LEARNING

SCIENTIFIC
PROGRAMMING

WITH PYTHON

CHRISTIAN HILL

Second Edition

Learning Scientific Programming with Python
Second Edition

Learn to master basic programming tasks from scratch with real-life, scientifically rel-
evant examples and solutions drawn from both science and engineering. Students and
researchers at all levels are increasingly turning to the powerful Python programming
language as an alternative to commercial packages and this fast-paced introduction
moves from the basics to advanced concepts in one complete volume, enabling readers
to gain proficiency quickly.

Beginning with general programming concepts such as loops and functions within
the core Python 3 language, and moving on to the NumPy, SciPy and Matplotlib
libraries for numerical programming and data visualization, this textbook also discusses
the use of Jupyter Notebooks to build rich-media, shareable documents for scientific
analysis. The second edition features a new chapter on data analysis with the pandas
library and comprehensive updates, new exercises and examples. A final chapter
introduces more advanced topics such as floating-point precision and algorithm stability,
and extensive online resources support further study. This textbook represents a targeted
package for students requiring a solid foundation in Python programming.

Christian Hill is a physicist and physical chemist currently working at the Interna-
tional Atomic Energy Agency. He has over 25 years’ experience of programming in the
physical sciences and has been programming in Python for 15 years. His research uses
Python to produce, analyze, process, curate and visualize large data sets in the area of
spectroscopy, plasma physics and material science.

Learning Scientific Programming
with Python

Second Edition

CHRISTIAN HILL

B CAMBRIDGE
%5 UNIVERSITY PRESS

CAMBRIDGE

UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi — 110025, India
79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University’s mission by disseminating knowledge in the
pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781108745918
DOI: 10.1017/9781108778039

© Christian Hill 2015, 2020

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.

First published 2015
Second edition 2020

Printed in the United Kingdom by TJ International Ltd, Padstow Cornwall
A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data

Names: Hill, Christian, 1974— author.

Title: Learning scientific programming with Python / Christian Hill.
Description: Second edition. | New York : Cambridge University Press, 2020.
| Includes bibliographical references and index.

Identifiers: LCCN 2020017917 (print) | LCCN 2020017918 (ebook)
| ISBN 9781108745918 (paperback) | ISBN 9781108778039 (epub)
Subjects: LCSH: Science—Data processing. | Science—Mathematics.

| Python (Computer program language)

Classification: LCC Q183.9 .H58 2020 (print) | LCC Q183.9 (ebook)
| DDC 005.13/3—dc23

LC record available at https://Iccn.loc.gov/2020017917

LC ebook record available at https://Iccn.loc.gov/2020017918

ISBN 978-1-108-74591-8 Paperback
Additional resources for this publication at www.cambridge.org/hill2 and https://scipython.com/

Cambridge University Press has no responsibility for the persistence or accuracy of
URL: for external or third-party internet websites referred to in this publication
and does not guarantee that any content on such websites is, or will remain,
accurate or appropriate.

www.cambridge.org
www.cambridge.org/9781108745918
http://dx.doi.org/10.1017/9781108778039
https://lccn.loc.gov/2020017917
https://lccn.loc.gov/2020017918
www.cambridge.org/hill2
https://scipython.com/

Contents

Acknowledgments
Code Listings

Introduction

1.1
1.2
1.3
14

About This Book
About Python
Installing Python
The Command Line

The Core Python Language |

2.1
2.2
23
24
25
2.6
2.7

The Python Shell

Numbers, Variables, Comparisons and Logic
Python Objects I: Strings

Python Objects II: Lists, Tuples and Loops
Control Flow

File Input/Output

Functions

Interlude: Simple Plots and Charts

3.1
32
33

Basic Plotting
Labels, Legends and Customization
More Advanced Plotting

The Core Python Language I

4.1
4.2
4.3
4.4
4.5
4.6

Errors and Exceptions

Python Objects III: Dictionaries and Sets
Pythonic Idioms: “Syntactic Sugar”
Operating-System Services

Modules and Packages

An Introduction to Object-Oriented Programming

page viii
ix

AN NN = =

o]

27
43
58
68
71

86

86
91
100

105

105
113
125
137
143
152

Vi

10

Contents

IPython and Jupyter Notebook

5.1 IPython
5.2 Jupyter Notebook

NumPy

6.1 Basic Array Methods

6.2 Reading and Writing an Array to a File
6.3 Statistical Methods

6.4 Polynomials

6.5 Linear Algebra

6.6 Random Sampling

6.7 Discrete Fourier Transforms

Matplotlib

7.1 Line Plots and Scatter Plots

7.2 Plot Customization and Refinement
7.3 Bar Charts, Pie Charts and Polar Plots
7.4 Annotating Plots

7.5 Contour Plots and Heatmaps

7.6 Three-Dimensional Plots

7.7 Animation

SciPy

8.1 Physical Constants and Special Functions

8.2 Integration and Ordinary Differential Equations
8.3 Interpolation

8.4 Optimization, Data-Fitting and Root-Finding

Data Analysis with pandas

9.1 Introduction to pandas

9.2 Reading and Writing Series and DataFrames
9.3 More Advanced Indexing

9.4 Data Cleaning and Exploration

9.5 Data Grouping and Aggregation

9.6 Examples

General Scientific Programming

10.1 Floating-Point Arithmetic
10.2 Stability and Conditioning
10.3 Programming Techniques and Software Development

172

172
186

196

196
228
239
246
261
276
287

294

294
299
314
323
336
348
352

358

358
381
408
414

438

438
452
462
468
479
483

490

490
498
503

Appendix A Solutions

Appendix B Differences Between Python Versions 2 and 3

Appendix C SciPy’s odeint Ordinary Differential Equation Solver

Glossary

Index

Contents

vii

514

536

540

543
549

viii

Acknowledgments

For Emma, Charlotte and Laurence

Many people have helped directly or indirectly in the preparation of this book, in partic-
ular Jonathan Tennyson at UCL, and Laurence Rothman and Iouli Gordon for hosting
my sabbatical year at the Harvard-Smithsonian Center for Astrophysics.

Many of the errors and omissions in the first edition of this book were pointed out
by just a few people who were helpful enough to get in touch, notably Stafford Baines,
Matthew Gillman and Stuart Anderson. Those that remain are, of course, entirely my
own fault.

Special thanks are also due to Helen Reynolds, Chris Pickard, Alison Whiteley,
James Elliott, Lianna Ishihara and Milo Shaffer. As ever, I owe much to the support,
encouragement and friendship of Natalie Haynes.

Code Listings

1.1
1.2
1.3
2.1
2.2
23
24
2.5
2.6
3.1
3.2
33

4.1
4.2
43
4.4
4.5
4.6
4.7
4.8
4.9
4.10
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10

Outputing a list of names using a program written in Python
Outputing a list of names using a program written in C

Different ways to output a list of names using a program written in Perl
Calculating the Fibonacci series in a list

Calculating the Fibonacci series without storing it

Determining if a year is a leap year

A virtual turtle robot

Python scope rules

The Tower of Hanoi problem

Plotting y = sin® x

An illustration of Moore’s law

The correlation between margarine consumption in the United States and
the divorce rate in Maine

Astronomical data

The Mersenne primes

Issuing a usage message for a script taking command-line arguments
Renaming data files by date

The Monty Hall problem

The definition of the abstract base class, BankAccount

Polymer class

The distribution of random flight polymers

A simple class representing a two-dimensional Cartesian vector

A simple two-dimensional molecular dynamics simulation

Creating a magic square

Verifying the validity of a Sudoku square

argmax and argmin

Reading the blood-pressure column

Analyzing data from a Stroop effect experiment

Simulation of the radioative decay of 'C

Calculating the correlation coefficient between air temperature and pressure
Liquid height in a spherical tank

Straight-line fit to absorbance data

Linear transformations in two dimensions

W NN

53
53
59
63
76
81
88
97

102
117
122
138
141
147
155
160
162
164
166
205
213
217
231
234
236
243
250
257
267

Code Listings

6.11
6.12
6.13
7.1
7.2
7.3
7.4
7.5
7.6
1.7

7.8

7.9

7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17
7.18
7.19
7.20
7.21
7.22

7.23
7.24
7.25

7.26

7.27
7.28
7.29
7.30
7.31
8.1
8.2
8.3
8.4

8.5

Linear least-squares fitting of the Beer—Lambert law

Modeling the distribution of '*C atoms in Cg

Blurring an image with a Gaussian filter

Scatter plot of demographic data for eight countries

The median age at first marriage in the US over time

The populations of five US cities over time

Exponential decay illustrated in terms of lifetimes

Customized tick marks

Wing-loading variation in swifts prior to fledging

The one-dimensional diffusion equation applied to the temperature of two
different metal bars

Ten subplots with zero vertical spacing

Letter frequencies in the text of Moby-Dick.

Visualizing renewable electricity generation in Germany

Pie chart of greenhouse gas emissions

Plotting the directive gain of a two-antenna system

Plotting the directive gain of a three-antenna system

Annotations with arrows in Matplotlib

Plotting a share price time series on an annotated chart

Some different ways to use ax.vlines and ax.hlines

A representation of the electromagnetic spectrum, 250-1000 nm

An analysis of the height-mass relationship in 507 healthy individuals
Some colorful shapes

The electrostatic potential of a point dipole

An example of filled and styled contours

A comparison of interpolation schemes for a small array visualized with
imshow ()

Barnsley’s fern

Heatmap of Boston’s temperatures in 2019

The two-dimensional diffusion equation applied to the temperature of a
steel plate

Four three-dimensional plots of a simple two-dimensional Gaussian func-
tion

A three-dimensional surface plot of a torus

A depiction of a helix on a three-dimensional plot

An animation of a decaying sine curve

An animation of a decaying sine curve, using blit=True

An animation of a bouncing ball

Least-well-defined physical constants

Probability densities for a particle in a uniform gravitational field

Normal modes of a vibrating circular drum

Generating an image of the diffraction pattern of a uniform, continuous
helix

The Gamma function on the real line

271
282
291
299
301
301
304
306
308

311
312
315
317
319
321
321
325
325
328
329
331
333
337
338

340
341
342

344

348
349
351
352
354
355
360
362
365

366
368

8.6
8.7
8.8

8.9

8.10
8.11
8.12

8.13
8.14

8.15

8.16
8.17

8.18

8.19
8.20
8.21
8.22
8.23
9.1

9.2

10.1

10.2
10.3
10.4
10.5
10.6
10.7
Al
A2
A3

A4

Code Listings

A comparison of the Lorentzian, Gaussian and Voigt line shapes

The spherical harmonic defined by [= 3,m = 2

Calculating the mass and center of mass of a tetrahedron given three differ-
ent densities

First-order reaction kinetics

Two coupled first-order reactions

Solution of the harmonic oscillator equation of motion

Calculating the motion of a sphere falling under the influence of gravity and
Stokes’ drag

Solution of the Robertson system of chemical reactions.

Calculating and plotting the trajectory of a spherical projectile including air
resistance.

A comparison of one-dimensional interpolation types using
scipy.interpolate.interpld

Two-dimensional interpolation with scipy.interpolate.interp2d
Interpolation onto a regular two-dimensional grid with
scipy.interpolate.RectBivariateSpline

Interpolation from an unstructured array of two-dimensional points with
scipy.interpolate.griddata

Minimizing the drag on an airship envelope

Nonlinear least squares-fit to an ellipse

Weighted and unweighted least-squares fitting with curve_fit

Solution of the Euler-Lotka equation

Generating a Newton fractal image

Reading in a text table of vitamin data

The height of a projectile as a function of time

Comparison of different step sizes, A, in the numerical solution of y’ = —ay
by the forward Euler algorithm

Comparison of algorithm stability in the calculation of I(n) = fol x'e*dx
A function to calculate the volume of a tetrahedron

Code to simulate rolling two dice containing magic numbers

Code to simulate rolling two dice refactored to use named constants

A function for converting between different temperature units

Unit tests for the temperature conversion function

The structural formula of a straight-chain alkane

Least-squares fit to the function x = xo + vot + % gt

Calculating the probability of g or more misprints on a given page of a
book.

A comparison of the numerical behavior of f(x) = (1 — cos? x)/x*> and
g(x) = sin® x/x2, close to x = 0.

Xi

373
377

385
387
390
392

394
397

400

408
410

410

412
423
426
428
432
433
454
458

499
500
504
506
506
510
511
517
527

528

534

1.1

Introduction

About This Book

This book is intended to help scientists and engineers learn version 3 of the Python
programming language and its associated libraries: NumPy, SciPy, Matplotlib and pan-
das. No prior programming experience or scientific knowledge in any particular field is
assumed. However, familiarity with some mathematical concepts such as trigonometry,
complex numbers and basic calculus is helpful to follow the examples and exercises.

Python is a powerful language with many advanced features and supplementary pack-
ages; while the basic syntax of the language is straightforward to learn, it would be
impossible to teach it in depth in a book of this size. Therefore, we aim for a balanced,
broad introduction to the central features of the language and its important libraries. The
text is interspersed with examples relevant to scientific research, and at the end of most
sections there are questions (short problems designed to test knowledge) and exercises
(longer problems that usually require a short computer program to solve). Although it
is not necessary to complete all of the exercises, readers will find it useful to attempt
at least some of them. Where a section, example or exercise contains more advanced
material that may be skipped on first reading, this is indicated with the symbol .

In Chapter 2 of this book, the basic syntax, data structures and flow control of a
Python program are introduced. Chapter 3 is a short interlude on the use of the pyplot
library for making graphical plots of data: this is useful to visualize the output of pro-
grams in subsequent chapters. Chapter 4 provides more advanced coverage of the core
Python language and a brief introduction to object-oriented programming. There fol-
lows another short chapter introducing the popular IPython and Jupyter Notebook envi-
ronments, before chapters on scientific programming with NumPy, Matplotlib, SciPy
and pandas. The final chapter covers more general topics in scientific programming,
including floating-point arithmetic, algorithm stability and programming style.

Readers who are already familiar with the Python programming language may wish
to skim Chapters 2 and 4.

Code examples and exercise solutions may be downloaded from the book’s web-
site at [https://scipython.com|. Note that while comments have been included in these
downloadable programs, they are not so extensive in the printed version of this book:
instead, the code is explained in the text itself through numbered annotations (such
as @). Readers typing in these programs for themselves may wish to add their own
explanatory comments to the code.

https://scipython.com

1.2

Introduction

About Python

Python is a powerful, general-purpose programming language devised by Guido van
Rossum in 1989.! It is classified as a high-level programming language in that it auto-
matically handles the most fundamental operations (such as memory management)
carried out at the processor level (“machine code”). It is considered a higher-level
language than, for example, C, because of its expressive syntax (which is close to
natural language in some cases) and rich variety of native data structures such as lists,
tuples, sets and dictionaries. For example, consider the following Python program which
outputs a list of names on separate lines.

Listing 1.1 Outputing a list of names using a program written in Python

egl-names.py: output three names to the console.

names = ['Isaac Newton', 'Marie Curie', 'Albert Einstein']
for name in names:
print (name)

Output:

Isaac Newton
Marie Curie
Albert Einstein

Now compare this with the equivalent program in C.

Listing 1.2 Outputing a list of names using a program written in C

/% egl-names.c: output a list of names to the console. */
#include <stdio.h>
#include <stdlib.h>

const char *names[] = {"Isaac Newton", "Marie Curie", "Albert Einstein"};
int main(void)
{

int 1i;

for (i = 0; i < (sizeof(names) / sizeof(*names)); i++) {

printf("%s\n", names[il);

return EXIT_SUCCESS;

Even if you are not familiar with the C language, you can see there is quite a lot
of overhead involved in coding even this simple task in C: two includes of libraries
not loaded by default, explicit declarations of variables to hold the list (“array”, in C)
of names, names, a counter, i, and explicit indexing of this array in a for loop; you
even need to add the line endings (“\n” is the “newline” character). This source code

1 Until recently, Python’s “benevolent dictator for life” (BDFL).

1.2.1

1.2 About Python 3

then has to be compiled — converted into the machine code that the computer processor
understands — before it can be run (executed). Furthermore, there is plenty of scope for
errors (bugs): trying to print the name stored in name[10] will likely cause junk to be
output: the C compiler won’t stop you from accessing this non-existent name.

The same program written in three lines of Python is clean and expressive: we do
not have to explicitly declare that names is a list of strings, there is no need for a loop
counter like i and there are no separate libraries to include (import in Python). To
run the Python program, one simply needs to type python egl-names.py which will
automatically invoke the Python “interpreter” to compile and then run the resulting
“bytecode” (a kind of intermediate representation of the program between its source
and the ultimate machine code that Python dispatches to the processor).

Python’s syntax aims to ensure that “There should be one — and preferably only one —
obvious way to do it.” This differs from some other popular high-level languages such as
Ruby and Perl, which take the opposite approach, encapsulated by the mantra “there’s
more than one way to do it”” For example, there are (at least) four obvious ways to
output the same list in Perl:?

Listing 1.3 Different ways to output a list of names using a program written in Perl

@names = ("Isaac Newton", "Marie Curie", "Albert Einstein");
Method 1
print "$_\n" for @names;

Method 2
print join "\n", @names;
print "\n";

Method 3
print map { "$_\n" } @names;

Method 4
$" = "\n";
print "@names\n";

(Note also Perl’s famously concise but somewhat opaque syntax.)

Advantages and Disadvantages of Python

Here are some of the main advantages of the Python programming language and why
you might want to use it:

. Its clean and simple syntax makes writing Python programs fast and generally
minimizes opportunities for bugs to creep in. When done right, the result is high-
quality software that is easy to maintain and extend.

. It’s free — Python and its associated libraries are free of cost and open source,
unlike commercial offerings such as Mathematica and MATLAB.

2 Well, obvious to Perl programmers.

Introduction

Cross-platform support: Python is available for every commonly available com-
puter system, including Windows, Unix, Linux and macOS. Although platform-
specific extensions exist, it is possible to write code that will run on any platform
without modification.

Python has a large library of modules and packages that extend its functionality.
Many of these are available as part of the “Standard Library” provided with the
Python interpreter itself. Others, including the NumPy, SciPy, Matplotlib and
pandas libraries used in scientific computing, can be downloaded separately at
no cost.

Python is relatively easy to learn. The syntax and idioms used for basic operations
are applied consistently in more advanced usage of the language. Error messages
are generally meaningful assessments of what went wrong rather than the generic
“crashes” that can occur in compiled lower-level languages such as C.

Python is flexible: it is often described as a “multi-paradigm” language that
contains the best features from the procedural, object-oriented and functional
programming paradigms. There is little need for the work-arounds required in
some languages when a problem can only be solved cleanly with one of these
approaches.

So where’s the catch? Well, Python does have some disadvantages and isn’t suitable

for every application.

The speed of execution of a Python program is not as fast as some other, fully
compiled languages such as C and Fortran. For heavily numerical work, the
NumPy and SciPy libraries alleviate this to some extent by using compiled-
C code “under the hood,” but at the expense of some reduced flexibility. For
many, many applications, however, the speed difference is not noticeable and
the reduced speed of execution is more than offset by a much faster speed of
development. That is, it takes much less time to write and debug a Python program
than to do the same in C, C++ or Java.

It is hard to hide or obfuscate the source code of a Python program to prevent
others from copying or modifying it. However, this doesn’t mean that successful
commercial Python programs don’t exist.

A common complaint about Python has historically been that its rapid devel-
opment has led to compatibility issues between versions. Certainly there are
important differences between Python 2 and Python 3 (described in the next
section and Appendix B), but the complaint stems from the fact that within the
Python 2 series there were major improvements and additions to the language that
meant that code written in a later version (say, 2.7) would not run on an earlier
version of Python (e.g. 2.6), although code written for an earlier version of Python
will always run on a later version (within the same branch, 2 or 3). If you use the
latest version of Python (see Section 1.3) you probably won’t run into a problem,
but some operating systems that come with Python are rather conservative and
install by default only an older version.

1.2.2

1.3

1.3 Installing Python 5

Python 2 or Python 37

On 1 January 2020, Python 2 reached its “end of life”: it will receive no further updates
or official support, and it is the newer Python 3 version that is being actively maintained
and developed. Although the differences between the two versions may seem minor,
code written in Python 3 will not run under Python 2 and vice versa: Python 3 is not
backward-compatible with its predecessor. This book teaches Python 3.

Since its release in 2009, the number of users and extent of library support for Python
3 has grown to the point that new users would find little benefit in learning Python 2
except to maintain legacy code.

There are several reasons for major change between versions (breaking your users’
existing code is not something to be undertaken lightly): Python 3 fixes some ugly
quirks and inconsistencies in the language and provides Unicode support for all strings
(eliminating a lot of the confusion that is created in dealing with Unicode and non-
Unicode strings in Python 2). Unicode is an international standard for the representation
of text in most of the writing systems in the world.

It is anticipated that most users of this book will not have trouble converting their
own code between the two versions of Python if necessary. The major differences are
listed and more information is given in Appendix B.

Installing Python

The official website of Python is www.python.org, and it contains full and easy-to-
follow instructions for downloading Python. However, there are several full distributions
which include the NumPy, SciPy and Matplotlib libraries (the “SciPy Stack™) to save
you from having to download and install these yourself:

° Anaconda is available for free (including for commerical use) from www.
anaconda.com/distribution. It installs both Python 2 and Python 3, but the default
version can be selected either before downloading as indicated on this web page,
or subsequently using the “conda” command.

. Enthought Deployment Manager (EDM) is a similar distribution with a free
version and various tiers of paid-for versions including technical support and
development software. It can be downloaded from https://assets.enthought.com/
downloads/.

In most cases, one of these distributions should be all you need. We provide some
platform-specific notes below.

The source code (and binaries for some platforms) for the NumPy, SciPy, Matplotlib
and [Python packages are available separately at:

. NumPy: https://github.com/numpy/numpy

. SciPy: https://github.com/scipy/scipy

. Matplotlib: https://matplotlib.org/users/installing.html
. [Python: https://github.com/ipython/ipython

www.python.org
www.anaconda.com/distribution
www.anaconda.com/distribution
https://assets.enthought.com/downloads/
https://assets.enthought.com/downloads/
https://github.com/numpy/numpy
https://github.com/scipy/scipy
https://matplotlib.org/users/installing.html
https://github.com/ipython/ipython

1.4

Introduction

. Jupyter Notebook and JupyterLab: https://jupyter.org/

Windows

Windows users have a couple of further options for installing the full SciPy stack:
Python(x,y) (https://python-xy.github.io) and WinPython (https://winpython.github.io/).
Both are free.

macOS

macOS (formerly Mac OS X), being based on Unix, comes with Python, but it is
usually an older version of Python 2. You must not delete or modify this installation
(it’s needed by the operating system), but you can follow the instructions above for
obtaining Python 3 and the SciPy stack. macOS does not have a native package manager
(an application for managing and installing software), but the two popular third-party
package managers, Homebrew (https://brew.sh/) and MacPorts (www.macports.org),
can both supply Python 3 and its packages if you prefer this option.

Linux

Almost all Linux distributions come with Python 2, but usually not Python 3, so you
may need to install it from the links above: the Anaconda and Enthought distributions
both have versions for Linux. Most Linux distributions come with their own software
package managers (e.g. apt in Debian and rpm for RedHat). These can be used to
install Python 3 and its libraries, though finding the necessary package repositories may
take some research on the Internet. Be careful not to replace or modify your system
installation as other applications may depend on it.

The Command Line

Most of the code examples in this book are written as stand-alone programs which can
be run from the command line (or from within an integrated development environment
(IDE) if you use one: see Section 10.3.2). To access the command-line interface (also
known as a console or terminal) on different platforms, follow the instructions below.

. Windows 7 and earlier: Start > All Programs > Command Prompt; alternatively,
type cmd in the Start > Run input box.

. Windows 8: Preview (lower left of screen) > Windows System: All apps; alterna-
tively type cmd in the search box pulled down the top right corner of the screen.

° Windows 10: From the Start Menu (Windows icon, lower left of screen) >

Windows System > Command Prompt; alternatively type cmd in the search box
accessed from the bottom-left corner of the screen, next to the Windows icon.

. Mac OS X and macOS: Finder > Applications > Utilities > Terminal

. Linux: if you are not using a graphical interface you are already at the command
line; if you are, then locate the Terminal application (distributions vary, but it is
usually found within a System Utilities or System Tools subfolder).

https://jupyter.org/
https://python-xy.github.io
https://winpython.github.io/
https://brew.sh/
www.macports.org

1.4 The Command Line 7

Commands typed at the command line are interpreted by an application called a shell,
which allows the user to navigate the file system and is able to start other applications.
For example, the command

python myprog.py

instructs the shell to invoke the Python interpreter, sending it the file myprog.py as the
script to execute. Output from the program is then returned to the shell and displayed in
your console.

2.1

The Core Python Language |

The Python Shell

This chapter introduces the syntax, structure and data types of the Python programming
language. The first few sections do not involve writing much beyond a few statements
of Python code and so can be followed using the Python shell. This is an interactive
environment: the user enters Python statements that are executed immediately after the
Enter key is pressed.

The steps for accessing the “native” Python shell differ by operating system. To start
it from the command line, first open a terminal using the instructions from Section 1.4
and type python.

To exit the Python shell, type exit ().

When you start the Python shell, you will be greeted by a message (which will vary
depending on your operating system and precise Python version). On my system, the
message reads:

Python 3.7.5 (default, Oct 25 2019, 10:52:18)
[Clang 4.0.1 (tags/RELEASE_401/final)] :: Anaconda, Inc. on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>>

The three chevrons (>>>) are the prompt, which is where you will enter your Python
commands. Note that this book is concerned with Python 3, so you should check that
the Python version number reported on the first line is Python 3.X.Y where the precise
values of the minor version numbers X and Y should not be important.

Many Python distributions come with a slightly more advanced shell called IDLE,
which features tab-completion, and syntax highlighting (Python keywords are colored
specially when you type them). We will pass over the use of this application in favor of
the newer and more advanced /Python environment, discussed in Chapter 5.

It is also possible for many installations (especially on Windows) to start a Python
shell directly from an application installed when you install the Python interpreter itself.
Some installations even add a shortcut icon to your desktop which will open a Python
shell when you click on it.

2.2

2.21

2.2 Numbers, Variables, Comparisons and Logic 9

Numbers, Variables, Comparisons and Logic

Types of Numbers

Among the most basic Python objects are the numbers, which come in three rypes:
integers (type: int), floating-point numbers (type: float) and complex numbers (type:
complex).

Integers
Integers are whole numbers such as 1, 8, =72 and 3847298893721407. In Python 3,
there is no limit to their magnitude (apart from the availability of your computer’s
memory). Integer arithmetic is exact.

For clarity, it is possible to separate any pair of digits by an underscore character,
For example, 299_792_458 is interpreted as the same number as 299792458.

I3 L)

Floating-Point Numbers
Floating-point numbers are the representation of real numbers such as 1.2, —0.36 and
1.67263 x 1077, They do not, in general, have the exact value of the real number
they represent, but are stored in binary to a certain precision (on most systems, to the
equivalent of 15-16 decimal places),' as explained in Section 10.1. For example, the
number % is stored as the binary equivalent of 1.33333333333333325931846502.. .,
which is nearly (but not quite) the same as the infinitely repeating decimal representation
of % = 1.3333 .- .. Moreover, even numbers that do have an exact decimal representation
may not have an exact binary representation: for example 1/10 is represented by the
binary number equivalent to 0.10000000000000000555111512 .. . Because of this finite
precision, floating-point arithmetic is not exact but, with care, it is “good enough” for
most scientific applications.

Any single number containing a period (“.”) is considered by Python to specify
a floating-point number. Scientific notation is supported using “e” or “E” to separate
the significand (mantissa) from the exponent: for example, 1.67263e-7 represents the
number 1.67263 x 1077,

As with integers, pairs of digits may be separated by an underscore. For example,
1.602_176_634e-34.

Complex Numbers
Complex numbers such as 4+ 3 j consist of a real and an imaginary part (denoted by j in
Python), each of which is itself represented as a floating-point number (even if specified
without a period). Complex number arithmetic is therefore not exact but subject to the
same finite precision considerations as floats.

A complex number may be specified either by “adding” a real number to an imaginary
one (denoted by the j suffix), asin 2.3 + 1.2j or by separating the real and imaginary
parts in a call to complex, as in complex(2.3, 1.2).

! This corresponds to the implementation of the IEEE-754 double-precision standard.

10

222

o0

The Core Python Language |

Example E2.1 Typing a number at the Python shell prompt simply echoes the num-
ber back to you:

>>> 5

5

>>> 5.

5.0

>>> 0.10

0.1

>>> 0.0001
0.0001

>>> 0.0000999
9.99e-05

Note that the Python interpreter displays numbers in a standard way. For example:
© The internal representation of 0.1 discussed earlier is rounded to “08. 1,” which is the
shortest number with this representation.
® Numbers smaller in magnitude than 0.0001 are displayed in scientific notation.
A number of one type can be created from a number of another type with the relevant
constructor:
>>> float(5)
5.0
>>> int (5.2)
5
>>> int (5.9)
5
>>> complex(3.)
(3+03)
>>> complex (0., 3.)
3j
©® Note that a positive floating-point number is rounded down in casting it into an
integer; more generally, int rounds towards zero: int(-1.4) would yield -1.
® Constructing a complex object from a float generates a complex number with the
imaginary part equal to zero.
® To generate a pure imaginary number, you have to explicitly pass two numbers to
complex with the first, real part, equal to zero.

Using the Python Shell as a Calculator

Basic Arithmetic
With the three basic number types described earlier, it is possible to use the Python shell
as a simple calculator using the operators given in Table 2.1. These are binary operators
in that they act on two numbers (the operands) to produce a third (e.g. 2**3 evaluates
to 8).

Python 3 has two types of division: floating-point division (/) always returns a
floating-point (or complex) number result, even if it acts on integers. Integer division

2.2 Numbers, Variables, Comparisons and Logic 11

Table 2.1 Basic Python
arithmetic operators

+ Addition

- Subtraction
Multiplication

/ Floating-point division
// Integer division

% Modulus (remainder)
** Exponentiation

(//) always rounds down the result to the nearest smaller integer (“floor division”); the
type of the resulting number is an int only if both of its operands are ints; otherwise it
returns a float. Some examples should make this clearer:
Regular (“true”) floating-point division with (/):
>>> 2.7 / 2
1.35
>>> 9 / 2
4.5

>>> 8 / 4
2.0

The last operation returns a float even though both operands are ints.
Integer division with (//):

>>> 8 // 4

2

>>>9 // 2

4

>>> 2.7 // 2
1.0

Note that // can perform integer arithmetic (rounding down) on floating-point numbers.
The modulus operator gives the remainder of an integer division:

>>> 9 % 2

1

>>> 4.5 % 3
1.5

Again, the number returned is an int only if both of the operands are ints.

Operator Precedence
Arithmetic operations can be strung together in a sequence, which naturally raises the
question of precedence: for example, does 2 + 4 * 3 evaluate to 14 (as 2 + 12) or 18
(as 6 * 3)7Table 2.2 shows that the answer is 14: multiplication has a higher precedence
than addition and is evaluated first. These precedence rules are overridden by the use of
parentheses: for example, (2 + 4) * 3 = 18.

Operators of equal precedence are evaluated left to right with the exception of expo-
nentiation (**), which is evaluated right to left (that is, “top down” when written using
the conventional superscript notation). For example,

12

The Core Python Language |

Table 2.2 Python arithmetic
operator precedence

e (highest precedence)

/. /1%

+, - (lowest precedence)

>>6 /2 / 4 # the same as 3 / 4
0.75

>>> 6 / (2 / 4) # the same as 6 / 0.5
12.0

>>> 2%HFQH*3 # the same as 2**(2%*3) == 2%**8
256

>>> (2%%2)%*3 # the same as 4%*3
64

In examples such as these, the text following the hash symbol, #, is a comment that is
ignored by the interpreter. We shall sometimes use comments in this to explain more
about a statement, but it is not necessary to type it in if you try out the code.

Methods and Attributes of Numbers
Python numbers are objects (in fact, everything in Python is an object) and have certain
attributes, accessed using the “dot” notation: <object>.<attribute> (this use of the
period has nothing to do with the decimal point appearing in a floating-point num-
ber). Some attributes are simple values: for example, complex number objects have the
attributes real and imag, which are the real and imaginary (floating-point) parts of the
number:
>>> (4 + 5j).real
4.9
>>> (4 + 5j).imag
5.0

Other attributes are methods: callable functions that act on their object in some way.?
For example, complex numbers have a method, conjugate, which returns the complex
conjugate:
>>> (4 + 5j).conjugate()
(4-53)
Here, the empty parentheses indicate that the method is to be called, that is, the function
to calculate the complex conjugate is to be run on the number 4 + 5j; if we omit them,
asin (4 + 5j).conjugate, we are referring to the method itself (without calling it) —
this method is itself an object!

Integers and floating-point numbers don’t actually have very many attributes that it
makes sense to use in this way, but if you’re curious you can find out how many bits an
integer takes up in memory by calling its bit_length method. For example,

2 In this book, we will use the terms method and function interchangeably. In Python, everything is an object
and the distinction is not as meaningful as it is in some other languages.

2.2 Numbers, Variables, Comparisons and Logic 13

>>> (3847298893721407).bit_length()
52

Note that Python allocates as much memory as is necessary to exactly represent the
integer.

Mathematical Functions
Two of the mathematical functions that are provided “by default” as so-called built-ins
are abs and round.

abs returns the absolute value of a number as follows:

>>> abs(-5.2)
5.2

>>> abs(-2)

2

>>> abs(3 + 4j)
5.0

This is an example of polymorphism: the same function, abs, does different things to
different objects. If passed a real number, x, it returns |x|, the nonnegative magnitude of
that number, without regard to sign; if passed a complex number, z = x + iy, it returns
the modulus, |z] = /x2 + y2.

The round function (with one argument) rounds a floating-point number to the nearest
integer, employing Banker’s rounding:>
>>> round(-9.62)
-10
>>> round (7.5)
8

>>> round (4.5)
4

One can also specify the number of digits of precision after the decimal point as a
second argument to round():

>>> round(3.141592653589793, 3)
3.142
>>> round(96485.33289, -2)
96500.0

Python is a very modular language: functionality is available in packages and mod-
ules that are imported if they are needed but are not loaded by default: this keeps the
memory required to run a Python program to a minimum and improves performance.
For example, many useful mathematical functions are provided by the math module,
which is imported with the statement

>>> import math

The math module concerns itself with floating-point and integer operations (for func-
tions of complex numbers, there is another module, called cmath). These are called
by passing one (or sometimes more than one) number to them inside parentheses (the
numbers are said to act as arguments to the function being called). For example,

3 In Banker’s rounding, half-integers are rounded to the nearest even integer.

14

The Core Python Language |

Table 2.3 Some functions provided by the math module. Angular
arguments are assumed to be in radians.

math.sqrt(x) Vx

math.exp(x) e*

math.log(x) In x

math.log(x, b) log,, x

math.logl®(x) logo x

math.sin(x) sin(x)

math.cos(x) cos(x)

math.tan(x) tan(x)

math.asin(x) arcsin(x)

math.acos(x) arccos(x)

math.atan(x) arctan(x)

math.sinh(x) sinh(x)

math.cosh(x) cosh(x)

math.tanh(x) tanh(x)

math.asinh(x) arsinh(x)

math.acosh(x) arcosh(x)

math.atanh(x) artanh(X)

math.hypot(x, y) The Euclidean norm, 4/x? + y?
math.factorial (x) x!

math.erf(x) The error function at x
math.gamma(x) The gamma function at x, I'(x)
math.degrees(x) Converts x from radians to degrees
math.radians(x) Converts x from degrees to radians

math.isclose(a, b) Testif a and b are equal to within some tolerance

>>> import math
>>> math.exp(-1.5)
0.22313016014842982
>>> math.cos (0)

1.0

>>> math.sqrt (16)
4.0

A complete list of the mathematical functions provided by the math module is avail-
able in the online documentation:* the more commonly used ones are listed in Table
2.3.

The math module also provides two very useful nonfunction attributes: math.pi and
math. e give the values of 7 and e, the base of the natural logarithm, respectively.

It is possible to import the math module with “from math import *” and access its
functions directly:
>>> from math import *

>>> cos(pi)
-1.0

4 https://docs.python.org/3/library/math.html.

https://docs.python.org/3/library/math.html

2.2.3

2.2 Numbers, Variables, Comparisons and Logic 15

However, although this may be convenient for interacting with the Python shell, it is
not recommended in Python programs. There is a danger of name conflicts (particularly
if many modules are imported in this way), and it makes it difficult to know which
function comes from which module. Importing with import math keeps the functions
bound to their module’s namespace: thus, even though math. cos requires more typing
it makes for code that is much easier to understand and maintain.

Example E2.2 As might be expected, mathematical functions can be strung together
in a single expression:

>>> import math

>>> math.sin(math.pi/2)

1.0

>>> math.degrees(math.acos(math.sqrt(3)/2))
30.000000000000004

Note the finite precision here: the exact answer is arccos(V3 /2) = 30°.
The fact that the int function rounds down in casting a positive floating-point number
to an integer can be used to find the number of digits a positive integer has:
>>> int(math.logl10(9999)) + 1
4

>>> int(math.logl®(10000)) + 1
5

Variables

What Is a Variable?

When an object, such as a float, is created in a Python program or using the Python
shell, memory is allocated for it: the location of this memory within the computer’s
architecture is called its address. The actual value of an object’s address isn’t actually
very useful in Python, but if you’re curious you can find it out by calling the id built-in
method:

>>> 1d(20.1)
4297273888 # for example

This number refers to a specific location in memory that has been allocated to hold the
float object with the value 20. 1.

For anything beyond the most basic usage, it is necessary to store the objects that are
involved in a calculation or algorithm and to be able to refer to them by some convenient
and meaningful name (rather than an address in memory). This is what variables are
for.> A variable name can be assigned (“bound”) to any object and used to identify that
object in future calculations. For example,

>>> a = 3

3 In Python, it is arguably better to talk of object identifiers or identifier names rather than variables, but we
will not be too strict about this.

16

The Core Python Language |

>>> b = -0.5
>>>a * b
-1.5

In this snippet, we create the int object with the value 3 and assign the variable name
a to it. We then create the float object with the value -0.5 and assign b to it. Finally,
the calculation a * b is carried out: the values of a and b are multiplied together and
the result returned. This result isn’t assigned to any variable, so after being output to the
screen it is thrown away. That is, the memory required to store the result, a float with
the value -1.5, is allocated for long enough for it to be displayed to the user, but then it
is gone.® If we need the result for some subsequent calculation, we should assign it to
another variable:

>>c=a*b

>>> ¢
-1.5

Note that we did not have to declare the variables before we assign them (tell Python
that the variable name a is to refer to an integer, b is to refer to a floating-point num-
ber, etc.), as is necessary in some computer languages. Python is a dynamically typed
language and the necessary object type is inferred from its definition: in the absence of
a decimal point, the number 3 is assumed to be an int; -0.5 looks like a floating-point
number and so Python defines b to be a float.”

Variable Names
There are some rules about what makes a valid variable name:

. Variable names are case-sensitive: a and A are different variables;

. Variable names can contain any letter, the underscore character (“_") and any
digit (0-9) ...

° ... but must not start with a digit;

. A variable name must not be the same as one of the reserved keywords given in
Table 2.4;

. The built-in constant names True, False and None cannot be assigned as variable
names.

Most of the reserved keywords are pretty unlikely choices for variable names, with
the exception of lambda. Python programmers often use lam if they need to use it. A
good text editor will highlight the keywords as you type your program, so this rarely
causes confusion.

It is possible to give a variable the same name as a built-in function (e.g. abs and
round), but that built-in function will no longer be available after such an assignment,

6 Actually in an interactive Python session the result of the last calculation is stored in the special variable
called _ (the underscore), so it isn’t really thrown away until overwritten by the next calculation.

7 This is sometimes called duck-typing after the phrase attributed to James Whitcomb Riley: “When I see a
bird that walks like a duck and swims like a duck and quacks like a duck, I call that bird a duck.”

2.2 Numbers, Variables, Comparisons and Logic 17

Table 2.4 Python 3 reserved keywords

and as assert async await break
class continue def del elif else
except finally for from global if
import in is lambda nonlocal not
or pass raise return try while
with yield False True None

so this is probably best avoided — luckily, most have names that are unlikely to be chosen
in practice.®

In addition to the rules mentioned earlier, there are certain style considerations that
dictate good practice in naming variables:

° Variable names should be meaningful (area is better than a) ...

° ...but not too long (the_area_of_the_triangle is unwieldy);

. Generally, don’t use I (upper-case i), 1 (lower-case L) or the upper-case letter 0:
they look too much like the digits 1 and O;

. The variable names i, j and k are usually used as integer counters;

. Use lower-case names, with words separated by underscores rather than

“CamelCase”: for example, mean_height and not MeanHeight.

These and many other rules and conventions are codified in a style guide called PEP8
which forms part of the Python documentation'? (see also Section 10.3.1).

Breaking these style rules will not result in your program failing to run, but it might
make it harder to maintain and debug — the person you help might be yourself!

Example E2.3 Heron'’s formula gives the area, A, of a triangle with sides a, b, ¢ as

A = +[s(s — a)(s — b)(s — ¢) where s = L(a+ b +).

For example,

>>> a = 4.503

>>> b = 2.377

>>> ¢ = 3.902

>>s = (a+b+c) /2

>>> area = math.sqrt(s * (s - a) * (s - b) * (s - <))
>>> area

4.63511081571606

© Don’t forget to import math if you haven’t already in this Python session.

8 For a complete list of built-in function names, see https://docs.python.org/3/library/functions.html.
9 CamelCase in Python is usually reserved for class names: see Section 4.6.2.
10 https://legacy.python.org/dev/peps/pep-0008/.

https://docs.python.org/3/library/functions.html
https://legacy.python.org/dev/peps/pep-0008/

18

224

The Core Python Language |

Table 2.5 Python comparison

operators

== Equal to

= Not equal to

> Greater than

< Less than

>= Greater than or equal to
<= Less than or equal to

Example E2.4 The data type and memory address of the object referred to by a
variable name can be found with the built-ins type and id:

>>> type(a)

<class 'float'>

>>> id(area)

4298539728 # for example

Comparisons and Logic

Operators
The main comparison operators that are used in Python to compare objects (such as
numbers) are given in Table 2.5.

The result of a comparison is a boolean object (of type bool) which has exactly
one of two values: True or False. These are built-in constant keywords and cannot be
reassigned to other values. For example,
>>> 7 ==
False

>>> 4 >= 3.14
True

Python is able, as far as possible without ambiguity, to compare objects of different
types: the integer 4 is promoted to a float for comparison with the number 3. 14.

Note the importance of the difference between == and =. The single equals sign is
an assignment, which does not return a value: the statement a = 7 assigns the variable
name a to the integer object 7 and that is all, whereas the expression a == 7 is a test: it
returns True or False depending on the value of a.!!

Care should be taken in comparing floating-point numbers for equality. Since they
are not stored exactly, calculations involving them frequently lead to a loss of precision
and this can give unexpected results to the unwary. For example,
>>> a = 0.01
>>> b = 0.1%*%2

>>> a == b
False

11 In some languages, such as C, assignment returns the value of whatever is being assigned, which can lead
to some nasty and hard-to-find bugs when = is mistakenly used as a comparison operator.

2.2 Numbers, Variables, Comparisons and Logic 19

In this example, 0.01 cannot be represented exactly as a floating-point number but is
(on my system) stored as a binary number equivalent to 0.010000000000000000208;
the result of squaring the floating-point representation of 0.1 on the other hand is
0.01000000000000000194, and these two numbers are not the same. See Section 10.1
for more information.

Since Python 3.5, the math library has provided a function, isclose, to test whether
two floating-point numbers are equal to within some absolute or relative tolerance:

>>> math.isclose(0.1**2, 0.01)
True

The relative tolerance can be set with the rel_tol argument, which defaults to 1.e-9:
this is the maximum allowed difference between the two numbers relative to the larger
absolute value of them; for example, to test if a and b are within 5% of the larger of
them:

>>> a = 9.5

>>> b = 10
>>> math.isclose(a, b, rel_tol=0.05)
True

This kind of relative comparison is problematic when one of the numbers is zero,'2, in

which case it can be helpful to test against an absolute tolerance, set by the abs_tol
argument (which defaults to 0):

>>> math.isclose(0, 1l.e-12) # relative tolerance comparison fails if rel_tol < 1
False

>>> math.isclose(®, 1.e-12, abs_tol=1.e-10)
True

Table 2.6 Truth table
for the not operator

P not P
True False
False True
Logic Operators

Comparisons can be modified and strung together with the logic operator keywords and,
not and or. See Tables 2.6, 2.7 and 2.8. For example,

>>> 7.0 > 4 and -1 >= 0 # equivalent to True and False
False

>> 5 < 4 0r 1 I=2 # equivalent to False or True
True

12 The relative difference between any number a and 0 is (la| — 0)/]a| which is certainly bigger than rel_tol
if rel_tol is less than 1.

20

The Core Python Language |

Table 2.7 Truth table for the and

operator

P Q P and Q
True True True
False True False
True False False
False False False

Table 2.8 Truth table for the or

operator

P Q P or Q
True True True
False True True
True False True
False False False

In compound expressions such as these, the comparison operators are evaluated first,
and then the logic operators in order of precedence: not, and, or. This precedence is
overridden with parentheses, as for arithmetic. Thus,

>>> not 7.5 < 0.9 or 4 ==

True

>>> not (7.5 < 0.9 or 4 == 4)
False

The truth tables for the logic operators are given below; note that, in common with most
languages or in Python is the inclusive or variant for which A or Bis True if both A and
B are True, rather than the exclusive or operator (A xor B is True only if one but not
both of A and B are True'?).

Boolean Equivalents and Conditional Assignment

In a logic test expression, it is not always necessary to make an explicit comparison to
obtain a boolean value: Python will try to convert an object to a bool type if needed.
For numerical objects, 0 evaluates to False and any nonzero value is True:

>>> a =0

>>> a or 4 < 3 # same as: False or 4 < 3
False

>>>

>>> not a + 1 # same as: not True
False

13 This xor built-in operator does not exist in Python, but it can be imported as a function with from operator
import xor. The call: xor(a, b) returns True or False.

2.2 Numbers, Variables, Comparisons and Logic 21

In this last example, addition has higher precedence than the logic operator not, so
a + 11is evaluated first to give 1. This corresponds to boolean True, and so the whole
expression is equivalent to not True. To explicitly convert an object to a boolean object,
use the bool constructor:

>>> bool(-1)

True

>>> b00l(0.0)
False

In fact, the and and or operators always return one of their operands and not just its bool
equivalent. So, for example:

>>>a =0

>>> a - 2 or a

-2

>>> 4 > 3 and a - 2

-2

>>> 4 > 3 and a

)

Logic expressions are evaluated left to right, and those involving and or or are short-
circuited: the second expression is only evaluated if necessary to decide the truth value
of the whole expression. The three examples presented here can be analyzed as follows:
O In the first example, a — 2 is evaluated first: this is equal to —2, which is equivalent
to True, so the or condition is fulfilled and the operand evaluating to True is returned
immediately: —2.

® 4 > 3is True, so the second expression must be evaluated to establish the truth of
the and condition. a — 2 is equal to —2, which is also equivalent to True, so the and
condition is fulfilled and —2 (as the most recently evaluated expression) is returned.

© In the last case, a is 0 which is equivalent to False: the and condition evaluates to
False because of this, and so the return value is 0.

Python’s Special Value, None
Python defines a single value, None, of the special type, NoneType. It is used to represent
the absence of a defined value, for example, where no value is possible or relevant. This
is particularly helpful in avoiding arbitrary default values (such as @, -1 or —99) for bad
or missing data.

In a boolean comparison, None evaluates to False, but to test whether or not a vari-
able, x, is equal to None, use

if x is None

and
if x is not None

rather than the shortcuts if x and if not x.!4

14 Note that not x also evaluates to True if x is any of 8, False or an empty data structure such as an empty
list, [], or string, ''; it is, therefore, not a very reliable way to test specifically if x is not set to None.

22

225

The Core Python Language |

Example E2.5 A common Python idiom is to assign a variable using the return value
of a logic expression:

>>> a =0

>>> b = a or -1

>>> b

-1

That is (for a understood to be an integer): “set b equal to the value of a unless a == 0,
in which case set b equal to —1.”

Immutability and Identity

The objects presented so far, such as integers and booleans, are immutable. Immutable
objects do not change after they are created, though a variable name may be reassigned
to refer to a different object from the one it was originally assigned to. For example,
consider the assignments:

>>> a = 8
>>> b = a

The first line creates the integer object with value 8 in memory, and assigns the name
a to it. The second line assigns the name b to the same object. You can see this by
inspecting the address of the object referred to by each name:

>>> id(a)

4297273504

>>> id(b)
4297273504

Thus, a and b are references to the same integer object. Now suppose a is reassigned to
a new number object:
>>> a = 3.14

>>> a

3.14

>>> b

8

>>> id(a)

4298630152

>>> id(b)

4297273504

Note that the value of b has not changed: this variable still refers to the original 8. The
variable a now refers to a new, float object with the value 3. 14 located at a new address.
This is what is meant by immutability: it is not the “variable” that cannot change but the
immutable object itself — see Figure 2.1.

A more convenient way to establish if two variables refer to the same object is to use
the is operator, which determines object identity:

>>> a = 2432
>>> b = a

2.2 Numbers, Variables, Comparisons and Logic 23

>>> a is b
True

>>> ¢ = 2432
>>> ¢ is a
False

>>> C == a
True

Here, the assignment ¢ = 2432 creates an entirely new integer object so ¢ is a evalu-
ates as False, even though a and c have the same value. That is, the two variables refer
to different objects with the same value.

It is often necessary to change the value of a variable in some way, such as
>>> a = 800
>>>a =a + 1

>>> a
801

The integers 800 and 801 are immutable: the linea = a + 1 creates a new integer object
with the value 801 (the right-hand side is evaluated first) and assigns it to the variable
name a (the old 800 is forgotten'> unless some other variable refers to it). That is, a
points to a different address before and after this statement.

This reassignment of a variable by an arithmetic operation on its value is so common
that there is a useful shorthand notation: the augmented assignment a += 5 is the same
as a = a + 5. The operators -=, *=, /=, //=, %= work in the same way. C-style incre-
ment and decrement operations such as a++ for a += 1 are not supported in Python,

however. 10
a >/ 8]
(a)
b
8] a 3.14
(b)
b

Figure 2.1 (a) Two variables referring to the same integer; (b) after reassigning the value of a.

15 That is, the memory assigned for it by Python is reclaimed (“garbage-collected”) for general use.
16- Assignment and augmented assignment in Python are statements not expressions and so do not return a
value and cannot be chained together.

24

O
2.2.6
Questions

The Core Python Language |

Example E2.6 Python provides the operator is not: it is more natural to write ¢ is
not athannot c is a.

>>> a = 8

>>> b = a

>>> b is a
True

>>> b /= 2

>>> b is not a
True

Example E2.7 Given the previous discussion, it might come as a surprise to find that

>>> a = 256
>>> b = 256
>>> a is b
True

This happens because Python keeps a cache of commonly used, small integer objects
(on my system, the numbers -5 to 256). To improve performance, the assignment a =
256 attaches the variable name a to the existing integer object without having to allocate
new memory for it. Because the same thing happens with b, the two variables in this
case do, in fact, point to the same object. By contrast,

>>> a = 257

>>> b = 257

>>> a is b
False

Exercises

Q2.2.1 Predict the result of the following expressions and check them using the
Python shell.

(@) 2.7 /2
b 2/4-1
© 2//4-1

(d @ +5)%3
() 2+5%3

 3*4//6
(g 3*@// 6
(h) 3% 2 %2
(i) 3 %2 %2

Q2.2.2 The operators listed in Table 2.1 are all binary operators: they take two
operands (numbers) and return a single value. The symbol — is also used as a unary

2.2 Numbers, Variables, Comparisons and Logic 25

operator, which returns the negative value of the single operand on which it acts. For
example,

>>> a = 4

>>> b = -a

>>> b

-4

Note that the expression b = -a (which sets the variable b to the negative value of a) is
different from the expression b -= a (which subtracts a from b and stores the result in

b). The unary — operator has a higher precedence than *, / and % but a lower precedence
than exponentiation (**), so that, for example -2 ** 41is -16 (i.e. —(2%), not (-2)*).
Predict the result of the following expressions and check them using the Python shell.

(a) -2 =2

(b) 2 ** -2

(c) -2 =** -2

(d 2 #*2**3
(e) 2 %% 3 ¥x 2

() -2 %x 3 #x 2
(@ (-2) ** 3 % 2
(h) (=2) ** 2 3

Q2.2.3 Predict and explain the results of the following statements.

@ 9+6j/2

(b) complex(4, 5).conjugate().imag

(c) complex(®, 3j)

(d) round(2.5)

(e) round(-2.5)

(f) abs(complex(5, -4)) == math.hypot(4,5)

Q2.2.4 Determine the value of i as a real number, where i = V-1.

Q2.2.5 Explain the (surprising?) behavior of the following short code:

8

>>> e 2

>>> from math import *
>>> sqrt(d ** e)
16.88210319127114

>>> d

Q2.2.6 Formally, the integer division a // b is defined as the floor of a/b (sometimes
written | #]) — that is, the largest integer less than or equal to a / b. The modulus or
remainder, a % b (also written a mod b), is then

a
db= —bH.
a mo a b

Use these definitions to predict the result of the following expressions and check them
using the Python shell.

26

Problems

The Core Python Language |

@ 7//4
by 7%4
) -7//4
d -7%4
e 7// -4
) 7%-4
(& -7//-4
(h) -7% -4

Q2.2.7 If two adjacent sides of a regular, six-sided die have the values a and b when
viewed side-on and read left to right, the value on the top of the die is given by 3(a’b —
ab®) mod 7.

Determine the value on the top of the die if (a) a = 2,6 =6, (b) a = 3,b = 5.

Q2.2.8 How many times must a sheet of paper (thickness, £ = 0.1 mm but otherwise
any size required) be folded to reach the Moon (distance from Earth, d = 384 400 km)?

Q2.2.9 Predict the results of the following expressions and check them using the
Python shell.

(@ mnotl<2o0r4>2
(b) not (1 <2or 4>2)
(c) 1<2o0r4>2

(d 4 >2or 18/0 ==
() not 0 <1

) 1 and 2
(g0 0 and 1
(h) 1o0ro

(i) type(complex(2, 3).real) is int

Q2.2.10 Explain why the following expression does not evaluate to 100.
>>> 1042

8

Hint: refer to the Python documentation for bitwise operators.

P2.2.1 There is no exclusive-or operator provided “out of the box” by Python, but one
can be constructed from the existing operators. Devise two different ways of doing this.
The truth table for the xor operator is given in Table 2.9.

P2.2.2 Some fun with the math module:

(a) What is special about the numbers sin (2017 \75) and (7 + 20)'?
(b) What happens if you try to evaluate an expression, such as ¢'°°°, which generates

a number larger than the largest floating-point number that can be represented

2.3

2.3.1

2.3 Python Objects I: Strings 27

in the default double precision? What if you restrict your calculation to integer
arithmetic (e.g. by evaluating 1000!)?

(c) What happens if you try to perform an undefined mathematical operation such as
division by zero?

(d) The maximum representable floating-point number in IEEE-754 double precision
is about 1.8 x 10°%. Calculate the length of the hypotenuse of a right-angled
triangle with opposite and adjacent sides 1.5 x 10?% and 3.5 x 10%°! (i) using the
math.hypot () function directly and (ii) without using this function.

P2.2.3 Some languages provide a sign(a) function which returns —1 if its argument,
a, is negative and 1 otherwise. Python does not provide such a function, but the math
module does include a function math.copysign(x, y), which returns the absolute value
of x with the sign of y. How would you use this function in the same way as the missing
sign(a) function?

P2.2.4 The World Geodetic System is a set of international standards for describing
the shape of the Earth. In the latest WGS-84 revision, the Earth’s geoid is approximated
to a reference ellipsoid that takes the form of an oblate spheroid with semi-major and
semi-minor axes a = 6378 137.0 m and ¢ = 6356 752.314245 m respectively.

Use the formula for the surface area of an oblate spheroid,

2 2

¢ atanh(e)) , wheree? =1- C—z,
a

Sop = 2ma |1+

to calculate the surface area of this reference ellipsoid and compare it with the surface
area of the Earth assumed to be a sphere with radius 6371 km.

Python Objects I: Strings

Defining a String Object

A Python string object (of type str) is an ordered, immutable sequence of characters.
To define a variable containing some constant text (a string literal), enclose the text in
either single or double quotes:

>>> greeting = "Hello, Sir!"
>>> bye = 'A bientdt'

Table 2.9 Truth table for the xor

operator

P Q P xor Q
True True False
False True True
True False True

False False False

28

The Core Python Language |

Strings can be concatenated using either the + operator or by placing them next to each
other on the same line:

>>> 'abc' + 'def'
'abcdef’
>>> 'one ' 'two' ' three'

'one two three'

Python doesn’t place any restriction on the length of a line, so a string literal can be
defined in a single, quoted block of text. However, for ease of reading, it is usually a
good idea to keep the lines of your program to a fixed maximum length (79 characters
is recommended). To break up a string over two or more lines of code, use the line
continuation character, “\” or (better) enclose the string literal in parentheses:

>>> long_string = 'We hold these truths to be self-evident, '\
' that all men are created equal...'

>>> long_string = ('We hold these truths to be self-evident,'

that all men are created equal...')

This defines the variable long_string to hold a single line of text (with no carriage
returns). The concatenation does not insert spaces so they need to be included explicitly
if they are wanted. The spaces lining up the opening quotes in this example are optional
but make the code easier to read.

If your string consists of a repetition of one or more characters, the * operator can be
used to concatenate them the required number of times:
>>> 'a' * 4
'aaaa'
>>> '-o0-' * 5§

'-0--0--0--0--0-"

The empty string is defined simply as s = '' (two single quotes) ors = "".
Finally, the built-in function, str converts an object passed as its argument into a
string according to a set of rules defined by the object itself:

>>> str(42)
1420

>>> str(3.4e5)
'340000.0"'

>>> str(3.4e20)
'3.4e+20"'

For finer control over the formatting of the string representation of numbers, see Section
2.3.7.

Example E2.8 Strings concatenated with the “+” operator can repeated with “*,” but
only if enclosed in parentheses:

>>> ('a'*4 + 'B') * 3
'aaaaBaaaaBaaaaB'

2.3.2

2.3 Python Objects I: Strings 29

Escape Sequences

The choice of quotes for strings allows one to include the quote character itself inside a
string literal — just define it using the other quote:

>>> verse = 'Quoth the Raven "Nevermore."'

But what if you need to include both quotes in a string? Or to include more than one
line in the string? This case is handled by special escape sequences indicated by a
backslash, \. The most commonly used escape sequences are listed in Table 2.10. For
example,

>>> sentence = "He said, \"This parrot's dead.\""
>>> sentence

'He said, "This parrot\'s dead."'

>>> print(sentence)

He said, "This parrot's dead."

>>> subjects = 'Physics\nChemistry\nGeology\nBiology'
>>> subjects
'Physics\nChemistry\nGeology\nBiology"

>>> print(subjects)

Physics

Chemistry

Geology

Biology

© Note that just typing a variable’s name at the Python shell prompt simply echoes its
literal value back to you (in quotes).
® To produce the desired string including the proper interpretation of special charac-
ters, pass the variable to the print built-in function (see Section 2.3.6).

On the other hand, if you want to define a string to include character sequences such
as ‘“\n” without them being escaped, define a raw string prefixed with r:
>>> rawstring = r'The escape sequence for a new line is \n.'
>>> rawstring
'The escape sequence for a new line is \\n.'

>>> print(rawstring)
The escape sequence for a new line is \n.

Table 2.10 Common Python escape sequences

Escape sequence Meaning

\' Single quote (")

\" Double quote (")

\n Linefeed (LF)

\r Carriage return (CR)

\t Horizontal tab

\b Backspace

A\ The backslash character itself

\u, \U, \N{} Unicode character (see Section 2.3.3)

\x Hex-encoded byte

30

2.3.3

The Core Python Language |

When defining a block of text including several line endings it is often inconvenient to
use \n repeatedly. This can be avoided by using triple-quoted strings: new lines defined
within strings delimited by """ and ' ' ' are preserved in the string:!”

a = """one
two
three"""
>>> print(a)
one

two

three

This is often used to create “docstrings” which document blocks of code in a program
(see Section 2.7.1).

Example E2.9 The \x escape denotes a character encoded by the single-byte hex
value given by the subsequent two characters. For example, the capital letter “N” is
encoded by the value 78, which is 4e in hex. Hence,

>>> '\x4e'

g

The backspace “character” is encoded as hex 88, which is why '\b' is equivalent to
'\x08":

>>> 'hello\b\b\b\b\bgoodbye"

'hello\x08\x08\x08\x08\x08goodbye"'

Sending this string to the print () function outputs the string formed by the sequence
of characters in this string literal:

>>> print('hello\b\b\b\b\bgoodbye')
goodbye

Unicode

Python 3 strings are composed of Unicode characters. unicode is a standard describing
the representation of more than 100 000 characters in just about every human language,
as well as many other specialist characters such as scientific symbols. It does this by
assigning a number (code point) to every character; the numbers that make up a string
are then encoded as a sequence of bytes.'® For a long time, there was no agreed encoding
standard, but the UTF-8 encoding, which is used by Python 3 by default, has emerged
as the most widely used today.'® If your editor will not allow you to enter a character
directly into a string literal, you can use its 16- or 32-bit hex value or its Unicode
character name as an escape sequence:
>>> '\u®OE9' # 16-bit hex value

17 Tt is generally considered better to use three double quotes, """, for this purpose.

18 For a list of code points, see the official Unicode website’s code charts at www.unicode.org/charts/.

19 UTF-8 encoded Unicode encompasses the venerable 8-bit encoding of the ASCII character set
(e.g. A = 65).

www.unicode.org/charts/

2.3.4

2.3 Python Objects I: Strings 31

Tg

é
>>> '\u@0000OE9' # 32-bit hex value

Tg

e
>>> "\N{LATIN SMALL LETTER E WITH ACUTE}' # by name

é

Example E2.10 Providing your editor or terminal allows it, and you can type them
at your keyboard or paste them from elsewhere (e.g. a web browser or word processor),
Unicode characters can be entered directly into string literals:

>>> creams = ’Créme fraiche, créme br(lée, créme patissiére’

Python even supports Unicode variable names, so identifiers can use non-ASCII
characters:

>>> X =4

>>> créme = ’anglaise’

Needless to say, because of the potential difficulty in entering non-ASCII characters
from a standard keyboard and because many distinct characters look very similar, this
is not a good idea.

Indexing and Slicing Strings

Indexing (or “subscripting”) a string returns a single character at a given location. Like
all sequences in Python, strings are indexed with the first character having the index 0;
this means that the final character in a string consisting of n characters is indexed at
n — 1. For example,

>>> a = "Knight"

>>> a[0]

.

>>> a[3]

gt

The character is returned in a str object of length 1. A nonnegative index counts forward
from the start of the string; there is a handy notation for the index of a string counting
backward: a negative index, starting at -1 (for the final character) is used. So,

>>> a = "Knight"

>>> a[-1]

g

>>> a[-4]

i
It is an error to attempt to index a string outside its length (here, with index greater than
5 or less than —6); Python raises an IndexError:

>>> a[6]

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
IndexError: string index out of range

Slicing a string, s[1:j], produces a substring of a string between the characters at two
indexes, including the first (i) but excluding the second (j). If the first index is omitted,
0 is assumed; if the second is omitted, the string is sliced to its end. For example,

32

The Core Python Language |

>>> a = "Knight"
>>> a[1:3]

1 '

ni
>>> al[:3]
'Kni'

>>> a[3:]
"ght'

>>> al[:]

'Knight'

This can seem confusing at first, but it ensures that the length of a substring returned
as s[i:j] has length j—i (for positive i, j) and that s[:i] + s[i:] == s. Unlike
indexing, slicing a string outside its bounds does not raise an error:

>>> a = "Knight"
>>> a[3:10]
"ght "

>>> a[10:]

To test if a string contains a given substring, use the in operator:

>>> 'Kni' in 'Knight':
True

>>> 'kni' in 'Knight':
False

Example E2.11 Because of the nature of slicing, s[m:n], n-m is always the length of
the substring. In other words, to return r characters starting at index m, use s[m:m+r].
For example,

>>> s = 'whitechocolatespaceegg'
>>> s[:5]

'white'

>>> s[5:14]

'chocolate’

>>> s[14:19]

'space’

>>> s[19:]

"egg'

Example E2.12 The optional third number in a slice specifies the stride. If omitted,
the default is 1: return every character in the requested range. To return every kth letter,
set the stride to k. Negative values of k reverse the string. For example,

>>> s = 'King Arthur'
>>> s[::2]

'Kn rhr'

>>> s[1::2]

'igAtu'

>>> s[-1:4:-1]
'ruhtrA’

2.3.5

2.3 Python Objects I: Strings 33

This last slice can be explained as a selection of characters from the last (index -1) down
to (but not including) character at index 4, with stride -1 (select every character, in the
reverse direction).

A convenient way of reversing a string is to slice between default limits (by omitting
the first and last indexes) with a stride of -1:

>>> s[::-1]
'ruhtrA gnikK'

String Methods

Python strings are immutable objects, and so it is not possible to change a string by
assignment — for example, the following is an error:

>>> a = 'Knight'

>>> a[0] = 'k’

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: 'str' object does not support item assignment

New strings can be constructed from existing strings, but only as new objects. For
example,

>>> a += ' Templar'

>>> print(a)

Knight Templar

>>> b = 'Black ' + a[:6]

>>> print(b)

Black Knight

To find the number of characters a string contains, use the len built-in method:

>>> a = 'Earth'
>>> len(a)
5

String objects come with a large number of methods for manipulating and transform-
ing them. These are accessed using the usual dot notation we have met already — some
of the more useful ones are listed in Table 2.11. In this and similar tables, text in italics
is intended to be replaced by a specific value appropriate to the use of the method; italic
text in [square brackets] denotes an optional argument.

Because these methods each return a new string, they can be chained together:
>>> s = '-+-Python Wrangling for Beginners'

>>> s.lower().replace('wrangling', 'programming').lstrip('+-"')
'python programming for beginners'

Example E2.13 Here are some possible manipulations using string methods:

v

>>> a = 'java python c++ fortran
>>> a.isalpha(Q)

False

>>> b = a.title()

34

The Core Python Language |

Table 2.11 Some common string methods

Method Description

center(width) Return the string centered in a string with total number of
characters width.

endswith(suffix) Return True if the string ends with the substring suffix.

startswith(prefix) Return True if the string starts with the substring prefix.

index(substring) Return the lowest index in the string containing substring.

1strip([chars]) Return a copy of the string with any of the leading characters
specified by [chars] removed. If [chars] is omitted, any
leading whitespace is removed.

rstrip([chars]) Return a copy of the string with any of the trailing characters
specified by [chars] removed. If [chars] is omitted, any
trailing whitespace is removed.

strip([chars]) Return a copy of the string with leading and trailing characters
specified by [chars] removed. If [chars] is omitted, any
leading and trailing whitespace is removed.

upper Q) Return a copy of the string with all characters in upper case.

lower() Return a copy of the string with all characters in lower case.

titleQ Return a copy of the string with all words starting with capitals

replace(old, new)

split([sepl)

join([list])
isalpha(Q)

isdigit()

and other characters in lower case.

Return a copy of the string with each substring old replaced
with new.

Return a 1ist (see Section 2.4.1) of substrings from the original
string which are separated by the string sep. If sep is not
specified, the separator is taken to be any amount of whitespace.
Use the string as a separator in joining a 1ist of strings.
Return True if all characters in the string are alphabetic and the
string is not empty; otherwise return False.

Return True if all characters in the string are digits and the
string is not empty; otherwise return False.

>>> b

'Java Python C++ Fortran

"n\n")

>>> ¢ = b.replace(' ',

>>> C

'Java!\nPython!\nC++!\nFortran!"'

>>> print(c)
Java!
Python!

C++!
Fortran!

>>> c.index ('Python')

6

>>> c[6:].startswith('Py"')

True
>>> c[6:12].isalpha ()
True

O a.isalpha() is False because of the spaces and "++'.
® Note that \n is a single character.

2.3.6

2.3 Python Objects I: Strings 35

The print Function

In Python 3, print is a built-in function (just like the others we have met such as len
and round). It takes a list of objects to be output, and the optional arguments end and
sep, that specify which characters should end the string and which characters should be
used to separate the printed objects respectively. Omitting these additional arguments
results in output in which the object fields are separated by a single space and the line
is ended with a newline character.?’ For example,

>>> ans = 6

>>> print('Solve:', 2, 'x =', ans, 'for x')

Solve: 2 x = 6 for x

>>> print('Solve: ', 2, 'x = ', ans, ' for x', sep='', end='!\n'")

Solve: 2x = 6 for x!

>>> print ()

>>> print('Answer: x =', ans/2)
Answer: x = 3.0

© Note that print () with no arguments just prints the default newline end character.
To suppress the new line at the end of a printed string, specify end to be the empty
string: end="":

>>> print('A line with no newline character', end='")
A line with no newline character>>>

The chevrons, >>>, at the end of this line form the prompt for the next Python command
to be entered.

Example E2.14 print can be used to create simple text tables:

>>> heading = '| Index of Dutch Tulip Prices |'
>>> line = '"+' + '-'¥*16 + '-'*13 + '+'
>>> print(line, heading, line,
" Nov 23 1636 | 100 |',
" Nov 25 1636 | 673 |',
| Feb 1 1637 | 1366 |', line, sep='\n')
B et +

o +
Nov 23 1636	100
Nov 25 1636	673
Feb 1 1637	1366
o +

20 The specific newline character used depends on the operating system: for example, on a Mac it is “\n” (the
“linefeed” character), on Windows it is two characters: “\r\n” (“carriage return” + “line feed”).

36

2.3.7

The Core Python Language |

String Formatting

Introduction to Python 3 String Formatting
In its simplest form, it is possible to use a string’s format method to insert objects into
it. The most basic syntax is

>>> '{} plus {} equals {}'.format(2, 3, 'five')
2 plus 3 equals five

Here, the format method is called on the string literal with the arguments 2, 3 and ' five'
which are interpolated, in order, into the locations of the replacement fields, indicated
by braces, {}. Replacement fields can also be numbered or named, which helps with
longer strings and allows the same value to be interpolated more than once:

>>> '{1} plus {0} equals {2}'.format(2, 3, 'five')

'3 plus 2 equals five'

>>> '{numl} plus {num2} equals {answer}'.format(numl=2, num2=3, answer='five')

'2 plus 3 equals five'

>>> '{0} plus {0} equals {1}'.format(2, 2+2)

'2 plus 2 equals 4'

Note that numbered fields can appear in any order and are indexed starting at 0.
Replacement fields can be given a minimum size within the string by the inclusion of

an integer length after a colon as follows:

>>> '=== {0:12} ==='.format('Python')

'=== Python ===

If the string is too long for the minimum size, it will take up as many characters as

needed (overriding the replacement field size specified):

>>> 'A number: <{0:2}>'.format(-20)
'A number: <-20>' # -20 won't fit into 2 characters: 3 are used anyway

By default, the interpolated string is aligned to the left; this can be modified to align to
the right or to center the string. The single characters <, > and "~ control the alignment:

>>> '=== {0:<12} ==='.format('Python')
'=== Python ==="
>>> '=== {0:>12} ==='.format('Python')
'=== Python ==="'
>>> '=== {0:412} ==="'.format('Python')
'=== Python ==="

In these examples, the field is padded with spaces, but this fill character can also be
specified. For example, to pad with hyphens in the last example, specify

>>> '=== {0:-412} ==='.format('Python')

=== -- —Python ——- ===
It is even possible to pass the minimum field size as a parameter to be interpolated. Just
replace the field size with a reference in braces as follows:

>>> a = 15
>>> 'This field has {0} characters: ==={1:>{2}}===."'.format(a, 'the field',k a)
'This field has 15 characters: === the field===."

Or with named interpolation:

2.3 Python Objects I: Strings 37

>>> 'This field has {w} characters: ==={0:>{w}}===."'.format('the field', w=a)
'This field has 15 characters: === the field===."
In each case, the second format specifier here has been taken to be :>15.
To insert the brace characters themselves into a formatted string, they must be dou-
bled up: use “{{” and “33”.

Formatting Numbers
The Python 3 string format method provides a powerful way to format numbers.

The specifiers “d”, “b”, “0”, “x”/“X” indicate a decimal, binary, octal and lower-
case/upper-case hex integer respectively:

>>> a = 254

>>> 'a = {0:5d}'.format(a) # decimal

'a = 254"

>>> 'a = {0:10b}'.format(a) # binary

'a = 11111110°

>>> 'a = {0:50}'.format(a) # octal

'a = 364"

>>> 'a = {0:5x}'.format(a) # hex (lower-case)
'a = fe'

>>> 'a = {0:5X}'.format(a) # hex (upper-case)
'a = FE'

Numbers can be padded with zeros to fill out the specified field size by prefixing the
minimum width with a @:
>>> a = 254
>>> 'a = {a:05d}"'.format(a=a)
'a = 00254'
By default, the sign of a number is only output if it is negative. This behavior can also
be customized by specifying, before the minimum width:

. “+”: always output a sign;
. “-”: only output a negative sign, the default; or
. “ ”: output a leading space only if the number is positive.

This last option enables columns of positive and negative numbers to be lined up nicely:

>>> print('{0: 5d}\n{l: 5d}\n{2: 5d}'.format(-4510, 1001, -3026))
-4510

1001

-3026
>>> a = -25
>>> b = 12

>>> s = "{0:+5d}\n{1:+5d}\n= {2:+3d}'.format(a, b, a+b)
>>> print(s)

-25

+12
= -13

There are also format specifiers for floating-point numbers, which can be output
to a chosen precision if desired. The most useful options are “f”: fixed-point nota-
tion, “e”/“E”: exponent (i.e. “scientific” notation), and “g”/“G”: a general format which

38

The Core Python Language |

uses scientific notation for very large and very small numbers.?! The desired precision
(number of decimal places) is specified as “.p” after the minimum field width. Some
examples:

>>> a = 1.464e-10

>>> '{0:9g}'.format(a)
'1.464e-10"'

>>> '{0:10.2E}"'. format(a)
' 1.46E-10"

>>> '{0:15.13f}'. format(a)
'0.0000000001464 "

>>> '{0:10f}"'. format(a)

' 0.000000"

©® Note that Python will not protect you from this kind of rounding to zero if not
enough space is provided for a fixed-point number.

Formatted String Literals (f-strings)

Since version 3.6, Python has supported a further way of interpolating values into
strings: a string literal denoted with a f before the quotes can evaluate expressions
placed within braces, including references to variables, function calls and comparisons.
This provides an expressive and concise way to define string objects; for example, given
the variables

>>> h = 6.62607015e-34
>>> h_units = 'J.s'

instead of using the format function:
>>> 'h = {h:.3e} {h_units}'.format(h=h, h_units=h_units)
'h = 6.626e-34 J.s'
one can simply write:
>>> f'h = {h:.3e} {h_units}'
'h = 6.626e-34 J.s'
This means that there is no need for the awkward repetition in the format call (h=h,
h_units=h_units) and for longer strings with many interpolations it is easier to read.
It is also generally faster to execute because the syntax is part of Python’s fundamental
grammar and no explicit function call is required.

Although it wouldn’t generally be a good idea to put a complex expression in an
f-string replacement field, it is common to call functions or make comparisons:

>>> name = 'Elizabeth’
>>> f'The name {name} has {len(name)} letters and {name.lower().count("e")} "e"s.'
'The name Elizabeth has 9 letters and 2 "e"s.'

or even:

>>> letter = 'k'
>>> f'{name} has {len(name)} letters and {name.lower().count(letter)} "{letter}"s.
'Elizabeth has 9 letters and 0 "k"s.'

21 More specifically, the g/G specifier acts like £/F for numbers between 10~ and 107 where p is the desired
precision (which defaults to 6), and acts like e/E otherwise.

2.3 Python Objects I: Strings 39

There are few minor things to bear in mind: the quotes used inside an f-string expres-
sion should not conflict with those used to delimit the string literal itself (note the use
of " above to avoid the clash with the outer £'..." quotes). Also, because f-strings are
evaluated once, at runtime, it is not possible to define a reuseable “template”:

>>> radius = 2.5

v

>>> s = f'The radius is {radius} m.
>>> print(s)

The radius is 2.5 m.

>>> radius = 10.3
>>> print(s)

The radius is 2.5 m.

For this use-case, traditional format string interpolation is better:

>>> radius = 2.5
>>> t = 'The radius is {} m.'
>>> print(t.format(radius))

The radius is 2.5 m.

>>> radius = 10.3
>>> print(t.format(radius))

The radius is 10.3 m.

In this book we will use both traditional format string interpolation and f-strings.

Older C-style Formatting

Python 3 also supports the less powerful, C-style format specifiers that are still in
widespread use. In this formulation the replacement fields are specified with the mini-
mum width and precision specifiers following a % sign. The objects whose values are to
be interpolated are then given after the end of the string, following another % sign. They
must be enclosed in parentheses if there is more than one of them. The same letters for
the different output types are used as earlier; strings must be specified explicitly with
“%s”. For example,

>>> kB = 1.380649e-23

>>> 'Here\'s a number: %10.2e' % kB

"Here's a number: 1.38e-23"

>>> 'The same number formatted differently: %7.le and %12.6e' % (kB, kB)

'The same number formatted differently: 1.4e-23 and 1.380649e-23'

>>> '%s is %g J/K' % ("Boltzmann's constant", kB)
"Boltzmann's constant is 1.38065e-23 J/K"

Example E2.15 Python can produce string representations of numbers for which
thousands are separated by commas:

40 The Core Python Language |
>>> '{:11,d}"'. format (1000000)
' 1,000,000
>>> "'{:11,.1f}'.format (1000000.)
'1,000,000.0°
Here is another table, produced using several different string methods:
title = "|' + "{:251}'.format('Cereal Yields (kg/ha)') + '|'
line = "+"' + "-"*15 + "+' + ('-'*8 + '+')*4
row = '| {:<13} |' + ' {:6,d} |'*4
header = '| {:213s} |'.format('Country') + (' {:46d} |'*4).format(1980, 1990,
2000, 2010)
print('+' + '-'*(len(title)-2) + '+',
title,
line,
header,
line,
row. format('China', 2937, 4321, 4752, 5527),
row. format('Germany', 4225, 5411, 6453, 6718),
row. format('United States', 3772, 4755, 5854, 6988),
line,
sep="\n")
o - +
| Cereal Yields (kg/ha) |
e it +----- - +-------- +-------- +-----—-- +
I Country | 1980 | 1990 | 2000 | 2010 |
e it e +----- - +---—---- +-------- +-----—-- +
| China | 2,937 | 4,321 | 4,752 | 5,527 |
| Germany | 4,225 | 5,411 | 6,453 | 6,718 |
| United States | 3,772 | 4,755 | 5,854 | 6,988 |
fommmmm e m———mm e Fmmmm— - fmmmmm—— fmmmmmm Fmmmmm - +
2.3.8 Exercises
Questions
Q2.3.1 Slice the string s = 'seehemewe' to produce the following substrings:
(a) 'see'
(b) 'he'
(c) 'me’
(d 'we’
(e) ‘'hem'
) 'meh'
(2) 'wee'

Q2.3.2 Write a single-line expression for determining if a string is a palindrome (reads
the same forward as backward).

Q2.3.3 Predict the results of the following statements and check them using the
Python shell.

>>> days = 'Sun Mon Tues Weds Thurs Fri Sat'

Problems

2.3 Python Objects I: Strings 41

(a) print(days[days.index('M'):])

(b) print(days[days.index('M'):days.index('Sa')].rstrip())
(c) print(days[6:3:-1].lower ()*3)

(d) print(days.replace('rs', '').replace('s ', ' ")[::41)
(€) print(' -*- '.join(days.split()))

Q2.3.4 What is the output of the following code? How does it work?

>>> suff = 'thstndrdththththththth'

>>>n =1

>>> print('{:d}{:s}'.format(n, suff[n*2:n*2+2]))
>>>n = 3

>>> print('{:d}{:s}'.format(n, suff[n*2:n*2+2]))
>>>n =5

>>> print('{:d}{:s}'.format(n, suff[n*2:n*2+2]))

Q2.3.5 Consider the following (incorrect) tests to see if the string 's' has one of
two values. Explain how these statements are interpreted by Python and give a correct
alternative.

>>> s = 'eggs'

>>> s == ('eggs' or 'ham')
True

>>> s == ('ham' or 'eggs')
False

P2.3.1

(a) Given a string representing a base-pair sequence (i.e. containing only the letters
A, G, C and T), determine the fraction of G and C bases in the sequence.

(Hint: strings have a count method, returning the number of occurrences of a
substring.)

(b) Using only string methods, devise a way to determine if a nucleotide sequence
is a palindrome in the sense that it is equal to its own complementary sequence
read backward. For example, the sequence TGGATCCA is palindromic because
its complement is ACCTAGGT, which is the same as the original sequence back-
ward. The complementary base pairs are (A, T) and (C, G).

P2.3.2 The table that follows gives the names, symbols, values, uncertainties and units
of some physical constants.
Defining variables of the form

G = 6.6743e-11 # J/K
G_unc = 1.5e-15 # uncertainty
G_units = 'NmA2/kg+2'

use the string object’s format method to produce the following output:

(a) kB = 1.381e-23 J/K

42 The Core Python Language |

Name Symbol Value Uncertainty Units
Boltzmann constant kg 1.380649 x 1072 (def) JK!
Speed of light c 2.99792458 x 103 (def) ms~!
Planck constant h 6.62607015 x 1073 (def) Js
Avogadro constant Na 6.02214076 x 102 (def) mol ™!
Electron magnetic moment e -9.28476377 x 107* 2.3 x 1073 JT!
Gravitational constant G 6.67430 x 107! 1.5%x 10713 Nm? kg2
(b) G = 0.0000000000667430 Nmr2/kgA2
(c) Using the same format specifier for each line,
kB = 1.3807e-23 J/K
mu_e = -9.2848e-24 J/T
N_.A = 6.0221e+23 mol-1
c = 2.9979e+08 m/s
(d) Again, using the same format specifier for each line,
=== G = +6.67E-11 [Nm~2/kg+2] ===
=== e = -9.28E-24 [3/T1 =
Hint: the Unicode codepoint for the lower-case Greek letter mu is U+83BC.
(e) (Harder). Produce the output below, in which the uncertainty (one standard devia-

tion) in the value of each constant is expressed as a number in parentheses relative
the preceding digits: that is, 6.67430(15) x 10~!'! means 6.67430 x 10~ + 1.5 x
10715,

G = 6.67430(15)e-11 Nm*2/kgA2
mu_e = -9.28476377(23)e-24 J1/T

P2.3.3 Given the elements of a 3 X 3 matrix as the nine variables all, al2, ..., a33,
produce a string representation of the matrix using formatting methods, (a) assuming
the matrix elements are (possibly negative) real numbers to be given to one decimal
place; (b) assuming the matrix is a permutation matrix with integer entries taking the
values O or 1 only. For example,

>>> print(s_a)

[0.0
[-1.1

3.4 -1.2]
0.5 -0.2]

[2.3 -1.4 -0.7]
>>> print(s_b)

[00

1]

P2.3.4 Find the Unicode code points for the planet symbols listed on the NASA web-
site (https://solarsystem.nasa.gov/resources/680/solar-system-symbols/) which mostly
fall within the hex range 2600-26FF: Miscellaneous Symbols (https://www.unicode.
org/charts/PDF/U2600.pdf) and output a list of planet names and symbols.

https://solarsystem.nasa.gov/resources/680/solar-system-symbols/
https://www.unicode.org/charts/PDF/U2600.pdf
https://www.unicode.org/charts/PDF/U2600.pdf

2.4

241

2.4 Python Objects lI: Lists, Tuples and Loops 43

Python Objects Il: Lists, Tuples and Loops

Lists

Initializing and Indexing Lists
Python provides data structures for holding an ordered list of objects. In some other
languages (e.g. C and Fortran) such a data structure is called an array and can hold only
one type of data (e.g. an array of integers); the core array structures in Python, however,
can hold a mixture of data types.

A Python [ist is an ordered, mutable array of objects. A list is constructed by speci-
fying the objects, separated by commas, between square brackets, []. For example,
>>> listl = [1, 'two', 3.14, 0]
>>> listl
[1, "two', 3.14, 0]
>>> a = 4
>>> list2 = [2, a, -0.1, listl, True]

>>> list2
[2, 4, -0.1, [1, '"two', 3.14, 0], True]

Note that a Python list can contain references to any type of object: strings, the various
types of numbers, built-in constants such as the boolean value True, and even other lists.
It is not necessary to declare the size of a list in advance of using it. An empty list can
be created with 1ist® = [] or list® = list().

An item can be retrieved from the list by indexing it (remember Python indexes start
at 0):
>>> listl1[2]
3.14
>>> list2[-1]
True
>>> 1ist2[3][1]
'two'
This last example retrieves the second (index: 1) item of the fourth (index: 3) item
of 1ist2. This is valid because the item list2[3] happens to be a list (the one also
identified by the variable name 1list1), and 1list1[1] is the string 'two'. In fact, since
strings can also be indexed:

>>> 1ist2[3][1]1[1]

w

To test for membership of a list, the operator in is used, as for strings:

>>> 1 in listl

True

>>> 'two' in list2:
False

This last expression evaluates to False because 1ist2 does not contain the string literal
"two' even though it contains 1ist1 which does: the in operator does not recurse into
lists-of-lists when it tests for membership.

44

The Core Python Language |

Lists and Mutability

Python lists are the first mutable object we have encountered. Unlike strings, which
cannot be altered once defined, the items of a list can be reassigned:

>>> listl

[1, '"two', 3.14, 0]

>>> listl[2] = 2.72

>>> listl

[1, '"two', 2.72, 0]

>>> list2

[2, 4, -0.1, [1, '"two',6 2.72, 0], True]

Note that not only has 1ist1 been changed, but 1ist2 (which contains 1ist1 as an item)
has also changed.?* This behavior catches a lot of people out to begin with, particularly
if a list needs to be copied to a different variable.

>>> ql = [1, 2, 3]

>>> q2 = ql

>>> ql[2] = 'oops'
>>> ql

[1, 2, 'oops']

>>> 2

[1, 2, "oops']

Here, the variables q1 and g2 refer to the same list, stored in the same memory location,
and because lists are mutable, the line q1[2] = 'oops' actually changes one of the
stored values at that location; g2 still points to the same location and so it appears to
have changed as well. In fact, there is only one list (referred to by two variable names)
and it is changed once. In contrast, integers are immutable, so the following does not
change the value of q[2]:

>>> a = 3

>>> q = [1, 2, a]
>>> a = 4

>>> q

[1, 2, 3]

The assignment a = 4 creates a whole new integer object, quite independent of the
original 3 that ended up in the list g. This original integer object isn’t changed by the
assignment (integers are immutable) and so the list is unchanged. This distinction is
illustrated by Figures 2.2, 2.3 and 2.4.

Lists can be sliced in the same way as string sequences:

>>> ql = [0., 0.1, 0.2, 0.3, 0.4, 0.5]

>>> ql[1:4]

[6.1, 0.2, 0.3]

>>> ql[::-1] # return a reversed copy of the list
[6.5, 0.4, 0.3, 0.2, 0.1, 0.0]

>>> ql[1::2] # striding: returns elements at 1, 3, 5

[60.1, 0.3, 0.5]

22 Actually, it hasn’t changed: it only ever contained a series of references to objects: the reference to list1
is the same, even though the references within 1ist1 have changed.

2.4 Python Objects lI: Lists, Tuples and Loops 45

(a) al —>

@2 —

(b) a9l —>

o[1]——{2]
+12)—>oops]

Figure 2.2 Two variables referring to the same list: (a) on initialization and (b) after setting
ql[2] = 'oops'.

@2 —>

Taking a slice copies the data to a new list. Hence,

>>> q2 = ql[1:4]

>>> q2[1] = 99 # only affects q2
>>> q2

[0.1, 99, 0.3]

>>> ql

[6.0, 0.1, 0.2, 0.3, 0.4, 0.5]

List Methods

Just as for strings, Python lists come with a large number of useful methods, summa-
rized in Table 2.12. Because list objects are mutable, they can grow or shrink in place,
that is, without having to copy the contents to a new object, as we had to do with strings.
The relevant methods are

append: add an item to the end of the list;
extend: add one or more objects by copying them from another list;>*
insert: insert an item at a specified index;

remove: remove a specified item from the list.

23 Actually, any Python object that forms a sequence that can be iterated over (e.g. a string) can be used as
the argument to extend

46 The Core Python Language |

ei2]—>{3] a—>{4]

Figure 2.3 A list defined withq = [1, 2, a] where a = 3:(a) on initialization and (b) after
changing the value of a witha = 4.

(b) a———>

Figure 2.4 A list defined withq = [1, 2, a] where a = 3:(a) on initialization and (b) after
changing the value of q with q[2] = 4.

2.4 Python Objects lI: Lists, Tuples and Loops 47

Table 2.12 Some common list methods

Method Description

append(element) Append element to the end of the list
extend(list2) Extend the list with the elements from 1ist2
index(element) Return the lowest index of the list containing element
insert(index, element) Insert element at index index

popQ Remove and return the last element from the list
reverse() Reverse the list in place

remove (element) Remove the first occurrence of element from the list
sort() Sort the list in place

copy O Return a copy of the list

count (element) Return the number of elements equal to element in the list
>>> q = []

>>> q.append (4)

>>> q

[4]

>>> q.extend([6, 7, 8])

q
>>> q
[4, 6, 7, 8]
>>> q.insert(l, 5) # insert 5 at index 1
>>>
[4, 5
>>> q
q

, 6, 7, 8]

.remove (7)

>>>

[4, 5, 6, 8]

>>> q.index (8)

3 # the item 8 appears at index 3

Two useful list methods are sort and reverse, which sort and reverse the list in place.
That is, they change the list object, but do not return a value:

>>>q = [2, 0, 4, 3, 1]
>>> q.sort()

>>> q

[, 1, 2, 3, 4]

>>> q.reverse()

>>> q

[4, 3, 2, 1, 0]

If you do want a sorted copy of the list, leaving it unchanged, you can use the sorted
built-in function:

>>q = ["a’',
>>> sorted(q)

e', 'A', 'c', 'b']

['A', 'a', 'b', 'c', 'e'] # returns a new list
>>> q
['a', 'e', 'A', 'c', 'b'] # the old list is unchanged

By default, sort) and sorted() order the items in an array in ascending order. Set
the optional argument reverse=True to return the items in descending order:

>>>q = [10, 5, 5, 2, 6, 1, 67]

48

24.2

The Core Python Language |

>>> sorted(q, reverse=True)
[67, 18, 6, 5, 5, 2, 1]

Python 3 does not allow direct comparisons between strings and numbers, so it is an
error to attempt to sort a list containing a mixture of such types:
>>> q = [5, '4', 2, 8]

>>> q.sort()
TypeError: unorderable types: str() < int()

Example E2.16 The methods append and pop make it very easy to use a list to
implement the data structure known as a stack:

>>> stack = []

>>> stack.append (1)
>>> stack.append(2)
>>> stack.append(3)
>>> stack.append(4)
>>> print(stack)
[1, 2, 3, 4]

>>> stack.pop ()

4
>>> print(stack)
[1, 2, 3]

The end of the list is the top of the stack from which items may be added or removed
(“last in, first out” (LIFO): think of a stack of dinner plates).

Example E2.17 The string method, split, generates a list of substrings from a given
string, split on a specified separator:

>>> s = 'Jan Feb Mar Apr May Jun'

>>> s.split() # By default, splits on whitespace
['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun']

>>> s = "J. M. Brown AND B. Mencken AND R. P. van't Rooden"
>>> s.split(' AND ')

[']J. M. Brown', 'B. Mencken', "R. P. van't Rooden"]

Tuples

The tuple Object

A tuple may be thought of as an immutable list. Tuples are constructed by placing
the items inside parentheses:
>>> t = (1, "two', 3.)

>>> t
(1, '"two', 3.0)

Tuples can be indexed and sliced in the same way as lists but, being immutable, they
cannot be appended to, extended or have elements removed from them:

2.4 Python Objects lI: Lists, Tuples and Loops 49

>>>t = (1, "two', 3.)
>>> t[1]

two
>>> t[2] = 4
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment

Although a tuple itself is immutable, it may contain references to mutable objects such
as lists. Hence,

>>> t = (1, ['a', 'b', 'd'], ®

>>> t[1][2] = 'c' # OK to change the list within the tuple

>>> t

(1. ['a', 'b', 'c'l,)

An empty tuple is created with empty parentheses: t®@ = (). To create a tuple con-
taining only one item (a singleton), however, it is not sufficient to enclose the item
in parentheses (which could be confused with other syntactical uses of parentheses);
instead, the lone item is given a trailing comma: t = (’one’,).

Uses of tuples

In some circumstances, particularly for simple assignments such as those in the previous
section, the parentheses around a tuple’s items are not required:

>>t =1, 2, 3

>>> t

i, 2, 3)

This usage is an example of tuple packing. The reverse, tuple unpacking, is a common
way of assigning multiple variables in one line:

>>> a, b, ¢ =97, 98, 99

>>> b
98

This method of assigning multiple variables is commonly used in preference to separate
assignment statements either on different lines or (very un-Pythonically) on a single
line, separated by semicolons:

a=297; b =98; c =99 # Don't do this!

Tuples are useful where a sequence of items cannot or should not be altered. In the
previous example, the tuple object only exists in order to assign the variables a, b and
c. The values to be assigned: 97, 98 and 99 are packed into a tuple for the purpose of
this statement (to be unpacked into the variables), but once this has happened, the tuple
object itself is destroyed. As another example, a function (Section 2.7) may return more
than one object: these objects are returned packed into a tuple. If you need any further
persuading, tuples are slightly faster for many uses than lists.

@_

Example E2.18 In an assignment using the “=" operator the right-hand side expres-
sion is evaluated first. This provides a convenient way to swap the values of two vari-
ables using tuples:

50

243

The Core Python Language |

Here, the right-hand side is packed into a tuple object, which is then unpacked into the
variables assigned on the left-hand side. This is more convenient than using a temporary
variable:

t =a

a =

b=t

Iterable Objects

Examples of Iterable Objects

Strings, lists and tuples are all examples of data structures that are iterable objects: they
are ordered sequences of items (characters in the case of strings, or arbitrary objects in
the case of lists and tuples) which can be taken one at a time. One way of seeing this is
to use the alternative method of initializing a list (or tuple) using the built-in constructor
methods 1ist() and tuple(). These take any iterable object and generate a list and a
tuple, respectively, from its sequence of items. For example,

>>> list('hello')

['h', 'e', '1', '1', "o']

>>> tuple([1l, 'two', 3])

(1, "two', 3)

Because the data elements are copied in the construction of a new object using these
constructor methods, 1ist is another way of creating an independent list object from
another:

>>> a = [5, 4, 3, 2, 1]

>>> b = a # b and a refer to the same list object

>>> b is a

True

>>> b = list(a) # create an entirely new list object with the same contents as a
>>> b is a

False

Because slices also return a copy of the object references from a sequence, the idiom
b = a[:] is often used in preference tob = list(a).

any and all
The built-in function any tests whether any of the items in an iterable object are equiv-
alent to True; all tests whether all of them are. For example,

>>>a = [1, 0, 0, 2, 3]

>>> any(a), all(a)

(True, False) # some (but not all) of a's items are equivalent to True
>>> b = [[], False, 0.]

>>> any(b), all(b)

(False, False) # none of b's items is equivalent to True

2.4 Python Objects lI: Lists, Tuples and Loops 51

* Syntax

It is sometimes necessary to call a function with arguments taken from a list or other
sequence. The * syntax used in a function call unpacks such a sequence into positional
arguments to the function (see also Section 2.7). For example, the math.hypot function
takes two arguments, a and b, and returns the quantity Va? + b2. If the arguments you
wish to use are in a list or tuple, the following will fail:

>>> t = [3, 4]

>>> math.hypot(t)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: hypot expected 2 arguments, got 1

We tried to call math.hypot() with a single argument (the list object t), which is an
error. We could index the list explicitly to retrieve the two values we need:
>>> t = [3, 4]

>>> math.hypot (t[0], t[1])
5.0

but a more elegant method is to unpack the list into arguments to the function with *t:

>>> math.hypot (*t)
5.0

for Loops

It is often necessary to take the items in an iterable object one by one and do something
with each in turn. Other languages, such as C, require this type of loop to refer to each
item in turn by its integer index. In Python this is possible, but the more natural and
convenient way is with the idiom:

for item in iterable object:

which yields each element of the iterable object in turn to be processed by the subse-
quent block of code. For example,

>>> fruit_list = ['apple', 'melon', 'banana', 'orange']
>>> for fruit in fruit_list:
print (fruit)
apple
melon
banana
orange

Each item in the list object fruit_list is taken in turn and assigned to the variable
fruit for the block of statements following the “:” — each statement in this block must
be indented by the same amount of whitespace. Any number of spaces or tab characters

could be used, but it is strongly recommended to use four spaces to indent code.’*

24 The use of whitespace as part of the syntax of Python is one of its most contentious aspects. Some people
used to languages such as C and Java, which delimit code blocks with braces ({...}), find it an anathema;
others take a more relaxed view and note that code is almost always indented consistently to make it
readable even when this isn’t enforced by the grammar of the language.

52

The Core Python Language |

Loops can be nested — the inner loop block needs to be indented by the same amount of
whitespace again as the outer loop (i.e. eight spaces):

>>> fruit_list = ['apple', 'melon', 'banana', 'orange']
>>> for fruit in fruit_list:
for letter in fruit:
print(letter, end='."')
print ()

a.

H o 0T -
o B H T
5 o o0

o T B o -
Q@ B B o

e.

In this example, we iterate over the string items in fruit_list one by one, and for each
string (fruit name), iterate over its letters. Each letter is printed followed by a full stop
(the body of the inner loop). The last statement of the outer loop, print (), forces a new
line after each fruit.

Example E2.19 We have already briefly met the string method join, which takes a
sequence of string objects and joins them together in a single string:

>>> ', '.join(('one', 'two', 'three'))

'one, two, three'

>>> print('\n'.join(reversed(['one', 'two', 'three'])))
three

two

one

The reversed built-in iterates over a sequence backwards, with the advantage (for long
sequences) that it does not create a new object or modify the original.

Recall that strings are themselves iterable sequences, and so can be passed to the join
method. For example, to join the letters of 'hello' with a single space:

>>> ' ', join('hello')
'hello'

The range Type
Python provides an efficient method of referring to a sequence of numbers that forms
a simple arithmetic progression: a, = ag + nd forn = 0,1,2,... In such a sequence,
each term is spaced by a constant value, the stride, d. In the simplest case, one simply
needs an integer counter, which runs in steps of one from an initial value of zero:
0,1,2,...,N — 1. It would be possible to create a list to hold each of the values, but
for most purposes this is wasteful of memory: it is easy to generate the next number in
the sequence without having to store all of the numbers at the same time.

Representing such arithmetic progressions for iterating over is the purpose of the
range type. A range object can be constructed with up to three arguments defining the
first integer, the integer to stop at and the stride (which can be negative).

range ([a®0=0], n, [stride=1])

2.4 Python Objects lI: Lists, Tuples and Loops 53

The notation describing the range constructor here means that if the initial value, a@,
is not given it is taken to be 0; stride is also optional and if it is not given it is taken to
be 1. Some examples:

>>> a = range(5) #0, 1, 2, 3, 4
>>> b = range(l, 6) #1, 2, 3, 4, 5
>>> ¢ = range(®, 6, 2) #0, 2, 4

>>> d = range(10, 0, -2) # 10, 8, 6, 4, 2

In Python 3, the object created by range is not a list. Rather, it is an iterable object
that can produce integers on demand: range objects can be indexed, cast into lists and
tuples, and iterated over:

>>> c[1] # i.e. the second element of 0, 2, 4
2

>>> c[0]

0

>>> list(d) # make a list from the range

[10, 8, 6, 4, 2]
>>> for x in range(5):
print(x)

B W N R 2 .

Example E2.20 The Fibonacci sequence is the sequence of numbers generated by
applying the rules:

ay =day = 1, a; = aj—1 +a-y.

That is, the ith Fibonacci number is the sum of the previous two: 1, 1,2,3,5,8,13,...
We present two ways of generating the Fibonacci series. First, by appending to a list:

Listing 2.1 Calculating the Fibonacci series in a 1ist

eg2-i-fibonacci.py
Calculates and stores the first n Fibonacci numbers.

n = 100
fib = [1, 1]
for i in range(2, n+l):
fib.append (fib[i-1] + fib[i-2])
print(£fib)

Alternatively, we can generate the series without storing more than two numbers at a
time as follows:

Listing 2.2 Calculating the Fibonacci series without storing it

eg2-ii-fibonacci.py
Calculates the first n Fibonacci numbers.

n = 100

54

The Core Python Language |

Keep track of the two most recent Fibonacci numbers.

a, b=1,1

print(a, b, end='")

for i in range(2, n+l1):
The next number (b) is a+b; then a becomes the previous b.
a, b =b, a+b
print(' ', b, end='")

enumerate
Because range objects can be used to produce a sequence of integers, it is tempting to
use them to provide the indexes of lists or tuples when iterating over them in a for loop:
>>> mammals = ['kangaroo', 'wombat', 'platypus']
>>> for i in range(len(mammals)):

print(i, ':', mammals[i])
0 : kangaroo

: wombat
2 : platypus

This works, of course, but it is more natural to avoid the explicit construction of a
range object (and the call to the 1en built-in) by using enumerate. This method takes an
iterable object and produces, for each item in turn, a tuple (count, item), consisting
of a counting index and the item itself:
>>> mammals = ['kangaroo', 'wombat', 'platypus']
>>> for i, mammal in enumerate(mammals):

print(i, ':', mammal)
0 : kangaroo

: wombat
2 : platypus

Note that each (count, item) tuple is unpacked in the for loop into the variables i and
mammal. It is also possible to set the starting value of count to something other than 0
(although then it won’t be the index of the item in the original list, of course):

>>> list(enumerate (mammals, 4))
[(4, 'kangaroo'), (5, 'wombat'), (6, 'platypus')]

zip
What if you want to iterate over two (or more) sequences at the same time? This is what
the zip built-in function is for: it creates an iterator object in which each item is a tuple
of items taken in turn from the sequences passed to it:
>>> a = [1, 2, 3, 4]
>>>b = ['a'", 'b', 'c', 'd']
>>> zip(a, b)
<builtins.zip at 0x104476998>
>>> for pair in zip(a, b):
print(pair)

2.4 Python Objects lI: Lists, Tuples and Loops 55

@3, 'ch
(4, 'd")
>>> list(zip(a, b)) # convert to list

[, 'a'y, @, 'b', @3, 'c'), (4, 'd)]
A nice feature of zip is that it can be used to unzip sequences of tuples as well:

>>> z = zip(a, b) # zip
>>> A, B = zip(¥*z) # unzip
>>> print(A, B)

(1, 2, 3, 4) ('a', 'b', 'c', 'd")
>>> list(A) == a, list(B) == b
(True, True)

zip does not copy the items into a new object, so it is memory-efficient and fast; but
this means that you only get to iterate over the zipped items once and you can’t index
them:

>>> z = zip(a, b):
>>> z[0]

' 1

TypeError: 'zip' object is not subscriptable

>>> for pair in z:
x =0 # just some dummy operation performed on each iteration

>>> for pair in z:
print (pair)

(nothing: we 've already exhausted the iterator z)
>>>

2.4.4 Exercises

Questions

Q2.4.1 Predict and explain the outcome of the following statements using the vari-
ables s = 'hello' anda = [4, 10, 2].

(a) print(s, sep='-"')
(b) print (*s, sep='-")
(C) print(a)

(d) print(*a, sep='"')
(e) 1list(range(*a))

Q2.4.2 A list could be used as a simple representation of a polynomial, P(x), with
the items as the coefficients of the successive powers of x, and their indexes as the
powers themselves. Thus, the polynomial P(x) = 4 + 5x + 2x> would be represented
by the list [4, 5, 0, 2]. Why does the following attempt to differentiate a polynomial
fail to produce the correct answer?

>>> P = [4, 5, 0, 2]

>>> dPdx = []
>>> for i, c in enumerate(P[1:]):

56

Problems

The Core Python Language |

dPdx . append(i*c)
>>> dPdx
[0, 0, 4] # wrong!

How can this code be fixed?

Q2.4.3 Given an ordered list of test scores, produce a list associating each score with a
rank (starting with 1 for the highest score). Equal scores should have the same rank. For
example, the input list [87, 75, 75, 50, 32, 32] should produce the list of rankings
[1,2,2,4,5,5].

Q2.4.4 Use a for loop to calculate from the first 20 terms of the Madhava series:

1 1 |
~ Vo [1- — 1
r= V2|l ss st

Q2.4.5 For what iterable sequences, x, does the expression any(x) and not all(x)
evaluate to True?

Q2.4.6 Explain why zip(*z) is the inverse of z = zip(a, b) — that is, while z pairs
the items: (a®, b®), (al, bl), (a2, b2), ..., zip(*z) separates them again: (a@,
al, a2, ...), (b0, bl, b2, ...).

Q2.4.7 Sorting a list of tuples arranges them in order of the first element in each tuple
first. If two or more tuples have the same first element, they are ordered by the second
element, and so on:

>>> sorted([(3, 1), (1, 4), (3, ®, (2, 2, (1, -1DD
[, -, a, 9, @, 2, G, 0, 3, I

This suggests a way of using zip to sort one list using the elements of another. Imple-
ment this method on the data below to produce an ordered list of the average amount of
sunshine in hours in London by month. Output the sunniest month first.

Jan Feb Mar Apr May Jun
447 65.4 101.7 1483 1709 1714
Jul Aug Sep Oct Nov Dec
176.7 186.1 1339 1054 59.6 458

P2.4.1 Write a short Python program which, given an array of integers, a, calculates
an array of the same length, p, in which p[i] is the product of all the integers in a except
a[i]. So, for example, ifa = [1, 2, 3],thenpis [6, 3, 2].

P2.4.2 The Hamming distance between two equal-length strings is the number of
positions at which the characters are different. Write a Python routine to calculate the
Hamming distance between two strings, s1 and s2.

2.4 Python Objects lI: Lists, Tuples and Loops 57

P2.4.3 Using a tuple of strings naming the digits 0-9, create a Python program which
outputs the representation of 7 as read aloud to eight decimal places:

three point one four one five nine two six five

P2.4.4 Write a program to output a nicely formatted depiction of the first eight rows
of Pascal’s triangle.

P2.4.5 A DNA sequence encodes each amino acid making up a protein as a three-
nucleotide sequence called a codon. For example, the sequence fragment AGTCT-
TATATCT contains the codons (AGT, CTT, ATA, TCT) if read from the first position
(“frame”). If read in the second frame it yields the codons (GTC, TTA, TAT) and in the
third (TCT, TAT, ATC).

Write some Python code to extract the codons into a list of three-letter strings given
a sequence and frame as an integer value (0, 1 or 2).

P2.4.6 The factorial function, n! = 1-2-3-...-(n— 1)n is the product of the first n
positive integers and is provided by the math module’s factorial method. The double
factorial function, n!!, is the product of the positive odd integers up to and including n
(which must itself be odd):

(n+1)/2
!l =]_[Qi-1)=1-3-5...-(n=2)-n.
i=1
Write a routine to calculate n!! in Python.
As a bonus exercise, extend the formula to allow for even n as follows:
n/2
nt=[Jer=2-4-6-....a-2)-n.
i=1

P2.4.7 Benford’s law is an observation about the distribution of the frequencies of the
first digits of the numbers in many different data sets. It is frequently found that the first
digits are not uniformly distributed, but follow the logarithmic distribution

d+1
P(d) = log;g (%)

That is, numbers starting with 1 are more common than those starting with 2, and so on,
with those starting with 9 the least common. The probabilities follow:

0.301
0.176
0.125
0.097
0.079
0.067
0.058
0.051
0.046

O 00 N Lt AW N

58

2.5

2.51

The Core Python Language |

Benford’s law is most accurate for data sets which span several orders of magnitude,
and can be proved to be exact for some infinite sequences of numbers.

(a) Demonstrate that the first digits of the first 500 Fibonacci numbers (see Example
E2.20) follow Benford’s law quite closely.

(b) The length of the amino acid sequences of 500 randomly chosen proteins
are provided in the file protein_lengths.py which can be downloaded from
[https://scipython.com/ex/bbal. This file contains a list, naa, which can be imported
at the start of your program with

from protein_lengths import naa

To what extent does the distribution of protein lengths obey Benford’s law?

Control Flow

Few computer programs are executed in a purely linear fashion, one statement after
another as written in the source code. It is more likely that during the program execution,
data objects are inspected and blocks of code executed conditionally on the basis of
some test carried out on them. Thus, all practical languages have the equivalent of an
if-then-(else) construction. This section explains the syntax of Python’s version of this
clause and covers a further kind of loop: the while loop.

if ... elif ... else

The if ... elif ... else construction allows statements to be executed condition-
ally, depending on the result of one or more logical tests (which evaluate to the boolean
values True or False):

if <logical expression 1>:
<statements 1>

elif <logical expression 2>:
<statements 2>

else:

<statements>
That is, if <logical expression 1> evaluates to True, <statements 1> are executed;
otherwise, if <logical expression 2> evaluates to True, <statements 2> are exe-
cuted, and so on; if none of the preceding logical expressions evaluate to True, the

statements in the block of code following else: are executed. These statement blocks
are indented with whitespace, as for the for loop. For example,

for x in range(10):

if x <= 3:

print(x, 'is less than or equal to three')
elif x > 5:

print(x, 'is greater than five')
else:

print(x, 'must be four or five, then')

https://scipython.com/ex/bba

2.5 Control Flow 59

produces the output:

0 is less than or equal to three
1 is less than or equal to three
is less than or equal to three
is less than or equal to three
must be four or five, then
must be four or five, then

is greater than five

is greater than five

is greater than five

© 0N OV AW N

is greater than five

It is not necessary to enclose test expressions such as x <= 3 in parentheses, as itis in C,
for example, but the colon following the test is mandatory. The test expressions don’t, in
fact, have to evaluate explicitly to the boolean values True and False: as we have seen,
other data types are taken to be equivalent to True unless they are @ (int) or 0. (float),
the empty string, '', empty list, [], the empty tuple, (), and so forth or Python’s special
type, None (see Section 2.2.4). Consider:

for x in range (10):
if x % 2:
print(x, 'is odd!"')
else:
print(x, 'is even!')

This works because x % 2 = 1 for odd integers, which is equivalent to True and x % 2
= 0 for even integers, which is equivalent to False.

There isno switch ... case ... finally construction in Python — equivalent con-
trol flow can be achieved with if ... elif ... else or with dictionaries (see Section
4.2).

Example E2.21 In the Gregorian calendar a year is a leap year if it is divisible by 4
with the exceptions that years divisible by 100 are not leap years unless they are also
divisible by 400. The following Python program determines if year is a leap year.

Listing 2.3 Determining if a year is a leap year

year = 1900

if not year % 400:
is_leap_year = True
elif not year % 100:
is_leap_year = False
elif not year % 4:
is_leap_year = True
else:
is_leap_year = False

s_ly = 'is a' if is_leap_year else 'is not a'
print('{:4d} {:s} leap year'.format(year, s_ly))

Hence the output:

1900 is not a leap year

60

252

253

The Core Python Language |

while Loops

Whereas a for loop is established for a fixed number of iterations, statements within the
block of a while loop execute only and as long as some condition holds:
>>> 1 =0
>>> while i < 10:

i+4=1

print(i, end='.")
>>> print ()
1.2.3.4.5.6.7.8.9.10.
The counter i is initialized to 0, which is less than 10, so the while loop begins. On
each iteration, i is incremented by one and its value printed. When i reaches 10, on
the following iteration i < 10 is False: the loop ends and execution continues after the
loop, where print () outputs a new line.

Example E2.22 A more interesting example of the use of a while loop is given by
this implementation of Euclid’s algorithm for finding the greatest common divisor of
two numbers, gcd(a, b):

>>> a, b = 1071, 462

>>> while b:
a, b=>b, a%b

>>> print(a)
21

The loop continues until b divides a exactly; on each iteration, b is set to the remainder
of a//b and then a is set to the old value of b. Recall that the integer 0 evaluates as
boolean False so while b: is equivalent here to while b != 0:.

More Control Flow: break, continue, pass and else

break

Python provides three further statements for controlling the flow of a program. The
break command, issued inside a loop, immediately ends that loop and moves execution
to the statements following the loop:

x =0
while True:
X +=1
if not (x % 15 or x % 25):
break

print(x, 'is divisible by both 15 and 25')

The while loop condition here is (literally) always True so the only escape from the
loop occurs when the break statement is reached. This occurs only when the counter x
is divisible by both 15 and 25. The output is therefore:

75 is divisible by both 15 and 25

2.5 Control Flow 61

Similarly, to find the index of the first occurrence of a negative number in a list:

alist = [0, 4, 5, -2, 5, 10]
for i, a in enumerate(alist):
if a < 0:
break
print(a, 'occurs at index', i)

will output:

-2 occurs at index 3

Note that after escaping from the loop, the variables i and a have the values that they
had within the loop at the break statement.

continue
The continue statement acts in a similar way to break but instead of breaking out of the
containing loop, it immediately forces the next iteration of the loop without completing
the statement block for the current iteration. For example,
for i in range(l, 11):

if i % 2:

continue

print(i, 'is even!')
prints only the even integers 2, 4, 6, 8, 10: if i is not divisible by 2 (and hence i % 2
is 1, equivalent to True), that loop iteration is canceled and the loop resumed with the
next value of i (the print statement is skipped).

pass
The pass command does nothing. It is useful as a “stub” for code that has not yet
been written but where a statement is syntactically required by Python’s whitespace
convention.
>>> for i in range(l, 11):
if i ==
pass # do something special if i is 6

if not i % 3:
print(i, 'is divisible by 3')

3 is divisible by 3

6 is divisible by 3

9 is divisible by 3

If the pass statement had been continue the line 6 is divisible by 3 would not have
been printed: execution would have returned to the top of the loop and i = 7 instead of
continuing to the second if statement.

else

A for or while loop may be followed by an else block of statements, which will be
executed only if the loop finished “normally” (that is, without the intervention of a
break). For for loops, this means these statements will be executed after the loop has

62

The Core Python Language |

reached the end of the sequence it is iterating over; for while loops, they are executed
when the while condition becomes False. For example, consider again our program to
find the first occurrence of a negative number in a list. This code behaves rather oddly
if there aren’t any negative numbers in the list:

>>> alist = [0, 4, 5, 2, 5, 10]
>>> for i, a in enumerate(alist):
if a < 0:

break

>>> print(a, 'occurs at index',6 i)
10 occurs at index 5

It outputs the index and number of the last item in the list (whether it is negative or not).
A way to improve this is to notice when the for loop runs through every item without
encountering a negative number (and hence the break) and output a message:

>>> alist = [0, 4, 5, 2, 5, 10]
. for i, a in enumerate(alist):
if a < 0:
print(a, 'occurs at index', i)
break
. else:
print('no negative numbers in the list')

no negative numbers in the list

As another example, consider this (not particularly elegant) routine for finding the
largest factor of a number a > 2:

a = 1013
b=a-1
while b I= 1:
if not a % b:
print('the largest factor of', a, 'is', b)
break
b -=1
else:
print(a, 'is prime!")

b is the largest factor not equal to a. The while loop continues as long as b is not equal
to 1 (in which case a is prime) and decrements b after testing if b divides a exactly; if it
does, b is the highest factor of a, and we break out of the while loop.

Example E2.23 A simple “turtle” virtual robot lives on an infinite two-dimensional
plane and its location is always an integer pair of (x,y) coordinates. It can face only
in directions parallel to the x and y axes (i.e. “north,” “east,” “south” or “west”) and it
understands four commands:

F: move forward one unit;

L: turn left (counterclockwise) by 90°;
R: turn right (clockwise) by 90°;

S: stop and exit.

2.5 Control Flow

63

The following Python program takes a list of such commands as a string and tracks
the turtle”’s location. The turtle starts at (0, 0), facing in the direction (1,0) (“east”).
The program ignores (but warns about) invalid commands and reports when the turtle

crosses its own path.

Listing 2.4 A virtual turtle robot

eg2-turtle.py
commands = 'FFFFFLFFFLFFFFRRRFXFFFFFFS'

Current location, current facing direction.

x, y=0,0

dx, dy = 1, 0

Keep track of the turtle's location in the list of tuples, locs.
locs = [(0, ®)]

@ for cmd in commands:

2]

if ecmd == 'S':
Stop command.
break
if cmd == 'F':
Move forward in the current direction.
X += dx
y += dy

if (x, y) in locs:
print ('Path crosses itself at: ({}, {})'.format(x, y))
locs.append((x, y))
continue
if cmd == 'L':
Turn to the left (counterclockwise).
L => (dx, dy): (1, 0 -> (0, 1) -> (-1, 0) -> (0, -1) -> (1,
dx, dy = -dy, dx
continue
if cmd == 'R':
Turn to the right (clockwise).
R => (dx, dy): (1, 0) -> (0, -1) -> (-1, 0) -> (0, 1) -> (1,
dx, dy = dy, -dx
continue
If we 're here it's because we don't recognize the command: warn.
print ('Unknown command:', cmd)
else:
We exhausted the commands without encountering an S for STOP.
print('Instructions ended without a STOP')

Plot a path of asterisks.
First find the total range of x and y values encountered.
x, y = zip(*locs)
xmin, xmax = min(x), max(x)
ymin, ymax = min(y), max(y)
The grid size needed for the plot is (nx, ny).
nx = xmax - xmin + 1
ny = ymax - ymin + 1
Reverse the y-axis so that it decreases *down® the screen.
for iy in reversed(range(ny)):
for ix in range(nx):

if (ix + xmin, iy + ymin) in locs:

0).

0.

64

254

Questions

The Core Python Language |

print('*', end="")
else:
print(' ', end='")
print ()

©® We can iterate over the string commands to take its characters one at a time.
® Note that the else: clause to the for loop is only executed if we do not break out
of it on encountering a STOP command.
© We unzip the list of tuples, locs, into separate sequences of the x and y coordinates
with zip(*locs).

The output produced from the commands given is:

Unknown command: X
Path crosses itself at: (1, 0)

Exercises

Q2.5.1 Write a Python program to normalize a list of numbers, a, such that its values
lie between O and 1. Thus, for example, the list a = [2, 4, 10, 6, 8, 4] becomes
[0.0, 0.25, 1.0, 0.5, 0.75, 0.25].

Hint: use the built-ins min and max, which return the minimum and maximum values
in a sequence, respectively; for example, min(a) returns 2 in the earlier mentioned list.

Q2.5.2 Write a while loop to calculate the arithmetic-geometric mean (AGM) of two
positive real numbers, x and y, defined as the limit of the sequences:

Ap+1 %(an + bn)
bn+l = Vanbm

starting with ap = x, by = y. Both sequences converge to the same number, denoted
agm(x, y). Use your loop to determine Gauss’s constant, G = 1/agm(1, V2).

Q2.5.3 The game of “Fizzbuzz” involves counting, but replacing numbers divisible
by 3 with the word “Fizz,” those divisible by 5 with “Buzz,” and those divisible by both
3 and 5 with “FizzBuzz.” Write a program to play this game, counting up to 100.

Q2.5.4 Straight-chain alkanes are hydrocarbons with the general stoichiometric for-
mula C,Hj,.,, in which the carbon atoms form a simple chain: for example, butane,
C4Hjo, has the structural formula that may be depicted H;CCH,CH,CHj;. Write a

Problems

2.5 Control Flow 65

program to output the structural formula of such an alkane, given its stoichiometry
(assume n > 1). For example, given stoich = 'C8H18', the output should be
H3C-CH2-CH2-CH2-CH2-CH2-CH2-CH3

P2.5.1 Modify your solution to Problem P2.4.4 to output the first 50 rows of Pascal’s
triangle, but instead of the numbers themselves, output an asterisk if the number is odd
and a space if it is even.

P2.5.2 The iterative weak acid approximation determines the hydrogen ion concen-
tration, [H*], of an acid solution from the acid dissociation constant, K,, and the acid
concentration, ¢, by successive application of the formula

[H' w1 = VK, (c = [H*]),

starting with [H"]y = 0. The iterations are continued until [H*] changes by less than
some predetermined, small tolerance value.

Use this method to determine the hydrogen ion concentration, and hence the pH (=
—log,o[H*]) of a ¢ = 0.01 M solution of acetic acid (K, = 1.78 X 107°). Use the
tolerance TOL = 1.e-10.

P2.5.3 The Luhn algorithm is a simple checksum formula used to validate credit card
and bank account numbers. It is designed to prevent common errors in transcribing the
number, and detects all single-digit errors and almost all transpositions of two adjacent
digits. The algorithm may be written as the following steps:

1. Reverse the number.

2. Treating the number as an array of digits, take the even-indexed digits (where the
indexes start at 1) and double their values. If a doubled digit results in a number
greater than 10, add the two digits (e.g. the digit 6 becomes 12 and hence 1 +2 =

3).
3. Sum this modified array.
4. If the sum of the array modulo 10 is O the credit card number is valid.

Write a Python program to take a credit card number as a string of digits (possibly in
groups, separated by spaces) and establish if it is valid or not. For example, the string
'4799 2739 8713 6272' is a valid credit card number, but any number with a single
digit in this string changed is not.

P2.5.4 Heron’s method for calculating the square root of a number, S, is as follows:
starting with an initial guess, xo, the sequence of numbers x,.; = %(x” + §/x,) are
successively better approximations to V.. Implement this algorithm to estimate the
square root of 2 117 519.73 to two decimal places and compare with the “exact” answer
provided by the math. sqrt method. For the purpose of this exercise, start with an initial
guess, xp = 2000.

P2.5.5 Write a program to determine tomorrow’s date given a string representing
today’s date, today, as either “D/M/Y” or “M/D/Y”. Cater for both British and US-style

66

The Core Python Language |

dates when parsing today according to the value of a boolean variable us_date_style.
For example, when us_date_style is False and today is '3/4/2014', tomorrow’s date
should be reported as '4/4/2014'.2> (Hint: use the algorithm for determining if a year
is a leap year, which is provided in the example to Section 2.5.1.)

P2.5.6 Write a Python program to determine f(7), the number of trailing zeros in n!,
using the special case of de Polignac’s formula:
n
fo =3, Elr
where | x] denotes the floor of x, the largest integer less than or equal to x.

P2.5.7 The hailstone sequence starting at an integer n > 0 is generated by the repeated
application of the three rules:

° if n = 1, the sequence ends;
° if n is even, the next number in the sequence is n/2;
° if n is odd, the next number in the sequence is 3n + 1.

(a) Write a program to calculate the hailstone sequence starting at 27.

(b) Let the stopping time be the number of numbers in a given hailstone sequence.
Modify your hailstone program to return the stopping time instead of the numbers
themselves. Adapt your program to demonstrate that the hailstone sequences
started with 1 < n < 100 agree with the Collatz conjecture (that all hailstone

sequences stop eventually).

P2.5.8 The algorithm known as the Sieve of Eratosthenes finds the prime numbers

in a list 2,3,...,n. It may be summarized as follows, starting at p = 2, the first prime

number:

Step 1. Mark all the multiples of p in the list as non-prime (that is, the numbers mp
where m = 2,3,4,...: these numbers are composite.

Step 2. Find the first unmarked number greater than p in the list. If there is no such
number, stop.
Step 3. Let p equal this new number and return to Step 1.
When the algorithm stops, the unmarked numbers are the primes.
Implement the Sieve of Eratosthenes in a Python program and find all the primes
under 10 000.

P2.5.9 Euler’s totient function, ¢(n), counts the number of positive integers less than
or equal to n that are relatively prime to n. (Two numbers, a and b, are relatively prime
if the only positive integer that divides both of them is 1; that is, if gcd(a, b) = 1.)
Write a Python program to compute ¢(n) for 1 < n < 100.
(Hint: you could use Euclid’s algorithm for the greatest common divisor given in the
example to Section 2.5.2.)

25 In practice, it would be better to use Python’s datetime library (described in Section 4.5.3), but avoid it for
this exercise.

2.5 Control Flow 67

P2.5.10 The value of 7 may be approximated by Monte Carlo methods. Consider the
region of the xy-plane bounded by 0 < x < 1 and 0 < y < 1. By selecting a large
number of random points within this region and counting the proportion of them lying
beneath the function y = V1 — x? describing a quarter-circle, one can estimate /4, this
being the area bounded by the axes and y(x). Write a program to estimate the value of &
by this method.

Hint: use Python’s random module. The method random.random() generates a
(pseudo-)random number between 0. and 1. See Section 4.5.1 for more information.

P2.5.11 Write a program to take a string of text (words, perhaps with punctuation,
separated by spaces) and output the same text with the middle letters shuffled randomly.

Keep any punctuation at the end of words. For example, the string:
Four score and seven years ago our fathers brought forth on this continent a new nation, conceived
in liberty, and dedicated to the proposition that all men are created equal.

might be rendered:
Four sorce and seevn yeras ago our fhtaers bhrogut ftroh on this cnnoientt a new noitan, cvieecond
in Ibrteiy, and ddicetead to the ptosoiporin that all men are cetaerd euaql.

Hint: random. shuffle shuffles a list of items in place. See Section 4.5.1.

P2.5.12 The electron configuration of an atom is the specification of the distribution
of its electrons in atomic orbitals. An atomic orbital is identified by a principal quantum
number, n = 1,2,3,... defining a shell comprised of one or more subshells defined
by the azimuthal quantum number, | = 0,1,2,...,n— 1. The values [= 0,1,2,3 are
referred to be the letters s, p, d and f respectively. Thus, the first few orbitals are 1s
n=11=0),2s(n=2,1=0),2p(n=2,l=1),3s (n=3,l =0), and each shell has n
subshells. A maximum of 2(2/ + 1) electrons may occupy a given subshell.

According to the Madelung rule, the N electrons of an atom fill the orbitals in order
of increasing n + / such that whenever two orbitals have the same value of n + [, they
are filled in order of increasing n. For example, the ground state of titanium (N = 22) is
predicted (and found) to be 15%25°2p®3523 p®4523d>.

Write a program to predict the electronic configurations of the elements up to ruther-
fordium (N = 104). The output for titanium should be

Ti: 1s2.2s2.2p6.3s2.3p6.4s2.3d2

A Python list containing the element symbols in order may be downloaded from
[https://scipython.com/ex/bbb].
As a bonus exercise, modify your program to output the configurations using the

convention that the part of the configuration corresponding to the outermost closed shell,
a noble gas configuration, is replaced by the noble gas symbol in square brackets; thus,

Ti: [Ar].4s2.3d2

the configuration of Argon being 1s2.2s2.2p6.3s2.3p6.

https://scipython.com/ex/bbb

68

2.6

2.6.1

26.2

The Core Python Language |

Table 2.13 File modes

mode argument Open mode

r Text, read-only (the default)

W Text, write (an existing file with the same name will be overwritten)

a Text, append to an existing file

r+ Text, reading and writing

rb Binary, read-only

wh Binary, write (an existing file with the same name will be overwritten)
ab Binary, append to an existing file

rb+ Binary, reading and writing

File Input/Output

Until now, data have been hard-coded into our Python programs, and output has been
to the console (the terminal). Of course, it will frequently be necessary to input data
from an external file and to write data to an output file. To achieve this, Python has file
objects.

Opening and Closing a File

A file object is created by opening a file with a given filename and mode. The filename
may be given as an absolute path, or as a path relative to the directory in which the
program is being executed. mode is a string with one of the values given in Table 2.13.
For example, to open a file for text-mode writing:

>>> f = open('myfile.txt', 'w')

file objects are closed with the close method: for example, f.close(). Python closes
any open file objects automatically when a program terminates.

Writing to a File
The write method of a file object writes a string to the file and returns the number of
characters written:

>>> f.write('Hello World!')
12

More helpfully, the print built-in takes an argument, file, to specify where to redirect
its output :

>>> print (35, 'Cl', 2, sep='"', file=f)

writes ‘35C12’ to the file opened as file object f instead of to the console.

Example E2.24 The following program writes the first four powers of the numbers
between 1 and 1000 in comma-separated fields to the file powers. txt:

2.6.3

2.6 File Input/Output 69

f = open('powers.txt', 'w')
for i in range(1,1001):

print(i, i**2, i**3, i**4, sep=', ', file=f)
f.close()

The file contents are

2, 4, 8, 16
3, 9, 27, 81

999, 998001, 997002999, 996005996001
1000, 1000000, 1000000000, 1000000000000

Reading from a File

To read n bytes from a file, call f.read(n). If n is omitted, the entire file is read in.?

readline() reads a single line from the file, up to and including the newline char-
acter. The next call to readline() reads in the next line, and so on. Both read() and
readline() return an empty string when they reach the end of the file.

To read all of the lines into a list of strings in one go, use f.readlines().

file objects are iterable, and looping over a (text) £ile returns its lines one at a time:

>>> for line in f:

print(line, end='")

First line
Second line

© Because line retains its newline character when read in, we use end="" to prevent
print from adding another, which would be output as a blank line.

You probably want to use this method if your file is very large unless you really
do want to store every line in memory. See Section 4.3.4 concerning Python’s with
statement for more best practice in file handling.

Example E2.25 To read in the numbers from the file powers.txt generated in the
previous example, the columns must be converted to lists of integers. To do this, each
line must be split into its fields and each field explicitly converted to an int:

f = open('powers.txt', 'r')
squares, cubes, fourths = [], [], []
for line in f.readlines():
fields = line.split(',"')
squares.append (int(fields[1]))
cubes.append(int(fields[2]))
fourths.append(int(fields[3]))
f.close()

26 To quote the official documentation: “it’s your problem if the file is twice as large as your machine’s
memory.”

70

26.4

Problems

The Core Python Language |

n = 500
print(n, 'cubed is', cubes[n-1])

The output is

500 cubed is 125000000

In practice, it is better to use NumPy (see Chapter 6) to read in data files such as
these.

Exercises

P2.6.1 The coast redwood tree species, Sequoia sempervirens, includes some of
the oldest and tallest living organisms on Earth. Details concerning individual trees
are given in the tab-delimited text file redwood-data.txt, available at
[.com/ex/bbdl. (Data courtesy of the Gymnosperm database, www.conifers.org/cu/
Sequoia.php)

Write a Python program to read in this data and report the tallest tree and the tree
with the greatest diameter.

P2.6.2 Write a program to read in a text file and censor any words in it that are on a
list of banned words by replacing their letters with the same number of asterisks. Your
program should store the banned words in lower case but censor examples of these
words in any case. Assume there is no punctuation.

As a bonus exercise, handle text that contains punctuation. For example, given the
list of banned words: ['C', 'Perl', 'Fortran'] the sentence

'Some alternative programming languages to Python are C, C++, Perl, Fortran and

Java.'

becomes

'Some alternative programming languages to Python are *, C++, #%%% ekwwddx

Java.'

P2.6.3 The Earth Similarity Index (ES]) attempts to quantify the physical similarity
between an astronomical body (usually a planet or moon) and Earth. It is defined by

ESIJ = ﬁ (1 -)w‘./n s

i=1
where the parameters x; ; are described, and their terrestrial values, x; g and weights, w;,
are given in Table 2.14. The radius, density and escape velocities are taken relative to
the terrestrial values. The ESI lies between O and 1, with the values closer to 1 indicating
closer similarity to Earth (which has an ESI of exactly 1: Earth is identical to itself!).
The file ex2-6-g-esi-data.txt available from [https://scipython.com/ex/bbc| con-
tains the earlier mentioned parameters for a range of astronomical bodies. Use these

Xi,j — Xi@

Xij + Xig

https://scipython.com/ex/bbd
https://scipython.com/ex/bbd
www.conifers.org/cu/Sequoia.php
www.conifers.org/cu/Sequoia.php
https://scipython.com/ex/bbc

2.7

2.71

2.7 Functions 71

Table 2.14 Parameters used in the definition of ESI

i Parameter Earth value, x;5 Weight, w;
1 Radius 1.0 0.57

2 Density 1.0 1.07

3 Escape velocity, vese 1.0 0.7

4 Surface temperature 288 K 5.58

data to calculate the ESI for each of the bodies. Which has properties “closest” to those
of the Earth?

P2.6.4 Write a program to read in a two-dimensional array of strings into a list of
lists from a file in which the string elements are separated by one or more spaces. The
number of rows, m, and columns, n, may not be known in advance of opening the file.
For example, the text file

ABCD
EFGH
I JKL

should create an object, grid, as

rc'a', 's', 'c¢', 'D'1, ['E', 'F', 'G', 'H'], ['TI', 'J', 'K', 'L']]

Read like this, grid contains a list of the array’s rows. Once the array has been read in,
write loops to output the columns of the array:

[['a', 'e', 't'l, ['B', 'F', '3'1, ['C', 'G', 'K'l, ['D', 'H', 'L'1]

Harder: also output all its diagonals read in one direction:

(cra'l, r's', 'E'l, ('c', 'f', 'r'yz, ['D°, 'G', "3'1, ['H', 'K'], ['L']]

and the other direction:

(e'o'y, c'c', 'w'], ['B', 'G', 'L'], ['A", 'F', 'K'], ['E', '3'], ['I']]

Functions

A Python function is a set of statements that are grouped together and named so that
they can be run more than once in a program. There are two main advantages to using
functions. First, they enable code to be reused without having to be replicated in differ-
ent parts of the program; second, they enable complex tasks to be broken into separate
procedures, each implemented by its own function — it is often much easier and more
maintainable to code each procedure individually than to code the entire task at once.

Defining and Calling Functions

The def statement defines a function, gives it a name and lists the arguments (if any) that
the function expects to receive when called. The function’s statements are written in an
indented block following this def. If at any point during the execution of this statement

72

The Core Python Language |

block a return statement is encountered, the specified values are returned to the caller.
For example,
>>> def square(x):

x_squared = x**2
return x_squared

>>> number = 2

>>> number_squared = square (number)

>>> print(number, 'squared is', number_squared)
2 squared is 4

>>> print ('8 squared is', square(8))

8 squared is 64

© The simple function named square takes a single argument, x. It calculates x**2 and
returns this value to the caller. Once defined, it can be called any number of times.
® In the first example, the return value is assigned to the variable number_squared;
® In the second example, it is fed straight into the print method for output to the
console.

To return two or more values from a function, pack them into a tuple. For example,
the following program defines a function to return both roots of the quadratic equation
ax* + bx + ¢ (assuming it has two real roots):

import math

def roots(a, b, c):
d = b**2 - 4*a¥*c
rl = (-b + math.sqrt(d)) / 2 / a
r2 = (-b - math.sqrt(d)) / 2 / a
return rl, r2

print(roots(l., -1., -6.))

When run, this program outputs, as expected:

(3.0, -2.0

It is not necessary for a function to explicitly return any object: functions that fall off
the end of their indented block without encountering a return statement return Python’s
special value, None.

Function definitions can appear anywhere in a Python program, but a function cannot
be referenced before it is defined. Functions can even be nested, but a function defined
inside another is not (directly) accessible from outside that function.

Docstrings

A function docstring is a string literal that occurs as the first statement of the function
definition. It should be written as a triple-quoted string on a single line if the func-
tion is simple, or on multiple lines with an initial one-line summary for more detailed
descriptions of complex functions. For example,

def roots(a, b, c):

"""Return the roots of ax*2 + bx + c."""
d = b**2 - 4*a*c

2.7.2

2.7 Functions 73

The docstring becomes the special _ _doc _ _ attribute of the function:

>>> roots.__doc

'Return the roots of ax*2 + bx + c.'

A docstring should provide details about how fo use the function: which arguments to
pass it and which objects it returns,”’ but should not generally include details of the
specific implementation of algorithms used by the function (these are best explained in
comments, preceded by #).

Docstrings are also used to provide documentation for classes and modules (see
Sections 4.5 and 4.6.2).

Example E2.26 1In Python, functions are “first class” objects: they can have variable
identifiers assigned to them, they can be passed as arguments to other functions, and
they can even be returned from other functions. A function is given a name when it
is defined, but that name can be reassigned to refer to a different object (don’t do this
unless you mean to!) if desired.

As the following example demonstrates, it is possible for more than one variable
name to be assigned to the same function object.
>>> def cosec(x):

"""Return the cosecant of x, cosec(x) = 1/sin(x)."""
return 1./math.sin(x)

>>> cosec
<function cosec at 0x100375170>
>>> cosec(math.pi/4)
1.4142135623730951

>>> Ccsc = cosecC

>>> csc

<function cosec at 0x100375170>
>>> csc(math.pi/4)
1.4142135623730951

O The assignment csc = cosec associates the identifier (variable name) csc with the
same function object as the identifier cosec: this function can then be called with csc()
as well as with cosec().

Default and Keyword Arguments

Keyword Arguments

In the previous example, the arguments have been passed to the function in the order in
which they are given in the function’s definition (these are called positional arguments).
It is also possible to pass the arguments in an arbitrary order by setting them explicitly
as keyword arguments:

roots(a=1., c=-6., b=-1.)
roots(b=-1., a=1., c=-6.)

27 For larger projects, docstrings document an application programming interface (APT) for the project.

74

The Core Python Language |

If you mix nonkeyword (positional) and keyword arguments the former must come first;
otherwise Python won’t know to which variable the positional argument corresponds:

>>> roots(l., c=6., b=-1.) # OK

3.0, -2.0)

>>> roots(b=-1., 1., -6.) # oops: which is a and which is c?
File "<stdin>", line 1

SyntaxError: non-keyword arg after keyword arg

Default Arguments

Sometimes you want to define a function that takes an optional argument: if the caller
doesn’t provide a value for this argument, a default value is used. Default arguments are
set in the function definition:

>>> def report_length(value, units='m'):

. return 'The length is {:.2f} {}'.format(value, units)

>>> report_length(33.136, 'ft')

'The length is 33.14 ft'

>>> report_length(10.1)
'The length is 10.10 m'

Default arguments are assigned when the Python interpreter first encounters the
function definition. This can lead to some unexpected results, particularly for mutable
arguments. For example,
>>> def func(alist = []):

alist.append(7)
return alist

>>> func()
[71

>>> func()
[7, 71

>>> func()
[7z, 7, 7]

The default argument to the function, func, here is an empty list, but it is the specific
empty list assigned when the function is defined. Therefore, each time func is called
this specific list grows.

Example E2.27 Default argument values are assigned when the function is defined.
Therefore, if a function is defined with an argument defaulting to some immutable
object, subsequently changing that variable will not change the default:

v

>>> default_units = 'm'

>>> def report_length(value, units=default_units):
return 'The length is {:.2f} {}'.format(value, units)

>>> report_length(10.1)
'The length is 10.10 m'
>>> default_units = 'cubits'
>>> report_length(10.1)
'The length is 10.10 m'

2.7.3

2.7 Functions 75

The default units used by the function report_length are unchanged by the reassign-
ment of the variable name default_units: the default value is set to the string object
referred to by default_units when the def statement is encountered by the Python
compiler ('m") and it cannot be changed subsequently.

This also means that if a default argument is assigned to a mutable object, it is
always that same object that is used whenever the function is called without providing
an alternative: see Question Q2.7.4.

Scope

A function can define and use its own variables. When it does so, those variables are
local to that function: they are not available outside the function. Conversely, variables
assigned outside all function defs are global and are available everywhere within the
program file. For example,
>>> def func():

a=>5

print(a, b)

>>> b =6
>>> func()
56

The function func defines a variable a, but prints out both a and b. Because the variable
b isn’t defined in the local scope of the function, Python looks in the global scope, where
itfindsb = 6, so thatis what is printed. It doesn’t matter that b hasn’t been defined when
the function is defined, but of course it must be before the function is called.

What happens if a function defines a variable with the same name as a global variable?
In this case, within the function the local scope is searched first when resolving variable
names, so it is the object pointed to by the local variable name that is retrieved. For
example,

>>> def func():

a=>5
print(a)
>>> a = 6

>>> func()

5

>>> print(a)
6

Note that the local variable a exists only within the body of the function; it just
happens to have the same name as the global variable a. It disappears after the function
exits and it doesn’t overwrite the global a.

Python’s rules for resolving scope can be summarized as “LEGB”’: first local scope,
then enclosing scope (for nested functions), then global scope, and finally built-ins — if
you happen to give a variable the same name as a built-in function (such as range or
len), then that name resolves to your variable (in local or global scope) and not to the

76

The Core Python Language |

original built-in. It is therefore generally not a good idea to name your variables after
built-ins.

The global and nonlocal Keywords

We have seen that it is possible to access variables defined in scopes other than the local
function’s. Is it possible to modify them (“rebind” them to new objects)? Consider the
distinction between the behavior of the following functions:

>>> def funcl():
print (x) # OK, providing x is defined in global or enclosing scope

>>> def func2():
X += 1 # not OK: can't modify x if it isn't local

>>> x = 4

>>> funcl()

4

>>> func2()

UnboundLocalError: local variable 'x' referenced before assignment

If you really do want to change variables that are defined outside the local scope, you
must first declare within the function body that this is your intention with the keywords
global (for variables in global scope) and nonlocal (for variables in enclosing scope,
for example, where one function is defined within another). In the previous case:
>>> def func2():

global x
x +=1 # OK now - Python knows we mean x in global scope

>>> x = 4

>>> func2() # no error
>>> X

5

The function func? really has changed the value of the variable x in global scope.

You should think carefully whether it is really necessary to use this technique (would
it be better to pass x as an argument and return its updated value from the function?),
Especially in longer programs, variable names in one scope that change value (or even
type!) within functions lead to confusing code, behavior that is hard to predict and tricky
bugs.

Example E2.28 Take a moment to study the following code and predict the result
before running it.

Listing 2.5 Python scope rules

eg2-scope.py

def outer_func():
def inner_func():
a=9
print('inside inner_func, a is {:d} (id={:d})'.format(a, id(a)))
print('inside inner_func, b is {:d} (id={:d})'.format(b, id(b)))

a,

2.7 Functions 77

print('inside inner_func, len is {:d} (id={:d})'.format(len,id(len)))

len = 2

print('inside outer_func, a is {:d} (id={:d})'.format(a, id(a)))
print('inside outer_func, b is {:d} (id={:d})'.format(b, id(b)))
print('inside outer_func, len is {:d} (id={:d})'.format(len,id(len)))
inner_func()

b=2¢6,7

outer_func ()

print('in global scope, a is {:d} (id={:d})'.format(a, id(a)))
print('in global scope, b is {:d} (id={:d})'.format(b, id(b)))
print('in global scope, len is', len, '(id={:d})'.format(id(len)))

This program defines a function, inner_func, nested inside another, outer_func.

After these definitions, the execution proceeds as follows:

1.
2.

Global variables a = 6 and b = 7 are initialized.
outer_func is called:

a. outer_func defines a local variable, len = 2.

b. The values of a and b are printed; they don’t exist in local scope and there
isn’t any enclosing scope, so Python searches for and finds them in global
scope: their values (6 and 7) are output.

c. The value of local variable len (2) is printed.

d. inner_func is called:

(1) Alocal variable, a = 9 is defined.

(2) The value of this local variable is printed.

(3) The value of b is printed; b doesn’t exist in local scope so Python
looks for it in enclosing scope, that of outer_func. It isn’t found
there either, so Python proceeds to look in global scope where it is
found: the value b = 7 is printed.

(4) The value of len is printed: 1len doesn’t exist in local scope, but it
is in the enclosing scope since len = 2 is defined in outer_func: its
value is output.

After outer_func has finished execution, the values of a and b in global scope
are printed.

The value of 1en is printed. This is not defined in global scope, so Python searches
its own built-in names: len is the built-in function for determining the lengths of
sequences. This function is itself an object and it provides a short string descrip-
tion of itself when printed.

inside outer_func, a is 6 (id=232)
inside outer_func, b is 7 (id=264)

inside outer_func, len is 2 (id=104)

inside inner_func, a is 9 (id=328)

inside inner_func, b is 7 (id=264)

inside inner_func, len is 2 (id=104)

in global scope, a is 6 (id=232)

78

274 ¢

The Core Python Language |

in global scope, b is 7 (id=264)
in global scope, len is <built-in function len> (id=977)

Note that in this example outer_func has (perhaps unwisely) redefined (re-bound)
the name len to the integer object 2. This means that the original len built-in function
is not available within this function (and neither is it available within the enclosed
function, inner_func).

Passing Arguments to Functions

A common question from new users of Python who come to it with a knowledge of other
computer languages is, are arguments to functions passed “by value” or “by reference?”
In other words, does the function make its own copy of the argument, leaving the
caller’s copy unchanged, or does it receive a “pointer” to the location in memory of the
argument, the contents of which the function can change? The distinction is important
for languages such as C, but does not fit well into the Python name-object model. Python
function arguments are sometimes (not very helpfully) said to be “references, passed by
value”. Recall that everything in Python is an object, and the same object may have
multiple identifiers (what we have been loosely calling “variables” up until now). When
a name is passed to a function, the “value” that is passed is, in fact, the object it points
to. Whether the function can change the object or not (from the point of view of the
caller) depends on whether the object is mutable or immutable.

A couple of examples should make this clearer. A simple function, funcl, taking an
integer argument, receives a reference to that integer object, to which it attaches a local
name (which may or may not be the same as the global name). The function cannot
change the integer object (which is immutable), so any reassignment of the local name
simply points to a new object: the global name still points to the original integer object.
>>> def funcl(a):

print('funcl: a = {}, id = {}'.format(a, id(a)))

a = 7 # reassigns local a to the integer 7
print('funcl: a = {}, id = {}'.format(a, id(a)))

>>> a = 3
>>> print('global: a = {}, id = {}'.format(a, id(a)))

global: a = 3, id = 4297242592

>>> funcl(a)
funcl: a = 3, id = 4297242592
funcl: a = 7, id = 4297242720

>>> print('global: a = {}, id = {}'.format(a, id(a)))

global: a = 3, id = 4297242592

func1 therefore prints 3 (inside the function, a is initially the local name for the original
integer object); it then prints 7 (this local name now points to a new integer object,
with a new id) — see Figure 2.5. After it returns, the global name a still points to the
original 3.

2.7 Functions 79

Now consider passing a mutable object, such as a 1ist, to a function, func2. This
time, an assignment to the list changes the original object, and these changes persist
after the function call.
>>> def func2(b):

print('func2: b = {}, id = {}'.format(b, id(b)))

b.append(7) # add an item to the list
print('func2: b = {}, id = {}'.format(b, id(b)))

>>> ¢ = [1, 2, 3]
>>> print('global: ¢ = {}, id = {}'.format(c, id(c)))

global: ¢ = [1, 2, 3], id = 4361122448

>>> func2(c)
func2: b = [1, 2, 3], id = 4361122448
func2: b = [1, 2, 3, 7], id = 4361122448

>>> print('global: ¢ = {}, id = {}'.format(c, id(c)))

global: ¢ = [1, 2, 3, 7], id = 4361122448

Note that it doesn’t matter what name is given to the list by the function: this name
points to the same object, as you can see from its id. The relationship between the
variable names and objects is illustrated in Figure 2.6.

So, are Python arguments passed by value or by reference? The best answer is proba-
bly that arguments are passed by value, but that value is a reference to an object (which
can be mutable or immutable).

Example E2.29 The Lazy Caterer’s Sequence, f(n), describes the maximum number
of pieces a circular pizza can be divided into with an increasing number of cuts, n.
Clearly, f(0) =1, f(1) =2 and f(2) = 4. For n = 3, f(3) = 7 (the maximum number of
pieces are formed if the cuts do not intersect at a common point). It can be shown that
the general recursion formula,

f) = f(n—1)+n,

(a) global a

local a

(b) global a
local a

Figure 2.5 Immutable objects. Within func1: (a) before reassigning the local variable a and (b)
after reassigning the value of local variable a.

80

2.7.5

The Core Python Language |

(a) global ¢ —>1[1,2,3]

__—

local b
(b) global c [1,2,3,7]
local b’//////7

Figure 2.6 Mutable objects. Within func2: (a) before appending to the list pointed to by both
global variable c and local variable b and (b) after appending to the list with b.append(7).

applies. Although there is a closed form for this sequence, f(n) = %(n2 +n+2), we
could also define a function to grow a list of consecutive values in the sequence:

>>> def f(seq):
seq.append(seq[-1] + n)

>>> seq = [1] # £(0) =1

>>> for n in range(l,16):
f(seq)

>>> print(seq)
[, 2, 4, 7, 11, 16, 22, 29, 37, 46, 56, 67, 79, 92, 106, 121]

The list seq is mutable and so grows in place each time the function £Q) is called.
The n referred to within this function is the name found in global scope (the for loop
counter).

Recursive Functions

A function that can call itself is called a recursive function. Recursion is not always
necessary but can lead to elegant algorithms in some situations.”® For example, one
way to calculate the factorial of an integer n > 1 is to define the following recursive
function:
>>> def factorial(n):

if n == 1:

return 1
return n * factorial(n - 1)

>>> factorial (5)
120

28 In fact, because of the overhead involved in making a function call, a recursive algorithm can be expected
to be slower than a well-designed iterative one.

2.7 Functions 81

Here, a call to factorial(n) returns n times whatever is returned by the call to
factorial(n - 1), which returns n — 1 times the returned values of factorial(n - 2)
and so on until factorial(1l) which is 1 by definition. That is, the algorithm makes use
of the fact that n! = n - (n — 1)! Care should be taken in implementing such recursive
algorithms to ensure that they stop when some condition is met.?’

Example E2.30 The famous Tower of Hanoi problem involves three poles, one of
which (pole A) is stacked with n differently sized circular discs in decreasing order of
diameter, with the largest at the bottom. The task is to move the stack to the third pole
(pole C) by moving one disc at a time in such a way that a larger disc is never placed on
a smaller one. It is necessary to use the second pole (pole B) as an intermediate resting
place for the discs.

The problem can be solved using the following recursive algorithm. Label the discs
D; with D the smallest disc and D,, the largest.

° Move discs Dy, D5, ..., D,_; from A to B.
° Move disc D,, from A to C.
. Move discs Dy, Ds, ..., D,_; from B to C.

The second step is a single move, but the first and last require the movement of a stack
of n—1 discs from one peg to another — which is exactly what the algorithm itself solves!

In the following code, we identify the discs by the integers 1,2, 3, ... stored in one of
three lists, A, B and C. The initial state of the system, with all discs on pole A is denoted
by, for example, A = [5, 4, 3, 2, 1] where the first indexed item is the “bottom” of
the pole and the last indexed item is the “top.” The rules of the problem require that
these lists must always be decreasing sequences.

Listing 2.6 The Tower of Hanoi problem

eg2-hanoi.py

def hanoi(n, P1, P2, P3):
" Move n discs from pole P1 to pole P3.
if n == 0:
No more discs to move in this step.
return

global count
count += 1

Move n - 1 discs from P1 to P2.
hanoi(n - 1, P1, P3, P2)

if P1:
Move disc from P1 to P3.
P3.append(P1l.pop())
print(A, B, Q)

29 In practice, an infinite loop is not possible because of the memory overhead involved in each function call,
and Python sets a maximum recursion limit.

82 The Core Python Language |

Move n - 1 discs from P2 to P3.
hanoi(n - 1, P2, P1, P3)

Initialize the poles: all n discs are on pole A.
=3

= list(range(n, 0, -1))

, ¢ =11, 01

ERESEES

print(A, B, Q)
count = 0
hanoi(n, A, B, C)
print (count)

Note that the hanoi function just moves a stack of discs from one pole to another:
lists (representing the poles) are passed into it in some order, and it moves the discs
from the pole represented by the first list, known locally as P1, to that represented by
the third (P3). It does not need to know which list is A, B or C.

2.7.6 Exercises

Questions
Q2.7.1 The following small programs each attempt to output the simple sum:

Which two programs work as intended? Explain carefully what is wrong with each of
the others.

(@) def 1line(:

my_sum = '\n'.join([" 56', ' +44', line(), ' 100', line(Q1])
print (my_sum)

(b) def 1line():
return '-----

my_sum = '\n'.join([" 56', ' +44', line(), ' 100', line(Q])
print (my_sum)

(c) def 1lineQ:
return '-----

my_sum = '\n'.join([" 56', ' +44', line, ' 100', line])
print (my_sum)

(d) def 1ineO:

print (' 56')
print (' +44')
print(line)
print(' 100")
print(line)
(€) def lineQ:
print ('
print (' 56')
print (' +44')
print(line())
print(' 100')
print(line())
(f) def 1ineO:
print ('
print (' 56')
print (' +44"')
line)
print(' 100')
line)

2.7 Functions

83

Q2.7.2 The following code snippet attempts to calculate the balance of a savings
account with an annual interest rate of 5% after four years, if it starts with a balance

of $100.

>>> balance =

>>> def
>>> for

Balance
Balance
Balance
Balance

100

add_interest(balance,

balance += balance * rate / 100

year in range(4):
add_interest(balance,

print('Balance after year {}:

after
after
after
after

year
year
year
year

B W N e

$100.00
$100.00
$100.00
$100.00

${:.2f}'.format(year + 1,

Explain why this doesn’t work and then provide a working alternative.

balance))

Q2.7.3 A Harshad number is an integer that is divisible by the sum of its digits (e.g.
21 is divisible by 2 + 1 = 3 and so is a Harshad number). Correct the following code,

which should return True or False if n is a Harshad number, or not, respectively:

def digit_sum(n):

' Find the sum of the digits of integer n.

s_di

dsum

gits
=0

list(str(n))

for s_digit in s_digits:

dsum += int(s_digit)

84

Problems

The Core Python Language |

def is_harshad(n):
return not n % digit_sum(n)

When run, the function is_harshad raises an error:

>>> is_harshad(21)

TypeError: unsupported operand type(s) for %: 'int' and 'NoneType'

Q2.7.4 Predict and explain the output of the following code.

def grow_list(a, 1lst=[]):
1st.append(a)
return lst

1stl = grow_list(1l)
1stl = grow_list(2, 1lstl)

1st2 = grow_list('a')

print(lstl)
print(1lst2)

P2.7.1 The word game Scrabble is played on a 15 x 15 grid of squares referred to
by a row index letter (A—O) and a column index number (1-15). Write a function to
determine whether a word will fit in the grid, given the position of its first letter as a
string (e.g. 'G7') a variable indicating whether the word is placed to read across or
down the grid and the word itself.

P2.7.2 Write a program to find the smallest positive integer, n, whose factorial is not
divisible by the sum of its digits. For example, 6 is not such a number because 6! = 720
and 7 + 2 + 0 = 9 divides 720.

P2.7.3 Write two functions which, given two lists of length 3 representing three-
dimensional vectors a and b, calculate the dot product, a - b and the vector (cross)
product, a X b.

Write two more functions to return the scalar triple product, a - (b X ¢) and the vector
triple product, a X (b X ¢).

P2.7.4 A right regular pyramid with height . and a base consisting of a regular n-
sided polygon of side length s has a volume V = %Ah and total surface area § =
A+ %nsl where A is the base area and [the slant height, which may be calculated from
the apothem of the base polygon, a = 3scotZ as A = fnsa and [= Vh? + a>.

Use these formulas to define a function, pyramid_AV, returning V and S when passed
values for n, s and A.

P2.7.5 The range of a projectile launched at an angle @ and speed v on flat terrain is
v?sin 2a

R="—""72=,
g

2.7 Functions 85

where g is the acceleration due to gravity, which may be taken to be 9.81 ms~2 for
Earth. The maximum height attained by the projectile is given by
V2 sin?
2¢
(We neglect air resistance and the curvature and rotation of the Earth.) Write a function
to calculate and return the range and maximum height of a projectile, taking @ and v as
arguments. Test it with the values v = 10 ms~!' and @ = 30°.

P2.7.6 Write a function, sinm_cosn, which returns the value of the following definite
integral for integers m,n > 1.

/2 m=D!"(mn-D!" 5

. e m, n both even,
f sin” @cos™ 0 d0 ={ (, P 2 herwi

0 v T otherwise.

Hint: for calculating the double factorial, see Exercise P2.4.6.

P2.7.7 Write a function that determines if a string is a palindrome (that is, reads the
same backward as forward) using recursion.

P2.7.8 Tetration may be thought of as the next operator after exponentiation. Thus,
where x X n can be written as the sum x + x + x + ... + x with n terms, and x" is the
multiplication of n factors: x-x-x-. .. x, the expression written " x is equal to the repeated
exponentiation involving n occurrences of x:

"x=x"
For example, 42 = 2222 = 2%
evaluated from top to bottom.
Write a recursive function to calculate "x and test it (for small, positive real values of
x and non-negative integers n: tetration generates very large numbers)!
How many digits are there in 35? In 32?

= 2'% = 65536. Note that the exponential “tower” is

3.1

3.1.1

86

Interlude: Simple Plots and Charts

As Python has grown in popularity, many libraries of packages and modules have
become available to extend its functionality in useful ways; Matplotlib is one such
library. Matplotlib provides a means of producing graphical plots that can be embedded
into applications, displayed on the screen or output as high-quality image files for
publication.

Matplotlib has a fully fledged object-oriented interface, which is described in more
detail in Chapter 7, but for simple plotting in an interactive shell session, its simpler,
procedural pyplot interface provides a convenient way of visualizing data. This short
chapter describes its use alongside some basic NumPy functionality (the NumPy library
is described in more detail in Chapter 6).

On a system with Matplotlib and NumPy installed, the recommended imports are:
>>> import matplotlib.pyplot as plt
>>> import numpy as np

even though this means prefacing method calls with “plt.” and “np.”"

Note: an earlier Python module, pylab, combined the functionality of pyplot and
numpy by importing all of their functions into a common namespace to mimic the
commercial MATLAB package. Its use is no longer encouraged and we do not describe
it here.

Basic Plotting

Line Plots and Scatter Plots

The simplest (x, y) line plot is achieved by calling plt.plot with two iterable objects of
the same length (typically lists of numbers or NumPy arrays). For example,

>>> ax [6., 0.5, 1.0, 1.5, 2.0, 2.5, 3.0]
[0.0, 0.25, 1.0, 2.25, 4.0, 6.25, 9.0]
>>> plt.plot(ax,ay)

>>> plt.show()

>>> ay

plt.plot creates a Matplotlib object (here, a Line2D object) and plt.show() displays it
on the screen. Figure 3.1 shows the result; by default the line will be in blue.

! It is better to avoid polluting the global namespace by importing as, e.g. from numpy import *.

0.5 1.0 1.5 2.0 2.

Figure 3.1 A basic (x,y) line plot.

1.2

1.0

0.8

0.6

0.4

—0.2

o[

3.0

0.2

0.0 0.2 0.4 0.6 0.8

Figure 3.2 A basic scatter plot.

1.0

1.2

3.1 Basic Plotting

87

To plot (x,y) points as a scatter plot rather than as a line plot, call plt.scatter

instead:

>>>
>>>
>>>

>>>
>>>

import random

ax,
for

plt.
plt.

ay = [1, [1

i in range(100):
ax.append(random.random())
ay.append(random.random())

scatter(ax,ay)
show ()

The resulting plot is shown in Figure 3.2.

88

Interlude: Simple Plots and Charts

The plot can be saved as an image by calling plt.savefig(filename). The desired
image format is deduced from the filename extension. For example,

plt.savefig('plot.png') # save as a PNG image
plt.savefig('plot.pdf') # save as PDF
plt.savefig('plot.eps') # save in Encapsulated PostScript format

Example E3.1 As an example, let’s plot the function y = sin® x for —27 < x < 2.
Using only the Python we’ve covered in the previous chapter, here is one approach:

We calculate and plot 1000 (x,y) points, and store them in the lists ax and ay. To
set up the ax list as the abcissa, we can’t use range directly because that method only
produces integer sequences, so first we work out the spacing between each x value as

Ax = Xmax — Xmin
n—1

(if our n values are to include xp;, and xpnax, there are n — 1 intervals of width Ax); the
abcissa points are then

Xi = Xpin + IAx fori=0,1,2,...,n—1.
The corresponding y-axis points are
i = sin(x;).

The following program implements this approach, and plots the (x, y) points on a simple
line-graph (see Figure 3.3).

Listing 3.1 Plotting y = sin® x

eg3-sin2x.py

import math
import matplotlib.pyplot as plt
xmin, xmax = -2. * math.pi, 2. * math.pi
n = 1000
x = [0.] * n
y = [0.] *n
dx = (xmax - xmin)/(n-1)
for i in range(n):
xpt = xmin + i * dx
x[i] = xpt
y[i] = math.sin(xpt)**2

plt.plot(x,y)
plt.show()

linspace and Vectorization

Plotting the simple function y = sin® x in the previous example involved quite a lot

of work, almost all of it to do with setting up the lists x and y. The NumPy library,
described more fully in Chapter 6, can be used to make life much easier.

3.1 Basic Plotting 89

1.0

0.6

0.4t

0.2F

0.0 ' ' ' ' ' '
8 6 -4 -2 0 2 4 6 8

Figure 3.3 A plot of y = sin® x.

First, the regularly spaced grid of x-coordinates, x, can be created using linspace.
This is much like a floating-point version of the range built-in: it takes a start
value, an end value, and the number of values in the sequence and generates an
array of values representing the arithmetic progression between (and inclusive of)
the two values. For example, x = np.linspace(-5, 5, 1001) creates the sequence:
-5.0,-4.99,-4.98,...,4.99,5.0.

Second, the NumPy equivalents of the math module’s methods can act on iterable
objects (such as lists or NumPy arrays). Thus, y = np.sin(x) creates a sequence of
values (actually, a NumPy ndarray), which are sin(x;) for each value x; in the array x:
import numpy as np
import matplotlib.pyplot as plt
n = 1000
xmin, xmax = -2*np.pi, 2*np.pi
X = np.linspace(xmin, xmax, n)

y = np.sin(x)**2

plt.plot(x,y)
plt.show()

This is called vectorization and is described in more detail in Section 6.1.3. Lists and
tuples can be turned into array objects supporting vectorization with the array construc-
tor method:

>>> w = [1.0, 2.0, 3.0, 4.0]

>>> w = np.array(w)

>>> w * 100 # multiply each element by 100
array ([100., 200., 300., 400.]1)

To add a second line to the plot, simply call plt.plot again:
X = np.linspace(xmin, xmax, n)

yl = np.sin(x)**2
y2 = np.cos(x)**2

90

Interlude: Simple Plots and Charts

1.0

0.8F

061

04r

027

0.01

—-0.2¢}

—0.4 ' ' ' ' ' ' '
20 -15 -10 -5 0 5 10 15 20

Figure 3.4 A plot of y = sinc(x).

plt.plot(x,yl)
plt.plot(x,y2)
plt.show()

Note that after a plot has been displayed with show or saved with savefig, it is no
longer available to display a second time — to do this it is necessary to call plt.plot
again. This is because of the procedural nature of the pyplot interface: each call to a
pyplot method changes the internal state of the plot object. The plot object is built up
by successive calls to such methods (adding lines, legends and labels, setting the axis
limits, etc.), and then the plot object is displayed or saved.

Example E3.2 The sinc function is the function
sin x
fx)=—.
X
To plot it over 20 < x < 20:
>>> X = np.linspace(-20, 20, 1001)
>>> y = np.sin(x)/x

__main__:1: RuntimeWarning: invalid value encountered in true_divide
>>> plt.plot(x,y)
>>> plt.show()

Note that even though Python warns of the division by zero at x = 0, the function is
plotted correctly: the singular point is set to the special value nan (standing for “Not a
Number”) and is omitted from the plot (Figure 3.4).

>>> y[498:503]
array ([0.99893367, 0.99973335, nan, 0.99973335, 0.99893367])

3.1.3

Problems

3.2

3.2.1

3.2 Labels, Legends and Customization 91

Exercises

P3.1.1 Plot the functions

cos? x

fl(x)zln(!)and

1
folx) = 111(—)
sin
on 1000 points across the range —20 < x < 20. What happens to these functions at
x=nnr/2(n=0,x1,+2,...)? What happens in your plot of them?

P3.1.2 The Michaelis—Menten equation models the kinetics of enzymatic reactions as

_dIP] _ VauwlSI

dt K, +I[ST
where v is the rate of the reaction converting the substrate, S, to product, P, catalyzed
by the enzyme. Vi« is the maximum rate (when all the enzyme is bound to S) and the
Michaelis constant, K,,, is the substrate concentration at which the reaction rate is at
half its maximum value.

Plot v against [S] for a reaction with K, = 0.04 M and V,,, = 0.1 M s~!. Look ahead

to the next section if you want to label the axes.

P3.1.3 The normalized Gaussian function centered at x = 0 is

(x) = ! ex —x—z
8 _0' 2n P 202)°

Plot and compare the shapes of these functions for standard deviations o = 1, 1.5 and 2.

Labels, Legends and Customization

Labels and Legends

Plot Legend

Each line on a plot can be given a label by passing a string object to its label argument.
However, the label won’t appear on the plot unless you also call plt.legend to add a
legend:

plt.plot(ax, ayl, label='sin*2(x)')

plt.legend ()
plt.show()

The location of the legend is, by default, the top right-hand corner of the plot but can
be customized by setting the loc argument to the legend method to any of the string or
integer values given in Table 3.1.

92

Interlude: Simple Plots and Charts

Table 3.1 Legend location
specifiers

String Integer
'best’ 0
'upper right'
'upper left'
'lower left'
'lower right'
'right'
'center left'
'center right'
'lower center'
'upper center'
'center'

O 00 NO VT WN =

—_
(=]

The Plot Title Axis Labels

A plot can be given a title above the axes by calling plt.title and passing the title as
a string. Similarly, the methods plt.xlabel and plt.ylabel control the labeling of the
x- and y-axes: just pass the label you want as a string to these methods. The optional
additional attribute fontsize sets the font size in points. For example, the following
code produces Figure 3.5.

t = np.linspace(0., 0.1, 1000)

Vp_uk, Vp_us = 230 * np.sqrt(2), 120 * np.sqrt(2)

f_uk, f_us = 50, 60

V_uk = Vp_uk * np.sin(2 * np.pi * f_uk * t)

V_us = Vp_us * np.sin(2 * np.pi * f_us * t)

plt.plot(t*1000, V_uk, label='UK')

plt.plot(t*1000, V_us, label='US'")

plt.title('A comparison of AC voltages in the UK and US')

plt.xlabel('Time /ms', fontsize=16.)

plt.ylabel('Voltage /V', fontsize=16.)

plt.legend)

plt.show()

©® We calculate the voltage as a function of time (t, in seconds) in the United King-
dom and in the United States, which have different rms voltages (230 V and 120 V
respectively; we have multiplied by V2 to get the peak-to-peak voltage) and different
frequencies (50 Hz and 60 Hz).

@ The time is plotted on the x-axis in milliseconds (t*1600).

Using IATEX in pyplot
You can use IATEX markup in pyplot plots, but this option needs to be enabled in
Matplotlib’s “rc settings,” as follows:

plt.rc('text', usetex=True)
Then simply pass the KIEX markup as a string to any label you want displayed in

this way. Remember to use raw strings (r'xxx"') to prevent Python from escaping any
characters followed by ISTEX’s backslashes (see Section 2.3.2).

3.2.2

Voltage /V

Figure 3.5 A comparison of AC voltages in the United Kingdom and United States.

3.2 Labels, Legends and Customization

A comparison of AC voltages in the UK and US

300
200
100 4
0_
-100 4 /
=200 1
— UK
=300 4 USs
T T T T T T
0 20 40 60 80 100

Time /ms

93

Example E3.3 To plot the functions f,(x) = x" sinx forn = 1,2, 3,4:

import matplotlib.pyplot as plt

import numpy as np

plt

for

plt
plt

.rc('text', usetex=True)

np.linspace(-10,160,1001)

n in range(1,5):

y = x¥*n * np.sin(x)

y /= max(y)

plt.plot(x,y, label=r'$xA{}\sin x$'.format(n))
.legend(loc="lower center')

.show ()

© To make the graphs easier to compare, they have been scaled to a maximum of 1 in

the

region considered.

The graph produced is given in Figure 3.6.

Customizing Plots

Markers
By default, plot produces a line-graph with no markers at the plotted points. To add
a marker on each point of the plotted data, use the marker argument. Several different
markers are available and are documented online;? some of the more useful ones are
listed in Table 3.2.

2 https://matplotlib.org/api/markers_api.html.

https://matplotlib.org/api/markers_api.html

94

Interlude: Simple Plots and Charts

xlsinz
?sinx

2 sin x

2tsinz

T T T

—10) 0 10

t

Figure 3.6 f,(x) = x’sinxforn = 1,2,3,4.

Table 3.2 Some Matplotlib marker
styles

Code Marker Description

Point

Circle

Plus

Cross

Diamond
Downward triangle
Upward triangle
Square

Star

> < O X + O -

= 0
* 0> < © X + 0

Colors

The color of a plotted line and/or its markers can be set with the color argument. Several
formats for specifying the color are supported. First, there are one-letter codes for some
common colors, given in Table 3.3. For example, color="r" specifies a red line and
markers. These colors are somewhat garish and (since Matplotlib 2.0) the default color
sequence for a series of lines on the same plot is the more pleasing “Tableau” sequence,
whose string identifiers are also given in Table 3.3.

Alternatively, shades of gray can specified as a string representing a float in the
range 0—1 (0. being black and 1. being white). HTML hex strings giving the red, green
and blue (RGB) components of the color in the range 80—££f can also be passed in the
color argument (e.g. color="#££00ff' is magenta). Finally, the RGB components can
also be passed as a tuple of three values in the range 0-1 (e.g. color=(0.5, 0., 0.)
is a dark red color).

3.2 Labels, Legends and Customization 95

Table 3.3 Matplotlib color code

letters

Basic color codes Tableau colors

b = blue tab:blue

g = green tab:orange

r =red tab:green

c=cyan tab:red

m = magenta tab:purple

y = yellow tab:brown

k = black tab:pink

w = white tab:gray
tab:olive
tab:cyan

Table 3.4 Matplotlib line

styles

Code Line style
- Solid

-- Dashed

: Dotted

-. Dash-dot

Line Styles and Widths
The default plot line style is a solid line of weight 1.5 pt. To customize this, set the
linestyle argument (also a string). Some of the possible line style settings are given in
Table 3.4.

To draw no line at all, set linestyle="" (the empty string). The thickness of a line
can be specified in points by passing a float to the linewidth attribute.

For example,

X = np.linspace(0.1, 1., 100)

yi=1./ x

ye = 10. * np.exp(-2 * Xx)

plt.plot(x, yi, color='r', linestyle=':', linewidth=4.)
plt.plot(x, ye, color="m', linestyle='--', linewidth=2.)
plt.show()

This code produces Figure 3.7.
The following abbreviations for the plot line properties are also valid:

. c for color,
. 1s for linestyle,
. 1w for linewidth.

For example,

plt.plot(x, y, c='g', 1ls="--', lw=2) # a thick, green, dashed line

96

Interlude: Simple Plots and Charts

oo
g

7’

9l hy, ~ o

1
01 02 03 04 05 06 07 08 09 1.0

Figure 3.7 Two different line styles on the same plot.

It is also possible to specify the color, line style and marker style in a single string:

plt.plot(x, y, 'r:4A") # a red, dotted line with triangle markers

Finally, multiple lines can be plotted using a sequence of x, y format arguments:

plt.plot(x, y1, 'r--', x, y2, 'k-.")

plots a red dashed line for (x, y1) and a black dash-dot line for (x, y2).

Plot Limits

The methods plt.xlim and plt.ylim set the x- and y-limits of the plot, respectively.
They must be called after any plt.plot statements, before showing or saving the figure.

For example, the following code produces a plot of the provided data series between
chosen limits (Figure 3.8):

t = np.linspace(0, 2, 1000)

f =t * np.exp(t + np.sin(20%t))
plt.plot(t, £f)

plt.x1lim(1.5,1.8)

plt.ylim(0,30)

plt.show()

Example E3.4 Moore’s law is the observation that the number of transistors on cen-
tral processing units (CPUs) approximately doubles every 2 years. The following pro-
gram illustrates this with a comparison between the actual number of transistors on
high-end CPUs from between 1972 and 2012, and that predicted by Moore’s law, which
may be stated mathematically as

n; = noz(yx'—)'o)/rz ,

where ng is the number of transistors in some reference year, yg, and 7, = 2 is the
number of years taken to double this number. Because the data cover 40 years, the

3.2 Labels, Legends and Customization 97

30 T T T T T

.50 1.55 1.60 1.65 1.70 1.75 1.80

0
1
Figure 3.8 A plot produced with explicitly defined data limits.

values of n; span many orders of magnitude, and it is convenient to apply Moore’s law
to its logarithm, which shows a linear dependence on y:

log o n; = logqno + yiT;yO log, 2.
2

Listing 3.2 An illustration of Moore’s law

eg3-moore.py
import numpy as np
import matplotlib.pyplot as plt

The data - lists of years:

year = [1972, 1974, 1978, 1982, 1985, 1989, 1993, 1997, 1999, 2000, 2003,
2004, 2007, 2008, 2012]

And number of transistors (ntrans) on CPUs in millions:

ntrans = [0.0025, 0.005, 0.029, 0.12, 0.275, 1.18, 3.1, 7.5, 24.0, 42.0,

220.0, 592.0, 1720.0, 2046.0, 3100.0]
Turn the ntrans list into a NumPy array and multiply by 1 million.
ntrans = np.array(ntrans) * 1l.e6

y0, n® = year[0], ntrans[0]

A linear array of years spanning the data's years.

y = np.linspace(y®, year[-1], year[-1] - y0® + 1)

Time taken in years for the number of transistors to double.
T2 = 2.

moore = np.logl®(n®) + (y - y0) / T2 * np.logl®(2)

plt.plot(year, np.logl®(ntrans), '*', markersize=12, color='r',
markeredgecolor="r', label='observed')

plt.plot(y, moore, linewidth=2, color='k', linestyle='--', label='predicted')

plt.legend(fontsize=16, loc='upper left')

plt.xlabel('Year')

plt.ylabel('log(ntrans)"')

plt.title("Moore's law")

plt.show()

98

3.2.3

Problems

Interlude: Simple Plots and Charts

In this example, the data are given in two lists of equal length representing the year
and representative number of transistors on a CPU in that year. The Moore’s law formula
above is implemented in logarithmic form, using an array of years spanning the provided
data. (Actually, since on a logarithmic scale this will be a straight line, really only two
points are needed.)

For the plot, shown in Figure 3.9, the data are plotted as largeish stars and the Moore’s
law prediction as a dashed black line.

Moore’s law

Observed PRt
91 === Predicted ,/
//
’/
8 o
,/
//

77 L

= ,

g i
£ e
=6 -
éﬁ ,//

,/
//
5 2
//
,/
A L
v
//
1970 1975 1980 1985 1990 1995 2000 2005 2010
Year

Figure 3.9 Moore’s law modeling the exponential growth in transistors on CPUs.

Exercises
P3.2.1 A molecule, A, reacts to form either B or C with first-order rate constants k;
and k,, respectively. That is,

d[A

A - i+ kia)

and so
[A] = [A]peCrHh)r]

where [A]y is the initial concentration of A. The product concentrations (starting
from 0) increase in the ratio [B]/[C] = k;/k, and conservation of matter requires

3.2 Labels, Legends and Customization 99

[B] + [C] = [A]p — [A]. Therefore,

ki _
Bl = Aln (1 = e~ itk
(Bl = = Al (1 —e™™)
[C] = ko [Alo (1 — ek +k2)t)
ki +ky

For a reaction with k; = 300 s~ and k, = 100 s™!, plot the concentrations of A, B
and C against time given an initial concentration of reactant [A], = 2.0 moldm™.

P3.2.2 A Gaussian integer is a complex number whose real and imaginary parts are
both integers. A Gaussian prime is a Gaussian integer x + iy such that either:

. one of x and y is zero and the other is a prime number of the form 4n + 3 or
—(4n + 3) for some integer n > 0; or
. both x and y are nonzero and x* + y? is prime.

Consider the sequence of Gaussian integers traced out by an imaginary particle,
initially at ¢, moving in the complex plane according to the following rule: it takes
integer steps in its current direction (1 in either the real or imaginary direction), but
turns left if it encounters a Gaussian prime. Its initial direction is in the positive real
direction (Ac = 1 + 0i = Ax = 1, Ay = 0). The path traced out by the particle is called
a Gaussian prime spiral.

Write a program to plot the Gaussian prime spiral starting at ¢ = 5 + 23i.

P3.2.3 The annual risk of death (given as “1 in N”’) for men and women in the UK in
2005 for different age ranges is given in the table below. Use pyplot to plot these data
on a single chart.

Agerange Female Male

<1 227 177
14 5376 4386
5-14 10417 8333
15-24 4132 1908
25-34 2488 1215
35-44 1106 663
45-54 421 279
55-64 178 112
65-74 65 42
75-84 21 15

> 84 7 6

100

3.3

3.3.1

3.3.2

Interlude: Simple Plots and Charts

90°

180° [+ 4w e e e e |oe

270°

Figure 3.10 The cardioid figure formed with a = 1.

More Advanced Plotting

Polar Plots

pyplot.plot produces a plot on Cartesian (x,y) axes. To produce a polar plot using
(r, 0) coordinates, use pyplot.polar, passing the arguments theta (which is usually the
independent variable) and r.

Example E3.5 A cardioid is the plane figure described in polar coordinates by r =
2a(1 + cosf) for 0 < 0 < 2n:

theta = np.linspace(®, 2.*np.pi, 1000)
a=1.

r =2 %*a* (1. + np.cos(theta))
plt.polar(theta, r)

plt.show()

The polar graph plotted by this code is illustrated in Figure 3.10.

Histograms

A histogram represents the distribution of data as a series of (usually vertical) bars with
lengths in proportion to the number of data items falling into predefined ranges (known
as bins). That is, the range of data values is divided into intervals and the histogram
constructed by counting the number of data values in each interval.

The pyplot function hist produces a histogram from a sequence of data values. The
number of bins can be passed as an optional argument, bins; its default value is 10.
Also by default the heights of the histogram bars are absolute counts of the data in the

3.3.3

3.3 More Advanced Plotting 101

0.20

0.15 1

0.10 |

0.05

0.00
-8 -6 -4 =2 0 2 4 6 8 10

Figure 3.11 A histogram of random, normally distributed data.

corresponding bin; setting the attribute density=True normalizes the histogram so that
its area (the height times width of each bar summed over the total number of bars) is
unity.

For example, take 5000 random values from the normal distribution with mean 0 and
standard deviation 2 (see Section 4.5.1):
>>> import matplotlib.pyplot as plt
>>> import random
>>> data = []
>>> for i in range(5000):

data.append(random.normalvariate(®, 2))

>>> plt.hist(data, bins=20, density=True)
>>> plt.show()

The resulting histogram is plotted in Figure 3.11.

Multiple Axes

The command pyplot.twinx() starts a new set of axes with the same x-axis as the
original one, but a new y-scale. This is useful for plotting two or more data series,
which share an abcissa (x-axis) but with y values which differ widely in magnitude or
which have different units. This is illustrated in the following example.

Example E3.6 As described at https://tylervigen.com/, there is a curious but utterly
meaningless correlation over time between the divorce rate in the US state of Maine
and the per capita consumption of margarine in that country. The two time series here
have different units and meanings and so should be plotted on separate y-axes, sharing
a common x-axis (year).

https://tylervigen.com/

102 Interlude: Simple Plots and Charts

5.2 9
—o— Divorce rate in Maine

5.0 Margarine consumption 8
2 k=)
2 3
2 4.8
=~ Q
: 1.6 6 E
2 o
=% i:C
s} =
5] g
Z o
S 44 5
2]
= g

1.2 4 &

0 3
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Figure 3.12 The correlation between the divorce rate in Maine and the per capita margarine
consumption in the United States.

Listing 3.3 The correlation between margarine consumption in the United States and the
divorce rate in Maine

eg3-margarine-divorce.py
import matplotlib.pyplot as plt

years = range (2000, 2010)
divorce_rate = [5.0, 4.7, 4.6, 4.4, 4.3, 4.1, 4.2, 4.2, 4.2, 4.1]
margarine_consumption = [8.2, 7, 6.5, 5.3, 5.2, 4, 4.6, 4.5, 4.2, 3.7]

Q 1line1 - plt.plot(years, divorce_rate, 'b-o',
label='Divorce rate in Maine')
plt.ylabel ('Divorces per 1000 people')
plt.legend)

plt.twinx ()

line2 = plt.plot(years, margarine_consumption, 'r-o',
label="Margarine consumption')

plt.ylabel('lb of Margarine (per capita)')

Jump through some hoops to get labels in the same legend:
@ lines = linel + line2

labels = []

for line in lines:
(3] labels.append(line.get_label())

plt.legend(lines, labels)
plt.show()

We have a bit of extra work to do in order to place a legend labeled with both lines on
the plot: @ pyplot.plot returns a list of objects representing the lines that are plotted,
so we save them as 1linel and 1ine2, @ concatenate them, and then ® loop over them
to retrieve their labels. The list of lines and labels can then be passed to pyplot.legend
directly. The result of this code is the graph plotted in Figure 3.12.

3.3.4

Problems

3.3 More Advanced Plotting 103

Exercises

P3.3.1 A spiral may be considered to be the figure described by the motion of a point
on an imaginary line as that line pivots around an origin at constant angular velocity. If
the point is fixed on the line, then the figure described is a circle.

(a) If the point on the rotating line moves from the origin with constant speed, its
position describes an Archimedean spiral. In polar coordinates, the equation of
this spiral is r = a + b6. Use pyplot to plot the spiral defined by a = 0,b = 2 for
0<6<8n.

(b) If the point moves along the rotating line with a velocity that increases in propor-
tion to its distance from the origin, the result is a logarithmic spiral, which may be
written as = a’. Plot the logarithmic spiral defined by @ = 0.8 for 0 < # < 8x.
The logarithmic spiral has the property of self-similarity: with each 2r whorl,
the spiral grows but maintains its shape.® Logarithmic spirals occur frequently in
nature, from the arrangements of the chambers of nautilus shells to the shapes of
galaxies.

P3.3.2 A simple model for the interaction potential between two atoms as a function
of their distance, r, is that of Lennard—Jones:

Ulr) =

A2 e

where A and B are positive constants.*
For Argon atoms, these constants may be taken to be A = 1.024 x 10723 Jnm® and
B =1.582x 107 Jnm'?.

(a) Plot U(r). On a second y-axis on the same figure, plot the interatomic force

dU 12B 6A
=g =" 7

Your plot should show the “interesting” part of these curves, which tend rapidly
to very large values at small r.
Hint: life is easier if you divide A and B by Boltzmann’s constant, 1.381 X
10723 JK~! so as to measure U(r) in units of K. What is the depth, €, and location,
ro, of the potential minimum for this system?

(b) For small displacements from the equilibrium interatomic separation (where F' =

0), the potential may be approximated to the harmonic oscillator function,

V(r) = %k(r - 1)’ +e€,

3 The Swiss mathematician Jakob Bernoulli was so taken with this property that he coined the logarithmic
spiral Spira mirabilis: the “miraculous sprial” and wanted one engraved on his headstone with the phrase
“Eadem mutata resurgo” (“Although changed, I shall arise the same”). Unfortunately, an Archimedian spiral
was engraved by mistake.

12

4 This was popular in the early days of computing because r~'2 is easy to compute as the square of 7.

104

Interlude: Simple Plots and Charts

where
d*U 156B 424
k= a2 | T T T T
U o Ty

Plot U(r) and V(r) on the same diagram.

P3.3.3 The seedhead of a sunflower may be modeled as follows. Number the 7 seeds
s =1,2,...,nand place each seed a distance r = +/s from the origin, rotated § = 27s/¢
from the x axis, where ¢ is some constant. The choice nature makes for ¢ is the golden
ratio, ¢ = (1 + V/5)/2, which maximizes the packing efficiency of the seeds as the
seedhead grows.

Write a Python program to plot a model sunflower seedhead. (Hint: use polar coordi-
nates.)

4.1

4.1.1

The Core Python Language |l

This chapter continues the introduction to the core Python language started in Chapter 2
with a description of Python error handling with exceptions, the data structures known
as dictionaries and sets, some convenient and efficient idioms to achieve common tasks,
and a survey of some of the modules provided in the Python Standard Library. Finally,
a brief introduction to object-oriented programming with Python is presented.

Errors and Exceptions

Python distinguishes between two types of error: syntax errors and other exceptions.
Syntax errors are mistakes in the grammar of the language and are checked for before
the program is executed. Exceptions are runtime errors: conditions usually caused by
attempting an invalid operation on an item of data. The distinction is that syntax errors
are always fatal: there is nothing the Python compiler can do for you if your program
does not conform to the grammar of the language. Exceptions, however, are conditions
that arise during the running of a Python program (such as division by zero) and a
mechanism exists for “catching” them and handling the condition gracefully without
stopping the program’s execution.

Syntax Errors

Syntax errors are caught by the Python compiler and produce a message indicating
where the error occurred. For example,

>>> for lambda in range(8):
File "<stdin>", line 1

for lambda in range(8):
A

SyntaxError: invalid syntax

Because lambda is a reserved keyword, it cannot be used as a variable name. Its occur-
rence where a variable name is expected is therefore a syntax error. Similarly,
>>> for f in range(8:

File "<stdin>", line 1
for f in range(8:

A

SyntaxError: invalid syntax

105

106

The Core Python Language Il

The syntax error here occurs because a single argument to the range built-in must be
given as an integer between parentheses: the colon breaks the syntax of calling functions
and so Python complains of a syntax error.

Because a line of Python code may be split within an open bracket (“(”, “[1”, or
“{3”), a statement split over several lines can sometimes cause a SyntaxError to be
indicated somewhere other than the location of the true bug. For example,

>>>a = [1, 2, 3, 4,

. b =25
File "<stdin>", line 4
b =25

A

SyntaxError: invalid syntax

Here, the statement b = 5 is syntactically valid: the error arises from failing to close the
square bracket of the previous list declaration (the Python shell indicates that a line is a
continuation of a previous one with the initial ellipsis (“...”).

There are two special types of SyntaxError that are worth mentioning: an
IndentationError occurs when a block of code is improperly indented and TabError
is raised when a tabs and spaces are mixed inconsistently to provide indentation.

Example E4.1 A common syntax error experienced by beginner Python program-
mers is in using the assignment operator “=" instead of the equality operator “=="1in a
conditional expression:
>>> if a = 5:
File "<stdin>", line 1
if a = 5:

A

SyntaxError: invalid syntax

This assignment a = 5 does not return a value (it simply assigns the integer object 5 to
the variable name a) and so there is nothing corresponding to True or False that the if
statement can use: hence the SyntaxError. This contrasts with the C language in which
an assignment returns the value of the variable being assigned (and so the statement a =
5 evaluates to True). This behavior is the source of many hard-to-find bugs and security
vulnerabilities and its omission from the Python language is by design.

Exceptions

An exception occurs when a syntactically correct expression is executed and causes a
runtime error. There are different types of built-in exception, and custom exceptions can
be defined by the programmer if required. If an exception is not “caught” using the try

. except clause described later, Python produces a (usually helpful) error message.
If the exception occurs within a function (which may have been called, in turn, by
another function, and so on), the message returned takes the form of a stack traceback:

! This error can be avoided by using only spaces to indent code.

4.1 Errors and Exceptions 107

the history of function calls leading to the error is reported so that its location in the
program execution can be determined.
Some built-in exceptions will be familiar from your use of Python so far.

NameError

>>> print('4z = ', 4%z)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name 'z' is not defined

A NameError exception occurs when a variable name is used that hasn’t been defined:
the print statement here is valid, but Python doesn’t know what the identifier z refers
to.

ZeroDivisionError

>>>a, b =0, 5
>>Db / a

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ZeroDivisionError: float division by zero

Division by zero is not mathematically defined.

TypeError and ValueError
A TypeError is raised if an object of the wrong type is used in an expression or function.
For example,

>>> '00' + 7

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

' 1

TypeError: Can't convert 'int' object to str implicitly

Python is a (fairly) strongly typed language, and it is not possible to add a string to an
integer.”

A ValueError, on the other hand, occurs when the object involved has the correct
type but an invalid value:

>>> float('hello')

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: could not convert string to float: 'hello’

The float built-in does take a string as its argument, so float('hello') is not a
TypeError: the exception is raised because the particular string ‘hello’ does not evalu-
ate to a meaningful floating-point number. More subtly,

2 Unlike in, say, Javascript or PHP, where it seems anything goes.

108

The Core Python Language Il

Table 4.1 Common Python exceptions

Exception Cause and description

FileNotFoundError Attempting to open a file or directory that does not exist — this
exception is a particular type of OSError.

IndexError Indexing a sequence (such as a list or string) with a subscript
that is out of range.

KeyError Indexing a dictionary with a key that does not exist in that
dictionary (see Section 4.2.2).

NameError Referencing a local or global variable name that has not been
defined.

TypeError Attempting to use an object of an inappropriate type as an
argument to a built-in operation or function.

ValueError Attempting to use an object of the correct type but with an
incompatible value as an argument to a built-in operation or
function.

ZeroDivisionError Attempting to divide by zero (either explicitly (using “/” or “//’)
or as part of a modulo operation “%”).

SystemExit Raised by the sys.exit function (see Section 4.4.1) — if not

handled, this function causes the Python interpreter to exit.

>>> int('7.0")

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: invalid literal for int() with base 10: '7.0'

A string that looks like a float cannot be directly cast to int: to obtain the result
probably intended, use int(float('7.0")).

Table 4.1 provides a list of the more commonly encountered built-in exceptions and
their descriptions.

Example E4.2 When an exception is raised but not handled (see Section 4.1.3),
Python will issue a traceback report indicating where in the program flow it occurred.
This is particularly useful when an error occurs within nested functions or within
imported modules. For example, consider the following short program:?

exception-test.py
import math

def func(x):
def trig(x):
for f in (math.sin, math.cos, math.tan):
print ('{£f}({x}) = {res}'.format(f=f.__name__, x=x, res=f(x)))
def invtrig(x):
for f in (math.asin, math.acos, math.atan):

3 Note the use of f.__name__ to return a string representation of a function’s name in this program; for
example, math.sin.__name__is 'sin'.

41.3

(1]
(2]
(3]

4.1 Errors and Exceptions 109

print (' {£f}({x}) = {res}'.format(f=f.__name__, x=x, res=f(x)))
trig(x)

invtrig(x)

func(1.2)

The function func passes its argument, x, to its two nested functions. The first, trig,
is unproblematic but the second, invtrig, is expected to fail for x out of the domain
(range of acceptable values) for the inverse trigonometric function, asin:

sin(1.2) = 0.9320390859672263
cos(1.2) = 0.3623577544766736
tan(1.2) = 2.5721516221263183
Traceback (most recent call last):
File "exception-test.py", line 14, in <module>
func(1.2)
File "exception-test.py", line 12, in func
invtrig(x)
File "exception-test.py", line 10, in invtrig
print(C’ {£f}({x}) = {res}’.format(f=f.__name__, x=x, res=£f(x)))
ValueError: math domain error

Following the traceback backward shows that the ValueError exception was raised
within invtrig (line 10, @), which was called from within func (line 12, @), which
was itself called by the exception-test.py module (i.e. program) at line 14, ©.

Handling and Raising Exceptions

Handling Exceptions
Often, a program must manipulate data in a way which might cause an exception to
be raised. Assuming such a condition is not to cause the program to exit with an error
but to be handled “gracefully” in some sense (an invalid data point ignored, division by
a zero value skipped, and so on), there are two approaches to this situation: check the
value of the data object before using it, or “handle” any exception that is raised before
resuming execution. The Pythonic approach is the latter, summed up in the expression
“It is Easier to Ask Forgiveness than to seek Permission” (EAFP).
To catch an exception in a block of code, write the code within a try: clause and

handle any exceptions raised in an except: clause. For example,
try:

y=1/x

print('1 /', x, ' = ',y)
except ZeroDivisionError:

print('l / O is not defined.')
... more statements

No check is required: we go ahead and calculate 1/x and handle the error arising from
division by zero if necessary. The program execution continues after the except block
whether the ZeroDivisionError exception was raised or not. If a different exception is
raised (e.g. a NameError because x is not defined), then this will not be caught — it is an
unhandled exception and will trigger an error message.

110

The Core Python Language Il

To handle more than one exception in a single except block, list them in a tuple

(which must be within brackets).
try:

y=1. / x

print('1 /', x, ' = ",y)
except (ZeroDivisionError, NameError):

print('x is zero or undefined!)
... more statements

To handle each exception separately, use more than one except clause:

try:

y=1./x

print('1 /', x, ' = ",y)
except ZeroDivisionError:

print('l / 0 is not defined.')
except NameError:

print('x is not defined')
... more statements

Warning: You may come across the following type of construction:

try:

[do something]
except: # Don't do this!

pass
This will execute the statements in the try block and ignore any exceptions raised — in
general, it is very unwise to do this as it makes code very hard to maintain and debug
(errors, whatever their cause, are silently supressed). Aim to catch specific exceptions
and handle them appropriately, allowing any other exceptions to “bubble up” to be
handled (or not) by any other except clauses.

The try ... except statement has two more optional clauses (which must follow
any except clauses if they are used). Statements in a block following the finally
keyword are always executed, whether an exception was raised or not. Statements in
a block following the else keyword are executed if an exception was not raised (see
Example E4.5).

Raising Exceptions

Usually an exception is raised by the Python interpreter as a result of some behavior
(anticipated or not) by the program. But sometimes it is desirable for a program to raise
a particular exception if some condition is met. The raise keyword allows a program
to force a specific exception and customize the message or other data associated with it.
For example,

if n % 2:
raise ValueError('n must be even!')
Statements here may proceed, knowing n is even ...

A related keyword, assert, evaluates a conditional expression and raises an
AssertionError exception if that expression is not equivalent to True. assert state-
ments can be useful to check that some essential condition holds at a specific point in
your program’s execution and are often helpful in debugging.

4.1 Errors and Exceptions 111

>>> assert 2 == 2 # [silence]: 2 == 2 is True so nothing happens
>>>
>>> assert 1 == 2 # will raise the AssertionError

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AssertionError

The syntax assert exprl, expr2 passes expr2 (typically an error message) to the
AssertionError:

>>> assert 1 == 2, 'One does not equal two'

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AssertionError: One does not equal two

Python is a dynamically typed language and arguments of any type can be legally
passed to a function, even if that function is expecting a particular type. It is sometimes
necessary to check that an argument object is of a suitable type before using it, and
assert could be used to do this.

Example E4.3 The following function returns a string representation of a two-
dimensional (2D) or three-dimensional (3D) vector, which must be represented as a
list or tuple containing two or three items.

>>> def str_vector(v):
assert type(v) is list or type(v) is tuple,\
'argument to str_vector must be a list or tuple’
assert len(v) in (2, 3),\
'vector must be 2D or 3D in str_vector'
it k']

1

unit_vectors = ['i"',
s =[]
for i, component in enumerate(v):

s.append (' {}{}'.format(component, unit_vectors[i]))

return '+'.join(s).replace('+-', '-')

O replace('+-', '-") here converts, for example, '4i+-3j' into '4i-3j".

Example E4.4 As another example, suppose you have a function that calculates the
vector (cross) product of two vectors represented as 1ist objects. This product is only
defined for three-dimensional vectors, so calling it with lists of any other length is an
error.
>>> def cross_product(a, b):
assert len(a) == len(b) == 3, 'Vectors a, b must be three-dimensional’
return [a[1]*b[2] - a[2]*b[1],

a[2]*b[0] - a[0]*b[2],
af0]*b[1] - a[1]1*b[0]]

>>> cross_product([1, 2, -1], [2, O, -1, 3]) # Oops!

112

The Core Python Language Il

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "<stdin>", line 2, in cross_product
AssertionError: Vectors a, b must be three-dimensional

>>> cross_product([1l, 2, -1], [2, O, -1])
[-2, -1, -4]

Example E4.5 The following code gives an example of the use of a try
else ... finally clause:

try-except-else-finally.py

def process_file(filename):

try:
fi = open(filename, 'r')

except IOError:
print('Oops: couldn\'t open {} for reading'.format(filename))
return

else:
lines = fi.readlines()
print('{} has {} lines.'.format(filename, len(lines)))
fi.close()

finally:
print (' Done with file {}'.format(filename))

print ('The first line of {} is:\n{}'.format(filename, lines[0]))
further processing of the lines
return

process_file('sonnet®.txt')
process_file('sonnet18.txt"')

except

© Within the else block, the contents of the file are only read if the file was success-

fully opened.

® Within the finally block, ‘Done with file filename’ is printed whether the file

was successfully opened or not.

Assuming that the file sonnet®.txt does not exist but that sonnet18. txt does, run-

ning this program prints:

Oops: couldn't open sonnet®.txt for reading
Done with file sonnet®.txt

sonnetl18.txt has 14 lines.
Done with file sonnetl8.txt

The first line of sonnetl8.txt is:

Shall I compare thee to a summer's day?

4.2 Python Objects llI: Dictionaries and Sets 113

41.4 Exercises

Questions

Q4.1.1 What is the point of else? Why not put statements in this block inside the
original try block?

Q4.1.2 What is the point of the finally clause? Why not put any statements you want
executed after the try block (regardless of whether or not an exception has been raised)
after the entire try ... except clause?

Hint: see what happens if you modify Example E4.5 to put the statements in the
finally clause after the try block.

Problems
P4.1.1 Write a program to read in the data from the file swallow-speeds.txt (avail-
able at |https://scipython.com/ex/bdal) and use it to calculate the average air-speed veloc-
ity of an (unladen) African swallow. Use exceptions to handle the processing of lines
that do not contain valid data points.
P4.1.2 Adapt the function of Example E4.3, which returns a vector in the following
form:
>>> print(str_vector([-2, 3.5]))
-2i + 3.5j
>>> print(str_vector((4, 0.5, -2)))
4i + 0.5j - 2k
to raise an exception if any element in the vector array does not represent a real number.
P4.1.3 Python follows the convention of many computer languages in choosing to
define 0° = 1. Write a function, powr(a, b), which behaves the same as the Python
expression a**b (or, for that matter, math.pow(a,b)) but raises a ValueError if a and b
are both zero.

4.2 Python Objects llI: Dictionaries and Sets

A dictionary in Python is a type of “associative array” (also known as a “hash” in some
languages). A dictionary can contain any objects as its values, but unlike sequences such
as lists and tuples, in which the items are indexed by an integer starting at 0, each item
in a dictionary is indexed by a unique key, which may be any immutable object.* The
dictionary therefore exists as a collection of key-value pairs; dictionaries themselves are
mutable objects.

4 Actually, dictionary keys can be any hashable object: a hashable object in Python is one with a special
method for generating a particular integer from any instance of that object; the idea is that instances (which
may be large and complex) that compare as equal should have hash numbers that also compare as equal so
they can be rapidly looked up in a hash table. This is important for some data structures and for optimizing
the speed of algorithms involving their objects.

https://scipython.com/ex/bda

114

421

The Core Python Language Il

Defining and Indexing a Dictionary

An dictionary can be defined by giving key: value pairs between braces:

>>> height = {'Burj Khalifa': 828., 'One World Trade Center': 541.3,
'Mercury City Tower': -1., 'Q1': 323.,
'"Carlton Centre': 223., 'Gran Torre Santiago': 300.,
'"Mercury City Tower': 339.}
>>> height
{'Burj Khalifa': 828.0,
'One World Trade Center': 541.3,
'Mercury City Tower': 339.0,
'Ql': 323.0,
'Carlton Centre': 223.0,
'Gran Torre Santiago': 300.0}

The command print (height) will return the dictionary in the same format (between
braces). If the same key is attached to different values (as 'Mercury City Tower' is
here), only the most recent value survives: the keys in a dictionary are unique.

Before Python 3.6, the items in a dictionary were not guaranteed to have any par-
ticular order; since this version, the order of insertion is preserved. Note that as in the
example above, redefining the value attached to a key does not change the key’s insertion
order: the key 'Mercury City Tower' is the third key to be defined, where it is given
the value -1.; it is later reassigned the value 339. but still appears in third position when
the dictionary is used.

An individual item can be retrieved by indexing it with its key, either as a literal
('Q1") or with a variable equal to the key:

>>> height['One World Trade Center']

541.3

>>> building = 'Carlton Centre'
>>> height[building]

223.0

Items in a dictionary can also be assigned by indexing it in this way:

height['Empire State Building'] = 381.
height['The Shard'] = 306.

An alternative way of defining a dictionary is to pass a sequence of (key, value)
pairs to the dict constructor. If the keys are simple strings (of the sort that could be
used as variable names), the pairs can also be specified as keyword arguments to this
constructor:
>>> ordinal = dict([(l, 'First'), (2, 'Second'), (3, 'Third')])
>>> mass = dict(Mercury=3.301e23, Venus=4.867e24, Earth=5.972e24)
>>> ordinal [2] # NB 2 here is a key, not an index
'Second’

>>> mass['Earth']
5.972e+24

A for-loop iteration over a dictionary returns the dictionary keys (in order of key
insertion):

>>> for c¢ in ordinal:

422

4.2 Python Objects llI: Dictionaries and Sets 115

print(c, ordinal[c])

1 First
2 Second
3 Third

Example E4.6 A simple dictionary of roman numerals:

>>> numerals = {'one':'I', '"two':'II', 'three':'III', 'four':'IV',6 'five':'V',
'six':'VI', 'seven':'VII', 'eight':'VIII',
1. 'r', 2: 'I1', 3: 'III', 4:'1IV', 5: 'Vv', 6:'VI', 7:'VII',
8:'VIII'}
>>> for i in ['three', 'four', 'five', 'six']:
print (numerals[i], end=' ")
IITI IV V VI

>>> for i in range(8,0,-1):
.. print (numerals[i], end=' ")
VIII VII VI V IV IITI II I

Note that regardless of the order in which the keys are stored, the dictionary can be
indexed in any order. Note also that although the dictionary keys must be unique, the
dictionary values need not be.

Dictionary Methods
getQ

Indexing a dictionary with a key that does not exist is an error:
>>> mass[’Pluto’]
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
KeyError: ’Pluto’

However, the useful method get() can be used to retrieve the value, given a key if
it exists, or some default value if it does not. If no default is specified, then None is
returned. For example,

>>> print(mass.get('Pluto'))

None

>>> mass.get('Pluto', -1)
-1

keys, values and items

The three methods, keys, values and items, return, respectively, a dictionary’s keys,
values and key-value pairs (as tuples). In previous versions of Python, each of these
were returned in a list, but for most purposes this is wasteful of memory: calling keys,
for example, required all of the dictionary’s keys to be copied as a list, which in most
cases was simply iterated over. That is, storing a whole new copy of the dictionary’s
keys is not usually necessary. Python 3 solves this by returning an iterable object, which

116

The Core Python Language Il

accesses the dictionary’s keys one by one, without copying them to a list. This is faster
and saves memory (important for very large dictionaries). For example,
>>> planets = mass.keys()
>>> print(planets)
dict_keys(['Mercury', 'Venus', 'Earth'])
>>> for planet in planets:
print(planet, mass[planet])

Mercury 3.301e+23
Venus 4.867e+24
Earth 5.972e+24

A dict_keys object can be iterated over any number of times, but it is not a list and
cannot be indexed or assigned:

>>> planets = mass.keys()
>>> planets[0]

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'dict_keys' object is not subscriptable

If you really do want a list of the dictionary’s keys, simply pass the dict_keys object to
the 1ist constructor (which takes any kind of sequence and makes a 1ist out of it):

>>> planet_list = list(mass.keys())
>>> planet_list

['Mercury', 'Venus', 'Earth']
>>> planet_list[0]

'Mercury'

>>> planet_list[1] = 'Jupiter'

>>> planet_list
['Mercury', 'Jupiter', 'Earth']

© This last assignment only changes the planet_list list; it doesn’t alter the original
dictionary’s keys.

Similar methods exist for retrieving a dictionary’s values and items (key-value pairs):
the objects returned are dict_values and dict_items.

For example,

>>> mass.items ()
dict_items([('Mercury', 3.301e+23), ('Venus', 4.867e+24), ('Earth', 5.972e+24)])
>>> mass.values ()
dict_values([3.301e+23, 4.867e+24, 5.972e+24])
>>> for planet_data in mass.items():
print(planet_data)

('Mercury', 3.301e+23)
('Venus', 4.867e+24)
('Earth', 5.972e+24)

Example E4.7 A Python dictionary can be used as a simple database. The following
code stores some information about some astronomical objects in a dictionary of tuples,
keyed by the object name, and manipulates them to produce a list of planet densities.

4.2 Python Objects llI: Dictionaries and Sets

Listing 4.1 Astronomical data

117

eg4-astrodict.py
import math

Mass (in kg) and radius (in km) for some astronomical bodies.

body = {'Sun': (1.988e30, 6.955e5),
"Mercury': (3.301e23, 2440.),
'Venus': (4.867e+24, 6052.),
'"Earth': (5.972e24, 6371.),
'Mars': (6.417e23, 3390.),
'"Jupiter': (1.899e27, 69911.),
'Saturn': (5.685e26, 58232.),
'Uranus': (8.682e25, 25362.),
'Neptune': (1.024e26, 24622.)

}

planets = list(body.keys())
The sun isn't a planet!
planets.remove('Sun')

def calc_density(m, r):
""" Returns the density of a sphere with mass m and radius r.
return m / (4/3 *

math.pi * r#**3)

rho = {}

for planet in planets:
m, r = body[planet]
Calculate the density in g/cm3.
rho[planet] = calc_density(m*1000, r*1.e5)

for planet, density in sorted(rho.items()):
print('The density of {0} is {1:3.2f} g/cm3'.format(planet, density))

O sorted(rho.items()) returns a list of the rho dictionary’s key-value pairs, sorted
by key. The keys are strings so in this case the sorting produces a list of the keys in

alphabetical order.
The output is

The density of Earth is 5.51 g/cm3
The density of Jupiter is 1.33 g/cm3
The density of Mars is 3.93 g/cm3
The density of Mercury is 5.42 g/cm3
The density of Neptune is 1.64 g/cm3
The density of Saturn is 0.69 g/cm3
The density of Uranus is 1.27 g/cm3
The density of Venus is 5.24 g/cm3

Keyword Arguments

In Section 2.7, we discussed the syntax for passing arguments to functions. In that
description, it was assumed that the function would always know what arguments could

be passed to it and these were listed in the function definition. For example,

def func(a, b, c):

118

The Core Python Language Il

Python provides a couple of useful features for handling the case where it is not
necessarily known what arguments a function will receive. Including *args (after any
“formally defined” arguments) places any additional positional argument into a tuple,
args, as illustrated by the following code:

>>> def func(a, b, *args):
print(args)

>>> func(l, 2, 3, 4, 'msg')

(3, 4, 'msg")

That is, inside func, in addition to the formal arguments a=1 and b=2, the arguments 3,
4 and 'msg' are available as the items of the tuple args. This tuple can be arbitrarily
long. Python’s own print built-in function works in this way: it takes an arbitrary num-
ber of arguments to output as a string, followed by some optional keyword arguments:

def print(*args, sep=' ', end='\n', file=None):

It is also possible to collect arbitrary keyword arguments (see Section 2.7.2) to a
function inside a dictionary by using the **kwargs syntax in the function definition.
Python takes any keyword arguments not specified in the function definition and packs
them into the dictionary kwargs. For example,
>>> def func(a, b, **kwargs):

for k in kwargs:
print(k, '=', kwargs[k])

>>> func(l, b=2, c=3, d=4, s='msg')

d =14
s = msg
c =3

One can also use *args and **kwargs when calling a function, which can be conve-
nient, for example, with functions that take a large number of arguments:

>>> def func(a, b, c, x, y, z):
print(a, b,)
print(x, y, z)

>>> args = [1, 2, 3]

>>> kwargs = {'x': 4, 'y': 5, 'z': 'msg'}
>>> func(*args, **kwargs)

123

4 5 msg

defaultdict

With regular Python dictionaries, an attempt to retrieve a value using a key that does not
exist will raise a KeyError exception. There is a useful container, called defaultdict,
that subclasses the dict built-in to allow one to specify default_factory, a function
which returns the default value to be assigned to the key if it is missing.

Example E4.8 To analyze the word lengths in the first line of the Gettysburg Address
with a regular dictionary requires code to catch the KeyError and set a default value:

423

©Q

4.2 Python Objects llI: Dictionaries and Sets 119

text = 'Four score and seven years ago our fathers brought forth on this
continent, a new nation, conceived in Liberty, and dedicated to the proposition
that all men are created equal'

text = text.replace(',', '').lower() # remove punctuation

word_lengths = {}
for word in text.split():
try:
word_lengths[len(word)] += 1
except KeyError:
word_lengths[len(word)] = 1
print(word_lengths)

Using defaultdict in this case would be more concise and elegant:

from collections import defaultdict

word_lengths = defaultdict(int)

for word in text.split():
word_lengths[len(word)] += 1

print (word_lengths)

returns:

defaultdict(<class 'int'>, {4: 3, 5: 5, 3: 9, 7: 4, 2: 3, 9: 3, 1: 1, 6: 1, 11: 1})

O Note that defaultdict is not a built-in: it must be imported from the collections
module.

® Here we set the default_factory function to int: if a key is missing, it will be
inserted into the dictionary and initialized with a call to int (), which returns 0.

Sets

A set is an unordered collection of unique items. As with dictionary keys, elements of
a set must be hashable objects. A set is useful for removing duplicates from a sequence
and for determining the union, intersection and difference between two collections.
Because they are unordered, set objects cannot be indexed or sliced, but they can be
iterated over, tested for membership and they support the len built-in. A set is created
by listing its elements between braces ({...}) or by passing an iterable to the set()
constructor:

>>> s = set([1l, 1, 4, 3, 2, 2, 3, 4, 1, 3, 'surprise!'])

>>> s

{1, 2, 'surprise!', 3, 4}

>>> len(s) # cardinality of the set

5

>>> 2 in s, 6 not in s # membership, nonmembership

(True, True)
>>> for item in s:
print (item)

1
2

surprise!

120

The Core Python Language Il

4

The set method add is used to add elements to the set. To remove elements there are
several methods: remove removes a specified element but raises a KeyError exception
if the element is not present in the set; discard() does the same but does not raise an
error in this case. Both methods take (as a single argument) the element to be removed.
pop (with no argument) removes an arbitrary element from the set and clear removes
all elements from the set:
>>> s = {2,-2,0}
>>> s.add (1)
>>> s.add(-1)
>>> s.add(1.0)
>>> s
{0, 1, 2, -1, -2}
>>> s.remove (1)
>>> s
{0, 2, -1, -2}
S
S
2
S

>>> s.discard(3) # OK - does nothing
>>>

{0, 2, -1, -2}

>>> s.pop()

0 # (for example)

>>> s

{2, -1, -2}

>>> s.clear()

set() # the empty set

© This statement will not add a new member to the set, even though the existing 1 is
an integer and the item we’re adding is a float. The test 1 == 1.0 is True, so 1.0 is
considered to be already in the set.

set objects have a wide range of methods corresponding to the properties of mathe-
matical sets; the most useful are illustrated in Table 4.2, which uses the following terms
from set theory:

° The cardinality of a set, |A|, is the number of elements it contains.
° Two sets are equal if they both contain the same elements.
) Set A is a subset of set B (A C B) if all the elements of A are also elements of B;

set B is said to be a superset of set A.
. Set A is a proper subset of B (A C B) if it is a subset of B but not equal to B; in
this case, set B is said to be a proper superset of A.

° The union of two sets (A U B) is the set of all elements from both of them.

° The intersection of two sets (A N B) is the set of all elements they have in
common.

° The difference of set A and set B (A \ B) is the set of elements in A that are not
in B.

° The symmetric difference of two sets, A A B, is the set of elements in either but
not in both.

° Two sets are said to be disjoint if they have no elements in common.

4.2 Python Objects llI: Dictionaries and Sets 121

Table 4.2 set methods

Method Description
isdisjoint(other) Is set disjoint with other?
issubset(other),

set <= other Is set a subset of other?
set < other Is set a proper subset of other?
issuperset(other),

set >= other Is set a superset of other?
set > other Is set a proper superset of other?
union(other),

set | other | ... The union of set and other(s)
intersection(other),

set & other & ... The intersection of set and other(s)
difference(other),

set - other - ... The difference of set and other(s)

symmetric_difference(other),

set " other The symmetric difference of set and other(s)

There are two forms for most set expressions: the operator-like syntax requires all
arguments to be set objects, whereas explicit method calls will convert any iterable
argument into a set.

>>> A = set((1l, 2, 3))

>>> B = set((1, 2, 3, 4))

>>> A <= B

True

>>> A.issubset((1, 2, 3, 4)) # OK: (1, 2, 3, 4) is turned into a set
True

Some more examples:

>>> C, D = set((3, 4, 5, 6)), set((7, 8, 9))
>>> B | C # union

{1, 2, 3, 4, 5, 6}

>> A | C | D # union of three sets
{1, 2, 3, 4, 5, 6, 7, 8, 9}

>>> A & C # intersection

{3}

>>> C & D

set() # the empty set

>>> C.isdisjoint (D)

True

>>> B - C # difference

{1, 2}

>>> B A C # symmetric difference

{1, 2, 5, 6}

122

The Core Python Language Il

frozensets

sets are mutable objects (items can be added to and removed from a set); because of
this they are unhashable and so cannot be used as dictionary keys or as members of
other sets.

>>> a = set((1, 2, 3))
>>> b = set(('q', (1, 2), a))

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

1 1

TypeError: unhashable type: 'set

>>>

(In the same way, 1ists cannot be dictionary keys or set members.) There is, however,
a frozenset object which is a kind of immutable (and hashable) set.’ frozensets are
fixed, unordered collections of unique objects and can be used as dictionary keys and
set members.

>>> a = frozenset((1l, 2, 3))

>>> b = set(('q', (1, 2), a)) # OK: the frozenset a is hashable
>>> b.add (4) # OK: b is a regular set

>>> a.add(4) # not OK: frozensets are immutable

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'frozenset' object has no attribute 'add'

Example E4.9 A Mersenne prime, M;, is a prime number of the form M; = 20— 1.
The set of Mersenne primes less than n may be thought of as the intersection of the set
of all primes less than n, P,, with the set, A, of integers satisfying 2i_1<n.

The following program returns a list of the Mersenne primes less than 1 000 000.

Listing 4.2 The Mersenne primes

import math

def primes(n):

""" Return a list of the prime numbers <= n.
sieve = [True] * (n // 2)
for i in range(3, int(math.sqrt(n)) + 1, 2):
if sievel[i//2]:
sieve[i*i//2::i] = [False] * ((n - i*i - 1) // (2%i) + 1)
return [2] + [2*i+1 for i in range(l, n // 2) if sieve[i]]

n = 1000000

P = set(primes(n))

A list of integers 24i - 1 <= n.

5Tha sense, they are to sets what tuples are to 1ists.

4.2 Python Objects llI: Dictionaries and Sets 123

A =]
O for i in range (2, int(math.log(n+l, 2)) + 1):
A.append (2%*i - 1)

The set of Mersenne primes as the intersection of P and A.
M = P.intersection(A)

Output as a sorted list of M.
(3] print(sorted(list(M)))

The prime numbers are produced in a list by the function primes, which implements
an optimized version of the Sieve of Eratosthenes algorithm (see Exercise P2.5.8); this is
converted into the set, P (@). We can take the intersection of this set with any iterable
object using the intersection method, so there is no need to explicitly convert our
second list of integers, A, (@) into a set.
© Finally, the set of Mersenne primes we create, M, is an unordered collection, so for
output purposes we convert it into a sorted list.

For n = 1000000, This output is

[3, 7, 31, 127, 8191, 131071, 524287]

424 Exercises

Questions

Q4.2.1 Write a one-line Python program to determine if a string is a pangram (a string
that contains each letter of the alphabet at least once).

Q4.2.2 Write a function, using set objects, to remove duplicates from an ordered
list. For example,

>>> remove_dupes([1, 1, 2, 3, 4, 4, 4, 5, 7, 8, 8, 91
[1, 2, 3, 4, 5, 7, 8, 9]

Q4.2.3 Predict and explain the effect of the following statements:

>>> set('hellohellohello')

>>> set(['hellohellohello'])

>>> set(('hellohellohello'))

>>> set(('hellohellohello"',))

>>> set(('hello', 'hello', 'hello'))
>>> set(('hello', ('hello', 'hello')))
>>> set(('hello', ['hello', 'hello'l))

Q4.2.4 If frozenset objects are immutable, how is this possible?

>>> a = frozenset((1l, 2, 3))
>>> a |= {2, 3, 4, 5}

>>> print(a)

frozenset([1, 2, 3, 4, 5])

124

Problems

The Core Python Language Il

Table 4.3 Resistor color codes

Color Abbreviation ~ Significant figures Multiplier =~ Tolerance
Black bk 0 1 -
Brown br 1 10 +1%
Red rd 2 107 +2%
Orange or 3 10° -
Yellow vyl 4 10* +5%
Green gr 5 103 +0.5%
Blue bl 6 108 +0.25%
Violet vi 7 107 +0.1%
Gray gy 8 108 +0.05%
White wh 9 10° -

Gold au - - +5%
Silver ag - - +10%
None -- - - +20%

Q4.2.5 Modify Example E4.8 to use a defaultdict to produce a list of words, keyed
by their length from the text of the first line of the Gettysburg Address.

P4.2.1 The values and tolerances of older resistors are identified by four colored
bands: the first two indicate the first two significant figures of the resistance in ohms,
the third denotes a decimal multiplier (number of zeros) and the fourth indicates the
tolerance. The colors and their meanings for each band are listed in Table 4.3.

For example, a resistor with colored bands violet, yellow, red, green has value 74 x
107 = 7400 Q and tolerance +0.5%.

Write a program that defines a function to translate a list of four color abbreviations
into a resistance value and a tolerance. For example,

In [x]: print(get_resistor_value(['vi', 'yl', 'rd', 'gr'l))

Out[x]: (7400, 0.5)

P4.2.2 The novel Moby-Dick is out of copyright and can be downloaded as a text
file from the Project Gutenberg website at www.gutenberg.org/2/7/0/2701/. Write a
program to output the 100 words most frequently used in the book by storing a count of
each word encountered in a dictionary.

Hint: use Python’s string methods to strip out any punctuation. It suffices to replace
any instances of the following characters with the empty string: !?":;, ()’ .*[]. When
you have a dictionary with words as the keys and the corresponding word counts as the
values, create a list of (count, word) tuples and sort it.

Bonus exercise: compare the frequencies of the top 2000 words in Moby-Dick with
the prediction of Zipf’s law:

log f(w) = log C — alog r(w),

www.gutenberg.org/2/7/0/2701/

4.3

4.3 Pythonic Idioms: “Syntactic Sugar” 125

where f(w) is the number of occurrences of word w, r(w) is the corresponding rank
(1 = most common, 2 = second most common, etc.) and C and « are constants. In the
traditional formulation of the law, C = log f(w;) and a = 1, where w; is the most
common word, such that r(w;) = 1.

P4.2.3 Reverse Polish notation (RPN) (or postfix notation) is a notation for mathe-
matical expressions in which each operator follows all of its operands (in contrast to
the more familiar infix notation, in which the operator appears between the operands
it acts on). For example, the infix expression 5 + 6 is written in RPN as 5 6 +. The
advantage of this approach is that parentheses are not necessary: to evaluate (3 + 7) /
2, it may be writtenas 3 7 + 2 /. An RPN expression is evaluated left to right with the
intermediate values pushed onto a stack — a last-in, first-out list of values — and retrieved
(popped) from the stack when needed by an operator (see also Example E2.16). Thus,
the expression 3 7 + 2 / proceeds with 3 and then 7 pushed to the stack (with 7 on
top). The next token is +, so the values are retrieved, added, and the result, 10, pushed
onto the (now empty) stack. Next, 2 is pushed to the stack. The final token / pops the
two values, 10 and 2 from the stack, and divides them to give the result, 5.

Write a program to evaluate an RPN expression consisting of space-delimited tokens
(the operators + - * / ** and numbers).

Hint: parse the expression into a list of string tokens and iterate over it, converting
and pushing the numbers to the stack (which may be implemented by appending to a
list). Define functions to carry out the operations by retrieving values from the stack
with pop. Note that Python does not provide a switch. . .case syntax, but these function
objects can be the values in a dictionary with the operator tokens as the keys.

P4.2.4 Use the dictionary of Morse code symbols in the file morse.py, available from

[https://scipython.com/ex/bdb], to write a program that can translate a message to and

from Morse code, using spaces to delimit individual Morse code “letters” and slashes
(“/’) to delimit words. For example, 'PYTHON 3' becomes '.-. -.- - - -. /

P4.2.5 The file shark-species.txt, available at |https://scipython.com/ex/bdc|, con-
tains a list of extant shark species arranged in a hierachy by order, family, genus and

species (with the species given as binomial name : common name). Read the file into a
data structure of nested dictionaries, which can be accessed as follows:

>>> sharks['Lamniformes']['Lamnidae']['Carcharodon']['C. carcharias']
Great white shark

Pythonic Idioms: “Syntactic Sugar”

Many computer languages provide syntax to make common tasks easier and clearer to
code. Such syntactic sugar consists of constructs that could be removed from the lan-
guage without affecting the language’s functionality. We have already seen one example

https://scipython.com/ex/bdb
https://scipython.com/ex/bdc

126

4.3.1

The Core Python Language Il

in so-called augmented assignment: a += 11is equivalenttoa = a + 1. Another exam-
ple is negative indexing of sequences: b[-1] is equivalent to and more convenient than
b[len(b)-1].

Comparison and Assignment Shortcuts

If more than one variable is to be assigned to the same object, the shortcut

may be used. Note that if mutable objects are assigned this way, the variable names will
all refer to the same object, not to distinct copies of it (recall Section 2.4.1).

Similarly, as was shown in Section 2.4.2, multiple assignments to different objects
can be achieved in a single line by tuple unpacking:

a, b, c = x + 1, 'hello', -4.5

The tuple on the right-hand side of this expression (parentheses are optional in this case)
is unpacked in the assignment to the variable names on the left-hand side. This single
line is thus equivalent to the three lines

a=x+1

b = 'hello'
c = -4.5

In expressions such as these the right-hand side is evaluated first and then assigned to
the left-hand side. As we have already seen, this provides a very useful way of swapping
the value of two variables without the need for a temporary variable:

a, b=">b, a

Comparisons may also be chained together in a natural way:

if a == b ==

print('a and b both equal 3')
if -1 < x < 1:

print('x is between -1 and 1')

Python supports conditional assignment: a variable name can be set to one value or
another depending on the outcome of an if ... else expression on the same line as
the assignment. For example,

y = math.sin(x)/x if x else 1

Short examples such as this one, in which the potential division by zero is avoided
(recall that @ evaluates to False) are benign enough, but the idiom should be avoided
for anything more complex in favor of a more explicit construct such as
try:

y = math.sin(x)/x
except ZeroDivisionError:

y=1

43.2

4.3 Pythonic Idioms: “Syntactic Sugar” 127

List Comprehension

A list comprehension in Python is a construct for creating a list based on another iterable
object in a single line of code. For example, given a list of numbers, x1ist, a list of the
squares of those numbers may be generated as follows:

>>> xlist = [1, 2, 3, 4, 5, 6]

>>> x2list = [x**2 for x in xlist]

>>> x2list
[1, 4, 9, 16, 25, 36]

This is a faster and syntactically nicer way of creating the same list with a block of code
within a for loop:
>>> x2list = []

>>> for x in xlist:
x2list.append(x**2)

List comprehensions can also contain conditional statements:

>>> x21ist = [x**2 for x in xlist if x % 2]
>>> x2list
[1, 9, 25]

Here, x gets fed to the x**2 expression to be entered into the x21ist under construction
only if x % 2 evaluates to True (i.e. if x is odd). This is an example of a filter (a single i f
conditional expression). If you require a more complex mapping of values in the original
sequence to values in the constructed list, the if .. else expression must appear before
the for loop:

>>> [x**2 if x % 2 else x**3 for x in xlist]
[1, 8, 9, 64, 25, 216]

This comprehension squares the odd integers and cubes the even integers in x1list.

Of course, the sequence used to construct the list does not have to be another list.
For example, strings, tuples and range objects are all iterable and can be used in list
comprehensions:
>>> [x**3 for x in range(l, 10)]

[1, 8, 27, 64, 125, 216, 343, 512, 729]
>>> [w.upper() for w in 'abc xyz']
['A", 'B', 'C', 'L oUXYL oY, 'z

Finally, list comprehensions can be nested. For example, the following code flattens
a list of lists:
>>> vlist = [[1, 2, 31, [4, 5, 6], [7, 8, 91]

>>> [c for v in vlist for c in v]
[1, 2, 3, 4, 5, 6, 7, 8, 9]

Here, the first loop produces the inner lists, one by one, as v, and each inner list v is
iterated over as c to be added to the list being created.

Example E4.10 Consider a 3 X 3 matrix represented by a list of lists:

128

4.3.3

The Core Python Language Il

M= [[1, 2, 3],
(4, 5, 61,
[7, 8, 911

Without using list comprehension, the transpose of this matrix could be built up by
looping over the rows and columns:

Mt = ([0, 0, 0], [0, 0, 0], [0, 0, 0]]

for ir in range(3):

for ic in range(3):
MT[ic][ir] = M[ir][ic]

With one list comprehension, the transpose can be constructed as

MT = []
for i in range(3):
MT.append([row[i] for row in M])

where rows of the transposed matrix are built from the columns (indexed with i=9,
1, 2) of each row in turn from M. The outer loop here can be expressed as a list
comprehension of its own:

MT = [[row[i] for row in M] for i in range(3)]

Note, however, that NumPy provides a much easier way to manipulate matrices.

lambda Functions

A lambda function in Python is a type of simple anonymous function. The executable
body of a 1ambda function must be an expression and not a statement; that is, it may not
contain, for example, loop blocks, conditionals or print statements. lambda functions
provide limited support for a programming paradigm known as functional program-
ming.% The simplest application of a 1ambda function differs little from the way a regular
function def would be used:

>>> f = lambda x: x**2 - 3%x + 2

>>> print(£(4.))
6.0

The argument is passed to x and the result of the function specified in the lambda
definition after the colon is passed back to the caller. To pass more than one argument
to a lambda function, pass a tuple (without parentheses):

>>> f = lambda x,y: x**2 + 2%x*y + y¥**2

>>> £(2., 3.)
25.0

In these examples, not too much is gained by using a lambda function, and the
functions defined are not all that anonymous either (because they’ve been bound to

% Functional programming is a style of programming in which computation is achieved through the evaluation
of mathematical functions with minimal reference to variables defining the state of the program.

4.3 Pythonic Idioms: “Syntactic Sugar” 129

the variable name f). A more useful application is in creating a list of functions, as in
the following example.

Example E4.11 Functions are objects (like everything else in Python) and so can be
stored in lists. Without using lambda we would have to define named functions (using
def) before constructing the list:
def const(x):
return 1.
def lin(x):
return x
def square(x):
return x**2
def cube(x):
return x**3
flist = [const, lin, square, cube]

Then f1ist[3](5) returns 125, since flist[3] is the function cube, and is called with
the argument 5.

The value of using 1ambda expressions as anonymous functions is that these functions
do not need to be named if they are just to be stored in a list and so can be defined as
items “inline” with the list construction:

>>> flist = [lambda x

lambda x:

lambda x:
N lambda x
>>> flist[3](5) # flist[3] is x**3
125
>>> flist[2](4) # flist[2] is x**2
16

Example E4.12 The sorted built-in and sort list method can order lists based on
the returned value of a function called on each element prior to making comparisons.
This function is passed as the key argument. For example, sorting a list of strings is
case-sensitive by default:

>>> sorted('Nobody expects the Spanish Inquisition'.split())

['Inquisition', 'Nobody', 'Spanish', 'expects', 'the']

We can make the sorting case-insensitive, however, by passing each word to the
str.lower method:

>>> sorted('Nobody expects the Spanish Inquisition'.split(), key=str.lower)
['expects', 'Inquisition', 'Nobody', 'Spanish', 'the']

(Of course, key=str.upper would work just as well.) Note that the list elements them-
selves are not altered: they are being ordered based on a lowercase version of them-
selves. We do not use parentheses here, as in str.lower (), because we are passing the
function itself to the key argument, not calling it directly.

130

43.4

4.3.5

The Core Python Language Il

It is typical to use lambda expressions to provide simple anonymous functions for this
purpose. For example, to sort a list of atoms as (element symbol, atomic number) tuples
in order of atomic number (the second item in each tuple):
>>> halogens = [('At', 85), ('Br', 35), ('Cl', 17), ('F', 9, ('I', 53)]

>>> sorted(halogens, key=lambda e: e[1])
[¢'e', 9, C'Cl', 175, ('Br', 35, ('I', 53), ('At', 85)]

Here, the sorting algorithm calls the function specified by key on each tuple item to
decide where it belongs in the sorted list. Our anonymous function simply returns the
second element of each tuple, and so sorting is by atomic number.

The with Statement

The with statement creates a block of code that is executed within a certain context.
A context is defined by a context manager that provides a pair of methods describing
how to enter and leave the context. User-defined contexts are generally used only in
advanced code and can be quite complex, but a common basic example of a built-in
context manager involves file input / output. Here, the context is entered by opening
the file. Within the context block, the file is read from or written to, and finally the file
is closed on exiting the context. The file object is a context manager that is returned
by the open() method. It defines an exit method which simply closes the file (if it was
opened successfully), so that this does not need to be done explicitly. To open a file
within a context, use

with open('filename') as f:

Process the file in some way, for example:
lines = f.readlines()

The reason for doing this is that you can be sure that the file will be closed after the
with block, even if something goes wrong in this block: the context manager handles
the code you would otherwise have to write to catch such runtime errors.

Generators

Generators are a powerful feature of the Python language; they allow one to declare a
function that behaves like an iterable object. That is, a function that can be used in a
for loop and that will yield its values, in turn, on demand. This is often more efficient
than calculating and storing all of the values that will be iterated over (particularly
if there will be a very large number of them). A generator function looks just like a
regular Python function, but instead of exiting with a return value, it contains a yield
statement, which returns a value each time it is required to by the iteration.
A very simple example should make this clearer. Let’s define a generator, count, to

count to n:
>>> def count(n):

i=0

while i < n:

4.3 Pythonic Idioms: “Syntactic Sugar” 131

i+=1
yield i

>>> for j in count(5):
print(j)

ViR W N

Note that we can’t simply call our generator like a regular function:

>>> count (5)
<generator object count at 0x102d8e6e®>

The generator count is expecting to be called as part of a loop (here, the for loop) and
on each iteration it yields its result and stores its state (the value of i reached) until the
loop next calls upon it.

In fact, we have been using generators already because the familiar range built-in
function is, in Python 3, a type of generator object.

There is a generator comprehension syntax similar to list comprehension (use round
brackets instead of square brackets):
>>> squares = (x**2 for x in range(5))

>>> for square in squares:
print (square)

O s =2 -

16
However, once we have “exhausted” our generator comprehension defined in this way,
we cannot iterate over it again without redefining it. If we try:
>>> for square in squares:

print (square)

>>>

we get nothing as we have already reached the end of the squares generator.
To obtain a list or tuple of a generator’s values, simply pass it to 1list or tuple, as
shown in the following example.

Example E4.13 This function defines a generator for the triangular numbers, T, =
Y k=1+2+3+...+nforn=0,1,2,...:thatis, T, =0,1,3,6,10,...

>>> def triangular_numbers(n):
i, t=1,0
while i <= n:
yield t
t += 1

132 The Core Python Language Il

i+=1

>>> list(triangular_numbers(15))
[e, 1, 3, 6, 18, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105]

Note that the statements after the yield statement are executed each time triangular_numbers
resumes. The call to triangular_numbers(15) returns an iterator that feeds these
numbers into list to generate a list of its values.

43.6 ¢ map

The built-in function map returns an iterator that applies a given function to every item
of a provided sequence, yielding the results as a generator would.” For example, one
way to sum a list of lists is to map the sum function to it:
>>> mylists = [[1, 2, 3], [10, 20, 301, [25, 75, 180]]
>>> list(map(sum, mylists))
[6, 60, 200]
(We have to cast explicitly back to a list because map returns a generator-like object.)
This statement is equivalent to the list comprehension:
>>> [sum(l) for 1 in mylists]
[6, 60, 200]

map is occasionally useful but has the potential to create very obscure code, and list or
generator comprehensions are generally to be preferred. The same applies to the filter
built-in, which constructs an iterator from the elements of a given sequence for which a
provided function returns True. In the following example, the odd integers less than 10
are generated: this function returns x % 2, and this expression evaluates to 0, equivalent
to False if x is even:

>>> list(filter(lambda x: x%2, range(10)))
[1, 3, 5, 7, 9]

Again, the list comprehension is more expressive:

>>> [x for x in range(10) if x % 2]
[1, 3, 5, 7, 9]

4.3.7 & Assignment Expressions: the Walrus Operator

Python 3.8 introduced a new piece of syntax which allows a variable to be assigned
within an expression. A conventional Python expression, such as 2 + 2 or x == 'a’
returns a value (which may be None); Python statements are composed of expressions
and generally have some effect on the state of the program (e.g. they assign a variable
or test a condition). The ability to assign a variable within an expression can lead to
more concise code with less repetition. For example, consider the following check that
a string is shorter than 10 characters, which produces a meaningful error message:

7 Constructs such as map are frequently used in functional programming.

4.3 Pythonic Idioms: “Syntactic Sugar” 133

>>> s = 'A string with too many characters'
>>> if len(s) > 10:
print(f's has {len(s)} characters. The maximum is 10.')

s has 33 characters. The maximum is 10.

The problem with this code is that we evaluate the length of the string twice (once for
the check and once for the message). We might assign a variable to avoid this:
>>> slen = len(s)

>>> if slen > 10:
print(f's has {slen} characters. The maximum is 10.')

but a more concise way, which saves a line of code, is to use an assignment expression.
The syntax a := b can be used to assign a to the value of b in the context of an
expression (e.g. a conditional expression) rather than a stand-alone statement. That is, it
assigns the value and then returns that value, in contrast to the usual Python assignment
behavior (which doesn’t return anything). Hence,

>>> if (slen := len(s)) > 10:
print(f's has {slen} characters. The maximum is 10.')

s has 33 characters. The maximum is 10.

The symbol : = supposedly looks like the eyes and tusks of a walrus, and so has become
known as the “walrus operator.” Note that assignment expressions should generally be
enclosed in parentheses.

Example E4.14 A good application of an assignment expression is the reuse of a
value that may be expensive to calculate, for example in a list comprehension:

filtered_values = [f(x) for x in values if f(x) >= 0]
Here, the := operator can be used to assign the returned value of £(x) at the same time
as checking if it is positive:
filtered_values = [val for x in values if (val := f(x)) >= 0]

As a further example, consider the following block of code, which reads in and
processes a large file in chunks of 4 kB at a time:

CHUNK_SIZE = 4096
chunk = fi.read(CHUNK_SIZE)
while chunk:

process_chunk (chunk)

chunk = fi.read(CHUNK_SIZE)

This can be written more clearly as

while chunk := fi.read(CHUNK_SIZE):
process_chunk (chunk)

134

4.3.8

Questions

The Core Python Language Il

(Note that in this case it is not necessary to enclose the assignment expression in paren-
theses).

Assignment expressions are a controversial addition to the Python language and do
not always make code clearer. This book will not use them extensively, since there is
always an alternative approach that works on versions of Python 3 prior to 3.8.

Exercises

Q4.3.1 Rewrite the list of lambda functions created in Example E4.11 using a single
list comprehension.

Q4.3.2 What does the following code do and how does it work?

>>> nmax = 5
>>> x = [1]
>>> for n in range(l,nmax+2):
print(x)
x = [([0] + x)[i] + (x + [0])[i] for i in range(n+1)]

Q4.3.3 Consider the lists

s»> a = ['A', 'B', 'C', 'D', 'E', 'F', 'G']
>>>b = [4, 2, 6, 1, 5, 0, 3]

Predict and explain the output of the following statements:

(a) [a[x] for x in b]

(b) [a[x] for x in sorted(b)]

(c) [a[b[x]] for x in b]

d) [x for (y, x) in sorted(zip(b, a))]

Q4.3.4 Dictionaries are data structures in which (since Python 3.6) key-value pairs
are stored in order of insertion. Write a one-line Python statement returning a list of
(key, value) pairs sorted by the keys themselves. Assume that all keys have the same
data type (why is this important?). Repeat the exercise to produce a list ordered by
dictionary values.

Q4.3.5 In the television series The Wire, drug dealers encrypt telephone numbers with
a simple substitution cypher based on the standard layout of the phone keypad. Each
digit of the number, with the exception of 5 and 0, is replaced with the corresponding
digit on the other side of the 5 key (“jump the five”); 5 and 0 are exchanged. Thus, 555-
867-5309 becomes 000-243-0751. Devise a one-line statement to encrypt and decrypt
numbers encoded in this way.

Q4.3.6 The built-in function sorted and sequence method sort require that the ele-
ments in the sequence be of types that can be compared: they will fail, for example, if

Problems

4.3 Pythonic Idioms: “Syntactic Sugar” 135

a list contains a mixture of strings and numbers. However, it is frequently the case that
a list contains numbers and the special value, None (perhaps denoting missing data).
Devise a way to sort such a list by passing a lambda function in the argument key; the
None values should end up at the end of the sorted list.

Q4.3.7 Use an assignment expression (the walrus operator) (a) in a while loop to
determine the smallest Fibonacci number greater than 5000; (b) in a while loop to echo
back a lower-case version of the user’s input (use the input built-in function) until they
enter exit.

P4.3.1 Use alist comprehension to calculate the frace of the matrix M (that is, the sum
of its diagonal elements). Hint: the sum built-in function takes an iterable object and
sums its values.

P4.3.2 The ROT13 substitution cipher encodes a string by replacing each letter with
the letter 13 letters after it in the alphabet (cycling around if necessary). For example, a
—nandp — c.

(a) Given a word expressed as a string of lower-case characters only, use a list
comprehension to construct the ROT13-encoded version of that string. Hint:
Python has a built-in function, ord, which converts a character to its Unicode
code point (e.g. ord('a") returns 97); another built-in, chr, is the inverse of ord
(e.g. chr(122) returns 'z").

(b) Extend your list comprehension to encode sentences of words (in lower case)
separated by spaces into a ROT13 sentence (in which the encoded words are also
separated by spaces).

P4.3.3 In A New Kind of Science,® Stephen Wolfram describes a set of simple one-
dimensional cellular automata in which each cell can take one of two values: “on” or
“off.” A row of cells is initialized in some state (e.g. with a single “on” cell somewhere
in the row) and it evolves into a new state according to a rule that determines the
subsequent state of a cell (“on” or “off”) from its value and that of its two nearest
neighbors. There are 2* = 8 different states for these three “parent” cells taken together
and so 28 = 256 different automata rules; that is, the state of cell i in the next generation
is determined by the states of cells i — 1, i and i + 1 in the present generation.

These rules are numbered 0-255 according to the binary number indicated by the
eight different outcomes each one specifies for the eight possible parent states. For
example, rule 30 produces the outcome (off, off, off, on, on, on, on, off) (or 00011110)
from the parent states given in the order shown in Figure 4.1. The evolution of the cells
can be illustrated by printing the row corresponding to each generation under its parent
as shown in this figure.

8 S. Wolfram (2002). A New Kind of Science, Wolfram Media.

136

The Core Python Language Il

000 000 000 000 000 000 OO® 000
(0] o (0] ([] ([] ([] ([] o

00011110 = 30

0000000000000 00e000000000000000
0000000000000 0eee00000000000000
0000000000000 00e0000000000000
0000000000000 eeee000000000000
0000000000008 00e000e00000000000
0000000000000 000000860000000000
0000000000000 000e00e000000000

Figure 4.1 Rule 30 of Wolfram’s one-dimensional two-state cellular automata and the first seven
generations.

Write a program to display the first few rows generated by rule 30 on the command
line, starting from a single “on” cell in the center of a row 80 cells wide. Use an asterisk
to indicate an “on” cell and a space to represent an “off” cell.

P4.3.4 The file iban_lengths.txt, available at |https://scipython.com/ex/bdd] con-
tains two columns of data: a two-letter country code and the length of that country’s
International Bank Account Number (IBAN):

AL 28
AD 24

GB 22
The code snippet below parses the file into a dictionary of lengths, keyed by the country
code:
iban_lengths = {}
with open('iban_lengths.txt') as fi:
for line in fi.readlines():

fields = line.split()
iban_lengths[fields[0]] = int(fields[1])

Use a lambda function and list comprehension to achieve the same goal in (a) two lines,
(b) one line.

P4.3.5 The power set of a set S, P(S), is the set of all subsets of S, including the
empty set and S itself. For example,

P({1,2,3}) = {1, {1}, {2}, {3}, {1, 2},{1, 3}, {2, 3}, {1, 2, 3}}.

Write a Python program that uses a generator to return the power set of a given set.

Hint: convert your set into an ordered sequence such as a tuple. For each item in this
sequence return the power set formed from all subsequent items, inclusive and exclusive
of the chosen item. Don’t forget to convert the tuples back to sets after you’re done.

P4.3.6 The Brown Corpus is a collection of 500 samples of (American) English-
language text that was compiled in the 1960s for use in the field of computational lin-

https://scipython.com/ex/bdd

4.4

4.4.1

4.4 Operating-System Services 137

guistics. It can be dowloaded from https://nltk.github.com/nltk_data/packages/corpora/
brown.zip.

Each sample in the corpus consists of words that have been tagged with their part-of-
speech after a forward slash. For example,

The/at football/nn opponent/nn on/in homecoming/nn is/bez ,/, of/in
course/nn ,/, selected/vbn with/in the/at view/nn that/cs

Here, The has been tagged as an article (/at), football as a noun (/nn) and so on. A
full list of the tags is available from the accompanying manual.’

Write a program that analyzes the Brown Corpus and returns a list of the eight-letter
words which feature each possible two-letter combinations exactly twice. For example,
the two-letter combination pc is present in only the words topcoats and upcoming; mt is
present only in the words boomtown and undreamt.

Operating-System Services

The sys Module

The sys module provides certain system-specific parameters and functions. Many of
them are of interest only to fairly advanced users of less-common Python implemen-
tations (the details of how floating-point arithmetic is implemented can vary between
different systems, for example, but is likely to be the same on all common platforms —
see Section 10.1). However, it also provides some that are useful and important: these
are described here.

sys.argv

sys.argv holds the command-line arguments passed to a Python program when it is
executed. It is a list of strings. The first item, sys.argv[0], is the name of the program
itself. This allows for a degree of interactivity without having to read from configuration
files or requiring direct user input, and means that other programs or shell scripts can
call a Python program and pass it particular input values or settings. For example, a
simple script to square a given number might be written:

square.py
import sys

n = int(sys.argv[1])
print(n, 'squared is', n**2)

(Note that it is necessary to convert the input value into an int, because it is stored in
sys.argv as a string.) Running this program from the command line with

python square.py 3

produces the output

9 This manual is available at http://clu.uni.no/icame/manuals/BROWN/INDEX.HTM though the tags them-
selves are presented better on the Wikipedia article at https://en.wikipedia.org/wiki/Brown_Corpus.

https://nltk.github.com/nltk_data/packages/corpora/brown.zip
https://nltk.github.com/nltk_data/packages/corpora/brown.zip
http://clu.uni.no/icame/manuals/BROWN/INDEX.HTM
https://en.wikipedia.org/wiki/Brown_Corpus

138

The Core Python Language Il

3 squared is 9

as expected. But because we did not hard-code the value of n, the same program can be
run with

python square.py 4

to produce the output

4 squared is 16

sys.exit

Calling sys.exit will cause a program to terminate and exit from Python. This happens
“cleanly,” so that any commands specified in a try statement’s finally clause are
executed first and any open files are closed. The optional argument to sys.exit can
be any object; if it is an integer, it is passed to the shell which, it is assumed, knows
what to do with it.'® For example, 0 usually denotes “successful” termination of the
program and nonzero values indicate some kind of error. Passing no argument or None
is equivalent to 0. If any other object is specified as an argument to sys.exit, it is passed
to stderr, Python’s implementation of the standard error stream. A string, for example,
appears as an error message on the console (unless redirected elsewhere by the shell).

bl

Example E4.15 A common way to help users with scripts that take command-line
arguments is to issue a usage message if they get it wrong, as in the following code
example.

Listing 4.3 Issuing a usage message for a script taking command-line arguments

square.py
import sys

try:
n = int(sys.argv[1])
except (IndexError, ValueError):
sys.exit('Please enter an integer, <n>, on the command line.\nUsage: '
'python {:s} <n>'.format(sys.argv[0]))
print(n, 'squared is', n¥**2)

The error message here is reported and the program exits if no command-line argu-
ment was specified (and hence indexing sys.argv[1] raises an IndexError) or the
command-line argument string does not evaluate to an integer (in which case the int
cast will raise a ValueError).
$ python square.py hello

Please enter an integer, <n>, on the command line.
Usage: python square.py <n>

$ python square.py 5
5 squared is 25

10° At least if it is in the range 0—127; undefined results could be produced for values outside this range.

442

4.4 Operating-System Services 139

The os Module

The os module provides various operating-system interfaces in a platform-independent
way. Its many functions and parameters are described in full in the official documenta-
tion,!! but some of the more important ones are described in this section.

Process Information
The Python process is the particular instance of the Python application that is executing
your program (or providing a Python shell for interactive use). The os module provides
a number of functions for retrieving information about the context in which the Python
process is running. For example, os.uname() returns information about the operating
system running Python and the network name of the machine running the process.

One function is of particular use: os.getenv(key) returns the value of the environ-
ment variable key if it exists (or None of it doesn’t). Many environment variables are
system-specific, but commonly include:

. HOME: the path to the user’s home directory;

. PWD: the current working directory;
° USER: the current user’s username;
. PATH: the system path environment variable.

For example, on my system:

>>> os.getenv('HOME')
'/Users/christian’

File-System Commands
It is often useful to be able to navigate the system directory tree and manipulate files
and directories from within a Python program. The os module provides the functions
listed in Table 4.4 to do just this. There are, of course, inherent dangers: your Python
program can do anything that your user can, including renaming and deleting files.
Pathname Manipulations'?
The os.path module provides a number of useful functions for manipulating path-
names. The version of this library installed with Python will be the one appropriate for
the operating system that it runs on (e.g. on a Windows machine, path-name components
are separated by the backslash character, “\”, whereas on Unix and Linux systems, the
(forward) slash character, “/” is used.

Common usage of the os.path module’s functions are to find the filename from a
path (basename), test to see if a file or directory exists (exists), join strings together to
make a path (join), split a filename into a “root” and an “extension” (splitext) and to

1T https://docs.python.org/3/library/os.html.

12 This section describes the low-level os.path module; since Python 3.4 the Standard Library pathlib
module has been available: this offers a higher-level, object-oriented approach to manipulating file-system
paths that can be more expressive. See https://docs.python.org/3/library/pathlib.html for details.

https://docs.python.org/3/library/os.html
https://docs.python.org/3/library/pathlib.html

140 The Core Python Language Il

Table 4.4 os module: some file-system commands

Function Description

os.listdir(path=".") List the entries in the directory given by path (or the current
working directory if this is not specified).

os.remove(path) Delete the file path (raises an OSError if path is a directory;
use os.rmdir instead).

os.rename (old_name, Rename the file or directory old_name to new_name. If a file

new_name) with the name new_name already exists, it will be overwritten
(subject to user-permissions).

os.rmdir(path) Delete the directory path. If the directory is not empty, an
OSError is raised.

os.mkdir(path) Create the directory named path.

os.system(command) Execute command in a subshell. If the command generates any
output, it is redirected to the interpreter standard output stream,
stdout.

Table 4.5 os.path module: common pathname manipulations

Function Description

os.path.basename(path) Return the basename of the pathname path giving a
relative or absolute path to the file: this usually means
the filename.

os.path.dirname(path) Return the directory of the pathname path.

os.path.exists(path) Return True if the directory or file path exists, and
False otherwise.

os.path.getmtime(path) Return the time of last modification of path.

os.path.getsize(path) Return the size of path in bytes.

os.path.join(pathl, path2, Return a pathname formed by joining the path compo-

L) nents pathl, path2, etc. with the directory separator

appropriate to the operating system being used.

os.path.split(path) Split path into a directory and a filename, returned as
a tuple (equivalent to calling dirname and basename)
respectively.

os.path.splitext(path) Split path into a “root” and an “extension” (returned as

a tuple pair).

find the time of last modification to a file (getmtime). Such common applications are
described briefly in Table 4.5.
Some examples referring to a file /home/brian/test.py:

>>> os.path.basename('/home/brian/test.py')
'test.py' # just the filename

>>> os.path.dirname('/home/brian/test.py')
'/home/brian’ # just the directory

>>> os.path.split('/home/brian/test.py')
('/home/brian', 'test.py') # directory and filename in a tuple

4.4 Operating-System Services 141

>>> os.path.splitext('/home/brian/test.py"')
('/home/brian/test', '.py') # file path stem and extension in a tuple

>>> os.path.join(os.getenv('HOME'), 'test.py')
'/home/brian/test.py’ # join directories and/or filename

>>> os.path.exists('/home/brian/test.py"')
False # file does not exist!

Trying to call some of these functions on a path that does not exist will cause a
FileNotFoundError exception to be raised (which could be caught within a try
except clause, of course).

Example E4.16 Suppose you have a directory of data files identified by filenames
containing a date in the form data-DD-Mon-YY.txt where DD is the two-digit day num-
ber, Mon is the three-letter month abbreviation and YY is the last two digits of the year,
for example '02-Feb-10'. The following program converts the filenames into the form
data-YYYY-MM-DD. txt so that an alphanumerical ordering of the filenames puts them in
chronological order.

Listing 4.4 Renaming data files by date

eg4-osmodule.py
import os
import sys

months = ['jan', 'feb', 'mar 'apr', 'may', 'jun',

i v i v 1 v
s

'jul', 'aug sep 'oct', 'mov', 'dec']
dir_name = sys.argv[1l]
for filename in os.listdir(dir_name):
filename is expected to be in the form 'data-DD-MMM-YY.txt'
d, month, y = int(filename[5:7]), filename[8:11], int(filename[12:14])

m = months.index(month.lower())+1

newname = 'data-20{:02d}-{:02d}-{:02d}.txt'.format(y, m, d)
newpath = os.path.join(dir_name, newname)

oldpath = os.path.join(dir_name, filename)

print(oldpath, '->', newpath)

os.rename (oldpath, newpath)

O We get the month number from the index of corresponding abbreviated month name
in the list months, adding 1 because Python list indexes start at 0.

For example, given a directory testdir containing the following files:
data-02-Feb-10. txt
data-10-Oct-14.txt

data-22-Jun-04. txt
data-31-Dec-06. txt

the command python eg4-osmodule.py testdir produces the output

testdir/data-02-Feb-10.txt -> testdir/data-2010-02-02.txt

142

443

Problems

The Core Python Language Il

testdir/data-10-Oct-14.txt -> testdir/data-2014-10-10.txt
testdir/data-22-Jun-04.txt -> testdir/data-2004-06-22.txt
testdir/data-31-Dec-06.txt -> testdir/data-2006-12-31.txt

See also Problem P4.4.4 and the datetime module (Section 4.5.3).

Exercises

P4.4.1 Modify the hailstone sequence generator of Exercise P2.5.7 to generate the
hailstone sequence starting at any positive integer that the user provides on the command
line (use sys.argv). Handle the case where the user forgets to provide n or provides an
invalid value for n gracefully.

P4.4.2 The Haversine formula gives the shortest (great-circle) distance, d, between
two points on a sphere of radius, R, from their longitudes (1, A,) and latitudes (¢, ¢»):

d = 2R arcsin (\/haversin(qﬁz — ¢1) + cos ¢ cos ¢haversin(A,; — /ll)) s

where the haversine function of an angle is defined by
haversin(a) = sin’ (%)

Write a program to calculate the shortest distance in kilometers between two points
on the surface of the Earth (considered as a sphere of radius 6378.1 km) given as
two command-line arguments, each of which is a comma-separated pair of latitude,
longitude values in degrees. For example, the distance between Paris and Rome is given
by executing:

python greatcircle.py 48.9,2.4 41.9,12.5
1107 km

P4.4.3 Write a Python program to create a directory, test, in the user’s home direc-
tory and to populate it with 20 Scalable Vector Graphics (SVGQG) files depicting a small,
filled, red circle inside a large, black, unfilled circle. For example,
<?xml version="1.0" encoding="utf-8"7>
<svg xmlns="http://www.w3.0rg/2000/svg"

xmlns:xlink="http://www.w3.0rg/1999/x1link"

width="500" height="500" style="background: #ffffff">
<circle cx="250.0" cy="250.0" r="200" style="stroke: black; stroke-width: 2px;

fill: none;"/>

<circle cx="430.0" cy="250.0" r="20" style="stroke: red; fill: red;"/>
</svg>

Each file should move the red circle around the inside rim of the larger circle so that
the 20 files together could form an animation.

One way to achieve this is to use the free ImageMagick software (www.imagemagick.
org/). Ensure the SVG files are named £ig®0.svg, £ig01l.svg, etc. and issue the follow-
ing command from your operating system’s command line:

www.imagemagick.org/
www.imagemagick.org/
http://www.w3.org/2000/svg
http://www.w3.org/1999/xlink

4.5

4.5 Modules and Packages 143

convert -delay 5 -loop ® fig*.svg animation.gif

to produce an animated GIF image.

P4.4.4 Modify the program of Example E4.16 to catch the following errors and han-
dle them gracefully:

° user does not provide a directory name on the command line (issue a usage
message);

° the directory does not exist;

° the name of a file in the directory does not have the correct format;

. the filename is in the correct format but the month abbreviation is not recog-
nized.

Your program should terminate in the first two cases and skip the file in the second two.

Modules and Packages

As we have seen, Python is quite a modular language and has functionality beyond
the core programming essentials (the built-in methods and data structures we have
encountered so far), which is made available to a program through the import statement.
This statement makes reference to modules that are ordinary Python files containing
definitions and statements. Upon encountering the line

import <module>

the Python interpreter executes the statements in the file <module>.py and enters the
module name <module> into the current namespace, so that the attributes it defines are
available with the “dotted syntax”: <module>.<attribute>.

Defining your own module is as simple as placing code within a file <module>.py,
which is somewhere the Python interpreter can find it (for small projects, usually just the
same directory as the program doing the importing). Note that because of the syntax of
the import statement, you should avoid naming your module anything that isn’t a valid
Python identifier (see Section 2.2.3). For example, the filename <module>.py should
not contain a hyphen or start with a digit. Do not give your module the same name as
any built-in modules (such as math or random) because these get priority when Python
imports.

A Python package is simply a structured arrangement of modules within a directory
on the file system. Packages are the natural way to organize and distribute larger Python
projects. To make a package, the module files are placed in a directory, along with a file
named __init__.py. This file is run when the package is imported and may perform
some initialization and its own imports. It may be an empty file (zero bytes long) if no
special initialization is required, but it must exist for the directory to be considered by
Python to be a package.

For example, the NumPy package (see Chapter 6) exists as the following directory
(some files and directories have been omitted for clarity):

144 The Core Python Language Il

numpy /
__init__.py
core/
fft/
__init__.py
fftpack.py
info.py

linalg/
__init__.py
linalg.py
info.py

polynomial/
__init__.py
chebyshev.py
hermite.py
legendre.py

random/
version.py

Thus, for example, polynomial is a subpackage of the numpy package containing several
modules, including legendre, which may be imported as

import numpy.polynomial.legendre

To avoid having to use this full dotted syntax in actually referring to its attributes, it is
convenient to use

from numpy.polynomial import legendre

Table 4.6 lists some of the major, freely available Python modules and packages
for general programming applications as well as for numerical and scientific work.
Some are installed with the core Python distribution (the Standard Library);'> where
indicated others can be downloaded and installed separately. Before implementing your
own algorithm, check that it isn’t included in an existing Python package.

Whilst other package managers exist,'* the pip application'® has become the de facto
standard. It is usually installed by default with most Python installations and does a
pretty good job of managing package versions and dependencies. To install the package
package, the following syntax is used at the command line:

pip install package # install latest version
pip install package==X.Y.Z # install version X.Y.Z
pip install 'package>=X.Y.Z' # install minimum version X.Y.Z

To uninstall a package, use:

pip uninstall package

13" A complete list of the components of the Standard Library is at https:/docs.python.org/3/library/index.
html.

14 For example, conda from the Anaconda distribution — see Section 1.3.

15 See https://pip.pypa.io/en/stable/ for full documentation.

https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://pip.pypa.io/en/stable/

451

4.5 Modules and Packages 145

Table 4.6 Python modules and packages. Those marked with an asterisk (*) are not part of
the Python Standard Library and must be installed separately, for example with pip.

Module / Package Description

0s, Sys Operating-system services, as described in Section 4.4

math, cmath Mathematical functions, as introduced in Section 2.2.2

random Random-number generator (see Section 4.5.1)

collections Data types for containers that extend the functionality of dictio-
naries, tuples, etc.

itertools Tools for efficient iterators that extend the functionality of simple
Python loops

glob Unix-style pathname pattern expansion

datetime Parsing and manipulating dates and times (see Section 4.5.3)

fractions Rational-number arithmetic

re Regular expressions

argparse Parser for command-line options and arguments

urllib URL (including web pages) opening, reading and parsing (see

* Django (django)
* pyparsing

Section 4.5.2)
A popular web application framework
Lexical parser for simple grammars

pdb The Python debugger

logging Python’s built-in logging module

xml, 1xml XML parsers

* VPython (visual) Three-dimensional visualization

unittest Unit-testing framework for systematically testing and validating

* NumPy (numpy)

* SciPy (scipy)

individual units of code (see Section 10.3.4)

Numerical and scientific computing (described in detail in Chapter
0)

Scientific computing algorithms (described in detail in Chapter 8)

* Matplotlib Plotting (see Chapters 3 and 7)

(matplotlib)

* SymPy (sympy) Symbolic computation (computer algebra)

* pandas Data manipulation and analysis with table-like data structures
* scikit-learn Machine learning

* Beautiful Soup 4 HTML parser, with handling of malformed documents
(beautifulsoup4)

The random Module

For simulations, modeling and some numerical algorithms it is often necessary to gen-
erate random numbers from some distribution. The topic of random-number generation
is a complex and interesting one, but the important aspect for our purposes is that,
in common with most other languages, Python implements a pseudorandom-number
generator (PRNG). This is an algorithm that generates a sequence of numbers that
approximates the properties of “truly” random numbers. Such sequences are determined
by an originating seed state and are always the same following the same seed: in this
sense they are deterministic. This can be a good thing (so that a calculation involving
random numbers can be reproduced) or a bad thing (e.g. if used for cryptography,
where the random sequence must be kept secret). Any PRNG will yield a sequence that

146

The Core Python Language Il

eventually repeats, and a good generator will have a long period. The PRNG imple-
mented by Python is the Mersenne Twister, a well-respected and much-studied algo-
rithm with a period of 2'%°37 — 1 (a number with more than 6000 digits in base 10).

Generating Random Numbers
The random-number generator can be seeded with any hashable object (e.g. an
immutable object such as an integer). When the module is first imported, it is seeded
with a representation of the current system time (unless the operating system provides
a better source of a random seed). The PRNG can be reseeded at any time with a call to
random. seed.

The basic random-number method is random. random. It generates a random number
selected from the uniform distribution in the semi-open interval [0, 1) — that is, including
0 but not including 1.

>>> import random

>>> random.random () # PRNG seeded 'randomly'
0.5204514767709216
>>> random.seed (42) # seed the PRNG with a fixed value

>>> random.random()
0.6394267984578837
>>> random.random()
0.025010755222666936

>>> random.seed (42) # reseed with the same value as before ...
>>> random.random()

0.6394267984578837 # ... and the sequence repeats

>>> random.random()

0.025010755222666936

Calling random.seed() with no argument reseeds the PRNG with a “random” value
as when the random module is first imported.

To select a random floating-point number, N, from a given range, a < N < b, use
random.uniform(a, b):
>>> random.uniform(-2., 2.)
-0.899882726523523

>>> random.uniform(-2., 2.)
-1.107157047404709

The random module has several methods for drawing random numbers from nonuni-
form distributions — see the documentation'® — the most important of them are described
below.

To return a number from the normal distribution with mean, mu, and standard devia-
tion, sigma, use random.normalvariate(mu, sigma):
>>> random.normalvariate (100, 15)

118.82178896586194

>>> random.normalvariate (100, 15)
97.92911405885782

16 https://docs.python.org/3/library/random.html.

https://docs.python.org/3/library/random.html

4.5 Modules and Packages 147

To select a random infeger, N, in a given range, a < N < b, use the random. randint
(a, b) method:
>>> random.randint (5, 10)
7

>>> random.randint (5, 10)
10

Random Sequences
Sometimes you may wish to select an item at random from a sequence such as a list.
This is what the method random. choice does:

>>> seq = [10, 5, 2, 'ni', -3.4]
>>> random.choice(seq)
-3.4

>>> random.choice(seq)

' v

ni

Another method, random.shuffle, randomly shuffles (permutes) the items of the
sequence in place:
>>> random.shuffle(seq)

>>> seq
[10, -3.4, 2, 'ni', 5]

Note that because the random permutation is made in place, the sequence must be
mutable: you can’t, for example, shuffle tuples.

Finally, to draw a 1ist of k unique elements from a sequence or set (without replace-
ment) population, there is random.sample (population, k):
>>> raffle_numbers = range(l, 100001)
>>> winners = random.sample(raffle_numbers, 5)

>>> winners
[89734, 42505, 7332, 30022, 4208]

The resulting list is in selection order (the first-indexed element is the first drawn) so
that one could, for example, without bias declare ticket number 89734 to be the jackpot
winner and the remaining four tickets second-placed winners.

Example E4.17 The Monty Hall problem is a famous conundrum in probability,
which takes the form of a hypothetical game show. The contestant is presented with
three doors; behind one is a car and behind each of the other two is a goat. The
contestant picks a door and then the game show host opens a different door to reveal
a goat. The host knows which door conceals the car. The contestant is then invited to
switch to the other closed door or stick with their initial choice.

Counterintuitively, the best strategy for winning the car is to switch, as demonstrated
by the following simulation.

Listing 4.5 The Monty Hall problem

eg4-montyhall.py
import random

148 The Core Python Language Il

def run_trial(switch_doors, ndoors=3):
Run a single trial of the Monty Hall problem, with or without switching
after the game show host reveals a goat behind one of the unchosen doors.
(switch_doors is True or False). The car is behind door number 1 and the
game show host knows that. Returns True for a win, otherwise returns False.

o

Pick a random door out of the ndoors available.
chosen_door = random.randint(l, ndoors)
if switch_doors:
Reveal a goat.
revealed_door = 3 if chosen_door==2 else 2
Make the switch by choosing any other door than the initially
selected one and the one just opened to reveal a goat.
available_doors = [dnum for dnum in range(1l,ndoors+1)
if dnum not in (chosen_door, revealed_door)]
chosen_door = random.choice(available_doors)

You win if you picked door number 1.
(1) return chosen_door == 1

def run_trials(ntrials, switch_doors, ndoors=3):
Run ntrials iterations of the Monty Hall problem with ndoors doors, with
and without switching (switch_doors = True or False). Returns the number
of trials which resulted in winning the car by picking door number 1.

nwins = 0
for i in range(ntrials):
if run_trial(switch_doors, ndoors):
nwins += 1

return nwins

ndoors, ntrials = 3, 10000
nwins_without_switch = run_trials(ntrials, False, ndoors)

nwins_with_switch = run_trials(ntrials, True, ndoors)

print('Monty Hall Problem with {} doors'.format(ndoors))
print ('Proportion of wins without switching: {:.4f}'
. format (nwins_without_switch/ntrials))
print ('Proportion of wins with switching: {:.4f}"'
.format (nwins_with_switch/ntrials))

©® Without loss of generality, we can place the car behind door number 1, leaving the
contestant initially to choose any door at random.

To make the code a little more interesting, we have allowed for a variable number of
doors in the simulation (but only one car).

Monty Hall Problem with 3 doors
Proportion of wins without switching: 0.3334
Proportion of wins with switching: 0.6737

452 O

4.5 Modules and Packages 149

The urllib Package

The urllib package in Python 3 is a set of modules for opening and retrieving the
content referred to by Uniform Resource Locators (URLs), typically web addresses
accessed with HTTP(S) (HyperText Transfer Protocol) or FTP (File Transfer Protocol).
Here is a very brief introduction to its use.

Opening and Reading URLSs
To obtain the content at a URL using HTTP you first need to make an HTTP request by
creating a Request object. For example,

import urllib.request
req = urllib.request.Request('https://www.wikipedia.org')

The Request object allows you to pass data (using GET or POST) and other information
about the request (metadata passed through the HTTP headers — see later). For a simple
request, however, one can simply open the URL immediately as a file-like object with
urlopen():

response = urllib.request.urlopen(req)

It’s a good idea to catch the two main types of exception that can arise from this
statement. The first type, URLError, results if the server doesn’t exist or if there is no
network connection; the second type, HTTPError, occurs when the server returns an error
code (such as 404: Page Not Found). These exceptions are defined in the urllib.error
module.
from urllib.error import URLError, HTTPError
try:

response = urllib.request.urlopen(req)
except HTTPError as e:

print ('The server returned error code', e.code)
except URLError as e:

print('Failed to reach server at {} for the following reason:\n{}'

.format (url, e.reason))

else:

the response came back OK

Assuming the urlopen() worked, there is often nothing more to do than simply read
the content from the response:
content = response.read()
The content will be returned as a bytestring. To decode it into a Python (Unicode) string

you need to know how it is encoded. A good resource will include the character set used
in the Content-Type HTTP header. This can be used as follows:

charset = response.headers.get_content_charset()
html = content.decode(charset)

where html is now a decoded Python Unicode string. If no character set is specified in
the headers returned, you may have to guess (e.g. set charset="utf-8").

https://www.wikipedia.org

150 The Core Python Language Il

GET and POST Requests
It is often necessary to pass data along with the URL to retrieve content from a server.
For example, when submitting an HTML form from a web page, the values correspond-
ing to the entries you have made are encoded and passed to the server according to either
the GET or POST protocols.

The urllib.parse module allows you to encode data from a Python dictionary into
a form suitable for submission to a web server. To take an example from the Wikipedia

API using a GET request:
>>> url = 'https://wikipedia.org/w/api.php'
>>> data = {'page': 'Monty_Python', 'prop': 'text', 'action': 'parse', 'section': 0}

>>> encoded_data = urllib.parse.urlencode(data)

>>> full_url = url + '?' + encoded_data

>>> full_url

'https://wikipedia.org/w/api.php?page=Monty_Python&prop=text&action=parse
§ion=0"

>>> req = urllib.request.Request(full_url)

>>> response = urllib.request.urlopen(req)

>>> html = response.read().decode('utf-8')

To make a POST request, instead of appending the encoded data to the string <url>?,
pass it to the Request constructor directly:

req = urllib.request.Request(url, encoded_data)

453 The datetime Module

Python’s datetime module provides classes for manipulating dates and times. There
are many subtle issues surrounding the handling of such data (time zones, different
calendars, Daylight Saving Time, etc.,) and full documentation is available online;!”
here we provide an overview of only the most common uses.

Dates

A datetime.date object represents a particular day, month and year in an idealized
calendar (the current Gregorian calendar is assumed to be in existence for all dates, past
and future). To create a date object, pass valid year, month and day numbers explicitly,
or call the date.today constructor:

>>> from datetime import date
>>> birthday = date(2004, 11, 5) # OK

>>> notadate = date(2005, 2, 29) # Oops: 2005 wasn't a leap year!

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: day is out of range for month

>>> today = date.today()

17 https://docs.python.org/3/library/datetime.html.

https://docs.python.org/3/library/datetime.html
https://wikipedia.org/w/api.php
https://wikipedia.org/w/api.php?page=Monty_Python&prop=text&action=parse§ion=0
https://wikipedia.org/w/api.php?page=Monty_Python&prop=text&action=parse§ion=0

4.5 Modules and Packages 151

>>> today
datetime.date (2014, 12, 6) # (for example)

Dates between 1/1/1 and 31/12/9999 are accepted. Parsing dates to and from strings is
also supported (see strptime and strftime).
Some more useful date object methods are used as follows:

>>> birthday.isoformat () # ISO 8601 format: YYYY-MM-DD
'2004-11-05"
>>> birthday.weekday () # Monday = 0, Tuesday = 1, ..., Sunday = 6

4 # (Friday)

0]
N

>>> birthday.isoweekday () # Monday = 1, Tuesday = 2, ..., Sunday
5

>>> birthday.ctime () # C-standard time output
'Fri Nov 5 00:00:00 2004'

date objects can also can be compared (chronologically):

>>> birthday < today
True

>>> today == birthday
False

Times

A datetime.time object represents a (local) time of day to the nearest microsecond. To
create a time object, pass the number of hours, minutes, seconds and microseconds (in
that order; missing values default to zero).

>>> from datetime import time

>>> lunchtime = time Chour=13, minute=30)

>>> lunchtime
datetime.time(13, 30)

>>> lunchtime.isoformat () # ISO 8601 format: HH:MM:SS if no microseconds
'13:30:00"'

>>> precise_time = time(4,46,36,501982)
>>> precise_time.isoformat () # ISO 8601 format: HH:MM:SS.mmmmmm
'04:46:36.501982"'

>>> witching_hour = time(24) # Oops: hour must satisfy 0 <= hour < 24

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: hour must be in 0..23

datetime Objects
A datetime.datetime object contains the information from both the date and time
objects: year, month, day, hour, minute, second, microsecond. As well as passing values

152

46 O

4.6.1

The Core Python Language Il

for these quantities directly to the datetime constructor, the methods today (returning
the current date) and now (returning the current date and time) are available:

>>> from datetime import datetime # (a notoriously ugly import)

>>> now = datetime.now()

>>> now
datetime.datetime (2020, 1, 27, 10, 27, 35, 762464)

>>> now.isoformat ()
'2020-01-27T10:27:35.762464"'

>>> now.ctime)
'Mon Jan 27 10:27:35 2020'

Date and Time Formatting

date, time and datetime objects support a method, strftime, to output their values as
a string formatted according to a syntax set using the format specifiers listed in Table
4.7.

>>> birthday.strftime('%A, %d %B %Y')
'Friday, 05 November 2004'

>>> now.strftime('%I:%M:%S on %d/%m/%y')
'10:27:35 on 27/01/20"

The reverse process, parsing a string into a datetime object, is the purpose of the
strptime method:
>>> launch_time = datetime.strptime('09:32:00 July 16, 1969',
"%H:%M:%S %B %d, %Y')

>>> print(launch_time)
1969-07-16 09:32:00

>>> print(launch_time.strftime('%I:%M %p on %A, %d %b %Y'))
09:32 AM on Wednesday, 16 Jul 1969

An Introduction to Object-Oriented Programming

Object-Oriented Programming Basics

Structured programming styles may be broadly divided into two categories: procedural
and object-oriented. The programs we have looked at so far in this book have been
procedural in nature: we have written functions (of the sort that would be called proce-
dures or subroutines in other languages) that are called, passed data, and which return
values from their calculations. The functions we have defined do not hold their own
data or remember their state in between being called, and we haven’t modified them
after defining them.

An alternative programming paradigm that has gained popularity through the use of
languages such as C++ and Java is object-oriented programming. In this context, an
object represents a concept of some sort: this could be a physical entity, but can also
be any abstract collection of components which relate to each other in a semantically

4.6 An Introduction to Object-Oriented Programming 153

Table 4.7 strftime and strptime format specifiers. Note that many of these
are locale-dependent (e.g. on a German-language system, %A will yield
Sonntag, Montag, etc.).

Specifier Description

%a Abbreviated weekday (Sun, Mon, etc.)

%A Full weekday (Sunday, Monday, etc.)

VA Weekday number (0 = Sunday, 1 = Monday, ..., 6 = Saturday)
%d Zero-padded day of month: 01, 02, 03, ..., 31

%b Abbreviated month name (Jan, Feb, etc.)

%B Full month name (January, February, etc.)

%m Zero-padded month number: 01, 02, ..., 12

%y Year without century (two-digit, zero-padded): 01, 02, ..., 99

%Y Year with century (four-digit, zero-padded): 0001, 0002, ... 9999
%H 24-hour clock hour, zero-padded: 00, 01, ..., 23

%I 12-hour clock hour, zero-padded: 00, 01, ..., 12

%p AM or PM (or locale equivalent)

%M Minutes (two-digit, zero-padded): 00, 01, ..., 59

%S Seconds (two-digit, zero-padded): 00, 01, ..., 59

%f Microseconds (six-digit, zero-padded): 000000, 000001, ..., 999999
%% The literal % sign

coherent way. An object holds data about itself (attributes) and defines functions (meth-
ods) for manipulating data. That manipulation may cause a change in the object’s state
(i.e. it may change some of the object’s attributes). An object is created (instantiated)
from a “blueprint” called a class, which dictates its behavior by defining its attributes
and methods.

In fact, as we have already pointed out, everything in Python is an object. So, for
example, a Python string is an instance of the str class. A str object possesses its
own data (the sequence of characters making up the string) and provides (“exposes”)
a number of methods for manipulating that data. For example, the capitalize method
returns a new string object created from the original string by capitalizing its first letter;
the split method returns a list of strings by splitting up the original string:
>>> a = 'hello, aloha, goodbye, aloha’
>>> a.capitalize()

'Hello, aloha, goodbye, aloha'

>>> a.split(',")
['hello', ' aloha', ' goodbye', ' aloha']

Even indexing a sequence is really to call the method _ _getitem_ _:

>>> b = [10, 20, 30, 40, 50]
>>> b.__getitem__(4)
50

That is, a[4] is equivalent to a.__getitem__(4).18

18 The double-underscore syntax usually denotes a name with some special meaning to Python.

154

The Core Python Language Il

BankAccount Customer
account_number name
balance address
customer date_of_birth
deposit (amount) password
withdraw (amount) get_age ()
change_password ()

Figure 4.2 Basic classes representing a bank account and a customer.

Part of the popularity of object-oriented programming, at least for larger projects,
stems from the way it helps to conceptualize the problem that a program aims to solve.
It is often possible to break a problem down into units of data and operations that it
is appropriate to carry out on that data. For example, a retail bank deals with people
who have bank accounts. A natural object-oriented approach to managing a bank would
be to define a BankAccount class, with attributes such as an account number, balance
and owner, and a second, Customer, class with attributes such as a name, address and
date of birth. The BankAccount class might have methods for allowing (or forbidding)
transactions depending on its balance and the Customer class might have methods for
calculating the customer’s age from their date of birth, for example (see Figure 4.2).

An important aspect of object-oriented programming is inheritance. There is often a
relationship between objects which takes the form of a hierarchy. Typically, a general
type of object is defined by a base class, and then customized classes with more special-
ized functionality are derived from it. In our bank example, there may be different kinds
of bank accounts: savings accounts, current (checking) accounts, etc. Each is derived
from a generic base bank account, which might simply define basic attributes such as
a balance and an account number. The more specialized bank account classes inherit
the properties of the base class but may also customize them by overriding (redefining)
one or more methods and may also add their own attributes and methods. This helps
structure the program and encourages code reuse — there is no need to declare an account
number separately for both savings and current accounts because both classes inherit
one automatically from the base class. If a base class is not to be instantiated itself, but
serves only as a template for the derived classes, it is called an abstract class.

In Figure 4.3, the relationship between the base class and two derived subclasses
is depicted. The base class, BaseAccount, defines some attributes (account_number,
balance and customer) and methods (such as deposit and withdraw) common
to all types of account, and these are inherited by the subclasses. The subclass
SavingsAccount adds an attribute and a method for handling interest payments on
the account; the subclass CurrentAccount instead adds two attributes describing the
annual account fee and transaction withdrawal limit, and overrides the base withdraw
method, perhaps to check that the transaction limit has not been reached before a
withdrawal is allowed.

4.6 An Introduction to Object-Oriented Programming 155

SavingsAccount

interest_rate

BankAccount

add_interest ()

account_number

balance
customer
. CurrentAccount
deposit (amount)
withdraw (amount) annual_fee
check_balance (amount) transaction_limit

withdraw (amount)

apply_annual_fee()

Figure 4.3 Two classes derived from an abstract base class: SavingsAccount and
CurrentAccount inherit methods and attributes from BankAccount but also customize and
extend its functionality.

46.2 Defining and Using Classes in Python

A class is defined using the class keyword and indenting the body of statements
(attributes and methods) in a block following this declaration. It is conventional to give
classes names written in CamelCase. It is a good idea to follow the class statement
with a docstring describing what it is that the class does (see Section 2.7.1). Class
methods are defined using the familiar def keyword, but the first argument to each
method should be a variable named self! — this name is used to refer to the object
itself when it wants to call its own methods or refer to attributes, as we shall see.
In our example of a bank account, the base class could be defined as follows:

Listing 4.6 The definition of the abstract base class, BankAccount

bank_account.py

class BankAccount:
" An abstract base class representing a bank account."""
currency = '$§'

def __ init __(self, customer, account_number, balance=0):

won

Initialize the BankAccount class with a customer, account number
and opening balance (which defaults to 0.)

i

self.customer = customer
self.account_number = account_number
self.balance = balance

19" Actually, it could be named anything, but self is almost universally used.

156

The Core Python Language Il

def deposit(self, amount):

Deposit amount into the bank account.
if amount > 0:
self.balance += amount
else:
print('Invalid deposit amount:', amount)

def withdraw(self, amount):
Withdraw amount from the bank account, ensuring there are sufficient
funds.

if amount > 0:
if amount > self.balance:
print ('Insufficient funds')
else:
self.balance -= amount
else:
print('Invalid withdrawal amount:', amount)

To use this simple class, we can save the code defining it as bank_account.py and
import it into a new program or the interactive Python shell with

from bank_account import BankAccount

This new program can now create BankAccount objects and manipulate them by calling
the methods described earlier.

Instantiating the Object
An instance of a class is created with the syntax object = ClassName(args). You may
want to require that an object instantiated from a class should initialize itself in some
way (perhaps by setting attributes with appropriate values) — such initialization is carried
out by the special method __init __, which receives any arguments, args, specified in
this statement.

In our example, an account is opened by creating a BankAccount object, passing the
name of the account owner (customer), an account number and, optionally, an opening
balance (which defaults to O if not provided):

my_account = BankAccount('Joe Bloggs', 21457288)

We will replace the string customer with a Customer object in Example E4.18.

Methods and Attributes

The class defines two methods: one for depositing a (positive) amount of money and
one for withdrawing money (if the amount to be withdrawn is both positive and not
greater than the account balance).

The BankAccount class possesses two different kinds of attribute: self.customer,
self.account_number and self.balance are instance variables: they can take different
values for different objects created from the BankAccount class. Conversely, the variable
currency is a class variable: this variable is defined inside the class but outside any of
its methods and is shared by all instances of the class.

4.6 An Introduction to Object-Oriented Programming

157

Both attributes and methods are accessed using the object.attr notation. For exam-

ple,

>>> my_account.account_number
21457288
>>> my_account.deposit (64)

>>> my_account.balance

64

access an attribute of my_account

call a method of my_account

Let’s add a third method, for printing the balance of the account. This must be defined
inside the class block:

def

check_balance(self):
""" Print a statement of the account balance.

o

print ('The balance of account number {:d} is {:s}{:.2f}"'

.format (self.account_number, self.currency, self.balance))

Example E4.18 We now define the Customer class described in the class diagram
of Figure 4.2: an instance of this class will become the customer attribute of the
BankAccount class. Note that it was possible to instantiate a BankAccount object by
passing a string literal as customer. This is a consequence of Python’s dynamic typing:
no check is automatically made that the object passed as an argument to the class
constructor is of any particular type.

The following code defines a Customer class and should be saved to a file called
customer.py:

from datetime import datetime

class Customer:

def __

def

A class representing a bank customer.

init __(self, name, address, date_of_birth):
self.name = name

self.address = address

self.date_of_birth = datetime.strptime(date_of_birth,
self.password = '1234'

get_age(self):
""" Calculates and returns the customer's age. """

today = datetime.today()
try:

'%Y -%m-%d")

birthday = self.date_of_birth.replace(year=today.year)

except ValueError:

birthday is 29 Feb but today's year is not a leap year
birthday = self.date_of_birth.replace(year=today.year,

day=self.date_of_birth.day -

if birthday > today:
return today.year - self.date_of_birth.year - 1
return today.year - self.date_of_birth.year

Then we can pass Customer objects to our BankAccount constructor:

>>> from bank_account import BankAccount

>>> from customer import Customer

>>>

>>> customerl = Customer('Helen Smith', '76 The Warren, Blandings, Sussex',

158

4.6.3

®©Q

The Core Python Language Il

'1976-02-29")
>>> accountl = BankAccount(customerl, 21457288, 1000)
>>> accountl.customer.get_age()
39
>>> print(accountl.customer.address)
76 The Warren, Blandings, Sussex

Class Inheritance in Python

A subclass may be derived from one or more other base classes with the syntax:

class SubClass(BaseClassl, BaseClass2, ...):

We will now define the two derived classes (or subclasses) illustrated in Figure 4.3
from the base BankAccount class. They can be defined in the same file that defines
BankAccount or in a different Python file which imports BankAccount.

class SavingsAccount (BankAccount):

A class representing a savings account.

def __ init __(self, customer, account_number, interest_rate, balance=0):
""" Initialize the savings account. """
self.interest_rate = interest_rate

super ().__ init __(customer, account_number, balance)

def add_interest(self):

Add interest to the account at the rate self.interest_rate.
self.balance *= (1. + self.interest_rate / 100)

@ The SavingsAccount class adds a new attribute, interest_rate, and a new
method, add_interest to its base class, and overrides the _ _init_ _ method to allow
interest_rate to be set when a SavingsAccount is instantiated.

® Note that the new __init__ method calls the base class’s __init__ method in
order to set the other attributes: the built-in function super allows us to refer to the
parent base class.?’ Our new SavingsAccount might be used as follows:

>>> my_savings = SavingsAccount('Matthew Walsh', 41522887, 5.5, 1000)
>>> my_savings.check_balance()

The balance of account number 41522887 is $1000

>>> my_savings.add_interest ()

>>> my_savings.check_balance()

The balance of account number 41522887 is $1055.00

The second subclass, CurrentAccount, has a similar structure:

class CurrentAccount (BankAccount):
""" A class representing a current (checking) account. """
def __ init __(self, customer, account_number, annual_fee,

transaction_limit, balance=0):

20 The built-in function super() called in this way creates a “proxy” object that delegates method calls to the
parent class (in this case, BankAccount).

4.6 An Introduction to Object-Oriented Programming 159

o

""" Initialize the current account.

self.annual_fee = annual_fee
self.transaction_limit = transaction_limit
super().__ init __(customer, account_number, balance)

def withdraw(self, amount):
Withdraw amount if sufficient funds exist in the account and amount
is less than the single transaction limit.

if amount <= O0:
print('Invalid withdrawal amount:', amount)
return

if amount > self.balance:
print ('Insufficient funds')
return

if amount > self.transaction_limit:
print('{0:s}{1:.2f} exceeds the single transaction limit of'
' {0:s}{2:.2f}'.format(self.currency, amount,
self.transaction_limit))
return

self.balance -= amount

def apply_annual_fee(self):

""" Deduct the annual fee from the account balance.

self.balance = max(®., self.balance - self.annual_fee)

Note what happens if we call withdraw on a CurrentAccount object:

>>> my_current = CurrentAccount(’Alison Wicks’, 78300991, 20., 200.)
>>> my_current.withdraw(220)
Insufficient Funds

>>> my_current.deposit(750)
>>> my_current.check_balance()
The balance of account number 78300991 is $750.00

>>> my_current.withdraw(220)
$220.00 exceeds the transaction limit of $200.00

The withdraw method called is that of the CurrentAccount class, as this method over-
rides that of the same name in the base class, BankAccount.

Example E4.19 A simple model of a polymer in solution treats it as a sequence of
randomly oriented segments; that is, one for which there is no correlation between the
orientation of one segment and any other (this is the so-called random-flight model).
We will define a class, Polymer, to describe such a polymer, in which the segment
positions are held in a list of (x,y,z) tuples. A Polymer object will be initialized with
the values N and a, the number of segments and the segment length, respectively. The

160 The Core Python Language Il

initialization method calls a make_polymer method to populate the segment positions
list.

The Polymer object will also calculate the end-to-end distance, R, and will implement
a method calc_Rg to calculate and return the polymer’s radius of gyration, defined as

N
1
Ry = N Z (ri = rewm)’.
i1

Listing 4.7 Polymer class

polymer.py

import math
import random

class Polymer:

o

""" A class representing a random-flight polymer in solution.

def __ init __(self, N, a):

Initialize a Polymer object with N segments, each of length a.

self.N, self.a = N, a

self.xyz holds the segment position vectors as tuples.
self.xyz = [(None, None, None)] * N

End-to-end vector.

self.R = None

Make our polymer by assigning segment positions.

self.make_polymer ()

def make_polymer(self):
Calculate the segment positions, center of mass and end-to-end
distance for a random-flight polymer.

Start our polymer off at the origin, (0, 0, 0).
self.xyz[0] = x, y, z = ¢cx, cy, cz =0, 0, 0
for i in range(l, self.N):
(1) # Pick a random orientation for the next segment.
theta = math.acos(2 * random.random() - 1)
phi = random.random() * 2. * math.pi
Add on the corresponding displacement vector for this segment.
+= self.a * math.sin(theta) * math.cos(phi)
+= self.a * math.sin(theta)
+= self.a * math.cos(theta)

Store it, and update our center of mass sum.

* math.sin(phi)

HON <X oW

self.xyz[i] = x, y, z
cX, Cy, CZz = CX + X, Cy +y, CZ + 2z
(2} # Calculate the position of the center of mass.
cx, ¢y, cz = cx / self.N, cy / self.N, cz / self.N

4.6 An Introduction to Object-Oriented Programming 161

The end-to-end vector is the position of the last
segment, since we started at the origin.
self.R = x, y, z

Finally, re-center our polymer on the center of mass.
for i in range(self.N):
self.xyz[i] = (self.xyz[i][®] - cx,
self.xyz[i][1] - cy,
self.xyz[i][2] - cz)

def calc_Rg(self):

Calculates and returns the radius of gyration, Rg. The polymer
segment positions are already given relative to the center of
mass, so this is just the rms position of the segments.

I

self.Rg = 0.
for x, y, z in self.xyz:

self.Rg += X¥*2 + y*¥2 4 z¥*2
self.Rg = math.sqrt(self.Rg / self.N)
return self.Rg

© One way to pick the location of the next segment is to pick a random point on the
surface of the unit sphere and use the corresponding pair of angles in the spherical polar
coordinate system, 6 and ¢ (where 0 < 8 < mand 0 < ¢ < 2m), to set the displacement
from the previous segment’s position as

Ax = asinfcos ¢
Ay = asinfsin ¢
Az =acos6

® We calculate the position of the polymer’s center of mass, rcy, and then shift the

origin of the polymer’s segment coordinates so that they are measured relative to this

point (that is, the segment coordinates have their origin at the polymer center of mass).
We can test the Polymer class by importing it in the Python shell:

>>> from polymer import Polymer
>>> polymer = Polymer (1000, 0.5) # a polymer with 1000 segments of length 0.5

>>> polymer.R # end-to-end vector
(5.631332375722011, 9.408046667059947, -1.3047608473668109)
>>> polymer.calc_Rg(Q) # radius of gyration

5.183761585363432

Let’s now compare the distribition of the end-to-end distances with the theoretically
predicted probability density function:

Y B T R)
oot () eol-55)

where the mean square position of the segments is (r?) = Na’.

162

46.4

The Core Python Language Il

Listing 4.8 The distribution of random flight polymers

eg4-c-ii-polymer-a.py
Compare the observed distribution of end-to-end distances for Np random-
flight polymers with the predicted probability distribution function.

import matplotlib.pyplot as plt
from polymer import Polymer
pi = plt.pi

Calculate R for Np polymers.
Np = 3000
Each polymer consists of N segments of length a.
N, a = 1000, 1.
R = [None] * Np
for i in range(Np):
polymer = Polymer(N, a)
Rx, Ry, Rz = polymer.R
R[i] = plt.sqrt(Rx**2 + Ry**2 + Rz**2)
Output a progress indicator every 100 polymers.
if not (i+1) % 100:
print(i+l, '/', Np)

Plot the distribution of Rx as a normalized histogram
using 50 bins.
plt.hist(R, 50, normed=1)

Plot the theoretical probability distribution, Pr, as a function of r.
r = plt.linspace(0,200,1000)

Pr = 4.%pi*r**2 * (2 * pi * msr / 3)**-1.5 * plt.exp(-3*r**2 / 2 / msr)
plt.plot(r, Pr, lw=2, c='r")

plt.xlabel('R")

plt.ylabel('P(R)")

plt.show()

msr = N

This program produces a plot that typically looks like Figure 4.4, suggesting agree-
ment with theory.

Classes and Operators

Operators (such as +, * and <=) and built-in functions, such as len and abs act on
Python objects by calling special methods these objects define with names beginning
and ending with two underscores, __ (so-called “dunder” methods). To implement
(“overload”) this functionality on custom classes, simply define methods with these
names. A complete list of these special methods can be found in the Python language
documentation,?! but Table 4.8 provides a list of the more commonly needed ones. For
example, the expression x + y calls x.__add _ _(y).

Python is a polymorphic language, and there may be circumstances in which x and
y have different types. If the object x does not implement the necessary method, then

21 https://docs.python.org/3/reference/datamodel. html.

https://docs.python.org/3/reference/datamodel.html

0.040

0.035 F

0.030 ¢

0.025 ¢

= 0.020 F

0.015 F

0.010 ¢

0.005 ¢

0.000
0

R

4.6 An Introduction to Object-Oriented Programming 163

Figure 4.4 Distribution of the end-to-end distances, R, of random flight-polymers with

N =1000,a = 1.

Table 4.8 Common Python special methods

Method Description Example
__add__ +, addition X +y
__sub__ -, subtraction X -y
__mul __ *, multiplication X *y

_ _truediv__ /, “true” division x/y
__floordiv__ //, floor division Xx//y
__mod__ %, modulus X%y
__pow__ *%exponentiation X ¥ty
__neg__ negation (unary minus) -X
__matmul __ @, matrix multiplication x @y
__abs__ absolute value abs(x)
__contains_ _ membership y in x
__lt__ less than y < X
__le__ less than or equal to y <= X
__eq__ equal to y == x
__ne__ not equal to y 1= x
__gt__ greater than y > X
__ge__ greater than or equal to y >= X
__str__ human-readable string representation str(x)
__Trepr__ unambiguous string representation repr(x)

T If not explicitly implemented, _ _ne __ calls __eq__ and inverts the result.

Python will look for a “reflected” version in the y object. Hence, the expression 'a' * 4

calls 'a'.__mul __(4) on the string object 'a'; the expression 4 * 'a' first tries to call
4.__mul__('a"), and when this fails (int objects do not know how to be multiplied
by strs), then tries the reflected version 'a'._ _rmul __(4) which returns 'aaaa': str

objects know how to be multiplied by ints.

164

The Core Python Language Il

The special methods _ _str__ and __repr__ deserve special mention. Both return
a string representation of the object, but whilst _ _str_ _ is expected to return a human-
readable string, the goal of __repr__ is, as far as possible, to be unambiguous.
Depending on the class, there may be a natural choice for the return value of _ _str_ _
that communicates the essential properties of an instance, whilst the return value of
__repr __ should aim to be complete enough that the information it contains could be
used for debugging or to create an identical instance. Note that for an object, obj, if
__repr__is defined but _ _str__is not, then str(obj) will return obj.__repr__Q.
A class should always define a _ _repr _ _() method, and optionally definea __str__()
if an easy to comprehend string is also required.

Example E4.20 Although NumPy (see Chapter 6) offers a faster option, it is still
instructive to code a class for vectors in pure Python. The following code defines the
Vector2D class and tests it for various operations.

Listing 4.9 A simple class representing a two-dimensional Cartesian vector

import math

class Vector2D:

"""A two-dimensional vector with Cartesian coordinates."""
def __init__(self, x, y):
self.x, self.y = x, y

def __str__(self):
"""Human-readable string representation of the vector.
return '{:g}i + {:g}j'.format(self.x, self.y)

i

def __repr__(self):
"""Unambiguous string representation of the vector.
return repr((self.x, self.y))

i

def dot(self, other):
"""The scalar (dot) product of self and other. Both must be vectors."""

if not isinstance(other, Vector2D):
raise TypeError('Can only take dot product of two Vector2D objects')
return self.x * other.x + self.y * other.y
Alias the __matmul__ method to dot so we can use a @ b as well as a.dot(b).
__matmul__ = dot

def __sub__(self, other):
"""Vector subtraction.
return Vector2D(self.x - other.x, self.y - other.y)

o

def __add__(self, other):

"""Vector addition.
return Vector2D(self.x + other.x, self.y + other.y)

def __mul__(self, scalar):
"""Multiplication of a vector by a scalar.

I

(3]

4.6 An Introduction to Object-Oriented Programming

vl = Vector2D(2, 5/3)
v2 = Vector2D(3, -1.5)

if isinstance(scalar, int) or isinstance(scalar, float):
return Vector2D(self.x*scalar, self.y*scalar)
raise NotImplementedError('Can only multiply Vector2D by a scalar')
def __rmul__(self, scalar):
"""Reflected multiplication so vector * scalar also works.
return self.__mul__(scalar)
def __neg__(self):
"""Negation of the vector (invert through origin.)"""
return Vector2D(-self.x, -self.y)
def __truediv__(self, scalar):
"""True division of the vector by a scalar."""
return Vector2D(self.x / scalar, self.y / scalar)
def __mod__(self, scalar):
"""One way to implement modulus operation:
return Vector2D(self.x % scalar, self.y % scalar)
def __abs__(self):
"""Absolute value (magnitude) of the vector."""
return math.sqrt(self.x**2 + self.y**2)
def distance_to(self, other):
"""The distance between vectors self and other."""
return abs(self - other)
def to_polar(self):
"""Return the vector's components in polar coordinates.
return self.__abs__(), math.atan2(self.y, self.x)
if __name__ == '__main__":

print('vl = ', vl)

print('repr(v2) = ', repr(v2))

print('vl + v2 = ', vl + v2)

print('vl - v2 = ', vl - v2)
print('abs(v2 - v1) = ', abs(v2 - vl1))
print('-v2 = ', -v2)

print('vl * 3 = ', vl * 3)

print('7 * v2 = ', 7 * vl)

print('v2 / 2.5 = ', v2 / 2.5)

print('vl % 1 ="', vl % 1)
print('vl.dot(v2) = vl @ v2 = ', vl @ v2)
print('vl.distance_to(v2) = ',vl.distance_to(v2))

print('vl as polar vector, (r, theta) =',

vl.to_polar())

for each component.

165

166 The Core Python Language Il

O Raise an exception if operands for the dot product are not both vectors.

® Only allow multiplication of a vector by a scalar quantity, but support both av and
va.

® Code inside this block is only executed if the code is run as the main program,
in which case Python will have set the variable __name __ to the hard-coded string
'; if the file is treated as a module and imported (e.g. from vector2d

——

import Vector2D), this block is ignored.

'__main

The output should be:

vl = 2i + 1.66667j

repr(v2) = (3, -1.5)

vl + v2 = 5i + 0.166667]

vl - v2 -1i + 3.16667j

abs(v2 - vl1) = 3.3208098075285464
-v2 = -31 + 1.5j

vl * 3 = 6i + 5j

7 % v2 = 14i + 11.6667j
v2 / 2.5 = 1.2i + -0.6j
vli % 1= 0i + 0.666667]
vl.dot(v2) = vl @ v2 = 3.5

vl.distance_to(v2) = 3.3208098075285464
vl as polar vector, (r, theta) = (2.6034165586355518, 0.6947382761967033)

Example E4.21 The code below uses the above Vector2D class to implement a simple
molecular dynamics simulation of circular particles with identical masses moving in two
dimensions. All particles initially have the same speed; the collisions equilibrate the
speeds to the Maxwell-Boltzmann distribution, as demonstrated by the figure produced
(Figure 4.5). The website accompanying this book provides further code for an anima-
tion of the simulation (fhttps://scipython.com/eg/baal). Note: whilst elegant, the object-
oriented approach taken here is not the fastest: there is an overhead to instantiating
multiple objects, which becomes significant when many particles and collisions need to
be considered at each time step. For a faster, NumPy-only approach, see the links from
this web page.

Listing 4.10 A simple two-dimensional molecular dynamics simulation

import math

import random

import matplotlib.pyplot as plt
from vector2d import Vector2D

class Particle:

o

"""A circular particle of unit mass with position and velocity.

def __init__(self, x, y, vx, vy, radius=0.01):
self.pos = Vector2D(x, y)
self.vel = Vector2D(vx, vy)

https://scipython.com/eg/baa

4.6 An Introduction to Object-Oriented Programming 167

17.5 -
15.0 -
12.5 -

_10.0

=

g

7.5
5.0 1
2.5
0.0 -

0.00 0.02 0.04 0.06 0.08 010 0.12 0.14 0.16

Speed, v /pmfs!

Figure 4.5 Distribution of particle speeds after equilibration to Maxwell-Boltzmann statistics
through multiple collisions.

self.radius = radius

def advance(self, dt):
"""Advance the particle's position according to its velocity."""
Use periodic boundary conditions: a Particle that moves across an
edge of the domain 0<=x<1, 0<=y<l magically reappears at the opposite
edge.
self.pos = (self.pos + self.vel * dt) % 1

def distance_to(self, other):
"""Return the distance from this Particle to other Particle.

won

return self.pos.distance_to(other.pos)

def get_speed(self):
"""Return the speed of the Particle from its velocity.
return abs(self.vel)

class Simulation:

win

"""A simple simulation of circular particles in motion.

def __init__(self, nparticles=100, radius=0.01, v0=0.05):
self.nparticles = nparticles
self.radius = radius
Randomly initialize the particles' positions and velocity directions.

168

The Core Python Language Il

def

def

self.particles = [self.init_particle(v®) for i in range(nparticles)]
self.t = 0

init_particle(self, v0=0.05):
"""Return a new Particle object with random position and velocity.

The position is chosen uniformly from 0 <= x < 1, 0 <=y < 1;
The velocity has fixed magnitude, v0, but random direction.

x, y = random.random(), random.random()

theta = 2*math.pi * random.random()

self.v® = vO

vx, vy = self.v® * math.cos(theta), self.v® * math.sin(theta)
return Particle(x, y, vx, vy, self.radius)

advance (self, dt):

win o

Advance the Simulation by dt in time, handling collisions.

self.t += dt
for particle in self.particles:
particle.advance(dt)

Find all distinct pairs of Particles currently undergoing a collision.
colliding_pair = []
for i in range(self.nparticles):
pi = self.particles[i]
for j in range(i+l, self.nparticles):
pj = self.particles[j]
pi collides with pj if their separation is less than twice
their radius.

if pi.distance_to(pj) < 2 self.radius:

colliding_pair.append((i, j))

print('ncollisions =', len(colliding_pair))
For each pair, the velocities change according to the kinetics of
an elastic collision between circles.
for i,j in colliding_pair:
pl, p2 = self.particles[i], self.particles[j]
rl, r2 = pl.pos, p2.pos
vl, v2 = pl.vel, p2.vel
dr, dv = r2 - r1, v2 - vl
dv_dot_dr = dv.dot(dr)
d = rl.distance_to(r2)**2
pl.vel = vl - dv_dot_dr / d * (rl - r2)
p2.vel = v2 - dv_dot_dr / d * (r2 - rl)

if __name__ == '__main__"':

import numpy as np

sim = Simulation(nparticles=1000, radius=0.005, v0=0.05)
dt = 0.02

nit = 500

dnit = nit // 10

4.6.5

Problems

4.6 An Introduction to Object-Oriented Programming 169

for i in range(nit):

if not i % dnit:
print(£f'{i}/{nit}")

sim.advance (dt)

Plot a histogram of the Particles' speeds.

nbins = sim.nparticles // 560

hist, bins, _ = plt.hist([p.get_speed() for p in sim.particles], nbins,
density=True)

v = (bins[1:] + bins[:-1])/2

The mean kinetic energy per Particle.

KE = sim.v@**2 / 2

The Maxwell-Boltzmann equilibrium distribution of speeds.
a=1/2/KE

f = 2%a * v * np.exp(-a*v¥**2)

plt.plot(v, £f)

plt.show()

Exercises

P4.6.1

(a) Modify the base BankAccount class to verify that the account number passed to
its __init__ constructor conforms to the Luhn algorithm described in Exercise
P2.5.3.

(b) Modify the CurrentAccount class to implement a free overdraft. The limit should
be set in the __init__ constructor; withdrawals should be allowed to within the
limit.

P4.6.2 Add a method, save_svg to the Polymer class of Example E4.19 to save an
image of its polymer as an SVG file. Refer to Exercise P4.4.3 for a template of an SVG
file.

P4.6.3 Write a program to create an image of a constellation using the data from the
Yale Bright Star Catalog (http://tdc-www.harvard.edu/catalogs/bsc5.html).

Create a class, Star, to represent a star with attributes for its name, magnitude and
position in the sky, parsed from the file bsc5.dat which forms part of the catalog.
Implement a method for this class which converts the star’s position on the celestial
sphere as (Right Ascension: @, Declination:) to a point in a plane, (x,y), for example

http://tdc-www.harvard.edu/catalogs/bsc5.html

170

The Core Python Language Il

using the orthographic projection about a central point (g, dp):

Aa =a—ap
X = cos o sin Aa

Yy = sin§ cos dy — cos 0 cos Aa sin oy

Suitably scaled, projected, star positions can be output to an SVG image as circles
(with a larger radius for brighter stars). For example, the line

<circle cx="200" cy="150" r="5" stroke="none" fill="#ffffff"/>

represents a white circle of radius 5 pixels, center on the canvas at (200, 150).

Hint: you will need to convert the right ascension from (hr, min, sec) and the decli-
nation from (deg, min, sec) to radians. Use the data corresponding to “equinox J2000,
epoch 2000.0” in each line of bsc5.dat. Let the user select the constellation from the
command line using its three-letter abbreviation (e.g. “Ori” for Orion): this is given as
part of the star name in the catalog. Don’t forget that star magnitudes are smaller for
brighter stars. If you are using the orthographic projection suggested, choose (g, dp) to
be the mean of («, 0) for stars in the constellation.

P4.6.4 Design and implement a class, Experiment, to read in and store a simple
series of (x,y) data as NumPy arrays from a text file. Include in your class methods
for transforming the data series by some simple function (e.g. x" = Inx,y" = 1/y) and to
perform a linear least-squares regression on the transformed data (returning the gradient
and intercept of the best-fit line, y;, = mx’+c). NumPy provides methods for performing
linear regression (see Section 6.5.3), but for this exercise the following equations can
be implemented directly:

Xy — Xy
- —)
)C2—)_62
c=y—mx,

where the bar notation, ~, denotes the arithmetic mean of the quantity under it. (Hint:
use np.mean(arr) to return the mean of array arr.)

Chloroacetic acid is an important compound in the synthetic production of phamaceu-
ticals, pesticides and fuels. At high concentration under strong alkaline conditions, its
hydrolysis may be considered as the following reaction:

CICH,COO™ + OH™ = HOCH,COO™ +CI".

Data giving the concentration of CICH,COO™, ¢ (in M), as a function of time, # (in s),
are provided for this reaction carried out in excess alkalai at five different temperatures
in the data files caa-T.txt (T = 40, 50, 60, 70, 80 in °C): these may be obtained from
[https://scipython.com/ex/bde| The reaction is known to be second-order and so obeys
the integrated rate law

1 1
- =—+kt,
C Co

https://scipython.com/ex/bde

4.6 An Introduction to Object-Oriented Programming 171

where k is the effective rate constant and ¢y the initial (+ = 0) concentration of
chloroacetic acid.

Use your Experiment class to interpret these data by linear regression of 1/c against
t, determining m(= k) for each temperature. Then, for each value of k, determine the
activation energy of the reaction through a second linear regression of In k against 1/T
in accordance with the Arrhenius law:

E
k=AeB/RT = Ink=InA- =%,
¢ nE= AT Ry

where R = 8.314 JK ' mol™! is the gas constant. Note: the temperature must be in
kelvins.

P4.6.5 Create anew class that derives from the 1ist object class which re-implements
it with one-based indexing instead of zero-based indexing. Overload as many of the spe-
cial methods listed at https://docs.python.org/3/reference/datamodel.html as necessary
and write tests to validate your code.

https://docs.python.org/3/reference/datamodel.html

5.1

5.1.1

172

IPython and Jupyter Notebook

The IPython shell and the related interactive, browser-based, Jupyter Notebook are two
related, powerful interfaces to the Python language. IPython has several advantages
over the native Python shell, including easy interaction with the operating system,
introspection and tab completion. Jupyter Notebook (formerly IPython Notebook) is
increasingly being adopted by scientists to share their data and the code they write to
analyze it in a standardized manner that aids reproducibility and visualization. Its default
execution environment (“kernel”) is Python, but it can be configured to work with any
of several dozen languages.

IPython

Installing IPython

Comprehensive details on installing [Python are available at the IPython website: see
https://ipython.org/install.html, but a summary is provided here.

IPython is included in the Continuum Anaconda Python distribution. To update to the
current version within Anaconda, use the conda package manager:

conda update conda
conda update ipython

If you already have Python installed, there are several alternative options. If you have
the pip package manager:

pip install ipython

It is also possible to manually download the latest IPython version from its GitHub
repository at https://github.com/ipython/ipython/releases and compile and install from
its top-level source directory with

python setup.py install

Using the IPython Shell

To start an interactive IPython shell session from the command line, simply type
ipython. You should be greeted with a message similar to this one:

https://ipython.org/install.html
https://github.com/ipython/ipython/releases

5.1 IPython 173

Python 3.7.3 (default, Mar 27 2019, 16:54:48)

Type 'copyright', 'credits' or 'license' for more information
IPython 7.6.1 -- An enhanced Interactive Python. Type '?' for help.
In [1]:

(The precise details of this message will depend on the setup of your system.) The
prompt In [1]: is where you type your Python statements and replaces the native
Python >>> shell prompt. The counter in square brackets increments with each Python
statement or code block. For example,
In [1]: 4 + 5
Out[1]: 9
In [2]: print(l)
1
In [3]: for i in range(4):

print(i, end='")

o123
In [4]:

To exit the IPython shell, type quit or exit. Unlike with the native Python shell, no
parentheses are required.

Help Commands
As listed in the welcome message, there are various helpful commands to obtain infor-
mation about using [Python:

. Typing a single “?” outputs an overview of the usage of [Python’s main features
(page down with the space bar or f; page back up with b; exit the help page
with q).

. %quickref provides a brief reference summary of each of the main IPython com-
mands and “magics” (see Section 5.1.3).

. help(Q) or help(object) invokes Python’s own help system (interactively or for
object if specified).

. Typing one question mark after an object name provides information about that

object: see below.

Possibly the most frequently used help functionality provided by IPython is the intro-
spection provided by the object? syntax. For example,

In [4]: a = [5, 6]

In [5]: a?

Type: list
String form: [5, 6]
Length: 2
Docstring:

Built-in mutable sequence.

If no argument is given, the constructor creates a new empty list.

! Some find this alone a good reason to use IPython.

174

IPython and Jupyter Notebook

The argument must be an iterable if specified.

Here, the command a? gives details about the object a: its string representation (which
would be produced by, for example, print(a)), its length (equivalent to len(a)) and
the docstring associated with the class of which it is an instance: since a is a list, this
provides brief details of how to instantiate a 1ist object.?

The ? syntax is particularly useful as a reminder of the arguments that a function or
method takes. For example,

In [6]: import numpy as np
In [7]: np.linspace?

Signature:
np.linspace(
start,
stop,
num=>50,
endpoint=True,
retstep=False,

dtype=None,
axis=0,

)

Docstring:

Return evenly spaced numbers over a specified interval.

Returns ‘num’ evenly spaced samples, calculated over the
interval ['start’, “stop’].

The endpoint of the interval can optionally be excluded.

versionchanged:: 1.16.0
Non-scalar ‘start’ and ‘stop’ are now supported.

Parameters
start : array_like
The starting value of the sequence.
stop : array_like
The end value of the sequence, unless “endpoint ™ is set to False.
In that case, the sequence consists of all but the last of '‘num + 1°
evenly spaced samples, so that “stop’ is excluded. Note that the step
size changes when “endpoint’ is False.
num : int, optional
Number of samples to generate. Default is 50. Must be non-negative.
endpoint : bool, optional
If True, 'stop is the last sample. Otherwise, it is not included.
Default is True.
retstep : bool, optional
If True, return (samples’, “step), where “step is the spacing
between samples.
dtype : dtype, optional
The type of the output array. If “dtype’ is not given, infer the data

2 This is what is meant by introspection: Python is able to inspect its own objects and provide information
about them.

5.1 IPython 175

type from the other input arguments.

. versionadded:: 1.9.0

For some objects, the syntax object?? returns more advanced information such as
the location and details of its source code.

Tab Completion

Just as with many command line shells, IPython supports tab completion: start typing
the name of an object or keyword, press the <TAB> key, and it will autocomplete it for
you or provide a list of options if more than one possibility exists. For example,

In [8]: w<TAB>

while %who_1s
with %whos
%who %%writefile

If you resume typing until the word becomes unambiguous (e.g. add the letters hi) and
then press <TAB> again, it will be autocompleted to while. The options with percent
signs in front of them are “magic functions,” described in Section 5.1.3.

History

You may already have used the native Python shell’s command history functionality
(pressing the up and down arrows through previous statements typed during your current
session). IPython stores both the commands you enter and the output they produce in
the special variables In and Out (these are, in fact, a list and a dictionary, respectively,
and correspond to the prompts at the beginning of each input and output). For example,
In [9]: d = {'C': 'Cador', 'G': 'Galahad', 'T': 'Tristan', 'A': 'Arthur'}

In [10]: for a in 'ACGT':

P print(d[a])
Arthur
Cador
Galahad
Tristan
In [11]: d = {'C': 'Cytosine', 'G': 'Guanine', 'T': 'Thymine', 'A': 'Adenine'}

In [12]: In[10]

Out[12]: "for a in 'ACGT':\n print(d[al)\n
In [13]: exec(In[10])

Adenine

Cytosine

Guanine

Thymine

© Note that In[16] simply holds the string version of the Python statement (here a for
loop) that was entered at index 10.

® To actually execute the statement (with the current dictionary d), we must send it to
Python’s exec built-in (see also the %rerun magic, Section 5.1.3).

176

IPython and Jupyter Notebook

There are a couple of further shortcuts: the alias _iN is the same as In[N], _N is the
same as Out [N], and the two most recent outputs are returned by the variables _and _ _,
respectively.

To view the contents of the history, use the ¥history or %hist magic function. By
default only the entered statements are output; it is often more useful to output the line
numbers as well, which is achieved using the -n option:

In [14]: %history -n
1: 4 + 5
2: print (1)
3:
for i in range(4):
print (i)
:a = [5, 6]
oa?

: np.linspace?
:d={'C': '"Cador', 'G': 'Galahad', 'T': 'Tristan', 'A': 'Arthur'}
10:
for a in 'ACGT':
print(d[a])
11: d = {'C': 'Cytosine', 'G': 'Guanine', 'T': 'Thymine', 'A': 'Adenine'}
12: In[10]
13: exec(In[10])
14: %history -n

4
5
6: import numpy as np
7
8

To output a specific line or range of lines, refer to them by number and/or number range
when calling %history:

In [15]: %history 4
a = [5, 6]

In [16]: %history -n 2-5
2: print (1)
3:

for i in range(4):

print (i)
4: a = [5, 6]
5: a?

In [17]: %history -n 1-3 7 12-14
1: 4 + 5
2: print(1l)
3:

for i in range(4):

print (i)
7: np.linspace?
12: In[10]

13: exec(In[10])
14: %history -n

This syntax is also used by several other IPython magic functions (see the following
section). The %history function can also take an additional option: -o displays the
output as well as the input.

Pressing CTRL-R brings up a prompt, the somewhat cryptic

5.1 IPython 177

I-search backward:
from which you can search within your command history.?

Interacting with the Operating System

IPython makes it easy to execute operating-system commands from within your shell
session: any statement preceded by an exclamation mark, !, is sent to the operating-
system command line (the “system shell”) instead of being executed as a Python state-
ment. For example, you can delete files, list directory contents and even execute other
programs and scripts:

In [11]: !pwd # return the current working directory
/Users/christian/research

In [12]: !1s # list the files in this directory
Meetings Papers code books
databases temp-file

In [13]: !rm temp-file # delete temp-file

In [14]: !1s
Meetings Papers code books
databases

Note that, for technical reasons,* the cd (Unix-like systems) and chdir (Windows)
commands must be executed as [Python magic functions:

In [15]: %cd / # change into root directory

In [16]: !1s

Applications Volumes usr Library
bin net Network cores
opt WWW System dev
private sbin Users home

In [17]: %cd ~/temp # change directory to temp within user's home directory
In [18]: !1s

output.txt test.py readme. txt utils

zigzag.py

If you use Windows and want to include a drive letter (such as C:) in the directory path
you should enclose the path in quotes: %cd 'C:\My Documents'.

Help, via ! command?, and tab completion, as described above, work within operating-
system commands.

You can pass the values of Python variables to operating-system commands by pre-
fixing the variable name with a dollar sign, $:

In [19]: python_script = 'zigzag.py'

In [20]: !1s $python_script

zigzag.py

In [21]: text_files = '*.txt'

In [22]: text_file_list = !ls $text_files

In [23]: text_file_list

3 This functionality may be familiar to users of the bash shell as (reverse-i-search)':.

4 System commands executed via the ! command method spawn their own shell, which is discarded imme-
diately afterward; changing a directory occurs only in this spawned shell and is not reflected in the one
running IPython.

178

IPython and Jupyter Notebook

output.txt readme. txt

In [24]: readme_file = text_file_list[1]

In [25]: !cat $readme_file

This is the file readme.txt

Each line of the file appears as an item

in a list when returned from !cat readme.txt

In [26]: readme_lines = !cat $readme_file

In [27]: readme_lines
Out[28]:
['This is the file readme.txt',
'Each line of the file appears as an item',
'in a list when returned from !cat readme.txt']

O Note that the output of a system command can be assigned to a Python variable,
here a list of the . txt files in the current directory.

® The cat system command returns the contents of the text file; IPython splits this
output on the newline character and assigns the resulting list to readme_lines. See also
Section 5.1.3

IPython Magic Functions

IPython provides many “magic” functions (or simply magics, those commands prefixed
with %) to speed up coding and experimenting within the [Python shell. Some of the
more useful ones are described in this section; for more advanced information the reader
is referred to the IPython documentation.’ IPython makes a distinction between line
magics: those whose arguments are given on a single line, and cell magics (prefixed by
two percent signs, %%): those which act on a series of Python commands. An example is
given in Section 5.1.3 where the %%timeit cell magic is described.

A list of currently available magic functions can be obtained by typing %1lsmagic.

The magic function %automagic toggles the “automagic” setting: its default is ON,
meaning that typing the name of a magic function without the % will also execute that
function, unless you have bound the name as a Python identifier (variable name) to some
object. The same principle applies to system commands:

In [x]: 1s

output.txt test.py readme. txt utils
zigzag.py

In [x]: 1s = @

In [x]: 1ls # now Is is an integer; !ls will still work
Out[x]: ©

Table 5.1 summarizes some useful IPython magics; the following subsections explain
more fully the less straightforward ones.

5 https://ipython.org/documentation.html.

https://ipython.org/documentation.html

5.1 IPython 179

Table 5.1 Useful IPython line magics

Magic Description

%alias Create an alias to a system command

%alias_magic Create an alias to an existing [Python magic

%bookmark Interact with [Python’s directory bookmarking system

%cd Change the current working directory

%dhist Output a list of visited directories

%edit Create or edit Python code within a text editor and then execute it

%env List the system environment variables, such as $HOME

%history List the input history for this IPython session

%load Read in code from a provided file and make it available for editing

%macro Define a named macro from previous input for future reexecution

%paste Paste input from the clipboard: use this in preference to, for
example, CTRL-V, to handle code indenting properly

%recall Place one or more input lines from the command history at the
current input prompt

%rerun Reexecute previous input from the numbered command history

%reset Reset the namespace for the current IPython session

%run Execute a named file as a Python script within the current session

%save Save a set of input lines or macro (defined with %macro) to a file
with a given name

%sxor!! Shell execute: run a given shell command and store its output

%timeit Time the execution of a provided Python statement

%who Output all the currently defined variables

%who_ls As for %who, but return the variable names as a list of strings

%whos As for %who, but provides more information about each variable

Aliases and Bookmarks

A system shell command can be given an alias: a shortcut for a shell command that
can be called as its own magic. For example, on Unix-like systems we could define the
following alias to list only the directories on the current path:

In [x]: %alias 1lstdir 1ls -d */

In [x]: %lstdir

Meetings/ Papers/ code/ books/
databases/

Now typing %¥1stdir has the same effect as !1s -d */. If %automagic is ON this alias
can also simply be called with 1stdir.

The magic %alias_magic provides a similar functionality for IPython magics. For
example, if you want to use %h as an alias to %history, type:

In [x]: %alias_magic h history

When working on larger projects it is often necessary to switch between different
directories. IPython has a simple system for maintaining a list of bookmarks which act
as shortcuts to different directories. The syntax for this magic function is

%bookmark <name> [directory]

If [directory] is omitted, it defaults to the current working directory.

180

IPython and Jupyter Notebook

In [x]: %bookmark py ~/research/code/python
In [x]: %bookmark www /srv/websites
In [x]: %cd py
/Users/christian/research/code/python
It may happen that a directory with the same name as your bookmark is within the
current working directory. In that case, this directory takes precedence and you must
use %cd -b <name> to refer to the bookmark.
A few more useful commands include:

° %bookmark -1: list all bookmarks;
° %bookmark -d <name>: remove bookmark <name>;
) %bookmark -r: remove all bookmarks.

Timing Code Execution

The IPython magic %timeit <statement> times the execution of the single-line state-
ment <statement>. The statement is executed N times in a loop, and each loop is
repeated R times. N is a suitable, usually large, number chosen by IPython to yield
meaningful results and R is, by default, 3. The average time per loop for the best of the
R repetitions is reported. For example, to profile the sorting of a random arrangement of
the numbers 1-100:

In [x]: import random

In [x]: numbers = list(range(l, 101))

In [x]: random.shuffle(numbers)

In [x]: %timeit sorted(numbers)
100000 loops, best of 3: 13.2 us per loop

Obviously the execution time will depend on the system (processor speed, memory,
etc.). The aim of repeating the execution many times is to allow for variations in speed
due to other processes running on the system. You can select N and R explicitly by
passing values to the options -n and -r respectively:

In [x]: %timeit -n 10000 -r 5 sorted(numbers)
10000 loops, best of 5: 11.2 us per loop

The cell magic %%timeit enables one to time a multiline block of code. For example,

a naive algorithm to find the factors of an integer n can be examined with
In [x]: n = 150
In [x]: %%timeit
factors = set()
for i in range(l, n+1):

if not n % i:

factors.add(n // i)

100000 loops, best of 3: 16.3 us per loop

Recalling and Rerunning Code
To reexecute one or more lines from your [Python history, use %rerun with a line number
or range of line numbers:

5.1 IPython 181

In [1]: import math

In [2]: angles = [0, 30, 60, 90]

In [3]: for angle in angles:
sine_angle = math.sin(math.radians(angle))
print('sin({:3d}) = {:8.5f}'.format(angle, sine_angle))

sin(0) = 0.00000
sin(30) = 0.50000
sin(45) = 0.70711
sin(60) = 0.86603
sin(90) = 1.00000

In [4]: angles = [15, 45, 75]

In [5]: %rerun 3

=== Executing: ===

for angle in angles:
sine_angle = math.sin(math.radians(angle))
print('sin({:3d}) = {:8.5f}'.format(angle, sine_angle))

=== OQutput: ===

sin(15) = 0.25882
sin(45) = 0.70711
sin(75) = 0.96593

In [6]: %rerun 2-3

=== Executing: ===

angles = [0, 30, 45, 60, 90]

for angle in angles:
sine_angle = math.sin(math.radians(angle))
print('sin({:3d}) = {:8.5f}'.format(angle, sine_angle))

=== Qutput: ===

sin(0) = 0.00000
sin(30) = 0.50000
sin(45) = 0.70711
sin(60) = 0.86603
sin(90) = 1.00000

The similar magic function %recall places the requested lines at the command
prompt but does not execute them until you press Enter, allowing you to modify them
first if you need to.

If you find yourself reexecuting a series of statements frequently, you can define a
named macro to invoke them. Specify line numbers as before:

In [7]: %macro sines 3
Macro “sines’ created. To execute, type its name (without quotes).
=== Macro contents: ===
for angle in angles:
sine_angle = math.sin(math.radians(angle))
print('sin({:3d}) = {:8.5f}'.format(angle, sine_angle))

In [8]: angles = [-45, -30, 0, 30, 45]
In [9]: sines
sin(-45) = -0.70711

182

IPython and Jupyter Notebook

sin(-30) = -0.50000
sin(C 0) = 0.00000
sin(30) = 0.50000
sin(45) = 0.70711

Loading, Executing and Saving Code
To load code from an external file into the current [Python session, use

%load <filename>
If you want only certain lines from the input file, specify them after the -r option.
This magic enters the lines at the command prompt, so they can be edited before being

executed.
To load and execute code from a file, use

%run <filename>

Pass any command line options after filename; by default IPython treats them the same
way that the system shell would. There are a few additional options to %run:

. -i: run the script in the current IPython namespace instead of an empty one (i.e.
the program will have access to variables defined in the current IPython session);

. -e: ignore sys.exit() calls and SystemExit exceptions;

. -t: output timing information at the end of execution (pass an integer to the

additional option -N to repeat execution that number of times).

For example, to run my_script.py 10 times from within [Python with timing informa-
tion:

In [x]: %run -t -N10 my_script.py

To save a range of input lines or a macro to a file, use %save. Line numbers are
specified using the same syntax as ¥history. A .py extension is added if you don’t add
it yourself, and confirmation is sought before overwriting an existing file. For example,

In [x]: %save sinesl 1 8 3
The following commands were written to file “sinesl.py':
import math
angles = [-45, -30, 0, 30, 45]
for angle in angles:
print('sin({:3d}) = {:8.5f}'.format(angle, math.sin(math.radians(angle))))

In [x]: %save sines2 1-3
The following commands were written to file “sines2.py’:
import math
angles = [0, 30, 60, 90]
for angle in angles:
print('sin({:3d}) = {:8.5f}'.format(angle, math.sin(math.radians(angle))))

Finally, to append to a file instead of overwriting it, use the -a option:

%save -a <filename> <line numbers>

5.1 IPython 183

Capturing the Output of a Shell Command

The IPython magic %sx command, equivalent to ! ! command executes the shell command
command and returns the resulting output as a list (split into semantically useful parts
on the newline character so there is one item per line). This list can be assigned to a
variable to be manipulated later. For example,

In [x]: current_working_directory = %sx pwd
In [x]: current_working_directory
['/Users/christian/temp']
In [x]: filenames = %sx ls
In [x]: filenames
Out[x]:
['output.txt',
'test.py',
'readme. txt’',
'utils',
'zigzag.py']
Here, filenames is a list of individual filenames.

The returned object is actually an IPython.utils.text.SList string list object.
Among the useful additional features provided by SList are a native method for
splitting each string into fields delimited by whitespace: fields; for sorting on those
fields: sort; and for searching within the string list: grep. For example,

In [x]: files = %sx 1ls -1
In [x]: files

['total 8',

'-rw-r--r-- 1 christian staff 93 5 Nov 16:30 output.txt',
'-rw-r--r-- 1 christian staff 23258 5 Nov 16:31 readme.txt',
'-rw-r--r-- 1 christian staff 218 5 Nov 16:32 test.py',
'drwxr-xr-x 2 christian staff 68 5 Nov 16:32 utils',
'-rw-r--r-- 1 christian staff 365 5 Nov 16:20 zigzag.py'l]

In [x]: del files[0] # strip non-file line 'total 8'

In [x]: files.fields()

Out[x]:

[['-rw-r--r--', '1', 'christian', 'staff', '93', '5', 'Nov', '16:30', 'output.txt'],
['-rw-r--r--', '1', 'christian', 'staff', '23258', '5', 'Nov', '16:31', 'readme
Ltxt'],

['-rw-r--r--"', '1', 'christian', 'staff', '365', '5', 'Nov', '16:20', 'zigzag.py']l]

In [x]: ['{} last modified at {} on {} {}'.format(f[8], f[7], £f[5], f[61)
for f in files.fields()]
Out[x]:
['output.txt last modified at 16:30 on 5 Nov',
'readme.txt last modified at 16:31 on 5 Nov',
'test.py last modified at 16:32 on 5 Nov',
'utils last modified at 16:32 on 5 Nov',
'zigzag.py last modified at 16:20 on 5 Nov']

The fields method can also take arguments specifying the indexes of the fields to
output; if more than one index is given the fields are joined by spaces:

In [x]: files.fields(®) # first field in each line of files
Out[x]: ['-rw-r--r--', '-rw-r--r--', '-rw-r--r--', 'drwxr-xr-x', '-rw-r--r--']

184 IPython and Jupyter Notebook

In [x]: files.fields(-1) # last field in each line of files
Out[x]: ['output.txt', 'readme.txt', 'test.py', 'utils', 'zigzag.py']

In [x]: files.fields(8, 7, 5, 6)

Out[x]:

['output.txt 16:30 5 Nov',
'readme.txt 16:31 5 Nov',
'test.py 16:32 5 Nov',

'utils 16:32 5 Nov',
'zigzag.py 16:20 5 Nov']

The sort method provided by SList objects can sort by a given field, optionally
converting the field from a string to a number, if required (so that, for example, 10 >
9). Note that this method returns a new SList object.

In [x]: files.sort(4) # sort alphanumerically by size (not useful)

Out[x]:

['-rw-r--r-- 1 christian staff 218 5 Nov 16:32 test.py',
'-rw-r--r-- 1 christian staff 23258 5 Nov 16:31 readme.txt',
'-rw-r--r-- 1 christian staff 365 5 Nov 16:20 zigzag.py',
'drwxr-xr-x 2 christian staff 68 5 Nov 16:32 utils',
'-rw-r--r-- 1 christian staff 93 5 Nov 16:30 output.txt']

In [x]: files.sort(4, nums=True) # sort numerically by size (useful)

Out[x]:

['drwxr-xr-x 2 christian staff 68 5 Nov 16:32 utils',
'-rw-r--r-- 1 christian staff 93 5 Nov 16:30 output.txt',
'-rw-r--r-- 1 christian staff 218 5 Nov 16:32 test.py',
'-rw-r--r-- 1 christian staff 365 5 Nov 16:20 zigzag.py',
'-rw-r--r-- 1 christian staff 23258 5 Nov 16:31 readme.txt']

The grep method returns items from the SList containing a given string:® to search
for a string in a given field only, use the field argument:

In [x]: files.grep('txt') # search for lines containing 'txt'
Out[x]:
['-rw-r--r-- 1 christian staff 93 5 Nov 16:30 output.txt',
'-rw-r--r-- 1 christian staff 23258 5 Nov 16:31 readme.txt']
In [x]: files.grep('16:32', field=7) # search file files created at 16:32
Out[x]:
['-rw-r--r-- 1 christian staff 218 5 Nov 16:32 test.py',
'drwxr-xr-x 2 christian staff 68 5 Nov 16:32 utils']

Example E5.1 RNA encodes the amino acids of a peptide as a sequence of codons,
with each codon consisting of three nucleotides chosen from the “alphabet”: U (uracil),
C (cytosine), A (adenine) and G (guanine).

The Python script, codon_lookup. py, available at |https://scipython.com/eg/bab), cre-
ates a dictionary, codon_table, mapping codons to amino acids where each amino acid
is identified by its one-letter abbreviation (e.g. R = arginine). The stop codons, signaling

6 In fact, its name implies it will match regular expressions as well, but we will not expand on this here.

https://scipython.com/eg/bab

5.1 IPython 185

termination of RNA translation, are identified with the single asterisk character, *.
The codon AUG signals the start of translation within a nucleotide sequence as well as
coding for the amino acid methionine.

This script can be executed within IPython with %run codon_lookup.py (or loaded
and then executed with %load codon_lookup.py followed by pressing Enter:

In [x]: %run codon_lookup.py
In [x]: codon_table

Out[x]:

{'GCG': 'A",
"UAA': 'R
'GGU': 'G"',
'ucut: 'S,
"ACA': 'T',
"ACC': 'T'}

Let’s define a function to translate an RNA sequence. Type %edit and enter the
following code in the editor that appears.

def translate_rna(seq):
start = seq.find('AUG')
peptide = []
i = start
while i < len(seq)-2:
codon = seq[i:i+3]
a = codon_table[codon]
if a == "*':
break
i+=3
peptide.append(a)
return ''.join(peptide)

When you exit the editor it will be executed, defining the function, translate_rna:

IPython will make a temporary file named: /var/folders/fj/yv29fhm91v7_6g
7sqsy1z2940000gp/T/ipython_edit_thunq9/ipython_edit_dltv_i.py

Editing... done. Executing edited code...
Out[x]: "def translate_rna(seq):\n start = seq.find('AUG')\n
peptide = []\
n i = start\n while i < len(seq)-2:\n codon = seq[i:i+3]\n a
= codon_table[codon]\n if a == '"*':\n break\n i += 3\n
peptide.append(a)\n return ''.join(peptide)\n"

Now feed the function an RNA sequence to translate:

In[x]: seq = 'CAGCAGCUCAUACAGCAGGUAAUGUCUGGUCUCGUCCCCGGAUGUCGCUACCCACGAG
ACCCGUAUCCUACUUUCUGGGGAGCCUUUACACGGCGGUCCACGUUUUUCGCUACCGUCGUUUUCCCGGUGC
CAUAGAUGAAUGUU'

In [x]: translate_rna(seq)

Out[x]: 'MSGLVPGCRYPRDPYPTFWGAFTRRSTFFATVVFPVP'

To read in a list of RNA sequences (one per line) from a text file, segs.txt, and
translate them, one could use %sx with the system command cat (or, on Windows, the
command type):

186

514

Problems

5.2

5.2.1

IPython and Jupyter Notebook

In [x]: seqs = %sx cat seqgs.txt
In [x]: for seq in segs:
print(translate_rna(seq))

MHMLDENLYDLGMKACHEGTNVLDKWRNMARVCSCDYQFK
MQGSDGQQESYCTLPFEVSGMP
MPVEWRTMQFQRLERASCVKDSTFKNTGSFIKDRKVSGISQDEWAYAMSHQMQPAAHYA
MIVVTMCQ

MGQCMRFAPGMHGMYSSFHPQHKEITPGIDYASMNEVETAETIRPI

Exercises

P5.1.1 Improve on the algorithm to find the number of factors of an integer given in
Section 5.1.3 by (a) looping the trial factor, i, up to no greater than the square root of n
(why is it not necessary to test values of i greater than this?); and (b) using a generator
(see Section 4.3.5). Compare the execution speed of these alternatives using the %timeit
[Python magic.

P5.1.2 Using the fastest algorithm from the previous question, devise a short piece of
code to determine the highly composite numbers less than 100 000 and use the %%timeit
cell magic to time its execution. A highly composite number is a positive integer with
more factors than any smaller positive integer, for example: 1,2,4,6,12,24,36,48, ...

Jupyter Notebook

Jupyter Notebook provides an interactive environment for Python programming within
a web browser.” Its main advantage over the more traditional console-based approach of
the IPython shell is that Python code can be combined with documentation (including
in rendered LaTeX), images and even rich media such as embedded videos. Jupyter
Notebooks are increasingly being used by scientists to communicate their research by
including the computations carried out on data as well as simply the results of those
computations. The format makes it easy for researchers to collaborate on a project and
for others to validate their findings by reproducing their calculations on the same data.

Jupyter Notebook Basics

Starting the Jupyter Notebook Server
If you have Jupyter installed, the server that runs the browser-based interface to IPython
can be started from the command line with

7 Starting with version 4, the IPython Notebook project was reformulated as Jupyter Notebook, with bindings
for other languages as well as for Python.

5.2 Jupyter Notebook 187

' JUpyter Quit Logout
Files Running Clusters
Select items to perform actions on them. Upload New~ &
0 v W/ Name ¥ Last Modified File size

The notebook list is empty.

Figure 5.1 The Jupyter Notebook index page.

jupyter notebook

This will open a web browser window at the URL of the local Jupyter Notebook appli-
cation. By default this is http://localhost:8888 though it will default to a different port if
8888 is in use.

The Jupyter Notebook index page (Figure 5.1) contains a list of the notebooks cur-
rently available in the directory from which the notebook server was started. This is also
the default directory to which notebooks will be saved (with the extension . ipynb), so it
is a good idea to execute the above command somewhere convenient in your directory
hierarchy for the project you are working on.

The index page contains three tabs: Files lists all the files, including Jupyter Note-
books and subdirectories within the current working directory; Running lists those note-
books that are currently active within your session (even if they are not open in a browser
window); Clusters provides an interface to [Python’s parallel computing engine: we will
not cover this topic in this book.

From the index page, one can start a new notebook (by clicking on “New > Notebook:
Python 3”) or open an existing notebook (by clicking on its name). To import an existing
notebook into the index page, either click “Upload” at the top of the page or drag the
notebook file into the index listing from elsewhere on your operating system.

To stop the notebook server, press CTRL-C in the terminal window it was started
from (and confirm at the prompt).

Editing a Jupyter Notebook

To start a new notebook, click the “New” button and select a notebook kernel (there
should at least be one called “Python 3”). This opens a new browser tab containing
the interface where you will write your code and connects it to an IPython kernel, the
process responsible for executing the code and communicating the results back to the
browser.

The new notebook document (Figure 5.2) consists of a title bar, a menu bar and a
tool bar, under which is an IPython prompt where you will type the code and markup
(e.g. explanatory text and documentation) as a series of cells.

In the title bar the name of the first notebook you open will probably be “Untitled”;
click on it to rename it to something more informative. The menu bar contains options
for saving, copying, printing, rearranging and otherwise manipulating the Jupyter Note-

http://localhost:8888

188 IPython and Jupyter Notebook

’ J u pyte r Unt|t|ed (unsaved changes) P Logout
File Edit View Insert Cell Kernel Help Trusted ¢* ‘ Python3 O
+ x @ B a ¥ MRun B C MW Code RE=RINH

In [1: |

Figure 5.2 Jupyter with a new notebook document.

book document. The tool bar consists of series of icons that act as shortcuts for common
operations that can also be achieved through the menu bar.
There are three types of input cells where you can write the content for your notebook:

. Code cells: the default type of cell, this type of cell consists of executable code.
As far as this chapter is concerned, the code you write here will be Python, but
Jupyter does provide a mechanism of executing code written in other languages
such as Julia and R.

. Markdown cells: this type of cell allows for a rich form of documentation for your
code. When executed, the input to a markdown cell is converted into HTML,
which can include mathematical equations, font effects, lists, tables, embedded
images and videos.

. Raw cells: input into this type of cell is not changed by the notebook — its content
and formatting is preserved exactly.

Running Cells

Each cell can consist of more than one line of input, and the cell is not interpreted until
you “run” (i.e. execute) it. This is achieved either by selecting the appropriate option
from the menu bar (under the “Cell” drop-down submenu), by clicking the “Run cell”
“play” button on the tool bar, or through the following keyboard shortcuts:

. Shift-Enter: Execute the cell, showing any output, and then move the cursor
onto the cell below. If there is no cell below, a new, empty one will be created.
. CTRL-Enter: Execute the cell in place, but keep the cursor in the current cell.

Useful for quick “disposable” commands to check if a command works or for
retrieving a directory listing.

. Alt-Enter: Execute the cell, showing any output, and then insert and move the
cursor to a new cell immediately beneath it.

Two other keyboard shortcuts are useful. When editing a cell the arrow keys navigate
the contents of the cell (edit mode); from this mode, pressing Esc enters command mode
from which the arrow keys navigate through the cells. To reenter edit mode on a selected
cell, press Enter.

5.2 Jupyter Notebook 189

The menu bar, under the “Cell” drop-down submenu, provides many ways of running
a notebook’s cells: usually, you will want to run the current cell individually or run it
and all those below it.

Code Cells

You can enter anything into a code cell that you can when writing a Python program
in an editor or at the regular IPython shell. Code in a given cell has access to objects
defined in other cells (providing they have been run). For example,

In[]:[n=10 }

Pressing Shift-Enter or clicking Run Cell executes this statement (defining n but
producing no output) and opens a new cell underneath the old one:

In [1]: [n = 10]

W)

Entering the following statements at this new prompt:

In[]:
print('1%*2 + 2**2 + ... + {}**2 = {}'.format(n,
sum_of_squares))

sum_of_squares = n * (n+l) * (2*n+l) // 6 |

and executing as before produces output and opens a third empty input cell. The whole
notebook document then looks like

In [1]: [n =10]
In [2]: sum_of_squares = n * (n+l) * (2*n+l) // 6
print('1**2 + 2**2 + ... + {}**2 = {}'.format(n,

sum_of_squares))

Out[2]: 1%%2 4 2%%2 4+ .., + 10**2 = 385

W]

You can edit the value of n in input cell 1 and rerun the entire document to update
the output. It is worth noting that it is also possible to set a new value for n after the
calculation in cell 2:

In [3]: [n = 15 J

Running cell 3 and then cell 2 then leaves the output to cell 2 as

Out[2]: 1%%2 + 2%%2 + ... + 15%%2 = 1240

even though the cell above still defines n to be 10. That is, unless you run the entire
document from the beginning, the output does not necessarily reflect the output of a
script corresponding to the code cells taken in order.

System commands (those prefixed with ! or !!) and [Python magics can all be used
within Jupyter Notebook.

190

IPython and Jupyter Notebook

Markdown Cells

Markdown cells convert your input text into HTML, applying styles according to a

simple syntax illustrated below. The full documentation is at
https://daringfireball.net/projects/markdown/

Here we explain the most useful features. A complete Jupyter Notebook of these exam-

ples can be downloaded from |https://scipython.com/book/markdown].

Basic Markdown
. Simple styles can be applied by enclosing text by asterisks or underscores:

In [x]: Surrounding text by two asterisks denotes **bold
style**; using one asterisk denotes *italic
text*, as does _a single underscore_.

Surrounding text by two asterisks denotes bold style; using
one asterisk denotes italic text, as does a single underscore.

. Headings at up to six levels (from top-level section titles to paragraph-level text)
are denoted with between one and six “#” characters: the text following these
characters is rendered at an appropriate font size (in HTML, using the elements
<h1> to <h6>).

. Block quotes are indicated by a single angle bracket, >:

In [x]: > "Climb if you will, but remember that courage and
strength are nought without prudence, and that a
momentary negligence may destroy the happiness
of a lifetime. Do nothing in haste; look well to
each step; and from the beginning think what may
be the end." - Edward Whymper

“Climb if you will, but remember that courage and strength are nought
without prudence, and that a momentary negligence may destroy
the happiness of a lifetime. Do nothing in haste; look well to each
step; and from the beginning think what may be the end.” — Edward
Whymper

. Code examples (for illustration rather than execution) are between blank lines and
indented by four spaces (or a tab). The following will appear in a monospaced
font with the characters as entered:

In [x]: n = 57
while n != 1:
ifn % 2:
n=3*n+1
else:
n//=2
n = 57
while n != 1:
ifn % 2:

n = 3*n + 1
else:

https://daringfireball.net/projects/markdown/
https://scipython.com/book/markdown

5.2 Jupyter Notebook 191

n //= 2
. Inline code examples are created by surrounding the text with backticks (*):
In [x]: Here are some Python keywords: “for , "while and
“lambda’ .

Here are some Python keywords: for, while and lambda.

. New paragraphs are started after a blank line.

HTML within Markdown

The markdown used by Jupyter Notebooks encompasses HTML, so valid HTML enti-
ties and tags can be used directly (for example, the tag for emphasis), as can CSS
styles to produce effects such as underlined text. Even complex HTML such as tables
can be marked up directly.

In [x]: The following Punnett table is marked up
in HTML.

<table style="text-align: center;">

<tr>

<th style="border-top:none; border-left:none;'
colspan="2"></th>

<th colspan="2">Male</th>

</tr>

<tr>

<th>A</th>

<th>a</th>

</tr>

<tr>

<th rowspan="2">Female</th>

<th>a</th>

<td style="background: #aaa;">Aa</td>

<td>aa</td>

</tr>

<tr>

<th>a</th>

<td style="background: #aaa;">Aa</td>

<td>aa</td>

</tr>

</table>

rowspan="2"

192 IPython and Jupyter Notebook

The following Punnett table is marked up in HTML.

Male

A |a

a| Aa| aa

Female
a | Aa| aa

Lists
Itemized (unnumbered) lists are created using any of the markers *, + or -, and nested
sublists are simply indented.

In [x]: The inner planets and their satellites:

* Mercury
* Venus
* Earth
* The Moon
+ Mars
- Phoebus
- Deimos

The inner planets and their satellites:

o Mercury

° Venus
° Earth
- The Moon
. Mars
- Phoebus
- Deimos

Ordered (that is, numbered) lists are created by preceding items by a number followed
by a full stop (period) and a space:

In [x]: 1. Symphony No. 1 in C major, Op. 21
2. Symphony No. 2 in D major, Op. 36
3. Symphony No. 3 in E-flat major ("Eroica"), Op. 55

1. Symphony No. 1 in C major, Op. 21
2. Symphony No. 2 in D major, Op. 36
3. Symphony No. 3 in E-flat major ("Eroica"), Op. 55

Links
There are three ways of introducing links into markdown text:

5.2 Jupyter Notebook 193

. Inline links provide a URL in round brackets after the text to be turned into a link
in square brackets. For example,

In [x]: Here is a link to the
[IPython website] (https://ipython.org/).

Here is a link to the IPython website.

. Reference links label the text to turn into a link by placing a name (containing
letters, numbers or spaces) in square brackets after it. This name is expected to
be defined using the syntax [name]: url elsewhere in the document, as in the
following example markdown cell.

In [x]: Some important mathematical sequences are the [prime
numbers] [primes],

[Fibonacci sequence][fib] and the [Catalan
numbers] [catalan_numbers].

[primes]: https://oeis.org/A000040
[£fib]: https://oeis.org/A000045
[catalan_numbers]: https://oeis.org/A000108]

Some important mathematical sequences are the primes,
Fibonacci sequence and the Catalan numbers.

. Automatic links, for which the clickable text is the same as the URL, are created
simply by surrounding the URL by angle brackets:

In [x]: [My website is <https://christianhill.co.uk>.]

My website is https://christianhill.co.uk.

If the link is to a file on your local system, give as the URL the path, relative to the
notebook directory, prefixed with files/:

In [x]: [Here is [a local data file](files/data/data®.txt).]

Here is a a local data file.

Note that links open in a new browser tab when clicked.

Mathematics

Mathematical equations can be written in IATEX and are rendered using the Javascript
library, MathJax. Inline equations are delimited by single dollar signs; “displayed”
equations by doubled dollar signs:

In [x]: An inline equation appears within a sentence of text, as
in the definition of the function $£(x) = \sin(x*2)$;
displayed equations get their own line(s) between
lines of text:

$$\int_0+\infty \mathrm{e}+{-x42}dx =
\frac{\sqrt{\pi}}{2}.$$

https://christianhill.co.uk
https://ipython.org/
https://oeis.org/A000040
https://oeis.org/A000045
https://oeis.org/A000108
https://christianhill.co.uk

194

5.2.2

IPython and Jupyter Notebook

An inline equation appears within a sentence of text, as in the
definition of the function f(x) = sin(x?); displayed equations get
their own line(s) between lines of text:

S ~
Ydx = —.
foe =

Images and Video

Links to image files work in exactly the same way as ordinary links (and can be inline or
reference links), but are preceded by an exclamation mark, !. The text in square brackets
between the exclamation mark and the link acts as alf fext to the image. For example,

In [x]: ![An interesting plot of the Newton
fractal] (/files/images/newton_fractal.png)
I[A remote link to a star
image] (https://christianhill.co.uk/static/images/
star.svg)

Video links must use the HTMLS5 <video> tag, but note that not all browsers support
all video formats. For example,

In [x]: <video controls style="width: 500px; margin: 0 auto;
display: block;" src="files/diffmap-animated.ogv" />

The data constituting images, video and other locally linked content are not embedded
in the notebook document itself: these files must be provided with the notebook when it
is distributed.

Converting Notebooks to Other Formats

nbconvert is a tool, installed with Jupyter, to convert notebooks from their native . ipynb
format® to any of several alternative formats. It is run from the (system) command line
as

jupyter nbconvert --to <format> <notebook.ipynb>

where notebook.ipynb is the name of the Jupyter Notebook file to be converted and
format is the desired output format. The default (if no format is given), is to produce a
static HTML file, as described below.

Conversion to HTML
The command

jupyter nbconvert <notebook.ipynb>

converts notebook. ipynb to HTML and produces a file, notebook.html, in the current
directory. This file contains all the necessary headers for a stand-alone HTML page,

8 This format is, in fact, just a JSON (JavaScript Object Notation) document.

https://christianhill.co.uk/static/images/star.svg
https://christianhill.co.uk/static/images/star.svg

5.2.3

5.2 Jupyter Notebook 195

which will closely resemble the interactive view produced by the Jupyter Notebook
server, but as a static document.

If you want just the HTML corresponding to the notebook without the header
(<html>, <head>, <body> tags, etc.), suitable for embedding in an existing web page,
add the --template basic option.

Any supporting files, such as images, are automatically placed in a directory with
the same base name as the notebook itself but with the suffix _files. For example,
jupyter nbconvert mynotebook.ipynb generates mynotebook.html and the directory
mynotebook_files.

Conversion to LaTeX
To export the notebook as a IS[EX document, use

jupyter nbconvert --to latex <notebook.ipynb>

To automatically generate a PDF file by running pdflatex on the notebook. tex file
produced, add the option --post pdf.

Conversion to Markdown

jupyter nbconvert --to markdown <notebook.ipynb>

converts the whole notebook into markdown (see Section 5.2.1): cells that are already
in markdown are unaffected and code cells are placed in triple-backtick (" ") blocks.

Conversion to Python
The command

jupyter nbconvert --to python <notebook.ipynb>

converts notebook. ipynb into an executable Python script. If any of the notebook’s code
cells contain [Python magic functions, this script may only be executable from within
an IPython session. Markdown and other text cells are converted to comments in the
generated Python script code.

JupyterLab

At the time of writing, Project Jupyter is testing a browser-based interactive devel-
opment environment (IDE) called JupyterLab, which will extend the functionality of
Jupyter Notebook and allow real-time collaboration between multiple users, drag-and-
drop manipulation of notebook cells, browser-based terminal (console) access, auto-
completion, and live preview of markdown. Custom widgets can be installed to allow the
loading and exploration of data in different formats within the browser and integration
with popular online services such as GitHub, Dropbox and Google Drive. It will be fully
backward-compatible with existing Jupyter Notebooks. More information is available
from the Project Jupyter website, https://jupyter.org/.

https://jupyter.org/

6.1

196

NumPy

NumPy has become the de facto standard package for general scientific programming
in Python. Its core object is the ndarray, a multidimensional array of a single data
type, which can be sorted, reshaped, subject to mathematical operations and statistical
analysis, written to and read from files, and much more. The NumPy implementations of
these mathematical operations and algorithms have two main advantages over the “core”
Python objects we have used until now. First, they are implemented as precompiled C
code and so approach the speed of execution of a program written in C itself; second,
NumPy supports vectorization: a single operation can be carried out on an entire array,
rather than requiring an explicit loop over the array’s elements. For example, compare
the multiplication of two one-dimensional lists of n numbers, a and b, in the core python
language:

c =11

for i in range(n):
c.append(al[i]l * b[il)

and using NumPy arrays:'

c=a*h

The elementwise multiplication is handled by optimized, precompiled C and so is very
fast (much faster for large n than the core Python alternative). The absence of explicit
looping and indexing makes the code cleaner, less error-prone and closer to the standard
mathematical notation it reflects.

All of NumPy’s functionality is provided by the numpy package. To use it, it is strongly
advised to import with

import numpy as np

and then to refer to its attributes with the prefix np. (e.g. np.array). This is the way we
use NumPy in this book.

Basic Array Methods

The NumPy array class is ndarray, which consists of a multidimensional table of ele-
ments indexed by a tuple of integers. Unlike Python lists and tuples, the elements cannot

! The terms “NumPy array” and ndarray will be used interchangeably in this book.

6.1.1

6.1 Basic Array Methods 197

be of different types: each element in a NumPy array has the same type, which is
specified by an associated data type object (dtype). The dtype of an array specifies
not only the broad class of element (integer, floating-point number, etc.) but also how it
is represented in memory (e.g. how many bits it occupies) — see Section 6.1.2.

The dimensions of a NumPy array are called axes; the number of axes an array has is
called its rank.?

Creating an Array

Basic Array Creation
The simplest way to create a small NumPy array is to call the np. array constructor with
a list or tuple of values:
In [x]: import numpy as np
In [x]: a = np.array((1600, 101, 102, 103))
In [x]: a
Out[x]: array([100, 101, 102, 103])
In [x]: b = np.array([[1.,2.], [3.,4.11)
Out[x]:
array([[1., 2.1,
[3., 4.1D

Note that passing a list of lists creates a two-dimensional array (and similarly for higher
dimensions).

Indexing a multidimensional NumPy array is a little different from indexing a conven-
tional Python list of lists: instead of b[i][j], refer to the index of the required element
as a tuple of integers, b[i, j]:

In [x]: b[0O,1] # same as b[(0,1)]
Out[x]: 2.0
In [x]: b[1,1] = 0. # also for assignment
Out[x]:
array ([[1., 2.1,

[3., 0.1D

The data type is deduced from the type of the elements in the sequence and “upcast”
to the most general type if they are of mixed but compatible types:

In [x]: np.array([-1, 0, 2.]) # mixture of int and float: upcast to float
Out[x]: array([-1., 0., 2.1)

You can also explicitly set the data type using the optional dtype argument (see Section
6.1.2):

In [x]: np.array([0, 4, -4], dtype=complex)
In [x]: array([0.+0.j, 4.+0.j, -4.+0.31)

If your array is large or you do not know the element values at the time of creation,
there are several methods to declare an array of a particular shape filled with default
or arbitrary values. The simplest and fastest, np.empty, takes a tuple of the array’s

2 Not to be confused with the concept of matrix rank from linear algebra.

198

NumPy

shape and creates the array without initializing its elements: the initial element values
are undefined (typically, random junk defined from whatever were the contents of the
memory that Python allocated for the array).

In [x]: np.empty((2,2))

Out[x]:

array ([[-2.31584178e+077, -1.72723381e-077],
[2.15686807e-314, 2.78134366e-30911)

There are also helper methods, np.zeros and np.ones, which create an array of the
specified shape with elements prefilled with 0 and 1, respectively. np.empty, np.zeros
and np. ones also take the optional dtype argument.

In [x]: np.zeros((3,2)) # default dtype is 'float'
Out[x]:
array([[0., 0.1,

[0., 0.1,

[0., 0.1D
In [x]: np.ones((3,3), dtype=int)
Out[x]:
array([[1, 1, 1],

[1, 1, 11,

[1, 1, 11D

If you already have an array and would like to create another with the same shape,
np.empty_like, np.zeros_like and np.ones_like will do that for you:

In [x]: a

Oout[x]: array([100, 161, 102, 1031)

In [x]: np.ones_like(a)

Out[x]: array([1l, 1, 1, 1])

In [x]: np.zeros_like(a, dtype=float)

Out[x]: array([0., 0., 0., 06.1)

Note that the array created inherits its dtype from the original array; to set its data
type to something else, use the dtype argument.

Initializing an Array from a Sequence

To create an array containing a sequence of numbers there are two methods: np.arange
and np.linspace. np.arange is the NumPy equivalent of range, except that it can
generate floating-point sequences. It also actually allocates the memory for the elements
in an ndarray instead of returning a generator-like object — compare Section 2.4.3.

In [x]: np.arange(7)

Out[x]: array([0, 1, 2, 3, 4, 5, 61)

In [x]: np.arange(l.5, 3., 0.5)
Out[x]: array([1.5, 2. , 2.51))

As with range, the array generated in these examples does not include the last elements,
7 and 3. However, arange has a problem: because of the finite precision of floating-point
arithmetic it is not always possible to know how many elements will be created. For
this reason, and because one often wants the last element of a specifed sequence, the

6.1 Basic Array Methods 199

np. linspace function can be a more useful way of creating an sequence.? For example,
to generate an evenly spaced array of the five numbers between 1 and 20 inclusive:

In [x]: np.linspace(l, 20, 5)
Out[x]: array([1. , 5.75, 10.5 , 15.25, 20. 1)

np.linspace has a couple of optional boolean arguments. First, setting retstep to True
returns the number spacing (step size):
In [x]: x, dx = np.linspace(®., 2*np.pi, 100, retstep=True)

In [x]: dx
Out[x]: 0.06346651825433926

This saves you from calculating dx = (end-start)/(num-1) separately; in this exam-
ple, the 100 points between 0 and 27 inclusive are spaced by 27/99 = 0.0634665...
Finally, setting endpoint to False omits the final point in the sequence, as for
np.arange:

In [x]: x = np.linspace(®, 5, 5, endpoint=False)
Out[x]: array([®., 1., 2., 3., 4.1)

Note that the array generated by np.linspace has the dtype of floating-point numbers,
even if the sequence generates integers.

Initializing an Array from a Function

To create an array initialized with values calculated using a function, use NumPy’s
np. fromfunction method, which takes as its arguments a function and a tuple repre-
senting the shape of the desired array. The function should itself take the same number
of arguments as dimensions in the array: these arguments index each element at which
the function returns a value. An example will make this clearer:

In [x]: def f(i, j):
return 2 * i * j

In [x]: np.fromfunction(f, (4,3))

array([[0., 9., 0.1,
[o., 2., 4.1,
[o., 4., 8.1,
[o 6., 12.11)

The function £ is called for every index in the specified shape and the values it returns
are used to initialize the corresponding elements.* A simple expression like this one can
be replaced by an anonymous lambda function (see Section 4.3.3) if desired:

In [x]: np.fromfunction(lambda i,j: 2*i*j, (4,3))

Example E6.1 To create a “comb” of values in an array of length N for which every
nth element is one but with zeros everywhere else:

3 We came across 1linspace in the discussion following Example E3.1.
4 Note that the indexes are passed as ndarrays and expect the function, £, to use vectorized operations.

200

6.1.2

NumPy

In [x]:
In [x]:
In [x]:
In [x]:

[100
000
000

N, n = 101, 5
def f(i):
return (i % n == 0) * 1

comb = np.fromfunction(f, (N,), dtype=int)
print (comb)
0010000100066 106000106000°1
010000100001 006060606106060606 10
1000010000160 0010000100

000100001
001000010
0 1]

e e e

ndarray Attributes for Introspection
A NumPy array knows its rank, shape, size, dtype and one or two other properties: these
can be determined directly from the attributes described in Table 6.1. For example,

In [x]:
In [x]:
Out[x]:
In [x]:
Out[x]:
In [x]:
Out[x]:
In [x]:
Out[x]:
In [x]:
Out[x]:

The

a = np.array(((1, 0, 1), (0, 1, 0)))
a.shape

2, 3 # 2 rows, 3 columns

a.ndim # rank (number of dimensions)
2

a.size # total number of elements
6

a.dtype

dtype('int64"')

a.data

<memory at 0x102387308>

shape attribute returns the axis dimensions in the same order as the axes are

indexed: a two-dimensional array with n rows and m columns has a shape of (n, m).

NumPy’s Basic Data Types (dtypes)

So far,

the NumPy arrays we have created have contained either integers or floating-

point numbers, and we have let Python take care of the details of how these are repre-

sented.

However, NumPy provides a powerful way of determining these details explic-

itly using data type objects. This is necessary, because in order to interface with the
underlying compiled C code the elements of a NumPy array must be stored in a com-

Table 6.1 ndarray attributes

Attribute Description

shape The array dimensions: the size of the array along each of its axes,
returned as a tuple of integers

ndim Number of axes (dimensions); note that ndim == len(shape)

size The total number of elements in the array, equal to the product of the
elements of shape

dtype The array’s data type (see Section 6.1.2)

data The “buffer” in memory containing the actual elements of the array

itemsize The size in bytes of each element

6.1 Basic Array Methods 201

patible format: that is, each element is represented in a fixed number of bytes that are
interpreted in a particular way.

For example, consider an unsigned integer stored in 2 bytes (16 bits) of memory (the
C-type uint16_t). Such a number can take a value between 0 and 2'® — 1 = 65535.
No equivalent native Python type exists for this exact representation: Python integers
are signed quantities and memory is dynamically assigned for them as required by their
size. So NumPy defines a data type object, np.uint16, to describe data stored in this
way.

Furthermore, different systems can order the two bytes of this number differently, a
distinction known as endianness. The big-endian convention places the most-significant
byte in the smallest memory address; the little-endian convention places the least-
significant byte in the smallest memory address. In creating your own arrays, NumPy
will use the default convention for the hardware your program is running on, but it is
essential to set the endianness correctly if reading in a binary file generated by a different
computer.

A full list of the numerical data types’ is given in the NumPy documentation,® but
the more common ones are listed in Table 6.2. They all exist within the numpy package
and so can be referred to as, for example, np.uint16. The data types that get created
by default when using the native Python numerical types are those with a trailing
underscore: np. float_, np.complex_ and np.bool_.

Apparently higher-precision floating-point number data types such as float96,
float128 and longdouble are available but are not to be trusted: their implementation is
platform-dependent, and on many systems they do not actually offer any extra precision
but simply align array elements on the appropriate byte-boundaries in memory.

To create a NumPy array of values using a particular data type, use the dtype argu-
ment of any array constructor function (such as np.array, np.zeros, etc.). This argu-
ment takes either a data type object (such as np.uint8) or something that can be con-
verted into one. It is common to specify the dtype using a string consisting of a letter
indicating the broad category of data type (integer, unsigned integer, complex number,
etc.) optionally followed by a number giving the byte size of the type. For example,

In [x]: b = np.zeros((3,3), dtype='u4')

creates a 3 X 3 array of unsigned, 32-bit (4-byte) integers (equivalent to np.uint32). A
list of supported data type letters and their meanings is given in Table 6.3.

To specify the endianness, use the prefixes > (big-endian), < (little-endian) or | (endi-
anness not relevant). For example,

In [x]: a = np.zeros((3,3), dtype='>£f8")
In [x]: b = np.zeros((3,3), dtype='<f')

In [x]: ¢ = np.empty((3,3), dtype='|S4")

create arrays of big-endian double-precision numbers, little-endian single-precision
numbers and four-character strings, respectively.

5 Strictly speaking, these types are array scalar types and not dtypes, but for our use here the distinction is
not important.
6 https://docs.scipy.org/doc/numpy/user/basics.types.html.

https://docs.scipy.org/doc/numpy/user/basics.types.html

202

NumPy

Table 6.2 Common NumPy data types

Data Type Description
int The default integer type, corresponding to C’s long:
platform-dependent

int8 Integer in a single byte: —128 to 127

intl6 Integer in 2 bytes: —32 768 to 32767

int32 Integer in 4 bytes: —2 147483 648 to 2 147 483 647

int64 Integer in 8 bytes: —23 to 263 — 1

uint8 Unsigned integer in a single byte: 0 to 255

uintl6 Unsigned integer in 2 bytes: 0 to 65 535

uint32 Unsigned integer in 4 bytes: 0 to 4 294 967 295

uint64 Unsigned integer in 8 bytes: 0 to 2 — 1

float_ The default floating-point number type, another name for
float64

float32 Single-precision, signed float: ~ 1073 to ~ 10%® with ~ 7
decimal digits of precision

float64 Double-precision, signed float: ~ 1073% to ~ 103 with
~ 15 decimal digits of precision

complex_ The default complex number type, another name for
complex128

complex64 Single-precision complex number (represented by 32-bit

floating-point real and imaginary components)

complex128 Double-precision complex number (represented by 64-bit
floating-point real and imaginary components)

bool_ The default boolean type represented by a single byte

Table 6.3 Common NumPy data type strings

String Description

Signed integer

Unsigned integer

Floating-point number*

Complex floating-point number

Boolean value

String (fixed-length sequence of characters)
Unicode

S LYo N e
Q

¢ Note that without specifying the byte size, setting dtype='£f' creates
a single-precision floating-point data type, equivalent to np. float32.

In these examples we have passed a fypecode string to an array constructor’s dtype
argument, but it is also possible to create a dtype object first and pass that instead:
In [x]: dt = np.dtype('£8")
In [x]: dt
dtype('float64') # double-precision floating-point
In [x]: a = np.array([0., 1., -2.], dtype=dt)

dtype objects have a handful of useful introspection methods:

6.1 Basic Array Methods 203

In [x]: dt.str # a string identifying the data type
'<f8'

In [x]: dt.name # data type name and bit-width
'float64'

In [x]: dt.itemsize # data type size in bytes
8

To copy an array to a new array with a different data type, pass the desired dtype or
typecode to the astype method:

In [x]: a = np.array([1.2345678, 2.5, 3.91)

In [x]: a.astype('float32') # cast to single-precision float
Out[x]: array([1.2345678, 2.5 , 3.9], dtype=float32)
In [x]: a.astype(np.uint8) # cast to unsigned, 1-byte integer

Out[x]: array([1l, 2, 3], dtype=uint8)

Strings in NumPy arrays are byfestrings of a fixed size: each “character” is repre-
sented by a single byte, in contrast to the variable size UTF-8 encoding, commonly
used to represent Unicode strings. This is necessary because NumPy arrays have a pre-
defined, fixed size in which all the elements occupy the same amount of memory so
that they can be indexed efficiently with a constant stride. Unicode strings encoded
with UTF-8, however, represent characters as code points with a variable width (see
Section 2.3.3). Of course, any string is ultimately stored as a sequence of bytes and
Python provides methods for translating between encodings. For example, on a system
encoding strings with UTF-8 by default:

In [x]: s = 'pifata' # UTF-8 encoded Unicode string

In [x]: b = s.encode()

In [x]: b

b'pi\xc3\xblata' # bytestring: h is stored in two bytes: hex C3B1
In [x]: len(s), len(b)

(6,7) # six UTF-8 encoded characters stored in 7 bytes
In [x]: arr = np.empty((2,2), 'S7")

In [x]: arr[:] = b # store the bytestring b in array arr

In [x]:

array ([[b'pi\xc3\xblata', b'pi\xc3\xblata'],
[b'pi\xc3\xblata', b'pi\xc3\xblata']l],
dtype="]|S7"')
In [x]: arr[0,0] # returns the bytestring
b'pi\xc3\xblata'
In [x]: arr[0,0].decode() # decode the bytestring back assuming UTF-8
'pinata’

Universal Functions (ufuncs)

In addition to the basic arithmetic operations of addition, division and more, NumPy
provides many of the familiar mathematical functions that the math module (Section
2.2.2) does, implemented as so-called universal functions that act on each element of
an array, producing an array in return without the need for an explicit loop. Universal
functions are the way NumPy allows for vectorization, which promotes clean, efficient
and easy-to-maintain code. For example,

204

NumPy

In [x]: x = np.linspace(l, 5, 5)
In [x]: x**2

Out[x]: array([1., 4., 9., 16., 25.1)

In [x]: x -1

Out[x]: array([0., 1., 2., 3., 4.1

In [x]: np.sqrt(x - 1)

Out[x]: array([0., 1., 1.41421356, 1.73205081, 2.1)

In [x]: y = np.exp(-np.linspace(®., 2., 5))
In [x]: np.sin(x - y)
Out[x]: array([0., 0.98431873, 0.48771645, -0.59340065, -0.98842844])

Array multiplication occurs elementwise: matrix multiplication is implemented by
the @ operator’ or NumPy’s dot function:

In [x]: a = np.array(((1, 2), (3, 4)))
In [x]: b = a

In [x]: a * b # elementwise multiplication
Out[x]:
array ([[1, 4],
[9, 161D
In [x]: a @b # matrix multiplication; also a.dot(b) or np.dot(a, b)
Out[x]:
array([[7, 10],
[15, 2211

Comparison and logic operators (", & and | for not, and and or, respectively) are also
vectorized and result in arrays of boolean values:
In [x]: a = np.linspace(l, 6, 6)%*3
In [x]: print(a)
[1. 8. 27. 64. 125. 216.]
In [x]: print(a > 100)
[False False False False True True]
In [x]: print((a < 10) | (a > 100))
[True True False False True True]

NumPy’s Special Values, nan and inf

NumPy defines two special values to represent the outcome of calculations, which are
not mathematically defined or not finite. The value np.nan (“Not a Number,” NaN)
represents the outcome of a calculation that is not a well-defined mathematical operation
(e.g. 0/0); np. inf represents infinity.® For example,

In [x]:
In [x]:

= np.arange (4, dtype='f8")
/=0 # [0/0 1/0 2/0 3/0]

. RuntimeWarning: invalid value encountered in true_divide ...
. RuntimeWarning: divide by zero encountered in true_divide

In [x]: a
Out[x]: array([nan, inf, inf, inf])

7 The @ operator was introduced in Python 35.
8 These quantities are defined in accordance with the IEEE-754 standard for floating-point numbers.

6.1 Basic Array Methods 205

Do not test nans for equality (np.nan == np.nan is False). Instead, NumPy provides
methods np.isnan, np.isinf and np.isfinite:

In [x]: np.isnan(a)

Out[x]: array([True, False, False, False], dtype=bool)
In [x]: np.isinf(a)

Out[x]: array([False, True, True, True], dtype=bool)
In [x]: np.isfinite(a)

Out[x]: array([False, False, False, False], dtype=bool)

Note that nan is neither finite nor infinite, and is not equal to itself! (See also Section

10.1.4.)

Example E6.2 A magic square is an N X N grid of numbers in which the entries in
each row, column and main diagonal sum to the same number (equal to N(N 24+ 1)/2).

A method for constructing a magic square for odd N is as follows:

Step 1. Start in the middle of the top row, and let n = 1.

Step 2. Insert n into the current grid position.

Step 3. If n = N? the grid is complete so stop. Otherwise, increment 7.

Step 4. Move diagonally up and right, wrapping to the first column or last row if the
move leads outside the grid. If this cell is already filled, move vertically down

one space instead.
Step 5. Return to step 2.
The following program creates and displays a magic square.

Listing 6.1 Creating a magic square

Create an N x N magic square. N must be odd.
import numpy as np

N =5
magic_square = np.zeros((N, N), dtype=int)

n=1
i, 3 =0, N//2

while n <= N**2:
magic_square[i, j] = n
n +=1
newi, newj = (i - 1) % N, (j + D% N
if magic_square[newi, newj]:
i+=1
else:
i, j = newi, newj

print(magic_square)

The 5 X 5 magic square output by the earlier example is

[[17 24 1 8 15]
[23 5 7 14 16]
[4 6 13 20 22]
[16 12 19 21 3]
[11 18 25 2 9]]

206

NumPy

Changing the Shape of an Array

Whatever the rank of an array, its elements are stored in sequential memory locations
that are addressed by a single index (internally the array is one-dimensional, but, know-
ing the shape of the array, Python is able to resolve a tuple of indexes into a single
memory address). NumPy arrays are stored in memory in C-style, row-major order,
that is, with the elements of the last (rightmost) index stored contiguously. In a two-
dimensional array, for example, the element a[0, 0] is followed by a[®, 1]. The array
that follows

In [x]: a = np.array(((1, 2), (3, 4)))

In [x]: print(a)

[[1 2]
[3 411

is stored in memory as the sequential elements [1,2,3,4].°

flatten and ravel

Suppose you wish to “flatten” a multidimensional array onto a single axis. NumPy
provides two methods to do this: flatten and ravel. Both flatten the array into its
internal (row-major) ordering, as described earlier. flatten returns an independent copy
of the elements and is generally slower than ravel, which tries to return a view to the
flattened array. An array view is a new NumPy array with, in this case, a different shape
from the original, but it does not “own” its data elements: it references the elements
of another array. Thus, just as with mutable lists (Section 2.4.1), a reassignment of an
element of one array affects the other. An example should make this clear:

In [x]: a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 911)

In [x]: b = a.flatten() # create an independent, flattened copy of a

In [x]: b

Out[x]: array([l, 2, 3, 4, 5, 6, 7, 8, 9])
In [x]: b[3] =0

In [x]: b
OQut[x]: array([l, 2, 3, 0, 5, 6, 7, 8, 9])
In [x]: a # a is unchanged
Out[x]:
array([[1, 2, 3],
[4, 5, 6],
[7, 8, 91D

Assignment to b didn’t change a because they are completely independent objects that
do not share their data. In contrast, the flattened array created by taking a view on a with
ravel refers to the same underlying data:

In [x]: c = a.ravel()

In [x]: c

Out[x]:array([1, 2, 3, 4, 5, 6, 7, 8, 91)
In [x]: c[3] =0

9 This contrasts with Fortran’s column-major ordering, which would store the elements as [1, 3, 2, 4].

6.1 Basic Array Methods 207

In [x]: c
Out[x]: array([1l, 2, 3, ®, 5, 6, 7, 8, 91)
In [x]: a

Out[x]:

array([[1, 2, 31,
[0, 5, 6],
[7, 8, 91D

You should be aware that although the ravel method “does its best” to return a view to
the underlying data, various array operations (including slicing; see Section 6.1.6) can
leave the elements stored in noncontiguous memory locations, in which case ravel has
no choice but to make a copy.

resize and reshape

An array may be resized (in place) to a compatible shape'® with the resize method,
which takes the new dimensions as its arguments.

In [x]: a = np.linspace(l, 4, 4)

In [x]: print(a)
[1. 2. 3. 4.]

In [x]: a.resize(2, 2) # reshapes a in place, doesn't return anything
In [x]: print(a)

[C1 2.1

[3. 4.11

The reshape method returns a view on the array with its elements reshaped as required.
The original array is not modified, but the objects share the same underlying data.

In [x]: a = np.linspace(l, 4, 4)

In [x]: b = a.reshape(2, 2)

In [x]: print(a)
[1. 2. 3. 4.]

In [x]: print(b)
[Ct 2.1
[3. 4.7]

In [x]: b[0®, 0] = -99
In [x]: print(b)
[[-99. 2.

[3. 4.]]

In [x]: print(a)
[-99. 2. 3. 4.1

Transposing an Array
The method transpose returns a view of an array with the axes transposed. For a two-
dimensional array, this is the usual matrix transpose:

10 That is, a shape with the same total number of elements.

208

NumPy
In [x]: a = np.linspace(l, 6, 6).reshape(3, 2)
In [x]: a
Out[x]:
array([[1., 2.1,
[3., 4.1,
[5., 6.1
In [x]: a.transpose() # or simply a.T
Out[x]:

array([[1., 3., 5.1,
[2., 4., 6.]1]

Note that transposing a one-dimensional array returns the array unchanged:

In [x]: b = np.array([100, 101, 162, 103])
In [x]: b.transpose()
Out[x]: array([100, 101, 162, 103])

See Section 6.1.11 for more on representing vectors with NumPy arrays.

Merging and Splitting Arrays

A clutch of NumPy methods merge and split arrays in different ways. np.vstack,
np.hstack and np.dstack stack arrays vertically (in sequential rows), horizontally (in
sequential columns) and depthwise (along a third axis). For example,

In [x]: a = np.array([0, O, 0O, 0])

In [x]: b = np.array([1l, 1, 1, 1])

In [x]: c = np.array([2, 2, 2, 2])
In [x]: np.vstack((a, b, <))

Out[x]:
array([[0, 0, O, 0],
[, 1, 1, 13,
[2, 2, 2, 21D
In [x]: np.hstack((a, b, <))
Out[x]:

array([0, 0, 0, O, 1, 1, 1, 1, 2, 2, 2, 2])
In [x]: np.dstack((a, b, ©))

Out[x]:

array ([[[0, 1, 2],
[e, 1, 27,
[e, 1, 21,
e, 1, 211D

Note that the array created contains an independent copy of the data from the original
arrays.!!

The inverse operations, np.vsplit, np.hsplit and np.dsplit, split a single array
into multiple arrays by rows, columns or depth. In addition to the array to be split,
these methods require an argument indicating how to split the array. If this argument
is a single integer, the array is split into that number of equal-sized arrays along the
appropriate axis. For example,

In [x]: a = np.arange(6)

I NumPy has to copy the data because it has to store its data in one contiguous block of memory and the
original arrays may be dispersed in different noncontiguous locations.

6.1 Basic Array Methods 209

In [x]: a

Out[x]: array([0, 1, 2, 3, 4, 51

In [x]: np.hsplit(a, 3)

Out[x]: [array([O, 1]1), array([2, 3]1), array([4, 51)1]

As can be seen, a list of array objects is returned. If the second argument is a sequence
of integer indexes, the array is split on those indexes:

In [x]: a

Out[x]: array([0, 1, 2, 3, 4, 5]

In [x]: np.hsplitCa, (2, 3, 5))

[array ([0, 1]), array([2]), array([3, 4]), array([51)]

—this is the same as the list [a[:2], a[2:3], a[3:5], a[5:]]. Unlike with np.hstack,
etc., the arrays returned are views on the original data.'?

Example E6.3 Suppose you have a 3 x 3 array to which you wish to add a row or
column. Adding a row is easy with np.vstack:

In [x]: a = np.ones((3, 3))

In [x]: np.vstack((a, np.array((2, 2, 2))))

Out[x]:

array ([[
[
[
[

-1,
-1,
-1,
1D

1 1
1 1
1., 1.,
2 2

N

Adding a column requires a bit more work, however. You can’t use np.hstack directly:
In [x]: a = np.ones((3, 3))

In [x]: np.hstack((a, np.array((2, 2, 2))))

[Traceback information]
ValueError: all the input arrays must have same number of dimensions

This is because np.hstack cannot concatenate two arrays with different numbers of
rows. Schematically:

[, 1., 1.1, [2., 2., 2.1
[1., 1., 1.1, + =2
[1., 1., 1.11

We can’t simply transpose our new row, either, because it’s a one-dimensional array and
its transpose is the same shape as the original. So we need to reshape it first:

In [x]: a = np.ones((3, 3))
In [x]: b = np.array((2, 2, 2)).reshape(3, 1)
In [x]: b
array ([[2],
[21,
[21D
In [x]: np.hstack((a, b))
Out[x]:

12 NumPy does this for efficiency reasons — copying large amounts of data is expensive and not necessary to
fulfill the function of these splitting methods.

210

NumPy

array([[1., 1., 1., 2.1,
ri, 1., 1., 2.1,
[, 1., 1., 2.1

Indexing and Slicing an Array

An array is indexed by a tuple of integers and, as for Python sequences, negative indexes
count from the end of the axis. Slicing and striding is supported in the same way as well.
Note, however, that slicing a NumPy array returns a view on its data, not a copy of the
data as for Python 1ists. For one-dimensional arrays there is only one index:

In [x]: a = np.linspace(l, 6, 6)
In [x]: print(a)
[1. 2. 3. 4. 5. 6.]

In [x]: a[l:4:2] # elements a[l1] and a[3] (a stride of 2)
Out[x]: array([2., 4.1)

In [x]: a[3::-2] # elements a[3] and a[l] (a stride of -2)
Out[x]: array([4., 2.]

Multidimensional arrays have an index for each axis. If you want to select every item
along a particular axis, replace its index with a single colon:

In [x]: a = np.linspace(l, 12, 12).reshape(4, 3)
In [x]: a
Out[x]:
array([[1., 2., 3.1,
[4., 5., 6.1,
L 7., 8., 9.1,

[10., 11., 12.11)
In [x]: a[3, 1]
Out[x]: 11.0

In [x]: a[2, :] # everything in the third row
Out[x]:
array([7., 8., 9.1)
In [x]: al[:, 1] # everything in the second column
Out[x]: array([2., 5., 8., 11.1)
In [x]: a[l:-1, 1:] # middle rows, second column onwards
Out[x]:
array([[5., 6.1,

[8., 9.1D

These and further examples of NumPy array slicing are illustrated in Figure 6.1.

The special ellipsis notation (. . .) is useful for high-rank arrays: in an index, it repre-
sents as many colons as are necessary to represent the remaining axes. For example, for
a four-dimensional array, a[3, 1, ...] is equivalent to a[3, 1, :, :] and a[3,

,1] is equivalent to a[3, :, :, 1].
The colon and ellipsis syntax also works for assignment:

In [x]: al[:, 1] =0 # set all elements in the second column to zero
In [x]: print(a)

[1. 0. 3.1

[4. 0 6.1]
[7. 0. 9.1
[10. 0 12.11

6.1 Basic Array Methods 211

1 2 3 1 2 3 1 2 3
4 5 6 4 5 6 4 5 6
7 8 9 7 8 9 7 8 9
10 | 11 12 10 | 11 | 12 10 | 11 12
al2, :] al:, 1] afl:-1, 1:]
(a) (b) (©
1 2 3 1 2 3 1 2 3
4 5 6 4 5 6 4 5 6
7 8 9 7 8 9 7 8 9
10 | 11 | 12 10 | 11 | 12 10 | 11 | 12
al::2, :] al2:, :2] afl::2, ::2]
(d) (e) ()

Figure 6.1 Various ways to slice a NumPy array.

Advanced Indexing

NumPy arrays can also be indexed by sequences that aren’t simple tuples of integers,
including other lists, arrays of integers and tuples of tuples. Such “advanced indexing”
creates a new array with its own copy of the data, rather than a view:

In [x]: a = np.linspace(®., 0.5, 6)

In [x]: print(a)

[0. 0.1 0.2 0.3 0.4 0.5]

In [x]: ia = [1, 4, 5] # a list of indexes
In [x]: print(al[ial])

[0.1 0.4 0.5]

In [x]: ia = np.array(((1, 2), (3, 4)))

In [x]: print(al[ia]l) # an array to be formed from the specified indexes
[[0.1 ©0.2]
[0.3 0.4]]

One can even index a multidimensional array with multidimensional arrays of indexes,
picking off individual elements at will to build an array of a specified shape. This can
lead to some rather baroque code:

In [x]: a = np.linspace(l, 12, 12).reshape(4, 3)
In [x]: print(a)

[[1. 2. 3.1

[4. 5. 6.]

[7. 8. 9.]

[16. 11. 12.]]

212

NumPy

In [x]: ia = np.array(((1, 0, (2, 1)))
In [x]: ja = mp.array(((0, 1), (1, 2)) D
In [x]: print(al[ia, jal)

[[4. 2.]

[8. 6.]]

Here we build a 2 x 2 array (the shape of the index arrays) whose elements are a[1, 0],
a[®, 1] on the top row and a[2, 1], a[l, 2] on the bottom row.

Instead of indexing an array with a sequence of integers, it is also possible to use an
array of boolean values. The True elements of this indexing array identify elements in
the target array to be returned:

In [x]: a = np.array([-2, -1, 0, 1, 2])
In [x]: ia = np.array([False, True, False, True, Truel)

In [x]: print(a[ial)
[-1 1 2]

Because comparisons are vectorized across arrays just like mathematical operations,
this leads to some useful shortcuts:

In [x]: print(a)

[-2 -1 0 1 2]

In [x]: ib = a < @

In [x]: print(ib)

[True True False False False]

In [x]: a[ib] = 0 # set all negative elements to zero
In [x]: print(a)
[0 0 0 1 2]

It is not actually necessary to store the intermediate boolean array, ib, and a[a < 0] =
0 does the same job:

In [x]: a = np.array([-2, -1, O, 1, 2])
In [x]: a[a < 0] =0

In [x]: print(a)

[0 6 0 1 2]

The boolean operations not, and and or are implemented on boolean arrays with the
operators ", & and | respectively. For example,

In [x]: years = np.array([1900, 1904, 1990, 1993, 2000, 2014, 2016, 2100])
In [x]: leap_year = (years % 400 == 0) | (years % 4 == 0) & ~(years % 100 == 0)
In [x]: print(list(zip(years, leap_year)))
Out[x]: [(1900, False), (1904, True), (1990, False), (1993, False),
(2000, True), (2014, False), (2016, True), (2100, False)]

Adding an Axis

To add an axis (i.e. dimension) to an array, insert np.newaxis in the desired position:

In [x]: a = np.linspace(l, 4, 4).reshape(2, 2)
In [x]: print(a) # a 2 x 2 array (rank = 2)
[C 1. 2.]

[3. 4.1]
In [x]: a.shape(Q)
@, 2

In [x]: b = a[:, np.newaxis, :]

6.1 Basic Array Methods 213

In [x]: print(b) # a 2 x 1 x 2 array (rank=3)
[ee 1. 2.11
[[L 3. 4.111
In [x]: b.shape
@2, 1, 2)

In fact, np.newaxis is the None object, so None can be used directly in its place if desired.

Example E6.4 A Sudoku square consists of a 9 X 9 grid with entries such that each
row, column and each of the nine nonoverlapping 3 X 3 tiles contains the numbers 1-9
once only. The following program verifies that a provided grid is a valid Sudoku square.

Listing 6.2 Verifying the validity of a Sudoku square

import numpy as np

def check_sudoku(grid):
" Return True if grid is a valid Sudoku square, otherwise False.
for i in range(9):
j, k index the top left-hand corner of each 3 x 3 tile.
i, k=@ //3) 3, (i %3) *3
if len(set(grid[i,:])) != 9 or len(set(grid[:,i])) != 9\
or len(set(grid[j:j+3, k:k+3].ravel())) != 9:
return False
return True

sudoku = """145327698

839654127

672918543

496185372

218473956

753296481

367542819

984761235

521839764"""
Turn the provided string, sudoku, into an integer array.
grid = np.array([[int(i) for i in line] for line in sudoku.split()])
print(grid)

if check_sudoku(grid):
print('grid valid')
else:
print('grid invalid')

© Here, we use the fact that an array of length nine contains nine unique elements if the
set formed from these elements has cardinality 9. No check is made that the elements
themselves are actually the numbers 1-9.

Meshes

To evaluate a multidimensional function on a grid of points, a mesh is useful The
function np.meshgrid is passed a series of N one-dimensional arrays representing coor-
dinates along each dimension and returns a set of N-dimensional arrays comprising a

214

6.1.7 ¢

NumPy

mesh of coordinates at which the function can be evaluated. For example, in the two-
dimensional case:

In [x]: x = np.linspace(®, 5, 6)

In [x]: y = np.linspace(®, 3, 4)

In [x]: X, Y = np.meshgrid(x, y)

In [x]: X

Out[x]:

array([[0., 1., 2., 3., 4., 5.7,
[e., 1., 2., 3., 4., 5.1,
[e6., 1., 2., 3., 4., 5.1,
[0. 1., 2., 3., 4., 5.1D

In [x]: Y

Out[x]:

array ([[©. 0., 0., 0., 0 0.1,
[1., 1., 1., 1., 1., 1.1,
[2., 2., 2., 2., 2 2.1,
[3., 3., 3., 3., 3., 3.1D

The arrays X and Y can each be indexed with indexes i, j: the x array is repeated as
rows down X and the y array as columns across Y. A function of two coordinates can
therefore be evaluated on the grid as simply £(X, Y).

Setting the optional argument sparse to True will return sparse grid to conserve
memory. In the previous example, instead of two arrays, both with shapes (6, 4), arrays
with shapes (1, 6) and (4, 1) that can be broadcast against each other (see Section
6.1.7) will be returned:

In [X]: X, Y = np.meshgrid(x, y, sparse=True)

In [X]: X

Out[X]: array([[0., 1., 2., 3., 4., 5.1D

In [X]: Y

Out[X]:

array ([[O
[1
[2.
[3

Broadcasting

We have already seen that simple operations such as addition and multiplication can be
carried out elementwise on two arrays of the same shape (vectorization):

In [x]: a = np.array([1l, 2, 3])

In [x]: b = np.array ([0, 10, 100])

In [x]: a * Db

Out[x]: array([0, 20, 300])

Broadcasting describes the rules that NumPy uses to carry out such operations when
the arrays have different shapes. This allows the operation to be carried out using
precompiled C loops instead of slower, Python loops, but there are constraints as to
which array shapes can be broadcast against each other. The rules are applied on each
dimension of the arrays, starting with the last and working backward. Two dimensions
compared in this way are said to be compatible if they are equal or one of them is 1.

6.1 Basic Array Methods 215

The simplest example of broadcasting involves the operation between an array and
a scalar (which may be considered for this purpose to be a one-dimensional array of
length 1). Consider

In [x]: a = np.array([[1l, 2, 3], [4, 5, 6]11)
In [x]: b = 2

In [x]: c=a *b

In [x]: c

Out[x]:

array ([[2, 4, 6],
[8, 16, 1211

The dimensions of a and b are compatible:

a: 2 x 3
b: 1
c: 2 x 3

Here, b can be broadcast across the two dimensions of array a by repetition of its value
for every element in that array. Similarly, an array of shape (3,) can be broadcast across
both rows of a:

In [x]: b = np.array([1, 2, 3])
In [x]: c=a *b

In [x]: c

Out[x]:

array([[1, 4, 9],
[4, 16, 1811

a: 2 X
b: 3
c: 2 x 3

That is, for each row of a, its entries are multiplied by the corresponding entries of
the one-dimensional array b. However, attempting to multiply a by an array whose last
dimension is not 1 or 3 is a ValueError here:

In [x]: b = np.array([1l, 2])
In [x]: a * b
----> 1 a b

ValueError: operands could not be broadcast together with shapes (2,3) (2,)

In the example of the sparse mesh created in the previous section, the arrays with
shapes (1, 6) and (4, 1) are compatible. For example,

In [x]: £ =X *Y
f

Out[x]:

array([[0., 0., 0., 0., 0., 0.1,
[o., 1., 2., 3., 4., 5.1,
[o., 2., 4., 6., 8., 10.],
[o., 3., 6., 9., 12., 15.11D

The broadcasting process “stretches out” the second axis of Y from 1 to 6 to match that
of X and the first axis of X from 1 to 4 to match that of Y:

216

6.1.8

NumPy

X: 1 x6
Y: 4 x1
f: 4 x 6

To force a broadcast on an array with insufficient dimensions to meet your require-
ments, you can always add an axis with np.newaxis. For example, one way to take the
outer product of two arrays is by adding a dimension to one of them and broadcasting
the multiplication:

In [x]: a = np.array([1l, 2, 3])

In [x]: b = np.array ([0, 10, 100])
In [x]: ¢ = a[:, np.newaxis] * b
In [x]: c

Out[x]:

array([[0, 20, 300],
[0, 40, 600],
[6, 60, 9001]1)

Thus, instead of matching elements in the two arrays with shapes (3,), the extra axis on
a creates an array with shape (3, 1) and this dimension is stretched across the array b:

al[:,np.newaxis]: 3 x1
b: 3
c: 3 x 3

Maximum and Minimum Values

NumPy arrays have the methods min and max, which return the minimum and maximum
values in the array. By default, a single value for the flattened array is returned; to find
maximum and minimum values along a given axis, use the axis argument:

In [x]: a = np.array([[3, O, -1, 11, [2, -1, -2, 4], [1, 7, 0, 411)
In [x]: print(a)

[[3 6 -1 1]

[2 -1 -2 4]

[1 7 0 4]]

In [x]: a.min() # "global" minimum
Out[x]: -2

In [x]: a.max() # "global" maximum
Out[x]: 7

In [x]: print(a.min(axis=0))

[1-1-2 1] # minima in each column
In [x]: print(a.max(axis=1))

[3 4 7] # maxima in each row

Often, one wants not the maximum (or minimum) value itself but its index in the
array. This is what the methods argmin and argmax do. By default, the index returned
is into the flattened array, so the actual value can be retrieved using a view on the array
created by ravel:

In [x]: a.argmin()
6

In [x]: a.ravel()[a.argmin()]
-2

A

6.1 Basic Array Methods 217

LA A ovod

300 |11 @ 30011 |—>|3 E
2 1| 2] 4 D 2 a2 4| —>] 4
1| 7] 04 @ 1|70 4|—>]|7

RRR:

[o] =] (=1 [

(a) axis=0 (b) axis=1

Figure 6.2 (a) a.max(axis=0) giving the maximum values and a.argmax (axis=0) giving the
indexes of the maximum values of each column in array a (that is, maintaining the row
dimension) and (b) The same for axis=1: maximum values along each row.

In [x]: print(a.argmax(axis=0))
[0 2 2 1] # row indexes of maxima in each column
In [x]: print(a.argmax(axis=1))
[0 3 1] # column indexes of maxima in each row

Figure 6.2 illustrates the process for axis=0 and for axis=1. Notice that if more than
one equal maximum exists in a column, the index of the first is returned.

Example E6.5 Consider the following oscillating functions on the interval [0, L]:

2 2L
£,00 = x(L = x)sin ;x; =2 n=1,23,...
n

n

The following code defines a two-dimensional array holding values of these functions
for L = 1 on a grid of N = 100 points (rows) forn = 1,2, ...,5 (columns). The position
of the maximum and minimum in each column is calculated with argmax(axis=0) and
argmin(axis=0). (See Figure 6.3.)

Listing 6.3 argmax and argmin

egb-array_maxmin.py
import numpy as np
import matplotlib.pyplot as plt

N = 100
L =1

def f(i, n):

218

NumPy

0.3

Ju(@)

() 20 40 60 30 100
xT

Figure 6.3 Maxima and minima of the functions f;,(x) described in Example E6.5. Note that
only the “global” maximum and minimum are returned for each function, and that where more
than one point has the same maximum or minimum value, only the first is returned.

lam = 2 * L / (n+1)
return x * (L-x) * np.sin(2*np.pi*x/lam)

a = np.fromfunction(f, (N+1, 5))

min_i = a.argmin(axis=0)

max_i = a.argmax(axis=0)

plt.plot(a, c='k")

plt.plot(min_i, a[min_i, np.arange(5)], 'v', c='k', markersize=10)
plt.plot(max_i, a[max_i, np.arange(5)], '*', c='k', markersize=10)
plt.xlabel(r'x")

plt.ylabel(r'$f_n(x)$")

plt.show()

Sorting an Array

NumPy arrays can be sorted in several different ways with the sort method, which
orders the numbers in an array in place. By default, this method sorts multidimensional
arrays along their last axis. To sort along some other axis, set the axis argument. For
example,

In [x]: a = np.array([5, -1, 2, 4, 0, 4])
In [x]: a.sort()
In [x]: print(a)
[-1 0 2 4 4 5]
In [x]: b = np.array([[0, 3, -2], [7, 1, 3], [4, 0, -11])
In [x]: print(b)
[l & 3 -2]
[7 1 3]

6.1.10

6.1 Basic Array Methods 219

[4 0 -17]
In [x]: b.sort()
In [x]: print(b)

sort the numbers along each row

[[-2 6 3]
[1 3 7]
[-1 0 4]]

This is the same as b. sort(axis=1) — “for each row, order the numbers by column.” To
sort the numbers in each column — “for each column, order the numbers by row,” set
axis=0:

In [x]: b = np.array([[®, 3, -2]1, [7, 1, 3], [4, 0, -111)

In [x]: b.sort(axis=0) # sort the numbers along each column
In [x]: print(b)

(e o -2]

[4 1 -1]

[z 3 311

The sorting algorithm used is the “quicksort” algorithm, which is a good general-
purpose choice.'3

Two other sorting functions are worth mentioning. np.argsort returns the indexes
that would sort an array rather than the sorted elements themselves:
In [x]: a = np.array([3, 0, -1, 1])

In [x]: np.argsort(a)
Out[x]: array([2, 1, 3, OD)

Therefore,

In [x]: a[np.argsort(a)]
Out[x]: array([-1, 6, 1, 31)

The method np.searchsorted takes a sorted array, a, and one or more values, v, and
returns the indexes in a at which the values should be entered to maintain its order:

In [x]: a = np.array([1l, 2, 3, 4])

In [x]: np.searchsorted(a, 3.5)

OQut[x]: 3

In [x]: np.searchsorted(a, (3.5, 0, 1.1))
Out[x]: array([3, 0, 1])

Structured Arrays

Also known as record arrays, structured arrays are arrays consisting of rows of values
where each value may have its own data type and name. These rows are the “records.”
This type of array is very much like a table of data with rows (records) consisting of
values that fall into columns (fields) and provides a very convenient and natural way to
manipulate scientific data that is often obtained or presented in tabular form.

13 Some arrays can be sorted faster with the alternative mergesort or heapsort algorithms; these can be
selected by setting the optional kind argument to the string literal values 'mergesort' and 'heapsort’,
for example: b.sort(axis=1, kind='heapsort').

220

NumPy

Structured arrays are useful for the manipulation of small sets of heterogeneous data,
but this functionality is available at a higher level in the pandas library (see Chapter 9),
which is often more convenient for large data sets.

Creating a Structured Array

The structure of a record array is defined by its dtype using a more complex syntax than
we have used previously. For example,

In [x]: a = np.zeros(5, dtype='int8, float32, complex_')

In [x]: print(a)

[0, 0.0, 0j) (0, 0.0, 0j) (0, 0.0, 0j) (0, 0.0, 0j) (0, 0.0, 0j)]

In [x]: a.dtype

dtype([C'f0", "[Jil'), ('f1', '<f4'), ('f2', '<cl6')])

Here, we have created an array of five records, each of which has three fields, defined
by constructing a dtype specified by the string 'int8, float32, complex_'.

. The first field is a single-byte, signed integer (int8, which is described by the
string '|il' — clearly the endianness [byte order] is not relevant in a one-byte

quantity).

. The second is a single-precision floating-point number, which is stored in mem-
ory (on my system) as a little-endian 4-byte sequence, indicated by '<f4".

. The final field is defined to be a complex number to default precision, which

on my system is stored in 16-bytes, little-endian (complex_ is equivalent to
complex128 which corresponds to a data type '<c16").

Because we did not explicitly name the fields, they are given the default names '£9',
'£1' and '£2'. To name the fields of our structured array explicitly, pass the dtype
constructor a list of (name, dtype descriptor) tuples: for example,
In [x]: dt = np.dtype([('time', '£f8"'), ('signal', 'i4')])
In [x]: a = np.zeros(10, dtype=dt)
In [x]: a
Out[x]:
array([(0.0, 0), (0.0, ®, ..., (0.0, ®],
dtype=[('time', '<£8'), ('signal', '<i4')])

A structured array can therefore be visualized as a table of data values with column
headings for each field.

Assigning records in a structured array is as expected:

In [x]: a[0] = (0., 4)
In [x]: a[1:3] = [(0.5, -3), (1., -5)]

In [x]: a
Out[x]:
array ([(0.0, 4), (0.5, -3), (1.0, -5), ..., (0.0, O],

dtype=[('time', '<£8'), ('signal', '<i4')])
but the real power of this approach is in the ability to reference a field by its name. For
example, to set the 'time' column in our array to a linear sequence:

In [x]: a['time'] = np.linspace(®., 4.5, 10)
In [x]: print(a)

6.1 Basic Array Methods 221

[(0.0, 4) (0.5, -3) (1.0, -5) (1.5, & (2.0, ® (2.5, ® (3.0, ® (3.5, ®
(4.0, 0 (4.5, ®]

In [x]: print(a['time'][-1])

4.5

Likewise, to obtain a view on a column, refer to it by name:

In [x]: print(a['time'])

[0. 0.5 1. 1.5 2. 2.5 3. 3.5 4. 4.5]
In [x]: print(a['signal']l.min(Q))

-5

More Ways to Create a Structured Array
There are several (arguably, too many) ways to define the dtype describing a structured
array. So far we have used a string of comma-separated identifiers and a list of tuples. A
third way is to use a dictionary. The basic usage assigns a list of values to the two keys,
'names' and 'formats', naming the fields and specifying their formats respectively:
In [x]: dt = np.dtype({ 'names': ['time',6 'signal'],
'formats': ['f8', 'i4']

b
In [x]: a = np.zeros (10, dtype=dt)
defines the same structured array of (time, signal) records as before. A third key,
"titles', can be used to give each field a more detailed description; each title can then
be used as an alias to its name in referring to that field in the array.'*

In [x]: dt = np.dtype({'names': ['candidate', 'mark', 'grade'],
'formats': ['|S50', 'ul', '[S2'],
'titles': ['Candidate Name', 'Percentage Mark', 'Grade: A-F']})

In [x]: a = np.zeros(1®, dtype=dt)

In [x]: a[0] = ('John Brown', 64, 'B-')

In [x]: a[l] = ('Jane Smith', 78, 'A')

In [x]: print(a['Candidate Name'])

[b'John Brown' b'Jane Smith' b'' b'' b'" b'" b'" b'" b'' b'']
In [x]: print(a['Percentage Mark'])

[64 78 0 0 0 O O O 0 0]

Sorting Structured Arrays

Structured arrays can be sorted by giv dimensionsing a specific order to the fields used
with the order argument. For example, with the following structured array:

In [x]: data = [('NiCd', 1.2, 0.14, 2000),

('Lead acid', 2.1, 0.14, 700),
('Lithium ion', 3.6, 0.46, 800)]

In [x]: dtype = [('name', '[S20'),
('voltage', '£8'),
('specific energy', '£8'),
('cycle durability', 'i4') 1]

In [x]: a = np.array(data, dtype=dtype)

14 In fact, title can be any Python object and can be used to provide detailed “metadata” concerning the
corresponding field.

222

6.1.11

NumPy

In [x]: a.sort(order="'specific energy')

In [x]: print(a)

[(b'Lead acid', 2.1, 0.14, 700) (b'NiCd', 1.2, 0.14, 2000)
(b'Lithium ion', 3.6, 0.46, 800)]

In [x]: a.sort(order=["'specific energy', 'voltage'])
In [x]: print(a)
[(b'Nicd', 1.2, 0.14, 2000) (b'Lead acid', 2.1, 0.14, 700)
(b'Lithium ion', 3.6, 0.46, 800)]
The second sort operation here sorts the records by specific energy, and if this is the
same for two or more records, then it sorts by voltage.

Arrays as Vectors

A vector with n components can be defined as a regular one-dimensional array with n
elements.

In addition to elementwise operations such as vector addition, subtraction and so
on, NumPy array objects implement scalar (dot) product and vector (cross) product

methods:

In [x]: a = np.array([1l, &, -31) # vector as a one-dimensional array
In [x]: b = np.array([2, -2, 5])

In [x]: a.dot(b) # or a @ b or b.dot(a) or np.dot(a,b)
Out[x]: -13

In [x]: np.cross(a, b)

array ([-6, -11, -21)

You can only take the cross product of an array with two or three elements; the third
component is assumed to be zero in the former case. To use dot and cross on two
individual vectors, ensure that they are row vectors as described previously and not
column vectors represented as an (n, 1) array:

In [x]: a = np.array([[1], [®], [-311) # a 3 x 1 two-dimensional array

In [x]: b = np.array([[2], [-2], [51D)
In [x]: print(a)

[[1]

[0]

[-31]
In [x]: np.dot(a,b) # tries matrix multiplication; won't work
ValueError: shapes (3,1) and (3,1) not aligned: 1 (dim 1) != 3 (dim 0)

If you do want to take the dot product of two column vectors using np.dot, they need
to be turned into row vectors:

In [x]: np.dot(a.T[0], b.T[O]) # transpose to row vectors

Out[x]: -13

This is a bit tortuous: the index is needed because the transpose of our (n, 1) (two-
dimensional) array is a (1, n) array from which we want the first and only row for
our vector. Alternatively, we can operate using a flattened view of the column vectors
obtained with ravel:

6.1.12

6.1 Basic Array Methods 223

In [x]: a.ravel() @ b.ravel()
Out[x]: -13

the same as a.ravel().dot(b.ravel())

To turn a row vector represented by a one-dimensional array of shape (n,) into a
column vector of shape (n, 1), add an axis:
In [x]: r = np.array([3, 4, 5])
In [x]: ¢ = r[:, np.newaxis]
In [x]: c
array ([[3],
[41,
[511)

Logic and Comparisons

NumPy provides a set of methods for comparing and performing logical operations on
arrays elementwise. The more useful of these are summarized in Table 6.4.

np.all and np.any work the same as Python’s built-in functions of the same name'
(see Section 2.4.3):

5

In [x]: a = np.array([[1l, 2, &, 3], [4, 0, 1, 1]11)
In [x]: np.any(a), np.all(a)
Out[x]: (True, False) # some (but not all) elements are equivalent to True

np.isreal and np.iscomplex return boolean arrays:

In [x]: b = np.array([1l, -1j, 0.5j, 0, 1-2.5j1)

In [x]: np.isreal(b)

Out[x]: array([True, False, False, True, False], dtype=bool)
In [x]: np.iscomplex(b)

Out[x]: array([False, True, True, False, True], dtype=bool)

Because the representation of floating-point numbers is not exact, comparing two
float or complex arrays with the == operator is not always reliable and is not recom-
mended Instead, the best we can do is see if two values are “close” to one another
within some (typically small) absolute or relative tolerance — NumPy provides the

Table 6.4 ndarray comparison methods

Function Description
np.all(a) Determine whether all array elements of a evaluate to True.
np.any(a) Determine whether any array element of a evaluates to True.

np.isreal(a)
np.iscomplex(a)

np.isclose(a, b)

np.allclose(a, b)

Determine whether each element of array a is real.

Determine whether each element of array a is a complex
number.

Return a boolean array of the comparison between arrays a and
b for equality within some tolerance.

Return a True if all the elements in the arrays a and b are equal
to within some tolerance.

15 Except that they don’t work on generator or iterator objects.

224

6.1.13

Questions

NumPy

function np.isclose(a, b) for elementwise comparisons of two arrays: it returns True
for elements satisfying

abs(a-b) <= (atol + rtol * abs(b))

with absolute tolerance, atol, and relative tolerance, rtol, which are 1073 and 107,
respectively by default but can be changed by setting the corresponding arguments.'®
An additional argument, equal_nan, defaults to False, meaning that nan values in cor-
responding positions in the two arrays are treated as different; to treat such elements as
equal, set equal_nan=True.

In [x]: a = np.array([1.66e-27, 1.38e-23, 6.63e-34, 6.02e23, np.nan])

In [x]: b = np.array([1.66e-27, 1.66e-27, 1.66e-27, 6.00e23, np.nan])

In [x]: np.isclose(a, b)

Out[x]: array([True, True, True, False, False], dtype=bool)

In [x]: np.isclose(a, b, equal_nan=True)

Out[x]: array([True, True, True, False, Truel], dtype=bool)

Note that small numbers compare as equal even though they may differ by many orders
of magnitude — to correct this, set atol=0 to compare within relative tolerance only:

In [x]: np.isclose(a, b, atol=0)
Out[x]: array([True, False, False, False, False], dtype=bool)

Finally, allclose(a, b) returns a single value: True only if every element in a is equal
to the corresponding element in b (within the tolerance defined by atol and rtol), and
otherwise False.

In [x]: x = np.linspace(®, np.pi, 100)
In [x]: np.allclose(np.sin(x)**2, 1 - np.cos(x)**2)
Out[x]: True

Exercises

Q6.1.1 What is the difference between the objects np.ndarray and np.array?

Q6.1.2 Why doesn’t this create a two-dimensional array?

>>> np.array((l1, 0, 0, (0, 1, ®, (0, 0, 1), dtype=float)

What is the correct way?

Q6.1.3 What is the difference, if any, between the following statements:

>>> a = np.array ([0, 0, 0])
>>> a = np.array([[0, 0, 0]])

Q6.1.4 Explain the following behavior:

16 Note that this relation is not symmetric in a and b, so it is possible that isclose(a, b) may not equal
isclose(b, a).

6.1 Basic Array Methods 225

In [x]: a, b = np.zeros((3,)), np.ones((3,))

In [x]: a.dtype = 'int

In [x]: a

Out[x]: array([®, O, 0])

In [x]: b.dtype = 'int'

In [x]: b

Out[x]: array([4607182418800017408, 4607182418800017408, 4607182418800017408])

What is the correct way to convert an array of one data type to an array of another?

Q6.1.5 A 3 x4 x4 array is created with

In [x]: a = np.linspace(l, 48, 48).reshape(3, 4, 4)
Index or slice this array to obtain the following:

(a) 20.0
(b) [9. 18. 11. 12.]
(c) The4 x4 array:

[[33. 34. 35. 36.]
[37. 38. 39. 40.]
[41. 42. 43. 44.]
[

45. 46. 47. 48.1]1]

(d) The 3 x 2 array:

(e 5., 6.1,
[21., 22.1,
[37., 38.11

(e) The 4 x 2 array:

[[36. 35.]
[40. 39.]
[44. 43.]
[48. 47.]]

(f) The 3 x 4 array:

[[13. 9. 5. 1.]
[29. 25. 21. 17.]
[45. 41. 37. 33.1]

(g) (Harder) Using an array of indexes, the 2 X 2 array:

[L 1. 4.]
[45. 48.]]

Q6.1.6 Write an expression, using boolean indexing, which returns only the values
from an array that have magnitudes between 0 and 1.

Q6.1.7 Why does the following statement evaluate to True even though the two num-
bers passed to np.isclose() differ by more than atol?

In [x]: np.isclose(-2.00231930436153, -2.0023193043615, atol=1.e-14)
Out[x]: True

226

Problems

NumPy

Q6.1.8 Explain why the following evaluates to True even though the two approxima-
tions to 7 differ by more than 10716:

In [x]: np.isclose(3.1415926535897932, 3.141592653589793, atol=1.e-16, rtol=0)
Out[x]: True

whereas this statement works as expected:

In [x]: np.isclose(3.14159265358979, 3.1415926535897, atol=1.e-14, rtol=0)
Out[x]: False

Q6.1.9 Verify that the magic square created in Example E6.2 satisfies the conditions
that it contains the numbers 1 to N2 and that its rows, columns and main diagonals sum
to N(N? + 1)/2.

Q6.1.10 Write a one-line statement that returns True if an array is a monotonically
increasing sequence or False otherwise.

Hint: np.diff returns the difference between consecutive elements of a sequence. For
example,

In [x]: np.diff([1, 2, 3, 3, 2])
Out[x]: array([1, 1, 0, -11)

Q6.1.11 (Harder) The dtype np.uint8 represents an unsigned integer in 8 bits. Its
value may therefore be in the range 0—255. Explain the following behavior:
In [x]: x = np.uint8(250)

In [x]: x * 2
OQut[x]: 500

In [x]: x = np.array([250,], dtype=np.uint8)
In [x]: x * 2
Out[x]: array([244], dtype=uint8)

P6.1.1 Turn the following data concerning various species of cetacean into a NumPy
structured array and order it by (a) mass and (b) population. Determine in each case the
index at which Bryde’s whale (population: 100 000, mass: 25 tonnes) should be inserted
to keep the array ordered.

6.1 Basic Array Methods

Name Population Mass/tonnes
Bowhead whale 9000 60
Blue whale 20000 120

Fin whale 100000 70
Humpback whale 80000 30
Gray whale 26 000 35
Atlantic white-sided dolphin 250000 0.235
Pacific white-sided dolphin 1000 000 0.15
Killer whale 100000 4.5
Narwhal 25000 1.5
Beluga 100000 1.5
Sperm whale 2000000 50
Baiji 13 0.13
North Atlantic right whale 300 75
North Pacific right whale 200 80
Southern right whale 7000 70

227

A text file containing these data can be downloaded at [https://scipython.com/ex/bfk].

P6.1.2 The shoelace algorithm for calculating the area of a simple polygon (that
is, one without holes or self-intersections) proceeds as follows: Write down the (x,y)
coordinates of the N vertexes in an N X 2 array and then repeat the coordinates of the
first vertex as the last row to make an (N + 1) X 2 array. Now (a) multiply each x-
coordinate value in the first N rows by the y-coordinate value in the next row down
and take the sum, S| = x;y2 + x2¥3 + ... + xyy;. Then (b) multiply each y-coordinate
value in the first N rows by the x-coordinate in the next row down and take the sum,
So =y1x2 + y2x3 + ...+ ynx;. The area of the polygon is then %ISI -S|

=

1 V1

2\)’
3\§
N

Y1

>
5

=
N

=
IS

=

1

(a)

X1 M
X2 Y2
X3 y3
X4 Y4
X1 Y1
(b)

Implement this algorithm as a function that takes a NumPy array of vertexes as its
argument and returns the area of the polygon. Do not use Python loops!

P6.1.3 Using NumPsy, it is possible to do this exercise without using a single (Python)

loop.

The normalized Gaussian function with mean u and standard deviation o is

Y
g(x) = p(—(x))

1
o\2n

€X

202

https://scipython.com/ex/bfk

228

6.2

6.2.1

6.2.2

NumPy

Write a program to calculate and plot the Gaussian functions with u = 0 and the three
values o = 0.5, 1, 1.5. Use a grid of 1000 points in the interval —10 < x < 10.

Verify (by direct summation) that the functions are normalized with area 1.

Finally, calculate the first derivative of these functions on the same grid using the
first-order central difference approximation:

_glx+h)—glx—h)
- 2h

g'(x)

for some suitably chosen, small /.

Reading and Writing an Array to a File

Scientific data are frequently read in from a text file, which may contain comments,
missing values and blank lines. Columns of values may be either aligned in a fixed-
width format or separated by one or more delimiting characters (such as spaces, tabs or
commas). Furthermore, there may be a descriptive header and even footnotes to the file,
which make it hard to parse directly using Python’s string methods.

NumPy provides several functions for reading data from a text file. The simpler
np.loadtxt handles many common cases; the more sophisticated np.genfromtxt
allows for better handling of missing values and footers. These are described in the
following sections.

np.save and np.load
There is a platform-independent binary format for saving a NumPy array:
In [x]: np.save('my-array.npy', a)

will save the array a to the binary file my-array.npy (the .npy extension is appended if
it is not provided). The array can then be reloaded using NumPy on any other operating
system with

In [x]: a = np.load('my-array.npy')

(the .npy extension must be provided).

np.loadtxt

The method prototype for np.loadtxt is

np.loadtxt (fname, dtype=<class 'float'>, comments='#"',
delimiter=None, converters=None, skiprows=0,
usecols=None, unpack=False, ndmin=0)

The arguments are as follows:

. fname: The only required argument, fname, which can be a filename, an open file
or a generator returning the lines of data to be parsed.

6.2 Reading and Writing an Array to a File 229

dtype: The data type of the array defaults to float but can be set explicitly by
the dtype argument. In particular, this is the place to set up names and types for
a structured array (see Section 6.1.10).

comments: Comments in a file are usually started by some character such as # (as
with Python) or %. To tell NumPy to ignore the contents of any line following this
character, use the comments argument — by default it is set to #.

delimiter: The string used to separate columns of data in the file; by default it is
None, meaning that any amount of whitespace (spaces, tabs) delimits the data. To
read a comma-separated (csv) file, set delimiter=",".

converters: An optional dictionary mapping the column index to a function
converting string values in that column to data (e.g. float).

skiprows: An integer giving the number of lines at the start of the file to skip
over before reading the data (e.g. to pass over header lines). Its default is 0 (no
header).

usecols: A sequence of column indexes determining which columns of the file
to return as data; by default it is None, meaning all columns will be parsed and
returned.

unpack: By default, the data table is returned in a single array of rows and columns
reflecting the structure of the file read in. Setting unpack=True will transpose
this array so that individual columns can be picked off and assigned to different
variables.

ndmin: The minimum number of dimensions the returned array should have. By
default, O (so a file containing a single number is read in as a scalar); it can also
be setto 1 or 2.

For example, to read the first, third and fourth columns from the file data.txt into
three separate one-dimensional arrays:

coll,

col3, col4 = np.loadtxt('data.txt', usecols=(®, 2, 3), unpack=True)

Example E6.6 The use of np.loadtxt is best illustrated using an example. Consider
the following text file of data relating to a (fictional) population of students. This file
can be downloaded as eg6-a-student-data.txt from |https://scipython.com/eg/bac].

Student data collected on 17 July 2014.
Researcher: Dr Wicks, University College Newbury.

The following data relate to N = 20 students. It
has been totally made up and so therefore is 100%
anonymous.

Subject Sex DOB Height Weight BP V02max

(ID) M/F dd/mm/yy m kg mmHg mL.kg-1.min-1
Jw-1 M 19/12/95 1.82 92.4 119/76 39.3

Jw-2 M 11/1/96 1.77 80.9 114/73 35.5

Jw-3 F 2/10/95 1.68 69.7 124/79 29.1

JW-6 M 6/7/95 1.72 75.5 110/60 45.5

JW-7 F 28/3/96 1.66 72.4 101/68 -

Jw-9 F 11/12/95 1.78 82.1 115/75 32.3

Jw-10 F 7/4/96 1.60 - -/- 30.1

https://scipython.com/eg/bac

230

NumPy

Jw-11 M 22/8/95 1.72 77.2 97/63 48.8
JW-12 M 23/5/96 1.83 88.9 105/70 37.7
Jw-14 F 12/1/96 1.56 56.3 108/72 26.0
JwW-15 F 1/6/96 1.64 65.0 99/67 35.7
JW-16 M 10/9/95 1.63 73.0 131/84 29.9
Jw-17 M 17/2/96 1.67 89.8 101/76 40.2
JW-18 M 31/7/96 1.66 75.1 -/~ -
JW-19 F 30/160/95 1.59 67.3 103/69 33.5
JW-22 F 9/3/96 1.70 - 119/80 30.9
JW-23 M 15/5/95 1.97 89.2 124/82 -
JW-24 F 1/12/95 1.66 63.8 100/78 -
JW-25 F 25/10/95 1.63 64.4 -/~ 28.0
JW-26 M 17/4/96 1.69 - 121/82 39.

Let’s find the average heights of the male and female students. The columns we need
are the second and fourth, and there are no missing data in these columns so we can
use np.loadtxt. First, construct a record dtype for the two fields, then read the relevant
columns after skipping the first nine header lines:

In [x]: fname = 'eg6-a-student-data.txt'
In [x]: dtypel = np.dtype([('gender', '|S1'), ('height', '£8')])
In [x]: a = np.loadtxt(fname, dtype=dtypel, skiprows=9, usecols=(1,3))
In [x]: a
Out[x]:
array([(b'M', 1.8200000524520874), (b'M', 1.7699999809265137),
(b'F', 1.6799999475479126), (b'M', 1.7200000286102295),

(b'M', 1.690080057220459)],
dtype=[('gender', 'S1'), ('height', '<£8')])
To find the average heights of the male students, we only want to index the records
with the gender field as M, for which we can create a boolean array:
In [x]: m = a['gender'] == b'M"

In [x]: m
Out[x]: array([True, True, False, True, ..., True], dtype=bool)

m has entries that are True or False for each of the 19 valid records (one is commented
out) according to whether the student is male or female. So the heights of the male
students can be seen to be:

In [x]: print(a['height'][m])

[1.82000005 1.76999998 1.72000003 1.72000003 1.83000004 1.63
1.66999996 1.65999997 1.97000003 1.69000006]

Therefore, the averages we need are

In [x]: m_av = a['height'][m].mean()

In [x]: f_av = a['height'][~m].mean()

In [x]: print('Male average: {:.2f} m, Female average: {:.2f} m'.format(m_av,f_av))
Male average: 1.75 m, Female average: 1.65 m

O Note that ~m (“not m”) is the inverse boolean array of m.

To perform the same analysis on the student weights, we have a bit more work to do
because there are some missing values (denoted by “-”
(see Section 6.2.3), but let’s write a converter method instead. We’ll replace the missing
values with the nicely unphysical value of —99. The function parse_weight expects a
string argument and returns a float:

). We could use np.genfromtxt

6.2 Reading and Writing an Array to a File 231

def parse_weight(s):
try:
return float(s)
except ValueError:
return -99.

This is the function we want to pass as a converter for column 4:

In [x]: dtype2 = np.dtype([('gender', '|S1'), ('weight', '£f8')])
In [x]: b = np.loadtxt(fname, dtype=dtype2, skiprows=9, usecols=(1l, 4),
converters={4: parse_weight})

Now mask off the invalid data and index the array with a boolean array as before:

In [x]: mv = b['weight'] > 0 # elements only True for valid data
In [x]: m_wav = b['weight'][mv & m].mean() # valid and male
In [x]: f_wav = b['weight'][mv & ~m].mean() # valid and female

In [x]: print('Male average: {:.2f} kg,
Female average: {:.2f} kg'.format(m_wav, f_wav))
Male average: 82.44 kg, Female average: 66.94 kg

Finally, let’s read in the blood pressure data. Here we have a problem, because the
systolic and diastolic pressures are not separated by whitespace but by a forward slash
(/). One solution is to reformat each line to replace the slash with a space before it is
fed to np.loadtxt. Recall that fname can be a generator instead of a filename or open
file: we write a suitable generator function, reformat_lines, which takes an open file
object and yields its lines to np.loadtxt, one by one, after the replacement. This is
going to mess with the column numbering because it has the side effect of splitting up
the birth dates into three columns, so in our reformatted lines the blood pressure values
are now in the columns indexed at 7 and 8.

Listing 6.4 Reading the blood-pressure column

egb-a-read-bp.py
import numpy as np

fname = 'eg6-a-student-data.txt'
dtype3 = np.dtype([('gender', '[S1"), ('bps', '£8'), ('bpd', '"£8')1)

def parse_bp(s):
try:
return float(s)
except ValueError:
return -99.

def reformat_lines(fi):
for line in fi:
line = line.replace('/', " ")
yield line
with open(fname) as fi:
gender, bps, bpd = np.loadtxt(reformat_lines(fi), dtype3, skiprows=9,
usecols=(1, 7, 8),converters={7: parse_bp, 8: parse_bp},
unpack=True)

Now do something with the data...

232

6.2.3

NumPy

np.genfromtxt

NumPy’s genfromtxt function is similar to np.loadtxt but has a few more options and
is able to cope with missing data.

The following arguments to this function are the same as for np.loadtxt: fname (the
only required argument), dtype, comments, converters, usecols and unpack.

Headers and Footers

Instead of np.loadtxt’s skiprows, the np.genfromtxt function has two optional argu-
ments, skip_header and skip_footer, giving the number of lines to skip at the begin-
ning and the end of the file, respectively.

Fixed-Width Fields

The delimiter argument works the same as for np.loadtxt but can also be provided
as a sequence of integers giving the widths of each field to be read in where the data
columns do not have delimiters. For example, suppose the following text file, data. txt,
is to be interpreted as consisting of four columns with widths 2, 1, 9 and 3 characters
(spaces are indicated with “_”):

.12..100.231.03

.11.1201.842.04
w1150.99.324.02

so that the first row is to be split: ' 1', '2', ' 100.231', '.03'. There is no delim-
iter character, so this isn’t possible with np.loadtxt, but with np.genfromtxt:
In [x]: np.genfromtxt(fname="'data.txt', delimiter=[2, 1, 9, 3],
dtype='i4, i4, £8, £8')
array([(1, 2, 100.231, 6.63), (1, 1, 1201.842, 0.04), (1, 1, 99.324, 0.62)],
dtype=[('£0', '<i4'), ('f1', '<id'), ('£2', '<f8'), ('f3', '<£8")1)

as required.

Missing Data
If a data set is incomplete, np.loadtxt will be unable to parse the fields with missing
data into valid values for the array and will raise an exception. np.genfromtxt, however,
sets missing or invalid entries equal to the default values given in Table 6.5.

For example, the comma-separated file here has two ways of indicating missing data:
empty fields and entries with “??7?7”:
10.1,4,-0.1,2
10.2,4,,0
10.3,777,,4

10.4,2,0.,
10.5,-1,7?7,3

Accordingly, np.genfromtxt sets the missing fields to its defaults:

In [x]: data = np.genfromtxt(fname='data.txt', dtype='£8, i4, f8, i4',
: delimiter=",")

6.2 Reading and Writing an Array to a File 233

Table 6.5 Default filling values for
missing data used by genfromtxt

Data type Default value
int -1

float np.nan

bool False
complex np.nan + 0.j

In [x]: print(data)
[(10.1, 4, -0.1, 2) (160.2, 4, nan, 0) (10.3, -1, nan, 4) (10.4, 2, 0.0, -1)
(10.5, -1, nan, 3)]

The missing_values and filling_values arguments allow closer control over which
default values to use for which columns. If missing_values is given as a sequence of
strings, each string is associated with a column in the data file, in order; if given as a
dictionary of string values, the keys denote either column indexes (if they are integers)
or column names (if they are strings). The corresponding argument, filling_values,
maps these column indexes or names to default values. If filling_values is provided
as a single value, this value is used for missing data in all columns.

For example, to replace the invalid values in column 1 (indicated by “???”") with 999,
the missing or invalid values in column 2 (also indicated by “??7?”) with —99 and the
missing values in column 3 with 0:

In [x]: data =np.genfromtxt(fname='data.txt',6 dtype='f8, i4, f8, i4',

delimiter="',"', missing_values={1: '???', 2: '??7?'},
filling_values={1: 999, 2: -99., 3: 0})

In [x]: print(data)
[(10.1, 4, -0.1, 2) (160.2, 4, -99.0, 0) (10.3, 999, -99.0, 4)
(10.4, 2, 6.0, 0) (10.5, -1, -99.0, 3)]

Note in particular how the missing entry in the second column has been replaced by 999
instead of the default —1 — this would be particularly important if —1 is a valid value for
this column (however, it is now up to the rest of your code to recognize and know what

to do with values such as 999.17

Column Names

The argument names provides a way of setting names for the columns of data read in. If
it is the boolean value True, the names are read from the first valid line after the number
of lines skipped over specified by the skip_header argument; if names is a comma-
separated string of names or a sequence of strings, those strings will be used as names.
By default, names is None and the field names are taken from the dtype, if given.

17 For more advanced handling of missing values, see the genfromtxt documentation for details on the
usemask argument and masked arrays in general.

234

NumPy

Example E6.7 In an experiment to investigate the Stroop effect, a group of students
were timed reading out 25 randomly ordered color names, first in black ink and
then in a color other than the one they name (e.g. the word “red” in blue ink). The
results are presented in the text file stroop.txt, which can be downloaded from
[https://scipython.com/eg/baj. Missing data are indicated by the character X.

Subject Number, Gender, Time (words in black), Time (words in color)
1,F,18.72,31.11
2,F,21.14,52.47
3,F,19.38,33.92
4,M,22.03,50.57
5,M,21.41,29.63
6,M,15.18,24.86
7,F,14.13,33.63
8,F,19.91,42.39
9,F,X,43.60
10,F,26.56,42.31
11,F,19.73,49.36
12,M,18.47,31.67
13,M,21.38,47.28
14,M,26.05,45.07
15,F,X,X
16,F,15.77,38.36
17,F,15.38,33.07
18,M,17.06,37.94
19,M,19.53,X
20,M,23.29,49.60
21,M,21.30,45.56
22,M,17.12,42.99
23,F,21.85,51.40
24,M,18.15,36.95
25,M,33.21,61.59

We can read in this data with np.genfromtxt and summarize the results with the code
here.

Listing 6.5 Analyzing data from a Stroop effect experiment

eg6-stroop.py
import numpy as np

Read in the data from stroop.txt, identifying missing values and

replacing them with NaN.

data = np.genfromtxt('stroop.txt', skip_header=1,
dtype=[('student', 'u8'), ('gender', 'S1'),

('black', '£f8'), ('color', '£8')],

delimiter="',",
missing_values='X")

nwords = 25

Remove invalid rows from data set.
filtered_data = data[np.isfinite(data['black']) & np.isfinite(data['color'])]

Extract rows by gender (M/F) and word color (black/color) and normalize
to time taken per word.

https://scipython.com/eg/baj

6.2.4

6.2 Reading and Writing an Array to a File 235

fb = filtered_data['black'][filtered_data['gender']==b'F'] / nwords

mb = filtered_data['black'][filtered_data['gender']==b'M'] /

fc = filtered_data['color'][filtered_data['gender']==b'F'] / nwords
/

mc = filtered_data['color']J[filtered_data['gender']==b'M"']

nwords

nwords

Produce statistics: mean and standard deviation by gender and word color.
mu_fb, sig_fb = np.mean(fb), np.std(£fb)
mu_fc, sig_fc = np.mean(fc), np.std(fc)
mu_mb, sig_mb = np.mean(mb), np.std(mb)
mu_mc, sig_mc = np.mean(mc), np.std(mc)

print('Mean and (standard deviation) times per word (sec)')

print('gender | black | color | difference')

print (' F | {:4.3f} ({:4.3f}) | {:4.3f} ({:4.3£f}) | {:4.3£}"
.format (mu_fb, sig_fb, mu_fc, sig_fc, mu_fc - mu_£fb))

print (' M | {:4.3£f} ({:4.3f}) | {:4.3f} ({:4.3f}) | {:4.3£}"

.format (mu_mb, sig_mb, mu_mc, sig_mc, mu_mc - mu_mb))

O In the absence of any provided filling_values, np.genfromtxt will replace the
invalid fields with np.nan.

® We only want to consider students with times for both parts of the experiment, so
create a filtered data set here.

The output shows a significantly slower per-word speed for the false-colored words
than for the words in black:

Mean and (standard deviation) times per word (sec)

gender | black | color | difference
F | 0.770 (0.137) | 1.632 (0.306) | 0.862
M | 0.849 (0.186) | 1.679 (0.394) | 0.830

np.savetxt

The np.savetxt function saves a NumPy array as a text file. Its call signature is

np.savetxt(fname, X, fmt='%.18e', delimiter="' ,

v

newline="\n', header='"', footer=

[

, comments='# ')

The arguments are as follows:

. fname: The name of the file or an open file handle into which the array data is to
be saved.
. X: The array to save.

. fmt: A string defining the C-style format specifier for the array data output (see
Section 2.3.7 for details). The default is '%.18e".

. delimiter: The string delimiting columns in the output file; by default, a single
space.
. newline: The string separating lines in the output file; by default, this is the Unix-

style '\n'. Windows users may prefer to set newline to the sequence used on their
platform: '\r\n".

236

NumPy

. header: A (possibly multiline) string to be written at the start of the output file.

. footer: A (possibly multiline) string to be written at the end of the output file.

° comments: A string that will be added to the header and footer to mark them as
comments. The defaultis '# '. This is useful if the file is to be subsequently read
in by np.loadtxt or np.genfromtxt so the number of header and footer lines
does not have to be explicitly specified.

Example E6.8 The decay of an ensemble of radioactive nuclei over a period of time
can be simulated as follows. Consider the time period to be divided into short, discrete
intervals of duration At <« 7, where 7 is the lifetime for the decay (which is related to
the half-life, ¢, », through 7 = #1,5/ In 2). The probability that a given nucleus will decay
in time At is p = At/t.

At each time-step, the simulation loops over the undecayed nuclei from the previous
time-step and draws a random number from the uniform distribution on [0, 1): if this
random number is less than p, the nucleus is considered to have decayed.

The code below defines a function to carry out this simulation for a set of Ny = 500
14C nuclei with half-life #, 2 = 5730 years. nsims = 10 such simulations are carried out
and saved to a comma-separated file, 14C-sim.csv, with a brief, explanatory header.

Listing 6.6 Simulation of the radioative decay of *C

import random
import numpy as np

def decay_sim(thalf, NO=500, tgrid=None, nhalflives=4):
"""Simulate the radioactive decay of NO® nuclei.

thalf is the half-life in some units of time.

If tgrid is provided, it should be a sequence of evenly-spaced time points
to run the simulation on.

If tgrid is None, it is calculated from nhalflives, the number of
half-lives to run the simulation for.

o

Calculate the lifetime from the half-life.
tau = thalf / np.log(2)

if tgrid is None:

Create a grid of Nt time points up to tmax.

Nt, tmax = 100, thalf * nhalflives

tgrid, dt = np.linspace(®, tmax, Nt, retstep=True)
else:

tgrid was provided: deduce Nt and the time step, dt.

Nt = len(tgrid)

dt = tgrid[1] - tgrid[0]

N = np.empty(Nt, dtype=int)

N[O®] = NO®

The probability that a given nucleus will decay in time dt.
p = dt / tau

6.2.5

Problems

6.2 Reading and Writing an Array to a File 237

for i in range(l, Nt):
At each time step, start with the undecayed nuclei from the previous.
N[i] = N[i-1]
Consider each nucleus in turn and decide whether it decays or not.
for j in range(N[i-1]):
r = random.random()

if r < p:
This nucleus decays.
N[i] -=1

return tgrid, N

NO® = 500
Half life of 14C in years.
thalf = 5730

Use Nt time steps up to tmax years.
Nt, tmax = 100, 20000
tgrid = np.linspace(®, tmax, Nt)

Repeat the simulation "experiment" nsims times.
nsims = 10
Nsim = np.empty ((Nt, nsims))
for i in range(nsims):

_, Nsim[:, i] = decay_sim(thalf, N®, tgrid)
Save the time grid, followed by the simulations in columns. We save integer
values for the data and create a comma-delimited file with a two-line header.
np.savetxt('1l4C-sim.csv', np.hstack((tgrid[:, None], Nsim)),

fmt = '%d', delimiter="',",

header=f'Simulations of the radioactive decay of {N®} 14C nuclei.\n'

f'Columns are time in years followed by {nsims} decay simulations.'

)

The contents of the output file, 14C-sim.csv, will resemble:

Simulations of the radioactive decay of 500 14C nuclei.
Columns are time in years followed by 10 decays.
0,500,500,500,500,500,500,500,500,500,500
202,489,486,487,491,487,486,485,487,490,490

404,479,478 ,483,479,477,476,480,474,484,482

606,462,467 ,470,463,464,463,470,454,474,471

This file can be read in to a NumPy array with:

arr = np.loadtxt('14C-sim.csv', delimiter=",")

See also Exercise P6.5.7.

Exercises

P6.2.1 The following text file, which is available to download at |https://scipython
.com/ex/bf]|, gives some data concerning the 8000 m peaks, in alphabetical order.

https://scipython.com/ex/bfj
https://scipython.com/ex/bfj

238

NumPy

ex6-2-b-mountain-data.txt This file contains a list of the 14
highest mountains in the world with their names, height, year
of first ascent, year of first winter ascent, and location as
longitude and latitude in degrees (d), minutes (m) and seconds
(s). Note: as of 2019, no winter ascent has been made of K2.

Name Height First ascent First winter Location
m date ascent date (WGS84)

Annapurna I 8091 3/6/1950 3/2/1987 28d35m46sN 83d49m13sE

Broad Peak 8051 9/6/1957 5/3/2013 35d48m39sN 76d34mO6SE
Cho Oyu 8201 19/10/1954 12/2/1985 28d05m39sN 86d39m39sE
Dhaulagiri I 8167 13/5/1960 21/1/1985 27d59m17sN 86d55m31sE
Everest 8848 29/5/1953 17/2/1980 27d59m17sN 86d55m31sE
Gasherbrum I 8080 5/7/1958 9/3/2012 35d43m28sN 76d41m47sE
Gasherbrum II 8034 7/7/1956 2/2/2011 35d45m30sN 76d39m12sE
K2 8611 31/7/1954 - 35d52m57sN 76d30m48sE
Kangchenjunga 8568 25/5/1955 11/1/1986 27d42m09sN 88d08m54sE
Lhotse 8516 18/5/1956 31/12/1988 27d57m42sN 86d56m00sE
Makalu 8485 15/5/1955 9/2/2009 27d53m21sN 87d05m19sE
Manaslu 8163 9/5/1956 12/1/1984 28d33mOsN 84d33m35sE

Nanga Parbat 8126 3/7/1953 16/2/2016 35d14m15sN 74d35m21sE
Shishapangma 8027 2/5/1964 14/1/2005 28d21m8sN 85d46m47sE

Use NumPy’s genfromtxt method to read these data into a suitable structured array
to determine the following:

(a) the lowest 8000 m peak;

(b) the most northely, easterly, southerly and westerly peaks;
(c) the most recent first ascent of the peaks;

(d) the first of the peaks to be climbed in winter.

Also, produce another structured array containing a list of mountains with their height
in feet and first ascent date, ordered by increasing height.!®

P6.2.2 The file busiest_airports.txt, which can be downloaded from
[https://scipython.com/ex/bfal, provides details of the 30 busiest airports in the world
in 2014. The tab-delimited fields are: three-letter IATA code, airport name, airport
location, latitude and longitude (both in degrees).

Write a program to determine the distance between two airports identified by their
three-letter IATA code, using the Haversine formula (see, for example, Exercise P4.4.2)
and assuming a spherical Earth of radius 6378.1 km.

P6.2.3 The World Bank provides an extensive collection of data sets on a wide
range of “indicators,” which is searchable at https://data.worldbank.org/. Data sets
concerning child immunization rates for BCG (against tuberculosis), Pol3 (Polio) and
measles in three Southeast Asian countries between 1960 and 2013 are available at

18 1 metre = 3.2808399 feet.

https://scipython.com/ex/bfa
https://data.worldbank.org/

6.3

6.3.1

6.3 Statistical Methods 239

[https://scipython.com/ex/bfb|. Fields are delimited by semicolons and missing values
are indicated by '..".

Use NumPy methods to read in these data and create three plots (one for each vaccine)
comparing immunization rates in the three countries.

Statistical Methods

NumPy provides several methods for performing statistical analysis, either on an entire
array or an axis of it.

Ordering Statistics

Maxima and Minima

We have already used np.min and np.max to find the minimum and maximum values
of an array (these methods are also available using the names np.amin and np . amax). If
the array contains one or more NaN values, the corresponding minimum or maximum
value will be np.nan. To ignore NaN values, instead use np.nanmin and np.nanmax:

In [x]: a = np.sqrt(np.linspace(-2, 2, 4))

In [x]: print(a)

[nan nan 0. 1. 1.41421356]

In [x]: np.min(a), np.max(a)

Out[x]: (man, nan)

In [x]: np.nanmin(a), np.nanmax(a)
(0.0, 1.4142135623730951)

We have also met the functions np.argmin and np.argmax, which return the index
of the minimum and maximum values in an array; they too have np.nanargmin and
np.nanargmax variants:

In [x]: np.argmin(a), np.argmax(a)

Out[x]: (0, 0) # the first nan in the array
In [x]: np.nanargmin(a), np.nanargmax(a)

Out[x]: (2, 4) # the indexes of 0, 1.41421356

The related methods, np. fmin / np. fmax and np.minimum / np .maximum, compare two
arrays, element by element, and return another array of the same shape. The first pair of
methods ignores NaN values and the second pair propagates them into the output array.
For example,

In [x]: np.fmin([1l, -5, 6, 2], [0, np.nan, -1, -1])
array([0., -5., -1., -1.1) # NaNs are ignored

In [x]: np.maximum([1l, -5, 6, 2], [®, np.nan, -1, -1])
array([1., nan, 6., 2.1) # NaNs are propagated

Percentiles

The np . percentile method returns a specified percentile, g, of the data along an axis (or
along a flattened version of the array if no axis is given). The minimum of an array is the
value at g = 0 (Oth percentile), the maximum is the value at g = 180 (100th percentile)

https://scipython.com/ex/bfb

240

6.3.2

NumPy

and the median is the value at g = 50 (50th percentile). Where no single value in the
array corresponds to the requested value of g exactly, a weighted average of the two
nearest values is used. For example,

In [x]: a = np.array([[®., 0.6, 1.2], [1.8, 2.4, 3.0]11)

In [x]: np.percentile(a, 50)

1.5

In [x]: np.percentile(a, 75)

2.25

In [x]: np.percentile(a, 50, axis=1)

array([0.6, 2.4])

In [x]: np.percentile(a, 75, axis=1)

array([0.9, 2.7]1)

Averages, Variances and Correlations

Averages

In addition to np.mean, which calculates the arithmetic mean of the values along a spec-
ified axis of an array, NumPy provides methods for calculating the weighted average,
median, standard deviation and variance. The weighted average is calculated as

- = wixi
W N
Eli Wi
where the weights, w;, are supplied as a sequence the same length as the array. For
example,

s

In [x]: x = np.array([1l., 4., 9., 16.1)
In [x]: np.mean(x)

7.5

In [x]: np.median(x)

6.5

In [x]: np.average(x, weights=[0., 3., 1., 0.])
5.25 # i.e. (3.%4. + 1.%9.) / (3. + 1.)

If you want the sum of the weights as well as the weighted average, set the returned
argument to True. In the following example, we do this and find the weighted averages
in each row (axis=1 averages values across columns of a two-dimensional array):

In [x]: x = np.array([[1., 8., 27], [-0.5, 1., 0.1]1)

In [x]: av, sw = np.average(x, weights=[0., 1., 0.1], axis=1, returned=True)
In [x]: print(av)

[9.72727273 ©.90909091]

In [x]: print(sw)

[1.1 1.1]

The averages are therefore (1 x 8 + 0.1 x 27)/1.1 = 9.72727273 and (1 x 1.)/1.1 =
0.90909091 where 1.1 is the sum of the weights.

6.3 Statistical Methods 241

Standard Deviations and Variances
The function np. std calculates, by default, the uncorrected sample standard deviation:

where x; are the N observed values in the array and X is their mean. To calculate the
corrected sample standard deviation,

1 &
— _E)2
o= N_3 i(x, X)?,

pass to the argument ddof the value of § such that N — ¢ is the number of degrees of
freedom in the sample. For example, if the sample values are drawn from the population
independently with replacement and used to calculate X there are N — 1 degrees of
freedom in the vector of residuals used to calculate o: (x; — X, x, — X,...,xy — X) and
so ¢ = 1. For example,

In [x]: x = np.array([1l., 2., 3., 4.])

In [x]: np.std(x) # or x.std(), uncorrected standard deviation
1.1180339887498949

In [x]: np.std(x, ddof=1) # corrected standard deviation
1.2909944487358056

The function np.nanstd calculates the standard deviation ignoring np.nan values (so
that N is the number of non-NaN values in the array). NumPy also has methods for
calculating the variance of the values in an array: np.var and np.nanvar.

The covariance is returned by the npcov method. In its simplest invocation, it can
be passed a single two-dimensional array, X, in which the rows represent variables, x;,
and the columns observations of the value of each variable. np.cov(X) then returns the
covariance matrix, C;;, indicating how variable x; varies with x;: the element C;; is said
to be an estimate of the covariance of variables x; and x;:

Cij = cov(x;, x;j) = E[(x; — pi)(xj —)],

where y; is the mean of the variable x; and E[] denotes the expected value. If there are
N observed values for each of the variables, y; = # >« Xik- The unbiased estimate of the
covariance is then

1
Cij= No1 Zk:[(xik = p) (X =)]

This is the default behavior of np.cov, but if the bias argument is set to 1, then N is
used in the denominator here to give the biased estimate of the covariance. Finally, the
denominator can be set explicitly to N — ¢ by passing ¢ as the argument to the ddof
argument of cov.

Example E6.9 As an example, consider the matrix of five observations each of three
variables, xg, x; and x;, whose observed values are held in the three rows of the array X:

242

NumPy

X = np.array([[0.1, 0.3, 0.4, 0.8, 0.9],
[3.2, 2.4, 2.4, 0.1, 5.5],
[10., 8.2, 4.3, 2.6, 0.9]

D

The covariance matrix is a 3 X 3 array of values,

In [x]: print(np.cov(X))

[[6.115 , 0.0575, -1.2325],
[0.0575, 3.757 , -0.8775],
[-1.2325, -0.8775, 14.525]]

The diagonal elements, Cj;, are the variances in the variables x;, assuming N — 1 degrees
of freedom:

In [x]: print(np.var(X, axis=1, ddof=1))
[0.115 3.757 14.525]

Although the magnitude of the covariance matrix elements is not always easy to inter-
pret (because it depends on the magnitude of the individual observations, which may be
very different for different variables), it is clear that there is a strong anticorrelation
between xg and x, (Cop = —1.2325: as one increases the other decreases) and no strong
correlation between xo and x; (Co; = 0.0575: xo and x; do not trend strongly together).

The correlation coefficient matrix is often used in preference to the covariance matrix
as it is normalized by dividing C;; by the product of the variables’ standard deviations:
Ci; Ci;
Pij = CO]’I‘(.X,',.Xj) =Y - —J
Tioj CiCjj
This means that the elements P;; have values between —1 and 1 inclusive, and the
diagonal elements, P; = 1. In our example, using np.corrcoef gives:

In [x]: print(np.corrcoef(X))

[[1. 0.0874779 -0.95363007]
[0.0874779 1. -0.11878687]
[-0.95363007 -0.11878687 1. 11

It is easy to see from this correlation coefficient matrix the strong anticorrelation
between xo and x; (Cpp = —0.954) and the lack of correlation between x; and the other
variables (e.g. C; o = 0.087).

Both the np. cov and np.corrcoef methods can take a second array-like object con-
taining a further set of variables and observations, so they can be called on a pair of
one-dimensional arrays without stacking them into a single matrix:

In [x]: x = np.array([1l., 2., 3., 4., 5.1)

In [x]: y = np.array([0.08, 0.31, 0.41, 0.48, 0.62])
In [x]: print(np.corrcoef(x,y))

[1. 0.97787645]
[0.97787645 1. 11
That is

np.corrcoef(x, y)

6.3.3

6.3 Statistical Methods 243

is a convenient alternative to

np.corrcoef(np.vstack((x,y)))

Finally, if your observations happen to be in the rows of your matrix, with the vari-
ables corresponding to the columns (instead of the other way round) there is no need to
transpose the matrix, just pass rowvar=0 to either np.cov or np.corrcoef and NumPy
will take care of it for you.

Example E6.10 The Cambridge University Digital Technology Group have been
recording the weather from the roof of their department building since 1995 and make
the data available to download in a single CSV file at www.cl.cam.ac.uk/research/dtg/
weather/.

The following program determines the correlation coefficient between pressure and
temperature at this site.

Listing 6.7 Calculating the correlation coefficient between air temperature and pressure

eg6-pT.py
import numpy as np
import matplotlib.pyplot as plt

data = np.genfromtxt('weather-raw.csv', delimiter=',', usecols=(1l, 4))

Remove any rows with either missing T or missing p.

data = data[~np.any(np.isnan(data), axis=1)]

Temperatures are reported after multiplication by a factor of 10 so remove
this factor.

datal[:,0] /= 10

Get the correlation coefficient.
corr = np.corrcoef(data, rowvar=0)[0, 1]
print('p-T correlation coefficient: {:.4f}'.format(corr))

Plot the data on a scatter plot: T on x-axis, p on y-axis.
plt.scatter(*data.T, marker='."')

plt.xlabel('T /$\mathrm{A\circ C}$"')

plt.ylabel('p /mbar')

plt.show()

The output (Figure 6.4) gives a correlation coefficient of 0.0260: as expected, there is
little correlation between air temperature and pressure (since the air density also varies).

Histograms

The NumPy function, np.histogram, creates a histogram from the values in an array.
That is, a set of bins is defined with lower and upper limits and each is filled with the
number of elements from the array whose value falls within its limits. For example,
suppose the following array holds the percentage marks of 10 students in a test:

In [x]: marks = np.array([45, 68, 56, 23, 60, 87, 75, 59, 63, 72])

www.cl.cam.ac.uk/research/dtg/weather/
www.cl.cam.ac.uk/research/dtg/weather/

244

NumPy

1050

K3
%N

1040 ¢

13380 3

.
2 .
ohl

'y

203
3]
3
s,
X
i
A i
n :
ghactlss, 3,8
$ did e
S
1R
RS
:
s X
$ siE
H i
: ;ﬁgg
K iii Hits:
iR
sorsisiihit
R X
s thodrigss
8 i
% #
L it
#
o
i
s
i
i
s
%
K

o oosl

3
i

3o
K]
o

1030

B
ik
e

1020 ¢

o
i
o

1010

1
;ﬁi

p /mbar
Bt
1o
;izzi‘
i i

1000 ¢

.
..
X .§§

*u3teds
211.

3308
s

.

o,

990 |

gl

i
B

980 |

970
1

Figure 6.4 There is virtually no correlation between air temperature and air pressure in this data
set.

There are several ways to define the histogram bins. If the bins argument is a sequence,
it defines the boundaries of the sequential bins:

In [x]: bins = [20, 40, 60, 80, 100]

defines four bins with ranges [20—40%), [40-60%), [60-80%) and [80-100%]. All but
the last bin is half open; that is, the first bin includes marks from and including 20% up
to but not including 40%. Note that a sequence of N + 1 numbers is required to create N
bins. The np.histogram method returns a tuple consisting of the values of the histogram
and the bin edges we defined (both as NumPy arrays).

In [x]: hist, bins = np.histogram(marks, bins)

In [x]: hist
Out[x]: array([1l, 3, 5, 11)

In [x]: bins
Out[x]: array([20, 460, 60, 80, 100])

This shows that there is one mark in the 20—40% bin, three in the 40-60% bin and so on.
If you just want a certain number of evenly spaced bins, an integer can be passed as

bins instead of a sequence:

In [x]: np.histogram(marks, bins=5)

Out[x]: (array([l, 1, 3, 3, 21D,
array([23. , 35.8, 48.6, 61.4, 74.2, 87. 1))

By default, the requested number of bins range between the minimum and maximum
values of the array (here, 23 and 87); to specify a different minimum and maximum, set
the range argument tuple:

In [x]: np.histogram(marks, bins=5, range=(0, 100))

Out[x]: (array([0, 1, 3, 5, 11),
array([0., 20., 40., 60., 80., 100.1))

6.3 Statistical Methods 245

The np . histogram method also has an optional boolean argument density: by default
it is False, meaning that the histogram array returned contains the number of values
from the original array in each bin. If density is set to True, the histogram array will
contain the probability density function, normalized so that the integral over the entire
range of the bins is equal to unity:

In [x]: hist, bins = np.histogram(marks, bins=5, range=(0,100),
density=True)

In [x]: print(hist)

[o. 8.005 0.015 0.825 0.005]

In [x]: bin_width = 100/5

In [x]: print(np.sumChist) * bin_width)
1.0

(By integral here we mean the area under the histogram, which is the sum of each
histogram bar height times its corresponding bin width.)

To plot a histogram with pyplot, use pyplot.hist, passing it the same arguments
you would to np.histogram:

In [x]: import matplotlib.pyplot as plt
In [x]: hist, bins, patches = plt.hist(marks, bins=5, range=(0, 160))
In [x]: hist, bins

Out[x]:
(array([0., 1., 3., 5., 1.01),
array ([0., 20., 49., 60., 80., 100.1))

In [x]: plt.show()

©® In addition to the bin counts (hist) and boundaries (bins), pyplot returns a list
of references to the “patches” which appear in the plotted figure (see Section 7.4.4 for
more information about this advanced feature).

The resulting histogram is plotted in Figure 6.5. See also Sections 3.3.2 and 7.3.

Mark count

0 20 40 60 80 100
Mark

Figure 6.5 An example histogram.

246

6.3.4

Problems

6.4

NumPy

Exercises

P6.3.1 A certain lottery involves players selecting six numbers without replacement
from the range [1, 49]. The jackpot is shared among the players who match all six
numbers (“balls”) selected in the same way at random in a twice-weekly draw (in any
order). If no player matches every drawn number, the jackpot “rolls over” and is added
to the following draw’s jackpot.

Although the lottery is fair in the sense that every combination of drawn numbers
is equally likely, it has been observed that many players show a preference in their
selection for certain numbers, such as those that represent dates (i.e. more of their
numbers are chosen from [1, 31] than would be expected if they chose randomly).
Hence, to avoid sharing the jackpot and so maximize one’s expected winnings, it would
be reasonable to avoid these numbers.

Test this hypothesis by establishing if there is any correlation between the number
of balls with values less than 13 (representing a month) and the jackpot winnings
per person. Ignore draws immediately following a rollover. The necessary data can be
downloaded from |https://scipython.com/ex/bfe].

P6.3.2 We have seen how to create a histogram plot from an array with pyplot.hist,
but suppose you have already created arrays hist and bins using np.histogram and
want to plot the resulting histogram from these arrays. You can’t use pyplot.hist
because this function expects to act on the original array of data. Use pyplot.bar'’
to plot a hist array as a bar chart.

P6.3.3 The heights, in cm, of a sample of 1000 adult men and 1000 adult women

from a certain population are collected in the data files ex6-3-f-male-heights. txt and

ex6-3-f-female-heights.txt available at |https://scipython.com/ex/bfd]. Read in the

data and establish the mean and standard deviation for each sex. Create histograms for

the two data sets using a suitable binning interval and plot them on the same figure.
Repeat the exercise in imperial units (feet and inches).

Polynomials

NumPy provides a powerful set of classes for representing polynomials, including meth-
ods for evaluation, algebra, root-finding and fitting of several kinds of polynomial basis
functions. In this section, the simplest and most familiar basis, the power series, will be
described first, before a discussion of a few other classical orthogonal polynomial basis
functions.

19 Documentation for this method is at https://matplotlib.org/api/_as_gen/matplotlib.pyplot.bar.html; see also
Section 7.3.

https://scipython.com/ex/bfe
https://scipython.com/ex/bfd
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.bar.html

6.4 Polynomials 247

6.4.1 Defining and Evaluating a Polynomial

A (finite) polynomial power series has as its basis the powers of x: 1(= x°), x, x?, x3, -+ , xV,

with coefficients ¢;:

N

P(x) = ZCO +clx+c2x2+63)c3 +. .+ eyx.

i=0
This section describes the use of the Polynomial convenience class, which provides a
natural interface to the underlying functionality of NumPy’s polynomial package.

The polynomial convenience class is numpy.polynomial.Polynomial. To import it

directly, use

In [x]: from numpy.polynomial import Polynomial

Alternatively, if the whole NumPy library is already imported as np, then rather than
constantly refer to this class as np.polynomial.Polynomial, it is convenient to define a
variable:

In [x]: import numpy as np
In [x]: Polynomial = np.polynomial.Polynomial

This is the way we will refer to the Polynomial class in this book.

To define a polynomial object, pass the Polynomial constructor a sequence of coeffi-
cients to increasing powers of x, starting with ¢(. For example, to represent the polyno-
mial

P(x) = 6 — 5x + x°,

define the object

In [x]: p = Polynomial([6, -5, 11)

You can inspect the coefficients of a Polynomial object with print or by referring to its
coef attribute.

In [x]: print(p)

poly([6. -5. 1.1)

In [x]; p.coef

Out[x]: array([6., -5., 1.1)

Notice that the integer coefficients used to define the polynomial have been automati-
cally cast to float. It is also possible to use complex coefficients.
To evaluate a polynomial for a given value of x, “call” it as follows:

In [x]: p(4) # calculate p at a single value of x

2.0

In [x]: x = np.linspace(-5, 5, 11)

In [x]: print(p(x)) # calculate p on a sequence of x values
Out[x]: [56. 42. 30. 20. 12. 6. 2. 0. 0. 2. 6.]

248

6.4.2

NumPy

Polynomial Algebra

The Polynomial convenience class implements the familiar Python operators: +, -, *, //,
**, % and divmod on Polynomial objects. These are illustrated in the following examples
using the polynomials

P(x)=6-5x+ X2,
O(x) =2 -3x.

In [x]: p = Polynomial([6, -5, 1])
In [x]: q = Polynomial([2, -31)

In [x]: print(p + q)

poly([8. -8. 1.1)

In [x]: print(p - q)
poly([4. -2. 1.1)

In [x]: print(p * q)
poly([12. -28. 17. -3.1)

In [x]: print(p //)
poly ([1.44444444 -0.33333333])

In [x]: print(p % q)
poly([3.11111111]) # i.e. 28/9

Division of a polynomial by another polynomial is analogous to integer division (and
uses the same // operator): that is, the result is another polynomial (with no reciprocal
powers of x), possibly leaving a remainder.

Hence p = q(—%x + g) + % and the // operator returns the quotient polynomial,
—%x + %. The remainder (which, in general, will be another polynomial) is returned,
as might be expected, by the modulus operator, %. The divmod() built-in returns both
quotient and remainder in a tuple:

In [x]: quotient, remainder = divmod(p, q)
In [x]: print(quotient)

poly ([1.44444444 -0.33333333]) # i.e. p(x) // q(x) is 13/9 - x/3

In [x]: print(remainder)
poly([3.11111111])

Exponentiation is supported through the ** operator; polynomials can only be raised
to a non-negative integer power:
In [x]: print(q ** 2)
poly([4. -12. 9.1

It isn’t always convenient to create a new polynomial object in order to use these
operators on one another, so many of the operators described here also work with
scalars:

In [x]: print(p * 2) # multiplication by a scalar
poly ([12. -10. 2.1

6.4.3

6.4 Polynomials 249

In [x]: print(p / 2) # division by a scalar
poly([3. -2.5 0.5])

and even tuples, lists and arrays of polynomial coefficients. For example, to multiply
P(x) by X2 —2x3%:
In [x]: print(p * [0, O, 1, -2])
poly([®. ©. 6. -17. 11. -2.1)
Finally, one polynomial can be substituted into another. To evaluate P(Q(x)), simply
use p(q):
In [x]: print(p(q))
poly([0. 3. 9.1)

That is, P(Q(x)) = 3x + 9x7.

Root-Finding

The roots of a polynomial are returned by the roots method. Repeated roots are simply
repeated in the returned array:

In [x]: p.roots()

array([2., 3.1)

In [x]: (q * q).roots()

array ([0.66666667, 0.66666667]1)

In [x]: Polynomial ([5, 4, 1]).roots(Q)

array([-2.-1.j, -2.+1.j1)

Polynomials can also be created from their roots with Polynomial. fromroots:

In [x]: print(Polynomial.fromroots([-4, 2, 1]))
poly([8. -10. 1. 1.1

That is, (x + 4)(x — 2)(x — 1) = 8 — 10x + x> + x>. Note that the way the polynomial is
constructed means that the coefficient of the highest power of x will be 1.

Example E6.11 The tanks used in the storage of cryogenic liquids and rocket fuel are
often spherical (why?). Suppose a particular spherical tank has a radius R and is filled
with a liquid to a height A. It is (fairly) easy to find a formula for the volume of liquid
from the height:

1
V = nRh* — gnh3.

Suppose that there is a constant flow of liquid from the tank at a rate F = —dV/dr.
How does the height of liquid, &, vary with time? Differentiating the earlier mentioned
equation with respect to 7 leads to

dh
2nRh — th®)— = —F.
(@n d)dt

250

NumPy

If we start with a full tank (A = 2R) at time ¢ = 0, this ordinary differential equation
may be integrated to yield the equation

1 4
—§7rh3 + RW? + (Ft - §7rR3) =0,

a cubic polynomial in /. Because this equation cannot be inverted analytically for 4,
let’s use NumPy’s Polynomial class to find A(f), given a tank of radius R = 1.5 m from
which liquid is being drawn at 200 cm®s~!.

The total volume of liquid in the full tank is Vy = %ﬂR3. Clearly, the tank is empty
when i = 0, which occurs at time T = V;/F, since the flow rate is constant. At any

particular time, ¢, we can find & by finding the roots of this equation.

Listing 6.8 Liquid height in a spherical tank

egb-c-spherical -tank-a.py
import numpy as np
import matplotlib.pyplot as plt

Polynomial = np.polynomial.Polynomial
Radius of the spherical tank in m.

R =1.5

Flow rate out of the tank, mA3.s-1.
F =2.e-4

Total volume of the tank.

VO = 4/3 * np.pi * R**3
Total time taken for the tank to empty.
T=Ve / F

Coefficients of the quadratic and cubic terms
of p(h), the polynomial to be solved for h.
c2, ¢3 = np.pi * R, -np.pi / 3

N = 100
Array of N time points between 0 and T inclusive.
time = np.linspace(®, T, N)
Create the corresponding array of heights h(t).
h = np.zeros(N)
for i, t in enumerate(time):
c®d = F*t - VO
p = Polynomial([c®, O, c2, c3])
Find the three roots to this polynomial.
roots = p.roots()
We want the one root for which 0 <= h <= 2R.
h[i] = roots[(® <= roots) & (roots <= 2*R)][0]

plt.plot(time, h, 'o')
plt.xlabel('Time /s')
plt.ylabel ('Height in tank /m')
plt.show()

© We construct an array of time points between =0and 7 = T.
® For each time point find the roots of the above cubic polynomial. Only one of the
roots is physically meaningful, in that 0 < & < 2R (the height of the level of liquid

6.4.4

6.4 Polynomials 251

3.0

o
[
25
g 20}
4
=]
]
8
£ 15
=
2o
Q
T 10t
0.5
)
L]
00 I I I I I I -
0 10000 20000 30000 40000 50000 60000 70000 80000

Time /s

Figure 6.6 The height of liquid as a function of time, A(¢), for the spherical tank problem.

cannot be negative or greater than the diameter of the tank), so we extract that root (by
boolean indexing) and store it in the array A.
Finally, we plot & as a function of time (Figure 6.6).

Calculus

Polynomials can be differentiated with the Polynomial.deriv method. By default, this
function returns the first derivative, but the optional argument m can be set to return the
mth derivative:

In [x]: print(p)

poly([6. -5. 1.]) # 6 - 5x + x*2

In [x]: print(p.deriv())

poly([-5. 2.1)

In [x]: print(p.deriv(2))

poly([2.1

A Polynomial object can also be integrated with an optional lower bound, L, and
constant of integration, k, treated as shown in the following example:

X
f 2—3xdx:[2x—%x2] :2x—%x2—2L+%L2,
L L

f2—3xdx:2x—§x2+k.

By default, L and k are zero, but can be specified by passing the arguments 1bnd and k
to the Polynomial . integ method:

In [x]: print(q)

poly([2. -3.1)

In [x]: print(q.integ())
poly ([©. 2. -1.51)

252

6.45 ¢

NumPy

In [x]: print(q.integ(lbnd=1))
poly([-0.5 2. -1.51)

In [x]: print(q.integ(k=2))
poly([2. 2. ~-1.5D)

Polynomials can be integrated repeatedly by passing a value to m, giving the number of
integrations to perform.?°

Classical Orthogonal Polynomials

In addition to the Polynomial class representing simple power series such as ag +
aix + apx* + ... + a,x", NumPy provides classes to represent a series composed of
any of a number of classical orthogonal polynomials. These polynomials and linear
combinations of them are widely used in physics, statistics and mathematics. As of
NumPy version 1.17, the polynomial convenience classes provided are Chebyshev,
Legendre, Laguerre, Hermite (“physicists’ version”) and HertmiteE (“probabilists’
version”). Many good textbooks exist describing the properties of these polynomial
classes; to illustrate their use we will focus here on the Legendre polynomials,’!
denoted P,(x). These are the solutions to Legendre’s differential equation,

d [(1 - xz)ipn(x) +nn+ DP,(x) = 0.
dx dx

The first few Legendre polynomials are

Po(x) =1,

Pi(x) = x,

Py(x) = 332 - 1),

P3(x) = %(5x3 - 3x),

Py(x) = 3(35x* = 30x7 + 3),

and are plotted in Figure 6.7.
A useful property of the Legendre polynomials is their orthogonality on the interval
[-1,1]:

1
2
P,(x)P,, dx = Omns
»[—\1 (X) (X) o 2n+ 1

which is important in their use as a basis for representing suitable functions.??

To create a linear combination of Legendre polynomials, pass the coefficients to the
Legendre constructor, just as for Polynomial. For example, to construct the polynomial
expansion 5P (x) + 2P,(x):

20 Different constants of integration for each can be specified by setting k to an array of values.

2l The Legendre polynomials are named after the French mathematician Adrien-Marie Legendre (1752-
1833); for 200 years until 2005 many publications mistakenly used a portrait of the unrelated French
politician Louis Legendre as that of the mathematician.

22 In particular, in physics, the multipole expansion of electrostatic potentials.

6.4 Polynomials 253

LOF ~
. P2
,/ R
- 7 ,'
05F -7 e
- P s
P ,
.
. ¢ ,
— ’ . s .
= ‘ o< ‘ 1
a l' - .
. e .
. L RN)
—05F e IR T i
; e — P2
- - - - P(2)
e Py(x)
“1of” -o- P
— Py(x)
—-1.0 —0.5 0.0 0.5 1.0

€

Figure 6.7 The first five Legendre polynomials, P,(x) forn =0, 1,2,3,4.

In [x]: Legendre = np.polynomial.Legendre
In [x]: A = Legendre([0, 5, 21)

An existing polynomial object can be converted into a Legendre series with the cast
method:

In [x]: P = Polynomial ([0, 1, 1])

In [x]: Q = Legendre.cast(P)

In [x]: print(Q)
leg([0.33333333 1. 0.66666667]1)

That is, x + x2 = %PO + P + %Pz.
An instance of a single Legendre polynomial basis function can be created with the
basis method:

In [x]: L3 = Legendre.basis(3)

This creates an object representing P3(x), and is equivalent to calling Legendre ([0, 0,
®, 11). To obtain a regular power series, we can cast it back to a Polynomial:

In [x]: print(Polynomial.cast(L3))
poly([®. -1.5 @. 2.5])

In addition to the functions just described for Polynomial, including differentiation
and integration of polynomial series, the convenience classes for the classical orthogo-
nal polynomials expose several useful methods.

convert converts between different kinds of polynomials. For example, the linear
combination A(x) = 5Pi(x) + 2P,(x) = 5x + 2%(3x2 —1) = -1 +5x+3x% as a
power series of monomials (a Maclaurin series), is represented by an instance of the
Polynomial class as:

In [x]: A = Legendre([0®, 5, 2])
In [x]: B = A.convert(kind=Polynomial)

In [x]: print(B)
In [x]: poly([-1. 5. 3.1)

254

6.4.6

NumPy

Because the objects A and B represent the same underlying function (just expanded in
different basis sets) they evaluate to the same value when given the same x, and have
the same roots:

In [x]: A(C-2) == B(-2)

Out[x]: True

In [x]: print(A.roots(), B.roots(), sep='\n')

[-1.84712709 0.18046042]
[-1.84712709 0.18046042]

Fitting Polynomials

A common use of polynomial expansions is in fitting and approximating data series.
NumPy’s polynomial modules provide methods for the least-squares fitting of functions.
The fit function of the polynomial convenience classes is described in this section.?

The domain and window Attributes

A typical one-dimensional fitting problem requires the best-fit polynomial to a finite,
continuous function over some finite region of the x-axis (the domain). However, poly-
nomials themselves can differ from each other wildly and diverge as x — =+oo. This
makes any attempt to blindly find the least-squares fit on the domain of the function
itself potentially risky: the fitted polynomial is frequently subject to numerical insta-
bility, overflow, underflow and other types of ill-conditioning (see Section 10.2). As an
example, consider the function

f(x) —e sin40x

in the interval (100, 100.1). There is nothing particularly tricky about this function: it is
well-behaved everywhere and f(x) takes very moderate values between e~! and e!. Yet
a straightforward least-squares fit to a fourth-order polynomial on this domain gives

—11.881851 + 2379.22228x — 119.741202x% — 23828009.7x> + 1192894610x*

and clearly the potential for numerical instability and loss of accuracy with even mod-
erate values of x: our approximation to f(x) is built up from difference between very
large monomial terms.

Each class of polynomial has a default window over which it is optimal to take a
linear combination in fitting a function. For example, the Legendre polynomials window
is the region [—-1, 1] plotted above, on which P,(x) are orthogonal and everywhere
|P,(x)| < 1. The problem is that it is rather unlikely that the function to be fitted falls
within the chosen polynomials’ window. It is therefore necessary to relate the domain
of the function to the window. This is done by shifting and scaling the x-axis: that is, by

23 Note: The older np.polyld class representing one-dimensional polynomials is still available (as of NumPy
1.17) for backward-compatibility reasons. It is documented at https://docs.scipy.org/doc/numpy/reference/
routines.polynomials.poly1d.html and provides a simpler but less-reliable least-squares fitting method,
np.polyfit. It is recommended, however, to use the new Polynomial class in new code.

https://docs.scipy.org/doc/numpy/reference/routines.polynomials.poly1d.html
https://docs.scipy.org/doc/numpy/reference/routines.polynomials.poly1d.html

6.4 Polynomials 255

mapping points in the function’s domain to points in the fitting polynomials’ window.
The polynomial fit function does this automatically, so the fourth-order least-squares
fit to the earlier mentioned function yields

In [x]: x = np.linspace(100, 100.1, 16001)

In [x]: f lambda x: np.exp(-np.sin(40*x))

In [x]: p = Polynomial.fit(x, f(x), 4)

In [x]: print(p)

poly ([1.49422551 -2.54641449 0.63284641 1.84246463 -1.02821956])

The domain and window of a polynomial can be inspected as the attributes domain and
window respectively:

In [x]: p.domain

array([100. , 100.1])

In [x]: p.window
array([-1., 1.1)

It is important to note that the argument x is mapped from the domain to the window
whenever a polynomial is evaluated. This means that two polynomials with different
domains and/or windows may evaluate to different values even if they have the same
coefficients. For example, if we create a Polynomial object from scratch with the same
coefficients as the fitted polynomial p above:

In [x]: q = Polynomial ([1.49422551, -2.54641449, 0.63284641,
1.84246463, -1.02821956])

it is created with the default domain and window, which are both (-1, 1):

In [x]: print(q.domain, q.window)
[-1. 1.1 [-1. 1.]

and so evaluating q at 100.05, say, maps 100.05 in the domain to 100.05 in the window
and gives a very different answer from the evaluation of p at the same point in the
domain (which maps to 0. in the window):

In [x]: q(100.05), p(160.05)
(-101176442.96772559, 1.4942255113760108)

It is easy to show that the mapping function from x in a domain (a, b) to x’ in a window
(a',b')is

b/_ ’ b/_ ’
X =m(x) = y +ux, whereyu= 5 a,)(zb’—bb <
—-a —-a

These are the parameters returned by the polynomial’s mapparms function:

In [x]: chi, mu = p.mapparms()
In [x]: print(chi, mu)
-2001.0, 20.0

Therefore,

In [x]: print(q(chi + mu*100.05))
1.49422551

It is possible to change domain and window by direct assignment:

256

NumPy

In [x]: gq.domain = np.array((100., 100.1))
In [x]: print(q(160.05))
1.49422551

To evaluate a polynomial on a set number of evenly distributed points in its domain,
for example, to plot it, use the Polynomial’s linspace method:
In [x]: p.linspace(5)
Oout [x]:

(array ([100. , 100.025, 100.05 , 100.075, 160.1 1),
array([1.80280222, 2.63107256, 1.49422551, 0.54527422, 0.39490249]))

p.linspace returns two arrays, with the specified number of samples on the polyno-
mial’s domain representing the x points and the values the polynomial takes at those
points, p(x).

Polynomial.fit

The Polynomial method fit returns a least-squares fitted polynomial to data, y, sampled
at values x. In its simplest use, fit needs only to be passed array-like objects, x and y,
and a value for deg, the degree of polynomial to fit. It returns the polynomial which
minimizes the sum of the squared errors,

E="lvi-pol.

For example,

In [x]: x = np.linspace (400, 700, 1000)

In [x]: y =1/ x*%4

In [x]: p = Polynomial.fit(x, y, 3)

produces the best-fit cubic polynomial to the function x~* on the interval [400, 700].
Weighted least-squares fitting is achieved by setting the argument, w, to a sequence

of weighting values that is the same length as x and y. The polynomial returned is that

which minimizes the sum of the weighted squared errors,

E = wly - pe)l.
i

The domain and window of the fitted polynomial may be specified with the arguments
domain and window; by default, a minimal domain covering the points x is used.

It is wise to check the quality of the fit before using the returned polynomial. Setting
the argument full=True causes fit to return two objects: the fitted polynomial and a
list of various statistics about the fit itself:

In [x]: deg = 3
In [x]: p, [resid, rank, sing_val, rcond] = Polynomial.fit(x, y, deg, full=True)

In [x]: p

Out[x]:

Polynomial ([1.07041864e-11, -1.16488662e-11, 1.02545751e-11,
-5.64068914e-12], [460., 7600.]1, [-1., 1.1)

In [x]: resid
Out[x]: array([4.57180972e-23])

6.4 Polynomials 257

In [x]: rank
Out[x]: 4

In [x]: sing_val
Out[x]: array([1.3843828 , 1.32111941, 0.50462215, 0.28893641])

In [x]: rcond
Out[x]: 2.2204460492503131e-13

This list can be analyzed to see how well the polynomial function fits the data. resid
is the sum of the squared residuals,

resid= > |y - p(x)P

— a smaller value indicates a better fit. rank and sing_val are the rank and singular
values of the matrix inverted in the least-squares algorithm to find the polynomial
coefficients: ill-conditioning of this matrix can lead to poor fits (particularly if the fitted
polynomial degree is too high). rcond is the cutoff ratio for small singular values within
this matrix: values smaller than this value are set to zero in the fit (to protect the fit from
spurious artifacts introduced by round-off error) and a RankWarning exception is raised.
If this happens, the data may be too noisy or not well described by the polynomial of the
specified degree. Note that least-squares fitting should always be carried out at double
precision and be aware of “over-fitting” the data (attempting to fit a function with too
many coefficients, i.e. a polynomial of too high order).

Example E6.12 A straight-line best fit is just a special case of a polynomial least-
squares fit (with deg=1). Consider the following data giving the absorbance, A, over a
path length of 5 mm of ultraviolet light at 280 nm, by a protein as a function of the
concentration, [P]:

[P}/pg mL™! A
0 2.287

20 3.528
40 4.336
80 6.909
120 8.274
180 12.855
260 16.085
400 24.797
800 49.058
1500 89.400

We expect the absorbance to be linearly related to the protein concentration: A = m[P]+
Ay, where Ay is the absorbance in the absence of protein (e.g. due to the solvent and
experimental components).

Listing 6.9 Straight-line fit to absorbance data

258 NumPy

80
£ 60 A
=]
(o}
Q0
