

Learning Scientific Programming with Python

Second Edition

Learn to master basic programming tasks from scratch with real-life, scientifically rel-
evant examples and solutions drawn from both science and engineering. Students and
researchers at all levels are increasingly turning to the powerful Python programming
language as an alternative to commercial packages and this fast-paced introduction
moves from the basics to advanced concepts in one complete volume, enabling readers
to gain proficiency quickly.

Beginning with general programming concepts such as loops and functions within
the core Python 3 language, and moving on to the NumPy, SciPy and Matplotlib
libraries for numerical programming and data visualization, this textbook also discusses
the use of Jupyter Notebooks to build rich-media, shareable documents for scientific
analysis. The second edition features a new chapter on data analysis with the pandas
library and comprehensive updates, new exercises and examples. A final chapter
introduces more advanced topics such as floating-point precision and algorithm stability,
and extensive online resources support further study. This textbook represents a targeted
package for students requiring a solid foundation in Python programming.

Christian Hill is a physicist and physical chemist currently working at the Interna-
tional Atomic Energy Agency. He has over 25 years’ experience of programming in the
physical sciences and has been programming in Python for 15 years. His research uses
Python to produce, analyze, process, curate and visualize large data sets in the area of
spectroscopy, plasma physics and material science.

Learning Scientific Programming
with Python
Second Edition

CHRIST IAN H ILL

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India

79 Anson Road, #06–04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University’s mission by disseminating knowledge in the
pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781108745918
DOI: 10.1017/9781108778039

© Christian Hill 2015, 2020

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.

First published 2015
Second edition 2020

Printed in the United Kingdom by TJ International Ltd, Padstow Cornwall

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data
Names: Hill, Christian, 1974– author.
Title: Learning scientific programming with Python / Christian Hill.
Description: Second edition. | New York : Cambridge University Press, 2020.
| Includes bibliographical references and index.
Identifiers: LCCN 2020017917 (print) | LCCN 2020017918 (ebook)
| ISBN 9781108745918 (paperback) | ISBN 9781108778039 (epub)
Subjects: LCSH: Science–Data processing. | Science–Mathematics.
| Python (Computer program language)
Classification: LCC Q183.9 .H58 2020 (print) | LCC Q183.9 (ebook)
| DDC 005.13/3–dc23
LC record available at https://lccn.loc.gov/2020017917
LC ebook record available at https://lccn.loc.gov/2020017918

ISBN 978-1-108-74591-8 Paperback

Additional resources for this publication at www.cambridge.org/hill2 and https://scipython.com/

Cambridge University Press has no responsibility for the persistence or accuracy of
URLs for external or third-party internet websites referred to in this publication
and does not guarantee that any content on such websites is, or will remain,
accurate or appropriate.

www.cambridge.org
www.cambridge.org/9781108745918
http://dx.doi.org/10.1017/9781108778039
https://lccn.loc.gov/2020017917
https://lccn.loc.gov/2020017918
www.cambridge.org/hill2
https://scipython.com/

Contents

Acknowledgments page viii
Code Listings ix

1 Introduction 1

1.1 About This Book 1
1.2 About Python 2
1.3 Installing Python 5
1.4 The Command Line 6

2 The Core Python Language I 8

2.1 The Python Shell 8
2.2 Numbers, Variables, Comparisons and Logic 9
2.3 Python Objects I: Strings 27
2.4 Python Objects II: Lists, Tuples and Loops 43
2.5 Control Flow 58
2.6 File Input/Output 68
2.7 Functions 71

3 Interlude: Simple Plots and Charts 86

3.1 Basic Plotting 86
3.2 Labels, Legends and Customization 91
3.3 More Advanced Plotting 100

4 The Core Python Language II 105

4.1 Errors and Exceptions 105
4.2 Python Objects III: Dictionaries and Sets 113
4.3 Pythonic Idioms: “Syntactic Sugar” 125
4.4 Operating-System Services 137
4.5 Modules and Packages 143
4.6 An Introduction to Object-Oriented Programming 152

v

vi Contents

5 IPython and Jupyter Notebook 172

5.1 IPython 172
5.2 Jupyter Notebook 186

6 NumPy 196

6.1 Basic Array Methods 196
6.2 Reading and Writing an Array to a File 228
6.3 Statistical Methods 239
6.4 Polynomials 246
6.5 Linear Algebra 261
6.6 Random Sampling 276
6.7 Discrete Fourier Transforms 287

7 Matplotlib 294

7.1 Line Plots and Scatter Plots 294
7.2 Plot Customization and Refinement 299
7.3 Bar Charts, Pie Charts and Polar Plots 314
7.4 Annotating Plots 323
7.5 Contour Plots and Heatmaps 336
7.6 Three-Dimensional Plots 348
7.7 Animation 352

8 SciPy 358

8.1 Physical Constants and Special Functions 358
8.2 Integration and Ordinary Differential Equations 381
8.3 Interpolation 408
8.4 Optimization, Data-Fitting and Root-Finding 414

9 Data Analysis with pandas 438

9.1 Introduction to pandas 438
9.2 Reading and Writing Series and DataFrames 452
9.3 More Advanced Indexing 462
9.4 Data Cleaning and Exploration 468
9.5 Data Grouping and Aggregation 479
9.6 Examples 483

10 General Scientific Programming 490

10.1 Floating-Point Arithmetic 490
10.2 Stability and Conditioning 498
10.3 Programming Techniques and Software Development 503

Contents vii

Appendix A Solutions 514

Appendix B Differences Between Python Versions 2 and 3 536

Appendix C SciPy’s odeint Ordinary Differential Equation Solver 540

Glossary 543

Index 549

Acknowledgments

For Emma, Charlotte and Laurence

Many people have helped directly or indirectly in the preparation of this book, in partic-
ular Jonathan Tennyson at UCL, and Laurence Rothman and Iouli Gordon for hosting
my sabbatical year at the Harvard-Smithsonian Center for Astrophysics.

Many of the errors and omissions in the first edition of this book were pointed out
by just a few people who were helpful enough to get in touch, notably Stafford Baines,
Matthew Gillman and Stuart Anderson. Those that remain are, of course, entirely my
own fault.

Special thanks are also due to Helen Reynolds, Chris Pickard, Alison Whiteley,
James Elliott, Lianna Ishihara and Milo Shaffer. As ever, I owe much to the support,
encouragement and friendship of Natalie Haynes.

viii

Code Listings

1.1 Outputing a list of names using a program written in Python 2
1.2 Outputing a list of names using a program written in C 2
1.3 Different ways to output a list of names using a program written in Perl 3
2.1 Calculating the Fibonacci series in a list 53
2.2 Calculating the Fibonacci series without storing it 53
2.3 Determining if a year is a leap year 59
2.4 A virtual turtle robot 63
2.5 Python scope rules 76
2.6 The Tower of Hanoi problem 81
3.1 Plotting y = sin2 x 88
3.2 An illustration of Moore’s law 97
3.3 The correlation between margarine consumption in the United States and

the divorce rate in Maine 102
4.1 Astronomical data 117
4.2 The Mersenne primes 122
4.3 Issuing a usage message for a script taking command-line arguments 138
4.4 Renaming data files by date 141
4.5 The Monty Hall problem 147
4.6 The definition of the abstract base class, BankAccount 155
4.7 Polymer class 160
4.8 The distribution of random flight polymers 162
4.9 A simple class representing a two-dimensional Cartesian vector 164
4.10 A simple two-dimensional molecular dynamics simulation 166
6.1 Creating a magic square 205
6.2 Verifying the validity of a Sudoku square 213
6.3 argmax and argmin 217
6.4 Reading the blood-pressure column 231
6.5 Analyzing data from a Stroop effect experiment 234
6.6 Simulation of the radioative decay of 14C 236
6.7 Calculating the correlation coefficient between air temperature and pressure 243
6.8 Liquid height in a spherical tank 250
6.9 Straight-line fit to absorbance data 257
6.10 Linear transformations in two dimensions 267

ix

x Code Listings

6.11 Linear least-squares fitting of the Beer–Lambert law 271
6.12 Modeling the distribution of 13C atoms in C60 282
6.13 Blurring an image with a Gaussian filter 291
7.1 Scatter plot of demographic data for eight countries 299
7.2 The median age at first marriage in the US over time 301
7.3 The populations of five US cities over time 301
7.4 Exponential decay illustrated in terms of lifetimes 304
7.5 Customized tick marks 306
7.6 Wing-loading variation in swifts prior to fledging 308
7.7 The one-dimensional diffusion equation applied to the temperature of two

different metal bars 311
7.8 Ten subplots with zero vertical spacing 312
7.9 Letter frequencies in the text of Moby-Dick. 315
7.10 Visualizing renewable electricity generation in Germany 317
7.11 Pie chart of greenhouse gas emissions 319
7.12 Plotting the directive gain of a two-antenna system 321
7.13 Plotting the directive gain of a three-antenna system 321
7.14 Annotations with arrows in Matplotlib 325
7.15 Plotting a share price time series on an annotated chart 325
7.16 Some different ways to use ax.vlines and ax.hlines 328
7.17 A representation of the electromagnetic spectrum, 250–1000 nm 329
7.18 An analysis of the height–mass relationship in 507 healthy individuals 331
7.19 Some colorful shapes 333
7.20 The electrostatic potential of a point dipole 337
7.21 An example of filled and styled contours 338
7.22 A comparison of interpolation schemes for a small array visualized with

imshow() 340
7.23 Barnsley’s fern 341
7.24 Heatmap of Boston’s temperatures in 2019 342
7.25 The two-dimensional diffusion equation applied to the temperature of a

steel plate 344
7.26 Four three-dimensional plots of a simple two-dimensional Gaussian func-

tion 348
7.27 A three-dimensional surface plot of a torus 349
7.28 A depiction of a helix on a three-dimensional plot 351
7.29 An animation of a decaying sine curve 352
7.30 An animation of a decaying sine curve, using blit=True 354
7.31 An animation of a bouncing ball 355
8.1 Least-well-defined physical constants 360
8.2 Probability densities for a particle in a uniform gravitational field 362
8.3 Normal modes of a vibrating circular drum 365
8.4 Generating an image of the diffraction pattern of a uniform, continuous

helix 366
8.5 The Gamma function on the real line 368

Code Listings xi

8.6 A comparison of the Lorentzian, Gaussian and Voigt line shapes 373
8.7 The spherical harmonic defined by l = 3,m = 2 377
8.8 Calculating the mass and center of mass of a tetrahedron given three differ-

ent densities 385
8.9 First-order reaction kinetics 387
8.10 Two coupled first-order reactions 390
8.11 Solution of the harmonic oscillator equation of motion 392
8.12 Calculating the motion of a sphere falling under the influence of gravity and

Stokes’ drag 394
8.13 Solution of the Robertson system of chemical reactions. 397
8.14 Calculating and plotting the trajectory of a spherical projectile including air

resistance. 400
8.15 A comparison of one-dimensional interpolation types using

scipy.interpolate.interp1d 408
8.16 Two-dimensional interpolation with scipy.interpolate.interp2d 410
8.17 Interpolation onto a regular two-dimensional grid with

scipy.interpolate.RectBivariateSpline 410
8.18 Interpolation from an unstructured array of two-dimensional points with

scipy.interpolate.griddata 412
8.19 Minimizing the drag on an airship envelope 423
8.20 Nonlinear least squares-fit to an ellipse 426
8.21 Weighted and unweighted least-squares fitting with curve_fit 428
8.22 Solution of the Euler–Lotka equation 432
8.23 Generating a Newton fractal image 433
9.1 Reading in a text table of vitamin data 454
9.2 The height of a projectile as a function of time 458
10.1 Comparison of different step sizes, h, in the numerical solution of y′ = −αy

by the forward Euler algorithm 499
10.2 Comparison of algorithm stability in the calculation of I(n) =

∫ 1
0 xnex dx 500

10.3 A function to calculate the volume of a tetrahedron 504
10.4 Code to simulate rolling two dice containing magic numbers 506
10.5 Code to simulate rolling two dice refactored to use named constants 506
10.6 A function for converting between different temperature units 510
10.7 Unit tests for the temperature conversion function 511
A.1 The structural formula of a straight-chain alkane 517
A.2 Least-squares fit to the function x = x0 + v0t + 1

2 gt2 527
A.3 Calculating the probability of q or more misprints on a given page of a

book. 528
A.4 A comparison of the numerical behavior of f (x) = (1 − cos2 x)/x2 and

g(x) = sin2 x/x2, close to x = 0. 534

1 Introduction

1.1 About This Book

This book is intended to help scientists and engineers learn version 3 of the Python
programming language and its associated libraries: NumPy, SciPy, Matplotlib and pan-
das. No prior programming experience or scientific knowledge in any particular field is
assumed. However, familiarity with some mathematical concepts such as trigonometry,
complex numbers and basic calculus is helpful to follow the examples and exercises.

Python is a powerful language with many advanced features and supplementary pack-
ages; while the basic syntax of the language is straightforward to learn, it would be
impossible to teach it in depth in a book of this size. Therefore, we aim for a balanced,
broad introduction to the central features of the language and its important libraries. The
text is interspersed with examples relevant to scientific research, and at the end of most
sections there are questions (short problems designed to test knowledge) and exercises
(longer problems that usually require a short computer program to solve). Although it
is not necessary to complete all of the exercises, readers will find it useful to attempt
at least some of them. Where a section, example or exercise contains more advanced
material that may be skipped on first reading, this is indicated with the symbol ♦.

In Chapter 2 of this book, the basic syntax, data structures and flow control of a
Python program are introduced. Chapter 3 is a short interlude on the use of the pyplot

library for making graphical plots of data: this is useful to visualize the output of pro-
grams in subsequent chapters. Chapter 4 provides more advanced coverage of the core
Python language and a brief introduction to object-oriented programming. There fol-
lows another short chapter introducing the popular IPython and Jupyter Notebook envi-
ronments, before chapters on scientific programming with NumPy, Matplotlib, SciPy
and pandas. The final chapter covers more general topics in scientific programming,
including floating-point arithmetic, algorithm stability and programming style.

Readers who are already familiar with the Python programming language may wish
to skim Chapters 2 and 4.

Code examples and exercise solutions may be downloaded from the book’s web-
site at https://scipython.com. Note that while comments have been included in these
downloadable programs, they are not so extensive in the printed version of this book:
instead, the code is explained in the text itself through numbered annotations (such
as Ê). Readers typing in these programs for themselves may wish to add their own
explanatory comments to the code.

1

https://scipython.com

2 Introduction

1.2 About Python

Python is a powerful, general-purpose programming language devised by Guido van
Rossum in 1989.1 It is classified as a high-level programming language in that it auto-
matically handles the most fundamental operations (such as memory management)
carried out at the processor level (“machine code”). It is considered a higher-level
language than, for example, C, because of its expressive syntax (which is close to
natural language in some cases) and rich variety of native data structures such as lists,
tuples, sets and dictionaries. For example, consider the following Python program which
outputs a list of names on separate lines.

Listing 1.1 Outputing a list of names using a program written in Python

eg1-names.py: output three names to the console.

names = ['Isaac Newton', 'Marie Curie', 'Albert Einstein']

for name in names:

print(name)

Output:

Isaac Newton

Marie Curie

Albert Einstein

Now compare this with the equivalent program in C.

Listing 1.2 Outputing a list of names using a program written in C

/* eg1-names.c: output a list of names to the console. */

#include <stdio.h>

#include <stdlib.h>

const char *names[] = {"Isaac Newton", "Marie Curie", "Albert Einstein"};

int main(void)

{

int i;

for (i = 0; i < (sizeof(names) / sizeof(*names)); i++) {

printf("%s\n", names[i]);

}

return EXIT_SUCCESS;

}

Even if you are not familiar with the C language, you can see there is quite a lot
of overhead involved in coding even this simple task in C: two includes of libraries
not loaded by default, explicit declarations of variables to hold the list (“array”, in C)
of names, names, a counter, i, and explicit indexing of this array in a for loop; you
even need to add the line endings (“\n” is the “newline” character). This source code

1 Until recently, Python’s “benevolent dictator for life” (BDFL).

1.2 About Python 3

then has to be compiled – converted into the machine code that the computer processor
understands – before it can be run (executed). Furthermore, there is plenty of scope for
errors (bugs): trying to print the name stored in name[10] will likely cause junk to be
output: the C compiler won’t stop you from accessing this non-existent name.

The same program written in three lines of Python is clean and expressive: we do
not have to explicitly declare that names is a list of strings, there is no need for a loop
counter like i and there are no separate libraries to include (import in Python). To
run the Python program, one simply needs to type python eg1-names.py which will
automatically invoke the Python “interpreter” to compile and then run the resulting
“bytecode” (a kind of intermediate representation of the program between its source
and the ultimate machine code that Python dispatches to the processor).

Python’s syntax aims to ensure that “There should be one – and preferably only one –
obvious way to do it.” This differs from some other popular high-level languages such as
Ruby and Perl, which take the opposite approach, encapsulated by the mantra “there’s
more than one way to do it.” For example, there are (at least) four obvious ways to
output the same list in Perl:2

Listing 1.3 Different ways to output a list of names using a program written in Perl

@names = ("Isaac Newton", "Marie Curie", "Albert Einstein");

Method 1

print "$_\n" for @names;

Method 2

print join "\n", @names;

print "\n";

Method 3

print map { "$_\n" } @names;

Method 4

$" = "\n";

print "@names\n";

(Note also Perl’s famously concise but somewhat opaque syntax.)

1.2.1 Advantages and Disadvantages of Python

Here are some of the main advantages of the Python programming language and why
you might want to use it:

• Its clean and simple syntax makes writing Python programs fast and generally
minimizes opportunities for bugs to creep in. When done right, the result is high-
quality software that is easy to maintain and extend.

• It’s free – Python and its associated libraries are free of cost and open source,
unlike commercial offerings such as Mathematica and MATLAB.

2 Well, obvious to Perl programmers.

4 Introduction

• Cross-platform support: Python is available for every commonly available com-
puter system, including Windows, Unix, Linux and macOS. Although platform-
specific extensions exist, it is possible to write code that will run on any platform
without modification.

• Python has a large library of modules and packages that extend its functionality.
Many of these are available as part of the “Standard Library” provided with the
Python interpreter itself. Others, including the NumPy, SciPy, Matplotlib and
pandas libraries used in scientific computing, can be downloaded separately at
no cost.

• Python is relatively easy to learn. The syntax and idioms used for basic operations
are applied consistently in more advanced usage of the language. Error messages
are generally meaningful assessments of what went wrong rather than the generic
“crashes” that can occur in compiled lower-level languages such as C.

• Python is flexible: it is often described as a “multi-paradigm” language that
contains the best features from the procedural, object-oriented and functional
programming paradigms. There is little need for the work-arounds required in
some languages when a problem can only be solved cleanly with one of these
approaches.

So where’s the catch? Well, Python does have some disadvantages and isn’t suitable
for every application.

• The speed of execution of a Python program is not as fast as some other, fully
compiled languages such as C and Fortran. For heavily numerical work, the
NumPy and SciPy libraries alleviate this to some extent by using compiled-
C code “under the hood,” but at the expense of some reduced flexibility. For
many, many applications, however, the speed difference is not noticeable and
the reduced speed of execution is more than offset by a much faster speed of
development. That is, it takes much less time to write and debug a Python program
than to do the same in C, C++ or Java.

• It is hard to hide or obfuscate the source code of a Python program to prevent
others from copying or modifying it. However, this doesn’t mean that successful
commercial Python programs don’t exist.

• A common complaint about Python has historically been that its rapid devel-
opment has led to compatibility issues between versions. Certainly there are
important differences between Python 2 and Python 3 (described in the next
section and Appendix B), but the complaint stems from the fact that within the
Python 2 series there were major improvements and additions to the language that
meant that code written in a later version (say, 2.7) would not run on an earlier
version of Python (e.g. 2.6), although code written for an earlier version of Python
will always run on a later version (within the same branch, 2 or 3). If you use the
latest version of Python (see Section 1.3) you probably won’t run into a problem,
but some operating systems that come with Python are rather conservative and
install by default only an older version.

1.3 Installing Python 5

1.2.2 Python 2 or Python 3?

On 1 January 2020, Python 2 reached its “end of life”: it will receive no further updates
or official support, and it is the newer Python 3 version that is being actively maintained
and developed. Although the differences between the two versions may seem minor,
code written in Python 3 will not run under Python 2 and vice versa: Python 3 is not
backward-compatible with its predecessor. This book teaches Python 3.

Since its release in 2009, the number of users and extent of library support for Python
3 has grown to the point that new users would find little benefit in learning Python 2
except to maintain legacy code.

There are several reasons for major change between versions (breaking your users’
existing code is not something to be undertaken lightly): Python 3 fixes some ugly
quirks and inconsistencies in the language and provides Unicode support for all strings
(eliminating a lot of the confusion that is created in dealing with Unicode and non-
Unicode strings in Python 2). Unicode is an international standard for the representation
of text in most of the writing systems in the world.

It is anticipated that most users of this book will not have trouble converting their
own code between the two versions of Python if necessary. The major differences are
listed and more information is given in Appendix B.

1.3 Installing Python

The official website of Python is www.python.org, and it contains full and easy-to-
follow instructions for downloading Python. However, there are several full distributions
which include the NumPy, SciPy and Matplotlib libraries (the “SciPy Stack”) to save
you from having to download and install these yourself:

• Anaconda is available for free (including for commerical use) from www.
anaconda.com/distribution. It installs both Python 2 and Python 3, but the default
version can be selected either before downloading as indicated on this web page,
or subsequently using the “conda” command.

• Enthought Deployment Manager (EDM) is a similar distribution with a free
version and various tiers of paid-for versions including technical support and
development software. It can be downloaded from https://assets.enthought.com/
downloads/.

In most cases, one of these distributions should be all you need. We provide some
platform-specific notes below.

The source code (and binaries for some platforms) for the NumPy, SciPy, Matplotlib
and IPython packages are available separately at:

• NumPy: https://github.com/numpy/numpy
• SciPy: https://github.com/scipy/scipy
• Matplotlib: https://matplotlib.org/users/installing.html
• IPython: https://github.com/ipython/ipython

www.python.org
www.anaconda.com/distribution
www.anaconda.com/distribution
https://assets.enthought.com/downloads/
https://assets.enthought.com/downloads/
https://github.com/numpy/numpy
https://github.com/scipy/scipy
https://matplotlib.org/users/installing.html
https://github.com/ipython/ipython

6 Introduction

• Jupyter Notebook and JupyterLab: https://jupyter.org/

Windows
Windows users have a couple of further options for installing the full SciPy stack:
Python(x,y) (https://python-xy.github.io) and WinPython (https://winpython.github.io/).
Both are free.

macOS
macOS (formerly Mac OS X), being based on Unix, comes with Python, but it is
usually an older version of Python 2. You must not delete or modify this installation
(it’s needed by the operating system), but you can follow the instructions above for
obtaining Python 3 and the SciPy stack. macOS does not have a native package manager
(an application for managing and installing software), but the two popular third-party
package managers, Homebrew (https://brew.sh/) and MacPorts (www.macports.org),
can both supply Python 3 and its packages if you prefer this option.

Linux
Almost all Linux distributions come with Python 2, but usually not Python 3, so you
may need to install it from the links above: the Anaconda and Enthought distributions
both have versions for Linux. Most Linux distributions come with their own software
package managers (e.g. apt in Debian and rpm for RedHat). These can be used to
install Python 3 and its libraries, though finding the necessary package repositories may
take some research on the Internet. Be careful not to replace or modify your system
installation as other applications may depend on it.

1.4 The Command Line

Most of the code examples in this book are written as stand-alone programs which can
be run from the command line (or from within an integrated development environment
(IDE) if you use one: see Section 10.3.2). To access the command-line interface (also
known as a console or terminal) on different platforms, follow the instructions below.

• Windows 7 and earlier: Start > All Programs > Command Prompt; alternatively,
type cmd in the Start > Run input box.

• Windows 8: Preview (lower left of screen) > Windows System: All apps; alterna-
tively type cmd in the search box pulled down the top right corner of the screen.

• Windows 10: From the Start Menu (Windows icon, lower left of screen) >
Windows System > Command Prompt; alternatively type cmd in the search box
accessed from the bottom-left corner of the screen, next to the Windows icon.

• Mac OS X and macOS: Finder > Applications > Utilities > Terminal
• Linux: if you are not using a graphical interface you are already at the command

line; if you are, then locate the Terminal application (distributions vary, but it is
usually found within a System Utilities or System Tools subfolder).

https://jupyter.org/
https://python-xy.github.io
https://winpython.github.io/
https://brew.sh/
www.macports.org

1.4 The Command Line 7

Commands typed at the command line are interpreted by an application called a shell,
which allows the user to navigate the file system and is able to start other applications.
For example, the command

python myprog.py

instructs the shell to invoke the Python interpreter, sending it the file myprog.py as the
script to execute. Output from the program is then returned to the shell and displayed in
your console.

2 The Core Python Language I

2.1 The Python Shell

This chapter introduces the syntax, structure and data types of the Python programming
language. The first few sections do not involve writing much beyond a few statements
of Python code and so can be followed using the Python shell. This is an interactive
environment: the user enters Python statements that are executed immediately after the
Enter key is pressed.

The steps for accessing the “native” Python shell differ by operating system. To start
it from the command line, first open a terminal using the instructions from Section 1.4
and type python.

To exit the Python shell, type exit().
When you start the Python shell, you will be greeted by a message (which will vary

depending on your operating system and precise Python version). On my system, the
message reads:

Python 3.7.5 (default, Oct 25 2019, 10:52:18)

[Clang 4.0.1 (tags/RELEASE_401/final)] :: Anaconda, Inc. on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>>

The three chevrons (>>>) are the prompt, which is where you will enter your Python
commands. Note that this book is concerned with Python 3, so you should check that
the Python version number reported on the first line is Python 3.X.Y where the precise
values of the minor version numbers X and Y should not be important.

Many Python distributions come with a slightly more advanced shell called IDLE,
which features tab-completion, and syntax highlighting (Python keywords are colored
specially when you type them). We will pass over the use of this application in favor of
the newer and more advanced IPython environment, discussed in Chapter 5.

It is also possible for many installations (especially on Windows) to start a Python
shell directly from an application installed when you install the Python interpreter itself.
Some installations even add a shortcut icon to your desktop which will open a Python
shell when you click on it.

8

2.2 Numbers, Variables, Comparisons and Logic 9

2.2 Numbers, Variables, Comparisons and Logic

2.2.1 Types of Numbers

Among the most basic Python objects are the numbers, which come in three types:
integers (type: int), floating-point numbers (type: float) and complex numbers (type:
complex).

Integers
Integers are whole numbers such as 1, 8, −72 and 3847298893721407. In Python 3,
there is no limit to their magnitude (apart from the availability of your computer’s
memory). Integer arithmetic is exact.

For clarity, it is possible to separate any pair of digits by an underscore character, “_.”
For example, 299_792_458 is interpreted as the same number as 299792458.

Floating-Point Numbers
Floating-point numbers are the representation of real numbers such as 1.2, −0.36 and
1.67263 × 10−7. They do not, in general, have the exact value of the real number
they represent, but are stored in binary to a certain precision (on most systems, to the
equivalent of 15–16 decimal places),1 as explained in Section 10.1. For example, the
number 4

3 is stored as the binary equivalent of 1.33333333333333325931846502 . . .,
which is nearly (but not quite) the same as the infinitely repeating decimal representation
of 4

3 = 1.3333 · · · . Moreover, even numbers that do have an exact decimal representation
may not have an exact binary representation: for example 1/10 is represented by the
binary number equivalent to 0.10000000000000000555111512 . . . Because of this finite
precision, floating-point arithmetic is not exact but, with care, it is “good enough” for
most scientific applications.

Any single number containing a period (“.”) is considered by Python to specify
a floating-point number. Scientific notation is supported using “e” or “E” to separate
the significand (mantissa) from the exponent: for example, 1.67263e-7 represents the
number 1.67263 × 10−7.

As with integers, pairs of digits may be separated by an underscore. For example,
1.602_176_634e-34.

Complex Numbers
Complex numbers such as 4+3 j consist of a real and an imaginary part (denoted by j in
Python), each of which is itself represented as a floating-point number (even if specified
without a period). Complex number arithmetic is therefore not exact but subject to the
same finite precision considerations as floats.

A complex number may be specified either by “adding” a real number to an imaginary
one (denoted by the j suffix), as in 2.3 + 1.2j or by separating the real and imaginary
parts in a call to complex, as in complex(2.3, 1.2).

1 This corresponds to the implementation of the IEEE-754 double-precision standard.

10 The Core Python Language I

Example E2.1 Typing a number at the Python shell prompt simply echoes the num-
ber back to you:

>>> 5

5

>>> 5.

5.0

>>> 0.10

Ê 0.1

>>> 0.0001

0.0001

>>> 0.0000999

Ë 9.99e-05

Note that the Python interpreter displays numbers in a standard way. For example:
Ê The internal representation of 0.1 discussed earlier is rounded to “0.1,” which is the
shortest number with this representation.
Ë Numbers smaller in magnitude than 0.0001 are displayed in scientific notation.

A number of one type can be created from a number of another type with the relevant
constructor:

>>> float(5)

5.0

>>> int(5.2)

5

>>> int(5.9)

Ê 5

>>> complex(3.)

Ë (3+0j)

Ì >>> complex(0., 3.)

3j

Ê Note that a positive floating-point number is rounded down in casting it into an
integer; more generally, int rounds towards zero: int(-1.4) would yield -1.
Ë Constructing a complex object from a float generates a complex number with the
imaginary part equal to zero.
Ì To generate a pure imaginary number, you have to explicitly pass two numbers to
complex with the first, real part, equal to zero.

2.2.2 Using the Python Shell as a Calculator

Basic Arithmetic
With the three basic number types described earlier, it is possible to use the Python shell
as a simple calculator using the operators given in Table 2.1. These are binary operators
in that they act on two numbers (the operands) to produce a third (e.g. 2**3 evaluates
to 8).

Python 3 has two types of division: floating-point division (/) always returns a
floating-point (or complex) number result, even if it acts on integers. Integer division

2.2 Numbers, Variables, Comparisons and Logic 11

Table 2.1 Basic Python
arithmetic operators

+ Addition
- Subtraction
* Multiplication
/ Floating-point division
// Integer division
% Modulus (remainder)
** Exponentiation

(//) always rounds down the result to the nearest smaller integer (“floor division”); the
type of the resulting number is an int only if both of its operands are ints; otherwise it
returns a float. Some examples should make this clearer:

Regular (“true”) floating-point division with (/):

>>> 2.7 / 2

1.35

>>> 9 / 2

4.5

>>> 8 / 4

2.0

The last operation returns a float even though both operands are ints.
Integer division with (//):

>>> 8 // 4

2

>>> 9 // 2

4

>>> 2.7 // 2

1.0

Note that // can perform integer arithmetic (rounding down) on floating-point numbers.
The modulus operator gives the remainder of an integer division:

>>> 9 % 2

1

>>> 4.5 % 3

1.5

Again, the number returned is an int only if both of the operands are ints.

Operator Precedence
Arithmetic operations can be strung together in a sequence, which naturally raises the
question of precedence: for example, does 2 + 4 * 3 evaluate to 14 (as 2 + 12) or 18
(as 6 * 3)? Table 2.2 shows that the answer is 14: multiplication has a higher precedence
than addition and is evaluated first. These precedence rules are overridden by the use of
parentheses: for example, (2 + 4) * 3 = 18.

Operators of equal precedence are evaluated left to right with the exception of expo-
nentiation (**), which is evaluated right to left (that is, “top down” when written using
the conventional superscript notation). For example,

12 The Core Python Language I

Table 2.2 Python arithmetic
operator precedence

** (highest precedence)
*, /, //, %
+, - (lowest precedence)

>>> 6 / 2 / 4 # the same as 3 / 4

0.75

>>> 6 / (2 / 4) # the same as 6 / 0.5

12.0

>>> 2**2**3 # the same as 2**(2**3) == 2**8

256

>>> (2**2)**3 # the same as 4**3

64

In examples such as these, the text following the hash symbol, #, is a comment that is
ignored by the interpreter. We shall sometimes use comments in this to explain more
about a statement, but it is not necessary to type it in if you try out the code.

Methods and Attributes of Numbers
Python numbers are objects (in fact, everything in Python is an object) and have certain
attributes, accessed using the “dot” notation: <object>.<attribute> (this use of the
period has nothing to do with the decimal point appearing in a floating-point num-
ber). Some attributes are simple values: for example, complex number objects have the
attributes real and imag, which are the real and imaginary (floating-point) parts of the
number:

>>> (4 + 5j).real

4.0

>>> (4 + 5j).imag

5.0

Other attributes are methods: callable functions that act on their object in some way.2

For example, complex numbers have a method, conjugate, which returns the complex
conjugate:

>>> (4 + 5j).conjugate()

(4-5j)

Here, the empty parentheses indicate that the method is to be called, that is, the function
to calculate the complex conjugate is to be run on the number 4 + 5 j; if we omit them,
as in (4 + 5j).conjugate, we are referring to the method itself (without calling it) –
this method is itself an object!

Integers and floating-point numbers don’t actually have very many attributes that it
makes sense to use in this way, but if you’re curious you can find out how many bits an
integer takes up in memory by calling its bit_length method. For example,

2 In this book, we will use the terms method and function interchangeably. In Python, everything is an object
and the distinction is not as meaningful as it is in some other languages.

2.2 Numbers, Variables, Comparisons and Logic 13

>>> (3847298893721407).bit_length()

52

Note that Python allocates as much memory as is necessary to exactly represent the
integer.

Mathematical Functions
Two of the mathematical functions that are provided “by default” as so-called built-ins
are abs and round.

abs returns the absolute value of a number as follows:
>>> abs(-5.2)

5.2

>>> abs(-2)

2

>>> abs(3 + 4j)

5.0

This is an example of polymorphism: the same function, abs, does different things to
different objects. If passed a real number, x, it returns |x|, the nonnegative magnitude of
that number, without regard to sign; if passed a complex number, z = x + iy, it returns
the modulus, |z| =

√
x2 + y2.

The round function (with one argument) rounds a floating-point number to the nearest
integer, employing Banker’s rounding:3

>>> round(-9.62)

-10

>>> round(7.5)

8

>>> round(4.5)

4

One can also specify the number of digits of precision after the decimal point as a
second argument to round():
>>> round(3.141592653589793, 3)

3.142

>>> round(96485.33289, -2)

96500.0

Python is a very modular language: functionality is available in packages and mod-
ules that are imported if they are needed but are not loaded by default: this keeps the
memory required to run a Python program to a minimum and improves performance.
For example, many useful mathematical functions are provided by the math module,
which is imported with the statement
>>> import math

The math module concerns itself with floating-point and integer operations (for func-
tions of complex numbers, there is another module, called cmath). These are called
by passing one (or sometimes more than one) number to them inside parentheses (the
numbers are said to act as arguments to the function being called). For example,

3 In Banker’s rounding, half-integers are rounded to the nearest even integer.

14 The Core Python Language I

Table 2.3 Some functions provided by the math module. Angular
arguments are assumed to be in radians.

math.sqrt(x)
√

x
math.exp(x) ex

math.log(x) ln x
math.log(x, b) logb x
math.log10(x) log10 x
math.sin(x) sin(x)
math.cos(x) cos(x)
math.tan(x) tan(x)
math.asin(x) arcsin(x)
math.acos(x) arccos(x)
math.atan(x) arctan(x)
math.sinh(x) sinh(x)
math.cosh(x) cosh(x)
math.tanh(x) tanh(x)
math.asinh(x) arsinh(x)
math.acosh(x) arcosh(x)
math.atanh(x) artanh(x)
math.hypot(x, y) The Euclidean norm,

√
x2 + y2

math.factorial(x) x!
math.erf(x) The error function at x
math.gamma(x) The gamma function at x, Γ(x)
math.degrees(x) Converts x from radians to degrees
math.radians(x) Converts x from degrees to radians
math.isclose(a, b) Test if a and b are equal to within some tolerance

>>> import math

>>> math.exp(-1.5)

0.22313016014842982

>>> math.cos(0)

1.0

>>> math.sqrt(16)

4.0

A complete list of the mathematical functions provided by the math module is avail-
able in the online documentation;4 the more commonly used ones are listed in Table
2.3.

The math module also provides two very useful nonfunction attributes: math.pi and
math.e give the values of π and e, the base of the natural logarithm, respectively.

It is possible to import the math module with “from math import *” and access its
functions directly:

>>> from math import *

>>> cos(pi)

-1.0

4 https://docs.python.org/3/library/math.html.

https://docs.python.org/3/library/math.html

2.2 Numbers, Variables, Comparisons and Logic 15

However, although this may be convenient for interacting with the Python shell, it is
not recommended in Python programs. There is a danger of name conflicts (particularly
if many modules are imported in this way), and it makes it difficult to know which
function comes from which module. Importing with import math keeps the functions
bound to their module’s namespace: thus, even though math.cos requires more typing
it makes for code that is much easier to understand and maintain.

Example E2.2 As might be expected, mathematical functions can be strung together
in a single expression:

>>> import math

>>> math.sin(math.pi/2)

1.0

>>> math.degrees(math.acos(math.sqrt(3)/2))

30.000000000000004

Note the finite precision here: the exact answer is arccos(
√

3/2) = 30◦.
The fact that the int function rounds down in casting a positive floating-point number

to an integer can be used to find the number of digits a positive integer has:

>>> int(math.log10(9999)) + 1

4

>>> int(math.log10(10000)) + 1

5

2.2.3 Variables

What Is a Variable?
When an object, such as a float, is created in a Python program or using the Python
shell, memory is allocated for it: the location of this memory within the computer’s
architecture is called its address. The actual value of an object’s address isn’t actually
very useful in Python, but if you’re curious you can find it out by calling the id built-in
method:

>>> id(20.1)

4297273888 # for example

This number refers to a specific location in memory that has been allocated to hold the
float object with the value 20.1.

For anything beyond the most basic usage, it is necessary to store the objects that are
involved in a calculation or algorithm and to be able to refer to them by some convenient
and meaningful name (rather than an address in memory). This is what variables are
for.5 A variable name can be assigned (“bound”) to any object and used to identify that
object in future calculations. For example,

>>> a = 3

5 In Python, it is arguably better to talk of object identifiers or identifier names rather than variables, but we
will not be too strict about this.

16 The Core Python Language I

>>> b = -0.5

>>> a * b

-1.5

In this snippet, we create the int object with the value 3 and assign the variable name
a to it. We then create the float object with the value -0.5 and assign b to it. Finally,
the calculation a * b is carried out: the values of a and b are multiplied together and
the result returned. This result isn’t assigned to any variable, so after being output to the
screen it is thrown away. That is, the memory required to store the result, a float with
the value -1.5, is allocated for long enough for it to be displayed to the user, but then it
is gone.6 If we need the result for some subsequent calculation, we should assign it to
another variable:

>>> c = a * b

>>> c

-1.5

Note that we did not have to declare the variables before we assign them (tell Python
that the variable name a is to refer to an integer, b is to refer to a floating-point num-
ber, etc.), as is necessary in some computer languages. Python is a dynamically typed
language and the necessary object type is inferred from its definition: in the absence of
a decimal point, the number 3 is assumed to be an int; -0.5 looks like a floating-point
number and so Python defines b to be a float.7

Variable Names
There are some rules about what makes a valid variable name:

• Variable names are case-sensitive: a and A are different variables;
• Variable names can contain any letter, the underscore character (“_”) and any

digit (0–9) ...
• ... but must not start with a digit;
• A variable name must not be the same as one of the reserved keywords given in

Table 2.4;
• The built-in constant names True, False and None cannot be assigned as variable

names.

Most of the reserved keywords are pretty unlikely choices for variable names, with
the exception of lambda. Python programmers often use lam if they need to use it. A
good text editor will highlight the keywords as you type your program, so this rarely
causes confusion.

It is possible to give a variable the same name as a built-in function (e.g. abs and
round), but that built-in function will no longer be available after such an assignment,

6 Actually in an interactive Python session the result of the last calculation is stored in the special variable
called _ (the underscore), so it isn’t really thrown away until overwritten by the next calculation.

7 This is sometimes called duck-typing after the phrase attributed to James Whitcomb Riley: “When I see a
bird that walks like a duck and swims like a duck and quacks like a duck, I call that bird a duck.”

2.2 Numbers, Variables, Comparisons and Logic 17

Table 2.4 Python 3 reserved keywords

and as assert async await break
class continue def del elif else
except finally for from global if
import in is lambda nonlocal not
or pass raise return try while
with yield False True None

so this is probably best avoided – luckily, most have names that are unlikely to be chosen
in practice.8

In addition to the rules mentioned earlier, there are certain style considerations that
dictate good practice in naming variables:

• Variable names should be meaningful (area is better than a) . . .
• . . . but not too long (the_area_of_the_triangle is unwieldy);
• Generally, don’t use I (upper-case i), l (lower-case L) or the upper-case letter O:

they look too much like the digits 1 and 0;
• The variable names i, j and k are usually used as integer counters;
• Use lower-case names, with words separated by underscores rather than

“CamelCase”: for example, mean_height and not MeanHeight.9

These and many other rules and conventions are codified in a style guide called PEP8
which forms part of the Python documentation10 (see also Section 10.3.1).

Breaking these style rules will not result in your program failing to run, but it might
make it harder to maintain and debug – the person you help might be yourself!

Example E2.3 Heron’s formula gives the area, A, of a triangle with sides a, b, c as

A =
√

s(s − a)(s − b)(s − c) where s = 1
2 (a + b + c).

For example,

>>> a = 4.503

>>> b = 2.377

>>> c = 3.902

>>> s = (a + b + c) / 2

Ê >>> area = math.sqrt(s * (s - a) * (s - b) * (s - c))

>>> area

4.63511081571606

Ê Don’t forget to import math if you haven’t already in this Python session.

8 For a complete list of built-in function names, see https://docs.python.org/3/library/functions.html.
9 CamelCase in Python is usually reserved for class names: see Section 4.6.2.

10 https://legacy.python.org/dev/peps/pep-0008/.

https://docs.python.org/3/library/functions.html
https://legacy.python.org/dev/peps/pep-0008/

18 The Core Python Language I

Table 2.5 Python comparison
operators

== Equal to
!= Not equal to
> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to

Example E2.4 The data type and memory address of the object referred to by a
variable name can be found with the built-ins type and id:

>>> type(a)

<class 'float'>

>>> id(area)

4298539728 # for example

2.2.4 Comparisons and Logic

Operators
The main comparison operators that are used in Python to compare objects (such as
numbers) are given in Table 2.5.

The result of a comparison is a boolean object (of type bool) which has exactly
one of two values: True or False. These are built-in constant keywords and cannot be
reassigned to other values. For example,

>>> 7 == 8

False

>>> 4 >= 3.14

True

Python is able, as far as possible without ambiguity, to compare objects of different
types: the integer 4 is promoted to a float for comparison with the number 3.14.

Note the importance of the difference between == and =. The single equals sign is
an assignment, which does not return a value: the statement a = 7 assigns the variable
name a to the integer object 7 and that is all, whereas the expression a == 7 is a test: it
returns True or False depending on the value of a.11

Care should be taken in comparing floating-point numbers for equality. Since they
are not stored exactly, calculations involving them frequently lead to a loss of precision
and this can give unexpected results to the unwary. For example,

>>> a = 0.01

>>> b = 0.1**2

>>> a == b

False

11 In some languages, such as C, assignment returns the value of whatever is being assigned, which can lead
to some nasty and hard-to-find bugs when = is mistakenly used as a comparison operator.

2.2 Numbers, Variables, Comparisons and Logic 19

In this example, 0.01 cannot be represented exactly as a floating-point number but is
(on my system) stored as a binary number equivalent to 0.010000000000000000208;
the result of squaring the floating-point representation of 0.1 on the other hand is
0.01000000000000000194, and these two numbers are not the same. See Section 10.1
for more information.

Since Python 3.5, the math library has provided a function, isclose, to test whether
two floating-point numbers are equal to within some absolute or relative tolerance:

>>> math.isclose(0.1**2, 0.01)

True

The relative tolerance can be set with the rel_tol argument, which defaults to 1.e-9:
this is the maximum allowed difference between the two numbers relative to the larger
absolute value of them; for example, to test if a and b are within 5% of the larger of
them:

>>> a = 9.5

>>> b = 10

>>> math.isclose(a, b, rel_tol=0.05)

True

This kind of relative comparison is problematic when one of the numbers is zero,12, in
which case it can be helpful to test against an absolute tolerance, set by the abs_tol

argument (which defaults to 0):

>>> math.isclose(0, 1.e-12) # relative tolerance comparison fails if rel_tol < 1

False

>>> math.isclose(0, 1.e-12, abs_tol=1.e-10)

True

Table 2.6 Truth table
for the not operator

P not P

True False
False True

Logic Operators
Comparisons can be modified and strung together with the logic operator keywords and,
not and or. See Tables 2.6, 2.7 and 2.8. For example,

>>> 7.0 > 4 and -1 >= 0 # equivalent to True and False

False

>>> 5 < 4 or 1 != 2 # equivalent to False or True

True

12 The relative difference between any number a and 0 is (|a| − 0)/|a| which is certainly bigger than rel_tol

if rel_tol is less than 1.

20 The Core Python Language I

Table 2.7 Truth table for the and
operator

P Q P and Q

True True True
False True False
True False False
False False False

Table 2.8 Truth table for the or
operator

P Q P or Q

True True True
False True True
True False True
False False False

In compound expressions such as these, the comparison operators are evaluated first,
and then the logic operators in order of precedence: not, and, or. This precedence is
overridden with parentheses, as for arithmetic. Thus,

>>> not 7.5 < 0.9 or 4 == 4

True

>>> not (7.5 < 0.9 or 4 == 4)

False

The truth tables for the logic operators are given below; note that, in common with most
languages or in Python is the inclusive or variant for which A or B is True if both A and
B are True, rather than the exclusive or operator (A xor B is True only if one but not
both of A and B are True13).

♦ Boolean Equivalents and Conditional Assignment
In a logic test expression, it is not always necessary to make an explicit comparison to
obtain a boolean value: Python will try to convert an object to a bool type if needed.
For numerical objects, 0 evaluates to False and any nonzero value is True:

>>> a = 0

>>> a or 4 < 3 # same as: False or 4 < 3

False

>>>

>>> not a + 1 # same as: not True

False

13 This xor built-in operator does not exist in Python, but it can be imported as a function with from operator

import xor. The call: xor(a, b) returns True or False.

2.2 Numbers, Variables, Comparisons and Logic 21

In this last example, addition has higher precedence than the logic operator not, so
a + 1 is evaluated first to give 1. This corresponds to boolean True, and so the whole
expression is equivalent to not True. To explicitly convert an object to a boolean object,
use the bool constructor:

>>> bool(-1)

True

>>> bool(0.0)

False

In fact, the and and or operators always return one of their operands and not just its bool
equivalent. So, for example:

>>> a = 0

Ê >>> a - 2 or a

-2

Ë >>> 4 > 3 and a - 2

-2

Ì >>> 4 > 3 and a

0

Logic expressions are evaluated left to right, and those involving and or or are short-
circuited: the second expression is only evaluated if necessary to decide the truth value
of the whole expression. The three examples presented here can be analyzed as follows:
Ê In the first example, a − 2 is evaluated first: this is equal to −2, which is equivalent
to True, so the or condition is fulfilled and the operand evaluating to True is returned
immediately: −2.
Ë 4 > 3 is True, so the second expression must be evaluated to establish the truth of
the and condition. a − 2 is equal to −2, which is also equivalent to True, so the and

condition is fulfilled and −2 (as the most recently evaluated expression) is returned.
Ì In the last case, a is 0 which is equivalent to False: the and condition evaluates to
False because of this, and so the return value is 0.

Python’s Special Value, None
Python defines a single value, None, of the special type, NoneType. It is used to represent
the absence of a defined value, for example, where no value is possible or relevant. This
is particularly helpful in avoiding arbitrary default values (such as 0, -1 or −99) for bad
or missing data.

In a boolean comparison, None evaluates to False, but to test whether or not a vari-
able, x, is equal to None, use

if x is None

and

if x is not None

rather than the shortcuts if x and if not x.14

14 Note that not x also evaluates to True if x is any of 0, False or an empty data structure such as an empty
list, [], or string, ''; it is, therefore, not a very reliable way to test specifically if x is not set to None.

22 The Core Python Language I

Example E2.5 A common Python idiom is to assign a variable using the return value
of a logic expression:

>>> a = 0

>>> b = a or -1

>>> b

-1

That is (for a understood to be an integer): “set b equal to the value of a unless a == 0,
in which case set b equal to −1.”

2.2.5 Immutability and Identity

The objects presented so far, such as integers and booleans, are immutable. Immutable
objects do not change after they are created, though a variable name may be reassigned
to refer to a different object from the one it was originally assigned to. For example,
consider the assignments:

>>> a = 8

>>> b = a

The first line creates the integer object with value 8 in memory, and assigns the name
a to it. The second line assigns the name b to the same object. You can see this by
inspecting the address of the object referred to by each name:

>>> id(a)

4297273504

>>> id(b)

4297273504

Thus, a and b are references to the same integer object. Now suppose a is reassigned to
a new number object:

>>> a = 3.14

>>> a

3.14

>>> b

8

>>> id(a)

4298630152

>>> id(b)

4297273504

Note that the value of b has not changed: this variable still refers to the original 8. The
variable a now refers to a new, float object with the value 3.14 located at a new address.
This is what is meant by immutability: it is not the “variable” that cannot change but the
immutable object itself – see Figure 2.1.

A more convenient way to establish if two variables refer to the same object is to use
the is operator, which determines object identity:

>>> a = 2432

>>> b = a

2.2 Numbers, Variables, Comparisons and Logic 23

>>> a is b

True

>>> c = 2432

>>> c is a

False

>>> c == a

True

Here, the assignment c = 2432 creates an entirely new integer object so c is a evalu-
ates as False, even though a and c have the same value. That is, the two variables refer
to different objects with the same value.

It is often necessary to change the value of a variable in some way, such as

>>> a = 800

>>> a = a + 1

>>> a

801

The integers 800 and 801 are immutable: the line a = a + 1 creates a new integer object
with the value 801 (the right-hand side is evaluated first) and assigns it to the variable
name a (the old 800 is forgotten15 unless some other variable refers to it). That is, a
points to a different address before and after this statement.

This reassignment of a variable by an arithmetic operation on its value is so common
that there is a useful shorthand notation: the augmented assignment a += 5 is the same
as a = a + 5. The operators -=, *=, /=, //=, %= work in the same way. C-style incre-
ment and decrement operations such as a++ for a += 1 are not supported in Python,
however.16

a

a 3.14

(b)

(a)

b

b

8

8

Figure 2.1 (a) Two variables referring to the same integer; (b) after reassigning the value of a.

15 That is, the memory assigned for it by Python is reclaimed (“garbage-collected”) for general use.
16 Assignment and augmented assignment in Python are statements not expressions and so do not return a

value and cannot be chained together.

24 The Core Python Language I

Example E2.6 Python provides the operator is not: it is more natural to write c is

not a than not c is a.

>>> a = 8

>>> b = a

>>> b is a

True

>>> b /= 2

>>> b is not a

True

Example E2.7♦ Given the previous discussion, it might come as a surprise to find that

>>> a = 256

>>> b = 256

>>> a is b

True

This happens because Python keeps a cache of commonly used, small integer objects
(on my system, the numbers −5 to 256). To improve performance, the assignment a =

256 attaches the variable name a to the existing integer object without having to allocate
new memory for it. Because the same thing happens with b, the two variables in this
case do, in fact, point to the same object. By contrast,

>>> a = 257

>>> b = 257

>>> a is b

False

2.2.6 Exercises

Questions

Q2.2.1 Predict the result of the following expressions and check them using the
Python shell.

(a) 2.7 / 2

(b) 2 / 4 - 1

(c) 2 // 4 - 1

(d) (2 + 5) % 3

(e) 2 + 5 % 3

(f) 3 * 4 // 6

(g) 3 * (4 // 6)

(h) 3 * 2 ** 2

(i) 3 ** 2 * 2

Q2.2.2 The operators listed in Table 2.1 are all binary operators: they take two
operands (numbers) and return a single value. The symbol – is also used as a unary

2.2 Numbers, Variables, Comparisons and Logic 25

operator, which returns the negative value of the single operand on which it acts. For
example,

>>> a = 4

>>> b = -a

>>> b

-4

Note that the expression b = -a (which sets the variable b to the negative value of a) is
different from the expression b -= a (which subtracts a from b and stores the result in
b). The unary – operator has a higher precedence than *, / and % but a lower precedence
than exponentiation (**), so that, for example -2 ** 4 is -16 (i.e. −(24), not (−2)4).

Predict the result of the following expressions and check them using the Python shell.

(a) −2 ** 2

(b) 2 ** -2

(c) −2 ** -2

(d) 2 ** 2 ** 3

(e) 2 ** 3 ** 2

(f) −2 ** 3 ** 2

(g) (−2) ** 3 ** 2

(h) (−2) ** 2 ** 3

Q2.2.3 Predict and explain the results of the following statements.

(a) 9 + 6j / 2

(b) complex(4, 5).conjugate().imag

(c) complex(0, 3j)

(d) round(2.5)

(e) round(-2.5)

(f) abs(complex(5, -4)) == math.hypot(4,5)

Q2.2.4 Determine the value of ii as a real number, where i =
√
−1.

Q2.2.5 Explain the (surprising?) behavior of the following short code:

>>> d = 8

>>> e = 2

>>> from math import *

>>> sqrt(d ** e)

16.88210319127114

Q2.2.6 Formally, the integer division a // b is defined as the floor of a/b (sometimes
written b a

b c) – that is, the largest integer less than or equal to a / b. The modulus or
remainder, a % b (also written a mod b), is then

a mod b = a − b
⌊a
b

⌋
.

Use these definitions to predict the result of the following expressions and check them
using the Python shell.

26 The Core Python Language I

(a) 7 // 4

(b) 7 % 4

(c) -7 // 4

(d) -7 % 4

(e) 7 // -4

(f) 7 % -4

(g) -7 // -4

(h) -7 % -4

Q2.2.7 If two adjacent sides of a regular, six-sided die have the values a and b when
viewed side-on and read left to right, the value on the top of the die is given by 3(a3b −
ab3) mod 7.

Determine the value on the top of the die if (a) a = 2, b = 6, (b) a = 3, b = 5.

Q2.2.8 How many times must a sheet of paper (thickness, t = 0.1 mm but otherwise
any size required) be folded to reach the Moon (distance from Earth, d = 384 400 km)?

Q2.2.9 Predict the results of the following expressions and check them using the
Python shell.

(a) not 1 < 2 or 4 > 2

(b) not (1 < 2 or 4 > 2)

(c) 1 < 2 or 4 > 2

(d) 4 > 2 or 10/0 == 0

(e) not 0 < 1

(f) 1 and 2

(g) 0 and 1

(h) 1 or 0

(i) type(complex(2, 3).real) is int

Q2.2.10 Explain why the following expression does not evaluate to 100.

>>> 10^2

8

Hint: refer to the Python documentation for bitwise operators.

Problems

P2.2.1 There is no exclusive-or operator provided “out of the box” by Python, but one
can be constructed from the existing operators. Devise two different ways of doing this.
The truth table for the xor operator is given in Table 2.9.

P2.2.2 Some fun with the math module:

(a) What is special about the numbers sin
(
2017 5√2

)
and (π + 20)i?

(b) What happens if you try to evaluate an expression, such as e1000, which generates
a number larger than the largest floating-point number that can be represented

2.3 Python Objects I: Strings 27

in the default double precision? What if you restrict your calculation to integer
arithmetic (e.g. by evaluating 1000!)?

(c) What happens if you try to perform an undefined mathematical operation such as
division by zero?

(d) The maximum representable floating-point number in IEEE-754 double precision
is about 1.8 × 10308. Calculate the length of the hypotenuse of a right-angled
triangle with opposite and adjacent sides 1.5 × 10200 and 3.5 × 10201 (i) using the
math.hypot() function directly and (ii) without using this function.

P2.2.3 Some languages provide a sign(a) function which returns −1 if its argument,
a, is negative and 1 otherwise. Python does not provide such a function, but the math

module does include a function math.copysign(x, y), which returns the absolute value
of x with the sign of y. How would you use this function in the same way as the missing
sign(a) function?

P2.2.4 The World Geodetic System is a set of international standards for describing
the shape of the Earth. In the latest WGS-84 revision, the Earth’s geoid is approximated
to a reference ellipsoid that takes the form of an oblate spheroid with semi-major and
semi-minor axes a = 6 378 137.0 m and c = 6 356 752.314245 m respectively.

Use the formula for the surface area of an oblate spheroid,

S obl = 2πa2
(
1 +

1 − e2

e
atanh(e)

)
, where e2 = 1 −

c2

a2 ,

to calculate the surface area of this reference ellipsoid and compare it with the surface
area of the Earth assumed to be a sphere with radius 6371 km.

2.3 Python Objects I: Strings

2.3.1 Defining a String Object

A Python string object (of type str) is an ordered, immutable sequence of characters.
To define a variable containing some constant text (a string literal), enclose the text in
either single or double quotes:

>>> greeting = "Hello, Sir!"

>>> bye = 'À bientôt'

Table 2.9 Truth table for the xor
operator

P Q P xor Q

True True False
False True True
True False True
False False False

28 The Core Python Language I

Strings can be concatenated using either the + operator or by placing them next to each
other on the same line:

>>> 'abc' + 'def'

'abcdef'

>>> 'one ' 'two' ' three'

'one two three'

Python doesn’t place any restriction on the length of a line, so a string literal can be
defined in a single, quoted block of text. However, for ease of reading, it is usually a
good idea to keep the lines of your program to a fixed maximum length (79 characters
is recommended). To break up a string over two or more lines of code, use the line
continuation character, “\” or (better) enclose the string literal in parentheses:

>>> long_string = 'We hold these truths to be self-evident,'\

... ' that all men are created equal...'

>>> long_string = ('We hold these truths to be self-evident,'

... ' that all men are created equal...')

This defines the variable long_string to hold a single line of text (with no carriage
returns). The concatenation does not insert spaces so they need to be included explicitly
if they are wanted. The spaces lining up the opening quotes in this example are optional
but make the code easier to read.

If your string consists of a repetition of one or more characters, the * operator can be
used to concatenate them the required number of times:

>>> 'a' * 4

'aaaa'

>>> '-o-' * 5

'-o--o--o--o--o-'

The empty string is defined simply as s = '' (two single quotes) or s = "".
Finally, the built-in function, str converts an object passed as its argument into a

string according to a set of rules defined by the object itself:

>>> str(42)

'42'

>>> str(3.4e5)

'340000.0'

>>> str(3.4e20)

'3.4e+20'

For finer control over the formatting of the string representation of numbers, see Section
2.3.7.

Example E2.8 Strings concatenated with the “+” operator can repeated with “*,” but
only if enclosed in parentheses:

>>> ('a'*4 + 'B') * 3

'aaaaBaaaaBaaaaB'

2.3 Python Objects I: Strings 29

2.3.2 Escape Sequences

The choice of quotes for strings allows one to include the quote character itself inside a
string literal – just define it using the other quote:

>>> verse = 'Quoth the Raven "Nevermore."'

But what if you need to include both quotes in a string? Or to include more than one
line in the string? This case is handled by special escape sequences indicated by a
backslash, \. The most commonly used escape sequences are listed in Table 2.10. For
example,

>>> sentence = "He said, \"This parrot's dead.\""

Ê >>> sentence

'He said, "This parrot\'s dead."'

Ë >>> print(sentence)

He said, "This parrot's dead."

>>> subjects = 'Physics\nChemistry\nGeology\nBiology'

>>> subjects

'Physics\nChemistry\nGeology\nBiology'

>>> print(subjects)

Physics

Chemistry

Geology

Biology

Ê Note that just typing a variable’s name at the Python shell prompt simply echoes its
literal value back to you (in quotes).
Ë To produce the desired string including the proper interpretation of special charac-
ters, pass the variable to the print built-in function (see Section 2.3.6).

On the other hand, if you want to define a string to include character sequences such
as “\n” without them being escaped, define a raw string prefixed with r:

>>> rawstring = r'The escape sequence for a new line is \n.'

>>> rawstring

'The escape sequence for a new line is \\n.'

>>> print(rawstring)

The escape sequence for a new line is \n.

Table 2.10 Common Python escape sequences

Escape sequence Meaning

\' Single quote (')
\" Double quote (")
\n Linefeed (LF)
\r Carriage return (CR)
\t Horizontal tab
\b Backspace
\\ The backslash character itself
\u, \U, \N{} Unicode character (see Section 2.3.3)
\x Hex-encoded byte

30 The Core Python Language I

When defining a block of text including several line endings it is often inconvenient to
use \n repeatedly. This can be avoided by using triple-quoted strings: new lines defined
within strings delimited by """ and ''' are preserved in the string:17

a = """one

two

three"""

>>> print(a)

one

two

three

This is often used to create “docstrings” which document blocks of code in a program
(see Section 2.7.1).

Example E2.9 The \x escape denotes a character encoded by the single-byte hex
value given by the subsequent two characters. For example, the capital letter “N” is
encoded by the value 78, which is 4e in hex. Hence,

>>> '\x4e'

'N'

The backspace “character” is encoded as hex 08, which is why '\b' is equivalent to
'\x08':

>>> 'hello\b\b\b\b\bgoodbye'

'hello\x08\x08\x08\x08\x08goodbye'

Sending this string to the print() function outputs the string formed by the sequence
of characters in this string literal:

>>> print('hello\b\b\b\b\bgoodbye')

goodbye

2.3.3 Unicode

Python 3 strings are composed of Unicode characters. unicode is a standard describing
the representation of more than 100 000 characters in just about every human language,
as well as many other specialist characters such as scientific symbols. It does this by
assigning a number (code point) to every character; the numbers that make up a string
are then encoded as a sequence of bytes.18 For a long time, there was no agreed encoding
standard, but the UTF-8 encoding, which is used by Python 3 by default, has emerged
as the most widely used today.19 If your editor will not allow you to enter a character
directly into a string literal, you can use its 16- or 32-bit hex value or its Unicode
character name as an escape sequence:

>>> '\u00E9' # 16-bit hex value

17 It is generally considered better to use three double quotes, """, for this purpose.
18 For a list of code points, see the official Unicode website’s code charts at www.unicode.org/charts/.
19 UTF-8 encoded Unicode encompasses the venerable 8-bit encoding of the ASCII character set

(e.g. A = 65).

www.unicode.org/charts/

2.3 Python Objects I: Strings 31

'é'

>>> '\u000000E9' # 32-bit hex value

'é'

>>> '\N{LATIN SMALL LETTER E WITH ACUTE}' # by name

'é'

Example E2.10 Providing your editor or terminal allows it, and you can type them
at your keyboard or paste them from elsewhere (e.g. a web browser or word processor),
Unicode characters can be entered directly into string literals:

>>> creams = ’Crème fraîche, crème brûlée, crème pâtissière’

Python even supports Unicode variable names, so identifiers can use non-ASCII
characters:

>>> Σ = 4

>>> crème = ’anglaise’

Needless to say, because of the potential difficulty in entering non-ASCII characters
from a standard keyboard and because many distinct characters look very similar, this
is not a good idea.

2.3.4 Indexing and Slicing Strings

Indexing (or “subscripting”) a string returns a single character at a given location. Like
all sequences in Python, strings are indexed with the first character having the index 0;
this means that the final character in a string consisting of n characters is indexed at
n − 1. For example,

>>> a = "Knight"

>>> a[0]

'K'

>>> a[3]

'g'

The character is returned in a str object of length 1. A nonnegative index counts forward
from the start of the string; there is a handy notation for the index of a string counting
backward: a negative index, starting at -1 (for the final character) is used. So,

>>> a = "Knight"

>>> a[-1]

't'

>>> a[-4]

'i'

It is an error to attempt to index a string outside its length (here, with index greater than
5 or less than −6); Python raises an IndexError:

>>> a[6]

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

IndexError: string index out of range

Slicing a string, s[i:j], produces a substring of a string between the characters at two
indexes, including the first (i) but excluding the second (j). If the first index is omitted,
0 is assumed; if the second is omitted, the string is sliced to its end. For example,

32 The Core Python Language I

>>> a = "Knight"

>>> a[1:3]

'ni'

>>> a[:3]

'Kni'

>>> a[3:]

'ght'

>>> a[:]

'Knight'

This can seem confusing at first, but it ensures that the length of a substring returned
as s[i:j] has length j−i (for positive i, j) and that s[:i] + s[i:] == s. Unlike
indexing, slicing a string outside its bounds does not raise an error:

>>> a = "Knight"

>>> a[3:10]

'ght'

>>> a[10:]

''

To test if a string contains a given substring, use the in operator:

>>> 'Kni' in 'Knight':

True

>>> 'kni' in 'Knight':

False

Example E2.11 Because of the nature of slicing, s[m:n], n-m is always the length of
the substring. In other words, to return r characters starting at index m, use s[m:m+r].
For example,

>>> s = 'whitechocolatespaceegg'

>>> s[:5]

'white'

>>> s[5:14]

'chocolate'

>>> s[14:19]

'space'

>>> s[19:]

'egg'

Example E2.12 The optional third number in a slice specifies the stride. If omitted,
the default is 1: return every character in the requested range. To return every kth letter,
set the stride to k. Negative values of k reverse the string. For example,

>>> s = 'King Arthur'

>>> s[::2]

'Kn rhr'

>>> s[1::2]

'igAtu'

>>> s[-1:4:-1]

'ruhtrA'

2.3 Python Objects I: Strings 33

This last slice can be explained as a selection of characters from the last (index -1) down
to (but not including) character at index 4, with stride -1 (select every character, in the
reverse direction).

A convenient way of reversing a string is to slice between default limits (by omitting
the first and last indexes) with a stride of -1:

>>> s[::-1]

'ruhtrA gniK'

2.3.5 String Methods

Python strings are immutable objects, and so it is not possible to change a string by
assignment – for example, the following is an error:

>>> a = 'Knight'

>>> a[0] = 'k'

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: 'str' object does not support item assignment

New strings can be constructed from existing strings, but only as new objects. For
example,

>>> a += ' Templar'

>>> print(a)

Knight Templar

>>> b = 'Black ' + a[:6]

>>> print(b)

Black Knight

To find the number of characters a string contains, use the len built-in method:

>>> a = 'Earth'

>>> len(a)

5

String objects come with a large number of methods for manipulating and transform-
ing them. These are accessed using the usual dot notation we have met already – some
of the more useful ones are listed in Table 2.11. In this and similar tables, text in italics
is intended to be replaced by a specific value appropriate to the use of the method; italic
text in [square brackets] denotes an optional argument.

Because these methods each return a new string, they can be chained together:

>>> s = '-+-Python Wrangling for Beginners'

>>> s.lower().replace('wrangling', 'programming').lstrip('+-')

'python programming for beginners'

Example E2.13 Here are some possible manipulations using string methods:

>>> a = 'java python c++ fortran '

>>> a.isalpha()

Ê False

>>> b = a.title()

34 The Core Python Language I

Table 2.11 Some common string methods

Method Description

center(width) Return the string centered in a string with total number of
characters width .

endswith(suffix) Return True if the string ends with the substring suffix.
startswith(prefix) Return True if the string starts with the substring prefix.
index(substring) Return the lowest index in the string containing substring.
lstrip([chars]) Return a copy of the string with any of the leading characters

specified by [chars] removed. If [chars] is omitted, any
leading whitespace is removed.

rstrip([chars]) Return a copy of the string with any of the trailing characters
specified by [chars] removed. If [chars] is omitted, any
trailing whitespace is removed.

strip([chars]) Return a copy of the string with leading and trailing characters
specified by [chars] removed. If [chars] is omitted, any
leading and trailing whitespace is removed.

upper() Return a copy of the string with all characters in upper case.
lower() Return a copy of the string with all characters in lower case.
title() Return a copy of the string with all words starting with capitals

and other characters in lower case.
replace(old, new) Return a copy of the string with each substring old replaced

with new.
split([sep]) Return a list (see Section 2.4.1) of substrings from the original

string which are separated by the string sep. If sep is not
specified, the separator is taken to be any amount of whitespace.

join([list]) Use the string as a separator in joining a list of strings.
isalpha() Return True if all characters in the string are alphabetic and the

string is not empty; otherwise return False.
isdigit() Return True if all characters in the string are digits and the

string is not empty; otherwise return False.

>>> b

'Java Python C++ Fortran '

>>> c = b.replace(' ', '!\n')

>>> c

'Java!\nPython!\nC++!\nFortran!'

>>> print(c)

Java!

Python!

C++!

Fortran!

>>> c.index('Python')

Ë 6

>>> c[6:].startswith('Py')

True

>>> c[6:12].isalpha()

True

Ê a.isalpha() is False because of the spaces and '++'.
Ë Note that \n is a single character.

2.3 Python Objects I: Strings 35

2.3.6 The print Function

In Python 3, print is a built-in function (just like the others we have met such as len

and round). It takes a list of objects to be output, and the optional arguments end and
sep, that specify which characters should end the string and which characters should be
used to separate the printed objects respectively. Omitting these additional arguments
results in output in which the object fields are separated by a single space and the line
is ended with a newline character.20 For example,

>>> ans = 6

>>> print('Solve:', 2, 'x =', ans, 'for x')

Solve: 2 x = 6 for x

>>> print('Solve: ', 2, 'x = ', ans, ' for x', sep='', end='!\n')

Solve: 2x = 6 for x!

Ê >>> print()

>>> print('Answer: x =', ans/2)

Answer: x = 3.0

Ê Note that print() with no arguments just prints the default newline end character.
To suppress the new line at the end of a printed string, specify end to be the empty

string: end='':

>>> print('A line with no newline character', end='')

A line with no newline character >>>

The chevrons, >>>, at the end of this line form the prompt for the next Python command
to be entered.

Example E2.14 print can be used to create simple text tables:

>>> heading = '| Index of Dutch Tulip Prices |'

>>> line = '+' + '-'*16 + '-'*13 + '+'

>>> print(line, heading, line,

... '| Nov 23 1636 | 100 |',

... '| Nov 25 1636 | 673 |',

... '| Feb 1 1637 | 1366 |', line, sep='\n')

...

+-----------------------------+

| Index of Dutch Tulip Prices |

+-----------------------------+

| Nov 23 1636 | 100 |

| Nov 25 1636 | 673 |

| Feb 1 1637 | 1366 |

+-----------------------------+

20 The specific newline character used depends on the operating system: for example, on a Mac it is “\n” (the
“linefeed” character), on Windows it is two characters: “\r\n” (“carriage return” + “line feed”).

36 The Core Python Language I

2.3.7 String Formatting

Introduction to Python 3 String Formatting
In its simplest form, it is possible to use a string’s format method to insert objects into
it. The most basic syntax is

>>> '{} plus {} equals {}'.format(2, 3, 'five')

2 plus 3 equals five

Here, the format method is called on the string literal with the arguments 2, 3 and 'five'
which are interpolated, in order, into the locations of the replacement fields, indicated
by braces, {}. Replacement fields can also be numbered or named, which helps with
longer strings and allows the same value to be interpolated more than once:

>>> '{1} plus {0} equals {2}'.format(2, 3, 'five')

'3 plus 2 equals five'

>>> '{num1} plus {num2} equals {answer}'.format(num1=2, num2=3, answer='five')

'2 plus 3 equals five'

>>> '{0} plus {0} equals {1}'.format(2, 2+2)

'2 plus 2 equals 4'

Note that numbered fields can appear in any order and are indexed starting at 0.
Replacement fields can be given a minimum size within the string by the inclusion of

an integer length after a colon as follows:

>>> '=== {0:12} ==='.format('Python')

'=== Python ==='

If the string is too long for the minimum size, it will take up as many characters as
needed (overriding the replacement field size specified):

>>> 'A number: <{0:2}>'.format(-20)

'A number: <-20>' # -20 won ' t fit into 2 characters: 3 are used anyway

By default, the interpolated string is aligned to the left; this can be modified to align to
the right or to center the string. The single characters <, > and ˆ control the alignment:

>>> '=== {0:<12} ==='.format('Python')

'=== Python ==='

>>> '=== {0:>12} ==='.format('Python')

'=== Python ==='

>>> '=== {0:^12} ==='.format('Python')

'=== Python ==='

In these examples, the field is padded with spaces, but this fill character can also be
specified. For example, to pad with hyphens in the last example, specify

>>> '=== {0:-^12} ==='.format('Python')

'=== ---Python--- ==='

It is even possible to pass the minimum field size as a parameter to be interpolated. Just
replace the field size with a reference in braces as follows:

>>> a = 15

>>> 'This field has {0} characters: ==={1:>{2}}===.'.format(a, 'the field', a)

'This field has 15 characters: === the field===.'

Or with named interpolation:

2.3 Python Objects I: Strings 37

>>> 'This field has {w} characters: ==={0:>{w}}===.'.format('the field', w=a)

'This field has 15 characters: === the field===.'

In each case, the second format specifier here has been taken to be :>15.
To insert the brace characters themselves into a formatted string, they must be dou-

bled up: use “{{” and “}}”.

Formatting Numbers
The Python 3 string format method provides a powerful way to format numbers.

The specifiers “d”, “b”, “o”, “x”/“X” indicate a decimal, binary, octal and lower-
case/upper-case hex integer respectively:

>>> a = 254

>>> 'a = {0:5d}'.format(a) # decimal

'a = 254'

>>> 'a = {0:10b}'.format(a) # binary

'a = 11111110'

>>> 'a = {0:5o}'.format(a) # octal

'a = 364'

>>> 'a = {0:5x}'.format(a) # hex (lower-case)

'a = fe'

>>> 'a = {0:5X}'.format(a) # hex (upper-case)

'a = FE'

Numbers can be padded with zeros to fill out the specified field size by prefixing the
minimum width with a 0:

>>> a = 254

>>> 'a = {a:05d}'.format(a=a)

'a = 00254'

By default, the sign of a number is only output if it is negative. This behavior can also
be customized by specifying, before the minimum width:

• “+”: always output a sign;
• “-”: only output a negative sign, the default; or
• “ ”: output a leading space only if the number is positive.

This last option enables columns of positive and negative numbers to be lined up nicely:

>>> print('{0: 5d}\n{1: 5d}\n{2: 5d}'.format(-4510, 1001, -3026))

-4510

1001

-3026

>>> a = -25

>>> b = 12

>>> s = '{0:+5d}\n{1:+5d}\n= {2:+3d}'.format(a, b, a+b)

>>> print(s)

-25

+12

= -13

There are also format specifiers for floating-point numbers, which can be output
to a chosen precision if desired. The most useful options are “f”: fixed-point nota-
tion, “e”/“E”: exponent (i.e. “scientific” notation), and “g”/“G”: a general format which

38 The Core Python Language I

uses scientific notation for very large and very small numbers.21 The desired precision
(number of decimal places) is specified as “.p” after the minimum field width. Some
examples:
>>> a = 1.464e-10

>>> '{0:g}'.format(a)

'1.464e-10'

>>> '{0:10.2E}'.format(a)

' 1.46E-10'

>>> '{0:15.13f}'.format(a)

'0.0000000001464'

>>> '{0:10f}'.format(a)

Ê ' 0.000000'

Ê Note that Python will not protect you from this kind of rounding to zero if not
enough space is provided for a fixed-point number.

Formatted String Literals (f-strings)
Since version 3.6, Python has supported a further way of interpolating values into
strings: a string literal denoted with a f before the quotes can evaluate expressions
placed within braces, including references to variables, function calls and comparisons.
This provides an expressive and concise way to define string objects; for example, given
the variables
>>> h = 6.62607015e-34

>>> h_units = 'J.s'

instead of using the format function:
>>> 'h = {h:.3e} {h_units}'.format(h=h, h_units=h_units)

'h = 6.626e-34 J.s'

one can simply write:
>>> f'h = {h:.3e} {h_units}'

'h = 6.626e-34 J.s'

This means that there is no need for the awkward repetition in the format call (h=h,
h_units=h_units) and for longer strings with many interpolations it is easier to read.
It is also generally faster to execute because the syntax is part of Python’s fundamental
grammar and no explicit function call is required.

Although it wouldn’t generally be a good idea to put a complex expression in an
f-string replacement field, it is common to call functions or make comparisons:
>>> name = 'Elizabeth'

>>> f'The name {name} has {len(name)} letters and {name.lower().count("e")} "e"s.'

'The name Elizabeth has 9 letters and 2 "e"s.'

or even:
>>> letter = 'k'

>>> f'{name} has {len(name)} letters and {name.lower().count(letter)} "{letter}"s.'

'Elizabeth has 9 letters and 0 "k"s.'

21 More specifically, the g/G specifier acts like f/F for numbers between 10−4 and 10p where p is the desired
precision (which defaults to 6), and acts like e/E otherwise.

2.3 Python Objects I: Strings 39

There are few minor things to bear in mind: the quotes used inside an f-string expres-
sion should not conflict with those used to delimit the string literal itself (note the use
of " above to avoid the clash with the outer f'...' quotes). Also, because f-strings are
evaluated once, at runtime, it is not possible to define a reuseable “template”:

>>> radius = 2.5

>>> s = f'The radius is {radius} m.'

>>> print(s)

The radius is 2.5 m.

>>> radius = 10.3

>>> print(s)

The radius is 2.5 m.

For this use-case, traditional format string interpolation is better:

>>> radius = 2.5

>>> t = 'The radius is {} m.'

>>> print(t.format(radius))

The radius is 2.5 m.

>>> radius = 10.3

>>> print(t.format(radius))

The radius is 10.3 m.

In this book we will use both traditional format string interpolation and f-strings.

Older C-style Formatting
Python 3 also supports the less powerful, C-style format specifiers that are still in
widespread use. In this formulation the replacement fields are specified with the mini-
mum width and precision specifiers following a % sign. The objects whose values are to
be interpolated are then given after the end of the string, following another % sign. They
must be enclosed in parentheses if there is more than one of them. The same letters for
the different output types are used as earlier; strings must be specified explicitly with
“%s”. For example,

>>> kB = 1.380649e-23

>>> 'Here\'s a number: %10.2e' % kB

"Here's a number: 1.38e-23"

>>> 'The same number formatted differently: %7.1e and %12.6e' % (kB, kB)

'The same number formatted differently: 1.4e-23 and 1.380649e-23'

>>> '%s is %g J/K' % ("Boltzmann's constant", kB)

"Boltzmann's constant is 1.38065e-23 J/K"

Example E2.15 Python can produce string representations of numbers for which
thousands are separated by commas:

40 The Core Python Language I

>>> '{:11,d}'.format(1000000)

' 1,000,000'

>>> '{:11,.1f}'.format(1000000.)

'1,000,000.0'

Here is another table, produced using several different string methods:
title = '|' + '{:^51}'.format('Cereal Yields (kg/ha)') + '|'

line = '+' + '-'*15 + '+' + ('-'*8 + '+')*4

row = '| {:<13} |' + ' {:6,d} |'*4

header = '| {:^13s} |'.format('Country') + (' {:^6d} |'*4).format(1980, 1990,

2000, 2010)

print('+' + '-'*(len(title)-2) + '+',

title,

line,

header,

line,

row.format('China', 2937, 4321, 4752, 5527),

row.format('Germany', 4225, 5411, 6453, 6718),

row.format('United States', 3772, 4755, 5854, 6988),

line,

sep='\n')

+---+

| Cereal Yields (kg/ha) |

+---------------+--------+--------+--------+--------+

| Country | 1980 | 1990 | 2000 | 2010 |

+---------------+--------+--------+--------+--------+

| China | 2,937 | 4,321 | 4,752 | 5,527 |

| Germany | 4,225 | 5,411 | 6,453 | 6,718 |

| United States | 3,772 | 4,755 | 5,854 | 6,988 |

+---------------+--------+--------+--------+--------+

2.3.8 Exercises

Questions

Q2.3.1 Slice the string s = 'seehemewe' to produce the following substrings:

(a) 'see'

(b) 'he'

(c) 'me'

(d) 'we'

(e) 'hem'

(f) 'meh'

(g) 'wee'

Q2.3.2 Write a single-line expression for determining if a string is a palindrome (reads
the same forward as backward).

Q2.3.3 Predict the results of the following statements and check them using the
Python shell.
>>> days = 'Sun Mon Tues Weds Thurs Fri Sat'

2.3 Python Objects I: Strings 41

(a) print(days[days.index('M'):])

(b) print(days[days.index('M'):days.index('Sa')].rstrip())

(c) print(days[6:3:-1].lower()*3)

(d) print(days.replace('rs', '').replace('s ', ' ')[::4])

(e) print(' -*- '.join(days.split()))

Q2.3.4 What is the output of the following code? How does it work?

>>> suff = 'thstndrdththththththth'

>>> n = 1

>>> print('{:d}{:s}'.format(n, suff[n*2:n*2+2]))

>>> n = 3

>>> print('{:d}{:s}'.format(n, suff[n*2:n*2+2]))

>>> n = 5

>>> print('{:d}{:s}'.format(n, suff[n*2:n*2+2]))

Q2.3.5 Consider the following (incorrect) tests to see if the string 's' has one of
two values. Explain how these statements are interpreted by Python and give a correct
alternative.

>>> s = 'eggs'

>>> s == ('eggs' or 'ham')

True

>>> s == ('ham' or 'eggs')

False

Problems

P2.3.1

(a) Given a string representing a base-pair sequence (i.e. containing only the letters
A, G, C and T), determine the fraction of G and C bases in the sequence.
(Hint: strings have a count method, returning the number of occurrences of a
substring.)

(b) Using only string methods, devise a way to determine if a nucleotide sequence
is a palindrome in the sense that it is equal to its own complementary sequence
read backward. For example, the sequence TGGATCCA is palindromic because
its complement is ACCTAGGT, which is the same as the original sequence back-
ward. The complementary base pairs are (A, T) and (C, G).

P2.3.2 The table that follows gives the names, symbols, values, uncertainties and units
of some physical constants.

Defining variables of the form

G = 6.6743e-11 # J/K

G_unc = 1.5e-15 # uncertainty

G_units = 'Nm^2/kg^2'

use the string object’s format method to produce the following output:

(a) kB = 1.381e-23 J/K

42 The Core Python Language I

Name Symbol Value Uncertainty Units
Boltzmann constant kB 1.380649 × 10−23 (def) J K−1

Speed of light c 2.99792458 × 108 (def) m s−1

Planck constant h 6.62607015 × 10−34 (def) J s
Avogadro constant NA 6.02214076 × 1023 (def) mol−1

Electron magnetic moment µe −9.28476377 × 10−24 2.3 × 10−31 J T−1

Gravitational constant G 6.67430 × 10−11 1.5 × 10−15 N m2 kg−2

(b) G = 0.0000000000667430 Nm^2/kg^2

(c) Using the same format specifier for each line,

kB = 1.3807e-23 J/K

mu_e = -9.2848e-24 J/T

N_A = 6.0221e+23 mol-1

c = 2.9979e+08 m/s

(d) Again, using the same format specifier for each line,

=== G = +6.67E-11 [Nm^2/kg^2] ===

=== µe = -9.28E-24 [J/T] ===

Hint: the Unicode codepoint for the lower-case Greek letter mu is U+03BC.
(e) (Harder). Produce the output below, in which the uncertainty (one standard devia-

tion) in the value of each constant is expressed as a number in parentheses relative
the preceding digits: that is, 6.67430(15) × 10−11 means 6.67430 × 10−11 ± 1.5 ×
10−15.

G = 6.67430(15)e-11 Nm^2/kg^2

mu_e = -9.28476377(23)e-24 J/T

P2.3.3 Given the elements of a 3 × 3 matrix as the nine variables a11, a12, . . . , a33,
produce a string representation of the matrix using formatting methods, (a) assuming
the matrix elements are (possibly negative) real numbers to be given to one decimal
place; (b) assuming the matrix is a permutation matrix with integer entries taking the
values 0 or 1 only. For example,

>>> print(s_a)

[0.0 3.4 -1.2]

[-1.1 0.5 -0.2]

[2.3 -1.4 -0.7]

>>> print(s_b)

[0 0 1]

[0 1 0]

[1 0 0]

P2.3.4 Find the Unicode code points for the planet symbols listed on the NASA web-
site (https://solarsystem.nasa.gov/resources/680/solar-system-symbols/) which mostly
fall within the hex range 2600–26FF: Miscellaneous Symbols (https://www.unicode.
org/charts/PDF/U2600.pdf) and output a list of planet names and symbols.

https://solarsystem.nasa.gov/resources/680/solar-system-symbols/
https://www.unicode.org/charts/PDF/U2600.pdf
https://www.unicode.org/charts/PDF/U2600.pdf

2.4 Python Objects II: Lists, Tuples and Loops 43

2.4 Python Objects II: Lists, Tuples and Loops

2.4.1 Lists

Initializing and Indexing Lists
Python provides data structures for holding an ordered list of objects. In some other
languages (e.g. C and Fortran) such a data structure is called an array and can hold only
one type of data (e.g. an array of integers); the core array structures in Python, however,
can hold a mixture of data types.

A Python list is an ordered, mutable array of objects. A list is constructed by speci-
fying the objects, separated by commas, between square brackets, []. For example,

>>> list1 = [1, 'two', 3.14, 0]

>>> list1

[1, 'two', 3.14, 0]

>>> a = 4

>>> list2 = [2, a, -0.1, list1, True]

>>> list2

[2, 4, -0.1, [1, 'two', 3.14, 0], True]

Note that a Python list can contain references to any type of object: strings, the various
types of numbers, built-in constants such as the boolean value True, and even other lists.
It is not necessary to declare the size of a list in advance of using it. An empty list can
be created with list0 = [] or list0 = list().

An item can be retrieved from the list by indexing it (remember Python indexes start
at 0):

>>> list1[2]

3.14

>>> list2[-1]

True

>>> list2[3][1]

'two'

This last example retrieves the second (index: 1) item of the fourth (index: 3) item
of list2. This is valid because the item list2[3] happens to be a list (the one also
identified by the variable name list1), and list1[1] is the string 'two'. In fact, since
strings can also be indexed:

>>> list2[3][1][1]

'w'

To test for membership of a list, the operator in is used, as for strings:

>>> 1 in list1

True

>>> 'two' in list2:

False

This last expression evaluates to False because list2 does not contain the string literal
'two' even though it contains list1 which does: the in operator does not recurse into
lists-of-lists when it tests for membership.

44 The Core Python Language I

Lists and Mutability
Python lists are the first mutable object we have encountered. Unlike strings, which
cannot be altered once defined, the items of a list can be reassigned:

>>> list1

[1, 'two', 3.14, 0]

>>> list1[2] = 2.72

>>> list1

[1, 'two', 2.72, 0]

>>> list2

[2, 4, -0.1, [1, 'two', 2.72, 0], True]

Note that not only has list1 been changed, but list2 (which contains list1 as an item)
has also changed.22 This behavior catches a lot of people out to begin with, particularly
if a list needs to be copied to a different variable.

>>> q1 = [1, 2, 3]

>>> q2 = q1

>>> q1[2] = 'oops'

>>> q1

[1, 2, 'oops']

>>> q2

[1, 2, 'oops']

Here, the variables q1 and q2 refer to the same list, stored in the same memory location,
and because lists are mutable, the line q1[2] = 'oops' actually changes one of the
stored values at that location; q2 still points to the same location and so it appears to
have changed as well. In fact, there is only one list (referred to by two variable names)
and it is changed once. In contrast, integers are immutable, so the following does not
change the value of q[2]:

>>> a = 3

>>> q = [1, 2, a]

>>> a = 4

>>> q

[1, 2, 3]

The assignment a = 4 creates a whole new integer object, quite independent of the
original 3 that ended up in the list q. This original integer object isn’t changed by the
assignment (integers are immutable) and so the list is unchanged. This distinction is
illustrated by Figures 2.2, 2.3 and 2.4.

Lists can be sliced in the same way as string sequences:

>>> q1 = [0., 0.1, 0.2, 0.3, 0.4, 0.5]

>>> q1[1:4]

[0.1, 0.2, 0.3]

>>> q1[::-1] # return a reversed copy of the list

[0.5, 0.4, 0.3, 0.2, 0.1, 0.0]

>>> q1[1::2] # striding: returns elements at 1, 3, 5

[0.1, 0.3, 0.5]

22 Actually, it hasn’t changed: it only ever contained a series of references to objects: the reference to list1

is the same, even though the references within list1 have changed.

2.4 Python Objects II: Lists, Tuples and Loops 45

q1

q2

(a)

[0] 1

[1]

[2]

q1

q2

2

3

1

2

‘oops’

[0]

[1]

[2]

(b)

Figure 2.2 Two variables referring to the same list: (a) on initialization and (b) after setting
q1[2] = 'oops'.

Taking a slice copies the data to a new list. Hence,

>>> q2 = q1[1:4]

>>> q2[1] = 99 # only affects q2

>>> q2

[0.1, 99, 0.3]

>>> q1

[0.0, 0.1, 0.2, 0.3, 0.4, 0.5]

List Methods
Just as for strings, Python lists come with a large number of useful methods, summa-
rized in Table 2.12. Because list objects are mutable, they can grow or shrink in place,
that is, without having to copy the contents to a new object, as we had to do with strings.
The relevant methods are

• append: add an item to the end of the list;
• extend: add one or more objects by copying them from another list;23

• insert: insert an item at a specified index;
• remove: remove a specified item from the list.

23 Actually, any Python object that forms a sequence that can be iterated over (e.g. a string) can be used as
the argument to extend

46 The Core Python Language I

q(a)

[0] 1

[1]

[2]

q

2

3

1

a

a

2

3 4

[0]

[1]

[2]

(b)

Figure 2.3 A list defined with q = [1, 2, a] where a = 3: (a) on initialization and (b) after
changing the value of a with a = 4.

q(a)

[0] 1

[1]

[2]

q

2

3

1

a

a

2

3

4

[0]

[1]

[2]

(b)

Figure 2.4 A list defined with q = [1, 2, a] where a = 3: (a) on initialization and (b) after
changing the value of q with q[2] = 4.

2.4 Python Objects II: Lists, Tuples and Loops 47

Table 2.12 Some common list methods

Method Description

append(element) Append element to the end of the list
extend(list2) Extend the list with the elements from list2
index(element) Return the lowest index of the list containing element
insert(index, element) Insert element at index index
pop() Remove and return the last element from the list
reverse() Reverse the list in place
remove(element) Remove the first occurrence of element from the list
sort() Sort the list in place
copy() Return a copy of the list
count(element) Return the number of elements equal to element in the list

>>> q = []

>>> q.append(4)

>>> q

[4]

>>> q.extend([6, 7, 8])

>>> q

[4, 6, 7, 8]

>>> q.insert(1, 5) # insert 5 at index 1

>>> q

[4, 5, 6, 7, 8]

>>> q.remove(7)

>>> q

[4, 5, 6, 8]

>>> q.index(8)

3 # the item 8 appears at index 3

Two useful list methods are sort and reverse, which sort and reverse the list in place.
That is, they change the list object, but do not return a value:

>>> q = [2, 0, 4, 3, 1]

>>> q.sort()

>>> q

[0, 1, 2, 3, 4]

>>> q.reverse()

>>> q

[4, 3, 2, 1, 0]

If you do want a sorted copy of the list, leaving it unchanged, you can use the sorted

built-in function:

>>> q = ['a', 'e', 'A', 'c', 'b']

>>> sorted(q)

['A', 'a', 'b', 'c', 'e'] # returns a new list

>>> q

['a', 'e', 'A', 'c', 'b'] # the old list is unchanged

By default, sort() and sorted() order the items in an array in ascending order. Set
the optional argument reverse=True to return the items in descending order:

>>> q = [10, 5, 5, 2, 6, 1, 67]

48 The Core Python Language I

>>> sorted(q, reverse=True)

[67, 10, 6, 5, 5, 2, 1]

Python 3 does not allow direct comparisons between strings and numbers, so it is an
error to attempt to sort a list containing a mixture of such types:

>>> q = [5, '4', 2, 8]

>>> q.sort()

TypeError: unorderable types: str() < int()

Example E2.16 The methods append and pop make it very easy to use a list to
implement the data structure known as a stack:

>>> stack = []

>>> stack.append(1)

>>> stack.append(2)

>>> stack.append(3)

>>> stack.append(4)

>>> print(stack)

[1, 2, 3, 4]

>>> stack.pop()

4

>>> print(stack)

[1, 2, 3]

The end of the list is the top of the stack from which items may be added or removed
(“last in, first out” (LIFO): think of a stack of dinner plates).

Example E2.17 The string method, split, generates a list of substrings from a given
string, split on a specified separator:

>>> s = 'Jan Feb Mar Apr May Jun'

>>> s.split() # By default, splits on whitespace

['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun']

>>> s = "J. M. Brown AND B. Mencken AND R. P. van't Rooden"

>>> s.split(' AND ')

['J. M. Brown', 'B. Mencken', "R. P. van't Rooden"]

2.4.2 Tuples

The tuple Object
A tuple may be thought of as an immutable list. Tuples are constructed by placing
the items inside parentheses:

>>> t = (1, 'two', 3.)

>>> t

(1, 'two', 3.0)

Tuples can be indexed and sliced in the same way as lists but, being immutable, they
cannot be appended to, extended or have elements removed from them:

2.4 Python Objects II: Lists, Tuples and Loops 49

>>> t = (1, 'two', 3.)

>>> t[1]

'two'

>>> t[2] = 4

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: 'tuple' object does not support item assignment

Although a tuple itself is immutable, it may contain references to mutable objects such
as lists. Hence,

>>> t = (1, ['a', 'b', 'd'], 0)

>>> t[1][2] = 'c' # OK to change the list within the tuple

>>> t

(1, ['a', 'b', 'c'], 0)

An empty tuple is created with empty parentheses: t0 = (). To create a tuple con-
taining only one item (a singleton), however, it is not sufficient to enclose the item
in parentheses (which could be confused with other syntactical uses of parentheses);
instead, the lone item is given a trailing comma: t = (’one’,).

Uses of tuples
In some circumstances, particularly for simple assignments such as those in the previous
section, the parentheses around a tuple’s items are not required:

>>> t = 1, 2, 3

>>> t

(1, 2, 3)

This usage is an example of tuple packing. The reverse, tuple unpacking, is a common
way of assigning multiple variables in one line:

>>> a, b, c = 97, 98, 99

>>> b

98

This method of assigning multiple variables is commonly used in preference to separate
assignment statements either on different lines or (very un-Pythonically) on a single
line, separated by semicolons:

a = 97; b = 98; c = 99 # Don ' t do this!

Tuples are useful where a sequence of items cannot or should not be altered. In the
previous example, the tuple object only exists in order to assign the variables a, b and
c. The values to be assigned: 97, 98 and 99 are packed into a tuple for the purpose of
this statement (to be unpacked into the variables), but once this has happened, the tuple
object itself is destroyed. As another example, a function (Section 2.7) may return more
than one object: these objects are returned packed into a tuple. If you need any further
persuading, tuples are slightly faster for many uses than lists.

Example E2.18 In an assignment using the “=” operator the right-hand side expres-
sion is evaluated first. This provides a convenient way to swap the values of two vari-
ables using tuples:

50 The Core Python Language I

a, b = b, a

Here, the right-hand side is packed into a tuple object, which is then unpacked into the
variables assigned on the left-hand side. This is more convenient than using a temporary
variable:

t = a

a = b

b = t

2.4.3 Iterable Objects

Examples of Iterable Objects
Strings, lists and tuples are all examples of data structures that are iterable objects: they
are ordered sequences of items (characters in the case of strings, or arbitrary objects in
the case of lists and tuples) which can be taken one at a time. One way of seeing this is
to use the alternative method of initializing a list (or tuple) using the built-in constructor
methods list() and tuple(). These take any iterable object and generate a list and a
tuple, respectively, from its sequence of items. For example,

>>> list('hello')

['h', 'e', 'l', 'l', 'o']

>>> tuple([1, 'two', 3])

(1, 'two', 3)

Because the data elements are copied in the construction of a new object using these
constructor methods, list is another way of creating an independent list object from
another:

>>> a = [5, 4, 3, 2, 1]

>>> b = a # b and a refer to the same list object

>>> b is a

True

>>> b = list(a) # create an entirely new list object with the same contents as a

>>> b is a

False

Because slices also return a copy of the object references from a sequence, the idiom
b = a[:] is often used in preference to b = list(a).

any and all
The built-in function any tests whether any of the items in an iterable object are equiv-
alent to True; all tests whether all of them are. For example,

>>> a = [1, 0, 0, 2, 3]

>>> any(a), all(a)

(True, False) # some (but not all) of a ' s items are equivalent to True
>>> b = [[], False, 0.]

>>> any(b), all(b)

(False, False) # none of b ' s items is equivalent to True

2.4 Python Objects II: Lists, Tuples and Loops 51

♦ * Syntax
It is sometimes necessary to call a function with arguments taken from a list or other
sequence. The * syntax used in a function call unpacks such a sequence into positional
arguments to the function (see also Section 2.7). For example, the math.hypot function
takes two arguments, a and b, and returns the quantity

√
a2 + b2. If the arguments you

wish to use are in a list or tuple, the following will fail:

>>> t = [3, 4]

>>> math.hypot(t)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: hypot expected 2 arguments , got 1

We tried to call math.hypot() with a single argument (the list object t), which is an
error. We could index the list explicitly to retrieve the two values we need:

>>> t = [3, 4]

>>> math.hypot(t[0], t[1])

5.0

but a more elegant method is to unpack the list into arguments to the function with *t:

>>> math.hypot(*t)

5.0

for Loops
It is often necessary to take the items in an iterable object one by one and do something
with each in turn. Other languages, such as C, require this type of loop to refer to each
item in turn by its integer index. In Python this is possible, but the more natural and
convenient way is with the idiom:

for item in iterable object:

which yields each element of the iterable object in turn to be processed by the subse-
quent block of code. For example,

>>> fruit_list = ['apple', 'melon', 'banana', 'orange']

>>> for fruit in fruit_list:

... print(fruit)

...

apple

melon

banana

orange

Each item in the list object fruit_list is taken in turn and assigned to the variable
fruit for the block of statements following the “:” – each statement in this block must
be indented by the same amount of whitespace. Any number of spaces or tab characters
could be used, but it is strongly recommended to use four spaces to indent code.24

24 The use of whitespace as part of the syntax of Python is one of its most contentious aspects. Some people
used to languages such as C and Java, which delimit code blocks with braces ({...}), find it an anathema;
others take a more relaxed view and note that code is almost always indented consistently to make it
readable even when this isn’t enforced by the grammar of the language.

52 The Core Python Language I

Loops can be nested – the inner loop block needs to be indented by the same amount of
whitespace again as the outer loop (i.e. eight spaces):

>>> fruit_list = ['apple', 'melon', 'banana', 'orange']

>>> for fruit in fruit_list:

... for letter in fruit:

... print(letter, end='.')

... print()

...

a.p.p.l.e.

m.e.l.o.n.

b.a.n.a.n.a.

o.r.a.n.g.e.

In this example, we iterate over the string items in fruit_list one by one, and for each
string (fruit name), iterate over its letters. Each letter is printed followed by a full stop
(the body of the inner loop). The last statement of the outer loop, print(), forces a new
line after each fruit.

Example E2.19 We have already briefly met the string method join, which takes a
sequence of string objects and joins them together in a single string:

>>> ', '.join(('one', 'two', 'three'))

'one, two, three'

>>> print('\n'.join(reversed(['one', 'two', 'three'])))

three

two

one

The reversed built-in iterates over a sequence backwards, with the advantage (for long
sequences) that it does not create a new object or modify the original.

Recall that strings are themselves iterable sequences, and so can be passed to the join
method. For example, to join the letters of 'hello' with a single space:

>>> ' '.join('hello')

'h e l l o'

The range Type
Python provides an efficient method of referring to a sequence of numbers that forms
a simple arithmetic progression: an = a0 + nd for n = 0, 1, 2, . . . In such a sequence,
each term is spaced by a constant value, the stride, d. In the simplest case, one simply
needs an integer counter, which runs in steps of one from an initial value of zero:
0, 1, 2, . . . ,N − 1. It would be possible to create a list to hold each of the values, but
for most purposes this is wasteful of memory: it is easy to generate the next number in
the sequence without having to store all of the numbers at the same time.

Representing such arithmetic progressions for iterating over is the purpose of the
range type. A range object can be constructed with up to three arguments defining the
first integer, the integer to stop at and the stride (which can be negative).

range([a0=0], n, [stride=1])

2.4 Python Objects II: Lists, Tuples and Loops 53

The notation describing the range constructor here means that if the initial value, a0,
is not given it is taken to be 0; stride is also optional and if it is not given it is taken to
be 1. Some examples:

>>> a = range(5) # 0, 1, 2, 3, 4

>>> b = range(1, 6) # 1, 2, 3, 4, 5

>>> c = range(0, 6, 2) # 0, 2, 4

>>> d = range(10, 0, -2) # 10, 8, 6, 4, 2

In Python 3, the object created by range is not a list. Rather, it is an iterable object
that can produce integers on demand: range objects can be indexed, cast into lists and
tuples, and iterated over:

>>> c[1] # i.e. the second element of 0, 2, 4

2

>>> c[0]

0

>>> list(d) # make a list from the range

[10, 8, 6, 4, 2]

>>> for x in range(5):

... print(x)

0

1

2

3

4

Example E2.20 The Fibonacci sequence is the sequence of numbers generated by
applying the rules:

a1 = a2 = 1, ai = ai−1 + ai−2.

That is, the ith Fibonacci number is the sum of the previous two: 1, 1, 2, 3, 5, 8, 13, . . .
We present two ways of generating the Fibonacci series. First, by appending to a list:

Listing 2.1 Calculating the Fibonacci series in a list

eg2-i-fibonacci.py

Calculates and stores the first n Fibonacci numbers.

n = 100

fib = [1, 1]

for i in range(2, n+1):

fib.append(fib[i-1] + fib[i-2])

print(fib)

Alternatively, we can generate the series without storing more than two numbers at a
time as follows:

Listing 2.2 Calculating the Fibonacci series without storing it

eg2-ii-fibonacci.py

Calculates the first n Fibonacci numbers.

n = 100

54 The Core Python Language I

Keep track of the two most recent Fibonacci numbers.

a, b = 1, 1

print(a, b, end='')

for i in range(2, n+1):

The next number (b) is a+b; then a becomes the previous b.

a, b = b, a+b

print(' ', b, end='')

enumerate
Because range objects can be used to produce a sequence of integers, it is tempting to
use them to provide the indexes of lists or tuples when iterating over them in a for loop:

>>> mammals = ['kangaroo', 'wombat', 'platypus']

>>> for i in range(len(mammals)):

print(i, ':', mammals[i])

0 : kangaroo

1 : wombat

2 : platypus

This works, of course, but it is more natural to avoid the explicit construction of a
range object (and the call to the len built-in) by using enumerate. This method takes an
iterable object and produces, for each item in turn, a tuple (count, item), consisting
of a counting index and the item itself:

>>> mammals = ['kangaroo', 'wombat', 'platypus']

>>> for i, mammal in enumerate(mammals):

print(i, ':', mammal)

0 : kangaroo

1 : wombat

2 : platypus

Note that each (count, item) tuple is unpacked in the for loop into the variables i and
mammal. It is also possible to set the starting value of count to something other than 0
(although then it won’t be the index of the item in the original list, of course):

>>> list(enumerate(mammals, 4))

[(4, 'kangaroo'), (5, 'wombat'), (6, 'platypus')]

♦ zip
What if you want to iterate over two (or more) sequences at the same time? This is what
the zip built-in function is for: it creates an iterator object in which each item is a tuple
of items taken in turn from the sequences passed to it:

>>> a = [1, 2, 3, 4]

>>> b = ['a', 'b', 'c', 'd']

>>> zip(a, b)

<builtins.zip at 0x104476998 >

>>> for pair in zip(a, b):

... print(pair)

...

(1, 'a')

(2, 'b')

2.4 Python Objects II: Lists, Tuples and Loops 55

(3, 'c')

(4, 'd')

>>> list(zip(a, b)) # convert to list

[(1, 'a'), (2, 'b'), (3, 'c'), (4, 'd')]

A nice feature of zip is that it can be used to unzip sequences of tuples as well:

>>> z = zip(a, b) # zip

>>> A, B = zip(*z) # unzip

>>> print(A, B)

(1, 2, 3, 4) ('a', 'b', 'c', 'd')

>>> list(A) == a, list(B) == b

(True, True)

zip does not copy the items into a new object, so it is memory-efficient and fast; but
this means that you only get to iterate over the zipped items once and you can’t index
them:

>>> z = zip(a, b):

>>> z[0]

TypeError: 'zip' object is not subscriptable

>>> for pair in z:

... x = 0 # just some dummy operation performed on each iteration

...

>>> for pair in z:

... print(pair)

...

(nothing: we ' ve already exhausted the iterator z)
>>>

2.4.4 Exercises

Questions

Q2.4.1 Predict and explain the outcome of the following statements using the vari-
ables s = 'hello' and a = [4, 10, 2].

(a) print(s, sep='-')

(b) print(*s, sep='-')

(c) print(a)

(d) print(*a, sep='')

(e) list(range(*a))

Q2.4.2 A list could be used as a simple representation of a polynomial, P(x), with
the items as the coefficients of the successive powers of x, and their indexes as the
powers themselves. Thus, the polynomial P(x) = 4 + 5x + 2x3 would be represented
by the list [4, 5, 0, 2]. Why does the following attempt to differentiate a polynomial
fail to produce the correct answer?

>>> P = [4, 5, 0, 2]

>>> dPdx = []

>>> for i, c in enumerate(P[1:]):

56 The Core Python Language I

... dPdx.append(i*c)

>>> dPdx

[0, 0, 4] # wrong!

How can this code be fixed?

Q2.4.3 Given an ordered list of test scores, produce a list associating each score with a
rank (starting with 1 for the highest score). Equal scores should have the same rank. For
example, the input list [87, 75, 75, 50, 32, 32] should produce the list of rankings
[1,2,2,4,5,5].

Q2.4.4 Use a for loop to calculate π from the first 20 terms of the Madhava series:

π =
√

12
(
1 −

1
3 · 3

+
1

5 · 32 −
1

7 · 33 + · · ·

)
.

Q2.4.5 For what iterable sequences, x, does the expression any(x) and not all(x)

evaluate to True?

Q2.4.6 Explain why zip(*z) is the inverse of z = zip(a, b) – that is, while z pairs
the items: (a0, b0), (a1, b1), (a2, b2), ..., zip(*z) separates them again: (a0,
a1, a2, ...), (b0, b1, b2, ...).

Q2.4.7 Sorting a list of tuples arranges them in order of the first element in each tuple
first. If two or more tuples have the same first element, they are ordered by the second
element, and so on:

>>> sorted([(3, 1), (1, 4), (3, 0), (2, 2), (1, -1)])

[(1, -1), (1, 4), (2, 2), (3, 0), (3, 1)]

This suggests a way of using zip to sort one list using the elements of another. Imple-
ment this method on the data below to produce an ordered list of the average amount of
sunshine in hours in London by month. Output the sunniest month first.

Jan Feb Mar Apr May Jun
44.7 65.4 101.7 148.3 170.9 171.4
Jul Aug Sep Oct Nov Dec
176.7 186.1 133.9 105.4 59.6 45.8

Problems

P2.4.1 Write a short Python program which, given an array of integers, a, calculates
an array of the same length, p, in which p[i] is the product of all the integers in a except
a[i]. So, for example, if a = [1, 2, 3], then p is [6, 3, 2].

P2.4.2 The Hamming distance between two equal-length strings is the number of
positions at which the characters are different. Write a Python routine to calculate the
Hamming distance between two strings, s1 and s2.

2.4 Python Objects II: Lists, Tuples and Loops 57

P2.4.3 Using a tuple of strings naming the digits 0–9, create a Python program which
outputs the representation of π as read aloud to eight decimal places:
three point one four one five nine two six five

P2.4.4 Write a program to output a nicely formatted depiction of the first eight rows
of Pascal’s triangle.

P2.4.5 A DNA sequence encodes each amino acid making up a protein as a three-
nucleotide sequence called a codon. For example, the sequence fragment AGTCT-
TATATCT contains the codons (AGT, CTT, ATA, TCT) if read from the first position
(“frame”). If read in the second frame it yields the codons (GTC, TTA, TAT) and in the
third (TCT, TAT, ATC).

Write some Python code to extract the codons into a list of three-letter strings given
a sequence and frame as an integer value (0, 1 or 2).

P2.4.6 The factorial function, n! = 1 · 2 · 3 · . . . · (n − 1)n is the product of the first n
positive integers and is provided by the math module’s factorial method. The double
factorial function, n!!, is the product of the positive odd integers up to and including n
(which must itself be odd):

n!! =

(n+1)/2∏
i=1

(2i − 1) = 1 · 3 · 5 · . . . · (n − 2) · n.

Write a routine to calculate n!! in Python.
As a bonus exercise, extend the formula to allow for even n as follows:

n!! =

n/2∏
i=1

(2i) = 2 · 4 · 6 · . . . · (n − 2) · n.

P2.4.7 Benford’s law is an observation about the distribution of the frequencies of the
first digits of the numbers in many different data sets. It is frequently found that the first
digits are not uniformly distributed, but follow the logarithmic distribution

P(d) = log10

(
d + 1

d

)
.

That is, numbers starting with 1 are more common than those starting with 2, and so on,
with those starting with 9 the least common. The probabilities follow:

1 0.301
2 0.176
3 0.125
4 0.097
5 0.079
6 0.067
7 0.058
8 0.051
9 0.046

58 The Core Python Language I

Benford’s law is most accurate for data sets which span several orders of magnitude,
and can be proved to be exact for some infinite sequences of numbers.

(a) Demonstrate that the first digits of the first 500 Fibonacci numbers (see Example
E2.20) follow Benford’s law quite closely.

(b) The length of the amino acid sequences of 500 randomly chosen proteins
are provided in the file protein_lengths.py which can be downloaded from
https://scipython.com/ex/bba. This file contains a list, naa, which can be imported
at the start of your program with

from protein_lengths import naa

To what extent does the distribution of protein lengths obey Benford’s law?

2.5 Control Flow

Few computer programs are executed in a purely linear fashion, one statement after
another as written in the source code. It is more likely that during the program execution,
data objects are inspected and blocks of code executed conditionally on the basis of
some test carried out on them. Thus, all practical languages have the equivalent of an
if-then-(else) construction. This section explains the syntax of Python’s version of this
clause and covers a further kind of loop: the while loop.

2.5.1 if ... elif ... else

The if ... elif ... else construction allows statements to be executed condition-
ally, depending on the result of one or more logical tests (which evaluate to the boolean
values True or False):

if <logical expression 1>:

<statements 1>

elif <logical expression 2>:

<statements 2>

...

else:

<statements>

That is, if <logical expression 1> evaluates to True, <statements 1> are executed;
otherwise, if <logical expression 2> evaluates to True, <statements 2> are exe-
cuted, and so on; if none of the preceding logical expressions evaluate to True, the
statements in the block of code following else: are executed. These statement blocks
are indented with whitespace, as for the for loop. For example,

for x in range(10):

if x <= 3:

print(x, 'is less than or equal to three')

elif x > 5:

print(x, 'is greater than five')

else:

print(x, 'must be four or five, then')

https://scipython.com/ex/bba

2.5 Control Flow 59

produces the output:
0 is less than or equal to three

1 is less than or equal to three

2 is less than or equal to three

3 is less than or equal to three

4 must be four or five, then

5 must be four or five, then

6 is greater than five

7 is greater than five

8 is greater than five

9 is greater than five

It is not necessary to enclose test expressions such as x <= 3 in parentheses, as it is in C,
for example, but the colon following the test is mandatory. The test expressions don’t, in
fact, have to evaluate explicitly to the boolean values True and False: as we have seen,
other data types are taken to be equivalent to True unless they are 0 (int) or 0. (float),
the empty string, '', empty list, [], the empty tuple, (), and so forth or Python’s special
type, None (see Section 2.2.4). Consider:
for x in range(10):

if x % 2:

print(x, 'is odd!')

else:

print(x, 'is even!')

This works because x % 2 = 1 for odd integers, which is equivalent to True and x % 2

= 0 for even integers, which is equivalent to False.
There is no switch ... case ... finally construction in Python – equivalent con-

trol flow can be achieved with if ... elif ... else or with dictionaries (see Section
4.2).

Example E2.21 In the Gregorian calendar a year is a leap year if it is divisible by 4
with the exceptions that years divisible by 100 are not leap years unless they are also
divisible by 400. The following Python program determines if year is a leap year.

Listing 2.3 Determining if a year is a leap year

year = 1900

if not year % 400:

is_leap_year = True

elif not year % 100:

is_leap_year = False

elif not year % 4:

is_leap_year = True

else:

is_leap_year = False

s_ly = 'is a' if is_leap_year else 'is not a'

print('{:4d} {:s} leap year'.format(year, s_ly))

Hence the output:

1900 is not a leap year

60 The Core Python Language I

2.5.2 while Loops

Whereas a for loop is established for a fixed number of iterations, statements within the
block of a while loop execute only and as long as some condition holds:

>>> i = 0

>>> while i < 10:

... i += 1

... print(i, end='.')

...

>>> print()

1.2.3.4.5.6.7.8.9.10.

The counter i is initialized to 0, which is less than 10, so the while loop begins. On
each iteration, i is incremented by one and its value printed. When i reaches 10, on
the following iteration i < 10 is False: the loop ends and execution continues after the
loop, where print() outputs a new line.

Example E2.22 A more interesting example of the use of a while loop is given by
this implementation of Euclid’s algorithm for finding the greatest common divisor of
two numbers, gcd(a, b):

>>> a, b = 1071, 462

>>> while b:

... a, b = b, a % b

...

>>> print(a)

21

The loop continues until b divides a exactly; on each iteration, b is set to the remainder
of a//b and then a is set to the old value of b. Recall that the integer 0 evaluates as
boolean False so while b: is equivalent here to while b != 0:.

2.5.3 More Control Flow: break, continue, pass and else

break
Python provides three further statements for controlling the flow of a program. The
break command, issued inside a loop, immediately ends that loop and moves execution
to the statements following the loop:

x = 0

while True:

x += 1

if not (x % 15 or x % 25):

break

print(x, 'is divisible by both 15 and 25')

The while loop condition here is (literally) always True so the only escape from the
loop occurs when the break statement is reached. This occurs only when the counter x
is divisible by both 15 and 25. The output is therefore:

75 is divisible by both 15 and 25

2.5 Control Flow 61

Similarly, to find the index of the first occurrence of a negative number in a list:

alist = [0, 4, 5, -2, 5, 10]

for i, a in enumerate(alist):

if a < 0:

break

print(a, 'occurs at index', i)

will output:

-2 occurs at index 3

Note that after escaping from the loop, the variables i and a have the values that they
had within the loop at the break statement.

continue
The continue statement acts in a similar way to break but instead of breaking out of the
containing loop, it immediately forces the next iteration of the loop without completing
the statement block for the current iteration. For example,

for i in range(1, 11):

if i % 2:

continue

print(i, 'is even!')

prints only the even integers 2, 4, 6, 8, 10: if i is not divisible by 2 (and hence i % 2

is 1, equivalent to True), that loop iteration is canceled and the loop resumed with the
next value of i (the print statement is skipped).

pass
The pass command does nothing. It is useful as a “stub” for code that has not yet
been written but where a statement is syntactically required by Python’s whitespace
convention.

>>> for i in range(1, 11):

... if i == 6:

... pass # do something special if i is 6

... if not i % 3:

... print(i, 'is divisible by 3')

...

3 is divisible by 3

6 is divisible by 3

9 is divisible by 3

If the pass statement had been continue the line 6 is divisible by 3 would not have
been printed: execution would have returned to the top of the loop and i = 7 instead of
continuing to the second if statement.

♦ else
A for or while loop may be followed by an else block of statements, which will be
executed only if the loop finished “normally” (that is, without the intervention of a
break). For for loops, this means these statements will be executed after the loop has

62 The Core Python Language I

reached the end of the sequence it is iterating over; for while loops, they are executed
when the while condition becomes False. For example, consider again our program to
find the first occurrence of a negative number in a list. This code behaves rather oddly
if there aren’t any negative numbers in the list:

>>> alist = [0, 4, 5, 2, 5, 10]

>>> for i, a in enumerate(alist):

... if a < 0:

... break

...

>>> print(a, 'occurs at index', i)

10 occurs at index 5

It outputs the index and number of the last item in the list (whether it is negative or not).
A way to improve this is to notice when the for loop runs through every item without
encountering a negative number (and hence the break) and output a message:

>>> alist = [0, 4, 5, 2, 5, 10]

... for i, a in enumerate(alist):

... if a < 0:

... print(a, 'occurs at index', i)

... break

... else:

... print('no negative numbers in the list')

...

no negative numbers in the list

As another example, consider this (not particularly elegant) routine for finding the
largest factor of a number a > 2:

a = 1013

b = a - 1

while b != 1:

if not a % b:

print('the largest factor of', a, 'is', b)

break

b -= 1

else:

print(a, 'is prime!')

b is the largest factor not equal to a. The while loop continues as long as b is not equal
to 1 (in which case a is prime) and decrements b after testing if b divides a exactly; if it
does, b is the highest factor of a, and we break out of the while loop.

Example E2.23 A simple “turtle” virtual robot lives on an infinite two-dimensional
plane and its location is always an integer pair of (x, y) coordinates. It can face only
in directions parallel to the x and y axes (i.e. “north,” “east,” “south” or “west”) and it
understands four commands:

• F: move forward one unit;
• L: turn left (counterclockwise) by 90◦;
• R: turn right (clockwise) by 90◦;
• S: stop and exit.

2.5 Control Flow 63

The following Python program takes a list of such commands as a string and tracks
the turtle”s location. The turtle starts at (0, 0), facing in the direction (1, 0) (“east”).
The program ignores (but warns about) invalid commands and reports when the turtle
crosses its own path.

Listing 2.4 A virtual turtle robot

eg2-turtle.py

commands = 'FFFFFLFFFLFFFFRRRFXFFFFFFS'

Current location, current facing direction.

x, y = 0, 0

dx, dy = 1, 0

Keep track of the turtle ' s location in the list of tuples, locs.
locs = [(0, 0)]

Ê for cmd in commands:

if cmd == 'S':

Stop command.

break

if cmd == 'F':

Move forward in the current direction.

x += dx

y += dy

if (x, y) in locs:

print('Path crosses itself at: ({}, {})'.format(x, y))

locs.append((x, y))

continue

if cmd == 'L':

Turn to the left (counterclockwise).

L => (dx, dy): (1, 0) -> (0, 1) -> (-1, 0) -> (0, -1) -> (1, 0).

dx, dy = -dy, dx

continue

if cmd == 'R':

Turn to the right (clockwise).

R => (dx, dy): (1, 0) -> (0, -1) -> (-1, 0) -> (0, 1) -> (1, 0).

dx, dy = dy, -dx

continue

If we ' re here it ' s because we don ' t recognize the command: warn.
print('Unknown command:', cmd)

Ë else:

We exhausted the commands without encountering an S for STOP.

print('Instructions ended without a STOP')

Plot a path of asterisks.

First find the total range of x and y values encountered.

Ì x, y = zip(*locs)

xmin, xmax = min(x), max(x)

ymin, ymax = min(y), max(y)

The grid size needed for the plot is (nx, ny).

nx = xmax - xmin + 1

ny = ymax - ymin + 1

Reverse the y-axis so that it decreases *down* the screen.

for iy in reversed(range(ny)):

for ix in range(nx):

if (ix + xmin, iy + ymin) in locs:

64 The Core Python Language I

print('*', end='')

else:

print(' ', end='')

print()

Ê We can iterate over the string commands to take its characters one at a time.
Ë Note that the else: clause to the for loop is only executed if we do not break out
of it on encountering a STOP command.
Ì We unzip the list of tuples, locs, into separate sequences of the x and y coordinates
with zip(*locs).

The output produced from the commands given is:

Unknown command: X

Path crosses itself at: (1, 0)

* *

* *

*

*

*

*

2.5.4 Exercises

Questions

Q2.5.1 Write a Python program to normalize a list of numbers, a, such that its values
lie between 0 and 1. Thus, for example, the list a = [2, 4, 10, 6, 8, 4] becomes
[0.0, 0.25, 1.0, 0.5, 0.75, 0.25].

Hint: use the built-ins min and max, which return the minimum and maximum values
in a sequence, respectively; for example, min(a) returns 2 in the earlier mentioned list.

Q2.5.2 Write a while loop to calculate the arithmetic-geometric mean (AGM) of two
positive real numbers, x and y, defined as the limit of the sequences:

an+1 = 1
2 (an + bn)

bn+1 =
√

anbn,

starting with a0 = x, b0 = y. Both sequences converge to the same number, denoted
agm(x, y). Use your loop to determine Gauss’s constant, G = 1/agm(1,

√
2).

Q2.5.3 The game of “Fizzbuzz” involves counting, but replacing numbers divisible
by 3 with the word “Fizz,” those divisible by 5 with “Buzz,” and those divisible by both
3 and 5 with “FizzBuzz.” Write a program to play this game, counting up to 100.

Q2.5.4 Straight-chain alkanes are hydrocarbons with the general stoichiometric for-
mula CnH2n+2, in which the carbon atoms form a simple chain: for example, butane,
C4H10, has the structural formula that may be depicted H3CCH2CH2CH3. Write a

2.5 Control Flow 65

program to output the structural formula of such an alkane, given its stoichiometry
(assume n > 1). For example, given stoich = 'C8H18', the output should be

H3C-CH2-CH2-CH2-CH2-CH2-CH2-CH3

Problems

P2.5.1 Modify your solution to Problem P2.4.4 to output the first 50 rows of Pascal’s
triangle, but instead of the numbers themselves, output an asterisk if the number is odd
and a space if it is even.

P2.5.2 The iterative weak acid approximation determines the hydrogen ion concen-
tration, [H+], of an acid solution from the acid dissociation constant, Ka, and the acid
concentration, c, by successive application of the formula

[H+]n+1 =
√

Ka (c − [H+]n),

starting with [H+]0 = 0. The iterations are continued until [H+] changes by less than
some predetermined, small tolerance value.

Use this method to determine the hydrogen ion concentration, and hence the pH (=
− log10[H+]) of a c = 0.01 M solution of acetic acid (Ka = 1.78 × 10−5). Use the
tolerance TOL = 1.e-10.

P2.5.3 The Luhn algorithm is a simple checksum formula used to validate credit card
and bank account numbers. It is designed to prevent common errors in transcribing the
number, and detects all single-digit errors and almost all transpositions of two adjacent
digits. The algorithm may be written as the following steps:

1. Reverse the number.
2. Treating the number as an array of digits, take the even-indexed digits (where the

indexes start at 1) and double their values. If a doubled digit results in a number
greater than 10, add the two digits (e.g. the digit 6 becomes 12 and hence 1 + 2 =
3).

3. Sum this modified array.
4. If the sum of the array modulo 10 is 0 the credit card number is valid.

Write a Python program to take a credit card number as a string of digits (possibly in
groups, separated by spaces) and establish if it is valid or not. For example, the string
'4799 2739 8713 6272' is a valid credit card number, but any number with a single
digit in this string changed is not.

P2.5.4 Heron’s method for calculating the square root of a number, S , is as follows:
starting with an initial guess, x0, the sequence of numbers xn+1 = 1

2 (xn + S/xn) are
successively better approximations to

√
S . Implement this algorithm to estimate the

square root of 2 117 519.73 to two decimal places and compare with the “exact” answer
provided by the math.sqrt method. For the purpose of this exercise, start with an initial
guess, x0 = 2000.

P2.5.5 Write a program to determine tomorrow’s date given a string representing
today’s date, today, as either “D/M/Y” or “M/D/Y”. Cater for both British and US-style

66 The Core Python Language I

dates when parsing today according to the value of a boolean variable us_date_style.
For example, when us_date_style is False and today is '3/4/2014', tomorrow’s date
should be reported as '4/4/2014'.25 (Hint: use the algorithm for determining if a year
is a leap year, which is provided in the example to Section 2.5.1.)

P2.5.6 Write a Python program to determine f (n), the number of trailing zeros in n!,
using the special case of de Polignac’s formula:

f (n) =
∑
i=1

⌊ n
5i

⌋
,

where bxc denotes the floor of x, the largest integer less than or equal to x.

P2.5.7 The hailstone sequence starting at an integer n > 0 is generated by the repeated
application of the three rules:

• if n = 1, the sequence ends;
• if n is even, the next number in the sequence is n/2;
• if n is odd, the next number in the sequence is 3n + 1.

(a) Write a program to calculate the hailstone sequence starting at 27.
(b) Let the stopping time be the number of numbers in a given hailstone sequence.

Modify your hailstone program to return the stopping time instead of the numbers
themselves. Adapt your program to demonstrate that the hailstone sequences
started with 1 ≤ n ≤ 100 agree with the Collatz conjecture (that all hailstone
sequences stop eventually).

P2.5.8 The algorithm known as the Sieve of Eratosthenes finds the prime numbers
in a list 2, 3, . . . , n. It may be summarized as follows, starting at p = 2, the first prime
number:
Step 1. Mark all the multiples of p in the list as non-prime (that is, the numbers mp

where m = 2, 3, 4, . . .: these numbers are composite.
Step 2. Find the first unmarked number greater than p in the list. If there is no such

number, stop.
Step 3. Let p equal this new number and return to Step 1.
When the algorithm stops, the unmarked numbers are the primes.

Implement the Sieve of Eratosthenes in a Python program and find all the primes
under 10 000.

P2.5.9 Euler’s totient function, φ(n), counts the number of positive integers less than
or equal to n that are relatively prime to n. (Two numbers, a and b, are relatively prime
if the only positive integer that divides both of them is 1; that is, if gcd(a, b) = 1.)

Write a Python program to compute φ(n) for 1 ≤ n < 100.
(Hint: you could use Euclid’s algorithm for the greatest common divisor given in the

example to Section 2.5.2.)

25 In practice, it would be better to use Python’s datetime library (described in Section 4.5.3), but avoid it for
this exercise.

2.5 Control Flow 67

P2.5.10 The value of π may be approximated by Monte Carlo methods. Consider the
region of the xy-plane bounded by 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. By selecting a large
number of random points within this region and counting the proportion of them lying
beneath the function y =

√
1 − x2 describing a quarter-circle, one can estimate π/4, this

being the area bounded by the axes and y(x). Write a program to estimate the value of π
by this method.

Hint: use Python’s random module. The method random.random() generates a
(pseudo-)random number between 0. and 1. See Section 4.5.1 for more information.

P2.5.11 Write a program to take a string of text (words, perhaps with punctuation,
separated by spaces) and output the same text with the middle letters shuffled randomly.
Keep any punctuation at the end of words. For example, the string:
Four score and seven years ago our fathers brought forth on this continent a new nation, conceived
in liberty, and dedicated to the proposition that all men are created equal.
might be rendered:
Four sorce and seevn yeras ago our fhtaers bhrogut ftroh on this cnnoientt a new noitan, cvieecond
in lbrteiy, and ddicetead to the ptosoiporin that all men are cetaerd euaql.

Hint: random.shuffle shuffles a list of items in place. See Section 4.5.1.

P2.5.12 The electron configuration of an atom is the specification of the distribution
of its electrons in atomic orbitals. An atomic orbital is identified by a principal quantum
number, n = 1, 2, 3, . . . defining a shell comprised of one or more subshells defined
by the azimuthal quantum number, l = 0, 1, 2, . . . , n − 1. The values l = 0, 1, 2, 3 are
referred to be the letters s, p, d and f respectively. Thus, the first few orbitals are 1s
(n = 1, l = 0), 2s (n = 2, l = 0), 2p (n = 2, l = 1), 3s (n = 3, l = 0), and each shell has n
subshells. A maximum of 2(2l + 1) electrons may occupy a given subshell.

According to the Madelung rule, the N electrons of an atom fill the orbitals in order
of increasing n + l such that whenever two orbitals have the same value of n + l, they
are filled in order of increasing n. For example, the ground state of titanium (N = 22) is
predicted (and found) to be 1s22s22p63s23p64s23d2.

Write a program to predict the electronic configurations of the elements up to ruther-
fordium (N = 104). The output for titanium should be

Ti: 1s2.2s2.2p6.3s2.3p6.4s2.3d2

A Python list containing the element symbols in order may be downloaded from
https://scipython.com/ex/bbb.

As a bonus exercise, modify your program to output the configurations using the
convention that the part of the configuration corresponding to the outermost closed shell,
a noble gas configuration, is replaced by the noble gas symbol in square brackets; thus,

Ti: [Ar].4s2.3d2

the configuration of Argon being 1s2.2s2.2p6.3s2.3p6.

https://scipython.com/ex/bbb

68 The Core Python Language I

Table 2.13 File modes

mode argument Open mode

r Text, read-only (the default)
w Text, write (an existing file with the same name will be overwritten)
a Text, append to an existing file
r+ Text, reading and writing
rb Binary, read-only
wb Binary, write (an existing file with the same name will be overwritten)
ab Binary, append to an existing file
rb+ Binary, reading and writing

2.6 File Input/Output

Until now, data have been hard-coded into our Python programs, and output has been
to the console (the terminal). Of course, it will frequently be necessary to input data
from an external file and to write data to an output file. To achieve this, Python has file
objects.

2.6.1 Opening and Closing a File

A file object is created by opening a file with a given filename and mode. The filename
may be given as an absolute path, or as a path relative to the directory in which the
program is being executed. mode is a string with one of the values given in Table 2.13.
For example, to open a file for text-mode writing:

>>> f = open('myfile.txt', 'w')

file objects are closed with the close method: for example, f.close(). Python closes
any open file objects automatically when a program terminates.

2.6.2 Writing to a File

The write method of a file object writes a string to the file and returns the number of
characters written:

>>> f.write('Hello World!')

12

More helpfully, the print built-in takes an argument, file, to specify where to redirect
its output :

>>> print(35, 'Cl', 2, sep='', file=f)

writes ‘35Cl2’ to the file opened as file object f instead of to the console.

Example E2.24 The following program writes the first four powers of the numbers
between 1 and 1000 in comma-separated fields to the file powers.txt:

2.6 File Input/Output 69

f = open('powers.txt', 'w')

for i in range(1,1001):

print(i, i**2, i**3, i**4, sep=', ', file=f)

f.close()

The file contents are

1, 1, 1, 1

2, 4, 8, 16

3, 9, 27, 81

...

999, 998001, 997002999, 996005996001

1000, 1000000, 1000000000, 1000000000000

2.6.3 Reading from a File

To read n bytes from a file, call f.read(n). If n is omitted, the entire file is read in.26

readline() reads a single line from the file, up to and including the newline char-
acter. The next call to readline() reads in the next line, and so on. Both read() and
readline() return an empty string when they reach the end of the file.

To read all of the lines into a list of strings in one go, use f.readlines().
file objects are iterable, and looping over a (text) file returns its lines one at a time:

>>> for line in f:

Ê ... print(line, end='')

...

First line

Second line

...

Ê Because line retains its newline character when read in, we use end='' to prevent
print from adding another, which would be output as a blank line.

You probably want to use this method if your file is very large unless you really
do want to store every line in memory. See Section 4.3.4 concerning Python’s with

statement for more best practice in file handling.

Example E2.25 To read in the numbers from the file powers.txt generated in the
previous example, the columns must be converted to lists of integers. To do this, each
line must be split into its fields and each field explicitly converted to an int:

f = open('powers.txt', 'r')

squares, cubes, fourths = [], [], []

for line in f.readlines():

fields = line.split(',')

squares.append(int(fields[1]))

cubes.append(int(fields[2]))

fourths.append(int(fields[3]))

f.close()

26 To quote the official documentation: “it’s your problem if the file is twice as large as your machine’s
memory.”

70 The Core Python Language I

n = 500

print(n, 'cubed is', cubes[n-1])

The output is
500 cubed is 125000000

In practice, it is better to use NumPy (see Chapter 6) to read in data files such as
these.

2.6.4 Exercises

Problems

P2.6.1 The coast redwood tree species, Sequoia sempervirens, includes some of
the oldest and tallest living organisms on Earth. Details concerning individual trees
are given in the tab-delimited text file redwood-data.txt, available at https://scipython
.com/ex/bbd. (Data courtesy of the Gymnosperm database, www.conifers.org/cu/
Sequoia.php)

Write a Python program to read in this data and report the tallest tree and the tree
with the greatest diameter.

P2.6.2 Write a program to read in a text file and censor any words in it that are on a
list of banned words by replacing their letters with the same number of asterisks. Your
program should store the banned words in lower case but censor examples of these
words in any case. Assume there is no punctuation.

As a bonus exercise, handle text that contains punctuation. For example, given the
list of banned words: ['C', 'Perl', 'Fortran'] the sentence
'Some alternative programming languages to Python are C, C++, Perl, Fortran and

Java.'

becomes
'Some alternative programming languages to Python are *, C++, ****, ******* and

Java.'

P2.6.3 The Earth Similarity Index (ESI) attempts to quantify the physical similarity
between an astronomical body (usually a planet or moon) and Earth. It is defined by

ESI j =

n∏
i=1

(
1 −

∣∣∣∣∣∣ xi, j − xi,⊕

xi, j + xi,⊕

∣∣∣∣∣∣
)wi/n

,

where the parameters xi, j are described, and their terrestrial values, xi,⊕ and weights, wi,
are given in Table 2.14. The radius, density and escape velocities are taken relative to
the terrestrial values. The ESI lies between 0 and 1, with the values closer to 1 indicating
closer similarity to Earth (which has an ESI of exactly 1: Earth is identical to itself!).

The file ex2-6-g-esi-data.txt available from https://scipython.com/ex/bbc con-
tains the earlier mentioned parameters for a range of astronomical bodies. Use these

https://scipython.com/ex/bbd
https://scipython.com/ex/bbd
www.conifers.org/cu/Sequoia.php
www.conifers.org/cu/Sequoia.php
https://scipython.com/ex/bbc

2.7 Functions 71

Table 2.14 Parameters used in the definition of ESI

i Parameter Earth value, xi,⊕ Weight, wi

1 Radius 1.0 0.57
2 Density 1.0 1.07
3 Escape velocity, vesc 1.0 0.7
4 Surface temperature 288 K 5.58

data to calculate the ESI for each of the bodies. Which has properties “closest” to those
of the Earth?

P2.6.4 Write a program to read in a two-dimensional array of strings into a list of
lists from a file in which the string elements are separated by one or more spaces. The
number of rows, m, and columns, n, may not be known in advance of opening the file.
For example, the text file

A B C D

E F G H

I J K L

should create an object, grid, as

[['A', 'B', 'C', 'D'], ['E', 'F', 'G', 'H'], ['I', 'J', 'K', 'L']]

Read like this, grid contains a list of the array’s rows. Once the array has been read in,
write loops to output the columns of the array:

[['A', 'E', 'I'], ['B', 'F', 'J'], ['C', 'G', 'K'], ['D', 'H', 'L']]

Harder: also output all its diagonals read in one direction:

[['A'], ['B', 'E'], ['C', 'F', 'I'], ['D', 'G', 'J'], ['H', 'K'], ['L']]

and the other direction:

[['D'], ['C', 'H'], ['B', 'G', 'L'], ['A', 'F', 'K'], ['E', 'J'], ['I']]

2.7 Functions

A Python function is a set of statements that are grouped together and named so that
they can be run more than once in a program. There are two main advantages to using
functions. First, they enable code to be reused without having to be replicated in differ-
ent parts of the program; second, they enable complex tasks to be broken into separate
procedures, each implemented by its own function – it is often much easier and more
maintainable to code each procedure individually than to code the entire task at once.

2.7.1 Defining and Calling Functions

The def statement defines a function, gives it a name and lists the arguments (if any) that
the function expects to receive when called. The function’s statements are written in an
indented block following this def. If at any point during the execution of this statement

72 The Core Python Language I

block a return statement is encountered, the specified values are returned to the caller.
For example,

Ê >>> def square(x):

... x_squared = x**2

... return x_squared

...

>>> number = 2

Ë >>> number_squared = square(number)

>>> print(number, 'squared is', number_squared)

2 squared is 4

Ì >>> print('8 squared is', square(8))

8 squared is 64

Ê The simple function named square takes a single argument, x. It calculates x**2 and
returns this value to the caller. Once defined, it can be called any number of times.
Ë In the first example, the return value is assigned to the variable number_squared;
Ì In the second example, it is fed straight into the print method for output to the
console.

To return two or more values from a function, pack them into a tuple. For example,
the following program defines a function to return both roots of the quadratic equation
ax2 + bx + c (assuming it has two real roots):

import math

def roots(a, b, c):

d = b**2 - 4*a*c

r1 = (-b + math.sqrt(d)) / 2 / a

r2 = (-b - math.sqrt(d)) / 2 / a

return r1, r2

print(roots(1., -1., -6.))

When run, this program outputs, as expected:

(3.0, -2.0)

It is not necessary for a function to explicitly return any object: functions that fall off
the end of their indented block without encountering a return statement return Python’s
special value, None.

Function definitions can appear anywhere in a Python program, but a function cannot
be referenced before it is defined. Functions can even be nested, but a function defined
inside another is not (directly) accessible from outside that function.

Docstrings
A function docstring is a string literal that occurs as the first statement of the function
definition. It should be written as a triple-quoted string on a single line if the func-
tion is simple, or on multiple lines with an initial one-line summary for more detailed
descriptions of complex functions. For example,

def roots(a, b, c):

"""Return the roots of ax^2 + bx + c."""

d = b**2 - 4*a*c

...

2.7 Functions 73

The docstring becomes the special _ _ doc _ _ attribute of the function:

>>> roots.__doc__

'Return the roots of ax^2 + bx + c.'

A docstring should provide details about how to use the function: which arguments to
pass it and which objects it returns,27 but should not generally include details of the
specific implementation of algorithms used by the function (these are best explained in
comments, preceded by #).

Docstrings are also used to provide documentation for classes and modules (see
Sections 4.5 and 4.6.2).

Example E2.26 In Python, functions are “first class” objects: they can have variable
identifiers assigned to them, they can be passed as arguments to other functions, and
they can even be returned from other functions. A function is given a name when it
is defined, but that name can be reassigned to refer to a different object (don’t do this
unless you mean to!) if desired.

As the following example demonstrates, it is possible for more than one variable
name to be assigned to the same function object.

>>> def cosec(x):

... """Return the cosecant of x, cosec(x) = 1/sin(x)."""

... return 1./math.sin(x)

...

>>> cosec

<function cosec at 0x100375170 >

>>> cosec(math.pi/4)

1.4142135623730951

Ê >>> csc = cosec

>>> csc

<function cosec at 0x100375170 >

>>> csc(math.pi/4)

1.4142135623730951

Ê The assignment csc = cosec associates the identifier (variable name) csc with the
same function object as the identifier cosec: this function can then be called with csc()

as well as with cosec().

2.7.2 Default and Keyword Arguments

Keyword Arguments
In the previous example, the arguments have been passed to the function in the order in
which they are given in the function’s definition (these are called positional arguments).
It is also possible to pass the arguments in an arbitrary order by setting them explicitly
as keyword arguments:

roots(a=1., c=-6., b=-1.)

roots(b=-1., a=1., c=-6.)

27 For larger projects, docstrings document an application programming interface (API) for the project.

74 The Core Python Language I

If you mix nonkeyword (positional) and keyword arguments the former must come first;
otherwise Python won’t know to which variable the positional argument corresponds:

>>> roots(1., c=6., b=-1.) # OK

(3.0, -2.0)

>>> roots(b=-1., 1., -6.) # oops: which is a and which is c?

File "<stdin>", line 1

SyntaxError: non-keyword arg after keyword arg

Default Arguments
Sometimes you want to define a function that takes an optional argument: if the caller
doesn’t provide a value for this argument, a default value is used. Default arguments are
set in the function definition:

>>> def report_length(value, units='m'):

... return 'The length is {:.2f} {}'.format(value, units)

>>> report_length(33.136, 'ft')

'The length is 33.14 ft'

>>> report_length(10.1)

'The length is 10.10 m'

Default arguments are assigned when the Python interpreter first encounters the
function definition. This can lead to some unexpected results, particularly for mutable
arguments. For example,

>>> def func(alist = []):

... alist.append(7)

... return alist

...

>>> func()

[7]

>>> func()

[7, 7]

>>> func()

[7, 7, 7]

The default argument to the function, func, here is an empty list, but it is the specific
empty list assigned when the function is defined. Therefore, each time func is called
this specific list grows.

Example E2.27 Default argument values are assigned when the function is defined.
Therefore, if a function is defined with an argument defaulting to some immutable
object, subsequently changing that variable will not change the default:

>>> default_units = 'm'

>>> def report_length(value, units=default_units):

... return 'The length is {:.2f} {}'.format(value, units)

...

>>> report_length(10.1)

'The length is 10.10 m'

>>> default_units = 'cubits'

>>> report_length(10.1)

'The length is 10.10 m'

2.7 Functions 75

The default units used by the function report_length are unchanged by the reassign-
ment of the variable name default_units: the default value is set to the string object
referred to by default_units when the def statement is encountered by the Python
compiler ('m') and it cannot be changed subsequently.

This also means that if a default argument is assigned to a mutable object, it is
always that same object that is used whenever the function is called without providing
an alternative: see Question Q2.7.4.

2.7.3 Scope

A function can define and use its own variables. When it does so, those variables are
local to that function: they are not available outside the function. Conversely, variables
assigned outside all function defs are global and are available everywhere within the
program file. For example,

>>> def func():

... a = 5

... print(a, b)

...

>>> b = 6

>>> func()

5 6

The function func defines a variable a, but prints out both a and b. Because the variable
b isn’t defined in the local scope of the function, Python looks in the global scope, where
it finds b = 6, so that is what is printed. It doesn’t matter that b hasn’t been defined when
the function is defined, but of course it must be before the function is called.

What happens if a function defines a variable with the same name as a global variable?
In this case, within the function the local scope is searched first when resolving variable
names, so it is the object pointed to by the local variable name that is retrieved. For
example,

>>> def func():

... a = 5

... print(a)

...

>>> a = 6

>>> func()

5

>>> print(a)

6

Note that the local variable a exists only within the body of the function; it just
happens to have the same name as the global variable a. It disappears after the function
exits and it doesn’t overwrite the global a.

Python’s rules for resolving scope can be summarized as “LEGB”: first local scope,
then enclosing scope (for nested functions), then global scope, and finally built-ins – if
you happen to give a variable the same name as a built-in function (such as range or
len), then that name resolves to your variable (in local or global scope) and not to the

76 The Core Python Language I

original built-in. It is therefore generally not a good idea to name your variables after
built-ins.

♦ The global and nonlocal Keywords
We have seen that it is possible to access variables defined in scopes other than the local
function’s. Is it possible to modify them (“rebind” them to new objects)? Consider the
distinction between the behavior of the following functions:

>>> def func1():

... print(x) # OK, providing x is defined in global or enclosing scope

...

>>> def func2():

... x += 1 # not OK: can ' t modify x if it isn ' t local

...

>>> x = 4

>>> func1()

4

>>> func2()

UnboundLocalError: local variable 'x' referenced before assignment

If you really do want to change variables that are defined outside the local scope, you
must first declare within the function body that this is your intention with the keywords
global (for variables in global scope) and nonlocal (for variables in enclosing scope,
for example, where one function is defined within another). In the previous case:

>>> def func2():

... global x

... x += 1 # OK now - Python knows we mean x in global scope

...

>>> x = 4

>>> func2() # no error

>>> x

5

The function func2 really has changed the value of the variable x in global scope.
You should think carefully whether it is really necessary to use this technique (would

it be better to pass x as an argument and return its updated value from the function?),
Especially in longer programs, variable names in one scope that change value (or even
type!) within functions lead to confusing code, behavior that is hard to predict and tricky
bugs.

Example E2.28 Take a moment to study the following code and predict the result
before running it.

Listing 2.5 Python scope rules

eg2-scope.py

def outer_func():

def inner_func():

a = 9

print('inside inner_func , a is {:d} (id={:d})'.format(a, id(a)))

print('inside inner_func , b is {:d} (id={:d})'.format(b, id(b)))

2.7 Functions 77

print('inside inner_func , len is {:d} (id={:d})'.format(len,id(len)))

len = 2

print('inside outer_func , a is {:d} (id={:d})'.format(a, id(a)))

print('inside outer_func , b is {:d} (id={:d})'.format(b, id(b)))

print('inside outer_func , len is {:d} (id={:d})'.format(len,id(len)))

inner_func()

a, b = 6, 7

outer_func()

print('in global scope, a is {:d} (id={:d})'.format(a, id(a)))

print('in global scope, b is {:d} (id={:d})'.format(b, id(b)))

print('in global scope, len is', len, '(id={:d})'.format(id(len)))

This program defines a function, inner_func, nested inside another, outer_func.
After these definitions, the execution proceeds as follows:

1. Global variables a = 6 and b = 7 are initialized.
2. outer_func is called:

a. outer_func defines a local variable, len = 2.
b. The values of a and b are printed; they don’t exist in local scope and there

isn’t any enclosing scope, so Python searches for and finds them in global
scope: their values (6 and 7) are output.

c. The value of local variable len (2) is printed.
d. inner_func is called:

(1) A local variable, a = 9 is defined.
(2) The value of this local variable is printed.
(3) The value of b is printed; b doesn’t exist in local scope so Python

looks for it in enclosing scope, that of outer_func. It isn’t found
there either, so Python proceeds to look in global scope where it is
found: the value b = 7 is printed.

(4) The value of len is printed: len doesn’t exist in local scope, but it
is in the enclosing scope since len = 2 is defined in outer_func: its
value is output.

3. After outer_func has finished execution, the values of a and b in global scope
are printed.

4. The value of len is printed. This is not defined in global scope, so Python searches
its own built-in names: len is the built-in function for determining the lengths of
sequences. This function is itself an object and it provides a short string descrip-
tion of itself when printed.

inside outer_func, a is 6 (id=232)

inside outer_func, b is 7 (id=264)

inside outer_func, len is 2 (id=104)

inside inner_func, a is 9 (id=328)

inside inner_func, b is 7 (id=264)

inside inner_func, len is 2 (id=104)

in global scope, a is 6 (id=232)

78 The Core Python Language I

in global scope, b is 7 (id=264)

in global scope, len is <built-in function len> (id=977)

Note that in this example outer_func has (perhaps unwisely) redefined (re-bound)
the name len to the integer object 2. This means that the original len built-in function
is not available within this function (and neither is it available within the enclosed
function, inner_func).

♦2.7.4 Passing Arguments to Functions

A common question from new users of Python who come to it with a knowledge of other
computer languages is, are arguments to functions passed “by value” or “by reference?”
In other words, does the function make its own copy of the argument, leaving the
caller’s copy unchanged, or does it receive a “pointer” to the location in memory of the
argument, the contents of which the function can change? The distinction is important
for languages such as C, but does not fit well into the Python name-object model. Python
function arguments are sometimes (not very helpfully) said to be “references, passed by
value”. Recall that everything in Python is an object, and the same object may have
multiple identifiers (what we have been loosely calling “variables” up until now). When
a name is passed to a function, the “value” that is passed is, in fact, the object it points
to. Whether the function can change the object or not (from the point of view of the
caller) depends on whether the object is mutable or immutable.

A couple of examples should make this clearer. A simple function, func1, taking an
integer argument, receives a reference to that integer object, to which it attaches a local
name (which may or may not be the same as the global name). The function cannot
change the integer object (which is immutable), so any reassignment of the local name
simply points to a new object: the global name still points to the original integer object.

>>> def func1(a):

... print('func1: a = {}, id = {}'.format(a, id(a)))

... a = 7 # reassigns local a to the integer 7

... print('func1: a = {}, id = {}'.format(a, id(a)))

...

>>> a = 3

>>> print('global: a = {}, id = {}'.format(a, id(a)))

global: a = 3, id = 4297242592

>>> func1(a)

func1: a = 3, id = 4297242592

func1: a = 7, id = 4297242720

>>> print('global: a = {}, id = {}'.format(a, id(a)))

global: a = 3, id = 4297242592

func1 therefore prints 3 (inside the function, a is initially the local name for the original
integer object); it then prints 7 (this local name now points to a new integer object,
with a new id) – see Figure 2.5. After it returns, the global name a still points to the
original 3.

2.7 Functions 79

Now consider passing a mutable object, such as a list, to a function, func2. This
time, an assignment to the list changes the original object, and these changes persist
after the function call.
>>> def func2(b):

... print('func2: b = {}, id = {}'.format(b, id(b)))

... b.append(7) # add an item to the list

... print('func2: b = {}, id = {}'.format(b, id(b)))

...

>>> c = [1, 2, 3]

>>> print('global: c = {}, id = {}'.format(c, id(c)))

global: c = [1, 2, 3], id = 4361122448

>>> func2(c)

func2: b = [1, 2, 3], id = 4361122448

func2: b = [1, 2, 3, 7], id = 4361122448

>>> print('global: c = {}, id = {}'.format(c, id(c)))

global: c = [1, 2, 3, 7], id = 4361122448

Note that it doesn’t matter what name is given to the list by the function: this name
points to the same object, as you can see from its id. The relationship between the
variable names and objects is illustrated in Figure 2.6.

So, are Python arguments passed by value or by reference? The best answer is proba-
bly that arguments are passed by value, but that value is a reference to an object (which
can be mutable or immutable).

Example E2.29 The Lazy Caterer’s Sequence, f (n), describes the maximum number
of pieces a circular pizza can be divided into with an increasing number of cuts, n.
Clearly, f (0) = 1, f (1) = 2 and f (2) = 4. For n = 3, f (3) = 7 (the maximum number of
pieces are formed if the cuts do not intersect at a common point). It can be shown that
the general recursion formula,

f (n) = f (n − 1) + n,

global(a)

global

local

local

a

a

a

3

3

7

a

(b)

Figure 2.5 Immutable objects. Within func1: (a) before reassigning the local variable a and (b)
after reassigning the value of local variable a.

80 The Core Python Language I

(a) global c [1,2,3]

local b

(b) global c [1,2,3,7]

local b

Figure 2.6 Mutable objects. Within func2: (a) before appending to the list pointed to by both
global variable c and local variable b and (b) after appending to the list with b.append(7).

applies. Although there is a closed form for this sequence, f (n) = 1
2 (n2 + n + 2), we

could also define a function to grow a list of consecutive values in the sequence:

>>> def f(seq):

... seq.append(seq[-1] + n)

...

>>> seq = [1] # f(0) = 1

>>> for n in range(1,16):

... f(seq)

...

>>> print(seq)

[1, 2, 4, 7, 11, 16, 22, 29, 37, 46, 56, 67, 79, 92, 106, 121]

The list seq is mutable and so grows in place each time the function f() is called.
The n referred to within this function is the name found in global scope (the for loop
counter).

2.7.5 Recursive Functions

A function that can call itself is called a recursive function. Recursion is not always
necessary but can lead to elegant algorithms in some situations.28 For example, one
way to calculate the factorial of an integer n ≥ 1 is to define the following recursive
function:

>>> def factorial(n):

... if n == 1:

... return 1

... return n * factorial(n - 1)

...

>>> factorial(5)

120

28 In fact, because of the overhead involved in making a function call, a recursive algorithm can be expected
to be slower than a well-designed iterative one.

2.7 Functions 81

Here, a call to factorial(n) returns n times whatever is returned by the call to
factorial(n - 1), which returns n− 1 times the returned values of factorial(n - 2)

and so on until factorial(1) which is 1 by definition. That is, the algorithm makes use
of the fact that n! = n · (n − 1)! Care should be taken in implementing such recursive
algorithms to ensure that they stop when some condition is met.29

Example E2.30 The famous Tower of Hanoi problem involves three poles, one of
which (pole A) is stacked with n differently sized circular discs in decreasing order of
diameter, with the largest at the bottom. The task is to move the stack to the third pole
(pole C) by moving one disc at a time in such a way that a larger disc is never placed on
a smaller one. It is necessary to use the second pole (pole B) as an intermediate resting
place for the discs.

The problem can be solved using the following recursive algorithm. Label the discs
Di with D1 the smallest disc and Dn the largest.

• Move discs D1,D2, . . . ,Dn−1 from A to B.
• Move disc Dn from A to C.
• Move discs D1,D2, . . . ,Dn−1 from B to C.

The second step is a single move, but the first and last require the movement of a stack
of n−1 discs from one peg to another – which is exactly what the algorithm itself solves!

In the following code, we identify the discs by the integers 1, 2, 3, . . . stored in one of
three lists, A, B and C. The initial state of the system, with all discs on pole A is denoted
by, for example, A = [5, 4, 3, 2, 1] where the first indexed item is the “bottom” of
the pole and the last indexed item is the “top.” The rules of the problem require that
these lists must always be decreasing sequences.

Listing 2.6 The Tower of Hanoi problem

eg2-hanoi.py

def hanoi(n, P1, P2, P3):

""" Move n discs from pole P1 to pole P3. """

if n == 0:

No more discs to move in this step.

return

global count

count += 1

Move n - 1 discs from P1 to P2.

hanoi(n - 1, P1, P3, P2)

if P1:

Move disc from P1 to P3.

P3.append(P1.pop())

print(A, B, C)

29 In practice, an infinite loop is not possible because of the memory overhead involved in each function call,
and Python sets a maximum recursion limit.

82 The Core Python Language I

Move n - 1 discs from P2 to P3.

hanoi(n - 1, P2, P1, P3)

Initialize the poles: all n discs are on pole A.

n = 3

A = list(range(n, 0, -1))

B, C = [], []

print(A, B, C)

count = 0

hanoi(n, A, B, C)

print(count)

Note that the hanoi function just moves a stack of discs from one pole to another:
lists (representing the poles) are passed into it in some order, and it moves the discs
from the pole represented by the first list, known locally as P1, to that represented by
the third (P3). It does not need to know which list is A, B or C.

2.7.6 Exercises

Questions

Q2.7.1 The following small programs each attempt to output the simple sum:

56

+44

100

Which two programs work as intended? Explain carefully what is wrong with each of
the others.

(a) def line():

'-----'

my_sum = '\n'.join([' 56', ' +44', line(), ' 100', line()])

print(my_sum)

(b) def line():

return '-----'

my_sum = '\n'.join([' 56', ' +44', line(), ' 100', line()])

print(my_sum)

(c) def line():

return '-----'

my_sum = '\n'.join([' 56', ' +44', line, ' 100', line])

print(my_sum)

(d) def line():

print('-----')

2.7 Functions 83

print(' 56')

print(' +44')

print(line)

print(' 100')

print(line)

(e) def line():

print('-----')

print(' 56')

print(' +44')

print(line())

print(' 100')

print(line())

(f) def line():

print('-----')

print(' 56')

print(' +44')

line()

print(' 100')

line()

Q2.7.2 The following code snippet attempts to calculate the balance of a savings
account with an annual interest rate of 5% after four years, if it starts with a balance
of $100.

>>> balance = 100

>>> def add_interest(balance, rate):

... balance += balance * rate / 100

...

>>> for year in range(4):

... add_interest(balance, 5)

... print('Balance after year {}: ${:.2f}'.format(year + 1, balance))

...

Balance after year 1: $100.00

Balance after year 2: $100.00

Balance after year 3: $100.00

Balance after year 4: $100.00

Explain why this doesn’t work and then provide a working alternative.

Q2.7.3 A Harshad number is an integer that is divisible by the sum of its digits (e.g.
21 is divisible by 2 + 1 = 3 and so is a Harshad number). Correct the following code,
which should return True or False if n is a Harshad number, or not, respectively:

def digit_sum(n):

""" Find the sum of the digits of integer n. """

s_digits = list(str(n))

dsum = 0

for s_digit in s_digits:

dsum += int(s_digit)

84 The Core Python Language I

def is_harshad(n):

return not n % digit_sum(n)

When run, the function is_harshad raises an error:
>>> is_harshad(21)

TypeError: unsupported operand type(s) for %: 'int' and 'NoneType'

Q2.7.4 Predict and explain the output of the following code.
def grow_list(a, lst=[]):

lst.append(a)

return lst

lst1 = grow_list(1)

lst1 = grow_list(2, lst1)

lst2 = grow_list('a')

print(lst1)

print(lst2)

Problems

P2.7.1 The word game Scrabble is played on a 15 × 15 grid of squares referred to
by a row index letter (A–O) and a column index number (1–15). Write a function to
determine whether a word will fit in the grid, given the position of its first letter as a
string (e.g. 'G7') a variable indicating whether the word is placed to read across or
down the grid and the word itself.

P2.7.2 Write a program to find the smallest positive integer, n, whose factorial is not
divisible by the sum of its digits. For example, 6 is not such a number because 6! = 720
and 7 + 2 + 0 = 9 divides 720.

P2.7.3 Write two functions which, given two lists of length 3 representing three-
dimensional vectors a and b, calculate the dot product, a · b and the vector (cross)
product, a × b.

Write two more functions to return the scalar triple product, a · (b × c) and the vector
triple product, a × (b × c).

P2.7.4 A right regular pyramid with height h and a base consisting of a regular n-
sided polygon of side length s has a volume V = 1

3 Ah and total surface area S =

A + 1
2 nsl where A is the base area and l the slant height, which may be calculated from

the apothem of the base polygon, a = 1
2 s cot πn as A = 1

2 nsa and l =
√

h2 + a2.
Use these formulas to define a function, pyramid_AV, returning V and S when passed

values for n, s and h.

P2.7.5 The range of a projectile launched at an angle α and speed v on flat terrain is

R =
v2 sin 2α

g
,

2.7 Functions 85

where g is the acceleration due to gravity, which may be taken to be 9.81 m s−2 for
Earth. The maximum height attained by the projectile is given by

H =
v2 sin2 α

2g
.

(We neglect air resistance and the curvature and rotation of the Earth.) Write a function
to calculate and return the range and maximum height of a projectile, taking α and v as
arguments. Test it with the values v = 10 m s−1 and α = 30◦.

P2.7.6 Write a function, sinm_cosn, which returns the value of the following definite
integral for integers m, n > 1.∫ π/2

0
sinn θ cosm θ dθ =

 (m−1)!!(n−1)!!
(m+n)!!

π
2 m, n both even,

(m−1)!!(n−1)!!
(m+n)!! otherwise.

Hint: for calculating the double factorial, see Exercise P2.4.6.

P2.7.7 Write a function that determines if a string is a palindrome (that is, reads the
same backward as forward) using recursion.

P2.7.8 Tetration may be thought of as the next operator after exponentiation. Thus,
where x × n can be written as the sum x + x + x + . . . + x with n terms, and xn is the
multiplication of n factors: x ·x ·x · . . . x, the expression written nx is equal to the repeated
exponentiation involving n occurrences of x:

nx = xx.
.x

For example, 42 = 2222

= 224
= 216 = 65536. Note that the exponential “tower” is

evaluated from top to bottom.
Write a recursive function to calculate nx and test it (for small, positive real values of

x and non-negative integers n: tetration generates very large numbers)!
How many digits are there in 35? In 52?

3 Interlude: Simple Plots and Charts

As Python has grown in popularity, many libraries of packages and modules have
become available to extend its functionality in useful ways; Matplotlib is one such
library. Matplotlib provides a means of producing graphical plots that can be embedded
into applications, displayed on the screen or output as high-quality image files for
publication.

Matplotlib has a fully fledged object-oriented interface, which is described in more
detail in Chapter 7, but for simple plotting in an interactive shell session, its simpler,
procedural pyplot interface provides a convenient way of visualizing data. This short
chapter describes its use alongside some basic NumPy functionality (the NumPy library
is described in more detail in Chapter 6).

On a system with Matplotlib and NumPy installed, the recommended imports are:
>>> import matplotlib.pyplot as plt

>>> import numpy as np

even though this means prefacing method calls with “plt.” and “np.”1

Note: an earlier Python module, pylab, combined the functionality of pyplot and
numpy by importing all of their functions into a common namespace to mimic the
commercial MATLAB package. Its use is no longer encouraged and we do not describe
it here.

3.1 Basic Plotting

3.1.1 Line Plots and Scatter Plots

The simplest (x, y) line plot is achieved by calling plt.plot with two iterable objects of
the same length (typically lists of numbers or NumPy arrays). For example,
>>> ax = [0., 0.5, 1.0, 1.5, 2.0, 2.5, 3.0]

>>> ay = [0.0, 0.25, 1.0, 2.25, 4.0, 6.25, 9.0]

>>> plt.plot(ax,ay)

>>> plt.show()

plt.plot creates a Matplotlib object (here, a Line2D object) and plt.show() displays it
on the screen. Figure 3.1 shows the result; by default the line will be in blue.

1 It is better to avoid polluting the global namespace by importing as, e.g. from numpy import *.

86

3.1 Basic Plotting 87

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

1

2

3

4

5

6

7

8

9

Figure 3.1 A basic (x, y) line plot.

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Figure 3.2 A basic scatter plot.

To plot (x, y) points as a scatter plot rather than as a line plot, call plt.scatter

instead:

>>> import random

>>> ax, ay = [], []

>>> for i in range(100):

... ax.append(random.random())

... ay.append(random.random())

...

>>> plt.scatter(ax,ay)

>>> plt.show()

The resulting plot is shown in Figure 3.2.

88 Interlude: Simple Plots and Charts

The plot can be saved as an image by calling plt.savefig(filename). The desired
image format is deduced from the filename extension. For example,
plt.savefig('plot.png') # save as a PNG image

plt.savefig('plot.pdf') # save as PDF

plt.savefig('plot.eps') # save in Encapsulated PostScript format

Example E3.1 As an example, let’s plot the function y = sin2 x for −2π ≤ x ≤ 2π.
Using only the Python we’ve covered in the previous chapter, here is one approach:

We calculate and plot 1000 (x, y) points, and store them in the lists ax and ay. To
set up the ax list as the abcissa, we can’t use range directly because that method only
produces integer sequences, so first we work out the spacing between each x value as

∆x =
xmax − xmin

n − 1
(if our n values are to include xmin and xmax, there are n − 1 intervals of width ∆x); the
abcissa points are then

xi = xmin + i∆x for i = 0, 1, 2, . . . , n − 1.

The corresponding y-axis points are

yi = sin2(xi).

The following program implements this approach, and plots the (x, y) points on a simple
line-graph (see Figure 3.3).

Listing 3.1 Plotting y = sin2 x

eg3-sin2x.py

import math

import matplotlib.pyplot as plt

xmin, xmax = -2. * math.pi, 2. * math.pi

n = 1000

x = [0.] * n

y = [0.] * n

dx = (xmax - xmin)/(n-1)

for i in range(n):

xpt = xmin + i * dx

x[i] = xpt

y[i] = math.sin(xpt)**2

plt.plot(x,y)

plt.show()

3.1.2 linspace and Vectorization

Plotting the simple function y = sin2 x in the previous example involved quite a lot
of work, almost all of it to do with setting up the lists x and y. The NumPy library,
described more fully in Chapter 6, can be used to make life much easier.

3.1 Basic Plotting 89

−8 −6 −4 −2 0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.3 A plot of y = sin2 x.

First, the regularly spaced grid of x-coordinates, x, can be created using linspace.
This is much like a floating-point version of the range built-in: it takes a start
value, an end value, and the number of values in the sequence and generates an
array of values representing the arithmetic progression between (and inclusive of)
the two values. For example, x = np.linspace(-5, 5, 1001) creates the sequence:
−5.0,−4.99,−4.98, . . . , 4.99, 5.0.

Second, the NumPy equivalents of the math module’s methods can act on iterable
objects (such as lists or NumPy arrays). Thus, y = np.sin(x) creates a sequence of
values (actually, a NumPy ndarray), which are sin(xi) for each value xi in the array x:

import numpy as np

import matplotlib.pyplot as plt

n = 1000

xmin, xmax = -2*np.pi, 2*np.pi

x = np.linspace(xmin, xmax, n)

y = np.sin(x)**2

plt.plot(x,y)

plt.show()

This is called vectorization and is described in more detail in Section 6.1.3. Lists and
tuples can be turned into array objects supporting vectorization with the array construc-
tor method:

>>> w = [1.0, 2.0, 3.0, 4.0]

>>> w = np.array(w)

>>> w * 100 # multiply each element by 100

array([100., 200., 300., 400.])

To add a second line to the plot, simply call plt.plot again:

...

x = np.linspace(xmin, xmax, n)

y1 = np.sin(x)**2

y2 = np.cos(x)**2

90 Interlude: Simple Plots and Charts

−20 −15 −10 −5 0 5 10 15 20
−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.4 A plot of y = sinc(x).

plt.plot(x,y1)

plt.plot(x,y2)

plt.show()

Note that after a plot has been displayed with show or saved with savefig, it is no
longer available to display a second time – to do this it is necessary to call plt.plot
again. This is because of the procedural nature of the pyplot interface: each call to a
pyplot method changes the internal state of the plot object. The plot object is built up
by successive calls to such methods (adding lines, legends and labels, setting the axis
limits, etc.), and then the plot object is displayed or saved.

Example E3.2 The sinc function is the function

f (x) =
sin x

x
.

To plot it over 20 ≤ x ≤ 20:

>>> x = np.linspace(-20, 20, 1001)

>>> y = np.sin(x)/x

__main__:1: RuntimeWarning: invalid value encountered in true_divide

>>> plt.plot(x,y)

>>> plt.show()

Note that even though Python warns of the division by zero at x = 0, the function is
plotted correctly: the singular point is set to the special value nan (standing for “Not a
Number”) and is omitted from the plot (Figure 3.4).

>>> y[498:503]

array([0.99893367, 0.99973335, nan, 0.99973335, 0.99893367])

3.2 Labels, Legends and Customization 91

3.1.3 Exercises

Problems

P3.1.1 Plot the functions

f1(x) = ln
(

1
cos2 x

)
and

f2(x) = ln
(

1
sin2 x

)
.

on 1000 points across the range −20 ≤ x ≤ 20. What happens to these functions at
x = nπ/2 (n = 0,±1,±2, . . .)? What happens in your plot of them?

P3.1.2 The Michaelis–Menten equation models the kinetics of enzymatic reactions as

v =
d[P]
dt

=
Vmax[S]
Km + [S]

,

where v is the rate of the reaction converting the substrate, S, to product, P, catalyzed
by the enzyme. Vmax is the maximum rate (when all the enzyme is bound to S) and the
Michaelis constant, Km, is the substrate concentration at which the reaction rate is at
half its maximum value.

Plot v against [S] for a reaction with Km = 0.04 M and Vmax = 0.1 M s−1. Look ahead
to the next section if you want to label the axes.

P3.1.3 The normalized Gaussian function centered at x = 0 is

g(x) =
1

σ
√

2π
exp

(
−

x2

2σ2

)
.

Plot and compare the shapes of these functions for standard deviations σ = 1, 1.5 and 2.

3.2 Labels, Legends and Customization

3.2.1 Labels and Legends

Plot Legend
Each line on a plot can be given a label by passing a string object to its label argument.
However, the label won’t appear on the plot unless you also call plt.legend to add a
legend:

plt.plot(ax, ay1, label='sin^2(x)')

plt.legend()

plt.show()

The location of the legend is, by default, the top right-hand corner of the plot but can
be customized by setting the loc argument to the legend method to any of the string or
integer values given in Table 3.1.

92 Interlude: Simple Plots and Charts

Table 3.1 Legend location
specifiers

String Integer
'best' 0
'upper right' 1
'upper left' 2
'lower left' 3
'lower right' 4
'right' 5
'center left' 6
'center right' 7
'lower center' 8
'upper center' 9
'center' 10

The Plot Title Axis Labels
A plot can be given a title above the axes by calling plt.title and passing the title as
a string. Similarly, the methods plt.xlabel and plt.ylabel control the labeling of the
x- and y-axes: just pass the label you want as a string to these methods. The optional
additional attribute fontsize sets the font size in points. For example, the following
code produces Figure 3.5.
t = np.linspace(0., 0.1, 1000)

Vp_uk, Vp_us = 230 * np.sqrt(2), 120 * np.sqrt(2)

f_uk, f_us = 50, 60

Ê V_uk = Vp_uk * np.sin(2 * np.pi * f_uk * t)

V_us = Vp_us * np.sin(2 * np.pi * f_us * t)

Ë plt.plot(t*1000, V_uk, label='UK')

plt.plot(t*1000, V_us, label='US')

plt.title('A comparison of AC voltages in the UK and US')

plt.xlabel('Time /ms', fontsize=16.)

plt.ylabel('Voltage /V', fontsize=16.)

plt.legend()

plt.show()

Ê We calculate the voltage as a function of time (t, in seconds) in the United King-
dom and in the United States, which have different rms voltages (230 V and 120 V
respectively; we have multiplied by

√
2 to get the peak-to-peak voltage) and different

frequencies (50 Hz and 60 Hz).
Ë The time is plotted on the x-axis in milliseconds (t*1000).

Using LATEX in pyplot
You can use LATEX markup in pyplot plots, but this option needs to be enabled in
Matplotlib’s “rc settings,” as follows:
plt.rc('text', usetex=True)

Then simply pass the LATEX markup as a string to any label you want displayed in
this way. Remember to use raw strings (r'xxx') to prevent Python from escaping any
characters followed by LATEX’s backslashes (see Section 2.3.2).

3.2 Labels, Legends and Customization 93

0 20 40 60 80 100

Time /ms

300

200

100

0

100

200

300
V

o
lt
a
g
e

/
V

A comparison of AC voltages in the UK and US

UK

US

Figure 3.5 A comparison of AC voltages in the United Kingdom and United States.

Example E3.3 To plot the functions fn(x) = xn sin x for n = 1, 2, 3, 4:

import matplotlib.pyplot as plt

import numpy as np

plt.rc('text', usetex=True)

x = np.linspace(-10,10,1001)

for n in range(1,5):

y = x**n * np.sin(x)

Ê y /= max(y)

plt.plot(x,y, label=r'$x^{}\sin x$'.format(n))

plt.legend(loc='lower center')

plt.show()

Ê To make the graphs easier to compare, they have been scaled to a maximum of 1 in
the region considered.

The graph produced is given in Figure 3.6.

3.2.2 Customizing Plots

Markers
By default, plot produces a line-graph with no markers at the plotted points. To add
a marker on each point of the plotted data, use the marker argument. Several different
markers are available and are documented online;2 some of the more useful ones are
listed in Table 3.2.

2 https://matplotlib.org/api/markers_api.html.

https://matplotlib.org/api/markers_api.html

94 Interlude: Simple Plots and Charts

−10 −5 0 5 10

−1.0

−0.5

0.0

0.5

1.0

x1 sin x

x2 sin x

x3 sin x

x4 sin x

Figure 3.6 fn(x) = x2 sin x for n = 1, 2, 3, 4.

Table 3.2 Some Matplotlib marker
styles

Code Marker Description
. · Point
o ◦ Circle
+ + Plus
x × Cross
D � Diamond
v O Downward triangle
^ M Upward triangle
s � Square
* ? Star

Colors
The color of a plotted line and/or its markers can be set with the color argument. Several
formats for specifying the color are supported. First, there are one-letter codes for some
common colors, given in Table 3.3. For example, color='r' specifies a red line and
markers. These colors are somewhat garish and (since Matplotlib 2.0) the default color
sequence for a series of lines on the same plot is the more pleasing “Tableau” sequence,
whose string identifiers are also given in Table 3.3.

Alternatively, shades of gray can specified as a string representing a float in the
range 0–1 (0. being black and 1. being white). HTML hex strings giving the red, green
and blue (RGB) components of the color in the range 00–ff can also be passed in the
color argument (e.g. color='#ff00ff' is magenta). Finally, the RGB components can
also be passed as a tuple of three values in the range 0–1 (e.g. color=(0.5, 0., 0.)

is a dark red color).

3.2 Labels, Legends and Customization 95

Table 3.3 Matplotlib color code
letters

Basic color codes Tableau colors
b = blue tab:blue
g = green tab:orange
r = red tab:green
c = cyan tab:red
m = magenta tab:purple
y = yellow tab:brown
k = black tab:pink
w = white tab:gray

tab:olive
tab:cyan

Table 3.4 Matplotlib line
styles

Code Line style
- Solid
-- Dashed
: Dotted
-. Dash-dot

Line Styles and Widths
The default plot line style is a solid line of weight 1.5 pt. To customize this, set the
linestyle argument (also a string). Some of the possible line style settings are given in
Table 3.4.

To draw no line at all, set linestyle='' (the empty string). The thickness of a line
can be specified in points by passing a float to the linewidth attribute.

For example,

x = np.linspace(0.1, 1., 100)

yi = 1. / x

ye = 10. * np.exp(-2 * x)

plt.plot(x, yi, color='r', linestyle=':', linewidth=4.)

plt.plot(x, ye, color='m', linestyle='--', linewidth=2.)

plt.show()

This code produces Figure 3.7.
The following abbreviations for the plot line properties are also valid:

• c for color,
• ls for linestyle,
• lw for linewidth.

For example,

plt.plot(x, y, c='g', ls='--', lw=2) # a thick, green, dashed line

96 Interlude: Simple Plots and Charts

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
1

2

3

4

5

6

7

8

9

10

Figure 3.7 Two different line styles on the same plot.

It is also possible to specify the color, line style and marker style in a single string:

plt.plot(x, y, 'r:^') # a red, dotted line with triangle markers

Finally, multiple lines can be plotted using a sequence of x, y format arguments:

plt.plot(x, y1, 'r--', x, y2, 'k-.')

plots a red dashed line for (x, y1) and a black dash-dot line for (x, y2).

Plot Limits
The methods plt.xlim and plt.ylim set the x- and y-limits of the plot, respectively.
They must be called after any plt.plot statements, before showing or saving the figure.
For example, the following code produces a plot of the provided data series between
chosen limits (Figure 3.8):

t = np.linspace(0, 2, 1000)

f = t * np.exp(t + np.sin(20*t))

plt.plot(t, f)

plt.xlim(1.5,1.8)

plt.ylim(0,30)

plt.show()

Example E3.4 Moore’s law is the observation that the number of transistors on cen-
tral processing units (CPUs) approximately doubles every 2 years. The following pro-
gram illustrates this with a comparison between the actual number of transistors on
high-end CPUs from between 1972 and 2012, and that predicted by Moore’s law, which
may be stated mathematically as

ni = n02(yi−y0)/T2 ,

where n0 is the number of transistors in some reference year, y0, and T2 = 2 is the
number of years taken to double this number. Because the data cover 40 years, the

3.2 Labels, Legends and Customization 97

1.50 1.55 1.60 1.65 1.70 1.75 1.80
0

5

10

15

20

25

30

Figure 3.8 A plot produced with explicitly defined data limits.

values of ni span many orders of magnitude, and it is convenient to apply Moore’s law
to its logarithm, which shows a linear dependence on y:

log10 ni = log10 n0 +
yi − y0

T2
log10 2.

Listing 3.2 An illustration of Moore’s law

eg3-moore.py

import numpy as np

import matplotlib.pyplot as plt

The data - lists of years:

year = [1972, 1974, 1978, 1982, 1985, 1989, 1993, 1997, 1999, 2000, 2003,

2004, 2007, 2008, 2012]

And number of transistors (ntrans) on CPUs in millions:

ntrans = [0.0025, 0.005, 0.029, 0.12, 0.275, 1.18, 3.1, 7.5, 24.0, 42.0,

220.0, 592.0, 1720.0, 2046.0, 3100.0]

Turn the ntrans list into a NumPy array and multiply by 1 million.

ntrans = np.array(ntrans) * 1.e6

y0, n0 = year[0], ntrans[0]

A linear array of years spanning the data ' s years.
y = np.linspace(y0, year[-1], year[-1] - y0 + 1)

Time taken in years for the number of transistors to double.

T2 = 2.

moore = np.log10(n0) + (y - y0) / T2 * np.log10(2)

plt.plot(year, np.log10(ntrans), '*', markersize=12, color='r',

markeredgecolor='r', label='observed')

plt.plot(y, moore, linewidth=2, color='k', linestyle='--', label='predicted')

plt.legend(fontsize=16, loc='upper left')

plt.xlabel('Year')

plt.ylabel('log(ntrans)')

plt.title("Moore's law")

plt.show()

98 Interlude: Simple Plots and Charts

In this example, the data are given in two lists of equal length representing the year
and representative number of transistors on a CPU in that year. The Moore’s law formula
above is implemented in logarithmic form, using an array of years spanning the provided
data. (Actually, since on a logarithmic scale this will be a straight line, really only two
points are needed.)

For the plot, shown in Figure 3.9, the data are plotted as largeish stars and the Moore’s
law prediction as a dashed black line.

1970 1975 1980 1985 1990 1995 2000 2005 2010
Year

4

5

6

7

8

9

lo
g(

n
tr

an
s)

Moore’s law

Observed

Predicted

Figure 3.9 Moore’s law modeling the exponential growth in transistors on CPUs.

3.2.3 Exercises

Problems

P3.2.1 A molecule, A, reacts to form either B or C with first-order rate constants k1

and k2, respectively. That is,

d[A]
dt

= −(k1 + k2)[A],

and so

[A] = [A]0e−(k1+k2)t,

where [A]0 is the initial concentration of A. The product concentrations (starting
from 0) increase in the ratio [B]/[C] = k1/k2 and conservation of matter requires

3.2 Labels, Legends and Customization 99

[B] + [C] = [A]0 − [A]. Therefore,

[B] =
k1

k1 + k2
[A]0

(
1 − e−(k1+k2)t

)
[C] =

k2

k1 + k2
[A]0

(
1 − e−(k1+k2)t

)
For a reaction with k1 = 300 s−1 and k2 = 100 s−1, plot the concentrations of A, B

and C against time given an initial concentration of reactant [A]0 = 2.0 mol dm−3.

P3.2.2 A Gaussian integer is a complex number whose real and imaginary parts are
both integers. A Gaussian prime is a Gaussian integer x + iy such that either:

• one of x and y is zero and the other is a prime number of the form 4n + 3 or
−(4n + 3) for some integer n ≥ 0; or

• both x and y are nonzero and x2 + y2 is prime.

Consider the sequence of Gaussian integers traced out by an imaginary particle,
initially at c0, moving in the complex plane according to the following rule: it takes
integer steps in its current direction (±1 in either the real or imaginary direction), but
turns left if it encounters a Gaussian prime. Its initial direction is in the positive real
direction (∆c = 1 + 0i⇒ ∆x = 1, ∆y = 0). The path traced out by the particle is called
a Gaussian prime spiral.

Write a program to plot the Gaussian prime spiral starting at c0 = 5 + 23i.

P3.2.3 The annual risk of death (given as “1 in N”) for men and women in the UK in
2005 for different age ranges is given in the table below. Use pyplot to plot these data
on a single chart.

Age range Female Male
< 1 227 177
1–4 5376 4386
5–14 10 417 8333
15–24 4132 1908
25–34 2488 1215
35–44 1106 663
45–54 421 279
55–64 178 112
65–74 65 42
75–84 21 15
> 84 7 6

100 Interlude: Simple Plots and Charts

0°

45°

90°

135°

180°

225°

270°

315°

0.5
1.0

1.5
2.0

2.5
3.03.5

4.0

Figure 3.10 The cardioid figure formed with a = 1.

3.3 More Advanced Plotting

3.3.1 Polar Plots

pyplot.plot produces a plot on Cartesian (x, y) axes. To produce a polar plot using
(r, θ) coordinates, use pyplot.polar, passing the arguments theta (which is usually the
independent variable) and r.

Example E3.5 A cardioid is the plane figure described in polar coordinates by r =

2a(1 + cos θ) for 0 ≤ θ ≤ 2π:

theta = np.linspace(0, 2.*np.pi, 1000)

a = 1.

r = 2 * a * (1. + np.cos(theta))

plt.polar(theta, r)

plt.show()

The polar graph plotted by this code is illustrated in Figure 3.10.

3.3.2 Histograms

A histogram represents the distribution of data as a series of (usually vertical) bars with
lengths in proportion to the number of data items falling into predefined ranges (known
as bins). That is, the range of data values is divided into intervals and the histogram
constructed by counting the number of data values in each interval.

The pyplot function hist produces a histogram from a sequence of data values. The
number of bins can be passed as an optional argument, bins; its default value is 10.
Also by default the heights of the histogram bars are absolute counts of the data in the

3.3 More Advanced Plotting 101

−8 −6 −4 −2 0 2 4 6 8 10
0.00

0.05

0.10

0.15

0.20

Figure 3.11 A histogram of random, normally distributed data.

corresponding bin; setting the attribute density=True normalizes the histogram so that
its area (the height times width of each bar summed over the total number of bars) is
unity.

For example, take 5000 random values from the normal distribution with mean 0 and
standard deviation 2 (see Section 4.5.1):

>>> import matplotlib.pyplot as plt

>>> import random

>>> data = []

>>> for i in range(5000):

... data.append(random.normalvariate(0, 2))

>>> plt.hist(data, bins=20, density=True)

>>> plt.show()

The resulting histogram is plotted in Figure 3.11.

3.3.3 Multiple Axes

The command pyplot.twinx() starts a new set of axes with the same x-axis as the
original one, but a new y-scale. This is useful for plotting two or more data series,
which share an abcissa (x-axis) but with y values which differ widely in magnitude or
which have different units. This is illustrated in the following example.

Example E3.6 As described at https://tylervigen.com/, there is a curious but utterly
meaningless correlation over time between the divorce rate in the US state of Maine
and the per capita consumption of margarine in that country. The two time series here
have different units and meanings and so should be plotted on separate y-axes, sharing
a common x-axis (year).

https://tylervigen.com/

102 Interlude: Simple Plots and Charts

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
4.0

4.2

4.4

4.6

4.8

5.0

5.2

D
iv

or
ce

s
p
er

10
00

p
eo

p
le

3

4

5

6

7

8

9

P
ou

n
d
s

of
m

ar
ga

ri
n
e

(p
er

ca
p
it

a)

Divorce rate in Maine

Margarine consumption

Figure 3.12 The correlation between the divorce rate in Maine and the per capita margarine
consumption in the United States.

Listing 3.3 The correlation between margarine consumption in the United States and the
divorce rate in Maine

eg3-margarine -divorce.py

import matplotlib.pyplot as plt

years = range(2000, 2010)

divorce_rate = [5.0, 4.7, 4.6, 4.4, 4.3, 4.1, 4.2, 4.2, 4.2, 4.1]

margarine_consumption = [8.2, 7, 6.5, 5.3, 5.2, 4, 4.6, 4.5, 4.2, 3.7]

Ê line1 = plt.plot(years, divorce_rate , 'b-o',

label='Divorce rate in Maine')

plt.ylabel('Divorces per 1000 people')

plt.legend()

plt.twinx()

line2 = plt.plot(years, margarine_consumption , 'r-o',

label='Margarine consumption')

plt.ylabel('lb of Margarine (per capita)')

Jump through some hoops to get labels in the same legend:

Ë lines = line1 + line2

labels = []

for line in lines:

Ì labels.append(line.get_label())

plt.legend(lines, labels)

plt.show()

We have a bit of extra work to do in order to place a legend labeled with both lines on
the plot: Ê pyplot.plot returns a list of objects representing the lines that are plotted,
so we save them as line1 and line2, Ë concatenate them, and then Ì loop over them
to retrieve their labels. The list of lines and labels can then be passed to pyplot.legend

directly. The result of this code is the graph plotted in Figure 3.12.

3.3 More Advanced Plotting 103

3.3.4 Exercises

Problems

P3.3.1 A spiral may be considered to be the figure described by the motion of a point
on an imaginary line as that line pivots around an origin at constant angular velocity. If
the point is fixed on the line, then the figure described is a circle.

(a) If the point on the rotating line moves from the origin with constant speed, its
position describes an Archimedean spiral. In polar coordinates, the equation of
this spiral is r = a + bθ. Use pyplot to plot the spiral defined by a = 0, b = 2 for
0 ≤ θ ≤ 8π.

(b) If the point moves along the rotating line with a velocity that increases in propor-
tion to its distance from the origin, the result is a logarithmic spiral, which may be
written as r = aθ. Plot the logarithmic spiral defined by a = 0.8 for 0 ≤ θ ≤ 8π.
The logarithmic spiral has the property of self-similarity: with each 2π whorl,
the spiral grows but maintains its shape.3 Logarithmic spirals occur frequently in
nature, from the arrangements of the chambers of nautilus shells to the shapes of
galaxies.

P3.3.2 A simple model for the interaction potential between two atoms as a function
of their distance, r, is that of Lennard–Jones:

U(r) =
B

r12 −
A
r6 ,

where A and B are positive constants.4

For Argon atoms, these constants may be taken to be A = 1.024 × 10−23 J nm6 and
B = 1.582 × 10−26 J nm12.

(a) Plot U(r). On a second y-axis on the same figure, plot the interatomic force

F(r) = −
dU
dr

=
12B
r13 −

6A
r7 .

Your plot should show the “interesting” part of these curves, which tend rapidly
to very large values at small r.
Hint: life is easier if you divide A and B by Boltzmann’s constant, 1.381 ×
10−23 J K−1 so as to measure U(r) in units of K. What is the depth, ε, and location,
r0, of the potential minimum for this system?

(b) For small displacements from the equilibrium interatomic separation (where F =

0), the potential may be approximated to the harmonic oscillator function,

V(r) =
1
2

k(r − r0)2 + ε,

3 The Swiss mathematician Jakob Bernoulli was so taken with this property that he coined the logarithmic
spiral Spira mirabilis: the “miraculous sprial” and wanted one engraved on his headstone with the phrase
“Eadem mutata resurgo” (“Although changed, I shall arise the same”). Unfortunately, an Archimedian spiral
was engraved by mistake.

4 This was popular in the early days of computing because r−12 is easy to compute as the square of r−6.

104 Interlude: Simple Plots and Charts

where

k =

∣∣∣∣∣∣d2U
dr2

∣∣∣∣∣∣
r0

=
156B
r14

0

−
42A
r8

0

.

Plot U(r) and V(r) on the same diagram.

P3.3.3 The seedhead of a sunflower may be modeled as follows. Number the n seeds
s = 1, 2, . . . , n and place each seed a distance r =

√
s from the origin, rotated θ = 2πs/φ

from the x axis, where φ is some constant. The choice nature makes for φ is the golden
ratio, φ = (1 +

√
5)/2, which maximizes the packing efficiency of the seeds as the

seedhead grows.
Write a Python program to plot a model sunflower seedhead. (Hint: use polar coordi-

nates.)

4 The Core Python Language II

This chapter continues the introduction to the core Python language started in Chapter 2
with a description of Python error handling with exceptions, the data structures known
as dictionaries and sets, some convenient and efficient idioms to achieve common tasks,
and a survey of some of the modules provided in the Python Standard Library. Finally,
a brief introduction to object-oriented programming with Python is presented.

4.1 Errors and Exceptions

Python distinguishes between two types of error: syntax errors and other exceptions.
Syntax errors are mistakes in the grammar of the language and are checked for before
the program is executed. Exceptions are runtime errors: conditions usually caused by
attempting an invalid operation on an item of data. The distinction is that syntax errors
are always fatal: there is nothing the Python compiler can do for you if your program
does not conform to the grammar of the language. Exceptions, however, are conditions
that arise during the running of a Python program (such as division by zero) and a
mechanism exists for “catching” them and handling the condition gracefully without
stopping the program’s execution.

4.1.1 Syntax Errors

Syntax errors are caught by the Python compiler and produce a message indicating
where the error occurred. For example,

>>> for lambda in range(8):

File "<stdin>", line 1

for lambda in range(8):

^

SyntaxError: invalid syntax

Because lambda is a reserved keyword, it cannot be used as a variable name. Its occur-
rence where a variable name is expected is therefore a syntax error. Similarly,

>>> for f in range(8:

File "<stdin>", line 1

for f in range(8:

^

SyntaxError: invalid syntax

105

106 The Core Python Language II

The syntax error here occurs because a single argument to the range built-in must be
given as an integer between parentheses: the colon breaks the syntax of calling functions
and so Python complains of a syntax error.

Because a line of Python code may be split within an open bracket (“()”, “[]”, or
“{}”), a statement split over several lines can sometimes cause a SyntaxError to be
indicated somewhere other than the location of the true bug. For example,

>>> a = [1, 2, 3, 4,

... b = 5

File "<stdin>", line 4

b = 5

^

SyntaxError: invalid syntax

Here, the statement b = 5 is syntactically valid: the error arises from failing to close the
square bracket of the previous list declaration (the Python shell indicates that a line is a
continuation of a previous one with the initial ellipsis (“...”).

There are two special types of SyntaxError that are worth mentioning: an
IndentationError occurs when a block of code is improperly indented and TabError

is raised when a tabs and spaces are mixed inconsistently to provide indentation.1

Example E4.1 A common syntax error experienced by beginner Python program-
mers is in using the assignment operator “=” instead of the equality operator “==” in a
conditional expression:

>>> if a = 5:

File "<stdin>", line 1

if a = 5:

^

SyntaxError: invalid syntax

This assignment a = 5 does not return a value (it simply assigns the integer object 5 to
the variable name a) and so there is nothing corresponding to True or False that the if

statement can use: hence the SyntaxError. This contrasts with the C language in which
an assignment returns the value of the variable being assigned (and so the statement a =

5 evaluates to True). This behavior is the source of many hard-to-find bugs and security
vulnerabilities and its omission from the Python language is by design.

4.1.2 Exceptions

An exception occurs when a syntactically correct expression is executed and causes a
runtime error. There are different types of built-in exception, and custom exceptions can
be defined by the programmer if required. If an exception is not “caught” using the try

... except clause described later, Python produces a (usually helpful) error message.
If the exception occurs within a function (which may have been called, in turn, by
another function, and so on), the message returned takes the form of a stack traceback:

1 This error can be avoided by using only spaces to indent code.

4.1 Errors and Exceptions 107

the history of function calls leading to the error is reported so that its location in the
program execution can be determined.

Some built-in exceptions will be familiar from your use of Python so far.

NameError

>>> print('4z = ', 4*z)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

NameError: name 'z' is not defined

A NameError exception occurs when a variable name is used that hasn’t been defined:
the print statement here is valid, but Python doesn’t know what the identifier z refers
to.

ZeroDivisionError

>>> a, b = 0, 5

>>> b / a

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ZeroDivisionError: float division by zero

Division by zero is not mathematically defined.

TypeError and ValueError
A TypeError is raised if an object of the wrong type is used in an expression or function.
For example,

>>> '00' + 7

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: Can't convert 'int' object to str implicitly

Python is a (fairly) strongly typed language, and it is not possible to add a string to an
integer.2

A ValueError, on the other hand, occurs when the object involved has the correct
type but an invalid value:

>>> float('hello')

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ValueError: could not convert string to float: 'hello'

The float built-in does take a string as its argument, so float('hello') is not a
TypeError: the exception is raised because the particular string ‘hello’ does not evalu-
ate to a meaningful floating-point number. More subtly,

2 Unlike in, say, Javascript or PHP, where it seems anything goes.

108 The Core Python Language II

Table 4.1 Common Python exceptions

Exception Cause and description

FileNotFoundError Attempting to open a file or directory that does not exist – this
exception is a particular type of OSError.

IndexError Indexing a sequence (such as a list or string) with a subscript
that is out of range.

KeyError Indexing a dictionary with a key that does not exist in that
dictionary (see Section 4.2.2).

NameError Referencing a local or global variable name that has not been
defined.

TypeError Attempting to use an object of an inappropriate type as an
argument to a built-in operation or function.

ValueError Attempting to use an object of the correct type but with an
incompatible value as an argument to a built-in operation or
function.

ZeroDivisionError Attempting to divide by zero (either explicitly (using “/” or “//”)
or as part of a modulo operation “%”).

SystemExit Raised by the sys.exit function (see Section 4.4.1) – if not
handled, this function causes the Python interpreter to exit.

>>> int('7.0')

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ValueError: invalid literal for int() with base 10: '7.0'

A string that looks like a float cannot be directly cast to int: to obtain the result
probably intended, use int(float('7.0')).

Table 4.1 provides a list of the more commonly encountered built-in exceptions and
their descriptions.

Example E4.2 When an exception is raised but not handled (see Section 4.1.3),
Python will issue a traceback report indicating where in the program flow it occurred.
This is particularly useful when an error occurs within nested functions or within
imported modules. For example, consider the following short program:3

exception -test.py

import math

def func(x):

def trig(x):

for f in (math.sin, math.cos, math.tan):

print('{f}({x}) = {res}'.format(f=f.__name__, x=x, res=f(x)))

def invtrig(x):

for f in (math.asin, math.acos, math.atan):

3 Note the use of f._ _name_ _ to return a string representation of a function’s name in this program; for
example, math.sin._ _name_ _ is 'sin'.

4.1 Errors and Exceptions 109

Ê print('{f}({x}) = {res}'.format(f=f.__name__, x=x, res=f(x)))

trig(x)

Ë invtrig(x)

Ì func(1.2)

The function func passes its argument, x, to its two nested functions. The first, trig,
is unproblematic but the second, invtrig, is expected to fail for x out of the domain
(range of acceptable values) for the inverse trigonometric function, asin:

sin(1.2) = 0.9320390859672263

cos(1.2) = 0.3623577544766736

tan(1.2) = 2.5721516221263183

Traceback (most recent call last):

File "exception-test.py", line 14, in <module>

func(1.2)

File "exception-test.py", line 12, in func

invtrig(x)

File "exception-test.py", line 10, in invtrig

print(’{f}({x}) = {res}’.format(f=f.__name__, x=x, res=f(x)))

ValueError: math domain error

Following the traceback backward shows that the ValueError exception was raised
within invtrig (line 10, Ê), which was called from within func (line 12, Ë), which
was itself called by the exception-test.py module (i.e. program) at line 14, Ì.

4.1.3 Handling and Raising Exceptions

Handling Exceptions
Often, a program must manipulate data in a way which might cause an exception to
be raised. Assuming such a condition is not to cause the program to exit with an error
but to be handled “gracefully” in some sense (an invalid data point ignored, division by
a zero value skipped, and so on), there are two approaches to this situation: check the
value of the data object before using it, or “handle” any exception that is raised before
resuming execution. The Pythonic approach is the latter, summed up in the expression
“It is Easier to Ask Forgiveness than to seek Permission” (EAFP).

To catch an exception in a block of code, write the code within a try: clause and
handle any exceptions raised in an except: clause. For example,

try:

y = 1 / x

print('1 /', x, ' = ',y)

except ZeroDivisionError:

print('1 / 0 is not defined.')

... more statements

No check is required: we go ahead and calculate 1/x and handle the error arising from
division by zero if necessary. The program execution continues after the except block
whether the ZeroDivisionError exception was raised or not. If a different exception is
raised (e.g. a NameError because x is not defined), then this will not be caught – it is an
unhandled exception and will trigger an error message.

110 The Core Python Language II

To handle more than one exception in a single except block, list them in a tuple
(which must be within brackets).
try:

y = 1. / x

print('1 /', x, ' = ',y)

except (ZeroDivisionError , NameError):

print('x is zero or undefined!)

... more statements

To handle each exception separately, use more than one except clause:
try:

y = 1. / x

print('1 /', x, ' = ',y)

except ZeroDivisionError:

print('1 / 0 is not defined.')

except NameError:

print('x is not defined')

... more statements

Warning: You may come across the following type of construction:
try:

[do something]

except: # Don ' t do this!
pass

This will execute the statements in the try block and ignore any exceptions raised – in
general, it is very unwise to do this as it makes code very hard to maintain and debug
(errors, whatever their cause, are silently supressed). Aim to catch specific exceptions
and handle them appropriately, allowing any other exceptions to “bubble up” to be
handled (or not) by any other except clauses.

The try ... except statement has two more optional clauses (which must follow
any except clauses if they are used). Statements in a block following the finally

keyword are always executed, whether an exception was raised or not. Statements in
a block following the else keyword are executed if an exception was not raised (see
Example E4.5).

♦ Raising Exceptions
Usually an exception is raised by the Python interpreter as a result of some behavior
(anticipated or not) by the program. But sometimes it is desirable for a program to raise
a particular exception if some condition is met. The raise keyword allows a program
to force a specific exception and customize the message or other data associated with it.
For example,
if n % 2:

raise ValueError('n must be even!')

Statements here may proceed, knowing n is even ...

A related keyword, assert, evaluates a conditional expression and raises an
AssertionError exception if that expression is not equivalent to True. assert state-
ments can be useful to check that some essential condition holds at a specific point in
your program’s execution and are often helpful in debugging.

4.1 Errors and Exceptions 111

>>> assert 2 == 2 # [silence]: 2 == 2 is True so nothing happens

>>>

>>> assert 1 == 2 # will raise the AssertionError

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

AssertionError

The syntax assert expr1, expr2 passes expr2 (typically an error message) to the
AssertionError:

>>> assert 1 == 2, 'One does not equal two'

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

AssertionError: One does not equal two

Python is a dynamically typed language and arguments of any type can be legally
passed to a function, even if that function is expecting a particular type. It is sometimes
necessary to check that an argument object is of a suitable type before using it, and
assert could be used to do this.

Example E4.3 The following function returns a string representation of a two-
dimensional (2D) or three-dimensional (3D) vector, which must be represented as a
list or tuple containing two or three items.

>>> def str_vector(v):

... assert type(v) is list or type(v) is tuple,\

... 'argument to str_vector must be a list or tuple'

... assert len(v) in (2, 3),\

... 'vector must be 2D or 3D in str_vector'

... unit_vectors = ['i', 'j', 'k']

... s = []

... for i, component in enumerate(v):

... s.append('{}{}'.format(component , unit_vectors[i]))

Ê ... return '+'.join(s).replace('+-', '-')

Ê replace('+-', '-') here converts, for example, '4i+-3j' into '4i-3j'.

Example E4.4 As another example, suppose you have a function that calculates the
vector (cross) product of two vectors represented as list objects. This product is only
defined for three-dimensional vectors, so calling it with lists of any other length is an
error.

>>> def cross_product(a, b):

... assert len(a) == len(b) == 3, 'Vectors a, b must be three-dimensional'

... return [a[1]*b[2] - a[2]*b[1],

... a[2]*b[0] - a[0]*b[2],

... a[0]*b[1] - a[1]*b[0]]

...

>>> cross_product([1, 2, -1], [2, 0, -1, 3]) # Oops!

112 The Core Python Language II

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "<stdin>", line 2, in cross_product

AssertionError: Vectors a, b must be three-dimensional

>>> cross_product([1, 2, -1], [2, 0, -1])

[-2, -1, -4]

Example E4.5 The following code gives an example of the use of a try ... except

... else ... finally clause:

try-except-else-finally.py

def process_file(filename):

try:

fi = open(filename, 'r')

except IOError:

print('Oops: couldn\'t open {} for reading'.format(filename))

return

else:

Ê lines = fi.readlines()

print('{} has {} lines.'.format(filename, len(lines)))

fi.close()

finally:

Ë print(' Done with file {}'.format(filename))

print('The first line of {} is:\n{}'.format(filename, lines[0]))

further processing of the lines ...

return

process_file('sonnet0.txt')

process_file('sonnet18.txt')

Ê Within the else block, the contents of the file are only read if the file was success-
fully opened.
Ë Within the finally block, ‘Done with file filename’ is printed whether the file
was successfully opened or not.

Assuming that the file sonnet0.txt does not exist but that sonnet18.txt does, run-
ning this program prints:

Oops: couldn't open sonnet0.txt for reading

Done with file sonnet0.txt

sonnet18.txt has 14 lines.

Done with file sonnet18.txt

The first line of sonnet18.txt is:

Shall I compare thee to a summer's day?

4.2 Python Objects III: Dictionaries and Sets 113

4.1.4 Exercises

Questions

Q4.1.1 What is the point of else? Why not put statements in this block inside the
original try block?

Q4.1.2 What is the point of the finally clause? Why not put any statements you want
executed after the try block (regardless of whether or not an exception has been raised)
after the entire try ... except clause?

Hint: see what happens if you modify Example E4.5 to put the statements in the
finally clause after the try block.

Problems

P4.1.1 Write a program to read in the data from the file swallow-speeds.txt (avail-
able at https://scipython.com/ex/bda) and use it to calculate the average air-speed veloc-
ity of an (unladen) African swallow. Use exceptions to handle the processing of lines
that do not contain valid data points.

P4.1.2 Adapt the function of Example E4.3, which returns a vector in the following
form:

>>> print(str_vector([-2, 3.5]))

-2i + 3.5j

>>> print(str_vector((4, 0.5, -2)))

4i + 0.5j - 2k

to raise an exception if any element in the vector array does not represent a real number.

P4.1.3 Python follows the convention of many computer languages in choosing to
define 00 = 1. Write a function, powr(a, b), which behaves the same as the Python
expression a**b (or, for that matter, math.pow(a,b)) but raises a ValueError if a and b

are both zero.

4.2 Python Objects III: Dictionaries and Sets

A dictionary in Python is a type of “associative array” (also known as a “hash” in some
languages). A dictionary can contain any objects as its values, but unlike sequences such
as lists and tuples, in which the items are indexed by an integer starting at 0, each item
in a dictionary is indexed by a unique key, which may be any immutable object.4 The
dictionary therefore exists as a collection of key-value pairs; dictionaries themselves are
mutable objects.

4 Actually, dictionary keys can be any hashable object: a hashable object in Python is one with a special
method for generating a particular integer from any instance of that object; the idea is that instances (which
may be large and complex) that compare as equal should have hash numbers that also compare as equal so
they can be rapidly looked up in a hash table. This is important for some data structures and for optimizing
the speed of algorithms involving their objects.

https://scipython.com/ex/bda

114 The Core Python Language II

4.2.1 Defining and Indexing a Dictionary

An dictionary can be defined by giving key: value pairs between braces:

>>> height = {'Burj Khalifa': 828., 'One World Trade Center': 541.3,

'Mercury City Tower': -1., 'Q1': 323.,

'Carlton Centre': 223., 'Gran Torre Santiago': 300.,

'Mercury City Tower': 339.}

>>> height

{'Burj Khalifa': 828.0,

'One World Trade Center': 541.3,

'Mercury City Tower': 339.0,

'Q1': 323.0,

'Carlton Centre': 223.0,

'Gran Torre Santiago': 300.0}

The command print(height) will return the dictionary in the same format (between
braces). If the same key is attached to different values (as 'Mercury City Tower' is
here), only the most recent value survives: the keys in a dictionary are unique.

Before Python 3.6, the items in a dictionary were not guaranteed to have any par-
ticular order; since this version, the order of insertion is preserved. Note that as in the
example above, redefining the value attached to a key does not change the key’s insertion
order: the key 'Mercury City Tower' is the third key to be defined, where it is given
the value -1.; it is later reassigned the value 339. but still appears in third position when
the dictionary is used.

An individual item can be retrieved by indexing it with its key, either as a literal
('Q1') or with a variable equal to the key:

>>> height['One World Trade Center']

541.3

>>> building = 'Carlton Centre'

>>> height[building]

223.0

Items in a dictionary can also be assigned by indexing it in this way:

height['Empire State Building'] = 381.

height['The Shard'] = 306.

An alternative way of defining a dictionary is to pass a sequence of (key, value)

pairs to the dict constructor. If the keys are simple strings (of the sort that could be
used as variable names), the pairs can also be specified as keyword arguments to this
constructor:

>>> ordinal = dict([(1, 'First'), (2, 'Second'), (3, 'Third')])

>>> mass = dict(Mercury=3.301e23, Venus=4.867e24, Earth=5.972e24)

>>> ordinal[2] # NB 2 here is a key, not an index

'Second'

>>> mass['Earth']

5.972e+24

A for-loop iteration over a dictionary returns the dictionary keys (in order of key
insertion):

>>> for c in ordinal:

4.2 Python Objects III: Dictionaries and Sets 115

... print(c, ordinal[c])

...

1 First

2 Second

3 Third

Example E4.6 A simple dictionary of roman numerals:

>>> numerals = {'one':'I', 'two':'II', 'three':'III', 'four':'IV', 'five':'V',

'six':'VI', 'seven':'VII', 'eight':'VIII',

1: 'I', 2: 'II', 3: 'III', 4:'IV', 5: 'V', 6:'VI', 7:'VII',

8:'VIII'}

>>> for i in ['three', 'four', 'five', 'six']:

... print(numerals[i], end=' ')

...

III IV V VI

>>> for i in range(8,0,-1):

... print(numerals[i], end=' ')

VIII VII VI V IV III II I

Note that regardless of the order in which the keys are stored, the dictionary can be
indexed in any order. Note also that although the dictionary keys must be unique, the
dictionary values need not be.

4.2.2 Dictionary Methods

get()
Indexing a dictionary with a key that does not exist is an error:

>>> mass[’Pluto’]

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

KeyError: ’Pluto’

However, the useful method get() can be used to retrieve the value, given a key if
it exists, or some default value if it does not. If no default is specified, then None is
returned. For example,

>>> print(mass.get('Pluto'))

None

>>> mass.get('Pluto', -1)

-1

keys, values and items
The three methods, keys, values and items, return, respectively, a dictionary’s keys,
values and key-value pairs (as tuples). In previous versions of Python, each of these
were returned in a list, but for most purposes this is wasteful of memory: calling keys,
for example, required all of the dictionary’s keys to be copied as a list, which in most
cases was simply iterated over. That is, storing a whole new copy of the dictionary’s
keys is not usually necessary. Python 3 solves this by returning an iterable object, which

116 The Core Python Language II

accesses the dictionary’s keys one by one, without copying them to a list. This is faster
and saves memory (important for very large dictionaries). For example,

>>> planets = mass.keys()

>>> print(planets)

dict_keys(['Mercury', 'Venus', 'Earth'])

>>> for planet in planets:

... print(planet, mass[planet])

...

Mercury 3.301e+23

Venus 4.867e+24

Earth 5.972e+24

A dict_keys object can be iterated over any number of times, but it is not a list and
cannot be indexed or assigned:

>>> planets = mass.keys()

>>> planets[0]

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: 'dict_keys' object is not subscriptable

If you really do want a list of the dictionary’s keys, simply pass the dict_keys object to
the list constructor (which takes any kind of sequence and makes a list out of it):

>>> planet_list = list(mass.keys())

>>> planet_list

['Mercury', 'Venus', 'Earth']

>>> planet_list[0]

'Mercury'

Ê >>> planet_list[1] = 'Jupiter'

>>> planet_list

['Mercury', 'Jupiter', 'Earth']

Ê This last assignment only changes the planet_list list; it doesn’t alter the original
dictionary’s keys.

Similar methods exist for retrieving a dictionary’s values and items (key-value pairs):
the objects returned are dict_values and dict_items.

For example,

>>> mass.items()

dict_items([('Mercury', 3.301e+23), ('Venus', 4.867e+24), ('Earth', 5.972e+24)])

>>> mass.values()

dict_values([3.301e+23, 4.867e+24, 5.972e+24])

>>> for planet_data in mass.items():

... print(planet_data)

...

('Mercury', 3.301e+23)

('Venus', 4.867e+24)

('Earth', 5.972e+24)

Example E4.7 A Python dictionary can be used as a simple database. The following
code stores some information about some astronomical objects in a dictionary of tuples,
keyed by the object name, and manipulates them to produce a list of planet densities.

4.2 Python Objects III: Dictionaries and Sets 117

Listing 4.1 Astronomical data

eg4-astrodict.py

import math

Mass (in kg) and radius (in km) for some astronomical bodies.

body = {'Sun': (1.988e30, 6.955e5),

'Mercury': (3.301e23, 2440.),

'Venus': (4.867e+24, 6052.),

'Earth': (5.972e24, 6371.),

'Mars': (6.417e23, 3390.),

'Jupiter': (1.899e27, 69911.),

'Saturn': (5.685e26, 58232.),

'Uranus': (8.682e25, 25362.),

'Neptune': (1.024e26, 24622.)

}

planets = list(body.keys())

The sun isn ' t a planet!
planets.remove('Sun')

def calc_density(m, r):

""" Returns the density of a sphere with mass m and radius r. """

return m / (4/3 * math.pi * r**3)

rho = {}

for planet in planets:

m, r = body[planet]

Calculate the density in g/cm3.

rho[planet] = calc_density(m*1000, r*1.e5)

Ê for planet, density in sorted(rho.items()):

print('The density of {0} is {1:3.2f} g/cm3'.format(planet, density))

Ê sorted(rho.items()) returns a list of the rho dictionary’s key-value pairs, sorted
by key. The keys are strings so in this case the sorting produces a list of the keys in
alphabetical order.

The output is

The density of Earth is 5.51 g/cm3

The density of Jupiter is 1.33 g/cm3

The density of Mars is 3.93 g/cm3

The density of Mercury is 5.42 g/cm3

The density of Neptune is 1.64 g/cm3

The density of Saturn is 0.69 g/cm3

The density of Uranus is 1.27 g/cm3

The density of Venus is 5.24 g/cm3

♦ Keyword Arguments
In Section 2.7, we discussed the syntax for passing arguments to functions. In that
description, it was assumed that the function would always know what arguments could
be passed to it and these were listed in the function definition. For example,

def func(a, b, c):

118 The Core Python Language II

Python provides a couple of useful features for handling the case where it is not
necessarily known what arguments a function will receive. Including *args (after any
“formally defined” arguments) places any additional positional argument into a tuple,
args, as illustrated by the following code:
>>> def func(a, b, *args):

... print(args)

...

>>> func(1, 2, 3, 4, 'msg')

(3, 4, 'msg')

That is, inside func, in addition to the formal arguments a=1 and b=2, the arguments 3,
4 and 'msg' are available as the items of the tuple args. This tuple can be arbitrarily
long. Python’s own print built-in function works in this way: it takes an arbitrary num-
ber of arguments to output as a string, followed by some optional keyword arguments:
def print(*args, sep=' ', end='\n', file=None):

It is also possible to collect arbitrary keyword arguments (see Section 2.7.2) to a
function inside a dictionary by using the **kwargs syntax in the function definition.
Python takes any keyword arguments not specified in the function definition and packs
them into the dictionary kwargs. For example,
>>> def func(a, b, **kwargs):

... for k in kwargs:

... print(k, '=', kwargs[k])

...

>>> func(1, b=2, c=3, d=4, s='msg')

d = 4

s = msg

c = 3

One can also use *args and **kwargs when calling a function, which can be conve-
nient, for example, with functions that take a large number of arguments:
>>> def func(a, b, c, x, y, z):

... print(a, b, c)

... print(x, y, z)

...

>>> args = [1, 2, 3]

>>> kwargs = {'x': 4, 'y': 5, 'z': 'msg'}

>>> func(*args, **kwargs)

1 2 3

4 5 msg

♦ defaultdict
With regular Python dictionaries, an attempt to retrieve a value using a key that does not
exist will raise a KeyError exception. There is a useful container, called defaultdict,
that subclasses the dict built-in to allow one to specify default_factory, a function
which returns the default value to be assigned to the key if it is missing.

Example E4.8 To analyze the word lengths in the first line of the Gettysburg Address
with a regular dictionary requires code to catch the KeyError and set a default value:

4.2 Python Objects III: Dictionaries and Sets 119

text = 'Four score and seven years ago our fathers brought forth on this

continent , a new nation, conceived in Liberty, and dedicated to the proposition

that all men are created equal'

text = text.replace(',', '').lower() # remove punctuation

word_lengths = {}

for word in text.split():

try:

word_lengths[len(word)] += 1

except KeyError:

word_lengths[len(word)] = 1

print(word_lengths)

Using defaultdict in this case would be more concise and elegant:

Ê from collections import defaultdict

Ë word_lengths = defaultdict(int)

for word in text.split():

word_lengths[len(word)] += 1

print(word_lengths)

returns:

defaultdict(<class 'int'>, {4: 3, 5: 5, 3: 9, 7: 4, 2: 3, 9: 3, 1: 1, 6: 1, 11: 1})

Ê Note that defaultdict is not a built-in: it must be imported from the collections

module.
Ë Here we set the default_factory function to int: if a key is missing, it will be
inserted into the dictionary and initialized with a call to int(), which returns 0.

4.2.3 Sets

A set is an unordered collection of unique items. As with dictionary keys, elements of
a set must be hashable objects. A set is useful for removing duplicates from a sequence
and for determining the union, intersection and difference between two collections.
Because they are unordered, set objects cannot be indexed or sliced, but they can be
iterated over, tested for membership and they support the len built-in. A set is created
by listing its elements between braces ({...}) or by passing an iterable to the set()

constructor:

>>> s = set([1, 1, 4, 3, 2, 2, 3, 4, 1, 3, 'surprise!'])

>>> s

{1, 2, 'surprise!', 3, 4}

>>> len(s) # cardinality of the set

5

>>> 2 in s, 6 not in s # membership , nonmembership

(True, True)

>>> for item in s:

... print(item)

...

1

2

surprise!

120 The Core Python Language II

3

4

The set method add is used to add elements to the set. To remove elements there are
several methods: remove removes a specified element but raises a KeyError exception
if the element is not present in the set; discard() does the same but does not raise an
error in this case. Both methods take (as a single argument) the element to be removed.
pop (with no argument) removes an arbitrary element from the set and clear removes
all elements from the set:
>>> s = {2,-2,0}

>>> s.add(1)

>>> s.add(-1)

Ê >>> s.add(1.0)

>>> s

{0, 1, 2, -1, -2}

>>> s.remove(1)

>>> s

{0, 2, -1, -2}

>>> s.discard(3) # OK - does nothing

>>> s

{0, 2, -1, -2}

>>> s.pop()

0 # (for example)

>>> s

{2, -1, -2}

>>> s.clear()

set() # the empty set

Ê This statement will not add a new member to the set, even though the existing 1 is
an integer and the item we’re adding is a float. The test 1 == 1.0 is True, so 1.0 is
considered to be already in the set.

set objects have a wide range of methods corresponding to the properties of mathe-
matical sets; the most useful are illustrated in Table 4.2, which uses the following terms
from set theory:

• The cardinality of a set, |A|, is the number of elements it contains.
• Two sets are equal if they both contain the same elements.
• Set A is a subset of set B (A ⊆ B) if all the elements of A are also elements of B;

set B is said to be a superset of set A.
• Set A is a proper subset of B (A ⊂ B) if it is a subset of B but not equal to B; in

this case, set B is said to be a proper superset of A.
• The union of two sets (A ∪ B) is the set of all elements from both of them.
• The intersection of two sets (A ∩ B) is the set of all elements they have in

common.
• The difference of set A and set B (A \ B) is the set of elements in A that are not

in B.
• The symmetric difference of two sets, A4 B, is the set of elements in either but

not in both.
• Two sets are said to be disjoint if they have no elements in common.

4.2 Python Objects III: Dictionaries and Sets 121

Table 4.2 set methods

Method Description

isdisjoint(other) Is set disjoint with other?

issubset(other),
set <= other Is set a subset of other?

set < other Is set a proper subset of other?

issuperset(other),
set >= other Is set a superset of other?

set > other Is set a proper superset of other?

union(other),
set | other | ... The union of set and other(s)

intersection(other),
set & other & ... The intersection of set and other(s)

difference(other),
set - other - ... The difference of set and other(s)

symmetric_difference(other),
set ˆ other ˆ ... The symmetric difference of set and other(s)

There are two forms for most set expressions: the operator-like syntax requires all
arguments to be set objects, whereas explicit method calls will convert any iterable
argument into a set.

>>> A = set((1, 2, 3))

>>> B = set((1, 2, 3, 4))

>>> A <= B

True

>>> A.issubset((1, 2, 3, 4)) # OK: (1, 2, 3, 4) is turned into a set

True

Some more examples:

>>> C, D = set((3, 4, 5, 6)), set((7, 8, 9))

>>> B | C # union

{1, 2, 3, 4, 5, 6}

>>> A | C | D # union of three sets

{1, 2, 3, 4, 5, 6, 7, 8, 9}

>>> A & C # intersection

{3}

>>> C & D

set() # the empty set

>>> C.isdisjoint(D)

True

>>> B - C # difference

{1, 2}

>>> B ^ C # symmetric difference

{1, 2, 5, 6}

122 The Core Python Language II

♦ frozensets
sets are mutable objects (items can be added to and removed from a set); because of
this they are unhashable and so cannot be used as dictionary keys or as members of
other sets.

>>> a = set((1, 2, 3))

>>> b = set(('q', (1, 2), a))

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: unhashable type: 'set'

>>>

(In the same way, lists cannot be dictionary keys or set members.) There is, however,
a frozenset object which is a kind of immutable (and hashable) set.5 frozensets are
fixed, unordered collections of unique objects and can be used as dictionary keys and
set members.

>>> a = frozenset((1, 2, 3))

>>> b = set(('q', (1, 2), a)) # OK: the frozenset a is hashable

>>> b.add(4) # OK: b is a regular set

>>> a.add(4) # not OK: frozensets are immutable

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

AttributeError: 'frozenset' object has no attribute 'add'

Example E4.9 A Mersenne prime, Mi, is a prime number of the form Mi = 2i − 1.
The set of Mersenne primes less than n may be thought of as the intersection of the set
of all primes less than n, Pn, with the set, An, of integers satisfying 2i − 1 < n.

The following program returns a list of the Mersenne primes less than 1 000 000.

Listing 4.2 The Mersenne primes

import math

def primes(n):

""" Return a list of the prime numbers <= n. """

sieve = [True] * (n // 2)

for i in range(3, int(math.sqrt(n)) + 1, 2):

if sieve[i//2]:

sieve[i*i//2::i] = [False] * ((n - i*i - 1) // (2*i) + 1)

return [2] + [2*i+1 for i in range(1, n // 2) if sieve[i]]

n = 1000000

Ê P = set(primes(n))

A list of integers 2^i - 1 <= n.

5 In a sense, they are to sets what tuples are to lists.

4.2 Python Objects III: Dictionaries and Sets 123

A = []

Ë for i in range(2, int(math.log(n+1, 2)) + 1):

A.append(2**i - 1)

The set of Mersenne primes as the intersection of P and A.

M = P.intersection(A)

Output as a sorted list of M.

Ì print(sorted(list(M)))

The prime numbers are produced in a list by the function primes, which implements
an optimized version of the Sieve of Eratosthenes algorithm (see Exercise P2.5.8); this is
converted into the set, P (Ê). We can take the intersection of this set with any iterable
object using the intersection method, so there is no need to explicitly convert our
second list of integers, A, (Ë) into a set.
Ì Finally, the set of Mersenne primes we create, M, is an unordered collection, so for
output purposes we convert it into a sorted list.

For n = 1 000 000, This output is

[3, 7, 31, 127, 8191, 131071, 524287]

4.2.4 Exercises

Questions

Q4.2.1 Write a one-line Python program to determine if a string is a pangram (a string
that contains each letter of the alphabet at least once).

Q4.2.2 Write a function, using set objects, to remove duplicates from an ordered
list. For example,

>>> remove_dupes([1, 1, 2, 3, 4, 4, 4, 5, 7, 8, 8, 9])

[1, 2, 3, 4, 5, 7, 8, 9]

Q4.2.3 Predict and explain the effect of the following statements:

>>> set('hellohellohello')

>>> set(['hellohellohello'])

>>> set(('hellohellohello'))

>>> set(('hellohellohello',))

>>> set(('hello', 'hello', 'hello'))

>>> set(('hello', ('hello', 'hello')))

>>> set(('hello', ['hello', 'hello']))

Q4.2.4 If frozenset objects are immutable, how is this possible?

>>> a = frozenset((1, 2, 3))

>>> a |= {2, 3, 4, 5}

>>> print(a)

frozenset([1, 2, 3, 4, 5])

124 The Core Python Language II

Table 4.3 Resistor color codes

Color Abbreviation Significant figures Multiplier Tolerance

Black bk 0 1 –
Brown br 1 10 ±1%
Red rd 2 102 ±2%
Orange or 3 103 –
Yellow yl 4 104 ±5%
Green gr 5 105 ±0.5%
Blue bl 6 106 ±0.25%
Violet vi 7 107 ±0.1%
Gray gy 8 108 ±0.05%
White wh 9 109 –
Gold au – – ±5%
Silver ag – – ±10%
None -- – – ±20%

Q4.2.5 Modify Example E4.8 to use a defaultdict to produce a list of words, keyed
by their length from the text of the first line of the Gettysburg Address.

Problems

P4.2.1 The values and tolerances of older resistors are identified by four colored
bands: the first two indicate the first two significant figures of the resistance in ohms,
the third denotes a decimal multiplier (number of zeros) and the fourth indicates the
tolerance. The colors and their meanings for each band are listed in Table 4.3.

For example, a resistor with colored bands violet, yellow, red, green has value 74 ×
102 = 7400 Ω and tolerance ±0.5%.

Write a program that defines a function to translate a list of four color abbreviations
into a resistance value and a tolerance. For example,

In [x]: print(get_resistor_value(['vi', 'yl', 'rd', 'gr']))

Out[x]: (7400, 0.5)

P4.2.2 The novel Moby-Dick is out of copyright and can be downloaded as a text
file from the Project Gutenberg website at www.gutenberg.org/2/7/0/2701/. Write a
program to output the 100 words most frequently used in the book by storing a count of
each word encountered in a dictionary.

Hint: use Python’s string methods to strip out any punctuation. It suffices to replace
any instances of the following characters with the empty string: !?":;,()’.*[]. When
you have a dictionary with words as the keys and the corresponding word counts as the
values, create a list of (count, word) tuples and sort it.

Bonus exercise: compare the frequencies of the top 2000 words in Moby-Dick with
the prediction of Zipf’s law:

log f (w) = log C − a log r(w),

www.gutenberg.org/2/7/0/2701/

4.3 Pythonic Idioms: “Syntactic Sugar” 125

where f (w) is the number of occurrences of word w, r(w) is the corresponding rank
(1 = most common, 2 = second most common, etc.) and C and a are constants. In the
traditional formulation of the law, C = log f (w1) and a = 1, where w1 is the most
common word, such that r(w1) = 1.

P4.2.3 Reverse Polish notation (RPN) (or postfix notation) is a notation for mathe-
matical expressions in which each operator follows all of its operands (in contrast to
the more familiar infix notation, in which the operator appears between the operands
it acts on). For example, the infix expression 5 + 6 is written in RPN as 5 6 +. The
advantage of this approach is that parentheses are not necessary: to evaluate (3 + 7) /

2, it may be written as 3 7 + 2 /. An RPN expression is evaluated left to right with the
intermediate values pushed onto a stack – a last-in, first-out list of values – and retrieved
(popped) from the stack when needed by an operator (see also Example E2.16). Thus,
the expression 3 7 + 2 / proceeds with 3 and then 7 pushed to the stack (with 7 on
top). The next token is +, so the values are retrieved, added, and the result, 10, pushed
onto the (now empty) stack. Next, 2 is pushed to the stack. The final token / pops the
two values, 10 and 2 from the stack, and divides them to give the result, 5.

Write a program to evaluate an RPN expression consisting of space-delimited tokens
(the operators + - * / ** and numbers).

Hint: parse the expression into a list of string tokens and iterate over it, converting
and pushing the numbers to the stack (which may be implemented by appending to a
list). Define functions to carry out the operations by retrieving values from the stack
with pop. Note that Python does not provide a switch...case syntax, but these function
objects can be the values in a dictionary with the operator tokens as the keys.

P4.2.4 Use the dictionary of Morse code symbols in the file morse.py, available from
https://scipython.com/ex/bdb, to write a program that can translate a message to and
from Morse code, using spaces to delimit individual Morse code “letters” and slashes
(“/”) to delimit words. For example, 'PYTHON 3' becomes '.�. -.� - � -. /

...�'

P4.2.5 The file shark-species.txt, available at https://scipython.com/ex/bdc, con-
tains a list of extant shark species arranged in a hierachy by order, family, genus and
species (with the species given as binomial name : common name). Read the file into a
data structure of nested dictionaries, which can be accessed as follows:

>>> sharks['Lamniformes']['Lamnidae']['Carcharodon']['C. carcharias']

Great white shark

4.3 Pythonic Idioms: “Syntactic Sugar”

Many computer languages provide syntax to make common tasks easier and clearer to
code. Such syntactic sugar consists of constructs that could be removed from the lan-
guage without affecting the language’s functionality. We have already seen one example

https://scipython.com/ex/bdb
https://scipython.com/ex/bdc

126 The Core Python Language II

in so-called augmented assignment: a += 1 is equivalent to a = a + 1. Another exam-
ple is negative indexing of sequences: b[-1] is equivalent to and more convenient than
b[len(b)-1].

4.3.1 Comparison and Assignment Shortcuts

If more than one variable is to be assigned to the same object, the shortcut

x = y = z = -1

may be used. Note that if mutable objects are assigned this way, the variable names will
all refer to the same object, not to distinct copies of it (recall Section 2.4.1).

Similarly, as was shown in Section 2.4.2, multiple assignments to different objects
can be achieved in a single line by tuple unpacking:

a, b, c = x + 1, 'hello', -4.5

The tuple on the right-hand side of this expression (parentheses are optional in this case)
is unpacked in the assignment to the variable names on the left-hand side. This single
line is thus equivalent to the three lines

a = x + 1

b = 'hello'

c = -4.5

In expressions such as these the right-hand side is evaluated first and then assigned to
the left-hand side. As we have already seen, this provides a very useful way of swapping
the value of two variables without the need for a temporary variable:

a, b = b, a

Comparisons may also be chained together in a natural way:

if a == b == 3:

print('a and b both equal 3')

if -1 < x < 1:

print('x is between -1 and 1')

Python supports conditional assignment: a variable name can be set to one value or
another depending on the outcome of an if ... else expression on the same line as
the assignment. For example,

y = math.sin(x)/x if x else 1

Short examples such as this one, in which the potential division by zero is avoided
(recall that 0 evaluates to False) are benign enough, but the idiom should be avoided
for anything more complex in favor of a more explicit construct such as

try:

y = math.sin(x)/x

except ZeroDivisionError:

y = 1

4.3 Pythonic Idioms: “Syntactic Sugar” 127

4.3.2 List Comprehension

A list comprehension in Python is a construct for creating a list based on another iterable
object in a single line of code. For example, given a list of numbers, xlist, a list of the
squares of those numbers may be generated as follows:

>>> xlist = [1, 2, 3, 4, 5, 6]

>>> x2list = [x**2 for x in xlist]

>>> x2list

[1, 4, 9, 16, 25, 36]

This is a faster and syntactically nicer way of creating the same list with a block of code
within a for loop:

>>> x2list = []

>>> for x in xlist:

... x2list.append(x**2)

List comprehensions can also contain conditional statements:

>>> x2list = [x**2 for x in xlist if x % 2]

>>> x2list

[1, 9, 25]

Here, x gets fed to the x**2 expression to be entered into the x2list under construction
only if x % 2 evaluates to True (i.e. if x is odd). This is an example of a filter (a single if

conditional expression). If you require a more complex mapping of values in the original
sequence to values in the constructed list, the if .. else expression must appear before
the for loop:

>>> [x**2 if x % 2 else x**3 for x in xlist]

[1, 8, 9, 64, 25, 216]

This comprehension squares the odd integers and cubes the even integers in xlist.
Of course, the sequence used to construct the list does not have to be another list.

For example, strings, tuples and range objects are all iterable and can be used in list
comprehensions:

>>> [x**3 for x in range(1, 10)]

[1, 8, 27, 64, 125, 216, 343, 512, 729]

>>> [w.upper() for w in 'abc xyz']

['A', 'B', 'C', ' ', 'X', 'Y', 'Z']

Finally, list comprehensions can be nested. For example, the following code flattens
a list of lists:

>>> vlist = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

>>> [c for v in vlist for c in v]

[1, 2, 3, 4, 5, 6, 7, 8, 9]

Here, the first loop produces the inner lists, one by one, as v, and each inner list v is
iterated over as c to be added to the list being created.

Example E4.10 Consider a 3 × 3 matrix represented by a list of lists:

128 The Core Python Language II

M = [[1, 2, 3],

[4, 5, 6],

[7, 8, 9]]

Without using list comprehension, the transpose of this matrix could be built up by
looping over the rows and columns:

MT = [[0, 0, 0], [0, 0, 0], [0, 0, 0]]

for ir in range(3):

for ic in range(3):

MT[ic][ir] = M[ir][ic]

With one list comprehension, the transpose can be constructed as

MT = []

for i in range(3):

MT.append([row[i] for row in M])

where rows of the transposed matrix are built from the columns (indexed with i=0,

1, 2) of each row in turn from M. The outer loop here can be expressed as a list
comprehension of its own:

MT = [[row[i] for row in M] for i in range(3)]

Note, however, that NumPy provides a much easier way to manipulate matrices.

4.3.3 lambda Functions

A lambda function in Python is a type of simple anonymous function. The executable
body of a lambda function must be an expression and not a statement; that is, it may not
contain, for example, loop blocks, conditionals or print statements. lambda functions
provide limited support for a programming paradigm known as functional program-
ming.6 The simplest application of a lambda function differs little from the way a regular
function def would be used:

>>> f = lambda x: x**2 - 3*x + 2

>>> print(f(4.))

6.0

The argument is passed to x and the result of the function specified in the lambda

definition after the colon is passed back to the caller. To pass more than one argument
to a lambda function, pass a tuple (without parentheses):

>>> f = lambda x,y: x**2 + 2*x*y + y**2

>>> f(2., 3.)

25.0

In these examples, not too much is gained by using a lambda function, and the
functions defined are not all that anonymous either (because they’ve been bound to

6 Functional programming is a style of programming in which computation is achieved through the evaluation
of mathematical functions with minimal reference to variables defining the state of the program.

4.3 Pythonic Idioms: “Syntactic Sugar” 129

the variable name f). A more useful application is in creating a list of functions, as in
the following example.

Example E4.11 Functions are objects (like everything else in Python) and so can be
stored in lists. Without using lambda we would have to define named functions (using
def) before constructing the list:

def const(x):

return 1.

def lin(x):

return x

def square(x):

return x**2

def cube(x):

return x**3

flist = [const, lin, square, cube]

Then flist[3](5) returns 125, since flist[3] is the function cube, and is called with
the argument 5.

The value of using lambda expressions as anonymous functions is that these functions
do not need to be named if they are just to be stored in a list and so can be defined as
items “inline” with the list construction:

>>> flist = [lambda x: 1,

... lambda x: x,

... lambda x: x**2,

... lambda x: x**3]

>>> flist[3](5) # flist[3] is x**3

125

>>> flist[2](4) # flist[2] is x**2

16

Example E4.12 The sorted built-in and sort list method can order lists based on
the returned value of a function called on each element prior to making comparisons.
This function is passed as the key argument. For example, sorting a list of strings is
case-sensitive by default:

>>> sorted('Nobody expects the Spanish Inquisition'.split())

['Inquisition', 'Nobody', 'Spanish', 'expects', 'the']

We can make the sorting case-insensitive, however, by passing each word to the
str.lower method:

>>> sorted('Nobody expects the Spanish Inquisition'.split(), key=str.lower)

['expects', 'Inquisition', 'Nobody', 'Spanish', 'the']

(Of course, key=str.upper would work just as well.) Note that the list elements them-
selves are not altered: they are being ordered based on a lowercase version of them-
selves. We do not use parentheses here, as in str.lower(), because we are passing the
function itself to the key argument, not calling it directly.

130 The Core Python Language II

It is typical to use lambda expressions to provide simple anonymous functions for this
purpose. For example, to sort a list of atoms as (element symbol, atomic number) tuples
in order of atomic number (the second item in each tuple):

>>> halogens = [('At', 85), ('Br', 35), ('Cl', 17), ('F', 9), ('I', 53)]

>>> sorted(halogens, key=lambda e: e[1])

[('F', 9), ('Cl', 17), ('Br', 35), ('I', 53), ('At', 85)]

Here, the sorting algorithm calls the function specified by key on each tuple item to
decide where it belongs in the sorted list. Our anonymous function simply returns the
second element of each tuple, and so sorting is by atomic number.

4.3.4 The with Statement

The with statement creates a block of code that is executed within a certain context.
A context is defined by a context manager that provides a pair of methods describing
how to enter and leave the context. User-defined contexts are generally used only in
advanced code and can be quite complex, but a common basic example of a built-in
context manager involves file input / output. Here, the context is entered by opening
the file. Within the context block, the file is read from or written to, and finally the file
is closed on exiting the context. The file object is a context manager that is returned
by the open() method. It defines an exit method which simply closes the file (if it was
opened successfully), so that this does not need to be done explicitly. To open a file
within a context, use

with open('filename') as f:

Process the file in some way, for example:

lines = f.readlines()

The reason for doing this is that you can be sure that the file will be closed after the
with block, even if something goes wrong in this block: the context manager handles
the code you would otherwise have to write to catch such runtime errors.

4.3.5 Generators

Generators are a powerful feature of the Python language; they allow one to declare a
function that behaves like an iterable object. That is, a function that can be used in a
for loop and that will yield its values, in turn, on demand. This is often more efficient
than calculating and storing all of the values that will be iterated over (particularly
if there will be a very large number of them). A generator function looks just like a
regular Python function, but instead of exiting with a return value, it contains a yield

statement, which returns a value each time it is required to by the iteration.
A very simple example should make this clearer. Let’s define a generator, count, to

count to n:

>>> def count(n):

... i = 0

... while i < n:

4.3 Pythonic Idioms: “Syntactic Sugar” 131

... i += 1

... yield i

...

>>> for j in count(5):

... print(j)

...

1

2

3

4

5

Note that we can’t simply call our generator like a regular function:

>>> count(5)

<generator object count at 0x102d8e6e0 >

The generator count is expecting to be called as part of a loop (here, the for loop) and
on each iteration it yields its result and stores its state (the value of i reached) until the
loop next calls upon it.

In fact, we have been using generators already because the familiar range built-in
function is, in Python 3, a type of generator object.

There is a generator comprehension syntax similar to list comprehension (use round
brackets instead of square brackets):

>>> squares = (x**2 for x in range(5))

>>> for square in squares:

... print(square)

...

0

1

4

9

16

However, once we have “exhausted” our generator comprehension defined in this way,
we cannot iterate over it again without redefining it. If we try:

>>> for square in squares:

... print(square)

...

>>>

we get nothing as we have already reached the end of the squares generator.
To obtain a list or tuple of a generator’s values, simply pass it to list or tuple, as

shown in the following example.

Example E4.13 This function defines a generator for the triangular numbers, Tn =∑n
k=1 k = 1 + 2 + 3 + . . . + n, for n = 0, 1, 2, . . .: that is, Tn = 0, 1, 3, 6, 10, . . .

>>> def triangular_numbers(n):

... i, t = 1, 0

... while i <= n:

... yield t

... t += i

132 The Core Python Language II

... i += 1

...

>>> list(triangular_numbers(15))

[0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105]

Note that the statements after the yield statement are executed each time triangular_numbers
resumes. The call to triangular_numbers(15) returns an iterator that feeds these
numbers into list to generate a list of its values.

♦4.3.6 map

The built-in function map returns an iterator that applies a given function to every item
of a provided sequence, yielding the results as a generator would.7 For example, one
way to sum a list of lists is to map the sum function to it:

>>> mylists = [[1, 2, 3], [10, 20, 30], [25, 75, 100]]

>>> list(map(sum, mylists))

[6, 60, 200]

(We have to cast explicitly back to a list because map returns a generator-like object.)
This statement is equivalent to the list comprehension:

>>> [sum(l) for l in mylists]

[6, 60, 200]

map is occasionally useful but has the potential to create very obscure code, and list or
generator comprehensions are generally to be preferred. The same applies to the filter

built-in, which constructs an iterator from the elements of a given sequence for which a
provided function returns True. In the following example, the odd integers less than 10
are generated: this function returns x % 2, and this expression evaluates to 0, equivalent
to False if x is even:

>>> list(filter(lambda x: x%2, range(10)))

[1, 3, 5, 7, 9]

Again, the list comprehension is more expressive:

>>> [x for x in range(10) if x % 2]

[1, 3, 5, 7, 9]

♦4.3.7 Assignment Expressions: the Walrus Operator

Python 3.8 introduced a new piece of syntax which allows a variable to be assigned
within an expression. A conventional Python expression, such as 2 + 2 or x == 'a'

returns a value (which may be None); Python statements are composed of expressions
and generally have some effect on the state of the program (e.g. they assign a variable
or test a condition). The ability to assign a variable within an expression can lead to
more concise code with less repetition. For example, consider the following check that
a string is shorter than 10 characters, which produces a meaningful error message:

7 Constructs such as map are frequently used in functional programming.

4.3 Pythonic Idioms: “Syntactic Sugar” 133

>>> s = 'A string with too many characters'

>>> if len(s) > 10:

... print(f's has {len(s)} characters. The maximum is 10.')

...

s has 33 characters. The maximum is 10.

The problem with this code is that we evaluate the length of the string twice (once for
the check and once for the message). We might assign a variable to avoid this:

>>> slen = len(s)

>>> if slen > 10:

... print(f's has {slen} characters. The maximum is 10.')

...

but a more concise way, which saves a line of code, is to use an assignment expression.
The syntax a := b can be used to assign a to the value of b in the context of an
expression (e.g. a conditional expression) rather than a stand-alone statement. That is, it
assigns the value and then returns that value, in contrast to the usual Python assignment
behavior (which doesn’t return anything). Hence,

>>> if (slen := len(s)) > 10:

... print(f's has {slen} characters. The maximum is 10.')

...

s has 33 characters. The maximum is 10.

The symbol := supposedly looks like the eyes and tusks of a walrus, and so has become
known as the “walrus operator.” Note that assignment expressions should generally be
enclosed in parentheses.

Example E4.14 A good application of an assignment expression is the reuse of a
value that may be expensive to calculate, for example in a list comprehension:

filtered_values = [f(x) for x in values if f(x) >= 0]

Here, the := operator can be used to assign the returned value of f(x) at the same time
as checking if it is positive:

filtered_values = [val for x in values if (val := f(x)) >= 0]

As a further example, consider the following block of code, which reads in and
processes a large file in chunks of 4 kB at a time:

CHUNK_SIZE = 4096

chunk = fi.read(CHUNK_SIZE)

while chunk:

process_chunk(chunk)

chunk = fi.read(CHUNK_SIZE)

This can be written more clearly as

while chunk := fi.read(CHUNK_SIZE):

process_chunk(chunk)

134 The Core Python Language II

(Note that in this case it is not necessary to enclose the assignment expression in paren-
theses).

Assignment expressions are a controversial addition to the Python language and do
not always make code clearer. This book will not use them extensively, since there is
always an alternative approach that works on versions of Python 3 prior to 3.8.

4.3.8 Exercises

Questions

Q4.3.1 Rewrite the list of lambda functions created in Example E4.11 using a single
list comprehension.

Q4.3.2 What does the following code do and how does it work?

>>> nmax = 5

>>> x = [1]

>>> for n in range(1,nmax+2):

... print(x)

... x = [([0] + x)[i] + (x + [0])[i] for i in range(n+1)]

...

Q4.3.3 Consider the lists

>>> a = ['A', 'B', 'C', 'D', 'E', 'F', 'G']

>>> b = [4, 2, 6, 1, 5, 0, 3]

Predict and explain the output of the following statements:

(a) [a[x] for x in b]

(b) [a[x] for x in sorted(b)]

(c) [a[b[x]] for x in b]

(d) [x for (y, x) in sorted(zip(b, a))]

Q4.3.4 Dictionaries are data structures in which (since Python 3.6) key-value pairs
are stored in order of insertion. Write a one-line Python statement returning a list of
(key, value) pairs sorted by the keys themselves. Assume that all keys have the same
data type (why is this important?). Repeat the exercise to produce a list ordered by
dictionary values.

Q4.3.5 In the television series The Wire, drug dealers encrypt telephone numbers with
a simple substitution cypher based on the standard layout of the phone keypad. Each
digit of the number, with the exception of 5 and 0, is replaced with the corresponding
digit on the other side of the 5 key (“jump the five”); 5 and 0 are exchanged. Thus, 555-
867-5309 becomes 000-243-0751. Devise a one-line statement to encrypt and decrypt
numbers encoded in this way.

Q4.3.6 The built-in function sorted and sequence method sort require that the ele-
ments in the sequence be of types that can be compared: they will fail, for example, if

4.3 Pythonic Idioms: “Syntactic Sugar” 135

a list contains a mixture of strings and numbers. However, it is frequently the case that
a list contains numbers and the special value, None (perhaps denoting missing data).
Devise a way to sort such a list by passing a lambda function in the argument key; the
None values should end up at the end of the sorted list.

Q4.3.7 Use an assignment expression (the walrus operator) (a) in a while loop to
determine the smallest Fibonacci number greater than 5000; (b) in a while loop to echo
back a lower-case version of the user’s input (use the input built-in function) until they
enter exit.

Problems

P4.3.1 Use a list comprehension to calculate the trace of the matrix M (that is, the sum
of its diagonal elements). Hint: the sum built-in function takes an iterable object and
sums its values.

P4.3.2 The ROT13 substitution cipher encodes a string by replacing each letter with
the letter 13 letters after it in the alphabet (cycling around if necessary). For example, a
→ n and p→ c.

(a) Given a word expressed as a string of lower-case characters only, use a list
comprehension to construct the ROT13-encoded version of that string. Hint:
Python has a built-in function, ord, which converts a character to its Unicode
code point (e.g. ord('a') returns 97); another built-in, chr, is the inverse of ord
(e.g. chr(122) returns 'z').

(b) Extend your list comprehension to encode sentences of words (in lower case)
separated by spaces into a ROT13 sentence (in which the encoded words are also
separated by spaces).

P4.3.3 In A New Kind of Science,8 Stephen Wolfram describes a set of simple one-
dimensional cellular automata in which each cell can take one of two values: “on” or
“off.” A row of cells is initialized in some state (e.g. with a single “on” cell somewhere
in the row) and it evolves into a new state according to a rule that determines the
subsequent state of a cell (“on” or “off”) from its value and that of its two nearest
neighbors. There are 23 = 8 different states for these three “parent” cells taken together
and so 28 = 256 different automata rules; that is, the state of cell i in the next generation
is determined by the states of cells i − 1, i and i + 1 in the present generation.

These rules are numbered 0–255 according to the binary number indicated by the
eight different outcomes each one specifies for the eight possible parent states. For
example, rule 30 produces the outcome (off, off, off, on, on, on, on, off) (or 00011110)
from the parent states given in the order shown in Figure 4.1. The evolution of the cells
can be illustrated by printing the row corresponding to each generation under its parent
as shown in this figure.

8 S. Wolfram (2002). A New Kind of Science, Wolfram Media.

136 The Core Python Language II

00011110 = 30

Figure 4.1 Rule 30 of Wolfram’s one-dimensional two-state cellular automata and the first seven
generations.

Write a program to display the first few rows generated by rule 30 on the command
line, starting from a single “on” cell in the center of a row 80 cells wide. Use an asterisk
to indicate an “on” cell and a space to represent an “off” cell.

P4.3.4 The file iban_lengths.txt, available at https://scipython.com/ex/bdd con-
tains two columns of data: a two-letter country code and the length of that country’s
International Bank Account Number (IBAN):

AL 28

AD 24

...

GB 22

The code snippet below parses the file into a dictionary of lengths, keyed by the country
code:

iban_lengths = {}

with open('iban_lengths.txt') as fi:

for line in fi.readlines():

fields = line.split()

iban_lengths[fields[0]] = int(fields[1])

Use a lambda function and list comprehension to achieve the same goal in (a) two lines,
(b) one line.

P4.3.5 The power set of a set S , P(S), is the set of all subsets of S , including the
empty set and S itself. For example,

P({1, 2, 3}) = {{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

Write a Python program that uses a generator to return the power set of a given set.
Hint: convert your set into an ordered sequence such as a tuple. For each item in this

sequence return the power set formed from all subsequent items, inclusive and exclusive
of the chosen item. Don’t forget to convert the tuples back to sets after you’re done.

P4.3.6 The Brown Corpus is a collection of 500 samples of (American) English-
language text that was compiled in the 1960s for use in the field of computational lin-

https://scipython.com/ex/bdd

4.4 Operating-System Services 137

guistics. It can be dowloaded from https://nltk.github.com/nltk_data/packages/corpora/
brown.zip.

Each sample in the corpus consists of words that have been tagged with their part-of-
speech after a forward slash. For example,

The/at football/nn opponent/nn on/in homecoming/nn is/bez ,/, of/in

course/nn ,/, selected/vbn with/in the/at view/nn that/cs

Here, The has been tagged as an article (/at), football as a noun (/nn) and so on. A
full list of the tags is available from the accompanying manual.9

Write a program that analyzes the Brown Corpus and returns a list of the eight-letter
words which feature each possible two-letter combinations exactly twice. For example,
the two-letter combination pc is present in only the words topcoats and upcoming; mt is
present only in the words boomtown and undreamt.

4.4 Operating-System Services

4.4.1 The sys Module

The sys module provides certain system-specific parameters and functions. Many of
them are of interest only to fairly advanced users of less-common Python implemen-
tations (the details of how floating-point arithmetic is implemented can vary between
different systems, for example, but is likely to be the same on all common platforms –
see Section 10.1). However, it also provides some that are useful and important: these
are described here.

sys.argv
sys.argv holds the command-line arguments passed to a Python program when it is
executed. It is a list of strings. The first item, sys.argv[0], is the name of the program
itself. This allows for a degree of interactivity without having to read from configuration
files or requiring direct user input, and means that other programs or shell scripts can
call a Python program and pass it particular input values or settings. For example, a
simple script to square a given number might be written:

square.py

import sys

n = int(sys.argv[1])

print(n, 'squared is', n**2)

(Note that it is necessary to convert the input value into an int, because it is stored in
sys.argv as a string.) Running this program from the command line with

python square.py 3

produces the output

9 This manual is available at http://clu.uni.no/icame/manuals/BROWN/INDEX.HTM though the tags them-
selves are presented better on the Wikipedia article at https://en.wikipedia.org/wiki/Brown_Corpus.

https://nltk.github.com/nltk_data/packages/corpora/brown.zip
https://nltk.github.com/nltk_data/packages/corpora/brown.zip
http://clu.uni.no/icame/manuals/BROWN/INDEX.HTM
https://en.wikipedia.org/wiki/Brown_Corpus

138 The Core Python Language II

3 squared is 9

as expected. But because we did not hard-code the value of n, the same program can be
run with

python square.py 4

to produce the output

4 squared is 16

sys.exit
Calling sys.exit will cause a program to terminate and exit from Python. This happens
“cleanly,” so that any commands specified in a try statement’s finally clause are
executed first and any open files are closed. The optional argument to sys.exit can
be any object; if it is an integer, it is passed to the shell which, it is assumed, knows
what to do with it.10 For example, 0 usually denotes “successful” termination of the
program and nonzero values indicate some kind of error. Passing no argument or None
is equivalent to 0. If any other object is specified as an argument to sys.exit, it is passed
to stderr, Python’s implementation of the standard error stream. A string, for example,
appears as an error message on the console (unless redirected elsewhere by the shell).

Example E4.15 A common way to help users with scripts that take command-line
arguments is to issue a usage message if they get it wrong, as in the following code
example.

Listing 4.3 Issuing a usage message for a script taking command-line arguments

square.py

import sys

try:

n = int(sys.argv[1])

except (IndexError , ValueError):

sys.exit('Please enter an integer, <n>, on the command line.\nUsage: '

'python {:s} <n>'.format(sys.argv[0]))

print(n, 'squared is', n**2)

The error message here is reported and the program exits if no command-line argu-
ment was specified (and hence indexing sys.argv[1] raises an IndexError) or the
command-line argument string does not evaluate to an integer (in which case the int

cast will raise a ValueError).

$ python square.py hello

Please enter an integer, <n>, on the command line.

Usage: python square.py <n>

$ python square.py 5

5 squared is 25

10 At least if it is in the range 0–127; undefined results could be produced for values outside this range.

4.4 Operating-System Services 139

4.4.2 The os Module

The os module provides various operating-system interfaces in a platform-independent
way. Its many functions and parameters are described in full in the official documenta-
tion,11 but some of the more important ones are described in this section.

Process Information
The Python process is the particular instance of the Python application that is executing
your program (or providing a Python shell for interactive use). The os module provides
a number of functions for retrieving information about the context in which the Python
process is running. For example, os.uname() returns information about the operating
system running Python and the network name of the machine running the process.

One function is of particular use: os.getenv(key) returns the value of the environ-
ment variable key if it exists (or None of it doesn’t). Many environment variables are
system-specific, but commonly include:

• HOME: the path to the user’s home directory;
• PWD: the current working directory;
• USER: the current user’s username;
• PATH: the system path environment variable.

For example, on my system:

>>> os.getenv('HOME')

'/Users/christian'

File-System Commands
It is often useful to be able to navigate the system directory tree and manipulate files
and directories from within a Python program. The os module provides the functions
listed in Table 4.4 to do just this. There are, of course, inherent dangers: your Python
program can do anything that your user can, including renaming and deleting files.

Pathname Manipulations12

The os.path module provides a number of useful functions for manipulating path-
names. The version of this library installed with Python will be the one appropriate for
the operating system that it runs on (e.g. on a Windows machine, path-name components
are separated by the backslash character, “\”, whereas on Unix and Linux systems, the
(forward) slash character, “/” is used.

Common usage of the os.path module’s functions are to find the filename from a
path (basename), test to see if a file or directory exists (exists), join strings together to
make a path (join), split a filename into a “root” and an “extension” (splitext) and to

11 https://docs.python.org/3/library/os.html.
12 This section describes the low-level os.path module; since Python 3.4 the Standard Library pathlib

module has been available: this offers a higher-level, object-oriented approach to manipulating file-system
paths that can be more expressive. See https://docs.python.org/3/library/pathlib.html for details.

https://docs.python.org/3/library/os.html
https://docs.python.org/3/library/pathlib.html

140 The Core Python Language II

Table 4.4 os module: some file-system commands

Function Description

os.listdir(path=’.’) List the entries in the directory given by path (or the current
working directory if this is not specified).

os.remove(path) Delete the file path (raises an OSError if path is a directory;
use os.rmdir instead).

os.rename(old_name,
new_name)

Rename the file or directory old_name to new_name. If a file
with the name new_name already exists, it will be overwritten
(subject to user-permissions).

os.rmdir(path) Delete the directory path . If the directory is not empty, an
OSError is raised.

os.mkdir(path) Create the directory named path .
os.system(command) Execute command in a subshell. If the command generates any

output, it is redirected to the interpreter standard output stream,
stdout.

Table 4.5 os.path module: common pathname manipulations

Function Description

os.path.basename(path) Return the basename of the pathname path giving a
relative or absolute path to the file: this usually means
the filename.

os.path.dirname(path) Return the directory of the pathname path .
os.path.exists(path) Return True if the directory or file path exists, and

False otherwise.
os.path.getmtime(path) Return the time of last modification of path .
os.path.getsize(path) Return the size of path in bytes.
os.path.join(path1, path2,
...)

Return a pathname formed by joining the path compo-
nents path1, path2, etc. with the directory separator
appropriate to the operating system being used.

os.path.split(path) Split path into a directory and a filename, returned as
a tuple (equivalent to calling dirname and basename)
respectively.

os.path.splitext(path) Split path into a “root” and an “extension” (returned as
a tuple pair).

find the time of last modification to a file (getmtime). Such common applications are
described briefly in Table 4.5.

Some examples referring to a file /home/brian/test.py:

>>> os.path.basename('/home/brian/test.py')

'test.py' # just the filename

>>> os.path.dirname('/home/brian/test.py')

'/home/brian' # just the directory

>>> os.path.split('/home/brian/test.py')

('/home/brian', 'test.py') # directory and filename in a tuple

4.4 Operating-System Services 141

>>> os.path.splitext('/home/brian/test.py')

('/home/brian/test', '.py') # file path stem and extension in a tuple

>>> os.path.join(os.getenv('HOME'), 'test.py')

'/home/brian/test.py' # join directories and/or filename

>>> os.path.exists('/home/brian/test.py')

False # file does not exist!

Trying to call some of these functions on a path that does not exist will cause a
FileNotFoundError exception to be raised (which could be caught within a try ...

except clause, of course).

Example E4.16 Suppose you have a directory of data files identified by filenames
containing a date in the form data-DD-Mon-YY.txt where DD is the two-digit day num-
ber, Mon is the three-letter month abbreviation and YY is the last two digits of the year,
for example '02-Feb-10'. The following program converts the filenames into the form
data-YYYY-MM-DD.txt so that an alphanumerical ordering of the filenames puts them in
chronological order.

Listing 4.4 Renaming data files by date

eg4-osmodule.py

import os

import sys

months = ['jan', 'feb', 'mar', 'apr', 'may', 'jun',

'jul', 'aug', 'sep', 'oct', 'nov', 'dec']

dir_name = sys.argv[1]

for filename in os.listdir(dir_name):

filename is expected to be in the form ' data-DD-MMM-YY.txt '
d, month, y = int(filename[5:7]), filename[8:11], int(filename[12:14])

Ê m = months.index(month.lower())+1

newname = 'data -20{:02d}-{:02d}-{:02d}.txt'.format(y, m, d)

newpath = os.path.join(dir_name, newname)

oldpath = os.path.join(dir_name, filename)

print(oldpath, '->', newpath)

os.rename(oldpath, newpath)

Ê We get the month number from the index of corresponding abbreviated month name
in the list months, adding 1 because Python list indexes start at 0.

For example, given a directory testdir containing the following files:

data-02-Feb-10.txt

data-10-Oct-14.txt

data-22-Jun-04.txt

data-31-Dec-06.txt

the command python eg4-osmodule.py testdir produces the output

testdir/data-02-Feb-10.txt -> testdir/data -2010-02-02.txt

142 The Core Python Language II

testdir/data-10-Oct-14.txt -> testdir/data -2014-10-10.txt

testdir/data-22-Jun-04.txt -> testdir/data -2004-06-22.txt

testdir/data-31-Dec-06.txt -> testdir/data -2006-12-31.txt

See also Problem P4.4.4 and the datetime module (Section 4.5.3).

4.4.3 Exercises

Problems

P4.4.1 Modify the hailstone sequence generator of Exercise P2.5.7 to generate the
hailstone sequence starting at any positive integer that the user provides on the command
line (use sys.argv). Handle the case where the user forgets to provide n or provides an
invalid value for n gracefully.

P4.4.2 The Haversine formula gives the shortest (great-circle) distance, d, between
two points on a sphere of radius, R, from their longitudes (λ1, λ2) and latitudes (φ1, φ2):

d = 2R arcsin
(√

haversin(φ2 − φ1) + cos φ1 cos φ2haversin(λ2 − λ1)
)
,

where the haversine function of an angle is defined by

haversin(α) = sin2
(
α

2

)
.

Write a program to calculate the shortest distance in kilometers between two points
on the surface of the Earth (considered as a sphere of radius 6378.1 km) given as
two command-line arguments, each of which is a comma-separated pair of latitude,
longitude values in degrees. For example, the distance between Paris and Rome is given
by executing:

python greatcircle.py 48.9,2.4 41.9,12.5

1107 km

P4.4.3 Write a Python program to create a directory, test, in the user’s home direc-
tory and to populate it with 20 Scalable Vector Graphics (SVG) files depicting a small,
filled, red circle inside a large, black, unfilled circle. For example,

<?xml version="1.0" encoding="utf-8"?>

<svg xmlns="http://www.w3.org/2000/svg"

xmlns:xlink="http://www.w3.org/1999/xlink"

width="500" height="500" style="background: #ffffff">

<circle cx="250.0" cy="250.0" r="200" style="stroke: black; stroke-width: 2px;

fill: none;"/>

<circle cx="430.0" cy="250.0" r="20" style="stroke: red; fill: red;"/>

</svg>

Each file should move the red circle around the inside rim of the larger circle so that
the 20 files together could form an animation.

One way to achieve this is to use the free ImageMagick software (www.imagemagick.
org/). Ensure the SVG files are named fig00.svg, fig01.svg, etc. and issue the follow-
ing command from your operating system’s command line:

www.imagemagick.org/
www.imagemagick.org/
http://www.w3.org/2000/svg
http://www.w3.org/1999/xlink

4.5 Modules and Packages 143

convert -delay 5 -loop 0 fig*.svg animation.gif

to produce an animated GIF image.

P4.4.4 Modify the program of Example E4.16 to catch the following errors and han-
dle them gracefully:

• user does not provide a directory name on the command line (issue a usage
message);

• the directory does not exist;
• the name of a file in the directory does not have the correct format;
• the filename is in the correct format but the month abbreviation is not recog-

nized.

Your program should terminate in the first two cases and skip the file in the second two.

4.5 Modules and Packages

As we have seen, Python is quite a modular language and has functionality beyond
the core programming essentials (the built-in methods and data structures we have
encountered so far), which is made available to a program through the import statement.
This statement makes reference to modules that are ordinary Python files containing
definitions and statements. Upon encountering the line

import <module>

the Python interpreter executes the statements in the file <module>.py and enters the
module name <module> into the current namespace, so that the attributes it defines are
available with the “dotted syntax”: <module>.<attribute>.

Defining your own module is as simple as placing code within a file <module>.py,
which is somewhere the Python interpreter can find it (for small projects, usually just the
same directory as the program doing the importing). Note that because of the syntax of
the import statement, you should avoid naming your module anything that isn’t a valid
Python identifier (see Section 2.2.3). For example, the filename <module>.py should
not contain a hyphen or start with a digit. Do not give your module the same name as
any built-in modules (such as math or random) because these get priority when Python
imports.

A Python package is simply a structured arrangement of modules within a directory
on the file system. Packages are the natural way to organize and distribute larger Python
projects. To make a package, the module files are placed in a directory, along with a file
named __init__.py. This file is run when the package is imported and may perform
some initialization and its own imports. It may be an empty file (zero bytes long) if no
special initialization is required, but it must exist for the directory to be considered by
Python to be a package.

For example, the NumPy package (see Chapter 6) exists as the following directory
(some files and directories have been omitted for clarity):

144 The Core Python Language II

numpy/

__init__.py

core/

fft/

__init__.py

fftpack.py

info.py

...

linalg/

__init__.py

linalg.py

info.py

...

polynomial/

__init__.py

chebyshev.py

hermite.py

legendre.py

...

random/

version.py

...

Thus, for example, polynomial is a subpackage of the numpy package containing several
modules, including legendre, which may be imported as

import numpy.polynomial.legendre

To avoid having to use this full dotted syntax in actually referring to its attributes, it is
convenient to use

from numpy.polynomial import legendre

Table 4.6 lists some of the major, freely available Python modules and packages
for general programming applications as well as for numerical and scientific work.
Some are installed with the core Python distribution (the Standard Library);13 where
indicated others can be downloaded and installed separately. Before implementing your
own algorithm, check that it isn’t included in an existing Python package.

Whilst other package managers exist,14 the pip application15 has become the de facto
standard. It is usually installed by default with most Python installations and does a
pretty good job of managing package versions and dependencies. To install the package
package, the following syntax is used at the command line:

pip install package # install latest version

pip install package==X.Y.Z # install version X.Y.Z

pip install 'package>=X.Y.Z' # install minimum version X.Y.Z

To uninstall a package, use:

pip uninstall package

13 A complete list of the components of the Standard Library is at https://docs.python.org/3/library/index.
html.

14 For example, conda from the Anaconda distribution – see Section 1.3.
15 See https://pip.pypa.io/en/stable/ for full documentation.

https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://pip.pypa.io/en/stable/

4.5 Modules and Packages 145

Table 4.6 Python modules and packages. Those marked with an asterisk (*) are not part of
the Python Standard Library and must be installed separately, for example with pip.

Module / Package Description

os, sys Operating-system services, as described in Section 4.4
math, cmath Mathematical functions, as introduced in Section 2.2.2
random Random-number generator (see Section 4.5.1)
collections Data types for containers that extend the functionality of dictio-

naries, tuples, etc.
itertools Tools for efficient iterators that extend the functionality of simple

Python loops
glob Unix-style pathname pattern expansion
datetime Parsing and manipulating dates and times (see Section 4.5.3)
fractions Rational-number arithmetic
re Regular expressions
argparse Parser for command-line options and arguments
urllib URL (including web pages) opening, reading and parsing (see

Section 4.5.2)
* Django (django) A popular web application framework
* pyparsing Lexical parser for simple grammars
pdb The Python debugger
logging Python’s built-in logging module
xml, lxml XML parsers
* VPython (visual) Three-dimensional visualization
unittest Unit-testing framework for systematically testing and validating

individual units of code (see Section 10.3.4)
* NumPy (numpy) Numerical and scientific computing (described in detail in Chapter

6)
* SciPy (scipy) Scientific computing algorithms (described in detail in Chapter 8)
* Matplotlib
(matplotlib)

Plotting (see Chapters 3 and 7)

* SymPy (sympy) Symbolic computation (computer algebra)
* pandas Data manipulation and analysis with table-like data structures
* scikit-learn Machine learning
* Beautiful Soup 4
(beautifulsoup4)

HTML parser, with handling of malformed documents

4.5.1 The random Module

For simulations, modeling and some numerical algorithms it is often necessary to gen-
erate random numbers from some distribution. The topic of random-number generation
is a complex and interesting one, but the important aspect for our purposes is that,
in common with most other languages, Python implements a pseudorandom-number
generator (PRNG). This is an algorithm that generates a sequence of numbers that
approximates the properties of “truly” random numbers. Such sequences are determined
by an originating seed state and are always the same following the same seed: in this
sense they are deterministic. This can be a good thing (so that a calculation involving
random numbers can be reproduced) or a bad thing (e.g. if used for cryptography,
where the random sequence must be kept secret). Any PRNG will yield a sequence that

146 The Core Python Language II

eventually repeats, and a good generator will have a long period. The PRNG imple-
mented by Python is the Mersenne Twister, a well-respected and much-studied algo-
rithm with a period of 219937 − 1 (a number with more than 6000 digits in base 10).

Generating Random Numbers
The random-number generator can be seeded with any hashable object (e.g. an
immutable object such as an integer). When the module is first imported, it is seeded
with a representation of the current system time (unless the operating system provides
a better source of a random seed). The PRNG can be reseeded at any time with a call to
random.seed.

The basic random-number method is random.random. It generates a random number
selected from the uniform distribution in the semi-open interval [0, 1) – that is, including
0 but not including 1.

>>> import random

>>> random.random() # PRNG seeded ' randomly '
0.5204514767709216

>>> random.seed(42) # seed the PRNG with a fixed value

>>> random.random()

0.6394267984578837

>>> random.random()

0.025010755222666936

...

>>> random.seed(42) # reseed with the same value as before ...

>>> random.random()

0.6394267984578837 # ... and the sequence repeats

>>> random.random()

0.025010755222666936

Calling random.seed() with no argument reseeds the PRNG with a “random” value
as when the random module is first imported.

To select a random floating-point number, N, from a given range, a ≤ N ≤ b, use
random.uniform(a, b):

>>> random.uniform(-2., 2.)

-0.899882726523523

>>> random.uniform(-2., 2.)

-1.107157047404709

The random module has several methods for drawing random numbers from nonuni-
form distributions – see the documentation16 – the most important of them are described
below.

To return a number from the normal distribution with mean, mu, and standard devia-
tion, sigma, use random.normalvariate(mu, sigma):

>>> random.normalvariate(100, 15)

118.82178896586194

>>> random.normalvariate(100, 15)

97.92911405885782

16 https://docs.python.org/3/library/random.html.

https://docs.python.org/3/library/random.html

4.5 Modules and Packages 147

To select a random integer, N, in a given range, a ≤ N ≤ b, use the random.randint

(a, b) method:

>>> random.randint(5, 10)

7

>>> random.randint(5, 10)

10

Random Sequences
Sometimes you may wish to select an item at random from a sequence such as a list.
This is what the method random.choice does:

>>> seq = [10, 5, 2, 'ni', -3.4]

>>> random.choice(seq)

-3.4

>>> random.choice(seq)

'ni'

Another method, random.shuffle, randomly shuffles (permutes) the items of the
sequence in place:

>>> random.shuffle(seq)

>>> seq

[10, -3.4, 2, 'ni', 5]

Note that because the random permutation is made in place, the sequence must be
mutable: you can’t, for example, shuffle tuples.

Finally, to draw a list of k unique elements from a sequence or set (without replace-
ment) population, there is random.sample(population, k):

>>> raffle_numbers = range(1, 100001)

>>> winners = random.sample(raffle_numbers , 5)

>>> winners

[89734, 42505, 7332, 30022, 4208]

The resulting list is in selection order (the first-indexed element is the first drawn) so
that one could, for example, without bias declare ticket number 89734 to be the jackpot
winner and the remaining four tickets second-placed winners.

Example E4.17 The Monty Hall problem is a famous conundrum in probability,
which takes the form of a hypothetical game show. The contestant is presented with
three doors; behind one is a car and behind each of the other two is a goat. The
contestant picks a door and then the game show host opens a different door to reveal
a goat. The host knows which door conceals the car. The contestant is then invited to
switch to the other closed door or stick with their initial choice.

Counterintuitively, the best strategy for winning the car is to switch, as demonstrated
by the following simulation.

Listing 4.5 The Monty Hall problem

eg4-montyhall.py

import random

148 The Core Python Language II

def run_trial(switch_doors , ndoors=3):

"""

Run a single trial of the Monty Hall problem, with or without switching

after the game show host reveals a goat behind one of the unchosen doors.

(switch_doors is True or False). The car is behind door number 1 and the

game show host knows that. Returns True for a win, otherwise returns False.

"""

Pick a random door out of the ndoors available.

chosen_door = random.randint(1, ndoors)

if switch_doors:

Reveal a goat.

revealed_door = 3 if chosen_door==2 else 2

Make the switch by choosing any other door than the initially

selected one and the one just opened to reveal a goat.

available_doors = [dnum for dnum in range(1,ndoors+1)

if dnum not in (chosen_door , revealed_door)]

chosen_door = random.choice(available_doors)

You win if you picked door number 1.

Ê return chosen_door == 1

def run_trials(ntrials, switch_doors , ndoors=3):

"""

Run ntrials iterations of the Monty Hall problem with ndoors doors, with

and without switching (switch_doors = True or False). Returns the number

of trials which resulted in winning the car by picking door number 1.

"""

nwins = 0

for i in range(ntrials):

if run_trial(switch_doors , ndoors):

nwins += 1

return nwins

ndoors, ntrials = 3, 10000

nwins_without_switch = run_trials(ntrials, False, ndoors)

nwins_with_switch = run_trials(ntrials, True, ndoors)

print('Monty Hall Problem with {} doors'.format(ndoors))

print('Proportion of wins without switching: {:.4f}'

.format(nwins_without_switch/ntrials))

print('Proportion of wins with switching: {:.4f}'

.format(nwins_with_switch/ntrials))

Ê Without loss of generality, we can place the car behind door number 1, leaving the
contestant initially to choose any door at random.

To make the code a little more interesting, we have allowed for a variable number of
doors in the simulation (but only one car).
Monty Hall Problem with 3 doors

Proportion of wins without switching: 0.3334

Proportion of wins with switching: 0.6737

4.5 Modules and Packages 149

♦4.5.2 The urllib Package

The urllib package in Python 3 is a set of modules for opening and retrieving the
content referred to by Uniform Resource Locators (URLs), typically web addresses
accessed with HTTP(S) (HyperText Transfer Protocol) or FTP (File Transfer Protocol).
Here is a very brief introduction to its use.

Opening and Reading URLs
To obtain the content at a URL using HTTP you first need to make an HTTP request by
creating a Request object. For example,

import urllib.request

req = urllib.request.Request('https://www.wikipedia.org')

The Request object allows you to pass data (using GET or POST) and other information
about the request (metadata passed through the HTTP headers – see later). For a simple
request, however, one can simply open the URL immediately as a file-like object with
urlopen():

response = urllib.request.urlopen(req)

It’s a good idea to catch the two main types of exception that can arise from this
statement. The first type, URLError, results if the server doesn’t exist or if there is no
network connection; the second type, HTTPError, occurs when the server returns an error
code (such as 404: Page Not Found). These exceptions are defined in the urllib.error

module.

from urllib.error import URLError , HTTPError

try:

response = urllib.request.urlopen(req)

except HTTPError as e:

print('The server returned error code', e.code)

except URLError as e:

print('Failed to reach server at {} for the following reason:\n{}'

.format(url, e.reason))

else:

the response came back OK

Assuming the urlopen() worked, there is often nothing more to do than simply read
the content from the response:

content = response.read()

The content will be returned as a bytestring. To decode it into a Python (Unicode) string
you need to know how it is encoded. A good resource will include the character set used
in the Content-Type HTTP header. This can be used as follows:

charset = response.headers.get_content_charset()

html = content.decode(charset)

where html is now a decoded Python Unicode string. If no character set is specified in
the headers returned, you may have to guess (e.g. set charset='utf-8').

https://www.wikipedia.org

150 The Core Python Language II

GET and POST Requests
It is often necessary to pass data along with the URL to retrieve content from a server.
For example, when submitting an HTML form from a web page, the values correspond-
ing to the entries you have made are encoded and passed to the server according to either
the GET or POST protocols.

The urllib.parse module allows you to encode data from a Python dictionary into
a form suitable for submission to a web server. To take an example from the Wikipedia
API using a GET request:

>>> url = 'https://wikipedia.org/w/api.php'

>>> data = {'page': 'Monty_Python', 'prop': 'text', 'action': 'parse', 'section': 0}

>>> encoded_data = urllib.parse.urlencode(data)

>>> full_url = url + '?' + encoded_data

>>> full_url

'https://wikipedia.org/w/api.php?page=Monty_Python&prop=text&action=parse

§ion=0'

>>> req = urllib.request.Request(full_url)

>>> response = urllib.request.urlopen(req)

>>> html = response.read().decode('utf-8')

To make a POST request, instead of appending the encoded data to the string <url>?,
pass it to the Request constructor directly:

req = urllib.request.Request(url, encoded_data)

4.5.3 The datetime Module

Python’s datetime module provides classes for manipulating dates and times. There
are many subtle issues surrounding the handling of such data (time zones, different
calendars, Daylight Saving Time, etc.,) and full documentation is available online;17

here we provide an overview of only the most common uses.

Dates
A datetime.date object represents a particular day, month and year in an idealized
calendar (the current Gregorian calendar is assumed to be in existence for all dates, past
and future). To create a date object, pass valid year, month and day numbers explicitly,
or call the date.today constructor:

>>> from datetime import date

>>> birthday = date(2004, 11, 5) # OK

>>> notadate = date(2005, 2, 29) # Oops: 2005 wasn ' t a leap year!

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ValueError: day is out of range for month

>>> today = date.today()

17 https://docs.python.org/3/library/datetime.html.

https://docs.python.org/3/library/datetime.html
https://wikipedia.org/w/api.php
https://wikipedia.org/w/api.php?page=Monty_Python&prop=text&action=parse§ion=0
https://wikipedia.org/w/api.php?page=Monty_Python&prop=text&action=parse§ion=0

4.5 Modules and Packages 151

>>> today

datetime.date(2014, 12, 6) # (for example)

Dates between 1/1/1 and 31/12/9999 are accepted. Parsing dates to and from strings is
also supported (see strptime and strftime).

Some more useful date object methods are used as follows:

>>> birthday.isoformat() # ISO 8601 format: YYYY-MM-DD

'2004-11-05'

>>> birthday.weekday() # Monday = 0, Tuesday = 1, ..., Sunday = 6

4 # (Friday)

>>> birthday.isoweekday() # Monday = 1, Tuesday = 2, ..., Sunday = 7

5

>>> birthday.ctime() # C-standard time output

'Fri Nov 5 00:00:00 2004'

date objects can also can be compared (chronologically):

>>> birthday < today

True

>>> today == birthday

False

Times
A datetime.time object represents a (local) time of day to the nearest microsecond. To
create a time object, pass the number of hours, minutes, seconds and microseconds (in
that order; missing values default to zero).

>>> from datetime import time

>>> lunchtime = time(hour=13, minute=30)

>>> lunchtime

datetime.time(13, 30)

>>> lunchtime.isoformat() # ISO 8601 format: HH:MM:SS if no microseconds

'13:30:00'

>>> precise_time = time(4,46,36,501982)

>>> precise_time.isoformat() # ISO 8601 format: HH:MM:SS.mmmmmm

'04:46:36.501982'

>>> witching_hour = time(24) # Oops: hour must satisfy 0 <= hour < 24

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ValueError: hour must be in 0..23

datetime Objects
A datetime.datetime object contains the information from both the date and time

objects: year, month, day, hour, minute, second, microsecond. As well as passing values

152 The Core Python Language II

for these quantities directly to the datetime constructor, the methods today (returning
the current date) and now (returning the current date and time) are available:

>>> from datetime import datetime # (a notoriously ugly import)

>>> now = datetime.now()

>>> now

datetime.datetime(2020, 1, 27, 10, 27, 35, 762464)

>>> now.isoformat()

'2020-01-27T10:27:35.762464'

>>> now.ctime()

'Mon Jan 27 10:27:35 2020'

Date and Time Formatting
date, time and datetime objects support a method, strftime, to output their values as
a string formatted according to a syntax set using the format specifiers listed in Table
4.7.

>>> birthday.strftime('%A, %d %B %Y')

'Friday, 05 November 2004'

>>> now.strftime('%I:%M:%S on %d/%m/%y')

'10:27:35 on 27/01/20'

The reverse process, parsing a string into a datetime object, is the purpose of the
strptime method:

>>> launch_time = datetime.strptime('09:32:00 July 16, 1969',

'%H:%M:%S %B %d, %Y')

>>> print(launch_time)

1969-07-16 09:32:00

>>> print(launch_time.strftime('%I:%M %p on %A, %d %b %Y'))

09:32 AM on Wednesday , 16 Jul 1969

♦4.6 An Introduction to Object-Oriented Programming

4.6.1 Object-Oriented Programming Basics

Structured programming styles may be broadly divided into two categories: procedural
and object-oriented. The programs we have looked at so far in this book have been
procedural in nature: we have written functions (of the sort that would be called proce-
dures or subroutines in other languages) that are called, passed data, and which return
values from their calculations. The functions we have defined do not hold their own
data or remember their state in between being called, and we haven’t modified them
after defining them.

An alternative programming paradigm that has gained popularity through the use of
languages such as C++ and Java is object-oriented programming. In this context, an
object represents a concept of some sort: this could be a physical entity, but can also
be any abstract collection of components which relate to each other in a semantically

4.6 An Introduction to Object-Oriented Programming 153

Table 4.7 strftime and strptime format specifiers. Note that many of these
are locale-dependent (e.g. on a German-language system, %A will yield
Sonntag, Montag, etc.).

Specifier Description

%a Abbreviated weekday (Sun, Mon, etc.)
%A Full weekday (Sunday, Monday, etc.)
%w Weekday number (0 = Sunday, 1 = Monday, . . . , 6 = Saturday)
%d Zero-padded day of month: 01, 02, 03, . . . , 31
%b Abbreviated month name (Jan, Feb, etc.)
%B Full month name (January, February, etc.)
%m Zero-padded month number: 01, 02, . . . , 12
%y Year without century (two-digit, zero-padded): 01, 02, . . . , 99
%Y Year with century (four-digit, zero-padded): 0001, 0002, . . . 9999
%H 24-hour clock hour, zero-padded: 00, 01, . . . , 23
%I 12-hour clock hour, zero-padded: 00, 01, . . . , 12
%p AM or PM (or locale equivalent)
%M Minutes (two-digit, zero-padded): 00, 01, . . . , 59
%S Seconds (two-digit, zero-padded): 00, 01, . . . , 59
%f Microseconds (six-digit, zero-padded): 000000, 000001, . . . , 999999
%% The literal % sign

coherent way. An object holds data about itself (attributes) and defines functions (meth-
ods) for manipulating data. That manipulation may cause a change in the object’s state
(i.e. it may change some of the object’s attributes). An object is created (instantiated)
from a “blueprint” called a class, which dictates its behavior by defining its attributes
and methods.

In fact, as we have already pointed out, everything in Python is an object. So, for
example, a Python string is an instance of the str class. A str object possesses its
own data (the sequence of characters making up the string) and provides (“exposes”)
a number of methods for manipulating that data. For example, the capitalize method
returns a new string object created from the original string by capitalizing its first letter;
the split method returns a list of strings by splitting up the original string:

>>> a = 'hello, aloha, goodbye, aloha'

>>> a.capitalize()

'Hello, aloha, goodbye, aloha'

>>> a.split(',')

['hello', ' aloha', ' goodbye', ' aloha']

Even indexing a sequence is really to call the method _ _ getitem _ _:

>>> b = [10, 20, 30, 40, 50]

>>> b.__getitem__(4)

50

That is, a[4] is equivalent to a._ _ getitem _ _(4).18

18 The double-underscore syntax usually denotes a name with some special meaning to Python.

154 The Core Python Language II

BankAccount

account_number

balance

customer

deposit(amount)

withdraw(amount)

Customer

name

address

date_of_birth

password

get_age()

change_password()

Figure 4.2 Basic classes representing a bank account and a customer.

Part of the popularity of object-oriented programming, at least for larger projects,
stems from the way it helps to conceptualize the problem that a program aims to solve.
It is often possible to break a problem down into units of data and operations that it
is appropriate to carry out on that data. For example, a retail bank deals with people
who have bank accounts. A natural object-oriented approach to managing a bank would
be to define a BankAccount class, with attributes such as an account number, balance
and owner, and a second, Customer, class with attributes such as a name, address and
date of birth. The BankAccount class might have methods for allowing (or forbidding)
transactions depending on its balance and the Customer class might have methods for
calculating the customer’s age from their date of birth, for example (see Figure 4.2).

An important aspect of object-oriented programming is inheritance. There is often a
relationship between objects which takes the form of a hierarchy. Typically, a general
type of object is defined by a base class, and then customized classes with more special-
ized functionality are derived from it. In our bank example, there may be different kinds
of bank accounts: savings accounts, current (checking) accounts, etc. Each is derived
from a generic base bank account, which might simply define basic attributes such as
a balance and an account number. The more specialized bank account classes inherit
the properties of the base class but may also customize them by overriding (redefining)
one or more methods and may also add their own attributes and methods. This helps
structure the program and encourages code reuse – there is no need to declare an account
number separately for both savings and current accounts because both classes inherit
one automatically from the base class. If a base class is not to be instantiated itself, but
serves only as a template for the derived classes, it is called an abstract class.

In Figure 4.3, the relationship between the base class and two derived subclasses
is depicted. The base class, BaseAccount, defines some attributes (account_number,
balance and customer) and methods (such as deposit and withdraw) common
to all types of account, and these are inherited by the subclasses. The subclass
SavingsAccount adds an attribute and a method for handling interest payments on
the account; the subclass CurrentAccount instead adds two attributes describing the
annual account fee and transaction withdrawal limit, and overrides the base withdraw

method, perhaps to check that the transaction limit has not been reached before a
withdrawal is allowed.

4.6 An Introduction to Object-Oriented Programming 155

BankAccount

account_number

balance

customer

deposit(amount)

withdraw(amount)

check_balance(amount)

SavingsAccount

interest_rate

add_interest()

CurrentAccount

annual_fee

transaction_limit

withdraw(amount)

apply_annual_fee()

Figure 4.3 Two classes derived from an abstract base class: SavingsAccount and
CurrentAccount inherit methods and attributes from BankAccount but also customize and
extend its functionality.

4.6.2 Defining and Using Classes in Python

A class is defined using the class keyword and indenting the body of statements
(attributes and methods) in a block following this declaration. It is conventional to give
classes names written in CamelCase. It is a good idea to follow the class statement
with a docstring describing what it is that the class does (see Section 2.7.1). Class
methods are defined using the familiar def keyword, but the first argument to each
method should be a variable named self19 – this name is used to refer to the object
itself when it wants to call its own methods or refer to attributes, as we shall see.

In our example of a bank account, the base class could be defined as follows:

Listing 4.6 The definition of the abstract base class, BankAccount

bank_account.py

class BankAccount:

""" An abstract base class representing a bank account."""

currency = '$'

def __ init __(self, customer , account_number , balance=0):

"""

Initialize the BankAccount class with a customer , account number

and opening balance (which defaults to 0.)

"""

self.customer = customer

self.account_number = account_number

self.balance = balance

19 Actually, it could be named anything, but self is almost universally used.

156 The Core Python Language II

def deposit(self, amount):

""" Deposit amount into the bank account."""

if amount > 0:

self.balance += amount

else:

print('Invalid deposit amount:', amount)

def withdraw(self, amount):

"""

Withdraw amount from the bank account, ensuring there are sufficient

funds.

"""

if amount > 0:

if amount > self.balance:

print('Insufficient funds')

else:

self.balance -= amount

else:

print('Invalid withdrawal amount:', amount)

To use this simple class, we can save the code defining it as bank_account.py and
import it into a new program or the interactive Python shell with
from bank_account import BankAccount

This new program can now create BankAccount objects and manipulate them by calling
the methods described earlier.

Instantiating the Object
An instance of a class is created with the syntax object = ClassName(args). You may
want to require that an object instantiated from a class should initialize itself in some
way (perhaps by setting attributes with appropriate values) – such initialization is carried
out by the special method _ _ init _ _, which receives any arguments, args, specified in
this statement.

In our example, an account is opened by creating a BankAccount object, passing the
name of the account owner (customer), an account number and, optionally, an opening
balance (which defaults to 0 if not provided):
my_account = BankAccount('Joe Bloggs', 21457288)

We will replace the string customer with a Customer object in Example E4.18.

Methods and Attributes
The class defines two methods: one for depositing a (positive) amount of money and
one for withdrawing money (if the amount to be withdrawn is both positive and not
greater than the account balance).

The BankAccount class possesses two different kinds of attribute: self.customer,
self.account_number and self.balance are instance variables: they can take different
values for different objects created from the BankAccount class. Conversely, the variable
currency is a class variable: this variable is defined inside the class but outside any of
its methods and is shared by all instances of the class.

4.6 An Introduction to Object-Oriented Programming 157

Both attributes and methods are accessed using the object.attr notation. For exam-
ple,

>>> my_account.account_number # access an attribute of my_account

21457288

>>> my_account.deposit(64) # call a method of my_account

>>> my_account.balance

64

Let’s add a third method, for printing the balance of the account. This must be defined
inside the class block:

def check_balance(self):

""" Print a statement of the account balance. """

print('The balance of account number {:d} is {:s}{:.2f}'

.format(self.account_number , self.currency, self.balance))

Example E4.18 We now define the Customer class described in the class diagram
of Figure 4.2: an instance of this class will become the customer attribute of the
BankAccount class. Note that it was possible to instantiate a BankAccount object by
passing a string literal as customer. This is a consequence of Python’s dynamic typing:
no check is automatically made that the object passed as an argument to the class
constructor is of any particular type.

The following code defines a Customer class and should be saved to a file called
customer.py:

from datetime import datetime

class Customer:

""" A class representing a bank customer. """

def __ init __(self, name, address, date_of_birth):

self.name = name

self.address = address

self.date_of_birth = datetime.strptime(date_of_birth , '%Y-%m-%d')

self.password = '1234'

def get_age(self):

""" Calculates and returns the customer ' s age. """
today = datetime.today()

try:

birthday = self.date_of_birth.replace(year=today.year)

except ValueError:

birthday is 29 Feb but today ' s year is not a leap year
birthday = self.date_of_birth.replace(year=today.year,

day=self.date_of_birth.day - 1)

if birthday > today:

return today.year - self.date_of_birth.year - 1

return today.year - self.date_of_birth.year

Then we can pass Customer objects to our BankAccount constructor:

>>> from bank_account import BankAccount

>>> from customer import Customer

>>>

>>> customer1 = Customer('Helen Smith', '76 The Warren, Blandings , Sussex',

158 The Core Python Language II

'1976-02-29')

>>> account1 = BankAccount(customer1 , 21457288, 1000)

>>> account1.customer.get_age()

39

>>> print(account1.customer.address)

76 The Warren, Blandings , Sussex

4.6.3 Class Inheritance in Python

A subclass may be derived from one or more other base classes with the syntax:

class SubClass(BaseClass1, BaseClass2, ...):

We will now define the two derived classes (or subclasses) illustrated in Figure 4.3
from the base BankAccount class. They can be defined in the same file that defines
BankAccount or in a different Python file which imports BankAccount.

class SavingsAccount(BankAccount):

""" A class representing a savings account. """

def __ init __(self, customer , account_number , interest_rate , balance=0):

""" Initialize the savings account. """

Ê self.interest_rate = interest_rate

Ë super().__ init __(customer, account_number , balance)

def add_interest(self):

""" Add interest to the account at the rate self.interest_rate. """

self.balance *= (1. + self.interest_rate / 100)

Ê The SavingsAccount class adds a new attribute, interest_rate, and a new
method, add_interest to its base class, and overrides the _ _ init _ _ method to allow
interest_rate to be set when a SavingsAccount is instantiated.
Ë Note that the new _ _ init _ _ method calls the base class’s _ _ init _ _ method in
order to set the other attributes: the built-in function super allows us to refer to the
parent base class.20 Our new SavingsAccount might be used as follows:

>>> my_savings = SavingsAccount('Matthew Walsh', 41522887, 5.5, 1000)

>>> my_savings.check_balance()

The balance of account number 41522887 is $1000

>>> my_savings.add_interest()

>>> my_savings.check_balance()

The balance of account number 41522887 is $1055.00

The second subclass, CurrentAccount, has a similar structure:

class CurrentAccount(BankAccount):

""" A class representing a current (checking) account. """

def __ init __(self, customer , account_number , annual_fee ,

transaction_limit , balance=0):

20 The built-in function super() called in this way creates a “proxy” object that delegates method calls to the
parent class (in this case, BankAccount).

4.6 An Introduction to Object-Oriented Programming 159

""" Initialize the current account. """

self.annual_fee = annual_fee

self.transaction_limit = transaction_limit

super().__ init __(customer, account_number , balance)

def withdraw(self, amount):

"""

Withdraw amount if sufficient funds exist in the account and amount

is less than the single transaction limit.

"""

if amount <= 0:

print('Invalid withdrawal amount:', amount)

return

if amount > self.balance:

print('Insufficient funds')

return

if amount > self.transaction_limit:

print('{0:s}{1:.2f} exceeds the single transaction limit of'

' {0:s}{2:.2f}'.format(self.currency, amount,

self.transaction_limit))

return

self.balance -= amount

def apply_annual_fee(self):

""" Deduct the annual fee from the account balance. """

self.balance = max(0., self.balance - self.annual_fee)

Note what happens if we call withdraw on a CurrentAccount object:

>>> my_current = CurrentAccount(’Alison Wicks’, 78300991, 20., 200.)

>>> my_current.withdraw(220)

Insufficient Funds

>>> my_current.deposit(750)

>>> my_current.check_balance()

The balance of account number 78300991 is $750.00

>>> my_current.withdraw(220)

$220.00 exceeds the transaction limit of $200.00

The withdraw method called is that of the CurrentAccount class, as this method over-
rides that of the same name in the base class, BankAccount.

Example E4.19 A simple model of a polymer in solution treats it as a sequence of
randomly oriented segments; that is, one for which there is no correlation between the
orientation of one segment and any other (this is the so-called random-flight model).

We will define a class, Polymer, to describe such a polymer, in which the segment
positions are held in a list of (x,y,z) tuples. A Polymer object will be initialized with
the values N and a, the number of segments and the segment length, respectively. The

160 The Core Python Language II

initialization method calls a make_polymer method to populate the segment positions
list.

The Polymer object will also calculate the end-to-end distance, R, and will implement
a method calc_Rg to calculate and return the polymer’s radius of gyration, defined as

Rg =

√√√
1
N

N∑
i=1

(ri − rCM)2.

Listing 4.7 Polymer class

polymer.py

import math

import random

class Polymer:

""" A class representing a random-flight polymer in solution. """

def __ init __(self, N, a):

"""

Initialize a Polymer object with N segments , each of length a.

"""

self.N, self.a = N, a

self.xyz holds the segment position vectors as tuples.

self.xyz = [(None, None, None)] * N

End-to-end vector.

self.R = None

Make our polymer by assigning segment positions.

self.make_polymer()

def make_polymer(self):

"""

Calculate the segment positions , center of mass and end-to-end

distance for a random-flight polymer.

"""

Start our polymer off at the origin, (0, 0, 0).

self.xyz[0] = x, y, z = cx, cy, cz = 0, 0, 0

for i in range(1, self.N):

Ê # Pick a random orientation for the next segment.

theta = math.acos(2 * random.random() - 1)

phi = random.random() * 2. * math.pi

Add on the corresponding displacement vector for this segment.

x += self.a * math.sin(theta) * math.cos(phi)

y += self.a * math.sin(theta) * math.sin(phi)

z += self.a * math.cos(theta)

Store it, and update our center of mass sum.

self.xyz[i] = x, y, z

cx, cy, cz = cx + x, cy + y, cz + z

Ë # Calculate the position of the center of mass.

cx, cy, cz = cx / self.N, cy / self.N, cz / self.N

4.6 An Introduction to Object-Oriented Programming 161

The end-to-end vector is the position of the last

segment, since we started at the origin.

self.R = x, y, z

Finally, re-center our polymer on the center of mass.

for i in range(self.N):

self.xyz[i] = (self.xyz[i][0] - cx,

self.xyz[i][1] - cy,

self.xyz[i][2] - cz)

def calc_Rg(self):

"""

Calculates and returns the radius of gyration , Rg. The polymer

segment positions are already given relative to the center of

mass, so this is just the rms position of the segments.

"""

self.Rg = 0.

for x, y, z in self.xyz:

self.Rg += x**2 + y**2 + z**2

self.Rg = math.sqrt(self.Rg / self.N)

return self.Rg

Ê One way to pick the location of the next segment is to pick a random point on the
surface of the unit sphere and use the corresponding pair of angles in the spherical polar
coordinate system, θ and φ (where 0 ≤ θ < π and 0 ≤ φ < 2π), to set the displacement
from the previous segment’s position as

∆x = a sin θ cos φ

∆y = a sin θ sin φ

∆z = a cos θ

Ë We calculate the position of the polymer’s center of mass, rCM, and then shift the
origin of the polymer’s segment coordinates so that they are measured relative to this
point (that is, the segment coordinates have their origin at the polymer center of mass).

We can test the Polymer class by importing it in the Python shell:

>>> from polymer import Polymer

>>> polymer = Polymer(1000, 0.5) # a polymer with 1000 segments of length 0.5

>>> polymer.R # end-to-end vector

(5.631332375722011, 9.408046667059947, -1.3047608473668109)

>>> polymer.calc_Rg() # radius of gyration

5.183761585363432

Let’s now compare the distribition of the end-to-end distances with the theoretically
predicted probability density function:

P(R) = 4πR2
(

3
2π〈r2〉

)3/2

exp
(
−

3R2

2〈r2〉

)
,

where the mean square position of the segments is 〈r2〉 = Na2.

162 The Core Python Language II

Listing 4.8 The distribution of random flight polymers

eg4-c-ii-polymer-a.py

Compare the observed distribution of end-to-end distances for Np random-

flight polymers with the predicted probability distribution function.

import matplotlib.pyplot as plt

from polymer import Polymer

pi = plt.pi

Calculate R for Np polymers.

Np = 3000

Each polymer consists of N segments of length a.

N, a = 1000, 1.

R = [None] * Np

for i in range(Np):

polymer = Polymer(N, a)

Rx, Ry, Rz = polymer.R

R[i] = plt.sqrt(Rx**2 + Ry**2 + Rz**2)

Output a progress indicator every 100 polymers.

if not (i+1) % 100:

print(i+1, '/', Np)

Plot the distribution of Rx as a normalized histogram

using 50 bins.

plt.hist(R, 50, normed=1)

Plot the theoretical probability distribution , Pr, as a function of r.

r = plt.linspace(0,200,1000)

msr = N * a**2

Pr = 4.*pi*r**2 * (2 * pi * msr / 3)**-1.5 * plt.exp(-3*r**2 / 2 / msr)

plt.plot(r, Pr, lw=2, c='r')

plt.xlabel('R')

plt.ylabel('P(R)')

plt.show()

This program produces a plot that typically looks like Figure 4.4, suggesting agree-
ment with theory.

4.6.4 Classes and Operators

Operators (such as +, * and <=) and built-in functions, such as len and abs act on
Python objects by calling special methods these objects define with names beginning
and ending with two underscores, _ _ (so-called “dunder” methods). To implement
(“overload”) this functionality on custom classes, simply define methods with these
names. A complete list of these special methods can be found in the Python language
documentation,21 but Table 4.8 provides a list of the more commonly needed ones. For
example, the expression x + y calls x._ _ add _ _(y).

Python is a polymorphic language, and there may be circumstances in which x and
y have different types. If the object x does not implement the necessary method, then

21 https://docs.python.org/3/reference/datamodel.html.

https://docs.python.org/3/reference/datamodel.html

4.6 An Introduction to Object-Oriented Programming 163

0 20 40 60 80 100
R

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

P
(R

)

Figure 4.4 Distribution of the end-to-end distances, R, of random flight-polymers with
N = 1000, a = 1.

Table 4.8 Common Python special methods

Method Description Example

_ _ add _ _ +, addition x + y
_ _ sub _ _ -, subtraction x - y
_ _ mul _ _ *, multiplication x * y
_ _ truediv _ _ /, “true” division x / y
_ _ floordiv _ _ //, floor division x // y
_ _ mod _ _ %, modulus x % y
_ _ pow _ _ **, exponentiation x ** y
_ _ neg _ _ negation (unary minus) -x
_ _ matmul _ _ @, matrix multiplication x @ y
_ _ abs _ _ absolute value abs(x)
_ _ contains _ _ membership y in x
_ _ lt _ _ less than y < x
_ _ le _ _ less than or equal to y <= x
_ _ eq _ _ equal to y == x
_ _ ne _ _ not equal to† y != x
_ _ gt _ _ greater than y > x
_ _ ge _ _ greater than or equal to y >= x
_ _ str _ _ human-readable string representation str(x)
_ _ repr _ _ unambiguous string representation repr(x)

† If not explicitly implemented, _ _ ne _ _ calls _ _ eq _ _ and inverts the result.

Python will look for a “reflected” version in the y object. Hence, the expression 'a' * 4

calls 'a'._ _ mul _ _(4) on the string object 'a'; the expression 4 * 'a' first tries to call
4._ _ mul _ _('a'), and when this fails (int objects do not know how to be multiplied
by strs), then tries the reflected version 'a'._ _ rmul _ _(4) which returns 'aaaa': str
objects know how to be multiplied by ints.

164 The Core Python Language II

The special methods _ _ str _ _ and _ _ repr _ _ deserve special mention. Both return
a string representation of the object, but whilst _ _ str _ _ is expected to return a human-
readable string, the goal of _ _ repr _ _ is, as far as possible, to be unambiguous.
Depending on the class, there may be a natural choice for the return value of _ _ str _ _
that communicates the essential properties of an instance, whilst the return value of
_ _ repr _ _ should aim to be complete enough that the information it contains could be
used for debugging or to create an identical instance. Note that for an object, obj, if
_ _ repr _ _ is defined but _ _ str _ _ is not, then str(obj) will return obj._ _ repr _ _().
A class should always define a _ _ repr _ _() method, and optionally define a _ _ str _ _()
if an easy to comprehend string is also required.

Example E4.20 Although NumPy (see Chapter 6) offers a faster option, it is still
instructive to code a class for vectors in pure Python. The following code defines the
Vector2D class and tests it for various operations.

Listing 4.9 A simple class representing a two-dimensional Cartesian vector

import math

class Vector2D:

"""A two-dimensional vector with Cartesian coordinates."""

def __init__(self, x, y):

self.x, self.y = x, y

def __str__(self):

"""Human-readable string representation of the vector."""

return '{:g}i + {:g}j'.format(self.x, self.y)

def __repr__(self):

"""Unambiguous string representation of the vector."""

return repr((self.x, self.y))

def dot(self, other):

"""The scalar (dot) product of self and other. Both must be vectors."""

Ê if not isinstance(other, Vector2D):

raise TypeError('Can only take dot product of two Vector2D objects')

return self.x * other.x + self.y * other.y

Alias the __matmul__ method to dot so we can use a @ b as well as a.dot(b).

__matmul__ = dot

def __sub__(self, other):

"""Vector subtraction."""

return Vector2D(self.x - other.x, self.y - other.y)

def __add__(self, other):

"""Vector addition."""

return Vector2D(self.x + other.x, self.y + other.y)

def __mul__(self, scalar):

"""Multiplication of a vector by a scalar."""

4.6 An Introduction to Object-Oriented Programming 165

Ë if isinstance(scalar, int) or isinstance(scalar, float):

return Vector2D(self.x*scalar, self.y*scalar)

raise NotImplementedError('Can only multiply Vector2D by a scalar')

def __rmul__(self, scalar):

"""Reflected multiplication so vector * scalar also works."""

return self.__mul__(scalar)

def __neg__(self):

"""Negation of the vector (invert through origin.)"""

return Vector2D(-self.x, -self.y)

def __truediv__(self, scalar):

"""True division of the vector by a scalar."""

return Vector2D(self.x / scalar, self.y / scalar)

def __mod__(self, scalar):

"""One way to implement modulus operation: for each component."""

return Vector2D(self.x % scalar, self.y % scalar)

def __abs__(self):

"""Absolute value (magnitude) of the vector."""

return math.sqrt(self.x**2 + self.y**2)

def distance_to(self, other):

"""The distance between vectors self and other."""

return abs(self - other)

def to_polar(self):

"""Return the vector ' s components in polar coordinates."""
return self.__abs__(), math.atan2(self.y, self.x)

Ì if __name__ == '__main__':

v1 = Vector2D(2, 5/3)

v2 = Vector2D(3, -1.5)

print('v1 = ', v1)

print('repr(v2) = ', repr(v2))

print('v1 + v2 = ', v1 + v2)

print('v1 - v2 = ', v1 - v2)

print('abs(v2 - v1) = ', abs(v2 - v1))

print('-v2 = ', -v2)

print('v1 * 3 = ', v1 * 3)

print('7 * v2 = ', 7 * v1)

print('v2 / 2.5 = ', v2 / 2.5)

print('v1 % 1 = ', v1 % 1)

print('v1.dot(v2) = v1 @ v2 = ', v1 @ v2)

print('v1.distance_to(v2) = ',v1.distance_to(v2))

print('v1 as polar vector, (r, theta) =', v1.to_polar())

166 The Core Python Language II

Ê Raise an exception if operands for the dot product are not both vectors.

Ë Only allow multiplication of a vector by a scalar quantity, but support both av and
va.

Ì Code inside this block is only executed if the code is run as the main program,
in which case Python will have set the variable _ _ name _ _ to the hard-coded string
'_ _ main _ _'; if the file is treated as a module and imported (e.g. from vector2d

import Vector2D), this block is ignored.

The output should be:

v1 = 2i + 1.66667j

repr(v2) = (3, -1.5)

v1 + v2 = 5i + 0.166667j

v1 - v2 = -1i + 3.16667j

abs(v2 - v1) = 3.3208098075285464

-v2 = -3i + 1.5j

v1 * 3 = 6i + 5j

7 * v2 = 14i + 11.6667j

v2 / 2.5 = 1.2i + -0.6j

v1 % 1 = 0i + 0.666667j

v1.dot(v2) = v1 @ v2 = 3.5

v1.distance_to(v2) = 3.3208098075285464

v1 as polar vector, (r, theta) = (2.6034165586355518, 0.6947382761967033)

Example E4.21 The code below uses the above Vector2D class to implement a simple
molecular dynamics simulation of circular particles with identical masses moving in two
dimensions. All particles initially have the same speed; the collisions equilibrate the
speeds to the Maxwell–Boltzmann distribution, as demonstrated by the figure produced
(Figure 4.5). The website accompanying this book provides further code for an anima-
tion of the simulation (https://scipython.com/eg/baa). Note: whilst elegant, the object-
oriented approach taken here is not the fastest: there is an overhead to instantiating
multiple objects, which becomes significant when many particles and collisions need to
be considered at each time step. For a faster, NumPy-only approach, see the links from
this web page.

Listing 4.10 A simple two-dimensional molecular dynamics simulation

import math

import random

import matplotlib.pyplot as plt

from vector2d import Vector2D

class Particle:

"""A circular particle of unit mass with position and velocity."""

def __init__(self, x, y, vx, vy, radius=0.01):

self.pos = Vector2D(x, y)

self.vel = Vector2D(vx, vy)

https://scipython.com/eg/baa

4.6 An Introduction to Object-Oriented Programming 167

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

Speed, v /pm fs−1

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

f
(v

)

Figure 4.5 Distribution of particle speeds after equilibration to Maxwell–Boltzmann statistics
through multiple collisions.

self.radius = radius

def advance(self, dt):

"""Advance the particle ' s position according to its velocity."""

Use periodic boundary conditions: a Particle that moves across an

edge of the domain 0<=x<1, 0<=y<1 magically reappears at the opposite

edge.

self.pos = (self.pos + self.vel * dt) % 1

def distance_to(self, other):

"""Return the distance from this Particle to other Particle."""

return self.pos.distance_to(other.pos)

def get_speed(self):

"""Return the speed of the Particle from its velocity."""

return abs(self.vel)

class Simulation:

"""A simple simulation of circular particles in motion."""

def __init__(self, nparticles=100, radius=0.01, v0=0.05):

self.nparticles = nparticles

self.radius = radius

Randomly initialize the particles ' positions and velocity directions.

168 The Core Python Language II

self.particles = [self.init_particle(v0) for i in range(nparticles)]

self.t = 0

def init_particle(self, v0=0.05):

"""Return a new Particle object with random position and velocity.

The position is chosen uniformly from 0 <= x < 1, 0 <= y < 1;

The velocity has fixed magnitude , v0, but random direction.

"""

x, y = random.random(), random.random()

theta = 2*math.pi * random.random()

self.v0 = v0

vx, vy = self.v0 * math.cos(theta), self.v0 * math.sin(theta)

return Particle(x, y, vx, vy, self.radius)

def advance(self, dt):

"""Advance the Simulation by dt in time, handling collisions."""

self.t += dt

for particle in self.particles:

particle.advance(dt)

Find all distinct pairs of Particles currently undergoing a collision.

colliding_pair = []

for i in range(self.nparticles):

pi = self.particles[i]

for j in range(i+1, self.nparticles):

pj = self.particles[j]

pi collides with pj if their separation is less than twice

their radius.

if pi.distance_to(pj) < 2 * self.radius:

colliding_pair.append((i, j))

print('ncollisions =', len(colliding_pair))

For each pair, the velocities change according to the kinetics of

an elastic collision between circles.

for i,j in colliding_pair:

p1, p2 = self.particles[i], self.particles[j]

r1, r2 = p1.pos, p2.pos

v1, v2 = p1.vel, p2.vel

dr, dv = r2 - r1, v2 - v1

dv_dot_dr = dv.dot(dr)

d = r1.distance_to(r2)**2

p1.vel = v1 - dv_dot_dr / d * (r1 - r2)

p2.vel = v2 - dv_dot_dr / d * (r2 - r1)

if __name__ == '__main__':

import numpy as np

sim = Simulation(nparticles=1000, radius=0.005, v0=0.05)

dt = 0.02

nit = 500

dnit = nit // 10

4.6 An Introduction to Object-Oriented Programming 169

for i in range(nit):

if not i % dnit:

print(f'{i}/{nit}')

sim.advance(dt)

Plot a histogram of the Particles ' speeds.
nbins = sim.nparticles // 50

hist, bins, _ = plt.hist([p.get_speed() for p in sim.particles], nbins,

density=True)

v = (bins[1:] + bins[:-1])/2

The mean kinetic energy per Particle.

KE = sim.v0**2 / 2

The Maxwell-Boltzmann equilibrium distribution of speeds.

a = 1 / 2 / KE

f = 2*a * v * np.exp(-a*v**2)

plt.plot(v, f)

plt.show()

4.6.5 Exercises

Problems

P4.6.1

(a) Modify the base BankAccount class to verify that the account number passed to
its __init__ constructor conforms to the Luhn algorithm described in Exercise
P2.5.3.

(b) Modify the CurrentAccount class to implement a free overdraft. The limit should
be set in the __init__ constructor; withdrawals should be allowed to within the
limit.

P4.6.2 Add a method, save_svg to the Polymer class of Example E4.19 to save an
image of its polymer as an SVG file. Refer to Exercise P4.4.3 for a template of an SVG
file.

P4.6.3 Write a program to create an image of a constellation using the data from the
Yale Bright Star Catalog (http://tdc-www.harvard.edu/catalogs/bsc5.html).

Create a class, Star, to represent a star with attributes for its name, magnitude and
position in the sky, parsed from the file bsc5.dat which forms part of the catalog.
Implement a method for this class which converts the star’s position on the celestial
sphere as (Right Ascension: α, Declination: δ) to a point in a plane, (x, y), for example

http://tdc-www.harvard.edu/catalogs/bsc5.html

170 The Core Python Language II

using the orthographic projection about a central point (α0, δ0):

∆α = α − α0

x = cos δ sin ∆α

y = sin δ cos δ0 − cos δ cos ∆α sin δ0

Suitably scaled, projected, star positions can be output to an SVG image as circles
(with a larger radius for brighter stars). For example, the line

<circle cx="200" cy="150" r="5" stroke="none" fill="#ffffff"/>

represents a white circle of radius 5 pixels, center on the canvas at (200, 150).
Hint: you will need to convert the right ascension from (hr, min, sec) and the decli-

nation from (deg, min, sec) to radians. Use the data corresponding to “equinox J2000,
epoch 2000.0” in each line of bsc5.dat. Let the user select the constellation from the
command line using its three-letter abbreviation (e.g. “Ori” for Orion): this is given as
part of the star name in the catalog. Don’t forget that star magnitudes are smaller for
brighter stars. If you are using the orthographic projection suggested, choose (α0, δ0) to
be the mean of (α, δ) for stars in the constellation.

P4.6.4 Design and implement a class, Experiment, to read in and store a simple
series of (x, y) data as NumPy arrays from a text file. Include in your class methods
for transforming the data series by some simple function (e.g. x′ = ln x, y′ = 1/y) and to
perform a linear least-squares regression on the transformed data (returning the gradient
and intercept of the best-fit line, y′fit = mx′+c). NumPy provides methods for performing
linear regression (see Section 6.5.3), but for this exercise the following equations can
be implemented directly:

m =
xy − x̄ȳ

x2 − x̄2
,

c = ȳ − mx̄,

where the bar notation, ·̄, denotes the arithmetic mean of the quantity under it. (Hint:
use np.mean(arr) to return the mean of array arr.)

Chloroacetic acid is an important compound in the synthetic production of phamaceu-
ticals, pesticides and fuels. At high concentration under strong alkaline conditions, its
hydrolysis may be considered as the following reaction:

ClCH2COO− + OH−
 HOCH2COO− + Cl−.

Data giving the concentration of ClCH2COO−, c (in M), as a function of time, t (in s),
are provided for this reaction carried out in excess alkalai at five different temperatures
in the data files caa-T.txt (T = 40, 50, 60, 70, 80 in ◦C): these may be obtained from
https://scipython.com/ex/bde. The reaction is known to be second-order and so obeys
the integrated rate law

1
c

=
1
c0

+ kt,

https://scipython.com/ex/bde

4.6 An Introduction to Object-Oriented Programming 171

where k is the effective rate constant and c0 the initial (t = 0) concentration of
chloroacetic acid.

Use your Experiment class to interpret these data by linear regression of 1/c against
t, determining m(≡ k) for each temperature. Then, for each value of k, determine the
activation energy of the reaction through a second linear regression of ln k against 1/T
in accordance with the Arrhenius law:

k = Ae−Ea/RT ⇒ ln k = ln A −
Ea

RT
,

where R = 8.314 J K−1 mol−1 is the gas constant. Note: the temperature must be in
kelvins.

P4.6.5 Create a new class that derives from the list object class which re-implements
it with one-based indexing instead of zero-based indexing. Overload as many of the spe-
cial methods listed at https://docs.python.org/3/reference/datamodel.html as necessary
and write tests to validate your code.

https://docs.python.org/3/reference/datamodel.html

5 IPython and Jupyter Notebook

The IPython shell and the related interactive, browser-based, Jupyter Notebook are two
related, powerful interfaces to the Python language. IPython has several advantages
over the native Python shell, including easy interaction with the operating system,
introspection and tab completion. Jupyter Notebook (formerly IPython Notebook) is
increasingly being adopted by scientists to share their data and the code they write to
analyze it in a standardized manner that aids reproducibility and visualization. Its default
execution environment (“kernel”) is Python, but it can be configured to work with any
of several dozen languages.

5.1 IPython

5.1.1 Installing IPython

Comprehensive details on installing IPython are available at the IPython website: see
https://ipython.org/install.html, but a summary is provided here.

IPython is included in the Continuum Anaconda Python distribution. To update to the
current version within Anaconda, use the conda package manager:

conda update conda

conda update ipython

If you already have Python installed, there are several alternative options. If you have
the pip package manager:

pip install ipython

It is also possible to manually download the latest IPython version from its GitHub
repository at https://github.com/ipython/ipython/releases and compile and install from
its top-level source directory with

python setup.py install

5.1.2 Using the IPython Shell

To start an interactive IPython shell session from the command line, simply type
ipython. You should be greeted with a message similar to this one:

172

https://ipython.org/install.html
https://github.com/ipython/ipython/releases

5.1 IPython 173

Python 3.7.3 (default, Mar 27 2019, 16:54:48)

Type 'copyright', 'credits' or 'license' for more information

IPython 7.6.1 -- An enhanced Interactive Python. Type '?' for help.

In [1]:

(The precise details of this message will depend on the setup of your system.) The
prompt In [1]: is where you type your Python statements and replaces the native
Python >>> shell prompt. The counter in square brackets increments with each Python
statement or code block. For example,

In [1]: 4 + 5

Out[1]: 9

In [2]: print(1)

1

In [3]: for i in range(4):

...: print(i, end='')

...:

0123

In [4]:

To exit the IPython shell, type quit or exit. Unlike with the native Python shell, no
parentheses are required.1

Help Commands
As listed in the welcome message, there are various helpful commands to obtain infor-
mation about using IPython:

• Typing a single “?” outputs an overview of the usage of IPython’s main features
(page down with the space bar or f; page back up with b; exit the help page
with q).

• %quickref provides a brief reference summary of each of the main IPython com-
mands and “magics” (see Section 5.1.3).

• help() or help(object) invokes Python’s own help system (interactively or for
object if specified).

• Typing one question mark after an object name provides information about that
object: see below.

Possibly the most frequently used help functionality provided by IPython is the intro-
spection provided by the object? syntax. For example,

In [4]: a = [5, 6]

In [5]: a?

Type: list

String form: [5, 6]

Length: 2

Docstring:

Built-in mutable sequence.

If no argument is given, the constructor creates a new empty list.

1 Some find this alone a good reason to use IPython.

174 IPython and Jupyter Notebook

The argument must be an iterable if specified.

Here, the command a? gives details about the object a: its string representation (which
would be produced by, for example, print(a)), its length (equivalent to len(a)) and
the docstring associated with the class of which it is an instance: since a is a list, this
provides brief details of how to instantiate a list object.2

The ? syntax is particularly useful as a reminder of the arguments that a function or
method takes. For example,

In [6]: import numpy as np

In [7]: np.linspace?

Signature:

np.linspace(

start,

stop,

num=50,

endpoint=True,

retstep=False,

dtype=None,

axis=0,

)

Docstring:

Return evenly spaced numbers over a specified interval.

Returns `num` evenly spaced samples, calculated over the

interval [`start`, `stop`].

The endpoint of the interval can optionally be excluded.

.. versionchanged:: 1.16.0

Non-scalar `start` and `stop` are now supported.

Parameters

start : array_like

The starting value of the sequence.

stop : array_like

The end value of the sequence, unless `endpoint` is set to False.

In that case, the sequence consists of all but the last of ``num + 1``

evenly spaced samples, so that `stop` is excluded. Note that the step

size changes when `endpoint` is False.

num : int, optional

Number of samples to generate. Default is 50. Must be non-negative.

endpoint : bool, optional

If True, `stop` is the last sample. Otherwise , it is not included.

Default is True.

retstep : bool, optional

If True, return (`samples`, `step`), where `step` is the spacing

between samples.

dtype : dtype, optional

The type of the output array. If `dtype` is not given, infer the data

2 This is what is meant by introspection: Python is able to inspect its own objects and provide information
about them.

5.1 IPython 175

type from the other input arguments.

.. versionadded:: 1.9.0

...

For some objects, the syntax object?? returns more advanced information such as
the location and details of its source code.

Tab Completion
Just as with many command line shells, IPython supports tab completion: start typing
the name of an object or keyword, press the <TAB> key, and it will autocomplete it for
you or provide a list of options if more than one possibility exists. For example,

In [8]: w<TAB>

while %who_ls

with %whos

%who %%writefile

If you resume typing until the word becomes unambiguous (e.g. add the letters hi) and
then press <TAB> again, it will be autocompleted to while. The options with percent
signs in front of them are “magic functions,” described in Section 5.1.3.

History
You may already have used the native Python shell’s command history functionality
(pressing the up and down arrows through previous statements typed during your current
session). IPython stores both the commands you enter and the output they produce in
the special variables In and Out (these are, in fact, a list and a dictionary, respectively,
and correspond to the prompts at the beginning of each input and output). For example,

In [9]: d = {'C': 'Cador', 'G': 'Galahad', 'T': 'Tristan', 'A': 'Arthur'}

In [10]: for a in 'ACGT':

....: print(d[a])

....:

Arthur

Cador

Galahad

Tristan

In [11]: d = {'C': 'Cytosine', 'G': 'Guanine', 'T': 'Thymine', 'A': 'Adenine'}

Ê In [12]: In[10]

Out[12]: "for a in 'ACGT':\n print(d[a])\n "

Ë In [13]: exec(In[10])

Adenine

Cytosine

Guanine

Thymine

Ê Note that In[10] simply holds the string version of the Python statement (here a for

loop) that was entered at index 10.
Ë To actually execute the statement (with the current dictionary d), we must send it to
Python’s exec built-in (see also the %rerun magic, Section 5.1.3).

176 IPython and Jupyter Notebook

There are a couple of further shortcuts: the alias _iN is the same as In[N], _N is the
same as Out[N], and the two most recent outputs are returned by the variables _ and _ _,
respectively.

To view the contents of the history, use the %history or %hist magic function. By
default only the entered statements are output; it is often more useful to output the line
numbers as well, which is achieved using the -n option:

In [14]: %history -n

1: 4 + 5

2: print(1)

3:

for i in range(4):

print(i)

4: a = [5, 6]

5: a?

6: import numpy as np

7: np.linspace?

8: d = {'C': 'Cador', 'G': 'Galahad', 'T': 'Tristan', 'A': 'Arthur'}

10:

for a in 'ACGT':

print(d[a])

11: d = {'C': 'Cytosine', 'G': 'Guanine', 'T': 'Thymine', 'A': 'Adenine'}

12: In[10]

13: exec(In[10])

14: %history -n

To output a specific line or range of lines, refer to them by number and/or number range
when calling %history:

In [15]: %history 4

a = [5, 6]

In [16]: %history -n 2-5

2: print(1)

3:

for i in range(4):

print(i)

4: a = [5, 6]

5: a?

In [17]: %history -n 1-3 7 12-14

1: 4 + 5

2: print(1)

3:

for i in range(4):

print(i)

7: np.linspace?

12: In[10]

13: exec(In[10])

14: %history -n

This syntax is also used by several other IPython magic functions (see the following
section). The %history function can also take an additional option: -o displays the
output as well as the input.

Pressing CTRL-R brings up a prompt, the somewhat cryptic

5.1 IPython 177

I-search backward:

from which you can search within your command history.3

Interacting with the Operating System
IPython makes it easy to execute operating-system commands from within your shell
session: any statement preceded by an exclamation mark, !, is sent to the operating-
system command line (the “system shell”) instead of being executed as a Python state-
ment. For example, you can delete files, list directory contents and even execute other
programs and scripts:

In [11]: !pwd # return the current working directory

/Users/christian/research

In [12]: !ls # list the files in this directory

Meetings Papers code books

databases temp-file

In [13]: !rm temp-file # delete temp-file

In [14]: !ls

Meetings Papers code books

databases

Note that, for technical reasons,4 the cd (Unix-like systems) and chdir (Windows)
commands must be executed as IPython magic functions:

In [15]: %cd / # change into root directory

In [16]: !ls

Applications Volumes usr Library

bin net Network cores

opt www System dev

private sbin Users home

In [17]: %cd ~/temp # change directory to temp within user ' s home directory
In [18]: !ls

output.txt test.py readme.txt utils

zigzag.py

If you use Windows and want to include a drive letter (such as C:) in the directory path
you should enclose the path in quotes: %cd 'C:\My Documents'.

Help, via !command?, and tab completion, as described above, work within operating-
system commands.

You can pass the values of Python variables to operating-system commands by pre-
fixing the variable name with a dollar sign, $:

In [19]: python_script = 'zigzag.py'

In [20]: !ls $python_script

zigzag.py

In [21]: text_files = '*.txt'

Ê In [22]: text_file_list = !ls $text_files

In [23]: text_file_list

3 This functionality may be familiar to users of the bash shell as (reverse-i-search)`':.
4 System commands executed via the !command method spawn their own shell, which is discarded imme-

diately afterward; changing a directory occurs only in this spawned shell and is not reflected in the one
running IPython.

178 IPython and Jupyter Notebook

output.txt readme.txt

In [24]: readme_file = text_file_list[1]

In [25]: !cat $readme_file

This is the file readme.txt

Each line of the file appears as an item

in a list when returned from !cat readme.txt

Ë In [26]: readme_lines = !cat $readme_file

In [27]: readme_lines

Out[28]:

['This is the file readme.txt',

'Each line of the file appears as an item',

'in a list when returned from !cat readme.txt']

Ê Note that the output of a system command can be assigned to a Python variable,
here a list of the .txt files in the current directory.
Ë The cat system command returns the contents of the text file; IPython splits this
output on the newline character and assigns the resulting list to readme_lines. See also
Section 5.1.3

5.1.3 IPython Magic Functions

IPython provides many “magic” functions (or simply magics, those commands prefixed
with %) to speed up coding and experimenting within the IPython shell. Some of the
more useful ones are described in this section; for more advanced information the reader
is referred to the IPython documentation.5 IPython makes a distinction between line
magics: those whose arguments are given on a single line, and cell magics (prefixed by
two percent signs, %%): those which act on a series of Python commands. An example is
given in Section 5.1.3 where the %%timeit cell magic is described.

A list of currently available magic functions can be obtained by typing %lsmagic.
The magic function %automagic toggles the “automagic” setting: its default is ON,

meaning that typing the name of a magic function without the % will also execute that
function, unless you have bound the name as a Python identifier (variable name) to some
object. The same principle applies to system commands:

In [x]: ls

output.txt test.py readme.txt utils

zigzag.py

In [x]: ls = 0

In [x]: ls # now ls is an integer; !ls will still work

Out[x]: 0

Table 5.1 summarizes some useful IPython magics; the following subsections explain
more fully the less straightforward ones.

5 https://ipython.org/documentation.html.

https://ipython.org/documentation.html

5.1 IPython 179

Table 5.1 Useful IPython line magics

Magic Description

%alias Create an alias to a system command
%alias_magic Create an alias to an existing IPython magic
%bookmark Interact with IPython’s directory bookmarking system
%cd Change the current working directory
%dhist Output a list of visited directories
%edit Create or edit Python code within a text editor and then execute it
%env List the system environment variables, such as $HOME
%history List the input history for this IPython session
%load Read in code from a provided file and make it available for editing
%macro Define a named macro from previous input for future reexecution
%paste Paste input from the clipboard: use this in preference to, for

example, CTRL-V, to handle code indenting properly
%recall Place one or more input lines from the command history at the

current input prompt
%rerun Reexecute previous input from the numbered command history
%reset Reset the namespace for the current IPython session
%run Execute a named file as a Python script within the current session
%save Save a set of input lines or macro (defined with %macro) to a file

with a given name
%sx or !! Shell execute: run a given shell command and store its output
%timeit Time the execution of a provided Python statement
%who Output all the currently defined variables
%who_ls As for %who, but return the variable names as a list of strings
%whos As for %who, but provides more information about each variable

Aliases and Bookmarks
A system shell command can be given an alias: a shortcut for a shell command that
can be called as its own magic. For example, on Unix-like systems we could define the
following alias to list only the directories on the current path:

In [x]: %alias lstdir ls -d */

In [x]: %lstdir

Meetings/ Papers/ code/ books/

databases/

Now typing %lstdir has the same effect as !ls -d */. If %automagic is ON this alias
can also simply be called with lstdir.

The magic %alias_magic provides a similar functionality for IPython magics. For
example, if you want to use %h as an alias to %history, type:

In [x]: %alias_magic h history

When working on larger projects it is often necessary to switch between different
directories. IPython has a simple system for maintaining a list of bookmarks which act
as shortcuts to different directories. The syntax for this magic function is

%bookmark <name> [directory]

If [directory] is omitted, it defaults to the current working directory.

180 IPython and Jupyter Notebook

In [x]: %bookmark py ~/research/code/python

In [x]: %bookmark www /srv/websites

In [x]: %cd py

/Users/christian/research/code/python

It may happen that a directory with the same name as your bookmark is within the
current working directory. In that case, this directory takes precedence and you must
use %cd -b <name> to refer to the bookmark.

A few more useful commands include:

• %bookmark -l: list all bookmarks;
• %bookmark -d <name>: remove bookmark <name>;
• %bookmark -r: remove all bookmarks.

Timing Code Execution
The IPython magic %timeit <statement> times the execution of the single-line state-
ment <statement>. The statement is executed N times in a loop, and each loop is
repeated R times. N is a suitable, usually large, number chosen by IPython to yield
meaningful results and R is, by default, 3. The average time per loop for the best of the
R repetitions is reported. For example, to profile the sorting of a random arrangement of
the numbers 1–100:

In [x]: import random

In [x]: numbers = list(range(1, 101))

In [x]: random.shuffle(numbers)

In [x]: %timeit sorted(numbers)

100000 loops, best of 3: 13.2 µs per loop

Obviously the execution time will depend on the system (processor speed, memory,
etc.). The aim of repeating the execution many times is to allow for variations in speed
due to other processes running on the system. You can select N and R explicitly by
passing values to the options -n and -r respectively:

In [x]: %timeit -n 10000 -r 5 sorted(numbers)

10000 loops, best of 5: 11.2 µs per loop

The cell magic %%timeit enables one to time a multiline block of code. For example,
a naive algorithm to find the factors of an integer n can be examined with

In [x]: n = 150

In [x]: %%timeit

factors = set()

for i in range(1, n+1):

if not n % i:

factors.add(n // i)

....:

100000 loops, best of 3: 16.3 µs per loop

Recalling and Rerunning Code
To reexecute one or more lines from your IPython history, use %rerun with a line number
or range of line numbers:

5.1 IPython 181

In [1]: import math

In [2]: angles = [0, 30, 60, 90]

In [3]: for angle in angles:

sine_angle = math.sin(math.radians(angle))

print('sin({:3d}) = {:8.5f}'.format(angle, sine_angle))

.....:

sin(0) = 0.00000

sin(30) = 0.50000

sin(45) = 0.70711

sin(60) = 0.86603

sin(90) = 1.00000

In [4]: angles = [15, 45, 75]

In [5]: %rerun 3

=== Executing: ===

for angle in angles:

sine_angle = math.sin(math.radians(angle))

print('sin({:3d}) = {:8.5f}'.format(angle, sine_angle))

=== Output: ===

sin(15) = 0.25882

sin(45) = 0.70711

sin(75) = 0.96593

In [6]: %rerun 2-3

=== Executing: ===

angles = [0, 30, 45, 60, 90]

for angle in angles:

sine_angle = math.sin(math.radians(angle))

print('sin({:3d}) = {:8.5f}'.format(angle, sine_angle))

=== Output: ===

sin(0) = 0.00000

sin(30) = 0.50000

sin(45) = 0.70711

sin(60) = 0.86603

sin(90) = 1.00000

The similar magic function %recall places the requested lines at the command
prompt but does not execute them until you press Enter, allowing you to modify them
first if you need to.

If you find yourself reexecuting a series of statements frequently, you can define a
named macro to invoke them. Specify line numbers as before:

In [7]: %macro sines 3

Macro `sines` created. To execute, type its name (without quotes).

=== Macro contents: ===

for angle in angles:

sine_angle = math.sin(math.radians(angle))

print('sin({:3d}) = {:8.5f}'.format(angle, sine_angle))

In [8]: angles = [-45, -30, 0, 30, 45]

In [9]: sines

sin(-45) = -0.70711

182 IPython and Jupyter Notebook

sin(-30) = -0.50000

sin(0) = 0.00000

sin(30) = 0.50000

sin(45) = 0.70711

Loading, Executing and Saving Code
To load code from an external file into the current IPython session, use

%load <filename>

If you want only certain lines from the input file, specify them after the -r option.
This magic enters the lines at the command prompt, so they can be edited before being
executed.

To load and execute code from a file, use

%run <filename>

Pass any command line options after filename; by default IPython treats them the same
way that the system shell would. There are a few additional options to %run:

• -i: run the script in the current IPython namespace instead of an empty one (i.e.
the program will have access to variables defined in the current IPython session);

• -e: ignore sys.exit() calls and SystemExit exceptions;
• -t: output timing information at the end of execution (pass an integer to the

additional option -N to repeat execution that number of times).

For example, to run my_script.py 10 times from within IPython with timing informa-
tion:

In [x]: %run -t -N10 my_script.py

To save a range of input lines or a macro to a file, use %save. Line numbers are
specified using the same syntax as %history. A .py extension is added if you don’t add
it yourself, and confirmation is sought before overwriting an existing file. For example,

In [x]: %save sines1 1 8 3

The following commands were written to file `sines1.py`:

import math

angles = [-45, -30, 0, 30, 45]

for angle in angles:

print('sin({:3d}) = {:8.5f}'.format(angle, math.sin(math.radians(angle))))

In [x]: %save sines2 1-3

The following commands were written to file `sines2.py`:

import math

angles = [0, 30, 60, 90]

for angle in angles:

print('sin({:3d}) = {:8.5f}'.format(angle, math.sin(math.radians(angle))))

Finally, to append to a file instead of overwriting it, use the -a option:

%save -a <filename> <line numbers>

5.1 IPython 183

Capturing the Output of a Shell Command
The IPython magic %sx command , equivalent to !!command executes the shell command
command and returns the resulting output as a list (split into semantically useful parts
on the newline character so there is one item per line). This list can be assigned to a
variable to be manipulated later. For example,

In [x]: current_working_directory = %sx pwd

In [x]: current_working_directory

['/Users/christian/temp']

In [x]: filenames = %sx ls

In [x]: filenames

Out[x]:

['output.txt',

'test.py',

'readme.txt',

'utils',

'zigzag.py']

Here, filenames is a list of individual filenames.
The returned object is actually an IPython.utils.text.SList string list object.

Among the useful additional features provided by SList are a native method for
splitting each string into fields delimited by whitespace: fields; for sorting on those
fields: sort; and for searching within the string list: grep. For example,

In [x]: files = %sx ls -l

In [x]: files

['total 8',

'-rw-r--r-- 1 christian staff 93 5 Nov 16:30 output.txt',

'-rw-r--r-- 1 christian staff 23258 5 Nov 16:31 readme.txt',

'-rw-r--r-- 1 christian staff 218 5 Nov 16:32 test.py',

'drwxr-xr-x 2 christian staff 68 5 Nov 16:32 utils',

'-rw-r--r-- 1 christian staff 365 5 Nov 16:20 zigzag.py']

In [x]: del files[0] # strip non-file line ' total 8 '
In [x]: files.fields()

Out[x]:

[['-rw-r--r--', '1', 'christian', 'staff', '93', '5', 'Nov', '16:30', 'output.txt'],

['-rw-r--r--', '1', 'christian', 'staff', '23258', '5', 'Nov', '16:31', 'readme

.txt'],

...

['-rw-r--r--', '1', 'christian', 'staff', '365', '5', 'Nov', '16:20', 'zigzag.py']]

In [x]: ['{} last modified at {} on {} {}'.format(f[8], f[7], f[5], f[6])

for f in files.fields()]

Out[x]:

['output.txt last modified at 16:30 on 5 Nov',

'readme.txt last modified at 16:31 on 5 Nov',

'test.py last modified at 16:32 on 5 Nov',

'utils last modified at 16:32 on 5 Nov',

'zigzag.py last modified at 16:20 on 5 Nov']

The fields method can also take arguments specifying the indexes of the fields to
output; if more than one index is given the fields are joined by spaces:

In [x]: files.fields(0) # first field in each line of files

Out[x]: ['-rw-r--r--', '-rw-r--r--', '-rw-r--r--', 'drwxr-xr-x', '-rw-r--r--']

184 IPython and Jupyter Notebook

In [x]: files.fields(-1) # last field in each line of files

Out[x]: ['output.txt', 'readme.txt', 'test.py', 'utils', 'zigzag.py']

In [x]: files.fields(8, 7, 5, 6)

Out[x]:

['output.txt 16:30 5 Nov',

'readme.txt 16:31 5 Nov',

'test.py 16:32 5 Nov',

'utils 16:32 5 Nov',

'zigzag.py 16:20 5 Nov']

The sort method provided by SList objects can sort by a given field, optionally
converting the field from a string to a number, if required (so that, for example, 10 >

9). Note that this method returns a new SList object.

In [x]: files.sort(4) # sort alphanumerically by size (not useful)

Out[x]:

['-rw-r--r-- 1 christian staff 218 5 Nov 16:32 test.py',

'-rw-r--r-- 1 christian staff 23258 5 Nov 16:31 readme.txt',

'-rw-r--r-- 1 christian staff 365 5 Nov 16:20 zigzag.py',

'drwxr-xr-x 2 christian staff 68 5 Nov 16:32 utils',

'-rw-r--r-- 1 christian staff 93 5 Nov 16:30 output.txt']

In [x]: files.sort(4, nums=True) # sort numerically by size (useful)

Out[x]:

['drwxr-xr-x 2 christian staff 68 5 Nov 16:32 utils',

'-rw-r--r-- 1 christian staff 93 5 Nov 16:30 output.txt',

'-rw-r--r-- 1 christian staff 218 5 Nov 16:32 test.py',

'-rw-r--r-- 1 christian staff 365 5 Nov 16:20 zigzag.py',

'-rw-r--r-- 1 christian staff 23258 5 Nov 16:31 readme.txt']

The grep method returns items from the SList containing a given string;6 to search
for a string in a given field only, use the field argument:

In [x]: files.grep('txt') # search for lines containing ' txt '
Out[x]:

['-rw-r--r-- 1 christian staff 93 5 Nov 16:30 output.txt',

'-rw-r--r-- 1 christian staff 23258 5 Nov 16:31 readme.txt']

In [x]: files.grep('16:32', field=7) # search file files created at 16:32

Out[x]:

['-rw-r--r-- 1 christian staff 218 5 Nov 16:32 test.py',

'drwxr-xr-x 2 christian staff 68 5 Nov 16:32 utils']

Example E5.1 RNA encodes the amino acids of a peptide as a sequence of codons,
with each codon consisting of three nucleotides chosen from the “alphabet”: U (uracil),
C (cytosine), A (adenine) and G (guanine).

The Python script, codon_lookup.py, available at https://scipython.com/eg/bab, cre-
ates a dictionary, codon_table, mapping codons to amino acids where each amino acid
is identified by its one-letter abbreviation (e.g. R = arginine). The stop codons, signaling

6 In fact, its name implies it will match regular expressions as well, but we will not expand on this here.

https://scipython.com/eg/bab

5.1 IPython 185

termination of RNA translation, are identified with the single asterisk character, *.
The codon AUG signals the start of translation within a nucleotide sequence as well as
coding for the amino acid methionine.

This script can be executed within IPython with %run codon_lookup.py (or loaded
and then executed with %load codon_lookup.py followed by pressing Enter:

In [x]: %run codon_lookup.py

In [x]: codon_table

Out[x]:

{'GCG': 'A',

'UAA': '*',

'GGU': 'G',

'UCU': 'S',

...

'ACA': 'T',

'ACC': 'T'}

Let’s define a function to translate an RNA sequence. Type %edit and enter the
following code in the editor that appears.

def translate_rna(seq):

start = seq.find('AUG')

peptide = []

i = start

while i < len(seq)-2:

codon = seq[i:i+3]

a = codon_table[codon]

if a == '*':

break

i += 3

peptide.append(a)

return ''.join(peptide)

When you exit the editor it will be executed, defining the function, translate_rna:

IPython will make a temporary file named: /var/folders/fj/yv29fhm91v7_6g

7sqsy1z2940000gp/T/ipython_edit_thunq9/ipython_edit_dltv_i.py

Editing... done. Executing edited code...

Out[x]: "def translate_rna(seq):\n start = seq.find('AUG')\n

peptide = []\

n i = start\n while i < len(seq)-2:\n codon = seq[i:i+3]\n a

= codon_table[codon]\n if a == '*':\n break\n i += 3\n

peptide.append(a)\n return ''.join(peptide)\n"

Now feed the function an RNA sequence to translate:

In[x]: seq = 'CAGCAGCUCAUACAGCAGGUAAUGUCUGGUCUCGUCCCCGGAUGUCGCUACCCACGAG

ACCCGUAUCCUACUUUCUGGGGAGCCUUUACACGGCGGUCCACGUUUUUCGCUACCGUCGUUUUCCCGGUGC

CAUAGAUGAAUGUU'

In [x]: translate_rna(seq)

Out[x]: 'MSGLVPGCRYPRDPYPTFWGAFTRRSTFFATVVFPVP'

To read in a list of RNA sequences (one per line) from a text file, seqs.txt, and
translate them, one could use %sx with the system command cat (or, on Windows, the
command type):

186 IPython and Jupyter Notebook

In [x]: seqs = %sx cat seqs.txt

In [x]: for seq in seqs:

...: print(translate_rna(seq))

...:

MHMLDENLYDLGMKACHEGTNVLDKWRNMARVCSCDYQFK

MQGSDGQQESYCTLPFEVSGMP

MPVEWRTMQFQRLERASCVKDSTFKNTGSFIKDRKVSGISQDEWAYAMSHQMQPAAHYA

MIVVTMCQ

MGQCMRFAPGMHGMYSSFHPQHKEITPGIDYASMNEVETAETIRPI

5.1.4 Exercises

Problems

P5.1.1 Improve on the algorithm to find the number of factors of an integer given in
Section 5.1.3 by (a) looping the trial factor, i, up to no greater than the square root of n
(why is it not necessary to test values of i greater than this?); and (b) using a generator
(see Section 4.3.5). Compare the execution speed of these alternatives using the %timeit
IPython magic.

P5.1.2 Using the fastest algorithm from the previous question, devise a short piece of
code to determine the highly composite numbers less than 100 000 and use the %%timeit

cell magic to time its execution. A highly composite number is a positive integer with
more factors than any smaller positive integer, for example: 1, 2, 4, 6, 12, 24, 36, 48, . . .

5.2 Jupyter Notebook

Jupyter Notebook provides an interactive environment for Python programming within
a web browser.7 Its main advantage over the more traditional console-based approach of
the IPython shell is that Python code can be combined with documentation (including
in rendered LaTeX), images and even rich media such as embedded videos. Jupyter
Notebooks are increasingly being used by scientists to communicate their research by
including the computations carried out on data as well as simply the results of those
computations. The format makes it easy for researchers to collaborate on a project and
for others to validate their findings by reproducing their calculations on the same data.

5.2.1 Jupyter Notebook Basics

Starting the Jupyter Notebook Server
If you have Jupyter installed, the server that runs the browser-based interface to IPython
can be started from the command line with

7 Starting with version 4, the IPython Notebook project was reformulated as Jupyter Notebook, with bindings
for other languages as well as for Python.

5.2 Jupyter Notebook 187

Figure 5.1 The Jupyter Notebook index page.

jupyter notebook

This will open a web browser window at the URL of the local Jupyter Notebook appli-
cation. By default this is http://localhost:8888 though it will default to a different port if
8888 is in use.

The Jupyter Notebook index page (Figure 5.1) contains a list of the notebooks cur-
rently available in the directory from which the notebook server was started. This is also
the default directory to which notebooks will be saved (with the extension .ipynb), so it
is a good idea to execute the above command somewhere convenient in your directory
hierarchy for the project you are working on.

The index page contains three tabs: Files lists all the files, including Jupyter Note-
books and subdirectories within the current working directory; Running lists those note-
books that are currently active within your session (even if they are not open in a browser
window); Clusters provides an interface to IPython’s parallel computing engine: we will
not cover this topic in this book.

From the index page, one can start a new notebook (by clicking on “New > Notebook:
Python 3”) or open an existing notebook (by clicking on its name). To import an existing
notebook into the index page, either click “Upload” at the top of the page or drag the
notebook file into the index listing from elsewhere on your operating system.

To stop the notebook server, press CTRL-C in the terminal window it was started
from (and confirm at the prompt).

Editing a Jupyter Notebook
To start a new notebook, click the “New” button and select a notebook kernel (there
should at least be one called “Python 3”). This opens a new browser tab containing
the interface where you will write your code and connects it to an IPython kernel, the
process responsible for executing the code and communicating the results back to the
browser.

The new notebook document (Figure 5.2) consists of a title bar, a menu bar and a
tool bar, under which is an IPython prompt where you will type the code and markup
(e.g. explanatory text and documentation) as a series of cells.

In the title bar the name of the first notebook you open will probably be “Untitled”;
click on it to rename it to something more informative. The menu bar contains options
for saving, copying, printing, rearranging and otherwise manipulating the Jupyter Note-

http://localhost:8888

188 IPython and Jupyter Notebook

Figure 5.2 Jupyter with a new notebook document.

book document. The tool bar consists of series of icons that act as shortcuts for common
operations that can also be achieved through the menu bar.

There are three types of input cells where you can write the content for your notebook:

• Code cells: the default type of cell, this type of cell consists of executable code.
As far as this chapter is concerned, the code you write here will be Python, but
Jupyter does provide a mechanism of executing code written in other languages
such as Julia and R.

• Markdown cells: this type of cell allows for a rich form of documentation for your
code. When executed, the input to a markdown cell is converted into HTML,
which can include mathematical equations, font effects, lists, tables, embedded
images and videos.

• Raw cells: input into this type of cell is not changed by the notebook – its content
and formatting is preserved exactly.

Running Cells
Each cell can consist of more than one line of input, and the cell is not interpreted until
you “run” (i.e. execute) it. This is achieved either by selecting the appropriate option
from the menu bar (under the “Cell” drop-down submenu), by clicking the “Run cell”
“play” button on the tool bar, or through the following keyboard shortcuts:

• Shift-Enter: Execute the cell, showing any output, and then move the cursor
onto the cell below. If there is no cell below, a new, empty one will be created.

• CTRL-Enter: Execute the cell in place, but keep the cursor in the current cell.
Useful for quick “disposable” commands to check if a command works or for
retrieving a directory listing.

• Alt-Enter: Execute the cell, showing any output, and then insert and move the
cursor to a new cell immediately beneath it.

Two other keyboard shortcuts are useful. When editing a cell the arrow keys navigate
the contents of the cell (edit mode); from this mode, pressing Esc enters command mode
from which the arrow keys navigate through the cells. To reenter edit mode on a selected
cell, press Enter.

5.2 Jupyter Notebook 189

The menu bar, under the “Cell” drop-down submenu, provides many ways of running
a notebook’s cells: usually, you will want to run the current cell individually or run it
and all those below it.

Code Cells
You can enter anything into a code cell that you can when writing a Python program
in an editor or at the regular IPython shell. Code in a given cell has access to objects
defined in other cells (providing they have been run). For example,

In []: n = 10

Pressing Shift-Enter or clicking Run Cell executes this statement (defining n but
producing no output) and opens a new cell underneath the old one:

In [1]: n = 10

In []:

Entering the following statements at this new prompt:

In []: sum_of_squares = n * (n+1) * (2*n+1) // 6
print('1**2 + 2**2 + ... + {}**2 = {}'.format(n,

sum_of_squares))

and executing as before produces output and opens a third empty input cell. The whole
notebook document then looks like

In [1]: n = 10

In [2]: sum_of_squares = n * (n+1) * (2*n+1) // 6
print('1**2 + 2**2 + ... + {}**2 = {}'.format(n,

sum_of_squares))

Out[2]: 1**2 + 2**2 + ... + 10**2 = 385

In []:

You can edit the value of n in input cell 1 and rerun the entire document to update
the output. It is worth noting that it is also possible to set a new value for n after the
calculation in cell 2:

In [3]: n = 15

Running cell 3 and then cell 2 then leaves the output to cell 2 as

Out[2]: 1**2 + 2**2 + ... + 15**2 = 1240

even though the cell above still defines n to be 10. That is, unless you run the entire
document from the beginning, the output does not necessarily reflect the output of a
script corresponding to the code cells taken in order.

System commands (those prefixed with ! or !!) and IPython magics can all be used
within Jupyter Notebook.

190 IPython and Jupyter Notebook

Markdown Cells
Markdown cells convert your input text into HTML, applying styles according to a
simple syntax illustrated below. The full documentation is at

https://daringfireball.net/projects/markdown/
Here we explain the most useful features. A complete Jupyter Notebook of these exam-
ples can be downloaded from https://scipython.com/book/markdown.

Basic Markdown
• Simple styles can be applied by enclosing text by asterisks or underscores:

In [x]: Surrounding text by two asterisks denotes **bold
style**; using one asterisk denotes *italic
text*, as does _a single underscore_.

Surrounding text by two asterisks denotes bold style; using
one asterisk denotes italic text, as does a single underscore.

• Headings at up to six levels (from top-level section titles to paragraph-level text)
are denoted with between one and six “#” characters: the text following these
characters is rendered at an appropriate font size (in HTML, using the elements
<h1> to <h6>).

• Block quotes are indicated by a single angle bracket, >:

In [x]: > "Climb if you will, but remember that courage and
strength are nought without prudence, and that a
momentary negligence may destroy the happiness
of a lifetime. Do nothing in haste; look well to
each step; and from the beginning think what may
be the end." - Edward Whymper

“Climb if you will, but remember that courage and strength are nought
without prudence, and that a momentary negligence may destroy
the happiness of a lifetime. Do nothing in haste; look well to each
step; and from the beginning think what may be the end.” – Edward
Whymper

• Code examples (for illustration rather than execution) are between blank lines and
indented by four spaces (or a tab). The following will appear in a monospaced
font with the characters as entered:

In [x]: n = 57
while n != 1:

if n % 2:
n = 3*n + 1

else:
n //= 2

n = 57

while n != 1:

if n % 2:

n = 3*n + 1

else:

https://daringfireball.net/projects/markdown/
https://scipython.com/book/markdown

5.2 Jupyter Notebook 191

n //= 2

• Inline code examples are created by surrounding the text with backticks (`):

In [x]: Here are some Python keywords: `for`, `while` and
`lambda`.

Here are some Python keywords: for, while and lambda.

• New paragraphs are started after a blank line.

HTML within Markdown
The markdown used by Jupyter Notebooks encompasses HTML, so valid HTML enti-
ties and tags can be used directly (for example, the tag for emphasis), as can CSS
styles to produce effects such as underlined text. Even complex HTML such as tables
can be marked up directly.

In [x]: The following Punnett table is marked up
in HTML.

<table style="text-align: center;">
<tr>
<th style="border-top:none; border-left:none;" rowspan="2"

colspan="2"></th>
<th colspan="2">Male</th>
</tr>
<tr>
<th>A</th>
<th>a</th>
</tr>
<tr>
<th rowspan="2">Female</th>
<th>a</th>
<td style="background: #aaa;">Aa</td>
<td>aa</td>
</tr>
<tr>
<th>a</th>
<td style="background: #aaa;">Aa</td>
<td>aa</td>
</tr>
</table>

192 IPython and Jupyter Notebook

The following Punnett table is marked up in HTML.

Male

A a

Female
a

a

Aa

Aa

aa

aa

Lists
Itemized (unnumbered) lists are created using any of the markers *, + or -, and nested
sublists are simply indented.

In [x]: The inner planets and their satellites:

* Mercury
* Venus
* Earth

* The Moon
+ Mars

- Phoebus
- Deimos

The inner planets and their satellites:

• Mercury
• Venus
• Earth

– The Moon

• Mars

– Phoebus
– Deimos

Ordered (that is, numbered) lists are created by preceding items by a number followed
by a full stop (period) and a space:

In [x]: 1. Symphony No. 1 in C major, Op. 21
2. Symphony No. 2 in D major, Op. 36
3. Symphony No. 3 in E-flat major ("Eroica"), Op. 55

1. Symphony No. 1 in C major, Op. 21
2. Symphony No. 2 in D major, Op. 36
3. Symphony No. 3 in E-flat major ("Eroica"), Op. 55

Links
There are three ways of introducing links into markdown text:

5.2 Jupyter Notebook 193

• Inline links provide a URL in round brackets after the text to be turned into a link
in square brackets. For example,

In [x]: Here is a link to the
[IPython website](https://ipython.org/).

Here is a link to the IPython website.

• Reference links label the text to turn into a link by placing a name (containing
letters, numbers or spaces) in square brackets after it. This name is expected to
be defined using the syntax [name]: url elsewhere in the document, as in the
following example markdown cell.

In [x]: Some important mathematical sequences are the [prime
numbers][primes],

[Fibonacci sequence][fib] and the [Catalan
numbers][catalan_numbers].

...

[primes]: https://oeis.org/A000040
[fib]: https://oeis.org/A000045
[catalan_numbers]: https://oeis.org/A000108]

Some important mathematical sequences are the primes,
Fibonacci sequence and the Catalan numbers.

• Automatic links, for which the clickable text is the same as the URL, are created
simply by surrounding the URL by angle brackets:

In [x]: My website is <https://christianhill.co.uk>.

My website is https://christianhill.co.uk.

If the link is to a file on your local system, give as the URL the path, relative to the
notebook directory, prefixed with files/:

In [x]: Here is [a local data file](files/data/data0.txt).

Here is a a local data file.

Note that links open in a new browser tab when clicked.

Mathematics
Mathematical equations can be written in LATEX and are rendered using the Javascript
library, MathJax. Inline equations are delimited by single dollar signs; “displayed”
equations by doubled dollar signs:

In [x]: An inline equation appears within a sentence of text, as
in the definition of the function $f(x) = \sin(x^2)$;
displayed equations get their own line(s) between
lines of text:

$$\int_0^\infty \mathrm{e}^{-x^2}dx =
\frac{\sqrt{\pi}}{2}.$$

https://christianhill.co.uk
https://ipython.org/
https://oeis.org/A000040
https://oeis.org/A000045
https://oeis.org/A000108
https://christianhill.co.uk

194 IPython and Jupyter Notebook

An inline equation appears within a sentence of text, as in the
definition of the function f (x) = sin(x2); displayed equations get
their own line(s) between lines of text:∫ ∞

0
e−x2

dx =

√
π

2
.

Images and Video
Links to image files work in exactly the same way as ordinary links (and can be inline or
reference links), but are preceded by an exclamation mark, !. The text in square brackets
between the exclamation mark and the link acts as alt text to the image. For example,

In [x]: ![An interesting plot of the Newton
fractal](/files/images/newton_fractal.png)

![A remote link to a star
image](https://christianhill.co.uk/static/images/
star.svg)

Video links must use the HTML5 <video> tag, but note that not all browsers support
all video formats. For example,

In [x]: <video controls style="width: 500px; margin: 0 auto;
display: block;" src="files/diffmap-animated.ogv" />

The data constituting images, video and other locally linked content are not embedded
in the notebook document itself: these files must be provided with the notebook when it
is distributed.

5.2.2 Converting Notebooks to Other Formats

nbconvert is a tool, installed with Jupyter, to convert notebooks from their native .ipynb
format8 to any of several alternative formats. It is run from the (system) command line
as

jupyter nbconvert --to <format> <notebook.ipynb>

where notebook.ipynb is the name of the Jupyter Notebook file to be converted and
format is the desired output format. The default (if no format is given), is to produce a
static HTML file, as described below.

Conversion to HTML
The command

jupyter nbconvert <notebook.ipynb>

converts notebook.ipynb to HTML and produces a file, notebook.html, in the current
directory. This file contains all the necessary headers for a stand-alone HTML page,

8 This format is, in fact, just a JSON (JavaScript Object Notation) document.

https://christianhill.co.uk/static/images/star.svg
https://christianhill.co.uk/static/images/star.svg

5.2 Jupyter Notebook 195

which will closely resemble the interactive view produced by the Jupyter Notebook
server, but as a static document.

If you want just the HTML corresponding to the notebook without the header
(<html>, <head>, <body> tags, etc.), suitable for embedding in an existing web page,
add the --template basic option.

Any supporting files, such as images, are automatically placed in a directory with
the same base name as the notebook itself but with the suffix _files. For example,
jupyter nbconvert mynotebook.ipynb generates mynotebook.html and the directory
mynotebook_files.

Conversion to LaTeX
To export the notebook as a LATEX document, use

jupyter nbconvert --to latex <notebook.ipynb>

To automatically generate a PDF file by running pdflatex on the notebook.tex file
produced, add the option --post pdf.

Conversion to Markdown
jupyter nbconvert --to markdown <notebook.ipynb>

converts the whole notebook into markdown (see Section 5.2.1): cells that are already
in markdown are unaffected and code cells are placed in triple-backtick (```) blocks.

Conversion to Python
The command

jupyter nbconvert --to python <notebook.ipynb>

converts notebook.ipynb into an executable Python script. If any of the notebook’s code
cells contain IPython magic functions, this script may only be executable from within
an IPython session. Markdown and other text cells are converted to comments in the
generated Python script code.

5.2.3 JupyterLab

At the time of writing, Project Jupyter is testing a browser-based interactive devel-
opment environment (IDE) called JupyterLab, which will extend the functionality of
Jupyter Notebook and allow real-time collaboration between multiple users, drag-and-
drop manipulation of notebook cells, browser-based terminal (console) access, auto-
completion, and live preview of markdown. Custom widgets can be installed to allow the
loading and exploration of data in different formats within the browser and integration
with popular online services such as GitHub, Dropbox and Google Drive. It will be fully
backward-compatible with existing Jupyter Notebooks. More information is available
from the Project Jupyter website, https://jupyter.org/.

https://jupyter.org/

6 NumPy

NumPy has become the de facto standard package for general scientific programming
in Python. Its core object is the ndarray, a multidimensional array of a single data
type, which can be sorted, reshaped, subject to mathematical operations and statistical
analysis, written to and read from files, and much more. The NumPy implementations of
these mathematical operations and algorithms have two main advantages over the “core”
Python objects we have used until now. First, they are implemented as precompiled C
code and so approach the speed of execution of a program written in C itself; second,
NumPy supports vectorization: a single operation can be carried out on an entire array,
rather than requiring an explicit loop over the array’s elements. For example, compare
the multiplication of two one-dimensional lists of n numbers, a and b, in the core python
language:
c = []

for i in range(n):

c.append(a[i] * b[i])

and using NumPy arrays:1

c = a * b

The elementwise multiplication is handled by optimized, precompiled C and so is very
fast (much faster for large n than the core Python alternative). The absence of explicit
looping and indexing makes the code cleaner, less error-prone and closer to the standard
mathematical notation it reflects.

All of NumPy’s functionality is provided by the numpy package. To use it, it is strongly
advised to import with
import numpy as np

and then to refer to its attributes with the prefix np. (e.g. np.array). This is the way we
use NumPy in this book.

6.1 Basic Array Methods

The NumPy array class is ndarray, which consists of a multidimensional table of ele-
ments indexed by a tuple of integers. Unlike Python lists and tuples, the elements cannot

1 The terms “NumPy array” and ndarray will be used interchangeably in this book.

196

6.1 Basic Array Methods 197

be of different types: each element in a NumPy array has the same type, which is
specified by an associated data type object (dtype). The dtype of an array specifies
not only the broad class of element (integer, floating-point number, etc.) but also how it
is represented in memory (e.g. how many bits it occupies) – see Section 6.1.2.

The dimensions of a NumPy array are called axes; the number of axes an array has is
called its rank.2

6.1.1 Creating an Array

Basic Array Creation
The simplest way to create a small NumPy array is to call the np.array constructor with
a list or tuple of values:

In [x]: import numpy as np

In [x]: a = np.array((100, 101, 102, 103))

In [x]: a

Out[x]: array([100, 101, 102, 103])

In [x]: b = np.array([[1.,2.], [3.,4.]])

Out[x]:

array([[1., 2.],

[3., 4.]])

Note that passing a list of lists creates a two-dimensional array (and similarly for higher
dimensions).

Indexing a multidimensional NumPy array is a little different from indexing a conven-
tional Python list of lists: instead of b[i][j], refer to the index of the required element
as a tuple of integers, b[i,j]:

In [x]: b[0,1] # same as b[(0,1)]

Out[x]: 2.0

In [x]: b[1,1] = 0. # also for assignment

Out[x]:

array([[1., 2.],

[3., 0.]])

The data type is deduced from the type of the elements in the sequence and “upcast”
to the most general type if they are of mixed but compatible types:

In [x]: np.array([-1, 0, 2.]) # mixture of int and float: upcast to float

Out[x]: array([-1., 0., 2.])

You can also explicitly set the data type using the optional dtype argument (see Section
6.1.2):

In [x]: np.array([0, 4, -4], dtype=complex)

In [x]: array([0.+0.j, 4.+0.j, -4.+0.j])

If your array is large or you do not know the element values at the time of creation,
there are several methods to declare an array of a particular shape filled with default
or arbitrary values. The simplest and fastest, np.empty, takes a tuple of the array’s

2 Not to be confused with the concept of matrix rank from linear algebra.

198 NumPy

shape and creates the array without initializing its elements: the initial element values
are undefined (typically, random junk defined from whatever were the contents of the
memory that Python allocated for the array).

In [x]: np.empty((2,2))

Out[x]:

array([[-2.31584178e+077, -1.72723381e-077],

[2.15686807e-314, 2.78134366e-309]])

There are also helper methods, np.zeros and np.ones, which create an array of the
specified shape with elements prefilled with 0 and 1, respectively. np.empty, np.zeros
and np.ones also take the optional dtype argument.

In [x]: np.zeros((3,2)) # default dtype is ' float '
Out[x]:

array([[0., 0.],

[0., 0.],

[0., 0.]])

In [x]: np.ones((3,3), dtype=int)

Out[x]:

array([[1, 1, 1],

[1, 1, 1],

[1, 1, 1]])

If you already have an array and would like to create another with the same shape,
np.empty_like, np.zeros_like and np.ones_like will do that for you:

In [x]: a

Out[x]: array([100, 101, 102, 103])

In [x]: np.ones_like(a)

Out[x]: array([1, 1, 1, 1])

In [x]: np.zeros_like(a, dtype=float)

Out[x]: array([0., 0., 0., 0.])

Note that the array created inherits its dtype from the original array; to set its data
type to something else, use the dtype argument.

Initializing an Array from a Sequence
To create an array containing a sequence of numbers there are two methods: np.arange
and np.linspace. np.arange is the NumPy equivalent of range, except that it can
generate floating-point sequences. It also actually allocates the memory for the elements
in an ndarray instead of returning a generator-like object – compare Section 2.4.3.

In [x]: np.arange(7)

Out[x]: array([0, 1, 2, 3, 4, 5, 6])

In [x]: np.arange(1.5, 3., 0.5)

Out[x]: array([1.5, 2. , 2.5]))

As with range, the array generated in these examples does not include the last elements,
7 and 3. However, arange has a problem: because of the finite precision of floating-point
arithmetic it is not always possible to know how many elements will be created. For
this reason, and because one often wants the last element of a specifed sequence, the

6.1 Basic Array Methods 199

np.linspace function can be a more useful way of creating an sequence.3 For example,
to generate an evenly spaced array of the five numbers between 1 and 20 inclusive:

In [x]: np.linspace(1, 20, 5)

Out[x]: array([1. , 5.75, 10.5 , 15.25, 20.])

np.linspace has a couple of optional boolean arguments. First, setting retstep to True

returns the number spacing (step size):

In [x]: x, dx = np.linspace(0., 2*np.pi, 100, retstep=True)

In [x]: dx

Out[x]: 0.06346651825433926

This saves you from calculating dx = (end-start)/(num-1) separately; in this exam-
ple, the 100 points between 0 and 2π inclusive are spaced by 2π/99 = 0.0634665 . . .
Finally, setting endpoint to False omits the final point in the sequence, as for
np.arange:

In [x]: x = np.linspace(0, 5, 5, endpoint=False)

Out[x]: array([0., 1., 2., 3., 4.])

Note that the array generated by np.linspace has the dtype of floating-point numbers,
even if the sequence generates integers.

Initializing an Array from a Function
To create an array initialized with values calculated using a function, use NumPy’s
np.fromfunction method, which takes as its arguments a function and a tuple repre-
senting the shape of the desired array. The function should itself take the same number
of arguments as dimensions in the array: these arguments index each element at which
the function returns a value. An example will make this clearer:

In [x]: def f(i, j):

...: return 2 * i * j

...:

In [x]: np.fromfunction(f,(4,3))

array([[0., 0., 0.],

[0., 2., 4.],

[0., 4., 8.],

[0., 6., 12.]])

The function f is called for every index in the specified shape and the values it returns
are used to initialize the corresponding elements.4 A simple expression like this one can
be replaced by an anonymous lambda function (see Section 4.3.3) if desired:

In [x]: np.fromfunction(lambda i,j: 2*i*j, (4,3))

Example E6.1 To create a “comb” of values in an array of length N for which every
nth element is one but with zeros everywhere else:

3 We came across linspace in the discussion following Example E3.1.
4 Note that the indexes are passed as ndarrays and expect the function, f, to use vectorized operations.

200 NumPy

In [x]: N, n = 101, 5

In [x]: def f(i):

...: return (i % n == 0) * 1

...:

In [x]: comb = np.fromfunction(f, (N,), dtype=int)

In [x]: print(comb)

[1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0

0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1]

ndarray Attributes for Introspection
A NumPy array knows its rank, shape, size, dtype and one or two other properties: these
can be determined directly from the attributes described in Table 6.1. For example,

In [x]: a = np.array(((1, 0, 1), (0, 1, 0)))

In [x]: a.shape

Out[x]: (2, 3) # 2 rows, 3 columns

In [x]: a.ndim # rank (number of dimensions)

Out[x]: 2

In [x]: a.size # total number of elements

Out[x]: 6

In [x]: a.dtype

Out[x]: dtype('int64')

In [x]: a.data

Out[x]: <memory at 0x102387308 >

The shape attribute returns the axis dimensions in the same order as the axes are
indexed: a two-dimensional array with n rows and m columns has a shape of (n, m).

6.1.2 NumPy’s Basic Data Types (dtypes)

So far, the NumPy arrays we have created have contained either integers or floating-
point numbers, and we have let Python take care of the details of how these are repre-
sented. However, NumPy provides a powerful way of determining these details explic-
itly using data type objects. This is necessary, because in order to interface with the
underlying compiled C code the elements of a NumPy array must be stored in a com-

Table 6.1 ndarray attributes

Attribute Description
shape The array dimensions: the size of the array along each of its axes,

returned as a tuple of integers
ndim Number of axes (dimensions); note that ndim == len(shape)
size The total number of elements in the array, equal to the product of the

elements of shape
dtype The array’s data type (see Section 6.1.2)
data The “buffer” in memory containing the actual elements of the array
itemsize The size in bytes of each element

6.1 Basic Array Methods 201

patible format: that is, each element is represented in a fixed number of bytes that are
interpreted in a particular way.

For example, consider an unsigned integer stored in 2 bytes (16 bits) of memory (the
C-type uint16_t). Such a number can take a value between 0 and 216 − 1 = 65 535.
No equivalent native Python type exists for this exact representation: Python integers
are signed quantities and memory is dynamically assigned for them as required by their
size. So NumPy defines a data type object, np.uint16, to describe data stored in this
way.

Furthermore, different systems can order the two bytes of this number differently, a
distinction known as endianness. The big-endian convention places the most-significant
byte in the smallest memory address; the little-endian convention places the least-
significant byte in the smallest memory address. In creating your own arrays, NumPy
will use the default convention for the hardware your program is running on, but it is
essential to set the endianness correctly if reading in a binary file generated by a different
computer.

A full list of the numerical data types5 is given in the NumPy documentation,6 but
the more common ones are listed in Table 6.2. They all exist within the numpy package
and so can be referred to as, for example, np.uint16. The data types that get created
by default when using the native Python numerical types are those with a trailing
underscore: np.float_, np.complex_ and np.bool_.

Apparently higher-precision floating-point number data types such as float96,
float128 and longdouble are available but are not to be trusted: their implementation is
platform-dependent, and on many systems they do not actually offer any extra precision
but simply align array elements on the appropriate byte-boundaries in memory.

To create a NumPy array of values using a particular data type, use the dtype argu-
ment of any array constructor function (such as np.array, np.zeros, etc.). This argu-
ment takes either a data type object (such as np.uint8) or something that can be con-
verted into one. It is common to specify the dtype using a string consisting of a letter
indicating the broad category of data type (integer, unsigned integer, complex number,
etc.) optionally followed by a number giving the byte size of the type. For example,
In [x]: b = np.zeros((3,3), dtype='u4')

creates a 3 × 3 array of unsigned, 32-bit (4-byte) integers (equivalent to np.uint32). A
list of supported data type letters and their meanings is given in Table 6.3.

To specify the endianness, use the prefixes > (big-endian), < (little-endian) or | (endi-
anness not relevant). For example,
In [x]: a = np.zeros((3,3), dtype='>f8')

In [x]: b = np.zeros((3,3), dtype='<f')

In [x]: c = np.empty((3,3), dtype='|S4')

create arrays of big-endian double-precision numbers, little-endian single-precision
numbers and four-character strings, respectively.

5 Strictly speaking, these types are array scalar types and not dtypes, but for our use here the distinction is
not important.

6 https://docs.scipy.org/doc/numpy/user/basics.types.html.

https://docs.scipy.org/doc/numpy/user/basics.types.html

202 NumPy

Table 6.2 Common NumPy data types

Data Type Description
int_ The default integer type, corresponding to C’s long:

platform-dependent
int8 Integer in a single byte: −128 to 127
int16 Integer in 2 bytes: −32 768 to 32 767
int32 Integer in 4 bytes: −2 147 483 648 to 2 147 483 647
int64 Integer in 8 bytes: −263 to 263 − 1
uint8 Unsigned integer in a single byte: 0 to 255
uint16 Unsigned integer in 2 bytes: 0 to 65 535
uint32 Unsigned integer in 4 bytes: 0 to 4 294 967 295
uint64 Unsigned integer in 8 bytes: 0 to 264 − 1
float_ The default floating-point number type, another name for

float64

float32 Single-precision, signed float: ∼ 10−38 to ∼ 1038 with ∼ 7
decimal digits of precision

float64 Double-precision, signed float: ∼ 10−308 to ∼ 10308 with
∼ 15 decimal digits of precision

complex_ The default complex number type, another name for
complex128

complex64 Single-precision complex number (represented by 32-bit
floating-point real and imaginary components)

complex128 Double-precision complex number (represented by 64-bit
floating-point real and imaginary components)

bool_ The default boolean type represented by a single byte

Table 6.3 Common NumPy data type strings

String Description

i Signed integer
u Unsigned integer
f Floating-point numbera

c Complex floating-point number
b Boolean value
S, a String (fixed-length sequence of characters)
U Unicode
a Note that without specifying the byte size, setting dtype='f' creates

a single-precision floating-point data type, equivalent to np.float32.

In these examples we have passed a typecode string to an array constructor’s dtype

argument, but it is also possible to create a dtype object first and pass that instead:
In [x]: dt = np.dtype('f8')

In [x]: dt

dtype('float64') # double-precision floating-point

In [x]: a = np.array([0., 1., -2.], dtype=dt)

dtype objects have a handful of useful introspection methods:

6.1 Basic Array Methods 203

In [x]: dt.str # a string identifying the data type

'<f8'

In [x]: dt.name # data type name and bit-width

'float64'

In [x]: dt.itemsize # data type size in bytes

8

To copy an array to a new array with a different data type, pass the desired dtype or
typecode to the astype method:

In [x]: a = np.array([1.2345678, 2.5, 3.9])

In [x]: a.astype('float32') # cast to single-precision float

Out[x]: array([1.2345678, 2.5 , 3.9], dtype=float32)

In [x]: a.astype(np.uint8) # cast to unsigned, 1-byte integer

Out[x]: array([1, 2, 3], dtype=uint8)

Strings in NumPy arrays are bytestrings of a fixed size: each “character” is repre-
sented by a single byte, in contrast to the variable size UTF-8 encoding, commonly
used to represent Unicode strings. This is necessary because NumPy arrays have a pre-
defined, fixed size in which all the elements occupy the same amount of memory so
that they can be indexed efficiently with a constant stride. Unicode strings encoded
with UTF-8, however, represent characters as code points with a variable width (see
Section 2.3.3). Of course, any string is ultimately stored as a sequence of bytes and
Python provides methods for translating between encodings. For example, on a system
encoding strings with UTF-8 by default:

In [x]: s = 'piñata' # UTF-8 encoded Unicode string

In [x]: b = s.encode()

In [x]: b

b'pi\xc3\xb1ata' # bytestring: ñ is stored in two bytes: hex C3B1

In [x]: len(s), len(b)

(6,7) # six UTF-8 encoded characters stored in 7 bytes

In [x]: arr = np.empty((2,2), 'S7')

In [x]: arr[:] = b # store the bytestring b in array arr

In [x]:

array([[b'pi\xc3\xb1ata', b'pi\xc3\xb1ata'],

[b'pi\xc3\xb1ata', b'pi\xc3\xb1ata']],

dtype='|S7')

In [x]: arr[0,0] # returns the bytestring

b'pi\xc3\xb1ata'

In [x]: arr[0,0].decode() # decode the bytestring back assuming UTF-8

'piñata'

6.1.3 Universal Functions (ufuncs)

In addition to the basic arithmetic operations of addition, division and more, NumPy
provides many of the familiar mathematical functions that the math module (Section
2.2.2) does, implemented as so-called universal functions that act on each element of
an array, producing an array in return without the need for an explicit loop. Universal
functions are the way NumPy allows for vectorization, which promotes clean, efficient
and easy-to-maintain code. For example,

204 NumPy

In [x]: x = np.linspace(1, 5, 5)

In [x]: x**2

Out[x]: array([1., 4., 9., 16., 25.])

In [x]: x - 1

Out[x]: array([0., 1., 2., 3., 4.])

In [x]: np.sqrt(x - 1)

Out[x]: array([0., 1., 1.41421356, 1.73205081, 2.])

In [x]: y = np.exp(-np.linspace(0., 2., 5))

In [x]: np.sin(x - y)

Out[x]: array([0., 0.98431873, 0.48771645, -0.59340065, -0.98842844])

Array multiplication occurs elementwise: matrix multiplication is implemented by
the @ operator7 or NumPy’s dot function:

In [x]: a = np.array(((1, 2), (3, 4)))

In [x]: b = a

In [x]: a * b # elementwise multiplication
Out[x]:

array([[1, 4],

[9, 16]])

In [x]: a @ b # matrix multiplication; also a.dot(b) or np.dot(a, b)
Out[x]:

array([[7, 10],

[15, 22]])

Comparison and logic operators (˜, & and | for not, and and or, respectively) are also
vectorized and result in arrays of boolean values:

In [x]: a = np.linspace(1, 6, 6)**3

In [x]: print(a)

[1. 8. 27. 64. 125. 216.]

In [x]: print(a > 100)

[False False False False True True]

In [x]: print((a < 10) | (a > 100))

[True True False False True True]

6.1.4 NumPy’s Special Values, nan and inf

NumPy defines two special values to represent the outcome of calculations, which are
not mathematically defined or not finite. The value np.nan (“Not a Number,” NaN)
represents the outcome of a calculation that is not a well-defined mathematical operation
(e.g. 0/0); np.inf represents infinity.8 For example,

In [x]: a = np.arange(4, dtype='f8')

In [x]: a /= 0 # [0/0 1/0 2/0 3/0]

... RuntimeWarning: invalid value encountered in true_divide ...

... RuntimeWarning: divide by zero encountered in true_divide ...

In [x]: a

Out[x]: array([nan, inf, inf, inf])

7 The @ operator was introduced in Python 35.
8 These quantities are defined in accordance with the IEEE-754 standard for floating-point numbers.

6.1 Basic Array Methods 205

Do not test nans for equality (np.nan == np.nan is False). Instead, NumPy provides
methods np.isnan, np.isinf and np.isfinite:
In [x]: np.isnan(a)

Out[x]: array([True, False, False, False], dtype=bool)

In [x]: np.isinf(a)

Out[x]: array([False, True, True, True], dtype=bool)

In [x]: np.isfinite(a)

Out[x]: array([False, False, False, False], dtype=bool)

Note that nan is neither finite nor infinite, and is not equal to itself! (See also Section
10.1.4.)

Example E6.2 A magic square is an N × N grid of numbers in which the entries in
each row, column and main diagonal sum to the same number (equal to N(N2 + 1)/2).
A method for constructing a magic square for odd N is as follows:
Step 1. Start in the middle of the top row, and let n = 1.
Step 2. Insert n into the current grid position.
Step 3. If n = N2 the grid is complete so stop. Otherwise, increment n.
Step 4. Move diagonally up and right, wrapping to the first column or last row if the

move leads outside the grid. If this cell is already filled, move vertically down
one space instead.

Step 5. Return to step 2.
The following program creates and displays a magic square.

Listing 6.1 Creating a magic square

Create an N x N magic square. N must be odd.

import numpy as np

N = 5

magic_square = np.zeros((N, N), dtype=int)

n = 1

i, j = 0, N//2

while n <= N**2:

magic_square[i, j] = n

n += 1

newi, newj = (i - 1) % N, (j + 1)% N

if magic_square[newi, newj]:

i += 1

else:

i, j = newi, newj

print(magic_square)

The 5 × 5 magic square output by the earlier example is
[[17 24 1 8 15]

[23 5 7 14 16]

[4 6 13 20 22]

[10 12 19 21 3]

[11 18 25 2 9]]

206 NumPy

6.1.5 Changing the Shape of an Array

Whatever the rank of an array, its elements are stored in sequential memory locations
that are addressed by a single index (internally the array is one-dimensional, but, know-
ing the shape of the array, Python is able to resolve a tuple of indexes into a single
memory address). NumPy arrays are stored in memory in C-style, row-major order,
that is, with the elements of the last (rightmost) index stored contiguously. In a two-
dimensional array, for example, the element a[0, 0] is followed by a[0, 1]. The array
that follows

In [x]: a = np.array(((1, 2), (3, 4)))

In [x]: print(a)

[[1 2]

[3 4]]

is stored in memory as the sequential elements [1,2,3,4].9

flatten and ravel
Suppose you wish to “flatten” a multidimensional array onto a single axis. NumPy
provides two methods to do this: flatten and ravel. Both flatten the array into its
internal (row-major) ordering, as described earlier. flatten returns an independent copy
of the elements and is generally slower than ravel, which tries to return a view to the
flattened array. An array view is a new NumPy array with, in this case, a different shape
from the original, but it does not “own” its data elements: it references the elements
of another array. Thus, just as with mutable lists (Section 2.4.1), a reassignment of an
element of one array affects the other. An example should make this clear:

In [x]: a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

In [x]: b = a.flatten() # create an independent , flattened copy of a

In [x]: b

Out[x]: array([1, 2, 3, 4, 5, 6, 7, 8, 9])

In [x]: b[3] = 0

In [x]: b

Out[x]: array([1, 2, 3, 0, 5, 6, 7, 8, 9])

In [x]: a # a is unchanged

Out[x]:

array([[1, 2, 3],

[4, 5, 6],

[7, 8, 9]])

Assignment to b didn’t change a because they are completely independent objects that
do not share their data. In contrast, the flattened array created by taking a view on a with
ravel refers to the same underlying data:

In [x]: c = a.ravel()

In [x]: c

Out[x]:array([1, 2, 3, 4, 5, 6, 7, 8, 9])

In [x]: c[3] = 0

9 This contrasts with Fortran’s column-major ordering, which would store the elements as [1, 3, 2, 4].

6.1 Basic Array Methods 207

In [x]: c

Out[x]: array([1, 2, 3, 0, 5, 6, 7, 8, 9])

In [x]: a

Out[x]:

array([[1, 2, 3],

[0, 5, 6],

[7, 8, 9]])

You should be aware that although the ravel method “does its best” to return a view to
the underlying data, various array operations (including slicing; see Section 6.1.6) can
leave the elements stored in noncontiguous memory locations, in which case ravel has
no choice but to make a copy.

resize and reshape
An array may be resized (in place) to a compatible shape10 with the resize method,
which takes the new dimensions as its arguments.

In [x]: a = np.linspace(1, 4, 4)

In [x]: print(a)

[1. 2. 3. 4.]

In [x]: a.resize(2, 2) # reshapes a in place, doesn ' t return anything
In [x]: print(a)

[[1. 2.]

[3. 4.]]

The reshape method returns a view on the array with its elements reshaped as required.
The original array is not modified, but the objects share the same underlying data.

In [x]: a = np.linspace(1, 4, 4)

In [x]: b = a.reshape(2, 2)

In [x]: print(a)

[1. 2. 3. 4.]

In [x]: print(b)

[[1. 2.]

[3. 4.]]

In [x]: b[0, 0] = -99

In [x]: print(b)

[[-99. 2.

[3. 4.]]

In [x]: print(a)

[-99. 2. 3. 4.]

Transposing an Array
The method transpose returns a view of an array with the axes transposed. For a two-
dimensional array, this is the usual matrix transpose:

10 That is, a shape with the same total number of elements.

208 NumPy

In [x]: a = np.linspace(1, 6, 6).reshape(3, 2)

In [x]: a

Out[x]:

array([[1., 2.],

[3., 4.],

[5., 6.]])

In [x]: a.transpose() # or simply a.T

Out[x]:

array([[1., 3., 5.],

[2., 4., 6.]]

Note that transposing a one-dimensional array returns the array unchanged:

In [x]: b = np.array([100, 101, 102, 103])

In [x]: b.transpose()

Out[x]: array([100, 101, 102, 103])

See Section 6.1.11 for more on representing vectors with NumPy arrays.

Merging and Splitting Arrays
A clutch of NumPy methods merge and split arrays in different ways. np.vstack,
np.hstack and np.dstack stack arrays vertically (in sequential rows), horizontally (in
sequential columns) and depthwise (along a third axis). For example,

In [x]: a = np.array([0, 0, 0, 0])

In [x]: b = np.array([1, 1, 1, 1])

In [x]: c = np.array([2, 2, 2, 2])

In [x]: np.vstack((a, b, c))

Out[x]:

array([[0, 0, 0, 0],

[1, 1, 1, 1],

[2, 2, 2, 2]])

In [x]: np.hstack((a, b, c))

Out[x]:

array([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2])

In [x]: np.dstack((a, b, c))

Out[x]:

array([[[0, 1, 2],

[0, 1, 2],

[0, 1, 2],

[0, 1, 2]]])

Note that the array created contains an independent copy of the data from the original
arrays.11

The inverse operations, np.vsplit, np.hsplit and np.dsplit, split a single array
into multiple arrays by rows, columns or depth. In addition to the array to be split,
these methods require an argument indicating how to split the array. If this argument
is a single integer, the array is split into that number of equal-sized arrays along the
appropriate axis. For example,

In [x]: a = np.arange(6)

11 NumPy has to copy the data because it has to store its data in one contiguous block of memory and the
original arrays may be dispersed in different noncontiguous locations.

6.1 Basic Array Methods 209

In [x]: a

Out[x]: array([0, 1, 2, 3, 4, 5])

In [x]: np.hsplit(a, 3)

Out[x]: [array([0, 1]), array([2, 3]), array([4, 5])]

As can be seen, a list of array objects is returned. If the second argument is a sequence
of integer indexes, the array is split on those indexes:

In [x]: a

Out[x]: array([0, 1, 2, 3, 4, 5])

In [x]: np.hsplit(a, (2, 3, 5))

[array([0, 1]), array([2]), array([3, 4]), array([5])]

– this is the same as the list [a[:2], a[2:3], a[3:5], a[5:]]. Unlike with np.hstack,
etc., the arrays returned are views on the original data.12

Example E6.3 Suppose you have a 3 × 3 array to which you wish to add a row or
column. Adding a row is easy with np.vstack:

In [x]: a = np.ones((3, 3))

In [x]: np.vstack((a, np.array((2, 2, 2))))

Out[x]:

array([[1., 1., 1.],

[1., 1., 1.],

[1., 1., 1.],

[2., 2., 2.]])

Adding a column requires a bit more work, however. You can’t use np.hstack directly:

In [x]: a = np.ones((3, 3))

In [x]: np.hstack((a, np.array((2, 2, 2))))

... [Traceback information] ...

ValueError: all the input arrays must have same number of dimensions

This is because np.hstack cannot concatenate two arrays with different numbers of
rows. Schematically:

[[1., 1., 1.], [2., 2., 2.]

[1., 1., 1.], + = ?

[1., 1., 1.]]

We can’t simply transpose our new row, either, because it’s a one-dimensional array and
its transpose is the same shape as the original. So we need to reshape it first:

In [x]: a = np.ones((3, 3))

In [x]: b = np.array((2, 2, 2)).reshape(3, 1)

In [x]: b

array([[2],

[2],

[2]])

In [x]: np.hstack((a, b))

Out[x]:

12 NumPy does this for efficiency reasons – copying large amounts of data is expensive and not necessary to
fulfill the function of these splitting methods.

210 NumPy

array([[1., 1., 1., 2.],

[1., 1., 1., 2.],

[1., 1., 1., 2.]])

6.1.6 Indexing and Slicing an Array

An array is indexed by a tuple of integers and, as for Python sequences, negative indexes
count from the end of the axis. Slicing and striding is supported in the same way as well.
Note, however, that slicing a NumPy array returns a view on its data, not a copy of the
data as for Python lists. For one-dimensional arrays there is only one index:
In [x]: a = np.linspace(1, 6, 6)

In [x]: print(a)

[1. 2. 3. 4. 5. 6.]

In [x]: a[1:4:2] # elements a[1] and a[3] (a stride of 2)

Out[x]: array([2., 4.])

In [x]: a[3::-2] # elements a[3] and a[1] (a stride of -2)

Out[x]: array([4., 2.]

Multidimensional arrays have an index for each axis. If you want to select every item
along a particular axis, replace its index with a single colon:
In [x]: a = np.linspace(1, 12, 12).reshape(4, 3)

In [x]: a

Out[x]:

array([[1., 2., 3.],

[4., 5., 6.],

[7., 8., 9.],

[10., 11., 12.]])

In [x]: a[3, 1]

Out[x]: 11.0

In [x]: a[2, :] # everything in the third row

Out[x]:

array([7., 8., 9.])

In [x]: a[:, 1] # everything in the second column

Out[x]: array([2., 5., 8., 11.])

In [x]: a[1:-1, 1:] # middle rows, second column onwards

Out[x]:

array([[5., 6.],

[8., 9.]])

These and further examples of NumPy array slicing are illustrated in Figure 6.1.
The special ellipsis notation (...) is useful for high-rank arrays: in an index, it repre-

sents as many colons as are necessary to represent the remaining axes. For example, for
a four-dimensional array, a[3, 1, ...] is equivalent to a[3, 1, :, :] and a[3, ...

,1] is equivalent to a[3, :, :, 1].
The colon and ellipsis syntax also works for assignment:

In [x]: a[:, 1] = 0 # set all elements in the second column to zero

In [x]: print(a)

[[1. 0. 3.]

[4. 0. 6.]

[7. 0. 9.]

[10. 0. 12.]]

6.1 Basic Array Methods 211

10

7

4

1

11

8

5

2

12

9

6

3

a[2, :]

(a)

10

7

4

1

11

8

5

2

12

9

6

3

a[:, 1]

(b)

10

7

4

1

11

8

5

2

12

9

6

3

a[1:-1, 1:]

(c)

10

7

4

1

11

8

5

2

12

9

6

3

a[::2, :]

(d)

10

7

4

1

11

8

5

2

12

9

6

3

a[2:, :2]

(e)

10

7

4

1

11

8

5

2

12

9

6

3

a[1::2, ::2]

(f)

Figure 6.1 Various ways to slice a NumPy array.

Advanced Indexing
NumPy arrays can also be indexed by sequences that aren’t simple tuples of integers,
including other lists, arrays of integers and tuples of tuples. Such “advanced indexing”
creates a new array with its own copy of the data, rather than a view:

In [x]: a = np.linspace(0., 0.5, 6)

In [x]: print(a)

[0. 0.1 0.2 0.3 0.4 0.5]

In [x]: ia = [1, 4, 5] # a list of indexes

In [x]: print(a[ia])

[0.1 0.4 0.5]

In [x]: ia = np.array(((1, 2), (3, 4)))

In [x]: print(a[ia]) # an array to be formed from the specified indexes

[[0.1 0.2]

[0.3 0.4]]

One can even index a multidimensional array with multidimensional arrays of indexes,
picking off individual elements at will to build an array of a specified shape. This can
lead to some rather baroque code:

In [x]: a = np.linspace(1, 12, 12).reshape(4, 3)

In [x]: print(a)

[[1. 2. 3.]

[4. 5. 6.]

[7. 8. 9.]

[10. 11. 12.]]

212 NumPy

In [x]: ia = np.array(((1, 0), (2, 1)))

In [x]: ja = np.array(((0, 1), (1, 2)))

In [x]: print(a[ia, ja])

[[4. 2.]

[8. 6.]]

Here we build a 2×2 array (the shape of the index arrays) whose elements are a[1, 0],

a[0, 1] on the top row and a[2, 1], a[1, 2] on the bottom row.
Instead of indexing an array with a sequence of integers, it is also possible to use an

array of boolean values. The True elements of this indexing array identify elements in
the target array to be returned:

In [x]: a = np.array([-2, -1, 0, 1, 2])

In [x]: ia = np.array([False, True, False, True, True])

In [x]: print(a[ia])

[-1 1 2]

Because comparisons are vectorized across arrays just like mathematical operations,
this leads to some useful shortcuts:

In [x]: print(a)

[-2 -1 0 1 2]

In [x]: ib = a < 0

In [x]: print(ib)

[True True False False False]

In [x]: a[ib] = 0 # set all negative elements to zero

In [x]: print(a)

[0 0 0 1 2]

It is not actually necessary to store the intermediate boolean array, ib, and a[a < 0] =

0 does the same job:

In [x]: a = np.array([-2, -1, 0, 1, 2])

In [x]: a[a < 0] = 0

In [x]: print(a)

[0 0 0 1 2]

The boolean operations not, and and or are implemented on boolean arrays with the
operators ˜, & and | respectively. For example,

In [x]: years = np.array([1900, 1904, 1990, 1993, 2000, 2014, 2016, 2100])

In [x]: leap_year = (years % 400 == 0) | (years % 4 == 0) & ~(years % 100 == 0)

In [x]: print(list(zip(years, leap_year)))

Out[x]: [(1900, False), (1904, True), (1990, False), (1993, False),

(2000, True), (2014, False), (2016, True), (2100, False)]

Adding an Axis
To add an axis (i.e. dimension) to an array, insert np.newaxis in the desired position:

In [x]: a = np.linspace(1, 4, 4).reshape(2, 2)

In [x]: print(a) # a 2 x 2 array (rank = 2)

[[1. 2.]

[3. 4.]]

In [x]: a.shape()

(2, 2)

In [x]: b = a[:, np.newaxis, :]

6.1 Basic Array Methods 213

In [x]: print(b) # a 2 x 1 x 2 array (rank=3)

[[[1. 2.]]

[[3. 4.]]]

In [x]: b.shape

(2, 1, 2)

In fact, np.newaxis is the None object, so None can be used directly in its place if desired.

Example E6.4 A Sudoku square consists of a 9 × 9 grid with entries such that each
row, column and each of the nine nonoverlapping 3 × 3 tiles contains the numbers 1–9
once only. The following program verifies that a provided grid is a valid Sudoku square.

Listing 6.2 Verifying the validity of a Sudoku square

import numpy as np

def check_sudoku(grid):

""" Return True if grid is a valid Sudoku square, otherwise False. """

for i in range(9):

j, k index the top left-hand corner of each 3 x 3 tile.

j, k = (i // 3) * 3, (i % 3) * 3

Ê if len(set(grid[i,:])) != 9 or len(set(grid[:,i])) != 9\

or len(set(grid[j:j+3, k:k+3].ravel())) != 9:

return False

return True

sudoku = """145327698

839654127

672918543

496185372

218473956

753296481

367542819

984761235

521839764"""

Turn the provided string, sudoku, into an integer array.

grid = np.array([[int(i) for i in line] for line in sudoku.split()])

print(grid)

if check_sudoku(grid):

print('grid valid')

else:

print('grid invalid')

Ê Here, we use the fact that an array of length nine contains nine unique elements if the
set formed from these elements has cardinality 9. No check is made that the elements
themselves are actually the numbers 1–9.

Meshes
To evaluate a multidimensional function on a grid of points, a mesh is useful The
function np.meshgrid is passed a series of N one-dimensional arrays representing coor-
dinates along each dimension and returns a set of N-dimensional arrays comprising a

214 NumPy

mesh of coordinates at which the function can be evaluated. For example, in the two-
dimensional case:
In [x]: x = np.linspace(0, 5, 6)

In [x]: y = np.linspace(0, 3, 4)

In [x]: X, Y = np.meshgrid(x, y)

In [x]: X

Out[x]:

array([[0., 1., 2., 3., 4., 5.],

[0., 1., 2., 3., 4., 5.],

[0., 1., 2., 3., 4., 5.],

[0., 1., 2., 3., 4., 5.]])

In [x]: Y

Out[x]:

array([[0., 0., 0., 0., 0., 0.],

[1., 1., 1., 1., 1., 1.],

[2., 2., 2., 2., 2., 2.],

[3., 3., 3., 3., 3., 3.]])

The arrays X and Y can each be indexed with indexes i, j: the x array is repeated as
rows down X and the y array as columns across Y. A function of two coordinates can
therefore be evaluated on the grid as simply f(X, Y).

Setting the optional argument sparse to True will return sparse grid to conserve
memory. In the previous example, instead of two arrays, both with shapes (6, 4), arrays
with shapes (1, 6) and (4, 1) that can be broadcast against each other (see Section
6.1.7) will be returned:
In [X]: X, Y = np.meshgrid(x, y, sparse=True)

In [X]: X

Out[X]: array([[0., 1., 2., 3., 4., 5.]])

In [X]: Y

Out[X]:

array([[0.],

[1.],

[2.],

[3.]])

♦6.1.7 Broadcasting

We have already seen that simple operations such as addition and multiplication can be
carried out elementwise on two arrays of the same shape (vectorization):
In [x]: a = np.array([1, 2, 3])

In [x]: b = np.array([0, 10, 100])

In [x]: a * b

Out[x]: array([0, 20, 300])

Broadcasting describes the rules that NumPy uses to carry out such operations when
the arrays have different shapes. This allows the operation to be carried out using
precompiled C loops instead of slower, Python loops, but there are constraints as to
which array shapes can be broadcast against each other. The rules are applied on each
dimension of the arrays, starting with the last and working backward. Two dimensions
compared in this way are said to be compatible if they are equal or one of them is 1.

6.1 Basic Array Methods 215

The simplest example of broadcasting involves the operation between an array and
a scalar (which may be considered for this purpose to be a one-dimensional array of
length 1). Consider

In [x]: a = np.array([[1, 2, 3], [4, 5, 6]])

In [x]: b = 2

In [x]: c = a * b

In [x]: c

Out[x]:

array([[2, 4, 6],

[8, 10, 12]])

The dimensions of a and b are compatible:

a: 2 x 3

b: 1

c: 2 x 3

Here, b can be broadcast across the two dimensions of array a by repetition of its value
for every element in that array. Similarly, an array of shape (3,) can be broadcast across
both rows of a:

In [x]: b = np.array([1, 2, 3])

In [x]: c = a * b

In [x]: c

Out[x]:

array([[1, 4, 9],

[4, 10, 18]])

a: 2 x 3

b: 3

c: 2 x 3

That is, for each row of a, its entries are multiplied by the corresponding entries of
the one-dimensional array b. However, attempting to multiply a by an array whose last
dimension is not 1 or 3 is a ValueError here:

In [x]: b = np.array([1, 2])

In [x]: a * b

...

----> 1 a * b

ValueError: operands could not be broadcast together with shapes (2,3) (2,)

In the example of the sparse mesh created in the previous section, the arrays with
shapes (1, 6) and (4, 1) are compatible. For example,

In [x]: f = X * Y

Out[x]: f

array([[0., 0., 0., 0., 0., 0.],

[0., 1., 2., 3., 4., 5.],

[0., 2., 4., 6., 8., 10.],

[0., 3., 6., 9., 12., 15.]])

The broadcasting process “stretches out” the second axis of Y from 1 to 6 to match that
of X and the first axis of X from 1 to 4 to match that of Y:

216 NumPy

X: 1 x 6

Y: 4 x 1

f: 4 x 6

To force a broadcast on an array with insufficient dimensions to meet your require-
ments, you can always add an axis with np.newaxis. For example, one way to take the
outer product of two arrays is by adding a dimension to one of them and broadcasting
the multiplication:

In [x]: a = np.array([1, 2, 3])

In [x]: b = np.array([0, 10, 100])

In [x]: c = a[:, np.newaxis] * b

In [x]: c

Out[x]:

array([[0, 20, 300],

[0, 40, 600],

[0, 60, 900]])

Thus, instead of matching elements in the two arrays with shapes (3,), the extra axis on
a creates an array with shape (3, 1) and this dimension is stretched across the array b:

a[:,np.newaxis]: 3 x 1

b: 3

c: 3 x 3

6.1.8 Maximum and Minimum Values

NumPy arrays have the methods min and max, which return the minimum and maximum
values in the array. By default, a single value for the flattened array is returned; to find
maximum and minimum values along a given axis, use the axis argument:

In [x]: a = np.array([[3, 0, -1, 1], [2, -1, -2, 4], [1, 7, 0, 4]])

In [x]: print(a)

[[3 0 -1 1]

[2 -1 -2 4]

[1 7 0 4]]

In [x]: a.min() # "global" minimum

Out[x]: -2

In [x]: a.max() # "global" maximum

Out[x]: 7

In [x]: print(a.min(axis=0))

[1 -1 -2 1] # minima in each column

In [x]: print(a.max(axis=1))

[3 4 7] # maxima in each row

Often, one wants not the maximum (or minimum) value itself but its index in the
array. This is what the methods argmin and argmax do. By default, the index returned
is into the flattened array, so the actual value can be retrieved using a view on the array
created by ravel:

In [x]: a.argmin()

6

In [x]: a.ravel()[a.argmin()]

-2

6.1 Basic Array Methods 217

1 7 0 4

2 -1 -2 4

3 0 -1 1

2

1

0

0 1 2 3

3 7 0 4

0 2 2 1

(a) axis=0

1 7 0 4

2 -1 -2 4

3 0 -1 1

2

1

0

0 1 2 3

7

4

3

1

3

0

(b) axis=1

Figure 6.2 (a) a.max(axis=0) giving the maximum values and a.argmax(axis=0) giving the
indexes of the maximum values of each column in array a (that is, maintaining the row
dimension) and (b) The same for axis=1: maximum values along each row.

In [x]: print(a.argmax(axis=0))

[0 2 2 1] # row indexes of maxima in each column

In [x]: print(a.argmax(axis=1))

[0 3 1] # column indexes of maxima in each row

Figure 6.2 illustrates the process for axis=0 and for axis=1. Notice that if more than
one equal maximum exists in a column, the index of the first is returned.

Example E6.5 Consider the following oscillating functions on the interval [0, L]:

fn(x) = x(L − x) sin
2πx
λn

; λn =
2L
n
, n = 1, 2, 3, . . .

The following code defines a two-dimensional array holding values of these functions
for L = 1 on a grid of N = 100 points (rows) for n = 1, 2, . . . , 5 (columns). The position
of the maximum and minimum in each column is calculated with argmax(axis=0) and
argmin(axis=0). (See Figure 6.3.)

Listing 6.3 argmax and argmin

eg6-array_maxmin.py

import numpy as np

import matplotlib.pyplot as plt

N = 100

L = 1

def f(i, n):

x = i * L / N

218 NumPy

0 20 40 60 80 100
x

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

f n
(x

)

Figure 6.3 Maxima and minima of the functions fn(x) described in Example E6.5. Note that
only the “global” maximum and minimum are returned for each function, and that where more
than one point has the same maximum or minimum value, only the first is returned.

lam = 2 * L / (n+1)

return x * (L-x) * np.sin(2*np.pi*x/lam)

a = np.fromfunction(f, (N+1, 5))

min_i = a.argmin(axis=0)

max_i = a.argmax(axis=0)

plt.plot(a, c='k')

plt.plot(min_i, a[min_i, np.arange(5)], 'v', c='k', markersize=10)

plt.plot(max_i, a[max_i, np.arange(5)], '^', c='k', markersize=10)

plt.xlabel(r'x')

plt.ylabel(r'$f_n(x)$')

plt.show()

6.1.9 Sorting an Array

NumPy arrays can be sorted in several different ways with the sort method, which
orders the numbers in an array in place. By default, this method sorts multidimensional
arrays along their last axis. To sort along some other axis, set the axis argument. For
example,

In [x]: a = np.array([5, -1, 2, 4, 0, 4])

In [x]: a.sort()

In [x]: print(a)

[-1 0 2 4 4 5]

In [x]: b = np.array([[0, 3, -2], [7, 1, 3], [4, 0, -1]])

In [x]: print(b)

[[0 3 -2]

[7 1 3]

6.1 Basic Array Methods 219

[4 0 -1]]

In [x]: b.sort() # sort the numbers along each row

In [x]: print(b)

[[-2 0 3]

[1 3 7]

[-1 0 4]]

This is the same as b.sort(axis=1) – “for each row, order the numbers by column.” To
sort the numbers in each column – “for each column, order the numbers by row,” set
axis=0:

In [x]: b = np.array([[0, 3, -2], [7, 1, 3], [4, 0, -1]])

In [x]: b.sort(axis=0) # sort the numbers along each column

In [x]: print(b)

[[0 0 -2]

[4 1 -1]

[7 3 3]]

The sorting algorithm used is the “quicksort” algorithm, which is a good general-
purpose choice.13

Two other sorting functions are worth mentioning. np.argsort returns the indexes
that would sort an array rather than the sorted elements themselves:

In [x]: a = np.array([3, 0, -1, 1])

In [x]: np.argsort(a)

Out[x]: array([2, 1, 3, 0])

Therefore,

In [x]: a[np.argsort(a)]

Out[x]: array([-1, 0, 1, 3])

The method np.searchsorted takes a sorted array, a, and one or more values, v, and
returns the indexes in a at which the values should be entered to maintain its order:

In [x]: a = np.array([1, 2, 3, 4])

In [x]: np.searchsorted(a, 3.5)

Out[x]: 3

In [x]: np.searchsorted(a, (3.5, 0, 1.1))

Out[x]: array([3, 0, 1])

6.1.10 Structured Arrays

Also known as record arrays, structured arrays are arrays consisting of rows of values
where each value may have its own data type and name. These rows are the “records.”
This type of array is very much like a table of data with rows (records) consisting of
values that fall into columns (fields) and provides a very convenient and natural way to
manipulate scientific data that is often obtained or presented in tabular form.

13 Some arrays can be sorted faster with the alternative mergesort or heapsort algorithms; these can be
selected by setting the optional kind argument to the string literal values 'mergesort' and 'heapsort',
for example: b.sort(axis=1, kind='heapsort').

220 NumPy

Structured arrays are useful for the manipulation of small sets of heterogeneous data,
but this functionality is available at a higher level in the pandas library (see Chapter 9),
which is often more convenient for large data sets.

Creating a Structured Array
The structure of a record array is defined by its dtype using a more complex syntax than
we have used previously. For example,

In [x]: a = np.zeros(5, dtype='int8, float32, complex_')

In [x]: print(a)

[(0, 0.0, 0j) (0, 0.0, 0j) (0, 0.0, 0j) (0, 0.0, 0j) (0, 0.0, 0j)]

In [x]: a.dtype

dtype([('f0', '|i1'), ('f1', '<f4'), ('f2', '<c16')])

Here, we have created an array of five records, each of which has three fields, defined
by constructing a dtype specified by the string 'int8, float32, complex_'.

• The first field is a single-byte, signed integer (int8, which is described by the
string '|i1' – clearly the endianness [byte order] is not relevant in a one-byte
quantity).

• The second is a single-precision floating-point number, which is stored in mem-
ory (on my system) as a little-endian 4-byte sequence, indicated by '<f4'.

• The final field is defined to be a complex number to default precision, which
on my system is stored in 16-bytes, little-endian (complex_ is equivalent to
complex128 which corresponds to a data type '<c16').

Because we did not explicitly name the fields, they are given the default names 'f0',
'f1' and 'f2'. To name the fields of our structured array explicitly, pass the dtype

constructor a list of (name, dtype descriptor) tuples: for example,

In [x]: dt = np.dtype([('time', 'f8'), ('signal', 'i4')])

In [x]: a = np.zeros(10, dtype=dt)

In [x]: a

Out[x]:

array([(0.0, 0), (0.0, 0), ..., (0.0, 0)],

dtype=[('time', '<f8'), ('signal', '<i4')])

A structured array can therefore be visualized as a table of data values with column
headings for each field.

Assigning records in a structured array is as expected:

In [x]: a[0] = (0., 4)

In [x]: a[1:3] = [(0.5, -3), (1., -5)]

In [x]: a

Out[x]:

array([(0.0, 4), (0.5, -3), (1.0, -5), ..., (0.0, 0)],

dtype=[('time', '<f8'), ('signal', '<i4')])

but the real power of this approach is in the ability to reference a field by its name. For
example, to set the 'time' column in our array to a linear sequence:

In [x]: a['time'] = np.linspace(0., 4.5, 10)

In [x]: print(a)

6.1 Basic Array Methods 221

[(0.0, 4) (0.5, -3) (1.0, -5) (1.5, 0) (2.0, 0) (2.5, 0) (3.0, 0) (3.5, 0)

(4.0, 0) (4.5, 0)]

In [x]: print(a['time'][-1])

4.5

Likewise, to obtain a view on a column, refer to it by name:

In [x]: print(a['time'])

[0. 0.5 1. 1.5 2. 2.5 3. 3.5 4. 4.5]

In [x]: print(a['signal'].min())

-5

More Ways to Create a Structured Array
There are several (arguably, too many) ways to define the dtype describing a structured
array. So far we have used a string of comma-separated identifiers and a list of tuples. A
third way is to use a dictionary. The basic usage assigns a list of values to the two keys,
'names' and 'formats', naming the fields and specifying their formats respectively:

In [x]: dt = np.dtype({ 'names': ['time', 'signal'],

'formats': ['f8', 'i4']

})

In [x]: a = np.zeros(10, dtype=dt)

defines the same structured array of (time, signal) records as before. A third key,
'titles', can be used to give each field a more detailed description; each title can then
be used as an alias to its name in referring to that field in the array.14

In [x]: dt = np.dtype({'names': ['candidate', 'mark', 'grade'],

'formats': ['|S50', 'u1', '|S2'],

'titles': ['Candidate Name', 'Percentage Mark', 'Grade: A-F']})

In [x]: a = np.zeros(10, dtype=dt)

In [x]: a[0] = ('John Brown', 64, 'B-')

In [x]: a[1] = ('Jane Smith', 78, 'A')

In [x]: print(a['Candidate Name'])

[b'John Brown' b'Jane Smith' b'' b'' b'' b'' b'' b'' b'' b'']

In [x]: print(a['Percentage Mark'])

[64 78 0 0 0 0 0 0 0 0]

Sorting Structured Arrays
Structured arrays can be sorted by giv dimensionsing a specific order to the fields used
with the order argument. For example, with the following structured array:

In [x]: data = [('NiCd', 1.2, 0.14, 2000),

('Lead acid', 2.1, 0.14, 700),

('Lithium ion', 3.6, 0.46, 800)]

In [x]: dtype = [('name', '|S20'),

('voltage', 'f8'),

('specific energy', 'f8'),

('cycle durability', 'i4')]

In [x]: a = np.array(data, dtype=dtype)

14 In fact, title can be any Python object and can be used to provide detailed “metadata” concerning the
corresponding field.

222 NumPy

In [x]: a.sort(order='specific energy')

In [x]: print(a)

[(b'Lead acid', 2.1, 0.14, 700) (b'NiCd', 1.2, 0.14, 2000)

(b'Lithium ion', 3.6, 0.46, 800)]

In [x]: a.sort(order=['specific energy', 'voltage'])

In [x]: print(a)

[(b'NiCd', 1.2, 0.14, 2000) (b'Lead acid', 2.1, 0.14, 700)

(b'Lithium ion', 3.6, 0.46, 800)]

The second sort operation here sorts the records by specific energy, and if this is the
same for two or more records, then it sorts by voltage.

6.1.11 Arrays as Vectors

A vector with n components can be defined as a regular one-dimensional array with n

elements.
In addition to elementwise operations such as vector addition, subtraction and so

on, NumPy array objects implement scalar (dot) product and vector (cross) product
methods:

In [x]: a = np.array([1, 0, -3]) # vector as a one-dimensional array

In [x]: b = np.array([2, -2, 5])

In [x]: a.dot(b) # or a @ b or b.dot(a) or np.dot(a,b)

Out[x]: -13

In [x]: np.cross(a, b)

array([-6, -11, -2])

You can only take the cross product of an array with two or three elements; the third
component is assumed to be zero in the former case. To use dot and cross on two
individual vectors, ensure that they are row vectors as described previously and not
column vectors represented as an (n, 1) array:

In [x]: a = np.array([[1], [0], [-3]]) # a 3 x 1 two-dimensional array

In [x]: b = np.array([[2], [-2], [5]])

In [x]: print(a)

[[1]

[0]

[-3]]

In [x]: np.dot(a,b) # tries matrix multiplication; won ' t work
...

ValueError: shapes (3,1) and (3,1) not aligned: 1 (dim 1) != 3 (dim 0)

If you do want to take the dot product of two column vectors using np.dot, they need
to be turned into row vectors:

In [x]: np.dot(a.T[0], b.T[0]) # transpose to row vectors

Out[x]: -13

This is a bit tortuous: the index is needed because the transpose of our (n, 1) (two-
dimensional) array is a (1, n) array from which we want the first and only row for
our vector. Alternatively, we can operate using a flattened view of the column vectors
obtained with ravel:

6.1 Basic Array Methods 223

In [x]: a.ravel() @ b.ravel() # the same as a.ravel().dot(b.ravel())

Out[x]: -13

To turn a row vector represented by a one-dimensional array of shape (n,) into a
column vector of shape (n, 1), add an axis:

In [x]: r = np.array([3, 4, 5])

In [x]: c = r[:, np.newaxis]

In [x]: c

array([[3],

[4],

[5]])

6.1.12 Logic and Comparisons

NumPy provides a set of methods for comparing and performing logical operations on
arrays elementwise. The more useful of these are summarized in Table 6.4.

np.all and np.any work the same as Python’s built-in functions of the same name15

(see Section 2.4.3):

In [x]: a = np.array([[1, 2, 0, 3], [4, 0, 1, 1]])

In [x]: np.any(a), np.all(a)

Out[x]: (True, False) # some (but not all) elements are equivalent to True

np.isreal and np.iscomplex return boolean arrays:

In [x]: b = np.array([1, -1j, 0.5j, 0, 1-2.5j])

In [x]: np.isreal(b)

Out[x]: array([True, False, False, True, False], dtype=bool)

In [x]: np.iscomplex(b)

Out[x]: array([False, True, True, False, True], dtype=bool)

Because the representation of floating-point numbers is not exact, comparing two
float or complex arrays with the == operator is not always reliable and is not recom-
mended Instead, the best we can do is see if two values are “close” to one another
within some (typically small) absolute or relative tolerance – NumPy provides the

Table 6.4 ndarray comparison methods

Function Description
np.all(a) Determine whether all array elements of a evaluate to True.
np.any(a) Determine whether any array element of a evaluates to True.
np.isreal(a) Determine whether each element of array a is real.
np.iscomplex(a) Determine whether each element of array a is a complex

number.
np.isclose(a, b) Return a boolean array of the comparison between arrays a and

b for equality within some tolerance.
np.allclose(a, b) Return a True if all the elements in the arrays a and b are equal

to within some tolerance.

15 Except that they don’t work on generator or iterator objects.

224 NumPy

function np.isclose(a, b) for elementwise comparisons of two arrays: it returns True
for elements satisfying

abs(a-b) <= (atol + rtol * abs(b))

with absolute tolerance, atol, and relative tolerance, rtol, which are 10−8 and 10−5,
respectively by default but can be changed by setting the corresponding arguments.16

An additional argument, equal_nan, defaults to False, meaning that nan values in cor-
responding positions in the two arrays are treated as different; to treat such elements as
equal, set equal_nan=True.

In [x]: a = np.array([1.66e-27, 1.38e-23, 6.63e-34, 6.02e23, np.nan])

In [x]: b = np.array([1.66e-27, 1.66e-27, 1.66e-27, 6.00e23, np.nan])

In [x]: np.isclose(a, b)

Out[x]: array([True, True, True, False, False], dtype=bool)

In [x]: np.isclose(a, b, equal_nan=True)

Out[x]: array([True, True, True, False, True], dtype=bool)

Note that small numbers compare as equal even though they may differ by many orders
of magnitude – to correct this, set atol=0 to compare within relative tolerance only:

In [x]: np.isclose(a, b, atol=0)

Out[x]: array([True, False, False, False, False], dtype=bool)

Finally, allclose(a, b) returns a single value: True only if every element in a is equal
to the corresponding element in b (within the tolerance defined by atol and rtol), and
otherwise False.

In [x]: x = np.linspace(0, np.pi, 100)

In [x]: np.allclose(np.sin(x)**2, 1 - np.cos(x)**2)

Out[x]: True

6.1.13 Exercises

Questions

Q6.1.1 What is the difference between the objects np.ndarray and np.array?

Q6.1.2 Why doesn’t this create a two-dimensional array?

>>> np.array((1, 0, 0), (0, 1, 0), (0, 0, 1), dtype=float)

What is the correct way?

Q6.1.3 What is the difference, if any, between the following statements:

>>> a = np.array([0, 0, 0])

>>> a = np.array([[0, 0, 0]])

Q6.1.4 Explain the following behavior:

16 Note that this relation is not symmetric in a and b, so it is possible that isclose(a, b) may not equal
isclose(b, a).

6.1 Basic Array Methods 225

In [x]: a, b = np.zeros((3,)), np.ones((3,))

In [x]: a.dtype = 'int'

In [x]: a

Out[x]: array([0, 0, 0])

In [x]: b.dtype = 'int'

In [x]: b

Out[x]: array([4607182418800017408, 4607182418800017408, 4607182418800017408])

What is the correct way to convert an array of one data type to an array of another?

Q6.1.5 A 3 × 4 × 4 array is created with

In [x]: a = np.linspace(1, 48, 48).reshape(3, 4, 4)

Index or slice this array to obtain the following:

(a) 20.0

(b) [9. 10. 11. 12.]

(c) The 4 × 4 array:

[[33. 34. 35. 36.]

[37. 38. 39. 40.]

[41. 42. 43. 44.]

[45. 46. 47. 48.]]

(d) The 3 × 2 array:

[[5., 6.],

[21., 22.],

[37., 38.]]

(e) The 4 × 2 array:

[[36. 35.]

[40. 39.]

[44. 43.]

[48. 47.]]

(f) The 3 × 4 array:

[[13. 9. 5. 1.]

[29. 25. 21. 17.]

[45. 41. 37. 33.]]

(g) (Harder) Using an array of indexes, the 2 × 2 array:

[[1. 4.]

[45. 48.]]

Q6.1.6 Write an expression, using boolean indexing, which returns only the values
from an array that have magnitudes between 0 and 1.

Q6.1.7 Why does the following statement evaluate to True even though the two num-
bers passed to np.isclose() differ by more than atol?

In [x]: np.isclose(-2.00231930436153, -2.0023193043615, atol=1.e-14)

Out[x]: True

226 NumPy

Q6.1.8 Explain why the following evaluates to True even though the two approxima-
tions to π differ by more than 10−16:

In [x]: np.isclose(3.1415926535897932, 3.141592653589793, atol=1.e-16, rtol=0)

Out[x]: True

whereas this statement works as expected:

In [x]: np.isclose(3.14159265358979, 3.1415926535897, atol=1.e-14, rtol=0)

Out[x]: False

Q6.1.9 Verify that the magic square created in Example E6.2 satisfies the conditions
that it contains the numbers 1 to N2 and that its rows, columns and main diagonals sum
to N(N2 + 1)/2.

Q6.1.10 Write a one-line statement that returns True if an array is a monotonically
increasing sequence or False otherwise.

Hint: np.diff returns the difference between consecutive elements of a sequence. For
example,

In [x]: np.diff([1, 2, 3, 3, 2])

Out[x]: array([1, 1, 0, -1])

Q6.1.11♦ (Harder) The dtype np.uint8 represents an unsigned integer in 8 bits. Its
value may therefore be in the range 0−255. Explain the following behavior:

In [x]: x = np.uint8(250)

In [x]: x * 2

Out[x]: 500

In [x]: x = np.array([250,], dtype=np.uint8)

In [x]: x * 2

Out[x]: array([244], dtype=uint8)

Problems

P6.1.1 Turn the following data concerning various species of cetacean into a NumPy
structured array and order it by (a) mass and (b) population. Determine in each case the
index at which Bryde’s whale (population: 100 000, mass: 25 tonnes) should be inserted
to keep the array ordered.

6.1 Basic Array Methods 227

Name Population Mass/tonnes
Bowhead whale 9000 60
Blue whale 20 000 120
Fin whale 100 000 70
Humpback whale 80 000 30
Gray whale 26 000 35
Atlantic white-sided dolphin 250 000 0.235
Pacific white-sided dolphin 1 000 000 0.15
Killer whale 100 000 4.5
Narwhal 25 000 1.5
Beluga 100 000 1.5
Sperm whale 2 000 000 50
Baiji 13 0.13
North Atlantic right whale 300 75
North Pacific right whale 200 80
Southern right whale 7000 70

A text file containing these data can be downloaded at https://scipython.com/ex/bfk.

P6.1.2 The shoelace algorithm for calculating the area of a simple polygon (that
is, one without holes or self-intersections) proceeds as follows: Write down the (x, y)
coordinates of the N vertexes in an N × 2 array and then repeat the coordinates of the
first vertex as the last row to make an (N + 1) × 2 array. Now (a) multiply each x-
coordinate value in the first N rows by the y-coordinate value in the next row down
and take the sum, S 1 = x1y2 + x2y3 + . . . + xNy1. Then (b) multiply each y-coordinate
value in the first N rows by the x-coordinate in the next row down and take the sum,
S 2 = y1x2 + y2x3 + . . . + yN x1. The area of the polygon is then 1

2 |S 1 − S 2|.

x1 y1

x2 y2

x3 y3

x4 y4

x1 y1

(a)

x1 y1

x2 y2

x3 y3

x4 y4

x1 y1

(b)

Implement this algorithm as a function that takes a NumPy array of vertexes as its
argument and returns the area of the polygon. Do not use Python loops!

P6.1.3 Using NumPy, it is possible to do this exercise without using a single (Python)
loop.

The normalized Gaussian function with mean µ and standard deviation σ is

g(x) =
1

σ
√

2π
exp

(
−

(x − µ)2

2σ2

)
.

https://scipython.com/ex/bfk

228 NumPy

Write a program to calculate and plot the Gaussian functions with µ = 0 and the three
values σ = 0.5, 1, 1.5. Use a grid of 1000 points in the interval −10 ≤ x ≤ 10.

Verify (by direct summation) that the functions are normalized with area 1.
Finally, calculate the first derivative of these functions on the same grid using the

first-order central difference approximation:

g′(x) ≈
g(x + h) − g(x − h)

2h
for some suitably chosen, small h.

6.2 Reading and Writing an Array to a File

Scientific data are frequently read in from a text file, which may contain comments,
missing values and blank lines. Columns of values may be either aligned in a fixed-
width format or separated by one or more delimiting characters (such as spaces, tabs or
commas). Furthermore, there may be a descriptive header and even footnotes to the file,
which make it hard to parse directly using Python’s string methods.

NumPy provides several functions for reading data from a text file. The simpler
np.loadtxt handles many common cases; the more sophisticated np.genfromtxt

allows for better handling of missing values and footers. These are described in the
following sections.

6.2.1 np.save and np.load

There is a platform-independent binary format for saving a NumPy array:

In [x]: np.save('my-array.npy', a)

will save the array a to the binary file my-array.npy (the .npy extension is appended if
it is not provided). The array can then be reloaded using NumPy on any other operating
system with

In [x]: a = np.load('my-array.npy')

(the .npy extension must be provided).

6.2.2 np.loadtxt

The method prototype for np.loadtxt is

np.loadtxt(fname, dtype=<class 'float'>, comments='#',

delimiter=None, converters=None, skiprows=0,

usecols=None, unpack=False, ndmin=0)

The arguments are as follows:

• fname: The only required argument, fname, which can be a filename, an open file
or a generator returning the lines of data to be parsed.

6.2 Reading and Writing an Array to a File 229

• dtype: The data type of the array defaults to float but can be set explicitly by
the dtype argument. In particular, this is the place to set up names and types for
a structured array (see Section 6.1.10).

• comments: Comments in a file are usually started by some character such as # (as
with Python) or %. To tell NumPy to ignore the contents of any line following this
character, use the comments argument – by default it is set to #.

• delimiter: The string used to separate columns of data in the file; by default it is
None, meaning that any amount of whitespace (spaces, tabs) delimits the data. To
read a comma-separated (csv) file, set delimiter=','.

• converters: An optional dictionary mapping the column index to a function
converting string values in that column to data (e.g. float).

• skiprows: An integer giving the number of lines at the start of the file to skip
over before reading the data (e.g. to pass over header lines). Its default is 0 (no
header).

• usecols: A sequence of column indexes determining which columns of the file
to return as data; by default it is None, meaning all columns will be parsed and
returned.

• unpack: By default, the data table is returned in a single array of rows and columns
reflecting the structure of the file read in. Setting unpack=True will transpose
this array so that individual columns can be picked off and assigned to different
variables.

• ndmin: The minimum number of dimensions the returned array should have. By
default, 0 (so a file containing a single number is read in as a scalar); it can also
be set to 1 or 2.

For example, to read the first, third and fourth columns from the file data.txt into
three separate one-dimensional arrays:
col1, col3, col4 = np.loadtxt('data.txt', usecols=(0, 2, 3), unpack=True)

Example E6.6 The use of np.loadtxt is best illustrated using an example. Consider
the following text file of data relating to a (fictional) population of students. This file
can be downloaded as eg6-a-student-data.txt from https://scipython.com/eg/bac.
Student data collected on 17 July 2014.

Researcher: Dr Wicks, University College Newbury.

The following data relate to N = 20 students. It

has been totally made up and so therefore is 100%

anonymous.

Subject Sex DOB Height Weight BP VO2max

(ID) M/F dd/mm/yy m kg mmHg mL.kg-1.min-1

JW-1 M 19/12/95 1.82 92.4 119/76 39.3

JW-2 M 11/1/96 1.77 80.9 114/73 35.5

JW-3 F 2/10/95 1.68 69.7 124/79 29.1

JW-6 M 6/7/95 1.72 75.5 110/60 45.5

JW-7 F 28/3/96 1.66 72.4 101/68 -

JW-9 F 11/12/95 1.78 82.1 115/75 32.3

JW-10 F 7/4/96 1.60 - -/- 30.1

https://scipython.com/eg/bac

230 NumPy

JW-11 M 22/8/95 1.72 77.2 97/63 48.8

JW-12 M 23/5/96 1.83 88.9 105/70 37.7

JW-14 F 12/1/96 1.56 56.3 108/72 26.0

JW-15 F 1/6/96 1.64 65.0 99/67 35.7

JW-16 M 10/9/95 1.63 73.0 131/84 29.9

JW-17 M 17/2/96 1.67 89.8 101/76 40.2

JW-18 M 31/7/96 1.66 75.1 -/- -

JW-19 F 30/10/95 1.59 67.3 103/69 33.5

JW-22 F 9/3/96 1.70 - 119/80 30.9

JW-23 M 15/5/95 1.97 89.2 124/82 -

JW-24 F 1/12/95 1.66 63.8 100/78 -

JW-25 F 25/10/95 1.63 64.4 -/- 28.0

JW-26 M 17/4/96 1.69 - 121/82 39.

Let’s find the average heights of the male and female students. The columns we need
are the second and fourth, and there are no missing data in these columns so we can
use np.loadtxt. First, construct a record dtype for the two fields, then read the relevant
columns after skipping the first nine header lines:

In [x]: fname = 'eg6-a-student-data.txt'

In [x]: dtype1 = np.dtype([('gender', '|S1'), ('height', 'f8')])

In [x]: a = np.loadtxt(fname, dtype=dtype1, skiprows=9, usecols=(1,3))

In [x]: a

Out[x]:

array([(b'M', 1.8200000524520874), (b'M', 1.7699999809265137),

(b'F', 1.6799999475479126), (b'M', 1.7200000286102295),

...

(b'M', 1.690000057220459)],

dtype=[('gender', 'S1'), ('height', '<f8')])

To find the average heights of the male students, we only want to index the records
with the gender field as M, for which we can create a boolean array:

In [x]: m = a['gender'] == b'M'

In [x]: m

Out[x]: array([True, True, False, True, ..., True], dtype=bool)

m has entries that are True or False for each of the 19 valid records (one is commented
out) according to whether the student is male or female. So the heights of the male
students can be seen to be:

In [x]: print(a['height'][m])

[1.82000005 1.76999998 1.72000003 1.72000003 1.83000004 1.63

1.66999996 1.65999997 1.97000003 1.69000006]

Therefore, the averages we need are

In [x]: m_av = a['height'][m].mean()

Ê In [x]: f_av = a['height'][~m].mean()

In [x]: print('Male average: {:.2f} m, Female average: {:.2f} m'.format(m_av,f_av))

Male average: 1.75 m, Female average: 1.65 m

Ê Note that ~m (“not m”) is the inverse boolean array of m.
To perform the same analysis on the student weights, we have a bit more work to do

because there are some missing values (denoted by “-”). We could use np.genfromtxt

(see Section 6.2.3), but let’s write a converter method instead. We’ll replace the missing
values with the nicely unphysical value of −99. The function parse_weight expects a
string argument and returns a float:

6.2 Reading and Writing an Array to a File 231

def parse_weight(s):

try:

return float(s)

except ValueError:

return -99.

This is the function we want to pass as a converter for column 4:

In [x]: dtype2 = np.dtype([('gender', '|S1'), ('weight', 'f8')])

In [x]: b = np.loadtxt(fname, dtype=dtype2, skiprows=9, usecols=(1, 4),

converters={4: parse_weight})

Now mask off the invalid data and index the array with a boolean array as before:

In [x]: mv = b['weight'] > 0 # elements only True for valid data

In [x]: m_wav = b['weight'][mv & m].mean() # valid and male

In [x]: f_wav = b['weight'][mv & ~m].mean() # valid and female

In [x]: print('Male average: {:.2f} kg,

Female average: {:.2f} kg'.format(m_wav, f_wav))

Male average: 82.44 kg, Female average: 66.94 kg

Finally, let’s read in the blood pressure data. Here we have a problem, because the
systolic and diastolic pressures are not separated by whitespace but by a forward slash
(/). One solution is to reformat each line to replace the slash with a space before it is
fed to np.loadtxt. Recall that fname can be a generator instead of a filename or open
file: we write a suitable generator function, reformat_lines, which takes an open file

object and yields its lines to np.loadtxt, one by one, after the replacement. This is
going to mess with the column numbering because it has the side effect of splitting up
the birth dates into three columns, so in our reformatted lines the blood pressure values
are now in the columns indexed at 7 and 8.

Listing 6.4 Reading the blood-pressure column

eg6-a-read-bp.py

import numpy as np

fname = 'eg6-a-student-data.txt'

dtype3 = np.dtype([('gender', '|S1'), ('bps', 'f8'), ('bpd', 'f8')])

def parse_bp(s):

try:

return float(s)

except ValueError:

return -99.

def reformat_lines(fi):

for line in fi:

line = line.replace('/', ' ')

yield line

with open(fname) as fi:

gender, bps, bpd = np.loadtxt(reformat_lines(fi), dtype3, skiprows=9,

usecols=(1, 7, 8),converters={7: parse_bp, 8: parse_bp},

unpack=True)

Now do something with the data...

232 NumPy

6.2.3 np.genfromtxt

NumPy’s genfromtxt function is similar to np.loadtxt but has a few more options and
is able to cope with missing data.

The following arguments to this function are the same as for np.loadtxt: fname (the
only required argument), dtype, comments, converters, usecols and unpack.

Headers and Footers
Instead of np.loadtxt’s skiprows, the np.genfromtxt function has two optional argu-
ments, skip_header and skip_footer, giving the number of lines to skip at the begin-
ning and the end of the file, respectively.

Fixed-Width Fields
The delimiter argument works the same as for np.loadtxt but can also be provided
as a sequence of integers giving the widths of each field to be read in where the data
columns do not have delimiters. For example, suppose the following text file, data.txt,
is to be interpreted as consisting of four columns with widths 2, 1, 9 and 3 characters
(spaces are indicated with “ ”):

 12 100.231.03

 11 1201.842.04

 11 99.324.02

so that the first row is to be split: ' 1', '2', ' 100.231', '.03'. There is no delim-
iter character, so this isn’t possible with np.loadtxt, but with np.genfromtxt:

In [x]: np.genfromtxt(fname='data.txt', delimiter=[2, 1, 9, 3],

dtype='i4, i4, f8, f8')

array([(1, 2, 100.231, 0.03), (1, 1, 1201.842, 0.04), (1, 1, 99.324, 0.02)],

dtype=[('f0', '<i4'), ('f1', '<i4'), ('f2', '<f8'), ('f3', '<f8')])

as required.

Missing Data
If a data set is incomplete, np.loadtxt will be unable to parse the fields with missing
data into valid values for the array and will raise an exception. np.genfromtxt, however,
sets missing or invalid entries equal to the default values given in Table 6.5.

For example, the comma-separated file here has two ways of indicating missing data:
empty fields and entries with “???”:

10.1,4,-0.1,2

10.2,4,,0

10.3,???,,4

10.4,2,0.,

10.5,-1,???,3

Accordingly, np.genfromtxt sets the missing fields to its defaults:

In [x]: data = np.genfromtxt(fname='data.txt', dtype='f8, i4, f8, i4',

...: delimiter=',')

6.2 Reading and Writing an Array to a File 233

Table 6.5 Default filling values for
missing data used by genfromtxt

Data type Default value
int -1
float np.nan
bool False
complex np.nan + 0.j

In [x]: print(data)

[(10.1, 4, -0.1, 2) (10.2, 4, nan, 0) (10.3, -1, nan, 4) (10.4, 2, 0.0, -1)

(10.5, -1, nan, 3)]

The missing_values and filling_values arguments allow closer control over which
default values to use for which columns. If missing_values is given as a sequence of
strings, each string is associated with a column in the data file, in order; if given as a
dictionary of string values, the keys denote either column indexes (if they are integers)
or column names (if they are strings). The corresponding argument, filling_values,
maps these column indexes or names to default values. If filling_values is provided
as a single value, this value is used for missing data in all columns.

For example, to replace the invalid values in column 1 (indicated by “???”) with 999,
the missing or invalid values in column 2 (also indicated by “???”) with −99 and the
missing values in column 3 with 0:

In [x]: data =np.genfromtxt(fname='data.txt', dtype='f8, i4, f8, i4',

...: delimiter=',', missing_values={1: '???', 2: '???'},

...: filling_values={1: 999, 2: -99., 3: 0})

...:

In [x]: print(data)

[(10.1, 4, -0.1, 2) (10.2, 4, -99.0, 0) (10.3, 999, -99.0, 4)

(10.4, 2, 0.0, 0) (10.5, -1, -99.0, 3)]

Note in particular how the missing entry in the second column has been replaced by 999

instead of the default −1 – this would be particularly important if −1 is a valid value for
this column (however, it is now up to the rest of your code to recognize and know what
to do with values such as 999.17

Column Names
The argument names provides a way of setting names for the columns of data read in. If
it is the boolean value True, the names are read from the first valid line after the number
of lines skipped over specified by the skip_header argument; if names is a comma-
separated string of names or a sequence of strings, those strings will be used as names.
By default, names is None and the field names are taken from the dtype, if given.

17 For more advanced handling of missing values, see the genfromtxt documentation for details on the
usemask argument and masked arrays in general.

234 NumPy

Example E6.7 In an experiment to investigate the Stroop effect, a group of students
were timed reading out 25 randomly ordered color names, first in black ink and
then in a color other than the one they name (e.g. the word “red” in blue ink). The
results are presented in the text file stroop.txt, which can be downloaded from
https://scipython.com/eg/baj . Missing data are indicated by the character X.

Subject Number, Gender, Time (words in black), Time (words in color)

1,F,18.72,31.11

2,F,21.14,52.47

3,F,19.38,33.92

4,M,22.03,50.57

5,M,21.41,29.63

6,M,15.18,24.86

7,F,14.13,33.63

8,F,19.91,42.39

9,F,X,43.60

10,F,26.56,42.31

11,F,19.73,49.36

12,M,18.47,31.67

13,M,21.38,47.28

14,M,26.05,45.07

15,F,X,X

16,F,15.77,38.36

17,F,15.38,33.07

18,M,17.06,37.94

19,M,19.53,X

20,M,23.29,49.60

21,M,21.30,45.56

22,M,17.12,42.99

23,F,21.85,51.40

24,M,18.15,36.95

25,M,33.21,61.59

We can read in this data with np.genfromtxt and summarize the results with the code
here.

Listing 6.5 Analyzing data from a Stroop effect experiment

eg6-stroop.py

import numpy as np

Read in the data from stroop.txt, identifying missing values and

replacing them with NaN.

Ê data = np.genfromtxt('stroop.txt', skip_header=1,

dtype=[('student', 'u8'), ('gender', 'S1'),

('black', 'f8'), ('color', 'f8')],

delimiter=',',

missing_values='X')

nwords = 25

Remove invalid rows from data set.

Ë filtered_data = data[np.isfinite(data['black']) & np.isfinite(data['color'])]

Extract rows by gender (M/F) and word color (black/color) and normalize

to time taken per word.

https://scipython.com/eg/baj

6.2 Reading and Writing an Array to a File 235

fb = filtered_data['black'][filtered_data['gender']==b'F'] / nwords

mb = filtered_data['black'][filtered_data['gender']==b'M'] / nwords

fc = filtered_data['color'][filtered_data['gender']==b'F'] / nwords

mc = filtered_data['color'][filtered_data['gender']==b'M'] / nwords

Produce statistics: mean and standard deviation by gender and word color.

mu_fb, sig_fb = np.mean(fb), np.std(fb)

mu_fc, sig_fc = np.mean(fc), np.std(fc)

mu_mb, sig_mb = np.mean(mb), np.std(mb)

mu_mc, sig_mc = np.mean(mc), np.std(mc)

print('Mean and (standard deviation) times per word (sec)')

print('gender | black | color | difference')

print(' F | {:4.3f} ({:4.3f}) | {:4.3f} ({:4.3f}) | {:4.3f}'

.format(mu_fb, sig_fb, mu_fc, sig_fc, mu_fc - mu_fb))

print(' M | {:4.3f} ({:4.3f}) | {:4.3f} ({:4.3f}) | {:4.3f}'

.format(mu_mb, sig_mb, mu_mc, sig_mc, mu_mc - mu_mb))

Ê In the absence of any provided filling_values, np.genfromtxt will replace the
invalid fields with np.nan.

Ë We only want to consider students with times for both parts of the experiment, so
create a filtered data set here.

The output shows a significantly slower per-word speed for the false-colored words
than for the words in black:

Mean and (standard deviation) times per word (sec)

gender | black | color | difference

F | 0.770 (0.137) | 1.632 (0.306) | 0.862

M | 0.849 (0.186) | 1.679 (0.394) | 0.830

6.2.4 np.savetxt

The np.savetxt function saves a NumPy array as a text file. Its call signature is

np.savetxt(fname, X, fmt='%.18e', delimiter=' ',

newline='\n', header='', footer='', comments='# ')

The arguments are as follows:

• fname: The name of the file or an open file handle into which the array data is to
be saved.

• X: The array to save.
• fmt: A string defining the C-style format specifier for the array data output (see

Section 2.3.7 for details). The default is '%.18e'.
• delimiter: The string delimiting columns in the output file; by default, a single

space.
• newline: The string separating lines in the output file; by default, this is the Unix-

style '\n'. Windows users may prefer to set newline to the sequence used on their
platform: '\r\n'.

236 NumPy

• header: A (possibly multiline) string to be written at the start of the output file.
• footer: A (possibly multiline) string to be written at the end of the output file.
• comments: A string that will be added to the header and footer to mark them as

comments. The default is '# '. This is useful if the file is to be subsequently read
in by np.loadtxt or np.genfromtxt so the number of header and footer lines
does not have to be explicitly specified.

Example E6.8 The decay of an ensemble of radioactive nuclei over a period of time
can be simulated as follows. Consider the time period to be divided into short, discrete
intervals of duration ∆t � τ, where τ is the lifetime for the decay (which is related to
the half-life, t1/2, through τ = t1/2/ ln 2). The probability that a given nucleus will decay
in time ∆t is p = ∆t/τ.

At each time-step, the simulation loops over the undecayed nuclei from the previous
time-step and draws a random number from the uniform distribution on [0, 1): if this
random number is less than p, the nucleus is considered to have decayed.

The code below defines a function to carry out this simulation for a set of N0 = 500
14C nuclei with half-life t1/2 = 5730 years. nsims = 10 such simulations are carried out
and saved to a comma-separated file, 14C-sim.csv, with a brief, explanatory header.

Listing 6.6 Simulation of the radioative decay of 14C

import random

import numpy as np

def decay_sim(thalf, N0=500, tgrid=None, nhalflives=4):

"""Simulate the radioactive decay of N0 nuclei.

thalf is the half-life in some units of time.

If tgrid is provided , it should be a sequence of evenly-spaced time points

to run the simulation on.

If tgrid is None, it is calculated from nhalflives , the number of

half-lives to run the simulation for.

"""

Calculate the lifetime from the half-life.

tau = thalf / np.log(2)

if tgrid is None:

Create a grid of Nt time points up to tmax.

Nt, tmax = 100, thalf * nhalflives

tgrid, dt = np.linspace(0, tmax, Nt, retstep=True)

else:

tgrid was provided: deduce Nt and the time step, dt.

Nt = len(tgrid)

dt = tgrid[1] - tgrid[0]

N = np.empty(Nt, dtype=int)

N[0] = N0

The probability that a given nucleus will decay in time dt.

p = dt / tau

6.2 Reading and Writing an Array to a File 237

for i in range(1, Nt):

At each time step, start with the undecayed nuclei from the previous.

N[i] = N[i-1]

Consider each nucleus in turn and decide whether it decays or not.

for j in range(N[i-1]):

r = random.random()

if r < p:

This nucleus decays.

N[i] -= 1

return tgrid, N

N0 = 500

Half life of 14C in years.

thalf = 5730

Use Nt time steps up to tmax years.

Nt, tmax = 100, 20000

tgrid = np.linspace(0, tmax, Nt)

Repeat the simulation "experiment" nsims times.

nsims = 10

Nsim = np.empty((Nt, nsims))

for i in range(nsims):

_, Nsim[:, i] = decay_sim(thalf, N0, tgrid)

Save the time grid, followed by the simulations in columns. We save integer

values for the data and create a comma-delimited file with a two-line header.

np.savetxt('14C-sim.csv', np.hstack((tgrid[:, None], Nsim)),

fmt = '%d', delimiter=',',

header=f'Simulations of the radioactive decay of {N0} 14C nuclei.\n'

f'Columns are time in years followed by {nsims} decay simulations.'

)

The contents of the output file, 14C-sim.csv, will resemble:
Simulations of the radioactive decay of 500 14C nuclei.

Columns are time in years followed by 10 decays.

0,500,500,500,500,500,500,500,500,500,500

202,489,486,487,491,487,486,485,487,490,490

404,479,478,483,479,477,476,480,474,484,482

606,462,467,470,463,464,463,470,454,474,471

...

This file can be read in to a NumPy array with:
arr = np.loadtxt('14C-sim.csv', delimiter=',')

See also Exercise P6.5.7.

6.2.5 Exercises

Problems

P6.2.1 The following text file, which is available to download at https://scipython
.com/ex/bfj , gives some data concerning the 8000 m peaks, in alphabetical order.

https://scipython.com/ex/bfj
https://scipython.com/ex/bfj

238 NumPy

ex6-2-b-mountain-data.txt This file contains a list of the 14

highest mountains in the world with their names, height, year

of first ascent, year of first winter ascent, and location as

longitude and latitude in degrees (d), minutes (m) and seconds

(s). Note: as of 2019, no winter ascent has been made of K2.

--

Name Height First ascent First winter Location

m date ascent date (WGS84)

--

Annapurna I 8091 3/6/1950 3/2/1987 28d35m46sN 83d49m13sE

Broad Peak 8051 9/6/1957 5/3/2013 35d48m39sN 76d34m06sE

Cho Oyu 8201 19/10/1954 12/2/1985 28d05m39sN 86d39m39sE

Dhaulagiri I 8167 13/5/1960 21/1/1985 27d59m17sN 86d55m31sE

Everest 8848 29/5/1953 17/2/1980 27d59m17sN 86d55m31sE

Gasherbrum I 8080 5/7/1958 9/3/2012 35d43m28sN 76d41m47sE

Gasherbrum II 8034 7/7/1956 2/2/2011 35d45m30sN 76d39m12sE

K2 8611 31/7/1954 - 35d52m57sN 76d30m48sE

Kangchenjunga 8568 25/5/1955 11/1/1986 27d42m09sN 88d08m54sE

Lhotse 8516 18/5/1956 31/12/1988 27d57m42sN 86d56m00sE

Makalu 8485 15/5/1955 9/2/2009 27d53m21sN 87d05m19sE

Manaslu 8163 9/5/1956 12/1/1984 28d33m0sN 84d33m35sE

Nanga Parbat 8126 3/7/1953 16/2/2016 35d14m15sN 74d35m21sE

Shishapangma 8027 2/5/1964 14/1/2005 28d21m8sN 85d46m47sE

--

Use NumPy’s genfromtxt method to read these data into a suitable structured array
to determine the following:

(a) the lowest 8000 m peak;
(b) the most northely, easterly, southerly and westerly peaks;
(c) the most recent first ascent of the peaks;
(d) the first of the peaks to be climbed in winter.

Also, produce another structured array containing a list of mountains with their height
in feet and first ascent date, ordered by increasing height.18

P6.2.2 The file busiest_airports.txt, which can be downloaded from
https://scipython.com/ex/bfa, provides details of the 30 busiest airports in the world
in 2014. The tab-delimited fields are: three-letter IATA code, airport name, airport
location, latitude and longitude (both in degrees).

Write a program to determine the distance between two airports identified by their
three-letter IATA code, using the Haversine formula (see, for example, Exercise P4.4.2)
and assuming a spherical Earth of radius 6378.1 km.

P6.2.3 The World Bank provides an extensive collection of data sets on a wide
range of “indicators,” which is searchable at https://data.worldbank.org/. Data sets
concerning child immunization rates for BCG (against tuberculosis), Pol3 (Polio) and
measles in three Southeast Asian countries between 1960 and 2013 are available at

18 1 metre = 3.2808399 feet.

https://scipython.com/ex/bfa
https://data.worldbank.org/

6.3 Statistical Methods 239

https://scipython.com/ex/bfb. Fields are delimited by semicolons and missing values
are indicated by '..'.

Use NumPy methods to read in these data and create three plots (one for each vaccine)
comparing immunization rates in the three countries.

6.3 Statistical Methods

NumPy provides several methods for performing statistical analysis, either on an entire
array or an axis of it.

6.3.1 Ordering Statistics

Maxima and Minima
We have already used np.min and np.max to find the minimum and maximum values
of an array (these methods are also available using the names np.amin and np.amax). If
the array contains one or more NaN values, the corresponding minimum or maximum
value will be np.nan. To ignore NaN values, instead use np.nanmin and np.nanmax:

In [x]: a = np.sqrt(np.linspace(-2, 2, 4))

In [x]: print(a)

[nan nan 0. 1. 1.41421356]

In [x]: np.min(a), np.max(a)

Out[x]: (nan, nan)

In [x]: np.nanmin(a), np.nanmax(a)

(0.0, 1.4142135623730951)

We have also met the functions np.argmin and np.argmax, which return the index
of the minimum and maximum values in an array; they too have np.nanargmin and
np.nanargmax variants:

In [x]: np.argmin(a), np.argmax(a)

Out[x]: (0, 0) # the first nan in the array

In [x]: np.nanargmin(a), np.nanargmax(a)

Out[x]: (2, 4) # the indexes of 0, 1.41421356

The related methods, np.fmin / np.fmax and np.minimum / np.maximum, compare two
arrays, element by element, and return another array of the same shape. The first pair of
methods ignores NaN values and the second pair propagates them into the output array.
For example,

In [x]: np.fmin([1, -5, 6, 2], [0, np.nan, -1, -1])

array([0., -5., -1., -1.]) # NaNs are ignored

In [x]: np.maximum([1, -5, 6, 2], [0, np.nan, -1, -1])

array([1., nan, 6., 2.]) # NaNs are propagated

Percentiles
The np.percentile method returns a specified percentile, q, of the data along an axis (or
along a flattened version of the array if no axis is given). The minimum of an array is the
value at q = 0 (0th percentile), the maximum is the value at q = 100 (100th percentile)

https://scipython.com/ex/bfb

240 NumPy

and the median is the value at q = 50 (50th percentile). Where no single value in the
array corresponds to the requested value of q exactly, a weighted average of the two
nearest values is used. For example,

In [x]: a = np.array([[0., 0.6, 1.2], [1.8, 2.4, 3.0]])

In [x]: np.percentile(a, 50)

1.5

In [x]: np.percentile(a, 75)

2.25

In [x]: np.percentile(a, 50, axis=1)

array([0.6, 2.4])

In [x]: np.percentile(a, 75, axis=1)

array([0.9, 2.7])

6.3.2 Averages, Variances and Correlations

Averages
In addition to np.mean, which calculates the arithmetic mean of the values along a spec-
ified axis of an array, NumPy provides methods for calculating the weighted average,
median, standard deviation and variance. The weighted average is calculated as

x̄w =

∑N
i wixi∑N

i wi
,

where the weights, wi, are supplied as a sequence the same length as the array. For
example,

In [x]: x = np.array([1., 4., 9., 16.])

In [x]: np.mean(x)

7.5

In [x]: np.median(x)

6.5

In [x]: np.average(x, weights=[0., 3., 1., 0.])

5.25 # i.e. (3.*4. + 1.*9.) / (3. + 1.)

If you want the sum of the weights as well as the weighted average, set the returned

argument to True. In the following example, we do this and find the weighted averages
in each row (axis=1 averages values across columns of a two-dimensional array):

In [x]: x = np.array([[1., 8., 27], [-0.5, 1., 0.]])

In [x]: av, sw = np.average(x, weights=[0., 1., 0.1], axis=1, returned=True)

In [x]: print(av)

[9.72727273 0.90909091]

In [x]: print(sw)

[1.1 1.1]

The averages are therefore (1 × 8 + 0.1 × 27)/1.1 = 9.72727273 and (1 × 1.)/1.1 =

0.90909091 where 1.1 is the sum of the weights.

6.3 Statistical Methods 241

Standard Deviations and Variances
The function np.std calculates, by default, the uncorrected sample standard deviation:

σN =

√√
1
N

N∑
i

(xi − x̄)2,

where xi are the N observed values in the array and x̄ is their mean. To calculate the
corrected sample standard deviation,

σ =

√√
1

N − δ

N∑
i

(xi − x̄)2,

pass to the argument ddof the value of δ such that N − δ is the number of degrees of
freedom in the sample. For example, if the sample values are drawn from the population
independently with replacement and used to calculate x̄ there are N − 1 degrees of
freedom in the vector of residuals used to calculate σ: (x1 − x̄, x2 − x̄, . . . , xN − x̄) and
so δ = 1. For example,

In [x]: x = np.array([1., 2., 3., 4.])

In [x]: np.std(x) # or x.std(), uncorrected standard deviation

1.1180339887498949

In [x]: np.std(x, ddof=1) # corrected standard deviation

1.2909944487358056

The function np.nanstd calculates the standard deviation ignoring np.nan values (so
that N is the number of non-NaN values in the array). NumPy also has methods for
calculating the variance of the values in an array: np.var and np.nanvar.

The covariance is returned by the npcov method. In its simplest invocation, it can
be passed a single two-dimensional array, X, in which the rows represent variables, xi,
and the columns observations of the value of each variable. np.cov(X) then returns the
covariance matrix, Ci j, indicating how variable xi varies with x j: the element Ci j is said
to be an estimate of the covariance of variables xi and x j:

Ci j ≡ cov(xi, x j) = E[(xi − µi)(x j − µ j)],

where µi is the mean of the variable xi and E[] denotes the expected value. If there are
N observed values for each of the variables, µi = 1

N
∑

k xik. The unbiased estimate of the
covariance is then

Ci j =
1

N − 1

∑
k

[(xik − µi)(x jk − µ j)].

This is the default behavior of np.cov, but if the bias argument is set to 1, then N is
used in the denominator here to give the biased estimate of the covariance. Finally, the
denominator can be set explicitly to N − δ by passing δ as the argument to the ddof

argument of cov.

Example E6.9 As an example, consider the matrix of five observations each of three
variables, x0, x1 and x2, whose observed values are held in the three rows of the array X:

242 NumPy

X = np.array([[0.1, 0.3, 0.4, 0.8, 0.9],

[3.2, 2.4, 2.4, 0.1, 5.5],

[10., 8.2, 4.3, 2.6, 0.9]

])

The covariance matrix is a 3 × 3 array of values,

In [x]: print(np.cov(X))

[[0.115 , 0.0575, -1.2325],

[0.0575, 3.757 , -0.8775],

[-1.2325, -0.8775, 14.525]]

The diagonal elements, Cii, are the variances in the variables xi, assuming N−1 degrees
of freedom:

In [x]: print(np.var(X, axis=1, ddof=1))

[0.115 3.757 14.525]

Although the magnitude of the covariance matrix elements is not always easy to inter-
pret (because it depends on the magnitude of the individual observations, which may be
very different for different variables), it is clear that there is a strong anticorrelation
between x0 and x2 (C02 = −1.2325: as one increases the other decreases) and no strong
correlation between x0 and x1 (C01 = 0.0575: x0 and x1 do not trend strongly together).

The correlation coefficient matrix is often used in preference to the covariance matrix
as it is normalized by dividing Ci j by the product of the variables’ standard deviations:

Pi j = corr(xi, x j) =
Ci j

σiσ j
=

Ci j√
CiiC j j

.

This means that the elements Pi j have values between −1 and 1 inclusive, and the
diagonal elements, Pii = 1. In our example, using np.corrcoef gives:

In [x]: print(np.corrcoef(X))

[[1. 0.0874779 -0.95363007]

[0.0874779 1. -0.11878687]

[-0.95363007 -0.11878687 1.]]

It is easy to see from this correlation coefficient matrix the strong anticorrelation
between x0 and x2 (C0,2 = −0.954) and the lack of correlation between x1 and the other
variables (e.g. C1,0 = 0.087).

Both the np.cov and np.corrcoef methods can take a second array-like object con-
taining a further set of variables and observations, so they can be called on a pair of
one-dimensional arrays without stacking them into a single matrix:

In [x]: x = np.array([1., 2., 3., 4., 5.])

In [x]: y = np.array([0.08, 0.31, 0.41, 0.48, 0.62])

In [x]: print(np.corrcoef(x,y))

[[1. 0.97787645]

[0.97787645 1.]]

That is

np.corrcoef(x, y)

6.3 Statistical Methods 243

is a convenient alternative to

np.corrcoef(np.vstack((x,y)))

Finally, if your observations happen to be in the rows of your matrix, with the vari-
ables corresponding to the columns (instead of the other way round) there is no need to
transpose the matrix, just pass rowvar=0 to either np.cov or np.corrcoef and NumPy
will take care of it for you.

Example E6.10 The Cambridge University Digital Technology Group have been
recording the weather from the roof of their department building since 1995 and make
the data available to download in a single CSV file at www.cl.cam.ac.uk/research/dtg/
weather/.

The following program determines the correlation coefficient between pressure and
temperature at this site.

Listing 6.7 Calculating the correlation coefficient between air temperature and pressure

eg6-pT.py

import numpy as np

import matplotlib.pyplot as plt

data = np.genfromtxt('weather-raw.csv', delimiter=',', usecols=(1, 4))

Remove any rows with either missing T or missing p.

data = data[~np.any(np.isnan(data), axis=1)]

Temperatures are reported after multiplication by a factor of 10 so remove

this factor.

data[:,0] /= 10

Get the correlation coefficient.

corr = np.corrcoef(data, rowvar=0)[0, 1]

print('p-T correlation coefficient: {:.4f}'.format(corr))

Plot the data on a scatter plot: T on x-axis, p on y-axis.

plt.scatter(*data.T, marker='.')

plt.xlabel('T /$\mathrm{^\circ C}$')

plt.ylabel('p /mbar')

plt.show()

The output (Figure 6.4) gives a correlation coefficient of 0.0260: as expected, there is
little correlation between air temperature and pressure (since the air density also varies).

6.3.3 Histograms

The NumPy function, np.histogram, creates a histogram from the values in an array.
That is, a set of bins is defined with lower and upper limits and each is filled with the
number of elements from the array whose value falls within its limits. For example,
suppose the following array holds the percentage marks of 10 students in a test:

In [x]: marks = np.array([45, 68, 56, 23, 60, 87, 75, 59, 63, 72])

www.cl.cam.ac.uk/research/dtg/weather/
www.cl.cam.ac.uk/research/dtg/weather/

244 NumPy

−10 −5 0 5 10 15 20 25 30 35
T /◦C

970

980

990

1000

1010

1020

1030

1040

1050

p
/m

ba
r

Figure 6.4 There is virtually no correlation between air temperature and air pressure in this data
set.

There are several ways to define the histogram bins. If the bins argument is a sequence,
it defines the boundaries of the sequential bins:

In [x]: bins = [20, 40, 60, 80, 100]

defines four bins with ranges [20–40%), [40–60%), [60–80%) and [80–100%]. All but
the last bin is half open; that is, the first bin includes marks from and including 20% up
to but not including 40%. Note that a sequence of N + 1 numbers is required to create N
bins. The np.histogram method returns a tuple consisting of the values of the histogram
and the bin edges we defined (both as NumPy arrays).

In [x]: hist, bins = np.histogram(marks, bins)

In [x]: hist

Out[x]: array([1, 3, 5, 1])

In [x]: bins

Out[x]: array([20, 40, 60, 80, 100])

This shows that there is one mark in the 20–40% bin, three in the 40–60% bin and so on.
If you just want a certain number of evenly spaced bins, an integer can be passed as

bins instead of a sequence:

In [x]: np.histogram(marks, bins=5)

Out[x]: (array([1, 1, 3, 3, 2]),

array([23. , 35.8, 48.6, 61.4, 74.2, 87.]))

By default, the requested number of bins range between the minimum and maximum
values of the array (here, 23 and 87); to specify a different minimum and maximum, set
the range argument tuple:

In [x]: np.histogram(marks, bins=5, range=(0, 100))

Out[x]: (array([0, 1, 3, 5, 1]),

array([0., 20., 40., 60., 80., 100.]))

6.3 Statistical Methods 245

The np.histogram method also has an optional boolean argument density: by default
it is False, meaning that the histogram array returned contains the number of values
from the original array in each bin. If density is set to True, the histogram array will
contain the probability density function, normalized so that the integral over the entire
range of the bins is equal to unity:

In [x]: hist, bins = np.histogram(marks, bins=5, range=(0,100),

density=True)

In [x]: print(hist)

[0. 0.005 0.015 0.025 0.005]

In [x]: bin_width = 100/5

In [x]: print(np.sum(hist) * bin_width)

1.0

(By integral here we mean the area under the histogram, which is the sum of each
histogram bar height times its corresponding bin width.)

To plot a histogram with pyplot, use pyplot.hist, passing it the same arguments
you would to np.histogram:

In [x]: import matplotlib.pyplot as plt

Ê In [x]: hist, bins, patches = plt.hist(marks, bins=5, range=(0, 100))

In [x]: hist, bins

Out[x]:

(array([0., 1., 3., 5., 1.]),

array([0., 20., 40., 60., 80., 100.]))

In [x]: plt.show()

Ê In addition to the bin counts (hist) and boundaries (bins), pyplot returns a list
of references to the “patches” which appear in the plotted figure (see Section 7.4.4 for
more information about this advanced feature).

The resulting histogram is plotted in Figure 6.5. See also Sections 3.3.2 and 7.3.

0 20 40 60 80 100

Mark

0

1

2

3

4

5

M
a
rk

co
u
n
t

Figure 6.5 An example histogram.

246 NumPy

6.3.4 Exercises

Problems

P6.3.1 A certain lottery involves players selecting six numbers without replacement
from the range [1, 49]. The jackpot is shared among the players who match all six
numbers (“balls”) selected in the same way at random in a twice-weekly draw (in any
order). If no player matches every drawn number, the jackpot “rolls over” and is added
to the following draw’s jackpot.

Although the lottery is fair in the sense that every combination of drawn numbers
is equally likely, it has been observed that many players show a preference in their
selection for certain numbers, such as those that represent dates (i.e. more of their
numbers are chosen from [1, 31] than would be expected if they chose randomly).
Hence, to avoid sharing the jackpot and so maximize one’s expected winnings, it would
be reasonable to avoid these numbers.

Test this hypothesis by establishing if there is any correlation between the number
of balls with values less than 13 (representing a month) and the jackpot winnings
per person. Ignore draws immediately following a rollover. The necessary data can be
downloaded from https://scipython.com/ex/bfe.

P6.3.2 We have seen how to create a histogram plot from an array with pyplot.hist,
but suppose you have already created arrays hist and bins using np.histogram and
want to plot the resulting histogram from these arrays. You can’t use pyplot.hist

because this function expects to act on the original array of data. Use pyplot.bar19

to plot a hist array as a bar chart.

P6.3.3 The heights, in cm, of a sample of 1000 adult men and 1000 adult women
from a certain population are collected in the data files ex6-3-f-male-heights.txt and
ex6-3-f-female-heights.txt available at https://scipython.com/ex/bfd. Read in the
data and establish the mean and standard deviation for each sex. Create histograms for
the two data sets using a suitable binning interval and plot them on the same figure.

Repeat the exercise in imperial units (feet and inches).

6.4 Polynomials

NumPy provides a powerful set of classes for representing polynomials, including meth-
ods for evaluation, algebra, root-finding and fitting of several kinds of polynomial basis
functions. In this section, the simplest and most familiar basis, the power series, will be
described first, before a discussion of a few other classical orthogonal polynomial basis
functions.

19 Documentation for this method is at https://matplotlib.org/api/_as_gen/matplotlib.pyplot.bar.html; see also
Section 7.3.

https://scipython.com/ex/bfe
https://scipython.com/ex/bfd
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.bar.html

6.4 Polynomials 247

6.4.1 Defining and Evaluating a Polynomial

A (finite) polynomial power series has as its basis the powers of x: 1(= x0), x, x2, x3, · · · , xN ,
with coefficients ci:

P(x) =

N∑
i=0

c0 + c1x + c2x2 + c3x3 + . . . + cN xN .

This section describes the use of the Polynomial convenience class, which provides a
natural interface to the underlying functionality of NumPy’s polynomial package.

The polynomial convenience class is numpy.polynomial.Polynomial. To import it
directly, use

In [x]: from numpy.polynomial import Polynomial

Alternatively, if the whole NumPy library is already imported as np, then rather than
constantly refer to this class as np.polynomial.Polynomial, it is convenient to define a
variable:

In [x]: import numpy as np

In [x]: Polynomial = np.polynomial.Polynomial

This is the way we will refer to the Polynomial class in this book.
To define a polynomial object, pass the Polynomial constructor a sequence of coeffi-

cients to increasing powers of x, starting with c0. For example, to represent the polyno-
mial

P(x) = 6 − 5x + x2,

define the object

In [x]: p = Polynomial([6, -5, 1])

You can inspect the coefficients of a Polynomial object with print or by referring to its
coef attribute.

In [x]: print(p)

poly([6. -5. 1.])

In [x]; p.coef

Out[x]: array([6., -5., 1.])

Notice that the integer coefficients used to define the polynomial have been automati-
cally cast to float. It is also possible to use complex coefficients.

To evaluate a polynomial for a given value of x, “call” it as follows:

In [x]: p(4) # calculate p at a single value of x

2.0

In [x]: x = np.linspace(-5, 5, 11)

In [x]: print(p(x)) # calculate p on a sequence of x values

Out[x]: [56. 42. 30. 20. 12. 6. 2. 0. 0. 2. 6.]

248 NumPy

6.4.2 Polynomial Algebra

The Polynomial convenience class implements the familiar Python operators: +, -, *, //,
**, % and divmod on Polynomial objects. These are illustrated in the following examples
using the polynomials

P(x) = 6 − 5x + x2,

Q(x) = 2 − 3x.

In [x]: p = Polynomial([6, -5, 1])

In [x]: q = Polynomial([2, -3])

In [x]: print(p + q)

poly([8. -8. 1.])

In [x]: print(p - q)

poly([4. -2. 1.])

In [x]: print(p * q)

poly([12. -28. 17. -3.])

In [x]: print(p // q)

poly([1.44444444 -0.33333333])

In [x]: print(p % q)

poly([3.11111111]) # i.e. 28/9

Division of a polynomial by another polynomial is analogous to integer division (and
uses the same // operator): that is, the result is another polynomial (with no reciprocal
powers of x), possibly leaving a remainder.

Hence p = q(− 1
3 x + 13

9) + 28
9 and the // operator returns the quotient polynomial,

− 1
3 x + 13

9 . The remainder (which, in general, will be another polynomial) is returned,
as might be expected, by the modulus operator, %. The divmod() built-in returns both
quotient and remainder in a tuple:

In [x]: quotient , remainder = divmod(p, q)

In [x]: print(quotient)

poly([1.44444444 -0.33333333]) # i.e. p(x) // q(x) is 13/9 - x/3

In [x]: print(remainder)

poly([3.11111111])

Exponentiation is supported through the ** operator; polynomials can only be raised
to a non-negative integer power:

In [x]: print(q ** 2)

poly([4. -12. 9.])

It isn’t always convenient to create a new polynomial object in order to use these
operators on one another, so many of the operators described here also work with
scalars:

In [x]: print(p * 2) # multiplication by a scalar

poly([12. -10. 2.])

6.4 Polynomials 249

In [x]: print(p / 2) # division by a scalar

poly([3. -2.5 0.5])

and even tuples, lists and arrays of polynomial coefficients. For example, to multiply
P(x) by x2 − 2x3:

In [x]: print(p * [0, 0, 1, -2])

poly([0. 0. 6. -17. 11. -2.])

Finally, one polynomial can be substituted into another. To evaluate P(Q(x)), simply
use p(q):

In [x]: print(p(q))

poly([0. 3. 9.])

That is, P(Q(x)) = 3x + 9x2.

6.4.3 Root-Finding

The roots of a polynomial are returned by the roots method. Repeated roots are simply
repeated in the returned array:

In [x]: p.roots()

array([2., 3.])

In [x]: (q * q).roots()

array([0.66666667, 0.66666667])

In [x]: Polynomial([5, 4, 1]).roots()

array([-2.-1.j, -2.+1.j])

Polynomials can also be created from their roots with Polynomial.fromroots:

In [x]: print(Polynomial.fromroots([-4, 2, 1]))

poly([8. -10. 1. 1.])

That is, (x + 4)(x − 2)(x − 1) = 8 − 10x + x2 + x3. Note that the way the polynomial is
constructed means that the coefficient of the highest power of x will be 1.

Example E6.11 The tanks used in the storage of cryogenic liquids and rocket fuel are
often spherical (why?). Suppose a particular spherical tank has a radius R and is filled
with a liquid to a height h. It is (fairly) easy to find a formula for the volume of liquid
from the height:

V = πRh2 −
1
3
πh3.

Suppose that there is a constant flow of liquid from the tank at a rate F = −dV/dt.
How does the height of liquid, h, vary with time? Differentiating the earlier mentioned
equation with respect to t leads to

(2πRh − πh2)
dh
dt

= −F.

250 NumPy

If we start with a full tank (h = 2R) at time t = 0, this ordinary differential equation
may be integrated to yield the equation

−
1
3
πh3 + πRh2 +

(
Ft −

4
3
πR3

)
= 0,

a cubic polynomial in h. Because this equation cannot be inverted analytically for h,
let’s use NumPy’s Polynomial class to find h(t), given a tank of radius R = 1.5 m from
which liquid is being drawn at 200 cm3 s−1.

The total volume of liquid in the full tank is V0 = 4
3πR3. Clearly, the tank is empty

when h = 0, which occurs at time T = V0/F, since the flow rate is constant. At any
particular time, t, we can find h by finding the roots of this equation.

Listing 6.8 Liquid height in a spherical tank

eg6-c-spherical -tank-a.py

import numpy as np

import matplotlib.pyplot as plt

Polynomial = np.polynomial.Polynomial

Radius of the spherical tank in m.

R = 1.5

Flow rate out of the tank, m^3.s-1.

F = 2.e-4

Total volume of the tank.

V0 = 4/3 * np.pi * R**3

Total time taken for the tank to empty.

T = V0 / F

Coefficients of the quadratic and cubic terms

of p(h), the polynomial to be solved for h.

c2, c3 = np.pi * R, -np.pi / 3

N = 100

Array of N time points between 0 and T inclusive.

Ê time = np.linspace(0, T, N)

Create the corresponding array of heights h(t).

h = np.zeros(N)

for i, t in enumerate(time):

c0 = F*t - V0

p = Polynomial([c0, 0, c2, c3])

Find the three roots to this polynomial.

Ë roots = p.roots()

We want the one root for which 0 <= h <= 2R.

h[i] = roots[(0 <= roots) & (roots <= 2*R)][0]

plt.plot(time, h, 'o')

plt.xlabel('Time /s')

plt.ylabel('Height in tank /m')

plt.show()

Ê We construct an array of time points between t = 0 and t = T .
Ë For each time point find the roots of the above cubic polynomial. Only one of the
roots is physically meaningful, in that 0 ≤ h ≤ 2R (the height of the level of liquid

6.4 Polynomials 251

0 10000 20000 30000 40000 50000 60000 70000 80000
Time /s

0.0

0.5

1.0

1.5

2.0

2.5

3.0

H
ei

gh
t

in
ta

nk
/m

Figure 6.6 The height of liquid as a function of time, h(t), for the spherical tank problem.

cannot be negative or greater than the diameter of the tank), so we extract that root (by
boolean indexing) and store it in the array h.

Finally, we plot h as a function of time (Figure 6.6).

6.4.4 Calculus

Polynomials can be differentiated with the Polynomial.deriv method. By default, this
function returns the first derivative, but the optional argument m can be set to return the
mth derivative:

In [x]: print(p)

poly([6. -5. 1.]) # 6 - 5x + x^2

In [x]: print(p.deriv())

poly([-5. 2.])

In [x]: print(p.deriv(2))

poly([2.])

A Polynomial object can also be integrated with an optional lower bound, L, and
constant of integration, k, treated as shown in the following example:∫ x

L
2 − 3x dx =

[
2x − 3

2 x2
]x

L
= 2x − 3

2 x2 − 2L + 3
2 L2,∫

2 − 3x dx = 2x − 3
2 x2 + k.

By default, L and k are zero, but can be specified by passing the arguments lbnd and k

to the Polynomial.integ method:

In [x]: print(q)

poly([2. -3.])

In [x]: print(q.integ())

poly([0. 2. -1.5])

252 NumPy

In [x]: print(q.integ(lbnd=1))

poly([-0.5 2. -1.5])

In [x]: print(q.integ(k=2))

poly([2. 2. -1.5])

Polynomials can be integrated repeatedly by passing a value to m, giving the number of
integrations to perform.20

♦6.4.5 Classical Orthogonal Polynomials

In addition to the Polynomial class representing simple power series such as a0 +

a1x + a2x2 + . . . + anxn, NumPy provides classes to represent a series composed of
any of a number of classical orthogonal polynomials. These polynomials and linear
combinations of them are widely used in physics, statistics and mathematics. As of
NumPy version 1.17, the polynomial convenience classes provided are Chebyshev,
Legendre, Laguerre, Hermite (“physicists’ version”) and HertmiteE (“probabilists’
version”). Many good textbooks exist describing the properties of these polynomial
classes; to illustrate their use we will focus here on the Legendre polynomials,21

denoted Pn(x). These are the solutions to Legendre’s differential equation,

d
dx

[
(1 − x2)

d
dx

Pn(x)
]

+ n(n + 1)Pn(x) = 0.

The first few Legendre polynomials are

P0(x) = 1,

P1(x) = x,

P2(x) = 1
2 (3x2 − 1),

P3(x) = 1
2 (5x3 − 3x),

P4(x) = 1
8 (35x4 − 30x2 + 3),

and are plotted in Figure 6.7.
A useful property of the Legendre polynomials is their orthogonality on the interval

[−1, 1]: ∫ 1

−1
Pn(x)Pm(x) dx =

2
2n + 1

δmn,

which is important in their use as a basis for representing suitable functions.22

To create a linear combination of Legendre polynomials, pass the coefficients to the
Legendre constructor, just as for Polynomial. For example, to construct the polynomial
expansion 5P1(x) + 2P2(x):

20 Different constants of integration for each can be specified by setting k to an array of values.
21 The Legendre polynomials are named after the French mathematician Adrien-Marie Legendre (1752–

1833); for 200 years until 2005 many publications mistakenly used a portrait of the unrelated French
politician Louis Legendre as that of the mathematician.

22 In particular, in physics, the multipole expansion of electrostatic potentials.

6.4 Polynomials 253

−1.0 −0.5 0.0 0.5 1.0
x

−1.0

−0.5

0.0

0.5

1.0
P
n
(x

)

P0(x)

P1(x)

P2(x)

P3(x)

P4(x)

Figure 6.7 The first five Legendre polynomials, Pn(x) for n = 0, 1, 2, 3, 4.

In [x]: Legendre = np.polynomial.Legendre

In [x]: A = Legendre([0, 5, 2])

An existing polynomial object can be converted into a Legendre series with the cast

method:

In [x]: P = Polynomial([0, 1, 1])

In [x]: Q = Legendre.cast(P)

In [x]: print(Q)

leg([0.33333333 1. 0.66666667])

That is, x + x2 = 1
3 P0 + P1 + 2

3 P2.
An instance of a single Legendre polynomial basis function can be created with the

basis method:

In [x]: L3 = Legendre.basis(3)

This creates an object representing P3(x), and is equivalent to calling Legendre([0, 0,

0, 1]). To obtain a regular power series, we can cast it back to a Polynomial:

In [x]: print(Polynomial.cast(L3))

poly([0. -1.5 0. 2.5])

In addition to the functions just described for Polynomial, including differentiation
and integration of polynomial series, the convenience classes for the classical orthogo-
nal polynomials expose several useful methods.

convert converts between different kinds of polynomials. For example, the linear
combination A(x) = 5P1(x) + 2P2(x) = 5x + 2 1

2 (3x2 − 1) = −1 + 5x + 3x2, as a
power series of monomials (a Maclaurin series), is represented by an instance of the
Polynomial class as:

In [x]: A = Legendre([0, 5, 2])

In [x]: B = A.convert(kind=Polynomial)

In [x]: print(B)

In [x]: poly([-1. 5. 3.])

254 NumPy

Because the objects A and B represent the same underlying function (just expanded in
different basis sets) they evaluate to the same value when given the same x, and have
the same roots:

In [x]: A(-2) == B(-2)

Out[x]: True

In [x]: print(A.roots(), B.roots(), sep='\n')

[-1.84712709 0.18046042]

[-1.84712709 0.18046042]

6.4.6 Fitting Polynomials

A common use of polynomial expansions is in fitting and approximating data series.
NumPy’s polynomial modules provide methods for the least-squares fitting of functions.
The fit function of the polynomial convenience classes is described in this section.23

The domain and window Attributes
A typical one-dimensional fitting problem requires the best-fit polynomial to a finite,
continuous function over some finite region of the x-axis (the domain). However, poly-
nomials themselves can differ from each other wildly and diverge as x → ±∞. This
makes any attempt to blindly find the least-squares fit on the domain of the function
itself potentially risky: the fitted polynomial is frequently subject to numerical insta-
bility, overflow, underflow and other types of ill-conditioning (see Section 10.2). As an
example, consider the function

f (x) = e− sin 40x

in the interval (100, 100.1). There is nothing particularly tricky about this function: it is
well-behaved everywhere and f (x) takes very moderate values between e−1 and e1. Yet
a straightforward least-squares fit to a fourth-order polynomial on this domain gives

−11.881851 + 2379.22228x − 119.741202x2 − 23828009.7x3 + 1192894610x4

and clearly the potential for numerical instability and loss of accuracy with even mod-
erate values of x: our approximation to f (x) is built up from difference between very
large monomial terms.

Each class of polynomial has a default window over which it is optimal to take a
linear combination in fitting a function. For example, the Legendre polynomials window
is the region [−1, 1] plotted above, on which Pn(x) are orthogonal and everywhere
|Pn(x)|< 1. The problem is that it is rather unlikely that the function to be fitted falls
within the chosen polynomials’ window. It is therefore necessary to relate the domain
of the function to the window. This is done by shifting and scaling the x-axis: that is, by

23 Note: The older np.poly1d class representing one-dimensional polynomials is still available (as of NumPy
1.17) for backward-compatibility reasons. It is documented at https://docs.scipy.org/doc/numpy/reference/
routines.polynomials.poly1d.html and provides a simpler but less-reliable least-squares fitting method,
np.polyfit. It is recommended, however, to use the new Polynomial class in new code.

https://docs.scipy.org/doc/numpy/reference/routines.polynomials.poly1d.html
https://docs.scipy.org/doc/numpy/reference/routines.polynomials.poly1d.html

6.4 Polynomials 255

mapping points in the function’s domain to points in the fitting polynomials’ window.
The polynomial fit function does this automatically, so the fourth-order least-squares
fit to the earlier mentioned function yields

In [x]: x = np.linspace(100, 100.1, 1001)

In [x]: f = lambda x: np.exp(-np.sin(40*x))

In [x]: p = Polynomial.fit(x, f(x), 4)

In [x]: print(p)

poly([1.49422551 -2.54641449 0.63284641 1.84246463 -1.02821956])

The domain and window of a polynomial can be inspected as the attributes domain and
window respectively:

In [x]: p.domain

array([100. , 100.1])

In [x]: p.window

array([-1., 1.])

It is important to note that the argument x is mapped from the domain to the window
whenever a polynomial is evaluated. This means that two polynomials with different
domains and/or windows may evaluate to different values even if they have the same
coefficients. For example, if we create a Polynomial object from scratch with the same
coefficients as the fitted polynomial p above:

In [x]: q = Polynomial([1.49422551, -2.54641449, 0.63284641,

1.84246463, -1.02821956])

it is created with the default domain and window, which are both (-1, 1):

In [x]: print(q.domain, q.window)

[-1. 1.] [-1. 1.]

and so evaluating q at 100.05, say, maps 100.05 in the domain to 100.05 in the window
and gives a very different answer from the evaluation of p at the same point in the
domain (which maps to 0. in the window):

In [x]: q(100.05), p(100.05)

(-101176442.96772559, 1.4942255113760108)

It is easy to show that the mapping function from x in a domain (a, b) to x′ in a window
(a′, b′) is

x′ = m(x) = χ + µx, where µ =
b′ − a′

b − a
, χ = b′ − b

b′ − a′

b − a
.

These are the parameters returned by the polynomial’s mapparms function:

In [x]: chi, mu = p.mapparms()

In [x]: print(chi, mu)

-2001.0, 20.0

Therefore,

In [x]: print(q(chi + mu*100.05))

1.49422551

It is possible to change domain and window by direct assignment:

256 NumPy

In [x]: q.domain = np.array((100., 100.1))

In [x]: print(q(100.05))

1.49422551

To evaluate a polynomial on a set number of evenly distributed points in its domain,
for example, to plot it, use the Polynomial’s linspace method:

In [x]: p.linspace(5)

Out [x]:

(array([100. , 100.025, 100.05 , 100.075, 100.1]),

array([1.80280222, 2.63107256, 1.49422551, 0.54527422, 0.39490249]))

p.linspace returns two arrays, with the specified number of samples on the polyno-
mial’s domain representing the x points and the values the polynomial takes at those
points, p(x).

Polynomial.fit
The Polynomial method fit returns a least-squares fitted polynomial to data, y, sampled
at values x. In its simplest use, fit needs only to be passed array-like objects, x and y,
and a value for deg, the degree of polynomial to fit. It returns the polynomial which
minimizes the sum of the squared errors,

E =
∑

i

|yi − p(xi)|2.

For example,

In [x]: x = np.linspace(400, 700, 1000)

In [x]: y = 1 / x**4

In [x]: p = Polynomial.fit(x, y, 3)

produces the best-fit cubic polynomial to the function x−4 on the interval [400, 700].
Weighted least-squares fitting is achieved by setting the argument, w, to a sequence

of weighting values that is the same length as x and y. The polynomial returned is that
which minimizes the sum of the weighted squared errors,

E =
∑

i

w2
i |yi − p(xi)|2.

The domain and window of the fitted polynomial may be specified with the arguments
domain and window; by default, a minimal domain covering the points x is used.

It is wise to check the quality of the fit before using the returned polynomial. Setting
the argument full=True causes fit to return two objects: the fitted polynomial and a
list of various statistics about the fit itself:

In [x]: deg = 3

In [x]: p, [resid, rank, sing_val , rcond] = Polynomial.fit(x, y, deg, full=True)

In [x]: p

Out[x]:

Polynomial([1.07041864e-11, -1.16488662e-11, 1.02545751e-11,

-5.64068914e-12], [400., 700.], [-1., 1.])

In [x]: resid

Out[x]: array([4.57180972e-23])

6.4 Polynomials 257

In [x]: rank

Out[x]: 4

In [x]: sing_val

Out[x]: array([1.3843828 , 1.32111941, 0.50462215, 0.28893641])

In [x]: rcond

Out[x]: 2.2204460492503131e-13

This list can be analyzed to see how well the polynomial function fits the data. resid
is the sum of the squared residuals,

resid =
∑

i

|yi − p(xi)|2

– a smaller value indicates a better fit. rank and sing_val are the rank and singular
values of the matrix inverted in the least-squares algorithm to find the polynomial
coefficients: ill-conditioning of this matrix can lead to poor fits (particularly if the fitted
polynomial degree is too high). rcond is the cutoff ratio for small singular values within
this matrix: values smaller than this value are set to zero in the fit (to protect the fit from
spurious artifacts introduced by round-off error) and a RankWarning exception is raised.
If this happens, the data may be too noisy or not well described by the polynomial of the
specified degree. Note that least-squares fitting should always be carried out at double
precision and be aware of “over-fitting” the data (attempting to fit a function with too
many coefficients, i.e. a polynomial of too high order).

Example E6.12 A straight-line best fit is just a special case of a polynomial least-
squares fit (with deg=1). Consider the following data giving the absorbance, A, over a
path length of 5 mm of ultraviolet light at 280 nm, by a protein as a function of the
concentration, [P]:

[P]/µg mL−1 A
0 2.287

20 3.528
40 4.336
80 6.909

120 8.274
180 12.855
260 16.085
400 24.797
800 49.058

1500 89.400

We expect the absorbance to be linearly related to the protein concentration: A = m[P]+

A0, where A0 is the absorbance in the absence of protein (e.g. due to the solvent and
experimental components).

Listing 6.9 Straight-line fit to absorbance data

258 NumPy

0 500 1000 1500

[P] / g mL

0

20

40

60

80
A

b
so

rb
a
n
ce

Figure 6.8 Line of least-squares best fit to absorbance data as a function of concentration.

eg6-polyfit.py

import numpy as np

import matplotlib.pyplot as plt

Polynomial = np.polynomial.Polynomial

The data: conc = [P] and absorbance , A.

conc = np.array([0, 20, 40, 80, 120, 180, 260, 400, 800, 1500])

A = np.array([2.287, 3.528, 4.336, 6.909, 8.274, 12.855, 16.085, 24.797,

49.058, 89.400])

cmin, cmax = min(conc), max(conc)

pfit, stats = Polynomial.fit(conc, A, 1, full=True, window=(cmin, cmax),

domain=(cmin, cmax))

print('Raw fit results:', pfit, stats, sep='\n')

A0, m = pfit

resid, rank, sing_val, rcond = stats

rms = np.sqrt(resid[0]/len(A))

print('Fit: A = {:.3f}[P] + {:.3f}'.format(m, A0),

'(rms residual = {:.4f})'.format(rms))

plt.plot(conc, A, 'o', color='k')

plt.plot(conc, pfit(conc), color='k')

plt.xlabel('[P] /$\mathrm{\mu g\cdot mL^{-1}}$')

plt.ylabel('Absorbance')

plt.show()

The output shows a good straight-line fit to the data (Figure 6.8):

Raw fit results:

poly([1.92896129 0.0583057])

[array([2.47932733]), 2, array([1.26633786, 0.62959385]), 2.2204460492503131e-15]

Fit: A = 0.058[P] + 1.929 (rms residual = 0.4979)

6.4 Polynomials 259

6.4.7 Exercises

Questions

Q6.4.1 The third derivative of the polynomial function P(x) = 3x3 + 2x − 7 is 18, so
why does the following evaluate as False?
In [x]: Polynomial((-7, 2, 0, 3)).deriv(3) == 18

Out[x]: False

Q6.4.2 Find and classify the stationary points of the polynomial

f (x) = (x2 + x − 11)2 + (x2 + x − 7)2.

Problems

P6.4.1 The expansion of the spherical ball of fire generated in an explosion may be
analyzed to deduce the initial energy, E, released by a nuclear weapon. The British
physicist Geoffrey Taylor used dimensional analysis to demonstrate that the radius of
this sphere, R(t), should be related to E, the air density, ρair, and time, t, through

R(t) = CE
1
5 ρ
− 1

5
air t

2
5 ,

where, using model-shock wave problems, Taylor estimated the dimensionless constant
C ≈ 1. Using the data obtained from declassified timed images of the first New Mexico
atomic explosion, Taylor confirmed this law and produced an estimate of the (then
unknown) value of E. Use a log–log plot to fit the data in Table 6.624 to the model and
confirm the time-dependence of R. Taking ρair = 1.25 kg m−3, deduce E and express its
value in joules and in “kilotons of TNT,” where the explosive energy released by 1 ton
of TNT (trinitrotoluene) is arbitrarily defined to be 4.184 × 109 J.

P6.4.2 Find the mean and variance of both x and y, the correlation coefficient and the
equation of the linear regression line for each of the four data sets given in Table 6.7.
Comment on these values in the light of a plot of the data.

Table 6.6 Radius of the ball of fire produced by the “Trinity”
nuclear test as a function of time

t/ms R/m t/ms R/m t/ms R/m
0.1 11.1 1.36 42.8 4.34 65.6

0.24 19.9 1.50 44.4 4.61 67.3
0.38 25.4 1.65 46.0 15.0 106.5
0.52 28.8 1.79 46.9 25.0 130.0
0.66 31.9 1.93 48.7 34.0 145.0
0.80 34.2 3.26 59.0 53.0 175.0
0.94 36.3 3.53 61.1 62.0 185.0
1.08 38.9 3.80 62.9
1.22 41.0 4.07 64.3
Note: these data can be downloaded from
https://scipython.com/ex/bfg .

24 G. I. Taylor, (1950) Proc. Roy. Soc. London A201, 159.

https://scipython.com/ex/bfg

260 NumPy

Table 6.7 Four sample data sets for analysis of mean, variance and
correlation

x1 y1 x2 y2 x3 y3 x4 y4

10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58
8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76
13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71
9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84
11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47
14.0 9.96 14.0 8.10 14.0 8.84 8.0 7.04
6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25
4.0 4.26 4.0 3.10 4.0 5.39 19.0 12.50
12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56
7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91
5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89
Note: These data can be downloaded from https://scipython.com/ex/bff .

P6.4.3 The van der Waals equation of state may be written as follows to give the
pressure, p, of a gas from its molar volume, V , and temperature, T :

p =
RT

V − b
−

a
V2 ,

where a and b are molecule-specific constants and R = 8.314 J K−1 mol−1 is the gas
constant. It can readily be rearranged to yield the temperature for a given pressure and
volume, but its form giving the molar volume in terms of pressure and temperature is a
cubic equation:

pV3 − (pb + RT)V2 + aV − ab = 0.

Of the three roots to this equation, below the critical point, (Tc, pc) all are real: the
largest and smallest give the molar volume of the gas phase and liquid phase, respec-
tively; above the critical point, where no liquid phase exists, only one root is real and
gives the molar volume of the gas (also known in this region as a supercritical fluid).
The critical point is given by the condition (∂p/∂V)T = (∂2 p/∂V2)T = 0 and for a van
der Waals gas is given by the formulas

Tc =
8a

27Rb
, pc =

a
27b2 .

For ammonia, the van der Waals constants are a = 4.225 L2 bar mol−2 and b =

0.03707 L mol−1.

(a) Find the critical point of ammonia, and then determine the molar volume at room
temperature and pressure, (298 K, 1 atm) and at (500 K, 12 MPa).

(b) An isotherm is the set of points (p,V) at a constant temperature satisfying an
equation of state. Plot the isotherm (p against V) for ammonia at 350 K using the
van der Waals equation of state and compare it with the 350 K isotherm for an
ideal gas, which has the equation of state, p = RT/V .

https://scipython.com/ex/bff

6.5 Linear Algebra 261

P6.4.4 The first stages of the Saturn V rocket that launched the Apollo 11 mission
generated an acceleration which increased with time throughout their operation (mostly
because of the decrease in mass as it burns its fuel). This acceleration may be modeled
(in units of m s−2) as a function of time after launch, t in seconds, by the quadratic
function:

a(t) = 2.198 + (2.842 × 10−2)t + (1.061 × 10−3)t2.

Determine the distance traveled by the rocket at the end of the stage-one center-engine
burn, 2 minutes and 15.2 seconds, after launch.

(Harder) Assuming a constant “lapse rate” of Γ = −dT/dz = 6 K km−1 from a ground
temperature of 302 K, at what time and altitude, z, did the rocket achieve Mach 1?
During the relevant phase of the launch, take the average pitch angle to be 12◦, and
assume that the speed of sound can be calculated as a function of absolute temperature
to be

c =

√
γRT
M

,

where the constants γ = 1.4 and R = 8.314 J K−1 mol−1, and the mean molar mass of
the atmosphere is M = 0.0288 kg mol−1.

6.5 Linear Algebra

6.5.1 Basic Matrix Operations

Matrix operations can be carried out on a regular two-dimensional NumPy array, includ-
ing scalar multiplication, matrix (dot) product, elementwise multiplication and trans-
pose:

In [x]: A = np.array([[0, 0.5], [-1, 2]])

In [x]: A

Out[x]:

array([[0. , 0.5],

[-1. , 2.]])

In [x]: A * 5 # multiplication by a scalar

Out[x]:

array([[0. , 2.5],

[-5. , 10.]])

In [x]: B = np.array([[2, -0.5], [3, 1.5]])

In [x]: B

Out[x]:

array([[2. , -0.5],

[3. , 1.5]])

In [x]: A.dot(B) # or np.dot(A, B): matrix product

Out[x]:

array([[1.5 , 0.75],

[4. , 3.5]])

262 NumPy

In [x]: A * B # elementwise multiplication

Out[x]:

array([[0. , -0.25],

[-3. , 3.]])

In [x]: A.transpose() # or simply A.T

Out[x]:

array([[0. , -1.],

[0.5, 2.]])

Note that the transpose returns a view on the original matrix.
The identity matrix is returned by passing the two dimensions of the matrix to the

method np.eye:

In [x]: np.eye(3, 3)

Out[x]:

array([[1., 0., 0.],

[0., 1., 0.],

[0., 0., 1.]])

Matrix Products
NumPy contains further methods for vector and matrix products. For example,

In [x]: a = np.array([1, 2, 3])

In [x]: b = np.array([0, 1, 2])

In [x]: np.inner(a, b) # inner product; here, the same as a.dot(b)

Out[x]: 8

In [x]: np.outer(a, b) # outer product

Out[x]:

array([[0, 1, 2],

[0, 2, 4],

[0, 3, 6]])

To raise a matrix to an (integer) power, however, requires a method from the
np.linalg module:

In [x]: A = np.array([[0, 0.5], [-1, 2]])

In [x]: np.linalg.matrix_power(A, 3) # the same as A @ A @ A

Out[x]:

array([[-1. , 1.75],

[-3.5 , 6.]])

Note that the ** operator performs elementwise exponentiation:

In [x]: A ** 3 # the same as A * A * A

Out[x]:

array([[0. , 0.125],

[-1. , 8.]])

6.5 Linear Algebra 263

Example E6.13 One way to create the two-dimensional rotation matrix,

R =

(
cos θ − sin θ
sin θ cos θ

)
,

which rotates points in the xy-plane counterclockwise through θ = 30◦ about the origin:

In [x]: theta = np.radians(30)

In [x]: c, s = np.cos(theta), np.sin(theta)

In [x]: R = np.array([[c, -s], [s, c]])

In [x]: print(R)

[[0.8660254 -0.5]

[0.5 0.8660254]]

The components of the unit vector along the x-axis after this rotation, for example, are
given by the dot product:

In [x]: v = np.array([1, 0])

In [x]: R @ v

Out[x]: array([0.8660254, 0.5])

Other Matrix Properties
The norm of a matrix or vector is returned by the function np.linalg.norm. It is possible
to calculate several different norms (see the documentation), but the ones used by default
are the Frobenius norm for two-dimensional arrays:

||A|| =

∑
i, j

|ai j|
2

1/2

and the Euclidean norm for one-dimensional arrays:

||a|| =

∑
i

|zi|
2

1/2

=
√
|z0|

2 + |z1|
2 + · · · + |zn−1|

2.

Thus,

In [x]: np.linalg.norm(A)

Out[x]: 2.2912878474779199

In [x]: c = np.array([1, 2j, 1 - 1j])

In [x]: np.linalg.norm(c)

Out[x]: 2.6457513110645907 # sqrt(1 + 4 + 2)

The function np.linalg.det returns the determinant of a matrix, and the regular NumPy
function np.trace returns its trace (the sum of its diagonal elements):

In [x]: np.linalg.det(A)

Out[x]: 0.5

In [x]: np.trace(A)

Out[x]: 2.0

264 NumPy

The rank of a matrix is obtained using np.linalg.matrix_rank:

In [x]: np.linalg.matrix_rank(A) # matrix A has full rank

Out[x]: 2

In [x]: D = np.array([[1,1],[2,2]]) # a rank-deficient matrix

In [x]: np.linalg.matrix_rank(D)

Out[x]: 1

To find the inverse of a square matrix, use np.linalg.inv. A LinAlgError exception
is raised if the matrix inversion fails:

In [x]: np.linalg.inv(A)

Out[x]:

array([[4., -1.],

[2., 0.]])

In [x]: np.linalg.inv(D)

...

LinAlgError: Singular matrix

Example E6.14 The currents flowing in the closed regions labeled I1, I2 and I3 of the
circuit given here may be analyzed by mesh analysis.

For each closed loop, we can apply Kirchoff’s voltage law (
∑

k Vk = 0) in conjunction
with Ohm’s law (V = IR), to give three simultaneous equations:

50I1 − 30I3 = 80,

40I2 − 20I3 = 80,

−30I1 − 20I2 + 100I3 = 0.

These can be expressed in matrix form as RI = V:
50 0 −30

0 40 −20
−30 −20 100

I1

I2

I3

 =

80
80
0

 ,

6.5 Linear Algebra 265

We could use the numerically stable np.linalg.solve method (Section 6.5.3) to find
the loop currents, I, here, but in this well-behaved system,25 let’s find them through left
multiplication by the matrix inverse, R−1:

R−1RI = I = R−1V.

Using NumPy’s array methods:

In [x]: R = np.array([[50, 0, -30], [0, 40, -20], [-30, -20, 100]])

In [x]: V = np.array([80, 80, 0])

In [x]: I = np.linalg.inv(R) @ V

In [x]: print(I)

[[2.33333333]

[2.61111111]

[1.22222222]]

Thus, I1 = 2.33 A, I2 = 2.61 A, I3 = 1.22 A.

Example E6.15 The matrix B, defined here, may be manipulated as follows:

B =

(
1 3 − j
3j −1 + j

)
, BT =

(
1 3j

3 − j −1 + j

)

B† =

(
1 −3j

3 + j −1 − j

)
, B−1 =

(
− 1

20 −
3
20 j 1

20 −
7
20 j

3
10 + 3

20 j − 1
20 + 1

10 j

)
.

In [x]: B = np.array([[1, 3 - 1j], [3j, -1 + 1j]])

In [x]: print(B)

[[1.+0.j 3.-1.j]

[0.+3.j -1.+1.j]]

In [x]: print(B.T) # matrix transpose

[[1.+0.j 0.+3.j]

[3.-1.j -1.+1.j]]

In [x]: print(B.conj().T) # Hermitian conjugate

[[1.-0.j 0.-3.j]

[3.+1.j -1.-1.j]]

In [x]: print(np.linalg.inv(B)) # matrix inverse

[[-0.05-0.15j 0.05-0.35j]

[0.30+0.15j -0.05+0.1j]]

A few other common matrix operations are also available from within the NumPy
package, including the trace, determinant, eigenvalues and (right) eigenvectors:

In [x]: print(np.trace(B))

1j

In [x]: print(np.linalg.det(B))

25 In general, matrix inversion may be an ill-conditioned problem, but this particular matrix is easy to invert
accurately. See Section 10.2.2 for more on conditioning.

266 NumPy

(-4-8j)

In [x]: eigenvalues , eigenvectors = np.linalg.eig(B)

In [x]: print(eigenvalues , eigenvectors , sep='\n\n')

[2.50851535+2.09456868j -2.50851535-1.09456868j]

[[0.77468569+0.j -0.52924821+0.38116633j]

[0.18832434+0.60365224j 0.75802940+0.j]]

6.5.2 Eigenvalues and Eigenvectors

To calculate the eigenvalues and (right) eigenvectors of a general square array with
shape (n, n), use np.linalg.eig, which returns the eigenvalues, w, as an array of
shape (n,) and the normalized eigenvectors, v, as a complex array of shape (n, n). The
eigenvalues are not returned in any particular order, but the eigenvalue w[i] corresponds
to the eigenvector v[:, i]. Note that the eigenvectors are arranged in columns. If the
eigenvalue calculation does not converge for some reason, a LinAlgError is raised.

In [x]: vals, vecs = np.linalg.eig(A)

In [x]: vals

Out[x]: array([0.29289322, 1.70710678])

Ê In [x]: np.isclose(np.sum(vals), A.trace())

Out[x]: True

In [x]: vecs

Out[x]:

array([[-0.86285621, -0.28108464],

[-0.50544947, -0.95968298]])

Ê Verify that the sum of the eigenvalues is equal to the matrix trace.
If the matrix is Hermitian or real-symmetric, the function np.linalg.eigh may be

used instead. This method takes an additional argument, UPLO, which can be 'L' or 'U'
according to whether the lower or upper triangular part of the matrix is used. The default
is 'L'.

Two additional methods, np.linalg.eigvals and np.linalg.eigvalsh, return only
the eigenvalues (and not the eigenvectors) of a general and Hermitian matrix, respec-
tively.

Since NumPy version 1.8, these and most other linalg methods follow the usual
broadcasting rules so that several matrices can be operated on at once: each matrix is
assumed to be stored in the last two dimensions. For example, we may work with an
array with shape (3, 2, 2), representing the three 2 × 2 Pauli matrices:

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
.

In [x]: pauli_matrices = np.array((

((0, 1), (1, 0)), # sigma_x

((0, -1j), (1j, 0)), # sigma_y

((1, 0), (0, -1)) # sigma_z

6.5 Linear Algebra 267

))

In [x]: np.linalg.eigh(pauli_matrices)

Out[x]:

(array([[-1., 1.],

[-1., 1.],

[-1., 1.]]),

array([[[-0.70710678+0.j , 0.70710678+0.j],

[0.70710678+0.j , 0.70710678+0.j]],

[[-0.70710678-0.j , -0.70710678+0.j],

[0.00000000+0.70710678j, 0.00000000-0.70710678j]],

[[0.00000000+0.j , 1.00000000+0.j],

[1.00000000+0.j , 0.00000000+0.j]]]))

Example E6.16 A linear transformation in two dimensions can be visualized through
its effect on the unit square defined by the two orthonormal basis vectors, ı̂ and ̂. In
general, it can be represented by a 2 × 2 matrix, T, which acts on a vector v to map
it from a vector space spanned by one basis onto a different vector space spanned by
another basis: v′ = Tv. Eigenvectors under such a tranformation may be scaled but
do not change orientation, as illustrated by the following code for the transformation
matrix:

T =

(3
2

1
2

1
2

3
2

)
.

The effect of the transformation on a set of points in the Cartesian plane is also
visualized in the output plot (Figure 6.9).

Listing 6.10 Linear transformations in two dimensions

import numpy as np

import matplotlib.pyplot as plt

Set up a Cartesian grid of points.

XMIN, XMAX, YMIN, YMAX = -3, 3, -3, 3

N = 16

xgrid = np.linspace(XMIN, XMAX, N)

ygrid = np.linspace(YMIN, YMAX, N)

Ê grid = np.array(np.meshgrid(xgrid, ygrid)).reshape(2, N**2)

Our untransformed unit basis vectors, i and j:

basis = np.array([[1,0], [0,1]])

def plot_quadrilateral(basis, color='k'):

"""Plot the quadrilateral defined by the two basis vectors."""

ix, iy = basis[0]

jx, jy = basis[1]

plt.plot([0, ix, ix+jx, jx, 0], [0, iy, iy+jy, jy, 0], color)

def plot_vector(v, color='k', lw=1):

"""Plot vector v as a line with a specified color and linewidth."""

plt.plot([0, v[0]], [0, v[1]], c=color, lw=lw)

268 NumPy

def plot_points(grid, color='k'):

"""Plot the grid points in a specified color."""

plt.scatter(*grid, c=color, s=2, alpha=0.5)

def apply_transformation(basis, T):

"""Return the transformed basis after applying transformation T."""

return (T @ basis.T).T

The untransformed grid and unit square.

plot_points(grid)

plot_quadrilateral(basis)

Apply the transformation matrix, S, to the scene.

S = np.array(((1.5, 0.5),(0.5, 1.5)))

tbasis = apply_transformation(basis, S)

plot_quadrilateral(tbasis, 'r')

Ë tgrid = S @ grid

plot_points(tgrid, 'r')

Find the eigenvalues and eigenvectors of S...

vals, vecs = np.linalg.eig(S)

print(vals, vecs)

if all(np.isreal(vals)):

... if they ' re all real, indicate them on the diagram.
v1, v2 = vals

e1, e2 = vecs.T

plot_vector(v1*e1, 'r', 3)

plot_vector(v2*e2, 'r', 3)

plot_vector(e1, 'k')

plot_vector(e2, 'k')

Ensure the plot has 1:1 aspect (i.e. squares look square) and set the limits.

plt.axis('square')

plt.xlim(XMIN, XMAX)

plt.ylim(YMIN, YMAX)

plt.show()

Ê We need to reshape the meshgrid of N × N points into an array of 2 × N2

coordinates...
Ë ... which can be transformed in a single line of code by the vectorized operation,
S @ grid.

6.5 Linear Algebra 269

0 1 2 3

3

3

2

 1

 12

0

1

2

3

Figure 6.9 The effect of a linear transformation given by a matrix, T, on the usual Cartesian
basis: the unit square (black) is stretched along one diagonal and squeezed along the other; the
scaled eigenvectors are also indicated.

6.5.3 Solving Equations

Linear Scalar Equations
NumPy provides an efficient and numerically stable method for solving systems of
linear scalar equations. The set of equations

m11x1 + m12x2 + . . . + m1nx1 = b1

m21x1 + m22x2 + . . . + m2nx2 = b2

· · ·

mn1x1 + mn2x2 + . . . + mnnxn = bn

can be expressed as the matrix equation Mx = b:
m11 m12 · · · m1n

m21 m22 · · · m2n
...

. . .
...

mn1 mn2 · · · mnn

x1

x2
...

xn

 =

b1

b2
...

bn

 .

270 NumPy

The solution of this system of equations (the vector x) is returned by the np.linalg.

solve method. For example, the three simultaneous equations

3x − 2y = 8,

−2x + y − 3z = −20,

4x + 6y + z = 7

can be represented as the matrix equation Mx = b:
3 −2 0
−2 1 −3

4 6 1

x
y
z

 =

8

−20
7

and solved by passing arrays corresponding to matrix M and vector b to np.linalg.solve:

In [x]: M = np.array([[3, -2, 0], [-2, 1, -3], [4, 6, 1]])

In [x]: b = np.array([8, -20, 7])

In [x]: np.linalg.solve(M, b)

Out[x]: array([2., -1., 5.])

That is, x = 2, y = −1, z = 5.
If no unique solution exists (for nonsquare or singular matrix, M), a LinAlgError is

raised.

Linear Least-Squares Solutions (“Best Fit”)
Where a set of equations, Mx = b, does not have a unique solution, a least-squares
solution that minimizes the L2 norm, ||b − Mx||2 (sum of squared residuals), may be
sought using the np.linalg.lstsq method. This is the type of problem described as
overdetermined (more data points than the two unknown quantities, m and c). Passed M

and b, np.linalg.lstsq returns the solution array x, the sum of squared residuals, the
rank of M and the singular values of M.

The rank of the matrix M is determined by the number of its singular values: by default,
a singular value is considered to be equal to zero if it is less than the optional parameter,
rcond, times the largest singular value of M. If rcond is explicitly set to None, it will
be taken to be the machine precision times the largest dimension of M. Before version
1.14 of NumPy, the default value of rcond was taken to be machine precision itself (set
rcond = −1 to use this default). At the time of writing, if no value is provided for rcond,
a FutureWarning is given.

A typical use of this method is to find the “line of best-fit,” y = mx + c, through some
data thought to be linearly related, as in the following example.

Example E6.17 The Beer–Lambert law relates the concentration, c, of a substance in
a solution sample to the intensity of light transmitted through the sample, It, across a
given path length, l, at a given wavelength, λ:

It = I0e−αcl,

where I0 is the incident light intensity and α is the absorption coefficient at λ.

6.5 Linear Algebra 271

Given a series of measurements of the fraction of light transmitted, It/I0, α may be
determined through a least-squares fit to the straight line:

y = ln
It

I0
= −αcl.

Although this line passes through the origin (y = 0 for c = 0), we will fit the more
general linear relationship:

y = mc + k,

where m = −αl, and verify that k is close to zero.
Given a sample with path length l = 0.8 cm, the following data were measured for

It/I0 at five different concentrations:

c /M It/I0

0.4 0.886
0.6 0.833
0.8 0.784
1.0 0.738
1.2 0.694

The matrix form of the least-squares equation to be solved is
c1 1
c2 1
c3 1
c4 1
c5 1

(

m
k

)
=

T1

T2

T3

T4

T5

,

where T = ln(It/I0). The code here determines m and hence α using np.linalg.lstsq:

Listing 6.11 Linear least-squares fitting of the Beer–Lambert law

eg6-beer-lambert-lstsq.py

import numpy as np

import matplotlib.pyplot as plt

Path length, cm.

path = 0.8

The data: concentrations (M) and It/I0.

c = np.array([0.4, 0.6, 0.8, 1.0, 1.2])

It_over_I0 = np.array([0.891, 0.841, 0.783, 0.744, 0.692])

n = len(c)

A = np.vstack((c, np.ones(n))).T

T = np.log(It_over_I0)

Ê x, resid, _, _ = np.linalg.lstsq(A, T, rcond=None)

m, k = x

alpha = - m / path

print('alpha = {:.3f} M-1.cm-1'.format(alpha))

print('k =', k)

print('rms residual = ', np.sqrt(resid[0]))

272 NumPy

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

c /M

−0.40

−0.35

−0.30

−0.25

−0.20

−0.15

−0.10

ln
(I

t/
I 0

)

Figure 6.10 Line of least-squares best fit to absorbance data as a function of concentration.

plt.plot(c, T, 'o')

plt.plot(c, m*c + k)

plt.xlabel('$c\;/\mathrm{M}$')

plt.ylabel('$\ln(I_\mathrm{t}/I_0)$')

plt.show()

Ê Here, _ is the dummy variable name conventionally given to an object we do not
need to store or use.

The output produces a best-fit value of α = 0.393 M−1 cm−1 and a value of k
compatible with experimental error:

alpha = 0.393 M-1.cm-1

k = 0.0118109033334

rms residual = 0.0096843591966

Figure 6.10 shows the data and fitted line.

6.5.4 Exercises

Questions

Q6.5.1 Demonstrate that the three Pauli matrices given in Section 6.5.2 are unitary.
That is, that σ†pσp = I2 for p = x, y, z, where I2 is the 2 × 2 identity matrix and †
denotes the Hermitian conjugate (conjugate transpose).

Q6.5.2 The ticker timer, much used in school physics experiments, is a device that
marks dots on a strip of paper tape at evenly spaced intervals of time as the tape moves
through it at some (possibly variable) speed. The following data relate to the positions

6.5 Linear Algebra 273

(in cm) of marks on a tape pulled through a ticker timer by a falling weight. The marks
are made every 1/10 s.

x = [1.3, 6.0, 20.2, 43.9, 77.0, 119.6, 171.7, 233.2, 304.2, 384.7,

474.7, 574.1, 683.0, 801.3, 929.2, 1066.4, 1213.2, 1369.4, 1535.1,

1710.3, 1894.9]

Fit these data to the function x = x0 + v0t + 1
2 gt2 and determine an approximate value

for the acceleration due to gravity, g.

Problems

P6.5.1 In physics, the Planck units of measurement are those defined such that the
five universal physical constants, c (the speed of light), G (the gravitational constant), ~
(the reduced Planck constant), (4πε0)−1 (the Coulomb constant) and kB (the Boltzmann
constant) are set to unity. The dimensions of these quantities in terms of length (L),
mass (M), time (T), charge (Q) and thermodynamic temperature (Θ) are given in Table
6.8, along with their values in SI units.

This suggests the following matrix relationship between the constants and their
dimensions:

L M T Q Θ

c 1 0 −1 0 0
G 3 −1 −2 0 0
~ 2 1 −1 0 0

(4πε0)−1 3 1 −2 −2 0
kB 2 1 −2 0 −1

.

Using the inverse of this matrix, determine the SI values of length, mass, time, charge
and temperature in the base Planck units; that is, the combination of these physical
constants yielding the dimensions L, M, T, Q and Θ. For example, the Planck length is
found to be lP =

√
~G/c3 = 1.616199 × 10−35 m.

Table 6.8 Some physical constants and their dimensions

c Speed of light 2.99792458 × 108 m s−1 L T−1

G Gravitational
constant

6.67384 × 10−11 m3 kg−1 s−2 L3 M−1 T−2

~ Reduced Planck
constant

1.054571726 × 10−34 J s L2 M T−1

(4πε0)−1 Coulomb
constant

8.9875517873681764 × 109 N m2 C−2 L3 M T−2 Q−2

kB Boltzmann
constant

1.3806488 × 10−23 J K−1 L2 M T−2 Θ−1

274 NumPy

P6.5.2 The (symmetric) matrix representing the inertia tensor of a collection of
masses, mi, with positions (xi, yi, zi) relative to their center of mass is

I =

Ixx Ixy Ixz

Ixy Iyy Iyz

Ixz Iyz Izz

 ,
where

Ixx =
∑

i

mi(y2
i + z2

i), Iyy =
∑

i

mi(x2
i + z2

i), Izz =
∑

i

mi(x2
i + y2

i),

Ixy = −
∑

i

mixiyi, Iyz = −
∑

i

miyizi, Ixz = −
∑

i

mixizi.

There exists a transformation of the coordinate frame such that this matrix is diagonal:
the axes of this transformed frame are called the principal axes and the diagonal inertia
matrix elements, Ia ≤ Ib ≤ Ic, are the principal moments of inertia.

Write a program to calculate the principal moments of inertia of a molecule, given the
position and masses of its atoms relative to some arbitrary origin. Your program should
first relocate the atom coordinates relative to its center of mass and then determine the
principal moments of inertia as the eigenvalues of the matrix I.

A molecule may be classified as follows according to the relative values of Ia, Ib

and Ic:

• Ia = Ib = Ic: spherical top;
• Ia = Ib < Ic: oblate symmetric top;
• Ia < Ib = Ic: prolate symmetric top;
• Ia < Ib < Ic: asymmetric top.

Determine the principal moments of inertia and classify the molecules NH3, CH4,
CH3Cl and O3 given the data available at https://scipython.com/ex/bfh. Also determine
the rotational constants, A, B and C, related to the moments of inertia through Q =

h/(8π2cIq) (Q = A, B,C; q = a, b, c) and usually expressed in cm−1.

P6.5.3♦ The NumPy method numpy.linalg.svd returns the singular value decompo-
sition (SVD) of a matrix, M, as the arrays, U, Σ and V, satisfying the factorization
M = UΣV†, where † denotes the Hermitian conjugate (the conjugate transpose).

The SVD and the eigendecomposition are related in that the left-singular row vec-
tors, U are the eigenvectors of MM∗ and the right-singular column vectors, V, are the
eigenvectors of M∗M. Furthermore, the diagonal entries of Σ are the square roots of the
nonzero eigenvalues of both MM∗ and M∗M.

Show that this is the case for the special case of M, a 3 × 3 matrix with random real
entries, by comparing the output of numpy.linalg.svd with that of numpy.linalg.eig.

Hint: the singular values of M are sorted in descending order, but the eigenvalues
returned by numpy.linalg.eig are in no particular order. Both methods produce nor-
malized eigenvectors, but may differ by sign (ignore the possibility that any of the
eigenvalues could have an eigenspace with dimension greater than 1).

https://scipython.com/ex/bfh

6.5 Linear Algebra 275

P6.5.4 Let the column matrix

Fn =

(
pn

qn

)
describe the number of non-negative integers less than 10n (n ≥ 0) that do (pn) and do
not (qn) contain the digit 5. Hence, for n = 1, p1 = 1 and q1 = 9. Devise a matrix-based
recursion relation for finding Fn+1 from Fn.

How many numbers less than 1010 contain the digit 5?
For each n ≤ 10, find pn and verify that pn = 10n − 9n.

P6.5.5 The matrix

F =

(
1 1
1 0

)
can be used to produce the Fibonacci sequence by repeated multiplication: the element
Fn

11 of the matrix Fn is the (n+1)th Fibonacci number (for n = 0, 1, 2 . . .). Use a NumPy
representation of F to calculate the first 10 Fibonacci numbers.

One can show that

Fn = CDnC−1, where D = C−1FC

is the diagonal matrix related to F through the similarity transformation associated with
matrix C. Use this relationship to find the 1100th Fibonacci number.

P6.5.6 The implicit formula for a conic section may be written as the second-degree
polynomial,

Q = Ax2 + Bxy + Cy2 + Dx + Ey + F = 0,

or in matrix form using the homogeneous coordinate vector,

x =

x
y
1

 ,
as xT Qx = 0, where

Q =

A B/2 D/2

B/2 C E/2
D/2 E/2 F

 .
Conic sections may be classified according to the following properties of Q, where the
submatrix Q33 is

Q33 =

(
A B/2

B/2 C

)
.

• If detQ = 0, the conic is degenerate in one of the following forms:

– if detQ33 < 0, the equation represents two intersecting lines;
– if detQ33 = 0, the equation represents two parallel lines;

276 NumPy

– if detQ33 > 0, the equation represents a single point.

• if detQ , 0:

– if detQ33 < 0, the conic is a hyperbola;
– if detQ33 = 0, the conic is a parabola;
– if detQ33 > 0, the conic is an ellipse:

◦ if A = C and B = 0, the ellipse is a circle.

Write a program to classify the conic section represented by the six coefficients
A, B,C,D, E and F.

Some test-cases (coefficients not given are zero):

• hyperbola: B = 1, F = −9;
• parabola: A = 1

2 ,D = 2, E = − 1
2 ;

• circle: A = 1
2 ,C = 1

2 ,D = −2, E = −3, F = 2;
• ellipse: A = 9,C = 4, F = −36;
• two parallel lines: A = 1, F = −1;
• a single point: A = 1,C = 1.

P6.5.7 Example E6.8 produced a comma-separated text file containing 10 simulations
of the radioactive decay of an ensemble of 500 14C nuclei. For each simulation column,
the number of undecayed nuclei as a function of time, N(t), is given; the grid of time
points (in years) is in the first column.

Average the simulation data, which is available at https://scipython.com/ex/bac, and
use NumPy’s np.linalg.lstsq function to perform a linear least-squares fit. Retrieve
the half-life of 14C, t1/2 = τ ln 2, where:

N(t) = N(0)e−t/τ ⇒ ln[N(t)] = ln[N(0)] −
t
τ
.

6.6 Random Sampling

NumPy’s random module provides methods for obtaining random numbers from any of
several distributions as well as convenient ways to choose random entries from an array
and to randomly shuffle the contents of an array.

As with the Standard Library’s random module (Section 4.5.1), np.random uses a
Mersenne Twister pseudorandom-number generator (PRNG) The way it seeds itself is
operating-system dependent, but it can be reseeded with any hashable object (e.g. an
immutable object such as an integer) by calling np.random.seed. For example, using
the randint method described here:

In [x]: np.random.seed(42)

In [x]: np.random.randint(1, 10, 10) # 10 random integers in [1, 10)

array([7, 4, 8, 5, 7, 3, 7, 8, 5, 4])

In [x]: np.random.randint(1, 10, 10)

array([8, 8, 3, 6, 5, 2, 8, 6, 2, 5])

https://scipython.com/ex/bac

6.6 Random Sampling 277

In [x]: np.random.randint(1, 10, 10)

array([1, 6, 9, 1, 3, 7, 4, 9, 3, 5])

In [x]: np.random.seed(42) # reseed the PRNG

In [x]: np.random.randint(1,10, 10)

array([7, 4, 8, 5, 7, 3, 7, 8, 5, 4]) # same as before

6.6.1 Uniformly Distributed Random Numbers

Random Floating-Point Numbers
The basic random method, random_sample,26 takes the shape of an array as its argument
and creates an array of the corresponding shape filled with numbers sampled randomly
from the uniform distribution over [0, 1); that is, the interval between 0 and 1 inclusive
of 0 but exclusive of 1:

In [x]: np.random.random_sample((3,2))

array([[0.92338355, 0.2978852],

[0.75175429, 0.88110707],

[0.16759816, 0.32203783]])

(called without an argument, it returns a single random number). If you want numbers
sampled from the uniform distribution over [a, b), you need to do a bit of work:

In [x]: a, b = 10, 20

In [x]: a + (b - a) * np.random.random_sample((3, 2))

array([[18.07084068, 12.11591797],

[14.08171741, 19.34857282],

[13.06759203, 11.07003867]])

In a uniform distribution, every number has the same probability of being sampled,
as can be seen from a histogram of a large number of samples (Figure 6.11):

In [x]: plt.hist(np.random.random_sample(10000), bins=100)

In [x]: plt.show()

The np.random.rand method is similar, but is passed the dimensions of the desired
array as separate arguments. For example,

In [x]: np.random.rand(2, 3)

Out[x]:

array([[0.61075227, 0.37459455, 0.95670676],

[0.25276732, 0.1601836 , 0.3746576]])

Random Integers
Sampling random integers is supported through a couple of methods. The np.random.

randint method takes up to three arguments: low, high and size.

• If both low and high are supplied, then the random number(s) are sampled from
the discrete half-open interval [low, high).27

26 np.random.random_sample is also available under the aliases np.random.random, np.random.ranf and
np.random.sample.

27 Note that this is different from the behavior of the Standard Library’s random.randint(a, b) method (see
Section 4.5.1), which picks numbers uniformly from the closed interval, [a, b].

278 NumPy

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

120

140

Figure 6.11 Histogram of 10 000 random samples from the uniform distribution on [0, 1)
provided by np.random.random_sample().

• If low is supplied but high is not, then the sampled interval is [0, low).
• size is the shape of the array of random integers desired. If it is omitted, as with

np.random.rand, a single random integer is returned.

In [x]: np.random.randint(4) # random integer from [0, 4)

2

In [x]: np.random.randint(4, size=10) # 10 random integers from [0, 4)

array([3, 2, 2, 2, 0, 2, 2, 1, 3, 1])

In [x]: np.random.randint(4, size=(3, 5)) # array of random integers from [0, 4)

array([[0, 1, 1, 2, 2],

[2, 0, 3, 3, 0],

[0, 1, 0, 1, 1]])

In [x]: np.random.randint(1, 4, (3, 5)) # array of random integers from [1, 4)

array([[1, 1, 1, 3, 2],

[1, 1, 2, 1, 3],

[1, 3, 1, 3, 1]])

np.random.randint can be useful for selecting random elements (with replacement)
from an array by picking random indexes:

In [x]: a = np.array([6, 6, 6, 7, 7, 7, 7, 7, 7])

In [x]: a[np.random.randint(len(a), size=5)]

array([7, 7, 7, 6, 7])

The other method for sampling random integers, np.random.random_integers, has the
same syntax but returns integers sampled from the uniform distribution over the closed
interval [low, high] (if high is supplied) or [0, low] (if it is not).

Example E6.18 These random-integer methods can be used for sampling from a set
of evenly spaced real numbers, though it requires a bit of extra work: to pick a number
from n evenly spaced real numbers between a and b (inclusive), use

In [x]: a + (b - a) * (np.random.random_integers(n) - 1) / (n - 1.)

6.6 Random Sampling 279

For example, to sample from [1
2 ,

3
2 ,

5
2 ,

7
2],

In [x]: a, b, n = 0.5, 3.5, 4

In [x]: a + (b - a) * (np.random.random_integers(n, size=10) - 1) / (n - 1.)

array([1.5, 0.5, 1.5, 1.5, 3.5, 2.5, 3.5, 3.5, 3.5, 3.5])

Example E6.19 In a famous experiment, a group of volunteers are asked to toss a
fair coin 100 times and note down the results of each toss (heads, H, or tails, T). It is
generally easy to spot the participants who fake the results by writing down what they
think is a random sequence of Hs and Ts instead of actually tossing the coin because
they tend not to include as many “streaks” of repeated results as would be expected by
chance.

If they had access to a Python interpreter, here’s how they could produce a more
plausibly random set of results:

In [x]: res = ['H', 'T']

In [37]: tosses = ''.join([res[i] for i in np.random.randint(2, size=100)])

In [38]: tosses

Out[38]: 'TTHHTHHTTHHHTHTTHHHTHHTHTTHHTHHTTTTHHHHHHHHTTTHTTHHHHHHHTHHHTHHHH

THTTTHTTHHHHTHTTTTHTTTHTHHTTHHHHHHH'

This virtual experiment features a run of eight heads in a row, and two runs of seven
heads in a row:

TAILS | i | HEADS

| 8 | *

| 7 | **

| 6 |

| 5 |

** | 4 | **

*** | 3 | ***

******* | 2 | ******

********** | 1 | ********

6.6.2 Random Numbers from Non-Uniform Distributions

The full range of random distributions supported by NumPy is described in the official
documentation.28 This section describes in detail only the normal, binomial and Poisson
distributions.

The Normal Distribution
The normal probability distribution is described by the Gaussian function,

P(x) =
1

σ
√

2π
exp

(
−

(x − µ)2

2σ2

)
,

28 https://docs.scipy.org/doc/numpy-1.14.0/reference/routines.random.html.

https://docs.scipy.org/doc/numpy-1.14.0/reference/routines.random.html

280 NumPy

where µ is the mean and σ the standard deviation. The NumPy function, np.random.
normal, selects random samples from the normal distribution. The mean and standard
deviation are specified by loc and scale respectively, which default to 0 and 1. The
shape of the returned array is specified with the size attribute.

In [x]: np.random.normal()

-0.34599057326978105

In [x]: np.random.normal(scale=5., size=3)

array([4.38196707, -5.17358738, 11.93523167])

In [x]: np.random.normal(100., 8., size=(4, 2))

array([[107.730434 , 101.06221195],

[100.75627505, 88.79995561],

[88.82658615, 94.89630767],

[105.91254312, 98.21190741]])

It is also possible to draw numbers from the standard normal distribution (that with
µ = 0 and σ = 1) with the np.random.randn method. Like random.rand, this takes the
dimensions of an array as its arguments:

In [x]: np.random.randn(2, 2)

array([[-1.25092263, 2.6291925],

[0.34158642, 0.40339403]])

Although np.random.randn does not provide a way to set the mean and standard devi-
ation explicitly, the standard distribution can be rescaled easily enough:

In [x]: mu, sigma = 100., 8.

In [x]: mu + sigma * np.random.randn(4, 2)

array([[104.92454826, 98.84646729],

[109.43568726, 92.9568489],

[90.21632016, 96.25271625],

[102.65745451, 89.94890264]])

60 70 80 90 100 110 120 130 140
0.00

0.01

0.02

0.03

0.04

0.05

0.06

Figure 6.12 Histogram of 10 000 random samples from the normal distribution provided by
np.random.normal.

6.6 Random Sampling 281

Example E6.20 The normal distribution may be plotted from sampled data as a his-
togram (Figure 6.12):

In [x]: mu, sigma = 100., 8.

In [x]: samples = np.random.normal(loc=mu, scale=sigma, size=10000)

In [x]: counts, bins, patches = plt.hist(samples, bins=100, density=True)

In [x]: plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) *

... np.exp(-(bins - mu)**2 / (2 * sigma**2)), lw=2)

In [x]: plt.show()

The Binomial Distribution
The binomial probability distribution describes the number of particular outcomes in a
sequence of n Bernoulli trials – that is, n independent experiments, each of which can
yield exactly two possible outcomes (e.g. yes/no, success/failure, heads/tails). If the
probability of a single particular outcome (say, success) is p, the probability that such a
sequence of trials yields exactly k such outcomes is(

n
k

)
pk(1 − p)n−k, where

(
n
k

)
=

n!
k!(n − k)!

.

For example, when a fair coin is tossed, the probability of it coming up heads each
time is 1

2 . The probability of getting exactly three heads out of four tosses is therefore
4(1

2)(1
2)3 = 1

4 , where the factor of
(

4
3

)
= 4 accounts for the four possible equivalent

outcomes: THHH, HTHH, HHTH, HHHT.
To sample from the binomial distribution described by parameters n and p, use

np.random.binomial(n, p). Again, the shape of an array of samples can be specified
with the third argument, size:

In [x]: np.random.binomial(4, 0.5)

2

In [x]: np.random.binomial(4, 0.5, (4, 4))

array([[1, 2, 2, 4],

[2, 1, 3, 2],

[2, 3, 1, 1],

[2, 4, 2, 3]])

Example E6.21 There are two stable isotopes of carbon, 12C and 13C (the radioactive
14C nucleus is present in nature in only trace amounts of the order of parts per trillion).
Taking the abundance of 13C to be x = 0.0107 (i.e. about 1%), we will calculate the
relative amounts of buckminsterfullerene, C60, with exactly zero, one, two, three and
four 13C atoms. (This is important in nuclear magnetic resonance studies of fullerenes,
for example, because only the 13C nucleus is magnetic and so detectable by NMR.)

The number of 13C atoms in a population of carbon atoms sampled at random from a
population with natural isotopic abundance follows a binomial distribution: the proba-
bility that, out of n atoms, m will be 13C (and therefore n − m will be 12C) is

pm(n) =

(
n
m

)
xm(1 − x)n−m.

282 NumPy

We can, of course, calculate pm(60) exactly from this formula for 0 ≤ m ≤ 4, but we
can also simulate the sampling with the np.random.binomial method.

Listing 6.12 Modeling the distribution of 13C atoms in C60

eg6-e-c13-a.py

import numpy as np

n, x = 60, 0.0107

mmax = 4

m = np.arange(mmax + 1)

Estimate the abundances by random sampling from the binomial distribution.

ntrials = 10000

pbin = np.empty(mmax + 1)

for r in m:

Ê pbin[r] = np.sum(np.random.binomial(n, x, ntrials) == r)/ntrials

Calculate and store the binomial coefficients nCm.

nCm = np.empty(mmax + 1)

nCm[0] = 1

for r in m[1:]:

nCm[r] = nCm[r - 1] * (n - r + 1) / r

The "exact" answer from binomial distribution.

p = nCm * x**m * (1-x)**(n-m)

print('Abundances of C60 as (13C)[m](12C)[60-m]')

print('m "Exact" Estimated')

print('-'*24)

for r in m:

print('{:1d} {:6.4f} {:6.4f}'.format(r, p[r], pbin[r]))

Ê For each value of r in the array m, we sample a large number of times (ntrial)
from the binomial distribution described by n = 60 and probability, x = 0.0107. The
comparison of these sample values with a given value of r yields a boolean array
which can be summed (remembering that True evaluates to 1 and False evaluates to
0); division by ntrials then gives an estimate of the probability of exactly r atoms
being of type 13C and the remainder of type 12C.

The explicit loop over m could be removed by creating an array of shape (ntrials,

mmax + 1) containing all the samples, and summing over the first axis of this array in
the comparison with the m array:

samples = np.random.binomial(n, x, (ntrials, mmax + 1))

pbin = np.sum(samples == m, axis=0) / ntrials

The abundances of 13Cm
12C60−m produced by our program are given as the following

output.

Abundances of C60 as (13C)[m](12C)[60-m]

m "Exact" Estimated

0 0.5244 0.5199

1 0.3403 0.3348

2 0.1086 0.1093

3 0.0227 0.0231

6.6 Random Sampling 283

4 0.0035 0.0031

That is, almost 48% of C60 molecules contain at least one magnetic nucleus.

The Poisson Distribution
The Poisson distribution describes the probability of a particular number of independent
events occurring in a given interval of time if these events occur at a known average rate.
It is also used for occurrences in specified intervals over other domains such as distance
or volume. The Poisson probability distribution of the number of events, k, is

P(k) =
λke−λ

k!
,

where the parameter λ is the expected (average) number of events occurring within the
considered interval.29 The NumPy implementation np.random.poisson takes λ as its
first argument (which defaults to 1) and, as before, the shape of the desired array of
samples can be specified with a second argument, size. For example, if I receive an
average of 2.5 emails an hour, a sample of the number of emails I receive each hour
over the next 8 hours could be obtained as:

In [x]: np.random.poisson(2.5, 8)

array([4, 1, 3, 0, 4, 1, 3, 2])

Example E6.22 The endonuclease enzyme EcoRI is used as a restriction enzyme
which cuts DNA at the nucleic acid sequence GAATTC. Suppose a given DNA
molecule contains 12 000 base pairs and a 50% G + C content. The Poisson distribution
can be used to predict the probability that EcoRI will fail to cleave this molecule as
follows:

The recognition site, GAATTC, consists of six nucleotide base pairs; the probabil-
ity that any given six-base sequence corresponds to GAATTC is 1/46 = 1/4096 and
so the expected number of cleavage sites for EcoRI in this DNA molecule is λ =

12 000/4096 = 2.93. From the Poisson distribution, we expect the probability that the
endonuclease will fail to cleave this molecule is therefore

P(0) =
λ0e−λ

0!
= 0.053,

or about 5.3%. To simulate the possibilities stochastically:

In [x]: lam = 12000 / 4**6

In [x]: N = 100000

In [x]: np.sum(np.random.poisson(lam, N) == 0) / N

Out[x]: 0.053699999999999998

29 The Poisson distribution is the limit of the binomial distribution as n → ∞ and p → 0 such that λ = np
tends to some finite constant value.

284 NumPy

6.6.3 Random Selections, Shuffling and Permutations

It is often the case that given an array of values, you wish to pick one or more at random
(with or without replacement). This is the purpose of the np.random.choice method.
Given a single argument, a one-dimensional sequence, it returns a random element
drawn from the sequence:

In [x]: np.random.choice([1, 5, 2, -5, 5, 2, 0])

2

In [x]: np.random.choice(np.arange(10))

7

A second argument, size, controls the shape of the array of random samples returned,
as before. By default, the elements of the sequence are drawn randomly with a uni-
form distribution and with replacement; to draw the sample without replacement, set
replace=False.

In [x]: a = np.array([1, 2, 0, -1, 1])

In [x]: np.random.choice(a, 6) # six random selections from a

array([1, -1, 2, 1, -1, 1])

In [x]: np.random.choice(a, (2, 2), replace=False)

array([[2, -1],

[1, 0]])

In [x]: np.random.choice(a, (3, 2), replace=False)

... <some traceback information > ...

ValueError: Cannot take a larger sample than population when 'replace=False'

This last example shows that, as you might expect, it is not possible to draw a larger
number of elements than there are in the original population if you are sampling without
replacement.

To specify the probability of each element being selected, pass a sequence of the same
length as the population to be sampled as the argument p. The probabilities should sum
to 1.

In [x]: a = np.array([1, 2, 0, -1, 1])

In [x]: np.random.choice(a, 5, p=[0.1, 0.1, 0., 0.7, 0.1])

Out[x]: array([-1, -1, -1, -1, 1])

In [x]: np.random.choice(a, 2, False, p=[0.1, 0.1, 0., 0.8, 0.])

Out[x]: array([-1, 2]) # sample without replacement

There are two methods for permuting the contents of an array: np.random.shuffle
randomly rearranges the order of the elements in place whereas np.random.permutation
makes a copy of the array first, leaving the original unchanged:

In [x]: a = np.arange(6)

In [x]: np.random.permutation(a)

array([4, 2, 5, 1, 3, 0])

In [x]: a

array([0, 1, 2, 3, 4, 5])

In [x]: np.random.shuffle(a)

In [x]: a

array([5, 4, 1, 3, 0, 2])

These methods only act on the first dimension of the array:

6.6 Random Sampling 285

In [x]: a = np.arange(6).reshape(3, 2)

In [x]: a

array([[0, 1],

[2, 3],

[4, 5]])

In [x]: a.random.permutation(a) # permutes the rows, but not the columns

array([[2, 3],

[4, 5],

[0, 1]])

6.6.4 Exercises

Questions

Q6.6.1 Explain the difference between
In [x]: a = np.array([6, 6, 6, 7, 7, 7, 7, 7, 7])

In [x]: a[np.random.randint(len(a), size=5)]

array([7, 7, 7, 6, 7]) # (for example)

and
In [x]: np.random.randint(6, 8, 5)

array([6, 6, 7, 7, 7]) # (for example)

Q6.6.2 In Example E6.18 we used random.random_integers to sample from the uni-
form distribution on the floating-point numbers [1

2 ,
3
2 ,

5
2 ,

7
2]. How can you do the same

using the np.random.randint instead?

Q6.6.3 The American lottery, Mega Millions, at the time of writing, involves the
selection of five numbers out of 70 and one from 25. The jackpot is shared among
the players who match all of their numbers in a corresponding random draw. What is
the probability of winning the jackpot? Write a single line of Python code using NumPy
to pick a set of random numbers for a player.

Q6.6.4 Suppose an n-page book is known to contain m misprints. If the misprints
are independent of one another, the probability of a misprint occurring on a particular
page is p = 1/n and their distribution may be considered to be binomial. Write a short
program to conduct a number of trial virtual “printings” of a book with n = 500,m =

400 and determine the probability, Pr, that a single given page will contain two or more
misprints.

Compare with the result predicted by the Poisson distribution with rate parameter
λ = m/n, Pr = 1 − e−λ

(
λ0

0! + λ
1!

)
.

Problems

P6.6.1 Simulate an experiment carried out ntrials times in which, for each experi-
ment, n coins are tossed and the total number of heads each time is recorded.

Plot the results of the simulation on a suitable histogram and compare with the
expected binomial distribution of heads.

286 NumPy

P6.6.2 A classic problem, first posed by Georges-Louis Leclerc, Comte de Buffon,
can be stated as follows:

Given a plane ruled with parallel lines a distance d apart, what is the probability that a needle of
length l ≤ d dropped at random onto the plane will cross a line?

The problem can be solved analytically, yielding the answer 2l/πd; show that this
solution is given approximately for the case l = d using a random simulation (Monte
Carlo) method, that is, by simulating the experiment with a large number of random
orientations of the needle.

A related problem involves dropping a circular coin of radius a onto a floor consisting
of square tiles, each of side d. Show that the probability of a coin crossing a tile edge is
1 − (d − 2a)2/d2 and confirm it with a Monte Carlo simulation.

P6.6.3 Some bacteria, such as Escherichia coli, possess helical flagella which enable
them to move toward attractants such as nutrients, a process known as chemotaxis.
When the flagella rotate counterclockwise, the bactrium is propelled forward; when they
rotate clockwise, it tumbles randomly, changing its orientation. A combination of such
movements enables the bacterium to perform a biased random walk: if the bacterium
senses it is moving up a concentration gradient toward an attractant it will rotate its
flagella counterclockwise more often than clockwise so as to continue moving in that
direction; conversely, if it is moving away it is more likely to rotate its flagella clockwise
so as to tumble, with the aim of randomly changing its orientation to one that points it
toward the attractant.

The chemotaxis of E. coli may be modeled (very) simplistically by considering a
bacterium to move in a two-dimensional “world” populated by an attractant with a
constant concentration gradient away from some location. At each of a series of time
steps, a model bacterium detects whether it is moving up or down this gradient and
either continues moving or tumbles according to some pair of probabilities.

Write a Python program to implement this simple model of chemotaxis for a world
consisting of the unit square with an attractant at its center. Plot the locations of 10
model bacteria that start off evenly spaced around the unit circle centered on the attrac-
tant location.

P6.6.4 One way to simulate the meanders in a river is as the average of a large number
of a random walks.30 Using a coordinate system (x, y), start at point A = (0, 0) and aim
to finish at B = (b, 0). Starting from an initial heading of φ0 from the AB direction, at
each step change this angle by a random amount drawn from a normal distribition with
mean µ = 0 and standard deviation σ, and proceed by unit distance in this direction.
Discard any walks which do not, after n steps, finish within one unit of B (this will be
the majority!).

30 B. Hayes, American Scientist 94, 490 (2006); H. von Schelling, General Electric Report No. 64GL92.

6.7 Discrete Fourier Transforms 287

Write a program to find the average path meeting the above constraints for b = 10,
using φ0 = 110◦, σ = 17◦, n = 40 and 106 random-walk trials. Plot the accepted walks
and their average, which should resemble a meander.

6.7 Discrete Fourier Transforms

6.7.1 One-dimensional Fast Fourier Transforms

numpy.fft is NumPy’s Fast Fourier Transform (FFT) library for calculating the discrete
Fourier transform (DFT) using the ubiquitous Cooley and Tukey algorithm.31 The def-
inition for the DFT of a function defined on n points, fm,m = 1, 2, . . . , n − 1 used by
NumPy is

Fk =

n−1∑
m=0

fm exp
(
−

2πimk
n

)
, k = 0, 1, 2, . . . , n − 1 (6.1)

NumPy’s basic DFT method, for real and complex functions, is np.fft.fft. If the
input signal function, f , is considered to be in the time domain, the output Fourier
Transform, F, is in the frequency domain and is returned by the fft(f) function call in a
standard order: F[:n/2] are the positive-frequency terms in increasing order, F[n/2+1:]
contains the negative-frequency terms in decreasing order, and F[n/2] is the (positive
and negative) Nyquist frequency.32 np.abs(F), np.abs(F)**2 and np.angle(F) are the
amplitude spectrum, power spectrum and phase spectrum, respectively.

The frequency bins corresponding to the values of F are given by np.fft.fftfreq

n, d) where d is the sample spacing. For even n, this is equivalent to

0,
1

dn
,

2
dn
, . . . ,

n/2 − 1
dn

,−
n/2
dn

,−
n/2 − 1

dn
, . . . ,−2,−1

To shift the spectrum so that the zero-frequency component is at the center, call
np.fft.fftshift. To undo that shift, call np.fft.ifftshift.

For example, consider the following waveform in the time domain with some syn-
thetic Gaussian noise added:

f (t) = 2 sin (20πt) + sin (100πt) .

In [x]: A1, A2 = 2, 1

In [x]: freq1,freq2 = 10, 50

In [x]: fsamp = 500

In [x]: t = np.arange(0, 1, 1/fsamp)

In [x]: n = len(t)

In [x]: f = A1*np.sin(2*np.pi*freq1*t) + A2*np.sin(2*np.pi*freq2*t)

In [x]: f += 0.2 * np.random.randn(n)

In [x]: plt.plot(t, f)

In [x]: plt.xlabel('Time /s')

31 J. W. Cooley and J. W. Tukey, Math. Comput. 19, 297–301 (1965).
32 Here, n is assumed to be even.

288 NumPy

0.0 0.2 0.4 0.6 0.8 1.0

Time /s

−6

−4

−2

0

2

4

6

Figure 6.13 The noisy waveform referred to in the text.

0 100 200 300 400 500
−600

−400

−200

0

200

400

600

real
imag

Figure 6.14 The Fourier transform of a noisy waveform with two frequency components, as
returned by np.fft.fft.

In [x]: plt.show()

The plot of this waveform is depicted in Figure 6.13.
The Fourier transform of this function is complex; its real and imaginary components

are plotted in Figure 6.14.

In [x]: F = np.fft.fft(f)

In [x]: plt.plot(F.real, 'k', label='real')

In [x]: plt.plot(F.imag, 'gray', label='imag')

In [x]: plt.legend(loc=2)

In [x]: plt.show()

6.7 Discrete Fourier Transforms 289

−300 −200 −100 0 100 200 300

Frequency /Hz

0

100

200

300

400

500

600

Figure 6.15 The Fourier Transform of a noisy waveform with two frequency components plotted
against frequency.

Now look at the shifted amplitude spectrum with the zero-frequency component at
the center:33

In [x]: freq = np.fft.fftfreq(n, 1/fsamp)

In [x]: F_shifted = np.fft.fftshift(F)

In [x]: freq_shifted = np.fft.fftshift(freq)

In [x]: plt.plot(freq_shifted , np.abs(F_shifted))

In [x]: plt.xlabel('Frequency /Hz')

In [x]: plt.show()

This plot is given in Figure 6.15.
Now, because our input function is real, its Fourier transform is Hermitian: the nega-

tive frequency components are the complex conjugates of the positive frequency com-
ponents so they don’t contain any further information. Therefore, we only need to deal
with the first half of the F array. Plotted against its (positive) frequencies as an amplitude
spectrum (Figure 6.16):

Ê In [x]: spec = 2/n * np.abs(F[:n//2])

In [x]: plt.plot(freq[:n//2], spec, 'k')

In [x]: plt.xlabel('Frequency /Hz')

In [x]: plt.show()

Ê Note that because of the way this DFT has been defined, a normalization factor of
2
n is required to faithfully regenerate the original amplitudes of each component.

The amplitudes of the 10 Hz and 50 Hz signals are easily resolved in this spectrum.

33 The shifting here is for illustration: note that it isn’t really necessary to shift both freq and F arrays simply
to plot one against the other.

290 NumPy

0 50 100 150 200 250

Frequency /Hz

0.0

0.5

1.0

1.5

2.0

2.5

Figure 6.16 The positive-frequency components of the Fourier transform of a noisy waveform,
normalized to show their intensities.

The inverse Fourier Transform defined through

fm =
1
n

n−1∑
k=0

Fk exp
(

2πimk
n

)
m = 0, 1, 2, . . . , n − 1

is returned by the method np.fft.ifft.
If, as mentioned earlier, the input function array is real and only the non-negative

frequency components are needed, the np.fft methods rfft, irfft, rfftfreq can be
used.

6.7.2 Two-Dimensional Fast Fourier Transforms

Discrete Fourier transforms and their inverses in two and higher dimensions are possible
using the np.fft methods fft2, ifft2, fftn and ifftn. The two-dimensional DFT is
defined as

F jk =

m−1∑
p=0

n−1∑
q=0

fpq exp
[
−2πi

(
p j
m

+
qk
n

)]
,

j = 0, 1, 2, . . . ,m − 1; k = 0, 1, 2, . . . , n − 1.

and higher dimensions follow similarly.

6.7 Discrete Fourier Transforms 291

Example E6.23 The two-dimensional DFT is widely used in image processing.34 For
example, multiplying the DFT of an image by a two-dimensional Gaussian function is
a common way to blur an image by decreasing the magnitude of its high-frequency
components.

The following code produces an image of randomly arranged squares and then blurs
it with a Gaussian filter.

Listing 6.13 Blurring an image with a Gaussian filter

eg6-fft2-blur.py

import numpy as np

import matplotlib.pyplot as plt

Image size, square side length, number of squares.

ncols, nrows = 120, 120

sq_size, nsq = 10, 20

The image array (0=background , 1=square) and boolean array of allowed places

to add a square so that it doesn ' t touch another or the image sides.
image = np.zeros((nrows, ncols))

sq_locs = np.zeros((nrows, ncols), dtype=bool)

sq_locs[1:-sq_size -1:,1:-sq_size -1] = True

def place_square():

""" Place a square at random on the image and update sq_locs. """

Valid_locs is an array of the indexes of True entries in sq_locs.

valid_locs = np.transpose(np.nonzero(sq_locs))

Pick one such entry at random, and add the square so its top left

corner is there; then update sq_locs.

i, j = valid_locs[np.random.randint(len(valid_locs))]

image[i:i+sq_size, j:j+sq_size] = 1

imin, jmin = max(0, i-sq_size -1), max(0, j-sq_size -1)

sq_locs[imin:i+sq_size+1, jmin:j+sq_size+1] = False

Add the required number of squares to the image.

for i in range(nsq):

place_square()

plt.imshow(image)

plt.show()

Take the two-dimensional DFT and center the frequencies.

ftimage = np.fft.fft2(image)

ftimage = np.fft.fftshift(ftimage)

plt.imshow(np.abs(ftimage))

plt.show()

Build and apply a Gaussian filter.

sigmax, sigmay = 10, 10

34 Note that there is an entire SciPy subpackage, scipy.ndimage, not described in this book, devoted to image
processing. This example serves simply to illustrate the syntax and format of NumPy’s two-dimensional
FFT implementation.

292 NumPy

0 20 40 60 80 100

0

20

40

60

80

100

0 20 40 60 80 100

0

20

40

60

80

100

0 20 40 60 80 100

0

20

40

60

80

100

0 20 40 60 80 100

0

20

40

60

80

100

Figure 6.17 Blurring an image with a Gaussian filter applied to its two-dimensional Fourier
transform.

cy, cx = nrows/2, ncols/2

x = np.linspace(0, nrows, nrows)

y = np.linspace(0, ncols, ncols)

X, Y = np.meshgrid(x, y)

gmask = np.exp(-(((X-cx)/sigmax)**2 + ((Y-cy)/sigmay)**2))

ftimagep = ftimage * gmask

plt.imshow(np.abs(ftimagep))

plt.show()

Finally, take the inverse transform and show the blurred image.

imagep = np.fft.ifft2(ftimagep)

plt.imshow(np.abs(imagep))

plt.show()

The results are shown in Figure 6.17.

6.7.3 Exercises

Questions

Q6.7.1 Compare the speed of execution of NumPy’s np.fft.fft algorithm and that
of the direct implementation of Equation 6.1.

Hint: treat the direct equation as a matrix multiplication (dot product) of an array of n
function values (random ones will do) with the n × n array with entries exp(−2πimk/n)
(m, k = 0, 1, . . . , n − 1). Use IPython’s %timeit magic function.

6.7 Discrete Fourier Transforms 293

Problems

P6.7.1 Consider a signal in the time domain defined by the function

f (t) = cos(2πνt)e−t/τ,

with frequency ν = 250 Hz decaying exponentially with a lifetime τ = 0.2 s. Plot
the function, sampled at 1000 Hz, and its discrete Fourier transform against frequency.
Examine, by means of a suitable plot, the effect of apodization on the DFT by truncating
the time sequence after (a) 0.5 s, (b) 0.2 s.

P6.7.2 A square wave of period T may be defined through the following function

fsq(t) =

{
1 t < T/2
−1 t ≥ T/2

,

with f (t) = f (t + nT) for n = ±1,±2, . . .
Plot the square wave with T = 1 (and hence cycle frequency, ν = 1) for 0 ≤ t < 2

taking a grid of 2048 time points over this interval. Calculate and plot its discrete Fourier
transform.

The Fourier expansion of this function is the infinite series

fsq(t) =
4
π

∞∑
k=1

1
2k − 1

sin[2π(2k − 1)νt].

Compare the square wave function with this Fourier expansion truncated at 3, 9 and
18 terms. Also compare their (suitably normalized) Fourier transforms: the missing
frequencies in each truncated series should appear as zeros in its Fourier transform,
whereas the present terms will have intensities 4/[π(2k − 1)].

P6.7.3 The scipy library provides a routine for reading in .wav files as NumPy arrays:

In [x]: from scipy.io import wavfile

In [x]: sample_rate , wav = wavfile.read(<filename >)

For a stereo file, the array wav has shape (n, 2) where n is the number of samples.
Use the routines of np.fft to identify the chords present in the sound file chords.wav,

which may be downloaded from https://scipython.com/ex/bfi. Which major chord do
they comprise?

The frequencies of musical notes on an equal-tempered scale for which A4 = 440 Hz
are provided as a dictionary in the file notes.py.

https://scipython.com/ex/bfi

7 Matplotlib

Matplotlib is probably the most popular Python package for plotting data. It can be
used through the procedural interface pyplot in very quick scripts to produce simple
visualizations of data (see Chapter 3) but, as described in this chapter, with care it
can also produce high-quality figures for journal articles, books and other publications.
Although there is some limited functionality for producing three-dimensional plots (see
Section 7.6), it is primarily a two-dimensional plotting library.

7.1 Line Plots and Scatter Plots

Matplotlib is a large package organized in a hierarchy: at the highest level is the
matplotlib.pyplot module. This provides a “state-machine environment” with a
similar interface to MATLAB and allows the user to add plot elements (data points,
lines, annotations, etc.) through simple function calls. This is the interface introduced
in Chapter 3.

At a lower level, which allows more advanced and customizable use, Matplotlib has
an object-oriented interface that allows one to create a figure object to which one or
more axes objects are attached. Most plotting, annotation and customization then occurs
through these axes objects. This is this approach adopted in this chapter.

To use Matplotlib in this way, we use the following recommended imports:

import matplotlib.pyplot as plt

import numpy as np

7.1.1 Plotting on a Single Axes Object

The top-level object, containing all the elements of a plot is called Figure. To create a
figure object, call plt.figure. No arguments are necessary, but optional customization
can be specified by setting the values described in Table 7.1. For example,

In [x]: # a default figure, with title "Figure 1"

In [x]: fig = plt.figure()

In [x]: # a small (4.5" x 2") figure with red background

In [x]: fig = plt.figure('Population density', figsize=(4.5, 2.),

....: facecolor='red')

294

7.1 Line Plots and Scatter Plots 295

Table 7.1 Arguments to plt.figure

Argument Description

num An identifier for the figure – if none is provided, an integer, starting at 1, is used
and incremented with each figure created; alternatively, using a string will set
the window title to that string when the figure is displayed with plt.show()

figsize A tuple of figure (width, height), unfortunately in inches
dpi Figure resolution in dots per inch
facecolor Figure background color
edgecolor Figure border color

To actually plot data, we need to create an Axes object – a region of the figure
containing the axes, tick-marks, labels, plot lines and markers, and so on. The simplest
figure, consisting of a single Axes object, is created and returned with

In [x]: ax = fig.add_subplot()

The Axes object, ax, is the one on which we can actually plot the data with ax.plot.
The essential features of this plot method were described in Chapter 3. Here, however,
note that the plot method actually returns a list of objects representing the plotted
lines. In its simplest usage, only a single line is plotted, and so this list consists of one
Line2D object that we may assign to a variable if desired. As a full example, consider
the following comparison of the catenary y = cosh(x) and its parabolic approximation,
y = 1 + x2/2.

import matplotlib.pyplot as plt

import numpy as np

fig = plt.figure()

ax = fig.add_subplot()

x = np.linspace(-2, 2, 1000)

Ê line_cosh , = ax.plot(x, np.cosh(x))

line_quad , = ax.plot(x, 1 + x**2 / 2)

plt.show()

Ê Note the syntax line_cosh, = ... to assign the returned line object to the variable
line_cosh rather than the list containing that object.

The two plotted lines are shown in Figure 7.1.
If no arguments need to be passed to fig.add_subplot(), the fig and ax objects can

be created in a single line with the convenience function plt.subplots():1

fig, ax = plt.subplots()

1 This function can also be passed arguments nrows and ncols for a grid of multiple subplots, and subplot_kw,
a dictionary of keyword arguments which will be passed to the add_subplot call for each subplot; additional
keyword arguments are passed to the plt.figure() call.

296 Matplotlib

Table 7.2 Matplotlib line
styles

(No line)
- Solid
-- Dashed
: Dotted
-. Dash-dot

7.1.2 Plot Limits

By default, Matplotlib plots all of the data passed to plot and sets the axis limits accord-
ingly. To set the axis limits to something else, use the ax.set_xlim and ax.set_ylim

methods. Either both limits can be set or an individual limit can be set with the argu-
ments left, right (or xmin, xmax) and bottom, top (or ymin, ymax). Unspecified limits
are left unchanged. For example,

x = np.linspace(-3, 3, 1000)

y = x**3 + 2 * x**2 - x - 1

fig = plt.figure()

ax = fig.add_subplot()

ax.plot(x, y)

ax.set_xlim(-1, 2) # x-limits are -1 to 2

ax.set_ylim(bottom=0) # ymin=0: plot will be "clipped" at the bottom

If bottom is greater than top or right less than left, the corresponding axis will be
reversed; that is, values on this axis will decrease from left to right (or from bottom to
top) (see Exercise P7.4.5).

If you wish to invert the axis direction without changing the limit values, the method
calls ax.invert_xaxis() and ax.invert_yaxis() will do that for you.

7.1.3 Line Styles, Markers and Colors

As we have seen previously, the plot style can be specified by passing extra arguments
to the plot() method. The default line style is a solid, 1.5 pt weight line in a color
determined by the order in which it is added to the plot.

An alternative line style can be selected from the predefined options with the
linestyle (or simply ls) argument. Possible string values to pass to this argument
(including the empty string for plotting no line) are shown in Table 7.2.

Further customization is possible by setting the dashes argument to a sequence of
values describing the repeated dash pattern in points. For example, dashes=[2, 4, 8,

4, 2, 4]] represents a pattern of dot (2 pts), space (4 pts), dash (8 pts), space (4 pts),
dot (2 pts), space (4 pts) to be repeated as the line style. Equivalently, one can call a
plotted line’s set_dashes method, as in the following code snippet:

x = np.linspace(-np.pi, np.pi, 1000)

line, = plt.plot(x, np.sin(x))

line.set_dashes([2, 4, 8, 4, 2, 4]) # dot-dash-dot

7.1 Line Plots and Scatter Plots 297

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
1.0

1.5

2.0

2.5

3.0

3.5

4.0

Figure 7.1 A simple plot of two lines on a single Axes object.

Table 7.3 Matplotlib color code
letters

Basic color codes Tableau colors
b = blue tab:blue
g = green tab:orange
r = red tab:green
c = cyan tab:red
m = magenta tab:purple
y = yellow tab:brown
k = black tab:pink
w = white tab:gray

tab:olive
tab:cyan

The line weight is customized by setting the lineweight (or simply lw) argument to
a number of points.

Line colors are specified with the color (or simply c) argument used in one of several
ways:

• string: by letter or name, one of the values given in Table 7.3; single-letter colors
are rather bright and the (default) “tableau” colors are more pleasing;

• string: by HTML six-digit hex-string preceded by '#', for example '#ffff00' is
yellow;

• string: a string representation of a float between 0. and 1. (for example '0.4')
gives a gray-scale between black (0.) and white(1.);

• tuple of floats between 0. and 1.: RGB components, for example (0.5, 0., 0.)

is a dark red color.

298 Matplotlib

Table 7.4 Some Matplotlib marker
styles (single-character string codes)

Code Marker Description

. · Point
o ◦ Circle
+ + Plus
x × Cross
D � Diamond
v O Downward triangle
^ M Upward triangle
s � Square
* ? Star

Table 7.5 Matplotlib marker properties

Argument Abbreviation Description

markersize ms Marker size, in points
markevery Set to a positive integer, N, to print a marker every

N points; the default, None, prints a marker for every
point

markerfacecolor mfc Fill color of the marker
markeredgecolor mec Edge color of the marker
markeredgewidth mew Edge width of the marker, in points

By default, the Line2D object created by calling plot on an Axes object does not
include markers: symbols printed at each point on the plot. To add them, specify one of
the single-character marker codes given in Table 7.4 using the marker argument

ax.plot(x, y, marker='v') # downward pointing triangles

Other marker properties can be set with the arguments listed in Table 7.5.
Matplotlib markers can be further customized; see the documentation for details.2

7.1.4 Scatter Plots

A typical two-dimensional scatter plot depicts the data as points on a Cartesian axes
system. Sometimes there is no meaningful or helpful ordering to the data and so no
need to join data points by lines. The pyplot.scatter function creates a scatter plot.
In addition to one-dimensional sequences of x- and y-data, as for pyplot.plot, the
data point marker colors and sizes can be set individually by passing a sequence of
appropriate values of the same length as the data to the arguments s and c, respectively.
The marker sizes are in points2 (points squared) so that their area is proportional to the

2 https://matplotlib.org/api/markers_api.html.

https://matplotlib.org/api/markers_api.html

7.2 Plot Customization and Refinement 299

values passed to s. Manipulating the size of the markers is a common way of indicating
a third dimension to the data, as in the following example.

Example E7.1 To explore the correlation between birth rate, life expectancy and per
capita income, we may use a scatter plot. The marker sizes are set in proportion to the
countries’ per-capita gross domestic product (GDP) but have to be scaled a little so they
don’t get too large (see Figure 7.2).

Listing 7.1 Scatter plot of demographic data for eight countries

eg7-scatter.py

import numpy as np

import matplotlib.pyplot as plt

countries = ['Brazil', 'Madagascar', 'S. Korea', 'United States',

'Ethiopia', 'Pakistan', 'China', 'Belize']

Birth rate per 1000 population.

birth_rate = [16.4, 33.5, 9.5, 14.2, 38.6, 30.2, 13.5, 23.0]

Life expectancy at birth, years.

life_expectancy = [73.7, 64.3, 81.3, 78.8, 63.0, 66.4, 75.2, 73.7]

Per person income fixed to US Dollars in 2000.

GDP = np.array([4800, 240, 16700, 37700, 230, 670, 2640, 3490])

fig, ax = plt.subplots()

Some arbitrary colors:

colors = range(len(countries))

ax.scatter(birth_rate , life_expectancy , c=colors, s=GDP/20)

ax.set_xlim(5, 45)

ax.set_ylim(60, 85)

ax.set_xlabel('Birth rate per 1000 population')

ax.set_ylabel('Life expectancy at birth (years)')

plt.show()

7.2 Plot Customization and Refinement

7.2.1 Gridlines

Gridlines are vertical (for the x-axis) and horizontal (for the y-axis) lines running across
the plot to aid with locating the numerical values of data points. By default, no gridlines
are drawn, but they may be turned on by calling the grid method on an Axes object (to
add both horizontal and vertical gridlines) or the xaxis or yaxis objects of a given Axes

(to select the gridlines to use). For example,

ax.yaxis.grid(True) # turn on horizontal gridlines

or

ax.grid(True) # turn on all gridlines

300 Matplotlib

5 10 15 20 25 30 35 40 45
Birth rate per 1000 population

60

65

70

75

80

85

L
if

e
ex

pe
ct

an
cy

at
bi

rt
h

(y
ea

rs
)

Figure 7.2 A scatter plot with variable marker sizes indicating each country’s GDP.

The line properties of the gridlines are set with the linestyle, linewidth, color, etc.
arguments as for plot lines.

Two sorts of gridlines correspond to the major and minor tick marks (see below):
these can be selected with the which argument, which takes on of the values 'major',
'minor' or 'both'. The default (if not specified) is which='major'.

ax.xaxis.grid(True, which='minor', c='b') # minor x-axis gridlines in blue

7.2.2 Log Scales

By default, Matplotlib plots data on a linear scale. To set a logarithmic scale, call one
or both of the following on your Axes object:

ax.set_xscale('log')

ax.set_yscale('log')

Base-10 logarithms are used by default, but the (integer) base can be set with the
optional arguments basex or basey. Nonpositive values in the data will be masked
as invalid by default. If you want negative values to be handled “symmetrically” with
positive ones, such that log(−|x|) = − log(|x|), then use 'symlog' instead of 'log'. See
also Question Q7.4.1.

7.2.3 Adding Titles, Labels and Legends

Axis labels may be added to the subplot Axes object with ax.set_xlabel and
ax.set_ylabel.

Plot-line legend labels are defined by adding the label attribute to the plt.plot

function call. However, the legend itself will not appear unless legend is called on the
plot Axes object (e.g. with ax.legend()). The appearance of the legend itself can be
customized extensively, but the most common additional argument you may wish to
pass to legend() is loc, defining the location of the legend on the plot (see Table 3.1).

7.2 Plot Customization and Refinement 301

There are two types of title you may want to give your figure: fig.suptitle adds a
centered title to the entire figure, which may contain more than one subplot; ax.title
adds a title to a single subplot.3

Example E7.2 The data read in from the file eg7-marriage-ages.txt, which can be
downloaded from https://scipython.com/eg/bag, giving the median age at first marriage
in the United States for 13 decades since 1890, are plotted by the program below.
Gridlines are turned on for both axes with ax.grid(), and custom markers are used
for the data points themselves (see Figure 7.3).

Listing 7.2 The median age at first marriage in the US over time

eg7-marriage-ages.py

import numpy as np

import matplotlib.pyplot as plt

year, age_m, age_f = np.loadtxt('eg7-marriage -ages.txt', unpack=True, skiprows=3)

fig, ax = plt.subplots()

Plot ages with male or female symbols as markers.

ax.plot(year, age_m, marker='$\u2642$', markersize=14, c='blue', lw=2,

mfc='blue', mec='blue')

ax.plot(year, age_f, marker='$\u2640$', markersize=14, c='magenta', lw=2,

mfc='magenta', mec='magenta')

ax.grid()

ax.set_xlabel('Year')

ax.set_ylabel('Age')

ax.set_title('Median age at first marriage in the USA, 1890-2010')

plt.show()

Example E7.3 The historical populations of five US cities are given in the files boston
.tsv, houston.tsv, detroit.tsv, san_jose.tsv, phoenix.tsv as tab-separated columns
of (year, population). They can be downloaded from https://scipython.com/eg/baf .

The following program plots these data on one set of axes with a different line style
for each.

Listing 7.3 The populations of five US cities over time

eg7-populations.py

import matplotlib.pyplot as plt

import numpy as np

fig, ax = plt.subplots()

3 See the documentation at https://matplotlib.org/api/legend_api.html for more details.

https://scipython.com/eg/bag
https://scipython.com/eg/baf
https://matplotlib.org/api/legend_api.html

302 Matplotlib

1900 1920 1940 1960 1980 2000
Year

20

21

22

23

24

25

26

27

28
Ag

e

Median age at first marriage in the USA, 1890–2010

Figure 7.3 Median age at first marriage in the USA, 1890–2010.

cities = ['Boston', 'Houston', 'Detroit', 'San Jose', 'Phoenix']

Line styles: solid, dashes, dots, dash-dots, and dot-dot-dash.

linestyles = [{'ls': '-'}, {'ls': '--'}, {'ls': ':'}, {'ls': '-.'},

{'dashes': [2, 4, 2, 4, 8, 4]}]

for i, city in enumerate(cities):

Ê filename = '{}.tsv'.format(city.lower()).replace(' ', '_')

yr, pop = np.loadtxt(filename, unpack=True)

line, = ax.plot(yr, pop/1.e6, label=city, c='k', **linestyles[i])

ax.legend(loc='upper left')

ax.set_xlim(1800, 2020)

ax.set_xlabel('Year')

ax.set_ylabel('Population (millions)')

plt.show()

Ê Note how the city name is used to deduce the corresponding filename.
The plot produced is shown in Figure 7.4.

7.2.4 Font Properties

The text elements of a plot (titles, legend, axis labels, etc.) can be customized with the
arguments given in Table 7.6. For example,

ax.title('Plot Title', fontsize=18, fontname='Times New Roman', color='blue')

7.2 Plot Customization and Refinement 303

1800 1850 1900 1950 2000
Year

0.0

0.5

1.0

1.5

2.0

2.5

Po
pu

la
ti

on
(m

ill
io

ns
)

Boston
Houston
Detroit
San Jose
Phoenix

Figure 7.4 Population trends for five US cities.

Table 7.6 Font property arguments for text elements of a plot

Argument Description

fontsize The size of the font in points (e.g. 12, 16)
fontname The font name (e.g. 'Courier', 'Arial')
family The font family (e.g. 'sans-serif', 'cursive', 'monospace')
fontweight The font weight (e.g. 'normal', 'bold')
fontstyle The font style (e.g. 'normal', 'italic')
color Any Matplotlib color specifier (e.g. 'r', '#ff00ff')

To use the same font properties for all text elements, it is easiest to set Matplotlib’s
rc settings using a dictionary of values. This involves a separate import first:4

from matplotlib import rc

font_properties = {'family' : 'monospace',

'weight' : 'bold',

'size' : 22}

Ê rc('font', **font_properties)

All text will now be rendered in 22-point, bold monospace in plots.

Ê Recall that the syntax **kwargs passes the (key, value) pairs of dictionary kwargs

and passes them to a function as keyword arguments (see Section 4.2.2).

4 It is also possible to edit Matplotlib’s configuration file, matplotlibrc, to set many kinds of plot preferences
and styles: see https://matplotlib.org/users/customizing.html.

https://matplotlib.org/users/customizing.html

304 Matplotlib

7.2.5 Tick Marks

Matplotlib does its best to label representative values (tick marks) on each axis appro-
priately, but there are some occasions when you want to customize them, for example,
to make the tick marks more or less frequent, or to label them differently.

Most commonly, one simply wants to set the tick mark values to a given sequence of
values: this is accomplished by calling ax.set_xticks and ax.set_yticks on the Axes

object of the plot. For example,

ax.set_xticks([0, 1, 3.5, 6.5, 15])

Note that the ticks do not have to be evenly spaced.
To replace the actual numbered labels, pass a sequence of strings of a suitable length

to ax.set_xticklabels and ax.set_yticklabels, as in the following example.5

Example E7.4 The following program plots the exponential decay described by y =

Ne−t/τ, labeled by lifetimes (nτ for n = 0, 1, . . .), such that after each lifetime the value
of y falls by a factor of e. The plot is given as Figure 7.5.

Listing 7.4 Exponential decay illustrated in terms of lifetimes

eg7-ticks-exp-decay.py

import numpy as np

import matplotlib.pyplot as plt

Initial value of y at t=0, lifetime (s).

N, tau = 10000, 28

Maximum time to consider (s).

tmax = 100

A suitable grid of time points, and the exponential decay itself.

t = np.linspace(0, tmax, 1000)

y = N * np.exp(-t/tau)

fig = plt.figure()

ax = fig.add_subplot()

ax.plot(t, y)

The number of lifetimes that fall within the plotted time interval.

ntau = tmax // tau + 1

xticks at 0, tau, 2*tau, ..., ntau*tau; yticks at the corresponding y-values.

xticks = [i*tau for i in range(ntau)]

yticks = [N * np.exp(-i) for i in range(ntau)]

ax.set_xticks(xticks)

ax.set_yticks(yticks)

xtick labels: 0, tau, 2tau, ...

Ê xtick_labels = [r'0', r'τ'] + [r'${}\tau$'.format(k) for k in range(2, ntau)]

ax.set_xticklabels(xtick_labels)

Corresponding ytick labels: N, N/e, N/2e, ...

5 Note that setting the tick labels directly in this way decouples your plot from its data to some extent. An
entire module, matplotlib.ticker, is devoted to the configuration of tick locating and formatting: its API
is beyond the scope of this book but is well described at https://matplotlib.org/api/ticker_api.html.

https://matplotlib.org/api/ticker_api.html

7.2 Plot Customization and Refinement 305

0 τ 2τ 3τ

t /s

N

N/e

N/2e

N/3e

y

Figure 7.5 An exponential decay with customized tick labels.

Ë ytick_labels = [r'N', r'N/e'] + [r'$N/{}e$'.format(k) for k in range(2, ntau)]

ax.set_yticklabels(ytick_labels)

ax.set_xlabel(r'$t\;/\mathrm{s}$')

ax.set_ylabel(r'y')

ax.grid()

plt.show()

Ê The x-axis tick labels are 0, τ, 2τ, . . .
Ë The y-axis tick labels are N,N/e,N/2e, . . .

Note that the length of the sequence of tick labels must correspond to that of the list
of tick values required.

To remove the tick labels altogether set them to the empty list, for example

ax.set_yticklabels([])

This retains the tick marks themselves. If you want neither tick marks nor tick labels on
the axis use:

ax.set_yticks([])

There are two kinds of ticks: major ticks and minor ticks. Only major ticks are turned
on by default; the smaller and more frequent minor ticks can most easily be enabled
with

ax.minorticks_on()

More advanced customization of tick marks and their labels, including showing minor
tick marks for one axis only, can be achieved using the ax.tick_params convenience
function, which takes the arguments described in Table 7.7.

Finally, ax.xaxis and ax.yaxis have a method, set_ticks_position, which takes
a single argument used to determine where the ticks appear: for ax.xaxis, 'top',

306 Matplotlib

Table 7.7 Common arguments to ax.tick_params

Argument Description

axis Which axis to customize: 'x', 'y' or 'both'; default is 'both'.
which Which tick mark set to customize: 'major', 'minor' or 'both'; default

is 'major'
direction Tick mark direction: 'in', 'out' or 'inout'; default is 'in'
length Length of the tick marks in points
width Width of the tick marks in points
pad Distance between the tick mark and its label in points
labelsize Tick label size in points
color Tick mark color (a Matplotlib specifier)
labelcolor Tick mark label color (a Matplotlib specifier)

'bottom', 'both' (the default) or 'none'; for ax.yaxis, 'left', 'right', 'both' (the
default) or 'none'.

Example E7.5 The following program creates a plot with both major and minor tick
marks, customized to be thicker and wider than the default, where the major tick marks
point into and out of the plot area.

Listing 7.5 Customized tick marks

eg7-tick-customization.py

import numpy as np

import matplotlib.pyplot as plt

A selection of functions on rn abcissa points for 0 <= x < 1.

rn = 100

rx = np.linspace(0, 1, rn, endpoint=False)

def tophat(rx):

""" Top hat function: y = 1 for x < 0.5, y = 0 for x >= 0.5 """

ry = np.ones(rn)

ry[rx>=0.5] = 0

return ry

A dictionary of functions to choose from.

ry = {'half-sawtooth': lambda rx: rx.copy(),

'top-hat': tophat,

'sawtooth': lambda rx: 2 * np.abs(rx-0.5)}

Repeat the chosen function nrep times.

nrep = 4

x = np.linspace(0, nrep, nrep*rn, endpoint=False)

Ê y = np.tile(ry['top-hat'](rx), nrep)

fig, ax = plt.subplots()

ax.plot(x, y, 'k', lw=2)

7.2 Plot Customization and Refinement 307

Add a bit of padding around the plotted line to aid visualization.

ax.set_ylim(-0.1, 1.1)

ax.set_xlim(x[0]-0.5, x[-1]+0.5)

Customize the tick marks and turn the grid on.

ax.minorticks_on()

ax.tick_params(which='major', length=10, width=2, direction='inout')

ax.tick_params(which='minor', length=5, width=2, direction='in')

ax.grid(which='both')

plt.show()

Ê This np.tile method constructs an array by repeating a given array nrep times. To
plot a different periodic function, choose 'half-sawtooth' or 'sawtooth' here.

The resulting plot is shown in Figure 7.6.

0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7.6 A periodic function plotted on a graph with gridlines and customized tick marks.

7.2.6 Error Bars

To produce a plotted line with error bars, use the method ax.errorbar instead of
ax.plot. In addition to the usual arguments of the plot function, errorbar allows the
specification of errors in the x- and y-coordinates by passing the following types of
value to the arguments xerr and yerr:

• None: no error bars for this coordinate;
• a scalar (e.g. xerr=0.2): all values are associated with symmetric error bars at

plus and minus this value (i.e. ±0.2);
• an array-type object of length n or shape (n, 1) (e.g. yerr=[0.1, 0.15, 0.1]):

the symmetric error bars are plotted at plus and minus the values in this sequence
for each of the n data points (i.e. ±0.1,±0.15,±0.1);

• an array-type object of shape (2, n) (i.e. two rows for each of n data points):
error bars, which may be asymmetric, are plotted using minus-values from the
first row and plus-values from the second.

308 Matplotlib

Table 7.8 Common arguments to ax.errorbar

Argument Description

x, y The data to plot
yerr, xerr Errors on the x and y data coordinates, as described in the text
fmt The plot format symbol (marker for the data point); set to None or the

empty string, '', to display only the error bars
ecolor A Matplotlib color specifier for the error bars; the default, None, uses the

same color as the connecting line between data markers
elinewidth The width of the error bar lines in points; use None to use the same line

width as the plotted data
capsize The length of the error bar caps, in points; by default, None: no caps to

the error bars
errorevery A positive integer giving the subsampling for the error bars; for example,

errorevery=10 draws error bars on every 10th data point only

The appearance of the error bars may be customized using the arguments summarized
in Table 7.8. For example,

Some data:

x = np.array([0.3, 0.5, 0.7, 0.9])

y = np.array([1. , 2. , 2.5, 3.9])

Constant, symmetric errors of +/- 0.05 on x-data.

xerr = 0.05

Asymmetric , variable errors on y-data.

yerr = np.array([[0.1 , 0.25, 0.5 , 0.4],

[0.1 , 0.15, 0.2 , 0.]])

ax.errorbar(x, y, yerr, xerr, fmt='o', ls='')

Example E7.6 Before fledging, some species of birds lose weight relative to the
surface area of their wings to maximize their aerodynamic efficiency. The file
fledging-data.csv, available at https://scipython.com/eg/bad gives wing-loading
values (body mass per wing area) as averages for two broods of swifts in the two weeks
prior to fledging, with their uncertainties.6

In the program below, we perform a weighted fit to the data and plot it, with error
bars.

Listing 7.6 Wing-loading variation in swifts prior to fledging

eg7-fledging.py

import numpy as np

import matplotlib.pyplot as plt

Read in the data: day before fledging, wing loading and error for two broods.

dt = np.dtype([('day', 'i2'), ('wl1', 'f8'), ('wl1-err', 'f8'),

('wl2', 'f8'), ('wl2-err', 'f8')])

data = np.loadtxt('fledging -data.csv', dtype=dt, delimiter=',')

6 J. Wright et al., Proc. R. Soc. B 273, 1895 (2006).

https://scipython.com/eg/bad

7.2 Plot Customization and Refinement 309

02468101214
days pre-fledging

w
in

g
lo

ad
in

g
(g

m
m

)
2

Figure 7.7 Fitted time series for wing-loading values in two cohorts of swift nestlings.

Weighted fit of exponential decay to the data. This is a linear least-squares

problem because y = Aexp(-Bx) => ln y = ln A - Bx = mx + c.

Ê p1_fit = np.poly1d(np.polyfit(data['day'], np.log(data['wl1']), 1,

w=np.log(data['wl1'])**-2))

p2_fit = np.poly1d(np.polyfit(data['day'], np.log(data['wl2']), 1,

w=np.log(data['wl2'])**-2))

wl1fit = np.exp(p1_fit(data['day']))

wl2fit = np.exp(p2_fit(data['day']))

Plot the data points with their uncertainties and the fits.

fig, ax = plt.subplots()

wl1 data: white circles, black borders, with error bars.

ax.errorbar(data['day'], data['wl1'], yerr=data['wl1-err'], ls='', marker='o',

color='k', mfc='w', mec='k', capsize=3)

ax.plot(data['day'], wl1fit, 'k', lw=1.5)

wl2 data: black filled circles, with error bars.

ax.errorbar(data['day'], data['wl2'], yerr=data['wl2-err'], ls='', marker='o',

color='k', mfc='k', mec='k'), capsize=3

ax.plot(data['day'], wl2fit, 'k', lw=1.5)

ax.set_xlim(15, 0)

ax.set_ylim(0.003, 0.012)

ax.set_xlabel('days pre-fledging')

ax.set_ylabel('wing loading ($\mathrm{g\,mm^{-2}}$)')

plt.show()

Ê The data points are weighted in the fit by 1/σ2 whereσ is the estimated one-standard
deviation error of the measurement.

Figure 7.7 shows the results of the fit. The broods, initially with different average
wing-loading values, are seen to converge prior to fledging.

310 Matplotlib

7.2.7 Multiple Subplots

To create a figure with more than one subplot (that is, Axes), call add_subplot on your
Figure object, setting its argument to indicate where the subplot should be placed. Each
call returns an Axes object. Single figures with more than 10 subplots are uncommon,
so the usual argument is a three-digit number where each digit indicates the number of
rows, number of columns and subplot number. The subplot number increases along the
columns in each row and then down the rows. For example, a figure consisting of three
rows of two columns of subplots can be constructed by adding Axes objects:

In [x]: fig = plt.figure()

In [x]: ax1 = fig.add_subplot(321) # top left subplot

In [x]: ax2 = fig.add_subplot(322) # top right subplot

In [x]: ax3 = fig.add_subplot(323) # middle left subplot

...

In [x]: ax6 = fig.add_subplot(326) # bottom right subplot

Alternatively, to create a figure and add all its subplots to it at the same time, call
plt.subplots, which takes arguments nrows and ncols (in addition to those listed in
Table 7.1) and returns a Figure and an array of Axes objects, which can be indexed for
each individual axis:

In [x]: fig, axes = plt.subplots(nrows=3, ncols=2)

In [x]: axes.shape

Out[x]: (3, 2)

In [x]: ax1 = axes[0, 0] # top left subplot

In [x]: ax2 = axes[2, 1] # bottom right subplot

In fact, a useful idiom to create a plot with a single Axes object is to call subplots()
with no arguments:

In [x]: fig, ax = plt.subplots()

In [x]: ax.plot(x, y) # no need to index the single Axes object created

Figures with subplots run the risk of their labels, titles and ticks overlapping each
other – if this happens, call the method tight_layout on the Figure object and Mat-
plotlib will do its best to arrange them so that there is sufficient space between them.

Example E7.7 Consider a metal bar of cross-sectional area, A, initially at a uniform
temperature, θ0, which is heated instantaneously at the exact center by the addition of an
amount of energy, H. The subsequent temperature of the bar (relative to θ0) as a function
of time, t, and position, x, is governed by the one-dimensional diffusion equation:

θ(x, t) =
H

cpA
1
√

Dt

1
√

4π
exp

(
−

x2

4Dt

)
,

where cp and D are the metal’s specific heat capacity per unit volume and thermal
diffusivity (which we assume are constant with temperature). The following code plots
θ(x, t) for three specific times and compares the plots between two metals, with different
thermal diffusivities but similar heat capacities, copper and iron.

7.2 Plot Customization and Refinement 311

Listing 7.7 The one-dimensional diffusion equation applied to the temperature of two
different metal bars

eg7-diffusion1d.py

import numpy as np

import matplotlib.pyplot as plt

Cross-sectional area of bar in m3, heat added at x = 0 in J.

A, H = 1.e-4, 1.e3

Temperature in K at t = 0.

theta0 = 300

Metal element symbol, specific heat capacities per unit volume (J.m-3.K-1),

Thermal diffusivities (m2.s-1) for Cu and Fe.

metals = np.array([('Cu', 3.45e7, 1.11e-4), ('Fe', 3.50e7, 2.3e-5)],

dtype=[('symbol', '|S2'), ('cp', 'f8'), ('D', 'f8')])

The metal bar extends from -xlim to xlim (m).

xlim, nx = 0.05, 1000

x = np.linspace(-xlim, xlim, nx)

Calculate the temperature distribution at these three times.

times = (1e-2, 0.1, 1)

Create our subplots: three rows of times, one column for each metal.

fig, axes = plt.subplots(nrows=3, ncols=2, figsize=(7, 8))

for j, t in enumerate(times):

for i, metal in enumerate(metals):

symbol, cp, D = metal

ax = axes[j, i]

The solution to the diffusion equation.

theta = theta0 + H/cp/A/np.sqrt(D*t * 4*np.pi) * np.exp(-x**2/4/D/t)

Plot, converting distances to cm and add some labeling.

ax.plot(x*100, theta, 'k')

ax.set_title('{}, $t={}$ s'.format(symbol.decode('utf8'), t))

ax.set_xlim(-4, 4)

ax.set_xlabel('$x\;/\mathrm{cm}$')

ax.set_ylabel('$\Theta\;/\mathrm{K}$')

Set up the y-axis so that each metal has the same scale at the same t.

for j in (0, 1, 2):

ymax = max(axes[j, 0].get_ylim()[1], axes[j, 1].get_ylim()[1])

print(axes[j, 0].get_ylim(), axes[j, 1].get_ylim())

for i in (0, 1):

ax = axes[j, i]

ax.set_ylim(theta0, ymax)

Ensure there are only three y-tick marks.

ax.set_yticks([theta0, (ymax + theta0)/2, ymax])

We don ' t want the subplots to bash into each other: tight_layout() fixes this.
fig.tight_layout()

plt.show()

Because copper is a better conductor, the temperature increase is seen to spread more
rapidly for this metal (see Figure 7.8).

312 Matplotlib

−4−3−2−1 0 1 2 3 4

x /cm

300

325

350

Θ
/K

Cu, t = 0.01 s

−4−3−2−1 0 1 2 3 4

x /cm

300

325

350

Θ
/K

Fe, t = 0.01 s

−4−3−2−1 0 1 2 3 4

x /cm

300

308

316

Θ
/K

Cu, t = 0.1 s

−4−3−2−1 0 1 2 3 4

x /cm

300

308

316

Θ
/K

Fe, t = 0.1 s

−4−3−2−1 0 1 2 3 4

x /cm

300.0

302.5

305.0

Θ
/K

Cu, t = 1 s

−4−3−2−1 0 1 2 3 4

x /cm

300.0

302.5

305.0

Θ
/K

Fe, t = 1 s

Figure 7.8 Numerical solutions of the one-dimensional diffusion equation for the temperatures
of two metal bars.

To further customize the subplot spacing, call fig.subplots_adjust(). This method
takes any of the keywords left, bottom, right, top, wspace and hspace, which can
be set to fractional values of the figure’s height and width as appropriate, to determine
the positions of the subplots’ left side (default 0.125), right side (0.9), bottom (0.1), top
(0.9), vertical spacing (0.2) and horizontal spacing (0.2). A practical use of this function
is to create “ganged” subplots that share a common axis, as in the following example.

Example E7.8 This code generates a figure of 10 subplots depicting the graph of
sin(nπx) for n = 0, 1, . . . , 9. The subplot spacing is configured so that they “run into”
each other vertically (see Figure 7.9).

Listing 7.8 Ten subplots with zero vertical spacing

import numpy as np

import matplotlib.pyplot as plt

nrows = 10

fig, axes = plt.subplots(nrows, 1)

Zero vertical space between subplots.

fig.subplots_adjust(hspace=0)

x = np.linspace(0, 1, 1000)

7.2 Plot Customization and Refinement 313

for i in range(nrows):

n = nrows for the top subplot, n = 0 for the bottom subplot.

n = nrows - i

axes[i].plot(x, np.sin(n * np.pi * x), 'k', lw=2)

We only want ticks on the bottom of each subplot.

axes[i].xaxis.set_ticks_position('bottom')

if i < nrows -1:

Set ticks at the nodes (zeros) of our sine functions.

axes[i].set_xticks(np.arange(0, 1, 1/n))

We only want labels on the bottom subplot x-axis.

axes[i].set_xticklabels('')

axes[i].set_yticklabels('')

plt.show()

0.0 0.2 0.4 0.6 0.8 1.0

Figure 7.9 Ten subplots of sin(nπx) for n = 0, 1, . . . 9 adjusted to remove vertical space between
them.

7.2.8 Saving Figures

Saving Figures for Printing
As mentioned in Section 7.1.1, the size of a Matplotlib figure can be controlled (in
inches) with the figsize argument to plt.figure(). For high-quality line-figures (as
opposed to images, heatmaps, and so on), saving to a vector file format will produce the
best printed appearance which can be rescaled without a loss of quality. Encapsulated
PostScript (EPS) or PDF are good, general-purpose choices:

A figure, 6" wide and 5" high.

fig = plt.figure(figsize=(6, 4))

ax = fig.add_subplot()

Draw the figure ...

plt.savefig('my-figure.eps')

314 Matplotlib

For figures which cannot be effectively vectorized (for example, images), a raster
format is necessary. In this case, to control the resolution of the printed version
there is an additional argument, dpi (dots per inch), which must be specified on
both plt.figure() and plt.savefig(). Suitable formats include JPG and PNG. For
example, a publication-quality figure for a journal article might be created with

DPI = 300 # a minimium resolution of 300 dpi is generally sufficient

fig = plt.figure(figsize=(3.5, 3), dpi=DPI)

ax = fig.add_subplot()

Draw the figure ...

plt.savefig('my-figure.png', dpi=DPI)

Saving Figures for Online Use
The first thing to note is that different monitors have different resolutions (pixel densi-
ties), so there is no way to fix the physical dimensions of the image as it appears on a
user’s screen. However, it is possible to produce an image file of a figure with specified
dimensions as the number of pixels (which is often all that is required for web pages).
There is a hoop to jump through: since figsize expects its dimensions in inches, we
pick a reasonable DPI and calculate these dimensions from the desired width and height
in pixels:

DPI = 100 # this is a reasonable choice

WIDTH, HEIGHT = 800, 800

fig = plt.figure(figsize=(WIDTH / DPI, HEIGHT / DPI), dpi=DPI)

Draw the figure ...

plt.savefig('my-figure.png', dpi=DPI) # important: respecify the DPI here

7.3 Bar Charts, Pie Charts and Polar Plots

7.3.1 Bar Charts and Histograms

The basic pyplot function for plotting a bar chart is ax.bar, which makes a plot of
rectangular bars defined by their left edges and height. For example,

ax.bar([0, 1, 2], [40, 80, 20])

The width of the rectangles is, by default, 0.8 but can be set with the (third) argu-
ment, width. If you want the bars vertically centered, either set the argument align to
'center' or calculate where their left edges should be:

w = 0.5

x, y = np.array([0, 1, 2]), np.array([40, 80, 20])

ax.bar(x, y, w, align='center') # easiest way of centering the bars

ax.bar(x - w/2, y, w) # or calculate the left edges

Additional arguments, including the provision of error bars, are given in Table 7.9.

7.3 Bar Charts, Pie Charts and Polar Plots 315

Table 7.9 Common arguments to ax.bar and barh

Argument Description

left A sequence of x-coordinates of the left edges of the bars (but see align)
width Width of the bars; if a scalar, all bars have the same width – can be array-like

for variable widths
bottom The y-coordinates of the bottom of the bars
height A sequence of heights for the bars
color Colors of the bar faces (scalar or array-like)
edgecolor Colors of the bar edges (scalar or array-like)
linewidth Line widths of the bar edges, in points (scalar or array-like)
xerr, yerr Error bar limits, as for errorbar (scalar or array-like)
error_kw A dictionary of keyword arguments corresponding to customization of the

appearance of the errorbars (see Table 7.8)
align The default, 'edge', aligns the bars by their left edges (for vertical bars) or

bottom edges (for horizontal bars); 'center' centers the bars on this axis
instead

log Set to True to use a logarithmic axis scale
orientation 'vertical' (the default) or 'horizontal'
hatch Set the hatching pattern for the bars: one of '/', '\', '|', '-', '+',

'x', 'o', 'O', '.', '*'; repeat the character for a denser pattern

By default, ax.bar produces a vertical bar chart. Horizontal bar charts are catered
for either by setting orientation='horizontal' or by using the analogous ax.barh

method.

Example E7.9 The following program produces a bar chart of letter frequencies in
the English language, estimated by analysis of the text of Moby-Dick.7 The vertical bars
are centered and labeled by letter (Figure 7.10).

Listing 7.9 Letter frequencies in the text of Moby-Dick.

eg7-charfreq.py

import numpy as np

import matplotlib.pyplot as plt

text_file = 'moby-dick.txt'

letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

Initialize the dictionary of letter counts: { ' A ': 0, ' B ': 0, ...}.
lcount = dict([(letter, 0) for letter in letters])

Read in the text and count the letter occurrences.

for letter in open(text_file).read():

try:

lcount[letter.upper()] += 1

except KeyError:

Ignore characters that are not letters.

7 See, for example, www.gutenberg.org/ebooks/2701 for a free text file of this novel.

www.gutenberg.org/ebooks/2701

316 Matplotlib

Figure 7.10 Letter frequencies in the novel Moby-Dick.

pass

The total number of letters.

norm = sum(lcount.values())

fig, ax = plt.subplots()

The bar chart, with letters along the horizontal axis and the calculated

letter frequencies as percentages as the bar height.

x = range(26)

ax.bar(x, [lcount[letter]/norm * 100 for letter in letters], width=0.8,

color='g', alpha=0.5, align='center')

ax.set_xticks(x)

ax.set_xticklabels(letters)

ax.tick_params(axis='x', direction='out')

ax.set_xlim(-0.5, 25.5)

ax.yaxis.grid(True)

ax.set_ylabel('Letter frequency , %')

plt.show()

For monochrome plots, it is sometimes preferable to distinguish bars by patterns.
The hatch argument can be used to do this, using any of several predefined patterns
(see Table 7.9) as illustrated in the example below.

Example E7.10 The file germany-energy-sources.txt, which can be downloaded
from https://scipython.com/eg/bae contains data on the renewable sources of electricity
produced in Germany from 1990 to 2018:

Renewable electricity generation in Germany in GWh (million kWh)

Year Hydro Wind Biomass Photovoltaics

2018 17974 109951 50851 45784

2017 20150 105693 50917 39401

2016 20546 79924 50928 38098

https://scipython.com/eg/bae

7.3 Bar Charts, Pie Charts and Polar Plots 317

...

The program below plots these data as a stacked bar chart, using Matplotlib’s hatch
patterns to distinguish between the different sources (Figure 7.11).

Listing 7.10 Visualizing renewable electricity generation in Germany

eg7-germany-alt-energy.py

import numpy as np

import matplotlib.pyplot as plt

data = np.loadtxt('germany-energy-sources.txt', skiprows=2, dtype='f8')

years = data[:, 0]

n = len(years)

GWh to TWh.

data[:, 1:] /= 1000

fig, ax = plt.subplots()

sources = ('Hydroelectric', 'Wind', 'Biomass', 'Photovoltaics')

hatch = ['oo', '', 'xxxx', '//']

bottom = np.zeros(n)

bars = [None]*n

for i, source in enumerate(sources):

Ê bars[i] = ax.bar(years, bottom=bottom, height=data[:, i+1], color='w',

hatch=hatch[i], align='center', edgecolor='k')

bottom += data[:, i+1]

ax.set_xticks(years[::2]) # for clarity, label every other year

plt.xticks(rotation=90)

ax.set_xlim(1989, 2019)

ax.set_ylabel('Renewable Electricity (TWh)')

ax.set_title('Renewable Electricity Generation in Germany, 1990-2018')

Ë plt.legend(bars, sources, loc='best')

plt.show()

Ê To include a legend, each bar chart object8 must be stored in a list, bars, which Ë

is passed to the ax.legend method with a corresponding sequence of labels, sources.

7.3.2 Pie Charts

It is straightforward to draw a pie chart in Matplotlib by passing an array of values to
ax.pie. The values will be normalized by their sum if this sum is greater than 1, or
otherwise treated directly as fractions. Labels, percentages, “exploded” segments and
other effects are handled as described in Table 7.10 and illustrated in the following
example.

8 Actually a Container of artists.

318 Matplotlib

2
0
1
8

2
0
1
6

2
0
1
4

2
0
1
2

2
0
1
0

2
0
0
8

2
0
0
6

2
0
0
4

2
0
0
2

2
0
0
0

1
9
9
8

1
9
9
6

1
9
9
4

1
9
9
2

1
9
9
0

0

50

100

150

200

R
en

ew
a
b
le

E
le

ct
ri

ci
ty

(T
W

h
)

Renewable Electricity Generation in Germany, 1990-2018

Hydroelectric

Wind

Biomass

Photovoltaics

Figure 7.11 Stacked bar chart of renewable energy generation in Germany, 1990–2018.

Table 7.10 Common arguments to ax.pie

Argument Description

colors A sequence of Matplotlib color specifiers for coloring the segments
labels A sequence of strings for labeling the segments
explode A sequence of values specifying the fraction of the pie chart radius to

offset each wedge by (0 for no explode effect)
shadow True or False: specifies whether to draw an attractive shadow under the

pie
startangle Rotate the “start” of the pie chart by this number of degrees counter-

clockwise from the horizontal axis
autopct A format string to label the segments by their percentage fractional value,

or a function for generating such a string from the data
pctdistance The radial position of the autopct text, relative to the pie radius; the

default is 0.6 (i.e. within the pie, which can be awkward for narrow
segments)

labeldistance The radial position of the label text, relative to the pie radius; the default
is 1.1 (just outside the pie)

radius The radius of the pie (the default is 1); this is useful when creating
overlapping pie charts with different radii

7.3 Bar Charts, Pie Charts and Polar Plots 319

Example E7.11 The following program depicts the emissions of greenhouse gases
by mass of “carbon equivalent” (data from the 2007 IPCC report).9

Listing 7.11 Pie chart of greenhouse gas emissions

eg7-pie.py

import numpy as np

import matplotlib.pyplot as plt

Annual greenhouse gas emissions , billion tons carbon equivalent (GtCe).

gas_emissions = np.array([(r'$\mathrm{CO_2}$-d', 2.2),

(r'$\mathrm{CO_2}$-f', 8.0),

('Nitrous\nOxide', 1.0),

('Methane', 2.3),

('Halocarbons', 0.1)],

dtype=[('source', 'U17'), ('emission', 'f4')])

Five colors beige.

colors = ['#C7B299', '#A67C52', '#C69C6E', '#754C24', '#534741']

Ê explode = [0, 0, 0.1, 0, 0]

fig, ax = plt.subplots()

ax.axis('equal') # So our pie looks round!

ax.pie(gas_emissions['emission'], colors=colors, shadow=True, startangle=90,

Ë explode=explode, labels=gas_emissions['source'], autopct='%.1f%%',

pctdistance=1.15, labeldistance=1.3)

plt.show()

Ê The segment corresponding to nitrous oxide has been “exploded” by 10%.
Ë The percentage values are formatted to one decimal place (autopct='%.1f%%').

The resulting pie chart is shown in Figure 7.12.

Pie charts have fallen out of favor in recent years (“the Comic Sans of data visualiza-
tion”) and they should certainly be avoided in comparing a large number of categories
or very similar values. Mercifully, Matplotlib does not support three-dimensional pie
charts.

7.3.3 Polar Plots

A polar plot, one of a radius value, r, given as a function of angle, θ, is created either
using pyplot.polar as in Section 3.3.1, or by specifying the default projection in adding
a subplot to a figure:
fig = plt.figure()

ax = fig.add_subplot(projection='polar')

9 IPCC, Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth
Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R. K
and Reisinger, A. (eds.)]. Geneva, Switzerland (2007).

320 Matplotlib

CO2-d

16.2%

CO2-f

58.8%

Nitrous
oxide7.4%

Methane

16.9%

Halocarbons

0.7%

Figure 7.12 Greenhouse gas emissions by percentage for five different sources. CO2-d denotes
CO2 emissions from deforestation; CO2-f denotes CO2 emissions from fossil fuel burning.

The following example illustrates both approaches.

Example E7.12 An antenna array can be used to direct radio waves in a particular
direction by adjusting their number, geometrical arrangement, and relative amplitudes
and phases.10 Consider an array of n isotropic antennas at positions, di, evenly spaced
by d along the x-axis from the origin:

d0 = 0, d1 = d x̂, . . . , dn−1 = (n − 1)d x̂.

If a single antenna produces a radiation vector, F(k), where k = k r̂ = (2π/λ)r̂, the total
radiation vector due to all n antennas is

Ftot(k) =

n−1∑
j=0

w je jik·d j F(k) = A(k)F(k),

where w j is the feed coefficient of the jth antenna, representing its amplitude and phase,
and A(k) is known as the array factor. We can choose w0 = 1 to specify the feed
coefficients relative to the antenna at the origin. If we further choose to look only at
the azimuthal (φ) contribution to the radiation in the xy plane, setting the polar angle
θ = π/2, we have:

A(φ) =

n−1∑
j=0

w je jikd cos φ.

10 S. J. Orfanidis, Electromagnetic Waves and Antennas, Rutgers University, http://eceweb1.rutgers.edu/
~orfanidi/ewa/.

http://eceweb1.rutgers.edu/~orfanidi/ewa/
http://eceweb1.rutgers.edu/~orfanidi/ewa/

7.3 Bar Charts, Pie Charts and Polar Plots 321

The relative radiation power pattern (“gain”) is the square of this quantity. For two
identical antennas,

g(φ) = |A(φ)|2 = |w0 + w1eikd cos φ|2.

In the code below, the related quantity, the directive gain, 10 log10(g/gmax), is plotted in
Figure 7.13 as a function of φ for the two-antenna case on a polar plot for d = λ and
w0 = 1,w1 = −i.

Listing 7.12 Plotting the directive gain of a two-antenna system

import numpy as np

import matplotlib.pyplot as plt

def gain(d, w):

"""Return the power as a function of azimuthal angle, phi."""

phi = np.linspace(0, 2*np.pi, 1000)

psi = 2*np.pi * d / lam * np.cos(phi)

A = w[0] + w[1]*np.exp(1j*psi)

g = np.abs(A)**2

return phi, g

def get_directive_gain(g, minDdBi=-20):

"""Return the "directive gain" of the antenna array producing gain g."""

DdBi = 10 * np.log10(g / np.max(g))

Ê return np.clip(DdBi, minDdBi, None)

Wavelength , antenna spacing, feed coefficients.

lam = 1

d = lam

w = np.array([1, -1j])

Calculate gain and directive gain; plot on a polar chart.

phi, g = gain(d, w)

DdBi = get_directive_gain(g)

plt.polar(phi, DdBi)

Ë ax = plt.gca()

Ì ax.set_rticks([-20, -15, -10, -5])

Í ax.set_rlabel_position(45)

plt.show()

Ê To better show the interesting region of the plot, where the power is highest, we
“clip” the values less than minDdBi to that value.
Ë To customize the plot we need the Axes object in the current plot context; this is
returned by plt.gca() (“get current axes”).
Ì set_rticks sets the position of the radial tick marks.
Í set_rlabel_position defines the angular position of the radial ticks.

NumPy’s broadcasting methods (see Section 6.1.7) provide a natural way to extend
this code to an arbitrary number of antennas; in the following example the figure method
add_subplot is called with the argument projection='polar' and returns a corre-
sponding Axes object, ax.

Listing 7.13 Plotting the directive gain of a three-antenna system

322 Matplotlib

0°

45°

90°

135°

180°

225°

270°

315°

20

15

10

5

Figure 7.13 The directive gain of a two-antenna array with d = λ, w0 = 1,w1 = −i.

import numpy as np

import matplotlib.pyplot as plt

def gain(d, w):

"""Return the power as a function of azimuthal angle, phi."""

phi = np.linspace(0, 2*np.pi, 1000)

psi = 2*np.pi * d / lam * np.cos(phi)

j = np.arange(len(w))

Ê A = np.sum(w[j] * np.exp(j * 1j * psi[:, None]), axis=1)

g = np.abs(A)**2

return phi, g

def get_directive_gain(g, minDdBi=-20):

"""Return the "directive gain" of the antenna array producing gain g."""

DdBi = 10 * np.log10(g / np.max(g))

return np.clip(DdBi, minDdBi, None)

Wavelength , antenna spacing, feed coefficients.

lam = 1

d = lam / 2

w = np.array([1, -1, 1])

Calculate gain and directive gain; plot on a polar chart.

phi, g = gain(d, w)

DdBi = get_directive_gain(g)

fig = plt.figure()

ax = fig.add_subplot(projection='polar')

Ë ax.plot(phi, DdBi)

ax.set_rticks([-20, -15, -10, -5])

ax.set_rlabel_position(45)

plt.show()

Ê The sum here is over the terms in the array factor expression: adding an axis to the
psi array calculates this sum for each of the angular positions, φ.

7.4 Annotating Plots 323

0°

45°

90°

135°

180°

225°

270°

315°

20

15

10

5

Figure 7.14 The directive gain of a many-antenna array with d = λ/2, w0 = 1,w1 = −1,w2 = 1.

Ë Note that with the plot projection already defined, we need ax.plot here, not
ax.polar.

The resulting plot is shown in Figure 7.14.

7.4 Annotating Plots

Matplotlib provides several ways to add different kinds of annotation to your plots. The
most important methods for adding text, arrows, lines and shapes are described below.

7.4.1 Adding Text

The method ax.text(x, y, s) is a basic method used to add a text string s at position
(x, y) (in data coordinates) to the axes. The font properties can be determined by
additionally passing a dictionary of (keyword, value) pairs to fontdict (see Table 7.6).
Individual keyword arguments (such as fontsize=20) can also be used to customize the
font in this way.

If the text annotation refers to a feature of the data, you will usually want the default
behavior, placing it using data coordinates so that it maintains the same relative position
to the data even if the plot limits are changed. If, instead, you want to place the text
in axis coordinates, such that (0, 0) is the lower left of the axes and (1, 1) is the upper
right, set the keyword argument transform=ax.transAxes where ax is the Axes object
the coordinates refer to.

324 Matplotlib

7.4.2 Arrows and Text

The ax.annotate method is similar to ax.text (although with an annoyingly different
syntax) but draws an arrow from the text to a specified point in the plot. The important
arguments to ax.annotate are:

• s, the string to output as a text label;
• xy, a tuple (x, y) giving the coordinates of the position to annotate (i.e. where

the arrow points to);
• xytext, a tuple (x, y) giving the coordinates of the text label (i.e. where the

arrow points from);
• xycoords, an optional string determining the type of coordinates referred to by

the argument xy: several options are available,11 but the most commonly used
ones are:

– 'data': data coordinates, the default,
– 'figure fraction': fractional coordinates of the figure size – (0, 0) is

lower left, (1, 1) is upper right,
– 'axes fraction': fractional coordinates of the axes – (0, 0) is lower left,

(1, 1) is upper right;

• textcoords: as for xycoords, an optional string determining the type of coor-
dinates referred to by xytext; an additional value is permitted for this string:
'offset points' specifies that the tuple xytext is an offset in points from the xy

position;
• arrowprops: if present, determines the properties and style of the arrow drawn

between xytext and xy (see below).

Additional keyword arguments are interpreted as properties of the Text object
produced as the label (e.g. fontsize and color). An important pair is verticalalignment
(or va) and horizontalalignment (or ha), which determine how the label is aligned
relative to its xytext position. Valid values are 'center', 'right', 'left', 'top',
'bottom' and 'baseline', as appropriate.

In its simplest usage, ax.annotate just adds a text label to the plot (without an arrow).
For example,

ax.annotate('My Label', xy=(0.5, 0.8), fontsize=16, xycoords='axes fraction',

ha='center')

which adds 'My Label' at the center, near the top of the axes in 16-point text. Note that
if there is no arrow or line, xytext is not necessary and the label is placed directly at xy.

The argument arrowprops is a dictionary determining the style of line or arrow
joining the label at xytext to the specified xy point. There is a somewhat bewildering
array of possible items to put in this dictionary, but the important ones are illustrated by
the following example.

11 See the documentation at https://matplotlib.org/api/text_api.html.

https://matplotlib.org/api/text_api.html

7.4 Annotating Plots 325

Example E7.13 The following program produces a plot with eight arrows with dif-
ferent styles (Figure 7.15).

Listing 7.14 Annotations with arrows in Matplotlib

eg7-arrows.py

import numpy as np

import matplotlib.pyplot as plt

fig, ax = plt.subplots()

x = np.linspace(0, 1)

ax.plot(x, x, 'o')

ax.annotate('default line', xy=(0.15, 0.1), xytext=(0.6, 0.1),

arrowprops={'arrowstyle': '-'}, va='center')

ax.annotate('dashed line', xy=(0.25, 0.2), xytext=(0.6, 0.2),

arrowprops={'arrowstyle': '-', 'ls': 'dashed'}, va='center')

ax.annotate('default arrow', xy=(0.35, 0.3), xytext=(0.6, 0.3),

arrowprops={'arrowstyle': '->'}, va='center')

ax.annotate('thick blue arrow', xy=(0.45, 0.4), xytext=(0.6, 0.4),

arrowprops={'arrowstyle': '->', 'lw': 4, 'color': 'blue'},

va='center')

ax.annotate('double-headed arrow', xy=(0.45, 0.5), xytext=(0.01, 0.5),

arrowprops={'arrowstyle': '<->'}, va='center')

ax.annotate('arrow with closed head', xy=(0.55, 0.6), xytext=(0.1, 0.6),

arrowprops={'arrowstyle': '-|>'}, va='center')

ax.annotate('a really thick red arrow\nwith not much space', xy=(0.65, 0.7),

xytext=(0.1, 0.7), va='center', multialignment='right',

arrowprops={'arrowstyle': '-|>', 'lw': 8, 'ec': 'r'})

ax.annotate('a really thick red arrow\nwith space between\nthe tail and the'

'label', xy=(0.85, 0.9), xytext=(0.1, 0.9), va='center',

multialignment='right',

arrowprops={'arrowstyle': '-|>', 'lw': 8, 'ec': 'r', 'shrinkA': 10})

plt.show()

Example E7.14 Another example of an annotated plot, this time of the share price of
BP plc (LSE: BP) with a couple of notable events added to it. The necessary data for
this example can be downloaded from Yahoo! Finance.12

Listing 7.15 Plotting a share price time series on an annotated chart

import datetime

import numpy as np

import matplotlib.pyplot as plt

from matplotlib.dates import strpdate2num

from datetime import datetime

Ê def date_to_int(s):

epoch = datetime(year=1970, month=1, day=1)

12 https://uk.finance.yahoo.com/q/hp?s=BP.L.

https://uk.finance.yahoo.com/q/hp?s=BP.L

326 Matplotlib

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

default line

dashed line

default arrow

thick blue arrow

double-headed arrow

arrow with closed head

a really thick red arrow
with not much space

a really thick red arrow
with space between
the tail and the label

Figure 7.15 An example of different arrow styles.

date = datetime.strptime(s, '%Y-%m-%d')

return (date - epoch).days

def bindate_to_int(bs):

return date_to_int(bs.decode('ascii'))

dt = np.dtype([('daynum','i8'), ('close', 'f8')])

share_price = np.loadtxt('bp-share-prices.csv', skiprows=1, delimiter=',',

usecols=(0, 4), converters={0: bindate_to_int},

dtype=dt)

fig, ax = plt.subplots()

ax.plot(share_price['daynum'], share_price['close'], c='g')

Ë ax.fill_between(share_price['daynum'], 0, share_price['close'], facecolor='g',

alpha=0.5)

daymin, daymax = share_price['daynum'].min(), share_price['daynum'].max()

ax.set_xlim(daymin, daymax)

price_max = share_price['close'].max()

def get_xy(date):

""" Return the (x, y) coordinates of the share price on a given date. """

x = date_to_int(date)

return share_price[np.where(share_price['daynum']==x)][0]

A horizontal arrow and label.

x, y = get_xy('1999-10-01')

ax.annotate('Share split', (x, y), xytext = (x+1000, y), va='center',

arrowprops=dict(facecolor='black', shrink=0.05))

A vertical arrow and label.

x, y = get_xy('2010-04-20')

ax.annotate('Deepwater Horizon\noil spill', (x, y), xytext = (x, price_max*0.9),

arrowprops=dict(facecolor='black', shrink=0.05), ha='center')

years = range(1989, 2015, 2)

7.4 Annotating Plots 327

19
89

19
91

19
93

19
95

19
97

19
99

20
01

20
03

20
05

20
07

20
09

20
11

20
13

0

200

400

600

800

1000

1200

1400

Share split

Deepwater Horizon
oil spill

Figure 7.16 BP plc’s share price on an annotated chart.

ax.set_xticks([date_to_int('{:4d}-01-01'.format(year)) for year in years])

Ì ax.set_xticklabels(years, rotation=90)

plt.show()

Ê We need to do some work to read in the date column: first decode the bytestring
read in from the file to ASCII (bindate_to_int), then use datetime (see Section 4.5.3)
to convert it into an integer number of days since some reference date (epoch): here we
choose the Unix epoch, 1 January 1970 (date_to_int).
Ë ax.fill_between fills the region below the plotted line with a single color.
Ì We rotate the year labels so there’s enough room for them (reading bottom to top).

Figure 7.16 shows the plotted chart.

7.4.3 Lines and Span Rectangles

Adding an arbitrary straight line to a Matplotlib plot can be achieved by simply plotting
the data corresponding to its start and end points with ax.plot; for example,

ax.plot([x1, x2], [y1, y2], color='k', lw=2)

draws a line between (x1, y1) and (x2, y2). Of course, this approach would be tedious
for drawing a large number of disconnected lines, so for horizontal and vertical lines
there are a pair of convenient methods, ax.hlines and ax.vlines. ax.hlines takes
mandatory arguments, y, xmin, xmax, and draws horizontal lines with y-coordinates at
each of the values given by the sequence y (if y is passed as a scalar, a single line is
drawn). xmin and xmax specify the start and end of each line; they can be scalars (in
which case all the lines will have the same start and end x-coordinates) or a sequence
(with one value for each of the y-coordinates specified by y). ax.vlines draws vertical
lines; its mandatory arguments, x, ymin and ymax, are entirely analogous.

328 Matplotlib

Figure 7.17 A figure generated from vertical and horizontal lines.

Example E7.15 The code below illustrates some different uses of ax.vlines and
ax.hlines (see Figure 7.17).

Listing 7.16 Some different ways to use ax.vlines and ax.hlines

eg7-circle-lines.py

import numpy as np

import matplotlib.pyplot as plt

fig, ax = plt.subplots()

ax.axis('equal')

A circle made of horizontal lines.

y = np.linspace(-1, 1, 100)

xmax = np.sqrt(1 - y**2)

ax.hlines(y, -xmax, xmax, color='g')

Draw a box of thicker lines around the circle.

ax.vlines(-1, -1, 1, lw=2, color='r')

ax.vlines(1, -1, 1, lw=2, color='r')

ax.hlines(-1, -1, 1, lw=2, color='r')

ax.hlines(1, -1, 1, lw=2, color='r')

Some evenly spaced vertical lines.

ax.vlines(y[::10], -1, 1, color='b')

Remove tick marks and labels.

ax.xaxis.set_visible(False)

ax.yaxis.set_visible(False)

A bit of padding around the outside of the box.

ax.set_xlim(-1.1, 1.1)

ax.set_ylim(-1.1, 1.1)

plt.show()

7.4 Annotating Plots 329

Table 7.11 Keyword arguments for styling patches

Argument Description

alpha Set the alpha transparency (0–1)
color Set both the facecolor and the edgecolor of the patch
edgecolor, ec Set the edge (border) color
facecolor, fc Set the patch face color
fill Indicate whether to fill the patch or not (True or False)
hatch Set the hatching pattern for the patch: one of '/', '\', '|', '-',

'+', 'x', 'o', 'O', '.', '*'; repeat the character for a denser pat-
tern

linestyle, ls Set the patch line style: 'solid', 'dashed', 'dashdot', 'dotted'
linewidth, lw Set the patch line width, in points

On static plots such as figures for printing, ax.hlines and ax.vlines work well, but
note that the line limits don’t change upon changing the axes’ limits in an interactive
plot. There are two further methods, ax.axhline and ax.axvline, which simply plot
a horizontal or vertical line across the axis, whatever its current limits. ax.axhline
takes arguments y, xmin, xmax, but these must be scalar values (so multiple lines require
repeated calls) and xmin, xmax are given in fractional coordinates such that 0 is the far
left of the plot and 1 the far right. Again, the ax.axvline arguments, x, ymin, ymax, are
analogous. Some examples:
ax.axhline(100, 0, 1) # horizontal line across whole of x-axis at y = 100

ax.axhline(100) # same thing: xmin and xmax default to 0 and 1

A thick, blue, dashed vertical line at x = 5, around the center of the y-axis.

ax.axvline(5, 0.4, 0.6, c='b', lw=4, ls='--')

The methods ax.axhspan and ax.axvspan are similar but produce a horizontal or
vertical spanning rectangle across the axis. ax.axhspan is passed arguments ymin, ymax
(in data coordinates), and xmin, xmax (in fractional axes units). ax.axvspan takes the
arguments xmin, xmax, ymin and ymax in the same way. Extra keywords can be used to
style the spanning rectangle (which is a type of Patch object; see Table 7.11).

Example E7.16 The program below annotates a simple wave plot to indicate the
different regions of the electromagnetic spectrum, using text, axvline, axhline and
axvspan (see Figure 7.18).

Listing 7.17 A representation of the electromagnetic spectrum, 250–1000 nm

eg7-annotate.py

import numpy as np

import matplotlib.pyplot as plt

Wavelength range, nm.

lmin, lmax = 250, 1000

x = np.linspace(lmin, lmax, 1000)

A wave with a smoothly increasing wavelength.

wv = (np.sin(10 * np.pi * x / (lmax+lmin-x)))[::-1]

330 Matplotlib

300 400 500 600 700 800 900 1000

λ /nm

UV Visible IR

Figure 7.18 A representation of the electromagnetic spectrum.

fig = plt.figure()

ax = fig.add_subplot(facecolor='k')

ax.plot(x, wv, c='w', lw=2)

ax.set_xlim(250, 1000)

ax.set_ylim(-2, 2)

Label and delimit the different regions of the electromagnetic spectrum.

ax.text(310, 1.5, 'UV', color='w', fontdict={'fontsize': 20})

ax.text(530, 1.5, 'Visible', color='k', fontdict={'fontsize': 20})

ax.annotate('', (400, 1.3), (750, 1.3), arrowprops={'arrowstyle': '<|-|>',

'color': 'w', 'lw': 2})

ax.text(860, 1.5, 'IR', color='w', fontdict={'fontsize': 20})

ax.axvline(400, -2, 2, c='w', ls='--')

ax.axvline(750, -2, 2, c='w', ls='--')

Horizontal "axis" across the center of the wave.

ax.axhline(c='w')

Remove the y-axis ticks and labels; label the x-axis.

ax.yaxis.set_visible(False)

ax.set_xlabel(r'$\lambda\;/\mathrm{nm}$')

Finally, add some colorful rectangles representing a rainbow in the

visible region of the spectrum.

Dictionary mapping of wavelength regions (nm) to approximate RGB values.

rainbow_rgb = { (400, 440): '#8b00ff', (440, 460): '#4b0082',

(460, 500): '#0000ff', (500, 570): '#00ff00',

(570, 590): '#ffff00', (590, 620): '#ff7f00',

(620, 750): '#ff0000'}

for wv_range , rgb in rainbow_rgb.items():

ax.axvspan(*wv_range , color=rgb, ec='none', alpha=1)

plt.show()

7.4 Annotating Plots 331

♦7.4.4 Circles, Polygons and Other Patches

Almost everything that gets rendered in a Matplotlib figure is a subclass of the abstract
base class, Artist. This includes lines (through Line2D) and text (through Text).13 An
important collection of rendered objects is further derived from the Artist subclass
Patch: a two-dimensional shape. The wedges of a pie chart (Section 7.3) and the arrows
of an annotation (Section 7.4) are examples we have met before.

To add a shape to an Axes object, create a patch using one of the classes described in
full in the Matplotlib documentation14 and call ax.add_patch(patch). To set the color,
line widths, transparency, etc. of the patch, pass one or more of the keywords listed in
Table 7.11 when creating the patch.

This usage for a few types of Patch objects is described below.

Circles and Ellipses
A Circle centered at xy = (x, y) (in data coordinates) and with radius r is created
with:

from matplotlib.patches import Circle

circle = Circle(xy, r, **kwargs)

It is added to the Axes with ax.add_patch:

ax.add_patch(circle)

The supported keyword arguments indicated by **kwargs are the usual patch styling
ones, summarized in Table 7.11.

Ellipse patches are similar but take arguments width and height (the total length of
the horizontal and vertical axes of the ellipse before rotation) and angle (the angle of
counterclockwise rotation of the ellipse in degrees).

from matplotlib.patches import Ellipse

ellipse = Ellipse(xy, width, height, angle, **kwargs)

Example E7.17 The following code reads in the heights and masses of 260 women
and 247 men from the data set published by Heinz et al.15 and available for download
at https://scipython.com/eg/bai . It plots the (height, mass) pairs for each individual on
a scatter plot and, for each sex, draws a 3σ covariance ellipse around the mean point.
The dimensions of this ellipse are given by the (scaled) eigenvalues of the covariance
matrix and it is rotated such that its semi-major axis lies along the largest eigenvector.

Listing 7.18 An analysis of the height–mass relationship in 507 healthy individuals

eg7-body-mass-height.py

13 In fact, there are two kinds of Artist: primitives and containers. Primitives are the graphical objects
(such as Line2D themselves) and containers are the elements of a figure onto which they are rendered (for
example Axes).

14 https://matplotlib.org/api/artist_api.html.
15 G. Heinz et al., Journal of Statistical Education 11(2), (2003). This article is available at https://doi.org/

10.1080/10691898.2003.11910711.

https://scipython.com/eg/bai
https://matplotlib.org/api/artist_api.html
https://doi.org/10.1080/10691898.2003.11910711
https://doi.org/10.1080/10691898.2003.11910711

332 Matplotlib

import numpy as np

import matplotlib.pyplot as plt

from matplotlib.patches import Ellipse

FEMALE, MALE = 0, 1

dt = np.dtype([('mass', 'f8'), ('height', 'f8'), ('gender', 'i2')])

data = np.loadtxt('body.dat.txt', usecols=(22, 23, 24), dtype=dt)

fig, ax = plt.subplots()

def get_cov_ellipse(cov, center, nstd, **kwargs):

"""

Return a matplotlib Ellipse patch representing the covariance matrix

cov centered at center and scaled by the factor nstd.

"""

Find and sort eigenvalues and eigenvectors into descending order.

eigvals, eigvecs = np.linalg.eigh(cov)

order = eigvals.argsort()[::-1]

eigvals, eigvecs = eigvals[order], eigvecs[:, order]

The counterclockwise angle to rotate our ellipse by.

vx, vy = eigvecs[:, 0][0], eigvecs[:, 0][1]

Ê theta = np.arctan2(vy, vx)

Width and height of ellipse to draw.

width, height = 2 * nstd * np.sqrt(eigvals)

return Ellipse(xy=center, width=width, height=height,

angle=np.degrees(theta), **kwargs)

labels, colors =['Female', 'Male'], ['magenta', 'blue']

for gender in (FEMALE, MALE):

sdata = data[data['gender']==gender]

height_mean = np.mean(sdata['height'])

mass_mean = np.mean(sdata['mass'])

cov = np.cov(sdata['mass'], sdata['height'])

ax.scatter(sdata['height'], sdata['mass'], color=colors[gender],

label=labels[gender])

e = get_cov_ellipse(cov, (height_mean , mass_mean), 3,

fc=colors[gender], alpha=0.4)

ax.add_patch(e)

ax.set_xlim(140, 210)

ax.set_ylim(30, 120)

ax.set_xlabel('Height /cm')

ax.set_ylabel('Mass /kg')

ax.legend(loc='upper left', scatterpoints=1)

plt.show()

Ê The function np.arctan2 returns the “two-argument arctangent”: np.arctan2

(y, x) is the angle in radians between the positive x-axis and the point (x, y).
Figure 7.19 shows the resulting plot.

7.4 Annotating Plots 333

Figure 7.19 Scatter plots for each gender of mass and height for a total of 507 students, with
their covariance ellipses annotated.

Rectangles
Rectangle patches are created in a similar way to Ellipses:

from matplotlib.patches import Rectangle

rectangle = Rectangle(xy, width, height, angle, **kwargs)

Here, however, the tuple xy=(x, y) gives the coordinates of the lower left corner of the
rectangle. A square is simply a rectangle with the same width and height, of course.

Polygons
A Polygon patch is created by passing an array of shape (N, 2), in which each row
represents the (x, y) coordinates of a vertex. If the additional argument, closed, is True
(the default), the polygon will be closed so that the start and end points are the same.
This is illustrated in the following example.

Example E7.18 This code produces an image (Figure 7.20) of some colorful shapes.

Listing 7.19 Some colorful shapes

import numpy as np

import matplotlib.pyplot as plt

from matplotlib.patches import Polygon, Circle, Rectangle

red, blue, yellow, green = '#ff0000', '#0000ff', '#ffff00', '#00ff00'

square = Rectangle((0.7, 0.1), 0.25, 0.25, facecolor=red)

circle = Circle((0.8, 0.8), 0.15, facecolor=blue)

triangle = Polygon(((0.05, 0.1), (0.396, 0.1), (0.223, 0.38)), fc=yellow)

rhombus = Polygon(((0.5, 0.2), (0.7, 0.525), (0.5, 0.85), (0.3, 0.525)), fc=green)

334 Matplotlib

Figure 7.20 Some colorful shapes using Matplotlib patches.

fig = plt.figure(facecolor='k')

ax = fig.add_subplot(aspect='equal')

for shape in (square, circle, triangle, rhombus):

ax.add_patch(shape)

ax.axis('off')

plt.show()

Questions

Q7.4.1 Compare plots of y = x3 for −10 ≤ x ≤ 10 using a logarithmic scale on the
x-axis, y-axis and both axes. What is the difference between using ax.set_xscale('log')

and ax.set_xscale('symlog')?

Q7.4.2 Adapt Example E7.9 to produce a horizontal bar chart, with the bars in order
of decreasing letter frequency (i.e. with the most common letter, E, at the bottom).

Problems

P7.4.1 The Economist’s Big Mac Index is a lighthearted measure of purchasing power
parity between two currencies. Its premise is that the difference between the price of a
McDonald’s Big Mac hamburger in one currency, converted into US dollars (USD) at
the prevailing exchange rate, and its price in the United States is a measure of the extent
to which that currency is over- or under-valued (relative to the dollar).

The files at https://scipython.com/ex/bga provide the historical Big Mac prices and
exchange rates for four currencies. For each currency, calculate the percentage over- or
under-valuation of each currency as

(local price converted to USD − US price)
(US price)

× 100

and plot it as a function of time.

https://scipython.com/ex/bga

7.4 Annotating Plots 335

P7.4.2 Plot, as a histogram, the data in the table below concerning the number of cases
of West Nile virus disease in the United States between 1999 and 2008. The two types
of disease, neuroinvasive and non-neuroinvasive, should be plotted as separate bars on
the same chart for each year.

Year Neuroinvasive cases Non-neuroinvasive cases

1999 59 3
2000 19 2
2001 64 2
2002 2946 1210
2003 2866 6996
2004 1148 1391
2005 1309 1691
2006 1495 2774
2007 1227 117
2008 689 667

P7.4.3 A bubble chart is a type of scatter plot that can depict three dimensions of data
through the position (x- and y-coordinates) and size of the marker. The plt.scatter

method can produce bubble charts by passing the marker size to its s attribute (in points-
squared such that the area of the marker is proportional to the magnitude of the third
dimension – see Example E7.1).

The files gdp.tsv, bmi_men.tsv and population_total.tsv, available at
https://scipython.com/ex/bgc, contain the following data from 2007 for each country:
the GDP per person per capita in international dollars fixed at 2005 prices, the body
mass index (BMI) of men (in kg m−2) and the total population. Generate a bubble chart
of BMI against GDP, in which the population is depicted by the size of the bubble
markers. Beware: some data are missing for some countries.

Bonus exercise: color the bubbles by continent using the list provided in the file
continents.tsv.

P7.4.4 The US National Oceanic and Atmospheric Administration (NOAA) makes a
data set of atmospheric carbon dioxide (CO2) concentrations since 1958 freely available
to the public at ftp://aftp.cmdl.noaa.gov/products/trends/co2/co2_mm_mlo.txt. Using
these data, plot the “interpolated” and “trend” CO2 concentration against time on the
same graph.

P7.4.5 Write a program to plot the Planck function, B(λ), for the spectral radiance of a
Black body at temperature, T , as a function of wavelength, λ, for the Sun (T = 5778 K):

B(λ) =
2hc2

λ5

1
exp (hc/λkBT) − 1

.

Use a NumPy array to store values of B(λ) from 100 to 5000 nm, but set the wavelength
range to decrease from 4000 nm to 0. The necessary physical constants may be taken

https://scipython.com/ex/bgc
ftp://aftp.cmdl.noaa.gov/products/trends/co2/co2_mm_mlo.txt

336 Matplotlib

Figure 7.21 An image produced using Matplotlib Circle patches.

to have the values h = 6.626 × 10−34 J s, c = 2.998 × 108 m s−1 and kB = 1.381 ×
10−23 J K−1.

P7.4.6 Reproduce Figure 7.21 using Circle patches.

7.5 Contour Plots and Heatmaps

Until now, we have looked only at plotting one-dimensional data (that is, functions of
one coordinate only). Matplotlib also supports several ways to plot data that is a function
of two dimensions.

7.5.1 Contour Plots

The pyplot method contour makes a contour plot of a provided two-dimensional array.
In its simplest invocation, contour(Z), no further arguments are required: the (x, y)
values are indexes into the two-dimensional array Z and contour intervals are selected
automatically. To explicitly include (x, y) coordinates, pass them as contour(X, Y,

Z). The arrays X and Y must have the same shape as Z (for example, as produced by
np.meshgrid: see Section 6.1.6) or be one-dimensional such that X has the same length
as the number of columns in Z, and Y has the same length as the number of rows in Z.

The contour levels can be controlled by a further argument: either a scalar, N, giving
the total number of contour levels, or a sequence, V, explicitly listing the values of Z at
which to draw contours.

The contours are colored according to Matplotlib’s default colormap. In this process,
the data are normalized linearly onto the interval [0, 1], which is then mapped onto a
list of colors that are used to style the contours at the corresponding values. The module

7.5 Contour Plots and Heatmaps 337

matplotlib.cm provides several colormap schemes:16 some of the more practical ones
are cm.viridis (since Matplotlib 2.0, the default), cm.hot, cm.bone, cm.winter, cm.jet,
cm.Greys and cm.hsv. If you want to use a colormap with its colors reversed, tack a _r

on the end of its name (e.g cm.hot_r).
As an alternative, contour supports the colors argument, which takes either a sin-

gle Matplotlib color specifier or a sequence of such specifiers. For single-color con-
tour plots, contours corresponding to negative values are plotted in dashed lines. The
widths of the contour lines can be styled individually or all together with the argument
linewidths.

Example E7.19 The following code produces a plot of the electrostatic potential of
an electric dipole p = (qd, 0, 0) in the (x, y) plane for q = 1.602 × 10−19 C, d = 1 pm,
using the point dipole approximation (see Figure 7.22).

Listing 7.20 The electrostatic potential of a point dipole

eg7-elec-dipole-pot.py

import numpy as np

import matplotlib.pyplot as plt

Dipole charge (C), Permittivity of free space (F.m-1).

q, eps0 = 1.602e-19, 8.854e-12

Dipole +q, -q distance (m) and a convenient combination of parameters.

d = 1.e-12

k = 1/4/np.pi/eps0 * q * d

Cartesian axis system with origin at the dipole (m).

X = np.linspace(-5e-11, 5e-11, 1000)

Y = X.copy()

X, Y = np.meshgrid(X, Y)

Dipole electrostatic potential (V), using point dipole approximation.

Phi = k * X / np.hypot(X, Y)**3

fig, ax = plt.subplots()

Draw contours at values of Phi given by levels.

levels = np.array([10**pw for pw in np.linspace(0, 5, 20)])

levels = sorted(list(-levels) + list(levels))

Monochrome plot of potential.

ax.contour(X, Y, Phi, levels=levels, colors='k', linewidths=2)

plt.show()

To add labels to the contours, store the ContourSet object returned by the call to
ax.contour and pass it to ax.clabel (perhaps with some additional parameters dictating
the font properties). A further method, ax.contourf, which takes the same arguments

16 See the page https://matplotlib.org/tutorials/colors/colormaps.html for a complete list.

https://matplotlib.org/tutorials/colors/colormaps.html

338 Matplotlib

−4 −2 0 2 4
×10−11

−4

−2

0

2

4

×10−11

Figure 7.22 A contour plot of the electrostatic potential of a point dipole.

as contour, draws filled contours. contour and ax.contourf can be used together, as in
the following example.

Example E7.20 This program produces a filled contour plot of a function, labels the
contours and provides some custom styling for their colors (see Figure 7.23).

Listing 7.21 An example of filled and styled contours

eg7-2dgau.py

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.cm as cm

X = np.linspace(0, 1, 100)

Y = X.copy()

X, Y = np.meshgrid(X, Y)

alpha = np.radians(25)

cX, cY = 0.5, 0.5

sigX, sigY = 0.2, 0.3

rX = np.cos(alpha) * (X-cX) - np.sin(alpha) * (Y-cY) + cX

rY = np.sin(alpha) * (X-cX) + np.cos(alpha) * (Y-cY) + cY

Z = (rX-cX)*np.exp(-((rX-cX)/sigX)**2) * np.exp(-((rY-cY)/sigY)**2)

fig = plt.figure()

ax = fig.add_subplot()

Reversed Greys colormap for filled contours.

cpf = ax.contourf(X, Y, Z, 20, cmap=cm.Greys_r)

Set the colors of the contours and labels so they ' re white where the
contour fill is dark (Z < 0) and black where it ' s light (Z >= 0).
colors = ['w' if level<0 else 'k' for level in cpf.levels]

cp = ax.contour(X, Y, Z, 20, colors=colors)

ax.clabel(cp, fontsize=12, colors=colors)

7.5 Contour Plots and Heatmaps 339

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

-0
.0

80

-0
.0

70

-0.060

-0
.0

50

-0
.0
40

-0
.0
30

-0.
020

-0
.0
10

0.
00

0

0.
01

0

0.
02

0

0.
03

0

0.
04

0

0.0
50

0.060
0.
07

0
0.

08
0

Figure 7.23 A two-dimensional plot with labeled contours.

plt.show()

7.5.2 Heatmaps

Another way to depict two-dimensional data is as a heatmap: an image in which the
color of each pixel is determined by the corresponding value in the array of data. The
use of Matplotlib’s functions ax.imshow, ax.pcolor and ax.pcolormesh is described in
this section.

ax.imshow
The Axes method ax.imshow displays an image on the axes. In its basic usage, it takes a
two-dimensional array and maps its values to the pixels on an image according to some
interpolation scheme and normalization. If the array data are taken from an image read
in with the Matplotlib method image.imread, this is usually all that is required:
In [x]: import matplotlib.pyplot as plt

In [x]: import matplotlib.image as mpimg

In [x]: im = mpimg.imread('image.jpg')

In [x]: plt.imshow(im)

In [x]: plt.show()

(In this case, im is a three-dimensional array of shape (n, m, 3) in which the “depth”
coordinate corresponds to the red, green and blue components of each pixel in the n-by-m
image.)

imshow is frequently used to visualize matrices or other two-dimensional arrays of
data. If the image produced for the figure has a different size to the array dimensions,
some kind of interpolation scheme is employed: for example, to visualize a 10 × 10
matrix as a 100×100 pixel image, a lot of intermediate points need to be approximated.
The default interpolation scheme is 'nearest', which is the most faithful to the under-
lying data but can look “blocky.” There are many alternative interpolation schemes (see

340 Matplotlib

0 2 4 6 8

0

2

4

6

8

0 2 4 6 8

0

2

4

6

8

Figure 7.24 A small matrix visualized using ax.imshow with two different interpolation
schemes.

the documentation17 for details): an example using interpolation='bilinear' is given
below: these can produce somewhat blurry-looking images for small arrays, however.
Note that imshow takes a cmap argument that assigns a colormap in the same way as it
does for ax.contourf.

Example E7.21 The following code compares two interpolation schemes: 'bilinear'
and 'nearest' (the default), which should look “blocky” (i.e. more faithful to the data):
see Figure 7.24.

Listing 7.22 A comparison of interpolation schemes for a small array visualized with
imshow()

eg7-matrix-show.py

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.cm as cm

Make an array with ones in the shape of an ' X '.
a = np.eye(10, 10)

a += a[::-1,:]

fig = plt.figure()

ax1 = fig.add_subplot(121)

Bilinear interpolation - this will look blurry.

ax1.imshow(a, interpolation='bilinear', cmap=cm.Greys_r)

ax2 = fig.add_subplot(122)

' nearest ' interpolation - faithful but blocky.
ax2.imshow(a, cmap=cm.Greys_r)

plt.show()

Recent versions of Matplotlib include an Axes method, matshow, which can be used
in place of imshow and sets desirable defaults for visualizing matrices.

17 https://matplotlib.org/api/_as_gen/matplotlib.axes.Axes.imshow.html

https://matplotlib.org/api/_as_gen/matplotlib.axes.Axes.imshow.html

7.5 Contour Plots and Heatmaps 341

Example E7.22 The Barnsley fern is a fractal that resembles the black spleenwort
species of fern. It is constructed by plotting a sequence of points in the (x, y) plane,
starting at (0, 0), generated by the following affine transformations, f1, f2, f3 and f4,
where each transformation is applied to the previous point and chosen at random with
probabilities p1 = 0.01, p2 = 0.85, p3 = 0.07 and p4 = 0.07:

f1(x, y) =

(
0 0
0 0.16

) (
x
y

)
,

f2(x, y) =

(
0.85 0.04
−0.04 0.85

) (
x
y

)
+

(
0
1.6

)
,

f3(x, y) =

(
0.2 −0.26
0.23 0.22

) (
x
y

)
+

(
0
1.6

)
,

f4(x, y) =

(
−0.15 0.28
0.26 0.24

) (
x
y

)
+

(
0
0.44

)
.

This algorithm is implemented in the program below and the result is depicted in
Figure 7.25.

Listing 7.23 Barnsley’s fern

eg7-fern.py

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.cm as cm

f1 = lambda x, y: (0., 0.16*y)

f2 = lambda x, y: (0.85*x + 0.04*y, -0.04*x + 0.85*y + 1.6)

f3 = lambda x, y: (0.2*x - 0.26*y, 0.23*x + 0.22*y + 1.6)

f4 = lambda x, y: (-0.15*x + 0.28*y, 0.26*x + 0.24*y + 0.44)

fs = [f1, f2, f3, f4]

npts = 50000

Canvas size (pixels).

width, height = 300, 300

aimg = np.zeros((width, height))

x, y = 0, 0

for i in range(npts):

Pick a random transformation and apply it.

f = np.random.choice(fs, p=[0.01, 0.85, 0.07, 0.07])

x, y = f(x, y)

Map (x, y) to pixel coordinates.

NB we "know" that -2.2 < x < 2.7 and 0 <= y < 10.

ix, iy = int(width / 2 + x * width / 10), int(y * height / 12)

Set this point of the array to 1 to mark a point in the fern.

aimg[iy, ix] = 1

plt.imshow(aimg[::-1,:], cmap=cm.Greens)

plt.show()

342 Matplotlib

0 50 100 150 200 250

0

50

100

150

200

250

Figure 7.25 The Barnsley fern fractal.

ax.pcolor and ax.pcolormesh
There are a couple of other similar Matplotlib methods that you will come across:
ax.pcolor and ax.pcolormesh. These are very similar. The precise differences are
beyond the scope of this book, but pcolormesh is very much faster than pcolor and is
the recommended alternative to imshow for this reason. The most noticeable difference
is that imshow follows the convention used in the image-processing community that
places the origin in the top left corner; the pcolor methods associate the origin with the
bottom left corner.

Colorbars
It is often useful to have a legend indicating how the colors of the plot relate to the
values of the array used to derive it. This is added with the fig.colorbar method. In its
most simple usage, simply call fig.colorbar(mappable) where mappable is the Image,
ContourSet or other suitable object to which the colorbar applies and a new Axes object
holding the colorbar will be created (and room made in the figure to accommodate it).
This object can be further customized and labeled, as shown in the following examples.

Example E7.23 The following code reads in a data file of maximum daily tempera-
tures in Boston for 2019 and plots them on a heatmap, with a labeled colorbar legend
(see Figure 7.26). The data file may be downloaded from https://scipython.com/eg/bah.

Listing 7.24 Heatmap of Boston’s temperatures in 2019

eg7-heatmap.py

import numpy as np

import matplotlib.pyplot as plt

Read in the relevant data from our input file.

dt = np.dtype([('month', np.int), ('day', np.int), ('T', np.float)])

data = np.genfromtxt('boston2019.dat', dtype=dt, usecols=(1, 2, 3),

https://scipython.com/eg/bah

7.5 Contour Plots and Heatmaps 343

delimiter=(4, 2, 2, 6))

In our heatmap, nan will mean "no such date", e.g. 31 June.

heatmap = np.empty((12, 31))

heatmap[:] = np.nan

for month, day, T in data:

NumPy arrays are zero-indexed; days and months are not!

heatmap[month-1, day-1] = T

Plot the heatmap, customize and label the ticks.

fig = plt.figure()

ax = fig.add_subplot()

im = ax.imshow(heatmap, interpolation='nearest')

ax.set_yticks(range(12))

ax.set_yticklabels(['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun',

'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'])

days = np.array(range(0, 31, 2))

ax.set_xticks(days)

ax.set_xticklabels(['{:d}'.format(day+1) for day in days])

ax.set_xlabel('Day of month')

ax.set_title('Maximum daily temperatures in Boston, 2019')

Add a colorbar along the bottom and label it.

Ê cbar = fig.colorbar(ax=ax, mappable=im, orientation='horizontal')

cbar.set_label('Temperature , $^\circ\mathrm{C}$')

plt.show()

Ê The “mappable” object passed to fig.colorbar is the AxesImage object returned by
ax.imshow.

Example E7.24 The two-dimensional diffusion equation is

∂U
∂t

= D
(
∂2U
∂x2 +

∂2U
∂y2

)
,

where D is the diffusion coefficient. A simple numerical solution on the domain of the
unit square 0 ≤ x < 1, 0 ≤ y < 1 approximates U(x, y; t) by the discrete function u(n)

i, j ,
where x = i∆x, y = j∆y and t = n∆t. Applying finite difference approximations yields

u(n+1)
i, j − u(n)

i, j

∆t
= D

u(n)
i+1, j − 2u(n)

i, j + u(n)
i−1, j

(∆x)2 +
u(n)

i, j+1 − 2u(n)
i, j + u(n)

i, j−1

(∆y)2

 ,
and hence the state of the system at time step n + 1, u(n+1)

i, j may be calculated from its

state at time step n, u(n)
i, j through the equation

u(n+1)
i, j = u(n)

i, j + D∆t

u(n)
i+1, j − 2u(n)

i, j + u(n)
i−1, j

(∆x)2 +
u(n)

i, j+1 − 2u(n)
i, j + u(n)

i, j−1

(∆y)2

 .

344 Matplotlib

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Day of month

Jan
Feb
Mar
Apr
May
Jun
Jul

Aug
Sep
Oct
Nov
Dec

Maximum daily temperatures in Boston, 2019

–10 0 10 20 30

Temperature, °C

Figure 7.26 A heatmap of maximum daily temperatures in Boston during 2019.

Consider the diffusion equation applied to a metal plate initially at temperature Tcold,
apart from a disc of a specified size, which is at temperature Thot. We suppose that the
edges of the plate are held fixed at Tcool. The following code applies the above formula to
follow the evolution of the temperature of the plate. It can be shown that the maximum
time step, ∆t, that we can allow without the process becoming unstable is

∆t =
1

2D
(∆x∆y)2

(∆x)2 + (∆y)2 .

In the code below, each call to do_timestep updates the numpy array u from the
results of the previous time step, u0. The simplest approach to applying the partial
difference equation is to use a Python loop:
for i in range(1, nx-1):

for j in range(1, ny-1):

uxx = (u0[i+1,j] - 2*u0[i,j] + u0[i-1,j]) / dx2

uyy = (u0[i,j+1] - 2*u0[i,j] + u0[i,j-1]) / dy2

u[i,j] = u0[i,j] + dt * D * (uxx + uyy)

However, this runs extremely slowly and using vectorization will farm out these explicit
loops to the much faster precompiled C code underlying NumPy’s array implementa-
tion.

The state of the system is plotted as an image at four different stages of its evolution
(see Figure 7.27).

Listing 7.25 The two-dimensional diffusion equation applied to the temperature of a steel
plate

eg7-diffusion2d.py

import numpy as np

import matplotlib.pyplot as plt

plate size, mm.

w = h = 10.

intervals in x-, y- directions , mm.

dx = dy = 0.1

7.5 Contour Plots and Heatmaps 345

Thermal diffusivity of steel, mm2.s-1.

D = 4.

Tcool, Thot = 300, 700

nx, ny = int(w/dx), int(h/dy)

dx2, dy2 = dx*dx, dy*dy

dt = dx2 * dy2 / (2 * D * (dx2 + dy2))

u0 = Tcool * np.ones((nx, ny))

u = u0.copy()

Initial conditions - ring of inner radius r, width dr centered at (cx, cy) (mm)

r, cx, cy = 2, 5, 5

r2 = r**2

for i in range(nx):

for j in range(ny):

p2 = (i*dx-cx)**2 + (j*dy-cy)**2

if p2 < r2:

u0[i, j] = Thot

def do_timestep(u0, u):

Propagate with forward-difference in time, central-difference in space.

u[1:-1, 1:-1] = u0[1:-1, 1:-1] + D * dt * (

(u0[2:, 1:-1] - 2*u0[1:-1, 1:-1] + u0[:-2, 1:-1])/dx2

+ (u0[1:-1, 2:] - 2*u0[1:-1, 1:-1] + u0[1:-1, :-2])/dy2)

u0 = u.copy()

return u0, u

Number of time steps.

nsteps = 101

Output 4 figures at these time steps.

mfig = [0, 10, 50, 100]

fignum = 0

fig = plt.figure()

for m in range(nsteps):

u0, u = do_timestep(u0, u)

if m in mfig:

fignum += 1

print(m, fignum)

ax = fig.add_subplot(220 + fignum)

im = ax.imshow(u.copy(), cmap=plt.get_cmap('hot'), vmin=Tcool, vmax=Thot)

ax.set_axis_off()

ax.set_title('{:.1f} ms'.format(m*dt*1000))

fig.subplots_adjust(right=0.85)

Ê cbar_ax = fig.add_axes([0.9, 0.15, 0.03, 0.7])

cbar_ax.set_xlabel('T / K', labelpad=20)

fig.colorbar(im, cax=cbar_ax)

plt.show()

Ê To set a common colorbar for the four plots we define its own Axes, cbar_ax and
make room for it with fig.subplots_adjust. The plots all use the same color range,
defined by vmin and vmax, so it doesn’t matter which one we pass in the first argument
to fig.colorbar.

346 Matplotlib

0.0 ms 6.2 ms

31.2 ms 62.5 ms

T / K

300

350

400

450

500

550

600

650

700

Figure 7.27 A representation of the temperature of a circular disc at four times after its
instantaneous heating.

7.5.3 Exercises

Questions

Q7.5.1 Generate an image plot of the sinc function in the Cartesian plane, sinc(r) =

sin r/r, where r =
√

x2 + y2.

Q7.5.2 The data provided in the comma-separated file birthday-data.csv, available
at https://scipython.com/ex/bgd gives the number of births recorded by the US Centers
for Disease Control and Prevention’s National Center for Health Statistics for each day
of the year as a total from years 1969–1988. The columns are month number (1 =
January, 12 = December), day number and number of live births.

Use NumPy to estimate, for each day of the year, the probability of a particular
individual’s birthday being on that day. Plot the probabilities as a heatmap like that
of Example E7.23 and investigate any features of interest.

Hint: the data need “cleaning” to a small extent – inspect the data file first to establish
the presence of any incorrect entries.

Problems

P7.5.1 The so-called chaos game is an algorithm for generating a fractal. First define
the n vertexes of a regular polygon and an initial point, (x0, y0), selected at random
within the polygon. Then generate a sequence of points, starting with (x0, y0), where
each point is a fraction r of the distance between the previous one and a polygon vertex
chosen at random. For example, the algorithm applied with parameters n = 3, r = 0.5
generates a Sierpinski triangle.

https://scipython.com/ex/bgd

7.5 Contour Plots and Heatmaps 347

Write a program to draw fractals using the chaos game algorithm.

P7.5.2 Extend the code in Example E7.17 to include contours of body mass index,
defined by BMI = (mass/kg)/(height/m)2. Plot these contours to delimit the supposed
categories of “under-weight” (<18.5), “over-weight” (>25) and “obese” (>30). Manu-
ally place the contour labels so that they are out of the way of the scatter plotted data
points and format them to one decimal place.

P7.5.3 The two-dimensional advection equation may be written

∂U
∂t

= −vx
∂U
∂x
− vy

∂U
∂y

,

where v = (vx, vy) is the vector velocity field, giving the velocity components vx and
vy, which may vary as a function of position, (x, y). In a similar way to the approach
taken in Example E7.24, this equation may be discretized and solved numerically. With
forward-differences in time and central-differences in space, we have

u(n+1)
i, j = u(n)

i, j − ∆t

vx;i, j

u(n)
i+1, j − u(n)

i−1, j

2∆x
+ vy;i, j

u(n)
i, j+1 − u(n)

i, j−1

2∆y

 .
Implement this approximate numerical solution on the domain 0 ≤ x < 10, 0 ≤ y < 10
discretized with ∆x = ∆y = 0.1 with the initial condition

u0(x, y) = exp
(
−

(x − cx)2 + (y − cy)2

α2

)
,

where (cx, cy) = (5, 5) and α = 2. Take the velocity field to be a circulation at constant
speed 0.1 about an origin at (7, 5).

P7.5.4 The Julia set associated with the complex function f (z) = z2 + c may be
depicted using the following algorithm.

For each point, z0, in the complex plane such that −1.5 ≤ Re[z0] ≤ 1.5 and −1.5 ≤
Im[z0] ≤ 1.5, iterate according to zn+1 = z2

n + c. Color the pixel in an image correspond-
ing to this region of the complex plane according to the number of iterations required
for |z| to exceed some critical value, |z|max (or black if this does not happen before a
certain maximum number of iterations nmax).

Write a program to plot the Julia set for c = −0.1 + 0.65 j, using |z|max = 10 and
nmax = 500.

P7.5.5 The mean altitudes of the 10 km × 10 km hectad squares used by the
UK’s Ordnance Survey in mapping Great Britain are given in the NumPy array file
gb-alt.npy, available at https://scipython.com/ex/bgb.

Plot a map of the island using this data with ax.imshow and plot further maps assum-
ing a mean sea-level rise of (a) 25 m, (b) 50 m, (c) 200 m. In each case, deduce the
percentage of land area remaining, relative to its present value.

https://scipython.com/ex/bgb

348 Matplotlib

7.6 Three-Dimensional Plots

Matplotlib is primarily a two-dimensional plotting library, but it does support three-
dimensional (3D) plotting functionality that is good enough for many purposes.
The easiest way to set up a three-dimensional plot is to import Axes3D from the
mpl_toolkits.mplot3d module and to set the subplot’s projection argument to '3d':

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

fig = plt.figure()

ax = fig.add_subplot(projection='3d')

The corresponding Axes object can then depict data in three dimensions as a line plot,
scatter plot, wireframe plot or surface plot.18

7.6.1 Wireframe Plots and Surface Plots

The simplest kind of surface plot is a wireframe plot that draws lines in three-
dimensional perspective joining the provided two-dimensional array of points, Z, on
a grid of data values provided as two-dimensional arrays, X and Y (as for imshow and
contour). By default, wires are drawn for every point in the array: if this is too many,
set the arguments rstride and cstride to specify the array row step size and column
step size.

The ax.plot_surface method is similar but produces a surface plot of filled patches.
The patch colors can be set to a single color with the color argument or styled to a
specifed colormap with the cmap argument. rstride and cstride default to 10 for the
ax.plot_surface method. Both methods are illustrated in the following example.

Example E7.25 Some of the different options for producing surface plots are illus-
trated by the code below, which produces Figure 7.28.

Listing 7.26 Four three-dimensional plots of a simple two-dimensional Gaussian function

eg7-3d-surface-plots.py

import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

import matplotlib.cm as cm

L, n = 2, 400

x = np.linspace(-L, L, n)

y = x.copy()

X, Y = np.meshgrid(x, y)

Z = np.exp(-(X**2 + Y**2))

fig, ax = plt.subplots(nrows=2, ncols=2, subplot_kw={'projection': '3d'})

18 It is even possible to produce three-dimensional contour plots and bar charts, though these are of doubtful
use in practice.

7.6 Three-Dimensional Plots 349

−2 −1 0 1 2−2
−1

0
1

2
0.0

0.5

1.0

−2 −1 0 1 2−2
−1

0
1

2
0.0

0.5

1.0

−2 −1 0 1 2−2
−1

0
1

2
0.0

0.5

1.0

−2 −1 0 1 2−2
−1

0
1

2
0.0

0.5

1.0

Figure 7.28 Four different three-dimensional surface plots of the same function.

ax[0, 0].plot_wireframe(X, Y, Z, rstride=40, cstride=40)

ax[0, 1].plot_surface(X, Y, Z, rstride=40, cstride=40, color='m')

ax[1, 0].plot_surface(X, Y, Z, rstride=12, cstride=12, color='m')

ax[1, 1].plot_surface(X, Y, Z, rstride=20, cstride=20, cmap=cm.hot)

for axes in ax.flatten():

axes.set_xticks([-2, -1, 0, 1, 2])

axes.set_yticks([-2, -1, 0, 1, 2])

axes.set_zticks([0, 0.5, 1])

fig.tight_layout()

plt.show()

In an interactive plot, the viewing direction can be changed by clicking and dragging
on the plot. To fix a particular viewing direction for a static plot image, pass the required
elevation and azimuthal angles (in degrees, in that order) to ax.view_init, as in the
following example.

Example E7.26 The parametric description of a torus with major radius c and minor
radius a is

x = (c + a cos θ) cos φ

y = (c + a cos θ) sin φ

z = a sin θ

for θ and φ each between 0 and 2π. The code below outputs two views of a torus rendered
as a surface plot (Figure 7.29).

Listing 7.27 A three-dimensional surface plot of a torus

eg7-torus-surface.py

350 Matplotlib

(a) (b)

Figure 7.29 Two views of the same torus: (a) θ = 36◦, φ = 26◦, (b) θ = 0◦, φ = 0◦.

import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

n = 100

theta = np.linspace(0, 2.*np.pi, n)

phi = np.linspace(0, 2.*np.pi, n)

Ê theta, phi = np.meshgrid(theta, phi)

c, a = 2, 1

x = (c + a*np.cos(theta)) * np.cos(phi)

y = (c + a*np.cos(theta)) * np.sin(phi)

z = a * np.sin(theta)

fig = plt.figure()

ax1 = fig.add_subplot(121, projection='3d')

ax1.set_zlim(-3, 3)

Ë ax1.plot_surface(x, y, z, rstride=5, cstride=5, color='k', edgecolors='w')

Ì ax1.view_init(36, 26)

ax2 = fig.add_subplot(122, projection='3d')

ax2.set_zlim(-3, 3)

ax2.plot_surface(x, y, z, rstride=5, cstride=5, color='k', edgecolors='w')

ax2.view_init(0, 0)

ax2.set_xticks([])

plt.show()

Ê We need θ and φ to range over the interval (0, 2π) independently, so we use a
meshgrid.
Ë Note that we can use keywords such as edgecolors to style the polygon patches
created by ax.plot_surface.
Ì Elevation angle above the xy-plane of 36◦, azimuthal angle in the xy-plane of 26◦.

7.6.2 Line Plots and Scatter Plots

Line plots and scatter plots work in three dimensions in a way similar to that in
which they work in two dimensions: the basic method call is ax.plot(x, y, z) and

7.6 Three-Dimensional Plots 351

Figure 7.30 A depiction of circularly polarized light as a helix on a three-dimensional plot.

ax.scatter(x, y, z), where x, y and z are equal-length, one-dimensional arrays. Only
limited annotation of such plots is possible without using advanced methods, however.

Example E7.27 Below is a simple example of a three-dimensional plot of a helix,
which could represent circularly polarized light, for example. See Figure 7.30.

Listing 7.28 A depiction of a helix on a three-dimensional plot

eg7-circular-polarization.py

import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

n = 1000

fig = plt.figure()

ax = fig.add_subplot(projection='3d')

Plot a helix along the x-axis.

theta_max = 8 * np.pi

theta = np.linspace(0, theta_max , n)

x = theta

z = np.sin(theta)

y = np.cos(theta)

ax.plot(x, y, z, 'b', lw=2)

A line through the center of the helix.

ax.plot((-theta_max*0.2, theta_max * 1.2), (0, 0), (0, 0), color='k', lw=2)

sin/cos components of the helix (e.g. electric and magnetic field

components of a circularly polarized electromagnetic wave..

ax.plot(x, y, 0, color='r', lw=1, alpha=0.5)

ax.plot(x, [0]*n, z, color='m', lw=1, alpha=0.5)

Remove axis planes, ticks and labels.

ax.set_axis_off()

plt.show()

352 Matplotlib

7.7 Animation

This section provides a brief introduction to the use of FuncAnimation to produce ani-
mated plots and charts from a Python script or within a Jupyter notebook. Matplotlib’s
animation functionality is provided by the animation module, which must be explicitly
imported before it can be used:

import matplotlib.animation as animation

7.7.1 Animating Plotted Data

A Simple Animated Line
The FuncAnimation class makes an animation by repeatedly calling a provided function,
func, which updates the plotted objects on a Matplotlib Figure object, fig. Additional
arguments are described in Table 7.12

The Figure and its Axes should be set up before calling FuncAnimation, and any
references to plotted objects need to be retained so that their data can be manipulated
by the animation function. For example, the (x, y) data plotted in a Line2D object can
be (re)set using its set_data. This is illustrated in the code below, which animates a
decaying sine curve.

Example E7.28 The following code animates a decaying sine curve that could, for
example, represent the decaying chime of a struck tuning fork at a fixed frequency:

M(t) = sin(2π f t)e−αt

Listing 7.29 An animation of a decaying sine curve

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.animation as animation

Time step for the animation (s), max time to animate for (s).

dt, tmax = 0.01, 5

Signal frequency (s-1), decay constant (s-1).

f, alpha = 2.5, 1

These lists will hold the data to plot.

t, M = [], []

Draw an empty plot, but preset the plot x- and y-limits.

fig, ax = plt.subplots()

Ê line, = ax.plot([], [])

ax.set_xlim(0, tmax)

ax.set_ylim(-1, 1)

ax.set_xlabel('t /s')

ax.set_ylabel('M (arb. units)')

def animate(i):

"""Draw the frame i of the animation."""

7.7 Animation 353

0 1 2 3 4 5

t /s

1.0

0.5

0.0

0.5

1.0

M
(a

rb
.

u
n
it

s)

Figure 7.31 The final frame of an animation of a decaying sine curve.

Ë global t, M

Append this time point and its data and set the plotted line data.

_t = i*dt

t.append(_t)

M.append(np.sin(2*np.pi*f*_t) * np.exp(-alpha*_t))

line.set_data(t, M)

Interval between frames in ms, total number of frames to use.

Ì interval , nframes = 1000 * dt, int(tmax / dt)

Animate once (set repeat=False so the animation doesn ' t loop).
ani = animation.FuncAnimation(fig, animate, frames=nframes, repeat=False,

interval=interval)

plt.show()

Ê Recall that the ax.plot method returns a tuple of Line2D objects, even if there is
only one plotted line. We need to retain a reference to it so we can set its data in the
animation function, animate.
Ë By declaring the t and M lists to be global objects we can modify them from inside
the animate function.
Ì By setting the time interval between frames to be the same (in milliseconds) as the
time step, the animation is made to appear “in real time.”

The final frame of the animation is depicted in Figure 7.31.

Blitting
In the previous example, the entire line object had to be redrawn for each frame. Where
there are a lot of data or a complex figure, this can slow down the animation. In this
case, it can help to use blitting, a technique from computer graphics that enables the
animation loop to only redraw parts of the figure that have changed between frames
instead of having to redraw all the data.

354 Matplotlib

Table 7.12 Arguments to FuncAnimation

Argument Description

fig The Matplotlib Figure object to animate
func A function called to set each frame of the animation by manipulating

objects on the Figure
frames The source of the object passed to func for each frame; if None (the

default), an increasing integer index is passed; this can also be an iterable
or generator function

init_func The function called to produce an empty frame of the animation; must be
provided if blit=True

fargs Any additional arguments to be passed to func
interval The time delay between frames in milliseconds (by default, 200)
repeat Boolean flag determining whether the animation should loop (repeat) or

not (by default, True)
blit Boolean flag determining whether to use blitting to optimize the animation

(by default, False); see text

There is some extra code necessary to use blitting: we must define a method to pass to
FuncAnimation’s init_func argument that creates a blank frame but returns a sequence
of the artist objects that will be redrawn for each frame. The function func, which is
called for each frame to be rendered, must also return a sequence of the altered artists.

Example E7.29 This code repeats the animation of the previous example, but using
the blitting technique and passing arguments explicitly to the animation function instead
of declaring them to be globals within it.

Listing 7.30 An animation of a decaying sine curve, using blit=True

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.animation as animation

Time step for the animation (s), max time to animate for (s).

dt, tmax = 0.01, 5

Signal frequency (s-1), decay constant (s-1).

f, alpha = 2.5, 1

These lists will hold the data to plot.

t, M = [], []

Draw an empty plot, but preset the plot x- and y-limits.

fig, ax = plt.subplots()

line, = ax.plot([], [])

ax.set_xlim(0, tmax)

ax.set_ylim(-1, 1)

ax.set_xlabel('t /s')

ax.set_ylabel('M (arb. units)')

def init():

return line,

7.7 Animation 355

def animate(i, t, M):

"""Draw the frame i of the animation."""

Append this time point and its data and set the plotted line data.

_t = i*dt

t.append(_t)

M.append(np.sin(2*np.pi*f*_t) * np.exp(-alpha*_t))

line.set_data(t, M)

return line,

Interval between frames in ms, total number of frames to use.

interval , nframes = 1000 * dt, int(tmax / dt)

Animate once (set repeat=False so the animation doesn ' t loop).
Ê ani = animation.FuncAnimation(fig, animate, frames=nframes, init_func=init,

fargs=(t, M), repeat=False, interval=interval, blit=True)

plt.show()

Ê Any objects assigned to the fargs argument of FuncAnimation will be handed on to
the animation function.

7.7.2 Animating Other Matplotlib Objects

To animate other Matplotlib objects such as patches and annotation labels, a refer-
ence must be kept and manipulated for each frame. Just as Line2D objects have a
set_data method, these other classes have “setter” methods (for example, set_center,
set_radius for Circle patches), as demonstrated in the following example.

Example E7.30 The following program animates a bouncing ball, starting from a
position (0, y0) with velocity (vx0, 0). The ball’s position, trajectory history and height
label all change with each frame.

Here, the frames argument to FuncAnimation is set to a generator function, get_pos,
which returns the next position of the ball each time it iterates. This position is handed
on to the animate function instead of the integer index of the frame.

Listing 7.31 An animation of a bouncing ball

import matplotlib.pyplot as plt

import matplotlib.animation as animation

Acceleration due to gravity, m.s-2.

g = 9.81

The maximum x-range of ball ' s trajectory to plot.
XMAX = 5

The coefficient of restitution for bounces (-v_up/v_down).

cor = 0.65

The time step for the animation.

dt = 0.005

Initial position and velocity vectors.

x0, y0 = 0, 4

vx0, vy0 = 1, 0

356 Matplotlib

def get_pos(t=0):

"""A generator yielding the ball ' s position at time t."""
x, y, vx, vy = x0, y0, vx0, vy0

Ê while x < XMAX:

t += dt

x += vx0 * dt

y += vy * dt

vy -= g * dt

if y < 0:

bounce!

y = 0

vy = -vy * cor

yield x, y

def init():

"""Initialize the animation figure."""

ax.set_xlim(0, XMAX)

ax.set_ylim(0, y0)

ax.set_xlabel('x /m')

ax.set_ylabel('y /m')

line.set_data(xdata, ydata)

ball.set_center((x0, y0))

height_text.set_text(f'Height: {y0:.1f} m')

return line, ball, height_text

def animate(pos):

"""For each frame, advance the animation to the new position , pos."""

x, y = pos

xdata.append(x)

ydata.append(y)

line.set_data(xdata, ydata)

ball.set_center((x, y))

height_text.set_text(f'Height: {y:.1f} m')

return line, ball, height_text

Set up a new Figure, with equal aspect ratio so the ball appears round.

fig, ax = plt.subplots()

ax.set_aspect('equal')

These are the objects we need to keep track of.

line, = ax.plot([], [], lw=2)

ball = plt.Circle((x0, y0), 0.08)

height_text = ax.text(XMAX*0.5, y0*0.8, f'Height: {y0:.1f} m')

ax.add_patch(ball)

xdata, ydata = [], []

interval = 1000*dt

ani = animation.FuncAnimation(fig, animate, get_pos, blit=True,

interval=interval , repeat=False, init_func=init)

plt.show()

Ê The generator function will keep on producing the ball’s position vector, (x, y)

until the ball’s x-coordinate reaches XMAX; then when the generator is exhausted and
produces None, the animation stops.

The final frame of the animation is depicted in Figure 7.32.

7.7 Animation 357

0 1 2 3 4 5

x /m

0

1

2

3

4

y
/
m

Height: 0.0 m

Figure 7.32 The final frame of an animation of a bouncing ball.

7.7.3 Exercises

Problems

P7.7.1 Use Matplotlib’s FuncAnimation class to produce an animation of a swinging
pendulum with an initial maximum angle from vertical and zero initial velocity. Inte-
grate the equation of motion numerically, and repeat the animation after one period of
the motion.

P7.7.2 Update Example E7.24 to display an animation of the evolution of temperature
of the metal plate over time.

P7.7.3 NASA’s Jet Propulsion Laboratory (JPL) maintains a web service and database
called HORIZONS that can be used to calculate ephemerides (the trajectories of objects
in the solar system over time). Use data from this resource, which has been pre-selected
and can be downloaded from https://scipython.com/ex/bas, to produce an animation of
the trajectory of the Voyager 2 space probe, between its launch in August 1977 and the
end of 1999. This period includes several gravity-assist (“slingshot”) maneuvers as the
spacecraft flies past the larger planets. Only the (X,Y) coordinates of the relevant bodies
need be considered.

https://scipython.com/ex/bas

8 SciPy

SciPy is a library of Python modules for scientific computing that provides more specific
functionality than the generic data structures and mathematical algorithms of NumPy.
For example, it contains modules for the evaluation of special functions frequently
encountered in science and engineering, optimization, integration, interpolation and
image manipulation. As with the NumPy library, many of SciPy’s underlying algorithms
are executed as compiled C code, so they are fast. Also like NumPy and Python itself,
SciPy is free software.

There is little new syntax to learn in using the SciPy routines, so this chapter will
focus on examples of the library’s use in short programs of relevance to science and
engineering.

8.1 Physical Constants and Special Functions

The useful scipy.constants package provides the internationally agreed standard val-
ues and uncertainties for physical constants. The scipy.special package also supplies
a large number of algorithms for calculating functions that appear in science, mathe-
matical analysis and engineering, including:

• Airy functions;
• elliptic functions and integrals;
• Bessel functions, their zeros, derivatives and integrals;
• spherical Bessel functions;
• a variety of statistical functions and distributions;
• gamma and beta functions;
• the error function;
• Fresnel integrals;
• Legendre functions and associated Legendre functions;
• a variety of orthogonal polynomials;
• hypergeometric functions;
• parabolic cylinder functions;
• Matheiu functions;
• spheroidal functions.

358

8.1 Physical Constants and Special Functions 359

They are described in detail in the documentation;1 this section focuses on a few repre-
sentative examples.

Most of these special functions are implemented in SciPy as universal functions: that
is, they support broadcasting and vectorization (automatic array-looping), and so work
as expected with NumPy arrays.

8.1.1 Physical Constants

SciPy contains the 2018 CODATA internationally recommended values2 of many
physical constants. They are held, with their units and uncertainties, in a dictionary,
scipy.constants.physical_constants, keyed by an identifying string. For example,

In [x]: import scipy.constants as pc

In [x]: pc.physical_constants['Avogadro constant']

Out[x]: (6.022140857e+23, 'mol^-1', 7400000000000000.0)

The convenience methods value, unit and precision retrieve the corresponding prop-
erties on their own:

In [x]: pc.value('electron mass')

Out[x]: 9.1093837015e-31

In [x]: pc.unit('electron mass')

Out[x]: 'kg'

In [x]: pc.precision('electron mass')

3.0737534961217373e-10

To save typing, it is usual to assign the value to a variable name at the start of a program,
for example,

In [x]: muB = pc.value('Bohr magneton')

A full list of the constants and their names is given in the SciPy documentation,3 but
Table 8.1 lists the more important ones. Some particularly important constants have a
direct variable assignment within scipy.constants (in SI units) and so can be imported
directly:

In [x]: from scipy.constants import c, R, k

In [x]: c, R, k # speed of light, gas constant, Boltzmann constant

Out[x]: (299792458.0, 8.314462618, 1.380649e-23)

Where this is the case, the variable name is given in the table. You will probably find
it convenient to use the scipy.constants values, but should be aware that if and when
newer values are released the package may be updated – this means that your code may
produce slightly different results for different versions of SciPy. The values given below
are from SciPy version 1.4, which includes the 2019 redefinition of the SI base units.

There are one or two useful conversion factors and methods defined within the
scipy.constants package, which also includes representations of the SI prefixes. For
example,

1 https://docs.scipy.org/doc/scipy/reference/special.html.
2 https://physics.nist.gov/cuu/Constants/.
3 https://docs.scipy.org/doc/scipy/reference/constants.html.

https://docs.scipy.org/doc/scipy/reference/special.html
https://physics.nist.gov/cuu/Constants/
https://docs.scipy.org/doc/scipy/reference/constants.html

360 SciPy

Table 8.1 Physical constants in scipy.constants

Constant string Variable Value Units

'atomic mass constant' m_u 1.6605390666e-27 kg
'Avogadro constant' N_A 6.02214076e+23 mol−1

'Bohr magneton' 9.2740100783e-24 J T−1

'Bohr radius' 5.29177210903e-11 m
'Boltzmann constant' k 1.380649e-23 J K−1

'electron mass' m_e 9.1093837015e-31 kg
'elementary charge' e 1.602176634e-19 C
'Faraday constant' 96485.33212 C mol−1

'fine-structure constant' alpha 0.0072973525693
'molar gas constant' R 8.314462618 J K−1 mol−1

'neutron mass' m_n 1.67492749804e-27 kg
'Newtonian constant of
gravitation'

G 6.6743e-11 m3 kg−1 s−2

'Planck constant' h 6.62607015e-34 J s
'proton mass' m_p 1.67262192369e-27 kg
'Rydberg constant' Rydberg 10973731.56816 m−1

'speed of light in vacuum' c 299792458.0 m s−1

In [x]: import scipy.constants as pc

In [x]: pc.atm

Out[x]: 101325.0 # 1 atm in Pa

In [x]: pc.bar

Out[x]: 100000.0 # 1 bar in Pa

In [x]: pc.torr

Out[x]: 133.32236842105263 # 1 torr in Pa

In [x]: pc.zero_Celsius

Out[x]: 273.15 # 0 degC in K

In [x]: pc.micro # also nano, pico, mega, giga, etc.

Out[x]: 1e-06

Example E8.1 This example uses the scipy.constants.physical_constants dic-
tionary to determine which are the least accurately known constants. To do this we
need the relative uncertainties in the constants’ values. The code mentioned here uses a
structured array to calculate these and outputs the least-well-determined constants.

Listing 8.1 Least-well-defined physical constants

import numpy as np

from scipy.constants import physical_constants

def make_record(k, v):

"""

Return the record for this constant from the key and value of its entry

in the physical_constants dictionary.

"""

8.1 Physical Constants and Special Functions 361

name = k

val, units, abs_unc = v

Calculate the relative uncertainty in ppm.

rel_unc = abs_unc / abs(val) * 1.e6

return name, val, units, abs_unc, rel_unc

dtype = [('name', 'S50'), ('val', 'f8'), ('units', 'S20'),

('abs_unc', 'f8'), ('rel_unc', 'f8')]

constants = np.array([make_record(k, v) for k, v in physical_constants.items()],

dtype=dtype)

constants.sort(order='rel_unc')

List the 10 constants with the largest relative uncertainties.

for rec in constants[-10:]:

print('{:.0f} ppm: {:s} = {:g} {:s}'.format(rec['rel_unc'],

rec['name'].decode(), rec['val'], rec['units'].decode()))

The output is shown here:
90 ppm: tau Compton wavelength over 2 pi = 1.11056e-16 m

90 ppm: tau mass energy equivalent in MeV = 1776.82 MeV

193 ppm: W to Z mass ratio = 0.88153

348 ppm: deuteron rms charge radius = 2.12799e-15 m

428 ppm: proton mag. shielding correction = 2.5689e-05

428 ppm: proton magn. shielding correction = 2.5689e-05

829 ppm: shielding difference of t and p in HT = 2.414e-08

990 ppm: shielding difference of d and p in HD = 2.02e-08

1346 ppm: weak mixing angle = 0.2229

2258 ppm: proton rms charge radius = 8.414e-16 m

8.1.2 Airy and Bessel Functions

The Airy functions Ai(x) and Bi(x) are the linearly independent solutions to the Airy
equation, y′′ − xy = 0, which occurs in quantum mechanics, optics, electrodynamics
and other areas of physics. The functions (Ai, Bi) and their derivatives (Aip, Bip) are
returned by the function scipy.special.airy. The only required argument is x, which
can be complex and can be a NumPy array:
In [x]: Ai, Aip, Bi, Bip = airy(0)

In [x]: Ai, Aip, Bi, Bip

(0.35502805388781722, -0.25881940379280682, 0.61492662744600068,

0.44828835735382638)

The first nt zeros of the Airy functions and their derivatives are returned by the
function scipy.special.ai_zeros(nt):
In [x]: a, ap, ai, aip = ai_zeros(2) # arrays for the first two zeros of Ai

In [x]: a[1], ap[1], ai[1], aip[1] # look at the second zero:

Out[x]: (-4.0879494441309721, -3.248197582179837, -0.41901547803256406,

-0.80311136965486463)

In [x]: airy(a[1])[0] # Ai(a) should = 0

Out[x]: 1.2774882441379295e-15 # close enough

In [x]: airy(ap[1])[1] # Aip(ap) should = 0

Out[x]: -3.2322209157744908e-16 # close enough

In [x]: airy(ap[1])[0] # Ai(ap) is returned as ai above

362 SciPy

Out[x]: -0.41901547803256395

In [x]: airy(a[1])[1] # Aip(a) is returned as aip above

Out[x]: -0.80311136965486396

Example E8.2♦ Consider a particle of mass m moving in a constant gravitational field
such that its potential energy at a height z above a surface is mgz. If the particle bounces
elastically on the surface, the classical probability density corresponding to its posi-
tion is

Pcl(z) =
1

√
zmax(zmax − z)

,

where zmax is the maximum height it reaches.
The quantum mechanical behavior of this system may described by the solution to

the time-independent Schrödinger equation,

−
~2

2m
d2ψ

dz2 + mgzψ = Eψ,

which is simplified by the coordinate rescaling q = z/α, where α = (~2/2m2g)1/3:

d2ψ

dq2 − (q − qE)ψ = 0, where qE =
E

mgα
.

The solutions to this differential equation are the Airy functions. The boundary condi-
tion ψ(z)→ 0 as z→ ∞ specifically gives:

ψ(q) = NEAi(q − qE),

where NE is a normalization constant.
The second boundary condition, ψ(q = 0) = 0, leads to quantization in terms of a

quantum number n = 1, 2, 3, . . ., with scaled energy values qE found from the zeros of
the Airy function: Ai(−qE) = 0.

The following program plots the classical and quantum probability distributions,
Pcl(z) and |ψ(z)|2, for n = 1 and n = 16 (Figure 8.1).

Listing 8.2 Probability densities for a particle in a uniform gravitational field

eg8-qm-gravfield.py

import numpy as np

from scipy.special import airy, ai_zeros

import matplotlib.pyplot as plt

nmax = 16

Find the first nmax zeros of Ai(x).

Ê a, _, _, _ = ai_zeros(nmax)

The actual boundary condition is Ai(-qE) = 0 at q = 0, so:

qE = -a

def prob_qm(n):

"""

Return the quantum mechanical probability density for a particle moving

8.1 Physical Constants and Special Functions 363

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
q

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

|ψ
(q

)|2
n = 1

Classical

Quantum

0 5 10 15 20
q

0.00

0.05

0.10

0.15

0.20

0.25

|ψ
(q

)|2

n = 16

Classical

Quantum

Figure 8.1 A comparison of classical and quantum probability distributions for a particle
moving in a constant gravitational field at two different energies.

in a uniform gravitational field.

"""

The quantum mechanical wavefunction is proportional to Ai(q - qE), where

the qE corresponding to quantum number n is indexed at n - 1.

Ë psi, _, _, _ = airy(q-qE[n-1])

Return the probability density, after rough-and-ready normalization.

P = psi**2

Ì return P / (sum(P) * dq)

def prob_cl(n):

"""

Return the classical probability density for a particle bouncing

elastically in a uniform gravitational field.

"""

The classical probability density is already normalized.

return 0.5/np.sqrt(qE[n-1]*(qE[n-1]-q))

The ground state, n = 1.

q, dq = np.linspace(0, 4, 1000, retstep=True)

plt.plot(q, prob_cl(1), label='Classical')

plt.plot(q, prob_qm(1), label='Quantum')

plt.ylim(0, 0.8)

plt.legend()

plt.show()

An excited state, n = 16.

364 SciPy

q, dq = np.linspace(0, 20, 1000, retstep=True)

plt.plot(q, prob_cl(16), label='Classical')

plt.plot(q, prob_qm(16), label='Quantum')

plt.ylim(0, 0.25)

plt.legend(loc='upper left')

plt.show()

Ê We use scipy.special.ai_zeros to retrieve the n = 1 and n = 16 eigenvalues.
Ë scipy.special.airy finds the corresponding wavefunctions and hence probability
densities.
Ì For the sake of illustration, these are normalized approximately by a very simple
numerical integration.

Bessel functions are another important class of function with many applications to
physics and engineering. SciPy provides several functions for evaluating them, their
derivatives and their zeros.

• jn(v, x) and jv(v, x) return the Bessel function of the first kind at x for order v
(Jν(x)). v can be real or integer.

• yn(n, x) and yv(v, x) return the Bessel function of the second kind at x for
integer order n (Yn(x)) and real order v (Yν(x)), respectively.

• in(n, x) and iv(v, x) return the modified Bessel function of the first kind at x
for integer order n (In(x)) and real order v (Iν(x)), respectively.

• kn(n, x) and kv(v, x) return the modified Bessel function of the second kind at
x for integer order n (Kn(x)) and real order v (Kν(x)), respectively.

• The functions jvp(v, x), yvp(v, x), ivp(v, x) and kvp(v, x) return the
derivatives of the earlier mentioned functions. By default, the first derivative is
returned; to return the nth derivative, set the optional argument, n.

• Several functions can be used to obtain the zeros of the Bessel functions. Probably
the most useful are jn_zeros(n, nt), jnp_zeros(n, nt), yn_zeros(n, nt) and
ynp_zeros(n, nt), which return the first nt zeros of Jn(x), J′n(x), Yn(x) and Y ′n(x).

Example E8.3 The vibrations of a thin circular membrane stretched across a rigid
circular frame (such as a drum head) can be described as normal modes written in terms
of Bessel functions:

z(r, θ; t) = AJn(kr) sin nθ cos kνt,

where (r, θ) describes a position in polar coordinates with the origin at the center of the
membrane, t is time and v is a constant depending on the tension and surface density of
the drum. The modes are labeled by integers n = 0, 1, . . . and m = 1, 2, 3, . . ., where k is
the mth zero of Jn.

The following program produces a plot of the displacement of the membrane in the
n = 3,m = 2 normal mode at time t = 0 (Figure 8.2).

8.1 Physical Constants and Special Functions 365

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

Figure 8.2 The n = 3,m = 2 normal mode of a vibrating circular drum.

Listing 8.3 Normal modes of a vibrating circular drum

eg8-drum-normal-modes.py

import numpy as np

from scipy.special import jn, jn_zeros

import matplotlib.pyplot as plt

Allow calculations up to m = mmax.

mmax = 5

def displacement(n, m, r, theta):

"""

Calculate the displacement of the drum membrane at (r, theta; t = 0)

in the normal mode described by integers n >= 0, 0 < m <= mmax.

"""

Pick off the mth zero of Bessel function Jn.

k = jn_zeros(n, mmax+1)[m]

return np.sin(n*theta) * jn(n, r*k)

Positions on the drum surface are specified in polar coordinates.

r = np.linspace(0, 1, 100)

theta = np.linspace(0, 2 * np.pi, 100)

Create arrays of cartesian coordinates (x, y) ...

x = np.array([rr*np.cos(theta) for rr in r])

y = np.array([rr*np.sin(theta) for rr in r])

... and vertical displacement (z) for the required normal mode at

time, t = 0.

n, m = 3, 2

z = np.array([displacement(n, m, rr, theta) for rr in r])

plt.contour(x, y, z)

366 SciPy

Figure 8.3 The diffraction pattern of a uniform, continuous helix.

plt.show()

Example E8.4 In an important paper in 19534 Rosalind Franklin published the X-ray
diffraction pattern of DNA from calf thymus, which displays a characteristic X shape
of diffraction spots, indicative of a helical structure.

The diffraction pattern of a uniform, continuous helix consists of a series of “layer
lines” of spacing 1/p in reciprocal space, where p is the helix pitch (the height of one
complete turn of the helix, measured parallel to its axis). The intensity distribution along
the nth layer line is proportional to the square of the nth Bessel function, Jn(2πrR),
where r is the radius of the helix and R is the radial coordinate in reciprocal space.

Consider the diffraction pattern of a helix with p = 34 Å and r = 10 Å. The code
listing here produces an SVG image of the diffraction pattern of a helix (Figure 8.3).

Listing 8.4 Generating an image of the diffraction pattern of a uniform, continuous helix

eg8-dna-diffraction.py

import numpy as np

from scipy.special import jn

import matplotlib.pyplot as plt

4 R. E. Franklin and R. G. Gosling, Nature 171, 740 (1953).

8.1 Physical Constants and Special Functions 367

Vertical range of the diffraction pattern: plot nlayer line layers above and

below the center horizontal.

nlayers = 5

ymin, ymax = -nlayers, nlayers

Horizontal range of the diffraction pattern, x = 2pi.r.R.

xmin, xmax = -10, 10

npts = 4000

x = np.linspace(xmin, xmax, npts)

Diffraction pattern along each line layer: |Jn(x)|^2

for n = 0, 1, ..., nlayers - 1.

Ê layers = np.array([jn(i, x)**2 for i in range(nlayers)])

Obtain the indexes of the maxima in each layer.

Ë maxi = [(np.diff(np.sign(np.diff(layers[i,:]))) < 0).nonzero()[0] + 1

for i in range(nlayers)]

Create the SVG image, using circles of different radii for diffraction spots.

svg_name='eg8-dna-diffraction.svg'

canvas_width = canvas_height = 500

fo = open(svg_name, 'w')

print("""<?xml version="1.0" encoding="utf-8"?>

<svg xmlns="www.w3.org/2000/svg"

xmlns:xlink="www.w3.org/1999/xlink"

width="{}" height="{}" style="background: {}">""".format(

canvas_width , canvas_height , '#ffffff'), file=fo)

def svg_circle(r, cx, cy):

""" Return the SVG mark up for a circle of radius r centered at (cx, cy). """

return r'<circle r="{}" cx="{}" cy="{}"/>'.format(r, cx, cy)

For each spot in each layer, draw a circle on the canvas. The circle radius

is the scaled value of the diffraction intensity maximum, with a ceiling

value of spot_max_radius because the center spots are very intense.

spot_scaling , spot_max_radius = 50, 20

for i in range(nlayers):

for j in maxi[i]:

Ì sx = (x[j] - xmin)/(xmax - xmin) * canvas_width

sy = (i - ymin)/(ymax - ymin) * canvas_height

spot_radius = min(layers[i, j]*spot_scaling , spot_max_radius)

print(svg_circle(spot_radius , sx, sy), file=fo)

if i:

The pattern is symmetric about the center horizontal:

duplicate the layers with i > 0.

sy = canvas_height - sy

print(svg_circle(spot_radius , sx, sy), file=fo)

print(r'</svg>', file=fo)

www.w3.org/2000/svg
www.w3.org/1999/xlink

368 SciPy

Ê The two-dimensional array, layers, holds the diffraction intensity in each line layer,
calculated as the square of a Bessel function.

Ë For plotting the pattern, we need to find the indexes of the maxima in the layers

array: this line of code finds these maxima by determining where the differences
between neighboring items go from positive to negative.

Ì Map the (x, y) coordinates in the reciprocal space of the diffraction pattern onto
the canvas coordinates, (sx, sy).

8.1.3 The Gamma and Beta Functions; Elliptic Integrals

The gamma function is defined by the improper integral

Γ(x) =

∫ ∞

0
tx−1e−t dt,

for real x > 0, and extended to negative x and complex numbers by analytic continua-
tion. It occurs frequently in integration problems, combinatorics and in expressions for
other special functions.

The gamma function and its natural logarithm are returned by the functions gamma(x)
and gammaln(x). There are also methods for the evaluation of the incomplete gamma
functions (obtained by replacing the lower or upper limits in the integral above with the
parameter a) and their inverses; these will not be described in detail here.

Example E8.5 The gamma function is related to the factorial by Γ(x) = (x − 1)!
and both are plotted in the code mentioned later (see Figure 8.4). Note that Γ(x) is not
defined for negative integer x, which leads to discontinuities in the plot.

Listing 8.5 The Gamma function on the real line

eg3-gamma.py

import numpy as np

from scipy.special import gamma

import matplotlib.pyplot as plt

The Gamma function.

ax = plt.linspace(-5, 5, 1000)

plt.plot(ax, gamma(ax), ls='-', c='k', label='$\Gamma(x)$')

(x - 1)! for x = 1, 2, ..., 6.

ax2 = plt.linspace(1, 6, 6)

xm1fac = np.array([1, 1, 2, 6, 24, 120])

plt.plot(ax2, xm1fac, marker='*', markersize=12, markeredgecolor='r',

ls='', c='r', label='$(x-1)!$')

plt.ylim(-50, 50)

plt.xlim(-5, 5)

plt.xlabel('x')

plt.legend()

plt.show()

8.1 Physical Constants and Special Functions 369

Figure 8.4 The gamma function on the real line, Γ(x), and (x − 1)! for integer x > 0.

The beta function is defined by the definite integral

B(a, b) =

∫ 1

0
ta−1(1 − t)b−1 dt, a > 0, b > 0.

It is closely related to the gamma function: B(a, b) = Γ(a)Γ(b)/Γ(a + b). The
scipy.special functions beta(a, b) and betaln(a, b) return the beta function and
its natural logarithm, respectively. As with the gamma function, there is an incomplete
beta function, B(a, b; x), obtained by replacing the upper limit with x; the methods
betainc(a, b, x) and betaincinv(a, b, y) return this function and its inverse.

Example E8.6 The exact classical mechanical description of a pendulum is quite
complex, and the equations of motion are usually only solved in introductory texts for
small displacements about equilibrium. In this case, the period T ≈ 2π

√
L/g and the

motion is harmonic.
The general solution requires elliptic integrals, but the special case of a pendulum

making 180◦ swings (i.e. ±90◦ about its equilibrium position) leads to the following
expression for the period:

T = 2

√
2l
g

∫ π/2

0

dθ
√

cos θ
.

370 SciPy

The substitution x = sin2 θ transforms this integral into a beta function:∫ π/2

0

dθ
√

cos θ
= 1

2

∫ 1
0 x−1/2(1 − x)−3/4 dx = 1

2 B
(

1
2 ,

1
4

)
.

Therefore,

T =
√

2B
(

1
2 ,

1
4

) √
l
g
.

To find the period of the pendulum in units of
√

l/g:

In [x]: import numpy as np

In [x]: from scipy.special import beta

In [x]: np.sqrt(2) * beta(0.5, 0.25)

7.4162987092054875

(Compare with the harmonic approximation, 2π = 6.283185.)

The group of elliptic integrals and related functions form an important class of math-
ematical objects and have been widely studied. They find application in geometry,
cryptography, analysis and many areas of physics. The complete elliptic integrals of
the first and second kind, K(m) and E(m), are defined for 0 ≤ m ≤ 1 by

K(m) =

∫ π/2

0

dθ√
1 − m sin2 θ

,

E(m) =

∫ π/2

0

√
1 − m sin2 θ dθ.

Their values for the parameter m are returned by the functions ellipk(m) and ellipe(m).
The incomplete elliptic integrals (defined by replacing the upper limit of π/2 with the
variable φ) are returned by ellipkinc(phi, m) and ellipeinc(phi, m), respectively:5

K(φ,m) =

∫ φ

0

dθ√
1 − m sin2 θ

,

E(φ,m) =

∫ φ

0

√
1 − m sin2 θ dθ.

5 It is necessary to be very careful with the notation of elliptic integrals; many sources use F(φ,m) instead of
K(φ,m) for the first kind, define them with interchanged arguments (i.e. F(m, φ)) or use the parameter k2

instead of m

F(φ, k) = F(φ|k2) =

∫ φ

0

dθ√
1 − k2 sin2 θ

E(φ, k) = E(φ|k2) =

∫ φ

0

√
1 − k2 sin2 θ dθ.

8.1 Physical Constants and Special Functions 371

Example E8.7 The problem of finding an arc length of an ellipse is the origin of the
name of the elliptic integrals. The equation of an ellipse with semi-major axis a and
semi-minor axis b may be written in parametric form as

x = a sin φ,

y = b cos φ.

The element of length along the ellipse’s perimeter is given by

ds =

√
dx2 + dy2 =

√
a2 cos2 φ + b2 sin2 φ dφ

= a
√

1 − e2 sin2 φ dφ,

where e =
√

1 − b2/a2 is the eccentricity. The arc length may therefore be written in
terms of incomplete elliptic integrals of the second kind:∫

ds = a
∫ φ2

φ1

√
1 − e2 sin2 φ dφ = a[E(e; φ2) − E(e; φ1)].

Earth’s orbit is an ellipse with semi-major axis 149 598 261 km and eccentricity
0.01671123. We will find the distance traveled by the Earth in one orbit, and compare it
with that obtained assuming a circular orbit of radius 1 AU ≡ 149 597 870.7 km.

The perimeter of an ellipse may be written using the earlier expression with φ1 =

0, φ2 = 2π:

P = a[E(e, 2π) − E(e, 0)] = 4aE(e),

since the entire perimeter is four times the quarter-perimeters, which may be written in
terms of the complete elliptic integral of the second kind. We have

In [x]: import numpy as np

In [x]: from scipy.special import ellipe

In [x]: a, e = 149_598_261 , 0.01671123 # semi-major axis (km), eccentricity

In [x]: pe = 4 * a * ellipe(e*e)

In [x]: print(pe)

939887967.974 # "exact" answer

In [x]: AU = 149_597_870.7 # mean orbit radius, km

In [x]: pc = 2 * np.pi * AU

In [x]: print(pc)

939951143.1675915 # assuming circular orbit

In [x]: (pc - pe) / pe * 100

0.0067215663638305143

That is, the percentage error in the perimeter in treating the orbit as circular is about
0.0067%.

372 SciPy

8.1.4 The Error Function and Related Integrals

The error function, defined by:

erf(z) =
2
√
π

∫ z

0
e−t2

dt

for real or complex z does not have a simple closed-form expression and so must
be calculated numerically. scipy.special has several functions relating to the error
function:

• erf(z): the error function;
• erfc(z): the complementary error function, erfc(z) = 1 − erf(z); it is more accu-

rate to use this function for large z than directly subtracting erf(z) from 1;
• erfcx(z): the scaled complementary error function, ez2

erfc(z);
• erfinv(y): the inverse error function;
• erfcinv(y): the inverse complementary error function;
• wofz(z): the Faddeeva function, a scaled complementary error function with

complex argument:

w(z) = e−z2
erfc(−iz) = erfcx(−iz),

which appears in problems related to plasma physics and radiative transfer;
• dawsn(z): a related integral known as Dawson’s integral:

D(z) = e−z2
∫ z

0
et2

dt.

Example E8.8 The wavefunction corresponding to the ground state of the one-
dimensional quantum harmonic oscillator may be written as follows in terms of a
parameter α =

√
mk/~, where m is the mass and k the oscillator force constant:

ψ0(x) =

(
α

π

)1/4
exp

(
−αx2/2

)
.

The probability density of the oscillator’s position is given by P0(x) = |ψ0(x)|2 and is
nonzero outside the classical turning points, ±α−1/2, a phenomenon known as tunneling.
We will calculate the probability of tunneling for an oscillator in the state ψ0.

The wavefunction is symmetric about x = 0, so the probability of tunneling is

P(x < −α) + P(x > α) = 2P(x > α) = 2
√
α

π

∫ ∞

α−1/2
exp

(
−αx2

)
dx

=
2
√
π

∫ ∞

1
e−y2

dy = erfc(1).

The complementary error function can be calculated directly:

In [x]: from scipy.special import erfc

In [x]: erfc(1)

0.15729920705028516

8.1 Physical Constants and Special Functions 373

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

Gaussian

Lorentzian

Voigt

Figure 8.5 A comparison of the Lorentzian, Gaussian and Voigt line shapes with γ = α = 0.1.

or about 16%.

Example E8.9 The Voigt line profile occurs in the modeling and analysis of radiative
transfer in the atmosphere. It is the convolution of a Gaussian profile, G(x;σ), and a
Lorentzian profile, L(x; γ):

V(x;σ, γ) =

∫ ∞

−∞

G(x′;σ)L(x − x′; γ) dx′, where

G(x;σ) =
1

σ
√

2π
exp

(
−

x2

2σ2

)
and L(x; γ) =

γ/π

x2 + γ2 .

Here γ is the half-width at half-maximum (HWHM) of the Lorentzian profile and σ

is the standard deviation of the Gaussian profile, related to its HWHM, α, by α =

σ
√

2 ln 2. In terms of frequency, ν, x = ν − ν0, where ν0 is the line center.
There is no closed form for the Voigt profile, but it is related to the real part of the

Faddeeva function, w(z), by

V(x;σ, γ) =
Re [w(z)]

σ
√

2π
, where z =

x + iγ

σ
√

2
.

The program mentioned here plots the Voigt profile for γ = 0.1, α = 0.1 and compares
it with the corresponding Gaussian and Lorentzian profiles (Figure 8.5). The equations
mentioned earlier are implemented in the three functions, G, L and V, defined in the code
here.

Listing 8.6 A comparison of the Lorentzian, Gaussian and Voigt line shapes

eg8-voigt.py

import numpy as np

374 SciPy

from scipy.special import wofz

import matplotlib.pyplot as plt

def G(x, alpha):

""" Return Gaussian line shape at x with HWHM alpha """

return np.sqrt(np.log(2) / np.pi) / alpha\

* np.exp(-(x / alpha)**2 * np.log(2))

def L(x, gamma):

""" Return Lorentzian line shape at x with HWHM gamma """

return gamma / np.pi / (x**2 + gamma**2)

def V(x, alpha, gamma):

"""

Return the Voigt line shape at x with Lorentzian component HWHM gamma

and Gaussian component HWHM alpha.

"""

sigma = alpha / np.sqrt(2 * np.log(2))

return np.real(wofz((x + 1j*gamma)/sigma/np.sqrt(2))) / sigma\

/ np.sqrt(2*np.pi)

alpha, gamma = 0.1, 0.1

x = np.linspace(-0.8, 0.8, 1000)

plt.plot(x, G(x, alpha), ls=':', c='k', label='Gaussian')

plt.plot(x, L(x, gamma), ls='--', c='k', label='Lorentzian')

plt.plot(x, V(x, alpha, gamma), c='k', label='Voigt')

plt.legend()

plt.show()

8.1.5 Fresnel Integrals

The Fresnel integrals are encountered in optics and are defined by the equations

S (z) =

∫ z

0
sin

(
πt2

2

)
dt,C(z) =

∫ z

0
cos

(
πt2

2

)
dt.

Both are returned in a tuple for real or complex argument z by the special.scipy

function fresnel(z). The related function, fresnel_zeros(nt), returns the first nt

complex zeros of S (z) and C(z).

Example E8.10 As well as playing an important role in the description of diffraction
effects in optics, the Fresnel integrals find an application in the design of motorway junc-
tions (freeway intersections). The curve described by the parametric equations (x, y) =

(S (t),C(t)) is called a clothoid (or Euler spiral) and has the property that its curvature
is proportional to the distance along the path of the curve. Hence, a vehicle traveling
at constant speed will experience a constant rate of angular acceleration as it travels
around the curve – this means that the driver can turn the steering wheel at a constant
rate, which makes the junction safer.

8.1 Physical Constants and Special Functions 375

The following code plots the Euler spiral for −10 ≤ t ≤ 10 (Figure 8.6).

In [x]: import numpy as np

In [x]: from scipy.special import fresnel

In [x]: import matplotlib.pyplot as plt

In [x]: t = np.linspace(-10, 10, 1000)

In [x]: plt.plot(*fresnel(t), c='k')

In [x]: plt.show()

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8
−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

Figure 8.6 The Euler spiral.

8.1.6 Binomial Coefficients and Exponential Integrals

The binomial coefficient
(

n
k

)
≡ nCk is returned by the scipy.special function binom(n,

k).
Various functions are supplied for the evaluation of different forms of the exponential

integral. The standard form is returned by expi(z):

Ei(z) =

∫ z

−∞

et

t
dt, |arg(−z) < π|.

expn(n, x) returns the value of ∫ ∞

1

e−xt

tn dt.

For n = 1, it is faster and more accurate to use exp1(z):∫ ∞

1

e−zt

t
dt.

376 SciPy

Example E8.11 Any integral of the form∫
f (z)ez dz,

where f (z) = P(z)/Q(z) is a rational function, can be reduced to the form∫
R(z)ez dz +

∑
i

∫
ez

(z − ai)ni
dz,

where R(z) is a polynomial (which may be zero) by expansion in partial fractions.
The first integral here can be evaluated by standard methods (repeated integration by
parts). Provided the path of integration does not pass through any singular points of the
integrand, the second term can be written in terms of exponential integrals.

For example, consider the integral

I =

∫ −2

−∞

ez

z2(z − 1)
dz.

It can easily be shown that

1
z2(z − 1)

=
1

z − 1
−

1
z
−

1
z2

and so the integral may be written as the three terms

I =

∫ −2

−∞

ez

z − 1
dz −

∫ −2

−∞

ez

z
dz −

∫ −2

−∞

ez

z2 dz.

The second integral is simply −Ei(−2) and substitution u = z − 1 resolves the first
integral to eEi(−3). The last integral may be written in terms of En(z) or further reduced
by integration by parts to ∫ −2

−∞

ez

z2 dz = −
e−2

2
+ Ei(−2).

Therefore,

I = eEi(−3) − 2Ei(−2) −
e−2

2
.

In SciPy,
In [x]: import numpy as np

In [x]: from scipy.special import expi

In [x]: np.e * expi(-3) - 2*expi(-2) - np.exp(-2)/2

-0.0053357974213484663

8.1.7 Orthogonal Polynomials and Spherical Harmonics

There are a large number of functions in scipy.special for the evaluation of different
sorts of orthogonal polynomials, including the Legendre, Jacobi, Laguerre, Hermite and
different flavors of Chebyshev polynomials. They take the general name eval_poly(n,

8.1 Physical Constants and Special Functions 377

Table 8.2 Some of the orthogonal polynomials in SciPy

Function Description

eval_legendre(n, x) Legendre polynomial, Pn(x)
eval_chebyt(n, x) Chebyshev polynomial of the first kind, Tn(x)
eval_chebyu(n, x) Chebyshev polynomial of the second kind, Un(x)
eval_hermite(n, x) (Physicists’) Hermite polynomial, Hn(x)
eval_jacobi(n, alpha, beta,
x)

Jacobi polynomial, P(α,β)
n (x)

eval_laguerre(n, x) Laguerre polynomial of the first kind, Ln(x)
eval_genlaguerre(n, alpha
x)

Generalized Laguerre polynomial of the first kind, Lαn (x)

x) where n is the order of the polynomial and x is an array-like sequence of values at
which to evaluate the polynomial. Table 8.2 gives the names of some of these functions.

The spherical harmonics used in SciPy are defined by the formula

Ym
n (φ, θ) =

√
(2n + 1)

4π
(n − m)!
(n + m)!

Pm
n (cos φ)eimθ,

where n = 0, 1, 2, . . . is called the degree and m = −n,−n + 1, . . . n the order of the
spherical harmonic. The functions Pm

n (x) are the associated Legendre polynomials. As
with so many special functions, different fields adopt different phase conventions and
normalizations, so it is important to check these carefully and make the appropriate
modifications when using them. In particular, many other fields use l for the degree
of the harmonic and reverse the definition of θ and φ. To be clear, in SciPy, θ is the
azimuthal (longitudinal) angle (taking values between 0 and 2π) and φ is the polar
(colatitudinal) angle (between 0 and π).

The scipy.special.sph_harm method is called with the arguments:

scipy.special.sph_harm(m, n, theta, phi)

where theta and phi can be array-like objects.

Example E8.12 Visualizing the spherical harmonics is a little tricky because they are
complex and defined in terms of angular coordinates, (θ, φ). One way is to plot the real
part only on the unit sphere. Matplotlib provides a toolkit for such three-dimensional
plots, mplot3d, as illustrated by the following code which produces Figure 8.7.6

Listing 8.7 The spherical harmonic defined by l = 3,m = 2

eg8-spherical -harmonics.py

import matplotlib.pyplot as plt

from matplotlib import cm, colors

from mpl_toolkits.mplot3d import Axes3D

6 See Section 7.6 and https://matplotlib.org/mpl_toolkits/mplot3d/.

https://matplotlib.org/mpl_toolkits/mplot3d/

378 SciPy

Figure 8.7 A depiction of the spherical harmonic defined by l = 3,m = 2.

import numpy as np

from scipy.special import sph_harm

phi = np.linspace(0, np.pi, 100)

theta = np.linspace(0, 2*np.pi, 100)

phi, theta = np.meshgrid(phi, theta)

The Cartesian coordinates of the unit sphere.

x = np.sin(phi) * np.cos(theta)

y = np.sin(phi) * np.sin(theta)

z = np.cos(phi)

m, l = 2, 3

Calculate the spherical harmonic Y(l, m) and normalize to [0, 1].

fcolors = sph_harm(m, l, theta, phi).real

fmax, fmin = fcolors.max(), fcolors.min()

fcolors = (fcolors - fmin)/(fmax - fmin)

Set the aspect ratio to 1 so our sphere looks spherical.

fig = plt.figure(figsize=plt.figaspect(1.))

ax = fig.add_subplot(projection='3d')

ax.plot_surface(x, y, z, rstride=1, cstride=1, facecolors=cm.jet(fcolors))

Turn off the axis planes.

ax.set_axis_off()

plt.show()

8.1.8 Exercises

Questions

Q8.1.1 By changing a single line in the program of Example E8.1, output the 10 most
accurately known constants (excluding those set to their values by definition).

Q8.1.2 Use SciPy’s constants and conversion factors to calculate the number density,
N/V , of ideal gas molecules at standard temperature and pressure (T = 0 ◦C, p =

1 atm). The ideal gas law is pV = NkBT .

8.1 Physical Constants and Special Functions 379

Problems

P8.1.1 Use scipy.special.binom to create a depiction of Pascal’s triangle of bino-
mial coefficients

(
n
k

)
up to n = 8.

P8.1.2 The Airy pattern is the circular diffraction pattern resulting from a uniformly
illuminated circular aperture. It consists of a bright, central disc surrounded by fainter
rings. Its mathematical description may be written in terms of the Bessel function of the
first kind,

I(θ) = I0

(
2J1(x)

x

)2

,

where θ is the observation angle and x = ka sin θ. a is the aperture radius and k = 2π/λ
is the angular wavenumber of the light with wavelength λ.

Plot the Airy pattern as I(x)/I0 for −10 ≤ x ≤ 10 and deduce from the position of the
first minimum in this function the maximum resolving power (in arcsec) of the human
eye (pupil diameter 3 mm) at a wavelength of 500 nm.

P8.1.3 Write a function, get_wv, which takes a molar bond dissociation energy, D0,
in kJ mol−1 and returns the wavelength of a photon corresponding to that energy per
molecule, in nm. The energy of a photon with wavelength λ is E = hc/λ.

For example,

In [x]: get_wv(497)

Out[x]: 240.69731528286377

P8.1.4 An ellipsoid is the three-dimensional figure bounded by the surface described
by the equation

x2

a2 +
y2

b2 +
z2

c2 = 1,

where a, b and c are the semi-principal axes. If a = b = c, the ellipsoid is a sphere. The
volume of an ellipsoid has a simple form,

V =
4
3
πabc.

There is no closed formula for the surface area of a general ellipsoid, but it may be
expressed in terms of incomplete elliptic integrals of the first and second kinds, K(φ, k)
and E(φ, k):

S = 2πc2 +
2πab
sin φ

(
K(φ, k2) cos2 φ + E(φ, k2) sin2 φ

)
,

where

cos φ =
c
a
, k =

a
√

b2 − c2

b
√

a2 − c2

and the coordinate system has been chosen such that a ≥ b ≥ c.

380 SciPy

Define a function, ellipsoid_surface, to calculate the surface area of a general
ellipsoid, and compare the results for different-shaped ellipsoids with the following
approximate formula:

S ≈ 2πc2 + 2πabr
(
1 −

b2 − c2

6b2 r2
(
1 −

3b2 + 10c2

56b2 r2
))
, where r =

φ

sin φ
.

P8.1.5 The drawdown or change in hydraulic head, s (a measure of the water pressure
above some geodetic datum), a distance r from a well at time t, from which water is
being pumped at a constant rate, Q, can be modeled using the Theis equation,

s(r, t) = H0 − H(r, t) =
Q

4πT
W(u), where u =

r2S
4Tt

.

Here, H0 is the hydraulic head in the absence of the well, S is the aquifer storage
coefficient (volume of water released per unit decrease in H per unit area) and T is
the transmissivity (a measure of how much water is transported horizontally per unit
time). The well function, W(u), is simply the exponential integral, E1(u).

For a well being pumped at a rate of Q = 1000 m3 d−1 from an aquifer described by
the parameters H0 = 20 m, S = 0.0003, T = 1000 m2 d−1, determine the height of the
hydraulic head as a function of r after t = 1 d of pumping.

Compare your answer with the approximate version of the Theis equation known
as the Jacob equation, in which the well function is taken to be appoximately W(u) ≈
−γ − ln u, where γ = 0.577215664 . . . is the Euler–Mascheroni constant.

P8.1.6 Some electronic components are cooled by annular fins (heatsinks), which
conduct heat away from the component and provide a larger surface area for that heat
to dissipate to the surroundings.

The cooling efficiency of an annular fin of width 2w and inner and outer radii r0 and
r1 may be written in terms of modified Bessel functions of the first and second kinds:

η =
2r0

β(r2
1 − r2

0)
K1(u0)I1(u1) − I1(u0)K1(u1)
K0(u0)I1(u1) + I0(u0)K1(u1)

,

where u0 = βr0, u1 = βr1 and

β =

√
hc

κw
.

hc is the heat transfer coefficient (which is taken to be constant over the fin’s surface)
and κ is the thermal conductivity of the fin material.

What is the cooling efficiency of an aluminium annular fin with dimensions r0 =

5 mm, r1 = 10 mm, w = 0.1 mm? Take hc = 10 W m−2 K−1 and κ = 200 W m−1 K−1.
Calculate the heat dissipation, Q̇ (the product of the efficiency, the fin area and

the temperature difference), for a component temperature T0 = 400 K and ambient
temperature Te = 300 K.

8.2 Integration and Ordinary Differential Equations 381

8.2 Integration and Ordinary Differential Equations

The scipy.integrate package contains functions for computing definite integrals. It
can evaluate both proper (with finite limits) and improper (infinite limits) integrals. It
can also perform numerical integration of systems of ordinary differential equations.

8.2.1 Definite Integrals of a Single Variable

The basic numerical integration routine is scipy.integrate.quad, which is based
on the venerable FORTRAN 77 QUADPACK library. It uses adaptive quadrature to
approximate the value of an integral by dividing its domain into subintervals that
are chosen iteratively to meet a particular tolerance (that is, estimated absolute or
relative error). In its simplest form, it takes three arguments: a Python function object
corresponding to the function to integrate, func, and the limits of integration, a and b.
func must take at least one argument; if it takes more than one it is integrated along the
coordinate corresponding to the first argument. In simple usage, lambda expressions are
a convenient way to define func. For example, to evaluate

∫ 4
1 x−2 dx = 3

4 numerically:

In [x]: from scipy.integrate import quad

In [x]: f = lambda x: 1/x**2

Out[x]: quad(f, 1, 4)

(0.7500000000000002, 1.913234548258995e-09)

quad returns two values in a tuple – the value of the integral and an estimate of the
absolute error in the result.

Use np.inf to evaluate improper integrals:

In [x]: quad(lambda x: np.exp(-x**2), 0, np.inf)

Out[x]: (0.8862269254527579, 7.101318390472462e-09)

In [x]: np.sqrt(np.pi)/2 # analytical result

Out[x]: 0.88622692545275794

Note that in this call to quad we didn’t even give the function a name but simply passed
it as an anonymous lambda object.

More complicated functions require a Python function object defined with def:

In [x]: def g(x):

...: if abs(x) < 0.5:

...: return -x

...: return x - np.sign(x)

...:

In [x]: quad(g, -0.6, 0.8)

Out[x]: (-0.06000000000000002, 6.661338147750941e-17)

Functions with singularities or discontinuities can cause problems for the numerical
quadrature routine even if the required integral is well defined. For example, the sinc
function f (x) = sin(x)/x has a removable singularity at x = 0, which causes the
following simple application of quad to fail:

In [x]: sinc = lambda x: np.sin(x)/x

382 SciPy

In [x]: quad(sinc, -2, 2)

...: RuntimeWarning: invalid value encountered in double_scalars

Out[37]: (nan, nan)

The solution is to configure quad by passing a list of such break points to the points

argument (the list does not have to be ordered):

In [x] quad(sinc, -2, 2, points=[0,])

(3.210825953605389, 3.5647329017567276e-14)

Note that break points cannot be specified with infinite limits.
The arguments epsrel and epsabs allow the specification of a desired accuracy of the

quadrature as a relative or absolute tolerance. The default values are both 1.49e-8, but
the integration can be done faster if a less-accurate answer is required. As an example,
consider integrating the rapidly varying function f (x) = e−|x| sin2 x2:

In [x]: f = lambda x: np.sin(x**2)**2 * np.exp(-np.abs(x))

In [x]: quad(f, -1, 2, epsabs=0.1)

Out[x]: (0.29551455828969975, 0.001529571827911671)

In [x]: quad(f, -1, 2, epsabs=1.49e-8) # (the default absolute tolerance)

Out[x]: (0.29551455505239044, 4.449763315720537e-10)

Note that epsabs is only a requested upper bound: the actual estimated accuracy in the
result may be much better, and in fact the actual result may be more accurate than this
estimate.

If a function takes one or more parameters in addition to its principal argument, these
need to be passed to quad as a tuple in args. For example, the integral

In,m =

∫ π/2

−π/2
sinn x cosm x dx

can be evaluated numerically with

In [x]: def f(x, n, m):

....: return np.sin(x)**n * np.cos(x)**m

....:

In [x]: n, m = 2, 1

In [x]: quad(f, -np.pi/2, np.pi/2, args=(n, m))

(0.6666666666666666, 1.625746841018571e-13)

Note that the additional parameters, n and m here, appear as arguments to our function
after the coordinate to be integrated over (x).

Example E8.13 Consider a torus of average radius R and cross-sectional radius r.
The volume of this shape may be evaluated analytically in Cartesian coordinates as a
volume of revolution:

V = 2
∫ R+r

R−r
2πxz dx, where z =

√
r2 − (x − R)2.

The center of the torus is at the origin and the z axis is taken to be its symmetry axis.
The integral is tedious but yields to standard methods: V = 2π2Rr2. Here we take a

numerical approach with the values R = 4, r = 1:

8.2 Integration and Ordinary Differential Equations 383

In [x]: R, r = 4, 1

In [x]: f = lambda x, R, r: x * np.sqrt(r**2 - (x-R)**2)

In [x]: V, _ = quad(f, R-r, R+r, args=(R, r))

In [x]: V *= 4 * np.pi

In [x]: Vexact = 2 * np.pi**2 * R * r**2

In [x]: print('V = {} (exact: {})'.format(V, Vexact))

Out[x]: V = 78.95683520871499 (exact: 78.95683520871486)

8.2.2 Integrals of Two and More Variables

The scipy.integrate functions dblquad, tplquad and nquad evaluate double, triple
and multiple integrals, respectively. Because, in general, the limits on one coordinate
may depend on another coordinate, the syntax for calling these functions is a little more
complicated.

dblquad evaluates the double integral:∫ b

a

∫ h(x)

g(x)
f (x, y) dy dx.

It is passed f (x, y) as a function of at least two variables, func(y, x, ...). The function
must take y as its first argument and x as its second argument. The integral limits are
passed to dblquad in four further arguments. First, the two arguments, a and b, specify
the lower and upper limits on the x-integral, respectively, as for quad. The next two
arguments, gfun and hfun, are the lower and upper limits on the y-integral and they
must be callable objects taking a single floating-point argument, the value of x at which
the limit applies (i.e. they must themselves be functions of x). If either of the y-integral
limits does not depend on x, gfun or hfun can return a constant value.

As a simple example, the integral∫ 4

1

∫ 2

0
x2y dydx

can be evaluated with

In [x]: f = lambda y, x: x**2 * y

In [x]: a, b = 1, 4

In [x]: gfun = lambda x: 0

In [x]: hfun = lambda x: 2

In [x]: dblquad(f, a, b, gfun, hfun)

Out[x]: (42.00000000000001, 4.662936703425658e-13)

Here, gfun and hfun are each called with a value of x, but they return a constant (0 and
2, respectively) no matter what this value is.

Of course, it is possible to wrap all of this into a single line:

In [x]: dblquad(lambda y, x: x**2 * y, 1, 4, lambda x: 0, lambda x: 2)

Out[x]: (42.00000000000001, 4.662936703425658e-13)

A double integral can be used to find the area of some two-dimensional shape
bounded by one or more functions. For an example in polar coordinates, consider the

384 SciPy

Figure 8.8 The region defined as the area inside r = 2 + 2 sin θ but outside the circle r = 2.

area inside the curve r = 2 + 2 sin θ but outside the circle defined by r = 2 for θ in
[0, 2π] (see Figure 8.8). These curves intersect at θ = 0, π so the required integral is

A =

∫ π

0

∫ 2+2 sin θ

2
r dr dθ,

where r dr dθ is the infinitesimal area element in polar coordinates. This particular
integral is fairly straightforward to evaluate analytically (A = 8 + π), so the numerical
result is easy to check:

In [x]: r1, r2 = lambda theta: 2, lambda theta: 2 + 2*np.sin(theta)

In [x]: A, _ = dblquad(lambda r, theta: r, 0, np.pi, r1, r2)

Out[x]: 11.141592653589791

In [x]: 8 + np.pi # exact answer

Out[x]: 11.141592653589793

The function to evaluate is simply r, defined by lambda r, theta: r; in the inner
integral the limits on r are 2 and 2 + 2 sin θ; for the outer integral θ ranges from 0
to π.

The method tplquad evaluates triple integrals and takes a function of three vari-
ables, func(z, y, x) and six further arguments: constant x-limits, a and b; y-limits,
gfun(x) and hfun(x) (which are functions, as for dblquad); and z-limits, qfun(x, y)

and rfun(x, y) (functions of x and y in that order).
Higher-dimensional integrations are handled by the scipy.integrate.nquad method,

which will not be discussed here (documentation and examples are available online).7

7 https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.nquad.html.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.nquad.html

8.2 Integration and Ordinary Differential Equations 385

Example E8.14 The volume of the unit sphere, 4π/3, can be expressed as a triple
integral in spherical polar coordinates with constant limits:∫ 2π

0

∫ π

0

∫ 1

0
r2 sin θ drdθdφ.

In [x]: from scipy.integrate import tplquad

In [x]: tplquad(lambda phi, theta, r: r**2 * np.sin(theta),

0, 1,

lambda theta: 0, lambda theta: np.pi,

lambda theta, phi: 0, lambda theta, phi: 2*np.pi)

Out[x]: (4.18879020478639, 4.650491330678174e-14)

Alternatively, it can be expressed in Cartesian coordinates with limits as functions:

8
∫ 1

0

∫ √
1−x2

0

∫ √1−x2−y2

0
dz dy dx,

where the integral is in the positive octant of the three-dimensonal Cartesian axes.
In [x]: A, _ = tplquad(lambda z, y, x: 1,

0, 1,

lambda x: 0, lambda x: np.sqrt(1 - x**2),

lambda x, vy: 0, lambda x, y: np.sqrt(1 - x**2 - y**2))

In [x]: 8*A

Out[x]: 4.188790204786391

Example E8.15 This example finds the mass and center of mass of the tetrahedron
bounded by the coordinate axes and the plane x + y + z = 1 with density ρ = ρ(x, y, z),
where ρ(x, y, z) is provided as a lambda function. We test it with the functions ρ = 1,
ρ = x and ρ = x2 + y2 + z2.

The mass may be written as a triple integral of the density over the volume of the
tetrahedron:

m =

∫
V
ρ(x, y, z) dV =

∫ 1

0

∫ 1−x

0

∫ 1−x−y

0
ρ(x, y, z) dz dy dx,

and the coordinates of the center of mass are given by

mx̄ =

∫
V

xρ(x, y, z) dV, mȳ =

∫
V

yρ(x, y, z) dV, mz̄ =

∫
V

zρ(x, y, z) dV.

The following program uses scipy.integrate.tplquad to perform the necessary
integrations (which can also be solved analytically).

Listing 8.8 Calculating the mass and center of mass of a tetrahedron given three different
densities

eg8-tetrahedron -cofm.py

import numpy as np

from scipy.integrate import tplquad

386 SciPy

The integration limits on x, y, z.

a, b = 0, 1

gfun, hfun = lambda x: 0, lambda x: 1 - x

qfun, rfun = lambda x, y: 0, lambda x, y: 1 - x - y

Ê lims = (a, b, gfun, hfun, qfun, rfun)

The three different density functions.

rhos = [lambda x, y, z: 1,

lambda x, y, z: x,

lambda x, y, z: x**2 + y**2 + z**2]

for rho in rhos:

The mass as a triple integral of rho over the volume.

m, _ = tplquad(rho, *lims)

The center of mass (xbar, ybar, zbar).

mxbar, _ = tplquad(lambda x, y, z: x * rho(x, y, z), *lims)

mybar, _ = tplquad(lambda x, y, z: y * rho(x, y, z), *lims)

mzbar, _ = tplquad(lambda x, y, z: z * rho(x, y, z), *lims)

xbar, ybar, zbar = mxbar / m, mybar / m, mzbar / m

print('mass = {:g}, CofM = ({:g}, {:g}, {:g})'.format(m, xbar, ybar, zbar))

Ê Note that the six arguments representing the limits on the triple integral (two con-
stants and two pairs of lambda functions) have been packed into a tuple, lims (the
parentheses are optional here).

The output is:

mass = 0.166667, CofM = (0.25, 0.25, 0.25)

mass = 0.0416667, CofM = (0.4, 0.2, 0.2)

mass = 0.05, CofM = (0.277778, 0.277778, 0.277778)

8.2.3 Ordinary Differential Equations

Ordinary differential equations (ODEs) can be solved numerically with scipy.

integrate.odeint or scipy.integrate.solve_ivp (“solve an initial value problem”).
The latter function was introduced in version 1.0 of the SciPy library and is the
recommended approach. However, much legacy code still uses odeint and this function
is described in Appendix C. solve_ivp, solves first-order differential equations – to
solve a higher-order equation, it must be decomposed into a system of first-order
equations first, as explained later.

A Single First-Order ODE
In its simplest use for the solution of a single first-order ODE,

dy
dt

= f (t, y),

solve_ivp takes three arguments: a function object returning dy/dt, the initial and
final time points for the integration, and a set of initial conditions, y0. If not specified,

8.2 Integration and Ordinary Differential Equations 387

the ODE solver selects and returns a sequence of suitable time points on which the
integration is carried out.

For example, consider the first-order differential equation describing the rate of the
reaction A→ P in terms of the concentration of the reactant, A:

d[A]
dt

= −k[A].

This example has an easily obtainable analytical solution:

[A] = [A]0e−kt,

where [A]0 is the initial concentration of [A].
To solve the equation numerically with solve_ivp, write it in the form as shown

above, with a single dependent variable, y(t) ≡ [A], which is a function of the indepen-
dent variable, t (time). We have:

dy
dt

= −ky.

We need to provide a function returning dy/dt as f (t, y) (in general a function of both t
and y), which here is simply:

def dydt(t, y):

return -k * y

(the order of the arguments is important). The initial and final time points, t_span,
should be provided as a (t0, tf) tuple, and the initial conditions must be an array-like
object even if, as here, there is only one value. We have:

soln = solve_ivp(dydt, (t0, tf), [y0])

The returned object, soln, is an instance of the OdeResult class, which defines a number
of relevant properties including arrays soln.t for the time points used in the integration,
soln.y, the values of the solution at these time points, and soln.success, a boolean flag
indicating whether or not the solver successfully reached the final time point requested.

A program comparing the numerical and analytical results for a reaction with k =

0.2 s−1 and y(0) ≡ [A]0 = 100 is given below; the resulting plot is Figure 8.9.

Listing 8.9 First-order reaction kinetics

import numpy as np

from scipy.integrate import solve_ivp

import matplotlib.pyplot as plt

First-order reaction rate constant, s-1.

k = 0.2

Initial condition on y: 100% of reactant is present at t = 0.

y0 = 100

Initial and final time points for the integration.

t0, tf = 0, 20

def dydt(t, y):

""" Return dy/dt = f(t, y) at time t. """

388 SciPy

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

t /s

0

20

40

60

80

100

R
em

ai
n
in

g
re

a
ct

a
n
t

(%
)

solve ivp

Exact

Figure 8.9 Exponential decay of a reactant in a first-order reaction: exact solution and numerical
solution with time points selected by the ODE solver.

return -k * y

Integrate the differential equation.

soln = solve_ivp(dydt, (t0, tf), [y0])

t, y = soln.t, soln.y[0]

Plot and compare the numerical and exact solutions.

plt.plot(t, y, 'o', color='k', label=r'\texttt{solve_ivp}')

plt.plot(t, y0 * np.exp(-k*t), color='gray', label='Exact')

plt.xlabel(r'$t\;/\mathrm{s}$')

plt.ylabel('Remaining reactant (\%)')

plt.legend()

plt.show()

This approach is certainly suitable if all that is required is the final reactant concen-
tration, but to follow the change in concentration at a higher time resolution, a specific
sequence of time points can be provided to the argument t_eval:

A suitable grid of 21 time points over 0-20s for following the reaction.

t0, tf = 0, 20

t_eval = np.linspace(t0, tf, 21)

Integrate the differential equation.

soln = solve_ivp(dydt, (t0, tf), [y0], t_eval=t_eval)

t, y = soln.t, soln.y[0]

Better still, setting the dense_output argument to True defines an OdeSolution object
called sol as one of the returned objects. This can be used to generate interpolated
values of the solution for intermediate values of the time points:

8.2 Integration and Ordinary Differential Equations 389

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

t /s

0

20

40

60

80

100
R

em
ai

n
in

g
re

a
ct

a
n
t

(%
)

solve ivp

Exact

Figure 8.10 Exponential decay of a reactant in a first-order reaction: exact solution and
numerical solution with pre-determined time points.

Initial and final time points for the integration.

t0, tf = 0, 20

Integrate the differential equation

soln = solve_ivp(dydt, (t0, tf), [y0], dense_output=True)

t = np.linspace(t0, tf, 20)

y = soln.sol(t)[0]

Note that the soln.sol object is callable: a value of the independent variable, time,
is passed to it and the solution array at that time is returned. Here there is only one
dependent variable, y, so we index this array at [0].

Plotting the solution points, y, as before yields Figure 8.10.
As with the quad family of routines, if the function returning the derivative requires

further arguments, they can be passed to solve_ivp in the args parameter. In the earlier
mentioned example, k is resolved in global scope, but we could pass it with:

def dydt(t, y, k):

return -k * y

(note that additional parameters must appear after the independent and dependent vari-
ables). The call to solve_ivp would then be:

soln = solve_ivp(dydt, (t0, tf), [y0], args=(k,))

Oddly, the ability to pass additional arguments in args was only added in SciPy version
1.4. An alternative way to pass arguments from the calling scope into the derivative
function, dydt, is to wrap this function in a lambda expression:

390 SciPy

soln = solve_ivp(lambda t, y: dydt(t, y, k), (t0, tf), y0, t_eval=t)

Coupled First-Order ODEs
solve_ivp can also solve a set of coupled first-order ODEs in more than one dependent
variable: y1(t), y2(t), . . . , yn(t):

dy1

dt
= f1(y1, y2, . . . , yn; t),

dy2

dt
= f2(y1, y2, . . . , yn; t),

· · ·

dyn

dt
= fn(y1, y2, . . . , yn; t).

In this case, the function passed to solve_ivp() must return a sequence of deriva-
tives, dy1/dt, dy2/dt, . . . , dyn/dt for each of the dependent variables; that is, it evaluates
the earlier mentioned functions fi(y1, y2, . . . , yn; t) for each of the yi passed to it in a
sequence, y. The form of this function is:

def deriv(t, y):

y = [y1, y2, y3, ...] is a sequence of dependent variables.

dy1dt = f1(y, t) # calculate dy1/dt as f1(y1, y2, ..., yn; t)

dy2dt = f2(y, t) # calculate dy2/dt as f2(y1, y2, ..., yn; t)

... etc

Return the derivatives in a sequence such as a tuple:

return dy1dt, dy2dt, ..., dyndt

For a concrete example, suppose a reaction proceeds via two first-order reaction steps:
A → B → P, with rate constants k1 and k2. The equations governing the rate of change
of A and B are

d[A]
dt

= −k1[A],

d[B]
dt

= k1[A] − k2[B].

Again, we can solve this pair of coupled equations analytically, but in our numerical
solution, let y1 ≡ [A] and y2 ≡ [B]:

dy1

dt
= −k1y1,

dy2

dt
= k1y1 − k2y2.

The code presented below integrates these equations for k1 = 0.2 s−1, k2 = 0.8 s−1 and
initial conditions y1(0) = 100, y2(0) = 0, and compares the result with the analytical
solution (Figure 8.11).

Listing 8.10 Two coupled first-order reactions

8.2 Integration and Ordinary Differential Equations 391

0 5 10 15 20

t /s

0

20

40

60

80

100

C
on

ce
n
tr

at
io

n
(a

rb
.

u
n
it

s)
[A]

[B]

[P]

Figure 8.11 Two coupled first-order reactions: numerical and exact solutions.

import numpy as np

from scipy.integrate import solve_ivp

import matplotlib.pyplot as plt

First-order reaction rate constants , s-1.

k1, k2 = 0.2, 0.8

Initial condition on y1, y2: [A](t=0) = 100, [B](t=0) = 0.

A0, B0 = 100, 0

A suitable grid of time points for the reaction.

t0, tf = 0, 20

def dydt(t, y, k1, k2):

""" Return dy_i/dt = f(y_i, t) at time t. """

y1, y2 = y

dy1dt = -k1 * y1

dy2dt = k1 * y1 - k2 * y2

return dy1dt, dy2dt

Integrate the differential equation.

y0 = A0, B0

Ê soln = solve_ivp(dydt, (t0, tf), y0, dense_output=True, args=(k1, k2))

t = np.linspace(t0, tf, 100)

A, B = soln.sol(t)

[P] is determined by conservation.

P = A0 - A - B

Analytical result.

Aexact = A0 * np.exp(-k1*t)

Bexact = A0 * k1/(k2-k1) * (np.exp(-k1*t) - np.exp(-k2*t))

392 SciPy

Pexact = A0 - Aexact - Bexact

plt.plot(t, A, 'o', label='[A]')

plt.plot(t, B, '^', label='[B]')

plt.plot(t, P, 'd', label='[P]')

plt.plot(t, Aexact)

plt.plot(t, Bexact)

plt.plot(t, Pexact)

plt.xlabel(r'$t\;/\mathrm{s}$')

plt.ylabel('Concentration (arb. units)')

plt.legend()

plt.show()

Ê Again, if you are using solve_ivp from a version of SciPy prior to version 1.4, there
is no way to directly pass the additional arguments k1 and k2 to the derivative function.
The work-around is to wrap the function in a lambda expression:

soln = solve_ivp(lambda t, y: dydt(t, y, k1, k2), (t0, tf), y0, dense_output=True)

A Single Second-Order ODE
To solve an ODE of higher than first order, it must first be reduced into a system of first-
order differential equations. In general, any differential equation with a single dependent
variable of order n can be written as a system of n first-order differential equations in n
dependent variables.

For example, the equation of motion for a harmonic oscillator is a second-order
differential equation:

d2x
dt2 = −ω2x,

where x is the displacement from equilibrium and ω is the angular frequency. This
equation may be decomposed into two first-order equations as follows:

dx1

dt
= x2,

dx2

dt
= −ω2x1,

where x1 is identified with x and x2 with dx/dt.
This pair of coupled first-order equations may be solved as before:

Listing 8.11 Solution of the harmonic oscillator equation of motion

import numpy as np

from scipy.integrate import solve_ivp

import matplotlib.pyplot as plt

Harmonic oscillator frequency (s-1).

omega = 0.9

Initial conditions on x1 = x and x2 = dx/dt at t = 0.

A, v0 = 3, 0 # cm, cm.s-1

x0 = A, v0

A suitable grid of time points.

8.2 Integration and Ordinary Differential Equations 393

0 5 10 15 20

t /s

3

2

1

0

1

2

3

x
/
cm

solve ivp()

Exact

Figure 8.12 The harmonic oscillator: numerical and exact solutions.

t0, tf = 0 , 20

def dxdt(t, x):

""" Return dx/dt = f(t, x) at time t. """

x1, x2 = x

dx1dt = x2

dx2dt = -omega**2 * x1

return dx1dt, dx2dt

Integrate the differential equation.

soln = solve_ivp(dxdt, (t0, tf), x0, dense_output=True)

t = np.linspace(t0, tf, 100)

x1, x2 = soln.sol(t)

Plot and compare the numerical and exact solutions.

plt.plot(t, x1, 'o', color='k', label=r'\texttt{solve_ivp()}')

plt.plot(t, A * np.cos(omega * t), color='gray', label='Exact')

plt.xlabel(r'$t\;/\mathrm{s}$')

plt.ylabel(r'$x\;/\mathrm{cm}$')

plt.legend()

plt.show()

The plot produced by this code is given in Figure 8.12.

Example E8.16 An object falling slowly in a viscous fluid under the influence of
gravity is subject to a drag force (Stokes’ drag), which varies linearly with its velocity.

394 SciPy

Its equation of motion may be written as the second-order differential equation:

m
d2z
dt2 = −c

dz
dt

+ mg′,

where z is the object’s position as a function of time, t, c is a drag constant which
depends on the shape of the object and the fluid viscosity and

g′ = g
(
1 −

ρfluid

ρobj

)
is the effective gravitational acceleration, which accounts for the buoyant force due to
the fluid (density ρfluid) displaced by the object (density ρobj). For a small sphere of
radius r in a fluid of viscosity η, Stokes’ law predicts c = 6πηr.

Consider a sphere of platinum (ρ = 21.45 g cm−3) with radius 1 mm, initially at
rest, falling in mercury (ρ = 13.53 g cm−3, η = 1.53 × 10−3 Pa s). The earlier men-
tioned second-order differential equation can be solved analytically, but to integrate it
numerically using solve_ivp, it must be treated as two first-order ODEs:

dz
dt

= ż,

d2z
dt2 =

dż
dt

= g′ −
c
m

ż.

In the code presented here, the function deriv calculates these derivatives and is passed
to solve_ivp with the intial conditions (z = 0, ż = 0) and a grid of time points.

Listing 8.12 Calculating the motion of a sphere falling under the influence of gravity and
Stokes’ drag

eg8-stokes-drag.py

import numpy as np

from scipy.integrate import solve_ivp

import matplotlib.pyplot as plt

Platinum sphere falling from rest in mercury.

Acceleration due to gravity (m.s-2).

g = 9.81

Densities (kg.m-3).

rho_Pt, rho_Hg = 21450, 13530

Viscosity of mercury (Pa.s).

eta = 1.53e-3

Radius and mass of the sphere.

r = 1.e-3 # radius (m)

m = 4*np.pi/3 * r**3 * rho_Pt

Drag constant from Stokes ' law.
c = 6 * np.pi * eta * r

Effective gravitational acceleration.

gp = g * (1 - rho_Hg/rho_Pt)

def deriv(t, z):

""" Return the dz/dt and d2z/dt2. """

dz0 = z[1]

8.2 Integration and Ordinary Differential Equations 395

dz1 = gp - c/m * z[1]

return dz0, dz1

t0, tf = 0, 20

t_eval = np.linspace(t0, tf, 50)

Initial conditions: z = 0, dz/dt = 0 at t = 0.

z0 = (0, 0)

Integrate the pair of differential equations.

sol = solve_ivp(deriv, (t0, tf), z0, t_eval=t_eval)

t = sol.t

z, zdot = sol.y

plt.plot(t, zdot)

print('Estimate of terminal velocity = {:.3f} m.s-1'.format(zdot[-1]))

Exact solution: terminal velocity vt (m.s-1) and characteristic time tau (s).

v0, vt, tau = 0, m*gp/c, m/c

print('Exact terminal velocity = {:.3f} m.s-1'.format(vt))

z = vt*t + v0*tau*(1-np.exp(-t/tau)) + vt*tau*(np.exp(-t/tau)-1)

zdot_exact = vt + (v0-vt)*np.exp(-t/tau)

plt.plot(t, zdot_exact)

plt.xlabel('t /s')

plt.ylabel('$\dot{z}\;/\mathrm{m\, s^{-1}}$')

plt.show()

The plot produced by this program is shown in Figure 8.13: the numerical and ana-
lytical results are indistinguishable at this scale but are reported to three decimal places
in the output:
Estimate of terminal velocity = 11.266 m.s-1

Exact terminal velocity = 11.285 m.s-1

The solve_ivp function can be configured to use different algorithms to solve a
system of ODEs by setting its method attribute; a list of options is given in Table 8.3.
The default, 'RK45', is an explicit Runge–Kutta method of order 5(4) and is a good
general-purpose approach for non-stiff problems.

A problem is said to be stiff if a numerical method is required to take excessively
small steps in its intervals of integration in relation to the smoothness of the exact
underlying solution. Stiff problems frequently occur when terms in the ODE represent
a variable changing in magnitude with very different timescales. The methods 'Radau',
'BDF' and 'LSODA' are worth trying if you suspect your ODE is stiff, as in the following
example.

Example E8.17 A classic example of a stiff system of ODEs is the kinetic analysis of
Robertson’s autocatalytic chemical reaction8 involving three species, x = [X], y = [Y]
and z = [Z] with initial conditions x = 1, y = z = 0:

8 H. H. Robertson, The solution of a set of reaction rate equations, in J. Walsh (Ed.), Numerical Analysis: An
Introduction, pp. 178–182, Academic Press, London (1966).

396 SciPy

0 5 10 15 20

t /s

0

2

4

6

8

10

ż
/
m

s
1

Figure 8.13 The velocity of a platinum sphere falling in mercury as a function of time, modeled
with Stokes’ law.

Table 8.3 ODE integration methods defined within
scipy.integrate.solve_ivp

method Description

'RK45' Explicit Runge–Kutta method of order 5(4)
'RK23' Explicit Runge–Kutta method of order 3(2)
'Radau' Implicit Runge–Kutta method of the Radau IIA family of order 5:

suitable for stiff problems
'BDF' Backward differentiation formula approximation, an implicit method

suitable for stiff problems
'LSODA' A flexible method that can automaticlly detect stiffness and switch

between the Adams (for non-stiff problems) and BDF (for stiff
problems) algorithms

ẋ ≡
dx
dt

= −0.04x + 104yz,

ẏ ≡
dy
dt

= 0.04x − 104yz − 3 × 107y2,

ż ≡
dz
dt

= 3 × 107y2.

(Note the very different timescales of the reactions, particularly for [Y].)
With the default Runge–Kutta algorithm on the time interval [0, 500]:

8.2 Integration and Ordinary Differential Equations 397

def deriv(t, y):

x, y, z = y

xdot = -0.04 * x + 1.e4 * y * z

ydot = 0.04 * x - 1.e4 * y * z - 3.e7 * y**2

zdot = 3.e7 * y**2

return xdot, ydot, zdot

t0, tf = 0, 500

y0 = 1, 0, 0

soln = solve_ivp(deriv, (t0, tf), y0)

print(soln)

We get there eventually:
message: 'The solver successfully reached the end of the integration interval.'

nfev: 6123410

njev: 0

nlu: 0

sol: None

status: 0

success: True

t: array([0.00000000e+00, 6.36669332e-04, 1.06518798e-03, ...,

4.99999288e+02, 4.99999819e+02, 5.00000000e+02])

t_events: None

y: array([[1.00000000e+00, 9.99974534e-01, 9.99957394e-01, ...,

4.19780946e-01, 4.19780771e-01, 4.19780487e-01],

[0.00000000e+00, 2.20107324e-05, 3.00616449e-05, ...,

2.41400796e-06, 2.47838908e-06, 2.72514279e-06],

[0.00000000e+00, 3.45561028e-06, 1.25439771e-05, ...,

5.80216640e-01, 5.80216750e-01, 5.80216788e-01]])

but at the cost of more than 6 million function evaluations (soln.nfev). The 'Radau'
method fares much better:

Listing 8.13 Solution of the Robertson system of chemical reactions.

import numpy as np

from scipy.integrate import solve_ivp

import matplotlib.pyplot as plt

def deriv(t, y):

"""ODEs for Robertson ' s chemical reaction system."""
x, y, z = y

xdot = -0.04 * x + 1.e4 * y * z

ydot = 0.04 * x - 1.e4 * y * z - 3.e7 * y**2

zdot = 3.e7 * y**2

return xdot, ydot, zdot

Initial and final times.

t0, tf = 0, 500

Initial conditions: [X] = 1; [Y] = [Z] = 0.

y0 = 1, 0, 0

Solve, using a method resilient to stiff ODEs.

soln = solve_ivp(deriv, (t0, tf), y0, method='Radau')

print(soln.nfev, 'evaluations required.')

Plot the concentrations as a function of time. Scale [Y] by 10**YFAC

so its variation is visible on the same axis used for [X] and [Z].

398 SciPy

0 100 200 300 400 500

time /s

0.0

0.2

0.4

0.6

0.8

1.0
co

n
ce

n
tr

a
ti
o
n

/
a
rb

.
u
n
it

s

[X]

104 [Y]

[Z]

Figure 8.14 The Robertson chemical equation system, numerically integrated with the Radau
IIA method.

YFAC = 4

plt.plot(soln.t, soln.y[0], label='[X]')

plt.plot(soln.t, 10**YFAC*soln.y[1], label=r'$10^{}\times$[Y]'.format(YFAC))

plt.plot(soln.t, soln.y[2], label='[Z]')

plt.xlabel('time /s')

plt.ylabel('concentration /arb. units')

plt.legend()

plt.show()

The output indicates only 248 evaluations required. The concentrations of [X], [Y]
and [Z] are plotted against time in Figure 8.14

The solve_ivp function can also detect and respond to events in the integration of
a set of differential equations. One or more functions can be provided in the events

argument, which should return zero when the state of the system corresponds to the
event to be triggered. For a very simple example consider a car traveling with velocity
v = 20 m s−1 subject to a braking force which decelerates it at a constant rate, a =

dv/dt = −3 m s−2. How long will it take the car to stop? The analytical answer is
obviously 20/3 = 6.67 s. To analyze the problem numerically, we can define an event
function that will return the car’s speed: the time at which this function returns 0 is
assigned to the solution object’s t_events variable:

In [x]: def car_stopped(t, y):

...: return y[0]

8.2 Integration and Ordinary Differential Equations 399

...:

In [x]: t0, tf = 0, 100 # a generous time interval to consider, s

In [x]: v0 = 20 # initial speed, m.s-1

In [x]: solve_ivp(lambda t, y: -3, (t0, tf), [v0], events=car_stopped)

Out[x]:

message: 'The solver successfully reached the end of the integration interval.'

nfev: 26

njev: 0

nlu: 0

sol: None

status: 0

success: True

t: array([0. , 0.14614572, 1.60760288, 16.22217454,

100.])

t_events: [array([6.66666667])]

y: array([[20. , 19.56156285, 15.17719135, -28.66652362,

-280.]])

y_events: [array([[-1.77635684e-15]])]

Note that the stopping time, given in the t_events array, is accurate: it is obtained
using a root-finding algorithm once the ODE integration has detected a change in sign
of the return value from the car_stopped event function. It has continued to integrate
for unphysical solutions beyond this time though (the car does not go backwards after
stopping). We can force solve_ivp to terminate after an event by attaching the boolean
object terminal = True to it:

In [x]: car_stopped.terminal = True

In [x]: solve_ivp(lambda t, y: -3, (t0, tf), [v0], events=car_stopped)

Out[x]:

message: 'A termination event occurred.'

nfev: 20

njev: 0

nlu: 0

sol: None

status: 1

success: True

t: array([0. , 0.14614572, 1.60760288, 6.66666667])

t_events: [array([6.66666667])]

y: array([[2.00000000e+01, 1.95615629e+01, 1.51771914e+01,

-1.77635684e-15]])

The terminal = True attribute must be attached to the function car_stopped after its
definition or it won’t be accessible to solve_ivp.9

Example E8.18 A spherical projectile of mass m launched with some initial velocity
moves under the influence of two forces: gravity, Fg = −mg ẑ, and air resistance (drag),
FD = − 1

2 cρAv2v/|v| = − 1
2 cρAvv, acting in the opposite direction to the projectile’s

velocity and proportional to the square of that velocity (under most realistic conditions).

9 This sort of post-definition modification of a function has been available in Python since version 2.1 (PEP
232) and is an example of monkey-patching. Some consider it to be poor style since it separates the method’s
definition from its functionality.

400 SciPy

Here, c is the drag coefficient, ρ the air density, and A the projectile’s cross-sectional
area.

The relevant equations of motion are therefore:

mẍ = −k
√

ẋ2 + ż2 ẋ,

mz̈ = −k
√

ẋ2 + ż2ż − mg,

where v = |v| =
√

ẋ2 + ż2 and k = 1
2 cρA. These can be decomposed into the following

four first-order ODEs with u1 ≡ x, u2 ≡ ẋ, u3 ≡ z, u4 ≡ ż:

u̇1 = u2,

u̇2 = −
k
m

√
u2

2 + u2
4u2,

u̇3 = u4,

u̇4 = −
k
m

√
u2

2 + u2
4u4 − mg.

The following code integrates this system and identifies two events: hitting the target
(the projectile returning to the ground at z = 0) and reaching its maximum height
(at which the z-component of its velocity is zero). We set the additional attribute
hit_target.direction = -1 to ensure that hit_target only triggers the event when
its return value (the projectile’s elevation) goes from positive to negative; otherwise the
event would be triggered at launch since z0 = 0. Other possibilities are direction = 1:
trigger the event when the return value changes from negative to positive or direction
= 0 (the default): the event is triggered when the return value is zero from either
direction.

Listing 8.14 Calculating and plotting the trajectory of a spherical projectile including air
resistance.

import numpy as np

from scipy.integrate import solve_ivp

import matplotlib.pyplot as plt

Drag coefficient , projectile radius (m), area (m2) and mass (kg).

c = 0.47

r = 0.05

A = np.pi * r**2

m = 0.2

Air density (kg.m-3), acceleration due to gravity (m.s-2).

rho_air = 1.28

g = 9.81

For convenience , define this constant.

k = 0.5 * c * rho_air * A

Initial speed and launch angle (from the horizontal).

v0 = 50

phi0 = np.radians(65)

def deriv(t, u):

8.2 Integration and Ordinary Differential Equations 401

x, xdot, z, zdot = u

speed = np.hypot(xdot, zdot)

xdotdot = -k/m * speed * xdot

zdotdot = -k/m * speed * zdot - g

return xdot, xdotdot, zdot, zdotdot

Initial conditions: x0, v0_x, z0, v0_z.

u0 = 0, v0 * np.cos(phi0), 0., v0 * np.sin(phi0)

Integrate up to tf unless we hit the target sooner.

t0, tf = 0, 50

def hit_target(t, u):

We ' ve hit the target if the z-coordinate is 0.
return u[2]

Stop the integration when we hit the target.

hit_target.terminal = True

We must be moving downwards (don ' t stop before we begin moving upwards!)
hit_target.direction = -1

def max_height(t, u):

The maximum height is obtained when the z-velocity is zero.

return u[3]

soln = solve_ivp(deriv, (t0, tf), u0, dense_output=True,

events=(hit_target , max_height))

print(soln)

print('Time to target = {:.2f} s'.format(soln.t_events[0][0]))

print('Time to highest point = {:.2f} s'.format(soln.t_events[1][0]))

A fine grid of time points from 0 until impact time.

t = np.linspace(0, soln.t_events[0][0], 100)

Retrieve the solution for the time grid and plot the trajectory.

sol = soln.sol(t)

x, z = sol[0], sol[2]

print('Range to target, xmax = {:.2f} m'.format(x[-1]))

print('Maximum height, zmax = {:.2f} m'.format(max(z)))

plt.plot(x, z)

plt.xlabel('x /m')

plt.ylabel('z /m')

plt.show()

The output is:

Time to target = 6.34 s

Time to highest point = 2.79 s

Range to target, xmax = 64.12 m

Maximum height, zmax = 49.42 m

and the plot created is shown in Figure 8.15.

402 SciPy

0 10 20 30 40 50 60

x /m

0

10

20

30

40

50
z

/
m

Figure 8.15 The trajectory of a spherical projectile launched with v0 = 50 m s−1 at φ0 = 50◦

including air resistance.

8.2.4 Exercises

Questions

Q8.2.1 Use scipy.integrate.quad to evaluate the following integral:∫ 6

0
bxc − 2

⌊ x
2

⌋
dx.

Q8.2.2 Use scipy.integrate.quad to evaluate the following definite integrals (most
of which can also be expressed in closed form over the range given but are awkward).

(a) ∫ 1

0

x4(1 − x)4

1 + x2 dx.

(Compare with 22/7 − π.)
(b) The following integral appears in the Debye theory of the heat capacity of crystals

at low temperature ∫ ∞

0

x3

ex − 1
dx.

(Compare with π4/15.)

8.2 Integration and Ordinary Differential Equations 403

(c) The integral sometimes known as the Sophomore’s dream:∫ 1

0
x−x dx.

(Compare the value you obtain from the summation
∑∞

n=1 n−n.)
(d) ∫ 1

0
[ln(1/x)]p dx.

(Compare with p! for integer 0 ≤ p ≤ 10.)
(e) ∫ 2π

0
ez cos θ dθ.

(Compare with 2πI0(z), where I0(z) is a modified Bessel function of the first kind,
for 0 ≤ z ≤ 2.)

Q8.2.3 Use scipy.integrate.dblquad to evaluate π by integration of the constant
function f (x, y) = 4 over the quarter circle with unit radius in the quadrant x > 0, y > 0.

Q8.2.4 What is wrong with the following attempt to calculate the area of the unit
circle (π) as a double integral in polar coordinates?

In [x]: dblquad(lambda r, theta: r, 0, 1, lambda r: 0, lambda r: 2*np.pi)

Out[x]: (19.739208802178712, 2.1914924100062363e-13)

Problems

P8.2.1 The area of the surface of revolution about the x-axis between a and b of the
function y = f (x) is given by the integral

S = 2π
∫ b

a
y ds, where ds =

√
1 +

(
dy
dx

)2

dx.

Use this equation to write a function to determine the surface area of revolution of a
function y = f (x) about the x-axis, given Python function objects that return y and
dy/dx, and test it for the paraboloid obtained by rotation of the function f (x) =

√
x

about the x-axis between a = 0 and b = 1. Compare with the exact result, π(53/2−1)/6.

P8.2.2 The integral of the secant function,∫ θ

0
sec φ dφ

for −π/2 < θ < π/2 is important in navigation and the theory of map projections. It can
be expressed in closed form as the inverse Gudermannian function,

gd−1(θ) = ln | sec θ + tan θ|.

404 SciPy

Use scipy.integrate.quad to calculate values for the integral across the relevant range
for θ given earlier and compare graphically with the exact answer.

P8.2.3 Consider a torus of uniform density, unit mass, average radius R and cross-
sectional radius r. The volume and moments of inertia of such a torus may be evaluated
analytically and give the results:

V = 2π2Rr2,

Iz = R2 + 3
4 r2,

Ix = Iy = 1
2 R2 + 5

8 r2,

where the center of mass of the torus is at the origin and the z axis is taken to be its
symmetry axis.

Here, we take a numerical approach. In cylindrical coordinates (ρ, θ, z), it may be
shown that:

V = 2
∫ 2π

0

∫ R+r

R−r

∫ √r2−(ρ−R)2

0
ρ dz dρ dθ,

Iz =
2
V

∫ 2π

0

∫ R+r

R−r

∫ √r2−(ρ−R)2

0
ρ3 dz dρ dθ,

Ix = Iy =
2
V

∫ 2π

0

∫ R+r

R−r

∫ √r2−(ρ−R)2

0
(ρ2 sin2 θ + z2)ρ dz dρ dθ.

Evaluate these integrals for the torus with dimensions R = 4, r = 1 and compare with
the exact values.

P8.2.4 The Brusselator is a theoretical model for an autocatalytic reaction. It assumes
the following reaction sequence, in which species A and B are taken to be in excess
with constant concentration and species D and E are removed as they are produced.
The concentrations of species X and Y can show oscillatory behavior under certain
conditions.

A→ X k1,

2X + Y→ 3X k2,

B + X→ Y + D k3,

X→ E k4.

It is convenient to introduce the scaled quantities

x = [X]

√
k2

k4
, y = [Y]

√
k2

k4
,

a = [A]
k1

k4

√
k2

k4
, b = [B]

k3

k4
,

8.2 Integration and Ordinary Differential Equations 405

and to scale the time by the factor k4, which gives rise to the dimensionless equations

dx
dt

= a − (1 + b)x + x2y,

dy
dt

= bx − x2y.

Show how these equations predict x and y to vary for (a) a = 1, b = 1.8 and (b) a =

1, b = 2.02 by plotting in each case (i) x, y as functions of (dimensionless) time and (ii)
y as a function of x.

P8.2.5 The equation governing the motion of a pendulum consisting of a mass at the
end of a light, rigid rod of length l may be written

d2θ

dt2 = −
g
l

sin θ,

where θ is the angle the pendulum makes with the vertical.
Taking l = 1 m and g = 9.81 m s−2, determine the subsequent motion of the

pendulum if it is started at rest with an initial angle θ0 = 30◦. Compare the motion with
the harmonic approximation reached by assuming θ is small, which has the analytical
solution θ = θ0 cos(ωt) with ω =

√
g/l.

P8.2.6 A simple mechanism for the formation of ozone in the stratosphere consists of
the following four reactions (known as the Chapman cycle):

O2 + hν→ 2O k1 = 3 × 10−12 s−1,

O2 + O + M→ O3 + M k2 = 1.2 × 10−33 cm6 molec−2 s−1,

O3 + hν′ → O + O2 k3 = 5.5 × 10−4 s−1,

O + O3 → 2O2 k4 = 6.9 × 10−16 cm3 molec−1 s−1,

where M is a nonreacting third body taken to be at the total air molecule concentration
for the altitude being considered. These reactions lead to the following rate equations
for [O], [O3] and [O2]:

d[O2]
dt

= −k1[O2] − k2[O2][O][M] + k3[O3] + 2k4[O][O3],

d[O]
dt

= 2k1[O2] − k2[O2][O][M] + k3[O3] − k4[O][O3],

d[O3]
dt

= k2[O2][O][M] − k3[O3] − k4[O][O3].

The rate constants apply at an altitude of 25 km, where [M] = 9 × 1017 molec cm−3.
Write a program to determine the concentrations of O3 and O as a function of time at
this altitude (you should find the [O2] remains pretty much constant). Start with initial
conditions [O2]0 = 0.21[M], [O]0 = [O3]0 = 0 and integrate for 108 s (starting from
scratch it takes about three years to build an ozone layer with this mechanism). Compare
the equilibrium concentrations with the approximate analytical result obtained using the

406 SciPy

steady-state approximation:

[O3] =

√
k1k2

k3k4
[O2][M]

1
2 ,

[O]
[O3]

=
k3

k2[O2][M]
.

P8.2.7 Hyperion is an irregularly shaped moon of Saturn notable for its chaotic rota-
tion. Its motion may be modeled as follows.

The orbit of Hyperion (H) about Saturn (S) is an ellipse with semi-major axis a and
eccentricity e. Let its point of closest approach (periapsis) be P. Its distance from the
planet, SH, as a function of its true anomaly (orbital angle, φ, measured from the line
SP) is therefore

r =
a(1 − e2)

1 + e cos φ
.

Define the angle θ to be that between the axis of the smallest principal moment of
inertia (loosely, the longest axis of the moon) and SP, and the quantity Ω to be a scaled
rate of change of θ with φ (i.e. the rate at which Hyperion spins as it orbits Saturn) as
follows:

Ω =
a2

r2

dθ
dφ
.

S P

H

φ θ

Now, it can be shown that

dΩ

dφ
= −

B − A
C

3
2(1 − e2)

a
r

sin[2(θ − φ)],

where A, B and C are the principal moments of inertia.
Use scipy.integrate.solve_ivp to find and plot the spin rate, Ω, as a function of φ

for the initial conditions (a) θ = Ω = 0 at φ = 0, and (b) θ = 0, Ω = 2 at φ = 0. Take
e = 0.1 and (B − A)/C = 0.265.

8.2 Integration and Ordinary Differential Equations 407

P8.2.8 The radioactive decay chain of 212Pb to the stable isotope 208Pb may be con-
sidered as the following sequence of steps with the given rate constants, ki:

212Pb→ 212Bi + β− k1 = 1.816 × 10−5 s−1,
212Bi→ 208Tl + α k2 = 6.931 × 10−5 s−1,
212Bi→ 212Po + β− k3 = 1.232 × 10−4 s−1,
208Tl→ 208Pb + β− k4 = 3.851 × 10−3 s−1,
212Po→ 208Pb + α k5 = 2.310 s−1.

By considering the following first-order differential equations giving the rates of
change for each species, plot their concentrations as a function of time:

d[212Pb]
dt

= −k1[212Pb],

d[212Bi]
dt

= k1[212Pb] − k2[212Bi] − k3[212Bi],

d[208Tl]
dt

= k2[212Bi] − k4[208Tl],

d[212Po]
dt

= k3[212Bi] − k5[212Po],

d[208Pb]
dt

= k4[208Tl] + k5[212Po].

If all the intermediate species, J, are treated in “steady state” (i.e. d[J]/dt = 0), the
approximate expression for the 208Pb concentration as a function of time is

[208Pb] = [212Pb]0

(
1 − e−k1t

)
.

Compare the “exact” result obtained by numerical integration of the differential equa-
tions with this approximate answer.

P8.2.9 A simple model of the evolution of a match flame considers the flame radius,
y, to change in time as

dy
dt

= αy2 − βy3,

where α and β are some constants relating to the transport of oxygen through the surface
of the flame and the rate of its consumption inside it. The flame is initally small, y(0) �
α/β, but at some point rapidly grows until it reaches a steady state of constant radius
(assuming an unlimited supply of fuel).

Taking α = β = 1, solve this ODE numerically using scipy.integrate.solve_ivp

using a suitable integration method over a time interval (0, 5/y(0)) for (a) y(0) = 0.01,
(b) y(0) = 0.0001. How many time steps must be taken in each case?

The exact solution may be written as

y(t) =
α

β
[
1 + W

(
aea−α2t/β

)] ,

408 SciPy

Table 8.4 Interpolation methods specified by the kind argument to
scipy.interpolate.interp1d

kind Description

'linear' The default, linear interpolation using only the values from the original data
arrays bracketing the desired point

'nearest' “Snap” to the nearest data point
'zero' A zeroth-order spline: interpolates to the last value seen in its traversal of the

data arrays
'slinear' First-order spline interpolation (in practice, the same as 'linear')
'quadratic' Second-order spline interpolation
'cubic' Cubic spline interpolation
'previous' Use the previous data point
'next' Use the next data point

where a = α/(βy(0)) and W(x) is the Lambert W function, implemented in SciPy as
scipy.special.lambertw. Compare the accuracy of the various numerical solutions
with this expression.

8.3 Interpolation

The package scipy.interpolate contains a large variety of functions and classes for
interpolation and splines in one and more dimensions. Some of the more important are
described in this section.

8.3.1 Univariate Interpolation

The most straightforward one-dimensional interpolation functionality is provided by
scipy.interpolate.interp1d. Given arrays of points x and y, a function is returned,
which can be called to generate interpolated values at intermediate values of x. The
default interpolation scheme is linear, but other options (see Table 8.4) allow for differ-
ent schemes, as shown in the following example.

Example E8.19 This example demonstrates some of the different interpolation meth-
ods available in scipy.interpolation.interp1d (see Figure 8.16).

Listing 8.15 A comparison of one-dimensional interpolation types using
scipy.interpolate.interp1d

eg8-interp1d.py

import numpy as np

from scipy.interpolate import interp1d

import matplotlib.pyplot as plt

A, nu, k = 10, 4, 2

8.3 Interpolation 409

0.0 0.1 0.2 0.3 0.4 0.5
−8

−6

−4

−2

0

2

4

6

8

10
data points

exact

nearest

linear

cubic

Figure 8.16 An illustration of different one-dimensional interpolation methods with
scipy.interpolation.interp1d.

def f(x, A, nu, k):

return A * np.exp(-k*x) * np.cos(2*np.pi * nu * x)

xmax, nx = 0.5, 8

x = np.linspace(0, xmax, nx)

y = f(x, A, nu, k)

f_nearest = interp1d(x, y, kind='nearest')

f_linear = interp1d(x, y)

f_cubic = interp1d(x, y, kind='cubic')

x2 = np.linspace(0, xmax, 100)

plt.plot(x, y, 'o', label='data points')

plt.plot(x2, f(x2, A, nu, k), label='exact')

plt.plot(x2, f_nearest(x2), label='nearest')

plt.plot(x2, f_linear(x2), label='linear')

plt.plot(x2, f_cubic(x2), label='cubic')

plt.legend()

plt.show()

8.3.2 Multivariate Interpolation

We shall consider two kinds of multivariate interpolation corresponding to whether or
not the source data are structured (arranged on some kind of grid) or not.

Interpolation from a Rectangular Grid
The simplest two-dimensional interpolation routine is scipy.interpolate.interp2d. It
requires a two-dimensional array of values, z, and the two (one-dimensional) coordinate

410 SciPy

arrays x and y to which they correspond. These arrays need not have constant spacing.
Three kinds of interpolation spline are supported through the kind argument: 'linear'
(the default), 'cubic' and 'quintic'.

Example E8.20 In the following example, we calculate the function

z(x, y) = sin
(
πx
2

)
ey/2

on a grid of points (x, y) which is not evenly spaced in the y-direction. We then use
scipy.interpolate.interp2d to interpolate these values onto a finer, evenly spaced
(x, y) grid: see Figure 8.17.

Listing 8.16 Two-dimensional interpolation with scipy.interpolate.interp2d

eg8-interp2d.py

import numpy as np

from scipy.interpolate import interp2d

import matplotlib.pyplot as plt

x = np.linspace(0, 4, 13)

y = np.array([0, 2, 3, 3.5, 3.75, 3.875, 3.9375, 4])

X, Y = np.meshgrid(x, y)

Z = np.sin(np.pi*X/2) * np.exp(Y/2)

x2 = np.linspace(0, 4, 65)

y2 = np.linspace(0, 4, 65)

Ê f = interp2d(x, y, Z, kind='cubic')

Z2 = f(x2, y2)

fig, ax = plt.subplots(nrows=1, ncols=2)

ax[0].pcolormesh(X, Y, Z)

X2, Y2 = np.meshgrid(x2, y2)

ax[1].pcolormesh(X2, Y2, Z2)

plt.show()

Ê Note that interp2d requires the one-dimensional arrays, x and y.

If the mesh of (x, y) coordinates form a regularly spaced grid, the fastest way to inter-
polate values from values of z is to use a scipy.interpolate.RectBivariateSpline

object as in the following example.

Example E8.21 In the following code, the function

z(x, y) = e−4x2
e−y2/4

is calculated on a regular, coarse grid and then interpolated onto a finer one (Figure
8.18).

8.3 Interpolation 411

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Figure 8.17 Two-dimensional interpolation with scipy.interpolate.interp2d.

Listing 8.17 Interpolation onto a regular two-dimensional grid with
scipy.interpolate.RectBivariateSpline

eg8-RectBivariateSpline.py

import numpy as np

from scipy.interpolate import RectBivariateSpline

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

Regularly spaced, coarse grid.

dx, dy = 0.4, 0.4

xmax, ymax = 2, 4

x = np.arange(-xmax, xmax, dx)

y = np.arange(-ymax, ymax, dy)

X, Y = np.meshgrid(x, y)

Z = np.exp(-(2*X)**2 - (Y/2)**2)

Ê interp_spline = RectBivariateSpline(y, x, Z)

Regularly spaced, fine grid.

dx2, dy2 = 0.16, 0.16

x2 = np.arange(-xmax, xmax, dx2)

y2 = np.arange(-ymax, ymax, dy2)

X2, Y2 = np.meshgrid(x2, y2)

Z2 = interp_spline(y2, x2)

fig, ax = plt.subplots(nrows=1, ncols=2, subplot_kw={'projection': '3d'})

ax[0].plot_wireframe(X, Y, Z, color='k')

ax[1].plot_wireframe(X2, Y2, Z2, color='k')

for axes in ax:

axes.set_zlim(-0.2, 1)

axes.set_axis_off()

412 SciPy

Figure 8.18 Two-dimensional interpolation from a coarse rectangular grid (left-hand plot) to a
finer one (right-hand plot) with scipy.interpolate.RectBivariateSpline.

fig.tight_layout()

plt.show()

Ê Note that for our function, Z, defined using the meshgrid set up here, the
RectBivariateSpline method expects the corresponding one-dimensional arrays y

and x to be passed in this order (opposite to that of interp2d).10

Interpolation of Unstructured Data
To interpolate unstructured data, that is, data points provided at arbitrary coordinates
(x, y), onto a grid, the method scipy.interpolate.griddata can be used. Its basic
usage for two dimensions is:

scipy.interpolate.griddata(points, values, xi, method='linear')

where the provided data are given as the one-dimensional array, values, at the coor-
dinates, points, which is provided as a tuple of arrays x and y or as a single array of
shape (n, 2), where n is the length of the values array. xi is an array of the coordinate
grid to by interpolated onto (of shape (m, 2).) The methods available are 'linear' (the
default), 'nearest' and 'cubic'.

Example E8.22 The code mentioned here illustrates the different kinds of interpola-
tion method available for scipy.interpolate.griddata using 400 points chosen ran-
domly from an interesting function. The results can be compared in Figure 8.19.

Listing 8.18 Interpolation from an unstructured array of two-dimensional points with
scipy.interpolate.griddata

eg8-gridinterp.py

import numpy as np

from scipy.interpolate import griddata

import matplotlib.pyplot as plt

x = np.linspace(-1, 1, 100)

10 This issue is related to the way that meshgrid is indexed, which is based on the conventions of MATLAB.

8.3 Interpolation 413

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0
Sample points on f(X,Y)

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0
method = ’nearest’

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0
method = ’linear’

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0
method = ’cubic’

Figure 8.19 Some different interpolation schemes for scipy.interpolate.griddata.

y = np.linspace(-1, 1, 100)

X, Y = np.meshgrid(x, y)

def f(x, y):

s = np.hypot(x, y)

phi = np.arctan2(y, x)

tau = s + s * (1 - s) / 5 * np.sin(6 * phi)

return 5 * (1 - tau) + tau

T = f(X, Y)

Choose npts random points from the discrete domain of our model function.

npts = 400

px, py = np.random.choice(x, npts), np.random.choice(y, npts)

fig, ax = plt.subplots(nrows=2, ncols=2)

Plot the model function and the randomly selected sample points.

ax[0, 0].contourf(X, Y, T)

ax[0, 0].scatter(px, py, c='k', alpha=0.2, marker='.')

ax[0, 0].set_title('Sample points on f(X, Y)')

Interpolate using three different methods and plot.

for i, method in enumerate(('nearest', 'linear', 'cubic')):

Ti = griddata((px, py), f(px, py), (X, Y), method=method)

r, c = (i + 1) // 2, (i + 1) % 2

ax[r, c].contourf(X, Y, Ti)

ax[r, c].set_title("method = '{}'".format(method))

fig.tight_layout()

plt.show()

414 SciPy

8.4 Optimization, Data-Fitting and Root-Finding

The scipy.optimize package provides a range of popular algorithms for minimization
of multidimensional functions (with or without additional constraints), least-squares
data-fitting and multidimensional equation solving (root-finding). This section will give
an overview of the more important options available, but it should be borne in mind
that the best choice of algorithm will depend on the individual function being analyzed.
For an arbitrary function, there is no guarantee that a particular method will converge
on the desired minimum (or root, etc.), or that if it does it will do so quickly. Some
algorithms are better suited to certain functions than others, and the more you know
about your function the better. SciPy can be configured to issue a warning message
when a particular algorithm fails, and this message can usually help to analyze the
problem.

Furthermore, the result returned often depends on the initial guess provided to the
algorithm – consider a two-dimensional function as a landscape with several valleys
separated by steep ridges: an initial guess placed within one valley is likely to lead most
algorithms to wander downhill and find the minimum in that valley (even if it isn’t the
global minimum) without climbing the ridges. Similarly, you might expect (but cannot
guarantee) that most numerical root-finders return the “nearest” root to the initial guess.

8.4.1 Minimization

SciPy’s optimization routines minimize a function of one or more variables, f (x1, x2,

. . . , xn). To find the maximum, one determines the minimum of − f (x1, x2, . . . , xn).
Some of the minimization algorithms only require the function itself to be evaluated;

others require its first derivative with respect to each of the variables in an array known
as the Jacobian:

J(f) =

(
∂ f
∂x1

,
∂ f
∂x2

, . . . ,
∂ f
∂xn

)
.

Some algorithms will attempt to estimate the Jacobian numerically if it cannot be pro-
vided as a separate function.

Furthermore, some sophisticated optimization algorithms require information about
the second derivatives of the function, a symmetric matrix of values called the Hessian:

H(f) =

∂2 f
∂x2

1

∂2 f
∂x2∂x1

· · ·
∂2 f

∂xn∂x1

∂2 f
∂x1∂x2

∂2 f
∂x2

2
· · ·

∂2 f
∂xn∂x2

...
...

. . .
...

∂2 f
∂x1∂xn

∂2 f
∂x2∂xn

· · ·
∂2 f
∂x2

n

.

Just as the Jacobian represents the local gradient of a function of several variables,
the Hessian represents the local curvature.

8.4 Optimization, Data-Fitting and Root-Finding 415

Unconstrained Minimization
The general algorithm for the minimization of multivariate scalar functions is
scipy.optimize.minimize, which takes two mandatory arguments:

minimize(fun, x0, ...)

The first is a function object, fun, for evaluating the function to be minimized: this
function should take an array of values, x, defining the point at which it is to be evalu-
ated (x1, x2, . . . , xn) followed by any further arguments it requires. The second required
argument, x0, is an array of values representing the initial guess for the minimization
algorithm to start at.

In this section we will demonstrate the use of minimize with Himmelblau’s function,
a simple two-dimensional function with some awkward features that make it a good
test-function for optimization algorithms. Himmelblau’s function is

f (x, y) = (x2 + y − 11)2 + (x + y2 − 7)2.

The region −5 ≤ x ≤ 5, −5 ≤ y ≤ 5 contains one local maximum,

f (−0.270845,−0.923039) = 181.617

(though the function climbs steeply outside of this region). There are four minima:

f (3, 2) = 0,

f (−2.805118, 3.131312) = 0,

f (−3.779310,−3.283186) = 0,

f (3.584428,−1.848126) = 0,

and four saddle points. Figure 8.20 shows a contour plot of the function.
The function may be defined in Python in the usual way:

In [x]: def f(X):

...: x, y = X

...: return (x**2 + y - 11)**2 + (x + y**2 - 7)**2

where for clarity we have unpacked the array, X, holding (x1, x2) into the named values
x1 ≡ x and x2 ≡ y.

To find a minimum, call minimize with some initial guess, say (x, y) = (0, 0):

In [x]: from scipy.optimize import minimize

In [x]: minimize(f, (0, 0))

jac: array([-8.77780211e-06, -3.52519449e-06])

message: 'Optimization terminated successfully.'

fun: 6.15694370233122e-13

njev: 16

hess_inv: array([[0.01575433, -0.00956965],

[-0.00956965, 0.03491686]])

status: 0

nfev: 64

success: True

x: array([2.99999989, 1.99999996])

416 SciPy

Table 8.5 Minimization information dictonary returned by scipy.optimize.minimize

Key Description

success A boolean value indicating whether or not the minimization was
successful

x If successful, the solution: the values of (x1, x2, . . . , xn) at which
the function is a minimum; if the algorithm was not successful, x
indicates the point at which it gave up

fun If successful, the value of the function at the minimum identified as x
message A string describing of the outcome of the minimization
jac The value of the Jacobian: if the minimization is successful the values

in this array should be close to zero
hess, hess_inv The Hessian and its inverse (if used)
nfev, njev, nhev The number of evaluations of the function, its Jacobian and its

Hessian

−4 −2 0 2 4

−4

−2

0

2

4

min1

min2

min3

min4

max

Figure 8.20 Contour plot of Himmelblau’s function.

minimize returns a dictionary-like object with information about the minimization.
The important fields are described in Table 8.5: if the minimization is successful, the
minimum appears as x in this object – here we have converged close to the minimum
f (3, 2) = 0.

The algorithm to be used by minimize is specified by setting its method argument to
one of the strings given in Table 8.6. The default algorithm, BFGS, is a good general-
purpose quasi-Newton method that can approximate the Jacobian if it is not provided
and does not use the Hessian. However, it struggles to find the maximum of Himmel-
blau’s function:

In [x]: mf = lambda X: -f(X) # to find the maximum, minimize -f(x, y)

In [x]: minimize(mf, (0.1, -0.2))

Out[x]:

fun: -1.2100579056485772e+35

8.4 Optimization, Data-Fitting and Root-Finding 417

Table 8.6 Some of the minimization methods used by scipy.optimize.minimize

method Description

BFGS Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm, the default for min-
imization without constraints or bounds

Nelder�Mead Nelder–Mead algorithm, also known as the downhill simplex or amoeba
method; no derivatives are needed

CG Conjugate gradient method
Powell Powell’s method (no derivatives are needed with this algorithm)
dogleg Dog-leg trust-region algorithm (unconstrained minimization); requires the

Jacobian and the Hessian (which must be positive-definite)
TNC Truncated Newton algorithm for minimization within bounds
l-bfgs-b Bound-constrained minimization with the L-BFGS-B algorithm
slsqp “Sequential least-squares programming” method for minimization with

bounds and equality and inequality constraints
cobyla “Constrained optimization by linear approximation” method for constrained

minimization

hess_inv: array([[0.254751 , -0.43222419],

[-0.43222419, 0.83976276]])

jac: array([0., 0.])

message: 'Optimization terminated successfully.'

nfev: 68

nit: 2

njev: 17

status: 0

success: True

x: array([3.45579856e+08, -5.71590777e+08])

Starting at (0.1,−0.2), the BFGS algorithm has wandered up one of the steep sides of
the Himmelblau function and failed to converge. Unfortunately, in this case it doesn’t
know it failed and returned True in the success flag (you may or may not see an error
message: 'Desired error not necessarily achieved due to precision loss.',
depending on the precise setup of your system). In fact, we need to start quite close to
the maximum to be sure of success:

In [x]: minimize(mf, (-0.2,-1))

Out[x]:

jac: array([3.81469727e-06, 1.90734863e-06])

message: 'Optimization terminated successfully.'

fun: -181.61652152258262

njev: 8

hess_inv: array([[0.0232834 , -0.00626945],

[-0.00626945, 0.06137267]])

status: 0

nfev: 32

success: True

x: array([-0.27084453, -0.92303852])

This is, of course, not much help if we don’t know in advance where the maximum is!
Let’s try a different minimization algorithm, starting at our arbitrary guess, (0, 0):

418 SciPy

In [x]: minimize(mf, (0, 0), method='Nelder-Mead')

Out[x]:

status: 0

nfev: 115

success: True

message: 'Optimization terminated successfully.'

fun: -181.61652150549165

nit: 59

x: array([-0.27086815, -0.92300745])

The Nelder–Mead algorithm is a simplex method that does not need or estimate the
derivatives of the function, so it isn’t tempted up the steep sides of the function. How-
ever, it has taken 115 function evaluations to converge on the local maximum.

As a final example, consider the dogleg method, which requires minimize to be
passed functions evaluating the Jacobian and the Hessian. The necessary derivatives
have simple analytical forms for Himmelblau’s function:

∂ f
∂x

= 4x(x2 + y − 11) + 2(x + y2 − 7),

∂ f
∂y

= 2(x2 + y − 11) + 4y(x + y2 − 7),

∂2 f
∂x2 = 12x2 + 4y − 42,

∂2 f
∂y2 = 12y2 + 4x − 26,

∂2 f
∂y∂x

=
∂2 f
∂x∂y

= 4x + 4y.

The Jacobian and Hessian can be coded up as follows:

In [x]: def df(X):

...: x, y = X

...: f1, f2 = x**2 + y - 11, x + y**2 - 7

...: dfdx = 4*x*f1 + 2*f2

...: dfdy = 2*f1 + 4*y*f2

...: return np.array([dfdx, dfdy])

...:

In [x]: def ddf(X):

...: x, y = X

...: d2fdx2 = 12*x**2 + 4*y - 42

...: d2fdy2 = 12*y**2 + 4*x - 26

...: d2fdxdy = 4*(x + y)

...: return np.array([[d2fdx2, d2fdxdy], [d2fdxdy, d2fdy2]])

...:

Ê In [x]: mdf = lambda X: -df(X)

In [x]: mddf = lambda X: -ddf(X)

Ê Note that as with the function itself, we need to use the negative of the Jacobian and
Hessian if we seek the maximum: these are defined as lambda functions mdf and mddf.

In [x]: minimize(mf, (0, 0), jac=mdf, hess=mddf, method='dogleg')

Out[x]:

jac: array([-1.26922473e-10, 1.23685240e-09])

8.4 Optimization, Data-Fitting and Root-Finding 419

message: 'Optimization terminated successfully.'

fun: -181.6165215225827

hess: array([[44.81187272, 4.77553259],

[4.77553259, 16.85937624]])

nit: 4

njev: 5

x: array([-0.27084459, -0.92303856])

status: 0

nfev: 5

success: True

nhev: 4

The algorithm has converged successfully on the local maximum in five function eval-
uations, five Jacobian evaluations and four Hessian evaluations.

♦ Constrained Optimization
Sometimes it is necessary to find the maximum or minimum of a function subject to
one or more constraints. To use the earlier mentioned function as an example, you may
wish for the single minimum of f (x, y) that satisfies x > 0, y > 0; or the minimum value
of the function along the line x = y.

The algorithms l-bfgs-b, tnc and slsqp support the bounds argument to minimize.
bounds is a sequence of tuples, each giving the (min, max) pairs for each variable of the
function defining the bounds on that variable to the minimization. If there is no bound
in either direction, use None.

For example, if we try to find a minimum in f (x, y) starting at (− 1
2 ,−

1
2) without spec-

ifying any bounds, the slsqp method converges (just about) on the one at (−2.805118,
3.131312):

In [x]: minimize(f, (-0.5,-0.5), method='slsqp')

Out[x]:

jac: array([-0.00721077, 0.00037714, 0.])

message: 'Optimization terminated successfully.'

fun: 4.0198760213901536e-07

nit: 10

njev: 10

x: array([-2.80522924, 3.131319])

status: 0

nfev: 46

success: True

To stay in the quadrant x < 0, y < 0, set bounds with no minimum on x or y and a
maximum bound at x = 0 and y = 0:

In [x]: xbounds = (None, 0)

In [x]: ybounds = (None, 0)

In [x]: bounds = (xbounds, ybounds)

In [x]: minimize(f, (-0.5,-0.5), bounds=bounds, method='slsqp')

Out[x]:

jac: array([-0.00283595, -0.00034243, 0.])

message: 'Optimization terminated successfully.'

fun: 4.115667606325133e-08

nit: 11

njev: 11

420 SciPy

x: array([-3.77933774, -3.28319868])

status: 0

nfev: 50

success: True

Suppose we wish to find the extrema of Himmelblau’s function that also satisfy
the condition x = y (that is, they lie along the diagonal of Figure 8.20). Two of the
minimization methods listed in Table 8.6 allow for constraints, cobyla and slsqp, so
we must use one of these.

Constraints are specified as the argument constraints to the minimize function as a
sequence of dictionaries defining string keys: 'type', the type of constraint; and 'fun',
a callable object implementing the constraint. 'type' may be 'eq' or 'ineq' for a
constraint based on an equality (such as x = y) or an inequality (e.g. x > 2y − 1). Note
that cobyla does not support equality constraints.

An equality constraint function should return zero if the constraint function is met;
an inequality constraint function should return a non-negative value if the inequality is
met.

To find the minima in f (x, y) subject to the constraint x = y, we can use the slsqp

method with an equality constraint function returning x − y:

In [x]: con = {'type': 'eq', 'fun': lambda X: X[0] - X[1]}

In [x]: minimize(f, (0, 0), constraints=con, method='slsqp')

jac: array([-16.33084416, 16.33130538, 0.])

message: 'Optimization terminated successfully.'

fun: 8.0000000007160867

nit: 7

njev: 7

x: array([2.54138438, 2.54138438])

status: 0

nfev: 32

success: True

The method converged on one of the minima (there is another: start at, for example,
(−2,−2) to find it). What about the maximum?

In [x]: minimize(mf, (0, 0), constraints=con, method='slsqp')

Out[x]:

jac: array([0., 0., 0.])

message: 'Singular matrix C in LSQ subproblem'

fun: -3.1826053300603689e+68

nit: 4

njev: 4

x: array([-1.12315113e+17, -1.12315113e+17])

status: 6

nfev: 16

success: False

That didn’t go so well – the algorithm wandered up the side of a valley. A better choice
of algorithm here is cobyla, but this method doesn’t support equality constraints, so we
will build one from a pair of inequalities: x = y if both of x > y and x < y are not
satisified:

In [x]: con1 = {'type': 'ineq', 'fun': lambda X: X[0] - X[1]}

8.4 Optimization, Data-Fitting and Root-Finding 421

−6 −4 −2 0 2 4 6 8
x

−200

−150

−100

−50

0

50

100

150

200

f
(x

)

Figure 8.21 The polynomial f (x) = x4 − 3x3 − 24x2 + 28x + 48.

In [x]: con2 = {'type': 'ineq', 'fun': lambda X: X[1] - X[0]}

In [x]: minimize(mf, (0, 0), constraints=(con1, con2), method='cobyla')

Out[x]:

status: 1

nfev: 34

success: True

message: 'Optimization terminated successfully.'

fun: -179.12499987327624

maxcv: 0.0

x: array([-0.49994148, -0.49994148])

Here, the constraint function defined in con1 returns a non-negative value if x > y and
that defined in con2 returns a non-negative value if x < y. The only way both can be
satisfied is if x = y.

Minimizing a Function of One Variable
If the function to be minimized is univariate (i.e. takes only one, scalar, variable), a
faster algorithm is provided by scipy.optimize.minimize_scalar. To simply return a
minimum, this function can be called with method='brent', which implements Brent’s
method for locating a minimum.

Ideally, one should “bracket” the minimum first by providing values for x, (a, b, c)
such that f (a) > f (b) and f (c) > f (b). This can be done with the bracket argument
which takes the tuple (a, b, c). If this isn’t possible or feasible, provide an interval of
two values of x on which to start a search for such a bracket (in the downhill direction).
If no bracket argument is specified, this search is initiated from the interval (0, 1).

Figure 8.21 gives an example polynomial with two minima and a maximum.
With no bracket, minimize_scalar converges on the minimum at −2.841 for this

function:

422 SciPy

In [x]: Polynomial = np.polynomial.Polynomial

In [x]: from scipy.optimize import minimize_scalar

In [x]: f = Polynomial((48., 28., -24., -3., 1.))

In [x]: minimize_scalar(f)

Out[x]:

fun: -91.32163915433344

nfev: 11

x: -2.8410443265958261

nit: 10

If we bracket the other minimum by providing values (a, b, c)=(3, 4, 6), which
can be seen from Figure 8.21 to satisfy f (a) > f (b) < f (c), the algorithm converges on
4.549:

In [x]: minimize_scalar(f, bracket=(3, 4, 6))

Out[x]:

fun: -175.45563549487974

nfev: 11

x: 4.5494683642571934

nit: 10

Finally, to find the maximum, call minimize_scalar with − f (x). This time, we will
initialize a search for a bracket to the minimum of − f (x) with the pair of values (−1, 0):

In [x]: minimize_scalar(-f, bracket=(-1, 0))

Out[x]:

fun: -55.734305899213226

nfev: 9

x: 0.54157595897344157

nit: 8

Example E8.23 A simple model for the envelope of an airship treats it as the volume
of revolution obtained from a pair of quarter-ellipses joined at their (equal) semi-minor
axes. The semi-major axis of the aft ellipse is taken to be longer than that representing
the bow by a factor α = 6. Equations describing the cross section (in the vertical plane)
of the airship envelope may be written

y =

b
a

√
x(2a − x) (x ≤ a),

b
a

√
a2 −

(x−a)2

α2 (a < x ≤ α(a + 1)).

The drag on the envelope is given by the formula

D = 1
2ρairv2V2/3CDV,

where ρair is the air density, v the speed of the airship, V the envelope volume and the
drag coefficient, CDV, is estimated using the following empirical formula:11

CDV = Re−1/6[0.172(l/d)1/3 + 0.252(d/l)1.2 + 1.032(d/l)2.7].

Here, Re = ρairvl/µ is the Reynold’s number and µ the dynamic viscosity of the air. l
and d are the airship length and maximum diameter (= 2b), respectively.

11 S. F. Hoerner, Fluid Dynamic Drag, Hoerner Fluid Dynamics (1965).

8.4 Optimization, Data-Fitting and Root-Finding 423

Suppose we want to minimize the drag with respect to the parameters a and b but fix
the total volume of the airship envelope, V = 2

3πab2(1+α). The following program does
this using the slsqp algorithm, for a volume of 200 000 m3, that of the Hindenburg.

Listing 8.19 Minimizing the drag on an airship envelope

eg8-airship.py

import numpy as np

from scipy.optimize import minimize

Air density (kg.m-3) and dynamic viscosity (Pa.s) at cruise altitude.

rho, mu = 1.1, 1.5e-5

Air speed (m.s-1) at cruise altitude.

v = 30

def CDV(L, d):

""" Calculate the drag coefficient. """

Re = rho * v * L / mu # Reynold ' s number
r = L / d # "fineness" ratio

return (0.172 * r**(1/3) + 0.252 / r**1.2 + 1.032 / r**2.7) / Re**(1/6)

def D(X):

""" Return the total drag on the airship envelope. """

a, b = X

L = a * (1+alpha)

return 0.5 * rho * v**2 * V(X)**(2/3) * CDV(L, 2*b)

Fixed total volume of the airship envelope (m3).

V0 = 2.e5

Parameter describing the tapering of the stern of the envelope.

alpha = 6

def V(X):

""" Return the volume of the envelope. """

a, b = X

return 2 * np.pi * a * b**2 * (1+alpha) / 3

Minimize the drag, constraining the volume to be equal to V0.

a0, b0 = 70, 45 # initial guesses for a, b

con = {'type': 'eq', 'fun': lambda X: V(X)-V0}

res = minimize(D, (a0, b0), method='slsqp', constraints=con)

if res['success']:

a, b = res['x']

L, d = a * (1+alpha), 2*b # length, greatest diameter

print('Optimum parameters: a = {:g} m, b = {:g} m'.format(a, b))

print('V = {:g} m3'.format(V(res['x'])))

print('Drag, D = {:g} N'.format(res['fun']))

print('Total length, L = {:g} m'.format(L))

print('Greatest diameter , d = {:g} m'.format(d))

print('Fineness ratio, L/d = {:g}'.format(L/d))

else:

We failed to converge: output the results dictionary.

print('Failed to minimize D!', res, sep='\n')

This example is a little contrived, since for fixed α the requirement that V be constant
means that a and b are not independent, but a solution is found readily enough:

424 SciPy

Optimum parameters: a = 32.9301 m, b = 20.3536 m

V = 200000 m3

Drag, D = 20837.6 N

Total length, L = 230.51 m

Greatest diameter , d = 40.7071 m

Fineness ratio, L/d = 5.66266

The actual dimensions of the Hindenburg were l = 245 m, d = 41 m giving the ratio
l/d = 5.98; so we didn’t do too badly.

8.4.2 Nonlinear Least-Squares Fitting

SciPy’s general nonlinear least-squares fitting routine is scipy.optimize.leastsq,
which has as its most basic call signature:

scipy.optimize.leastsq(func, x0, args=()).
This will attempt to fit a sequence of data points, y, to a model function, f, which
depends on one or more fit parameters. leastsq is passed a related function object, func,
which returns the difference between y and f (the residuals). leastsq also requires an
initial guess for the fitted parameters, x0. If func requires any other arguments (typically,
arrays of the data, y, and one or more independent variables), pass them in the sequence
args. For example, consider fitting the artificial noisy decaying cosine function, f (t) =

Ae−t/τ cos 2πνt (Figure 8.22).

In [x]: import numpy as np

In [x]: import matplotlib.pyplot as plt

In [x]: A, freq, tau = 10, 4, 0.5

In [x]: def f(t, A, freq, tau):

...: return A * np.exp(-t/tau) * np.cos(2*np.pi * freq * t)

...:

In [x]: tmax, dt = 1, 0.01

In [x]: t = np.arange(0, tmax, dt)

In [x]: yexact = f(t, A, freq, tau)

In [x]: y = yexact + np.random.randn(len(yexact))*2

In [x]: plt.plot(t, yexact)

In [x]: plt.plot(t, y)

In [x]: plt.show()

To fit this noisy data, y, to the parameters A, freq and tau (pretending we don’t know
them), we first define our residuals function:

In [x]: def residuals(p, y, t):

...: A, freq, tau = p

...: return y - f(t, A, freq, tau)

The first argument is the sequence of parameters, p, which we unpack into named
variables for clarity. The additional arguments needed are the data points, y, and the
independent variable, t. Now make some initial guesses for the parameters that aren’t
too wildly off and call leastsq:

In [x]: from scipy.optimize import leastsq

In [x]: p0 = 5, 5, 1

8.4 Optimization, Data-Fitting and Root-Finding 425

0.0 0.2 0.4 0.6 0.8 1.0
−15

−10

−5

0

5

10

15

Figure 8.22 A synthetic noisy decaying cosine function.

In [x]: plsq = leastsq(residuals , p0, args=(y, t))

In [x]: plsq[0]

Out[x]: [9.33962672 4.04958427 0.48637434]

As with SciPy’s other optimization routines, leastsq can be configured to return more
information about its working, but here we report only the solution (best-fit parameters),
which is always the first item in the plsq tuple.

The true values are A, freq, tau = 10, 4, 0.5, so given the noise we haven’t done
badly. Graphically,

In [x]: plt.plot(t, y, 'o', c='k', label='Data')

In [x]: plt.plot(t, yexact, c='gray', label='Exact')

In [x]: pfit = plsq[0]

In [x]: plt.plot(t, f(t, *pfit), c='k', label='Fit')

In [x]: plt.legend()

In [x]: plt.show()

The fit is illustrated in Figure 8.23.
If it is known, it is also possible to pass the Jacobian to leastsq, as the following

example demonstrates.

Example E8.24 In this example, we are given a noisy series of data points that we
want to fit to an ellipse. The equation for an ellipse may be written as a nonlinear
function of angle θ (0 ≤ θ < 2π), which depends on the parameters a (the semi-major
axis) and e (the eccentricity):

r(θ; a, e) =
a(1 − e2)

1 − e cos θ
.

To fit a sequence of data points (θ, r) to this function, we first code it as a Python function
taking two arguments: the independent variable, theta, and a tuple of the parameters,

426 SciPy

Figure 8.23 Non-linear least-squares fit to a noisy decaying cosine function.

p = (a, e). The function we wish to minimize is the difference between this model
function and the data, r, defined as the method residuals:

def f(theta, p):

a, e = p

return a * (1 - e**2)/(1 - e*np.cos(theta))

def residuals(p, r, theta):

return r - f(theta, p)

We also need to give leastsq an initial guess for the fit parameters, say p0 = (1,

0.5). The simplest call to fit the function would then pass to leastsq the function
object, residuals; the initial guesses, p0; and args=(r, theta), the additional argu-
ments needed by the residuals function:

plsq = leastsq(residuals , p0, args=(r, theta))

If at all possible, however, it is better to also provide the Jacobian (the first derivative
of the fit function with respect to the parameters to be fitted). Expressions for these are
straightforward to calculate and implement:

∂ f
∂a

=
(1 − e2)

1 − e cos θ
,

∂ f
∂e

=
a[cos θ(1 + e2) − 2e]

(1 − e cos θ)2 .

However, the function we wish to minimize is the residuals function, r− f , so we need
the negatives of these derivatives. Here is the working code and the fit result (Figure
8.24).

Listing 8.20 Nonlinear least squares-fit to an ellipse

eg8-leastsq.py

8.4 Optimization, Data-Fitting and Root-Finding 427

Figure 8.24 Nonlinear least-squares fitting of data to the equation of an ellipse in polar
coordinates.

import numpy as np

from scipy import optimize

import matplotlib.pyplot as plt

def f(theta, p):

a, e = p

return a * (1 - e**2)/(1 - e*np.cos(theta))

The data to fit.

theta = np.array([0.0000, 0.4488, 0.8976, 1.3464, 1.7952, 2.2440, 2.6928,

3.1416, 3.5904, 4.0392, 4.4880, 4.9368, 5.3856, 5.8344, 6.2832])

r = np.array([4.6073, 2.8383, 1.0795, 0.8545, 0.5177, 0.3130, 0.0945, 0.4303,

0.3165, 0.4654, 0.5159, 0.7807, 1.2683, 2.5384, 4.7271])

def residuals(p, r, theta):

""" Return the observed - calculated residuals using f(theta, p). """

return r - f(theta, p)

def jac(p, r, theta):

""" Calculate and return the Jacobian of residuals. """

a, e = p

da = (1 - e**2)/(1 - e*np.cos(theta))

de = a * (np.cos(theta) * (1 + e**2) - 2*e) / (1 - e*np.cos(theta))**2

return -da, -de

Initial guesses for a, e.

p0 = (1, 0.5)

plsq = optimize.leastsq(residuals , p0, Dfun=jac, args=(r, theta), col_deriv=True)

print(plsq)

plt.polar(theta, r, 'x')

428 SciPy

theta_grid = np.linspace(0, 2*np.pi, 200)

plt.polar(theta_grid , f(theta_grid , plsq[0]), lw=2)

plt.show()

SciPy also includes a curve-fitting function, scipy.optimize.curve_fit, that can fit
data to a function directly (without the need for an additional function to calculate the
residuals) and supports weighted least-squares fitting. The call signature is

curve_fit(f, xdata, ydata, p0, sigma, absolute_sigma)

where f is the function to fit to the data (xdata, ydata). p0 is the initial guess for
the parameters, and sigma, if provided, gives the weights of the ydata values. If
absolute_sigma is True, these are treated as one standard deviation error (that is,
absolute weights); the default, absolute_sigma=False, treats them as relative weights.

The curve_fit function returns popt, the best-fit values of the parameters, and pcov,
the covariance matrix of the parameters.

Example E8.25 To illustrate the use of curve_fit in weighted and unweighted least-
squares fitting, the following program fits the Lorentzian line shape function centered
at x0 with a HWHM of γ and an amplitude, A:

f (x) =
Aγ2

γ2 + (x − x0)2 ,

to some artificial noisy data. The fit parameters are A, γ and x0. The data close to the
line center are simulated as being much noisier than the rest.

Listing 8.21 Weighted and unweighted least-squares fitting with curve_fit

eg8-curve-fit.py

import numpy as np

from scipy.optimize import curve_fit

import matplotlib.pyplot as plt

x0, A, gamma = 12, 3, 5

n = 200

x = np.linspace(1, 20, n)

yexact = A * gamma**2 / (gamma**2 + (x-x0)**2)

Add some noise with a sigma of 0.5 apart from a particularly noisy region

near x0 where sigma is 3.

sigma = np.ones(n)*0.5

sigma[np.abs(x-x0+1)<1] = 3

noise = np.random.randn(n) * sigma

y = yexact + noise

def f(x, x0, A, gamma):

""" The Lorentzian entered at x0 with amplitude A and HWHM gamma. """

return A *gamma**2 / (gamma**2 + (x-x0)**2)

8.4 Optimization, Data-Fitting and Root-Finding 429

def rms(y, yfit):

return np.sqrt(np.sum((y-yfit)**2))

Unweighted fit.

p0 = 10, 4, 2

popt, pcov = curve_fit(f, x, y, p0)

yfit = f(x, *popt)

print('Unweighted fit parameters:', popt)

print('Covariance matrix:'); print(pcov)

print('rms error in fit:', rms(yexact, yfit))

print()

Weighted fit.

popt2, pcov2 = curve_fit(f, x, y, p0, sigma=sigma, absolute_sigma=True)

yfit2 = f(x, *popt2)

print('Weighted fit parameters:', popt2)

print('Covariance matrix:'); print(pcov2)

print('rms error in fit:', rms(yexact, yfit2))

plt.plot(x, yexact, label='Exact')

plt.errorbar(x, y, yerr=noise, elinewidth=0.5, c='0.5', marker='+',

lw=0, label='Noisy data')

plt.plot(x, yfit, label='Unweighted fit')

plt.plot(x, yfit2, label='Weighted fit')

plt.ylim(-1, 4)

plt.legend(loc='lower center')

plt.show()

5 10 15 20
1

0

1

2

3

4

Exact

Unweighted fit

Weighted fit

Noisy data

Figure 8.25 Example of least-squares fit with scipy.optimize.curve_fit.

430 SciPy

As Figure 8.25 shows, the unweighted fit is thrown off by the noisy region. Data in
this region are given a lower weight in the weighted fit and so the parameters are closer
to their true values and the fit is better. The output is

Unweighted fit parameters: [11.61282984 3.64158981 3.93175714]

Covariance matrix:

[[0.0686249 -0.00063262 0.00231442]

[-0.00063262 0.06031262 -0.07116127]

[0.00231442 -0.07116127 0.16527925]]

rms error in fit: 4.10434012348

Weighted fit parameters: [11.90782988 3.0154818 4.7861561]

Covariance matrix:

[[0.01893474 -0.00333361 0.00639714]

[-0.00333361 0.01233797 -0.02183039]

[0.00639714 -0.02183039 0.06062533]]

rms error in fit: 0.694013741786

8.4.3 Root-Finding

scipy.optimize provides several methods for obtaining the roots of both univariate and
multivariate functions. Only the algorithms relating to functions of a single variable,
brentq, brenth, ridder and bisect, are described here. Each of these methods requires
a continuous function, f (x), and a pair of numbers defining a bracketing interval for
the root to find; that is, values a and b such that the root lies in the interval [a, b] and
sgn[f (a)] = −sgn[f (b)]. Details of the algorithms behind these root-finding methods
can be found in standard textbooks on numerical analysis.12

In general, the method of choice for finding the root of a well-behaved function is
scipy.optimize.brentq, which implements a version of Brent’s method with inverse
quadratic extrapolation (scipy.optimize.brenth is a similar algorithm but with hyper-
bolic extrapolation). As an example, consider the following function for −1 ≤ x ≤ 1:

f (x) =
1
5

+ x cos
(

3
x

)
.

A plot of this function (Figure 8.26) suggests there is a root between −0.7 and −0.5:

In [x]: f = lambda x: 0.2 + x*np.cos(3/x)

In [x]: x = np.linspace(-1, 1, 1000)

In [x]: plt.plot(x, f(x))

In [x]: plt.axhline(0, color='k')

In [x]: plt.show()

In [x]: from scipy.optimize import brentq

In [x]: brentq(f, -0.7, -0.5)

Out[x]: -0.5933306271014237

12 For example, Press et al., Numerical Recipes. The Art of Scientific Computing, 3rd edn., Cambridge
University Press, Cambridge (2007).

8.4 Optimization, Data-Fitting and Root-Finding 431

−1.0 −0.5 0.0 0.5 1.0
x

−1.0

−0.5

0.0

0.5

1.0

1.5

f
(x

)

Figure 8.26 The function f (x) = 1
5 + x cos(3/x) and its roots.

The algorithm for root-finding known as Ridder’s method is implemented in the func-
tion scipy.optimize.ridder and the slower but very reliable (for continuous functions)
method of bisection is scipy.optimize.bisect.

Finally, root-finding by the Newton–Raphson algorithm can be very fast (quadratic)
for many continuous functions, provided the first derivative, f ′(x), can be calculated.
For functions for which an analytical expression for f ′(x) can be coded, this is passed
to the method scipy.optimize.newton as the argument fprime, along with a starting
point, x0, which should (in general) be as near to the root as possible. It is not necessary
to bracket the root. If the f ′(x) cannot be provided, the secant method is used by newton.
If you are in the happy position of being able to provide the second derivative, f ′′(x),
as fprime2 as well as the first, Halley’s method (which converges even faster than the
basic Newton–Raphson algorithm) is used instead.

Note that the stopping condition within the iterative algorithm used by newton is the
step size so there is no guarantee that it has converged on the desired root: the result
should be verified by evaluating the function at the returned value to check that it is
(close to) zero.

Example E8.26 In ecology, the Euler–Lotka equation describes the growth of a pop-
ulation in terms of P(x), the fraction of individuals alive at age x, and m(x), the mean
number of live females born per time period per female alive during that time period:

β∑
x=α

P(x)m(x)e−rx = 1,

where α and β are the boundary ages for reproduction defining the discrete growth rate,
λ = er. r = ln λ is known as Lotka’s intrinsic rate of natural increase.

432 SciPy

Table 8.7 Population data for voles
measured by Leslie and Ranson

x /weeks m(x) P(x)

8 0.6504 0.83349
16 2.3939 0.73132
24 2.9727 0.58809
32 2.4662 0.43343
40 1.7043 0.29277
48 1.0815 0.18126
56 0.6683 0.10285
64 0.4286 0.05348
72 0.3000 0.02549

In a paper by Leslie and Ranson,13 P(x) and m(x) were measured for a population
of voles (Microtus agrestis) using a time period of eight weeks. The data are given in
Table 8.7.

The sum R0 =
∑β

x=α P(x)m(x) gives the ratio between the total number of female
births in successive generations; a population grows if R0 > 1 and r determines how
fast this growth is. In order to find r, Leslie and Ranson used an approximate numerical
method; the code mentioned here determines r by finding the real root of the Lotka-
Euler equation directly (it can be shown that there is only one root).

Listing 8.22 Solution of the Euler–Lotka equation

eg8-euler-lotka.py

import numpy as np

from scipy.optimize import brentq

The data, from Table 6 of:

P. H. Leslie and R. M. Ranson, J. Anim. Ecol. 9, 27 (1940).

x = np.linspace(8, 72, 9)

m = np.array([0.6504, 2.3939, 2.9727, 2.4662, 1.7043,

1.0815, 0.6683, 0.4286, 0.3000])

P = np.array([0.83349, 0.73132, 0.58809, 0.43343, 0.29277,

0.18126, 0.10285, 0.05348, 0.02549])

Calculate the product sequence f and R0, the ratio between the number of

female births in successive generations.

f = P * m

R0 = np.sum(f)

if R0 > 1:

msg = 'R0 > 1: population grows'

else:

msg = 'Population does not grow'

The Euler-Lotka equation: we seek the one real root in r.

def func(r):

13 P. H. Leslie and R. M. Ranson, The mortality, fertility and rate of natural increase of the vole (Microtus
agrestis) as observed in the laboratory, J. Anim. Ecol. 9, 27 (1940).

8.4 Optimization, Data-Fitting and Root-Finding 433

return np.sum(f * np.exp(-r * x)) - 1

Bracket the root and solve with scipy.optimize.brentq.

a, b = 0, 10

r = brentq(func, a, b)

print('R0 = {:.3f} ({})'.format(R0, msg))

print('r = {:.5f} (lambda = {:.5f})'.format(r, np.exp(r)))

The output of this program is as follows:

R0 = 5.904 (R0 > 1: population grows)

r = 0.08742 (lambda = 1.09135)

This value of r may be compared with the approximate value obtained by Leslie and
Ranson, who comment:

The required root is 0.087703 which slightly overestimates the value of r, to which the series is
approaching. This lies between 0.0861 (the third degree approximation) and 0.0877, but nearer
the latter than the former, the error being probably in the last decimal place.

Example E8.27 The Newton–Raphson method for finding the roots of a function
takes an initial guess to a root, x0, and seeks successively better approximations of it
as:

xn+1 = xn −
f (xn)
f ′(xn)

.

That is, at each iteration, the root is approximated as xn+1, the x-axis intercept of the
tangent to the graph at f (xn). When applied to functions of a complex variable z, the
method can be used to create interesting fractals by considering which root it converges
to for a set of numbers in the complex plane. The code below generates a fractal image
(Figure 8.27) by coloring those points in the complex plane used as the initial guess by
the root found.

Listing 8.23 Generating a Newton fractal image

import numpy as np

import matplotlib.pyplot as plt

from matplotlib.colors import ListedColormap

A list of colors to distinguish the roots.

colors = ['b', 'r', 'g', 'y']

TOL = 1.e-8

def newton(z0, f, fprime, MAX_IT=1000):

"""The Newton-Raphson method applied to f(z).

Returns the root found, starting with an initial guess, z0, or False

if no convergence to tolerance TOL was reached within MAX_IT iterations.

"""

434 SciPy

z = z0

for i in range(MAX_IT):

dz = f(z)/fprime(z)

if abs(dz) < TOL:

return z

z -= dz

return False

def plot_newton_fractal(f, fprime, n=200, domain=(-1, 1, -1, 1)):

"""Plot a Newton Fractal by finding the roots of f(z).

The domain used for the fractal image is the region of the complex plane

(xmin, xmax, ymin, ymax) where z = x + iy, discretized into n values along

each axis.

"""

roots = []

m = np.zeros((n, n))

def get_root_index(roots, r):

"""Get the index of r in the list roots.

If r is not in roots, append it to the list.

"""

try:

return np.where(np.isclose(roots, r, atol=TOL))[0][0]

except IndexError:

roots.append(r)

return len(roots) - 1

xmin, xmax, ymin, ymax = domain

for ix, x in enumerate(np.linspace(xmin, xmax, n)):

for iy, y in enumerate(np.linspace(ymin, ymax, n)):

z0 = x + y*1j

r = newton(z0, f, fprime)

if r is not False:

ir = get_root_index(roots, r)

m[iy, ix] = ir

nroots = len(roots)

if nroots > len(colors):

Use a "continuous" colormap if there are too many roots.

cmap = 'hsv'

else:

Use a list of colors for the colormap: one for each root.

cmap = ListedColormap(colors[:nroots])

plt.imshow(m, cmap=cmap, origin='lower')

plt.axis('off')

plt.show()

f = lambda z: z**4 - 1

fprime = lambda z: 4*z**3

8.4 Optimization, Data-Fitting and Root-Finding 435

Figure 8.27 The Newton fractal for the function f (z) = z4 − 1. Intricate, self-similar structures
are seen for initial guesses, z0, in between the roots (−1, 1,−i, i).

plot_newton_fractal(f, fprime, n=500)

8.4.4 Exercises

Questions

Q8.4.1 Use scipy.optimize.brentq to find the solutions to the equation

x + 1 = −
1

(x − 3)3 .

Q8.4.2 The scipy.optimize.newton method fails to find a root of the following func-
tions with the given starting point, x0. Explain why and find the roots either by modify-
ing the call to newton or by using a different method.

(a)

f (x) = x3 − 5x, x0 = 1.

(b)

f (x) = x3 − 3x + 1, x0 = 1.

(c)

f (x) = 2 − x5, x0 = 0.01.

436 SciPy

(d)

f (x) = x4 − (4.29)x2 − 5.29, x0 = 0.8.

Q8.4.3 The trajectory of a projectile in the xz-plane launched from the origin at an
angle θ0 with speed v0 = 25 m s−1 is

z = x tan θ0 −
g

2v2
0 cos2 θ0

x2.

If the projectile passes through the point (5, 15), use Brent’s method to determine the
possible values of θ0.

Problems

P8.4.1 A rectangular field with area A = 10 000 m3 is to be fenced off beside a
straight river (the boundary with the river does not need to be fenced). What dimensions
a, b minimize the amount of fencing required? Verify that a constrained minimization
algorithm gives the same answer as the algebraic analysis.

P8.4.2 Find all of the roots of

f (x) =
1
5

+ x cos
(

3
x

)
using (a) scipy.optimize.brentq and (b) scipy.optimize.newton.

P8.4.3 The Wien displacement law predicts that the wavelength of maximum emis-
sion from a black body described by Planck’s law is proportional to 1/T :

λmaxT = b,

where b is a constant known as Wien’s displacement constant. Given the Planck distri-
bution of emitted energy density as a function of wavelength,

u(λ,T) =
8π2hc
λ5

1
ehc/λkBT − 1

,

determine the constant b by using scipy.optimize.minimize_scalar to find the max-
imum in u(λ,T) for temperatures in the range 500 K ≤ T ≤ 6000 K and fitting λmax

to a straight line against 1/T . Compare with the “exact” value of b, which is available
within scipy.constants (see Section 8.1.1).

P8.4.4♦ Consider a one-dimensional quantum mechanical particle in a box (−1≤ x≤ 1)
described by the Schrödinger equation:

−
d2ψ

dx2 = Eψ,

in energy units for which ~2/(2m) = 1, with m the mass of the particle. The exact
solution for the ground state of this system is given by

ψ = cos
(
πx
2

)
, E =

π2

4
.

8.4 Optimization, Data-Fitting and Root-Finding 437

An approximate solution may be arrived at using the variational principle by minimiz-
ing the expectation value of the energy of a trial wavefunction,

ψtrial =

N∑
n=0

anφn(x)

with respect to the coefficients an. Taking the basis functions to have the following
symmetrized polynomial form,

φn = (1 − x)N−n+1(x + 1)n+1,

use scipy.optimize.minimize and scipy.integrate.quad to find the optimum value
of the expectation value (Rayleigh–Ritz ratio):

E =
〈ψtrial|Ĥ|ψtrial〉

〈ψtrial|ψtrial〉
= −

∫ 1
−1 ψtrial

d2

dx2ψtrial dx∫ 1
−1 ψtrialψtrial dx

.

Compare the estimated energy, E, with the exact answer for N = 1, 2, 3, 4. (Hint: use
np.polynomial.Polynomial objects to represent the basis and trial wavefunctions.)

9 Data Analysis with pandas

9.1 Introduction to pandas

9.1.1 What is pandas?

pandas is a widely-used, open-source Python library for data manipulation and analysis.
Unlike NumPy, its basic array-like data structure, the DataFrame object, can contain
heterogeneous data types (floats, integers, strings, dates, etc.) that may be structured in
a hierarchy and indexed. It provides a large number of vectorized functions for cleaning,
transforming and aggregating data efficiently using similar idioms to those used by
NumPy. Its name derives from the term “panel data” (otherwise known as “longitudinal
data”), which refers to data sets of several variables followed over multiple time periods
for the same individual.

The pandas homepage, https://pandas.pydata.org/, contains details of the latest
release and how to download and install pandas. In this chapter we follow the common
convention of importing the library as the alias pd:

import pandas as pd

The key pandas data structures are Series and DataFrame, representing a one-
dimensional sequence of values and a data table, respectively. Their basic properties
and use will be described in this section, followed by more advanced features and
applications to examples in subsequent sections. pandas is a large, complex library with
a lot of functionality; this chapter aims to cover the basics: more detailed examples are
provided on the website accompanying the book.

9.1.2 Series

In its simplest form, a Series may be created in the same way as a one-dimensional
NumPy array:

In [x]: river_lengths = pd.Series([6300, 6650, 6275, 6400])

In [x]: river_lengths

Out[x]:

0 6300

1 6650

2 6275

3 6400

dtype: int64

438

https://pandas.pydata.org/

9.1 Introduction to pandas 439

The Series can be given a name and dtype:

In [x]: river_lengths = pd.Series([6300, 6650, 6275, 6400], name='Length /km',

dtype=float)

Out[x]:

0 6300.0

1 6650.0

2 6275.0

3 6400.0

Name: Length /km, dtype: float64

Unlike a NumPy array, however, each element in a pandas Series is associated with an
index. Since we did not set the index explicitly here, a default integer sequence (starting
at 0) is used for the index:

In [x]: river_lengths.index

Out[x]: RangeIndex(start=0, stop=4, step=1)

RangeIndex is a pandas object that works in a memory-efficient way like Python’s range
built-in to provide a monotonic integer sequence. It is often useful to refer to the rows
of a Series with some other label than an integer index. Explicit indexing of the entries
can be achieved by passing a sequence as the index argument or by creating the Series

from a dictionary:

In [x]: river_lengths = pd.Series(data=[6300, 6650, 6275, 6400],

...: index=['Yangtze', 'Nile', 'Mississippi', 'Amazon'],

...: name='Length /km')

or:

In [x]: river_lengths = pd.Series(data={'Yangtze': 6300, 'Nile': 6650,

...: 'Mississippi': 6275, 'Amazon': 6400},

...: name='Length /km')

In [x]: river_lengths

Out[x]:

Yangtze 6300

Nile 6650

Mississippi 6275

Amazon 6400

Name: Length /km, dtype: int64

This allows a nicely expressive way of referring to Series entries using the index labels
instead of integers; either individually:

In [x]: river_lengths['Nile']

Out[x]: 6650

instead of river_lengths[1]; or from another sequence:

In [x]: river_lengths[['Amazon', 'Nile', 'Yangtze']]

Out[x]:

Amazon 6400

Nile 6650

Yangtze 6300

Name: Length /km, dtype: int64

instead of river_lengths[[3, 1, 0]]. Python-style slicing also works as expected:

440 Data Analysis with pandas

In [x]: river_lengths[2::-1]

Out[x]:

Mississippi 6275

Nile 6650

Yangtze 6300

Name: Length /km, dtype: int64

It is even possible to use a slice-like notation for the index labels, but note that in this
case the endpoint is inclusive:

In [x]: river_lengths['Nile':'Amazon']

Out[x]:

Nile 6650

Mississippi 6275

Amazon 6400

Name: Length /km, dtype: int64

Providing the index label is a valid Python identifier, one can refer to a row as an
attribute of the Series:

In [x]: river_lengths.Mississippi

Out[x]: 6275

It is, of course, possible to do numerical operations on Series data, in a vectorized
fashion, as for NumPy arrays:

In [x]: KM_TO_MILES = 0.621371

In [x]: river_lengths *= KM_TO_MILES

In [x]: river_lengths.name = 'Length /miles'

In [x]: river_lengths

Out[x]:

Yangtze 3914.637300

Nile 4132.117150

Mississippi 3899.103025

Amazon 3976.774400

Name: Length /miles, dtype: float64

In the above we have also chosen to update the Series object’s name attribute. Note that
the dtype has also changed appropriately from int64 to float64 to accommodate the
new values.

Comparison operations and filtering a Series with a boolean operation creates a new
Series:

In [x]: river_lengths > 4000

Out[x]:

Nile True

Amazon False

Yangtze False

Mississippi False

Name: Length /miles, dtype: bool

In [x]: river_lengths[river_lengths <= 4000]

Out[x]:

Amazon 3976.774400

Yangtze 3914.637300

Mississippi 3899.103025

Name: Length /miles, dtype: float64

9.1 Introduction to pandas 441

Tests for membership of a Series examine the index, not the values:

In [x]: 'Yangtze' in river_lengths

Out[x]: True

Series can be sorted, either by their index or their values, using Series.sort_index

and Series.sort_values, respectively. By default these methods return a new Series,
but they can also be used to update the original Series with the argument inplace=True.
A further argument, ascending, can be True (the default) or False to set the ordering:

In [x]: river_lengths.sort_index()

Out[x]:

Amazon 3976.774400

Mississippi 3899.103025

Nile 4132.117150

Yangtze 3914.637300

Name: Length /miles, dtype: float64

In [x]: river_lengths.sort_values(ascending=False, inplace=True)

In [x]: river_lengths

Out[x]:

Nile 4132.117150

Amazon 3976.774400

Yangtze 3914.637300

Mississippi 3899.103025

Name: Length /miles, dtype: float64

When two series are combined, they are aligned by index label.

In [x]: masses = pd.Series({'Ganymede': 1.482e23,

'Callisto': 1.076e23,

'Io': 8.932e22,

'Europa': 4.800e22,

'Moon': 7.342e22,

'Earth': 5.972e24}, name='mass /kg')

In [x]: radii = pd.Series({'Ganymede': 2.634e6,

'Io': 1.822e6,

'Moon': 1.737e6,

'Earth': 6.371e6}, name='radius /m')

In [x]: from scipy.constants import G

In [x]: surface_g = G * masses / radii**2

In [x]: surface_g.name = 'surface gravity /m.s-2'

In [x]: surface_g.index.name = 'Body'

In [x]: surface_g

Body

Callisto NaN

Earth 9.819650

Europa NaN

Ganymede 1.425634

Io 1.795740

Moon 1.624075

Name: surface gravity /m.s-2, dtype: float64

Note that where no correspondence can be made within the indexes (an index label in
one Series that is missing from the other), the result is “Not a Number” (NaN). The
methods isnull and notnull test for this:

442 Data Analysis with pandas

In [x]: surface_g.isnull()

Out[x]:

Body

Callisto True

Earth False

Europa True

Ganymede False

Io False

Moon False

Name: surface gravity /m.s-2, dtype: bool

To return a list without any missing values, either filter with surface_g[surface_g.notnull()]

or use the dropna method:

In [x]: surface_g.dropna()

Out[x]:

Body

Earth 9.819650

Ganymede 1.425634

Io 1.795740

Moon 1.624075

Name: surface gravity /m.s-2, dtype: float64

Finally, to convert a Series into a NumPy ndarray (dropping the index and other
metadata), use the values property:

In [x]: surface_g.values

Out[x]: array([nan, 9.81964974, nan, 1.42563409, 1.79573967,

1.62407526])

Example E9.1 NaN entries can be replaced in a pandas Series with a specified value
using the fillna method:

In [x]: ser1 = pd.Series({'b': 2, 'c': -5, 'd': 6.5}, index=list('abcd'))

In [x]: ser1

Out[x]:

a NaN

b 2.0

c -5.0

d 6.5

dtype: float64

In [x]: ser1.fillna(1, inplace=True)

In [x]: ser1

Out[x]:

a 1.0

b 2.0

c -5.0

d 6.5

dtype: float64

Infinities (represented by the floating-point inf value) can be replaced with the
replace method, which takes a scalar or sequence of values and substitutes them with
another, single value:

9.1 Introduction to pandas 443

In [x]: ser2 = pd.Series([-3.4, 0, 0, 1], index=ser1.index)

In [x]: ser2

Out[x]:

a -3.4

b 0.0

c 0.0

d 1.0

dtype: float64

In [x]: ser3 = ser1 / ser2

In [x]: ser3

Out[x]:

a -0.294118

b inf

c -inf

d 6.500000

dtype: float64

In [x]: ser3.replace([np.inf, -np.inf], 0)

Out[x]:

a -0.294118

b 0.000000

c 0.000000

d 6.500000

dtype: float64

(Assuming NumPy has been imported with import numpy as np.)

9.1.3 DataFrame

Creating a DataFrame
A DataFrame is a two-dimensional table of data that can be thought of as an ordered set
of Series columns, which all have the same index. To create a simple DataFrame from
a dictionary, assign value sequences1 to column name keys:

In [x]: data = {'mass': [1.482e23, 1.076e23, 8.932e22, 4.800e22, 7.342e22],

'radius': [2.634e6, None, 1.822e6, None, 1.737e6],

'parent': ['Jupiter', 'Jupiter', 'Jupiter', 'Jupiter', 'Earth']

}

In [x]: index = ['Ganymede', 'Callisto', 'Io', 'Europa', 'Moon']

In [x]: df = pd.DataFrame(data, index=index)

In [x]: df

Out[x]:

mass radius parent

Ganymede 1.482000e+23 2634000.0 Jupiter

Callisto 1.076000e+23 NaN Jupiter

Io 8.932000e+22 1822000.0 Jupiter

Europa 4.800000e+22 NaN Jupiter

Moon 7.342000e+22 1737000.0 Earth

Values which were None in the data have been assigned to NaN in the DataFrame. We
may wish to rename a column or index row: to do this, call rename, declaring which

1 The (unspecified) units here are SI units: kg and m.

444 Data Analysis with pandas

axis ('index' [the same as 'rows', and the default] or 'columns'2) contains the label(s)
to be renamed, and passing a dictionary mapping each original label to its replacement.
Remember to set inplace=True if you want the orginal DataFrame modified rather than
a new copy returned. For example,

In [x]: df.rename({'parent': 'planet'}, axis='columns', inplace=True)

In [x]: df.rename({'Moon': 'The Moon'}) # change a row index label

Out[x]:

mass radius planet

Ganymede 1.482000e+23 2634000.0 Jupiter

Callisto 1.076000e+23 NaN Jupiter

Io 8.932000e+22 1822000.0 Jupiter

Europa 4.800000e+22 NaN Jupiter

The Moon 7.342000e+22 1737000.0 Earth

This last statement has returned a new DataFrame but not altered the original one, df.

Accessing Rows, Columns and Cells
An individual column can be obtained by indexing or by attribute (if its name is a valid
Python identifier):

In [x]: df['mass'] # or df.mass

Out[x]:

Ganymede 1.482000e+23

Callisto 1.076000e+23

Io 8.932000e+22

Europa 4.800000e+22

Moon 7.342000e+22

Name: mass, dtype: float64

Since this column is just a pandas Series, individual values can be retrieved by position
or reference to the index label:

In [x]: df['mass'][2]

Out[x]: 8.932e+22

In [x]: df['mass']['Io'] # or df [' mass ']. Io or df.mass.Io
Out[x]: 8.932e+22

Now, for retrieving columns and individual values this is fine, but assignment raises a
warning:

In [x]: df['radius ']['Callisto '] = 2.410e6

/Users/christian/envs/py37/bin/ipython:1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

...

In this case, it has worked:

In [x]: df['radius']['Callisto']

Out[x]: 2410000.0

but the message is a general warning that “chained indexing” ([..][..]) can lead to
unpredictable results when used for assignment: depending on how the data are stored

2 One can also refer to the rows and columns of a DataFrame with axis=0 and axis=1, respectively.

9.1 Introduction to pandas 445

in memory, it is possible for the indexing expression to yield a copy of the data rather
than a view. Assigning to the copy rather than modifying the data in-place is what the
SettingWithCopyWarning is warning could happen. Chained indexing for assignment
operations should be avoided.

Two DataFrame methods, loc and iloc, can be used to reliably access and assign to
columns, rows and cells; using them is strongly recommended. loc selects by row and
column labels:

In [x]: df.loc['Europa ']

Out[x]:

mass 4.8e+22

radius NaN

planet Jupiter

Name: Europa, dtype: object

The single row of data indexed by the label Europa is returned as a Series. If only a
subset of the columns are required, pass their names in a sequence to the second axis:3

In [x]: df.loc['Europa', ['mass', 'planet']]

Out[x]:

mass 4.8e+22

planet Jupiter

Name: Europa, dtype: object

Slicing, “fancy” indexing and boolean indexing are all supported by loc:

In [x]: df.loc[:, 'mass'] # the same as df [' mass '] - returns a Series
Out[x]:

Ganymede 1.482000e+23

Callisto 1.076000e+23

Io 8.932000e+22

Europa 4.800000e+22

Moon 7.342000e+22

Name: mass, dtype: float64

In [x]: df.loc['Ganymede ':'Io', ['mass', 'radius ']]

Out[x]:

mass radius

Ganymede 1.482000e+23 2634000.0

Callisto 1.076000e+23 2410000.0

Io 8.932000e+22 1822000.0

In [x]: df.loc[['Moon', 'Europa '], 'planet ']

Out[x]:

Moon Earth

Europa Jupiter

Name: planet, dtype: object

In [x]: df.loc[df.planet=='Jupiter', 'radius ']

Out[x]:

Ganymede 2634000.0

Callisto 2410000.0

3 Note that whilst chained indexing refers to a cell in column, row order: df[col][row], loc locates cells the
other way round: df.loc[row, col] or df.loc[row][col].

446 Data Analysis with pandas

Io 1822000.0

Europa NaN

Name: radius, dtype: float64

The value of a single cell can therefore be retrieved from the row and column labels:

In [x]: df.loc['Europa', 'mass']

Out[x]: 4.8e+22

This is the safe way to modify data in a DataFrame:

In [x]: df.loc['Europa', 'radius '] = 1.561e6 # no warning, data changed in place

In [x]: df.loc['Europa ']

Out[x]:

mass 4.8e+22

radius 1.561e+06

parent Jupiter

Name: Europa, dtype: object

It is common to use loc in combination with boolean indexing to filter rows by column
values. For example, the masses of Jupiter’s moons:

In [x]: df.loc[df.planet=='Jupiter', 'mass']

Out[x]:

Ganymede 1.482000e+23

Callisto 1.076000e+23

Io 8.932000e+22

Europa 4.800000e+22

Name: mass, dtype: float64

The rows corresponding to moons with radii less than 2000 km:

In [x]: df.loc[df.radius < 2.e6]

Out[x]:

mass radius planet

Io 8.932000e+22 1822000.0 Jupiter

Europa 4.800000e+22 1561000.0 Jupiter

Moon 7.342000e+22 1737000.0 Earth

The second method, iloc, retrieves data by numerical index position:

In [x]: df.iloc[1] # the second row

Out[x]:

mass 1.076e+23

radius 2.41e+06

parent Jupiter

Name: Callisto , dtype: object

In [x]: df.iloc[:, [1, 2]] # all rows, second and third columns

Out[x]:

radius planet

Ganymede 2634000.0 Jupiter

Callisto 2410000.0 Jupiter

Io 1822000.0 Jupiter

Europa 1561000.0 Jupiter

Moon 1737000.0 Earth

In [x]: df.iloc[-1, 1] # last row, second column

Out[x]: 1737000.0

9.1 Introduction to pandas 447

For single scalar values, there are also at and iat:

In [x]: df.at['Moon', 'mass'] # same as df.loc [' Moon ' , ' mass ']
Out[x]: 7.342e+22

In [x]: df.iat[-1, 0] # same as df.iloc[-1, 0]

Out[x]: 7.342e+22

Example E9.2 There is a potential source of confusion when using loc for a Series

or DataFrame with an integer index: it is important to remember that loc always refers
to the index labels, whereas iloc takes a (zero-based) integer location index:

In [x]: df = pd.DataFrame(np.arange(12).reshape(4, 3) + 10,

index=[1, 2, 3, 4], columns=list('abc'))

In [x]: df

Out[x]:

a b c

1 10 11 12

2 13 14 15

3 16 17 18

4 19 20 21

In [x]: df.loc[1] # the row with index *label* 1 (the first row)

Out[x]:

a 10

b 11

c 12

Name: 1, dtype: int64

In [x]: df.iloc[1] # the row with index *location* 1 (the row labeled 2)

a 13

b 14

c 15

Name: 2, dtype: int64

Note also that index labels do not have to be unique:

In [x]: df.index = [1, 2, 2, 3] # change the index labels

In [x]: df

Out[x]:

a b c

1 10 11 12

2 13 14 15

2 16 17 18

3 19 20 21

In [x]: df.loc[2] # a DataFrame: all rows labeled 2

Out[x]:

a b c

2 13 14 15

2 16 17 18

In [x]: df.iloc[2] # a Series: there is only one row located at index 2

Out[x]:

a 16

b 17

448 Data Analysis with pandas

c 18

Name: 2, dtype: int64

Combining Series and DataFrames
Another way to create a DataFrame is from a nested dictionary or from a dictionary of
Series. In each case, the outer dictionary keys contain the column names; Series and
inner dictionaries end up as rows:

boeing_wingspan = pd.Series({'B747-8': 68.4, 'B777-9': 64.8, 'B787-10': 60.12},

name='wingspan')

boeing_length = pd.Series({'B747-8': 76.3, 'B777-9': 76.7, 'B787-10': 68.28},

name='length')

boeing_range = pd.Series({'B777-9': 13940, 'B787-10': 11910},

name='range', dtype=float)

Create a DataFrame from a dictionary of Series.

df_boeing = pd.DataFrame({'wingspan': boeing_wingspan , 'length': boeing_length ,

'range': boeing_range})

Create a DataFrame from a dictionary of dictionaries.

df_airbus = pd.DataFrame({'range': {'A350 -1000': 16100, 'A380 -800': 14800},

'wingspan': {'A350 -1000': 64.75, 'A380 -800': 79.75},

'length': {'A350 -1000': 73.8, 'A380 -800': 72.72} })

In [x]: df_boeing

Out[x]:

wingspan length range

B747-8 68.40 76.30 NaN

B777-9 64.80 76.70 13940.0

B787-10 60.12 68.28 11910.0

In [x]: df_airbus

Out[x]:

range wingspan length

A350 -1000 16100 64.75 73.80

A380 -800 14800 79.75 72.72

Note that missing values in the columns become NaN in the DataFrame. To concate-
nate two DataFrames, use pd.concat:4

In [x]: pd.concat((df_airbus , df_boeing))

Out[x]:

length range wingspan

A350 -1000 73.80 16100.0 64.75

A380 -800 72.72 14800.0 79.75

B747-8 76.30 NaN 68.40

B777-9 76.70 13940.0 64.80

B787-10 68.28 11910.0 60.12

4 Note that the concat and append functions require data to be copied into a new DataFrame and for large data
sets can be slow and memory-inefficient. In this case, if at all possible, it is better to pre-allocate an empty
DataFrame of the right size and to insert data directly into it.

9.1 Introduction to pandas 449

(df_airbus.append(df_boeing) would give the same result.)
To add a single column to a DataFrame, assign a sequence of values or a Series

object:

In [x]: df_airbus['speed'] = [950, 903]

In [x]: df_airbus

Out[x]:

range wingspan length speed

A350 -1000 16100 64.75 73.80 950

A380 -800 14800 79.75 72.72 903

Concatenating DataFrames with different columns fills the unknown values with
NaN:

In [x]: df_aircraft = pd.concat((df_airbus , df_boeing))

In [x]: df_aircraft

Out[x]:

length range speed wingspan

A350 -1000 73.80 16100.0 950.0 64.75

A380 -800 72.72 14800.0 903.0 79.75

B747-8 76.30 NaN NaN 68.40

B777-9 76.70 13940.0 NaN 64.80

B787-10 68.28 11910.0 NaN 60.12

Note that retrieving a Series as a row or column returns a view on the DataFrame, so
changes to this Series will be reflected in it:

In [x]: speeds = df_aircraft['speed ']

In [x]: speeds['B747-8','B787-10'] = 903, 956 # changes df_aircraft data

In [x]: jumbo = df_aircraft.loc['B747-8']

In [x]: jumbo.range = 15000 # changes df_aircraft data

In [x]: df_aircraft

Out[x]:

length range speed wingspan

A350 -1000 73.80 16100.0 950.0 64.75

A380 -800 72.72 14800.0 903.0 79.75

B747-8 76.30 15000.0 903.0 68.40

B777-9 76.70 13940.0 NaN 64.80

B787-10 68.28 11910.0 956.0 60.12

To remove a column from a DataFrame, call Python’s del keyword:

In [x]: del df_aircraft['speed'] # NB but not del df_aircraft.speed

In [x]: df_aircraft

Out[x]:

length range wingspan

A350 -1000 73.80 16100.0 64.75

A380 -800 72.72 14800.0 79.75

B747-8 76.30 15000.0 68.40

B777-9 76.70 13940.0 64.80

B787-10 68.28 11910.0 60.12

The drop function can be used to selectively remove rows and columns from a
DataFrame. A new object is returned unless inplace=True is specified:

450 Data Analysis with pandas

In [x]: df_aircraft.drop(['A350-1000', 'A380 -800']) # drop rows by default

Out[x]:

length range wingspan

B747-8 76.30 15000.0 68.40

B777-9 76.70 13940.0 64.80

B787-10 68.28 11910.0 60.12

In [x]: df_aircraft.drop(['length', 'wingspan '], axis='columns', inplace=True)

In [x]: df_aircraft

Out[x]:

range

A350 -1000 16100.0

A380 -800 14800.0

B747-8 15000.0

B777-9 13940.0

B787-10 11910.0

9.1.4 Sorting, Arithmetic and Statistics

As might be expected, many of the most useful functions for data analysis are available
from within pandas.

Example E9.3 The file india-data.csv, available at https://scipython.com/eg/bak,
contains columns of demographic data on the 36 states and union territories (UTs) of
India. When read in with:

In [x]: df = pd.read_csv('india-data.csv', index_col=0)

(more on this method in the next section), the DataFrame produced contains an Index of
State/UT name and columns:

In [x]: df.index

Out[x]:

Index(['Uttar Pradesh', 'Maharashtra', 'Bihar', 'West Bengal',

...

'Dadra and Nagar Haveli', 'Daman and Diu', 'Lakshadweep'],

dtype='object', name='State/UT')

In [x]: df.columns

Out[x]:

Index(['Male Population', 'Female Population', 'Area (km2)',

'Male Literacy (%)', 'Female Literacy (%)', 'Fertility Rate'],

dtype='object')

We can quickly inspect the DataFrame with df.head(n), which outputs the first n rows
(or five rows if n is not specified):

In [x]: df.head()

Out[x]:

Male Population ... Female Literacy (%)

State/UT ...

Uttar Pradesh 104480510 ... 59.26

Maharashtra 58243056 ... 75.48

Bihar 54278157 ... 53.33

https://scipython.com/eg/bak

9.1 Introduction to pandas 451

West Bengal 46809027 ... 71.16

Madhya Pradesh 37612306 ... 60.02

[5 rows x 5 columns]

pandas makes it straightforward to compute new columns for our DataFrame:

In [x]: df['Population'] = df['Male Population'] + df['Female Population']

In [x]: total_pop = df['Population'].sum()

In [x]: print(f'Total population: {total_pop:,d}')

Total population: 1,210,754,977

In [x]: df['Population Density (km-2)'] = df['Population'] / df['Area (km2)']

In [x]: df.loc['West Bengal', 'Population Density (km-2)']

Out[x]: 1028.440091490896 # population density of West Bengal

In [x]: total_pop / df['Area (km2)'].sum()

Out[x]: 368.3195047153525 # mean population density

Maximum and minimum values are obtained in the same way as in NumPy, for
example:

In [x]: df['Male Literacy (%)'].min()

Out[x]: 73.39

Perhaps more usefully, idxmin and idxmax return the index label(s) of the minimum and
maximum values, respectively:

In [x]: df['Area (km2)'].idxmax() # largest state/UT by area

Out[x]: 'Rajasthan'

Naturally, the value returned can be passed to df.loc to obtain the entire row. For
example, the row corresponding to the most densely populated state / UT:

In [x]: df.loc[df['Population Density (km-2)'].idxmax()]

Out[x]:

Male Population 8887326

Female Population 7800615

Area (km2) 1484

Male Literacy (%) 91.03

Female Literacy (%) 80.93

Population 16687940

Population Density (km-2) 1.124524e+04

Name: Delhi, dtype: float64

Correlation statistics between DataFrames or Series can be calculated with the corr

function:

In [x]: df['Female Literacy (%)'].corr(df['Fertility Rate'])

Out[x]: -0.7361949271996956

In this case (two columns of data being compared), a single correlation coefficient
is produced. More generally, the correlation matrix is returned as a new DataFrame.
pandas can be used to quickly produce a variety of simple, labeled plots and charts from
a DataFrame with a family of df.plot methods. By default, these use the Matplotlib
backend, so the syntax is the same as presented in Chapter 7. For example,

In [x]: df.plot.scatter('Female Literacy (%)', 'Fertility Rate')

452 Data Analysis with pandas

60 70 80 90

Female Literacy (%)

1.5

2.0

2.5

3.0

3.5

4.0

F
er

ti
li
ty

R
a
te

Figure 9.1 Scatter plot of fertility rate against female literacy for the 36 states and UTs of India.

Figure 9.1 shows the resulting plot.

9.2 Reading and Writing Series and DataFrames

9.2.1 Reading Text Files

Delimited Text Files
The core method for reading text files of data into a DataFrame is pd.read_csv. This
works in much the same way as NumPy’s genfromtxt method, but with additional
functionality for naming columns and setting the DataFrame index. It takes no fewer
than 49 possible arguments, but the most important are described below.5

• filepath_or_buffer (required): The path to the file to read: this can be a local
file or a URL for fetching data across the internet.

• sep: The column delimiter; by default ',', but use '\s+' for whitespace-
delimited columns, '\t' for tab-delimiters, or None to force pandas to try to
infer the delimiter. See also delim_whitespace.

• delimiter: An alias for sep.
• header: The row numbers (indices) to use for the column names. The default is

header=0: use the first row for the column names. Note: if the file does not have a
header, specify header=None and set the column names with the names argument.

5 See the documentation at https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html
for a complete description.

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html

9.2 Reading and Writing Series and DataFrames 453

• names: A sequence of unique column names to use. If the file contains no header,
set header=None in addition to setting names.

• index_col: The column(s) to use as the row labels in the DataFrame.
• usecols: A sequence of column indices (as for NumPy’s loadtxt method) or

column names identifying the columns to be read into the DataFrame.
• squeeze: If the data required consist of a single column, then squeeze=True will

return a Series instead of the default, a DataFrame.
• converters: A dictionary of functions for converting the values in specified

columns in the input file into data values for the DataFrame. The dictionary keys
can be column indices or column names.

• skiprows: An integer giving the number of lines at the start of the file to skip over
before reading the data or a sequence giving the indices of rows to skip.

• skipfooter: The number of rows at the bottom of the file to skip (by default, 0).
• nrows: The number of rows of the file to read: this is useful for reading a subset

of lines from a very large file for testing or exploring its data.
• na_values: A string or sequence of strings to treat as NaN values, in addition

to the default values which include 'NaN', 'NA', 'NULL' and '#N/A' (see the
documentation for a full list).

• parse_dates: Set to True to parse the index column(s) as a sequence of datetime
objects (see Section 9.3.2); other options are available for this argument (see the
online documentation).

• comment: Specify a single character, such as '#', which, when found at the start
of a line, signals that the whole line is to be ignored.

• skip_blank_lines: The default, True, skips over blank lines in the input file; set
to False to interpret these as a row of NaN values instead.

• delim_whitespace: Can be set to True instead of specifying sep='\s+' to indi-
cate that the data columns are separated by whitespace.

Example E9.4 The file ionization-energies.csv, available to download at
https://scipython.com/eg/baq, contains the ionization energies (in eV) of some of
the elements of the periodic table:

Ionization Energies (eV) of the first few elements of the periodic table

Element, IE1, IE2, IE3, IE4, IE5

H, 13.59844

He, 24.58741, 54.41778

Li, 5.39172, 75.64018, 122.45429

Be, 9.3227, 18.21116, 153.89661, 217.71865

B, 8.29803, 25.15484, 37.93064, 259.37521, 340.22580

C, 11.26030, 24.38332, 47.8878, 64.4939, 392.087

N, 14.53414, 29.6013, 47.44924, 77.4735, 97.8902

O, 13.61806, 35.11730, 54.9355, 77.41353, 113.8990

F, 17.42282, 34.97082, 62.7084, 87.1398, 114.2428

Ne, 21.5646, 40.96328, 63.45, 97.12, 126.21

Na, 5.13908, 47.2864, 71.6200, 98.91, 138.40

https://scipython.com/eg/baq

454 Data Analysis with pandas

These data can be read into a DataFrame as follows. Here, we suppose that we are
only interested in the first two periods of the periodic table and the first four ionization
energies:

Ê In [x]: df = pd.read_csv('ionization -energies.csv', skiprows=1, index_col=0,

...: usecols=range(5), nrows=11)

Ë In [x]: df.columns = df.columns.str.strip()

In [x]: print('Second ionization energy of Li: {} eV'.format(df.loc['Li'].IE2))

Second ionization energy of Li: 75.64018 eV

Ê Note that the usecols argument includes the column we want to set to the DataFrame
index and nrows includes the column headers (but not the skipped rows).
Ë The whitespace around the column names is not automatically removed. pandas
provides a variety of methods for manipulating strings within the str “accessor” names-
pace, which can be applied to all the column names in one statement; this is faster than
using rename:

df.rename(columns=lambda s: s.strip(), inplace=True)

Example E9.5 The following text file, available at https://scipython.com/eg/bao,
contains data concerning 13 vitamins important for human health.

List of vitamins , their solubility (in fat or water) and recommended dietary

allowances for men / women.

Data from the US Food and Nutrition Board, Institute of Medicine , National

Academies

Vitamin A Fat 900ug/700ug

Vitamin B1 Water 1.2mg/1.1mg

Vitamin B2 Water 1.3mg/1.1mg

Vitamin B3 Water 16mg/14mg

Vitamin B5 Water 5mg

Vitamin B6 Water 1.5mg/1.4mg

Vitamin B7 Water 30ug

Vitamin B9 Water 400ug

Vitamin B12 Water 2.4ug

Vitamin C Water 90mg/75mg

Vitamin D Fat 15ug

Vitamin E Fat 15mg

Vitamin K Fat 110ug/120ug

--- Data for guidance only, consult your physician ---

The recommended (daily) dietary allowances are listed in either of two units in the
final column; sometimes these are different for men and women. If we wish to parse this
column into an average value in µg, we can use a converter function as in the following
code.

Listing 9.1 Reading in a text table of vitamin data

https://scipython.com/eg/bao

9.2 Reading and Writing Series and DataFrames 455

import pandas as pd

def average_rda_in_micrograms(col):

def ensure_micrograms(s):

if s.endswith('ug'):

return float(s[:-2])

elif s.endswith('mg'):

return float(s[:-2]) * 1000

raise ValueError(f'Unrecognised units in {s}')

fields = col.split('/')

return sum([ensure_micrograms(s) for s in fields]) / len(fields)

df = pd.read_csv('vitamins.txt', delim_whitespace=True, skiprows=4,

skipfooter=1, header=None, usecols=(1, 2, 3),

converters={'RDA': average_rda_in_micrograms},

names=['Vitamin', 'Solubility', 'RDA'],

index_col=0

)

In this code, the four header rows and one footer row are skipped (blank lines are
skipped automatically); the Index is set to the first used column (index_col=0, identi-
fying the vitamin). The converter function averages the numerical values encountered
(after conversion to µg), where multiple values are assumed to be separated by a solidus
character (/).

Fixed-Width Text Files
The method read_fwf reads fixed-width formatted files. The field widths are passed as
a list of tuples to the argument colspecs, giving the half-open intervals of the fields
to read in from each line; i.e. (i, j) refers to the field from index i to index j - 1.
Alternatively, if the intervals are contiguous, a list of field widths can be passed to the
argument widths.

We return to the np.genfromtxt example of Section 6.2.3. The following short file,
data.txt, consists of four columns with widths 2, 1, 9 and 3 characters (spaces are
indicated with ‘ ’):
 12 100.231.03

 11 1201.842.04

 11 99.324.02

To read in this file with pandas, use either:
df = pd.read_fwf('data.txt',

colspecs=[(0, 2), (2, 3), (3, 12), (12, 15)], header=None)

or, since the intervals are contiguous:
df = pd.read_fwf('data.txt', widths=(2, 1, 9, 3), header=None)

to give the DataFrame:
0 1 2 3

0 1 2 100.231 0.03

1 1 1 1201.842 0.04

2 1 1 99.324 0.02

456 Data Analysis with pandas

9.2.2 Writing Text Files

The DataFrame method to_csv outputs its data to a text file, formatted according to the
arguments summarized below.6

• path_or_buf: A file path or file object to output to; if None, the DataFrame is
returned as string.

• sep: The single-character field-delimiter (defaults to ',').
• na_rep: The string to use to represent missing data (defaults to the empty string,

'').
• float_format: The C-style format specifier (see Section 2.3.7) for floating-point

numbers.
• columns: A sequence identifying the columns to output.
• header: By default, True, indicating that column names should be output; can be

set to False or a list of column names.
• index: By default, True, indicating that row names should be output.
• compression: One of 'infer', 'gzip', 'bz2', 'zip', 'xz', None to specify

whether and how to compress the output file. The default is 'infer': pandas
determines the intended compression method from the filename extension.

Example E9.6 To write a comma-separated file containing data on vitamins from the
DataFrame created in Example E9.5 to_csv can be used as follows:

df.to_csv('vitamins.csv', float_format='%.1f', columns=['Solubility', 'RDA'])

The file written is:

Vitamin,Solubility ,RDA

A,Fat,800.0

B1,Water ,1150.0

B2,Water ,1200.0

B3,Water ,15000.0

B5,Water ,5000.0

B6,Water ,1450.0

B7,Water ,30.0

B9,Water ,400.0

B12,Water ,2.4

C,Water ,82500.0

D,Fat,15.0

E,Fat,15000.0

K,Fat,115.0

6 Full documentation is available at https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.
DataFrame.to_csv.html

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html

9.2 Reading and Writing Series and DataFrames 457

Figure 9.2 An Excel sheet containing data concerning the structural properties of some diatomic
molecules.

9.2.3 Microsoft Excel Files

pandas is able to read DataFrames from Excel files with both .xls and .xlsx extensions
with the function pd.read_excel. You may need to install the xlrd package7 separately
from your Python package manager or using pip on the command line with, for exam-
ple:

pip install xlrd

The file path to the Excel document is passed as the first argument to read_excel. Most
of the additional arguments already described for read_csv function in the same way,
except that usecols can be passed either a list of columnn indices or a string giving the
range of Excel column labels: for example: ‘B:K’, ‘A,D,G:K’.

By default, only the first sheet of the file is used; to read in from a different sheet
or more than one sheet, pass one or more indexes or sheet names to the argument
sheet_name.

Example E9.7 The Excel file bond-lengths.xlsx, available online at
https://scipython.com/eg/bbk, contains data on the bond lengths, vibrational constants
and dissociation energies of some diatomic molecules. The single sheet is named
‘Diatomics’. Column A contains the molecular formula; the first row is a title, and the
second row contains the column names. There is also a footer of two lines, as shown in
Figure 9.2.

The following statement can be used to read in a DataFrame containing these data:

7 https://pypi.org/project/xlrd/

https://scipython.com/eg/bbk
https://pypi.org/project/xlrd/

458 Data Analysis with pandas

df = pd.read_excel('bond-lengths.xlsx',

index_col=0, # the first column contains the index labels

skipfooter=2, # ignore the last two lines of the sheet

header=1, # take the column names from the second row

usecols='A:E', # use Excel columns labeled A-E

sheet_name='Diatomics' # take data from this sheet

)

print(df)

Bond length /A we /cm-1 wexe /cm-1 De /kJ.mol-1

Molecule

I2 2.666000 214.50000 0.61400 224.104224

O2 1.207520 1580.19000 11.98000 623.340895

Cl2 1.987000 559.70000 2.67000 350.883683

F2 1.411930 916.64000 11.23600 223.640111

N2 1.097680 2358.57000 14.32400 1161.440719

CO 1.128323 2169.81358 13.28831 1059.592595

NO 1.150770 1904.20000 14.07500 770.443043

Should you be in the unfortunate position of needing to write to an Excel spreadsheet
file, use to_excel, as in the following example. Again, there may be a dependency to
resolve: if the openpyxl module8 is not available, you can install through your package
manager or using pip:

pip install openpyxl

Example E9.8 To create some data to write to a file, the following program generates
a DataFrame with the height of a projectile launched at three different angles (in the
columns) as a function of time (rows):

Listing 9.2 The height of a projectile as a function of time

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

Acceleration due to gravity, m.s-2.

g = 9.81

Time grid, s.

t = np.linspace(0, 5, 500)

Projectile launch angles, deg.

theta0 = np.array([30, 45, 80])

Projectile launch speen, m.s-1.

v0 = 20

def z(t, v0, theta0):

"""Return the height of the projectile at time t > 0."""

return -g/2 * t**2 + v0*t*np.sin(theta0)

8 https://pypi.org/project/openpyxl/

https://pypi.org/project/openpyxl/

9.2 Reading and Writing Series and DataFrames 459

0 10 20 30 40

Range /m

0

5

10

15

20

H
ei

g
h
t

/
m

30

45

80

Figure 9.3 Trajectories of a projectile launched with v0 = 20 m s−1 at three different angles.

def x(t, v0, theta0):

"""Return the range of the projectile at time t > 0."""

return v0 * t * np.cos(theta0)

An empty DataFrame with columns for the different launch angles.

df = pd.DataFrame(columns=theta0, index=t)

Populate df with the projectile heights as a function of time.

for theta in theta0:

df[theta] = z(t, v0, np.radians(theta))

Once the projectile has landed (z <= 0), set the height data as invalid.

df[df<=0] = np.nan

Create a Matplotlib figure with the trajectories plotted.

fig, ax = plt.subplots()

for theta in theta0:

ax.plot(x(t, v0, np.radians(theta)), df[theta], label=f'${theta}^\circ$')

The maximum height obtained by the projectile for each value of theta0.

heights = df.max()

print(heights)

Set the y-limits with a bit of padding at the top; label the axes.

ax.set_ylim(0, heights.max()*1.05)

ax.set_xlabel('Range /m')

ax.set_ylabel('Height /m')

ax.legend()

plt.show()

Figure 9.3 shows the plot of the trajectories that is produced by this code.
To save the DataFrame df to an Excel file in a single sheet, use to_excel:

df.to_excel('projectile.xlsx', sheet_name='Dependence on angle')

460 Data Analysis with pandas

To write an Excel file with more than one sheet, create a pd.ExcelWriter object and
call to_excel for each pandas object to output:

with pd.ExcelWriter('projectile2.xlsx') as writer:

for theta in theta0:

Only retain the valid data for each trajectory.

ser = df[theta].dropna()

Change the Series index to be the range instead of time.

ser.index = x(ser.index, v0, np.radians(theta))

ser.to_excel(writer, sheet_name=f'{theta} deg')

9.2.4 Web Scraping

The pandas function read_html can be used to parse web pages for data contained
in HTML tables. A list of DataFrames is returned, and the default arguments for this
function do a pretty good job on most well-formed pages. The most useful arguments
are listed below.

• io: A URL, filepath or file object from which to parse the HTML
• match: An optional string to search for within the table: only tables containing

this string are parsed and returned.9

• header: The row index to be used for the column headers; the default, None, uses
the HTML <th> header cells, if present.

• index_col: The column(s) to use as the row labels in the DataFrame.
• attrs: A dictionary of HTML attributes to identify the required table; for exam-

ple, attrs={'id': 'data-table'}.
• thousands: The separator used in grouping the digits of large numbers; defaults

to ','.
• decimal: The character used in denoting the decimal point; the default is '.', as

used in the United States, United Kingdom, Australia, Japan, China and South
Korea; non-British European countries often use ','.

• na_values: String(s) used to denote NaN data, as for read_csv.

Example E9.9 At the time of writing, the first table on the Wikipedia page https:
//en.wikipedia.org/wiki/List_of_wine-producing_regions contains columns of the rank,
country name and wine production for the principal wine-producing countries in the
world. To parse it with pandas:

In [x]: dfs = pd.read_html(

'https://en.wikipedia.org/wiki/List_of_wine -producing_regions',

Ê index_col=1, match="Wine production by country")

Ë In [x]: dfs[0].head()

Out[x]:

Rank Production(tonnes)

Country(with link to wine article)

9 match can be a regular expression.

https://en.wikipedia.org/wiki/List_of_wine-producing_regions
https://en.wikipedia.org/wiki/List_of_wine-producing_regions
https://en.wikipedia.org/wiki/List_of_wine -producing_regions

9.2 Reading and Writing Series and DataFrames 461

Italy 1 4796900

France 2 4607850

Spain 3 4293466

United States 4 3300000

China 5 1700000

Ê In this case, the table is identified by a match to the the text inside the <caption>

element of the first <table> on the page.
Ë dfs is a list containing a single item, the DataFrame parsed from the matching table.

9.2.5 Exercises

Problems

P9.2.1 The web page at https://scipython.com/ex/bab gives tables for the total ozone
column amounts in October in “Dobson units,”10 and the concentrations of two chlo-
rofluorocarbon (CFC) compounds, “F11” and “F12”, in parts per trillion by volume
(pptv) for the years 1957 – 1984; see Farman et al., Nature 315, 207 (1985).

Read in and parse these data, and plot them on a suitable chart.

P9.2.2 At https://en.wikipedia.org/wiki/Abundances_of_the_elements_(data_page)
Wikipedia gives a list of element abundances for the Sun and solar system in an HTML
table (amongst other, similar data). Use pandas’ read_html method to read in and parse
the Kaye and Laby data (column headed “Y1”) and plot a bar chart demonstrating
Oddo–Harkins rule: that elements with even atomic numbers are more abundant than
those with neighboring odd atomic numbers.

P9.2.3 The Hertzsprung–Russell diagram classifies stars on a scatter plot: each star is
represented as a point with an x-coordinate of effective temperature and a y-coordinate
of luminosity, a measure of the star’s radiated electromagnetic power. The page at
https://scipython.com/ex/bak can be used to obtain a version of the HYG-database,11

which provides data on 119614 stars. Read in these data with pandas and plot a
Hertzsprung–Russell diagram. The luminosity column is identified as 'lum' in the
header and the star temperature can be calculated from its color index (also referred to
as (B − V) and identified as the column labeled 'ci') using the Ballesteros formula:

T /K = 4600
(

1
0.92(B − V) + 1.7

+
1

0.92(B − V) + 0.62

)
.

10 The Dobson unit is defined as the thickness, in units of 0.01 mm, that a layer of pure gas would form at
standard conditions for temperature and pressure from its total column amount in the atmosphere above a
region of the Earth’s surface.

11 https://github.com/astronexus/HYG-Database, released under a Creative Commons Attribution-ShareAlike
license

https://scipython.com/ex/bab
https://en.wikipedia.org/wiki/Abundances_of_the_elements_(data_page)
https://scipython.com/ex/bak
https://github.com/astronexus/HYG-Database

462 Data Analysis with pandas

Note that the luminosity is best visualized on a logarithmic scale and the temperature
axis is usually plotted in reverse (decreasing temperature towards the right-hand side of
the diagram).

P9.2.4 Transport for London (TfL) is the UK local government body responsible for
the public transport system of Greater London; they make available an Excel document,
available from the link at https://scipython.com/ex/bam, which provides statistics about
the usage of the underground network (the Tube) in the form of entry and exit passenger
numbers for a “typical” day at each station over the years 2007–2017.

Read in this document with pandas, and analyze it to determine: (a) the busiest station
on a typical weekday in 2017; (b) the station with the greatest percentage increase in
passengers over the period 2007–2017; (c) the station with the largest relative difference
in passenger numbers between the working week and a typical Sunday in 2017.

P9.2.5 The HITRAN database (https://hitran.org) provides a list of molecular line
intensities for modeling radiative transmission in planetary atmospheres. Its native for-
mat consists of 160-character records of fixed-width fields.

Use pandas to read in the file CO2-transitions.par, available from
https://scipython.com/ex/ban (where a description of the fields can also be found).
Plot line intensity against wavelength for these transitions in the infrared region of the
spectrum (λ = 10 mm to 700 nm, corresponding to wavenumber ν̃ = 1 cm−1 to about
14 000 cm−1), where carbon dioxide (CO2) is responsible for a significant fraction of
the greenhouse effect in Earth’s atmosphere.

9.3 More Advanced Indexing

9.3.1 Hierarchical Indexes with MultiIndex

A DataFrame is an intrinsically two-dimensional array of data: to represent data in
higher dimensions, it is common to use hierarchical indexing to represent multiple
levels within a single index. If the data are sparse or heterogeneous, this is much more
efficient than creating a multidimensional NumPy array. For example, consider a data
set concerning the mean monthly temperature and rainfall in five European cities. This
could be considered three-dimensional, the dimensions being “city,” “month” and “data
type” (this last meaning either temperature or rainfall). For five cities (Paris, Berlin,
Vienna, London, Madrid) and four months (Jan, Apr, Jul, Oct), there would therefore
be 40 data points in total.

We could create a conventional single-level index consisting of (city, month)

tuples, but it wouldn’t be very convenient or flexible. Instead, we can create a hierarchi-
cal index with two levels from a sequence of two-item tuples using
pd.MultiIndex.from_tuples:

In [x]: cities = ('Paris', 'Berlin', 'Vienna', 'London', 'Madrid')

In [x]: months = ('Jan', 'Apr', 'Jul', 'Oct')

In [x]: index = pd.MultiIndex.from_tuples(

https://scipython.com/ex/bam
https://hitran.org
https://scipython.com/ex/ban

9.3 More Advanced Indexing 463

...: (city, month) for city in cities for month in months)

In [x]: index

Out[x]:

MultiIndex([('Paris', 'Jan'),

('Paris', 'Apr'),

('Paris', 'Jul'),

('Paris', 'Oct'),

('Berlin', 'Jan'),

...

('Madrid', 'Jul'),

('Madrid', 'Oct')],

)

MultiIndexes of this form (the Cartesian product of two or more sequences) are so
common that there is a convenience function, from_product, for their creation:
index = pd.MultiIndex.from_product((cities, months))

We can create a DataFrame with this index by assigning an array of data in the shape
(20, 2):
In [x]: index.names = ['City', 'Month']

In [x]: # Mean monthly temperature (degC) for each city in each of Jan, Apr, Jul,

Oct.

In [x]: temps = [[4.9, 11.5, 20.5, 13.0], [0.1, 9.0, 19.1, 9.4],

...: [0.3, 10.7, 20.8, 10.2], [5.2, 9.9, 18.7, 12.0],

...: [6.3, 12.9, 25.6, 15.1]

...:]

In [x]: # Mean monthly rainfall (mm) for each city in each of Jan, Apr, Jul,

Oct.

In [x]: rainfall = [[51.0, 51.8, 62.3, 61.5], [37.2, 33.7, 52.5, 32.2],

...: [38., 45., 70., 38.], [55.2, 43.7, 44.5, 68.5],

...: [33., 45., 12., 60.]

...:]

In [x]: arr = np.array((temps, rainfall)).reshape((2, 20)).T

In [x]: df = pd.DataFrame(arr, index=index, columns=['Mean temperature /degC',

...: 'Mean rainfall /mm'])

In [x]: df

Out[x]:

Mean temperature /degC Mean rainfall /mm

City Month

Paris Jan 4.9 51.0

Apr 11.5 51.8

Jul 20.5 62.3

Oct 13.0 61.5

Berlin Jan 0.1 37.2

Apr 9.0 33.7

Jul 19.1 52.5

Oct 9.4 32.2

Vienna Jan 0.3 38.0

Apr 10.7 45.0

Jul 20.8 70.0

Oct 10.2 38.0

London Jan 5.2 55.2

Apr 9.9 43.7

Jul 18.7 44.5

Oct 12.0 68.5

464 Data Analysis with pandas

Madrid Jan 6.3 33.0

Apr 12.9 45.0

Jul 25.6 12.0

Oct 15.1 60.0

The loc method can be used to index into the DataFrame’s MultiIndex:

In [x]: df.loc['Vienna']

Out[x]:

Mean temperature /degC Mean rainfall /mm

Month

Jan 0.3 38.0

Apr 10.7 45.0

Jul 20.8 70.0

Oct 10.2 38.0

In [x]: df.loc[('Paris', 'Jul')]

Out[x]:

Mean temperature /degC 20.5

Mean rainfall /mm 62.3

Name: (Paris, Jul), dtype: float64

In [x]: df.loc[('Paris', 'Jul'), 'Mean rainfall /mm']

Out[x]: 62.3

To slice a MultiIndex, however, it must first be sorted:

In [x]: df['Berlin':'London']

Out[x]: ...

UnsortedIndexError: 'Key length (1) was greater than MultiIndex lexsort depth (0)'

This somewhat cryptic error message is a result of the way pandas is optimized to slice
only indexes which are in lexicographical order. There are several methods to sort a
MultiIndex, but the simplest is to use sort_index as we did previously:

In [x]: df.sort_index(inplace=True)

In [x]: df['Berlin':'London']

Out[x]:

Mean temperature /degC Mean rainfall /mm

City Month

Berlin Apr 9.0 33.7

Jan 0.1 37.2

Jul 19.1 52.5

Oct 9.4 32.2

London Apr 9.9 43.7

Jan 5.2 55.2

Jul 18.7 44.5

Oct 12.0 68.5

Note that this has sorted the months into alphabetical order as well. To keep them in
chronological order, one approach would be to number the months instead by relabeling
the index:

In [x]: df2 = df.rename({'Jan': 1, 'Apr': 4, 'Jul': 7, 'Oct': 10})

In [x]: df2.sort_index(inplace=True)

In [x]: df2.loc['Vienna', 'Mean temperature /degC']

Out[x]:

Month

9.3 More Advanced Indexing 465

1 0.3

4 10.7

7 20.8

10 10.2

Name: Mean temperature /degC, dtype: float64

The useful xs function makes selecting data indexed at different levels of a MultiIndex

easier, and does not require the index to be sorted. For example, to retrieve the climate
data for January in all cities:

In [x]: df.xs('Jan', level=1) # look in second level of the MultiIndex for ' Jan '
Out[x]:

Mean temperature /degC Mean rainfall /mm

City

Berlin 0.1 37.2

London 5.2 55.2

Madrid 6.3 33.0

Paris 4.9 51.0

Vienna 0.3 38.0

A Series or DataFrame with a hierarchical row index can be reshaped so as to create
a MultiIndex on the columns instead by using the unstack() function:

In [x]: df.unstack()

Out[x]:

Mean temperature /degC ... Mean rainfall /mm

Month Apr Jan Jul ... Jan Jul Oct

City ...

Berlin 9.0 0.1 19.1 ... 37.2 52.5 32.2

London 9.9 5.2 18.7 ... 55.2 44.5 68.5

Madrid 12.9 6.3 25.6 ... 33.0 12.0 60.0

Paris 11.5 4.9 20.5 ... 51.0 62.3 61.5

Vienna 10.7 0.3 20.8 ... 38.0 70.0 38.0

[5 rows x 8 columns]

9.3.2 Timestamps and Time Series

pandas provides a Timestamp object, representing an instant in time to some preci-
sion. The to_datetime method provides a powerful and flexible way of parsing a
human-readable string into a Timestamp. The following examples all evaluate to a
timestamp representing midnight on the 12th of March, 2020: Timestamp('2020-03-12
00:00:00'). Note that where the date is ambiguous, by default it is resolved in favor of
the US convention: MM/DD/YY: to force a string to be interpreted as DD/MM/YY set
dayfirst=True.

pd.to_datetime('2020-03-12')

pd.to_datetime('12/3/20', dayfirst=True)

pd.to_datetime('3/12/20')

pd.to_datetime('12 March, 2020')

pd.to_datetime('12th of March 2020')

pd.to_datetime('Mar 12, 2020')

Times are also handled gracefully:

466 Data Analysis with pandas

Table 9.1 Some string codes for pandas
time frequencies and offsets

Code Description

A Year end
M Month end
W Week
D Calendar day
H Hour
T Minute
S Second
L Millisecond
U Microsecond

In [x]: pd.to_datetime('9:05 21 August 2017')

Out[x]: Timestamp('2017-08-21 09:05:00')

In [x]: pd.to_datetime('21 August 2017 09:05:23')

Out[x]: Timestamp('2017-08-21 09:05:23')

Indexes can be constructed as a range of regularly spaced Timestamps with the
date_range function. Ranges can be specified by passing the start and end date, or
by passing the start date and the number of periods. The range interval is one day
by default, but this can be controlled with the freq argument (see Table 9.1 for valid
values).

In [x]: pd.date_range('1997-03-12', '1997-03-15')

Out[x]: DatetimeIndex(['1997-03-12', '1997-03-13', '1997-03-14', '1997-03-15'],

dtype='datetime64[ns]', freq='D')

In [x]: pd.date_range('1997-03-12', periods=4)

Out[x]: DatetimeIndex(['1997-03-12', '1997-03-13', '1997-03-14', '1997-03-15'],

dtype='datetime64[ns]', freq='D')

Ê In [x]: pd.date_range('1997-03', periods=4, freq='M')

Out[x]: DatetimeIndex(['1997-03-31', '1997-04-30', '1997-05-31', '1997-06-30'],

dtype='datetime64[ns]', freq='M')

Ë In [x]: pd.date_range('1997-03', periods=4, freq='MS')

Out[x]: DatetimeIndex(['1997-03-01', '1997-04-01', '1997-05-01', '1997-06-01'],

dtype='datetime64[ns]', freq='MS')

Ê By defaults, monthly ranges specified with freq='M' are marked at the end of the
month. The same is true for annual ranges (freq='A').
Ë To set timestamps at the start of each month use freq='MS' (and freq='AS' for
annual ranges).

pandas makes a distinction between a timestamp (represented by a Timestamp object)
and a time period: an interval of time between two points in time. A time period is
represented by the Period object and its start and end points are accessed through its
attributes start_time and end_time. The syntax for creating time periods is similar to
date ranges:

9.3 More Advanced Indexing 467

In [x]: p = pd.Period('2020-04', freq='M')

In [x]: t = pd.Timestamp('2020-04-03 14:30')

In [x]: p.start_time < t < p.end_time

Out[x]: True

It is often necessary to resample a time series at a different (higher or lower) fre-
quency. The resample method assists with this: it returns a Resampler object which can
be used to aggregate the data in some appropriate way. For example, in downsampling
(resampling the data to a wider time frame), it may be appropriate to take the mean,
minimum, maximum or sum of the values in the resampling interval. The following
example should make this clearer.

Example E9.10 The file river-level.csv, available at https://scipython.com/eg/bal ,
lists the height in meters above sea level of Chitterne Brook, a small river in Wiltshire,
England. Heights are given as minimum, average, and maximum values for each day
between 1 January 2014 and 31 December 2016.

The following code reads in the data and plots the daily river height along with its
monthly average, minimum and maximum values.

import pandas as pd

import matplotlib.pyplot as plt

Ê df = pd.read_csv('river-level.csv', index_col=0, comment='#', parse_dates=True)

rs_monthly = df.resample('M')

df['avg_level'].plot(label='Daily average')

rs_monthly['avg_level'].mean().plot(label='Monthly average')

rs_monthly['min_level'].min().plot(label='Monthly minimum')

rs_monthly['max_level'].max().plot(label='Monthly maximum')

plt.xlabel('Date')

plt.ylabel('River level /m')

plt.gca().legend()

plt.show()

Ê Note that we need to set parse_dates=True to force pandas to interpret the first
column as a DatetimeIndex.

Figure 9.4 shows the resulting plot.

9.3.3 Exercises

Problems

P9.3.1 Use pandas to read in the file, tb-cases.txt, available from
https://scipython.com/ex/bao, which provides numbers of cases of tuberculosis in
the USA, broken down by state for the years 1993–2018. Create a DataFrame with a
hierarchical index (MultiIndex) consisting of the state name and year. Plot these data
appropriately and determine the state with the greatest relative decrease in tuberculosis
over the time period considered.

https://scipython.com/eg/bal
https://scipython.com/ex/bao

468 Data Analysis with pandas

20
14

-01

20
14

-05

20
14

-09

20
15

-01

20
15

-05

20
15

-09

20
16

-01

20
16

-05

20
16

-09

Date

0.00

0.25

0.50

0.75

1.00

1.25
R

iv
er

le
v
el

/
m

Daily average

Monthly average

Monthly minimum

Monthly maximum

Figure 9.4 The level of Chitterne Brook in meters over the period 2014–2016.

P9.3.2 The populations of each state in the USA over the years 1993–2018 are given
in the file US-populations.txt, available from https://scipython.com/ex/bap. Read
these data into a pandas DataFrame with a suitable index, and analyze them for any
interesting trends. Then combine these data with those of Problem P9.3.1 to determine
the states with the greatest and least prevalence of tuberculosis per head of population
in 2018.

9.4 Data Cleaning and Exploration

Any scientific research, particularly experimental research, will generate data sets
containing invalid or missing values. Data points can be dropped or fall outside the
detectable range of the measuring instrument, may get transcribed incorrectly, or are
obtained incompletely from various sources. pandas provides a variety of methods for
dealing with such missing values, including functions for removing them or replacing
them with average or default values.

This book does not attempt to provide a guide to the scientific method, but the reader
should be aware that the way in which one deals with missing or invalid data can bias
the subsequent analysis towards a particular set of conclusions.

https://scipython.com/ex/bap

9.4 Data Cleaning and Exploration 469

9.4.1 Missing Values

The default sentinel value indicating missing data is NaN. In Section 9.1.2 we have
already used the methods isnull() and notnull() to test for the presence or absence
of such values, and the method dropna(), which returns a new DataFrame with rows
containing only non-null data:

In [x]: df = pd.DataFrame([[1.1, np.nan, np.nan, 10.3],

...: [0.8, np.nan, 3.6, 2.9],

...: [1.2, 2.5, 1.6, 2.7],

...: [np.nan, np.nan, np.nan, np.nan],

...: [np.nan, np.nan, 3.6, 5.3]],

...: columns=list('ABCD'))

In [x]: df

A B C D

0 1.1 NaN NaN 10.3

1 0.8 NaN 3.6 2.9

2 1.2 2.5 1.6 2.7

3 NaN NaN NaN NaN

4 NaN NaN 3.6 5.3

In [x]: df.dropna()

Out[x]:

A B C D

2 1.2 2.5 1.6 2.7

You may wish to drop only rows (or columns) which consist entirely of NaN. In that
case, pass the argument how='all' instead of using the default, how='any':

In [x]: df.dropna(how='all')

Out[x]:

A B C D

0 1.1 NaN NaN 10.3

1 0.8 NaN 3.6 2.9

2 1.2 2.5 1.6 2.7

4 NaN NaN 3.6 5.3

It is also possible to specify a threshold number of NaN values to trigger the drop of a
column or row:

In [x]: df.dropna(thresh=3, axis=1) # only drop columns with three or more NaNs

Out[x]:

A C D

0 1.1 NaN 10.3

1 0.8 3.6 2.9

2 1.2 1.6 2.7

3 NaN NaN NaN

4 NaN 3.6 5.3

An alternative to dropping the NaN values is to replace them with valid data according
to some process. This is the purpose of the fillna() method. Common options are given
in the following examples.

Replace all NaN values with a single value:

In [x]: df.fillna(3.6)

470 Data Analysis with pandas

Out[x]:

A B C D

0 1.1 3.6 3.6 10.3

1 0.8 3.6 3.6 2.9

2 1.2 2.5 1.6 2.7

3 3.6 3.6 3.6 3.6

4 3.6 3.6 3.6 5.3

Replace NaN values with the last encountered valid value down the columns (“fill
forward”):

In [x]: df.fillna(method='ffill')

Out[x]:

A B C D

0 1.1 NaN NaN 10.3

1 0.8 NaN 3.6 2.9

2 1.2 2.5 1.6 2.7

3 1.2 2.5 1.6 2.7

4 1.2 2.5 3.6 5.3

Replace NaN values with the last encountered valid value along the rows:

In [x]: df.fillna(method='ffill', axis=1)

Out[x]:

A B C D

0 1.1 1.1 1.1 10.3

1 0.8 0.8 3.6 2.9

2 1.2 2.5 1.6 2.7

3 NaN NaN NaN NaN

4 NaN NaN 3.6 5.3

Passing a dictionary of column or index names enables close control over the filling
values; chaining calls can then give a powerful and flexible way to clean data. For
example, to fill in the missing data in columns A and C with their means:

In [x]: df.fillna({'A': df['A'].mean(), 'C': df['C'].mean()})

Out[x]:

A B C D

0 1.100000 NaN 2.933333 10.3

1 0.800000 NaN 3.600000 2.9

2 1.200000 2.5 1.600000 2.7

3 1.033333 NaN 2.933333 NaN

4 1.033333 NaN 3.600000 5.3

A further example:

In [x]: df.fillna({'A': df['A'].mean(), 'B': df['B'].mean()}).fillna(0)

Out[x]:

A B C D

0 1.100000 2.5 0.0 10.3

1 0.800000 2.5 3.6 2.9

2 1.200000 2.5 1.6 2.7

3 1.033333 2.5 0.0 0.0

4 1.033333 2.5 3.6 5.3

It may be that the data set being used uses a different sentinel value to indicate invalid
data, for example -1 or -99. The replace method can canonicalize such data:

9.4 Data Cleaning and Exploration 471

In [x]: ser = pd.Series([1.2, 3.5, -99, -99, 4.0, -99, -0.5])

In [x]: ser.replace(-99, np.nan)

Out[x]:

0 1.2

1 3.5

2 NaN

3 NaN

4 4.0

5 NaN

6 -0.5

dtype: float64

replace can also take a dictionary mapping values to their replacements:
In [x]: ser.replace({-99: 0, -0.5: np.nan})

Out[x]:

0 1.2

1 3.5

2 0.0

3 0.0

4 4.0

5 0.0

6 NaN

dtype: float64

9.4.2 Duplicate Values

The DataFrame method duplicated() returns a Series of boolean values indicating
whether each row is a duplicate of a previous row; drop_duplicates() drops such rows.
By default, both methods consider all columns; to remove rows with duplicate entries
in a single column or several columns, pass a column name or a sequence of column
names explicitly. A further argument, keep, determines whether the first encountered
row ('first', the default) or last encountered row ('last') is retained.
In [x]: df = pd.DataFrame([['Lithium', 'Li', 3, 6, 0.0759],

...: ['Lithium', 'Li', 3, 7, 0.9241],

...: ['Sodium', 'Na', 11, 23, 1],

...: ['Potassium', 'K', 19, 39, 0.932581],

...: ['Potassium', 'K', 19, 40, 1.17e-4],

...: ['Potassium', 'K', 19, 41, 0.067302]],

...: columns=['Element', 'Symbol', 'Z', 'A', 'Abundance'])

In [x]: df

Out[x]:

Element Symbol Z A Abundance

0 Lithium Li 3 6 0.075900

1 Lithium Li 3 7 0.924100

2 Sodium Na 11 23 1.000000

3 Potassium K 19 39 0.932581

4 Potassium K 19 40 0.000117

5 Potassium K 19 41 0.067302

In [x]: df.drop_duplicates(['Symbol'])

Out[x]:

Element Symbol Z A Abundance

0 Lithium Li 3 6 0.075900

472 Data Analysis with pandas

2 Sodium Na 11 23 1.000000

3 Potassium K 19 39 0.932581

In [x]: df.drop_duplicates(['Symbol', 'Z'], keep='last')

Out[x]:

Element Symbol Z A Abundance

1 Lithium Li 3 7 0.924100

2 Sodium Na 11 23 1.000000

5 Potassium K 19 41 0.067302

9.4.3 Binning Data

It is often necessary to bin together large amounts of continuous data, either to reduce
it to a manageable size or to categorize it based on value. The pandas function cut can
be used to do this in a similar way to NumPy’s histogram function (Section 6.3.3):

In [x]: marks = [67, 80, 34, 55, 77, 66, 59, 52, 70, 67, 58, 63, 49, 72]

In [x]: bins = [0, 40, 60, 70, 80, 100]

In [x]: dist = pd.cut(marks, bins)

In [x]: dist

[(60, 70], (70, 80], (0, 40], (40, 60], ..., (60, 70], (40, 60], (70, 80]]

Length: 14

Categories (5, interval): [(0, 40] < (40, 60] < (60, 70] < (70, 80] < (80, 100]]

Each mark is placed in a bin with edges defined by the sequence bins. The number of
values in each bin is returned by value_counts:

In [x]: pd.value_counts(dist)

Out[x]:

(60, 70] 5

(40, 60] 5

(70, 80] 3

(0, 40] 1

(80, 100] 0

dtype: int64

By default, the right side of each interval is closed (values equal to this side are included
in the bin, indicated by ‘]’) and the left side is open (indicated by ‘(’); this can be
swapped by setting the argument right=False:

In [x]: pd.value_counts(pd.cut(marks, bins, right=False))

Out[x]:

[40, 60) 5

[60, 70) 4

[70, 80) 3

[80, 100) 1

[0, 40) 1

dtype: int64

The bins can also be named by passing a sequence of strings to the labels argument:

In [x]: dist = pd.cut(marks, bins, labels=list(reversed('ABCDE')), right=False)

In [x]: dist

[C, A, E, D, B, ..., C, D, C, D, B]

Length: 14

9.4 Data Cleaning and Exploration 473

Categories (5, object): [E < D < C < B < A]

In [x]: pd.value_counts(dist)

Out[x]:

D 5

C 4

B 3

A 1

E 1

dtype: int64

Note that the categories do not have any particular order. To put the counts in order of
decreasing grade, we can sort the Series index:

In [x]: pd.value_counts(dist).sort_index(ascending=False)

Out[x]:

A 1

B 3

C 4

D 5

E 1

dtype: int64

9.4.4 Dealing with Outliers

Detecting and filtering outliers is, like dealing with missing values or invalid data, a
potentially subtle process and careful thought should be given to the assumptions behind
the expected underlying distribution. However, often, outlying values are expected
based on detector failure (sticky pixels, cosmic rays, and the like), obvious errors, or
well-understood exceptional cases. Filtering them automatically can be achieved with
NumPy-like array operations.

For example, consider a simulated village in which the 200 houses have normally-
distributed prices (µ = $250 000, σ = $55 000), with the exception of a couple of man-
sions worth many times more than the average home:

In [x]: nhouses = 200

In [x]: mu, sigma = 250, 55 # mean, standard deviation in $1000s

Ê In [x]: prices = np.clip(np.random.randn(nhouses)*sigma + mu, 0, None).astype(int)

In [x]: prices[-2] = 1.e3

In [x]: prices[-1] = 2.e3

In [x]: df = pd.DataFrame(prices, columns=['price, $1000s'])

In [x]: df.tail()

Out[x]:

price, $1000s

195 247

196 218

197 236

198 1000

199 2000

Ê np.clip(arr, min, max) constrains the values of arr to fall within min and max,
here to prevent negative house prices being produced by the random sampling. This is
itself a type of outlier filtering!

474 Data Analysis with pandas

These outliers distort the mean and (especially) the standard deviation of the house
price distribution:
In [x]: df.median() # the median is a robust measure of central tendency

Out[x]:

price, $1000s 247.8

dtype: float64

In [x]: df.mean() # the mean is affected more by the outliers

Out[x]:

price, $1000s 258.775

dtype: float64

In [x]: df.std() # the standard deviation is greatly affected

Out[x]:

price, $1000s 145.796907

dtype: float64

We may be interested in analyzing the prices of “ordinary” houses in the village,
ignoring the mansions. One way to do this is to identify the mansions as deviating from
the mean house price by, say, three standard deviations and setting their prices to NaN:
In [x]: df[df > 3*df.std()+df.mean()] = np.nan

In [x]: df.tail()

price, $1000s

195 247.0

196 218.0

197 236.0

198 NaN

199 NaN

Now we find values closer to the (non-mansion) house price distribution:
In [x]: df.mean()

Out[x]:

price, $1000s 246.237374

dtype: float64

In [x]: df.std()

Out[x]:

price, $1000s 55.995279

dtype: float64

Example E9.11 Robert Millikan’s famous oil-drop experiments were carried out at
the University of Chicago from 1909 to determine the magnitude of the charge of the
electron.12 In a single experiment, an electrically charged oil droplet was observed to
fall a known distance, d, between two uncharged plates at its terminal velocity, vg: from
the time taken, tg, the droplet’s radius, a, can be deduced. Next, a voltage was applied
to the plates, inducing an electric field between them. As the droplet rises under the
resulting net force, the time taken, te, for it to move back up through the same distance,
d, can be used to deduce its total charge, q, which is observed to be an integer multiple
of the same base value, e, that is: q = Ne.

12 Since May 2019, this quantity has been fixed by definition at 1.602176634 × 10−19 C.

9.4 Data Cleaning and Exploration 475

For the free-fall part of the experiment,13 when the droplet falls at constant terminal
velocity vg = −d/tg there is no net force on it: the sum of the gravitational and drag
forces is zero:

Fg + Fd = 0 ⇒ −m′g − 6πηavg = 0,

where m′ = 4
3πa3ρ′ = 4

3πa3(ρoil − ρair) is the effective mass of the droplet (after the
mass of air it displaces is taken into account), g = 9.803 m s−1 is the acceleration due
to gravity in Chicago, and η = 1.859 × 10−5 kg m−1 s−1 is the air viscosity under the
experimental conditions (temperature, humidity, etc.). Rearranging, we get the follow-
ing expression for the droplet radius:

a =

√
−9ηvg

2ρ′g
.

When a suitable voltage is applied to the plates and the droplet moves upwards at a
constant velocity ve = d/te, the force due to the electric field is balanced by gravity and
the drag force (at this new velocity):

Fe + Fg + F′d = 0 ⇒ qE + 6πηavg − 6πηave = 0

⇒ q =
6πηa(ve − vg)

E
=

6πηad
E

(
1
tg

+
1
te

)
Each droplet (labeled A–H) was observed three times for each different charge, q,
acquired by exposure to X-rays (up to seven experiments per droplet).

The data at https://scipython.com/eg/bam give the time data for a number of such
experiments conducted with an oil of density ρoil = 917.3 kg m−3 on a day for which
ρair = 1.17 kg m−3. The magnitude of the electric field was E = 322.1 kN C−1 and the
distance the drops move, d = 11.09 mm. We can use these data to estimate e (assuming
it is not fixed by definition) as follows.

drop expt tg te tg te tg te

A 1 13.102 46.822 12.941 46.896 13.086 46.681

A 2 12.938 86.767 13.032 86.952 13.086 86.746

A 3 13.023 61.082 12.958 60.826 12.998 60.860

A 4 12.943 86.747 12.922 86.840 13.054 86.899

B 1 11.434 56.305 11.350 56.097 11.246 56.282

B 2 11.402 75.823 11.584 75.819 11.487 76.063

B 3 11.591 44.717 11.397 44.851 11.364 44.776

B 4 11.443 75.905 11.368 75.975 11.457 76.041

B 5 11.434 75.939 11.414 75.880 11.444 75.929

B 6 11.559 75.892 11.414 75.924 11.292 75.985

B 7 11.394 44.716 11.589 44.753 11.401 44.794

C 1 16.197 100.458 16.010 100.486 16.329 100.461

C 2 16.241 47.727 16.106 47.714 16.177 47.625

C 3 16.133 37.879 16.267 37.746 16.203 37.709

C 4 16.170 64.765 16.136 64.649 16.229 64.508

D 1 16.176 38.017 16.127 37.910 16.282 38.020

13 In this example we adopt a coordinate system in which the droplet’s vertical position, z, increases in the
“up” direction.

https://scipython.com/eg/bam

476 Data Analysis with pandas

D 2 16.275 38.280 16.092 38.208 16.133 38.092

D 3 16.422 48.327 16.073 48.284 16.212 48.184

D 4 16.134 38.202 16.258 38.270 16.105 38.229

D 5 16.164 102.562 16.217 102.673 16.194 102.696

E 1 12.275 55.020 12.116 54.962 12.307 54.978

E 2 12.157 54.772 12.183 54.967 12.046 55.219

E 3 12.146 55.004 12.118 54.938 12.346 54.869

E 4 12.319 43.635 12.243 43.552 12.073 43.582

F 1 14.172 61.946 14.174 61.970 14.069 61.959

F 2 14.145 90.718 13.955 90.707 14.075 90.866

F 3 14.070 62.147 14.074 61.961 14.247 61.892

F 4 14.017 61.968 14.101 61.921 14.106 62.174

G 1 9.723 50.375 9.527 50.482 9.502 50.508

G 2 9.463 63.755 9.670 63.853 9.509 63.827

G 3 9.448 63.804 9.407 63.899 9.563 63.768

G 4 9.327 63.855 9.518 63.967 9.533 63.824

H 1 13.192 73.375 13.167 73.338 13.316 73.449

H 2 13.042 42.642 13.387 42.428 13.334 42.459

H 3 13.389 42.379 13.244 42.373 13.055 42.610

H 4 13.114 73.161 13.226 73.384 13.207 73.257

H 5 13.030 73.295 13.022 73.419 13.438 73.512

First, define the necessary parameters:

eta = 1.859e-5 # air viscosity , kg.m-1.s-1

rho_air = 1.17 # air density, kg.m-3

rho_oil = 917.3 # oil density, kg.m-3

rhop = rho_oil - rho_air

g = 9.803 # acceleration due to gravity, m.s-2

d = 11.09e-3 # rise/fall distance, m

E = -322.1e3 # electric field vector (points down!)

Next, read in the data, assigning the first two columns to a MultiIndex:

In [x]: import pandas as pd

In [x]: df = pd.read_csv('eg10-millikan -data.txt', delim_whitespace=True,

index_col=[0, 1])

In [x]: df.head()

Out[x]:

tg te tg.1 te.1 tg.2 te.2

drop expt

A 1 13.102 46.822 12.941 46.896 13.086 46.681

2 12.938 86.767 13.032 86.952 13.086 86.746

3 13.023 61.082 12.958 60.826 12.998 60.860

4 12.943 86.747 12.922 86.840 13.054 86.899

B 1 11.434 56.305 11.350 56.097 11.246 56.282

Note that pandas has added a counting integer to the column names to make them
distinct.

We will start with just a single droplet, taking the transpose of its data:

In [x]: dropA = df.loc['A'].T

In [x]: dropA

Out[x]:

expt 1 2 3 4

tg 13.102 12.938 13.023 12.943

te 46.822 86.767 61.082 86.747

tg.1 12.941 13.032 12.958 12.922

9.4 Data Cleaning and Exploration 477

te.1 46.896 86.952 60.826 86.840

tg.2 13.086 13.086 12.998 13.054

te.2 46.681 86.746 60.860 86.899

We would prefer to label each row as simply 'tg' or 'te':

In [x]: dropA.index = dropA.index.str.slice(0, 2)

In [x]: dropA

Out[x]:

expt 1 2 3 4

tg 13.102 12.938 13.023 12.943

te 46.822 86.767 61.082 86.747

tg 12.941 13.032 12.958 12.922

te 46.896 86.952 60.826 86.840

tg 13.086 13.086 12.998 13.054

te 46.681 86.746 60.860 86.899

We require the average of all of the values of tg (in the absence of the electric field the
droplet takes the same time to fall the distance d) and the average value of te for each
column (each experiment may have a different droplet charge, but the fall–rise times are
measured three times for each experiment):

In [x]: tg = dropA.loc['tg'].values.mean()

In [x]: te = dropA.loc['te'].mean()

In [x]: tg

Out[x]: 13.006916666666667

In [x]: te

Out[x]:

expt

1 46.799667

2 86.821667

3 60.922667

4 86.828667

dtype: float64

Now use the value of tg to calculate the droplet’s radius:

In [x]: a = np.sqrt(9*eta*d/tg/2/rhop/g)

In [x]: a

Out[x]: 2.8181654881967875e-06

or about 2.82 µm. The charge we deduce for each experiment is:

In [x]: q = 6 * np.pi * eta * a * d / E * (1/tg + 1/te)

In [x]: q

Out[x]:

expt

1 -3.340563e-18

2 -3.005663e-18

3 -3.172143e-18

4 -3.005631e-18

dtype: float64

Repeating this for all the droplets, we can add a column, q to the DataFrame df:

for drop in df.index.levels[0]:

drop_df = df.loc[drop].T

drop_df.index = drop_df.index.str.slice(0, 2)

478 Data Analysis with pandas

0 10 20 30

Experiment number

3

4

5
|q
|

10 18

0

2

4

6

8

∆
q

×10 19

Figure 9.5 Sorted droplet charges, q, and neighbouring differences, ∆q.

tg = drop_df.loc['tg'].values.mean()

te = drop_df.loc['te'].mean()

a = np.sqrt(9*eta*d/tg/2/rhop/g)

q = 6 * np.pi * eta * a * d / E * (1/tg + 1/te)

df.loc[drop, 'q'] = q.values

It is now helpful to sort the droplet charges by magnitude and to plot the sorted array
and its differences (Figure 9.5):
In [x]: sorted_q = sorted(-df.loc[:, 'q'])

In [x]: plt.plot(sorted_q)

In [x]: plt.ylabel('$|q|$')

In [x]: plt.twinx()

In [x]: dq = np.diff(sorted_q)

In [x]: plt.plot(dq)

In [x]: plt.ylabel(r'Δq')

In [x]: plt.show()

It certainly seems possible that the droplet charge is always a multiple of some value
between 1 × 10−19 C and 2 × 10−19 C. We can therefore estimate the value of |e|:
In [x]: e_estimate = dq[(dq>1.e-19) & (dq<2.e-19)].mean()

In [x]: e_estimate

Out[x]: 1.5697150510604604e-19

We can now add a column to df for the number of elementary charges we hypothesise
for each experiment:
In [x]: df['N'] = (df['q'] / e_estimate).astype(int)

Considering all the data then gives us our estimate for the magnitude of the electron
charge:
In [x]: (df['q']/df['N']).mean()

Out[x]: 1.5923552150386455e-19

within 1% of the defined value.

9.5 Data Grouping and Aggregation 479

9.4.5 Exercises

Problems

P9.4.1 Use pandas’ cut method to classify the stars in the data set of Problem P9.2.3
according to their temperature by placing them into the bins labeled M, K, G, F, A, B,
and O with left edges (in K) at 2400, 3700, 5200, 6000, 7500, 10 000, and 30 000.

Hence modify the code in the solution to this problem to plot the stars in a color
appropriate to their temperature by establishing the following mapping:

color_mapping = {'M': '#FFB56C', 'K': '#FFDAB5', 'G': '#FFEDE3', 'F': '#F9F5FF',

'A': '#D5E0FF', 'B': '#A2C0FF', 'O': '#92B5FF'}

Hint: pandas provides a map method for mapping input values from an existing column
to output values in a new column using a dictionary.

P9.4.2 Reanalyze the data from Example E9.11, concerning Millikan’s oil-drop
experiment, to use a more accurate approximation for the effective air viscosity:

η =
η0

1 + b
ap

,

where p = 100.82 kPa is the air pressure, η0 = 1.859 × 10−5 kg m−1 s−1, b = 7.88 ×
10−3 Pa m, and a is the droplet radius.

P9.4.3 The Cambridge University Digital Technology Group have been recording
the weather from the roof of their department building since 1995 and make the data
available to download at www.cl.cam.ac.uk/research/dtg/weather/.

Read in the entire data set and parse it with pandas to determine (a) the most common
wind direction; (b) the fastest wind speed measured; (c) the year with the sunniest June;
(d) the day with the highest rainfall; (e) the coldest temperature measured. Note that
there are occasional missing and invalid data points in the data set.

P9.4.4 The data set at https://scipython.com/ex/baq lists the following quantities, in
US dollars over time: (a) the price of gold; (b) the S&P 500 US stock market index; and
(c) the price of the cryptocurrency Bitcoin. Compare the performance of these indexes
over the period 2010–2020 with respect to the regular investment of $100 per month.

9.5 Data Grouping and Aggregation

9.5.1 DataFrame Grouping with groupby

The powerful pandas method groupby can be used to analyze data in a Series or
DataFrame based on their categorization according to some key row (or column) val-
ues. The term split–apply–combine describes the process succinctly: first, the data is
split according to its categorization; next, the analysis technique or statistical method
required (for example, summing values or finding their mean) is applied to the split

www.cl.cam.ac.uk/research/dtg/weather/
https://scipython.com/ex/baq

480 Data Analysis with pandas

groups; finally, the results of the analysis are combined into a result object. Figure 9.6
depicts a simple example of the process.

Example E9.12 Consider the following table of the yields of three compounds, A, B
and C, attained in a synthesis experiment by three students, Anu, Jenny and Tom.

In [x]: data = [['Anu', 'A', 5.4], ['Anu', 'B', 6.7], ['Anu', 'C', 10.1],

...: ['Jenny', 'A', 6.5], ['Jenny', 'B', 5.9], ['Jenny', 'C', 12.2],

...: ['Tom', 'A', 4.0], ['Tom', 'B', None], ['Tom', 'C', 9.5]

...:]

In [x]: df = pd.DataFrame(data, columns=['Student', 'Compound', 'Yield /g'])

In [x]: print(df)

Student Compound Yield /g

0 Anu A 5.4

1 Anu B 6.7

2 Anu C 10.1

3 Jenny A 6.5

4 Jenny B 5.9

5 Jenny C 12.2

6 Tom A 4.0

7 Tom B NaN

8 Tom C 9.5

One way of analyzing these data is to group them by compound (“split” into separate
data structures, each with a common value of 'Compound') and then apply some opera-
tion (say, finding the mean) to each group, before recombining into a single DataFrame,
as illustrated in Figure 9.6.

In [x]: grouped = df.groupby('Compound')

Anu

Anu

Anu

Jenny

Jenny

Jenny

Tom

Tom

Tom

A

B

C

A

B

C

A

B

C

5.4

6.7

10.1

6.5

5.9

12.2

4.0

-

9.5

Anu

Jenny

Tom

Anu

Jenny

Tom

Anu

Jenny

Tom

A

A

A

B

B

B

B

B

B

C

C

C

5.4

6.5

4.0

6.7

5.9

-

10.1

12.2

9.5

A

B

C

5.3

6.3

10.6

split apply and combine

Figure 9.6 An illustration of the split–apply–combine paradigm for analyzing data with grouped
data in pandas: the DataFrame is split into groups by compound (A, B and C); the mean
function is applied to the groups; these values are combined into the returned object.

9.5 Data Grouping and Aggregation 481

In [x]: grouped.mean()

Out[x]:

Yield /g

Compound

A 5.3

B 6.3

C 10.6

Here, the 'Student' column has been ignored as a so-called “nuisance” column:
there is no helpful way to take the mean of a string. The max() and min() functions,
however, consider the strings’ lexigraphical ordering:

In [x]: grouped.max()

Out[x]:

Student Yield /g

Compound

A Tom 6.5

B Tom 6.7

C Tom 12.2

Note that max() has returned 'Tom' for every row, since this name is lexigraphically last
(‘greatest’) in the 'Student' column. The column 'Yield /g' consists of the maximum
yields for each compound, across all students. To apply the function to a subset of the
columns only (which may be necessary for very large DataFrames), select them before
the function call, for example:

In [x]: grouped['Yield /g'].min()

Out[x]:

Compound

A 4.0

B 5.9

C 9.5

Name: Yield /g, dtype: float64

The object returned by groupby() can be iterated over:

In [x]: for compound , group in grouped:

...: print('Compound:', compound)

...: print(group)

...:

Compound: A

Student Compound Yield /g

0 Anu A 5.4

3 Jenny A 6.5

6 Tom A 4.0

Compound: B

Student Compound Yield /g

1 Anu B 6.7

4 Jenny B 5.9

7 Tom B NaN

Compound: C

Student Compound Yield /g

2 Anu C 10.1

5 Jenny C 12.2

8 Tom C 9.5

482 Data Analysis with pandas

We can also group by the 'Student' column:

In [x]: grouped = df.groupby('Student')

In [x]: grouped.mean()

Out[x]:

Yield /g

Student

Anu 7.40

Jenny 8.20

Tom 6.75

Another powerful feature is the ability to group on the basis of a specified mapping,
provided, for example, by a dictionary. Suppose each student is undertaking a different
degree programme:

In [x]: degree_programmes = {'Anu': 'Chemistry',

'Jenny': 'Chemistry',

'Tom': 'Pharmacology'}

First, turn the 'Student' column into an Index and then group, not by the Index itself
but using the provided mapping:

In [x]: df.set_index('Student', inplace=True)

In [x]: df.groupby(degree_programmes).mean()

Out[x]:

Yield /g

Chemistry 7.80

Pharmacology 6.75

That is, the average yield for students of chemistry was 7.8 g, whereas for pharmacology
it was only 6.75 g.

9.5.2 Exercises

Problems

P9.5.1 The Organisation for Economic Co-operation and Development (OECD),
within its Programme for International Student Assessment (PISA), publishes an
evaluation of the educational systems around the world by measuring the performance
of 15-year-old school pupils on mathematics, science, and reading. The evaluation is
carried out every three years.

Historical PISA data can be downloaded from https://scipython.com/ex/bza. Read
these data in to a pandas DataFrame and use its grouping functionality to determine and
visualize (a) the overall performance of all studied countries over time; (b) the gender
disparity (if any) in each of reading, mathematics and science; and (c) the correlation
between the performances in each of these areas across all countries.

P9.5.2 Read in the data at https://scipython.com/ex/bar concerning recent Formula
One Grands Prix seasons, and rank (a) the drivers by their number of wins; (b) the
constructors by their number of wins; and (c) the circuits by their average fastest lap per
race.

https://scipython.com/ex/bza
https://scipython.com/ex/bar

9.6 Examples 483

9.6 Examples

The following examples demonstrate the practical use of pandas in two case studies
involving the analysis and visualization of real data.

Example E9.13 The file nuclear-explosion-data.csv, available to download at
https://scipython.com/eg/ban, contains data on all nuclear explosions between 1945
and 1998.14 We will use pandas to analyze it in various ways.

Inspection of the file in a text editor shows that it contains a header line naming the
columns, so we can load it straight away with pd.read_csv and inspect its key features:
In [x]: import pandas as pd

In [x]: df = pd.read_csv('nuclear-explosion -data.csv')

In [x]: df.head()

Out[x]:

date time id country ... yield_upper purpose name type

0 19450716 123000.0 45001 USA ... 21.0 WR TRINITY TOWER

1 19450805 231500.0 45002 USA ... 15.0 COMBAT LITTLEBOY AIRDROP

2 19450809 15800.0 45003 USA ... 21.0 COMBAT FATMAN AIRDROP

3 19460630 220100.0 46001 USA ... 21.0 WE ABLE AIRDROP

4 19460724 213500.0 46002 USA ... 21.0 WE BAKER UW

[5 rows x 16 columns]

In [x]: df.index

Out[x]: RangeIndex(start=0, stop=2051, step=1)

In [x]: df.columns

Out[x]:

Index(['date', 'time', 'id', 'country', 'region', 'source', 'lat', 'long',

'mb', 'Ms', 'depth', 'yield_lower', 'yield_upper', 'purpose', 'name',

'type'],

dtype='object')

There are 16 columns; here we will be concerned with those described in Table 9.2.
It is natural to assign the date and time of the explosion to the DataFrame index. Some

helper functions facilitate this:
from datetime import datetime

def parse_time(t):

hour, t = divmod(t, 10000)

minute, t = divmod(t, 100)

return int(hour), int(minute), int(t)

def parse_datetime(date, time):

date_and_time = datetime.strptime(str(date), '%Y%m%d')

hour, minute, second = parse_time(time)

return date_and_time.replace(hour=hour, minute=minute, second=second)

df.index = pd.DatetimeIndex([parse_datetime(date, time) for date, time in

zip(df['date'], df['time'])])

14 from N.-O. Bergkvist and R. Ferm, Nuclear Explosions 1945–1998, Swedish Defence Research Establish-
ment/SIPRI, Stockholm, July 2000.

https://scipython.com/eg/ban

484 Data Analysis with pandas

1950 1960 1970 1980 1990 2000

Year

0

50

100

150
N

u
m

b
er

o
f
n
u
cl

ea
r

ex
p
lo

si
o
n
s

Figure 9.7 Bar chart of the number of nuclear explosions by year between 1945 and 1998.

We can plot the number of explosions in each year by grouping on index.year and
finding the size of each group; a regular Matplotlib bar chart can then be produced:

explosion_number = df.groupby(df.index.year).size()

import matplotlib.pyplot as plt

fig, ax = plt.subplots()

ax.bar(explosion_number.index, explosion_number.values)

ax.set_xlabel('Year')

ax.set_ylabel('Number of nuclear explosions')

plt.show()

Figure 9.7 shows the resulting plot.

Table 9.2 Important columns of nuclear explosion data in file
nuclear-explosion-data.csv

Column Description
date Date of explosion in format YYYYMMDD
time Time of explosion in format HHMMSS.Z, where Z represents

tenths of seconds
country The state that carried out the explosion
lat The latitude of the explosion in degrees, relative to the equator
long The longitude of the explosion in degrees, relative to the prime

meridian
yield_lower Lower estimate of the yield in kilotons (kt) of TNT
yield_upper Upper estimate of the yield in kilotons (kt) of TNT
type The method of deployment of the nuclear device

9.6 Examples 485

A stacked bar chart can break down the annual count of explosions by country. First,
group by both year and country and get the explosion counts for this grouping with
size():

df2 = df.groupby([df.index.year, df.country])

explosions_by_country = df2.size()

print(explosions_by_country.head(7))

country

1945 USA 3

1946 USA 2

1948 USA 3

1949 USSR 1

1951 USA 16

USSR 2

1952 UK 1

dtype: int64

Next, unstack the second index into columns, filling the empty entries with zeros:

explosions_by_country = explosions_by_country.unstack().fillna(0)

print(explosions_by_country.head(7))

country CHINA FRANCE INDIA PAKISTAN UK USA USSR

1945 0.0 0.0 0.0 0.0 0.0 3.0 0.0

1946 0.0 0.0 0.0 0.0 0.0 2.0 0.0

1948 0.0 0.0 0.0 0.0 0.0 3.0 0.0

1949 0.0 0.0 0.0 0.0 0.0 0.0 1.0

1951 0.0 0.0 0.0 0.0 0.0 16.0 2.0

1952 0.0 0.0 0.0 0.0 1.0 10.0 0.0

1953 0.0 0.0 0.0 0.0 2.0 11.0 5.0

Each row in this DataFrame can then be plotted as stacked bars on a Matplotlib chart:

countries = ['USA', 'USSR', 'UK', 'FRANCE', 'CHINA', 'INDIA', 'PAKISTAN']

bottom = np.zeros(len(explosions_by_country))

fig, ax = plt.subplots()

for country in countries:

ax.bar(explosions_by_country.index, explosions_by_country[country],

bottom=bottom, label=country)

bottom += explosions_by_country[country].values

ax.set_xlabel('Year')

ax.set_ylabel('Number of nuclear explosions')

ax.legend()

plt.show()

Figure 9.8 shows the resulting stacked bar chart.
The geopandas package provides a convenient way to plot the yield data on a world

map. A full description of geographic information systems (GIS) is beyond the scope
of this book, but geopandas is relatively self-contained and easy to use. First, read in
the DataFrame for a low-resolution earth map (included with geopandas), and plot it
on a Matplotlib Axes object. We’ll accept the default equirectangular projection but
customize the borders and fill the land areas in gray:

import geopandas

486 Data Analysis with pandas

1950 1960 1970 1980 1990 2000

Year

0

50

100

150
N

u
m

b
er

o
f
n
u
cl

ea
r

ex
p
lo

si
o
n
s USA

USSR

UK

FRANCE

CHINA

INDIA

PAKISTAN

Figure 9.8 Stacked bar chart of the number of nuclear explosions by year caused by different
countries between 1945 and 1998.

world = geopandas.read_file(geopandas.datasets.get_path('naturalearth_lowres'))

fig, ax = plt.subplots()

world.plot(ax=ax, color="0.8", edgecolor='black', linewidth=0.5)

The data provide lower and upper estimates of the explosion yield, so take the average
and add circles as a scatter plot at the explosions’ latitudes and longitudes. There is quite
a large dynamic range from a few kilotons of TNT up to 50 million tons for the Tsar
Bomba hydrogen bomb test of 1961, so clip the lower circle size to ensure that the
smaller explosions are visible on the map:

df['yield_estimate'] = df[['yield_lower','yield_upper']].mean(axis=1)

sizes = (df['yield_estimate'] / 120).clip(10)

ax.scatter(df['long'], df['lat'], s=sizes, fc='r', ec='none', alpha=0.5)

ax.set_ylim(-60, 90)

plt.axis('off')

plt.show()

The result is Figure 9.9.

Example E9.14 The file volcanic-eruptions.csv, available to download at
https://scipython.com/eg/bap, contains data concerning 822 significant volcanic events
on Earth between 1750 BCE and 2020 CE from the US National Centres for Envi-
ronmental Information (NCEI).15 The information on each event is given in comma-
separated fields and includes date, volcano name, location, type, estimated number of
human deaths and “Volcanic Explosivity Index” (VEI).

15 https://www.ngdc.noaa.gov/hazard/volcano.shtml.

https://scipython.com/eg/bap
https://www.ngdc.noaa.gov/hazard/volcano.shtml

9.6 Examples 487

Figure 9.9 A map of nuclear explosions, showing the blast yield, between 1945 and 1998.

The data are readily parsed into a DataFrame with:

In [x]: df = pd.read_csv('volcanic -eruptions.csv', index_col=0)

The most deadly volcanic eruption in the database is that of Ilopango, around the middle
of the fifth century CE:

In [x]: df.loc[df['Deaths'].idxmax()]

Out[x]:

Year 450

Month NaN

Day NaN

Name Ilopango

Location El Salvador

Country El Salvador

Latitude 13.672

Longitude -89.053

Elevation 450

Type Caldera

VEI 6

Deaths 30000

Name: 25, dtype: object

It would be helpful to have a column with the day, month and year of the explosion
parsed into a string. Define a helper function, get_date:

def get_date(year, month, day):

if year < 0:

s_year = f'{-year} BCE'

else:

s_year = str(year)

if pd.isnull(month):

return s_year

s_date = f'{int(month)}/{s_year}'

if pd.isnull(day):

return s_date

return f'{int(day)}/{s_date}'

and apply it to the DataFrame:

488 Data Analysis with pandas

In [x]: df['date'] = [get_date(year, month, day) for year, month, day in

zip(df['Year'], df['Month'], df['Day'])]

Simple filtering can give us a list of eruptions with a VEI of at least 6 since the start
of the nineteenth century:

In [x]: df[(df['VEI'] >= 6) & (df['Year'] >= 1800)]

Out[x]:

Year Month Day Name ... Type VEI Deaths date

218 1815 4.0 10.0 Tambora ... Stratovolcano 7.0 11000.0 10/4/1815

322 1883 8.0 27.0 Krakatau ... Caldera 6.0 2000.0 27/8/1883

365 1902 10.0 25.0 Santa Maria ... Stratovolcano 6.0 2500.0 25/10/1902

386 1912 9.0 6.0 Novarupta ... Caldera 6.0 2.0 6/9/1912

650 1991 6.0 15.0 Pinatubo ... Stratovolcano 6.0 350.0 15/6/1991

To find the 10 most explosive eruptions, we could filter out those with unknown VEI
values before sorting:

In [x]: df[pd.notnull(df['VEI'])].sort_values('VEI').tail(10)[

...: ['date', 'Name', 'Type', 'Country', 'VEI']]

Out[x]:

date Name Type Country VEI

29 653 Dakataua Caldera Papua New Guinea 6.0

25 450 Ilopango Caldera El Salvador 6.0

22 240 Ksudach Stratovolcano Russia 6.0

21 230 Taupo Caldera New Zealand 6.0

18 60 Bona-Churchill Stratovolcano United States 6.0

99 19/2/1600 Huaynaputina Stratovolcano Peru 6.0

1 1750 BCE Veniaminof Stratovolcano United States 6.0

40 1000 Changbaishan Stratovolcano North Korea 7.0

218 10/4/1815 Tambora Stratovolcano Indonesia 7.0

3 1610 BCE Santorini Shield volcano Greece 7.0

However, there are many entries with a VEI of 6 and their ordering here is not
clear. A better approach might be to sort first by VEI and next by deaths, setting
na_position='first' to ensure that the null values are placed before numerical values
(and therefore effectively rank lowest):

In [x]: df.sort_values(['VEI', 'Deaths'], na_position='first').tail(10)[

...: ['date', 'Name', 'Type', 'Country', 'VEI', 'Deaths']]

Out[x]:

date Name Type Country VEI Deaths

386 6/9/1912 Novarupta Caldera United States 6.0 2.0

650 15/6/1991 Pinatubo Stratovolcano Philippines 6.0 350.0

99 19/2/1600 Huaynaputina Stratovolcano Peru 6.0 1500.0

120 1660 Long Island Complex volcano Papua New Guinea 6.0 2000.0

322 27/8/1883 Krakatau Caldera Indonesia 6.0 2000.0

365 25/10/1902 Santa Maria Stratovolcano Guatemala 6.0 2500.0

25 450 Ilopango Caldera El Salvador 6.0 30000.0

3 1610 BCE Santorini Shield volcano Greece 7.0 NaN

40 1000 Changbaishan Stratovolcano North Korea 7.0 NaN

218 10/4/1815 Tambora Stratovolcano Indonesia 7.0 11000.0

We can also plot some histograms summarizing the data (Figure 9.10):

fig, axes = plt.subplots(nrows=2, ncols=2)

df['Day'].hist(bins=31, ax=axes[0][0], grid=False)

9.6 Examples 489

1 10 20 30

(a) Day

0

20

1 3 6 9 12

(b) Month

0

50

1600 1800 2000

(c) Year

0

200

0 2000 4000 6000

(d) Elevation /m

0

200

Figure 9.10 Histograms summarizing some of the columns of volcanic event data: (a) day of
month; (b) month of year; (c) frequency by year since 1600 – hopefully, volcanic events have
been progressively better recorded since 1600 and have not actually increased in frequency; (d)
volcano elevation.

axes[0][0].set_xlabel('(a) Day')

df['Month'].hist(bins=np.arange(1, 14) - 0.5, ax=axes[0][1], grid=False)

axes[0][1].set_xticks(range(1, 13))

axes[0][1].set_xlabel('(b) Month')

df[df['Year']>1600]['Year'].hist(ax=axes[1][0], grid=False)

axes[1][0].set_xlabel('(c) Year')

df['Elevation'].hist(ax=axes[1][1], grid=False)

axes[1][1].set_xlabel('(d) Elevation /m')

plt.tight_layout()

plt.show()

10 General Scientific Programming

10.1 Floating-Point Arithmetic

10.1.1 The Representation of Real Numbers

The real numbers, such as 1.2, −0.36, π, 4 and 13256.625 may be thought of as points
on a continuous, infinite number line.1 Some real numbers (including the integers them-
selves) can be expressed as a ratio of two integers, for example, 5

8 and 1
3 . Such numbers

are called rational. Others, such as π, e and
√

2 cannot and are called irrational.
There can therefore be several ways of writing a real number, depending on which

category it falls into, and not all of these ways can express the number precisely (using
a finite amount of ink!). For example, the rational real number 5

8 may be written exactly
as a decimal expansion as 0.625:

5
8

=
6

10
+

2
100

+
5

1000
,

but the number 1
3 cannot be written in a finite number of terms of a decimal expansion:

1
3

=
3

10
+

3
100

+
3

1000
+ . . . = 0.333 . . .

In writing 1
3 as a decimal expansion we must truncate the infinite sequence of 3s some-

where.
The irrational numbers can be described exactly (given some presumed geometrical

or other knowledge), for example, π is the ratio of a circle’s circumference to its diam-
eter,

√
2 is the length of the hypotenuse of a right-angled triangle whose other sides

have length 1. To represent or store such a number numerically, however, some level of
approximation is necessary. For example, 355

113 is a famous rational approximation to π.
A (better) decimal approximation is 3.14159265358979. But, as a decimal expansion,2

an infinite number of digits are needed to express the value of π precisely, just as an
infinite number of 3s are needed in the decimal expansion of 1

3 .
Computers store numbers in binary, and the same considerations that apply to the

limits of the decimal representation of a real number apply to its binary representation.

1 Obviously, an integer such as 4 is just a special sort of real number.
2 Note that a decimal expansion is simply a rational number with a power of 10 in the denominator,

3.14159265358979 = 314159265358979
100000000000000 .

490

10.1 Floating-Point Arithmetic 491

For example, 5
8 has an exact binary representation in a finite number of bits:

5
8

=
1
2

+
0
4

+
1
8

= 0.1012

but
1
10

= 0.000110011001100110011 . . .2

is an infinitely repeating sequence. Only a finite number of these digits can be stored,
and the truncated series of bits converted back to decimal is

1
10
≈ 0.100000000000000006

using the so-called double-precision standard common to most computer languages on
most operating systems. This is the nearest representable number to 1

10 .
The format of the double-precision floating-point representation of numbers is dic-

tated by the IEEE-754 standard. There are three parts to the representation, stored in a
total of 64 bits (8 bytes): the single sign bit, an 11-bit exponent and a 52-bit significand
(also called the mantissa). This is best demonstrated by an example in decimal: the
number 13256.625 can be written in scientific notation as:

13256.625 = +1.3256625 × 104

and stored with the sign bit corresponding to +, a significand equal to 13256625 (where
the decimal point is implicitly to be placed after the first digit) and the exponent 4. This
notation is called “floating point” because the decimal point3 is moved by the number
of places indicated by the exponent.

The floating-point representation of numbers in binary works in the same way, except
that each digit can only be 0 or 1, of course. This allows for a neat trick: when the
number’s binary point (equivalent to the decimal point in base-10) is shifted so that
its significand has no leading zeros, then it will start with 1. Because all significands
normalized in this way will start with 1, there is no need to store it, and effectively 53
bits of precision can be stored in a 52-bit significand.4 The omitted bit is sometimes
called the hidden bit.

In our example, 13256.625 can in fact be represented exactly in binary as

13256.62510 ≡ 11001111001000.1012.

The normalized form of the significand is therefore 11001111001000101 and the expo-
nent is 13, since:

11001111001000.1012 = 1.1001111001000101 × 213.

Now, as discussed, the first digit of the normalized signifcand will always be 1, so it is
omitted and the significand is stored as

3 More generally known as the radix point in bases other than base-10.
4 Note that this trick works only in the binary sysetm.

492 General Scientific Programming

1001111001000101000000000000000000000000000000000000

In order to allow for negative exponents (numbers with magnitudes less than 1), the
exponent is stored with a bias: 1023 is added to the actual exponent. That is, actual
exponents in the range −1022 to +1023 are stored as numbers in the range 1 to 2046. In
this case, the 11-bit exponent field is 13 + 1023 = 1036:

10000001100

Finally, the sign bit is 0, indicating a positive number. The full, 64-bit floating-point
representation of 13256.625 (with spaces for clarity) is

0 10000001100 1001111001000101000000000000000000000000000000000000

and is exact. However, 0.1 is

0 01111111011 1001100110011001100110011001100110011001100110011010

and is not exact (note the truncation and rounding of the infinitely repeating sequence
0011...) – in decimal, this number is

0.100000000000000005551115123126

In general, the 53 bits (including the hidden bit) of the significand give about 15
decimal digits of precision: log10(253) = 15.95. Any calculation resulting in more
significant digits is subject to rounding error. The upper bound of the relative error
due to rounding is called the machine epsilon, ε. In Python,

In [x]: import sys

In [x]: eps = sys.float_info.epsilon

In [x]: eps

Out[x]: 2.220446049250313e-16

It can be shown that the maximum spacing between two normalized floating-point
numbers is 2ε. That is, x + 2*eps == x is guaranteed always to be False.

10.1.2 Comparing Floating-Point Numbers

Because of the finite precision of the floating-point representation of (most) real num-
bers it is extremely risky to compare two floats for equality. For example, consider
squaring 0.1:

In [x]: (0.1)**2

Out[x]: 0.010000000000000002

As we have come to expect, this is not exactly 0.01, but it is also not even the nearest rep-
resentable number to 0.01, since the number squared was, in fact, 0.100000000000000006.
The unfortunate consequence of this is

In [x]: (0.1)**2 == 0.01

Out[x]: False

NumPy provides the methods isclose and allclose (see Section 6.1.12) for com-
paring two floating-point numbers or arrays to within a specified or default tolerance:

10.1 Floating-Point Arithmetic 493

In [x]: np.isclose(0.1**2, 0.01)

Out[x]: True

Note also that floating-point addition is not necessarily associative:

In [x]: a, b, c = 1e14, 25.44, 0.74

In [x]: (a + b) + c

Out[x]: 100000000000026.17

In [x]: a + (b + c)

Out[x]: 100000000000026.19

Nor, in general, is floating-point multiplication distributive over addition:

In [x]: a, b, c = 100, 0.1, 0.2

In [x]: a*b + a*c

Out[x]: 30.0

In [x]: a * (b + c)

Out[x]: 30.000000000000004

10.1.3 Loss of Significance

Most floating-point operations (such as addition and subtraction) result in a loss of
significance. That is, the number of significant digits in the result can be smaller than
in the original numbers (operands) used in the calculation. To illustrate this, consider
a hypothetical floating-point representation working in decimal with a six-digit signifi-
cand and perform the following calculation, written in its exact form:

1.2345432 − 1.23451 = 0.0000332.

Our hypothetical system cannot store the first operand to its full precision but can only
get as close as 1.23454. The floating-point subtraction then yields

1.23454 − 1.23451 = 0.00003.

The original numbers were accurate in the most significant six digits, but the result is
only accurate in its first significant digit. Note that it isn’t the case that the exact result
cannot be represented in all its digits by our floating-point architecture: 0.0000332 ≡
3.32 × 10−5 only has three significant digits, well within the six available to us. The
drastic loss of significance occurred because there was only a very small difference
between the two numbers. This effect is sometimes called catastrophic cancellation and
should always be a consideration when subtracting two numbers with similar values.

A similar loss of significance can occur when a small number is subtracted from (or
added to) a much larger one:

12345.6 + 0.123456 = 12345.72345 (exactly),
12345.6 + 0.123456 = 12345.7 (six-digit decimal significand).

Even though the 15 or so significant digits of a double-precision floating-point num-
ber may seem like sufficient accuracy for a single calculation, be aware that repeatedly

494 General Scientific Programming

carrying out such calculations can increase this rounding error dramatically if the num-
bers involved cannot be represented exactly. For example, consider the following:

In [x]: for i in range(10000000):

....: a += 0.1

....:

In [x]: a

Out[x]: 999999.9998389754

The difference between this approximate value and the exact answer, 1 000 000, is over
1.61 × 10−4.

Python’s math module has a function, fsum, which uses a technique called the
Shewchuk algorithm to compensate for rounding errors and loss of significance.
Compare these two implementations of the previous sum using a generator expression:

In [x]: sum((0.1 for i in range(10000000)))

Out[x]: 999999.9998389754

In [x]: math.fsum((0.1 for i in range(10000000)))

Out[x]: 1000000.0

10.1.4 Underflow and Overflow

Another consequence of the way that floating-point numbers are handled is that there is
a minimum and maximum magnitude to the numbers that can be stored. For example,
Bayesian calculations frequently require small probabilities to be multiplied together,
with each probability a number between 0 and 1. For a large number of such probabil-
ities this product can reach a value that is too small to represent, resulting in underflow
to zero:

In [x]: P = 1

In [x]: for i in range(101):

....: print(P)

....: P *= 5.e-4

1

0.0005

2.5e-07

1.25e-10

6.250000000000001e-14

...

1.0097419586828971e-307

5.0487097934146e-311 # denormalization starts

2.5243548965e-314

1.2621776e-317

6.31e-321

5e-324

0.0 # underflow

0.0

Below this value, Python begins to sacrifice some of the precision and maintains a
modified representation of the number (a denormal, or subnormal number), a process

10.1 Floating-Point Arithmetic 495

called gradual underflow. Eventually, however, the number underflows its representa-
tion totally and becomes indistinguishable from zero. The minimum number that can be
represented at full IEEE-754 double precision is

In [x]: import sys

In [x]: sys.float_info.min

Out[x]: 2.2250738585072014e-308

There are several possible tactics for dealing with underflow (beyond using higher-
precision numbers such as np.float128, if available). In the earlier example, it is com-
mon to take the sum of the logarithms of the probabilities, which has a much more
modest magnitude, instead of taking the product directly. Alternatively, one could start
the earlier code with P = 1.e100 and manipulate the resulting numbers on the under-
standing that they are larger than they should be by this constant factor.

Floating-point overflow is the problem at the other end of the number scale: the largest
double-precision number that can be represented is

In [x]: sys.float_info.max

Out[x]: 1.7976931348623157e+308

In NumPy, numbers that overflow are set to the special values inf or -inf depending
on sign:

In [x]: f = 1

In [x]: for x in range(1, 40, 4):

...: print('exp({}) = {}'.format(x**2, np.exp(x**2)))

...:

exp(1) = 2.718281828459045

exp(25) = 72004899337.38588

exp(81) = 1.5060973145850306e+35

exp(169) = 2.487524928317743e+73

exp(289) = 3.2441824460394912e+125

exp(441) = 3.340923407659982e+191

exp(625) = 2.7167594696637367e+271

exp(841) = inf

exp(1089) = inf

exp(1369) = inf

This leads to some curious relations between numbers that are too big to represent:

In [x]: a, b = 1.e500, 1.e1000

In [x]: a == b

Out[x]: True

In [x]: a, b

Out[x]: (inf, inf)

There is another special value, nan (“Not a Number,” NaN), which is returned by
some operations involving overflowed numbers:

In [x]: a / b

Out[x]: nan

(NumPy also implements its own values, numpy.nan and numpy.inf, see Section 6.1.4.)
Never check if an object is nan with the == operator: nan is not even equal to itself(!)5:

5 This means that the == operator is not an equivalence relation for floating-point numbers as it is not reflexive.

496 General Scientific Programming

In [x]: c = a / b

In [x]: c == c

Out[x]: False

Python int objects are not subject to overflow, as Python will automatically allocate
memory to hold them to full precision (within the limitations of available machine mem-
ory). However, NumPy integer arrays, which map to the underlying C data structures,
are stored in a fixed number of bytes (see Table 6.2) and may overflow. For example,

In [x]: a = np.zeros(3, dtype=np.int16)

In [x]: a[:] = -30000, 30000, 40000

In [x]: a

Out[x]: array([-30000, 30000, -25536], dtype=int16)

In [x]: b = np.zeros(3, dtype=np.uint16)

In [x]: b[:] = -30000, 40000, 70000

In [x]: b

Out[x]: array([35536, 40000, 4464], dtype=uint16)

Signed 16-bit integers have the range −32768 to 32767, i.e. −215 to (215 − 1). Due
to the way they are stored, an attempted assignment to the number 40000 has resulted
instead in the assignment of 40000 − 216 = −25536 to a[2] above. Similarly, unsigned
16-bit integers are limited to values in the range 0 to 65535, i.e. 0 to (216 − 1). Negative
numbers cannot be represented at all and b[0] = −30000 gets converted to −30000
mod 216 = 35536; b[2] = 70000 overflows and ends up as 70000 mod 216 = 4464.

10.1.5 Further Reading

• From the Python documentation: Floating-Point Arithmetic: Issues and Limita-
tions, available at https://docs.python.org/tutorial/floatingpoint.html.

• The article “What Every Computer Scientist Should Know About Floating-Point
Arithmetic” by David Goldberg (Computing Surveys, March 1991) has become
something of a classic and for a rigorous approach to the topic of floating-point
arithmetic is highly recommended. It is available at https://docs.oracle.com/cd/
E19957-01/806-3568/ncg_goldberg.html.

• S. Oliveira and D. Stewart, Writing Scientific Software: A Guide to Good Style,
Cambridge University Press, Cambridge (2006).

• N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd edn., Society
for Industrial and Applied Mathematics, Philadelphia, PA (2002).

• The Standard Library module, decimal, supports decimal fixed-point and cor-
rectly rounded decimal floating-point arithmetic, but its calculations are generally
much slower than those of the native float datatype. See https://docs.python.org/
3/library/decimal.html for more details.

https://docs.python.org/tutorial/floatingpoint.html
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://docs.python.org/3/library/decimal.html
https://docs.python.org/3/library/decimal.html

10.1 Floating-Point Arithmetic 497

10.1.6 Exercises

Questions

Q10.1.1 The decimal representation of some real numbers is not unique. For example,
prove mathematically that 0.9̇ ≡ 0.9999 . . . ≡ 1.

Q10.1.2
√

tan(π) = 0 is mathematically well defined, so why does the folllowing
calculation fail with a math domain error?
In [x]: math.sqrt(math.tan(math.pi))

ValueError Traceback (most recent call last)

<ipython-input -135-7bfdceeef434 > in <module >()

----> 1 math.sqrt(math.tan(math.pi))

Q10.1.3 Fermat’s last theorem states that no three positive integers x, y and z can
satisfy the equation xn +yn− zn = 0 for any integer n > 2. Explain this apparent counter-
example to the theorem:
In [x]: 844487.**5 + 1288439.**5 - 1318202.**5

Out[x]: 0.0

Q10.1.4 The functions f (x) = (1−cos2 x)/x2 and g(x) = sin2 x/x2 are mathematically
indistinguishable, but plotted using Python in the region −0.001 ≤ x ≤ 0.001 show a
significant difference. Explain the origin of this difference.

Q10.1.5 How can you establish whether a floating-point number is nan or not without
using math.isnan or numpy.isnan?

Q10.1.6 Predict and explain the outcome of the following:

(a) 1e1001 > 1e1000

(b) 1e350/1.e100 == 1e250

(c) 1e250 * 1.e-250 == 1e150 * 1.e-150

(d) 1e350 * 1.e-350 == 1e450 * 1.e-450

(e) 1 / 1e250 == 1e-250

(f) 1 / 1e350 == 1e-350

(g) 1e450/1e350 != 1e450 * 1e-350

(h) 1e250/1e375 == 1e-125

(i) 1e35 / (1e1000 - 1e1000) == 1 / (1e1000 - 1e1000)

(j) 1e1001 > 1e1000 or 1e1001 < 1e1000

(k) 1e1001 > 1e1000 or 1e1001 <= 1e1000

Problems

P10.1.1 Heron’s formula for the area of a triangle (as used in Example E2.3),

A =
√

s(s − a)(s − b)(s − c) where s = 1
2 (a + b + c),

is inaccurate if one side is very much smaller than the other two (“needle-shaped”
triangles). Why? Demonstrate that the following reformulation gives a more accurate

498 General Scientific Programming

result in this case by considering the triangle with sides (10−13, 1, 1), which has the area
5 × 10−14:6

A =
1
4

√
(a + (b + c))(c − (a − b))(c + (a − b))(a + (b − c)),

where the sides have been relabeled so that a ≥ b ≥ c.
What happens if you rewrite the factors in this equation to remove their inner paren-

theses? Why?

P10.1.2 Write a function to determine the machine epsilon of a numerical data type
(float, np.float128, int, etc.).

10.2 Stability and Conditioning

10.2.1 The Stability of an Algorithm

The stability of an algorithm may be thought of in relation to how it handles approxi-
mation errors that occur in its operation or its input data. These errors typically arise
from experimental uncertainties (imperfect measurements providing the input data)
or from the sort of floating-point approximations involved in the calculations of the
algorithm discussed in the previous section. Another common source of error is in the
approximations made in “discretizing” a problem: the need to represent the values of
a continuous function, y = f (x) say, on a discrete “grid” of points: yi = f (xi). An
algorithm is said to be numerically stable if it does not magnify these errors and unstable
if it causes them to grow.

Example E10.1 Consider the differential equation

dy
dx

= −αy

for α > 0 subject to the boundary condition y(0) = 1. This simple problem can be solved
analytically:

y = e−αx,

but suppose we want to solve it numerically. The simplest approach is the forward (or
explicit) Euler method: choose a step size, h, defining a grid of x values, xi = xi−1 + h,
and approximate the corresponding y values through:

yi = yi−1 + h
∣∣∣∣∣dy
dx

∣∣∣∣∣
xi−1

= yi−1 − hαyi−1 = yi−1(1 − αh).

The question arises: what value should be chosen for h? A small h minimizes the error
introduced by the approximation above, which basically joins y values by straight-line

6 This formula is due to William Kahan, one of the designers of the IEEE-754 floating-point standard.

10.2 Stability and Conditioning 499

0 2 4 6 8 10
1.0

0.5

0.0

0.5

1.0

h = 0.01

h = 0.2

h = 1

Figure 10.1 Instability of the forward Euler solution to dy/dx = −αy for large step size, h.

segments,7 but if h is too small there will be cancellation errors due to the finite precision
used in representing the numbers involved.8

The following code implements the forward Euler algorithm to solve the earlier
differential equation. The largest value of h (here, h = α/2 = 1) clearly makes the
algorithm unstable (see Figure 10.1).

Listing 10.1 Comparison of different step sizes, h, in the numerical solution of y′ = −αy by
the forward Euler algorithm

import numpy as np

import matplotlib.pyplot as plt

alpha, y0, xmax = 2, 1, 10

def euler_solve(h, n):

""" Solve dy/dx = -alpha.y by forward Euler method for step size h."""

y = np.zeros(n)

y[0] = y0

for i in range(1, n):

y[i] = (1 - alpha * h) * y[i-1]

return y

def plot_solution(h):

x = np.arange(0, xmax, h)

y = euler_solve(h, len(x))

plt.plot(x, y, label='$h={}$'.format(h))

for h in (0.01, 0.2, 1):

7 That is, the Taylor series about yi−1 has been truncated at the linear term in h.
8 In the extreme case that h is chosen to be smaller than the machine epsilon, typically about 2 × 10−16, then

we have xi = xi−1 and there is no grid of points at all.

500 General Scientific Programming

plot_solution(h)

plt.legend()

plt.show()

Example E10.2 The integral

In =

∫ 1

0
xnex dx n = 0, 1, 2, . . .

suggests a recursion relation obtained by integration by parts:

In =
[
xnex]1

0 − n
∫ 1

0
xn−1ex dx = e − nIn−1,

terminating with I0 = e − 1. However, this algorithm, applied “forward” for increasing
n is numerically unstable since small errors (such as floating-point rounding errors) are
magnified at each step: if the error in In is εn such that the estimated value of I′n = In + εn

then

εn = I′n − In = (e − nI′n−1) − (e − nIn−1) = n(In−1 − I′n−1) = −nεn−1,

and hence |εn| = n!ε0. Even if the error in ε0 is small, that in εn is larger by a factor n!,
which can be huge.

The numerically stable solution, in this case, is to apply the recursion backward for
decreasing n:

In−1 =
1
n

(e − In) ⇒ εn−1 = −
εn

n
.

That is, errors in In are reduced on each step of the recursion. One can even start the
algorithm at I′N = 0 and, providing enough steps are taken between N and the desired n,
it will converge on the correct In.

Listing 10.2 Comparison of algorithm stability in the calculation of I(n) =
∫ 1

0
xnex dx

eg9-integral-stability.py

import numpy as np

import matplotlib.pyplot as plt

def Iforward(n):

if n == 0:

return np.e - 1

return np.e - n * Iforward(n-1)

def Ibackward(n):

if n >= 99:

return 0

return (np.e - Ibackward(n+1)) / (n+1)

N = 35

Iforward = [np.e - 1]

for n in range(1, N+1):

10.2 Stability and Conditioning 501

0 5 10 15 20 25 30 35
n

0.5

0.0

0.5

1.0

1.5

2.0

I
(n

)
Forward algorithm
Backward algorithm

Figure 10.2 Instability of the forward recursion relation for In =
∫ 1

0
xnex dx.

Iforward.append(np.e - n * Iforward[n-1])

Ibackward = [0] * (N+1)

for n in range(N-1,-1,-1):

Ibackward[n] = (np.e - Ibackward[n+1]) / (n+1)

n = range(N+1)

plt.plot(n, Iforward, label='Forward algorithm')

plt.plot(n, Ibackward , label='Backward algorithm')

plt.ylim(-0.5, 2)

plt.xlabel('n')

plt.ylabel('$I(n)$')

plt.legend()

plt.show()

Figure 10.2 shows the forward algorithm becoming extremely unstable for n > 16 and
fluctuating between very large positive and negative values; conversely, the backward
algorithm is well behaved.

10.2.2 Well-Conditioned and Ill-Conditioned Problems

In numerical analysis, a further distinction is made between problems which are well-
or ill-conditioned. A well-conditioned problem is one for which small relative errors in
the input data lead to small relative errors in the solution; an ill-conditioned problem is
one for which small input errors lead to large errors in the solution. Conditioning is a
property of the problem, not the algorithm, and is distinct from the issue of stability:
it is perfectly possible to use an unstable algorithm on a well-conditioned problem and
end up with erroneous results.

502 General Scientific Programming

Example E10.3 Consider the two lines given by the equations:

y = x

y = mx + c

These lines intersect at (x?, y?) = (c/(1 − m), c/(1 − m)). Finding the intersection point
is an ill-conditioned problem when m ≈ 1 (lines nearly parallel).

For example, the lines y = x and y = (1.01)x + 2 intersect at (x?, y?) = (−200,−200).
If we perturb m slightly by δm = 0.001, to m′ = m + δm = 1.011, the intersection point
becomes (x′?, y

′
?) = (−181.8182,−181.8182). That is, a relative error of δm/m ≈ 0.001

in m has created a relative error of |(x′? − x?)/x?| ≈ 0.091, almost 100 times larger.
Conversely, if the lines have very different gradients, the problem is well-conditioned.

Take, for example, m = −1 (perpendicular lines): the intersection (1, 1) becomes
(1.0005, 1.0005) under the same perturbation to m′ = m + δm = −0.999, leading to a
relative error of 0.0005, which is actually smaller than the relative error in m.

Example E10.4 The conditioning of polynomial root-finding is notoriously bad. One
famous example is Wilkinson’s polynomial:

P(x) =

20∏
i=1

(x − i) = (x − 1)(x − 2) · · · (x − 20)

= x20 − 210x19 + 20615x18 + . . . + 2432902008176640000,

By inspection, the roots are simply 1, 2, . . . , 20. However, Wilkinson showed that
decreasing the coefficient of x19 from −210 to −210 − 2−23 ≈ −210.000000119209 had
a drastic effect on many of the roots, some of which become complex. For example, the
root at x = 20 moves to x = 20.8, a change of 4% on a perturbation of one coefficient
by less than one part in a billion (see also Problem P10.2.2).

10.2.3 Exercises

Problems

P10.2.1 The simplest (and least accurate) way to calculate the first derivative of a
function is to simply use the definition:

f ′(x) = lim
h→0

f (x + h) − f (x)
h

.

Fixing h at some small value, our approximation is

f ′(x) ≈
f (x + h) − f (x)

h
.

10.3 Programming Techniques and Software Development 503

Using the function f (x) = ex, which value of h (in double-precision arithmetic, to the
nearest power of 10) gives the most accurate approximation to f ′(1) = e?

P10.2.2 Use NumPy’s Polynomial class (see Section 6.4) to generate an object repre-
senting Wilkinson’s polynomial from its roots to the available numerical precision; then
find the roots of this representation of the polynomial.

10.3 Programming Techniques and Software Development

10.3.1 General Remarks

Commenting Code
Throughout this book we have tried to comment the code examples and exercise solu-
tions helpfully. This is a good practice, even for short scripts, but the effective use of
comments is not an entirely trivial activity. Here is some general advice:

• Generally, place comments on their own lines rather than “inline” with code (that
is, after but on the same line as the code they describe):

Volume of a dodecahedron of side length a.

V = (15 + 7 * np.sqrt(5)) / 4 * a**3

rather than

V = (15 + 7 * np.sqrt(5)) / 4 * a**3 # volume of a dodecahedron of side a

Longer comments should be complete sentences, with the first word capitalized
(if appropriate, i.e. unless it is an identfier that begins with a lower-case letter) and
ending in a period.

This book uses inline comments to clarify points of syntax; most of these would
not be necessary in fluent “production” Python code.

• Explain why your code does what it does, don’t simply explain what it does.
Assume that the person reading your code knows the syntax of the language
already. Thus,

Increase i by 10:

i += 10

is a terrible comment which adds nothing to the line of code it purports to explain.
On the other hand,

Skip the next 10 data points.

i += 10

at least gives some indication of the reason for the statement.
• Keep comments up to date with the code they explain. It is all too easy to change

code without synchronizing the corresponding comments. This can lead to a
situation that is worse than having no comment at all:

Skip the next 10 data points.

i += 20

504 General Scientific Programming

Which is correct? Is the comment correct in explaining the programmer’s inten-
tion but the line of code buggy, or has the line of code been updated for some
reason without changing the comment? If your code is likely to be subject to
such changes, consider defining a separate variable to hold the change in i:
DATA_SKIP = 10

...

Skip the next DATA_SKIP data points.

i += DATA_SKIP

In fact, some programmers advocate aiming to minimize the number of comments
by carefully choosing meaningful identifier names. For example, if we rename
our index, we might even do away with the comment altogether:
data_index += DATA_SKIP

• Explain functions carefully using docstrings. In Python, all functions have
an attribute __doc__ which is set to the docstring provided in the function
definition (see Section 2.7.1). A docstring is usually a multiline, triple-quoted
string providing an explanation of what the function does, the arguments it
takes and the nature of its return value(s), if any. From an interactive shell,
typing help(function_name) provides more detailed information concerning the
function, including this docstring.

Example E10.5 An example of a well-commented function (to calculate the volume
of a tetrahedron) is given here.

Listing 10.3 A function to calculate the volume of a tetrahedron

eg9-tetrahedron.py

import numpy as np

def tetrahedron_volume(vertexes=None, sides=None):

"""

Return the volume of the tetrahedron with given vertexes or side lengths.

If vertexes are given they must be in an array with shape (4, 3): the

position vectors of the four vertexes in three dimensions; if the six sides are

given, they must be an array of length 6. If both are given, the sides

will be used in the calculation.

Raises a ValueError if the vertexes do not form a tetrahedron (e.g.

because they are coplanar, colinear or coincident).

"""

This method implements Tartaglia ' s formula using the Cayley-Menger
determinant:

|0 1 1 1 1 |

|1 0 s1^2 s2^2 s3^2|

288 V^2 = |1 s1^2 0 s4^2 s5^2|

|1 s2^2 s4^2 0 s6^2|

|1 s3^2 s5^2 s6^2 0 |

where s1, s2, ..., s6 are the tetrahedron side lengths.

10.3 Programming Techniques and Software Development 505

Warning: this algorithm has not been tested for numerical stability.

The indexes of rows in the vertexes array corresponding to all

possible pairs of vertexes.

vertex_pair_indexes = np.array(((0, 1), (0, 2), (0, 3),

(1, 2), (1, 3), (2, 3)))

if sides is None:

If no sides were provided, work them out from the vertexes.

Ê vertexes = np.asarray(vertexes)

if vertexes.shape != (4, 3):

raise TypeError('vertexes must be a numpy array with shape (4, 3)')

Get all the squares of all side lengths from the differences between

the six different pairs of vertex positions.

vertex1, vertex2 = vertex_pair_indexes.T

sides_squared = np.sum((vertexes[vertex1] - vertexes[vertex2])**2,

axis=-1)

else:

Check that sides has been provided as a valid array and square it.

sides = np.asarray(sides)

if sides.shape != (6,):

raise TypeError('sides must be an array with shape (6,)')

sides_squared = sides**2

Set up the Cayley-Menger determinant.

M = np.zeros((5, 5))

Fill in the upper triangle of the matrix.

M[0, 1:] = 1

The squared-side length elements can be indexed using the vertex

pair indexes (compare with the determinant illustrated above).

M[tuple(zip(*(vertex_pair_indexes + 1)))] = sides_squared

The matrix is symmetric , so we can fill in the lower triangle by

adding the transpose.

M = M + M.T

Calculate the determinant and check it is positive (negative or zero

values indicate the vertexes to not form a tetrahedron).

det = np.linalg.det(M)

if det <= 0:

raise ValueError('Provided vertexes do not form a tetrahedron')

return np.sqrt(det / 288)

Ê Using np.asarray to convert vertexes into a NumPy array if it isn’t one already
enables the function to work with any compatible object (such as a list of lists).

Magic Numbers
In the context of programming style, a magic number is any constant numerical value
used directly in a program, instead of being assigned to a meaningful variable name.
Avoiding magic numbers generally leads to more readable, flexible and maintainable
code, despite the increased verbosity. Wherever a number appears without an explana-
tion (except, perhaps, for trivial cases such as initializing a variable to zero, or incre-
menting a quantity by one), it is worth considering whether that number can be assigned

506 General Scientific Programming

to a variable. If it appears more than once, it is almost always a good idea to do so, as
illustrated in the following example.

Example E10.6 The following program estimates the probability of obtaining differ-
ent totals on rolling two dice:

Listing 10.4 Code to simulate rolling two dice containing magic numbers

import random

Initialize the rolls dictionary to a count of zero for each possible outcome.

rolls = dict.fromkeys(range(2, 13), 0)

The simulation: roll two dice 100000 times.

for j in range(100000):

roll_total = random.randint(1, 6) + random.randint(1, 6)

rolls[roll_total] += 1

Report the simulation results.

for i in range(2, 13):

P = rolls[i] / 100000

print(f'P({i}) = {P:.5f}')

Several magic numbers appear without explanation in the program above: the number
of pips showing on each die is selected randomly from the integers 1–6; the total number
of each of the possible outcomes 2–12 are stored in a dictionary, rolls, whose keys are
generated by the function call range(2, 13); and the number of simulated rolls is hard-
coded as 100 000.

Note that if we wanted, for example, to change the number of rolls we would have
to edit the code in three places: the simulation loop, the comment above the simulation
loop, and in the probability calculation. Maintaining and adapting code like this in a
longer program is likely to be time-consuming and error-prone.

A little thought about how to assign these magic-number constants to variables also
suggests a way to make the code more flexible, as shown below. As with other lan-
guages, it is common, but not necessary, to signal the definition of such a constant by
defining its name in capitals:

Listing 10.5 Code to simulate rolling two dice refactored to use named constants

import random

NDICE = 2

NFACES_PER_DIE = 6

NROLLS = 100000

Calculate all the possible roll totals.

min_roll , max_roll = NDICE, NDICE * NFACES_PER_DIE

roll_total_range = range(min_roll, max_roll+1)

Initialize the rolls dictionary to a count of zero for each possible outcome.

rolls = dict.fromkeys(roll_total_range , 0)

The simulation: roll NDICE dice NROLLS times.

10.3 Programming Techniques and Software Development 507

for j in range(NROLLS):

roll_total = 0

for i in range(NDICE):

roll_total += random.randint(1, NFACES_PER_DIE)

rolls[roll_total] += 1

Report the simulation results.

for i in roll_total_range:

P = rolls[i] / NROLLS

print(f'P({i}) = {P:.5f}')

In this program, we can simulate the rolling of any number of dice with any number
of sides any number of times by changing, in a single code location, the variables NDICE,
NFACES_PER_DIE and NROLLS.

Style Guide for Python Code
The officially recommended coding conventions for Python are provided by a docu-
ment known as PEP8 (available at www.python.org/dev/peps/pep-0008/). While it is
acknowledged that it isn’t always appropriate to follow these conventions all the time,
Python programmers generally agree that they maximize the comprehensibility and
maintainability of code. The focus is on consistency, readability and in minimizing the
probability of hard-to-find typographical errors. Some of the highlights are

• Use four spaces per indentation level (and never tabs).9

• In assignments, put spaces around the = sign; for example, a = 10, not a=10.
• Use a maximum of 79 characters per line, where you need to split a line of code

over more than one line:

– favor implicit line continuation inside parentheses over the explicit use of
the character, \ (see Section 2.3.1);

– in arithmetic expressions, break around binary operators so that the new
line is after the operator;

– as far as possible, line up code so that expressions within parentheses
line up.

For example, the following is considered poor style:

lengthy_calculation = margin*margin_px + (border*border_px\

+ padding*padding_px)

and might be better written as

lengthy_calculation = (margin*margin_px + (border*border_px +

padding*padding_px))

• Separate top-level function and class definitions by two blank lines; within a
class, separate them by one blank line.

9 A good text editor can be configured to automatically expand tabs to a fixed number of spaces.

www.python.org/dev/peps/pep-0008/

508 General Scientific Programming

• Use UTF-8 encoding for your source code (in Python 3 this is the default encod-
ing anyway).

• Avoid wildcard imports (from foo import *), as they introduce (and potentially
over-write) the imported module’s names into the local namespace (recall Ques-
tion Q2.2.5).

• Separate operators from their operands with single spaces unless operations with
different priorities are being combined; for example, write x = x + 5 but r2 =

x**2 + y**2.
• Don’t use spaces around the = in keyword arguments; for example, in function

calls use foo(b=4.5) not foo(b = 4.5).
• Avoid putting more than one statement on the same line separated by semicolons;

for example, instead of a = 1; b = 2, write a, b = 1, 2 (see Section 4.3.1).
• Functions, modules and packages should have short, all-lowercase names. Use

underscores in function and module names if necessary, but avoid them in pack-
age names.

• Class names should be in (upper) CamelCase, also known as CapWords; for
example, AminoAcid, not amino_acid (see Section 4.6.2).

• Define constants10 in all-capitals with underscores separating words; for example,
MAX_LINE_LENGTH.

10.3.2 Editors

While, to some extent, the choice of text editor for writing code is a personal one, most
programmers favor one with syntax highlighting and the possibility to define macros to
speed up repetitive tasks. Popular choices include:

• Visual Studio Code, a popular, free and open-source editor developed by
Microsoft for Windows, Linux and macOS;

• Sublime Text, a commercial editor with per-user licensing and a free-evaluation
option;

• Vim, a widely used, cross-platform keyboard-based editor with a steep learning
curve but powerful features; the more basic vi editor is installed on almost all
Linux and Unix operating systems;

• Emacs, a popular alternative to Vim;
• Notepad++, a free Windows-only editor;
• SciTE, a fast, lightweight source code editor;
• Atom, another free, open-source, cross-platform editor.

Beyond simple editors, there are fully featured integrated development environments
(IDEs) that also provide debugging, code-execution, intelligent code-completion and
access to operating-system services. Here are some of the options available:

• Eclipse with the PyDev plugin, a popular free IDE (www.eclipse.org/ide/);

10 Note that Python doesn’t really have constants in the same way that, for example, C does.

www.eclipse.org/ide/

10.3 Programming Techniques and Software Development 509

• JupyterLab, an open-source browser-based IDE for data science and other appli-
cations in Python (https://jupyter.org/);

• PyCharm, a cross-platform IDE with commercial and free editions (www.
jetbrains.com/pycharm/);

• PythonAnywhere, an online Python environment with free and paid-for options
(www.pythonanywhere.com/);

• Spyder, an open-source IDE for scientific programming in Python, which inte-
grates NumPy, SciPy, Matplotlib and IPython (www.spyder-ide.org/).

10.3.3 Version Control

Unless properly managed, larger software projects (in practice, anything consisting
of more than a single file of code) often rapidly descend into a tangle with modified
versions, experimental code, ad hoc features and temporary files. The management of
changes to the files comprising a software project is called version control (or revision
control).

At its simplest, version control can involve simply keeping code in a number of
parallel directories (folders), numbered chronologically as the software evolves. This
approach can work, but if a small change in a large amount of code leads to a new
version, it is inefficient (a lot of unchanged code is copied across to the new directory).
If a new version is created only when the code changes a lot, then there is scope for a
lot of tangled code to be generated between versions.

To solve these problems, there are several version-control software packages avail-
able, some of which are listed here. Most of these run as stand-alone applications on an
operating system and can be invoked from the command line or used through a graphical
interface. Some advantages are as follows:

• many developers can collaborate on one project;
• branching: the parallel development of two versions of the software at the same

time, for example, to test out new features;
• tagging (or labeling): a way of referring to a snapshot of the project in a particular

state;
• roll-back of a file in the project to a previous version;
• cloning: a means of distributing a software project along with its history of

changes;
• some version-control systems integrate with online repositories for storing and

sharing code; the most famous of these is GitHub (https://github.com/).

The working of version-control systems is not described in detail here (the syntax
varies between systems and there are extensive tutorials, documentation and even entire
books written about each one). Some recommended options are:

• Git: the most widely adopted version-control system, Git works on a distributed
(or decentralized) basis, allowing developers to work on a project without sharing
a common network or central reference code repository; open-source projects can

https://jupyter.org/
www.jetbrains.com/pycharm/
www.jetbrains.com/pycharm/
www.pythonanywhere.com/
https://github.com
http://www.spyder-ide.org/

510 General Scientific Programming

be hosted for free at online services such as GitHub and Bitbucket:
https://git-scm.com/

• Mercurial: another distributed version-control system:
https://www.mercurial-scm.org/

• Subversion (SVN): a centralized option with free (for open-source projects) host-
ing at SourceForge (https://sourceforge.net/). As Git has gained in popularity,
SVN is not as widely used as it once was:
https://subversion.apache.org/.

10.3.4 Unit Tests

Unit testing is a way of validating software by focusing on individual units of source
code. As an object-oriented programming language, for Python this usually means that
individual classes (and sometimes even individual functions) are tested against a set of
trial data (some of which may be deliberately incorrect or malformed). The aim is to
catch any bugs which lead to the faulty interpretation of data. The set of unit tests also
serves as a documented and verifiable assertion that the code does what it is supposed to.
In some paradigms of code development, unit tests are written before the code itself.11

An important aspect of unit testing is “regression testing”: it provides a means of
ensuring that subsequent changes to the code (perhaps the addition of some functional-
ity) do not break it: the upgraded code should pass the same unit tests that the original
code did.

Unit testing your own code for a small project takes discipline. The tests are, them-
selves, computer code (and, perhaps, associated data) and need careful thought to write.
The devising of suitable unit tests often prompts the programmer to think more deeply
about the implementation of their code and can catch possible bugs before it is written.

Python’s native unit testing framework is based around the unittest module: a sim-
ple application is given in the example below. The external pytest framework is a
popular and well-supported alternative.

Example E10.7 Suppose we want to write a function to convert a temperature
between the units degrees Fahrenheit, degrees Celsius and kelvins (identified by the
characters 'F', 'C' and 'K', respectively). The six formulas involved are not difficult
to code, but we might wish to handle gracefully a couple of conditions that could arise
in the use of this function: a physically unrealizable temperature (< 0 K) or a unit other
than 'F', 'C' or 'K'.

Our function will first convert to kelvins and then to the units requested; if the
from-units and the to-units are the same for some reason, we want to return the
original value unchanged. The function convert_temperature is defined in the file
temperature_utils.py.

11 In particular, so-called “extreme” programming.

https://git-scm.com/
https://www.mercurial-scm.org/
https://sourceforge.net/
https://subversion.apache.org/

10.3 Programming Techniques and Software Development 511

Listing 10.6 A function for converting between different temperature units

temperature_utils.py

def convert_temperature(value, from_unit , to_unit):

""" Convert and return the temperature value from from_unit to to_unit. """

A dictionary of conversion functions from different units *to* K.

toK = {'K': lambda val: val,

'C': lambda val: val + 273.15,

'F': lambda val: (val + 459.67)*5/9,

}

A dictionary of conversion functions *from* K to different units.

fromK = {'K': lambda val: val,

'C': lambda val: val - 273.15,

'F': lambda val: val*9/5 - 459.67,

}

First convert the temperature from from_unit to K.

try:

T = toK[from_unit](value)

except KeyError:

raise ValueError('Unrecognized temperature unit: {}'.format(from_unit))

if T < 0:

raise ValueError('Invalid temperature: {} {} is less than 0 K'

.format(value, from_unit))

if from_unit == to_unit:

No conversion needed!

return value

Now convert it from K to to_unit and return its value.

try:

return fromK[to_unit](T)

except KeyError:

raise ValueError('Unrecognized temperature unit: {}'.format(to_unit))

To use the unittest module to conduct unit tests on the convert_temperature,
we write a new Python script defining a class, TestTemperatureConversion, derived
from the base unittest.TestCase class. This class defines methods that act as tests
of the convert_temperature function. These test methods should call one of the base
class’s assertion functions to validate that the return value of convert_temperature is
as expected. For example,

self.assertEqual(<returned value>, <expected value>)

returns True if the two values are exactly equal and False otherwise. Other assertion
functions exist to check that a specific exception is raised (e.g. by invalid arguments)
or that a returned value is True, False, None, and so on. The unit test code for our
convert_temperature function is here.

Listing 10.7 Unit tests for the temperature conversion function

from temperature_utils import convert_temperature

import unittest

512 General Scientific Programming

class TestTemperatureConversion(unittest.TestCase):

def test_invalid(self):

"""

There ' s no such temperature as -280 C, so convert_temperature should
raise a ValueError.

"""

Ê self.assertRaises(ValueError , convert_temperature , -280, 'C', 'F')

def test_valid(self):

""" A series of valid temperature conversions to test. """

test_cases = [((273.16, 'K',), (0.01, 'C')),

((-40, 'C'), (-40, 'F')),

((450, 'F'), (505.3722222222222, 'K'))]

for test_case in test_cases:

((from_val , from_unit), (to_val, to_unit)) = test_case

result = convert_temperature(from_val, from_unit , to_unit)

Ë self.assertAlmostEqual(to_val, result)

def test_no_conversion(self):

"""

Ensure that if the from-units and to-units are the same the

temperature is returned exactly as it was passed and not converted

to and from kelvins, which may cause loss of precision.

"""

T = 56.67

result = convert_temperature(T, 'C', 'C')

Ì self.assertTrue(result is T)

def test_bad_units(self):

""" Check that ValueError is raised if invalid units are passed. """

self.assertRaises(ValueError , convert_temperature , 0, 'C', 'R')

self.assertRaises(ValueError , convert_temperature , 0, 'N', 'K')

unittest.main()

Ê assertRaises verifies that a specified exception is raised by the method convert_

temperature. The necessary arguments to this method are passed after the method
object itself.
Ë We need assertAlmostEqual here because the floating-point arithmetic is likely to
cause a loss of precision due to rounding errors.
Ì We use assertTrue here to ensure that the temperature value is returned as the same
object that was passed and not converted to and from kelvins.

Running this script shows that our function passes its unit tests:
$ python eg9-temperature -conversion -unittest.py

...

--

Ran 4 tests in 0.000s

OK

10.3 Programming Techniques and Software Development 513

10.3.5 Further Reading

• F. Brooks, The Mythical Man-Month, Addison-Wesley, Boston, MA (1975,
1995). Near-legendary monograph on software development explaining why
“adding manpower to a late software project makes it later.”

• J. Loeliger and M. McCullough, Version Control with Git, O’Reilly, Sebastopol,
CA (2012).

• S. McConnell, Code Complete: A Practical Handbook of Software Construction,
Microsoft Press, Redmond, WA (2004).

• A. Hunt and D. Thomas, The Pragmatic Programmer, Addison-Wesley, Boston,
MA (1999).

Appendix A Solutions

Answers to selected questions are given here. For further exercises and solutions, see
https://scipython.com.

Q2.2.5 This question illustrates the danger of “wildcard” imports: the value of the
variable e = 2 is replaced by the definition of e in the math module. The expression d

** e therefore raises 8 to the power of e = 2.71828 . . . instead of squaring it.

Q2.2.7 Using Python’s operators:

>>> a = 2

>>> b = 6

>>> 3 * (a**3*b - a*b**3) % 7

3

>>> a = 3

>>> b = 5

>>> 3 * (a**3*b - a*b**3) % 7

1

Q2.2.8 The thickness of the paper on the nth fold is 2nt, so we require 2nt ≥ d ⇒
nmin = dlog2(d/t)e:

>>> d = 384_400 * 1.e3 # distance to Moon, m

>>> t = 1.e-4 # paper thickness , m

>>> math.log(d / t, 2) # base-2 logarithm

41.805745474760016

Hence the paper must be folded 42 times to reach to the Moon (dxe denotes the ceiling
of x: the smallest integer not less than x).

Q2.2.10 The ˆ operator does not raise a number to another power (that is the **

operator). It is the bitwise xor operator, and in binary 10ˆ2 is 1010 xor 0010 = 1000,
which is 8 in decimal.

Q2.3.1 Slice the string s = 'seehemewe' as follows (other solutions are possible in
some cases):

(a) s[:3]

(b) s[3:5]

(c) s[5:7]

(d) s[7:]

(e) s[3:6]

(f) s[5:2:-1]

514

https://scipython.com

Solutions 515

(g) s[-2::-3]

Q2.3.2 Simply slice the string backward and compare with the original:

>>> s = 'banana'

>>> s == s[::-1]

False

>>> s = 'deified'

>>> s == s[::-1]

True

Q2.3.5 This is not the correct way to test if the string s is equal to either 'ham' or
'eggs'. The expression ('eggs' or 'ham') is a boolean one in which both arguments,
being nonempty strings, evaluate to True. The expression short-circuits at the first True
equivalent and this operand is returned (see Section 2.2.4): that is, ('eggs' or 'ham')

returns 'eggs'. Because s is, indeed, the string 'eggs' the equality comparison returns
True. However, if the order of the operands is swapped, the boolean or again short-
circuits at the first True equivalent, which is now 'ham' and returns it. The equality
comparison with s fails, and the result is False.

There are two correct ways to test if s is one of two or more strings:

>>> s = 'eggs'

>>> s == 'ham' or s == 'eggs'

True

>>> s in ('ham', 'eggs')

True

(See Section 2.4.2 for more information about the syntax of the second statement.)

Q2.4.2 The problem is that enumerate, by default, returns the indexes and items of
the array passed to it with the indexes starting at 0. The array passed to it is the slice
P[1:] = [5, 0, 2] and so enumerate generates, in turn, the tuples (0, 5), (1, 0) and
(2, 2). However, for our derivative we need the indexes into the original list, P, giving
(1, 5), (2, 0) and (3, 2). There are two alternatives: pass the optional argument
start=1 to enumerate or add 1 to the default index:

>>> P = [4, 5, 0, 2]

>>> dPdx = []

>>> for i, c in enumerate(P[1:], start=1):

... dPdx.append(i*c)

>>> dPdx

[5, 0, 6]

>>> P = [4, 5, 0, 2]

>>> dPdx = []

>>> for i, c in enumerate(P[1:]):

... dPdx.append((i+1)*c)

>>> dPdx

[5, 0, 6]

Q2.4.3 Here is one solution:

>>> scores = [87, 75, 75, 50, 32, 32]

>>> ranks = []

516 Solutions

>>> for score in scores:

... ranks.append(scores.index(score) + 1)

...

>>> ranks

[1, 2, 2, 4, 5, 5]

Q2.4.4 The following calculates π to 10 decimal places.

>>> import math

>>> pi = 0

>>> for k in range(20):

Ê ... pi += pow(-3, -k) / (2*k+1)

...

>>> pi *= math.sqrt(12)

>>> print('pi = ', pi)

pi = 3.1415926535714034

>>> print('error = ', abs(pi - math.pi))

error = 1.8389734179891093e-11

Ê The built-in pow(x, j) is equivalent to (x)**j.

Q2.4.5 any(x) and not all(x) is True if at least one item in x is equivalent to
True but not all of them:

>>> x1, x2, x3 = [False, False], [1, 2, 3, 4], [1, 2, 3, 0]

>>> any(x1) and not all(x1)

False

>>> any(x2) and not all(x2)

False

>>> any(x3) and not all(x3)

True

Q2.4.6 Recall that the * operator unpacks a tuple into a positional argument list to
a function. So if z = zip(a, b) is the (iterator) sequence: (a0, b0), (a1, b1), (a2,

b2), ... Unpacking this sequence in the call zip(*z) is equivalent to calling zip with
these tuples as arguments:

zip((a0, b0), (a1, b1), (a2, b2), ...)

zip takes the first and second items from each tuple in turn, reproducing the original
sequences:

(a0, a1, a2, ...), (b0, b1, b2, ...)

Q2.4.7 Simply zip the lists of sunshine hours and month names together and
reverse-sort the resulting list of tuples:

>>> months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun',

... 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']

>>> sun = [44.7, 65.4, 101.7, 148.3, 170.9, 171.4,

... 176.7, 186.1, 133.9, 105.4, 59.6, 45.8]

>>> for s, m in sorted(zip(sun, months), reverse=True):

... print('{}: {:.1f} hrs'.format(m, s))

...

Aug: 186.1 hrs

Jul: 176.7 hrs

Jun: 171.4 hrs

Solutions 517

May: 170.9 hrs

Apr: 148.3 hrs

Sep: 133.9 hrs

Oct: 105.4 hrs

Mar: 101.7 hrs

Feb: 65.4 hrs

Nov: 59.6 hrs

Dec: 45.8 hrs

Jan: 44.7 hrs

Q2.5.1 To normalize a list:

>>> a = [2, 4, 10, 6, 8, 4]

>>> amin, amax = min(a), max(a)

>>> for i, val in enumerate(a):

... a[i] = (val - amin) / (amax - amin)

...

>>> a

[0.0, 0.25, 1.0, 0.5, 0.75, 0.25]

Q2.5.2 The following code calculates Gauss’s constant to 14 decimal places.

>>> import math

>>> tol = 1.e-14

>>> an, bn = 1., math.sqrt(2)

>>> while abs(an - bn) > tol:

... an, bn = (an + bn) / 2, math.sqrt(an * bn)

...

>>> print('G = {:.14f}'.format(1/an))

G = 0.83462684167407

Q2.5.3 The following code produces the first 100 “Fizzbuzz” numbers.

nmax = 100

for n in range(1, nmax + 1):

message = ''

if not n % 3:

message = 'fizz'

if not n % 5:

message += 'buzz'

Ê print(message or n)

Ê Note that if n is not divisible by either 3 or 5, message will be the empty string,
which evaluates to False in this logical expression, so n is printed instead.

Q2.5.4 Here’s one solution, using stoich = 'C8H18' as an example:

Listing A.1 The structural formula of a straight-chain alkane

qn2-5-c-alkane-a.py

stoich = 'C8H18'

fragments = stoich.split('H')

nC = int(fragments[0][1:])

nH = int(fragments[1])

if nH != 2*nC + 2:

print('{} is not an alkane!'.format(stoich))

518 Solutions

else:

print('H3C', end='')

for i in range(nC-2):

print('-CH2', end='')

print('-CH3')

The output is:

H3C-CH2-CH2-CH2-CH2-CH2-CH2-CH3

Q2.7.1 Only (b) and (f) behave as intended:

(a) In the absence of an explicit return statement, the line function returns None.
Because None cannot be joined into a string, an error occurs:

my_sum = '\n'.join([' 56', ' +44', line, ' 100', line])

...

TypeError: sequence item 2: expected str instance , NoneType found

(b) This code works as intended.
(c) The function line returns a string, as required, but is not called as line(): without

the parentheses, line refers to the function object itself, which cannot be joined
in a string, so an error occurs:

my_sum = '\n'.join([' 56', ' +44', line, ' 100', line])

...

TypeError: sequence item 2: expected str instance , function found

(d) This code does not cause an error, but outputs a string representation of the
function instead of the string returned when the function is called:

56

+44

<function line at 0x103d9e9e0 >

100

<function line at 0x103d9e9e0 >

(e) This code generates unwanted None output:

56

+44

None

100

None

This happens because the statement print(line()) calls the function line,
which prints a line of hyphens but also prints its return value (which is None since
it doesn’t return anything else explicitly).

(f) This code works as intended.

Q2.7.2 The problem is within the add_interest function:

def add_interest(balance, rate):

balance += balance * rate / 100

Solutions 519

This creates a new float object, balance, local to the function, which is independent of
the original balance object. When the function exits, the local balance is destroyed and
the original balance never updated. One fix would be to return the updated balance
value from the function:

>>> balance = 100

>>> def add_interest(balance, rate):

... balance += balance * rate / 100

... return balance

...

>>> for year in range(4):

... balance = add_interest(balance, 5)

... print('Balance after year {}: ${:.2f}'.format(year + 1, balance))

...

Balance after year 1: $105.00

Balance after year 2: $110.25

Balance after year 3: $115.76

Balance after year 4: $121.55

Q2.7.3 The problem is that the function digit_sum does not return the sum of the
digits of n that it has calculated. In the absence of an explicit return statement, a Python
function returns None, but None isn’t an acceptable object to use in a modulus calculation
and so a TypeError is raised.

The fix is simply to add return dsum:

def digit_sum(n):

""" Find and return the sum of the digits of integer n. """

s_digits = list(str(n))

dsum = 0

for s_digit in s_digits:

dsum += int(s_digit)

return dsum

def is_harshad(n):

return not n % digit_sum(n)

Now, as expected:

>>> is_harshad(21)

True

Q2.7.4 The code outputs:

[1, 2, 'a']

[1, 2, 'a']

because a new list is created once when the function is defined, and it is this list that is
appended to and returned with each call. Therefore, lst1 and lst2 are the same object,
as you can confirm with:

print(lst1 is lst2)

True

Q4.1.1 It is a good idea to keep the try block as small as possible to prevent
exceptions that you do not want to catch being caught instead of the one you do. For

520 Solutions

instance, in Example E4.5, suppose we read the file after opening it within the same try

block:

try:

fi = open(filename, 'r')

lines = fi.readlines()

except IOError:

...

Now there are two errors that could give rise to an IOError exception being raised:
failure to open the file and failure to read its lines. The except clause is intended to
handle the first case, but it will also be executed in the second case when it would
be more appropriate to handle it differently (or leave it unhandled and stop program
execution).

Q4.1.2 The point of finally in Example E4.5 is that statements in this block get
executed before the function returns. If the line

print(' Done with file {}'.format(filename))

were moved to after the try block, it would not be executed if an IOError exception is
raised (because the function would have returned to its caller before this print statement
is encountered.

Q4.2.1 This can easily be achieved with a set. Given the string, s:

set(s.lower()) >= set('abcdefghijklmnopqrstuvwxyz')

is True if it is a pangram. For example,

>>> s = 'The quick brown fox jumps over the lazy dog'

>>> set(s.lower()) >= set('abcdefghijklmnopqrstuvwxyz')

True

>>> s = 'The quick brown fox jumped over the lazy dog'

>>> set(s.lower()) >= set('abcdefghijklmnopqrstuvwxyz')

False

Q4.2.2 This function can be used to remove duplicates from an ordered list.

>>> def remove_dupes(l):

... return sorted(set(l))

...

>>> remove_dupes([1, 1, 2, 3, 4, 4, 4, 5, 7, 8, 8, 9])

[1, 2, 3, 4, 5, 7, 8, 9]

Note that although sets don’t have an order, they are iterable and can be passed to the
sorted() built-in method (which returns a list).

Q4.2.3 From within the Python interpreter:

>>> set('hellohellohello')

{'h', 'o', 'l', 'e'}

>>> set(['hellohellohello'])

{'hellohellohello'}

>>> set(('hellohellohello'))

{'h', 'o', 'l', 'e'}

>>> set(('hellohellohello',))

Solutions 521

{'hellohellohello'}

>>> set(('hello', 'hello', 'hello'))

{'hello'}

>>> set(('hello', ('hello', 'hello')))

{'hello', ('hello', 'hello')}

>>> set(('hello', ['hello', 'hello']))

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: unhashable type: 'list'

Note the difference between initializing a set with a list of objects and attempting to
add a list as an object in a set.

Q4.2.4 Note that the statement

>> a |= {2, 3, 4, 5}

does not change the frozenset but rather creates a new one from the union of the old
one and the set {2, 3, 4, 5}. (In the same way, we have seen that for int object i,
the assignment i = i + 1 rebinds the label i to a new integer object with value i + 1

rather than changing the value of the immutable int object previously bound to i.)

Q4.2.5 The following code snippet should be added after the definition of text:
don’t forget to import defaultdict from the collections module.

words_by_length = defaultdict(list)

for word in text.split():

words_by_length[len(word)].append(word)

for length in sorted(words_by_length.keys()):

print(f'{length}: {words_by_length[length]}')

Output:

1: ['a']

2: ['on', 'in', 'to']

3: ['and', 'ago', 'our', 'new', 'and', 'the', 'all', 'men', 'are']

4: ['four', 'this', 'that']

5: ['score', 'seven', 'years', 'forth', 'equal']

6: ['nation']

7: ['fathers', 'brought', 'liberty', 'created']

9: ['continent', 'conceived', 'dedicated']

11: ['proposition']

Q4.3.1 The list comprehension

>>> flist = [lambda x, i=i: x**i for i in range(4)]

creates the same list of anonymous functions as that in Example E4.11.
Note that we need to pass each i into the lambda function explicitly or else Python’s

closure rules will lead to every lambda function being equivalent to x**3 (3 being the
final value of i in the loop).

Q4.3.2 The code snippet outputs the first nmax+1 rows of Pascal’s triangle:

[1]

[1, 1]

522 Solutions

[1, 2, 1]

[1, 3, 3, 1]

[1, 4, 6, 4, 1]

[1, 5, 10, 10, 5, 1]

In the list comprehension assignment,

x = [([0] + x)[i] + (x + [0])[i] for i in range(n+1)]

the elements of two lists are added. The two lists are formed from the list representing
the previous row by, in the first case, adding a 0 to the beginning of the list, and in the
second case, by adding a 0 to the end of the list. In this way, the sum is taken over by
neighboring pairs of numbers, with the end numbers unchanged. For example, if x is
[1, 3, 3, 1], the next row is formed by summing the elements in the lists

[0, 1, 3, 3, 1]

[1, 3, 3, 1, 0]

which yields the required [1, 4, 6, 4, 1].

Q4.3.3

(a) Index the items of a using the elements of b:

>>> [a[x] for x in b]

['E', 'C', 'G', 'B', 'F', 'A', 'D']

(b) Index the items of a using the sorted elements of b. In this case, the returned list
is just (a copy of) a:

>>> [a[x] for x in sorted(b)]

['A', 'B', 'C', 'D', 'E', 'F', 'G']

(c) Index the items of a using the elements of b indexed at the elements of b(!)

>>> [a[b[x]] for x in b]

['F', 'G', 'D', 'C', 'A', 'E', 'B']

(d) Associate each element of b with the corresponding element of a in a sequence
of tuples: [(4, ’A’), (2, ’B’), (6, ’C’), ...], which is then sorted – this
method is used to return the elements of a corresponding to the ordered elements
of b.

>>> [x for (y,x) in sorted(zip(b,a))]

['F', 'D', 'B', 'G', 'A', 'E', 'C']

Q4.3.4 To return a sorted list of (key, value) pairs from a dictionary:

>>> d = {'five': 5, 'one': 1, 'four': 4, 'two': 2, 'three': 3}

>>> d

{'four': 4, 'one': 1, 'five': 5, 'two': 2, 'three': 3}

>>> sorted([(k, v) for k, v in d.items()])

[('five', 5), ('four', 4), ('one', 1), ('three', 3), ('two', 2)]

Note that sorting the list of (key, value) tuples requires that the keys all have data types
that can be meaningfully ordered. This approach will not work, for example, if the keys
are a mixture of integers and strings since (in Python 3) there is no defined order to sort

Solutions 523

these types into: a TypeError: unorderable types: int() < str() exception will be
raised.

To sort by value we could sort a list of (value, key) tuples, but to keep the returned
list as (key, value) pairs, use

>>> sorted([(k, v) for k, v in d.items()], key=lambda item: item[1])

[('one', 1), ('two', 2), ('three', 3), ('four', 4), ('five', 5)]

The key argument to sorted specifies how to interpret each item in the list for ordering:
here we want to order by the second entry (item[1]) in each (k, v) tuple to order by
value.

Q4.3.5 The following code encrypts (and decrypts) a telephone number held as a
string using the “jump the 5” method.

''.join(['5987604321'[int(i)] if i.isdigit() else '-' for i in '555-867-5309'])

Q4.3.6 One solution is to construct a tuple with two elements for each item in
the list to be sorted: first, a boolean value indicating whether the item is None or not;
second, the value itself. When these tuples are sorted, the first element is False for all
the numbers (which can be compared as the second element) and True for all the None

values. Since False always compares as “less than” True, there is no need to compare
different types:

In [x]: lst = [4, 2, 6, None, 0, 8, None, 3]

In [x]: lst.sort(key=lambda e: (e is None, e))

In [x]: lst

Out[x]: [0, 2, 3, 4, 6, 8, None, None]

Q4.3.7 Here are two suggested solutions:
(a) Using an assignment expression with a tuple:

>>> t = 1, 1

>>> while (t := (t[0] + t[1], t[0])) < (5000, 0):

... continue

...

>>> t[0]

6765

(b) With an assignment expression involving input in a while loop:

>>> while (s := input("> ").lower()) != "exit":

... print(s)

...

> hello

hello

> bye

bye

> quit

quit

> :q

:q

> exit

>>>

524 Solutions

Q6.1.1 An np.ndarray is a NumPy class for representing multidimensional arrays
in Python; in this book, we often refer to instances of this class simply as array objects.
np.array is a function that constructs such objects from its arguments (usually a
sequence).

Q6.1.2 To create a two-dimensional array, array() must be passed a sequence of
sequences as a single argument: this call passes three sequence arguments instead. The
correct call is

>>> np.array(((1, 0, 0), (0, 1, 0), (0, 0, 1)) , dtype=float)

Q6.1.3 np.array([0, 0, 0]) creates a one-dimensional array with three elements;
a = np.array([[0, 0, 0]]) creates a 1×3 two-dimensional array (i.e. a[0] is the one-
dimensional array created in the first example).

Q6.1.4 Changing an array’s type by setting dtype directly does not alter the data
at the byte level, only how the data are interpreted as a number, string and so on.
As it happens, the byte-representations of zero are the same for integers (int64) and
floats (float64), so the result of setting dtype is as expected. However, the 8 bytes
representing 1.0 translate to the integer 4602678819172646912. To convert the data type
properly, use astype(), which returns a new array (with its own data):

In [x]: a = np.ones((3,))

In [x]: a

Out[x]: array([1., 1., 1.])

In [x]: a.astype('int')

In [x]: a

Out[x]: array([1, 1, 1])

Q6.1.5 Indexing and slicing a NumPy array:

(a) a[1, 0, 3]

(b) a[0, 2, :] (or just a[0, 2])
(c) a[2, ...] (or a[2, :, :] or a[2])
(d) a[:, 1, :2]

(e) a[2, :, :1:-1] (“in the third block, for each row take (backwards) the items in
all but the first column”).

(f) a[:, ::-1, 0] (“for each block, traverse the rows backward and take the item in
the first column of each”).

(g) Defining the three 2 × 2 index arrays for the blocks, rows and columns locating
our elements as follows:

ia = np.array([[0, 0], [2, 2]])

ja = np.array([[0, 0], [3, 3]])

ka = np.array([[0, 3], [0, 3]])

a[ia, ja, ka] returns the desired result.

Q6.1.6 For example,

In [x]: a = np.array([0, -1, 4.5, 0.5, -0.2, 1.1])

In [x]: a[abs(a) <= 1]

Out[x]: array([0. , -1. , 0.5, -0.2])

Solutions 525

Q6.1.7 In the following code:

In [x]: a, b = -2.00231930436153, -2.0023193043615

In [x]: np.isclose(a, b, atol=1.e-14)

Out[x]: True

np.isclose() returns True because although the absolute difference between the two
numbers is greater than 10−14, it is (significantly) less than rtol * abs(b), the contri-
bution from the default relative difference. To obtain the expected behavior, set rtol to
0:

In [x]: np.isclose(-2.00231930436153, -2.0023193043615, atol=1.e-14, rtol=0)

Out[x]: False

Q6.1.8 The different behavior here is due to the finite precision with which real
numbers are stored: double-precision floating-point numbers are only represented to
the equivalent of about 15 decimal places and so the two numbers being compared here
are the same to within this precision:

In [x]: 3.1415926535897932 - 3.141592653589793

Out[x]: 0.0

Q6.1.9 For example,

In [x]: N = 5

In [x]: Nsq = N**2

In [x]: np.allclose(np.sort(magic_square.flatten()),

np.linspace(1, Nsq, Nsq).astype(int))

Out[x]: True

In [x]: Nsum = N * (N**2 + 1) // 2

In [x]: np.allclose(np.sum(magic_square , axis=0), Nsum)

Out[x]: True

In [x]: np.allclose(np.sum(magic_square , axis=1), Nsum)

Out[x]: True

In [x]: n.allclose(np.diag(magic_square), Nsum)

Out[x]: True

Ê In [x]: n.allclose(np.diag(np.fliplr(magic_square)), Nsum)

Out[x]: True

Ê np.fliplr flips the array in the left/right direction. An alternative way to get this
“other” diagonal is with a.ravel()[N-1:-N+1:N-1].

Q6.1.10 The following statement will determine if a sequence a is increasing or
not:

np.all(np.diff(a) > 0)

Q6.1.11 In the first case, a single object is created of the requested dtype and
multiplied by a scalar (regular Python int). Python “upcasts” to return the result in
dtype that can hold it:

526 Solutions

In [x]: x = np.uint8(250)

In [x]: type(x*2)

Out[x]: numpy.int64

However, an ndarray, because it has a fixed byte size, cannot be upcast in the same
way: its own dtype takes precedence over that of the scalar multiplying it, and so the
multiplication is carried out modulo 256.

Compare this with the result of multiplying two scalars with the same dtype:
In [x]: np.uint8(250) * np.uint8(2)

Out[x]: 244 # (of type np.uint8)

(You may also see a warning: RuntimeWarning: overflow encountered in ubyte_

scalars.)

Q6.4.1 The Polynomial deriv method returns a Polynomial object (in this case
with a single term, the coefficient of x0, equal to 18). This object is not equal to the
integer object with value 18.

Q6.4.2 Using numpy.polynomial.Polynomial,
In [x]: p1 = Polynomial([-11, 1, 1])

In [x]: p2 = Polynomial([-7, 1, 1])

In [x]: p = p1**2 + p2**2

In [x]: dp = p.deriv() # first derivative

In [x]: stationary_points = dp.roots()

In [x]: ddp = dp.deriv() # second derivative

In [x]: minima = stationary_points[ddp(stationary_points) > 0]

In [x]: maxima = stationary_points[ddp(stationary_points) < 0]

In [x]: inflections = stationary_points[np.isclose(ddp(stationary_points),0)]

In [x]: print(np.array((minima, p(minima))).T)

[[-3.54138127 8.]

[2.54138127 8.]]

In [x]: print(np.array((maxima, p(maxima))).T)

[[-0.5 , 179.125]]

In [x]: print(np.array((inflections , p(inflections))).T)

[]

That is, the function has two minima,

f (−3.54138127) = 8,

f (2.54138127) = 8,

one maximum,

f (−0.5) = 179.125,

and no points of inflection/undulation.

Q6.5.1 Without overcomplicating things,
In [x]: pauli_matrices = np.array((

((0, 1), (1, 0)),

((0, -1j), (1j, 0)),

((1, 0), (0, -1))

))

In [x]: I2 = np.eye(2)

In [x]: for sigma in pauli_matrices:

Solutions 527

...: print(np.allclose(sigma.T.conj().dot(sigma), I2))

True

True

True

Q6.5.2 The following code fits the coefficients to the required quadratic equation.
Note that this is a linear least-squares fit even though the function is nonlinear in time
because it is linear with respect to the coefficients.

Listing A.2 Least-squares fit to the function x = x0 + v0t + 1
2 gt2

qn6-9-b-quadratic -fit-a.py

import numpy as np

import matplotlib.pyplot as plt

Polynomial = np.polynomial.Polynomial

x = np.array([1.3, 6.0, 20.2, 43.9, 77.0, 119.6, 171.7, 233.2, 304.2,

384.7, 474.7, 574.1, 683.0, 801.3, 929.2, 1066.4, 1213.2,

1369.4, 1535.1, 1710.3, 1894.9])

dt, n = 0.1, len(x)

tmax = dt * (n-1)

t = np.linspace(0, tmax, n)

A = np.vstack((np.ones(n), t, t**2)).T

coefs, resid, _, _ = np.linalg.lstsq(A, x)

Initial position (cm) and speed (cm.s-1), acceleration due to gravity (m.s-2).

x0, v0, g = coefs[0], coefs[1], coefs[2] * 2 / 100

print('x0 = {:.2f} cm, v0 = {:.2f} cm.s-1, g = {:.2f} m.s-2'.format(x0, v0, g))

xfit = Polynomial(coefs)(t)

plt.plot(t, x, 'ko')

plt.plot(t, xfit, 'r')

plt.xlabel('Time (sec)')

plt.ylabel('Distance (cm)')

plt.show()

The fitted function is shown in Figure A.1.

Q6.6.1 The first case,
In [x]: a = np.array([6, 6, 6, 7, 7, 7, 7, 7, 7])

In [x]: a[np.random.randint(len(a), size=5)]

array([7, 7, 7, 6, 7]) # (for example)

takes random samples from the array a with replacement: for each item selected the
probability of a 6 is 1

3 and the probability of a 7 is 2
3 .

In the second case,
In [x]: np.random.randint(6, 8, 5)

array([6, 6, 7, 7, 7]) # (for example)

the numbers are drawn from [6, 7] uniformly, so the probabilities of each number being
selected is 1

2 .

528 Solutions

0.0 0.5 1.0 1.5 2.0
Time (sec)

0

500

1000

1500

2000

D
is

ta
n
ce

 (
cm

)

Figure A.1 Least squares fit to the function x = x0 + v0t + 1
2 gt2.

Q6.6.2 The function np.random.randint samples uniformly from the half-open
interval, [low, high), so to get the equivalent behavior to np.random.random_integers

in Example E6.18 we need:

In [x]: a, b, n = 0.5, 3.5, 4

In [x]: a + (b - a) * (np.random.randint(1, n + 1, size=10) - 1) / (n - 1)

Out[x]: array([0.5, 1.5, 0.5, 3.5, 1.5, 3.5, 2.5, 0.5, 1.5, 1.5])

Q6.6.3 The probability of winning is one in(
70
5

) (
25
1

)
=

70 · 69 · 68 · 67 · 66
1 · 2 · 3 · 4 · 5

· 25 = 302575350.

To pick five random numbers from 1 to 70 and one from 1 to 25:

In [x]: (sorted(np.random.choice(np.arange(1, 71), 5, replace=False)),

np.random.randint(25) + 1)

([23, 45, 51, 52, 67], 11)

Q6.6.4 Here is a more general solution to the problem. Draw the distribution of
misprints across the book from the binomial distribution using np.random.binomial

and count up how many pages have more than q misprints on them. To compare with
the Poisson distribution, for the number of misprints on a page, X, we must calculate
Pr(X >= q) = 1 − Pr(X < q) = 1 − (Pr(X = 0) + Pr(X = 1) + . . . + Pr(X = q − 1):

Listing A.3 Calculating the probability of q or more misprints on a given page of a book.

qn6-7-d-misprints -a.py

import numpy as np

Solutions 529

n, m = 500, 400

q = 2

ntrials = 100

errors_per_page = np.random.binomial(m, 1/n, (ntrials, n))

av_ge_q = np.sum(errors_per_page >=q) / n / ntrials

print('Probability of {} or more misprints on a given page'.format(q))

print('Result from {} trials using binomial distribution: {:.6f}'

.format(ntrials, av_ge_q))

Now calculate the same quantity using the Poisson approximation ,

Pr(X>=q) = 1 - exp(-lam)[1 + lam + lam^2/2! + ... + lam^(q-1}/(q-1)!]

lam = m/n

poisson = 1

term = 1

for k in range(1, q):

term *= lam/k

poisson += term

poisson = 1 - np.exp(-lam) * poisson

print('Result from Poisson distribution: {:.6f}'.format(poisson))

A sample output is

Probability of 2 or more misprints on a given page

Result from 100 trials using binomial distribution: 0.190200

Result from Poisson distribution: 0.191208

Q6.7.1 The two methods for calculating the DFT can be timed using the IPython
%timeit magic function

In [x]: import numpy as np

In [x]: n = 512

In [x]: # Our input function is just random numbers.

In [x]: f = np.random.rand(n)

In [x]: # Time the NumPy (Cooley-Tukey) DFT algorithm.

In [x]: %timeit np.fft.fft(f)

100000 loops, best of 3: 13.1 us per loop

In [x]: # Now calculate the DFT by direct summation.

In [x]: k = np.arange(n)

In [x]: m = k.reshape((n, 1))

In [x]: w = np.exp(-2j * np.pi * m * k / n)

In [x]: %timeit np.dot(w, f)

1000 loops, best of 3: 354 us per loop

In [x]: # Check the two methods produce the same result.

In [x]: ftfast = np.fft.fft(f)

In [x]: ftslow = np.dot(w, f)

In [x]: np.allclose(ftfast, ftslow)

Out[x]: True

The Cooley–Tukey algorithm is found to be almost 30 times faster than the direct
method. In fact, this algorithm can be shown to scale as O(n log n) compared with O(n2)
for direct summation.

Q8.1.1 Simply change the line:

530 Solutions

for rec in constants[-10:]:

to:

for rec in constants[constants['rel_unc'] > 0][:10]:

and the format specifier in the output line to ':g' (since the uncertainties are less than
1 ppm). The most accurately known constant is the electron g-factor.

1.74797e-07 ppm: electron g factor = -2.00232

1.79792e-07 ppm: electron mag. mom. to Bohr magneton ratio = -1.00116

1.90811e-06 ppm: hertz-hartree relationship = 1.51983e-16 E_h

1.91096e-06 ppm: Rydberg constant times hc in eV = 13.6057 eV

...

Q8.1.2 The calculation N/V = p/kBT for the stated conditions can be done entirely
with constants from scipy.constants:

In [x]: scipy.constants.atm / scipy.constants.k / scipy.constants.zero_Celsius

Out[x]: 2.686780501003883e+25

This is the Loschmidt constant, which is defined by the 2010 CODATA standards and
included in scipy.constants (see the documentation for details):

In [x]: from scipy import constants

In [x]: constants.value('Loschmidt constant (273.15 K, 101.325 kPa)')

Out[x]: 2.6867805e+25

Q8.2.1 By numerical integration, the result is seen to be 3:

In [x]: from scipy.integrate import quad

In [x]: import numpy as np

In [x]: func = lambda x: np.floor(x) - 2*np.floor(x/2)

In [x]: quad(func, 0, 6)

Out[x]: (2.999964948683555,0.0009520766614606472)

Q8.2.2 In the following we assume the following imports:

In [x]: import numpy as np

In [x]: from scipy.integrate import quad

(a) In [x]: f1 = lambda x: x**4 * (1 - x)**4/(1 + x**2)

In [x]: quad(f1, 0, 1)

Out[x]: (0.0012644892673496185, 1.1126990906558069e-14)

In [x]: 22/7 - np.pi

Out[x]: 0.0012644892673496777

(b) In [x]: f2 = lambda x: x**3/(np.exp(x) - 1)

In [x]: quad(f2, 0, np.inf)

Out[x]: (6.49393940226683, 2.628470028924825e-09)

In [x]: np.pi**4 / 15

Out[x]: 6.493939402266828

Solutions 531

(c) In [x]: f3 = lambda x: x**-x

In [x]: quad(f3, 0, 1)

Out[x]: (1.2912859970626633, 3.668398917966442e-11)

In [x]: np.sum(n**-n for n in range(1, 20))

Out[x]: 1.2912859970626636

(d) In [x]: from scipy.misc import factorial

In [x]: f4 = lambda x, p: np.log(1/x)**p

In [x]: for p in range(10):

...: print(quad(f4, 0, 1, args=(p,))[0], factorial(p))

...:

1.0 1.0

0.9999999999999999 1.0

1.9999999999999991 2.0

6.000000000000064 6.0

24.000000000000014 24.0

119.9999999999327 120.0

719.9999999989705 720.0

5039.99999945767 5040.0

40320.00000363255 40320.0

362880.00027390465 362880.0

(e) In [x]: from scipy.special import i0

In [x]: z = np.linspace(0, 2, 100)

In [x]: y1 = 2 * np.pi * i0(z)

In [x]: f5 = lambda theta, z: np.exp(z*np.cos(theta))

In [x]: y2 = np.array([quad(f5, 0, 2*np.pi, args=(zz,))[0] for zz in z])

In [x]: np.max(abs(y2-y1))

Out[x]: 2.1863399979338283e-11

Q8.2.3 To estimate π by integration of the constant function f (x, y) = 4 over the
quarter circle with unit radius in the quadrant x > 0, y > 0:

In [x]: from scipy.integrate import dblquad

In [x]: dblquad(lambda y, x: 4, 0, 1, lambda x: 0, lambda x: np.sqrt(1 - x**2))

Out[x]: (3.1415926535897922, 3.533564552071766e-10)

Q8.2.4 The integral to be calculated is∫ 1

0

∫ 2π

0
r dθ dr = π.

Note that the inner integral is over θ and the outer is over r. Therefore, the call to
dblquad should call the function f (r, θ) = r as lambda theta, r: r (note the order of
the arguments).

In [x]: dblquad(lambda theta, r: r, 0, 1, lambda r: 0, lambda r: 2*np.pi)

Out[x]: (3.141592653589793, 3.487868498008632e-14)

Alternatively, swap the order of the integration:

dblquad(lambda r, theta: r, 0, 2*np.pi, lambda theta: 0, lambda theta: 1)

(3.141592653589793, 3.487868498008632e-14)

532 Solutions

Q8.4.1 Rewrite the equation as

f (x) = x + 1 + (x − 3)−3 = 0.

This function is readily plotted and the roots may be bracketed in (−2,−0.5) and
(0, 2.99) (avoiding the singularity at x = 3).

In [x]: f = lambda x: x + 1 + (x-3)**-3

In [x]: brentq(f, -2, -0.5), brentq(f, 0, 2.99)

Out[x]: (-0.984188231211512, 2.3303684533047426)

Q8.4.2 Some examples of root-finding for which the Newton–Raphson algorithm
fails and how to solve this.

(a) In [x]: newton(lambda x: x**3 - 5*x, 1, lambda x: 3*x**2 - 5)

...

RuntimeError: Failed to converge after 50 iterations , value is 1.0

The Newton–Raphson algorithm enters an endless cycle of values for x:

x0 = 1 : x1 = x0 − f (x0)/ f ′(x0) = −1,

x1 = −1 : x2 = x1 − f (x1)/ f ′(x1) = 1,

x2 = 1 : x3 = x2 − f (x2)/ f ′(x2) = −1,

· · ·

Alternative starting points converge correctly on a root. Even a very small dis-
placement from x = 0 ensures convergence:

In [x]: newton(lambda x: x**3 - 5*x, 1.0001, lambda x: 3*x**2 - 5)

Out[x]: 2.23606797749979

In [x]: newton(lambda x: x**3 - 5*x, 1.1, lambda x: 3*x**2 - 5)

Out[x]: -2.23606797749979

In [x]: newton(lambda x: x**3 - 5*x, 0.5, lambda x: 3*x**2 - 5)

Out[x]: 0.0

(b) In [x]: f, fp = lambda x: x**3 - 3*x + 1, lambda x: 3*x**2 - 3

In [x]: newton(f, 1, fp)

Out[x]: 1.0

In [x]: f(1.0)

Out[x]: -1

The algorithm converged, but not on a root! Unfortunately, the gradient of the
function is zero at the chosen starting point and because of round-off error this
has not led to a ZeroDivisionError. To find the roots, choose different starting
points such that f ′(x0) , 0, or use a different method after bracketing the roots
by inspection of a plot of the function:

In [x]: brentq(f, -0.5, 0.5), brentq(f, -2, -1.5), brentq(f, 1, 2)

Out[x]: (0.34729635533386066, -1.879385241571423, 1.532088886237956)

(c) The function f (x) = 2 − x5 has a flat plateau around f (0) = 2 and the small
gradient here leads to slow convergence on the root:

Solutions 533

In [x]: newton(f, 0.01, fp)

...

RuntimeError: Failed to converge after 50 iterations, value is ...

To find it using newton, either move the starting point closer to the root, or
increase the maximum number of iterations:

In [x]: newton(f, 0.01, fp, maxiter=100)

Out[x]: 1.148698354997035

(d) This is another example of a function that generates an endless cycle of values
from the Newton–Raphson method:
In [x]: f = lambda x: x**4 - 4.29 * x**2 - 5.29

In [x]: fp = lambda x: 4*x**3 - 8.58 * x

In [x]: newton(f, 0.8, fp)

...

RuntimeError: Failed to converge after 50 iterations, value is ...

Unlike the function in (a), the region 0.6 ≤ x0 ≤ 1.1 attracts this cyclic behavior,
so one needs to initialize the algorithm outside this range to obtain the roots ±2.3.
For example,

In [x]: newton(f, 1.2, fp)

Out[x]: -2.3

Q8.4.3 In general, there are two (physically distinct) possible angles θ0 correspond-
ing to the projectile passing through the specified point, (x1, y1) = (5, 15), on the way
up or on the way down. These values are the roots in (0, π/2) of the function

f (θ0; x1, z1) = x1 tan θ0 −
gx2

1

2v2
0 cos2 θ0

− z1.

After bracketing the roots with a rough plot of f (θ0), we can use brentq:

In [x]: g = 9.81

In [x]: v0, x1, z1 = 25, 5, 15

In [x]: f = lambda theta0, x1, z1: x1 * np.tan(theta0) - g / 2\

* (x1 / v0 / np.cos(theta0))**2 - z1

In [x]: th1 = brentq(f, 1, 1.4, args=(x1,z1))

In [x]: th2 = brentq(f, 1.5, 1.6, args=(x1,z1))

In [x]: np.degrees(th1), np.degrees(th2)

Out[x]: (74.172740936822834, 87.392310240255171)

That is, θ0 = 74.2◦ or θ0 = 87.4◦.

Q10.1.1 Let x = 0.9999 Then,

10x = 9.9999 . . . = 9 + x ⇒ 9x = 9 ⇒ x = 1.

Q10.1.2 This occurs because math.pi is only a (double-precision floating-point)
approximation to π, and the tangent of this approximate value happens to be negative:

In [x]: math.tan(math.pi)

Out[x]: -1.2246467991473532e-16

Taking the square root leads to the math domain error.

534 Solutions

Q10.1.3 The problem, of course, is that the expression has been written using
double-precision floating-point numbers and the difference between the sum of the first
two terms and the third is smaller than the precision of this representation. Using the
exact representation in integer arithmetic,

In [x]: 844487**5 + 1288439**5

Out[x]: 3980245235185639013055619497406

In [x]: 1288439**5

Out[x]: 3980245235185639013290924656032

giving a difference of

In [x]: 844487**5 + 1288439**5 - 1318202**5

Out[x]: -235305158626

The finite precision of the floating-point representation used, however, truncates the
decimal places before this difference is apparent:

In [x]: 844487.**5 + 1288439.**5

Out[x]: 3.980245235185639e+30

In [x]: 1318202.**5

Out[x]: 3.980245235185639e+30

This is an example of catastrophic cancellation.

Q10.1.4 The expression 1 - np.cos(x)**2 suffers from catastrophic cancellation
close to x = 0 resulting in a dramatic loss of precision and wild oscillations in the plot
of f (x) (Figure A.2). Consider, for example, x = 1.e-9: in this case, the difference
1 - np.cos(x)**2 is indistinguishable from zero (at double precision) so f(x) returns
0. Conversely, np.sin(x)**2 is indistinguishable from x**2 and g(x) returns 1.0 cor-
rectly.

Listing A.4 A comparison of the numerical behavior of f (x) = (1 − cos2 x)/x2 and
g(x) = sin2 x/x2, close to x = 0.

qn9-1-c-cos-sin-a.py

import numpy as np

import matplotlib.pyplot as plt

f = lambda x: (1 - np.cos(x)**2)/x**2

g = lambda x: (np.sin(x)/x)**2

x = np.linspace(-0.0001, 0.0001, 10000)

plt.plot(x, f(x))

plt.plot(x, g(x))

plt.ylim(0.99995, 1.00005)

plt.show()

Q10.1.5 We cannot compare with == because nan is not equal to itself. However, it
is the only floating-point number that is not equal to itself, so use != instead:

In [x]: c = 0 * 1.e1000 # 0 * inf is nan

In [x]: c != c

Out[x]: True # c isn ' t equal to itself, so must be nan

Solutions 535

−0.00010 −0.00005 0.00000 0.00005 0.00010

0.00006

0.00008

0.00010

0.00012

0.00014

+9.999×10−1

Figure A.2 A comparison of the numerical behavior of f (x) = (1 − cos2 x)/x2 and
g(x) = sin2 x/x2, close to x = 0.

Appendix B Differences Between
Python Versions 2 and 3

B.0.1 Integers and Arithmetic

In Python 2, there were two kinds of integer: “simple” integers (system-dependent, but
usually stored in either 32 or 64 bits) and “long” integers (of any size), indicated with
the suffix L. Python 3 is simpler: there is only one integer type, which can be of any
magnitude (subject to the availability of memory on your computer).

Python 2’s division operator, /, would always perform integer (floor) division on
its arguments if they are both integers. Conversely, in Python 3, this operation always
returns a float. In both versions, the // operator can be used to force floor division. In
summary,

Python 2:

>>> 8 / 4

2 # Python 2 only: an int

>>> 8 // 4

2

>>> 7.7 / 2

3.85

>>> 7.7 // 2

3.0 # the largest integer not greater than 3.85

>>> -7.7 // 2

-4.0 # the largest integer not greater than -3.85

Python 3:

>>> 8 / 4

2.0 # a float, even though both 8 and 4 are ints

>>> 8 // 4

2

>>> 7.7 / 2

3.85

>>> 7.7 // 2

3.0

>>> -7.7 // 2

-4.0

The round() built-in function acts a little differently between the two versions. In
rounding to zero decimal places, Python 3 employs bankers’ rounding: if a number is
midway between two integers, then the even integer is returned; the return type is int.
In Python 2, round() rounded away from zero and always returned a float.

Python 2:

536

Differences Between Python Versions 2 and 3 537

>>> round(-4.5)

-5.0

>>> round(6.5)

7.0

Python 3:

>>> round(-4.5)

-4

>>> round(6.5)

6

B.0.2 Comparisons

Python 2 allowed comparisons between objects of different types. When comparing a
numeric and non-numeric type, the numeric type was always less than the non-numeric
one; other objects of different types were ordered consistently but arbitrarily (that is,
different Python interpreters may produce a different ordering; CPython ordered by the
type name, e.g. all dicts were “less than” strs):

>>> '2' > 5

True

>>> {} > 'a' # (CPython)

False

Python 3 does not allow objects of different types to be compared:

>>> '2' > 5

TypeError Traceback (most recent call last)

...

----> 1 '2' > 5

TypeError: unorderable types: str() > int()

B.0.3 Keywords

The reserved keywords in Python, those that cannot be used as variable names (identi-
fiers), were given in Table 2.4. The corresponding list for Python 2.7 excluded async,
await, nonlocal, True, False, None but included exec and print.

One of the most obvious differences to new users between Python 2 and Python 3 is
that in Python 2 print was a statement whereas in Python 3 print() is a function:

Python 2:

>>> print '2 + 2 =', 4

2 + 2 = 4

>>> print >>fo, 'A string to write to file with open handle fo'

Python 3:

>>> print('2 + 2 =', 4)

2 + 2 = 4

>>> print('A string to write to file with open handle fo', file=fo)

538 Differences Between Python Versions 2 and 3

It was also the case that since True and False were not reservered keywords in Python
2, they were valid identifier names, allowing problematic usage such as:

Python 2:

>>> True = False

>>> True

False

B.0.4 Strings and Unicode

In Python 2, a distinction was made between Unicode strings (whose string literals
were preceded with the character u, for example u'El Niño' and 8-bit strings (which
only contain 7-bit ASCII bytes). This was the cause of many headaches, including
the dreaded UnicodeEncodeError, which occurred when strings of different types were
mixed. For example, attempting to interpolate a Unicode string into an 8-bit string:

>>> s1 = 'I live in'

>>> s2 = u'Saint Étienne'

>>> '{} {}'.format(s1, s2)

----> 1 '{} {}'.format(s1, s2)

UnicodeEncodeError: 'ascii' codec can't encode characters in position 0-6:

ordinal not in range(128)

All strings of text in Python 3 are Unicode strings and have the type str:

>>> s1 = 'I live in'

>>> s2 = 'Saint Étienne'

>>> '{} {}'.format(s1, s2)

'I live in Saint Étienne'

If you really do have a string of 8-bit data values, then that’s a bytestring of type
bytes. Binary data literals may be defined with the b'...' syntax, or cast from other
compatible objects as follows:

>>> b1 = b'ABC'

>>> b2 = b'ABC\xff'

>>> b3 = bytes([65, 66, 67, 255])

>>> b4 = bytes([65, 66, 67, 0xff])

The last three generate the same bytes object, with the final byte being defined in
different ways. It is an error to try to assign a value greater than 255 in a byte object,
since bytes have 8 bits by definition:

>>> b5 = bytes([65, 66, 67, 256])

----> 1 b5 = bytes([65, 66, 67, 256])

ValueError: bytes must be in range(0, 256)

B.0.5 Iterators and Lists

In Python 2, the range built-in returned a list, and memory was allocated for every
element:

Differences Between Python Versions 2 and 3 539

>>> range(10)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

This created obvious problems for very large sequences, and so there was a separate
built-in, xrange that returned an iterable object which would yield each value of an
arithmetic progression in turn without storing all the elements.

In Python 3, range returns an iterable object similar to the old xrange, and xrange

no longer exists. Python 3’s range (but not Python 2’s xrange) is clever enough to work
out whether an integer is a member of the sequence without iterating over it, so the
following is extremely fast:

>>> 999999999998 in range(0, 10**12, 2) # all even numbers less than 1 trillion

True

>>> 999999999997 in range(0, 10**12, 2)

False

Similarly, the Python 2 dictionary methods, keys(), values() and items(), returned
lists of these values:

>>> d = {'a': 1, 'b': 2, 'c': 3}

>>> d.keys()

['a', 'c', 'b']

>>> d.items()

[('a', 1), ('c', 3), ('b', 2)]

Python 3 returns special iterable objects. If a list is required, it must be cast explicitly:

>>> d = {'a': 1, 'b': 2, 'c': 3}

>>> d.keys()

dict_keys(['a', 'b', 'c'])

>>> list(d.keys())

['a', 'b', 'c'] # NB Python 3.6+: dictionaries are in order of insertion

This is, of course, more efficient for large dictionaries.
The zip built-in provides a further example. Python 2:

>>> zip(['a', 'b', 'c'], [1, 2, 3])

[('a', 1), ('b', 2), ('c', 3)] # a list of tuples

Python 3:

>>> zip(['a','b','c'], [1, 2, 3])

<zip at 0x102bcf5c8 > # a special iterable zip object ...

>>> list(zip(['a','b','c'], [1, 2, 3]))

[('a', 1), ('b', 2), ('c', 3)] # that can be cast into a list if you want.

Appendix C SciPy’s odeint Ordinary
Differential Equation Solver

Section 8.2.3 described SciPy’s solve_ivp method for solving ordinary differential
equations (ODEs): this function provides access to a suite of ODE solvers through a
unified interface and is currently the recommended approach for most situations likely
to be encountered by SciPy users. The older function, scipy.integrate.odeint,1 is
still available as of SciPy version 1.4, and because much legacy code is likely to depend
on it, its use is described in this appendix. odeint is based on the well-tested Fortran
LSODA routine, which can automatically switch between stiff and nonstiff algorithms.

A Single First-Order ODE
In its simplest use for the solution of a single first-order ODE,

dy
dt

= f (y, t),

odeint takes three arguments: a function object returning dy/dt, an initial condition, y0,
and a sequence of t values at which to calculate the solution, y(t).

Returning to the example of a first-order chemical reaction, A → P, in terms of the
reactant concentration, y = [A], which satisfies

dy
dt

= −ky,

we would define

def dydt(y, t):

return -k * y

Note that the order of the arguments is the opposite to that required for solve_ivp.
Using odeint, the equivalent solution to the one given in Section 8.2.3 would be

from scipy.integrate import odeint

First-order reaction rate constant, s-1.

k = 0.2

Initial condition on y: 100% of reactant is present at t=0.

y0 = 100

A suitable grid of time points for the reaction.

t = np.linspace(0, 20, 21)

1 The odeint function is a simplified interface to the more advanced scipy.integrate.ode method, which
provides a range of different numerical integrators, including Runge–Kutta algorithms and support for
complex-valued variables.

540

SciPy’s odeint Ordinary Differential Equation Solver 541

y = odeint(dydt, y0, t)

Note that, by default, odeint returns just the solution, y, as a function of the specified
grid of time points.2

A Single Second-Order ODE
Solving a second-order ODE such as that of the simple harmonic oscillator problem in
Section 8.2.3 again requires that it be decomposed into first-order equations:

Harmonic oscillator frequency (s-1).

omega = 0.9

Initial conditions on x1 = x and x2 = dx/dt at t = 0.

x0 = 3, 0 # cm, cm.s-1

def dxdt(x, t, omega):

""" Return dx/dt = f(x,t) at time t for the harmonic oscillator."""

x1, x2 = x

dx1dt = x2

dx2dt = -omega**2 * x1

return dx1dt, dx2dt

Integrate the differential equations with odeint.

x1, x2 = odeint(dxdt, x0, t, args=(omega ,)).T

odeint returns a two-dimensional array with the values of each dependent variable in
rows: if we want to unpack this array into separate one-dimensional arrays of position
and velocity, we need to transpose the returned array.

2 An optional argument full_output can be set to True to additionally output a dictionary, infodict, with
statistics about how well (or badly) the integration went.

Glossary

argument A value passed to a function when calling it. Positional arguments are iden-
tified by their order in the sequence specified by the function definition (e.g.
complex(1, -2)); keyword arguments are associated with an identifier when
calling the function (e.g. complex(real=1, imag=-2)).

attribute In Python, an object (item of data, function, etc.) associated with (“belonging
to”) another object and accessed through the dot notation, object.attribute.
For example, the upper function is an attribute of the str object: given an
instance of a string, such as 'python', it is accessed as 'python'.upper and
called as 'python'.upper().

built-in Any of a number of functions and types that are predefined by the Python inter-
preter and always available without explicitly importing them from another
module. Examples are print(), float and range().

bytecode An “intermediate” language into which source code is compiled by the
Python interpreter, to be executed by the Python “virtual machine” as machine
code understood by the computer processor.

catastrophic cancellation A drastic loss of significance experienced in floating-point
arithmetic when a quantity is subtracted from another with a very similar value.

class A template for creating (instantiating) objects, which defines their attributes,
interfaces and behaviors. Classes may be related to each other through inheri-
tance (q.v.).

conditioning (of a numerical problem) A problem whose solution is relatively insen-
stive to errors and uncertainties in its input data is called well-conditioned; a
problem for which small relative errors in the input result in large differences
in the output is said to be ill-conditioned.

docstring A string literal written as the first statement in a function, class or module
definition, which becomes the _ _ doc _ _ attribute of that object and documents
what it does.

double-underscore methods Special methods (“dunder” methods) are denoted in
Python by names starting and ending with two underscore characters. These
methods usually implement an operation that is invoked by some special
syntax or built-in function. For example, indexing a list, x[i] is basically
equivalent to calling x._ _ getitem _ _(i). Redefining these methods is how
operator overloading (q.v.) is achieved in Python.

543

544 Glossary

duck-typing The determination of the suitability of an object with respect to some
operation from the methods and properties it possesses rather than its formally
declared data type. Python is a duck-typed language.

dynamic type-checking The determination of the suitability of an object for an
operation at runtime rather than before the program is executed (static type-
checking). Python is a dynamically typed language.

EAFP “Easier to Ask Forgiveness than to seek Permission”: the idiomatic Python
coding style that attempts to carry out an operation on data with the intention
of handling any errors (exceptions) that occur gracefully. This is in contrast to
the “Look Before You Leap” paradigm) adopted in other languages, in which
the data are carefully checked for their type and suitability before attempting
the operation.

endianness The platform-dependent order of the bytes representing a number. Big-
endian systems place the most-significant byte first (in the smallest memory
address); little-endian systems place it last. The name derives from the sectar-
ian division between Lilliputs over which end of a boiled egg should be broken
in Jonathan Swift’s 1726 novel, Gulliver’s Travels.

exception An error occuring during the execution of a Python program; unless dealt
with, an exception leads to termination of the program. It is common to antic-
ipate and catch (handle) specific exceptions in a try ... except clause (q.v.
EAFP). User-defined exceptions can also be defined and triggered (raised).

expression A syntactically correct combination of valid Python identifiers, literals
and operators, which evaluates to some value. For example, (assuming x is
defined), x + 2 is a valid Python expression evaluating to the sum of the value
of x and the integer 2.

floating-point number The representation of a real number used in computer arith-
metic, in which the number is stored in separate parts representing its signif-
icant digits and exponent within a fixed number of bits to a generally finite
precision.

function A set of statements, grouped into a unit of the program to perform a task
when called (executed). Functions may be passed arguments (data in the form
of Python object references) and may return one or more values. Functions
that belong to an object are called its methods; since everything in Python is
an object, there is little difference between these terms.

hash A Python object is hashable if it can return a hash value from a special method,
_ _ hash _ _, which never changes during its lifetime, and if it can be compared
to other objects for equality. This is important for data structures such as
dictionaries, which map hash values to objects for high-performance storage
and access.

identifier name The symbolic name associated with an object, by which it is referred
to in a program’s source code.

inheritance The realization of a hierarachy between classes in an object-oriented pro-
gram. A class that is defined as being based on (“sub-classed” from) another

Glossary 545

is said to inherit its attributes, which it may modify and add to. Inheritance
encourages code-reuse and the hierarchy it represents is often inherent in the
underlying concepts the classes represent.

instance A specific occurence of an object, created (“instantiated”) from a class (q.v.)
with its own particular data and identifier name. In addition to attribute values
belonging to a specific instance of an object, there may be data shared by all
instances of a given class (class attributes).

introspection The ability of a program or interactive shell session to provide informa-
tion about an object at runtime. For example, the expression type(x) returns
the type of the object identified by the name x.

IPython A command-line, interactive computing environment for Python, providing a
variety of convenient functionalities including introspection, command history,
interactive visualization and tab completion.

iterable An iterable object is one containing or yielding a sequence of values, one after
another, when looped over. Examples include lists, tuples and strs.

Jupyter Notebook A browser-based interactive computing environment for creating
rich-media, shareable documents, which mix code, code output and explana-
tory text in an ordered sequence of editable “cells.”

lambda An anonymous function: one not (necessarily) bound to an identifier name. In
Python, lambda functions are typically defined inline with other code and can
only contain a single expression.

least-squares fitting In the analysis of an overdetermined system (one with more data
points than unknown parameters to its model), the process of obtaining the set
of parameters that minimizes the sum of the squares of the (observed – mod-
eled) residuals. In linear least-squares fitting, the model function depends lin-
early on its parameters.

list comprehension The Python syntax for creating a list in a concise, readable line
of code without the explicit use of the append method; for example, [x**2 for

x in range(5)].
literal A Python literal is the direct specification of an object when parsed by the inter-

preter (as opposed to its reference by variable name). For example, 'parrot'
is a string literal.

magic number A constant numerical value used as a literal (q.v.) in a program instead
of being assigned to a meaningul variable name. Generally avoided in clear,
maintainable code.

Matplotlib A free, open-source plotting library for producing a variety of two- and
three-dimensional plots and charts suitable for data visualization, which can
be used in print and online.

method A function bound to an object.
module A collection of Python code (object definitions, including classes and func-

tions, and executable code) in one or more files, that may be imported for
reuse by other programs.

546 Glossary

mutable and immutable objects A immutable object cannot be changed after it is
defined: objects of this type are assigned a region of memory (associated with
an identity, which may be thought of as its “address” in memory) and the
contents of this region cannot be altered whilst the object exists (though the
name associated with the object may be rebound to a different object). A
mutable object may be changed “in-place”: its properties can be altered without
changing its identity. Some immutable object types are: int, float, str and
tuple; the object types list, dict and set are mutable.

namespace A mapping (dictionary) between identifier names and the objects they are
assigned to; which namespaces are used to resolve a name to an object is
determined by the name’s scope (q.v.).

Not a Number (NaN) The unique member of the floating-point arithmetic data type
that represents undefined or unrepresentable numbers.

NumPy A free, open-source library supporting fast numerical operations on large,
multidimensional arrays of a single data type.

object The abstract conceptualization of an entity realized in a computer program as
a data structure which may possess and manipulate its own data (attributes),
including methods and other objects.

object-oriented programming (OOP) A programming paradigm in which the com-
ponents of a system are identified as discrete entities which are defined in code
by objects described by templates (“blueprints”) called classes. This conceptu-
alization can help to solve problems by breaking them into small, related parts
with simple individual behaviors, which interact in a defined and controllable
way.

operator overloading The implementation of an operator used in one class on another
class: for example, the + operator is used to add integers (in, for example, the
expression 2 + 3) but also to concatenate list objects: [1, 2] + [3, 4, 5]

returns [1, 2, 3, 4, 5]. This is an example of polymorphism (q.v.). User-
defined classes can overload an operator by defining its corresponding double-
underscore method (q.v.).

optimization (mathematics) The process of obtaining the best (according to some
criteria) parameterization of a problem (possibly subject to some constraints).
For example, finding the values of x and y which give the minimum value of
a function f (x, y) is an optimization problem. Finding its maximum value is
essentially the same problem, since it is equivalent to minimizing − f (x, y).

overflow and underflow The condition of the result of a calculation being larger or
smaller than can be represented in memory for the data type used. For exam-
ple, math.exp(1000) overflows in double-precision floating-point arithmetic
because it is bigger than the largest representable float using 64 bits (about
1.8 × 10308.

package A hierarchically structured collection of modules (q.v.) stored in a directory,
which provides them with a namespace (q.v.) and allows larger projects to
define how they are imported and used.

Glossary 547

pandas A free, open-source library for data manipulation and analysis, with support
for tabular data with heterogeneous data types and high-level functionality for
grouping, aggregating and cleaning data sets.

PEP Python Enhancement Proposals, a set of usage recommendations, standards
descriptions and governance procedures for developers of the Python language.
New language features are proposed and described in short documents,
which are reviewed by a steering committee and placed in the repository
at www.python.org/dev/peps/.

pip The Python package manager for installing packages (q.v.) from the Python Pack-
age Index (https://pypi.org/), a repository of free software libraries to extend
the language’s functionality.

polymorphism The property of a function (method) being able to act meaningfully on
data of different types. For example, the Python * operator is polymorphic in
that it can be used to multiply together two numbers (2 * 1.2 returns 2.4) but
also to create a list with repeated elements ([0] * 4 returns [0, 0, 0, 0].

pseudorandom-number generator (PRNG) An algorithm that generates a sequence
of numbers that approximates the properties of random numbers. A PRNG
may be initialized (seeded) with a fixed value to reproduce a sequence (it is
deterministic), which will repeat eventually (though with a long period).

SciPy A free, open-source library used for scientific computing, including algorithms
for integration, interpolation, optimization and differential equation solving.

scope The availability of a variable (name) within a block of code. Since the same iden-
tifier name may be bound to different objects in different parts of a program,
the rules about scope resolution determine which object is resolved when that
identifier is used. For example, if a variable is referred to within a function
definition, the Python interpreter will first see if it has been assigned to an
object within that function (the local namespace), and if this fails, look within
the block of code enclosing the function, and so on, ending with the program
(or module) global namespace and finally Python’s own built-in namespace
(which predefines names for objects such as the print function).

shell A user interface to a computing system, particularly one with an interactive
command-line interface at which commands are entered and executed.

stability (of an algorithm) An algorithm is said to be stable if it is relatively unaf-
fected by approximation errors of various sorts that can occur in its execution
or input data; if these errors are magnified (typically leading to the catastrophic
failure of the algorithm to obtain a meaningful result), it is said to be unstable.

stack (software) A set of software components which work together to create a plat-
form (or environment) on which a class of computing tasks can be carried
out. For example, the “SciPy stack” is sometimes thought of as composed of a
Python interpreter installed with the NumPy, SciPy and Matplotlib libraries.

Standard Library A large set of modules containing methods for carrying out com-
mon tasks in, for example, mathematics, file I/O and debugging. The Standard

www.python.org/dev/peps/
https://pypi.org/

548 Glossary

Library is installed automatically with most Python distributions; further pack-
ages and modules are available from the Python Package Index using pip (q.v.).

statement One or more lines of Python code, composed of expressions (q.v.), which
generally have an effect on the state of the executing program.

strongly and weakly typed A language is described as weakly typed if it will silently
convert objects to a suitable type in order to allow a function to operate on
them; strongly typed languages only allow operations on objects of a pre-
scribed set of types (in the case of statically typed languages) or on those
which possess compatible properties (in the case of dynamically typed lan-
guages). Python is fairly strongly typed: for example, the expression 'hello'
+ 4 raises an exception (TypeError). A language like JavaScript is relatively
weakly typed and coerces the integer 4 into a string in order to return 'hello4'.

syntactic sugar Programming syntax and constructs which, whilst not strictly neces-
sary to make the language function, make code simpler, clearer, more pleasant
to program, and (sometimes) faster. For example, Python supports augmented
assignment (e.g. a += 1 as a synonym for a = a + 1) and list comprehension
(q.v.).

unicode An international standard for the encoding and representation of text expressed
in almost all of the world’s writing systems. The Unicode standard assigns a
code point number to each character and defines how this number should
be expressed in bytes, along with rules concerning the directionality of text,
comparison (collation) of characters, and so on.

variable The symbolic name associated with an object, by which it is referred to in a
program’s source code. In Python, a variable in this sense is sometimes more
formally called an identifier name: a single object may have more than one
such identifier.

vectorization The batch operation of a single operation on an entire array, without
the need for an explicit Python loop – this improves both speed and readabil-
ity. NumPy supports vectorization on its ndarray object type by implemeting
many of its operations in precompiled C code.

version control The management of changes to software as it is developed, often using
a tool which allows collaboration, tagging of release versions and branching of
parallel code versions for development.

Index

@ operator, 204
* syntax, see also tuple packing and unpacking
%%timeit IPython cell magic, 180, 186
%alias_magic IPython magic, 179
%automagic IPython magic, 178
%bookmark IPython magic, 179
%history IPython magic, 176
%load IPython magic, 182, 185
%lsmagic IPython magic, 178
%macro IPython magic, 181
%recall IPython magic, 181
%rerun IPython magic, 180
%run IPython magic, 182, 185
%save IPython magic, 182
%sx IPython magic, 183
%timeit IPython magic, 180, 186
3D plot, 348, 377

A New Kind of Science, 135
abs (built-in method), 13
abstract class, 154
add (set method), 120
advection equation, 347
affine transformation, 341
airship, 422
Airy functions, 361
Airy pattern, 379
algorithm stability, 498
alias (IPython), 179
all (built-in method), 50
Anaconda (Python distribution), 5, 172
animation, 352
annotation (Matplotlib), 323
anonymous functions, 128, 381
any (built-in method), 50
apodization, 293
append (list method), 45
append (list method), 48
arguments, 13, 73
arithmetic-geometric mean, 64
assert, 110
assertion, 110, 511
AssertionError exception, 110
attribute, 153

attributes, 12
augmented assignment, 23, 126
average (mean), 240
ax.add_artist, 331
ax.annotate, 324
ax.axhline, 329
ax.axhspan, 329
ax.xaxis.grid, 299
ax.axvline, 329
ax.axvspan, 329
ax.bar, 314, 484
ax.barh, 315
ax.clabel, 337
ax.contourf, 337
ax.fill_between, 327
ax.grid, 299
ax.hlines, 327
ax.imshow, 339
ax.invert_xaxis, 296
ax.invert_yaxis, 296
ax.legend, 300, 317
ax.minorticks_on, 305
ax.pcolor, 342
ax.pcolormesh, 342
ax.pie, 317
ax.plot, 295, 327, 351
ax.plot_surface, 348
ax.plot_wireframe, 348
ax.scatter, 351
ax.set_xlabel, 300
ax.set_xlim, 296
ax.set_xscale, 300, 334
ax.set_xticklabels, 304
ax.set_xticks, 304
ax.set_ylabel, 300
ax.set_ylim, 296
ax.set_yscale, 300, 334
ax.set_yticklabels, 304
ax.set_yticks, 304
ax.text, 323
ax.tick_params, 305
ax.title, 301
ax.view_init, 349

549

550 Index

ax.vlines, 327
ax.xaxis.set_ticks_position, 305
ax.yaxis.grid, 299
ax.yaxis.set_ticks_position, 305

bankers’ rounding, 13, 536
Barnsley fern, 341
Benford’s law, 57
Bernoulli trial, 281
Bessel function, 364, 379
beta function, 369
BFGS (optimization algorithm), 416
biased random walk, 286
binary operator, 10
binomial coefficients, 375
binomial probability distribution, 281
bisection (root-finding), 431
blitting, 353
body mass index (BMI), 335, 347
bool (boolean object), 18
boolean indexing (NumPy array), 212, 225
break, 60
break points, 382
broadcasting (NumPy array), 214, 266, 321, 359
Brown Corpus, 136
Brusselator, 404
buckminster fullerene, 281
Buffon’s needle, 286
built-ins, 13, 16

C, 2, 4
CamelCase, 17, 155, 508
cardinality, 120
catastrophic cancellation, 493
cellular automata, 135
chained indexing (pandas), 444
Chapman cycle, 405
chemotaxis, 286
Circle patch (Matplotlib), 331
class, 153
class inheritance, 154, 158
class variables, 156
clear (set method), 120
close (file method), 68
clothoid, 374
code cell (Jupyter), 188, 189
code points, 30, 203
codons, 57, 184
Collatz conjecture, 66
colormaps, 336, 340
colors (Matplotlib), 94
command line, 6
commenting code, 12, 503
comparison operators, 18
complementary error function, 372
complex, 10
complex numbers, 9
conditional assignment, 126

console (command-line interface), 6
constrained optimization, 419
constructors, 10, 157
context manager, 130
continue, 61
contour plots, 336
copying a list, 50
correlation coefficient matrix, 242
covariance, 241
curve-fitting, 428

data aggregation, 479
data cleaning, 468
datetime.date, 150
datetime.datetime, 151
datetime module, 150
datetime.time, 151
Dawson’s integral, 372
de Polignac’s formula, 66
Debye theory, 402
decimal, 496
decimal expansion, 490
default argument, 74
defaultdict, 118
del, 449
denormalization (of floating-point number), 494
dictionary, 113
diffusion equation, 310, 343
discard (set method), 120
discrete Fourier transform, 287
division, 10
docstring, 30, 72, 155, 174, 504
domain (of Polynomial), 254
double factorial (of an odd integer), 57
double integrals, 383
dtype, 221
duck-typing, 16

EAFP (Easier to Ask Forgiveness than to seek
Permission; Python idiom), 109

Earth Similarity Index, 70
EcoRI, 283
eigenvalues, 266
eigenvectors, 266
electromagnetic spectrum, 329
electron configuration, 67
ellipse, 371, 406, 425
Ellipse patch (Matplotlib), 331
ellipsoid, 379
elliptic integrals, 370
else (exception handling), 110
else (for and while loops), 61
empty string, 28
endianness, 201, 220
Enthought Deployment Manager, 5
enumerate built-in, 54
environment variables, 139
error function, 372

Index 551

escape sequence, 29
Euclid’s algorithm, 60
Euclidean norm, 263
Euler’s totient function, 66
Euler–Lotka equation, 431
Excel, 457
exceptions, 105, 106
exponent (floating-point numbers), 9, 491
exponential decay, 304
extend (list method), 45

f-strings, 38
factorial (of an integer), 57, 80, 368
Faddeeva function, 372, 373
fast Fourier transform, 287
Fibonacci sequence, 53, 275
fig.add_subplot, 310
fig.colorbar, 342
fig.subplots_adjust, 312
fig.suptitle, 301
fig.tight_layout, 310
file input/output, 68
FileNotFoundError exception, 108, 141
filter (built-in method), 132
finally (exception handling), 110
fit quality, 256
fit to straight line, 170, 257, 270
fit, weighted least-squares, 308
fledging bird weight, 308
float, 9
floating-point numbers, 9, 200, 223, 491

comparison of, 492
font properties, plot, 303
for loops, 51
format specifiers, C-style, 39
Formula One, 482
Fortran, 4
forward Euler method, 498
Fresnel integrals, 374
Frobenius norm, 263
frozensets, 122
FuncAnimation, 352
functional programming, 128
functions, 12, 71

gamma function, 368
Gauss’s constant, 64
Gaussian function, 91, 227, 279, 373
Gaussian prime spiral, 99
gcd (greatest common divisor), 60
generator comprehension, 131
generators, 130, 186
GET protocol, 150
Git (version control software), 509
global, 76
greenhouse gases, 319
Gregorian calendar, 59, 150
gridlines (Matplotlib), 299

Gudermannian function, 403

hailstone sequence, 66, 142
Hamming distance (string comparison), 56
harmonic oscillator, 392
hash table, 113
Haversine formula, 142, 238
heatmaps, 339
heatsinks, 380
Heron’s formula (for the area of a triangle), 17, 497
Heron’s method (for approximating a square root),

65
Hertzsprung–Russell diagram, 461
Hessian, 418
Hessian matrix, 414
hidden bit (floating-point number), 491
highly composite numbers, 186
Himmelblau’s function, 415
histograms, 100, 243, 281, 488
HTML (mark-up language), 191, 194
HTTP, 149
Hyperion (moon of Saturn), 406

ideal gas, 378
identity (of objects), 22
identity matrix, 262
if statement, 58
if ... elif ... else, 58
image processing, 291
immutability, 22
indenting code, 51
IndexError exception, 108
indexing a sequence, 31, 43
in operator, 43
insert (list method), 45
installing Python, 5
instance (of a class), 156
instance variable, 156
int, 9, 496
integers, 9, 200, 496
integrated development environment (IDE), 6, 508
integration, 381
International Bank Account Number (IBAN),

validating, 136
interpolation, 408
introspection, 173, 200, 202
ionization energy (of an atom), 453
IPython help, 173
IPython kernel, 187
IPython shell, 172
irrational numbers, 490
is operator, 22
isotopes of carbon, 281
items (dict method), 115
iterable objects, 50
iterative weak acid approximation, 65

Jacobian matrix, 414, 418, 425
Julia set, 347

552 Index

Jupyter Notebook, 186

KeyError exception, 108, 115
keys (dict method), 115
keyword arguments, 74, 118
Kirchoff’s voltage law, 264

lambda, 128, 199, 381
lambda function see anonymous function 128
LaTeX, 92, 193, 195
Lazy Caterer’s Sequence, 79
least-squares fitting, 270, 424
LEGB (resolving scope), 75
Legendre polynomial, 252
legends (Matplotlib), 91, 300
legends (Matplotlib), location of, 91
len (built-in method), 33
Lennard–Jones potential, 103
limits (of Matplotlib plot), 96, 296
LinAlgError exception, 264, 270
line style (Matplotlib), 95, 296
line width (Matplotlib), 95
line width, plot, 297
linear equation solving, 269
list, 43, 44
list comprehension, 127
logarithmic scale (Matplotlib), 300
logic operators, 19
London Underground, 462
Lorentzian function, 373, 428
loss of precision, 18, 493, 512
lottery, 246, 285
Luhn algorithm, 65, 169

machine epsilon, 492
macro (IPython), 181
Madelung rule, 67
Madhava series, 56
magic (IPython), 178, 189, 195
magic numbers, 505
magic squares, 205
mantissa see significand (floating-point number) 491
map (built-in method), 132
markdown cell (Jupyter), 188, 190
markers (Matplotlib), 93, 298
math.fsum, 494
math.isclose, 19
MathJax, 193
math module, 13
MATLAB, 86, 294
matplotlib.cm, 337
matrix inverse, 264
matrix product, 261
matrix rank, 264
matrix visualization, 340
maximization, 414
meander (river), 286
median, 240
Mercurial (version-control software), 510

Mersenne prime, 122
Mersenne Twister, 146, 276
mesh analysis (electrical circuit), 264
meshes (as NumPy arrays), 213
methods, 12, 153
Michaelis–Menten equation, 91
Millikan oil-drop experiment, 474, 479
minimization, 414
missing data values, 469
Moby-Dick, 124, 315
modules and packages, 143
modulus, 11
Monte Carlo method, 67
Monty Hall problem, 147
Moore’s law, 96
Morse code, 125
mutability, 44

NameError exception, 107
namespace, 15
NaN (Not a Number), 90
nbconvert, 194
ndarray, 196
Nelder–Mead (optimization algorithm), 418
Newton–Raphson algorithm, 431
None, 21, 115, 138
nonlinear least-squares fitting, 424
nonlocal, 76
normal probability distribution, 146, 279
np.all, 223
np.allclose, 224, 492
np.amax, 239
np.amin, 239
np.any, 223
np.arange, 198
np.arctan2, 332
np.argmax, 239
np.argmin, 239
np.argsort, 219
np.array, 197
np.asarray, 505
np.clip, 473
np.corrcoef, 242
np.cov, 241
np.dot, 204, 261
np.dsplit, 208
np.dstack, 208
np.dtype, 197, 200, 220
np.empty, 197
np.empty_like, 198
np.eye, 262
np.fft.fft, 287
np.fft.fft2, 290
np.fft.fftn, 290
np.fft.fftshift, 287
np.fft.ifft, 290
np.fft.ifft2, 290

Index 553

np.fft.ifftn, 290
np.fft.ifftshift, 287
np.fft.irfft, 290
np.fft.rfft, 290
np.fft.rfftfreq, 290
np.fmax, 239
np.fmin, 239
np.fromfunction, 199
np.genfromtxt, 232
np.histogram, 243
np.hsplit, 208
np.hstack, 208
np.inf, 204, 381
np.inner, 262
np.isclose, 224, 492
np.iscomplex, 223
np.isfinite, 205
np.isinf, 205
np.isnan, 205
np.isreal, 223
np.linalg.matrix_rank, 264
np.linalg.det, 263
np.linalg.eig, 266
np.linalg.eigh, 266
np.linalg.eigvals, 266
np.linalg.eigvalsh, 266
np.linalg.inv, 264
np.linalg.lstsq, 270
np.linalg.matrix_power, 262
np.linalg.norm, 263
np.linalg.solve, 270
np.linalg.svd, 274
np.linspace, 89, 198
np.load, 228
np.loadtxt, 228
np.maximum, 239
np.mean, 240
np.meshgrid, 213
np.minimum, 239
np.nan, 204
np.nanargmax, 239
np.nanargmin, 239
np.nanmax, 239
np.nanmin, 239
np.nanstd, 241
np.nanvar, 241
np.ndarray.argmax, 216
np.ndarray.argmin, 216
np.ndarray.astype, 203
np.ndarray.flatten, 206
np.ndarray.max, 216
np.ndarray.min, 216
np.ndarray.ndim, 200
np.ndarray.ravel, 206, 222
np.ndarray.reshape, 207
np.ndarray.resize, 207
np.ndarray.shape, 200

np.ndarray.size, 200
np.ndarray.sort, 218
np.ndarray.transpose, 207
np.newaxis, 216
np.ones, 198
np.ones_like, 198
np.outer, 262
np.percentile, 239
np.random, 276
np.random.binomial, 281
np.random.choice, 284
np.random.normal, 280
np.random.permutation, 284
np.random.poisson, 283
np.random.rand, 277
np.random.randint, 277
np.random.randn, 280
np.random.random, 277
np.random.random_integers, 278
np.random.random_sample, 277
np.random.ranf, 277
np.random.sample, 277
np.random.seed, 276
np.random.shuffle, 284
np.save, 228
np.savetxt, 235
np.searchsorted, 219
np.std, 241
np.tile, 307
np.trace, 263
np.transpose, 261
np.var, 241
np.vsplit, 208
np.vstack, 208
np.zeros, 198
np.zeros_like, 198
nuclear explosion, 259, 483
NumPy, 86, 196
NumPy array indexing, 210, 225
Nyquist frequency, 287

object-oriented programming, 152
objects, 12, 153
Oddo–Harkins rule, 461
Ohm’s law, 264
open (file method), 68
operands, 10
operating-system commands, 177
operator precedence, 11
optimization bounds, 419
ordinary differential equations (ODEs), 386, 540
orthogonal polynomials, 252, 376
os (module), 139
os.getenv, 139
os.listdir, 140
os.mkdir, 140
os.path module, 139

554 Index

os.path.basename, 140
os.path.dirname, 140
os.path.exists, 140
os.path.getmtime, 140
os.path.getsize, 140
os.path.join, 140
os.path.split, 140
os.path.splitext, 140
os.remove, 140
os.rename, 140
os.rmdir, 140
os.system, 140
os.uname, 139
outer product, 216
outliers, 473
over-fitting, 257
overdetermined problems, 270
overflow (of a floating-point number), 495
ozone, 405, 461

palindromes, 40, 41, 85
pandas, 438
pangram, 123
Pascal’s triangle, 57, 65
pass, 61
Patch (Matplotlib), 331, 355
Pauli matrix, 266, 272
pd.concat, 448
pd.cut, 472, 479
pd.DataFrame, 443
pd.DataFrame.at, 447
pd.DataFrame.corr, 451
pd.DataFrame.drop, 449
pd.DataFrame.drop_duplicates, 471
pd.DataFrame.dropna, 469
pd.DataFrame.duplicated, 471
pd.DataFrame.fillna, 469
pd.DataFrame.groupby, 479, 484
pd.DataFrame.head, 450
pd.DataFrame.iat, 447
pd.DataFrame.idxmax, 451
pd.DataFrame.idxmin, 451
pd.DataFrame.iloc, 445
pd.DatetimeIndex, 467
pd.DataFrame.loc, 445, 464
pd.DataFrame.rename, 443
pd.DataFrame.replace, 442, 470
pd.DataFrame.resample, 467
pd.DataFrame.sort_index, 464
pd.DataFrame.to_csv, 456
pd.DataFrame.to_excel, 458
pd.DataFrame.xs, 465
pd.date_range, 466
pd.DatetimeIndex, 466
pd.MultiIndex, 462
pd.MultiIndex.from_product, 463
pd.MultiIndex.from_tuples, 462

pd.Period, 466
pd.RangeIndex, 439
pd.read_csv, 452
pd.read_excel, 457
pd.read_fwf, 455
pd.read_html, 460
pd.Series, 438, 448
pd.Series.dropna, 442
pd.Series.isnull, 441
pd.Series.notnull, 441
pd.Series.sort_index, 441
pd.Series.sort_values, 441
pd.Series.values, 442
pd.Timestamp, 465
pd.to_datetime, 465
pd.value_counts, 472
pendulum (motion of), 369, 405
PEP8 (Python code style guide), 17, 507
percentiles, 239
Perl, 3
physical constants, 359
pie charts, 317
pip, 144
Planck function, 335, 436
Planck units, 273
plt.contour, 336
plt.errorbar, 307
plt.figure, 294
plt.hist, 100
plt.legend, 91
plt.Line2D, 295, 331
plt.plot, 86
plt.polar, 100, 319
plt.savefig, 88, 314
plt.scatter, 87, 298
plt.subplots, 310
plt.title, 92
plt.twinx, 101
Poisson probability distribution, 283
polar plots, 100, 319
polygon, 227
Polygon patch (Matplotlib), 333
polymer, 159
polymorphism, 13
Polynomial (NumPy package), 247
Polynomial.basis, 253
Polynomial.cast, 253
Polynomial.coef, 247
Polynomial.convert, 253
Polynomial.deriv, 251
Polynomial.domain, 255
Polynomial.fit, 254, 256, 257
Polynomial.fromroots, 249
Polynomial.integ, 251
Polynomial.linspace, 256
Polynomial.mapparms, 255
Polynomial.roots, 249

Index 555

Polynomial.window, 255
polynomials, 246
pop (list method), 48
pop (set method), 120
positional arguments, 73
POST protocol, 150
power set, 136
principal moments of inertia, 274
print (built-in method), 68
procedural programming, 152
Programme for International Student Assessment

(PISA), 482
projectile, trajectory of, 84, 399, 436, 458
pseudorandom-number generator, 145, 276
pyplot, 86, 294
pyplot.hist, 245
pytest, 510
Python(x,y), 6

quantum harmonic oscillator, 372
quantum mechanical tunneling, 372
quicksort, 219

radioactive decay, 407
random walks, 286
random.choice, 147
random module, 145
random.normalvariate, 146
random.randint, 147
random.random, 146
random.sample, 147
random.seed, 146
random.shuffle, 147
random.uniform, 146
range (built-in method), 52, 539
RangeIndex, 439
RankWarning exception, 257
rational numbers, 490
raw cell (Jupyter), 188
reaction rates, 387, 390
read (file method), 69
readline (file method), 69
readlines (file method), 69
real numbers, 9, 490
record arrays, 219
Rectangle patch (Matplotlib), 333
recursive functions, 80
remove (list method), 45
remove (set method), 120
reserved keywords, 17
residuals (of fitted data), 424
resistor color codes, 124
reverse, 47
reverse Polish notation, 125
reversed (built-in method), 52
revision control see version control 509
Ridder’s method (root-finding), 431
root-finding, 430

ROT13 (substitution cipher), 135
rotation matrixes, 263
round (built-in method), 13
rounding error, 492, 512
Ruby (programming language), 3
Runge–Kutta method, 395

Saturn V rocket, 261
Scalable Vector Graphics (SVG), 142, 170, 366
scatter plots, 87, 298
scientific notation, 37
scope, 75
scope, global, 75, 76
scope, local, 75
Sequoia sempervirens, 70
set, 119
shark species, 125
shell, 7, 8, 177
Shewchuk algorithm, 494
shoelace algorithm, 227
short-circuit, 21
sign bit (floating-point number), 491
significand (floating-point number), 9, 491
sinc function, 90
singletons, 49
singular value decomposition, 274
singularity, 381
slicing a sequence, 31, 44, 210
SList.fields, 183
SList.grep, 184
SList IPython object, 183
SList.sort, 184
Sophomore’s dream, 403
sort, 47, 129
sort (NumPy array method), 218, 221
sorted (built-in method), 47, 129
sp.constants.physical_constants, 359
sp.integrate, 381
sp.integrate.dblquad, 383
sp.integrate.nquad, 384
sp.integrate.ode, 540
sp.integrate.odeint, 386
sp.integrate.quad, 381
sp.integrate.solve_ivp, 386
sp.integrate.tplquad, 384
sp.interpolate, 408
sp.interpolate.griddata, 412
sp.interpolate.interp1d, 408
sp.interpolate.interp2d, 409
sp.interpolate.RectBivariateSpline, 410
sp.optimize, 414
sp.optimize.bisect, 431
sp.optimize.brenth, 430
sp.optimize.brentq, 430
sp.optimize.curve_fit, 428
sp.optimize.leastsq, 424
sp.optimize.minimize, 415

556 Index

sp.optimize.minimize_scalar, 421
sp.optimize.ridder, 431
sp.optimize.newton, 431
sp.special, 358
sp.special.airy, 361
sp.special.ai_zeros, 361
sp.special.beta, 369
sp.special.betainc, 369
sp.special.betaincinv, 369
sp.special.betaln, 369
sp.special.dawsn, 372
sp.special.ellipe, 370
sp.special.ellipeinc, 370
sp.special.ellipk, 370
sp.special.ellipkinc, 370
sp.special.erf, 372
sp.special.erfc, 372
sp.special.erfcinv, 372
sp.special.erfcx, 372
sp.special.erfinv, 372
sp.special.exp1, 375
sp.special.expi, 375
sp.special.expn, 375
sp.special.fresnel, 374
sp.special.fresnel_zeros, 374
sp.special.gamma, 368
sp.special.gammaln, 368
sp.special.sph_harm, 377
sp.special.wofz, 372
sphere, volume of, 385
spherical harmonic, 377
split–apply–combine (pandas), 479
split (string method), 48
sp.special.binom, 375, 379
square wave, 293
stack (data structure), 48, 125
stack traceback, 106, 108
stacked bar chart, 317
standard deviation, 241
stars, classification of, 461, 479
steady-state approximation, 406
stiff ordinary differential equations, 395, 540
Stokes’ drag, 393
Stokes’ law, 394
str, 27
stride, 32, 52, 210
string formatting, 36
string literals, 27
string methods, 34
string, raw, 29
string, triple-quoted, 30
strings, 27
Stroop effect, 234
structured arrays, 219, 229
Subversion, SVN (version control software), 510
sunflower seedhead (modeling), 104
surface of revolution, 403

surface plots, 348
SVG see Scalable Vector Graphics 142, 170, 366
swallow (African, unladen), 113
swapping the values of two variables, 49, 126
syntactic sugar, 125
syntax error, 105
sys.argv, 137
sys.exit, 138
sys (module), 137
SystemExit exception, 108
SystemExit exception, 182

tab completion, 175
terminal (command-line interface), 6
tetrahedron, center of mass of, 385
tetration, 85
The Wire, 134
Theis equation, 380
tick labels, removing, 305
tick marks (Matplotlib), 304
ticker timer, 272
time series, 465
timing code, 180
title (Matplotlib), 92, 301
torus, visualizing with Matplotlib, 349
torus, volume of, 382, 404
Tower of Hanoi, 81
triangular numbers, 131
triple integral, 384
tuberculosis, 467
tuple, 48, 72
tuple packing and unpacking, 49, 51, 126
turtle, 62
TypeError exception, 107

unary minus operator, 25
underflow (of floating-point number), 494
Unicode, 30, 203
uniform random distribution, 277
unit testing, 510
unittest, 510
universal functions, 203, 359
urllib package, 149
UTF-8 encoding, 30, 203, 508

ValueError exception, 107, 109
values (dict method), 115
van der Waals equation, 260
variable naming, 16
variance, 241
variational principle, 437
vectorization, 89, 203, 214, 359
vectors, 222
version control, 509
video, embedding in Jupyter notebook, 194
Voigt line profile, 373
volcanic eruptions, analysis with pandas, 486
Voyager 2, 357

weather data analysis, 243, 479

Index 557

web scraping, 460
West Nile virus, 335
WGS-84 geodetic standard, 27
Wien displacement law, 436
Wikipedia, scraping with pandas, 460
Wilkinson’s polynomial, 502
window (of Polynomial), 254
WinPython, 6
with, 130
write (file method), 68

X-ray diffraction, 366

Yale Bright Star Catalog, 169

ZeroDivisionError exception, 107, 109
Zipf’s law, 124

	Copyright
	Contents
	Acknowledgments
	Code Listings
	1 Introduction
	1.1 About This Book
	1.2 About Python
	1.3 Installing Python
	1.4 The Command Line

	2 The Core Python Language I
	2.1 The Python Shell
	2.2 Numbers, Variables, Comparisons and Logic
	2.3 Python Objects I: Strings
	2.4 Python Objects II: Lists, Tuples and Loops
	2.5 Control Flow
	2.6 File Input/Output
	2.7 Functions

	3 Interlude: Simple Plots and Charts
	3.1 Basic Plotting
	3.2 Labels, Legends and Customization
	3.3 More Advanced Plotting

	4 The Core Python Language II
	4.1 Errors and Exceptions
	4.2 Python Objects III: Dictionaries and Sets
	4.3 Pythonic Idioms: “Syntactic Sugar”
	4.4 Operating-System Services
	4.5 Modules and Packages
	4.6 An Introduction to Object-Oriented Programming

	5 IPython and Jupyter Notebook
	5.1 IPython
	5.2 Jupyter Notebook

	6 NumPy
	6.1 Basic Array Methods
	6.2 Reading and Writing an Array to a File
	6.3 Statistical Methods
	6.4 Polynomials
	6.5 Linear Algebra
	6.6 Random Sampling
	6.7 Discrete Fourier Transforms

	7 Matplotlib
	7.1 Line Plots and Scatter Plots
	7.2 Plot Customization and Refinement
	7.3 Bar Charts, Pie Charts and Polar Plots
	7.4 Annotating Plots
	7.5 Contour Plots and Heatmaps
	7.6 Three-Dimensional Plots
	7.7 Animation

	8 SciPy
	8.1 Physical Constants and Special Functions
	8.2 Integration and Ordinary Differential Equations
	8.3 Interpolation
	8.4 Optimization, Data-Fitting and Root-Finding

	9 Data Analysis with pandas
	9.1 Introduction to pandas
	9.2 Reading and Writing Series and DataFrames
	9.3 More Advanced Indexing
	9.4 Data Cleaning and Exploration
	9.5 Data Grouping and Aggregation
	9.6 Examples

	10 General Scientific Programming
	10.1 Floating-Point Arithmetic
	10.2 Stability and Conditioning
	10.3 Programming Techniques and Software Development

	Appendix A Solutions
	Appendix B Differences Between Python Versions 2 and 3
	Appendix C SciPy’s odeint Ordinary Differential Equation Solver
	Glossary
	Index

