

Machine Learning Refined

With its intuitive yet rigorous approach to machine learning, this text provides students

with the fundamental knowledge and practical tools needed to conduct research and

build data-driven products. The authors prioritize geometric intuition and algorithmic

thinking, and include detail on all the essential mathematical prerequisites, to offer a

fresh and accessible way to learn. Practical applications are emphasized, with examples

from disciplines including computer vision, natural language processing, economics,

neuroscience, recommender systems, physics, and biology. Over 300 color illustra-

tions are included and have been meticulously designed to enable an intuitive grasp

of technical concepts, and over 100 in-depth coding exercises (inPython) provide a

real understanding of crucial machine learning algorithms. A suite of online resources

including sample code, data sets, interactive lecture slides, and a solutions manual are

provided online, making this an ideal text both for graduate courses on machine learning

and for individual reference and self-study.

Jeremy Watt received his PhD in Electrical Engineering from Northwestern University,

and is now a machine learning consultant and educator. He teaches machine learning,

deep learning, mathematical optimization, and reinforcement learning at Northwestern

University.

Reza Borhani received his PhD in Electrical Engineering from Northwestern University,

and is now a machine learning consultant and educator. He teaches a variety of courses

in machine learning and deep learning at Northwestern University.

Aggelos K. Katsaggelos is the Joseph Cummings Professor at Northwestern University,

where he heads the Image and Video Processing Laboratory. He is a Fellow of IEEE,

SPIE, EURASIP, and OSA and the recipient of the IEEE Third Millennium Medal

(2000).

Machine Learning Refined

Foundations, Algorithms, and Applications

JEREMY WATT

Northwestern University, Illinois

REZA BORHANI

Northwestern University, Illinois

AGGELOS K. KATSAGGELOS

Northwestern University, Illinois

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India

79 Anson Road, #06–04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University’s mission by disseminating knowledge in the pursuit of

education, learning, and research at the highest international levels of excellence.

www.cambridge.org

Information on this title:www.cambridge.org/9781108480727

DOI: 10.1017/9781108690935

© Cambridge University Press 2020

This publication is in copyright. Subject to statutory exception

and to the provisions of relevant collective licensing agreements,

no reproduction of any part may take place without the written

permission of Cambridge University Press.

First published 2020

Printed and bound in Great Britain by Clays Ltd, Elcograf S.p.A.

A catalogue record for this publication is available from the British Library.

ISBN 978-1-108-48072-7 Hardback

Additional resources for this publication atwww.cambridge.org/watt2

Cambridge University Press has no responsibility for the persistence or accuracy

of URLs for external or third-party internet websites referred to in this publication

and does not guarantee that any content on such websites is, or will remain,

accurate or appropriate.

To our families:

Deb, Robert, and Terri

Soheila, Ali, and Maryam

Ειρήνη, Ζωή, Σοφία, and Ειρήνη

Contents

Preface page xii

Acknowledgements xxii

1 Introduction to Machine Learning 1

1.1 Introduction 1

1.2 Distinguishing Cats from Dogs: a Machine Learning Approach 1

1.3 The Basic Taxonomy of Machine Learning Problems 6

1.4 Mathematical Optimization 16

1.5 Conclusion 18

Part I Mathematical Optimization 19

2 Zero-Order Optimization Techniques 21

2.1 Introduction 21

2.2 The Zero-Order Optimality Condition 23

2.3 Global Optimization Methods 24

2.4 Local Optimization Methods 27

2.5 Random Search 31

2.6 Coordinate Search and Descent 39

2.7 Conclusion 40

2.8 Exercises 42

3 First-Order Optimization Techniques 45

3.1 Introduction 45

3.2 The First-Order Optimality Condition 45

3.3 The Geometry of First-Order Taylor Series 52

3.4 Computing Gradients Efficiently 55

3.5 Gradient Descent 56

3.6 Two Natural Weaknesses of Gradient Descent 65

3.7 Conclusion 71

3.8 Exercises 71

4 Second-Order Optimization Techniques 75

4.1 The Second-Order Optimality Condition 75

viii Contents

4.2 The Geometry of Second-Order Taylor Series 78

4.3 Newton’s Method 81

4.4 Two Natural Weaknesses of Newton’s Method 90

4.5 Conclusion 91

4.6 Exercises 92

Part II Linear Learning 97

5 Linear Regression 99

5.1 Introduction 99

5.2 Least Squares Linear Regression 99

5.3 Least Absolute Deviations 108

5.4 Regression Quality Metrics 111

5.5 Weighted Regression 113

5.6 Multi-Output Regression 116

5.7 Conclusion 120

5.8 Exercises 121

5.9 Endnotes 124

6 Linear Two-Class Classification 125

6.1 Introduction 125

6.2 Logistic Regression and the Cross Entropy Cost 125

6.3 Logistic Regression and the Softmax Cost 135

6.4 The Perceptron 140

6.5 Support Vector Machines 150

6.6 Which Approach Produces the Best Results? 157

6.7 The Categorical Cross Entropy Cost 158

6.8 Classification Quality Metrics 160

6.9 Weighted Two-Class Classification 167

6.10 Conclusion 170

6.11 Exercises 171

7 Linear Multi-Class Classification 174

7.1 Introduction 174

7.2 One-versus-All Multi-Class Classification 174

7.3 Multi-Class Classification and the Perceptron 184

7.4 Which Approach Produces the Best Results? 192

7.5 The Categorical Cross Entropy Cost Function 193

7.6 Classification Quality Metrics 198

7.7 Weighted Multi-Class Classification 202

7.8 Stochastic and Mini-Batch Learning 203

7.9 Conclusion 205

7.10 Exercises 205

Contents ix

8 Linear Unsupervised Learning 208

8.1 Introduction 208

8.2 Fixed Spanning Sets, Orthonormality, and Projections 208

8.3 The Linear Autoencoder and Principal Component Analysis 213

8.4 Recommender Systems 219

8.5 K-Means Clustering 221

8.6 General Matrix Factorization Techniques 227

8.7 Conclusion 230

8.8 Exercises 231

8.9 Endnotes 233

9 Feature Engineering and Selection 237

9.1 Introduction 237

9.2 Histogram Features 238

9.3 Feature Scaling via Standard Normalization 249

9.4 Imputing Missing Values in a Dataset 254

9.5 Feature Scaling via PCA-Sphering 255

9.6 Feature Selection via Boosting 258

9.7 Feature Selection via Regularization 264

9.8 Conclusion 269

9.9 Exercises 269

Part III Nonlinear Learning 273

10 Principles of Nonlinear Feature Engineering 275

10.1 Introduction 275

10.2 Nonlinear Regression 275

10.3 Nonlinear Multi-Output Regression 282

10.4 Nonlinear Two-Class Classification 286

10.5 Nonlinear Multi-Class Classification 290

10.6 Nonlinear Unsupervised Learning 294

10.7 Conclusion 298

10.8 Exercises 298

11 Principles of Feature Learning 304

11.1 Introduction 304

11.2 Universal Approximators 307

11.3 Universal Approximation of Real Data 323

11.4 Naive Cross-Validation 335

11.5 Efficient Cross-Validation via Boosting 340

11.6 Efficient Cross-Validation via Regularization 350

11.7 Testing Data 361

11.8 Which Universal Approximator Works Best in Practice? 365

11.9 Bagging Cross-Validated Models 366

x Contents

11.10 K-Fold Cross-Validation 373

11.11 When Feature Learning Fails 378

11.12 Conclusion 379

11.13 Exercises 380

12 Kernel Methods 383

12.1 Introduction 383

12.2 Fixed-Shape Universal Approximators 383

12.3 The Kernel Trick 386

12.4 Kernels as Measures of Similarity 396

12.5 Optimization of Kernelized Models 397

12.6 Cross-Validating Kernelized Learners 398

12.7 Conclusion 399

12.8 Exercises 399

13 Fully Connected Neural Networks 403

13.1 Introduction 403

13.2 Fully Connected Neural Networks 403

13.3 Activation Functions 424

13.4 The Backpropagation Algorithm 427

13.5 Optimization of Neural Network Models 428

13.6 Batch Normalization 430

13.7 Cross-Validation via Early Stopping 438

13.8 Conclusion 440

13.9 Exercises 441

14 Tree-Based Learners 443

14.1 Introduction 443

14.2 From Stumps to Deep Trees 443

14.3 Regression Trees 446

14.4 Classification Trees 452

14.5 Gradient Boosting 458

14.6 Random Forests 462

14.7 Cross-Validation Techniques for Recursively Defined Trees 464

14.8 Conclusion 467

14.9 Exercises 467

Part IV Appendices 471

Appendix A Advanced First- and Second-Order Optimization Methods 473

A.1 Introduction 473

A.2 Momentum-Accelerated Gradient Descent 473

A.3 Normalized Gradient Descent 478

A.4 Advanced Gradient-Based Methods 485

Contents xi

A.5 Mini-Batch Optimization 487

A.6 Conservative Steplength Rules 490

A.7 Newton’s Method, Regularization, and Nonconvex Functions 499

A.8 Hessian-Free Methods 502

Appendix B Derivatives and Automatic Differentiation 511

B.1 Introduction 511

B.2 The Derivative 511

B.3 Derivative Rules for Elementary Functions and Operations 514

B.4 The Gradient 516

B.5 The Computation Graph 517

B.6 The Forward Mode of Automatic Differentiation 520

B.7 The Reverse Mode of Automatic Differentiation 526

B.8 Higher-Order Derivatives 529

B.9 Taylor Series 531

B.10 Using the autograd Library 536

Appendix C Linear Algebra 546

C.1 Introduction 546

C.2 Vectors and Vector Operations 546

C.3 Matrices and Matrix Operations 553

C.4 Eigenvalues and Eigenvectors 556

C.5 Vector and Matrix Norms 559

References 564

Index 569

Preface

For eons we humans have sought out rules or patterns that accurately describe

how important systems in the world around us work, whether these systems

be agricultural, biological, physical, financial, etc. We do this because such rules

allow us to understand a system better, accurately predict its future behavior

and ultimately, control it. However, the process of finding the ”right” rule that

seems to govern a given system has historically been no easy task. For most of

our history data (glimpses of a given system at work) has been an extremely

scarce commodity. Moreover, our ability to compute, to try out various rules

to see which most accurately represents a phenomenon, has been limited to

what we could accomplish by hand. Both of these factors naturally limited

the range of phenomena scientific pioneers of the past could investigate and

inevitably forced them to use philosophical and/or visual approaches to rule-

finding. Today, however, we live in a world awash in data, and have colossal

computing power at our fingertips. Because of this, we lucky descendants of the

great pioneers can tackle a much wider array of problems and take a much more

empirical approach to rule-finding than our forbears could. Machine learning,

the topic of this textbook, is a term used to describe a broad (and growing)

collection of pattern-finding algorithms designed to properly identify system

rules empirically and by leveraging our access to potentially enormous amounts

of data and computing power.

In the past decade the user base of machine learning has grown dramatically.

From a relatively small circle in computer science, engineering, and mathe-

matics departments the users of machine learning now include students and

researchers from every corner of the academic universe, as well as members of

industry, data scientists, entrepreneurs, and machine learning enthusiasts. This

textbook is the result of a complete tearing down of the standard curriculum

of machine learning into its most fundamental components, and a curated re-

assembly of those pieces (painstakingly polished and organized) that we feel

will most benefit this broadening audience of learners. It contains fresh and

intuitive yet rigorous descriptions of the most fundamental concepts necessary

to conduct research, build products, and tinker.

Preface xiii

Book Overview

The second edition of this text is a complete revision of our first endeavor, with

virtually every chapter of the original rewritten from the ground up and eight

new chapters of material added, doubling the size of the first edition. Topics from

the first edition, from expositions on gradient descent to those on One-versus-

All classification and Principal Component Analysis have been reworked and

polished. A swath of new topics have been added throughout the text, from

derivative-free optimization to weighted supervised learning, feature selection,

nonlinear feature engineering, boosting-based cross-validation, and more.

While heftier in size, the intent of our original attempt has remained un-

changed: to explain machine learning, from first principles to practical imple-

mentation, in the simplest possible terms. A big-picture breakdown of the second

edition text follows below.

Part I: Mathematical Optimization (Chapters 2–4)

Mathematical optimization is the workhorse of machine learning, powering not

only the tuning of individual machine learning models (introduced in Part II)

but also the framework by which we determine appropriate models themselves

via cross-validation (discussed in Part III of the text).

In this first part of the text we provide a complete introduction to mathemat-

ical optimization, from basic zero-order (derivative-free) methods detailed in

Chapter 2 to fundamental and advanced first-order and second-order methods

in Chapters 3 and 4, respectively. More specifically this part of the text con-

tains complete descriptions of local optimization, random search methodologies,

gradient descent, and Newton’s method.

Part II: Linear Learning (Chapters 5–9)

In this part of the text we describe the fundamental components of cost function

based machine learning, with an emphasis on linear models.

This includes a complete description of supervised learning in Chapters 5–7

including linear regression, two-class, and multi-class classification. In each of

these chapters we describe a range of perspectives and popular design choices

made when building supervised learners.

In Chapter 8 we similarly describe unsupervised learning, and Chapter 9 con-

tains an introduction to fundamental feature engineering practices including pop-

ular histogram features as well as various input normalization schemes, and

feature selection paradigms.

xiv Preface

Part III: Nonlinear Learning (Chapters 10–14)

In the final part of the text we extend the fundamental paradigms introduced in

Part II to the general nonlinear setting.

We do this carefully beginning with a basic introduction to nonlinear super-

vised and unsupervised learning in Chapter 10, where we introduce the motiva-

tion, common terminology, and notation of nonlinear learning used throughout

the remainder of the text.

In Chapter 11 we discuss how to automate the selection of appropriate non-

linear models, beginning with an introduction to universal approximation. This

naturally leads to detailed descriptions of cross-validation, as well as boosting,

regularization, ensembling, and K-folds cross-validation.

With these fundamental ideas in-hand, in Chapters 12–14 we then dedicate an

individual chapter to each of the three popular universal approximators used in

machine learning: fixed-shape kernels, neural networks, and trees, where we discuss

the strengths, weaknesses, technical eccentricities, and usages of each popular

universal approximator.

To get the most out of this part of the book we strongly recommend that

Chapter 11 and the fundamental ideas therein are studied and understood before

moving on to Chapters 12–14.

Part IV: Appendices

This shorter set of appendix chapters provides a complete treatment on ad-

vanced optimization techniques, as well as a thorough introduction to a range

of subjects that the readers will need to understand in order to make full use of

the text.

Appendix A continues our discussion from Chapters 3 and 4, and describes

advanced first- and second-order optimization techniques. This includes a discussion

of popular extensions of gradient descent, including mini-batch optimization,

momentum acceleration, gradient normalization, and the result of combining these

enhancements in various ways (producing e.g., the RMSProp and Adam first

order algorithms) – and Newton’s method – including regularization schemes

and Hessian-free methods.

Appendix B contains a tour of computational calculus including an introduc-

tion to the derivative/gradient, higher-order derivatives, the Hessian matrix,

numerical differentiation, forward and backward (backpropogation) automatic

differentiation, and Taylor series approximations.

Appendix C provides a suitable background in linear and matrix algebra, in-

cluding vector/matrix arithmetic, the notions of spanning sets and orthogonality,

as well as eigenvalues and eigenvectors.

Preface xv

Readers: How To Use This Book

This textbook was written with first-time learners of the subject in mind, as

well as for more knowledgeable readers who yearn for a more intuitive and

serviceable treatment than what is currently available today. To make full use of

the text one needs only a basic understanding of vector algebra (mathematical

functions, vector arithmetic, etc.) and computer programming (for example,

basic proficiency with a dynamically typed language like Python). We provide

complete introductory treatments of other prerequisite topics including linear

algebra, vector calculus, and automatic differentiation in the appendices of the

text. Example ”roadmaps,” shown in Figures 0.1–0.4, provide suggested paths

for navigating the text based on a variety of learning outcomes and university

courses (ranging from a course on the essentials of machine learning to special

topics – as described further under ”Instructors: How to use this Book” below).

We believe that intuitive leaps precede intellectual ones, and to this end defer

the use of probabilistic and statistical views of machine learning in favor of a

fresh and consistent geometric perspective throughout the text. We believe that

this perspective not only permits a more intuitive understanding of individ-

ual concepts in the text, but also that it helps establish revealing connections

between ideas often regarded as fundamentally distinct (e.g., the logistic re-

gression and Support Vector Machine classifiers, kernels and fully connected

neural networks, etc.). We also highly emphasize the importance of mathemati-

cal optimization in our treatment of machine learning. As detailed in the ”Book

Overview” section above, optimization is the workhorse of machine learning

and is fundamental at many levels – from the tuning of individual models to

the general selection of appropriate nonlinearities via cross-validation. Because

of this a strong understanding of mathematical optimization is requisite if one

wishes to deeply understand machine learning, and if one wishes to be able to

implement fundamental algorithms.

To this end, we place significant emphasis on the design and implementa-

tion of algorithms throughout the text with implementations of fundamental

algorithms given in Python. These fundamental examples can then be used as

building blocks for the reader to help complete the text’s programming exer-

cises, allowing them to ”get their hands dirty” and ”learn by doing,” practicing

the concepts introduced in the body of the text. While in principle any program-

ming language can be used to complete the text’s coding exercises, we highly

recommend using Python for its ease of use and large support community. We

also recommend using the open-source Python libraries NumPy, autograd, and

matplotlib, as well as the Jupyter notebook editor to make implementing and

testing code easier. A complete set of installation instructions, datasets, as well

as starter notebooks for many exercises can be found at

https://github.com/jermwatt/machine_learning_refined

xvi Preface

Instructors: How To Use This Book

Chapter slides associated with this textbook, datasets, along with a large array of

instructional interactive Python widgets illustrating various concepts through-

out the text, can be found on the github repository accompanying this textbook

at

https://github.com/jermwatt/machine_learning_refined

This site also contains instructions for installing Python as well as a number

of other free packages that students will find useful in completing the text’s

exercises.

This book has been used as a basis for a number of machine learning courses

at Northwestern University, ranging from introductory courses suitable for un-

dergraduate students to more advanced courses on special topics focusing on

optimization and deep learning for graduate students. With its treatment of

foundations, applications, and algorithms this text can be used as a primary

resource or in fundamental component for courses such as the following.

Machine learning essentials treatment: an introduction to the essentials

of machine learning is ideal for undergraduate students, especially those in

quarter-based programs and universities where a deep dive into the entirety

of the book is not feasible due to time constraints. Topics for such a course

can include: gradient descent, logistic regression, Support Vector Machines,

One-versus-All and multi-class logistic regression, Principal Component Anal-

ysis, K-means clustering, the essentials of feature engineering and selection,

cross-validation, regularization, ensembling, bagging, kernel methods, fully

connected neural networks, and trees. A recommended roadmap for such a

course – including recommended chapters, sections, and corresponding topics

– is shown in Figure 0.1.

Machine learning full treatment: a standard machine learning course based

on this text expands on the essentials course outlined above both in terms

of breadth and depth. In addition to the topics mentioned in the essentials

course, instructors may choose to cover Newton’s method, Least Absolute

Deviations, multi-output regression, weighted regression, the Perceptron, the

Categorical Cross Entropy cost, weighted two-class and multi-class classifica-

tion, online learning, recommender systems, matrix factorization techniques,

boosting-based feature selection, universal approximation, gradient boosting,

random forests, as well as a more in-depth treatment of fully connected neu-

ral networks involving topics such as batch normalization and early-stopping-

based regularization. A recommended roadmap for such a course – including

recommended chapters, sections, and corresponding topics – is illustrated in

Figure 0.2.

Preface xvii

Mathematical optimization for machine learning and deep learning: such

a course entails a comprehensive description of zero-, first-, and second-order

optimization techniques from Part I of the text (as well as Appendix A) in-

cluding: coordinate descent, gradient descent, Newton’s method, quasi-Newton

methods, stochastic optimization, momentum acceleration, fixed and adaptive

steplength rules, as well as advanced normalized gradient descent schemes

(e.g., Adam and RMSProp). These can be followed by an in-depth description

of the feature engineering processes (especially standard normalization and

PCA-sphering) that speed up (particularly first-order) optimization algorithms.

All students in general, and those taking an optimization for machine learning

course in particular, should appreciate the fundamental role optimization plays

in identifying the ”right” nonlinearity via the processes of boosting and regular-

iziation based cross-validation, the principles of which are covered in Chapter

11. Select topics from Chapter 13 and Appendix B – including backpropagation,

batch normalization, and foward/backward mode of automatic differentiation

– can also be covered. A recommended roadmap for such a course – including

recommended chapters, sections, and corresponding topics – is given in Figure

0.3.

Introductory portion of a course on deep learning: such a course is best suit-

able for students who have had prior exposure to fundamental machine learning

concepts, and can begin with a discussion of appropriate first order optimiza-

tion techniques, with an emphasis on stochastic and mini-batch optimization,

momentum acceleration, and normalized gradient schemes such as Adam and

RMSProp. Depending on the audience, a brief review of fundamental elements

of machine learning may be needed using selected portions of Part II of the text.

A complete discussion of fully connected networks, including a discussion of

backpropagation and forward/backward mode of automatic differentiation, as

well as special topics like batch normalization and early-stopping-based cross-

validation, can then be made using Chapters 11, 13, and Appendices A and B of

the text. A recommended roadmap for such a course – including recommended

chapters, sections, and corresponding topics – is shown in Figure 0.4. Additional

recommended resources on topics to complete a standard course on deep learn-

ing – like convolutional and recurrent networks – can be found by visiting the

text’s github repository.

xviii Preface

CHAPTER SECTIONS TOPICS

1

2

3

5

6

7

8

9

10

11

12

13

14

B

1 2 3 4 5

Gradient Descent

Global/Local Optimization Curse of Dimensionality

Machine Learning Taxonomy

Least Squares Linear Regression

1 2 3 4 5

1 2 4 5

1 2 3 5 6 8

4

A

1 2

1 2 3 4 6

1 2 3 5

2 7

Logistic Regression Cross Entropy/Softmax Cost SVMs

K-means

One-versus-All Multi-Class Logistic Regression

Principal Component Analysis

Feature Engineering Feature Selection

Ensembling Bagging

Nonlinear Regression Nonlinear Classification

Universal Approximation Cross-Validation Regularization

Regression Trees

Kernel Methods The Kernel Trick

Classification Trees

BackpropagationFully Connected Networks

1 2 4

1 2 3 4 76

2 3

1 2 4

1 2 3 4

9

1

C

3

Figure 0.1 Recommended study roadmap for a course on the essentials of machine

learning, including requisite chapters (left column), sections (middle column), and

corresponding topics (right column). This essentials plan is suitable for

time-constrained courses (in quarter-based programs and universities) or self-study, or

where machine learning is not the sole focus but a key component of some broader

course of study. Note that chapters are grouped together visually based on text layout

detailed under ”Book Overview” in the Preface. See the section titled ”Instructors: How

To Use This Book” in the Preface for further details.

Preface xix

CHAPTER SECTIONS TOPICS

1

2

5

6

7

8

9

10

11

12

13

14

1 2 3 4 5

Gradient Descent

Global/Local Optimization Curse of Dimensionality

Machine Learning Taxonomy

Least Squares Linear Regression

1 2 3 4 5

1 2 4 5

1 2 3 5 6 8

4

1 2

1 2 3 4 6

1 2 3 5

2 7

Logistic Regression Cross Entropy/Softmax Cost

K-means

One-versus-All Multi-Class Logistic Regression

PCA

Feature Engineering Feature Selection

Ensembling Bagging

Nonlinear Supervised Learning Nonlinear Unsupervised Learning

Universal Approximation Cross-Validation Regularization

Regression/Classification Trees

Kernel Methods The Kernel Trick

BackpropagationFully Connected Networks

Newton’s method
1 2 3

3 4 5 6
Least Absolute Deviations

Weighted RegressionMulti-Output Regression

4 7 9 10

Categorical Cross Entropy

The Perceptron

Weighted Two-Class ClassificationSVMs

5 87 9

Weighted Multi-Class Classification Online Learning

4 6 7
Recommender Systems Matrix Factorization

1 3 6
RegularizationBoosting

1 2 3 54 6 7

K-Fold Cross-Validation

1 2 3 4 5 76 8 9 10 11 12

1 2 3 4 65 7

1 2 3 4 65 87

Early Stopping

Activation Functions

Batch Normalization

Gradient Boosting Random Forests
1 2 3 4 65 87

3

B

A

C

3

Figure 0.2 Recommended study roadmap for a full treatment of standard machine

learning subjects, including chapters, sections, as well as corresponding topics to cover.

This plan entails a more in-depth coverage of machine learning topics compared to the

essentials roadmap given in Figure 0.1, and is best suited for senior undergraduate/early

graduate students in semester-based programs and passionate independent readers. See

the section titled ”Instructors: How To Use This Book” in the Preface for further details.

xx Preface

CHAPTER SECTIONS TOPICS

1

2

3

4

5

6

7

8

9

10

11

12

13

14

A

B

1 2 3 4 5

Gradient Descent

Global/Local Optimization Curse of Dimensionality

Coordinate DescentRandom Search

Machine Learning Taxonomy

Newton’s Method

Stochastic/Mini-Batch Optimization

Momentum Acceleration Normalized Schemes: Adam, RMSProp

Fixed Lipschitz Steplength Rules Backtracking Line Search

Hessian-Free Optimization

Online Learning

Feature Scaling PCA-Sphering Missing Data Imputation

RegularizationBoosting

Batch Normalization

Forward/Backward Mode of Automatic Differentiation

1 2 3 4 5 76

1 2 3 4 5 76

1 2 3 4 5

8

3 4 5

5 6

6

1 2 3 4 5 76 8

C

1 2 3 4 5 76 8 9 10

Figure 0.3 Recommended study roadmap for a course on mathematical optimization

for machine learning and deep learning, including chapters, sections, as well as topics

to cover. See the section titled ”Instructors: How To Use This Book” in the Preface for

further details.

Preface xxi

CHAPTER SECTIONS TOPICS

1

2

3

5

6

8

10

11

12

13

14

Gradient Descent

Stochastic/Mini-Batch Optimization

Momentum Acceleration Normalized Schemes: Adam, RMSProp

Fixed Lipschitz Steplength Rules Backtracking Line Search

Nonlinear Regression

Universal Approximation

Backpropagation

1 2 3 4 5 76

A

B Forward/Backward Mode of Automatic Differentiation

1 2 3 4 5 6

7

9

4

1 2 3 4 5

1 2 3 4 5 76 8

1 2 3 4 6
Cross-Validation Regularization

Early Stopping

Activation FunctionsFully Connected Networks

Batch Normalization

Nonlinear Classification Nonlinear Autoencoder

C

1 2 3 4 5 76 8 9 10

Figure 0.4 Recommended study roadmap for an introductory portion of a course on

deep learning, including chapters, sections, as well as topics to cover. See the section

titled ”Instructors: How To Use This Book” in the Preface for further details.

Acknowledgements

This text could not have been written in anything close to its current form

without the enormous work of countless genius-angels in the Python open-

source community, particularly authors and contributers of NumPy, Jupyter,

and matplotlib. We are especially grateful to the authors and contributors of

autograd including Dougal Maclaurin, David Duvenaud, Matt Johnson, and

Jamie Townsend, as autograd allowed us to experiment and iterate on a host of

new ideas included in the second edition of this text that greatly improved it as

well as, we hope, the learning experience for its readers.

We are also very grateful for the many students over the years that provided

insightful feedback on the content of this text, with special thanks to Bowen

Tian who provided copious amounts of insightful feedback on early drafts of

the work.

Finally, a big thanks to Mark McNess Rosengren and the entire Standing

Passengers crew for helping us stay caffeinated during the writing of this text.

1 Introduction to Machine

Learning

1.1 Introduction

Machine learning is a unified algorithmic framework designed to identify com-

putational models that accurately describe empirical data and the phenomena

underlying it, with little or no human involvement. While still a young dis-

cipline with much more awaiting discovery than is currently known, today

machine learning can be used to teach computers to perform a wide array

of useful tasks including automatic detection of objects in images (a crucial

component of driver-assisted and self-driving cars), speech recognition (which

powers voice command technology), knowledge discovery in the medical sci-

ences (used to improve our understanding of complex diseases), and predictive

analytics (leveraged for sales and economic forecasting), to just name a few.

In this chapter we give a high-level introduction to the field of machine

learning as well as the contents of this textbook.

1.2 Distinguishing Cats from Dogs: a Machine Learning
Approach

To get a big-picture sense of how machine learning works, we begin by dis-

cussing a toy problem: teaching a computer how to distinguish between pic-

tures of cats from those with dogs. This will allow us to informally describe the

terminology and procedures involved in solving the typical machine learning

problem.

Do you recall how you first learned about the difference between cats and

dogs, and how they are different animals? The answer is probably no, as most

humans learn to perform simple cognitive tasks like this very early on in the

course of their lives. One thing is certain, however: young children do not need

some kind of formal scientific training, or a zoological lecture on felis catus and

canis familiaris species, in order to be able to tell cats and dogs apart. Instead,

they learn by example. They are naturally presented with many images of

what they are told by a supervisor (a parent, a caregiver, etc.) are either cats

or dogs, until they fully grasp the two concepts. How do we know when a

child can successfully distinguish between cats and dogs? Intuitively, when

2 Introduction to Machine Learning

they encounter new (images of) cats and dogs, and can correctly identify each

new example or, in other words, when they can generalize what they have learned

to new, previously unseen, examples.

Like human beings, computers can be taught how to perform this sort of task

in a similar manner. This kind of task where we aim to teach a computer to

distinguish between different types or classes of things (here cats and dogs) is

referred to as a classification problem in the jargon of machine learning, and is

done through a series of steps which we detail below.

1. Data collection. Like human beings, a computer must be trained to recognize

the difference between these two types of animals by learning from a batch of

examples, typically referred to as a training set of data. Figure 1.1 shows such a

training set consisting of a few images of different cats and dogs. Intuitively, the

larger and more diverse the training set the better a computer (or human) can

perform a learning task, since exposure to a wider breadth of examples gives

the learner more experience.

Figure 1.1 A training set consisting of six images of cats (highlighted in blue) and six

images of dogs (highlighted in red). This set is used to train a machine learning model

that can distinguish between future images of cats and dogs. The images in this figure

were taken from [1].

2. Feature design. Think for a moment about how we (humans) tell the difference

between images containing cats from those containing dogs. We use color, size,

the shape of the ears or nose, and/or some combination of these features in order

to distinguish between the two. In other words, we do not just look at an image

as simply a collection of many small square pixels. We pick out grosser details,

or features, from images like these in order to identify what it is that we are

looking at. This is true for computers as well. In order to successfully train a

computer to perform this task (and any machine learning task more generally)

1.2 Distinguishing Cats from Dogs: a Machine Learning Approach 3

we need to provide it with properly designed features or, ideally, have it find or

learn such features itself.

Designing quality features is typically not a trivial task as it can be very ap-

plication dependent. For instance, a feature like color would be less helpful in

discriminating between cats and dogs (since many cats and dogs share similar

hair colors) than it would be in telling grizzly bears and polar bears apart! More-

over, extracting the features from a training dataset can also be challenging. For

example, if some of our training images were blurry or taken from a perspective

where we could not see the animal properly, the features we designed might

not be properly extracted.

However, for the sake of simplicity with our toy problem here, suppose we

can easily extract the following two features from each image in the training set:

size of nose relative to the size of the head, ranging from small to large, and shape

of ears, ranging from round to pointy.

nose size largesmall

ea
r s

ha
pe

ro
un

d
po

in
ty

Figure 1.2 Feature space representation of the training set shown in Figure 1.1 where

the horizontal and vertical axes represent the features nose size and ear shape,

respectively. The fact that the cats and dogs from our training set lie in distinct regions

of the feature space reflects a good choice of features.

Examining the training images shown in Figure 1.1, we can see that all cats

have small noses and pointy ears, while dogs generally have large noses and

round ears. Notice that with the current choice of features each image can now

be represented by just two numbers: a number expressing the relative nose size,

and another number capturing the pointiness or roundness of the ears. In other

words, we can represent each image in our training set in a two-dimensional

4 Introduction to Machine Learning

feature space where the features nose size and ear shape are the horizontal and

vertical coordinate axes, respectively, as illustrated in Figure 1.2.

3. Model training. With our feature representation of the training data the

machine learning problem of distinguishing between cats and dogs is now a

simple geometric one: have the machine find a line or a curve that separates

the cats from the dogs in our carefully designed feature space. Supposing for

simplicity that we use a line, we must find the right values for its two parameters

– a slope and vertical intercept – that define the line’s orientation in the feature

space. The process of determining proper parameters relies on a set of tools

known as mathematical optimization detailed in Chapters 2 through 4 of this text,

and the tuning of such a set of parameters to a training set is referred to as the

training of a model.

Figure 1.3 shows a trained linear model (in black) which divides the feature

space into cat and dog regions. This linear model provides a simple compu-

tational rule for distinguishing between cats and dogs: when the feature rep-

resentation of a future image lies above the line (in the blue region) it will be

considered a cat by the machine, and likewise any representation that falls below

the line (in the red region) will be considered a dog.

nose size largesmall

ea
r s

ha
pe

ro
un

d
po

in
ty

Figure 1.3 A trained linear model (shown in black) provides a computational rule for

distinguishing between cats and dogs. Any new image received in the future will be

classified as a cat if its feature representation lies above this line (in the blue region), and

a dog if the feature representation lies below this line (in the red region).

1.2 Distinguishing Cats from Dogs: a Machine Learning Approach 5

Figure 1.4 A validation set of cat and dog images (also taken from [1]). Notice that the

images in this set are not highlighted in red or blue (as was the case with the training set

shown in Figure 1.1) indicating that the true identity of each image is not revealed to the

learner. Notice that one of the dogs, the Boston terrier in the bottom right corner, has

both a small nose and pointy ears. Because of our chosen feature representation the

computer will think this is a cat!

4. Model validation. To validate the efficacy of our trained learner we now show

the computer a batch of previously unseen images of cats and dogs, referred to

generally as a validation set of data, and see how well it can identify the animal

in each image. In Figure 1.4 we show a sample validation set for the problem at

hand, consisting of three new cat and dog images. To do this, we take each new

image, extract our designed features (i.e., nose size and ear shape), and simply

check which side of our line (or classifier) the feature representation falls on. In

this instance, as can be seen in Figure 1.5, all of the new cats and all but one dog

from the validation set have been identified correctly by our trained model.

The misidentification of the single dog (a Boston terrier) is largely the result

of our choice of features, which we designed based on the training set in Figure

1.1, and to some extent our decision to use a linear model (instead of a nonlinear

one). This dog has been misidentified simply because its features, a small nose

and pointy ears, match those of the cats from our training set. Therefore, while

it first appeared that a combination of nose size and ear shape could indeed

distinguish cats from dogs, we now see through validation that our training set

was perhaps too small and not diverse enough for this choice of features to be

completely effective in general.

We can take a number of steps to improve our learner. First and foremost we

should collect more data, forming a larger and more diverse training set. Second,

we can consider designing/including more discriminating features (perhaps eye

color, tail shape, etc.) that further help distinguish cats from dogs using a linear

model. Finally, we can also try out (i.e., train and validate) an array of nonlinear

models with the hopes that a more complex rule might better distinguish be-

tween cats and dogs. Figure 1.6 compactly summarizes the four steps involved

in solving our toy cat-versus-dog classification problem.

6 Introduction to Machine Learning

nose size largesmall

ea
r s

ha
pe

ro
un

d
po

in
ty

Figure 1.5 Identification of (the feature representation of) validation images using our

trained linear model. The Boston terrier (pointed to by an arrow) is misclassified as a cat

since it has pointy ears and a small nose, just like the cats in our training set.

Data collection Feature design Model training Model validation

Training set

Validation set

Figure 1.6 The schematic pipeline of our toy cat-versus-dog classification problem. The

same general pipeline is used for essentially all machine learning problems.

1.3 The Basic Taxonomy of Machine Learning Problems

The sort of computational rules we can learn using machine learning generally

fall into two main categories called supervised and unsupervised learning, which

we discuss next.

1.3 The Basic Taxonomy of Machine Learning Problems 7

1.3.1 Supervised learning

Supervised learning problems (like the prototypical problem outlined in Section

1.2) refer to the automatic learning of computational rules involving input/out-

put relationships. Applicable to a wide array of situations and data types, this

type of problem comes in two forms, called regression and classification, depend-

ing on the general numerical form of the output.

Regression

Suppose we wanted to predict the share price of a company that is about to

go public. Following the pipeline discussed in Section 1.2, we first gather a

training set of data consisting of a number of corporations (preferably active in

the same domain) with known share prices. Next, we need to design feature(s)

that are thought to be relevant to the task at hand. The company’s revenue is one

such potential feature, as we can expect that the higher the revenue the more

expensive a share of stock should be. To connect the share price (output) to the

revenue (input) we can train a simple linear model or regression line using our

training data.

revenue

revenue

revenue

revenue

estimated share pricenew company’s revenue

sh
ar

e
pr

ic
e

sh
ar

e
pr

ic
e

sh
ar

e
pr

ic
e

sh
ar

e
pr

ic
e

Figure 1.7 (top-left panel) A toy training dataset consisting of ten corporations’ share

price and revenue values. (top-right panel) A linear model is fit to the data. This trend

line models the overall trajectory of the points and can be used for prediction in the

future as shown in the bottom-left and bottom-right panels.

The top panels of Figure 1.7 show a toy dataset comprising share price versus

revenue information for ten companies, as well as a linear model fit to this data.

Once the model is trained, the share price of a new company can be predicted

8 Introduction to Machine Learning

based on its revenue, as depicted in the bottom panels of this figure. Finally,

comparing the predicted price to the actual price for a validation set of data

we can test the performance of our linear regression model and apply changes

as needed, for example, designing new features (e.g., total assets, total equity,

number of employees, years active, etc.) and/or trying more complex nonlinear

models.

This sort of task, i.e., fitting a model to a set of training data so that predictions

about a continuous-valued output (here, share price) can be made, is referred to as

regression. We begin our detailed discussion of regression in Chapter 5 with the

linear case, and move to nonlinear models starting in Chapter 10 and throughout

Chapters 11–14. Below we describe several additional examples of regression to

help solidify this concept.

year

st
ud

en
t d

eb
t

[in
 tr

ill
io

ns
 o

f d
ol

la
rs

]

Figure 1.8 Figure associated with Example 1.1, illustrating total student loan debt in the

United States measured quarterly from 2006 to 2014. The rapid increase rate of the debt,

measured by the slope of the trend line fit to the data, confirms that student debt is

growing very fast. See text for further details.

Example 1.1 The rise of student loan debt in the United States

Figure 1.8 (data taken from [2]) shows the total student loan debt (that is money

borrowed by students to pay for college tuition, room and board, etc.) held

by citizens of the United States from 2006 to 2014, measured quarterly. Over

the eight-year period reflected in this plot the student debt has nearly tripled,

totaling over one trillion dollars by the end of 2014. The regression line (in

black) fits this dataset quite well and, with its sharp positive slope, emphasizes

the point that student debt is rising dangerously fast. Moreover, if this trend

continues, we can use the regression line to predict that total student debt will

surpass two trillion dollars by the year 2026 (we revisit this problem later in

Exercise 5.1).

1.3 The Basic Taxonomy of Machine Learning Problems 9

Example 1.2 Kleiber’s law

Many natural laws in the sciences take the form of regression models. For

example, after collecting a considerable amount of data comparing the body

mass versus metabolic rate (a measure of at-rest energy expenditure) of a variety

of animals, early twentieth-century biologist Max Kleiber found that the log of

these two quantities are related linearly. This linear relationship can be seen

visually by examining the dataset shown in Figure 1.9. Examining a similar

dataset, Kleiber found the slope of the regression line to be around

3

4

or, in other

words, that metabolic rate ∝ mass

3

4

.

This sublinear relationship means that compared to smaller-bodied species

(like birds), larger-bodied species (like walruses) have lower metabolic rates,

which is consistent with having lower heart rates and larger life spans (we

revisit this problem later in Exercise 5.2).

log of mass

lo
g

of
 m

et
ab

ol
ic

 ra
te

Figure 1.9 Figure associated with Example 1.2. A large set of body mass versus

metabolic rate data points, transformed by taking the log of each value, for various

animals over a wide range of different masses. See text for further details.

Example 1.3 Predicting box office success

In 1983 the Academy award winning screenwriter William Goldman coined the

phrase “nobody knows anything” in his book Adventures in the Screen Trade,

referring to his belief that at the time it was impossible for anyone to predict

the success or failure of Hollywood movies. While this may be true – in the era

of the internet – by leveraging data like the quantity of internet searches for

a movie’s trailer, as well as the amount of discussion about a movie on social

networks (see, e.g., [3, 4]), machine learning can accurately predict opening box

office revenue for certain films. Sales forecasting for a range of products/services

including box office sales is often performed using regression since the output

to be predicted is continuous (enough) in nature.

10 Introduction to Machine Learning

Example 1.4 Business and industrial applications

Examples of regression are plentiful in business and industry. For instance, using

regression to accurately predict the price of consumer goods (from electronics,

to automobiles, to houses) are hugely valuable enterprises unto themselves (ex-

plored further in Example 5.5). Regression is also commonly used in industiral

applications to better understand a given system, e.g., how the configuration of

an automobile affects its performance (see Example 5.6), so that such processes

can be optimized.

Classification

The machine learning task of classification is similar in principle to that of

regression, with the key difference between the two being that instead of pre-

dicting a continuous-valued output, with classification the output we aim at

predicting takes on discrete values or classes. Classification problems arise in a

host of forms. For example, object recognition where different objects from a set

of images are distinguished from one another (e.g., handwritten digits for the

automatic sorting of mail or street signs for driver-assisted and self-driving cars)

is a very popular classification problem. The toy problem of distinguishing cats

from dogs discussed in Section 1.2 falls into this bucket as well. Other common

classification problems include speech recognition (recognizing different spo-

ken words for voice recognition systems), determining the general sentiment of

a social network like Twitter towards a particular product or service, as well as

determining what kind of hand gesture someone is making from a finite set of

possibilities (for use, for instance, in controlling a computer without a mouse).

Geometrically speaking, a common way of viewing the task of classification

in two dimensions is one of finding a separating line (or, more generally, a

separating curve) that accurately separates two kinds of data.

1

This is precisely

the perspective on classification we took in describing the toy example in Section

1.2, where we used a line to separate (features extracted from) images of cats

and dogs. New data from a validation set are then automatically classified by

simply determining which side of the line the data lies on. Figure 1.10 illustrates

the concept of a linear model or classifier used for performing classification on

a two-dimensional toy dataset.

Many classification problems (e.g., handwritten digit recognition, discussed

below) have naturally more than two classes. After describing linear two-class

classification in Chapter 6 we detail linear multi-class classification in Chapter 7.

The nonlinear extension of both problems is then described starting in Chapter

10 and throughout Chapters 11–14. Below we briefly describe several further

examples of classification to help solidify this concept.

1

In higher dimensions we likewise aim at determining a separating linear hyperplane (or, more

generally, a nonlinear manifold).

1.3 The Basic Taxonomy of Machine Learning Problems 11

feature 1

feature 1

fe
at

ur
e

2
fe

at
ur

e
2

feature 1

feature 1

fe
at

ur
e

2
fe

at
ur

e
2

?

Figure 1.10 (top-left panel) A toy two-dimensional training set of data consisting of two

distinct classes: red and blue. (top-right panel) A linear model is trained to separate the

two classes. (bottom-left panel) A validation point whose class is unknown.

(bottom-right panel) The validation point is classified as blue since it lies on the blue

side of the trained linear classifier.

Example 1.5 Object detection

Object detection, a common classification problem (see, e.g., [5, 6, 7]), is the

task of automatically identifying a specific object in a set of images or videos.

Popular object detection applications include the detection of faces in images

for organizational purposes and camera focusing, pedestrians for autonomous

driving vehicles, and faulty components for automated quality control in elec-

tronics production. The same kind of machine learning framework, which we

highlight here for the case of face detection, can be utilized for solving many

such detection problems.

After training a (linear) classifier on a set of training data consisting of facial

and nonfacial images, faces are sought after in a new validation image by sliding

a (typically) square window over the entire image. At each location of the sliding

window the image content inside is examined to see which side of the classifier

it lies on. This is illustrated in Figure 1.11. If the (feature representation of the)

content lies on the face side of the classifier the content is classified as a face,

otherwise a nonface.

Example 1.6 Sentiment analysis

The rise of social media has significantly amplified the voice of consumers, pro-

viding them with an array of well-tended outlets on which to comment, discuss,

and rate products and services (see, e.g., [8]). This has led many firms to seek out

12 Introduction to Machine Learning

input image feature space

face nonface

Figure 1.11 Figure associated with Example 1.5. To determine if any faces are present in

an input image (in this instance an image of the Wright brothers, inventors of the

airplane, sitting together in one of their first motorized flying machines in 1908) a small

window is scanned across its entirety. The content inside the box at each instance is

determined to be a face by checking which side of the learned classifier the feature

representation of the content lies. In the figurative illustration shown here the area

above and below the learned classifier (shown in blue and red) are the face and nonface

sides of the classifier, respectively. See text for further details.

data intensive methods for gauging their customers’ feelings towards recently

released products, advertising campaigns, etc. Determining the aggregated feel-

ings of a large base of customers, using text-based content like product reviews,

tweets, and comments, is commonly referred to as sentiment analysis. Classifica-

tion models are often used to perform sentiment analysis, learning to identify

consumer data of either positive or negative feelings. We discuss this problem

further in Example 9.1.

Example 1.7 Computer-aided diagnosis of medical conditions

A myriad of two-class classification problems naturally arise in medical settings

when a healthcare professional looks to determine whether or not a patient

suffers from a particular malady, and when medical researchers conduct research

into what features distiniguish those suffering from such a malady from those

who do not (in the hopes that a remedy can then be devised to ameliorate the

malady based on these features). The modality of these sorts of experiments

varies widely, from statistical measurements of affected areas (e.g., the shape

and area of biopsied tumorous tissue; see Exercise 6.13), to biochemical markers,

to information derived from radiological image data, to genes themselves (as

explored further in Example 11.18).

For instance, paired with a classification algorithm functional Magnetic Reso-

nance Imaging (fMRI) of the brain is an increasingly useful method for diagnos-

ing neurological disorders such as Autism, Alzheimer’s, and Attention Deficit

Hyperactivity Disorder (ADHD). To perform classification a dataset is acquired

consisting of statistically based features extracted from fMRI brain scans of pa-

1.3 The Basic Taxonomy of Machine Learning Problems 13

Figure 1.12 Figure associated with Example 1.7. See text for details.

Example 1.8 Spam detection

Spam detection is a standard text-based two-class classification problem. Im-

plemented in most email systems, spam detection automatically identifies un-

wanted messages (e.g., advertisements), referred to as spam, from the emails

users want to see (often referred to as ham). Once trained, a spam detector

can remove unwanted messages without user input, greatly improving a user’s

email experience. This example is discussed in further detail in Examples 6.10

and 9.2.

Example 1.9 Financial applications

Two-class classification problems arise in all sorts of financial applications. They

are often used in commercial lending to determine whether or not an individual

should receive a commercial loan, credit card, etc., based on their historical finan-

cial information. This standard two-class classification problem, either ”lend”

or ”do not lend,” is explored in greater detail in Examples 6.11 and 9.7, with the

latter example described in the context of feature selection.

Fraud detection is another hugely popular two-class classification problem

in the financial space. The detection of fradulent financial (e.g., credit card)

transactions is naturally framed as a two-class classification problem where the

two classes consist of legitimate transactions and fraudulent ones. The challenge

with such problems is typically that the record of fraudulent transactions is

tients suffering from one such previously mentioned cognitive disorder, as well

as individuals from a control group who are not afflicted. These fMRI brain

scans capture neural activity patterns localized in different regions of the brain

as patients perform simple activities such as tracking a small visual object. Fig-

ure 1.12, taken from [9], illustrates the result of applying a classification model

to the problem of diagnosing patients with ADHD. This is discussed further in

Example 11.19.

14 Introduction to Machine Learning

dwarfed many times over by valid ones, making such datasets highly imbalanced,

an issue discussed further in Sections 6.8.4 and 6.9).

Example 1.10 Recognition problems

Recognition problems are a popular form of multi-class classification where the

aim is to train a classifier to automatically distinguish between a collection of

things, whether those things be human gestures (gesture recognition), various

visual objects (object recognition), or spoken words (speech recognition).

For example, recognizing handwritten digits is a popular object recognition

problem commonly built into the software of mobile banking applications, as

well as more traditional Automated Teller Machines, to give users among others

the ability to automatically deposit paper checks. In this application each class

of data consists of (images of) several handwritten versions of a single digit in

the range 0–9, resulting in a total of ten classes (see Figure 1.13).

Figure 1.13 Figure associated with

Example 1.10. An illustration of

various handwritten digits. See

text for further details.

We discuss handwritten digit recognition in further detail later at several

differnt points (for instance, in Example 7.10), and more general applications in

object and speech recognition later in Sections 9.2.4 and 9.2.3, respectively.

1.3.2 Unsupervised learning

Unsupervised learning (unlike supervised learning problems outlined previ-

ously) deals with the automatic learning of computational rules that describe

input data only. Often such rules are learned in order to simplify a dataset to

allow for easier supervised learning, or for human analysis and interpretation.

Two fundamental unsupervised problems, dimension reduction and clustering,

allow for simplification of a dataset via two natural paths: by either reducing

the ambient dimension of input data (in the former case) or by determining

a small number of representatives that adequately describe the diversity of a

larger set of data (in the latter case). Both subcategories of unsupervised learning

are first introduced in Chapter 8 (where the linear version of each is detailed),

1.3 The Basic Taxonomy of Machine Learning Problems 15

and discussed further in Chapters 10–14 (where their nonlinear extensions are

discussed).

Dimension reduction

The dimensionality of modern-day data such as images, videos, text documents,

and genetic information, is often far too large for effective use of predictive mod-

eling and analysis. For example, even a megapixel image, a medium-resolution

image by today’s standards, is a million-dimensional piece of data. This is true

for a gray-scale image that has only one dimension for each of its one million

pixels. A color megapixel image would have three million dimensions. There-

fore, reducing the dimension of this sort of data is often crucial to effective

application of many machine learning algorithms, making dimension reduction

a common preprocessing step for prediction and analysis tasks.

Geometrically speaking, to reduce the dimension of a dataset means to squash

or project it down onto a proper lower-dimensional line or curve (or more

generally a linear hyperplane or nonlinear manifold), preferably one that retains

as much of the original data’s defining characteristics as possible.

This general idea is illustrated for two toy datasets in Figure 1.14, with the two-

dimensional (left panel) and three-dimensional (right panel) data squashed (or

projected) onto a proper one-dimensional line and two-dimensional hyperplane,

respectively, reducing the ambient dimension of data by one in each case while

retaining much of the shape of the original data. In practice, the reduction in

dimension of modern-day large datasets can be much greater than achieved in

this illustration.

Figure 1.14 Two toy datasets consisting of two-dimensional (left panel) and

three-dimensional (right panel) input data, shown as hollow black circles. The data in

each case is projected onto a lower-dimensional subspace, and is effectively lowered a

dimension while retaining a good amount of the original data’s structure.

Clustering

Clustering aims at identifying gross underlying structure in a set of input data by

grouping together points that share some structural characteristic, e.g., proxim-

ity to one another in the feature space, which helps better organize or summarize

16 Introduction to Machine Learning

feature 1

feature 1

feature 1

feature 1
fe

at
ur

e
2

fe
at

ur
e

2
fe

at
ur

e
2

fe
at

ur
e

2

Figure 1.15 Two toy examples of the vast array in which input data can cluster.

Clustering algorithms are designed to uncover these kinds of distinct structures. In each

instance the distinct clusters in the original data (on the left) are colored for

visualization purposes (on the right).

a set of training data for analysis by a human or machine interpreter. The struc-

ture of data can vary immensely, with data falling into globular clusters or along

nonlinear manifolds as illustrated in Figure 1.15.

1.4 Mathematical Optimization

As we will see throughout the remainder of the book, we can formalize the

search for parameters of a learning model via well-defined mathematical func-

tions. These functions, commonly referred to as cost or loss functions, take in

a specific set of model parameters and return a score indicating how well we

would accomplish a given learning task using that choice of parameters. A high

value indicates a choice of parameters that would give poor performance, while

the opposite holds for a set of parameters providing a low value. For instance,

recall the share price prediction example outlined in Figure 1.7 where we aimed

at learning a regression line to predict a company’s share price based on its

revenue. This line is learned to the data by optimally tuning its two parame-

ters: slope and vertical intercept. Geometrically, this corresponds to finding the

set of parameters providing the smallest value (called a minimum) of a two-

dimensional cost function, as shown pictorially in Figure 1.16. This concept

plays a similarly fundamental role with classification (and indeed with all ma-

1.4 Mathematical Optimization 17

chine learning problems) as well. In Figure 1.10 we detailed how a general linear

classifier is trained, with the ideal setting for its parameters again corresponding

with the minimum of a cost function as illustrated pictorially in Figure 1.17.

sh
ar

e
pr

ic
e

sh
ar

e
pr

ic
e

revenue revenue

interce
pt

interce
pt

slopeslope

cost value cost value

Figure 1.16 (top panels) A figurative drawing of the two-dimensional cost function

associated with learning the slope and intercept parameters of a linear model for the

share price regression problem discussed in the previous section and shown in Figure

1.7. Also shown here are two different sets of parameter values, one (left) at the

minimum of the cost function and the other (right) at a point with larger cost function

value. (bottom panels) The linear model corresponding to each set of parameters in the

top panel. The set of parameters resulting in the best fit are found at the minimum of

the cost surface.

Because a low value corresponds to a high-performing model in the case of

both regression and classification (and, as we will see, for unsupervised learning

problems as well) we will always look to minimize cost functions in order to

find the ideal parameters of their associated learning models. As the study

of computational methods for minimizing formal mathematical functions, the

tools of mathematical optimization therefore play a fundamental role throughout

the text. Additionally, as we will see later in the text starting in Chapter 11,

optimization also plays a fundamental role in cross-validation or the learning of

a proper nonlinear model automatically for any dataset. Because of these critical

roles mathematical optimization plays in machine learning we begin this text

with an exhaustive description of the fundamental tools of optimization in

Chapters 2–4.

18 Introduction to Machine Learning

interce
pt

slopeslope

cost value cost value

feature 1 feature 1

fe
at

ur
e

2

fe
at

ur
e

2

interce
pt

Figure 1.17 (top panels) A figurative drawing of the two-dimensional cost function

associated with learning the slope and intercept parameters of a linear model

separating two classes of the toy dataset first shown in Figure 1.10. Also shown here are

two different sets of parameter values, one (left) corresponding to the minimum of the

cost function and the other (right) corresponding to a point with larger cost function

value. (bottom panels) The linear classifiers corresponding to each set of parameters in

the top panels. The optimal set of parameters, i.e., those giving the minimum value of

the associated cost function, allow for the best separation between the two classes.

1.5 Conclusion

In this chapter we have given a broad overview of machine learning, with an

emphasis on critical concepts we will see repeatedly throughout the text. We

began in Section 1.2 by describing a prototypical machine learning problem,

as well as the steps typically taken to solve such a problem (summarized in

Figure 1.6). In Section 1.3 we then introduced the fundamental families of ma-

chine learning problems – supervised and unsupervised learning – detailing a

number of applications of both. Finally in Section 1.4 we motivated the need

for mathematical optimization by the pursuit of ideal parameters for a machine

learning model, which has direct correspondence to the geometric problem of

finding the smallest value of an associated cost function (summarized pictorially

in Figures 1.16 and 1.17).

Part I

Mathematical Optimization

2 Zero-Order Optimization

Techniques

2.1 Introduction

The problem of determining the smallest (or largest) value a function can take,

referred to as its global minimum (or global maximum), is a centuries-old pursuit

that has numerous applications throughout the sciences and engineering. In this

chapter we begin our investigation of mathematical optimization by describing

the zero-order optimization techniques – also referred to as derivative-free optimiza-

tion techniques. While not always the most powerful optimization tools at our

disposal, zero-order techniques are conceptually the simplest tools available to

us – requiring the least amount of intellectual machinery and jargon to describe.

Because of this, discussing zero-order methods first allows us to lay bare, in a

simple setting, a range of crucial concepts we will see throughout the chapters

that follow in more complex settings – including the notions of optimality, local

optimization, descent directions, steplengths, and more.

2.1.1 Visualizing minima and maxima

When a function takes in only one or two inputs we can attempt to visually

identify its minima or maxima by plotting it over a large swath of its input

space. While this idea certainly fails when a function takes in three or more

inputs (since we can no longer visualize it properly), we begin nevertheless

by first examining a number of low-dimensional examples to gain an intuitive

feel for how we might effectively identify these desired minima or maxima in

general.

Example 2.1 Visual inspection of single-input functions for minima and

maxima

In the top-left panel of Figure 2.1 we plot the quadratic function

g(w) = w

2

(2.1)

over a short region of its input space (centered around zero from w = -3 to

w = 3). In this figure we also mark the evaluation of the function’s global

22 Zero-Order Optimization Techniques

3 0 32 1 1 2

0 31 2

0 31 2

0 31 2

0

2

4

6

8

8

6

4

2

0

1

0

1

1

0

1

2

3

g(w)

g(w)

g(w)

w

w

w

w

g(w)

3 2 13 2 1

3 2 1

Figure 2.1 Figure associated with Example 2.1. Four example functions are shown with

the evaluation of their minima and maxima highlighted by green dots. See text for

further details.

minimum at w = 0 (that is, the point

(

0, g(0)

)

where g(0) = 0) with a green dot.

Note that as we move farther away from the origin (in either the negative or

positive direction) the evaluation of g becomes progressively larger, implying

that its global maxima lies at w = ±∞.

In the top-right panel in Figure 2.1 we show the result of multiplying the

previous quadratic function by -1, giving the new quadratic

g(w) = -w

2

. (2.2)

Doing so causes the function to flip upside down, with its global minima now

lying at w = ±∞, and the input w = 0 that once provided the global minimum

of g now returns its global maximum. The evaluation of this maximum is again

marked with a green dot on the function.

In the bottom-left panel of Figure 2.1 we plot the sinusoidal function

g(w) = sin(3w). (2.3)

Here we can clearly see that (over the range we have plotted the function) there

are three global minima and three global maxima (the evaluation of is each

marked by a green dot on the function). Indeed if we drew this function out

over a wider and wider swath of its input we would see that it has infinitely

many such global minima and maxima (existing at every odd multiple of

π

6

).

In the bottom-right panel of Figure 2.1 we look at the sum of a sinusoidal and

a quadratic function, which takes the algebraic form

2.2 The Zero-Order Optimality Condition 23

g(w) = sin(3w) + 0.3 w

2

. (2.4)

Inspecting this function (over the range it is plotted) we can see that it has a

global minimum around w = -0.5. The function also has other minima and

maxima that are locally optimal, meaning values that are minimal or maximal

only locally and with respect to just their neighbors (and not the function as a

whole). For example, g has a local maximum near w = 0.6 and a local minimum

near w = 1.5. The evaluation of both maxima and minima over the range of

input shown for this function are marked by a green dot in the figure.

2.2 The Zero-Order Optimality Condition

With a number of simple examples illustrating minima and maxima we can

now define them more formally. The task of determining a global minimum of

a function g with N input variables w

1

, w

2

, . . . , w

N

can formally be phrased as

the following minimization problem

minimize

w

1

,w

2

, ..., w

N

g (w

1

, w

2

, . . . , w

N

) (2.5)

which can be rewritten much more compactly (by stacking all the inputs in an

N-dimensional vector w) as

minimize

w

g

(

w

)

. (2.6)

By solving such minimization problem we aim to find a pointw

?

such that

g

(

w

?

)

≤ g (w) for all w. (2.7)

This is the zero-order definition of a global minimum. In general, a function

can have multiple or even infinitely many global minimum points (like the

sinusoidal function in Equation (2.3)).

We can likewise describe mathematical points w

?

at which g has a global

maximum. For such points we can write

g

(

w

?

)

≥ g (w) for all w. (2.8)

This is the zero-order definition of a global maximum. To express our pursuit of

a global maximum of a function we then write

maximize

w

g

(

w

)

. (2.9)

Note that the concepts of minima and maxima of a function are always related

24 Zero-Order Optimization Techniques

to each other via multiplication by -1. That is, a global minimum of a function

g is always a global maximum of the function -g, and vice versa. Therefore we

can always express the maximization problem in Equation (2.9) in terms of a

minimization problem, as

minimize

w

- g

(

w

)

. (2.10)

Akin to zero-order definitions for global minima and maxima in Equations

(2.7) and (2.8), there are zero-order definitions for local minima and maxima as

well. For instance, we can say a function g has a local minimum at a pointw

?

if

g

(

w

?

)

≤ g (w) for all w near w

?

. (2.11)

The statement ”for all w near w

?

” is relative, simply describing the fact that a

neighborhood (however small) aroundw

?

must exist such that, when evaluated

at every point in this neighborhood, the function g attains its smallest value at

w

?

. The same formal zero-order definition can be made for local maxima as

well, switching the ≤ sign to ≥.

Packaged together, these zero-order definitions for minima and maxima (col-

lectively called optima) are often referred to as the zero-order condition for opti-

mality. The phrase zero-order in this context refers to the fact that in each case,

the optima of a function are defined in terms of the function itself (and nothing

else). In further chapters we will see higher-order definitions of optimal points,

specifically the first-order definitions that involve the first derivative of a function

in Chapter 3, as well as second-order definitions involving a function’s second

derivative in Chapter 4.

2.3 Global Optimization Methods

In this section we describe the first approach one might take to approximately

minimize an arbitrary function: evaluate the function using a large number of

input points and treat the input that provides the lowest function value as the

approximate global minimum of the function. This approach is called a global

optimization method because it is capable of approximating the global optima

of a function (provided a large enough number of evaluations are made).

The important question with this sort of optimization scheme is: how do

we choose the inputs to try out with a generic function? We clearly cannot try

them all since, even for a single-input continuous function, there are an infinite

number of points to try.

We can take two approaches here to choosing our (finite) set of input points

to test: either sample (i.e., guess) them uniformly over an evenly spaced grid

(uniform sampling), or pick the same number of input points at random (random

sampling). We illustrate both choices in Example 2.2.

2.3 Global Optimization Methods 25

g(w)

w w

w w

g(w)

g(w)

g(w)

Figure 2.2 Figure associated with Example 2.2. Minimizing a simple function via

sampling – or ”guessing.” (top row) Sampling the input of a function four times evenly

(left panel) and at random (right panel). Here the inputs chosen are shown as blue dots,

and their evaluations by the function are shown as green dots. (bottom row) Sampling

uniformly (left panel) and randomly (right panel) 20 times. The more samples we take,

the more likely we are to find a point close to the global minimum using either

sampling approach. See text for further details.

Example 2.2 Minimizing a quadratic function

Here we illustrate two sampling methods for finding the global minimum of

the quadratic function

g(w) = w

2

+ 0.2 (2.12)

which has a global minimum at w = 0. For the sake of simplicity we limit the

range over which we search to [-1,+1]. In the top row of Figure 2.2 we show

the result of a uniform-versus-random sampling of four inputs, shown in blue

in each panel of the figure (with corresponding evaluations shown in green

on the function itself). We can see that by randomly sampling here we were

able to (by chance) achieve a slightly lower point when compared to sampling

the function evenly. However, using enough samples we can find an input very

close to the true global minimum of the function with either sampling approach.

In the bottom row we show the result of sampling 20 inputs uniformly versus

randomly, and we can see that, by increasing the number of samples, using

either approach, we are now able to approximate the global minimum with

much better precision.

26 Zero-Order Optimization Techniques

Note that with both global optimization approaches discussed in Example

2.2 we are simply employing the zero-order optimality condition, since from a

set of K chosen inputs

n

w

k

o

K

k=1

we are choosing the one input w

j

with lowest

evaluation on the cost function

g

±

w

j

²

≤ g

±

w

k

²

k = 1, 2, ..., K (2.13)

which is indeed an approximation to the zero-order optimality condition dis-

cussed in the previous section.

While easy to implement and perfectly adequate for functions having low-

dimensional input, as we see next, this naturally zero-order framework fails

miserably when the input dimension of a function grows to even moderate size.

2.3.1 The curse of dimensionality

While this sort of global optimization based on zero-order evaluations of a

function works fine for low-dimensional functions, it quickly fails as we try to

tackle functions with larger number of inputs or, in other words, functions that

take in N-dimensional inputw where N is large. This makes such optimization

methods essentially unusable in modern machine learning since the functions

we often deal with have input dimensions ranging from the hundreds to the

hundreds of thousands, or even millions.

To get a sense of why the global approach quickly becomes infeasible, imagine

we use a uniform sampling of points across the input space of a single-input

function, choosing (for the sake of argument) three points, each at a distance

of d from the previous one, as illustrated in the top-left panel of Figure 2.3.

Imagine now that the input space of the function increases by one, and that

the range of each input is precisely that of the original single-input function,

as illustrated in the top-middle panel of Figure 2.3. We still aim to cover the

space evenly and with enough samples such that each input we evaluate is once

again at a distance d from its closest neighbors in either direction. Notice, in

order to do this in a now two-dimensional space we need to sample 3

2

= 9 input

points. Likewise if we increase the dimension of the input once again in the same

fashion, in order to sample evenly across the input space so that each input is

at a maximum distance of d from its neighbors in every input dimension we

will need 3

3

= 27 input points, as illustrated in the top-right panel of Figure 2.3.

If we continue this thought experiment, for a general N-dimensional input we

would need to sample 3

N

points, a huge number even for moderate values of N.

This is a simple example of the so-called curse of dimensionality which, generally

speaking, describes the exponential difficulty one encounters when trying to

deal with functions of increasing input dimension.

The curse of dimensionality remains an issue even if we decide to take samples

randomly. To see why this is the case using the same hypothetical scenario,

suppose now that, instead of fixing the distance d of each sample from its

2.4 Local Optimization Methods 27

3/10 1/10 0/10

d d

d d

d

d

Figure 2.3 (top row) The number of input points we must sample uniformly if we wish

each to be at a distance of d from its neighbors grows exponentially as the input

dimension of a function increases. If three points are used to cover a single-input space

in this way (left panel), 3

2

= 9 points are required in two dimensions, and 3

3

= 27 points

in three dimensions (and this trend continues). Sampling randomly (bottom row) does

not solve the problem either. See text for further details.

neighbors, we fix the total number of randomly chosen samples to a fixed value

and look at how well they tend to distribute over an input space as we increase

its dimension. From left to right in the bottom panels of Figure 2.3 we see one

instance of how a total of ten points are randomly selected in N = 1, N = 2,

and N = 3 dimensional space, respectively. Once again we are inhibited by the

curse of dimensionality. As we increase the dimension of the input space the

average number of samples per unit hypercube drops exponentially, leaving

more and more regions of the space without a single sample or corresponding

evaluation. In order to counteract this problem we would need to start sampling

exponentially many points, leading to the same problem we encounter with the

uniform sampling scheme.

2.4 Local Optimization Methods

As opposed to the global optimization techniques described in Section 2.3,

where a large number of input points are sampled simultaneously with the

lowest evaluation crowned the approximate global minimum, local optimization

methods work by starting with a single input point and then by sequentially

refining it, driving the point towards an approximate minimum point. Local

optimization methods are by far the most popular mathematical optimization

28 Zero-Order Optimization Techniques

schemes used in machine learning today, and are the subject of the remainder of

this part of the text. While there is substantial variation in the kinds of specific

local optimization methods we will discuss going forward, nonetheless they all

share a common overarching framework that we introduce in this section.

2.4.1 The big picture

Starting with a sample input, usually referred to as an initial point and denoted

throughout the text by w

0

, local optimization methods refine this initial point

sequentially, pulling it downhill towards points that are lower and lower on

the function, eventually reaching a minimum as illustrated for a single-input

function in Figure 2.4. More specifically, from w

0

the point is pulled downhill

to a new point w

1

lower on the function, i.e., where g

±

w

0

²

> g

±

w

1

²

. The point

w

1

itself is then pulled downwards to a new point w

2

. Repeating this process K

times yields a sequence of K points (excluding our starting initial point)

w

0

, w

1

, ...,wK

(2.14)

where each subsequent point is (generally speaking) on a lower and lower

portion of the function, i.e.,

g

±

w

0

²

> g

±

w

1

²

> · · · > g

±

w

K

²

. (2.15)

w

1

w

k

w

g(w)

· · ·

w

0

Figure 2.4 Local optimization methods work by minimizing a target function in a

sequence of steps. Shown here is a generic local optimization method applied to

minimize a single-input function. Starting with the initial point w

0

, we move towards

lower points on the cost function like a ball rolling downhill.

2.4 Local Optimization Methods 29

2.4.2 The general framework

In general the sequential refinement process enacted by a local optimization

method works as follows. To take the first step from an initial point w

0

to the

very first update w

1

, what is called a descent direction at w

0

is found. This is a

direction vectord

0

in the input space, beginning atw

0

and pointing away from it

towards a new pointw

1

with lower function evaluation. When such a direction

is found the first update w

1

is given by the sum

w

1

= w

0

+ d

0

. (2.16)

To refine the point w

1

we look for a new descent direction d

1

, one that moves

downhill stemming from the pointw

1

. When we find such a direction the second

updatew

2

is then formed as the sum

w

2

= w

1

+ d

1

. (2.17)

We repeat this process, producing a sequence of input points

w

0

w

1

= w

0

+ d

0

w

2

= w

1

+ d

1

w

3

= w

2

+ d

2

.

.

.

w

K

= w

K-1

+ d

K-1

(2.18)

where d

k-1

is the descent direction determined at the kth step of the process,

defining the kth step asw

k

= w

k-1

+ d

k-1

such that in the end the inequalities in

Equation (2.15) are met. This is illustrated schematically with a generic function

taking in two inputs in the top panel of Figure 2.5. The two-input function is

illustrated here via a contour plot, a common visualization tool that allows us

to project a function down onto its input space. Darker regions on the plot

correspond to points with larger evaluations (higher on the function), while

brighter regions correspond to points with smaller evaluations (lower on the

function).

The descent directions in Equation (2.18) can be found in a multitude of ways.

In the remaining sections of this chapter we discuss zero-order approaches for

doing so, and in the following chapters we describe the so-called first- and second-

order approaches, i.e., approaches that leverage the first- and/or second-order

derivative of a function to determine descent directions. How the descent direc-

tions are determined is precisely what distinguishes major local optimization

schemes from one another.

30 Zero-Order Optimization Techniques

2.4.3 The steplength parameter

We can compute how far we travel at each step of a local optimization method

by examining the general form of a local step. Making this measurement we can

see that, at the kth step as defined in Equation (2.18), we move a distance equal

to the length of the corresponding descent direction

³

³

³

w

k

-w

k-1

³

³

³

2

=

³

³

³

d

k-1

³

³

³

2

. (2.19)

This can mean that the length of descent vectors could be problematic even if

they point in a descent direction, downhill. For example, if they are too long, as

illustrated in the middle panel of Figure 2.5, then a local method can oscillate

wildly at each update step, never reaching an approximate minimum. Likewise

if they are too small in length, a local method will move so sluggishly slow, as

illustrated in the bottom panel of Figure 2.5, that far too many steps would be

required to reach an approximate minimum.

w

1

w

0

w

2

w

3

w

4

d

0

d

1

d

2

d

3

w

0

w

1

w

2

w

3

w

4

w

0

w

1

w

2

w

3

w

4

Figure 2.5 (top panel) Schematic illustration of a generic local optimization scheme

applied to minimize a function taking in two inputs, with descent directions marked in

black. See text for further details. (middle panel) Direction vectors are too large, causing

a wild oscillatory behavior around the minimum point. (bottom panel) Direction

vectors are too small, requiring a large number of steps be taken to reach the minimum.

2.5 Random Search 31

Because of this potential problem many local optimization schemes come

equipped with what is referred to as a steplength parameter, also called a learning

rate in the jargon of machine learning. This parameter, which allows us to con-
trol the length of each update step (hence the name steplength parameter), is
typically denoted by the Greek letter α. With a steplength parameter the generic
kth update step is written as

w

k

= w

k−1

+ αd

k−1

. (2.20)

The entire sequence of K steps is then similarly written as

w

0

w

1

= w

0

+ αd

0

w

2

= w

1

+ αd

1

w

3

= w

2

+ αd

2

.

.

.

w

K

= w

K−1

+ αd

K−1

.

(2.21)

Note the only difference between this form for the kth step and the original is
that now we scale the descent direction dk−1

by the steplength parameter α > 0.

With the addition of this parameter the distance traveled at the kth step of a
generic local optimization scheme can be computed as

±

±

±

w

k

− w

k−1

±

±

±

2

=

±

±

±

±

²

w

k−1

+ αd

k−1

³

−w

k−1

±

±

±

±

2

= α

±

±

±

d

k−1

±

±

±

2

. (2.22)

In other words, the length of the kth step is now proportional to the length of the
descent vector, and we can fine tune precisely how far we wish to travel in this
direction by setting the value of α properly. A common choice is to set α to some

fixed small value for each of the K steps. However (just like local optimization

methods themselves), there are a number of ways of setting the steplength
parameter which we will discuss later in the current and future chapters.

2.5 Random Search

In this section we describe our first local optimization algorithm: random search.
With this instance of the general local optimization framework we seek out a
descent direction at each step by examining a number of random directions stem-

ming from our current point. This manner of determining a descent direction,
much like the global optimization scheme described in Section 2.3, scales poorly
with the dimension of input, which ultimately disqualifies random search for
use with today’s large-scale machine learning problems. However, this zero-
order approach to local optimization is extremely useful as a simple example of
the general framework introduced previously, allowing us to give a simple yet

32 Zero-Order Optimization Techniques

concrete algorithmic example of universally present ideas like descent directions,

various choices for the steplength parameter, and issues of convergence.

2.5.1 The big picture

The defining characteristic of the random search (as is the case with every major

local optimization scheme) lies in how the descent direction d

k-1

at the kth local

optimization update stepw

k

= w

k-1

+ d

k-1

is chosen.

With random search we do (perhaps) the ”laziest” possible thing one could

think to do in order to find a descent direction: we sample a given number of

random directions stemming from w

k-1

, evaluate each candidate update point,

and choose the one that gives us the smallest evaluation (so long as it is indeed

lower on the function than our current point). In other words, we look locally

around the current point, in a certain number of random directions, for a point

that has a lower evaluation, and if we find one we move to it.

To be more precise, at the kth step we generate P random directions {d

p

}

P

p=1

to

try out, each stemming from the prior step w

k-1

and leading to the candidate

point w

k-1

+ d

p

for p = 1, 2, ...,P.

After evaluating all such P candidate points we pick the one that gives us the

smallest evaluation, i.e., the one with the index given by

s = argmin

p=1,2,...,P

g

±

w

k-1

+ d

p

²

. (2.23)

Finally, if the best point found has a smaller evaluation than the current point,

i.e., if g

±

w

k-1

+ d

s

²

< g

±

w

k-1

²

, then we move to the new point w

k

= w

k-1

+ d

s

,

otherwise we either halt the method or try another batch of P random directions.

The random search method is illustrated in Figure 2.6 using a quadratic

function where, for visualization purposes, the number of random directions to

try is set relatively small to P = 3.

2.5.2 Controlling the length of each step

In order to better control the progress of random search we can normalize our

randomly chosen directions to each have unit length, i.e., kdk

2

= 1. This way

we can adjust each step to have whatever length we desire by introducing a

steplength parameter α (as discussed in Section 2.4.3). This more general step

w

k

= w

k-1

+ αd now has length exactly equal to the steplength parameter α, as

kw

k

-w

k-1

k

2

= kα dk

2

= αkdk

2

= α. (2.24)

2.5 Random Search 33

w

0

w

1 w

2

minimum point

g(w)

candidate direction

chosen direction

Figure 2.6 At each step the random search algorithm determines a descent direction by
examining a number of random directions. The direction leading to the new point with

the smallest evaluation is chosen as the descent direction, and the process repeated until
a point near a local minimum is found. Here we show three prototypical steps
performed by random search, where three random directions are examined at each
step. At each step the best descent direction found is drawn as a solid black arrow while

the other two inferior directions are shown as dashed black arrows.

Example 2.3 Minimizing a simple quadratic using random search
In this example we run random local search for K = 5 steps with α = 1 for all
steps, at each step searching for P = 1000 random directions to minimize the
quadratic function

g(w

1

,w

2

) = w

2

1

+w

2

2

+ 2. (2.25)

Figure 2.7 shows the function in three dimensions on the top-left panel, along
with the set of steps produced by the algorithm colored from green (at the start
of the run where we initialize at w0

= [3 4]T) to red (when the algorithm halts).
Directed arrows illustrate each descent direction chosen, connecting each step
to its predecessor, and are shown to help illustrate the total path the algorithm
takes. In the top-right panel we show the same function, but viewed from
directly above as its contour plot.

Notice that if the dimension of the input N is greater than 2 we cannot make

a plot like the ones shown in the figure to tell how well a particular run of
any local optimization (here random search) is performed. A more general way

to visualize the progress made by a local method is to plot the corresponding
sequence of function evaluations against the step number, i.e., plotting the pairs
±

k, g

±

w

k

²²

for k = 1, 2, ...,K, as demonstrated in the bottom panel of Figure 2.7.
This allows us to tell (regardless of the input dimension N of the function being
minimized) how the algorithm performed, and whether we need to adjust any
of its parameters (e.g., the maximum number of steps K or the value of α). This

34 Zero-Order Optimization Techniques

3 0 32 1 1 2 44

3

0

3

2

1

1

2

4

4

0 31 2 4 5

5

20

10

15

25

0

2

2

4

4

0

2

2

4

4

0

30

10

20

40

k

w

1

w

2

w

2

w

1

g(w

k

)

g(w)

Figure 2.7 Figure associated with Example 2.3. See text for further details.

visualization is called a cost function history plot. An additional benefit of such a

plot is that we can more easily tell the exact value of each function evaluation

during the local optimization run

Example 2.4 Minimizing a function with multiple local minima

In this example we show what one may need to do in order to find the global

minimum of a function using a local optimization scheme like random search.

For visualization purposes we use the single-input function

g(w) = sin(3w)+ 0.3w

2

(2.26)

and initialize two runs, one starting at w

0

= 4.5 and another at w

0

= -1.5. For

both runs we use a steplength of α = 0.1 fixed for all K = 10 steps or iterations.

As can be seen in Figure 2.8, depending on where we initialize, we may end up

near a local (left panel) or global minimum (right panel). Here we illustrate the

steps of each run as circles along the input axis with corresponding evaluations

on the function itself as similarly colored x marks. The steps of each run are

colored green near the start of the run to red when a run halts.

2.5 Random Search 35

w

g(w)g(w)

w

Figure 2.8 Figure associated with Example 2.4. Properly minimizing such a nonconvex

function like the one shown here requires multiple runs of local optimization with

different initializations. See text for further details.

2.5.3 Exploring fundamental steplength rules

In Examples 2.3 and 2.4 we set the steplength parameter α fixed for all steps

of each run. Known as a fixed steplength rule, this is a very common choice of

steplength parameter for local optimization methods in general. It is also possi-

ble to change the value of α from one step to another with what is often referred

to as an adjustable steplength rule. Before exploring a very common adjustable

steplength rule used in machine learning, called the diminishing steplength rule,

we first show the importance of steplength tuning through a simple example.

Example 2.5 A failure to converge

In this example we use random search to minimize the quadratic function

g

(

w

1

,w

2

)

= w

2

1

+ w

2

2

+ 2 (2.27)

using the steplength α = 1 (as we used in Example 2.3) but with a different

initialization at w

0

= [1.5 2]

T

. However, with this initialization and as shown

by examining the contour plot of this function in the left panel of Figure 2.9,

the algorithm gets stuck at a non-optimal point (colored red) away from the

global minimum point located at the origin, where here the contour plot is

shown without color for better visualization. Also drawn in the same plot is a

blue unit circle centered at the final red point, representing the location of all

possible points the algorithm could take us to if we decided to take another

step and move from where it halts at the red point. Notice how this blue circle

encompasses one of the contours of the quadratic (in dashed red) on which the

final red point lies. This means that every possible direction provides ascent,

not descent, and the algorithm must therefore halt.

We need to be careful when choosing the steplength value with this simple

36 Zero-Order Optimization Techniques

w

1

w

2

w

1

w

1

w

2

w

2

Figure 2.9 Figure associated with Example 2.5. Determining a proper steplength is

crucial to optimal performance with random search – and by extension many local

optimization algorithms. Here choosing the steplength too large leads to the method

halting at a suboptimal point (left panel), setting it too small leads to very slow

convergence towards the minimum of the function (middle panel), and setting it ”just

right” leads to ideal convergence to a point close to the function’s minimum (right

panel). See text for further details.

quadratic function, and by extension any general function. If, as shown in the

middle panel of Figure 2.9, we repeat the same experiment but cut the steplength

down to α = 0.01, we do not reach a point anywhere near the global minimum

within the same number of steps.

Setting the steplength parameter a little larger to α = 0.1 for all steps, we make

another run mirroring the previous one with results shown in the right panel

of Figure 2.9. The algorithm now converges to a point much closer to the global

minimum of the function at the origin.

In general, the combination of steplength and maximum number of iterations

are best chosen together. The trade-off here is straightforward: a small steplength

combined with a large number of steps can guarantee convergence to a local

minimum, but can be computationally expensive. Conversely, a large steplength

and small number of maximum iterations can be cheaper but less effective at

finding the optimal. Often, in practice, these kinds of choices are made by making

several runs of an algorithm and plotting their corresponding cost function

histories to determine optimal parameter settings.

2.5.4 Diminishing steplength rules

A commonly used alternative to fixed steplength rules are the so-called dimin-

ishing steplength rules wherein we shrink or diminish the size of the steplength at

each step of local optimization. One common way of producing a diminishing

steplength rule is simply to set α =

1

k

at the kth step of the process. This provides

the benefit of shrinking the distance between subsequent steps as we progress

2.5 Random Search 37

on a run, since with this choice of steplength and a unit-length descent direction

vector we have

kw

k

- w

k-1

k

2

= αkd

k-1

k

2

=

1

k

. (2.28)

At the same time, if we sum up the total distance the algorithm travels in K steps

(provided we indeed move at each step) we have

K

X

k=1

kw

k

-w

k-1

k

2

=

K

X

k=1

1

k

. (2.29)

The beauty of this sort of diminishing steplength is that while the steplength

α =

1

k

decreases to zero as k increases, the total distance traveled by the algo-

rithm goes to infinity.

1

This means that a local algorithm employing this sort of

diminishing steplength rule can – in theory – move around an infinite distance

in search of a minimum all the while taking smaller and smaller steps, which

allows it to work into any small nooks and crannies a function might have where

any minimum lies.

2.5.5 Random search and the curse of dimensionality

As with the global optimization approach discussed in Section 2.3, the curse

of dimensionality also poses a major obstacle to the practical application of the

random search algorithm as the dimension of a function’s input increases. In

other words, for most functions it becomes exponentially more difficult to find a

descent direction at random at a given point as its input dimension increases.

Take, for example, the single-input quadratic function g(w) = w

2

+ 2 and

suppose we take a single step using the random search algorithm beginning

at w

0

= 1 with steplength α = 1. As illustrated in the top panel of Figure

2.10, because the input dimension in this case is N = 1, to determine a descent

direction we only have two directions to consider: the negative and positive

directions from our initial point. One of these two directions will provide descent

1

The sum

∑

∞

k=1

1

k

is often called the harmonic series, and one way to see that it diverges to infinity

is by lumping together consecutive terms as

∞

X

k=1

1

k

= 1+

1

2

+

´

1

3

+

1

4

µ

+

´

1

5

+

1

6

+

1

7

+

1

8

µ

+ · · ·

≥ 1+

1

2

+ 2

´

1

4

µ

+ 4

´

1

8

µ

+ · · ·

= 1+

1

2

+

1

2

+

1

2

+ · · · .

(2.30)

In other words, the harmonic series is lower-bounded by an infinite sum of

1

2

values, and thus

diverges to infinity.

38 Zero-Order Optimization Techniques

0 1 2

g(w)

g(w)

ascent

descent

Figure 2.10 (top panel) When the input dimension is N = 1, there are only two unit

directions we can move in, only one of which (the solid arrow) is a descent direction.

(bottom panel) When the input dimension is N = 2, there are infinitely many unit

directions to choose from, only a fraction of which whose endpoint lies inside the unit

circle (points on the solid portion of the arc) are descent directions.

(here, the negative direction). In other words, we would have a 50 percent chance

of finding a descent direction if were to choose one at random.

Now let us examine the same sort of quadratic function, this time one that

takes in an N = 2 dimensional vectorw as input: g

(

w

)

= w

T

w + 2, and imagine

taking a single random search step starting at w

0

=

[1 0]

T

, a two-dimensional

analog of the initialization we used for our one-dimensional quadratic. As il-

lustrated in the bottom panel of Figure 2.10, we now have infinitely many unit

directions to choose from, but only a fraction of which (less than 50 percent)

provide descent. In other words, in two dimensions the chance of randomly

selecting a descent direction drops with respect to its analogous value in one

dimension. This decrease in the probability of randomly choosing a descent

direction decreases exponentially as the input dimension N of this quadratic in-

creases. Indeed one can compute that for a general N , the probability of choosing

a descent direction at random starting at

w

0

=

1

0

.

.

.

0

N×1

(2.31)

2.6 Coordinate Search and Descent 39

for the quadratic function at hand is upper-bounded by

1

2

´

√

3

2

µ

N-1

(see Exercise

2.5). This means, for example, that when N = 30 the descent probability falls

below 1 percent, making random search incredibly inefficient for minimizing

even a simple quadratic function.

2.6 Coordinate Search and Descent

The coordinate search and descent algorithms are additional zero-order local

methods that get around the inherent scaling issues of random local search

by restricting the set of search directions to the coordinate axes of the input

space. The concept is simple: random search was designed to minimize a func-

tion g (w

1

, w

2

, ..., w

N

) with respect to all of its parameters simultaneously. With

coordinate-wise algorithms we attempt to minimize such a function with re-

spect to one coordinate or parameter at a time (or, more generally, one subset of

coordinates or parameters at a time) keeping all others fixed.

While this limits the diversity of descent directions that can be potentially

discovered, and thus more steps are often required to determine approximate

minima, these algorithms are far more scalable than random search.

2.6.1 Coordinate search

As illustrated in the left panel of Figure 2.11 for a prototypical N = 2 dimensional

example, with coordinate search we seek out a descent direction by searching

randomly among only the coordinate axes of the input space. This means in

general that, for a function of input dimension N, we only look over the 2N

directions from the set {±e

n

}

N

n=1

, where e

n

is a standard basis vector whose entries

are set to zero except its nth entry which is set to 1.

w

0

w

0

g(w) g(w)

Figure 2.11 (left panel) With coordinate search we seek out descent directions only among

the coordinates axes: at each step, colored alternately blue and red for better

visualization, we try 2N = 4 directions along the N = 2 coordinate axes, and pick the

one resulting in the largest decrease in the function’s evaluation. (right panel) With

coordinate descent we (ideally) take a step immediately after examining the positive and

negative directions along each coordinate.

40 Zero-Order Optimization Techniques

It is this restricted set of directions we are searching over that distinguishes

the coordinate search approach from the random search approach described

in the previous section, where the set of directions at each step was made

up of random directions. While the (lack of) diversity of the coordinate axes

may limit the effectiveness of the possible descent directions it can encounter

(and thus more steps are required to determine an approximate minimum), the

restricted search makes coordinate search far more scalable than the random

search method since at each step only 2N directions must be tested.

2.6.2 Coordinate descent

A slight twist on the coordinate search produces a much more effective algorithm

at precisely the same computational cost, called coordinate descent. Instead of

collecting each coordinate direction (along with its negative version), and then

choosing a single best direction from this entire set, we can simply examine one

coordinate direction (and its negative) at a time and step in this direction if it

produces descent. This idea is illustrated in the right panel of Figure 2.11.

Whereas with coordinate search we evaluate the cost function 2N times (twice

per coordinate) to produce a single step, this alternative approach takes the same

number of function evaluations but potentially moves N steps in doing so. In

other words, with coordinate descent we can, for the same cost as coordinate

search, potentially minimize a function much faster. Indeed of all the zero-order

methods detailed in this chapter, coordinate descent is by far the most practical.

Example 2.6 Coordinate search versus coordinate descent

In this example we compare the efficacy of coordinate search and the coordinate

descent algorithms on the simple quadratic function

g(w

1

, w

2

) = 0.26

±

w

2

1

+ w

2

2

²

- 0.48 w

1

w

2

. (2.32)

In Figure 2.12 we compare 20 steps of coordinate search (left panel) and coordi-

nate descent (right panel), using a diminishing steplength for both runs. Because

coordinate descent effectively takes two steps for every single step taken by co-

ordinate search, we get significantly closer to the function’s minimum using the

same number of function evaluations.

2.7 Conclusion

This chapter laid the groundwork for a wide range of fundamental ideas related

to mathematical optimization (motivated in Section 1.4) that we will see repeat-

2.7 Conclusion 41

2

4

3

1

0

1

2

4

3

1

0

1

432101 432101

w

1

w

2

w

1

w

2

Figure 2.12 Figure associated with Example 2.6. A run of coordinate search (left panel)

and coordinate descent (right panel) employed to minimize the same function. While

both runs have the same computational cost, coordinate descent makes significantly

greater progress. See text for further details.

edly not only in the next two chapters, but throughout the remainder of the text

as well.

We began by introducing the concept of mathematical optimization, which

is the mathematical/computational pursuit of a function’s minima or maxima.

Then in Section 2.2 we translated our informal definition of a function’s minima

and maxima into the language of mathematics, with this formal translation

referred to as the zero-order condition for optimality. Leveraging this definition we

then described global optimization methods (essentially the raw evaluation of a

function over a fine grid of input points) in Section 2.3 which we saw – due to the

curse of dimensionality – scales very poorly in terms of input dimension, and

are thus not often very practical. Section 2.4 introduced the alternative to this

limited framework – local optimization – which encompasses an enormous family

of algorithms we discuss in the remainder of this chapter, as well as the two

chapters that follow. Finally, in Sections 2.5 and 2.6 we described a number of

examples of zero-order local optimization algorithms – including random search

and coordinate search/descent. While the latter schemes can be very useful in

particular applications, in general these zero-order local schemes are not as

widely used in machine learning when compared to those we will see in the

chapters to come, which leverage a function’s first and/or second derivatives

to more immediately formulate descent directions (instead of the raw search

required by zero-order algorithms). However, the relative simplicity of zero-

order schemes allowed us to flush out a range of critical concepts associated

with local optimization – ideas that we will see echo repeatedly throughout

the chapters that follow in a comparatively uncluttered setting – including the

notions of descent directions, steplength/learning rates, diminishing steplength

schemes, and cost function history plots.

42 Zero-Order Optimization Techniques

2.8 Exercises

†The data required to complete the following exercises can be downloaded from

the text’s github repository at github.com/jermwatt/machine_learning_refined

2.1 Minimizing a quadratic function and the curse of dimensionality

Consider the simple quadratic function

g(w) = w

T

w (2.33)

whose minimum is always at the origin regardless of the input dimension N.

(a) Create a range of these quadratics for input dimension N = 1 to N = 100,

sample the input space of each P = 100 times uniformly on the hypercube

[-1,1]× [-1,1]× · · · × [-1, 1] (this hypercube has N sides), and plot the minimum

value attained for each quadratic against the input dimension N.

(b) Repeat part (a) using P = 100, P = 1000, and P = 10,000 samples, and plot

all three curves in the same figure. What sort of trend can you see in this plot as

N and P increase?

(c) Repeat parts (a) and (b), this time replacing uniformly chosen samples with

randomly selected ones.

2.2 Implementing random search in Python

Implement the random search algorithm in Python and repeat the experiment

discussed in Example 2.4.

2.3 Using random search to minimize a nonconvex function

Use your implementation of random search in Exercise 2.2 to minimize the

function

g(w

1

,w

2

) = tanh (4w

1

+ 4w

2

) +max

±

0.4w

2

1

, 1

²

+ 1. (2.34)

Take a maximum of eight steps and search through P = 1000 random directions

at each step, with a steplength α = 1 and an initial point w

0

= [2 2]

T

.

2.4 Random search with diminishing steplength

In this exercise you will use random search and a diminishing steplength to

minimize the Rosenbrock function

2.8 Exercises 43

g (w

1

,w

2

) = 100

±

w

2

-w

2

1

²

2

+ (w

1

- 1)

2

. (2.35)

This function has a global minimum at the point w

?

= [1 1]

T

located in a very

narrow and curved valley.

Make two runs of random search using P = 1000, the initial point w

0

=

[-2 - 2]

T

, and K = 50 steps. With the first run use a fixed steplength α = 1, and

– with the second run – a diminishing steplength as detailed in Section 2.5.4.

Compare the two runs by either plotting the contour plot of the cost function

(with each run plotted on top), or by constructing a cost function history plot.

2.5 Random descent probabilities

Consider the quadratic function g(w) = w

T

w + 2, which we aim to minimize

using random search starting at w

0

defined in Equation (2.31), with α = 1 and

³

³

³

d

0

³

³

³

2

= 1.

(a) When N = 2, show that the probability of descent – i.e., the probability that

g(w

0

+αd

0

) < g(w

0

) for a randomly chosen unit direction d

0

– is upper-bounded

by

√

3

4

. Hint: see Figure 2.13.

(b) Extend your argument in part (a) to find an upper-bound on the probability

of descent for general N.

1

2

p

3

2

1

2

g(w)

Figure 2.13 Figure associated with Exercise 2.5.

2.6 Revisiting the curse of dimensionality

In this exercise you will empirically confirm the curse of dimensionality problem

described in Section 2.5.5 for the simple quadratic g(w) = w

T

w + 2.

Starting at the N-dimensional input point w

0

defined in Equation (2.31), create P

random unit directions {d

p

}

P

p=1

(where kd

p

k

2

= 1) and evaluate the point w

0

+ d

p

via the quadratic for all p.

Next, produce a plot illustrating the portion of the sampled directions that

44 Zero-Order Optimization Techniques

provide a decrease in function evaluation (i.e., the number of descent directions

divided by P) against N (for N = 1,2, ..., 25) and for three values of P : P = 100,

P = 1000, and P = 10,000. Describe the trend you observe.

2.7 Pseudo-code for the coordinate search algorithm

Devise pseudo-code for the coordinate search algorithm described in Section

2.6.1.

2.8 Coordinate search applied to minimize a simple quadratic

Compare five steps of the random search algorithm (with P = 1000 random

directions tested at each step) to seven steps of coordinate search, using the

same starting point w

0

= [3 4]

T

and fixed steplength parameter value α = 1 to

minimize the quadratic function

g(w

1

,w

2

) = w

2

1

+ w

2

2

+ 2. (2.36)

Plot this function along with the resulting runs of both algorithms, and describe

any differences in behavior between the two runs.

2.9 Coordinate search with diminishing steplength

Implement the coordinate search algorithm detailed in Section 2.6.1 and use it

to minimize the function

g(w

1

,w

2

) = 0.26

±

w

2

1

+ w

2

2

²

- 0.48 w

1

w

2

(2.37)

using the diminishing steplength rule beginning at a random initial point. The

global minimum of this function lies at the origin. Test your implementation

by making sure it can reach a point significantly close (e.g., within 10

-2

) to the

origin from various random initializations.

2.10 Coordinate search versus coordinate descent

Implement the coordinate search and coordinate descent algorithms, and repeat

the experiment discussed in Example 2.6.

3 First-Order Optimization

Techniques

3.1 Introduction

In this chapter we describe fundamental optimization algorithms that lever-

age the first derivative or gradient of a function. These techniques, collectively

called first-order optimization methods, are some of the most popular local opti-

mization algorithms used to tackle machine learning problems today. We begin

with a discussion of the first-order optimality condition which codifies how the

first derivative(s) of a function characterizes its minima. We then discuss funda-

mental concepts related to hyperplanes, and in particular the first-order Taylor

series approximation. As we will see, by exploiting a function’s first-order in-

formation we can construct local optimization methods, foremost among them

the extremely popular gradient descent algorithm, that naturally determine high-

quality descent directions at a cost that is very often cheaper than even the

coordinate-wise approaches described in the previous chapter.

3.2 The First-Order Optimality Condition

In Figure 3.1 we show two simple quadratic functions, one in two dimensions

(left panel) and one in three dimensions (right panel), marking the global mini-

mum on each with a green point. Also drawn in each panel is the line/hyperplane

tangent to the function at its minimum point, also known as its first-order Tay-

lor series approximation (see Appendix Section B.9 if you are not familiar with

the notion of Taylor series approximation). Notice in both instances that the

tangent line/hyperplane is perfectly flat. This sort of behavior is universal (for

differentiable functions) regardless of the function one examines, and it holds

regardless of the dimension of a function’s input. That is, minimum values of a

function are naturally located at valley floors where a tangent line or hyperplane

is perfectly flat, and thus has zero-valued slope(s).

Because the derivative (see Appendix Sextion B.2) of a single-input function or

the gradient (see Appendix Sextion B.4) of a multi-input function at a point gives

precisely this slope information, the value of first-order derivatives provide a

convenient way of characterizing minimum values of a function g. When N = 1,

any point v of the single-input function g(w) where

46 First-Order Optimization Techniques

w

g(w

1

,w

2

)

g(w)

w

1

w

2

Figure 3.1 The first-order optimality condition characterizes points where the

derivative or gradient of a function equals zero or, likewise, where the line or

hyperplane tangent to a function has zero slope (i.e., it is completely horizontal and

parallel to the input space). With a simple convex quadratic this condition identifies the

global minimum of the function, illustrated here with a single-input (left panel) and

multi-input (right panel) quadratic function.

d

dw

g (v) = 0 (3.1)

is a potential minimum. Analogously with multi-input functions, any

N-dimensional point v where every partial derivative of g is zero, i.e.,

∂

∂w

1

g(v) = 0

∂

∂w

2

g(v) = 0

.

.

.

∂

∂w

N

g(v) = 0

(3.2)

is a potential minimum. This system of N equations is naturally referred to as

the first-order system of equations. We can also write the first-order system more

compactly using gradient notation as

∇g

(

v

)

= 0

N×1

. (3.3)

This very useful characterization of minimum points is the first-order analog

to the zero-order condition for optimality discussed in Section 2.2, and is thus

referred to as the first-order optimality condition (or the first-order condition for

short). There are, however, two problems with the first-order characterization

of minima.

Firstly, with few exceptions (including some interesting examples we detail in

Section 3.2.1), it is virtually impossible to solve a general function’s first-order

3.2 The First-Order Optimality Condition 47

systems of equations ”by hand” (that is, to solve such equations algebraically for

closed-form solutions). The other problem is that while the first-order condition

defines only global minima for convex functions, like the quadratics shown in

Figure 3.1, in general this condition captures not only the minima of a function

but other points as well, including maxima and saddle points of nonconvex func-

tions as we see in the example below. Collectively, minima, maxima, and saddle

points are often referred to as stationary or critical points of a function.

Example 3.1 Visual inspection of single-input functions for stationary points

In the top row of Figure 3.2 we plot the functions

g(w) = sin (2w

)

g(w) = w

3

g(w) = sin (3w)+ 0.3w

2

(3.4)

along with their derivatives in the second row of the same figure. On each

function we mark the points where its derivative is zero using a green dot (we

likewise mark these points on each derivative itself), and show the tangent line

corresponding to each such point in green as well.

g(w) g(w)

g(w)

d

dw

g(w)

Figure 3.2 Figure associated with Example 3.1. From left to right in the top row, the

functions g(w) = sin(2w), w

3

, and sin (3w)+ 0.3w

2

are plotted along with their

derivatives in the bottom row. See text for further details.

Examining these plots we can see that it is not only global minima that have

zero derivatives, but a variety of other points as well, including (i) local minima

or points that are the smallest with respect to their immediate neighbors, e.g.,

the one around the input value w = -2.5 in the top-right panel; (ii) local (and

48 First-Order Optimization Techniques

global) maxima or points that are the largest with respect to their immediate

neighbors, e.g., the one around the input value w = 0.5 in the top-right panel;

and (iii) saddle points, like the one shown in the top-middle panel, that are neither

maximal nor minimal with respect to their immediate neighbors.

3.2.1 Special cases where the first-order system can be solved by hand

In principle, the benefit of using the first-order condition is that it allows us to

transform the task of seeking out global minima to that of solving a system of

equations, for which a wide range of algorithmic methods have been designed.

The emphasis here on the word algorithmic is key, as solving a system of (poten-

tially nonlinear) equations by hand is, generally speaking, very difficult (if not

impossible).

However, there are a handful of relatively simple but important examples

where one can compute the solution to a first-order system by hand, or at least

one can show algebraically that they reduce to a linear system of equations

which can be easily solved numerically. By far the most important of these is

the multi-input quadratic function (see Example 3.4) and the highly related

Rayleigh quotient (see Exercise 3.3). These functions arise in many places in the

study of machine learning, from fundamental models like linear regression, to

second-order algorithm design, to the mathematical analysis of algorithms.

Example 3.2 Finding stationary points of single-input functions via the

first-order condition

In this example we use the first-order condition for optimality to compute sta-

tionary points of the functions

g

(

w

)

= w

3

g (w) = e

w

g (w) = sin (w)

g

(

w

)

= a + bw+ cw

2

(c > 0).

(3.5)

• g (w) = w

3

: the first-order condition gives

d

dw

g(v) = 3v

2

= 0, which we can

visually identify as a saddle point at v = 0 (see top-middle panel of Figure

3.2).

• g (w) = e

w

: the first-order condition gives

d

dw

g(v) = e

v

= 0, which is only

satisfied as v goes to -∞, giving a minimum.

• g (w) = sin (w) : the first-order condition gives stationary points wherever

d

dw

g(v) = cos (v) = 0, which occurs at odd integer multiples of

π

2

, i.e., maxima

at v =

(4k+1)π

2

and minima at v =

(4k+3)π

2

where k is any integer.

3.2 The First-Order Optimality Condition 49

• g

(

w

)

= a+ bw+ cw

2

: the first-order condition gives

d

dw

g(v) = 2cv + b = 0, with

a minimum at v =

-b

2c

(assuming c > 0).

Example 3.3 A simple-looking function

As mentioned previously, the vast majority of first-order systems cannot be

solved by hand algebraically. To get a sense of this challenge here we show an

example of a simple-enough looking function whose global minimum is not

straightforward to compute by hand.

Consider the degree-four polynomial

g(w) =

1

50

±

w

4

+w

2

+ 10w

²

(3.6)

which is plotted over a short range of inputs containing its global minimum in

Figure 3.3.

Figure 3.3 Figure associated with Example 3.3.

See text for details.

w

g(w)

The first-order system here can be easily computed as

d

dw

g(w) =

1

50

±

4w

3

+ 2w + 10

²

= 0 (3.7)

which simplifies to

2w

3

+ w+ 5 = 0. (3.8)

This has only one real solution

w =

3

q

√

2031 - 45

3

√

36

-

1

3

q

6

±

√

2031- 45

²

(3.9)

which can be computed – after much toil – using centuries-old tricks developed

for just such problems. In fact, had the polynomial in Equation (3.6) been of

degree six or higher, we would not have been able to guarantee finding its

stationary point(s) in closed form.

50 First-Order Optimization Techniques

Example 3.4 Stationary points of multi-input quadratic functions

Take the general multi-input quadratic function

g (w) = a + b

T

w +w

T

Cw (3.10)

where C is an N × N symmetric matrix, b is an N × 1 vector, and a is a scalar.

Computing the gradient of g we have

∇g (w) = 2Cw + b. (3.11)

Setting this equal to zero gives a symmetric linear system of equations of the

form

Cw = -

1

2

b (3.12)

whose solutions are stationary points of the original function. Note here we

have not explicitly solved for these stationary points, but have merely shown

that the first-order system of equations in this particular case is in fact one of

the easiest to solve numerically (see Example 3.6).

3.2.2 Coordinate descent and the first-order optimality condition

While solving the first-order system in Equation (3.2) simultaneously is often

impossible, it is sometimes possible to solve such a system sequentially. In other

words, in some (rather important) cases the first order system can be solved one

equation at a time, the nth of which takes the form

∂

∂w

n

g(v) = 0. This idea, which is

a form of coordinate descent, is especially effective when each of these equations

can be solved for in closed form (e.g., when the function being minimized is a

quadratic).

To solve the first-order system sequentially, we first initialize at an input w

0

,

and begin by updating the first coordinate by solving

∂

∂w

1

g

±

w

0

²

= 0 (3.13)

for the optimal first weight w

?

1

. Note importantly in solving this equation for w

1

that all other weights are kept fixed at their initial values. We then update the

first coordinate of the vector w

0

with this solution w

?

1

, and call the updated set

of weights w

1

. Continuing this pattern, to update the nth weight we solve

∂

∂w

n

g

±

w

n-1

²

= 0 (3.14)

for w

?

n

. Again, when this equation is solved all other weights are kept fixed at

3.2 The First-Order Optimality Condition 51

their current values. We then update the nth weight using this value forming

the updated set of weights w

n

.

After we sweep through allNweights a single time we can refine our solution

by sweeping through the weights again (as with any other coordinate-wise

method). At the kth such sweep we update the nth weight by solving the single

equation

∂

∂w

n

g

±

w

N

(

k-1)+n-1

²

= 0 (3.15)

to update the nth weight of w

N(k-1)+n-1

, and so on.

Example 3.5 Minimizing convex quadratic functions via coordinate descent

In this example we use coordinate descent to minimize the convex quadratic

function

g(w

1

,w

2

) = w

2

1

+ w

2

2

+ 2 (3.16)

whose minimum lies at the origin. We make the run initialized at w

0

= [3 4]

T

,

where a single sweep through the coordinates (i.e., two steps) here perfectly

minimizes the function. The path this run took is illustrated in the left panel of

Figure 3.4 along with a contour plot of the function. One can easily check that

each first-order equation in this case is linear and trivial to solve in closed form.

w

1

w

2

w

1

w

2

0

3

1

2

4

1

2

3

4

3 0 32 1 1 2 440 31 1 2 4

0

3

1

2

4

1

Figure 3.4 Figure associated with Example 3.5. See text for details.

We then apply coordinate descent to minimize the convex quadratic

g(w

1

,w

2

) = 2w

2

1

+ 2w

2

2

+ 2w

1

w

2

+ 20 (3.17)

52 First-Order Optimization Techniques

whose contour plot is shown in the right panel of Figure 3.4. Here it takes two

full sweeps through the variables to find the global minimum, which again lies

at the origin.

Example 3.6 Solving symmetric linear systems of equations

In Example 3.4 we saw that the first-order system of a multi-input quadratic

function takes the form

Cw = -

1

2

b (3.18)

where C is a symmetric matrix as described in that example. We can use the

coordinate descent algorithm to solve this system, thereby minimizing the cor-

responding quadratic function. Divorced from the concept of a quadratic we

can think of coordinate descent in a broader context as a method for solving

more general symmetric linear systems of equations, which is quite commonly

encountered in practice, e.g., at each and every step of Newton’s method (as

detailed in Chapter 4).

3.3 The Geometry of First-Order Taylor Series

In this section we describe important characteristics of the hyperplane includ-

ing the concept of the direction of steepest ascent and steepest descent. We then

study a special hyperplane: the first-order Taylor series approximation to a func-

tion, which defines the very essence of the extremely popular gradient descent

algorithm, introduced in Section 3.5.

3.3.1 The anatomy of hyperplanes

A general N-dimensional hyperplane can be characterized as

h(w

1

, w

2

, . . . , w

N

) = a + b

1

w

1

+ b

2

w

2

+ · · · + b

N

w

N

(3.19)

where a as well as b

1

through b

N

are all scalar parameters. We can rewrite h more

compactly – using vector notation – as

h(w) = a + b

T

w (3.20)

denoting

3.3 The Geometry of First-Order Taylor Series 53

b =

b

1

b

2

.

.

.

b

N

and w =

w

1

w

2

.

.

.

w

N

. (3.21)

When N = 1, Equation (3.20) simplifies to

h(w) = a + bw (3.22)

which is the familiar formula for a (one-dimensional) line. Notice, h(w) = a +bw

is a one-dimensional thing living in a two-dimensional ambient space whose

input space (characterized by w) is one-dimensional itself.

The same is true for general N. That is, h(w) = a + b

T

w is an N-dimensional

mathematical object living in an (N+1)-dimensional ambient space whose input

space (characterized by w

1

,w

2

, . . . , w

N

) is N-dimensional.

3.3.2 Steepest ascent and descent directions

As we just saw, with a one-dimensional hyperplane the input space is also one-

dimensional, implying that at any point w

0

in the input space there are only two

directions to move in: to the left or right of w

0

. This is illustrated in the left panel

of Figure 3.5. Here, starting at w

0

and moving to the right (towards+∞) increases

the value of h, and hence it is an ascent direction. Conversely, moving to the left

(towards -∞) decreases the value of h, and hence it is a descent direction.

When N > 1, however, there are infinitely many directions to move in (as

opposed to just two when N = 1) – some providing ascent, some providing

descent, and some that preserve the value of h – as illustrated in the right panel

of Figure 3.5 for N = 2. It is therefore logical to ask whether we can find the

direction that produces the largest ascent (or descent), commonly referred to as

the direction of steepest ascent (or descent).

Formalizing the search for the direction of steepest ascent at a given pointw

0

,

we aim to find the unit direction d such that the value of h

±

w

0

+ d

²

is maximal.

In other words, we aim to solve

maximize

d

h

±

w

0

+ d

²

(3.23)

over all unit-length vectors d. Note from Equation (3.20) that h

±

w

0

+ d

²

can be

written as

a + b

T

±

w

0

+ d

²

= a + b

T

w

0

+ b

T

d (3.24)

where the first two terms on the right-hand side are constant with respect to d.

54 First-Order Optimization Techniques

w

h(w) = a + bw

h(w) = a + b

T

w

w

1

w

2

w

0

w

0

d

ascentdescent

Figure 3.5 (left panel) At any given point w

0

in the input space of a one-dimensional

hyperplane h, there are only two directions to travel in: one that increases the evaluation

of h (or an ascent direction), and one that decreases it (or a descent direction). (right

panel) In higher dimensions (here N = 2) there are infinitely many (unit) directions d to

move into – starting at a given N-dimensional input point w

0

. As can be seen in this

case, the endpoint of all such directions form a unit circle around and centered atw

0

.

Therefore maximizing the value of h

±

w

0

+ d

²

is equivalent to maximizing b

T

d,

which itself can be written, using the inner-product rule (see Appendix C), as

b

T

d = kbk

2

kdk

2

cos(θ). (3.25)

Note, once again, that kbk

2

(i.e., the length of b) does not change with respect to

d, and that kdk

2

= 1. Therefore the problem in Equation (3.23) reduces to

maximize

θ

cos(θ) (3.26)

where θ is the angle between the vectors b and d.

It is clear now, of all unit diretions, d =

b

kbk

2

provides the steepest ascent

(where θ = 0 and cos(θ) = 1). Similarly, we can show that the unit direction

d =

-b

kbk

2

provides the steepest descent (where θ = π and cos(θ) = -1).

3.3.3 The gradient and the direction of steepest ascent/descent

A multi-input function g(w) can be approximated locally around a given point

w

0

by a hyperplane h(w)

h(w) = g(w

0

)+ ∇g(w

0

)

T

±

w - w

0

²

(3.27)

which can be rewritten as h(w) = a+ b

T

w (to match our notation in the previous

section) where

a = g(w

0

)- ∇g(w

0

)

T

w

0

and b = ∇g(w

0

). (3.28)

This hyperplane is the first-order Taylor series approximation of g at w

0

, and is

tangent to g at this point (see Appendix B).

Because h is constructed to closely approximate g near the pointw

0

, its steepest

3.4 Computing Gradients Efficiently 55

ascent and descent directions also tell us the direction to travel to increase or

decrease the value of the underlying function g itself at/near the point w

0

.

3.4 Computing Gradients Efficiently

Think for a moment about how you perform basic arithmetic, e.g., multiplying

two numbers. If the two numbers involved are relatively small, such as 35 times

21, you can likely do the multiplication in your head using a combination of

multiplication properties and simple multiplication results you learned in elemen-

tary school. For example, you may choose to use the distributive property of

multiplication to decompose 35 × 21 as

(30+ 5) × (20 + 1) = (30 × 20) + (30 × 1) + (5 × 20) + (5 × 1) (3.29)

and then use the multiplication table that you have likely memorized to find

30 × 20, 30 × 1, and so on. We use this sort of strategy on a daily basis when

making quick back-of-the-envelope calculations like computing interest on a

loan or investment, computing how much to tip at a restaurant, etc.

However, even though the rules for multiplication are quite simple and work

regardless of the two numbers being multiplied together, you would likely never

compute the product of two arbitrarily large numbers, like 140283197 times

2241792341, using the same strategy. Instead you would likely use a calculator

because it conveniently automates the process of multiplying two numbers of

arbitrary size. A calculator allows you to compute with much greater efficiency

and accuracy, and empowers you to use the fruits of arithmetic computation for

more important tasks.

This is precisely how you can think about the computation of derivatives

and gradients. Perhaps you can compute the derivative of a relatively simple

mathematical function like g(w) = sin(w

2

) easily, knowing a combination of

differentiation rules as well as derivatives of certain elementary functions such as

sinusoids and polynomials (see Appendix B for a review). In this particular case

you can use the chain rule to write

d

dw

g(w) as

d

dw

g(w) =

³

d

dw

w

2

´

cos(w

2

) = 2w cos(w

2

). (3.30)

As with multiplication, even though the rules for differentiation are quite

simple and work regardless of the function being differentiated, you would

likely never compute the gradient of an arbitrarily complicated function, such

as the one that follows, yourself and by hand

g

(

w

1

, w

2

)

= 2

sin

(

w

2

1

+w

2

2

)

tanh (cos (w

1

w

2

)) tanh

±

w

1

w

4

2

+ tanh

±

w

1

+w

2

2

²²

(3.31)

as it is extremely time consuming and easy to mess up (just like multiplication

56 First-Order Optimization Techniques

of two large numbers). Following the same logic a gradient calculator would al-

low for computing derivatives and gradients with much greater efficiency and

accuracy, empowering us to use the fruits of gradient computation for more im-

portant tasks, e.g., for the popular first-order local optimization schemes that are

the subject of this chapter and that are widely used in machine learning. There-

fore throughout the remainder of the text the reader should feel comfortable

using a gradient calculator as an alternative to hand computation.

Gradient calculators come in several varieties, from those that provide numer-

ical approximations to those that literally automate the simple derivative rules

for elementary functions and operations. We outline these various approaches

in Appendix B. For Python users we strongly recommend using the open-source

automatic differentiation library called autograd [10, 11, 12, 13] or JAX (an ex-

tension of autograd that runs on GPUs and TPUs). This is a high-quality and

easy-to-use professional-grade gradient calculator that gives the user the power

to easily compute the gradient for a wide variety of Python functions built using

standard data structures and autograd operations. In Section B.10 we provide

a brief tutorial on how to get started with autograd, as well as demonstrations

of some of its core functionality.

3.5 Gradient Descent

In Section 3.3 we saw how the negative gradient -∇g

(

w

) of a function

g

(

w

)

computed at a particular point always defines a valid descent direction at that

point. We could very naturally wonder about the efficacy of a local optimization

method, that is one consisting of steps of the general formw

k

= w

k-1

+ αd

k

(see

Section 2.4), employing the negative gradient direction d

k

= -∇g

±

w

k-1

²

. Such a

sequence of steps would then take the form

w

k

= w

k-1

- α∇g

±

w

k-1

²

. (3.32)

It seems intuitive, at least at the outset that, because each and every direction is

guaranteed to be one of descent (provided we set α appropriately, as we must

always do when using any local optimization method), taking such steps could

lead us to a point near a local minimum of the target function g. The rather

simple update step in Equation (3.32) is indeed an extremely popular local

optimization method called the gradient descent algorithm, named so because it

employs the (negative) gradient as the descent direction.

A prototypical path taken by gradient descent is illustrated in Figure 3.6 for

a generic single-input function. At each step of this local optimization method

we can think about drawing the first-order Taylor series approximation to the

function, and taking the descent direction of this tangent hyperplane (i.e., the

negative gradient of the function at this point) as our descent direction for the

algorithm.

3.5 Gradient Descent 57

w

0

w

1

w

2

g(w)

w

Figure 3.6 A figurative drawing of the gradient descent algorithm. Beginning at the

initial point w

0

we make our first approximation to g (w) at the point

(

w

0

, g

(

w

0

))

on the

function (shown as a hollow black dot) with the first-order Taylor series approximation

itself drawn in red. Moving in the negative gradient descent direction provided by this

approximation we arrive at a pointw

1

= w

0

- α

d

dw

g

(

w

0

)

. We then repeat this process at

w

1

, moving in the negative gradient direction there, to w

2

= w

1

- α

d

dw

g(w

1

), and so forth.

As we will see in this and many of our future chapters, the gradient descent

algorithm is often a far better local optimization algorithm than the zero-order

approaches discussed in the previous chapter. Indeed gradient descent, along

with its extensions which we detail in Appendix A, is arguably the most popu-

lar local optimization algorithm used in machine learning today. This is largely

because of the fact that the descent direction provided here (via the gradient)

is almost always easier to compute (particularly as the dimension of the input

increases) than seeking out a descent direction at random (as is done with the

zero-order methods described in Sections 2.4 through 2.6). In other words, the

fact that the negative gradient direction provides a descent direction for the

function locally, combined with the fact that gradients are easy to compute (par-

ticularly when employing an automatic differentiator) makes gradient descent

a superb local optimization method.

Example 3.7 Minimizing a nonconvex function using gradient descent

To find the global minimum of a general nonconvex function using gradient

descent (or any local optimization method) one may need to run it several times

with different initializations and/or steplength schemes. We showcase this fact

using the nonconvex function

g(w) = sin(3w) + 0.3w

2

(3.33)

illustrated in the top panels of Figure 3.7. The same function was minimized

58 First-Order Optimization Techniques

in Example 2.4 using random search. Here we initialize two runs of gradient

descent, one at w

0

= 4.5 (top-left panel) and another at w

0

= -1.5 (top-right

panel), using a fixed steplength of α = 0.05 for both runs. As can be seen by the

results, depending on where we initialize we may end up near a local or global

minimum of the function (we color the steps from green to red as the method

proceeds from start to finish).

3 0 32 1 1 2

3

0

3

2

1

1

2

0

0

2

2

2

2

0

5

10

15

20

g(w)

w

1

w

2

w

w

2

w

1

g(w

1

,w

2

)

w

g(w)

Figure 3.7 (top panels) Figure associated with Example 3.7. (bottom panels) Figure

associated with Example 3.8. See text for details.

Example 3.8 Minimizing a convex multi-input function using gradient de-

scent

In this example we run gradient descent on the convex multi-input quadratic

function

g(w

1

,w

2

) = w

2

1

+ w

2

2

+ 2 (3.34)

previously used in Example 2.3. We fix the steplength parameter at α = 0.1 for all

3.5 Gradient Descent 59

ten steps of the algorithm. In the bottom row of Figure 3.7 we illustrate the path

taken by this run of gradient descent in the input space of the function, again

coloring the steps from green to red as the method finishes. This is shown along

with the three-dimensional surface of the function in the bottom-left panel, and

”from above,” showing the contours of the function on its input space in the

bottom-right panel.

3.5.1 Basic steplength choices for gradient descent

As with all local methods, one needs to carefully choose the steplength or learn-

ing rate parameter α with gradient descent. While there are an array of available

sophisticated methods for choosing α in the case of gradient descent, the most

common choices employed in machine learning are those basic approaches first

detailed in the simple context of zero-order methods in Section 2.5. These com-

mon choices include (i) using a fixed α value for each step of a gradient descent

run, which for simplicity’s sake commonly takes the form of 10

γ

, where γ is an

(often negative) integer, and (ii) using a diminishing steplength like α =

1

k

at the

kth step of a run.

In both instances our aim in choosing a particular value for the steplength

α at each step of gradient descent mirrors that of any other local optimization

method: α should be chosen to induce the most rapid minimization possible.

With the fixed steplength this often means choosing the largest possible value

for α that leads to proper convergence.

Example 3.9 A fixed steplength selection for gradient descent

At each step of gradient descent we always have a descent direction – this is

defined explicitly by the negative gradient itself. However, whether or not we

actually descend in the function when taking a gradient descent step depends

completely on how far we travel in the direction of the negative gradient, which

we control via our steplength parameter. Set incorrectly, we can descend in-

finitely slowly, or even ascend in the function.

We illustrate this in Figure 3.8 using the simple single-input quadratic g(w) =

w

2

. Here we show the result of taking five gradient descent steps using three

different fixed steplength values, all initialized at the same point w

0

= -2.5. The

top row of this figure shows the function itself along with the evaluation at each

step of a run (the value of α used in each run is shown at the top of each panel

in this row), which are colored from green at the start of the run to red when the

last step of the run is taken. From left to right each panel shows a different run

with a slightly increased fixed steplength value α used for all steps. In the left

panel the steplength is extremely small – so small that we do not descend very

much at all. In the right panel, however, when we set the value of α too large

the algorithm ascends in the function (ultimately diverging).

60 First-Order Optimization Techniques

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

2 0 2

2 0 2 2 0 2

0

8

0

8

0

8

0

8

0

8

0

8

k

w

g(w)

g(w

k

)

α = 0.05 α = 0.20 α = 1.20

g(w

k

) g(w

k

)

g(w) g(w)

w w

k k

Figure 3.8 Figure associated with Example 3.9. See text for details.

In the bottom row we show the cost function history plot corresponding to

each run of gradient descent in the top row of the figure. We also color these

points from green (start of run) to red (end of run).

Example 3.10 Comparing fixed and diminishing steplengths

In Figure 3.9 we illustrate the comparison of a fixed steplength scheme and a

diminishing one to minimize the function

g(w) =

|

w

|

. (3.35)

Notice that this function has a single global minimum at w = 0. We make two

runs of 20 steps of gradient descent, each initialized at the point w

0

= 2, the first

with a fixed steplength rule of α = 0.5 (shown in the top-left panel) for each and

every step, and the second using the diminishing steplength rule α =

1

k

(shown

in the top-right panel).

Here we can see that the fixed steplength run gets stuck, unable to descend

towards the minimum of the function, while the diminishing steplength run

settles down nicely to the global minimum (which is also reflected in the cost

function history plot shown in the bottom panel of the figure). This is because

the derivative of this function (defined everywhere but at w = 0) takes the form

3.5 Gradient Descent 61

α = 0.5

α = 1/k

k

g(w

k

)

w

g(w)

w

g(w)

Figure 3.9 Figure associated with Example 3.10. See text for details.

d

dw

g(w) =

+1 if w > 0

-1 if w < 0

(3.36)

which makes the use of any fixed steplength scheme problematic since the

algorithm will always move at a fixed distance at each step. We face this potential

issue with all local optimization methods (indeed we first saw it occur with a

zero-order method in Example 2.5).

3.5.2 Oscillation in the cost function history plot: not always a bad thing

Remember that in practice – since we regularly deal with cost functions that take

in far too many inputs – we use the cost function history plot (first described in Sec-

tion 2.5.2) to tune our steplength parameter α, as well as debug implementations

of the algorithm.

Note that when employing the cost function history plot in choosing a proper

steplength value, it is not ultimately important that the plot associated to a run

of gradient descent (or any local optimization method) be strictly decreasing (that

is showing that the algorithm descended at every single step). It is critical to find a

value ofα that allows gradient descent to find the lowest function value possible,

even if it means that not every step descends. In other words, the best choice of α

for a given minimization might cause gradient descent to ”hop around” some,

62 First-Order Optimization Techniques

moving up and down, and not the one that shows descent in each and every

step. Below we show an example illustrating this point.

Example 3.11 Oscillatory versus monotonically decreasing cost function

history plots

In this example we show the result of three runs of gradient descent to minimize

the function

g (w) = w

2

1

+w

2

2

+ 2 sin (1.5 (w

1

+w

2

))

2

+ 2 (3.37)

whose contour plot is shown in Figure 3.10. You can see a local minimum around

the point [1.5 1.5]

T

, and a global minimum near [-0.5 - 0.5]

T

. All three runs

start at the same initial point w

0

= [3 3]

T

and take ten steps. The first run (shown

in the top-left panel) uses a fixed steplength parameter α = 10

-2

, the second run

(shown in the top-middle panel) uses α = 10

-1

, and the third run (shown in the

top-right panel) uses α = 10

0

.

w

1

w

2

k

g(w

k

)

w

1

w

1

w

2

w

2

run 1

run 2

run 3

Figure 3.10 Figure associated with Example 3.11. See text for details.

In the bottom panel of the figure we plot the cost function history plot associ-

ated with each run of gradient descent, showing the first, second, and third run

in black, pink, and blue, respectively. Here we can see that the value of our first

choice was too small (as can also be seen in the top-left panel), the second choice

leads to convergence to the local minimum (as can be seen in the top-middle

panel), and final run while ”hopping around” and not strictly decreasing at

each step finds the lowest point out of all three runs. So while this run used the

largest steplength α = 10

0

, clearly leading to oscillatory (and perhaps eventually

3.5 Gradient Descent 63

divergent) behavior, it does indeed find the lowest point out of all three runs

performed.

This function is rather pathological, i.e., it was designed specifically for the

purposes of this example. However, in practice the moral expressed here, that

it is just fine for the cost the function history associated with a run of gradient

descent (or any local optimization algorithm more generally) to oscillate up and

down (and not be perfectly smooth and monotonically decreasing), holds in

general.

3.5.3 Convergence criteria

When does gradient descent stop? Technically, if the steplength is chosen wisely,

the algorithm will halt near stationary points of a function, typically minima or

saddle points. How do we know this? By the very form of the gradient descent

step itself. If the step w

k

= w

k-1

- α∇g

±

w

k-1

²

does not move from the prior

pointw

k-1

significantly then this can mean only one thing: that the direction we

are traveling in is vanishing, i.e., -∇g

±

w

k-1

²

≈ 0

N×1

. This is – by definition – a

stationary point of the function (as detailed in Section 3.2).

In principle, then, we can wait for gradient descent to get sufficiently close

to a stationary point by ensuring, for instance, that the magnitude of the gra-

dient

µ

µ

µ

µ

∇g

±

w

k-1

²

µ

µ

µ

µ

2

is sufficiently small. Other formal convergence criteria in-

clude (i) halting when steps no longer make sufficient progress (e.g., when

1

N

µ

µ

µ

w

k

- w

k-1

µ

µ

µ

2

is smaller than some ±) or, (ii) when corresponding evaluations

no longer differ substantially (e.g., when

1

N

¶

¶

¶

¶

g

±

w

k

²

- g

±

w

k-1

²

¶

¶

¶

¶

is smaller than

some ±). Finally, a practical way to halt gradient descent – as well as any other

local optimization scheme – is to simply run the algorithm for a fixed number

of maximum iterations. In machine learning applications this latter practical

condition is very often employed, either alone or in combination with a formal

stopping procedure.

How do we set the maximum iteration count? As with any local method this is

typically set manually/heuristically, and is influenced by things like computing

resources, knowledge of the particular function being minimized, and – very

importantly – the choice of the steplength parameter α. Smaller choices for α,

while more easily providing descent at each step, frequently require more steps

for the algorithm to achieve significant progress. Conversely, if α is set too large

gradient descent may bounce around erratically forever, never localizing in an

adequate solution.

3.5.4 Python implementation

In this section we provide a basicPython implementation of the gradient descent

algorithm. There are a number of variations one can use in practice including

64 First-Order Optimization Techniques

various halting conditions (described above), as well as various to compute the

gradient itself. The inputs here include the function to minimize g, a steplength

alpha, a maximum number of iterations max its (our default stopping condi-

tion), and an initial point w that is typically chosen at random. The outputs in-

clude a history of weight updates and corresponding cost function value history

(which one can use to produce a cost function history plot). The computation of

the gradient function in line 16 employs by default the open-source automatic

differentiation library autograd (detailed in Sections 3.4 and B.10) – although

one can easily replace this with any other method for computing the gradient

function.

1 # import automatic differentiator to compute gradient module

2 from autograd import grad

3

4 # gradient descent function

5 def gradient_descent(g, alpha, max_its, w):

6

7 # compute gradient module using autograd

8 gradient = grad(g)

9

10 # gradient descent loop

11 weight_history = [w] # weight history container

12 cost_history = [g(w)] # cost function history container

13 for k in range(max_its):

14

15 # evaluate the gradient

16 grad_eval = gradient(w)

17

18 # take gradient descent step

19 w = w - alpha*grad_eval

20

21 # record weight and cost

22 weight_history.append(w)

23 cost_history.append(g(w))

24

25 return weight_history, cost_history

Given the input to g is N-dimensional, a general random initialization can

be written as shown below where the NumPy function random.randn produces

samples from a standard normal distribution with zero mean and unit standard

deviation. It is also common to scale such initializations by small constants (e.g.,

0.1 or smaller).

1 # a common random initialization scheme

2 import numpy as np

3 scale = 0.1

4 w = scale*np.random.randn(N,1)

3.6 Two Natural Weaknesses of Gradient Descent 65

3.6 Two Natural Weaknesses of Gradient Descent

As we saw in the previous section, gradient descent is a local optimization

scheme that employs the negative gradient at each step. The fact that calculus

provides us with a true descent direction in the form of the negative gradient

direction, combined with the fact that gradients are often cheap to compute

(whether or not one uses an automatic differentiator), means that we need not

search for a reasonable descent direction at each step of the method as we

needed to do with the zero-order methods detailed in the previous chapter. This

is extremely advantageous, and is the fundamental reason why gradient descent

is so popular in machine learning.

However, no basic local optimization scheme is without its shortcomings.

In the previous chapter we saw how, for example, the natural shortcoming

of random search limits its practical usage to functions of low-dimensional

input. While gradient descent does not suffer from this particular limitation,

the negative gradient has its own weaknesses as a descent direction, which we

outline in this section.

3.6.1 Where do the weaknesses of the (negative) gradient direction
originate?

Where do these weaknesses originate? Like any vector, the negative gradient

always consists fundamentally of a direction and a magnitude (as illustrated in

Figure 3.11). Depending on the function being minimized either one of these

attributes – or both – can present challenges when using the negative gradient

as a descent direction.

m
ag
ni
tu
de

direction

w

rg(w)

Figure 3.11 The gradient vector of any arbitrary function at any point consists of a

magnitude and a direction.

The direction of the negative gradient can rapidly oscillate during a run of

gradient descent, often producing zig-zagging steps that take considerable time

66 First-Order Optimization Techniques

to reach a minimum point. The magnitude of the negative gradient can vanish

rapidly near stationary points, leading gradient descent to slowly crawl near

minima and saddle points. This too can slow down gradient descent’s progress

near stationary points. These two problems, while not present when minimiz-

ing every single function, do present themselves in machine learning because

many of the functions we aim to minimize have long narrow valleys – long flat

areas where the contours of a function become increasingly parallel. Both of

these issues – stemming from either the direction or magnitude of the negative

gradient direction – are explored further below.

3.6.2 The (negative) gradient direction

A fundamental property of the (negative) gradient direction is that it always

points perpendicular to the contours of a function. This statement is universally

true, and holds for any (differentiable) function and at all of its inputs. That is,

the gradient ascent/descent direction at an input w

0

is always perpendicular to

the contour g(w) = g(w

0

).

Example 3.12 The negative gradient direction

In Figure 3.12 we show the contour plot of (top-left panel) g (w) = w

2

1

+ w

2

2

+ 2,

(top-right panel) g (w) = w

2

1

+w

2

2

+ 2 sin (1.5 (w

1

+ w

2

))

2

+ 2, and (bottom panel)

g (w) =

±

w

2

1

+w

2

- 11

²

2

+

±

w

1

+ w

2

2

- 6

²

2

.

On each plot we also show the negative gradient direction defined at three

random points. Each of the points we choose are highlighted in a unique color,

with the contour on which they sit on the function colored in the same manner

for visualization purposes. The descent direction defined by the gradient at each

point is drawn as an arrow, and the tangent line to the contour at each input is

also drawn (in both instances colored the same as their respective point).

In each instance we can see how the gradient descent direction is always

perpendicular to the contour it lies on – in particular being perpendicular to the

tangent line at each point on the contour (which is also shown). Because the

gradient ascent directions will simply point in the opposite direction as the

descent directions shown here, they too will be perpendicular to the contours.

3.6.3 The zig-zagging behavior of gradient descent

In practice, the fact that the negative gradient always points in a direction

perpendicular to the contour of a function can – depending on the function

being minimized – make the negative gradient direction oscillate rapidly or

zig-zag during a run of gradient descent. This in turn can cause zig-zagging

behavior in the gradient descent steps themselves and too much zig-zagging

3.6 Two Natural Weaknesses of Gradient Descent 67

w

1

w

2

w

1

w

1

w

2

w

2

Figure 3.12 Figure associated with Example 3.12. Regardless of the function the

negative gradient direction is always perpendicular to the function’s contours. See text

for further details.

slows minimization progress. When it occurs, many gradient descent steps are

required to adequately minimize a function. We illustrate this phenomenon

below using a set of simple examples.

The interested reader may note that we describe a popular solution to this

zig-zagging behavior, called momentum-accelerated gradient descent, later in Ap-

pendix Section A.2.

Example 3.13 The zig-zagging behavior of gradient descent

In Figure 3.13 we illustrate the zig-zagging behavior of gradient descent with

three N = 2 dimensional quadratic functions that take the general form g(w) =

a + b

T

w + w

T

Cw. In each case a and b are set to zero, and the matrix C is set so

that each quadratic gets progressively narrower:

68 First-Order Optimization Techniques

C =

"

0.50 0

0 12

#

(top panel of Figure 3.13)

C =

"

0.10 0

0 12

#

(middle panel of Figure 3.13)

C =

"

0.01 0

0 12

#

(bottom panel of Figure 3.13)

(3.38)

and hence the quadratic functions differ only in how we set the upper-left

value of the matrix C. All three quadratics, whose contour plots are shown in

the top, middle, and bottom panels of Figure 3.13 respectively, have the same

global minimum at the origin. However, as we change this single value of C

from quadratic to quadratic, we elongate the contours significantly along the

horizontal axis, so much so that in the third case the contours seem almost

completely parallel to each other near our initialization (an example of a long

narrow valley).

w

2

w

1

w

2

w

2

w

1

w

1

Figure 3.13 Figure associated with Example 3.13, illustrating the zig-zagging behavior

of gradient descent. See text for further details.

We then make a run of 25 gradient descent steps to minimize each, using the

same initialization at w

0

= [10 1]

T

and steplength value α = 10

-1

. In each case

3.6 Two Natural Weaknesses of Gradient Descent 69

the weights found at each step are plotted on the contour plots and colored green

(at the start of the run) to red (as we reach the maximum number of iterations).

Examining the figure we can see – in each case, but increasingly from the first

to third example – the zig-zagging behavior of gradient descent very clearly.

Indeed not much progress is made with the third quadratic at all due to the

large amount of zig-zagging.

We can also see the cause of this zig-zagging: the negative gradient direction

constantly points in a perpendicular direction with respect to the contours of the

function, and in very narrow functions these contours become almost parallel.

While it is true that we can ameliorate this zig-zagging behavior by reducing the

steplength value, this does not solve the underlying problem that zig-zagging

produces – which is slow convergence.

3.6.4 The slow-crawling behavior of gradient descent

As we know from the first-order condition for optimality discussed in Section

3.2, the (negative) gradient vanishes at stationary points. That is, ifw is a mini-

mum, maximum, or saddle point then we know that ∇g (w) = 0. Notice that this

also means that the magnitude of the gradient vanishes at stationary points, that

is, k∇g (w) k

2

= 0. By extension, the (negative) gradient at points near a stationary

point have non-zero direction but vanishing magnitude, i.e., k∇g (w) k

2

≈ 0.

The vanishing behavior of the magnitude of the negative gradient near station-

ary points has a natural consequence for gradient descent steps: they progress

very slowly, or ”crawl,” near stationary points. This occurs because, unlike the

zero-order methods discussed in Sections 2.5 and 2.6 (where we normalized the

magnitude of each descent directions), the distance traveled during each step of

gradient descent is not completely determined by the steplength value α. Indeed

we can easily compute the general distance traveled by a gradient descent step

as

µ

µ

µ

w

k

- w

k-1

µ

µ

µ

2

=

µ

µ

µ

µ

±

w

k-1

- α∇g

±

w

k-1

²²

- w

k-1

µ

µ

µ

µ

2

= α

µ

µ

µ

µ

∇g

±

w

k-1

²

µ

µ

µ

µ

2

. (3.39)

In other words, the length of a general gradient descent step is equal to the value

of the steplength parameter α times the magnitude of the descent direction.

The consequences of this are fairly easy to unravel. Since the magnitude of the

gradient

µ

µ

µ

µ

∇g

±

w

k-1

²

µ

µ

µ

µ

2

is large far away from stationary points, and because we

often randomly initialize gradient descent in practice so that our initial points

often lie far away from any stationary point of a function, the first few steps of

a gradient descent run in general will be large, and make significant progress

towards minimization. Conversely, when approaching a stationary point the

magnitude of the gradient is small, and so the length traveled by a gradient

descent step is also small. This means that gradient descent steps make little

progress towards minimization when near a stationary point.

70 First-Order Optimization Techniques

In short, the fact that the length of each step of gradient descent is proportional

to the magnitude of the gradient means that gradient descent often starts off

making significant progress but slows down significantly near minima and sad-

dle points – a behavior we refer to as ”slow-crawling.” For particular functions

this slow-crawling behavior can not only mean that many steps are required to

achieve adequate minimization, but can also lead gradient descent to completely

halt near saddle points of nonconvex functions.

The interested reader may note that we describe a popular solution to this

slow-crawling behavior – called normalized gradient descent – later in Appendix

Sections A.3 and A.4.

Example 3.14 The slow-crawling behavior of gradient descent

In the left panel of Figure 3.14 we plot the function

g(w) = w

4

+ 0.1 (3.40)

whose minimum is at the origin, which we will minimize using ten steps of

gradient descent and a steplength parameter α = 10

-1

. We show the results of

this run on the function itself (with steps colored from green at the start of the

run to red at the final step). Here we can see that this run of gradient descent

starts off taking large steps but crawls slowly as it approaches the minimum.

Both of these behaviors are quite natural, since the magnitude of the gradient is

large far from the global minimum and vanishes near it.

w

g(w)

w

g(w)

Figure 3.14 Figure associated with Example 3.14. See text for details.

In the right panel of Figure 3.14 we illustrate the crawling issue of gradient

descent near saddle points using the nonconvex function

g(w) = max

2

(0, 1 + (3w- 2.3)

3

)+ max

2

(0,1 + (-3w + 0.7)

3

). (3.41)

3.7 Conclusion 71

This function has a minimum at w =

1

2

and saddle points at w =

7

30

and w =

23

30

.

We make a run of gradient descent on this function using 50 steps withα = 10

-2

,

initialized at the origin.

Examining the right panel of the figure we can see how the gradient descent

steps halt near the leftmost saddle point due to the settings (initialization and

steplength parameter) chosen for this run. The fact that gradient descent crawls

as it approaches this saddle point is quite natural (because the magnitude of the

gradient vanishes here) but this prevents the algorithm from finding the global

minimum.

3.7 Conclusion

In this chapter we described local optimization schemes that leverage a func-

tion’s first derivative(s) to produce effective descent directions – otherwise

known as first-order methods. Such methods constitute perhaps the most pop-

ular set of optimization tools used with machine learning problems.

We began in Section 3.2 by looking at how the first derivatives of a function

provide a useful condition for characterizing its minima, maxima, and saddle

points (together known as stationary points) via the first-order condition for

optimality. In preparation for our discussion of first-order local methods we

then described the ascent and descent directions of a hyperplane, as well as those

provided by the tangent hyperplane associated with the first-order Taylor series

approximation in Section 3.3. In Section 3.5 we saw how such descent direc-

tions, when employed in a local optimization framework, naturally lead to the

construction of a popular local scheme known as gradient descent.

The gradient descent algorithm is widely used in machine learning, as the

descent direction provided by the negative gradient is almost always readily

available for use (and so a descent direction need not be sought out explic-

itly as with the zero-order methods described in Chapter 2). However, by its

very nature the negative gradient direction has two inherent weaknesses when

leveraged for local optimization – the zig-zagging and slow-crawling problems

detailed in Section 3.6 – that reduce its effectiveness. These problems, and the

corresponding solutions to each (collectively referred to as advanced first-order

optimization methods), are discussed in significant detail in Appendix A of this

text.

3.8 Exercises

†The data required to complete the following exercises can be downloaded from

the text’s github repository at github.com/jermwatt/machine_learning_refined

72 First-Order Optimization Techniques

3.1 First-order condition for optimality

Use the first-order condition to find all stationary points of g (calculations should

be done by hand). Then plot g and label the point(s) you find, and determine ”by

eye” whether each stationary point is a minimum, maximum, or saddle point.

Note: stationary points can be at infinity!

(a) g (w) = w log (w)+ (1 -w) log (1 -w) where w lies between 0 and 1

(b) g (w) = log (1 + e

w

)

(c) g (w) = w tanh (w)

(d) g (w) =

1

2

w

T

Cw + b

T

w where C =

"

2 1

1 3

#

and b =

"

1

1

#

3.2 Stationary points of a simple quadratic function

A number of applications will find us employing a simple multi-input quadratic

g (w) = a + b

T

w +w

T

Cw (3.42)

where the matrix C =

1

β

I. Here I is theN×N identity matrix, andβ > 0 a positive

scalar. Find all stationary points of g.

3.3 Stationary points of the Rayleigh quotient

The Rayleigh quotient of an N × N matrix C is defined as the normalized

quadratic function

g(w) =

w

T

Cw

w

T

w

(3.43)

where w , 0

N×1

. Compute the stationary points of this function.

3.4 First-order coordinate descent as a local optimization scheme

(a) Express the coordinate descent method described in Section 3.2.2 as a local

optimization scheme, i.e., as a sequence of steps of the form w

k

= w

k-1

+ α d

k

.

(b) Code up the coordinate descent method for the particular case of a quadratic

function and repeat the experiment described in Example 3.5.

3.5 Try out gradient descent

Run gradient descent to minimize the function

3.8 Exercises 73

g(w) =

1

50

±

w

4

+w

2

+ 10w

²

(3.44)

with an initial point w

0

= 2 and 1000 iterations. Make three separate runs using

each of the steplength values α = 1, α = 10

-1

, and α = 10

-2

. Compute the

derivative of this function by hand, and implement it (as well as the function

itself) in Python using NumPy.

Plot the resulting cost function history plot of each run in a single figure to

compare their performance. Which steplength value works best for this partic-

ular function and initial point?

3.6 Compare fixed and diminishing steplength values for a simple example

Repeat the comparison experiment described in Example 3.10, producing the

cost function history plot comparison shown in the bottom panel of Figure 3.9.

3.7 Oscillation in the cost function history plot

Repeat the experiment described in Example 3.11, producing cost function his-

tory plot shown in the bottom panel of Figure 3.10.

3.8 Tune fixed steplength for gradient descent

Take the cost function

g (w) = w

T

w (3.45)

where w is an N = 10 dimensional input vector, and g is convex with a single

global minimum at w = 0

N×1

. Code up gradient descent and run it for 100 steps

using the initial point w

0

= 10 · 1

N×1

, with three steplength values: α

1

= 0.001,

α

2

= 0.1, and α

3

= 1. Produce a cost function history plot to compare the three

runs and determine which performs best.

3.9 Code up momentum-accelerated gradient descent

Code up the momentum-accelerated gradient descent scheme described in Sec-

tion A.2.2 and use it to repeat the experiments detailed in Example A.1 using a

cost function history plot to come to the same conclusions drawn by studying

the contour plots shown in Figure A.3.

3.10 Slow-crawling behavior of gradient descent

In this exercise you will compare the standard and fully normalized gradient

descent schemes in minimizing the function

g(w

1

,w

2

) = tanh(4w

1

+ 4w

2

)+ max(1, 0.4w

2

1

) + 1. (3.46)

74 First-Order Optimization Techniques

Using the initialization w

0

= [2 2]

T

make a run of 1000 steps of the standard

and fully normalized gradient descent schemes, using a steplength value of

α = 10

-1

in both instances. Use a cost function history plot to compare the two

runs, noting the progress made with each approach.

3.11 Comparing normalized gradient descent schemes

Code up the full and component-wise normalized gradient descent schemes and

repeat the experiment described in Example A.4 using a cost function history

plot to come to the same conclusions drawn by studying the plots shown in

Figure A.6.

3.12 Alternative formal definition of Lipschitz gradient

An alternative to defining the Lipschitz constant by Equation (A.49) for functions

g with Lipschitz continuous gradient is given by

µ

µ

µ

∇g (x) - ∇g
(

y

)

µ

µ

µ

2

≤ L

µ

µ

µ

x - y

µ

µ

µ

2

. (3.47)

Using the limit definition of the derivative (see Section B.2.1) show that this

definition is equivalent to the one given in Equation (A.49).

3.13 A composition of functions with Lipschitz gradient

Suppose f and g are two functions with Lipschitz gradient with constants L

and K respectively. Using the definition of Lipschitz continuous gradient given

in Exercise 3.12 show that the composition f

(

g

)

also has Lipschitz continuous

gradient. What is the corresponding Lipschitz constant of this composition?

4 Second-Order Optimization

Techniques

In this chapter we describe fundamental optimization algorithms that leverage

the first and second derivatives, or likewise the gradient and Hessian of a func-

tion. These techniques, collectively called second-order optimization methods, are

popular in particular applications of machine learning today. In analogy to the

previous chapter, here we begin with a discussion of the second-order optimality

condition. We then discuss quadratic functions as well as the notion of curvature

defined by second derivatives, and the second-order Taylor series expansion.

By exploiting a function’s first- and second-order derivative information we can

construct powerful local optimization methods, including the popular Newton’s

method and its extensions (commonly referred to as Hessian-free optimizers).

4.1 The Second-Order Optimality Condition

When discussing convexity/concavity of general mathematical functions we

often talk about convexity/concavity at a point. To determine whether a general

single-input function g(w) is convex or concave at a point v, we check its curvature

or second derivative information at that point (assuming it is at least twice-

differentiable there): if

d

2

dw

2

g(v) ≥ 0 (or ≤ 0) then g is said to be convex (or

concave) at v.

An analogous statement can be made for a function g with multi-dimensional

input: if the Hessian matrix evaluated at a point v, denoted by ∇

2

g (v), has all

nonnegative (or nonpositive) eigenvalues then g is said to be convex (or concave)

at v, in which case the Hessian matrix itself is called positive (or negative)

semi-definite.

Based on these point-wise convexity/concavity definitions, the function g

(

w

)

is said to be convex everywhere if its second derivative

d

2

dw

2

g(w) is always non-

negative. Likewise g (w) is convex everywhere if∇

2

g (w) always has nonnegative

eigenvalues. This is generally referred to as the second-order definition of convexity.

Example 4.1 Convexity of single-input functions

In this example we use the second-order definition of convexity to verify whether

each of the functions shown in Figure 4.1 is convex or not.

76 Second-Order Optimization Techniques

g(w) g(w) g(w) g(w)

w w w w

Figure 4.1 Figure associated with Example 4.1. From left to right, plots of functions

g (w) = w

3

, g (w) = e

w

, g (w) = sin (w), and g (w) = w

2

.

• g (w) = w

3

has second derivative

d

2

dw

2

g(w) = 6w, which is not always nonneg-

ative, hence g is not convex.

• g (w) = e

w

has second derivative

d

2

dw

2

g(w) = e

w

, which is positive for any choice

of w, and g is therefore convex.

• g (w) = sin (w) has second derivative

d

2

dw

2

g(w) = -sin (w). Since this is not

always nonnegative, g is nonconvex.

• g (w) = w

2

has second derivative

d

2

dw

2

g(w) = 2, and g is therefore convex.

Example 4.2 Convexity of multi-input quadratic functions

The multi-input quadratic function

g(w) = a + b

T

w + w

T

C w (4.1)

has the Hessian matrix ∇

2

g (w) = 2C (assuming C is symmetric). Therefore its

convexity is determined by studying the eigenvalues of C.

By studying a few simple examples it is easy to come to some far-reaching

conclusions about how the second derivative helps unveil the identity of sta-

tionary points. In Figure 4.2 we plot the three single-input functions we studied

in Example 3.1 (defined in Equation (3.4)), along with their first- and second-

order derivatives (shown in the top, middle, and bottom rows of the figure,

respectively). In the top panels we mark the evaluation of all stationary points

by the function in green (where we also show the tangent line in green). The

corresponding evaluations by the first and second derivatives are marked in

green as well in the middle and bottom panels of the figure, respectively.

By studying these simple examples in Figure 4.2 we can see consistent behav-

ior of certain stationary points. In particular we can see consistency in how the

value of a function’s second derivative at a stationary point v helps us identify

whether it is a local minimum, local maximum, or saddle point. A stationary

point v is:

4.1 The Second-Order Optimality Condition 77

g(w)

d

dw

g(w)

d

2

dw

2

g(w)

Figure 4.2 Three single-input functions along with their first- and second-order

derivatives shown in the top, middle, and bottom panels, respectively. See text for

further details.

• a local (or global) minimum if

d

2

dw

2

g(v) > 0 (since it occurs at convex portions

of a function),

• a local (or global) maximum if

d

2

dw

2

g(v) < 0 (since it occurs at concave portions

of a function),

• a saddle point if

d

2

dw

2

g(v) = 0 and

d

2

dw

2

g(w) changes sign at w = v (since it occurs

at an inflection point of a function, i.e., where a function goes from concave to

convex or vice versa).

These second-order characteristics hold more generally for any single-input

function, and taken together form the second-order condition for optimality for

single-input functions.

With multi-input functions the analogous second-order condition holds. As

with all things having to do with convexity/concavity and the second-order

derivative matrix (i.e., the Hessian), the second-order optimality condition for

multi-input functions translates to the eigenvalues of the Hessian. More specifi-

cally, a stationary point v of a multi-input function g(w) is:

• a local (or global) minimum if all eigenvalues of ∇

2

g(v) are positive (since it

occurs at convex portions of a function),

• a local (or global) maximum if all eigenvalues of ∇

2

g(v) are negative (since it

occurs at concave portions of a function),

• a saddle point if the eigenvalues of ∇

2

g(v) are of mixed values, i.e., some

negative and some positive (since it occurs at an inflection point of a function).

78 Second-Order Optimization Techniques

Notice when the input dimension N equals 1, these rules reduce to those stated

for single-input functions as the Hessian matrix collapses into a single second-

order derivative.

4.2 The Geometry of Second-Order Taylor Series

As we will see throughout this chapter, quadratic functions naturally arise when

studying second-order optimization methods. In this section we first discuss

quadratic functions with an emphasis on how we determine their overall shape,

and whether they are convex, concave, or have a more complicated geometry.

We then study quadratic functions generated by the second-order Taylor series

approximation (see Appendix Section B.9 for a review of this concept), and

in particular how these fundamental quadratics inherently describe the local

curvature of a twice-differentiable function.

4.2.1 The general shape of single-input quadratic functions

The basic formula for a quadratic function with a single input takes the familiar

form

g(w) = a + b w + c w

2

(4.2)

where a, b, and c are all constant values controlling the shape of the function.

In particular, the constant c controls the convexity or concavity of the function

or, in other words, whether the quadratic faces upwards or downwards. When

the value of c is nonnegative the quadratic function is convex and points upwards,

regardless of how the other parameters are set. Conversely, when the value of

c is nonpositive the quadratic is concave and points downwards. When c = 0 the

quadratic reduces to a linear function (which can be considered both convex

and concave).

In the left column of Figure 4.3 we plot two simple quadratics: the convex

quadratic g(w) = 6w

2

(top-left panel) and the concave quadratic g(w) = -w

2

(bottom-left panel) to illustrate how the value of c controls the shape and con-

vexity of the general quadratic function.

4.2.2 The general shape of multi-input quadratic functions

The multi-input quadratic function takes a form that is completely generalized

from the single-input case, which we write as

g(w) = a + b

T

w + w

T

C w (4.3)

where the input w is N-dimensional, a remains a constant, b is an N × 1 vector,

4.2 The Geometry of Second-Order Taylor Series 79

andC an N×N matrix (which we assume is symmetric for our purposes). Because

this quadratic is defined along many dimensions it can take on a wider variety of

shapes than its single-input analog. For example, it can be convex along certain

input dimensions and concave along others.

The generalization of the single-input test for convexity/concavity is no longer

whether or not the values of C are positive or negative, but whether its eigen-

values are (see Appendix Section C.4.3). If the eigenvalues of the matrix are all

nonnegative the quadratic is convex, if all nonpositive it is concave, if all equal zero

it reduces to a linear function that is both convex and concave, and otherwise

(i.e., if some of its eigenvalues are positive and others negative) it is neither

convex nor concave.

In the middle and right columns of Figure 4.3 we show several examples of

multi-input quadratic functions with N = 2 inputs. In all examples we have set a

and b to zero and simply change the values of C. For simplicity in all four cases

C is chosen to be a diagonal matrix so that its eigenvalues are conveniently the

entries on its diagonal.

C =

"

1 0

0 0

#

(top-middle panel of Figure 4.3)

C =

"

1 0

0 1

#

(top-right panel of Figure 4.3)

C =

"

0 0

0 -1

#

(bottom-middle panel of Figure 4.3)

C =

"

1 0

0 -1

#

(bottom-right panel of Figure 4.3)

4.2.3 Local curvature and the second-order Taylor series

Another way to think about the local convexity or concavity of a function g at

a point v is via its second-order Taylor series approximation at that point (see

Section B.9). This fundamental approximation taking the form

h(w) = g(v)+

±

d

dw

g(v)

²

(w- v) +

1

2

°

d

2

dw

2

g(v)

!

(w- v)

2

(4.4)

is a true quadratic built using the (first and) second derivative of the function.

Not only does the second-order approximation match the curvature of the un-

derlying function at each point v in the function’s domain, but if the function

is convex at that point (due to its second derivative being nonnegative) then

the second-order Taylor series is convex everywhere. Likewise if the function is

concave at v, this approximating quadratic is concave everywhere.

80 Second-Order Optimization Techniques

w

1

w

2

w

1

w

1

w

1

w

1

w

2

w

2

w

2

w

1

Figure 4.3 (top-left panel) A convex single-input quadratic. (bottom-left panel) a

concave single-input quadratic. (top-middle and top-right panels) Two convex

two-input quadratics. (bottom-middle panel) A concave two-input quadratic.

(bottom-right panel) A two-input quadratic that is neither convex nor concave.

This concept holds analogously for multi-input functions as well. The second-

order Taylor series approximation to a function taking in N-dimensional input

at a point v is given by

h(w) = g(v) +∇g(v)

T

(w - v)+

1

2

(w - v)

T

∇

2

g (v) (w - v). (4.5)

Again, when the function g is convex at the point v the corresponding quadratic

function is convex everywhere. Similar statements can be made when the func-

tion g is concave at the point v, or neither convex or concave there.

Example 4.3 Local convexity/concavity and the second-order Taylor series

In Figure 4.4 we show the function

g(w) = sin(3w)+ 0.1w

2

(4.6)

drawn in black, along with the second-order Taylor series quadratic approxima-

tion shown in turquoise at three example points (one per panel). We can see in

this figure that the local convexity/concavity of the function is perfectly reflected

in the shape of the associated quadratic approximation. That is, at points of local

convexity (as in the first and third panel of the figure) the associated quadratic

approximation is convex everywhere. Conversely, at points of local concavity

4.3 Newton’s Method 81

w

g(w) g(w) g(w)

w w

Figure 4.4 Figure associated with Example 4.3. See text for details.

(as in the second panel of the figure) the associated quadratic approximation is

universally concave.

4.3 Newton’s Method

Since the first-order Taylor series approximation to a function leads to the local

optimization framework of gradient descent (see Section 3.5), it seems intuitive

that higher-order Taylor series approximations might similarly yield descent-

based algorithms as well. In this section we introduce a local optimization

scheme based on the second-order Taylor series approximation, called Newton’s

method (named after its creator, Isaac Newton). Because it uses second derivative

information, Newton’s method has natural strengths and weaknesses when

compared to gradient descent. In summary we will see that the cumulative

effect of these trade-offs is, in general, that Newton’s method is especially useful

for minimizing convex functions of a moderate number of inputs.

4.3.1 The descent direction

We saw in our discussion of gradient descent that the first-order Taylor series ap-

proximation, being a hyperplane itself, conveniently provides us with a descent

direction (see Section 3.3. By comparison a quadratic function has stationary

points that are global minima when the quadratic is convex, and global max-

ima when it is concave. We can compute the stationary point(s) of a quadratic

function fairly easily using the first-order condition for optimality (see Section

3.2).

For the single-input case, the second-order Taylor series approximation cen-

tered at a point v is shown in Equation (4.4). Using the first-order condition to

solve for the stationary point w

?

of this quadratic (see Example 3.2) by setting

its derivative to zero and solving, we find that

82 Second-Order Optimization Techniques

w

?

= v -

d

dw

g(v)

d

2

dw

2

g(v)

. (4.7)

Equation (4.7) says that in order to get to the point w

?

we move from v in the

direction given by -

d

dw

g(v)

d

2

dw

2

g(v)

.

The same kind of calculation can be made in the case of multi-input second-

order Taylor series approximation shown in Equation (4.5). Setting the gradient

of the quadratic approximation to zero (as shown in Example 3.4) and solving

gives the stationary point

w

?

= v -

³

∇

2

g(v)

´

-1

∇g(v). (4.8)

This is the direct analog of the single-input solution in Equation (4.7), and indeed

reduces to it when N = 1. It likewise says that in order to get to the stationary

point w

?

we move from v in the direction given by -

³

∇

2

g(v)

´

-1

∇g(v). When

might this direction be a descent direction? Let us examine a simple example

first to build up our intuition.

Example 4.4 Stationary points of approximating quadratics

In the top row of Figure 4.5 we show the convex function

g(w) =

1

50

³

w

4

+w

2

´

+ 0.5 (4.9)

drawn in black, along with three second-order Taylor series approximations

shown in light blue (one per panel), each centered at a distinct input point. In

each panel the point of expansion is shown as a red circle and its evaluation by

the function as a red x, the stationary point w

?

of the second-order Taylor series

as a green circle, and the evaluations of both the quadratic approximation and

the function itself at w

?

are denoted by a blue and green x, respectively.

Since the function g itself is convex everywhere, the quadratic approximation

not only matches the curvature at each point but is always convex and facing

upwards. Therefore its stationary point is always a global minimum. Notice

importantly that the minimum of the quadratic approximation w

?

always leads

to a lower point on the function than the evaluation of the function at v, i.e.,

g (w

?

) < g (v).

In the bottom row of Figure 4.5 we show similar panels as those described

above, only this time for the nonconvex function

g(w) = sin (3w)+ 0.1w

2

+ 1.5. (4.10)

However, the situation is now clearly different, with nonconvexity being the

4.3 Newton’s Method 83

ww w

g(w) g(w)

g(w)

ww w

g(w) g(w)

g(w)

Figure 4.5 Figure associated with Example 4.4. See text for details.

culprit. In particular at concave portions of the function (like the one shown in

the middle panel) since the quadratic is also concave, the stationary point w

?

of the quadratic approximation is a global maximum of the approximator, and

tends to lead towards points that increase the value of the function (not decrease

it).

From our cursory investigation of these two simple examples we can intuit

an idea for a local optimization scheme: repeatedly traveling to points defined

by the stationary point of the second-order Taylor series approximation. For

convex functions, where each quadratic approximation’s stationary point seems

to lower the original function’s initial evaluation, this idea could provide an

efficient algorithm to minimize a cost function. This is indeed the case, and the

resulting algorithm is called the Newton’s method.

4.3.2 The algorithm

Newton’s method is a local optimization algorithm produced by repeatedly tak-

ing steps to stationary points of the second-order Taylor series approximations

of a function. At the kth step of this process for a single-input function, we make

a second-order Taylor series approximation centered at the point w

k-1

h(w) = g(w

k-1

)+

±

d

dw

g(w

k-1

)

²

(w -w

k-1

) +

1

2

°

d

2

dw

2

g(w

k-1

)

!

(w-w

k-1

)

2

(4.11)

and solve for its stationary point to create the update w

k

as

84 Second-Order Optimization Techniques

w

k

= w

k-1

-

d

dw

g(w

k-1

)

d

2

dw

2

g(w

k-1

)

. (4.12)

More generally with multi-input functions taking in N-dimensional input, at

the kth step we form the second-order quadratic approximation

h(w) = g(w

k-1

)+∇g(w

k-1

)

T

(w-w

k-1

)+

1

2

(w-w

k-1

)

T

∇

2

g

³

w

k-1

´

(w-w

k-1

) (4.13)

and solve for a stationary point of this approximator, giving the update w

k

as

1

w

k

= w

k-1

-

³

∇

2

g(w

k-1

)

´

-1

∇g(w

k-1

). (4.15)

This is a local optimization scheme that fits right in with the general form we

have seen in the previous two chapters, i.e.,

w

k

= w

k-1

+ αd

k

(4.16)

where, in the case of Newton’s method, d

k

= -

³

∇

2

g(w

k-1

)

´

-1

∇g(w

k-1

) and

α = 1. The fact that the steplength parameter α is implicitly set to 1 here follows

naturally from the derivation we have seen.

Notice, the Newton’s update formula in Equation (4.15) requires that we

invert an N × N Hessian matrix (where N is the input dimension). However, in

practice, w

k

is typically found via solving

2

the equivalent symmetric system of

equations

∇

2

g

³

w

k-1

´

w = ∇

2

g

³

w

k-1

´

w

k-1

- ∇g(w

k-1

) (4.17)

which can be done more cost-effectively compared to finding its closed form

solution via Equation (4.15).

1

From the perspective of first-order optimization the kth Netwon’s method step in Equation

(4.12) applied to a single-input function can also be considered a gradient descent step with

self-adjusting steplength parameter

α =

1

d

2

dw

2

g

³

w

k-1

´ , (4.14)

which adjusts the length traveled based on the underlying curvature of the function, akin to the

self-adjusting steplength perspective of normalized gradient steps discussed in Appendix

Section A.3. Although this interpretation does not generalize directly to the multi-input case in

Equation (4.15), by discarding the off-diagonal entries of the Hessian matrix one can form a

generalization of this concept for the multi-input case. See Appendix Section A.8.1 for further

details.

2

One can solve this system using coordinate descent as outlined in Section 3.2.2. When more

than one solution exists the smallest possible solution (e.g., in the ‘

2

sense) is typically taken.

This is also referred to as the pseudo-inverse of ∇

2

g

(

w

).

4.3 Newton’s Method 85

As illustrated in the top panel of Figure 4.6 for a single-input function, start-

ing at an initial point w

0

Newton’s method produces a sequence of points

w

1

, w

2

, . . . , etc., that minimize gby repeatedly creating the second-order Taylor

series quadratic approximation to the function, and traveling to a stationary

point of this quadratic. Because Newton’s method uses quadratic as opposed

to linear approximations at each step, with a quadratic more closely mimicking

the associated function, it is often much more effective than gradient descent

in the sense that it requires far fewer steps for convergence [14, 15]. However,

this reliance on quadratic information also makes Newton’s method naturally

more difficult to use with nonconvex functions since at concave portions of

such a function the algorithm can climb to a local maximum, as illustrated in

the bottom panel of Figure 4.6, or oscillate out of control.

w

2

w

g(w)

w

0

w

1

w

0

w

1

w

0

w

1

w

g(w)

Figure 4.6 Newton’s method illustrated. To find a minimum of g, Newton’s method

hops down the stationary points of quadratic approximations generated by its

second-order Taylor series. (top panel) For convex functions these quadratic

approximations are themselves always convex (whose only stationary points are

minima), and the sequence leads to a minimum of the original function. (bottom panel)

For nonconvex functions quadratic approximations can be concave or convex

depending on where they are constructed, leading the algorithm to possibly converge

to a maximum.

86 Second-Order Optimization Techniques

Example 4.5 Minimization of a convex function using Newton’s method

In Figure 4.7 we show the process of performing Newton’s method to minimize

the function

g(w) =

1

50

³

w

4

+ w

2

+ 10w

´

+ 0.5 (4.18)

beginning at the point w

0

= 2.5, marked as a green dot in the top-left panel

and corresponding evaluation of the function marked as a green x. The top-

right panel of the figure shows the first Newton step, with the corresponding

quadratic approximation shown in green and its minimum shown as a magenta

circle along with the evaluation of this minimum on the quadratic shown as a

blue x. The remaining panels show the next iterations of Newton’s method.

0

3

g(w)

w

33

w

33

w

33

w

33

0

3

g(w)

0

3

g(w)

0

3

g(w)

Figure 4.7 Figure associated with Example 4.5, animating a run of Newton’s method

applied to the function in Equation (4.18). See text for further details.

Example 4.6 Comparison to gradient descent

As illustrated in the right panel of Figure 4.8, a single Newton step is all that is

required to completely minimize the convex quadratic function

g (w

1

,w

2

) = 0.26

³

w

2

1

+ w

2

2

´

- 0.48w

1

w

2

. (4.19)

This can be done with a single step because the second-order Taylor series

4.3 Newton’s Method 87

approximation to a quadratic function is simply the quadratic function itself.

Thus Newton’s method reduces to solving the linear first-order system of a

quadratic function. We compare the result of this single Newton step (shown

in the right panel of Figure 4.8) to a corresponding run of 100 steps of gradient

descent in the left panel of the figure.

w

1

w

1

w

2

w

2

Figure 4.8 Figure associated with Example 4.6. See text for details.

4.3.3 Ensuring numerical stability

Near flat portions of a function the numerator

d

dw

g(w

k-1

) and denominator

d

2

dw

2

g(w

k-1

) of the single-input Newton update in Equation (4.12) both have

small, near-zero values. This can cause serious numerical problems once each

(but especially the denominator) shrinks below machine precision, i.e., the small-

est value a computer can interpret as being nonzero.

One simple and common way to avoid this potential division-by-zero problem

is to add a small positive value ± to the denominator, either when it shrinks

below a certain value or for all iterations. This regularized Newton’s step then

takes the form

w

k

= w

k-1

-

d

dw

g(w

k-1

)

d

2

dw

2

g(w

k-1

) + ±

. (4.20)

The value of the regularization parameter ± is typically set to a small positive

3

value (e.g., 10

-7

).

3

This adjustment is made when the function being minimized is known to be convex, since in

this case

d

2

dw

2

g(w) ≥ 0 for all w.

88 Second-Order Optimization Techniques

The analogous adjustment for the general multi-input Newtons’s update is

to add ±I

N×N

(an N ×N identity matrix scaled by a small positive ± value) to the

Hessian matrix in Equation (4.15), giving

4

w

k

= w

k-1

-

³

∇

2

g(w

k-1

)+ ±I

N×N

´

-1

∇g(w

k-1

). (4.21)

Adding this additional term to the Hessian guarantees that the matrix∇

2

g(w

k-1

)+

±I

N×N

is always invertible, provided a large enough value for ± is used.

4.3.4 Steplength choices

While we have seen in the derivation of Newton’s method that (being a local

optimization approach) it does have a steplength parameter α, it is implicitly

set to α = 1 and so appears ”invisible.” However, in principle, one can explicitly

introduce a steplength parameter α and use adjustable methods (e.g., backtrack-

ing line search as introduced in Section A.4) to tune it. An explicitly weighted

Newton step then takes the form

w

k

= w

k-1

- α

³

∇

2

g(w

k-1

)

´

-1

∇g(w

k-1

) (4.22)

with the standard Newton step falling out when α = 1.

4.3.5 Newton’s method as a zero-finding algorithm

Newton’s method was first invented not as a local optimization algorithm,

but as a zero-finding algorithm. In other words, Newton’s method was first

invented to find zeros of a function f , i.e., where f (w) = 0

N×1

. Traditionally

the function f examined was some sort of polynomial function. In the context

of local optimization we can think of Newton’s method as an approach for

iteratively solving the first-order system (see Section 3.2)

∇g (v) = 0

N×1

. (4.23)

Take the case where our input dimension N = 1. Generally speaking, finding

zeros of an arbitrary function is not a trivial affair. Instead of trying to solve

the first-order equation

d

dw

g (v) = 0 directly let us try to set up an iterative

procedure where we find an approximate a solution to this equation by solving

a related sequence of simpler problems. Following the same sort of logic we

used in deriving gradient descent and Newton’s method previously, instead of

trying to find a zero of the function itself, let us try to find a zero of the tangent

line provided by our function’s first-order Taylor series approximation. Finding

4

As with the original Newton step in Equation (4.15), it is virtually always more numerically

efficient to compute this update by solving the associated linear system

³

∇

2

g(w

k-1

) + ±I

N×N

´

w =

³

∇

2

g(w

k-1

) + ±I

N×N

´

w

k-1

- ∇g(w

k-1

) for w.

4.3 Newton’s Method 89

the point(s) at which a line or – more generally – a hyperplane equals zero is a

comparatively trivial affair.

To write out the first step of this scheme, remember first and foremost that

we are thinking of this as an iterative method applied to the derivative function

d

dw

g (w). This means that, beginning at a point w

0

, our linear first-order Taylor

series approximation to the derivative function

h (w) =

d

dw

g

³

w

0

´

+

d

2

dw

2

g

³

w

0

´ ³
w -w

0

´

(4.24)

naturally involves the second derivative of the function g (it is, after all, the

first-order approximation of this function’s derivative). We can easily compute

where this line crosses the input axis by setting the equation above equal to zero

and solving. Doing this, and calling the solution w

1

, we have

w

1

= w

0

-

d

dw

g

³

w

0

´

d

2

dw

2

g (w

0

)

. (4.25)

Examined closely we can see that this is indeed a Newton step. Since we have

only found the zero of a linear approximation to

d

dw

g

(

w

) and not to this function

itself, it is natural to repeat this procedure to refine our approximation. At the

kth such step our update takes the form

w

k

= w

k-1

-

d

dw

g

³

w

k-1

´

d

2

dw

2

g

(

w

k-1

)

(4.26)

which is exactly the form of Newton step in Equation (4.12). Precisely the anal-

ogous reasoning applied to multi-input functions (where N > 1), starting with

the desire to iteratively solve the first-order system, leads to deriving the multi-

input Newton’s step shown in Equation (4.15).

4.3.6 Python implementation

In this section we provide a simple implementation of Newton’s method in

Python, leveraging the excellent autograd automatic differentiation and NumPy

libraries (see Sections 3.4 and B.10). In particular we employ the grad and

hessian modules from autograd to compute the first and second derivatives of

a general input function automatically.

1 # import autograd’s automatic differentiator

2 from autograd import grad

3 from autograd import hessian

4

5 # import NumPy library

6 import numpy as np

7

90 Second-Order Optimization Techniques

8 # Newton’s method

9 def newtons_method(g, max_its, w):

10

11 # compute gradient/Hessian using autograd

12 gradient = grad(g)

13 hess = hessian(g)

14

15 # set numerical stability parameter

16 epsilon = 10**(-7)

17 if ’epsilon’ in kwargs:

18 epsilon = kwargs[’epsilon’]

19

20 # run the Newton’s method loop

21 weight_history = [w] # container for weight history

22 cost_history = [g(w)] # container for cost function history

23 for k in range(max_its):

24

25 # evaluate the gradient and hessian

26 grad_eval = gradient(w)

27 hess_eval = hess(w)

28

29 # reshape hessian to square matrix

30 hess_eval .shape = (int((np.size(hess_eval))**(0.5)),int((np.

size(hess_eval))**(0.5)))

31

32 # solve second -order system for weight update

33 A = hess_eval + epsilon*np.eye(w.size)

34 b = grad_eval

35 w = np.linalg.solve(A, np.dot(A,w)-b)

36

37 # record weight and cost

38 weight_history.append(w)

39 cost_history.append(g(w))

40

41 return weight_history,cost_history

Notice, while we used a maximum iterations convergence criterion the poten-

tially high computational cost of each Newton step often incentivizes the use of

more formal convergence criteria (e.g., halting when the norm of the gradient

falls below a pre-defined threshold). This also often incentivizes the inclusion of

checkpoints that measure and/or adjust the progress of a Newton’s method run

in order to avoid problems near flat areas of a function. Additionally, one can

use the same kind of initialization for this implementation of Newton’s method

as described for gradient descent in Section 3.5.4.

4.4 Two Natural Weaknesses of Newton’s Method

Newton’s method is a powerful algorithm that makes enormous progress to-

wards finding a function’s minimum at each step, compared to zero- and first-

order methods that can require a large number of steps to make equivalent

4.5 Conclusion 91

progress. Since both first- and second-order (i.e., curvature) information are em-

ployed, Newton’s method does not suffer from the problems inherent to first-

order methods (e.g., the zig-zagging problem we saw in Section 3.6.3). However,

Newton’s method suffers from its own unique weaknesses – primarily in deal-

ing withnonconvexity, as well as scalingwith input dimension – which we briefly

discuss here. While these weaknesses do not prevent Newton’s method (as we

have described it) from being widely used in machine learning, they are (at

least) worth being aware of.

4.4.1 Minimizing nonconvex functions

As discussed in the previous section, Newton’s method can behave very badly

when applied to minimizing nonconvex functions. Since each step is based on

the second-order approximation to a function, initiated at concave point/region

Newton’s method will naturally take a step uphill. This fact is illustrated for a

prototypical nonconvex function in the bottom row of Figure 4.6. The interested

reader can see Section A.7, where we describe a simple and common approach

to adjusting Newton’s method to address this issue.

4.4.2 Scaling limitations

Since the quadratic approximation used by Newton’s method matches a function

very well locally, the method can converge to a global minimum in far fewer steps

(than first-order methods) particularly when close to a minimum. However, a

Newton’s method step is computationally far more expensive than a first-order

step, requiring the storage and computation of not just a gradient but an entire

N × N Hessian matrix of second derivative information as well. Simply storing

the Hessian for a single step of Newton’s method, with itsN

2

entries, can quickly

become challenging for even moderately sized input. For example, if the input

to a function has dimension N = 10, 000 the corresponding Hessian matrix has

100, 000, 000 entries. The kind of functions used in machine learning applications

can easily have tens of thousands to hundreds of thousands or even millions of

inputs, making the complete storage of an associated Hessian impossible.

Later in Section A.8 we discuss basic ways of ameliorating this problem, which

involve adjusting the basic Newton’s method step by replacing the Hessian with

some sort of approximation that does not suffer from this inherent scaling issue.

4.5 Conclusion

In this chapter we cap off our discussion of mathematical optimization in this

part of the text by describing second-order optimization techniques, i.e., those

that leverage both the first and second derivative(s) of a function in forming

descent directions.

92 Second-Order Optimization Techniques

We began in Section 4.2 with a review of the second-order condition for

optimality. We then briefly touched on function curvature as defined by its

second derivative(s) in Section 4.1 before immediately applying this concept

in detailing the keystone second-order local optimization method – Newton’s

method – in Section 4.3.

Afterwards in Section 4.4 we touched on two natural problems with the

Newton’s method scheme – its application to the minimization of nonconvex

functions and to functions with high-dimensional input. The interested reader

should note that in Appendix Sections A.7 and A.8 we detail common adjust-

ments to the standard Newton’s scheme for ameliorating these problems, with

the latter set of adjustments referred to as Hessian-free optimization.

4.6 Exercises

†The data required to complete the following exercises can be downloaded from

the text’s github repository at github.com/jermwatt/machine_learning_refined

4.1 Determining the eigenvalues of a symmetric matrix

In this exercise we investigate an alternative approach to checking that the

eigenvalues of an N×N symmetric matrix C (e.g., a Hessian matrix) are all non-

negative. This approach does not involve explicitly computing the eigenvalues

themselves, and is significantly easier to employ in practice.

(a) Let C be an N×N symmetric matrix. Show that if C has all nonnegative eigen-

values then the quantity z

T

Cz ≥ 0 for all z. Hint: use the eigenvalue decomposition

of C (see Appendix Section C.4).

(b) Show the converse. That is, if an N×N symmetric matrix C satisfies z

T

Cz ≥ 0

for all z then it must have all nonnegative eigenvalues.

(c) Use this method to verify that the second-order definition of convexity holds

for the quadratic function

g (w) = a + b

T

w +w

T

Cw (4.27)

where a = 1, b = [1 1]

T

, and C =

"

1 1

1 1

#

.

(d) Show that the eigenvalues of C + λI

N×N

can all be made to be positive by

4.6 Exercises 93

setting λ large enough. What is the smallest value of λ that will make this

happen?

4.2 Outer-product matrices have all nonnegative eigenvalues

(a) Use the method described in Exercise 4.1 to verify that for any N × 1 vector

x, the N ×N outer-product matrix xx

T

has all nonnegative eigenvalues.

(b) Similarly show that for any set of P vectors x

1

,x

2

, ..., x
P

of length N that the

sum of outer-product matrices

P

∑

p=1

δ

p

x

p

x

T

p

has all nonnegative eigenvalues if each

δ

p

≥ 0.

(c) Show that the matrix

P

∑

p=1

δ

p

x

p

x

T

p

+ λI

N×N

where each δ

p

≥ 0 and λ > 0 has all

positive eigenvalues.

4.3 An alternative way to check the second-order definition of convexity

Recall that the second-order definition of convexity for a multi-input function

g (w) requires that we verify whether or not the eigenvalues of ∇

2

g (w) are

nonnegative for each input w. However, to explicitly compute the eigenvalues

of the Hessian in order to check this is a cumbersome or even impossible task for

all but the nicest of functions. Here we use the result of Exercise 4.1 to express

the second-order definition of convexity in a way that is often much easier to

employ in practice.

(a) Use the result ofExercise 4.1 to conclude that nonnegativity of the eigenvalues

of ∇

2

g (w) are nonnegative at every w is equivalently stated as the inequality

z

T

³

∇

2

g

(

w

)

´

z ≥ 0 holding at each w for all z.

(b) Use this manner of expressing the second-order definition of convexity to

verify that the general quadratic function g (w) = a + b

T

w + w

T

Cw where C is

symmetric and known to have all nonnegative eigenvalues, always defines a

convex function.

(c) Verify that g

(

w

)

= -cos

³

2πw

T

w

´

+ w

T

w is nonconvex by showing that it

does not satisfy the second-order definition of convexity.

4.4 Newton’s method I

Repeat the experiment described in Example 4.5. Instead of plotting the re-

94 Second-Order Optimization Techniques

sulting path taken by Newton’s method (as shown in Figure 4.7), create a cost

function history plot to ensure your algorithm properly converges to a point

near the global minimum of the function. You may employ the implementation

of Newton’s method described in Section 4.3.6 as a base for this exercise.

4.5 Newton’s method II

(a) Use the first-order optimality condition (see Section 3.2) to determine the

unique stationary point of the function g

(

w

)

= log

³

1 + e

w

T

w

´

where w is two-

dimensional (i.e., N = 2).

(b) Use the second-order definition of convexity to verify that g (w) is convex,

implying that the stationary point found in part (a) is a global minimum. Hint:

to check the second-order definition use Exercise 4.2.

(c) Perform Newton’s method to find the minimum of the function g (w) de-

termined in part (a). Initialize your algorithm at w

0

= 1

N×1

and make a plot

of the cost function history for ten iterations of Newton’s method in order to

verify that your algorithm works properly and is converging. You may use the

implementation given in Section 4.3.6 as a base for this part of the exercise.

(d) Now run your Newton’s method code from part (c) again, this time initial-

izing at the point w

0

= 4 · 1

N×1

. While this initialization is further away from the

unique minimum of g

(

w

) than the one used in part (c) your Newton’s method

algorithm should converge faster starting at this point. At first glance this result

seems very counterintuitive, as we (rightfully) expect that an initial point closer

to a minimum will provoke more rapid convergence of Newton’s method! Ex-

plain why this result actually makes sense for the particular function g (w) we

are minimizing here.

4.6 Finding square roots

Use Newton’s method to compute the square root of 999. Briefly explain how

you set up the relevant cost function that was minimized to obtain this square

root. Explain how you use zero- or first-order optimization methods (detailed

in Chapters 2 and 3) to do this as well.

4.7 Nonconvex minimization using Newton’s method

Use (regularized) Newton’s method to minimize the function

g(w) = cos(w) (4.28)

4.6 Exercises 95

beginning at w = 0.1. In particular make sure you achieve decrease in function

value at every step of Newton’s method.

4.8 Newtonian descent

(a) Show that when g

(

w

) is convex the Newton step in

Equation (4.15) does

indeed decrease the evaluation of g, i.e., g

³

w

k

´

≤ g

³

w

k-1

´

.

(b) Show, regardless of the function g being minimized, that ± in Equation (4.21)

can be set large enough so that a corresponding Newton step can lead to a lower

portion of the function, i.e., g

³

w

k

´

≤ g

³

w

k-1

´

.

4.9 Newton’s method as a self-adjusting gradient descent method

Implement the subsampled Newton’s step outlined in Appendix Section A.8.1

and given in Equation (A.78) formed by ignoring all off-diagonal elements of

the Hessian, and compare it to gradient descent using the test function

g (w) = a + b

T

w + w

T

Cw (4.29)

where a = 0, b =

"

0

0

#

, and C =

"

0.5 2

1 9.75

#

.

Make a run of each local method for 25 steps beginning at the initial point

w

0

= [10 1]

T

, using the largest fixed steplength value of the form 10

γ

(where

γ is an integer) for gradient descent. Make a contour plot of the test function

and plot the steps from each run on top of it to visualize how each algorithm

performs.

4.10 The Broyden–Fletcher–Goldfarb–Shanno (BFGS) method

Start with the same assumption as in Example A.12 (i.e., a recursion based

on a rank-2 difference between S

k

and its predecessor) and employ the secant

condition to derive a recursive update for S

k

in terms of S

k-1

, a

k

, and b

k

. Next,

use the Sherman–Morrison identity to rewrite your update in terms of F

k

, the

inverse of S

k

.

Part II

Linear Learning

5 Linear Regression

5.1 Introduction

In this chapter we formally describe the supervised learning problem called

linear regression, or the fitting of a representative line (or, in higher dimensions,

a hyperplane) to a set of input/output data points as first broadly detailed in

Section 1.3.1. Regression in general may be performed for a variety of reasons:

to produce a so-called trend line (or more generally – as we will see later – a

curve) that can be used to help visually summarize, drive home a particular

point about the data under study, or to learn a model so that precise predictions

can be made regarding output values in the future. In the description given

here we will describe various ways of designing appropriate cost functions

for regression, including a discussion of the Least Squares and Least Absolute

Deviations costs, as well as appropriate metrics for measuring the quality of a

trained regressor (that is one whose parameters have been fully optimized), and

various common extensions of the basic regression concept (including weighted

and multi-output regression).

5.2 Least Squares Linear Regression

In this section we formally introduce the problem of linear regression, or the

fitting of a representative line (or hyperplane in higher dimensions) to a set of

input/output data points. We also walk through the design of the popular Least

Squares cost function commonly employed to appropriately tune the parameters

of a regressor in general.

5.2.1 Notation and modeling

Data for regression problems generally come in the form of a set of P input/out-

put observation pairs

(

x

1

, y

1

)

,

(

x

2

, y

2

)

, ...,
(

x

P

, y

P

)

(5.1)

or

n±

x

p

, y

p

²o

P

p=1

for short, where x

p

and y

p

denote the input and output of the pth

100 Linear Regression

observation, respectively. Each input x

p

is in general a column vector of length

N

x

p

=

x

1,p

x

2,p

.

.

.

x

N,p

(5.2)

and each output y

p

is scalar-valued (we consider vector-valued outputs in Sec-

tion 5.6). Geometrically speaking, the linear regression problem is then one of

fitting a hyperplane to a scatter of points in (N + 1)-dimensional space.

In the simplest instance where the inputs are also scalar-valued (i.e., N = 1),

linear regression simplifies to fitting a line to the associated scatter of data

points in two-dimensional space. A line in two dimensions is determined by

two parameters: a vertical intercept w

0

and slope w

1

. We must set the values of

these parameters in a way that the following approximate linear relationship

holds between the input/output data

w

0

+ x

p

w

1

≈ y

p

, p = 1, ..., P. (5.3)

Notice that we have used the approximately equal sign in Equation (5.3)

because we can never be absolutely sure that all data lies completely on a

single line. More generally, when dealing with N-dimensional input we have

a bias weight and N associated slope weights to tune properly in order to fit a

hyperplane, with the analogous linear relationship written as

w

0

+ x

1,p

w

1

+ x

2,p

w

2

+ · · ·+ x

N,p

w

N

≈ y

p

, p = 1, ..., P. (5.4)

Both the single-input and general multi-input cases of linear regression are

illustrated figuratively in Figure 5.1. Each dimension of the input is referred to

as a feature or input feature in machine learning parlance. Hence we will often

refer to the parameters w

1

, w

2

, ..., w

N

as the feature-touching weights, the only

weight not touching a feature is the bias w

0

.

The linear relationship in Equation (5.4) can be written more compactly, using

the notation x̊ to denote an input x with a 1 placed on top of it. This means that

we stack a 1 on top of each of our input points x

p

x̊

p

=

1

x

1,p

x

2,p

.

.

.

x

N,p

(5.5)

for all p = 1, ..., P. Now placing all parameters into a single column vector w

5.2 Least Squares Linear Regression 101

x

2

y = w

0

+ x w

1

y = w

0

+ x

1

w

1

+ x

2

w

2

x

x

1

y

y

Figure 5.1 (left panel) A simulated dataset in two dimensions along with a well-fitting

line. A line in two dimensions is defined as w

0

+ xw

1

= y, where w

0

is referred to as the

bias and w

1

the slope, and a point

±

x

p

, y

p

²

lies close to it if w

0

+ x

p

w

1

≈ y

p

. (right panel) A

simulated three-dimensional dataset along with a well-fitting hyperplane. A

hyperplane in general is defined as w

0

+ x

1

w

1

+ x

2

w

2

+ · · ·+ x

N

w

N

= y, where again w

0

is

the bias and w

1

, w

2

, . . . ,w
N

the hyperplane’s coordinate-wise slopes, and a point

±

x

p

, y

p

²

lies close to it if w

0

+ x

1,p

w

1

+ x

2,p

w

2

+ · · ·+ x

N,p

w

N

≈ y

p

. Here N = 2.

w =

w

0

w

1

w

2

.

.

.

w

N

(5.6)

we may write the general desired linear relationships in Equation (5.4) more

compactly as

x̊

T

p

w ≈ y

p

p = 1, ..., P. (5.7)

5.2.2 The Least Squares cost function

To find the parameters of the hyperplane that best fits a regression dataset we

must first form a cost function that measures how well a linear model with a

particular choice of parameters fits the regression data. One of the more popular

choices for doing this is called the Least Squares cost function. For a given set

of parameters in the vector w this cost function computes the total squared

error between the associated hyperplane and the data, as illustrated pictorially

in the Figure 5.2. Naturally then the best fitting hyperplane is the one whose

parameters minimize this error.

Focusing on just the pth approximation in Equation (5.7) we ideally want

x̊

T

p

w to be as close as possible to the pth output y

p

, or equivalently, the error or

difference between the two, i.e., x̊

T

p

w- y

p

, to be as small as possible. By squaring

102 Linear Regression

y

x

y

x

Figure 5.2 (left panel) A prototypical two-dimensional dataset along with a line fit to

the data using the Least Squares framework, which aims at recovering the linear model

that minimizes the total squared length of the solid error bars. (right panel) The Least

Squares error can be thought of as the total area of the blue squares, having solid black

error bars as sides. The cost function is called Least Squares because it allows us to

determine a set of parameters whose corresponding line minimizes the sum of these

square errors.

this quantity (so that both negative and positive errors of the same magnitude

are treated equally) we can define

g

p

(w) =

±

x̊

T

p

w - y

p

²

2

(5.8)

as a point-wise cost function that measures the error of a model (here a linear one)

on the individual point

±

x

p

, y

p

²

. Now since we want all P such values to be small

simultaneously we can take their average over the entire dataset, forming the

Least Squares cost function

1

for linear regression

g (w) =

1

P

P

X

p=1

g

p

(w) =

1

P

P

X

p=1

±

x̊

T

p

w - y

p

²

2

. (5.9)

Notice that the larger the Least Squares cost becomes the larger the squared

error between the corresponding linear model and the data, and hence the

poorer we represent the given dataset using a linear model. Therefore we want

to find the optimal parameter vector w that minimizes g

(

w

), or written formally

we want to solve the unconstrained optimization problem

1

Technically speaking, the Least Squares cost function g (w) is a function of both the the weights

w as well as the data. However, for notational simplicity we often choose not to show the

dependency on data explicitly. Otherwise we would have to write the cost function as

g

³

w,

n±

x̊

p

, y

p

²o

P

p=1

´

and things start to get too messy. Moreover, for a given dataset the weights w are the important

input to the function as they are what we need to tune in order to produce a good fit. From an

optimization perspective the dataset itself is considered fixed. We will make this sort of

notational simplification for virtually all future machine learning cost functions we study as

well.

5.2 Least Squares Linear Regression 103

minimize

w

1

P

P

X

p=1

±

x̊

T

p

w - y

p

²

2

. (5.10)

using the tools of local optimization detailed in Chapters 2, 3, and 4.

5.2.3 Minimization of the Least Squares cost function

The Least Squares cost function for linear regression in Equation (5.9) can be

proven to be convex for any dataset (see Section 5.9). In Example 5.1 we showcase

this fact using a toy linear regression dataset.

Example 5.1 Verifying convexity by visual inspection

The top panel of Figure 5.3 shows a toy linear regression dataset, consisting of

P = 50 input/output pairs randomly selected off of the line y = x, with a small

amount of random noise added to each output. In the bottom-left panel of this

figure we plot the three-dimensional surface of the Least Squares cost function

associated with this dataset, with its contour plot shown in two dimensions

in the bottom-right panel. We can see, by the upward bending shape of the cost

function’s surface on the left or by the elliptical shape of its contour lines on the

right, that the Least Squares cost function is indeed convex for this particular

dataset.

Because of its convexity, and because the Least Squares cost function is in-

finitely differentiable, we can apply virtually any local optimization scheme to

minimize it properly. However, the generic practical considerations associated

with each local optimization method still apply: that is, the zero- and second-

order methods do not scale gracefully, and with gradient descent we must

choose a fixed steplength value, a diminishing steplength scheme, or an ad-

justable method like backtracking line search (as detailed in Chapter 3). Because

the Least Squares cost is a convex quadratic function, a single Newton step can

perfectly minimize it. This is sometimes referred to as minimizing the Least

Squares via solving its normal equations (see Exercise 5.3 for further discussion).

Example 5.2 Using gradient descent

In Figure 5.4 we show the result of minimizing the Least Squares cost using the

toy dataset presented in Example 5.1. We use gradient descent and employ a

fixed steplength value α = 0.5 for all 75 steps until approximately reaching the

minimum of the function.

The figure shows progression of the gradient descent process (from left to

104 Linear Regression

44

4

4

0 1

0

1

x

y

w

0

w

1

g(w

0

,w

1

)

w

1

w

0

Figure 5.3 Figure associated with Example 5.1. See text for details.

right) both in terms of the Least Squares cost minimization (top row) and line

provided by the corresponding weights (bottom row). The optimization steps

in the top row are colored from green at the start of the run (leftmost panel)

to red at its finale (rightmost panel). The linear model is colored to match the

step of gradient descent (green near the beginning and red towards the end).

Examining the figure, as gradient descent approaches the minimum of the cost

function the corresponding parameters provide a better and better fit to the

data, with the best fit occurring at the end of the run at the point closest to the

Least Squares cost’s minimizer.

g(w

0

, w

1

)

x

y

Figure 5.4 Figure associated with Example 5.2. See text for details.

5.2 Least Squares Linear Regression 105

Figure 5.5 Figure associated

with Example 5.2. See text for

details.

g(w

k

)

k

α = 0.5

α = 0.01

5.2.4 Python implementation

When implementing a cost function like Least Squares it is helpful to think in a

modular fashion, with the aim of lightening the amount of mental ”bookkeep-

ing” required, by breaking down the cost into a few distinct components. Here

we break the cost function down into two main parts: the model that is a linear

combination of input and weights, and the cost itself (i.e., squared error).

We express our (linear) model as a function worthy enough of its own notation,

as

model

±

x

p

,w

²

= x̊

T

p

w. (5.11)

If we were to go back and use this new modeling notation we could re-write

our ideal settings of the weights in Equation (5.7), as

model

±

x

p

,w

²

≈ y

p

(5.12)

and likewise our Least Squares cost function in Equation (5.9), as

g (w) =

1

P

P

X

p=1

±

model

±

x

p

,w

²

- y

p

²

2

. (5.13)

This kind of simple deconstruction of the Least Squares cost lends itself to

an organized, modular, and easily extendable implementation. Starting with

Whenever we use a local optimization method like gradient descent we must

properly tune the steplength parameter α (as described previously, e.g., in Sec-

tion 3.5). In Figure 5.5 we show the cost function history plot for two steplength

values: α = 0.01 (in purple), and α = 0.5 (in black), which we ended up using

for the run shown in Figure 5.4. This illustrates why (in machine learning con-

texts) the steplength parameter is often referred to as the learning rate, since this

value does indeed determine how quickly the proper parameters of our linear

regression model (or any machine learning model in general) are learned.

106 Linear Regression

the model, note that while it is more compact and convenient mathematically

to write the linear combination x̊

T

p

w by tacking a 1 on top of the raw input

x

p

, in implementing this we can more easily compute the linear combination by

exposing the bias and feature-touching weights separately as

x̊

T

p

w = w

0

+ x

T

p

ω (5.14)

where vectorω contains all the feature-touching weights

ω =

w

1

w

2

.

.

.

w

N

. (5.15)

Remember that w

0

is called the bias since it controls where our linear model

pierces the y axis, and w

1

, w

2

, ..., w

N

are called feature-touching weights because

they touch each individual dimension of the input (which in the jargon of

machine learning are called features).

Using the efficient NumPy’s np.dot operation

2

we can implement the linear

model as

1 a = w[0] + np.dot(x_p.T,w[1:])

which matches the right-hand side of Equation (5.14), where w[0] denotes the

bias w

0

and w[1:] denotes the remaining N feature-touching weights in ω.

Wrapping this into a Python function we have our linear model implemented

as

1 # compute linear combination of input point

2 def model(x_p,w):

3 # compute linear combination and return

4 a = w[0] + np.dot(x_p.T,w[1:])

5 return a.T

which we can then use to form the associated Least Squares cost function.

1 # a least squares function for linear regression

2 def least_squares(w,x,y):

3 # loop over points and compute cost contribution from each input/

output pair

4 cost = 0

5 for p in range(y.size):

2

As a general rule whenever vectorized implementations are available, one must refrain from

implementing algebraic expressions in Python entry-wise using for instance, explicit for loops.

5.2 Least Squares Linear Regression 107

6 # get pth input/output pair

7 x_p = x[:,p][:,np.newaxis]

8 y_p = y[p]

9

10 ## add to current cost

11 cost += (model(x_p,w) - y_p)**2

12

13 # return average least squares error

14 return cost/float(y.size)

Notice here we explicitly show all of the inputs to the cost function, not just

the (N + 1) × 1 weights w, whose Python variable is denoted by w. The Least

Squares cost also takes in all inputs (with ones stacked on top of each point) x̊

p

,

which together we denote by the (N + 1) × P Python variable x as well as the

entire set of corresponding outputs which we denote as the 1 × P variable y.

Notice that this really is a direct implementation of the algebraic form of the

cost in Equation (5.13), where we think of the cost as the sum of squared errors

of a linear model of input against its corresponding output. However, explicit

for loops (including list comprehensions) written in Python are rather slow due

to the very nature of the language.

It is easy to get around most of this inefficiency by replacing explicit for loops

with numerically equivalent operations performed using NumPy operations. The

NumPy package is an API for some very efficient vector/matrix manipulation

libraries written in C. Broadly speaking, when writing a Pythonic function like

this one with heavy use of NumPy functionality one tries to package each step

of computation – which previously was being formed sequentially at each data

point – together for the entire dataset simultaneously. This means we do away

with the explicit for loop over each of our Ppoints and make the same computa-

tions (numerically speaking) for every point simultaneously. Below we provide

one such NumPy-heavy version of the Least Squares implementation shown pre-

viously that is far more efficient.

Note that in using these functions the input variable x (containing the entire

set of P inputs) is of size N × P, and its corresponding output y is of size 1 × P.

Here we have written this code – and in particular the model function – to mirror

its respective formula as close as possible.

1 # compute linear combination of input points

2 def model(x,w):

3 a = w[0] + np.dot(x.T,w[1:])

4 return a.T

5

6 # an implementation of the least squares cost function for linear

regression

7 def least_squares(w):

8 # compute the least squares cost

9 cost = np.sum((model(x,w) - y)**2)

10 return cost/float(y.size)

108 Linear Regression

Notice too that for simplicity we write the Pythonic Least Squares cost function

least squares(w) instead of least squares(w,x,y), where in the latter case

we explicitly list its other two arguments: the input x and output y data. This

is done for notational simplicity – we do this with our math notation as well

denoting our Least Squares cost g (w) instead of g

(

w, x, y

)

– and either format is

perfectly fine practically speaking as autograd (see Section B.10) will correctly

differentiate both forms (since by default it computes the gradient of a Python

function with respect to its first input only). We will use this kind of simplified

Pythonic notation when introducing future machine learning cost functions as

well.

While we recommend most users employ the automatic differentiator library

autograd (see Section 3.4) to perform both gradient descent and Newton’s

method on our machine learning cost functions, here one can (since this cost

function is simple enough to) ”hard code” the gradient formally by writing it

out ”by hand” (using the derivative rules detailed in Section B.3). Doing so one

can compute the gradient of the Least Squares cost in closed form as

∇g (w) =

2

P

P

X

p=1

x̊

p

±

x̊

T

p

w - y

p

²

. (5.16)

Furthermore, in performing Newton’s method one can also compute the Hes-

sian of the Least Squares cost by hand. Moreover, since the cost is a convex

quadratic only a single Newton step can completely minimize it. This single Newton

step solution is often referred to as minimizing the Least Squares cost via its

normal equations. The system of equations solved in taking this single Newton

step is equivalent to the first-order system (see Section 3.2) for the Least Squares

cost function

P

X

p=1

x̊

p

x̊

T

p

w =

P

X

p=1

x̊

p

y

p

. (5.17)

5.3 Least Absolute Deviations

In this section we discuss a slight twist on the derivation of the Least Squares

cost function that leads to an alternative cost for linear regression called Least

Absolute Deviations. This alternative cost function is much more robust to outliers

in a dataset than the original Least Squares.

5.3.1 Susceptibility of Least Squares to outliers

One downside of using the squared error in the Least Squares cost (as a measure

that we then minimize to recover optimal linear regression parameters) is that

5.3 Least Absolute Deviations 109

squaring the error increases the importance of larger errors. In particular, squaring

errors of length greater than 1 makes these values considerably larger. This

forces weights learned via the Least Squares cost to produce a linear fit that

is especially focused on trying to minimize these large errors, sometimes due

to outliers in a dataset. In other words, the Least Squares cost produces linear

models that tend to overfit to outliers in a dataset. We illustrate this fact via a

simple dataset in Example 5.3.

y

x

5.3.2 Replacing squared error with absolute error

Our original derivation of the Least Squares cost function in Section 5.2 aimed

at learning a set of ideal weights so that we have

x̊

T

p

w ≈ y

p

p = 1, ..., P (5.18)

Figure 5.6 Figure associated

with Example 5.3. See text

for details.

Example 5.3 Least Squares overfits to outliers

In this example we use the dataset plotted in Figure 5.6, which can largely be

represented by a proper linear model with the exception of a single outlier,

to show how the Least Squares cost function for linear regression tends to

create linear models that overfit to outliers. We tune the parameters of a linear

regressor to this dataset by minimizing the Least Squares cost via gradient

descent (see Section 3.5), and plot the associated linear model on top of the

data. This fit (shown in black) does not fit the majority of the data points well,

bending upward clearly with the aim of minimizing the large squared error on

the singleton outlier point.

110 Linear Regression

for a dataset of P points

n±

x

p

, y

p

²o

P

p=1

. We then squared the difference between

both sides of each desired approximation

g

p

(

w

)

=

±

x̊

T

p

w - y

p

²

2

p = 1, ..., P (5.19)

and took the average of these P squared error terms to form the full Least Squares

cost function.

As an alternative to using a squared error for our point-wise cost in Equation

(5.19) we can instead measure the absolute error for each desired approximation

g

p

(w) =

µ

µ

µ

µ

x̊

T

p

w - y

p

µ

µ

µ

µ

p = 1, ..., P. (5.20)

By using absolute error instead of the squared version we still treat negative

and positive errors equally, but we do not exaggerate the importance of large

errors greater than 1. Taking the average of these absolute error point-wise costs

gives us the cousin of Least Squares, the so-called Least Absolute Deviations cost

function

g (w) =

1

P

P

X

p=1

g

p

(w) =

1

P

P

X

p=1

µ

µ

µ

µ

x̊

T

p

w - y

p

µ

µ

µ

µ

. (5.21)

The only price we pay in employing the absolute error instead of the squared

error is a technical one: while this cost function is also always convex regardless

of the input dataset, since its second derivative is zero (almost everywhere) we

can use only zero- and first-order methods to properly minimize it (and not

second-order methods).

Example 5.4 Least Squares versus Least Absolute Deviations

In Figure 5.7 we compare the result of tuning a linear model by minimizing the

Least Squares versus the Least Absolute Deviation cost functions employing

the dataset in Example 5.3. In both cases we run gradient descent for the same

number of steps and using the same choice of steplength parameter. We show

the cost function histories for both runs in the right panel of Figure 5.7, where the

runs using the Least Squares and Least Absolute Deviations are shown in black

and magenta respectively. Examining the cost function histories we can see that

the cost function value of the Least Absolute Deviations cost is considerably

lower than that of Least Squares. This alone provides evidence that the former

will provide a considerably better fit than Least Squares.

This advantage can also be seen in the left panel of Figure 5.7 where we plot

and compare the best fit line provided by each run. The Least Squares fit is

shown in black, while the Least Absolute Deviation fit is shown in magenta.

The latter fits considerably better, since it does not exaggerate the large error

produced by the single outlier.

5.4 Regression Quality Metrics 111

Least Squares

Least Absolute Deviations

x

y

k

g(w

k

)

Figure 5.7 Figure associated with Example 5.4. See text for details.

5.4 Regression Quality Metrics

In this brief section we describe how to make predictions using a trained re-

gression model followed by simple metrics for judging the quality of such a

model.

5.4.1 Making predictions using a trained model

If we denote the optimal set of weights found by minimizing a regression cost

function by w

?

then our fully trained linear model can be written as

model

(

x,w

?

)

= x̊

T

w

?

= w

?

0

+ x

1

w

?

1

+ x

2

w

?

2

+ · · · + x
N

w

?

N

. (5.22)

Regardless of how we determine optimal parameters w

?

, by minimizing a

regression cost like the Least Squares or Least Absolute Deviations, we make

predictions employing our linear model in the same way. That is, given an input

x

0

(whether it is from our training dataset or a brand new input) we predict its

output y

0

by simply passing it along with our trained weights into our model

as

model

(

x

0

,w

?

)

= y

0

. (5.23)

This is illustrated pictorially on a prototypical linear regression dataset in Figure

5.8.

5.4.2 Judging the quality of a trained model

Once we have successfully minimized a linear regression cost function it is an

easy matter to determine the quality of our regression model: we simply evaluate

112 Linear Regression

y

y

0

x

0

x

w

?

0

+ x w

?

1

= y

Figure 5.8 Once optimal parameters w

?

0

and w

?

1

of a regression line are found via

minimizing an appropriate cost function they may be used to predict the output value

of any input x

0

by substituting it into Equation (5.22). Here N = 1.

a cost function using our optimal weights. For example, we can evaluate the

quality of a trained model using the Least Squares cost, which is especially

natural to use when we employ this cost in training. To do this we plug in

our learned model parameters along with the data into the Least Squares cost,

giving the so-called Mean Squared Error (or MSE for short)

MSE =

1

P

P

X

p=1

±

model

±

x

p

,w

?

²

- y

p

²

2

. (5.24)

The name for this regression quality metric describes precisely what the Least

Squares cost computes, i.e., the average (or mean) squared error. To reduce the

affect of outliers and other large values, often the square root of this value is taken

as a regression quality metric. This is referred to as the Root Mean Squared Error

or RMSE for short.

In the same way we can employ the Least Absolute Deviations cost to deter-

mine the quality of our trained model. Plugging in our learned model parame-

ters along with the data into this cost computes the Mean Absolute Deviations

(or MAD for short), which is precisely what this cost function computes

MAD =

1

P

P

X

p=1

µ

µ

µ

µ

model

±

x

p

,w

?

²

- y

p

µ

µ

µ

µ

. (5.25)

These two metrics differ in precisely the ways we have seen their respective

cost functions differ (e.g., the MSE measure is far more sensitive to outliers). In

general, the lower one can make these quality metrics (by proper tuning of the

model weights) the better the quality of the corresponding trained model, and

vice versa. However, the threshold for what one considers ”good” or ”great”

5.5 Weighted Regression 113

performance can depend on personal preference, an occupational or institution-

ally set benchmark, or some other problem-dependent concern.

Example 5.5 Predicting house prices

As described in Example 1.4, linear regression has a myriad of business ap-

plications. Predicting the price of a given commodity is a particularly popular

application, and the so-called Boston Housing dataset [16] is a readily available

example of such a problem. This dataset consists of a set of basic statistics (fea-

tures) and corresponding prices (in dollars) for P = 506 houses in the city of

Boston in the United States. The N = 13-dimensional input features include: per

capita crime rate by town (feature 1), average number of rooms per dwelling (fea-

ture 6), weighted distances to five Boston employment centers (feature 8), and

the percentage of the local population deemed ”lower class,” denoted LSTAT

(feature 13). One can easily attain reasonable RMSE and MAD metrics of around

4500 and 3000, respectively (see Exercise 5.9). Later on we drill deeper into this

dataset, examining its critical features in a process known as feature selection in

Examples 9.6 and 9.11.

Example 5.6 Predicting Automobile Miles-per-Gallon

As detailed earlier in Example 1.4, linear regression has a host of industrial

applications involved in accurately predicting the behavior of particular sys-

tems. The Autombile Miles-per-Gallon (or Auto-MPG for short) dataset [17] is

a popular dataset used for such purposes, and consists of a set of basic data on

P = 398 automobiles. The N = 6 input features are to be used to predict the

MPG of each car. The input features of this dataset include: number of cylinders

in the car’s engine block (feature 1), the total engine displacement (feature 2),

the horsepower of the car’s motor (feature 3), the weight of the car (feature

4), the car’s acceleration ability measured in seconds taken to accelerate to a

benchmark speed from standstill (feature 5), and the year the car was produced

(feature 6).

3

One can attain reasonable RMSE and MAD metrics of around 3.3

and 2.5 MPG, respectively (see Exercise 5.9). Later on we drill deeper into this

data, examining its critical features in a process known as feature selection in

Exercise 9.10.

5.5 Weighted Regression

Because regression cost functions can be decomposed over individual data

points, we see in this section that it is possible to weight these points in or-

3

The final feature of the original dataset (called ”origin”) was removed as no meaningful

description of it could be found.

114 Linear Regression

der to emphasize or de-emphasize their importance to a regression model. This

practice is called weighted regression.

5.5.1 Dealing with duplicates

Imagine we have a linear regression dataset that contains multiple copies of the

same point, generated not by error but for example by necessary quantization

(or binning) of input features in order to make human-in-the-loop analysis or

modeling of the data easier. Needless to say, ”duplicate” data points should not

be thrown away in a situation like this.

time [s]

po
rt

io
n

of
 ra

m
p

tr
av

el
ed

Figure 5.9 Figure associated with Example 5.7. See text for details.

Let us now examine what happens to a regression cost function (e.g., Least

Squares) when a dataset contains duplicate data points. Specifically we assume

there are β

p

versions of the input/output pair

±

x

p

, y

p

²

in our data. For regression

datasets we have seen so far (excluding the one shown in Figure 5.9) we have

always had β

p

= 1 for all p = 1, . . . , P. Using our model notation to represent

Example 5.7 Quantization of input features can create duplicate points

In Figure 5.9 we show a raw set of data from a modern reenactment of Galileo’s

famous ramp experiment where, in order to quantify the effect of gravity, he

repeatedly rolled a ball down a ramp to determine the relationship between

distance and amount of time it takes an object to fall to the ground. This dataset

consists of multiple trials of the same experiment, where each output’s numer-

ical value has been rounded to two decimal places. Performing this natural

numerical rounding (sometimes referred to as quantizing) produces multiple

duplicate data points, which we denote visually by scaling the dot representing

each point in the image. The larger the dot’s radius, the more duplicate points

it represents.

5.5 Weighted Regression 115

our linear model (see, e.g., Section 5.4.1) we can write the sum of all point-wise

squared errors as

(

model (x

1

,w) - y

1

)

2

+ · · · +
(

model (x

1

,w) - y

1

)

2

|°°{z°°}

β

1

+

(

model (x

2

,w

)

- y

2

)

2

+ · · · +
(

model (x

2

,w

)

- y

2

)

2

|°°{z°°}

β

2

.

.

.

+

(

model (x

P

,w) - y

P

)

2

+ · · ·+
(

model (x

P

,w) - y

P

)

2

|°°°{z°°°}

β

P

.

(5.26)

The natural grouping in Equation (5.26) then helps us write the overall Least

Squares cost function as

g (w) =

1

β

1

+ β

2

+ · · · + β

P

P

X

p=1

β

p

±

model

±

x

p

,w

²

- y

p

²

2

. (5.27)

As we can see here the Least Squares cost function naturally collapses into a

weighted version of itself in the sense that we can combine summands so that

a repeated point in the dataset is represented in the cost function by a single

weighted summand. Since the weights β

1

, β
2

, ..., β
P

are fixed for any given

dataset, we can minimize a weighted regression cost precisely as we would

any other (by tuning w alone). Finally notice that setting β

p

= 1 (for all p)

in Equation (5.27) gives us back the original (unweighted) Least Squares cost

function in Equation (5.13).

5.5.2 Weighting points by confidence

Weighted regression can also be employed when we wish to weight each point

based on our confidence in the trustworthiness of each data point. For exam-

ple if our dataset came in two batches, one batch from a trustworthy source

and another from a less trustworthy source (where some data points could be

noisy or fallacious), we would want to weight data points from the trustworthy

source more in our final regression. This can be done very easily using precisely

the weighted regression paradigm introduced previously, only now we set the

weights β

1

, β
2

, ..., β
P

ourselves based on our confidence of each point. If we

believe that a point is very trustworthy we can set its corresponding weight β

p

high, and vice versa. Notice in the extreme case, a weight value of β

p

= 0 ef-

116 Linear Regression

fectively removes its corresponding data point from the cost function, implying

we do not trust that point at all.

x

y

Figure 5.10 Figure associated with Example 5.8. See text for details.

5.6 Multi-Output Regression

Thus far we have assumed that data points for linear regression consist of vector-

valued inputs and scalar-valued outputs. In other words, a prototypical regression

data point takes the form of an input/output pair

±

x

p

, y

p

²

where the input x

p

is an

N-dimensional vector, and the output y

p

a scalar. While this configuration covers

the vast majority of regression cases one may encounter in practice, it is possible

to perform (linear) regression where both input and output are vector-valued.

This is often called multi-output regression, which we now discuss.

5.6.1 Notation and modeling

Suppose our regression dataset consists of P input/output pairs

±

x

1

, y

1

²

,

±

x

2

, y

2

²

, ...,
±

x

P

, y

P

²

(5.28)

Example 5.8 Adjusting a single data point’s weight to reflect confidence

In Figure 5.10 we show how adjusting the weight associated with a single data

point affects the final learned model in a weighted linear regression setting.

The toy regression dataset shown in this figure includes a red data point whose

diameter changes in proportion to its weight. As the weight (which can be

interpret as ”confidence”) is increased from left to right, the regressor focuses

more and more on representing the red point. If we increase its weight enough

the fully trained regression model naturally starts fitting to this single data point

alone while disregarding all other points, as illustrated in the rightmost panel

of Figure 5.10.

5.6 Multi-Output Regression 117

where each input x

p

is N-dimensional and each output y

p

is C-dimensional.

While in principle we can treat y

p

as a C× 1 column vector, in order to keep the

formulae that follows looking similar to what we have already seen in the scalar

case we will treat the input as an N × 1 column vector and the output as a 1 ×C

row vector, as

4

x

p

=

x

1,p

x

2,p

.

.

.

x

N,p

y

p

=

h

y

0,p

y

1,p

· · · y

C-1,p

i

. (5.29)

If we assume that a linear relationship holds between the input x

p

and just the

cth dimension of the output y

c,p

, we are back to precisely the sort of regression

framework we have seen thus far, and we can write

x̊

T

p

w

c

≈ y

c,p

p = 1, ..., P (5.30)

wherew

c

is a set of weights

w

c

=

w

0,c

w

1,c

w

2,c

.

.

.

w

N,c

(5.31)

and x̊

p

is the vector formed by stacking 1 on top of x

p

. If we then further assume

that a linear relationship holds between the input and all C entries of the output,

we can place each weight vectorw

c

into the cth column of an (N + 1)×C weight

matrixW as

W =

w

0,0

w

0,1

· · · w

0,c

· · · w

0,C-1

w

1,0

w

1,1

· · · w

1,c

· · · w

1,C-1

w

2,0

w

2,1

· · · w

2,c

· · · w

2,C-1

.

.

.

.

.

. · · ·
.

.

. · · ·
.

.

.

w

N,0

w

N,1

· · · w

N,c

· · · w

N,C-1

(5.32)

and write the entire set of C linear models via a vector-matrix product

x̊

T

p

W

=

h

x̊

T

p

w

0

x̊

T

p

w

1

· · · x̊

T

p

w

C-1

i

. (5.33)

This allows us to write the entire set of C linear relationships very compactly as

4

Notice that unlike the input we index the output starting from 0. We do this because eventually

we will stack a 1 on top of each input x

p

(as we did with standard regression in Section 5.2) and

this entry will have the zeroth index of our input.

118 Linear Regression

x̊

T

p

W ≈ y

p

p = 1, ...,P. (5.34)

5.6.2 Cost functions

The thought process involved in deriving a regression cost function for the

case of multi-output regression mirrors almost exactly the scalar-output case

discussed in Sections 5.2 and 5.3. For example, to derive a Least Squares cost

function we begin (in the same way we did in Section 5.2) by taking the difference

of both sides of Equation (5.34). However, the error associated with thepth point,

written as x̊

T

p

W - y

p

, is now a vector of C values. To square this error we must

therefore employ the squared ‘

2

vector norm (see Section C.5 if not familiar with

this vector norm). The Least Squares cost function in this case is then the average

squared ‘

2

norm of each point’s error, written as

g (W) =

1

P

P

X

p=1

¶

¶

¶

¶

x̊

T

p

W - y

p

¶

¶

¶

¶

2

2

=

1

P

P

X

p=1

C-1

X

c=0

±

x̊

T

p

w

c

- y

c,p

²

2

. (5.35)

Notice that when C = 1, this reduces to the original Least Squares cost we saw

in Section 5.2.

Likewise, the Least Absolute Deviations cost (which measures the absolute

value of each error as opposed to its square) for our present case takes the

analogous form

g (W) =

1

P

P

X

p=1

¶

¶

¶

¶

x̊

T

p

W - y

p

¶

¶

¶

¶

1

=

1

P

P

X

p=1

C-1

X

c=0

µ

µ

µ

µ

x̊

T

p

w

c

- y

c,p

µ

µ

µ

µ

(5.36)

where k·k

1

is the ‘

1

vector norm, the generalization of the absolute value function

for vectors (see Section C.5.1 if not familiar with this vector norm).

Just like their scalar-valued versions, these cost functions are always convex

regardless of the dataset used. They also decompose over the weights w

c

asso-

ciated with each output dimension. For example, we can rewrite the right-hand

side of the Least Absolute Deviations cost in Equation (5.36) by swapping the

summands over P and C, giving

g (W) =

C-1

X

c=0

1

P

P

X

p=1

µ

µ

µ

µ

x̊

T

p

w

c

- y

c,p

µ

µ

µ

µ

=

C-1

X

c=0

g

c

(w

c

) (5.37)

where we have denoted g

c

(w

c

) =

1

P

∑

P

p=1

µ

µ

µ

µ

x̊

T

p

w

c

- y

c,p

µ

µ

µ

µ

. Since the weights from

each of the C subproblems do not interact we can, if desired, minimize each g

c

for an optimal setting of w

c

independently, and then take their sum to form the

full cost function g.

5.6 Multi-Output Regression 119

Figure 5.11
Figure associated

with Example

5.9. See text for

details.

5.6.3 Python implementation

Because Python and NumPy have such flexible syntax, we can implement the

linear model

model (x, W) = x̊

T

W (5.38)

precisely as we did in the scalar-output case in Section 5.2.4. In implementing this

linear combination we need not form the adjusted input x̊

p

(by tacking a 1 on

top of the raw input x

p

) and can more easily compute the linear combination by

exposing the biases as

x̊

T

p

W = b+ x

T

p

W (5.39)

where we denote the bias b and the feature-touching weightsW as

b =

w

0,0

w

0,1

w

0,2

.

.

.

w

0,C-1

W =

w

0,1

w

0,2

· · · w

0,C-1

w

1,1

w

1,2

· · · w

1,C-1

w

2,1

w

2,2

· · · w

2,C-1

.

.

.

.

.

.

.

.

.

.

.

.

w

N,1

w

N,2

· · · w

N,C-1

. (5.40)

This notation is used to match the Pythonic slicing operation (as shown in the

Example 5.9 Fitting a linear model to a multi-output regression dataset

In Figure 5.11 we show an example of multi-output linear regression using a

toy dataset with input dimension N = 2 and output dimension C = 2, where

we have plotted the input and one output value in each of the two panels of the

figure.

We tune the parameters of an appropriate linear model via minimizing the

Least Squares cost using gradient descent, and illustrate the fully trained model

(shown in green in each panel) by evaluating a fine mesh of points in the input

region of the dataset.

120 Linear Regression

implementation given below), which we implement in Python analogously as

follows.

a = w[0] + np.dot(x_p.T,w[1:])

That is, b = w[0] denotes the bias and W = w[1:] denotes the remaining

feature-touching weights. Another reason to implement in this way is that the

particular linear combination x

T

p

W – implemented the model using np.dot as

np.dot(x p.T,w[1:]) below – is an especially efficient since NumPy’s np.dot

operation is far more efficient than constructing a linear combination in Python

via an explicit for loop.

Multi-output regression cost functions can also be implemented in Python

precisely as we have seen previously. For example, our linear model and Least

Squares cost can be written as shown below.

1 # linear model

2 def model(x,w):

3 a = w[0] + np.dot(x.T,w[1:])

4 return a.T

5

6 # least squares cost

7 def least_squares(w):

8 cost = np.sum((model(x,w) - y)**2)

9 return cost/float(np.size(y))

Note that since any cost for multi-output regression takes in a matrix of pa-

rameters, when using autograd as part of your optimization process it can

be very convenient to first flatten your chosen cost – as explained in Section

B.10.3 – prior to minimization. Doing this avoids the need to explicitly loop over

weights in your local optimization routine, allowing you to directly employ the

basic Python implementations of, e.g., gradient descent (see Section 3.5.4) and

Newton’s method (see Section 4.3.6) without modification.

5.7 Conclusion

We began Part II of the text in this chapter by describing linear regression, the

simplest of our supervised learning problems.

More specifically, we began in Section 5.2 by introducing important notation,

the formal linear model, as well as the Least Squares cost function for regression.

In Section 5.3 we then introduced the Least Absolute Deviations cost, which is

far less sensitive to outliers, but at the cost of not being twice differentiable

(thus second-order methods are not directly applicable to its minimization).

Having already described methods of mathematical optimization in Part I of

the text we quickly deal with the minimization of these cost functions for linear

regression. Next in Section 5.5 we described weighted regression, a twist on the

5.8 Exercises 121

standard scheme that allows for complete control over how each point is em-

phasized during regression. Finally in Section 5.6 we discussed various metrics

for quantifying the quality of a trained regression model.

5.8 Exercises

†The data required to complete the following exercises can be downloaded from

the text’s github repository at github.com/jermwatt/machine_learning_refined

5.1 Fitting a regression line to the student debt data

Fit a linear model to the US student load debt dataset shown in Figure 1.8

by minimizing the associated linear regression Least Squares problem using a

single Newton step (also known as solving the normal equations). If this linear

trend continues what will the total student debt be in 2030?

5.2 Kleiber’s law and linear regression

After collecting and plotting a considerable amount of data comparing the body

mass versus metabolic rate (a measure of at rest energy expenditure) of a variety

of animals, early twentieth-century biologist Max Kleiber noted an interesting

relationship between the two values. Denoting by x

p

and y

p

the body mass (in

kg) and metabolic rate (in kJ/day) of a given animal respectively, treating the

body mass as the input feature Kleiber noted (by visual inspection) that the

natural log of these two values were linearly related. That is

w

0

+ log

±

x

p

²

w

1

≈ log

±

y

p

²

. (5.41)

In Figure 1.9 we show a large collection of transformed data points

n±

log

±

x

p

²

, log

±

y

p

²²o

P

p=1

(5.42)

each representing an animal ranging from a small black-chinned hummingbird

in the bottom-left corner to a large walrus in the top-right corner.

(a) Fit a linear model to the data shown in Figure 1.9.

(b) Use the optimal parameters you found in part (a) along with the properties

of the log function to write the nonlinear relationship between the body mass x

and the metabolic rate y.

(c) Use your fitted line to determine how many calories an animal weighing 10

kg requires (note each calorie is equivalent to 4.18 J).

122 Linear Regression

y

x

1

x

2

5.4 Solving the normal equations

As discussed in Section 5.2.4, the Least Squares cost function for linear regression

can be perfectly minimized using a single Newton’s method step (see Section

4.3) – with the corresponding system of equations shown in Equation (5.17) also

referred to as the normal equations. In what circumstancs do you think this is not

an excellent solution method for minimizing the Least Squares cost? Why? Hint:

see Section 4.4.2.

5.5 Lipschitz constant for the Least Squares cost

Compute the Lipschitz constant (see Section A.6.4) of the Least Squares cost

function.

5.6 Compare the Least Squares and Least Absolute Deviation costs

Repeat the experiment outlined in Example 5.4. You will need to implement

the Least Absolute Deviations cost, which can be done similarly to the Least

Squares implementation in Section 5.2.4.

5.7 Empirically confirm convexity for a toy dataset

Empirically confirm that the Least Absolute Deviations cost function is convex

for the toy dataset shown in Section 5.3.

Figure 5.12 Figure associated

with Exercise 5.3. See text for

further details.

5.3 The Least Squares cost function and a single Newton step

As mentioned in Section 5.2.3, a single Newton step can perfectly minimize the

Least Squares cost for linear regression. Use a single Newton step to perfectly

minimize the Least Squares cost over the dataset shown in Figure 5.12. This

dataset roughly lies on a hyperplane, thus the fit provided by a perfectly mini-

mized Least Squares cost should fit very well. Use a cost function history plot

to check that you have tuned the parameters of your linear model properly.

5.8 Exercises 123

λ g(w

1

) + (1 - λ) g(w

2

)

g(w

1

)

g(w

2

)

λw

1

+ (1- λ)w

2

w

1

w

2

Figure 5.13 Figure associated with Exercise 5.8.

Stating this geometric fact algebraically, g is convex if and only if for all w

1

and w

2

in the domain of g and all λ ∈ [0, 1], we have

g

(

λw

1

+

(1

- λ

)

w

2

)

≤ λg

(

w

1

)

+

(1

- λ

)

g

(

w

2

)

. (5.43)

5.9 Housing price and Automobile Miles-per-Gallon prediction

Verify the quality metrics given in Examples 5.5 and 5.6 for the Boston Housing

and Automobile Miles-per-Gallon datasets. Because of the large variations in the

input values of these datasets you should standard normalize the input features

of each – as detailed in Section 9.3 – prior to optimization.

5.10 Improper tuning and weighted regression

Suppose someone proposed tuning the point-wise weights β

1

, ..., β
P

by mini-

mizing the weighted Least Squares cost in Equation (5.27) with respect to both

β

1

, ..., β
P

and w, the weights of the linear model, while keeping β

1

, ..., β
P

all non-

negative (thus the smallest value taken by the cost function is zero). Suppose

you are able to optimize to completion – what would go wrong in terms of the

efficacy of the final model on a general dataset? Draw a picture to explain your

ideas.

5.8 The Least Absolute Deviations cost is convex

Prove that the Least Absolute Deviations cost is convex using the zero-order

definition of convexity given below.

An unconstrained function g is convex if and only if any line segment con-

necting two points on the graph of g lies above its graph. Figure 5.13 illustrates

this definition of a convex function.

124 Linear Regression

5.11 Multi-output regression

Repeat the experiment outlined in Example 5.9. You can use the implementation

described in Section 5.6.3 as a base for your implementation.

5.9 Endnotes

5.9.1 Proof that the Least Squares cost function is always convex

Here we show that the Least Squares cost function for linear regression is always

a convex quadratic. Examining just the pth summand of the Least Squares cost,

we have

±

x̊

T

p

w - y

p

²

2

=

±

x̊

T

p

w - y

p

² ±
x̊

T

p

w - y

p

²

= y

2

p

- 2x̊

T

p

wy

p

+ x̊

T

p

w x̊

T

p

w (5.44)

where we have arranged the terms in increasing order of degree.

Now, since x̊

T

p

w = w

T

x̊

p

we can switch around the first inner-product in the

third term on the right, giving equivalently

y

2

p

- 2x̊

T

p

wy

p

+w

T

x̊

p

x̊

T

p

w. (5.45)

This is only the pth summand. Summing over all the points gives analogously

g (w) =

1

P

P

X

p=1

±

y

2

p

- 2x̊

T

p

wy

p

+ w

T

x̊

p

x̊

T

p

w

²

=

1

P

P

X

p=1

y

2

p

-

2

P

P

X

p=1

y

p

x̊

T

p

w +

1

P

P

X

p=1

w

T

x̊

p

x̊

T

p

w.

(5.46)

From here we can spot that indeed the Least Squares cost function is a quadratic,

since denoting

a =

1

P

∑

P

p=1

y

2

p

b = -

2

P

∑

P

p=1

x̊

p

y

p

C =

1

P

∑

P

p=1

x̊

p

x̊

T

p

(5.47)

we can write the Least Squares cost equivalently as

g (w) = a + b

T

w + w

T

C w. (5.48)

Furthermore, because the matrix C is constructed from a sum of outer-product

matrices it is also convex, since the eigenvalues of such a matrix are always

nonnegative (see Sections 4.1 and 4.2 for further details about convex quadratic

functions of this form).

6 Linear Two-Class Classification

6.1 Introduction

In this chapter we discuss linear two-class classification, another kind of supervised

learning problem (as introduced in Section 1.3.1). At the outset the difference

between classification and regression (detailed in the previous chapter) is quite

subtle: two-class (or binary) classification is the name we give to a supervised

learning problem when the output of a dataset takes on only two discrete values,

often referred to as two classes. Many popular machine learning problems fall

into this category, including face detection (the two classes here include face and

nonface objects) and object detection in general, text-based sentiment analysis

(the two classes here consist of written product reviews ascribing a positive or

negative opinion), automatic diagnosis of medical conditions (the two classes

in this case refer to medical data corresponding to patients who either do or do

not have a specific malady), and more.

This subtle difference is important, and spurs the development of new cost

functions that are better-suited to deal with such data. These new cost functions

are formulated based on a wide array of motivating perspectives including

logistic regression, Perceptron, and Support Vector Machines, which we discuss in

detail. While these perspectives widely differ on the surface they all (as we will

see) reduce to virtually the same essential principle for two-class classification.

As in the prior chapter, here we will also look at metrics that help us determine

the quality of a trained classifier, as well as extensions on the basic concept

(including categorical and weighted two-class classification).

6.2 Logistic Regression and the Cross Entropy Cost

In this section we describe a fundamental framework for linear two-class clas-

sification referred to as logistic regression employing the so-called Cross Entropy

cost function.

126 Linear Two-Class Classification

6.2.1 Notation and modeling

Two-class classification is a particular instance of regression wherein the data

still comes in the form of P input/output pairs

n±

x

p

, y

p

²o

P

p=1

, and each input x

p

is an N-dimensional vector. However, the corresponding output y

p

is no longer

continuous but takes on only two discrete numbers. While the actual value of

these numbers is in principle arbitrary, particular value pairs are more helpful

than others for derivation purposes. In this section we suppose that the output

of our data takes on either the value 0 or+1, i.e., y

p

∈ {0, +1}. Often in the context

of classification the output values y

p

are called labels, and all points sharing the

same label value are referred to as a class of data. Hence a dataset containing

points with label values y

p

∈ {0, +1

}

is said to be a dataset consisting of two

classes.

The simplest way such a dataset can be distributed is on a set of adjacent

steps as illustrated in the top two panels of Figure 6.1 for N = 1 (on the left) and

N = 2 (on the right). Here the bottom step is the region of the space containing

class 0, i.e., all of the points that have label value y

p

= 0. Likewise the top step

contains class 1, i.e., all of the points having label value y

p

= +1. From this

perspective, the problem of two-class classification can be naturally viewed as a

case of nonlinear regression where our goal is to regress (or fit) a nonlinear step

function to the data. We call this the regression perspective on classification.

Alternatively we can change perspective and view the dataset directly from

”above” where we can imagine looking down on the data from a point high up

on the y axis. In other words, we look at the data as if it is projected onto the

y = 0 plane. From this perspective, which is illustrated in the bottom panels of

Figure 6.1, we remove the vertical y dimension of the data and visually represent

the dataset using its input only, displaying the output values of each point by

coloring the points one of two unique colors: we use blue for points with label

y

p

= 0, and red for those having label y

p

= +1. From this second perspective

which we call the perceptron perspective and illustrate in the bottom two panels of

Figure 6.1, the edge separating the two steps (and consequently the data points

on them) when projected onto the input space, takes the form of a single point

when N = 1 (as illustrated in the bottom-left panel) and a line when N = 2

(as illustrated in the bottom-right panel). For general N what separates the two

classes of data will be a hyperplane,

1

which is also called a decision boundary in

the context of classification.

In the current section and the one that follows we focus solely on the regres-

sion perspective on two-class classification. We come back to the Perceptron

perspective again in Section 6.4.

1

A point and a line are special low-dimensional instances of a hyperplane.

6.2 Logistic Regression and the Cross Entropy Cost 127

×

+1

+1

0

one-dimensional input:
decision boundary is a single point

two-dimensional input:
decision boundary is a line

x

x

y

y

x

2

x

2

x

1

x

1

Figure 6.1 Two perspectives on classification illustrated using single-input (left column)

and two-input (right column) toy datasets. The regression perspective shown in the top

panels is equivalent to the perceptron perspective shown in the bottom panels, where

we look at each respective dataset from ”above.” In the Perceptron perspective we also

mark the decision boundary. This is where the step function (colored in yellow in the

top panels) transitions from its bottom to top step. See text for further details.

6.2.2 Fitting a discontinuous step function

Adopting the regression perspective on two-class classification, we might be

tempted at first to simply apply the linear regression framework described in

Chapter 5 to fit such data. We do exactly this in Example 6.1.

Example 6.1 Fitting a linear regressor to classification data

In Figure 6.2 we show a simple two-class dataset where we have fit a line to this

dataset via linear regression (shown in green). The line itself provides a poor

representation of this data since its output takes on just two discrete values. Even

when we pass this fully tuned linear regressor through a discrete step function

by assigning the label +1 to all output values greater than 0.5 and the label 0 to

all output values less than 0.5, the resulting step function (shown in dashed red

in the figure) still provides a less than ideal representation for the data. This is

because the parameters of the (green) line were tuned first (before passing the

resulting model through the step) causing the final step model to fail to properly

identify two of the points on the top step. In the parlance of classification these

types of points are referred to as misclassified points or misclassifications for short.

128 Linear Two-Class Classification

y

x

Figure 6.2 Figure associated with Example 6.1. See text for details.

Example 6.1 hints at the fact that using linear regression outright to represent

classification data is a poor option. Even after passing the resulting linear model

through a step function the result still did not capture the true step function on

which the data of that example lay. Instead of tuning the parameters of a linear

model (performing linear regression) and then passing the result through a step

function, we can in principle do a better job if we tune the parameters of the

linear model after passing it through a step function.

To describe this sort of regression more formally, first recall our notation

(introduced in Section 5.2) for denoting a linear model of N-dimensional input

x̊

T

w = w

0

+ x

1

w

1

+ x

2

w

2

+ · · · + x

N

w

N

(6.1)

where

w =

w

0

w

1

w

2

.

.

.

w

N

and x̊ =

1

x

1

x

2

.

.

.

x

N

. (6.2)

Next, let us denote a step function algebraically as

2

step(t) =

1 if t > 0

0 if t < 0

(6.3)

Shoving our linear model in Equation (6.1) through this gives us a step function

3

step

±

x̊

T

w

²

(6.4)

2

What happens with step (0) is, for our purposes, arbitrary. It can be set to any fixed value or left

undefined as we have done here.

3

Technically, step

±

x̊

T

w - 0.5

²

is the function that maps output values x̊

T

w greater (smaller) than

0.5 to 1 (0). However, we can fuse the constant -0.5 into the bias weight w

0

by rewriting it as

w

0

←- w

0

- 0.5 (after all it is a parameter that must be learned) so that the step function can be

expressed more compactly, as is done in Equation (6.4).

6.2 Logistic Regression and the Cross Entropy Cost 129

with a linear decision boundary between its lower and upper steps, defined by all

points x̊ where x̊

T

w = 0. Any input lying exactly on the decision boundary can

be assigned a label at random.

To tune the weight vector w properly we can (once again, as with linear

regression in Chapter 5) set up a Least Squares cost function by reflecting on

the sort of ideal relationship we want to find between the input and output of

our dataset. Ideally, we want the point

±

x

p

, y

p

²

to lie on the correct side of the

optimal decision boundary or, in other words, the output y

p

to lie on the proper

step. Expressed algebraically, this ideal desire can be written as

step

±

x̊

T

p

w

²

= y

p

p = 1, ..., P. (6.5)

To find weights that satisfy this set of P equalities we form a Least Squares

cost function by squaring the difference between both sides of each equality,

and taking their average

g(w) =

1

P

P

X

p=1

±

step

±

x̊

T

w

²

- y

p

²

2

. (6.6)

Our ideal weights then correspond to a minimizer of this cost function.

Unfortunately it is very difficult (if not impossible) to properly minimize

this Least Squares cost using local optimization, as at virtually every point

the function is completely flat locally (see Example 6.2). This problem, which is

inherited from our use of the step function, renders both gradient descent and

Newton’s method ineffective, since both methods immediately halt at flat areas

of a cost function.

Example 6.2 Visual inspection of classification cost functions

In the left panel of Figure 6.3 we plot the Least Squares cost function in Equation

(6.6) for the dataset shown previously in Figure 6.2, over a wide range of values

of its two parameters w

0

and w

1

. This Least Squares surface consists of discrete

steps at many different levels, and each step is completely flat. Because of this

local optimization methods (like those detailed in Chapters 2–4) cannot not be

used to effectively minimize it.

In the middle and right panels of Figure 6.3 we plot the surfaces of two

related cost functions over the same dataset. In the following we introduce the

cost function shown in the middle panel in Figure 6.3, and the cost in the right

panel in Figure 6.3. Both are far superior, in terms of our ability to properly

minimize them, than the step-based Least Squares cost function shown on the

left.

130 Linear Two-Class Classification

w

0

w

1

w

0

w

0

w

1

w

1

Figure 6.3 Figure associated with Example 6.2. See text for details.

6.2.3 The logistic sigmoid function

To make the minimization of the Least Squares cost possible we can replace the

step function in Equation (6.6) with a continuous approximation that matches it

closely. The logistic sigmoid function

σ (x) =

1

1 + e

-x

(6.7)

is such an approximation. In Figure 6.4 we plot this function (left panel) as well

as several internally weighted versions of it (right panel). As we can see for

the correct setting of internal weights the logistic sigmoid can be made to look

arbitrarily similar to the step function.

x

σ(x) σ(wx)

x

Figure 6.4 (left panel) Plot of the sigmoid function σ(x). (right panel) By increasing the

weight w in σ(wx) from w = 1 (shown in red) to w = 2 (shown in green) and finally to

w = 10 (shown in blue), the internally weighted version of the sigmoid function

becomes an increasingly good approximator of the step function.

6.2 Logistic Regression and the Cross Entropy Cost 131

6.2.4 Logistic regression using the Least Squares cost

Swapping out the step function with its sigmoid approximation in Equation

(6.5) gives the related set of approximate equalities we desire to hold

σ

±

x̊

T

p

w

²

≈ y

p

p = 1, ..., P (6.8)

as well as the corresponding Least Squares cost function

g (w) =

1

P

P

X

p=1

±

σ

±

x̊

T

w

²

- y

p

²

2

. (6.9)

Fitting a logistic sigmoid to classification data by minimizing this cost function

is often referred to as performing logistic regression.

4

While the resulting cost

function is generally nonconvex, it can be properly minimized nonetheless using

a host of local optimization techniques.

Example 6.3 Using normalized gradient descent

In Figure 6.5 we show how normalized gradient descent (a slight variation on

the standard gradient descent algorithm outlined in Chapter 3, see Appendix

Section A.3 for further details) can be used to minimize the Least Squares cost in

Equation (6.9) over the dataset first shown in Figure 6.2. Here a of run normalized

gradient descent was performed, initialized at the point w

0

= -w

1

= 20. Plotted

in the left panel is the sigmoidal fit provided by properly minimizing the Least

Squares cost. In the right panel a contour plot of the cost function is shown with

the (normalized) gradient descent path colored green to red as the run progresses

towards the cost function’s minimizer. A surface plot of this cost function (in

three dimensions) is shown in the middle panel of Figure 6.3. Although this cost

function is very flat in many places, normalized gradient descent is designed

specifically to deal with costs like this (see Section A.3).

6.2.5 Logistic regression using the Cross Entropy cost

The squared error point-wise cost g

p

(

w

)

=

±

σ

±

˚

x

T

p

w

²

- y

p

²

2

that we average over

all P points in the data to form the Least Squares cost in Equation (6.9) is

universally defined, regardless of the values taken by the output by y

p

. However,

because we know that the output we deal with in a two-class classification setting

is limited to the discrete values y

p

∈ {0, 1}, it is reasonable to wonder if we can

create a more appropriate cost customized to deal with just such values.

One such point-wise cost, which we refer to as the log error, is defined as

follows

4

Because we are essentially performing regression using a logistic function.

132 Linear Two-Class Classification

x

w

0

w

1

g(w

0

,w

1

)

y

Figure 6.5 Figure associated with Example 6.3. See text for details.

g

p

(w) =

-log

±

σ

±

x̊

T

p

w

²²

if y

p

= 1

-log

±

1 - σ

±

x̊

T

p

w

²²

if y

p

= 0.

(6.10)

First, notice that this point-wise cost is always nonnegative (regardless of the

input and weight values) with a minimum

5

value of 0.

Secondly, notice how this log error cost penalizes violations of our desired

(approximate) equalities in Equation (6.8) much more harshly than a squared

error does, as can be seen in Figure 6.6 where both are plotted for comparison.

σ(x̊

T

p

w)

g

p

(w)

Figure 6.6 Visual comparison of the squared error (in blue) and the log error (in red) for

two cases: y

p

= 0 (solid curves) and y

p

= 1 (dashed curves). In both cases the log error

penalizes deviation from the true label value to a greater extent than the squared error.

Finally, notice that since our label values y

p

∈ {0,1} we can write the log error

in Equation (6.10) equivalently in a single line as

g

p

(w) = -y

p

log

±

σ

±

x̊

T

p

w

²²

-

±

1 - y

p

²

log

±

1 - σ

±

x̊

T

p

w

²²

. (6.11)

5

Technically, an infimum.

6.2 Logistic Regression and the Cross Entropy Cost 133

This equivalent form allows us to write the overall cost function (formed by

taking the average of the point-wise costs over all P data points) as

g

(

w

)

= -

1

P

P

X

p=1

y

p

log

±

σ

±

x̊

T

p

w

²²

+

±

1 - y

p

²

log

±

1 - σ

±

x̊

T

p

w

²²

. (6.12)

This is referred to as the Cross Entropy cost for logistic regression.

6.2.6 Minimizing the Cross Entropy cost

The right panel of Figure 6.3 shows the surface of the Cross Entropy cost taken

over the dataset shown in Figure 6.2. That the plotted surface looks convex is

not accidental. Indeed (unlike Least Squares) the Cross Entropy cost is always

convex regardless of the dataset used (see chapter’s exercises). This means that

a wider variety of local optimization schemes can be used to properly minimize

it (compared to the generally nonconvex sigmoid-based Least Squares cost)

including standard gradient descent schemes (see Section 3.5) and second-order

Newton’s methods (see Section 4.3). For this reason the Cross Entropy cost is

very often used in practice to perform logistic regression.

Example 6.4 Minimizing the Cross Entropy logistic regression

In this example we repeat the experiments of Example 6.3 using (instead) the

Cross Entropy cost and standard gradient descent, initialized at the point w

0

= 3

and w

1

= 3. The left panel of Figure 6.7 shows the sigmoidal fit provided by

properly minimizing the Cross Entropy cost. In the right panel a contour plot of

the cost function is shown with the gradient descent path colored green to red

as the run progresses towards the cost’s minimizer. A surface plot of this cost

function is shown in the right panel of Figure 6.3.

x

w

0

g(w

0

,w

1

)

y w

1

Figure 6.7 Figure associated with Example 6.4. See text for details.

134 Linear Two-Class Classification

6.2.7 Python implementation

We can implement the Cross Entropy costs very similarly to the way we did

the Least Squares cost for linear regression (see Section 5.2.4) breaking down

our implementation into a linear model and the error function itself. Our linear

model takes in both an appended input point x̊

p

and a set of weights w

model

±

x

p

,w

²

= x̊

T

p

w (6.13)

which we can still implement as shown below.

1 # compute linear combination of input point

2 def model(x,w):

3 a = w[0] + np.dot(x.T,w[1:])

4 return a.T

We can then implement the Cross Entropy cost using the log error in Equation

(6.10) as shown below.

1 # define sigmoid function

2 def sigmoid(t):

3 return 1/(1 + np.exp(-t))

4

5 # the convex cross-entropy cost function

6 def cross_entropy(w):

7 # compute sigmoid of model

8 a = sigmoid(model(x,w))

9

10 # compute cost of label 0 points

11 ind = np.argwhere(y == 0)[:,1]

12 cost = -np.sum(np.log(1 - a[:,ind]))

13

14 # add cost on label 1 points

15 ind = np.argwhere(y==1)[: ,1]

16 cost -= np.sum(np.log(a[:,ind]))

17

18 # compute cross-entropy

19 return cost/y.size

To minimize this cost we can use virtually any local optimization method

detailed in Chapters 2–4. For first- and second-order methods (e.g., gradient

descent and Newton’s method schemes) an autograd (see Section 3.4) can be

used to automatically compute its gradient and Hessian.

Alternatively, one can indeed compute the gradient and Hessian of the Cross

Entropy cost in closed form, and implement them directly. Using the simple

derivative rules outlined in Section B.3 the gradient can be computed as

6.3 Logistic Regression and the Softmax Cost 135

∇g

(

w

)

= -

1

P

P

X

p=1

±

y

p

- σ

±

x̊

T

p

w

²²

x̊

p

. (6.14)

In addition to employing Newton’s method ”by hand” one can hand compute

the Hessian of the Cross Entropy function as

∇

2

g (w) =

1

P

P

X

p=1

σ

±

x̊

T

p

w

² ±
1 - σ

±

x̊

T

p

w

²²

x̊

p

x̊

T

p

. (6.15)

6.3 Logistic Regression and the Softmax Cost

In the previous section we saw how to derive logistic regression when employ-

ing label values y

p

∈ {0, 1}. However, as mentioned earlier, these label values

are arbitrary, and one can derive logistic regression using a different set of label

values, e.g., y

p

∈ {-1,+1}. In this brief section we do just this, tracing out entirely

similar steps to what we have seen previously, resulting in new cost function

called the Softmax cost for logistic regression. While the Softmax differs in form

algebraically, it is in fact equivalent to the Cross Entropy cost. However, con-

ceptually speaking the Softmax cost is considerably valuable, since it allows us

to sew together the many different perspectives on two-class classification into

a single coherent idea, as we will see in the sections that follow.

6.3.1 Different labels, same story

If we change the label values from y

p

∈ {0, 1} to y

p

∈ {-1, +1} much of the

story we saw unfold previously unfolds here as well. That is, instead of our

data ideally sitting on a step function with lower and upper steps taking on the

values 0 and 1 respectively, they take on values -1 and +1 as shown in Figure

6.8 for prototypical cases where N = 1 (left panel) and N = 2 (right panel).

This particular step function is called a sign function, since it returns the

numerical sign of its input

sign(x) =

+1 if x > 0

-1 if x < 0

. (6.16)

Shoving a linear model through the sign function gives us a step function

sign

±

x̊

T

w

²

(6.17)

with a linear decision boundary between its two steps defined by all points

x̊ where x̊

T

w = 0. Any input lying exactly on the decision boundary can be

136 Linear Two-Class Classification

×

+1

+1

one-dimensional input:
decision boundary is a single point

two-dimensional input:
decision boundary is a line

x

x

y y

x

2

x

2

x

1

x

1

+1

+1

Figure 6.8 The analogous setup to Figure 6.1, only here we use label values

y

p

∈ {-1, +1}.

assigned a label at random. A point is classified correctly when its true label is

predicted correctly, that is when sign

±

x̊

T

p

w

²

= y

p

. Otherwise, it is said to have

been mislcassified.

As when using label values y

p

∈ {0,1}, we can again attempt to form a Least

Squares cost using the sign function. However, just as with the original step-

based Least Squares in Equation (6.6) this too would be completely flat almost

everywhere, and therefore extremely difficult to minimize properly.

Akin to what we did previously, we can look to replace the discontinuous

sign (·) function with a smooth approximation: a slightly adjusted version of the

logistic sigmoid function so that its values range between -1 and 1 (instead of 0

and 1). This scaled version of the sigmoid, called the hyperbolic tangent function,

is written as

tanh(x) = 2 σ (x) - 1 =

2

1 + e

-x

- 1. (6.18)

Given that the sigmoid function σ

(

·

) ranges smoothly between 0 and 1, it is easy

to see why tanh (·) ranges smoothly between -1 and +1.

Analogous to the Least Squares cost in Equation (6.9), we can form a Least

Squares cost for recovering optimal model weights using the tanh (·) function

g(w) =

1

P

P

X

p=1

±

tanh

±

x̊

T

p

w

²

- y

p

²

2

(6.19)

6.3 Logistic Regression and the Softmax Cost 137

which is likewise nonconvex with undesirable flat regions, requiring specialized

local methods for its proper minimization (see Example 6.3).

As with 0/1 labels here too we can employ the point-wise log error cost

g

p

(w) =

-log

±

σ

±

x̊

T

p

w

²²

if y

p

= +1

-log

±

1 - σ

±

x̊

T

p

w

²²

if y

p

= -1

(6.20)

which we can then use to form the so-called Softmax cost for logistic regression

g (w) =

1

P

P

X

p=1

g

p

(w) . (6.21)

As with the Cross Entropy cost it is far more common to express the Softmax

cost differently by re-writing the log error in a equivalent way as follows. First,

notice that because 1-σ (x) = σ(-x) the point-wise cost in Equation (6.20) can be

rewritten equivalently as -log

±

σ

±

-x̊

T

w

²²

and so the point-wise cost function

can be written as

g

p

(w) =

-log

±

σ

±

x̊

T

p

w

²²

if y

p

= +1

-log

±

σ

±

-x̊

T

p

w

²²

if y

p

= -1.

(6.22)

Now notice, because of the particular choice of label values we are using here,

i.e., y

p

∈ {-1, +1

}

, that we can move the label value in each case inside the inner

most parentheses, and write both cases in a single line as

g

p

(w) = -log

±

σ

±

y

p

x̊

T

p

w

²²

. (6.23)

Finally, since -log (x) = log

±

1

x

²

, we can write the point-wise cost in Equation

(6.23) equivalently (using the definition of the sigmoid) as

g

p

(w) = log

±

1 + e

-y

p

x̊

T

p

w

²

. (6.24)

Substituting this form of the point-wise log error function into Equation (6.21)

we have a more common appearance of the Softmax cost for logistic regression

g(w) =

1

P

P

X

p=1

log

±

1 + e

-y

p

x̊

T

p

w

²

. (6.25)

This cost function, like the Cross Entropy cost detailed in the previous Sec-

tion, is always convex regardless of the dataset used (see chapter’s exercises).

Moreover, as we can see here by its derivation, the Softmax and Cross Entropy

cost functions are completely equivalent (upon change of label value y

p

= -1 to

y

p

= 0 and vice versa), having been built using the same point-wise log error

cost function.

138 Linear Two-Class Classification

x

w

0

w

1

g(w

0

,w

1

)

y

Figure 6.9 Figure associated with Example 6.5. See text for details.

6.3.2 Python implementation

If we express the Softmax cost using the log error as in Equation (6.21), then we

can implement it almost entirely the same way we did with the Cross Entropy

cost as shown in Section 6.2.7.

To implement the Softmax cost as shown in Equation (6.25) we first implement

the linear model, which takes in both an appended input point x̊

p

and a set of

weights w as

model

±

x

p

, w

²

= x̊

T

p

w . (6.26)

With this notation for our model, the corresponding Softmax cost can be written

as

g(w) =

1

P

P

X

p=1

log

±

1 + e

-y

p

model

(

x

p

,w

)

²

.

We can then implement the cost in chunks – first the model function below

precisely as we did with linear regression (see Section 5.2.4).

Example 6.5 Minimizing Softmax logistic regression using standard gradi-

ent descent

In this example we repeat the experiments of Example 6.4, swapping out labels

y

p

= 0 with y

p

= -1, to form the Softmax cost and use gradient descent (with

the same initial point, steplength parameter, and number of iterations) for its

minimization. The results are shown in Figure 6.9.

6.3 Logistic Regression and the Softmax Cost 139

1 # compute linear combination of input point

2 def model(x,w):

3 a = w[0] + np.dot(x.T,w[1:])

4 return a.T

We can then implement the Softmax cost as shown below.

1 # the convex softmax cost function

2 def softmax(w):

3 cost = np.sum(np.log(1 + np.exp(-y*model(x,w))))

4 return cost/float(np.size(y))

As alternative to using an automatic differentiator (which we use by default

– employing autograd (see Section 3.4), one can perform gradient descent and

Newton’s method here by hand computing the gradient and Hessian of the

Softmax cost function. Using the simple derivative rules outlined in Section B.3

gradient can be computed as

6

∇g

(

w

)

= -

1

P

P

X

p=1

e

-y

p

x̊

T

p

w

1 + e

-y

p

x̊

T

p

w

y

p

x̊

p

. (6.27)

In addition to employ Newton’s method ”by hand” one can hand compute the

Hessian of the Softmax function as

∇

2

g (w) =

1

P

P

X

p=1

°

1

1 + e

y

p

x̊

T

p

w

! °
1 -

1

1 + e

y

p

x̊

T

p

w

!

x̊

p

x̊

T

p

. (6.28)

6.3.3 Noisy classification datasets

The discrete nature of the output in classification makes the concepts of noise

and noisy data different in linear classification than we saw previously with

linear regression in Chapter 5. As described there, in the case of linear regres-

sion, noise causes the data to not fall precisely on a single line (or hyperplane

in higher dimensions). With linear two-class classification, noise manifests itself

in our inability to find a single line (or hyperplane in higher dimensions) to

separate the two classes of data. Figure 6.10 shows such a noisy classification

dataset consisting of P = 100 points, whose two classes can be separated by a

6

One can express the gradient algebraically in several ways. However, writing the gradient in

this way helps avoid numerical problems associated with using the exponential function on a

modern computer. This is due to the exponential ”overflowing” with large exponents, e.g., e

1000

,

as these numbers are too large to store explicitly on the computer and so are represented

symbolically as ∞. This becomes a problem when evaluating

e

1000

1+e

1000

which, although basically

equal to the value 1, is thought of by the computer to be a NaN (not a number).

140 Linear Two-Class Classification

x

1

x

2

y

x

1

x

2

Figure 6.10 A two-class classification dataset viewed from the regression perspective on

the left and from the perceptron perspective on the right, with three noisy data points

pointed to by small arrows. See text for further details.

line but not perfectly. The left panel of this figure shows the data in three dimen-

sions (viewed from a regression perspective) along with the trained classifier: a

three-dimensional hyperbolic tangent function. The right panel shows the same

dataset in two dimensions (viewed from a perceptron perspective) along with

the learned linear decision boundary. Here the two half-spaces created by the

decision boundary are also colored (light blue and light red) according to the

class confined within each. As you can see, there are three points in this case

(two blue points and one red point) that look like they are on the wrong side

of our classifier. Such noisy points are often misclassified by a trained classifier,

meaning that their true label value will not be correctly predicted. Two-class

classification datasets typically have noise of this kind, and thus are not often

perfectly separable by a linear decision boundary.

6.4 The Perceptron

As we have seen with logistic regression in the previous section, we treat classifi-

cation as a particular form of nonlinear regression (employing – with the choice

of label values y

p

∈ {-1,+1

}

– a tanh nonlinearity). This results in the learning

of a proper nonlinear regressor, and a corresponding linear decision boundary

x̊

T

w = 0. (6.29)

Instead of learning this decision boundary as a result of a nonlinear regres-

sion, the Perceptron derivation described in this section aims at determining

this ideal linear decision boundary directly. While we will see how this direct

approach leads back to the Softmax cost function, and that practically speaking

6.4 The Perceptron 141

x

1

x

2

x̊

T

w = 0

x̊

T

w = 0

x

1

x

2

Figure 6.11 With the Perceptron we aim to directly learn the linear decision boundary

x̊

T

w = 0 (shown here in black) to separate two classes of data, colored red (class +1)

and blue (class -1), by dividing the input space into a red half-space where x̊

T

w > 0,

and a blue half-space where x̊

T

w < 0. (left panel) A linearly separable dataset where it

is possible to learn a hyperplane to perfectly separate the two classes. (right panel) A

dataset with two overlapping classes. Although the distribution of data does not allow

for perfect linear separation, the Perceptron still aims to find a hyperplane that

minimizes the number of misclassified points that end up in the wrong half-space.

the Perceptron and logistic regression often result in learning the same linear deci-

sion boundary, the Perceptron’s focus on learning the decision boundary directly

provides a valuable new perspective on the process of two-class classification.

In particular – as we will see here – the Perceptron provides a simple geometric

context for introducing the important concept of regularization (an idea we will

see arise in various forms throughout the remainder of the text).

6.4.1 The Perceptron cost function

As we saw in the previous section with our discussion of logistic regression

(where our output/label values y

p

∈ {-1, +1}), in the simplest instance our two

classes of data are largely separated by a linear decision boundary given by the

collection of input x where x̊

T

w = 0, with each class (mostly) lying on either

side. This decision boundary is a point when the dimension of the input is N = 1,

a line when N = 2, and is more generally for arbitrary N a hyperplane defined in

the input space of a dataset.

This classification scenario can be best visualized in the case N = 2, where we

view the problem of classification ”from above” – showing the input of a dataset

colored to denote class membership. The default coloring scheme we use here –

matching the scheme used in the previous section – is to color points with label

y

p

= -1 blue and y

p

= +1 red. The linear decision boundary is here a line that

best separates points from the y

p

= -1 class from those of the y

p

= +1 class, as

shown for a prototypical dataset in Figure 6.11.

142 Linear Two-Class Classification

The linear decision boundary cuts the input space into two half-spaces, one

lying ”above” the hyperplane where x̊

T

w > 0, and one lying ”below” it where

x̊

T

w < 0. Notice then, as depicted visually in Figure 6.11, that a proper set of

weights w define a linear decision boundary that separates a two-class dataset

as well as possible with as many members of one class as possible lying above

it, and likewise as many members as possible of the other class lying below it.

Because we can always flip the orientation of an ideal hyperplane by multiplying

it by -1 (or likewise because we can always swap our two label values) we

can say in general that when the weights of a hyperplane are tuned properly

members of the class y

p

= +1 lie (mostly) ”above” it, while members of the

y

p

= -1 class lie (mostly) ”below” it. In other words, our desired set of weights

define a hyperplane where as often as possible we have that

x̊

T

p

w > 0 if y

p

= +1

x̊

T

p

w < 0 if y

p

= -1.

(6.30)

Because of our choice of label values we can consolidate the ideal conditions

above into the single equation below

- y

p

x̊

T

p

w < 0. (6.31)

Again we can do so specifically because we chose the label values y

p

∈ {-1,+1}.

Likewise by taking the maximum of this quantity and zero we can then write

this ideal condition, which states that a hyperplane correctly classifies the point

x

p

, equivalently forming a point-wise cost

g

p

(w) = max

±

0, -y

p

x̊

T

p

w

²

= 0. (6.32)

Note that the expression max

±

0,-y

p

x̊

T

p

w

²

is always nonnegative, since it

returns zero if x

p

is classified correctly, and returns a positive value if the point

is classified incorrectly. The functional form of this point-wise cost max (0, ·) is

often called a rectified linear unit for historical reasons (see Section 13.3). Because

these point-wise costs are nonnegative and equal to zero when our weights are

tuned correctly, we can take their average over the entire dataset to form a

proper cost function as

g

(

w

)

=

1

P

P

X

p=1

max

±

0, -y

p

x̊

T

p

w

²

. (6.33)

When minimized appropriately this cost function can be used to recover the

ideal weights satisfying the desired equations above as often as possible.

6.4 The Perceptron 143

6.4.2 Minimizing the Perceptron cost

This cost function goes by many names such as the Perceptron cost, the rectified

linear unit cost (or ReLU cost for short), and the hinge cost (since when plotted a

ReLU function looks like a hinge – see Figure 6.12). This cost function is always

convex but only has a single (discontinuous) derivative in each input dimen-

sion. This implies that we can only use zero- and first-order local optimization

schemes (but not Newton’s method). Note that the Perceptron cost always has a

trivial solution at w = 0, since indeed g (0) = 0, thus one may need to take care

in practice to avoid finding it (or a point too close to it) accidentally.

6.4.3 The Softmax approximation to the Perceptron

Here we describe a common approach to ameliorating the optimization is-

sues detailed above concerning the Perceptron cost. Somewhat akin to our re-

placement of the discrete step function with a smooth approximating sigmoid

function in previous sections, here we replace the max function portion of the

Perceptron cost with a smooth (or at least twice differentiable) alternative that

closely matches it everywhere. We do this via the Softmax function defined as

soft (s

0

, s

1

, ..., s

C-1

) = log (e

s

0

+ e

s

1

+ · · · + e

s

C-1

) (6.34)

where s

0

, s

1

, ..., s

C-1

are any C scalar values – which is a generic smooth approx-

imation to the max function, i.e.,

soft (s

0

, s

1

, ..., s

C-1

) ≈ max (s

0

, s

1

, ..., s

C-1

) . (6.35)

To see why the Softmax approximates the max function let us look at the sim-

ple case when C = 2. Suppose momentarily that s

0

≤ s

1

, so that max (s

0

, s

1

) = s

1

.

Therefore max (s

0

, s

1

) can be written as max (s

0

, s

1

) = s

0

+ (s

1

- s

0

), or equiv-

alently as max (s

0

, s

1

) = log (e

s

0

) + log (e

s

1

-s

0

). Written in this way we can see

that log (e

s

0

)

+ log (1+ e

s

1

-s

0

)

= log (e

s

0

+ e

s

1

)

= soft (s

0

, s

1

) is always larger than

max (s

0

, s

1

) but not by much, especially when

e

s

1

-s

0

± 1. Since the same argu-

ment can be made if s

0

≥ s

1

we can say generally that soft (s

0

, s

1

) ≈ max (s

0

, s

1

).

The more general case follows similarly as well.

Returning to the Perceptron cost function in Equation (6.33), we replace the

pth summand with its Softmax approximation making our point-wise cost

g

p

(w) = soft

±

0,-y

p

x̊

T

p

w

²

= log

±

e

0

+ e

-y

p

x̊

T

p

w

²

= log

±

1 + e

-y

p

x̊

T

p

w

²

(6.36)

giving the overall cost function as

g (w) =

P

X

p=1

log

±

1 + e

-y

p

x̊

T

p

w

²

(6.37)

144 Linear Two-Class Classification

s

g(s)

Figure 6.12 Plots of the Perceptron g

(

s

)

= max (0, s

) (shown in green) as well as its

smooth Softmax approximation g (s) = soft (0, s) = log (1 + e

s

) (shown in dashed black).

which is the Softmax cost we saw previously derived from the logistic regression

perspective on two-class classification. This is why the cost function is called

Softmax, since it derives from the general Softmax approximation to the max

function.

Note that like the Perceptron cost – as we already know – the Softmax cost

is convex. However, unlike the Perceptron cost, the Softmax cost has infinitely

many derivatives and Newton’s method can therefore be used to minimize it.

Moreover, it does not have a trivial solution at zero like the Perceptron cost

does. Nonetheless, the fact that the Softmax cost so closely approximates the

Perceptron shows just how closely aligned – in the end – both logistic regression

and the Perceptron perspectives on classification truly are. Practically speaking

their differences lie in how well – for a particular dataset – one can optimize

either cost function, along with (what is very often slight) differences in the

quality of each cost function’s learned decision boundary. Of course when the

Softmax is employed from the Perceptron perspective there is no qualitative

difference between the Perceptron and logistic regression at all.

6.4.4 The Softmax cost and linearly separable datasets

Imagine that we have a dataset whose two classes can be perfectly separated

by a hyperplane, and that we have chosen an appropriate cost function to

minimize it in order to determine proper weights for our model. Imagine further

that we are extremely lucky and our initialization w

0

produces a linear decision

boundary x̊

T

w

0

= 0 with perfect separation. This means, according to Equation

(6.31), that for each of our P points we have that -y

p

x̊

T

p

w

0

< 0 and likewise that

the point-wise Perceptron cost in Equation (6.33) is zero for every point, i.e.,

g

p

±

w

0

²

= max

±

0, -y

p

x̊

T

p

w

0

²

= 0 and so the Perceptron cost in Equation 6.33 is

exactly equal to zero.

Since the Perceptron cost value is already zero, its lowest value, any local

optimization algorithm will halt immediately (that is, we would never take a

6.4 The Perceptron 145

single optimization step). However, this will not be the case if we used the same

initialization but employed the Softmax cost instead of the Perceptron.

Since we always have that e

-y

p

x̊

T

p

w

0

> 0, the Softmax point-wise cost is always

nonnegative g

p

±

w

0

²

= log

±

1+ e

-y

p

x̊

T

p

w

0

²

> 0 and hence too the Softmax cost. This

means that in applying any local optimization scheme like, e.g., gradient descent

we will indeed take steps away from the initialization w

0

in order to drive the

value of the Softmax cost lower and lower towards its minimum at zero. In fact

– with data that is indeed linearly separable – the Softmax cost achieves this

lower bound only when the magnitude of the weights grows to infinity. This is clear

from the fact that each individual term log

±

1 + e

-C

²

= 0 only as C -→ ∞. Indeed

if we multiply our initialization w

0

by any constant C > 1 we can decrease the

value of any negative exponential involving one of our data points since e

-C

< 1

and so e

-y

p

x̊

T

p

Cw

0

= e

-C

e

-y

p

x̊

T

p

w

0

< e

-y

p

x̊

T

p

w

0

.

This likewise decreases the Softmax cost as well with the minimum achieved

only as C -→ ∞. However, importantly, regardless of the scalar C > 1 value

involved the decision boundary defined by the initial weights x̊

T

w

0

= 0 does

not change location, since we still have that C x̊

T

w

0

= 0 (indeed this is true for

any nonzero scalar C). So even though the location of the separating hyperplane

need not change, with the Softmax cost we still take more and more steps in

minimization since (in the case of perfectly linearly separable data) its minimum

lies off at infinity. This fact can cause severe numerical instability issues with

local optimization schemes that make large progress at each step – particularly

Newton’s method (see Section 4.3) – since they will tend to rapidly diverge to

infinity.

7

Example 6.6 Perfectly separable data and the Softmax cost

In applying Newton’s method to minimize the Softmax cost over perfectly

linearly separable data, it is easy to run into numerical instability issues as

the global minimum of the cost technically lies at infinity. Here we examine a

simple instance of this behavior using the single input dataset shown Figure

6.9. In the top row of Figure 6.13 we illustrate the progress of five Newton

steps in beginning at the point w =

"

1

1

#

. Within five steps we have reached a

point providing a very good fit to the data (in the top-left panel of the figure

we plot the tanh (·) fit using the logistic regression perspective on the Softmax

cost), and one that is already quite large in magnitude (as can be seen in the

top-right panel of the figure, where the contour plot of the cost function is

shown). We can see here by the trajectory of the steps in the right panel, which

are traveling linearly towards the minimum out at

"

-∞

∞

#

, that the location of

7

Notice: because the Softmax and Cross Entropy costs are equivalent (as discussed in the

previous section), this issue equally presents itself when using the Cross Entropy cost as well.

146 Linear Two-Class Classification

the linear decision boundary (here a point) is not changing after the first step

or two. In other words, after the first few steps each subsequent step is simply

multiplying its predecessor by a scalar value C > 1.

x

w

0

w

1

g(w

0

,w

1

)

y

Figure 6.13 (top row) Figure associated with Example 6.6. See text for details.

Notice that if we simply flip one of the labels – making this dataset not

perfectly linearly separable – the corresponding cost function does not have a

global minimum out at infinity, as illustrated in the contour plot shown in the

bottom row of Figure 6.13.

6.4.5 Normalizing feature-touching weights

How can we prevent this potential problem – of the weights learned via local op-

timization (and Newton’s method in particular) shooting off to infinity – when

employing the Softmax/Cross Entropy cost with perfectly linearly separable

data? One simple approach would be simply to employ our local optimization

schemes more carefully – by taking fewer steps and/or halting optimization if

the magnitude of the weights grows larger than a large predefined constant.

Another approach is to control the magnitude of the weights during the op-

timization procedure itself. Both approaches are generally referred to in the

jargon of machine learning as regularization strategies (described in great detail

in Section 11.6). The former strategy (a form of what is called early stopping)

is straightforward, requiring slight adjustments to the way we have typically

employed local optimization, but the latter approach requires some further ex-

planation which we now provide.

To control the magnitude of w means that we want to control the size of the

N + 1 individual weights it contains

6.4 The Perceptron 147

w =

w

0

w

1

.

.

.

w

N

. (6.38)

We can do this by directly controlling the size of just N of these weights, and it

is particularly convenient to do so using the final N feature-touching weights

w

1

, w

2

, ...,w
N

because these define the normal vector to the linear decision bound-

ary x̊

T

w = 0. To more easily introduce the geometric concepts that follow we

will use our bias/feature weight notation for w first introduced in Section 5.2.4.

This provides us with individual notation for the bias and feature-touching

weights as

(bias): b = w

0

(feature-touching weights): ω =

w

1

w

2

.

.

.

w

N

. (6.39)

With this notation we can express a linear decision boundary as

x̊

T

w = b+ x

T

ω = 0. (6.40)

To see why this notation is useful, first note how, geometrically speaking,

the feature-touching weights ω define the normal vector of the linear decision

boundary. The normal vector to a hyperplane (like our decision boundary) is

always perpendicular to it, as illustrated in Figure 6.14. We can always compute

the error – also called the signed distance – of a point x

p

to a linear decision

boundary in terms of the normal vectorω.

To see how this is possible, imagine we have a point x

p

lying ”above” the linear

decision boundary on a translate of the decision boundary where b+x

T

ω = β > 0,

as illustrated in the Figure 6.14 (the same simple argument that follows can be

made if x

p

lies ”below” it as well). To compute the distance of x

p

to the decision

boundary imagine we know the location of its vertical projection onto the decision

boundary, which will call x

0

p

. To compute our desired error we want to compute

the signed distance between x

p

and its vertical projection, i.e., the length of the

vector x

0

p

- x

p

times the sign of β, which here is +1 since we assume the point

lies above the decision boundary, i.e., d =

³

³

³

x

0

p

- x

p

³

³

³

2

sign

(

β

)

=

³

³

³

x

0

p

- x

p

³

³

³

2

. Now,

because this vector is also perpendicular to the decision boundary (and so is parallel

to the normal vectorω) the inner-product rule (see Section C.2) gives

±

x

0

p

- x

p

²

T

ω =

³

³

³

x

0

p

- x

p

³

³

³

2

³

³

³

ω

³

³

³

2

= d

³

³

³

ω

³

³

³

2

. (6.41)

148 Linear Two-Class Classification

d

b+ x

T

! = 0

b+ x

T

! = β

!

x

p

x

0

p

Figure 6.14 A linear decision boundary written as b+ x

T

ω = 0 has a normal vector ω

defined by its feature-touching weights. To compute the signed distance of a point x

p

to

the boundary we mark the translation of the decision boundary passing through this

point as b+ x

T

ω = β, and the projection of the point onto the decision boundary as x

0

p

.

Now if we take the difference between our decision boundary and its trans-

lation evaluated at x

0

p

and x

p

respectively, we have simplifying

β - 0 =

´

b +

±

x

0

p

²

T

ω

µ

-

±

b + x

T

p

ω

²

=

±

x

0

p

- x

p

²

T

ω. (6.42)

Since both formulae are equal to

±

x

0

p

- x

p

²

T

ω we can set them equal to each

other, which gives

d

³

³

³

ω

³

³

³

2

= β (6.43)

or in other words that the signed distance d of x

p

to the decision boundary is

d =

β

³

³

³

ω

³

³

³

2

=

b+ x

T

p

ω

³

³

³

ω

³

³

³

2

. (6.44)

Note that we need not worry dividing by zero here since if the feature-

touching weights ω were all zero, this would imply that the bias b = 0 as

well and we have no decision boundary at all. Also notice, this analysis implies

that if the feature-touching weights have unit length as kωk

2

= 1 then the signed

distance d of a point x

p

to the decision boundary is given simply by its evaluation

b+x

T

p

ω. Finally note that if x

p

were to lie below the decision boundary and β < 0

nothing about the final formulae derived above will change.

We mark this point-to-decision-boundary distance on points in Figure 6.15;

here the input dimension is N = 3 and the decision boundary is a true hyper-

plane.

Remember, as detailed above, we can scale any linear decision boundary by

6.4 The Perceptron 149

b

+

x

T

p

!

k

!

k

2

b

+

x

T

q

!

k!

k

2

x

q

x p

!

b

+

x

T

!

=

0

Figure 6.15 Visual representation of the distance to the hyperplane b+ x

T

ω, of two

points x

p

and x

q

lying above it.

a nonzero scalar C and it still defines the same hyperplane. So if – in particular

– we multiply by C =

1

k

ω

k

2

we have

b + x

T

ω

³

³

³

ω

³

³

³

2

=

b

³

³

³

ω

³

³

³

2

+ x

T

ω

³

³

³

ω

³

³

³

2

= 0. (6.45)

We do not change the nature of our decision boundary and now our feature-

touching weights have unit length as

³

³

³

³

³

ω

k

ω

k

2

³

³

³

³

³

2

= 1. In other words, regardless of

how large our weights wwere to begin with we can always normalize them in

a consistent way by dividing them by the magnitude of ω.

6.4.6 Regularizing two-class classification

The normalization scheme described above is particularly useful in the context

of the technical issue with the Softmax/Cross Entropy highlighted above because

clearly a decision boundary that perfectly separates two classes of data can be

feature-weight normalized to prevent its weights from growing too large (and

diverging to infinity). Of course we do not want to wait to perform this nor-

malization until after we run our local optimization, since this will not prevent

the magnitude of the weights from potentially diverging, but during optimiza-

tion. We can achieve this by constraining the Softmax/Cross Entropy cost so that

feature-touching weights always have length one, i.e., kωk

2

= 1. Formally this

minimization problem (employing the Softmax cost) can be phrased as follows

minimize

b,ω

1

P

P

X

p=1

log

±

1 + e

-y

p

(b+x

T

p

ω)

²

subject to kωk

2

2

= 1.

(6.46)

150 Linear Two-Class Classification

By solving this constrained version of the Softmax cost we can still learn a

decision boundary that perfectly separates two classes of data, but we avoid

divergence in the magnitude of the weights by keeping their magnitude feature-

weight normalized. This formulation can indeed be solved by simple extensions of

the local optimization methods detailed in Chapters 2–4. However, a more pop-

ular approach in the machine learning community is to ”relax” this constrained

formulation and instead solve the highly related unconstrained regularized ver-

sion of the original Softmax cost. This relaxed form of the problem consists in

minimizing a cost function that is a linear combination of our original Softmax

cost and the magnitude of the feature weights

g (b,ω) =

1

P

P

X

p=1

log

±

1 + e

-y

p

(b+x

T

p

ω)

²

+ λ kωk

2

2

(6.47)

which we can minimize using any of our familiar local optimization schemes.

Here the term kωk

2

2

is referred to as a regularizer, and the parameterλ ≥ 0 is called

a regularization parameter. The parameter λ is used to balance how strongly we

pressure one term or the other in minimizing their sum. In minimizing the first

term, our Softmax cost, we are still looking to learn an excellent linear decision

boundary. In also minimizing the second term, the magnitude of the feature-

touching weights, we incentivize the learning of small weights. This prevents

the divergence of their magnitude since if their size does start to grow our entire

cost function ”suffers” because of it, and becomes large. Because of this the

value of λ is typically chosen to be small (and positive) in practice, although

some fine-tuning can be useful.

Example 6.7 The regularized Softmax cost

Here we repeat the experiment of described in Example 6.6, but add a regularizer

with λ = 10

-3

to the Softmax cost as in Equation (6.47). In the right panel of

Figure 6.16 we show the contour plot of the regularized cost, and we can see that

its global minimum no longer lies at infinity. However, we still learn a perfect

decision boundary as illustrated in the left panel by a tightly fitting tanh (·

)

function.

6.5 Support Vector Machines

In this section we describe Support Vector Machines [18], or SVMs for short. This

approach provides interesting theoretical insight into the two-class classification

process – particularly under the assumption that the data is perfectly linearly

separable. However, we will see that in the more realistic scenario when data is

6.5 Support Vector Machines 151

x

w

0

w

1

g(w

0

,w

1

)

y

Figure 6.16 Figure associated with Example 6.7. See text for details.

not perfectly separable the Support Vector Machines approach does not provide

a learned decision boundary that substantially differs from those provided by

logistic regression or the Perceptron.

6.5.1 The Margin-Perceptron

Suppose once again that we have a two-class classification training dataset of P

points

n±

x

p

, y

p

²o

P

p=1

with the labels y

p

∈ {-1,+1}. Also suppose for the time being

that we are dealing with a two-class dataset that is perfectly linearly separable

with a known linear decision boundary x̊

T

w = 0 like the one illustrated in

Figure 6.17.

x̊

T

w = -1

x̊

T

w = 1

x̊

T

w = 0

buffer zone

margin

Figure 6.17 For linearly separable data the width of the buffer zone (in

gray) confined between two evenly spaced translates of a separating hyperplane that

just touch each respective class, defines the margin of that separating hyperplane.

This separating hyperplane creates a buffer between the two classes confined

between two evenly shifted (equidistant) versions of itself: one version that lies

on the positive side of the separator and just touches the class having labels

152 Linear Two-Class Classification

y

p

= +1 (colored red) taking the form x̊

T

w = +1, and one lying on the negative

side of it just touching the class with labels y

p

= -1 (colored blue) taking the

form x̊

T

w = -1. The translations above and below the separating hyperplane are

more generally defined as x̊

T

w = +β and x̊

T

w = -β respectively, where β > 0.

However, by dividing off β in both equations and reassigning the variables

as w ←-

w

β

we can leave out the redundant parameter β and have the two

translations as stated x̊

T

w = ²1.

The fact that all points in the +1 class lie exactly on or on the positive side of

x̊

T

w = +1, and all points in the -1 class lie exactly on or on the negative side of

x̊

T

w = -1 can be written formally as the following conditions

x̊

T

w ≥ 1 if y

p

= +1

x̊

T

w ≤ -1 if y

p

= -1

(6.48)

which is a generalization of the conditions which led to the Perceptron cost in

Equation (6.30).

We can combine these conditions into a single statement by multiplying each

by their respective label values, giving the single inequality y

p

x̊

T

w ≥ 1 which

can be equivalently written as a point-wise cost

g

p

(w) = max

±

0, 1 - y

p

x̊

T

w

²

= 0. (6.49)

Again, this value is always nonnegative. Summing up all P equations of the

form above gives the Margin-Perceptron cost

g (w) =

P

X

p=1

max

±

0, 1 - y

p

x̊

T

w

²

. (6.50)

Notice the striking similarity between the original Perceptron cost from the

previous section and the Margin-Perceptron cost above: naively we have just

”added a 1” to the nonzero input of the max function in each summand. How-

ever, this additional 1 prevents the issue of a trivial zero solution with the

original Perceptron discussed previously, which simply does not arise here.

If the data is indeed perfectly linearly separable any hyperplane passing

between the two classes will have parameters wwhere g (w) = 0. However, the

Margin-Perceptron is still a valid cost function even if the data is not linearly

separable. The only difference is that with such a dataset we can not make the

criteria above hold for all points in the dataset. Thus a violation for the pth point

adds the positive value of 1 - y

p

x̊

T

w to the cost function.

6.5.2 Relation to the Softmax cost

As with the Perceptron, we can smooth out the Margin-Perceptron by replacing

the max operator with Softmax (see Section 6.4.3). Doing so in one summand of

the Margin-Perceptron gives the related summand

6.5 Support Vector Machines 153

soft

±

0,1 - y

p

x̊

T

w

²

= log

±

1 + e

1-y

p

x̊

T

w

²

. (6.51)

Right away, if we were to sum over all Pwe could form a Softmax-like cost func-

tion that closely matches the Margin-Perceptron. But note how in the derivation

of the margin Perceptron above the ”1” used in the 1 - y

p

±

x̊

T

w

²

component of

the cost could have been chosen to be any number we desire. Indeed we chose

the value ”1” out of convenience. Instead we could have chosen any value

± > 0 in which case the set of P conditions stated in Equation (6.48) would be

equivalently stated as

max

±

0, ±- y

p

x̊

T

w

²

= 0 (6.52)

for all p and the Margin-Perceptron equivalently stated as

g (w) =

P

X

p=1

max

±

0, ±- y

p

x̊

T

w

²

(6.53)

and, finally, the softmax version of one summand here being

soft

±

0, ± - y

p

x̊

T

w

²

= log

±

1 + e

±-y

p

x̊

T

w

²

. (6.54)

When± is quite small we of course have that log

±

1 + e

±-y

p

x̊

T

w

²

≈ log

±

1 + e

-y

p

x̊

T

w

²

,

the same summand used in the Softmax cost. Thus we can, roughly speaking,

interpret Softmax cost function as a smoothed version of our Margin-Perceptron

cost as well.

6.5.3 Maximum margin decision boundaries

When two classes of data are perfectly linearly separable infinitely many hy-

perplanes perfectly divide up the data. In Figure 6.18 we display two such

hyperplanes for a prototypical perfectly separable dataset. Given that both clas-

sifiers (as well as any other decision boundary perfectly separating the data)

would perfectly classify this dataset, is there one that we can say is the ”best” of

all possible separating hyperplanes?

One reasonable standard for judging the quality of these hyperplanes is via

their margin lengths, that is the distance between the evenly spaced translates

that just touch each class. The larger this distance is the intuitively better the as-

sociated hyperplane separates the entire space given the particular distribution

of the data. This idea is illustrated pictorially in the figure. In this illustration two

separators are shown along with their respective margins. While both perfectly

distinguish between the two classes the green separator (with smaller margin)

divides up the space in a rather awkward fashion given how the data is dis-

tributed, and will therefore tend to more easily misclassify future data points.

154 Linear Two-Class Classification

Figure 6.18 Infinitely many linear decision boundaries can perfectly separate a dataset

like the one shown here, where two linear decision boundaries are shown in green and

black. The decision boundary with the maximum margin – here the one shown in black

– is intuitively the best choice. See text for further details.

On the other hand, the black separator (having a larger margin) divides up the

space more evenly with respect to the given data, and will tend to classify future

points more accurately.

In our venture to recover the maximum margin separating decision boundary,

it will be convenient to use our individual notation for the bias and feature-

touching weights (used in, e.g., Section 6.4.5)

(bias): b = w

0

(feature-touching weights): ω =

w

1

w

2

.

.

.

w

N

. (6.55)

With this notation we can express a linear decision boundary as

x̊

T

w = b + x

T

ω = 0. (6.56)

To find the separating hyperplane with maximum margin we aim to find

a set of parameters so that the region defined by b + x

T

ω = ²1, with each

translate just touching one of the two classes, has the largest possible margin.

As depicted in Figure 6.19 the margin can be determined by calculating the

distance between any two points (one from each translated hyperplane) both

lying on the normal vector ω. Denoting by x

1

and x

2

the points on vector ω

belonging to the positively and negatively translated hyperplanes, respectively,

the margin is computed simply as the length of the line segment connecting x

1

and x

2

, i.e., kx

1

- x

2

k

2

.

The margin can be written much more conveniently by taking the difference

of the two translates evaluated at x

1

and x

2

respectively, as

6.5 Support Vector Machines 155

b+ x

T

!= 1

b+ x

T

! = 0

2

k

!

k

2

!

b + x

T

! = -1

x

1

x

2

Figure 6.19 The margin of a separating hyperplane can be calculated by

measuring the distance between the two points of intersection of the normal vector ω

and the two equidistant translations of the hyperplane. This distance can be shown to

have the value of

2

kωk

2

(see text for further details).

±

w

0

+ x

T

1

w

²

-

±

w

0

+ x

T

2

w

²

=

±

x

1

- x

2

²

T

ω = 2. (6.57)

Using the inner-product rule,

8

and the fact that the two vectors x

1

- x

2

and ω

are parallel to each other, we can solve for the margin directly in terms of ω, as

kx

1

- x

2

k

2

=

2

kωk

2

. (6.58)

Therefore finding the separating hyperplane with maximum margin is equiva-

lent to finding the one with the smallest possible normal vector ω.

6.5.4 The hard-margin and soft-margin SVM problems

In order to find a separating hyperplane for the data with minimum length

normal vector we can simply combine our desire to minimize kωk

2

2

subject to

the constraint (defined by the Margin-Perceptron) that the hyperplane perfectly

separates the data (given by the margin criterion described above). This results

in the so-called hard-margin support vector machine problem

minimize

b,ω

kωk

2

2

subject to max

±

0, 1 - y

p

±

b+ x

T

p

ω

²²

= 0, p = 1, ..., P.

(6.59)

The constraints here guarantee that the hyperplane we recover separates

the data perfectly. While there are constrained optimization algorithms that are

8

Using the inner-product rule (see Section C.2) we have from Equation (6.57) that

2 =

±

x

1

- x

2

²

T

ω =

³

³

³

x

1

- x

2

³

³

³

2

kωk

2

. Rearranging gives the expression shown in Equation (6.58).

156 Linear Two-Class Classification

designed to solve problems like this as stated (see e.g., [14, 15, 19]), we can

also solve the hard-margin problem by relaxing the constraints and forming

an unconstrained formulation of the problem (to which we can apply familiar

algorithmic methods to minimize). This is precisely the regularization approach

detailed previously in Section 6.4.6. To do this we merely bring the constraints

up, forming a single cost function

g (b,ω) =

P

X

p=1

max

±

0, 1 - y

p

±

b + x

T

p

ω

²²

+ λ kωk

2

2

(6.60)

to be minimized. Here the parameter λ ≥ 0 is called a penalty or regularization

parameter (as we saw previously in Section 6.4.6). When λ is set to a small

positive value we put more ”pressure” on the cost function to make sure the

constraints indeed hold, and (in theory) when λ is made very small the formu-

lation above matches the original constrained form. Because of this, λ is often

set to be quite small in practice (the optimal value being the one that results in

the original constraints of Equation (6.59) being satisfied).

This regularized form of the Margin-Perceptron cost function is referred to as

the soft-margin Support Vector Machine cost.

9

Example 6.8 The SVM decision boundary

In the left panel of Figure 6.20 we show three boundaries learned via minimizing

the Margin-Perceptron cost (shown in Equation (6.50)) three separate times with

different random initializations. In the right panel of this figure we show the

decision boundary provided by properly minimizing the soft-margin SVM cost

in Equation (6.60) with regularization parameter λ = 10

-3

.

Figure 6.20 Figure associated with Example 6.8. See text for details.

9

There are other relaxations of the hard-margin SVM problem used in practice (see, e.g., [20]);

however, they have no theoretical or practical advantage over the one presented here [21, 22].

6.6 Which Approach Produces the Best Results? 157

Each of the boundaries shown in the left panel perfectly separates the two

classes, but the SVM decision boundary in the right panel provides the maxi-

mum margin. Note how in the right panel the translates of the decision boundary

pass through points from both classes – equidistant from the SVM linear deci-

sion boundary. These points are called support vectors, hence the name Support

Vector Machines.

6.5.5 SVMs and noisy data

A very big practical benefit of the soft-margin SVM problem in Equation (6.60)

is that it allows us it to deal with noisy imperfectly (linearly) separable data

– which arise far more commonly in practice than datasets that are perfectly

linearly separable. Whereas ”noise” makes at least one of the constraints in

the hard-margin problem in Equation (6.59) impossible to satisfy (and thus

the problem is technically impossible to solve), the soft-margin relaxation can

always be properly minimized and is therefore much more frequently used in

practice.

6.6 Which Approach Produces the Best Results?

Once we forgo the strong (and unrealistic) assumption of perfectly (linear)

separability the added value of a ”maximum margin hyperplane” provided

by the SVM solution disappears since we no longer have a margin to begin with.

Thus with many datasets in practice the soft-margin problem does not provide a

solution remarkably different than the Perceptron or logistic regression. Indeed

– with datasets that are not linearly separable – it often returns exactly the same

solution provided by the Perceptron or logistic regression.

Furthermore, let us consider the soft-margin SVM problem in Equation (6.60),

and smooth the Margin-Perceptron portion of the cost using the Softmax function

as detailed in Section 6.5.2. This results in a smoothed out soft-margin SVM cost

function of the form

g

(

b,ω

)

=

P

X

p=1

log

±

1 + e

-y

p

(

b+x

T

p

ω

)

²

+λ kωk

2

2

. (6.61)

While this is interpreted through the lens of SVMs, it can also be immediately

identified as a regularized Softmax cost (i.e., as a regularized Perceptron or

logistic regression

10

). Therefore we can see that all three methods of linear two-

class classification we have seen – logistic regression, the Perceptron, and SVMs

– are very deeply connected, and why they tend to provide similar results on

realistic (not linearly separable) datasets.

10

Indeed this soft-margin SVM cost even at times referred to as the log-loss SVM (see, e.g., [21])

158 Linear Two-Class Classification

6.7 The Categorical Cross Entropy Cost

In Sections 6.2 and 6.3 we saw how two different choices for label values, y

p

∈

{0, 1} or y

p

∈ {-1,+1}, result in precisely the same two-class classification via

Cross Entropy/Softmax cost function minimization. In each instance we formed

a log error cost per data point, and averaging these over all P data points provided

a proper and convex cost function. In other words, the numerical values of

the label pairs themselves were largely used just to simplify the expression of

these cost functions. Given the pattern for deriving convex cost functions for

logistic regression, given any two numerical label values y

p

∈ {a, b} it would be a

straightforward affair to derive an appropriate convex cost function based on a

log error like point-wise cost.

However, the true range of label value choices is even broader than this –

than two numerical values. We can indeed use any two distinct objects as labels

as well, i.e., two unordered values. However, regardless of how we define our

labels we still end up building the same sort of two-class classifier we have seen

previously – tuning its weights by minimization of a familiar cost function like,

for example, the Cross Entropy/Softmax cost.

To drive home this point, in this brief section we show how to derive the

same Cross Entropy cost function seen in Section 6.2 employing categorical labels

instead of numerical ones. This leads to the derivation of the so-called Categorical

Cross Entropy cost function, which – as we will see – is equivalent to the Cross

Entropy cost.

6.7.1 One-hot encoded categorical labels

Suppose we begin with a two-class classification dataset

n±

x

p

, y

p

²o

P

p=1

with N-

dimensional input and transform our original numerical label values y

p

∈ {0, 1}

with one-hot encoded vectors of the form

y

p

= 0 ←- y

p

=

"

1

0

#

y

p

= 1 ←- y

p

=

"

0

1

#

. (6.62)

Each vector representation uniquely identifies its corresponding label value, but

now our label values are no longer ordered numerical values, and our dataset now

takes the form

n±

x

p

, y

p

²o

P

p=1

, where y

p

is defined as above. However, our goal here

will remain the same: to properly tune a set of N + 1 weights w so as to regress

the input to the output of our dataset.

6.7.2 Choosing a nonlinearity

With these new categorical labels our classification task – when viewed as a regres-

sion problem – is a special case of multi-output regression (as detailed in Section 5.6)

6.7 The Categorical Cross Entropy Cost 159

where we aim to regress N-dimensional input against two dimensional categor-

ical labels using a nonlinear function of the linear combination x̊

T

p

w . Because

our categorical labels have length two we need to use a nonlinear function of

this linear combination that produces two outputs as well. Since the labels are

one-hot encoded and we are familiar with the sigmoid function (see Section

6.2.3), it then makes sense to use the following nonlinear function of each input

point x

p

σ

p

=

σ

±

x̊

T

p

w

²

1 - σ

±

x̊

T

p

w

²

. (6.63)

Why? Because suppose for a particular point that y

p

=

"

1

0

#

andw is tuned so that

σ

±

x̊

T

p

w

²

≈ 1. By the definition of the sigmoid this implies that 1 - σ

±

x̊

T

p

w

²

≈ 0

and so that – for this point – σ

p

≈

"

1

0

#

= y

p

which is indeed our desire. And, of

course, this same idea holds if y

p

=

"

0

1

#

as well.

Thus with this nonlinear transformation an ideal setting of our weightswwill

force

σ

p

≈ y

p

(6.64)

to hold for as many points as possible.

6.7.3 Choosing a cost function

As was the case with numerical labels, here we could also very well propose a

standard point-wise cost taken from our experience with regression such as, for

example, the Least Squares

g

p

(w) =

³

³

³

σ

p

- y

p

³

³

³

2

2

(6.65)

and minimize the average of these over all P points to tunew. However, as was

the case with numerical labels, here because our categorical labels take a very

precise binary form we are better off employing a log error (see Section 6.2) to

better incentivize learning (producing a convex cost function). Denoting logσ

p

the vector formed by taking the log (·

) of each entry of

σ

p

, here the log error

takes the form

g

p

(w) = -y

T

p

log σ

p

= -y

p,1

log

±

σ

±

x̊

T

p

w

²²

- y

p,2

log

±

1 - σ

±

x̊

T

p

w

²²

(6.66)

where note here that y

p

=

"

y

p,1

y

p,2

#

. Taking the average of these P point-wise

160 Linear Two-Class Classification

costs gives the so-called Categorical Cross Entropy cost function for two-class

classification. Here the ”categorical” part of this name refers to the fact that our

labels are one-hot encoded categorical (i.e., unordered) vectors.

However, it is easy to see that cost function is precisely the log error we found

in Section 6.2. In other words, written in terms of our original numerical labels,

the pointwise cost above is precisely

g

p

(w) = -y

p

log

±

σ

±

x̊

T

p

w

²²

-

±

1 - y

p

²

log

±

1 - σ

±

x̊

T

p

w

²²

. (6.67)

Therefore, even though we employed categorical versions of our original

numerical label values, the cost function we minimize in the end to properly tune

w is precisely the same we have seen previously – the Cross Entropy/Softmax

cost where numerical labels were employed.

6.8 Classification Quality Metrics

In this section we describe simple metrics for judging the quality of a trained

two-class classification model, as well as how to make predictions using one.

6.8.1 Making predictions using a trained model

If we denote by w

?

the optimal set of weights found by minimizing a classifi-

cation cost function, employing by default label values y

p

∈ {-1,+1}, then note

we can write our fully tuned linear model as

model

(

x,w

?

)

= x̊

T

w

?

= w

?

0

+ x

1

w

?

1

+ x

2

w

?

2

+ · · · + x

N

w

?

N

. (6.68)

This fully trained model defines an optimal decision boundary for the training

dataset which takes the form

model

(

x,w

?

)

= 0. (6.69)

To predict the label y

0

of an input x

0

we then process this model through an

appropriate step. Since by default we use label values y

p

∈ {-1,+1}, this step

function is conveniently defined by the sign (·) function (as detailed in Section

6.3), and the predicted label for x

0

is given as

sign

(

model

(

x

0

,w

?

))

= y

0

. (6.70)

This evaluation, which will always take on values ²1 if x

0

does not lie exactly

on the decision boundary (in which case we assign a random value from ²1),

simply computes which side of the decision boundary the input x

0

lies on. If it

lies ”above” the decision boundary then y

0

= +1, and if ”below” then y

0

= -1.

This is illustrated for a prototypical dataset in Figure 6.21.

6.8 Classification Quality Metrics 161

y

0

= sign(w

?

0

+ x

0

1

w

?

1

+ x

0

2

w

?

2

)

x

1

x

0

1

x

2

x

0

2

w

?

0

+ x

1

w

?

1

+ x

2

w

?

2

= 0

Figure 6.21 Once a decision boundary has been learned for the training dataset with

optimal parameters w

?

0

and w

?

, the label y of a new point x can be predicted by simply

checking which side of the boundary it lies on. In the illustration shown here x lies

below the learned hyperplane, and as a result is given the label sign

(

x̊

0T

w

?

)

= -1.

6.8.2 Confidence scoring

Once a proper decision boundary is learned, we can judge its confidence in

any point based on the point’s distance to the decision boundary. We say that our

classifier has zero confidence in points lying along the decision boundary itself,

because the boundary cannot tell us accurately which class such points belong

to (which is why they are randomly assigned a label value if we ever need

to make a prediction there). Likewise we say that near the decision boundary

we have little confidence in the classifier’s predictions. Why is this? Imagine we

apply a small perturbation to the decision boundary, changing its location ever

so slightly. Some points very close to the original boundary will end up on the

opposite side of the new boundary, and will consequently have different predicted

labels. Conversely, this is why we have high confidence in the predicted labels of

points far from the decision boundary. These predicted labels will not change if

we make a small change to the location of the decision boundary.

The notion of ”confidence” can be made precise and normalized to be uni-

versally applicable by running the point’s distance to the boundary through the

sigmoid function (see Section 6.2.3). This gives the confidence that a point belongs

to class +1.

The signed distance d from a point to the decision boundary provided by our

trained model can be computed (see Section 6.4.5) as

d =

b

?

+ x

T

p

ω

?

³

³

³

ω

?

³

³

³

2

(6.71)

where we denote

162 Linear Two-Class Classification

(bias): b

?

= w

?

0

(feature-touching weights): ω

?

=

w

?

1

w

?

2

.

.

.

w

?

N

. (6.72)

By evaluating d using the sigmoid function we squash it smoothly onto the interval

[0,1], giving a ”confidence” score

confidence in the predicted label of a point x = σ

(

d

)

. (6.73)

When this value equals 0.5 the point lies on the boundary itself. If the value is

greater than 0.5 the point lies on the positive side of the decision boundary and

so we have larger confidence in its predicted label being +1. When the value is

less than 0.5 the point lies on the negative side of the classifier, and so we have less

confidence that it truly has label value +1. Because normalization employing

the sigmoid squashes (-∞,+∞

) down to the interval [0

, 1] this confidence value

is often interpreted as a probability.

6.8.3 Judging the quality of a trained model using accuracy

Once we have successfully minimized a cost function for linear two-class clas-

sification it can be a delicate matter to determine our trained model’s quality.

The simplest metric for judging the quality of a fully trained model is to count

the number of misclassifications it forms over our training dataset. This is a raw

count of the number of training data points x

p

whose true label y

p

is predicted

incorrectly by our trained model.

To compare the point x

p

’s predicted label ŷ

p

= sign

±

model

±

x

p

,w

?

²²

and true

label y

p

we can use an identity function I

(

·

) and compute

I

±

ŷ

p

, y

p

²

=

0 if ŷ

p

= y

p

1 if ŷ

p

, y

p

.

(6.74)

Summing all P points gives the total number of misclassifications of our trained

model

number of misclassifications =

P

X

p=1

I

±

ˆ

y

p

, y

p

²

. (6.75)

Using this we can also compute the accuracy, denoted byA, of a trained model.

This is simply the percentage of training dataset whose labels are correctly pre-

dicted by the model, that is

6.8 Classification Quality Metrics 163

A = 1 -

1

P

P

X

p=1

I

±

ŷ

p

, y

p

²

. (6.76)

The accuracy ranges from 0 (no points are classified correctly) to 1 (all points

are classified correctly).

iterationiteration��
 nr a�t a
 � � o	 i � � � t� oi � � �� � e�t �
 i � ao�� � a� i 	 � r

Figure 6.22 Figure associated with Example 6.9. See text for details.

Comparing the left and right panels of the figure we can see that the number of

misclassifications and Softmax evaluations at each step of a gradient descent run

do not perfectly track one another. That is, it is not the case that just because the

cost function value is decreasing that so too is the number of misclassifications.

Example 6.9 Comparing cost function and misclassification histories

Our classification cost functions are – in the end – based on smooth approx-

imations to a discrete step function (as detailed in Sections 6.2 and 6.3). This

is the function we truly wish to use, i.e., the function through which we truly

want to tune the parameters of our model. However, since we cannot optimize

this parameterized step function directly we settle for a smooth approximation.

The consequences of this practical choice are seen when we compare the cost

function history from a run of gradient descent to the corresponding misclassi-

fication count measured at each step of the run. In Figure 6.22 we show such a

comparison using the dataset shown in Figure 6.10. In fact we show such results

of three independent runs of gradient descent, with the history of misclassifica-

tions shown in the left panel and corresponding Softmax cost histories shown

in the right panel. Each run is color-coded to distinguish it from the other runs.

164 Linear Two-Class Classification

Again, this occurs because our Softmax cost is only an approximation of the true

quantity we would like to minimize.

This simple example has an extremely practical implication: after a running

a local optimization to minimize a two-class classification cost function the best

step (the one that provides the best classification result), and corresponding

weights, are associated with the lowest number of misclassifications (or likewise

the highest accuracy), not the lowest cost function value.

6.8.4 Judging the quality of a trained model using balanced accuracy

Classification accuracy is an excellent basic measurement of a trained classifier’s

performance. However, in certain scenarios using the accuracy metric can paint

an incomplete picture of how well we have really solved a classification problem.

For example, when a dataset consists of highly imbalanced classes – that is, when

a dataset has far more examples of one class than the other – the ”accuracy” of

a trained model loses its value as a quality metric. This is because when one

class greatly outnumbers the other in a dataset an accuracy value close to 1

can be misleading. For example, if one class makes up 95 percent of all data

points, a naive classifier that blindly assigns the label of the majority class to

every training point achieves an accuracy of 95 percent. But here misclassifying 5

percent amounts to completely misclassifying an entire class of data.

This idea of ”sacrificing” members of the smaller class by misclassifying them

(instead of members from the majority class) is – depending on the application

– very undesirable. For example, in distinguishing between healthy individuals

and sufferers of a rare disease (the minority class), one might rather misclassify a

healthy individual (a member of the majority class) and give them further testing

than miss out on correctly detecting someone who truly has the disease. As

another example, with financial fraud detection (introduced in Example 1.9) one

is more accepting of misclassified valid transactions than undetected fraudulent

ones, as the former can typically be easily dealt with by further human inspection

(e.g., by having a customer review possibly fraudulent transactions).

These sorts of scenarios point to a problem with the use of accuracy as a

proper metric for diagnosing classifier performance on datasets with highly

imbalanced classes: because it weights misclassifications from both classes equally

it fails to convey how well a trained model performs on each class of the data

individually. This results in the potential for strong performance on a very large

class of data masking poor performance on a very small one. The simplest way

to improve the accuracy metric is to take this potential problem into account,

and instead of computing accuracy over both classes together to compute accuracy

on each class individually and average the results.

If we denote the indices of those points with labels y

p

= +1 and y

p

= -1 as

Ω

+1

and Ω

-1

respectively, then we can compute the number of misclassifica-

6.8 Classification Quality Metrics 165

tions on each class individually (employing the notation and indicator function

introduced above) as

number of misclassifications on +1 class =

∑

p∈Ω

+1

I

±

ˆ

y

p

, y

p

²

number of misclassifications on -1 class =

∑

p∈Ω

-1

I

±

ŷ

p

, y

p

²

.

(6.77)

The accuracy on each class individually can then be likewise computed as (de-

noting the accuracy on class+1 and-1 individually asA

+1

andA

-1

respectively)

A

+1

= 1 -

1

|Ω

+1

|

∑

p∈Ω

+1

I

±

ŷ

p

, y

p

²

A

-1

= 1 -

1

|Ω

-1

|

∑

p∈Ω

-1

I

±

ˆ

y

p

, y

p

²

.

(6.78)

Note here the |Ω

+1

| and |Ω

-1

| denote the number of points belonging to the +1

and -1 class respectively. We can then combine these two metrics into a single

value by taking their average. This combined metric is called balanced accuracy

(which we denote as A

balanced

)

A

balanced

=

A

+1

+A

-1

2

. (6.79)

Notice if both classes have equal representation then balanced accuracy reduces

to the overall accuracy value A.

The balanced accuracy metric ranges from 0 to 1. When equal to 0 no point is

classified correctly, and when both classes are classified perfectly A

balanced

= 1.

Values of the metric in between 0 and 1 measure how well – on average – each

class is classified individually. If, for example, one class of data is classified

completely correct and the other completely incorrect (as in our imaginary

scenario where we have an imbalanced dataset with 95 percent membership in

one class and 5 percent in the other, and where have simply classified the entire

space as the majority class) then A

balanced

= 0.5.

Thus balanced accuracy is a simple metric for helping us understand whether

our learned model has ”behaved poorly” on highly imbalanced datasets (see

e.g., Example 6.12). In order to improve the behavior of our learned model in

such instances we have to adjust the way we perform two class classification.

One popular way of doing this – called weighted classification – is discussed in

Section 6.9.

6.8.5 The confusion matrix and additional quality metrics

Additional metrics for judging the quality of a trained model for two-class

classification can be formed using the confusion matrix, shown in the Figure

6.23. A confusion matrix is a simple look-up table where classification results

are broken down by actual (across rows) and predicted (across columns) class

membership. Here we denote by A the number of data points whose actual

label, +1, is identical to the label assigned to them by the trained classifier. The

166 Linear Two-Class Classification

Figure 6.23 The confusion matrix can be used to

produce additional quality metrics for two-class

classification.

A B

C D

±

predicted label

ac
tu

al
 la

be
l

+1 -1

+1

-1

A

B

C D

other diagonal entry D is similarly defined as the number of data points whose

predicted class,-1, is equal to their actual class. The off-diagonal entries denoted

by B and C represent the two types of classification errors wherein the actual

and predicted labels do not match one another. In practice we want these two

values to be as small as possible.

Our accuracy metric can be expressed in terms of the confusion matrix quan-

tities shown in the figure as

A =

A +D

A+ B+ C+ D

(6.80)

and our accuracy on each individual class likewise as

A

+1

=

A

A+C

A

-1

=

D

B+D

.

(6.81)

In the jargon of machine learning these individual accuracy metrics are often

called precision (A

+1

) and specificity (A

-1

) respectively. The balanced accuracy

metric can likewise be expressed as

A

balanced

=

1

2

A

A +C

+

1

2

D

B + D

. (6.82)

Example 6.10 Spam detection

In this example we perform two-class classification on a popular spam detection

(see Example 1.9) dataset taken from [23]. This dataset consists of P = 4601 data

points, 1813 spam and 2788 ham emails, with each data point consisting of

various input features for an email (described in further detail in Example 9.2),

as well as a binary label indicating whether or not the email is spam. Properly

minimizing the Softmax cost we can achieve a 93 percent accuracy over the

entire dataset, along with the following confusion matrix.

Predicted

ham spam

A
c
t
u

a
l

ham 2664 124

spam 191 1622

6.9 Weighted Two-Class Classification 167

Example 6.11 Credit check

In this example we examine a two-class classification dataset consisting of

P = 1000 samples, each a set of statistics extracted from loan application to

a German bank (taken from [24]). Each input has an associated label: either a

good (700 examples) or bad (300 examples) credit risk as determined by financial

professionals. In learning a classifier for this dataset we create an automatic

credit risk assessment tool that can help decide whether or not future applicants

are good candidates for loans.

The N = 20 dimensional input features in this dataset include: the individual’s

current account balance with the bank (feature 1), the duration (in months) of

previous credit with the bank (feature 2), the payment status of any prior credit

taken out with the bank (feature 3), and the current value of their savings/stocks

(feature 6). Properly minimizing the Perceptron cost we can achieve a 75 percent

accuracy over the entire dataset, along with the following confusion matrix.

Predicted

bad good

A
c
t
u

a
l

bad 285 15

good 234 466

6.9 Weighted Two-Class Classification

Because our two-class classification cost functions are summable over individual

points we can – as we did with regression in Section 5.5 – weight individual

points in order to emphasize or deemphasize their importance to a classification

model. This is called weighted classification. This idea is often implemented when

dealing with highly imbalanced two class datasets (see Section 6.8.4).

6.9.1 Weighted two-class classification

Just as we saw with regression in Section 5.5, weighted classification cost func-

tions naturally arise due to repeated points in a dataset. For example, with

metadata (for example, census data) datasets it is not uncommon to receive du-

plicate data points due to multiple individuals reporting the same answers to a

survey.

In Figure 6.24 we take a standard census dataset and plot a subset of it along

a single input feature. With only one feature taken into account we end up with

multiple entries of the same data point, which we show visually via the radius

of each point (the more times a given data point appears in the dataset the larger

we make the radius). These data points should not be thrown away – they did

not arise due to some error in data collecting – they represent the true dataset.

168 Linear Two-Class Classification

log capital gain

cl
as

s

Figure 6.24 An example of duplicate entries in a metadata dataset. Here a single input

feature of this dataset is plotted along with the labels for each point. There are many

duplicates in this slice of the data, which are visually depicted by the radius of each

point (the larger the radius, the more duplicates of that point exist in the dataset).

Just as with a regression cost, if we examine any two-class classification cost it

will ”collapse,” with summands containing identical points naturally combining

into weighted terms. One can see this by performing the same kind of simple

exercise used in Section 6.24 to illustrate this fact for regression. This leads to

the notion of weighting two-class cost functions, like for example the weighted

Softmax cost, which we write below using the generic model notation used used

in Section 7.6 to represent our linear model

g

(

w

)

=

P

X

p=1

β

p

log

±

1 + e

-y

p

model

(

x

p

,w

)

²

. (6.83)

Here the values β

1

, β
2

, ..., β
P

are fixed point-wise weights. That is, a unique

point

±

x

p

, y

p

²

in the dataset has weight β

p

= 1, whereas if this point is repeated

R times in the dataset then one instance of it will have weight β

p

= R while

the others have weight β

p

= 0. Since these weights are fixed (i.e., they are

not parameters that need to be tuned, like w) we can minimize a weighted

classification cost precisely as we would any other via a local optimization

scheme like gradient descent or Newton’s method.

6.9.2 Weighting points by confidence

Just as with regression (see Section 5.5), we can also think of assigning the fixed

weight values in Equation (6.83) based on our ”confidence” of the legitimacy

of a data point. If we believe that a point is very trustworthy we can set its

6.9 Weighted Two-Class Classification 169

corresponding weight β

p

closer to 1, and the more untrustworthy we find a

point the smaller we set β

p

in the range 0 ≤ β

p

≤ 1, where β

p

= 0 implies we

do not trust the point at all. In making these weight selections we of course

determine how important each data point is in the training of the model.

6.9.3 Dealing with class imbalances

Weighted classification – in the manner detailed above – is often used to deal

with imbalanced datasets. These are datasets that contain far more examples of

one class of data than the other. With such datasets it is often easy to achieve a

high accuracy by misclassifying points from the smaller class (as described in

Section 6.8.4).

One way of ameliorating this issue is to use a weighted classification cost to

alter the behavior of the learned classifier so that it weights points in the smaller

class more, and points in the larger class less. In order to produce this outcome it

is common to assign such weights inversely proportional to the number of members

of each class. This weights members of the majority and minority classes so that

– overall – each provides an equal contribution to the weighted classification.

That is if we denote by Ω

+1

and Ω-1 the index sets for the points in classes

+1 and -1, respectively, then first note that P = |Ω

+1

| + |Ω

-1

|. Then denoting by

β

+1

and β

-1

the weight for each member of class +1 and -1 respectively we can

set these class-wise weights inversely proportional to the number of points in

each class as

β

+1

∝

1

|Ω

+1

|

β

-1

∝

1

|Ω

-1

|

.

(6.84)

Example 6.12 Class imbalance and weighted classification

In the left panel of Figure 6.25 we show a toy dataset with severe class imbalance.

Here we also show the linear decision boundary resulting from minimizing the

Softmax cost over this dataset using five steps of Newton’s method, and color

each region of the space based on how this trained classifier labels points.

There are only three (of a total of 55) points in total misclassified here (one

blue and two red – giving an accuracy close to 95 percent); however, those that

are misclassified constitute almost half of the minority (red) class. While this is

not reflected in a gross misclassification or accuracy metric, it is reflected in a

balanced accuracy (see Section 6.8.4) which is significantly lower, at around 79

percent.

In the middle and right panels we show the result of increasing the weights of

each member of the minority class from β = 1 to β = 5 (middle panel) and β = 10

(right panel). These weights are denoted visually in the figure by increasing the

radius of the points in proportion to the value of β used (thus their radius in-

creases from left to right). Also shown in the middle and right panels is the result

170 Linear Two-Class Classification

of properly minimizing the weighted Softmax cost in Equation (6.83) using the

same optimization procedure (i.e., five steps of Newton’s method). As the value

of β is increased on the minority class, we encourage fewer misclassifications of

its members (at the expense here of additional misclassifications of the majority

class). In the right panel of the figure – where β = 10 – we have one more mis-

classification than in the original run with an accuracy of 93 percent. However,

with the assumption that misclassifying minority class members is far more

perilous than misclassifying members of the majority class, here the trade-off is

well worth it as no members of the minority class are misclassified. Moreover,

we achieve a significantly improved balanced accuracy score of 96 percent over

the 79 percent achieved with the original (unweighted) run.

Figure 6.25 Figure associated with Example 6.12. See text for details.

6.10 Conclusion

In this chapter we detailed the problem of linear two-class classification, where

we look to automatically distinguish between different types of distinct things

using a linear decision boundary. We saw a wide range of perspectives for

framing classification, with each shedding unique light on the process itself.

We began by discussing the regression perspective on classification in Sec-

tions 6.2 and 6.3 – where logistic regression was described – and followed this

by detailing ways of viewing the problem “from above” with both the Percep-

tron and Support Vector Machines perspectives described in Sections 6.4 and 6.5,

respectively. While these disparate perspectives differ in the how they couch

the origins of two-class classification, we saw how they all naturally lead to the

minimization of the same sort of cost function (e.g., the Cross Entropy or Softmax

cost) using the same linear model. This unifying realization – discussed further

in Section 7.4 – helps explain why (on average) these various perspectives on

two-class classification result in similar performance in practice (based on the

metrics introduced in Section 6.8). Practically speaking this makes the various

perspectives, cost functions, and labeling schemes for two-class classification

6.11 Exercises 171

(including categorical labeling schemes, as detailed in Section 6.8) essentially

interchangeable, allowing one great flexibility in conceptualizing and construct-

ing two-class classifiers. In future chapters we will rely heavily on this idea when

layering on new concepts, introducing them in the context of a single perspective

(e.g., the perceptron) for the sake of simplicity, while appreciating implicitly that

such new concepts automatically apply to all other perspectives on two-class

classification as well.

6.11 Exercises

†The data required to complete the following exercises can be downloaded from

the text’s github repository at github.com/jermwatt/machine_learning_refined

6.1 Implementing sigmoidal Least Squares cost

Repeat the experiment described in Example 6.3 by coding up the Least Squares

cost function shown in Equation (6.9) and the normalized gradient descent algo-

rithm detailed in Section A.3. You need not reproduce the contour plot shown in

the right panel of Figure 6.5; however, you can verify that your implementation

is working properly by reproducing the final fit shown in the left panel of that

figure. Alternatively show that your final result produces zero misclassifications

(see Section 6.8.3).

6.2 Show the equivalence of the log error and Cross Entropy point-wise cost

Show that – with label values y

p

∈ {0, 1} – the log error in Equation (6.10) is

equivalent to the Cross Entropy point-wise cost in Equation (6.11).

6.3 Implementing the Cross Entropy cost

Repeat the experiment described in Example 6.4 by coding up the Cross Entropy

cost function shown in Equation (6.12) as detailed in Section 6.2.7. You need not

reproduce the contour plot shown in the right panel of Figure 6.7; however, you

can verify that your implementation is working properly by reproducing the

final fit shown in the left panel of that figure. Alternatively show that your final

result produces zero misclassifications (see Section 6.8.3).

6.4 Compute the Lipschitz constant of the Cross Entropy cost

Compute the Lipschitz constant (Section A.6.4) of the Cross Entropy cost shown

in Equation (6.12).

172 Linear Two-Class Classification

6.5 Confirm gradient and Hessian calculations

Confirm that the gradient and Hessian of the Cross Entropy cost are as shown

in Section 6.2.7.

6.6 Show the equivalence of the log error and Softmax point-wise cost

Show that – with label values y

p

∈ {-1, +1} – the log error in Equation (6.22) is

equivalent to the Softmax point-wise cost in Equation (6.24).

6.7 Implementing the Softmax cost

Repeat the experiment described in Example 6.5 by coding up the Softmax

cost function shown in Equation (6.25). You need not reproduce the contour

plot shown in the right panel of Figure 6.9; however, you can verify that your

implementation is working properly by reproducing the final fit shown in the

left panel of that figure. Alternatively show that your final result produces zero

misclassifications (see Section 6.8.3).

6.8 Implementing the Log Error version of Softmax

Repeat the experiment described in Section 6.3.3 and shown in Figure 6.10

using the log error based Softmax cost shown in Equation (6.21) and any local

optimization scheme you wish. You need not reproduce the plots shown in the

figure to confirm your implementation works properly, but should be able to

achieve a minimum of five misclassifications (see Section 6.8.3).

6.9 Using gradient descent to minimize the Perceptron cost

Use the standard gradient descent scheme to minimize the Perceptron cost

function in Equation (6.33) over the dataset shown in Figure 6.10. Make two

runs of gradient descent using fixed steplength values α = 10

-1

and 10

-2

, with

50 steps each (and random initializations). Produce a cost function history plot

and history of misclassification (see Section 6.8.3) at each step of the run. Which

run achieves perfect classification first?

6.10 The perceptron cost is convex

Show that the Perceptron cost given in Equation (6.33) is convex using the

zero-order definition of convexity described in Exercise 5.8.

6.11 The Softmax cost is convex

Show that the Softmax cost function given in Equation (6.25) is convex by veri-

fying that it satisfies the second-order definition of convexity. Hint: the Hessian,

already given in Equation (6.3.2), is a weighted outer-product matrix like the one de-

scribed in Exercise 4.2.

6.11 Exercises 173

6.12 The regularized Softmax

Repeat the experiment described in Example 6.7 and shown in Figure 6.16. You

need not reproduce the plots shown in the figure to confirm your implementa-

tion works properly, but should be able to achieve a result that has five or fewer

misclassifications.

6.13 Compare the efficacy of two-class cost functions I

Compare the efficacy of the Softmax and the Perceptron cost functions in terms

of the minimal number of misclassifications each can achieve by proper mini-

mization via gradient descent on a breast cancer dataset. This dataset consists

of P = 699 data points, each point consisting of N = 9 input of attributes of

a single individual and output label indicating whether or not the individual

does or does not have breast cancer. You should be able to achieve around 20

misclassifications with each method.

6.14 Compare the efficacy of two-class cost functions II

Compare the efficacy of the Softmax and the Perceptron cost functions in terms

of the minimal number of misclassifications each can achieve by proper min-

imization via gradient descent on the spam detection dataset introduced in

Example 6.10. You should be able to achieve at least 90 percent accuracy with

both methods. Because of the large variations in the input values of this dataset

you should standard normalize the input features of the dataset – as detailed in

Section 9.3 – prior to optimization.

6.15 Credit check

Repeat the experiment described in Example 6.11. Using an optimizer of your

choice, try to achieve something close to the results reported. Make sure you

standard normalize the input features of the dataset – as detailed in Section 9.3 –

prior to optimization.

6.16 Weighted classification and balanced accuracy

Repeat the experiment described in Example 6.12 and shown in Figure 6.25.

You need not reproduce the plots shown in the figure to confirm your imple-

mentation works properly, but should be able to achieve similar results to those

reported there.

7 Linear Multi-Class Classification

7.1 Introduction

In practice many classification problems (e.g., face recognition, hand gesture

recognition, recognition of spoken phrases or words, etc.) have more than just

two classes we wish to distinguish. However, a single linear decision boundary

naturally divides the input space only in two subspaces, and therefore is funda-

mentally insufficient as a mechanism for differentiating between more than two

classes of data. In this chapter we describe how to generalize what we have seen

in the previous chapter to deal with this multi-class setting – referred to as linear

multi-class classification. As with prior chapters, we describe several perspectives

on multi-class classification including One-versus-All and the multi-class Percep-

tron, quality metrics, and extensions of basic principles (including categorical

and weighted multi-class classification). Here we also describe mini-batch opti-

mization – first detailed in Section A.5 in the context of first order optimization

– through the lens of machine learning, summarizing its use in optimizing both

supervised and unsupervised learners.

7.2 One-versus-All Multi-Class Classification

In this section we explain the fundamental multi-classification scheme called

One-versus-All, step by step using a single toy dataset with three classes.

7.2.1 Notation and modeling

A multi-class classification dataset

n±

x

p,

y

p

²o

P

p=1

consists of C distinct classes of

data. As with the two-class case we can in theory use any set of C distinct

label values to distinguish between the classes. For convenience, here we use

label values y

p

∈ {0, 1, . . . , C - 1}. In what follows we employ the prototypical

toy dataset shown in Figure 7.1 to help us derive our fundamental multi-class

classification scheme.

7.2 One-versus-All Multi-Class Classification 175

Figure 7.1 A prototypical classification dataset with C = 3 classes. Here points with

label value y

p

= 0, y

p

= 1, and y

p

= 2 are colored blue, red, and green, respectively.

7.2.2 Training C One-versus-All classifiers

A good first step in the development of multi-class classification is to simplify

the problem to something we are already familiar with: two-class classification.

We already know how to distinguish each class of our data from the other C- 1

classes. This sort of two-class classification problem (discussed in the previous

chapter) is indeed simpler, and is adjacent to the actual problem we want to

solve, i.e., learn a classifier that can distinguish between all C classes simulta-

neously. To solve this adjacent problem we learn C two-class classifiers over the

entire dataset, with the cth classifier trained to distinguish the cth class from

the remainder of the data, and hence called a One-versus-Rest or One-versus-All

classifier.

To solve the cth two-class classification subproblem we simply assign tempo-

rary labels ỹ

p

to the entire dataset, giving +1 labels to the cth class and -1 labels

to the remainder of the dataset

ỹ

p

=

+1 if y

p

= c

-1 if y

p

, c

(7.1)

where y

p

is the original label for the pth point of the multi-class dataset. We then

run a two-class classification scheme of our choice (by minimizing any classi-

fication cost detailed in the previous chapter). Denoting the optimal weights

learned for the cth classifier as w

c

where

176 Linear Multi-Class Classification

w

c

=

w

0,c

w

1,c

w

2,c

.

.

.

w

N,c

(7.2)

we can then express the corresponding decision boundary associated with the

cth two-class classification (distinguishing class c from all other data points)

simply as

x̊

T

w

c

= 0. (7.3)

In Figure 7.2 we show the result of solving this set of subproblems on the

prototypical dataset shown first in Figure 7.1. In this case we learnC = 3 distinct

linear two-class classifiers, which are shown in the top row of the figure. Each

learned decision boundary is illustrated in the color of the single class being

distinguished from the rest of the data, with the remainder of the data colored

gray in each instance. In the bottom row of the figure the dataset is shown once

again along with all three learned two-class decision boundaries.

Figure 7.2 (top row) Three one-versus-all linear two-class classifiers learned to the

dataset shown in Figure 7.1. (bottom row) All three classifiers shown on top of the

original dataset. See text for further details.

Having solved the adjacent problem by learning C One-versus-All classifiers

we can now ask: is it possible to somehow combine these two-class classifiers

to solve the original multi-class problem? As we will see, it most certainly is.

7.2 One-versus-All Multi-Class Classification 177

But first it is helpful to break up the problem into three pieces for (i) points that

lie on the positive side of a single two-class classifier, (ii) points that lie on the

positive side of more than one classifier, and (iii) points that lie on the positive

side of none of the classifiers. Notice, these three cases exhaust all the possible

ways a point can lie in the input space in relation to the C two-class classifiers.

7.2.3 Case 1. Labeling points on the positive side of a single classifier

Geometrically speaking, a pointx that lies on the positive side of the cth classifier

but on the negative side of all the rest, satisfies the following inequalities: x̊

T

w

c

>

0, and x̊

T

w

j

< 0 for all j , c. First, notice that since all classifier evaluations of x

are negative except for the cth one (which is positive), we can write

x̊

T

w

c

= max

j= 0,...,C-1

x̊

T

w

j

. (7.4)

Next, that the cth classifier evaluates x positively means that (from its per-

spective) x belongs to class c. Similarly, because every other classifier evaluates

x negatively (from their perspective) x does not belong to any class j , c. Alto-

gether we have all C individual classifiers in agreement that x should receive the

label y = c. Therefore, using Equation (7.4) we can write the label y as

y = argmax

j= 0,...,C-1

x̊

T

w

j

. (7.5)

In Figure 7.3 we show the result of classifying all points in the space of our toy

dataset that lie on the positive side of a single classifier. These points are colored

to match their respective classifier. Notice there still are regions left uncolored

in Figure 7.3. These include regions where points are either on the positive side

of more than one classifier or on the positive side of none of the classifiers. We

discuss these cases next.

Figure 7.3 One-versus-All classification of points lying on the positive side of a single

classifier. See text for details.

178 Linear Multi-Class Classification

7.2.4 Case 2. Labeling points on the positive side of more than one
classifier

When a point x falls on the positive side of more than one classifier it means that,

unlike the previous case, more than one classifier will claim x as one of their own.

In a situation like this and, as we saw in Section 6.8.2, we can consider the signed

distance of x to a two-class decision boundary as a measure of our confidence in

how the point should be labeled. The farther a point is on the positive side of

a classifier, the more confidence we have that this point should be labeled +1.

Intuitively, this is a simple geometric concept: the larger a point’s distance to

the boundary the deeper into one region of a classifier’s half-space it lies, and

thus we can be much more confident in its class identity than a point closer to

the boundary. Another way to think about is to imagine what would happen

if we slightly perturbed the decision boundary? Those points originally close

to its boundary might end up on the other side of the perturbed hyperplane,

changing classes, whereas those points farther from the boundary are less likely

to be so affected and hence we can be more confident in their class identities to

begin with.

In the present context we can intuitively extend this idea. If a point lies on

the positive side of multiple two-class classifiers, we should assign it the label

corresponding to the decision boundary it is farthestfrom.

Let us now see how this simple idea plays out when used on our toy dataset.

In the left and middle panels of Figure 7.4 we show two example points (drawn

in black) in a region of our toy dataset that lie on the positive side of more than one

two-class classifier. In each case we highlight the distance from the new point

to both decision boundaries in dashed black, with the projection of the point

onto each decision boundary shown as an x in the same color as its respective

classifier.

Beginning with the point shown in the left panel, notice that it lies on the

positive side of both the red and blue classifiers. However, we can be more

confident that the point should belong to the blue class since the point lies

a greater distance from the blue decision boundary than the red (as we can

tell by examining the length of the dashed lines emanating from the point to

each boundary). By the same logic the point shown in the middle panel is best

assigned to the red class, being at a greater distance from the red classifier than

the blue. If we repeat this logic for every point in this region (as well as those

points in the other two triangular regions where two or more classifiers are

positive) and color each point the color of its respective class, we will end up

shading each such region as shown in the right panel of Figure 7.4. The line

segments separating each pair of colored regions in this panel (e.g., the green

and the red areas of the bottom-right triangular region) consist of points lying

equidistant to (and on the positive sides of) two of the One-versus-All classifiers.

In other words, these are parts of our multi-class decision boundary.

7.2 One-versus-All Multi-Class Classification 179

Figure 7.4 One-versus-All classification of points lying on the positive side of more than

one classifier. Here a point (shown in black) lies on the positive side of both the red and

blue classifiers with its distance to each decision boundary noted by dashed lines

connecting it to each classifier. See text for further details.

Decomposing the weightsw

j

of our jth classifier by separating the bias weight

from feature-touching weights as

(bias): b

j

= w

0, j

(feature-touching weights): ω

j

=

w

1, j

w

2, j

.

.

.

w

N,j

(7.6)

allows us to write the signed distance from a point x to its decision boundary as

signed distance of x to jth boundary =

x̊

T

w

j

³

³

³

³

ω

j

³

³

³

³

2

. (7.7)

Now, if we normalize the weights of each linear classifier by the length of its

normal vector (containing all feature-touching weights) as

w

j

←-

w

j

³

³

³

³

ω

j

³

³

³

³

2

(7.8)

which we will assume to do from here on, then this distance is simply written

as the raw evaluation of the point via the decision boundary

signed distance of x to jth boundary = x̊

T

w

j

. (7.9)

To assign a point in one of our current regions we seek out the classifier which

maximizes this quantity. Expressed algebraically, the label y assigned to this point

is given (after weight-normalization) as

y = argmax

j= 0,...,C-1

x̊

T

w

j

. (7.10)

180 Linear Multi-Class Classification

This is precisely the same rule we found in Equation (7.5) for regions of the space

where only a single classifier is positive. Note that normalizing the weights of

each classifier (by the magnitude of their feature-touching weights) does not

affect the validity of this labeling scheme for points lying on the positive side

of just a single classifier as dividing a set of raw evaluations by a positive

number does not change the mathematical sign of those raw evaluations: the

sole classifier that positively evaluates a point will remain the sole classifier

whose signed distance to the point in question is positive.

7.2.5 Case 3. Labeling points on the positive side of no classifier

When a point x lies on the positive side of none of our C One-versus-All classifiers

(or in other words, on the negative side of all of them), it means that each of our

classifiers designates it as not in their respective class. Thus we cannot argue

(as we did in the previous case) that one classifier is more confident in its class

identity. What we can do instead is ask which classifier is the least confident

about x not belonging to their class? The answer is not the decision boundary

it is farthest from as was the case previously, but the one it is closest to. Here

again the notion of signed distance to decision boundary comes in handy, noticing

that assigning x to the decision boundary that it is closest to means assigning it

to the boundary that it has the largest signed distance to (since now this signed

distance, as well as the other signed distances, are all negative). Formally, again

assuming that the weights of each classifier have been normalized, we can write

y = argmax

j= 0,...,C-1

x̊

T

w

j

. (7.11)

In the left and middle panels of Figure 7.5 we show two example points in a

region of our toy dataset that lie on the negative side of all three of our two-class

classifiers. This is the white triangular region in the middle of the data. Again we

highlight the distance from each point to all three decision boundaries in dashed

black, with the projection of the point onto each decision boundary shown as

an x in the same color as its respective classifier.

Starting with the point in the left panel, since it lies on the negative side of

all three classifiers the best we can do is assign it to the class that it is closest to

(or ”least offends”), here the blue class. Likewise the point shown in the middle

panel can be assigned to the green class as it lies closest to its boundary. If we

repeat this logic for every point in the region and color each point the color of

its respective class, we will end up shading this central region as shown in the

right panel of Figure 7.5. The line segments separating the colored regions in the

middle of this panel consists of points lying equidistant to (and on the negative

sides of) all the One-versus-All classifiers. In other words, these are parts of our

multi-class decision boundary.

7.2 One-versus-All Multi-Class Classification 181

Figure 7.5 One-versus-All classification of points lying on the negative side of all

classifiers. See text for further details.

7.2.6 Putting it all together

We have now deduced, by breaking down the problem of how to combine our

C two-class classifiers to perform multi-class classification into three exhaustive

cases, that a single rule can be used to assign a label y to any point x as

y = argmax

j= 0,...,C-1

x̊

T

w

j

(7.12)

assuming that the (feature-touching) weights of each classifier have been nor-

malized as in Equation (7.8). We call this the fusion rule since we can think of it as

a rule that fuses our C two-class classifiers together to determine the label that

must be assigned to a point based on the notion of signed distance to decision

boundary.

In Figure 7.6 we show the result of applying the fusion rule in Equation (7.12)

to the entire input space of our toy dataset we have used throughout this section.

This includes the portions of the space where points lie (i) on the positive side of

a single classifier (as shown in Figure 7.3), (ii) on the positive side of more than

one classifier (as shown in the right panel of Figure 7.4), and (iii) on the positive

side of none of the classifiers (as shown in the right panel of Figure 7.5).

In the left panel of Figure 7.6 we show the entire space colored appropriately

according to the fusion rule, along with the three original two-class classifiers.

In the right panel we highlight (in black) the line segments that define borders

between the regions of the space occupied by each class. This is indeed our

multi-class classifier or decision boundary provided by the fusion rule. In general

when using linear two-class classifiers the boundary resulting from the fusion

rule will always be piece-wise linear (as with our simple example here). While the

fusion rule explicitly defines this piece-wise linear boundary, it does not provide

us with a nice, closed form formula for it (as with two-class frameworks like

logistic regression or SVMs).

182 Linear Multi-Class Classification

Figure 7.6 The result of applying the fusion rule in Equation (7.12) to the input space of

our toy dataset, with regions colored according to their predicted label along with the

original two-class decision boundaries (left panel) and fused multi-class decision

boundary in black (right panel). See text for further details.

7.2.7 The One-versus-All (OvA) algorithm

When put together, the two-step process we have now seen (i.e., learn C One-

versus-All two-class classifiers and then combine them using the fusion rule)

is generally referred to as the One-versus-All multi-class classification algorithm or

OvA algorithm for short. In practice it is common to see implementations of the

OvA algorithm that skip the normalization step shown in Equation (7.8). This

can theoretically lead to poor classification accuracy due to differently sized

normal vectors, creating out of scale distance-to-classifier measurements. How-

ever, because often each classifier is trained using the same local optimization

scheme the resulting magnitude of each trained normal vector can end up being

around the same magnitude, hence reducing the difference between normalized

and unnormalized evaluation of input points by each classifier.

Example 7.1 Classification of a dataset with C = 4 classes using OvA

In this example we apply the OvA algorithm to classify a toy dataset with C = 4

classes shown in the left panel of Figure 7.7. Here blue, red, green, and yellow

points have label values 0, 1, 2, and 3, respectively. In the middle panel of Figure

7.7 we show the input space colored according to the fusion rule, along with

the C = 4 individually learned two-class classifiers. Notice that none of these

two-class classifiers perfectly separates its respective class from the rest of the

data. Nevertheless, the final multi-class decision boundary shown in the right

panel of Figure 7.7 does a fine job of distinguishing the four classes.

7.2 One-versus-All Multi-Class Classification 183

Figure 7.7 Figure associated with Example 7.1. See text for details.

Example 7.2 Regression view of the fusion rule

In deriving the fusion rule in Equation (7.12) we viewed the problem of multi-

class classification from the perceptron perspective (first discussed in the two-

class case in Section 6.4), meaning that we viewed our data in the input feature

space alone, coloring the value of each label instead of treating the labels as an

output dimension (visually speaking) and plotting the data in three dimensions.

However, if we do this, viewing our multi-class data ”from the side” in what

we can think of as the regression perspective, we can indeed view the fusion

rule as a multi-level step function. This is shown in Figure 7.8 for the primary toy

dataset used throughout this section. The left panel shows the data and fusion

rule ”from above,” while in the right panel the same setup shown ”from the

side” with the fusion rule displayed as a discrete step function.

Figure 7.8 Fusion rule for a toy classification dataset with C = 3 classes, shown from the

perceptron perspective (left panel) and from the regression perspective (right panel).

Note that the jagged edges on some of the steps in the right panel are merely an artifact

of the plotting mechanism used to generate the three dimensional plot. In reality the

edges of each step are smooth like the fused decision boundary shown in the input

space. See Example 7.2 for further details.

184 Linear Multi-Class Classification

7.3 Multi-Class Classification and the Perceptron

In this section we discuss a natural alternative to One-versus-All (OvA) multi-

class classification detailed in the previous section. Instead of training C two

class classifiers first and then fusing them into a single decision boundary (via

the fusion rule), we train all C classifiers simultaneously to directly satisfy the

fusion rule. In particular we derive the multi-class Perceptron cost for achieving

this feat, which can be thought of as a direct generalization of the two-class

Perceptron described in Section 6.4.

7.3.1 The multi-class Perceptron cost function

In the previous section on OvA multi-class classification we saw how the fusion

rule in Equation (7.12)defined class ownership for every point x in the input space

of the problem. This, of course, includes all (input) points x

p

in our training

dataset

n±

x

p

, y

p

²o

P

p=1

. Ideally, with all two-class classifiers properly tuned, we

would like the fusion rule to hold true for as many of these points as possible

y

p

= argmax

j= 0,...,C-1

x̊

T

p

w

j

. (7.13)

Instead of tuning our C two-class classifiers one-by-one and then combining

them in this way, we can learn the weights of all C classifiers simultaneously so

as to satisfy this ideal condition as often as possible.

To get started in constructing a proper cost function whose minimizers satisfy

this ideal, first note that if Equation (7.13) is to hold for our pth point then we

can say that the following must be true as well

x̊

T

p

w

y

p

= max

j= 0,...,C-1

x̊

T

p

w

j

. (7.14)

In words, Equation (7.14) simply says that the (signed) distance from the point

x

p

to its class decision boundary is greater than (or equal to) its distance to every

other two-class decision boundary. This is what we ideally want for all of our

training data points.

Subtracting x̊

T

p

w

y

p

from the right-hand side of Equation (7.14) then gives us

a good candidate for a point-wise cost function that is always nonnegative and

minimal at zero, defined as

g

p

(w

0

, ...,w
C-1

) =

°

max

j= 0,...,C-1

x̊

T

p

w

j

!

- x̊

T

p

w

y

p

. (7.15)

Notice that if our weights w

0

, ...,w
C-1

are set ideally, g

p

(w

0

, ...,w
C-1

) should be

zero for as many points as possible. With this in mind, we can then form a cost

7.3 Multi-Class Classification and the Perceptron 185

function by taking the average of the point-wise cost in Equation (7.15) over the

entire dataset, as

g

±

w

0

, ..., w

C-1

²

=

1

P

P

X

p=1

"°

max

j= 0,...,C-1

x̊

T

p

w

j

!

- x̊

T

p

w

y

p

#

. (7.16)

This cost function, which we refer to hereafter as the multi-class Perceptron cost,

provides a way to tune all classifier weights simultaneously in order to recover

weights that satisfy the fusion rule as well as possible.

7.3.2 Minimizing the multi-class Perceptron cost

Like its two-class analog discussed in Section 6.4, the multi-class Perceptron is

always convex regardless of the dataset employed (see chapter’s exercises). It

also has a trivial solution at zero. That is, when w

j

= 0 for all j = 0, ..., C - 1 the

cost is minimal. This undesirable behavior can often be avoided by initializing

any local optimization scheme used to minimize it away from the origin. Note

also that we are restricted to using zero- and first-order optimization methods

to minimize the multi-class Perceptron cost as its second derivative is zero

(wherever it is defined).

Example 7.3 Minimizing the multi-class Perceptron

In this example we minimize the multi-class Perceptron in Equation (7.16) over

the toy multi-class dataset originally shown in Figure 7.1, minimizing the cost

via the standard gradient descent procedure (see Section 3.5).

In the left panel of Figure 7.9 we plot the dataset, the final multi-class clas-

sification over the entire space, and each individual One-versus-All decision

boundary (that is, where x̊

T

w

c

= 0 for c = 0, 1, and 2). In the right panel we show

the fused multi-class decision boundary formed by combining these individual

One-versus-All boundaries via the fusion rule. Note in the left panel that be-

cause we did not train each individual two-class classifier in a One-versus-All

fashion (as was done in the previous section), each individual learned two-class

classifier performs quite poorly in separating its class from rest of the data. This

is perfectly fine, as it is the fusion of these linear classifiers (via the fusion rule)

that provides the final multi-class decision boundary shown in the right panel

of the figure, which achieves perfect classification.

7.3.3 Alternative formulations of the multi-class Perceptron cost

The multi-class Perceptron cost in Equation (7.16) can also be derived as a

direct generalization of its two-class version introduced in Section 6.4. Using the

following simple property of the max function

186 Linear Multi-Class Classification

Figure 7.9 Figure

associated with

Example 7.3.

max (s

0

, s

1

, ..., s
C-1

)- z = max (s

0

- z, s

1

- z, ..., s
C-1

- z) , (7.17)

where s

0

, s

1

, ..., s
C-1

and z are scalar values, we can write each summand on the

right hand side of Equation (7.16) as

max

j=0,...,C-1

x̊

T

p

±

w

j

-w

y

p

²

. (7.18)

Notice that for j = y

p

we have x̊

T

p

±

w

j

- w

y

p

²

= 0. This allows us to rewrite the

quantity in Equation (7.18) equivalently as

max

j= 0,...,C-1

j,yp

±

0, x̊

T

p

±

w

j

- w

y

p

²²

(7.19)

and hence the entire multi-class Perceptron cost as

g

±

w

0

, ...,w
C-1

²

=

1

P

P

X

p=1

max

j= 0,...,C-1

j,yp

±

0, x̊

T

p

±

w

j

- w

y

p

²²

. (7.20)

In this form it is easy to see that when C = 2 the multi-class Perceptron cost

reduces to the two-class version detailed in Section 6.4.

7.3.4 Regularizing the multi-class Perceptron

In deriving the fusion rule and subsequently the multi-class Perceptron cost

function we have assumed that the normal vector for each two-class classifier

has unit length, so that we can fairly compare the (signed) distance of each input

x

p

to each of our One-versus-All two-class decision boundaries (as first detailed

in Section 7.2.4). This means that in minimizing the multi-class Perceptron cost

in Equation (7.16) we should (at least formally) subject it to the constraints that

all these normal vectors have unit length, giving the constrained minimization

problem

7.3 Multi-Class Classification and the Perceptron 187

minimize

b

0

,ω

0

, ..., b
C-1

,ω

C-1

1

P

P

X

p=1

"°

max

j= 0,...,C-1

b

j

+ x

T

p

ω

c

!

-

±

b

y

p

+ x

T

p

ω

y

p

²

#

subject to

³

³

³

³

ω

j

³

³

³

³

2

2

= 1, j = 0, ...,C - 1

(7.21)

where we have used the bias/feature-touching weight notation, allowing us to

decompose each weight vectorw

j

as shown in Equation (7.6).

While this problem can be solved in its constrained form, it is more common-

place (in the machine learning community) to relax such a problem (as we have

seen previously with the two-class Perceptron in Section 6.4.6 and the support

vector machine in Section 6.5), and solve a regularized version.

While in theory we could provide a distinct penalty (or regularization) pa-

rameter for each of the C constraints in Equation (7.21), for simplicity one can

choose a single regularization parameter λ ≥ 0 to penalize the magnitude of all

normal vectors simultaneously. This way we need only provide one regulariza-

tion value instead of Cdistinct regularization parameters, giving the regularized

version of the multi-class Perceptron problem as

minimize

b

0

,ω

0

, ..., b
C-1

,ω

C-1

1

P

P

X

p=1

"°

max

j= 0,...,C-1

b

j

+ x

T

p

ω

j

!

-

±

b

y

p

+ x

T

p

ω

y

p

²

#

+ λ

C-1

X

j=0

³

³

³

³

ω

j

³

³

³

³

2

2

.

(7.22)

This regularized form does not quite match the original constrained formu-

lation as regularizing all normal vectors together will not necessarily guarantee

that

³

³

³

³

ω

j

³

³

³

³

2

2

= 1, for all j. However, it will generally force the magnitude of all

normal vectors to ”behave well” by, for instance, disallowing (the magnitude

of) one normal vector to grow arbitrarily large while one shrinks to almost zero.

As we see many times in machine learning, it is commonplace to make such

compromises to get something that is ”close enough” to the original as long as

it does work well in practice. This is indeed the case here, with λ typically set to

a small value (e.g., 10

-3

or smaller).

7.3.5 The multi-class Softmax cost function

As with the two-class Perceptron (see Section 6.4.3), we are often willing to

sacrifice a small amount of modeling precision, by forming a closely matching

smoother cost function to the one we already have, in order to make optimization

easier or expand the optimization tools we can bring to bear. As was the case

with the two-class Perceptron, here too we can smooth the multi-class Perceptron

cost employing the Softmax function.

Replacing the max function in each summand of the multi-class Perceptron

in Equation (7.16) with its Softmax approximation in Equation (6.34) gives the

following cost function

188 Linear Multi-Class Classification

g

±

w

0

, ...,w
C-1

²

=

1

P

P

X

p=1

log

C-1

X

j=0

e

x̊

T

p

w

j

- x̊

T

p

w

y

p

. (7.23)

This is referred to as the multi-class Softmax cost function, both because it is

built by smoothing the multi-class Perceptron using the Softmax function, and

because it can be shown to be the direct multi-class generalization of the two-

class Softmax function (see, e.g., Equation (6.37)). The multi-class Softmax cost

function in Equation (7.23) also goes by many other names including the multi-

class Cross Entropy cost, the Softplus cost, and the multi-class logistic cost.

7.3.6 Minimizing the multi-class Softmax

Not only is the multi-class Softmax cost function convex (see chapter’s exer-

cises) but (unlike the multi-class Perceptron) it also has infinitely many smooth

derivatives, enabling us to use second-order methods (in addition to zero- and

first-order methods) in order to properly minimize it. Notice also that it no

longer has a trivial solution at zero, akin to its two-class Softmax analog that

removes this deficiency from the two-class Perceptron.

Example 7.4 Newton’s method applied to minimizing the multi-class Soft-

max cost

In Figure 7.10 we show the result of applying Newton’s method to minimize

the multi-class Softmax cost to a toy dataset with C = 4 classes, first shown in

Figure 7.7.

Figure 7.10 Figure

associated with

Example 7.4.

7.3.7 Alternative formulations of the multi-class Softmax

Smoothing the formulation of the multi-class Perceptron given in Equation (7.16)

by replacing the max with the Softmax function gives an equivalent but different

formulation of the multi-class Softmax as

7.3 Multi-Class Classification and the Perceptron 189

g

±

w

0

, ...,w
C-1

²

=

1

P

P

X

p=1

log

1 +

C-1

X

j=0

j,yp

e

x̊

T

p

±

w

j

-w

yp

²

. (7.24)

Visually, this formulation appears more similar to the two-class Softmax cost,

and indeed does reduce to it when C = 2 and y

p

∈ {-1,+1}.

This cost function is also referred to as the multi-class Cross Entropy cost because

it is, likewise, a natural generalization of the two-class version seen in Section

6.2. To see that this is indeed the case, first note that we can rewrite the pth

summand of the multi-class Softmax cost in Equation (7.23), using the fact that

log (e

s

) = s, as

log

C-1

X

j=0

e

x̊

T

p

w

j

- x̊

T

p

w

y

p

= log

C-1

X

j=0

e

x̊

T

p

w

c

- log

±

e

x̊

T

p

w

yp

²

. (7.25)

Next, we can use the log property that log (s)-log (t) = log

±

s

t

²

to rewrite Equation

(7.25) as

log

C-1

X

j=0

e

x̊

T

p

w

j

- log e

x̊

T

p

w

yp

= log

∑

C-1

j=0

e

x̊

T

p

w

j

e

x̊

T

p

w

yp

. (7.26)

Finally, since log (s

)

= -log

±

1

s

²

this can be rewritten equivalently as

log

∑

C-1

j=0

e

x̊

T

p

w

j

e

x̊

T

p

w

yp

= -log

e

x̊

T

p

w

yp

∑

C-1

j=0

e

x̊

T

p

w

j

. (7.27)

Altogether we can then express the multi-class Softmax in Equation (7.23) equiv-

alently as

g

±

w

0

, ...,w
C-1

²

= -

1

P

P

X

p=1

log

e

x̊

T

p

w

yp

∑

C-1

j=0

e

x̊

T

p

w

j

. (7.28)

Visually, this formulation appears more similar to the two-class Cross Entropy

cost in Equation (6.12), and indeed does reduce to it in quite a straightforward

manner when C = 2 and y

p

∈ {0, 1}.

7.3.8 Regularization and the multi-class Softmax

As with the multi-class Percpetron cost (in Section 7.3.4), it is common to regu-

larize the multi-class Softmax as

190 Linear Multi-Class Classification

1

P

P

X

p=1

log

C-1

X

j=0

e

b

j

+x

T

p

ω

j

-

±

b

y

p

+ x

T

p

ω

y

p

²

+λ

C-1

X

j=0

³

³

³

³

ω

j

³

³

³

³

2

2

(7.29)

where, once again, we have used the bias/feature-touching weight notation

allowing us to decompose each weight vector w

c

as shown in Equation (7.6).

Regularization can also help prevent local optimization methods like Newton’s

method (which take large steps) from diverging when dealing with perfectly

separable data (see Section 6.4).

7.3.9 Python implementation

To implement either of the multi-class cost functions detailed in this section it

is first helpful to rewrite our model using the matrix notation first introduced

in Section 5.6. In other words we first stack the weights from our C classifiers

together into a single (N + 1) ×C array of the form

W =

w

0,0

w

0,1

w

0,2

· · · w

0,C-1

w

1,0

w

1,1

w

1,2

· · · w

1,C-1

w

2,0

w

2,1

w

2,2

· · · w

2,C-1

.

.

.

.

.

.

.

.

. · · ·
.

.

.

w

N,0

w

N,1

w

N,2

· · · w

N,C-1

. (7.30)

Here the bias and normal vector of the cth classifier have been stacked on top of

one another and make up the cth column of the array. We likewise extend our

model notation to also denote the evaluation of our C individual linear models

together as

model (x,W) = x̊

T

W =

h

x̊

T

w

0

x̊

T

w

1

· · · x̊

T

w

C-1

i

. (7.31)

This is precisely the same condensed linear model we used to implement multi-

output regression in Section 5.6.3,which we repeat below.

1 # compute C linear combinations of input point, one per classifier

2 def model(x,w):

3 a = w[0] + np.dot(x.T,w[1:])

4 return a.T

With this model notation we can more conveniently implement essentially

any formula derived from the fusion rule like, for example, the multi-class

Perceptron. For example, we can write the fusion rule in Equation (7.12) itself

equivalently as

y = argmax [model (x,W

)]

. (7.32)

7.3 Multi-Class Classification and the Perceptron 191

Likewise we can write the pth summand of the multi-class Perceptron compactly

as

°

max

c= 0,...,C-1

x̊

T

p

w

c

!

- x̊

T

p

w

y

p

. = max

h

model

±

x

p

,W

²i

- model

±

x

p

,W

²

y

p

(7.33)

where here the term model

±

x

p

,W

²

y

p

refers to the y

p

th entry of model

±

x

p

,W

²

.

Python code often runs much faster when for loops – or equivalently list

comprehensions – are written equivalently using matrix-vector NumPy oper-

ations (this has been a constant theme in our implementations since linear

regression in Section 5.2.4).

Below we show an example implementation of the multi-class Perceptron

in Equation (7.16) that takes in the model function provided above. Note that

np.linalg.fro denotes the Frobenius matrix norm (see Section C.5.3).

One can implement the multi-class Softmax in Equation (7.23) in an entirely

similar manner.

1 # multiclass perceptron

2 lam = 10**-5 # our regularization parameter

3 def multiclass_perceptron(w):

4 # pre-compute predictions on all points

5 all_evals = model(x,w)

6

7 # compute maximum across data points

8 a = np.max(all_evals,axis = 0)

9

10 # compute cost in compact form using numpy broadcasting

11 b = all_evals[y.astype(int).flatten(),np.arange(np.size(y))]

12 cost = np.sum(a - b)

13

14 # add regularizer

15 cost = cost + lam*np.linalg.norm(w[1:,:],’fro’)**2

16

17 # return average

18 return cost/float(np.size(y))

Finally, note that since any cost for multi-class classification described in this

section takes in a matrix of parameters, when using autograd as part of your

optimization process it can be very convenient to first flattenyour chosen cost – as

explained in Section B.10.3 – prior to minimization. Doing this avoids the need to

explicitly loop over weights in your local optimization routine, allowing you to

directly employ the basic Python implementations of, e.g., gradient descent (see

Section 3.5.4) and Newton’s method (see Section 4.3.6) without modification.

192 Linear Multi-Class Classification

7.4 Which Approach Produces the Best Results?

In the previous two sections we have seen two fundamental approaches to

linear multi-class classification: the One-versus-All (OvA) and the multi-class

Perceptron/Softmax. Both approaches are commonly used in practice and often

(depending on the dataset) produce similar results (see, e.g., [25, 26]). However,

the latter approach is (at least in principle) capable of achieving higher accuracy

on a broader range of datasets. This is due to the fact that with OvA we solve

a sequence of C two-class subproblems (one per class), tuning the weights of

our classifiers independently of each other. Only afterward do we combine all

classifiers together to form the fusion rule. Thus the weights we learn satisfy

the fusion rule indirectly. On the other hand, with the multi-class Perceptron or

Softmax cost function minimization we are tuning all parameters of all C clas-

sifiers simultaneously to directly satisfy the fusion rule over our training dataset.

This joint minimization permits potentially valuable interactions to take place

in-between the two-class classifiers in the tuning of their weights that cannot

take place in the OvA approach.

Example 7.5 Comparison of OvA and multi-class Perceptron

We illustrate this principal superiority of the multi-class Perceptron approach

over OvA using a toy dataset with C = 5 classes, shown in the left panel of

Figure 7.11, where points colored red, blue, green, yellow, and violet have label

values y

p

= 0, 1, 2, 3, and 4, respectively.

Figure 7.11 Figure associated with Example 7.5. See text for details.

Think for a moment how the OvA approach will perform in terms of the

yellow colored class concentrated in the middle of the dataset, particularly how

the subproblem in which we distinguish between members of this class and all

others will be solved. Because this class of data is surrounded by members of

the other classes, and there are fewer members of the yellow class than all other

classes combined, the optimal linear classification rule for this subproblem is

to classify all points as nonyellow (or in other words, to misclassify the entire

7.5 The Categorical Cross Entropy Cost Function 193

yellow class). This implies that the linear decision boundary will lie outside

the range of the points shown, with all points in the training data lying on its

negative side. Since the weights of decision boundary associated with the yellow

colored class are tuned solely based on this subproblem, this will lead to the

entire yellow class being misclassified in the final OvA solution provided by the

fusion rule, as shown in the middle panel of Figure 7.11.

On the other hand, if we employ the multi-class Perceptron or Softmax ap-

proach we will not miss this class since all C = 5 two-class classifiers are learned

simultaneously, resulting in a final fused decision boundary that is far superior

to the one provided by OvA, as shown in the right panel of Figure 7.11. We mis-

classify far fewer points and, in particular, do not misclassify the entire yellow

class of data.

7.5 The Categorical Cross Entropy Cost Function

In the previous sections we employed by default the numerical label values

y

p

∈ {0, 1, ..., C - 1}. However, as in the case of two-class classification (see Section

6.7), the choice of label values with multi-class classification is also arbitrary.

Regardless of how we define label values we still end up with precisely the

same multi-class scheme we saw in Section 7.3 and cost functions like the multi-

class Softmax.

In this section we see how to use categorical labels, that is labels that have no

intrinsic numerical order, to perform multi-class classification. This perspective

introduces the notion of a discrete probability distribution as well as the notion of

a Categorical Cross Entropy cost, which (as we will see) is completely equivalent

to the multi-class Softmax/Cross Entropy cost function we saw in Section 7.3.

7.5.1 Discrete probability distributions

Suppose you took a poll of ten friends or work colleagues inquiring if they

owned a pet cat or dog. From this group you learned that three people owned

neither a cat nor a dog, one person owned a cat, and six people owned dogs.

Building a corresponding data vector s =

h

3, 1, 6

i

from this survey response,

s can be represented visually as a histogram where the value of each entry is

represented by a vertical bar whose height is made proportional to its respective

value. A histogram of this particular vector is shown in the left panel of Figure

7.12.

It is quite common to normalize data vectors like this one so that they can be

interpreted as a discrete probability distribution. To do so, the normalization must

be done in a way to ensure that (i) the numerical ordering of its values (from

smallest to largest) is retained, (ii) its values are nonnegative, and (iii) its values

sum exactly to 1. For a vector of all nonnegative entries this can be done by

194 Linear Multi-Class Classification

0.6

0.3

0.1

3

1

6

Figure 7.12 (left panel) Visual representation of a sample data vector

h

s = 3, 1, 6

i

,

resulting from a pet ownership survey and shown as a histogram. (right panel)

Normalizing this vector by dividing it off by the sum of its entries allows us to treat it as

a discrete probability distribution.

simply dividing it by the sum of its values. With the toy example we use here

since its (nonnegative) values sum to 3 + 1 + 6 = 10 this requires dividing all

entries of s by 10 as

s =

h

0.3, 0.1, 0.6

i

. (7.34)

This normalized histogram (sometimes referred to as a probability mass function)

is shown in the right panel of Figure 7.12.

7.5.2 Exponential normalization

This kind of normalization can be done in general for any length C vector

s =

h

s

0

, s

1

, ..., s
C-1

i

with potentially negative elements. Exponentiating each

element in s gives the vector

h

e

s

0

, e

s

1

, ..., e

s

C-1

i

(7.35)

where all entries are now guaranteed to be nonnegative. Notice also that expo-

nentiation maintains the ordering of values in s from small to large.

1

If we now

divide off the sum of this exponentiated version of s from each of its entries, as

σ (s) =

h

e

s

0

∑

C-1

c=0

e

sc

,

e

s

1

∑

C-1

c=0

e

sc

, ..., e

s

C-1

∑

C-1

c=0

e

sc

i

(7.36)

we not only maintain the two aforementioned properties (i.e., nonnegativity

and numerical order structure) but, in addition, satisfy the third property of a

valid discrete probability distribution: all entries now sum to 1.

The function σ

(

·

) defined in

Equation (7.36) is called a normalized exponential

1

This is because the exponential function e

(

·) is always monotonically increasing.

7.5 The Categorical Cross Entropy Cost Function 195

σ

1

σ

2

σ

0

σ

0

+ σ

1

+σ

2

= 1

s

1

s

0

s

2

Figure 7.13 (left panel) A vector of length C = 3 shown as a histogram. (right panel)

Taking the normalized exponential of this vector, as defined in Equation (7.36),

produces a new vector of all nonnegative entries whose numerical order is preserved,

and whose total value sums to 1.

function.

2

It is often used so that we may interpret an arbitrary vector s (possibly

containing negative as well as positive entries) as a discrete probability distri-

bution (see Figure 7.13), and can be thought of as a generalization of the logistic

sigmoid introduced in Section 6.2.3.

7.5.3 Exponentially normalized signed distances

In the previous two sections we relied on a point x’s signed distance to each of

the C individual decision boundaries (or something very close to it if we do not

normalize feature-touching weights) to properly determine class membership.

This is codified directly in the fusion rule (given in, for example, Equation (7.12))

itself.

For a given setting of our weights for all C two-class classifiers the evaluation

of x through all decision boundaries produces C signed distance measurements

s =

h

x̊

T

w

0

x̊

T

w

1

· · · x̊

T

w

C-1

i

(7.37)

which we can think of as a histogram.

Because – as we have seen above – the normalized exponential function pre-

serves numerical order we can likewise consider the exponentially normalized

2

This function is sometimes referred to as Softmax activation in the context of neural networks.

This naming convention is unfortunate, as the normalized exponential is not a soft version of

the max function as the rightly named Softmax function detailed in Section 7.2.5 is, and should

not be confused with it. While it is a transformation that does preserve the index of the largest

entry of its input, it is not a soft version of the argmax function either as it is sometimes

erroneously claimed to be.

196 Linear Multi-Class Classification

signed distance in determining proper class ownership. Denoting by σ

(

·

) the

normalized exponential our generic histogram of signed distances becomes

σ

(

s

)

=

´

e

x̊

T

w

0

∑

C-1

c=0

e

x̊

T

w

c

e

x̊

T

w

1

∑

C-1

c=0

e

x̊

T

w

c

· · · e

x̊

T

w

C-1

∑

C-1

c=0

e

x̊

T

w

c

µ

. (7.38)

Transforming the histogram of signed distance measurements also gives us

a way of considering class ownership probabilistically. For example, if for a

particular setting of the entire set of weights gave for a particular point x

p

σ (s) =

h

0.1, 0.7, 0.2

i

(7.39)

then while we would still assign a label based on the fusion rule (see Equation

(7.12)) – here assigning the label y

p

= 1 since the second entry 0.7 of this vector

is largest – we could also add a note of confidence that ”y

p

= 1 with 70 percent

probability.”

Figure 7.14 (left panel) Histogram visualizations of signed distance measurements of

three exemplar points in a C = 3 class dataset. (right panel) Exponentially normalized

signed distance measurements visualized as histograms for the same three points.

Example 7.6 Signed distances as a probability distribution

In Figure 7.14 we use the prototype C = 3 class dataset (shown in Figure 7.1)

and visualize both signed distance vectors as histograms for several points (left

panel) as well as their normalized exponential versions (right panel). Note how

the largest positive entry in each original histogram shown on the left panel

remains the largest positive entry in the normalized version shown on the right

panel.

7.5 The Categorical Cross Entropy Cost Function 197

7.5.4 Categorical classification and the Categorical Cross Entropy cost

Suppose we begin with a multi-class classification dataset

n±

x

p

, y

p

²o

P

p=1

with N-

dimensional input and transform our numerical label values y

p

∈ {0,1, ..., C- 1}

with one-hot encoded vectors of the form

y

p

= 0 ←- y

p

=

h

1, 0, · · · 0, 0

i

y

p

= 1 ←- y

p

=

h

0, 1, · · · 0, 0

i

.

.

.

y

p

= C - 1 ←- y

p

=

h

0, 0, · · · 0, 1

i

.

(7.40)

Here each one-hot encoded categorical label is a length C vector and contains all

zeros except a 1 in the index equal to the value of y

p

(note that the first entry in

this vector has index 0 and the last C - 1).

Each vector representation uniquely identifies its corresponding label value,

but now our label values are no longer ordered numerical values, and our dataset

now takes the form

n±

x

p

, y

p

²o

P

p=1

, where y

p

are one-hot encoded labels defined as

above. Our goal, however, remains the same: to properly tune the weights of our

C One-versus-All two-class classifiers to learn the best correspondence between

the N-dimensional input and C-dimensional output of our training dataset.

With vector-valued output, instead of scalar numerical values, we can phrase

multi-class classification as an instance of multi-output regression (see Section

5.6). In other words, denoting by W the (N + 1 × C) matrix of weights for all C

classifiers (see Section 7.3.9) we can aim at tuning W so that the approximate

linear relationship holds for all our points

x̊

T

p

W ≈ y

p

. (7.41)

However, since now our output y

p

does not consist of continuous values but

one-hot encoded vectors, a linear relationship would not represent such vectors

very well at all. Entries of the left-hand side for a given p can be nonnegative, less

than zero or greater than one, etc. However, taking the normalized exponential

transform of our linear model normalizes it in such a way (by forcing all its

entries to be nonnegative and sum exactly to one) so that we could reasonably

propose to tuneW so that

σ

±

x̊

T

p

W

²

≈ y

p

(7.42)

holds as tightly as possible over our training dataset (where σ (·) is the normal-

ized exponential). Interpreting σ

±

x̊

T

p

W

²

as a discrete probability distribution,

this is saying that we want to tune the weights of our model so that this distri-

198 Linear Multi-Class Classification

bution concentrates completely at index y

p

, i.e., the only nonzero entry of the

one-hot encoded output y

p

.

To learn our weights properly we could employ a standard point-wise regres-

sion cost such as the Least Squares (see Section 5.2)

g

p

(W) =

³

³

³

³

σ

±

x̊

T

p

W

²

- y

p

³

³

³

³

2

2

. (7.43)

However, as we discussed in Section 6.2, a more appropriate point-wise cost

when dealing with binary output is the log error since it more heavily penalizes

errors less than one in such instances. Here the log error of σ

±

x̊

T

p

W

²

and y

p

can

be written as

g

p

(W) = -

C

X

c=0

y

p,c

log σ

±

x̊

T

p

W

²

c

(7.44)

where y

p,c

is the cth entry of the one-hot encoded label y

p

. Note that this formula

simplifies considerably since y

p

is a one-hot encoded vector, hence all but one

summand on the right-hand side above equals zero. This is precisely the original

label integer label c of the pointx

p

, thus the c

th

index of y

p

equals one i.e., y

p,c

= 1.

This means that the above simplifies too

g

p

(

W

)

= -logσ

±

x̊

T

p

W

²

y

p

(7.45)

and from the definition of the normalized exponential this is precisely

g

p

(W) = -log

e

x̊

T

p

w

yp

∑

C-1

c=0

e

x̊

T

p

w

c

. (7.46)

If we then form a cost function by taking the average of the above over all P

training data points we have

g (W) = -

1

P

P

X

p=1

log

e

x̊

T

p

w

yp

∑

C-1

c=0

e

x̊

T

p

w

c

. (7.47)

This is precisely a form of the standard multi-class Cross Entropy/Softmax cost

function we saw in Section 7.3.7 in Equation (7.28) where we used numerical

label values y

p

∈ {0,1, ...,C- 1}.

7.6 Classification Quality Metrics

In this section we describe simple metrics for judging the quality of a trained

multi-class classification model, as well as how to make predictions using one.

7.6 Classification Quality Metrics 199

7.6.1 Making predictions using a trained model

If we denote the optimal set of weights for the cth One-versus-All two-class

classifier as w

?

c

– found by minimizing a multi-class classification cost function

in Section 7.3 or via performing OvA as detailed in Section 7.2 – then to predict

the label y

0

of an input x

0

we employ the fusion rule as

y

0

= argmax

c=0,...,C-1

y

0

= argmax

c=0,1,2

x̊

0 T

w

?

c

x̊

T

w

?

1

= 0

x

0

x̊

T

w

?

0

= 0

x̊

T

w

?

2

= 0

Figure 7.15 (left panel) A toy C = 3 class dataset, multi-class decision boundary (shown

in black, along with regions colored according to the prediction provided by the fusion

rule. (right panel) The same dataset shown with each One-versus-All decision

boundary (with each is colored based on the class it distinguishes from the remainder of

the data), which – when combined via the fusion rule – provides the multi-class

decision boundary shown in the left panel. Here the label y

0

of a new point x

0

, shown as

a hollow circle in the upper-right, is predicted via the fusion rule which measures –

roughly speaking – the maximum distance from this point to each One-versus-All

decision boundary.

7.6.2 Confidence scoring

Once a proper decision boundary is learned, we can describe the confidence we

have in any point based on the point’s distance to the decision boundary, in the same

x

0T

w

?

c

(7.48)

where any point lying exactly on the decision boundary should be assigned

a label randomly based on the index of those classifiers providing maximum

evaluation. Indeed this set of points forms the multi-class decision boundary –

illustrated in black for a toy C = 3 class dataset in the left panel of Figure 7.15

– where the regions in this image have been colored based on predicted label

provided by the fusion rule evaluation of each point in the input space. The right

panel of this image shows the same dataset and the individual One-versus-All

boundaries (where each is colored based on the class it distinguishes from the

remainder of the data), and for a point x

0

depicts its fusion rule evaluation as the

maximum distance to each One-versus-All boundary (which is roughly what is

computed by the fusion rule evaluation – see Section 7.2.4).

200 Linear Multi-Class Classification

way we can with two-class data (see Section 6.8.2). More specifically, we can use

its exponentially normalized distance to score our confidence in the prediction,

as described in Section 7.5.3.

7.6.3 Judging the quality of a trained model using accuracy

To count the number of misclassifications a trained multi-class classifier forms

over our training dataset, we simply take a raw count of the number of training

data points x

p

whose true label y

p

is predicted incorrectly. To compare the point

x

p

’s predicted label ŷ

p

= argmax

j=0,...,C-1

x

T

p

w

?

j

and true true label y

p

we can use an

identity function I (·) and compute

I

±

ŷ

p

, y

p

²

=

0 if ŷ

p

= y

p

1 if ŷ

p

, y

p

.

(7.49)

Taking a sum of the above over all P points gives the total number of misclassi-

fications of our trained model

number of misclassifications =

P

X

p=1

I

±

ŷ

p

, y

p

²

. (7.50)

Using this we can also compute the accuracy, denoted A, of a trained model.

This is simply the normalized number of training data points whose labels are

correctly predicted by the model, defined as

A = 1 -

1

P

P

X

p=1

I

±

ŷ

p

, y

p

²

. (7.51)

The accuracy ranges from 0 (no points are classified correctly) to 1 (all points

are classified correctly).

Example 7.7 Comparing cost function and counting cost values

In Figure 7.16 we compare the number of misclassifications versus the value

of the multi-class Softmax cost in classifying the C = 5 class dataset shown

in Figure 7.11 over three runs of standard gradient descent using a steplength

parameter α = 10

-2

for all three runs.

Comparing the left and right panels of the figure we can see that the number of

misclassifications and Softmax evaluations at each step of a gradient descent run

do not perfectly track one another. That is, it is not the case that just because the

cost function value is decreasing that so too is the number of misclassifications

(very much akin to the two-class case). This occurs because our Softmax cost is

7.6 Classification Quality Metrics 201

iterationiteration

number of misclassifications multi-class Softmax cost value

Figure 7.16 Figure associated with Example 7.7. See text for further details.

only an approximation of the true quantity we would like to minimize, i.e., the

number of misclassifications.

This simple example has an extremely practical implication: while we tune

the weights of our model by minimizing an appropriate multi-class cost, after

minimization the best set of weights from the run are associated with the lowest

number of misclassifications (or likewise the highest accuracy) not the lowest cost

function value.

7.6.4 Advanced quality metrics for dealing with unbalanced classes

The advanced quality metrics we saw in the case of two-class classification to

deal with severe class imbalance, including balanced accuracy (see Section 6.8.4)

as well as further metrics defined by a confusion matrix (see Section 6.8.5), can be

directly extended to deal with class-imbalance issues in the multi-class context.

These direct extensions are explored further in this chapter’s exercises.

Example 7.8 Confusion matrix for a toy dataset

In the left panel of Figure 7.17 we show the result of a fully tuned multi-class

classifier trained on the dataset first shown in Figure 7.7. The confusion matrix

corresponding to this classifier is shown in the right panel of the figure. The

(

i, j

)

th entry of this matrix counts the number of training data points that have

true label y = i and predicted label ŷ = j.

202 Linear Multi-Class Classification

Example 7.9 The Iris dataset

In this example we explore the application of linear multi-class classification to

the popular Iris dataset, taken from [27]. This dataset consists of a set of P = 150

statistical measurements on C = 3 types of flowers (the Iris Setosa, Iris Versicolor,

and Iris Virginica species), with 50 of each type of flower represented in the data.

Each input point consists of N = 4 features including sepal length and width as

well as petal length and width (all measured in centimeters).

Minimizing the multi-class Softmax cost we can easily attain almost perfect

classification of this dataset, resulting in two misclassifications and the following

confusion matrix.

Predicted

Setosa Versicolor Virginica

A
c
t
u

a
l

Setosa 50 0 0

Versicolor 0 49 1

Virginica 0 1 49

7.7 Weighted Multi-Class Classification

Weighted multi-class classification arises for precisely the same reasons de-

scribed for two-class classification in Section 6.9; that is, as a way of including a

notion of confidence in data points and for dealing with severe class imbalances.

One can easily derive weighted versions of the multi-class Perceptron/Softmax

cost functions that completely mirror the two-class analog detailed in this earlier

section (see Exercise 7.10).

Figure 7.17 Figure

associated with Example 7.8.

See text for details.

7.8 Stochastic and Mini-Batch Learning 203

7.8 Stochastic and Mini-Batch Learning

In Appendix Section A.5 we describe a simple extension of the standard gradient

descent algorithm (outlined in Chapter 3) called mini-batch gradient descent. This

approach is designed to accelerate the minimization of cost functions consisting

of a sum of P terms

g (w) =

P

X

p=1

g

p

(w) (7.52)

where g

1

g

2

, ..., g

P

are all functions of the same kind that take in the same pa-

rameters.

As we have seen, every supervised learning cost function looks like this –

including those used for regression, two-class, and multi-class classification.

Each g

p

is what we have generally referred to as a point-wise cost that measures

the error of a particular model on the pth point of a dataset. For example, with

the Least Squares cost we saw in Section 5.2 that the point-wise cost took the

form g

p

(

w

)

=

±

x̊

T

p

w - y

p

²

2

, with the two-class Softmax (in Section 6.4.3) it took

the form g

p

(

w

)

= -log

±

σ

±

y

p

x̊

T

p

w

²²

, and with the multi-class Softmax (in Section

7.3.5) the form g

p

(

W

)

=

h

log

±

∑

C-1

c=0

e

x̊

T

p

w

c

²

-

˚

x

T

p

w

y

p

i

. More generally, as we will

see moving forward (as with, for example, the linear Autoencoder described

in Section 8.3), every machine learning cost function takes this form (because they

always decompose over their training data) where g

p

is a point-wise cost of

the pth point of a dataset. Because of this we can directly apply mini-batch

optimization in tuning their parameters.

7.8.1 Mini-batch optimization and online learning

As detailed in Appendix Section A.5, the heart of the mini-batch idea is to

minimize such a cost sequentially over small mini-batches of its summands, one

mini-batch of summands at a time, as opposed to the standard local optimization

step where minimize in the entire set of summands at once. Now, since machine

learning cost summands are inherently tied to training data points, in the context

of machine learning we can think about mini-batch optimization equivalently in

terms of mini-batches of training data as well. Thus, as opposed to a standard

(also called full batch) local optimization that takes individual steps by sweeping

through an entire set of training data simultaneously, the mini-batch approach

has us take smaller steps sweeping through training data sequentially (with one

complete sweep through the data being referred to as an epoch). This machine

learning interpretation of mini-batch optimization is illustrated schematically

in the Figure 7.18.

As with generic costs, mini-batch learning often greatly accelerates the mini-

mization of machine learning cost functions (and thus the corresponding learn-

204 Linear Multi-Class Classification

w

0,0

w

0,1

w

0,2

w

0,3

= w

1,0

w

0

w

1

take a
descent step

α

take a
descent step

take a
descent step

take a
descent step

α α α

Figure 7.18 Schematic comparison of first iteration of (top panel) full batch and

(bottom) stochastic gradient descent, through the lens of machine learning using (for

the sake of simplicity) a small dataset of points. In the full batch sweep we take a step in

all points simultaneously, whereas (bottom panel) in the mini-batch approach we sweep

through these points sequentially as if we received the data in an online fashion.

ing taking place) – and is most popularly paired with gradient descent (Section

3.5) or one of its advanced analogs (see Appendix Section A.4). This is partic-

ularly true when dealing with very large datasets, i.e., when P is large (see e.g.,

[21, 28]). With very large datasets the mini-batch approach can also help limit

the amount of active memory consumed in storing data by loading in – at each

step in a mini-batch epoch – only the data included in the current mini-batch. The

mini-batch approach can also be used (or interpreted) as a so-called online learn-

ing technique, wherein data actually arises in small mini-batches and is directly

used to update the parameters of the associated model.

Example 7.10 Recognition of handwritten digits

In this example we perform handwritten digit recognition (as introduced in

Example 1.10) via multi-class classification. In Figure 7.19 we illustrate the ac-

celerated convergence of mini-batch gradient descent over the standard gradient

descent method using the multi-class Softmax cost and P = 50, 000 randomly

selected training points from the MNIST dataset [29], a popular collection of

handwritten images like those shown in Figure 1.13. In particular we show a

comparison of the first 10 steps/epochs of both methods, using a batch of size

200 for the mini-batch version and the same steplength for both runs, where we

see that the mini-batch run drastically accelerates minimization in terms of both

the cost function (left panel) and number of misclassifications (right panel).

7.9 Conclusion 205

number of misclassificationscost value

iteration iteration

Figure 7.19 Figure associated with Example 7.10. A comparison of the progress made

by standard (in black) and mini-batch (in magenta) gradient descent over the MNIST

training dataset in terms of cost function value (left panel) and number of

misclassifications (right panel). The mini-batch approach makes significantly faster

progress than standard gradient descent in both measures.

7.9 Conclusion

In this chapter we went from two to multi-class linear classification, detailing a

range of perspectives on mirroring our discussion in the previous chapter.

We began with the One-versus-All (or OvA for short) approach outlined in

Section 7.2 which involves intelligently combining the results of several one-

versus-all two-class classifiers. In Section 7.3 we then saw how to train this

set of two-class classifiers simultaneously by minimizing multi-class Perceptron or

Cross Entropy/Softmax cost functions. This simultaneous approach – at least in

principle – can provide superior performance when compared to OvA, but in

practice both approaches often lead to similar results (as detailed in Section 7.4).

Next in Section 7.5 we discussed the arbitrary nature of choosing label values,

by detailing the most arbitrary choice: categorical labels. Multi-class metrics

– natural extensions of those metrics first described for two-class problems

in Section 6.8 – were then detailed in Section 7.6. Finally, picking up on our

discussion in Section A.5, we described mini-batch optimization in the context

of machine learning in Section 7.8.

7.10 Exercises

†The data required to complete the following exercises can be downloaded from

the text’s github repository at github.com/jermwatt/machine_learning_refined

7.1 One-versus-All classification pseudo-code

Write down a psuedo-code that summarizes the One-versus-All (OvA) algo-

rithm described in Section 7.2.

206 Linear Multi-Class Classification

7.2 One-versus-All classification

Repeat the experiment described in Example 7.1. You need not reproduce the

illustrations shown in Figure 7.7; however, you should make sure your trained

model achieves a similar result (in terms of the number of misclassifications) as

the one shown there (having less than ten misclassifications).

7.3 Multi-class Perceptron

Repeat the experiment described in Example 7.3. You need not reproduce the

illustrations shown in Figure 7.9; however, you should make sure your trained

model achieves zero misclassifications. You can use the Python implementation

outlined in Section 7.3.9 of the multi-class Perceptron cost.

7.4 The multi-class and two-class Perceptrons

Finish the argument started in Section 7.3.3 to show that the multi-class Percep-

tron cost in Equation (7.16) reduces to the two-class Perceptron cost in Equation

(6.33).

7.5 Multi-class Softmax

Repeat the experiment described in Example 7.4 using any local optimization

method. You need not reproduce the illustrations shown in Figure 7.10; however,

you should make sure your trained model achieves a small number of misclas-

sifications (ten or fewer). You can use the Python implementation outlined in

Section 7.3.9 as a basis for you implementation of the multi-class Softmax cost.

7.6 Show the multi-class Softmax reduces to two-class Softmax when C = 2

Finish the argument started in Section 7.3.7 to show that the multi-class Softmax

cost in Equation (7.23) reduces to the two-class Softmax cost in Equation (6.34).

7.7 Hand-calculations with the multi-class Softmax cost

Show that the Hessian of the multi-class Softmax cost function can be computed

block-wise, for s , c, as

∇

2

w

c

w

s

g = -

P

X

p=1

e

x

T

p

w

c

+x

T

p

w

s

°

C

∑

d=1

e

x

T

p

w

d

!

2

x

p

x

T

p

(7.53)

and for s = c, as

7.10 Exercises 207

∇

2

w

c

w

c

g =

P

X

p=1

e

x

T

p

w

c

C

∑

d=1

e

x

T

p

w

d

1 -

e

x

T

p

w

c

C

∑

d=1

e

x

T

p

w

d

x

p

x

T

p

. (7.54)

7.8 The multi-class Perceptron and Softmax costs are convex

Show that the multi-class Perceptron and Softmax costs are always convex

(regardless of the dataset used). To do this you can use, e.g., the zero-order

definition of convexity (see Exercise 5.8).

7.9 Balanced accuracy in the multi-class setting

Extend the notion of balanced accuracy, detailed in the context of two-class

classification (see Section 6.8.4), to the multi-class setting. In particular give an

equation for the balanced accuracy in the context of multi-class classification

that is analogous to Equation (6.79) for the two-class case.

7.10 Weighted multi-class Softmax

A general weighted version of the two-class Softmax cost is given in Equation

(6.83). What will the analogous weighted multi-class Softmax cost function look

like? If we set the weights the of cost function to deal with class imbalance – as

detailed for the two-class case in Section 6.9.3 – how should we set the weight

values?

7.11 Recognizing handwritten digits

Repeat the experiment outlined in Example 7.10 by implementing mini-batch

gradient descent. You may not obtain precisely the same results shown in Figure

7.19 based on your implementation, initialization of the algorithm, etc.; however,

you should be able to recreate the general result.

8 Linear Unsupervised Learning

8.1 Introduction

In this chapter we discuss several useful techniques for unsupervised learning,

broadly introduced in Section 1.3, which are designed to reduce the dimension

of a given dataset by intelligently reducing either its number of input features

or data points. These techniques can be employed as a preprocessing step to

supervised learning, allowing them to scale to larger datasets, or for the sake of

human in-the-loop data analysis. We begin the chapter by reviewing the notion

of a spanning set from vector algebra, and then detail the linear Autoencoder, our

fundamental feature dimension reduction tool, and address the highly related

topic of Principal Component Analysis. We then discuss the K-means clustering

algorithm, Recommender Systems, and end with a discussion of general matrix

factorization problems.

8.2 Fixed Spanning Sets, Orthonormality, and Projections

In this section we review the rudimentary concepts from linear algebra that

are crucial to understanding unsupervised learning techniques. The interested

reader needing a refresher in basic vector and matrix operations (which are

critical to understanding the concepts presented here) may find a review of

such topics in Sections C.2 and C.3.

8.2.1 Notation

As we have seen in previous chapters, data associated with supervised tasks

of regression and classification always comes in as input/output pairs. Such

dichotomy does not exist with unsupervised learning tasks wherein a typical

dataset is written simply as a set of P (input) points

{x

1

, x

2

, . . . , x
P

} (8.1)

or

n

x

p

o

P

p=1

for short, all living in the same N-dimensional space. Throughout the

remainder of this section we will assume that our dataset has been mean-centered:

8.2 Fixed Spanning Sets, Orthonormality, and Projections 209

a simple and completely reversible operation that involves subtracting off the

mean of the dataset along each input dimension so that it straddles the origin.

As illustrated in Figure 8.1, when thinking about points in a multi-dimensional

vector space we can picture them either as dots (as shown in the left panel), or as

arrows stemming from the origin (as shown in the middle panel). The former is

how we have chosen to depict our regression and classification data thus far in

the book since it is just more aesthetically pleasing to picture linear regression

as fitting of a line to a scatter of dots as opposed to a collection of arrows. The

equivalent latter perspective, however (i.e., viewing multi-dimensional points

as arrows), is the conventional way vectors are depicted, e.g., in any standard

linear algebra text. In discussing unsupervised learning techniques it is often

helpful to visualize points living in an N-dimensional space using both of these

conventions, some as dots and some as arrows (as shown in the right panel of

Figure 8.1). Those vectors drawn as arrows are particular points, often called a

basis or spanning set of vectors, over which we aim to represent every other point

in the space.

Notationally, we denote a spanning set by

{c

1

, c

2

, . . . , c
K

} (8.2)

or, {c

k

}

K

k=1

for short.

Figure 8.1 Two-dimensional points illustrated as dots (left panel), arrows (middle

panel), and a mixture of both (right panel). Those shown as arrows on the right are a

basis or spanning set over which we aim to represent every point in the entire space.

8.2.2 Perfect representation of data using fixed spanning sets

A spanning set is said to be capable of perfectly representing all P of our points

if we can express each data point x

p

as some linear combination of our spanning

set’s members, as

K

X

k=1

c

k

w

p, k

= x

p

, p = 1, ..., P. (8.3)

210 Linear Unsupervised Learning

Generally speaking two simple conditions, if met by a spanning set of vec-

tors {c

k

}

K

k=1

, guarantee all P equalities in Equation (8.3) to hold regardless of the

dataset

n

x

p

o

P

p=1

used: (i)K = N, or in other words, the number of spanning vectors

matches the data dimension,

1

and (ii) all spanning vectors are linearly indepen-

dent.

2

For such a spanning set Equation (8.3) can be written more compactly

as

Cw

p

= x

p

, p = 1, ...,P, (8.4)

where the spanning matrix C is formed by stacking the spanning vectors

column-wise

C =

| | · · · |

c

1

c

2

c

N

| | · · · |

(8.5)

and where the linear combination weights are the stacked into column vectors

w

p

w

p

=

w

p,1

w

p,2

.

.

.

w

p,N

(8.6)

for all p = 1, ...,P.

To tune the weights in each w

p

we can form an associated Least Squares cost

function (as we have done multiple times previously, for example, with linear

regression in Section 5.2) that, when minimized, forces the equalities in Equation

(8.4) to hold

g (w

1

, ..., w

P

) =

1

P

P

X

p=1

±

±

±

Cw

p

- x

p

±

±

±

2

2

. (8.7)

This Least Squares cost function can be minimized via any local optimization

method. In particular we can use the first-order condition (Section 3.2) in each

weight vector w

p

independently, with the corresponding first-order system taking

the form

C

T

C w

p

= C

T

x

p

. (8.8)

This is an N × N symmetric linear system that can be easily solved numerically

1

Otherwise if K < N, some portions of the space will definitely be out of the spanning vectors’

reach.

2

See Section C.2.4 if unfamiliar with the notion of linear independence.

8.2 Fixed Spanning Sets, Orthonormality, and Projections 211

(see, e.g., Section 3.2.2 and Example 3.6). Once solved, the optimally tuned

weight vector w

?

p

for the point x

p

is often referred to as the encoding of the point

over the spanning matrix C. The actual linear combination of the spanning

vectors for each x

p

(i.e., Cw

?

p

) is likewise referred to as the decoding of the point.

Example 8.1 Data encoding

In the left panel of Figure 8.2 we show anN = 2 dimensional toy dataset centered

at the origin, along with the spanning set C =

"

2 1

1 2

#

shown as two red arrows.

Minimizing the Least Squares cost in Equation (8.7), in the right panel we show

the encoded version of this data, plotted in a new space whose coordinate axes

are now in line with the two spanning vectors.

encoded dataoriginal data

x

1

x

2

c

2

c

1

Figure 8.2 Figure associated with Example 8.1. A toy dataset (left panel) with spanning

vectors shown as red arrows, and its encoding (right panel). See text for further details.

8.2.3 Perfect representation of data using fixed orthonormal spanning
sets

An orthonormal basis or spanning set is a very special kind of spanning set

whose elements (i) have unit length, and (ii) are perpendicular or orthogonal to

each other. Algebraically this means that vectors belonging to an orthonormal

spanning set satisfy the following condition

c

T

i

c

j

=

1

0

if i = j

if i , j

(8.9)

which can be expressed equivalently but more compactly, in terms of the span-

ning matrix C, as

212 Linear Unsupervised Learning

C C

T

= I

N×N

. (8.10)

Because of this very special property of orthonormal spanning sets we can

solve for the ideal weights w

p

(or encoding) of the point x

p

immediately, since

the first-order solution in Equation (8.8) simplifies to

w

p

= C

T

x

p

. (8.11)

In other words, encoding is enormously cheaper when our spanning set is

orthonormal since there is no system of equations left to solve for, and we

can get the encoding of each data point directly via a simple matrix-vector

multiplication.

Substituting this form of the encoding into the set of equalities in Equation

(8.4) we have

C C

T

x

p

= x

p

, p = 1, ...,P. (8.12)

We call this the Autoencoder formula since it expresses how a point x

p

is first

encoded (via w

p

= C

T

x

p

) and then decoded back to itself (Cw

p

= CC

T

x

p

). This is

because with orthonormal spanning sets we also have that C C

T

= I

N×N

, and the

two transformations we apply to the data, the encoding transformation C

T

and

the decoding transformation C, are inverse operations.

8.2.4 Imperfect representation of data using fixed spanning sets

In the previous two subsections, in order to be able to represent data perfectly,

we assumed that the number of linearly independent spanning vectors K and

the ambient input dimension N were identical. When K < N we can no longer

perfectly represent every possible data point in an input space. Instead we can

only hope to approximate, as well as possible, our dataset as

Cw

p

≈ x

p

, p = 1, ...,P. (8.13)

This is analogous to Equation (8.4) except now C and w

p

are an N × K matrix

and a K × 1 column vector, respectively, where K < N .

To learn the proper encodings for our data we still aim to minimize the

Least Squares cost in Equation (8.7) and can still use the first-order system to

independently solve for each w

p

as in Equation (8.8). Geometrically speaking,

in solving the Least Squares cost we aim at finding the best K-dimensional

subspace on which to project our data points, as illustrated in Figure 8.3. When

the encoding w

p

is optimally computed for the point x

p

, its decoding Cw

p

is

precisely the projection of x

p

onto the subspace spanned by C. This is called

a projection because, as illustrated in the figure, the representation is given by

projecting or dropping x

p

perpendicularly onto the subspace.

8.3 The Linear Autoencoder and Principal Component Analysis 213

original data encoded data decoded data

c

2

c

1

x

p

Cw

p

w

p

Figure 8.3 (left panel) A dataset of points x

p

in N = 3 dimensions along with a linear

subspace spanned by K = 2 vectors c

1

and c

2

, colored in red. (middle panel) The

encoding space spanned by c

1

and c

2

, where our encoded vectors w

p

live. (right panel)

The projected or decoded versions of each data point x

p

shown in the subspace spanned

by C = [c

1

c

2

]. The decoded version of the original point x

p

is expressed as Cw

p

.

Akin to what we saw in the previous subsection, if our spanning set of K

elements is orthonormal the corresponding formula for each encoding vector

w

p

simplifies to Equation (8.11), and the autoencoder formula shown previously

in Equation (8.12) become

C C

T

x

p

≈ x

p

p = 1, ...,P. (8.14)

In other words, since K < N the encoding C

T

and decoding C transformations

are no longer quite inverse operations of one another.

8.3 The Linear Autoencoder and Principal Component Analysis

The most fundamental unsupervised learning method, known as Principal Com-

ponent Analysis or PCA for short, follows directly from our discussion in the

previous section regarding fixed spanning set representations with one crucial

caveat: instead of just learning the proper weights to best represent input data

over a given fixed spanning set we learn a proper spanning set as well.

214 Linear Unsupervised Learning

8.3.1 Learning proper spanning sets

Imagine we returned to the previous section, but instead of assuming we were

given K ≤ N fixed spanning vectors over which to represent our mean-centered

input as

Cw

p

≈ x

p

p = 1, ..., P (8.15)

we aimed to learn the best spanning vectors to make this approximation as tight

as possible. To do this we could simply add C to the set of parameters of our

Least Squares function in Equation (8.7) giving

g

(

w

1

, ..., w

P

, C

)

=

1

P

P

X

p=1

±

±

±

Cw

p

- x

p

±

±

±

2

2

(8.16)

which we could then minimize to learn the best possible set of weights w

1

through w

P

as well as the spanning matrix C. This Least Squares cost function,

which is generally nonconvex,

3

can be properly minimized using any number

of local optimization techniques including gradient descent (see Section 3.5) and

coordinate descent (see Section 3.2.2).

original data encoded data decoded data

x

1

x

2

x

3

c

1

c

2

x

3

x

1

x

2

Figure 8.4 Figure associated with Example 8.2. See text for details.

In addition to the original data, the left panel of the figure shows the learned

spanning vectors as red arrows, and corresponding subspace colored in light

3

However, it is convex in each w

p

keeping all other weights and C fixed, and convex in C

keeping all weight vectors w

p

fixed.

Example 8.2 Learning a proper spanning set via gradient descent

In this example we use gradient descent to minimize the Least Squares cost in

Equation (8.16) in order to learn the best K = 2 dimensional subspace for the

mean-centered N = 3 dimensional dataset of P = 100 points shown in the left

panel of Figure 8.4.

8.3 The Linear Autoencoder and Principal Component Analysis 215

red. This is the very best two-dimensional subspace representation for the input

data. In the middle panel we show the corresponding learned encodings w

p

of the original input x

p

in the space spanned by the two recovered spanning

vectors. In the right panel of the figure we show the original data space again

as well as the decoded data, i.e., the projection of each original data point onto

our learned subspace.

8.3.2 The linear Autoencoder

As detailed in Section 8.2.4, if our K spanning vectors concatenated column-wise

to form the spanning matrix C are orthonormal, then the encoding of each x

p

may be written simply as w

p

= C

T

x

p

. If we plug in this simple solution for w

p

into the pth summand of the Least Squares cost in Equation (8.16), we get a cost

that is a function of C alone

g (C) =

1

P

P

X

p=1

±

±

±

C C

T

x

p

- x

p

±

±

±

2

2

. (8.17)

We can think of this Least Squares as enforcing the Autoencoder formula shown

in Equation (8.14) to hold when properly minimized, and thus it is often referred

to as the linear Autoencoder. Instead of being given an encoding/decoding scheme

for each data point, by minimizing this cost function we learn one.

Even though we were led to the linear Autoencoder by assuming our spanning

matrix C is orthonormal, we need not constrain our minimization of Equation

(8.17) to enforce this condition because, as is shown in Section 8.9, the minima

of the linear Autoencoder are always orthonormal (see Section 8.9.1).

Example 8.3 Learning a linear Autoencoder using gradient descent

In the left panel of Figure 8.5 we show a mean-centered two-dimensional dataset,

along with a single spanning vector (i.e., K = 1) learned to the data by minimizing

the linear Autoencoder cost function in Equation (8.17) using gradient descent.

The optimal vector is shown as a red arrow in the left panel, the corresponding

encoded data is shown in the middle panel, and the decoded data in the right

panel along with the optimal subspace for the data (a line) shown in red.

8.3.3 Principal Component Analysis

The linear Autoencoder cost in Equation (8.17) may have many minimizers,

of which the set of principal components is a particularly important one. The

spanning set of principal components always provide a consistent skeleton for a

dataset, with its members pointing in the dataset’s largest directions of orthogonal

216 Linear Unsupervised Learning

encoded data

decoded dataoriginal data

Figure 8.5 Figure associated with Example 8.3. See text for details.

x

2

x

1

Figure 8.6 A prototypical dataset with scaled versions of its first and second principal

components shown as the longer and shorter red arrows, respectively. See text for

further details.

As we show in Section 8.9.2, this special orthonormal minimizer of the linear

Autoencoder is given by the eigenvectors of the so-called covariance matrix of

variance. Employing this particular solution to the linear Autoencoder is often

referred to as Principal Component Analysis, or PCA for short, in practice.

This idea is illustrated for a prototypical N = 2 dimensional dataset in Figure

8.6, where the general elliptical distribution of the data is shown in light grey.

A scaled version of the first principal component of this dataset (shown as the

longer red arrow) points in the direction in which the dataset is most spread

out, also called its largest direction of variance. A scaled version of the second

principal component (shown as the shorter of the two red arrows) points in

the next most important direction in which the dataset is spread out that is

orthogonal to the first.

8.3 The Linear Autoencoder and Principal Component Analysis 217

the data. Denoting by X the N × P data matrix consisting of our P mean-centered

input points stacked column-wise

X =

| | |

x

1

x

2

· · · x

P

| | |

(8.18)

the covariance matrix is defined as the N× N matrix

1

P

X X

T

. Denoting the eigen-

decomposition (see Section C.4) of the covariance matrix as

1

P

X X

T

= V D V

T

(8.19)

the principal components are given by the orthonormal eigenvectors in V, and

the variance in each (principal component) direction is given precisely by the

corresponding nonnegative eigenvalues in the diagonal matrix D.

encoded dataoriginal data

x

1

x

2

c

2

c

1

Example 8.5 A warning example!

While PCA can technically be used to reduce the dimension of data in a pre-

dictive modeling scenario (in hopes of improving accuracy, computation time,

etc.) it can cause severe problems in the case of classification. In Figure 8.8

Figure 8.7 Figure

associated with

Example 8.4.

Example 8.4 Principal components

In the left panel of Figure 8.7 we show the mean-centered data first displayed

in Figure 8.5, along with its two principal components (pointing in the two

orthogonal directions of greatest variance in the dataset) shown as red arrows.

In the right panel we show the encoded version of the data in a space where the

principal components are in line with the coordinate axes.

218 Linear Unsupervised Learning

x

1

x

2

x

2

x

1

Figure 8.8 Figure associated with Example 8.5. (left panel) A toy classification dataset

consisting of two linearly separable classes. The ideal one-dimensional subspace

produced via PCA is shown in black. (right panel) Reducing the feature space

dimension by projecting the data onto this subspace completely destroys the original

separability of the data.

8.3.4 Python implementation

Below we provide a Python implementation involved in computing the prin-

cipal components of a dataset – including data centering, principal component

computation, and the PCA encoding. This implementation extensively leverages

NumPy’s linear algebra submodule.

First we center the data using the short implementation below.

1 # center an input dataset X

2 def center(X):

3 X_means = np.mean(X,axis=1)[:,np.newaxis]

4 X_centered = X - X_means

5 return X_centered

Next, we compute the principal components of the mean-centered data.

we illustrate feature space dimension reduction via PCA on a simulated two-

class dataset where the two classes are linearly separable. Because the ideal

one-dimensional subspace for the data in this instance runs (almost) parallel

to the ideal linear classifier, projecting the complete dataset onto this subspace

completely destroys the inter-class separation. For this very reason, while it is

commonplace to sphere classification data using PCA, as detailed in Section 9.5,

one needs to be extremely careful using PCA as a dimension reduction tool with

classification or when the data does not natively live in or near a linear subspace.

8.4 Recommender Systems 219

1 # function for computing principal components of input dataset X

2 def compute_pcs(X,lam):

3 # create the data covariance matrix

4 P = float(X.shape[1])

5 Cov = 1/P*np.dot(X,X.T) + lam*np.eye(X.shape[0])

6

7 # use numpy function to compute eigenvectors / eigenvalues

8 D,V = np.linalg.eigh(Cov)

9 return D,V

Note that in practice it is often helpful to slightly regularize a matrix prior to

computing its eigenvalues/vectors to avoid natural numerical instability issues

associated with their computation. Here this means adding a small weighted

identity λI

N×N

, where λ ≥ 0 is some small value (e.g., 10

-5

), to the data co-

variance matrix prior to computing its eigenvalues/vectors. In short, in order

to avoid computational trouble we typically compute principal components of

the regularized covariance matrix

1

P

X X

T

+ λI

N×N

instead of the raw covariance

matrix itself. Thus the addition of the term lam*np.eye(X.shape[0]) in line 5

of the implementation above.

8.4 Recommender Systems

In this section we discuss the fundamental linear Recommender System, a pop-

ular unsupervised learning framework commonly employed by businesses to

help automatically recommend products and services to their customers. From

the vantage of machine learning, however, the basic Recommender System de-

tailed here is simply a slight twist on our core unsupervised learning technique:

Principal Component Analysis.

8.4.1 Motivation

Recommender Systems are heavily used in e-commerce today, providing cus-

tomers with personalized recommendations for products and services by using

a consumer’s previous purchasing and rating history, along with those of simi-

lar customers. For instance, a movie provider like Netflix with millions of users

and tens of thousands of movies, records users’ reviews and ratings (typically

in the form of a number on a scale of 1–5 with 5 being the most favorable rating)

in a large matrix such as the one illustrated in Figure 8.9. These matrices are

very sparsely populated, since an individual customer has likely rated only a

small portion of the movies available.

With this sort of product ratings data available, online movie and commerce

sites often use the unsupervised learning technique we discuss in this section as

their main tool for making personalized recommendations to customers regard-

ing what they might like to consume next. With the technique for producing

220 Linear Unsupervised Learning

x x x x x

x x x x x x

x x x x x

x x x x x x

x x x x x

x

x

x x

x x

x x

x

x

x

1 2 3 4 5 6 7 8 9

N

P

1

2

3

4

users

m
ov

ies

Figure 8.9 A prototypical movie rating matrix is very sparsely populated, with each

user having rated only a very small number of films. In this diagram movies are listed

along rows with users along columns. In order to properly recommend movies for users

to watch we try to intelligently guess the missing values of this matrix, and then

recommend movies that we predict users would rate highly (and therefore enjoy the

most).

personalized recommendations we discuss here we aim to first intelligently

guess the values of missing entries in the ratings matrix. Next, in order to rec-

ommend a new product to a given user, we examine our filled-in ratings matrix

for products we have predicted the user would rate highly (and thus enjoy), and

recommend those.

8.4.2 Notation and modeling

With a Recommender System we continue to use our familiar notation {x

1

, ..., x
P

}

to denote input data, each of which has dimension N. In this application the point

x

p

denotes our pth customer’s rating vector of all N possible products available

to be rated. The number of products N is likely quite large, so large that each

customer has the chance to purchase and review only a very small sampling of

them, making x

p

a very sparsely populated vector (with whatever ratings user

p has input into the system). We denote the index set of these nonempty entries

of x

p

as

Ω

p

=

n

(

j,p

)

| jth entry of x

p

is filled in

o

. (8.20)

Since our goal is to fill in the missing entries of each input vector x

p

we have no

choice but to make assumptions about how users’ tastes behave in general. The

simplest assumption we can make is that every user’s tastes can be expressed

as a linear combination of some small set of fundamental user taste profiles.

For example, in the case of movies these profiles could include the prototypical

8.5 K-Means Clustering 221

romance movie lover, prototypical comedy movie lover, action movie lover, etc.

The relatively small number of such categories or user types compared to the

total number of users provides a useful framework to intelligently guess missing

values present in a user ratings dataset. Formally this is to say that we assume

that some ideal spanning set of K fundamental taste vectors (which we can

package in an N× K matrixC) exist so that each vector x

p

can be truly expressed

as the linear combination

Cw

p

≈ x

p

, p = 1, ..., P. (8.21)

In order to then learn both the spanning set C and each weight vector w

p

we

could initially propose to minimize a Least Squares cost similar to one shown

in Equation (8.16). However, our input data is now incomplete as we only have

access to the entries indexed by Ω

p

for x

p

. Therefore we can only minimize that

Least Squares cost over these entries, i.e.,

g (w

1

, ...,w
P

,C) =

1

P

P

X

p=1

±

±

±

±

±

n

Cw

p

- x

p

o

²

²

²

²

Ω

p

±

±

±

±

±

2

2

. (8.22)

The notation

{

v

}|

Ω

p

here denotes taking only those entries of v in the index

setΩ

p

. Because the Least Squares cost here is defined only over a select number

of indices we cannot leverage any sort of orthonormal solutions to this cost,

or construct a cost akin to the linear Autoencoder in Equation (8.17). However,

we can easily use gradient (see Section 3.5) and coordinate descent (see Section

3.2.2) based schemes to properly minimize it.

8.5 K-Means Clustering

The subject of this section, the K-means algorithm, is an elementary example

of another set of unsupervised learning methods called clustering algorithms.

Unlike PCA, which was designed to reduce the ambient dimension (or feature

dimension) of the data space, clustering algorithms are designed to (properly)

reduce the number of points (or data dimension) in a dataset, and in doing so

help us to better understand its structure.

8.5.1 Representing a dataset via clusters

One way to simplify a dataset is by grouping together nearby points into clusters.

Take the following set of two-dimensional data points, shown in the left panel

of Figure 8.10. When you carefully examine the data shown there you can see

that it naturally falls into three groups or clusters because you have something

along the lines of a clustering algorithms built into your brain.

In the right panel of Figure 8.10 we show a visual representation of each cluster,

222 Linear Unsupervised Learning

Figure 8.10 (left) A two-dimensional toy dataset with P = 12 data points. (right) The

data shown naturally clustered into K = 3 clusters. Points that are geometrically close to

one another belong to the same cluster, and each cluster boundary is roughly marked

using a uniquely colored solid curve. Each cluster center – also called a centroid – is

marked by a star symbol colored to match its cluster boundary.

including each cluster’s boundary drawn as a uniquely colored solid curve. We

also draw the center of each cluster using a star symbol that matches the unique

boundary color of each cluster. These cluster centers are often referred to in the

jargon of machine learning as cluster centroids. The centroids here allow us to

think about the dataset in the big picture sense – instead of P = 12 points we

can think of our dataset grossly in terms of these K = 3 cluster centroids, as each

represents a chunk of the data.

How can we describe, mathematically speaking, the clustering scenario we

naturally see when we view the points/clusters like those shown in Figure 8.10?

First some notation. As in the previous sections we will denote our set of

P points generically as x

1

, x

2

, ..., x
P

. To keep things as generally applicable as

possible we will also denote by K the number of clusters in a dataset (e.g., in

the dataset of Figure 8.10, K = 3). Because each cluster has a centroid we need

notation for this as well, and we will use c

1

, c

2

, ..., c
K

to denote these where c

k

is

the centroid of the kth cluster. Finally we will need a notation to denote the set

of points that belong to each cluster. We denote the set of indices of those points

belonging to the kth cluster as

S

k

=

n

p | if x

p

belongs to the kth cluster

o

. (8.23)

With all of our notation in hand we can now better describe the prototype

clustering scenario shown in Figure 8.10. Suppose we have identified each clus-

ter and its centroid ”by eye,” as depicted in the right panel of the figure. Because

the centroid denotes the center of a cluster, it seems intuitive that each one can

be expressed as the average of the points assigned to its cluster as

c

k

=

1

|S

k

|

X

p∈S

k

x

p

. (8.24)

8.5 K-Means Clustering 223

This formula confirms the intuition that each centroid represents a chunk of the

data – being the average of those points belonging to each cluster.

Next we can state mathematically an obvious and implicit fact about the

simple clustering scenario visualized in Figure 8.10: that each point belongs to

the cluster whose centroid it is closest to. To express this algebraically for a given

point x

p

is simply to say that the point must belong to the cluster whose distance

to the centroid

±

±

±

x

p

- c

k

±

±

±

2

is minimal. In other words, the point x

p

belongs to or is

assigned to cluster k

?

if

a

p

= argmin

k=1,...,K

±

±

±

x

p

- c

k

±

±

±

2

. (8.25)

In the jargon of machine learning these are called cluster assignments.

8.5.2 Learning clusters to represent data

Of course we do not want to have to rely on our visualization abilities to identify

clusters in a dataset. We want an algorithm that will do this for us automatically.

Thankfully we can do this rather easily using the framework detailed above

for mathematically describing clusters, the resulting algorithm being called the

K-means clustering algorithm.

To get started, suppose we want to cluster a dataset of P points into K clusters

automatically. Note here that we will fix K, and address how to properly decide

on its value later.

Since we do not know where the clusters nor their centroids are located we

can start off by taking a random guess at the locations of our K centroids (we

have to start somewhere). This ”random guess” – our initialization – for the K

centroids could be a random subset of K of our points, a random set of K points

in the space of the data, or any number of other types of initializations. With our

initial centroid locations decided on we can then determine cluster assignments

by simply looping over our points and for each x

p

finding its closest centroid

using the formula we saw above

a

p

= argmin

k=1,...,K

±

±

±

x

p

- c

k

±

±

±

2

. (8.26)

Now we have both an initial guess at our centroids and clustering assign-

ments. With our cluster assignments in hand we can then update our centroid

locations – as the average of the points recently assigned to each cluster

c

k

=

1

|S

k

|

X

p∈S

k

x

p

. (8.27)

These first three steps – initializing the centroids, assigning points to each cluster,

and updating the centroid locations – are illustrated in the top row of Figure

8.11 with the dataset shown above in Figure 8.10.

224 Linear Unsupervised Learning

Figure 8.11 The first two iterations of the K-means algorithm illustrated using the

dataset first shown in Figure 8.10. (top row) (left panel) A set of data points with

random centroid initializations and assignments. (right panel) Centroid locations

updated as average of points assigned to each cluster. (bottom row) (left panel)

Assigning points based on updated centroid locations. (right panel) Updated location

of centroids given by cluster averages.

To further refine our centroids/clusters we can now simply repeat the above

two-step process of (a) reassigning points based on our new centroid locations

and then (b) updating the centroid locations as the average of those points

assigned to each cluster. The second iteration of the algorithm is illustrated for a

particular example in the bottom row of Figure 8.11. We can halt doing so after,

for example, a predefined number of maximum iterations or when the cluster

centroids to not change location very much from one iteration to the next.

Example 8.6 The impact of initialization

The result of the algorithm reaching poor minima can have significant impact

on the quality of the clusters learned. For example in Figure 8.12 we use a two-

dimensional toy dataset with K = 2 clusters to find. With the initial centroid

positions shown in the top panel, the K-means algorithm gets stuck in a local

minimum and consequently fails to cluster the data properly. A different initial-

ization for one of the centroids, however, leads to a successful clustering of the

data, as shown in the bottom panel of the figure. To overcome this issue in prac-

8.5 K-Means Clustering 225

su
cc
es
s

fa
ilu

re

Figure 8.12 Success or failure of K-means depends on the centroids’ initialization. (top)

(i) Two centroids are initialized, (ii) cluster assignment is updated, (iii) centroid

locations are updated, (iv) no change in the cluster assignment of the data points leads

to stopping of the algorithm. (bottom) (i) Two centroids are initialized with the red one

being initialized differently, (ii) cluster assignment is updated, (iii) centroid locations are

updated, (iv) cluster assignment is updated, (v) centroid locations are updated, (vi) no

change in the cluster assignment of the data points leads to stopping of the algorithm.

tice we often run the algorithm multiple times with different initializations, with

the best solution being one that results in the smallest value of some objective

value of cluster quality.

For example, one metric for determining the best clustering from a set of runs

is the average distance of each point to its cluster centroid – called the average intra-

cluster distance. Denoting by c

k

p

the final cluster centroid of the pth point x

p

, then

the average distance from each point to its respective centroid can be written as

average intra-cluster distance =

1

P

P

X

p=1

±

±

±

x

p

- c

k

p

±

±

±

2

. (8.28)

Computing this for each run of K-means we choose the final clustering that

achieves the smallest such value as the best clustering arrangement.

� � 	� ! & � � *��� & + - (� * . ! + � ���� � � * & ! & �� 0 � % ($ ���; > :$ I P P T J O H � U I F � J E F B M � O V N C F S � P G � D M V T U F S T,5 P � E F U F S N J O F � U I F � P Q U J N B M � T F U U J O H � P G � U I F � Q B S B N F U F S, � J � F � � U I F � O V N C F S � P G � D M V T U F S T

J O � X I J D I � U P � D M V T U F S � U I F � E B U B � X F � U Z Q J D B M M Z � N V T U � U S Z � B � S B O H F � P G � E J�F S F O U � W B M V F T � G P S, � S V O � U I F � , � N F B O T � B M H P S J U I N � J O � F B D I � D B T F � B O E � D P N Q B S F � U I F � S F T V M U T � V T J O H � B O

B Q Q S P Q S J B U F � N F U S J D � M J L F � U I F � B W F S B H F � J O U S B � D M V T U F S � E J T U B O D F � J O & R V B U J P O � 	 � � � �
 � � 0 G

D P V S T F � J G � X F � B D I J F W F � B O � P Q U J N B M � D M V T U F S J O H � G P S � F B D I � W B M V F � P G,	 Q F S I B Q T � S V O O J O H

U I F � B M H P S J U I N � N V M U J Q M F � U J N F T � G P S � F B D I � W B M V F � P G,
 � U I F O � U I F � J O U S B � D M V T U F S � E J T U B O D F

T I P V M EB M X B Z T � H P � E P X O � N P O P U P O J D B M M Z � B T � X F � J O D S F B T F � U I F � W B M V F � P G � ,T J O D F � X F � B S F

Q B S U J U J P O J O H � U I F � E B U B T F U � J O U P � T N B M M F S � B O E � T N B M M F S � D I V O L T �

’ P S � F Y B N Q M F � J O ’ J H V S F � � � � � X F � T I P X � U I F � S F T V M U T � P G � S V O O J O H � U F O � S V O T � P G � , �

N F B O T � S B O H J O H � U I F � W B M V F � P G,G S P N,���������������� � � B O E � L F F Q J O H � U I F � D M V T U F S J O H � U I B U

Q S P W J E F E � U I F � M P X F T U � J O U S B � D M V T U F S � E J T U B O D F � G P S � F B D I � W B M V F � P G,G P S � U I F � E B U B T F U

T I P X O � J O � U I F � M F G U � Q B O F M � P G � U I F � m H V S F � � * O � U I F � S J H I U � Q B O F M � X F � Q M P U � U I F � C F T U � E J T U B O D F

W B M V F � B U U B J O F E � G P S � F B D I � W B M V F � P G,U S J F E � B � Q M P U � P G U F O � S F G F S S F E � U P � J O � U I F � K B S H P O � P G

N B D I J O F � M F B S O J O H � B T � BT D S F F � Q M P U�

�� � �� �� �� �
 �� �	 �� �� �� �� � �� �� �� �
 ���� �� �� �	 �� �� �� �� �
 ���� �� �	 �� � ! � - * ���; > 4 6’ J H V S F � B T T P D J B U F E � X J U I & Y B N Q M F � � � � � � 	 M F G U � Q B O F M
 � " � E B U B T F U � U P � D M V T U F S � � 	 S J H I U

Q B O F M
 � "T D S F FQ M P U � � 4 F F � U F Y U � G P S � G V S U I F S � E F U B J M T �" T � P O F � T I P V M E � F Y Q F D U � U I F � J O U S B � D M V T U F S � E J T U B O D F � E F D S F B T F T � N P O P U P O J D B M M Z � B T

X F � J O D S F B T F,� � / P U J D F � I P X F W F S � U I B U � U I F � T D S F F � Q M P U � B C P W F � I B T � B OF M C P XB U,��

N F B O J O H � U I B U � J O D S F B T J O H � U I F � O V N C F S � P G � D M V T U F S T � G S P N � U I S F F � U P � G P V S � B O E � P O X B S E T

S F E V D F T � U I F � E J T U B O D F � W B M V F � C Z � W F S Z � M J U U M F � � # F D B V T F � P G � U I J T � X F � D B O � B S H V F � U I B U,��

J T � B � H P P E � D I P J D F � G P S � U I F � O V N C F S � P G � D M V T U F S T � G P S � U I J T � Q B S U J D V M B S � E B U B T F U � 	 X I J D I � B M T P

N B L F T � T F O T F � J O � U I J T � J O T U B O D F � T J O D F � X F � D B O � W J T V B M J [F � U I F � E B U B T F U � B O E � D M F B S M Z � T F F

U I B U � J U � I B T � U I S F F � D M V T U F S T
 � T J O D F � B O Z � G F X F S � D M V T U F S T � B O E � U I F � J O U S B � D M V T U F S � E J T U B O D F

J T � D P N Q B S B U J W F M Z � M B S H F � X I J M F � B E E J O H � B E E J U J P O B M � D M V T U F S T � E P F T � O P U � E F D S F B T F � U I F

U P U B M � J O U S B � D M V T U F S � E J T U B O D F � U P P � N V D I �

5 I J T � J M M V T U S B U F T � U I F � U Z Q J D B M � V T B H F � P G � U I F � T D S F F � Q M P U � G P S � E F D J E J O H � P O � B O � J E F B M

O V N C F S � P G � D M V T U F S T,G P S � , � N F B O T � � 8 F � D P N Q V U F � B O E � U I F O � Q M P U � U I F � J O U S B � D M V T U F S

E J T U B O D F � P W F S � B � S B O H F � P G � W B M V F T � G P S, � B O E � Q J D L � U I F � W B M V F � B U � U I F � w F M C P X w � P G � U I F

Q M P U � � * O � Q S B D U J D F � U I J T � W B M V F � J T � P G U F O � D I P T F O � T V C K F D U J W F M Z � 	 C Z � W J T V B M � B O B M Z T J T � P G � U I F

T D S F F � Q M P U
 � B T � X B T � E P O F � I F S F �

8.6 General Matrix Factorization Techniques 227

8.6 General Matrix Factorization Techniques

In this section we tie together the unsupervised learning methods described in

this chapter by describing them all through the singular lens of matrix factoriza-

tion.

8.6.1 Unsupervised learning and matrix factorization problems

If we compactly represent our P input data points by stacking them column-wise

into the data matrix X as in Equation (8.18), we can write the Least Squares cost

function in Equation (8.16) that is the basis for Principal Component Analysis

(Section 8.3) compactly as

g

(

W,C

)

=

1

P

kCW -Xk

2

F

. (8.29)

Here kAk

2

F

=

∑

N

n=1

∑

P

p=1

A

2

n, p

is the Frobenius norm, and A

n,p

is the

(

n, p

)

th

element of the matrixA, which is the analog of the squared ‘

2

norm for matrices

(see Section C.5.3).

We can likewise express our set of desired approximations that motivate PCA

– given in Equation (8.15) – and that the minimization of this cost function force

to hold as closely as possible

CW ≈ X. (8.30)

This set of desired approximations is often referred to as a matrix factorization

since we desire to factorize the matrix X into a product of two matrices C andW.

This is the matrix analog of factorizing a single digit into two ”simpler” ones,

e.g., as 5 × 2 = 10. Thus, in other words, the PCA problem can be interpreted as

a basic exemplar of a matrix factorization problem.

PCA is not the only unsupervised learning method we can recast in this

way. Recommender Systems, as we saw in Section 8.4, results in a cost function

that closely mirrors PCA’s – and so likewise closely mirrors its compact form

given above. Here the only difference is that many entries of the data matrix

are unknown, thus the factorization is restricted to only those values of X that

are known. Denoting by Ω the set of indices of known values of X, the matrix

factorization involved in Recommender Systems takes the form

{CW ≈ X}|

Ω

(8.31)

where the symbol

{

V

}|

Ω

is used to denote that we care only about entries of an

input matrix V in the index set Ω, which is a slight deviation of the PCA fac-

torization in Equation (8.30). The corresponding Least Squares cost is similarly

a slight twist on the compact PCA Least Squares cost in Equation (8.29) and is

given as

228 Linear Unsupervised Learning

g (W, C) =

1

P

k {CW -X}|

Ω

k

2

F

. (8.32)

Note how this is simply the matrix form of the Recommender Systems cost

function given earlier in Equation (8.22).

Finally, we can also easily see that K-means (Section 8.5) falls into the same

category, and can too be interpreted as a matrix factorization problem. We can

do this by first re-interpreting our initial desire with K-means clustering, that

points in the kth cluster should lie close to its centroid, which may be written

mathematically as

c

k

≈ x

p

for all p ∈ S
k

k = 1, ..., K (8.33)

where c

k

is the centroid of the kth cluster and S

k

the set of indices of the subset

of those P data points belonging to this cluster. These desired relations can be

written more conveniently in matrix notation for the centroids – denoting by e

k

the kth standard basis vector (that is a K × 1 vector with a 1 in the kth slot and

zeros elsewhere) – likewise as

C e

k

≈ x

p

for all p ∈ S
k

k = 1, ..., K. (8.34)

Then, introducing matrix notation for the weights (here constrained to be

standard basis vectors) and the data we can likewise write the above relations

as

CW ≈ X for all p ∈ S
k

k = 1, ..., K (8.35)

where

w

p

∈ {e
k

}

K

k=1

, p = 1, . . . , P. (8.36)

Figure 8.14 pictorially illustrates the compactly written desired K-means re-

lationship above for a small prototypical dataset. Note that the location of the

only nonzero entry in each column of the assignment matrix W determines the

cluster membership of its corresponding data point in X. So, in other words,

K-means too is a matrix factorization problem (with a very particular set of

constraints on the matrix W).

Having framed the desired outcome – when parameters are set optimally –

the associated cost function for K-means can then likewise be written compactly

as

g (W, C) =

1

P

kCW- Xk

2

F

(8.37)

subject to the constraint that w

p

∈ {e
k

}

K

k=1

for p = 1, . . . , P. In other words, we can

8.6 General Matrix Factorization Techniques 229

1

0

0

1

0

0

1

0

0

1

0

0

1

0

0

0

1

0

0

1

0

0

0

1

0

0

1

0

0

1

⇡

0

0

1

0

1

0

C

W

X

Figure 8.14 K-means clustering relations described in a compact matrix form. Cluster

centroids inC lie close to their corresponding cluster points in X. The p

th

column of the

assignment matrix W contains the standard basis vector corresponding to the data

point’s cluster centroid.

interpret the K-means algorithm described in Section 8.5 as a way of solving the

constrained optimization problem

minimize

C,W

kCW -Xk

2

F

subject to w

p

∈ {e
k

}

K

k=1

, p = 1, . . . , P.

(8.38)

One can easily show that the K-means algorithm we derived in the previous

section is also the set of updates resulting from the application of the block-

coordinate descent method for solving the above K-means optimization prob-

lem. This perspective on K-means is particularly helpful, since in the natural

derivation of K-means shown in the previous section K-means is a somewhat

heuristic algorithm (i.e., it is not tied to the minimization of a cost function, like

every other method we discuss is). One practical consequence of this is that

– previously – we had no framework in which to judge how a single run of

the algorithm was progressing. Now we do. Now we know that we can treat

the K-means algorithm precisely as we do every other optimization method we

discuss – as a way of minimizing a particular cost function – and can use the

cost function to understand how the algorithm is functioning.

8.6.2 Further variations

We saw in Equation (8.38) how K-means can be recast as a constrained matrix

factorization problem, one where each column w

p

of the assignment matrix W

is constrained to be a standard basis vector. This is done to guarantee every

data point x

p

ends up getting assigned to one (and only one) cluster centroid

230 Linear Unsupervised Learning

c

k

. There are many other popular matrix factorization problems that – from

a modeling perspective – simply employ different constraints than the one

given for K-means. For example, a natural generalization of K-means called

sparse coding [30] is a clustering-like algorithm that differs from K-means only

in that it allows assignment of data points to multiple clusters. Sparse coding is a

constrained matrix factorization problem often written as

minimize

C,W

kCW- Xk

2

F

subject to

±

±

±

w

p

±

±

±

0

≤ S, p = 1, . . . , P

(8.39)

where the K-means constraints are replaced with constraints of the form

±

±

±

w

p

±

±

±

0

≤

S, making it possible for each x

p

to be assigned to at most S clusters simulta-

neously. Recall,

±

±

±

w

p

±

±

±

0

indicates the number of nonzero entries in the vector w

p

(see Section C.5.1).

Besides sparsity, seeking a nonnegative factorization of the input matrix X

is another constraint sometimes put on matrices C and W, giving the so-called

nonnegative matrix factorization problem

minimize

C,W

kCW -Xk

2

F

subject to C,W ≥ 0.

(8.40)

Nonnegative matrix factorization (see, e.g., [31])is used predominantly in situa-

tions where data is naturally nonnegative (e.g., Bag of Words representation of

text data, pixel intensity representation of image data, etc.) where presence of

negative entries hinders interpretability of learned solutions.

Table 8.1 shows a list of common matrix factorization problems subject to

possible constraints on C and W.

8.7 Conclusion

In this chapter we introduced unsupervised learning, detailing a number of

popular concepts and models. Such problems differ from those we have seen

in the previous three chapters in terms of their data – which contain only input

(and no output).

We began in Section 8.2 by reviewing the concepts of spanning sets, as well as

the notion of encodings/decodings. In Section 8.3 we then looked at how to learn

optimal linear encodings via the so-called linear Autoencoder. In this section we

also studied the special Principal Component Analysis (or PCA for short) solution

to the linear Autoencoder, which can be conveniently computed in terms of the

eigenvectors of the data covariance matrix. Next in Section 8.4 we looked at a

popular twist on the notion of learning spanning sets – called Recommender

Systems. K-means clustering was then introduced in Section 8.5. Finally in Section

8.8 Exercises 231

Table 8.1 Common matrix factorization problems CW ≈ X subject to possible
constraints on C and W.

Matrix factorization problem Constraints on C and W

Principal Component Analysis C is orthonormal

Recommender systems No constraint on C or W; X is only partially known

K-means clustering Each column of W is a standard basis vector

Sparse dictionary learning Each column of W is sparse

Nonnegative matrix factorization Both C and W are nonnegative

8.6 we introduced a matrix factorization framework that compactly showcases

the similarities between PCA, Recommender Systems, K-means clustering, and

more advanced unsupervised learning models.

8.8 Exercises

†The data required to complete the following exercises can be downloaded from

the text’s github repository at github.com/jermwatt/machine_learning_refined

8.1 The standard basis

A simple example of an orthonormal spanning set is the set of N standard basis

vectors. The nth element of a standard basis is a vector that consist entirely of

zeros, except for a 1 in its nth slot

(nth element of the standard basis) c

n

=

0

.

.

.

0

1

0

.

.

.

0

. (8.41)

232 Linear Unsupervised Learning

This is also what we referred to as a one-hot-encoded vector in Section 7.5.

Simplify the formula for the optimal weight vector/encoding in Equation

(8.11) when using a standard basis.

8.2 Encoding data

Repeat the experiment described in Example 8.1, reproducing the illustrations

shown in Figure 8.2.

8.3 Orthogonal matrices and eigenvalues

Show that the N×K matrix C is orthogonal if and only if the nonzero eigenvalues

of C C

T

all equal +1.

8.4 Nonconvexity of the linear Autoencoder

With K = 1 make a contour plot on the range [-5, 5] × [-5, 5] of the linear

Autoencoder in Equation (8.17) over the dataset shown in the left panel of

Figure 8.5. How many global minima does this contour plot appear to have?

Given the concept of the linear Autoencoder and the result described in Example

8.3 describe the optimal spanning vector(s) represented by these minima and

how they compare to the one shown in the left panel of Figure 8.5.

8.5 Minimizing the linear Autoencoder over a toy dataset

Repeat the experiment described in Example 8.3, reproducing the illustrations

shown in Figure 8.5. Implement your code so that you can easily compute the

gradient of the linear Autoencoder using the autograd.

8.6 Producing a PCA basis

Repeat the experiment described in Example 8.4, reproducing the illustrations

shown in Figure 8.7. You may use the implementation given in Section 8.3.4 as

a basis for your work.

8.7 A warning example

Repeat the experiment described in Example 8.5, reproducing the illustrations

shown in Figure 8.8.

8.8 Perform K-means

Implement the K-means algorithm detailed and apply it to properly cluster the

dataset shown in the left panel of Figure 8.13 using K = 3 cluster centroids.

Visualize your results by plotting the dataset, coloring each cluster a unique

color.

8.9 Endnotes 233

8.9 Making a scree plot

Repeat the experiment described in Example 8.7, reproducing the illustration

shown in the right panel of Figure 8.13.

8.10 Alternating minimization

While the PCA Least Squares cost function in Equation (8.29) is not convex,

it is biconvex in that it is convex in each matrix of parameters C and W inde-

pendently. This realization leads to a natural extension of the coordinate descent

method described in Section 3.2.2 called alternating minimization. Such optimiza-

tion methods are widely used to solve general matrix factorization problems

(like those listed in Table 8.1).

In this approach we minimize the PCA Least Squares cost sequentially by

minimizing the cost (to completion) over one matrix at a time, that is C or W

independently (with the other matrix fixed). This process – of fixing one of the

two matrices and minimizing to completion over the other – is repeated until

the state of both matrices does not change significantly, or when a maximum

number of iterations is reached.

Alternatingly minimizing to completion over C and W reduces to sequentially

solving two first-order systems of equations – generated checking the first-

order condition of Equation (11.4) in C and W, respectively. Write out these two

systems of equations.

8.9 Endnotes

8.9.1 The minima of the Autoencoder are all orthogonal matrices

To show that the minima of the linear Autoencoder in Equation (8.17) are all

orthogonal matrices, we first substitute the eigenvalue decomposition (see Sec-

tion C.4) of CC

T

as CC

T

= VDV

T

, where V is an N × N matrix of orthogonal

eigenvectors and D is a N×N diagonal matrix with at most K nonnegative eigen-

values along the upper K entries of its diagonal (since C C

T

is an outer-product

matrix – see Exercise 4.2), for the matrix C C

T

in the pth summand of the linear

Autoencoder (remember we assume our data is mean-centered)

±

±

±

C C

T

x

p

- x

p

±

±

±

2

2

=

±

±

±

VDV

T

x

p

- x

p

±

±

±

2

2

= x

T

p

VDDV

T

x

p

- 2x

T

p

VDV

T

x

p

+ x

T

p

x

p

. (8.42)

Introducing I

N×N

= VV

T

in between the inner product x

T

p

x

p

= x

T

p

VV

T

x

p

,

denoting q

p

= V

T

x

p

, and denoting A

2

= AA for any square matrix A we may

rewrite the right-hand side above equivalently as

q

T

p

DDq

p

- 2q

T

p

Dq

p

+ q

T

p

q

p

= q

T

p

³

D

2

- 2D + I

N×N

´

q

p

= q

T

p

(D - I

N×N

)

2

q

p

(8.43)

where the last equality follows from completing the square.

234 Linear Unsupervised Learning

Performing this for each summand the linear Autoencoder in Equation (8.17)

can be written equivalently as

g

(

C

)

=

P

X

p=1

q

T

p

(

D - I

N×N

)

2

q

p

. (8.44)

Since the entries of D are nonnegative it is easy to see that this quantity is mini-

mized for C such that g (C) = (N-K)

∑

P

p=1

x

T

p

x

p

, i.e., where D

K×K

(the upper K×K

portion of D) is precisely the identity. In other words, the linear Autoencoder is

minimized over matrices C, where C C

T

has all nonzero eigenvalues equal to +1,

and the only such matrices that have this property are orthogonal (see Exercise

8.3).

8.9.2 Formal derivation principal components

To begin the derivation of the classic Principal Components Analysis solution to the

linear Autoencoder in Equation (8.17) all we must do is examine one summand

of the cost, under the assumption that C is orthonormal. Expanding the of the

pth summand we have

±

±

±

C C

T

x

p

- x

p

±

±

±

2

2

= x

T

p

C C

T

CC

T

x

p

- 2x

T

p

CC

T

x

p

+ x

T

p

x

p

(8.45)

and then using our assumption that C

T

C = I

K×K

we can see that it may be

rewritten equivalently as

- x

T

p

CC

T

x

p

+ x

T

p

x

p

= -

±

±

±

C

T

x

p

±

±

±

2

2

+

±

±

±

x

p

±

±

±

2

2

. (8.46)

Since our aim is to minimize the summation of terms taking the form of the

above, and the data point x

p

is fixed and does not include the variable C we

are minimizing with respect to, minimizing the original summand on the left

is equivalent to minimizing only the first term -

±

±

±

C

T

x

p

±

±

±

2

2

on the right-hand side.

Summing up these terms, the pth of which can be written decomposed over

each individual basis element we aim to learn as

-

±

±

±

C

T

x

p

±

±

±

2

2

= -

K

X

n=1

³

c

T

n

x

p

´

2

(8.47)

gives us the following equivalent cost function to minimize for our ideal or-

thonormal basis

g (C) = -

1

P

P

X

p=1

K

X

n=1

³

c

T

n

x

p

´

2

. (8.48)

Studying this reduced form of our linear Autoencoder cost function we can

8.9 Endnotes 235

see that it decomposes completely over the basis vectors c

n

, i.e., there are no terms

where c

i

and c

j

interact when i , j. This means – practically speaking – that we

can optimize our orthonormal basis one element at a time. Reversing the order

of the summands above we can isolate each individual basis element over the

entire dataset, writing the above equivalently as

g (C) = -

1

P

K

X

n=1

P

X

p=1

³

c

T

n

x

p

´

2

. (8.49)

Now we can think about minimizing our cost function one basis element

at a time. Beginning with c

1

we first isolate only those relevant terms above,

which consists of: -

1

P

∑

P

p=1

³

c

T

1

x

p

´

2

. Since there is a minus sign in front of this

summation, this is the same as maximizing its negation which we denote as

h (c

1

) =

1

P

P

X

p=1

³

c

T

1

x

p

´

2

. (8.50)

Since our basis is constrained to be orthonormal the basis element c

1

in par-

ticular is constrained to have unit-length. Statistically speaking, Equation (8.50)

measures the variance of the dataset in the direction defined by c

1

. Note: this quantity

is precisely the variance because our data is assumed to have been mean-centered.

Since we aim to maximize this quantity we can phrase our optimization in purely

sample statistical terms as well: we aim to recover a form of the basis vector c

1

that points in the maximum direction of variance in the dataset.

To determine the maximum value of the function above or to determine the

direction of maximum variance in the data we can rewrite the formula above by

stacking the (mean-centered) data points x

p

column-wise – forming the N × P

data matrix X (as shown in Equation (8.18) – giving the equivalent formula in

h (c

1

) =

1

P

c

T

1

X X

T

c

1

= c

T

1

µ

1

P

X X

T

¶

c

1

. (8.51)

Written in this form the above takes the form of a so-called Rayleigh quotient

whose maximum is expressible algebraically in closed form based on the eigen-

value/eigenvector decomposition of the matrix X X

T

(in the middle term) or

likewise the matrix

1

P

X X

T

(in the term on the right). Because the matrix

1

P

X X

T

can be interpreted statistically as the covariance matrix of the data it is more

common to use the particular algebraic arrangement on the right.

So, denoting by v

1

and d

1

the corresponding eigenvector and largest eigen-

value of

1

P

X X

T

, the maximum of the above occurs when c

1

= v

1

, whereh (v

1

) = d

1

– which is also the variance in this direction. In the jargon of machine learning

v

1

is referred to as the first principal component of the data.

With our first basis vector in hand, we can move on to determine the second

element of our ideal orthonormal spanning set. Isolating the relevant terms from

236 Linear Unsupervised Learning

above and following the same thought process we went through above results

in the familiar looking function

h (c

2

) =

1

P

P

X

p=1

³

c

T

2

x

p

´

2

(8.52)

that we aim to maximize in order to recover our second basis vector. This formula

has the same sort of statistical interpretation as the analogous version of the first

basis vector had above – here again it calculates the variance of the data in the

direction of c

2

. Since our aim here is to maximize – given that c

1

has already been

resolved and that c

T

1

c

2

= 0 due to our orthonormal assumption – the statistical

interpretation here is that we are aiming to find the second largest orthogonal

direction of variance in the data.

This formula can also be written in compact vector-matrix form as h

(

c

2

)

=

c

T

2

³

1

P

X X

T

´

c

2

, and its maximum (given our restriction to an orthonormal basis

implies that we must have c

T

1

c

2

= 0) is again expressible in closed form in

terms of the eigenvalue/eigenvector decomposition of the covariance matrix

1

P

X X

T

. Here the same analysis leading to the proper form of c

1

shows that the

maximum of the above occurs when c

2

= v

2

the eigenvector of

1

P

X X

T

associated

with its second largest eigenvalue d

2

, and the variance in this direction is then

h (v

2

) = d

2

. This ideal basis element/direction is referred to as the second principal

component of the data.

More generally, following the same analysis for the nth member of our ideal

orthonormal basis we look to maximize the familiar looking formula

h (c

n

) =

1

P

P

X

p=1

³

c

T

n

x

p

´

2

. (8.53)

As with the first two cases above, the desire to maximize this quantity can be

interpreted as the quest to uncover the nth orthonormal direction of variance in

the data. And following the same arguments, writing the above more compactly

as h (c

n

) = c

T

n

³

1

P

X X

T

´

c

n

, etc., we can show that it takes the form c

n

= v

n

, where v

n

is the nth eigenvector of

1

P

X X

T

associated with its nth largest eigenvalue d

n

, and

here the sample variance is expressible in terms of this eigenvalue h

(

c

n

)

= d

n

.

This learned element/direction is referred to as the nth principal component of

the data.

9 Feature Engineering and
Selection

9.1 Introduction

In this chapter we discuss the principles of feature engineering and selection.

Feature engineering methods consist of an array of techniques that are ap-

plied to data before they are used by either supervised or unsupervised models.

Some of these tools, e.g., the feature scaling techniques that we describe in Sec-

tions 9.3 through 9.5, properly normalize input data and provide a consistent

preprocessing pipeline for learning, drastically improving the efficacy of many

local optimization methods.

Another branch of feature engineering focuses on the development of data

transformations that extract useful information from raw input data. For ex-

ample, in the case of a two-class classification, these tools aim to extract critical

elements of a dataset that ensure instances within a single class are seen as ”sim-

ilar” while those from different classes are ”dissimilar.” Designing such tools

often requires significant domain knowledge and a rich set of experiences deal-

ing with particular kinds of data. However, we will see that one simple concept,

the histogram feature transformation, is a common feature engineering tool used

for a variety of data types including categorical, text, image, and audio data. We

give a high-level overview of this popular approach to feature engineering in

Section 9.2.

Human beings are often an integral component of the machine learning

paradigm, and it can be crucial that individuals be able to interpret and/or

derive insights from a machine learning model. The performance of a model is a

common and relatively easy metric for humans to interpret: does the model pro-

vide good

1

predictive results? Sometimes it is very useful to understand which

input features were the most pertinent to achieving strong performance, as it

helps us refine our understanding of the nature of the problem at hand. This is

done through what is called feature selection. In Sections 9.6 and 9.7 we discuss

two popular ways for performing feature selection: boosting and regularization.

Feature selection can be thought of as a supervised dimension reduction tech-

nique that reduces the total number of features involved in a regression or clas-

sification, making the resulting model more human interpretable. An abstract

1

Here ”good” can mean, for instance, that the learner achieves an agreed upon benchmark value

for accuracy, error, etc.

238 Feature Engineering and Selection

PCA clusteringfeature selection
inp

ut

da
ta

 m
at

rix
ou

tp
ut

da

ta
 m

at
rix

Figure 9.1 A prototypical comparison of feature selection, PCA, and clustering as

dimension reduction schemes on an arbitrary data matrix, like those we have discussed

in previous chapters for un/supervised learning, whose rows contain features and

columns individual data points. The former two methods reduce the dimension of the

feature space, or in other words the number of rows in a data matrix. However, the two

methods work differently: while feature selection literally selects rows from the original

matrix to keep, PCA uses the geometry of the feature space to produce a new data

matrix based on a lower feature dimensional version of the data. K-means, on the other

hand, reduces the dimension of the data/number of data points, or equivalently the

number of columns in the input data matrix. It does so by finding a small number of

new averaged representatives or “centroids” of the input data, forming a new data

matrix whose fewer columns (which are not present in the original data matrix) are

precisely these centroids.

illustration of this concept is shown in the left panel of Figure 9.1, and is com-

pared visually to the result of both Principal Component Analysis (PCA) and

clustering (two unsupervised learning techniques introduced in the previous

chapter). In contrast to feature selection, when PCA (see Section 8.3) is applied

to reduce the dimension of a dataset it does so by learning a new (smaller) set of

features over which the dataset may be fairly represented. Likewise any cluster-

ing technique (like K-means detailed in Section 8.5) learns new representations

to reduce the shear number of points in a dataset.

9.2 Histogram Features

A histogram is an extremely simple yet useful way of summarizing and repre-

senting the contents of an array. In this section we see how this rather simple con-

cept is at the core of designing features for common types of input data including

categorical, text, image, and audio data types. Although each of these data types

differs substantially in nature, we will see how the notion of a histogram-based

feature makes sense in each context. This discussion aims at giving the reader

9.2 Histogram Features 239

a high-level, intuitive understanding of how common histogram-based feature

methods work. The interested reader is encouraged to consult specialized texts

(referenced throughout this section) on each data type for further study.

9.2.1 Histogram features for categorical data

Every machine learning paradigm requires that the data we deal with consist

strictly of numerical values. However, raw data does not always come pre-

packaged in this manner. Consider, for instance, a hypothetical medical dataset

consisting of several patients’ vital measurements such as blood pressure, blood

glucose level, and blood type. The first two features (i.e., blood pressure and

blood glucose level) are naturally numerical, and hence ready for supervised

or unsupervised learning. Blood type, on the other hand, is a categorical feature,

taking on the values O, A, B, and AB. Such categorical features need to be trans-

lated into numerical values before they can be fed into any machine learning

algorithm.

A first, intuitive approach to do this would be to represent each category with

a distinct real number, e.g., by assigning 0 to the blood type O, 1 to A, 2 to B,

and 3 to AB, as shown in the top left panel of Figure 9.2. Here the way we assign

numbers to each category is important. In this particular instance, by assigning

1 to A, 2 to B, and 3 to AB, and because the number 3 is closer to number 2 than it

is to number 1, we have inadvertently injected the assumption into our dataset

that an individual with blood type AB is more ”similar” to one with blood type

B than one with blood type A. One could argue that it is more appropriate to

switch the numbers used to represent categories B and AB so that AB now sits

between (and hence equidistant from) A and B, as shown in the top right panel

of Figure 9.2. However, with this reassignment blood type O is now interpreted

as being maximally different from blood type B, a kind of assumption that may

or may not be true in reality.

The crux of the matter here is that there is always a natural order to any set

of numbers, and by using such values we inevitably inject assumptions about

similarity or dissimilarity of the existing categories into our data. In most cases

we want to avoid making such assumptions that fundamentally change the

geometry of the problem, especially when we lack the intuition or knowledge

necessary for determining similarity between different categories.

A better way of encoding categorical features, which avoids this problem,

is to use a histogram whose bins are all categories present in the categorical

feature of interest. Doing this in the example of blood type, an individual with

blood type O is no longer represented by a single number but by a four-binned

histogram that contains all zero values except the bin representing blood type O,

which is set to 1. Individuals with other blood types are represented similarly,

as depicted visually in the bottom panel of Figure 9.2. This way, all blood type

representations (each a four-dimensional vector with a single 1 and three 0s) are

240 Feature Engineering and Selection

ABA BO

0 1 2 3

ABA BO

0 1 2 3

1

0

0

0

1

0

0

0

1

0

0

0

1

0

0

0

close/similar close/similar

far/dissimilar far/dissimilar

blood type: A blood type: B blood type: ABblood type: Obins

O
A
B

AB

Figure 9.2 Blood type converted into numerical features (top panels) and

histogram-based features (bottom panel). See text for further details.

geometrically equidistant from one another. This method of encoding categorical

features is sometimes referred to as one-hot encoding (see Section 6.7.1).

9.2.2 Histogram features for text data

Many popular uses of machine learning, including sentiment analysis, spam

detection, and document categorization or clustering are based on text data,

e.g., online news articles, emails, social media posts, etc. However, with text

data, the initial input (i.e., the document itself) requires a significant amount

of preprocessing and transformation prior to being input into any machine

learning algorithm. A very basic but widely used feature transformation of a

document for machine learning tasks is called a Bag of Words (BoW) histogram or

feature vector. Here we introduce the BoW histogram and discuss its strengths,

weaknesses, and common extensions.

A BoW feature vector of a document is a simple histogram count of the differ-

ent words it contains with respect to a single corpus or collection of documents,

minus those nondistinctive words that do not characterize the document (in the

context of the application).

To illustrate this idea let us build a BoW representation for the following

corpus of two simple text documents each consisting of a single sentence.

1. dogs are the best
2. cats are the worst (9.1)

To make the BoW representation of these documents we begin by parsing them,

9.2 Histogram Features 241

0

0

0

0

1/

p

2

1/

p

2

1/

p

2

1/

p

2

x

2

x

1

best
cat
dog
worst

Figure 9.3 Bag of Words histogram features for the two example documents shown in

Equation (9.1). See text for further details.

creating representative vectors (histograms) x

1

and x

2

which contain the num-

ber of times each word appears in each document. The BoW vectors for both of

these documents are depicted visually in Figure 9.3.

Notice that, in creating the BoW histograms, uninformative words such as

are and the, typically referred to as stop words, are not included in the final

representation. Further, notice that we count the singular dog and cat in place

of their plural, which appeared in the original documents. This preprocessing

step is commonly called stemming, where related words with a common stem or

root are reduced to (and then represented by) their common linguistic root. For

instance, the words learn, learning, learned, and learner, in the final BoW

feature vector are all represented by and counted as learn. Additionally, each

BoW vector is normalized to have unit length.

Given that BoW vectors contain only nonnegative entries and all have unit

length, the inner product between two BoW vectors x

1

and x

2

always ranges

between 0 and 1, i.e., 0 ≤ x

T

1

x

2

≤ 1. This inner product or correlation value may

be used as a rough geometric measure of similarity between two BoW vectors.

For example, when two documents are made up of completely different words,

the correlation is exactly zero, their BoW vectors are perpendicular to one other,

and the two documents can be considered maximally different. This is the case

with BoW vectors shown in Figure 9.3. On the other hand, the higher the cor-

relation between two BoW vectors the more similar their respective documents

are purported to be. For example, the BoW vector of the document I love dogs
would have a rather large positive correlation with that of I love cats.

Because the BoW vector is such a simple representation of a document, com-

pletely ignoring word order, punctuation, etc., it can only provide a gross sum-

mary of a document’s contents. For example, the two documents dogs are
better than cats and cats are better than dogs would be considered ex-

actly the same document using BoW representation, even though they imply com-

pletely opposite meanings. Nonetheless, the gross summary provided by BoW

can be distinctive enough for many applications. Additionally, while more com-

plex representations of documents (capturing word order, parts of speech, etc.)

may be employed they can often be unwieldy (see, e.g., [32]).

242 Feature Engineering and Selection

Example 9.1 Sentiment analysis

Determining the aggregated feelings of a large base of customers, using text-

based content like product reviews, tweets, and social media comments, is com-

monly referred to as sentiment analysis. Classification models are often used to

perform sentiment analysis, learning to identify consumer data of either positive

or negative feelings.

For example, the top panel of Figure 9.4 shows BoW vector representations for

two brief reviews of a controversial comedy movie, one with a positive opinion

and the other with a negative one. The BoW vectors are rotated sideways in this

figure so that the horizontal axis contains the common words between the two

sentences (after stop word removal and stemming). The polar opposite senti-

ment of these two reviews is perfectly represented in their BoW representations,

which as one can see are indeed perpendicular (i.e., they have zero correlation).

In general, two documents with opposite sentiments are not and need not al-

ways be perpendicular for sentiment analysis to work effectively, even though

we ideally expect them to have small correlations, as shown in the bottom panel

of Figure 9.4.

minute worst immaturelaugh peoplefun timesimpleguarantee makemoviefilm incredibleresponsible

1

p

7

0

This is simply one of the funniest
films of all time, you are guaranteed
to laugh every minute of it.

Reviewer 1 Reviewer 2

This is the worst movie ever made
and people responsible for it are
incredibly immature.

words with a negative sentiment words with a positive sentimentneutral words

Figure 9.4 Figure associated with Example 9.1. (top panel) BoW representation of two

movie review excerpts, with words (after the removal of stop words and stemming)

shared between the two reviews listed along the horizontal axis. The vastly different

opinion of each review is reflected very well by the BoW histograms, which have zero

correlation. (bottom panel) In general, the BoW histogram of a typical document with

positive sentiment is ideally expected to have small correlation with that of a typical

document with negative sentiment.

9.2 Histogram Features 243

nu
m

be
r o

f m
isc

las
sif

ica
tio

ns

iteration

9.2.3 Histogram features for image data

To perform supervised/unsupervised learning tasks on image data, such as

object recognition or image compression, the raw input data are pixel values of

Example 9.2 Spam detection

In many spam detectors (see Example 1.8) the BoW feature vectors are formed

with respect to a specific list of spam words (or phrases) such as free, guarantee,

bargain, act now, all natural, etc., that are frequently seen in spam emails.

Additionally, features like the frequency of certain characters like ! and * are

appended to the BoW feature, as are other spam-targeted features including the

total number of capital letters in the email and the length of longest uninter-

rupted sequence of capital letters, as these features can further distinguish the

two classes.

In Figure 9.5 we show classification results on a spam email dataset (first

introduced in Example 6.10) consisting of Bag of Words (BoW), character fre-

quencies, and other spam-focused features. Employing the two-class Softmax

cost (see Section 7.3) to learn the separator, the figure shows the number of mis-

classifications for each step of a run of Newton’s method (see Section 4.3). More

specifically, these classification results are shown for the same dataset using

only BoW features alone (in blue), BoW and character frequencies (in orange),

and the BoW/character frequencies as well as spam-targeted features (in green).

Unsurprisingly the addition of character frequencies improves the classification,

with the best performance occurring when the spam-focused features are used

as well.

Figure 9.5 Figure

associated with

Example 9.2. See

text for details.

244 Feature Engineering and Selection

an image itself. The pixel values of an 8-bit grayscale image are each just a single

integer in the range of 0 (black) to 255 (white), as illustrated in Figure 9.6. In

other words, a grayscale image is just a matrix of integers ranging from 0 to 255.

A color image is then just a set of three such grayscale matrices, one for each of

the red, blue, and green channels.

Figure 9.6 An 8-bit grayscale image consists of pixels, each taking a value between 0

(black) and 255 (white). To visualize individual pixels, a small 8 × 8 block from the

original image is blown up on the right.

Although it is possible to use raw pixel values directly as features, pixel values

themselves are typically not discriminative enough to be useful for machine

learning tasks. We illustrate why this is the case using a simple example in

Figure 9.7. Consider the three images of shapes shown in the left column of

this figure. The first two are similar triangles and the third shape is a square.

We would like an ideal set of features to reflect the similarity of the first two

images as well as their distinctness from the last image. However, due to the

difference in their relative size, position in the image, and the contrast of the

image itself (the image with the smaller triangle is darker toned overall) if we

were to use raw pixel values to compare the images (by taking the difference

between each image pair) we would find that the square and larger triangle are

more similar than the two triangles themselves.

2

This is because the pixel values

of the first and third image, due to their identical contrast and location of the

triangle/square, are indeed more similar than those of the two triangle images.

In the middle and right columns of Figure 9.7 we illustrate a two-step pro-

cedure that generates the sort of discriminating feature transformation we are

after. In the first part we shift perspective from the pixels themselves to the edge

content at each pixel. By taking edges instead of pixel values we significantly

reduce the amount of information we must deal with in an image without de-

stroying its identifying structures. In the middle column of the figure we show

corresponding edge detected images, in particular highlighting eight equally

(angularly) spaced edge orientations, starting from 0 degrees (horizontal edges)

2

This is to say that if we denote by X

i

the ith image then we would find that

kX

1

-X

3

k

F

< kX

1

- X

2

k

F

.

9.2 Histogram Features 245

Figure 9.7 (left column) Three images of simple shapes. While the triangles in the top

two images are visually similar, this similarity is not reflected by comparing their raw

pixel values. (middle column) Edge detected versions of the original images, here using

eight edge orientations, retain the distinguishing structural content while significantly

reducing the amount of information in each image. (right column) By taking

normalized histograms of the edge content we have a feature representation that

captures the similarity of the two triangles quite well while distinguishing both from

the square. See text for further details.

with seven additional orientations at increments of 22.5 degrees, including 45

degrees (capturing the diagonal edges of the triangles) and 90 degrees (vertical

edges). Clearly the edges retain distinguishing characteristics from each original

image, while significantly reducing the amount of total information in each case.

We then make normalized histogram of each image’s edge content (as shown

for the examples in the right column of Figure 9.7). That is, we make a vector

consisting of the total amount of each edge orientation found in the image

(the vertical axis of the histogram) and normalize the resulting vector to have

unit length. This is completely analogous to the BoW feature representation

described for text data previously, with the counting of edge orientations being

the analog of counting “words” in the case of text data. Here we also have

a normalized histogram that represents an image grossly while ignoring the

location and ordering of its information. However, as shown in the right panel

of Figure 9.7 (unlike raw pixel values) these histogram feature vectors capture

characteristic information about each image, with the top two triangle images

having very similar histograms and both differing significantly from that of the

third image of the square.

246 Feature Engineering and Selection

Generalizations of this simple edge histogram concept are widely used as

feature transformations for visual object recognition where the goal is to lo-

cate objects of interest (e.g., faces in a face recognition app or pedestrians in a

self-driving car) in an example image or when different objects need to be dis-

tinguished from each other across multiple images (e.g., handwritten digits as

in the example below, or even distinguishing cats from dogs as discussed in Sec-

tion 1.2). This is due to the fact that edge content tends to preserve the structure

of more complex images – like the one shown in Figure 9.8 – while drastically

reducing the amount of information in the image [33, 34]. The majority of the

pixels in this image do not belong to any edges, yet with just the edges we can

still tell what the image contains.

Figure 9.8 (left panel) A natural image (in this instance of the two creators/writers of the

television show ”South Park” (this image is reproduced with permission of Jason

Marck). (right panel) The edge-detected version of this image, where the bright yellow

pixels indicate large edge content, still describes the scene very well (in the sense that

we can still tell there are two people in the image) using only a fraction of the

information contained in the original image. Note that edges have been colored yellow

for visualization purposes only.

However, for such complex images, preserving local information (features of

the image in smaller areas) becomes important. Thus a natural way to extend the

edge histogram feature is to compute it not over the entire image, but by breaking

the image into relatively small patches and computing an edge histogram of

each patch, then concatenating the results. In Figure 9.9 we show a diagram of

a common variation of this technique often used in practice where neighboring

histograms are normalized jointly in larger blocks (see, e.g., [5, 35, 36, 37, 38] for

further details).

Interestingly this edge-based histogram feature design mimics the way many

animals seem to process visual information. From visual studies performed

largely on frogs, cats, and primates, where a subject is shown visual stimuli

while electrical impulses are recorded in a small area in the subject’s brain

where visual information is processed, neuroscientists have determined that

individual neurons involved roughly operate by identifying edges [39, 40]. Each

9.2 Histogram Features 247

input image blown-up window feature vector

edge content of window

Figure 9.9 A pictorial representation of the sort of generalized edge histogram feature

transformation commonly used for object detection. An input image is broken down

into small (here 9× 9) blocks, and an edge histogram is computed on each of the smaller

nonoverlapping (here 3 × 3) patches that make up the block. The resulting histograms

are then concatenated and normalized jointly, producing a feature vector for the entire

block. Concatenating such block features by scanning the block window over the entire

image gives the final feature vector.

neuron therefore acts as a small ”edge detector,” locating edges in an image of a

specific orientation and thickness, as shown in Figure 9.10. It is thought that by

combining and processing these edge detected images that humans and other

mammals ”see.”

Example 9.3 Handwritten digit recognition

In this example we look at the problem of handwritten digit recognition (intro-

duced in Example 1.10), and compare the training effectiveness of mini-batch

gradient descent (20 steps/epochs with a learning rate of α = 10

-2

and batch size

of 200 applied to a multi-class Softmax cost) using P = 50,000 raw (pixel-based)

data points from the MNIST handwritten digit recognition dataset (introduced

in Example 7.10), to the effectiveness of precisely the same setup applied to edge

histogram based features extracted from these same data points.

The effectiveness of this setup over the raw data in terms of both the cost

function and misclassification history resulting from the optimization run is

shown as the black curves in the left and right panels, respectively, of Figure

9.11. The results of the same run over the edge feature extracted version of the

dataset is shown by the magenta curves in the same figure. Here we can see

a massive performance gap, particularly in the misclassification history plot in

248 Feature Engineering and Selection

Figure 9.10 Visual information is processed in an area of the brain where each neuron

detects in the observed scene edges of a specific orientation and width. It is thought that

what we (and other mammals) ”see” is a processed interpolation of these edge detected

images.

the right panel of the figure, where the difference in performance is around 4000

misclassifications (in favor of the run over the edge-based features).

cost value number of misclassifications

iteration iteration

Figure 9.11 Figure associated with Example 9.3. See text for details.

9.2.4 Histogram features for audio data

Like images, audio signals in raw form are not discriminative enough to be

used for audio-based classification tasks (e.g., speech recognition) and once

again properly designed histogram-based features could be used. In the case

of an audio signal it is the histogram of its frequencies, otherwise known as its

9.3 Feature Scaling via Standard Normalization 249

+

·

⇡

·

·

·

+

+ a

k

a

1

a

2

a

3

a

k

a

1

a

2

a

3

frequency

Figure 9.12 A pictorial representation of an audio signal and its representation as a

frequency histogram or spectrum. (left panel) A figurative audio signal can be

decomposed as a linear combination of simple sinusoids with varying frequencies (or

oscillations). (right panel) The frequency histogram then contains the strength of each

sinusoid in the representation of the audio signal.

spectrum, that provides a robust summary of its contents. As illustrated picto-

rially in Figure 9.12, the spectrum of an audio signal counts up (in histogram

fashion) the strength of each level of its frequency or oscillation. This is done

by decomposing the speech signal over a basis of sinusoidal waves of ever in-

creasing frequency, with the weights on each sinusoid representing the strength

of that frequency in the original signal. Each oscillation level is analogous to an

edge direction in the case of an image, or an individual word in the case of a

BoW text feature.

As with image data in Figure 9.9, computing frequency histograms over over-

lapping windows of an audio signal as illustrated pictorially in Figure 9.13,

produces a feature vector that preserves important local information as well,

and is a common feature transformation used for speech recognition called a

spectrogram [41, 42]. Further processing of the windowed histograms (e.g., to

emphasize the frequencies of sound best recognized by the human ear) is also

commonly performed in practical implementations of this sort of feature trans-

formation.

9.3 Feature Scaling via Standard Normalization

In this section we describe a popular method of input normalization in machine

learning called feature scaling via standard normalization. This sort of feature en-

gineering scheme provides several benefits to the learning process, including

substantial improvement in learning speed when used with local optimization

algorithms, and with first-order methods in particular. As such this feature engi-

neering method can also be thought of as an optimization trick that substantially

improves our ability to minimize virtually every machine learning model.

250 Feature Engineering and Selection

color intensity coding
time domain signal

time

fre
qu

en
cy

time

fre
qu

en
cy

fre
qu

en
cy

spectrogram

Figure 9.13 A pictorial representation of histogram-based features for audio data. The

original speech signal (shown on the left) is broken up into small (overlapping)

windows whose frequency histograms are computed and stacked vertically to produce

a so-called spectrogram (shown on the right).

9.3.1 Standard normalization

Standard normalization of the input features of a dataset is a very simple two-

step procedure consisting of first mean-centering and then rescaling each of its

input features by the inverse of its standard deviation. Phrased algebraically,

we normalize along the nth input feature of our dataset by replacing x

p,n

(the

nth coordinate of the input point x

p

) with

x

p,n

- µ

n

σ

n

(9.2)

where µ

n

and σ

n

are the mean and standard deviation computed along the nth

dimension of the data, defined respectively as

µ

n

=

1

P

∑

P

p=1

x

p,n

σ

n

=

q

1

P

∑

P

p=1

±

x

p,n

- µ

n

²

2

.

(9.3)

This (completely invertible) procedure is done for each input dimension n =

1, ...,N. Note that if σ

n

= 0 for some n the standard normalization in Equation

(9.2) is undefined as it involves division by zero. However, in this case the

corresponding input feature is redundant since this implies that the nth feature

is the same constant value across the entirety of data. As we discuss further

in the next section, such a feature should be removed from the dataset in the

beginning as nothing can be learned from its presence in any machine learning

model.

Generally speaking, standard normalization alters the shape of machine learn-

ing cost functions by making their contours appear more ”circular.” This idea

is illustrated in Figure 9.14 where in the top row we show a prototypical N = 2

9.3 Feature Scaling via Standard Normalization 251

cost function

data space

center scale

Figure 9.14 (Standard normalization illustrated. The input space of a generic dataset

(top-left panel) as well as its mean-centered (top-middle panel) and scaled version

(top-right panel). As illustrated in the bottom row, where a prototypical cost function

corresponding to this data is shown, standard normalization results in a cost function

with less elliptical and more circular contours compared to the original cost function.

dimensional dataset (top-left panel) as well as its standard normalized version

(top-right panel). In the input data space, standard normalization produces a

centered and more compactly confined version of the original data. Simultane-

ously, as shown in the bottom row of the figure, a generic cost function associated

with the standard normalized version of the data has contours that are much

more circular than those associated with the original, unnormalized data.

Making the contours of a machine learning cost function more circular helps

speed up the convergence of local optimization schemes, particularly first-order

methods like gradient descen (however, feature scaling techniques can also

help to better condition a dataset for use with second-order methods, helping

to potentially avoid issues with numerical instability as briefly touched on in

Section 4.3.3). This is because, as detailed in Section 3.6.2, the gradient descent

direction always points perpendicular to the contours of a cost function. This

means that, when applied to minimize a cost function with elliptical contours

like the example shown in the top panel of Figure 9.15, the gradient descent

direction points away from the minimizer of the cost function. This characteristic

naturally leads the gradient descent algorithm to take zig-zag steps back and

forth.

In standard normalizing the input data we temper such elliptical contours,

transforming them into more circular contours as shown in the bottom-left panel

and (ideally) bottom-right panel of Figure 9.15. With more circular contours the

gradient descent direction starts pointing more and more in the direction of

252 Feature Engineering and Selection

the cost function’s minimizer, making each gradient descent step much more

effective. This often means we can use a much larger steplength parameter α

when minimizing a cost function over standard normalized data.

w

?

w

?

w

k

w

k

w

?

w

k

Figure 9.15 In standard normalizing input data we temper its associated cost function’s

often-elliptical contours, like those shown in the top panel, into more circular ones as

shown in the bottom-left and bottom-right panels. This means that the gradient descent

direction, which points away from the minimizer of a cost function when its contours

are elliptical (leading to the common zig-zagging problem with gradient descent),

points more towards the function’s minimizer as its contours become more circular.

This makes each gradient descent step much more effective, typically allowing the use

of much larger steplength parameter values α, meaning that measurably fewer steps are

required to adequately minimize the cost function.

Example 9.4 Linear regression with standard normalized data

A simple regression dataset is plotted in the top-left panel of Figure 9.16. With

a quick glance at the data we can see that, if tuned properly, a linear regressor

will fit this dataset exceedingly well. Since this is a low-dimensional example

with only two parameters to tune (i.e., the bias and slope of a best fit line)

we can visualize its associated Least Squares cost function, as illustrated in the

top-middle panel of Figure 9.16. Notice how elliptical the contours of this cost

function are, creating a long narrow valley along the long axis of the ellipses. In

the top-middle panel of the figure we also show 100 steps of gradient descent

initialized at the point w

0

= [0 0]

T

, using a fixed steplength parameter α = 10

-1

.

Here the steps on the contour plot are colored from green to red as gradient

descent begins (green) to when it ends (red). Examining the panel we can see

that even at the end of the run we still have quite a way to travel to reach the

9.3 Feature Scaling via Standard Normalization 253

minimizer of the cost function. We plot the line associated with the final set of

weights resulting from this run in blue in the top-left panel of the figure. Because

these weights lie rather far from the true minimizer of the cost function they

provoke a (relatively) poor fit of the data.

w

0

w

1

x

y

w

1

y

x

w

0

w

0

w

0

w

1

w

1

Figure 9.16 Figure associated with Examples 9.4 and 9.5, showing the result of standard

normalization applied to a regression (top row) and a two-class classification (bottom

row) dataset. See text for details.

We then standard normalize the data, and visualize the contour plot of the

associated Least Squares cost in the top-right panel of Figure 9.16. As we can

see the contours of this Least Squares cost are perfectly circular, and so gradient

descent can much more rapidly minimize this cost. On top of the contour plot

we show a run of 20 (instead of 100) gradient descent steps using the same

initial point and steplength parameter as we used before with unnormalized

data. Note that since cost function associated with the standard normalized

version of the data is so much easier to optimize, we reach a point much closer

to the minimizer after just a few steps, resulting in a linear model (shown in red)

which fits the data in the top-left panel far better than the regressor provided by

the first run (shown in blue).

Example 9.5 Linear two-class classification with standard normalized data

The bottom-left panel of Figure 9.16 shows a simple two-class classification

dataset. Just like the previous example, since we only have two parameters to

tune in learning a linear classifier for this dataset, it is possible to visualize

the contour plot of the corresponding two-class Softmax cost. The contours of

this cost function are plotted in the bottom-middle panel of Figure 9.16. Once

254 Feature Engineering and Selection

again, their extremely long and narrow shape suggests that gradient descent

will struggle immensely in determining the global minimizer (located inside

the smallest contour shown).

We confirm this intuition by making a run of 100 steps of gradient descent

beginning at the pointw = [20 30]

T

and using a steplength parameter of α = 1.

As shown in the bottom-middle panel, these steps (colored from green to red as

gradient descent progresses) zig-zag considerably. Moreover we can see that at

the end of the run we are still a long way from the minimizer of the cost function,

resulting in a very poor fit to the dataset (shown in blue in the bottom-left panel

of the figure).

In the bottom-right panel of Figure 9.16 we show the result of repeating this

experiment using standard normalized input. Here we use the same initializa-

tion, but only 25 steps, and (since the contours of the associated cost are so much

more circular) a larger steplength value α = 10. This rather large value would

have caused the first run of gradient descent to diverge. Nonetheless even with

so few steps we are able to find a good approximation to the global minimizer.

We plot the corresponding tanh model (in red) in the bottom-left panel of the

figure, which fits the data much better than the result of the first run (shown in

blue).

9.3.2 Standard normalized model

Once a general model taking in N-dimensional standard normalized input has

been properly tuned, and the optimal parameters w

?

0

,w

?

1

, ...,w?

N

have been de-

termined, in order to evaluate any new point we must standard normalize each

of its input features using the same statistics we computed on the training data.

9.4 Imputing Missing Values in a Dataset

Real-world data can contain missing values for various reasons including human

error in collection, storage issues, faulty sensors, etc. Generally speaking, if a

supervised learning data point is missing its output value there is little we can

do to salvage it, and usually such a corrupted data point is thrown away in

practice. Likewise, if a large number of input values of a data point are missing

it is best discarded. However, a data point missing just a handful of its input

features can be salvaged by filling in missing input features with appropriate

values. This process, often called imputation, is particularly useful when the data

is scarce.

9.4.1 Mean imputation

Suppose as usual that we have a set of P inputs, each of which is N-dimensional,

and that the setΩ

n

contains the indices of all data points whose nth input feature

9.5 Feature Scaling via PCA-Sphering 255

value is missing. In other words, for all j ∈ Ω

n

the value of x

j,n

is missing in

our input data. An intuitive value to fill for all missing entries along the nth

input feature is the simple average (or expected value) of the dataset along this

dimension. That is, for all j ∈ Ω

n

we set x

j,n

= µ

n

, where

µ

n

=

1

P - |Ω
n

|

X

j<Ω

n

x

j,n

(9.4)

and where |Ω

n

| denotes the number of elements inΩ

n

. This is often called mean

imputation. Notice, after mean imputation, that the mean value of the entire nth

feature of the input remains unchanged, since

1

P

P

X

p=1

x

p,n

=

1

P

X

j<Ω

n

x

j,n

+

1

P

X

j∈Ω

n

x

j,n

=

1

P

(P- |Ω
n

|) µ

n

+

1

P

X

j∈Ω

n

µ

n

= µ

n

. (9.5)

Therefore one consequence of imputing missing values of a dataset using

the mean along each input dimension is that when we standard normalize this

dataset (as detailed in the previous section), all values imputed with the mean

become exactly zero. This is illustrated for a simple example in Figure 9.17. Thus

any parameter or weight in the model that touches such a mean-imputed entry

is completely nullified numerically. This is desirable given that such values were

missing in the first place.

9.5 Feature Scaling via PCA-Sphering

In the Section 9.3 we saw how feature scaling via standard normalization signif-

icantly improves the topology of a machine learning cost functions, enabling

much more rapid minimization via first-order methods like gradient descent

(see Section 3.5). In this Section we describe how Principal Component Analysis

(PCA) (detailed in Section 8.3) can be used to perform a more advanced form of

input normalization, commonly called PCA-sphering (or sometimes whitening).

9.5.1 PCA-sphering: the big picture

PCA-sphering takes the idea of standard normalization described in Section

9.3 one step further by using PCA (see Section 8.3) to rotate the mean-centered

dataset, so that its largest orthogonal directions of variance align with the coor-

dinate axes, prior to scaling each input by its standard deviation. This simple

adjustment typically allows us to better compactify the data, and more impor-

tantly results in a cost function whose contours are even more ”circular” than

that provided by standard normalization (indeed PCA-sphering regression data

makes the contours of a Least Squares cost for linear regression perfectly circular

– see Exercise 9.6 for further details). This is illustrated in Figure 9.18 where we

256 Feature Engineering and Selection

x

j,1

µ

2

±

x

j,1

?

±

x

j,1

- µ

1

0

±

Figure 9.17 (left panel) The input of a prototypical N = 2 dimensional dataset where a

single point x

j

, drawn as a hollow red dot, is missing its second entry. The

mean-imputed version of this point is then shown as a filled-in red point. (right panel)

By mean-centering such a dataset (which is the first step of standard normalization) the

mean-imputed feature of x

j

becomes exactly equal to zero.

compare pictorially the effect of standard normalization and PCA-sphering on

a prototypical N = 2 dimensional input dataset, as well as how each scheme

changes the topology of the associated cost function. As outlined in Section

9.3.1, gradient descent schemes work far better the more circular we make the

contours of a cost function.

The trade-off, of course, is that while PCA-sphering makes first-order opti-

mization considerably easier once it is enacted, we must pay an extra up-front

cost of performing PCA on the data, making PCA-sphering more computation-

ally expensive than the standard normalization procedure. Whether or not this

extra up-front cost is worth it can vary in practice from problem to problem,

however often times it is. This is particularly true when employing first-order

optimization (see, e.g., Exercise 9.7) since – as summarized in Figure 9.15 – the

more circular we make the contours of a cost function the easier gradient-based

optimization methods can minimize them properly.

9.5.2 PCA-sphering: the technical details

More formally we can express the standard normalization scheme applied to a

single data point x

p

in two steps as

mean-center: for each n replace x

p,n

←-

±

x

p,n

- µ

n

²

std-scale: for each n replace x

p,n

←-

x

p,n

σ

n

9.5 Feature Scaling via PCA-Sphering 257

PCA-sphered coststandard-normalized costoriginal cost

center

center

scale

rotate scale

Figure 9.18 The standard normalization procedure (top row) compared to

PCA-sphering (middle row) on a generic set of input data. With PCA- sphering we

insert a single extra step into the standard normalization pipeline in between

mean-centering and scaling by standard deviations, where we rotate the data using

PCA. This not only shrinks the space consumed by the data more than standard

normalization (compare top right and middle right panels), it also tends to make any

associated cost function considerably easier to minimize by better tempering its

contours, making them more circular (bottom row panels).

where ”std” is short for ”standard deviation,” and the mean and standard

deviation are defined as µ

n

=

1

P

∑

P

p=1

x

p,n

and σ

n

=

q

1

P

∑

P

p=1

x

2

p,n

for each n. Note

here too that the notation a ←- b denotes the replacement of quantity a with

quantity b.

Denoting by X the N × P matrix of input whose pth column contains the

input data point x

p

, and by V the set of eigenvectors of the data covariance

matrix

1

P

X X

T

= V D V

T

(as detailed in Section 8.3.3), we can then write the

PCA-sphering scheme applied to the same data point x

p

in three highly related

steps noting importantly that the nth eigenvalue d

n

(the nth diagonal entry of

the matrix D) is precisely equal

3

to the variance σ

2

n

, and equivalently

√

d

n

= σ

n

3

The Rayleigh quotient definition (see, e.g., Exercise 3.3) of the nth eigenvalue d

n

of the data

covariance matrix states that numerically speaking d

n

=

1

P

v

n

X X

T

v

n

, where v

n

is the nth and

258 Feature Engineering and Selection

mean-center: for each n replace x

p,n

←-

±

x

p,n

- µ

n

²

PCA-rotate: transform x

p

←- V

T

x

p

std-scale: for each n replace x

p,n

←-

x

p,n

√

d

n

.

Denoting D

-1/

2

as the diagonal matrix whose nth diagonal element is

1

√

d

n

,

we can then (after mean-centering the data) express steps 2 and 3 of the PCA-

sphering algorithm recipe above quite compactly as

X ←- D

-

1

/

2

V

T

X . (9.6)

9.5.3 PCA-sphered model

Once a general model taking in N-dimensional PCA-sphered input has been

properly tuned, and the optimal parameters have been determined, in order to

evaluate any new point we must PCA-sphere new input features using the same

statistics we computed on the training data.

9.6 Feature Selection via Boosting

In Chapters 5 through 7 we saw how the fully tuned linear model for supervised

learning generally takes the form

model

(

x,w

?

)

= x̊

T

w

?

= w

?

0

+ x

1

w

?

1

+ x

2

w

?

2

+ · · · + x

N

w

?

N

(9.7)

where the weights w

?

0

, w

?

1

..., w

?

N

are optimally tuned via the minimization of

an appropriate cost function. Understanding the intricate connections the input

features of a dataset have with its corresponding output naturally boils down

to human analysis of these N + 1 tuned weights. However, it is not always

straightforward to derive meaning from such a sequence of N + 1 numbers,

exacerbated by the fact that the idea of human interpretability quickly becomes

untenable as the input dimension N grows. To ameliorate this issue we can use

what is called a feature selection technique.

In this section we discuss one popular way of performing feature selection,

called boosting or forward stage-wise selection. Boosting is a bottom-up approach

to feature selection wherein we gradually build up our model one feature at a

time by training a supervised learner sequentially, one weight at a time. Doing

this gives human interpreters an easier way to gage the importance of individual

corresponding eigenvector. Now in terms of our PCA-transformed data this is equivalently

written as d

n

=

1

P

³

³

³v

T

n

X

³

³

³

2

2

=

1

P

∑

P

p=1

±

w

p,n

²

2

= σ

2

n

or in other words, it is the variance along the nth

axis of the PCA-transformed data.

9.6 Feature Selection via Boosting 259

features, and likewise lets them more easily derive insight about a particular

phenomenon.

9.6.1 Boosting based feature selection

In tuning a model’s weights one at a time we do not want to tune them in any

order (e.g., at random) as this will not aid human interpretation. Instead we

want to tune them starting with the most important (feature-touching) weight,

then tune the second most important (feature-touching) weight, then the third,

and so forth. Here by ”importance” we mean how each input feature contributes

to the final supervised learning model as determined by its associated weight

or, in other words, how each contributes to minimizing the corresponding cost

(or associated metric) as much as possible.

The boosting process is started with a model, which we will denote as model

0

,

that consists of the bias w

0

alone

model

0

(x,w) = w

0

. (9.8)

We then tune the bias parameter w

0

by minimizing an appropriate cost (de-

pending on whether we are solving a regression or classification problem) over

this variable alone. For example, if we are performing regression employing the

Least Squares cost we would minimize

1

P

P

X

p=1

±

model

0

(x,w)- y

p

²

2

=

1

P

P

X

p=1

±

w

0

- y

p

²

2

(9.9)

which gives the optimal value for our bias w

0

←- w

?

0

. Plugging this learned

weight into our starting model in Equation (9.8) gives

model

0

(

x,w

)

= w

?

0

. (9.10)

Next, at the first round of boosting, in order to determine the most important

feature-touching weight (among w

1

, w

2

, . . . , w

N

) we try out each one by mini-

mizing an appropriate cost over each individually, having already set the bias

optimally. For example, in the case of Least Squares regression the nth of these

N subproblems takes the form

1

P

P

X

p=1

±

model

0

±

x

p

,w

²

+ w

n

x

n,p

- y

p

²

2

=

1

P

P

X

p=1

±

w

?

0

+ x

n,p

w

n

- y

p

²

2

. (9.11)

Notice, since the bias weight has already been set we only tune the weight w

n

in the nth subproblem.

260 Feature Engineering and Selection

The feature-touching weight that produces the smallest cost (or best metric

value in general) from these N subproblems corresponds to the individual fea-

ture that helps best explain the relationship between the input and output of our

dataset. It can therefore be interpreted as the most important feature-touching

weight we learn. Denoting this weight as w

s

1

, we then fix it at its optimally

determined value w

?

s

1

(discarding all other weights tuned in each of these sub-

problems) and update our model accordingly. Our updated model at the end of

the first round of boosting, which we call model

1

, is a sum of our optimal bias

and this newly determined optimal feature-touching weight

model

1

(

x,w

)

= model

0

(

x,w

)

+ x

s

1

w

?

s

1

= w

?

0

+ x

s

1

w

?

s

1

. (9.12)

This boosting process is then repeated sequentially. In general at the mth

round of boosting the mth most important feature-touching weight is deter-

mined following the same pattern. At the beginning of the mth round (where

m > 1) we have already determined the optimal setting of our bias as well as

the top m- 1 most important feature-touching weights, and our model takes the

form

model

m-1

(x,w) = w

?

1

+ x

s

1

w

?

s

1

+ · · · + x

s

m-1

w

?

s

m-1

. (9.13)

We then set up and solve N-m+1 subproblems, one for each feature-touching

weight we have not yet chosen. For example, in the case of Least Squares re-

gression the nth of these takes the form

1

P

P

X

p=1

±

model

m-1

±

x

p

,w

²

+ w

n

x

n,p

- y

p

²

2

(9.14)

where again in each case we only tune the individual weight w

n

. The feature-

touching weight that produces the smallest cost value corresponds to the mth

most important feature. Denoting this weight w

s

m

we then fix it at its optimal

value w

?

s

m

, and add its contribution to the running model as

model

m

(

x,w

)

= model

m-1

(

x,w

)

+ x

s

m

w

?

s

m

. (9.15)

Given that we have N input features we can continue until m ≤ N or when

some maximum number of iterations is reached. Note too that, after M rounds of

boosting, we have constructed a sequence of models {models

m

}

M

m=0

. This method

of recursive model building via adding features one at a time and tuning only

the added feature’s weight (keeping all others fixed at their previously tuned

values) is referred to as boosting.

9.6 Feature Selection via Boosting 261

9.6.2 Selecting the right number of features via boosting

Recall that feature selection is done primarily for the purposes of human interpre-

tation. Therefore a benchmark value for the number of features M to select can be

chosen based on the desire to explore a dataset, and the procedure halted once

this number of rounds have completed. One can also halt exploration when

adding additional features to the model results in very little decrease in the

cost, as most of the correlation between inputs and outputs has already been

explained. Finally, M can be chosen entirely based on the sample statistics of the

dataset via a procedure known as cross-validation, which we discuss in Chapter

11.

Regardless of how we select the value of M, it is important to standard nor-

malize the input data (as detailed in Section 9.3) before we begin the boosting

procedure for feature selection. In addition to the optimization speed-up ad-

vantage, standard normalization also allows us to fairly compare each input

feature’s contribution by examining their tuned weight values.

Example 9.6 Exploring predictors of housing prices via boosting

The result of running M = 5 rounds of boosting on the Boston Housing dataset

(first introduced in Example 5.5), using the Least Squares cost and Newton’s

method optimizer, is visualized in the top panel of Figure 9.19. This special kind

of cost function history shows each weight/feature index added to the model

at each round of boosting (starting with the bias which has index 0). As can be

seen on the horizontal axis, the first two most contributing features found via

boosting are LSTAT (feature 13) and the average number of rooms per dwelling

(feature 6). Examining the histogram of model weights in the bottom panel

of Figure 9.19, we can see (unsurprisingly) that the LSTAT weight, having a

negative value, is negatively correlated with the output (i.e., home price) while

the weight associated with the average number of rooms feature is positively

correlated with the output.

Example 9.7 Exploring predictors of credit risk via boosting

In Figure 9.20 we show the results of running the boosting procedure (using

a Softmax cost and Newton’s method optimizer) on the German credit score

dataset first introduced in Example 6.11, which consists of P = 1000 samples,

each a set of statistics extracted from loan applications to a German bank. The

N = 20 dimensional input features in this dataset include: the individual’s

current account balance with the bank (feature 1), the duration (in months) of

previous credit with the bank (feature 2), the payment status of any prior credit

taken out with the bank (feature 3), and the current value of their savings/stocks

(feature 6). These are precisely the top four features found via boosting, most of

which are positively correlated with an individual being a good credit risk (as

shown in the bottom panel of Figure 9.20).

262 Feature Engineering and Selection

weight values learned by boosting

weight index
13 6 8 11 4

0.00

0.25

0.75

13 6 8 11 40

cost value at each round of boosting

weight index

0.0

1.0

Figure 9.19 Figure associated with Example 9.6. See text for details.

cost value at each round of boosting

weight index
0 1 2 3 6 20 7 14 12 9 8

0.0

0.6

weight values learned by boosting

weight index
1 2 3 6 20 7 14 12 9 8

0.0

0.5

Figure 9.20 Figure associated with Example 9.7. See text for details.

9.6.3 On the efficiency of boosting as a greedy algorithm

Boosting is essentially a greedy algorithm, where at each stage we choose the

next most important (feature-touching) weight and tune it properly by solving

a set of respective subproblems. While each round of boosting demands we

9.6 Feature Selection via Boosting 263

solve a number of subproblems, each one is a minimization with respect to only

a single weight and is therefore cheap to solve virtually regardless of the local

optimization scheme used. This makes boosting a computationally effective

approach to feature selection, and allows it to scale to datasets with a large

number of input dimensions N. A weakness inherent in doing this, however, is

that in determining feature-touching weights one at a time, interactions between

features/weights can be potentially missed.

To capture these potentially missed interactions one might naturally extend

the boosting idea and try to add a group of R feature-touching weights at

each round instead of just one. However, a quick calculation shows that this

idea would quickly fail to scale. In order to determine the first best group of R

feature-touching weights at the first stage of this approach we would need to try

out every combination of R weights by solving a subproblem for each. The issue

here is that there are combinatorially many subgroups of size R, more precisely

(

N

R

)

=

N!

R!(N-R)!

of them. This is far too many problems to solve in practice, even

for small-to-moderate values of N and R (e.g.,

(

100

5

)

= 75, 287, 520).

9.6.4 The residual perspective on boosting regression

Recall the nth subproblem in the mth stage of boosting in the case of Least

Squares regression aims at minimizing

1

P

P

X

p=1

±

model

m-1

±

x

p

,w

²

+w

n

x

n,p

- y

p

²

2

. (9.16)

If we rearrange the terms in each summand and denote

r

m

p

=

±

y

p

- model

m-1

±

x

p

,w

²²

(9.17)

then we can write the Least Squares cost function in Equation (9.16) equivalently

as

1

P

P

X

p=1

±

w

n

x

n,p

- r

m

p

²

2

(9.18)

where the term r

m

p

on the right-hand side of each summand is fixed since w

n

is the only weight being tuned here. This r

m

p

term is the residual of the original

output y

p

after the contribution of model model

m

has been subtracted off. We

can then think about each round of boosting as determining the next feature

that best correlates with the residual from the previous round.

264 Feature Engineering and Selection

9.7 Feature Selection via Regularization

With the boosting approach to feature selection discussed in the previous sec-

tion we took a greedy ”bottom-up” approach to feature selection: we began by

tuning the bias and then added new features to our model one at a time. In

this section we introduce a complementary approach to feature selection, called

regularization. Instead of building up a model starting at the bottom, with regu-

larization we take a ”top-down” view and start off with a complete model that

includes every one of our input features, and then we gradually remove input

features of inferior importance. We do this by adding a second function to our

cost (called a regularizer) that penalizes all weights, forcing our model to shrink

the weight values associated with less-important input features.

9.7.1 Regularization using weight vector norms

The simple linear combination of the cost function g and an auxiliary function h

f

(

w

)

= g(w)+ λ h(w) (9.19)

is often referred to as regularization in the parlance of machine learning, with the

function h called a regularizer and the parameter λ ≥ 0 called a regularization or

penalty parameter.

When λ = 0 the linear combination in Equation (9.19) reduces to the original

cost function g. As we increase λ the two functions g and h start to compete for

dominance, with the linear combination taking on properties of both functions. As

we set λ to a larger and larger value the function h dominates the combination,

eventually completely drowning out g, and we end up essentially with a scaled

version of the regularizer h.

In machine learning applications it is very common to use a vector or matrix

norm of model parameters (see Section C.5) as a regularizer h, with different

norms used to produce different effects in the learning of machine learning

models. In what follows we outline how several common vector norms affect

the minimization of a generic cost function g.

Example 9.8 Regularization using the ‘

0

norm

The ‘

0

vector norm of w, written as

k

w

k

0

, measures its length or magnitude as

kwk

0

= number of nonzero entries of w. (9.20)

By regularizing a cost g using this regularizer (i.e., f (w) = g (w) + λ kwk

0

), we

penalize the regularized cost f for every nonzero entry of w since every such

9.7 Feature Selection via Regularization 265

entry adds one unit to kwk

0

. Conversely, then, in minimizing f , the two functions

g and kwk

0

compete for dominance with g wanting w to be resolved as a point

near its minimizer, while the regularizer kwk

0

aims to determine a w that has as

few nonzero elements as possible, or in other words, a weight vector w that is

very sparse.

Example 9.9 Regularization using the ‘

1

norm

The ‘

1

vector norm, written as kwk

1

, measures the magnitude of w as

kwk

1

=

N

X

n=0

|w

n

| . (9.21)

By regularizing a cost g using this regularizer (i.e., f (w) = g (w)+ λ kwk

1

), we

penalize the regularized cost based on the sum of the absolute value of the

entries of w.

Conversely, then, in minimizing this sum, the two functions g and

k

w

k

1

com-

pete for dominance with g wanting w to be resolved as a point near its minimizer,

while the regularizer kwk

1

aims to determine a w that is small in terms of the

absolute value of each of its components, but also because the ‘

1

norm is closely

related to the ‘

0

norm (see Section C.5), one that has few nonzero entries and is

therefore sparse.

Example 9.10 Regularization using the ‘

2

norm

The ‘

2

vector norm of w, written as kwk

2

, measures its magnitude as

kwk

2

=

v

t

N

X

n=0

w

2

n

. (9.22)

By regularizing a cost g using this regularizer (i.e., f (w) = g (w)+ λ kwk

2

), we

penalize the regularized cost based on the sum of squares of the entries of w.

Conversely in minimizing this sum, the two functions g and kwk

2

compete

for dominance with g wanting w to be resolved as a point near its minimizer,

while the regularizer kwk

2

aims to determine a w that is small in the sense that

all of its entries have a small squared value.

We have so far seen a number of instances of ‘

2

regularization, e.g., in the

context of Softmax classification in Section 6.4.6 and support vector machines

in Section 6.5.4.

9.7.2 Feature selection via ‘

1

regularization

In the context of machine learning by inducing the discovery of sparse weight

vectors, the ‘

0

and ‘

1

reguarlizers help uncover the identity of a dataset’s most

important features. This is because when we employ such norms as regularizer

266 Feature Engineering and Selection

we force the recovered model weights to be rather sparse (provided we have

set λ appropriately), with only those weights associated with a model’s most

important features remaining. This makes either norm (at least in principle)

quite appropriate for the task of feature selection.

Of the two sparsity-inducing norms described in Examples 9.8 and 9.9, the ‘

0

norm (while promoting sparsity directly and to the greatest degree) is the most

challenging to employ due to its discontinuous nature, making the minimization

of an ‘

0

regularized cost function quite difficult. While the ‘

1

norm induces

sparsity to less of a degree, it is both convex and differentiable (almost everywhere),

making the use of first-order methods possible for its minimization. Because

of this practical advantage the ‘

1

norm is by far the more commonly used

regularizer for feature selection in practice.

Finally, remember as detailed in the previous section that when performing

feature selection we are only interested in determining the importance of feature-

touching weights w

1

, w

2

, ...,w
N

, thus we only need regularize them (and not the

bias weight w

0

). This means that our regularization will more specifically take

the form

f (w) = g (w) +λ

N

X

n=1

|w

n

| . (9.23)

Using our individual notation for the bias and feature-touching weights (used

for instance in Section 6.4.6)

(bias): b = w

0

(feature-touching weights): ω =

w

1

w

2

.

.

.

w

N

(9.24)

we can write this general ‘

1

regularized cost function equivalently as

f (b,ω) = g (b,ω)+ λ kωk

1

. (9.25)

9.7.3 Selecting the right regularization parameter

Because feature selection is done for the purposes of human interpretation, the

value of λ can be set based on several factors. A benchmark value for λ can be

chosen based on the desire to explore a dataset, finding a value that provides

sufficient sparsity while retaining a low cost value. The value of λ can also be

chosen entirely based on the sample statistics of the dataset via a procedure

known as cross-validation, which we discuss in Chapter 11.

Just like boosting and regardless of how we select λ, it is important to standard

9.7 Feature Selection via Regularization 267

normalize the input data so that we can fairly compare each input feature’s con-

tribution by examining their tuned weight values recovered from minimization

of the regularized cost function.

Example 9.11 Exploring predictors of housing prices via regularization

In this example we form an ‘

1

regularized Least Squares cost using the Boston

Housing dataset (first introduced in Example 5.5 and used in the context of

boosting-based feature selection in Example 9.6) and examine 50 evenly spaced

values for λ in the range [0,130]. For each value of λ in this range, starting from

0 (as illustrated in the top panel of Figure 9.21), we run gradient descent with

a fixed number of steps and steplength parameter to minimize the regularized

cost. By the time λ is set to the largest value in the range, three major weights

remain recovered by the parameter tuning (as illustrated in the bottom panel of

Figure 9.21), corresponding to feature 6, feature 13, and feature 11. The first two

features (i.e., feature 6 and feature 13) were also determined to be important via

boosting in Example 9.6.

136 8 1141 121097532

136 8 1141

weight index
121097532

w
ei

gh
t v

al
ue

w
ei

gh
t v

al
ue

0.0

0.2

0.4

0.0

0.3

0.3

λ = 0

λ = 100

Figure 9.21 Figure associated with Example 9.11. See text for details.

Example 9.12 Exploring predictors of credit risk via regularization

In this example we minimize the ‘

1

regularized two-class Softmax cost over the

German credit dataset (first introduced in Example 9.20), using 50 evenly spaced

values for λ in the range [0,130]. For each value of λ in this range, starting from

268 Feature Engineering and Selection

0 (as illustrated in the top panel of Figure 9.22) we run gradient descent with

a fixed number of steps and steplength parameter to minimize the regularized

cost.

By the time λ ≈ 40, five major weights remain, corresponding to features 1,

2, 3, 6, and 7 (as illustrated in the bottom panel of Figure 9.22). The first four of

these features were also determined to be important via boosting in Example

9.7.

136 8 1141

weight index
121097532

136 8 1141

weight index
121097532

w
ei

gh
t v

al
ue

w
ei

gh
t v

al
ue

0.0

0.2

0.4

0.0

0.3

0.3

λ = 0

λ = 130

Figure 9.22 Figure associated with Example 9.12. See text for details.

9.7.4 Comparing regularization and boosting

While boosting is an efficient greedy scheme, the regularization idea detailed in

this section can be computationally intensive to perform since for each value of

λ tried, a full run of local optimization must be completed. On the other hand,

while boosting is a ”bottom-up” approach that identifies individual features

one at a time, regularization takes a more ”top-down” approach and identifies

important features all at once. In principle this allows regularization to uncover

groups of important features correlated in such an interconnected way with the

output that may be missed by boosting.

9.8 Conclusion 269

9.8 Conclusion

In this chapter we reviewed fundamental techniques for feature engineering and

feature selection.

We began by discussing feature engineering techniques, which are used as

data preprocessing steps for virtually all machine learning problems, and which

we will make use of extensively in the remainder of the text. In Section 9.2 we

detailed histogram features, which neatly summarize the content in data and

can be designed for virtually any data modality. In Sections 9.3–9.5 various input

scaling techniques were described, including standard normalization and PCA-

sphering. These methods standardize input data and improve the topology of

machine learning cost functions, making them significantly easier to minimize

(particularly using the first-order methods described in Chapter 3). Finally in

Sections 9.6 and 9.7 we described two complementary approaches to feature

selection – boosting and regularization – which enable straightforward human

analysis of the stregnth of individual features included in a trained machine

learning model.

9.9 Exercises

†The data required to complete the following exercises can be downloaded from

the text’s github repository at github.com/jermwatt/machine_learning_refined

9.1 Spam email

Repeat the experiment described in Example 1.8 using any local optimization

scheme you desire and the two-class Softmax cost. Make sure to produce a plot

like the one shown in Figure 9.5 to compare the results of using each combination

of features.

9.2 MNIST classification: pixels versus edge-based features

Repeat the experiment outlined in Example 9.3 and create a pair of cost func-

tion/misclassification history plots like the ones shown in Figure 9.11. Your

results may vary slightly from those reported in the example depending on the

details of your implementation.

9.3 Student debt

Produce two contour plots of the Least Squares cost function over the student

debt dataset [2] shown in Figure 1.8, as well as its standard normalized version.

Compare the overall topology of each contour plot and describe why the plot

associated with the standard normalized data will be far easier to optimize via

270 Feature Engineering and Selection

gradient descent. Indeed, fitting to the original dataset using gradient descent

is almost impossible here. Minimize the Least Squares cost over the standard

normalized version of the data using gradient descent and reproduce the plot

shown in Figure 1.8.

9.4 Least Squares and perfectly circular contours: part 1

In Example 9.4 we saw how the contour plot of the Least Squares cost over an

N = 1 regression dataset changed from highly elliptical to perfectly circular after

the data was standard normalized (see Figure 9.16). Show that the contour plot

of a Least Squares cost over standard normalized data will always be perfectly

circular when N = 1. Then describe why this does not necessarily happen when

N > 1.

9.5 Breast cancer dataset

Perform linear two-class classification on a breast cancer dataset [43] consisting

of P = 569 data points using an appropriate cost function and local optimizer.

Fill in any missing values in the data using mean-imputation and report the best

misclassification rate you were able to achieve. Compare how quickly you can

minimize the your cost function over the original and standard normalized data

using the same parameters (i.e., the same number of steps, steplength parameter,

etc.).

9.6 PCA-sphering and the Least Squares cost for linear regression

The Least Squares cost for linear regression presents the ideal example of how

PCA-sphering a dataset positively effects the topology of a machine learning cost

function (making it considerably easier to minimize properly). This is because

– as we show formally below – PCA-sphering the input of a regression dataset

leads to a Least Squares cost for linear regression that has perfectly circular

contours and is thus very easy to minimize properly. While PCA-sphering does

not improve all cost functions to such a positive degree, this example is still

indicative of the effect PCA-sphering has on improving the topology of machine

learning cost functions in general.

To see how PCA-sphering perfectly tempers the contours of the Least Squares

cost for linear regression first note – as detailed in Section 5.9.1 – that the Least

Squares cost is always (regardless of the dataset used) a convex quadratic

function of the general form g

(

w

)

= a + b

T

w + w

T

C w, where – in partic-

ular – C =

1

P

∑

P

p=1

x̊

p

x̊

T

p

. If the input of a regression dataset is PCA-sphered,

then the lower N × N submatrix of C is given as

1

P

SS

T

, where S is defined in

Equation (9.6). However, because of the very way S is defined we have that

1

P

S S

T

=

1

P

I

N×N

, where I

N×N

is the N × N identity matrix, and thus, in general,

that C =

1

P

I

(N+1)×(N+1)

. In other words, the Least Squares cost over PCA-sphered

9.9 Exercises 271

input is a convex quadratic with all eigenvalues equal to 1, implying that it is a

quadratic with perfectly circular contours (see Section 4.2.2).

9.7 Comparing standard normalization to PCA-sphering on MNIST

Compare a run of ten gradient descent steps using the multi-class Softmax cost

over 50, 000 random digits from the MNIST dataset (introduced in Example

7.10), a standard normalized version, and a PCA-sphered version of the data.

For each run use the largest fixed steplength of the form α = 10

γ

for γ an integer

you find to produce descent. Create a plot comparing the progress of each run in

terms of the cost function and number of misclassifications. Additionally, make

sure your initialization of each run is rather small, particularly the first run where

you apply no normalization at all to the input as each raw input point of this

dataset is large in magnitude. In the case of the raw data initializing at a point

too far away from the origin can easily cause numerical overflow, producing

nan or inf values, ruining the rest of the corresponding local optimization run.

9.8 Least Squares and perfectly circular contours: part 2

In Exercise 9.4 we saw how PCA-sphering input data reshapes the topology

of the Least Squares cost so that its contours become perfectly circular. Explain

how this makes the minimization of such a PCA-sphered Least Squares cost

extremely easy. In particular explain how – regardless of the dataset – such

a cost can be perfectly minimized using one ”simplified” Newton step – as

described in Section A.8.1 – where we ignore the off-diagonal elements of the

Hessian matrix when taking a Newton step.

9.9 Exploring predictors of housing prices

Implement the boosting procedure detailed in Section 9.6.1 for linear regression

employing the Least Squares cost, and repeat the experiment described in Exam-

ple 9.6. You need not reproduce the visualizations in Figure 9.19, but make sure

you are able to reach the similar conclusions to those outlined in the example.

9.10 Predicting Miles-per-Gallon in automobiles

Run M = 6 rounds of boosting on the automobile MPG dataset introduced

in Example 5.6, employing the Least Squares cost function, to perform feature

selection. Provide an interpretation of the three most important features you

find, and how they correlate with the output.

9.11 Studying important predictors of credit risk

Implement the boosting procedure detailed in Section 9.6.1 for linear classifica-

tion employing the two-class Softmax cost, and repeat the experiment described

272 Feature Engineering and Selection

in Example 9.7. You need not reproduce the visualizations in Figure 9.20, but

make sure you are able to reach the same conclusions outlined in the example.

9.12 Exploring predictors of housing prices

Implement the regularization procedure detailed in Section 9.7 for linear regres-

sion employing the Least Squares cost, and repeat the experiment described

in Example 9.11. You need not reproduce the visualizations in Figure 9.21, but

make sure you are able to reach the same conclusions outlined in the example.

9.13 Studying important predictors of credit risk

Implement the regularization procedure detailed in Section 9.7 for linear classi-

fication employing two-class Softmax cost, and repeat the experiment described

in Example 9.12. You need not reproduce the visualizations in Figure 9.22, but

make sure you are able to reach the same conclusions outlined in the example.

Part III

Nonlinear Learning

10 Principles of Nonlinear Feature
Engineering

10.1 Introduction

Thus far we have dealt with major supervised and unsupervised learning

paradigms assuming – for the sake of simplicity – underlying linear models.

In this chapter we drop this simplifying assumption and begin our foray into

nonlinear machine learning by exploring nonlinear feature engineering in the

context of supervised and unsupervised learning. While nonlinear feature en-

gineering is really only feasible when a dataset (or the phenomenon generating

it) is well understood, understanding the basis of nonlinear feature engineering

is extremely valuable as it allows us to introduce an array of crucial concepts in

a relatively simple environment that will be omnipresent in our discussion of

nonlinear learning going forward. As we will see, these important concepts in-

clude a variety of formal mathematical and programmatic principles, modeling

tools, and jargon terms.

10.2 Nonlinear Regression

In this section we introduce the general framework of nonlinear regression

via engineering of nonlinear feature transformations based on visual intuition,

along with a range of examples. The form of many classic natural laws from

the sciences – as first discussed in Example 1.2 – can be derived via the general

methods described here (as we explore in Example 10.2 and Exercises 10.2 and

10.4).

10.2.1 Modeling principles

In Chapter 5 we detailed the basic linear model for regression

model (x,w

)

= w

0

+ x

1

w

1

+ x

2

w

2

+ · · · + x

N

w

N

(10.1)

or, more compactly

model (x,w

)

= x̊

T

w (10.2)

276 Principles of Nonlinear Feature Engineering

˚

f

T

w

x̊

T

w

Figure 10.1 (left panel) Linear regression illustrated. Here the fit to the data is defined

by the linear model x̊

T

w . (right panel) Nonlinear regression is achieved by injecting

nonlinear feature transformations into our model. Here the fit to the data is a nonlinear

curve defined by

˚

f

T

w . See text for further details.

where

x̊ =

1

x

1

x

2

.

.

.

x

N

and w =

w

0

w

1

w

2

.

.

.

w

N

. (10.3)

To tune the parameters of our linear model over a generic dataset of P points

n±

x

p

, y

p

²o

P

p=1

so that it represents the data (an example of which is shown in the

left panel of Figure 10.1) as well as possible, or phrased algebraically so that we

have

1

x̊

T

p

w ≈ y

p

p = 1, 2, ..., P (10.4)

we minimize a proper regression cost function, e.g., the Least Squares cost

g (w) =

1

P

P

X

p=1

±

x̊

T

p

w - y

p

²

2

. (10.5)

We can move from linear to general nonlinear regression, in both its principles

and implementation, simply by swapping out the linear model used in the

construction of our linear regression with a nonlinear one. For example, instead

of using a linear model we can use a nonlinear one involving a single nonlinear

function f (e.g., a quadratic, a sine wave, a logistic function, etc.) that can be

parameterized or unparameterized. In the jargon of machine learning such a

nonlinear function f is often called a nonlinear feature transformation (or just

a feature) since it transforms our original input features x. Our corresponding

nonlinear model would then take the form

1

Following the compact notation in Equation (10.3), x̊

T

p

=

h

1 x

1,p

x

2,p

· · · x

N,p

i

where x

n,p

is the

nth entry in x

p

.

10.2 Nonlinear Regression 277

model (x,Θ

)

= w

0

+ f

(

x

)

w

1

(10.6)

where the setΘ contains all model parameters including the linear combination

weights (herew

0

and w

1

) as well as potential internal parameters of the function

f itself.

We can simply extend this idea to create nonlinear models that use more

than just a single nonlinear feature transformation. In general, we can form a

nonlinear model as the weighted sum of B nonlinear functions of our input, as

model (x,Θ) = w

0

+ f

1

(x)w

1

+ f

2

(x)w

2

+ · · · + f

B

(x)w

B

(10.7)

where f

1

, f

2

, . . . , f
B

are nonlinear (parameterized or unparameterized) func-

tions, and w

0

through w

B

along with any additional weights internal to the

nonlinear functions are represented in the weight set Θ.

Regardless of what nonlinear functions we choose, the steps we take to for-

mally resolve such a model for the purposes of regression are entirely similar

to what we have seen for the simple case of linear regression. In analogy to the

linear case, here too it is helpful to write the generic nonlinear model in Equation

(10.7) more compactly as

model (x,Θ) =

˚

f

T

w (10.8)

denoting

˚

f =

1

f

1

(

x

)

f

2

(x)

.

.

.

f

B

(x)

and w =

w

0

w

1

w

2

.

.

.

w

B

. (10.9)

Once again to tune the parameters of our generic nonlinear model over a dataset

of P points so that it represents the data (an example of which is shown in the

right panel of Figure 10.1) as well as possible, or phrased algebraically so that

we have

2

˚

f

T

p

w ≈ y

p

p = 1, 2, ...,P (10.10)

we minimize a proper regression cost function over Θ, e.g., the Least Squares

cost

g

(

Θ

)

=

1

P

P

X

p=1

±

˚

f

T

p

w - y

p

²

2

. (10.11)

2

Here

˚

f

T

p

=

h

1 f

1

±

x

p

²

f

2

±

x

p

²

· · · f

B

±

x

p

²i

, following the compact notation in Equation (10.9).

278 Principles of Nonlinear Feature Engineering

Despite all these structural similarities between the linear and nonlinear

frameworks, one question still remains: how do we determine the appropri-

ate nonlinear feature transformations for our model, and their number B for a

generic dataset? This is indeed one of the most important challenges we face in

machine learning, and is one which we will discuss extensively in the current

chapter as well as several of those to come.

10.2.2 Feature engineering

Here we begin our investigation of nonlinear regression by discussing some

simple instances where we can determine the sort and number of nonlinear

features we need by visualizing the data, and by relying on our own pattern

recognition abilities to determine the appropriate nonlinearities. This is an in-

stance of what is more broadly referred to as feature engineering wherein the

functional form of nonlinearities to use in machine learning models is deter-

mined (or engineered) by humans through their expertise, domain knowledge,

intuition about the problem at hand, etc.

Example 10.1 Modeling a wave

In the left panel of Figure 10.2 we show a nonlinear regression dataset. Because

of the wavy appearance of this data we can defensibly propose a nonlinear

model consisting of a sine function

f (x) = sin (v

0

+ xv

1

) (10.12)

parameterized by tunable weights v

0

and v

1

, with our regression model given

as

model (x,Θ) = w

0

+ f (x) w

1

(10.13)

where Θ = {w

0

, w

1

, v

0

, v

1

}. Intuitively it seems like this model could fit the data

well if its parameters were all properly tuned. In the left panel of Figure 10.2

we show the resulting model fit to the data (in green) by minimizing the Least

Squares cost via gradient descent.

With our weights fully tuned, notice that our model is defined linearly in terms

of its feature transformation. This means that if we plot the transformed version

of our dataset, i.e.,

n±

f

±

x

p

²

, y

p

²o

P

p=1

wherein the internal feature weights v

0

and

v

1

have been optimally tuned, our model fits this transformed data linearly,

as shown in the right panel of Figure 10.2. In other words, in this transformed

feature space whose input axis is given by f (x) and whose output is y, our tuned

nonlinear model becomes a linear one.

Finally note that, as detailed in Section 9.3 for the case of linear regression,

with nonlinear regression it is still highly advantageous to employ standard

10.2 Nonlinear Regression 279

x

yy

x f (x)

Figure 10.2 Figure associated with Example 10.1. (left panel) A nonlinear regression

dataset and corresponding tuned model defined in Equations (10.12) and (10.13). (right

panel) The same data and tuned model viewed in the transformed feature space. See text

for further details.

g(Θ

k

)

k

Figure 10.3 Figure associated with Example 10.1. See text for details.

Example 10.2 Galileo and gravity

In 1638 Galileo Galilei, infamous for his expulsion from the Catholic church for

daring to claim that the Earth orbited the Sun and not the converse (as was the

prevailing belief at the time) published his final book: ”Discourses and Mathe-

matical Demonstrations Relating to Two New Sciences” [44]. In this book, written

as a discourse among three men in the tradition of Aristotle, he described his

experimental and philosophical evidence for the notion of uniformly acceler-

ated physical motion. Specifically, Galileo (and others) had intuition that the

acceleration of an object due to (the force we now know as) gravity is uniform

normalization to scale our input when employing gradient descent schemes

to minimize a corresponding Least Squares cost function g. In Figure 10.3 we

show the cost function history plots resulting from a run of gradient descent

employing the original unnormalized (in black) and standard normalized (in

magenta) versions of the input. Comparing the two histories we can see that

a significantly lower cost function value is found when using the standard

normalized input.

280 Principles of Nonlinear Feature Engineering

1/2

3/4+

1/4 +

2/3

0

1/

Figure 10.4 Figure associated with Example 10.2. Figurative illustration of Galileo’s

ramp experiment setup used for exploring the relationship between time and the

distance an object falls due to gravity. To perform this experiment he repeatedly rolled a

ball down a ramp and timed how long it took to get

1

4

,

1

2

,

2

3

,

3

4

, and all the way down the

ramp. See text for further details.

Data from a modern reenactment[45] of this experiment (averaged over 30

trials) is shown in the left panel of Figure 10.5 where the input axis is time (in

seconds) while the output is the portion of the ramp traveled by the ball during

the experiment. The data here displays a nonlinear quadratic relationship between

its input and output. This translates to using the quadratic model

model(x,Θ) = w

0

+ f

1

(x) w

1

+ f

2

(x) w

2

(10.14)

with two unparameterized feature transformations: the identity transformation

f

1

(x) = x and the quadratic transformation f

2

(x) = x

2

. Replacing f

1

(x) and f

2

(x) in

Equation (10.14) with x and x

2

gives the familiar quadratic form w

0

+xw

1

+x

2

w

2

.

After standard normalizing the input of this dataset (see Section 9.3) we min-

imize the corresponding Least Squares cost via gradient descent, and plot the

corresponding best nonlinear fit on the original data in the left panel of Figure

10.5. Since this model is a linear combination of its two feature transformations

(plus a bias weight) we can also visualize its corresponding linear fit in the trans-

formed feature space, as shown in the right panel of Figure 10.5. In this space

3

Why did Galileo not simply drop the ball from some height and time how long it took to reach

certain distances to the ground? Because no reliable way to measure time had yet existed. As a

result he had to use a water clock for his ramp experiments! Interestingly, Galileo was the one

who set humanity on the route towards its first reliable time-piece in his studies of the

pendulum.

in time or, in other words, that the distance an object falls is directly propor-

tional to the amount of time it has been traveling, squared. This relationship

was empirically solidified using the following ingeniously simple experiment

performed by Galileo.

Repeatedly rolling a metal ball down a grooved 5.5 meter long piece of wood

set at an incline as shown in Figure 10.4, Galileo timed how long the ball took

to get

1

4

,

1

2

,

2

3

,

3

4

, and all the way down the wood ramp.

3

10.2 Nonlinear Regression 281

f

1

(x)

f

2

(x)

x

y

y

Figure 10.5 Figure associated with Example 10.2. (left panel) Data from a modern

reenactment of a famous experiment performed by Galileo along with a well tuned

quadratic model. (right panel) The same dataset and model viewed in the transformed

feature space. See text for further details.

the input axes are given by f

1

(x) and f

2

(x) respectively, and our transformed

points by the triplet

±

f

1

±

x

p

²

, f

2

±

x

p

²

, y

p

²

.

10.2.3 Python implementation

Below we show a universal way to implement the generic nonlinear model

shown in Equation (10.8), generalizing our original linear implementation from

Section 5.2.4.

1 # an implementation of our model employing a

2 # general nonlinear feature transformation

3 def model(x, theta):

4

5 # feature transformation

6 f = feature_transforms(x, theta[0])

7

8 # compute linear combination and return

9 a = theta[1][0] + np.dot(f.T, theta[1][1:])

10

11 return a.T

Here our generic set of engineered feature transformations are implemented in

the Python function feature transforms, and differ depending on how the fea-

tures themselves are defined. We have implemented this function as generically

as possible, to encompass the case where our desired feature transformations

have internal parameters. That is, we package the model weights in the set Θ as

theta, which is a list containing the internal weights of feature transforms in

its first entry theta[0], and the weights in the final linear combination of the

model stored in the second entry theta[1].

282 Principles of Nonlinear Feature Engineering

For example, the feature transforms function employed in Example 10.1

can be implemented as follows.

1 def feature_transforms(x, w):

2

3 # compute feature transformation

4 f = np.sin(w[0] + np.dot(x.T, w[1:])).T

5

6 return f

If our desired feature transformations do not have internal parameters we can

either leave the parameter input to this function empty, or implement the model

above slightly differently by computing our set of feature transformations as

1 f = feature_transforms(x)

and computing the linear combination of these transformed features as

1 a = theta[0] + np.dot(f.T, theta[1:])

In either case, in order to successfully perform nonlinear regression we can

focus our attention solely on implementing the function feature transforms,

employing the autograd-wrapped NumPy library if we wish to employ auto-

matic differentiation (see Section B.10). Nothing about how we implement our

regression cost functions changes from the original context of linear regression

detailed in Chapter 5. In other words, once we have implemented a given set of

feature transformations correctly, employing the model above we can then tune

the parameters of our nonlinear regression precisely as we have done in Chapter

5, using any regression cost function and local optimization scheme. The only

caveat one must keep in mind is that when employing parameterized models

(like the one in Example 10.1) the corresponding cost functions are generally

nonconvex. Thus either zero- or first-order methods of optimization should be

applied, or second-order methods adjusted in the manner detailed in Appendix

Section A.7.

10.3 Nonlinear Multi-Output Regression

In this section we present a description of nonlinear feature engineering for

multi-output regression first introduced in Section 5.6. This mirrors what we

have seen in the previous section completely with one small but important

difference: in the multi-output case we can choose to model each regression

10.3 Nonlinear Multi-Output Regression 283

separately, employing a (potentially) different nonlinear model for each output,

or jointly, producing a single nonlinear model for all outputs simultaneously.

10.3.1 Modeling principles

With linear multi-output regression we construct C linear models of the form

x̊

T

w

c

, or equivalently, one joint linear model including all C regressions by

stacking the weight vectors w

c

column-wise into an (N + 1) × C matrix W (see

Section 5.6.1) and forming the multi-output linear model

model (x,W) = x̊

T

W . (10.15)

Given a dataset of P points

n±

x

p

, y

p

²o

P

p=1

where each paired input x

p

and output

y

p

is N × 1 and 1 × C dimensional, respectively, we aim to tune the parameters

in W to learn a linear relationship between the input and output as

x̊

T

p

W ≈ y

p

p = 1, 2, ...,P (10.16)

by minimizing an appropriate cost function, e.g., the Least Squares cost

g

(

W

)

=

1

P

P

X

p=1

³

³

³

³

x̊

T

p

W- y

p

³

³

³

³

2

2

. (10.17)

With multi-output regression the move from linear to nonlinear modeling

closely mirrors what we saw in the previous section. That is, for the cth re-

gression problem we construct a model using (in general) B

c

nonlinear feature

transformations as

model

c

(x,Θ

c

) = w

c,0

+ f

c,1

(x) w

c,1

+ f

c,2

(x)w

c,2

+ · · · + f

c,B

c

(x)w

c,B

c

(10.18)

where f

c,1

, f

c,2

, ..., f

c,B

c

are nonlinear (potentially parameterized) functions, and

w

c,0

through w

c,B

c

(along with any additional weights internal to the nonlinear

functions) are represented in the weight set Θ

c

.

To simplify the chore of choosing nonlinear features for each regressor we can

instead choose a single set of nonlinear feature transformations and share them

among all C regression models. If we choose the same set of B nonlinear features

for all C models, the cth model takes the form

model

c

(

x,Θ

c

)

= w

c,0

+ f

1

(

x

)

w

c,1

+ f

2

(

x

)

w

c,2

+ · · · + f

B

(

x

)

w

c,B

(10.19)

whereΘ

c

now contains both the linear combination weights w

c,0

, w

c,0

, ..., w
c,B

as

well as any weights internal to the shared feature transformations. Note that in

this case the only parameters unique to the cth model are the linear combination

284 Principles of Nonlinear Feature Engineering

x̊

T

w

1

x̊

T

w

2

˚

f

T

2

w

2

˚

f

T

1

w

1

˚

f

T

w

1

˚

f

T

w

2

Figure 10.6 Figurative illustrations of multi-output regression with C = 2 outputs. (left

panel) Linear multi-output regression. (middle panel) Nonlinear multi-output

regression where each regressor uses its own distinct nonlinear feature transformations.

(right panel) Nonlinear multi-output regression where both regressors share the same

nonlinear feature transformations. See text for further details.

weights since every model shares any weights internal to the feature transfor-

mations. Employing the same compact notation for our feature transformations

as in Equation (10.9) we can express each of these models more compactly as

model

c

(

x,Θ

c

)

=

˚

f

T

w

c

. (10.20)

Figure 10.6 shows a prototypical multi-output regression using this notation.

We can then express all C models together by stacking all C weight vectors w

c

column-wise into a (B+ 1) ×C weight matrix W, giving the joint model as

model (x,Θ) =

˚

f

T

W. (10.21)

This is a direct generalization of the original linear model shown in Equation

(10.15), and the set Θ contains the linear combination weights in W as well as

any parameters internal to our feature transformations themselves. To tune the

weights of our joint model so that it represents our dataset as well as possible,

or phrased algebraically so that we have

˚

f

T

p

W ≈ y

p

p = 1, 2, ...,P (10.22)

we minimize an appropriate regression cost of this model over the parameters

in Θ, e.g., the Least Squares cost

4

4

Note that if these feature transformations contain no internal parameters (e.g., polynomial

functions) then each individual regression model can be tuned separately. However, when

employing parameterized features (e.g., neural networks) then the cost function does not

decompose over each regressor and we must tune all of our model parameters jointly, that is,

we must learn all C regressions simultaneously. This differs from the linear case where tuning the

10.3 Nonlinear Multi-Output Regression 285

g

(

Θ

)

=

1

P

P

X

p=1

³

³

³

³

˚

f

T

p

W - y

p

³

³

³

³

2

2

. (10.23)

10.3.2 Feature engineering

With multi-output regression, determining appropriate features by visual in-

spection is more challenging than the basic instance of regression detailed in the

previous section. Here we provide one relatively simple example of this sort of

feature engineering to give a flavor of this challenge and the nonlinear modeling

involved.

Figure 10.7 Figure

associated with

Example 10.3. See text for

details and compare to

the linear case shown in

Figure 5.11.

From visual examination of the data we can reasonably choose to model

both regressions simultaneously using B = 2 parameterized sinusoidal feature

transformations

f

1

(

x

)

= sin

(

v

1,0

+ v

1,1

x

1

+ v

1,2

x

2

)

f

2

(x) = sin

(

v

2,0

+ v

2,1

x

1

+ v

2,2

x

2

)

.

(10.24)

Fitting this set of nonlinear features jointly by minimizing the Least Squares

cost in Equation (10.23) using gradient descent results in the nonlinear surfaces

plotted in green in Figure 10.7.

parameters of the linear model, either one regressor at a time or simultaneously, returns the

same result (see Section 5.6.2).

Example 10.3 Modeling multiple waves

In Figure 10.7 we show an example of nonlinear multi-output regression using a

toy dataset with input dimension N = 2 and output dimension C = 2, where the

input paired with the first and second outputs are shown in the left and right

panel, respectively. Both instances appear to be sinusoidal in nature, with each

having its own unique shape.

286 Principles of Nonlinear Feature Engineering

10.3.3 Python implementation

As with the linear case detailed in Section 5.6.3, here likewise we can piggy-back

on our general Pythonic implementation of nonlinear regression introduced in

Section 10.2.3, and employ precisely the same model and cost function imple-

mentation as used in the single-output case. The only difference is in how we

define our feature transformations and the dimensions of our matrix of linear

combination weights.

10.4 Nonlinear Two-Class Classification

In this section we introduce the general framework of nonlinear classification,

along with a number of elementary examples. As in the prior sections, these

examples are all low-dimensional, allowing us to visually examine patterns in

the data and propose appropriate nonlinearities, which we can inject into our

linear supervised paradigm to produce nonlinear classifications. In doing this

we are essentially performing nonlinear feature engineering for the two-class

classification problem.

10.4.1 Modeling principles

While we employed a linear model in deriving linear two-class classification in

Chapter 6, this linearity was simply an assumption about the sort of boundary

that (largely) separates the two classes of data. Employing by default label values

y

p

∈ {-1, +1} and expressing our linear model algebraically as

model (x,w) = x̊

T

w (10.25)

our linear decision boundary then consists of all input points x where x̊

T

w = 0.

Likewise, label predictions are made (see Section 7.6) as

y = sign

±

x̊

T

w

²

. (10.26)

To tunewwe then minimize a proper two-class classification cost function, e.g.,

the two-class Softmax (or Cross Entropy) cost

g (w) =

1

P

P

X

p=1

log

±

1 + e

-y

p

x̊

T

p

w

²

. (10.27)

We can adjust this framework to jump from linear to nonlinear classification

in an entirely similar fashion as we did with regression in Section 10.2. That is,

we can swap out our linear model with a nonlinear one of the generic form

model (x,Θ

)

= w

0

+ f

1

(

x

)

w

1

+ f

2

(

x

)

w

2

+ · · · + f

B

(

x

)

w

B

(10.28)

10.4 Nonlinear Two-Class Classification 287

˚

f

T

w = 0

˚

x

T

w = 0

Figure 10.8 Figurative illustrations of linear and nonlinear two-class classification. (left

panel) In the linear case the separating boundary is defined as x̊

T

w = 0. (right panel) In

the nonlinear case the separating boundary is defined as

˚

f

T

w = 0. See text for further

details.

where f

1

, f

2

, . . . , f

B

are nonlinear parameterized or unparameterized functions,

and w

0

throughw

B

(along with any additional weights internal to the nonlinear

functions) are represented in the weight set Θ. Just as with regression, here too

we can express this more compactly (see Section 10.2.1) as

model (x,Θ) =

˚

f

T

w. (10.29)

In complete analogy to the linear case, our decision boundary here consists of

all inputs x where

˚

f

T

w = 0, and likewise predictions are made as

y = sign

±

˚

f

T

w

²

. (10.30)

Figure 10.8 shows a prototypical two-class classification using this notation.

Finally, in order to tune the parameters in Θ we must minimize a proper cost

function with respect to it, e.g., the two-class Softmax cost (again in complete

analogy to Equation (10.27))

g (Θ) =

1

P

P

X

p=1

log

±

1 + e

-y

p

˚

f

T

p

w

²

. (10.31)

10.4.2 Feature engineering

With /low-dimensional datasets we can, in certain instances, fairly easily engi-

neer a proper set of nonlinear features for two-class classification by examining

the data visually. Below we explore two such examples.

Example 10.4 When the decision boundary is just two single points

In discussing classification through the lens of logistic regression in Section

6.3 we saw how linear classification can be thought of as a specific instance

288 Principles of Nonlinear Feature Engineering

+1

-1

0

× ×

+1

-1

0

×

× ×

y = tanh(w

0

+ x w

1

+ x

2

w

2

)

y = w

0

+ x w

1

+ x

2

w

2

w

0

+ x w

1

+ x

2

w

2

< 0

w

0

+ x w

1

+ x

2

w

2

= 0

w

0

+ x w

1

+ x

2

w

2

> 0

y y

x

x

w

0

+ x w

1

< 0

y = w

0

+ x w

1

w

0

+ x w

1

= 0

w

0

+ x w

1

> 0

y = tanh(w

0

+ x w

1

)

x

x

Figure 10.9 Figure associated with Example 10.4. (left column) A prototypical linear

two-class classification dataset with fully tuned linear model shown from the regression

perspective (top), and from the perceptron perspective (bottom) where label values are

encoded as colors (red for +1 and blue for -1). (right column) A simple nonlinear

two-class classification dataset that requires a decision boundary consisting of two

points, something a linear model cannot provide. As can be seen here, a quadratic

model can achieve this goal (provided its parameters are tuned appropriately).

A quadratic model takes the form

model(x,Θ) = w

0

+ xw

1

+ x

2

w

2

(10.32)

which uses two feature transformations: the identity f

1

(x) = x and the quadratic

of nonlinear regression. In particular, we saw how from this perspective we

aim at fitting a curve (or surface in higher dimensions) that consists of a linear

combination of our input passed through the tanh function. For datasets with

input dimension N = 1, like the one shown in the left column of Figure 10.9, this

results in learning a decision boundary that is defined by a single point.

However, a linear decision boundary is quite inflexible in general, and fails

to provide good separation even in the case of the simple example shown in the

right column of Figure 10.9. For such a dataset we clearly need a model that is

capable of crossing the input space (the x axis) twice at points separated by some

distance, something a linear model can never do.

What sort of simple function crosses the horizontal axis twice? A quadratic

function can. If adjusted to the right height a quadratic certainly can be made

to cross the horizontal axis twice and, when passed through a tanh function,

could indeed give us the sort of predictions we desire (as illustrated in the right

column of Figure 10.9).

10.4 Nonlinear Two-Class Classification 289

y

y

f

2

(x)

f

1

(x)

x

Figure 10.10 Figure associated with Example 10.4. See text for details.

Example 10.5 An elliptical decision boundary

In the left column of Figure 10.11 we show a toy two-class classification dataset

with input dimension N = 2, shown from the perceptron perspective in the top

panel and from the regression perspective in the bottom panel.

Visually examining the dataset it appears that some sort of elliptical decision

boundary centered at the origin, defined by

model(x,Θ) = w

0

+ x

2

1

w

1

+ x

2

2

w

2

(10.33)

might do a fine job of classification. Parsing this formula we can see that we

have used two feature transformations, i.e., f

1

(x) = x

2

1

and f

2

(x) = x

2

2

, with the

parameter setΘ =
{

w

0

, w

1

, w

2

}

.

Minimizing the Softmax cost in Equation (10.31) using this model (via gradient

descent) we show the resulting nonlinear decision boundary in black, from the

perceptron perspective in the top panel and from the regression perspective in

the bottom panel. Finally, in the right column we show the data in the transformed

transformation f

2

(x) = x

2

, with the weight setΘ only containing the weights w

0

,

w

1

, and w

2

.

In the left panel of Figure 10.10 we illustrate a toy dataset like the one shown in

the right column of Figure 10.9. We also show, in green, the result of fully tuning

the quadratic model in Equation (10.32) by minimizing (via gradient descent) the

corresponding two-class Softmax in Equation (10.31). In the right panel we show

the same dataset only in the transformed feature space defined by our two features

(as first detailed in Examples 10.1 and 10.2) wherein the nonlinear decision

boundary becomes linear. This finding is true in general: a well-separating

nonlinear decision boundary in the original space of a dataset translates to a

well-separating linear decision boundary in the transformed feature space. This

is analogous to the case of regression, as detailed in Section 10.2.2, where a

good nonlinear fit in an original space corresponds to a good linear fit in the

transformed feature space.

290 Principles of Nonlinear Feature Engineering

x

1

x

2

f

2

(x)

f

1

(x)

x

2

x

1

f

1

(x)

f

2

(x)

Figure 10.11 Figure associated with Example 10.5. See text for details.

feature space along with the corresponding linear decision boundary.

10.4.3 Python implementation

The general nonlinear model in Equation (10.29) can be implemented precisely

as described in Section 10.2.3, since it is the same general nonlinear model we

use with nonlinear regression. Therefore, just as with regression, we need not

alter the implementation of any two-class classification cost function introduced

in Chapter 6 to perform nonlinear classification: all we need to do is properly

define our nonlinear transformation(s) in Python.

10.5 Nonlinear Multi-Class Classification

In this section we present the general nonlinear extension of linear multi-class

classification first introduced in Chapter 7. This mirrors what we have seen in

10.5 Nonlinear Multi-Class Classification 291

the previous sections very closely, and is in particular almost entirely similar to

the discussion of nonlinear multi-output regression in Section 10.3.

10.5.1 Modeling principles

As we saw in Chapter 7 with linear multi-class classification we construct C

linear models of the form x̊

T

w

c

, which we may represent jointly by stacking the

weight vectors w

c

column-wise into an (N + 1) × C matrixW (see Section 7.3.9)

and forming a single multi-output linear model of the form

model (x,W) = x̊

T

W . (10.34)

Given a dataset of P points

n±

x

p

, y

p

²o

P

p=1

where each input x

p

is N-dimensional

and each y

p

is a label value in the set y

p

∈ {0, 1, ...,C- 1}, we aim to tune the

parameters inW to satisfy the fusion rule

y

p

= argmax

c=0,1,...,C-1

h

model

±

x

p

,W

²i

p = 1, 2, ...,P (10.35)

by either tuning each column of W one at a time in a One-versus-All fashion

(see Section 7.2), or by minimizing an appropriate cost, e.g., multi-class Softmax

cost

g (W) =

1

P

P

X

p=1

log

C-1

X

c=0

e

x̊

T

p

w

c

- x̊

T

p

w

y

p

(10.36)

over the entire matrixW simultaneously (see Section 7.3).

With multi-class classification the move from linear to nonlinear modeling

very closely mirrors what we saw in the case of multi-output regression in

Section 10.3. That is, for the cth classifier we can construct a model using (in

general) B

c

nonlinear feature transformations as

model

c

(x,Θ

c

) = w

c,0

+ f

c,1

(x) w

c,1

+ f

c,2

(x)w

c,2

+ · · · + f

c,B

c

(x)w

c,B

c

(10.37)

where f

c,1

, f

c,2

, . . . , f

c,B

c

are nonlinear parameterized or unparameterized func-

tions, and w

c,0

through w

c,B

c

(along with any additional weights internal to the

nonlinear functions) are represented in the weight set Θ

c

.

To simplify the chore of choosing nonlinear features for each classifier we can

instead choose a single set of nonlinear feature transformations and share them

among all C two-class models. If we choose the same set of B nonlinear features

for all C models, the cth model takes the form

model

c

(

x,Θ

c

)

= w

c,0

+ f

1

(

x

)

w

c,1

+ f

2

(

x

)

w

c,2

+ · · · + f

B

(

x

)

w

c,B

(10.38)

292 Principles of Nonlinear Feature Engineering

x̊

T

w

2

= 0

x̊

T

w

3

= 0

x̊

T

w

1

= 0

˚

f

T

1

w

1

= 0

˚

f

T

2

w

2

= 0

˚

f

T

3

w

3

= 0

˚

f

T

w

2

= 0

˚

f

T

w

3

= 0

˚

f

T

w

1

= 0

Figure 10.12 Figurative illustrations of multi-class classifiers on a generic dataset with

C = 3 classes. (left panel) Linear multi-class classification. (middle panel) Nonlinear

multi-class classification where each classifier uses its own distinct nonlinear feature

transformations. (right panel) Nonlinear multi-class classification where all classifiers

share the same nonlinear feature transformations. See text for further details.

whereΘ

c

now contains the linear combination weights w

c,0

, w

c,1

, ..., w
c,B

as well

as any weights internal to the shared feature transformations. Employing the

same compact notation for our feature transformations as in Equation (10.9) we

can express each of these models more compactly as

model

c

(

x,Θ

c

)

=

˚

f

T

w

c

. (10.39)

Figure 10.12 shows a prototypical multi-class classification using this notation.

We can then tune the parameters of each of these models individually, taking a

One-versus-All approach, or simultaneously by minimizing a single joint cost

function over all of them together. To perform the latter approach it is helpful

to first re-express all C models together by stacking all C weight vectors w

c

column-wise into a (B+ 1) ×C weight matrix W, giving the joint model as

model (x,Θ) =

˚

f

T

W (10.40)

where the set Θ contains the linear combination weights in W as well as any pa-

rameters internal to our feature transformations themselves. To tune the weights

of our joint model so that the fusion rule

y

p

= argmax

c=0,1,...,C-1

h

model

±

f

p

,W

²i

p = 1, 2, ...,P (10.41)

holds as well as possible, we minimize an appropriate multi-class cost of this

model over the parameters in Θ, e.g., the multi-class Softmax cost

g (Θ) =

1

P

P

X

p=1

log

C-1

X

c=0

e

˚

f

T

p

w

c

-

˚

f

T

p

w

y

p

. (10.42)

10.5 Nonlinear Multi-Class Classification 293

10.5.2 Feature engineering

Determining nonlinear features via visual analysis is even more challenging in

the multi-class setting than in the instance of two-class classification detailed in

the previous section. Here we provide a simple example of this sort of feature

engineering, noting that in general we will want to learn such feature transfor-

mations automatically (as we begin to detail in the next chapter).

Example 10.6 Multi-class data with elliptical boundaries

In this example we engineer nonlinear features to perform multi-class classifica-

tion on the dataset shown in the top-left panel of Figure 10.13, which consists of

C = 3 classes that appear to be (roughly) separable by elliptical boundaries. Here

the points colored blue, red, and green have label values 0, 1, and 2, respectively.

x

1

x

2

Figure 10.13 Figure associated with Example 10.6. See text for details.

Because the data is not centered at the origin we must use a full degree-two

polynomial expansion of the input consisting of features of the form x

i

1

x

j

2

where

i+ j ≤ 2. This gives the degree-two polynomial model

model (x,Θ

)

= w

0

+ x

1

w

1

+ x

2

w

2

+ x

1

x

2

w

3

+ x

2

1

w

4

+ x

2

2

w

5

. (10.43)

Using this nonlinear model we minimize the multi-class Softmax cost in Equa-

tion (10.42) via gradient descent, and plot the corresponding fused multi-class

boundary in the top-right panel of Figure 10.13 where each region is colored

according to the prediction made by the final classifier.

294 Principles of Nonlinear Feature Engineering

We also plot the resulting two-class boundary produced by each individual

classifier in the bottom row of Figure 10.13, coloring each boundary according

to the One-versus-All classification performed in each instance. Here, as in

the linear case outlined in Section 7.3, we can see that while each two-class

subproblem cannot be solved correctly, when fused via Equation (10.41) the

resulting multi-class classification can still be very good.

10.5.3 Python implementation

The general nonlinear model in Equation (10.40) can be implemented as de-

scribed in Section 10.3.3, since it is the same general nonlinear model we use

with nonlinear multi-output regression. Therefore, just as with multi-output

regression, we need not alter the implementation of joint nonlinear multi-class

classification cost functions introduced in Chapter 7: all we need to do is prop-

erly define our nonlinear transformation(s) in Python.

10.6 Nonlinear Unsupervised Learning

In this section we discuss the general nonlinear extension of our fundamental

unsupervised learning technique introduced in Section 8.3: the Autoencoder.

10.6.1 Modeling principles

In Section 8.3 we described the linear Autoencoder, an elegant way to determine

the best linear subspace to represent a set of mean-centered N-dimensional

input data points

n

x

p

o

P

p=1

. To determine the projection of our data onto the K-

dimensional subspace spanned by the columns of an N × K matrix C, we first

encode our data on the subspace using the encoder model

model

e

(x, C) = C

T

x (10.44)

which takes in an N-dimensional input x and returns a K-dimensional output

C

T

x. We then decode to produce the projection onto the subspace as

model

d

(v, C) = Cv. (10.45)

The output of the decoder, being a projection onto a subspace lying in the original

N-dimensional space, is itself N-dimensional.

The composition of these two steps gives the linear Autoencoder model

model (x, C

)

= model

d

(model

e

(

x, C

)

, C

)

= C C

T

x (10.46)

10.6 Nonlinear Unsupervised Learning 295

Figure 10.14 Figurative illustrations of a linear (left panel) and nonlinear (right panel)

Autoencoder. See text for further details.

that, when C is tuned correctly, produces a linear subspace that represents the

data extremely well

C C

T

x

p

≈ x

p

p = 1, 2, ...,P (10.47)

or, equivalently, has an effect on input as close to the identity transformation as

possible, i.e.,

CC

T

≈ I

N×N

. (10.48)

In order to recover this ideal setting for C we can minimize, for example, the

Least Squares error measurement of the desired effect in Equation (10.47)

g

(

C

)

=

1

P

P

X

p=1

³

³

³

C C

T

x

p

- x

p

³

³

³

2

2

. (10.49)

To introduce nonlinearity here, i.e., to determine a nonlinear surface (also called

a manifold) to project the data onto (as illustrated in the right panel of Figure

10.14) we can simply replace the linear encoder/decoder models in Equations

(10.44) and (10.45) with nonlinear versions of the generic form

model

e

(

x, Θ

e

)

= f

e

(

x

)

model

d

(v,Θ

d

) = f

d

(v) .

(10.50)

Here, f

e

and f

d

are (in general) nonlinear vector-valued functions, with Θ

e

and

Θ

d

denoting their parameter sets. With this notation we can write the general

nonlinear Autoencoder model simply as

model (x,Θ) = f

d

(f

e

(x)) (10.51)

where the parameter set Θ now contains all parameters of both Θ

e

and Θ

d

.

296 Principles of Nonlinear Feature Engineering

As with the linear version, here our aim is to properly design the encoder/de-

coder pair and tune the parameters of Θ properly in order to determine the

appropriate nonlinear manifold for the data, as

f

d

±

f

e

±

x

p

²²

≈ x

p

p = 1, 2, ..., P. (10.52)

To tune the parameters in Θ we can minimize, for example, the Least Squares

error measurement of the desired effect in Equation (10.52)

g (Θ) =

1

P

P

X

p=1

³

³

³

³

f

d

±

f

e

±

x

p

²²

- x

p

³

³

³

³

2

2

. (10.53)

10.6.2 Feature engineering

Given that both encoder and decoder models contain nonlinear features that

must be determined, and the compositional manner in which the model is

formed in Equation (10.51), engineering features by visual analysis can be diffi-

cult even with an extremely simple example, like the one we discuss now.

Example 10.7 A circular manifold

In this example we use a simulated dataset of P = 20 two-dimensional data

points to learn a circular manifold via the nonlinear Autoencoder scheme de-

tailed in the current section. This dataset is displayed in the left panel of Figure

10.15 where we can see it has an almost perfect circular shape.

x

1

x

2

original data decoded data projection map

Figure 10.15 Figure associated with Example 10.7. (left panel) Original data is

distributed roughly on a circle. (middle panel) The final decoding of the original data

onto the determined circular manifold. (right panel) A projection mapping showing

how points in the nearby space are projected onto the final learned manifold.

To engineer a nonlinear Autoencoder model for this dataset, recall that a circle

in two dimensions, as illustrated in the left panel of Figure 10.16, can be fully

10.6 Nonlinear Unsupervised Learning 297

characterized using its center point w = [w

1

w

2

]

T

and radius r. Subtracting off

w from any point x

p

on the circle then centers the data at the origin, as shown

in the right panel of Figure 10.16.

θ

p

w

1

w

2

x

p ,2

x

p,1

x

p

w

r

x

p

-w

w

Figure 10.16 Figure associated with Example 10.7. (left panel) A circle in two

dimensions is characterized by its center point w and its radius r. (right panel) when

centered at the origin, any point on the circle can be represented using the angle created

between its connector to the origin and the horizontal axis.

Once centered, any two-dimensional point x

p

-won the circle can be encoded

as the (scalar) angle θ

p

between the line segment connecting it to the origin and

the horizontal axis. Mathematically speaking, we have

f

e

±

x

p

²

= θ

p

= arctan

°

x

p,2

- w

2

x

p,1

- w

1

!

. (10.54)

To design the decoder, beginning with θ

p

, we can reconstruct x

p

as

f

d

±

θ

p

²

=

"

r cos(θ

p

) +w

1

r sin(θ

p

) +w

2

#

. (10.55)

Taken together this encoder/decoder pair defines an appropriate nonlinear Au-

toencder model of the general form given in Equation (10.51), with a set of

parametersΘ = {w

1

,w

2

, r}.

In the middle panel of Figure 10.15 we show the final learned manifold along

with the decoded data, found by minimizing the cost function in Equation (10.53)

via gradient descent. In the right panel of the figure we show the manifold

recovered as a black circle (with red outline for ease of visualization), and

illustrate how points in the space are attracted (or projected) to the recovered

manifold as a vector field.

298 Principles of Nonlinear Feature Engineering

10.7 Conclusion

In this chapter we described nonlinear feature engineering for supervised and

unsupervised learning problems. Nonlinear feature engineering involves the

design of nonlinear models via philosophical reflection or visual analysis of

data. While nonlinear feature engineering is itself a very useful skill-set, the

greater value of this chapter is in introducing the general nonlinear modeling

framework, including general nonlinear models, formalities, and concepts, that

are the foundation for the remaining chapters of the text.

10.8 Exercises

†The data required to complete the following exercises can be downloaded from

the text’s github repository at github.com/jermwatt/machine_learning_refined

10.1 Modeling a wave

Repeat the experiment described in Example 10.1, including making the panels

shown in Figure 10.2.

10.2 Modeling population growth

Figure 10.17 shows the population of yeast cells growing in a constrained cham-

ber (data taken from [46]). This is a common shape found with population

growth data, where the organism under study starts off with only a few mem-

bers and is limited in growth by how fast it can reproduce and the resources

available in its environment. In the beginning such a population grows exponen-

tially, but the growth halts rapidly when the population reaches the maximum

carrying capacity of its environment.

Propose a single nonlinear feature transformation for this dataset and fit a

corresponding model to it, using the Least Squares cost function and gradient

descent. Make sure to standard normalize the input of the data (see Section 9.3).

Plot the data along with the final fit provided by your model together in a single

panel.

10.3 Galileo’s experiment

Repeat the experiment described in Example 10.2, including making the panels

shown in Figure 10.5.

10.8 Exercises 299

Figure 10.17 Figure

associated with

Exercise 10.2. See text for

details.

time [hours]

no
rm

al
iz

ed

po
pu

la
tio

n
le

ve
l

year

nu
m

be
r o

f t
ra

ns
is

to
rs

(a) Propose a single feature transformation for the Moore’s law dataset shown in

Figure 10.18 so that the transformed input/output data is related linearly. Hint:

to produce a linear relationship you will end up having to transform the output, not the

input.

10.4 Moore’s law

Gordon Moore, co-founder of Intel corporation, predicted in a 1965 paper [47]

that the number of transistors on an integrated circuit would double approxi-

mately every two years. This conjecture, referred to nowadays as Moore’s law,

has proven to be sufficiently accurate over the past five decades. Since the pro-

cessing power of computers is directly related to the number of transistors in

their CPUs, Moore’s law provides a trend model to predict the computing power

of future microprocessors. Figure 10.18 plots the transistor counts of several mi-

croprocessors versus the year they were released, starting from Intel 4004 in

1971 with only 2300 transistors, to Intel’s Xeon E7 introduced in 2014 with more

than 4.3 billion transistors.

Figure 10.18 Figure

associated with Exercise

10.4. See text for details.

300 Principles of Nonlinear Feature Engineering

(b) Formulate and minimize a Least Squares cost function for appropriate

weights, and fit your model to the data in the original data space as shown

in Figure 10.18.

10.5 Ohm’s law

Ohm’s law, proposed by the German physicist Georg Simon Ohm following a

series of experiments made by him in the 1820s, connects the magnitude of the

current in a galvanic circuit to the sum of all the exciting forces in the circuit,

as well as the length of the circuit. Although he did not publish any account of

his experimental results, it is easy to verify his law using a simple experimental

setup shown in the left panel of Figure 10.19, that is very similar to what he

then utilized. The spirit lamp heats up the circuit, generating an electromotive

force which creates a current in the coil deflecting the needle of the compass.

The tangent of the deflection angle is directly proportional to the magnitude of

the current passing through the circuit. The magnitude of this current, denoted

by I, varies depending on the length of the wire used to close the circuit (dashed

curve). In the right panel of Figure 10.19 we plot the readings of the current I

(in terms of the tangent of the deflection angle) when the circuit is closed with

a wire of length x (in cm), for five different values of x. The data plotted here is

taken from [48].

length of wire

cu
rr

en
t

Figure 10.19 Figure associated with Exercise 10.5. (left panel) Experimental setup for

verification of Ohm’s law. Black and brown wires are made up of constantan and

copper, respectively. (right panel) Current measurements for five different lengths of

closing wire.

(a) Suggest a single nonlinear transformation of the original data so that the

transformed input/output data is related linearly.

(b) Formulate a proper Least Squares cost function using your transformed data,

minimize it to recover ideal parameters, fit your proposed model to the data,

and display it in the original data space.

10.8 Exercises 301

10.6 Modeling multiple waves

Repeat the experiment outlined in Example 10.3. You need not reproduce the

illustrations shown in Figure 10.7. Instead use a cost function history plot to

ensure that you are able to learn an accurate fit to the data.

10.7 An elliptical decision boundary

Repeat the experiment outlined in Example 10.5. You need not reproduce the

illustrations shown in Figure 10.11. Instead use a cost function history plot to

ensure that you are able to learn an accurate fit to the data.

Figure 10.20 Figure associated with

Exercise 10.8. See text for details.

x

1

x

2

10.9 A circular manifold

Repeat the experiment outlined in Example 10.7 and report the optimal values

you find for w

1

, w

2

, and r.

10.10 Another nonlinear extension of PCA

As we saw in Section 8.3 minimizing the PCA Least Squares cost

g

(

w

1

, w

2

, ..., w

P

, C

)

=

1

P

P

X

p=1

³

³

³

Cw

p

- x

p

³

³

³

2

2

(10.56)

over theN×K spanning set C and correspondingK×1 weight vectorsw

1

, w

2

, ..., w

P

determines a proper K-dimensional linear subspace for the set of input points

x

1

, x

2

, ..., x

P

.

10.8 Engineering features for a two-class classification dataset

Propose a nonlinear model for the dataset shown in Figure 10.20 and perform

nonlinear two-class classification. Your model should be able to achieve perfect

classification on this dataset.

302 Principles of Nonlinear Feature Engineering

As an alternative to extending Autoencoders to allow PCA to capture nonlin-

ear subspaces (as described at length in Section 10.5), we can extend this PCA

Least Squares cost. This is a more restricted version of nonlinear PCA, often

termed kernel PCA, that is the basis for similar nonlinear extensions of other

unsupervised problems including K-means. In this exercise you will investigate

fundamental principles involved in this nonlinear extension.

To do this we begin by choosing a set of B nonlinear feature transformations

f

1

, f

2

, ..., f

B

that have no internal parameters, and denote the transformation of

x

p

using this entire set of feature transformations as

f

p

=

f

1

±

x

p

²

f

2

±

x

p

²

.

.

.

f

B

±

x

p

²

. (10.57)

Then, instead of learning a linear subspace for our input data, we learn one for

these transformed inputs by minimizing

g

(

w

1

, w

2

, ..., w

P

, C

)

=

1

P

P

X

p=1

³

³

³

Cw

p

- f

p

³

³

³

2

2

. (10.58)

Note here that since each f

p

has size B×1, our spanning set C must necessarily

be of size B × K.

(a) Assuming that the set of B feature transformations chosen have no internal

parameters, describe the classical PCA solution to the problem of minimizing

the cost function in Equation (10.58). Hint: see Section 8.4.

(b) Suppose that we have a dataset of input points distributed roughly on the

unit circle in a two-dimensional space (i.e., N = 2), and that we use the two

feature transformations f

1

(

x

)

= x

2

1

and f

2

(

x

)

= x

2

2

. What kind of subspace will

we find in both the original and transformed feature space if we use just the

first principle component from the classical PCA solution to represent our data?

Draw a picture of what this looks like in both spaces.

10.11 A nonlinear extension of K-means

The same idea introduced in the previous exercise can also be used to extend

K-means clustering (see Section 8.4) to a nonlinear setting as well – and is the

basis for the so-called kernel K-means. This can be done by first noting that both

PCA and K-means have the same Least Squares cost function. With K-means,

however, the minimization of this cost function is constrained so that each weight

vector w

p

is a standard basis vector (see Section 8.7).

10.8 Exercises 303

(a) Extend the K-means problem precisely as shown with PCA in the previous

exercise. Compare this to the same sort of clustering performed on the original

input, and describe in words what is being clustered in each instance.

(b) Suppose that we have a dataset of two-dimensional input points distributed

roughly in two clusters: one cluster consists of points distributed roughly on

the unit circle, and another consists of points distributed roughly on the circle

of radius two, centered at the origin. Using the two feature transformations

f

1

(x) = x

2

1

and f

2

(x) = x

2

2

, what kind of clusters will we find upon proper

execution of K-means with K = 2, both in the original and transformed feature

space? Draw a picture of what this looks like in both spaces.

11 Principles of Feature Learning

11.1 Introduction

In Chapter 10 we saw how linear supervised and unsupervised learners alike

can be extended to perform nonlinear learning via the use of nonlinear functions

(or feature transformations) that we engineered ourselves by visually examining

data. For example, we expressed a general nonlinear model for regression as a

weighted sum of B nonlinear functions of our input as

model (x,Θ) = w

0

+ f

1

(x) w

1

+ f

2

(x) w

2

+ · · · + f

B

(x) w

B

(11.1)

where f

1

through f

B

are nonlinear parameterized or unparameterized functions

(or features) of the data, and w

0

through w

B

(along with any additional weights

internal to the nonlinear functions) are represented in the weight set Θ.

In this chapter we detail the fundamental tools and principles of feature learn-

ing (or automatic feature engineering) that allow us to automate this task and

learn proper features from the data itself, instead of engineering them ourselves.

In particular we discuss how to choose the form of the nonlinear transformations

f

1

through f

B

, the number B of them employed, as well as how the parameters

in Θ are tuned, automatically and for any dataset.

11.1.1 The limits of nonlinear feature engineering

As we have described in previous chapters, features are those defining charac-

teristics of a given dataset that allow for optimal learning. In Chapter 10 we saw

how the quality of the mathematical features we can design ourselves is fun-

damentally dependent on our level of knowledge regarding the phenomenon

we were studying. The more we understand (both intellectually and intuitively)

about the process generating the data we have at our fingertips, the better we

can design features ourselves. At one extreme where we have near perfect un-

derstanding of the process generating our data, this knowledge having come

from considerable intuitive, experimental, and mathematical reflection, the fea-

tures we design allow near perfect performance. However, more often than not

we know only a few facts, or perhaps none at all, about the data we are analyz-

ing. The universe is an enormous and complicated place, and we have a solid

understanding only of how a sliver of it all works.

11.1 Introduction 305

x

y

x

1

x

2

Figure 11.1 Toy (left panel) regression and (right panel) two-class classification datasets

that clearly exhibit nonlinear behavior. The true underlying nonlinear function used to

generate the data in each case is shown in dashed black. See text for further details.

It is precisely this challenge which motivates the fundamental feature learning

tools described in this chapter. In short, these technologies automate the process

of identifying appropriate nonlinear features for arbitrary datasets. With these

tools in hand we no longer need to engineer proper nonlinearities, at least in terms

of how we engineered nonlinear features in the previous chapter. Instead, we

aim at learning their appropriate forms. Compared to our own limited nonlinear

pattern recognition abilities, feature learning tools can identify virtually any

nonlinear pattern present in a dataset regardless of its input dimension.

11.1.2 Chapter outline

The aim to automate nonlinear learning is an ambitious one and perhaps at

first glance an intimidating one as well, for there are an infinite variety of

nonlinearities and nonlinear functions to choose from. How do we, in general,

Most (particularly modern) machine learning datasets have far more than

two inputs, rendering visualization useless as a tool for feature engineering.

But even in rare cases where data visualization is possible, we cannot simply

rely on our own pattern recognition skills. Take the two toy datasets illustrated

in Figure 11.1, for example. The dataset on the left is a regression dataset with

one-dimensional input and the one on the right is a two-class classification

dataset with two-dimensional input. The true underlying nonlinear model used

to generate the data in each case is shown by the dashed black lines. We humans

are typically taught only how to recognize the simplest of nonlinear patterns

by eye, including those created by elementary functions (e.g., polynomials of

low degree, exponential functions, sine waves) and simple shapes (e.g., squares,

circles, ellipses). Neither of the patterns shown in the figure match such simple

nonlinear functionalities. Thus, whether or not a dataset can be visualized,

human engineering of proper nonlinear features can be difficult if not outright

impossible.

306 Principles of Feature Learning

parse this infinitude automatically to determine the appropriate nonlinearity

for a given dataset?

The first step, as we will see in Section 11.2, is to organize the pursuit of au-

tomation by first placing the fundamental building blocks of this infinitude into

manageable collections of (relatively simple) nonlinear functions. These collections

are often called universal approximators, of which three strains are popularly used

and which we introduce here: fixed-shape approximators, artificial neural net-

works, and trees. After introducing universal approximators we then discuss

the fundamental concepts underlying how they are employed, including the

necessity for validation error as a measurement tool in Section 11.3, a description

of cross-validation and the bias-variance trade-off in Section 11.4, the automatic

tuning of nonlinear complexity via boosting and regularization in Sections 11.5

and 11.6, respectively, as well as the notion of testing error in Section 11.7 and

bagging in Section 11.9.

11.1.3 The complexity dial metaphor of feature learning

The ultimate aim of feature learning is a paradigm for the appropriate and

automatic learning of features for any any dataset regardless of problem type.

This translates – formally speaking – into the the automatic determination of

both the proper form of the general nonlinear model in Equation (11.1) and the

proper parameter tuning of this model regardless of training data and problem

type. We can think about this challenge metaphorically as (i) the construction

of, and (ii) the automatic setting of, a ”complexity dial,” like the one illustrated

in Figure 11.2 for a simple nonlinear regression dataset (first used in Example

10.1). This complexity dial conceptualization of feature learning visually depicts

the challenge of feature learning at a high level as a dial that must be built and

automatically tuned to determine the appropriate amount of model complexity

needed to represent the phenomenon generating a given dataset.

Setting this complexity dial all the way to the left corresponds, generally

speaking, to choosing a model with lowest nonlinear complexity (i.e., a linear

model, as depicted visually in the figure). As the dial is turned from left to

right various models of increasing complexity are tried against the training

data. If turned too far to the right the resulting model will be too complex (or

too ”wiggly”) with respect to the training data (as depicted visually in the two

small panels on the right side of the dial). When set ”just right” (as depicted

visually in the small image atop the complexity dial that is second to the left)

the resulting model represents the data – as well as the underlying phenomenon

generating it – very well.

While the complexity dial is a simplified depiction of feature learning we will

see that it is nonetheless a helpful metaphor, as it will help us organize our

understanding of the diverse set of ideas involved in performing it properly.

11.2 Universal Approximators 307

complexity

Figure 11.2 A visual depiction of feature learning as the construction and automatic

setting of a ”complexity dial” that – broadly speaking – controls the form the nonlinear

model in Equation (11.1) as well as its parameter tuning, and thus the complexity of the

model with respect to the training data.

11.2 Universal Approximators

In the previous chapter we described how to engineer appropriate nonlinear

features ourselves to match the patterns we gleamed in simple datasets. How-

ever, very rarely in practice can we design perfect or even strongly-performing

nonlinear features by completely relying on our own understanding of a dataset,

whether this is gained by visualizing the data, philosophical reflection, or do-

main expertise.

In this section we jettison the unrealistic assumption that proper nonlinear

features can be engineered in the manner described in the previous chapter,

and replace it with an equally unrealistic assumption that has far more practical

repercussions (as we will see in the forthcoming sections): that we have complete

and noiseless access to the phenomenon generating our data. Here we will see,

in the case where we have such unfettered access to data, that absolutely per-

fect features can be learned automatically by combining elements from a set of

basic feature transformations, known as universal approximators. In this section

we will also see elementary exemplars from the three most popular universal

approximators, namely, fixed-shape approximators, neural networks, and trees.

For the sake of simplicity we will restrict our discussion to nonlinear regres-

sion and two-class classification, which as we saw in Chapter 10, share the same

generic nonlinear model, formed as a linear combination of B nonlinear feature

transformations of the input

model (x,Θ

)

= w

0

+ f

1

(

x

)

w

1

+ f

2

(

x

)

w

2

+ · · · + f

B

(

x

)

w

B

. (11.2)

308 Principles of Feature Learning

Recall that with nonlinear two-class classification, we simply pass the nonlinear

regression model in Equation (11.2) through the mathematical sign function to

make binary predictions. While our focus in this section will be on these two

supervised problems, because the general nonlinear model in Equation (11.2)

is used in virtually all other forms of nonlinear learning including multi-class

classification (see Section 10.4) and unsupervised learning (see Section 10.6), the

thrust of the story unveiled here holds more generally for all machine learning

problems.

11.2.1 Perfect data

We now start by imagining the impossible: a perfect dataset for regression. Such

a dataset has two important characteristics: it is completely noiseless and infinitely

large. Being completely noiseless, the first characteristic means that we could

completely trust the quality of every one of its input/output pairs. Being in-

finitely large, means that we have unfettered access to every input/output pair

±

x

p

, y

p

²

of the dataset that could possibly exist. Combined, such a dataset per-

fectly describes the phenomenon that generates it. In the top panels of Figure

11.3 we illustrate what such a perfect dataset would look like in the simplest

instance where the input/output data is related linearly.

x

y

Figure 11.3 (top-left panel) A prototypical realistic linear regression dataset is a noisy

and (relatively) small set of points that can be roughly modeled by a line. (top-middle

panel) The same dataset with all noise removed from each output. (top-right panel) The

perfect linear regression dataset where we have infinitely many points lying precisely

on a line. (bottom-left panel) A prototypical realistic nonlinear regression dataset is a

noisy and (relatively) small set of points that can be roughly modeled by a nonlinear

curve. (bottom-middle panel) All noise removed from the output, creating a noise-free

dataset. (bottom-right panel) The perfect nonlinear regression dataset where we have

infinitely many points lying precisely on a curve.

11.2 Universal Approximators 309

linear boundary

nonlinear boundary

x

1

x

2

y = +1

y =-1

Figure 11.4 (top-left panel) A prototypical realistic linear two-class classification dataset

is a noisy and (relatively) small set of points that can be roughly modeled by a step

function with linear boundary. (top-middle panel) We progress to remove all noise from

the data by returning the true label values to our noisy points. (top-right panel) The

perfect linear two-class classification dataset where we have infinitely many points

lying precisely on a step function with linear boundary. (bottom-left panel) A

prototypical realistic nonlinear two-class classification dataset is a noisy and (relatively)

small set of points that can be roughly modeled by a step function with nonlinear

boundary. (bottom-middle panel) We progress to remove all noise from the data,

creating a noise-free dataset. (bottom-right panel) The perfect nonlinear two-class

classification dataset where we have infinitely many points lying precisely on a step

function with nonlinear boundary.

In short, a perfect regression dataset is a continuous function with unknown

equation. Because of this we will refer to our perfect data using the function

notation y (x), meaning that the data pair defined at input x can be written as

either

(

x, y (x)

)

or likewise

(

x, y

)

. In the same vein a perfect two-class classification

dataset can be represented as a step function sign

(

y

(

x

)

)

with a continuous

Starting in the left panel we show a realistic dataset (the kind we deal with

in practice) that is both noisy and small. In the middle panel we show the same

dataset, but with the noise removed from each output. In the right panel we

depict a perfect dataset by adding all missing points from the line to the noiseless

data in the middle panel, making the data appear as a continuous line (or

hyperplane, in higher dimensions). In the bottom panels of Figure 11.3 we show

a similar transition for a prototypical nonlinear regression dataset wherein the

perfect data (shown in the rightmost panel) carves out a continuous nonlinear

curve (or surface, in higher dimensions).

With two-class classification a perfect dataset (using label values y

p

∈ {-1, +1}

by default) would share the same characteristics: it is completely noiseless and

infinitely large. However, in this case, the perfect data would appear not as

continuous curve or surface itself, but a step function with a continuous nonlinear

boundary between its top and bottom steps. This is illustrated in Figure 11.4,

which mirrors very closely what we saw with regression in Figure 11.3.

310 Principles of Feature Learning

boundary – determined by y

(

x

). It is important to bear in mind that the function

notation y

(

x

) does not imply that we have knowledge of a closed-form

formula

relating the input/output pairs of a perfect dataset; we do not! Indeed our aim

next is to understand how such a formula can be devised to adequately represent

a perfect dataset.

11.2.2 The spanning set analogy for universal approximation

Here we will leverage our knowledge and intuition about basic linear algebra

concepts such as vectors, spanning sets, and the like (see Section 8.2) to better

understand how we can combine nonlinear functions to model perfect regres-

sion and classification data. In particular, we will see how vectors and nonlinear

functions are very much akin when it comes to the notions of linear combination

and spanning sets.

Linear combinations of vectors and functions

To begin, assume we have a set of B vectors {f

1

, f

2

, . . . , f

B

}, each having length

N. We call this a spanning set of vectors. Then, given a particular set of weights

w

1

through w

B

, the linear combination

f

1

w

1

+ f

2

w

2

+ · · · + f

B

w

B

= y (11.3)

defines a new N-dimensional vector y. This is illustrated in the top row of Figure

11.5 for a particular set of vectors and weights where B = 3 and N = 3.

The arithmetic of nonlinear functions works in an entirely similar manner: given

a spanning set of B nonlinear functions

³

f

1

(x) , f

2

(x) , . . . , f

B

(x)

´

(where the input

x is N-dimensional and output is scalar), and a corresponding set of weights,

the linear combination

w

0

+ f

1

(x) w

1

+ f

2

(x) w

2

+ · · ·+ f

B

(x) w

B

= y (x) (11.4)

defines a new function y (x). This is illustrated in the bottom row of Figure 11.5

for a particular set of functions and weights where B = 3 and N = 1.

Notice the similarity between the vector and function arithmetic in Equations

(11.3) and (11.4): taking a particular linear combination of a set of vectors creates

a new vector with qualities inherited from each vector f

b

in the set, just as taking

a linear combination of a set of functions creates a new function taking on

qualities of each function f

b

(x) in that set. One difference between the two linear

combination formulae is the presence of a bias parameter w

0

in Equation (11.4).

This bias parameter could be rolled into one of the nonlinear functions and not

made explicit (by adding a constant function to the mix), but we choose to leave

it out-front of the linear combination of functions (as we did with linear models

in previous chapters). The sole purpose of this bias parameter is to move our

linear combination of functions vertically along the output axis.

11.2 Universal Approximators 311

+

=

+

++ =

f

1

f

2

f

3

w

1

w

2

w

3

y

f

1

(x) f

2

(x) f

3

(x)

w

1

w

2

w

3

y(x)

Figure 11.5 (top row) A particular linear combination of vectors f

1

, f

2

, and f

3

(shown in

black) creates a new vector y (shown in blue). (bottom row) In an entirely similar

fashion a particular linear combination of three functions f

1

(x), f

2

(x), and f

3

(x) (shown

in black) creates a new function y(x) (shown in blue).

Capacity of spanning sets

Computing the vector y in Equation (11.3) for a given set of weights w

1

through

w

B

is a trivial affair. The inverse problem on other hand, i.e., finding the weights

given y, is slightly more challenging. Stated algebraically, we want to find the

weights w

1

through w

B

such that

f

1

w

1

+ f

2

w

2

+ · · · + f

B

w

B

≈ y (11.5)

holds as well as possible. This is illustrated for a simple example in the top row

of Figure 11.6.

How well the vector approximation in Equation (11.5) holds depends on three

crucial and interrelated factors: (i) the diversity (i.e., linear independence) of

the spanning vectors, (ii) the number B of them used (in general the larger we

make B the better), and (iii) how well we tune the weights w

1

through w

B

via

minimization of an appropriate cost.

1

Factors (i) and (ii) determine a spanning set’s rank or capacity, that is a measure

for the range of vectors y we can possibly represent with such a spanning set. A

spanning set with a low capacity, that is one consisting of a nondiverse and/or a

small number of spanning vectors can approximate only a tiny fraction of those

present in the entire vector space. On the other hand, a spanning set with a high

capacity can represent a broader swath of the space. The notion of capacity for

1

For instance, here we can use the Least Squares cost

g(w

1

, w

2

, ..., w

B

) =

µ

µ

µ

f

1

w

1

+ f

2

w

2

+ · · · + f

B

w

B

- y

µ

µ

µ

2

2

. (11.6)

312 Principles of Feature Learning

Figure 11.6 (top panels) A three-dimensional vector y (shown in red in the first panel

from the left) is approximated using one (second panel from the left), two (third panel

from the left), and three (fourth panel from the left) spanning vectors (here, standard

basis vectors). As the number of spanning vectors increases we can approximate y with

greater precision. (bottom panels) The same concept holds with functions as well. A

continuous function with scalar input y (x) (shown in red) is approximated using one

(second panel from the left), two (third panel from the left), and three (fourth panel

from the left) spanning functions (here, sine waves of varying frequency). As the

number of functions increases we can approximate y (x) with greater precision.

a spanning set of vectors is illustrated for a particular spanning set in the top

row of Figure 11.7.

Turning our attention from vectors to functions, notice that computing the

function y (x) in Equation (11.4) for a given set of weights w

1

through w

B

is

straightforward. As with the vector case, we can reverse this problem and try to

find the weights w

1

through w

B

, for a given y

(

x

), such that

w

0

+ f

1

(

x

)

w

1

+ f

2

(

x

)

w

2

+ · · ·+ f

B

(

x

)

w

B

≈ y

(

x

)

(11.7)

holds as well as possible. This is illustrated for a simple example in the bottom

row of Figure 11.6.

Once again, how well this function approximation holds depends on three

crucial and interrelated factors: (i) the diversity of the spanning functions, (ii)

the number B of them used, and (iii) how well we tune the weights w

0

throughw

B

(as well as any parameters internal to our nonlinear functions) via minimization

of an appropriate cost.

2

In analogy to the vector case, factors (i) and (ii) determine the capacity of a

spanning set of functions. A low capacity spanning set that uses a nondiverse

and/or small array of nonlinear functions is only capable of representing a small

2

For instance, here we can use the Least Squares cost

g(w

0

, w

1

, ..., w

B

) =

Z

x∈D

(

w

0

+ f

1

(x) w

1

+ · · · + f

B

(x) w

B

- y (x)

)

2

dx (11.8)

where D is any desired portion of the input domain.

11.2 Universal Approximators 313

Figure 11.7 (top panels) As we increase the number of (diverse) vectors in a spanning

set, from one in the left panel to two and three in the middle and right panels,

respectively, we increase the capacity of the spanning set. This is reflected in the

increasing diversity of sample vectors created using each spanning set (shown in

different shades of blue). (bottom panels) The same concept holds with functions as

well. As we increase the number of (diverse) functions in the spanning set, from a single

function in the left panel to two and three functions in the middle and right panels,

respectively, we increase the spanning set’s capacity. This is reflected in the increasing

diversity of sample functions created using each spanning set (shown in different

shades of blue).

range of nonlinear functions. On the other hand, a spanning set with a high

capacity can represent a wider swath of functions. The notion of capacity for

a spanning set of functions is illustrated for a particular spanning set in the

bottom row of Figure 11.7.

Sometimes the spanning functions f

1

through f

B

are parameterized, meaning

that they have internal parameters themselves. An unparameterized spanning

function is very much akin to a spanning vector, as they are both parameter-free.

A parameterized spanning function on the other hand can take on a variety of

shapes alone, and thus can itself have high capacity. The same cannot be said

about spanning vectors and unparameterized spanning functions. This concept

is illustrated in Figure 11.8 where in the left column we show an ordinary

spanning vector x = [1 1]

T

(top-left panel) along with an unparameterized

spanning function, i.e., sin (x) (bottom-left panel). In the bottom-right panel of

the figure we show the parameterized function sin (wx), which can represent

a wider range of different functions as its internal parameter w is adjusted.

Thinking analogously, we can also parameterize the spanning vector x, e.g., via

multiplying it by the rotation matrix

R

w

=

"

cos(w) -sin(w)

sin(w) cos(w)

#

(11.9)

314 Principles of Feature Learning

that allows it to rotate in the plane and represent a range of different vectors

depending on how the rotation angle w is set.

sin(x)

R

w

x

sin(wx)

w = π/6

w = -π/6

w = 1

w = 3

w = 2

w = 0

x

Figure 11.8 (top-left panel) An ordinary spanning vector. (bottom-left panel) An

unparameterized spanning function. (bottom-right panel) A parameterized spanning

function with a single internal parameter. By changing the value of this internal

parameter it can be made to take on a range of shapes. (top-right panel) A

parameterized spanning vector (premultiplied by the rotation matrix in Equation (11.9))

changes direction depending on how the parameter w is set.

Universal approximation

In the case of vector-based approximation in Equation (11.5) if we choose B ≥ N

vectors for our spanning set, and at least N of them are linearly independent, then

our spanning set has maximal capacity and we can therefore approximate every

N-dimensional vector y to any given precision, provided we tune the parameters

of the linear combination properly. Such a set of spanning vectors, of which there

are infinitely many for an N-dimensional vector space, can approximate (or in

this case perfectly represent) every vector universally, and is thus sometimes

referred to as a universal approximator. For example, the simple standard basis

(see Exercise 8.1) for a vector space is a common example of a spanning set that

is a universal approximator. This notion of universal approximation of vectors

is illustrated in the top panel of Figure 11.9.

The same concept holds with function approximation in Equation (11.7) as

well. If we choose the right kind of spanning functions, then our spanning set

has maximal capacity and we can therefore approximate every function y (x) to

any given precision, provided we tune the parameters of the linear combination

properly. Such a set of spanning functions, of which there are infinitely many

varieties, can approximate every function universally, and is thus often referred

11.2 Universal Approximators 315

Figure 11.9 (top panel) Universal approximation illustrated in the vector case. (top row)

A universal approximator spanning set consisting of three vectors, shown in black.

(middle row) Three example vectors to approximate colored red, yellow, and blue, from

left to right. (bottom row) The approximation of each vector in the middle row using

the spanning set in the top row, shown in black in each instance. This approximation

can be made perfect, but for visualization purposes is shown slightly offset here.

(bottom panel) The analogous universal approximation scenario illustrated for

functions. (top row) A universal approximator spanning set consisting of three

functions (in practice many more spanning functions may be needed than shown here).

(middle row) Three example functions to approximate colored red, yellow, and blue,

from left to right. (bottom row) The approximation of each function in the middle row

using the spanning set in the top row, shown in black in each instance.

316 Principles of Feature Learning

to as a universal approximator. This notion of universal approximation of functions

is illustrated in the bottom panel of Figure 11.9.

One difference between the vector and the function regime of universal ap-

proximation is that with the latter we may need infinitely many spanning

functions to be able to approximate a given function to an arbitrary precision

(whereas with the former it is always sufficient to set B greater than or equal to

N).

11.2.3 Popular universal approximators

When it comes to approximating functions there is an enormous variety of span-

ning sets that are universal approximators. Indeed, just as in the vector case, with

functions there are infinitely many universal approximators. However, for the

purposes of organization, convention, as well as a variety of technical matters,

universal approximators used in machine learning are often lumped into three

main categories referred to as fixed-shape approximators, neural networks, and

trees. Here we introduce only the most basic exemplar from each of these three

categories, which we will reference throughout the remainder of the chapter.

Each of these popular families has its own unique practical strengths and weak-

nesses as a universal approximator, a wide range of technical details to explore,

and conventions of usage.

Example 11.1 The fixed-shape family of universal approximators

The family of fixed-shape functions consists of groups of nonlinear functions with

no internal parameters, a popular example being polynomials.

3

When dealing

with just one input this subfamily of fixed-shape functions consists of

f

1

(x) = x, f

2

(x) = x

2

, f

3

(x) = x

3

, etc., (11.10)

with the Dth element taking the form f

D

(x) = x

D

. A combination of the first D

units from this subfamily is often referred to as a degree-D polynomial. There are

an infinite number of these functions (one for each positive whole number D)

and they are naturally ordered by their degree. The fact that these functions have

no tunable internal parameters gives each a fixed shape as shown in the top row

of Figure 11.10.

With two inputs x

1

and x

2

, a general degree-D polynomial unit takes the

analogous form

f

b

(x

1

, x

2

) = x

p

1

x

q

2

(11.11)

where p and q are nonnegative integers and p + q ≤ D. Classically, a degree-D

3

Polynomials were the first provable universal approximators, this having been shown in 1885

via the so-called (Stone–) Weierstrass approximation theorem (see, e.g., [49]).

11.2 Universal Approximators 317

f (x) = x

f (x) = x

2

f (x) = x

3

f (x) = x

4

f (x) = x

2

f (x) = x

1

x

2

f (x) = x

1

x

2

2

f (x) = x

2

1

x

3

2

Figure 11.10 Four units from the polynomial family of fixed-shape universal

approximators with N = 1 (top row) and N = 2 (bottom row) dimensional input.

polynomial is a linear combination of all such units. Furthermore, the definition

in Equation (11.11) directly generalizes to higher-dimensional input as well.

Fixed-shape approximators are discussed in much greater detail in Chapter 12.

Example 11.2 The neural network family of universal approximators

Another popular family of universal approximators are neural networks.

4

Broadly

speaking neural networks consist of parameterized functions,

5

allowing them to

take on a variety of different shapes (unlike the fixed-shape functions described

previously, each of which takes on a single fixed form).

The simplest subfamily of neural networks consists of parameterized elemen-

tary functions (e.g., tanh) of the form

f

b

(x) = tanh

(

w

b,0

+ w

b,1

x

)

(11.12)

where the internal parameters w

b,0

and w

b,1

of the bth unit allow it to take on

a variety of shapes. In the top row of Figure 11.11 we illustrate this fact by

randomly setting the values of its two internal parameters, and plotting the

result.

To construct neural network features taking in higher-dimensional input we

take a linear combination of the input and pass the result through the nonlinear

4

Neural networks were shown to be universal approximators in the late 1980s and early 1990s

[50, 51, 52].

5

An evolutionary step between fixed-shape and neural network units, that is a network unit

whose internal parameters are randomized and fixed, are also universal approximators [53, 54].

318 Principles of Feature Learning

Figure 11.11 Unlike fixed-shape approximators, neural network units are flexible and

can take on a variety of shapes based on how we set their internal parameters. Four

such units, taking in N = 1 (top row) and N = 2 (bottom row) dimensional input, are

shown whose internal parameters are set randomly in each instance.

function (here, tanh). For example, an element f

b

for general N-dimensional

input takes the form

f

b

(x) = tanh

(

w

b,0

+ w

b,1

x

1

+ · · · + w

b, N

x

N

)

. (11.13)

As with the lower-dimensional example in Equation (11.12), each function

in Equation (11.13) can take on a variety of different shapes, as illustrated in

the bottom row of Figure 11.11, based on how we tune its internal parameters.

Neural network approximators are described in much greater detail in Chapter

13.

Example 11.3 The trees family of universal approximators

Like neural networks, a single element from the family of tree-based universal

approximators

6

can take on a wide array of shapes. The simplest sort of tree unit

consists of discrete step functions or, as they are more commonly referred to,

stumps whose break lies along a single dimension of the input space. A stump

with one-dimensional input x can be written as

f

b

(x) =

v

1

v

2

x ≤ s

x > s

(11.14)

where s is called a split point at which the stump changes values, and v

1

and

6

Trees have been long known to be universal approximators. See, e.g., [49, 55].

11.2 Universal Approximators 319

Figure 11.12 Tree-based units can take on a variety of shapes depending on how their

split points and leaf values are assigned. Four instances of an N = 1 (top row) and N = 2

(bottom row) dimensional stump.

v

2

are values taken by the two sides of the stump, respectively, which we refer

to as leaves of the stump. A tree-based universal approximator is a set of such

stumps with each unit having its own unique split point and leaf values.

In the top row of Figure 11.12 we plot four instances of such a stump unit.

Higher-dimensional stumps follow this one dimensional pattern. A split point

s is first chosen along a single input dimension. Each side of the split is then

assigned a single leaf value, as illustrated in the bottom row of Figure 11.12

for two-dimensional input. Tree-based approximators are described in much

further detail in Chapter 14.

When forming a basic universal approximator based nonlinear model

model (x,Θ

)

= w

0

+ f

1

(

x

)

w

1

+ f

2

(

x

)

w

2

+ · · · + f

B

(

x

)

w

B

(11.15)

we always use units from a single type of universal approximator (e.g., all fixed-

shape, neural network, or tree-based units). In other words, we do not ”mix and

match,” taking a few units from each of the main families. As we will see in

the present chapter as well as those following this one, by restricting a model’s

feature transformations to a single family we can (in each of the three cases)

better optimize the learning process and better deal with each family’s unique

technical eccentricities relating to fundamental scaling issues associated with

320 Principles of Feature Learning

fixed-shape units, the nonconvexity of cost functions associated with neural

network units, and the discrete nature of tree-based units.

11.2.4 The capacity and optimization dials

With any of the major universal approximators introduced previously (whether

they be fixed-shape, neural networks, or trees) we can attain universal approx-

imation to any given precision, provided that the generic nonlinear model in

Equation (11.15) has sufficiently large capacity (which can be ensured by making

B large enough), and that its parameters are tuned sufficiently well through op-

timization of an associated cost function. The notions of capacity and optimization

of such a nonlinear model are depicted conceptually in Figure 11.13 as a set of

two dials.

The capacity dial visually summarizes the amount of capacity we allow into a

given model, with each notch on the dial denoting a distinct model constructed

from units of a universal approximator. When set all the way to the left we

admit as little capacity as possible, i.e., we employ a linear model. As we move

the capacity dial from left to right (clockwise) we adjust the model, adding more

and more capacity, until the dial is set all the way to the right. When set all the

way to the right we can imagine admitting an infinite amount of capacity in

our model (e.g., by using an infinite number of units from a particular family of

universal approximators).

The optimization dial visually summarizes how well we minimize the cost

function of a given model whose capacity is already set. The setting all the way

to the left denotes the initial point of whatever local optimization technique

we use. As we turn the optimization dial from left to right (clockwise) we can

imagine moving further and further along the particular optimization run we

use to properly tune the parameters of the model, with the final step being

represented visually as the dial set all the way to the right where we imagine

we have successfully minimized the associated cost function.

Note that in this conceptualization each pair of settings (of capacity and op-

timization dials) produces a unique tuned model: the model’s overall architec-

ture/design is decided by the capacity dial, and the set of specific values for the

model parameters is determined by the optimization dial. For example, one par-

ticular setting may correspond to a model composed of B = 10 neural networks

units, whose parameters are set by taking 1000 steps of gradient descent, while

another setting corresponds to a model composed of B = 200 neural networks

units, whose parameters are set by taking only five steps of gradient descent.

With these two dial conceptualizations in mind, we can think about the con-

cept of universal approximation of a continuous function as turning both dials

all the way to the right, as shown in the bottom row of Figure 11.13. That is,

to approximate a given continuous function using a universal approximator,

we set our model capacity as large as possible (possibly infinitely so) turning

the capacity dial all the way to the right, and optimize its corresponding cost

11.2 Universal Approximators 321

optimization

optimizationcapacity

capacity

Figure 11.13 Model capacity and optimization precision visualized as two dials. When

the capacity dial is set to the left we have a low-capacity linear model, when set to the

right we admit maximum (perhaps infinite) capacity into the model. The optimization

dial set to the left denotes the initial point of optimization, and all the way to the right

denotes the final step of successful optimization. (top row) With linear regression (as we

saw in previous chapters) we set the capacity dial all the way to the left and the

optimization dial all the way to the right in order to find the best possible set of

parameters for a low-capacity linear model (drawn in blue) that fits the given

regression data. (bottom row) With universal approximation of a continuous function

(drawn in black) we set both dials to the right, admitting infinite capacity into the model

and tuning its parameters by optimizing to completion. See text for further discussion.

function aswell as possible, turning the optimization dial all the way to the right

as well.

In contrast, with the sort of linear learning we have looked at in previous

chapters (as depicted in the top row of the Figure 11.13) we set our capacity

dial all the way to the left (employing a linear model) but still set our optimiza-

tion dial all the way to the right. By optimizing to completion we determine

the proper bias and slope(s) of our linear model when performing, e.g., linear

regression, as depicted in the figure.

We now examine a number of simple examples of universal approximation

using various near-perfect regression and two-class classification datasets, where

we set both the capacity and optimization dials far to the right. Here near-perfect

means a very finely sampled, large dataset (as opposed to a perfect, infinitely

large one). The case where a dataset is truly infinitely large (P = ∞) would,

in theory, require infinite computing power to minimize a corresponding cost

function.

Example 11.4 Universal approximation of near-perfect regression data

In Figure 11.14 we illustrate universal approximation of a near-perfect regres-

322 Principles of Feature Learning

sion dataset consisting of P = 10, 000 evenly sampled points from an underlying

sinusoidal function defined over the unit interval. In the left, middle, and right

columns we show the result of fitting an increasing number of polynomial, neu-

ral network, and tree units, respectively, to this data. As we increase the number

of units in each case (from top to bottom) the capacity of each corresponding

model increases, allowing for a better universal approximation.

polynomial units neural network units tree units

B = 100

B = 1

B = 3

Figure 11.14 Figure associated with Example 11.4. Models built from polynomial (left

column), neural network (middle column), and stump units (right column) fit to a

near-perfect regression dataset. In visualizing the tree-based models in the right column

we have connected each discrete step via a vertical line for visualization purposes only.

As more and more units are added to the models each is able to fit the dataset with

increasing precision. See text for further details.

Note here that it takes far fewer units of both the polynomial and neural

network approximators to represent the data well as compared to the discrete

stump units. This is because members of the former more closely resemble the

smooth sinusoidal function that generated the data in the first place. This sort

of phenomenon is true in general: while any type of universal approximator

can be used to approximate a perfect (or near-perfect) dataset as closely as

11.3 Universal Approximation of Real Data 323

desired, some universal approximators require fewer units to do so than the

others depending on the shape of the underlying function that generated the

dataset.

Example 11.5 Universal approximation of near-perfect classification data

In the top row of Figure 11.15 we show four instances of near-perfect two-

class classification data from the perceptron perspective (i.e., from the top) each

consisting of P = 10, 000 points. In each instance those points colored red have

label value+1, and those colored blue have label value-1. Plotted in the second

row of this figure are the corresponding datasets shown from the regression

perspective (i.e., from the side).

Each of these near-perfect datasets can be approximated effectively using any

of the three catalogs of universal approximators discussed in Section 11.2.3,

provided that the capacity of each model is increased sufficiently and that the

corresponding parameters are tuned properly. In the third and fourth rows

of the figure we show the resulting fit from employing B = 30 polynomial

approximators using a Least Squares and Softmax cost, respectively.

11.3 Universal Approximation of Real Data

In the previous section we saw how a nonlinear model built from units of a

single universal approximator can be made to tightly approximate any perfect

dataset if we increase its capacity sufficiently and tune the model’s parameters

properly by minimizing an appropriate cost function. In this section we will

investigate how universal approximation carries over to the case of real data, i.e.,

data that is finite in size and potentially noisy. We will then learn about a new

measurement tool, called validation error, that will allow us to effectively employ

universal approximators with real data.

11.3.1 Prototypical examples

Here we explore the use of universal approximators in representing real data

using two simple examples: a regression and two-class classification dataset.

The problems we encounter with these two simple examples mirror those we

face in general when employing universal approximator based models with real

data, regardless of problem type.

Example 11.6 Universal approximation of real regression data

In this example we illustrate the use of universal approximators on a real re-

gression dataset that is based on the near-perfect sinusoidal data presented in

Example 11.4. To simulate a real version of this dataset we randomly selected

324 Principles of Feature Learning

x

1

x

2

y

x

2

x

1

Figure 11.15 Figure associated with Example 11.5. (top row) Four instances of

near-perfect two-class classification data. (second row) The corresponding data shown

from a different (i.e., regression) perspective. Respective polynomial approximations to

each dataset with B = 30 units in each instance using a Least Squares cost (third row)

and a Softmax cost (fourth row). The approximations shown in the final row are passed

through the tanh function before visualization. See text for further details.

P = 21 of its points and added a small amount of random noise to the output

(i.e., y component) of each point, as illustrated in Figure 11.16.

In Figure 11.17 we illustrate the fully tuned nonlinear fit of a model employ-

ing polynomial (top row), neural network (middle row), and tree units (bottom

row) to this data. Notice how, with each of the universal approximators, all three

models underfit the data when using only B = 1 unit in each case (leftmost col-

umn). This underfitting of the data is a direct consequence of using low-capacity

models, which produce fits that are not complex enough for the underlying data

they are aiming to approximate. Also notice how each model improves as we in-

crease B, but only up to a certain point after which each tunedmodel becomes far

11.3 Universal Approximation of Real Data 325

y

x x

y

Figure 11.16 Figure associated with Example 11.6. (left panel) The original near-perfect

sinusoidal dataset from Example 11.4. (right panel) A real regression dataset formed by

adding random noise to the output of a small subset of the near-perfect dataset’s points.

too complex and starts to look rather wild, and very much unlike the sinusoidal

phenomenon that originally generated the data. This is especially visible in the

polynomial and neural network cases, where by the time we reach B = 20 units

(rightmost column) both models are extremely oscillatory and far too complex.

Such overfitting models while representing the current data well, will clearly

make for poor predictors of future data generated by the same process.

polynomial units

neural network units

tree-based units

B = 3B = 1 B = 10 B = 20

Figure 11.17 Figure associated with Example 11.6. See text for details.

In Figure 11.18 we plot several of the polynomial based models shown in

Figure 11.17, along with the corresponding Least Squares cost value each at-

tains. In adding more polynomial units we turn up the capacity of our model

326 Principles of Feature Learning

and, optimizing each model to completion, the resulting tuned models achieve

lower and lower cost value. However, the resulting fit provided by each fully

tuned model (after a certain point) becomes far too complex and starts to get

worse in terms of how it represents the general regression phenomenon. As a

measurement tool the cost value only tells us how well a tuned model fits the

training data, but fails to tell us when our tuned model becomes too complex.

Example 11.7 Universal approximation of real classification data

In this example we illustrate the application of universal approximator-based

models on a real two-class classification dataset that is based on the near-perfect

dataset presented in Example 11.5. Here we simulated a realistic version of this

data by randomly selecting P = 99 of its points, and adding a small amount

of classification noise by flipping the labels of five of those points, as shown in

Figure 11.19.

In Figure 11.20 we show the nonlinear decision boundaries provided by fully

tuned models employing polynomial (top row), neural network (middle row),

and tree units (bottom row). In the beginning where B = 2 (leftmost column)

all three tuned models are not complex enough and thus underfit the data,

providing a classification that in all instances simply classifies the entire space

as belonging to the blue class. After that and up to a certain point the decision

boundary provided by each model improves as more units are added, with

B = 5 polynomial units, B = 3 neural network units, and B = 5 tree units

providing reasonable approximations to the desired circular decision boundary.

However, soon after we reach these numbers of units each tuned model becomes

too complex and overfits the training data, with the decision boundary of each

drifting away from the true circular boundary centered at the origin. As with

regression in Example 11.6, both underfitting and overfitting problems occur in

the classification case as well, regardless of the sort of universal approximator

used.

In Figure 11.21 we plot several of the neural network based models shown in

the middle row of Figure 11.20, along with the corresponding two-class Softmax

cost value each attains. As expected, increasing model capacity by adding more

neural network units always (upon tuning the parameters of each model by

complete minimization) decreases the cost function value (just as with perfect

or near-perfect data). However, the resulting classification, after a certain point,

actually gets worse in terms of how it (the learned decision boundary) represents

the general classification phenomenon.

In summary, Examples 11.6 and 11.7 show that, unlike the case with perfect

data, when employing universal approximator based models with real data we

must be careful with how we set the capacity of our model, as well as how

well we tune its parameters via optimization of an associated cost. These two

11.3 Universal Approximation of Real Data 327

10 200

10 200

10 200

10 200

cost function plot

number of units

1 polynomial unit

3 polynomial units

10 polynomial units

20 polynomial units

Figure 11.18 Figure associated with Example 11.6. See text for details.

simple examples also show how the cost value associated with training data

(also called training error) fails as a reliable tool to measure how well a tuned

328 Principles of Feature Learning

x

2

x

1

x

1

x

2

Figure 11.19 Figure associated with Example 11.7. (left panel) The original near-perfect

classification dataset from Example 11.5, with the true circular boundary used to

generate the data shown in dashed black (this is the boundary we hope to recover using

classification). (right panel) A real dataset formed from a noisy subset of these points.

See text for further details.

model represents the phenomenon underlying a real dataset. Both of these issues

arise in general, and are discussed in greater detail next.

11.3.2 The capacity and optimization dials, revisited

The prototypical examples described in Section 11.3.1 illustrate how with real

data we cannot (as we can in the case of perfect data) simply set our capacity

and optimization dials (introduced in Section 11.2.4) all the way to the right, as

this leads to overly complex models that fail to represent the underlying data-

generating phenomenon well. Notice, we only control the complexity of a tuned

model (or, roughly speaking, how ”wiggly” a tuned model fit is) indirectly by

how we set both our capacity and optimization dials, and it is not obvious a priori

how we should set them simultaneously in order to achieve the right amount of

model complexity for a given dataset. However, we can make this dial-tuning

problem somewhat easier by fixing one of the two dials and adjusting only the

other. Setting one dial all the way to the right imbues the other dial with the

sole control over the complexity of a tuned model (and turns it into – roughly

speaking – the complexity dial described in Section 11.1.3). That is, fixing one of

the two dials all the way to the right, as we turn the unfixed dial from left to right

we increase the complexity of our final tuned model. This is a general principle

when applying universal approximator based models to real data that does not

present itself in the case of perfect data.

To gain a stronger intuition for this principle, suppose first that we set our

optimization dial all the way to the right (meaning that regardless of the dataset

and model we use, we always tune its parameters by minimizing the corre-

sponding cost function to completion). Then with perfect data, as illustrated in

11.3 Universal Approximation of Real Data 329

2 polynomial units 5 polynomial units 9 polynomial units 20 polynomial units

2 neural network units 3 neural network units 5 neural network units 9 neural network units

2 tree units 5 tree units 9 tree units 17 tree units

Figure 11.20 Figure associated with Example 11.7. See text for details.

the top row of Figure 11.22, as we turn our capacity dial from left to right (e.g.,

by adding more units) the resulting tuned model provides a better and better

representation of the data.

However, with real data, as illustrated in the bottom row of Figure 11.22, start-

ing with our capacity dial all the way to the left, the resulting tuned model is not

complex enough for the phenomenon underlying our data. We say that such a

tuned model underfits, as it does not fit the given data well.

7

Turning the capacity

dial from left to right increases the complexity of each tuned model, providing

a better and better representation of the data and the phenomenon underlying

it. However, there comes a point, as we continue turning the dial from left to

right, where the corresponding tuned model becomes too complex. Indeed past

this point, where the complexity of each tuned model is wildly inappropriate

for the phenomenon at play, we say that overfitting begins. This language is used

because while such highly complex models fit the given data extremely well,

they do so at the cost of not representing the underlying phenomenon well. As

7

Notice that while the simple visual depiction here illustrates an underfitting model as a linear

(”unwiggly”) function – which is quite common in practice – it is possible for an underfitting

model to be quite ”wiggly.” Regardless of the shape a tuned model takes, we say that it

underfits if it poorly represents the training data, i.e., if it has high training error.

330 Principles of Feature Learning

cost function plot

number of units

1 neural network unit

642

642

642

3 neural network units

6 neural network units

Figure 11.21 Figure associated with Example 11.7. See text for details.

we continue to turn our capacity dial to the right the resulting tuned models

will become increasingly complex and increasingly less representative of the

true underlying phenomenon.

Now suppose instead that we turn our capacity dial all the way to the right,

using a very high-capacity model, and set its parameters by turning our opti-

mization dial ever so slowly from left to right. In the case of perfect data, as

illustrated in the top row of Figure 11.23, this approach produces tuned models

that increasingly represent the data well. With real data on the other hand, as

illustrated in the bottom row of Figure 11.23, starting with our optimization dial

11.3 Universal Approximation of Real Data 331

capacity

capacity optimization

optimization

Figure 11.22 (top row) With perfect data if we set our optimization dial to all the way to

the right, as we increase the capacity of our model by turning the capacity dial from left

to right the corresponding representation gets better and better. (bottom row) With real

data a similar effect occurs; however, here as we turn the capacity further to the right

each tuned model will tend to become more and more complex, eventually overfitting

the given data. See text for further details.

set all the way to the left will tend to produce low-complexity underfitting tuned

models. As we turn our optimization dial from left to right, taking steps of a par-

ticular local optimization scheme, our corresponding model will tend to increase

in complexity, improving its representation of the given data. This improvement

continues only up to a point where our corresponding tuned model becomes too

complex for the phenomenon underlying the data, and hence overfitting begins.

After this point the tuned models arising from turning the optimization dial fur-

ther to the right are far too complex to adequately represent the phenomenon

underlying the data.

11.3.3 Motivating a new measurement tool

How we set our capacity and optimization dials in order to achieve a final tuned

model that has just the right amount of complexity for a given dataset is the main

challenge we face when employing universal approximator based models with

real data. In Examples 11.6 and 11.7 we saw how training error fails to indicate

when a tuned model has sufficient complexity for the tasks of regression and two-

class classification, respectively – a fact more generally true about all nonlinear

machine learning problems as well. If we cannot rely on training error to help

decide on the proper amount of complexity required to address real nonlinear

332 Principles of Feature Learning

capacity optimization

optimizationcapacity

Figure 11.23 (top row) With perfect data if we set our capacity dial all the way to the

right, as we increase the amount we optimize our model by turning the optimization

dial from left to right (starting all the way on the left where for simplicity we assume all

model parameters are initialized at zero) the corresponding representation gets better

and better. (bottom row) With real data a similar effect occurs, but only up to a certain

point where overfitting begins. See text for further details.

machine learning tasks, what sort of measurement tool should we use instead?

Closely examining Figure 11.24 reveals the answer!

In the top row of this figure we show three instances of models presented for

the toy regression dataset in Example 11.6: a fully tuned low-complexity (and

underfitting) linear model in the left panel, a high-complexity (and overfitting)

degree-20 polynomial model in the middle panel, and a degree-three polynomial

model in the right panel that fits the data and the underlying phenomenon

generating it ”just right.” What do both the underfitting and overfitting patterns

have in common, that the ”just right” model does not?

Scanning the left two panels of the figure we can see that a common problem

with both the underfitting and overfitting models is that, while they differ in

how well they represent data we already have, they will both fail to adequately

represent new data generated via the same process by which the current data was

made. In other words, we would not trust either model to predict the output of

a newly arrived input point. The ”just right” fully tuned model does not suffer

from the same problem as it closely approximates the sort of wavy sinusoidal

pattern underlying the data, and as a result would work well as a predictor for

future data points.

The same story tells itself in the bottom row of Figure 11.24 with our two-

11.3 Universal Approximation of Real Data 333

underfitting overfitting “just right”

underfitting overfitting “just right”

Figure 11.24 (top row) Three models for the regression dataset from Example 11.6: an

underfitting model (top-left panel), an overfitting model (top-middle panel), and a ”just

right” one (top-right panel). (bottom row) Three models for the two-class classification

dataset from Example 11.7: an underfitting model that simply classifies everything as

part of the blue class (bottom-left panel), an overfitting model (bottom-middle panel),

and a ”just right” fit (bottom-right panel). See text for further details.

class classification dataset used previously in Example 11.7. Here we show a

fully tuned low-complexity (and underfitting) linear model in the left panel, a

high-complexity (and overfitting) degree-20 polynomial model in the middle

panel, and a ”just right” degree-two polynomial model in the right panel. As

with the regression case, the underfitting and overfitting models both fail to

adequately represent the underlying phenomenon generating our current data

and, as a result, will fail to adequately predict the label values of new data

generated via the same process by which the current data was made.

In summary, with both the simple regression and classification examples

discussed here we can roughly qualify poorly-performing models as those that

will not allow us to make accurate predictions of data we will receive in the

future. But how do we quantify something we will receive in the future? We

address this next.

11.3.4 The validation error

We now have an informal diagnosis for the problematic performance of under-

fitting/overfitting models: such models do not accurately represent new data

we might receive in the future. But how can we make use of this diagnosis? We

of course do not have access to any new data we will receive in the future. To

334 Principles of Feature Learning

training
validation

Figure 11.25 Splitting the data into training and validation sets. The original data

shown in the left panel as the entire round mass is split randomly in the right panel into

two nonoverlapping sets. The smaller piece, typically

1

10

to

1

3

of the original data, is then

taken as the validation set with the remaining taken as the training set.

There is no precise rule for what portion of a given dataset should be saved

for validation. In practice, typically between

1

10

to

1

3

of the data is assigned to the

validation set. Generally speaking, the larger and/or more representative (of the

true phenomenon from which the data is sampled) a dataset is, the larger the

portion of the original data may be assigned to the validation set (e.g.,

1

3

). The

intuition for doing this is that if the data is plentiful/representative enough, the

training set still accurately represents the underlying phenomenon even after

removal of a relatively large set of validation data. Conversely, in general with

smaller or less representative (i.e., more noisy or poorly-distributed) datasets

we usually take a smaller portion for validation (e.g.,

1

10

) since the relatively

larger training set needs to retain what little information of the underlying

phenomenon was captured by the original data, and little data can be spared

for validation.

make this notion useful we need to translate it into a quantity we can always

measure, regardless of the dataset/problem we are tackling or the kind of model

we employ.

The universal way to do this is, in short, to fake it: we simply remove a random

portion of our data and treat it as ”new data we might receive in the future,”

as illustrated abstractly in Figure 11.25. In other words, we cut out a random

chunk of the dataset we have, train our selection of models on only the portion of

data that remains, and validate the performance of each model on this randomly

removed chunk of ”new” data. The random portion of the data we remove to

validate our model(s) is commonly called the validation data (or validation set),

and the remaining portion we use to train models is likewise referred to as

the training data (or training set). The model providing the lowest error on the

validation data, i.e., the lowest validation error, is then deemed the best choice

from a selection of trained models. As we will see, validation error (unlike

training error) is in fact a proper measurement tool for determining the quality

of a model against the underlying data-generating phenomenon we want to

capture.

11.4 Naive Cross-Validation 335

11.4 Naive Cross-Validation

Validation error provides us with a concrete way of not only measuring the

performance of a single tuned model, but more importantly it allows us to

compare the efficacy of multiple tuned models of various levels of complexity.

By carefully searching through a set of models ranging in complexity we can then

easily identify the best of the bunch, the one that provides minimal error on the

validation set. This comparison of models, called cross-validation or sometimes

model search or selection, is the basis of feature learning as it provides a systematic

way to learn (as opposed to engineer, as detailed in Chapter 10) the proper form

a nonlinear model should take for a given dataset.

In this section we introduce what we refer to as naive cross-validation. This

consists of a search over a set of models of varying capacity, with each model

fully optimized over the training set, in search of a validation-error-minimizing

choice. While it is simple in principle and in implementation, naive cross-

validation is in general very expensive (computationally speaking) and often

results in a rather coarse model search that can miss (or ”skip over”) the ideal

amount of complexity desired for a given dataset.

11.4.1 The big picture

The first organized approach one might take to determining an ideal amount of

complexity for a given dataset is to first choose a single universal approximator

(e.g., one of those simple exemplars outlined in Section 11.2.3) and construct a

set of M models of the general form given in Equation (11.15) by ranging the

value of B from 1 to M sequentially as

model

1

(

x,Θ

1

)

= w

0

+ f

1

(

x

)

w

1

model

2

(x,Θ

2

) = w

0

+ f

1

(x) w

1

+ f

2

(x) w

2

.

.

.

model

M

(x,Θ

M

) = w

0

+ f

1

(x) w

1

+ f

2

(x) w

2

+ · · · + f

M

(x) w

M

.

(11.16)

This set of models – which we can denote compactly as {model

m

(

x,Θ

m

)

}

M

m=1

(or

even more compactly as just {model

m

}

M

m=1

) where the set Θ

m

consists of all those

parameters of the mth model – naturally increases in capacity from m = 1 to

m = M (as first described in Section 11.2.2). If we optimize every one of these

models to completion they will also roughly speaking – as discussed in Section

11.3.2 – increase in terms of their complexity with respect to training data as well.

Thus, if we first split our original data randomly into training and validation

portions as detailed in Section 11.3.4, and measure the error of all M fully trained

models on each portion of the data, we can very easily determine which of the

M models provides the ideal amount of complexity for the dataset overall by

finding the one that achieves minimum validation error.

336 Principles of Feature Learning

overfittingunderfitting

overfitting

un
de

rfi
tti
ng

complexity
er
ro
r

m = 1

m = M

optimizationcapacity

Figure 11.26 (top panel) Prototypical training (in blue) and validation (in yellow) error

plots resulting from a run of naive cross-validation. Here the set of models – which

generally increase in complexity with respect to the training set – are formed by fully

optimizing a set of models of increasing capacity. Low-complexity models underfit the

data, typically producing large training and validation errors. While the training error

will monotonically decrease as model complexity increases, validation error tends to

decrease only up to the point where overfitting of the training data begins. (bottom

panels) Naive cross-validation using our dial conceptualization, where we turn the

capacity dial from left to right, searching over a range of models of increasing capacity in

search of a validation-error-minimizing model, while keeping the optimization dial set

all the way to the right (indicating that we optimize each model to completion). See text

for further details.

In the top panel of Figure 11.26 we show the generic sort of training (in blue)

and validation (in yellow) errors we find in practice as a result of following this

naive cross-validation scheme. The horizontal axis of this plot shows (roughly

speaking) the complexity of each of our M fully optimized models, with the

output on the vertical axis denoting error level. As can be seen in the figure, our

low-complexity models underfit the data as reflected in their high training and

validation errors. As the model complexity increases further, fully optimized

models achieve lower training error since increasing model complexity allows

us to constantly improve how well we can represent training data. This fact

is reflected in the monotonically decreasing nature of the (blue) training error

curve. On the other hand, while the validation error of our models will tend

to decrease at first as we increase complexity, this trend continues only up to

a point where overfitting of the training data begins. Once we reach a model

11.4 Naive Cross-Validation 337

complexity that overfits the training data our validation error starts to increase

again, as our model becomes less and less a fair representation of ”data we

might receive in the future” generated by the same phenomenon.

Note in practice that while training error typically follows the monotonically

decreasing trend shown in the top panel of Figure 11.26, validation error can

oscillate up and down more than once depending on the models tested. In any

event, we determine the best fully optimized model from the set by choosing

the one that minimizes validation error. This is often referred to as solving the

bias-variance trade-off, as it involves determining a model that (ideally) neither

underfits (or has high bias) nor overfits (or has high variance).

In the bottom row of Figure 11.26 we summarize this naive approach to

cross-validation using the capacity/optimization dial conceptualization first in-

troduced in Section 11.2.2. Here we set our optimization dial all the way to the

right – indicating that we optimize every model to completion – and in ranging

over our set of M models we turn the capacity dial from left to right starting with

m = 1 (on the left) and ending with m = M (all the way to the right), with the

value of m increasing by 1 at each notch of the dial. Since in this case the capacity

dial roughly governs model complexity – as summarized visually in the bottom

row of Figure 11.22 – our model search reduces to setting this dial correctly to

the minimum validation error setting. To visually denote how this is done we

wrap the prototypical validation error curve shown in the top panel of Figure

11.26 clockwise around the capacity dial. We can then imagine setting this dial

correctly (and automatically) to the value of m providing minimum validation

error.

Example 11.8 Naive cross-validation and regression

In this example we illustrate the use of a naive cross-validation procedure on the

sinusoidal regression dataset first introduced in Example 11.6. Here we use

2

3

of

the original set of 21 data points for training, and the remaining

1

3

for validation.

The set of models we compare here are polynomials of degree 1 ≤ m ≤ 8. In

other words, the mth model from our set {model

m

}

8

m=1

is a single-input degree-m

polynomial of the form

model

m

(

x,Θ

m

)

= w

0

+ xw

1

+ x

2

w

2

+ · · · + x

m

w

m

. (11.17)

Note how this small set of models is naturally ordered in terms of nonlinear

capacity, with lower-degree models having smaller capacity and higher-degree

models having larger capacity.

Figure 11.27 shows the fit of three polynomial models on the original dataset

(first row), training data (second row), and validation data (third row). The er-

rors on both the training (in blue) and validation (in yellow) data is shown in

the bottom panel for all eight models. Notice, the validation error is at its lowest

when the model is a degree-four polynomial. Of course as we use more poly-

338 Principles of Feature Learning

nomial units, moving from left to right in the figure, the higher-degree models

fit the training data better. However, as the training error continues to decrease,

the corresponding validation error starts climbing rapidly as the corresponding

models provide poorer and poorer representations of the validation data (by the

time m = 7 the validation error becomes so large that we do not plot it in the

same window so that the other error values can be distinguished properly).

model

er
ro

r

training validation

model 2 model 4 model 8

or
ig

ina
l d

at
a

tra
ini

ng
 d

at
a

va
lid

at
io

n
da

ta

1 2 3 4 5 6 7 8

0.0

0.2

0.4

Figure 11.27 Figure associated with Example 11.8. See text for details.

Example 11.9 Naive cross-validation and classification

In this example we illustrate the use of a naive approach to cross-validation on

the two-class classification dataset first shown in Example 11.7. Here we use

(approximately)

4

5

of the original set of 99 data points for training, and the other

1

5

for validation. For the sake of simplicity we employ only a small set of poly-

11.4 Naive Cross-Validation 339

nomial models having degrees 1 ≤ m ≤ 7. In other words, the mth model from

our set {model

m

}

7

m=1

is a degree-m polynomial (with two-dimensional input) of

the form

model

m

(x,Θ

m

) = w

0

+

X

0< i+j≤m

x

i

1

x

j

2

w

i, j

. (11.18)

These models are also naturally ordered from low to high capacity, as we increase

the degree m of the polynomial.

Figure 11.28 shows the fit of three models from {model

m

}

7

m=1

along with the

original data (first row), the training data (second row), and the validation data

(third row). The training and validation errors are likewise shown in the bottom

panel for all seven models. With classification it makes more sense to use the

number of misclassifications computed over the training/validation sets or some

function of these misclassifications (e.g., accuracy) as our training/validation

errors, as opposed to the raw evaluation of a classification cost.

In this case the degree-two polynomial model (m = 2) provides the smallest

validation error, and hence the best nonlinear decision boundary for the entire

dataset. This result does make intuitive sense as well, as we determined a circular

boundary using a model of this form when engineering such features inExample

10.5 of Section 10.4.2. As the complexity goes up and training error continues to

decrease, our models overfit the training data while at the same time providing

a poor solution for the validation data.

11.4.2 Problems with naive cross-validation

Naive cross-validation works reasonably well for simple examples like those

described above. However, since the process generally involves trying out a

range of models where each model is optimized completely from scratch, naive

cross-validation can be very expensive computationally speaking. Moreover,

the capacity difference between even adjacent models (e.g., those consisting of m

and m+ 1 units) can be quite large, leading to huge jumps in the range of model

complexities tried out on a dataset. In other words, controlling model complexity

via adjustment of the capacity dial (with our optimization dial turned all the way

to the right – as depicted in the bottom panels of Figure 11.26) often only allows

for a coarse model search that can easily ”skip over” an ideal amount of model

complexity. As we will see in the next two sections, much more robust and fine-

grained cross-validation schemes can be constructed by setting our capacity dial

to the right and controlling model complexity by carefully setting our optimization

dial.

340 Principles of Feature Learning

model 1 model 2 model 4

or
ig

ina
l d

at
a

tra
ini

ng
 d

at
a

va
lid

at
io

n
da

ta

training validation

model

nu
m

be
r o

f
m

isc
las

sif
ica

tio
ns

1 2 3 4 5 6 7

0

5

10

15

Figure 11.28 Figure associated with Example 11.9. See text for details.

11.5 Efficient Cross-Validation via Boosting

In this section we introduce boosting, the first of two fundamental paradigms

for effective cross-validation described in this chapter. In contrast to the naive

form of cross-validation described in the previous section, with boosting-based

cross-validation we perform our model search by taking a single high-capacity

model and optimize it one unit at a time, resulting in a much more efficient cross-

validation procedure. While in principle any universal approximator can be

used with boosting, this approach is often used as the cross-validation method

of choice when employing tree-based universal approximators (as discussed

further in Section 14.7).

11.5 Efficient Cross-Validation via Boosting 341

11.5.1 The big picture

The basic principle behind boosting-based cross-validation is to progressively

build a high-capacity model one unit at a time, using units from a single type of

universal approximator (e.g., one of those simple exemplars outlined in Section

11.2.3), as

model (x,Θ

)

= w

0

+ f

1

(

x

)

w

1

+ f

2

(

x

)

w

2

+ · · · + f

M

(

x

)

w

M

. (11.19)

We do this sequentially in M rounds

8

where at each round we add one unit

to the model, completely optimizing this unit’s parameters alone along with

its corresponding linear combination weight, and keep these parameters fixed

at these optimally tuned values forever more. Alternatively, we can think of

this procedure as beginning with a high-capacity model of the form in Equation

(11.19) and – inM rounds – optimizing the parameters of each unit, one at a time.

9

In either case, performing boosting in this way produces a sequence of M tuned

models that generally increase in complexity with respect to the training dataset,

which we denote compactly as [model

m

]

M

m=1

where the mth model consists of m

tuned units. Since just one unit is optimized at a time, boosting tends to provide

a computationally efficient fine-resolution form of model search (compared to

naive cross-validation).

The general boosting procedure tends to produce training/validation error

curves that generally look like those shown in the top panel of Figure 11.29.

As with the naive approach detailed in the previous section, here too we tend

to see training error decrease as m grows larger while validation error tends to

start high where underfitting occurs, dip down to a minimum value (perhaps

oscillating more than the one time illustrated here), and rise back up when

overfitting begins.

Using the capacity/optimization dial conceptualization first introduced in

Section 11.2.4, we can think about boosting as starting with our capacity dial set

all the way to the right at some high value (e.g., some large value of M), and

fidgeting with the optimization dial by turning it very slowly from left to right,

as depicted in the bottom row of Figure 11.29. As discussed in Section 11.3.2

and summarized visually in the bottom row of Figure 11.23, with real data this

general configuration allows our optimization dial to govern model complexity.

In other words, with this configuration our optimization dial (roughly speaking)

becomes the sort of fine-resolution complexity dial we aimed to construct at the

outset of the chapter (see Section 11.1.3). With our optimization dial turned all

the way to the left we begin our search with a low-complexity tuned model

(called model

1

) consisting of a single unit of a universal approximator having

its parameters fully optimized. As we progress through rounds of boosting we

turn the optimization dial gradually from left to right (here each notch on the

8

M + 1 rounds if we include w

0

.

9

This is a form of coordinate-wise optimization. See, for example, Section 2.6.

342 Principles of Feature Learning

overfittingunderfitting

complexity
er

ro
r

capacity

overfitting
un

de
rfi

tti
ng

optimization

small number
of units optimized

large number
of units optimized

Figure 11.29 (top panel) Prototypical training and validation error curves associated

with a completed run of boosting. (bottom panels) With boosting we fix our capacity dial

all the way to the right, and begin with our optimization dial set all the way to the left.

We then slowly turn our optimization dial from left to right, with each notch on the

optimization dial denoting the complete optimization of one additional unit of the

model, increasing the complexity of each subsequent model created with respect to the

training set. See text for further details.

optimization dial denotes the complete optimization of one additional unit)

optimizing (to completion) a single weighted unit of our original high-capacity

model in Equation (11.19), so that at the mth round our tuned model (called

model

m

) consists of m individually but fully tuned units. Our ultimate aim in

doing this is of course to determine a setting of the optimization (i.e., determine

an appropriate number of tuned units) that minimizes validation error.

Whether we use fixed-shape, neural network, or tree-based units with boost-

ing, we will naturally prefer units with low capacity so that the resolution of our

model search is as fine-grained as possible. When we start adding units one

at a time we turn our optimization dial clockwise from left to right. We want

this dial turning to be done as smoothly as possible so that we can scan the

validation error curve in a fine-grained fashion, in search of its minimum. This

is depicted in the left panel of Figure 11.30. If we use high-capacity units at each

round of boosting the resulting model search will be much coarser, as adding

each additional unit results in aggressively turning the dial from left to right

leaving large gaps in our model search, as depicted in the right panel of Figure

11.30. This kind of low-resolution search could easily result in us skipping over

11.5 Efficient Cross-Validation via Boosting 343

overfitting

un
de

rfi
tti

ng

overfitting
un

de
rfi

tti
ng

capacity
small

number of units
large

number of units
small

number of units
large

number of units

low-capacity units high-capacity units

capacity

Figure 11.30 (left panel) Using low-capacity units makes the boosting procedure a high-

(or fine-) resolution search for optimal model complexity. (right panel) Using

high-capacity units makes boosting a low- (or coarse-) resolution search for optimal

model complexity. See text for further details.

the complexity of an optimal model. The same can be said as to why we add

only one unit at a time with boosting, tuning its parameters alone at each round.

If we added more than one unit at a time, or if we retuned every parameter of

every unit at each step of this process, not only would we have significantly more

computation to perform at each step but the performance difference between

subsequent models could be quite large and we might easily miss out on an

ideal model.

11.5.2 Technical details

Formalizing our discussion of boosting above, we begin with a set ofMnonlinear

features or units from a single family of universal approximators

F = { f

1

(x) , f

2

(x) , . . . , f

M

(x)}. (11.20)

We add these units sequentially (or one at a time) building a sequence ofM tuned

models [model

m

]

M

m=1

that increase in complexity with respect to the training data,

from m = 1 to m = M, ending with a generic nonlinear model composed of M

units. We will express this final boosting-made model slightly differently than

in Equation (11.19), in particular reindexing the units it is built from as

model (x,Θ) = w

0

+ f

s

1

(x)w

1

+ f

s

2

(x)w

2

+ · · ·+ f

s

M

(x)w

M

. (11.21)

Here we have reindexed the individual units to f

s

m

to denote the unit from the

entire collection in F added at the mth round of the boosting process. The linear

combination weightsw

0

throughw

M

along with any additional weights internal

to f

s

1

, f

s

2

, . . . , f
s

M

are represented collectively in the weight setΘ.

The process of boosting is performed in a total of M rounds, one for each of

the units in Equation (11.21). At each round we determine which unit, when

344 Principles of Feature Learning

added to the running model, best lowers its training error. We then measure the

corresponding validation error provided by this update, and in the end after all

rounds of boosting are complete, use the lowest validation error measurement

found to decide which round provided the best overall model.

For the sake of simplicity in describing the formal details of boosting, we will

center our discussion on a single problem: nonlinear regression on the training

dataset

n±

x

p

, y

p

²o

P

p=1

employing the Least Squares cost. However, the principles

of boosting we will see remain exactly the same for other learning tasks (e.g.,

two-class and multi-class classification) and their associated costs.

Round 0 of boosting

We begin the boosting procedure by tuning

model

0

(

x,Θ

0

)

= w

0

(11.22)

whose weight set Θ

0

= {w

0

} contains a single bias weight, which we can easily

tune by minimizing an appropriate cost over this variable alone. With this in

mind, to find the optimal value for w

0

we minimize the Least Squares cost

1

P

P

X

p=1

±

model

0

±

x

p

,Θ

0

²

- y

p

²

2

=

1

P

P

X

p=1

±

w

0

- y

p

²

2

. (11.23)

This gives the optimal value for w

0

, which we denote as w

?

0

. We fix the bias

weight at this value forever more throughout the process.

Round 1 of boosting

Having tuned the only parameter of model

0

we now boost its complexity by

adding the weighted unit f

s

1

(x) w

1

to it, resulting in a modified running model

which we call model

1

model

1

±

x,Θ

1

²

= model

0

±

x,Θ

0

²

+ f

s

1

(x)w

1

. (11.24)

Note here the parameter set Θ

1

contains w

1

and any parameters internal to the

unit f

s

1

. To determine which unit in our set F best lowers the training error, we

press model

1

against the data by minimizing

1

P

P

X

p=1

±

model

0

±

x

p

,Θ

0

²

+ f

s

1

±

x

p

²

w

1

- y

p

²

2

=

1

P

P

X

p=1

±

w

?

0

+ f

s

1

±

x

p

²

w

1

- y

p

²

2

(11.25)

11.5 Efficient Cross-Validation via Boosting 345

for every unit f

s

1

∈ F .

Note that since the bias weight has already been set optimally in the previous

round we only need tune the weight w

1

as well as the parameters internal to

the nonlinear unit f

s

1

. Also note, in particular, that with neural networks all

nonlinear units take precisely the same form, and therefore we need not solve

M versions of the optimization problem in Equation (11.25), one for every unit

inF , as we would do when using fixed-shape or tree-based units. Regardless of

the type of universal approximator employed, round 1 of boosting ends upon

finding the optimal f

s

1

and w

1

, which we denote respectively as f

?

s

1

and w

?

1

, and

keep fixed moving forward.

Round m > 1 of boosting

In general, at the mth round of boosting we begin with model

m-1

consisting of

a bias term and m - 1 units of the form

model

m-1

(

x,Θ

m-1

)

= w

?

0

+ f

?

s

1

(

x

)

w

?

1

+ f

?

s

2

(

x

)

w

?

2

+ · · · + f

?

s

m-1

(

x

)

w

?

m-1

. (11.26)

Note that the parameters of this model have been tuned sequentially, starting

with the bias w

?

0

in round 0, w

?

1

and any internal parameters of f

?

s

1

in round 1,

and so forth, up to w

?

m-1

and any parameters internal to f

?

s

m-1

in round m - 1.

The mth round of boosting then follows the same pattern outlined in round

1, where we seek out the best weighted unit f

s

m

(

x

)

w

m

to add to our running

model to best lower its training error on the dataset. Specifically, our mth model

takes the form

model

m

(

x,Θ

m

)

= model

m-1

±

x,Θ

m-1

²

+ f

s

m

(x)w

m

(11.27)

and we determine the proper unit to add to this model by minimizing

1

P

P

X

p=1

±

model

m-1

±

x

p

,Θ

m-1

²

+ f

s

m

±

x

p

²

w

m

- y

p

²

2

=

1

P

P

X

p=1

±

w

?

0

+ w

?

1

f

?

s

1

+ · · · + f

?

s

m-1

±

x

p

²

w

?

m-1

+ f

s

m

±

x

p

²

w

m

- y

p

²

2

(11.28)

overw

m

and parameters internal to f

s

m

(if they exist), which are contained in the

parameter setΘ

m

.

Once again with fixed-shape or tree-based approximators, this entails solving

M (or M - m + 1, if we decide to check only those units not used in previous

rounds) such optimization problems, and choosing the one with smallest train-

ing error. With neural networks, since each unit takes the same form, we need

only solve one such optimization problem.

346 Principles of Feature Learning

11.5.3 Early stopping

Once all rounds of boosting are complete note how we have generated a se-

quence of M tuned models

10

– denoted

¶

model

m

(

x,Θ

m

)·

M

m=1

– which gradually

increase in nonlinear complexity from m = 1 to m = M, and thus gradually

decrease in training error. This gives us fine-grained control in selecting an

appropriate model, as the jump in performance in terms of both the training

and validation errors between subsequent models in this sequence can be quite

smooth, provided we use low-capacity units (as discussed in Section 11.5.1).

Once boosting is complete we select from our set of models the one that

provides the lowest validation error. Alternatively, instead of running all rounds

of boosting and deciding on an optimal model after the fact, we can attempt

to halt the procedure when the validation error first starts to increase. This

concept, referred to as early stopping, leads to a more computationally efficient

implementation of boosting, but one needs to be careful in deciding when the

validation error has really reached its minimum as it can oscillate up and down

multiple times (as mentioned in Section 11.4), and need not take the simple

generic form illustrated in the top panel of Figure 11.29. There is no ultimate

solution to this issue – thus ad hoc solutions are typically used in practice when

early stopping is employed.

11.5.4 An inexpensive but effective enhancement

A slight adjustment at each round of boosting, in the form of addition of an

individual bias, can significantly improve the algorithm. Formally, at the mth

round of boosting instead of forming model

m

as shown in Equation (11.27), we

add an additional bias weight w

0,m

as

model

m

(

x,Θ

m

)

=model

m-1

±

x,Θ

m-1

²

+ w

0,m

+ f

s

m

(x) w

m

. (11.29)

This simple adjustment results in greater flexibility and generally better overall

performance by allowing units to be adjusted ”vertically” at each round (in

the case of regression) at the minimal cost of adding a single variable to each

optimization subproblem. Note that once tuning is done, the optimal bias weight

w

?

0,m

can be absorbed into the bias weights from previous rounds, creating a

single bias weight w

?

0

+w

?

0,1

+ · · · + w

?

0,m

for the entire model.

This enhancement is particularly useful when using fixed-shape or neural

network units for boosting, as it is redundant when using tree-based approxi-

mators because they already have individual bias terms baked into them that

always allow for this kind of vertical adjustment at each round of boosting.

11

10

We have excluded model

0

as it does not use any universal approximator units.

11

In the jargon of machine learning boosting with tree-based learners is often referred to as

gradient boosting. See Section 14.5 for further details.

11.5 Efficient Cross-Validation via Boosting 347

To see this note that while Equation (11.14) shows the most common way of

expressing a stump taking in one-dimensional input, repeated for convenience

here, as

f (x) =

v

1

v

2

x ≤ s

x > s

(11.30)

it is also possible to express f (x) equivalently as

f (x) = w

0

+ w

1

h(x) (11.31)

where w

0

denotes an individual bias parameter for the stump and w

1

is an

associated weight that scales h(x), which is a simple step function with fixed

levels and a split at x = s

h (x) =

0

1

x ≤ s

x > s.

(11.32)

Expressing the stump in this equivalent manner allows us to see that every

stump unit does indeed have its own individual bias parameter, making it

redundant to add an individual bias at each round when boosting with stumps.

The same concept holds for stumps taking in general N-dimensional input as

well.

Example 11.10 Boosting regression using tree units

In this example we use the sinusoidal regression dataset first shown in Example

11.6 consisting of P = 21 data points, and construct a set of B = 20 tree (stump)

units for this dataset (see Section 11.2.3). In Figure 11.31 we illustrate the result

of M = 50 rounds of boosting (meaning many of the stumps are used multiple

times). We split the dataset into

2

3

training and

1

3

validation, which are color-

coded in light blue and yellow, respectively. Depicted in the figure are resulting

regression fits and associated training/validation errors for several rounds of

boosting. This example is discussed further in Section 14.5.

Example 11.11 Boosting classification using neural network units

In this example we illustrate the same kind of boosting as previously shown in

Example 11.10, but now for two-class classification using a dataset of P = 99

data points that has a (roughly) circular decision boundary. This dataset was

first used in Example 11.7. We split the data randomly into

2

3

training and

1

3

validation, and employ neural network units for boosting. In Figure 11.32 we

illustrate the result of M = 30 rounds of boosting in terms of the nonlinear

decision boundary and resulting classification, as well as training/validation

errors.

348 Principles of Feature Learning

data/fit

error

number of units number of units number of units

10 20 30 40 50 10 20 30 40 5010 20 30 40 50

0.0

0.5

0.0

0.5

0.0

0.5

Figure 11.31 Figure associated with Example 11.10. See text for details.

11.5.5 Similarity to feature selection

The careful reader will notice how similar the boosting procedure is to the one

introduced in Section 9.6 in the context of feature selection. Indeed principally

the two approaches are entirely similar, except with boosting we do not select

from a set of given input features but create them ourselves based on a cho-

sen universal approximator family. Additionally, unlike feature selection where

our main concern is human interpretability, we primarily use boosting as a tool

for cross-validation. This means that unless we specifically prohibit it from oc-

curring, we can indeed select the same feature multiple times in the boosting

process as long as it contributes positively towards finding a model with mini-

mal validation error.

These two use-cases for boosting, i.e., feature selection and cross-validation,

can occur together, albeit typically in the context of linear modeling as detailed

in Section 9.6. Often in such instances cross-validation is used with a linear

model as a way of automatically selecting an appropriate number of features,

with human interpretation of the resulting selected features still in mind. On the

other hand, rarely is feature selection done when employing a nonlinear model

based on features from a universal approximator due to the great difficulty

in the human interpretability of nonlinear features. The rare exception to this

rule is when using tree-based units which, due to their simple structure, can in

particular instances be readily interpreted by humans.

11.5 Efficient Cross-Validation via Boosting 349

original data training data validation data

units

m
is

cl
as

si
fic

at
io

ns

0 10 20 30

0 10 20 30

0 10 20 30

0 10 20 30

0

5

10

15

0

5

10

15

0

5

10

15

0

5

10

15

Figure 11.32 Figure associated with Example 11.11. See text for details.

11.5.6 The residual perspective with regression

Here we describe a common interpretation of boosting in the context of regres-

sion, that of sequentially fitting to the residual of a regression dataset. To see

what this means, consider the following Least Squares cost function where we

have inserted a boosted model at the mth round of its development

g

(

Θ

m

)

=

1

P

P

X

p=1

±

model

m

±

x

p

,Θ

m

²

- y

p

²

2

. (11.33)

We can write our boosted model recursively as

model

m

±

x

p

,Θ

m

²

= model

m-1

±

x

p

,Θ

m-1

²

+ f

m

±

x

p

²

w

m

(11.34)

350 Principles of Feature Learning

where all of the parameters of the (m - 1)th model (i.e., model

m-1

) are already

tuned. Combining Equations (11.33) and (11.34) we can rewrite the Least Squares

cost as

g

(

Θ

m

)

=

1

P

P

X

p=1

±

f

m

±

x

p

²

w

m

-

±

y

p

-model

m-1

±

x

p

²²²

2

. (11.35)

By minimizing this cost we look to tune the parameters of a single additional

unit so that

f

m

±

x

p

²

w

m

≈ y

p

- model

m-1

±

x

p

²

(11.36)

for all p or, in other words, so that this fully tuned unit approximates our

original output y

p

minus the contribution of the previous model. This quantity,

the difference between our original output and the contribution of the (m - 1)th

model, is often called the residual: it is what is left to represent after subtracting

offwhat was learned by the (m - 1)th model.

Example 11.12 Boosting from the perspective of fitting to the residual

In Figure 11.33 we illustrate the process of boostingM = 20 neural network units

to a toy regression dataset. In the top panels we show the dataset along with the

fit provided by model

m

at the mth step of boosting for select values of m. In the

corresponding bottom panels we plot the residual at the same step, as well as

the fit provided by the corresponding mth unit f

m

. As boosting progresses, the

fit on the original data improves while (simultaneously) the residual shrinks.

11.6 Efficient Cross-Validation via Regularization

In the previous section we saw how with boosting based cross-validation we

automatically learn the proper level of model complexity for a given dataset

by optimizing a general high-capacity model one unit at a time. In this section

we introduce what are collectively referred to as regularization techniques for

efficient cross-validation. With this set of approaches we once again start with

a single high-capacity model, and once again adjust its complexity with respect

to a training dataset via careful optimization. However, with regularization

we tune all of the units simultaneously, controlling how well we optimize its

associated cost so that a minimum validation instance of the model is achieved.

11.6 Efficient Cross-Validation via Regularization 351

0 1 0 10 1

0 1 0 1 0 1

x

y

1

-1

1

-1

1

-1

1

-1

1

-1

1

-1

model 1 model 5 model 20

original

residual

unit 1 unit 5 unit 20

Figure 11.33 Figure associated with Example 11.12. See text for details.

11.6.1 The big picture

Imagine for a moment that we have a simple nonlinear regression dataset, like

the one shown in the top-left panel of the Figure 11.34, and we use a high-

capacity model (relative to the nature of the data) made up of a sum of universal

approximators of a single kind to fit it as

model (x,Θ) = w

0

+ f

1

(x) w

1

+ f

2

(x)w

2

+ · · · + f

M

(x) w

M

. (11.37)

Suppose that we partition this data into training and validation portions, and

then train our high-capacity model by completely optimizing the Least Squares

cost over the training portion of the data. In other words, we determine a set of

parameters for our high-capacity model that lie very close to a global minimum

of its associated cost function. In the top-right panel of the figure we draw a

hypothetical two-dimensional illustration of the cost function associated with

our high-capacity model over the training data, denoting the global minimum

by a blue dot and its evaluation on the function by a blue x.

Since our model has high capacity, the resulting fit provided by the parameters

lying at the global minimum of our cost will produce a tuned model that is overly

complex and severely overfits the training portion of our dataset. In the bottom-

left panel of the Figure 11.34 we show the tuned model fit (in blue) provided

by such a set of parameters, which wildly overfits the training data. In the top-

352 Principles of Feature Learning

weights

cost functiondata

data / fit data / fit

Figure 11.34 (top-left panel) A generic nonlinear regression dataset. (top-right panel) A

figurative illustration of the cost function associated with a high-capacity model over

the training portion of this data. The global minimum is marked here with a blue dot

(along with its evaluation by a blue x) and a point nearby is marked in yellow (whose

evaluation is shown as a yellow x). (bottom-left panel) The original data and fit (in blue)

provided by the model using parameters from the global minimum of the cost function

severely overfits the training portion of the data. (bottom-right panel) The parameters

corresponding to the yellow dot shown in the top-right panel minimize the cost

function over the validation portion of the data, and thus provide a much better fit (in

yellow) to the data. See text for further details.

right panel we also show a set of parameters lying relatively near the global

minimum as a yellow dot, and whose evaluation of the function is shown as a

yellow x. This set of parameters lying in the general neighborhood of the global

minimum is where the cost function is minimized over the validation portion of

our data. Because of this the corresponding fit (shown in the bottom-right panel

in yellow) provides a much better representation of the data.

This toy example is illustrative of a more general principle we have seen ear-

lier in Section 11.3.2: that overfitting is due both to the capacity of an untuned

model being too high and its corresponding cost function (over the training data)

being optimized too well, leading to an overly complex tuned model. This phe-

nomenon holds true for all machine learning problems (including regression,

classification, and unsupervised learning techniques like the Autoencoder) and

is the motivation for general regularization based cross-validation strategies: if

proper optimization of all parameters of a high-capacity model leads to overfit-

ting, it can be avoided by optimizing said model imperfectly when validation

error (not training error) is at its lowest. In other words, regularization in the

11.6 Efficient Cross-Validation via Regularization 353

context of cross-validation constitutes a set of approaches to cross-validation

wherein we carefully tune all parameters of a high-capacity model by setting

them purposefully away from the global minimum of its associated cost func-

tion. This can be done in a variety of ways, and we detail the two most popular

approaches next.

11.6.2 Early stopping based regularization

With early stopping based regularization

12

we properly tune a high-capacity

model by making a run of local optimization (tuning all parameters of the

model), and by using the set of weights from this run where the model achieves

minimum validation error. This idea is illustrated in the left panel of Figure 11.35

where we employ the same prototypical cost function first shown in the top-

right panel of Figure 11.34. During a run of local optimization we frequently

compute training and validation errors (e.g., at each step of the optimization

procedure) so that a set of weights providing minimum validation error can be

determined with fine resolution.

weights weights

increases
λ

optimization path

Figure 11.35 (left panel) A figurative illustration of early stopping regularization

applied to a prototypical cost function of a high-capacity model. We make a run of

optimization – here shown to completion at the global minimum in blue – and choose

the set of weights that provide a minimum validation error (shown in yellow). (right

panel) A figurative illustration of regularizer based regularization. By adding a

regularizer function to the cost associated with a high-capacity model we change its

shape, in particular dragging its global minimum (where overfitting behavior occurs)

away from its original location. The regularized cost function can then be completely

minimized to recover weights as close to/far away from the true global minimum of the

original cost function, depending on the choice of the regularization parameter λ.

Proper setting of this parameter allows for the recovery of validation-error-minimizing

weights. See text for further details.

Whether one literally stops the optimization run when minimum validation

12

This regularization approach is especially popular when employing deep neural network

models as detailed in Section 13.7.

354 Principles of Feature Learning

error has been reached (which can be challenging in practice given the somewhat

unpredictable behavior of validation error as first noted in Section 11.4.1) or one

runs the optimization to completion (picking the best set of weights afterwards),

in either case we refer to this method as early stopping regularization. Note

that the method itself is analogous to the early stopping procedure outlined for

boosting based cross-validation in Section 11.5.3, in that we sequentially increase

the complexity of a model until minimum validation is reached. However, here

(unlike boosting) we do this by controlling how well we optimize a model’s

parameters simultaneously, as opposed to one unit at a time.

Supposing that we begin our optimization with a small initial value (which

we typically do) the corresponding training and validation error curves will, in

general,

13

look like those shown in the top panel of Figure 11.36. At the start of the

run the complexity of our model (evaluated at the initial weights) is quite small,

providing a large training and validation error. As minimization proceeds, and

we continue optimizing one step at a time, error in both training and validation

portions of the data decreases while the complexity of the tuned model increases.

This trend continues up until a point when the model complexity becomes too

great and overfitting begins, and validation error increases.

In terms of the capacity/optimization dial conceptualization detailed in Sec-

tion 11.3.2, we can think of (early stopping based) regularization as beginning

with our capacity dial set all the way to the right (since we employ a high-capacity

model) and our optimization dial all the way to the left (at the initialization of

our optimization). With this configuration – summarized visually in the bottom

panel of Figure 11.36 – we allow our optimization dial to directly govern the

amount of complexity our tuned models can take. In other words, with this

configuration our optimization dial becomes (roughly speaking) the ideal com-

plexity dial described at the start of the chapter in Section 11.1.3. With early

stopping we turn our optimization dial from left to right, starting at our initial-

ization making a run of local optimization one step at a time, seeking out a set

of parameters that provide minimum validation error for our (high-capacity)

model.

There are a number of important engineering details associated with imple-

menting an effective early stopping regularization procedure, which we discuss

below.

• Different optimization runs may lead to different tuned models. The cost

function topology associated with high-capacity models can be quite compli-

cated. Different initializations can thus produce different trajectories towards

potentially different minima of the cost function, and produce corresponding

validation-error-minimizing models that differ in shape – as illustrated pic-

torially in the top row of Figure 11.37. However, in practice these differences

13

Note that both can oscillate in practice depending on the optimization method used.

11.6 Efficient Cross-Validation via Regularization 355

overfittingunderfitting

complexity
er

ro
r

capacity

overfitting

un
de

rfi
tti

ng

optimization

small number
of steps taken

large number
of steps taken

Figure 11.36 (top panel) A prototypical pair of training/validation error curves

associated with a generic run of early stopping regularization. (bottom panels) With

early stopping we set our capacity dial all the way to the right and our optimization dial

all the way to the left. We then slowly move our optimization dial from left to right,

iteratively improving the fit of our of model to the training data, adjusting all of its

parameters simultaneously one step at a time. As each step of optimization progresses

we slowly turn the optimization dial clockwise from left to right, gradually increasing

the complexity of our tuned model, in search of a tuned model with minimum

validation error. Here each notch on the optimization dial abstractly denotes a step of

local optimization. See text for further details.

tend not to effect performance, and the resulting models can be easily com-

bined or bagged together (see Section 11.9) to average out any major differences

in their individual performance.

• How high should capacity be set? How do we know how high to set the

capacity of our model when using early stopping (or any other form of)

regularization based cross-validation? In general there is no single answer. It

must simply be set at least ”high” enough that the model overfits if optimized

completely. This can be achieved by adjusting M (the number of units in the

model) and/or the capacity of individual units (by, for example, using shallow

versus deep neural network or tree based units, as we detail in Chapters 13

and 14, respectively).

• Local optimization must be carefully performed. One must be careful with

the sort of local optimization scheme used with early stopping cross-validation.

356 Principles of Feature Learning

As illustrated in the bottom-left panel of Figure 11.37, ideally we want to turn

our optimization dial smoothly from left to right, searching over a set of

model complexities with a fine resolution. This means, for example, that with

early stopping we often avoid local optimization schemes that take very large

steps (e.g., Newton’s method – as detailed in Chapter 4) as this can result

in a coarse and low-resolution search over model complexity that can eas-

ily skip over minimum-validation models, as depicted in the bottom-right

panel of the figure. Local optimizers that take smaller, high-quality steps –

like the advanced first-order methods detailed in Appendix A – are often

preferred when employing early stopping. Moreover, when employing mini-

batch/stochastic first-order methods (see Appendix Section A.5) validation

error should be measured several times per epoch to avoid taking too many

steps without measuring validation error.

• When is validation error really at its lowest? While generally speaking val-

idation error decreases at the start of an optimization run and eventually

increases (making somewhat of a ”U” shape) it can certainly fluctuate up and

down during optimization. Therefore it is not all together obvious when the

validation error has indeed reached its lowest point unless the optimization

process is performed to completion. To deal with this peculiarity, often in

practice a reasonable engineering choice is made as to when to stop based on

how long it has been since the validation error has not decreased. Moreover,

as mentioned earlier, one need not truly halt a local optimization procedure

to employ the thrust of early stopping, and can simply run the optimizer to

completion and select the best set of weights from the run after completion.

The interested reader can see Example 13.14 for a simple illustration of early

stopping based regularization.

11.6.3 Regularizer based methods

A regularizer is a simple function that can be added to a machine learning cost

for a variety of purposes, e.g., to prevent unstable learning (as we saw in Section

6.4.6), as a natural part of relaxing the Support Vector Machine (Section 6.5.4) and

multi-class learning scenarios (Section 7.3.4), and for feature selection (Section

9.7). As we will see, the latter of these applications (feature selection) is very

similar to our use of the regularizer here.

Adding a simple regularizer function like one of those we have seen in pre-

vious applications (e.g., the ‘

2

norm) to the cost of a high-capacity model, we

can alter its shape and, in particular, move the location of its global minimum

away from its original location. In general if our high-capacity model is given

as model (x,Θ), its associated cost function given by g, and a regularizer h, then

the regularized cost is given as the linear combination of g and h as

11.6 Efficient Cross-Validation via Regularization 357

overfitting

un
de

rfi
tti

ng

overfitting

un
de

rfi
tti

ng

small
number of steps

large
number of steps

small
number of steps

large
number of steps

small steplength large steplength

cost function validation error data / fits

weights number of steps taken
w

0

w

0

optimization optimization

Figure 11.37 Two subtleties associated with early stopping based regularization.

(top-left panel) A prototypical cost function associated with a high-capacity model,

with two optimization paths (shown in red and green, respectively) resulting from two

local optimization runs beginning at different starting points. (top-middle panel) The

validation error histories corresponding to each optimization run. (top-right panel)

While each run produces a different set of optimal weights, and a different fit to the data

(here shown in green and red respectively, corresponding to each run), these fits are

generally equally representative. (bottom-left panel) Taking optimization steps with a

small steplength makes the early stopping procedure a fine-resolution search for

optimal model complexity. With such small steps we smoothly turn the optimization

dial from left to right in search of a validation-error-minimizing model. (bottom-right

panel) Using steps with a large steplength makes early stopping a coarse-resolution

search for optimal model complexity. With each step taken we aggressively turn the dial

from left to right, performing a coarser model search that potentially skips over the

optimal model.

g (Θ)+ λh (Θ) (11.38)

where λ is referred to as the regularization parameter. The regularization pa-

rameter is always nonnegative λ ≥ 0 and controls the mixture of the cost and

regularizer. When it is set small and close to zero the regularized cost is essen-

tially just g, and conversely when set very large the regularizer h dominates in

the linear combination (and so upon minimization we are really just minimizing

it alone). In the right panel of Figure 11.35 we show how the shape of a figurative

regularized cost (and consequently the location of its global minimum) changes

with the value of λ.

Supposing that we begin with a large value of λ and try progressively smaller

358 Principles of Feature Learning

overfittingunderfitting

complexity
er
ro
r

capacity

overfitting
un
de

rfi
tti
ng

optimization

large λ small λ

Figure 11.38 (top panel) A prototypical pair of training/validation error curves

associated with a generic run of regularizer based cross-validation. (bottom panels)

With regularizer-based cross-validation we set our capacity dial all the way to the right

and our optimization dial all the way to the left (beginning with a large value for our

regularization parameter λ). We then slowly move our optimization dial from left to

right by decreasing the value of λ, where here each notch on the optimization dial

represents the complete minimization of the corresponding regularized cost function in

Equation (11.38), improving the fit our of model to the training data. By adjusting the

value of λ (and completely minimizing each corresponding regularized cost) we slowly

turn the optimization dial clockwise from left to right, gradually increasing the

complexity of our tuned model, in search of a model with minimum validation error.

See text for further details.

values (completely optimizing each regularized cost), the corresponding train-

ing and validation error curves will in general look something like those shown

in the top panel of Figure 11.38 (remember in practice that validation error can

oscillate, and need not take just one dip down). At the start of this procedure,

using a large value of λ, the complexity of our model is quite small as the reg-

ularizer completely dominated in the regularized cost, and thus the associated

minimum recovered belongs to the regularizer and not the cost function itself.

Since the set of weights is virtually unrelated to the data we are training over,

the corresponding model will tend to have large training and validation errors.

As λ is decreased the parameters provided by complete minimization of the

regularized cost will be closer to the global minimum of the original cost itself,

and so error on both training and validation portions of the data decreases while

(generally speaking) the complexity of the tuned model increases. This trend

continues up until a point when the regularization parameter is small enough

11.6 Efficient Cross-Validation via Regularization 359

that the recovered parameters lie too close to that of the original cost, so that

the corresponding model complexity becomes too great. Here overfitting begins

and validation error increases.

In terms of the capacity/optimization dial scheme detailed in Section 11.3.2,

we can think of regularizer based cross-validation as beginning with our ca-

pacity dial set to the right (since we employ a high-capacity model) and our

optimization dial all the way to the left (employing a large value for λ in our

regularized cost). With this configuration (summarized visually in the bottom

panel of Figure 11.38) we allow our optimization dial to directly govern the

amount of complexity our tuned models can take. As we turn our optimization

dial from left to right we decrease the value of λ and completely minimize the

corresponding regularized cost, seeking out a set of parameters that provide

minimum validation error for our (high-capacity) model.

There are a number of important engineering details associated with imple-

menting an effective regularizer based cross-validation procedure, which we

discuss below.

• Bias weights are often not included in the regularizer. As with linear models

as discussed in Section 9.7, often only the nonbias weights of a general model

are included in the regularizer. For example, suppose that we employ fixed-

shape universal approximator units and hence our parameter set Θ contains

a single bias w

0

and feature-touching weights w

1

, w

2

, ...,w
B

. If we then regu-

larize our cost function g (Θ) using the squared ‘

2

norm, our regularized cost

would then take the form g (Θ)+λ

∑

B

b=1

w

2

b

. When employing neural network

units we follow the same pattern, but here we have far more bias terms to

avoid including in the regularizer. For example, if we use units of the form

f

b

(x) = tanh

(

w

b,0

+ x

1

w

b,1

+ · · · + x

N

w

b,N

)

the term w

b,0

– internal to the unit

– is a bias term we also do not want included in our regularizer. Thus, to

regularize a cost function including these units using the squared ‘

2

norm we

have g (Θ) +λ

±

∑

B

b=1

w

2

b

+

∑

B

b=1

∑

N

n=1

w

2

b,n

²

.

• Choice of regularizer function. Note that while the ‘

2

norm is a very popular

regularizer, one can – in principle – use any simple function as a regularizer.

Other popular choices of regularizer functions include the ‘

1

norm regularizer

h(w) = kwk

1

=

∑

N

n=1

|w

n

|, which tends to produce sparse weights, and the

total variation regularizer h(w) =

∑

N-1

n=1

|w

n+1

- w

n

|, which tends to produce

smoothly-varying weights. We often use the simple quadratic regularizer (‘

2

norm squared) to incentivize weights to be small, as we naturally do with

two-class and multi-class logistic regression. Each of these different kinds of

regularizers tends to pull the global minimum of the sum towards different

portions of the input space – as illustrated in Figure 11.39 for the quadratic

(top-left panel), ‘

1

norm (top-middle panel), and total variation norm (top-

right panel).

360 Principles of Feature Learning

• Choosing the range of λ values. Analogously to what we saw with early

stopping and boosting procedures previously, with regularization we want

to perform our search as carefully as possible, turning our optimization dial

as smoothly as possible from left to right in search of our perfect model. This

desire translates directly to both the range and number of values for λ that

we test out. For instance, the more values we try within a given range, the

smoother we turn our optimization dial (as depicted visually in the bottom-

left panel of Figure 11.39). The limit on how many values we can try is

often dictated by computation and time restrictions, since for every value of

λ tried a complete minimization of a corresponding regularized cost function

must be performed. This can make regularizer based cross-validation very

computationally expensive. On the other hand, trying too few of values can

result in a coarse search for weights providing minimum validation error,

increasing the possibility that such weights are skipped over entirely (as

depicted in the bottom-right panel of Figure 11.39).

overfitting

un
de

rfi
tti
ng

overfitting

un
de

rfi
tti
ng

small

fine range for coarse range for

optimization optimization

λ λ

λ small λlarge λlarge λ

Figure 11.39 (top row) A visual depiction of where the ‘

2

(top-left panel), ‘

1

(top-middle

panel), and total variation (top-right panel) functions pull the global minimum of a cost

function – when used as a regularizer. These functions pull the global minimum

towards the origin, the coordinate axes, and diagonal lines where consecutive entries

are equal, respectively. (bottom-left panel) Testing out a large range and number of

values for the regularization parameter λ results in a fine-resolution search for

validation-error-minimizing weights. (bottom-right panel) A smaller number (or a

poorly chosen range) of values can result in a coarse search that can skip over ideal

weights. See text for further details.

11.7 Testing Data 361

Example 11.13 Tuning λ for a two-class classification problem

In this example we use a quadratic regularizer to find a proper nonlinear clas-

sifier for the two-class classification dataset shown in the left column of Figure

11.40 where the training set is shown with their perimeter colored in light blue,

and the validation points have their perimeter colored yellow. Here we use

B = 20 neural network units – a high-capacity model with respect to this data –

and try out 6 values of λ uniformly distributed between 0 and 0.5 (completely

minimizing the corresponding regularized cost in each instance). As the value of

λ changes the fit provided by the weights recovered from the global minimum of

each regularized cost function is shown in the left column, while the correspond-

ing training and validation errors are shown in blue and yellow, respectively, in

the right column. In this simple experiment, a value somewhere around λ ≈ 0.25

appears to provide the lowest validation error and corresponding best fit to the

dataset overall.

11.6.4 Similarity to regularization for feature selection

Akin to the boosting procedure detailed in the previous section, here the careful

reader will notice how similar the regularizer based framework described here

is to the concept of regularization detailed for feature selection in Section 9.7.

The two approaches are very similar in theme, except here we do not select

from a set of given input features but create them ourselves based on a universal

approximator. Additionally, instead of our main concern with regularization

being human interpretability of a machine learning model, as it was in Section 9.7,

here we use regularization as a tool for cross-validation.

11.7 Testing Data

In Section 11.3.4 we saw how, in place of training error, validation error is an

appropriate measurement tool that enables us to accurately identify an appro-

priate model/parameter tuning for generic data. However, like the training error,

choosing a model based on minimum validation error can also potentially lead

to models that overfitour original dataset. In other words, at least in principle, we

can overfit to validation data as well. This can make validation error a poor in-

dicator of how well a cross-validated model will perform in general. As we will

see in this brief section, the potential dangers of this reality can be ameliorated,

provided the dataset is large enough, by splitting our original training data into

not two sets (training and validation), but three: training, validation, and testing

sets. By measuring a cross-validated model’s performance on the testing set we

not only gain a better measure of its ability to capture the true nature of the

362 Principles of Feature Learning

number of misclassificationsdata / classification fit

λ

Figure 11.40 Figure associated with Example 11.13. See text for details.

phenomenon generating the data, but we also gain a reliable measurement tool

for comparing the efficacy of multiple cross-validated models.

11.7.1 Overfitting validation data

In Section 11.3.4 we learned how, as a measurement tool, training error fails to

help us properly identify when a tuned model has sufficient complexity to prop-

erly represent a given dataset. There we saw how an overfitting model, that is

one that achieves minimum training error but is far too complex, represents the

11.7 Testing Data 363

Figure 11.41 (left panel) A randomly generated two-class classification dataset. (right

panel) The decision boundary of a cross-validated model providing 70 percent accuracy

on the validation data, which is meaningfully greater than random chance (50 percent).

training data we currently have incredibly well, but simultaneously represents

the phenomenon underlying the data (as well as any future data similarly gen-

erated by it) very poorly. While not nearly as prevalent in practice, it is possible

for a properly cross-validated model to overfit validation data.

To see how this is possible let us analyze an extreme two-class classification

dataset. As shown in the left panel of Figure 11.41 this dataset shows no mean-

ingful relationship whatsoever between the input and output (labels). Indeed

we created it by choosing the coordintes of the two-dimensional input points

randomly over the input space, and then assigning label value +1 (red class) to

half of the points (which are selected, once again, at random) and label value -1

(blue class) to the other half.

and points randomly (uniformly) on the unit square and assigned labels to

the points at random.

Because we know that the underlying phenomenon generating this dataset

is completely random, no model, whether it has been found via cross-validation

or otherwise, should ever allow us to correctly predict the label of future points

with an accuracy that is substantially greater than 50 percent. In other words, no

model should truly provide better-than-chance accuracy on random data such

as this. However, this reality need not be reflected in an appropriately cross-

validated model (i.e., one with minimum validation error for some split of the

data). Indeed in the right panel of Figure 11.41 we show the decision boundary

of a naively cross-validated model for this dataset, where

1

5

of the original

data was used as validation, and color the regions according to the model’s

predictions. This particular cross-validated model provides 70 percent accuracy

on the validation data, which perhaps at first glance is mysterious given our

understanding of the underlying phenomenon. However, this is because, even

though it was chosen as the validation-error-minimizing model, this model still

overfits the original data. While it is not as prevalent or severe as the overfitting

that occurs with training-error-minimized models, overfitting to validation data

like this is still a danger that in practice should be avoided when possible.

364 Principles of Feature Learning

training
validation
testing

Figure 11.42 The original dataset (left panel) is split randomly into three

nonoverlapping subsets: training, validation, and testing sets (right panel).

In the case of our random two-class data introduced in Section 11.7.1, such a

testing set provides a far more accurate picture of how well our cross-validated

model will work in general. In Figure 11.43 we again show this dataset (with

validation data points highlighted with yellow boundaries), which is now aug-

mented by the addition of a testing portion (those points highlighted with green

boundaries) that are generated precisely the same way we created the original

dataset in Figure 11.41. Note importantly that this testing portion was not used

during training/cross-validation. While our cross-validated model achieved 70

percent accuracy on the validation set (as mentioned previously), it achieves

only a 52 percent accuracy on the testing set, which is a more realistic indicator

of our model’s true classification ability, given the nature of this data.

What portion of the original dataset should we assign to our testing set? As

with the portioning of training and validation (detailed in Section 11.3.4), there

is no general rule here, save perhaps one: the use of testing data is a luxury we

11.7.2 Testing data and testing error

Up until now we have used validation data both to select the best model for

our data (i.e., cross-validation) and to measure its quality. However, much like

when the notion of validation data was first introduced in Section 11.3.4, we

see that using the same set of data to perform both of these tasks can lead to

the selection of an overfitting model and can diminish the utility of validation

error as a measure of model quality. The solution to this problem (again much

like when we introduced the concept of validation data to begin with) is to

split up the two tasks we now assign to validation data by introducing a second

validation set. This ”second validation set” is often called a test set or testing set,

and is used solely to measure the quality of our final cross-validated model.

By splitting our data into three chunks (as illustrated in Figure 11.42) we still

use training and validation portions precisely as they have been used thus far

(i.e., for performing cross-validation). However, after the cross-validated model

is constructed its quality is measured on the distinct testing set of data, on which

it has been neither trained nor validated. This testing error gives an ”unbiased”

estimate of the cross-validated model’s performance, and is generally closer to

capturing the true error of our model on future data generated by the same

phenomenon.

11.8 Which Universal Approximator Works Best in Practice? 365

Figure 11.43 (left panel) The same dataset first shown in Figure 11.41 augmented by

data points highlighted in green that were removed from training and validation

procedures, and left out for testing. (right panel) The cross-validated model only

achieves a 52 percent accuracy on the testing set, which is a much better estimate of a

machine learning model’s ability to classify random data.

can indulge in only when we have a large amount of data. When data is scarce

we must leverage it all just to build a ”halfway reasonable” cross-validated

model. When data is plentiful, however, often the size of validation and testing

sets are chosen similarly. For example, if

1

5

of a dataset is used for validation,

often for simplicity the same portion is used for testing as well.

11.8 Which Universal Approximator Works Best in Practice?

Beyond special circumstances such as those briefly discussed below, it is vir-

tually never clear a priori which, if any, of the universal approximators will

work best. Indeed cross-validation (as outlined in the previous sections) is the

toolset one uses in practice to decide which type of universal approximator

based model works best for a particular problem. Using these techniques one

can create a range of different cross-validated models, each built from a distinct

type of universal approximator, and compare their efficacy on a testing set (de-

scribed in Section 11.7) afterwards to see which universal approximator works

best. Alternatively, one can cross-validate a range of universal approximator

based models and average them together afterwards, as discussed next in Sec-

tion 11.9, leading to an averaged model that consists of representatives from

multiple universal approximators.

In some instances broad understanding of a dataset can direct the choice of

universal approximator. For example, because oftentimes business, census, and

(more generally) structured datasets consist of broad mixtures of continuous and

discontinuous categorical input features (see Section 6.7.1), tree-based universal

approximators, with their discontinuous step-like shapes, often provide stronger

results on average than other universal approximator types. On the other hand,

data that is naturally continuous (e.g., data generated by natural processes or

366 Principles of Feature Learning

sensor data) is often better matched with a continuous universal approximator:

fixed-shape or neural network. Understanding whether future predictions need

be made inside or outside the input domain of the original dataset can also help

guide the choice of approximator. In such cases fixed-shape or neural network

approximators can be preferred over trees – the latter by their very nature always

creating perfectly flat predictions outside of the original data’s input domain

(see Exercise 14.9 for further details).

When human interpretability is of primary importance, this desire (in certain

circumstances) can drive the choice of universal approximator. For example,

due to their discrete branching structure (see Section 14.2), tree-based universal

approximators can often be much easier to interpret than other approximators

(particularly neural networks). For analogous reasons fixed-shape approxima-

tors (e.g., polynomials) are often employed in the natural sciences, like the

gravitational phenomenon underlying the Galileo’s ramp dataset discussed in

Example 11.17.

11.9 Bagging Cross-Validated Models

As we discussed in detail in Section 11.3.4, validation data is the portion of our

original dataset we exclude at random from the training process in order to

determine a proper tuned model that will faithfully represent the phenomenon

generating our data. The validation error generated by our tuned model on

this ”unseen” portion of data is the fundamental measurement tool we use to

determine an appropriate cross-validated model for our entire dataset (besides,

perhaps, a testing set – see Section 11.7). However, the random nature of splitting

data into training and validation poses an obvious flaw to our cross-validation

process: what if the random splitting creates training and validation portions

which are not desirable representatives of the underlying phenomenon that

generated them? In other words, in practice what do we do about potentially

bad training–validation splits, which can result in poorly representative cross-

validated models?

Because we need cross-validation in order to choose appropriate models in

general, and because we can do nothing about the (random) nature by which we

split our data for cross-validation (what better method is there to simulate the

”future” of our phenomenon?), the practical solution to this fundamental prob-

lem is to simply create several different training–validation splits, determine an

appropriate cross-validated model on each split, and then average the resulting

cross-validated models. By averaging a set of cross-validated models, also re-

ferred to as bagging in the jargon of machine learning, we can very often ”average

out” the potentially undesirable characteristics of each model while synergizing

their positive attributes. Moreover, with bagging we can also effectively combine

cross-validated models built from different universal approximators. Indeed this

11.9 Bagging Cross-Validated Models 367

is the most reasonable way of creating a single model built from different types

of universal approximators in practice.

Here we will walk through the concept of bagging or model averaging for re-

gression, as well as two-class and multi-class classification by exploring an array

of simple examples. With these simple examples we will illustrate the superior

performance of bagged models visually, but in general we confirm this using

the notion of testing error (see Section 11.7) or an estimate of testing error (often

employed when bagging trees – see Section 14.6). Regardless, the principles

detailed here can be employed more widely as well to any machine learning

problem. As we will see, the best way to average/bag a set of cross-validated

regression models is by taking their median and cross-validated classification

models by computing the mode of their predicted labels.

11.9.1 Bagging regression models

Here we explore several ways of bagging a set of cross-validated models for

the nonlinear regression dataset first described in Example 11.6. As we will see,

more often than not the best way to bag (or average) cross-validated regression

models is by taking their median (as opposed to their mean).

Example 11.14 Bagging cross-validated regression models

In the set of small panels in the left side of Figure 11.44 we show ten different

training–validation splits of a prototypical nonlinear regression dataset, where

4

5

of the data in each instance has been used for training (colored light blue) and

1

5

is

used for validation (colored yellow). Plotted with each split of the original data

is the corresponding cross-validated model found via naive cross-validation

(see Section 11.4.1) of the full range of polynomial models of degree 1 to 20.

As we can see, while many of these cross-validated models perform quite well,

several of them (due to the particular training–validation split on which they are

based) severely underfit or overfit the original dataset. In each instance the poor

performance is completely due to the particular underlying (random) training–

validation split, which leads cross-validation to a validation-error-minimizing

tuned model that still does not represent the true underlying phenomenon very

well. By taking an average (here the median) of the ten cross-validated models

shown in these small panels we can average out the poor performance of this

handful of bad models, leading to a final bagged model that fits the data quite

well – as shown in the large right panel of Figure 11.44.

Why average our cross-validated models using the median as opposed to

the mean? Simply because the mean is far more sensitive to outliers than is the

median. In the top row of Figure 11.45 we show the regression dataset shown

previously along with the individual cross-validated fits (left panel), the median

bagged model (middle panel), and the mean bagged model (right panel). Here

the mean model is highly affected by the few overfitting models in the group,

368 Principles of Feature Learning

Figure 11.44 Figure associated with Example 11.14. (left columns) The results of

applying cross-validation to ten random training–validation splits of a nonlinear

regression dataset, with each resulting model shown in one of the ten small panels.

Here the training and validation portions in each instance are colored light blue and

yellow, respectively. (right column) The fit, shown in red, resulting from the bagging of

the ten models whose fits are shown on the left. See text for further details.

and ends up being far too oscillatory to fairly represent the phenomenon under-

lying the data. The median is not affected in this way, and is therefore a much

better representative.

When we bag we are simply averaging various cross-validated models with

the desire to both avoid bad aspects of poorly-performing models, and jointly

leverage strong elements of the well-performing ones. Nothing in this notion

prevents us from bagging together cross-validated models built using different

universal approximators, and indeed this is the most organized way of combin-

ing different types of universal approximators in practice.

In the bottom row of Figure 11.45 we show the result of a cross-validated

polynomial model (left panel), a cross-validated neural network model (second

to the left panel), and a cross-validated tree-based model (second to the right

panel) built via boosting (see Section 11.5). Each cross-validated model uses a

different training–validation split of the original dataset, and the bagged median

of these models is shown in the right panel.

11.9 Bagging Cross-Validated Models 369

neural network model tree model median modelfixed-shape model

median modelindividual models mean model

Figure 11.45 Figure associated with Example 11.14. The ten individual cross-validated

models first shown in Figure 11.45 are plotted together in the top-left panel. The median

and mean of these models are shown in the top-middle and top-right panel, respectively.

With regression, bagging via the median tends to produce better results as it is less

sensitive to outliers. (bottom row) Cross-validated fixed-shape polynomial (left panel),

neural network (second panel from the left), and tree-based (second panel from the

right) models. The median of these three models is shown in the right panel. See text for

further details.

11.9.2 Bagging classification models

The principle behind bagging cross-validated models holds analogously for

classification tasks, just as it does with regression. Because we cannot be cer-

tain whether or not a particular (randomly chosen) validation set accurately

represents the ”future data” from a given phenomenon well, the averaging (or

bagging) of a number of cross-validated classification models provides a way of

averaging out poorly representative portions of some models while combining

the various models’ positive characteristics.

Because the predicted output of a (cross-validated) classification model is a

discrete label, the average used to bag cross-validated classification models is the

mode (i.e., the most popularly predicted label).

Example 11.15 Bagging cross-validated two-class classification models

In the set of small panels in the left column of Figure 11.46 we show five

different training–validation splits of the prototypical two-class classification

dataset first described in Example 11.7, where

2

3

of the data in each instance is

used for training and

1

3

is used for validation (the boundaries of these points

370 Principles of Feature Learning

are colored yellow). Plotted with each split of the original data is the nonlinear

decision boundary corresponding to each cross-validated model found via naive

cross-validation of the full range of polynomial models of degree 1 to 8. Many of

these cross-validated models perform quite well, but some of them (due to the

particular training–validation split on which they are based) severely overfit the

original dataset. By bagging these models using the most popular prediction

to assign labels (i.e., the mode of these cross-validated model predictions) we

produce an appropriate decision boundary for the data shown in the right

panel of the figure.

Figure 11.46 Figure associated with Example 11.15. (left column) Five models

cross-validated on random training–validation splits of the data, with the validation

data in each instance highlighted with a yellow outline. The corresponding nonlinear

decision boundary provided by each model is shown in each panel. Some models, due

to the split of the data on which they were built, severely overfit. (right column) The

original dataset with the decision boundary provided by the bag (i.e., mode) of the five

cross-validated models. See text for further details.

In the top-middle panel of Figure 11.47 we illustrate the decision boundaries of

11.9 Bagging Cross-Validated Models 371

five cross-validated models, each built using B = 20 neural netwok units trained

on different training–validation splits of the dataset shown in the top-left panel

of the figure. In each instance

1

3

of the dataset is randomly chosen as validation

(highlighted in yellow). While some of the learned decision boundaries (shown

in the top-middle panel) separate the two classes quite well, others do a poorer

job. In the top-right panel we show the decision boundary of the bag, created

by taking the mode of the predictions from these cross-validated models, which

performs quite well.

neural network model tree model median modelfixed-shape model

median modelindividual models mean model

Figure 11.47 Figure associated with Example 11.15. (top-left panel) A toy two-class

classification dataset first described in Example 11.7. (top-middle panel) The decision

boundaries, each shown in a different color, resulting from five models cross-validated

on different training-validation splits of the data. (top-right panel) The decision

boundary resulting from the mode (the modal model) of the five individual

cross-validated models. (bottom row) The decision boundaries provided by a

cross-validated fixed-shape polynomial model (left panel), neural network model

(second from the left panel), and tree-based model (third from the left panel). In each

instance the validation portion of the data is highlighted in yellow. (right panel) The

decision boundary provided by the mode of these three models. See text for further

details.

As with regression, with classification we can also combine cross-validated

models built from different universal approximators. We illustrate this in the

bottom row of Figure 11.47 using the same dataset. In particular, we show

the result of a cross-validated polynomial model (left panel), a cross-validated

neural network model (in the second to the left panel), and a cross-validated

tree-based model (second to the right panel). Each cross-validated model uses

a different training–validation split of the original data, and the bag (mode) of

these models shown in the right panel performs quite well.

372 Principles of Feature Learning

Example 11.16 Bagging cross-validated multi-class classification models

In this example we illustrate the bagging of various cross-validated multi-class

models on the two different datasets shown in the left column of Figure 11.48.

In each case we naively cross-validate polynomial models of degree 1 through

5, with five cross-validated models learned in total. In the middle column of

the figure we show the decision boundaries provided by each cross-validated

model in distinct colors, while the decision boundary of the final modal model is

shown in the right column for each dataset.

data individual models modal model

data individual models modal model

Figure 11.48 Figure associated with Example 11.16. (left column) Two multi-class

classification datasets. (middle column) The decision boundaries resulting from five

cross-validated models, each shown as a distinct color. (right column) The decision

boundary provided by bagging. See text for further details.

11.9.3 How many models should we bag in practice?

Note that in the examples of this section the exact number of cross-validated

models bagged were set somewhat arbitrarily. Like other important parameters

involved with cross-validation (e.g., the portion of a dataset to reserve for val-

idation) there is no magic number (of cross-validated models) used generally

in practice for bagging. Ideally, if we knew that any random validation portion

of a dataset generally represented it well, which is often true with very large

datasets, there would be less of a need to ensemble multiple cross-validated

11.10 K-Fold Cross-Validation 373

models where each was trained on a different training–validation split of the

original data. Indeed in such instances we could instead bag a range of models

trained on a single training–validation split in order to achieve similar im-

provements over a single model. On the other hand, the less we could trust in

the faithfulness of a random validation portion to represents a phenomenon at

large, the less we could trust an individual cross-validated model, and hence we

might wish to bag more of them to help average our poorly-performing models

resulting from bad splits of the data. Often in practice considerations such as

computation power and dataset size determine if bagging is used, and if so,

how many models are employed in the average.

11.9.4 Ensembling: Bagging versus Boosting

The bagging technique described here wherein we combine a number of dif-

ferent models, each cross-validated independently of the others, is a primary

example of what is referred to as ensembling in the jargon of machine learning.

An ensembling method (as the name ”ensemble” implies) generally refers to any

method of combining different models in a machine learning context. Bagging

certainly falls into this general category, as does the general boosting approach

to cross-validation described in Section 11.5. However, these two ensembling

methods are very different from one another.

With boosting we build up a single cross-validated model by gradually adding

together simple models consisting of a single universal approximator unit (see

Section 11.5.4). Each of the constituent models involved in boosting are trained

in a way that makes each individual model dependent on its predecessors (which

are trained first). On the other hand, with bagging (as we have seen) we average

together multiple cross-validated models that have been trained independently of

each other. Indeed any one of those cross-validated models in a bagged ensemble

can itself be a boosted model.

11.10 K-Fold Cross-Validation

In this section we detail a twist on the notion of ensembling, called K-fold

cross-validation, that is often applied when human interpretability of a final

model is of significant importance. While ensembling often provides a better-

fitting averaged predictor that avoids the potential pitfalls of any individual

cross-validated model, human interpretability is typically lost as the final model

is an average of many potentially very different nonlinearities.

14

Instead of

averaging a set of cross-validated models over many splits of the data, each of

which provides minimum validation error over a respective split, with K-fold

cross-validation we choose a single model that has minimum average validation

14

Stumps/tree-based approximators are sometimes an exception to this general rule, as detailed in

Section 14.2.

374 Principles of Feature Learning

error over all splits of the data. This produces a potentially less accurate final

model, but one that is significantly simpler (than an ensembled model) and can

be more easily understood by humans. As we will see, in special applications

K-fold cross-validation is used with linear models as well.

training
validation

fold 1 fold 2 fold 3

Figure 11.49 Schematic illustration of K-fold cross-validation for K = 3.

11.10.1 The K-folds cross-validation procedure

K-fold cross-validation is a method for determining robust cross-validated mod-

els via an ensembling-like procedure that constrains the complexity of the final

model so that it is more human interpretable. Instead of averaging a group

of cross-validated models, each of which achieves a minimum validation error

over a random training–validation split of the data, with K-fold cross-validation

we choose a single final model that achieves the lowest average validation er-

ror over all of the splits together. By selecting a single model to represent the

entire dataset, as opposed to an average of different models (as is done with

ensembling), we make it easier to interpret the selected model.

Of course the desire for any nonlinear model to be interpretable means that

its fundamental building blocks (universal approximators of a certain type)

need to be interpretable as well. Neural networks, for example, are almost never

human interpretable while fixed-shape (most commonly polynomials) and tree-

based approximators (commonly stumps) can be interpreted depending on the

problem at hand. Thus the latter two types of universal approximators are more

commonly employed with the K-fold technique.

To further simplify the final outcome of this procedure, instead of using

completely random training–validation splits (as done with ensembling) we

split the data randomly into a set of K nonoverlapping pieces. This is depicted

visually in Figure 11.49 where the original data is split intoK = 3 nonoverlapping

sets.

11.10 K-Fold Cross-Validation 375

We then cycle through K training–validation splits of the data that consist

of K - 1 of these pieces as training, with the final portion as validation, which

allows for each point in the dataset to belong to a validation set precisely one

time. Each such split is referred to as a fold, of which there are K in total, hence

the name ”K-fold” cross-validation. On each fold we cross-validate the same

set of models and record the validation score of each. Afterwards, we choose

the single best model that produced the lowest average validation error. Once this

is done the chosen model is retrained over the entire dataset to provide a final

tuned predictor of the data.

Since no models are combined/averaged together with this procedure, it

can very easily produce less accurate models (in terms of testing error de-

scribed in Section 11.7) for general learning problems when compared to en-

sembling. However, when human interpretability of a model overshadows the

needs for exceptional performance, K-fold cross-validation produces a stronger-

performing model than a single cross-validated model that can still be under-

stood by human beings. This is somewhat analogous to the story of feature

selection detailed in Sections 9.6 and 9.7, where human interpretability is the

guiding motivator (and not simply prediction power).

Example 11.17 Galileo’s gravity experiment

In this example we use K-fold cross-validation on the Galileo dataset detailed

in Example 10.2 to recover the quadratic rule that was both engineered there,

and that Galileo himself divined from a similar dataset. Since there are only

P = 6 points in this dataset, intuition suggests that we use a large value for K as

described in Section 11.3.4. In this instance we can set K as high as possible, i.e.,

K = P, meaning that each fold will contain only a single data point for validation

purposes. This setting of K-fold cross-validation – sometimes referred to as leave-

one-out cross-validation – is usually employed when the size of data is extremely

small.

Here we search over polynomial models of degree 1 through 6, since they are

not only easily interpretable, but are appropriate for data gleaned from physical

experiments (which often trace out smooth rules). As shown in Figure 11.50,

while not all of the models over the six folds fit the data well, the model chosen

by K-fold is indeed the quadratic polynomial fit originally proposed by Galileo.

11.10.2 K-fold cross-validation and high-dimensional linear modeling

Suppose for a moment we have a high-capacity model (e.g., a polynomial of

degree D where D is very large) which enables several kinds of overfitting

behavior for a nonlinear regression dataset, with each overfitting instance of the

model provided by different settings of the linear combination weights of the

model. We illustrate such a scenario in the left panel of Figure 11.51, where two

376 Principles of Feature Learning

Figure 11.50 Figure associated with Example 11.17. (small panels) Six cross-validated

models, each trained on all but one point from the dataset. Here the validation portion

of each fold (i.e., a single data point) is highlighted in yellow. (large panel) The model

with lowest average validation error is a quadratic. See text for further details.

settings of such a model provide two distinct overfitting predictors for a generic

nonlinear regression dataset. As we learned in Section 10.2, any

15

nonlinear

model in the original space of a regression dataset corresponds to a linear model

in the transformed feature space (i.e., the space where each individual input axis

is given by one of the chosen nonlinear features). Since our model easily overfits

the original data, in the transformed feature space our data lies along a linear

subspace that can be perfectly fit using many different hyperplanes. Indeed the

two nonlinear overfitting models shown in the left panel of the figure correspond

one-to-one with the two linear fits in the transformed feature space – illustrated

symbolically

16

in the right panel of the figure.

Figure 11.51 (left panel) Two instances of overfitting by a high-capacity model to a

nonlinear regression dataset. (right panel) These two models – as viewed in the feature

transformed space – are linear. See text for further details.

15

Suppose any parameters internal to the features (if they exist) are fixed.

16

In reality we could not visualize this space, as it would be too high-dimensional.

11.10 K-Fold Cross-Validation 377

The general scenario depicted in the right panel of Figure 11.51 is precisely

where we begin when faced with small datasets that have very high input

dimension: in such scenarios even a linear model has extremely high capacity

and can easily overfit, virtually ruling out the use of more complicated nonlinear

models. Thus in such scenarios, in order to properly tune the parameters of a

(high-capacity) linear model we often turn to regularization to block capacity in

high-capacity models (as described in Section 11.6.3). Given the small amount of

data at play to determine the best setting of the regularization parameter, K-fold

cross-validation is commonly employed to determine the proper regluarization

parameter value and ultimately the parameters of the linear model.

This scenario provides an interesting point of intersection with the notion of

feature selection via regularization detailed in Section 9.7. Employing the ‘

1

regu-

larizer we can block the capacity of our high-capacity linear model while simul-

taneously selecting important input features, facilitating human interpretability

of the learned model.

Example 11.18 Genome-wide association studies

Genome-wide association studies (GWAS) aim at understanding the connec-

tions between tens of thousands of genetic markers (input features), taken from

across the human genome of several subjects, with medical conditions such as

high blood pressure, high cholesterol, heart disease, diabetes, various forms of

cancer, and many others (see Figure 11.52). These studies typically involve a rel-

atively small number of patients with a given affliction (as compared to the very

large dimension of the input). As a result, regularization based cross-validation

is a useful tool for learning meaningful (linear) models for such data. Moreover,

using a (sparsity-inducing) regularizer like the ‘

1

norm can help researchers

identify the handful of genes critical to the affliction under study, which can

both improve our understanding of it and perhaps provoke development of

gene-targeted therapies. See Exercise 11.10 for further details.

Example 11.19 fMRI studies

Neuroscientists believe that only a small number of active brain regions are

involved in performing any given cognitive task. Therefore limiting the number

of input features allowed in the classification model, via ‘

1

regularized feature

selection, is commonly done in order to produce high-performing and human-

interpretable results. Figure 1.12 illustrates the result of applying a classification

model with sparse feature selection to the problem of diagnosing patients with

ADHD. The sparsely distributed regions of color represent activation areas

uncovered by the learning algorithm that significantly distinguish between in-

dividuals with and without ADHD.

378 Principles of Feature Learning

1 2 3 4 5 6 7 8 9 10
22

11 12 13 14 151617
18

19 20
21

X

blood pressureglucose level

chromosomes

Figure 11.52 Conceptual illustration of a genome-wide association study wherein a

quantitative biological trait (e.g., blood pressure or glucose level) is to be associated

with specific genomic locations.

11.11 When Feature Learning Fails

Supposing we implement the tools outlined in this chapter correctly, when

does cross-validation, ensembling, and (more broadly) feature learning fail? The

simple answer is, feature learning fails when our data fails to sufficiently reflect

the underlying phenomenon that generated it. Nonlinear feature engineering

(outlined in Chapter 10) also fails in such circumstances. This can happen when

one or more of the following occur.

• When a dataset has no inherent structure: if there is little or no relation-

ship present in the data (due to improper measurement, experimentation,

or selection of inputs) the nonlinear model learned via feature learning will

be useless. For example, in the left panel of Figure 11.53 we show a small

two-class dataset formed by randomly choosing points on the unit square

and randomly assigning each point one of two class labels. No classification

boundary learned from this dataset can ever yield value, as the data itself

contains no meaningful pattern.

• When a dataset is too small: when a dataset is too small to represent the

true underlying phenomenon feature learning can inadvertently determine

an incorrect nonlinearity. For example, in the middle panel of Figure 11.53 we

show a simple example of this occurrence. The phenomenon underlying this

two-class dataset has a nonlinear boundary (shown in dashed black). How-

ever, because we have sampled too few points, the data we do have is linearly

11.12 Conclusion 379

separable and cross-validation will recover a linear boundary (shown in solid

black) that does not reflect the true nature of the underlying phenomenon.

Because of the small data size this problem is unavoidable.

Figure 11.53 Feature learning fails when our data fails to sufficiently reflect the

underlying phenomenon that generated it. This can occur when a dataset is poorly

structured, too small, or poorly distributed like the data shown in the left, middle, and

right panels, respectively. See text for further details.

11.12 Conclusion

This chapter outlined a range of fundamental and extremely important concepts

for feature learning, or automatic feature engineering, that will echo repeatedly

throughout the remainder of the text.

Foremost among these principles is the notion of universal approximators intro-

duced in Section 11.2, which are the analog of spanning sets (from vector algebra)

for the case of perfect data. Here we learned about basic instances of three fun-

damental families of universal approximators – fixed-shape, neural networks, and

trees – each of which has unique attributes and technical eccentricities that are

explored in great detail in the chapters following this one. Unlike the case of

perfect data, when dealing with real data great care must be taken in properly

• When a dataset is poorly distributed: even if a dataset is large it can still fail to

reflect the true nature of the underlying phenomenon that generated it. When

this happens feature learning will fail. For example, in the right panel of Figure

11.53 we show a simple two-class dataset whose two classes are separated by

a perfectly circular boundary shown in dashed black. While the dataset is

relatively large, the data samples have all been taken from the top portion

of the input space. Viewed on its own this reasonably large dataset does not

represent the true underlying phenomenon very well. While cross-validation

produces a model that perfectly separates the two classes, the corresponding

parabolic decision boundary (shown in solid black) does not match the true

circular boundary. Such a circumstance is bound to happen when data is

poorly distributed and fails to reflect the phenomenon that generated it.

380 Principles of Feature Learning

setting the capacity of a model built with units of a universal approximator, and

in optimizing its parameters appropriately (see Section 11.3). These two ”dials”

(as they are described in Section 11.3.2) constitute the two main controls we have

when properly applying any universal approximator based model to real data.

Indeed feature learning is in essence the appropriate setting of the capacity and

optimization dials (automatically) via the methods of cross-validation detailed

in Sections 11.4–11.6. Here we saw that it is easier to fix capacity at a high level

and carefully optimize than vice versa, leading to the boosting and regularization

procedures outlined in Sections 11.5 and 11.6, respectively. Finally, bagging – the

careful combination of a collection of trained/cross-validated models – was de-

scribed in Section 11.9 (along with the analogous K-fold cross-validation scheme

for smaller, higher-dimensional datasets in Section 11.10), which generally leads

to better-preforming (bagged) models.

11.13 Exercises

†The data required to complete the following exercises can be downloaded from

the text’s github repository at github.com/jermwatt/machine_learning_refined

11.1 Naive cross-validation I

Repeat the experiment described in Example 11.8, splitting the original dataset

at random into training and validation portions. You need not reproduce the

panels in Figure 11.27, but make a plot showing the training and validation

errors for your range of models tested, and visualize the model you find (along

with the data) that provides the lowest validation error. Given your particular

training–validation split your results may be different than those presented in

the example.

11.2 Naive cross-validation II

Repeat the experiment described in Example 11.9, splitting the original dataset

at random into training and validation portions. You need not re-produce the

panels in Figure 11.28, but make a plot showing the training and validation errors

for your range of models tested. Given your particular training–validation split

your results may be different than those presented in the example.

11.3 Boosting based cross-validation I

Repeat the experiment described in Example 11.11. You need not reproduce the

panels in Figure 11.32, but make a plot showing the training and validation

errors for your range of models tested.

11.13 Exercises 381

11.4 Boosting based cross-validation II

Perform 20 rounds of boosting based cross-validation using neural network

units (defined in Equation (11.12)), employing the breast cancer dataset dis-

cussed in Exercise 9.5, and randomly splitting the original dataset into 80 percent

training and 20 percent validation.

11.5 Regularization based cross-validation

Repeat the experiment described in Example 11.13. You need not reproduce the

panels in Figure 11.40, but make a plot showing the training and validation

errors for your range of models tested.

11.6 Bagging regression models

Repeat the first experiment outlined in Example 11.14, producing ten naively

cross-validated polynomial models to fit different training–validation splits of

the regression dataset shown in Figure 11.44. Produce a set of plots like the ones

shown in Figure 11.44 that show how each individual model fits to the data, as

well as how the bagged median model fits.

11.7 Bagging two-class classification models

Repeat the first experiment outlined in Example 11.15, producing five naively

cross-validated polynomial models to fit different training–validation splits of

the two-class classification dataset shown in Figure 11.46. Compare the efficacy

– in terms of number of misclassifications over the entire dataset – of each

individual model and the final bagged model.

11.8 Bagging multi-class classification models

Repeat the second experiment outlined in Example 11.16, whose results are

shown in the bottom row of Figure 11.48. Compare the efficacy – in terms of

number of misclassifications over the entire dataset – of each individual model

and the final bagged model.

11.9 K-fold cross-validation

Repeat the experiment outlined in Example 11.17, reproducing the plots shown

in Figure 11.50.

11.10 Classification of diabetes

Perform K-fold cross-validation using a linear model and the ‘

1

regularizer over

a popular two-class classification genomics dataset consisting of P = 72 data-

points, each of which has input dimensionN = 7128. This will tend to produce a

sparse predictive linear model – as detailed in Example 11.18 – which is helpful

382 Principles of Feature Learning

in determining a small number of genes that correlate with the output of this

two-class classification dataset (which is whether each individual represented

in the dataset has diabetes or not).

12 Kernel Methods

12.1 Introduction

In this chapter we continue our discussion of fixed-shape universal approxima-

tors, which began back in Section 11.2.3. This will very quickly lead to the notion

of kernelization as a clever way of representing fixed-shape features so that they

scale more gracefully when applied to vector-valued input.

12.2 Fixed-Shape Universal Approximators

Using the classic polynomial as our exemplar, in Section 11.2.3 we introduced

the family of fixed-shape universal approximators as collections of various non-

linear functions which have no internal (tunable) parameters. In this section

we pick up the discussion of fixed-shape approximators, beginning a deeper

dive into the technicalities associated with these universal approximators and

challenges we have to address when employing them in practice.

12.2.1 Trigonometric universal approximators

What generally characterizes fixed-shape universal approximators are their lack

of internal parameters and straightforward organization, with very often the

units of a particular family of fixed-shape approximators being organized in

terms of degree or some other natural index (see Section 11.2.3). These simple

characteristics have made fixed-shape approximators, such as the polynomials

(which we have seen previously) as well as the sinusoidal and Fourier exam-

ples (which we discuss now) extremely popular in areas adjacent to machine

learning, e.g., mathematics, physics, and engineering.

Example 12.1 Sinusoidal approximators

The collection of sine waves of increasing frequency is a common example of a

classic fixed-shape approximator, with units of the form

f

1

(x) = sin(x), f

2

(x) = sin(2x), f

3

(x) = sin(3x), etc., (12.1)

384 Kernel Methods

where the mth element in general is given as f

m

(x) = sin(mx). The first four

members of this family of functions are plotted in Figure 12.1.

f

2

(x) = sin(2x)f

1

(x) = sin(x) f

3

(x) = sin(3x) f

4

(x) = sin(4x)

Figure 12.1 Figure associated with Example 12.1. From left to right, the first four units

of a sinusoidal universal approximator. See text for further details.

As with polynomials, notice how each of these elements has no tunable param-

eter inside (and thus a fixed shape), and that the elements are naturally ordered

in terms of their complexity from low to high. Also as with polynomials, we

can easily generalize this catalog of functions to higher-dimensional input. In

general, for N-dimensional input a sinusoidal unit takes the form

f

m

(x) = sin (m

1

x

1

) sin (m

2

x

2

) · · · sin (m

N

x

N

) (12.2)

where m

1

, m

2

, . . . , m
N

are nonnegative integers.

Example 12.2 The Fourier basis

Similarly to the sinusoidal family described in Example 12.1, the Fourier basis

[56] – so named after its inventor Joseph Fourier who first used these functions

in the early 1800s to study heat diffusion – consists of the set of paired sine and

cosine waves (with ever-increasing frequency) of the form

f

2m-1

(x) = sin (2πmx) and f

2m

(x) = cos (2πmx) (12.3)

for all m ≥ 1. It is also common to write the Fourier units in the compact complex

exponential form (see Exercise 12.1)

f

m

(x) = e

2πimx

. (12.4)

For a general N-dimensional input each multi-dimensional Fourier unit then

takes the form

f

m

(

x

)

= e

2πim

1

x

1

e

2πim

2

x

2

· · · e2πim

N

x

N

(12.5)

where m

1

, m

2

, ...,m
N

are integers.

12.2 Fixed-Shape Universal Approximators 385

12.2.2 The scaling challenge of fixed-shape approximators with large
input dimension

As we saw in Chapter 11, when using polynomial units very often we use com-

plete packages of monomials as a polynomial of a certain degree. For example,

a polynomial model of degree D when the input is two-dimensional consists

of all monomial units of the form f

m

(x) = x

p

1

x

q

2

where p and q are nonnegative

integers such that 0 < p + q ≤ D.

More generally with N-dimensional input a polynomial unit takes the form

f

m

(x) = x

m

1

1

x

m

2

2

· · · x

m

N

N

(12.6)

and to construct a polynomial model of degree D we collect all such terms

where 0 < m

1

+ m

2

+ · · · + m

N

≤ D and m

1

, m

2

, ...,m
N

are nonnegative integers.

Unless used in tandem with boosting (see Section 11.3) we virtually always use

polynomial units as a complete package of units of a certain degree, not individually.

One reason for doing this is that since the polynomial units are naturally ordered

(from low to high complexity), when including a unit of a particular complexity

it makes sense, organizationally speaking, to include all other units in the family

having lesser complexities. For instance, it usually does not make much sense

to define quadratic polynomials free of linear terms. Nonetheless, packaging

polynomial units in this way is not something that we must do when employing

them, but is a sensible and common practice.

Like polynomials, it is also common when employing sinusoidal and Fourier

units to use them as complete packages, since they too are ordered in terms

of their individual complexities from low to high. For example, in analogy to a

degree-D polynomial, we can package a degree-D Fourier model consisting of all

units of the form given in Equation (12.5) where 0 < max (|m

1

|, |m

2

|, . . . , |m

N

|) ≤

D. This choice of packaging is largely a convention.

However, a very serious practical issue presents itself when employing fixed-

shape approximators like polynomials and trigonometric bases, when used in

complete packages of units: even with a moderate-sized input dimension N

the corresponding number of units in the package M grows rapidly with N ,

quickly becoming prohibitively large in terms of storage and computation. In

other words, the number of units of a typical fixed-shape approximator in a

model employing a complete package of such units grows exponentially with the

dimension of input.

Example 12.3 Number of units in a degree-D polynomial approximator

The precise number M of units in a degree-D polynomial of an input with

dimension N can be computed precisely as

386 Kernel Methods

M =

°

N + D

D

!

- 1 =

(N + D)!

N!D!

- 1. (12.7)

Even if the input dimension N is of small to moderate size, e.g., N = 100 or

N = 1000, then just the associated degree D = 5 polynomial feature map of these

input dimensions has M = 96, 560, 645 and M = 8, 459, 043, 543, 950 monomial

terms, respectively. In the latter case we cannot even hold the feature vectors in

memory on a modern computer.

Example 12.4 Number of units in a degree-D Fourier approximator

The corresponding number of units M in a package of degree-D Fourier basis

elements is even more gargantuan than that of a degree-D polynomial: the

degree-D Fourier feature collection of arbitrary input dimension N has precisely

M = (2D + 1)

N

- 1 (12.8)

units. When D = 5 and N = 80 this is 11

80

- 1, a number larger than current

estimates of the number of atoms in the visible universe!

Our cursory analyses in Examples 12.3 and 12.4 indicate that since the total

number of units of a fixed-shape approximator grows exponentially in the input

dimension, any approach to selecting fixed-shape units for a nonlinear model

is problematic in general. For example, with polynomials, even if we chose a

smaller set of just those units with the exact same degree, i.e., all units where

m

1

+ m

2

+ · · · + m

N

= D, we would still end up with a combinatorially large

number of units to employ.

This serious scaling issue motivates the so-called kernel trick described in the

next section, that extends the use of classic fixed-shape approximators (when

employing complete packages of units) to problems with high-dimensional

input.

12.3 The Kernel Trick

This crucial issue, of not being able to effectively store and compute with high-

dimensional fixed-shape feature transformations, motivates the search for more

efficient representations. In this section we introduce the notion of kernelization,

also commonly called the kernel trick, as a clever way of constructing fixed-shape

features for virtually any machine learning problem. Kernelization not only

allows us to avoid the combinatorial explosion problem detailed at the end of

the previous section, but also provides a way of generating new fixed-shape

features defined solely through such a kernelized representation.

12.3 The Kernel Trick 387

12.3.1 A useful fact from the fundamental theorem of linear algebra

Before discussing the concept of kernelization, it will be helpful to first recall

a useful proposition from the fundamental theorem of linear algebra about

decomposition of any M-dimensional vector ω over the columns of a given

M× Pmatrix F. Denoting the pth column of F as f

p

, in the case whereω happens

to lie inside the column space of F, we can express it via a linear combination of

these columns as

ω =

P

X

p=1

f

p

z

p

(12.9)

where z

p

is the linear combination weight or coefficient associated with f

p

. By

stacking these weights into aP×1 column vector z, we can write this relationship

more compactly as

ω = Fz. (12.10)

If, on the other hand, ω happens to lie outside the column space of F, as

illustrated pictorially in Figure 12.2, we can decompose it into two pieces – the

portion of ω belonging to the subspace spanned by the columns of F, and an

orthogonal component r – and write it as

r

F

column space of

Fz

!

Figure 12.2 An illustration of a useful fact from the fundamental theorem of linear

algebra which states that any vectorω in an M-dimensional space can be decomposed

asω = Fz+ r where the vector Fz belongs in the column space of the matrix F, and r is

orthogonal to this subspace.

In sum, any vectorω in an M-dimensional space can be decomposed over the

column space of a given matrix F as ω = Fz + r. The vector Fz belongs in the

ω = Fz+ r. (12.11)

Note that r being orthogonal to the span of columns in F means algebraically

that F

T

r = 0

P×1

. Moreover when ω is in the column space of F, we can still

decompose it using the more general form given in Equation (12.11) by setting

r = 0

M×1

without violating the orthogonality condition F

T

r = 0

P×1

.

388 Kernel Methods

subspace determined by the columns of F, while r is orthogonal to this subspace.

As we will now see this simple decomposition is the key to representing fixed-

shape features more effectively.

12.3.2 Kernelizing machine learning cost functions

Here we provide several fundamental examples of how to kernelize standard

supervised machine learning problems and their cost functions, including the

Least Squares cost for regression and the Softmax cost for two-class classifica-

tion. Virtually all machine learning cost functions can be kernelized following

arguments similar to these, including the multi-class Softmax, Principal Com-

ponent Analysis, and K-means clustering (see chapter’s exercises).

Example 12.5 Kernelizing regression via the Least Squares cost

Suppose we want to perform a generic nonlinear regression using our M units

belonging to a degree-D fixed-shape approximator, with our corresponding

model evaluated at the pth input x

p

taking the form

model

±

x

p

, w

²

= w

0

+ f

1

±

x

p

²

w

1

+ f

2

±

x

p

²

w

2

+ · · · + f

M

±

x

p

²

w

M

. (12.12)

For convenience we will write this more compactly, exposing the feature-touching

weights and the bias separately, as

model

±

x

p

, b,ω

²

= b+ f

T

p

ω (12.13)

where we have used the bias/feature-touching weight notation (previously in-

troduced in, e.g., Section 6.4.5)

b = w

0

and ω =

w

1

w

2

.

.

.

w

M

(12.14)

as well as a shorthand for our entire set of M feature transformations of the

training input x

p

as

f

p

=

f

1

(x

p

)

f

2

(x

p

)

.

.

.

f

M

(x

p

)

. (12.15)

In this notation our Least Squares cost for regression takes the form

12.3 The Kernel Trick 389

g

(

b,ω

)

=

1

P

P

X

p=1

±

b + f

T

p

ω- y

p

²

2

. (12.16)

Now, denote by F the M × P matrix formed by stacking the vectors f

p

column-

wise. Employing the fundamental theorem of linear algebra discussed in the

previous section, we may write ω as

ω = Fz+ r (12.17)

where r satisfies F

T

r = 0

P×1

. Substituting this representation of ω back into the

cost function in Equation (12.16) gives

1

P

P

X

p=1

±

b+ f

T

p

(Fz+ r)- y

p

²

2

=

1

P

P

X

p=1

±

b + f

T

p

Fz- y

p

²

2

. (12.18)

Finally, denoting the symmetric P × P matrix H = F

T

F (and its pth column

h

p

= F

T

f

p

), referred to as a kernel matrix or just a kernel for short, our original cost

function can be expressed equivalently as

g

(

b, z

)

=

1

P

P

X

p=1

±

b+ h

T

p

z - y

p

²

2

(12.19)

with our corresponding model evaluated at the pth input now taking the equiv-

alent form

model

±

x

p

, b, z

²

= b+ h

T

p

z. (12.20)

Note that in kernelizing the original regression model in Equation (12.13) and

its associated cost function in Equation (12.16) we have changed their arguments

(due to our substitution ofω), arriving at completely equivalent kernelized model

in Equation (12.20) and kernelized cost function in Equation (12.19).

Example 12.6 Kernelizing two-class classification via the Softmax cost

Following the pattern shown in Example 12.5, here we essentially repeat the

same argument employing the two-class Softmax cost.

Writing our generic two-class Softmax cost using the same notation as em-

ployed in Example 12.5 we have

g

(

b,ω

)

=

1

P

P

X

p=1

log

±

1 + e

-y

p

(

b+f

T

p

ω

)

²

. (12.21)

We then write the representation of ω over F as ω = Fz + r where F

T

r = 0

P×1

.

Making this substitution into Equation (12.21) and simplifying gives

390 Kernel Methods

g (b,z) =

1

P

P

X

p=1

log

±

1 + e

-y

p

(

b+f

T

p

Fz

)

²

.

(12.22)

Denoting the P× P kernel matrix H = F

T

F (where h

p

= F

T

f

p

is the pth column of

H) we can then write the cost function in Equation (12.22) in kernelized form as

g (b,z) =

1

P

P

X

p=1

log

±

1 + e

-y

p

(

b+h

T

p

z

)

²

.

(12.23)

This kernelized form of the two-class Softmax is often referred to as kernelized

logistic regression.

Using the same sort of argument given in Examples 12.5 and 12.6 we may ker-

nelize virtually any machine learning problem discussed in this text including

multi-class classification, Principal Component Analysis, K-means clustering,

as well as any ‘

2

regularized version of these models. For easy reference, we

show both the original and kernelized forms of popular supervised learning

cost functions in Table 12.1.

Table 12.1 Popular supervised learning cost functions and their kernelized versions.

Cost function Original version Kernelized version

Least Squares

1

P

P

∑

p=1

±

b+ f

T

p

ω - y

p

²

2

1

P

P

∑

p=1

±

b+ h

T

p

z - y

p

²

2

Two-class Softmax

1

P

P

∑

p=1

log

³

1 + e

-y

p

±

b+f

T

p

ω

²

´

1

P

P

∑

p=1

log

³

1 + e

-y

p

±

b+h

T

p

z

²

´

Squared-margin SVM

1

P

P

∑

p=1

max

2

±

0, 1 - y

p

±

b + f

T

p

ω

²²

1

P

P

∑

p=1

max

2

±

0, 1- y

p

±

b+ h

T

p

z

²²

Multi-class Softmax

1

P

P

∑

p=1

log

1 +

C-1

∑

j=0

j,yp

e

³

b

j

-b

yp

´

+f

T

p

³

ω

j

-ω

yp

´

1

P

P

∑

p=1

log

1 +

C-1

∑

j=0

j,yp

e

³

b

j

-b

yp

´

+h

T

p

³

z

j

-z

yp

´

‘

2

regularizer

a

λ kωk

2

2

λz

T

Hz

a

The ‘

2

regularizer can be added to any cost function g(b,ω) in the middle column and the

resulting kernelized form of the sum g(b,ω) + λ kωk

2

2

will be the sum of the kernelized cost and

the kernelized regularizer, i.e., g(b, z)+ λ z

T

Hz.

12.3 The Kernel Trick 391

12.3.3 Popular kernels in machine learning

The real value of kernelizing any machine learning cost is that for many fixed-

shape units, including polynomial and Fourier features, the kernel matrix H =

F

T

F may be constructed without first building the matrix F (which often has

prohibitively large row dimension). Instead, as we will see through a number

of examples, this matrix may be constructed entry-wise via simple formulae.

Moreover, thinking about constructing kernel matrices in this way leads to the

construction of fixed-shape universal approximators starting with the defini-

tion of the kernel matrix itself (and not by beginning with an explicit feature

transformation). In either case, by constructing the kernel matrix without first

computing F we completely avoid the exponential scaling problem with fixed-

shape universal approximators discussed in Section 12.2.2.

Example 12.7 The polynomial kernel

Consider the following degree D = 2 polynomial mapping from N = 2 to M = 5

dimensional space given by the feature transformation vector

f =

x

1

x

2

x

2

1

x

1

x

2

x

2

2

. (12.24)

Note that multiplying some or all of the entries in f by a constant value like

√

2,

as in

f =

√

2 x

1

√

2 x

2

x

2

1

√

2 x

1

x

2

x

2

2

(12.25)

does not change this feature transformation for our modeling purposes, since

the

√

2 attached to several of the terms can be absorbed by their associated

weights inωwhen forming model (x, b,ω) = b+ f

T

ω. Denoting briefly by u = x

i

and v = x

j

the ith and jth input data points, respectively, the

(

i, j

)

th element of

the kernel matrix H = F

T

F for a degree D = 2 polynomial is written as

392 Kernel Methods

h

i, j

= f

T

i

f

j

=

h

√

2u

1

√

2u

2

u

2

1

√

2 u

1

u

2

u

2

2

i

√

2 v

1

√

2 v

2

v

2

1

√

2 v

1

v

2

v

2

2

=

±

1 + 2u

1

v

1

+ 2u

2

v

2

+ u

2

1

v

2

1

+ 2u

1

u

2

v

1

v

2

+ u

2

2

v

2

2

²

- 1

= (1 + u

1

v

1

+ u

2

v

2

)

2

- 1

=

±

1 + u

T

v

²

2

- 1.

(12.26)

In other words, the kernel matrix H may be built without first constructing

the explicit features in Equation (12.25), by simply defining it entry-wise as

h

i, j

=

±

1 + x

T

i

x

j

²

2

- 1. (12.27)

This way of defining the polynomial kernel matrix is very useful since we only

require access to the original input data, not the explicit polynomial features

themselves.

Although the kernel construction rule in Equation (12.27) was derived specif-

ically for N = 2 and a degreeD = 2 polynomial, one can show that a polynomial

kernel can be defined entry-wise, in a similar manner, for general N and D as

h

i,j

=

±

1 + x

T

i

x

j

²

D

- 1. (12.28)

Example 12.8 The Fourier kernel

A degree-D Fourier feature transformation from N = 1 to M = 2D dimensional

space may be written as the 2D × 1 feature vector

f =

√

2 cos (2πx)

√

2 sin (2πx)

.

.

.

√

2 cos (2πDx)

√

2 sin (2πDx

)

(12.29)

where, as explained in the previous example, the multiplication of its entries by

√

2 does not alter the original transformation defined in Equation (12.3) for our

modeling purposes. In this case the corresponding

(

i, j

)

th element of the kernel

matrix H = F

T

F can be written as

12.3 The Kernel Trick 393

h

i, j

= f

T

i

f

j

=

D

X

m=1

2

h

cos (2πmx

i

) cos

±

2πmx

j

²

+ sin (2πmx

i

) sin

±

2πmx

j

²i

. (12.30)

Using the simple trigonometric identity cos(α) cos(β)+ sin(α) sin(β) = cos(α- β),

this may be written equivalently as

h

i,j

=

D

X

m=1

2 cos

±

2πm(x

i

- x

j

)

²

. (12.31)

Employing the complex definition of cosine, i.e., cos(α) =

e

iα

+e

-iα

2

, we can rewrite

this as

h

i,j

=

D

X

m=1

h

e

2πim(x

i

-x

j

)

+ e

-2πim(x

i

-x

j

)

i

=

D

X

m=-D

e

2πim(x

i

-x

j

)

- 1. (12.32)

If x

i

- x

j

is an integer then e

2πim

(

x

i

-x

j)

= 1, and the summation expression inside

brackets in Equation (12.32) sums to 2D + 1. Supposing this is not the case,

examining the summation alone we may write

D

X

m=-D

e

2πim

(

x

i

-x

j

)

= e

-2πiD

(

x

i

-x

j

)

2D

X

m=0

e

2πim

(

x

i

-x

j

)

. (12.33)

Noticing that the sum on the right-hand side is a geometric series, we can further

simplify the above as

e

-2πiD

(

x

i

-x

j

)

1 - e

2πi

(

x

i

-x

j

)

(2D+1)

1 - e

2πi

(

x

i

-x

j)

=

sin

±

(2D + 1) π

±

x

i

- x

j

²²

sin

±

π

±

x

i

- x

j

²² (12.34)

where the final equality follows from the complex definition of sine, i.e., sin(α) =

e

iα

-e

-iα

2i

.

Because in the limit, as t approaches any integer value, we have

sin((2D+1)πt)

sin(πt)

=

2D + 1 (which one can show using L’Hospital’s rule from basic calculus), we

may therefore generally write, in conclusion, that

h

i, j

=

sin

±

(2D + 1)π

±

x

i

- x

j

²²

sin

±

π

±

x

i

- x

j

²² - 1. (12.35)

Similar Fourier kernel derivation can be made for a general N-dimensional input

(see Exercise 12.11).

394 Kernel Methods

Example 12.9 The Radial Basis Function (RBF) kernel

Another popular choice of kernel is the Radial Basis Function (RBF) kernel

defined entry-wise over the input data as

h

i,j

= e

-β

k

x

i

-x

j

k

2

2

(12.36)

where β > 0 is a hyperparameter that must be tuned to the data. While the RBF

kernel is typically defined directly as the kernel matrix in Equation (12.36), it

can be traced back to an explicit feature transformation as with the polynomial

and Fourier kernels. That is, we can find the explicit form of the fixed-shape

feature transformation f such that

h

i, j

= f

T

i

f

j

(12.37)

where f

i

and f

j

are the feature transformations of the input points x

i

and

x

j

, respectively. The RBF feature transformation is different from polynomial

and Fourier transformations in that its associated feature vector f is infinite-

dimensional. For example, when N = 1 the feature vector f takes the form

f =

f

1

(x)

f

2

(

x

)

f

3

(x)

.

.

.

(12.38)

where the mth entry (or feature) is defined as

f

m

(x) = e

-βx

2

s

(

2β

)

m-1

(m - 1)!

x

m-1

for all m ≥ 1. (12.39)

When N > 1 the corresponding feature vector takes on an analogous form

which is also infinite in length, making it impossible to even construct and store

such a feature vector (regardless of the input dimension).

Notice that the shape (and hence fitting behavior) of RBF kernels depends on

the setting of their hyperparameter β. In general, the larger β is set the more

complex an associated model employing an RBF kernel becomes. To illustrate

this, in Figure 12.3 we show three examples of supervised learning: regression

(top row), two-class classification (middle row), and multi-class classification

(bottom row), using the RBF kernel with three distinct settings of β in each

instance. This creates underfitting (left column), reasonable predictive behav-

ior (middle column), and overfitting behavior (right column). In each instance

Newton’s method was used to minimize each corresponding cost, and conse-

quently tune each model’s parameters. In practice β is set via cross-validation

(see, e.g., Example 12.10).

12.3 The Kernel Trick 395

β = 0.0001 β = 0.01

β = 10

β = 100β = 0.1

β = 10

-8

β = 0.0001

β = 10

β = 0.01

Figure 12.3 Figure associated with Example 12.9. See text for details.

While we have presented some of the most commonly used kernels in practice

here, the reader can see, e.g., [57, 58] for a more exhaustive list of kernels and

their properties.

12.3.4 Making predictions with kernelized models

As we saw inExamples 12.5 and 12.6, the kernelized form of a general supervised

model evaluated at a point x takes the form

model (x, b, z) = b+ h

T

z (12.40)

where the parameters b and z must be tuned by the minimization of an ap-

propriate kernelized cost. In this framework the kernelization h of the generic

396 Kernel Methods

input x involves evaluation against every point x

p

in the (training) dataset. For

example with a degree-D polynomial kernel, h is given as the P-dimensional

vector

h =

±

1 + x

T

1

x

²

D

- 1

±

1 + x

T

2

x

²

D

- 1

.

.

.

±

1 + x

T

P

x

²

D

- 1

. (12.41)

This necessity of employing every (training) data point in evaluating a trained

model is virtually unique

1

to kernelized learners, as we will not see this re-

quirement when employing other universal approximators in the chapters to

come.

12.4 Kernels as Measures of Similarity

If we look back at the form of the polynomial, Fourier, and RBF kernels in

Examples 12.7 through 12.9 we can see that in each instance the

(

i, j

)

th entry

of the kernel matrix is a function defined on the pair

±

x

i

, x

j

²

of input data. For

example, studying the RBF kernel

h

i,j

= e

-β

k

x

i

-x

jk

2

2

(12.42)

we can see that, as a function of x

i

and x

j

, it measures the similarity between

these two inputs via the ‘

2

norm of their difference. The more similar x

i

andx

j

are

in the input space the larger h

i, j

becomes, and vice versa. In other words, the RBF

kernel can be interpreted as a similarity measure that describes how closely two

inputs resemble each other. This interpretation of kernels as similarity measures

also applies to other previously introduced kernels including the polynomial

and Fourier kernels, even though these kernels clearly encode similarity in

different ways.

In Figure 12.4 we visualize our three exemplar kernels (polynomial, Fourier,

and RBF) as similarity measures by fixing x

i

at x

i

= [0.5 0.5]

T

and plotting h

i, j

for a fine range of x

j

values over the unit square [0, 1]

2

, producing a color-coded

surface showing how each kernel treats points near x

i

. Analyzing this figure we

can obtain a general sense of how these three kernels define similarity between

points. Firstly, we can see that a polynomial kernel treats data points x

i

and x

j

similarly if their inner product is high or, in other words, they highly correlate

with each other. Likewise, the points are treated as dissimilar when they are

1

The evaluation of a K-nearest-neighbors classifier also involves employing the entire training

set.

12.5 Optimization of Kernelized Models 397

h

x

1

x

2

Figure 12.4 Surfaces generated by polynomial, Fourier, and RBF kernels centered at

x

i

= [0.5 0.5]

T

. Each surface point is color-coded based on its magnitude, which can be

thought of as a measure of similarity between x

i

and its corresponding input. (left

panel) A degree D = 2 polynomial kernel, (middle panel) degree D = 3 Fourier kernel,

and (right panel) RBF kernel with β = 10. See text for further details.

orthogonal to one another. On the other hand, the Fourier kernel treats points as

similar if they lie close together, but their similarity differs like a sinc function as

their distance from each other grows. Finally, an RBF kernel provides a smooth

similarity between points: if they are close to each other in aEuclidean sense they

are deemed highly similar, but once the distance between them passes a certain

threshold they become rapidly dissimilar.

12.5 Optimization of Kernelized Models

As discussed previously, virtually any machine learning model (supervised or

unsupervised) can be kernelized. The real value in kernelization is that, for a

large range of kernel types, we can actually construct the kernel matrix H with-

out explicitly defining the associated feature transformations. As we have seen

this allows us to get around the scaling issue associated with fixed-shape ap-

proximators with large input dimension (see Section 12.2.2). Moreover, because

the final kernelized model remains linear in its parameters, corresponding ker-

nelized cost functions are quite ”nice” in terms of their general geometry. For

example, any convex cost function for regression and classification remains con-

vex when kernelized, including popular cost functions for regression, two-class,

and multi-class classification (detailed in Chapters 5–7). This allows virtually

any optimization method to be used to tune a kernelized supervised learner,

from zero- to first-order and even powerful second-order approaches like New-

ton’s method (detailed in Chapters 2–4).

However, because a generic kernel matrix H is a square matrix of size P × P

(where P is the number of data points in the training set) kernelized models

inherently scale quadratically (and thus very poorly) in the size of training data.

This not only makes training kernelized models extremely challenging on large

398 Kernel Methods

datasets, but also predictions using such models (which as we saw in Section

12.3.4 require the evaluation of every training data point) become increasingly

challenging as the size of training data increases.

Most standard ways of dealing with this crippling scaling issue in the size

of the training data revolve around avoiding the creation of the entire kernel

matrix H at once, especially during training. For example, one can use first-

order methods such as stochastic gradient descent so that only a small number

of training data points are dealt with at a time, meaning that only a small subset

of columns of H are ever created concurrently when training. Sometimes the

structure of certain problems can be used to avoid explicit kernel construction

as well.

12.6 Cross-Validating Kernelized Learners

In general, there is a large difference between the capacity of subsequent degrees

D and D + 1 in models employing polynomial and Fourier kernels. With poly-

nomials for instance, the difference between the number of units encapsulated

in a degree-D polynomial kernel and that of a degree-(D + 1) polynomial kernel

can be calculated, using Equation (12.7), as

"°

N + D + 1

D + 1

!

- 1

#

-

"°

N + D

D

!

- 1

#

=

°

N +D

D + 1

!

. (12.43)

When N = 500, for example, there are 20,958,500 more polynomial units

encapsulated in a degree D = 3 kernel matrix than a degree D = 2 kernel matrix.

Because of this enormous combinatorial leap in capacity between subsequent

degree kernels, cross-validation via regularization with the ‘

2

norm (as detailed

in Section 11.4) is common practice when employing polynomial and Fourier

kernels. Since the hyperparameter β of the RBF kernel is continuous, models

employing an RBF kernel can (in addition to the regularization approach) be

cross-validated in principle by comparing various values of β directly.

Example 12.10 Breast cancer classification using an RBF kernel

In this example we use naive cross-validation (as first detailed in Section 11.4.1)

to determine an ideal parameter β for an RBF kernel over the breast cancer

dataset first described in Exercise 6.13. In this set of experiments we use the

Softmax cost and set aside 20 percent of this two-class dataset (randomly) for

validation purposes (with the same portion being set aside for validation for

each value of β used). We try out a range of 50 evenly spaced values for β on the

interval [0, 1], minimize the corresponding cost using Newton’s method, and

plot the number of misclassifications on both the training (in blue) and validation

(in yellow) sets in Figure 12.5. The minimum number of misclassifications on the

12.7 Conclusion 399

validation set occured when β was set close to the value 0.2, which resulted in

one and five misclassifications on the training and validation sets, respectively.

A simple linear classifier trained on the same portion of data provided seven

and 22 misclassifications on training and validation sets, respectively.

m
is
cl
as
si
fic
at
io
ns

β

0.0 0.2 0.4 0.6 0.8 1.0

0

10

20

30

40

50

Figure 12.5 Figure associated with Example 12.10. See text for details.

12.7 Conclusion

In this chapter we continued our description of fixed-shape models, continuing

from Section 11.2.3 where they were first introduced. We began with a review

of several popular examples of fixed-shape universal approximators in Section

12.2. The fact that these universal approximators scale extremely poorly with

the input dimension of a dataset, as described in Section 12.2.2, naturally led

us to discuss their extension as kernels in Section 12.3. Using the ”kernel trick”

we can not only extend popular fixed-shape approximators to more easily deal

with high-dimensional input, but can create a range of new approximators

directly as kernels. However, while kernelizing a fixed-shape approximator helps

it overcome scaling issues in the input dimension of a dataset, it introduces a

scaling issue in the dataset size. This issue can be somewhat ameliorated via

clever kernel matrix construction and optimization (as outlined in Section 12.5).

Lastly, in Section 12.6 we briefly touched on the use of regularizer based cross-

validation – which was previously discussed at length in Section 11.6.

12.8 Exercises

†The data required to complete the following exercises can be downloaded from

the text’s github repository at github.com/jermwatt/machine_learning_refined

400 Kernel Methods

12.1 Complex Fourier representation

Verify that using complex exponential definitions of cosine and sine functions,

i.e., cos(α) =

1

2

±

e

i α

+ e

-i α

²

and sin(α) =

1

2i

±

e

i α

- e

-i α

²

, we can write the partial

Fourier expansion model

model(x,w) = w

0

+

M

X

m=1

[cos(2πmx) w

2m-1

+ sin(2πmx) w

2m

] (12.44)

equivalently as

model(x,v) =

M

X

m=-M

e

2π imx

v

m

(12.45)

where the complex weights v

-M

, ..., v
0

, ..., v
M

are given in terms of the real weights

w

0

,w

1

, ...,w
2M

as

v

m

=

1

2

(w

2m-1

- i w

2m

)

w

0

1

2

(

w

1-2m

+ i w

-2m

)

if m > 0

if m = 0

if m < 0.

(12.46)

12.2 Combinatorial explosion in monomials

Confirm that the number of monomial units in a degree-D polynomial grows

combinatorially in input dimension as given in Equation (12.7).

D = 1 D = 3 D = 12

Figure 12.6 Figure associated with Exercise 12.3.

12.3 Polynomial kernel regression

Reproduce polynomial kernel fits of degree D = 1, D = 3, and D = 12 to the

nonlinear dataset shown in Figure 12.6.

12.8 Exercises 401

12.4 Kernelize the ‘

2

regularized Least Squares cost

Use the kernelization argument made in Examples 12.5 and 12.6 to kernelize the

‘

2

regularized Least Squares cost function.

12.5 Kernelize the multi-class Softmax cost

Use the kernelization argument made in Examples 12.5 and 12.6 to kernelize the

multi-class Softmax cost.

12.6 Regression with the RBF kernel

Implement the RBF kernel in Example 12.9 and perform nonlinear regression

on the dataset shown in the top row of Figure 12.3 using β = 10

-4

, β = 10

-2

, and

β = 10 to reproduce the respective fits shown in the figure.

12.7 Two-class classification with the RBF kernel

Implement the RBF kernel in Example 12.9 and perform nonlinear two-class

classification on the dataset shown in the middle row of Figure 12.3 using

β = 10

-8

, β = 10

-4

, and β = 10. For each case produce a misclassification history

plot to show that your results match what is shown in the figure.

12.8 Multi-class classification with the RBF kernel

Implement the RBF kernel in Example 12.9 and perform nonlinear multi-class

classification on the dataset shown in the bottom row of Figure 12.3 using

β = 10

-2

, β = 10

-1

, and β = 100. For each case produce a misclassification history

plot to show that your results match, respectively, what is shown in the figure.

12.9 Polynomial kernels for arbitrary degree and input dimension

Show that a polynomial kernel can be defined entry-wise, as given in Equation

(12.28), for general degree D and input dimension N.

12.10 An infinite-dimensional feature transformation

Verify that the infinite-dimensional feature transformation defined in Equation

(12.39) indeed yields the entry-wise form of the RBF kernel in Equation (12.36).

12.11 Fourier kernel for vector-valued input

For a general N-dimensional input each Fourier unit takes the form

f

m

(x) = e

2πim

1

x

1

e

2πim

2

x

2

· · · e2πim

N

x

N

= e

2πim

T

x

(12.47)

where the vector m

402 Kernel Methods

m =

m

1

m

2

.

.

.

m

N

(12.48)

contains integer-valued entries. Further, a degree-D Fourier expansion contains

all such units satisfying 0 < kmk

∞

≤ D (see Appendix Section C.5 if not familiar

with the infinity norm). Calculate the corresponding

(

i, j

)

th entry of the kernel

matrix H, i.e., h

i,j

= f

T

i

f

j

where f

j

denotes the complex conjugate of f

j

.

12.12 Kernels and a cancer dataset

Repeat the experiment described in Example 12.10, and produce a plot like

the one shown in Figure 12.5. You may achieve different results based on your

random training–validation split of the original data.

13 Fully Connected Neural
Networks

13.1 Introduction

As we first saw in Section 11.2.3, artificial neural networks, unlike polynomials

and other fixed-shape approximators, have internal parameters that allow each

of their units to take on a variety of shapes. In this chapter we expand on that

introduction extensively, discussing general multi-layer neural networks, also

referred to as fully connected networks, multi-layer perceptrons, and deep feed-forward

neural networks.

13.2 Fully Connected Neural Networks

In this section we describe general fully connected neural networks, which are

recursively built generalizations of the sort of units we first saw throughout

Chapter 11. As this is an often confused subject we describe fully connected

networks progressively (and with some redundancy that will hopefully benefit

the reader), layer by layer, beginning with single-hidden-layer units first described

inSection 11.2.3, providing algebraic, graphical, and computational perspectives

on their construction. Afterwards, we briefly touch on the biological plausibility

of fully connected networks, and end this section with an in-depth description

of how to efficiently implement them in Python.

13.2.1 Single-hidden-layer units

The general algebraic representation (i.e., the formula) of a single-hidden-layer

unit, also called a single-layer unit for short, is something we first saw in Equa-

tion (11.12) and is quite simple: a linear combination of input passed through

a nonlinear activation function, which is typically an elementary mathematical

function (e.g., tanh). Here we will denote such units in general as

f

(1)

(x) = a

w

(1)

0

+

N

X

n=1

w

(1)

n

x

n

(13.1)

where a

(

·

) denotes an activation function, and the superscripts on

f and w

0

404 Fully Connected Neural Networks

through w

N

indicate they represent a single- (i.e., one-) layer unit and its internal

weights, respectively.

Because we will want to extend the single-layer idea to create multi-layer

networks, it is helpful to pull apart the sequence of two operations used to

construct a single-layer unit: the linear combination of input, and the passage

through a nonlinear activation function. We refer to this manner of writing out

the unit as the recursive recipe for creating single-layer neural network units, and

summarize it below.

Recursive recipe for single-layer units

1. Choose an activation function a (·)

2. Compute the linear combination v = w

(1)

0

+

∑

N

n=1

w

(1)

n

x

n

3. Pass the result through activation and form a (v)

Example 13.1 Illustrating the capacity of single-layer units

In the top panels of Figure 13.1 we plot four instances of a single-layer unit using

tanh as our nonlinear activation function. These four nonlinear units take the

form

f

(1)

(x) = tanh

±

w

(1)

0

+ w

(1)

1

x

²

(13.2)

where in each instance the internal parameters of the unit (i.e., w

(1)

0

and w

(1)

1

) have

been set randomly, giving each instance a distinct shape. This roughly illustrates

the capacity of each single-layer unit. Capacity (a concept first introduced in

Section 11.2.2) refers to the range of shapes a function like this can take, given

all the different settings of its internal parameters.

In the bottom row of Figure 13.1 we swap out tanh for the ReLU

1

activation

function, forming a single-layer unit of the form

f

(1)

(x) = max

±

0, w

(1)

0

+w

(1)

1

x

²

. (13.3)

Once again the internal parameters of this unit allow it to take on a variety of

shapes (distinct from those created by tanh activation), four instances of which

are illustrated in the bottom panels of the figure.

1

The Rectified Linear Unit or ReLU function was first introduced in the context of two-class

classification and the Perceptron cost in Section 6.4.1.

13.2 Fully Connected Neural Networks 405

Figure 13.1 Figure associated with Example 13.1. Four instances of a single-layer neural

network unit with tanh (top row) and ReLU activation (bottom row). See text for

further details.

If we form a general nonlinear model using B = U

1

such single-layer units as

model (x,Θ

)

= w

0

+ f

(1)

1

(

x

)

w

1

+ · · ·+ f

(1)

U

1

(

x

)

w

U

1

(13.4)

whose jth unit takes the form

f

(1)

j

(

x

)

= a

w

(1)

0, j

+

N

X

n=1

w

(1)

n, j

x

n

(13.5)

then the parameter set Θ contains not only the weights of the final linear com-

bination w

0

through w

U

1

, but all parameters internal to each f

(1)

j

as well. This is

precisely the sort of model we used in the neural network examples throughout

Chapter 11.

The left panel of Figure 13.2 shows a common graphical representation of

the single-layer model in Equation (13.4), and visually unravels the individual

algebraic operations performed by such a model. A visual representation like

this is often referred to as a neural network architecture or just an architecture. Here

the bias and input of each single-layer unit composing the model is shown as

a sequence of dots all the way on the left of the diagram. This layer is ”visible”

to us since this is where we inject the input data to our network which we

ourselves can ”see,” and is also often referred to as the first or input layer of the

406 Fully Connected Neural Networks

.

.

.

1

.

.

.

.

.

.

W

1

x

× a

(·)

×

W

1

T

w

T

2

˚

˚

f

(1)

1

w

0

w

1

w

2

w

U

1

f

(1)

2

f

(1)

U

1

U

1

1

x

1

x

N

w

(1)

0,U

1

w

(1)

1,U

1

w

(1)

N,U

1

.

.

.

1

x

1

x

N

.

.

.

1

x

1

x

N

w

(1)

0,1

w

(1)

1,1

w

(1)

N ,1

w

(1)

0,2

w

(1)

1,2

w

(1)

N,2

2

1

.

.

.

1

x

1

x

N

U

1

2

1

w

1

w

2

w

U

1

w

0

1

hidden layer

outputfeature transformation

model

input layer

hidden layer

outputfeature transformation

model

input layerhidden layer

outputfeature transformation

model

input layer

Figure 13.2 (left panel) Graphical representation of a single-layer neural network

model, given in Equation (13.4), which is composed of U

1

single-layer units. (top-right

panel) A condensed graphical representation of a single-layer neural network.

(bottom-right panel) This network can be represented even more compactly, illustrating

in a simple diagram all of the computation performed by a single-layer neural network

model. See text for further details.

network. The linear combination of input leading to each unit is then shown

visually by edges connecting the input to a hollow circle (summation unit),

with the nonlinear activation then shown as a larger blue circle (activation unit).

In the middle of this visual depiction (where the blue circles representing all

U

1

activations align) is the hidden layer of this architecture. This layer is called

”hidden” because it contains internally processed versions of our input that we

do not ”see.” While the name hidden is not entirely accurate (as we can visualize

the internal state of these units if we so desire) it is a commonly used convention,

hence the name single-hidden-layer unit. The output of these U

1

units is then

collected in a linear combination, and once again visualized by edges connecting

each unit to a final summation shown as a hollow circle. This is the final output

13.2 Fully Connected Neural Networks 407

of the model, and is often called the final or output layer of the network, which

is again ”visible” to us (not hidden).

Compact representation of single-layer neural networks

Because we will soon wish to add more hidden layers to our rudimentary

model in detailing multi-layer networks, the sort of visual depiction in the left

panel of Figure 13.2 quickly becomes unwieldy. Thus, in order to keep ourselves

organized and better prepared to understand deeper neural network units, it

is quite helpful to compactify this visualization. We can do so by first using a

more compact notation to represent our model algebraically, beginning by more

concisely representing our input, placing a 1 at the top of our input vector x,

which we denote by placing a hollow ring symbol over x as

2

˚

x =

1

x

1

.

.

.

x

N

. (13.6)

Next we collect all of the internal parameters of our U

1

single-layer units.

Examining the algebraic form for the jth unit in Equation (13.5) we can see that

it has N+1 such internal parameters. Taking these parameters we form a column

vector, starting with the bias w

(1)

0, j

and then input-touching weights w

(1)

1, j

through

w

(1)

N, j

, and place them into the jth column of an (N + 1) × U

1

matrix

W

1

=

w

(1)

0,1

w

(1)

0,2

· · · w

(1)

0,U

1

w

(1)

1,1

w

(1)

1,2

· · · w

(1)

1,U

1

.

.

.

.

.

.

.

.

.

.

.

.

w

(1)

N,1

w

(1)

N,2

· · · w

(1)

N,U

1

. (13.7)

With this notation note how the matrix-vector product W

T

1

x̊ contains every

linear combination internal to our U

1

nonlinear units. In other words, W

T

1

x̊ has

dimension U

1

× 1, and its jth entry is precisely the linear combination of the

input data internal to the jth unit

h

W

T

1

x̊

i

j

= w

(1)

0, j

+

N

X

n=1

w

(1)

n, j

x

n

j = 1, 2, ..., U

1

. (13.8)

Next, we extend our notation for the arbitrary activation function a (·) to

2

This notation was introduced and employed previously in Section 5.2.

408 Fully Connected Neural Networks

handle such a vector. More specifically, we define a

(

·

) as the vector function that

takes in a general d × 1 vector v and returns – as output – a vector of the same

dimension containing activation of each of its input’s entries, as

a (v) =

a (v

1

)

.

.

.

a

(

v

d

)

. (13.9)

Notice how with this notation, the vector activation a

±

W

T

1

x̊

²

becomes a U

1

× 1

vector containing all U

1

single-layer units, the jth of which is given as

h

a

±

W

T

1

x̊

²i

j

= a

°

w

(1)

0, j

+

N

∑

n=1

w

(1)

n, j

x

n

!

j = 1, 2, ...,U
1

. (13.10)

Using another compact notation to denote the weights of the final linear combi-

nation as

w

2

=

w

0

w

1

.

.

.

w

U

1

(13.11)

and extending our vector a by tacking a 1 on top of it – denoting the resulting

(U

1

+ 1)×1 vector å – we can finally write out the model in Equation (13.4) quite

compactly as

model (x,Θ

)

= w

T

2

å

±

W

T

1

x̊

²

. (13.12)

This more compact algebraic formulation lends itself to much more easily

digestible visual depictions. In the top-right panel of Figure 13.2 we show a

slightly condensed version of our original graph in the left panel, where the

linear weights attached to each input are now shown more compactly as the set

of crisscrossing line segments connecting the input to each unit, with the matrix

W

1

jointly representing all U

1

of the weighted combinations. In the bottom-

right panel of Figure 13.2 we compactify our original visual representation even

further. In this more compact representation we can more easily visualize the

computation performed by the general single-layer neural network model in

Equation (13.12), where we depict the scalars, vectors, and matrices in this

formula symbolically as circles, diamonds, and squares, respectively.

13.2.2 Two-hidden-layer units

To create a two-hidden-layer neural network unit, or a two-layer unit for short,

we recurse on the idea of the single-layer unit detailed in the previous section.

13.2 Fully Connected Neural Networks 409

We do this by first constructing a set of U

1

single-layer units and treat them as

input to another nonlinear unit. That is, we take their linear combination and

pass the result through a nonlinear activation.

The algebraic form of a general two-layer unit is given as

f

(2)

(x) = a

w

(2)

0

+

U

1

X

i=1

w

(2)

i

f

(1)

i

(x)

(13.13)

which reflects the recursive nature of constructing two-layer units using single-

layer ones. This recursive nature can be also seen in the recursive recipe given

below for building two-layer units.

Recursive recipe for two-layer units

1. Choose an activation function a

(

·

)

2. Construct U

1

single-layer units f

(1)

i

(x) for i = 1, 2, ..., U

1

3. Compute the linear combination v = w

(2)

0

+

∑

U

1

i=1

w

(2)

i

f

(1)

i

(x)

4. Pass the result through activation and form a (v)

Example 13.2 Illustrating the capacity of two-layer units

In the top row of Figure 13.3 we plot four instances of a two-layer neural network

unit – using tanh activation – of the form

f

(2)

(x) = tanh

±

w

(2)

0

+ w

(2)

1

f

(1)

(x)

²

(13.14)

where

f

(1)

(x) = tanh

±

w

(1)

0

+ w

(1)

1

x

²

. (13.15)

The wider variety of shapes taken on by instances of this unit, as shown in the

figure, reflects the increased capacity of two-layer units over their single-layer

analogs shown in Figure 13.1.

In the bottom row of the figure we show four exemplars of the same sort of

unit, only now we use ReLU activation instead of tanh in each layer.

410 Fully Connected Neural Networks

Figure 13.3 Figure associated with Example 13.2. Four instances of a two-layer neural

network unit with tanh (top row) and ReLU activation (bottom row). See text for

further details.

In general, if we wish to create a model usingB = U

2

two-layer neural network

units we write

model (x,Θ) = w

0

+ f

(2)

1

(x) w

1

+ · · · + f

(2)

U

2

(x) w

U

2

(13.16)

where

f

(2)

j

(x) = a

w

(2)

0, j

+

U

1

X

i=1

w

(2)

i, j

f

(1)

i

(x)

j = 1, 2, ...,U
2

(13.17)

and where the parameter setΘ, as always, contains those (superscripted) weights

internal to the neural network units as well as the final linear combination

weights. Importantly note that while each two-layer unit f

(2)

j

in Equation (13.17)

has unique internal parameters – denoted by w

(2)

i, j

where i ranges from 0 to U

1

– the weights internal to each single-layer unit f

(1)

i

are the same across all the

two-layer units themselves.

Figure 13.4 shows a graphical representation (or architecture) of a generic two-

layer neural network model whose algebraic form is given in Equation (13.16).

In the left panel we illustrate each input single-layer unit precisely as shown

previously in the top-right panel of Figure 13.2. The input layer, all the way to

the left, is first fed into each of our U

1

single-layer units (which still constitutes

13.2 Fully Connected Neural Networks 411

.

.

.

W

1

1

.

.

.

W

1

.

.

.

W

1

2

.

.

.

,U

2

.

.

.

.

.

.

W

1

.

.

.

W

2

x × a

(·)

×

W

1

W

2

T T

a

(·)

×

w

T

3

˚

˚ ˚

w

0

w

1

w

2

w

U

2

f

(2)

2

f

(2)

1

f

(2)

U

2

U

1

2

1

U

1

2

1

U

1

2

1

.

.

.

1

x

1

x

N

.

.

.

1

x

1

x

N

.

.

.

1

x

1

x

N

w

(2)

2,1

w

(2)

2,2

w

(2)

2,U

2

w

(2)

0,1

w

(2)

1,1

w

(2)

U

1

,1

w

(2)

0,2

w

(2)

1,2

w

(2)

U

1

,2

w

(2)

0,U

2

w

(2)

1,U

2

w

(2)

U

1

,U

2

1

1

1

1

w

1

w

2

w

U

2

U

1

2

1

2

1

U

2

1

x

1

x

N

1

1

w

0

input layer

outputfeature transformation

model

hidden layer 1 hidden layer 2

model

outputfeature transformation

hidden layer 1 input layer hidden layer 2

model

outputfeature transformation

hidden layer 1 input layer hidden layer 2

Figure 13.4 (left panel) Graphical representation of a two-layer neural network model,

given in Equation (13.16), which is composed of U

2

two-layer units. (top-right panel) A

condensed graphical representation of a two-layer neural network. (bottom-right panel)

This network can be represented more compactly, providing a simpler depiction of the

computation performed by a two-layer neural network model. See text for further

details.

the first hidden layer of the network). A linear combination of these single-layer

units is then fed into each of the U

2

two-layer units, referred to by convention as

the second hidden layer, since its computation is also not immediately ”visible”

to us. Here we can also see why this sort of architecture is referred to as fully

connected: every dimension of input is connected to every unit in the first hidden

layer, and each unit of the first hidden layer is connected to every unit of the

second hidden layer. At last, all the way to the right of this panel, we see a linear

combination of the U

2

two-layer units which produces the final (visible) layer

of the network: the output of our two-layer model.

412 Fully Connected Neural Networks

Compact representation of two-layer neural networks

As with single-layer models, here it is also helpful to compactify both our

notation and the corresponding visualization of a two-layer model in order to

simplify our understanding and make the concept easier to wield. Using the

same notation introduced in Section 13.2.1, we can compactly designate the

output of our U

1

single-layer units as

output of first hidden layer: å

±

W

T

1

x̊

²

. (13.18)

Following the same pattern as before we can then condense all internal

weights of the U

2

units in the second layer column-wise into a (U

1

+ 1) × U

2

matrix of the form

W

2

=

w

(2)

0,1

w

(2)

0,2

· · · w

(2)

0,U

2

w

(2)

1,1

w

(2)

1,2

· · · w

(2)

1,U

2

.

.

.

.

.

.

.

.

.

.

.

.

w

(2)

U

1

,1

w

(2)

U

1

,2

· · · w

(2)

U

1

,U

2

(13.19)

which mirrors precisely how we defined the (N + 1)×U

1

internal weight matrix

W

1

for our single-layer units in Equation (13.7). This allows us to likewise

express the output of our U

2

two-layer units compactly as

output of second hidden layer: å

±

W

T

2

å

±

W

T

1

x̊

²²

. (13.20)

The recursive nature of two-layer units is on full display here. Remember that

we use the notation å

(

·

) somewhat loosely as a vector-valued function in the

sense that it simply represents taking the nonlinear activation a (·), element-wise,

of whatever vector is input into it as shown in Equation (13.9), with a 1 appended

to the top of the result.

Concatenating the final linear combination weights into a single vector as

w

3

=

w

0

w

1

.

.

.

w

U

2

(13.21)

allows us to write the full two-layer neural network model as

model (x,Θ) = w

T

3

å

±

W

T

2

å

±

W

T

1

x̊

²²

. (13.22)

As with its single-layer analog, this compact algebraic formulation of a two-layer

13.2 Fully Connected Neural Networks 413

neural network lends itself to much more easily digestible visual depictions. In

the top-right panel of Figure 13.4 we show a slightly condensed version of the

original graph in the left panel, where the redundancy of showing every single-

layer unit has been reduced to a single visual representation. In doing so we

remove all the weights assigned to crisscrossing edges connecting the first and

second hidden layers, and place them in the matrix W

2

defined in Equation

(13.19) to avoid cluttering the visualization. In the bottom-right panel of Figure

13.4 we condense this two-layer depiction even further where scalars, vectors,

and matrices are depicted symbolically as circles, diamonds, and squares, re-

spectively. This greatly compacted graph provides a simplified visual represen-

tation of the total computation performed by a general two-layer neural network

model.

13.2.3 General multi-hidden-layer units

Following the same pattern we have seen thus far in describing single- and

two-layer units we can construct general fully connected neural network units

with an arbitrary number of hidden layers. With each hidden layer added we

increase the capacity of a neural network unit, as we have seen previously in

graduating from single-layer units to two-layer units, as well as a model built

using such units.

To construct a general L-hidden-layer neural network unit, or L-layer unit

for short, we simply recurse on the pattern we have established previously

L - 1 times, with the resulting L-layer unit taking as input a number U

L-1

of

(L - 1)-layer units, as

f

(L)

(x) = a

w

(L)

0

+

U

L-1

X

i=1

w

(L)

i

f

(L-1)

i

(x)

. (13.23)

As was the case with single- and two-layer units, this formula is perhaps

easier to digest if we think about it in terms of the recursive recipe given below.

Recursive recipe for L-layer units

1. Choose an activation function a (·)

2. Construct U

L-1

number of (L- 1)-layer units f

(L-1)

i

(x) for i = 1, 2, ..., U

L-1

3. Compute the linear combination v = w

(L)

0

+

∑

U

L-1

i=1

w

(L)

i

f

(L-1)

i

(x)

4. Pass the result through activation and form a

(

v

)

414 Fully Connected Neural Networks

Note that while in principle the same activation function need not be used for

all hidden layers of an L-layer unit, for the sake of simplicity, a single kind of

activation is almost always used.

Figure 13.5 Figure associated with Example 13.3. Four instances of a three-layer

network unit with tanh (top row) and ReLU activation (bottom row). See text for

further details.

In general we can produce a model consisting of B = U

L

such L-layer units as

model (x,Θ) = w

0

+ f

(L)

1

(x)w

1

+ · · · + f

(L)

U

L

(x)w

U

L

(13.24)

where

Example 13.3 Illustrating the capacity of three-layer units

In the top row of Figure 13.5 we show four instances of a three-layer unit with

tanh activation. The greater variety of shapes shown here, as compared to single-

and two-layer analogs in Examples 13.1 and 13.2, reflects the increased capacity

of these units. In the bottom row we repeat the same experiment, only using the

ReLU activation function instead of tanh.

13.2 Fully Connected Neural Networks 415

f

(L)

j

(x) = a

w

(L)

0, j

+

U

L-1

X

i=1

w

(L)

i, j

f

(L-1)

i

(x)

j = 1, 2, ...,U
L

(13.25)

and where the parameter setΘ contains both those weights internal to the neural

network units as well as the final linear combination weights.

Figure 13.6 shows an unraveled graphical representation of this model, which

is a direct generalization of the kinds of visualizations we have seen previously

with single- and two-layer networks. From left to right we can see the input

layer to the network, its L hidden layers, and the output. Often models built

using three or more hidden layers are referred to as deep neural networks in the

jargon of machine learning.

1

1

2

.

.

.

1

2

.

.

.

.

.

.

1

W

1

1

W

2

1

2

.

.

.

1

2

.

.

.

1W

1

2

.

.

.

.

.

.

1

W

1 1

W

2

1

2

.

.

.

1

2

.

.

.

1

W

1

2

.

.

.

.

.

.

1

W

1

1

W

2

1

2

.

.

.

1

2

.

.

.

1W

L-1

W

L-1

L-1

U

L

w

0

w

2

w

1

w

U

L

f

(L)

1

f

(L)

2

f

(L)

U

L

U

L-1

1

x

1

x

N

1

x

1

x

N

1

x

1

x

N U

1

U

2

U

L-1

U

1

U

2

U

L-1

U

1

U

2

w

(L)

0,1

w

(L)

1,1

w

(L)

2,1

w

(L)

U

L-1

,1

w

(L)

1,2

w

(L)

0,2

w

(L)

2,2

w

(L)

U

L-1

,2

w

(L)

2,U

L

w

(L)

1,U

L

w

(L)

0,U

L

w

(L)

U

L-1

,U

L

input layer hidden layer 1 hidden layer 2 hidden layer hidden layer

outputfeature transformation
model

L- 1 L

Figure 13.6 Graphical representation of an L-layer neural network model, given in

Equation (13.24), which is composed of U

L

L-layer units.

416 Fully Connected Neural Networks

Compact representation of multi-layer neural networks

To simplify our understanding of a general multi-layer neural network archi-

tecture we can use precisely the same compact notation and visualizations we

have introduced in the simpler contexts of single- and two-layer neural net-

works. In complete analogy to the way we compactly represented two-layer

neural networks, we denote the output of the Lth hidden layer compactly as

output of Lth hidden layer: å

±

W

T

L

å

±

W

T

L-1

å

±

· · · å
±

W

T

1

x̊

²²²²

. (13.26)

Denoting the weights of the final linear combination as

w

L+1

=

w

0

w

1

.

.

.

w

U

L

(13.27)

we can express the L-layer neural network model compactly as

model (x,Θ) = w

T

L+1

å

±

W

T

L

å

±

W

T

L-1

å

±

· · · å
±

W

T

1

x̊

²²²²

. (13.28)

Once again this compact algebraic formulation of an L-layer neural network

lends itself to much more easily digestible visual depictions. The top panel of

Figure 13.7 shows a condensed version of the original graph in Figure 13.6,

where the redundancy of showing every (L - 1)-layer unit has been reduced to

a single visualization. The succinct visual depiction shown in the bottom panel

of Figure 13.7 represents this network architecture even more compactly, with

scalars, vectors, and matrices are shown symbolically as circles, diamonds, and

squares, respectively.

13.2.4 Selecting the right network architecture

We have now seen a general and recursive method of constructing arbitrarily

”deep” neural networks, but many curiosities and technical issues remain to

be addressed that are the subject of subsequent sections in this chapter. These

include the choice of activation function, popular cross-validation methods for

models employing neural network units, as well as a variety of optimization-

related issues such as the notions of backpropagation and batch normalization.

However, one fundamental question can (at least in general) be addressed

now, which is how we choose the ”right” number of units and layers for a neural

network architecture. As with the choice of proper universal approximator in

general (as detailed in Section 11.8), typically we do not know a priori what sort

of architecture will work best for a given dataset (in terms of number of hidden

layers and number of units per hidden layer). In principle, to determine the

best architecture for use with a given dataset we must cross-validate an array

13.2 Fully Connected Neural Networks 417

1

2

.

.

.

1

W

1

1

W

2

1

2

.

.

.

1

2

.

.

.

1

W

L-

x

×

a

(·)

×

× a(·)

W

1

×a(·)

W

L

T

W

2

T

T

w

T

L,

L-

+ 1

˚

˚

˚ ˚

w

0

w

2

w

1

w

U

L

input layer hidden layer 1 hidden layer 2 hidden layer

outputfeature transformation

model

L

input layer hidden layer 1 hidden layer 2 hidden layer

outputfeature transformation

model

L

.

.

.

1

x

1

x

N

U

1 U

2

U

L

Figure 13.7 (top panel) A condensed graphical representation of an L-layer neural

network model shown in Figure 13.6. (bottom panel) A more compact version,

succinctly describing the computation performed by a general L-layer neural network

model. See text for further details.

of choices. In doing so we note that, generally speaking, the capacity gained

by adding new individual units to a neural network model is typically much

smaller relative to the capacity gained by the addition of new hidden layers. This

is because appending an additional layer to an architecture grafts an additional

recursion to the computation involved in each unit, which significantly increases

their capacity and that of any corresponding model, as we have seen in Examples

13.1, 13.2, and 13.3. In practice, performing model search across a variety of

neural network architectures can be expensive, hence compromises must be

made that aim at determining a high-quality model using minimal computation.

To this end, early stopping based regularization (see Sections 11.6.2 and 13.7) is

commonly employed with neural network models.

418 Fully Connected Neural Networks

13.2.5 Neural networks: the biological perspective

The human brain contains roughly 10

11

biological neurons which work together

in concert when we perform cognitive tasks. Even when performing relatively

minor tasks we employ a sizable series of interconnected neurons – called bio-

logical neural networks – to perform the task properly. For example, somewhere

between 10

5

to 10

6

neurons are required to render a realistic image of our vi-

sual surroundings. Most of the basic jargon and modeling principles of neural

network universal approximators we have seen thus far originated as a (very)

rough mathematical model of such biological neural networks.

An individual biological neuron (shown in the top-left panel of Figure 13.8)

consists of three main parts: dendrites (the neuron’s receivers), soma (the cell

body), and axon (the neuron’s transmitter). Starting around the 1940s psycholo-

gists and neuroscientists, with a shared desire to understand the human brain

better, became interested in modeling neurons mathematically. These early mod-

els, later dubbed as artificial neurons (a basic exemplar of which is shown in

the top-right panel of Figure 13.8), culminated in the introduction of the Per-

ceptron model in 1957 [59]. Closely mimicking a biological neuron’s structure,

an artificial neuron comprises a set of dendrite-like edges that connect it to

other neurons, each taking an input and multiplying it by a (synaptic) weight

associated with that edge. These weighted inputs are summed up after going

through a summation unit (shown by a small hollow circle). The result is sub-

sequently fed to an activation unit (shown by a large blue circle) whose output

is then transmitted to the outside via an axon-like projection. From a biological

perspective, neurons are believed to remain inactive until the net input to the

cell body (soma) reaches a certain threshold, at which point the neuron gets

activated and fires an electro-chemical signal, hence the name activation function.

Stringing together large sets of such artificial neurons in layers creates a more

mathematically complex model of a biological neural network, which still re-

mains a very simple approximation to what goes on in the brain. The bottom

panel of Figure 13.8 shows the kind of graphical representation (here of a two-

layer network) used when thinking about neural networks from this biological

perspective. In this rather complex visual depiction every multiplicative opera-

tion of the architecture is shown as an edge, creating a mesh of intersecting lines

connecting each layer. In describing fully connected neural networks in Sec-

tions 13.2.1 through 13.2.3 we preferred simpler, more compact visualizations

that avoid this sort of complex visual mesh.

13.2.6 Python implementation

In this section we show how to implement a generic model consisting of L-layer

neural network units in Python using NumPy. Because such models can have a

large number of parameters, and because associated cost functions employing

them can be highly nonconvex (as further discussed in Section 13.5), first-order

13.2 Fully Connected Neural Networks 419

.

.

.

1

2

3

4

5

6

7

8

9

10

11

1

2

3

4

5

6

7

8

9

1

1

1

x

3

x

4

x

5

x

6

x

1

x

2

x

N

x

1

1

w

0

w

N

w

1

a

°

w

0

+

N

Â

n=1

w

n

x

n

!

axon

soma

dendrites

linear
combination

nonlinear
activation

summation unit

activation unit

Figure 13.8 (top-left panel) A typical biological neuron. (top-right panel) An artificial

neuron, that is a simplistic mathematical model of the biological neuron, consisting of:

(i) weighted edges that represent the individual multiplications (of 1 byw

0

, x

1

by w

1

,

etc.), (ii) a summation unit shown as a small hollow circle representing the sum

w

0

+w

1

x

1

+ · · · +w
N

x

N

, and (iii) an activation unit shown as a larger blue circle

representing the sum evaluated by the nonlinear activation function a

(

·

). (bottom panel)

An example of a fully connected two-layer neural network as commonly illustrated

when detailing neural networks from a biological perspective.

local optimization methods (e.g., gradient descent and its variants detailed in

Chapter 3 and Appendix A) are the most common schemes used to tune the

parameters of general neural network models. Moreover, because computing

derivatives of a model employing neural network units ”by hand” is extremely

tedious (see Section 13.4) the use of automatic differentiation is not only helpful

but in most cases necessary. Thus in the Python implementation detailed here

we strongly recommend using autograd – the automatic differentiator used

420 Fully Connected Neural Networks

throughout this text (see Section B.10.2) – to make computing derivatives clean

and simple.

Below we provide an implementation of a neural network feature transfor-

mation called feature transforms (a notation we first introduced in Chapter

10).

1 # neural network feature transformation

2 def feature_transforms(a, w):

3

4 # loop through each layer

5 for W in w:

6

7 # compute inner-product with current layer weights

8 a = W[0] + np.dot(a.T, W[1:])

9

10 # pass through activation

11 a = activation(a).T

12

13 return a

This Python function takes in the input x, written as the variable a, and the

entire set of weight matrices W

1

through W

L

internal to our neural network

architecture, written as the variable w where w = [W 1, W 2, ..., W L]. The

output of our feature transformation function is the output of the final layer

of the network, expressed algebraically in Equation (13.26). We compute this

output recursively, looping forward through the network architecture, starting

with the first hidden layer using matrixW

1

and ending with the computation of

the final hidden layer using W

L

. This results in a Python function consisting of

a simple for loop over the weight matrices of the hidden layers. Notice, in line

11 of the implementation above, that activation can refer to any elementary

function built using NumPy operations. For example, the tanh activation can be

written as np.tanh(a), and the ReLU as np.maximum(0,a).

With our feature transformation function complete we can now implement

our model, which is a simple variation on the implementations we have seen

in previous chapters. Here the inputs to this Python function are x – our input

data – and a Python list theta of length two whose first entry contains our list

of internal weight matrices, and whose second entry contains the weights of the

final linear combination.

1 # neural network model

2 def model(x, theta):

3

4 # compute feature transformation

5 f = feature_transforms(x, theta[0])

6

7 # compute final linear combination

8 a = theta[1][0] + np.dot(f.T, theta[1][1:])

13.2 Fully Connected Neural Networks 421

9

10 return a.T

This implementation of a fully connected neural network model can be eas-

ily paired with Pythonic implementation of the generic machine learning cost

functions detailed in previous chapters.

Finally, we provide a Python function called network initializer that cre-

ates initial weights for a general neural network model, and also provides a

simple interface for creating general architectures: it is precisely this initializer

that determines the shape of our implemented network. To create a desired

network we simply input a comma-separated list called layer sizes of the

following form

1 layer_sizes = [N, U_1, ..., U_L, C]

where N is the input dmension, U 1 through U L are the number of desired units

in the hidden layers 1 through L, respectively, and C is the output dimension.

The initializer will then automatically create initial weight matrices (of the

proper dimensions) as well as the final weights for the linear combination,

packaged together as the output theta init.

1 # create initial weights for a neural network model

2 def network_initializer(layer_sizes, scale):

3

4 # container for all tunable weights

5 weights = []

6

7 # create appropriately -sized initial

8 # weight matrix for each layer of network

9 for k in range(len(layer_sizes)-1):

10

11 # get layer sizes for current weight matrix

12 U_k = layer_sizes[k]

13 U_k_plus_1 = layer_sizes[k+1]

14

15 # make weight matrix

16 weight = scale*np.random.randn(U_k+1, U_k_plus_1)

17 weights.append(weight)

18

19 # repackage weights so that theta_init[0] contains all

20 # weight matrices internal to the network, and theta_init[1]

21 # contains final linear combination weights

22 theta_init = [weights[:-1], weights[-1]]

23

24 return theta_init

Next, we provide several examples using this implementation.

422 Fully Connected Neural Networks

Figure 13.9 Figure associated with Example 13.4. The resulting decision boundary

learned by a fully connected neural network on a two-class dataset (top row) and

multi-class dataset (bottom row), from both the regression perspective (left column)

and perceptron perspective (right column). See text for further details.

Next, we perform multi-class classification on the multi-class dataset first

shown in Example 10.6 (C = 3), using a model consisting of two hidden layers,

choosing the number of units in each layer arbitrarily as U

1

= 12 and U

2

=

5, respectively, the tanh activation, and using a shared scheme (that is, the

network architecture is shared by each classifier, as detailed in Section 10.5 for

general feature transformations). We then tune the parameters of this model by

minimizing the corresponding multi-class Softmax cost (as shown in Equation

Example 13.4 Nonlinear classification using multi-layer neural networks

In this example we use a multi-layer architecture to perform nonlinear classifi-

cation, first on the two-class dataset shown previously in Example 11.9.2. Here,

we arbitrarily choose the network to have four hidden layers with ten units in

each layer, and the tanh activation. We then tune the parameters of this model

by minimizing an associated two-class Softmax cost (see Equation (10.31)) via

gradient descent, visualizing the nonlinear decision boundary learned in the

top row of Figure 13.9 along with the dataset itself.

13.2 Fully Connected Neural Networks 423

(10.42)), and show the resulting learned decision boundary in the bottom row

of Figure 13.9.

Example 13.5 Random Autoencoder manifolds

In Section 10.6.1 we introduced the general nonlinear Autoencoder, which con-

sists of two nonlinear functions: an encoder f

e

and decoder f

d

, whose parameters

we tune so that (ideally) the composition f

d

(f

e

(x)) forms the best nonlinear man-

ifold on which an input dataset rests. In other words, given a set of input points

n

x

p

o

P

p=1

we aim to tune the parameters of our encoder/decoder pair so that

Figure 13.10 Figure associated with Example 13.5. Nine random manifolds generated

by a multi-layer neural network Autoencoder. See text for further details.

Example 13.6 Nonlinear Autoencoder using multi-layer neural networks

In this example we illustrate the use of a multi-layer neural network Autoen-

coder for learning a nonlinear manifold over the dataset shown in the top-left

f

d

±

f

e

±

x

p

²²

≈ x

p

p = 1, 2, ..., P. (13.29)

In Figure 13.10 we visualize nine instances of the function f

d

(f

e

(x)), each of

which is technically called a manifold, where both f

d

and f

e

are five-hidden-layer

neural networks with ten units in each layer, and the sinc function as activation.

All weights are set randomly in each instance to show the kind of nonlinear

manifolds we could potentially discover using such encoding/decoding func-

tions. Because of the exceedingly high capacity of this nonlinear Autoencoder

model the instances shown in the figure are quite diverse in shape.

424 Fully Connected Neural Networks

x

1

x

2

original data learned manifold

decoded data projection map

Figure 13.11 Figure associated with Example 13.6. See text for details.

13.3 Activation Functions

In principle one can use any (nonlinear) function as an activation for a fully

connected neural network. For some time after their invention activations were

chosen largely based on their biological plausibility, since this is the perspective

in which neural networks themselves were at first largely regarded (as detailed

in Section 13.2.5). Today activation functions are chosen based on practical con-

siderations including our ability to properly optimize models which employ

them as well as (of course) the general performance they provide. In this section

panel of Figure 13.11. Here for both the encoder and decoder functions we arbi-

trarily use a three-hidden-layer fully connected network with ten units in each

layer, and the tanh activation. We then tune the parameters of both functions

together by minimizing the Least Squares cost given in Equation (10.53), and

uncover the proper nonlinear manifold on which the dataset rests. In Figure

13.11 we show the learned manifold (top-right panel), the decoded version of

the original dataset, i.e., the original dataset projected onto our learned manifold

(bottom-left panel), and a projection map visualizing how all of the data in this

space is projected onto the learned manifold via a vector-field plot (bottom-right

panel).

13.3 Activation Functions 425

we briefly review popular historical and modern activation functions through

several examples.

Example 13.7 The step and sigmoid activations

As broadly discussed in Section 13.2.5 the concept of neural networks was first

introduced from a biological perspective where each unit of an architecture

mimics a biological neuron in the human brain. Such neurons were thought

to act somewhat like digital switches, being either completely ”on” or ”off” to

transmitting information to connected cells. This belief naturally led to the use

of a step function taking on just two values: 0 (off) and 1 (on). However, this kind

of step function (which we discuss in the context of logistic regression in Section

6.2) leads to piece-wise flat cost functions (see, e.g., the left panel of Figure 6.3),

which are extremely difficult to optimize using any local optimization technique.

In the context of logistic regression this sort of problem is what led to the logistic

sigmoid, and for the same practical reason the sigmoid function was one of the

first popularly used activation functions. As a smooth approximation to the step

function, the logistic sigmoid was viewed as a reasonable compromise between

the desired neuronal model and the practical need to tune parameters properly.

While the logistic sigmoid performs very well in the comparatively simpler

context of linear classification, when used as an activation function it often

leads to a technical issue known as the vanishing gradient problem. Note how

the logistic sigmoid function (shown in the top-left panel of Figure 13.12) maps

almost all negative input values (except those near the origin) to output values

very close to zero, and its derivative (shown in the bottom-left panel of the figure)

maps input values away from the origin to ouput values very close to zero. These

characteristics can cause the gradient of a neural network model employing

sigmoid activations to shrink undesirably, preventing proper parameter tuning

– a problem that balloons as more hidden layers are added.

In practice, neural network models employing the hyperbolic tangent func-

tion (tanh) typically perform better than the same network employing logistic

sigmoid activations, because the function itself centers its output about the ori-

gin. However, since the derivative of tanh likewise maps input values away

from the origin to output values very close to zero, neural networks employing

the tanh activation can also suffer from the vanishing gradient problem.

Example 13.8 The Rectified Linear Unit (ReLU) activation

For decades after fully connected neural networks were first introduced, re-

searchers employed almost exclusively logistic sigmoid activation functions,

based on their biologically plausible nature (outlined in Section 13.2.5). Only

in the early 2000s did some researchers begin to break away from this tradi-

tion, entertaining and testing alternative activation functions [60]. The simple

ReLU function (see Example 13.1) was the first such activation function to be

popularized.

426 Fully Connected Neural Networks

Figure 13.12 Figure associated with Examples 13.7 and 13.8. The logistic sigmoid

function (top-left panel) and its derivative (bottom-left panel). The derivative here

maps most input values away from the origin to output values very close to zero, which

can cause the gradient of a network employing sigmoid activation to vanish during

optimization, and thus prevent adequate parameter tuning. The ReLU function

(top-right panel) and its derivative (bottom-right panel). While not as susceptible to

vanishing gradient problems, neural networks employing the ReLU need to be

initialized away from zero to prevent units from disappearing. See text for further

details.

A computationally simpler function in comparison to the logistic sigmoid

(which involves the use of both a log and exponential function), the ReLU has

quickly become the most popular activation function in use today. Because the

derivative of the ReLU function (plotted in the bottom-right panel of Figure

13.12) only maps negative input values to zero, networks employing this activa-

tion tend not to suffer (as severely) from the sort of vanishing gradient problem

commonly found with the logistic sigmoid activation (detailed in the previous

example). However, because of the shape of the ReLU itself (shown in the top-

right panel of the figure) care still must be taken when initializing and training a

network employing ReLU activations, as ReLU units themselves vanish as well

at nonpositive inputs. For example, akin to the need to initialize the ReLU cost

function detailed in Section 6.4 away from the origin where the optimization

process will stall, a fully connected neural network employing ReLU activations

should be initialized away from the origin to avoid too many of the units (and

their gradients) from disappearing.

13.4 The Backpropagation Algorithm 427

Example 13.9 The maxout activation

The maxout activation, defined as

Figure 13.13 Figure associated with Example 13.9. Four instances of a maxout unit in

Equation (13.30), with parameters randomly set in each case. See text for further details.

13.4 The Backpropagation Algorithm

The backpropagation algorithm, often referred to simply as backpropagation or

backprop for short, is the jargon phrase used in machine learning to describe

an approach to computing gradients algorithmically via a computer program

that is especially effective for models employing multi-layer neural networks.

Backprop is a special case of a more general scheme generally referred to as the

reverse mode of automatic differentiation. The interested reader is encouraged to

see Appendix Sections B.6 and B.7 for more on automatic differentiation.

Automatic differentiation allows us to turn over the tedious burden of com-

puting gradients ”by hand” to the tireless laborer that is the modern computer.

a(x) = max(v

0

+ v

1

x, w

0

+ w

1

x) (13.30)

is a relative of the ReLU that takes the maximum of two linear combinations

of the input (instead of one linear combination and zero, as is the case with

ReLU). Four instances of such a maxout unit are plotted in Figure 13.13, where

in each instance the parameters v

0

, v

1

, w

0

, and w

1

are set at random. While this

change seems algebraically rather minor, multi-layer neural network architec-

tures employing the maxout activation tend to have certain advantages over

those employing tanh and ReLU activations, including (i) fewer issues with

problematic initializations, (ii) fewer issues with gradients vanishing, and (iii)

empirically faster convergence with far fewer gradient descent steps [61]. These

advantages come with a simple price: the maxout activation has twice as many

internal parameters as either the ReLU or tanh, hence architectures built using

them have roughly twice as many parameters to tune.

428 Fully Connected Neural Networks

In other words, an automatic differentiator is an effective calculator that makes

computing gradients of virtually any cost function a simple chore. Like many

technical advances throughout history, automatic differentiation was discov-

ered and rediscovered by different researchers in different areas of science and

engineering at different times. This is precisely why this universally applicable

concept (automatic differentiation) is referred to as backpropagation in the ma-

chine learning community, as this was the name given to it by its discoverers in

this field.

13.5 Optimization of Neural Network Models

Typically cost functions associated with fully connected neural network models

are highly nonconvex. In this section we address this issue, highlighting the local

optimization techniques discussed in Appendix A of the text that are especially

useful at properly tuning such models.

13.5.1 Nonconvexity

Models employing multi-layer neural networks are virtually always noncon-

vex. However, they often exhibit a variety of nonconvexity that we can fairly

easily deal with using advanced optimization methods such as those detailed in

Appendix A of the text. For example, in Section 6.2.4 we studied the shape of a

Least Squares cost for logistic regression that employs a sigmoid based model.

With one-dimensional input this model, written as

model (x,Θ) = σ (w

0

+ w

1

x) (13.31)

can be interpreted, through the lens of neural networks, as a single unit of

a single-hidden-layer neural network with scalar input and logistic sigmoid

activation, where the weights of the final linear combination are fixed (with the

bias set to zero and the weight touching σ (·) set to one). In the middle panel of

Figure 6.3 we showed the surface of the Least Squares cost of this model over

the simple dataset shown in Figure 6.2.

Examining the general shape of this cost function we can clearly see that it

is nonconvex. Several portions of the cost surface, on either side of the long

narrow valley containing the cost’s global minimum, are almost completely flat.

In general, cost functions employing neural network models have nonconvex

shapes that share the kinds of basic characteristics seen in this figure: long

narrow valleys, flat areas, and many saddle points and local minima.

These sorts of nonconvexities are problematic for basic first- and second-order

optimization schemes. However, both frameworks can be extended to better

deal with such eccentricities. This is especially true for gradient-based meth-

ods, as powerful modifications to the standard gradient descent method allow

13.5 Optimization of Neural Network Models 429

Figure 13.14 (top panel) An abstract depiction of the sort of prototypical cost function

seen when employing neural network models. Such a cost may contain many saddle

points, long narrow valleys, and local minima whose depth closely match its global

minima. With advanced local optimization techniques we can easily traverse saddle

points and long narrow valleys, determining such local minima. (bottom panel) An

abstract depiction of the sort of worst-case scenario nonconvex function rarely

encountered when using neural network models. Here the difference in depth between

the cost’s local and global minima is substantial, and therefore models employing

parameters from each area will vary substantially in quality. Given the vast number of

poor local minima, such a cost function is very difficult to minimize properly using

local optimization.

This is starkly different than a kind of hypothetical, worst-case scenario non-

convex cost (not often encountered with neural networks) whose global minima

it to easily deal with long narrow valleys and flat areas of nonconvex functions.

These modifications include momentum-based (see Appendix Section A.2) and

normalized gradient methods (see Appendix Section A.3). Combining these two

modifications (see Appendix Section A.4), in addition to mini-batch optimiza-

tion (see Section 7.8 and Appendix Section A.5), can further enhance gradient-

based methods so that they can more easily minimize cost functions like the one

shown in the middle panel of Figure 6.3, and neural network models in general.

In short, the sort of nonconvexity encountered with neural network models is

often manageable using advanced optimization tools.

Even when neural network cost functions have many local minima, these tend

to lie at a depth close to that of their global minima, and thus tend to provide

similar performance if found via local optimization. An abstract depiction of

this sort of prototypical cost function, the kind often encountered with neural

network models, is shown in the top panel of Figure 13.14.

430 Fully Connected Neural Networks

lie considerably lower than its local minima. An abstract depiction of such a func-

tion is shown in the bottom panel of Figure 13.14. There are no enhancements

one can make to any local optimization method to enable it to effectively mini-

mize such a cost function, with the only practical salve being to make many runs

starting from random initial points to see if a global minimum can be reached

by some individual run.

Example 13.10 Comparing first-order optimizers on a multi-layer neural

network model

In this example we use P = 50,000 randomly selected data points from the

MNIST dataset (see Example 7.10) to perform multi-class classification (C = 10)

using a four-hidden-layer neural network with ten units per layer, and a tanh

activation (this particular architecture was chosen arbitrarily for the purposes of

this example). Here we compare the efficacy of three first-order optimizers: the

standard gradient descent scheme (see Section 3.5), its component-normalized

version (see Section A.3.2), and RMSProp (see Section A.4).

Each optimizer is used in both batch and mini-batch (using batch size of 200)

regimes (see Section 7.8) to minimize the multi-class Softmax cost over this data.

For all runs we initialize at the same starting point, and in each instance use the

largest fixed steplength value of the form α = 10

γ

(for integer γ) that produced

convergence.

In Figure 13.15 we show the results of the batch (top row) and mini-batch

(bottom row) versions, showing both cost and accuracy histories measuring the

efficacy of each optimizer during the first ten epochs (or full sweeps through the

dataset). In both the batch and mini-batch runs we can see how the component-

normalized version of gradient descent and RMSProp significantly outperform

the standard algorithm in terms of speed of convergence.

13.6 Batch Normalization

Previously, in Section 9.3, we saw how normalizing each input feature of a

dataset significantly aids in speeding up parameter tuning, particularly with

first-order optimization methods, by improving the shape of a cost function’s

contours (making them more ”circular”).

With our generic linear model

model (x, w

)

= w

0

+ x

1

w

1

+ · · · + x
N

w

N

(13.32)

standard normalization involves normalizing the distribution of each input

dimension of a dataset

n

x

p

o

P

p=1

by making the substitution

13.6 Batch Normalization 431

co
st

epoch
ac
cu

ra
cy

epoch epoch

epoch

co
st

ac
cu

ra
cy

Figure 13.15 Figure associated with Example 13.10. Cost function (left column) and

accuracy (right column) history plots comparing the efficacy of three first order

optimizers in tuning the parameters of a four-hidden-layer neural network model over

the MNIST dataset, using the batch (top row) and mini-batch (bottom row) versions of

each optimizer. See text for further details.

x

p,n

←-

x

p,n

- µ

n

σ

n

(13.33)

for the nth input dimension, where µ

n

and σ

n

are the mean and standard devi-

ation along this dimension, respectively.

In this section we will learn how grafting a standard normalization step on to

each hidden layer of an L-layer neural network model

model (x,Θ) = w

0

+ f

(L)

1

(x) w

1

+ · · · + f

(L)

U

L

(x) w

U

L

(13.34)

where f

(L)

1

through f

(L)

U

L

are L-layer units as described in Section 13.2, similarly

makes tuning the parameters of such a model significantly easier.

With this extended standard normalization technique, called batch normaliza-

tion [62], we normalize not just the input to our fully connected network but the

distribution of every unit in every hidden layer of the network as well. As we

will see, doing this provides even greater optimization speed-up (than that pro-

vided by standard normalization of the input alone) for fully connected neural

network models.

432 Fully Connected Neural Networks

13.6.1 Batch normalization of single-hidden-layer units

Suppose first, for simplicity, that we are dealing with a single-layer neural

network model. Setting L = 1 in Equation (13.34) gives this model as

model (x,Θ) = w

0

+ f

(1)

1

(x) w

1

+ · · · + f

(1)

U

1

(x) w

U

1

. (13.35)

We now extend the basic standard normalization scheme, applying the same

normalization concept to every ”weight-touching” distribution of this model.

Of course here the input features no longer touch the weights of the final linear

combination (i.e., w

1

,w

2

, ...,w
U

1

). They instead touch the weights internal to the

single-layer units themselves. We can see this more easily by analyzing the jth

single-layer unit in this network

f

(1)

j

(x) = a

w

(1)

0, j

+

N

X

n=1

w

(1)

n, j

x

n

(13.36)

wherein the nth dimension of the input x

n

only touches the internal weight

w

(1)

n, j

. Thus in standard normalizing the input we directly affect the contours

of a cost function only along the weights internal to the single-layer units. To

affect the contours of a cost function with respect to weights external to the

first hidden layer (here the weights of the final linear combination) we must

naturally normalize the output of the first hidden layer.

Putting these output values in a set – and denoting it by

n

f

(1)

j

±

x

p

²o

P

p=1

– we

would naturally want to standard normalize its distribution as

f

(1)

j

(

x

)

←-

f

(1)

j

(

x

)

- µ

f

(1)

j

σ

f

(1)

j

(13.37)

where the mean µ

f

(1)

j

and standard deviation σ

f

(1)

j

are given as

µ

f

(1)

j

=

1

P

P

X

p=1

f

(1)

j

±

x

p

²

and σ

f

(1)

j

=

v

u

t

1

P

P

X

p=1

³

f

(1)

j

±

x

p

²

- µ

f

(1)

j

´

2

. (13.38)

Note importantly that, unlike our input features, the output of the single-layer

units (and hence their distributions) change every time the internal parameters

of our model are changed, e.g., during each step of gradient descent. The con-

stant alteration of these distributions is referred to as internal covariate shift in

the jargon of machine learning, or just covariate shift for short, and implies that if

we are to carry over the principle of standard normalization completely we will

need to normalize the output of the first hidden layer at every step of parameter

tuning. In other words, we need to graft standard normalization directly into

the hidden layer of our architecture itself.

13.6 Batch Normalization 433

Below we show a generic recipe for doing just this, a simple extension of the

recursive recipe for single-layer units given in Section 13.2.1.

Recursive recipe for batch-normalized single-layer units

1. Choose an activation function a (·)

2. Compute the linear combination v = w

(1)

0

+

∑

N

n=1

w

(1)

n

x

n

3. Pass the result through activation and form f

(1)

(x) = a (v)

4. Standard normalize f

(1)

as f

(1)

(

x

)

←-

f

(1)

(x)-µ

f

(1)

σ

f

(1)

Example 13.11 Visualizing internal covariate shift in a single-layer network

In this example we illustrate the internal covariate shift in a single-layer neural

network model using two ReLU units f

(1)

1

and f

(1)

2

, applied to performing two-

class classification of the toy dataset introduced in Example 11.7. We run 5000

steps of gradient descent to minimize the two-class Softmax cost using this

single-layer network, where we standard normalize the input data.

In Figure 13.16 we show the progression of this gradient descent run, plotting

the tuples

n±

f

(1)

1

±

x

p

²

, f

(1)

2

±

x

p

²²o

P

p=1

at three of the steps taken during the run. The

top and bottom panels respectively show the covariate shift and the complete

cost function history curve, where the current step of the optimization is marked

on the curve with a red dot.

As can be seen in the top row of Figure 13.16, the distribution of these tuples

change dramatically as the gradient descent algorithm progresses. We can intuit

(from our previous discussions on input normalization) that this sort of shifting

distribution negatively affects the speed at which gradient descent can properly

minimize our cost function.

Next, we repeat this experiment using the same gradient descent settings but

now with batch-normalized single-layer units, and plot the results in a similar

manner in Figure 13.17. Notice how the distribution of activation outputs stays

considerably more stable as gradient descent progresses.

434 Fully Connected Neural Networks

0.51.0 0.51.0 0.51.0

0.4

0.4

0.4

0.4

0.4

0.4

1000 2000 3000 4000 50000 1000 2000 3000 4000 50000 1000 2000 3000 4000 50000

0.8

0.5

0.8

0.5

0.8

0.5

g(Θ

k

)

k

f

(1)

1

f

(1)

2

f

(1)

1

f

(1)

1

f

(1)

2

f

(1)

2

g(Θ

k

) g(Θ

k

)

k k

Figure 13.16 Figure associated with Example 13.11. See text for details.

22

2

2

1000 2000 3000 4000 50000 1000 2000 3000 4000 50000 1000 2000 3000 4000 50000

0.8

0.6

0.8

0.6

0.8

0.6

g(Θ

k

)

k

f

(1)

1

f

(1)

2

f

(1)

1

f

(1)

1

f

(1)

2

f

(1)

2

g(Θ

k

)

g(Θ

k

)

k k

22 22

2

2

2

2

Figure 13.17 Figure associated with Example 13.11. See text for details.

13.6.2 Batch normalization of multi-hidden-layer units

Suppose for a moment that our fully connected neural network has just two

hidden layers (i.e.,L = 2 inEquation (13.34)), and that we have grafted a standard

normalization step onto the first hidden layer of our network as described in the

previous section, so that now our two-hidden-layer units touch the final linear

13.6 Batch Normalization 435

combination weights (i.e., w

1

,w

2

, ...,w
U

2

). To temper an associated cost function

with respect to w

j

we normalize the associated distribution of our jth unit via

f

(2)

j

(x)←-

f

(2)

j

(x) - µ

f

(2)

j

σ

f

(2)

j

(13.39)

where the mean µ

f

(2)

j

and standard deviation σ

f

(2)

j

are defined as

µ

f

(2)

j

=

1

P

P

X

p=1

f

(2)

j

±

x

p

²

and σ

f

(2)

j

=

v

u

t

1

P

P

X

p=1

³

f

(2)

j

±

x

p

²

- µ

f

(2)

j

´

2

. (13.40)

As was the case in studying the single-layer case in the previous section,

here too we will need to graft this step on to the second hidden layer of our

network so that whenever its parameters change (e.g., during each step of a

local optimizer) the distribution of this unit remains normalized.

Extending this concept to a general L-hidden-layer neural network model

in Equation (13.34) we will normalize the output of every hidden layer of the

network. Thus in general, for L-layer units once we have standard normalized

the output of every layer preceding it we standard normalize the jth unit of the

Lth hidden layer

f

(L)

j

(x) = a

w

(L)

0, j

+

U

L-1

X

i=1

w

(L)

i, j

f

(L-1)

i

(x)

(13.41)

via the substitution

f

(L)

j

(x)←-

f

(L)

j

±

x

p

²

- µ

f

(L)

j

σ

f

(L)

j

(13.42)

where the mean µ

f

(L)

j

and standard deviation σ

f

(L)

j

are defined as

µ

f

(L)

j

=

1

P

P

X

p=1

f

(L)

j

±

x

p

²

and σ

f

(L)

j

=

v

u

t

1

P

P

X

p=1

³

f

(L)

j

±

x

p

²

- µ

f

(L)

j

´

2

. (13.43)

As with the single-layer case, we can still construct each batch-normalized

unit recursively since all we must do is insert a standard normalization step into

the end of each layer as summarized in the following recipe (akin to the recipe

given for a general L-layer unit in Section 13.2.3).

436 Fully Connected Neural Networks

Recursive recipe for batch-normalized L-layer units

1. Choose an activation function a

(

·

)

2. Construct U

L-1

batch-normalized (L - 1)-layer units f

(L-1)

i

(

x

)

for i = 1,2, ...,U
L-1

3. Compute the linear combination v = w

(L)

0

+

∑

U

L-1

i=1

w

(L)

i

f

(L-1)

i

(x)

4. Pass the result through activation and form f

(L)

(

x

)

= a

(

v

)

5. Standard normalize f

(L)

via f

(L)

(

x

)

←-

f

(L)

(x)-µ

f

(L)

σ

f

(L)

When employing a stochastic or mini-batch first-order method for optimiza-

tion (see Section 7.8), normalization of the architecture is performed precisely

as detailed here, on each individual mini-batch. Also note that, in practice, the

batch normalization formula in Equation (13.42) is often parameterized as

f

(L)

(

x

)

←- α

f

(L)

(x) - µ

f

(L)

σ

f

(L)

+ β (13.44)

where inclusion of the tunable parameters α and β (which are tuned along with

the other parameters of a batch-normalized network) allows for greater flexibil-

ity. However, even without these extra parameters we can achieve significant

improvement in optimization speed when tuning fully connected neural net-

work models with the employment of (unparameterized) batch normalization.

Example 13.12 Visualizing internal covariate shift in a multi-layer network

In this example we illustrate the covariate shift in a four-hidden-layer network

with two units per layer, using the ReLU activation and the same dataset em-

ployed in Example 13.11. We then compare this to the covariate shift present in

the batch-normalized version of the same network. We use just two units per

layer so that we can visualize the distribution of activation outputs of each layer.

Beginning with the unnormalized version of the network we can see that – as

with the single-layer case in Example 13.11 – the covariate shift of this network

(shown in the top row of Figure 13.18) is considerable. The distribution of each

hidden layer’s units is shown here, with the output tuples of the ‘th hidden

layer

n±

f

(‘)

1

±

x

p

²

, f

(‘)

2

±

x

p

²²o

P

p=1

colored in cyan for ‘ = 1, in magenta for ‘ = 2, in

lime green for ‘ = 3, and in orange for ‘ = 4.

Performing batch normalization on each layer of this network helps consider-

ably in taming this covariate shift. In Figure 13.19 we show the result of running

the same experiment, using the same initialization, activation, and dataset, but

13.6 Batch Normalization 437

11

1

0.5

2000 4000 6000 8000 100000 2000 4000 6000 8000 100000 2000 4000 6000 8000 100000

0.66

0.54

g(Θ

k

)

k

g(Θ

k

)

g(Θ

k

)

k k

11 11

1 1

0.66

0.54

0.66

0.54

0.5 0.5

f

(`)

2

f

(`)

2

f

(`)

2

f

(`)

1

f

(`)

1

f

(`)

1

Figure 13.18 Figure associated with Example 13.12. See text for details.

22

2

2

2000 4000 6000 8000 100000 2000 4000 6000 8000 100000 2000 4000 6000 8000 100000

0.65

0.45

g(Θ

k

)

k

g(Θ

k

) g(Θ

k

)

k k

22 22

2

2

2

2

0.65

0.45

0.65

0.45

f

(`)

2

f

(`)

2

f

(`)

2

f

(`)

1

f

(`)

1

f

(`)

1

Figure 13.19 Figure associated with Example 13.12. See text for details.

this time using the batch-normalized version of the network. Studying the figure

from left to right, as gradient descent progresses, we can see once again that the

distribution of each layer’s activation outputs remains much more stable than

previously.

438 Fully Connected Neural Networks

��

��

��

�	

��

��

��

�

��

��

��

��

�� �� �� �� �� �� �� �� �� ��

Figure 13.20 Figure associated with Example 13.13. See text for details.

13.6.3 Evaluation of new data points in batch-normalized networks

An important point to remember when employing a batch-normalized neural

network is that we must treat new data points (not used in training) precisely

as we treat training data. This means that the final normalization constants

determined during training (i.e., the various means and standard deviations

of the input as well as those for each hidden layer output) must be saved and

reused in order to properly evaluate new data points. More specifically, all

normalization constants in a batch-normalized network should be fixed to the

values computed at the final step of training (e.g., at the best step of gradient

descent) when evaluating new data points.

13.7 Cross-Validation via Early Stopping

Being highly parameterized, the optimization of cost functions associated with

fully connected neural networks, particularly those employing many hidden

layers, can require significant computation. Because of this early stopping based

Example 13.13 Standard versus batch normalization on MNIST

In this example we illustrate the benefit of batch normalization in terms of speed-

ing up optimization via graident descent on a dataset of P = 50,000 randomly

chosen handwritten digits from the MNIST dataset (introduced in Example

7.11). In Figure 13.20 we show cost (left panel) and classification accuracy (right

panel) histories of ten epochs of gradient descent, using the largest steplength

of the form 10

γ

(for integer γ) we found that produced adequate convergence.

We compare the standard and batch-normalized version of a four-hidden-layer

neural network with ten units per layer and ReLU activation. Here we can see,

both in terms of cost function value and number of misclassifications (accuracy),

that the batch-normalized version allows for much more rapid minimization via

gradient descent.

13.7 Cross-Validation via Early Stopping 439

regularization (as described in Section 11.6.2), which involves learning parame-

ters to minimize validation error during a single run of optimization, is a pop-
ular cross-validation technique when employing fully connected multi-layer

networks. The notion of early stopping is also the basis for specialized ensem-

bling techniques which aim at producing a set of neural network models for
bagging (introduced in Section 11.9) at minimal computational cost (see, e.g.,
[63, 64]).

Example 13.14 Early stopping and regression
In this example we illustrate the early stopping procedure using a simple non-
linear regression dataset (split into 2

3

training and 1

3

validation), and a three-
hidden-layer neural network with ten units per layer, and with tanh activation.
Three different steps from a single run of gradient descent (for a total of 10,000

steps) is illustrated in Figure 13.21, one per each column, with the resulting fit at
each step shown over the original (first row), training (second row), and valida-
tion data (third row). Stopping the gradient descent early after taking (around)
2000 steps provides, for this training-validation split of the original data, a fine
nonlinear model for the entire dataset.

Example 13.15 Early stopping and handwritten digit classification
In this example we use early stopping based regularization to determine the
optimal settings of a two-hidden-layer neural network, with 100 units per layer
and ReLU activation, over the MNIST dataset of handwritten digits first de-
scribed in Example 7.10. This multi-class dataset (C = 10) consists of P = 50,000

points in the training and 10,000 points in the validation set. With a batch size
of 500 we run 100 epochs of the standard mini-batch gradient descent scheme,

resulting in the training (blue) and validation (yellow) cost function (left panel)
and accuracy (right panel) history curves shown in Figure 13.22. Employing the
multi-class Softmax cost, we found the optimal epoch with this setup achieved
around 99 percent accuracy on the training set, and around 96 percent accuracy
on the validation set. One can introduce enhancements like those discussed in
the previous sections of this chapter to improve these accuracies further. For
comparison, a linear classifier – trained/validated on the same data – achieved
94 and 92 percent training and validation accuracies, respectively.

440 Fully Connected Neural Networks

or
ig

in
al

 d
at

a
tr

ai
ni

ng
 d

at
a

va
lid

at
io

n
da

ta

error

step step step

error error

Figure 13.21 Figure associated with Example 13.14. See text for details.

13.8 Conclusion

In this chapter we described a range of technical matters associated with fully

connected neural networks, which were first introduced in Section 11.2.3.

We began by carefully describing single- and multi-layer neural network

architectures in Section 13.2, followed by a discussion of activation functions

in Section 13.3, backpropogation in Section 13.4, and the nonconvexity of cost

13.9 Exercises 441

co
st

ac
cu

ra
cy

epoch epoch

Figure 13.22 Figure associated with Example 13.15. See text for details.

functions over neural network models in Section 13.5. Batch normalization – a

natural extension of the standard normalization procedure described in Section

9.4 – was then explored in Section 13.6. Finally, in Section 13.7 we discussed the

use of regularization (and in particular, early stopping) based cross-validation

– first described in great detail in Section 11.6 – with fully connected neural

network models.

13.9 Exercises

†The data required to complete the following exercises can be downloaded from

the text’s github repository at github.com/jermwatt/machine_learning_refined

13.1 Two-class classification with neural networks

Repeat the two-class classification experiment described in Example 13.4 begin-

ning with the implementation outlined in Section 13.2.6. You need not reproduce

the result shown in the top row of Figure 13.9, but can verify your result via

checking that you can achieve perfect classification of the data.

13.2 Multi-class classification with neural networks

Repeat the multi-class classification experiment described in Example 13.4 be-

ginning with the implementation outlined in Section 13.2.6. You need not re-

produce the result shown in the bottom row of Figure 13.9, but can verify your

result via checking that you can achieve perfect classification of the data.

13.3 Number of weights to learn in a neural network

(a) Find the total number Q of tunable parameters in a general L-hidden-layer

neural network, in terms of variables expressed in the layer sizes list in Section

13.2.6.

442 Fully Connected Neural Networks

(b) Based on your answer in part (a), explain how the input dimension N and

number of data points P each contributes to Q. How is this different from what

you saw with kernel methods in the previous chapter?

13.4 Nonlinear Autoencoder using neural networks

Repeat the Autoencoder experiment described in Example 13.6 beginning with

the implementation outlined in Section 13.2.6. You need not reproduce the pro-

jection map shown in the bottom-right panel of Figure 13.11.

13.5 The maxout activation function

Repeat Exercise 13.4 using the maxout activation (detailed in Example 13.9).

13.6 Comparing advanced first-order optimizers I

Repeat the first set of experiments described in Example 13.10, and produce

plots like those shown in the top row of Figure 13.15. Your plots may not look

precisely like those shown in this figure (but they should look similar).

13.7 Comparing advanced first-order optimizers II

Repeat the second set of experiments described in Example 13.10, and produce

plots like those shown in the bottom row of Figure 13.15. Your plots may not

look precisely like those shown in this figure (but they should look similar).

13.8 Batch normalization

Repeat the experiment described in Example 13.13, and produce plots like those

shown in Figure 13.20. Your plots may not look precisely like those shown in

this figure (but they should look similar).

13.9 Early stopping cross-validation

Repeat the experiment described in Example 13.14. You need not reproduce all

the panels shown in Figure 13.21. However, you should plot the fit provided by

the weights associated with the minimum validation error on top of the entire

dataset.

13.10 Handwritten digit recognition using neural networks

Repeat the experiment described in Example 13.15, and produce cost/accuracy

history plots like the ones shown in Figure 13.22. You may not reproduce exactly

what is reported based on your particular implementation. However, you should

be able to achieve similar results as reported in Example 13.15.

14 Tree-Based Learners

14.1 Introduction

In this chapter we greatly expound on our discussion of tree-based learners,

first introduced in Section 11.2.3, which are wildly popular due to their great

effectiveness particularly with structured data (see, e.g., the discussion in Section

11.8). In this chapter we explore the technical eccentricities associated with

tree-based learners, describe the so-called regression and classification trees, and

explain their particular usage with boosting based cross-validation and bagged

ensembles (first introduced in Sections 11.5 and 11.9, respectively) where they

are referred to as gradient boosting and random forests in the jargon of machine

learning.

14.2 From Stumps to Deep Trees

In Section 11.2.3 we introduced the simplest exemplar of a tree-based learner:

the stump. In this section we discuss how, using simple stumps, we can define

more general and complex tree-based universal approximators.

14.2.1 The stump

The most basic tree-based universal approximator, the stump, is a simple step

function of the form

f

(

x

)

=

v

1

v

2

x ≤ s

x > s

(14.1)

with three tunable parameters: two step levels or leaf parameters denoted by

v

1

and v

2

(whose values are set independently of one another), and a split

point parameter s defining the boundary between the two levels. This simple

stump is depicted in the top-left panel of Figure 14.1. In the top-right panel

of this figure we show another graphical representation of the generic stump

in Equation (14.1), which helps explain the particular nomenclature (i.e., trees,

leaves, etc.) used in the context of tree-based approximators. Represented this

444 Tree-Based Learners

xs

v

1

v

2

v

1,2

v

1,1

v

2,1

v

2,2

s

1

s

2

xs

x > s

f (x)

v

1

v

2

x > s

2

x > s

1

f (x)

x > s

v

1,1

v

1,2

v

2,1

v

2,2

x ≤ s

x ≤ s

x ≤ s

1

x ≤ s

2

Figure 14.1 (top-left panel) A simple stump, defined in Equation (14.1). (top-right

panel) A graphical illustration of a stump function as a binary tree. (bottom-left panel)

A depth-two tree formed by recursing on each leaf of the stump, replacing it with a new

stump. (bottom-right panel) A graphical illustration of the depth-two tree.

way, the stump can be thought of as a binary tree structure of depth one, with

f (x) as its root node, and v

1

and v

2

as its leaf nodes.

The stump defined in Equation (14.1) takes in one-dimensional (i.e., scalar)

input. When the input is N-dimensional in general, the stump cuts along a

single dimension (or coordinate axis). For example, when defined along some

nth dimension a stump taking in N-dimensional input x is defined as

f

(

x

)

=

v

1

v

2

x

n

≤ s

x

n

> s

(14.2)

where x

n

here denotes the nth dimension of x.

14.2.2 Creating deep trees via recursion

Recursing we can construct deeper trees by applying the same concept used to

build a stump to each of its leaves, i.e., by splitting each leaf in two. This recursion

results in a tree of depth two, with three split points and four distinct leaves, as

shown in the bottom row of Figure 14.1. A depth-two tree has significantly

greater capacity (see Section 11.2) than a stump, since the location of the split

points and the leaf values can be set in a multitude of different ways, as can be

seen in the top row of Figure 14.2.

This recursive idea can then be continually applied to each leaf of a depth-

two tree to create a depth-three tree, and so forth. The deeper a tree becomes

the more capacity it gains, with each unit being able to take on a wider variety

14.2 From Stumps to Deep Trees 445

f

1

(x) f

2

(x) f

3

(x) f

4

(x)

f

1

(x) f

2

(x) f

3

(x) f

4

(x)

Figure 14.2 Four instances of a depth D = 2 tree (top row) and a depth D = 10 tree

(bottom row), where in each instance all the parameters (i.e., split points and leaf

values) are set at random. The latter is clearly capable of generating a wider swath of

shapes given different settings of its parameters, and thus has higher capacity. Note

here that the leaves are connected by vertical lines in order to give each tree instance a

continuous appearance, which is done for visualization purposes only.

of different shapes, as can be seen in the bottom row of Figure 14.2. Indeed this

is reflected in the fact that trees become exponentially more parameterized the

deeper they are made: one can easily show that a tree of general depth D (with

scalar input) will have 2

D

- 1 split points and 2

D

leaves, thus 2

D+1

- 1 tunable

parameters in total. This recursive procedure is often referred to as the growing

of a tree in the jargon of machine learning.

Note importantly that unlike fixed-shape and neural network universal ap-

proximators, tree-based units are defined locally. This means that when we adjust

one parameter of a polynomial or a neural network unit it can globally affect the

shape of the function over the entire input space. However, when we split any

leaf of a tree we are only affecting the shape of the tree locally at that leaf. This

is why tree-based universal approximators are sometimes called local function

approximators.

14.2.3 Creating deep trees via addition

Deeper, more flexible trees can also be constructed via addition of shallower

trees. For instance, Figure 14.3 illustrates how a depth-two tree can be created

by adding together three depth-one trees (i.e., three stumps). Again, it is easy

446 Tree-Based Learners

x

s

1

s

2

s

3

x

s

1

s

2

s

3

Figure 14.3 (left panel) Three stumps, each depicted in a distinct color. For ease of

visualization we have connected the leaves by vertical lines in order to give each stump

instance a continuous appearance. (right panel) A depth-two tree (in black) created by

adding together the three stumps shown in the left panel.

to show that in general adding 2

D

- 1 stumps (with scalar input) together will

create a depth-D tree (provided that the stumps do not share any split points).

14.2.4 Human interpretability

Given their particularly simple structure, shallow tree-based units (such as the

depth-one and depth-two trees shown in Figure 14.1) are often easy to interpret

by humans, in comparison to their fixed-shape and neural network counterparts.

However, this feature of tree-based units quickly dissipates as the depth of a tree

is increased (see, e.g., depth D = 10 trees depicted in the bottom row of Figure

14.2) as well as when trees are combined or ensembled together.

14.3 Regression Trees

In this section we discuss the use of general tree-based universal approximators

for the problem of regression, often called regression trees. Unlike fixed-shape

or neural network universal approximators, cost functions imbued with tree-

based units create highly nonconvex, staircase-like functions that cannot be

easily minimized by any local optimization method. To see why this is the case

via an example, let us take the simple regression dataset shown in the top-left

panel of Figure 14.4, and try to fit a nonlinear regressor to it using a model

composed of a single stump, by minimizing an appropriate cost function over

this model (e.g., the Least Squares cost).

14.3.1 Determining an optimal split point when leaf values are fixed

Fitting a single-stump model to our dataset entails tuning its three parameters:

the location of the stump’s split point, as well as its two leaf values. To make

matters easy, here we fix the two leaf parameters associated with our model

to two arbitrary values so that only the split point parameter s remains to be

14.3 Regression Trees 447

y

x

s

g(s)

s

g(s)

x

Figure 14.4 (top-left panel) A prototypical nonlinear regression dataset. (top-right

panel) Three stumps with fixed leaf values (whose split point can vary). (middle panel)

Each stump instance is slid horizontally across the input of the data by varying its split

point value, creating three corresponding staircase-like Least Squares costs. (bottom

panel) Each cost in the middle panel is constant in between consecutive inputs,

implying that we need only test one split point per flat region, e.g., the mid-point, as

shown in this panel. See text for further details.

optimally tuned, and hence we can now visualize the one-dimensional Least

Squares cost function g(s) involving the split point parameter alone. In the top-

right panel of Figure 14.4 we show three stump instances, colored red, green,

and blue, with distinct but fixed leaf values. Now we take each stump and

sweep it over the dataset horizontally, trying out for each all possible split

points in the input space of the dataset. The three Least Squares cost functions

resulting from this exercise are shown in the middle panel of the figure and are

colored to match their corresponding stumps shown in the top-right panel. Each

one-dimensional cost, as we can see, looks like a staircase consisting of many

448 Tree-Based Learners

perfectly flat regions. These problematic flat regions are a direct consequence of

the shape of our nonlinearity (i.e., the stump). Recall, we saw similar behavior

when dealing with step functions in the context of logistic regression back in

Sections 6.2 and 6.3. The existence of such flat regions is massively undesirable

because no local optimization algorithm can navigate them effectively.

However, notice when the leaf values of a stump are fixed the corresponding

Least Squares cost remains constant for all split point values in between con-

secutive inputs. In other words, all three cost functions in the middle panel of

Figure 14.4 take on a staircase shape with their flat step areas located in the same

locations: the regions in between consecutive input values.

This fact has a very practical repercussion: while we cannot properly tune the

split point parameter using local optimization (due to the staircase shape of the

cost function over this parameter), we can, however, find one by simply testing

a single value (e.g., the mid-point) in each of the flat areas of the cost since all split

points there produce the same regression quality. This collection of mid-point

evaluations for each of our three example stumps is illustrated in the bottom

panel of Figure 14.4.

14.3.2 Determining optimal leaf values when split point is fixed

Contrary to the task of determining the optimal split point of a stump with fixed

leaf values, determining the optimal leaf values for a stump with a fixed split

point is exceedingly straightforward. Since the leaves of a stump are constant-

valued, and we want them both to be set so that together our stump represents

the data as well as possible, it makes intuitive sense simply to set the value of

each leaf to the mean output of those points it will represent. This choice is shown

in red in the right panel of Figure 14.5 for our toy regression dataset, where for

a given split point (illustrated by the vertical blue dashed line in the left panel)

the leaf value on the left is set to the mean of the output of those points lying to

the left of the split point, and the leaf value on the right is set to the mean of the

output of those points to the right of the split point.

This intuitive choice of leaf value can be completely justified via the first-order

optimality condition introduced in Section 3.2. To see this, let us first formalize

the general scenario we are investigating. In the context of regression, our fixed

split point s is defined along the nth input dimension of a regression dataset

– denoted by

n±

x

p

, y

p

²o

P

p=1

– and splits the data into two sections. We can keep

track of these two subsets of our data via index sets Ω

L

and Ω

R

, which denote

the input/output pairs of our dataset lying on either side of the split to the ”left”

and ”right” of it, expressed formally as

Ω

L

=

n

p | x

p,n

≤ s

o

and Ω

R

=

n

p | x

p,n

> s

o

. (14.3)

A general stump using this split point (echoing Equation (14.2)) can then be

written as

14.3 Regression Trees 449

Figure 14.5 (left panel) The same regression dataset shown in Figure 14.4, along with

the fixed split point shown via a vertical dashed blue line that divides the input space of

data into two subspaces lying to the left and right of this line. (right panel) The stump

with optimally set leaf values, determined as the mean of the output of all data points

to the left and right of the split point. See text for further details.

f (x) =

v

L

v

R

x

n

≤ s

x

n

> s

(14.4)

where x

n

is the nth dimension of the input x, and v

L

and v

R

are leaf values we

will determine.

To determine the optimal values of v

L

and v

R

we can minimize two one-

dimensional Least Squares costs, defined over the points belonging to the index

setΩ

L

and Ω

R

, respectively, as

g(v

L

) =

1

|Ω

L

|

X

p∈Ω

L

±

v

L

- y

p

²

2

and g(v

R

) =

1

|Ω

R

|

X

p∈Ω

R

±

v

R

- y

p

²

2

(14.5)

where |Ω

L

| and |Ω

R

| denote the number of points belonging to the index sets Ω

L

andΩ

R

, respectively.

Each of these cost functions is exceptionally simple. Setting the derivative of

each to zero (with respect to its corresponding leaf value) and solving gives the

optimal leaf values v

?

L

and v

?

R

, respectively, as

v

?

L

=

1

|Ω

L

|

X

p∈Ω

L

y

p

and v

?

R

=

1

|Ω

R

|

X

p∈Ω

R

y

p

. (14.6)

14.3.3 Optimization of regression stumps

Combining the two ideas discussed previously provides a reasonable work-

around for tuning all three parameters of a stump for the purposes of regression

(as an alternative to tuning all three together via local optimization, which

we cannot do). That is, first we create a set of candidate split point values

by recording every mid-point between our input data, along each of its input

450 Tree-Based Learners

dimensions. For each candidate split point we then determine the stump’s leaf

values optimally, setting them to the mean of the training data output to the

left and right of the split point, and compute its (Least Squares) cost value.

After doing this for all candidate split points, we find the very best stump (with

optimal split point and leaf values) as one that provides the lowest cost value.

Example 14.1 Fitting the parameters of a simple regression tree

In this example we fit a single-stump model to the toy regression dataset shown

in Figures 14.4 and 14.5, illustrating the entire range of candidate stumps whose

split points are formed by taking the mid-point between each consecutive pair

of inputs and whose corresponding leaf values are set to the mean of the output

on either side of each split. Scanning the panels of Figure 14.6 from the top-left

to the bottom-right we illustrate the entire range of candidate stumps for this

dataset, scanning from left to right across the input of the dataset. In the top of

each panel we show the candidate stump, with the Least Squares cost values

associated with that particular stump as well as those that preceded it plotted

underneath. Once all candidates have been tested (as shown in the bottom-right

panel), the particular stump providing the lowest possible cost value (here, the

fifth stump in the bottom-left panel) is found optimal.

In general, for a dataset of P points, each of input dimension N , there are

a total of N(P - 1) split points to choose from over the entire input space of

the problem. When computation becomes a primary concern (mainly with very

large P and/or N) sampling strategies derived from this basic scheme may be

used, including testing split points along only a random selection of all input

dimensions, testing a coarser selection of split points, and so on.

14.3.4 Deeper regression trees

To fit a depth-two tree to a regression dataset we first fit a stump as described in

the previous section, and then recurse on the same idea on each of the stump’s

leaves. In other words, we can think of the first fitted stump as dividing our

original dataset into two nonoverlapping subsets, one belonging to each leaf.

Thinking recursively we can then fit a stump to each of these subsets in precisely

the same way as we fit the stump to the original dataset, splitting each of the

leaves of our original stump in two and creating a depth-two tree. We can go

on further and repeat this process, splitting each leaf of our depth-two tree to

create a depth-three tree, and so on.

Note that in the process of growing the tree, there are certain conditions in

which we should not split a leaf. For example, there is no reason to split a leaf

that contains just a single data point, or one where data points contained in

14.3 Regression Trees 451

co
st

split point

x

y

x x x

co
st

co
st

co
st

split point split point split point

co
st

co
st

co
st

co
st

split point split point split point split point

y

y y

xxxx

y yyy

Figure 14.6 Figure associated with Example 14.1. See text for details.

the input space of the leaf have precisely the same output value (since in both

instances our current leaf represents the data contained in it perfectly). Both of

these practical conditions are often generalized when implementing recursive

tree-based regressors in practice. For instance, progress on a leaf may be halted

if it contains less than a predetermined number of points (as opposed to just a

singleton point). Thus, in practice, a regression tree (with scalar input) of depth

Dmay not end up with precisely 2

D

leaves. Instead, certain branches stemming

from the root of the tree may halt sooner than others, with some branches of

the tree possibly growing to the defined depth. Therefore when applying binary

452 Tree-Based Learners

trees to regression (and, as we will see, classification) we refer to the trees as

having a maximum depth, i.e., the largest depth that a branch of the tree can

possibly grow to.

Example 14.2 Growing a maximum-depth regression tree

The recursive procedure for growing a deep regression tree is illustrated in

Figure 14.7. We begin (on the left) by fitting a stump to the original dataset.

As we move from left to right the recursion proceeds, with each leaf of the

preceding tree split in order to create the next, deeper tree. As can be seen in the

rightmost panel, a tree with maximum depth of four is capable of representing

the training data perfectly.

depth = 1 depth = 2 depth = 3 depth = 4

Figure 14.7 Figure associated with Example 14.2. See text for details.

14.4 Classification Trees

In this section we discuss the application of tree-based universal approximators

to the problem of classification, often referred to as classification trees. Thankfully,

virtually everything that we have previously seen regarding regression trees

in the previous section caries over directly to the problem of classification.

However, as we will see, the fact that classification data has discrete output

naturally provokes different approaches to determining appropriate leaf values.

As in the prior section, we begin here by discussing the proper construction of

a stump, employing a toy dataset to illustrate key concepts, and recurse on this

idea to create deeper trees.

14.4.1 Determining an optimal split point when leaf values are fixed

Imagine we are now dealing with a classification dataset, for example, the toy

dataset shown in the left panel of Figure 14.8, and suppose that we aim to

properly fit a stump to this data. If we attempt to set the split point of our

stump via local optimization we run into precisely the same problem we came

upon in Section 14.3.1 with regression. That is, not only will any corresponding

14.4 Classification Trees 453

classification cost function be nonconvex, but it will consist of completely flat,

staircase-like sections that no local optimization algorithm can navigate effec-

tively. Thus determining the optimal split point value in the case of classification

must naturally result in the same approach we saw with regression in the pre-

vious section: we must test out an array of split point candidates to determine

which works best. Once again, for the same practical purposes we saw with

regression, we can simply test the mid-points between each consecutive pair of

input values along each of their input dimensions (or a subset of these points if

their number becomes prohibitively large).

14.4.2 Determining optimal leaf values when split point is fixed

In Section 14.3.2 we saw with regression that the leaf values for a single-stump

model can be intuitively set to the mean output of those points belonging to

each leaf of the stump. We backed up this intuitive choice by showing that

these settings are precisely what we find by solving the first-order condition

for a set of appropriately defined Least Squares cost functions. Here in the

classification scenario, let us follow this logic in reverse and begin by optimizing

an appropriate cost function (e.g., the Perceptron or Cross Entropy/Softmax

costs). We then follow by presenting an intuitive choice based on a different

statistic of the output: the mode.

Suppose we are tasked with classification of a two-class dataset

n±

x

p

, y

p

²o

P

p=1

with label values y

p

∈ {-1, +1}, and that the split point of our stump is fixed.

We define index sets Ω

L

and Ω

R

as in Equation (14.3) to denote the indices of

all points lying to the ”left” and ”right” of our split point. To determine the

optimal values of v

L

and v

R

we can minimize two one-dimensional classification

costs (e.g., the Softmax) defined over the points belonging to the index set Ω

L

andΩ

R

, respectively, as

g(v

L

) =

1

|Ω

L

|

X

p∈Ω

L

log

(

1 + e

-y

p

v

L

)

and g(v

R

) =

1

|Ω

R

|

X

p∈Ω

R

log

(

1 + e

-y

p

v

R

)

(14.7)

where again, as in Equation (14.5), |Ω

L

| and |Ω

R

| denote the number of points

belonging to the index sets Ω

L

and Ω

R

, respectively. One can also weight the

summands of such cost functions (as detailed in Section 6.9.3) in order to better

deal with potential class imbalance in the leaves.

In either case, unlike the analogous pair of Least Squares costs in Equation

(14.5), here we cannot solve the corresponding first-order conditions in closed

form and must rely on local optimization techniques. However, because of the

simplicity of each problem such optimizations are especially easy to solve it-

eratively. Indeed, often these sorts of costs are approximately minimized by

applying just a single step of Newton’s method. Doing this substantially mini-

454 Tree-Based Learners

mizes the costs while keeping computation overhead low

1

and preventing po-

tential numerical issues associated with the Softmax cost and Newton’s method

(introduced in the context of linear two-class classification in Section 6.6).

Note that, as with any other approach to classification, once appropriate

leaf values have been determined, to make valid predictions the output of a

classification stump must be passed through an appropriate discretizer, e.g., the

sign function in the case of two-class classification using label values ±1 (see

Section 6.8.1).

As an alternative to the cost function based approach detailed thus far, one can

also choose optimal leaf values based on simple statistics of the output. Since the

output of classification data is discrete, we would naturally avoid using the mean

as our statistic of choice (as we did with regression), and instead lean towards

using the mode (i.e., the most popular output label), also called the majority vote.

Using the mode will keep our leaf values constrained to the discrete labels of

our data, providing more appropriate stumps.

However, the standard mode statistic can lead to undesirable consequences,

an example of which is illustrated for a simple two-class dataset in Figure 14.8.

For this particular dataset because of the distribution of the majority class (here

those points with label value y

p

= -1) the statistical mode on both sides of

every stump will always equal -1, and thus all stumps will be entirely flat and

identical. The lack of stump diversity in this simple example does not invalidate

the use of the standard mode. However, it does highlight its inefficiency in

that deeper trees (which are more costly to create) are needed to capture the

nonlinearity of such a toy dataset.

To compensate for class imbalances like the one shown here we can, in com-

plete analogy to the concept of weighting cost functions to better handle class

imbalance (see Section 6.8.1), choose leaf values based on the balanced mode or

balanced majority vote. To compute the standard mode on one leaf of a stump

we simply count up the number of points belonging to each class in the leaf,

and determine the mode by picking the class associated with the largest count.

To compute the balanced mode on one leaf of a stump we first count up the

number of points belonging to each class on the leaf and then weight each count

inversely based on the number of points in each class belonging to both leaves

of the stump, determining the balanced mode by choosing the largest resulting

weighted count. For a general multi-class dataset with C classes, the weighted

count for the cth class on one leaf can be written as

1

As detailed in Section 4.3, a single Newton step involves minimizing the best quadratic

approximation to a cost function provided by its second-order Taylor series expansion, and for a

general single-input cost g(w) results in a simple update of the form

w

?

= w

0

-

d

dw

g(w

0

)

d

2

dw

2

g(w

0

) +λ

(14.8)

where w

0

is some initial point, λ ≥ 0 is a regularization parameter used to prevent possible

division by zero (as discussed in Section 4.3.3), and w

?

is the optimal update.

14.4 Classification Trees 455

y

x x

y

Figure 14.8 (left panel) A simple two-class classification dataset. (right panel) For each

of the nine split points denoted by vertical dashed blue lines, assigning leaf values

based on the standard mode leads to a completely flat stump, shown here in red. See text

for further details.

number of points from class c in leaf

number of points from class c in both leaves of the stump

. (14.9)

Figure 14.9 shows the result of using this strategy (of setting the leaf values

based on balanced mode instead of the mode itself) on the same dataset illus-

trated previously in Figure 14.8. Using the balanced mode here we produce

a greater variety of stumps (when compared with using the standard mode),

which allows us to capture the nonlinearity present in this dataset more effec-

tively. To see how the balanced majority was used to define the leaf values in

this instance let us examine one of the stumps (the sixth one in the middle-right

panel) more closely. This stump has six data points on its left and four data

points on its right side. Of the six data points lying to the left of its split point,

four points have a label value of-1 and two points a label value of +1, resulting

in a balanced majority vote of

4

8

and

2

2

for the two classes, respectively (noting

that in this dataset there are a total of eight data points in the -1 class and two

in the +1 class). Since

2

2

>

4

8

the leaf value on the left is set to +1. Likewise, the

balanced majority votes to the right of the split point for the -1 and +1 classes

are calculated similarly as

4

8

and

0

2

, respectively, and hence the right leaf value

is set to -1.

14.4.3 Optimization of classification stumps

Putting everything together, to determine an optimal stump (consisting of op-

timal split point and leaf values) we can range over a set of reasonably chosen

split points and construct corresponding leaf values for each stump using either

the cost function based or majority vote based approaches described in Section

14.4.2. To determine which stump is ideal for our dataset we can then compute

an appropriate classification metric over every stump instance and choose the

one that provides the best performance. For example, with two-class classifi-

cation we can employ an accuracy metric like those introduced in Section 6.8,

456 Tree-Based Learners

Figure 14.9 The same dataset and set of split points shown in Figure 14.8, only here the

balanced mode calculation in Equation (14.9) is used to create the leaf values. See text for

further details.

with the balanced accuracy discussed in Section 6.8.4 being the safest choice given

the class imbalance we might encounter in practice, or more specialized metrics

such as information gain [65].

Note that, in the context of classification trees, quality metrics are often re-

ferred to as purity metrics, since they measure how pure each leaf of the stump is

in terms of class representation. Ideally, the stump is chosen that best represents

the data while its leaves remain as ”pure” as possible, each containing (largely)

members of a single class if possible.

Example 14.3 Fitting the parameters of a simple classification tree

In Figure 14.10 we illustrate the resulting balanced accuracy of the stumps shown

in Figure 14.9. Because of the symmetry of this particular dataset only the first

five stumps are shown here, of which the fourth one provides the minimum

cost, and thus is optimal for our dataset.

14.4 Classification Trees 457

y

x

b
a
l
a
n

c
e

d

a
c
c
u

r
a
c
y

split point

Figure 14.10 Figure associated with Example 14.3. See text for details.

14.4.4 Deeper classification trees

To build deeper classification trees we recurse on the two leaves of a stump and
treat each like we did the original data, building a stump out of each. Just as with

regression trees (see Section 14.3.4) this often results in binary trees of amaximum
depth, as certain branches halt under obvious and/or user-defined conditions.
With classification, one natural halting condition is when a leaf is completely

pure, that is, it contains only members of a single class. In such a case there is no
reason to continue splitting such a leaf. Other common halting conditions often
used in practice include halting growth when the number of points on a leaf
falls below a certain threshold and/or when splits do not sufficiently increase
accuracy.

Example 14.4 Growing two maximum-depth classification trees
In Figure 14.11 we illustrate the growth of a tree to a maximum depth of seven
on a two-class classification dataset. In Figure 14.12 we do the same for a multi-

class classification dataset with C = 3 classes. In both cases as the tree grows

note how many parts of the input space do not change as leaves on the deeper
branches become pure. By the time we reach a maximum depth of seven we

have considerably overfit both datasets.

458 Tree-Based Learners

depth = 1 depth = 2 depth = 3

depth = 7depth = 6depth = 5depth = 4

Figure 14.11 Figure associated with Example 14.4. See text for details.

depth = 1 depth = 2 depth = 3

depth = 5 depth = 6 depth = 7depth = 4

Figure 14.12 Figure associated with Example 14.4. See text for details.

14.5 Gradient Boosting

As mentioned in Section 14.2.3 deep tree-based universal approximators can be

built via addition of shallow trees. The most popular way to build deeper re-

gression and classification trees via addition is by summing together shallower

ones, with each shallow tree constructed as detailed in Sections 14.3 and 14.4,

and growing the tree sequentially one shallow member at a time. This scheme is

an instance of the general boosting method introduced in Section 11.5. Moreover,

trees are indeed the most popular universal approximator used when applying

14.5 Gradient Boosting 459

boosting based cross-validation, with this pairing very often referred to as gra-

dient boosting [66, 67]. The principles of boosting outlined in Section 11.5 remain

unchanged in the context of tree-based learners. However, with the specific

knowledge of how to appropriately fit regression and classification trees to data

we can now expound on important details related to gradient boosting that we

could not delve into previously.

14.5.1 Shallow trees rule

As described in Section 11.5.1 low-capacity units (of any universal approximator)

are most often used with boosting in order to provide a fine-resolution model

search. In the context of tree-based units this leads to the use of shallow trees, with

stumps and trees of depth two being especially popular. One can of course use

higher-capacity tree units (of depth three and beyond) in constructing deeper

cross-validated trees via boosting. However, boosting with such high-capacity

units can easily lead to skipping over of optimal models (as depicted abstractly

in Figure 11.30).

14.5.2 Boosting with tree-based learners

As detailed in Section 11.5, at the mth round of boosting we begin with a model

consisting of a fully tuned linear combination of m - 1 units of a universal

approximator (see Equation (11.26). In the case of tree-based learners we can

dispense with the bias and weights of the linear combination (since they are

naturally ”baked in” to tree-based units, as detailed in Section 11.5.4) and write

our model as

model

m-1

(x,Θ

m-1

) = f

?

s

1

(x)+ f

?

s

2

(x)+ · · · + f

?

s

m-1

(x) (14.10)

where each function in this sum is a tree-based unit (e.g., a stump) whose split

point(s) and leaf values have been chosen optimally. The mth round of boosting

involves a search over a range of suitable candidates (here, various trees with

differing split points) and a corresponding optimization of each candidate’s leaf

values. To construct the next candidate model we add a prospective unit f

s

m

(x)

to model

m-1

(x,Θ

m-1

), forming

model

m

(

x,Θ

m

)

= model

m-1

±

x,Θ

m-1

²

+ f

s

m

(

x

)

(14.11)

and optimize the leaf values of f

s

m

(

x

) using an appropriate cost function (e.g.,

the Least Squares cost for regression and Softmax cost for classification) with

respect to a training dataset. This leaf-value optimization very closely mirrors

the approaches described in Sections 14.3.2 and 14.4.2 in the case of regression

and classification, respectively.

For example, suppose f

s

m

is a stump and we are dealing with the regression

460 Tree-Based Learners

case with a Least Squares cost and a dataset of P points denoted by

n±

x

p

, y

p

²o

P

p=1

.

In complete analogy to Equation (14.5) we must then minimize the following

pair of Least Squares costs

g(v

L

) =

1

|Ω

L

|

X

p∈Ω

L

±

model

m-1

±

x

p

,Θ

m-1

²

+ v

L

- y

p

²

2

g(v

R

) =

1

|Ω

R

|

X

p∈Ω

R

±

model

m-1

±

x

p

,Θ

m-1

²

+ v

R

- y

p

²

2

(14.12)

to properly determine our two leaf values v

L

and v

R

, where Ω

L

and Ω

R

are

index sets as defined in Equation (14.3), and |Ω

L

| and |Ω

R

| denote their sizes.

Like those cost functions in Equation (14.5), these simple costs can each be

minimized perfectly by checking the first-order condition for optimality (or

equivalently by taking a single step of Newton’s method).

Similarly, if dealing with two-class classification with a Softmax cost and label

values y

p

∈ {-1,+1} we set leaf values of a stump by minimizing two costs –

analogous to Equation (14.7) – of the form

g(v

L

) =

1

|Ω

L

|

X

p∈Ω

L

log

±

1 + e

-y

p(

model

m-1

(

x

p

,Θ

m-1

)

+v

L)

²

g(v

R

) =

1

|Ω

R

|

X

p∈Ω

R

log

±

1 + e

-y

p

(

model

m-1

(

x

p

,Θ

m-1

)

+v

R

)

²

(14.13)

which (in both cases) cannot be minimized in closed form, but must be solved via

local optimization. Often, as discussed in Section 14.4.2, this is done by simply

taking a single step of Newton’s method as it provides a positive trade-off

between the minimization quality and computation effort.

Example 14.5 Regression via gradient boosting

In Figure 14.13 we illustrate the use of boosting with regression stumps, which is

often (as discussed in Section 11.5.6) interpreted as successive rounds of fitting

to the residual of a regression dataset. We can see this in the case of a simple

stump by rearranging terms in Equation (14.12). For example, g(v

L

) in Equation

(14.12) can be rewritten as

g(v

L

) =

1

|Ω

L

|

X

p∈Ω

L

±

v

L

- r

p

²

2

(14.14)

where r

p

is the residual of the pth point defined as r

p

= y

p

-model

m-1

±

x

p

,Θ

m-1

²

.

In the top row of this figure we show the original dataset along with the

resulting fit provided by a model constructed from multiple rounds of stump-

based boosting. Simultaneously in the bottom row we show each subsequent

14.5 Gradient Boosting 461

stump-based fit to the residual provided by the most recent stump added to the

running model.

model 1 model 5 model 20

original

residual

unit 1 unit 5 unit 20

Figure 14.13 Figure associated with Example 14.5. See text for details.

Example 14.6 Spam detection via gradient boosting

In this example we use gradient boosting employing stumps, and cross-validate

to determine an ideal number of rounds of boosting, using the spam dataset

first described in Example 6.10. In this set of experiments we use the Softmax

cost and set aside 20 percent of this two-class dataset (randomly) for validation

purposes. We run 100 rounds of boosting and take a single step of Newton’s

method to tune each stump function. In Figure 14.14 we plot the number of

misclassifications on both the training (in blue) and validation (in yellow) sets.

The minimum number of misclassifications on the validation set occured at the

sixty-fifth round of boosting, which resulted in 220 and 50 misclassifications on

the training and validation sets, respectively. A simple linear classifier trained

on the same portion of data provided 277 and 67 misclassifications on training

and validation sets, respectively.

462 Tree-Based Learners

boosting round

m
is

cl
as

si
fic

at
io

ns

Figure 14.14 Figure associated with Example 14.6. See text for details.

14.6 Random Forests

Unless human interpretability of the final model is of primary concern, one

virtually never uses a single recursively defined regression or classification tree,

but a bagged ensemble of them. Generally speaking, bagging (as detailed in Section

11.9) involves combining multiple cross-validated models to produce a single

higher-performing model. One can easily do this with recursively defined trees,

employing the cross-validation techniques outlined in Section 14.7. However,

in practice it is often unnecessary to grow each tree using cross-validation to

temper their complexity. Instead, each tree can be trained on a random portion

of training data taken from the original dataset and grown to a predetermined

maximum depth, and afterwards bagged together.

This can be done with any universal approximator in principle but is espe-

cially practical with tree-based learners. This is both because trees are cheap to

produce, and also because as locally defined approximators (see Section 14.2.2), it

is natural to employ basic leaf-split halting protocols while growing the individ-

ual trees themselves (see Sections 14.3.4 and 14.4.4). While trees can certainly

overfit, even when not cross-validated they are naturally prevented from ex-

hibiting the sort of wild oscillatory overfitting behavior that is readily possible

with fixed-shape or neural network models.

2

Thus bagging a set of overfitting

trees can often successfully combat the sort of overfitting each tree presents,

resulting in very effective models. Moreover, because each fully grown tree in

such an ensemble can be learned efficiently, the computational trade-off, that is,

training a large number of fully grown trees compared with a smaller number

of cross-validated ones (each of which require more resources to construct), is

often advantageous in practice.

Such an ensemble of recursively defined trees is often called a random forest [68]

in the jargon of machine learning. The ”random” part of the name random forest

2

Compare, for instance, the overfitting behavior exhibited by each universal approximator in

Figure 11.17.

14.6 Random Forests 463

refers both to the fact that each tree uses a random portion of the original data as

training (which, by convention, is often sampled from the original dataset with

replacement), and that often only a random subset of input feature dimensions

are sampled for viable split points at each node in the trees produced. For each

tree in such a forest often something like

j

√

N

k

of N features are chosen at

random to determine split points.

Example 14.7 Random forest classification

In Figure 14.15 we show the result of bagging a set of five fully grown classifica-

tion trees trained on different random portions of a simple two-class dataset (in

each instance

2

3

of the original dataset was used for training and the final

1

3

was

used for validation). Each of the five splits are illustrated in the small panels on

the left along with the decision boundary provided by each trained model, with

the validation data points in each case highlighted with a yellow boundary. Note

that while most of the individual trees overfit the data, their ensemble (shown

in the large panel on the right) does not. This ensembled model, as detailed in

Section 11.9, is built by taking the mode of the five classification trees on the left.

Figure 14.15 Figure associated with Example 14.7. (left column) The decision

boundaries given by five fully grown classification trees, each grown on a different

subset of the original data. Each individual tree tends to overfit the data but their

bagged ensemble (shown in the right panel) compensates for this, and does not overfit.

See text for further details.

464 Tree-Based Learners

14.7 Cross-Validation Techniques for Recursively Defined Trees

The basic principles of cross-validation, outlined in Sections 11.3 through 11.6,

generally apply to the proper construction of recursively grown regression and

classification trees in practice, with some technical differences arising due to

the unique way such models are built. For example, we can begin with a low-

capacity depth-one tree and grow it until minimum validation error is achieved

(a form of early stopping specific to trees). Alternatively, we can begin by fitting

a deep high-capacity tree to the data and gradually decrease its complexity

by pruning leaves that do not contribute to low validation error (a form of

regularization specific to trees).

Because recursively defined trees are typically ensembled as random forests,

with each tree fully grown to a random training portion of the original dataset

(as detailed in Section 14.6), the cross-validation techniques described here are

often used to temper the complexity of a single regression or classification tree

when human interpretability of a tree-based model is of crucial importance –

something that is virtually always lost when ensembling multiple nonlinear

models together.

14.7.1 Early stopping

We can easily use cross-validation to dictate the proper maximum depth of a tree

by growing a tree of large depth, measuring validation error at each depth of the

tree, and (after the fact) determine which depth produced minimal validation

error. Alternatively, we can stop the growth early when we are confident

3

that

(something approximating) minimum validation error has been achieved. This

approach, while used in practice, translates to a relatively coarse model search

since the capacity of a tree grows exponentially from one depth to the next.

As detailed in the previous two sections, practical considerations are often

used to halt the leaf splitting (regardless of whether cross-validation is being

performed). These include halting splitting if a leaf contains a singleton data

point or a predecided (small) number of points, if all data points belong to the

same class (in the case of classification) or have approximately the same output

value (in the case of regression). To create a finer-resolution cross-validation

search we can add validation-error-focused criteria to halt the growth of indi-

vidual leaves as well. The simplest such criterion is to check whether or not

splitting a leaf will result in lowering validation error (or lowering training error

past a predetermined threshold): if yes, the leaf is split, otherwise growth of the

leaf is halted. This approach to cross-validation is unique in that validation error

3

As with any form of early stopping, determining when validation error is at its minimum ”on

the fly” is not always a straightforward affair as validation error does not always fall and rise

monotonically (as discussed in the context of boosting and regularization in Sections 11.5.3 and

11.6.2, respectively).

14.7 Cross-Validation Techniques for Recursively Defined Trees 465

will always monotonically decrease as the maximum depth of a tree is increased,

but can result in underfitting models due to leaves halting growth prematurely.

Example 14.8 Early stopping by depth and leaf growth

In Figure 14.16 we show an example of cross-validating the maximum depth of a

tree in the range of one through five for a simple regression dataset. The dataset,

with training data colored in blue and validation data in yellow, is shown along

with each subsequent fit in the top row of Figure 14.16, while the corresponding

training/validation error is shown in its bottom row.

error error error

maximum depth maximum depthmaximum depth

depth = 3 depth = 1 depth = 5

Figure 14.16 Figure associated with Example 14.8. See text for details.

In Figure 14.17 we show two examples of cross-validating the maximum

depth of a tree in the range of one through five for another regression dataset,

where leaf growth is now halted when validation error does not improve. In each

instance the dataset, with training data colored in blue and validation data in

yellow, is shown along with each subsequent fit on top, with the corresponding

training/validation error is shown directly underneath it. In the first run (shown

in the top two rows of Figure 14.17), because of the particular split of training

and validation data, growth of each leaf is halted immediately, resulting in

an underfitting, depth-one representation. With the second run on a different

training–validation split of the data (shown in the bottom two rows of Figure

14.17), tree growth continues to improve validation error up to the maximum

depth tested, resulting in a significantly better representation.

466 Tree-Based Learners

error

maximum depth

error

maximum depth

error

maximum depth

error error error

maximum depth maximum depth maximum depth

Figure 14.17 Figure associated with Example 14.8. See text for details.

14.7.2 Pruning

In contrast to beginning with a low-capacity (shallow) tree and growing it via

early stopping, we can instead begin by fitting a high-capacity (deep) tree and

remove leaves that do not improve validation error, until a minimum-validation

tree structure remains. This technique – illustrated pictorially in Figure 14.18 – is

called pruning because it entails examining an initially overly complicated tree

and cutting off its leaves, akin to the way pruning of natural trees is done by

snipping off redundant leaves and branches. Pruning is a tree-specific form of

regularization based cross-validation, discussed previously in Section 11.6.

While early stopping is often more computationally efficient than pruning, the

latter provides a finer-resolution model search in determining the tree structure

with minimal validation error, since tree/leaf growth is unhindered and is only

cut back after the fact.

14.8 Conclusion 467

v

1,2

v

1,1

s

1

xs

x> s

1

f (x)

x> s

v

1,1

v

1,2

v

1,2

v

1,1

v

2,1

v

2,2

s

1

s

2

xs

x > s

2

x > s

1

f (x)

x > s

v

1,1

v

1,2

v

2,1

v

2,2

v

2

v

2,2

x > s

2

v

2,1

v

2

x ≤ s

x ≤ s

x ≤ s

1

x ≤ s

2

x ≤ s

2

x ≤ s

1

Figure 14.18 Pruning illustrated. (top panels) A fully grown tree of depth two with four

leaves. (bottom) A pruned version of the original tree wherein the leaves v

2,1

and v

2,2

are

pruned and replaced by a single leaf.

14.8 Conclusion

In this chapter we discussed a range of important technical matters related to

tree-based universal approximators, which were first introduction in Section

11.2.3. We began in Section 14.2 by providing a more formal description of

stumps as well as deeper trees, which as detailed in this section can be formed

via recursion or summation. Recursively defined regression and classification

trees were then gently motivated and detailed in Sections 14.3 and 14.4. Gradient

boosting – the specific application of boosting based cross-validation (described

in detail in Section 11.5) to tree-based learners – was touched upon in Section

14.5. Similarly, random forests – the specialized application of bagging (detailed

in Section 11.9) to tree-based learners – was described in Section 14.6. Finally,

the use of cross-validation with recursively defined tree-based learners – both

from a naive and regularization perspective – were explored in Section 14.7.

14.9 Exercises

†The data required to complete the following exercises can be downloaded from

the text’s github repository at github.com/jermwatt/machine_learning_refined

468 Tree-Based Learners

14.1 Growing deep trees by addition

Show that in general adding 2

D

- 1 stumps (with scalar input) together will

create a depth-D tree (provided that the stumps do not share any split points).

14.2 Fitting the parameters of a simple regression tree

Repeat the experiment described in Example 14.1, and reproduce the plots

shown in Figure 14.6.

14.3 Code up a regression tree

Repeat the experiment described in Example 14.2 by coding up a recursively

defined regression tree. You need not reproduce Figure 14.7. Instead, measure

and plot the Least Squares error at each depth of your tree.

14.4 Code up a two-class classification tree

Repeat the first experiment described in Example 14.4 by coding up a recursively

defined two-class classification tree. You need not reproduce Figure 14.11. In-

stead, measure and plot the number of misclassifications at each depth of your

tree.

14.5 Code up a multi-class classification tree

Repeat the second experiment described in Example 14.4 by coding up a re-

cursively defined multi-class classification tree. You need not reproduce Figure

14.12. Instead, measure and plot the number of misclassifications at each depth

of your tree.

14.6 Gradient boosting for regression

Repeat the experiment described in Example 14.5 by coding up a gradient boost-

ing algorithm employing regression stumps. Reproduce Figure 14.13, illustrat-

ing the boosted tree as well as the best stump fit to the residual at rounds one,

two, and ten of boosting.

14.7 Gradient boosting for classification

Determine the leaf values of a stump added at the mth round of boosting to

a classification tree by minimizing the Softmax costs in Equation (14.13) via

taking a single step of Newton’s method.

14.8 Random forests

Repeat the experiment described in Example 14.7 by coding up a random forest

built from classification trees. You need not reproduce Figure 14.15. However,

you can verify that your implementation is working properly by checking that

14.9 Exercises 469

the final accuracy of your random forest classifier outstrips the accuracy of many

of the individual trees in the ensemble or, alternatively, you can employ a testing

set by setting aside a small portion of the original data.

14.9 Limitation of trees outside their training range

We have seen in this chapter that trees are efficient nonlinear approximations,

and do not suffer from the sort of oscillatory behavior that can adversely affect

global approximators like polynomials and neural networks (see Section 14.6).

However, tree-based learners – by nature – fail to work effectively outside their

training range. In this exercise you will see why this is the case by training a

regression tree using the student debt data first shown in Figure 1.8. Use your

trained tree to predict what the total student debt will be in the year 2050. Does

it make sense? Explain why.

14.10 Naive cross-validation

Repeat the experiment outlined in Example 14.8 whose results are shown in

Figure 14.16.

Part IV

Appendices

A Advanced First- and
Second-Order Optimization

Methods

A.1 Introduction

In this chapter we study advanced first- and second-order optimization tech-

niques that are designed to ameliorate the natural weaknessess associated with

gradient descent and Newton’s method – as detailed previously in Sections 3.6

and 4.4, respectively.

A.2 Momentum-Accelerated Gradient Descent

In Section 3.6 we discussed a fundamental issue associated with the direction

of the negative gradient: it can (depending on the function being minimized)

oscillate rapidly, leading to zig-zagging gradient descent steps that slow down

minimization. In this section we describe a popular enhancement to the standard

gradient descent step, called momentum acceleration, that is specifically designed

to ameliorate this issue. The core of this idea comes from the field of time series

analysis, and in particular is a tool for smoothing time series data known as

the exponential average. Here we first introduce the exponential average and then

detail how it can be integrated into the standard gradient descent step in order to

help ameliorate some of this undesirable zig-zagging behavior (when it occurs),

and consequently speed up gradient descent.

A.2.1 The exponential average

In Figure A.1 we show an example of a time series data. This particular example

shows a real snippet of the price of a financial stock measured at 450 consecutive

points in time. In general time series data consists of a sequence of K ordered

points w

1

, w

2

, ..., w

K

, meaning that the point w

1

comes before (i.e., it is created

and/or collected before) w

2

, the point w

2

before w

3

, and so on. For example, we

generate a (potentially multi-dimensional) time series of points whenever we

run a local optimization scheme with steps w

k

= w

k-1

+ αd

k-1

since it produces

the sequence of ordered pointsw

1

, w

2

, ...,wK

.

Because the raw values of a time series often oscillate, it is common prac-

tice to smooth them (in order to remove these zig-zagging motions) for better

474 Advanced First- and Second-Order Optimization Methods

Figure A.1 An example of a

time series data, representing

the price of a financial stock

measured at 450 consecutive

points in time.

100 200 300 4000

0

40

visualization or prior to further analysis. The exponential average is one of the

most popular such smoothing techniques for time series, and is used in virtu-

ally every application area in which this sort of data arises. In Figure A.2 we

show the result of smoothing the data shown in Figure A.1. Before we see how

the exponential average is computed, it is first helpful to see how to compute

a cumulative average of K input points w

1

, w

2

, ..., w

K

, that is the average of the

first two points, the average of the first three points, and so forth. Denoting the

average of the first k points as h

k

we can write

h

1

= w

1

h

2

=

w

1

+ w

2

2

h

3

=

w

1

+ w

2

+ w

3

3

.

.

.

h

K

=

w

1

+ w

2

+ w

3

+ · · · +w

K

K

.

(A.1)

Notice how at each step h

k

essentially summarizes the input points w

1

through

w

k

via the simplest statistic: their sample mean. The way the cumulative average

is written in Equation (A.1), we need access to every raw point w

1

through w

k

in

order to compute the kth cumulative average h

k

. Alternatively, we can write this

cumulative average by expressing h

k

for k > 1 in a recursive manner involving

only its preceding cumulative average h

k-1

and current time series value w

k

, as

h

k

=

k - 1

k

h

k-1

+

1

k

w

k

. (A.2)

From a computational perspective, the recursive way of defining the cumulative

average is far more efficient since at the kth step we only need to store and deal

with two values as opposed to k of them.

The exponential average is a simple twist on the cumulative average formula.

A.2 Momentum-Accelerated Gradient Descent 475

Figure A.2 (left panel) An exponential average (in pink) of the time series data shown in

Figure A.1. (right panel) An exponential average of just the first 100 points of the time

series, which is a smooth approximation to the underlying time series data.

Notice, at every step in Equation (A.2) that the coefficients on h

k-1

and w

k

always sum to 1, i.e.,

k-1

k

+

1

k

= 1. As k grows larger both coefficients change:

the coefficient on h

k-1

gets closer to 1 while the one on w

k

gets closer to 0.

With the exponential average we freeze these coefficients. That is, we replace the

coefficient on h

k-1

with a constant value β ∈ [0,1], and the coefficient on w

k

with

1 - β, giving a similar recursive formula for the exponential average, as

h

k

= βh

k-1

+

(

1 - β

)

w

k

. (A.3)

Clearly the parameter β here controls a trade-off: the smaller we set β the

more our exponential average approximates the raw (zig-zagging) time series

itself, while the larger we set it the more each subsequent average looks like its

predecessor (resulting in a smoother curve). Regardless of how we set β each h

k

in an exponential average can still be thought of as a summary for w

k

and all

time series points that precede it.

Why is this slightly adjusted version of the cumulative average called an

exponential average? Because if we roll back the update shown in Equation (A.3)

to express h

k

only in terms of preceding time series elements, as we did for

cumulative average in Equation (A.1), an exponential (or power) pattern in the

coefficients will emerge.

Note that in deriving the exponential average we assumed our time series

data was one-dimensional, that is each raw point w

k

is a scalar. However, this idea

holds regardless of the input dimension. We can likewise define the exponen-

tial average of a time series of general N-dimensional points w

1

, w

2

, ...,wK

by

initializing h

1

= w

1

, and then for k > 1 building h

k

as

h

k

= βh

k-1

+

(

1 - β

)

w

k

. (A.4)

Here the exponential average h

k

at step k is also N-dimensional.

476 Advanced First- and Second-Order Optimization Methods

A.2.2 Ameliorating the zig-zagging behavior of gradient descent

As mentioned previously, a sequence of gradient descent steps can be thought

of as a time series. Indeed if we take K steps of a gradient descent run we do

create a time series of ordered gradient descent steps w

1

, w

2

, ...,wK

and descent

directions -∇g

±

w

0

²

, -∇g

±

w

1

²

, ...,-∇g

±

w

K-1

²

.

To attempt to ameliorate some of the zig-zagging behavior of our gradient

descent steps w

1

, w

2

, ...,wK

– as detailed in Section 3.6.3 – we could compute

their exponential average. However, we do not want to smooth the gradient de-

scent steps after they have been created – as the ”damage is already done” in the

sense that the zig-zagging has already slowed the progress of a gradient descent

run. Instead what we want is to smooth the steps as they are created, so that our

algorithm makes more progress in minimization.

How do we smooth the steps as they are created? Remember from Section

3.6.3 that the root cause of zig-zagging gradient descent is the oscillating nature

of the (negative) gradient directions themselves. In other words, if the descent

directions -∇g

±

w

0

²

, -∇g

±

w

1

²

, ...,-∇g

±

w

K-1

²

zig-zag, so will the gradient de-

scent steps themselves. Therefore it seems reasonable to suppose that if we

smooth out these directions themselves, as they are created during a run of

gradient descent, we can as a consequence produce gradient descent steps that

do not zig-zag as much and therefore make more progress in minimization.

To do this we first initialize d

0

= -∇g

±

w

0

²

and then for k > 1 the exponentially

averaged descent direction d

k-1

(using the formula in Equation (A.4)) takes the

form

d

k-1

= βd

k-2

+

(

1 - β

)

±

-∇g

±

w

k-1

²²

. (A.5)

We can then use this descent direction in our generic local optimization frame-

work to take a step as

w

k

= w

k-1

+ αd

k-1

. (A.6)

Together this exponential averaging adds only a single extra step to our basic

gradient descent scheme, forming a momentum-accelerated gradient descent step

of the form

1

1

Sometimes this step is written slightly differently: instead of averaging the negative gradient

directions the gradient itself is exponentially averaged, and then the step is taken in their

negative direction. This means that we initialize our exponential average at the first negative

descent direction d

0

= -∇g

±

w

0

²

, and for k > 1 the general descent direction and corresponding

step is computed as

d

k-1

= βd

k-2

+

(

1 - β

)

∇g

±

w

k-1

²

w

k

= w

k-1

-α d

k-1

.

(A.7)

A.2 Momentum-Accelerated Gradient Descent 477

d

k-1

= βd

k-2

+

(

1 - β

)

±

-∇g

±

w

k-1

²²

w

k

= w

k-1

+ α d

k-1

.

(A.8)

The term ”momentum” here refers to the new exponentially averaged descent

direction d

k-1

, that by definition is a function of every negative gradient which

precedes it. Hence d

k-1

captures the average or ”momentum” of the directions

preceding it.

As with any exponential average the choice of β ∈ [0, 1] provides a trade-

off. On the one hand, the smaller β is chosen the more the exponential average

resembles the actual sequence of negative descent directions since more of each

negative gradient direction is used in the update, but the less these descent

directions summarize all of the previously seen negative gradients. On the other

hand, the larger β is chosen the less these exponentially averaged descent steps

resemble the negative gradient directions, since each update will use less of each

subsequent negative gradient direction, but the more they represent a summary

of them. Often in practice larger values of β are used, e.g., in the range [0.7,1].

Example A.1 Accelerating gradient descent on a simple quadratic

In this example we compare a run of standard gradient descent to themomentum-

accelerated version using a quadratic function of the form

g (w) = a + b

T

w + w

T

Cw (A.9)

where a = 0, b =

"

0

0

#

, and C =

"

0.5 0

0 9.75

#

.

Here we make three runs of 25 steps: a run of gradient descent and two runs

of momentum-accelerated gradient descent using two choices of the parameter

β ∈ {0.2,0.7}. All three runs are initialized at the same point w

0

= [10 1]

T

, and

use the same steplength α = 10

-1

.

We show the resulting steps taken by the standard gradient descent run in

the top panel of Figure A.3 (where significant zig-zagging is present), and the

momentum-accelerated versions using β = 0.2 and β = 0.7 in the middle and

bottom panels of this figure, respectively. Both momentum-accelerated versions

clearly outperform the standard scheme, in that they reach a point closer to

the true minimum of the quadratic. Also note that the overall path taken by

gradient descent is smoother in the bottom panel, due to the larger value of its

corresponding β.

478 Advanced First- and Second-Order Optimization Methods

w

2

w

1

Figure A.3 Figure associated with Example A.1. The zig-zagging behavior of gradient

descent can be ameliorated using the momentum-accelerated gradient descent step in

Equation (A.8). See text for further details.

A.3 Normalized Gradient Descent

In Section 3.6 we discussed a fundamental issue associated with the magnitude

of the negative gradient and the fact that it vanishes near stationary points,

causing gradient descent to slowly crawl near stationary points. In particular

this means – depending on the function being minimized – that it can halt near

saddle points. In this section we describe a popular enhancement to the standard

gradient descent scheme, called normalized gradient descent, that is specifically

designed to ameliorate this issue. The core of this idea lies in a simple inquiry:

since the (vanishing) magnitude of the negative gradient is what causes gradient

descent to slowly crawl near stationary points or halt at saddle points, what

happens if we simply ignore the magnitude at each step by normalizing it out?

A.3.1 Normalizing out the full gradient magnitude

In Section 3.6.4 we saw how the length of a standard gradient descent step

is proportional to the magnitude of the gradient, expressed algebraically as

A.3 Normalized Gradient Descent 479

α k∇g(w

k-1

)k

2

. Moreover, we also saw there how this fact explains why gra-

dient descent slowly crawls near stationary points, since near such points the

magnitude of the gradient vanishes.

Since the magnitude of the gradient is to blame for slow crawling near sta-

tionary points, what happens if we simply ignore it by normalizing it out of the

update step and just travel in the direction of negative gradient itself?

One way to normalize a (gradient) descent direction is via dividing it by its

magnitude. Doing so gives a normalized gradient descent step of the form

w

k

= w

k-1

- α

∇g(w

k-1

)

³

³

³

∇g(w

k-1

)

³

³

³

2

. (A.10)

In doing this we do indeed ignore the magnitude of the gradient, since

³

³

³

w

k

- w

k-1

³

³

³

2

=

³

³

³

³

³

³

³

-α

∇g(w

k-1

)

³

³

³

∇g(w

k-1

)

³

³

³

2

³

³

³

³

³

³

³

2

= α. (A.11)

In other words, if we normalize out the magnitude of the gradient at each step

of gradient descent then the length of each step is exactly equal to the value

of our steplength parameter α. This is precisely what we did with the random

search method in Section 2.5.2.

Notice that if we slightly rewrite the fully normalized step in Equation (A.10)

as

w

k

= w

k-1

-

α

³

³

³

∇g(w

k-1

)

³

³

³

2

∇g(w

k-1

) (A.12)

we can interpret our fully magnitude-normalized step as a standard gradient

descent step with a steplength value

α

k

∇g(w

k-1

)

k

2

that adjusts itself at each step

based on the magnitude of the gradient to ensure that the length of each step is

precisely α.

Also notice that in practice it is often useful to add a small constant ± (e.g.,

10

-7

or smaller) to the gradient magnitude to avoid potential division by zero

(where the magnitude completely vanishes)

w

k

= w

k-1

-

α

³

³

³

∇g(w

k-1

)

³

³

³

2

+ ±

∇g(w

k-1

). (A.13)

Example A.2 Ameliorating slow-crawling near minima and saddle points

Shown in the left panel of Figure A.4 is a repeat of the run of gradient descent

first detailed in Example 3.14, only here we use a fully normalized gradient

descent step. We use the same number of steps and steplength value used

in that example (which led to slow-crawling with the standard scheme). Here,

480 Advanced First- and Second-Order Optimization Methods

however, the normalized step – unaffected by the vanishing gradient magnitude

– is able to pass easily through the flat region of this function and find a point

very close to the minimum at the origin. Comparing this run to the original run

(of standard gradient descent) in Figure 3.14 we can see that the normalized run

gets considerably closer to the global minimum of the function.

w

g(w) g(w)

w

Figure A.4 Figure associated with Example A.2. By normalizing the gradient we can

overcome the slow-crawling behavior of gradient descent near a function’s minima (left

panel) and saddle points (right panel). See text for further details.

Shown in the right panel of Figure A.4 is a repeat of the run of gradient

descent first detailed in Example 3.14, only here we use a fully normalized

gradient descent step. We use the same number of steps and steplength value

used in that example (which led to halting at a saddle point with the standard

scheme). Here, however, the normalized step – unaffected by the vanishing

gradient magnitude – is able to pass easily through the flat region of the saddle

point and reach a point of this function close to the minimum.

Example A.3 A trade-off when using normalized gradient descent

In Figure A.5 we show a comparison of fully normalized (left panel) and stan-

dard (right panel) gradient descent on the simple quadratic function

g(w) = w

2

. (A.14)

Both algorithms use the same initial point (w

0

= -3), steplength parameter (α =

0.1), and maximum number of iterations (20 each). Steps are colored from green

to red to indicate the starting and ending points of each run, with circles denoting

the actual steps in the input space and xmarks denoting their respective function

evaluations.

Notice, how the standard version races to the global minimum of the function,

while the normalized version – taking fixed-length steps – gets only a fraction of

the way there. This behavior is indicative of how a normalized step will fail to

leverage the gradient when it is large – as the standard method does – in order

to take larger steps at the beginning of a run.

A.3 Normalized Gradient Descent 481

normalized gradient descent standard gradient descent

w

g(w)

g(w)

w

Figure A.5 Figure associated with Example A.3. While normalizing the gradient speeds

up gradient descent near flat regions of a function where the magnitude of the gradient

is small, it likewise fails to leverage the often large magnitude of the gradient far from a

function’s minima. See text for further details.

A.3.2 Normalizing out the magnitude component-wise

Remember that the gradient is a vector of N partial derivatives

∇g(w) =

∂

∂w

1

g (w)

∂

∂w

2

g (w)

.

.

.

∂

∂w

N

g

(

w

)

(A.15)

with the jth partial derivative

∂

∂w

j

g

(

w

) defining how the gradient behaves along

the jth coordinate axis. If we then look at what happens to the jth partial deriva-

tive of the gradient when we normalize off the full magnitude of the gradient

∂

∂w

j

g

(

w

)

³

³

³

∇g (w)

³

³

³

2

=

∂

∂w

j

g

(

w

)

q

∑

N

n=1

±

∂

∂w

n

g (w)

²

2

(A.16)

we can see that the jth partial derivative is normalized using a sum of the mag-

nitudes of every partial derivative. This means that if the jth partial derivative

is already small in magnitude itself, doing this will erase virtually all of its con-

tribution to the final descent step. Therefore normalizing by the magnitude of

the entire gradient can be problematic when dealing with functions containing

regions that are flat with respect to only some of the partial derivative direc-

482 Advanced First- and Second-Order Optimization Methods

tions, as it diminishes the contribution of the very partial derivatives we wish to

enhance by ignoring magnitude.

As an alternative we can normalize out the magnitude of the gradient component-

wise. In other words, instead of normalizing each partial derivative by the mag-

nitude of the entire gradient we can normalize each partial derivative with

respect to only itself as

∂

∂w

j

g (w)

r

´

∂

∂w

j

g (w)

µ

2

=

∂

∂w

j

g (w)

¶

¶

¶

¶

∂

∂w

j

g (w)

¶

¶

¶

¶

= sign

°

∂

∂w

j

g (w)

!

. (A.17)

Therefore in the jth direction we can write this component-normalized gradient

descent step as

w

k

j

= w

k-1

j

- α sign

°

∂

∂w

j

g

±

w

k-1

²

!

. (A.18)

We can then write the entire component-wise normalized step as

w

k

= w

k-1

- α sign

±

∇g

±

w

k-1

²²

(A.19)

where here the sign function acts component-wise on the gradient vector. We

can easily compute the length of a single step of this component-normalized

gradient descent step (provided the partial derivatives of the gradient are all

nonzero) as

³

³

³

w

k

-w

k-1

³

³

³

2

=

³

³

³

³

-α sign

±

∇g

±

w

k-1

²²

³

³

³

³

2

=

√

N α. (A.20)

Notice, additionally, that if we slightly rewrite the jth component-normalized

step in Equation (A.18) as

w

k

j

= w

k-1

j

-

α

r

´

∂

∂w

j

g

(

w

k-1

)

µ

2

∂

∂w

j

g

±

w

k-1

²

(A.21)

we can interpret our component-normalized step as a standard gradient descent

step with an individual steplength value

steplength =

α

r

´

∂

∂w

j

g

(

w

k-1

)

µ

2

(A.22)

per component that all adjusts themselves individually at each step based on

component-wise magnitude of the gradient to ensure that the length of each

step is precisely

√

N α. Indeed if we write

A.3 Normalized Gradient Descent 483

a

k-1

=

α

r

´

∂

(∂w

1

g

(

w

k-1

)

µ

2

α

r

´

∂

∂w

2

g

(

w

k-1

)

µ

2

.

.

.

α

r

´

∂

∂w

N

g

(

w

k-1

)

µ

2

(A.23)

then the full component-normalized descent step can also be written as

w

k

= w

k-1

- a

k-1

◦ ∇g(w

k-1

) (A.24)

where the ◦ symbol denotes component-wise multiplication (see Appendix Sec-

tion C.2.3). In practice, a small ± > 0 is added to the denominator of each value

of each entry of a

k-1

to avoid division by zero.

Example A.4 Full versus component-normalized gradient descent

In this example we use the function

g(w

1

,w

2

) = max (0, tanh(4w

1

+ 4w

2

)) + |0.4w

1

|+ 1 (A.25)

to show the difference between full and component-normalized gradient de-

scent steps on a function that has a very narrow flat region along only a single

dimension of its input. Here this function – whose surface and contour plots

can be seen in the left and right panels of Figure A.6, respectively – is very flat

along the w

2

dimension for any fixed value of w

1

, and has a very narrow valley

leading towards its minima in the w

2

dimension where w

1

= 0. If initialized

at a point where w

2

> 2 this function cannot be minimized very easily using

standard gradient descent or the fully normalized version. In the latter case,

the magnitude of the partial derivative in w

2

is nearly zero everywhere, and so

fully normalizing makes this contribution smaller, and halts progress. In the top

row of the figure we show the result of 1000 steps of fully normalized gradient

descent starting at the point w

0

= [2 2]

T

, colored green (at the start of the run)

to red (at its finale). As can be seen, little progress is made.

In the bottom row of the figure we show the results of using component-

normalized gradient descent starting at the same initialization and employing

the same steplength. Here we only need 50 steps in order to make significant

progress.

In summary, normalizing out the gradient magnitude – using either of the

approaches detailed previously – ameliorates the ”slow-crawling” problem of

484 Advanced First- and Second-Order Optimization Methods

0

3

1

2

1

2

3 0 32 1 1 2

3 0 32 1 1 2

0

3

1

2

1

2

w

1

w

1

w

2

w

2

w

1

w

2

w

2

w

1

Figure A.6 Figure associated with Example A.4. See text for details.

standard gradient descent and empowers the method to push through flat re-

gions of a function with much greater ease. This includes flat regions of a

function that may lead to a local minimum, or the region around a saddle point

of a nonconvex function where standard gradient descent can halt. However –

as highlighted in Example A.3 – in normalizing every step of standard gradient

descent we do shorten the first few steps of the run that are typically large (since

random initializations are often far from stationary points of a function). This is

the trade-off of the normalized step when compared with the standard gradient

descent scheme: we trade shorter initial steps for longer ones around stationary

points.

A.4 Advanced Gradient-Based Methods 485

A.4 Advanced Gradient-Based Methods

In Section A.2 we described the notion of momentum-accelerated gradient de-

scent, and how it is a natural remedy for the zig-zagging problem the standard

gradient descent algorithm suffers from when run along long narrow valleys.

As we saw, the momentum-accelerated descent direction d

k-1

is simply an ex-

ponential average of gradient descent directions taking the form

d

k-1

= βd

k-2

+

(

1 - β

)

±

-∇g

±

w

k-1

²²

w

k

= w

k-1

+ α d

k-1

(A.26)

where β ∈ [0,1] is typically set at a value of β = 0.7 or higher.

Then in Section A.3.2 we saw how normalizing the gradient descent direction

component-wise helps deal with the problem standard gradient descent has

when traversing flat regions of a function. We saw there how a component-

normalized gradient descent step takes the form (for the jth component of w)

w

k

j

= w

k-1

j

- α

∂

∂w

j

g

±

w

k-1

²

r

´

∂

∂w

j

g (w)

µ

2

(A.27)

where in practice a small fixed value ± > 0 is often added to the denominator on

the right-hand side to avoid division by zero.

With the knowledge that these two additions to the standard gradient descent

step help solve two fundamental problems associated with the descent direction

used with gradient descent, it is natural to try to combine them in order to leverage

both enhancements.

One way of combining the two ideas would be to component-normalize

the exponential average descent direction computed in momentum-accelerated

gradient descent. That is, compute the exponential average direction in the top

line of Equation (A.8) and then normalize it (instead of the raw gradient descent

direction). With this idea we can write out the update for the jth component of

the resulting descent direction as

d

k-1

j

= sign

°

β d

k-2

j

-

(

1 - β

) ∂

∂w

j

g

±

w

k-1

²

!

. (A.28)

Many popular first-order steps used to tune machine learning models – par-

ticularly those involving deep neural networks (see Chapter 13) – combine

momentum and normalized gradient descent in this sort of way. Below we list

a few examples, including the popular Adam and RMSProp first-order steps.

486 Advanced First- and Second-Order Optimization Methods

Example A.5 Adaptive Moment Estimation (Adam)

Adaptive Moment Estimation (Adam) [69] is a component-wise normalized gra-

dient step employing independently-calculated exponential averages for both

the descent direction and its magnitude. That is, we compute the jth coordinate

of the updated descent direction by first computing the exponential average of

the gradient descent direction d

k

j

and the squared magnitude h

k

j

separately along

this coordinate as

d

k-1

j

= β

1

d

k-2

j

+

(

1 - β

1

) ∂

∂w

j

g

±

w

k-1

²

h

k-1

j

= β

2

h

k-2

j

+

(

1 - β

2

)

°

∂

∂w

j

g

±

w

k-1

²

!

2

(A.29)

where β

1

and β

2

are exponential average parameters that lie in the range [0 ,1].

Popular values for the parameters of this update step are β

1

= 0.9 and β

2

= 0.999.

Note that, as with any exponential average, these two updates apply when k > 1,

and should be initialized

2

at first values from the series they respectively model,

i.e., d

0

j

=

∂

∂w

j

g

±

w

0

²

and h

0

j

=

´

∂

∂w

j

g

±

w

0

²

µ

2

.

The Adam step is then a component-wise normalized descent step using

this exponential average descent direction and magnitude, with a step in the jth

coordinate taking the form

w

k

j

= w

k-1

j

- α

d

k-1

j

q

h

k-1

j

. (A.30)

Example A.6 Root Mean Squared Propagation (RMSProp)

This popular first-order step is a variant of the component-wise normalized

step where – instead of normalizing each component of the gradient by its

magnitude – each component is normalized by the exponential average of the

component-wise magnitudes of previous gradient directions.

Denoting by h

k

j

the exponential average of the squared magnitude of the jth

partial derivative at step k, we have

h

k

j

= γh

k-1

j

+

(

1 - γ

)

°

∂

∂w

j

g

±

w

k-1

²

!

2

. (A.31)

2

The authors of this particular update step proposed that each exponential average be initialized

at zero – i.e., d

0

j

= 0 and h

0

j

= 0 – instead of the first step in each series they respectively model.

This initialization – along with the values for β

1

and β

2

that are typically chosen to be greater

than 0.9 – causes the first few update steps of these exponential averages to be ”biased” towards

zero as well. Because of this they also employ a ”bias-correction” term to compensate for this

initialization.

A.5 Mini-Batch Optimization 487

The Root Mean Squared Error Propagation (RMSProp) [70] step is then a

component-wise normalized descent step using this exponential average, with

a step in the jth coordinate taking the form

w

k

j

= w

k-1

j

- α

∂

∂w

j

g

±

w

k-1

²

q

h

k-1

j

. (A.32)

Popular values for the parameters of this update step are γ = 0.9 and α = 10

-2

.

A.5 Mini-Batch Optimization

In machine learning applications we are almost always tasked with minimizing

a sum of P functions of the same form. Written algebraically such a cost takes the

form

g (w) =

P

X

p=1

g

p

(w) (A.33)

where g

1

, g

2

, ..., g

P

are functions of the same type, e.g., convex quadratic func-

tions (as with Least Squares linear regression discussed in Chapter 5), all pa-

rameterized using the same set of weightsw.

This special summation structure allows for a simple but very effective enhance-

ment to virtually any local optimization scheme, called mini-batch optimization.

Mini-batch optimization is most often used in combination with a gradient-

based step.

A.5.1 A simple idea with powerful consequences

The motivation for mini-batch optimization rests on a simple inquiry: for this

sort of function g shown in Equation (A.33), what would happen if instead of

taking one descent step in g – that is, one descent step in the entire sum of the

functions g

1

, g

2

, ..., g

P

simultaneously – we took a sequence of P descent steps in

g

1

, g

2

, ..., g

P

sequentially by first descending in g

1

, then in g

2

, etc., until finally

we descend in g

P

? As we will see throughout this text, in many instances this

idea can lead to considerably faster optimization of a such a function. While this

finding is largely empirical, it can be interpreted in the framework of machine

learning as we will see in Section 7.8.

The gist of this idea is drawn in Figure A.7 for the case P = 3, where we graph-

ically compare the idea of taking a descent step simultaneously in g

1

, g

2

, ..., g

P

versus a sequence of P descent steps in g

1

, then g

2

, etc., up to g

P

.

Taking the first step of a local method to minimize a cost function g of the form in

488 Advanced First- and Second-Order Optimization Methods

X

w

0

w

1

take a descent step

take a descent step

take a descent step

take a descent stepw

0,0

w

0,1

w

0,2

w

0,3

= w

1,0

batch descent (first epoch)

mini-batch descent (first epoch)

α

α α

α

g

1

g

3

g

2

g

1

g

3

g

2

Figure A.7 An abstract illustration of the batch (top panel) and mini-batch descent

approaches to local optimization. See text for further details.

Equation (A.33), we begin at some initial pointw

0

, determine a descent direction

d

0

, and transition to a new point w

1

as

w

1

= w

0

+ α d

0

. (A.34)

By analogy, if we were to follow the mini-batch idea detailed above this entails

taking a sequence of P steps. If we call our initial point w

0,0

= w

0

, we then first

determine a descent direction d

0,1

in g

1

alone, the first function in the sum for g,

and take a step in this direction as

w

0,1

= w

0,0

+ α d

0,1

. (A.35)

Next we determine a descent direction d

0,2

in g

2

, the second function in the sum

for g, and take a step in this direction

w

0,2

= w

0,1

+ α d

0,2

(A.36)

and so forth. Continuing this pattern we take a sequence of P steps, where d

0,p

is the descent direction found in g

p

, that takes the following form

A.5 Mini-Batch Optimization 489

w

0,1

= w

0,0

+ α d

0,1

w

0,2

= w

0,1

+ α d

0,2

.

.

.

w

0,p

= w

0,p-1

+ α d

0,p

.

.

.

w

0,P

= w

0,P-1

+ αd

0,P

.

(A.37)

This sequence of updates completes one sweep through the functions g

1

, g

2

, ..., g

P

,

and is commonly referred to as an epoch. If we continued this pattern and took

another sweep through each of the P functions we perform a second epoch of

steps, and so on.

A.5.2 Descending with larger mini-batch sizes

Instead of taking P sequential steps in single functions g

p

, one at a time (a mini-

batch of size 1), we can more generally take fewer steps in one epoch, but take

each step with respect to severalof the functions g

p

, e.g., two functions at a time, or

three functions at a time, etc. With this slight twist on the idea detailed above we

take fewer steps per epoch but take each with respect to larger nonoverlapping

subsets of the functions g

1

, g

2

, ..., g

P

, but still sweep through each g

p

exactly

once per epoch.

The size/cardinality of the subsets used is called the batch size of the process

(mini-batch optimization using a batch size of 1 is also often referred to as

stochastic optimization). What batch size works best in practice – in terms of

providing the greatest speed up in optimization – varies and is often problem

dependent.

A.5.3 General performance

Is the trade-off – taking more steps per epoch with a mini-batch approach as

opposed to a full descent step – worth the extra effort? Typically yes. Often in

practice, when minimizing machine learning functions an epoch of mini-batch

steps like those detailed above will drastically outperform an analogous full

descent step – often referred to as a full batch or simply a batch epoch in the

context of mini-batch optimization. This is particularly true when P is large,

typically in the thousands or greater.

A prototypical comparison of a cost function history employing a batch and

corresponding epochs of mini-batch optimization applied to the same hypo-

thetical function g (with the same initialization) is shown in Figure A.8. Because

we take far more steps with the mini-batch approach and because each g

p

takes

the same form, each epoch of the mini-batch approach typically outperforms its

490 Advanced First- and Second-Order Optimization Methods

full batch analog. Even when taking into account that far more descent steps

are taken during an epoch of mini-batch optimization the method often greatly

outperforms its full batch analog (see, e.g., Exercise 7.11) – again, particularly

when P is large.

g

1

g

3

g

2

g

descent step in

epoch 1 epoch 2 epoch 3 epoch 4

g = g

1

+ g

2

+ g

3

batch

mini-batch

Figure A.8 A prototypical cost function history comparison of batch and mini-batch

descent. Here P = 3. Epoch per epoch, the mini-batch approach tends to outperform the

full batch step, reaching points nearer to local minima of functions of the form in

Equation (A.33) faster than the full batch approach.

A.6 Conservative Steplength Rules

In Section 3.5 we described how the steplength parameter α for the gradient

descent step – whether fixed for all iterations or diminishing – is very often

determined by trial and error in machine learning applications. However, it is

possible to derive proper steplength parameter settings mathematically that are

guaranteed to produce convergence of the algorithm. These steplength choices

are often quite conservative, specifically designed to force descent in the function

at every step, and are therefore quite expensive computationally speaking. In this

section we briefly review such steplength schemes for the sake of the interested

reader.

A.6.1 Gradient descent and simple quadratic surrogates

Crucial to the analysis of theoretically convergent steplength parameter choices

for gradient descent is the following quadratic function

h

α

(w) = g

±

w

0

²

+ ∇g

±

w

0

²

T

±

w -w

0

²

+

1

2α

³

³

³

w - w

0

³

³

³

2

2

(A.38)

A.6 Conservative Steplength Rules 491

h

α

(w)

w

0

w

w

1

w

1

g(w)

h

α

(w)

Figure A.9 Two quadratic functions approximating the function g around w

0

given by

the quadratic approximation in Equation (A.38). The value of α is larger with the red

quadratic than with the blue one.

where α > 0. The first two terms on the right-hand side constitute the first-order

Taylor series approximation to g(w) at a pointw

0

or, in other words, the formula

for the tangent hyperplane there. The final term on the right-hand side is the

simplest quadratic component imaginable, turning the tangent hyperplane –

regardless of whether or not it is tangent at a point that is locally convex or

concave – into a convex and perfectly symmetric quadratic whose curvature

is controlled in every dimension by the parameter α. Moreover, note that like

the hyperplane, this quadratic is still tangent to g(w) at w

0

, matching both the

function and derivative values at this point.

What happens to this quadratic when we change the value of α? In Figure

A.9 we illustrate the approximation for two different values of α with a generic

convex function. Note the connection to α: the larger the value α, the wider the

associated quadratic becomes.

One of the beautiful things about such a simple quadratic approximation as

h

α

is that we can easily compute a unique global minimum for it, regardless of

the value of α, by checking the first-order optimality condition (see Section 3.2).

Setting its gradient to zero we have

∇h

α

(w) = ∇g

±

w

0

²

+

1

α

±

w -w

0

²

= 0. (A.39)

Rearranging the above and solving forw, we can find the minimizer of h

α

, which

we call w

1

, as

w

1

= w

0

- α∇g

±

w

0

²

. (A.40)

Thus the minimum of our simple quadratic approximation is precisely a stan-

dard gradient descent step at w

0

with a steplength parameter α.

492 Advanced First- and Second-Order Optimization Methods

g(w)

w

0

w

1

w

2

w

Figure A.10 Gradient descent can be viewed simultaneously as using either linear or

simple quadratic surrogates to find a stationary point of g. At each step the associated

steplength defines both how far along the linear surrogate we move before hopping

back onto the function g, and at the same time the width of the simple quadratic

surrogate which we minimize to reach the same point on g.

If we continue taking steps in this manner the kth update is found as the min-

imum of the simple quadratic approximation associated with the previous up-

date w

k-1

, which is likewise

h

α

(w) = g

±

w

k-1

²

+ ∇g

±

w

k-1

²

T

±

w - w

k-1

²

+

1

2α

³

³

³

w - w

k-1

³

³

³

2

2

(A.41)

where the minimum is once again given as the kth gradient descent step

w

k

= w

k-1

- α∇g

±

w

k-1

²

. (A.42)

In sum, our exercise with the simple quadratic yields an alternative perspec-

tive on the standard gradient descent algorithm (detailed in Section 3.5): we

can interpret gradient descent as an algorithm that uses linear approximation

to move towards a function’s minimum, or simultaneously as an algorithm that

uses simple quadratic approximations to do the same. In particular this new

perspective says that as we move along the direction of steepest descent of

the hyperplane, moving from step to step, we are simultaneously ”hopping”

down the global minima of these simple quadratic approximations. These two

simultaneous perspectives are illustrated prototypically in Figure A.10.

A.6.2 Backtracking line search

Since the negative gradient is a descent direction, if we are at a step w

k-1

then –

with a small enough α – the gradient descent step tow

k

will decrease the value

A.6 Conservative Steplength Rules 493

g(w)

w

w

k

w

k-1

w

k

Figure A.11 An illustration of our second perspective on how to choose a value for the

steplength parameter α that is guaranteed to decrease the underlying function’s value

by taking a single gradient descent step. The value of α should be decreased until its

minimum lies over the function. A step to such a point must decrease the function’s

value because at this point the quadratic is by definition at its lowest, and so is in

particular lower than where it began tangent to g. Here the α value associated with the

red quadratic is too large, while the one associated with the blue quadratic is small

enough so that the quadratic lies above the function. A (gradient descent) step to this

point decreases the value of the function g.

of g, i.e., g

±

w

k

²

≤ g

±

w

k-1

²

. Our first perspective on gradient descent (detailed in

Section 3.5) tells us that this will work because as we shrink α we are traveling

a shorter distance in the descent direction of the tangent hyperplane at w

k-1

,

and if we shrink this distance enough the underlying function should also be

decreasing in this direction. Our second perspective gives us a different but

completely equivalent take on this issue: it tells us that in shrinking α we are

increasing the curvature of the associated quadratic approximation shown in

Equation (A.41) (whose minimum is the point we will move to), so that the

minimum point on the quadratic approximation lies above the function g. A

step to such a point must decrease the function’s value because at this point the

quadratic is by definition at its lowest, and is in particular lower than where it

began tangent to g.

How can we find a value of α that does just this at the pointw

k-1

? If our generic

gradient descent step isw

k

= w

k-1

- α∇g

±

w

k-1

²

, we want to determine a value

of α so that at w

k

the function is lower than the minimum of the quadratic, i.e.,

g

±

w

k

²

≤ h

α

±

w

k

²

, as illustrated in Figure A.11. We could select a large number of

values for α and test this condition, keeping the one that provides the biggest

decrease. However, this is a computationally expensive and somewhat unwieldy

prospect. Instead, we test out values of α via an efficient bisection process by

which we gradually decrease the value of α from some initial value until the

inequality is satisfied. This procedure, referred to as backtracking line search,

generally runs as follows.

494 Advanced First- and Second-Order Optimization Methods

1. Choose an initial value for α, e.g., α = 1, and a scalar ”dampening factor”

t ∈ (0,1).

2. Create the candidate descent step w

k

= w

k-1

- α∇g

±

w

k-1

²

.

3. Test if g

±

w

k

²

≤ h

α

±

w

k

²

. If yes, then choose w

k

as the next gradient descent

step; otherwise decrease the value of α as α←- tα, and go back to step 2.

Note that the inequality g

±

w

k

²

≤ h

α

±

w

k

²

cab be written equivalently as

g

±

w

k

²

≤ g

±

w

k-1

²

-

α

2

³

³

³

³

∇g

±

w

k-1

²

³

³

³

³

2

2

(A.43)

by plugging in the step w

k

= w

k-1

- α∇g

±

w

k-1

²

into the quadratic h

α

±

w

k

²

,

completing the square, and simplifying. This equivalent version tells us that so

long as we have not reached a stationary point of g the term

α

2

³

³

³

³

∇g

±

w

k-1

²

³

³

³

³

2

2

(A.44)

will always be positive, hence finding a value of α that satisfies our inequality

means that g

±

w

k

²

will be strictly smaller than g

±

w

k-1

²

.

It is the logic of trying out a large value for α first and then decreasing it

until we satisfy the inequality that prevents an otherwise unwieldy number

of tests to be performed here. Note, however, the way the dampening factor

t ∈ (0,1) controls how coarsely we sample the α values: in setting t closer to 1

we decrease the amount by which α is shrunk at each failure, which could mean

more evaluations are required to determine an adequate α value. Conversely,

setting t closer to 0 here shrinks α considerably with every failure, leading to

completion more quickly but at the possible cost of outputting a small value for

α (and hence a short gradient descent step).

Backtracking line search is a convenient rule for determining a steplength

value at each iteration of gradient descent and works ”right out of the box.”

However, each gradient step using backtracking line search, compared to using

a fixed steplength value, typically includes higher computational cost due to

the search for proper steplength.

A.6.3 Exact line search

In thinking on how one could automatically adjust the steplength value α, one

might also think about trying to determine the steplength α that minimizes the

function g directly along the kth gradient descent step w

k

= w

k-1

- α∇g

±

w

k-1

²

,

that is

minimize

α > 0

g

±

w

k-1

- α∇g

±

w

k-1

²²

. (A.45)

A.6 Conservative Steplength Rules 495

This idea is known as exact line search. Practically speaking, however, this idea

must be implemented via a backtracking line search approach in much the same

way we saw previously – by successively examining smaller values until we

find a value of α at the kth step w

k

= w

k-1

- α∇g

±

w

k-1

²

such that

g

±

w

k

²

≤ g

±

w

k-1

²

. (A.46)

A.6.4 Conservatively optimal fixed steplength values

Suppose we construct the simple quadratic approximation of the form in Equa-

tion (A.41) and we turn up the value of α in the simple quadratic approximation

so that it reflects the greatest amount of curvature or change in the function’s

first derivative. Setting the quadratic’s parameter α to this maximum curvature,

called the Lipschitz constant, means that the quadratic approximation will lie

completely above the function everywhere except at its point of tangency with

the function at

±

w

k-1

, g

±

w

k-1

²²

.

When α is set so that the entire quadratic itself lies above the function this

means that in particular the quadratic’s minimum lies above the function. In

other words, our gradient descent step must lead to a smaller evaluation of g

since

g

±

w

k

²

< h

α

±

w

k

²

≤ h

α

±

w

k-1

²

= g

±

w

k-1

²

. (A.47)

As detailed in Section 4.1, curvature information of a function is found in

its second derivative(s). More specifically, for a single-input function maximum

curvature is defined as the maximum (in absolute value) taken by its second

derivative, i.e.,

max

w

¶

¶

¶

¶

¶

¶

d

2

dw

2

g(w)

¶

¶

¶

¶

¶

¶

. (A.48)

Analogously for a multi-input function g(w) to determine its maximum curva-

ture we must determine the largest possible eigenvalue (in magnitude) of its

Hessian matrix or, written algebraically, employing the spectral norm k·k

2

(see

Section C.5)

max

w

³

³

³

∇

2

g (w)

³

³

³

2

. (A.49)

As daunting a task as this may seem it can in fact be done analytically for a range

of common machine learning functions including linear regression, (two-class

and multi-class) logistic regression, support vector machines, as well as shallow

neural networks.

496 Advanced First- and Second-Order Optimization Methods

Once determined this maximum curvature L – or an upper bound on it – gives

a fixed

3

steplength α =

1

L

that can be used so that the kth descent step

w

k

= w

k-1

-

1

L

∇g

±

w

k-1

²

(A.51)

is guaranteed to always descend in the function g.

4

With this steplength we

can initialize gradient descent anywhere in the input domain of a function and

gradient descent will converge to a stationary point.

This conservatively optimal steplength can be a very convenient rule to use

in practice. However, as its name implies, it is indeed a conservative rule by

nature. Therefore, in practice, one should use it as a benchmark to search for

larger convergence-forcing fixed steplength values. In other words, with the

steplength α =

1

L

calculated one can easily test larger steplengths of the form

α =

t

L

for any constant t > 1. Indeed depending on the problem values of t

ranging from 1 to 100 can work well in practice.

Example A.7 Computing the Lipschitz constant of a single-input sinusoid

Let us compute the Lipschitz constant – or maximum curvature – of the sinusoid

function

g(w) = sin(w). (A.55)

3

If we use local instead of global curvature to define the steplength our corresponding step will

take the form

w

k

= w

k-1

-

1

³

³

³

³

∇

2

g

±

w

k-1

²

³

³

³

³

2

∇g

±

w

k-1

²

(A.50)

which we can interpret as a gradient descent step with self-adjusting steplength (that adjusts

itself based on the local curvature of the function g). Newton’s method – as discussed in Section

4.3 – can be thought of as an extension of this idea.

4

It is fairly easy to rigorously show that the simple quadratic surrogate tangent to g at the point

±

w

k-1

, g

±

w

k-1

²²

with α =

1

L

h

1

L

(w) = g

±

w

k-1

²

+ ∇g

±

w

k-1

²

T

±

w- w

k-1

²

+

L

2

³

³

³

w - w

k-1

³

³

³

2

2

(A.52)

indeed lies completely above the function g at all points. Writing out the first-order Taylor’s

formula for g centered at w

k-1

, we have

g (w) = g

±

w

k-1

²

+ ∇g

±

w

k-1

²

T

±

w -w

k-1

²

+

1

2

±

w- w

k-1

²

T

∇

2

g (c)

±

w- w

k-1

²

(A.53)

where c is a point on the line segment connecting w and w

k-1

. Since ∇

2

g ± LI

N×N

we have

a

T

∇

2

g (c) a ≤ L kak

2

2

(A.54)

for all a, and in particular for a = w - w

k-1

, which implies g (w) ≤ h

1

L

(w).

A.6 Conservative Steplength Rules 497

We can easily compute the second derivative of this function as

d

2

dw

2

g(w) = -sin(w). (A.56)

The maximum value this (second derivative) function can take is 1, hence L = 1,

and therefore α =

1

L

= 1 guarantees descent at every step.

Example A.8 Computing the Lipschitz constant of a multi-input quadratic

In this example we look at computing the Lipschitz constant of the quadratic

function

g(w) = a + b

T

w + w

T

Cw (A.57)

where a = 1, b =

"

1

1

#

, and C =

"

2 0

0 1

#

.

Here the Hessian is simply ∇

2

g(w) = C + C

T

= 2C for all input w, and since

the eigenvalues of a diagonal matrix are precisely its diagonal elements, the

maximum (in magnitude) eigenvalue is clearly 4. Thus we can set L = 4, giving

a conservative optimal steplength value of α =

1

4

.

A.6.5 Convergence proofs

To set the stage for the material of this section, it will be helpful to briefly point

out the specific set of mild conditions satisfied by all of the cost functions we

aim to minimize in this book, as these conditions are relied upon explicitly in

the upcoming convergence proofs. These three basic conditions are listed below.

1. They have piecewise-differentiable first derivative.

2. They are bounded from below.

3. They have bounded curvature.

Gradient descent with fixed Lipschitz steplength

With the gradient of g being Lipschitz continuous with constant L, from Section

A.6.4 we know that at the kth iteration of gradient descent we have a corre-

sponding quadratic upper bound on g of the form

g (w) ≤ g

±

w

k-1

²

+∇g

±

w

k-1

²

T

±

w -w

k-1

²

+

L

2

kw - w

k-1

k

2

2

(A.58)

498 Advanced First- and Second-Order Optimization Methods

for all w in the domain of g. Now plugging in the form of the gradient step

w

k

= w

k-1

-

1

L

∇g

±

w

k-1

²

into the above and simplifying gives

g

±

w

k

²

≤ g

±

w

k-1

²

-

1

2L

k∇g

±

w

k-1

²

k

2

2

(A.59)

which, since k∇g

±

w

k-1

²

k

2

2

≥ 0, indeed shows that the sequence of gradient steps

is decreasing. To show that it converges to a stationary point where the gradient

vanishes we subtract g

±

w

k-1

²

from both sides of Equation (A.59), and sum the

result over 1 ≤ k ≤ K, giving

K

X

k=1

h

g

±

w

k

²

- g

±

w

k-1

²i

= g

±

w

K

²

- g

±

w

0

²

≤ - 1

2L

K

X

k=1

³

³

³

³

∇g

±

w

k-1

²

³

³

³

³

2

2

. (A.60)

Note importantly here that since g is bounded from below, taking K -→ ∞, we

must have that

∞

X

k=1

³

³

³

³

∇g

±

w

k-1

²

³

³

³

³

2

2

<∞. (A.61)

Hence the fact that the infinite sum above must be finite implies that as k -→ ∞
we have that

³

³

³

³

∇g

±

w

k-1

²

³

³

³

³

2

2

-→ 0 (A.62)

meaning that the sequence of gradient descent steps with steplength determined

by the Lipschitz constant of the gradient of g produces a sequence with vanish-

ing gradient that converges to a stationary point of g. Note that we could have

made the same argument above using any fixed steplength smaller than

1

L

as

well.

Gradient descent with backtracking line search

With the assumption that g has a maximum bounded curvature of L, it follows

that with any fixed choice of initial steplength α > 0 and t ∈ (0, 1) we can always

find an integer n

0

such that

t

n

0

α ≤

1

L

. (A.63)

Thus the backtracking-found steplength at the kth gradient descent step will

always be larger than this lower bound, i.e.,

α

k

≥ t

n

0

α > 0 (A.64)

A.7 Newton’s Method, Regularization, and Nonconvex Functions 499

for all k.

Recall from Equation (A.43) that by running the backtracking procedure at

the kth gradient step we have

g

±

w

k

²

≤ g

±

w

k-1

²

-

α

k

2

³

³

³

³

∇g

±

w

k-1

²

³

³

³

³

2

2

. (A.65)

To show that the sequence of gradient steps converges to a stationary point

of g we first subtract g

±

w

k-1

²

from both sides of Equation (A.65), and sum the

result over 1 ≤ k ≤ K, which gives

K

X

k=1

h

g

±

w

k

²

- g

±

w

k-1

²i

= g

±

w

K

²

- g

±

w

0

²

≤ -1

2

K

X

k=1

α

k

³

³

³

³

∇g

±

w

k-1

²

³

³

³

³

2

2

. (A.66)

Since g is bounded from below, taking K -→ ∞, we must have

∞

X

k=1

α

k

³

³

³

³

∇g

±

w

k-1

²

³

³

³

³

2

2

<∞. (A.67)

Now, we know from Equation (A.64) that

K

X

k=1

α

k

≥ K t

n

0

α (A.68)

implying

∞

X

k=1

α

k

=∞. (A.69)

In order for Equations (A.67) and (A.69) to hold simultaneously we must have

that

³

³

³

³

∇g

±

w

k-1

²

³

³

³

³

2

2

-→ 0 (A.70)

as k -→ ∞. This shows that the sequence of gradient steps determined by

backtracking line search converges to a stationary point of g.

A.7 Newton’s Method, Regularization, and Nonconvex Functions

As we saw in Section 4.3, Newton’s method is naturally incapable of properly

minimizing generic nonconvex functions. In this section we describe the regu-

larized Newton step as a common approach to ameliorate this particular issue

(which we have essentially seen before albeit without the more in-depth context

we provide here).

500 Advanced First- and Second-Order Optimization Methods

A.7.1 Turning up ±

In Section 4.3.3 we saw how adding a very small positive value ± to the second

derivative of a single-input function, or analogously a weighted identity matrix

of the form ±I

N×N

to the Hessian in the multi-input case, helps Newton’s method

avoid numerical problems in flat regions of a convex function. This adjusted

Newton step, which takes the form

w

k

= w

k-1

-

±

∇

2

g(w

k-1

)+ ±I

N×N

²

-1

∇g(w

k-1

), (A.71)

can be interpreted as the stationary point of a slightly adjusted second-order

Taylor series approximation centered at w

k-1

h(w) = g(w

k-1

) +∇g(w

k-1

)

T

(w -w

k-1

)+

1

2

(w - w

k-1

)

T

∇

2

g

±

w

k-1

²

(w - w

k-1

)

+

±

2

³

³

³

w - w

k-1

³

³

³

2

2

.

(A.72)

The first three terms (on the right-hand side of the equality) still represent

the second-order Taylor series at w

k-1

, and to it we have added

±

2

³

³

³

w -w

k-1

³

³

³

2

2

,

a convex and perfectly symmetric quadratic centered at w

k-1

with N positive

eigenvalues (each equal to

±

2

). In other words, we have a sum of two quadratic

functions. When w

k-1

is at a nonconvex or flat portion of a function the first

quadratic is likewise nonconvex or flat. However, the second one is always

convex, and the larger ± is set the greater its (convex) curvature. This means

that if we set ± larger we can convexify the entire approximation, forcing the

stationary point we solve for to be a minimum and the direction in which we

travel is one of guaranteed descent.

Example A.9 The effect of regularization

In Figure A.12 we illustrate the regularization of a nonconvex function

h

1

(w

1

,w

2

) = w

2

1

- w

2

2

(A.73)

using the convex regularizer

h

2

(w

1

,w

2

) = w

2

1

+ w

2

2

. (A.74)

In particular we show what the resulting sum h

1

+ ±h

2

looks like over four pro-

gressively increasing values of ±, from ± = 0 (leftmost panel) to ± = 2 (rightmost

panel).

Since h

1

is nonconvex, and has a single stationary point that is a saddle point

at the origin, the addition of h

2

pulls up its downward-facing dimension. Not

A.7 Newton’s Method, Regularization, and Nonconvex Functions 501

✏ = 0 ✏ = 0.6

✏ = 1 ✏ = 2

Figure A.12 Figure associated with Example A.9. From left to right, a nonconvex

quadratic function is slowly turned into a convex function via the weighted addition of

a convex quadratic. See text for further details.

Example A.10 Minimization of a nonconvex function

In Figure A.13 we illustrate five regularized Newton steps (using the update

step shown in Equation (A.71)) to minimize the nonconvex function

g(w) = 2 - e

-w

2

. (A.75)

We initialize the algorithm at a point of local nonconvexity for this function, and

gradually increase ± from ± = 0 (top panel) where Newton’s method diverges, to

± = 4 (bottom panel) where it has sufficientlyconvexified the Newton step, leading

the algorithm to take downhill steps towards the minimum of the function. In

the figure the steps from each run are colored from green (the first step) to red

(the final step), with the regularized second-order approximation at each step

colored accordingly.

To determine how high we need to turn up ± in order to make the regularized

second-order Taylor series approximation convex, recall from Section 4.2 that

a quadratic function is convex if and only if it has all nonnegative eigenvalues.

Thus ± must be made larger than the magnitude of the smallest eigenvalue of

the Hessian∇

2

g

±

w

k-1

²

in order for the regularized second-order quadratic to be

convex. For a single-input function this reduces to ± being larger in magnitude

than value of the function’s second derivative at w

k-1

(if it is negative there).

While ± in the regularized Newton step in Equation (A.71) is typically set to a

relatively small value, it is interesting to note that as we increase ±, the direction

we travel in tilts toward the gradient descent direction at w

k-1

. In other words,

when ± is large the direction we travel when taking the regularized Newton step

becomes the gradient descent direction (albeit with a very small magnitude)

surprisingly as ± is increased, the shape of the sum is dictated more and more

by h

2

. Eventually, turning up ± sufficiently, the sum becomes convex.

502 Advanced First- and Second-Order Optimization Methods

Figure A.13 Figure associated with

Example A.10. See text for details.

w

g(w)

✏ = 0

✏ = 1.5

✏ = 4

w

w

g(w)

g(w)

-

±

∇

2

g(w

k-1

)+ ±I

N×N

²

-1

∇g(w

k-1

) ≈ - (±I

N×N

)

-1

∇g(w

k-1

) = -

1

±

∇g(w

k-1

).

(A.76)

A.8 Hessian-Free Methods

While Newton’s method is a powerful technique that exhibits rapid convergence

due to its employment of second-order information, it is naturally constrained

by the input dimension N of a general function g (w). More specifically, the N×N

Hessian matrix ∇

2

g (w), with its N

2

entries, naturally limits Newton’s method’s

use to cases where N is (roughly speaking) in the thousands, since it is difficult

to even store such a matrix when N is larger (let alone compute with it).

In this section we discuss a two variations on Newton’s method, collectively

referred to as Hessian-free optimization methods, that ameliorate this issue by

replacing the Hessian (in each Newton’s method step) with a close approxi-

mation that does not suffer from the same scaling issue. Because of this, both

approaches naturally trade the precision of each Newton’s method step with the

A.8 Hessian-Free Methods 503

ability to scale the basic algorithm to high-dimensional input. The first of these

approaches is the simplest conceptually speaking, and involves subsampling the

Hessian, using only a fraction of its entries. The latter method, often referred to

as quasi-Newton, involves replacing the Hessian with a low-rank approximation

that can be computed effectively.

A.8.1 Subsampling the Hessian

The simplest way to deal with the scaling issue inherent with Newton’s method,

that of the massive number of entries in the N × N Hessian matrix ∇

2

g (w) as

N increases, is to simply subsample the Hessian. That is, instead of using the

entire Hessian matrix we use only a fraction of its entries, setting the remainder

of the entries to zero. This of course dilutes the power of complete second-

order information leveraged at each Newton’s step, and thus the corresponding

efficacy of each corresponding Newton’s step, but salvages the otherwise unten-

able method when N is too large. There are a variety of ways one can consider

subsampling the Hessian that trade-off between maintaining second-order in-

formation and the allowance of graceful scaling with input dimension (see, e.g.,

[15, 71]).

One popular subsampling scheme involves simply retaining only the diagonal

entries of the Hessian matrix, i.e., only the N pure partial second derivatives of

the form

∂

2

∂w

2

n

g(w) for n = 1,2, ...,N. This drastically reduces the number of entries

of the Hessian, and greatly simplifies the Newton’s step from the solution to a

linear system of equations

w

k

= w

k-1

-

±

∇

2

g(w

k-1

)

²

-1

∇g(w

k-1

) (A.77)

to the straightforward component-wise update for each n = 1, 2, ...,N

w

k

n

= w

k-1

n

-

∂

∂w

n

g(w

k-1

)

∂

2

∂w

2

n

g(w

k-1

)

. (A.78)

In other words, keeping only the diagonal entries of the Hessian we de-

couple each coordinate and no longer have a system of equations to solve. The

downside, of course, is that we ignore all cross-partial derivatives retaining

only the second-order information corresponding to the curvature along each

input dimension independently. Nonetheless, this subsampled Newton’s step

can be quite effective in practice when used to minimize machine learning cost

functions (see, e.g., Exercise 9.8) and can scale as gracefully as a first-order

method like gradient descent.

504 Advanced First- and Second-Order Optimization Methods

A.8.2 Secant methods

In studying Newton’s method as a zero-finding algorithm, at the kth step in

finding a zero of the first-order equation

d

dw

g (w) = 0 we form the first-order

Taylor series

h (w) =

d

dw

g

±

w

k-1

²

+

d

2

dw

2

g

±

w

k-1

² ±
w -w

k-1

²

(A.79)

and find where this linear function equals zero, which is given by the corre-

sponding Newton update

w

k

= w

k-1

-

d

dw

g

±

w

k-1

²

d

2

dw

2

g

(

w

k-1

)

. (A.80)

If we replace the slope of the tangent line – here the second derivative evaluation

d

2

dw

2

g

±

w

k-1

²

– with the slope provided by a closely related

5

secant line

d

2

dw

2

g

±

w

k-1

²

≈

d

dw

g

±

w

k-1

²

-

d

dw

g

±

w

k-2

²

w

k-1

-w

k-2

(A.81)

we will produce an algorithm highly related to Newton’s method (but with no

need to employ the second derivative). Replacing the second derivative with

this approximation in our Newton’s step we have a secant method update

w

k

= w

k-1

-

d

dw

g

±

w

k-1

²

d

dw

g

(

w

k-1

)

-

d

dw

g

(

w

k-2

)

w

k-1

-w

k-2

(A.82)

which we can write in a less cumbersome manner as

w

k

= w

k-1

-

d

dw

g

±

w

k-1

²

s

k-1

(A.83)

where s

k-1

has been used to denote the slope of the secant line

s

k-1

=

d

dw

g

±

w

k-1

²

-

d

dw

g

±

w

k-2

²

w

k-1

- w

k-2

. (A.84)

While less accurate than Newton’s method this approach, which does not rely

directly on the second derivative, can still be generally used to solve the first-

order equation and find stationary points of the function g(w). This fact, while

fairly inconsequential for a single-input function with N = 1, gains significantly

5

Remember that the derivative of a single-input function defines the slope of the tangent line to

the function at the point of tangency. This slope can be roughly approximated as the slope of a

nearby secant line, that is a line that passes through the same point as well as another point

nearby on the function (see Section B.2.1).

A.8 Hessian-Free Methods 505

more value when this secant method is generalized to multi-input functions.

This is because, as we have already discussed, it is the very size of the Hessian

matrix that prohibits Newton’s method’s use for functions with large values of

N.

Everything we have discussed for the generic single-input case tracks to the

multi-input instance as well. Notice, looking back at Equation (A.84), that by

multiplying both sides by w

k-1

-w

k-2

we can write it equivalently as

s

k-1

±

w

k-1

-w

k-2

²

=

d

dw

g

±

w

k-1

²

-

d

dw

g

±

w

k-2

²

. (A.85)

This is often referred to as the single-input secant condition.

Replacing each component of Equation (A.85) with its multi-input analog gives

the multi-input secant condition

S

k-1

±

w

k-1

- w

k-2

²

= ∇g

±

w

k-1

²

- ∇g

±

w

k-2

²

. (A.86)

Here we have replaced the scalar s

k-1

with its analog, an N × N matrix S

k-1

,

and the one-dimensional terms w

k-1

, w

k-2

,

d

dw

g

±

w

k-1

²

, and

d

dw

g

±

w

k-2

²

with their

respective N-dimensional analogs:w

k-1

,w

k-2

, ∇g

±

w

k-1

²

, and ∇g

±

w

k-2

²

. Assum-

ing for a moment that S

k-1

is invertible, we can also express the secant condition

as

w

k-1

- w

k-2

=

±

S

k-1

²

-1

±

∇g

±

w

k-1

²

- ∇g

±

w

k-2

²²

. (A.87)

In either instance, we can see that the secant method requires we solve for the

matrix S

k-1

or its inverse

±

S

k-1

²

-1

. Unlike the one-dimensional instance of the

secant condition in Equation (A.85) where each update has a unique solution,

with the N-dimensional case in Equation (A.86) we must solve a system of

equations which will generally have infinitely many solutions, since there are

only N equations but N

2

entries to solve for in the matrix S

k-1

.

A.8.3 Quasi-Newton methods

As discussed in Section 4.3.2, the standard Newton step

w

k

= w

k-1

-

±

∇

2

g

±

w

k-1

²²

-1

∇g

±

w

k-1

²

(A.88)

is an example of a local optimization step of the generic formw

k

= w

k-1

+ αd

k

,

with the descent direction given by

d

k

= -

±

∇

2

g

±

w

k-1

²²

-1

∇g

±

w

k-1

²

. (A.89)

The term ”quasi-Newton” method is the jargon phrase used for any descent

step of the form

506 Advanced First- and Second-Order Optimization Methods

d

k

= -

±

S

k-1

²

-1

∇g

±

w

k-1

²

(A.90)

where the true Hessian matrix ∇

2

g

±

w

k-1

²

is replaced with a secant approxima-

tion S

k-1

. As with the single-input case this kind of update – while less accurate

at each step than the true Newton’s method – can still define an effective local

optimization method depending on how S

k-1

is constructed (all while avoiding

the need for direct second-order information).

In other words, in taking quasi-Newton steps we are no longer required to

compute a sequence of Hessian matrices

∇

2

g

±

w

0

²

, ∇

2

g

±

w

1

²

, ∇

2

g

±

w

2

²

, etc., (A.91)

and instead we construct a sequence of corresponding secant matrices

S

1

, S

2

, S

3

, etc., (A.92)

as an approximation to the Hessian sequence. To construct this secant sequence,

note the following.

• S

k-1

should be a solution to the secant condition. Defining for notational

convenience a

k

= w

k-1

- w

k-2

and b

k

= ∇g

±

w

k-1

²

- ∇g

±

w

k-2

²

, the secant

condition in Equation (A.86) dictates we must have that S

k-1

a

k

= b

k

. Letting

F

k

=

±

S

k

²

-1

we can write this equivalently as a

k

= F

k

b

k

.

• S

k-1

should be symmetric. Since the Hessian ∇

2

g

±

w

k-1

²

is always symmetric

and ideally we want S

k-1

to mimic the Hessian closely, it is reasonable to

expect S

k-1

to be symmetric as well.

• The secant sequence should converge. As the quasi-Newton method pro-

gresses, the sequence of steps w

k-1

should converge (to a minimum of g), so

too should the secant sequence S

k-1

(to the Hessian evaluated at that mini-

mum).

We now explore, by example, a number of ways to construct secant sequences

that satisfy these conditions. These constructions are recursive in nature and take

the general form

F

k

= F

k-1

+ D

k-1

(A.93)

where the N×N difference matrix D

k-1

is designed to be symmetric, of a particular

low rank, and diminishing in magnitude.

Symmetry of D

k-1

guarantees if we initialize the very first F

0

to a symmetric

matrix (most commonly the identity matrix), this recursive update will retain

our desired symmetry property (since the sum of two symmetric matrices is

A.8 Hessian-Free Methods 507

always symmetric). Similarly, if D

k-1

is designed to be positive-definite and

the initialization F

0

is also positive-definite (as the identity matrix is) then this

property is inherited by all matrices F

k

. Constraining D

k-1

to be of low rank

makes it structurally simple and allows to compute it in closed form at each step.

Finally, the magnitude/norm of D

k-1

should shrink as k gets larger, otherwise F

k

simply will not converge.

Example A.11 Rank-1 difference matrix

In this example we describe one of the simplest recursive formula for S

k

(or more

precisely its inverse F

k

) where the difference matrix D

k-1

in Equation (A.93) is a

rank-1 outer-product matrix

D

k-1

= u u

T

. (A.94)

By first assuming this form of the difference matrix does indeed satisfy the secant

condition, we can then work backwards from it to determine the proper value for

u.

Substituting F

k-1

+ u u

T

for F

k

into the secant condition gives

±

F

k-1

+ u u

T

²

b

k

= a

k

(A.95)

or rearranging equivalently

u u

T

b

k

= a

k

- F

k-1

b

k

. (A.96)

Multiplying both sides by

±

b

k

²

T

±

b

k

²

T

u u

T

b

k

=

±

b

k

²

T

a

k

-

±

b

k

²

T

F

k-1

b

k

(A.97)

and taking the square root of both sides gives

u

T

b

k

=

´

±

b

k

²

T

a

k

-

±

b

k

²

T

F

k-1

b

k

µ

1

2

. (A.98)

Substituting the value for u

T

b

k

from Equation (A.98) into Equation (A.96), we

arrive at the desired form for the vector u

u =

a

k

- F

k-1

b

k

±

(

b

k

)

T

a

k

-

(

b

k

)

T

F

k-1

b

k

²

1

2

(A.99)

with the corresponding recursive formula for F

k

given as

508 Advanced First- and Second-Order Optimization Methods

F

k

= F

k-1

+

±

a

k

- F

k-1

b

k

² ±
a

k

- F

k-1

b

k

²

T

(

b

k

)

T

a

k

-

(

b

k

)

T

F

k-1

b

k

. (A.100)

Example A.12 The Davidon–Fletcher–Powell (DFP) method

We can use a slightly more complex structure for the difference matrix by con-

structing it as a sum of two rank-1 matrices

D

k-1

= u u

T

+ v v

T

. (A.101)

By allowing for a rank-2 difference between the subsequent matrices (as opposed

to a rank-1 difference) we encode an additional level of complexity into our

approximation to subsequent inverse Hessian evaluations.

In order to determine the proper values for u and v, we substitute F

k-1

+D

k-1

for F

k

into the secant condition (as we did in Example A.11), giving

±

F

k-1

+ u u

T

+ v v

T

²

b

k

= a

k

, (A.102)

or rearranging equivalently

u u

T

b

k

+ v v

T

b

k

= a

k

- F

k-1

b

k

. (A.103)

Note that here we have only a single equation, and so there are infinitely many

choices for our two unknown vectors u and v. A very simple yet common way

of determining a single set of values for u and v is to suppose the first/second

term on the left-hand side of Equation (A.103) equals the corresponding term

on the right-hand side, that is

u u

T

b

k

= a

k

and v v

T

b

k

= -F

k-1

b

k

. (A.104)

This added assumption allows us to solve for a valid pair of u and v in a way

that closely mirrors the solution method from Example A.11. First, we multiply

each by

±

b

k

²

T

, giving

±

b

k

²

T

u u

T

b

k

=

±

b

k

²

T

a

k

and

±

b

k

²

T

v v

T

b

k

= -

±

b

k

²

T

F

k-1

b

k

. (A.105)

Taking the square root of both sides in both equations, we then have the set of

equations

u

T

b

k

=

´

±

b

k

²

T

a

k

µ

1

2

and v

T

b

k

=

´

-

±

b

k

²

T

F

k-1

b

k

µ

1

2

. (A.106)

Substituting these value for u

T

b

k

and v

T

b

k

from Equation (A.106) into Equation

(A.104), we have

A.8 Hessian-Free Methods 509

u =

a

k

±

(

b

k

)

T

a

k

²

1

2

and v =

-F

k-1

b

k

±

-

(

b

k

)

T

F

k-1

b

k

²

1

2

. (A.107)

with the corresponding recursive formula for F

k

given as

F

k

= F

k-1

+

a

k

±

a

k

²

T

(

b

k

)

T

a

k

-

±

F

k-1

b

k

² ±
F

k-1

b

k

²

T

(

b

k

)

T

F

k-1

b

k

. (A.108)

This is called the Davidon–Fletcher–Powell (DFP) method based on the authors

who first put forth this solution [14, 72].

While the update derived here is for the inverse matrix F

k

=

±

S

k

²

-1

, an en-

tirely similar recursive expression can be formulated for S

k

itself, leading to the

Broyden–Fletcher–Goldfarb–Shanno (BFGS) update, named after its original

authors [14, 72, 73] (see Exercise 4.10).

A.8.4 Low-memory quasi-Newton methods

In the previous examples we saw how to construct a sequence of (inverse) secant

matrices via the recursion

±

S

k

²

-1

=

±

S

k-1

²

-1

+ D

k-1

(A.109)

to replace the true Hessian sequence. The descent direction for the kth step of a

quasi-Newton method then takes the form

d

k

= -

±

S

k-1

²

-1

∇g(w

k-1

) (A.110)

where S

k-1

is our approximation to ∇

2

g

±

w

k-1

²

. Notice, however, that as written

in Equation (A.110), computing the descent direction still involves the explicit

form of an N × N matrix: the inverse of S

k-1

. But recall, it was precisely the

presence of the N × N Hessian matrix (with its N

2

values) that drove us to

examine quasi-Newton methods to begin with. So, at first glance, it appears that

we have not avoided the serious scaling issues associated with employing an

N × N matrix: originally a Hessian matrix, now a secant matrix.

Luckily we can avoid explicit construction of the (inverse) secant matrix by

focusing on how it acts on the gradient vector ∇g(w

k-1

) in Equation (A.110). For

example, denoting for notational convenience z

k-1

= ∇g(w

k-1

) and F

k

=

±

S

k

²

-1

,

the descent direction d

k

using the recursive update derived in Example A.11 can

be written as

510 Advanced First- and Second-Order Optimization Methods

d

k

= -F

k

z

k-1

= -

F

k-1

+

±

a

k

- F

k-1

b

k

² ±
a

k

- F

k-1

b

k

²

T

(

b

k

)

T

a

k

-

(

b

k

)

T

F

k-1

b

k

z

k-1

= -F

k-1

z

k-1

-

±

a

k

- F

k-1

b

k

²

T

z

k-1

(

b

k

)

T

a

k

-

(

b

k

)

T

F

k-1

b

k

±

a

k

- F

k-1

b

k

²

.

(A.111)

Notice wherever the matrix F

k-1

appears in the final line of Equation (A.111),

it is always attached to some other vector, in this case b

k

and z

k-1

. Thus if we

somehow manage to compute F

k-1

b

k

and F

k-1

z

k-1

directly as vectors, we can

avoid explicitly forming F

k-1

.

This is where our particular recursive construction of F

k

as

F

k

= F

k-1

+ u

k-1

±

u

k-1

²

T

(A.112)

comes to rescue. Rolling this recursion all the way back to F

0

and initializing

F

0

= I

N×N

, we can write it equivalently as

F

k

= I

N×N

+

´

u

0

±

u

0

²

T

+ · · · + u

k-1

±

u

k-1

²

T

µ

. (A.113)

Multiplication of any vector t with F

k

can then be written as

F

k

t = I

N×N

t+

´

u

0

±

u

0

²

T

+ · · · + u

k-1

±

u

k-1

²

T

µ

t (A.114)

and simplified as

F

k

t = t + u

0

´

±

u

0

²

T

t

µ

+ · · · + u

k-1

´

±

u

k-1

²

T

t

µ

. (A.115)

To compute F

k

t, as written in Equation (A.115), we only need access to vectors

t as well as u

0

through u

k-1

, and perform simple vector inner-product.

We can make very similar kinds of arguments with any rank-1 or rank-2

quasi-Newton update formula, meaning that any of the update formulae given

in the preceding examples can be implemented in a way that we never need

explicitly construct a secant or inverse secant matrix (see, e.g., [14, 72]).

B Derivatives and Automatic

Differentiation

B.1 Introduction

The concept of the derivative from calculus is fundamental to forming an in-

tuitive and practical understanding of local optimization techniques, which

are the workhorse of machine learning. Because of its critical importance this

appendix chapter provides a self-contained overview of derivatives, practical

computation of derivatives via automatic differentiation (including an outline

of the backpropagation algorithm), and Taylor series approximations.

B.2 The Derivative

The derivative is a simple tool for understanding a (continuous) mathematical

function locally, meaning at and around a single point. In this section we review

the notion of the derivative at a point, and how it naturally defines the best linear

approximation (i.e., a line in two dimensions, a hyperplane in higher dimensions)

that matches the given function at that point as well as a line/hyperplane can.

B.2.1 The secant and tangent lines

In Figure B.1 we illustrate a single-input function g(w) along with the tangent

line to this function at various points in its input domain. At any input point

the slope of the tangent line to this function is referred to as its derivative. Notice

at different input points how this quantity (i.e., the slope of the tangent line)

seems to match the general local steepness of the underlying function itself. The

derivative naturally encodes this information.

To formally define the derivative, we start by examining a secant line formed

by taking any two points on a (single-input) function and connecting them with

a straight line. The equation of any secant line constructed in this way is easy

to find since its slope is given by the ”rise over run” difference between the two

points, and the equation of any line can be formed using its slope and any point

on said line. For a generic single-input function g and the input points w

0

and

w

1

, the secant line h passes through the points

±

w

0

, g

±

w

0

²²

and

±

w

1

, g

±

w

1

²²

, with

its slope defined as

512 Derivatives and Automatic Differentiation

w

0

w

1

w

2

g(w)

w

Figure B.1 A generic function with the tangent line drawn at various points of its input

domain. See text for further details.

g(w

1

) - g(w

0

)

w

1

-w

0

(B.1)

and its equation defined as

h(w) = g(w

0

) +

g(w

1

) - g(w

0

)

w

1

- w

0

(w -w

0

). (B.2)

Now imagine we fix the point w

0

and begin slowly pushing the point w

1

towards it. As w

1

gets closer and closer to w

0

the secant line resembles the

tangent line at w

0

more and more. In other words, if we denote the difference

between w

1

and w

0

by ±

w

1

= w

0

+ ± (B.3)

then the slope of the secant line connecting

±

w

0

, g

±

w

0

²²

to

±

w

1

, g

±

w

1

²²

, given as

g(w

1

) - g(w

0

)

w

1

- w

0

=

g(w

0

+ ±) - g(w

0

)

w

0

+ ± -w

0

=

g(w

0

+ ±) - g(w

0

)

±

(B.4)

matches the slope of the tangent line at w

0

(i.e., the derivative at w

0

) as |±| gets

infinitesimally small. Notice that ± may be positive or negative here, depending

on whether w

1

lies to the right or left of w

0

. For the derivative to be defined

at w

0

the quantity in Equation (B.4) needs to converge to the same value as ±

approaches zero, regardless of the mathematical sign of ± (or equivalently, the

direction in which w

1

approaches w

0

). For example, the derivative at w

0

= 0 is

defined for the function g

(

w

)

= max(0,w

2

) since

B.2 The Derivative 513

g(w

0

+ ±) - g(w

0

)

±

=

max(0, ±2

) - max(0, 0)

±

=

±

2

±

= ± (B.5)

which converges to zero as ± approaches zero. On the other hand, the derivative

at w

0

= 0 is not defined for the function g

(

w

)

= max(0,w) since

g(w

0

+ ±) - g(w

0

)

±

=

max(0, ±)

±

(B.6)

equals zero when a negative ± approaches zero, and equals one when a positive

± approaches zero.

One common notation used to denote the derivative of g at the point w

0

is

dg

±

w

0

²

dw

(B.7)

where the symbol d means ”infinitely small change in the value of.” Notice this is

precisely what the fraction in Equation (B.4) expresses when |±| is infinitesimally

small. A common variation on this notation puts g

±

w

0

²

out front, as

d

dw

g

±

w

0

²

. (B.8)

There are also other notations commonly used in practice to denote the deriva-

tive of g at w

0

, e.g., g

0

±

w

0

²

. Finally, note that with this notation the equation of

the tangent line to g at the point w

0

can be written as

h(w) = g(w

0

) +

d

dw

g(w

0

)(w- w

0

). (B.9)

B.2.2 Numerical differentiation

To avoid having to find the derivative expression in Equation (B.4) analytically,

especially when the function g is rather complicated, we can create a derivative

calculator that estimates its derivative at a user-defined pointw

0

by simply setting

± to some small number (in absolute value) like ± = 0.0001. To be more robust in

our approximation of the derivative we can replace the ”one-way” secant slope

in Equation (B.8) with the average slope of the right and left secant lines, as

d

dw

g

±

w

0

²

≈

g(w

0

+ ±) - g(w

0

- ±)

2±

. (B.10)

In either case the smaller we set ± the better our estimation of the actual

derivative value becomes. However, setting ± too small can create round-off

errors due to the fact that numerical values (whether or not they are produced

from a mathematical function) can be represented only up to a certain precision

514 Derivatives and Automatic Differentiation

on a computer, and that both the numerator and denominator in Equations

(B.4) and (B.10) shrink to zero rapidly. This numerical stability issue does not

completely invalidate numerical differentiation, but is worth being aware of.

B.3 Derivative Rules for Elementary Functions and Operations

For certain elementary functions and operations we need not resort to numerical

differentiation since finding their exact derivative value is quite straightforward.

We organize derivative formulae for popular elementary functions and operations

in Tables B.1 and B.2, respectively. We provide formal proof for one elementary

function from Table B.1 (monomial of degree d) and one elementary operation

from Table B.2 (multiplication) in Examples B.1 and B.2, respectively. One can

easily confirm the remainder of the derivative rules by following a similar

argument, or consulting any standard calculus reference.

Table B.1 Derivative formulae for elementary functions.

Elementary function Equation Derivative

Sine sin (w) cos (w)

Cosine cos (w) -sin (w)

Exponential e

w

e

w

Logarithm log (w

)

1

w

Hyperbolic tangent tanh (w) 1 - tanh

2

(w)

Rectified Linear Unit (ReLU) max (0,w)

0

1

if w < 0

if w > 0

Table B.2 Derivative formulae for elementary operations.

Elementary operation Equation Derivative

Addition of a constant c+ g (w)

d

dw

g (w)

Multiplication by a constant c g (w) c

d

dw

g (w)

Addition of functions f

(

w

)

+ g

(

w

)

d

dw

f

(

w

)

+

d

dw

g

(

w

)

Multiplication of functions f (w) g (w)

h

d

dw

f (w)

i

g (w) + f (w)

h

d

dw

g (w)

i

Composition of functions f

(

g (w)

)

d

dg

f

(

g

)

d

dw

g (w)

B.3 Derivative Rules for Elementary Functions and Operations 515

Example B.1 Derivative of general monomial terms

Starting with a degree-two monomial g(w) = w

2

, we can write for general w and

small ±

g(w+ ±)- g(w)

±

=

(w + ±)

2

- w

2

±

=

(w

2

+ 2w±+ ±

2

)- w

2

±

=

2w±+ ±

2

±

= 2w+ ±.

(B.11)

Sending ± to zero we get

d

dw

g(w) = 2w. (B.12)

Now let us examine a general degree-d monomial g(w) = w

d

. All we need to do

here is expand (w + ±)

d

and rearrange its terms appropriately, as

(w+ ±)

d

=

d

X

j=0

°

d

j

!

±

j

w

d-j

= w

d

+ d ±w

d-1

+ ±

2

d

X

j=2

°

d

j

!

±

j-2

w

d-j

(B.13)

where

°

d

j

!

=

d!

j!(d - j)!

. (B.14)

Plugging this expansion into the definition of the derivative

(w+ ±)

d

- w

d

±

= dw

d-1

+ ±

d

X

j=2

°

d

j

!

±

j-2

w

d- j

(B.15)

we can see that the second term on the right-hand side vanishes as ± -→ 0.

Example B.2 The product rule

With two functions f (w) and g(w) we want to evaluate

f (w+ ±)g(w+ ±) - f (w)g(w)

±

(B.16)

as ± approaches zero. Adding and subtracting f (w + ±)g(w) in the numerator

gives

f (w+ ±)g(w+ ±)- f (w + ±)g(w)+ f (w+ ±)g(w)- f (w)g(w)

±

(B.17)

which then simplifies to

f (w+ ±)- f (w)

±

g(w) + f (w+ ±)

g(w+ ±)- g(w)

±

. (B.18)

516 Derivatives and Automatic Differentiation

Notice as ± -→ 0, the first and second term in Equation (B.18) goes to

h

d

dw

f (w)

i

g(w)

and f (w)

h

d

dw

g(w)

i

, respectively, together giving

d

dw

³

f

(

w

)

g

(

w

)

´

=

µ

d

dw

f

(

w

)

¶

g

(

w

)

+ f

(

w

)

µ

d

dw

g

(

w

)

¶

. (B.19)

B.4 The Gradient

The gradient is a straightforward generalization of the notion of derivative for

a multi-input function g (w

1

, w

2

, . . . , w

N

). Treating all inputs but the first one

(i.e., w

1

) as fixed values (not variables), the function g momentarily reduces to

a single-input function for which we have seen how to define the derivative

(with respect to its only input variable w

1

). This partial derivative, written as

∂

∂w

1

g (w

1

,w

2

, . . . , w

N

), determines the slope of the hyperplane tangent to g at a

given point, along the first input dimension. Repeating this for all inputs to g

gives N partial derivatives (one along each input dimension) that collectively

define the set of slopes of the tangent hyperplane. This is completely analogous to

the single-input case where the derivative provides the slope of the tangent line.

For notational convenience these partial derivatives are typically collected

into a vector, called the gradient and denoted by ∇g

(

w

1

,w

2

, . . . ,w
N

), as

∇g

(

w

1

,w

2

, . . . , w

N

)

=

∂

∂w

1

g

(

w

1

,w

2

, . . . , w

N

)

∂

∂w

2

g (w

1

,w

2

, . . . ,w
N

)

.

.

.

∂

∂w

N

g (w

1

, w

2

, . . . ,w
N

)

. (B.20)

Stacking all N inputs (w

1

through w

N

) similarly into a column vector

w =

w

1

w

2

.

.

.

w

N

, (B.21)

the hyperplane tangent to the function g (w) at the point

±

w

0

, g

±

w

0

²²

can be

compactly characterized as

h(w) = g(w

0

)+ ∇g(w

0

)

T

(w - w

0

), (B.22)

which is the direct generalization in higher dimensions of the formula for a tan-

gent line defined by the derivative of a single-input function given in Equation

(B.9), as illustrated in Figure B.2.

B.5 The Computation Graph 517

w

w

1

w

2

h(w) = g(w

0

) +

d

dw

g(w

0

)

⇣

w- w

0

⌘

h(w) = g(w

0

) +rg(w

0

)

T

⇣

w-w

0

⌘

g(w)g(w)

Figure B.2 (left panel) The derivative of a single-input function defines the slope of the

tangent line at a point. (right panel) The gradient of a multi-input function analogously

defines the set of slopes of the tangent hyperplane at a point. Here N = 2. In each panel

the point of tangency is highlighted on the function as a green circle.

B.5 The Computation Graph

Virtually any function g expressed via an algebraic formula can be broken

down (akin to the way physical substances may be broken down into their

atomic parts) into a combination of elementary functions (e.g., sin (·), e

(·)

, log (·),

etc.) and operations (e.g., addition, multiplication, composition, etc.). One very

useful way of organizing the elementary decomposition of a generic function

is via a so-called computation graph. The computation graph of a function g

not only allows us to more easily understand its anatomy, as a combination of

elementary functions and operations, but it also allows us to evaluate a function

in a programmatic way. Here we describe the computation graph by studying

two simple examples employing a single-input and a multi-input function.

Example B.3 The computation graph of a single-input function

Take the single-input function

g(w) = tanh(w)cos(w) + log(w). (B.23)

We can represent this function by decomposing it into its simplest parts, as

shown in the top panel of Figure B.3. This graphical depiction is like a blueprint,

showing us precisely how g is constructed from elementary functions and op-

erations. We read this computation graph from left to right starting with the

input node representing w, and ending with the full computation of g (w) on the

right. Each yellow node in the graph (aside from the input node that is colored

differently in gray) represents a single elementary function or operation, and is

marked as such. The directed arrows or edges connecting pairs of nodes then

show how computation flows when evaluating g(w).

The terms parent and child are often used to describe the local topology of

computation graphs for any pair of nodes in the graph connected via a directed

518 Derivatives and Automatic Differentiation

tanh(

cos(

log(

× +

tanh(

cos(

log(

×

w

c

b

a

d

e

a = 0.905

b = 0.701

c = 0.176

d = 0.634

e = 0.810

1.5tanh(

cos(

log(

1.5 tanh(

cos(

log(

× +

1.5

a = 0.905

b = 0.701

c = 0.176

a = 0.905

b = 0.701

c = 0.176

d = 0.634

Figure B.3 Figure associated with Example B.3. (top panel) The computation graph for

the single-input function defined in Equation (B.23). (bottom panels) Visualizing the

flow of computation through this graph. See text for further details.

If we were to write out the formula of each child node in terms of its parent(s)

we would have the following list of formulae

a = tanh(w)

b = cos(w)

c = log(w)

d = a × b

e = c + d

(B.24)

where the final node evaluates the whole function, i.e., e = g(w). Note, once

again, how each child node is a function of its parent(s). Therefore we can, for

example, write a as a(w) since w is the (only) parent node of a, or likewise write

d as d(a, b) since both a and b are parents to d. At the same time, if we unravel

the definition of each node, every node in the end is really a function of the

input w alone. In other words, we can also write each node as a function of their

common ancestor w, e.g., d(w) = tanh(w) × cos(w).

The computation flows forward through the graph (from left to right) in sets

of parent–child nodes. In the bottom panels of Figure B.3 we illustrate how g (w)

is evaluated for the particular input value w = 1.5 using the computation graph

shown in the top panel of the figure. Beginning on the left we first substitute

edge. The parent node is where the edge/arrow originates from and the child

node is where it points to. Because these parent–child relationships are defined

locally, a particular node can be both a parent and a child with respect to other

nodes in the graph. For instance, in the computation graph shown in the top

panel of Figure B.3, the input node w (colored gray) is parent to the nodes a, b,

and c, while a and b themselves are parents to the node d.

B.5 The Computation Graph 519

the value w = 1.5 in the input node, and evaluate each of the input node’s

children, here computing a

(1

.5) = tanh(1.5) = 0.905, b

(1

.5) = cos(1.5) = 0.701,

and c (1.5) = log(1.5) = 0.176, as illustrated in the bottom left panel with the

parent node highlighted in blue and the children in red. Computation next flows

to any child whose parents have all been evaluated, here the node d, as illustrated

in the middle panel of the figure where we have used the same coloring to

denote the parent–child relationship. Note how in computing d (1.5) = a(1.5) ×

b(1.5) = 0.634 we only need access to its evaluated parents, i.e., a (1.5) and

b (1.5), which we have indeed already computed. We then evaluate the final

child node in the graph, e, at our desired input value. Once again, to compute

e

(1

.5) = c(1.5) + d(1.5) = 0.810 we only need access to the evaluations made at

its parents, here c (1.5) and d (1.5), which have already been computed.

Example B.4 The computation graph of a multi-input function

Computation graphs can similarly be constructed for multi-input functions as

well. For example, in the top row of Figure B.4 we show the computation graph

for the simple multi-input quadratic

(·)

2

(·)

2

+

(·)

2

(·)

2

+

(·)

2

(·)

2

(·)

2

1

2

w

2

w

1

c

a

b

a = 1 a = 1

b = 4

c = 5

a = 1

b = 4

1

2

1

Figure B.4 Figure associated with Example B.4. (top panel) The computation graph for

the multi-input quadratic function defined in Equation (B.25). (bottom panels)

Visualizing the flow of computation through this graph. See text for further details.

In the bottom panels of Figure B.4 we illustrate how g (w

1

,w

2

) is evaluated for

the particular input values of w

1

= 1 and w

2

= 2. Beginning on the left we first

g (w

1

,w

2

) = w

2

1

+w

2

2

. (B.25)

The two inputs w

1

and w

2

here are each represented by a distinct node. Just as

with the single-input case in Example B.3, the computation flows from left to

right or forward through the graph. Also, as with single-input case, one forward

sweep through the graph is sufficient to calculate any value g (w

1

, w

2

).

520 Derivatives and Automatic Differentiation

substitute in the value w

1

= 1 and evaluate its only child a

(1)

= 1

2

, as illustrated

in the bottom-left panel of the figure. Next, we do the same for the second input

node, substituting in the value w

2

= 2 and evaluating its only child b (2) = 2

2

, as

illustrated in the bottom-middle panel of the figure. Finally, we move to the last

child node, computing it as c = a(1) + b(2) = 5 where the evaluations a(1) and

b(2) have already been computed in the previous steps of the process.

The notion of a computation graph is quite flexible, as functions can be decom-

posed in various ways. Here we have broken two example functions down into

their simplest, most elementary parts. However, it is more useful to decompose

more sophisticated functions (e.g., fully connected neural networks, as detailed

in Section 13.2) into computation graphs consisting of more sophisticated ele-

mentary building blocks such as matrix multiplication, vector-wise functions,

etc.

B.6 The Forward Mode of Automatic Differentiation

In the previous section we saw how representing a function via its computation

graph allows us to evaluate it at any input point by traversing the graph in a

forward direction, from left to right, recursively evaluating each node in the

graph with respect to the function’s original input. The computation graph of

a function can similarly be used to form and evaluate a function’s gradient by

similarly sweeping forward through the function’s computation graph from left

to right, forming and evaluating the gradient of each node with respect to the

function’s original input. In doing this we also naturally evaluate the original

function at each node along with the gradient evaluation. This recursive algo-

rithm, called the forward mode of automatic differentiation, is easily programmable

and allows for the transfer of the tedious chore of gradient computation to a

computer program, which makes gradient computation faster and more reli-

able (than when performed manually and then hard-coded into a computer

program). Moreover, unlike numerical differentiation (see Section B.2.2), auto-

matic differentiation provides the exact derivative or gradient evaluation, not

just an approximation. Here we describe the forward mode of automatic differ-

entiation by studying two examples, employing the algorithm to differentiate a

single-input and a multi-input function.

Example B.5 Forward-mode differentiation of a single-input function

Take the function g(w) = tanh(w)cos(w) + log(w) whose computation graph we

previously illustrated in Figure B.3. To evaluate the derivative

d

dw

g(w) using the

forward mode of automatic differentiation, we traverse this computation graph

B.6 The Forward Mode of Automatic Differentiation 521

much in the same way we did to compute its evaluation g(w) in Example B.3.

We begin at the input node all the way to the left where w and its derivative

d

dw

w both have known values: the value of w is chosen by the user and

tanh(

cos(

log(

tanh(

cos(

log(

×

tanh(

cos(

log(

× +

w,

d

dw

w

a,

d

dw

a

b,

d

dw

b

c,

d

dw

c

d,

d

dw

d

e,

d

dw

e

w

w

w

w,

d

dw

w a,

d

dw

a

b,

d

dw

b

c,

d

dw

c

w,

d

dw

w

a ,

d

dw

a

b,

d

dw

b

c,

d

dw

c

d,

d

dw

d

Figure B.5 Figure associated with Example B.5 illustrating forward-mode derivative

computation of the single-input function defined in Equation (B.23). At each step of the

process a child node and its derivative are both formed with respect to w, which are

recursively constructed using the node/derivative evaluations of its parent(s). See text

for further details.

Forming each child node and its derivative requires only the values computed

at its parent(s), along with the derivative rules for elementary functions and

operations described in Section B.3, which tell us how to combine the derivatives

computed at the parent(s) to compute the child derivative. For each child node

here we can form their derivatives with respect to the input w as

d

dw

w is

always, trivially, equal to 1. With the form of both the node and its derivative in

hand we then move to the children of the input node, i.e., nodes a, b, and c. For

each child node, we form both the node and its derivative with respect to the

input, i.e., a and

d

dw

a for the first child node, b and

d

dw

b for the second child node,

and c and

d

dw

c for the third. These first steps are illustrated on the computation

graph of the function in the top panel of Figure B.5, where the parent node (the

input) is highlighted in blue and the children (nodes a, b, and c) are colored in

red.

522 Derivatives and Automatic Differentiation

d

dw

a(w) = 1 - tanh

2

(w)

d

dw

b(w) = -sin(w)

d

dw

c(w) =

1

w

(B.26)

using Table B.1 as a look-up table.

With the current function values/derivatives computed with respect to w we

move forward to the next child nodes in the graph where we will see the same

pattern emerge, seeking to form the nodes and their derivatives with respect

to w. Examining the computation graph in the top panel of Figure B.5 we can

see that we have already formed all parents of d (i.e., nodes a and b) as well as

their derivatives, and thus we move to node d next and form d(w) = a(w)× b(w)

using the values of a(w) and b(w) just computed. To compute the derivative

d

dw

d(a, b) we employ the chain rule and write it, in terms of the derivatives of its

parents/inputs, as

d

dw

d(a, b) =

∂

∂a

d(a, b)×

d

dw

a(w) +

∂

∂b

d(a, b) ×

d

dw

b(w). (B.27)

Notice, because we have already formed the derivatives of a and b with

respect to w, we need only compute the parent–child derivatives

∂

∂a

d(a, b) and

∂

∂b

d(a, b). Since the parent–child relationship here is multiplicative both of these

derivatives can be found, using the product rule from Table B.2, as

∂

∂a

d(a, b) = b

∂

∂b

d(a, b) = a.

(B.28)

All together we have the entire form of the derivative at node d as

d

dw

d(a, b) = (1 - tanh

2

(w)) cos(w)- tanh(w) sin(w), (B.29)

which we illustrate pictorially in the middle panel of Figure B.5.

Now that we have resolved d and its derivative, we can work on the final node

e, which is a child of nodes d and c, defined in terms of them as e(d, c) = d + c.

Once again, using the chain rule the derivative of e with respect to w is written

as

d

dw

e(d, c) =

∂

∂d

e(d, c)×

d

dw

d(w) +

∂

∂c

e(d, c) ×

d

dw

c(w). (B.30)

We have already computed the derivatives of d and c with respect to w, so

plugging 1 for both

∂

∂d

e(d, c) and

∂

∂c

e(d, c) we have our desired derivative

B.6 The Forward Mode of Automatic Differentiation 523

d

dw

g(w) =

d

dw

e(d, c) = (1 - tanh

2

(w)) cos(w)- tanh(w) sin(w)+

1

w

. (B.31)

With the form of the derivative computed at each node of the graph we can

imagine appending each derivative to its respective node, leaving us with an

upgraded computation graph for our function g(w) that can now evaluate both

function and derivative values. This is done by plugging in a value for w at

the start of the graph, and propagating the function and derivative forward

through the graph from left to right. This is why the method is called the

forward mode of automatic differentiation, as all computation is done moving

forward through the computation graph. For example, in Figure B.6 we illustrate

how g(1.5) and

d

dw

g(1.5) are computed together traversing forward through the

computation graph. Note that in evaluating the derivative in this manner we

naturally evaluate the function as well.

tanh(

cos(

log(

tanh(

cos(

log(

×

tanh(

cos(

log(

× +

a = .91,

d

dw

a= .18

b = .07,

d

dw

b = -1.0

c = .18,

d

dw

c = .67

w = 1.5,

d

dw

w = 1

a = .91,

d

dw

a = .18

b = .07,

d

dw

b = -1.0

c = .18,

d

dw

c = .67

w = 1.5,

d

dw

w = 1

a = .91,

d

dw

a = .18

b = .07,

d

dw

b = -1.0

c = .18,

d

dw

c = .67

w

w

w

w = 1.5,

d

dw

w = 1

d = .06,

d

dw

d = -.89

d = .06,

d

dw

d = -.89 e = .01,

d

dw

e = -.22

Figure B.6 Figure associated with Example B.5 illustrating evaluation of the function

g (w) given in Equation (B.23), as well as its derivative, at the input point w = 1.5 using

the forward mode of automatic differentiation. See text for further details.

524 Derivatives and Automatic Differentiation

Example B.6 Forward-mode differentiation of a multi-input function

The forward mode of automatic differentiation works similarly for multi-input

functions as well, only now we must compute the form of the gradient at each

node in the graph (instead of a single derivative). Here we illustrate how this is

done using the multi-input quadratic g (w

1

, w

2

) = w

2

1

+ w

2

2

whose computation

graph was first shown in Figure B.4.

Following the pattern set forth with the single-input function in Example B.5,

we begin by computing the gradient at each input node, which are trivially

∇w

1

=

"

1

0

#

and ∇w

2

=

"

0

1

#

. (B.32)

We then move to the children of our input nodes beginning at node a, where we

compute the gradient of a or, in other words, the partial derivatives of a (w

1

) = w

2

1

with respect to both w

1

and w

2

, as

∂

∂w

1

a = 2w

1

and

∂

∂w

2

a = 0. (B.33)

Similarly, we can compute the partial derivatives of b (w

2

) = w

2

2

with respect to

w

1

and w

2

, as

∂

∂w

1

b = 0 and

∂

∂w

2

b = 2w

2

. (B.34)

These two steps are illustrated in the left panel of Figure B.7. With the form of

the gradient computed at nodes a and b we can finally compute the gradient at

their common child node, c. Employing the chain rule we have

∂

∂w

1

c =

∂

∂a

c

∂

∂w

1

a +

∂

∂b

c

∂

∂w

1

b = 1 × 2w

1

+ 1 × 0 = 2w

1

∂

∂w

2

c =

∂

∂a

c

∂

∂w

2

a +

∂

∂b

c

∂

∂w

2

b = 1 × 0 + 1 × 2w

2

= 2w

2

.

(B.35)

(·)

2

(·)

2

+

(·)

2

(·)

2

w

1

,

∂

∂w

1

w

1

,

∂

∂w

2

w

1

±

w

2

,

∂

∂w

1

w

2

,

∂

∂w

2

w

2

±

a,

∂

∂w

1

a ,

∂

∂w

2

a

±

b,

∂

∂w

1

b ,

∂

∂w

2

b

±

c,

∂

∂w

1

c,

∂

∂w

2

c

±

w

1

,

∂

∂w

1

w

1

,

∂

∂w

2

w

1

±

w

2

,

∂

∂w

1

w

2

,

∂

∂w

2

w

2

±

a,

∂

∂w

1

a,

∂

∂w

2

a

±

b,

∂

∂w

1

b ,

∂

∂w

2

b

±

w

1

w

2

w

1

w

2

Figure B.7 Figure associated with Example B.6 illustrating forward-mode gradient

computation of the multi-input function g (w

1

,w

2

) defined in Equation (B.25). See text

for further details.

B.6 The Forward Mode of Automatic Differentiation 525

The forward-mode differentiator discussed here does not provide an algebraic

description of a function’s derivative, but a programmatic function (a computa-

tion graph) that can be used to evaluate the function and its derivative at any set

of input points. Conversely, one can build an algorithm that employs the basic

derivative rules to provide an algebraic derivative, but this requires the imple-

mentation of a computer algebra system. Such a derivative calculator that deals

with derivatives using symbolic computation (i.e., algebra on the computer) is

called a symbolic differentiator. However, expressing equations algebraically can

be quite unwieldy. For example, the rather complicated-looking function

g(w) =

w

2

sin(w

2

+ w) cos(w

2

+ 1)

log(w + 1)

(B.36)

has an expansive algebraic derivative

d

dw

g(w) =

(2w+ 1) w

2

cos(w

2

+ 1) cos(w

2

+ w)

log(w+ 1)

-

w

2

sin(w

2

+ w) cos(w

2

+ 1)

(w+ 1) log

2

(w + 1)

+

2w sin(w

2

+ w) cos(w

2

+ 1)

log(w+ 1)

-

2w

3

sin(w

2

+ 1) sin(w

2

+w)

log(w+ 1)

.

(B.37)

This problem is exponentially worse, to the point of being a considerable compu-

tational burden, when dealing with multi-input functions (which we commonly

deal with in machine learning). The (forward-mode) automatic differentiator,

which produces a computation graph of the derivative instead of an algebraic

form, does not have this problem.

Finally, note that because calculations involved in the forward mode of au-

tomatic differentiation are made using the computation graph of a given func-

tion g, one engineering choice to be made is to decide how the graph will be

constructed and manipulated. Essentially we have two choices: we can either

construct the computation graph implicitly by carefully implementing the ele-

mentary derivative rules, or we can parse the input function g and construct its

computation graph explicitly as we did in explaining the method in this section.

The advantage of implicitly constructing the graph is that the corresponding

calculator is light-weight (as there is no need to store a graph) and easy to con-

struct. On the other hand, implementing a calculator that explicitly constructs

computation graphs requires additional tools (e.g., a parser), but allows for eas-

ier computation of higher-order derivatives. This is because in the latter case the

differentiator takes in a function to differentiate and treats it as a computation

graph, and often outputs a computation graph of its derivative which can then

be plugged back into the same algorithm to create second-order derivatives,

and so forth.

526 Derivatives and Automatic Differentiation

B.7 The Reverse Mode of Automatic Differentiation

While the forward mode of automatic differentiation introduced in the previous

section provides a wonderful programmatic way of computing derivatives, it

can be inefficient for many kinds multi-input functions (particularly those in

machine learning involving fully connected networks). This is because while most

of the nodes in the computation graph of a multi-input function may only take

in just a few inputs, we compute the complete gradient with respect to all the inputs

at each and every node. This leads to considerable computation waste since we

know that the partial derivative of any node with respect to an original input of

the function that it does not take in will always be equal to zero.

This obvious waste is the motivation for what is called the reverse mode of

automatic differentiation or, in the jargon of machine learning, the backpropagation

algorithm. With the reverse mode we begin by traversing a function’s computa-

tion graph in the forward direction (starting with the input nodes and moving

from left to right) computing only the form of the partial derivatives needed

at each node of the computation graph (ignoring partial derivatives that will

always be zero). Once this forward sweep is complete we then (starting with

the final node(s) in the graph) move in the reverse direction and sweep backwards

through the graph, collecting and combining the previously computed partial

derivatives to appropriately construct the gradient. While this means that we

must construct the computation graph explicitly (and store it), the trade-offwith

wasted computation is often well worth it when dealing with machine learning

functions. This makes the reverse mode a more popular choice (than the forward

mode detailed in the prior section) in machine learning applications, and is in

particular the brand of automatic differentiator implemented in autograd (the

Python-based automatic differentiator we recommend one uses with this text).

Example B.7 Reverse-mode differentiation of a multi-input function

In Example B.6 of the previous section we described how to compute the gra-

dient of the function g (w

1

, w

2

) = w

2

1

+ w

2

2

using forward-mode automatic dif-

ferentiation. Notice how, in calculating the full gradient at each node of this

function’s computation graph, we performed several wasteful computations:

whenever partial derivatives were taken with respect to input not taken in by

a node (through its complex web of parent–child relations leading back to the

original input of the function) we know by default this partial derivative will

always equal zero. For example, the partial derivative

∂

∂w

2

a = 0 since a is not a

function of the original input w

2

.

In Figure B.8 we redraw the computation graph of this quadratic with the

gradient expressed in terms of the partial derivatives at each node and with

all zero partials marked accordingly. Examining this graph we can see that a

good deal of the partials trivially equal zero. Trivial zeros such as these waste

computation as we form them traversing forward through the graph.

B.7 The Reverse Mode of Automatic Differentiation 527

(·)

2

(·)

2

+

w

1

,

∂

∂w

1

w

1

, 0

±

b,

0,

∂

∂w

2

b

±

a,

∂

∂w

1

a, 0

±

c,

∂

∂w

1

c,

∂

∂w

2

c

±

w

2

,

0,

∂

∂w

2

w

2

±

w

1

w

2

Figure B.8 Figure associated with Example B.7. The computation graph of the quadratic

function described in the text, with zero partials marked. See text for further details.

This issue becomes much more severe with multi-input functions that take

in larger numbers of input variables. For example, in Figure B.9 we illustrate

the computational graph of the analogous quadratic function taking four inputs

g

(

w

1

, w

2

, w

3

, w

4

)

= w

2

1

+w

2

2

+w

2

3

+w

2

4

. In this case more than half of all the gradient

entries at the nodes in this graph are zero due to the fact that certain nodes are

not functions of certain inputs, and hence their partial derivatives are always

zero.

(·)

2

+

+

+

w

1

,

∂

∂w

1

w

1

, 0, 0, 0

±

w

2

,

0,

∂

∂w

2

w

2

, 0, 0

±

w

4

,

0, 0, 0,

∂

∂w

4

w

4

±

w

3

,

0, 0,

∂

∂w

3

w

3

, 0

±

c,

0, 0,

∂

∂w

3

c, 0

±

d ,

0, 0, 0,

∂

∂w

4

d

±

b,

0,

∂

∂w

2

b, 0, 0

±

a,

∂

∂w

1

a, 0, 0, 0

±

e,

∂

∂w

1

e,

∂

∂w

2

e, 0, 0

±

f ,

0, 0,

∂

∂w

3

f ,

∂

∂w

4

f

±

g,

∂

∂w

1

g,

∂

∂w

2

g ,

∂

∂w

3

g,

∂

∂w

4

g

±

w

1

w

2

w

4

w

3

(·)

2

(·)

2

(·)

2

Figure B.9 Figure associated with Example B.7. The computation graph of a simple

four-input quadratic with the gradient expressed at each node in terms of partial

derivatives. Here over half of the partial derivatives computed are trivial zeros. See text

for further details.

To remedy this inefficiency, automatic differentiation can also be performed

in a reverse mode, which consists of a forward and reverse (or backward) sweep

through the computation graph of a function. In the forward sweep of the

reverse mode we traverse the computation graph in forward direction (from

left to right) recursively just as with the forward mode, only at each node we

528 Derivatives and Automatic Differentiation

compute the partial derivatives of each child node with respect to its parent(s)

only, and not the full gradient with respect to the function input.

This is illustrated for the quadratic function g (w

1

,w

2

) = w

2

1

+ w

2

2

in the top

panels of Figure B.10. In the top-left panel we show the computing of partial

derivatives for child nodes a and b (colored red), which are taken only with

respect to their parents (which here are w

1

and w

2

, respectively, colored blue).

In the top-right panel we illustrate the next computation in the forward sweep,

the partial derivatives computed at the child node c (colored red) with respect

to its parents a and b (colored blue).

(·)

2

(·)

2

(·)

2

+

+ +

w

1

, 1

b,

∂

∂w

2

b

a ,

∂

∂w

1

a

c,

∂

∂a

c,

∂

∂b

c

w

2

, 1

a,

∂

∂w

1

a

b,

∂

∂w

2

b

w

1

, 1

w

2

, 1

b,

∂

∂b

c

∂

∂w

2

b

a ,

∂

∂a

c

∂

∂w

1

a×1

∂

∂a

c

∂

∂w

1

aw

1

,

∂

∂b

c

∂

∂w

2

bw

2

, ×1

c,

∂

∂a

c,

∂

∂b

c

∂

∂w

2

bb,

∂

∂b

c

a,

∂

∂w

1

a

∂

∂a

c

c,

∂

∂a

c,

∂

∂b

c

w

1

w

1

w

1

w

2

w

2

w

2

(·)

2

(·)

2

(·)

2

(·)

2

(·)

2

Figure B.10 Figure associated with Example B.7. Forward (top panels) and backward

sweep (bottom panels) illustrated for a simple two-input quadratic function. See text for

further details.

Once the forward sweep is complete, we change course and traverse the com-

putation graph in the reverse direction, starting at the end node and traversing

backwards recursively from right to left until we reach the input nodes. At every

step of the process we update the partial derivative of each parent by multiply-

ing it by the partial derivative of its children node with respect to that parent.

When the backward sweep is completed we will have recursively constructed

the gradient of the function with respect to all of its inputs.

The backward sweep is illustrated for the two-input quadratic function in the

bottom panels of Figure B.10. Starting from end node in our forward sweep,

i.e., node c, we observe that c has two parents: a and b. Therefore we update

the derivative at a by (left) multiplying it by

∂

∂a

c giving

∂

∂a

c

∂

∂w

1

a, and similarly

update the derivative at b by (left) multiplying it by

∂

∂b

c giving

∂

∂b

c

∂

∂w

2

b. We then

repeat this procedure recursively with the children of a and b, ending with the

partial derivative

∂

∂a

c

∂

∂w

1

a

∂

∂w

1

w

1

=

∂

∂a

c

∂

∂w

1

a and

∂

∂b

c

∂

∂w

2

b

∂

∂w

2

w

2

=

∂

∂b

c

∂

∂w

2

b. These are

precisely the two partial derivatives of the complete gradient of the quadratic

with respect to its input w

1

and w

2

.

B.8 Higher-Order Derivatives 529

B.8 Higher-Order Derivatives

In previous sections we have seen how we can efficiently compute the derivative

of functions composed of elementary building blocks, and that these derivatives

are themselves functions built from elementary building blocks. Because of this

we can likewise compute derivatives of derivatives, commonly referred to as

higher-order derivatives, which are the subject of this section.

B.8.1 Higher-order derivatives of single-input functions

Here we explore the concept of higher-order derivatives of single-input func-

tions by looking at a simple example.

Example B.8 Higher-order derivatives

To compute the second-order derivative of the function

g(w) = w

4

(B.38)

we first find its first-order derivative as

d

dw

g(w) = 4w

3

(B.39)

and then differentiate it one more time to get

d

dw

·

d

dw

g(w)

¸

= 12w

2

. (B.40)

Taking the derivative of the resulting function one more time gives the third-

order derivative of g as

d

dw

·

d

dw

·

d

dw

g(w)

¸¸

= 24w. (B.41)

Similarly, we can compute the first three derivatives of the function

g(w) = cos(3w)+ w

2

+ w

3

(B.42)

explicitly as

d

dw

g(w) = -3sin(3w) + 2w+ 3w

2

d

dw

·

d

dw

g(w)

¸

= -9cos(3w) + 2 + 6w

d

dw

·

d

dw

·

d

dw

g(w)

¸¸

= 27sin(3w)+ 6.

(B.43)

530 Derivatives and Automatic Differentiation

Higher-order derivatives are also often expressed using more compact nota-

tion than given in Example B.8. For instance, the second derivative is very often

denoted more compactly using the following notation

d

2

dw

2

g(w) =

d

dw

·

d

dw

g(w)

¸

. (B.44)

Likewise, the third derivative is often denoted more compactly as

d

3

dw

3

g(w) =

d

dw

·

d

dw

·

d

dw

g(w)

¸¸

(B.45)

and, in general, the nth derivative is written as

d

n

dw

n

g(w). (B.46)

B.8.2 Higher-order derivatives of multi-input functions

We have seen how the gradient of a multi-input function is a collection of partial

derivatives

∇g(w

1

,w

2

, . . . ,w
N

) =

∂

∂w

1

g(w

1

,w

2

, . . . ,w
N

)

∂

∂w

2

g(w

1

,w

2

, . . . ,w
N

)

.

.

.

∂

∂w

N

g(w

1

,w

2

, . . . ,w
N

)

(B.47)

where the gradient contains the nth partial derivative

∂

∂w

n

g(w

1

,w

2

, . . . ,w
N

) as its

nth entry. This partial derivative (like the original function itself) is a function,

taking in theN inputs abbreviatedw, which we can differentiate along each input

axis. For instance, we can take the mth partial derivative of

∂

∂w

n

g(w

1

,w

2

, ..,w
N

)

as

∂

∂w

m

∂

∂w

n

g(w

1

,w

2

, . . . ,w
N

). (B.48)

This is a second-order derivative. How many of these does the function g have?

Since every one of g’sN first-order derivatives (each being a function ofN inputs)

has N partial derivatives, g(w) has a total of N

2

second-order derivatives.

As with the notion of the gradient, this large set of second-order derivatives

are typically organized in a particular way so that they can be more easily

communicated and computed with. The Hessian – which is written notationally

as ∇

2

g(w) – is the N × N matrix of second-order derivatives whose (m,n)th

element is

∂

∂w

m

∂

∂w

n

g(w), or

∂

∂w

m

∂

∂w

n

g for short. The full Hessian matrix is written

as

B.9 Taylor Series 531

∇

2

g(w) =

∂

∂w

1

∂

∂w

1

g

∂

∂w

1

∂

∂w

2

g · · · ∂

∂w

1

∂

∂w

N

g

∂

∂w

2

∂

∂w

1

g

∂

∂w

2

∂

∂w

2

g · · · ∂

∂w

2

∂

∂w

N

g

.

.

.

.

.

.

.

.

.

.

.

.

∂

∂w

N

∂

∂w

1

g

∂

∂w

N

∂

∂w

2

g · · · ∂

∂w

N

∂

∂w

N

g

. (B.49)

Moreover, since it is virtually always the case that

∂

∂w

m

∂

∂w

n

g =

∂

∂w

n

∂

∂w

m

g, particu-

larly with the sort of functions used in machine learning, the Hessian is always

a symmetric matrix.

The number of partial derivatives of a multi-input function grows exponentially

with the order. We have just seen that a function taking in N inputs has N

2

second-order derivatives. In general such a function has N

D

partial derivatives

of order D.

B.9 Taylor Series

In this section we describe the Taylor series of a function, a fundamental tool of

calculus that is critically important for first- and second-order local optimization

(as detailed in Chapters 3 and 4 of this text). We begin by deriving this crucial

concept for single-input functions, and follow by generalizing to the case of

multi-input functions.

B.9.1 Linear approximation is only the beginning

We began our discussion of derivatives in Section B.2 by defining the derivative

at a point as the slope of the tangent line to a given input function. For a function

g(w) we then formally described the tangent line at a point w

0

as

h(w) = g(w

0

) +

d

dw

g(w

0

)(w - w

0

) (B.50)

with the slope here given by the derivative

d

dw

g(w

0

). The justification for exam-

ining the tangent line to begin with is fairly straightforward: locally (close to

the point w

0

) the tangent line looks awfully similar to the function, and so if we

want to better understand g near w

0

we can just as well look at the tangent line

there. This makes our lives a lot easier because a line (compared to a generic g) is

always a comparatively simple object, and therefore understanding the tangent

line is always a simple affair.

If we study the form of our tangent line h(w) closely, we can define in precise

mathematical terms how it matches the function g. Notice, first of all, that the

tangent line takes on the same value as the function g at the point w

0

, i.e.,

h(w

0

) = g(w

0

) +

d

dw

g(w

0

)(w

0

- w

0

) = g(w

0

). (B.51)

532 Derivatives and Automatic Differentiation

Next, notice that the first derivative value of these two functions match as well.

That is, if we take the first derivative of h with respect to w we can see that

d

dw

h(w

0

) =

d

dw

g(w

0

). (B.52)

In short, when the tangent line h matches g so that at w

0

both the function and

derivative values are equal, we can write

h(w

0

) = g(w

0

)

d

dw

h(w

0

) =

d

dw

g(w

0

).

(B.53)

What if we turned this idea around and tried to find a line that satisfies these

two properties. In other words, we start with a general line

h(w) = a

0

+ a

1

(w -w

0

) (B.54)

with unknown coefficients a

0

and a

1

, and we want to determine the right value

for these coefficients so that the line satisfies the two criteria in Equation (B.53).

These two criteria constitute a system of equations we can solve for the correct

values of a

0

and a

1

. Computing the left-hand side of each, where h is our general

line in Equation (B.54), we end up with a trivial system of equations to solve for

both unknowns simultaneously

h(w

0

) = a

0

= g(w

0

)

d

dw

h(w

0

) = a

1

=

d

dw

g(w

0

)

(B.55)

and behold, the coefficients are precisely those of the tangent line.

B.9.2 From tangent line to tangent quadratic

Given that the function and derivative values of the tangent line match those of

its underlying function, can we do better? Can we find a simple function that

matches the function value, first derivative, and the second derivative value at

a point w

0

? In other words, is it possible to determine a simple function h that

satisfies the following three conditions?

h(w

0

) = g(w

0

)

d

dw

h(w

0

) =

d

dw

g(w

0

)

d

2

dw

2

h(w

0

) =

d

2

dw

2

g(w

0

)

(B.56)

Notice how a (tangent) line h can only satisfy the first two of these properties

B.9 Taylor Series 533

and never the third, since it is a degree-one polynomial and

d

2

dw

2

h(w) = 0 for all

w. This fact implies that we need at least a degree-two polynomial to satisfy all

three criteria. Starting with a general degree-two polynomial

h(w) = a

0

+ a

1

(w- w

0

)+ a

2

(w-w

0

)

2

(B.57)

with unknown coefficients a

0

, a

1

, and a

2

, we can evaluate the left-hand side of

each criterion in Equation (B.56), forming a system of three equations, and solve

for these coefficients.

h(w

0

) = a

0

= g(w

0

)

d

dw

h(w

0

) = a

1

=

d

dw

g(w

0

)

d

2

dw

2

h(w

0

) = 2a

2

=

d

2

dw

2

g(w

0

)

(B.58)

With all of our coefficients determined (in terms of the derivatives of g at w

0

)

we have a degree-two polynomial that satisfies the three desired criteria

h(w) = g(w

0

)+

d

dw

g(w

0

)(w -w

0

) +

1

2

d

2

dw

2

g(w

0

)(w -w

0

)

2

. (B.59)

This is one step beyond the tangent line (an approximating quadratic func-

tion) but note that the first two terms are indeed the tangent line itself. Such

a quadratic approximation matches a generic function g near the point w

0

far

more closely than the tangent line, as illustrated in Figure B.11.

second-orderfirst-order third-order fourth-order

Figure B.11 From left to right, the first-, second-, third-, and fourth-order Taylor series

approximation to the function g(w) = sin(w), drawn in different colors, evaluated at the

same input point.

B.9.3 Building better and better local approximations

Having derived this quadratic based on our reflection on the tangent line, one

can naturally think of going one step further. That is, finding a simple function

h that satisfies even one more condition than the quadratic.

534 Derivatives and Automatic Differentiation

h(w

0

) = g(w

0

)

d

dw

h(w

0

) =

d

dw

g(w

0

)

d

2

dw

2

h(w

0

) =

d

2

dw

2

g(w

0

)

d

3

dw

3

h(w

0

) =

d

3

dw

3

g(w

0

)

(B.60)

Noting that no degree-two polynomial could satisfy this last condition, since

its third derivative is always equal to zero, we could seek out a degree-three

polynomial. Using the same analysis as we performed previously, setting up the

corresponding system of equations based on a generic degree-three polynomial

leads to the conclusion that the following does indeed satisfy all of the criteria

in Equation (B.60)

h(w) = g(w

0

)+

d

dw

g(w

0

)(w -w

0

) +

1

2

d

2

dw

2

g(w

0

)(w- w

0

)

2

+

1

6

d

3

dw

3

g(w

0

)(w -w

0

)

3

.

(B.61)

This is an even better approximation of g near the point w

0

than the quadratic, as

illustrated for a particular example in Figure B.11. Examining this figure we can

clearly see that the approximation becomes better and better as we increase the

order of the approximation. This makes sense, as each polynomial contains more

of the underlying function’s derivative information as we increase the degree.

However, we can never expect it to match the entire function everywhere: we

build each polynomial to match g at only a single point, so regardless of degree

we can expect it only to match the underlying function near the point w

0

.

Setting up a set of N + 1 criteria, the first demanding that h(w

0

) = g(w

0

) and

the remaining N demanding that the first N derivatives of h match those of g at

w

0

, leads to construction of the degree-N polynomial

h(w) = g(w

0

)+

N

X

n=1

1

n!

d

n

dw

n

g(w

0

)(w -w

0

)

n

. (B.62)

This general degree-N polynomial is called the Taylor series of g at the point w

0

.

B.9.4 Multi-input Taylor series

We have now seen, with single-input functions, how the general Taylor series

approximation can be thought of as a natural extension of the tangent line for

higher-degree polynomial approximations. The story with multi-input functions

is precisely analogous.

If we asked what sort of degree-one polynomial h(w) matched a function g(w)

at a pointw

0

in terms of both its function and gradient value there, i.e.,

B.9 Taylor Series 535

Figure B.12 The first-order

(colored in lime green) and

second-order (colored in

turquoise) Taylor series

approximations to the function

g(w

1

,w

2

) = sin(w

1

) at a point near

the origin.

g(w

1

, w

2

)

w

1

w

2

h

±

w

0

²

= g

±

w

0

²

∇h

±

w

0

²

= ∇g

±

w

0

² (B.63)

we could set up a system of equations (mirroring the one we set up when asking

the analogous question for single-input functions) and recover the tangent hy-

perplane (our first-order Taylor series approximation) we saw back in Section

B.4

h(w

0

) = g(w

0

) +∇g(w

0

)

T

(w -w

0

). (B.64)

Notice how this is the exact analog of the first-order approximation for single-

input functions, and reduces to it (a tangent line) when N = 1.

Likewise, inquiring about what sort of degree-two (quadratic) function h

could match g at a point w

0

in terms of the value it takes, as well as the values

its first and second derivatives take, i.e.,

h

±

w

0

²

= g

±

w

0

²

∇h

±

w

0

²

= ∇g

±

w

0

²

∇

2

h

±

w

0

²

= ∇

2

g

±

w

0

²

(B.65)

we would likewise derive (as we did explicitly with the single-input case) the

second-order Taylor series approximation

h(w) = g(w

0

)+ ∇g(w

0

)

T

(w - w

0

) +

1

2

(w -w

0

)

T

∇

2

g

±

w

0

²

(w - w

0

). (B.66)

Notice once again how this is the exact analog of the second-order approximation

for single-input functions, and reduces to it when N = 1.

In Figure B.12 we plot the first- and second-order Taylor series approximation

(shown in lime green and turquoise, respectively) of the function g(w

1

,w

2

) =

536 Derivatives and Automatic Differentiation

sin(w

1

) at a point near the origin. As was the case with single-input functions

the second-order approximation is a much better local approximator than the

first, as it contains more derivative information there.

Higher-order Taylor series approximations can be defined precisely as in the

single-input case. The main difference with multi-input functions is that higher-

order approximations, starting with the third-order derivative, require serious

manipulation of tensors of partial derivatives.

While this can be readily defined, only approximations up to the second order are

ever used in practice. This is because (as we saw in Section B.8.2) the number

of partial derivatives grows exponentially in the order of a derivative. Thus

even though we get a better (local) approximator as we increase the order of a

Taylor series, the serious pitfall of calculating/storing exponentially many partial

derivatives nullifies the benefit.

B.10 Using the autograd Library

In this section we demonstrate how to use a simple yet powerful automatic dif-

ferentiator written in Python, called autograd [10, 11] – a tool we make extensive

use of throughout the text.

B.10.1 Installing autograd

autograd is an open-source professional-grade gradient calculator, or automatic

differentiator, whose default is the reverse mode outlined in the previous section.

It allows you to automatically compute the derivative of arbitrarily complex

functions built using basic Python and NumPy functions.

It is also very easy to install: simply open a terminal and type

pip install autograd

to install the program. You can also visit the github repository for autograd at

https://github.com/HIPS/autograd

to download the same set of files to your machine. Another tool called JAX –

built by the same community as an extension of autograd for use on GPUs and

TPUs – can be used in a very similar manner as described here, and can be

downloaded by visiting

https://github.com/google/jax

Along with autograd we also highly recommend the Anaconda Python 3

distribution, which can be installed by visiting

B.10 Using the autograd Library 537

https://anaconda.com

This standard Python distribution includes a number of useful libraries, includ-

ing NumPy, Matplotlib, and Jupyter notebooks.

B.10.2 Using autograd

Here we show a number of examples highlighting the basic usage of the

autograd automatic differentiator. With simple modules we can easily com-

pute derivatives of single-input functions, as well as partial derivatives and

complete gradients of multi-input functions implemented in Python and NumPy.

Example B.9 Computing derivatives of single-input functions

Since autograd is specially designed to automatically compute the derivative(s)

of NumPy code, it comes with its own wrapper on the basic NumPy library. This is

where the differentiation rules (applied specifically to NumPy functionality) are

defined. You can use autograd’s version of NumPy exactly like you would the

standard version, as virtually nothing about the user interface has been changed.

To import this autograd wrapped version of NumPy, type

1 # import statement for autograd wrapped NumPy

2 import autograd.numpy as np

We begin by demonstrating the use of autograd with the simple function

g((w) = tanh (w) (B.67)

whose derivative, written algebraically, is

d

dw

g

(

w

)

= 1 - tanh

2

(

w

)

. (B.68)

There are two common ways of defining functions in Python. First is the standard

Python function declaration (as shown below).

1 # a named Python function

2 def g(w):

3 return np.tanh(w)

You can also create anonymous functions in Python (functions you can define in

a single line of code) by using the lambda command.

538 Derivatives and Automatic Differentiation

1 # a function defined via lambda

2 g = lambda w: np.tanh(w)

Regardless of how we define our function in Python it still amounts to the same

thing mathematically/computationally.

To compute the derivative of our function we must first import the gradient

calculator, conveniently called grad.

1 # import autograd’s basic automatic differentiator

2 from autograd import grad

To use the grad function we simply pass in the function we wish to differen-

tiate. grad works by explicitly computing the computation graph of our input,

returning its derivative that we can then evaluate wherever we want. It does not

provide an algebraic function, but a Python function. Here we call the derivative

function of our input dgdw.

1 # create the gradient of g

2 dgdw = grad(g)

We can compute higher-order derivatives of our input function by using the

same autograd functionality recursively, i.e., by plugging in the derivative func-

tion dgdw into autograd’s grad function. Doing this once gives us the second

derivative Python function, which we call d2gdw2.

1 # compute the second derivative of g

2 d2gdw2 = grad(dgdw)

We plot the input function as well as its first and second derivatives in Fig-

ure B.13.

Figure B.13 Figure

associated with Example

B.9. See text for details.

1

1

0

0 2 424

g(w)

d

dw

g(w)

d

2

dw

2

g(w)

B.10 Using the autograd Library 539

Example B.10 Function and gradient evaluations

As mentioned in the previous section, when we use an automatic differentiator to

evaluate the gradient of a function we evaluate the function itself in the process. In

other words, whenever we evaluate the gradient, we get the function evaluation

”for free.”

However, the grad function in the previous example returned only a single

value: the evaluation of the derivative. The function evaluation is indeed being

computed ”under the hood” of grad, and is simply not returned for ease of use.

There is another autograd method called value and grad that returns every-

thing computed ”under the hood” including both the derivative(s) and function

evaluation(s). Below we use this autograd functionality to reproduce the previ-

ous example’s first derivative calculations.

1 # import autograd’s automatic differentiator

2 from autograd import value_and_grad

3

4 # create the gradient of g

5 dgdw = value_and_grad(g)

6

7 # evaluate g and its gradient at w=0

8 w = 0

9 g_val, grad_val = dgdw(w)

Example B.11 Computing Taylor series approximations

Usingautogradwe can easily compute Taylor series approximations (see Section

B.9) of any single-input function. Take, for instance, the function g(w) = tanh(w)

along with its first-order Taylor series approximation

h(w) = g(w

0

) +

d

dw

g(w

0

)(w- w

0

) (B.69)

centered at the point w

0

= 1. First, we produce this function and its first-order

Taylor series approximation in Python as follows.

1 # create the function g and its first derivative

2 g = lambda w: np.tanh(w)

3 dgdw = grad(g)

4

5 # create first-order Taylor series approximation

6 first_order = lambda w0, w: g(w0) + dgdw(w0)*(w - w0)

Next, we evaluate and plot the function (in black) and its first-order approxi-

mation (in green) in Figure B.14. It is just as easy to compute the second-order

Taylor series approximation as well, whose formula is given as

540 Derivatives and Automatic Differentiation

q(w) = g(w

0

)+

d

dw

g(w

0

)(w -w

0

) +

1

2

d

2

dw

2

g(w

0

)(w -w

0

)

2

. (B.70)

1 # create the second derivative of g

2 d2gdw2 = grad(dgdw)

3

4 # create second -order Taylor series approximation

5 second_order = lambda w0, w: g(w0) + dgdw(w0)*(w - w0) + 0.5*d2gdw2(w0

)*(w - w0)**2

The second-order Taylor series approximation is shown (in blue) in Figure B.14,

with the point of expansion/tangency shown as a red circle.

Figure B.14 Figure

associated with Example

B.11. See text for details.

0 2 424

1

1

0

g(w)

Example B.12 Computing individual partial derivatives

There are a number of ways we can go about using autograd to compute the

partial derivatives of a multi-input function. First, let us look at how to use

autograd to compute partial derivatives individually or, one at a time, beginning

with the function

g (w

1

,w

2

) = tanh (w

1

w

2

) . (B.71)

We translate this function into Python below.

1 # a simple multi-input function

2 def g(w_1, w_2):

3 return np.tanh(w_1*w_2)

Taking in two inputs, this function lives in three dimensions, as plotted in the

left panel of Figure B.15.

If we use the exact same call we used in the previous examples, and write

B.10 Using the autograd Library 541

w

1

w

2

g(w)

∂

∂w

1

g(w)

∂

∂w

2

g(w)

w

2

w

2

w

1

w

1

Figure B.15 Figure associated with Example B.12. A multi-input function (left panel)

and its partial derivative in the first (middle panel) and second input (right panel). See

text for further details.

grad(g)

since our function takes in two inputs, this will return the first partial derivative

∂

∂w

1

g (w

1

,w

2

). This is the default setting of each automatic differentiation method

in autograd.

Alternatively to compute this partial derivative function we can explicitly

pass a second argument to grad, or any of the other autograd methods, which

is a simple index denoting which partial derivative we want. To create the same

(first) partial derivative this way, we pass in the index 0 (since Python indexing

starts with 0) as follows.

grad(g, 0)

Similarly, to construct the second partial derivative we pass in the index 1.

grad(g, 1)

More generally, if g takes in N inputs (w

1

through w

N

) we can construct its nth

partial derivative using the same pattern as follows.

grad(g, n-1)

We plot these two partial derivative functions in the middle and right panels of

Figure B.15.

542 Derivatives and Automatic Differentiation

Example B.13 Computing several derivatives or the full gradient

Building on the previous example, here we look at how to use autograd to

construct several partial derivative functions at once or the entire gradient of a

multi-input function. We do this via example, using the same function employed

in the previous example.

There are two ways to do this using autograd. The first way is to simply index

all the partial derivatives desired using the same sort of notation introduced

previously. For instance, if we wish to construct the full gradient of the two-

input function employed in the previous example, we tell autograd of this

desire by feeding in the two indices (0,1) as shown below.

grad(g, (0,1))

More generally, for a function taking in N inputs, to construct any subset

of partial derivatives at once we use the same sort of indexing notation. Note

that this usage applies to all methods in the autograd automatic differentiation

library.

The second way to construct several derivatives at once using autograd is by

writing a function in NumPy where the desired variables we wish to differentiate

with respect to are all input into the function as a single argument. For example,

instead of writing out our function in Python as

1 # a simple multi-input function defined in Python

2 def g(w_1, w_2):

3 return np.tanh(w_1*w_2)

where both w 1 and w 2 are fed in one at a time, if we write it equivalently using

vector notation as

1 def g(w):

2 return np.tanh(w[0]*w[1])

then the call

grad(g)

or equivalently

grad(g, 0)

will produce derivatives of g with respect to its first argument, which here will

give us the complete gradient of g.

This indexing format holds more generally as well, that is, the statement

B.10 Using the autograd Library 543

grad(g, n-1)

computes the derivatives of the function with respect to the nth input (whether

it is a single variable or multiple variables).

B.10.3 Flattening mathematical functions using autograd

Mathematical functions come in all shapes and sizes, and moreover, we can

often express individual functions algebraically in a variety of different ways.

This short section discusses function flattening, which is a convenient way to

standardize functions implemented in Python so that, for example, we can more

quickly apply (in code) local optimization without the need to loop over weights

of a particularly complicated function.

Example B.14 Flattening a multi-input function

Consider the function

g (a, b, C) =

±

a + r

T

b + z

T

Cz

²

2

(B.72)

where the input variable a is a scalar, b is a 2 × 1 vector, C is a 2 × 2 matrix,

and the nonvariable vectors r and z are fixed at r = [1 2]

T

and z = [1 3]

T

,

respectively. This function is not written in the standard form g (w) in which we

discuss local optimization in Chapters 2 through 4 of this text. While, of course,

all of the principles and algorithms described there still apply to this function,

the implementation of any of those methods will be naturally more complicated

as each step will need to be explicitly written in all three inputs a, b, and C,

which is more cumbersome to write (and implement). This annoyance is greatly

amplified when dealing with functions of many more explicit inputs variables,

which we regularly encounter in machine learning. For such functions, in order

to take a single descent step using some local method we must loop over their

many different input variables.

Thankfully, every mathematical function can be expressed so that all of its

input variables are represented as a single contiguous vector w, which alleviates

this irritation. For example, by defining a single vector

544 Derivatives and Automatic Differentiation

w =

w

1

w

2

w

3

w

4

w

5

w

6

w

7

=

a

b

1

b

2

c

11

c

12

c

21

c

22

(B.73)

the original function in Equation (B.72) can then be equivalently written as

g (w) =

±

s

T

w

²

2

(B.74)

where

s =

1

1

2

1

3

3

9

. (B.75)

Again note that all we have really done here is reindexed the entries of the input

vectors in a contiguous manner so that we can implement local optimization

schemes in a less cumbersome way in a single line of algebra or autograd code,

instead of requiring a loop over each input variable. This variable reindexing

scheme is called function flattening, and is depicted visually in Figure B.16.

w

a

b

C

Figure B.16 Figure associated with Example B.14. A figurative illustration of flattening

of the function given in Equation (B.72). See text for further details.

While performing the reindexing required to flatten a function is important, it

(like derivative computation itself) is a repetitive and time-consuming operation

for humans to perform themselves. Thankfully, the autograd library has a built-

in module that flattens functions, which can be imported as shown below.

B.10 Using the autograd Library 545

1 # import function flattening module from autograd

2 from autograd.misc.flatten import flatten_func

Below we define a Python version of the function in Equation (B.72).

1 # Python implementation of g

2 r = np.array([[1],[2]])

3 z = np.array([[1],[3]])

4 def g(input_weights):

5 a = input_weights[0]

6 b = input_weights[1]

7 C = input_weights[2]

8 return (((a + np.dot(r.T, b) + np.dot(np.dot(z.T, C), z)))**2)

[0][0]

To flatten g we then simply call

1 # flatten an input function g

2 g_flat, unflatten_func, w = flatten_func(g, input_weights)

Here on the right-hand side input weights is a list of initializations for input

variables to the function g. The outputs g flat, unflatten func, and w are the

flattened version of g, a module to unflatten the input weights, and a flattened

version of the initial weights, respectively.

C Linear Algebra

C.1 Introduction

In this appendix chapter we briefly review basic ideas from linear algebra that

are fundamental to understanding machine learning. These include vector and

matrix arithmetic, vector and matrix norms, and eigenvalue decomposition. The

reader is strongly encouraged to ensure familiarity with all concepts mentioned

in this chapter before proceeding with the rest of the text.

C.2 Vectors and Vector Operations

We begin by reviewing the fundamental notion of a vector, as well as vector

arithmetic.

C.2.1 The vector

A vector is another word for an ordered listing of numbers. For example,

[-3 4 1] (C.1)

is a vector of three elements or entries, also referred to as a vector of size or

dimension three. In general, a vector can have an arbitrary number of elements,

and can contain numbers, variables, or both. For example,

[x

1

x

2

x

3

x

4

] (C.2)

is a vector of four variables. When numbers or variables are listed out horizon-

tally (or in a row) we call the resulting vector a row vector. However, we can

list them vertically (or in a column) just as well, in which case we refer to the

resulting vector as a column vector. For instance,

-3

4

1

(C.3)

C.2 Vectors and Vector Operations 547

Figure C.1 A two-dimensional vector visualized as an arrow stemming from the origin

(left panel), or equivalently as a single point in a two-dimensional plane (right panel).

is now a column vector of size three. We can swap back and forth between a

row and column version of a vector by transposing each. Transposition is usually

denoted by a superscript T placed just to the right and above a vector, and

simply turns a row vector into an equivalent column vector and vice versa. For

example, we have

-3

4

1

T

= [-3 4 1] and [-3 4 1]

T

=

-3

4

1

. (C.4)

To discuss vectors more generally we use algebraic notation, typically a bold

lowercase (often Roman) letter, e.g., x. The transpose of x is then denoted as x

T

.

This notation does not denote whether or not the vector is a row or column,

or how many elements it contains. Such information must therefore be given

explicitly. Throughout the text, unless stated otherwise, we assume all vectors

are column vectors by default.

Vectors of length two (or three) are easy to intuit since they live in two- (or

three-) dimensional spaces that are familiar to our human senses. For example,

the two-dimensional vector

x =

"

1

2

#

(C.5)

can be drawn in a two-dimensional plane as an arrow stemming from the origin

and ending at the point whose horizontal and vertical coordinates are 1 and 2,

respectively, as illustrated in the left panel of Figure C.1. However, as shown

in the right panel of the figure, x can alternatively be drawn (and thought of)

as a single point, i.e., the arrow’s endpoint. When plotting a low-dimensional

machine learning dataset (that is simply a collection of vectors) we often employ

the latter visual style.

548 Linear Algebra

C.2.2 Vector addition

We add (and subtract) two vectors element-wise, noting that, in order to be able

to do so, the two vectors must have the same number of elements (or dimension),

and both must be row or column vectors. For example, vectors

x =

x

1

x

2

.

.

.

x

N

and y =

y

1

y

2

.

.

.

y

N

(C.6)

are added element-wise to form

x + y =

x

1

+ y

1

x

2

+ y

2

.

.

.

x

N

+ y

N

. (C.7)

Subtraction of y from x is defined similarly as

x - y =

x

1

- y

1

x

2

- y

2

.

.

.

x

N

- y

N

. (C.8)

Thinking of vectors as arrows stemming from the origin, the addition of two

vectors is equal to the vector representing the far corner of the parallelogram

formed by the two vectors in the sum. This is typically called the parallelogram

law, and is illustrated in Figure C.2 for two input vectors colored black, with

their sum shown in red. The dashed lines here are merely visual guides helping

to outline the parallelogram underlying the sum.

Figure C.2 The parallelogram law

illustrated.

C.2 Vectors and Vector Operations 549

C.2.3 Vector multiplication

Unlike addition, there is more than one way to define vector multiplication.

In what follows we review multiplication of a vector by a scalar, element-wise

multiplication of two vectors, as well as inner- and outer-product of two vectors.

Multiplication of a vector by a scalar

We can multiply any vector x by a scalar c, by treating the multiplication element-

wise as

cx =

c x

1

c x

2

.

.

.

c x

N

. (C.9)

Element-wise product of two vectors

The element-wise product, sometimes called the Hadamard product, works

precisely how it sounds: we multiply two vectors element by element. Note

that, just like addition, we need both vectors to have the same dimension in

order to make this work. Notationally, the element-wise product of two vectors

x and y is written as

x ◦ y =

x

1

y

1

x

2

y

2

.

.

.

x

N

y

N

. (C.10)

Inner-product of two vectors

The inner-product (also referred to as the dot product) is another way to multiply

two vectors of the same dimension. Unlike the element-wise product, the inner-

product of two vectors produces a scalar output. To take the inner-product of

two vectors we first multiply them together element-wise, and then simply add

up the elements in the resulting vector. The inner-product of vectors x and y is

written as

x

T

y = x

1

y

1

+ x

2

y

2

+ · · · + x

N

y

N

=

N

X

n=1

x

n

y

n

. (C.11)

550 Linear Algebra

Vector length or magnitude

The well-known Pythagorean theorem provides a useful way to measure the

length of a vector in two dimensions. Using the Pythagorean theorem we can

treat the general two-dimensional vector

x =

"

x

1

x

2

#

(C.12)

as the hypotenuse of a right triangle, and write

length of x =

q

x

2

1

+ x

2

2

. (C.13)

Notice, we can also express the length of x in terms of the inner-product of x

with itself, as

length of x =

√

x

T

x, (C.14)

and this generalizes to vectors of any dimension. Using the notation kxk

2

to

denote the length of an N-dimensional vector x, we have

kxk

2

=

√

x

T

x =

v

t

N

X

n=1

x

2

n

. (C.15)

Geometric interpretation of the inner-product

The inner-product of two vectors x and y

x

T

y =

N

X

n=1

x

n

y

n

(C.16)

can be expressed in terms of the lengths of x and y, via the so-called inner-product

rule, as

x

T

y = kxk

2

kyk

2

cos(θ) (C.17)

where θ is the angle between x and y. This rule is perhaps best intuited after a

slight rearrangement of its terms, as

±

x

kxk

2

²

T

°

y

kyk

2

!

= cos(θ) (C.18)

where vectors

x

kxk

2

and

y

kyk

2

still point in the same direction as x and y, respectively,

but both have been normalized to have unit length, since

C.2 Vectors and Vector Operations 551

cos(θ) =0 -1 < cos(θ) < 00 < cos(θ) < 1

θ

θ

θ

Figure C.3 The inner-product of two unit-length vectors is equal to the cosine of the

angle θ created between them.

k

x

kxk

2

k

2

= k

y

kyk

2

k

2

= 1. (C.19)

Note that because cosine always lies between -1 and 1, so too does the inner

product of any two unit-length vectors. When they point in the exact same

direction, θ = 0, and their inner-product is maximal (i.e., 1). As the two vector

start to point away from each other, θ increases, and the inner-product starts to

shrink. When the two vectors are perpendicular to each other, their inner-product

is equal to zero. The inner-product reaches its minimal value (i.e., -1) when

θ = π, and the two vectors point in completely opposite directions (see Figure

C.3).

Outer-product of two vectors

The outer-product is another way to define multiplication between two vectors.

With two column vectors (of not necessarily the same dimension)

x =

x

1

x

2

.

.

.

x

N

and y =

y

1

y

2

.

.

.

y

M

(C.20)

their outer-product is written as xy

T

, and defined as

xy

T

=

x

1

x

2

.

.

.

x

N

h

y

1

y

2

· · · y

M

i

=

x

1

y

1

x

1

y

2

· · · x

1

y

M

x

2

y

1

x

2

y

2

· · · x

2

y

M

.

.

.

.

.

.

.

.

.

.

.

.

x

N

y

1

x

N

y

2

· · · x

N

y

M

. (C.21)

The result is an N ×M matrix, which can be thought of as a collection of M

column vectors of lengthN stacked side by side (or likewise, as a collection of N

552 Linear Algebra

row vectors of length M stacked on top of each other). We will return to matrices

and discuss them further in the next section.

C.2.4 Linear combination of vectors

A linear combination is an operation that generalizes simple addition of two

vectors by combining addition and scalar multiplication. Given two vectors x

1

and x

2

of the same dimension, their linear combination is formed by multiplying

each with a scalar first and then adding up the result, as

α

1

x

1

+ α

2

x

2

(C.22)

where α

1

and α

2

are real numbers. Notice that for a given pair of values (α

1

, α
2

)

the linear combination is a vector itself with the same dimension as x

1

and x

2

.

In Figure C.4 we show the linear combination of vectors

x

1

=

"

2

1

#

and x

2

=

"

-1

1

#

(C.23)

for three distinct settings of (α

1

, α
2

). The set of all such vectors created by taking

a linear combination of vectors x

1

and x

2

is referred to as the span of x

1

and x

2

,

and written as

span of x

1

and x

2

=

n

α

1

x

1

+ α

2

x

2

| (α

1

, α
2

) ∈ R

2

o

. (C.24)

(α

1

,α

2

) = (-1,-2)(α

1

,α

2

) = (1, 1) (α

1

,α

2

) = (2, 3)

x

1

x

2

Figure C.4 The linear combination (in red) of vectors x

1

and x

2

defined in Equation

(C.23) for three different settings of (α

1

, α
2

). As you can see by changing the values of α

1

and α

2

in α

1

x

1

+α

2

x

2

we get a new vector each time. The set of all such vectors is referred

to as the span of x

1

and x

2

, which in this case is the entire two-dimensional plane.

For the vectorsx

1

andx

2

in Equation (C.23)the span is the entire two-dimensional

plane. But this is not necessarily always the case for any pair of vectors x

1

and

x

2

. Take

C.3 Matrices and Matrix Operations 553

x

1

=

"

1

1

#

and x

2

=

"

3

3

#

(C.25)

for instance. Because these two vectors point at the same direction (one is a

scalar multiple of the other), any linear combination of the two will have the

same direction. In this case the span of x

1

and x

2

is no longer the entire two-

dimensional plane, but a one-dimensional line that can be traced out using scalar

multiples of any of the two vectors. In other words, given either one of x

1

or

x

2

the other one becomes redundant (in terms of finding their span). In linear

algebra terms such vectors are called linearly dependent.

The notion of linear combination of vectors can be extended in general to a

set of k vectors {x

1

,x

2

, . . . , x
k

} (all of the same dimension), taking the form

k

X

i=1

α

i

x

i

= α

1

x

1

+ α

2

x

2

+ · · · + α

k

x

k

. (C.26)

If these vectors span a k-dimensional space they are called linearly independent.

Otherwise, there is at least one vector in the set that can be written as a linear

combination of the rest.

C.3 Matrices and Matrix Operations

In this section we review the concept of a matrix as well as the basic operations

one can perform on a single matrix or pairs of matrices. These completely mirror

those of the vector in the previous section, including the transpose operation,

addition/subtraction, and several multiplication operations. Because of the close

similarity to vectors this section is much more terse than the previous section.

C.3.1 The matrix

If we take a set of N row vectors, each of dimension M

x

1

=

h

x

11

x

12

· · · x

1M

i

x

2

=

h

x

21

x

22

· · · x

2M

i

.

.

.

x

N

=

h

x

N1

x

N2

· · · x

NM

i

554 Linear Algebra

and stack them one by one on top of each other we form an object called a matrix

X =

x

11

x

12

· · · x

1M

x

21

x

22

· · · x

2M

.

.

.

.

.

.

.

.

.

.

.

.

x

N1

x

N2

· · · x

NM

(C.27)

of dimensionN×M, where the first number N is the number of rows in the matrix,

with the second number M denoting the number of columns. The notation we

use to describe a matrix in the text is a bold uppercase letter, e.g., X. Like the

vector notation nothing about the dimensions of the matrix is detailed by its

notation and they must be explicitly stated.

The transpose operation we originally saw for vectors is defined by extension

for matrices. When performed on a matrix, the transpose operation flips the

entire matrix around: every column is turned into a row, and then these rows

are stacked one on top of the other, forming an M × N matrix

X

T

=

x

11

x

21

· · · x

N1

x

12

x

22

· · · x

N2

.

.

.

.

.

.

.

.

.

.

.

.

x

1M

x

2M

· · · x

NM

. (C.28)

C.3.2 Matrix addition

As with vectors, addition (and subtraction) is performed element-wise on ma-

trices of the same dimensions. For example, with two N ×M matrices

X =

x

11

x

12

· · · x

1M

x

21

x

22

· · · x

2M

.

.

.

.

.

.

.

.

.

.

.

.

x

N1

x

N2

· · · x

NM

and Y =

y

11

y

12

· · · y

1M

y

21

y

22

· · · y

2M

.

.

.

.

.

.

.

.

.

.

.

.

y

N1

y

N2

· · · y

NM

(C.29)

their sum is defined as

X+ Y =

x

11

+ y

11

x

12

+ y

12

· · · x

1M

+ y

1M

x

21

+ y

21

x

22

+ y

22

· · · x

2M

+ y

2M

.

.

.

.

.

.

.

.

.

.

.

.

x

N1

+ y

N1

x

N2

+ y

N2

· · · x

NM

+ y

NM

. (C.30)

C.3.3 Matrix multiplication

As with vectors, there are a variety of ways to define matrix multiplication

which we review here.

C.3 Matrices and Matrix Operations 555

Multiplication of a matrix by a scalar

We can multiply any matrix X by a scalar c, and this operation is performed

element by element as

cX =

c x

11

c x

12

· · · c x

1M

c x

21

c x

22

· · · c x

2M

.

.

.

.

.

.

.

.

.

.

.

.

c x

N1

c x

N2

· · · c x

NM

. (C.31)

Multiplication of a matrix by a vector

Generally speaking, there are two ways to multiply an N × M matrix X by a

vector y. The first, referred to as left multiplication, involves multiplication by

an N-dimensional row vector y. This operation, written as yX, results in a row

vector of dimension M whose mth element is the inner-product of y with the

mth column of X

yX =

h

∑

N

n=1

y

n

x

n1

∑

N

n=1

y

n

x

n2

· · ·
∑

N

n=1

y

n

x

nM

i

. (C.32)

Likewise, right multiplication is defined by multiplying X on the right by an

M-dimensional column vector y. Written as Xy, right multiplication results in

an N-dimensional column vector whose nth element is the inner-product of y

with the nth row of X

Xy =

∑

M

m=1

y

m

x

1m

∑

M

m=1

y

m

x

2m

.

.

.

∑

M

m=1

y

m

x

Nm

. (C.33)

Element-wise multiplication of two matrices

As with vectors, we can define element-wise multiplication on two matrices of

the same dimensions. The element-wise product of two N × M matrices X and

Y is written as

X ◦ Y =

x

11

y

11

x

12

y

12

· · · x

1M

y

1M

x

21

y

21

x

22

y

22

· · · x

2M

y

2M

.

.

.

.

.

.

.

.

.

.

.

.

x

N1

y

N1

x

N2

y

N2

· · · x

NM

y

NM

. (C.34)

556 Linear Algebra

General multiplication of two matrices

The general product (or simply product) of two matrices X and Y can be de-

fined based on the vector outer-product operation, provided that the number of

columns in X matches the number of rows in Y. That is, we must have X and Y of

dimensions N ×M andM × P respectively, for the matrix product to be defined

as

XY =

M

X

m=1

x

m

y

T

m

(C.35)

where x

m

is the mth column of X, and y

T

m

is the transpose of the mth column of

Y

T

(or equivalently, the mth row of Y). Note that each summand in Equation

(C.35) is itself a matrix of dimension N × P, and so too is the final matrix XY.

General matrix multiplication can also be defined element-wise, using vector

inner-products, where the entry in the nth row and pth column of XY is found

as the inner-product of (transpose of) the nth row in X and the pth column in Y.

C.4 Eigenvalues and Eigenvectors

In this section we review general linear functions and their relationship to

matrices. We particularly focus on the special case of the square matrix, for

which we discuss the important topics of eigenvectors and eigenvalues.

C.4.1 Linear functions and matrix multiplication

As we discussed in the previous section, the product of an N ×M matrix

X =

x

11

x

12

· · · x

1M

x

21

x

22

· · · x

2M

.

.

.

.

.

.

.

.

.

.

.

.

x

N1

x

N2

· · · x

NM

(C.36)

by an M-dimensional column vector

w =

w

1

w

2

.

.

.

w

M

(C.37)

is an N-dimensional column vector written as Xw. Treating the vector w as

input, Xw defines a function g written formally as

g(w) = Xw. (C.38)

C.4 Eigenvalues and Eigenvectors 557

Writing g(w) explicitly as

g(w) =

x

11

w

1

+ x

12

w

2

+ · · · + x

1M

w

M

x

21

w

1

+ x

22

w

2

+ · · · + x

2M

w

M

.

.

.

x

N1

w

1

+ x

N2

w

2

+ · · · + x

NM

w

M

(C.39)

it is clear that each of its elements is a linear function in variables w

1

through

w

M

, and hence g itself is called a linear function.

C.4.2 Linear functions and square matrices

When the number of rows in a matrix X is identical to the number of columns

in it, i.e., N = M, the matrix is called a square matrix. When N = M = 2 we can

visually examine the effect of a linear function g(w) = Xw by viewing the way

two-dimensional pointsw are transformed via g.

In Figure C.5 we provide just such a visualization using the 2 × 2 matrix X

whose entries were set at random as

X =

"

0.726 - 1.059

-0.200 - 0.947

#

. (C.40)

In the left panel of the figure we show a coarse set of grid lines. The point of

this grid is to help visualize how each point constituting the grid lines (and thus

the entire space itself) is transformed using the matrix X in Equation (C.40). For

visualization purposes, a circle of radius 2 is drawn on top of the grid, and is

transformed along with it. In the right panel of the figure we illustrate how the

space shown in the left panel is warped by the function g(w) = Xw.

0 2 424

4

2

0

2

4

0 2 424

4

2

0

2

4

Figure C.5 The input (left panel) and output (right panel) spaces of the linear function

g(w) = Xw with the matrix X defined in Equation (C.40).

558 Linear Algebra

C.4.3 Eigenvalues and eigenvectors

The previous visualization in Figure C.5 is interesting in its own right, but if

examined closely can also be used to provoke the notion of what are called

eigenvectors. These are the handful of directions that, unlike most others that are

warped and twisted by multiplication with the given matrix, are only scaled by

the function. In other words, eigenvectors are those special vectors in the input

space that retain their direction, after having gone through the linear transforma-

tion g. In Figure C.6 we again show the transformation provided by the random

matrix X in Equation (C.40). This time, however, we also highlight two such

eigenvectors as black arrows. Comparing the left and right panels of the figure,

notice how neither direction gets twisted or warped by the transformation: they

are only scaled.

0 2 424

4

2

0

2

4

0 2 424

4

2

0

2

4

Figure C.6 A redrawing of Figure C.5 with the two eigenvectors of X added as two

black arrows in both input and output spaces.

What we saw with linear functions based on 2×2 square matrices holds more

generally for higher dimensions as well: a linear function based on an N × N

matrix affects at most N linearly independent directions by simply scaling them.

For an N ×N matrix X each such direction v , 0

N×1

satisfying

Xv = λv (C.41)

is called an eigenvector. Here the value λ is precisely the amount by which X

scales v, and is called an eigenvalue. In general, λ can take on real or complex

values.

C.4.4 The special case of the symmetric matrix

A symmetric matrix, that is a square matrix X where X = X

T

, is an important

special case of a square matrix that arises in a wide range of contexts (e.g.,

Hessian matrices, covariance matrices, etc.). One of the main advantages such

matrices have over merely square ones is the following: their eigenvectors are

C.5 Vector and Matrix Norms 559

alwaysperpendicular to each other, and their eigenvalues are alwaysreal numbers

[74, 75, 76]. This fact has significant repercussions in the analysis of such matrices

as we can diagonalize them as follows.

Stacking all of the eigenvectors of X column-wise into a matrixV, and placing

the corresponding eigenvalues along the diagonal of a matrix D, we can write

the Equation (C.41) simultaneously for all eigenvectors/values, as

XV = VD. (C.42)

When the eigenvectors are all perpendicular to each other,V is an orthonormal

matrix

1

and we haveVV

T

= I. Thus multiplying both sides of Equation (C.42) by

V

T

(on the right) we can expressX completely in terms of its eigenvectors/values

as

X = VDV

T

. (C.43)

C.5 Vector and Matrix Norms

In this section we discuss popular vector and matrix norms that will arise

frequently in our study of machine learning, particularly when discussing reg-

ularization. A norm is a kind of function that measures the length of real vectors

and matrices. The notion of length is extremely useful as it enables us to define

distance (or similarity) between any two vectors (or matrices) living in the same

space.

C.5.1 Vector norms

The ‘

2

norm

We begin with the most widely used vector norm in machine learning, the ‘

2

norm, defined for an N-dimensional vector x as

k

x

k

2

=

v

t

N

X

n=1

x

2

n

. (C.44)

Using the ‘

2

norm we can measure the distance between any two points x and

y via

³

³

³

x - y

³

³

³

2

, which is simply the length of the vector connecting x and y. For

example, the distance between

x =

"

1

2

#

and y =

"

9

8

#

(C.45)

1

Here we have assumed every eigenvector v that satisfies Equation (C.41) has unit length, i.e.,

kvk

2

= 1. If not, we can always replace vwith

v

kvk

2

and Equation (C.41) will still hold.

560 Linear Algebra

is calculated as

q

(1

- 9)

2

+

(2

- 8)

2

= 10, as shown pictorially (in red) in Figure

C.7.

Figure C.7 The ‘

1

(blue), ‘

2

(red), and ‘

∞

(green)

based distances between the points x and y

defined in Equation (C.45).

8

6

y

x

The ‘

1

norm

The ‘

1

norm of a vector x is another way to measure its length, defined as the

sum of the absolute values of its entries

kxk

1

=

N

X

n=1

|x

n

| . (C.46)

In terms of the ‘

1

norm the distance between x and y is given by

³

³

³

x - y

³

³

³

1

, which

provides a measurement of distance different from the ‘

2

norm. As illustrated in

Figure C.7 the distance defined by the ‘

1

norm is the length of a path consisting

of perpendicular pieces (shown in blue). Because these paths are somewhat

akin to how an automobile might travel from x to y if they were two locations

in a gridded city, having to traverse perpendicular city blocks one after the

other, the ‘

1

norm is sometimes referred to as the taxicab norm, and the distance

measured via the ‘

1

norm, the Manhattan distance. For x and y in Equation (C.45)

the Manhattan distance is calculated as |1 - 9| + |2 - 8| = 14.

The ‘

∞

norm

The ‘

∞

norm of a vector x is equal to its largest entry (in terms of absolute value),

defined mathematically as

kxk

∞

= max

n

|x

n

| . (C.47)

For example, the distance between x and y in Equation (C.45) in terms of the ‘

∞

norm is found as max (|1 - 9| , |2 - 8|

)

= 8, as illustrated in Figure C.7 (in green).

C.5 Vector and Matrix Norms 561

C.5.2 Common properties of vector norms

The ‘

2

, ‘

1

, and ‘

∞

norms share a number of useful properties that we detail be-

low. Since these properties hold in general for any vector norm, we momentarily

drop the subscript and represent the generic norm of x simply by kxk.

1. Norms are always nonnegative, that is, kxk ≥ 0 for any x. Furthermore, the

equality holds if and only if x = 0, implying that the norm of any nonzero vector

is always greater than zero.

2. The norm of αx, that is a scalar multiple of x, can be written in terms of the

norm of x as kαxk = |α| kxk. With α = -1 for example, we have that k - xk = kxk.

3. Norms also satisfy the so-called triangle inequality where for any three vectors

x, y, and z we have kx - zk + kz - yk ≥ kx - yk. As illustrated in Figure C.8 for

the ‘

2

norm (left panel), the ‘

1

norm (middle panel), and the ‘

∞

norm (right

panel), the triangle inequality simply states that the distance between x and y is

always smaller than (or equal to) the distance between x and z, and the distance

between z and y, combined. In other words, if one wanted to travel from a given

point x to a given point y, it would be always better to travel directly from x to y

than to travel first to a third point z, and then to y. With the change of variables

u = x - z and v = z - y, the triangle inequality is sometimes written in the

simpler form of kuk + kvk ≥ ku + vk for all vectors u and v.

y

z

x x x

z z

y y

Figure C.8 The triangle inequality illustrated for the ‘

2

norm (left panel), ‘

1

norm

(middle panel), and ‘

∞

norm (right panel).

In addition to the general properties mentioned above and held by any norm,

the ‘

2

, ‘

1

, and ‘

∞

norms share a stronger bond that ties them together: they are

all members of the ‘

p

norm family. The ‘

p

norm is generally defined as

kxk

p

=

N

X

n=1

|x

n

|

p

1

p

(C.48)

562 Linear Algebra

Figure C.9 Illustration of the ‘

1

(blue), ‘

2

(red),

and ‘

∞

(green) unit balls.

0 11

1

0

1

for p ≥ 1. One can easily verify that with p = 1, p = 2, and as p -→ ∞, the ‘

p

norm reduces to the ‘

1

, ‘

2

, and ‘

∞

norm, respectively.

The ‘

p

norm balls

A norm ball is the set of all vectors x with same norm value, that is, all x such

that

k

x

k

= c for some constant c > 0. When c = 1, this set is called the unit norm

ball, or simply the unit ball. The ‘

1

, ‘

2

, and ‘

∞

unit balls are plotted in Figure

C.9.

The ‘

0

norm

The ‘

0

norm is yet another way of defining a vector’s length as

kxk

0

= number of nonzero entries of x. (C.49)

Calling the ‘

0

norm a norm is technically a misnomer as it does not hold the

scalability property held by all vector norms. That is, kαxk

0

is generally not

equal to |α| kxk

0

. Nevertheless, the ‘

0

norm arises frequently when modeling

vectors with a large number of zeros (also called sparse vectors).

C.5.3 Matrix norms

The Frobenius norm

Recall that the ‘

2

norm of a vector is defined as the square root of the sum of the

squares of its elements. The Frobenius norm is the intuitive extension of the ‘

2

norm for vectors to matrices, defined similarly as the square root of the sum of

the squares of all the elements in the matrix, and written for an N ×M matrix X

as

kXk

F

=

v

t

N

X

n=1

M

X

m=1

x

2

nm

. (C.50)

C.5 Vector and Matrix Norms 563

For example, the Frobenius norm of the matrix X =

"

-1 2

0 5

#

is calculated as

q

(-1)

2

+ 2

2

+ 0

2

+ 5

2

=

√

30.

The connection between the ‘

2

norm and the Frobenius norm goes further:

collecting all singular values of X in the vector s we have

kXk

F

= ksk

2

. (C.51)

The spectral and nuclear norms

The observation that the ‘

2

norm of the vector of singular values of a matrix is

identical to its Frobenius norm motivates the use of other ‘

p

norms on the vector

s. In particular, the ‘

1

norm of s defines the nuclear norm of X denoted by kXk

*

kXk

*

= ksk

1

(C.52)

and the ‘

∞

norm of s defines the spectral norm of X denoted by kXk

2

kXk

2

= ksk

∞

. (C.53)

Because the singular values of real matrices are always nonnegative, the spectral

norm and the nuclear norm of such a matrix are simply its largest and the sum

of all its singular values, respectively.

References

[1] J. Elson, J. R. Douceur, J. Howell, and J. Saul, “Asirra: a CAPTCHA that exploits

interest-aligned manual image categorization,” Proceedings of ACM Conference on

Computer and Communications Security, pp. 366–374, 2007.

[2] D. Lee, W. Van der Klaauw, A. Haughwout, M. Brown, and J. Scally, “Measuring

student debt and its performance,” FRB of New York Staff Report, no. 668, 2014.

[3] R. Panaligan and A. Chen, “Quantifying movie magic with google search,” Google

Whitepaper, 2013.

[4] S. Asur and B. A. Huberman, “Predicting the future with social media,” Proceedings

of IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent

Technology (WI-IAT), vol. 1, pp. 492–499, 2010.

[5] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,”

Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recog-

nition, vol. 1, pp. 886–893, 2005.

[6] M. Enzweiler and D. M. Gavrila, “Monocular pedestrian detection: survey and

experiments,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31,

no. 12, pp. 2179–2195, 2009.

[7] S. Maldonado-Bascon, S. Lafuente-Arroyo, P. Gil-Jimenez, H. Gomez-Moreno, and

F. López-Ferreras, “Road-sign detection and recognition based on support vector

machines,” IEEE Transactions on Intelligent Transportation Systems, vol. 8, no. 2, pp.

264–278, 2007.

[8] B. Pang, L. Lee, and S. Vaithyanathan, “Thumbs up?: sentiment classification using

machine learning techniques,” Proceedings of the ACL-02 Conference on Empirical

Methods in Natural Language Processing, vol. 10, pp. 79–86, 2002.

[9] R. Hammer, J. R. Booth, R. Borhani, and A. K. Katsaggelos, “Pattern analysis based

on fMRI data collected while subjects perform working memory tasks allowing

high-precision diagnosis of ADHD,” US Patent App. 15317724, 2017.

[10] D. Maclaurin, D. Duvenaud, and R. P. Adams, “Autograd: reverse-mode differenti-

ation of native Python,” ICML Workshop on Automatic Machine Learning, 2015.

[11] M. Johnson, R. Frostig, and C. Leary, “Compiling machine learning programs via

high-level tracing,” Systems and Machine Learning (SysML), 2018.

[12] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind, “Automatic differen-

tiation in machine learning: a survey,” Journal of Marchine Learning Research, vol. 18,

pp. 1–43, 2018.

[13] R. D. Neidinger, “Introduction to automatic differentiation and MATLAB object-

oriented programming,” SIAM Review, vol. 52, no. 3, pp. 545–563, 2010.

[14] D. G. Luenberger, Linear and Nonlinear Programming. Springer, 2003.

References 565

[15] S. P. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press,

2004.

[16] D. Harrison Jr and D. L. Rubinfeld, “Hedonic housing prices and the demand for

clean air,” Journal of Environmental Economics and Management, vol. 5, no. 1, pp.

81–102, 1978.

[17] D. Dua and C. Graff, Auto MPG dataset. UCI Machine Learning Repository available

at https://archive.ics.uci.edu/ml/datasets/auto+mpg, 2017.

[18] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20, no. 3,

pp. 273–297, 1995.

[19] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and

statistical learning via the alternating direction method of multipliers,” Foundations

and Trends

R

± in Machine Learning, vol. 3, no. 1, pp. 1–122, 2011.

[20] B. Schölkopf and A. J. Smola, Learning with Kernels: Support Vector Machines, Regu-

larization, Optimization, and Beyond. MIT Press, 2002.

[21] L. Bottou, “Large-scale machine learning with stochastic gradient descent,” pp.

177–186, 2010.

[22] O. Chapelle, “Training a support vector machine in the primal,” Neural Computation,

vol. 19, no. 5, pp. 1155–1178, 2007.

[23] D. Dua and C. Graff, Spambase dataset. UCI Machine Learning Repository available

at https://archive.ics.uci.edu/ml/datasets/spambase, 2017.

[24] D. Dua and C. Graff, Statlog dataset. UCI Machine Learning Repository available

at https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data), 2017.

[25] R. Rifkin and A. Klautau, “In defense of one-vs-all classification,” Journal of Machine

Learning Research, vol. 5, pp. 101–141, 2004.

[26] Y. Tang, “Deep learning using support vector machines,” CoRR, abs/1306.0239, 2013.

[27] D. Dua and C. Graff, Iris dataset. UCI Machine Learning Repository available at

https://archive.ics.uci.edu/ml/datasets/iris, 2017.

[28] D. P. Bertsekas, “Incremental gradient, subgradient, and proximal methods for con-

vex optimization: a survey,” Optimization for Machine Learning, vol. 2010, pp. 1–38,

2011.

[29] Y. LeCun and C. Cortes, MNIST handwritten digit database. Available at

http://yann.lecun.com/exdb/mnist/, 2010.

[30] B. A. Olshausen and D. J. Field, “Sparse coding with an overcomplete basis set: a

strategy employed by V1?” Vision Research, vol. 37, no. 23, pp. 3311–3325, 1997.

[31] D. D. Lee and H. S. Seung, “Algorithms for nonnegative matrix factorization,”

Advances in Neural Information Processing Systems, pp. 556–562, 2001.

[32] C. D. Manning and H. Schütze, Foundations of Statistical Natural Language Processing.

MIT Press, 1999.

[33] H. Barlow, “The coding of sensory messages,” Current Problems in Animal Behaviour,

pp. 331–360, 1961.

[34] H. Barlow, “Redundancy reduction revisited,” Network: Computation in Neural Sys-

tems, vol. 12, no. 3, pp. 241–253, 2001.

[35] S. J. Prince, Computer Vision: Models, Learning, and Inference. Cambridge University

Press, 2012.

[36] Y. LeCun, K. Kavukcuoglu, and C. Farabet, “Convolutional networks and applica-

tions in vision,” Proceedings of IEEE International Symposium on Circuits and Systems

(ISCAS), pp. 253–256, 2010.

566 References

[37] Y. LeCun and Y. Bengio, “Convolutional networks for images, speech, and time

series,” The Handbook of Brain Theory and Neural Networks, vol. 3361, no. 10, 1995.

[38] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

convolutional neural networks,” Advances in Neural Information Processing Systems,

pp. 1097–1105, 2012.

[39] S. Marčelja, “Mathematical description of the responses of simple cortical cells,”

JOSA, vol. 70, no. 11, pp. 1297–1300, 1980.

[40] J. P. Jones and L. A. Palmer, “An evaluation of the two-dimensional gabor filter

model of simple receptive fields in cat striate cortex,” Journal of neurophysiology,

vol. 58, no. 6, pp. 1233–1258, 1987.

[41] X. Huang, A. Acero, and H. W. Hon, Spoken Language Processing: A Guide to Theory,

Algorithm and System Development. Prentice Hall, 2001.

[42] L. R. Rabiner and B. H. Juang, Fundamentals of Speech Recognition. Prentice Hall,

1993.

[43] D. Dua and C. Graff, Breast cancer Wisconsin (diagnostic) dataset. The Uni-

versity of California, Irvine (UCI) Machine Learning Repository available at

https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(diagnostic),

2017.

[44] G. Galilei, Dialogues Concerning Two New Sciences. Dover, 1914.

[45] S. Straulino, “Reconstruction of Galileo Galilei’s experiment: the inclined plane,”

Physics Education, vol. 43, no. 3, p. 316, 2008.

[46] J. Lin, S. M. Lee, H. J. Lee, and Y. M. Koo, “Modeling of typical microbial cell growth

in batch culture,” Biotechnology and Bioprocess Engineering, vol. 5, no. 5, pp. 382–385,

2000.

[47] G. E. Moore, “Cramming more components onto integrated circuits,” Proceedings of

the IEEE, vol. 86, no. 1, pp. 82–85, 1998.

[48] V. Mayer and E. Varaksina, “Modern analogue of Ohm’s historical experiment,”

Physics Education, vol. 49, no. 6, p. 689, 2014.

[49] W. Rudin, Principles of Mathematical Analysis. McGraw-Hill New York, 1964.

[50] G. Cybenko, “Approximation by superpositions of a sigmoidal function,” Mathe-

matics of Control, Signals and Systems, vol. 2, no. 4, pp. 303–314, 1989.

[51] J. Park and I. W. Sandberg, “Universal approximation using radial-basis-function

networks,” Neural Computation, vol. 3, no. 2, pp. 246–257, 1991.

[52] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are

universal approximators,” Neural Networks, vol. 2, no. 5, pp. 359–366, 1989.

[53] A. Rahimi and B. Recht, “Uniform approximation of functions with random bases,”

Proceedings of the 46th Annual Allerton Conference on Communication, Control, and

Computing, pp. 555–561, 2008.

[54] A. Rahimi and B. Recht, “Random features for large-scale kernel machines,” Ad-

vances in Neural Information Processing Systems, pp. 1177–1184, 2008.

[55] H. Buhrman and R. De Wolf, “Complexity measures and decision tree complexity:

a survey,” Theoretical Computer Science, vol. 288, no. 1, pp. 21–43, 2002.

[56] B. Osgood, Lectures on the Fourier Transform and Its Applications. American Mathe-

matical Society, 2019.

[57] D. J. MacKay, “Introduction to Gaussian processes,” NATO ASI Series F Computer

and Systems Sciences, vol. 168, pp. 133–166, 1998.

[58] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2011.

References 567

[59] F. Rosenblatt, The Perceptron, A Perceiving and Recognizing Automaton. Cornell

Aeronautical Laboratory, 1957.
[60] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier networks,” Proceedings

of the 14th International Conference on Artificial Intelligence and Statistics, vol. 15, pp.
315–323, 2011.

[61] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio, “Maxout

networks,” arXiv preprint arXiv:1302.4389, 2013.
[62] S. Ioffe and C. Szegedy, “Batch normalization: accelerating deep network training

by reducing internal covariate shift,” arXiv preprint arXiv:1502.03167, 2015.
[63] G. Huang, Y. Li, G. Pleiss, Z. Liu, J. E. Hopcroft, and K. Q. Weinberger, “Snapshot

ensembles: train 1, get M for free,” arXiv preprint arXiv:1704.00109, 2017.
[64] L. N. Smith, “Cyclical learning rates for training neural networks,” Proceedings of

2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 464–472,
2017.

[65] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification and Regression
Trees. Chapman and Hall CRC, 1984.

[66] J. H. Friedman, “Greedy function approximation: a gradient boosting machine,”

Annals of Statistics, pp. 1189–1232, 2001.
[67] T. Chen and C. Guestrin, “XGBoost: a scalable tree boosting system,” Proceedings

of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 785–794, 2016.

[68] A. Liaw and M. Wiener, “Classification and regression by randomForest,” R News,
vol. 2, no. 3, pp. 18–22, 2002.

[69] D. P. Kingma and J. Ba, “Adam: a method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[70] T. Tieleman and G. Hinton, Lecture 6a: Overview of Mini?Batch Gradient Descent.
Neural Networks for Machine Learning (Coursera Lecture Slides), 2012.

[71] C. M. Bishop, Neural Networks for Pattern Recognition. Oxford University Press,
1995.

[72] R. Fletcher, Practical Methods of Optimization. John Wiley & Sons, 2013.
[73] C. G. Broyden, “The convergence of a class of double-rank minimization algo-

rithms,” Journal of the Institute of Mathematics and Its Applications, vol. 6, no. 3-4, pp.
76–90, 1970.

[74] S. Boyd and L. Vandenberghe, Introduction to Applied Linear Algebra: Vectors, Matrices,
and Least Squares. Cambridge University Press, 2018.

[75] M. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret, “Applications of second-order
cone programming,” Linear Algebra and Its Applications, vol. 284, no. 1, pp. 193–228,
1998.

[76] L. N. Trefethen and D. Bau III,Numerical Linear Algebra. SIAM: Society for Industrial
and Applied Mathematics, 1997.

Index

A

accuracy, 162

balanced accuracy, 164

activation function, 403, 418, 424

Adam (optimization method), 486

ADHD, 12, 377

application

business and industrial applications, 10

cancer classification, 173, 398

cat versus dog classification, 1

credit risk assessment, 167

diagnosis of medical conditions, 12

financial applications, 13

genome-wide association, 377

handwritten digit recognition, 204, 247

object detection, 11

object recognition, 10, 14

predicting Automobile Miles-per-Gallon, 113

predicting box office success, 9

predicting house prices, 113

sentiment analysis, 11, 242

spam detection, 13, 243, 461

student loan prediction, 8

ascent direction, 35

autoencoder

linear, 215

nonlinear, 294, 304, 403, 423

autograd, 55, 56, 89, 536

automatic differentiation, 55, 520, 526

forward mode, 520

reverse mode, 526

average

cumulative average, 474

exponential average, 474

B

backpropagation, 427, 526

backtracking line search, 493

Bag of Words (BoW), 240

bagging

classification, 369

regression, 367

batch normalization, 430

batch size, 489

bias weight, 100

biological neural networks, 418, 424

boosting

cross-validation, 340

feature selection, 258

Broyden–Fletcher–Goldfarb–Shanno (BFGS)

method, 95, 509

C

capacity dial, 320, 328

categorical Cross Entropy cost, 158, 193

child node, 517

classification

nonlinear, 286, 290, 304, 403, 443

quality metrics, 160

weighted classification, 167

classifier, 5

clustering, 14, 15

complexity dial, 306

computation graph, 517

confusion matrix, 165

constrained optimization, 156

contour plot, 29

convergence, 32, 63, 85, 497

convexity, 51, 57, 78, 81, 91, 103, 501

coordinate descent, 39, 50

coordinate search, 39

correlation value, 241

cost

Cross Entropy, 133

Least Absolute Deviations, 108

Least Squares, 103

Perceptron, 140

Softmax, 135

cost function, 16

cost function history plot, 34, 61

Cross Entropy cost, 125

cross-validation

570 Index

boosting based, 340

K-fold, 373

leave-one-out, 375

naive, 335

regularization based, 350

curse of dimensionality, 26, 37

curvature, 75, 491

D

dataset

Auto-MPG data, 113

bacterial growth data, 298

Boston Housing data, 113, 261, 267

breast cancer data, 173, 398

German credit data, 167, 261, 267

Iris dataset, 202

Kleiber’s law data, 9

MNIST dataset, 204, 247, 430, 438

Moore’s law data, 299

Ohm’s law data, 300

spam detection data, 166, 461

student loan data, 8

Davidon–Fletcher–Powell (DFP) method, 509

decision boundary, 126

derivative, 511

descent direction, 29

diagonal matrix, 233, 257

differentiation

automatic, 520

numerical, 513

symbolic, 525

differentiation rules, 56

dimension reduction, 14

discrete probability distribution, 193

E

early stopping

boosting, 346

regularization, 353

edge detection, 243

eigenvalue, 75, 77, 79

ensembling, 373, 446

epoch, 489

exact line search, 495

exponential average, 473

F

face detection, 11, 125

feature

feature engineering, 2, 238, 275

feature learning, 3, 304, 378

feature scaling, 249

feature selection, 113, 258, 264

histogram features, 238

feature design, 2

feature selection, 113

first-order optimization, 45

first-order system of equations, 46

fMRI, 12, 377

Fourier basis, 384

Fourier kernel, 392

fully connected networks, 403

function approximation, 312

fundamental theorem of linear algebra, 387

fusion rule, 181, 184, 291

G

Galileo, 279

ramp experiment, 114

genome-wide association study (GWAS), 377

global optimization, 24

gradient, 516

gradient boosting, 346, 458

gradient computation, 56, 536

gradient descent

component-wise normalization, 481

convergence criteria, 63

gradient descent algorithm, 56, 63, 87

illustration, 57

momentum acceleration, 473

normalized gradient descent, 478

Python implementation, 63

slow-crawling behavior, 69, 478

zig-zagging behavior, 65, 69, 473

graident descent

mini-batch gradient descent, 203

weaknesses, 65

greedy algorithm, 262

H

Hadamard product, 549

handwritten digit recognition, 10, 247

hard-margin SVMs, 155

harmonic series, 37

Hessian matrix, 91, 134, 495

Hessian-free optimization

quasi-Newton, 503

secant method, 504

subsampling, 502

Index 571

hidden layer, 406

hinge cost, 143

histogram features

for audio data, 248

for categorical data, 239

for image data, 243

for text data, 240

human interpretability, 258, 348, 366, 373, 446

hyperbolic tangent function, 136

hyperplane, 52

I

image compression, 243

imbalanced data, 164, 167

imputation, 254

information gain, 456

inner-product rule, 54

J

JAX, 56, 536

K

K-fold cross-validation, 373

K-means, 221

kernel

cross-validation, 398

Fourier kernel, 392

kernels as measures of similarity, 396

optimization, 397

polynomial kernel, 391

radial basis function (RBF) kernel, 394

kernel trick, 386

Kernelized models

multi-class classification, 390

regression, 388

two-class classification, 389

Kleiber’s law, 9, 121

L

learning rate, 31

Least Absolute Deviations, 108

Least Squares cost function, 101

minimization, 103

susceptibility to outliers, 108

leave-one-out cross-validation, 375

line search, 88

backtracking, 493

exact, 495

linear regression

dealing with duplicates, 114

Least Absolute Deviations cost, 108

Least Squares cost, 101

notation and modeling, 99

Python implementation, 105

root mean squared error, 111

linear separation, 141

linear two-class classification

notation and modeling, 126

Lipschitz constant, 495

local optimization, 27

log-loss SVM, 157

logistic regression, 131

logistic sigmoid function, 130

low-memory quasi-Newton methods, 509

M

machine precision, 87

majority vote, 454

Manhattan distance, 560

manifold, 10, 15, 423

margin, 151

Margin-Perceptron, 151

matrix

arithmetic, 554

norms, 562

matrix factorization problem, 227

maximum

global, 21

local, 23

maximum margin classifier, 153

maxout activation, 427

mean imputation, 254

Mean Squared Error (MSE), 112

median (statistics), 367

metrics

accuracy, 198

mean squared error, 112

mini-batch optimization, 203, 487

minimum

global, 21

local, 23, 46

missing data, 254

mode (statistics), 453

momentum acceleration, 473

Moore’s law, 299

multi-class classification, 10

multi-output regression, 282

cost functions, 118

notation and modeling, 116

Python implementation, 119

572 Index

N

naive cross-validation, 335

weaknesses, 339

neural networks, 317, 403

activation functions, 424

backpropagation, 427

batch normalization, 430

biological perspective, 418

compact representation, 407

cross-Validation via early stopping, 438

graphical representation, 419

multi-hidden-layer, 413

nonconvexity, 428

optimization, 428

Python implementation, 418

single-hidden-layer, 403

two-hidden-layer, 408

neuron, 419

Newton’s method

algorithm, 81

comparison to gradient descent, 86

connection to gradient descent, 84

convergence, 85

illustration, 85

numerical stability, 87

Python implementation, 89

scaling limitations, 90

zero-finding perspective, 88

nonlinear autoencoder, 294

nonlinear multi-output regression, 282

nonlinear regression, 275

nonnegative matrix factorization, 230

normalized exponential function, 194

normalized gradient descent, 478

norms (vector/matrix), 559

numerical differentiation, 513

O

object detection, 11

object recognition, 14

Ohm’s law, 300

one-hot encoding, 193, 239

One-versus-All

algorithm, 182

notation and modeling, 174

online learning, 203

optimality condition

first-order, 45, 46

second-order, 75

zero-order, 23

optimization

constrained, 155

first-order, 45

global, 24

local, 27

second-order, 75

zero-order, 21

optimization dial, 320, 328

orthonormal basis, 211

outliers, 109

overfitting, 323, 333

P

parent node, 517

PCA-sphering, 255

perceptron, 140

Perceptron cost, 140

polynomial kernel, 391

positive (semi)definite, 75

Principal Component Analysis (PCA), 213

pruning, 464

pseudo-inverse, 84

purity, 456

Python (programming language), 56, 63, 89,

105, 119, 134, 138

Python implementation

function flattening, 543

gradient descent, 63

linear regression, 105

multi-class classification, 190

multi-output regression, 119

neural networks, 418

Newton’s method, 89

nonlinear regression, 281

nonlinear two-class classification, 290

PCA, 218

Q

quadratic function, 42, 51

quadratic geometry, 76

quality metrics

classification, 160

regression, 111

quantization, 114

quasi-Newton methods, 503, 505

R

radial basis function, 394

random forests, 462

random local search, 37

random search, 31

Rayleigh quotient, 48, 72, 235

Index 573

recommender systems, 219

rectified linear unit, 143, 426

recursively built neural networks, 403

recursively built trees, 450

regression

linear regression, 101

multi-output regression, 116

nonlinear, 275, 282, 304, 403, 443

quality metrics, 111

weighted, 114

regularization, 87, 500

cross-validation, 350

feature selection, 264

residual, 263, 349, 460

revenue forecasting, 9

RMSProp, 430, 487

S

saddle point, 47, 71, 76, 478

sampling

random, 25

uniform, 24

scree plot, 226

secant method, 504

second-order optimization, 75

sentiment analysis, 12, 242

signed distance, 195

similarity measure, 396

soft-margin SVMs, 155

Softmax cost, 135

spam detection, 13, 243

spanning set, 208, 310, 546

sparse coding, 230

spectrogram, 249

speech recognition, 10, 248

standard basis vector, 39

standard normalization, 249

stationary point, 47, 63, 76, 81, 478

steepest ascent, 52

steepest descent, 52

stemming, 241

steplength

adjustable steplength rule, 35

conservative steplength rules, 490

diminishing steplength rule, 35, 36, 60

fixed steplength rule, 31, 35, 60, 495

steplength issues, 30, 60, 63

steplength parameter, 31, 88, 490

stochastic optimization, 489

stop words, 241

stump (trees), 443

supervised learning, 7

classification, 10

regression, 7

support vector machines, 150

hard-margin, 155

symmetric linear system, 50

T

Taylor series, 52, 79, 81, 500, 504, 531

testing error, 361

testing set, 364

time series, 474

training model, 3

training set, 2

trees, 318, 443

classification trees, 452

creating deep trees via addition, 445

creating deep trees via recursion, 444

cross-validation, 464

gradient boosting, 458

pruning, 466

random forests, 462

regression trees, 446

triangle inequality, 561

U

underfitting, 323, 333

uniform sampling, 24

universal approximation, 307

universal approximators

fixed-shape, 316

neural networks, 317

trees, 318

unsupervised learning, 7

V

validation error, 323, 333

validation model, 3

validation set, 3

vanishing gradient problem, 425

vector

arithmetic, 548

norms, 559

W

weighted regression, 114

weighted two-class classification, 167

whitening, 255

574 Index

Z

zero-order optimization, 21

	Contents
	Preface
	Acknowledgements
	1 Introduction to Machine Learning
	1.1 Introduction
	1.2 Distinguishing Cats from Dogs: a Machine Learning Approach
	1.3 The Basic Taxonomy of Machine Learning Problems
	1.4 Mathematical Optimization
	1.5 Conclusion

	Part I Mathematical Optimization
	2 Zero-Order Optimization Techniques
	2.1 Introduction
	2.2 The Zero-Order Optimality Condition
	2.3 Global Optimization Methods
	2.4 Local Optimization Methods
	2.5 Random Search
	2.6 Coordinate Search and Descent
	2.7 Conclusion
	2.8 Exercises

	3 First-Order Optimization Techniques
	3.1 Introduction
	3.2 The First-Order Optimality Condition
	3.3 The Geometry of First-Order Taylor Series
	3.4 Computing Gradients Efficiently
	3.5 Gradient Descent
	3.6 Two Natural Weaknesses of Gradient Descent
	3.7 Conclusion
	3.8 Exercises

	4 Second-Order Optimization Techniques
	4.1 The Second-Order Optimality Condition
	4.2 The Geometry of Second-Order Taylor Series
	4.3 Newton’s Method
	4.4 Two Natural Weaknesses of Newton’s Method
	4.5 Conclusion
	4.6 Exercises

	Part II Linear Learning
	5 Linear Regression
	5.1 Introduction
	5.2 Least Squares Linear Regression
	5.3 Least Absolute Deviations
	5.4 Regression Quality Metrics
	5.5 Weighted Regression
	5.6 Multi-Output Regression
	5.7 Conclusion
	5.8 Exercises
	5.9 Endnotes

	6 Linear Two-Class Classification
	6.1 Introduction
	6.2 Logistic Regression and the Cross Entropy Cost
	6.3 Logistic Regression and the Softmax Cost
	6.4 The Perceptron
	6.5 Support Vector Machines
	6.6 Which Approach Produces the Best Results?
	6.7 The Categorical Cross Entropy Cost
	6.8 Classification Quality Metrics
	6.9 Weighted Two-Class Classification
	6.10 Conclusion
	6.11 Exercises

	7 Linear Multi-Class Classification
	7.1 Introduction
	7.2 One-versus-All Multi-Class Classification
	7.3 Multi-Class Classification and the Perceptron
	7.4 Which Approach Produces the Best Results?
	7.5 The Categorical Cross Entropy Cost Function
	7.6 Classification Quality Metrics
	7.7 Weighted Multi-Class Classification
	7.8 Stochastic and Mini-Batch Learning
	7.9 Conclusion
	7.10 Exercises

	8 Linear Unsupervised Learning
	8.1 Introduction
	8.2 Fixed Spanning Sets, Orthonormality, and Projections
	8.3 The Linear Autoencoder and Principal Component Analysis
	8.4 Recommender Systems
	8.5 K-Means Clustering
	8.6 General Matrix Factorization Techniques
	8.7 Conclusion
	8.8 Exercises
	8.9 Endnotes

	9 Feature Engineering and Selection
	9.1 Introduction
	9.2 Histogram Features
	9.3 Feature Scaling via Standard Normalization
	9.4 Imputing Missing Values in a Dataset
	9.5 Feature Scaling via PCA-Sphering
	9.6 Feature Selection via Boosting
	9.7 Feature Selection via Regularization
	9.8 Conclusion
	9.9 Exercises

	Part III Nonlinear Learning
	10 Principles of Nonlinear Feature Engineering
	10.1 Introduction
	10.2 Nonlinear Regression
	10.3 Nonlinear Multi-Output Regression
	10.4 Nonlinear Two-Class Classification
	10.5 Nonlinear Multi-Class Classification
	10.6 Nonlinear Unsupervised Learning
	10.7 Conclusion
	10.8 Exercises

	11 Principles of Feature Learning
	11.1 Introduction
	11.2 Universal Approximators
	11.3 Universal Approximation of Real Data
	11.4 Naive Cross-Validation
	11.5 Efficient Cross-Validation via Boosting
	11.6 Efficient Cross-Validation via Regularization
	11.7 Testing Data
	11.8 Which Universal Approximator Works Best in Practice?
	11.9 Bagging Cross-Validated Models
	11.10 K-Fold Cross-Validation
	11.11 When Feature Learning Fails
	11.12 Conclusion
	11.13 Exercises

	12 Kernel Methods
	12.1 Introduction
	12.2 Fixed-Shape Universal Approximators
	12.3 The Kernel Trick
	12.4 Kernels as Measures of Similarity
	12.5 Optimization of Kernelized Models
	12.6 Cross-Validating Kernelized Learners
	12.7 Conclusion
	12.8 Exercises

	13 Fully Connected Neural Networks
	13.1 Introduction
	13.2 Fully Connected Neural Networks
	13.3 Activation Functions
	13.4 The Backpropagation Algorithm
	13.5 Optimization of Neural Network Models
	13.6 Batch Normalization
	13.7 Cross-Validation via Early Stopping
	13.8 Conclusion
	13.9 Exercises

	14 Tree-Based Learners
	14.1 Introduction
	14.2 From Stumps to Deep Trees
	14.3 Regression Trees
	14.4 Classification Trees
	14.5 Gradient Boosting
	14.6 Random Forests
	14.7 Cross-Validation Techniques for Recursively Defined Trees
	14.8 Conclusion
	14.9 Exercises

	Part IV Appendices
	Appendix A Advanced First- and Second-Order Optimization Methods
	A.1 Introduction
	A.2 Momentum-Accelerated Gradient Descent
	A.3 Normalized Gradient Descent
	A.4 Advanced Gradient-Based Methods
	A.5 Mini-Batch Optimization
	A.6 Conservative Steplength Rules
	A.7 Newton’s Method, Regularization, and Nonconvex Functions
	A.8 Hessian-Free Methods

	Appendix B Derivatives and Automatic Differentiation
	B.1 Introduction
	B.2 The Derivative
	B.3 Derivative Rules for Elementary Functions and Operations
	B.4 The Gradient
	B.5 The Computation Graph
	B.6 The Forward Mode of Automatic Differentiation
	B.7 The Reverse Mode of Automatic Differentiation
	B.8 Higher-Order Derivatives
	B.9 Taylor Series
	B.10 Using the autograd Library

	Appendix C Linear Algebra
	C.1 Introduction
	C.2 Vectors and Vector Operations
	C.3 Matrices and Matrix Operations
	C.4 Eigenvalues and Eigenvectors
	C.5 Vector and Matrix Norms

	References
	Index

