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Foreword

The econometrics and statistics professions have made enormous progress on
exploiting information in Big Data for a variety of purposes. In macroeconomics,
Big Data analysis has a long history. In 1937, NBER researchers Wesley Mitchell
and Arthur Burns studied 487 monthly and quarterly economic time series to advise
policy makers on the state of the US business cycle. Their refined list of 71 variables
formed a system of leading, lagging, and coincident indicators that has had lasting
impact on business-cycle analysis and real-time macroeconomic monitoring and
forecasting.

My own interest in the subject came 50 years later, in 1987, when the NBER
asked Jim Stock and me to revisit the indicators and bring “modern” (circa 1980s)
time series methods to bear on the Mitchell–Burns project. Like Mitchell and Burns,
we began by collecting data on hundreds of monthly and quarterly time series.
For each series, we produced a variety of plots and summary statistics, which we
printed and stored in a large blue three-ring binder that we called the “blue book.”
Ultimately, the project culminated in an 11-variable dynamic factor model that
could be used to monitor (nowcast) and forecast the state of the macroeconomy
and the probability of a recession. In some respects, this was progress—indeed, it
was viewed as state of the art in the late 1980s—but it certainly didn’t exploit Big
Data.

“Why,” Jim asked, “do we have to limit the analysis to such a small set of
variables? Can’t we somehow use all the variables in the blue book? Aren’t we
throwing away a lot of information?” Yes, we were throwing away important
information, but in 1987 macroeconomists didn’t have the necessary Big Data
tools to extract it. That has changed, and the contributions in this volume provide
a systematic survey of Big Data methods currently used in macroeconomics and
economics more generally. I wish I had this volume thirty-some years ago for the
blue book project, but I’m certainly glad I have it now for future projects.

Princeton, NJ, USA Mark Watson
August 2019
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Preface

The last three decades have seen a surge in data collection. During the same period,
statisticians and econometricians have developed numerous techniques to digest the
ever-growing amount of data and improve predictions. This volume surveys the
adaptation of these methods to macroeconomic forecasting from both the theoretical
and the applied perspective. The reader is presented with the current state of
the literature and a broad collection of tools for analyzing large macroeconomic
datasets. The intended audience includes researchers, professional forecasters,
instructors, and students. The volume can be used as a reference and a teaching
resource in advanced courses focusing on macroeconomic forecasting.

Each chapter of the book is self-contained with references. The topics are
grouped into five main parts. Part I sets the stage by surveying big data types
and sources. Part II reviews some of the main approaches for modeling rela-
tionships among macroeconomic time series, including dynamic factor models,
vector autoregressions, volatility models, and neural networks. Part III showcases
dimension reduction techniques yielding parsimonious model specifications. Part IV
surveys methods that deal with model and forecast uncertainty. Several techniques
described in Parts III and IV originated in the statistical learning literature and have
been successfully adopted in econometrics. They are frequently combined to avoid
overfitting and to improve forecast accuracy. Part V examines important extensions
of the topics covered in the previous three sections.

This volume assumes prior training in econometrics and time series analysis.
By filling a niche in forecasting in data-rich environments, it complements more
comprehensive texts such as Economic Forecasting by Elliott and Timmermann
(2016) and Applied Economic Forecasting Using Time Series Methods by Ghysels
and Marcellino (2018). The chapters in this book attempt to balance the depth and
breadth of the covered material, and are more survey-like than the papers published
in the 2019 Journal of Econometrics special issue titled Big Data in Dynamic
Predictive Econometric Modeling. Given the rapid evolution of big data analysis,
the topics included in this volume have to be somewhat selective, focusing on the
time series aspects of macroeconomic forecasting—as implied by the title—rather
than on spatial, network, structural, and causal modeling.
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viii Preface

I began working on this volume during my sabbatical at the Central European
University, where I received lots of valuable advice and encouragement to proceed
from László Mátyás. Working on this book has been a great learning experience.
I would like to thank the wonderful team of contributors for excellent chapters
produced in a timely manner. I appreciate their responsiveness and patience in
dealing with my requests. I would also like to thank my colleagues at the University
of Hawaii for letting me focus on this project during a busy academic year.

Honolulu, HI, USA Peter Fuleky
May 2019
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Chapter 1
Sources and Types of Big Data
for Macroeconomic Forecasting

Philip M. E. Garboden

1.1 Understanding What’s Big About Big Data

Nearly two decades after the term “Big Data” first appeared in print, there remains
little consensus regarding what it means (Lohr, 2012; Shi, 2014). Like many
a scientific craze before it, the term Big Data quickly became an omnipresent
buzzword applied to anything and everything that needed the gloss of being
cutting edge. Big Data was going to solve many of society’s most complex
problems (Mayer-Schonberger & Cukier, 2013), while simultaneously sowing the
seeds of its self-destruction (O’Neil, 2017). Of course, neither of these predictions
was accurate; Big Data do have the potential to advance our understanding of
the world, but the hard problems remain hard and incrementalism continues to
dominate the social sciences. And while critics have expressed legitimate concerns,
specifically at the intersection of data and governance, the consequences are by no
means as dire as some would make them out to be.

Hyperbole aside, Big Data do have enormous potential to improve the timeliness
and accuracy of macroeconomic forecasts. Just a decade ago, policymakers needed
to wait for periodic releases of key indicators such as GDP and inflation followed
by a series of subsequent corrections. Today, high frequency economic time series
allow researchers to produce and adjust their forecasts far more frequently (Baldacci
et al. 2016, Bok, Caratelli, Giannone, Sbordone, & Tambalotti 2018, Einav &
Levin 2014a, Einav & Levin 2014b, Swanson & Xiong 2018), even in real time
(Croushore, 2011). Not only are today’s time series updated more frequently, but
there are more of them available than ever before (Bok et al., 2018) on a much more

P. M. E. Garboden (�)
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4 P. M. E. Garboden

heterogeneous set of topics (Einav & Levin, 2014b), often with near population-
level coverage (Einav & Levin, 2014a).

In this chapter, we consider the types of Big Data that have proven useful
for macroeconomic forecasting. We begin by adjudicating between the various
definitions of the term, settling on one we believe is most useful for forecasting.
We review what the literature has presented as both the strengths and weaknesses
of Big Data for forecasters, highlighting the particular set of skills necessary to
utilize non-traditional data resources. This chapter leaves any in-depth discussion of
analytic tools and data structures to the rest of the volume, and instead highlights the
challenges inherent in the data themselves, their management, cleaning, and main-
tenance. We then propose a taxonomy of the types of data useful for forecasting,
providing substantive examples for each. While we are neither the first nor the last
researchers to take on such a categorization, we have structured ours to help readers
see the full range of data that can be brought to bear for forecasting in a Big Data
world.

1.1.1 How Big is Big?

Not surprisingly, there is no specific threshold after which a dataset can be
considered “Big.” Many commentators have attempted to describe the qualitative
differences that separate Big Data from traditional data sources. Two themes
emerge: First, Big Data are generally collected for purposes other than academic
research and statistical modeling (Baldacci et al., 2016; Einav & Levin, 2014a).
Second, they generally require processing beyond the capabilities of standard
statistical software (Taylor, Schroeder, & Meyer 2014, Shi 2014, Hassani & Silva
2015). As much as neither of these assertions is wholly correct, there is some value
in both.

Administrative data have been used for forecasting well before the advent of Big
Data (Bok et al., 2018). Data from Multiple Listing Services, for example, have
played a key role in forecasting future housing demand for decades, well before
anyone thought to call it “Big” (Vidger, 1969). Nor are all Big Data administrative
data. Data collected for scientific purposes from the Sloan Digital Sky Survey
consist of over 175,000 galaxy spectra, prompting researchers to develop novel data
management techniques (Yip et al., 2004). Despite numerous exceptions, however,
much of the data we now consider “Big” is collected as a part of regular business
or governing processes and thus, as we will describe below, present a number of
technical challenges related to data management and cleaning.

The second argument, that Big Data are “Big” because of the computational
requirements associated with their analysis, is similarly resonant but emerges
more from the discipline’s origins in computer science than from its uses in
macroeconomics. Most of the definitions in this vein focus on whether or not a
dataset is “difficult to process and analyze in reasonable time” (Shi, 2014; Tien,
2014) or more flippantly when a dataset is so large that “you can’t use STATA”
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(Hilger quoted in Taylor et al., 2014). And while these definitions clearly present a
moving target (just think about STATA from 10 years ago), they reflect the fact that
Big Data are an inherently intradisciplinary endeavor that often requires economists
to collaborate with computer scientists to structure the data for analysis.

Rather than focusing on precise definitions, we believe it is more important to
distinguish between the types of Big Data, specifically the dimensions by which a
dataset can be considered “Big.” Many canonical attempts have been made to define
these parameters, from “volume, velocity, and variety” (Laney, 2001), to its more
recent augmented form “volume, velocity, variety, and veracity” (Shi, 2014), to “tall,
fat, and huge” (Buono, Mazzi, Kapetanios, Marcellino, & Papailias, 2017).

But most valuable for forecasting is the idea that time series data are big if they
are huge in one or more of the following dimensions: the length of time (days,
quarters, years) the data is collected (T ), the number of samples per unit time that
an observation is made (m),1 and the number of variables that are collected at this
rate (K) for an X matrix of dimensions (mT ×K) (Diebold, 2016b). Time series
data are thus Big if they are tall (huge T ), wide (huge K), dense (huge m), or any
combination of those. The value of this approach is that it distinguishes between
the types of data that are big because they have been collected for a very long
time (US population, for example), those that are big because they are collected
very frequently (tick-by-tick stock fluctuations), and those that contain a substantial
number of variables (satellite imaging data). From a forecasting perspective, this
differentiation provides a common language to determine the strengths of a dataset
in forecasting volatility versus trend in both the short and the long term. As Diebold
points out, dense data (huge m) are largely uninformative for forecasting long-term
trends (for which one wants tall data) (Diebold, 2016c), but can be quite useful for
volatility estimation (Diebold, 2016a).

1.1.2 The Challenges of Big Data

Big Data, however defined, present a unique set of challenges to macroeconomists
above and beyond the need for new statistical tools. The data sources themselves
require a level of technical expertise outside of the traditional methods curriculum.
In this section, we outline those challenges.

Undocumented and Changing Data Structures

Most Big Data are not created for the benefit of economic researchers but exists as
a byproduct of business or governmental activities. The Internal Revenue Service

1The value of m may not be constant for a particular time series and, in some cases such as tick
data, may be dependent on the data generating process itself.
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keeps tax information on all Americans so that it can collect taxes. Google stores
billions of search queries so that it can improve its algorithms and increase
advertisement revenue. Electronic medical records ensure continuity of care and
accurate billing. None of these systems were designed with academic research in
mind. While many businesses have begun to develop APIs and collaborate with
academic institutions, these projects exist far outside of these firms’ core business
model. This has several consequences.

First of all, Big Data generally come to researchers uncleaned, unstructured,
and undocumented (Baldacci et al., 2016; Einav & Levin, 2014b; Laney, 2001).
The structure of “Big Data” can be quite complex often incorporating spatial and
temporal elements into multi-dimensional unbalanced panels (Buono et al., 2017;
Matyas, 2017). While traditional survey data include metadata that can help expedite
analysis, most business and governmental data are simply exported from proprietary
systems which store data in the way most convenient to the users (Bok et al., 2018).
Larger more technologically friendly companies have invested resources in making
their data more accessible for research. Data from the likes of Zillow, Twitter, and
Google, for example, are made available through APIs, online dashboards, and data
sharing agreements, generally with accompanying codebooks and documentation of
database structure. But not all organizations have the resources necessary to prepare
their data in that manner.

Second, traditional longitudinal data sources take care to ensure that the data
collected is comparable across time. Data collected in later waves must be identical
to or backwards compatible with earlier waves of the survey. For Big Data collected
from private sources, the data change as business needs change, resulting in
challenges when constructing time series over many years (huge T data). Moreover,
much of technology that could realistically allow companies to store vast amounts
of data was developed fairly recently, meaning that constructing truly huge T time
series data is often incompatible with Big Data. To make matters worse, local
government agencies are often required to store data for a set period of time, after
which they can (and in our experience often do) destroy the information.

Third, many sources of Big Data rely on the increasing uptake of digital
technologies and thus are representative of a changing proportion of the population
(Baldacci et al., 2016; Buono et al., 2017). Cellular phone data, for example,
have changed over just the last 20 years from including a small non-representative
subset of all telecommunications to being nearly universal. Social networks, by
comparison, go in and out of popularity over time as new competitors attract
younger early adapters out of older systems.

Need for Network Infrastructure and Distributed Computing

A second core challenge for macroeconomists looking to utilize Big Data is that
it can rarely be stored and processed on a personal computer (Bryant, Katz, &
Lazowska 2008, Einav & Levin 2014a, Einav & Levin 2014b). Instead, it requires
access to distributed cluster computing systems connected via high-speed networks.
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Ironically, access to these technologies has put industry at an advantage over
academia, with researchers’ decision to embrace big data coming surprisingly “late
to the game” (Bryant et al., 2008).

Fortunately, many campuses now host distributed computing centers to which
faculty have access, eliminating a serious obstacle to big data utilization. Unfor-
tunately, usage of these facilities can be expensive and require long-term funding
streams if data infrastructure is to be maintained. Moreover, hardware access is
necessary but not sufficient. The knowledge to use such equipment falls well outside
of the usual Economics training and requires a great deal of specialized knowledge
generally housed in computer science and engineering departments. While these
challenges have forced Big Data computing to become a rare “interdisciplinary
triumph” (Diebold, 2012; Shi, 2014), they also incur costs associated with the
translational work necessary to link expertise across disciplines.

Costs and Access Limitations

While some agencies and corporations have enthusiastically partnered with macroe-
conomists, others have been far more hesitant to open their data up to outside
scrutiny. Many corporations know that their data have value not just to academics
but for business purposes as well. While many companies will negotiate data
sharing agreements for non-commercial uses, some big data are, quite simply, very
expensive.

A complementary concern is that because much of Big Data is proprietary,
private, or both, organizations have become increasingly hesitant to share their
data publicly, particularly when there are costs associated with deidentification. A
security breech can not only harm the data provider’s reputation (including potential
litigation) but can also greatly reduce the amount of data the provider is willing to
make available to researchers in the future. In the best case scenario, data owners
are requiring increasingly costly security systems to be installed to limit potential
harm (Bryant et al., 2008). In the worst, they simply refuse to provide the data.

Data Snooping, Causation, and Big Data Hubris

One of the main challenges with Big Data emerges from its greatest strength: there’s
a lot of it. Because many of the techniques used to extract patterns from vast datasets
are agnostic with respect to theory, the researcher must remain vigilant to avoid over-
fitting (Baldacci et al., 2016; Hassani & Silva, 2015; Taylor et al., 2014). Although
few macroeconomists would conflate the two, there is a tendency for journalists and
the general public to interpret a predictive process with a causal one, a concern that
is amplified in situations where variables are not pre-selected on theoretical grounds
but instead are allowed to emerge algorithmically.

Big Data generation, moreover, rarely aligns the sampling logics, making
traditional tests of statistical significance largely inappropriate (Abadie, Athey,
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Imbens, & Wooldridge, 2014, 2017). The uncertainty of estimates based on Big Data
is more likely to be based on the data generating process, design, or measurement
than on issues associated with random draws from a theoretically infinite population.

When ignored, these issues can lead to what some researchers have referred to as
“big data hubris” (Baldacci et al., 2016), a sort of overconfidence among researchers
that having a vast amount of information can compensate for traditional econometric
rigor around issues of selection, endogeneity, and causality.

Perhaps the most common parable of Big Data hubris comes from Google’s
attempt to build a real-time flu tracker that could help public health professionals
respond more quickly (Lazer, Kennedy, King, & Vespignani, 2014). The idea behind
the Google Flu Tracker (GFT) was to use search terms such as “do I have the flu?”
to determine the spread of the flu much more rapidly than the CDC’s traditional
tracking, which relied on reports from hospital laboratories. The GFT was released
to enormous fanfare and provided a sort of proof-of-concept for how Big Data could
benefit society (Mayer-Schonberger & Cukier, 2013). Unfortunately, as time went
on, the GFT became less and less effective, predicting nearly double the amount of
flu than was actually occurring (Lazer et al., 2014).

The reason for this was fairly simple. Google had literally millions of search
terms available in its database but only 1152 data points from the CDC. Because
machine learning was utilized naively—without integration with statistical methods
and theory—it was easy to identify a set of search terms that more or less perfectly
predicted the CDC data. Going forward, however, the algorithm showed itself to
have poor out-of-sample validity. According to Lazer et al. (2014), even 3-week-old
CDC data do a better job of predicting current flu prevalence than Google’s tracker,
even after extensive improvements were made to the system.

While there is no reason to give up on what would be a useful public health
tool, the shortcomings of GFT illustrate the risks of looking for patterns in data
without expertise in economic forecasting and time series analysis. Moreover,
Google Search is an evolving platform both in terms of its internal algorithms but
also its usage, making it particularly hard to model the data generating function in a
way that will be reliable across time.

1.2 Sources of Big Data for Forecasting

Having outlined the challenges of Big Data, we now turn to various forms of Big
Data and how they can be useful for macroeconomic forecasting. They are: (1)
Financial Market Data; (2) E-Commerce and Credit Cards; (3) Mobile Phones; (4)
Search; (5) Social Media Data; (6) Textual Data; (7) Sensors, and The Internet of
Things; (8) Transportation Data; (9) Other Administrative Data. There are a number
of existing taxonomies of Big Data available in the literature (Baldacci et al., 2016;
Bryant et al., 2008; Buono et al., 2017) and we do not claim any superiority to our
structure other than a feeling for its inherent logic in the forecasting context. In each
section we briefly describe the types of data that fall into each category and present
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exemplary (or at least interesting) examples of how each type of data has been used
in forecasting. While all examples are related to forecasting, we admittedly look
outside of macroeconomics for examples of the less common data types. Our goal
was to err on the side of inclusion, as many of these examples may have relevance
to macroeconomics.

1.2.1 Financial Market Data

Many core economic indicators such as inflation and GDP are released several
months after the time period they represent, sometimes followed by a series of
corrections. Because forecasts of these measures with higher temporal granularity
are enormously valuable to private firms as well as government agencies, the issue of
how to forecast (or nowcast2) economic indicators has received significant attention.

The sheer number of hourly, daily, weekly and monthly data series that can be
applied to such analyses is staggering. Nearly all aspects of financial markets are
regularly reported including commodity prices, trades and quotes of both foreign
and domestic stocks, derivatives, option transactions, production indexes, housing
starts and sales, imports, exports, industry sales, treasury bond rates, jobless claims,
and currency exchange rates, just to name a few (Buono et al. 2017, Bańbura,
Giannone, Modugno, & Reichlin 2013). The challenge is then how to manage such
abundance, particularly when the number of items in each series (mT ) is less than
the number of series (K), and when the different data series relevant to the forecast
are reported at different frequencies (m) and different release lags creating a ragged
edge at the end of the trend (Bańbura et al., 2013).

It is well beyond the scope of this chapter to summarize all the examples of
how high (or at least higher) frequency financial data have been used to improve
macroeconomic forecasts (for some examples see Stock & Watson 2002, Aruoba,
Diebold, & Scotti 2009, Giannone, Reichlin, & Small 2008, Angelini, Camba-
Mendez, Giannone, Reichlin, & Rünstler 2011, Baumeister, Guérin, & Kilian, 2015,
Monteforte & Moretti 2013, Andreou, Ghysels, & Kourtellos 2013, Kim & Swanson
2018, Pan, Wang, Wang, & Yang 2018). But a few examples are worth highlighting.

Modugno (2013) examines the issue of constructing an inflation forecast that can
be updated continuously, rather than waiting for monthly releases (as is the case in
the USA). Modugno uses daily data on commodity prices from the World Market
Price of Raw Materials (RMP), weekly data on energy prices from the Weekly
Retail Gasoline and Diesel Prices data (WRGDP) from the Energy Information
Administration, monthly data on manufacturing from the Institute for Supply
Management (released 2 weeks prior to inflation), and daily financial data from the

2We generally favor the use of the word “forecast” throughout the chapter even for predictions of
contemporaneous events. In a philosophical sense, we see little difference in predicting a number
that is unknown because it has not yet occurred or because it has not yet been observed.
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US dollar index, the S&P 500, the Treasury constant maturity rate, and the Treasury-
bill rate. He finds that for zero and 1 month horizons the inclusion of these mixed
frequency data outperforms standard models but exclusively due to an improvement
in the forecasting of energy and raw material prices.

Degiannakis and Filis (2018) attempt to use high-frequency market data to
forecast oil prices. Arguing that because oil markets are becoming increasingly
financialized, there are benefits in looking beyond market fundamentals to improve
forecasts. Their model combines traditional measures on the global business
cycle, oil production, oil stocks, and the capacity utilization rate with “ultra-high”
frequency tick-by-tick data on exchange rates, stock market indexes, commodities
(oil, gold, copper, gas, palladium, silver), and US T-bill rates. They find that for
long-term forecasts, the fundamentals remain critical, but the inclusion of highly
granular market data improves their short-term estimates in ways robust to various
comparisons.

1.2.2 E-commerce and Scanner Data

In order to construct the consumer price index, the census sends fieldworkers out
to collect prices on a basket of goods from brick and mortar stores across the
country. While this represents a sort of gold standard for data quality, it is not
without its limitations. It is both expensive to collect and impossible to monitor
in real time (Cavallo & Rigobon, 2016). Nor is it able to address bias related to
the substitution of one good for another or to provide details on how quality may
shift within the existing basket; factors that are critical for an accurate measure of
inflation (Silver & Heravi, 2001).

To fill this gap, economists have begun collecting enormous datasets of prices,
relying either on bar-code scanner data (Silver & Heravi 2001, Berardi, Sevestre, &
Thébault 2017) or by scraping online listings from e-commerce retailers (Cavallo
& Rigobon, 2016; Rigobón, 2015). Perhaps the most famous of these is the MIT
Billion Prices Project which, in 2019, was collecting 15 million prices every day
from more than 1000 retailers in 60 countries (Project, 2019). The genesis of
the project came from Cavallo (2013) and his interest in measuring inflation in
Argentina. Cavallo suspected, and would later prove, that the official releases from
Argentine officials were masking the true rate of inflation in the county. By scraping
4 years’ worth of data from supermarket websites in Argentina (and comparison data
in Brazil, Chile, Columbia, and Venezuela), Cavallo was able to show an empirical
inflation rate of 20%, compared to official statistics which hovered around 4%.
Building on this methodology, the Billion Prices Project began scraping and curating
online sales prices from around the world allowing not only for inflation forecasting,
but additional empirical research on price setting, stickiness, and so forth. Other
similar work has been done using data from Adobe Analytics, which collects sales
data from its clients for the production of business metrics (Goolsbee & Klenow,
2018).
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While e-commerce has increased its market share substantially (and is continuing
to do so), its penetration remains dwarfed by brick and mortar businesses particu-
larly in specific sectors (like groceries). For this reason, researchers have partnered
with particular retailers to collect price scanner data in order to construct price
indexes (Ivancic, Diewert, & Fox, 2011), more precisely measure inflation (Silver &
Heravi, 2001), and to examine the influence of geopolitical events on sales (Pandya
& Venkatesan, 2016). While is seems like that the relative ease of collecting online
prices, combined with the increasing e-commerce market share will tend to push
research into the online space, both forms of price data have enormous potential for
forecasting.

1.2.3 Mobile Phones

In advanced economies, nearly 100% of the population uses mobile phones, with
the number of cellphone accounts exceeding the number of adults by over 25%
(Blondel, Decuyper, & Krings, 2015). Even in the developing world, mobile phones
are used by three quarters of the population; in a country such as Cote d’Ivoire,
where fewer than 3% of households have access to the web, 83% use cell phones
(Mao, Shuai, Ahn, & Bollen, 2015). This has pushed many researchers to consider
the value of mobile phone data for economic forecasting, particularly in areas where
traditional demographic surveys are expensive or dangerous to conduct (Blondel
et al. 2015, Ricciato, Widhalm, Craglia, & Pantisano 2015).

The mobile phone data that is available to researchers is fairly thin, generally
consisting solely of the Call Detail Records (CDR) that simply provide a unique
identifier of the mobile device, the cell tower to which it connected, and type of
connection (data, call, etc.), the time, and duration of the call (Ricciato et al., 2015).
Some datasets will also include data on the destination tower or, if the user is
moving, the different connecting towers that he or she may utilize during the route.
To compensate for this thinness, however, is the data’s broad coverage (particularly
in areas with a single cellular carrier) and the potential for near real-time data access.

Mobile phone data have been used to forecast demographic trends such as
population densities (Deville et al., 2014), poverty (Mao et al. 2015, Smith-
Clarke, Mashhadi, & Capra 2014, Blumenstock, Cadamuro, & On 2015), and
unemployment (Toole et al., 2015). In general, these papers look at the distribution
of the number of cell phone calls and the networks of connections between towers
(including density and heterogeneity) to improve forecasting at smaller levels of
temporal and spatial granularity than is typically available.3

In one of the more ingenious analyses, Toole et al. (2015) looked at patterns
of cell phone usage before and after a mass layoff in an undisclosed European

3This approach has particular value in times of disaster, upheaval or other unexpected events for
which data are necessary for an effective response.
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country. Using a Bayesian classification model, they found that after being laid off,
individuals significantly reduced their level of communication. They made fewer
calls, received fewer calls, and spoke with a smaller set of people in the period after
the layoff than they had prior to the layoff (or than a control group in a town that
did not experience the employment shock). The researchers used the relationship
identified in this analysis to train a macroeconomic model to improve forecasts of
regional unemployment, finding significant improvements to their predictions once
mobile phone data were included.

Mobile phones and other always-on devices have also allowed economists to
increase the frequency with which they survey individuals as they go about their
daily routines. MacKerron and Mourta’s Mappiness project, for example, utilizes a
mobile phone app to continually ping users about their level of happiness throughout
the day resulting in over 3.5 million data points produced by tens of thousands of
British citizens (MacKerron & Mourato, 2010). While this particular project has yet
to be employed for forecasting, it’s clear that this sort of real-time attitudinal data
could contribute to the prediction of multiple macroeconomic time series.

1.2.4 Search Data

Once the purview of marketing departments, the use of search data has increased
in forecasting, driven by the availability of tools such as Google Trends (and, more
recently, Google Correlate). These tools report a standardized measure of search
volume for particular user-identified queries on a scale from 0, meaning no searches,
to 100, representing the highest search volume for a particular topic during the
time window. Smaller areas of spatial aggregation, namely states, are also available.
While keywords with a search volume below a particular threshold are redacted for
confidentiality reasons, Google Trends provides otherwise unavailable insight into
a population’s interest in a particular topic or desire for particular information.

It is hardly surprising given the nature of this data, that it would be used for
forecasting. Although attempts have not been wholly successful (Lazer et al., 2014),
many researchers have attempted to use search terms for disease symptoms to track
epidemics in real time (Ginsberg et al., 2009; Yuan et al., 2013). Similar approaches
have used search engine trend data to forecast hotel room demand (Pan, Chenguang
Wu, & Song, 2012), commercial real estate values (Alexander Dietzel, Braun, &
Schäfers, 2014), movie openings, video game sales, and song popularity (Goel,
Hofman, Lahaie, Pennock, & Watts, 2010). The various studies using search data
have indicated the challenges of making such predictions. Goel et al. (2010), for
example, look at a number of different media and note significant differences in
search data’s ability to predict sale performance. For “non-sequel games,” search
proved a critical early indicator of buzz and thus first month sales. But this pattern
did not hold for sequel games for which prequel sales were a much stronger
predictor, or movies for which the inclusion of search in the forecasting models
provided very little improvement over traditional forecasting models.
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One of the places where search data have proved most valuable is in the early
prediction of joblessness and unemployment (Choi & Varian, 2009, 2012; D’Amuri
& Marcucci, 2017; Smith, 2016; Tefft, 2011). D’Amuri and Marcucci (2017),
for example, use search volume for the word “jobs” to forecast the US monthly
unemployment rate finding it to significantly outperform traditional models for a
wide range of out-of-sample time periods (particularly during the Great Recession).
In an interesting attempt at model falsification, the authors use Google Correlate to
find the search term with the highest temporal correlation with “jobs” but that is
substantively unrelated to employment (in this case, the term was “dos,” referring to
the operating system or the Department of State). The authors found that despite its
strong in-sample correlation, “dos” performed poorly in out-of-sample forecasting.
This combined with several other robustness checks, provides evidence that unlike
early attempts with Google Flu Trends, online searchers looking for job openings
are a sustainable predictor of unemployment rates.

1.2.5 Social Network Data

Since the early days of the internet, social networks have produced vast quantities of
data, much of it in real time. As the use of platforms such as Facebook and Twitter
have become nearly ubiquitous, an increasing number of economists have looked
for ways to harness these data streams for forecasting. Theoretically, if the data
from these networks can be collected and processed at sufficient speeds, forecasters
may be able to gather information that has not yet been incorporated into the prices
of stock or the betting markets, presenting opportunities for arbitrage (Giles 2010,
Arias, Arratia, & Xuriguera 2013).

Generally speaking, the information provided by social media can be of two dis-
tinct kinds. First, it may provide actual information based on eyewitness accounts,
rumors, or whisper campaigns that has not yet been reported by mainstream news
sources (Williams & Reade, 2016). More commonly, social media data are thought
to contain early signals of the sentiments or emotional states of specific populations
which is predictive of their future investment behaviors (Mittal & Goel, 2012).
Whether exogenous or based on unmeasured fundamentals, such sentiments can
drive market behavior and thus may be useful data to incorporate into models for
forecasting.

The most common social network used for forecasting is Twitter, likely because
it lacks the privacy restrictions of closed networks such as Facebook and because
of Twitter’s support for the data needs of academic researchers. Each day, approxi-
mately 275 million active Twitter users draft 500 million tweets often live tweeting
events such as sporting events, concerts, or political rallies in close to real time.

Several papers have examined how these data streams can be leveraged for
online betting, amounting to a test of whether incorporating social media data can
improve outcome forecasting more accurately than the traditional models used by
odds makers. For example, Brown, Rambaccussing, Reade, and Rossi (2018) used
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13.8 million tweets responding to events in UK Premier League soccer4 matches.
Coding each tweet using a microblogging dictionary as either a positive or negative
reaction to a particular team’s performance, the researchers found that social media
contained significant information that had not yet been incorporated into betting
prices on the real-time wagering site Betfair.com. Similar research has looked at
Twitter’s value in predicting box office revenue for films (Arias et al., 2013; Asur &
Huberman, 2010) and the results of democratic elections (Williams & Reade, 2016).

Not surprisingly, a larger literature examines the ability of social networks
to forecast stock prices, presenting itself as challenges to the efficient market
hypothesis (Bollen, Mao, & Zeng 2011, Mittal & Goel 2012). Bollen et al. (2011),
in a much cited paper, used Twitter data to collect what they term “collective mood
states” operationally defined along six dimensions (calm, alert, sure, vital, kind, and
happy). The researchers then used a self-organizing fuzzy neural network model
to examine the non-linear association between these sentiments and the Dow Jones
Industrial Average (DJIA). They found that the inclusion of some mood states (calm
in particular) greatly improved predictions for the DJIA, suggesting that public
sentiment was not fully incorporated into stock prices in real time. Similar work
with similar findings has been done using social networks more directly targeting
potential stock market investors such as stock message boards (Antweiler & Frank,
2004), Seeking Alpha (Chen, De, Hu, & Hwang, 2014) and The Motley Fool’s
CAPS system, which crowdsources individual opinions on stock movements (Avery,
Chevalier, & Zeckhauser, 2015).

1.2.6 Text and Media Data

If social media is the most popular textual data used for forecasting, it is far from
the only one. Text mining is becoming an increasingly popular technique to identify
trends in both sentiment and uncertainty (Nassirtoussi, Aghabozorgi, Wah, & Ngo
2014, Bholat, Hansen, Santos, & Schonhardt-Bailey 2015). The most popular text
data used in such analyses come from online newspapers, particularly business
related newspapers like the Wall Street Journal or the Financial Times (Alanyali,
Moat, & Preis 2013, Schumaker & Chen 2009, Thorsrud 2018, Baker, Bloom, &
Davis 2016). But other sources are used as well such as minutes from the Fed’s
Federal Open Market Committee (FOMC) (Ericsson, 2016, 2017) and Wikipedia
(Moat et al. 2013, Mestyán, Yasseri, & Kertész 2013).

In one of the field’s seminal works, Baker et al. (2016) develop an index of
economic policy uncertainty (EPU) which counts the number of articles using one or
more terms from each of the following three groups: (1) “economic” or “economy,”
(2) “uncertainty,” or “uncertain,” and (3) “Congress,” “deficit,” “Federal Reserve,”
“legislation,” “regulation,” or “White House.” For the last two decades in the USA,

4Football.
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the researchers constructed this measure using the top 10 daily newspapers, with
other sources used internationally and further back in time. While this approach
will assuredly not capture all articles that suggest policy uncertainty, the index
strongly correlates with existing measures of policy uncertainty and can improve
economic forecasts. When the index of uncertainty increases, investment, output
and employment all decline.

A wholly different use of textual data is employed by Moat et al. (2013). Rather
than focus on the content of news sources, their research considers how investors
seek information prior to trading decisions. Collecting a count of views and edits
to Wikipedia pages on particular DJIA firms, the authors find a correlation between
Wikipedia usage and movements in particular stocks. Fortunately or unfortunately
(depending on your view), they did not find similar associations with more generic
Wikipedia pages listed on the General Economic Concepts page such as “modern
portfolio theory” or “comparative advantage.”

1.2.7 Sensors, and the Internet of Things

The Internet of Things, like many technology trends, is more often discussed
than used. Nevertheless, there is no doubt that the technology for ubiquitous
sensing is decreasing dramatically in cost with potentially profound implications
for forecasting. There are currently few examples of sensor data being used for
economic forecasting, and that which does exist comes from satellite images,
infrared networks, or sophisticated weather sensing hardware (rather than toasters
and air conditioners).

One of the primary uses of sensor data is to collect satellite information on
land use to predict economic development and GDP (Park, Jeon, Kim, & Choi
2011, Keola, Andersson, & Hall 2015, Seto & Kaufmann 2003). Keola et al.
(2015), for example, use satellite imagery from the Defense Meteorological Satellite
Program (DMSP) to estimate the level of ambient nighttime light and NASA’s
Moderate Resolution Imaging Spectroradiometer (MODIS) to determine whether
non-urbanized areas are forests or agricultural land. The authors find that these
two measures combined can be useful for forecasting economic growth. This
technology, the authors argue, is particularly valuable in areas where traditional
survey and administrative measures are not yet reliably available, specifically the
developing world.

In a much more spatially limited implementation, Howard and Hoff (2013) use a
network of passive infrared sensors to collect data on building occupancy. Applying
a modified Bayesian combined forecasting approach, the authors are able to forecast
building occupancy up to 60 min into the future. While seemingly inconsequential,
the authors argue that this 1-hour-ahead forecast has the potential to dramatically
reduce energy consumption as smart heating and cooling systems will be able to
pre-cool or pre-heat rooms only when occupancy is forecast.
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Looking to the future, an increasing number of electronics will soon be embedded
with some form of low-cost computer capable of communicating remotely either
to end users or to producers (Fleisch, 2010; Keola et al., 2015). Because this
technology is in its infancy, no economic forecasts have incorporated data collected
from these micro-computers (Buono et al., 2017). It is not hard, however, to
imagine how such data could function in a forecasting context. Sensors embedded in
consumer goods will be able to sense the proximity of other sensors, the functioning
of the goods themselves, security threats to those goods, and user behavior (Fleisch,
2010). Data that suggest high levels of product obsolescence could be used to
forecast future market demand. Data on user behavior may some day serve as a
proxy for sentiments, fashion, and even health, all of which could theoretically
forecast markets in a way similar to social network data.

1.2.8 Transportation Data

Over the last few years, there has been an enormous increase in both the quantity
and quality of transportation data, whether through GPS enabled mobile phones,
street level sensors, or image data. This has led to a sort of renaissance of
forecasting within the transportation planning field. To date, the bulk of this work
has been detached from the work of macroeconomists as it has primarily focused
on predicting traffic congestion (Xia, Wang, Li, Li, & Zhang 2016, Yao & Shen
2017, Lv, Duan, Kang, Li, & Wang 2015, Polson & Sokolov 2017), electric vehicle
charging demand (Arias & Bae, 2016), or transportation-related crime and accidents
(Kouziokas, 2017).

One paper that suggests a locus of interaction between macroeconomists and
transportation forecasters comes from Madhavi et al. (2017). This paper incorpo-
rates transportation data into models of electricity load forecasting and finds that,
in addition to traditional weather variables, the volume of traffic into and out of a
particular area can be highly predictive of energy demands.

While little work exists, there are a number of plausible uses of transportation
data to forecast large-scale trends. Of course, transportation inefficiencies are likely
predictive of gasoline prices. The pattern of peak travel demand could be indicative
of changes of joblessness, sector growth or decline, and other labor force variables.
And finally, the movement of vehicles throughout a metropolitan area could be used
to construct a forecast of both residential and commercial real estate demand within
particular metropolitan areas.

1.2.9 Other Administrative Data

The reliability and consistency of some government, nonprofit, and trade association
data has made it difficult to construct reliable time series, particularly at a national
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level. In the presence of undocumented changes in the data collection process (either
because of regulation or technology), it becomes difficult to disentangle the data
generating process from changes in data coverage and quality. One exception to this
trend is use of data on housing sales, collected through the National Association of
Realtors’ Multiple Listing Service (MLS) in the USA (for examples outside of the
USA, see Baltagi & Bresson, 2017). These data, which track all property sales for
which a real estate agent was involved, have been invaluable to those attempting to
forecast housing market trends (Chen, Ong, Zheng, & Hsu 2017, Park & Bae 2015).

Park and Bae (2015), for example, use a variety of machine learning algorithms
to forecast trends in housing prices in a single county in Fairfax, Virgina. Using
the MLS data, they obtained 15,135 records of sold properties in the county, each
of which contained a rich set of property-level attributes. In similar work in the
international context, Chen and colleagues use a Support Vector Machine approach
using administrative sales records from Taipei City. In both cases, the Big Data
forecasting approach improved over previous methods.

One place where big administrative data have significant potential is in the area
of local and national budget forecasting. At the national level, the approach to
revenue and expenditure forecasting has followed traditional methods conducted by
up to six agencies (The Council of Economic Advisers, The Office of Management
and Budget, The Federal Reserve Board, The Congressional Budget Office, The
Social Security Administration, and the Bureau of Economic Analysis) (Williams
& Calabrese, 2016). While some of these agencies may be including Big Data into
their forecasts, there is a dearth of literature on the subject (Ghysels & Ozkan, 2015)
and federal budget forecasts have traditionally shown poor out-of-year performance
(Williams & Calabrese, 2016). It is almost certain that the vast majority of local
governments are not doing much beyond linear interpolations, which an abundance
of literature suggests is conservative with respect to revenue (see Williams &
Calabrese, 2016, for review).

1.2.10 Other Potential Data Sources

We have attempted to provide a fairly comprehensive list of the sources of Big Data
useful for forecasting. In this, however, we were limited to what data have been tried
rather than what data could be tried. In this final section, we propose several data
sources that have not yet bubbled to the surface in the forecasting literature often
because they have particular challenges related to curation or confidentiality.

The most noticeable gap relates to healthcare. Electronic medical records, while
extremely sensitive, represent enormous amounts of data about millions of patients.
Some of this, such as that collected by Medicare and Medicaid billing, is stored
by the government, but other medical data rest with private providers. While social
media may be responsive to rapidly spreading epidemics, electronic medical records
would be useful in predicting healthcare utilization well into the future. In the
future, the steady increase of “wearables” such as Apple watches and FitBits has
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the potential to provide real-time information on health and wellness, potentially
even enabling researchers to measure stress and anxiety, both of which the literature
suggests are predictive of market behavior.

Second, while the use of textual data has increased, audio and video data has
been largely ignored by the forecasting literature. Online content is now produced
and consumed via innumerable media ranging from YouTube videos, to podcasts,
to animated gifs. As speech recognition software improves along with our ability to
extract information from images and video recordings, it is likely that some of this
data may prove useful for forecasting.

Finally, as noted above, there appears to be a significant under-utilization of
administrative data, particularly that which is collected at the local level but relevant
nationally. The challenges here have more to do with federalism and local control
than they do with data science and econometrics. Data that are primarily collected
by state and local governments are often inaccessible and extremely messy. This
limits, for example, our ability to use education or court data to forecast national
trends; the amount of local autonomy related to the collection and curation of this
data presents a simply insurmountable obstacle, at least for now.

1.3 Conclusion

This chapter has outlined the various types of Big Data that can be applied
to macroeconomic forecasting. By comparison to other econometric approaches,
the field is still relatively new. Like all young fields, both the challenges and
opportunities are not fully understood. By and large, the myriad publications
outlined here have taken the approach of adding one or more big datasets into
existing forecasting approaches and comparing the out-of-sample performance of
the new forecast to traditional models. While essential, this approach is challenged
by the simple fact that models that fail to improve performance have a much steeper
hill to climb for publication (or even public dissemination). And yet knowing what
does not improve a model can be very valuable information. Moreover, it remains
unclear how approaches combining multiple Big Data sources will perform versus
those that select one or the other. Over a dozen papers attempt to use Big Data to
forecast unemployment, all using clever and novel sources of information. But are
those sources redundant to one another or would combining multiple sources of data
produce even better forecasts? Beyond simply bringing more data to the forecasting
table, it is these questions that will drive research going forward.
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Part II
Capturing Dynamic Relationships



Chapter 2
Dynamic Factor Models

Catherine Doz and Peter Fuleky

2.1 Introduction

Factor analysis is a dimension reduction technique summarizing the sources of
variation among variables. The method was introduced in the psychology literature
by Spearman (1904), who used an unobserved variable, or factor, to describe the
cognitive abilities of an individual. Although originally developed for independently
distributed random vectors, the method was extended by Geweke (1977) to capture
the comovements in economic time series. The idea that the comovement of
macroeconomic series can be linked to the business cycle has been put forward by
Burns and Mitchell (1946): “a cycle consists of expansions occurring at about the
same time in many economic activities, followed by similarly general recessions,
contractions, and revivals which merge into the expansion phase of the next cycle;
this sequence of changes is recurrent but not periodic.” Early applications of
dynamic factor models (DFMs) to macroeconomic data, by Sargent and Sims (1977)
and Stock and Watson (1989, 1991, 1993), suggested that a few latent factors
can account for much of the dynamic behavior of major economic aggregates. In
particular, a dynamic single-factor model can be used to summarize a vector of
macroeconomic indicators, and the factor can be seen as an index of economic con-
ditions describing the business cycle. In these studies, the number of time periods
in the dataset exceeded the number of variables, and identification of the factors
required relatively strict assumptions. While increments in the time dimension were
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limited by the passage of time, the availability of a large number of macroeconomic
and financial indicators provided an opportunity to expand the dataset in the cross-
sectional dimension and to work with somewhat relaxed assumptions. Chamberlain
(1983) and Chamberlain and Rothschild (1983) applied factor models to wide panels
of financial data and paved the way for further development of dynamic factor
models in macroeconometrics. Indeed, since the 2000s dynamic factor models
have been used extensively to analyze large macroeconomic datasets, sometimes
containing hundreds of series with hundreds of observations on each. They have
proved useful for synthesizing information from variables observed at different
frequencies, estimation of the latent business cycle, nowcasting and forecasting,
and estimation of recession probabilities and turning points. As Diebold (2003)
pointed out, although DFMs “don’t analyze really Big Data, they certainly represent
a movement of macroeconometrics in that direction,” and this movement has proved
to be very fruitful.

Several very good surveys have been written on dynamic factor models, includ-
ing Bai and Ng (2008b); Bai and Wang (2016); Barigozzi (2018); Barhoumi,
Darné, and Ferrara (2014); Breitung and Eickmeier (2006); Lütkepohl (2014);
Stock and Watson (2006, 2011, 2016). Yet we felt that the readers of this volume
would appreciate a chapter covering the evolution of dynamic factor models,
their estimation strategies, forecasting approaches, and several extensions to the
basic framework. Since both small- and large-dimensional models have advanced
over time, we review the progress achieved under both frameworks. In Sect. 2.2
we describe the distinguishing characteristics of exact and approximate factor
models. In Sects. 2.3 and 2.4, we review estimating procedures proposed in the time
domain and the frequency domain, respectively. Section 2.5 presents approaches
for determining the number of factors. Section 2.6 surveys issues associated with
forecasting, and Sect. 2.8 reviews the handling of structural breaks in dynamic factor
models.

2.2 From Exact to Approximate Factor Models

In a factor model, the correlations among n variables, x1 . . . xn, for which T
observations are available, are assumed to be entirely due to a few, r < n,
latent unobservable variables, called factors. The link between the observable
variables and the factors is assumed to be linear. Thus, each observation xit can
be decomposed as

xit = μi + λ′if t + eit ,

where μi is the mean of xi , λi is an r × 1 vector, and eit and f t are two uncorrelated
processes. Thus, for i = 1 . . . n and t = 1 . . . T , xit is decomposed into the
sum of two mutually orthogonal unobserved components: the common component,
χit = λ′if t , and the idiosyncratic component, ξit = μi + eit . While the factors drive
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the correlation between xi and xj , j �= i, the idiosyncratic component arises from
features that are specific to an individual xi variable. Further assumptions placed on
the two unobserved components result in factor models of different types.

2.2.1 Exact Factor Models

The exact factor model was introduced by Spearman (1904). The model assumes
that the idiosyncratic components are not correlated at any leads and lags so that ξit
and ξks are mutually orthogonal for all k �= i and any s and t , and consequently all
correlation among the observable variables is driven by the factors. The model can
be written as

xit = μi +
r∑

j=1

λijfjt + eit , i = 1 . . . n, t = 1 . . . T , (2.1)

where fjt and eit are orthogonal white noises for any i and j ; eit and ekt are
orthogonal for k �= i; and λij is the loading of the j th factor on the ith variable.
Equation (2.1) can also be written as

xit = μi + λ′if t + eit , i = 1 . . . n, t = 1 . . . T ,

with λ′i = (λi1 . . . λir ) and f t = (f1t . . . frt )
′. The common component is χit =∑r

j=1 λijfjt , and the idiosyncratic component is ξit = μi + eit .
In matrix notation, with xt = (x1t . . . xnt )

′, f t = (f1t . . . frt )
′, and et =

(e1t . . . ent )
′, the model can be written as

xt = μ+�f t + et , (2.2)

where � = (λ1 . . . λn)
′ is a n × r matrix of full column rank (otherwise fewer

factors would suffice), and the covariance matrix of et is diagonal since the
idiosyncratic terms are assumed to be uncorrelated. Observations available for
t = 1, . . . T can be stacked, and Eq. (2.2) can be rewritten as

X = ιT ⊗μ′ +F�′ +E,

where X = (x1 . . . xT )
′ is a T × n matrix, F = (f 1 . . .f T )

′ a T × r matrix,
E = (e1 . . . eT )

′ is a T × n matrix, and ιT is a T × 1 vector with components equal
to 1.

While the core assumption behind factor models is that the two processes f t
and et are orthogonal to each other, the exact static factor model further assumes
that the idiosyncratic components are also orthogonal to each other, so that any
correlation between the observable variables is solely due to the common factors.
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Both orthogonality assumptions are necessary to ensure the identifiability of the
model (see Anderson, 1984; Bartholomew, 1987). Note that f t is defined only
up to a premultiplication by an invertible matrix Q since f t can be replaced by
Qf t whenever � is replaced by �Q−1. This means that only the respective spaces
spanned by f t and by � are uniquely defined. This so-called indeterminacy problem
of the factors must be taken into account at the estimation stage.

Factor models have been introduced in economics by Geweke (1977), Sargent
and Sims (1977), and Engle and Watson (1981). These authors generalized the
model above to capture dynamics in the data. Using the same notation as in Eq. (2.2),
the dynamic exact factor model can be written as

xt = μ+�0f t +�1f t−1 + · · · +�sf t−s + et ,

or more compactly

xt = μ+�(L)f t + et , (2.3)

where L is the lag operator.
In this model, f t and et are no longer assumed to be white noises, but are

instead allowed to be autocorrelated dynamic processes evolving according to
f t = �(L)ut and et = ρ(L)εt , where the q and n dimensional vectors ut
and εt , respectively, contain iid errors. The dimension of f t is also q, which is
therefore referred to as the number of dynamic factors. In most of the dynamic
factor models literature, f t and et are generally assumed to be stationary processes,
so if necessary, the observable variables are pre-processed to be stationary. (In
this chapter, we only consider stationary variables; non-stationary models will be
discussed in Chap. 17.)

The model admits a static representation

xt = μ+�F t + et , (2.4)

with F t = (f ′t , f ′t−1, . . . , f ′t−s)′, an r = q(1+ s) dimensional vector of static
factors, and � = (�0, �1, . . . , �s), a n× r matrix of loading coefficients. The
dynamic representation in (2.2.1) and (2.3) captures the dependence of the observed
variables on the lags of the factors explicitly, while the static representation in (2.4)
embeds those dynamics implicitly. The two forms lead to different estimation
methods to be discussed below.

Exact dynamic factor models assume that the cross-sectional dimension of the
dataset, n < T , is finite, and they are usually used with small, n � T , samples.
There are two reasons for these models to be passed over in the n→∞ case. First,
maximum likelihood estimation, the typical method of choice, requires specifying
a full parametric model and imposes a practical limitation on the number of
parameters that can be estimated as n → ∞. Second, as n → ∞, some of the
unrealistic assumptions imposed on exact factor models can be relaxed, and the
approximate factor model framework, discussed in the next section, can be used
instead.
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2.2.2 Approximate Factor Models

As noted above, exact factor models rely on a very strict assumption of no
cross-correlation between the idiosyncratic components. In two seminal papers
Chamberlain (1983) and Chamberlain and Rothschild (1983) introduced approx-
imate factor models by relaxing this assumption. They allowed the idiosyncratic
components to be mildly cross-correlated and provided a set of conditions ensuring
that approximate factor models were asymptotically identified as n→∞.

Let xnt = (x1t , . . . , xnt )′ denote the vector containing the t th observation of the
first n variables as n → ∞, and let �n = cov(xnt ) be the covariance matrix of
xt . Denoting by λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A) the ordered eigenvalues of any
symmetric matrix A with size (n × n), the assumptions underlying approximate
factor models are the following:

(CR1) Supnλr(�n) = ∞ (the r largest eigenvalues of �n are diverging)
(CR2) Supnλr+1(�n) <∞ (the remaining eigenvalues of �n are bounded)
(CR3) Infnλn(�n) > 0 (�n does not approach singularity)

The authors show that under assumptions (CR1)–(CR3), there exists a unique
decomposition �n = �n�

′
n+	n, where �n is a sequence of nested n× r matrices

with rank r and λi(�n�′n) → ∞, ∀i = 1 . . . r , and λ1(	n) < ∞. Alternatively,
xt can be decomposed using a pair of mutually orthogonal random vector processes
f t and ent

xnt = μn +�nf t + ent ,

with cov(f t ) = I r and cov(ent ) = 	n, where the r common factors are pervasive,
in the sense that the number of variables affected by each factor grows with n, and
the idiosyncratic terms may be mildly correlated with bounded covariances.

Although originally developed in the finance literature (see also Connor &
Korajczyk, 1986, 1988, 1993), the approximate static factor model made its way
into macroeconometrics in the early 2000s (see for example Bai, 2003; Bai &
Ng, 2002; Stock & Watson, 2002a,b). These papers use assumptions that are
analogous to (CR1)–(CR3) for the covariance matrices of the factor loadings and the
idiosyncratic terms, but they add complementary assumptions (which vary across
authors for technical reasons) to accommodate the fact that the data under study are
autocorrelated time series. The models are mainly used with data that is stationary
or preprocessed to be stationary, but they have also been used in a non-stationary
framework (see Bai, 2004; Bai & Ng, 2004). The analysis of non-stationary data
will be addressed in detail in Chap. 17.

Similarly to exact dynamic factor models, approximate dynamic factor models
also rely on an equation linking the observable series to the factors and their lags,
but here the idiosyncratic terms can be mildly cross-correlated, and the number of
series is assumed to tend to infinity. The model has a dynamic

xnt = μn +�n(L)f t + ent
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and a static representation

xnt = μn +�nF t + ent

equivalent to (2.3) and (2.4), respectively.
By centering the observed series, μn can be set equal to zero. For the sake of

simplicity, in the rest of the chapter we will assume that the variables are centered,
and we also drop the sub- and superscript n in �n, xnt , and ent . We will always
assume that in exact factor models the number of series under study is finite, while
in approximate factor models n → ∞, and a set of assumptions that is analogous
to (CR1)–(CR3)—but suited to the general framework of stationary autocorrelated
processes—is satisfied.

2.3 Estimation in the Time Domain

2.3.1 Maximum Likelihood Estimation of Small Factor Models

The static exact factor model has generally been estimated by maximum likelihood
under the assumption that (f t )t∈Z and (et )t∈Z are two orthogonal iid Gaussian pro-
cesses. Unique identification of the model requires that we impose some restrictions
on the model. One of these originates from the definition of the exact factor model:
the idiosyncratic components are set to be mutually orthogonal processes with a
diagonal variance matrix. A second restriction sets the variance of the factors to be
the identity matrix, V ar(f t ) = I r . While the estimator does not have a closed form
analytical solution, for small n the number of parameters is small, and estimates can
be obtained through any numerical optimization procedure. Two specific methods
have been proposed for this problem: the so-called zig-zag routine, an algorithm
which solves the first order conditions (see for instance Anderson, 1984; Lawley
& Maxwell, 1971; Magnus & Neudecker, 2019) and the Jöreskog (1967) approach,
which relies on the maximization of the concentrated likelihood using a Fletcher–
Powell algorithm. Both approaches impose an additional identifying restriction on
�. The maximum likelihood estimators �̂, 	̂ of the model parameters �, 	 are√
T consistent and asymptotically Gaussian (see Anderson & Rubin, 1956). Under

standard stationarity assumptions, these asymptotic results are still valid even if
the true distribution of f t or et is not Gaussian: in this case �̂ and 	̂ are QML
estimators of � and 	.

Various formulas have been proposed to estimate the factors, given the parameter
estimates �̂, 	̂. Commonly used ones include

• f̂ t = �̂
′
(�̂�̂

′ + 	̂)−1xt , the conditional expectation of f t given xt and the
estimated values of the parameters, which, after elementary calculations, can also

be written as f̂ t = (I r + �̂
′
	̂
−1

�̂)−1�̂
′
	̂
−1

xt , and
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• f̂ t = (�̂
′
	̂
−1

�̂)−1�̂
′
	̂
−1

xt which is the FGLS estimator of f t , given the
estimated loadings.

Additional details about these two estimators are provided by Anderson (1984).
Since the formulas are equivalent up to an invertible matrix, the spaces spanned by
the estimated factors are identical across these methods.

A dynamic exact factor model can also be estimated by maximum likelihood
under the assumption of Gaussian (f ′t , e′t )t∈Z.1 In this case, the factors are assumed
to follow vector autoregressive processes, and the model can be cast in state-space
form. To make things more precise, let us consider a factor model where the vector
of factors follows a VAR(p) process and enters the equation for xt with s lags

xt = �0f t +�1f t−1 + · · · +�sf t−s + et , (2.5)

f t = 
1f t + · · · +
pf t−p + ut , (2.6)

where the VAR(p) coefficient matrices, 
, capture the dynamics of the factors.
A commonly used identification restriction sets the variance of the innovations
to the identity matrix, cov(ut ) = I r , and additional identifying restrictions are
imposed on the factor loadings. The state-space representation is very flexible and
can accommodate different cases as shown below:

• If s ≥ p− 1 and if et is a white noise, the measurement equation is xt = �F t +
et with � = (�0 �1 . . .�s) and F t = (f ′tf ′t−1 . . .f

′
t−s)′ (static representation

of the dynamic model), and the state equation is

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f t
f t−1

...
f t−p+1

...
f t−s

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣


1 . . . 
p O . . . O
I q O . . . . . . . . . O
O I q O . . . . . . O
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...
O . . . . . . O I q O

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f t−1

f t−2
...

f t−p
...

f t−s−1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡

⎢⎢⎢⎣

I q

O
...

O

⎤

⎥⎥⎥⎦ut

• If s < p − 1 and if et is a white noise, the measurement equation is xt =
�F t + et with � = (�0 �1 . . .�s O . . . O) and F t = (f ′tf ′t−1 . . .f

′
t−p+1)

′,
and the state equation is

⎡

⎢⎢⎢⎣

f t
f t−1

...
f t−p+1

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣


1 
2 . . . 
p

I q O . . . O
...

. . .
. . .

...
O . . . I q O

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

f t−1

f t−2
...

f t−p

⎤

⎥⎥⎥⎦+

⎡

⎢⎢⎢⎣

I q

O
...

O

⎤

⎥⎥⎥⎦ut (2.7)

1When (f t ) and (et ) are not Gaussian, the procedure gives QML estimators.
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• The state-space representation can also accommodate the case where each of
the idiosyncratic components is itself an autoregressive process. For instance,
if s = p = 2 and eit follows a second order autoregressive process with
eit = di1eit−1 + di2eit−2 + εit for i = 1 . . . n, then the measurement equation
can be written as xt = �αt with � = (�0 �1 �2 In O) and αt =
(f ′t f ′t−1 f ′t−2 e′t e′t−1)

′, and the state equation is

⎡

⎢⎢⎢⎢⎢⎣

f t
f t−1

f t−2

et

et−1

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎣


1 
2 O O O
I q O O O O
O I q O O O
O O O D1 D2

O O O In O

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎣

f t−1

f t−2

f t−3

et−1

et−2

⎤

⎥⎥⎥⎥⎥⎦
+

⎡

⎢⎢⎢⎢⎢⎣

I q O
O O
O O
O In

O O

⎤

⎥⎥⎥⎥⎥⎦

[
ut

εt

]
, (2.8)

with Dj = diag
(
d1j . . . dnj

)
for j = 1, 2 and εt = (ε1t . . . εnt )

′. This model,
with n = 4 and r = 1, was used by Stock and Watson (1991) to build a coincident
index for the US economy.

One computational challenge is keeping the dimension of the state vector small
when n is large. The inclusion of the idiosyncratic component in αt implies that the
dimension of system matrices in the state equation (2.8) grows with n. Indeed, this
formulation requires an element for each lag of each idiosyncratic component. To
limit the computational cost, an alternative approach applies the filter In −D1L−
D2L

2 to the measurement equation. This pre-whitening is intended to control for
serial correlation in the idiosyncratic terms, so that they do not need to be included
in the state equation. The transformed measurement equation takes the form xt =
ct + �̃αt + εt , for t ≥ 2, with ct = D1xt−1 +D2xt−2, �̃ = (

�̃0 . . . �̃4
)

and
αt = (f t f t−1 . . . f t−4)

′, since

(In −D1L−D2L
2)xt =�0f t + (�1 −D1�0)f t−1+

(�2 −D1�1 −D2�0)f t−2−
(D1�2 +D2�1)f t−3 − (D2�2)f t−4 + εt

(2.9)

The introduction of lags of xt in the measurement equation does not cause further
complications; they can be incorporated in the Kalman filter since they are known
at time t . The associated state equation is straightforward and the dimension of αt
is smaller than in (2.8).

Once the model is written in state-space form, the Gaussian likelihood can be
computed using the Kalman filter for any value of the parameters (see for instance
Harvey, 1989), and the likelihood can be maximized by any numerical optimization
procedure over the parameter space. Watson and Engle (1983) proposed to use a
score algorithm, or the EM algorithm, or a combination of both, but any other
numerical procedure can be used when n is small. With the parameter estimates, θ̂ ,
in hand, the Kalman smoother provides an approximation of f t using information
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from all observations f̂ t |T = E(f t |x1, . . . , xT , θ̂). Asymptotic consistency and
normality of the parameter estimators and the factors follow from general results
concerning maximum likelihood estimation with the Kalman filter.

To further improve the computational efficiency of estimation, Jungbacker and
Koopman (2014) reduced a high-dimensional dynamic factor model to a low-
dimensional state space model. Using a suitable transformation of the measurement
equation, they partitioned the observation vector into two mutually uncorrelated
subvectors, with only one of them depending on the unobserved state. The trans-
formation can be summarized by

x∗t = Axt with A =
[

AL

AH

]
and x∗t =

[
xLt
xHt

]
,

where the model for x∗t can be written as

xLt = AL�F t + eLt and xHt = eHt ,

with eLt = ALet and eHt = AH et . Consequently, the xHt subvector is not required
for signal extraction and the Kalman filter can be applied to a lower dimensional
collapsed model, leading to substantial computational savings. This approach can be
combined with controlling for idiosyncratic dynamics in the measurement equation,
as described above in (2.9).

2.3.2 Principal Component Analysis of Large Approximate
Factor Models

Chamberlain and Rothschild (1983) suggested to use principal component analysis
(PCA) to estimate the approximate static factor model, and Stock and Watson
(2002a,b) and Bai and Ng (2002) popularized this approach in macro-econometrics.
PCA will be explored in greater detail in Chap. 8, but we state the main results here.

Considering centered data and assuming that the number of factors, r , is known,
PCA allows to simultaneously estimate the factors and their loadings by solving the
least squares problem

min
�,F

1

nT

n∑

i=1

T∑

t=1

(
xit − λ′if t

)2 = min
�,F

1

nT

T∑

t=1

(xt −�f t )
′(xt −�f t ). (2.10)
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Due to the aforementioned rotational indeterminacy of the factors and their loadings,
the parameter estimates have to be constrained to get a unique solution. Generally,
one of the following two normalization conditions is imposed

1

T

T∑

t=1

f̂ t f̂
′
t = I r or

�̂
′
�̂

n
= I r .

Using the first normalization and concentrating out � gives an estimated factor
matrix, F̂ , which is T times the eigenvectors corresponding to the r largest eigen-
values of the T × T matrix XX′. Given F̂ , �̂ = (F̂ ′F̂ )−1F̂

′
X = F̂

′
X/T is the

corresponding matrix of factor loadings. The solution to the minimization problem
above is not unique, even though the sum of squared residuals is unique. Another
solution is given by �̃ constructed as n times the eigenvectors corresponding to
the r largest eigenvalues of the n× n matrix X′X. Using the second normalization
here implies F̃ = X�̃/n. Bai and Ng (2002) indicated that the latter approach is
computationally less costly when T > n, while the former is less demanding when
T < n. In both cases, the idiosyncratic components are estimated by êt = xt − �̂f̂ t ,
and their covariance is estimated by the empirical covariance matrix of êt . Since
PCA is not scale invariant, many authors (for example Stock & Watson, 2002a,b)
center and standardize the series, generally measured in different units, and as a
result PCA is applied to the sample correlation matrix in this case.

Stock and Watson (2002a,b) and Bai and Ng (2002) proved the consistency of
these estimators, and Bai (2003) obtained their asymptotic distribution under a
stronger set of assumptions. We refer the reader to those papers for the details, but
let us note that these authors replace assumption (CR1) by the following stronger
assumption2

lim
n→∞

�′�
n

= ��

and replace assumptions (CR2) and (CR3), which were designed for white noise
data, by analogous assumptions taking autocorrelation in the factors and idiosyn-
cratic terms into account. Under these assumptions, the factors and the loadings
are proved to be consistent, up to an invertible matrix H , converging at rate
δnT = 1/ min(

√
n,
√
T )ır , so that

f̂ t −Hf t = OP (δnT ) and λ̂i −H−1λi = OP (δnT ), ∀ i = 1 . . . n.

2A weaker assumption can also be used: 0 < c ≤ lim inf
n→∞ λr (

�′�
n
) < lim sup

n→∞
λ1(

�′�
n
) ≤ c < ∞

(see Doz, Giannone, & Reichlin, 2011).
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Under a more stringent set of assumptions, Bai (2003) also obtains the following
asymptotic distribution results:

• If
√
n/T → 0 then, for each t :

√
n(f̂ t −H ′f t ) −→

d
N(0, �t )where �t is known.

• If
√
T /n → 0 then, for each i:

√
T (̂λi −H−1λi )

d−→ N(0, W i ) where W i is
known.

2.3.3 Generalized Principal Component Analysis of Large
Approximate Factor Models

Generalized principal components estimation mimics generalized least squares
to deal with a nonspherical variance matrix of the idiosyncratic components.
Although the method had been used earlier, Choi (2012) was the one who proved
that efficiency gains can be achieved by including a weighting matrix in the
minimization

min
�,F

1

nT

T∑

t=1

(xt −�f t )
′	−1(xt −�f t ).

The feasible generalized principal component estimator replaces the unknown 	 by
an estimator 	̂ . The diagonal elements of 	 can be estimated by the variances of the
individual idiosyncratic terms (see Boivin & Ng, 2006; Jones, 2001). Bai and Liao
(2013) derive the conditions under which the estimated 	̂ can be treated as known.
The weighted minimization problem above relies on the assumption of independent
idiosyncratic shocks, which may be too restrictive in practice. Stock and Watson
(2005) applied a diagonal filter D(L) to the idiosyncratic terms to deal with serial
correlation, so the problem becomes

min
D(L),�,F̃

1

T

T∑

t=1

(D(L)xt −�f̃ t )
′	̃−1

(D(L)xt −�f̃ t ),

where F̃ = (f̃ 1 . . . f̃ T )
′ with f̃ t = D(L)f t and 	̃ = E[̃et ẽ′t ] with ẽt = D(L)et .

Estimation of D(L) and F̃ can be done sequentially, iterating to convergence.
Breitung and Tenhofen (2011) propose a similar two-step estimation procedure that
allows for heteroskedastic and serially correlated idiosyncratic terms.

Even though PCA was first used to estimate approximate factor models where
the factors and the idiosyncratic terms were iid white noise, most asymptotic
results carried through to the case when the factors and the idiosyncratic terms were
stationary autocorrelated processes. Consequently, the method has been widely used
as a building block in approximate dynamic factor model estimation, but it required
extensions since PCA on its own does not capture dynamics. Next we review several
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approaches that attempt to incorporate dynamic behavior in large scale approximate
factor models.

2.3.4 Two-Step and Quasi-Maximum Likelihood Estimation
of Large Approximate Factor Models

Doz et al. (2011) proposed a two-step estimator that takes into account the dynamics
of the factors. They assume that the factors in the approximate dynamic factor model
xt = �f t + et follow a vector autoregressive process, f t = 
1f t−1 + · · · +

pf t−p + ut , and they allow the idiosyncratic terms to be autocorrelated but do
not specify their dynamics. As illustrated in Sect. 2.3.1, this model can easily be
cast in state-space form. The estimation procedure is the following:

Step 1 Preliminary estimators of the loadings, �̂, and factors, f̂ t , are obtained
by principal component analysis. The idiosyncratic terms are estimated by êit =
xit − λ̂

′
i f̂ t , and their variance is estimated by the associated empirical variance

ψ̂ii . The estimated factors, f̂ t , are used in a vector-autoregressive model to
obtain the estimates 
̂j , j = 1 . . . p.

Step 2 The model is cast in state-space form as in (2.7), with the variance of the
common shocks set to the identity matrix, cov(ut ) = I r , and cov(et ) defined
as 	 = diag(ψ11 . . . ψnn). Using the parameter estimates �̂, 	̂, 
̂j , j = 1 . . . p
obtained in the first step, one run of the Kalman smoother is then applied to the
data. It produces a new estimate of the factor, f̂ t |T = E(f t |x1, . . . , xT , θ̂), where
θ̂ is a vector containing the first step estimates of all parameters. It is important
to notice that, in this second step, the idiosyncratic terms are misspecified, since
they are taken as mutually orthogonal white noises.

Doz et al. (2011) prove that, under their assumptions, the parameter estimates, θ̂ ,

are consistent, converging at rate
(

min(
√
n,
√
T )
)−1

. They also prove that, when

the Kalman smoother is run with those parameter estimates instead of the true
parameters, the resulting two step-estimator of f t is also min(

√
n,
√
T ) consistent.

Doz, Giannone, and Reichlin (2012) proposed to estimate a large scale approx-
imate dynamic factor model by quasi-maximum likelihood (QML). In line with
Doz et al. (2011), the quasi-likelihood is based on the assumption of mutually
orthogonal iid Gaussian idiosyncratic terms (so that the model is treated as if it
were an exact factor model, even though it is not), and a Gaussian VAR model
for the factors. The corresponding log-likelihood can be obtained from the Kalman
filter for given values of the parameters, and they use an EM algorithm to compute
the maximum likelihood estimator. The EM algorithm, proposed by Dempster,
Laird, and Rubin (1977) and first implemented for dynamic factor models by
Watson and Engle (1983), alternates an expectation step relying on a pass of
the Kalman smoother for the current parameter values and a maximization step
relying on multivariate regressions. The application of the algorithm is tantamount
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to successive applications of the two-step approach. The calculations are feasible
even when n is large, since in each iteration of the algorithm, the current estimate
of the ith loading, λi , is obtained by ordinary least squares regression of xit on
the current estimate of the factors. The authors prove that, under a standard set of
assumptions, the estimated factors are mean square consistent. Their results remain
valid even if the processes are not Gaussian, or if the idiosyncratic terms are not
iid, or not mutually orthogonal, as long as they are only weakly cross-correlated.
Reis and Watson (2010) apply this approach to a model with serially correlated
idiosyncratic terms. Jungbacker and Koopman (2014) also use the EM algorithm
to estimate a dynamic factor model with autocorrelated idiosyncratic terms, but
instead of extending the state vector as in Eq. (2.8), they transform the measurement
equation as described in Sect. 2.3.5.

Bai and Li (2012) study QML estimation in the more restricted case where
the quasi-likelihood is associated with the static exact factor model. They obtain
consistency and asymptotic normality of the estimated loadings and factors under
a set of appropriate assumptions. Bai and Li (2016) incorporate these estimators
into the two-step approach put forward by Doz et al. (2011) and obtain similar
asymptotic results. They also follow Jungbacker and Koopman (2014) to handle
the case where the idiosyncratic terms are autoregressive processes. Bai and Liao
(2016) extend the approach of Bai and Li (2012) to the case where the idiosyncratic
covariance matrix is sparse, instead of being diagonal, and propose a penalized
maximum likelihood estimator.

2.3.5 Estimation of Large Approximate Factor Models
with Missing Data

Observations may be missing from the analyzed dataset for several reasons. At the
beginning of the sample, certain time series might be available from an earlier start
date than others. At the end of the sample, the dates of final observations may
differ depending on the release lag of each data series. Finally, observations may
be missing within the sample since different series in the dataset may be sampled
at different frequencies, for example, monthly and quarterly. DFM estimation
techniques assume that the observations are missing at random, so there is no
endogenous sample selection. Missing data are handled differently in principal
components and state space applications.3

The least squares estimator of principal components in a balanced panel given in
Eq. (2.10) needs to be modified when some of the nT observations are missing.
Stock and Watson (2002b) showed that estimates of F and � can be obtained

3Mixed data sampling (MIDAS) regression models, proposed by Ghysels, Santa-Clara, and
Valkanov (2004), represent an alternative way of dealing with missing data.
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numerically by

min
�,F

1

nT

n∑

i=1

T∑

t=1

Sit
(
xit − λ′if t

)2

where Sit = 1 if an observation on xit is available and Sit = 0 otherwise. The
objective function can be minimized by iterations alternating the optimization with
respect to � given F and then F given �; each step in the minimization has a
closed form expression. Starting values can be obtained, for example, by principal
component estimation using a subset of the series for which there are no missing
observations. Alternatively, Stock and Watson (2002b) provide an EM algorithm
for handling missing observations.

Step 1 Fill in initial guesses for missing values to obtain a balanced dataset. Esti-
mate the factors and loadings in this balanced dataset by principal components
analysis.

Step 2 The values in the place of a missing observations for each variable are
updated by the expectation of xit conditional on the observations, and the factors
and loadings from the previous iteration.

Step 3 With the updated balanced dataset in hand, reestimate the factors and
loadings by principal component analysis. Iterate step 2 and 3 until convergence.

The algorithm provides both estimates of the factors and estimates of the missing
values in the time series.

The state space framework has been adapted to missing data by either allowing
the measurement equation to vary depending on what data are available at a given
time (see Harvey, 1989, section 6.3.7) or by including a proxy value for the missing
observation while adjusting the model so that the Kalman filter places no weight on
the missing observation (see Giannone, Reichlin, & Small, 2008).

When the dataset contains missing values, the formulation in Eq. (2.9) is not
feasible since the lagged values on the right-hand side of the measurement equation
are not available in some periods. Jungbacker, Koopman, and van der Wel (2011)
addressed the problem by keeping track of periods with missing observations and
augmenting the state vector with the idiosyncratic shocks in those periods. This
implies that the system matrices and the dimension of the state vector are time-
varying. Yet, the model can still be collapsed by transforming the measurement
equation and partitioning the observation vector as in Jungbacker and Koopman
(2014) and removing from the model the subvector that does not depend on the state.
Under several simplifying assumptions, Pinheiro, Rua, and Dias (2013) developed
an analytically and computationally less demanding algorithm for the special case
of jagged edges, or observations missing at the end of the sample due to varying
publication lags across series.

Since the Kalman filter and smoother can easily accommodate missing data, the
two-step method of Doz et al. (2011) is also well-suited to handle unbalanced panel
datasets. In particular, it also allows to overcome the jagged edge data problem.
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This feature of the two-step method has been exploited in predicting low frequency
macroeconomic releases for the current period, also known as nowcasting (see
Sect. 2.6). For instance, Giannone et al. (2008) used this method to incorporate
the real-time informational content of monthly macroeconomic data releases into
current-quarter GDP forecasts. Similarly, Banbura and Rünstler (2011) used the
two-step framework to compute the impact of monthly predictors on quarterly GDP
forecasts. They extended the method by first computing the weights associated
with individual monthly observations in the estimates of the state vector using an
algorithm by Koopman and Harvey (2003), which then allowed them to compute
the contribution of each variable to the GDP forecast.

In the maximization step of the EM algorithm, the calculation of moments
involving data was not feasible when some observations were missing, and therefore
the original algorithm required a modification to handle an incomplete dataset.
Shumway and Stoffer (1982) allowed for missing data but assumed that the factor
loading coefficients were known. More recently, Banbura and Modugno (2014)
adapted the EM algorithm to a general pattern of missing data by using a selection
matrix to carry out the maximization step with available data points. The basic idea
behind their approach is to write the likelihood as if the data were complete and
to adapt the Kalman filter and smoother to the pattern of missing data in the E-
step of the EM algorithm, where the missing data are replaced by their best linear
predictions given the information set. They also extend their approach to the case
where the idiosyncratic terms are univariate AR processes. Finally they provide a
statistical decomposition, which allows one to inspect how the arrival of new data
affects the forecast of the variable of interest.

Modeling mixed frequencies via the state space approach makes it possible to
associate the missing observations with particular dates and to differentiate between
stock variables and flow variables. The state space model typically contains an
aggregator that averages the high-frequency observations over one low-frequency
period for stocks, and sums them for flows (see Aruoba, Diebold, & Scotti, 2009).
However, summing flows is only appropriate when the variables are in levels; for
growth rates it is a mere approximation, weakening the forecasting performance of
the model (see Fuleky & Bonham, 2015). As pointed out by Mariano and Murasawa
(2003) and Proietti and Moauro (2006), appropriate aggregation of flow variables
that enter the model in log-differences requires a non-linear state space model.

2.4 Estimation in the Frequency Domain

Classical principal component analysis, described in Sect. 2.3.2, estimates the space
spanned by the factors non-parametrically only from the cross-sectional variation
in the data. The two-step approach, discussed in Sect. 2.3.4, augments principal
components estimation with a parametric state space model to capture the dynamics
of the factors. Frequency-domain estimation combines some features of the previous
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two approaches: it relies on non-parametric methods that exploit variation both over
time and over the cross section of variables.

Traditional static principal component analysis focuses on contemporaneous
cross-sectional correlation and overlooks serial dependence. It approximates the
(contemporaneous) covariance matrix of xt by a reduced rank covariance matrix.
While the correlation of two processes may be negligible contemporaneously,
it could be high at leads or lags. Discarding this information could result in
loss of predictive capacity. Dynamic principal component analysis overcomes this
shortcoming by relying on spectral densities. The n× n spectral density matrix of a
second order stationary process, xt , for frequency ω ∈ [−π ,π ] is defined as

�x(ω) = 1

2π

∞∑

k=−∞
e−ikω�x(k),

where �x(k) = E[xtx′t−k]. In analogy to their static counterpart, dynamic principal
components approximate the spectrum of xt by a reduced rank spectral density
matrix. Static principal component analysis was generalized to the frequency
domain by Brillinger (1981). His algorithm relied on a consistent estimate of xt ’s
spectral density, �̂x(ω), at frequency ω. The eigenvectors corresponding to the
r largest eigenvalues of �̂x(ω), a Hermitian matrix, are then transformed by the
inverse Fourier transform to obtain the dynamic principal components.

The method was popularized in econometrics by Forni, Hallin, Lippi, and
Reichlin (2000). Their generalized dynamic factor model encompasses as a special
case the approximate factor model of Chamberlain (1983) and Chamberlain and
Rothschild (1983), which allows for correlated idiosyncratic components but is
static. And it generalizes the factor model of Sargent and Sims (1977) and Geweke
(1977), which is dynamic but assumes orthogonal idiosyncratic components. The
method relies on the assumption of an infinite cross section to identify and
consistently estimate the common and idiosyncratic components. The common
component is a projection of the data on the space spanned by all leads and lags
of the first r dynamic principal components, and the orthogonal residuals from this
projection are the idiosyncratic components.

Forni et al. (2000) and Favero, Marcellino, and Neglia (2005) propose the
following procedure for estimating the dynamic principal components and common
components.

Step 1 For a sample x1 . . . xT of size T , estimate the spectral density matrix of
xt by

�̂x(ωh) = 1

2π

M∑

k=−M
wke

−ikωh �̂x(k), ωh = 2πh/(2M + 1), h = −M . . .M ,
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where wk = 1− |k|/(M + 1) are the weights of the Bartlett window of widthM
and �̂x(k) = (T − k)−1∑T

t=k+1(xt − x)(xt−k − x)′ is the sample covariance
matrix of xt for lag k. For consistent estimation of �x(ω) the window width has
to be chosen such that M →∞ and M/T → 0 as T →∞. Forni et al. (2000)
note that a choice ofM = 2

3T
1/3 worked well in simulations.

Step 2 For h = −M . . .M , compute the eigenvectors λ1(ωh) . . . λr (ωh) corre-
sponding to the r largest eigenvalues of �̂x(ωh). The choice of r is guided by a
heuristic inspection of eigenvalues. Note that, for M = 0, λj (ωh) is simply the
j th eigenvector of the (estimated) variance-covariance matrix of xt : the dynamic
principal components then reduce to the static principal components.

Step 3 Define λj (L) as the two-sided filter

λj (L) =
M∑

k=−M
λjkL

k , k = −M . . .M ,

where

λjk = 1

2M + 1

M∑

h=−M
λj (ωh)e

−ikωh ,

The first r dynamic principal components of xt are f̂ j t = λj (L)
′xt , j = 1 . . . r ,

which can be collected in the vector f̂ t = (f̂ 1t . . . f̂ rt )
′.

Step 4 Run an OLS regression of xt on present, past, and future dynamic
principal components

xt = �−q f̂ t+q + . . .+�pf̂ t−p,

and estimate the common component as the fitted value

χ̂ t = �̂−q f̂ t+q + . . .+ �̂pf̂ t−p,

where �̂l , l = −q . . . p are the OLS estimators, and the leads q and lags p used
in the regression can be chosen by model selection criteria. The idiosyncratic
component is the residual, ξ̂it = xit − χ̂it .
Although this method efficiently estimates the common component, its reliance

on two-sided filtering rendered it unsuitable for forecasting. Forni, Hallin, Lippi,
and Reichlin (2005) extended the frequency domain approach developed in their
earlier paper to forecasting in two steps.
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Step 1 In the first step, they estimated the covariances of the common and
idiosyncratic components using the inverse Fourier transforms

�̂χ (k) = 1

2M + 1

M∑

k=−M
eikωh�̂χ (ωh) and

�̂ξ (k) = 1

2M + 1

M∑

k=−M
eikωh�̂ξ (ωh)

where �̂χ (ωh) and �̂ξ (ωh) = �̂x(ωh)− �̂χ (ωh) are the spectral density matri-
ces corresponding to the common and idiosyncratic components, respectively.

Step 2 In the second step, they estimated the factor space using a linear combi-
nation of the x’s, λ′xt = λ′χ t + λ′ξ t . Specifically, they compute r independent
linear combinations f̂ j t = λ̂

′
jxt , where the weights λ̂j maximize the variance of

λ′χ t and are defined recursively

λ̂j = arg max
λ∈Rn

λ′�̂χ (0)λ s.t. λ′�̂ξ (0)λ = 1 and λ′�̂ξ (0)̂λm = 0,

for j = 1 . . . r and 1 ≤ m ≤ j − 1 (only the first constraint applies for j = 1).
The solutions of this problem, λ̂j , are the generalized eigenvectors associated
with the generalized eigenvalues ν̂j of the matrices, �̂χ (0) and �̂ξ (0),

λ̂
′
j �̂χ (0) = ν̂j λ̂′j �̂ξ (0), j = 1 . . . n,

with the normalization constraint λ̂
′
j �̂ξ (0)̂λj = 1 and λ̂

′
i�̂ξ (0)̂λj = 0 for

i �= j . The linear combinations f̂ j t = λ̂
′
jxt , j = 1 . . . n are the generalized

principal components of xt relative to the couple (�̂χ (0), �̂ξ (0)). Defining
�̂ = (̂λ1 . . . λ̂r ), the space spanned by the common factors is estimated by the
first r generalized principal components of the x’s: �̂

′
xt = λ̂

′
1xt . . . λ̂

′
rxt . The

forecast of the common component depends on the covariance between χ iT+h
and �̂

′
xT . Observing that this covariance equals the covariance between χT+h

and �̂
′
χT , the forecast of the common component can be obtained from the

projection

χ̂T+h|T = �̂χ (h)�̂(�̂
′
�̂χ (0)�̂)

−1�̂
′
xT .

Since this two-step forecasting method relied on lags but not leads, it avoided
the end-of-sample problems caused by two-sided filtering in the authors’ earlier
study. A simulation study by the authors suggested that this procedure improves
upon the forecasting performance of Stock and Watson (2002a,b) static principal
components method for data generating processes with heterogeneous dynamics
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and heterogeneous variance ratio of the common and idiosyncratic components. In
line with most of the earlier literature, Forni, Giannone, Lippi, and Reichlin (2009)
continued to assume that the space spanned by the common components at any time
t has a finite dimension r as n tends to infinity, allowing a static representation
of the model. By identifying and estimating cross-sectionally pervasive shocks and
their dynamic effect on macroeconomic variables, they showed that dynamic factor
models are suitable for structural modeling.

The finite-dimension assumption for the common component rules out certain
factor-loading patterns. In the model xit = ai(1− biL)−1ut + ξit , where ut is a
scalar white noise and the coefficients bi are drawn from a uniform distribution
(-0.9, 0.9), the space spanned by the common components χit , i ∈ N is infinite
dimensional. Forni and Lippi (2011) relaxed the finite-dimensional assumption and
proposed a one-sided estimator for the general dynamic factor model of Forni et al.
(2000). Forni, Hallin, Lippi, and Zaffaroni (2015, 2017) continued to allow the
common components—driven by a finite number of common shocks—to span an
infinite-dimensional space and investigated the model’s one-sided representations
and asymptotic properties. Forni, Giovannelli, Lippi, and Soccorsi (2018) evaluated
the model’s pseudo real-time forecasting performance for US macroeconomic
variables and found that it compares favorably to finite dimensional methods during
the Great Moderation. The dynamic relationship between the variables and the
factors in this model is more general than in models assuming a finite common
component space, but, as pointed out by the authors, its estimation is rather complex.

Hallin and Lippi (2013) give a general presentation of the methodological
foundations of dynamic factor models. Fiorentini, Galesi, and Sentana (2018)
introduced a frequency domain version of the EM algorithm for dynamic factor
models with latent autoregressive and moving average processes. In this paper
the authors focused on an exact factor model with a single common factor, and
left approximate factor models with multiple factors for future research. But they
extended the basic EM algorithm with an iterated indirect inference procedure based
on a sequence of simple auxiliary OLS regressions to speed up computation for
models with moving average components.

Although carried out in the time domain, Peña and Yohai’s (2016) generalized
dynamic principal components model mimics two important features of Forni
et al.’s (2000) generalized dynamic factor model: it allows for both a dynamic repre-
sentation of the common component and nonorthogonal idiosyncratic components.
Their procedure chooses the number of common components to achieve a desired
degree of accuracy in a mean squared error sense in the reconstruction of the original
series. The estimation iterates two steps: the first is a least squares estimator of the
loading coefficients assuming the factors are known, and the second is updating the
factor estimate based on the estimated coefficients. Since the authors do not place
restrictions on the principal components, their method can be applied to potentially
nonstationary time series data. Although the proposed method does well for data
reconstruction, it is not suited for forecasting, because—as in Forni et al. (2000)—it
uses both leads and lags to reconstruct the series.
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2.5 Estimating the Number of Factors

Full specification of the DFM requires selecting the number of common factors. The
number of static factors can be determined by information criteria that use penalized
objective functions or by analyzing the distribution of eigenvalues. Bai and Ng
(2002) used information criteria of the form IC(r) = lnVr(�̂, F̂ ) + rg(n, T ),
where Vr(�̂, F̂ ) is the least squares objective function (2.10) evaluated with the
principal components estimators when r factors are considered, and g(n, T ) is a
penalty function that satisfies two conditions: g(n, T ) → 0 and min[n1/2, T 1/2] ·
g(n, T ) → ∞, as n, T → ∞. The estimator for the number of factors is r̂IC =
min0≤r≤rmax IC(r), where rmax is the upper bound of the true number of factors.
The authors show that the estimator is consistent without restrictions between n
and T , and the results hold under heteroskedasticity in both the time and cross-
sectional dimension, as well as under weak serial and cross-sectional correlation.
Li, Li, and Shi (2017) develop a method to estimate the number of factors when the
number of factors is allowed to increase as the cross-section and time dimensions
increase. This is useful since new factors may emerge as changes in the economic
environment trigger structural breaks.

Ahn and Horenstein (2013) and Onatski (2009, 2010) take a different approach
by comparing adjacent eigenvalues of the spectral density matrix at a given
frequency or of the covariance matrix of the data. The basic idea behind this
approach is that the first r eigenvalues will be unbounded, while the remaining
values will be bounded. Therefore the ratio of subsequent eigenvalues is maximized
at the location of the largest relative cliff in a scree plot (a plot of the ordered
eigenvalues against the rank of those eigenvalues). These authors also present
alternative statistics using the difference, the ratio of changes, and the growth rates
of subsequent eigenvalues.

Estimation of the number of dynamic factors usually requires several steps. As
illustrated in Sect. 2.2.1, the number of dynamic factors, q, will in general be lower
than the number of static factors r = q(1+ s), and therefore the spectrum of the
common component will have a reduced rank with only q nonzero eigenvalues.
Based on this result, Hallin and Liska (2007) propose a frequency-domain procedure
which uses an information criterion to estimate the rank of the spectral density
matrix of the data. Bai and Ng (2007) take a different approach by first estimating
the number of static factors and then applying a VAR(p) model to the estimated
factors to obtain the residuals. They use the eigenvalues of the residual covariance
matrix to estimate the rank q of the covariance of the dynamic (or primitive) shocks.
In a similar spirit, Amengual and Watson (2007) first project the observed variables
xt onto p lags of consistently estimated r static principal components f t . . .f t−p
to obtain serially uncorrelated residuals ût = xt −∑p

i=1 �̂i f̂ t−i . These residuals
then have a static factor representation with q factors. Applying the Bai and Ng
(2002) information criterion to the sample variance matrix of these residuals yields
a consistent estimate of the number of dynamic factors, q.
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2.6 Forecasting with Large Dynamic Factor Models

One of the most important uses of dynamic factor models is forecasting. Both small
scale (i.e., n small) and large scale dynamic factor models have been used to this
end. Very often, the forecasted variable is published with a delay: for instance, Euro-
area GDP is published 6 weeks after the end of the corresponding quarter. The long
delay in data release implies that different types of forecasts can be considered.
GDP predictions for quarter Q, made prior to that quarter, in Q − 1,Q − 2, . . .
for instance, are considered to be “true” out of sample forecasts. But estimates
for quarter Q can also be made during that same quarter using high frequency
data released within quarter Q. These are called “nowcasts.” Finally, since GDP
for quarter Q is not known until a few weeks into quarter Q + 1, forecasters
keep estimating it during this time interval. These estimates are considered to be
“backcasts.” As we have seen, dynamic factor models are very flexible and can
easily handle all these predictions.

Forecasts using large dimensional factor models were first introduced in the
literature by Stock and Watson (2002a). The method, also denoted diffusion index
forecasts, consists of estimating the factors f t by principal component analysis, and
then using those estimates in a regression estimated by ordinary least squares

yt+h = β ′f f̂ t + β ′wwt + εt+h,

where yt is the variable of interest, f̂t is the vector of the estimated factors, and wt is
a vector of observable predictors (typically lags of yt ). The direct forecast for time
T + h is then computed as

yT+h|T = β̂
′
f f̂ T + β̂

′
wwT .

The authors prove that, under the assumptions they used to ensure the consistency
of the principal component estimates,

plimn→∞
[
(β̂
′
f f̂ T + β̂

′
wwT )− (β ′f f T + β ′wwT )

]
= 0,

so that the forecast is asymptotically equivalent to what it would have been if the
factors had been observed. Furthermore, under a stronger set of assumptions Bai
and Ng (2006) show that the forecast error is asymptotically Gaussian, with known
variance, so that forecast intervals can be computed. Stock and Watson (2002b)
considered a more general model to capture the dynamic relationship between the
variables and the factors

yt+h = αh + βh(L)f̂ t + γh(L)yt + εt+h,
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with forecast equation

ŷT+h|T = α̂h + β̂h(L)f̂ T + γ̂h(L)yT . (2.11)

They find that this model produces better forecasts for some variables and forecast
horizons, but the improvements are not systematic.

While the diffusion index methodology relied on a distributed lag model, the
approach taken by Doz et al. (2011) and Doz et al. (2012) captured factor dynamics
explicitly. The estimates of a vector-autoregressive model for f̂ t can be used to
recursively forecast f̂ T+h|T at time T . A mean square consistent forecast for period
T + h can then be obtained by yT+h|T = �̂f̂ T+h|T . This approach has been used
by Giannone et al. (2008) and by many others. However Stock and Watson (2002b)
point out that the diffusion index and two step approaches are equivalent since the
recursive forecast of the factor in the latter implies that f̂ T+h|T is a function of f̂ T
and its lags, as in (2.11).

2.6.1 Targeting Predictors and Other Forecasting Refinements

In the diffusion index and two-step forecasting methodology, the factors are first
estimated from a large number of predictors, (x1t . . . xnt ), by the method of principal
components, and then used in a linear forecasting equation for yt+h. Although
the method can parsimoniously summarize information from a large number of
predictors and incorporate it into the forecast, the estimated factors do not take into
account the predictive power of xit for yt+h. Boivin and Ng (2006) pointed out that
expanding the sample size simply by adding data without regard to its quality or
usefulness does not necessarily improve forecasts. Bai and Ng (2008a) suggested to
target predictors based on their information content about y. They used hard and soft
thresholding to determine which variables the factors are to be extracted from and
thereby reduce the influence of uninformative predictors. Under hard thresholding,
a pretest procedure is used to decide whether a predictor should be kept or not.
Under soft thresholding, the predictor ordering and selection is carried out using
the least angle regression (LARS) algorithm developed by Efron, Hastie, Johnstone,
and Tibshirani (2004).

Kelly and Pruitt (2015) proposed a three-pass regression filter with the ability
to identify the subset of factors useful for forecasting a given target variable while
discarding those that are target irrelevant but may be pervasive among predictors.
The proposed procedure uses the covariances between the variables in the dataset
and the proxies for the relevant latent factors, the proxies being observable variables
either theoretically motivated or automatically generated.

Pass 1 The first pass captures the relationship between the predictors, X, and
m � min(n, T ) factor proxies, Z, by running a separate time series regression
of each predictor, xi , on the proxies, xit = αi + z′tβ i + εit , for i = 1 . . . n, and
retaining β̂i .
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Pass 2 The second pass consists of T separate cross section regressions of the
predictors, xt , on the coefficients estimated in the first pass, xit = αt + β̂

′
if t +

εit , for t = 1 . . . T , and retaining f̂ t . First-stage coefficient estimates map the
cross-sectional distribution of predictors to the latent factors. Second-stage cross
section regressions use this map to back out estimates of the factors, f̂ t , at each
point in time.

Pass 3 The third pass is a single time series forecasting regression of the target
variable yt+1 on the predictive factors estimated in the second pass, yt+1 = α +
f̂
′
tβ + εt+1. The third-pass fitted value, ŷt+1, is the forecast for period t + 1.

The automatic proxy selection algorithm is initialized with the target variable itself
z1 = y, and additional proxies based on the prediction error are added iteratively,
zk+1 = y− ŷk for k = 1 . . . m− 1, where k is the number of proxies in the model at
the given iteration. The authors point out that partial least squares, further analyzed
by Groen and Kapetanios (2016), is a special case of the three-pass regression filter.

Bräuning and Koopman (2014) proposed a collapsed dynamic factor model
where the factor estimates are established jointly by the predictors xt and the target
variable yt . The procedure is a two-step process.

Step 1 The first step uses principal component analysis to reduce the dimension
of a large panel of macroeconomic predictors as in Stock and Watson (2002a,b).

Step 2 In the second step, the authors use a state space model with a small number
of parameters to model the principal components jointly with the target variable
yt . The principal components, f PC,t , are treated as dependent variables that are
associated exclusively with the factors f t , but the factors f t enter the equation
for the target variable yt . The unknown parameters are estimated by maximum
likelihood, and the Kalman filter is used for signal extraction.

In contrast to the two-step method of Doz et al. (2011), this approach allows for
a specific dynamic model for the target variable that may already produce good
forecasts for yt .

Several additional methods originating in the machine learning literature have
been used to improve forecasting performance of dynamic factor models, including
bagging (Inoue & Kilian, 2008) and boosting (Bai & Ng, 2009), which will be
discussed in Chaps. 14 and 16, respectively.

2.7 Hierarchical Dynamic Factor Models

If a panel of data can be organized into blocks using a priori information, then
between- and within-block variation in the data can be captured by the hierarchical
dynamic factor model framework formalized by Moench, Ng, and Potter (2013).
The block structure helps to model covariations that are not sufficiently pervasive to
be treated as common factors. For example, in a three-level model, the series i, in a
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given block b, at each time t can exhibit idiosyncratic, block specific, and common
variation

xibt = λgib(L)gbt + exibt
gbt = �f b(L)f t + egbt


f (L)f t = ut ,

where variables xibt and xjbt within a block b are correlated because of the
common factors f t or the block-specific shocks egbt , but correlations between
blocks are possible only through f t . Some of the xit may not belong to a block and
could be affected by the common factors directly, as in the two-level model (2.5).
The idiosyncratic components can be allowed to follow stationary autoregressive
processes, φxib(L)exibt = εxibt and 
gb(L)egbt = εgbt .

If we were given data for production, employment, and consumption, then xi1t
could be one of the n1 production series, xi2t could be one of the n2 employment
series, and xi3t could be one of the n3 consumption series. The correlation
between the production, employment, and consumption factors, g1t , g2t , g3t , due
to economy-wide fluctuations, would be captured by f t . In a multicountry setting, a
four-level hierarchical model could account for series-specific, country (subblock),
region (block), and global (common) fluctuations, as in Kose, Otrok, and Whiteman
(2003). If the country and regional variations were not properly modeled, they
would appear as either weak common factors or idiosyncratic errors that would
be cross-correlated among series in the same region. Instead of assuming weak
cross-sectional correlation as in approximate factor models, the hierarchical model
explicitly specifies the block structure, which helps with the interpretation of the
factors.

To estimate the model, Moench et al. (2013) extend the Markov chain Monte
Carlo method that Otrok and Whiteman (1998) originally applied to a single factor
model. Let � = (�g , �f ), 
 = (
f , 
g , 
x), and 	 = (	f , 	g , 	x) denote the
matrices containing the loadings, coefficients of the lag polynomials, and variances
of the innovations, respectively. Organize the data into blocks, xbt , and get initial
values for gt and f t using principal components; use these to produce initial values
for �, 
, 	.

Step 1 Conditional on �, 
, 	, f t , and the data xbt , draw gbt for all b.
Step 2 Conditional on �, 
, 	, and gbt , draw f t .
Step 3 Conditional on f t and gbt , draw �, 
, 	, and return to Step 1.

The sampling of gbt needs to take into account the correlation across blocks due
to f t . As in previously discussed dynamic factor models, the factors and the
loadings are not separately identified. To achieve identification, the authors suggest
using lower triangular loading matrices, fixed variances of the innovations to the
factors, 	f , 	g , and imposing additional restrictions on the structure of the lag
polynomials. Jackson, Kose, Otrok, and Owyang (2016) survey additional Bayesian
estimation methods. Under the assumption that common factors have a direct impact
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on x, but are uncorrelated with block-specific ones, so that xibt = λf ib(L)f t +
λgib(L)gbt + exibt , Breitung and Eickmeier (2016) propose a sequential least
squares estimation approach and compare it to other frequentist estimation methods.

Kose, Otrok, and Whiteman (2008) use a hierarchical model to study interna-
tional business cycle comovements by decomposing fluctuations in macroeconomic
aggregates of G-7 countries into a common factor across all countries, country
factors that are common across variables within a country, and idiosyncratic
fluctuations. Moench and Ng (2011) apply this model to national and regional
housing data to estimate the effects of housing shocks on consumption, while Fu
(2007) decomposes house prices in 62 US metropolitan areas into national, regional,
and metro-specific idiosyncratic factors. Del Negro and Otrok (2008) and Stock and
Watson (2008) use this approach to add stochastic volatility to their models.

2.8 Structural Breaks in Dynamic Factor Models

As evident from the discussion so far, the literature on dynamic factor models has
grown tremendously, evolving in many directions. In the remainder of this chapter
we will concentrate on two strands of research: dynamic factor models (1) with
Markov-switching behavior and (2) with time-varying loadings. In both cases, the
aim is to take into account the evolution of macroeconomic conditions over time,
either through (1) non-linearities in the dynamics of the factors or (2) the variation of
loadings, which measure the intensity of the links between each observable variable
and the underlying common factors. This instability seemed indeed particularly
important to address after the 2008 global financial crisis and the subsequent slow
recovery. These two strands of literature have presented a number of interesting
papers in recent years. In what follows, we briefly describe some of them, but we do
not provide an exhaustive description of the corresponding literature.

2.8.1 Markov-Switching Dynamic Factor Models

One of the first uses of dynamic factor models was the construction of coincident
indexes. The literature soon sought to allow the dynamics of the index to vary
according to the phases of the business cycle. Incorporating Markov switching
into dynamic factor models (MS-DFM) was first suggested by Kim (1994) and
Diebold and Rudebusch (1996).4 Diebold and Rudebusch (1996) considered a single
factor that played the role of a coincident composite index capturing the latent state
of the economy. They suggested that the parameters describing the dynamics of
the factor may themselves depend on an unobservable two-state Markov-switching

4The working paper version appeared in 1994 in NBER Working Papers 4643.
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latent variable. More precisely, they modeled the factor the same way as Hamilton
(1989) modeled US real GNP to obtain a statistical characterization of business
cycle phases. In practice, Diebold and Rudebusch (1996) used a two-step estimation
method since they applied Hamilton’s model to a previously estimated composite
index.

Kim (1994) introduced a very general model in which the dynamics of the factors
and the loadings may depend on a state-variable. Using the notation used so far in
the current chapter, his model was

yt = �Stf t +BStxt + et

f t = 
Stf t−1 +�Stxt +H St εt ,

where xt is a vector of exogenous or lagged dependent variables, and where the(
et

εt

)
’s are i.i.d. Gaussian with covariance matrix

(
R O
O Q

)
. The underlying state

variable St can take M possible values, and is Markovian of order one, so that
P(St = j |St−1 = i, St−2 = k, . . .) = P(St = j |St−1 = i) = pij . He proposed
a very powerful approximation in the computation of the Kalman filter and the
likelihood and estimated the model in one step by maximum likelihood5. Using
this approximation, the likelihood can be computed at any point of the parameter
space and maximized using a numerical procedure. It must be however emphasized
that such a procedure is applicable in practice only when the number of parameters
is small, which means that the dimension of xt must be small. Once the parameters
have been estimated, it is possible to obtain the best approximations of f t and St
for any t using the Kalman filter and smoother, given the observations x1 . . . xt and
x1 . . . xT , respectively.

Kim (1994) and Chauvet (1998) estimated a one factor Markov-switching model
using this methodology. In both papers, the model is formulated like a classical
dynamic factor model, with the factor following an autoregressive process whose
constant term depends on a two-state Markov variable St :

xt = λft + et and φ(L)ft = βSt + ηt
where ηt∼ i.i.d. N(0, 1) and St can take two values denoted as 0 and 1, which
basically correspond to expansions and recessions: the conditional expectation of
the factor is higher during expansions than during recessions. Kim and Yoo (1995)
used the same four observable variables as the US Department of Commerce
and Stock and Watson (1989, 1991, 1993), whereas Chauvet (1998) considered
several sets of observable series over various time periods, taking into account
different specifications for the dynamics of the common factor. Both papers obtained

5Without this approximation, the Kalman filter would be untractable, since it would be necessary
to take the MT possible trajectories of S1, . . . , ST . For further details, see Kim (1994) and the
references therein.
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posterior recession probabilities and turning points that were very close to official
NBER dates. Kim and Nelson (1998) proposed a Gibbs sampling methodology
that helped to avoid Kim’s (1994) approximation of the likelihood. This Bayesian
approach also provided results that were very close to the NBER dates, and allowed
tests of business cycle duration dependence. Chauvet and Piger (2008) compared the
nonparametric dating algorithm given in Harding and Pagan (2003) with the dating
obtained using Markov-switching models similar to those of Chauvet (1998). They
showed that both approaches identify the NBER turning point dates in real time
with reasonable accuracy, and identify the troughs with more timeliness than the
NBER. But they found evidence in favor of MS-DFMs, which identified NBER
turning point dates more accurately overall. Chauvet and Senyuz (2016) used a two-
factor MS-DFM to represent four series; three related to the yield curve and the
fourth, industrial production, representing economic activity. Their model allowed
to analyze the lead-lag relationship between the cyclical phases of the two sectors.

Camacho, Perez-Quiros, and Poncela (2014) extended the Kim and Yoo (1995)
approach to deal with mixed frequency and/or ragged-edge data. They ran sim-
ulations and applied their methodology to real time observations of the four
variables used by the US Department of Commerce. They found evidence that
taking into account all the available information in this framework yields substantial
improvements in the estimated real time probabilities. Camacho, Perez-Quiros, and
Poncela (2015) used the same approach and applied the method to a set of thirteen
Euro-area series. They obtained a non-linear indicator of the overall economic
activity and showed that the associated business cycle dating is very close to the
CEPR Committee’s dating.

The one-step methods used in all these papers (most of them following
Kim’s (1994) approximation of the likelihood, others relying on Kim and
Nelson’s (1998) Gibbs sampling) have been successful in estimating MS-DFMs
of very small dimensions. In order to estimate MS-DFM of larger dimensions, it is
possible to take advantage of the two-step approach originally applied to a small
number of variables by Diebold and Rudebusch (1996). Indeed, it is possible to
use a two-step approach similar to the one of Doz et al. (2011) in a standard DFM
framework: in the first step, a linear DFM is estimated by principal components,
in the second step, a Markov-switching model, as in Hamilton (1989), is specified
for the estimated factor(s) and is estimated by maximum likelihood. Camacho et al.
(2015) compared this two-step approach to a one-step approach applied to a small
dataset of coincident indicators. They concluded that the one-step approach was
better at turning point detection when the small dataset contained good quality
business cycle indicators, and they also observed a decreasing marginal gain in
accuracy when the number of indicators increased. However other authors have
obtained satisfying results with the two-step approach. Bessec and Bouabdallah
(2015) applied MS-factor MIDAS models6 to a large dataset of mixed frequency

6Their model combines the MS-MIDAS model (Guérin & Marcellino, 2013) and the factor-
MIDAS model (Marcellino & Schumacher, 2010).
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variables. They ran Monte Carlo simulations and applied their model to US data
containing a large number of financial series and real GDP growth: in both cases
the model properly detected recessions. Doz and Petronevich (2016) also used the
two-step approach: using French data, they compared business cycle dates obtained
from a one factor MS-DFM estimated on a small dataset with Kim’s (1994) method,
to the dates obtained using a one factor MS-DFM estimated in two steps from a
large database. The two-step approach successfully predicted the turning point dates
released by the OECD. As a complement, Doz and Petronevich (2017) conducted
a Monte-Carlo experiment, which provided evidence that the two-step method is
asymptotically valid for large N and T and provides good turning points prediction.
Thus the relative performances of the one-step and two-step methods under the MS-
DFM framework are worth exploring further, both from a turning point detection
perspective and a forecasting perspective.

2.8.2 Time Varying Loadings

Another strand of the literature deals with time-varying loadings. The assumption
that the links between the economic variables under study and the underlying factors
remain stable over long periods of time may be seen as too restrictive. If the common
factors are driven by a small number of structural shocks, the observable variables
may react to those structural shocks in a time varying fashion. Structural changes
in the economy may also lead to changes in the comovements of variables, and in
turn require adjustment in the underlying factor model. Such shifts have become
particularly relevant after the 2008 financial crisis and the ensuing slow recovery.
But the literature had dealt with similar questions even earlier, for instance, during
the Great Moderation. The issue is important since assuming constant loadings—
when in fact the true relationships experience large structural breaks—can lead to
several problems: overestimation of the number of factors, inconsistent estimates of
the loadings, and deterioration of the forecasting performance of the factors.

The literature on this topic is rapidly growing, but the empirical results and
conclusions vary across authors. We provide an overview of the literature, without
covering it exhaustively. This overview can be roughly divided into two parts. In a
first group of papers, the loadings are different at each point of time. In a second
group of papers, the loadings display one break or a small number of breaks, and
tests are proposed for the null hypothesis of no break.

The first paper addressing changes in the loadings is Stock and Watson (2002a).
The authors allowed for small-amplitude time variations in the loadings. More
precisely, they assumed that xit = λitft + eit with λit = λit−1 + git ζit , where
git = O

(
T −1

)
and ζit has weak cross-sectional dependence. They proved that

PCA estimation of the loadings and factors is consistent, even though the estimation
method assumes constant loadings. This result has been confirmed by Stock and
Watson (2009), who analyzed a set of 110 US quarterly series spanning 1959 to
2006 and introduce a single break in 1984Q1 (start of the Great Moderation). They
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found evidence of instability in the loadings for about half of the series, but showed
that the factors are well estimated using PCA on the full sample. Bates, Plagborg-
Möller, Stock, and Watson (2013) further characterized the type and magnitude of
parameter instability that is compatible with the consistency of PCA estimates. They
showed that, under an appropriate set of assumptions, the PCA estimated factors
are consistent if the loading matrix is decomposed as �t = �0 + hnT ξ t with

hnT = O
(
T −1/2

)
, which strengthens the result of Stock and Watson (2002a),

obtained for hnT = O
(
T −1

)
). They further showed that, for a given number of

factors, if hnT = O
(

1/ min(n1/4T 1/2, T 3/4
)

the estimated factors converge to the

true ones (up to an invertible matrix) at the same rate as in Bai and Ng (2002)
i.e., 1/ min(n1/2, T 1/2). However, they showed that, if the proportion of series
undergoing a break is too high, usual criteria are likely to select too many factors.

In a Monte-Carlo experiment, Banerjee, Marcellino, and Masten (2007) demon-
strated that consistent estimation of the factors does not preclude a deterioration of
factor based forecasts. Stock and Watson (2009) pointed out that forecast equations
may display even more instability than the factor loadings, and they assessed the
importance of this instability on the forecast performance. In particular, they showed
that the best forecast results are obtained when the factors are estimated from the
whole sample, but the forecast equation is only estimated on the sub-sample where
its coefficients are stable.

Del Negro and Otrok (2008) proposed a DFM with time-varying factor loadings,
but they also included stochastic volatility in both the factors and the idiosyncratic
components. Their model aimed at studying the evolution of international business
cycles, and their dataset consisted of real GDP growth for nineteen advanced
countries. They considered a model with two factors: a world factor and a European
factor. The model, with time varying loadings, can be written as

yit = ai + bwit f wt + beitf et + εit ,

where f wt and f et are the world and European factors, and where beit = 0 for non-
European countries. The loadings are assumed to follow a random walk without
drift: bit = bit−1 + σηi ηit , with the underlying idea that the sensitivity of a given
country to the factors may evolve over time, and that this evolution is slow but
picks up permanent changes in the economy. The factors and the idiosyncratic
components have stochastic volatility, which allows variation in the importance of
global/regional shocks and country-specific shocks. The model was estimated using
Gibbs sampling. The results supported the notion of the Great Moderation in all the
countries in the sample, notwithstanding important heterogeneity in the timing and
magnitude, and in the sources (domestic or international) of this moderation. This
is in line with features later highlighted by Stock and Watson (2012) (see below).
Del Negro and Otrok (2008) also showed that the intensity of comovements is time-
varying, but that there has been a convergence in the volatility of fluctuations in
activity across countries.
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Su and Wang (2017) considered a factor model where the number of factors is
fixed, and the loadings change smoothly over time, using the following specifica-
tion: λit = λi(t/T ) where λi is an unknown smooth function. They employed a
local version of PCA to estimate the factors and the loadings and obtained local
versions of the Bai (2003) asymptotic distributions. They used an information
criterion similar to the Bai and Ng (2002) information criteria and proved its
consistency for large n and T . They also proposed a consistent test of the null
hypothesis of constant loadings: the test statistic is a rescaled version of the mean
square discrepancy between the common components estimated with time-varying
loadings and the common components estimated by PCA with constant loadings,
and it is asymptotically Gaussian under the null. Finally, the authors also suggested
a bootstrap version of the test in order to improve its size in finite samples. Their
simulations showed that the information criteria work well, and that the bootstrap
version of the test is more powerful than other existing tests when there is a single
break at an unknown date. Finally, using the Stock and Watson (2009) dataset, they
clearly rejected the null of constant loadings.

Breitung and Eickmeier (2011) were the first to consider the case where strong
breaks may occur in the loadings. They noted that, in this case, the number of
common factors has to be increased: for instance, in the case of a single break,
two sets of factors are needed to describe the common component before and after
the break, which is tantamount to increasing the number of factors in the whole
sample. For a known break date, they proposed to test the null hypothesis of constant
loadings in individual series, using a Chow test, a Wald test, or an LM test, with
the PCA-estimated factors replacing the unknown factors. They also addressed the
issue of a structural break at an unknown date: building on Andrews (1993), they
proposed a Sup-LM statistic to test the null of constant loadings in an individual
series. In both cases, autocorrelation in the factors and idiosyncratic terms are taken
into account. Applying an LM-test, and using Stock and Watson 2005 US data, they
found evidence of a structural break at the beginning of 1984 (start of the Great
Moderation). They also found evidence of structural breaks for the Euro-area, at the
beginning of 1992 (Maastricht treaty) and the beginning of 1999 (stage 3 of EMU).
Yamamoto and Tanaka (2015) noted that this testing procedure suffers from non-
monotonic power, which is widespread in structural change tests. To remedy this
issue, they proposed a modified version of the Breitung and Eickmeier (2011) test,
taking the maximum of the Sup-Wald test statistics obtained from regressing the
variable of interest on each estimated factor. They showed that this new test does
not suffer from the non-monotonic power problem.

Stock and Watson (2012) addressed the issue of a potential new factor associated
with the 2007Q4 recession and its aftermath. The authors used a large dataset of
132 disaggregated quarterly series, which were transformed to induce stationarity
and subsequently “detrended” to eliminate low frequency variations from the data.
They estimated six factors and the corresponding loadings by PCA over the period
1959Q1–2007Q3. The factors were extended over 2007Q4–2011Q2 by using the
estimated loadings from the pre-recession period to form linear combinations of the
observed variables after the onset of the recession. The extended factors available
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from 1959Q1 to 2011Q2 with constant loadings were denoted the “old factors.” The
authors showed that these old factors explain most of the variation in the individual
time series, which suggests that there was no new factor after the financial crisis.
They also tested the null hypothesis of a break in the loadings after 2007Q4 and
showed that this hypothesis is rejected only for a small number of series. Further,
they investigated the presence of a new factor by testing whether the idiosyncratic
residuals display a factor structure, and concluded that there is no evidence of a
new factor. Finally, they examined the volatility of the estimated innovations of
the factors during different subperiods and found evidence that the recession was
associated with exceptionally large unexpected movements in the “old factors.”
Overall, they concluded that the financial crisis resulted in larger volatility of the
factors, but neither did a new factor appear, nor did the response of the series to
the factors change, at least for most series. These results are consistent with those
obtained by Del Negro and Otrok (2008).

However, many users of DFMs have focused on the breaks-in-the-loadings
scheme mentioned above, and several other tests have been proposed to test the null
hypothesis of no break. Han and Inoue (2015) focused on the joint null hypothesis
that all factor loadings are constant over time against the alternative that a fraction α
of the loadings are not. Their test assumes that there is a single break at an unknown
date that is identical for all series. They used the fact that if the factors are estimated
from the whole sample, their empirical covariance matrix before the break will differ
from their empirical covariance matrix after the break. They proposed a Sup-Wald
and Sup-LM test, where the supremum is taken over the possible break dates. These
tests were shown to be consistent even if the number of factors is overestimated.

Chen, Dolado, and Gonzalo (2014) proposed a test designed to detect big breaks
at potentially unknown dates. As previously noticed by Breitung and Eickmeier
(2011), in such a situation one can write a model with fixed loadings and a larger
number of factors. The test is based on the behavior of the estimated factors before
and after the break date if there is one. It relies on a linear regression of one of the
estimated factors on the others and tests for a structural break in the coefficients of
this regression. If the potential break date is known, the test is a standard Wald test.
If it is unknown, the test can be run using the Sup-LM or Sup-Wald tests which have
been proposed by Andrews (1993). The authors’ Monte-Carlo experiment showed
that both tests perform well when T ≥ 100 and have better power than the tests
proposed by Breitung and Eickmeier (2011) or Han and Inoue (2015). The authors
also showed that the Sup-Wald test generally behaves better than Sup-LM test in
finite samples and confirms that Bai-Ng’s criteria overestimate the number of factors
when there is a break. Finally, the authors applied the Sup-Wald test to the same
dataset as Stock and Watson (2009): the null hypothesis of no break was rejected,
and the estimated break date was around 1979–1980, rather than 1984, the break
date chosen by Stock and Watson (2009) and usually associated with the start of the
Great Moderation.

Cheng, Liao, and Schorfheide (2016) considered the case where the number of
factors may change at one, possibly unknown, break date, but adopted a different
approach, based on shrinkage estimation. Since it is only the product of factors
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and loadings, the common component is uniquely identified in a factor model. The
authors used a normalization that attributes changes in this product to changes in
the loadings. The estimator is based on a penalized least-squares (PLS) criterion
function, in which adaptive group-LASSO penalties are attached to pre-break factor
loadings and to changes in the factor loadings. This PLS estimator shrinks the small
coefficients to zero, but a new factor appears if a column of zero loadings turns into
non-zero values after the break. The authors proved the consistency of the estimated
number of pre- and post-break factors and the detection of changes in the loadings,
under a general set of assumptions. Once the number of pre- and post-break factors
has been consistently estimated, the break date can also be consistently estimated.
The authors’ Monte-Carlo experiment showed that their shrinkage estimator cannot
detect small breaks, but is more likely to detect large breaks than Breitung and
Eickmeier (2011), Chen et al. (2014), or Han and Inoue (2015). Finally, they applied
their procedure to the same dataset as Stock and Watson (2012). The results provided
strong evidence for a change in the loadings after 2007, and the emergence of a new
factor seems to capture comovements among financial series, but also spills over
into real variables.

Corradi and Swanson (2014) looked at the consequences of instability in factor-
augmented forecast equations. Forecast failures can result from instability in the
loadings, instability in the regression coefficients of forecast equations, or both.
They built a test for the joint null hypothesis of structural stability of factor loadings
and factor-augmented forecast equation coefficients. The test statistic is based on
the difference between the sample covariance of the forecasted variable and the
factors estimated on the whole sample, and the sample covariance of the forecasted
variable and the factors estimated using a rolling window estimation scheme. The
number of factors is fixed according to the Bai and Ng (2002) criterion and is thus
overestimated if there is a break in the loadings. Under a general set of assumptions,
and if

√
T /n→ 0, the test statistics based on the difference between the two sample

covariances has an asymptotic χ2 distribution under the null. Using this test on an
empirical dataset analogous to Stock and Watson (2002a), the authors rejected the
null of stability for six forecasted variables (in particular GDP) but did not reject the
null for four others.

Baltagi, Kao, and Wang (2017) also addressed the issue of a single break in the
number of factors and/or the factor loadings at an unknown date. The number of
factors is fixed on the whole sample, without taking the break into account, and
the estimation of the break point relies on the discrepancy between the pre- and
post-break second moment matrices of the estimated factors. Once the break point
is estimated, the authors showed that the number of factors and the factor space are
consistently estimated on each sub-sample at the same rate of convergence as in Bai
and Ng (2002).

Ma and Su (2018) considered the case where the loadings exhibit an unknown
number of breaks. They proposed a three-step procedure to detect the breaks if any
and identify the dates when they occur. In the first step, the sample is divided into
J + 1 intervals, with T � J � m, where m is an upper bound for the number
of breaks, and a factor model is estimated by PCA on each interval. In the second
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step a fused group Lasso is applied to identify intervals containing a break. In the
third step, a grid search allows to determine each break inside the corresponding
interval. The authors proved that this procedure consistently estimates the number
of breaks and their location. Using this method on Stock and Watson (2009) dataset,
they identified five breaks in the factor loadings for the 1959–2006 period.

2.9 Conclusion

This chapter reviews the literature on dynamic factor models and several exten-
sions of the basic framework. The modeling and estimation techniques surveyed
include static and dynamic representation of small and large scale factor models,
non-parametric and maximum likelihood estimation, estimation in the time and
frequency domain, accommodating datasets with missing observations, and regime
switching and time varying parameter models.
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Chapter 3
Factor Augmented Vector
Autoregressions, Panel VARs, and Global
VARs

Martin Feldkircher, Florian Huber, and Michael Pfarrhofer

3.1 Introduction

Statistical institutions and central banks of several major countries now provide
large and complete databases on key macroeconomic indicators that calls for
appropriate modeling techniques. As examples of such databases, the FRED-MD
database (McCracken & Ng, 2016) includes over 150 macroeconomic and financial
time series for the USA that are updated on a monthly basis. In Europe, the
European Central Bank (ECB) as well as the Bank of England (BoE) maintain
similar databases. Efficiently exploiting these large amounts of data is already
challenging at the individual country level but even more difficult if the researcher
is interested in jointly modeling relations across countries in light of a large number
of time series per country. In this chapter, we discuss three popular techniques that
allow for including a large number of time series per country and jointly modeling
a (potentially) large number of units (i.e., countries). These competing approaches
are essentially special cases of large vector autoregressive (VAR) models described
in Chap. 4 and dynamic factor models (DFMs), discussed in Chap. 2 of this volume.

The first approach that allows for modeling interactions across units are panel
vector autoregressive models (PVARs). Compared to the literature on large VAR
models described in Chap. 4 of this book, PVARs feature a panel structure in their
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endogenous variables that gives rise to a variety of potential restrictions on the
parameters. In this framework, regularization is naturally embedded by pooling
coefficients attached to the same variable but stemming from different units of
the cross-section. In a seminal paper, Canova and Ciccarelli (2004) develop panel
VARs with drifting coefficients in order to exploit a large information set. They find
that allowing for time-varying parameters and cross-country linkages substantially
improves turning point predictions for output growth for a set of industrialized coun-
tries. Koop and Korobilis (2016) propose a panel VAR framework that overcomes
the problem of overparameterization by averaging over different restrictions on
interdependencies between and heterogeneities across cross-sectional units. More
recently, Koop and Korobilis (2019) advocate a particular class of priors that
allows for soft clustering of variables or countries arguing that classical shrinkage
priors are inappropriate for PVARs. In terms of forecasting, these contributions
show that using model selection/averaging techniques help in terms of out-of-
sample predictability. Dées and Güntner (2017) forecast inflation for the four
largest economies in the euro area, namely France, Germany, Italy, and Spain.
They show that the PVAR approach performs well against popular alternatives,
especially at a short forecast horizon and relative to standard VAR forecasts based
on aggregate inflation data. Bridging single country and panel VARs, Jarociński
(2010) estimates country-specific VARs with a prior that pushes coefficients towards
a (cross-sectional) mean.

As a special case of a PVAR model, Pesaran, Schuermann, and Weiner (2004)
introduce the global vector autoregressive (GVAR) model to deal with a large
number of countries in an effective manner. This framework proceeds in two steps.
In the first, a set of country-specific VARs is estimated with each model consisting
of a system of equations for the domestic macroeconomic variables. Information
from the cross-section is included by augmenting the set of domestic variables
with weakly exogenous foreign and global control variables. Crucially, the foreign
variables are endogenously determined within the full system of country VARs since
they are simply constructed as weighted averages of the other countries’ domestic
variables. The weights should reflect the connectivity of countries and have to be
exogenously specified. In a second step, the country models are stacked to yield a
system of equations that represents the world economy. By estimating the country
VARs separately, the framework ensures that cross-country heterogeneity is fully
taken into account. Also there is no need for symmetry in the variable coverage of
countries. The GVAR achieves regularization by using weighted averages instead of
the full set of foreign variables in each country VAR.

In the context of forecasting with GVAR models, Pesaran, Schuermann, and
Smith (2009) show that taking global links across economies into account leads
to more accurate out-of-sample predictions than using forecasts based on univariate
specifications for output and inflation. Yet for interest rates, the exchange rate and
financial variables, the results are less spectacular, and the authors also find strong
cross-country heterogeneity in the performance of GVAR forecasts. Employing a
GVAR model to forecast macroeconomic variables in five Asian economies, Han
and Ng (2011) find that one-step-ahead forecasts from GVAR models outperform
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those of stand-alone VAR specifications for short-term interest rates and real
equity prices. Concentrating on predicted directional changes to evaluate the
forecasting performance of GVAR specifications, Greenwood-Nimmo, Nguyen,
and Shin (2012) confirm the superiority of GVAR specifications over univariate
benchmark models at long-run forecast horizons. Feldkircher and Huber (2016)
introduce additional regularization by employing shrinkage priors, borrowed from
the large Bayesian VAR literature, in the GVAR country VARs. Building on this
work, Crespo Cuaresma, Feldkircher, and Huber (2016) show that GVAR forecasts
improve upon forecasts from naive models, a global model without shrinkage on
the parameters and country-specific vector autoregressions using shrinkage priors.
Dovern, Feldkircher, and Huber (2016) and Huber (2016) introduce different forms
of time-variation in the residual variances.1 Both papers demonstrate that the GVAR
equipped with stochastic volatility further improves forecast performance and hence
generalize the results of Pesaran et al. (2009). In another recent contribution,
Chudik, Grossman, and Pesaran (2016) suggest augmenting the GVAR model
with additional proxy equations to control for unobserved global factors and
show that including data on Purchasing Managers’ Indices improves out-of-sample
forecasting accuracy.

Finally, another approach to include information from the cross-section is by
using factor augmented vector autoregressions (FAVARs). In a seminal contribution,
Bernanke, Boivin, and Eliasz (2005) propose modeling a large number of variables
as a function of relatively few observed and unobserved factors and an idiosyncratic
noise term. The common factors serve to capture joint movements in the data and,
conditional on suitable identification, can be thought of as the underlying driving
forces of the variables. Typically, these factors are assumed to follow a VAR process.
FAVARs are an attractive means of data reduction and are frequently applied when
the information set is numerous. In a recent application, Moench (2008) combines a
FAVAR with a term structure model to make predictions of bond yields at different
maturities. Technically, the original framework of Bernanke et al. (2005) has been
subsequently modified. For example, Banerjee, Marcellino, and Masten (2014)
introduce the concept of error correction to the FAVAR framework and Eickmeier,
Lemke, and Marcellino (2015) introduce time-variation in the factor loadings and
residual variances. Both studies show that these modifications lead to further,
improved forecasts relative to standard FAVARs. FAVARs can also be applied to
extract and condense information from different countries. Indeed, Eickmeier and
Ng (2011) provide evidence of superior forecasts when exploiting international
data relative to data-rich approaches that focus on domestic variables only. This
is especially true for longer forecast horizons. In general, FAVARs that work with
international data do not draw particular attention to the fact that data are of the
same type but stem from different countries.

1See Crespo Cuaresma, Doppelhofer, Feldkircher, and Huber (2019) for a GVAR specification in
the context of monetary policy that allows both parameters and residual variances to change over
time.
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This chapter is organized as follows. The next section introduces the models more
formally while the next section illustrates the merits of the competing approaches
by means of a small forecasting exercise for inflation, output, and interest rates for
the G7 countries.

3.2 Modeling Relations Across Units

In this section, we introduce the econometric framework for the panel VAR,
the global VAR, and the factor augmented VAR. Many of the aspects discussed
below, such as cross-sectional restrictions, can easily be combined across all three
major model classes. Each description of the respective model is accompanied and
enhanced by an overview of applications in the related literature. We focus on
mainly discussing potential avenues for modeling panel data using multivariate time
series models, while we mostly refrain from presenting details on estimation tech-
niques. Estimation of the models below can be carried out by standard (Bayesian)
VAR methods, discussed, for instance, in Chap. 4 of this volume.

3.2.1 Panel VAR Models

The discussion in Sect. 3.1 highlights that capturing linkages between units (i.e.,
countries, companies, etc.) could be crucial in understanding dynamic processes
as well as for macroeconomic forecasting. Considering the literature on VAR
models (see Chap. 5 of this book), one potential approach to covering cross-sectional
linkages would be to include cross-sectional information in an otherwise standard
VAR model.

To set the stage, let yit (i = 1, . . . ,N) be aM-dimensional vector of endogenous
variables for unit i and measured in time t = 1, . . . , T .2 Stacking the yit ’s yields a
K-dimensional vector yt = (y′1t , . . . , y′Nt )′ with K = MN . Using a standard VAR
approach implies that yt depends on the P lags of yt

3

yt = A1yt−1 + . . .+AP yt−P + εt , (3.1)

where Ap (p = 1, . . . ,P) denote (K ×K)-dimensional matrices of autoregressive
coefficients and εt ∼ N(0, �) is a Gaussian shock vector with variance-covariance
matrix � of dimension K ×K . Analogous to the endogenous vector, the error term

2For simplicity, we assume that each cross-sectional unit features the same set of endogenous
variables. This restriction, however, can easily be relaxed.
3Note that we exclude intercepts and deterministic terms and the specifications below can
straightforwardly be adapted.
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is given by εt = (ε′1t , . . . , ε′Nt )′, which yields a block matrix structure for

� =
⎡

⎢⎣
�11 . . . �1N

...
. . .

...
�N1 . . . �NN

⎤

⎥⎦ .

The block-diagonal elements �ii of size M ×M refer to the variance-covariance
structure among endogenous variables within unit i. By the given symmetry of �,
we have �ij = �j i again of size M ×M for i, j = 1, . . . ,N . Specifically, �ij
captures covariances between the variables in unit i and j , for i �= j .

Notice that the number of autoregressive coefficients is k = PK2 while the
number of free elements in � is K(K + 1)/2. This implies that the total number
of coefficients often exceeds the number of observations T . This problem usually
arises in the high-dimensional VAR case discussed in Chap. 4 and leads to the well-
known curse of dimensionality. The key difference between the present framework
and a standard VAR is the structure of yt . If yt is composed of different units
(say countries), yt features a panel structure and elements in Ap might be similar
across countries. This leads to several modeling possibilities, potentially alleviating
overparameterization issues by reducing the number of free parameters. To illustrate
how one could proceed, let us rewrite the equations associated with unit i in Eq. (3.1)
as follows:

yit = 
ixit +�izit + εit , (3.2)

with 
i denoting an (M × MP)-matrix of coefficients associated with xit =
(y′it−1, . . . , y′it−P )′ and �i is an (M ×MP(N − 1))-dimensional matrix related
to the lags of yj t (∀j �= i), stored in zit = (x′1t , . . . , x′i−1,t , x

′
i+1,t , . . . , x

′
Nt )

′.
Equation (3.2) is the standard panel VAR (PVAR) model commonly found in the
literature (for an extensive survey, see also Canova & Ciccarelli, 2013).

To more intuitively motivate the potential parameter restrictions discussed in the
following paragraphs for exploiting the panel data structure, we present a small
example for N = 3 countries,M = 2 variables. This recurring simple example will
also serve to illuminate commonalities and distinctions across the three types of
specifications discussed in this chapter. For the sake of simplicity, we only consider
p = 1 lag of the endogenous variables. In this special case, the full system of
equations may be written as

y1t = 
11y1t−1 +�11y2t−1 +�12y3t−1 + ε1t , ε1t ∼ N(0, �11)

y2t = 
21y2t−1 +�21y1t−1 +�22y3t−1 + ε2t , ε2t ∼ N(0, �22)

y3t = 
31y3t−1 +�31y1t−1 +�32y2t−1 + ε3t , ε3t ∼ N(0, �33).

Notice that each of the country specific models is a standard VAR model with

i1 for i = 1, . . . , 3 capturing the coefficients on the first lag of the domestic
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endogenous variable, augmented by additional information from the respective
lagged foreign endogenous vectors.

Cross-country spillovers or linkages emerge along two dimensions. First, the
coefficients in �i1 and �i2 govern dynamic interdependencies across countries by
capturing effects that propagate through the system based on the lagged foreign
variables. Setting �i1 = �i2 = 0 results in a set of three unrelated multivariate
regression models, if one assumes that εit and εj t for i �= j are orthogonal. Second,
relaxing orthogonality between country-specific error terms results in static inter-
dependencies, capturing the case that shocks across countries might be correlated,
potentially providing valuable information on contemporaneous movements across
elements in yt that can be exploited for forecasting or conducting structural analysis.
The contemporaneous relationship between shocks to country i and j is given by
the corresponding block in the variance-covariance matrix, obtained by computing
E(εitε′j t ) = �ij . Finally, a related yet distinct dimension to be considered based
on the specific structures provided by panel data is whether domestic dynamics
governed by the 
i1 are similar across countries, a phenomenon usually termed
cross-sectional homogeneity. These homogeneity restrictions might be warranted if
the countries in the panel are homogeneous or their macroeconomic fundamentals
feature similar dynamics. For instance, Wang and Wen (2007) find that the short-
run behavior of inflation is highly synchronized and similar across a diverse set of
economies. Such information can be incorporated by setting the relevant elements
in 
i1 and 
j1 equal to each other.

3.2.2 Restrictions for Large-Scale Panel Models

Following this small scale example, we proceed by the general model outlined in
Eq. (3.2) that constitutes the standard, unrestricted PVAR model. In the literature,
researchers typically introduce several parametric restrictions on 
i , �i , as well as
on �. In what follows, we discuss the commonly used restrictions addressing cross-
sectional homogeneity and static and dynamic interdependencies in more detail and
focus on their merits from a forecasting perspective.

Cross-Sectional Homogeneity

The first restriction, henceforth labeled cross-sectional homogeneity, concerns
the relationship between the endogenous quantities in yit and their “own” lags
yit−p (p = 1, . . . ,P). Note that this restriction is sometimes alternatively referred
to as cross-sectional heterogeneity in its converse formulation. Depending on the
specific application at hand, researchers typically assume that each unit features
similar domestic dynamics. In a cross-country case, for instance, this implies
that several countries share identical reactions to (lagged) movements in domestic
quantities, implying that 
i = 
j = 
. These restrictions might be appropriate
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if the different units are similar to each other. For instance, in a multi-country
context, economies that are similar also tend to feature similar domestic dynamics.
However, in case of heterogeneous units, this assumption could be too restrictive.
Returning to a multi-country context, it might be difficult to argue that China and
the USA display similar dynamics in terms of their domestic fundamentals. Hence,
using these restrictions potentially translates into distorted estimates of the VAR
coefficients, in turn leading to imprecise forecasts and biased impulse responses. By
contrast, for a set of comparatively homogeneous countries, e.g., selected euro area
member states, pooling information across units may yield more precise inference
and forecasts.

Dynamic Interdependencies

The second set of restrictions relates to lagged relations across units, stored in the
matrix �i . Here, non-zero elements imply that movements in foreign quantities
affect the evolution of domestic variables, that is, effects spill over dynamically.
The related literature labels this type of relationship dynamic interdependency.
Various types of restrictions may be feasible in this context. The simplest case to
impose structure on dynamic interdependencies would be to set �i = 0, ruling
out dynamic cross-country spillovers. A less restrictive and arguably more realistic
assumption would be to asymmetrically rule out such relationships. Monetary policy
shocks emitting from the USA, for instance, most likely transmit dynamically to
other countries, while it is unlikely that smaller countries impact US developments.
Extracting information from such international linkages may improve forecasts by
alleviating a potential omitted variable bias.

Static Interdependencies

Finally, the third typical restriction is concerned with how to model contempora-
neous relations between the shocks across countries in the system, termed static
interdependencies. Such restrictions essentially deal with the question whether
shocks are correlated along countries and variable types. This translates into a
selection issue related to certain elements of the variance-covariance matrix of
the full system. For the small-scale example presented earlier, this implies testing
whether �ij = 0 for i and j or whether selected off-diagonal elements of �ii for
all i are set equal to zero. Choices in this context can be motivated by resorting to
theoretical insights. For instance, there is a broad body of literature that separates
fast from slow moving variables in the context of monetary policy shocks. In the
absence of additional information, however, model selection along this dimension
becomes cumbersome and appropriate techniques are necessary.
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Implementing Parametric Restrictions

Analyzing real world phenomena in a multi-country time series context often
requires a combination of several types of restrictions stated above. Appropriate
modeling choices can be either guided by economic theory, common sense, or
by relying on the various approaches set forth in the literature to econometrically
estimate or test the specification that provides the best fit for the data at hand.

Estimates implementing the restrictions can be introduced both in the frequentist
and the Bayesian estimation context. Depending on the length of the number of
available observations and the size of the problem considered, one may employ
the generalized method of moments (GMM) approach pioneered in Arellano and
Bond (1991), or alternative Bayesian pooled estimators (see, for instance, Canova,
2007). Here, it is worth emphasizing that the bulk of the literature relies on Bayesian
techniques to estimate PVAR models. The reason is that all three types of restrictions
translate into a huge number of model specification issues that are difficult to tackle
using frequentist methods. Bayesian methods, by contrast, provide a natural way
of exploring a vast dimensional model space by using Markov chain Monte Carlo
(MCMC) algorithms that entail exploring promising regions of the model space.

One strand of the literature introduces parsimony in panel VARs by reducing the
dimension of the parameter space via a small number of unobserved latent compo-
nents. These techniques share several features of dynamic factor models and thus
provide a synthesis between PVARs and DFMs, not in terms of observed quantities
but in terms of coefficients. In their seminal contribution, Canova and Ciccarelli
(2004) and Canova and Ciccarelli (2009) employ a dynamic factor structure on the
coefficients of the fully parameterized system, greatly reducing the dimensionality
of the regression problem. In particular, they assume that unit-specific parameters
are driven by a small set of global, regional, and country-specific factors. One key
feature is that this approach controls for movements in the underlying regression
coefficients over time in a parsimonious manner. Koop and Korobilis (2019) extend
the methods proposed in Canova and Ciccarelli (2009) to also select suitable static
interdependencies by modeling the variance-covariance matrix using a similar low-
dimensional factor structure. However, evidence for time variation in the VAR
coefficients for standard macroeconomic models is limited, and the forecasting
literature typically identifies that a successful forecasting model should control
for heteroscedasticity in the error variances—especially when interest centers on
producing accurate density forecasts. Thus, we leave this strand of the literature
aside and, in this chapter, focus exclusively on constant regression coefficients while
allowing for time-variation in the error variances.

Taking a fully data-driven perspective to select required restrictions in the PVAR
context, Koop and Korobilis (2016) adapt a stochastic search variable selection
prior (George & McCulloch, 1993; George, Sun, & Ni, 2008) to account for
model uncertainty. This approach centers on introducing latent binary indicators that
allow for assessing whether coefficients are similar across countries (i.e., whether
cross-sectional homogeneity is present) or whether dynamic and static relations
across countries should be pushed to zero (i.e., shutting off any dynamic and static
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interdependencies). One key advantage of this approach is that a deterministic
search of the model space is replaced by a stochastic approach to model uncertainty,
effectively constructing a Markov chain that explores relevant regions in the model
space.

Finally, another approach closely related to assuming a factor structure on
coefficients captures cross-sectional homogeneity by introducing a hierarchical
Bayesian model on the coefficients. This approach was first used in a multi-country
VAR setting by Jarociński (2010). Here, the key assumption is that country-specific
coefficients cluster around a common mean. Any cross-country differences are
captured by allowing for deviations from this common mean. This type of prior
is closely related to random coefficient and heterogeneity models (see Allenby,
Arora, & Ginter, 1998; Frühwirth-Schnatter, Tüchler, & Otter, 2004) pioneered in
the marketing literature.

3.2.3 Global Vector Autoregressive Models

The basic structure of the global vector autoregressive model is similar to the PVAR,
but differs in its treatment of the foreign country variables (Pesaran et al., 2004;
Dées, di Mauro, Pesaran, and Smith, 2007). In contrast to the panel VAR, we include
information on the foreign variables by means of the vector y∗it . This vector of
weakly exogenous variables is constructed as a cross-sectional weighted average
defined by

y∗it =
N∑

j=1

wijyj t ,

with wij denoting pre-specified weights with wii = 0, wij ≥ 0 for i �= j

and
∑N
j=1wij = 1. To achieve a structure akin to Eq. (3.2), we again use

xit = (y′it−1, . . . , y′it−P )′, and stack the cross-sectional averages y∗it in a vector
zit = (y′∗it , y′∗it−1, . . . , y′∗it−P )′. The equation for unit i reads

yit = 
ixit +�izit + εit , (3.3)

with 
i , again, denoting an (M ×MP) matrix of coefficients associated with unit
i’s own lags, while �i is a (M ×M(P + 1))-dimensional matrix containing the
parameters measuring dependencies across units. Due to the presence of the foreign-
specific variables, Pesaran et al. (2004) refer to this specification as VARX∗. It is
worth mentioning that the dimensions of the endogenous variables across units need
not necessarily be of the same size, an assumption we use here for simplicity. Notice
that while the panel VAR specification resulted in M2P(N − 1) coefficients to be
estimated for foreign quantities, imposing structure via the exogenous weights wij
reduces this number toM2(P + 1).
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The Full GVAR Model

Constructing the GVAR model from Eq. (3.3) involves stacking the country-specific
submodels. For the sake of simplicity, we focus on the case of one lag for both
the domestic and foreign variables, and adopt some of the notation used above.
The more general specification involving more lags is straightforward to obtain
employing the logic presented in the following paragraphs. Based on Eq. (3.3), we
consider

yit = 
i1yit−1 +�i0y
∗
it +�i1y

∗
it−1 + εit , (3.4)

where 
i1 is a coefficient matrix associated with the own lag of unit i, �i0
captures contemporaneous relations across units, and �i1 contains the coefficients
corresponding to the lags of the foreign-unit averages. All three matrices are of size
M ×M . Using a vector zit = (yit , y∗it )′, Eq. (3.4) is rewritten as

Aizit = Bizit−1 + εit , (3.5)

with Ai = (IM ,−�i0) and Bi = (
i1, �i1) and IM denoting the identity matrix of
sizeM . We proceed by stacking the country-specific variables in theK-dimensional
vector xt = (y′1t , . . . , y′Nt )′, henceforth referred to as the global vector.

It is straightforward to construct a weighting matrix W i such that zit = W ixt .
Exploiting the definition of zit in combination with Eq. (3.5) yields a formulation in
terms of the global vector

AiW ixt = BiW ixt−1 + εit .

The final step involves stacking these equations to yield the full system representa-
tion. Here, we first define

G =

⎡

⎢⎢⎢⎣

A1W 1

A2W 2
...

ANWN

⎤

⎥⎥⎥⎦ , H =

⎡

⎢⎢⎢⎣

B1W 1

B2W 2
...

BNWN

⎤

⎥⎥⎥⎦ ,

and the error vector εt = (ε′1t , . . . , ε′Nt )′. Using these definitions, we obtain the
following global model

Gxt = Hxt−1 + εt .

In the general case, it is reasonable to assume a normally distributed error term
εt ∼ N(0, �) with some variance-covariance matrix �. Under the condition that G

is non-singular, we obtain the reduced-form representation of the GVAR model

xt = G−1Hxt−1 +G−1εt .
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Let εt = G−1εt , then it follows that the reduced form variance-covariance matrix is
given by E(εt εt

′) = G−1�(G−1)′.
The specifics of the linking matrix W i are yet to be discussed. In the empirical

literature using GVARs, different weighting schemes determining thewij have been
employed. The proposed schemes range from using bilateral trade flows or financial
linkages for measuring the strength of dependencies between countries, to measures
based on geographic distances that are often used in the spatial econometrics
literature (see, for instance Eickmeier & Ng, 2015). Bayesian estimation techniques
also allow for integrating out uncertainty surrounding the choice of the linkage
matrix, for instance, as in Feldkircher and Huber (2016).

It is revealing to consider a simple example for the GVAR for two reasons. First,
it directly shows the structure required on the W i . Second, the correspondence
between the panel VAR and global VAR restrictions becomes evident. The full
system of equations, analogous to the previous example in the context of the panel
VAR, for three units can be written as

y1t = 
11y1t−1 +�10(w12y2t +w13y3t )+�11(w12y2t−1 +w13y3t−1)+ ε1t ,

y2t = 
21y2t−1 +�20(w21y1t +w23y3t )+�21(w21y1t−1 +w23y3t−1)+ ε2t ,

y3t = 
31y3t−1 +�30(w31y1t +w32y2t )+�31(w31y1t−1 +w32y2t−1)+ ε3t .

Consequently, to achieve the structure of Eq. (3.5) for the first cross-sectional unit in
terms of the global vector yt = (y′1t , y′2t , y′3t )′ specific to this example we require
W 1 to be given by

W 1 =

⎡

⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 w12 0 w13 0
0 0 0 w12 0 w13

⎤

⎥⎥⎦ =
[
I 2 0 0
0 w12I 2 w13I 2

]
.

For the remaining units we have

W 2 =
[

0 I 2 0
w21I 2 0 w23I 2

]
, W 3 =

[
0 0 I 2

w31I 2 w32I 2 0

]
.

To illustrate the correspondence between the panel and global VAR coefficients,
consider Eq. (3.2) and observe that �11 = w12�11 and �12 = w13�11. This implies
that by relying on cross-sectional averages constructed using the exogenous weights
wij , one imposes a specific structure and restrictions on the full system coefficients,
effectively reducing the number of free parameters to estimate.

Specifically, this specification assumes the coefficients for unit i associated with
foreign lags to be proportional across the foreign vectors. Shrinkage towards zero is
imposed ifwij is small, that is, in the case of the weights reflecting a situation where
the respective units are not closely linked. For instance, assuming w12 = 1 and by
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the required restrictions w13 = 0, one would obtain a bilateral VAR specification,
shutting down dynamic interdependencies between unit one and three. This claim is
easily verified by observing that in this case we have �11 = �11 and �12 = 0.

3.2.4 Factor Augmented Vector Autoregressive Models

In contrast to PVAR and GVAR models that are mainly used to explicitly account
for interdependencies and spillovers between countries and exploiting the cross-
sectional dimension in a time series context, FAVAR models are applicable to
an even more diverse set of problems. Here, the main intuition is to reduce
dimensionality of the model by extracting a small number of unobserved factors
from a large-scale data set that summarize the contained information efficiently.
This procedure may be employed for estimating single country models where the
information set is large, but can also be used in a multi-country context.

Chapter 2 in this volume and Stock and Watson (2016) provide comprehensive
discussions of dynamic factor models. The FAVAR is a synthesis of the dynamic
factor approach and the literature on vector autoregressive models. In its general
form, as proposed by Bernanke et al. (2005), the FAVAR approach links a large
number of time series in xt of size K to a set of M observed quantities of interest
mt andQ latent factors f t

xt = 	f f t +	mmt + εt , εt ∼ N(0, �ε). (3.6)

Equation 3.6 is the so-called measurement equation, with 	f and 	m denoting
K ×Q and K ×M matrices of factor loadings. This equation states that the xt
are driven by a small number (Q � K) of unobserved and observed factors, with
the respective sensitivity of elements in xt to movements in f t and mt governed
by the factor loadings. Moreover, such specifications typically include zero mean
Gaussian measurement errors, with a diagonal variance-covariance matrix �ε . This
implies that any co-movement between the elements in xt stem exclusively from the
common factors in f t and mt .

The joint evolution of the latent and manifest driving forces, stacked in a (M +
Q)-vector zt = (f ′t , m′

t )
′, is determined by the state equation

zt = A1zt−1 + . . .+AP zt−P + ηt , ηt ∼ N(0, �η) (3.7)

which is a standard VAR process of order P and coefficient matrices Ap (p =
1, . . . ,P) of dimension (M +Q)× (M +Q). Again, the state equation errors are
assumed to be normally distributed and centered on zero with variance covariance
matrix �η. Notice that combining Eqs. (3.6) and (3.7) establishes a simple yet
flexible state-space representation with Gaussian error terms.

In the context of modeling large systems of multiple economies, a potential
FAVAR specification would be to treat the endogenous variables of country i as
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the observed factors yit , while unobserved factors are extracted from the foreign
quantities. In terms of the formulation above, this would imply xt = (y′1t , . . . , y′Nt )′
and mt = y1t .

A simple three country example is provided in the following, focusing on
the required setup for the first country (the remaining country models are to be
understood analogously). The observation equation is given by

⎡

⎣
y1t

y2t

y3t

⎤

⎦

︸ ︷︷ ︸
xt

=
[
IM 0
	y 	f

] [
y1t

f t

]

︸ ︷︷ ︸
zt

+
⎡

⎣
0

ε2t

ε3t

⎤

⎦ ,

with the dynamic evolution of zt governed by the process given in Eq. (3.7).
This setup produces multiple sets of interesting results. First, the estimates of the
latent factors f t can be interpreted as international factors, since they carry shared
information from quantities foreign to the country of interest. Second, the factor
loadings matrices 	y , 	f provide information on how strongly individual countries
are linked to the extracted international factors, with the variances of the error
terms ε2t , ε3t capturing the magnitude of country-specific idiosyncrasies. Third, the
simple VAR structure of the state equation in Eq. (3.7) allows for all common types
of inferential analyses and forecasting exercises. Besides forecasts for the observed
and unobserved factors, that is, the quantities of the country of interest and the
international factors, the observation equation can be used to calculate forecasts
for all countries considered.

3.2.5 Computing Forecasts

A brief summary of how to obtain forecasts is provided in the following. The
interested reader is referred to Hamilton (1994), who provide a much more complete
treatment of forecasting based on multivariate time series models. Estimated
parameters for the VAR processes underlying the PVAR, GVAR, and FAVAR
can be used to generate forecasts in a standard way. All models feature vector
autoregressive structures of order p as in Eq. (3.1), which may be written as VAR(1).
Let Y t = (y′t , y′t−1, . . . , y′t−p+1)

′, ut = (ε′t , 0, . . . , 0)′, and the companion matrix

A =

⎡

⎢⎢⎢⎢⎢⎣

A1 A2 . . . Ap−1 Ap

IK 0 . . . 0 0
0 IK . . . 0 0
...

. . .
...

0 . . . . . . IK 0

⎤

⎥⎥⎥⎥⎥⎦
.
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The corresponding VAR(1) representation that we use to obtain expressions for the
predictive density of h-step ahead forecasts is given by Y t = AY t−1 + ut and it
follows that

Y t+h = AhY t +
h−1∑

i=0

Aiut+h−i .

Using Ŷ t+h to denote the forecast at horizon h, we have

E(Y t+h) = Ŷ t+h = AhY t ,

where the prediction is given by the firstK rows of Ŷ t+h. Let � denote the variance-
covariance matrix of ut , then for the variance of the forecasts at h-steps ahead
denoted by �t+h we have

E(Y t+hY ′t+h) = �t+h =
h−1∑

i=0

Ai�A′i ,

where the relevant submatrix analogous to the point prediction is the upper K ×K-
block of �t+h. Using these relations, one can easily draw from the predictive density
under the assumption that the shocks are normally distributed.

3.3 Empirical Application

In this section we provide a simple forecasting application based on a monthly panel
of country-level time series. We evaluate the relative performance of the panel,
global, and factor augmented vector autoregressive models against standard VAR
specifications and a univariate AR(1) benchmark to underline the value of exploiting
information from the cross-sectional dimension for forecasting.

3.3.1 Data and Model Specification

For the empirical application, we use quarterly observations for consumer price
inflation, short-term interest rates, and industrial production (as a measure of
economic performance) for the G7 countries, that is, data from Canada (CA),
Germany (DE), France (FR), the United Kingdom (GB), Italy (IT), Japan (JP), and
the United States (USA). The considered period ranges from 1980:Q1 to 2013:Q4.
For the GVAR weighting scheme, we rely on bilateral trade weights, constructed by
averaging the respective bilateral trade relations over the sample period.
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An Illustrative Example

We illustrate the structure of the competing modeling approaches discussed above
once again using a simple example. We consider the information set included in
the respective equations of the PVAR, GVAR, and FAVAR for the case of the USA.
For visualization purposes, we normalize the data beforehand to have zero mean
and unit standard deviation. Besides the US measures of inflation, interest rates
and output, the PVAR includes all series of the other countries. In the GVAR, all
foreign quantities are constructed by relying on cross-sectional averages using trade
weights. For the FAVAR, we extract three factors summarizing high-dimensional
cross-sectional information on non-US countries. Figure 3.1 shows the resulting
(foreign) time series for all three approaches. Inflation is depicted in light gray, the
interest rate series are dark gray, while industrial production is black.

In the left panel of Fig. 3.1, the information stemming from foreign countries
is shown for the unrestricted PVAR model. A few points are worth noting. Co-
movement is observable both across the cross-section, but also across variable types.
The impact of the global financial crisis of 2007/2008 is clearly visible, with large
drops in output and inflation, while expansionary monetary policies are reflected by
a decrease of short-term interest rates in all countries. The middle panel depicts the
cross-sectional weighted averages that result in the case of the GVAR. The right
panel shows the three extracted factors over time. Factor 1 appears to be closely
tracking inflation and interest rates across countries, while for the remaining factors
it is less obvious to identify commonalities with observed time series.

This small example provides intuition about how high-dimensional information
(as is the case for the PVAR) is compressed in both the FAVAR and the GVAR

1. All series (PVAR) 2. Weighted series (GVAR) 3. Extracted factors (FAVAR)

1980 1990 2000 2010 1980 1990 2000 2010 1980 1990 2000 2010

−2

0

2

4

6

St
an

da
rd

iz
ed

Inflation Interest rate Production index Fac. 1 Fac. 2 Fac. 3

Fig. 3.1 Information set for the United States in the PVAR, GVAR, and FAVAR
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case. While the approaches differ in terms of how to achieve a more parsimonious
representation of the data, it is apparent that both result in a similar lower
dimensional summary of the information set used in the forecasting exercise.

Model Specification

The bulk of the literature on large VARs in general, and multi-country models in
particular, uses a Bayesian approach to estimation. This involves choosing prior
distributions for all parameters to be estimated in the respective models. In the
following, we will sketch the prior setup for all models considered, putting a special
emphasis also on discussing possibilities to account for cross-sectional homogene-
ity, and dynamic and static interdependencies. Moreover, all models are allowed
to feature heteroscedastic errors. This feature has proven crucial for forecasting,
especially in the context of density forecasts (Carriero, Clark, & Marcellino, 2016).
Here, we employ variants of stochastic volatility specifications for all competitors.
The models are estimated using Markov chain Monte Carlo (MCMC) simulation
methods, with further details on priors and estimation presented in Appendix A.

To assess the merits and comparative strengths and weaknesses of the three
approaches discussed here, we provide evidence for two specifications per model
class. The set of competing models is complemented by a naive univariate AR(1)
process with stochastic volatility and two otherwise standard VAR models with a
hierarchical Minnesota shrinkage prior (Litterman, 1986). All competing models
we consider are summarized in Table 3.1.

The first model we consider is a simple three-equation VAR specification for
each of the seven countries (single-country Bayesian VAR, BVAR-SC). The second
uses the full information set of 21 variables at once, rendering this specification a
large Bayesian VAR (BVAR). A similar Minnesota prior is employed for the state
equation of the FAVAR models. In this context, we split the information set into
domestic and foreign quantities prior to estimation, and extract one (FAVAR-F1)

Table 3.1 Competing models, abbreviations, and short description

Model Description

BVAR-SC Bayesian VAR, Minnesota prior, country-by-country, stochastic volatility

BVAR Bayesian VAR, Minnesota prior, all countries jointly, stochastic volatility

PVAR-noDI Panel VAR, coefficient pooling, no DIs, SIs, stochastic volatility

PVAR-DI Panel VAR, coefficient pooling, DIs, SIs, stochastic volatility

GVAR-NG Global VAR, normal-gamma shrinkage prior, stochastic volatility

GVAR-CP Global VAR, coefficient pooling, stochastic volatility

FAVAR-F1 Factor augmented VAR, one factor, stochastic volatility

FAVAR-F3 Factor augmented VAR, three factors, stochastic volatility

AR(1) Autoregressive process of order 1, stochastic volatility

Notes: DIs dynamic interdependencies, SIs static interdependencies
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and three (FAVAR-F3) factors from the foreign variables. The single-country VAR
based on the domestic quantities is then augmented by these factors. For the factors,
loadings and variance covariance matrices we use standard prior distributions and
algorithms for estimation.

For the domestic coefficient matrices of both PVARs (PVAR without dynamic
interdependencies, PVAR-noDI and PVAR with dynamic interdependencies, PVAR-
DI) and all coefficients of GVAR with coefficient pooling, GVAR-CP, we use a
prior designed to exploit the cross-sectional structure by pooling information over
the respective countries. A similar prior has, for instance, been used in Jarociński
(2010) or Fischer, Huber, and Pfarrhofer (2019). The idea hereby is to assume
country-specific coefficients to share a common mean, reflecting cross-sectional
homogeneity. The prior used in the forecasting exercise stochastically selects
coefficients that are homogeneous, but allows also for heterogeneous coefficients
if suggested by the likelihood. The difference between PVAR-noDI and PVAR-DI is
that the first specification rules out dynamic interdependencies a priori, while in the
latter case, we impose a normal-gamma shrinkage prior (Griffin & Brown, 2010)
to stochastically select non-zero coefficients associated with foreign quantities. The
same shrinkage prior is used for all coefficients of the GVAR normal-gamma, GVAR-
NG specification.

The error terms of the PVARs and GVARs are decomposed using a factor
stochastic volatility specification (see, for instance, Aguilar & West, 2000). Here,
the stacked error term is decomposed into a lower-dimensional set of dynamic
factors that capture co-movements in the cross-section and idiosyncratic stochastic
volatility error terms. The factor loadings linking the factors to the high-dimensional
errors govern covariances across countries.

3.3.2 Evaluating Forecasting Performance

For the purpose of comparing the three approaches discussed in this chapter and
assessing their performance, we use a pseudo out-of-sample forecasting exercise.
Here, we split the available data into a training and a holdout sample of length
To that is used to evaluate the predictions in terms of the realized values of the
series. The forecasting design is recursive, implying that we start with forecasting
the beginning of the holdout sample, indexed by TH = T − To+ 1. After obtaining
the relevant predictive distributions, we expand the initial estimation sample by a
single observation and re-estimate all models. This procedure is repeated until no
more observations are available in the holdout sample. For the forecasting exercise
we use the period from 1999:Q1 to 2013:Q4 as holdout, that is, 60 observations. This
holdout serves to calculate root mean squared errors (RMSEs) and log-predictive
likelihoods (LPLs) to assess both point and density forecasts.

Precise definitions of the involved performance measures in the following require
that we introduce additional notation. Let I1:t be the information set containing
all available time series up to time t . We are interested in computing the h-step
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ahead point forecast for some variable conditional on the information set, that is
the predictive mean ŷt+h = E(yt+h|I1:t ). Moreover, we let p(yt+h|I1:t ) denote the
predictive density for said variable. Finally, we refer to the realized value of the time
series in the holdout sample by yo

t+h.

Performance Measures

In terms of point forecasts, we use the well-known measure based on RMSEs. The
corresponding definition for the h-step ahead forecast for some model is given by

RMSE =
√√√√ 1

To

To∑

t=TH

(
yo
t+h − ŷt+h

)2.

Intuitively, this measure captures the average deviation of the forecast from the
realized value over the holdout sample. The smaller the RMSE, the better the out-
of-sample predictive performance in terms of point forecasts is the model.

The RMSE measures only how well the model performs in terms of point
forecasting, ignoring model performance in terms of higher moments of the
predictive distribution. To see how well the predictions of a given model fit the
data in the holdout sample, we rely on LPLs (see, for instance, Geweke & Amisano,
2010). The measure at time t is defined as

LPLt+h = logp
(
yt+h = yo

t+h|I1:t
)

.

Here, we evaluate the realized yo
t+h under the predictive distribution arising from

the respective modeling approach. The magnitude of this value is determined by the
mean and variance of the predicted value, accounting both for the point forecast but
also how precisely it is estimated.

We consider marginal log-predictive scores (LPSs) used for evaluating the
models per variable type, and joint log-predictive scores based on the full predictive
vector across variable types and countries. All these measures can be calculated for
the h-step ahead predictions across competing econometric models. In particular,
based on the available quarterly frequency, we provide measures of forecasting
performance for one-quarter ahead, two-quarters ahead, and 1-year ahead in the
next section.

3.3.3 Results

In this section, we first consider the performance of the competing models using
joint LPSs and average RMSEs. This allows to provide a rough grasp in terms of
overall performance. In a second step, we assess the relative merits of the proposed
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models in terms of marginal LPSs and RMSEs for inflation to investigate model-
specific strengths and weaknesses across countries. This second exercise serves to
investigate the causes for some of the observed differences across models in overall
forecasting performance.

Overall Forecasting Performance

We first present evidence for one-quarter, two-quarters, and 1-year ahead forecasts.
The results are summarized in Table 3.2, which presents joint RMSEs calculated
across countries and variable types relative to the AR(1) benchmark, implying
that values less than 1 indicate a superior forecast performance compared to the
benchmark. We also provide LPSs for all competing models summed over the whole
out-of-sample period.

One takeaway from Table 3.2 is that performance measures in terms of point
and density forecasts do not necessarily agree which model performs best. The best
performing model in terms of point forecast at the one-quarter ahead horizon, PVAR-
noDI improves upon the naive benchmark by roughly 19% in terms of RMSEs. Most
of the competing models show improvements over the AR(1) specification, with
approximately 10–15% smaller RMSEs, except for GVAR-CP. For this model, we
obtain higher RMSEs as compared to the univariate model. A similar picture arises
for two-quarters ahead forecasts, with slightly worse point forecasts relative to the
AR(1) than before and the PVAR without dynamic interdependencies producing
the best point forecasts. Interestingly, the GVAR-CP, that has been performing
poorly at the one-quarter ahead horizon, outperforms the benchmark at this horizon,
with the average improvement across multivariate models upon the univariate
forecasts being around 10%. For 1-year ahead forecasts, we again observe that
the relative performance of multivariate forecasting approaches worsens slightly.

Table 3.2 Overall measures of joint forecasting performance

One-quarter ahead Two-quarters ahead 1-year ahead

Model RMSE LPS RMSE LPS RMSE LPS

BVAR-SC 0.881 4485.71 0.892 3732.35 0.939 2643.46

BVAR 0.852 3989.69 0.868 3514.89 0.907 2513.83

PVAR-noDI 0.818 4578.73 0.831 4034.75 0.855 3304.97

PVAR-DI 0.844 3756.31 0.853 3101.34 0.877 2030.57

GVAR-NG 0.871 4496.99 0.891 3819.25 0.915 2920.52

GVAR-CP 1.017 4353.78 0.925 3948.39 0.950 3362.14
FAVAR-F1 0.869 4668.31 0.886 3914.38 0.934 2711.59

FAVAR-F3 0.861 4893.68 0.872 4035.68 0.900 2573.57

AR(1) 1.000 4863.63 1.000 4076.00 1.000 3311.89

Notes: Model abbreviations as in Table 3.1. LPSs reflect the sum over the whole out-of-sample
period. RMSEs are calculated across countries and variable types and relative to the AR(1) process.
Respective maximum (LPSs) and minimum values (RMSEs) are in bold
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The best performing model PVAR-noDI still outperforms the univariate benchmark
by roughly 15%. It is worth mentioning that forecasts of the single country
BVAR (BVAR) outperform forecasts of the AR(1) benchmark. However, exploiting
information from the cross-section and introducing restrictions of some form seem
to improve upon the high-dimensional VAR model.

In terms of density forecasts, the LPSs in Table 3.2 indicate that the AR(1)
benchmark is hard to beat across all forecasting horizons considered. Starting with
the one-quarter ahead scores, we observe that the FAVAR specifications produce
the most accurate density forecasts, displaying the highest value for the three-
factor specification. The joint LPS for the univariate competitor is close to the
best performing model and outperforms all other multivariate models. It is worth
mentioning that multiple approaches extracting information from the cross-section
improve upon standard large BVAR methodology. In the two-quarter ahead case
we observe an overall lower level of LPSs, and no multivariate model outperforms
the benchmark, even though FAVAR-F3 and PVAR-noDI are in close range to the
AR(1) model. For the 1-year ahead forecasts, GVAR-CP outperforms the AR(1),
with PVAR-noDI also showing a comparable LPS.

To provide some evidence which periods drive the differences in performance
for density forecasts, we present LPSs of the competing models for the one-quarter
ahead horizon over time in Fig. 3.2. The left panel shows LPS scores for each point
in time, while the right panel depicts the cumulative sum over all periods. A first
observation regarding LPS over time is that they appear to be fluctuating more for
some models than others. The FAVAR specification using three factors outperforms
its competitors in most periods. A second observation refers to the behavior of LPSs
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Fig. 3.2 Log-predictive scores of one-quarter ahead forecasts. Notes: Model abbreviations as in
Table 3.1. The left panel refers to the log-predictive likelihood at the given point in time by period.
The right panel depicts the cumulative sum over all periods
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during the global financial crisis. All considered models show large decreases in
density forecasting performance around this period, with FAVAR-F3 exhibiting the
weakest forecasting performance. Turning to the cumulative scores, two points are
worth noting. First, as suggested by examining LPS scores over time, the FAVAR
with three factors appears to strongly outperform its competitors up to the outbreak
of the global financial crisis. Afterwards, its performance deteriorates considerably
relative to the other competing models. The other approaches are similar at a level
slightly below the top performers, except for BVAR and PVAR-DI that display
inferior overall log scores.

Forecasts for Individual Countries

Following the discussion of performance measures over time, we now focus on
forecasts for inflation per country. To provide an overview of model-specific
characteristics of resulting forecasts, we present the forecasts for the USA over the
holdout period for the PVAR-noDI, GVAR-NG, and FAVAR-F3 alongside the realized
time series in Fig. 3.3 for the one-quarter and 1-year ahead horizon. We choose these
three models based on their performance relative to the competitors.

One−year ahead

1. PVAR−noDI

One−year ahead

2. GVAR−NG

One−year ahead

3. FAVAR−F3

One−quarter ahead

1. PVAR−noDI

One−quarter ahead

2. GVAR−NG

One−quarter ahead

3. FAVAR−F3

2000 2005 2010 2000 2005 2010 2000 2005 2010

−0.01

0.00

0.01

0.02

−0.01

0.00

0.01

0.02

Fig. 3.3 Forecasts for US inflation over the holdout sample. Notes: The gray shaded area covers
the interval between 16th and 84th percentile of the posterior predictive density, with the dashed
line indicating the posterior median. The thicker black line are the realized values for inflation. The
upper three panels are based on the one-quarter ahead forecasts, while the lower three refer to the
1-year ahead horizon



86 M. Feldkircher et al.

Figure 3.3 presents the median of the predictive density alongside the 68%
posterior coverage interval in gray. For the one-quarter ahead forecasts, we observe
similar predictive densities in terms of the mean and the precision for the PVAR
and GVAR. The FAVAR differs drastically in terms of the estimation precision,
which can be explained by the fact that for the PVAR and GVAR, we have 21
endogenous variables resulting in a much larger parameter space compared to
that of the six endogenous variables of the FAVAR. Time variation in the error
variances translates into differences in the forecast precision over time, mirrored
by the tighter error bands in the period before the global financial crisis, and wider
predictive densities afterwards. For the 1-year ahead horizon, we observe again
similar density forecasts for the PVAR and GVAR. Compared to the one-quarter
ahead predictions, movements in median predictions are much less pronounced.
For the FAVAR specification, we now observe much wider error bands, reflecting
higher uncertainty surrounding the forecasts. It is worth mentioning that for the
FAVAR, movements in the median predictions appear to more closely track the
actual evolution of inflation, especially at the beginning of the holdout sample and
during the global financial crisis.

Table 3.3 contains RMSEs for inflation across all countries for the one-quarter
and 1-year ahead horizon. One takeaway here is that no specification strictly
dominates the others across countries or forecasting horizon. For the one-quarter
ahead predictions, we observe improvements upon the univariate benchmark for
all countries except the United Kingdom. For Canada, Germany, and the USA,
the PVAR without dynamic interdependencies performs best, with improvements of
around 10% for the first two countries, and 5% for the latter. For France, Italy, and
especially Japan, we observe large improvements against the AR(1) for PVAR-DI,
with RMSEs for Japan being 21.2% lower than for the benchmark. While the other
approaches appear to perform similarly, the GVAR-CP performs poorly across all
countries, with RMSEs up to twice as large as those of the AR(1) process. Turning to
the 1-year ahead horizon, we find that for Germany and France none of the proposed
multi-country models is able to outperform the naive benchmark. The GVAR with
normal-gamma shrinkage prior performs best relative to the AR(1) specification for
Canada and the USA, while we find particularly strong improvements for Japan with
PVAR-noDI (22.4% lower RMSEs) and France for PVAR-DI (15.9% lower).

The final set of results addresses the performance for inflation forecasts across
countries in terms of the predictive density. The results are depicted in Table 3.4,
again for one-quarter and 1-year ahead. In this context, the multi-country framework
apparently does not yield large improvements against the AR(1) benchmark. In fact,
for France and the USA, the univariate forecast produces the highest log-predictive
score. For Canada, Germany, and Italy, modest improvements are observable. The
only somewhat substantive improvement occurs for Japan using the GVAR-NG
specification. Considering 1-year ahead forecasts, we observe larger improvements
for Canada (GVAR-NG), the United Kingdom (PVAR-DI), and Japan (PVAR-
noDI). Minor improvements are detectable for France and Italy, while the AR(1)
benchmark is superior against all competing models for Germany and the USA at
this horizon.
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Table 3.3 Root mean squared error for inflation forecasts

One-quarter ahead

Model CA DE FR GB IT JP US

BVAR-SC 0.963 0.995 1.056 1.028 1.019 0.953 0.990

BVAR 0.940 0.989 0.989 1.018 0.964 0.894 0.971

PVAR-noDI 0.913 0.904 1.004 1.105 0.931 0.862 0.945
PVAR-DI 0.934 0.942 0.933 1.058 0.931 0.788 0.965

GVAR-NG 0.947 0.969 0.960 1.058 0.944 0.802 0.949

GVAR-CP 1.384 1.816 1.932 1.921 1.852 1.748 1.308

FAVAR-F1 0.944 1.030 1.056 1.029 1.035 0.965 0.994

FAVAR-F3 0.937 0.973 1.028 1.021 0.996 0.944 1.005

AR(1) 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1-year ahead

Model CA DE FR GB IT JP US

BVAR-SC 0.967 1.108 1.092 1.030 1.088 0.938 1.043

BVAR 0.920 1.146 0.964 1.017 0.955 0.834 0.966

PVAR-noDI 0.920 1.077 1.021 1.251 0.926 0.776 0.944

PVAR-DI 0.904 1.120 0.841 1.027 0.916 0.881 0.992

GVAR-NG 0.901 1.105 0.932 1.188 0.985 0.788 0.936
GVAR-CP 1.133 1.522 1.236 1.475 1.336 1.207 1.090

FAVAR-F1 0.962 1.147 1.085 1.036 1.075 0.914 1.059

FAVAR-F3 0.919 1.074 1.030 1.105 1.024 0.909 1.025

AR(1) 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Notes: Model abbreviations as in Table 3.1. RMSEs are presented relative to the AR(1) process.
Respective minimum values are in bold

Concluding the forecasting exercise, a few points are worth noting. First, fore-
casting performance measures may yield different rankings of competing models,
depending on whether one is interested in point or density forecasts. Second,
there is seldom one specification that is strictly superior for all variables and
countries over time. Finally, exploiting the cross-sectional structure to obtain more
precise estimates in large scale VAR models if applicable usually pays off in terms
of forecasting, with gains ranging from substantial to modest depending on the
specifics of the forecasting application.

3.4 Summary

In this chapter we have summarized three prominent frameworks to deal with large
data repeated from the cross-section, the panel vector autoregressive (PVAR) model,
the global vector-autoregressive (GVAR) model, and the factor augmented vector
autoregressive (FAVAR) model. We illustrate all three approaches by means of a
small forecasting exercise. We find that different forms of multi-country models
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Table 3.4 Log-predictive scores for inflation forecasts

One-quarter ahead

Model CA DE FR GB IT JP US

BVAR-SC 222.40 253.98 249.37 250.04 248.9 245.84 219.91

BVAR 222.46 250.12 251.32 253.75 254.32 245.11 211.01

PVAR-noDI 228.91 256.69 250.78 245.72 256.65 252.79 212.24

PVAR-DI 218.59 249.12 248.70 246.56 245.00 252.70 201.95

GVAR-NG 225.07 251.01 253.33 250.46 250.47 252.99 214.64

GVAR-CP 214.27 238.00 232.81 235.25 226.16 236.06 195.05

FAVAR-F1 223.48 252.98 249.26 249.08 247.15 244.85 216.98

FAVAR-F3 223.47 253.16 249.95 247.21 248.95 246.28 215.83

AR(1) 225.02 255.29 255.04 253.07 256.21 244.31 226.96
1-year ahead

Model CA DE FR GB IT JP US

BVAR-SC 213.47 239.98 220.66 225.83 222.41 228.33 213.15

BVAR 213.00 234.52 225.41 231.80 227.56 229.74 207.11

PVAR-noDI 218.38 240.74 217.71 217.70 231.52 242.97 208.58

PVAR-DI 212.34 230.35 228.21 231.82 226.27 230.68 190.83

GVAR-NG 218.93 238.94 230.25 227.35 228.27 240.25 216.53

GVAR-CP 208.51 225.11 219.06 220.23 217.83 220.54 206.63

FAVAR-F1 213.00 239.36 218.45 226.46 223.85 226.37 209.94

FAVAR-F3 215.06 240.75 222.71 223.59 222.44 230.15 212.11

AR(1) 213.91 241.68 227.89 225.65 231.10 227.76 221.30

Notes: Model abbreviations as in Table 3.1. LPSs reflect the sum over the holdout sample.
Respective maximum values are in bold

excel depending on the forecast horizon, the variable set of interest, and the measure
of forecast evaluation (point versus density forecasts). More importantly though and
irrespective of the preferred multi-country framework, our results demonstrate that
taking information from the cross-section into account clearly improves forecasts
over models that focus on domestic data only.

Appendix A: Details on Prior Specification

Priors for the BVAR and FAVAR Coefficients
The Minnesota prior pushes the system of equations towards a multivariate random
walk, featuring cross-variable and cross-equation shrinkage. We follow a data-
driven approach to select the amount of shrinkage applied, by imposing Gamma
distributed priors on the hyperparameter governing how tight the prior is on the own
lags of a variable, and the hyperparameter related to shrinkage of the lags of other
variables in the system. Different ranges of the endogenous variables are reflected
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in the prior by scaling it based on standard deviations obtained from univariate
autoregressive processes of order one for all series.

A similar Minnesota prior is used for estimating the state-equation of the
country-specific FAVAR models. We consider extracting one factor (FAVAR-F1)
and three factors (FAVAR-F3) for the forecasting exercise, respectively. For the
factors and factor loadings we employ standard Gaussian priors and simulate the
related quantities using the forward filtering backward sampling algorithm by Chris
and Kohn (1994) and Frühwirth-Schnatter (1994). The errors in the measurement
equation are assumed to have zero mean with a diagonal variance-covariance
matrix. On the corresponding diagonal elements, we impose independent weakly
informative inverse Gamma priors.

Variance Estimation for BVARs and FAVARs
Turning to modeling the variance-covariance matrix of the VAR processes that
allows for heteroscedasticity, we employ analogous stochastic volatility specifica-
tions for the BVAR, BVAR-SC, FAVAR-F1, and FAVAR-F3. A complete treatment
of stochastic volatility models is out of scope of this chapter, the interested reader
is referred to Jacquier, Polson, and Rossi (2002). Let �t be a generic variance-
covariance matrix applicable to all specifications. This matrix may be decomposed
into

�t = H−1St (H
−1)′,

with H−1 denoting a square lower triangular matrix with ones on the main diagonal
of appropriate dimension. Time variation stems from the elements of St , a diagonal
matrix with characteristic elements sit . A stochastic volatility specification results
assuming the logarithm of sit for all i follows an AR(1) process

ln(sit ) = μi + ρi (ln(sit )−μi)+ νit , νit ∼ N(0, ς2
i ), (3.8)

where μi , ρi , and ς2 denote the unconditional mean, persistence parameter, and
innovation variance of this state equation. For the purposes of this forecasting
exercise, we rely on the R-package stochvol for estimation and use its default
prior settings (Kastner, 2016). For the free elements of H−1, weakly informative
independent Gaussian priors with zero mean are employed. Combining the likeli-
hood with the respective priors yields conditional posterior distributions to be used
in a Gibbs sampler with most of the involved quantities being of standard form (for
detailed information, see for instance Koop, 2003).

Priors for the PVAR and GVAR Coefficients
The priors and model specifics for the PVAR and the GVAR specifications are
designed to account for dynamic interdependencies using a shrinkage priors and
static interdependencies via factor stochastic volatility. Moreover, we introduce
a prior to be used for extracting information across countries, reflecting cross-
sectional homogeneity. For the domestic coefficients of the PVAR variants (PVAR
and PVAR-DI) and for all coefficients of GVAR-CP, we stack the coefficients
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specific to country i in a column vector ai . We assume the country-specific
coefficients to be homogenous across cross-sectional observations with deviations
governed by an error wi , cast in regression form as

ai = a +wi , wi ∼ N(0, V ),

with variance-covariance matrix V assumed to be diagonal with characteristic
elements vj . Notice that vj governs the degree of heterogeneity of coefficients
across countries. The specification above may be written in terms of the prior
distribution on the country-specific coefficients as ai ∼ N(a, V ). As priors on the
common mean we use a ∼ N(0, 10× I ), and for vj ∼ G(0.01, 0.01).

For the non-domestic coefficients of PVAR-DI and for all coefficients of GVAR,
we use a normal-gamma shrinkage (NG, Griffin & Brown, 2010) prior. This prior is
among the class of absolutely continuous global-local shrinkage priors and mimics
the discrete stochastic search variable selection (SSVS, George & McCulloch, 1993;
George et al., 2008) prior discussed in Chap. 4 of this volume. We choose the NG
prior rather than the SSVS prior due to its advantageous empirical properties in high-
dimensional model spaces (for an application in the VAR context that we base the
hyperparameter values on, see Huber & Feldkircher, 2019). The global parameter of
the hierarchical prior setup strongly pushes all coefficients towards zero, while local
parameters allow for a priori non-zero idiosyncratic coefficients if suggested by the
data likelihood. Intuitively, this prior allows for stochastic selection of inclusion
and exclusion of VAR coefficients. The specification PVAR rules out all dynamic
interdependencies a priori.

Factor Stochastic Volatility for Variance Estimation
Rather than decomposing the variance-covariance matrix as in the context of the
BVAR and FAVAR specifications, we structure the stacked K-dimensional error
vector εt for all countries in the PVAR and GVAR case as follows. We specify

εt = �F t + ηt , F t ∼ N(0, H t ), ηt ∼ N(0, �t ),

with F t denoting a set ofQ latent dynamic factors following a Gaussian distribution
with zero mean and time-varying diagonal variance-covariance matrix H t =
diag(h1t , . . . ,hQt ). � is a K ×Q matrix of factor loadings, linking the unobserved
low-dimensional factors to the high dimensional error term εt . The vector ηt is
a K-vector of idiosyncratic errors that is normally distributed with zero mean
and diagonal variance covariance matrix �t = diag(ω1t , . . . ,ωKt ). This setup
implies that E(εtε′t ) = �H t�

′ + �t . By the assumed diagonal structure of �t ,
this translates to the covariances being driven by the respective factor loadings
in �. Static interdependencies can, for instance, be tested by imposing a suitable
shrinkage prior on the elements of this matrix.
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It remains to specify the law of motion on the respective logarithm of the diagonal
elements of H t and �t . Here, we assume

ln(hjt ) = μhj + ρhj (ln(hjt )−μh)+ νhjt , νhjt ∼ N(0, ς2
hj )

ln(ωlt ) = μωl + ρωl(ln(ωlt )−μωl)+ νωlt , νωlt ∼ N(0, ς2
ωl),

for j = 1, . . . ,Q and l = 1, . . . ,K , with the specification and parameters to be
understood analogous to Eq. (3.8). Again we employ the R-package stochvol
for estimation and use its default prior settings (Kastner, 2016) for the AR(1) state
equations. For the elements of the factor loadings matrix, we impose independent
normally distributed priors with zero mean and unit variance. The latent factors are
simulated using a forward filter backward sampling algorithm (Chris & Kohn, 1994;
Frühwirth-Schnatter, 1994) similar to the one employed for sampling the factors in
the context of the FAVAR specifications.
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Chapter 4
Large Bayesian Vector Autoregressions

Joshua C. C. Chan

4.1 Introduction

Vector autoregressions (VARs) are the workhorse models for empirical macroeco-
nomics. They were introduced to economics by Sims (1980), and have since been
widely adopted for macroeconomic forecasting and structural analysis. Despite their
simple formulation, VARs often forecast well, and are used as the benchmark for
comparing forecast performance of new models and methods. They are also used to
better understand the impacts of structural shocks on key macroeconomic variables
through the estimation of impulse response functions.

VARs tend to have a lot of parameters. Early works by Doan, Litterman, and Sims
(1984) and Litterman (1986) on Bayesian methods that formally incorporate non-
data information into informative priors have often been found to greatly improve
forecast performance. However, until recently, most empirical work had considered
only small systems that rarely include more than a few dependent variables.

This has changed since the seminal work of Banbura, Giannone, and Reichlin
(2010), who found that large Bayesian VARs with more than two dozen of
dependent variables forecast better than small VARs. This has generated a rapidly
expanding literature on using large Bayesian VARs for forecasting and structural
analysis; recent papers include Carriero, Kapetanios, and Marcellino (2009), Koop
(2013), and Carriero, Clark, and Marcellino (2015a). Large Bayesian VARs thus
provide an alternative to factor models that are traditionally used to handle large
datasets (e.g., Stock & Watson, 2002; Forni, Hallin, Lippi, and Reichlin, 2003). For
more applications and examples that naturally give rise to large VARs, see Chapter
3 on VARs designed for multi-country data.
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There are by now many extensions of small VARs that take into account salient
features of macroeconomic data, the most important of which being time-varying
volatility (Cogley & Sargent, 2005; Primiceri, 2005). How best to construct large
VARs with time-varying volatility is an active research area, and has generated
many new approaches, such as Koop and Korobilis (2013), Carriero, Clark, and
Marcellino (2015b, 2016), and Chan (2018).

There are two key challenges in estimating large VARs. First, large VARs
typically have far more parameters than observations. Without appropriate shrinkage
or regularization, parameter uncertainty would make forecasts or any analysis
unreliable. Second, estimation of large VARs involves manipulating large matrices
and is typically computationally intensive. These two challenges are exacerbated
when we extend large VARs to allow for more flexible error covariance structures,
such as time-varying volatility.

In what follows, we first study methods to tackle these two challenges in the
context of large homoscedastic VARs. We will then discuss a few recent models
that incorporate stochastic volatility into large VARs and the associated estimation
methods.

4.1.1 Vector Autoregressions

We first consider a standard homoscedastic VAR of order p. Let yt = (y1t , . . . , ynt )′
denote the n× 1 vector of dependent variables at time t . Then, the basic VAR(p) is
given by

yt = b+A1yt−1 + · · · +Apyt−p + εt , (4.1)

where b is an n× 1 vector of intercepts, A1, . . . , Ap are n× n coefficient matrices,
and εt ∼ N(0, �). In other words, the VAR(p) is simply a multiple-equation
regression where the regressors are the lagged dependent variables. Specifically,
there are n equations and each equation has k = np + 1 regressors—so there are a
total of nk = n2p+ n VAR coefficients. With typical quarterly data, the number of
VAR coefficients can be more than the number of observations when n is large.

The model in (4.1) runs from t = 1 to t = T , and it depends on the p
initial conditions y−p+1, . . . , y0. In principle these initial conditions can be modeled
explicitly. Here all the analysis is done conditioned on these initial conditions. If the
series is not too short, both approaches typically give similar results.

There are two common ways to stack the VAR(p) in (4.1) over t = 1, . . . , T . In
the first representation, we rewrite the VAR(p) as:

yt = Xtβ + εt ,

where Xt = In ⊗ [1, y′t−1, . . . , y′t−p] with ⊗ denoting the Kronecker product and
β = vec([b, A1, . . . , Ap]′)—i.e., the intercepts and VAR coefficient matrices are
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stacked by rows into a nk × 1 vector. Furthermore, stacking y = (y′1, . . . , y′T )′, we
obtain

y = Xβ + ε, (4.2)

where X = (X′1, . . . , X′T )′ is a T n× nk matrix of regressors and ε ∼ N(0, IT ⊗�).
In the second representation, we first stack the dependent variables into a T × n

matrix Y so that its t-th row is y′t . Now, let Z be a T × k matrix of regressors, where
the t-th row is x′t = (1, y′t−1, . . . , y′t−p). Next, let A = (b, A1, . . . , Ap)′ denote the
k× n matrix of VAR coefficients. Then, we can write the VAR(p) as follows:

Y = ZA+U, (4.3)

where U is a T × nmatrix of innovations in which the t-th row is ε′t . In terms of the
first representation in (4.2), y = vec(Y′), β = vec(A), and ε = vec(U′). It follows
that

vec(U) ∼ N(0, � ⊗ IT ). (4.4)

4.1.2 Likelihood Functions

Next we derive the likelihood functions implied by the two equivalent representa-
tions of the VAR(p), namely (4.2) and (4.3).

Using the first representation of the VAR(p) in (4.2), we have

(y |β, �) ∼ N(Xβ, IT ⊗�).

Therefore, the likelihood function is given by

p(y |β, �) = (2π)− T n2 |(IT ⊗�)|− 1
2 e−

1
2 (y−Xβ)′(IT⊗�)−1(y−Xβ)

= (2π)− T n2 |�|− T2 e−
1
2 (y−Xβ)′(IT⊗�−1)(y−Xβ), (4.5)

where the second equality holds because |IT ⊗ �| = |�|T and (IT ⊗ �)−1 =
IT ⊗�−1.

Since the two representations of the VAR(p) are equivalent, the likelihood
implied by (4.3) should be the same as in (4.5). In what follows we rewrite (4.5)
in terms of Y, Z, and A. To do that, we need the following results: for conformable
matrices B, C, D, we have

vec(BCD) = (D′ ⊗B)vec(C), (4.6)

tr(B′C) = vec(B)′vec(C), (4.7)

tr(BCD) = tr(CDB) = tr(DBC), (4.8)
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where tr(·) is the trace function.
Noting that y−Xβ = ε = vec(U′), we now rewrite the quadratic form in (4.5)

as

(y−Xβ)′(IT ⊗�−1)(y−Xβ) = vec(U′)′(IT ⊗�−1)vec(U′)

= vec(U′)′vec(�−1U′)

= tr(U�−1U′)

= tr(�−1U′U),

where the second equality holds because of (4.6); the third equality holds because
of (4.7); and the last equality holds because of (4.8). Using this representation
of the quadratic form and U = Y − ZA, the likelihood implied by the second
representation in (4.3) is therefore given by

p(Y |A, �) = (2π)− T n2 |�|− T2 e−
1
2 tr
(
�−1(Y−ZA)′(Y−ZA)

)
. (4.9)

4.2 Priors for Large Bayesian VARs

What makes Bayesian VARs Bayesian is the use of informative priors that incorpo-
rate non-data information. As mentioned in the introduction, VARs tend to have a
lot of parameters, and large VARs exacerbate this problem. For example, a VAR(4)
with n = 20 dependent variables has 1620 VAR coefficients, which is much larger
than the number of observations in typical quarterly datasets. Without informative
priors or regularization, it is not even possible to estimate the VAR coefficients.

In this section we discuss a range of informative priors that are found useful in
the context of large VARs. One common feature of these priors is that they aim to
“shrink” an unrestricted VAR to one that is parsimonious and seemingly reasonable.
These priors differ in how they achieve this goal, and whether they lead to analytical
results or simpler Markov chain Monte Carlo (MCMC) algorithms for estimating the
posterior distributions. In addition, they also differ in how easily they can be applied
to more flexible VARs, such as VARs with stochastic volatility.

4.2.1 The Minnesota Prior

Shrinkage priors in the context of small VARs were first developed by
Doan et al. (1984) and Litterman (1986). Due to their affiliations with the University
of Minnesota and the Federal Reserve Bank of Minneapolis at that time, this family
of priors is commonly called Minnesota priors. It turns out that Minnesota priors
can be directly applied to large VARs. This approach uses an approximation that
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leads to substantial simplifications in prior elicitation. Below we present a version
discussed in Koop and Korobilis (2010).

To introduce the Minnesota priors, we use the first representation of the VAR
with likelihood given in (4.5). Here the model parameters consist of two blocks: the
VAR coefficients β and the error covariance matrix �. Instead of estimating �, the
Minnesota prior replaces it with an estimate �̂ obtained as follows.

We first estimate an AR(p) for each of the n variables separately. Let s2
i denote

the sample variance of the residuals for the i-th equation. Then, we set �̂ =
diag(s2

1 , . . . , s2
n). As we will see below, the main advantage of this approach is that

it simplifies the computations—often MCMC is not needed for posterior analysis
or forecasts. One main drawback, however, is that here we replace an unknown
quantity � by a potentially crude estimate �̂. This approach therefore ignores
parameter uncertainty—instead of tackling it by integrating out the unknown
parameters with respect to the posterior distribution. As such, this approach often
produces inferior density forecasts.

With � being replaced by an estimate, the only parameters left are the VAR
coefficients β. Now, consider the following normal prior for β:

β ∼ N(βMinn, VMinn).

The Minnesota prior sets sensible values for βMinn and VMinn in a systematic
manner. To explain the prior elicitation procedure, first note that β consists of three
groups of parameters: intercepts, coefficients associated with a variable’s own lags,
and coefficients associated with lags of other variables.

The prior mean βMinn is typically set to zero for growth rates data, such as
GDP growth rate or inflation rate. This prior mean provides shrinkage for VAR
coefficients, and reflects the prior belief that growth rates data are typically not
persistent. For levels data such as money supply or consumption level, βMinn is set
to be zero except the coefficients associated with the first own lag, which are set to
be one. This prior incorporates the belief that levels data are highly persistent—
particularly, it expresses the preference for a random walk specification. Other
variants, such as specifying a highly persistent but stationary process, are also
commonly used.

The Minnesota prior sets the prior covariance matrix VMinn to be diagonal; the
exact values of the diagonal elements in turn depend on three key hyperparameters,
c1, c2, and c3. Now consider the coefficients in the i-th equation. First, for a
coefficient associated with the i-th variable’s own lag l, l = 1, . . . ,p, its variance is
set to be c1/l2. That is, the higher the lag length, the higher the degree of shrinkage
(either to zero or to unity). Second, for a coefficient associated with the l-th lag of
variable j , j �= i, its variance is set to be c2s

2
i /(l2s2

j ). In other words, in addition
to applying higher level of shrinkage to higher lag length, the prior variance also
adjusts for the scales of the variables. Lastly, the variance of the intercept is set to
be c3. The Minnesota prior therefore turns a complicated prior elicitation task into
setting only three hyperparameters. There are by now many different variants of the
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Minnesota prior; see, e.g., Kadiyala and Karlsson (1997) and Karlsson (2013) for
additional discussion.

Estimation
Estimation under the Minnesota prior is straightforward; that is, one of the main
appeals of the Minnesota prior. Recall that � is replaced by an estimate �̂, and we
only need to estimate β. Given the VAR representation in (4.2) and the normal prior
β ∼ N(βMinn, VMinn), standard linear regression results give

(β | y) ∼ N(β̂, K−1
β ),

where

Kβ = V−1
Minn +X′(IT ⊗ �̂

−1
)X, β̂ = K−1

β

(
V−1

MinnβMinn +X′(IT ⊗ �̂
−1
)y
)

,

and we have replaced � by the estimate �̂. In particular, the posterior mean of β

is β̂, and we would only need to compute this once instead of tens of thousands of
times within a Gibbs sampler.

When the number of variables n is large, however, computations might still
be an issue because β̂ is of dimension nk × 1 with k = np + 1. In those cases,
inverting the nk × nk precision matrix Kβ to obtain the covariance matrix K−1

β is

computationally intensive. It turns out that to obtain β̂, one need not compute the
inverse K−1

β explicitly. To that end, we introduce the following notations: given a
non-singular square matrix B and a conformable vector c, let B\c denote the unique
solution to the linear system Bz = c, i.e., B\c = B−1c. When B is lower triangular,
this linear system can be solved quickly by forward substitution. When B is upper
triangular, it can be solved by backward substitution.1

Now, we first compute the Cholesky factor CKβ
of Kβ such that Kβ = CKβ

C′Kβ
.

Then, compute

C′Kβ
\
(

CKβ
\(V−1

MinnβMinn +X′(IT ⊗ �̂
−1
)y)
)

by forward then backward substitution.2 Then, by construction,

(C′Kβ
)−1C−1

Kβ
(V−1

MinnβMinn +X′(IT ⊗ �̂
−1
)y)

= (CKβ
C′Kβ

)−1(V−1
MinnβMinn +X′(IT ⊗ �̂

−1
)y)

= β̂.

This alternative way to obtain β̂ is substantially faster when n is large.

1Forward and backward substitutions are implemented in standard packages such as MATLAB,
GAUSS, and R. In MATLAB, for example, it is done by mldivide(B, c) or simply B\c.
2Since VMinn is diagonal, its inverse is straightforward to compute.
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4.2.2 The Natural Conjugate Prior

The original Minnesota prior discussed in Sect. 4.2.1 replaces the error covariance
matrix � with an estimate—and in doing so ignores parameter uncertainty associ-
ated with �. That approach substantially simplifies the computations at the expense
of the quality of density forecasts. In this section we introduce the natural conjugate
prior for the VAR coefficients and �. This prior retains much of the computational
tractability of the Minnesota prior, but it explicitly treats � to be an unknown
quantity to be estimated.

To introduce the natural conjugate prior, we use the second representation of
the VAR with likelihood given in (4.9). Now the model parameters consist of two
blocks: the error covariance matrix � as before and the VAR coefficients organized
into the k × n matrix A. The natural conjugate prior is a joint distribution for
(vec(A), �). To describe its specific form, we first need to define the following
distributions.

An n× n random matrix � is said to have an inverse-Wishart distribution with
shape parameter ν > 0 and scale matrix S if its density function is given by

f (�; ν, S) = |S|ν/2

2nν/2�n(ν/2)
|�|− ν+n+1

2 e−
1
2 tr(S�−1),

where �n is the multivariate gamma function. We write � ∼ IW(ν, S). For ν >
m+ 1, E� = S/(ν −m− 1).

Next, an m× n random matrix W and an n× n random matrix � are said to
have a normal-inverse-Wishart distribution with parameters M, P, S, and ν if
(vec(W) |�) ∼ N(vec(M), � ⊗ P) and � ∼ IW(ν, S). We write (W, �) ∼
NIW(M, P, ν, S). The kernel of the normal-inverse-Wishart density function is
given by

f (W, �;M, P, ν, S) ∝ |�|− ν+m+n+1
2 e−

1
2 tr(�−1(W−M)′P−1(W−M))e−

1
2 tr(�−1S).

(4.10)

To derive this density function from the definition, first note that

[vec(W−M)]′(�⊗ P)−1vec(W−M) = [vec(W−M)]′(�−1 ⊗ P−1)vec(W−M)

= [vec(W−M)]′vec(P−1(W−M)�−1)

= tr((W−M)′P−1(W−M)�−1)

= tr(�−1(W−M)′P−1(W−M)).

In the above derivations, the second equality holds because of (4.6); the third
equality holds because of (4.7); and the last equality holds because of (4.8).
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Now, from the definition, the joint density function of (vec(W), �) is given by

f (W, �) ∝ |�|− ν+n+1
2 e−

1
2 tr(S�−1) × |�⊗ P|− 1

2 e−
1
2 [vec(W−M)]′(�⊗P)−1vec(W−M)

= |�|− ν+m+n+1
2 e−

1
2 tr(�−1S)e−

1
2 tr(�−1(W−M)′P−1(W−M)),

where we have used the fact that |�⊗ P| = |�|m|P|n. This proves that the joint
density function of (vec(W), �) has the form given in (4.10).

By construction, the marginal distribution of � is IW(ν, S). It turns out that the
marginal distribution of vec(W) unconditional on � is a multivariate t distribution.
For more details, see, e.g., Karlsson (2013).

Now we consider the following normal-inverse-Wishart prior on (A, �):

� ∼ IW(ν0, S0), (vec(A) |�) ∼ N(vec(A0), � ⊗VA).

That is, (vec(A), �) ∼ NIW(vec(A0), VA, ν0, S0) with joint density function

p(A, �) ∝ |�|− ν0+n+k+1
2 e−

1
2 tr(�−1S0)e

− 1
2 tr
(
�−1(A−A0)

′V−1
A (A−A0)

)

. (4.11)

It turns out that the joint posterior distribution of (A, �) is also a normal-inverse-
Wishart distribution, as shown in the next section. Hence, this prior is often called
the natural conjugate prior. The hyperparameters of this prior are vec(A0), VA, ν0,
and S0. Below we describe one way to elicit these hyperparameters.

One often sets a small value for ν0 (say, n+ 2) so that the prior variance of � is
large—i.e., the prior is relatively uninformative. Given ν0, one then chooses a value
for S0 to match the desired prior mean of � via the equality E� = S0/(ν0 − n−
1). As for vec(A0) and VA, their values are chosen to mimic the Minnesota prior.
For example, vec(A0) is typically set to zero for growth rates data. For levels data,
vec(A0) is set to be zero except the coefficients associated with the first own lag,
which are set to be one.

Finally, to elicit VA, first note that given �, the prior covariance matrix of
vec(A) is � ⊗VA. This Kronecker structure implies cross-equation restrictions on
the covariance matrix, which is more restrictive than the covariance matrix VMinn
under the Minnesota prior. However, the advantage of this Kronecker structure is
that it can be exploited to speed up computations, which we will discuss in the next
section.

Following the example of the Minnesota prior, we choose VA to induce
shrinkage. Specifically, VA is assumed to be diagonal with diagonal elements
vA,ii = c1/(l2s2

r ) for a coefficient associated with the l-th lag of variable r and
vA,ii = c2 for an intercept, where s2

r is the residual sample variance of an AR(p)
model for the variable r . Similar to the Minnesota prior, we apply a higher degree
of shrinkage for a coefficient associated with a higher lag length. But contrary to the
Minnesota prior, here we cannot have different prior variances for a variable’s own
lag and the lag of a different variable due to the Kronecker structure.
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Estimation
In this section we discuss the estimation of A and � under the natural conjugate
prior. As mentioned earlier, the posterior distribution of A and � turns out to be the
normal-inverse-Wishart distribution as well. To see this, we combine the likelihood
given in (4.9) and the natural conjugate prior in (4.11) to get

p(A, � |Y) ∝ p(A, �)p(Y |A, �)

∝ |�|− ν0+n+k+1
2 e−

1
2 tr(�−1S0)e

− 1
2 tr
(
�−1(A−A0)

′V−1
A (A−A0)

)

× |�|− T2 e−
1
2 tr
(
�−1(Y−ZA)′(Y−ZA)

)

∝ |�|− ν0+n+k+T+1
2 e−

1
2 tr(�−1S0)e

− 1
2 tr
[
�−1

(
(A−A0)

′V−1
A (A−A0)+(Y−ZA)′(Y−ZA)

)]

.
(4.12)

The last line looks almost like the kernel of the normal-inverse-Wishart density
function in (4.10)—the only difference is that here we have two quadratic terms
involving A instead of one. If we could somehow write the sum

(A−A0)
′V−1

A (A−A0)+ (Y−ZA)′(Y−ZA)

as (A− Â)′KA(A− Â) for some k × n matrix Â and k × k symmetric matrix KA,
then p(A, � |Y) is a normal-inverse-Wishart density function.

To that end, below we do a matrix version of “completing the square”:

(A−A0)
′V−1

A (A−A0)+ (Y−ZA)′(Y−ZA)

= (A′V−1
A A− 2A′V−1

A A0 +A′0V−1
A A0)+ (A′Z′ZA− 2A′Z′Y+Y′Y)

= A′(V−1
A +Z′Z)A− 2A′(V−1

A A0 +Z′Y)+ Â′KAÂ− Â′KAÂ+A′0V−1
A A0 +Y′Y

= (A− Â)′KA(A− Â)− Â′KAÂ+A′0V−1
A A0 +Y′Y, (4.13)

where

KA = V−1
A +Z′Z, Â = K−1

A (V
−1
A A0 +Z′Y).

Note that on the right-hand-side of the second equality, we judiciously add and
subtract the term Â′KAÂ so that we obtain one quadratic form in A.

Now, substituting (4.13) into (4.12), we have

p(A, � |Y) ∝ |�|− ν0+n+k+T+1
2 e−

1
2 tr(�−1S0)e

− 1
2 tr
[
�−1

(
(A−Â)′KA(A−Â)−Â′KAÂ+A′0V−1

A A0+Y′Y
)]

= |�|− ν0+n+k+T+1
2 e−

1
2 tr(�−1Ŝ)e−

1
2 tr[�−1(A−Â)′KA(A−Â)],
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where Ŝ = S0 + A′0V−1
A A0 + Y′Y − Â′KAÂ. Comparing this kernel with the

normal-inverse-gamma density function in (4.10), we conclude that

(A, � |Y) ∼ NIW(Â, K−1
A , ν0 + T , Ŝ).

In particular, the posterior means of A and � are respectively Â and Ŝ/(ν0+T − 1).
Other posterior moments can often be found by using properties of the normal-
inverse-Wishart distribution. When analytical results are not available, we can
estimate the quantities of interest by generating draws from the posterior distribution
p(A, � |Y). Below we describe a computationally efficient way to obtain posterior
draws.

Since (A, � |Y) ∼ NIW(Â, K−1
A , ν0 + T , Ŝ), we can sample A and � in two

steps. First, we draw � marginally from (� |Y) ∼ IW(ν0+ T , Ŝ). Then, given the
sampled �, we simulate from the conditional distribution

(vec(A) |Y, �) ∼ N(vec(Â), � ⊗K−1
A ).

Here note that the covariance matrix � ⊗K−1
A is of dimension nk = n(np + 1),

and sampling from this normal distribution using conventional methods—e.g.,
computing the Cholesky factor of the covariance matrix � ⊗K−1

A —would involve
O(n6) operations. This is especially computationally intensive when n is large. Here
we consider an alternative method with complexity of the order O(n3) only.

This more efficient approach exploits the Kronecker structure �⊗K−1
A to speed

up computation. In particular, it is based on an efficient sampling algorithm to draw
from the matrix normal distribution.3 We further improve upon this approach by
avoiding the computation of the inverse of the k× k matrix KA.

Recall that given a non-singular square matrix B and a conformable vector c, we
use the notation B\c to denote the unique solution to the linear system Bz = c, i.e.,
B\c = B−1c. Now, we first obtain the Cholesky decomposition CKA of KA such
that CKAC′KA

= KA. Then compute

C′KA
\(CKA\(V−1

A A0 +Z′Y))

by forward followed by backward substitution. By construction,

(C′KA
)−1(C−1

KA
(V−1

A A0 +Z′Y)) = (C′KA
CKA)

−1(V−1
A A0 +Z′Y) = Â.

3The algorithm of drawing from the matrix normal distribution is well-known, and is described
in the textbook by Bauwens, Lubrano, and Richard (1999, p.320). This algorithm is adapted in
Carriero et al. (2016) and Chan (2018) to estimate more flexible large Bayesian VARs.
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Next, let C� be the Cholesky decomposition of �. Then, compute

W1 = Â+ (C′KA
\U)C′� ,

where U is a k × n matrix of independent N(0, 1) random variables. In the
Appendix B we show that vec(W1) ∼ N(vec(Â), � ⊗K−1

A ) as desired.
Therefore, we have a computationally efficient way to sample from the posterior

distribution (A, � |Y) ∼ NIW(Â, K−1
A , ν0 + T , Ŝ). Note also that the algorithm

described above gives us an independent sample—unlike MCMC draws which are
correlated by construction.

4.2.3 The Independent Normal and Inverse-Wishart Prior

The main advantage of the natural conjugate prior is that analytical results are
available for posterior analysis and simulation is typically not needed. However,
it comes at a cost of restricting the form of prior variances on the VAR coefficients.
In this section we discuss an alternative joint prior for the VAR coefficients and
covariance matrix that is more flexible.

To that end, we use the first representation of the VAR with likelihood given
in (4.5). This joint prior on (β, �) is often called the independent normal and
inverse-Wishart prior, because it assumes prior independence between β and �,
i.e., p(β, �) = p(β)p(�). More specifically, we consider the form

β ∼ N(β0, Vβ), � ∼ IW(ν0, S0)

with prior densities

p(β) = (2π)− nk2 |Vβ |− 1
2 e−

1
2 (β−β0)

′V−1
β
(β−β0), (4.14)

p(�) = |S0|ν0/2

2nν0/2�n(ν0/2)
|�|− ν0+n+1

2 e−
1
2 tr(S0�

−1). (4.15)

The hyperparameters of this prior are β, Vβ , ν0, and S0. The values for ν0 and S0
can be chosen the same way as in the case of the natural conjugate prior. For β0 and
Vβ , we can set them to be the same as the Minnesota prior, i.e., β0 = βMinn and
Vβ = VMinn. Also note that in contrast to the natural conjugate prior, here Vβ , the
prior covariance matrix of the VAR coefficients, is not required to have a Kronecker
structure, and is therefore more flexible.

Estimation
As mentioned above, in contrast to the case of the natural conjugate prior, the
posterior distribution under the independent normal and inverse-Wishart prior is
non-standard, and posterior simulation is needed for estimation and forecasting.
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Below we derive a Gibbs sampler to draw from the posterior distribution p(β, � | y).
To that end, we derive the two full conditional distributions p(β | y, �) and
p(� | y, β).

Using the likelihood given in (4.5) and the prior on β given in (4.14), we note
that standard linear regression results would apply. In fact, we have

(β | y, �) ∼ N(β̂, K−1
β ),

where

Kβ = V−1
β +X′(IT ⊗�−1)X, β̂ = K−1

β

(
V−1

β β0 +X′(IT ⊗�−1)y
)

.

The main difficulty of obtaining a draw from N(β̂, K−1
β ) using conventional

methods is that computing the n(np + 1) × n(np + 1) inverse K−1
β is very

computationally intensive when n is large. But fortunately we can sample from
N(β̂, K−1

β ) without computing K−1
β explicitly. First, β̂ can be obtained by forward

and backward substitution as before. Second, we can use an alternative algorithm to
sample from N(β̂, K−1

β ) without computing K−1
β explicitly.

Algorithm 4.1 (Sampling from the Normal Distribution Given the Precision
Matrix) To generate R independent draws from N(μ, K−1) of dimension m, carry
out the following steps:

1. Compute the lower Cholesky factor B of K such that K = BB′.
2. Generate U = (U1, . . . ,Um)′ by drawing U1, . . . ,Um ∼ N(0, 1).
3. Return W = μ+ (B′)−1U.
4. Repeat Steps 2 and 3 independently R times.

To check that W ∼ N(μ, K−1), we first note that W is an affine transformation
of the normal random vector U, so it has a normal distribution. It is easy to check
that EW = μ. The covariance matrix of W is

Cov(W) = (B′)−1Cov(U)((B′)−1)′ = (B′)−1(B)−1 = (BB′)−1 = K−1.

Hence, W ∼ N(μ, K−1).
Using this algorithm to sample fromN(β̂, K−1

β ) allows us to avoid the expensive

computation of the inverse K−1
β . However, if Kβ is a dense matrix, this algorithm

still involves O(n6) operations. Hence, it is expected to be much slower than
simulations under the natural conjugate prior that involves only O(n3) operations.

Next, we derive the conditional distribution p(� | y, β). First note that the
likelihood in (4.5) can be equivalently written as

p(y |β, �) = (2π)− T n2 |�|− T2 e−
1
2

∑T
t=1(yt−Xtβ)′�−1(yt−Xtβ). (4.16)
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Now, combining (4.16) and the prior on � given in (4.15), we have

p(� | y, β) ∝ p(y |β, �)p(�)

∝ |�|− T2 e−
1
2

∑T
t=1(yt−Xtβ)′�−1(yt−Xtβ) × |�|− ν0+n+1

2 e−
1
2 tr(S0�

−1)

= |�|− ν0+n+T+1
2 e−

1
2 tr(S0�

−1)e−
1
2 tr[
∑T
t=1(yt−Xtβ)(yt−Xtβ)′�−1]

= |�|− ν0+n+T+1
2 e

− 1
2 tr
[(

S0+∑T
t=1(yt−Xtβ)(yt−Xtβ)′

)
�−1

]

,

which is the kernel of an inverse-Wishart density function. In fact, we have

(� | y, β) ∼ IW
(
ν0 + T , S0 +

T∑

t=1

(yt −Xtβ)(yt −Xtβ)′
)

. (4.17)

Hence, a Gibbs sampler can be constructed to simulate from the posterior
distribution by repeatedly drawing from p(β | y, �) and p(� | y, β).

4.2.4 The Stochastic Search Variable Selection Prior

Another popular shrinkage prior for the VAR coefficients is the so-called stochastic
search variable selection (SSVS) prior considered in George, Sun, and Ni (2008).
It is based on the independent normal and inverse-Wishart prior, but it introduces a
hierarchical structure for the normal prior on β. The main idea is to divide, in a data-
based manner, the elements in β into two groups: in the first group the coefficients
are shrunk strongly to zero, whereas they are not shrunk in the second group. In other
words, the “variable selection” part is done by setting the coefficients in the first
group to be close to zero, and only the variables in the second group are “selected.”
This partition is done stochastically in each iteration in the MCMC sampler, and
hence “stochastic search.”

Specifically, the elements of β are assumed to be independent, and each element
βj has a two-component mixture distribution with mixture weight qj ∈ (0, 1):

(βj | qj ) ∼ (1− qj )φ(βj ; 0, κ0j )+ qjφ(βj ; 0, κ1j ),

where φ(·;μ, σ 2) denotes the density function of the N(μ, σ 2) distribution. The
SSVS prior sets the first prior variance κ0j to be “small” and the second prior
variance κ1j to be large.

To see the partition more clearly, let us consider an equivalent latent variable
representation by introducing the indicator γj ∈ {0, 1} with success probability qj ,
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i.e., P(γj = 1 | qj ) = qj . Then, we can rewrite the above prior as

(βj | γj ) ∼ (1− γj )N(0, κ0j )+ γjN(0, κ1j ).

Hence, when γj = 0, βj is strongly shrunk to zero; when γj = 1, the prior on βj is
relatively non-informative.

Let γ = (γ1, . . . , γnk)′. For later reference, we rewrite the joint prior (β | γ ) as:

(β | γ ) ∼ N(0, �γ ),

where �γ is diagonal with diagonal elements (1− γj )κ0j + γjκ1j , j = 1, . . . , nk.
It remains to choose values for the prior variances κ0j and κ1j . There are various

implementations, here we simply set κ1j = 10 and κ0j to be the j -th diagonal
element of the Minnesota prior covariance matrix VMinn. As for �, we assume the
inverse-Wishart prior:

� ∼ IW(ν0, S0).

It is possible to have a SSVS prior on � as well. See George et al. (2008) for
further details. Finally, we set the mixture weight qj to be 0.5, so that βj has equal
probabilities in each component. An alternative is to treat qj as a model parameter
to be estimated.

Estimation
Estimation involves only slight modifications of the 2-block Gibbs sampler under
the independent normal and inverse-Wishart prior. In particular, here we construct
a 3-block sampler to sequentially draw from p(� | y, γ , β), p(β | y, γ , �), and
p(γ | y, β, �).

The full conditional distribution of � is inverse-Wishart, having the exact same
form as given in (4.17). Next, the full conditional distribution of β is again normal:

(β | y, γ , �) ∼ N(β̂, K−1
β ),

where

Kβ = �−1
γ +X′(IT ⊗�−1)X, β̂ = K−1

β X′(IT ⊗�−1)y.

Sampling from this normal distribution can be done using Algorithm 4.1.
Finally, to draw from p(γ | y, β, �), note that γ1, . . . , γnk are conditionally

independent given the data and other parameters. In fact, we have p(γ | y, β, �) =∏nk
j=1 p(γj |βj ). Moreover, each γj is a Bernoulli random variable and we only

need to compute its success probability. To that end, note that

P(γj = 1 |βj ) ∝ qjφ(βj ; 0, κ1j )
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and

P(γj = 0 |βj ) ∝ (1− qj )φ(βj ; 0, κ0j ).

Hence, after normalization, we obtain

P(γj = 1 |βj ) = qjφ(βj ; 0, κ1j )

qjφ(βj ; 0, κ1j )+ (1− qj )φ(βj ; 0, κ0j )
.

4.3 Large Bayesian VARs with Time-Varying Volatility,
Heavy Tails and Serial Dependent Errors

Despite the empirical success of large Bayesian VARs with standard error assump-
tions (e.g., homoscedastic, Gaussian and serially independent), there is a lot of
recent work in developing flexible VARs with more general error distributions.
These more flexible VARs are motivated by the empirical observations that features
like time-varying volatility and non-Gaussian errors are useful for modeling a
variety of macroeconomic time series.

In this section we study a few of these more flexible VARs, including VARs
with heteroscedastic, non-Gaussian, and serially correlated errors. To that end, we
focus on the second representation of the VAR(p), which we reproduce below for
convenience:

Y = ZA+U, vec(U) ∼ N(0, � ⊗ IT ).

Note we can equivalently write the error specification as ut ∼ N(0, �), t =
1, . . . , T . That is, the errors here are assumed to be independent, homoscedastic,
and Gaussian. Below we consider a variety of extensions of this basic VAR.

To motivate the framework, recall that the main difficulty in doing posterior
simulation for large Bayesian VARs is the large number of VAR coefficients in A.
One key advantage of the natural conjugate prior on (A, �) is that the conditional
distribution of A given � is Gaussian and its covariance matrix has a Kronecker
product structure. This special feature can be exploited to dramatically speed up
computation from O(n6) to O(n3), as described in section “Estimation.”

It turns out that this Kronecker product structure in the conditional covariance
matrix of A can be preserved for a wide class of flexible models. Specifically, Chan
(2018) proposes the following VAR with a more general covariance structure:

Y = ZA+U, vec(U) ∼ N(0, � ⊗�), (4.18)

where � is a T × T covariance matrix. Obviously, if � = IT , (4.18) reduces
to the standard VAR. Here the covariance matrix of vec(U) is assumed to have
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the Kronecker product structure � ⊗�. Intuitively, it separately models the cross-
sectional and serial covariance structures of U, which are governed by � and �

respectively.
In the next few subsections, we first show that by choosing a suitable serial

covariance structure �, the model in (4.18) includes a wide variety of flexible
specifications. Section 4.3.4 then shows that the form of the error covariance matrix,
namely �⊗�, leads to a Kronecker product structure in the conditional covariance
matrix of A. Again this special feature is used to dramatically speed up computation.
The presentation below follows Chan (2018).

4.3.1 Common Stochastic Volatility

One of the most useful features for modeling macroeconomic time series is time-
varying volatility. For example, the volatilities of a wide range of macroeconomic
variables were substantially reduced at the start of the Great Moderation in the early
1980s. Models with homoscedastic errors would not be able to capture this feature
of the data.

To allow for heteroscedastic errors, Carriero et al. (2016) introduce a large
Bayesian VAR with a common stochastic volatility. In their setup, the error covari-
ance matrix is scaled by a common, time-varying factor that can be interpreted as
the overall macroeconomic volatility. More specifically, consider ut ∼ N(0, eht�)
with the common volatility eht . The log volatility ht in turn follows a stationary
AR(1) process:

ht = ρht−1 + εht , (4.19)

where εht ∼ N(0, σ 2
h ) and |ρ| < 1. Note that for identification purposes, this AR(1)

process is assumed to have a zero unconditional mean.
One drawback of this setup is that the volatility specification is somewhat

restrictive—all variances are scaled by a single factor and, consequently, they are
always proportional to each other. On the other hand, there is empirical evidence, as
shown in Carriero et al. (2016), that the volatilities of macroeconomic variables tend
to move together. And specifying a common stochastic volatility is a parsimonious
way to model that feature.

This common stochastic volatility model falls within the framework in (4.18)
with � = diag(eh1 , . . . , ehT ). Empirical applications that use this common stochas-
tic volatility include Mumtaz (2016), Mumtaz and Theodoridis (2018), and Poon
(2018).
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4.3.2 Non-Gaussian Errors

Gaussian errors are often assumed for convenience rather than for deep theoretical
reasons. In fact, some recent work has found that VARs with heavy-tailed error
distributions, such as the t distribution, often forecast better than their counterparts
with Gaussian errors (see, e.g., Cross & Poon, 2016; Chiu, Mumtaz, & Pinter, 2017).

Since many distributions can be written as a scale mixture of Gaussian dis-
tributions, the framework in (4.18) can accommodate various commonly-used
non-Gaussian distributions. To see this, let � = diag(λ1, . . . , λT ). If each λt
follows independently an inverse-gamma distribution (λt | ν) ∼ IG(ν/2, ν/2),
then marginally ut has a multivariate t distribution with mean vector 0, scale matrix
�, and degree of freedom parameter ν (see, e.g., Geweke, 1993).

If each λt has an independent exponential distribution with mean α, then
marginally ut has a multivariate Laplace distribution with mean vector 0 and
covariance matrix α� (Eltoft, Kim, and Lee, 2006). Other scale mixtures of
Gaussian distributions can be defined similarly. For additional examples, see, e.g.,
Eltoft, Kim, and Lee (2006a).

4.3.3 Serially Dependent Errors

Instead of the conventional assumption of serially independent errors, the frame-
work in (4.18) can also handle serially correlated errors, such as errors that follow
an ARMA(p, q) process.

For a concrete example, suppose ut follows the following MA(2) process:

ut = εt +ψ1εt−1 +ψ2εt−2,

where εt ∼ N(0, �), ψ1 and ψ2 satisfy the invertibility conditions. This is nested
within the general framework with

� =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω0 ω1 ω2 0 · · · 0

ω1 ω0 ω1
. . .

. . .
...

ω2 ω1 ω0
. . .

. . . 0

0
. . .

. . .
. . .

. . . ω2
...

. . .
. . .

. . .
. . . ω1

0 · · · 0 ω2 ω1 ω0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where ω0 = 1+ψ2
1 +ψ2

2 , ω1 = ψ1(1+ψ2), and ω2 = ψ2.
One drawback of the above MA(2) specification is that each element of ut must

have the same MA coefficients (although their variances can be different). Put it
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differently, the framework in (4.18) cannot accommodate, for example, a general
MA(2) process of the form

ut = εt +	1εt−1 +	2εt−2,

where 	1 and 	2 are n× n matrices of coefficients. This is because in this case the
covariance matrix of vec(U) does not have a Kronecker structure—i.e., it cannot be
written as � ⊗�. Nevertheless, this restricted form of serial correlation might still
be useful to capture persistence in the data.

Other more elaborate covariance structures can be constructed by combining
different examples in previous sections. For example, suppose ut follows an MA(1)
stochastic volatility process of the form:

ut = εt +ψ1εt−1,

where εt ∼ N(0, eht�) and ht has an AR(1) process as in (4.19). This is a
multivariate generalization of the univariate moving average stochastic volatility
models considered in Chan (2013). This model is a special case of the flexible
Bayesian VAR in (4.18) with

� =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

(1+ψ2
1 )e

h1 ψ1eh1 0 · · · 0

ψ1eh1 ψ2
1 eh1 + eh2

. . .
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . . ψ2
1 ehT−2 + ehT−1 ψ1ehT−1

0 · · · 0 ψ1ehT−1 ψ2
1 ehT−1 + ehT

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

4.3.4 Estimation

Next we discuss the estimation of the Bayesian VAR in (4.18) using MCMC
methods. To keep the discussion general, we leave � unspecified and focus on
the key step of jointly sampling both the VAR coefficients A and the cross-
sectional covariance matrix �. Then, we take up various examples of � and provide
estimation details for tackling each case.

Using a similar derivation as in Sect. 4.1.2, one can show that the likelihood of
the VAR in (4.18) is given by

p(Y |A, �, �) = (2π)− T n2 |�|− T2 |�|− n2 e−
1
2 tr
(
�−1(Y−XA)′�−1(Y−XA)

)
. (4.20)

Next, we assume a prior of the form p(A, �, �) = p(A, �)p(�), i.e., the
parameter blocks (A, �) and � are a priori independent. For (A, �), we adopt the
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natural conjugate prior:

� ∼ IW(ν0, S0), (vec(A) |�) ∼ N(vec(A0), � ⊗VA)

with joint density function given in (4.11).
Given the prior p(A, �, �) = p(A, �)p(�), posterior draws can be obtained by

sequentially sampling from: (1) p(A, � |Y, �) and (2) p(� |Y, A, �). Here we first
describe how one can implement Step 1 efficiently. Depending on the covariance
structure �, additional blocks might be needed to sample some extra hierarchical
parameters. These steps are typically easy to implement as they amount to fitting a
univariate time series model. We will discuss various examples below.

When � = IT , the Bayesian VAR in (4.18) reduces to the conventional VAR
with the natural conjugate prior. And in Sect. 4.2.2 we showed that (A, � |Y)
has a normal-inverse-Wishart distribution. There we also discussed how we can
draw from the normal-inverse-Wishart distribution efficiently. It turns out that
similar derivations go through even with an arbitrary covariance matrix �. More
specifically, it follows from (4.20) and (4.11) that

p(A, � |Y, �) ∝|�|− ν0+n+k+T2 e−
1
2 tr(�−1S0)

× e
− 1

2 tr
(
�−1((A−A0)

′V−1
A (A−A0)+(Y−ZA)′�−1(Y−ZA))

)

=|�|− ν0+n+k+T2 e−
1
2 tr(�−1S0)e

− 1
2 tr
(
�−1(A′0V−1

A A0+Y′�−1Y−Â′KAÂ)
)

× e−
1
2 tr
(
�−1(A−Â)′KA(A−Â)

)
,

where KA = V−1
A + Z′�−1Z and Â = K−1

A (V
−1
A A0 + Z′�−1Y). In the above

derivations, we have “completed the square” and obtained:

(A−A0)
′V−1

A (A−A0)+ (Y−ZA)′�−1(Y−ZA)

=(A− Â)′KA(A− Â)+A′0V−1
A A0 +Y′�−1Y− Â′KAÂ.

If we let

Ŝ = S0 +A′0V−1
A A0 +Y′�−1Y− Â′KAÂ,

then (A, � |Y, �) has a normal-inverse-Wishart distribution with parameters ν0 +
T , Ŝ, Â, and K−1

A . We can then sample (A, � |Y, �) in two steps. First, sample
� marginally from (� |Y, �) ∼ IW(ν0 + T , Ŝ). Second, given the � sampled,
simulate

(vec(A) |Y, �, �) ∼ N(vec(Â), � ⊗K−1
A ).
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As discussed in Sect. 4.2.2, we can sample from this normal distribution efficiently
without explicitly computing the inverse K−1

A .
Here we comment on a few computational details. Again, we need not compute

the T × T inverse �−1 to obtain KA, Â, or Ŝ. As an example, consider computing
the quadratic form Z′�−1Z. Let C� be the Cholesky factor of � such that C�C′� =
�. Then, Z′�−1Z can be obtained via Z̃′Z̃, where Z̃ = C�\Z.

This approach would work fine for an arbitrary � with dimension, say, less than
1000. For larger T , computing the Cholesky factor of � and performing the forward
and backward substitution is likely to be time-consuming. Fortunately, for most
models, � or �−1 are band matrices—i.e., sparse matrices whose nonzero elements
are confined to a diagonal band. For example, � is diagonal—hence banded—for
both the common stochastic volatility model and the t errors model. Moreover, � is
banded for VARs with MA errors and �−1 is banded for AR errors.

This special structure of � or �−1 can be exploited to speed up computation. For
instance, obtaining the Cholesky factor of a band T ×T matrix with fixed bandwidth
involves only O(T ) operations (e.g., Golub & van Loan, 1983, p.156) as opposed
to O(T 3) for a dense matrix of the same size. Similar computational savings can be
obtained for operations such as multiplication, forward, and backward substitution
by using band matrix routines. We refer the readers to Chan (2013) for a more
detailed discussion on computation involving band matrices.

Next, we take up various examples of � and provide the corresponding estima-
tion details.

t Errors
As discussed in Sect. 4.3.2, a VAR with iid t errors falls within the framework
in (4.18) with � = diag(λ1, . . . , λT ), where each λt follows an inverse-gamma
distribution (λt | ν) ∼ IG(ν/2, ν/2). Unconditional on λt , ut has a t distribution
with degree of freedom parameter ν. Note that in this case � is diagonal and
�−1 = diag(λ−1

1 , . . . , λ−1
T ).

Let p(ν) denote the prior density function of ν. Then, posterior draws can be
obtained by sequentially sampling from: (1) p(A, � |Y, �, ν); (2) p(� |Y, A, �, ν);
and (3) p(ν |Y, A, �, �). Step 1 can be implemented exactly as before. For Step 2,
note that

p(� |Y, A, �, ν) =
T∏

t=1

p(λt |Y, A, �, ν) ∝
T∏

t=1

λ
− n2
t e−

1
2λt

u′t�−1ut × λ−(
ν
2+1)

t e−
ν

2λt

In other words, each λt is conditionally independent given other parameters and
has an inverse-gamma distribution: (λt |Y, A, �, ν) ∼ IG((n+ ν)/2, (u′t�−1ut +
ν)/2).

Lastly, ν can be sampled by an independence-chain Metropolis–Hastings
step with the proposal distribution N(̂ν,K−1

ν ), where ν̂ is the mode of
logp(ν |Y, A, �, �) and Kν is the negative Hessian evaluated at the mode. For
implementation details of this step, see Chan and Hsiao (2014).
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Common Stochastic Volatility
Now, consider the common stochastic volatility model proposed in Carriero et al.
(2016): ut ∼ N(0, eht�), where ht follows an AR(1) process in (4.19). In this case
� = diag(eh1 , . . . , ehT ), which is also diagonal.

We assume independent truncated normal and inverse-gamma priors for ρ and
σ 2
h : ρ ∼ N(ρ0,Vρ)1(|ρ| < 1) and σ 2

h ∼ IG(νh0, Sh0). Then, posterior draws can
be obtained by sampling from: (1) p(A, � |Y, �, ρ, σ 2

h ); (2) p(� |Y, A, �, ρ, σ 2
h );

(3) p(ρ |Y, A, �, �, σ 2
h ); and (4) p(σ 2

h |Y, A, �, �, ρ).
Step 1 again can be implemented exactly as before. For Step 2, note that

p(� |Y, A, �, ρ, σ 2
h ) = p(h |Y, A, �, ρ, σ 2

h ) ∝ p(h | ρ, σ 2
h )

T∏

t=1

p(yt |A, �,ht ),

where p(h | ρ, σ 2
h ) is a Gaussian density implied by the state equation,

logp(yt |A, �,ht ) = ct − n
2
ht − 1

2
e−htu′t�−1ut

and ct is a constant not dependent on ht . It is easy to check that

∂

∂ht
logp(yt |A, �,ht ) = −n

2
+ 1

2
e−htu′t�−1ut ,

∂2

∂h2
t

logp(yt |A, �,ht ) = −1

2
e−htu′t�−1ut .

Then, one can implement a Newton-Raphson algorithm to obtain the mode of
logp(h |Y, A, �, ρ, σ 2

h ) and compute the negative Hessian evaluated at the mode,
which are denoted as ĥ and Kh, respectively. Using N(̂h, K−1

h ) as a proposal
distribution, one can sample h directly using an acceptance-rejection Metropolis–
Hastings step. We refer the readers to Chan (2017) and Chan and Jeliazkov (2009)
for details. Finally, Steps 3 and 4 are standard and can be easily implemented (see,
e.g., Chan & Hsiao, 2014).

MA(1) Errors
We now consider an example where � is not diagonal and we construct � using
band matrices. More specifically, suppose each element of ut follows the same
MA(1) process:

uit = ηit +ψηi,t−1,

where |ψ | < 1, ηit ∼ N(0, 1), and the process is initialized with ui1 ∼ N(0, 1+
ψ2). Stacking ui = (ui1, . . . , uiT )′ and ηi = (ηi1, . . . , ηiT )′, we can rewrite the
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MA(1) process as

ui = Hψηi ,

where ηi ∼ N(0, Oψ) with Oψ = diag(1+ψ2, 1, . . . , 1), and

Hψ =

⎛

⎜⎜⎜⎝

1 0 · · · 0
ψ 1 · · · 0
...

. . .
. . .

...
0 · · · ψ 1

⎞

⎟⎟⎟⎠ .

It follows that the covariance matrix of ui is HψOψH′ψ . That is, � = HψOψH′ψ is
a function ofψ only. Moreover, both Oψ and Hψ are band matrices. Notice also that
for a general MA(q) process, one only needs to redefine Hψ and Oψ appropriately
and the same procedure would apply.

Let p(ψ) be the prior for ψ . Then, posterior draws can be obtained by sequen-
tially sampling from: (1) p(A, � |Y,ψ) and (2) p(ψ |Y, A, �). Again, Step 1 can
be carried out exactly the same as before. In implementing Step 1, we emphasize
that products of the form Z′�−1Z or Z′�−1Y can be obtained without explicitly
computing the inverse �−1. Instead, since in this case � is a band matrix, its
Cholesky factor C� can be obtained inO(T ) operations. Then, to compute Z′�−1Z,
one simply returns Z̃′Z̃, where Z̃ = C�\Z.

For Step 2, p(ψ |Y, A, �) is non-standard, but it can be evaluated quickly using
the direct method in Chan (2013), which is more efficient than using the Kalman
filter. Specifically, since the determinant |Hψ | = 1, it follows from (4) that the
likelihood is given by

p(Y |A, �,ψ) = (2π)− T n2 |�|− T2 (1+ψ2)−
n
2 e
− 1

2 tr
(
�−1Ũ′O−1

ψ Ũ)
)

,

where Ũ = H−1
ψ (Y− ZA), which can be obtained in O(T ) operations since Hψ is

a band matrix. Therefore, p(ψ |Y, A, �) ∝ p(Y |A, �,ψ)p(ψ) can be evaluated
quickly. Then, ψ is sampled using an independence-chain Metropolis–Hastings step
as in Chan (2013).

AR(1) Errors
Here we consider an example where � is a full matrix, but �−1 is banded.
Specifically, suppose each element of ut follows the same AR(1) process:

uit = φui,t−1 + ηit ,

where |φ| < 1, ηit ∼ N(0, 1), and the process is initialized with ui1 ∼ N(0, 1/(1−
φ2)). Stacking ui = (ui1, . . . , uiT )′ and ηi = (ηi1, . . . , ηiT )′, we can rewrite the
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AR(1) process as

Hφui = ηi ,

where ηi ∼ N(0, Oφ) with Oφ = diag(1/(1− φ2), 1, . . . , 1), and

Hφ =

⎛

⎜⎜⎜⎝

1 0 · · · 0
−φ 1 · · · 0

...
. . .

. . .
...

0 · · · −φ 1

⎞

⎟⎟⎟⎠ .

Since the determinant |Hφ | = 1 �= 0, Hφ is invertible. It follows that the covariance
matrix of ui is H−1

φ Oφ(H′φ)−1, or �−1 = H′φO−1
φ Hφ , where both Oφ and Hφ are

band matrices.
Suppose we assume the truncated normal prior φ: φ ∼ N(φ0,Vφ)1(|φ| < 1).

Then, posterior draws can be obtained by sampling from: (1) p(A, � |Y,φ); and
(2) p(φ |Y, A, �). In implementing Step 1, products of the form Z′�−1Z can be
computed easily as the inverse �−1 is a band matrix.

For Step 2, p(φ |Y, A, �) is non-standard, but a good approximation can be
obtained easily without numerical optimization. To that end, recall that

ut = φut−1 + εt ,

where εt ∼ N(0, �), and the process is initialized by u1 ∼ N(0, �/(1 −
φ2)). Then, consider the Gaussian proposal N(φ̂,K−1

φ ), where Kφ = 1/Vφ +∑T
t=2 u′t−1�

−1ut−1 and φ̂ = K−1
φ (φ0/Vφ +∑T

t=2 u′t−1�
−1ut ). With this proposal

distribution, we can then implement an independence-chain Metropolis–Hastings
step to sample φ.

4.4 Empirical Application: Forecasting with Large Bayesian
VARs

In this section we consider a real-time macroeconomic forecasting exercise to
illustrate the large Bayesian VARs and the associated estimation methods discussed
in Sect. 4.3.
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4.4.1 Data, Models, and Priors

In our empirical application we use a real-time dataset considered in Chan (2018)
that consists of 20 variables at quarterly frequency. The dataset includes a variety of
standard macroeconomic and financial variables such as GDP, industrial production,
inflation, interest rates, and unemployment. The data are sourced from the Federal
Reserve Bank of Philadelphia and the sample period is from 1964Q1 to 2015Q4.
These variables are commonly used in applied work and are similar to the variables
included in the large VARs in Banbura et al. (2010) and Koop (2013). A detailed
description of the variables and their transformations are provided in Appendix A.

We include a range of large Bayesian VARs combined with different prior
specifications. For comparison, we also include a small Bayesian VAR using only
four core variables: real GDP growth, industrial production, unemployment rate,
and PCE inflation. The full description of other models is given in Table 4.1.

Whenever possible, we choose the same priors for common parameters across
models. For the Minnesota prior, we set βMinn = 0 and the three hyperparameters
for VMinn are set to be c1 = 0.22, c2 = 0.12, and c3 = 102. For the natural conjugate
prior, we set A0 = 0 and the two hyperparameters for the covariance matrix VA are
assumed to be c1 = 0.22 and c2 = 102. Moreover we set ν0 = n + 3, S0 =
diag(s2

1 , . . . , s2
n), where s2

i denotes the standard OLS estimate of the error variance
for the i-th equation.

For the common stochastic volatility model, we assume independent priors for
σ 2
h and ρ: σ 2

h ∼ IG(νh0, Sh0) and ρ ∼ N(ρ0,Vρ)1(|ρ| < 1), where we set νh0 = 5,
Sh0 = 0.04, ρ0 = 0.9, and Vρ = 0.22. These values imply that the prior mean of
σ 2
h is 0.12 and ρ is centered at 0.9. For the degree of freedom parameter ν under

the t model, we consider a uniform prior on (2, 50), i.e., ν ∼ U(2, 50). For the
MA coefficient ψ under the MA model, we assume the truncated normal prior ψ ∼
N(ψ0,Vψ)1(|ψ | < 1) so that the MA process is invertible. We set ψ0 = 0 and
Vψ = 1. The prior thus centers around 0 and has support within the interval (−1, 1).
Given the large prior variance, it is also relatively noninformative.

Table 4.1 A list of competing models

Model Description

BVAR-small 4-variable VAR with the Minnesota prior

BVAR-Minn 20-variable VAR with the Minnesota prior

BVAR-NCP 20-variable VAR with the natural conjugate prior

BVAR-IP 20-variable VAR with the independent prior

BVAR-SSVS 20-variable VAR with the SSVS prior

BVAR-CSV 20-variable VAR with a common stochastic volatility

BVAR-CSV-t 20-variable VAR with a common SV and t errors

BVAR-CSV-t-MA 20-variable VAR with a common SV and MA(1) t errors
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4.4.2 Forecast Evaluation Metrics

We perform a recursive out-of-sample forecasting exercise to evaluate the perfor-
mance of the Bayesian VARs with different priors in terms of both point and density
forecasts. We focus on four main variables: real GDP growth, industrial production,
unemployment rate, and PCE inflation.

We use each of the Bayesian VARs listed in Table 4.1 to produce both point and
density m-step-ahead iterated forecasts with m = 1 and m = 2. Due to reporting
lags, the real-time data vintage available at time t contains observations only up to
quarter t − 1. Hence, the forecasts are current quarter nowcasts and one-quarter-
ahead forecasts. The evaluation period is from 1975Q1 to 2015Q4, and we use the
2017Q3 vintage to compute the actual outcomes.

Given the data up to time t , denoted as Y1:t , we obtain posterior draws given
Y1:t . We then compute the predictive mean E(yi,t+m |Y1:t ) as the point forecast for
variable i, and the predictive density p(yi,t+m |Y1:t ) as the density forecast for the
same variable. For many Bayesian VARs considered, neither the predictive mean
nor the predictive density of yi,t+m can be computed analytically. If that is the case,
we obtain them using predictive simulation. Next, we move one period forward
and repeat the whole exercise with data Y1:t+1, and so on. These forecasts are then
evaluated for t = t0, . . . , T −m.

For forecast evaluation metrics, let yo
i,t+m denote the actual value of the variable

yi,t+m. The metric used to evaluate the point forecasts is the root mean squared
forecast error (RMSFE) defined as

RMSFE =
√∑T−m

t=t0 (y
o
i,t+m − E(yi,t+m |Y1:t ))2

T −m− t0 + 1
.

To evaluate the density forecast p(yi,t+m |Y1:t ), one natural measure is the pre-
dictive likelihood p(yi,t+m = yo

i,t+m |Y1:t ), i.e., the predictive density of yi,t+m
evaluated at the actual value yo

i,t+m. If the actual outcome yo
i,t+m is likely under

the density forecast, the value of the predictive likelihood will be large, and vice
versa. See, e.g., Geweke and Amisano (2011) for a more detailed discussion of the
predictive likelihood and its connection to the marginal likelihood. We evaluate the
density forecasts using the average of log predictive likelihoods (ALPL):

ALPL = 1

T −m− t0 + 1

T−m∑

t=t0
logp(yi,t+m = yo

i,t+m |Y1:t ).

For this metric, a larger value indicates better forecast performance.
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4.4.3 Forecasting Results

For easy comparison, we report below the ratios of RMSFEs of a given model to
those of the 4-variable Bayesian VAR using the core variables: real GDP growth,
industrial production, unemployment rate, and PCE inflation. Hence, values smaller
than unity indicate better forecast performance than the benchmark. For the average
of log predictive likelihoods, we report differences from that of the 4-variable
Bayesian VAR. In this case, positive values indicate better forecast performance
than the benchmark.

Tables 4.2, 4.3, 4.4, and 4.5 report the point and density forecast results for
the four core variables. No single models or priors can outperform others for
all variables in all horizons. However, there are a few consistent patterns in the

Table 4.2 Forecast
performance relative to a
4-variable Bayesian VAR;
GDP growth

Relative RMSFE Relative ALPL

m = 1 m = 2 m = 1 m = 2

BVAR-Minn 0.95 0.98 −0.04 −0.10

BVAR-NCP 0.92 0.98 0.04 0.03

BVAR-IP 1.01 0.96 0.03 0.05

BVAR-SSVS 0.92 1.02 0.01 0.00

BVAR-CSV 0.95 0.94 0.13 0.09

BVAR-CSV-t 0.93 0.95 0.13 0.09

BVAR-CSV-t-MA 0.93 0.93 0.13 0.10

Table 4.3 Forecast
performance relative to a
4-variable Bayesian VAR;
industrial production

Relative RMSFE Relative ALPL

m = 1 m = 2 m = 1 m = 2

BVAR-Minn 0.97 0.94 0.02 −0.02

BVAR-NCP 0.96 0.95 0.15 0.09

BVAR-IP 0.94 0.90 0.10 0.10

BVAR-SSVS 0.99 0.96 0.08 0.07

BVAR-CSV 0.89 0.90 0.27 0.17

BVAR-CSV-t 0.88 0.89 0.26 0.17

BVAR-CSV-t-MA 0.87 0.89 0.27 0.17

Table 4.4 Forecast
performance relative to a
4-variable Bayesian VAR;
unemployment rate

Relative RMSFE Relative ALPL

m = 1 m = 2 m = 1 m = 2

BVAR-Minn 0.99 0.96 0.08 0.33

BVAR-NCP 0.99 0.96 0.11 0.30

BVAR-IP 1.02 0.99 −0.01 −0.03

BVAR-SSVS 1.02 1.01 −0.03 −0.07

BVAR-CSV 1.00 0.95 0.18 0.43

BVAR-CSV-t 0.99 0.95 0.16 0.40

BVAR-CSV-t-MA 0.98 0.96 0.16 0.37
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Table 4.5 Forecast
performance relative to a
4-variable Bayesian VAR;
PCE inflation

Relative RMSFE Relative ALPL

m = 1 m = 2 m = 1 m = 2

BVAR-Minn 1.04 1.06 −0.01 0.02

BVAR-NCP 1.04 1.06 −0.02 −0.01

BVAR-IP 1.02 1.00 −0.02 0.00

BVAR-SSVS 1.00 1.02 0.00 0.02

BVAR-CSV 1.04 1.04 0.09 0.11

BVAR-CSV-t 1.03 1.03 0.10 0.10

BVAR-CSV-t-MA 1.03 1.04 0.09 0.08

forecasting results. First, consistent with the results in Banbura et al. (2010) and
Koop (2013), large VARs tend to forecast real variables better than the small VAR,
whereas the small VAR does better than large models for PCE inflation in terms of
point forecasts (see also Stock & Watson, 2007).

Second, among the four priors for large Bayesian VARs, the natural conjugate
prior seems to perform well—even when it is not the best among the four, its
performance is close to the best. See also a similar comparison in Koop (2013).
Given that the natural conjugate prior can substantially speed up computations in
posterior simulation, it might be justified to be used as the default in large systems.

Third, the results also show that large Bayesian VARs with more flexible error
covariance structures tend to outperform the standard VARs. This is especially so for
density forecasts. Our results are consistent with those in numerous studies, such as
Clark (2011), D’Agostino, Gambetti, and Giannone (2013) and Clark and Ravazzolo
(2015), which find that small Bayesian VARs with stochastic volatility outperform
their counterparts with only constant variance. Fourth, even though BVAR-CSV
tends to forecast very well, in many instances its forecast performance can be further
improved by using the t error distribution or adding an MA component.

Overall, these forecasting results show that large Bayesian VARs tend to forecast
well relative to small systems. Moreover, their forecast performance can be further
enhanced by allowing for stochastic volatility, heavy-tailed, and serially correlated
errors.

4.5 Further Reading

Koop and Korobilis (2010) and Karlsson (2013) are two excellent review papers
that cover many of the topics discussed in Sect. 4.2. The presentation of the large
Bayesian VARs with time-varying volatility, heavy-tailed distributions, and serial
dependent errors in Sect. 4.3 closely follows Chan (2018).

Developing large, flexible Bayesian VARs is an active research area and there
are many different approaches. For instance, Koop and Korobilis (2013) consider an
approximate method for forecasting using large time-varying parameter Bayesian
VARs. Chan, Eisenstat, and Koop (2016) estimate a Bayesian VARMA containing
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12 variables. Carriero et al. (2015b) propose an efficient method to estimate a 125-
variable VAR with a standard stochastic volatility specification. Koop, Korobilis,
and Pettenuzzo (2019) consider compressed VARs based on the random projection
method. Ahelegbey, Billio, and Casarin (2016a,b) develop Bayesian graphical mod-
els for large VARs. Gefang, Koop, and Poon (2019) use variational approximation
for estimating large Bayesian VARs with stochastic volatility.

Appendix A: Data

The real-time dataset for our forecasting application includes 13 macroeconomic
variables that are frequently revised and 7 financial or survey variables that are not
revised. The list of variables is given in Table 4.6. They are sourced from the Federal
Reserve Bank of Philadelphia and cover the quarters from 1964Q1 to 2015Q4.
All monthly variables are converted to quarterly frequency by averaging the three
monthly values within the quarter.

Table 4.6 Description of variables used in the recursive forecasting exercise

Variable Transformation

Real GNP/GDP 400� log

Real personal consumption expenditures: total 400� log

Real gross private domestic investment: nonresidential 400� log

Real gross private domestic investment: residential 400� log

Real net exports of goods and services No transformation

Nominal personal income 400� log

Industrial production index: total 400� log

Unemployment rate No transformation

Nonfarm payroll employment 400� log

Indexes of aggregate weekly hours: total 400� log

Housing starts 400� log

Price index for personal consumption expenditures, constructed 400� log

Price index for imports of goods and services 400� log

Effective federal funds rate No transformation

1-year treasury constant maturity rate No transformation

10-year treasury constant maturity rate No transformation

Moody’s seasoned baa corporate bond minus federal funds rate No transformation

ISM manufacturing: PMI composite index No transformation

ISM manufacturing: new orders index No transformation

S&P 500 400� log
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Appendix B: Sampling from the Matrix Normal Distribution

Suppose we wish to sample from N(vec(Â), � ⊗K−1
A ). Let CKA and C� be the

Cholesky decompositions of KA and � respectively. We wish to show that if we
construct

W1 = Â+ (C′KA
\U)C′� ,

where U is a k × n matrix of independent N(0, 1) random variables, then vec(W1)

has the desired distribution. To that end, we make use of some standard results on
the matrix normal distribution (see, e.g., Bauwens et al., 1999, pp. 301–302).

A p × q random matrix W is said to have a matrix normal distribution
MN(M, Q⊗ P) for covariance matrices P and Q of dimensions p × p and q × q,
respectively, if vec(W) ∼ N(vec(M), Q⊗ P). Now suppose W ∼MN(M, Q⊗ P)
and define V = CWD+E. Then, V ∼MN(CMD+E, (D′QD)⊗ (CPC′)).

Recall that U is a k× n matrix of independent N(0, 1) random variables. Hence,
U ∼MN(0, In ⊗ Ik). Using the previous result with C = (C′KA

)−1, D = C′� , and

E = Â, it is easy to see that W1 ∼ MN(Â, � ⊗K−1
A ). Finally, by definition we

have vec(W1) ∼ N(vec(Â), � ⊗K−1
A ).
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Chapter 5
Volatility Forecasting in a Data Rich
Environment

Mauro Bernardi, Giovanni Bonaccolto, Massimiliano Caporin,
and Michele Costola

5.1 Introduction

Volatility forecasting has a central role in many economic and financial frameworks,
ranging from asset allocation, risk management and trading to macroeconomic
forecasting. Dozens of authors introduced and discussed econometric models to
better capture the stylized features of observed data to provide optimal predictions
of the variance for either a single variable or a vector of variables of interest. The
early works on models for volatility forecasting appeared after 1980, starting from
the seminal contribution of Engle (1982). Nowadays, the various models might be
clustered into several families according to either the data used to estimate and then
forecast the volatility or to the model structure.

When focusing on variance (or volatility), covariance and correlation forecasting,
the first model that is usually mentioned is the Generalized Auto Regressive Condi-
tional Heteroskedasticity (GARCH) model. The modelling of variance dynamics
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evolved from the seminal works of Engle (1982) and Bollerslev (1986) both in
terms of GARCH-type specifications, either univariate or multivariate, and through
the introduction of additional models. The family of volatility models now includes
models for both latent and observable (co-)variance sequences (Caporin & McAleer,
2010). Among the former, beside the GARCH models, we might include stochastic
volatility models, as pioneered by Taylor (1986), and multivariate models based on
latent factors. The latter includes models based on realized volatility and realized
covariance sequences. These model classes have been reviewed by several authors,
including Bollerslev, Chou, and Kroner (1992), Asai, McAleer, and Yu (2006),
Bauwens, Laurent, and Rombouts (2006) and McAleer and Medeiros (2006). In the
last decade the literature moved from the development of novel and more flexible
specifications to a few aspects of volatility modelling. These include the derivation
of the asymptotic behaviour of parameter estimators, the introduction of multivariate
model specification feasible with large cross-sectional dimensions (either by proper
model structures or by tailored estimation approaches), i.e. in the presence of the
so-called curse of dimensionality (see, for instance, Caporin and Paruolo, 2015;
Dhaene, Sercu, and Wu, 2017; Noureldin, Shephard, and Sheppard, 2014) and
the development and introduction of models for realized covariances (Golosnoy,
Gribisch, & Liesenfeld, 2012). The development and use of volatility models with
large cross-sectional dimensions remains a challenging topic, particularly when we
adopt those models to produce forecasts in portfolio allocation, risk management,
hedging and in many other areas not limited to a financial framework. One key issue
is that models need to remain feasible when the number of assets increases, and have
a specification flexible enough to allow for an economic interpretation of the model
parameters; see Silvennoinen and Teräsvirta (2009). The increased availability of
high-frequency data points at the possibility of using high-frequency data to estimate
realized covariance sequences. These, in turn, might be later directly modelled or
integrated within GARCH-type models; see Shepard and Sheppard (2010). Finally,
the availability of huge data sources on financial companies, including not just
market-related and balance-sheet-related variables but also web-based searches
and textual data on news and tweets, as well as the possibility of recovering
interdependence structures (i.e. networks) among target variables, call for additional
efforts in model development; see, among others, Caporin and Poli (2017) and
Billio, Caporin, Frattarolo, and Pelizzon (2018).

The various models that allow forecasting volatility, covariance and correlations
share a common feature: recovering forecasts from these models is rather simple.
The complexity is in the model estimation, particularly when the cross-sectional
dimension is large. The curse of dimensionality, a typical problem in conditional
covariance modelling, occurs due to the increase in the number of parameters.
Coping with both issues remains a challenging topic. In this chapter, we review
the volatility modelling literature starting from the univariate models and moving
toward the multivariate specifications with a focus on how the current models
allow for the management of large cross-sectional dimensions or the integration of
different data sources. We will address these issues by focusing on three main model
families, namely, the classical GARCH-type specifications, the stochastic volatility
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model class and the models based on high-frequency data, i.e. the Realized Volatility
model class. We will not discuss in depth the tools for forecast evaluation; instead,
we refer the readers to Chapter 24 or to the survey by Violante and Laurent (2012)
and the references cited therein.

5.2 Classical Tools for Volatility Forecasting: ARCH Models

Volatility clustering, i.e. the presence of serial dependence in the second order
moment, is one of the most known stylized facts that characterizes financial returns
time series. The GARCH model class, introduced by Engle (1982) and Bollerslev
(1986), allows capturing this feature by modelling the conditional variance with
linear or non-linear specifications and has become a reference tool widely used
in risk management and option pricing. In this section, we first briefly review
the GARCH class both at the univariate and multivariate levels, pointing at the
most relevant specifications. Second, we discuss the specifications and approaches
addressing the issues that might be encountered within a data rich environment
when the final purpose is volatility (or covariance) forecasting. For a detailed review
and discussion on univariate GARCH models, see Bollerslev, Engle, and Nelson
(1994) and Teräsvirta (2009), while for multivariate GARCH models we refer the
reader to Bauwens et al. (2006), Silvennoinen and Teräsvirta (2009) and Caporin
and McAleer (2012).

5.2.1 Univariate GARCH Models

Among the several univariate GARCH models (see the survey by Bollerslev, 2010),
we choose only a few cases, the most relevant ones, and we limit ourselves to the
simplest specifications. Let xt define the sequence of the logarithmic difference for
the price Pt of a given asset; then, the conditional mean is characterized as follows:

xt = E(xt |�t−1)+ εt , εt ≡ h
1
2
t zt , zt ∼ iid (0, 1) ,

where �t−1 is the information set at time t − 1, ht is the conditional variance
and zt is an innovation term with zero mean and unit variance following an i.i.d
distribution. We might then consider alternative specifications for ht .

The GARCH model of Bollerslev (1986) provides the following dynamic for the
conditional variances:

ht = ω+ βht−1 + αε2
t−1.
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The parameters must satisfy the constraints ω > 0, α ≥ 0, β ≥ 0 and α + β < 1 to
ensure the positivity and the stationarity of the conditional variance ht .

The Exponential GARCH (EGARCH) model by Nelson (1991) defines the
dynamic on the logarithm of the conditional variance. Therefore, it does not require
restrictions on the parameters for the positivity of ht . The EGARCH model is
defined as follows:

loght = ω+ β loght−1 + αzt−1 + κ (|zt−1| −E|zt−1|) .

A sufficient condition for covariance stationarity is that |β| < 1. The EGARCH
model allows for different effects of negative and positive shocks on the conditional
variance, which depend on α and κ .

The GJR-GARCH model of Glosten, Jagannathan, and Runkle (1993) adds a
dummy for negative shocks with respect to the GARCH model:

ht = ω+ βht−1 + αε2
t−1 + γ ε2

t−11[εt−1<0],

where 1(.) is the indicator function. The coefficient γ measures the degree of
asymmetry of negative shocks. Sufficient conditions for the positivity of conditional
variances (ht ) require that ω ≥ 0, α ≥ 0, β ≥ 0, γ ≥ 0, while for covariance
stationarity, under the additional assumption of symmetry for the density of zt =
h
−1/2
t εt , we need α + β + γ

2 < 1.
Finally, the Asymmetric Power ARCH (APARCH) model of Ding, Granger, and

Engle (1993) can be viewed as a non-linear generalization of the GARCH and GJR-
GARCH models. The parameter δ > 0 drives the non-linearity and represents the
power of the conditional volatility over which we define the dynamic. The model
reads as follows:

hδt = ω+ βhδt−1 + α (|εt−1| − ϕεt−1)
δ ,

where |ϕ| ≤ 1 and δ > 0. An excellent discussion for necessary and sufficient
moment conditions is provided by Ling and McAleer (2002). The APARCH model
nests several univariate GARCH specifications.

Forecasting volatility from GARCH-type models requires limited efforts as, by
default, one-step-ahead forecasts are a bi-product of model estimation. For instance,
for the GARCH model, we have:

hT+1 = ω̂+ β̂hT + α̂ε2
T ,

where we assume we estimate parameters using a sample from 1 to T . Multi-
step-ahead forecasts might be easily obtained by recursive substitutions, replacing
unknown conditional variances with their predicted values.

These models, as well as many other univariate GARCH specifications, can
be easily extended with the introduction of exogenous information, leading to
GARCHX models (see, among many others, Fleming, Kirby, and Ostdiek, 2008).
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Referring to the simple GARCH model, we could have

ht = ω+ βht−1 + αε2
t−1 + δ′Xt−1,

where Xt is the vector of conditioning information, and the parameter vector δ
might be constrained to ensure the positivity of the conditional variance. Issues
associated with the data dimension emerge in GARCH models when they include
conditioning variables. In fact, the number of potentially relevant drivers we could
include in Xt might be huge. For instance, we might introduce a large number of
macroeconomic variables that could impact on the uncertainty of a given variable
of interest, or we might collect several financial indicators that could impact
on the volatility of a specific financial instrument. This clearly challenges the
estimation of even univariate models and, consequently, their use from a forecasting
perspective. However, there are two approaches we might consider to deal with the
dimensionality (of covariates) issue. The first makes use of dimension reduction
techniques, where we summarize the informative content of covariates into a
few indicators. The classical example is principal component analysis, but other
dimension reduction approaches might be used. The second approach points at
regularization methods, for instance, the Least Absolute Shrinkge and Selection
Operator (LASSO) (Tibshirani, 1996), that is introducing in the model estimation
step a penalty component that helps in selecting the most relevant covariates.

5.2.2 Multivariate GARCH Models

Multivariate GARCH (MGARCH) models are a natural extension of the univariate
specifications for the modelling of covariance and/or correlation matrices. The mean
equation becomes

xt = E(xt |�t−1)+ εt , εt ≡ H
1
2
t zt , zt ∼ iid (0, I) ,

where now xt is a (N × 1) vector and Ht is a N ×N positive definite matrix, the
conditional covariance matrix. Following a standard practice, we cluster MGARCH
models into two families: the conditional covariance models and the conditional
correlations models. The two groups differ, as the first explicitly models conditional
covariances, while the second explicitly models conditional correlations. We briefly
review here the most common models, and we refer the reader to Bauwens
et al. (2006) and Silvennoinen and Teräsvirta (2009) for additional details on
the following models as well as on additional specifications. For all the models
we consider, recovering the forecasts of conditional covariances and correlations
is relatively simple because, by construction, the models implicitly provide the
one-step-ahead predictions as a bi-product of model estimation. Multi-step-ahead
forecasts can be easily obtained by recursive substitutions.
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Conditional Covariance Models
The prototype model in this class is the VECH model proposed by Bollerslev, Engle,
and Wooldridge (1988), where each element of the matrix Ht is a linear function of
past values of Ht and the lagged and square products of mean innovations errors:

vech(Ht ) = ω+Avech(εt−1ε
′
t−1)+Bvech(Ht−1),

where vech(·) denotes the vectorization operator, which stacks the lower portion
of a N ×N symmetric matrix in a m = N × (N + 1)/2× 1 vector, and ω is the
vector of the same dimension for the constant terms. Finally, A and B are square
matrices of parameters with dimensions m×m. This model is the most flexible in
this class. Nevertheless, it is highly exposed to the curse of dimensionality, as the
number of parameters to be estimated is of order O

(
N4
)

and parameters must be
non-linearly constrained to ensure a positive definite conditional covariance. This
makes the model infeasible even in small cross-sectional dimensions.

A relevant alternative is the BEKK model of Engle and Kroner (1995), which
reads as follows:

Ht = CC′ +Aεt−1ε
′
t−1C′ +BHt−1B′,

where A and B are now N ×N matrices (symmetry is not required) and C is lower
triangular. This model is less exposed to the curse of dimensionality, which is,
however, still present as the parameter number is of order O

(
N2
)
. Nevertheless, the

absence of relevant parameter constraints (apart from a simple positivity constraint
on parameters of position (1, 1) in A and B) makes the model feasible in small or
moderate cross-sectional dimensions.

A third relevant model is the Orthogonal GARCH (OGARCH) of Alexander
(2001), in which we first rotate the mean innovations moving to the principal
components and then we fit univariate GARCH:

E
(
εt ε

′
t

) = � = LDL′,

ut = L′εt , E
(
utu′t |It−1

) = diag (ht ) ,

hi,t = (1− αi − βi) di,i + αiu2
i,t−1 + βihi,t−1,

E
(
εt ε

′
t |It−1

) = Ldiag (ht )L′,

where L is the matrix of eigenvectors, D is the diagonal matrix of eigenvalues (with
di,i being a single element of D) and ut is the vector of principal components, with
a conditional covariance that is equal to a diagonal matrix, in which the elements
in the main diagonal are equal to ht . Furthermore, the conditional variances of
the principal components follow a GARCH(1,1) with the intercept targeted to
the specific eigenvalue and the dynamic driven by the parameters αi and βi . The
OGARCH model requires the use of a sample estimator to recover the principal
components. It then moves to the univariate GARCH estimation, where parameter
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constraints are required only in the last step to ensure positivity of the conditional
variances. This procedure allows fitting the model even in large cross-sectional
dimensions. However, from a forecasting perspective, the models make a relevant
implicit assumption, that is, that the loadings matrix (the eigenvector matrix) is time-
invariant.

Conditional Correlation Models
Multivariate GARCH models based on conditional variances and correlations
require fewer parameters compared to models for conditional covariances and are
thus feasible in moderate or even large cross-sectional dimensions. The first model
in this family is the Constant Conditional Correlation (CCC) proposed by Bollerslev
(1990), where univariate conditional variance specifications are accompanied by an
unconditional correlation matrix:

Ht = DtRDt ,

where Dt =
(
h

1/2
11t , . . . ,h1/2

NNt

)
, hii is a conditional variance obtained from a

univariate GARCH process on εt and R is unconditional correlation matrix of
vt = D

−1
t εt .

The Dynamic Conditional Correlation (DCC) model introduced by Engle (2002)
generalizes the CCC model, allowing for dynamic correlations and leading to

Ht = DtRtDt ,

where

Rt = Q̄−1/2
t Qt Q̄

−1/2
t , Q̄t = diag

(
q11,t , . . . , qNN ,t

)
(5.1)

and Qt is equal to

Qt = (1− α− β)S+ αut−1u′t−1 + βQt−1, (5.2)

where uit = εi,t/
√
hii,t , S is a symmetric positive definite matrix close to the

unconditional correlation matrix (Aielli, 2013) while α and β are scalar parameters
satisfying α + β < 1 and α,β > 0 to guarantee covariance stationarity.

In both the CCC and DCC models, the curse of dimensionality has a limited
impact since the model estimation requires a collection of steps pointing either at
univariate GARCH estimation or at the adoption of sample moments. However, this
flexibility comes with a relevant drawback, as the models completely neglect the
presence of spillovers or interdependence among conditional variances, covariances
and correlations.



134 M. Bernardi et al.

5.2.3 Dealing with Large Dimension in Multivariate Models

When dealing with MGARCH models, the curse of dimensionality represents a
crucial issue. While on the one side conditional correlation models might represent
a solution, on the other side we do have interest in recovering model structures
that, besides being feasible, also lead to economically relevant relationships, and
thus there is a need to include spillovers. In turn, these elements would allow for
better covariance forecasts, where the latter can be easily obtained from the model’s
dynamic structures. In MGARCH specifications, similarly to univariate GARCH,
one-step-ahead forecasts are a by-product of model estimation while multi-step
forecasts derive from simple recursions. Consequently, obtaining forecasts is not
complex once we have an estimated model; the complicated step is the estimation
of a useful, from an economic point of view, model specification.

Several proposals have been introduced in the financial econometrics literature
since the introduction of the DCC model in 2002. These proposals follow two main
research lines. The first highlights the introduction of model parametrizations that
limit the curse of dimensionality or cope with the curse of dimensionality while
trying to recover some elements from the interpretation point of view or in terms
of variance spillovers. The second strand focuses on the introduction of estimation
methods that try to circumvent the dimensionality issue.

With respect to the introduction of restricted parametrizations, several authors
focused on the VECH and BEKK models, introducing scalar and diagonal spec-
ifications, where the parameter matrices capturing the interdependence between
variances and covariances include a much smaller number of parameters. While
this choice makes the models feasible in moderate cross-sectional dimensions, the
curse of dimensionality is still present, as it depends on the covariance intercepts
that still include O

(
N2
)

parameters. In addition, by moving to scalar or diagonal
specifications, the models completely lose the presence of spillovers, making them
less relevant from an empirical point of view. Examples are given by Attanasio
(1991), Marcus and Minc (1992) and Ding and Engle (2001), where, for instance,
we might choose one of the following structures for the A matrix of a BEKK model
(and similarly for the B matrix or for the VECH model):

A = αI , A = diag (a) , A = aa′, (5.3)

where theN -dimensional vector a might includeN different parameters or a smaller
number leading to common parameters for groups of variables.

Opposite to the choice of a restricted parameterization, in the DCC model case
that, in its most common specification, includes scalar parameters, the literature
attempts to re-introduce flexibility by proposing diagonal or similar structures; see,
among many others, Billio, Caporin, and Gobbo (2006), Cappiello, Engle, and
Sheppard (2006) and Caporin and McAleer (2012). This leads to parameter matrices
structured as in Eq. (5.3).
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A different approach, potentially crossing all models, makes use of the known
interdependence relationships among the modelled variables to provide restricted
and interpretable model specifications (see Caporin and Paruolo, 2015 and Billio
et al., 2018). In these approaches, the parameter matrices have a structure driven, for
instance, by proximity relationships or observed networks linking the variables of
interest, leading, in the BEKK case, to the following form for the parameter matrix
A (and similarly for B):

A = diag (a0)+ diag (a0)W ,

where W is the adjacency matrix of an observed network, and the matrix A depends
on two vector or parameters. The network proxies for the interdependence allow for
the presence of spillovers with an additional, but limited, set of parameters compared
to diagonal specifications.

Finally, we mention models that cope with the curse of dimensionality by
introducing a rotation of the observed variables before estimating a multivariate
dynamic model. These models are closely related to the OGARCH but try to
overcome its limitations. We mention here the approach of Van der Weide (2002)
and the more recent RARCH model of Noureldin et al. (2014) in which a rotation
of the variables is followed by a BEKK-type model with a restricted intercept, thus
potentially solving the curse of dimensionality if the parameter matrices are set to
be diagonal.

A second set of papers focuses on estimation methods. On the one side we
have approaches dealing with the dimensionality issue by resorting to composite
likelihood approaches (Bauwens, Grigoryeva, & Ortega, 2016; Pakel, Shephard,
Sheppard, & Engle, 2017). Despite the appeal of these suggestions, the estimated
models might be affected by the absence of spillovers due to the adoption of a
diagonal specification for the parameter matrices. A different approach is taken
by Dhaene et al. (2017), who introduced a LASSO penalization in the estimation
of the BEKK model parameters. This allows for the presence of spillovers, but
the estimation in large cross-sectional dimensions would be complex due to the
presence of the model intercept.

5.3 Stochastic Volatility Models

In recent decades, stochastic volatility models have gained increasing interest in
mathematical finance, financial econometrics and asset and risk management (see,
among others, Hull & White, 1987; Heston, 1993; Ghysels, Harvey, & Renault,
1996). Particularly, they have proven to be useful tools for pricing financial assets
and derivatives and estimating efficient portfolio allocations. Like the GARCH
models, they go beyond Black and Scholes (1973)’s restrictive assumption that
volatility is constant, trying to capture the main stylized facts characterizing finan-
cial time series, such as volatility clustering and fat-tailed distributions (see, e.g.,
Cont, 2001), or the leverage effect highlighted by Black (1976). Stochastic volatility
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models represent a valid alternative to GARCH models, which are relatively easy
to estimate but have relevant drawbacks. For instance, they impose parameter
restrictions that are often violated by the estimated coefficients (Nelson, 1991).
While returns volatility evolves according to a specific function in GARCH models,
it follows an unobserved random process in stochastic volatility models (see, e.g.,
Melino and Turnbull, 1990; Harvey, Ruiz, and Shephard, 1994; Jacquier, Polson,
and Rossi, 1994; Taylor, 1994). Stochastic volatility models can be defined in either
a discrete or a continuous time setting. The models belonging to the first category
(discrete) are mainly used by econometricians for risk and portfolio management,
whereas the ones included in the second category (continuous) are mainly used by
mathematicians for pricing derivatives (Meucci, 2010). Here, we focus on discrete-
time stochastic volatility models, whereas we use the continuous time setting to
derive realized volatility measures in Sect. 5.4.1.

5.3.1 Univariate Stochastic Volatility Models

Starting from the univariate setting, a standard specification (see, e.g., Taylor, 1986;
Taylor, 1994; Jacquier et al., 1994; Kim, Shephard, & Chib, 1998b; Liesenfeld &
Richard, 2003; Hautsch & Ou, 2008 reads as follows:

rt = exp

(
ht

2

)
εt (5.4a)

ht = α+ βht−1 + ηt , (5.4b)

where rt and ht are, respectively, the log-return and the log-volatility of a financial
asset at time t , for t = 1, 2, . . . , T , whereas the error terms εt ∼ N(0, 1) and ηt ∼
N(0, σ 2

η ) are mutually independent Gaussian white noise processes. Therefore, the
model in Eqs. (5.4a)–(5.4b) treats the log-volatility as a latent, unobserved variable
following an AR(1) process. Under the condition |β| < 1, the process is stationary.

Unfortunately, the likelihood function of rt does not have an analytical expres-
sion and, therefore, is difficult to evaluate. As a result, the estimation of the
parameters in Eqs. (5.4a)–(5.4b) requires nontrivial econometric techniques. Among
them, we mention the generalized method of moments (see, e.g., Andersen &
Sorensen, 1996; Jacquier et al., 1994; Melino & Turnbull, 1990), quasi-maximum
likelihood estimation (see, e.g., Harvey et al., 1994; Melino & Turnbull, 1990)
and Markov Chain Monte Carlo methods (see, e.g., Kim et al., 1998b; Melino &
Turnbull, 1990).

Harvey et al. (1994) and Chib, Nardari, and Shephard (2002), among others,
specified a Student-t distribution for the error term εt . In addition, it is also possible
to include a jump component in either Eq. (5.4a) or (5.4b) or both (see, e.g., Bates,
2000; Duffie, Pan, and Singleton, 2000). To capture the leverage effect, Shephard
(1996) and Jacquier, Polson, and Rossi (2004) introduced a negative correlation
between the contemporaneous error terms εt and ηt in Eqs. (5.4a) and (5.4b).
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5.3.2 Multivariate Stochastic Volatility Models

Univariate stochastic volatility models have the drawback of not capturing the co-
movements of different assets, which become particularly relevant during periods
of financial distress. As a result, they are of little use in applications where the
correlation structure of financial assets plays a relevant role, such as in asset
allocation and risk management. This drawback has stimulated the development
of multivariate stochastic volatility models.

The first multivariate stochastic volatility model introduced in the literature
was proposed by Harvey et al. (1994) and is described below. Let rt =
(r1,t , r2,t , . . . , rN ,t )

′ be the N × 1 vector including the log-returns of N stocks
at time t , where ri,t = exp(hi,t/2)εi,t and hi,t = αi + βihi,t−1 + ηi,t , for
i = 1, 2, . . . ,N and t = 1, 2, . . . , T . Here, we assume that the vectors of error
terms εt = (ε1,t , ε2,t , . . . , εN ,t )

′ and ηt = (η1,t , η2,t , . . . , ηN ,t )
′ are serially and

mutually independent, being distributed as follows:

[
εt

ηt

]
∼ N

([
0
0

]
,

[
�ε 0
0 �η

])
,

where �η is a positive definite covariance matrix, whereas �ε defines the correlation
matrix of assets returns.

Then, the model proposed by Harvey et al. (1994) reads as follows:

rt = H1/2
t εt (5.5)

for t = 1, 2, . . . , T , where Ht = diag{exp(h1,t ), exp(h2,t ), . . . , exp(hN ,t )} is the
diagonal matrix of time-varying volatilities, whose elements follow a restricted
VAR(1) process, that is:

ht = α + βht−1 + ηt ,

where ht = (h1,t ,h2,t , . . . ,hN ,t )
′ is an N × 1 vector, α = (α1,α2, . . . ,αN)′ is an

N × 1 vector of intercepts, whereas β = diag{β1,β2, . . . ,βN } is anN ×N diagonal
matrix.

As a result, the assets returns have the following conditional distribution:

rt |ht ∼ N
(

0, H1/2
t �εH

1/2
t

)
.

As highlighted by Harvey et al. (1994), the correlations are constant similarly to the
model of Bollerslev (1990). The assumption of constant correlations is reasonable
in empirical applications according to Bollerslev (1990) and Harvey et al. (1994).
Nevertheless, other contributions question these assumptions (see, e.g., Diebold and
Nerlove, 1989).
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In the estimation process, Harvey et al. (1994) focused on the particular case in
which ht follows a multivariate random walk, such that it is possible to emphasize
the persistence of volatility over time. Particularly, after linearizing (5.5) and setting
wi,t = log r2

i,t , Harvey et al. (1994) considered the following specification:

wt = (−1.27)ι+ ht + ξ t (5.6a)

ht = ht−1 + ηt , (5.6b)

where ι is an N × 1 vector, the elements of which are equal to 1, wt =
(w1,t ,w2,t , . . . ,wN ,t )

′, whereas ξ t = (ξ1,t , ξ2,t , . . . , ξN ,t )
′, with ξi,t = log ε2

i,t + 1.27
being i.i.d. and having a covariance matrix that is a known function of �ε (Harvey
et al., 1994).

By treating the system of Eq. (5.6) as a Gaussian state-space model and using
the Kalman filter, Harvey et al. (1994) retrieved the corresponding quasi-maximum
likelihood estimators. Later, So, Li, and Lam (1997) and Danielsson (1998) focused
on specifications that resemble the basic model introduced by Harvey et al.
(1994). Particularly, So et al. (1997) used a quasi-maximum likelihood method
in a context in which the off-diagonal elements of β are not necessarily equal
to zero. In contrast, Danielsson (1998) used a simulated maximum likelihood
method. Another tool that has attracted interest for estimating multivariate stochastic
volatility models is represented by Markov chain Monte Carlo (MCMC) methods
(see, e.g., Jacquier et al. (1994), Chib and Greenberg (1996) and Smith and Pitts
(2006); see the next section). Several extensions of the basic multivariate stochastic
volatility model of Harvey et al. (1994), described above, have been proposed. For
instance, as highlighted by Harvey et al. (1994), a possible generalization allows
for a more complex specification for ht in place of a simple VAR(1) process,
such as a multivariate autoregressive moving average (ARMA) or a stationary
vector autoregressive fractionally integrated moving average (ARFIMA) process, as
suggested by So and Kwok (2006). Another well-known extension includes latent
common factors (see, e.g., Harvey et al., 1994; Jacquier, Polson, and Rossi, 1999b;
Aguilar and West, 2000). Similarly to the univariate setting described in Sect. 5.3.1,
it is possible to define multivariate stochastic volatility models that capture stylized
facts of financial time series. For instance, among others, we mention Asai and
McAleer (2006a), who proposed a model that reproduces the leverage effect, and
Yu and Meyer (2006a), who developed a model in which εt follows a multivariate
Student-t distribution to capture the excess kurtosis of financial returns.

5.3.3 Improvements on Classical Models

Since the seminal paper of Harvey et al. (1994), the literature on multivariate
stochastic volatility models has been enriched by many interesting contributions
from either the perspective of parsimonious modelling high dimensional vectors or
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focusing on the parameters estimation issue. In this section, we consider the major
contributions dealing with multivariate extensions of the basic stochastic volatility
and ARCH-type models that are able to capture additional features of observed time
series. We further provide an additional investigation of recent contributions for
large dimensional models in the next section.

Given the large number of existing contributions on multivariate SV models,
a complete overview is beyond the scope of the present contribution. Instead, we
summarize the most relevant approaches from several categories while referring to
previous up-to-date reviews for details when available.

The most important extension of basic SV models is the Multivariate Factor
Stochastic Volatility (MFSV) model first introduced by Pitt and Shephard (1999);
see also Kim, Shephard, and Chib (1998a) and Chib, Nardari, and Shephard
(2006). The model generates time-varying correlations by factorizing the variance-
covariance matrix in terms of a small number of latent processes following SV
dynamics:

yt = Bt ft +Ktqt +V1/2
t �−1

t εt , εt ∼ Np
(
0, Ip

)
(5.7a)

ft = c+Aft−1 +D1/2
t γ t , γ t ∼ Nq

(
0, Ip

)
(5.7b)

ht = μ+
 (ht −μ)+ ηt , ηt ∼ Np+q
(
0, �η

)
, (5.7c)

where ft =
(
f1,t , f2,t , . . . , fq,t

)ᵀ is a vector of latent factors,

�t = diag
{
λ1,t , . . . , λp,t

}
(5.8a)

K = diag
{
k1,t , . . . , kp,t

}
(5.8b)

qt =
(
q1,t , . . . , qp,t

)′ (5.8c)

ht =
(
h1,t , . . . ,hp,t ,hp+1,t , . . . ,hp+q,t

)
(5.8d)

Vt = diag
{
exp
(
h1,t
)

, . . . , exp
(
hp,t
)}

(5.8e)

Dt = diag
{
exp
(
hp+1,t

)
, . . . , exp

(
hp+q,t

)}
(5.8f)


 = diag
{
φ1, . . . ,φp+q

}
(5.8g)

�η = diag
{
ση,1, . . . , ση,p+q

}
, (5.8h)

λj ,t ∼ G
( νj

2 ,
νj
2

)
, kj ,t are jump sizes for j = 1, 2, . . . ,p and qj ,t ∼ Ber

(
κj
)
.

Hereafter, x ∼ Ber (π) denotes a Bernoulli random variable with a success
probability equal to π ,i.e. P (x = 1) = π . For identification purposes, the p × q
loading matrices B are assumed to be such that bij ,t = 0, for (i < j , i ≤ q) and
bii,t = 1 for (i ≤ q) with all other elements unrestricted. Thus, in this model, each
of the factors and each of the errors evolve according to univariate SV models.

The MFSV model defined in Eqs. (5.7)–(5.8) accounts for heavy-tails, jumps-in
mean as well as specific dynamic evolution for the conditional volatility and the
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latent factor, providing a general framework in which both the conditional variances
and correlations evolve over time following a stochastic process. Given its general
formulation, the MFSV model nests several alternative specifications previously
proposed in literature. The jump components qt were introduced by Chib et al.
(2006), who also considered a simpler evolution for the factors that correspond to
the following parameter restrictions: c = 0q , A = 0q×q and time-invariant loading
matrix Bt = B. Chib et al. (2006) also introduced the diagonal scaling matrix �t
in order to account for the non-Gaussian nature of financial returns that is heavily
documented in literature. Indeed, by marginalizing out the latent factors �j ,t , we
retrieve a standard Student-t distribution for the error terms λ−1

j ,t εj ,t ∼ Stνj (0, 1).
If we further impose the constraints that Kt = 0p×p and �t = 0p×p, we get the
specification of Kim et al. (1998a) and Pitt and Shephard (1999). Jacquier, Polson,
and Rossi (1999a) and Liesenfeld and Richard (2003) considered a similar FSV
model with the additional restriction that Vt is not time-varying and estimate the
parameter using single-move Gibbs sampling and efficient importance sampling
schemes to approximate the likelihood, respectively. Pitt and Shephard (1999) also
employed a MCMC-based approach for the general model formulation discussed
above, sampling the log-volatilities along the lines of Shephard and Pitt (2004). An
extensive discussion of Bayesian inference in the context of FSV is presented by
Chib et al. (2006) in the context of a fat-tailed FSV with jumps.

Yu and Meyer (2006b) proposed a bivariate alternative to FSV models with a
dynamic equation for correlation evolution. However, the model generalization to
larger dimensions is complex.

Tsay (2010) proposed a Cholesky decomposition SV model that routinely applies
a Cholesky decomposition of the time-varying covariance matrix to preserve the
positive-definiteness. However, the model implies a sequential ordering for the
outcome variables. To prevent this issue, Asai and McAleer (2006b) exploited the
matrix exponential operator to get a compact SV model representation:

yt |At ∼ Np (0, �t ) (5.9a)

�t = exp (At ) = Et exp (Vt )Eᵀ
t (5.9b)

αt = vech (At ) (5.9c)

αt+1 = μ+
 (αt −μ)+ ηt , ηt ∼ Np(p+1)/2
(
0, �η

)
, (5.9d)

where μ ∈ R
p, 
 is the autoregressive matrix of dimension p × p and Et and

Vt denote the spectral decomposition of the matrix At . Despite the elegance of the
solution, the matrix exponentiation is computationally intensive in large dimensions
since it involves the spectral decomposition of the variance-covariance matrix in
Eq. (5.9b) at each time t . Philipov and Glickman (2006b) allowed for dynamic
correlations by assuming that the conditional covariance matrix �t follows an
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Inverted Wishart distribution with parameters that depend on the past covariance
matrix �t−1. Particularly,

yt |�t ∼ Np (0, �t ) (5.10a)

�t |ν, St−1, �t−1 ∼ IWq (ν, St−1) (5.10b)

St−1 = 1

ν

(
�−1
t−1

)d/2
A
(
�
−d/2
t−1

)′
, (5.10c)

where �
−d/2
t−1 =

(
�−1
t−1

)d/2
and IWq (ν0, Q0) denote an Inverted Wishart

distribution with parameters (ν0, Q0), and for convenience in Eq. (5.10c), we used
the parametrization proposed by Asai and McAleer (2009a). Philipov and Glickman
(2006b) estimated this model in a Bayesian setting with an MCMC algorithm.
Gourieroux, Jasiak, and Sufana (2009a) used an alternative approach and derived
a Wishart autoregressive process.

The approach of Gribisch (2016) generalizes the basic Wishart MSV model
of Philipov and Glickman (2006b) and Asai and Asai and McAleer (2009a) to
encompass a regime-switching behaviour. The latent state variable is driven by
a first-order Markov process. The model allows for state-dependent covariance
and correlation levels and state-dependent volatility spillover effects. Parameter
estimates are obtained using Bayesian Markov Chain Monte Carlo procedures and
filtered estimates of the latent variances, and covariances are generated by particle
filter techniques. The model is defined as in Eq. (5.10) with the following minor
modifications:

St−1 = 1

ν

(
�−1
t−1

)d/2
ASt

(
�
−d/2
t−1

)′
,

while {St , t = 1, 2, . . . , T } is a Markov chain.

5.3.4 Dealing with Large Dimensional Models

One of the main challenges in modern financial econometrics involves building
reliable multivariate volatility models in large dimensions. When the dimension p
is large, improvements over traditional models to efficiently deal with the curse
of dimensionality problem can come from two different directions. The first is
through the building and validation of more parsimonious models that are able to
account for most of the stylized facts and dependences among assets, while the
second relevant way improves upon the existing estimation methodologies. In this
latter direction, one promising estimation method has been recently proposed by
Kastner (2018) for the multivariate Student-t FSV model of Chib et al. (2006)
with constant factor loadings and without the jump component. Therefore their
model is similar to that specified in (5.7), with the additional restrictions Kt = 0
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and Bt = 0, for all t , c = 0 and A = 0. Kastner, Frühwirth-Schnatter, and
Lopes (2017) discussed efficient Bayesian estimation of a dynamic factor stochastic
volatility model. They proposed two interweaving MCMC strategies (see Yu &
Meng, 2011) to substantially accelerate the convergence and mixing of standard
approaches by exploiting the non-identifiability issues that arise in factor models.
Their simulation experiments show that the proposed interweaving methods boost
estimation efficiency by several orders of magnitude.

On the same stream of literature, Bitto and Frühwirth-Schnatter (2019) and Kast-
ner (2018) accounted for the curse of dimensionality on time-varying parameters
(TVP) models with stochastic volatility and FSV, respectively. Specifically, Bitto
and Frühwirth-Schnatter (2019) proposed a Normal-Gamma prior (see, e.g., Griffin
& Brown, 2010) for variable selection in time-varying parameters regression (TVP)
models by exploiting the non-centred parameterization of Frühwirth-Schnatter and
Wagner (2010). Although originally proposed for dealing with variable selection
in a dynamic regression context, the general framework can be easily extended to
include time-varying conditional covariance in multivariate models, by exploiting
the Cholesky decomposition of Lopes, McCulloch, and Tsay (2014). More specif-
ically, let yt ∼ N (0, �t ), with time-varying variance covariance �t = AtDtAt ,
where AtD

1/2
t is the lower triangular Cholesky decomposition of �t ; then, A−1

t yt ∼
N (0, Dt ) and yt can be expressed as

yt = N (Bxt , Dt ) ,

where

Bt =

⎛

⎜⎜⎝

−�2,1,t 0 0 · · · 0 0
−�3,1,t −�3,2,t 0 · · · 0 0
· · · · · · · · · · · · · · · · · ·

−�p,1,t −�p,2,t −�p,3,t · · · −�p,p−1,t 0

⎞

⎟⎟⎠ , (5.11)

with �ij ,t for j < i being the elements of the matrix A−1
t , and xt =(

y1,t , y2,t , . . . , yp−1,t
)ᵀ being a regressor derived from yt . Moreover, to capture

the conditional heteroskedasticity the diagonal matrix Dt can be parameterized
in terms of a vector of conditional volatilities Dt = diag{eh1,t , . . . , ehp,t }, having
autoregressive dynamics as in Eq. (5.7c). Therefore, placing the Normal-Gamma
prior distribution on the unrestricted elements of the matrix of loading factors
Bt in Eq. (5.11) induces sparsity into the correlation matrix of yt . Another recent
interesting contribution on estimating large dimensional MFSV models is that of
Kastner (2018). Quoting Kastner (2018), the main aim of his paper is ‘to strike the
indispensable balance between the necessary flexibility and parameter parsimony
by using a factor stochastic volatility (SV) model in combination with a global-local
shrinkage prior’. Indeed, Kastner (2018) proposed an MFSV model that alleviates
the curse of dimensionality by combining the parsimonious factor representation
with sparsity. As for Bitto and Frühwirth-Schnatter (2019), sparsity is obtained
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by imposing computationally efficient absolutely continuous shrinkage priors (see
Griffin & Brown, 2010) on the factor loadings. The FSV model specified by Kastner
(2018) can be cast within the general FSV formulation in Eqs. (5.7)–(5.8). Again,
the factor loadings Bt = B are assumed to be constant over time, the jump matrix of
jump intensities is null, Kt = 0p×p and the matrix �t is also fixed to one, although
a more complex fat-tailed distribution can be considered. Moreover, the common
factor dynamics specified in Eq. (5.7b) impose constraints on both the vector c
and the loading matrix A, where c = 0 and A = 0. Moreover, the autoregressive
dynamics for the factor stochastic volatilities are assumed to have zero means.
Therefore, an additional restriction is that

(
μ1,μ2, . . . ,μp

)ᵀ = 0 in Eq. (5.7c). The
distinguishing feature of the FSV approach proposed by Kastner (2018) is that it
introduces sparse estimation on each unrestricted element of the matrix of factor
loadings B by assuming the following Normal-Gamma hierarchical prior, which
further shrinks unimportant elements of the factor loadings matrix to zero in an
automatic way:

bij |τ 2
ij ∼ N

(
0, τ 2

ij

)
(5.12a)

τij |λ2
i ∼ G

(
ai , aiλ

2
i /2
)

(5.12b)

λ2
i |λ2

i ∼ G (ci , di) , (5.12c)

where G (·, ·) denotes a Gamma distribution. The hierarchical prior distribution
specified in Eq. (5.12) extends the usual prior for factor loadings, in which τ 2

ij = τ 2

for all the elements of the matrix (see, e.g., Chib et al., 2006; Kastner et al., 2017;
Pitt & Shephard, 1999), to achieve more shrinkage. This approach is related to that
of Bhattacharya and Dunson (2011) for the class of non-parametric static factor
models.

With regard to the WSV approach, Asai and McAleer (2009b) proposed further
extensions of the basic multivariate SV model that can be useful in high dimensions,
which are strongly related to the DCC model of Engle (2002) (see section “Condi-
tional Correlation Models”). Indeed, Asai and McAleer (2009b) modelled the vector
of log-returns as in Eq. (5.1), where the dynamic evolution of the correlation in
Eq. (5.2) is replaced by:

Qt+1 = (1−ψ)ArQ+ψQt +�t , �t ∼Wp(ν, �),

where ArQ is a p× p matrix assumed to be positive definite and ψ ∈ (−1, 1). An
alternative specification provided by Asai and McAleer (2009b) is closely related to
the approach of Philipov and Glickman (2006a,b) discussed in the previous section.
Despite the various advancements in recent years, this model class still suffers from
the limited presence of spillovers across variances, covariances and correlations
because, in many cases, the (time-varying) parameter matrices are diagonal.
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5.4 Volatility Forecasting with High Frequency Data

A huge stimulus to the advancements in volatility forecasting came from the
increased availability of high-frequency data in the late 1990s. Several works in the
area emerged, starting from the studies focused on the analysis of high-frequency
data features or on the modelling of high-frequency data with GARCh-type
specifications (see, among many others, Andersen and Bollerslev, 1997, 1998; Engle
and Sokalska, 2012; Engle and Russell, 1998; Ghysels and Jasiak, 1998). Later,
we observed the surge of a more general and well-defined class of models and
tools. In this group, we include both the approaches estimating daily variances,
covariances and correlations starting from high-frequency data (let us call these,
measurement papers) as well as the works proposing models for realized variances,
covariances and correlation sequences (modelling papers). Both measuring and
modelling research lines clash with the dimensionality issues. In this section, after
briefly reviewing the univariate and multivariate measuring and modelling standard
approaches, we will show how they cope with a data rich environment.

5.4.1 Measuring Realized Variances

Since the seminal contribution of Andersen, Bollerslev, and Diebold (2003), the
realized volatility literature focused on the measurement issue has evolved, both
in terms of the availability of asymptotic results regarding volatility estimator
properties (allowing, for instance, the design of several tests for the occurrence
of jumps in equity prices) as well as for the possibility of handling a number of
empirical data features, with a particular reference to the microstructural noise (i.e.
the noise due to, for instance, infrequent trading and bid-ask bounce).

To introduce realized volatility measuring, we must make a hypothesis about the
process generating the equity prices. Let pt be the logarithmic price of a financial
asset at time t and assume it follows a Brownian semimartingale process, which
reads as follows:

pt = p0 +
∫ t

0
μudu+

∫ t

0
σudWu, t ≥ 0, (5.13)

where the drift μ = (μt )t≥0 is locally bounded and predictable, whereas σ =
(σt )t≥0 is a strictly positive process, independent of the standard Brownian Motion
W = (Wt )t≥0 and càdlag.

We now focus on the quadratic variation. If each trading day equals the interval
[0, 1] and is divided into M subintervals having the same width, the quadratic
variation at the t-th day is defined as follows:

QVt = plim
M→∞

M∑

i=2

(pt ,i − pt ,(i−1))
2
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where pt ,i is the price of a given asset we record at the i-th intraday interval of the
t-th day.

Hull and White (1987) showed that under our hypothesis for the price process,
and under additional regularity conditions for μu and σu, the quadratic variation
equals the integrated volatility (IV), i.e. the integral

∫ t
0 σ

2
u du. Building on this result,

we can estimate the volatility for day t by means of the realized variance:

RVt =
M−1∑

i=1

r2
t ,i ,

where rt ,i = pt ,(i+1) − pt ,i .
Barndorff-Nielsen and Shephard (2002) highlighted that the realized variance is

an unbiased estimator of the quadratic variation and converges to it as the sampling
frequency tends to infinity. Furthermore, Barndorff-Nielsen and Shephard (2002)
showed that:

M1/2
(
RVt −

∫ 1

0
σ 2
u du

)
d→MN

(
0, 2
∫ 1

0
σ 4
u du

)

where MN denotes the mixed normal distribution, whereas
∫ 1

0 σ
4
u du is the inte-

grated quarticity.
Several studies have addressed the impact of microstructure noise on the

properties of RVt (see, e.g., Hasbrouck, 2006). Bandi and Russel (2006) suggested
limiting the sampling frequency and proposed the rule of thumb of using 5-min
returns, optimizing the trade-off between bias and variance. In contrast, Zhang,
Mykland, and Ait-Sahalia (2005) introduced the two time-scales realized variance,
whereas Hansen and Lunde (2006) used a kernel approach for realized volatility
estimation.

In addition to the microstructure noise, the volatility of financial returns is
affected by rapid and large increments, as highlighted by several contributions
in the literature (see, e.g., Ball and Torous, 1983; Jarrow and Rosenfeld, 1984;
Jorion, 1988; Duffie et al., 2000; Eraker, Johannes, and Polson, 2003). Several
testing methods have been developed to detect the presence and deal with the
occurrence of jumps in stock prices. Among others, we mention here Barndorff-
Nielsen and Shephard (2006), Andersen, Bollerslev, and Dobrev (2007), Lee and
Mykland (2008), Andersen, Bollerslev, Frederiksen, and Ørregaard Nielsen (2010)
and Corsi, Pirino, and Renò (2010).

5.4.2 Realized Variance Modelling and Forecasting

The availability of realized variance sequences opens the door to a vast set of
modelling strategies, starting from ARMA-type specifications, whose final purpose
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is variance forecasting. However, the empirical evidence suggests that RV shows
long-memory features, thus requiring some care in model design. Corsi (2009)
introduced a successful model, that is, the Heterogeneous Auto Regressive (HAR)
model, with the purpose of approximating the long-memory behaviour of RV with
a restricted auto-regressive structure:

RVt = β0 + β1RVt−1 + β2RVt−1:t−5 + β3RVt−1:t−20 + εt (5.14)

where RVt−1:t−s = 1
s

∑k
j=1 RVt−j is the mean of the realized volatility in the last

s days, whereas εt is an error term with an expected value equal to zero.
The HAR model includes three volatility determinants that reflect the behaviour

of different financial operators according to the horizon characterizing their activity
(Corsi, 2009). Particularly, RVt−1 refers to short-term operators, the activity of
which has a daily or intra-daily frequency, such as dealers, market makers and
intraday speculators. RVt−1:t−5 captures the behaviour of medium-term opera-
tors, such as portfolio managers who typically rebalance their portfolios weekly.
RVt−1:t−20 reflects long-term operators, such as insurance companies and pension
funds who trade much less frequently and possibly for larger amounts. Therefore,
the HAR model postulates that operators having different time horizons perceive,
react to and cause different types of volatility components (Corsi, 2009), consistent
with the heterogeneous market hypothesis discussed in Muller et al. (1993). The
HAR model has different advantages. For instance, it is easy to implement and to
estimate with the standard ordinary least squares (OLS), as all the variables in (5.14)
are observed. Moreover, by using simulated data, the HAR-RV model is able to
reproduce the typical features of financial time series, such as long memory and fat
tails, and empirical results highlight its excellent forecasting performance (Corsi,
2009). As the HAR model might be red as a restricted AR specification, variance
forecasting from the HAR model inherits all the features and properties of AR model
forecasting.

The HAR model of Corsi (2009) becomes the prototype for several more flexible
specifications. For instance, Bollerslev, Patton, and Quaedvlieg (2016) highlighted
the fact that RVt includes a measurement error in addition to the true latent
integrated volatility, and therefore the forecasts arising from OLS estimates are
affected by the so-called errors-in-variables problem. Notably, this often leads to an
attenuation bias, with the directly observable RV process being less persistent than
the latent IV process (Bollerslev et al., 2016). Bollerslev et al. (2016) addressed this
issue by developing the so-called HARQ-F model, which builds on time-varying
coefficients. Empirical analyses of the S&P 500 equity index and the constituents
of the Dow Jones Industrial Average show that the HARQ-F model provides more
responsive forecasts, with significant benefits in terms of predictive accuracy. An
alternative specification is proposed in Bekierman and Manner (2018), where the
autoregressive parameters of the HAR-RV model are allowed to be driven by a
latent Gaussian autoregressive process and are estimated by means of maximum
likelihood using the Kalman filter.
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Another interesting approach that we can use to forecast realized variance
measures involves the mixed data sampling model (MIDAS-RV) of Ghysels, Santa-
Clara, and Valkanov (2004), Ghysels and Valkanov (2006). The main advantage
provided by the MIDAS is that it makes it possible to incorporate different levels of
sample frequency. In doing so, we use an approach that preserves the information
included in high-frequency data, without computing daily aggregates, such as the
realized variance, to use as regressors. In fact, the standard procedure of pre-filtering
data implies the risk of losing important information. Like the HAR-RV model, the
MIDAS is able to reproduce the persistence of volatility over time, with a reduced
number of parameters to be estimated when compared to standard econometric
models. Particularly, the general specification of the MIDAS variance model reads
as follows:

RVt ,v = μ+ φ
J∑

j=0

b(j , θ)Zt−j + εt ,

where RVt ,v = RVt + . . . + RVt+v quantifies the integrated variance over a v-
interval, whereas Zt−j includes a set of covariates that can be sampled at any
frequency; for instance, Forsberg and Ghysels (2007) analysed different choices for
Zt−j . In Ghysels and Valkanov (2006), the weighting function b(j , θ) builds on the
Beta function with parameter θ to reproduce a gradually declining and hump-shaped
behaviour.

Note that the HAR-RV and the MIDAS-RV models are two of the econometric
tools that we can use to forecast the realized measures of volatility. Nevertheless,
additional different methods are available in the literature. For instance, Andersen
et al. (2003) used long-memory Gaussian vector autoregressive (VAR) models to
forecast realized volatilities. Shephard and Sheppard (2010) introduced the high-
frequency-based volatility (HEAVY) models, in which one equation models the
volatility of returns, building on a realized measure that is specified in the second
equation. Christiansen, Schmeling, and Schrimpf (2012) predicted the asset return
volatility in a Bayesian model averaging framework, while Hansen, Huang, and
Shek (2012) added a realized volatility component to the GARCH structure leading
to the Realized GARCH model. Caporin and Velo (2015) used an HAR model with
asymmetric effects with respect to the volatility and the return and GARCH and GJR
GARCH specifications for the variance equation. Bonaccolto and Caporin (2016)
predicted realized measures of volatility in regression quantiles.

Engle and Gallo (2006) introduced an approach alternative to the HAR for mod-
elling and forecasting realized sequences, the multiplicative error model (MEM).
The model read as follows:

RVt = htηt
and

ht = ω+ αRVt−1 + βht−1.
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The model estimation requires a proper distributional assumption for the innova-
tions ηt , usually a Gamma. The MEM is somewhat less used than the HAR due to
the need of resorting to likelihood methods for model estimation.

For both approaches based on realized variances, the construction of forecasts,
similarly to univariate GARCH models, is a bi-product of model estimation for the
one-step-ahead case, while for forecasts horizons larger than one period, we might
adopt recursive substitution.

5.4.3 Measuring and Modelling Realized Covariances

In the framework of high-frequency data, multivariate analyses requires the estima-
tion of additional realized measures, that is, realized covariances. The pioneering
works in this area are those of Andersen et al. (2003) and Barndorff-Nielsen and
Shephard (2004). Let rt ,i = pt ,i − pt ,(i−1) be the N × 1 vector of intraday returns
of N stocks, recorded at the i-th intraday interval (for i = 2, . . .M) of the t-th
trading day, with pt ,(i) and pt ,(i−1) being the corresponding log-prices observed,
respectively, at the end and at the beginning of that intraday interval. The realized
covariance matrix is then computed on the t-th trading day, as follows:

RCOVt =
M∑

i=2

rt ,ir′t ,i (5.15)

After specifying a continuous time diffusion process for the logarithmic prices of
the N stocks—the multivariate extension of (5.13)—Barndorff-Nielsen and Shep-
hard (2004) showed that RCOV is a consistent estimator of the daily covariance
matrix �t :

√
M

[
vech (RCOV)− vech

(∫ 1

0
�t (u)du

)]
d→ N(0, �t ),

where vech is the half-vectorization operator, whereas �t is a positive definite
matrix (see Barndorff-Nielsen and Shephard, 2004).

The advantage of using the realized covariance matrix in (5.15) consists of
exploiting the additional information about the high-frequency co-movements of
N stocks. Nevertheless, as highlighted by Sheppard (2006), frequent sampling
is recommended if prices are error free. Unfortunately, high-frequency data are
contaminated by market microstructure noise, and their presence affects the per-
formance of realized covariance estimators. Particularly, Bandi and Russell (2005)
showed that (5.15) is not consistent in the presence of microstructure noise. As
highlighted by Bandi and Russell (2005), higher sampling frequencies produce a
bias due to the accumulation of microstructure noise. On the other hand, lower
sampling frequencies reduce the accuracy of the estimates. In order to optimize
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the trade-off between bias and efficiency, Bandi and Russell (2005) introduced a
method to determine the optimal sampling frequency.

When moving from the estimation of realized variances to the estimation of
realized covariances, we need to take into account an additional issue, which is
particularly critical when using ultra-high-frequency data: the so-called Epps effect.
Epps (1979) documented the fact that stock correlations tend to decrease as the
sampling frequency increases. Indeed, information arrives at different frequencies
for the different N stocks (non-synchronous trading), and this is an additional
source of bias when estimating realized covariances. Several approaches have been
proposed in the literature to address the nonsynchronicity issue. Among them, we
mention Barndorff-Nielsen, Hansen, Lunde, and Shephard (2011), who proposed a
multivariate realized kernel to estimate ex-post covariations. Notably, the estimator
introduced by Barndorff-Nielsen et al. (2011) is consistent in the presence of both
microstructure effects and asynchronous trading.

Similarly to the univariate case in which we focus on individual realized
variances, a typical approach to model and then forecast the realized covariance
matrix consists in building multivariate econometric models. For this purpose, for
instance, Bauer and Vorkink (2011) used a multivariate HAR model, inspired by
Corsi (2009), whereas Chiriac and Voev (2011) used a multivariate ARFIMA model.
Here, we suppose that RCOVt is the realized covariance matrix on the t-th day,
which we estimate either from (5.15) or by using other estimators proposed in the
literature. Then, after defining the variable zt = vech(RCOVt ), we can estimate a
simple vector autoregression of order p, defined as follows:

zt = α +
p∑

i=1

β izt−i + εt , (5.16)

where εt is a zero-mean random noise, βi , for i = 1, . . . ,p, are the k× k parameter
matrices, with k = N(N + 1)/2, whereas α is a k× 1 vector of intercepts.

A slightly different approach for joint modelling the dynamic evolution of the
matrices of realized covariances has been recently proposed by Gourieroux (2006)
and Gourieroux, Jasiak, and Sufana (2009b) to derive a Wishart autoregressive
process. Specifically, they define a Wishart autoregressive process of order 1
(WAR(1)) as a matrix process having the following conditional Laplace transform:

�t (�) = Eyt+1 (exp (tr (�yt+1))) =
exp
[
tr
(

Mᵀ�
(
Ip − 2��

)−1 Myt
)]

|Ip − 2��|k/2
,

where yt is a stochastic matrix of order p × p, Eyt+1 (·) denotes the conditional
expectation of yt−1 given the information set up to time t ,i.e. {yt , yt−1, . . . }, k is the
scalar degree of freedom, with k > p− 1, M is the p× p matrix of autoregressive
parameters and � is a p× p symmetric, positive definite matrix. The matrix � has
to be such that ‖�1/2��1/2‖ < 1, to ensure that the Laplace transform is well
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defined. Gourieroux et al. (2009b) provided a closed-form expression for the first
two conditional moments of the Wishart autoregressive process, which are useful to
express the dynamic evolution:

Eyt+1 (yt+1) = MytMᵀ + k�.

Therefore, the dynamics for yt+1 can be defined as follows:

yt+1 = MytMᵀ + k� + ηt ,

where ηt is an innovation such that its expectation is zero, i.e. E
(
ηt
) = 0

¯
. The

conditional probability density function of yt+1 is given by

f (yt+1|yt ) = |yt+1|(k−p−1)/2

2kp/2�p(k/2)|�|k/2
exp

[
−1

2
tr
(
�−1 (yt+1 +MytMᵀ))

]
× (5.17)

0F1
(
k/2, 1/4MytMᵀyt+1

)
,

where �p
(
k/2

) = ∫
A�0 exp (tr (−A)) |A|(k−n−1)/2dA is the multidimensional

gamma function, 0F1 is the hypergeometric function of matrix argument and the
density is defined on positive definite matrices. Applications of the WAR(1) process
can be found in Gourieroux and Sufana (2010) and Gourieroux and Sufana (2011);
see also Bonato, Caporin, and Ranaldo (2012, 2013).

5.4.4 Realized (Co)variance Tools for Large Dimensional
Settings

The increased availability of high-frequency data, both with respect to the cross-
sectional dimension as well as in terms of the data frequency (higher and higher,
going to the millisecond level and pointing at nanoseconds), challenges the mea-
surement as well as the modelling of realized covariance sequences.

When focusing on the measurement issue, the recent literature has focused on the
need to estimate a large realized covariance matrix starting from a framework where
the number of intra-daily returns is smaller than the cross-sectional dimension.
Obviously, to cope with this issue, the sampling frequency might be increased to
enlarge the degrees of freedom, moving for instance to tick data. However, when
increasing the data frequency, the impact of microstructure noise is larger, and we
lose synchronicity among observed prices in the cross-section. Among the possible
solutions proposed in recent years, we mention Tao, Wang, Yao, and Zou (2011),
Tao, Wang, and Chen (2013) and Tao, Wang, and Zhou (2013), who introduced
estimators based either on thresholding techniques or regularization approaches
that are robust to microstructure noise, asynchronicity and that are valid when the
cross-sectional dimension is larger than the temporal dimension. Similarly, Lam,
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Feng, and Hu (2017) proposed a non-linear shrinkage approach for cross-sectional
dimensions of the same order of the temporal dimensions, while Morimoto and
Nagata (2017) proposed a robust covariance estimator building on the features of
the realized covariance eigenvalues. A different research line follows from Ait-
Sahalia and Xiu (2017) and Ait-Sahalia and Xiu (2019), who used factor structures
to introduce realized covariance estimators.

On the modelling side, estimating a linear model such as that in (5.16) remains
feasible when the cross-sectional dimension is large, under the assumption that
the time series of realized covariances are sufficiently long. Nevertheless, financial
operators typically deal with large portfolios in their real-world activity and need to
carefully address the dimensionality issue, which becomes relevant in two different
cases. First, we might have time series of realized covariances of limited length,
relative to the cross-sectional dimension. Second, the number of parameters in
models like (5.16) increases exponentially as N grows, with a possible impact on
the estimators’ efficiency as well as on inferential aspects.

The latter might be due to the empirical evidence showing that assets returns are
typically highly correlated, and, when N > T , estimates derived from standard
econometric techniques, such as OLS, are poorly determined and exhibit high
variance. As a result, as N increases, the consequent accumulation of estimation
errors becomes a problem that must be addressed. By considering the dimensionality
issue, Callot, Kock, and Medeiros (2017) proposed a penalized model that builds
on the least absolute shrinkage and selection operator (LASSO), introduced by
Tibshirani (1996). As highlighted by Callot et al. (2017), an advantage of this
approach is that it does not reduce dimensionality by transforming variables. In
doing so, it is possible to keep the interpretability of the individual original variables.
Particularly, in a first step, Callot et al. (2017) rewrote (5.16) in a stacked form,
such that it is possible to specify and estimate a regression model for each of the
k variables included in zt . For instance, the regression model specified for the j -th
variable in zt , for j = 1, . . . , k, reads as follows:

zj = Zjβj + εj , (5.18)

where zj = [z1,j , . . . , zT ,j ]′ is the T × 1 time series vector for the j -th variable
included in zt , whereas Zj is the T × (kp + 1) matrix of covariates for the j -th
equation (Callot et al., 2017).

Then, in a second step, Callot et al. (2017) included an �1-norm penalty for each
regression (5.18), focusing on the following objective function:

L(βj ) =
1

T
||zj −Zjβj ||2 + λ||βj ||1, (5.19)

where λ is a tuning parameter that reflects the magnitude of the penalization. Indeed,
the greater λ, the sparser the solutions yielded by (5.19), with an increasing number
of coefficients that approach zero. Along the solutions path, the optimal value of λ
could be determined by means of well-known statistical techniques, such as cross-
validation.
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A different research line builds on factor structures to model and forecast realized
covariances. Among the papers belonging to this group, we cite Fan, Furger, and Xiu
(2016), Shen, Yao, and Li (2018), Jin, Maheu, and Yang (2019) and Sheppard and
Xu (2019).

5.4.5 Bayesian Tools

Conditional autoregressive Wishart processes (see Gourieroux et al., 2009b;
Philipov & Glickman, 2006a,b) have also been considered for directly modelling
realized volatility (RV) and realized correlations (RCOV). Golosnoy et al. (2012)
proposed a Conditional Autoregressive Wishart (CAW) model for the analysis of
realized covariance matrices of asset returns, which was further generalized by Yu,
Li, and Ng (2017). The Generalized Conditional Autoregressive Wishart (GCAW) is
a generalization of the existing models and accounts for the symmetry and positive
definiteness of RCOV matrices without imposing any parametric restriction. In
what follows, we briefly describe these two approaches.

Golosnoy et al. (2012) assumed an autoregressive moving average structure for
the scale matrix of the Wishart distribution. Specifically, let Rt be the p× p matrix
of realized covariances at time t , then the CAW(r , s) model can be expressed as

Rt |Ft−1 ∼Wp

(
ν,

St
ν

)
(5.20a)

St = ccᵀ +
r∑

i=1

BiSt−iBᵀ
i +

s∑

i=1

AjRt−jAᵀ
j , (5.20b)

where Ft−1 denotes past information up to time t − 1, ν > p is the degree of
freedom scalar parameter, St is a symmetric and definite positive scale matrix
and Wp (ν0, Q0) denotes a Wishart distribution with parameters (ν0, Q0). Equa-
tion (5.20b) introduces a matrix-variate autoregressive dynamics for the RCOV,
which is parameterized in terms of a lower triangular p × p matrix c and the
unconstrained matrices of dimension p×p, Bi and Aj . The CAW(r , s) in Eq. (5.20)
is not identified. Sufficient parameter restrictions that ensure identification are
provided by Golosnoy et al. (2012). Specifically, the main diagonal elements of c
and the first diagonal element for each of the matrices Aj and Bi are restricted to be
positive. The CAW(r , s) model involves p(p + 1)/2+ (r + s)p2 + 1 parameters.
However, the number of CAW parameters can be reduced by imposing restrictions
on the matrices

(
Bi , Aj

)
. A natural restriction is to impose a diagonal structure

on the dynamics of St by assuming that Bi and Aj are diagonal matrices that
considerably reduce the number of parameters to p(p+ 1)/2+ (r + s)p+ 1.

The recursion in Eq. (5.20b) resembles the BEKK–GARCH(p, q) specification of
Engle and Kroner (1995) for the conditional covariance in models for multivariate
returns, and it has the appealing property of guaranteeing the symmetry and positive
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definiteness of the conditional mean St essentially without imposing parametric
restrictions on

(
c, Aj , Bi

)
as long as the initial matrices are symmetric and positive

definite. The CAW(r , s) is also related to the Wishart Autoregressive (WAR)
model of Gourieroux et al. (2009b), which is based on a conditional non-central
Wishart distribution for Rt . As recognized by Golosnoy et al. (2012), the WAR
provides a dynamic model for the matrix of non-centrality parameters of the Wishart
distribution, which is assumed to depend on lagged values of Rt rather than on
the scale matrix (as under the CAW model). Therefore, the CAW(r , s) model
can be interpreted as a generalization of the WAR(r) model. Golosnoy et al.
(2012) also proposed extensions of the CAW model obtained by including a Mixed
Data Sampling (MIDAS) component and Heterogeneous Autoregressive (HAR)
dynamics for long-run fluctuations. For those extensions, interested readers can refer
to the original paper.

The CAW model in Eq. (5.20) was further generalized to the GCAW specification
by Yu et al. (2017), which replaces Eq. (5.20a) by

Rt |Ft−1 ∼Wp (ν, �t , St ) ,

where �t is the p × p symmetric and positive semidefinite noncentrality matrix,
while ν and St are defined as in Golosnoy et al. (2012). Yu et al. (2017) proposed
the same dynamics of St proposed by Golosnoy et al. (2012) in Eq. (5.20b) and
introduced an additional evolution for �t :

�t =
K∑

k=1

MkRt−kMk ,

where, again, Mk is a p × p matrix of parameters and accounts for the autore-
gressive property of high-frequency returns. The same identifiability restrictions of
Golosnoy et al. (2012) can be applied to the GCAW model.

An interesting approach that jointly models the conditional volatility, the realized
volatilities and the pairwise realized correlations have been recently proposed by
Yamauchi and Omori (2018). The basic MSV model is given by Eqs. (5.7)–(5.8),
with Bt = 0, Kt = 0 and �t = diag{ι}, which is enriched by including the vectors
of RV and RCOV having their own dynamics. Thus, they introduced the additional
measurement equations based on realized measures Ri,t = log(RVi,t ) and Ct =
log
(

1+RCOVij ,t
1−RCOVij ,t

)

Ri,t = ξi + hi,t + εRi,t , εRi,t
i.i.d .∼ N

(
0, σ 2

i,t

)

Cij ,t = δij + gij ,t + εCij ,t , εCij ,t
i.i.d .∼ N

(
0, σ 2

ij ,t

)
,
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where the terms ξj and δij s are included to adjust for the biases resulting from
microstructure noise, non-trading hours, non-synchronous trading and so forth (see
Yamauchi and Omori, 2018).

5.5 Conclusion

In this chapter, we reviewed the main classes of models that allow the construction
of volatility, covariances and correlations, with a focus on the most recent advance-
ments in the financial econometrics literature and on the challenges posed by the
increased availability of data. All models share some limits when the cross-sectional
dimension starts to diverge, unless strong restrictions are imposed on the model
dynamic. In the latter case, the models might become feasible, but the economic
intuition we could recover from the model fit is reduced. In turn, this could have a
negative impact on the forecast analyses if our interest is not only limited to the
derivation of a forecast but also includes the identification of the drivers of the
forecast as well as the elements that impact the forecast performances.
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Chapter 6
Neural Networks

Thomas R. Cook

6.1 Introduction

Neural networks have emerged in the last 10 years as a powerful and versatile set
of machine learning tools. They have been deployed to produce art, write novels,
read handwriting, translate languages, caption images, interpret MRIs, and many
other tasks. In this chapter, we will introduce neural networks and their application
to forecasting.

Though neural networks have recently become very popular, they are an old
technology. Early work on neurons as computing units dates as far back as 1943
(McCulloch and Pitts) with early commercial applications arising in the late 1950s
and early 1960s. The development of neural networks since then, however, has been
rocky. In the late 1960s, work by Minsky and Papert showed that perceptrons (an
elemental form of neural network) were incapable of emulating the exclusive-or
(XOR) function. This led to a sharp decline in neural network research that lasted
through the mid-1980s. From the mid-1980s through the end of the century, neural
networks were a productive but niche area of computer science research. Starting
in the mid-2000s however, neural networks have seen widespread adoption as a
powerful machine learning method. This surge in popularity has been attributable
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largely to a confluence of factors: algorithmic developments that made neural
networks useful for practical applications; advances in processing power that made
model training feasible; the rise of “big data”; and a few high-profile successes in
areas such as computer vision. At this point in time, neural networks have gained
mainstream appeal in areas far beyond computer science such as bioinformatics,
geology, medicine, chemistry, and others.

In economics and finance, neural networks have been used since the early
1990s, mostly in the context of microeconomics and finance. Much of the early
work focused on bankruptcy prediction (see Altman, Marco, & Varetto, 1994;
Odom & Sharda, 1990; Tam, 1991). Additional research using neural networks to
predict creditworthiness was performed around this time and there is a growing
appetite among banks to use artificial intelligence for credit underwriting. More
recently, in the area of finance, neural networks have been successfully used for
market forecasting (see Dixon, Klabjan, & Bang, 2017; Heaton, Polson, & Witte,
2016; Kristjanpoller & Minutolo, 2015; McNelis, 2005 for examples). There has
been some limited use of neural networks in macroeconomic research (see Dijk,
Teräsvirta, & Franses, 2002; Terasvirta & Anderson, 1992, as examples), but much
of this research seems to have occurred prior to the major resurgence of neural
networks in the 2010s.

Although there are already many capable tools in the econometric toolkit, neural
networks are a worthy addition because of their versatility of use and because
they are universal function approximators. This is established by the theorem of
universal approximation, first put forth by Cybenko (1989) with similar findings
offered by Hornik, Stinchcombe, and White (1989) and further generalized by
Hornik (1991). In summary, the theorem states, that for any continuous function
f : Rm �→ R

n, there exists a neural network with one hidden layer, G, that can
approximate f to an arbitrary level of accuracy (i.e., |f (x)−G(x)| < ε for any
ε > 0). While there are other algorithms that can be used as universal function
approximators, neural networks require few assumptions (inductive biases), have a
tendency to generalize well, and scale well to the size of the input space in ways
that other methods do not.

Neural networks are often associated with “big data.” The reason for this is
that people often associate neural networks with complex modeling tasks that are
difficult/impractical with other types of models. For example we often hear of neural
networks in reference to computer vision, speech translation and drug discovery.
Each of these types of task produces high-dimensional, complex outputs (and likely
takes equivalently complex inputs). And, like any type of model, the amount of
data needed to train a neural network typically scales to the dimensionality of its
inputs/outputs. Take, for example, the Inception neural network model (Szegedy
et al., 2015). This is an image classification model that learns a distribution over
about 1000 categories that are then used to classify an image. The capabilities of
this model are impressive, but to get the network to learn such a large distribution
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of possible image categories, researchers made use of a dataset containing over one
million labeled images.1

The remainder of this chapter will proceed as follows. In the remainder of
this section the technical aspects of neural networks will be presented, focusing
on the fully connected network as a point of reference. Section 6.2 will discuss
neural network model design considerations. Sections 6.3 and 6.4 will introduce
recurrent networks and encoder-decoder networks. Section 6.5 will provide an
applied example in the form of unemployment forecasting.

6.1.1 Fully Connected Networks

A fully connected neural network, sometimes called a multi-layer perceptron, is
among the most straightforward types of neural network models. It consists of
several interconnected layers of neurons that translate inputs into a target output.

The fully connected neural network, and neural networks generally, are funda-
mentally comprised of neurons. A neuron is simply a linear combination of inputs,
plus a constant term (called a bias), and transformed through a function (called an
activation function),

f (xβ + α),

where x is an n-length vector of inputs, β is a corresponding vector of weights, and
α is a scalar bias term.

Neurons are typically stacked into layers. Layers can have various forms, but the
most simple is called a dense, or fully connected layer. For a layer with p neurons,
let B = (β1 . . .βp) so that B has the dimensions (n× p), and let α = (α1 . . . αp).
The matrix B supplies weights for each term in the input vector to each of the p
neurons while α supplies the bias for each neuron. Given an n-length input vector
x, we can write a dense layer with p neurons as,

g(x) = f (xB + α)

=

⎡

⎢⎢⎢⎣

f (xβ1 + α1)

f (xβ2 + α2)
...

f (xβp + αp)

⎤

⎥⎥⎥⎦

T

. (6.1)

1Specifically, a subset of the imagenet dataset. See Russakovsky et al. (2015).
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ŷt+hxt−1

xt−2

xt

Fig. 6.1 Diagram of a fully connected network as might be constructed for a forecasting task.
The network takes in several lags of the input vector x and returns an estimate of the target at the
desired forecast horizon t + h. This network has two hidden layers with three and four neurons
respectively. The output layer is a single neuron, returning a one-dimensional output

As should be clear from this expression, each element in the input vector bears some
influence on (or connection to) each of the p neurons, which is why we call this a
fully connected layer.

The layer described in Eq. (6.1) can also accept higher-order input such as an
m× n matrix of several observations, X = (x1, x2, xm)′, in which case,

g(X) = f (XB + α)

=
⎡

⎢⎣
f (x1β1 + α1) . . . f (x1βp + αp)

...
. . .

...
f (xmβ1 + α1) . . . f (xmβp + αp)

⎤

⎥⎦ .

A fully connected, feed forward network (Fig. 6.1), with K layers is formed by
connecting dense layers together so that the output of the preceding layer serves as
the input for the current layer. Let k index a given layer, then the output of the k-th
layer is

gk(X) = fk(gk−1(X)Bk + αk)

g0(X) = X,

The parameters of the network are all elements Bk , αk for k ∈ (1 . . . .K). For
simplicity, denote these parameters by θ , where θk = (Bk , αk). Further, for
simplicity, denote the final output of the network G(X; θ) = gK(X).

In the context of a supervised learning problem (such as a forecasting problem),
we have a known target, y, estimated as ŷ = G(X; θ), and we can define a loss
function, L(y; θ) to summarize the discrepancy between our estimate and target.
To estimate the model, we simply find θ that minimizes L(y; θ). The estimation
procedure will be discussed in greater detail below.
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6.1.2 Estimation

To fit a neural network, we follow a modified variation of gradient descent. Gradient
descent is an iterative procedure. For each of θk ∈ θ , we calculate the gradient of the
loss, ∇θkL(y; θ). The negative gradient tells us the direction of steepest descent and
the direction in which to adjust θk to reduce L(y; θ). After calculating ∇θkL(y; θ),
we perform an update,

θk ← θk − γ∇θkL(y; θ).

where γ controls the size of the update and is sometimes referred to as the learning
rate. After updates are computed for all θk ∈ θ , L(y; θ) is recomputed. These steps
are repeated until a stopping rule has been reached (e.g., the L(y; θ) falls below a
preset threshold).

The computation of ∇θL(y; θ) is costly and increases with the size of X and y.
To reduce this cost, and the overall computation time needed, we turn to stochastic
gradient descent (SGD). This is a modification of gradient descent in which updates
to θ are calculated using only one observation at a time. For each iteration of the
procedure, one observation, {x,y}, is chosen, then updates to θ are calculated and
applied as described for gradient descent, and a new observation is chosen for use
in the next iteration of the procedure. By using SGD, we reduce the time needed for
each iteration of the optimization procedure, but increase the expected number of
iterations needed to reach performance equivalent to gradient descent.

In many cases the speed of optimization can be further boosted through Mini-
batch SGD. This is a modification of SGD in which updates are calculated using
several observations at a time. Mini-batch SGD should generally require fewer
iterations than SGD, but computing the updates for each iteration will be more
computationally costly. The per-iteration cost of calculating updates to θ , however,
should be lower than for gradient descent. Mini-batch SGD is by far the most
popular procedure for fitting a neural network.

Fitting a neural network is a non-convex optimization problem. It is possible and
quite easy for a mini-batch SGD procedure to get stuck at local minima or saddle
points (Dauphin et al., 2014). To overcome this, a number of modified optimization
algorithms have been proposed. These include RMSprop and adaGrad (Duchi,
Hazan, & Singer, 2011). Generally, these modifications employ adaptive learning
rates and/or notions of momentum to encourage the optimization algorithm to
choose appropriate learning rates and avoid suboptimal local minima (see Ruder,
2016 for a review).

More recently, Adam (Kingma & Ba, 2014) has emerged as a popular variation
of gradient descent and as argued in Ruder (2016), “Adam may be the best overall
choice [of optimizer].” Adam modifies vanilla gradient descent by scaling the
learning rates of individual parameters using the estimated first and second moments
of the gradient. Let θk be the estimated value of θk at the current step in the Adam
optimization procedure, then we can estimate the first and second moments of the
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gradient of θk via exponential moving average,

μt = μt−1γμ + (1− γμ)(∇θkL)

νt = νt−1γν + (1− γν)(∇θkL)
2

μ0 = 0
ν0 = 0,

where arguments to the loss function are suppressed for readability. Both γμ and γν
are hyper parameters that control the pace at which μ and ν change. With μ and ν,
we can assemble an approximate signal to noise ratio of the gradient and use that
ratio as the basis for the update step:

μ̂t = μt
1−(γμ)t

ν̂t = νt
1−(γν )t

θk ← θk + γ μ̂t√
ν̂t+ε

,

where μ̂t and ν̂t correct for the bias induced by the initialization of μ and ν to zero,
γ is the maximum step-size for any iteration of the procedure (the learning rate),
and where division should be understood in this context as element-wise division.
By constructing the update from a signal to noise ratio the path of gradient descent
becomes smoother. That is, the algorithm is encouraged to take large step sizes along
dimensions of the gradient that are steep and relatively stable; it is cautioned to
take small step sizes along dimensions of the gradient that are shallow or relatively
volatile. As a result, parameter updates are less volatile. The authors of the algorithm
suggest values of γμ = 0.9999, γν = 0.9 and ε = 1e− 8.

Gradient Estimation

Each of the optimization routines described in the previous section rely upon the
computation of ∇θkL(y; θ) for all θk ∈ θ . This is achieved through the backpropa-
gation algorithm (Rumelhart, Hinton, & Williams, 1986), which is a generalization
of the chain rule from calculus. Consider, for example, a network G(X; θ) with
an accompanying loss L(y; θ) = 1

2m‖G(X; θ)− y‖2
2 = 1

2m

∑m
i (G(X; θ)i − yi)2.

Then

∇G(X;θ)L(y; θ) = 1

m
(G(X; θ)− y).

To derive ∇θKL(y; θ), we simply apply chain rule to the above equation, suppress-
ing arguments to G and g for notational simplicity:

∇θKL(y; θ) =
∂G

∂θK

T

∇GL(y)

=
[
(f ′(gk−1Bk + αk)gk−1)

T 1
m
(G− y)

(f ′(gk−1Bk + αk))
T 1
m
(G− y),

]T
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where ∂G
θK

is a generalized form of a Jacobian matrix, capable of representing higher-
order tensors, and f ′ indicates the first derivative of f with respect to its argument.

Collecting right-hand-side gradients into Jacobian matrices, we can extend the
application of backpropagation to calculate the gradient of the loss with respect to
any of the set of parameters θk:

∇θkL(y; θ) =
∂L(y; θ)
∂Gk

∂gK

∂gK−1

∂gK−1

∂gK−2
. . .
∂gk+1

gk

∂gk

∂θk
.

6.1.3 Example: XOR Network

To illustrate the concepts discussed thus far, we will review a simple, well known
network that illustrates the construction of a neural network from end to end.
This network is known as the XOR network (Minsky & Papert, 1969; Rumelhart,
Hinton, & Williams, 1985). It was an important hurdle in the development of neural
networks.

Consider a dataset with labels y whose values depend on features, X:

X =

⎡

⎢⎢⎣

1 0
0 0
1 1
0 1

⎤

⎥⎥⎦ y =

⎡

⎢⎢⎣

1
0
0
1

⎤

⎥⎥⎦ .

The label of any given observation follows the logic of the exclusive-or operation –
yi = 1 only if xi contains exactly one non-zero element.

We can build a fully connected network, G(X; θ) that perfectly represents this
relationship using only two layers and three neurons (two in the first layer and one
in the last layer):

g1(X) = f (XB1 + α1) (6.2)

g2(X) = f (g1(X)B2 + α2) (6.3)

B1 =
[
β11 β12

β13 β14

]
B2 =

[
β21

β22

]

f (a) = 1

1+ e−a .

The structure of this network is illustrated in Fig. 6.2.
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xi1

xi2

yi

Fig. 6.2 The XOR network. This network is sufficiently simple that each neuron can be labeled
according to the logical function it performs

Because this is a classification problem, we will measure loss by log-loss (i.e.,
negative log-likelihood)2:

L(y; θ) =−
m∑

i

yi log(G(X; θ)i)+ (1− yi) log(1−G(X; θ)i)

=− (y log(G(X; θ))+ (1− y)log(1−G(X; θ))).
(6.4)

Calculation of gradients for the final layer yields

∂L(y; θ)
∂G(X; θ) =

y −G(X; θ)
(G(X; θ)− 1)G(X; θ)

and application of chain rule provides gradients for θ1 and θ2,

∇θ2L(y; θ) =
[
∂L(y;θ)
∂G(X;θ)

∂G(X;θ)
∂B2

∂L(y;θ)
∂G(X;θ)

∂G(X;θ)
∂α2

]

=
[
g1(X)

T (y −G(X; θ))
(y −G(X; θ))

] (6.5)

∇θ1L(y; θ) =
[
∂L(y;θ)
∂G(X;θ)

∂G(X;θ)
∂g1(X)

∂g1(X)
∂B1

∂L(y;θ)
∂G(X;θ)

∂G(X;θ)
∂g1(X)

∂g1(X)
∂α1

]

=
[
XT (y −G(X; θ))BT2 � f ′(XB1 + α1)

(y −G(X; θ))BT2 � f ′(XB1 + α1),

] (6.6)

2We use log-loss because it is the convention (in both the machine learning and statistical literature)
for this type of categorization problem. Other loss functions, including mean squared error would
likely work as well.
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Algorithm 1 Gradient descent to fit the XOR network
Data: X, y

Input: γ , stop_rule
Initialize θ = B1,B2,α1,α2 to random values
while stop_rule not met do

Forward pass:
calculate ŷ = G(X; θ) as in (6.2)–(6.3)
calculate L(y; θ) by log-loss(ŷ, y) as in (6.4)
Backward pass:
calculate ∇θ2 = ∇θ2L(y; θ) as in (6.5)
calculate ∇θ1 = ∇θ1L(y; θ) as in (6.6)
Update:
θ1 ← θ1 − γ∇θ1

θ2 ← θ2 − γ∇θ2

end while

where f ′ indicates the first derivative of the activation function (i.e., f ′(a) =
f (a)� (1− f (a))). To fit (or train) this model, we minimize L(y; θ) via vanilla
gradient descent as described in Algorithm 1.

Figure 6.3 illustrates the results of this training process. It shows that, as
the number of training iterations increases, the model output predicts the correct
classification of each element in y.

Fig. 6.3 The path of the loss function over the training process. Annotations indicate the model
prediction at various points during the training process. The model target is y = [1, 0, 0, 1]
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6.2 Design Considerations

The XOR neural network is an example of a network that is very deliberately
designed in the way that one might design a circuit or economic model. Each neuron
in the network carries out a specific and identifiable task. The neurons in g1 learn
to emulate OR and NOT AND gates on the input, while the g2 neuron learns to
emulate an AND gate on the output of g1.3 It is somewhat unusual to design neural
network models this explicitly. Moreover explicitly designing a neural network this
way obviates one of the central advantages of neural network models: a network
model with sufficient number of neurons and an appropriate amount of training data
can learn to approximate any function without being ex ante and explicitly designed
to approximate that function.

The typical process for designing a neural network occurs without guidance from
an explicit, substantive theory. Instead, the process of designing a neural network is
usually functional in nature. As such, when designing a neural network, we are
usually left with many design decisions or, alternatively stated, a large space of
hyper parameters to explore. Finding the optimal set of hyper parameters needed to
make a neural network work effectively for a given problem is one of the biggest
challenges to building a successful model. Efficient, automatic processes to optimize
model hyper parameters is an active area of research. In this section, we will discuss
some of the common design decisions that we must make when designing a neural
network model.

6.2.1 Activation Functions

Activation functions are what enable neural networks to approximate non-linear
functions. Any differentiable function can be used as an activation function.
Moreover, some non-differentiable functions can also be used, as long as there are
relatively few points of non-differentiability. Activation functions also tend to be
monotonic, though this is not required. The influence of an activation function on
model performance is inherently related to the structure of the network model, the
method of weight initialization, and idiosyncrasies in the data.

For model training to be successful, the codomain of the final layer activation
function must admit the range of possible target values, y. For many forecasting
tasks, then, the most appropriate final layer activation function is the identify
function, f (a) = a.

Generally for hidden layers, we want to choose activation functions that return
the value of the input (i.e., approximate identity) when the value of the input is near

3See Bland (1998), Rumelhart et al. (1985) for further discussion.
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Table 6.1 Common activation functions

Sigmoid f (a) = 1
1+ea

ReLU (Nair & Hinton, 2010)
f (a) =

{
a a > 0

0 a ≤ 0

Leaky ReLU (Maas, Hannun, & Ng, 2013)
f (a) =

{
a a > 0

a α a ≤ 0
& 0 < α � 1

Hyperbolic tangent (Karlik & Olgac, 2011) f (a) = ea−1
ea+1

Swish f (xβ) = x 1
1+exβ

zero. This is a desirable property because it removes complications with weight
initialization (Sussillo & Abbott, 2014).

Additionally, we want to choose activations that are unbounded (in at least one
direction). This helps to prevent neuron saturation (which occurs when gradients
approach zero). In turn, this helps prevent the problem of vanishing gradients (Ben-
gio, Simard, & Frasconi, 1994; Glorot & Bengio, 2010) in which early network
layers update very slowly. The severity of this problem scales to the depth of
the network (assuming the same, bounded, activation function is used for every
layer in the network). In the extreme, this can cause adjustments to model weights
to effectively stop very early in the training process. It is largely because of the
vanishing gradient problem that sigmoid and hyperbolic tangent (see Table 6.1
below) have fallen out of favor for general use.

Table 6.1 provides a list of some common activation functions. Sigmoid and
Hyperbolic Tangent activation functions were commonly used in the early develop-
ment of neural networks, but in recent years the Rectified Linear Unit (ReLU) has
become the most popular choice for activation function. Other activation functions
such as Swish have emerged more recently and, while they have not found the same
widespread adoption, recent research suggests that they may perform better than
ReLU in general settings (Ramachandran, Zoph, & Le, 2017).

6.2.2 Model Shape

Cybenko (1989) provides the universal approximation theorem, which establishes
that a feed forward network with a single hidden layer can approximate any
continuous function. Hornik et al. (1989) provides a related and contemporaneous
result. As a matter of theory then, no network should need to be larger than
two layers (an output layer and a hidden layer) to predict a target from a given
input. This, however, requires that each layer (especially the hidden layer) contain
sufficient neurons to approximate the desired function. Indeed, the hidden layer in a
two layer network may require as many neurons as the number of training samples,
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N , to effectively approximate a desired function (Huang, 2003; Huang & Babri,
1997).

Additional hidden layers can drastically reduce the parameter space without
impinging the expressiveness of the model (Hastad, 1986; Telgarsky, 2016). For
example, results from Huang (2003) show that a three layer network with m output
neurons can exactly fit the target data when the first layer contains

√
(m+ 2)N +

2
√
N/(m+ 2) neurons and the second layer contains m

√
N/(m+ 2) neurons.

Combined, this three layer network has 2
√
(m+ 2)N � N neurons. This result

establishes the size of a three layer network that is needed to considerably overfit
the training data. As such, it establishes an upper bound to the parameterization
of a three layer network. Note that increasing the number of layers does not serve
to improve the performance of the model per se, but rather lowers the number of
neurons required to fit the model. Further, difficulties with weight initialization and
vanishing/exploding gradients increase with depth.

There are few well-established rules for determining ex ante how many layers
a network should have or how many neurons should go in each layer. Broadly
speaking, over-parameterization of a network will not impact the model’s accuracy
as long as an appropriate training methodology is used (Zou, Cao, Zhou, & Gu,
2018). But over-parameterization will increase computational costs and it may
increase the likelihood that training becomes prematurely stuck in a suboptimal
minima. Under-parameterization, on the other hand will limit the expressiveness
of a network and yield an under-performing model. The most obvious, heuristic
strategy to determining the appropriate size and shape of a network is to begin with a
small network and successively adjust its depth (the number of layers) or width (the
number of neurons in each layer) in small increments to improve training accuracy.

6.2.3 Weight Initialization

While gradient descent and backpropagation provide a method to optimize param-
eters in a neural network, we must set the initial values for the parameters. Caution
must be taken when initializing weights as bad initializations can cause gradients to
saturate (i.e., reduce to small values near zero) prematurely. When this happens, the
associated neuron will produce the same output regardless of variation in its input.
These neurons are called “dead neurons.” In practice, a few dead neurons will not
influence the accuracy of a model if the network layer is large. If however, most
or all of the neurons in a layer die, then gradient descent will lose the ability to
update earlier layers and the network will become effectively unresponsive to its
input. Poor weight initialization can also cause volatility in the training process, and
may prevent gradient descent from finding an ideal set of parameters.

One might suspect that i.i.d. random draws from a distribution would be sufficient
to initialize all weights in a network. For example, we might initialize all weights in
a network with a random draw from a standard normal distribution. Indeed this was
a common approach with early neural networks. For small networks, this will work.
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However for deep neural networks, this is inadequate and will tend to encourage
the problems described in the preceding paragraph. Indeed, it is the inadequacy
of random initialization that led researchers to conclude that deep neural networks
performed worse than simple ones (Bengio, Lamblin, Popovici, & Larochelle,
2007).

Early breakthroughs in weight initialization came in 2006 and 2007 (Bengio
et al., 2007; Hinton, Osindero, & Teh, 2006) in the form of network pre-training.
This is a method where the network is built iteratively, one layer at a time. We begin
with a single-layer network with weights initialized to random values. Then train
that single-layer network. When training is complete, recover the weights for the
layer as the initialization weights for that layer. Then add an additional layer and
repeat the process until the network is complete. This process is still occasionally
employed, but it is time-consuming for large networks.

Instead, consider the method put forth in Glorot and Bengio (2010). This paper
observes that the tendency for gradients to vanish (or explode) is somewhat con-
trolled by keeping variances consistent across layers. To avoid vanishing gradients,
we want to initialize weights so that the variance of the output of each layer is
roughly consistent with the variance of the output of the preceding layer (and
ultimately the variance of the input). To achieve this, the authors suggest initializing
all weights βi ∈ Bk as,

βi ∼ N
(

0,
2

pk + pk−1

)
,

where pk is the number of output neurons for layer k, and pk−1 is the number
of output neurons from the preceding layer (i.e., the number of input neurons to
the current layer). This approach has been widely adopted in the neural network
community as it tends to produce good results.

6.2.4 Regularization

To build models that generalize well, it is necessary prevent overfitting. This can
partially be accomplished by adopting a training regime that uses out of sample data
to determine when gradient descent should stop. We can further prevent overfitting
by limiting the complexity of a neural network. To do this, we engage in the process
of regularization. There are a number of approaches to regularization; we will
discuss two of the more commonly used forms: weight decay and dropout.

Weight decay, or alternatively L2 regularization, applies a loss penalty to each
weight in a layer according to its L2 norm: λk

2 ‖Bk‖2
2. The hyper parameter λk

controls the magnitude of the penalty. When weight decay is employed, it is
typically applied identically to each layer. Consider a network G containing no
bias terms, so that all of the network weights can be represented in a single vector
θ = (vec(B1) . . . vec(BK)), and where, for each layer λk = λ. Then we can rewrite



174 T. R. Cook

the model’s objective function4 J to incorporate the loss function, L along with the
penalty as

J (θ) = L(y; θ)+ λk
2

K∑

k

‖Bk‖2
2

= L(y; θ)+ λ
2
‖θ‖2

2

with a gradient

∇θJ (θ) = ∇θL(y; θ)+ λθ .

Through some rearrangement of terms in the (vanilla gradient descent) update step,
it becomes clear why this type of regularization is called weight decay:

θ ← (1− γ λ)θ − γ∇θJ (θ).

That is, by applying an L2 regularization penalty, we are imposing a reduction in
θ by a factor of (1− γ λ) at each iteration of the training process. For a given non-
zero βi ∈ θ , if during the training process ∇θL(y; θ) does not encourage movement
in the direction of βi , then it will decay towards zero. In the aggregate, then, the
application of weight decay will produce parameter estimates that emphasize the
parameters that represent significant contribution to the reduction of the objective
function (Goodfellow, Bengio, & Courville, 2016). At the same time, the application
of weight decay discourages the model fitting procedure from overreacting to non-
systematic variation in the model target (Krogh & Hertz, 1992). Note that for weight
decay to work properly, λ must be set so that γ λ < 1

Outside of weight decay, a common approach to regularization is a process
called dropout (Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014).
Consider a network G(X) with a layer k and its preceding layer k − 1 with p
neurons. The application of dropout to layer k draws a p-length vector r ∼
Bernoulli(π) at each step in the training process. It then modifies the input to
layer k,

gk(X) = f (r � gk−1(x)Bk + αk).

This modification is only applied during the training process. After the model has
been trained,

gk(X) = f (gk−1(x)Bk + αk).

4In this setting, the goal of the model fitting process would be to minimize this objective function.
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The application of r to the output of layer k−1 effectively turns some of the neurons
in the network off. The dropout procedure accomplishes two things.

First, dropout limits overfitting by breaking heavily correlated updates of con-
nected neurons (co-adaption). Updates become heavily correlated when one neuron
updates to compensate for the output of a connected neuron. This is undesirable as
it tends to correspond to fitting idiosyncrasies in the data and thus overfitting (see
discussion in Srivastava et al., 2014). Dropout introduces instability in the inputs
to a layer, thus breaking the ability of a neuron in that layer to become overly
dependent on the output from any given neuron in the preceding layer. This breaks
co-adaptation and thus reduces the propensity for overfitting.

Second, dropout allows us to approximate many models at once. Since dropout
will set the output of a random number of neurons to zero, it achieves the effect
of removing those neurons (briefly) from the network. With the neurons removed,
we can consider the network to be an example of a sparse network sampled from
G. Srivastava et al. (2014) argue that this interpretation suggests that training a
network with dropout provides estimates that approximate a model averaging over
many sparse networks. Gal and Ghahramani (2016) extend this view to argue that
models with dropout can be interpreted as Bayesian models. Specifically, they argue
that dropout in a deep neural network is equivalent to variational inference with a
Gaussian process. By applying dropout during inference as well as estimation, we
can generate uncertainty estimates via bootstrap simulation.

6.2.5 Data Preprocessing

Neural network models do not require strong assumptions about the data generating
process. As a matter of practice however, neural network models are quite sensitive
to several properties of the data.

When feeding a model with more than one feature, it is important that the features
are at roughly similar scales (to within about an order of magnitude). In theory, a
neural network should be able to adjust to inputs of differing scales. But in the
initial iterations of training, larger-scaled inputs will dominate gradients and thus
parameter adjustments. This can lead to premature saturation of the neurons or very
slow model convergence. Pre-scaling the model inputs to have similar scales will
alleviate this problem. Typical approaches include scaling inputs to standard normal
distribution (normalization), and scaling inputs to the interval (0, 1] through the
following affine transformation:

x∗ = x −min(x)
max(x)−min(x) .

Beyond scaling the data, it is important to consider its bounds. Neural networks
excel at generating predictions that generally lie within the boundaries of the
training data. Out-of-bounds predictions are subject to more error. In some cases,
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Fig. 6.4 Left: neural network predictions of a sine wave. The training data (in gray) is randomly
distributed about the sin curve on the interval [−2π , 2π ]. Trained model estimates (blue) are
shown for the interval [−4π , 4π ]. The sin function (orange) is provided for reference. Right:
neural network predictions for a random walk with drift. Training data consists of the first
1000 observations of the walk. In-bounds model predictions (orange) are shown for the first
1000 observations. Out-of-bounds model predictions (blue) are shown for observations beyond
observation 1040

this error will be severe. See, for example the left panel in Fig. 6.4. A neural
network was given scaler training values x ∈ [−2π , 2π ], and trained to predict
corresponding values of y distributed about sin(x). After training, the model
faithfully reproduces sin(x) within the interval represented by the training data.
Predictions outside of this interval (i.e., out-of-bounds) do not conform to a sine
wave and resemble a linear extrapolation from the model predictions of the nearest
training data.

In other cases, out-of-bounds predictions may present errors that are less severe.
The right panel of Fig. 6.4 shows neural network predictions of a random walk
with drift. A fully-connected network was trained on the first 1000 observa-
tions. For each observation yt , the network was provided with prior observations,
(yt−1, yt−2 . . . yt−30), as input. The figure shows predictions on test-data (i.e., data
not used for model training, but generated from the same random walk process). The
network can fit in-bounds observations (the first 1000 observations) quite closely.
Predictions for out-bounds predictions follow the general trend of the random walk,
but are subject to considerably more error. The size of the error tends to grow with
distance from the training data.

For economists, the issues posed by out-of-bounds predictions will most likely
create complications in dealing with non-stationary data. To reduce the potential
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for errors in model prediction, researchers can transform data into a mean-reverting
(or as nearly mean-reverting as possible) form using standard econometric tools.
An alternative technique that has seen success in recent years is to employ
wavelet networks for forecasting with non-stationary data. Wavelet networks refer
to networks that operate on data that has been preprocessed through a wavelet
decomposition (see Jothimani, Yadav, & Shankar, 2015; Lineesh, Minu, & John,
2010; Minu, Lineesh, & John, 2010, as examples).5

6.3 RNNs and LSTM

For purposes of forecasting we are almost always making use of time-series data
or data that is in some other way sequential. We can incorporate the temporal
dependencies of our data into fully connected networks by structuring model inputs
as in a distributed lag model. This approach, however, increases the model input
space and requires corresponding increases to the size of model’s parameter space.
It also requires that all inputs to the model be of the same size and will require us to
drop one observation per lag in our data.

Recurrent neural networks (RNNs) are a type of neural network that is designed
for sequence data; in the context of forecasting, these type of networks can be a
good alternative to a fully connected model. Unlike a fully connected network, a
recurrent neural network layer imposes an ordering on its inputs and considers them
as a sequence. Consider a sequence6 x = (x1, x2 . . . xT ). We can write a basic RNN
(Fig. 6.5) model as G(x; θ), with the output of any given layer written as:

gt (x) = f (xtBx + gt−1(x)Bg)

g0(x) = 0,

where Bx is a 1× p matrix of weights, Bg is a p × p matrix of weights, and the
resulting gt (x) is a p-length vector.

This model diverges substantially from the fully connected architecture discussed
in Sect. 6.1.1. All layers share a single set of weights, (Bx , Bg). Further, while
each layer gt (x) receives input from the preceding layer gt−1(x), each layer also
receives external input from the t-th element in x. Because each layer includes a
new input and because each layer’s output is taken as input to the subsequent layer,
we can think of gt (x) as representing the state of the model at a specific point in
the sequence. The state of the model at t is an accumulation of the model response

5An alternative form of the wavelet neural network uses wavelet functions as activation functions
for hidden nodes in the network. This form of wavelet network, however, is designed to improve
optimization speeds, create self-assembling networks, or achieve ends other than accommodating
non-stationary data.
6We focus here on a sequence of scalar values. All discussion in this section extends to sequences
of multi-dimensional input (e.g., a sequence of vectors).
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xt

gt−1(x) gt(x) gt+1(x) gt+2(x)

xt+1 xt+2

xt gt(x)

f(xt+1Bx + gt(x)Bg)f(xtBx + gt−1(x)Bg) f(xt+2Bx + gt+1(x)Bg)

Fig. 6.5 Comparison of cell-based and unrolled implementations of an RNN. The top network
represents the unrolled conceptualization of the RNN. The bottom network illustrates a network
containing an RNN cell

to all items in x prior to t and as such, can be thought of as a representation of the
network’s memory.

In a forecasting framework, we might only be primarily interested in the final
layer output gT (x), which we could treat as an estimate of a target variable at a
specified forecast horizon, yT+h. However, because of the structure of this network
and the fact that its parameters are shared, we can collect the output of each layer
as g = (g1(x), g2(x) . . . gT (x)) in which case the network becomes a mapping
G : x → g.

To this point, we have been discussing the model G(x; θ) as a set of T network
layers. This conception of an RNN is called the “unrolled” form of an RNN. It
is useful and more intuitive to illustrate the concept of an RNN in the context of
its unrolled form. In practice, however, it is often more efficient to program the
RNN as a special network object called a cell. A cell implements a for-loop in the
computational graph of the model. Implemented as a cell, the RNN produces the
entire sequence g from the inputs x and occupies the same space in a network as a
single layer. This makes it easier to embed the RNN into larger networks and brings
computational benefits in terms of memory efficiency.

A simple RNN, such as the one described above, illustrates the concept of an
RNN, but it will not perform well will lengthy input sequences. As discussed by
Bengio et al. (1994), they will have difficulty learning long-term time-dependencies.
For example, a simple RNN may have difficulty learning that the impact of a
shock in an input time series leads the response in the output series by several
periods. When simple RNN models do learn long-term dependencies, they usually
suffer from vanishing gradients. When this occurs, the model parameters become
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established based upon only early portions of the input sequence and later portions
of the input sequence have no effect on parameter updates.

The Long Short Term Memory (LSTM) network (Fig. 6.6) (Hochreiter &
Schmidhuber, 1997) has emerged as a variant of the RNN that does not suffer
from vanishing gradients and is capable of learning long-term dependencies. This
type of network incorporates both long-run state information (long-run memory)
as well as short-term state information (short-term memory). This type of network
also includes mechanisms for resetting the long-run memory and thereby helping to
avoid the vanishing gradients problem (Gers, Schmidhuber, & Cummins, 2000).

An LSTM network is a collection of several equations that take the current input,
xt , the network output generated at the previous timestep, ht−1, and the network
state st−1, which is responsible for its long-run memory, and produce a new output,
ht , and an updated version of the network state, st . Collecting Zt = [xt , ht−1], and
writing the inverse logit function as σ , we can represent an LSTM cell with two
equations,

st =
forget︷ ︸︸ ︷

st−1︸︷︷︸
old state

� σ(ZtBd)︸ ︷︷ ︸
delete selection

+
modify︷ ︸︸ ︷

σ(ZtBi )︸ ︷︷ ︸
modification selection

� tanh(ZtBc)︸ ︷︷ ︸
modification magnitude

(6.7)

ht = σ(ZtBo)� tanh(st ). (6.8)

Equation (6.7) updates the LSTM cell’s memory. It is comprised of two components.
The first component is a forget step, which selects which components of the cell’s
memory to delete. The second component is a modification step which identifies
which portions of the state should be modified and the extent of modification. The
raw cell output, ht , is a representation of the cell state (memory) filtered through
an output gate based on the current input and previous cell output. The use of
hyperbolic tangent (tanh) activation functions serves to maintain the scale of values
in the state and cell outputs. This helps to prevent gradients from vanishing or
exploding.

With the raw output, ht from an LSTM cell, we typically add an additional layer
to transform it into a direct prediction that is compatible with our target variable,
ŷt = f (htβy).

Note, the parameters θ = [Bd , Bi , Bc, Bo, βy] are shared across timesteps. At
the same time, note that the LSTM cell passes the raw output ht and long-run state,
st , from one timestep to the next. Thus, even though the LSTM cell parameters
are shared across timesteps, the computation of the gradients for the parameters
requires iterating backward through the timesteps (see Werbos, 1990) to compute
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xt xt+1

ht

st

xt+2
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yt yt+1 yt+2
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Fig. 6.6 Illustration of rolled and unrolled versions of an LSTM cell. This figure is similar to
Fig. 6.4, the top network represents the unrolled conceptualization of the LSTM. The bottom
network illustrates a network containing an LSTM cell. The operations within the layers labeled
“LSTM” and “LSTM Cell” are provided in Eqs. (6.7)–(6.8). The networks are shown with a final
layer that transforms output h into its final form, y

the intermediate gradients for the state and raw output:

∂L(yt ; θ)
∂ht

= ∂L(yt ; θ)
∂yt

βy +
∂L(yt ; θ)
∂ht+1

∂ht+1

∂ht

∂L(yt ; θ)
∂st

= ∂L(yt ; θ)
∂ht

� tanh′(st )+ ∂L(yt ; θ)
∂st+1

∂st+1

∂st
.

We can recover these gradients by observing that ∂L(yt ;θ)
∂sT+1

= ∂L(yt ;θ)
∂hT+1

= 0 and
that

∂L(yt ; θ)
∂ht−1

= ∂L(yt ; θ)
∂σ (ZtBd)

σ ′(ZtBd)Ḃd + ∂L(yt ; θ)
∂σ (ZtBi )

σ ′(ZtBi )Ḃi+

∂L(yt ; θ)
∂tanh(ZtBc)

tanh′(ZtBc)Ḃc + ∂L(yt ; θ)
∂σ (ZtBo)

σ ′(ZtBo)Ḃo

∂L(yt ; θ)
∂st−1

=∂L(yt ; θ)
∂st

� σ(ZtBd),

where Ḃ indicates the portion of the parameter that is multiplied by ht−1 in ZtB =
(xt ,ht−1)B.
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With these intermediate gradients, we can calculate gradients for each item in θ ,

∂L(yt ; θ)
∂βy

= h
∂L(yt ; θ)
∂y

∂L(yt ; θ)
∂Bd

= Zt
(
∂L(yt ; θ)
∂st

� st−1 � σ ′(ZtBd)
)

∂L(yt ; θ)
∂Bi

= Zt
(
∂L(yt ; θ)
∂st

� tanh(Zt , Bc)� σ ′(ZtBi )
)

∂L(yt ; θ)
∂Bc

= Zt
(
∂L(yt ; θ)
∂st

� σ(Zt , Bi )� tanh′(ZtBc)
)

∂L(yt ; θ)
∂Bo

= Zt
(
∂L(yt ; θ)
∂ht

� tanh(st )� σ ′(ZtBo)
)

.

With the gradients calculated, we can fit the model via gradient descent.

6.4 Encoder-Decoder

The LSTM model can be used in the context of forecasting as follows. Consider
a time series X = (x1 . . . xT ), a target series corresponding to an h-step ahead
forecast horizon y = (y1+h, y2+h . . . yT+h), and an LSTM model G(x; θ) = ŷT+h.
The estimate produced by the LSTM model would be analogous to a direct forecast
(see Marcellino, Stock, & Watson, 2006). An iterative forecast could be generated,
but the fundamental LSTM model would remain unchanged.

Instead, we can make use of an encoder-decoder network (Cho et al., 2014;
Sutskever, Vinyals, & Le, 2014). This type of network is a member of a broader
class of networks called sequence-to-sequence networks. The encoder-decoder
architecture was initially developed to facilitate language modeling tasks (e.g.,
translation). Specifically, it was developed to allow a model to predict words in
the output while considering the context of individual words in the input along with
the context of the words that have already been predicted in the output.

The model is comprised of two components, aptly named the encoder and
the decoder. The encoder consists of the RNN model from the previous section,
G(x; θ). For the purposes of our discussion here, consider the encoder to be an
LSTM cell with an accompanying fully connected final layer. The encoder takes the
sequence x and returns a fixed-length representation. Conventionally, we specify
this fixed-length representation as the final output from the models, gT (x). We also
recover from G(x; θ) the RNN cell’s final state, sT .

The second component of the model is called the decoder. It consists of an
RNN network and a final, fully connected layer. Whereas the encoder began with
a variable length sequence and produced a fixed-length output gT (x), the decoder
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sT

gT (x)

(sT , gT (x))

yT+1 yT+2 yT+3

(sT , yT+1) (sT , yT+2) (sT , yT+3)

x

Fig. 6.7 Illustration of an encoder-decoder network. The figure shows an LSTM cell encoding
inputs x into a fixed-length representation via an LSTM cell. The fixed-length representation is
then processed through an unrolled LSTM network (the decoder module) to produce a variable
length sequence y. Network weights for the encoder module are shared across timesteps; weights
for the decoder module are also shared across timesteps

begins with a fixed-length input gT (x) and produces a variable length output. It
does this by taking output of the previous timestep as input to produce output for
the current timestep. In practice, for use in forecasting, we would fix the length of
the decoder output to correspond to the desired forecast horizon.

As a specific implementation, consider the decoder, D(g, sT ; θ), as an LSTM
network with a fully connected final layer. Following Cho et al. (2014), the decoder
takes in the final encoder state, sT , as part of its input at every timestep. Denote by
ht the raw output7 of the LSTM at timestep t and as produced by dt . We can write
the decoder output of each timestep along the forecast horizon, h ∈ (1, 2, . . . ,H),
as

yT+h = f (dT+h([yT+h−1, sT ], hT+h−1)βy)

yT+0 = f (dT+0([gT (x), sT ], 0)βy),

where f is the decoder’s final layer activation function and where βy is the vector
of weights for corresponding to the decoder’s final layer. Note that just as with the
RNN cell, the parameters βy are shared across timesteps. The reason for this is to
ensure that the raw output from the RNN cell is converted into a target output in a
consistent fashion for each timestep. Figure 6.7 provides an illustration of this entire
encoder-decoder network.

Gradients for this model are derived in the same fashion as they are for RNNs, via
backpropagation through time. As with the other neural network models discussed
in this chapter, we train this model using gradient descent.

7In other words, the output of the decoder LSTM prior to the final, fully connected layer.
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6.5 Empirical Application: Unemployment Forecasting

In this section we will examine the performance of the three neural network
architectures (Fully Connected, LSTM, Encoder-Decoder ) as applied to the task of
unemployment forecasting. This analysis will closely follow Cook and Hall (2017).

6.5.1 Data

To test the performance of the neural network approach, we trained each of the
models presented above to predict the civilian unemployment rate. This measure
is collected monthly by the US Bureau of Labor and Statistics. It measures the
percentage of the labor force that is currently unemployed. The unemployment rate
only measures unemployment in the US. At the time of this writing, data for the
unemployment rate is available as far back as 1948, and as recently as last month.

Unemployment is a useful indicator to target for this exercise for a few reasons.
First, unemployment is a substantively meaningful indicator to forecast; the Federal
Reserve works to manage the unemployment rate as part of its dual mandate, and it
is closely monitored by economic actors and scholars across a variety of sectors.

Second, in contrast to GDP, unemployment usually undergoes limited revision
after its initial release. This is an important consideration since it allows us to
generally sidestep the problems of collecting and assembling appropriate “vintages”
of the data. We use the last release of the unemployment rate for all training and
testing. To be clear, the largest discrepancy between the original vintage of the data
and final release of the data is about 23 basis points, with the average discrepancy
being nine basis points. We will assume the impact of these discrepancies on the
predictive accuracy of our forecasts to be negligible.

For this exercise, we will target 1, 3, 6, 9, and 12 month forecast horizons for the
target. For each forecast horizon, we train each of the three models presented above,
yielding 15 total model variants for training.

The target will be the sole series used as input for each of the models. For each
observation, the model inputs are the previous 36 monthly values of the target, along
with first and second order differences in the target. In theory, the model could
identify and extract the first and second order differences of the input data, but we
supply them directly because (1) we can be reasonably certain that they will supply
the model with useful information and (2) because it allows us to reduce the training
time and simplify the model structure.

It is possible and relatively easy to add additional series to these models and there
should be performance gains from doing so. We will refrain from adding additional
series here, however, as this will simplify our discussion of the model.
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6.5.2 Model Specification

The fully connected model is comprised of one hidden layer, with a 32 neurons, and
a final output layer consisting of a single neuron. The ReLU activation function is
applied to each neuron in the hidden layer. The output layer neuron uses a linear (i.e.,
the identity) activation function. Dropout is applied to all layers with a probability of
dropout set to 10%. Weight decay is also applied to all layer with a value of 0.0009.
Each of the hyperparameters was chosen via hand tuning.

The LSTM model is comprised of a single LSTM cell with state and output sizes
set to twelve. Due to complexities with the LSTM cell, it does not employ dropout or
weight decay. The output layer of the LSTM model, is a single neuron with a linear
activation function. We could apply the output layer to all outputs from the LSTM
cell yieldingG(x|θ) = (f (h1βy), f (h2βy), . . . f (hT βy)). However, since we only
care about the final output from the sequence, we discard the output of all earlier
timesteps and apply the output layer to only the output from the final timestep,
yielding our model output G(x|θ) = f (hT βy). This reduces the computational

cost of model training by reducing the complexity of calculating ∂L(yt ;θ)
∂βy

.

The Encoder-Decoder model uses two LSTM cells and a final, fully connected
output layer. The encoder module is identical to the LSTM model just described.
The decoder module consists of an LSTM module with a state size of twelve. A
final output layer consisting of a single neuron with a linear activation function
is applied to the output of each timestep. The parameters of this output layer are
shared across all timesteps. As described Eq. (6.4), the initial input to the decoder is
the output from the encoder module. At every subsequent timestep, the input to the
decoder is the decoder output from the previous timestep.

6.5.3 Model Training

We construct a training data set from the unemployment rate data from 1963 to 1996.
Every tenth observation in this period is sequestered into a validation dataset. We
use the validation dataset to evaluate the performance of the model and implement
early stopping in the training process. The remainder of the data, from 1997 to 2015,
is sequestered into a testing dataset. We use this dataset to assess the performance
of the trained model.

The training process is subject to stochasticity. The initial weights for each
model network are randomly distributed using Xavier initialization. Random weight
initialization drives stochasticity in the training process. Beyond this, there are a
few other sources of stochasticity in the training process, including dropout and the
optimization routine itself (mini-batch Adam).

As a consequence of the stochasticity inherent to the model training process,
repeated runs of the same model will yield trained networks that vary in their
weights and, consequently, in forecasts. To accommodate this variance, we train 30
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Table 6.2 Performance metrics for DARM and neural network models at 0–4 quarter prediction
horizons

Fully Encoder
Horizon connected LSTM decoder DARM

1 Months Mean MAE 20.61 4.10 4.02 11.7

St. Dev. 4.22 0.12 0.07

3 Months Mean MAE 25.38 15.43 15.53 32.8

St. Dev. 5.50 0.08 0.21

6 Months Mean MAE 34.64 28.76 29.00 49.3

St. Dev. 4.45 0.61 0.25

9 Months Mean MAE 47.69 44.99 44.79 65.8

St. Dev. 3.26 1.93 0.88

12 Months Mean MAE 63.45 63.06 61.01 90.7

St. Dev. 3.04 3.28 1.70

All metrics presented as hundredths of one percent

instances of each model. This allows us to assess expected model performance as
well as assess the variance in performance across repeated runs of the same model.

All model variants trained in less than 5 min.

6.5.4 Results

Model performance is provided in Table 6.2. Each of the first three columns describe
the performance of a model in terms of test mean absolute error (MAE), aggregated
across repeated iterations. The mean MAE indicates the average model perfor-
mance. The standard deviation of the MAE gives some sense of the distribution in
model performance across repeated trainings of a model. The final column provides
performance metrics against a benchmark model.

As a benchmark, we consider a direct8 autoregressive model (DARM) that uses
monthly data. The model is specified as follows:

ŷt+h =
k∑

i=1

βiyt−i , (6.9)

where t indexes the time of forecast, k is the number of lags, and n indicates the
forecast horizon. In this paper, we use the DARM model estimates published by the
SPF (Stark, 2017).

8This is to be contrasted with an iterative model, in which the next-step-ahead is forecast and then
iterative extrapolation is used to generate a prediction for the desired forecast horizon.
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Broadly speaking, each of the neural network models outperform the benchmark
model, with the exception of the fully connected model at the 1 month horizon. The
encoder-decoder and LSTM models outperform the fully connected models quite
strongly at the early horizons. At the 9 and 12 month horizons, the models converge
in performance. It is notable, however, that the standard deviation of the mean
absolute forecasting error is considerably lower for the LSTM and encoder-decoder
models, with the encoder-decoder model having the lowest variance in performance
at most horizons.

6.6 Conclusion

This chapter has discussed the fundamentals of neural network models with a
primary focus on their application to supervised, predictive tasks. Through this
discussion, it showed the flexibility of neural networks and their potential for
application to econometric tasks such as forecasting. Yet this chapter is by no means
a complete description of the potential of neural networks in econometric settings.
Macroeconomists might find additional uses for neural networks in unsupervised
econometric applications (e.g., interpreting textual data or generating low dimen-
sional representations of large datasets), or agent-based applications (where neural
networks might be used in the context of reinforcement learning). Moreover, as
new sources of “Big Data” emerge, economists will be able to train networks to
produce increasingly sophisticated outputs or to operate on increasingly complex
inputs. Lastly, it is important to note that neural networks represent an area of rapid
methodological research and innovation. For example, strong efforts are afoot to
adapt neural networks for use within the framework of causal inference. As these
efforts develop, so will the utility of neural networks in macroeconomic analysis.
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Seeking Parsimony



Chapter 7
Penalized Time Series Regression

Anders Bredahl Kock, Marcelo Medeiros, and Gabriel Vasconcelos

7.1 Introduction

Penalized regression methods have become an important estimation and model
selection tool for applied researchers. With the availability of vast datasets in the
era of Big Data, selecting the relevant variables in a regression model is of great
importance. In this chapter we review the most commonly used penalized regression
methods in the framework of time series models. We pay special attention to Ridge
Regression (Hoerl & Kennard, 1970), the Least Absolute Shrinkage and Selection
Operator (Lasso) (Tibshirani, 1996), the Elastic Net (Zou & Hastie, 2005), the
adaptive Lasso (Zou, 2006), the adaptive Elastic Net (Zou & Zhang, 2009), and
the group Lasso (Yuan & Lin, 2006).

The main contents of this chapter are as follows: We first consider a linear
regression model which nests three commonly used linear time series models that
we are going to focus on. The three nested models are the autoregressive (AR), the
autoregressive distributed lag (ADL) with strongly exogenous regressors, and the
vector autoregressive (VAR) model. For this general model we review the penalties
mentioned in the previous paragraph. We do not claim to make an exhaustive review
and mainly focus on those penalty functions that have been used in the context
of time series models and for which theoretical performance guarantees have been
established in that context. Furthermore, we focus solely on covariance stationary
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models and instead refer to Chap. 17 of this book for a treatment of unit roots and
cointegration (in the context of high-dimensional data).

The remainder of this chapter is organized as follows: We define notation
used throughout the chapter in Sect. 7.2. In Sect. 7.3 we define the linear model
used throughout the chapter and in Sect. 7.4 we review commonly used penalty
functions. The main theoretical developments for the penalized methods considered
are discussed in Sect. 7.5 and we give practical recommendations concerning the
selection of the penalty parameters and software implementations in Sect. 7.6. In
Sect. 7.7 we include a Monte Carlo simulation study comparing the presented
methods in a controlled environment. We compare the penalties in terms of
parameter estimation, model selection, and forecasting ability. Finally, we provide
a small empirical application to inflation forecasting in Sect. 7.8.

7.2 Notation

For any x ∈ R
n, let ||x|| =

√∑n
i=1 x

2
i be the �2-norm of x and let ||x||�1 =∑n

i=1 |xi | be the �1-norm. ||x||�0 =
∑n
i=1 1{xi �=0} denotes the �0-“norm” of x, i.e.,

the number of non-zero elements of x. For anyA ⊆ R
n, let |A| denote its cardinality.

Furthermore, xA denotes the vector of length |A| consisting of those entries of x

whose indices belong to A. For any n × n matrix B, BA denotes the |A| × |A|
matrix consisting only of those rows and columns of B that have indices in A.

Throughout this chapter, all random variables are defined on a probability space
(�,F,P) where we denote the expectation with respect to P by E. Convergence in

distribution will be denoted by
d→.

7.3 Linear Models

In this section we shall consider time series models that are special cases of the
classic linear regression model

yt = β ′xt + εt , t = 1, . . . , T (7.1)

for some T ∈ N and where β is a k× 1 vector of unknown parameters. The subscript
t for the observations is used as we are concerned with time series models in the
sequel. Furthermore, we shall refer to β0 as the true parameter vector which we
assume to be unique throughout this chapter. Let A = {i : β0

i �= 0} be the indices
of the non-zero coefficients with cardinality s0 = |A|. If s0 is much smaller than k,
then β0 is said to be sparse.

Many commonly used linear time series models are of the form (7.1). To illustrate
this point, consider the following examples.
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7.3.1 Autoregressive Models

In the autoregressive model of order p, AR(p), the data is generated by the recursion

yt = φ0 + φ1yt−1 + · · · + φpyt−p + εt , t = 1, . . . , T (7.2)

with p initial values, which, for concreteness, one can set y0 = . . . = y−p+1 = 0.1

Thus, k = p+ 1 and β = (φ0, . . . ,φp)’ in (7.1). Other deterministic terms than an
intercept are handled in the usual manner.

7.3.2 Autoregressive Distributed Lag Models

An autoregressive distributed lag (ADL) model is written as

yt = φ0 + φ1yt−1 + · · · + φpyt−p + θ ′1xt−1 + · · · + θ ′qxt−q + εt , t = 1, . . . , T ,
(7.3)

where xt is an m × 1 vector of weakly exogenous covariates, that is,
E(εt |xt−1, . . . , x1) = 0. In this case, we have k = (p + 1) + q × m and
β = (φ0,φ1, . . . ,φp, θ ′1, . . . , θ ′q)’ in (7.1).

7.3.3 Vector Autoregressive Models

For m × 1 vectors yt = (yt ,1, . . . , yt ,m) and εt = (εt ,1, . . . , εt ,m), a vector
autoregressive model of order p, VAR(p), is defined as

yt = φ0 +
1yt−1 + . . .+
pyt−p + εt , t = 1, . . . , T . (7.4)

For any 1 ≤ i ≤ m note that the ith equation in (7.4) is of the form (7.1). In
particular, letting 


(i)
l denote the ith row of 
l , one has k = 1+pm and β = βi =

(φ0,i , 

(i)
1 , . . . , 
(i)p )′ for the ith equation in (7.4).

7.3.4 Further Models

The above three examples reveal that all models that are linear in β fall within the
framework of (7.1). In particular, we have made no/few assumptions on probabilistic

1Unless mentioned otherwise, we shall throughout assume that all necessary initial values equal 0.
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properties of the error terms (and exogenous regressors).2 Thus, these can in
principle be non-independent and (conditionally) heteroskedastic. Such assumptions
come into play once one wishes to establish the theoretical properties of the
estimator under study. Before turning to theoretical properties of various penalized
estimators in Sect. 7.5, we introduce some commonly used penalty functions.

7.4 Penalized Regression and Penalties

Let y = Xβ + ε be the usual matrix form of (7.1) and Z = (y, X). A penalized
regression estimator β̂ is obtained as

β̂ ∈ argmin
β∈Rk

[
‖y −Xβ‖2 + λp(β, α, Z)

]
, (7.5)

where λ ≥ 0 is a penalty/tuning parameter and p : Rk × R
d × R

T×(1+k) → [0,∞)
is called the penalty function as it penalizes the entries of β for being different from
zero. α is a d-dimensional tuning parameter to be chosen by the user. Often p does
not depend on any tuning parameter. Note that p can also depend on the observed
data Z which is relevant below for the adaptive versions of the Lasso and the Elastic
Net.

In all examples of p below, for all (α, B) ∈ R
d ×R

T×(1+k), one has p(β, α, B) =
0 if and only if β = 0. Thus, p penalizes β for being non-zero and an estimator β̂

obtained from (7.5) is called penalized since it minimizes a combination of the usual
least squares objective function and the penalty function p. The larger the λ ≥ 0 is,
the more weight is put on the penalty function and a solution β̂ to (7.5) will tend to
have smaller entries (in absolute value) than the least squares estimator. Often one
considers the sample average of the least squares part in (7.5), 1

T
‖y −Xβ‖2. This

is of no importance and merely results in a rescaling of λ by a factor of 1
T

as well.
Note also that in (7.5), β is allowed to vary over all of Rk which can, of course,

be restricted to any subset of Rk . However, in order to establish desirable theoretical
properties of a (penalized) estimator, it is usually assumed that β0 belongs to the
subset of Rk minimized over. Finally, the existence of a unique minimizer in (7.5)
depends on the properties of X and p. If these are such that the objective function is
strictly convex, the minimizer is guaranteed to be unique. We now turn to exhibiting
concrete examples of the penalty function p. It is important to note that all penalties
mentioned result in estimators which are applicable even when k > T .3 Thus, they
work in the context of high-dimensional data.

2Hence, strictly speaking, the model is not yet fully specified.
3For the adaptive Lasso and the adaptive Elastic Net this is of course conditional on choosing an
initial estimator that is applicable when k > T .
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7.4.1 Ridge Regression

Ridge Regression, as introduced in Hoerl and Kennard (1970), results from using
(note that p only depends on β)

p(β,α, Z) =
k∑

i=1

β2
i (7.6)

in (7.5). In this case one has the closed form solution β̂ridge(λ) =
(
X′X+ λI k

)−1

X′y. Note that β̂ridge(0) = β̂OLS whenever these are well-defined. Ridge
Regression is useful when X′X is (nearly) singular since the least squares estimator
is (1) not unique when X′X is singular, and (2) has high variance when X′X is
nearly singular. Despite being unbiased (in cross sectional data) this high variance
results in a high mean square error. Thus, even though β̂ridge is biased for all

λ > 0, there always exists a λ > 0 such that the mean square error of β̂ridge(λ)

is strictly lower than the one of the least square estimator, cf. Hoerl and Kennard
(1970) Theorem 4.3 for a precise statement, due to the lower variance of the ridge
estimator. While these results are proven in the context of cross sectional data, they
motivate the use of Ridge Regression also for time series data. We note that despite
the fact that Ridge Regression shrinks the parameter estimates to zero compared to
the least squares estimator in the sense that ||β̂ridge(λ)||2 < ||β̂OLS ||2 for λ > 0,

β̂ridge(λ)will not have entries that are exactly equal to zero and it is thus not directly
useful for variable selection.

7.4.2 Least Absolute Shrinkage and Selection Operator (Lasso)

The Lasso was proposed by Tibshirani (1996) and uses (note that p only depends
on β)

p(β,α, Z) =
k∑

i=1

|βi | (7.7)

in (7.5). Thus, while Ridge Regression uses the squared �2-norm as penalty function
for β, the Lasso uses the �1-norm. The appealing feature of the Lasso is that
β̂Lasso(λ) can contain exact zeros for λ sufficiently large in (7.5). We refer to
Lemma 2.1 in Bühlmann and van de Geer (2011) for necessary and sufficient
conditions for an entry of β̂Lasso to equal zero. The important thing to note is that
the Lasso performs estimation and variable selection in one step. This is in stark
contrast to traditional procedures which would estimate β0 by, say, least squares
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(when applicable) and then decide which entries of β0 are (non)-zero by means of
hypothesis tests. However, the final model one arrives at by such a testing procedure
depends heavily on the order in which such tests are carried out. For example,
one could gradually test down the model by testing the significance of individual
coefficients by means of t-tests stopping at the first rejection of the null of no
significance. Alternatively, one could use joint tests or combinations of joint and
individual tests—the point being that the final model depends heavily on the type
and order of tests being used. Another alternative to the Lasso is to use information
criteria such as AIC, BIC, or HQ for model selection.4 However, just like the
above test procedures, these are only applicable to the least squares estimator when
k < T unless one resorts to ad hoc ways of splitting the regressors into subgroups
of size less than T . Furthermore, the computational burden of these information
criteria increases exponentially in k. That being said, the Lasso is only variable
selection consistent under rather stringent assumptions, which are rarely satisfied
for time series, cf. Zou (2006) (Theorem 1 and Corollary 1) and Zhao and Yu (2006)
(Theorems 1 and 2). As we shall see, the Lasso can often still estimate β0 precisely
though. The Lasso has by now become a very popular estimator in high-dimensional
models where k can potentially be much larger than T .

7.4.3 Adaptive Lasso

The adaptive Lasso was introduced by Zou (2006) and uses (note that p depends
only on β and Z)

p(β,α, Z) =
k∑

i=1

1

|β̂OLS,i |
|βi |, (7.8)

where β̂OLS,i is the least squares estimator of β0
i . Note that in contrast to the Ridge

and Lasso estimator, the adaptive Lasso penalty depends on the data Z = (y, X)
through the initial estimator β̂OLS(Z) = (X′X)−1X′y. The underlying idea of
the adaptive Lasso penalty is to use more “tailored” weights than the Lasso, which
penalizes all parameters by the same factor λ. As long as the least squares estimator
is consistent (which is the case under mild regularity conditions) this will lead
to penalizing truly zero coefficients more than the non-zero coefficients (for T
sufficiently large). To see this, assume first that β0

i = 0. By the consistency of β̂OLS,i

it will be close to zero in large samples. Thus, 1
|β̂OLS,i | will tend to infinity and it will

be costly to choose a non-zero value of βi in the minimization problem (7.5). If,

4Section 7.6.1 contains a discussion of these, where, however, they are used for selection of the
tuning parameter λ rather than directly the model.
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on the other hand, β0
i �= 0, then by the same reasoning as above 1

|β̂OLS,i | remains

bounded in probability. Thus, the zero coefficients are penalized much more than
the non-zero ones and we shall later see (cf. Table 7.1) that the adaptive Lasso
has seemingly good properties under mild regularity conditions. Note also that Zou
(2006) originally proposed

p(β,α, Z) =
k∑

i=1

1

|β̂OLS,i |α
|βi |, (7.9)

for an α > 0. However, our feeling is that the choice of α = 1 is most common in
practice and it also avoids an additional tuning parameter. Thus, we will focus on
α = 1 in the remainder of this paper.

Finally, it should be mentioned that other estimators than the least squares
estimator can be used as initial estimator for the adaptive Lasso: in fact the least
squares estimator is not even unique when k > T as X′X is singular in that case. In
this case one could use, e.g., the Lasso as initial estimator instead such that5

p(β,α, Z) =
∑

i:β̂Lasso,i �=0

1

|β̂Lasso,i |
|βi |,

excluding all variables for which β̂Lasso,i = 0. In general, one only needs
to know the rate of convergence for the initial estimator in order to establish
“good” theoretical properties of the adaptive Lasso. Thus, the adaptive Lasso is
also applicable in high-dimensional models with more explanatory variables than
observations.

7.4.4 Elastic Net

The elastic net penalty was proposed by Zou and Hastie (2005) and is (note that p
depends only on β and α ∈ [0, 1])

p(β,α, Z) = α
k∑

i=1

β2
i + (1− α)

k∑

i=1

|βi |, (7.10)

for α ∈ [0, 1]. The elastic net penalty is a convex combination of the ridge penalty
(α = 1) and the Lasso penalty (α = 0) and the idea of the elastic net is to combine
the strengths of these two estimators. In particular, as argued in Zou and Hastie

5In case the initial estimator, β̂initial say, has entries equal to zero, which can be the case for the
Lasso, it is a common practice to simply leave the corresponding variables out of the second step
adaptive Lasso estimation.
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(2005), in case a group of explanatory variables is highly correlated (which is often
the case in time series applications), the Lasso selects only one of the variables in
the group. Whether this is a desirable property or not may depend on the application
at hand. In case one thinks of the highly correlated variable as forming a group of
(relevant) variables, then one may want to select all the relevant variables instead of
only one of the group members. Hence, one may prefer the elastic net to the Lasso
in such a situation.

7.4.5 Adaptive Elastic Net

The adaptive elastic net as introduced in Zou and Zhang (2009) uses

p(β, α, Z) =
(
α

k∑

i=1

1

|β̂EN ,i |γ
β2
i + (1− α)

k∑

i=1

1

|β̂EN ,i |γ
|βi |
)

, (7.11)

where α = (α, γ ) ∈ [0, 1] × (0,∞) and β̂EN is the elastic net estimator (as
remarked for the adaptive Lasso above, other estimators can in principle be used
as initial estimators). The motivation for Zou and Zhang (2009) to introduce the
adaptive elastic net was that it can combine the tailored weights of the adaptive
Lasso with the potentially good performance in highly correlated designs of the
elastic net.

7.4.6 Group Lasso

The group Lasso was introduced by Yuan and Lin (2006). It divides the full
parameter vector β into β ′ = (β ′1, . . . , β ′J )′, where the length of βj is kj for
j = 1, . . . , J (J ≤ k), and uses (note that p only depends on β)

p(β, α, Z) =
J∑

j=1

√
kj ||βj ||.

The name group Lasso stems from the fact that the parameter vector has been
divided into J disjoint groups by the user. This is particularly relevant in macroe-
conometrics where the explanatory variables often belong to natural groups such
as the group of house price variables, the group of interest rate variables, or the
group of exchange rate variables. The group Lasso contains the plain Lasso as a
special case upon choosing J = k (such that kj = 1 for j = 1, . . . , k). In the
general case, the group Lasso penalizes the parameter vector of each group by its �2-
norm. The group Lasso may be of interest since it has been shown, cf. Proposition 1
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of Yuan and Lin (2006), that its penalty can result in the whole estimator for a
group being zero. This is useful as an interpretation of this event is that a group of
variables is irrelevant. Finally, we note that an adaptive version of the group Lasso
was proposed in Wang and Leng (2008). The (adaptive) group Lasso is popular in
additive models and has, e.g., been used by Huang, Horowitz, and Wei (2010) to
select the components in an expansion of such models.

7.4.7 Other penalties and methods

We stress that the penalty functions p discussed above are just a subset of those
introduced in the literature. We have focused on these as they are commonly used.
Let us, however, mention that also penalties such as the SCAD (Fan and Li, 2001)
and Bridge (Frank and Friedman, 1993) are common. The Dantzig selector of
Candes and Tao (2007) is also rather popular, while the non-negative garrote is an
early contribution (Breiman, 1995).

A procedure developed explicitly with time series in mind is FARM of Fan, Ke,
and Wang (2018) who decorrelate the covariates by a factor model before using
a penalized estimator in the second step. See also Kneip and Sarda (2011) for a
precursor to this work.

7.5 Theoretical Properties

In this section we discuss some desirable properties that one may want a (penalized)
estimator β̂ of β0 to possess. Recall thatA = {i : β0

i �= 0} and let Â = {i : β̂i �= 0}.
We begin by discussing three asymptotic properties of a sequence of estimators.

1. Consistency: β̂ is consistent for β0 if P(||β̂ − β0|| > δ)→ 0 as T →∞ for all
δ > 0. Other norms than the �2-norm may be relevant in the case where k→∞
as T →∞.

2. Variable selection consistency: β̂ is said to be variable selection consistent if
P(Â = A)→ 1 as T →∞. This property is also sometimes called sparsistency
and entails that all relevant variables (those with non-zero coefficients) are
asymptotically retained in the model and all irrelevant variables (those with a
coefficient of zero) are discarded from the model.

3. Oracle property: In the context of linear models as in (7.1) and in which the least
squares estimator converges at rate

√
T , β̂ is said to possess the oracle property

or, alternatively, to be oracle efficient if

(a) it is variable selection consistent, cf. 2 above.
(b)

√
T (β̂A − β0

A) has the same limit in distribution as
√
T (β̂OLS,A − β0

A)
(assumed to exist). In words, this entails that the limiting distribution of



202 A. B. Kock et al.

the properly centered and scaled estimator of the non-zero coefficients is
the same as if only the relevant variables had been included in the model
from the outset and their coefficients had been estimated by least squares.
Put differently, the limiting distribution of the estimator of the non-zero
coefficients is the same as if an oracle had revealed the relevant variables
prior to estimation and one had only included these.

Of course the exact form of the limiting distribution of
√
T (β̂OLS,A −

β0
A) depends on the model under consideration. Under the mild regularity

conditions that (i) 1
T

∑T
t=1 xtx

′
t → �X in probability for a positive definite

matrix �X, which typically is the limit of 1
T

∑T
t=1 E(xtx

′
t ) (assumed to

exist), and (ii) 1√
T

∑T
t=1 xt εt

d→ N(0, �) for some positive definite matrix

�, which typically is the limit of 1
T

∑T
t=1 E(ε

2
t xtx

′
t ) (assumed to exist), one

has that6

√
T (β̂OLS,A − β0

A)
d→ N|A|(0, [�X,A]−1�A[�X,A]−1). (7.12)

In the classic setting of (xt , εt ) being i.i.d. with x1 and ε1 independent and
E(ε1) = 0, this reduces to �X = E(x1x

′
1) and � = σ 2�X, where σ 2 =

E(ε2
1) such that

√
T (β̂OLS,A − β0

A)
d→ N|A|(0, σ 2[�X,A]−1).

Finally, we note that in order to establish that
√
T (β̂A − β0

A) and
√
T (β̂OLS,A −

β0
A) have the same limiting distribution, one often shows the slightly stronger

property |√T (β̂A − β̂OLS,A)| → 0 in probability.

Before introducing a desirable non-asymptotic property of β̂, it is worth making
a few remarks to provide some perspective on the oracle property.

Remark 7.1 The oracle property, while looking appealing, is nothing new in the
sense that it is satisfied by well-known procedures in simple models. For example,
one could use BIC to consistently select a model estimated by least squares under
standard assumptions. Therefore, with probability tending to one, the resulting
estimator of the non-zero coefficients coincides with the least squares estimator only
including the relevant variables, thus proving the oracle property (of course using
BIC has a higher computational cost). Similarly, letting Ã = {i : |β̂OLS,i | > T −1/4}
in a setting where the least squares estimator converges at rate

√
T , implementing

least squares only including the variables in Ã results in an oracle efficient estimator.

6Of course one only needs to impose (i) and (ii) on the relevant variables (those indexed by A) in
order to ensure that the least squares estimator has the limit distribution in (7.12).
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Remark 7.2 The oracle property sounds almost too good to be true—and in some
sense it is. As pointed out in Leeb and Pötscher (2005) and Leeb and Pötscher
(2008), any estimator that is variable selection consistent (and thus classifies
truly zero coefficients as zero with probability tending to one) must also classify
coefficients as zero that induce a sequence of models (probability measures)
contiguous to the model with a zero coefficient. In many commonly used (linear
time series) models, including AR, MA, (fractional) ARIMA, VAR, and VARMA
models, one has such contiguity, cf. Chapter 2 of Taniguchi and Kakizawa (2000)
for details.7 This implies that local to zero (yet non-zero!) parameters of the form
c√
T

for c ∈ R will be classified as zero with probability tending to one. Thus, many
sequences of non-zero coefficients must be classified as zero by any procedure that
is variable selection consistent. This can be shown to imply that for any variable
selection consistent estimator β̂ and anyM > 0

sup
β0∈Rk

Pβ0

(
T

∥∥∥β̂ − β0
∥∥∥

2 ≥ M
)
→ 1, (7.13)

where Pβ0 is the sequence of measures induced by the model (7.1).8 This lack
of uniform boundedness of the scaled �2-estimation error of a variable selection
consistent estimator is in stark contrast to the behavior of the least squares estimator.
More precisely, since β̂OLS − β0 = (X′X)−1X′ε does not depend on β0, one has
that

T

∥∥∥β̂OLS − β0
∥∥∥

2 = trace

[(
X′X
T

)−1
X′εε′X
T

(
X′X
T

)−1
]

is uniformly bounded in probability (over β0 ∈ R
k) if, for example, X′X

T
converges

in probability to some positive definite �X and X′εε′X
T

converges in probability to
some positive definite �. This, in turn, only requires a law of large numbers to apply
to X′X

T
and X′εε′X

T
which is the case for many dependence structures of X and ε.

Therefore, in contrast to (7.13), one has forM := trace(�−1
X ��−1

X )+ 1 that

sup
β0∈Rk

Pβ0

(
T

∥∥∥β̂OLS − β0
∥∥∥

2 ≥ M
)
→ 0.

7Taniguchi and Kakizawa (2000) actually prove local asymptotic normality in the mentioned
models. This implies contiguity by Le Cam’s 1st Lemma.
8See Theorem 2.1 in Leeb and Pötscher (2008) for a precise statement of an “expectation” version
of this statement.
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Thus, in terms of asymptotic maximal estimation error, the least squares estimator
performs better than any variable selection consistent estimator (and thus better than
any oracle efficient estimator).

Recall that we are considering models of the form (7.1) and let s0 = |A| be the
number of relevant variables. A non-asymptotic property that is often discussed is
the so-called oracle inequality. An oracle inequality essentially guarantees an upper
bound on the estimation error of an estimator (in some norm) to hold with at least
a certain probability. To set the stage, assume that we knew which variables are
relevant in (7.1) (but not the value of their non-zero coefficients). An obvious way
to estimate β0

A would be to use least squares in

yt = β ′Axt ,A + εt .

||β̂OLS − β0|| including only the s0 relevant variables (and setting β̂OLS,Ac = 0) is

typically of order
√
s0
T

(in probability). An oracle inequality is then a statement of

the form:
Without using any knowledge of β0, the estimator β̂ of β0 satisfies

||β̂ − β0|| ≤ C
√
s0 log(k)

T
(7.14)

with probability at least 1− δ for some δ,C > 0.9

Remark 7.3 The term oracle inequality comes from the fact that the order of the
�2-estimation error of an estimator satisfying an oracle inequality is only larger by
a factor

√
log(k) than the one of the least squares estimator that knows the relevant

variables. Thus, even when the total number of variables, k, is much larger than the
number of relevant variables, s0, an estimator that obeys an oracle inequality only
pays a price of

√
log(k) for not knowing from the outset which variables are relevant.

Put differently, the estimator is almost as precise as if an oracle had revealed the
relevant variables prior to estimation and one had acted on that knowledge by only
including these. We shall see that, e.g., the Lasso often satisfies an oracle inequality
with a rate as in (7.14).

While the oracle inequality in (7.14) is stated for the �2-norm one can also
consider other norms. As a rule of thumb, only the dependence on s0 changes and is
generally s1/q

0 for the �q -norm.

9The proviso “Without using any knowledge of β0” should go without saying as β̂ is assumed to
be an estimator and can hence not depend on β0. However, we stress it here to underscore the point
that without knowing which variables are relevant, one can obtain almost the same estimation error
(in terms of rates) as if one did. For an oracle inequality to be of interest, one typically thinks of δ
of being close to zero.
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Remark 7.4 The results in Raskutti, Wainwright, and Yu (2011) show the rate
in (7.14) is (near) minimax optimal over B�0(s0) := {β ∈ R

k : ||β||�0 ≤ s0}. Thus,
there exists no estimator which generally has a lower rate of maximal estimation
error over B�0(s0), i.e., sparse parameter vectors, than the Lasso.

Remark 7.5 A one-step-ahead forecast of yT+1 from the model

yt = x′t−1β + εt

is typically created as ŷT+1|T = β̂
′
T xT , where β̂T is an estimator of β0 based on

data up to time T , i.e., on ZT := Z. The forecast error of ŷT+1|T is

|ŷT+1|T − yT+1| = |(β̂T − β0)′xT − εT+1| ≤ ||β̂T − β0||||xT || + |εT+1|,

where the estimate follows by the Cauchy–Schwarz inequality. The above display
implies that an oracle inequality for β̂T implies a guarantee on the forecast precision
of ŷT+1|T as long as xT does not have a “too large” �2-norm and |εT+1| not being
“too large.” When k is fixed, ||xT || is typically bounded in probability while it may
be increasing if k → ∞ as T → ∞. However, as long as ||xT ||||β̂T − β0|| tends
to zero, the forecast error can still be guaranteed to be asymptotically no larger than
the one of the infeasible ỹT+1|T = β0′xT requiring knowledge of β0.

We now return to the linear models discussed in Sect. 7.3 (which all are special
cases of (7.1)) and indicate some known results on the properties of the penalized
estimators discussed in Sect. 7.4. The results known to us on these estimators in
AR, ADL, and VAR models can be found in Table 7.1. Each entry indicates which
estimator(s) has the given property in a given model along with a reference to exact
assumptions on the model.

7.6 Practical Recommendations

7.6.1 Selection of the Penalty Parameters

The estimation of linear models by the penalized regression methods described in
Sect. 7.4 involves the choice of the penalty (tuning) parameter λ. In some cases,
the econometrician also needs to specify other tuning parameters, such as α for
the Elastic Net. In general our feeling is that specifying a value of the penalty
parameter(s) with theoretical performance guarantees (e.g., the oracle property or
oracle inequalities) is still an open problem for most time series models. The penalty
parameter λ is directly related to the number of variables in the model and thus is a
key quantity for correct model selection. We next review the most used methods to
select the penalty parameter(s).
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Table 7.1 Literature comparison

Model

AR ADL VAR

Consistent –Lasso
Nardi and Rinaldo
(2011)

–Lasso
Kock and Callot (2015)
–Lasso
Basu and Michailidis (2015)

Sparsistency Lasso
Nardi and Rinaldo
(2011)

Oracle property –Adaptive Lasso
Kock (2016)

–Weighted Lasso
Medeiros and
Mendes (2016)
–Adaptive Lasso
Audrino and
Camponovo (2018)

–Adaptive Lasso
Ren and Zhang (2010)
–Adaptive Group Lasso
Callot and Kock (2014)

Oracle inequality –Lasso
Kock and Callot (2015)
–Lasso
Basu and Michailidis (2015)

For the model mentioned in a column, the table shows which estimator has been shown to
possess the property in the corresponding row along with a reference to a paper providing detailed
assumptions. A reference is only included in “its greatest generality.” Thus if a paper has, e.g.,
established the oracle property in a VAR model, the reference will not be mentioned in the context
of AR models. Neither will it be mentioned in the context of consistent estimation in VAR models.
Audrino and Camponovo (2018) also consider a class of non-linear time series models

Cross-Validation

One of the methods that is most used for model (variable) selection is cross-
validation (CV). In the context of penalized regressions, CV methods have been
used to select the penalty parameters. The idea of CV methods is to split the sample
into two disjoint subsets: the training set (“in-sample”) and the validation set (“out-
of-sample”). The parameters of the model are estimated using solely the training set
and the performance of the model using the estimated parameters is tested on the
validation set. Let  and A be the sets potential values of λ and α. Furthermore,
let V ⊆ {1, . . . , T } be the indices of the observations in the validation set and
T ⊆ {1, . . . , T } be the indices of the observations in the training set. Often, but
not always, T := Vc. Let β̂T(λ, α) be the parameter estimate based on the training
data T using the tuning parameters (λ, α) ∈  ×A. For each (λ, α)

CV (λ, α, V) =
∑

t∈V

(yt − x′t β̂T(λ, α))2

denotes the corresponding prediction error over the validation set V. Let V =
{V1, . . . , VB} be a user specified collection of validation sets (with corresponding
training sets {T1, . . . , TB}), which we will say more about shortly. The cross-
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validation error for the parameter combination (λ, α) is then calculated as

CV (λ, α) =
B∑

i=1

CV (λ, α, Vi )

and one chooses a set of tuning parameters

(λ̂, α̂) ∈ argmin
(λ,α)∈ ×A

CV (λ, α).

The final parameter estimate is then found as β̂(λ̂, α̂) based on all observations
1, . . . , T .

We now turn to the choice of B and corresponding {V1, . . . , VB}. There are two
classic ways to split the sample: exhaustive and non-exhaustive CV; see Arlot and
Celisse (2010) for a recent survey on CV methods for variable selection. For the
exhaustive class of CV methods, leave-v-out CV is the most common one. The
idea is to use v observations as the validation set and the remaining observations to
estimate the parameters of the model. This is done for all possible ways of choosing
v observations out of T . Thus, B = (

T
v

)
with each Vi having cardinality v in the

above general setting. Ti = Vci , i = 1, . . . ,B. A popular choice is to set v = 1 such
that B = T and Vi = {i}. This is known as the leave-one-out CV.

Exhaustive CV is computationally very intensive as it performs cross-validation
over many sample splits. A remedy to the computational intensity is to use non-
exhaustive CV methods. Among these, B-fold CV is the most popular. In B-fold
CV, the sample is (randomly) partitioned into B subsamples with “approximately”
the same number of observations. Thus, V1, . . . , VB have roughly the same cardinal-
ity.10 In many implementations the B validation groups are disjoint such that each
observation belongs to one group only. Again, Ti = Vci , i = 1, . . . ,B. B equal to 5
or 10 are typical choices.

As mentioned before, CV methods have been used extensively in econometrics
and statistics for variable selection in linear models. In the framework of penalized
regressions the variables selected depend on the choice of the penalty parame-
ters. However, for time series data, the CV procedures described above are not
guaranteed to be variable selection consistent as this property has mainly been
established under the assumption of independent observations; see Shao (1993) and
Racine (2000) for a discussion. A potential solution is h-block CV. Here the idea
is to remove h observations before and after the ith observation and only use the
remaining observations for estimation. Thus, Ti = {1, . . . , i − h− 1} ∪ {i + h+
1, . . . , T }, where {a, . . . , b} = ∅ if a > b, i = 1, . . . , T . One uses Vi = {i}.

However, Racine (2000) showed that the h-block CV is also model selection
inconsistent for time-dependent data and instead proposed the hv-block CV. Here

10In fact, one typically chooses each Vi to have T /B observations (up to rounding) such that
max1≤i≤j≤B

∣∣|Vi| − |Vj |
∣∣ ≤ 1.
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the idea is to first remove v observations around i = 1, . . . , T − v and use Vi =
{i − v, i + v}. Removing further h observations on each side of i one sets Ti =
{1, . . . ., i − v− h− 1} ∪ {i + v+ h+ 1, . . . , T }, where {a, . . . , b} = ∅ if a > b. We
refer to Racine (2000) for choices of v and h and note that his results focus on the
least squares estimator.

Information Criteria

The penalty parameter is directly related to the degrees of freedom of the models.
Classic information criteria such as the ones of Akaike (AIC, Akaike, 1974),
Schwarz (BIC, Schwarz et al., 1978) as well as Hannan and Quinn (HQ, Hannan
and Quinn, 1979) can be used to select λ.

Letting σ̂ 2(λ, α) = 1
T

∑T
t=1(yt −x′t β̂(λ, α))2 for an estimator β̂(λ, α) pertaining

to a specific value of tuning parameters (λ, α), the AIC, BIC, and HQ can be written,
respectively, as:

AIC(λ, α) = log(̂σ 2(λ, α))+ df(λ, α)
2

T

BIC(λ, α) = log(̂σ 2(λ, α))+ df(λ, α)
log(T )

T

HQ(λ, α) = log(̂σ 2(λ, α))+ df(λ, α)
log log(T )

T
,

(7.15)

where df(λ, α) is the number of degrees of freedom of the used estimation method.
For the sparsity inducing methods such as the Lasso, adaptive Lasso, Elastic Net,
and adaptive Elastic Net, one typically has that df(λ, α) is the number of estimated
non-zero parameters for a given choice of (λ, α). For Ridge Regression, df(λ, α) =
tr[X(X′X+ λI )−1X′]; see Hastie, Tibshirami, and Friedman (2001, page 68). For
each information criterion one chooses the combination (λ̂, α̂) that minimizes it.
The resulting estimator is β̂(λ̂, α̂).

7.6.2 Computer Implementations

All the models presented in this chapter are implemented in libraries in R.
The glmnet package (Friedman, Hastie & Tibshirani, 2010) can implement the
Lasso, Ridge, Elastic Net, and the respective adaptive versions. As for the selection
of λ, the glmnet package is implemented only by cross-validation. Information
criteria must be programmed manually. When estimating a model by a penalized
estimator with glmnet, the output is the entire regularization path from the largest
possible model to the intercept-only model. glmnet is well documented and the
help files are downloaded automatically during installation. The documentation con-
tains examples with codes that can be reproduced and adjusted. Finally, generalized
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linear models are also implemented in the package and we refer to the reference
manual and vignette for full details.11

Although the glmnet is the most popular package for implementing shrinkage
estimators, there are several alternatives in other R packages. In January 2019 alone,
6 packages related to the Lasso and shrinkage estimators were published in the
Comprehensive R Archive Network (CRAN). A good example of an alternative
package is lars. For restrictions on coefficients there is the nnlasso package.
If one is dealing with large multi-gigabyte datasets one can use the biglasso
package.

7.7 Simulations

Consider the data generating process

yt = 0.6yt−1 + x′1,t−1β
0 + εt ,

εt = h
1
2
t ut , ut

iid∼ t∗(5),

ht = 5× 10−4 + 0.9ht−1 + 0.05ε2
t−1

xt =
[
x1,t

x2,t

]
= A1

[
x1,t−1

x2,t−1

]
+A4

[
x1,t−4

x2,t−4

]
+ vt , vt

iid∼ t∗(5),

(7.16)

Medeiros and Mendes (2016), where each element of β0 is given by β0
i =

1√
s0
(−1)i , i = 1, . . . , s0 − 1. x1,t is a (s0 − 1) × 1 vector of relevant variables,

and {ut } and {vt } are independent iid sequences of t-distributed random variables
with 5 degrees of freedom that have been normalized to have zero mean and
unit variance. Furthermore, all entries of vt are independent. The vector xt =
(x′1,t , x

′
2,t )

′ ∈ R
(k−1) has k − s irrelevant variables, x2,t , and follows a fourth-

order VAR model. The matrices A1 and A2 are block diagonal with each block
of dimension 5 × 5 and consisting solely of elements equal to 0.15 and −0.1,
respectively. The described setting is a rather adverse one as the errors are not
normal, fat-tailed, and conditionally heteroskedastic. The unconditional variance of
εt is given by 5× 10−4/(1− 0.90− 0.05) = 0.01.

In order to evaluate the effects of non-Gaussianity and heteroskedasticity, we also
simulate the case where all the error distributions are Gaussian and homoskedastic.
The variance of vt is set to identity and the variance of εt is set to 0.01.

We simulate from (7.16) with T = {100, 500}, k = {100, 500, 1000}, and s0 =
{5, 10, 20}. The models are estimated by the Lasso, adaptive Lasso, Elastic Net,

11The reference manual as well as the vignette files can be found at https://cran.r-project.org/web/
packages/glmnet/index.html.

https://cran.r-project.org/web/packages/glmnet/index.html
https://cran.r-project.org/web/packages/glmnet/index.html
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and adaptive Elastic Net. The weights of the adaptive versions of the Lasso and
the Elastic Net are the inverse of the absolute value of the estimated coefficients of
their non-adaptive counterparts plus 1/

√
T . Adding 1/

√
T to the weights described

in Sect. 7.4 gives variables excluded by the initial estimator a second chance. An
alternative often used is to exclude from the second step those variables excluded in
the first step, cf. footnote 5. λ is always chosen by the BIC and the α parameter in
the Elastic Net and adaptive Elastic Net is set to 0.5. The α parameter in the adaptive
Lasso, Eq. (7.8), and the γ parameter in the adaptive Elastic Net, equation (7.11),
are both set to 1. The number of Monte Carlo replications is 1000.

Table 7.2 shows the average bias and the average mean squared error (MSE) for
the estimators over the Monte Carlo replications and the candidate variables, i.e.,

Bias = 1

1000k

1000∑

j=1

[
φ̂(j) − 0.6+

n−1∑

i=1

(
β̂
(j)
i − β0

i

)]
,

and

MSE = 1

1000k

1000∑

j=1

[(
φ̂(j) − 0.6

)2 +
n−1∑

i=1

(
β̂
(j)
i − β0

i

)2
]

,

where φ̂(j) and β̂
(j)

denote the estimators in the j th Monte Carlo replication.
Several facts emerge from Table 7.2. First, as expected, the bias and the MSE of
all different methods decrease as the sample size grows. The MSE grows also when
the number of relevant regressors, s0, increases, while the bias shows no pattern.
Neither bias nor MSE shows a pattern in k. The Ridge Regression is the method
with the highest bias and MSE. The Elastic Net is not superior to the Lasso. On
the other hand, the adaptive versions of the Lasso and the Elastic Net are clearly
superior to their non-adaptive versions. This is not surprising since the penalties in
the adaptive versions are more “intelligent” than in the non-adaptive versions.

Table 7.3 presents model selection results. Panel (a) presents the fraction of repli-
cations in which the correct model has been selected, i.e., Â = A in the terminology
of Sect. 7.5. First, it is clear that the performance of the Ridge Regression is not
satisfactory in terms of correct model selection. This is by construction since Ridge
Regression does not produce any zero estimates (in general). The Lasso and the
Elastic Net also deliver a poor performance in terms of detection of the correct
sparsity pattern. This can be explained by the fact that the regressors are highly
correlated, cf. Zhao and Yu (2006). On the other hand, the adaptive versions provide
good results for larger samples in particular. The adaptive Lasso seems marginally
superior to the adaptive Elastic Net in terms of model selection capability. Panel (b)
shows the fraction of replications in which the relevant variables are all included.
Again, by construction, Ridge always includes all relevant variables since it includes
all variables. One interesting result is that adaptive or non-adaptive methods achieve
almost the same results. The results deteriorate as the number of variables in the
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model increases. Note also that in some cases the adaptive version includes a higher
fraction of relevant variables than the non-adaptive counterparts. This is possible as
we are adding 1√

T
to the estimated coefficients in the first step. Therefore, a variable

that was removed in the first step by the Lasso or the Elastic Net will have a penalty
equal to

√
T and will have a chance of being included in the final model. Panel (c)

presents the fraction of relevant variables included. All methods perform equally
well. The difference between adaptive and non-adaptive version becomes evident in
Panel (d), which shows the fraction of irrelevant variables excluded from the model.
Both the adaptive Lasso and the adaptive Elastic Net discard many more irrelevant
variables than their non-adaptive versions.

Table 7.4 shows the MSE for one-step-ahead out-of-sample forecasts. We con-
sider a total of 100 out-of-sample observations. We compare the different procedures
to the oracle procedure. By oracle procedure we mean the model that only includes
x1,t and estimates its parameters by least squares. As expected, the results for
T = 500 are superior to the ones for T = 100. Furthermore, all the methods
deteriorate as the number of either relevant or irrelevant variables increases, with
the worst performance being observed for large s0 and large k. Finally, the adaptive
versions are clearly superior to their non-adaptive counterparts. We also evaluate the
case where the hypothesis of sparsity is violated by making s0 = k. In this case the
performance of all methods, including the Ridge, deteriorates substantially.

The results with respect to the Gaussian and homoskedastic case are depicted in
Tables 7.5, 7.6, and 7.7. The overall conclusions do not change much.

7.8 Empirical Example: Inflation Forecasting

7.8.1 Overview

Inflation forecasting is of great importance in rational economic decision-making.
For example, central banks rely on inflation forecasts not only to inform monetary
policy but also to anchor inflation expectations and thus enhance policy efficacy.
Indeed, as part of an effort to improve economic decision-making, many central
banks release their inflation forecasts on a regular basis.

Despite the benefits of forecasting inflation accurately, improving upon simple
benchmark models has proven to be a challenge for both academics and practition-
ers; see Faust and Wright (2013) for a survey. In this section we investigate how
penalized estimators can improve upon two traditional benchmarks in the literature,
namely the random walk (RW) and the autoregressive (AR) models.
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7.8.2 Data

Our data consist of variables from the FRED-MD database, which is a large monthly
macroeconomic dataset designed for empirical analysis in data-rich environments.
The dataset is updated in real-time through the FRED database and is available from
Michael McCracken’s webpage.12 For further details, we refer to McCracken and
Ng (2016).

In this chapter, we use the vintage of the data as of January 2016. Our
sample starts in January 1960 and ends in December 2015 (672 observations).
Only variables without missing observations in the entire sample period are used
(122 variables). In addition, we include as potential predictors the four principal
component factors computed from this set of variables. We include four lags of
all explanatory variables, including the four factors, and four lags of inflation.
Therefore, the estimated models have 508(= (122+ 4) · 4+ 4) potential predictors
plus an intercept. The out-of-sample window is from January 1990 to December
2015. All variables are transformed as described in McCracken and Ng (2016).
The only exceptions are the price indices which are log-differenced only once. πt
denotes the inflation in month t computed as πt = log(Pt )− log(Pt−1), where Pt
is the price index in month t . The baseline price index is the personal consumption
expenditures (PCEs).

We compare performances not only across models in the out-of-sample window
but also in two different subsample periods, namely January 1990 to December 2000
(132 out-of-sample observations) and January 2001 to December 2015 (180 out-
of-sample observations). The first sample corresponds to a period of low inflation
volatility (σ̂ = 0.17%), while in the second sample, inflation is more volatile
(σ̂ = 0.32%). However, on average, inflation is higher during 1990–2000 than
2001–2015. Relative to the 1990–2000 period, inflation was more volatile near the
recession in the early 1990s. Figure 7.1 shows the time series evolution of the PCE
inflation during the entire out-of-sample period.

7.8.3 Methodology

We shall create direct forecasts of the h-period ahead inflation from the linear model

πt+h = β ′hxt + εt+h, h = 1, . . . , 12, t = 1, . . . , T , (7.17)

where πt+h is the inflation in month t+h; xt contains the 508 explanatory variables;
βh is a horizon-specific vector of parameters; and εt+h is a zero-mean random error.

12https://research.stlouisfed.org/econ/mccracken/fred-databases/.

https://research.stlouisfed.org/econ/mccracken/fred-databases/
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Fig. 7.1 Personal consumption expenditure inflation rate from 1990 to 2015. The figure shows the
time evolution of the personal consumption expenditures (PCEs) inflation rate from January 1990
to December 2015 (312 observations). Inflation is computed as πt = log(Pt )− log(Pt−1), where
Pt represents the PCE price index

The direct forecasts at horizon h = 1, . . . , 12 are created as

π̂t+h|t = β̂
′
h,t−Rh+1:txt , (7.18)

where β̂h,t−Rh+1:t is the estimated vector of parameters based on data from time
t − Rh + 1 up to t and Rh is the window size used for estimation of βh. Rh
varies according to the forecasting horizon: for the 1990–2000 period, the number
of observations is Rh = 360 − h − p − 1 (where p = 4 is the number of lags
in the model), while for 2001–2015, Rh = 492− h− 4− 1. Thus, the forecasts
are based on a rolling window framework of fixed length. However, the actual in-
sample number of observations depends on the forecasting horizon. We consider
direct forecasts as opposed to recursive/iterative forecasts in order to avoid having
to forecast the covariates.

In addition to three benchmark specifications (No-change (Random Walk) and
AR(4) models), we consider the following shrinkage estimators: the Lasso, the
adaptive Lasso, the Elastic Net, the adaptive Elastic Net, and Ridge Regression.
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The penalty term for all the penalized estimators is chosen by the Bayesian
Information Criterion (BIC) as described in Sect. 7.6.1. The α parameter for the
Elastic Net and the adaptive Elastic Net is set to 0.5. Finally, the adaptive versions of
the Lasso and the Elastic Net use the inverse of the absolute non-adaptive estimates
plus 1/

√
T as weights.

7.8.4 Results

The main results are shown in Table 7.8. Panels (a) and (b) present the results for the
1990–2000 and 2001–2015 periods, respectively, while Panel (c) shows the results
for the full out-of-sample period. The table reports the RMSEs and, in parentheses,
the MAEs for all models relative to the RW specification. The error measures
were calculated from 132 rolling windows covering the 1990–2000 period and 180
rolling windows covering the 2001–2015 period. Values in bold denote the most
accurate model at each horizon. Cells in gray (blue) show the models included in
the 50% model confidence sets (MCSs) of Hansen, Lunde, and Nason (2011) using
the squared error (absolute error) as the loss function. The MCSs were constructed
based on the maximum t statistic. A MCS is a set of models that is constructed such
that it will contain the model with the best forecasting performance with a given
level of confidence (50% confidence in our case) and is based on a sequence of tests
of equal predictive ability.

Several conclusions emerge from the tables and we start by considering the out-
of-sample period from January 1990 until December 2000. It is clear from the results
that the RW model can be easily beaten by the AR(4) specification as well as by
the penalized regression alternatives. The best performing shrinkage method is the
Ridge Regression with gains of more than 20% over the RW benchmark. The other
penalized regressions have gains up to 20%. On the other hand, apart from the first
two horizons, it is evident from the table that is quite difficult to beat the AR model.
Finally, in terms of point forecast performance, the Ridge Regression attains the
lowest average squared errors for eight out of twelve horizons and the lowest mean
absolute errors for six horizons. In terms of MCSs, the RW is rarely included in the
set and Ridge is the penalized estimator that is included in the MCS most frequently.
Among the benchmarks, the AR(4) model is the most competitive one and, apart
from the two first horizons, is always included in the MCS.

We now turn to the out-of-sample from January 2001 to December 2015. This
is the period of higher inflation volatility. In this case, both the RW and AR(4)
benchmarks are beaten by the penalized estimators. Now the Lasso, the Elastic Net,
and Ridge Regression are all very competitive. The performance gains over the RW
benchmark can be higher than 25%. The RW model is never included in the MCS.
The AR(4) alternative is included only for three different horizons.
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Fig. 7.2 Rolling root mean squared error (RMSE). The figure displays the root mean squared
errors (RMSEs) computed over rolling windows of 48 observations. Panel (a)–(c) display,
respectively, the results for 1-, 6-, and 12-month-ahead forecasts. (a) Rolling RMSE h = 1. (b)
Rolling RMSE h = 6. (c) Rolling RMSE h = 12

Finally, analyzing the results for the full out-of-sample period, it is evident that
the penalized estimators outperform the benchmarks. Ridge Regression seems to be
the best estimator. However, in terms of MCSs it is difficult to discriminate among
different shrinkage methods.

In order to check the robustness of the results over the out-of-sample period,
we compute rolling RMSEs and MAEs over windows of 48 observations. The
results are shown in Figs. 7.2 and 7.3. As can be seen from the figures, the RW is
systematically dominated by the other models. The only exception is a short period
in the beginning of the sample when the RW specification is comparable to the other
procedures.

To shed some light on the estimated models we report a measure of variable
importance in Fig. 7.4. As there are a large number of predictors we group them
into ten different classes: (1) AR terms (lags of inflation); (2) output and income; (3)
labor market; (4) housing; (5) consumption, orders, and inventories; (6) money and
credit; (7) interest and exchange rates; (8) prices; (9) stock market; and (10) factors.
For each forecasting horizon the figure shows the average estimated coefficient
across the rolling windows for each group. Prior to averaging, the coefficients are
multiplied by the variables standard deviation in order to be comparable. The final
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Fig. 7.3 Rolling mean absolute error (MAE). The figure displays the mean absolute errors
(MAEs) computed over rolling windows of 48 observations. Panel (a)–(c) display, respectively,
the results for 1-, 6-, and 12-month-ahead forecasts. (a) Rolling MAE h = 1. (b) Rolling MAE h =
6. (c) Rolling MAE h = 12

measures of importance are rescaled to sum one. As the number of variables in
each group is very different, we also divide the importance measures by the number
of variables in the group. The most important variables in the Ridge are different
from the other penalized regression methods. First, for the Ridge, the pattern across
forecasting horizons is quite stable. On the other hand, the other methods display
a more erratic behavior. For the Ridge, AR terms and other price measures are
the most important variables, followed by money, employment, output-income, and
stocks. Factors, housing, interest-exchange have almost no relevance in the model.
For the other penalized regressions, apart from AR terms, output-income is the most
important class of variables. Interestingly, for 4- and 5-months-ahead forecasts, the
AR terms lose their importance.
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Fig. 7.4 Variable selection. The figure displays the relative importance of each class of variables
as measured by the standardized estimated coefficients for horizon 1–12. The importance of each
variable is given by the sum of the absolute value of its coefficients in the standardized scale across
all rolling windows. The importance of a class of variable is the sum of the importance of all
variables in the class divided by the number of variables in the class. The results were rescaled to
sum one. (a) Ridge. (b) Lasso. (c) Adaptive Lasso. (d) Elastic net. (e) Adaptive elastic net

7.9 Conclusions

In this chapter we reviewed some of the most used penalized estimators in regression
models for time series forecasting. We paid special attention to the Lasso, the
adaptive Lasso, the Elastic Net, and the adaptive Elastic Net as well as the Ridge
Regression. We highlighted the main theoretical results for the methods. We also
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illustrated the different approaches in a simulated study and in an empirical exercise
forecasting monthly US inflation.
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Chapter 8
Principal Component and Static Factor
Analysis

Jianfei Cao, Chris Gu, and Yike Wang

8.1 Principal Component Analysis

Principal component analysis (PCA) and factor analysis are closely related tech-
niques. Given a T -dimensional dataset, both techniques aim to capture the variation
in the data using low dimensional representations. In particular, principal component
analysis captures the major variations in the data covariance matrix using an
“important” subset of its eigenvectors. Factor analysis, on the other hand, assumes
an explicit model with a factor structure, which leads to the estimation of a set
of common factors that capture the data variation. We will see in Sect. 8.2.1 that
principal components can be used to form estimators of factor models. In this
section, we focus on principal component analysis, which sheds light upon the
rationale of factor analysis.
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8.1.1 Introduction

The goal of principal component analysis is to find a low dimensional approximation
by which most of the variation in the data is retained.

Principal component analysis was first proposed by Pearson (1901) and Hotelling
(1933). They adopted different approaches: Pearson (1901) considers the low
dimensional linear subspace that captures the data variation, while Hotelling (1933)
uses orthogonal transformations to approximate the data. Since then there have been
a large number of theoretical developments and successful applications in various
disciplines. See Jolliffe (2002) and Jolliffe and Cadima (2016) for a detailed and
lucid account of the history of principal component analysis as well as the recent
developments.

We will first present the approach of Hotelling (1933), and then that of Pearson
(1901), using Muirhead (2009) and Hastie, Tibshirani, and Wainwright (2015) as
respective major sources of reference.

8.1.2 Variance Maximization

Suppose we have a random vector x ∈ R
T with mean μ and a positive definite

covariance matrix �. Let UDU′ be the eigenvalue decomposition of �, where D =
diag (d1, . . . , dT ), d1 ≥ · · · ≥ dT > 0, and U contains orthonormal columns ut ,
t = 1, . . . , T . We want to look for various linear functions h′tx of x, such that they
satisfy certain conditions:

• h′1x has the largest variance,
• h′2x has the second largest variance and is uncorrelated with h′1x,
• h′3x has the third largest variance and is uncorrelated with h′1x and h′2x,
• and so on.

Note that the variance of an arbitrary linear function α′x of x is var
(
α′x
) = α′�α.

To solve the first problem, we want to maximize var
(
h′1x
) = h′1�h1 over h1 such

that h′1h1 = 1. The normalization is necessary because otherwise we do not have a
finite solution. Let β = U′h1 = (β1, . . . ,βT )′. Since h′1h1 = 1 and UU′ = IT , we
have β ′β = 1. Then we have

h′1�h1 = β ′Dβ =
T∑

t=1

dtβ
2
t ≤ d1

T∑

r=1

β2
t = d1,

with equality when β = [1, 0, . . . , 0]′. This means that h1 = u1, again because
U′U = IT . Therefore, h′1�h1 = d1.
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For the second problem, the condition of uncorrelatedness of h′2x and h′1x implies
that

0 = cov
(
h′2x, u′1x

)

= h′2�u1

= d1h′2u1,

where the last line is due to the eigenvalue decomposition. In other words, we have
h′2u1 = 0. In general, we will show that ht is the eigenvector corresponding to the
t-th largest eigenvalue dt , and the condition of the uncorrelatedness of h′tx and h′sx
for s = 1, . . . , t − 1 can all be restated as h′tus = 0.

The solution for the t-th linear function is established by the following theorem.

Theorem 8.1 Let UDU′ be the eigenvalue decomposition of the covariance matrix
�. Then, for t = 2, . . . , T , the t-th linear transformation ht is the solution to the
following problem:

dt = max
α∈RT

α′�α

s.t. α′α = 1

α′us = 0, for s = 1, . . . , t − 1,

and the maximizer is the eigenvector ut corresponding to the t-th eigenvalue dt .

Proof Let β = U′α = (β1, . . . ,βT )′. For t = 2, we have α′u1 = 0, so β ′U′u1 =
α′UU′u1 = α′u1 = 0. Note that U is orthonormal, so U′u1 = (1, 0, . . . , 0)′. This
implies that β1 = 0.

Since α′α = 1, we have β ′β = α′UU′α = α′α = 1. This yields

α′�α = α′UDU′α = β ′Dβ =
T∑

t=1

dtβ
2
t =

T∑

t=2

dtβ
2
d ≤ d2

T∑

t=2

β2
t ,

with equality when β = (0, 1, 0, . . . , 0)′. The third equality is because D is diagonal.
The fourth equality is because β1 = 0. The inequality is because d2 ≥ d3 ≥
· · · ≥ dT > 0. Therefore, maximum variance is achieved when α = UU′α =
U(0, 1, 0, . . . , 0)′ = u2.

The rest of the proof proceeds in exactly the same way. ��
We call u′t (x−μ) the t-th principal component of x. We can find up to T

principal components, but dimension reduction can be conducted when most of the
variation in the random vector could be captured by R principal components, where
R < T .

What we have presented above is the population principal components. To
obtain sample principal components, suppose we are given a collection of data
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x1, x2, . . . , xN , we can define S = ∑N
i=1 (xi − x̄) (xi − x̄)′ /N to be the sample

covariance matrix. Then we can form the sample version of the principal compo-
nents by using the sample version of the corresponding quantities.

8.1.3 Reconstruction Error Minimization

Next, we present the approach of Pearson (1901), which aims to find the best low
dimensional linear fit to the data. Namely, we minimize the reconstruction error of
the data using rank R subspace by the minimization problem

min
μ,{λi }Ni=1,HR

1

N

N∑

i=1

‖xi −HRλi −μ‖2 , (8.1)

s.t . H′RHR = IR ,

where μ ∈ R
T is the location parameter, HR ∈ R

T×R is a matrix with R
orthonormal columns, IR is the identity matrix of size R, and λi ∈ R

R is a
coefficient vector that linearly combines the orthonormal columns of HR for every
i ∈ {1, . . . ,N}. For the sample covariance matrix S = ∑N

i=1(xi − x̄)(xi − x̄)′/N ,
let S = UDU′ be the eigenvalue decomposition of S, where U = [u1, . . . , uT ] and
D = diag (d1, . . . , dT ) with d1 ≥ · · · ≥ dT ≥ 0.

Theorem 8.2 The solution to the reconstruction error minimization problem
(8.1) is

μ̂ = x̄,

̂HR = [u1 · · ·uR ] ,

̂λi = ̂H′R (xi − x̄) ,

for i = 1, . . . ,N .

Proof Holding HR fixed, we can minimize over μ and λi to obtain

μ̂ = x̄,

̂λi = H′R (xi − x̄) .

After plugging in μ and λi as functions of HR , we can minimize the following over
HR:

min
HR

1

N

N∑

i=1

∥∥(xi − x̄)−HRH′R (xi − x̄)
∥∥2 .
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Letting X̃ ∈ R
N×T be the demeaned data matrix, we can rewrite the above problem

as

min
HR

1

N
tr
((

X̃− X̃HRH′R
) (

X̃
′ −HRH′RX̃

′))

=min
HR

tr
(
S
(
IT −HRH′R

))
.

Using the eigenvalue decomposition of S, we can further simplify the problem as

min
HR

tr
(
S
(
IT −HRH′R

))

=min
HR

tr
(
DU′

(
IT −HRH′R

)
U
)

=min
HR

(d1 + · · · + dT )− tr
(
DU′HRH′RU

)
.

Therefore, to compute the optimal solution ̂HR , it is the same as solving the
maximization problem below:

max
HR

tr
(
DU′HRH′RU

)
(8.2)

s.t . H′RHR = IR . (8.3)

Problem 8.2 has the same optimal objective function value as the following problem:

max
HR

tr
(
DHRH′R

)
(8.4)

s.t . H′RHR = IR . (8.5)

This can be easily seen by rewriting problem 8.2 as an optimization problem over
U′HR , and we could simply replace U′HR in the problem by HR since U is an
orthogonal matrix.

Given any matrix HR satisfying H′RHR = IR , we define A = HRH′R with
diagonal elements At t for t = 1, . . . , T . Then, the objective function becomes
tr
(
DHRH′R

) = ∑T
t=1 At t dt . Also, we have that

∑T
t=1 At t = tr

(
HRH′R

) = R.
Since At t is the �2-norm of the t-th row of HR , we have that At t ≥ 0. To find an
upper bound for At t , let HT be a T × T square matrix, in which the first R columns
are HR , and the remaining columns are chosen so that all the columns of HT are
orthonormal. Since At t is bounded above by the �2-norm of the t-th row of HT , and
HT is an orthonormal matrix, so HTH′T = IT , and At t ≤ 1. Therefore, the optimal
objective function value of problem (8.4) is dominated by (i.e., no larger than) the
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optimal value of the following problem:

max
At t∈[0,1]

T∑

t=1

At t dt

s.t .
T∑

t=1

At t = R.

Provided that d1 ≥ · · · ≥ dT ≥ 0, an optimal solution of the above problem is that
At t = 1 for t ≤ R and At t = 0 for R < t ≤ T . This is the unique solution if dt
is strictly ordered. So, the optimal objective function value of the above problem is∑R
t=1 dt . It is easy to see that this objective function value can be achieved if HR

in problem (8.2) is set to be the first R columns of U: [u1 · · ·uR ], which thus is the
optimal solution of the original problem, ̂HR . ��
Note that this method aligns with the first approach as in Sect. 8.1.2 in the sense that
they generate the same optimal solutions.

8.1.4 Related Methods

In this subsection we introduced two methods that are related to PCA: the
independent component analysis and the sparse principal component analysis.

Independent Component Analysis

As discussed in Sect. 8.1.2, PCA generates a linear transformation of the random
variable x ∈ R

T : s1 = h′1x, s2 = h′2x, . . . , sR = h′Rx, where s1, . . . , sR are
orthogonal of each other. In this subsection, we introduce independent component
analysis (ICA), which aims at generating a linear transformation, s1 = w′1x, s2 =
w′2x, . . . , sR = w′Rx, so that s1, . . . , sR are not only orthogonal but also independent
from each other. Independence is a stronger condition than orthogonality, but it is
plausible in various applications.

For instance, consider the setting when we have several microphones located in
different places, and there are different people talking at the same time. The mixed
speech signals recorded by the microphones (denoted by x ∈ R

T ) can be considered
as a linear transformation of the original speech signals (denoted by s ∈ R

R). The
goal here is to find a linear transformation matrix W ∈ R

T×R to recover the original
signals through s = W′x. Usually, it is plausible to assume that the original speech
signals are independently generated. Next, we present the ICA method following
the study by Hyvärinen and Oja (2000).
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First, to quantify the dependency level of the components in s, the following
measure of mutual information is introduced:

I (s) =
R∑

r=1

H(sr )−H(s),

where H(y) ≡ −E[log(f (y))] is the Shannon entropy of the random variable y,
which depends on the probability distribution f (y).

Shannon entropy is a concept in information theory which measures the expected
amount of information in an event drawn from a distribution, and it gives a lower
bound on the number of bits needed on average to encode symbols drawn from the
distribution. The more deterministic a distribution is, the lower its entropy. When
the components of s are independent, coding s as a random vector requires the same
amount of code length than coding si separately, and thus

∑R
r=1H(sr ) = H(s) and

I (s) = 0. While when si are dependent, coding s as a whole requires less code
length than coding si separately, which implies that I (s) > 0. Therefore, I (s) is a
non-negative quantity which measures the amount of dependence among si . Thus,
the goal of ICA is to find a matrix W which minimizes I (s).

In Hyvärinen and Oja (2000), it is derived that the mutual information measure
can be rewritten as:

I (s) = c−
R∑

r=1

J (sr ),

where c is a constant, and J (y) ≡ H(ygauss)−H(y), in which ygauss is a Gaussian
random variable of the same covariance matrix as y. J (y) is called negentropy,
and it measures the level of non-Gaussianity of the random variable y. Notice that
Gaussian random variable has the highest entropy, and the more y deviates from
the Gaussian variable, the less its entropy is and thus the higher negentropy is.
Therefore, ICA can also be interpreted as an approach to maximize the level of
non-Gaussianity of each of the source signals.

In practice, computing J (sr ) is challenging since it depends on an estimate of the
probability distribution of x. To see this, recall that H(sr ) by definition involves the
probability distribution fsr (sr ), which in turn depends on the probability distribution
of x since sr = w′rx. Therefore, to avoid computing J (sr ) directly, Hyvärinen and
Oja (2000) show that the negentropy measure can be approximated as follows:

J (sr ) ∝ (E[G(sr )] −E[G(v)])2 , (8.6)

where v follows the standard normal distribution andG is a non-quadratic function.
In particular, a good choice of G(u) is a−1

1 log cosh a1u, where 1 ≤ a1 ≤ 2, and its
derivative is g(u) = tanh(a1u).
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In Hyvärinen (1999) and Hyvärinen and Oja (2000), an efficient algorithm called
FastICA is introduced. This algorithm maximizes the objective function (8.6) using
approximate Newton iterations, while it decorrelates the output in each iteration
step. The FastICA algorithm can be implemented as follows:

Step 1 Prewhiten the data matrix X = (x1, . . . , xN)′ ∈ R
N×T such that columns

of X have mean zero, variance one, and are uncorrelated. Uncorrelated
columns can be obtained through PCA.

Step 2 For r = 1, . . . ,R: initialize wr by some random vector of length T . Given
the set of weights {w1, . . . , wr−1}, find wr by iterating the following steps
until convergence:

(i) Let

wr ← 1

N
X′g(Xwr )− 1

N
[h(Xwr )′ιN ]wr

with g(u) = tanh(u), h(u) = 1− tanh2(u), and ιN being a column
vector of 1’s of dimension N .

(ii) Achieve decorrelation by

wr ← wr −
r−1∑

t=1

(w′rwt )wt .

(iii) Normalize wr by

wr ← wr
‖wr‖ .

Step 3 Let W = [w1, . . . , wR]. The extracted independent signals are given by
XW.

ICA is widely used in signal recognition and biomedical research to discover
patterns from noisy data. See Bartlett, Movellan, & Sejnowski (2002) and Brown,
Yamada, and Sejnowski (2001) for examples. It is first used by Back and Weigend
(1997) to extract structures from stock returns. In addition, Kim and Swanson (2018)
investigate the performance of ICA in predicting macroeconomic data, which we
will discuss in Sect. 8.5.4. For formal treatment of ICA, Tong, Liu, and Soon (1991)
and Stone (2004) provide detailed discussions on the theory and algorithms.

Sparse Principal Component Analysis

One limitation of PCA is that its results lack interpretability, which can be improved
by using the sparse principal component analysis (SPCA). To see this, let X be an
N × T matrix, and X = VDU′ be the singular value decomposition of X, where V
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is N × T , D is T × T , and U is T × T . Then F = VD are the principal components
and U are the corresponding loadings. That is, each dimension of the data matrix
can be written as a linear combination of the learned principal components F with
weights given in each row of U. Standard PCA typically gives nonzero weights to
all principal components, which makes it hard to interpret the relationship between
principal components and the observed data. SPCA, as proposed by Zou, Hastie,
and Tibshirani (2006), solves this problem by introducing sparsity on the loadings.

SPCA can be performed using the following procedure as proposed in Zou et al.
(2006):

Step 1 Setting A = [u1, . . . , uR ], we compute wr using the following elastic net
problem for r = 1, . . . ,R:

wr = arg min
w∈RT

(ur −w)′X′X(ur −w)+ λ‖w‖2 + λ1,r‖w‖1.

Step 2 Given W = [w1, . . . , wR ], we compute the singular value decomposition,
X′XW = UDV′, and let A = UV′.

Step 3 Repeat Steps 1–2 until convergence.
Step 4 After normalization, wr/‖wr‖ is the estimate of the rth sparse principal

component loading vector, for r = 1, . . . ,R.

SPCA has been extensively studied in the literature. For example, Cai, Ma,
and Wu (2013) establish optimal rates of convergence and propose an adaptive
estimation procedure. Detailed discussions can be found in Hastie, Tibshirani,
and Friedman (2009). In Sect. 8.5.4, we will present the performance of SPCA in
forecasting macroeconomic aggregates, following the study by Kim and Swanson
(2018).

8.2 Factor Analysis with Large Datasets

Factor models have been the workhorse models for macroeconomic forecasting
with prominent performances demonstrated in, e.g., Stock and Watson (1999) and
Stock and Watson (2002b). In this section, we discuss the estimation and inference
problems of factor models, which rely on large-scale datasets containing both a large
number of units and a large number of time periods.

Throughout this section, we consider a model with a factor structure such that
for each i = 1, . . . ,N and each t = 1, . . . , T ,

xit = λ′ift + uit , (8.7)

where λi is an r × 1 non-random vector and ft is an r × 1 random vector. Here λi is
the individual factor loading and ft is the underlying common factor. The last term
uit is the idiosyncratic error term. In this factor model, only xit is observed.
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In a vector notation where we stack all t’s for each i, Eq. (8.7) can be written as

xi = Fλi + ui ,

where xi = (xi1, . . . , xiT )′ is a T × 1 vector, F = (f1, . . . , fT )′ is a T × r matrix,
and ui = (ui1, . . . , uiT )′ is a T × 1 vector. By further stacking, we can write the
factor model in a matrix notation such that

X = F�′ +U, (8.8)

where X = (x1, . . . , xN) is a T ×N matrix, � = (λ1, . . . , λN)′ is an N × r matrix,
and U = (u1, . . . , uN) is a T ×N matrix.

In this section, we consider the asymptotic framework where both N and T go to
infinity, and we focus on the case where the number of common factors r is fixed. We
will discuss how both the factor loadings and common factors can be consistently
estimated, and the asymptotic behavior of the estimator. We will also discuss how
the relative rate of growth of N and T affects our results.

Section 8.2.1 introduces the principal component method, which is a predom-
inant technique for the factor model estimation. We discuss the properties of the
estimator and explain how this knowledge can be used to analyze forecasting. In
Sect. 8.3, we introduce some machine learning methods and discuss how the usage
of these methods can facilitate macroeconomic forecasting with large factor models.
In Sect. 8.4, we discuss factor analysis in the context of policy evaluation.

8.2.1 Factor Model Estimation by the Principal Component
Method

Despite the existence of other methods such as the maximum likelihood estimation,
the principal component method has been the predominant way of performing
factor model estimations because of its transparent estimation procedures and fast
implementations. In this subsection, we discuss the asymptotic properties of this
method and explain how to perform macroeconomic forecasting using the estimates
from the factor model estimations. Rigorous illustrations can be found in Bai and
Ng (2002), Bai (2003), and Bai and Ng (2006).

Estimation

For clarification, we use superscript 0 to denote the true parameters. Namely, the
matrix form of the data generating process of the factor model is now

X = F0�0′ +U.
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As in Bai and Ng (2002), Bai (2003), and Bai and Ng (2006), we consider the
optimization problem

min
�∈RN×r ,F∈RT×r

1

NT

N∑

i=1

T∑

t=1

(xit − λi
′ft )2, (8.9)

where we minimize the mean squared loss over both � and F. Under the normaliza-
tion that F′F/T is an identity matrix, the solution ̂F is

√
T times the eigenvectors

corresponding to the r leading eigenvalues of the matrix XX′. Therefore, this
estimation procedure lines up with the PCA method as introduced in Sect. 8.1.

Estimate the Number of Factors

We have assumed so far that the number of factors r is known. In practice, this
is usually infeasible, since we observe neither the true common factors F0 nor the
true factor loadings �0. Bai and Ng (2002) introduce a procedure that provides a
consistent estimate of the true number of factors r .

For some k̄ that is an upper bound of the possible number of factors, let k be
such that 0 ≤ k ≤ k̄. Then, for each k, the corresponding value of the objective
function is

V (k) = min
�∈RN×k ,F∈RT×k

1

NT

N∑

i=1

T∑

t=1

(xit − λ′ift )2.

Following Bai and Ng (2002), define the panel Cp criteria by

PC(k) = V (k)+ kg(N , T ),

and the information criteria by

IC(k) = log(V (k))+ kg(N , T ),

where g(N , T ) is a function of bothN and T that scales the penalty term. It is shown
in Bai and Ng (2002) that under a general set of assumptions of the underlying
factor model, the minimizer of either the penal Cp criterion or the information
criterion consistently estimates the true number of factors, if (i) g(N , T ) → 0 and
(ii) min{N , T } ·g(N , T )→∞ asN , T →∞. That is, for k̂ = arg min0≤k≤k̄ PC(k)
or k̂ = arg min0≤k≤k̄ IC(k),

Pr(̂k = r)→ 1
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as N , T → ∞, given that the function g(N , T ) is chosen appropriately. A set of
viable criteria includes

PCp1(k) = V (k)+ kσ̂ 2
(
N + T
NT

)
log

(
NT

N + T
)

,

PCp2(k) = V (k)+ kσ̂ 2
(
N + T
NT

)
log (min{N , T }) ,

PCp3(k) = V (k)+ kσ̂ 2
(

log (min{N , T })
min{N , T }

)
,

where σ̂ is a consistent estimate of (NT )−1∑N
i=1
∑T
t=1 E[uit ]2, and

ICp1(k) = log(V (k))+ k
(
N + T
NT

)
log

(
NT

N + T
)

, (8.10)

ICp2(k) = log(V (k))+ k
(
N + T
NT

)
log (min{N , T }) ,

ICp3(k) = log(V (k))+ k
(

log (min{N , T })
min{N , T }

)
.

One valid choice of σ̂
2 is V (k̄).

All the six above methods are valid and have good finite sample performance.
In practice, the information criteria are often preferred because they do not depend
on the unknown scaling term, σ̂ 2. The usage of ICp1 in (8.10) is suggested by Bai
(2003).

Note that we assume the true number of factors r is fixed throughout our
discussion. Li, Li, and Shi (2017) propose a procedure to consistently estimate the
number of factors when r grows to infinity. This is of particular use in applications
where new factors might emerge.

Rate of Convergence and Asymptotic Distribution

Knowing the rate of convergence, or what is better, the asymptotic distribution
can help us understand the uncertainty of the factor model estimation, which is
of essential importance when we use the estimates from factor models to form
forecasting. In this subsection, we discuss the asymptotic properties of the factor
model estimation.

Following the literature of factor models as in, e.g., Bai and Ng (2002), Bai
(2003), and Bai and Ng (2006), we assume that there exist positive definite matrices,
�F and �� such that

�F = plim
T→∞

F0′F0/T
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and

�� = lim
N→∞�0′�0/N .

As in Bai (2003), let ϒVϒ ′ be the eigenvalue decomposition of �
1/2
� �F�

1/2
� such

that V = diag(v1, v2, . . . , vr), and assume that v1 > v2 > · · · > vr > 0. Further
define Q = V1/2ϒ ′�−1/2

� and an r × r invertible matrix, H, as follows:

H = (�0′�0/N)(F0′
̂F/T )V−1

NT ,

where VNT is a diagonal matrix whose diagonal entries are the first r eigenvalues
of XX′/(NT ) in decreasing order.

Then, the following results are established in Bai (2003):

1. if
√
N/T → 0, then for each t ,

√
N(̂ft −H′f 0

t )
d−→ N(0, V−1Q�tQ′V−1), (8.11)

where �t = limN→∞N−1∑N
i=1
∑N
j=1 λ0

i λ
0
j

′
E[uitujt ];

2. if lim inf
√
N/T ≥ τ for some τ > 0, then for each t

T (̂ft −H′f 0
t ) = Op(1); (8.12)

3. if
√
T /N → 0, then for each i,

√
T (̂λi −H−1λ0

i )
d−→ N(0, (Q′)−1
iQ−1), (8.13)

where 
i = plimT→∞T −1∑T
s=1
∑T
t=1 E[f 0

t f 0
s

′
uisuit ];

4. if lim inf
√
T /N ≥ τ for some τ > 0, then

N(̂λi −H−1λ0
i ) = Op(1); (8.14)

5. for each (i, t), the common components ĉit =̂λi
′
̂ft and c0

it = λ0
i

′
f 0
t satisfy

ĉit − c0
it√

vit/N +wit/T
d−→ N(0, 1), (8.15)

where vit = λ0
i

′
�−1

� �t�
−1
� λ0

i and wit = f 0
t

′
�−1

F 
i�
−1
F f 0

t .

Note that̂ft can only consistently estimate H′f 0
t , a transformation of the original

factor vector. Thus, F0 is only identified up to this transformation. However, learning
F0H is good enough in many empirical settings. For example, the space spanned by
the column vectors of F0H is the same with that of F0, so they yield the same linear
predictor.
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The above results shed light on the rate of convergence. Results (8.11)
and (8.12) show that the rate of convergence for the common factor estimator,
̂ft , is min{√N , T }, (8.13) and (8.14) show that the rate of convergence for the factor
loading estimator,̂λi , is min{√T ,N}, and (8.15) shows that the rate of convergence
for the common component estimator, ĉit , is min{√N ,

√
T }.

Finally, the asymptotic covariance matrix of̂ft can be estimated by

̂�t = V−1
NT

(
1

N

N∑

i=1

û2
it
̂λîλ

′
i

)
V−1
NT ,

where VNT is defined as in H.

Factor-Augmented Regression

The estimated common factors can be used to assist forecasting. To formalize this
idea, we present the framework in Bai and Ng (2006) to illustrate the “factor-
augmented” regression, and we discuss the theoretical results that lead to statistical
inference.

Consider a forecasting problem where we observe {yt , wt , xt }Tt=1 with wt =
(w1t , . . . ,wKt)′ and xt = (x1t , . . . , xNt )′. The goal is to forecast an outcome
variable yT+h with h being the horizon of the forecast. We assume the following
linear regression function for yT+h:

yt+h = α′ft + β ′wt + εt+h, (8.16)

and ft is assumed to appear in the following factor model:

xit = λ′ift + uit . (8.17)

We cannot estimate Eq. (8.16) directly since we do not observe ft . Instead, we
could estimate the factor model (8.17) first and use the estimated factors to assist
the regression estimation. Namely, we could obtain the common factor estimates
{̂ft }Tt=1 by estimating Model (8.17) using the principal component method, and then

we could regress yt+h on botĥft and wt to obtain the least squares estimates α̂ and
β̂. The forecast of yt+h is then given by

ŷT+h|T = α̂
′
̂ft + ̂β

′
wt .

As discussed in the previous discussion,̂ft can only identify an invertible transfor-
mation of ft , but this is sufficient for the purpose of forecasting or recovering β
alone.
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Let zt = (f′t , w′t )′, ẑt = (̂f′t , w′t )′, δ = ((H−1α)′, β ′)′, ̂δ = (α̂′, ̂β
′
)′, and ε̂t+h =

ŷt+h|T − yt+h. Then, it is shown in Bai and Ng (2006) that if
√
T /N → 0, we have

that

√
T (̂δ − δ)

d−→ N(0, �δ),

where �δ can be estimated by

̂�δ =
(

1

T

T−h∑

t=1

ẑt ẑ′t

)−1 (
1

T

T−h∑

t=1

ẑt ẑ′t ε̂2
t+h

)(
1

T

T−h∑

t=1

ẑt ẑ′t

)−1

.

Assume that given the information at t = T , εT+h has mean zero. Then, the
conditional expectation of yT+h is simply

yT+h|T = α′fT + β ′wT .

Under both
√
T /N → 0 and

√
N/T → 0, Bai and Ng (2006) show that the

forecast ŷT+h|T satisfies

ŷT+h|T − yT+h|T
σ̂y

d−→ N(0, 1),

where

σ̂ 2
y =

1

T
ẑ′T ̂�δ ẑT + 1

N
α̂
′
̂�T α̂.

The reason for having two terms in σ̂ 2
y is that we need to account for the uncertainty

from both the common factors estimation and the least squares estimation. A
confidence interval for yT+h|T with 1− α confidence level is then

[̂yT+h|T − z1−α/2σ̂y , ŷT+h|T + z1−α/2σ̂y], (8.18)

where z1−α/2 is the 1− α/2 quantile of the standard normal distribution.
Notice that (8.18) is the confidence interval for the conditional expectation of

yT+h at time T . If one is willing to assume normality of the error term εt , one can
form a confidence interval for the forecasting variable yT+h as well. Following Bai
and Ng (2006), let εt ∼ N(0, σ 2

ε ). Then a confidence interval for yT+h with 1− α
confidence level is

[̂yT+h|T − z1−α/2(̂σ
2
ε + σ̂ 2

y ), ŷT+h|T + z1−α/2(̂σ
2
ε + σ̂ 2

y )],

where σ̂ 2
ε = T −1∑T

t=1 ε̂
2
t , and σ̂ 2

y and z1−α/2 are as defined above.
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8.3 Regularization and Machine Learning in Factor Models

Machine learning methods have been widely used in macroeconomic forecasting
with large datasets, where there are both a large number of cross-sectional units, and
a large number of repeated observations. The benefit of using large-scale datasets
also comes with the danger of overfitting. Therefore, some level of regularization
is needed to prevent the model from being overly complex. Many machine learning
methods are designed such that the degree of model complexity is optimally tuned
towards better forecasting.

This is also the case in the context of factor-augmented regression, which
uses the estimated factors and potentially their lags as the regressors. Provided
that the estimation of common factors is not targeted at forecasting, not all
the estimated factors are necessarily useful in forecasting. Nevertheless, machine
learning methods can be applied to mitigate the influence of those unimportant
regressors.

8.3.1 Machine Learning Methods

In this section, we consider a general form of the factor-augmented forecasting
model

yt+h = g(zt )+ εt+h,

where zt is a vector of regressors including the estimated common factorŝft , current
outcome variable yt , extra control variables wt , and any possible lags of them. A
linear form of this model is

yt+h = α(L)′̂ft + β(L)′wt + γ (L)′yt + εt+h = π ′zt + εt+h, (8.19)

where (α(L), β(L), γ (L)) are conformable polynomials of lags. We introduce some
machine learning methods that estimate g(·) by ĝ(·), and thus the forecast for
yT+h is given by ĝ(zT ). Note that although we introduce the general prediction
formulation which includes both static and dynamic regressors, we focus on the
static setting. See Chap. 2 for more detailed discussion on dynamic factor analysis.
Also, see Chap. 7 for discussion on the statistical properties of the ridge regression,
lasso, and elastic net, and Chap. 14 for boosting.

Ridge Regression Ridge regression is a shrinkage method that imposes the �2-
regularization. Instead of minimizing the mean squared prediction error as in the
least squares estimation, the ridge regression solves the following optimization
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problem:

min
π

(
1

T

T−h∑

t=1

(yt+h − π ′zt )2
)
+
⎛

⎝λR
dπ∑

j=1

π2
j

⎞

⎠ ,

where λR is the penalty parameter and usually is chosen via cross-validation,
and dπ is the dimensionality of π . Intuitively, the ridge regression simultaneously
“shrinks” each element of the least squares estimate towards zero, and the amount
of shrinkage is determined by the penalty parameter λR . In practice, the ridge
regression estimator is easy to calculate and has a closed-form solution.

Lasso As introduced in Tibshirani (1996), the least absolute shrinkage and selec-
tion operator (Lasso) is a linear regression method that is similar to the ridge
regression, except that instead of penalizing the �2-norm of the coefficients, it
penalizes the �1-norm. In particular, the Lasso estimator solves the optimization
problem

min
π

(
1

T

T−h∑

t=1

(yt+h − π ′zt )2
)
+
⎛

⎝λL
dπ∑

j=1

|πj |
⎞

⎠ .

In principle, the Lasso estimator effectively “shrinks” each element of the least
squares estimate towards zero by a certain amount, which is determined by the
penalty level λL. If the absolute values of some entries of the least squares estimate
are sufficiently small, then the Lasso estimator sets them to zero. This is a feature of
the �1-penalty function, and thus the Lasso estimator can perform model selection
by assigning zero coefficients to some unimportant regressors. Computationally, the
Lasso problem is convex and can be solved efficiently.

Elastic Net The ridge regression and Lasso have their own strengths and weak-
nesses. The idea of the elastic net as introduced in Zou and Hastie (2005) is to
combine the two methods such that the underlying model can be more flexible. The
elastic net estimator solves the optimization problem

min
π

(
1

T

T−h∑

t=1

(yt+h − π ′zt )2
)
+
⎛

⎝λR
dπ∑

j=1

π2
j

⎞

⎠+
⎛

⎝λL
dπ∑

j=1

|πj |
⎞

⎠ .

One way to determine the penalty parameters is to let λR = λE(1− α)/2 and λL =
λEα, where α is chosen by the researcher and λE is chosen via cross-validation. By
doing this, the ridge regression and Lasso become special cases of the elastic net.
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Boosting The boosting algorithm uses the idea of combining results of different
methods in order to improve forecasting. The goal here is to estimate a model Ĝ(·)
between the outcome variable yt+h and observables zt . We present the boosting
algorithm below following Bai and Ng (2009). First, we initialize the estimator by
letting Ĝ(0)(·) = ȳ. Then, we update Ĝ(m)(·) iteratively for m = 1, . . . ,M , using
the following steps:

Step 1 Form the stepwise regression residual û(m−1)
t by

û
(m−1)
t = yt+h − Ĝ(m−1)(zt ).

Step 2 Fit a model ĝ(m)(·) between û(m−1)
t and zt . For example, run Lasso of

û
(m−1)
t on zt , where the resulting predictor ĝ(m)(zt ) is a linear predictor

for û(m−1)
t .

Step 3 Update the forecasting model by letting Ĝ(m)(·) = Ĝ(m−1)(·)+ νĝ(m)(·),
where 0 < ν < 1 is the step length.

The forecasting for yT+h is then ĜM(zt ). Note that in Step 2, we can use different
methods for different iterations. The idea is that some source of variation that is not
learned by one method might be captured by another method, and combining them
may result in better forecasting. It is shown in Bai and Ng (2009) that boosting can
sometimes outperform the standard factor-augmented forecasts and is far superior
to the autoregressive forecast. See Chap. 14 of this book for more details.

Other machine learning methods have also been used in macroeconomic forecast-
ing. For example, the least angle regression (LARS) is used in Bai and Ng (2008).
An extensive review of the machine learning algorithms can be found in Hastie et al.
(2009), and a horse race among various forecasting methods using machine learning
techniques has been conducted by Kim and Swanson (2018), which we will present
in details in Sect. 8.5.

8.3.2 Model Selection Targeted at Prediction

One issue about using estimated factors in forecasting problems is that not all
the factors are necessarily useful for forecasting. One plausible reason is that the
estimation of the common factors is not targeted at predicting the outcome variable
but at explaining the auxiliary variables. In the standard factor-augmented regression
as described in Eqs. (8.16) and (8.17), we choose the factors that can capture xit
well, rather than predicting yt+h well. In this subsection, we present two sets of
methods that consider prediction in forming factors.
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Targeted Predictor

One way to overcome this issue is to perform model selection before factor
model estimation. In the following, we present the “targeted predictor” method as
introduced in Bai and Ng (2008). In particular, let xt = (x1t , . . . , xNt )′ and consider
the linear model below

yt+h = α̃′xt + β ′wt + ε̃t+h.

One can perform variable selection with respect to xt using this regression function.
For example, one can impose the L1 penalty in the spirit of Lasso and solve the
following problem:

min
α̃,β

(
1

T

T−h∑

t=1

(yt+h − α̃′xt − β ′wt )2
)
+
(
λL

N∑

i=1

|α̃i |
)

.

Let x̃t be the collection of xit that are assigned nonzero coefficients through
this procedure. Then, the factor model estimation can be performed based on
Model (8.17) using x̃t instead of xt , which is followed by the factor-augmented
regression estimation using Model (8.16). Bai and Ng (2008) show that the “targeted
predictor” method often generates better forecasting outcomes than the standard
factor-augmented regression, which we will discuss further in Sect. 8.5.2.

Partial Least Squares and Sparse Partial Least Squares

Another approach that considers prediction at the stage of forming factors is the
partial linear squares regression (PLS) method. The idea behind the PLS estimator
is very similar to the idea behind the factor-augmented regression (the PCA-type
regression). Both methods assume that the target variable yt+h and the predictors
xt are driven by some unobserved common factors. The difference is that the PLS
approach extracts factors using the information of both the target variable and the
predictors, while the PCA method constructs factors based on the information of the
predictors only.

Let the matrix of the predictor variables be X ∈ R
T×N and the vector of the target

variable be y ∈ R
T×1. Let R be the desired number of factors. Following Chun and

Keleş (2010), the PLS-type regression can be conducted in the following steps:
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Step 1 For r = 1, . . . ,R: given {w1, . . . , wr−1}, compute wr ∈ R
N×1 using the

optimization problem

wr = arg max
w∈RN

w′X′yy′Xw

s.t. w′w = 1

w′X′Xwj = 0, ∀j = 1, . . . , r − 1.

Let W = [w1, . . . , wR ].
Step 2 Compute q̂ using the OLS estimation:

q̂ = arg min
q∈RR×1

‖y−XWq‖2.

The resulting PLS estimate is ̂β
PLS = Wq̂.

The PCA and PLS approaches use different objective functions to extract the
common components. The former uses w′X′Xw to capture the variations in the
predictors X, whereas the latter uses w′X′yy′Xw to account for the correlation
between the predictors X and the target variable y.

By a similar motivation of using SPCA instead of PCA, Chun and Keleş (2010)
also propose a penalized version of PLS called sparse partial least squares regression
(SPLS). For some fixed parameter κ , the SPLS estimator can be implemented using
the following procedure:

Step 1 Initialize β̂
SPLS = 0, the active setA = {}, r = 1, and residuals û = y.

Step 2 While r ≤ R,

(i) compute ŵ using the optimization problem

min
w∈RN ,c∈RN

−κw′X′ û û′Xw+ (1− κ)(c−w)′X′ û û′X(c−w)+λ1‖c‖1+ λ2‖c‖2
2;

(ii) updateA as {i : ŵi �= 0} ∪ {i : ̂β
SPLS

i �= 0};
(iii) run Step 2 in the PLS procedure with y, XA, and W = [w1, . . . , wr ]

and obtain the new estimate ̂β
SPLS

;

(iv) update r with r + 1 and û with y−X̂β
SPLS

.

In particular, the performance of the sparse PLS estimator in macroeconomic
forecasting has been investigated by Fuentes, Poncela, and Rodríguez (2015) and
will be presented in details in Sect. 8.5.3.



8 Principal Component and Static Factor Analysis 249

8.4 Policy Evaluation with Factor Model

Policy evaluation can often be transformed into a problem of forecasting the
counter-factual outcome. In this section, we discuss the prominent policy evaluation
problems where the data generating process of the counter-factual outcome follows
a factor structure. Empirical applications of the methods introduced in this section
will be presented in Sect. 8.6.

8.4.1 Rubin’s Model and ATT

Suppose we want to evaluate the effect of some policy d on some outcome y. We
can observe a panel withN individuals and T time periods. Individuals with indexes
from 1 to N0 are the control group and those with indexes from N0 + 1 to N are the
treatment group. Let N1 = N −N0. The policy starts to take effect at some point
between time T0 and T0+1, where T0 < T . That is, any period after T0 is considered
a post-treatment period. Let T1 = T − T0.

Let dit denote the treatment status, where dit = 1 only if N0 + 1 ≤ i ≤ N and
T0 + 1 ≤ t ≤ T , and dit = 0 otherwise. Rubin’s model defines

yit =
{
yit (1), if dit = 1

yit (0), otherwise,

and the treatment effect on this individual i at time t is defined by

αit = yit (1)− yit (0).

The parameter of interest is the average treatment effect on the treated units (ATT):

ATT = 1

N1T1

N∑

i=N0+1

T∑

t=T0+1

αit = 1

N1T1

N∑

i=N0+1

T∑

t=T0+1

(yit (1)− yit (0)).

Note that we do not observe yit (0) for the treated units in the post-treatment time
periods. Therefore, the problem becomes a forecasting problem where we use the
observed data of the untreated units to predict the counter-factual outcome of the
treated units in the post-treatment time periods.
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8.4.2 Interactive Fixed-Effects Model

The interactive fixed-effects model is formally studied by Bai (2009), which can be
applied in policy evaluation. Consider the following model:

yit = αdit + β ′xit + λ′ift + uit , (8.20)

where, for simplicity, we assume homogeneous treatment effect which is captured
by α. The researchers only observe (yit , dit , xit ) for i = 1, . . . ,N and t =
1, . . . , T . Throughout this section, assume both N and T are large. An estimator
of Model (8.20) is called the interactive fixed-effects estimator (IFE), which treats
the unobserved variables λi and ft as unknown parameters to recover. Model (8.20)
is a generalization of the additive fixed-effects model, for which we simply set
λi = (1, λ̃i )′ and ft = (f̃t , 1)′. It is also a generalization of the factor model
by allowing for the possible causal effects of the observed characteristics xit . The
underlying counter-factual process is

yit (0) = β ′xit + λ′ift + uit .

To estimate Model (8.20), Bai (2009) performs principal component analysis
and least squares estimation in iterations. First, initialize the estimate for (α, β) and

denote it by (̂α(0), ̂β
(0)
). For example, one can use the least squares estimate

(̂α(0), ̂β
(0)
) = arg min

α,β

N∑

i=1

T∑

t=1

(yit − αdit − β ′xit )2.

Then, construct (̂α(m), ̂β
(m)

,̂λ
(m)

i ,̂f(m)t ) for m = 1, . . . ,M iteratively using Steps 1
and 2 below until numerical convergence:

Step 1 Given (̂α(m−1), β̂
(m−1)

), perform principal component analysis as intro-
duced in Sect. 8.2.1 with respect to the model

yit − αdit − β ′xit = λ′ift + uit .

That is, compute (̂λ
(m)

i ,̂f(m)t ) by treating yit − α̂(m−1)dit − (̂β(m−1)
)′xit as

the observable variable in the factor model estimation.
Step 2 Given (̂λ

(m)

i ,̂f(m)t ), perform least squares estimation to the model

yit − λ′ift = αdit + β ′xit + uit



8 Principal Component and Static Factor Analysis 251

by computing

(̂α(m), ̂β
(m)
) = arg min

α,β

N∑

i=1

T∑

t=1

(yit − (̂λ(m)i )′̂f(m)t − αdit − β ′xit )2.

Then, the estimate of ATT is given by

ÂTTIFE = α̂(M).

It is shown in Bai (2009) that the IFE estimator is consistent and asymptotically
normal under a set of moderate conditions.

In Sect. 8.6, we will discuss in details the empirical applications of the IFE
estimator in policy evaluation, which include the studies by Gobillon and Magnac
(2016) and Kim and Oka (2014).

8.4.3 Synthetic Control Method

The synthetic control method is commonly used to perform program evaluation in
event studies. In this section, we present the synthetic control method in estimating
the average treatment effect on the treated. References of discussing the synthetic
control method with multiple treated units include Firpo and Possebom (2018),
Robbins, Saunders, and Kilmer (2017), and Xu (2017).

Consider the following model:

yit = δt + αdit + λ′ift + uit ,

where we only observe yit and dit . One motivation of applying the synthetic control
method (SCM) to estimate this model compared with the IFE method is that this
approach allows for non-stationary time fixed effects, δt , while the IFE approach
does not. On the other hand, the IFE estimator can account for the effects of
observable characteristics, xit . The underlying counter-factual process is

yit (0) = δt + λ′ift + uit .

The idea of the synthetic control method is to use a convex combination of the
untreated units (plus a constant) to estimate the counter-factual outcome of the
treated units as if they were not treated. The weights are assigned such that the
pre-treatment data fit well. Namely, for each i = N0 + 1, . . . ,N , we compute

ŵi = arg min
w∈W

T0∑

t=1

⎛

⎝yit −w0 −
N0∑

j=1

wjyjt

⎞

⎠
2

,
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where W = {w = (w0,w1, . . . ,wN0) ∈ R
N0+1|∑N0

j=1wj = 1 and wj ≥ 0,∀j =
1, . . . ,N0}. That is, W is the set of weights that are positive and sum up to one,
with no restrictions on the intercept w0. For each i = N0 + 1, . . . ,N and t =
T0 + 1, . . . , T , the estimate of the counter-factual outcome is

ŷit (0) = ŵ0 +
N0∑

j=1

ŵj yjt ,

and the corresponding treatment effect estimate is

α̂it = yit − ŷit (0).

Finally, the estimate of ATT is given by

ÂTTSC = 1

N1T1

N∑

i=N0+1

T∑

t=T0+1

α̂it .

Empirical applications of applying the synthetic control method in policy
evaluation can be found in, e.g., Gobillon and Magnac (2016) and Hsiao, Ching,
and Wan (2012), which we will present in details in Sect. 8.6.

8.5 Empirical Application: Forecasting in Macroeconomics

In this section, we discuss the empirical applications of factor models in forecasting
macroeconomic variables. Regarding the application of forecasting macroeconomic
variables, we first summarize the performance of the diffusion index approach.
Then, we present the improvements of integrating the diffusion index method with
machine learning techniques.

8.5.1 Forecasting with Diffusion Index Method

In a series of early pioneering studies by Stock and Watson, e.g., Stock and Watson
(1999, 2002a,b), the researchers have demonstrated that applying the factor analysis
can substantially improve the forecasting capabilities of the models on a variety
of key macroeconomic aggregates. In this section, following the classical paper of
Stock and Watson (2002b), we present in details the empirical performance of the
diffusion index method, which is a method based on principal component analysis
and has been introduced in Sect. 8.2.1.



8 Principal Component and Static Factor Analysis 253

Forecasting Procedures

The literature of macroeconomic forecasting focuses on examining model pre-
dictability for important macroeconomic variables that reflect real economic activi-
ties and financial conditions. For instance, the goal of Stock and Watson (2002b) is
to predict 8 monthly US macroeconomic time series. Among the eight time series,
four variables are related to real economic activities, which are the measures of total
industrial production (ip), real personal income less transfers (gmyxpq), real manu-
facturing and trade sales (msmtq), and the number of employees on nonagricultural
payrolls (lpnag). The other four variables are the indexes of prices, which include
the consumer price index (punew), the personal consumption expenditure implicit
price deflator (gmdc), the consumer price index less food and energy (puxx), and the
producer price index for finished goods (pwfsa). As discussed in Kim and Swanson
(2018), the ability to precisely forecast these measures is of important economic
relevance, because the Federal Reserve relies on these measures to formulate the
national monetary policy.

The study in Stock and Watson (2002b) contains 215 predictors which represent
14 main categories of macroeconomic time series. Using these predictors, which
are monthly time series for the US from 1959:1 (i.e., January 1959) to 1998:12
(i.e., December 1998), the empirical goal of the study is to construct 6-, 12-, and
24-month-ahead forecasts for the eight macroeconomic aggregates from 1970:1 to
1998:12. The forecasting procedure applies the following “recursive” scheme. First,
the researchers use the data from 1959:1 to 1970:1 to form an out-of-sample forecast
for 1970:1+h, where h is 6, 12, and 24, respectively, depending on the forecasting
horizons. Then, the data from 1959:1 to 1970:2 are used to forecast for 1970:2+h
and so on. Finally, the last forecast is based on the data from 1959:1 to 1998:12-h
for the period of 1998:12.1

Benchmark Models

In the study of Stock and Watson (2002b), four benchmark models are applied as
comparisons with the diffusion index method. First, the univariate autoregression
(AR) model might be one of the simplest time-series tools for forecasting, which is
shown in the following:

ŷT+h|T = α̂h0 +
p∑

j=1

γ̂hj yT−j+1,

1Another popular forecasting strategy is the so-called “rolling” scheme, which, in each step, drops
the earliest observation in the current forecast window while adding a new one. The relative
performance between the recursive and rolling schemes can be found in, for example, Kim and
Swanson (2018).
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where we forecast the future observations for a given variable using its historical
realizations. The number of lags, p, is set using BIC with 0 ≤ p ≤ 6. The second
benchmark model in the study is the vector autoregression (VAR) model, where the
following three variables are used in the multivariate regressions: a measure of the
real-activity-monthly growth, a measure of the variation in monthly inflation, and
the change in the 90-day US treasury bill rate. The number of lags is fixed at 4,
which provides better forecasting performance than the one selected through BIC.
Third, this study considers the model using leading indicators (LI). In particular, 11
leading indicators are used for forecasting the real-activity measures, and 8 leading
indicators are applied for predicting the price indexes. These leading indicators
performed well individually in former forecasting studies. Finally, the Phillips curve
(PC) is considered in this study, due to its reliability for forecasting inflation. The
predictors of the PC method include the unemployment rate, the relative price of
goods and energy, and a measure controlling for the imposition and removal of the
Nixon wage and price controls. In both the LI and PC methods, lags of the control
variables and lags of yt are included, and the number of lags is selected with BIC.

Diffusion Index Models

Stock and Watson (2002b) present the forecasting performance of the diffusion
index method. In this method, the factors are first extracted from the 215 predictors
using the principal component analysis, and then the factors are used for forecasting
the eight macroeconomic time series. We present the diffusion index model in the
following:

ŷT+h|T = α̂h +
m∑

j=1

̂β
′
hĵ fT−j+1 +

p∑

j=1

γ̂hj yT−j+1, (8.21)

where f̂t is the r-dimensional estimated factors. Also, Stock and Watson (2002b)
consider three versions of this model. First, the DI-AR-Lag model includes lags of
the factors and lags of yt , where the number of factors, r , the number of lags of f̂t,
m, and the number of lags of yt , p, are selected by BIC, with 1 ≤ r ≤ 4, 1 ≤ m ≤ 3,
and 0 ≤ p ≤ 6. Then, the DI-AR model includes only the contemporaneous factors
and lags of yt . So, m = 1, and r and p are chosen via BIC with 1 ≤ r ≤ 12 and
0 ≤ p ≤ 6. And finally, the DI model contains the contemporaneous factors only.
So m = 1 and p = 0, and r is selected by BIC, where 1 ≤ r ≤ 12.

Forecasting Performance

In Table 8.1, we summarize the performance of the four benchmark models and the
three diffusion index models for forecasting the eight macroeconomic time series
12 months ahead. In particular, each cell of the table reports the relative ratio of the
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out-of-sample mean squared errors of each method with respect to the ones of the
benchmark AR method. For every targeted macroeconomic variable, we highlight
the result generating the smallest forecasting errors in bold. The standard errors are
reported in parentheses.

We first discuss the forecasting performance for the four real-activity measures in
Table 8.1. As can be seen from the table, in most cases the diffusion index methods
outperform the benchmark methods substantially, with the forecasts of employment
being the only exception. The enhancements over the benchmark methods are
substantial for the measure of industrial production, real personal income less
transfers, and real manufacturing and trade sales. For instance, considering the
measure of real manufacturing and trade sales, the forecasting MSE of the DI-AR-
Lag model is 48% of that of the AR model and 58% of that of the LI model. The
forecasting capabilities of the DI method and the DI-AR-Lag method are similar,
which suggests that mostly the estimated factors, rather than yt and the lags of
f̂t, account for the forecasts. The 6-month- and 24-month-ahead forecasts are also
presented in Stock and Watson (2002b), which shows that the longer the forecasting
horizon is, the larger the relative improvements of the diffusion index methods are.

Moreover, as can be seen from Table 8.1, in terms of forecasting the inflation
measures, the DI-AR-Lag and DI-AR methods outperform the benchmark methods
less often and the relative improvements are smaller than the case of forecasting
the real-activity measures. This result suggests that there is more room for the
inflation forecasts to improve, and accordingly in the following we present the study
in Bai and Ng (2008), which introduces refinements to the current diffusion index
methods using machine learning techniques and demonstrates the improvements on
the inflation forecasts.

8.5.2 Forecasting Augmented with Machine Learning Methods

In this section, we summarize the study in Bai and Ng (2008) to show that machine
learning methods can augment the diffusion index methods and enhance forecasting
performance. The intuition of the research is that instead of extracting factors from
all the available predictors, it could be useful to only extract factors from the
predictors that are informative for the outcome variables to predict. As a result, this
study applies machine learning methods, including “hard” and “soft” thresholdings,
to select the informative predictors. This approach is called the “targeted diffusion
index” method.

The dataset used in Bai and Ng (2008) contains 132 monthly time series from
1960:1 to 2003:12, which are the potential predictors. The focus of this study is
to predict CPI, which has been considered as a challenging task in the previous
studies as is shown in, e.g., Stock and Watson (2002b). This study applies the
recursive scheme to make forecasts 1, 6, 12, and 24 months ahead. Provided that
the forecasting performance may vary over sample period due to variations in the
underlying economic situations, this paper considers the following seven forecast
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subsamples separately: 70:3-80:12, 80:3-90:12, 90:3-00:12, 70:3-90:12, 70:3-00:12,
80:3-00:12, and 70:3-03:12.

Diffusion Index Models

We describe the forecasting models used in this study. First, this paper considers
the original principal component method, denoted as PC, as the benchmark model,
which extracts factors from all the 132 predictors. Denote each of the 132 predictors
using xit . Second, the squared principal component (SPC) method exacts factors
from 264 predictors, which contain both xit and the squared ones, x2

it . Third, the
squared factors method (PC2) extracts factors from the 132 predictors and uses both
the estimated factors and the squares of the estimated factors to make forecasts.

Hard Thresholding Models

In addition, this paper introduces three methods that apply hard thresholding to
select targeted predictors, and then extract targeted diffusion indexes from the
targeted predictors to make forecasts. Using hard thresholding, each potential
predictor is evaluated individually, and if a given predictor’s marginal predictive
power for the inflation variable is above a certain threshold, it is selected as a
targeted predictor, and not otherwise. The marginal predictive power is measured
as the absolute t-statistic of a predictor in the regression controlling for some
other variables, e.g., lags of the inflation measure. And this paper considers three
thresholding levels: 1.28, 1.75, and 2.58, which are the critical values at the level
of 10%, 5%, and 1%, respectively. The first hard thresholding method, TPC, selects
targeted predictors from the 132 predictors using the hard thresholding rule, and
then extracts factors from the targeted predictors. The second method, TSPC, selects
targeted predictors from the 264 predictors which include xit and x2

it . And the third
method, TPC2, uses the same targeted diffusion indexes as the TSPC method does,
and uses also the squares of the targeted diffusion indexes for forecasting.

Soft Thresholding Models

A concern of the hard thresholding method is that this approach only considers each
predictor individually without taking into account the influences of other predictors.
As an alternative, Bai and Ng (2008) also consider the soft thresholding methods
with particular attention paid to the “least angle regression” (LARS) approach.
As is introduced in Efron, Hastie, Johnstone and Tibshirani (2004), LARS is a
variable selection algorithm that approximates the optimal solutions of the Lasso
problem. Specifically, LARS starts from a zero coefficient vector. Then, for the
predictor that is most correlated with the dependent variable, say xj , the algorithm
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moves its coefficient towards the direction of the OLS coefficient and computes
the residuals along the way. Until some other predictor, say xk , is found to have as
much correlation with the residuals as xj has, the algorithm adds xk to the active
set of predictors. Then, the algorithm moves the coefficients of xj and xk jointly
towards the least squares direction until another predictor, say xm, is found to have
much correlation with the residuals. This process proceeds in this way until all the
predictors are added sequentially to the active set.

Bai and Ng (2008) consider four methods using LARS. The first method is
LA(PC), which selects the 30 best predictors from the 132 predictors using LARS,
and then extracts factors from the 30 selected predictors. The second method,
LA(SPC), instead selects the 30 best predictors using LARS from the 264 predictors,
which include both xit and x2

it , and then extracts factors. Moreover, this paper
also considers LA(5), which uses the 5 best predictors selected by LARS to make
forecasts, and LA(k∗), which uses the k∗ best predictors selected by LARS, where
k∗ is chosen through BIC. Note that both LA(5) and LA(k∗) do not extract factors
and thus they are not diffusion index methods.

Empirical Findings

In the following, we present the average number of selected predictors and the
forecasting performances of each method. To save space, we only report the results
for the 12-month-ahead forecasts with the hard-thresholding cutoff value being
1.65 and the LARS tuning parameter value being 0.5. Details for other forecasting
horizons, tuning parameter values, and outcome variables (e.g., personal income,
retail sales, industrial production, and total employment) can be found in Bai and
Ng (2008), which in general are coherent with the main findings we present here.

In Table 8.2, we report the average number of predictors used across different
forecasting methods. By design, the number of predictors is fixed ex-ante for PC,
SPC, PC2, LA(PC), LA(5), and LA(SPC). We see that the number of targeted pre-
dictors selected by hard thresholding is much larger than the number of predictors
selected via BIC under LARS.

Table 8.2 Average number of selected predictors across different forecasting methods

PC SPC TPC TSPC PC2 TPC2 LA(PC) LA(5) LA(k*) LA(SPC)

70.3–80.12 132 264 64.2 122.8 132 64.2 30 5 15.0 30

80.3–90.12 132 264 87.3 169.7 132 87.3 30 5 10.7 30

90.3–00.12 132 264 89.0 171.4 132 89.0 30 5 11.8 30

70.3–90.12 132 264 75.7 146.2 132 75.7 30 5 12.9 30

70.3–00.12 132 264 80.1 154.5 132 80.1 30 5 12.5 30

80.3–00.12 132 264 88.1 170.6 132 88.1 30 5 11.2 30

70.3–03.12 132 264 80.6 155.6 132 80.6 30 5 12.8 30

Note: This table summarizes the results in Table 3 of Bai and Ng (2008)
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Table 8.3 Relative mean squared forecasting errors across different methods

PC SPC TPC TSPC PC2 TPC2 LA(PC) LA(5) LA(k*) LA(SPC)

70.3–80.12 0.631 0.595 0.659 0.654 0.644 0.612 0.599 0.623 0.691 0.562
80.3–90.12 0.575 0.582 0.689 0.573 0.633 0.661 0.569 0.566 0.702 0.477
90.3–00.12 0.723 0.699 0.616 0.698 0.703 0.613 0.681 0.665 1.088 0.675

70.3–90.12 0.603 0.589 0.675 0.613 0.639 0.638 0.584 0.594 0.698 0.519
70.3–00.12 0.611 0.597 0.665 0.618 0.642 0.631 0.590 0.597 0.733 0.531
80.3–00.12 0.594 0.597 0.669 0.589 0.639 0.644 0.583 0.576 0.764 0.506
70.3–03.12 0.609 0.597 0.665 0.615 0.639 0.632 0.587 0.597 0.751 0.531

Note: This table summarizes the results in Table 6 of Bai and Ng (2008). Bold fonts indicate the
method which generates the smallest relative mean squared errors for each forecast subsample.

In addition, in Table 8.3, we present the ratio of the forecasting mean squared
errors of each method with the ones using the univariate autoregression model
with 4 lags, i.e., AR(4). For each forecast subsample, we highlight the method that
generates the smallest relative mean squared errors. As can be seen from this table,
most of the entries are below 1, which confirms the findings in the previous literature
that the diffusion index methods in general outperform the benchmark AR models.
More importantly, the results suggest that the targeted diffusion index methods have
substantially enhanced the original diffusion index methods. The soft thresholding
method, LA(SPC), is the best approach in most cases, with only one exception in
which the hard thresholding method, TPC2, wins. Overall, the soft thresholding
procedures outperform the hard thresholding ones. Also, it is noticeable that adding
the squares of the predictors from which to select the targeted predictors further
reduces the forecast errors, which suggests that introducing non-linearity between
the predictors and principal components is beneficial.

In the current literature, more and more research has been conducted to combine
the diffusion index methods with the state-of-the-art machine learning techniques.
For instance, Bai and Ng (2009) introduce some boosting methods to select the pre-
dictors in the factor-augmented autoregressive estimations, and Kim and Swanson
(2018) combine the diffusion index methods with the machine learning techniques,
which include bagging, boosting, ridge regression, least angle regression, elastic
net, and non-negative garotte. Finally, it is also noteworthy that machine learning
techniques may not always improve the diffusion index methods. As demonstrated
in Stock and Watson (2012), the forecasts based on some shrinkage representations
using, e.g., pretest methods, Bayesian model averaging, empirical Bayes, and
bagging, tend to fall behind the traditional dynamic factor model forecasts.

8.5.3 Forecasting with PLS and Sparse PLS

One approach that is closely related to the targeted predictor model is the partial
least squares (PLS) method. As introduced in Fuentes et al. (2015), the PLS
approach also takes into account the target variable (i.e., outcome variable to
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Table 8.4 Relative mean squared forecasting errors using PLS and SPLS

Bai and Ng (2008) PLS SPLS

Period LA(SPC) a (k=2) b (k=2) c (k=2) a (k=2) b (k=2) c (k=2)

70.3–80.12 0.562 0.462 0.890 0.472 0.472 0.765 0.458
80.3–90.12 0.477 0.486 0.995 0.476 0.440 0.784 0.441

90.3–00.12 0.675 0.532 1.200 0.621 0.521 0.820 0.623

70.3–90.12 0.519 0.465 0.947 0.465 0.469 0.780 0.465
70.3–00.12 0.531 0.466 0.957 0.473 0.470 0.823 0.473

80.3–00.12 0.506 0.484 1.005 0.487 0.461 0.858 0.473

70.3–03.12 0.531 0.469 0.977 0.479 0.472 0.845 0.478

Note: This table summarizes the results in Table 6 of Bai and Ng (2008) and Table 2 of Fuentes
et al. (2015). Bold fonts indicate the method which generates the smallest relative mean squared
errors for each forecast subsample.

forecast) when it forms the principal components. Moreover, the corresponding
shrinkage version of the model, the sparse partial least squares (SPLS) method,
imposes the �1-penalty on the direction vectors so that it allows the latent factors to
depend on a small subset of the predictors. In Table 8.4, we report the forecasting
performances based on PLS and SPLS, and compare them with the ones based on
targeted predictors in Bai and Ng (2008).

Following the study by Fuentes et al. (2015), Table 8.4 presents the relative
mean squared forecasting errors of the PLS and SPLS methods, using AR(4) as
the benchmark model. In the same table, the relative performances of the targeted
predictor method, LA(SPC), as discussed in Bai and Ng (2008), are presented as
well to serve as a comparison. To save space, we only show the results for the
12-month forecasting horizon, while similar conclusions can be drawn for other
forecasting horizons. Both PLS and SPLS consider the following three setups: the
baseline version (i.e., setup (a)) extracts orthogonal latent components based on the
covariance between the predictors, X ∈ R

N×T , and the target variable Y ∈ R
T :

X′Y; setup (b) relies on the covariance between an enlarged set of the predictors,
including both X and the lags of the target variable, and the target variable Y;
and setup (c) uses the covariance between the predictors, X, and the residuals from
regressing the target variable, Y, on its own lags using AR(p).

Table 8.4 suggests that the most preferred versions of PLS or SPLS, which are
indicated in bold in the table, provide less forecasting errors in general than the
LA(SPC) method does. Overall, setups (a) and (c) forecast better than setup (b), and
the best SPLS setup performs slightly better than the best PLS setup for most of the
forecasting subsamples.

8.5.4 Forecasting with ICA and Sparse PCA

The forecasting performances using ICA and sparse PCA (SPCA) are studied in
Kim and Swanson (2018). The authors provide some evidence that, comparing



8 Principal Component and Static Factor Analysis 261

Table 8.5 Relative forecasting mean squared errors using PCA, ICA, and SPCA

UR PI TB10Y CPI PPI NPE HS IPX M2 SNP GDP

PCA 0.780 0.870 0.940 0.875 0.943 0.811 0.900 0.800 0.939 0.976 0.916
ICA 0.897 0.920 0.931 0.840 0.843 0.802 0.901 0.574 0.965 0.920 0.916
SPCA 0.827 0.789 0.409 0.870 0.858 0.706 0.542 0.268 0.969 0.897 0.916

Note: This table summarizes the results in Table 3 of Kim and Swanson (2018) for specification
type 1 (SP1) and 1-month ahead forecasting horizon (h=1). Bold fonts highlight the method which
generates the smallest relative mean squared errors for each outcome measure.

with the standard PCA method, ICA or SPCA tends to generate less forecasting
errors for short-term predictions, e.g., 1-month ahead forecasts, whereas PCA has
better performances than ICA and SPCA for longer-period predictions, e.g., 6
month and 12 month forecasts. Theoretical explanations for the different forecasting
performances over the various methods and forecasting horizons await future
research. In Table 8.5, we present the 1-month ahead forecasting results using PCA,
ICA, and SPCA based on the study of Kim and Swanson (2018), which shows that
among 9 out of 11 target variables, ICA or SPCA outperforms PCA.2

8.6 Empirical Application: Policy Evaluation
with Interactive Effects

In this section, we consider the setting of policy evaluation. In practice, it is
important for policy makers to understand the consequences of implementing a
policy in order to make informed decisions. It has been emphasized in some recent
literature, e.g., Gobillon and Magnac (2016), Hsiao et al. (2012), and Kim and Oka
(2014), that controlling for the latent factor structure can facilitate the empirical
study of policy evaluation. In the following, we consider the same data generating
process that has been introduced in Sect. 8.4, which assumes that the values of the
outcome variable with and without treatment are the following:

yit (0) = β ′xit + λ′ift + εit (8.22)

yit (1) = yit (0)+ αit . (8.23)

2Readers need to be cautious to understand and interpret the results of comparing different
forecasting methods. For instance, each entry in Table 8.5 corresponds to the best performance
of a given method, say PCA, ICA, or SPCA, across a variety of machine learning models, which
are used to forecast the target variables using the extracted factors. This implies that the reported
forecasting errors in the table already take into account the data to forecast, due to the selection
over the machine learning models. However, the relative forecasting performances across PCA,
ICA, and SPCA may be different when we “truly” forecast out of sample.
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In this framework, the factor structure allows for a number of unobserved
economic shocks, which can be time varying and are represented by the factor
vector, ft . Also, different cross-sectional observations can react to the latent shocks
differently, which is captured by the i-specific factor loading vector, λi , for every
observation i. More importantly, this framework is flexible to allow the treatment
variable to be freely correlated with the latent factors and factor loadings. For
example, in Gobillon and Magnac (2016), the researchers are interested in studying
the effect of implementing the enterprise zone program in France in 1997 on the
regional employment levels. In this context, the factor structure can incorporate
not only the additive region specific effects and time effects, but also unobserved
economic shocks and region specific reactions to these shocks. The unobserved
economic shocks may include, but are not limited to, time varying business cycles,
technological shocks, and sector specific economic shocks. The enterprise zone
program provides financial incentives for the municipalities to hire the local labor
force, and thus the decision of implementing the policy may also depend on the
unobserved local economic conditions.

8.6.1 Findings Based on Monte Carlo Experiments

In the following, we present the Monte Carlo simulation experiments in Gobillon
and Magnac (2016) to illustrate that when the multidimensional factor structure
exists, the popular difference-in-differences method is generically biased and the
synthetic control method is also possible to fail, whereas the interactive fixed-
effects estimator tends to be well-performed. In particular, the simulation exercise
uses (8.22) and (8.23) as the data generating process, where the treatment effect
coefficient is set to be αit = 0.3 and no explanatory variable is included. We
report the simulation results using three factors. The elements in the first factor
are restricted to be ones, and thus the model contains the additive individual effects.
The entry in the second factor is set to be asin(πt/T ) with a > 0, and thus it is
a function of time. Also, each element in the third factor is an i.i.d draw from the
uniform distribution on [0,1].

Moreover, the simulation exercise contains three possibilities for generating the
factor loadings. In the baseline model, the factor loadings are random draws from the
uniform distribution on the support of [0,1]. Then, this study considers overlapping
supports for the treated and untreated units, where the factor loadings of the treated
units are shifted by 0.5 from the baseline counterparts. Finally, this paper considers
the case with disjoint supports, in which the factor loadings of the untreated units are
draws from the uniform distribution on [0,1], while those of the treated units from
the uniform distribution on [1,2]. Therefore, the treatment variable is independent of
the factor loadings in the baseline scenario, while the correlation between the factor
loadings and the treatment dummy is 0.446 and 0.706 in the second and third cases,
respectively.
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Table 8.6 Biases of
estimated treatment effects
using different methods in
Monte Carlo simulations

Support difference 0 0.5 1

IFE 0.002 −0.009 −0.002

(0.143) (0.154) (0.209)

SC 0.010 0.633 1.420

(0.102) (0.120) (0.206)

DID −0.087 0.209 0.518

(0.134) (0.134) (0.137)

Note: This table summarizes Table 2 of Gobillon
and Magnac (2016)

Then, we report the estimated treatment effects using the interactive fixed effects,
synthetic controls, and difference-in-differences methods in Table 8.6. As can be
seen, there is little estimation bias in the baseline setting for all the methods, which
is not surprising since the endogeneity issue does not occur in this setting provided
that the treatment dummy is independent of the factors and factor loadings. Also,
the synthetic control method is more efficient than the interactive fixed-effects
estimator, since the synthetic control method imposes additional constraints that are
aligned with the true data generating process. In addition, considering the settings
with overlapping and disjoint supports, the interactive fixed-effects estimator is
unbiased and is able to account for the endogenous factor structure. However, the
synthetic control method imposes the constraints that the factor loadings of each
treated unit are linear combinations of the factor loadings of the untreated units,
which do not hold in general in these settings and thus the synthetic control estimates
are fairly biased. Also, it is expected to see that the difference-in-differences method
is rather biased in these settings since it can only account for additive fixed effects.
As a summary, the interactive fixed-effects estimator outperforms the synthetic
controls and the difference-in-differences methods when an endogenous factor
structure is present, which is of significant relevance in various empirical settings of
policy evaluation.

8.6.2 Empirical Findings

The empirical findings in Gobillon and Magnac (2016) also suggest that the
interactive fixed-effects approach is relatively more plausible for the empirical
setting. In their study, the researchers evaluate the enterprise zone program, which
exempts the firms’ contributions to the national health insurance and pension system
if the employers hire at least 20% of their labor force locally. The tax reduction
is as high as around 30% of the total labor expenses. Therefore, it is important
to understand if the policy would facilitate the local residents to find a job. The
researchers use a flow sample of unemployment spells in France from July 1989
to June 2003 to examine the effect of the enterprise zone program introduced on
January 1, 1997. The researchers consider the impact on the number of exits from
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unemployment to a job, and the number of exits from unemployment for unknown
reasons. For both measures, the findings based on the interactive fixed effects and
the difference-in-differences methods are similar: the program has a positive and
significant effect on the number of exits from unemployment to employment, and
an insignificant effect on the amount of exits for unknown reasons. Nevertheless,
the synthetic control estimates find a negative and insignificant effect on the exits
to employment, and a positive and significant effect on leaving unemployment for
unknown reasons. The synthetic control estimates seem to be counterintuitive, since
the financial incentives of the program are likely to induce a higher effect on the exits
to a job than the exits for unknown reasons. As a result, the researchers conclude
that the interactive fixed-effects estimator behaves well relative to its competitors in
both the Monte Carlo simulations and the empirical application.

In the recent empirical literature, a larger number of studies have started to
apply the interactive fixed-effects approach for policy evaluations. For instance,
Hsiao et al. (2012) analyze the influences of political and economic integration
of Hong Kong with Mainland China on the growth of the Hong Kong economy.
Using a panel dataset of 24 countries, the latent factor structure is flexible to
control for the potential endogenous economic and political shocks and country
specific reactions to these shocks. Also, Kim and Oka (2014) evaluate the effects
of implementing the unilateral divorce law on divorce rates in the USA using a
panel of state-level divorce rates, where the researchers are motivated to control
for the multidimensional unobserved social and economic shocks and the state
specific reactions to the shocks. It is a recent trend that the potential existence of the
endogenous factor structure becomes more emphasized by the researchers and thus
the interactive fixed-effects approach becomes more popular in policy evaluation to
control for that influence.
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Chapter 9
Subspace Methods

Tom Boot and Didier Nibbering

9.1 Introduction

With a limited number of observations and a large number of variables, dimension
reduction is necessary to obtain accurate macroeconomic forecasts. This can be done
by identifying a small set of variables that appear most relevant to the variable
of interest by variable selection (Ng, 2013) or shrinkage methods as the lasso
(Tibshirani, 1996). Alternatively, one can transform the high dimensional data set
into a small number of factors that capture most of the available information, as
in factor models by Stock and Watson (2002, 2006) and Bai and Ng (2006, 2008),
among others. In both cases, the low measurement frequency of macroeconomic
data and the weak forecast relations make it a challenging task to find an accurate
low-dimensional representation of the high-dimensional data. In fact, the selection
methods themselves can add considerable noise to the forecast, potentially offsetting
some of their gains.

Instead of trying to find the most informative part of the data, subspace methods
reduce the dimension of the data in a data-oblivious fashion. For example, they draw
a small set of variables at random, based on which a forecast can be constructed.
Repeating this many times, and combining the forecasts using a simple average,
has been found to be highly effective when constructing macroeconomic forecasts.
The exact way in which these methods achieve such high forecast accuracy is not

T. Boot (�)
Department of Economics, Econometrics and Finance, University of Groningen, Groningen,
The Netherlands
e-mail: t.boot@rug.nl

D. Nibbering
Department of Econometrics and Business Statistics, Monash University, Clayton, VIC, Australia
e-mail: didier.nibbering@monash.edu

© Springer Nature Switzerland AG 2020
P. Fuleky (ed.), Macroeconomic Forecasting in the Era of Big Data,
Advanced Studies in Theoretical and Applied Econometrics 52,
https://doi.org/10.1007/978-3-030-31150-6_9

267

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31150-6_9&domain=pdf
mailto:t.boot@rug.nl
mailto:didier.nibbering@monash.edu
https://doi.org/10.1007/978-3-030-31150-6_9


268 T. Boot and D. Nibbering

yet fully understood. Upper bounds on the mean squared forecast error indicate
that high correlations in the data limit the omitted variables bias, while the small
subspace dimension greatly reduces the forecast variance.

In this chapter, we provide an introduction to four different subspace methods:
complete subset regression (CSR), random subset regression (RS), random projec-
tion regression (RP), and compressed regression (CR). The first is introduced by
Elliott, Gargano, and Timmermann (2013) who propose to average over individual
forecasts constructed from all possible linear regression models with a fixed number
of predictors. Since using all available subsets is infeasible in high-dimensional
settings, Elliott, Gargano, and Timmermann (2015) take arbitrary subsets as an
approximation. The latter approach is further analyzed by Boot and Nibbering
(2019), who discuss two different approaches to construct a random subspace in
a macroeconomic forecasting setting. Random subset regression uses randomly
selected subsets of predictors to estimate many low-dimensional approximations
to the original model. Random projection regression forms a low-dimensional
subspace by averaging over predictors using random weights drawn from a standard
normal distribution. Koop, Korobilis, and Pettenuzzo (2019) exploit the computa-
tional gains from using sparse random projection matrices in a Bayesian compressed
regression.

While applications of random subspace methods to economic forecasting are
very recent, the ideas underlying random subspace methods have been used in a
number of applications in the statistics and machine learning literature. Bootstrap
aggregation methods aggregate the forecasts of models fitted on subsets of the data
to a final prediction. Breiman (1996) and Breiman (1999) use bootstrap aggregation
to draw subsets of observations instead of predictors, a method known as bagging.
Feature bagging is a form of bootstrap aggregation where one draws subsets of
predictors instead of observations. Within computer science, the performance of
decision trees is often improved by training trees using random subsets of the
available observations or variables at each split point, and then averaging the
predictions from each of these trees. Random subset regression is a simple form
of feature bagging aiming to reduce the dimension of the set of predictors in a linear
regression model. Random projection regression and compressed regression are part
of a large machine learning literature on constructing a new set of predictors (Frieze,
Kannan, and Vempala, 2004; Mahoney and Drineas, 2009). The justification for the
use of random projections is often derived from the Johnson–Lindenstrauss lemma
(Johnson and Lindenstrauss, 1984). In a linear regression model, Kabán (2014)
shows that the results can be sharpened without invoking the Johnson–Lindenstrauss
lemma.

This chapter is organized as follows: Sect. 9.2 establishes notation and sets
the forecasting framework. Section 9.3 briefly discusses two fundamental ideas
behind subspace methods: forecast combinations and factor models. Section 9.4
introduces the random subspace methods. Section 9.5 surveys the performance of
the random subspace methods in empirical applications reported in the literature.
Theoretical guarantees on the forecast performance of random subspace methods
are reviewed in Sect. 9.6. Section 9.7 illustrates the use of these methods in two
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empirical applications to macroeconomic forecasting with many predictors, and
Sect. 9.8 concludes with recommendations for future research.

9.2 Notation

We denote by yt+1 the macroeconomic variable of interest. To forecast this variable,
we make use of a set of pw must-have predictors wt , such as a constant and lags of
yt+1, and a set of px possibly relevant predictors xt . The case of interest is where
px is large, so that including all predictors in a single model leads to inefficient
forecasts. When it is not clear which variables to include in wt , this set can be left
empty. Both xt and wt can include lags of yt+1.

We focus on the linear model

yt+1 = w′tβw + x′tβx + εt+1, (9.1)

where the forecast error is denoted by εt+1 and the time index t runs from t =
0, . . . , T . The predictors zt = (w′t , x′t )′, with t = 0, . . . , T − 1, are used in the
estimation of the p × 1 parameter vector β = (β ′w, β ′x)′, and zT = (w′T , x′T )′ is
only used for the construction of point forecasts ŷT+1 for yT+1. Theoretically, the
linearity assumption is not too restrictive, as in many cases we can approximate a
nonlinear function f (xt , β) using a first order Taylor expansion.

9.3 Two Different Approaches to Macroeconomic
Forecasting

9.3.1 Forecast Combinations

A consistent finding in macroeconomic forecasting is that averaging forecasts
from multiple forecasting models increases prediction accuracy (Timmermann,
2006). When the forecasts from the individual models are unbiased, combining
multiple forecasts lowers the variance, and hence the mean squared forecast error.
When individual models are misspecified, averaging might lower the bias if the
misspecification error cancels.

A linear forecast combination pools over N individual forecasts ŷT+1,i to obtain
a forecast ŷT+1 for yT+1 by

ŷT+1 =
N∑

i=1

ωiŷT+1,i ,

where ωi is the weight on ŷT+1,i .
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Ideally, different models are combined using a weighted average, with weights
that reflect the reliability of each forecast. In practice, estimation of combination
weights introduces additional variance in the forecast. This can offset a large part of
the variance reduction by combination. It turns out that taking a simple average over
different models is generally hard to beat (Claeskens, Magnus, Vasnev, and Wang,
2016; Elliott and Timmermann, 2013). This is especially true if all models perform
roughly the same, in which case equal weighting is close to being optimal.

The literature on forecast combinations generally starts by assuming that a
number of different forecasts are available, but is silent on where these forecasts
actually come from. The subspace methods discussed in this paper generate a
sequence of forecasts that can then be combined to yield an accurate forecast.

9.3.2 Principal Component Analysis, Diffusion Indices, Factor
Models

Factor models reflect the idea that a small number of latent components drive most
variation in macroeconomic series. We observe a vector of regressors xt that satisfies

xt = �′f t + et ,

where f t is a r × 1 vector, � is a r ×p matrix of loadings, and et is an idiosyncratic
component. The factors are driving the dependent variable according to

yt+1 = w′tβw + f ′tβf + εt+1.

It is generally assumed that the factors are orthonormal, such that 1
T

∑T
t=1 f tf

′
t =

I r . Taking a singular value decomposition of xt , we have

xt = USvt = �′f t + et .

If the idiosyncratic component et = 0, the factors equal the left singular vectors
(up to a rotation), and the model essentially applies a linear dimension reduction by
replacing xt as

x′t → x′tUS−1 = f ′t . (9.2)

It turns out that this is still a good strategy if et �= 0, as the left singular vectors
are consistent for the space spanned by the unknown factors Stock and Watson
(2002). Forecasts based on (estimated) factors are generally precise, and often an
interpretation of the factors can be derived from the loadings.

Random subspace methods apply a linear dimension reduction step as in (9.2),
but instead of multiplication with a data dependent matrix that is explicitly designed
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to find factors, it replaces US−1 by a random matrix R. Intuitively, suppose that all
predictors strongly correlate with a single factor that drives the dependent variable.
Then including a randomly selected subset of predictors, where R is a random
permutation matrix, or a set of randomly weighted averages of the predictors, where
R contains independent standard normally distributed elements, will not lead to
a large omitted variable bias. When the dimension of these sets is small, there
can however be a substantial reduction in variance compared to the case where
one includes all available predictors. The theoretical results later in this chapter
also point in this direction. To avoid that the random selection/weighting induces
additional variance itself, we can average over forecasts obtained under many
different random selections/weights.

9.4 Subspace Methods

Subspace methods can be seen as a combination of the ideas outlined in the previous
section. First, a linear dimension reduction step as in a factor model is performed
to obtain a low-dimensional approximation to the data. That is, we post-multiply
the regressors xt with a px × k matrix Ri . The subspace dimension k < px
equals the number of predictors in the subspace. A commonly used deterministic
matrix Ri contains the principal component loadings corresponding to the k largest
eigenvalues of the sample covariance matrix of the predictors. If the elements of Ri
are drawn from a known probability distribution, then this opens up the possibility to
generate many low-dimensional approximations to the data. Inspired by the forecast
combination literature, the forecasts based on the individual approximations are then
combined to improve the forecast accuracy.

Replacing the full regressor matrix with the regressors projected onto the
subspace leads to the approximating model

yt+1 = w′tβw,i + x′tRiβx,i + ut+1, (9.3)

which can be rewritten to

yt+1 = z′tSiβ i + ut+1, with Si =
(

Ipw O

O Ri

)
,

with zt as defined below (9.1). Instead of estimating β in the high-dimensional
model, where all pw + px predictors are included, we estimate the pw + k
parameters in βi in this low-dimensional model.

Under the assumption that T > (pw + k), the least squares estimator of βi is
given by

β̂i = (S′iZ′ZSi )
−1S′iZ′y.
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Using this estimate, we construct an individual forecast for yT+1 as

ŷT+1,i = z′T Si β̂ i .

Based on N different realizations of the dimension reduction matrix Ri , N
different forecasts are obtained. These forecasts are subsequently averaged to obtain
the prediction

ŷT+1 = 1

N

N∑

i=1

ŷT+1,i .

As we see here, each forecast receives an equal weight.
We now discuss three subspace methods that all have recently been applied to

economic data.

9.4.1 Complete Subset Regression

Complete subset regression (Elliott et al., 2013) is a subspace method in which
the individual forecasts are constructed from all possible linear regression models
with a fixed number of k predictors. The matrix Ri in (9.3) selects one of the N
unique combinations of k predictors out of the px available predictors. The selection
matrix Ri is data-independent and has

(
px
k

)
possible realizations. The set of models

following from all possible realizations of Ri is called a complete subset.
To construct a more formal definition of complete subset regression, define an

index l = 1, . . . k with k the dimension of the subspace, and a scalar c(l) such that
1 ≤ c(l) ≤ px . Denote by ec(l) a px-dimensional vector with its c(l)-th entry equal
to one, then complete subset regressions are based on the matrices Ri of the form

[ec(1), . . . , ec(k)] , ec(m) �= ec(n) if m �= n,

where c(1), . . . , c(k) is one of the N = (px
k

)
combinations of k predictors.

A special case of complete subset regressions are forecast combinations of
univariate models for each available predictor. It is generally found however that
using larger values of k leads to lower omitted variable bias at the expense of a
relatively small increase in the variance.

Subspace Dimension

Optimal selection of the subspace dimension is a largely unexplored area. The
value of k is the number regressors in each regression, but the variance of the
averaged forecast generally does not scale linearly with k. For example, when
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all regressors are orthonormal, the variance scales as k · k
p

(see Sect. 9.6). An
appropriate information criterion to select k is not yet available.

Elliott et al. (2013) show that under the assumption that yt+1 and zt are
independent and identically distributed, the value of k can be set to minimize
the mean squared forecast error for given values of β. However, both the i.i.d.
assumption and available information on the values in β do generally not hold in
macroeconomic forecasting.

In practice, the subspace dimension can be recursively selected by evaluating the
forecast accuracy of each dimension in the current information set and selecting the
best performing k. Empirical results in Boot and Nibbering (2019) and Elliott et al.
(2015) indicate that the performance is not heavily dependent on the precise value
of k.

Weighting Schemes

Since there is little empirical evidence that alternative weighting schemes out-
perform equal weighted forecast combinations, random subspace methods use an
equal weighted average. Since macroeconomic data typically has a small number
of observations, estimating sophisticated weighting schemes is particularly difficult
in this setting. Elliott et al. (2013) experimented with a weighting scheme that is
based on the Bayesian Information Criterion (BIC). The weight of each model is
proportional to the exponential of its BIC, which results in larger weights for models
with a high likelihood value. They do not find structural improvements over using
equal weights.

Limitations

When the number of available predictors is large, considering all combinations of
predictors for a given k becomes infeasible. As a solution, we can average over
forecasts from a smaller set of models. This smaller set of models can be selected
by a stochastic search. Elliott et al. (2013, 2015) implement a Markov Chain and
a Shotgun approach but find similar performance for randomly drawing a set of
models. They draw with uniform probability a feasible number of models without
replacement from the complete subspace regressions. Randomly drawing models is
simple, fast, and assigns, similar to equal weighting, the same probability to each
submodel. This brings us to a feasible alternative to complete subset regressions in
macroeconomic forecasting settings.
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9.4.2 Random Subset Regression

Random subset regression uses randomly selected subsets of predictors to estimate
many low-dimensional approximations to the original model. The forecasts from
these submodels are then combined to reduce the forecast variance while main-
taining most of the signal. Note that this method is slightly different from randomly
drawing models from the set of complete subset regressions. Instead of drawing a set
of models without replacement, random subset regression draws a set of predictors
without replacement for each submodel.

In random subset regression, the matrix Ri is a random selection matrix that
selects a random set of k predictors out of the original px available predictors. For
example, if px = 5 and k = 3, a possible realization of Ri is

⎛

⎜⎜⎜⎜⎜⎝

0 1 0
0 0 0
1 0 0
0 0 1
0 0 0

⎞

⎟⎟⎟⎟⎟⎠
.

The same formulation as for complete subset regression can be used to represent a
general matrix Ri . We have a px-dimensional vector ec(l) with its c(l)-th entry equal
to one, where l = 1, . . . k is an index and c(l) a scalar such that 1 ≤ c(l) ≤ px .
Then random subset regression is based on random matrices

[ec(1), . . . , ec(k)] , ec(m) �= ec(n) if m �= n.

The intuition why random subset regression is effective in macroeconomic
forecasting is the following. One might generally worry that selecting predictors
at random results in irrelevant predictors being present in each submodel. However,
in macroeconomic data, the predictors are often highly correlated. This means that
even if a predictor is irrelevant, it is most likely correlated with a predictor that is
relevant. As such, even predictors that are irrelevant when all variables are included
are relevant when only small sets of variables are included. With strong correlation
present, the use of random subsets reduces the variance of the forecast by at least a
factor k

px
, while the increase in bias is only small.

9.4.3 Random Projection Regression

An alternative for using a random selection matrix is to use a random weighting
matrix. Instead of selecting individual regressors, this gives a new set of predictors
which are weighted averages of the original predictors. This can be easily imple-
mented by drawing a matrix Ri of which each element is distributed independent
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and identically following some probability distribution. The most common choice
is

[Ri]hj ∼ N(0, 1/
√
k), (9.4)

with h = 1, . . . ,px and j = 1, . . . , k. Repeating the same procedure as for random
subset regression, only now with the matrix Ri defined in (9.4) yields random
projection regression.

Random projections are originally motivated by data sets that contain too many
observations to allow a calculation of the covariance matrix 1

T
X′X in a reasonable

time. To reduce the dimension T , we can note that ER[ 1
T

X′RR′X] = 1
T

X′X.
If 1

T
X′RR′X is sufficiently close to its expectation, then we can calculate the

covariance matrix accurately using the smaller matrix X′R. Such a result is
generally shown through the Johnson–Lindenstrauss lemma (Achlioptas, 2003;
Dasgupta and Gupta, 2003). If we use (9.4), this still requires the multiplication
of X′R. Hence, subsequent work focused on showing the Johnson–Lindenstrauss
lemma for matrices R that contain many zeros (Achlioptas, 2003; Li, Hastie, and
Church, 2006).

Since we apply dimension reduction to the large number of predictors, instead
of reducing a large number of observations, the above motivation for random
projection does not align with our application here. The problem we aim to solve
is more statistical in nature, with a large variance caused by the inclusion of many
predictors, rather than computational. This direction has received substantially less
attention. We discuss the relevant empirical literature in Sect. 9.5, and theoretical
results in Sect. 9.6.

9.4.4 Compressed Regression

To speed up calculations, sparse random projection matrices have been proposed.
The prime example is to choose

Rij = √s
⎧
⎨

⎩

−1 with probability 1
2s ,

0 with probability 1− 1
s
,

+1 with probability 1
2s .

This specification was proposed by Achlioptas (2003), who shows that the Johnson–
Lindenstrauss lemma applies to this matrix for s = 3. This was extended to s =
O(
√
n) by Li et al. (2006). As s governs the sparsity of R, setting s large can lead

to significant computational gains, without loss in accuracy.
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Guhaniyogi and Dunson (2015) use an alternative specification for the random
matrix,

Rij = √s

⎧
⎪⎨

⎪⎩

−1 with probability 1
s2 ,

0 with probability 2(1− 1
s
) 1
s
,

+1 with probability (1− 1
s
)2,

where 1/s ∼ U [0.1, 0.9], and subsequently the columns of R are orthonormalized
using the Gram–Schmidt algorithm. The subspace dimension k is drawn uniformly
over [2 logpx , min(n,px)]. Guhaniyogi and Dunson (2015) apply the dimension
reduction in a Bayesian framework, and use Bayesian model averaging to weight the
forecasts. Under normal-inverse gamma priors, and a diffuse prior on the models, the
weights can be analytically calculated. Furthermore, they provide a set of sufficient
conditions for the predictive density under dimension reduction to converge to the
true predictive density.

9.5 Empirical Applications of Subspace Methods

Subspace methods are relatively new to the economics literature. This section
lists early applications in the field of macroeconomic forecasting, but also in
microeconomics and finance. Since subspace methods have their roots in the
machine learning, we also refer to some applications in this literature.

9.5.1 Macroeconomics

The first applications of subspace methods in the macroeconomic literature use
random subset regression to forecast economic indicators with a large number of
possible predictors. Elliott et al. (2015) forecast quarterly US unemployment, GDP
growth, and inflation and find more accurate point forecasts by random subset
regression than dynamic factor models or univariate regressions over multiple
forecast horizons. Although the paper presents the subspace method as complete
subset regressions, the methods randomly sample low-dimensional models to form
a final forecast in practice.

Leroux, Kotchoni, and Stevanovic (2017) draw similar conclusions in an exten-
sive forecasting exercise on monthly US data. The authors compare the forecast
accuracy of a large number of different forecasting models on industrial production,
employment, inflation, the stock market index, and exchange rates. They find that
random subset regression shows often better performance in terms of mean squared
forecast error than univariate models, factor-augmented regressions, dynamic factor
models, and standard forecast combinations for industrial production and employ-
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ment growth. The forecast accuracy for other series does not seem to benefit from
any data-rich model.

Garcia, Medeiros, and Vasconcelos (2017) also confirm the strong performance
of random subset regression in a real-time forecasting exercise for Brazilian infla-
tion. They use several lasso-type models, target factors, random forests, Bayesian
vector autoregressions, standard time series models, random subset regression,
and expert forecasts to produce forecasts for twelve different forecast horizons.
Apart from the first two horizons, complete subset regression dominates all other
forecasting methods on mean squared forecasting error. The same holds for density
forecasts based on bootstrap resampling and for forecasts of accumulated inflation.

Koop et al. (2019) use compressed regression in a Bayesian vector autoregressive
model to forecast 7 monthly macroeconomic variables with up to 129 dependent
variables and 13 lags. They compare the forecast performance to univariate autore-
gressive models, dynamic factor models, factor augmented vector autoregressions,
and the Minnesota prior vector autoregressions. The forecast accuracy of the
Bayesian compressed vector autoregressions is similar or better than either factor
methods or large vector autoregression methods involving prior shrinkage, for 1–12
months ahead forecast horizons.

Pick and Carpay (2018) analyze in detail multi-step ahead forecasting perfor-
mance on 14 variables using a large vector autoregression to which the random
subspace methods are applied, as well as a number of popular dimension reduction
methods. They find that the random subspace methods and the lasso algorithm
provide the most accurate forecasts. This is in line with the findings for one-step-
ahead forecasts in Boot and Nibbering (2019).

9.5.2 Microeconomics

Schneider and Gupta (2016) use random projection regression to forecast 1-week-
ahead sales for existing and newly introduced tablet computers. They produce the
forecast with a bag-of-words model based on consumer reviews. This model counts
the number of occurrences of words in a particular piece of text. Since many words
can occur, the number of parameters is equally large. Dimension reduction by
random projection results in improved forecast accuracy compared to a baseline
model that ignores the consumer reviews and a support vector machine based on the
reviews.

Chiong and Shum (2018) use random projections to estimate aggregate discrete-
choice models with large choice sets. However, they project the large number of
different choice categories on a low-dimensional subspace instead of reducing the
variable space. The paper focuses on parameter estimation in several simulations
and in an application to supermarket scanner data, but does not perform a forecasting
exercise.
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9.5.3 Finance

Elliott et al. (2013) propose complete subset regressions and illustrate the methods
in a forecasting exercise on the monthly US stock returns. They find an increase
in forecast accuracy for the one-step-ahead forecasts for the excess return of the
S&P 500 by complete subset regressions relative to standard forecast combination
methods, univariate forecasting models, lasso, ridge regression, bagging, and
Bayesian model averaging.

Meligkotsidou, Panopoulou, Vrontos and Vrontos (2019) extend the complete
subset regressions framework to a quantile regression setting. After constructing
the complete subset combination of quantile forecasts, they employ a recursive
algorithm that selects the best complete subset for each predictive regression
quantile. The method is applied to forecasting the quarterly S&P 500 equity
premium. Complete quantile subset regression outperforms both the historical
average benchmark and the complete subset regressions in forecast accuracy and
economic value.

Gillen (2016) uses a strategy very similar to complete subset regressions to obtain
efficient portfolios. He selects a random subset of securities and determines the
optimal portfolio weights for these securities. By generating many different random
subsets of securities, one obtains multiple weights for each security. These weights
are averaged to obtain the final portfolio weight for each security. The expected
out-of-sample performance of this strategy dominates both the 1/N strategy rule
and sample-based optimization of the portfolio. Shen and Wang (2017) propose a
similar approach and also conclude that the out-of-sample performance is superior
to various competing strategies on diversified data sets.

9.5.4 Machine Learning

Random subspace methods have their roots in the machine learning literature.
Although this literature commonly does not consider macroeconomic applications,
it does focus on forecasting and big data. We briefly discuss some of the con-
tributions in the machine learning literature to forecasting with random subspace
methods.

Ho (1998) introduces random subspace methods in decision trees. Multiple trees
are constructed by training on random subsets of the available explanatory variables.
Decisions of the trees are combined in a decision forest by averaging the estimates
of the class probabilities in each tree. Compared to decision trees that are trained
on the full set of explanatory variables, the subspace method shows significant
improvements in forecast accuracy in a collection of different data sets.

Bay (1998) applies the same idea to nearest neighbor classifiers. He combines
multiple nearest neighbor classifiers that only use a random subset of the explana-
tory variables. The method outperforms standard nearest neighbor classifiers, k
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nearest neighbor classifiers, and neighbor classifiers with forward and backward
selection of explanatory variables.

Bryll, Gutierrez-Osuna, and Quek (2003) develop a wrapper method that can
be used with combinations of any type of classifier trained on random subsets
of explanatory variables. The method selects the size of the random subset by
comparing classification accuracy of different sizes of subsets. Moreover, the
method only uses the best performing subsets to form a final prediction. The
proposed method improves performance for bagging and several single-classifier
algorithms on an image recognition data set.

Bingham and Mannila (2001) apply random projection as a dimensionality
reduction tool to image and text data. They find that randomly projecting the data on
a low-dimensional subspace performs similarly to principal component regression.
However, they only assess the distortion created by the dimension reduction tool,
that is, the Euclidean distance between two dimensionality reduced data vectors
relative to their Euclidean distance in the original high-dimensional space, and the
computational costs.

Fradkin and Madigan (2003) evaluate the performance of random projections in
classification. They apply classifiers as decision trees, nearest neighbor algorithms,
and support vector machines to several data sets after dimension reduction by
principal component analysis and random projections. They find in all cases that
principal component analysis results in better predictive performance than random
projections. However, the results are based on a single draw of the random projection
matrix instead of averaging over multiple predictions based on different draws of
the random matrix. Cannings and Samworth (2017) also evaluate the performance
of random projections in high dimensional classification. They provide a framework
in which any type of classifier is applied to a low-dimensional subspace constructed
by random projections of the original explanatory variables. The final prediction is
based on an average over random projections, but only over random projections that
provide the lowest error. The random projections approach outperforms a collection
of benchmarks classifiers on a number of empirical data sets in terms of forecast
accuracy.

Guhaniyogi and Dunson (2015) introduce Bayesian compressed regression with
an application to data from a molecular epidemiology study. They find better
performance in terms of mean square prediction error relative to benchmark models
in predicting individual’s sensitivity to DNA damage and individual’s repair rate
after DNA damage.

9.6 Theoretical Results: Forecast Accuracy

This section provides theoretical results on the performance of the random subspace
methods for point forecasts ŷT+1 for yT+1. We consider the forecasts by random
subset regression and random projection regression, two subspace methods that are
feasible in high-dimensional macroeconomic forecasting settings.
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A large part of this section is based on Boot and Nibbering (2019) and
Elliott et al. (2013). The results are based on the assumptions that the number of
regressors px is large, but fixed. Then, asymptotic results are established in the limit
where T → ∞. Estimation uncertainty is introduced by scaling the coefficients
with a factor T −1/2, which excludes the possibility to estimate these coefficients
consistently, even in the asymptotic limit.

9.6.1 Mean Squared Forecast Error

In this section, we analyze the asymptotic mean squared forecast error. The results
are valid for a range of weakly dependent time series models. For any estimator β̃
for the true parameter β, the asymptotic MSFE is defined as

ρ = lim
T→∞ T E

[(
yT+1 − z′T β̃

)2 − σ 2
]
= lim
T→∞ T E

[
(z′T β − z′T β̃)2

]
.

The error variance σ 2 is subtracted as it arises from the error εT+1, which is
unpredictable by any method. This expression is very similar to the one in Hansen
(2010), who divides the expression by the error variance σ 2.

Denote the ordinary least squares (OLS) estimator without dimension reduction
as β̂. This estimator is based on all predictors in zt = (w′t , x′t )′, and yields the
following forecast:

ŷOLS
T+1 = z′T β̂ = z′T (Z′Z)−1Z′y,

where y = (y1, . . . , yT )′, Z = (z0, . . . , zT−1)
′. Under standard regularity assump-

tions that ensure the convergence of
√
T (β̂−β) to a mean zero, normally distributed

random vector, the asymptotic mean squared forecast error is

ρ(pw,px) = lim
T→∞ T E

[
(β̂ − β)′zT z′T (β̂ − β)

]

= σ 2(pw + px),
(9.5)

using that E[ztz′t ] = �z for t = 0, . . . , T . The fact that the MSFE increases with px
is the motivation to consider k-dimensional subspaces with k < px . This will reduce
the variance from σ 2px to (at most) σ 2k, but it will also induce a squared bias term
into the MSFE. The trade-off between reducing the variance and increasing the bias
is determined by the subspace dimension k.

When the coefficients βx are fixed, the bias in the asymptotic mean squared
forecast error is infinite because of the multiplication with T . In practice, one would
expect the bias and the variance to be roughly of the same order. To make sure that
the asymptotic theory reflects this finite sample situation, a convenient assumption
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is that the coefficients βx are local-to-zero, that is, βx = βx,0/
√
T . This renders a

finite bias in the asymptotic limit. The forecast under the random subspace methods
is given by

ŷT+1 =
N∑

i=1

[ŷT+1,Si ] ,

with ŷT+1,Si = z′T Si β̂Si , β̂Si = (S′iZ′ZSi )
−1S′iZ′y, and Si =

(
Ipw O

O Ri

)
.

Boot and Nibbering (2019) show that the sum over i can be replaced by an
expectation with a negligible effect on the MSFE when the number of draws of
the random matrix R is as large as N = O(px logpx).

Identity Covariance Matrix

We can get a sense of the bias variance trade-off by making the assumption that
�x = Ipx . In this case, the exact mean squared error for random subset regression
and random projection regression is

ρ(pw, k) = σ 2
[
pw + k k

px

]
+
[

1− k

px

]2

β ′x,0βx,0.

This shows that although the subspace dimension is k, the variance is in fact even
lower, namely of k k

px
. The optimal value of k is given by

k∗ = η

1+ ηpx , η = β ′x,0βx,0

σ 2 · px ,

for which we have

ρ∗(pw, k∗) = σ 2

(
pw +

β ′x,0βx,0

σ 2px + β ′x,0βx,0
px

)
.

Comparing this to (9.5), we see that the factor σ 2px is reduced by a factor η/(1+η)
with η the signal-to-noise ratio per parameter. If the informational content in each
predictor is therefore small, gains can be expected from the dimension reduction
procedure.

Intuitively, one might expect that when strong correlations between variables
are present, the random subspace methods are increasingly effective. In this case,
omitting one variable, but including a strongly correlated one would prevent a large
omitted variable bias. However, when the covariance matrix �x is of general form,
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there is no analytic expression for the MSFE. To circumvent this problem, there
have been several studies that derive bounds on the in-sample mean squared error
under i.i.d. observations, starting with Kabán (2014) and refined by Thanei, Heinze,
and Meinshausen (2017). Boot and Nibbering (2019) provide expressions for the
asymptotic mean squared forecast error under general assumptions that allow for a
broad range of time series models. We discuss these results in some detail to explain
part of the success of random subspace methods in macroeconomic forecasting
settings.

9.6.2 Mean Squared Forecast Error Bounds

For random subset regression, Boot and Nibbering (2019) show that the asymptotic
MSFE can be upper bounded by

ρ(pw, k) ≤ σ 2(pw + k)+ β ′x,0�βx,0 −
k

px
β ′x,0� [ws� + (1−ws)D� ]

−1
�βx,0.

For random projection, the upper bound is

ρ(pw , k) ≤ σ 2(pw + k)+β ′x,0�βx,0−
k

px
β ′x,0�

[
wp� + (1−wp) tr(�)

px
Ipx

]−1
�βx,0,

where ws = k−1
px−1 , D� is a diagonal matrix with [D�]ii = [�]ii , wp =

px(k+1)−2
(px+2)(px−1) , and tr(�) denotes the trace of � = plimT→∞X′MWX, where

MW = IT −W (W ′W )−1W ′.
The first term reflects the variance, while the second and third term reflect the

bias induced by selecting/projection to a low-dimensional subspace. As expected,
the variance is reduced from σ 2px to σ 2k. This variance reduction comes at the
expense of a bias term. For random subset regression the bias is a weighted average
of the covariance matrix � and its diagonal elements D� . When k = 1, all weight
is put on the diagonal matrix and any information on cross-correlations is lost in the
low-dimensional subspace. When k = px , we obtain the OLS mean squared forecast
error (9.5). The bound for random projection regression depends on a weighted
average of � and the constant diagonal matrix tr(�)

px
Ipx . When k = 1, nearly all

weight is put on the diagonal matrix. When k = px , we again obtain the OLS mean
squared forecast error (9.5).

To get further insight in the bounds, decompose the covariance matrix �x =
V �V ′, where the orthogonal matrix V contains the eigenvectors of �x and � is a
diagonal matrix with eigenvalues sorted in decreasing order. We assume that the
predictors are standardized, such that [�x]ii = 1 for i = 1, . . . ,px . The data
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generating process (9.1) can be rewritten in terms of the principal components
f ′t = x′tV as

yt+1 = f ′tγ + εt+1.

The bounds for both random subspace methods reduce to

ρ(0, k) ≤ σ 2k +
pf∑

i=1

γ 2
0,iλi

(
1− k

px

λi

wr(λi − 1)+ 1

)
, (9.6)

with wr = ws for random subset regression and wr = wp for random projection
regression.

In macroeconomic forecasting, it is generally assumed that a small number of
principal components, associated with the largest eigenvalues of �x , drive the
dependent variable. In other words, the nonzero γ0,i corresponds to λi � 1. In
settings with px and k < px sufficiently large, the weight wr is close to k/px for
both random subspace methods, and wrλi � 1 for each λi � 1. The bound in (9.6)
shows that in this setting a subspace dimension k < px reduces the variance without
inducing a large bias in the forecast. However, when γ0,i is nonzero for λi < 1, both
methods should set k close to px to avoid bias.

9.6.3 Theoretical Results in the Literature

Random projections are historically motivated by the Johnson–Lindenstrauss
lemma (Johnson and Lindenstrauss, 1984), for which Dasgupta and Gupta (2003)
provide a simple proof. The lemma shows that random projections reduce the
dimensionality of a set of points in Euclidean space while approximately preserving
pairwise distances. Achlioptas (2003) and Li et al. (2006) show that this lemma
also holds for random projections with very low computational costs. Given that
they preserve pairwise distances, random projections can then, for example, be used
to perform k-means clustering in a low-dimensional space with provably accurate
assignment of observations to clusters (Boutsidis, Zouzias, Mahoney, and Drineas,
2015). Vempala (2005) gives an overview of the theoretical results for random
projections.

Upper bounds on the in-sample mean squared error under random projections
have been established by Maillard and Munos (2009) based on the Johnson–
Lindenstrauss lemma, and improved upon by Kabán (2014). Thanei et al. (2017)
showed that further improvements can be made by including a minimization step
in the derivation, which uniformly lowers the upper bound. Boot and Nibbering
(2019) improve these bounds further by recognizing that the random projection
matrix, which is not exactly orthogonal, can be replaced by an exactly orthogonal
matrix. They also provide the corresponding bound for random subset regression.
The bounds show that the bias resulting from components associated with large
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eigenvectors is expected to be small. This is also the conclusion of Slawski et al.
(2018), who use a different route to arrive at an upper bound, where the bias is shown
to depend on the variation in the data associated with small eigenvalues. Elliott
et al. (2013) provide an exact expression for the MSFE which contains the sum
over all subsets and therefore does not lend itself for interpretation. Exact results
for the mean squared forecast error for both random projections and random subset
regression are not yet available.

In a Bayesian framework, Guhaniyogi and Dunson (2015) show that the predic-
tive density under random projection converges to the true predictive density when
the model is near sparse, i.e., the sum of the absolute coefficients remains finite
when the sample size and the number of predictors increase.

9.7 Empirical Illustrations

This section illustrates the performance of the random subspace methods in
forecasting macroeconomic indicators of the US economy. The results in the first
application are taken from Boot and Nibbering (2019), where here we add the
results for random compression. The second application provides new results for
multi-step-ahead forecasts using the data from Stock and Watson (2002).

9.7.1 Empirical Application: FRED-MD

A detailed description of the data and methods can be found in Boot and Nibbering
(2019). We forecast industrial production and consumer price index (as transformed
by McCracken and Ng (2016)) from January 1980 to December 2014. The model is
a linear AR(4) model, treating the remaining 129 series in the FRED-MD data set,
as well as lags five and six, as potentially relevant predictors xt . We compare the
forecast performance as measured by mean squared forecast error of random subset
regression (RS), random projection regression (RP), compressed regression (CR),
principal component regression (PC), partial least squares (PL), ridge regression
(RI), and lasso (LA). Compressed regression is implemented as described above,
with the only exception that, like the other methods, the subspace dimension k is
determined through historical forecast performance.

Results

Table 9.1 shows the MSFE of the selected forecasts relative to the AR(4) model,
for forecasting the industrial production index (INDP) and inflation (CPI). The
subspace dimension, number of factors, and regularization constants are determined
based on past performance. Random subset regression is most accurate for forecast-
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Table 9.1 FRED-MD: relative MSFE on industrial production and inflation

RS RP CR PC PL RI LA

INDP 0.814 0.840 0.836 0.890 0.898 0.844 0.826

CPI 0.887 0.868 0.938 0.962 0.872 0.901 0.897

Note: This table shows the MSFE relative to the AR(4) model for Industrial Production (INDP)
and the Consumer Price Index (CPI) for different methods. The tuning parameters are selected
based on past predictive performance
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Fig. 9.1 Forecast accuracy for different subspace dimensions

ing the industrial production index and random projection regression for forecasting
inflation.

Figure 9.1 shows how the MSFE depends on the subspace dimension k, and on
the number of principal components, if the same dimension is selected throughout
the forecast period. For industrial production a much smaller number of principal
components is selected compared to CPI. The bounds on the MSFE of the random
subspace methods discussed above suggest that random subset regression is more
accurate if only principal components associated with the largest eigenvalues drive
the dependent variable. The empirical result here, although based on only two series,
agrees with this observation. We further note that the dependence on the subspace
dimension is relatively mild.

9.7.2 Empirical Application: Stock and Watson (2002)

Stock and Watson (2002) study the performance of factor models on macroe-
conomic data for multi-step-ahead forecasts. Here, we repeat their analysis and
compare the forecast error of the diffusion index models based on principal
component analysis to random subset regression, random projection regression, and
compressed regression.
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Methods

Details of the data and appropriate transformations can be found in Stock and
Watson (2002). The goal is to forecast a set of four real and four price variables. The
real variables are: industrial production (IP), personal income (PI), manufacturing
(MFG), and nonagricultural employment (NE). The price variables are consumer
price index (CPI), consumption deflator (CD), CPI excluding food and energy
(CFE), and the producer price index (PPI). For each of these variables, we consider
h = {6, 12, 24}-step ahead forecasts for the period 1970:1+h, until 1998:12.

Stock and Watson (2002) consider three versions of a diffusion index model:
a model with only diffusion indices as explanatory variables (DI), a model that
adds a number of lags of the dependent variable to DI (DI-AR), and a model that
also includes lags of the diffusion indices themselves (DI-AR, Lag). The first two
models lower the dimension of the space spanned by the predictors by considering
f ′t = x′tE with E the matrix of eigenvector loadings of the correlation matrix
of the predictors. The random subspace methods instead take f it = x′tRi , with
Ri a random matrix, and average over a large number of forecasts obtained from
using different realizations Ri . The relative forecast performance then allows us
to compare whether information is extracted more efficiently from xt by using
diffusion indices or random subspaces. For the DI-AR, Lag model, the random
subspace analogue is less clear. For example, for random subset regression, we could
select a number of variables and also include lags of these variables. Alternatively,
we could expand xt by lags of the data, and select directly from this enlarged matrix.
We do not pursue these options here.

The forecasts of the diffusion index models are based on

ŷhT+h|T = α̂h +
m∑

j=1

β̂
′
hj f̂ T−j+1 +

p∑

j=1

γ̂hj yT−j+1,

where the factors f̂ t are the first k principal components of the standardized matrix
of predictors X. The DI model takes p = 0, m = 1, and 0 ≤ k ≤ 12. The DI-AR
model takes m = 1, 0 ≤ p ≤ 6, and 0 ≤ k ≤ 12. The DI-AR, Lag model takes
0 ≤ k ≤ 4, 1 ≤ m ≤ 3, and 0 ≤ p ≤ 6. The number of factors and lags are selected
by BIC.

The number of lags and the subspace dimension for the subspace methods are
based on past predictive performance, with a burn-in of 36 months. The maximum
subspace dimension is set as kmax = 70, which is the largest number feasible for the
first forecasts.

Results

For the real variables, Table 9.2 reports the root mean squared forecast error for the
AR model, and the diffusion index models DI, DI-AR, and DI-AR, Lag. For the
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DI-AR and DI model, the table also reports the relative mean squared error of the
three random subspace methods.

We see a clear pattern where the subspace methods outperform the diffusion
indices for h = {6, 12}, but are outperformed for h = 24. We also see that the
differences between the three random subspace methods are generally small. The
ranking of the three methods on 6 months and 1 year horizons is relatively stable as:
random subset regression, random projection regression, and random compression.
For 2-year ahead forecasts random projection seems to be the most stable.

In Table 9.3, we report the results for the price variables. Here, the results are
more diffuse. For CPI and PPI, the best diffusion index models outperform the
random subspace methods at h = {6, 12}. For CD and CPI-FE there is no clear
winner. Surprisingly, on the price variables, random subset regression is the weakest
random subspace methods. The difference between random projection regression
and random compression is generally small.

9.8 Discussion

This chapter examines random subspace methods in a macroeconomic forecasting
framework. Since the number of variables in this setting approaches the number of
observations, parameter uncertainty is an important source of forecast inaccuracy.
Random subspace methods form a new class of dimension reduction methods that
can potentially address these concerns. This chapter summarizes empirical and
theoretical results on the use of random subspace methods in forecasting. There is
much scope for expanding these results, and below we briefly discuss four possible
directions for future research.

There are no formal results on the effect of instabilities on the forecast perfor-
mance under random subspace methods. There is a wealth of empirical evidence
for unstable forecasting relations in economic forecasting models. This leaves open
the possibility that the success of random subspace methods in macroeconomic
forecasting is due to the fact that they somehow reduce adversary effects of
structural instabilities.

This chapter only focuses on point forecasts under mean squared error loss.
The performance of random subspace methods under alternative loss functions for
point forecasts is not well studied. Moving away from point forecasts, it would be
interesting to see whether the combination of big data and subspace methods can
contribute to improvements in density forecasting.

Theoretical results on random subspace forecasts are limited in two important
ways. We lack easy to interpret exact expressions of the mean squared forecast
error, even when the number of variables grows slowly compared to the number
of observations. This leaves open the question whether these methods are in some
sense optimal, or at least optimal for a particular class of data generating processes.

Another main case of interest is when the number of variables is much larger than
the number of observations. Given that subspace methods can easily be implemented



9 Subspace Methods 289

Ta
bl

e
9.

3
St

oc
k

an
d

W
at

so
n

(2
00

2)
:f

or
ec

as
tin

g
re

su
lts

pr
ic

e
in

fla
tio

n

C
PI

C
D

C
PI

-F
E

PP
I

H
or

iz
on

6
12

24
6

12
24

6
12

24
6

12
24

D
I-

A
R

,L
ag

0.
79

0.
70

0.
59

0.
97

0.
90

0.
67

0.
85

0.
84

0.
84

0.
91

0.
86

0.
76

D
I-

A
R

0.
78

0.
69

0.
70

0.
95

0.
87

0.
70

0.
85

0.
85

0.
87

0.
91

0.
85

0.
86

D
I

1.
59

1.
30

1.
07

1.
64

1.
34

1.
07

1.
74

1.
57

1.
46

2.
41

2.
43

2.
11

R
S-

A
R

0.
80

0.
77

0.
67

0.
93

0.
89

0.
65

0.
86

0.
79

0.
91

0.
95

0.
90

0.
79

R
P-

A
R

0.
79

0.
75

0.
64

0.
93

0.
86

0.
65

0.
85

0.
82

0.
78

0.
94

0.
87

0.
76

C
R

-A
R

0.
80

0.
73

0.
67

0.
91

0.
87

0.
67

0.
85

0.
78

0.
79

0.
94

0.
88

0.
80

R
S

1.
61

1.
31

1.
10

1.
51

1.
27

1.
03

1.
76

1.
55

1.
37

2.
42

2.
45

2.
05

R
P

1.
44

1.
17

0.
95

1.
39

1.
16

0.
92

1.
44

1.
31

1.
18

2.
05

1.
92

1.
58

C
R

1.
46

1.
17

0.
95

1.
39

1.
16

0.
92

1.
45

1.
31

1.
19

2.
04

1.
91

1.
58

R
M

SE
,A

R
0.

01
0

0.
02

1
0.

05
2

0.
00

7
0.

01
6

0.
03

8
0.

00
9

0.
01

9
0.

04
6

0.
01

7
0.

03
3

0.
07

8

N
ot

e:
T

hi
s

ta
bl

e
sh

ow
s

th
e

m
ea

n
sq

ua
re

d
fo

re
ca

st
er

ro
r

re
la

tiv
e

to
th

e
A

R
m

od
el

fo
r

th
e

pr
ic

e
in

fla
tio

n
va

ri
ab

le
s

co
ns

um
er

pr
ic

e
in

de
x

(C
PI

),
co

ns
um

pt
io

n
de

fla
to

r
(C

D
),

co
ns

um
er

pr
ic

e
in

de
x

ex
cl

ud
in

g
fo

od
an

d
en

er
gy

(C
PI

-F
E

),
pr

od
uc

er
pr

ic
e

in
de

x
(P

PI
).

Fo
r

fu
rt

he
r

in
fo

rm
at

io
n,

se
e

th
e

no
te

fo
llo

w
in

g
Ta

bl
e

9.
2



290 T. Boot and D. Nibbering

in scenarios where px � T , theoretical results under the assumption that px/T →
c with c ∈ (0,∞) or even px/T →∞ would be highly desirable. However, we are
not aware of any results in this regime.
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Chapter 10
Variable Selection and Feature Screening

Wanjun Liu and Runze Li

10.1 Introduction

With the advent of modern technology for data collection, ultra-high dimensional
datasets are widely encountered in machine learning, statistics, genomics, medicine,
finance, marketing, etc. For example, in biomedical studies, huge numbers of
magnetic resonance images (MRI) and functional MRI data are collected for each
subject. Financial data is also of a high dimensional nature. Hundreds of thousands
of financial instruments can be measured and tracked over time at very fine time
intervals for use in high frequency trading. This ultra-high dimensionality causes
challenges in both computation and methodology. Scalability is the major challenge
to ultra-high dimensional data analysis. Many traditional methods that perform
well for low-dimensional data do not scale to ultra-high dimensional data. Other
issues such as high collinearity, spurious correlation, and noise accumulation (Fan
& Lv, 2008, 2010) bring in additional challenges. Therefore, variable selection
and feature screening have been a fundamental problem in the analysis of ultra-
high dimensional data. For example, the issue of spurious correlation is illustrated
by a simple example in Fan and Lv (2008). Suppose we have a n × p dataset
with sample size n and the p predictors independently follow the standard normal
distribution. When p � n, the maximum absolute value of sample correlation
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Fig. 10.1 Distributions of the maximum absolute sample correlation coefficient when n =
60,p = 1000 (solid curve) and n = 60,p = 5000 (dashed curve)

coefficient among predictors can be very large. Figure 10.1 shows the distributions
of the maximum absolute sample correlation with n = 60 and p = 1000, 5000.
Though the predictors are generated independently, some of them can be highly
correlated due to high-dimensionality.

Over the past two decades, a large amount of variable selection approaches
based on regularizedM-estimation have been developed. These approaches include
the Lasso (Tibshirani, 1996), the SCAD (Fan & Li, 2001), the Dantzig selector
(Candes & Tao, 2007), and the MCP (Zhang, 2010), among others. However, these
regularization methods may not perform well for ultra-high dimensional data due
to the simultaneous challenges of computational expediency, statistical accuracy,
and algorithmic stability (Fan, Samworth, & Wu, 2009). To improve the statistical
performance of regularization methods and reduce computational cost, a class of
two stage approaches is proposed. In the first stage, we reduce the number of
features from a very large scale to a moderate size in a computationally fast way.
Then in the second stage, we further implement refined variable selection algorithms
such as regularization methods to the features selected from the first stage. Ideally,
we select all the important features and may allow a few unimportant features
entering our model in the first stage. The first stage is referred to as the feature
screening stage. We will only focus on the feature screening stage in this chapter.

Suppose we have p features X1, . . . ,Xp in the feature space and denote the
true index set of important variables by M". The definition of M" may vary
across different models. For example, in a parametric model associated with true
parameters β" = (β"1 , . . . ,β"p)

�,M" is typically defined to be

M" = {1 ≤ j ≤ p : β"j �= 0}.
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Our goal in the feature screening stage is to select a submodel M̂ ⊂ {1, . . . ,p} with
little computational cost such thatM" ⊂ M̂ with high probability. This is referred
to as the sure screening property.

Definition 10.1 (Sure Screening) Let M" be the true index set of important
features and M̂ be the index set of selected important variables by some feature
screening procedure based on a sample of size n, then this feature screening
procedure has the sure screening property if

Pr(M" ⊂ M̂)→ 1 as n→∞.

The sure screening property ensures that all the important features will be included
in the selected submodel with probability approaching to 1 as the sample size goes
to infinity. A trivial but less interesting choice of M̂ is M̂ = {1, . . . ,p}, which
always satisfies the definition of sure screening. Here we assume the number of true
important features is much smaller than p. This kind of assumption is also known
as sparsity assumption in the sense that most of the entries in the true parameter β"

are zero. Of interest is to find a M̂ whose cardinality is much smaller than p (i.e.,
|M̂| � p) and meanwhile the sure screening holds.

10.2 Marginal, Iterative, and Joint Feature Screening

10.2.1 Marginal Feature Screening

The most popular feature screening method is the marginal feature screening, which
ranks the importance of features based on marginal utility and thus is computation-
ally attractive. More specifically, the marginal feature screening procedure assigns
an index, say ω̂j , to the feature Xj for j = 1, . . . ,p. This index ω̂j measures the
dependence between the j th feature and the response variable. Then we can rank
the importance of all features according to ω̂j and include the features ranked on
the top in the submodel. For example, in the setting of linear regression, the index
ω̂j is chosen to be the absolute value of marginal Pearson correlation between the
j th feature and the response (Fan & Lv, 2008). Features with larger absolute values
of ω̂j are more relevant to the response and thus are ranked on the top. As a result,
we include the top dn features in the submodel,

M̂dn = {1 ≤ j ≤ p : ω̂j is among the top dn ones},

where dn is some pre-specified threshold. Note that the marginal feature screening
procedure only uses the information of j th feature and the response without looking
at all other features and thus it can be carried out in a very efficient way. A large
amount of literature have studied the sure screening property of various marginal
feature screening methods, see Fan and Lv (2008); Fan et al. (2009); Fan, Feng, and
Song (2011); Fan, Ma, and Dai (2014); Li, Zhong, and Zhu (2012).
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10.2.2 Iterative Feature Screening

As pointed out in Fan and Lv (2008), the marginal feature screening procedure may
suffer from the following two issues:

1. Some unimportant features that are highly correlated with important features
can have higher rankings than other important features that are relatively weakly
related to the response.

2. An important feature that is marginally independent but jointly dependent on the
response tends to have lower ranking.

The first issue says that the marginal feature screening has chance to include some
unimportant features in the submodel. This is not a big issue for the purpose of
feature screening. The second one is a bigger issue, which indicates that the marginal
feature screening may fail to include all the important feature if it is marginally
independent of the response. Absence of any important feature may lead to a biased
estimation. To overcome the two aforementioned issues, one can apply an iterative
feature screening procedure by iteratively carrying out the marginal screening
procedure. This iterative procedure was first introduced by Fan and Lv (2008) and
can be viewed as a natural extension of the marginal feature screening. At the kth
iteration, we apply marginal feature screening to the features survived from the
previous step and is typically followed by a regularization methods if a regression
model is specified. Let M̂k be the selected index set of important variables at the
kth iteration and the final selected index set of important variables is given by
M̂ = M̂1 ∪ M̂2 ∪ . . . , the union of all selected index sets. For example, Fan and
Lv (2008) uses the residuals computed from linear regression as the new response
and iteratively applies marginal feature screening based on Pearson correlation. The
iterative feature screening can significantly improve the simple marginal screening,
but it can also be much more computationally expensive.

10.2.3 Joint Feature Screening

Another approach to improve the marginal screening is known as the joint screening
(Xu & Chen, 2014; Yang, Yu, Li, & Buu, 2016). Many regularization methods
involve solving an optimization problem of the following form:

min
β

1

n

n∑

i=1

�(xi , β) subject to ‖β‖0 ≤ k, (10.1)

where �(·, ·) is some loss function of negative log-likelihood function. It is quite
challenging to solve the minimization problem in (10.1) especially in the ultra-
high dimensional setting. The joint screening approach approximates the objective



10 Variable Selection and Feature Screening 297

function by its Taylor’s expansion and replaces the possibly singular Hessian
matrix with some invertible matrix. After the approximation, one can solve such
optimization problem iteratively in a fast manner. In many applications, one can
obtain a closed form at each iteration for the joint screening approach.

10.2.4 Notations and Organization

We introduce some notations used in this chapter. Let Y ∈ R be the univariate
response variable and x = (X1, . . . ,Xp)� ∈ R

p be the p-dimensional features.
We observe a sample {(xi ,Yi)}, i = 1, . . . , n from the population (x,Y ) with
xi = (Xi1, . . . ,Xip)�. Let y = (Y1, . . . ,Yn)� be the response vector and X =
(x1, . . . , xn)� be the design matrix. We use x(j) to denote the j th column of X and
use 1(·) to denote the indicator function. For a vector β = (β1, . . . ,βp)� ∈ R

p,
‖β‖q = (

∑p

j=1 |βj |q)1/q denotes its �q norm for 0 ≤ q ≤ ∞. In particular,

‖β‖0 = ∑p

j=1 1(|βj | �= 0) is the number of non-zero elements in β and ‖β‖∞ =
max1≤j≤p |βj |. For a symmetric matrix M ∈ R

p×p, we use ‖M‖F and ‖M‖∞
to denote the Frobenius norm and supremum norm respectively. Let λmin(M) and
λmax(M) be the smallest and largest eigenvalue of M. Let M be a subset of
{1, . . . ,p} and βM, a sub-vector of β, consists of βj for all j ∈M. We useM" to
denote the true index set of important features and β" = (β"1 , . . . ,β"p)

� denote the
true parameter. We assume |M"| = s throughout this chapter, where |M"| denotes
the cardinality of the setM".

In the rest of this chapter, we spend most of the efforts reviewing the marginal
feature screening methods as the marginal feature screening is the most popular
screening method. The iterative feature screening can be viewed as a natural
extension of marginal feature screening. We will discuss the details on the iterative
and joint screening methods in one or two particular examples.

The rest of this chapter is organized as follows: In Sect. 10.3, we introduce the
feature screening methods for independent and identically distributed data, which is
the most common assumption in statistical modeling. Many different models have
been developed for such data, including linear model, generalized linear model,
additive model, varying-coefficient model, etc. However, this assumption is usually
violated in areas such as finance and economics. In Sect. 10.4, we review the
feature screening methods that are developed for longitudinal data, that is, data
is collected over a period of time for each subject. In Sect. 10.5, we review the
feature screening methods for survival data, which is widely seen in reliability
analysis in engineering, duration analysis in economics, and event history analysis
in sociology, etc.
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10.3 Independent and Identically Distributed Data

Independent and identically distributed (IID) data is the most common assumption
in statistical literature and a large amount of feature screening methods have
been developed for IID data. In this section, we review some of the widely used
feature screening methods for such data. Throughout this section, we assume that
{(xi ,Yi)}, i = 1, . . . , n is a random sample from the population (x,Y ).

10.3.1 Linear Model

Let us consider the linear regression model

Y = β0 + x�β + ε, (10.2)

where β0 is the intercept, β = (β1, . . . ,βp)� is a p-dimensional regression
coefficient vector, and ε is the error term. In the ultra-high dimensional setting,
the true regression coefficient vector β" = (β"1 , . . . ,β"p)

� is assumed to be sparse,
meaning that most of the coefficients β"j are 0. The true index set of the model is
defined as

M" = {1 ≤ j ≤ p : β"j �= 0}.

We call the features with indices in the set M" important features. Fan and Lv
(2008) suggests ranking all features according to the marginal Pearson correlation
coefficient between individual feature and the response and select the top features
which have strong correlation with the response as important features. For a pre-
specified value νn(0 < νn < 1), the index set of selected features is given by

M̂νn = {1 ≤ j ≤ p : |ĉorr(x(j), y)| is among the top !νnn" largest ones},

where x(j) is the j th column of X, ĉorr denotes the sample Pearson correlation,
and !νnn" is the integer part of νnn. This procedure achieves the goal of feature
screening since it reduces the ultra-high dimensionality down to a relatively
moderate scale !νnn". This procedure is referred to as the sure independence
screening (SIS). Then appropriate regularization methods such as Lasso, SCAD,
and Dantzig selector can be further applied to the selected important features. The
corresponding methods are referred to as SIS-LASSO, SIS-SCAD, and SIS-DS.
This feature screening procedure is based on Pearson correlation and can be carried
out in an extremely simple way at very low computational cost. In addition to the
computational advantage, this SIS enjoys the sure screening property. Assume that
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the error is normally distributed and the following conditions hold:

(A1) minj∈M"
β"j ≥ c1n

−κ and minj∈M"
|cov(β"−1

j Y ,Xj)| ≥ c2, for some κ > 0
and c1, c2 > 0.

(A2) There exists τ ≥ 0 and c3 > 0 such that λmax(�) ≤ c3n
τ , where � = cov(x)

is the covariance matrix of x and λmax(�) is the largest eigenvalue of �.
(A3) p > n and logp = O(nξ ) for some ξ ∈ (0, 1− 2κ).

Fan and Lv (2008) showed that if 2κ + τ < 1, then with the choice of νn = cn−θ
for some 0 < θ < 1− 2κ − τ and c > 0, we have for some C > 0

Pr(M" ⊂ M̂νn) ≥ 1−O(exp{−Cn1−2κ/ log n}). (10.3)

Conditions (A1) requires certain order of minimal signal among the important
features, condition (A2) rules out the case of strong collinearity, and condition (A3)
allows p grows exponentially with sample size n. Equation (10.3) shows that the SIS
can reduce the exponentially growing dimension p down to a relatively small scale
dn = !νnn" = O(n1−θ ) < n, while include all important features in the submodel
with high probability. The optimal choice of dn relies on unknown parameters. It
is common to assume s/n → 0 where s is the number of important features.
In practice, one can conservatively set dn = n − 1 or require dn/n → 0 with
dn = n/ log n. See more details in Fan and Lv (2008).

Marginal Pearson correlation is employed to rank the importance of features;
SIS may suffer from the potential issues with marginal screening. On the one
hand, SIS may fail to select the important feature when it is jointly correlated but
marginally uncorrelated with the response. On the other hand, the SIS tends to
select unimportant features which are jointly uncorrelated but highly marginally
correlated with the response. To address these issues, Fan and Lv (2008) also
introduced an iterative SIS procedure (ISIS) by iteratively replacing the response
with the residuals obtained from the linear regression using the selected features
from the previous step. The ISIS works as follows: In the first iteration, we select
a subset of k1 features A1 = {Xi1 , . . . ,Xik1 } using an SIS based model selection
method such as SIS-LASSO or SIS-SCAD. Then we regress the response Y over
the selected features A1 and obtain the residuals. We treat the residuals as the
new responses and apply the same method to the remaining k2 = p − k1 features
A2 = {Xj1 , . . . ,Xjk2 }. We keep doing this until we get l disjoint subsetsA1, . . . ,Al
such that d =∑l

i=1 |Ai | < n. We use the unionA = ∪�i=1Ai as the set of selected
features. In practical implementation, we can choose, for example, the largest l
such that |A| < n. This iterative procedure makes those important features that
are missed in the previous step possible to re-enter the selected model. In fact, after
features in A1 entering into the model, those that are marginally weakly correlated
with Y purely due to the presence of variables inA1 should now be correlated with
the residuals.
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10.3.2 Generalized Linear Model and Beyond

A natural extension of SIS is applying the feature screening procedure to generalized
linear models. Assume that the response Y is from an exponential family with the
following canonical form:

fY (y, θ) = exp{yθ − b(θ)+ c(y)},

for some known functions b(·), c(·), and unknown parameter θ . Consider the
following generalized linear model:

E(Y |x) = g−1(β0 + x�β), (10.4)

where g(·) is the link function, β0 is an unknown scalar, and β = (β1, . . . ,βp)�
is a p-dimensional unknown vector. The linear regression model in (10.2) is just a
special case of (10.4) by taking g(μ) = μ. Without loss of generality, we assume
that all the features are standardized to have mean zero and standard deviation one.
Fan and Song (2010) proposes a feature screening procedure for (10.4) by ranking
the maximum marginal likelihood estimator (MMLE). For each 1 ≤ j ≤ p, the

MMLE β̂
M

j is a 2-dimensional vector and defined as

β̂
M

j = (β̂Mj0, β̂Mj1)
� = arg min

βj0,βj1

1

n

n∑

i=1

�(Yi ,βj0 + βj1Xij ), (10.5)

where �(y, θ) = −yθ + b(θ)− c(y) is the negative log-likelihood function. The
minimization problem in (10.5) can be rapidly computed and its implementation
is robust since it only involves two parameters. Such a feature screening procedure
ranks the importance of features according to their magnitude of marginal regression
coefficients. The set of important features is defined as

M̂νn = {1 ≤ j ≤ p : |β̂Mj1| > νn},

where νn is some pre-specified threshold. As a result, we dramatically decrease
the dimension from p to a moderate size by choosing a large νn and hence the
computation is much more feasible after screening. Although the interpretations
and implications of the marginal models are biased from the full model, it is
suitable for the purpose of variable screening. In the linear regression setting, the
MMLE ranking is equivalent to the marginal correlation ranking. However, the
MMLE screening does not rely on the normality assumption and can be more
easily applied to other models. Under proper regularity conditions, Fan and Song
(2010) established the sure screening property of the MMLE ranking. By taking
νn = cn1−2κ for some 0 < κ < 1/2 and c > 0, we have

Pr(M" ⊂ M̂νn)→ 1 as n→∞.
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See more about the details about the conditions in Fan and Song (2010). This MMLE
procedure can handle the NP-dimensionality of order

logp = o(n(1−2κ)α/(α+2)),

where α is some positive parameter that characterizes how fast the tail of distribution
of features decay. For instance, α = 2 corresponds to normal features and α = ∞
corresponds to features that are bounded. When features are normal (α = 2), the
MMLE gives a weaker result than that of the SIS which permits logp = o(n1−2κ).
However, MMLE allows non-normal features and other error distributions.

Fan et al. (2009) studied a very general pseudo-likelihood framework in which
the aim is to find the parameter vector β = (β1, . . . ,βp)� that is sparse and
minimizes an objective function of the form

Q(β0, β) = 1

n

n∑

i=1

�(Yi ,β0 + β�xi ), (10.6)

where the function �(·, ·) can be some loss function or negative log-likelihood
function. This formulation in (10.6) includes a lot of important statistical models
including

1. Generalized linear models: All generalized linear models, including logistic
regression and Poisson log-linear models, fit very naturally into the framework.

2. Classification: Some common approaches to classification assume the response
takes values in {−1, 1} also fit the framework. For instance, support vector
machine (Vapnik, 2013) uses the hinge loss function �(Yi ,β0 + x�i β) = (1−
Yi(β0 + x�i β))+, while the boosting algorithm AdaBoost (Freund & Schapire,
1997) uses �(Yi ,β0 + x�i β) = exp{−Yi(β0 + x�i β)}.

3. Robust fitting: Instead of the conventional least squares loss function, one may
prefer a robust loss function such as the �1 loss �(Yi ,β0 + x�i β) = |Yi − β0 −
x�i β| or the Huber loss (Huber, 1964), which also fits into the framework.

Fan et al. (2009) suggests to rank the importance of features according to their
marginal contributions to the magnitude of the likelihood function. This method can
be viewed as a marginal likelihood ratio screening, as it builds on the increments of
the log-likelihood. The marginal utility of the j th feature Xj is quantified by

Lj = min
β0,βj

n−1
n∑

i=1

�(Yi ,β0 +Xijβj ).

The idea is to compute the vector of marginal utilities L = (L1, . . . ,Lp)� and
rank the features according to the marginal utilities: the smaller Lj is, the more
important Xj is. Note that in order to compute Lj , we only need to fit a model with
two parameters, β0 and βj , so computing the vector L can be done very quickly and
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stably, even for an ultra-high dimensional problem. The feature Xj is selected if
the corresponding utility Lj is among the dn smallest components of L. Typically,
we may take dn = !n/ log n". When dn is large enough, it has high probability
of selecting all of the important features. The marginal likelihood screening and
the MMLE screening share a common computation procedure as both procedures
solve p optimization problems over a two-dimensional parameter space. Fan and
Song (2010) showed that these two procedures are actually equivalent in the sense
that they both possess the sure screening property and that the number of selected
variables of the two methods is of the same order of magnitude.

Fan et al. (2009) also proposes an iterative feature screening procedure, which
consists of the following steps:

Step 1. Compute the vector of marginal utilities L = (L1, . . . ,Lp)� and select
the set Â1 = {1 ≤ j ≤ p : Lj is among the first k1 smallest ones}. Then apply a
penalized (pseudo)-likelihood, such as Lasso and SCAD, to select a subset M̂.

Step 2. For each j ∈ {1, . . . ,p}/M̂, compute

L
(2)
j = min

β0,βj ,βM̂

1

n

n∑

i=1

L(Yi ,β0 + x�
i,M̂βM̂ +Xijβj ), (10.7)

where xi,M̂ denotes the sub-vector of xi consisting of those elements in M̂. Then
select the set

Â2 = {j ∈ {1, . . . ,p}/M̂ : L(2)j is among the first k2 smallest ones}.

Step 3. Use penalized likelihood to the features in set M̂∪ Â2,

β̂2 = arg min
β0,βÂ2

,βM̂

1

n

n∑

i=1

�(Yi ,β0 + x�
i,M̂βM̂ + x�

i,Â2
βÂ2

)+
∑

j∈M̂∪Â2

pλ(|βj |),

where pλ(·) is some penalty function such as Lasso or SCAD. The indices of β̂2
that are non-zero yield a new estimated set M̂.

Step 4. Repeat Step 2 and Step 3 and stop once |M̂| ≥ dn.

Note that L(2)j can be interpreted as the additional contribution of feature Xj given

the presence of features in M̂. The optimization problem in Step 2 is a low-
dimensional problem which can be solved efficiently. An alternative approach in
Step 2 is to substitute the fitted value β̂M̂1

from the Step 1 into (10.7). Then the
optimization in (10.7) only involves two parameters and is exactly an extension of
Fan and Lv (2008). To see this, let ri = Yi − x�

i,M̂βM̂ denote the residual from the
previous step and we choose the square loss function, then

�(Yi ,β0 + x�
i,M̂βM̂ +Xijβj ) = (ri − β0 − βjXij )2.
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Without explicit definition of residuals, the idea of considering additional contribu-
tion to the response can be applied to a much more general framework.

10.3.3 Nonparametric Regression Models

Fan et al. (2011) proposes a nonparametric independence screening (NIS) for ultra-
high dimensional additive model of the following form:

Y =
p∑

j=1

mj(Xj )+ ε, (10.8)

where mj(Xj ) is assumed to have mean zero for identifiability. The true index set
of important features is defined as

M" = {1 ≤ j ≤ p : Em2
j (Xj ) > 0}.

To identify the important features in (10.8), Fan et al. (2011) considers the following
p marginal nonparametric regression problems

min
fj∈L2(P )

E(Y − fj (Xj ))2, (10.9)

where P denotes the joint distribution of (x,Y ) and L2(P ) is the family of
square integrable functions under the measure P . The minimizer of (10.9) is
fj = E(Y |Xj) and hence Ef 2

j (Xj ) can be used as marginal utility to mea-
sure the importance of feature Xj at population level. Given a random sample
{(xi ,Yi)}, i = 1, . . . , n, fj (x) can be estimated by a set of B-spline basis. Let
B(x) = (B1(x), . . . ,BL(x))� be a B-spline basis and βj = (βj1, . . . ,βjL)� be
the corresponding coefficients for the B-spline basis associated with feature Xj .
Consider the following least squares,

β̂j = arg min
βj

1

n

n∑

i=1

(Yi − β�j B(Xij ))2.

Thus fj (x) can be estimated by f̂j (x) = β̂
�
j B(x). The index set of selected

submodel is given by

M̂νn = {1 ≤ j ≤ p : ‖f̂j‖2
n ≥ νn},

where ‖f̂j‖2
n = n−1∑n

i=1 f̂j (Xij )
2 and νn is some pre-specified threshold. The

NIS ranks the importance according to the marginal strength of the marginal
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nonparametric regression. Under the regularity conditions, Fan et al. (2011) shows
that by taking νn = c1Ln

−2κ , we have

Pr(M" ⊂ M̂νn) ≥ 1− sL[(8+ 2L) exp(−c2n
1−4κL−3)+ 6L exp(−c3nL

−3)],

where L is the number of B-spline basis, s = |M"| and c2, c3 are some positive
constants. It follows that if

logp = o(n1−4κL−3 + nL−3), (10.10)

then Pr(M" ⊂ M̂νn) → 1. It is worthwhile to point out that the number of spline
bases L affects the order of dimensionality. Equation (10.10) shows that the smaller
the number of basis functions, the higher the dimensionality that the NIS can handle.
However, the number of basis functions cannot be too small since the approximation
error would be too large if we only use a small number of basis functions. After the
feature screening, a natural next step is to use penalized method for additive model
such as penGAM proposed in Meier, Van de Geer and Bühlmann (2009) to further
select important features. Similar to the iterative procedure in Fan et al. (2009), Fan
et al. (2011) also introduces an iterative version of NIS, namely INIS-penGAM, by
carrying out the NIS procedure and penGAM alternatively. We omit the details here.

Varying-coefficient model is another important nonparametric statistical model
that allows us to examine how the effects of features vary with some exposure
variable. It is a natural extension of classical linear models with good interpretability
and flexibility. Varying-coefficient model arises frequently in economics, finance,
epidemiology, medical science, ecology, among others. For an overview, see Fan
and Zhang (2008). An example of varying-coefficient model is the analysis of
cross-country growth. Linear model is often used in the standard growth analysis.
However, a particular country’s growth rate will depend on its state of development
and it would make much more sense if we treat the coefficients as functions of the
state of development, which leads to a standard varying-coefficient model (Fan &
Zhang, 2008). In this example, state of development is the exposure variable.

Consider the following varying-coefficient model,

Y =
p∑

j=1

βj (U)Xj + ε, (10.11)

where U is some observable univariate exposure variable and the coefficient βj (·)
is a smooth function of variable U . In the form of (10.11), the features Xj enter
the model linearly. Such nonparametric formulation allows nonlinear interactions
between the exposure variable and the features. The true index set of important
features is defined as

M" = {1 ≤ j ≤ p : E(β2
j (U)) > 0},



10 Variable Selection and Feature Screening 305

with model size s = |M"|. Fan et al. (2014) considered a nonparametric screening
procedure by ranking a measure of the marginal nonparametric contribution of each
feature given the exposure variable. For each feature Xj , j = 1, . . . ,p, consider the
following marginal regression:

min
aj ,bj

E[(Y − aj − bjXj )2|U ]. (10.12)

Let aj (U) and bj (U) be the solution to (10.12) and we have

bj (U) = Cov[Xj ,Y |U ]
Var[Xj |U ] and aj (U) = E(Y |U)− bj (U)E(Xj |U).

The marginal contribution of Xj for the response can be characterized by

ωj = ‖aj (U)+ bj (U)Xj )‖2 − ‖a0(U)‖2, (10.13)

where a0(U) = E[Y |U ] and ‖f ‖2 = Ef 2. By some algebra, it can be seen that

ωj = E
[
(Cov[Xj ,Y |U ])2

Var[Xj |U ]

]
.

This marginal utility ωj is closely related to the conditional correlation between Xj
and Y since ωj = 0 if and only if Cov[Xj ,Y |U ] = 0. On the other hand, if we
assume Var[Xj |U ] = 1, then the marginal utility ωj is the same as the measure of
marginal functional coefficient ‖bj (U)‖2.

Suppose we have a random sample {(xi ,Yi ,Ui)}, i = 1, . . . , n, similar to the
setting of additive model, we can estimate aj (U), bj (U), and a0(U) using B-
spline technique. Let B(U) = (B1(U), . . . ,BL(U))� be a B-spline basis and the
coefficients of B-splines can be estimated by the following marginal regression
problems:

(̂ηj , θ̂ j ) = min
ηj ,θj

n−1
n∑

i=1

(Yi −B(Ui)�ηj −B(Ui)�θ jXij )
2,

η̂0 = min
η0
n−1

n∑

i=1

(Yi −B(Ui)�η0)
2,

where η0 = (η01 , . . . , η0L)
�, ηj = (ηj1 , . . . , ηjL)

�, and θ j = (θj1 , . . . , θjL)
� are

the B-spline coefficients for a0(U), aj (U), and bj (U), respectively. As a result,
âj (U), b̂j (U), and â0(U) can be estimated by

âj (U) = B(U)�η̂j , b̂j (U) = B(U)�θ̂ j , and â0(U) = B(U)�η̂0.
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The sample marginal utility for screening is

ω̂j = ‖̂aj (U)+ b̂j (U)‖2
n − ‖̂a0(U)‖2

n,

where ‖f (U)‖2
n = n−1∑n

i=1 f (Ui)
2. The submodel is selected by

M̂νn = {1 ≤ j ≤ p : ω̂j ≥ νn}.

Under regularity conditions, Fan et al. (2014) established the sure screening property
for their proposed screening procedure if the dimensionality satisfies logp =
o(n1−4κL−3) for some 0 < κ < 1/4, which is of the same order for the additive
model setting. An iterative nonparametric independence screening procedure is also
introduced in Fan et al. (2014), which repeatedly applies the feature screening
procedure followed by a moderate scale penalized method such as group-SCAD
(Wang, Li, & Huang, 2008).

Instead of using the marginal contribution in (10.13) to rank the importance
of features, Liu, Li, and Wu (2014) proposed a screening procedure based on
conditional correlation for varying-coefficient model. Given U , the conditional
correlation between Xj and Y is defined as the conditional Pearson correlation

ρ(Xj ,Y |U) = cov(Xj ,Y |U)√
cov(Xj ,Xj |U)cov(Y ,Y |U) .

ThenE[ρ2(Xj ,Y |U)] can be used as a marginal utility to evaluate the importance of
Xj at population level. It can be estimated by the kernel regression (Liu et al., 2014).
The features with high conditional correlations will be included in the selected
submodel. This procedure can be viewed as a natural extension of the SIS by
conditioning on the exposure variable U .

10.3.4 Model-Free Feature Screening

In previous sections, we have discussed model-based feature screening procedures
for ultra-high dimensional data, which requires us to specify the underlying true
model structure. However, it is quite challenging to correctly specify the model
structure on the regression function in high dimensional modeling. Mis-specification
of the data generation mechanism could lead to large bias. In practice, one may do
not know what model to use unless the dimensionality of feature space is reduced
to a moderate size. To achieve greater realism, model-free feature screening is
necessary for high dimensional modeling. In this section, we review several model-
free feature screening procedures.
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Recall that under the parametric modeling, the true index set of important
features M" is defined as the indices of non-zero elements in β". Since no
assumption is made on the specification of the model, there is no such true parameter
β" and thus we need to redefine the true index set of important featuresM". Let Y
be the response variable and x = (X1, . . . ,Xp)� be the p-dimensional covariate
vector. Define the index set of important features as

M" = {1 ≤ j ≤ p : F(y|x) functionally depends on Xj for any y ∈ �y},

where F(y|x) = Pr(Y < y|x) is the conditional distribution function of Y given x
and �y is the support of Y . This indicates that conditional on xM"

, Y is statistically
independent of xMc

"
, where xM"

is a s-dimensional sub-vector of x consisting of all
Xj with j ∈M" andMc

" is the complement ofM".
Zhu, Li, Li, and Zhu (2011) considered a general model framework under which

F(y|x) depends on x only through B�xM"
, where B is a s ×K unknown parameter

matrix. In other words, we assume F(y|x) = F(y|B�xM"
). Note that B may not be

identifiable. What is identifiable is the space spanned by the columns of B. However,
the identifiability of B is of no concern here because our primary goal is to identify
important features rather than estimating B itself. This general framework covers
a wide range of existing models including the linear regression model, generalized
linear models, the partially linear model (Hardle, Liang, & Gao, 2012), the single-
index model (Hardle, Hall, & Ichimura, 1993), and the partially linear single-index
model (Carroll, Fan, Gijbels, & Wand, 1997), etc. It also includes the transformation
regression model with a general transformation h(Y ).

Zhu et al. (2011) proposes a unified screening procedure for this general
framework. Without loss of generality, assume E(Xj ) = 0 and V ar(Xj ) = 1.
Define �(y) = E[xF(y|x)]. It then follows by the law of iterated expectations that
�(y) = E[xE(1(Y < y|x))|x] = cov(x, 1(Y < y)). Let �j(y) be the j th element
of �(y) and define

ωj (y) = E(�2
j (y)), j = 1, . . . ,p.

Under certain conditions, Zhu et al. (2011) showed that

max
j∈Mc

"

ωj < min
j∈M"

ωj uniformly for p,

and ωj = 0 if and only if cov(B�xM"
,Xj) = 0. These results reveal that the

quantity ωj is in fact a measure of the correlation between the marginal covariate
Xj and the linear combination B�xM"

and hence can be used as a marginal utility.
Here are some insights. If Xj and Y are independent, so are Xj and 1(Y < y).
Consequently, �j(y) = 0 for all y ∈ �y and ωj = 0. On the other hand, if Xj and
Y are dependent, then there exists some y ∈ �y such that �j(y) �= 0, and hence ωj
must be positive. In practice, one can employ the sample estimate of ωj to rank the
features. Given a random sample {(xi ,Yi)}, i = 1, . . . , n, and assume the features
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are standardized in the sense that n−1∑n
i=1Xij = 0 and n−1∑n

i=1X
2
ij = 1 for all

j . A natural estimator for ωj is

ω̃j = 1

n

n∑

k=1

{
1

n

n∑

i=1

Xij1(Yi < Yk)

}2

.

An equivalent expression of ω̃j is ω̂j = n2/(n − 1)(n − 2)ω̃j , which is the
correspondingU -statistic of ω̃j . We use ω̂j as the marginal utility to select important
features and the selected submodel is given by

M̂νn = {1 ≤ j ≤ p : ω̂j > νn}.

This procedure is referred to as sure independent ranking screening (SIRS). Zhu
et al. (2011) established the consistency in ranking (CIR) property of the SIRS,
which is a stronger result than the sure screening property. It states that if p =
o(exp(an)) for some fixed a > 0, then there exists some constant sδ ∈ (0, 4/δ)
where δ = minj∈M"

ωj −maxj∈Mc
"
ωj such that

Pr(max
j∈Mc

"

ω̂j < min
j∈M"

ω̂j ) ≥ 1− 4p exp{n log(1− δsδ/4)/3}. (10.14)

Since p = o(exp(an)), the right-hand side of (10.14) approaches to 1 with an
exponential rate as n → ∞. Therefore, SIRS ranks all important features above
unimportant features with high probability. Provided that an ideal threshold is
available, this property would lead to consistency in selection, that is, a proper
choice of the threshold can perfectly separate the important and unimportant
features. In practice, one can choose the threshold with the help of extra artificial
auxiliary variables. The idea of introducing auxiliary variables for thresholding was
first proposed by Luo, Stefanski, and Boos (2006) to tune the entry significance
level in forward selection, and then extended by Wu, Boos, and Stefanski (2007)
to control the false selection rate of forward regression in linear model. Zhu
et al. (2011) extended this idea to choose the threshold for feature screening as
follows. We generate d auxiliary variables z ∼ Nd(0, Id) such that z is independent
of x and Y and we regard (p + d)-dimensional vector (x�, z�)� as the new
features. The normality of z here is not critical here. We know that minj∈M"

ωj >

maxl=1,...,d ωp+l since we know z is truly unimportant features. Given a random
sample, we know mink∈M"

ω̂k > maxl=1,...,d ω̂p+l holds with high probability
according to the consistence in ranking property. Let Cd = maxl=1,...,d ω̂p+l , the
set of selected features is given by

M̂Cd = {1 ≤ k ≤ p : ω̂k > Cd}.

Li et al. (2012) proposed a model-free feature screening procedure based on
the distance correlation. This procedure does not impose any model assumption on
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F(y|x). Let u ∈ R
du and v ∈ R

dv be two random vectors. The distance correlation
measures the distance between the joint characteristic function of (u, v) and the
product of marginal characteristic functions of u and v (Székely, Rizzo, & Bakirov,
2007). To be precise, let φu(t) and φv(s) be the characteristic functions of u and v
respectively, and φu,v(t, s) be the joint characteristic function of (u, v). The squared
distance covariance is defined as

dcov2(u, v) =
∫

R
du+dv

|φu,v(t, s)− φu(t)φv(s)|2w(t, s)dtds,

where w(t, s) is some weight function. With a proper choice of the weight function,
the squared distance covariance can be expressed in the following closed form:

dcov2(u, v) = S1 + S2 − 2S3,

where Sj , j = 1, 2, 3 are defined as

S1 = E{‖u− ũ‖du‖v− ṽ‖dv },
S2 = E{‖u− ũ‖du}E{‖v− ṽ‖dv },
S3 = E{E(‖u− ũ‖du |u)E(‖v− ṽ‖dv |v)},

where (ũ, ṽ) is an independent copy (u, v) and ‖a‖d stands for the Euclidean norm
of a ∈ R

d . The distance correlation (DC) between u and v is defined as

dcorr(u, v) = dcov(u, v)√
dcov(u, u)dcov(v, v)

.

The distance correlation has many appealing properties. The first property is that
distance correlation is closely related to the Pearson correlation. If U and V are
two univariate normal random variables, the distance correlation dcorr(U ,V ) is a
strictly increasing function of |ρ|, where ρ is the Pearson correlation between U and
V . This property implies that the DC-based marginal feature screening procedure is
equivalent to the SIS in Fan and Lv (2008) for linear regression if features and
errors are normally distributed. The second property is that dcorr(u, v) = 0 if and
only if u and v are independent (Székely et al., 2007). Note that two univariate
random variables U and V are independent if and only if U and T (V ), a strictly
monotone transformation of V , are independent. This implies that a DC-based
feature screening procedure can be more effective than the Pearson correlation based
procedure since DC can capture both linear and nonlinear relationship between
U and V . In addition, DC is well-defined for multivariate random vectors, thus
DC-based screening procedure can be directly used for grouped predictors and
multivariate response. These remarkable properties make distance correlation a
good candidate for feature screening.
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Given a random sample {(ui , vi )}, i = 1, . . . , n from (u, v), the squared distance

covariance between u and v is estimated by d̂cov
2
(u, v) = Ŝ1 + Ŝ2 − 2Ŝ3, where

Ŝ1 = 1

n2

n∑

i=1

n∑

j=1

‖ui − uj‖du‖vi − vj‖dv ,

Ŝ2 = 1

n2

n∑

i=1

n∑

j=1

‖ui − uj‖du
1

n2

n∑

i=1

n∑

j=1

‖vi − vj‖dv ,

Ŝ3 = 1

n3

n∑

i=1

n∑

j=1

n∑

k=1

‖ui − uk‖du‖vj − vk‖dv .

Similarly, we can define the sample distance covariances d̂cov(u, u) and d̂cov(v, v).
Accordingly, the sample distance correlation between u and v is defined by

̂dcorr(u, v) = d̂cov(u, v)√
d̂cov(u, u)d̂cov(v, v)

.

Let y = (Y1, . . . ,Yq)� be the response vector with support �y , and x =
(X1, . . . ,Xp)� be the covariate vector. Here we allow the response to be univariate
or multivariate and assume q is a fixed number. For each j = 1, . . . ,p, we
can calculate the sample distance correlation ̂dcorr(Xj , y). Based on the fact that

dcorr(Xj , y) = 0 if and only if Xj and y are independent, ̂dcorr(Xj , y) can be used
as a marginal utility to rank the importance of Xj . Therefore, the set of important
variables is defined as

M̂νn = {1 ≤ j ≤ p : ̂dcorr(Xj , y) > νn},

for some pre-specified threshold νn. This model-free feature screening procedure
is known as DC-SIS. Under certain moment assumptions and with the choice of
νn = cn−κ for some constants c and κ , Li et al. (2012) showed that DC-SIS
enjoys the sure screening property. This DC-SIS allows for arbitrary regression
relationship of Y onto x, regardless of whether it is linear or nonlinear. It also
permits univariate and multivariate responses, regardless of whether it is continuous,
discrete, or categorical. Note that the SIRS in Zhu et al. (2011) requires that F(y|x)
depends on x through a linear combination B�xM"

. Comparing with SIRS, this
DC-SIS is completely model-free and it does not require any model assumption on
the relationship between features and the response. Another advantage of DC-SIS
is that it can be directly utilized for screening grouped variables and multivariate
responses while SIRS can only handle univariate response. An iterative version of
DC-SIS was proposed in Zhong and Zhu (2015) to address the issues of marginal
feature screening.
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10.3.5 Feature Screening for Categorical Data

Plenty of feature screening methods have been proposed for models where both
the features and the response are continuous. In practice, we are also interested
in the situation where features and/or response are categorical data. Fan and Fan
(2008) proposed a marginal t-test screening for the linear discriminant analysis and
showed that it has the sure screening property. Fan and Song (2010) proposed a
maximum marginal likelihood screening for generalized linear models and rank
variables according to the magnitudes of coefficient, which can be applied directly
to the logistic regression.

Mai and Zou (2012) introduced a nonparametric screening method based on
Kolmogorov–Smirnov distance for binary classification. It does not require any
modeling assumption and thus is robust and has wide applicability. Let Y be the
label and takes value in {−1, 1} and let F+j (x) and F−j (x) denote the conditional
CDF of Xj given Y = 1,−1, respectively. Define

Kj = sup
−∞<x<∞

|F+j (x)− F−j (x)|.

The sample version of Kj is defined as

Knj = sup
−∞<x<∞

|F̂+j (x)− F̂−j (x)|,

where F̂+j (x) and F̂−j (x) are the empirical CDF of Xj given Y = 1,−1
respectively. This screening procedure is called Kolmogorov filter due to the
fact that Knj is actually the Kolmogorov–Smirnov test statistic for testing the
equivalence of two distributions. By definition, Knj is invariant under any strictly
monotone univariate transformations applied to individual feature. Mai and Zou
(2012) recommended using the Kolmogorov filter to select the submodel

M̂dn = {1 ≤ j ≤ p : Knj is among the first dn largest ones}.

Mai and Zou (2015) extended the idea of Kolmogorov filter to a wide variety of
applications including multi-class classification, Poisson regression, and so on by
slicing the response. The resulting procedure is a nonparametric model-free feature
screening procedure that works with discrete, categorical, or continuous features.

Cui, Li, and Zhong (2015) developed an effective model-free and robust feature
screening procedure for ultra-high dimensional discriminant analysis with a possi-
bly diverging number of classes. Without specifying a regression model, define the
true index set of important features by

M" = {1 ≤ j ≤ p : F(y|x) functionally depends on Xj }.
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Let Y be a categorical response with K categories {y1, . . . , yK }, and assume X
is a continuous univariate feature. Let F(x|Y ) = Pr(X ≤ x|Y ) be the conditional
distribution function of X given Y . Denote by F(x) = Pr(X ≤ x) the unconditional
distribution function of X and Fk(x) = Pr(X ≤ x|Y = yk) the conditional
distribution function of X given Y = yk . If Fk(x) = F(x) for all x and k =
1, . . . ,K , thenX and Y are independent. Based on this observation, Cui et al. (2015)
proposed the following index

MV(X|Y ) = E[V ar(F (X|Y ))]

to measure the dependence between X and Y . Let pk = Pr(Y = yk) > 0, then
MV(X|Y ) can be written as

MV(X|Y ) =
K∑

k=1

pk

∫
(Fk(x)− F(x))2dF(x). (10.15)

Equation (10.15) implies that MV(X|Y ) can be represented as the weighted average
of Cramer–von Mises distances between the conditional distribution of X given
Y = yk and the unconditional distribution function of X. Cui et al. (2015)
showed that MV(X|Y ) = 0 if and only if X and Y are statistically independent.
Another appealing property of MV(X|Y ) is that it characterizes both linear and
nonlinear relationships, making it a good marginal utility for ultra-high dimensional
discriminant analysis.

Let {(Xi ,Yi)}, i = 1, . . . , n be a random sample from the population (X,Y ).
Define p̂k = n−1∑n

i=1 1(Yi = yk), F̂ (x) = n−1∑n
i=1 1(Xi ≤ x), and

F̂k(x) = n−1∑n
i=1 1(Xi ≤ x,Yi = yk)/p̂k . Based on the Cramer–von Mises

representation (10.15), MV(X|Y ) can be estimated by its sample counterpart

M̂V(X|Y ) = n−1
K∑

k=1

n∑

i=1

p̂k(F̂k(Xi)− F̂ (Xi))2.

For each of the features Xj , j = 1 . . . ,p, we can compute the sample version of the
index M̂V(Xj |Y ) between Xj and Y . We select the submodel by

M̂νn = {1 ≤ j ≤ p : M̂V(Xj |Y ) > νn},

for some pre-specified threshold νn. This MV-based screening procedure is referred
to as MV-SIS. The sure screening property holds for MV-SIS under very mild
moment conditions of features and it does not require the regression function of
Y onto x to be linear. It is worth noting that MV-SIS is insensitive to heavy tailed
distributions of features and potential outliers due to the robustness of conditional
distribution function. Furthermore, the sure screening property holds even when
number of classes diverges.
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In reality, one may also encounter the situation in which both the features and
the response are categorical. Huang, Li, and Wang (2014) proposed a chi-square
based feature screening procedure for such situation. The idea is to construct a chi-
square test statistic for each pair of feature and response. Let Yi ∈ {1, . . . ,K} be
the class label of response, and xi = (Xi1, . . . ,Xip)� be the associated categorical
features. For simplicity, assume each Xij is binary though the method and theory
can be readily applied to multi-class categorical features. Define Pr(Yi = k) =
πyk , Pr(Xij = k) = πjk , and Pr(Yi = k1,Xij = k2) = πyj ,k1k2 . Those quantities
can be estimated by their sample counterparts π̂yk = n−1∑n

i=1 1(Yi = k),
π̂jk = n−1∑n

i=1 1(Xij = k) and π̂yj ,k1k2 = n−1∑n
i=1 1(Yi = k1)1(Xij = k2),

respectively. Subsequently, for each feature, a chi-square type statistic can be
constructed as

�̂j =
K∑

k1=1

2∑

k2=1

(π̂yk1 π̂jk2 − π̂yj ,k1k2)
2

π̂yk1 π̂jk2

,

which is a natural estimator of

�j =
K∑

k1=1

2∑

k2=1

(πyk1πjk2 − πyj ,k1k2)
2

πyk1πjk2

.

Obviously, features with larger values of �̂j are more relevant to the response. As a
result, the submodel is selected by

M̂νn = {1 ≤ j ≤ p : �̂j > νn},

where νn > 0 is some pre-specified threshold. Note that n�̂j has an asymptotic
distribution χ2

K−1, where χ2
K−1 is the chi-squared distribution with degrees of

freedomK − 1. Then M̂νn can be defined in terms of p-value. Let p̂j = Pr(χ2
K−1 >

n�̂j ) and M̂νn can be equivalently expressed as M̂νn = {1 ≤ j ≤ p : p̂j < pνn}
for some 0 < pνn < 1. When the number of categories of features are different
from each other, then features involving more categories are more likely to have
larger �j values, regardless of whether the feature is important or not. Based on
this observation, it is more appropriate to use the p-values p̂j as the marginal utility
to select the important features instead of using �̂j . Assume the j th feature has
Rj categories, the p-value p̂j can be obtained from the Pearson chi-squared test of
independence with degrees of freedom (K − 1)(Rj − 1).

Huang et al. (2014) suggested using the following maximum ratio criterion to
determine how many features should be included in the submodel. Let {k1, . . . , kp}
be a permutation of {1, . . . ,p} such that �̂k1 ≥ �̂k2 ≥ · · · ≥ �̂kp. Recall that the
true model size is |M"| = s. As long as j + 1 ≤ s, we should have �̂kj/�̂kj+1 →
cj ,j+1 in probability for some cj ,j+1 > 0. On the other hand, if j > s, we should
have both �̂kj and �̂kj+1 converge towards to 0 in probability. If their convergence
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rates are of the same order, we should have �̂kj/�̂kj+1 = O(1). If j = s, we
expect �̂kj → cj > 0 while �̂kj+1 → 0 in probability. This makes the ratio
�̂kj/�̂kj+1 →∞. They suggest selecting the top d̂ features as submodel where

d̂ = arg max
0≤j≤p−1

�̂kj/�̂kj+1

and �̂0 is defined to be 1. That is, we include the d̂ features with the largest �̂j in
the submodel.

10.4 Time-Dependent Data

10.4.1 Longitudinal Data

Instead of observing independent and identically distributed data, one may observe
longitudinal data, that is, the features may change over time. More precisely, longi-
tudinal data, also known as panel data, is a collection of repeated observations of the
same subjects over a period of time. Longitudinal data differs from cross-sectional
data in that it follows the same subjects over a period of time, while cross-sectional
data are collected from different subjects at each time point. Longitudinal data
is often seen in economy, finance studies, clinical psychology, etc. For example,
longitudinal data is often seen in event studies, which tries to analyze what factors
drive abnormal stock returns over time, or how stock prices react to merger and
earnings announcements.

Time-varying coefficient model is widely used for modeling longitudinal data.
Consider the following time-varying coefficient model,

y(t) = x(t)�β(t)+ ε(t), t ∈ T , (10.16)

where x(t) = (X1(t), . . . ,Xp(t))� are the p-dimensional covariates, β(t) =
(β1(t), . . . ,βp(t))� are the time-varying coefficients, ε(t) is a mean zero stochastic
process, and T is the time interval in which the measurements are taken. In
model (10.16), t need not to be calendar time, for instance, we can set t to be the
age of a subject. In general, it is assumed that T is a closed and bounded interval in
R. The goal is to identify the set of true important variables, which is defined as

M" = {1 ≤ j ≤ p : ‖βj (t)‖2 �= 0},

where ‖β(t)‖2 = 1
|T |
∫
T
β2(t)dt and |T | is the length of T .

Suppose there is a random sample of n independent subjects {xi (t),Yi(t)}, i =
1, . . . , n from model (10.16). Let tik and mi be the time of the kth measurement
and the number of repeated measurement for the ith subject. Y (tik) and xi (tik) =
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(Xi1(tik), . . . ,Xip(tik))� are the ith subject’s observed response and covariates at
time tik . Based on the longitudinal observations, the model can be written as

Yi(tik) = xi (tik)�β(tik)+ εi(tik),

where β(tik) = (β1(tik), . . . ,βp(tik))� is the coefficient at time tik . Song, Yi, and
Zou (2014) considered a marginal time-varying coefficient model for each j =
1, . . . ,p,

Yi(tik) = βj (tik)Xij (tik)+ εi(tik).

Let B(t) = (B1(t), . . . ,BL(t))� be a B-spline basis on the time interval T , where L
is the dimension of the basis. For the ease of presentation, we use the same B-spline
basis for all βj (t). Under smoothness conditions, each βj (t) can be approximated
by the linear combination of B-spline basis functions. For each j , consider marginal
weighted least square estimation based on B-spline basis

γ̂ j = arg min
γjl

n∑

i=1

wi

mi∑

k=1

(
Yi(tik)−

L∑

l=1

Xij (tik)Bl(tik)γjl

)2

,

where γ j = (γj1, . . . , γjL)� is the unknown parameter and γ̂ j = (γ̂j1, . . . , γ̂jL)�
is its estimate. Choices of wi can be 1 or 1/mi , that is equal weights to observations
or equal weights to subjects. See Song et al. (2014) for more details on how to obtain
γ̂ j . The B-spline estimator of βk(t) is given by β̂j (t) = γ̂�j B(t). The selected set
of features is given by

M̂νn = {1 ≤ j ≤ p : ‖β̂j (t)‖2 ≥ νn},

where νn is a pre-specified threshold. To evaluate ‖β̂j (t)‖2, one can take N
equally spaced time points t1 < · · · < tN in T , and compute ‖β̂Nj (t)‖2 =
N−1∑N

i=1 β̂
2
j (ti). As long as N is large enough, ‖β̂Nj (t)‖2 should be close enough

to ‖β̂j (t)‖2. This varying-coefficient independence screening is referred to as VIS
and enjoys the sure screening property (Song et al., 2014). An iterative VIS (IVIS)
was also introduced in Song et al. (2014), which utilizes the additional contribution
of unselected features by conditioning on the selected features that survived the
previous step.

Cheng, Honda, Li and Peng (2014) proposed a similar nonparametric indepen-
dence screening method for the time-varying coefficient model. In their setting, they
allow some of the important features simply have constant effects, i.e.,

Yi(tik) =
q∑

j=1

Xij (tik)βj +
p∑

j=q+1

Xij (tik)βj (tik)+ εi(tik).
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The first q coefficients βj , j = 1, . . . , q do not change over time. Cheng et al. (2014)
points out that it is very important to identify the non-zero constant coefficients
because treating a constant coefficient as time varying will yield a convergence rate
that is slower than

√
n.

Both Song et al. (2014) and Cheng et al. (2014) ignore the covariance structure
of ε(t) and carry out the feature screening on a working independence structure.
Chu, Li, and Reimherr (2016) extended the VIS by incorporating within-subject
correlation and dynamic error structure. They also allow baseline variables in their
model, which are believed to have impact on the response based on empirical
evidence or relevant theories and are not subject to be screened. These baseline
features are calledZ-variables and the longitudinal features to be screened are called
X-variables. Consider the following model,

Yi(tik) =
q∑

j=1

βj (tik)Zij (tik)+
p∑

j=1

βj (tik)Xij (tik)+ εi(tik), (10.17)

where Z-variables are the known important variables by prior knowledge and X-
variables are ultra-high dimensional features. It is assumed that εi(t) have variances
that vary across time, are independent across i (between subjects) and correlated
across t (within the same subject). Incorporating the error structure into the model
estimation is expected to increase screening accuracy. Chu et al. (2016) proposed a
working model without any X-variables to estimate the covariance structure,

Yi(tik) = βw0 +
q∑

l=1

βwl (tik)Zil(tik)+ εwi (tik). (10.18)

Although model (10.18) is mis-specified, valuable information about the covariance
structure can still be gained. Standard ordinary least squares and regression spline
technique can be applied to (10.18) (Huang, Wu, & Zhou, 2004), and we can
obtain the corresponding residuals ri(tik). Let V (tik) be a working variance
function for ε(tik) and it can be approximated by V (tik) ≈ ∑L

l=1 αlBl(tik), where
B1(t), . . . ,BL(t) is a B-spline basis. The coefficients αl , l = 1, . . . ,L can be
estimated by minimizing the following least squares

α̂ = (̂α1, . . . , α̂L)
� = min

α1,...,αL

n∑

i=1

mi∑

k=1

(
r2
i (tik)−

L∑

l=1

αlBl(tik)

)2

.

Then define V̂ (tik) = ∑L
l=1 α̂lBl(tik). Denote by Ri the mi × mi working

correlation matrix for the ith subject. A parametric model can be used to estimate
the working correlation matrix. These models include autoregressive (AR) structure,
stationary or non-stationary M-dependent correlation structure, parametric families
such as the Matern. Now assume we obtain the working correlation matrix Ri based
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on some parametric model, then the weight matrix for ith subject is given by

Wi = 1

mi
V̂−1/2
i R−1

i V̂−1/2
i ,

where V̂i is the mi ×mi diagonal matrix consisting of the time-varying variance

V̂i =

⎛

⎜⎜⎜⎝

V̂ (ti1) 0 . . . 0
0 V̂ (ti2) . . . 0
...

...
. . .

...
0 0 . . . V̂ (timi )

⎞

⎟⎟⎟⎠ .

For each j , define a marginal time-varying model with the j th X-variable,

Yi(tik) =
q∑

l=1

βljZil(tik)+ βj (tik)Xij (tik)+ εi(tik). (10.19)

Using the B-spline technique and the weight matrix Wi , one can obtain the weighted
least squares estimate for model (10.19), and thus the fitted value Ŷ (j)(tik), see Chu
et al. (2016) for a detailed description. Then the weighted mean squared errors are
given by

ûj = 1

n

n∑

i=1

(yi − ŷ(j)i )
�Wi (yi − ŷ(j)i ),

where yi = (Y (ti1), . . . ,Y (timi )� and ŷ(j)i = (Ŷ (j)(ti1), . . . , Ŷ (j)(timi ))�. Note that
a small value of ûj indicates a strong marginal association between the j th feature
and the response. Thus, the selected set of important variables is given by

M̂νn = {1 ≤ j ≤ p : ûj ≤ νn}.

This procedure has sure screening property, meaning that with probability tending to
1, all important variables will be included in the submodel defined by M̂νn provided
certain conditions are satisfied. See the supplementary material of Chu et al. (2016).

Different form the B-spline techniques, Xu, Zhu, and Li (2014) proposed a
generalized estimating equation (GEE) based sure screening procedure for lon-
gitudinal data. Without risk of confusion, we slightly abuse the notations here.
Let yi = (Yi1, . . . ,Yimi )

� be the response vector for the ith subject, and Xi =
(xi1, . . . , ximi )

� be the corresponding mi × p matrix of features. Suppose the
conditional mean of Yik given xik is

μik(β) = E(Yik|xik) = g−1(x�ikβ),
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where g(·) is a known link function, and β is a p-dimensional unknown parameter
vector. Let Ai (β) be an mi × mi diagonal matrix with kth diagonal element
σ 2
ik(β) = Var(Yik|xik), and Ri be an mi ×mi working correlation matrix. The GEE

estimator of β is defined to be the solution to

G(β) = n−1
n∑

i=1

X�i A1/2
i (β)R−1

i A1/2
i (β)(yi −μi (β)) = 0, (10.20)

where μi (β) = (μi1(β), . . . ,μimi (β))
�. Let g(β) = (g1(β), . . . , gp(β))� =

E(G(β)). Then gj (0) can be used as a measure of the dependence between the
response and the j th feature. Let R̂i be an estimate of Ri . Then Ĝ(0) is defined as

Ĝ(0) = n−1
n∑

i=1

X�i A1/2
i (0)R̂−1

i A−1/2
i (0)(yi −μi (0)).

Hence, we would select the set of important features using

M̂νn = {1 ≤ j ≤ p : |Ĝj (0)| > νn},

where Ĝj (0) is the j th component of Ĝ(0) and νn is a pre-specified threshold. If we
consider the linear regression model Yi = x�i β + εi , the GEE function in (10.20)
reduces to

G(0) = n−1
n∑

i=1

xi (Yi − x�i β).

Therefore, for any given νn, the GEE based screening (GEES) selects the submodel
using

M̂νn = {1 ≤ k ≤ p : n−1|x�(j)y| > νn},

where y = (Y1, . . . ,Yn)� and x(j) is the j th column of the design matrix X =
(x1, . . . , xn)�, which coincides with the original SIS proposed in Fan and Lv (2008).
One desiring property of GEES is that even the working correlation matrix structure
of R̂ is mis-specified, all the important features will be retained by the GEES with
probability approaching to 1.

10.4.2 Time Series Data

The analysis of time series data is common in economics and finance. For example,
the market model in finance relates the return of an individual stock to the return of
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a market index or another individual stock. Another example is the term structure
of interest rates in which the time evolution of the relationship between interest
rates with different maturities is investigated. In this section, we briefly review
some feature screening methods in time series. The SIS (Fan & Lv, 2008) was
originally proposed for linear regression and assumes the random errors follow
normal distribution. Yousuf (2018) analyzes the theoretical properties of SIS for
high dimensional linear models with dependent and/or heavy tailed covariates and
errors. They also introduced a generalized least squares screening (GLSS) procedure
which utilizes the serial correlation present in the data. With proper assumptions on
the moment, the strength of dependence in the error and covariate processes, Yousuf
(2018) established the sure screening properties for both screening procedures.
GLSS is shown to outperform SIS in many cases since GLSS utilizes the serial
correlation when estimating the marginal effects.

Yousuf (2018)’s work is limited to the linear model and ignores some unique
qualities of time series data. The dependence structure of longitudinal data is too
restrictive to cover the type of dependence present in most time series. Yousuf and
Feng (2018) studied a more general time series setting. Let y = (Y1, . . . ,Yn)�
be the response time series, and let xt−1 = (Xt−1,1, . . . ,Xt−1,m)

� denote the m
predictor series at time t − 1. Given that the lags of these predictor series are
possible covariates, let zt−1 = (xt−1, . . . , xt−h) = (Zt−1,1, . . . ,Zt−1,p) denote the
p-dimensional vector of covariates, where p = mh. The set of important covariates
is defined as

M" = {1 ≤ j ≤ p : F(yt |Yt−1, . . . ,Yt−h, zt−1) functionally depends on Zt−1,j },

where F(yt |·) is the conditional distribution function of Yt . The value h represents
the maximum lag order for the response and predictor series. The value of h can
be pre-specified by the user, or can be determined by some data driven method.
Yousuf and Feng (2018) proposed a model-free feature screening method based on
the partial distance correlation (PDC). More specifically, the PDC between u and v,
controlling for z, is defined as

pdcor(u, v; z) = dcor2(u, v)− dcor2(u, z)dcor2(v, z)√
1− dcor4(u, z)

√
1− dcor4(v, z)

, (10.21)

if dcor(u, z), dcor(v, z) �= 1, otherwise pdcor(u, v; z) = 0. For more details and
interpretation of PDC, see Székely and Rizzo (2014). pdcor(u, v; z) can be estimated
by its sample counterpart ̂pdcor(u, v; z) which replaces dcor by d̂cor in (10.21).

The corresponding feature screening procedure PDC-SIS was introduced in
Yousuf and Feng (2018). They first define the conditioning vector for the lth lag
of predictor series k as Sk,l = (Yt , . . . ,Yt−h,Xt−1,k , . . . ,Xt−l+1,k) with 1 ≤ l ≤
h. Besides that a certain number of lags of Yt are included in the model, the
conditioning vector also includes all lower order lags for each lagged covariate
of interest. By including the lower order lags in the conditioning vector, PDC-
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SIS tries to shrink towards submodels with lower order lags. For convenience, let
C = {S1,1, . . . ,Sm,1,S1,2, . . . ,Sm,h} denote the set of conditioning vectors where
Ck+(l−1)∗m = Sk,l is the conditioning vector for covariate Zt−1,(l−1)∗m+k . The
selected submodel is

M̂νn = {1 ≤ j ≤ p : |̂pdcor(Yt ,Zt−1;Cj )| ≥ νn}. (10.22)

The PDC-SIS attempts to utilize the time series structure by conditioning on
previous lags of the covariates. Yousuf and Feng (2018) also proposed a different
version, namely PDC-SIS+, to improve the performance of PDC-SIS. Instead of
only conditioning on the previous lags of one covariate, PDC-SIS+ also conditions
on additional information available from previous lags of other covariates as well.
To attempt this, PDC-SIS+ identifies strong conditional signals at each lag level and
add them to the conditioning vector for all higher order lag levels. By utilizing this
conditioning scheme we can pick up on hidden significant variables in more distant
lags, and also shrink toward models with lower order lags by controlling for false
positives resulting from high autocorrelation, and cross-correlation.

10.5 Survival Data

10.5.1 Cox Model

Survival analysis is a branch of statistics for analyzing the expected duration of time
until one or more events happen, such as death in biological organisms and failure
in mechanical systems. This topic is referred to as reliability theory or reliability
analysis in engineering, duration analysis or duration modeling in economics, and
event history analysis in sociology. It is inevitable to analyze survival data in many
scientific studies since the primary outcomes or responses are subject to be censored.
The Cox model (Cox, 1972) is the most commonly used regression model for
survival data. Let T be the survival time and x be the p-dimensional covariate vector.
Consider the following Cox proportional hazard model

h(t |x) = h0(t) exp{x�β}, (10.23)

where h0(t) is the unknown baseline hazard functions. In survival analysis, survival
time T is typically censored by the censoring time C. Denote the observed time by
Z = min{T ,C} and the event indicator by δ = 1(T ≤ C). For simplicity we assume
that T and C are conditionally independent given x and the censoring mechanism is
non-informative. The observed data is an independently and identically distributed
random sample {(xi , zi , δi)}, i = 1, . . . , n. Let t01 < · · · < t0N be the ordered distinct
observed failure times and (k) index its associate covariates x(k). R(t) denotes the
risk set right before the time t : R(t) = {i : zi ≥ t}. Under (10.23), the likelihood
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function is

L(β) =
N∏

k=1

h0(z(k)) exp(x�(k)β)
n∏

i=1

exp{H0(zi) exp{x�i β}},

where H0(t) = ∫ t
0 h0(s)ds is the corresponding cumulative baseline hazard

function. Consider the ‘least informative’ nonparametric modeling for H0 with
the form H0(t) = ∑N

k=1 hk1(t
0
k ≤ t), then H0(zi) = ∑N

k=1 hk1(i ∈ R(t0k )).
Consequently the log-likelihood becomes

�(β) =
N∑

k=1

{log(hk)+ x�(k)β} −
n∑

i=1

{
N∑

k=1

hk1(i ∈ R(t0k )) exp(x�i β)

}
. (10.24)

Given β, the maximizer of (10.24) is given by ĥk = 1/
∑
i∈R(t0j ) exp{x�i β}.

Plugging in the maximizer, the log-likelihood function can be written as

�(β) =
⎛

⎝
n∑

i=i
δix�i β −

n∑

i=1

δi log

⎧
⎨

⎩
∑

k∈R(ti )
exp{x�k β}

⎫
⎬

⎭

⎞

⎠ , (10.25)

which is also known as the partial likelihood (Cox, 1972).

10.5.2 Feature Screening for Cox Model

A marginal feature screening procedure is developed in Fan, Feng, and Wu (2010).
The marginal utility ûj of the feature Xj is defined as the maximum of the partial
likelihood only with respect to Xj ,

ûj = max
βj

⎛

⎝
n∑

i=i
δiXijβj −

n∑

i=1

δi log

⎧
⎨

⎩
∑

k∈R(ti )
exp{Xkjβj }

⎫
⎬

⎭

⎞

⎠ . (10.26)

Here Xij is the j th element of xi = (Xi1, . . . ,Xip)�. Intuitively, a larger marginal
utility indicates that the associated feature contains more information about the
survival outcome. One can rank all features according to the marginal utilities from
the largest to the smallest and define the selected submodel

M̂νn = {1 ≤ j ≤ p : ûj > νn}.
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Zhao and Li (2012) proposed to fit a marginal Cox model for each feature,
namely the hazard function has the form h0(t) exp{βjXj } for feature Xj . Let
Ni(t) = 1(zi ≤ t , δi = 1) be independent counting process for each subject i
and Yi(t) = 1(zi ≥ t) be the at-risk processes. For k = 0, 1, . . . , define

S
(k)
j (t) = n−1

n∑

i=1

XkijYi(t)h(t |xi ),

S
(k)
j (β, t) = n−1

n∑

i=1

XkijYi(t) exp{βXij }.

Then the maximum marginal partial likelihood estimator β̂j is defined as the
solution to the following estimating equation

Uj(β) =
n∑

i=1

∫ C

0

{
Xij −

S
(1)
j (β, t)

S
(0)
j (β, t)

}
dNi(t) = 0. (10.27)

Define the information to be Ij (β) = −∂Uj (β)/∂β. The submodel of selected
important feature is given by

M̂νn = {1 ≤ j ≤ p : Ij (β̂j )1/2|β̂j | ≥ νn}.

Zhao and Li (2012) also proposed a practical way to choose the threshold ν̂n
such that the proposed method has control on the false positive rate, which is the
proportion of unimportant features incorrectly selected, i.e., |M̂νn ∩Mc

"|/|Mc
"|.

The expected false positive rate can be written as

E

(
|M̂νn ∩Mc

"|
|Mc

"|

)
= 1

p− s
∑

j∈Mc
"

Pr(Ij (β̂j )
1/2|β̂j | ≥ νn).

Zhao and Li (2012) showed that Ij (β̂j )1/2β̂j has an asymptotically standard normal
distribution. Therefore, the expected false positive rate is 2(1−�(νn)), where �(·)
is the cumulative distribution function of standard normal. The false positive rate
decreases to 0 as p increases with n. In practice, we can first fix the number
of false positives f that we are willing to tolerate, which corresponds to a false
positive rate of f /(p− s). Because s is unknown, we can be conservative by letting
νn = �−1(1− f /p), so that the expected false positive is less than f . The choice
of νn is also related to a false discovery rate (FDR). By definition, the FDR is
|Mc

" ∩ M̂νn |/|M̂νn |, which is the false positive rate multiplying by |Mc
"|/|M̂ν |.

Since |Mc
"|/|M̂ν | ≤ p/|M̂ν |, in order to control the false positive rate at level

q = f /p, we can control the FDR at level f /|M̂νn |. This proposed method is
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called the principled Cox sure independence screening procedure (PSIS) and we
summarize the PSIS as follows.

Step 1. Fit a marginal Cox model for each feature and obtain the parameter
estimate β̂j and variance estimate Ij (β̂j )−1.

Step 2. Fix the false positive rate q = f /p and set νn = �(1− q/2).
Step 3. Select the feature Xj if Ij (β̂j )1/2|β̂j | ≥ νn.

Zhao and Li (2012) showed that this PSIS enjoys the sure screening property and
is able to control the false positive rate. Under regularity conditions (see Appendix
in Zhao and Li (2012)), if we choose νn = �−1(1− q/2), and logp = O(n1/2−κ)
for some κ < 1/2, then there exists constants c1, c2 > 0 such that

Pr(M ⊂ M̂νn) ≥ 1− s exp(−c1n
1−2κ)

and

E

(
|M̂νn ∩Mc

"|
|Mc

"|

)
≤ q + c2n

−1/2.

Distinguished from marginal screening procedure in Fan et al. (2010) and Zhao
and Li (2012), Yang et al. (2016) proposed a joint screening procedure based on
the joint likelihood for the Cox’s model. They considered the constrained partial
likelihood

β̂m = arg max
β

�(β) subject to ‖β‖0 ≤ m, (10.28)

where �(β) is defined in (10.25) andm is some pre-specified integer and is assumed
to be greater than the number of non-zero elements in the true parameter β". The
constraint ‖β"‖0 ≤ m guarantees that the solution β̂m is sparse. However, it is
almost impossible to solve the constrained problem (10.28) in the high dimensional
setting directly. Alternatively, one can approximate the likelihood function by its
Taylor expansion. Let γ be in the neighborhood of β, then

�(γ ) ≈ �(β)+ (γ − β)��′(β)+ 1

2
(γ − β)��′′(β)(γ − β), (10.29)

where �′(β) and �′′(β) are the first and second gradient of �(β), respectively. When
p > n, the Hessian matrix �′′(β) is not invertible. To deal with the singularity of
�′′(β) and save computational costs, Yang et al. (2016) further approximated �(γ )
only including the diagonal elements in �′′(β),

g(γ |β) = �(β)+ (γ − β)��′(β)− u
2
(γ − β)�W(γ − β), (10.30)
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where u is a scaling constant to be specified and W is a diagonal matrix with W =
−diag{�′′(β)}. Then the original problem can be approximated by

max
γ
g(γ |β) subject to ‖γ ‖0 ≤ m. (10.31)

Since W is a diagonal matrix, there is a closed form solution to (10.31) and thus the
computational cost is low. In fact, the maximizer of g(γ |β) without the constraint is

γ̃ = (γ̃1, . . . , γ̃p)
� = β + u−1W−1�′(β).

Denote the order statistics of γ̃j by |γ̃(1)| ≥ |γ̃(2)| ≥ · · · ≥ |γ̃(p)|. The solution
to (10.31) is given by γ̂ = (γ̂1, . . . , γ̂p)� with γ̂j = γ̃j1{|γ̃j | > |γ̃(m+1)|} :=
H(γ̃j ;m). We summarize the joint feature screening as follows.

Step 1. Initialize β(0) = 0.
Step 2. Set t = 0, 1, 2, . . . and iteratively conduct Step 2a and Step 2b until the

algorithm converges.

Step 2a. Compute γ̃ (t) and β̃
(t)

where γ̃ (t)=β(t)+ u−1
t W−1(β(t))

�′(β(t)), and β̃
(t)= (H(γ̃ (t)1 ;m), . . . ,H(γ̃ (t)p ;m))�. Set Mt =

{j : β̃(t)j �= 0}.
Step 2b. Update β by β(t+1) = (β

(t+1)
1 , . . . ,β(t+1)

p )� as follows. If j �∈
Mt , set β(t+1)

j = 0; otherwise, set {β(t+1)
j : j ∈ Mt } be the

maximum partial likelihood estimate of the submodelMt .

This procedure is referred to as sure joint screening (SJS) procedure. Yang
et al. (2016) showed the sure screening property of the SJS under proper regularity
conditions. This SJS is expected to perform better than the marginal screening
procedure when there are features that are marginally independent of the survival
time, but not jointly independent of the survival time. In practical implementation,
Yang et al. (2016) suggested setting m = !n/ log n" in practice based on their
numerical studies.
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Part IV
Dealing with Model Uncertainty



Chapter 11
Frequentist Averaging

Felix Chan, Laurent Pauwels, and Sylvia Soltyk

11.1 Introduction

In combining the results of these two methods, one can obtain a result whose probability
law of error will be more rapidly decreasing – Laplace (1818)

While Bates and Granger (1969) is often considered to be the seminal work that
promoted the benefit of forecast combination, the idea of combining different
approaches to improve performance can be traced back to Laplace (1818) as pointed
out by Stigler (1973). Today, forecast combination is a standard practice both in
academic and policy related work relying on the enormous volume of research in
the past 30 years. As the availability of ‘big data’ becomes more common, so is the
importance of forecast combination. In the era of ‘big data’, a common problem
faced by practitioners is the large number of predictors which is often greater
than the number of observations. Thus, it is not possible to utilise all predictors
in one ‘super model’, at least not in the traditional econometrics sense, which
would involve estimating more parameters than the number of observations. Even if
there are sufficient observations to estimate such a ‘super model’, it often becomes
intractable due to the number of predictors. As such, forecasters often seek more par-
simonious representations. The two most common approaches are model averaging
and forecast combination. As it will become clearer later, the former accommodates
model uncertainty while the latter focus on forecast uncertainty. It is certainly true
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that the two approaches are fundamentally different with different motivations,
together they offer a complementary toolbox to macroeconomic forecasters.

As such, the objective of this chapter is to summarise some of the recent
approaches of model averaging and optimal forecast combination from the per-
spective of macroeconomic forecasting. It covers both point forecasts and density
forecasts. In addition to discussing the various estimators and formulation, a large
part of this chapter is to highlight the current understanding on the foundation of
forecast combination. This is particularly important as noted in Chan and Pauwels
(2018) and Claeskens, Magnus, Vasnev, and Wang (2016), the theoretical foundation
of forecast combination is less than complete and its superior performance is not
guaranteed. The presence of the so-called forecast combination puzzle demonstrates
the lack of theoretical understanding on the foundation of forecast combination.
Thus one of the aims of this chapter is to present the gap in the current theoretical
foundation and encourage further research in this area.

This chapter is organised as follows. Section 11.2 provides an overview of the
basic principles of model averaging from the frequentist perspective. Section 11.3
presents an overview of the optimal forecast combination problem applied to points
forecasts. The asymptotic theory for both the Mean Squared Forecast Error (MSFE)
and Mean Absolute Deviation (MAD) optimal combination weights is derived. This
is followed by Sect. 11.4 which focuses on their applications to density forecasts.
A novel approach of density forecast combination by matching moments is also
proposed. Section 11.5 contains some concluding remarks and discussions on
possible future directions.

11.2 Background: Model Averaging

This section provides some background on frequentist model averaging. It is
important to point out that there exist surveys on the various topics covered in this
section. Moral-Benito (2015) provides an excellent survey on model averaging from
both Bayesian and frequentist perspectives. See also Elliott (2011), Elliott, Gargano,
and Timmermann (2013), Hansen (2007, 2014), Liu and Kuo (2016) for some recent
advances.

While the motivation of model averaging originated from minimising model
uncertainty, such minimisation can also lead to reducing forecast variance. Consider
the following data generating process (DGP)

yt = x′tβ + z′tγ + εt t = 1, . . . , T (11.1)

where xt and zt are M1 × 1 and M2 × 1 vectors of predictors. Both M1 and M2
are fixed finite constant with M = M1 +M2. The difference between the two
sets of predictors is that some or all of the elements in the parameter vector γ
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can be zeros, whereas all elements in β are non-zeros.1 In other words, this setup
allows researchers to nominate variables that are important for their investigation
but unclear about the exact specification of the model amongst a large collection of
predictors. This is particularly relevant if researchers are interested in conducting
statistical inference on β where zt are essentially a set of control variables. Since
Least Squares type estimates of β are generally biased if the model is misspecified
(omitted variable bias), this leads to the problem of selecting appropriate predictors
out of all possible M2 variables in zt . Note that there are in total 2M2 possible
models.

Let � = {F1, . . . ,F2M2 } of all possible models, and let β̂ i be the estimator for
model Fi then the Frequentist Model Average Estimator can be defined as

β̂FMA =
2M2∑

i=1

wi β̂i (11.2)

where wi ∈ [0, 1] with
∑M2
i=1wi = 1. This estimator is shown to be consistent and

asymptotically Normal under fairly standard regularity conditions. Specifically,

√
T
(
β̂FMA − β0

)
d→  (11.3)

where

   =
2M2∑

i=1

wi   i

with   i being the asymptotic distribution of β̂i .
The variance of each element in β̂FMA can be modified further to accommodate
uncertainty surrounding model selection. Buckland, Burnham, and Augustin (1997)
proposed

̂

SE
(
β̂FMA,k

)
=

2M2∑

i=1

wi

√
σ̂ 2
i,k

N
+
(
β̂j ,k − β̂FMA,k

)2
k = 1, . . . ,M1

where σ̂ 2
i,k denotes the variance estimate of β̂i,k . That is, the kth element in the

parameter vector β̂j . For details see Hjort and Claeskens (2003), Claeskens and
Hjort (2003) and Claeskens and Hjort (2008). It should also note that this result
does not hold for perfectly correlated estimators, see Buckland et al. (1997).

1Strictly speaking, some elements in β can be 0 but variables selection is not being conducted on
xt .



332 F. Chan et al.

The theoretical results presented above assume the weights, wi , are fixed. Since
the asymptotic properties of the estimator depends on the weights, as shown in
Eq. (11.3), the choice of weights is therefore important in terms of efficiency and
other statistical properties. While researchers may have some idea about which
models would appear to be more important or more likely in practice, it is difficult
to determine the exact weighting scheme. A common approach for choosing wi is
based on different information criteria, such as Akaike (AIC), Schwarz-Bayesian
(SBIC) and Hannan–Quinn (HQIC). These criteria share a general form which is

ICi = −2 log (Li)+ γi (11.4)

where Li and γi denote the maximum likelihood and penalty functions for model
i = 1, . . . , 2M2 , respectively. The penalty functions of the three aforementioned
criteria are

γ AIC =2N

γ SBIC =2N log T

γHQC =2N log log T

where N and T denote the number of parameters and observations, respectively.
In order to transform the information criteria into a proper weighting scheme,
Buckland et al. (1997) proposes a likelihood ratio

wi = ci
∑2M2
i=1 ci

where ci = exp
(−ICi/2

)
.

Hansen (2007) proposes a slightly different approach to obtain the weights.
Instead of considering the model in the form of Eq. (11.1), Hansen (2007) considers
the following

yt =
∞∑

i=1

πixit + εt , εt ∼ iid
(

0, σ 2
ε

)
t = 1, . . . , T . (11.5)

Under this setup, models with any finite subset of predictors, xit , can be interpreted
as an approximation of Eq. (11.5). Specifically, let model j be the model with the
first Nj predictors in Eq. (11.5), that is

yt =
Nj∑

i=1

πixit + ujt (11.6)
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where

ujt =
∞∑

i=Nj+1

πixit + εt . (11.7)

Equation (11.6) can be expressed in matrix form

y = Xjπ j + uj (11.8)

for convenience. Define an estimator

π̂J (w) =
J∑

i=1

wi

(
π̂ i

0

)
(11.9)

where π̂ j denotes the least squares estimator of π j . Define the Mallow’s criterion
as

MC (w) = [y−XJ π̂J (w)]
′ [y−XJ π̂J (w)]+ 2σ 2

ε w′N (11.10)

where N = (N1, . . . ,NJ ). The optimal weight based on minimising the Mallow’s
criterion is therefore

ŵMC = arg min
w∈W

MC (w) . (11.11)

Model averaging based on ŵMC is often called the Mallows Model Averaging
(Moral-Benito, 2015) which contains certain optimality properties. Specifically, if
ŵMC is constrained to a discrete set in W then the estimator has the lowest possible
squared error. This result, however, does not hold if εt is not homoskedastic. Hansen
and Racine (2012) proposes the Jackknife Model Averaging which is asymptotically
optimal (least squared error) in the presence of heteroskedastic errors.

11.3 Forecast Combination

In standard model averaging as introduced above, the central idea is to estimate
(a subset of) the parameter vector by combining the parameter vector estimates
from different model specifications. The forecast can then be generated through
this ‘combined’ parameter vector. While this approach would be robust to model
specification, or more specifically, robust to different variable selection bias, the
forecast performance from this ‘combined’ estimate is not clear. A more direct
approach, is to combine the forecast generated from different models in such a way
that would minimise a specific forecast criterion.
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Since the seminal work of Bates and Granger (1969), the combination of point
forecasts have been widely studied and implemented as a way to improve forecast
performance vis-à-vis the forecasts of individual models. Bates and Granger (1969)
considered a weighted linear combination of a pair of point forecasts using the
relative variance and covariances to construct a combined forecast that minimised
the MSFE. The seminal paper by Bates and Granger (1969) resulted numerous
studies, including work by Newbold and Granger (1974), Granger and Ramanathan
(1984) and Diebold (1989). Clemen (1989)’s survey of the literature, reviewing over
200 papers, up until the time of its publication concluded that when the objective
is to minimise MSFE, the simple average of the individual forecasts generally
outperforms the forecast combination with optimal weights.

Despite its age, the survey by Timmermann (2006) remains an authority on
forecast combination. Some recent advances, however, can be found in Claeskens
et al. (2016) and Chan and Pauwels (2018). Other significant works in the literature
will also be presented and highlighted throughout the rest of the chapter.

Timmermann (2006) presents further motivation to combine forecasts, adding
to the well-known result that forecast combination lead to improved forecast
performance (smaller MSFE) compared to individual forecasts. These motivations
can be summarised as follows:

1. Pooling the underlying information set from each individual forecast model to
construct a full information set may not be possible due to the often unavailable
individual model information sets. Using Monte Carlo simulation, Hsiao and
Wan (2014) find that when the full information set is available, the combination
of information is preferred over forecast combination, otherwise combining
methods are preferred over individual forecasts.

2. Different models have varying adaptation rates to structural breaks. Pesaran and
Timmermann (2007) show that combinations of forecasts from models with
varying levels of adaptability to structural break will outperform forecasts from
individual models. For structural break and forecast combination, see amongst
others: Diebold and Pauly (1987), Hendry and Clements (2004), Jore, Mitchell,
and Vahey (2010), Tian and Anderson (2014) and Hsiao and Wan (2014).

3. Combining forecasts of different models may result in increased robustness
regarding both model misspecification biases which may be present in the
individual forecast models, and measurement errors in the underlying data sets
of the individual forecasts (Stock & Watson, 1998, 2004). This is particularly
prominent when forecast combination is conducted jointly with model averaging.

These motivations are driven mostly by empirical observations rather than the-
oretical investigation. The theoretical underpinning of forecast combination has
received less attention in the literature until recently by Smith and Wallis (2009),
Elliott (2011), Claeskens et al. (2016) and Chan and Pauwels (2018) to mention a
few. Chan and Pauwels (2018) derive the necessary and sufficient conditions for a
simple average forecast combination to outperform an individual forecast, and hence
provide broad theoretical justification why forecast combination works.
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11.3.1 The Problem

This section presents the forecast combination problem. The discussion follows
closely to the framework proposed by Chan and Pauwels (2018) and enables the
derivation of most of the basic results in the literature on combining point forecasts.

It is often convenient to express the variable of interest as a sum of its forecast
and forecast error as shown in Chan and Pauwels (2018). Specifically, consider

yt = ŷit + νit i = 0, · · · ,K (11.12)

where νit are the forecast errors. Define ‘best forecast’ under a given forecast
criterion (loss function), L

(
yt , ŷit

)
, as

Definition 11.1 Let ŷ0t be the best forecast for yt under the loss function L
(
yt , ŷt

)

then for any ε > 0,

Pr
[
L
(
yt , ŷ0t

)
< ε
] ≥ Pr

[
L
(
yt , ŷit

)
< ε
] ∀i = 1, . . . ,K . (11.13)

Following from the standard result in stochastic dominance, Definition 11.1 implies
that

E
[
L
(
yt , ŷ0t

)] ≤ E
[
L
(
yt , ŷit

)] ∀i = 1, . . . ,K . (11.14)

The expression in Eq. (11.14) is more common from a practical viewpoint as
Definition 11.1 is difficult to verify in practice.

Let ŷ0t denotes the best forecast of yt based on Definition 11.1 and the forecast
criterion (loss function) L

(
yt , ŷit

) ≥ 0. Define uit = ν0t − νit , rearranging
Eq. (11.12) yields

ŷit = yt − ν0t + uit i = 1, · · · ,K . (11.15)

This framework decomposes the prediction errors νit into two parts. The first
part, ν0t , represents the prediction error of the best forecast, and the second part,
uit , represents the difference in prediction errors between the best forecast and
forecast i.

Equation (11.15) can be written in matrix form. Let Y = (y0, · · · , yT )′, ŷt =(
ŷ1t , · · · , ŷKt

)′, Ŷ = (ŷ1, · · · , ŷT
)′, Ŷ0 =

(
ŷ01, · · · , ŷ0T

)
and u = (u1, · · · , uT )′

with ut = (u1t , · · · , uKt )′, νt = (ν1t , · · · , νKt )′ with ν = (ν1, · · · , νT )′ and ν0 =
(ν01, · · · , ν0T )

′. Equation (11.15) is expressed as

Ŷ = (Y− ν0)⊗ i′ + u (11.16)

where i denotes a k × 1 vector of ones, and ⊗ denotes the Kronecker product.
Forecasts for t = 1, · · · , T , based on a linear combination of forecasts from the
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k models, are therefore

Ŷw = Yi′w− ν0i′w+ uw. (11.17)

If w is an affine combination, i.e., i′w = 1, then ν0+uw is a T ×1 vector containing
the forecast errors of the forecast combination. If w is not an affine combination,
then Ŷw does not produce unbiased forecasts because E

(
Ŷw
)
= E (Y) i′w, under

the standard assumptions that E (ν0t ) = E (uit ) = 0 for all i and t . Hence the affine
constraint, i′w, plays a significant role in avoiding potential bias due to forecast
combination.

These forecasts can be based on models with different predictors but it can also be
‘subjective’ forecasts, i.e., not generated by any particular models or predictors such
as professional forecaster surveys. Perhaps more importantly, it can also contain
forecasts generated by combinations of other forecasts in ŷt .

The fundamental problem in forecast combination which can be presented as the
following optimization problem for point forecast

w∗ = arg min E
[
L
(
yt , w′ŷt

)]
(11.18)

s.t. i′w =1. (11.19)

where i denotes a column of 1’s. While this setup is convenient for theoretical
analysis, it is often not straightforward to evaluate the expectation in (11.18) without
any assumption on the distribution of forecast errors. As such, the finite sample
counterpart of Eq. (11.18) is used to estimate the optimal weight. Specifically,
practitioners solve

ŵ = arg min T −1
T∑

t=1

L
(
yt , w′ŷt

)
(11.20)

s.t. i′w =1. (11.21)

11.3.2 Forecast Criteria

An important aspect in forecasting is the criteria with which the forecasts are
being evaluated, and hence the specification of E

[
L
(
yt , w′ŷt

)]
in the optimization

problem in Eqs. (11.18) and (11.19). The fundamental problem is to seek a
combination of ŷt |s to produce the ‘best’ forecast for yt under some specific loss
function or forecast criterion. The following three loss functions are amongst the
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most popular forecast criteria:

LMSFE
(
yt , ŷt

) = (yt − ŷt
)2 (11.22)

LMAD
(
yt , ŷt

) = ∣∣yt − ŷt
∣∣ (11.23)

LMAPE
(
yt , ŷt

) =
∣∣∣∣
yt − ŷt
yt

∣∣∣∣ . (11.24)

The sample counterparts of Eqs. (11.22)–(11.24) give the well-known forecast
criteria

MSFE =T −1
T∑

t=1

(
yt − ŷt

)2 (11.25)

MAD =T −1
T∑

t=1

∣∣yt − ŷt
∣∣ (11.26)

MAPE =T −1
T∑

t=1

∣∣∣∣
yt − ŷt
yt

∣∣∣∣ . (11.27)

where T denotes the number of forecasts generated. Equation (11.25) is the
well-known Mean Squared Forecast Error, Eq. (11.26) gives the Mean Absolute
Deviation or Mean Absolute Error and Eq. (11.27) is the Mean Absolute Percentage
Error. Under the assumptions of the Weak Law of Large Numbers (WLLN),

T −1
T∑

t=1

L
(
yt , ŷt |s

)− E
[
L
(
yt , ŷt |s

)] = op(1). (11.28)

Equation (11.28) gives an important insight about forecast evaluation in practice
as pointed out by Chan and Pauwels (2018). The three forecast criteria as defined
in Eqs. (11.25)–(11.27) can be interpreted as the estimated mean of the forecast
errors, et = yt − ŷt . Like any other estimators, the estimates are subject to finite
sampling errors. Therefore, simple ranking based on these criteria is not sufficient
to identify the ‘best’ model. Statistical tests must be conducted in order to determine
if a set of forecasts does in fact produce superior performance over another. See for
examples, Harvey, Leybourne, and Newbold (1997), Clark and West (2006, 2007)
and the references within.

This problem is amplified when the number of forecasts,K , is large. One possible
way to reduce the complexity is by combining these forecasts in a way that would
minimise a specific forecast criterion. There are at least two possible approaches,
namely model averaging and forecast combination. Note that these approaches are
not mutually exclusive. In fact, they can be used jointly in minimising a specific
forecast criteria. A more thorough discussion can be found in Sects. 11.2 and 11.3.1.
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11.3.3 MSFE

Consider the optimization problem as presented in Eqs. (11.18) and (11.19) with
the MSFE loss function in Eq. (11.22). The Lagrangian function associated with the
optimization problem is

L = E [yt −w′ŷt ]2 + λ
(
1−w′i

)
. (11.29)

Note that yt = ŷit + νit where yit denotes the forecast of yt from model i with νit
denotes the forecast error of model i. Thus, under the affine constraint, Eq. (11.29)
can be written as

L = w′���w+ λ (1−w′i
)

(11.30)

where��� = E(νtν
′
t ) is the variance-covariance matrix of forecast errors from the K

competing models, with νt = (ν1t , . . . , νkt )′.
Differentiate Eq. (11.29) with respect to w and λ and set them to zero gives

∂L

∂w

∣∣∣∣
w=w∗,λ=λ∗

=2���w∗ − iλ∗ = 0 (11.31)

∂L

∂λ

∣∣∣∣
w=w∗,λ=λ∗

=1−w∗′i = 0. (11.32)

Pre-multiply the first equation above with w and using the second equation, wi = 1,
gives

λ∗ = 2w∗′���w∗ (11.33)

and therefore

���w∗ − iw∗′���w∗ = 0. (11.34)

Rearranging gives

���w∗
(
w∗′���w∗

)−1 = i. (11.35)

The expression in Eq. (11.35) turns out to be extremely useful in terms of under-
standing the properties of forecast combination under MSFE. This includes the
conditions that leads to the simple average being the optimal weight vector, w∗ =
K−1i. For more details, see Chan and Pauwels (2018).

It is, however, also possible to derive a closed form solution for w∗ under the
assumption that��� is positive definite with non-zero determinant. Note that the first
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order conditions as shown in Eqs. (11.31) and (11.32) form a linear system, that is

(
2��� −i
i′ 0

)(
w∗
λ∗
)
=
(

0
1

)
.

Since���−1 exists, the coefficient matrix has the following inverse

(
1
2

[
���−1 −���−1i

(
i′���−1i

)−1 i′���−1
]
���−1i

(
i′���−1i

)−1

− (i′���−1i
)−1

i′���−1 2
(
i′���−1i

)−1

)

and solving for the optimal weight w∗ gives

w∗ = ���−1i
(

i′���−1i
)−1

(11.36)

Given convexity of the loss function, this solution is a unique global minimum of
the optimization problem.

An interesting observation from the existing literature is that there appears to be
a lack of statistical results on the estimated optimal weight. While there exists a
closed form solution for minimising MSFE under the affine constraints, as shown
in Eq. (11.36), the variance-covariance matrix of the forecast error, ���, is seldom
known in practice. This means the optimal weight must be estimated, rather than
calculated, based on the estimated variance-covariance matrix. Also worth noting is
that only the sample counterpart of the loss function can be calculated in practice,
which leads to finite sampling errors. Thus, the estimation errors from estimating���,
along with the finite sample errors in computing MSFE, provide two major causes to
the ‘forecast combination puzzle’ as noted by Claeskens et al. (2016) and Chan and
Pauwels (2018). Given the stochastic nature of the problem, distributional properties
of the optimal weight vector would appear to be useful in practice. Specifically, the
asymptotic distribution of the estimated optimal weight can facilitate inferences and
provide a mean to test statistically the estimated weight against other weighting
schemes, such as simple average.

Let ŵMSFET = �̂��
−1
T i
(

i′�̂��−1
T i
)−1

where �̂��T denotes the sample estimate of

��� based on T observations. Consider the following assumptions for purpose of
deriving asymptotic results for the estimate of the optimal weight vector.

(i) νt is independently and identically distributed with finite first and second
moments.

(ii) �̂��T is a consistent estimator of ��� such that �̂��T − ��� = op(1) and√
T vec

(
�̂��T −���

)
∼ N(0, A).

(iii) There exists 0 < η <∞ such that
(

i′�̂��−1
T i
)
− η = op(1).
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These assumptions are fairly mild and somewhat standard. Assumption (i)
imposes existence of moment on the forecast errors. Note that this assumption does
not exclude the case where yt is integrated with order 1. In other words, yt can have
a unit root, as long as all models for yt induce forecast errors that have finite second
moment. Assumption (ii) requires that the variance-covariance matrix of the forecast
errors can be estimated consistently. While it can be numerically challenging, it can
generally be achieved in practice. Assumption (iii) is to ensure that the closed form
solution of the optimal weights exists under MSFE.

The asymptotic distribution of ŵMSFET under �̂��T can be found in Proposi-
tion 11.1.

Proposition 11.1 Under Assumption (iii),
√
T vec

(
ŵMSFET −w∗

) ∼N (0, B)
where

B = 1

η2

(
i′���−1 ⊗���−1

)
A
(
���−1i⊗���−1

)
(11.37)

with A denotes the variance-covariance matrix of vec
(
�̂��
−1
T

)
and η = i′���−1i.

Proof See Appendix. ��
The literature has investigated various aspects of forecast combinations. One of

the main issues is centred around the fact that taking a simple average of forecasts
often provides a simple and effective way to combine forecasts. Two questions have
been investigated, namely: Why does the simple average often outperform more
complex weighting techniques in practice? And, is the simple average optimal? The
former question has been named the ‘forecast combination puzzle’ by Stock and
Watson (2004).

The Forecast Combination Puzzle

While the aforementioned literature at the beginning of Sect. 11.3 presents the
justification for using forecast combination and the closed form solution derived
above in Eq. (11.36) appears to be straightforward to compute in practice, the
common empirical finding known as the ‘forecast combination puzzle’ continues to
be of interest in the literature. The puzzle arises from the empirical observation that
the simple average generally outperforms more complicated weighting strategies.

Stock and Watson (1998) compare 49 univariate forecasting methods and
various forecast combination methods using U.S. macroeconomic data, while
Stock and Watson (2004) examine numerous linear and non-linear forecasting
models and forecast combination methods for macroeconomic data from seven
countries. In both of these papers, the authors find that various combination methods
outperformed individual forecasts, with the simple average and median forecast
combination being best according to MSFE. Marcellino (2004) extended their
analysis to European data and arrived at similar conclusions.
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Smith and Wallis (2009) propose an explanation for the ‘forecast combination
puzzle’ by re-examining the Survey of Professional Forecasters (SPF) data used
in Stock and Watson (2003) and by using Monte Carlo simulations. The authors
explain that the ‘forecast combination puzzle’ is due, in part, to the parameter
estimation effect: the estimation error in the weight estimation process results in
finite sample errors; hence, the simple average outperforms the weighted schemes
with respect to MSFE. The authors recommend omitting the covariances between
forecast errors and calculate the weight estimates on the (inverse) MSFE (in contrast
to Bates and Granger, 1969). Elliott (2011) elaborates, showing that not only must
there be estimation error, relatively the gains from optimal weight estimation must
be small for the ‘forecast combination puzzle’ to hold.

While the majority of the literature finds that the simple average of forecasts
generally outperforms more complicated weighing strategies empirically, there are
exceptions. Aiolfi, Capistrán, and Timmermann (2010) discuss how to combine
survey forecasts and time series model forecasts, and apply these methods to SPF
data. The authors find that the simple average weighted survey forecast outperforms
the best individual time series forecast the majority of the time, but combining
both survey forecasts and a selection of time series forecast combination, there is
an improved performance overall. Genre, Kenny, Meyler, and Timmermann (2013)
analyzed various weighting schemes using European Central Bank SPF data, and
found that some of the more complicated methods outperformed simple averages
occasionally; however, no approach consistently outperformed the simple average
over time and over a range of target variables. Pinar, Stengos, and Yazgan (2012) use
stochastic dominance efficiency to evaluate a number of time series model forecast
combination and find that the simple average does not outperform a number of more
complicated weighting strategies where the weights are estimated.

Is the Simple Average Optimal?

Until recently, theoretical investigations in the literature have raised the question:
is the simple average combination optimal or is this finding a result of some other
mechanism? Some of the ambiguous results suggest that further investigation into
the theoretical properties of forecast combination is necessary to clarify whether the
simple average is optimal and why the ‘forecast combination puzzle’ occurs.

Claeskens et al. (2016) offer a theoretical solution to the ‘forecast combination
puzzle’ and conclude that forecast combination is biased when the weights are
estimated, and the variance of the combined forecast is larger than the simple
average where the weights are not estimated. Hsiao and Wan (2014) propose the use
of different geometric approaches and impose a multi-factor structure on forecast
errors to combine forecasts with and without the presence of structural break. The
authors provide the necessary and sufficient condition when the simple average
is an optimal combination for their approaches. Some of the results in Hsiao and
Wan (2014) are generalized by Chan and Pauwels (2018). Chan and Pauwels (2018)
derive the necessary and sufficient condition for the forecast of an individual model
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to outperform the simple average forecast combination. Together, these two papers
confirm the hypotheses put forward by Elliott (2011) theoretically. These conditions
lead to the case where the simple average is the optimal weight, and are represented
in the expression in Eq. (11.35) in Sect. 11.3.3.

In the literature, it is common to rank the performance of individual forecasts and
their combination using MSFE. Recall Eq. (11.28) in Sect. 11.3.2. This equation
gives an important insight about forecast evaluation. The three forecast criteria
defined in Eqs. (11.25)–(11.27) can be interpreted as estimated mean of the forecast
errors, which means that MSFE, for example, is subject to finite sampling errors.
This is because it is an estimator of the forecast errors and may not be a consistent
estimator. Therefore, ranking based on MSFE or any of the three forecast criterion
is not sufficient to identify the optimal model or combination. Statistical tests must
be conducted in order to determine if a set of forecasts or model does in fact
produce superior performance over another. The asymptotic result presented in
Proposition 11.1 should prove useful in this regard. See also Chan and Pauwels
(2018) for some further discussion.

Elliott and Timmermann (2004) observe that the vast majority of studies in the
literature base performance of forecast combination on MSFE. Generally, most of
these studies have found that the simple average combination is optimal. The authors
discuss that this result may not arise when there are asymmetries in the loss function
and skewness in the forecast error distribution, which raises the question of optimal
forecasts under general loss functions, rather than simply using the symmetric loss
function MSFE.

Also noted is the work of Hansen (2008) who suggests that the combination
weights should be chosen by minimising the Mallows criterion, a variation of
Eq. (11.10) that gives an approximation of MSFE by the sum of squared errors and
a penalty term, therefore addressing the trade-off between model complexity and fit.

11.3.4 MAD

The literature on combining point forecasts has focused mainly on MSFE, with
some notable exception including Chan and James (2011) and Chan and Pauwels
(2019). The former investigates the benefit of forecast combination in forecasting
conditional variance and when the forecast criteria is not a well behaved mathemat-
ical function, such as the number of Value-at-Risk violations. The latter provides
a theoretical exposition on the performance of forecast combination under Mean
Absolute Deviation. The authors show that, under mild assumptions, the optimal
solution under minimising MSFE is the same as minimising MAD. The key to this
equivalence result is due to the affine constraint, specifically, Eq. (11.19).

The solution to the optimization problem as presented in Eqs. (11.18) and
(11.19) with MAD as defined in Eq. (11.23) is not straightforward to obtain. Due
to the non-differentiability nature of the loss function, the derivation of the First
Order Necessary Conditions (FONC) is somewhat technical as shown in Chan and
Pauwels (2019). The authors show that the necessary and sufficient condition for the
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optimal solution must satisfy

E
(
u|ν0 + u′w∗ > 0

)
Pr
(
ν0 + u′w∗ > 0

)

= E
(
u|ν0 + u′w∗ < 0

)
Pr
(
ν0 + u′w∗ < 0

)
.

(11.38)

Surprisingly, the MSFE optimal weight is the same as the MAD optimal weight
when solving Eqs. (11.18) and (11.19) as shown in Chan and Pauwels (2019). This
equivalence has several implications. First, given the result in Proposition 11.1,
the asymptotic distribution of the estimated optimal weight under MAD can be
derived directly by an application of epi-convergence. The basic idea is to establish
the connection between the asymptotic distributions of the solutions from different
optimization problem. For a more technical introduction to the concept see Knight
(1998, 2001).

Proposition 11.2 Let ŵMADT be the solution to the minimisation problem
as defined in Eqs. (11.20) and (11.21). Under the Assumptions (i)–(iii),√
T vec

(
ŵMADT −w∗

) ∼ N (0, B) where

B = 1

η2

(
i′���−1 ⊗���−1

)
A
(
���−1i⊗���−1

)

with A denotes the variance-covariance matrix of vec
(
�̂��
−1
T

)
and η = i′���−1i.

Proof See Appendix. ��
Given the equivalence of the two optimal solutions, it is perhaps not surprising
that both share the same asymptotic distribution as implied by Propositions 11.1
and 11.2.

The second implication is that there are two choices for estimating the optimal
weight under MSFE and MAD. The first utilises the closed form solution as shown
in Eq. (11.36) and the second requires solving the FONC as show in Eq. (11.38)
numerically or solving the optimization problem as shown in Eqs. (11.20)
and (11.21) with linear programming techniques. The latter would appear to be
more computationally intensive but the closed form solution requires estimating the
variance-covariance matrix of the forecast errors, which is known to be a difficult
problem whenK is large. It is also well known that the estimation of large variance-
covariance matrix can be extremely sensitive to outliers. The optimal choice
between these options remains unclear and could be an area for future research.

11.4 Density Forecasts Combination

The majority of studies in the literature have focused on combination of point
forecasts, which generally does not provide any description of the associated
uncertainty. A number of authors have attempted to provide some estimate of
uncertainty for point forecasts by extending the theory to interval forecasts (see,
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for example, Chatfield (1993) and Christoffersen (1998)). Moreover, as noted by
Diebold and Lopez (1996), forecasts of economic and financial variables are often
represented by probabilities. A density forecast is an estimate of the probability
distribution of the possible future values of a variable. On density forecasting see, for
example, Diebold, Gunther, and Tay (1998), Corradi and Swanson (2006) provide
a survey on the evaluation of density and interval forecasts, and Tay and Wallis
(2000) for a comprehensive survey on density forecasting. Since the combination of
point forecasts generally provides better forecasting results compared to individual
forecasts, a natural extension of this framework is density forecast combination.

Wallis (2005) uses equally weighted combined density forecasts to demonstrate
the statistical framework for combining density forecasts. To find optimal weights
for density forecasts, Mitchell and Hall (2005), Hall and Mitchell (2007) and
Geweke and Amisano (2011) propose to maximise the average logarithmic score
of the combined density forecasts by minimising the Kullback–Liebler distance
between the forecasts and the ‘true’ densities, to obtain a linear combination of
the density forecasts. This approach is summarised as optimization problems in the
next section.

Kascha and Ravazzolo (2010) compare linear and logarithmic combinations of
density forecasts using equal weights, recursive log score weights and (inverse)
MSFE weights. The authors find that while the combinations do not always
outperform individual models, they provide insurance against selecting an
inappropriate individual model. Kapetanios, Mitchell, Price, and Fawcett (2015)
allow the density combination weights to follow a more general scheme by letting
the weights depend on the variable of interest using piecewise linear weight
functions. The authors find that their generalized density forecast combination
outperforms the linear counterparts proposed in the preceding literature. Pauwels
and Vasnev (2016) show that the number of forecasting periods must be sufficiently
large for the asymptotic properties of the method proposed by Hall and Mitchell
(2007) to hold. The authors note that if the number of forecasting periods is small,
the optimal weights by Hall and Mitchell (2007) may result in only one density
being selected, rather than a combination. In contrast to the preceding authors who
use linear and logarithmic combinations of densities, Busetti (2017) proposes a
slightly different approach by averaging the quantiles of the individual densities
using a method known as quantile aggregation.

11.4.1 Optimal Weights

A popular formulation using the concept of Kullback–Leibler divergence leads to
the following optimization problem

w∗ KLIC = arg min
w

∫
f (y) log

(
f (y)

w′p(y)

)
dy (11.39)

s.t. i′w =1 (11.40)
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where f (y) denotes the true probability density of the variable yt and p(y) =
(p1(y), . . . ,pk(y))′ denotes the vector of K competing forecast densities. Equa-
tion (11.39) represents the most common forecast criterion for density forecast,
namely, the Kullback–Liebler Information Criterion (KLIC). Again, Eqs. (11.39)
and (11.40) are convenient for theoretical analysis but it is generally not practical
since the underlying distribution is often unknown. In fact, if f (y) is known, then
there is no need for density combination!

Similar to point forecast, practitioners are therefore required to solve the
finite sample counterpart of the optimization problem as presented in Eqs. (11.39)
and (11.40). That is,

ŵKLIC = arg min
w

T −1
T∑

t=1

log ft (yt )− log
(
w′pt (yt )

)

s.t. i′w =1

where ft (yt ) denotes an empirical estimate of f (y). However, since ft (yt ) does
not involve w and it can be considered fixed. The optimization problem can be
simplified further to

ŵ = arg max
w

T −1
T∑

t=1

log
(
w′pt (yt )

)
(11.41)

s.t. i′w =1. (11.42)

The optimal weights, ŵ, obtained from optimizing (11.41) subject to (11.42) are
often called log score weights as introduced by Mitchell and Hall (2005), Hall and
Mitchell (2007) and Geweke and Amisano (2011).

The consistency and asymptotic distribution of the optimal log score weights
are derived in Pauwels, Radchenko, and Vasnev (2018). Pauwels et al. (2018)
show that under some assumptions these log score weights are consistent as the
number of observations increase (Theorem 3.1). Furthermore, the weights are shown
to be asymptotically normal under mild conditions (Theorem 3.2). The authors
also extend the KLIC optimization framework subject to high moment constraints
and derive the corresponding asymptotic theory. This is particularly relevant when
making Value-at-Risk forecasts especially when the data exhibit asymmetry and fat
tails.

11.4.2 Theoretical Discussions

As shown in the results below, it is often convenient to explore the theoretical
properties of density forecast combination by using concepts from information
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theory. Let f (y) and p(y) be two density functions with f (y) being the true density
function for the random variable yt . Define

H(f ) =−
∫
f (y) log f (y)dy (11.43)

H(p||f ) =−
∫
f (y) logp(y)dy (11.44)

Equations (11.43) and (11.44) define the entropy and cross entropy for the random
variable, Y , respectively. Note thatH(f ) ≥ 0 andH(f ||p) ≥ 0. The KLIC between
f and p is defined as

D(p, f ) =
∫
f (y) log

f (y)

p(y)
dy. (11.45)

Straightforward algebra shows that D(p, f ) = H(p||f )−H(f ). Gibbs inequality
ensures that KLIC is always positive. An implication is that H(p||f ) ≥ H(f ) with
equality if and only if p(y) = f (y). Recall the optimization problem as defined in
Eqs. (11.39) and (11.40). Under the assumption that H(f ) = ∫ f (y) log f (y)dy =
E (log f (y)) is well defined, the optimization can be rewritten as

w∗ KLIC = arg max
w

∫
f (y) log

(
w′p(y)

)
dy

s.t. w′i =1.

Note that the objective function in this case is−H(w′p||f ) as defined in Eq. (11.44).
This is the population version of the objective function in Hall and Mitchell (2007).
The Lagrangian is

L(w) =
∫
f (y) log

(
w′p(y)

)
dy − λ (w′i− 1

)
(11.46)

and the first order necessary conditions are therefore

∂L

∂w

∣∣∣∣
λ=λ∗,w=ŵKLIC

=
∫
f (y)

p(y)
w′p(y)

dy − λi = 0 (11.47)

∂L

∂λ

∣∣∣∣
λ=λ∗,w=ŵKLIC

=w′i− 1 = 0. (11.48)

Pre-multiplying Eq. (11.47) with w′ and simplifying using Eq. (11.48) gives λ = 1
and this implies the optimal weight vector must satisfy

∫
p(y)

w′p(y)
f (y)dy = i (11.49)
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or

E

(
p(y)

w′p(y)

)
= i. (11.50)

Several theoretical considerations are warranted here. The first is concerned
with the performance of density forecast when the weight vector is the solution
to the optimization problem as stated in Eqs. (11.39) and (11.40). The following
propositions shed light on this issue.

Proposition 11.3 Let p(y) = wp1(y) + (1 − w)p2(y) then D(p, f ) ≤
wD(p1, f )+ (1−w)D(p2, f ).

Proof See Appendix. ��
Proposition 11.3 provides the upper bound of divergence for forecast density
combination and it is the density forecast combination analogue to Proposition 1
in Chan and Pauwels (2018). An implication of this result is that it is possible
for individual density forecast to outperform forecast combination and forms the
foundation to demonstrate the relative performance of optimal weight as shown in
Proposition 11.4.

Proposition 11.4 Let w satisfies Eq. (11.49), then D(w′p, f ) ≤ D(pi , f ) for all
i = 1, . . . N .

Proof See Appendix. ��
Following from Proposition 11.3, Proposition 11.4 shows that forecast combination
based on the optimal weight as derived in Eq. (11.49) will improve density forecast
in the KLIC sense. This demonstrates the fact that, similar to point forecast,
combining density forecast will in general, improve forecast performance, at least
in the KLIC sense.

The second theoretical consideration is the density counterpart of the ‘forecast
combination puzzle’. That is, how well will the simple average of density forecast
perform? This is partially answered by the proposition below.

Proposition 11.5 The simple average will outperform an individual density, pi(y),
in the KLIC sense if

E

(
pi(y)

i′p(y)

)
< log

1

N
. (11.51)

Proof See Appendix. ��
Proposition 11.5 suggests that simple average may still outperform individual
density if there are sufficient additional information from combining different
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densities.2 In other words, there must be additional information content from the
other densities in order for the simple average to be beneficial, even though the
simple average is not the optimal weight.

11.4.3 Extension: Method of Moments

The method discussed above uses KLIC as a measure of ‘distance’ between the
two densities. An alternative approach to this is to seek a linear combination of
the K densities, so that the resulting random variable shares certain features, such
as the same set of moments, with yt . This is akin to the generalized method of
moments proposed by Hansen (1982). There are two motivations of this approach,
one theoretical and one practical.

The theoretical motivation is that the minimisation of KLIC aims to seek a linear
combination so that the two densities are as ‘close’ to each other as possible. This
applies to the density over all, which means certain aspects of the distribution
may not be as close as it could be in order for the other features to be ‘closer’
such that the ‘closeness’ overall is achieved. However, there are applications where
certain features of the distribution are more important than the others. This method
allows practitioners, at least in principle, to choose which aspects or features of
the distribution are more important. For example, when applied to the forecast of
Value-at-Risk, the variance and the kurtosis of the distribution would perhaps be
more important than other moments. See, for example, Chan and James (2011) and
Pauwels et al. (2018) for further discussion.

The practical motivation for this extension is that there is no closed form solution
to Eq. (11.50). Numerical methods must be employed in order to obtain the optimal
weight vector for density forecast combination when optimizing KLIC. However, a
closed form solutions is often possible for the method of moments as shown below.

Following from the previous section, the basic idea is to stipulate a linear
combination of densities, p(y) = w′p(y), to produce a combined density which
has a set of moments as close to the moments of yt as possible. Note that the j th
moment of p(y) is

∫
yjp(y)dy =

∫
yjw′p(y)dy

=w′
∫
yjp(y)dy

2More specifically, the proposition shows that the additional information from combining different
densities must be greater than N nit.
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and therefore

w′
[∫
yp(y)dy, . . . ,

∫
yNp(y)dy

] = μpw

where

μp =

⎡

⎢⎢⎣

μ1,1 . . . μK ,1
...

. . .
...

μ1,N
. . . μK ,N

⎤

⎥⎥⎦ (11.52)

with μi,j denotes the j th moment implied by the i density, pi(y). Let μ =
(μ1, . . . ,μN) be the vector of the raw N moments of yt , then one can seek the
linear combination to minimise the following quadratic form

ŵMM = arg min
w

(
μpw−μ

)′ (
μpw−μ

)
(11.53)

s.t. i′w =1. (11.54)

Under the assumption that the N th moment of yt exists and N ≥ K such that
μ′pμp is non-singular, it is straightforward to obtain a closed form solution to the
optimization problem defined in Eqs. (11.53) and (11.54).

The Lagrangian associated with the optimization problem is

L = (μpw−μ
)′ (

μpw−μ
)+ λ (1− i′w

)
. (11.55)

The FONC is therefore

∂L

∂w

∣∣∣∣
w=ŵMM ,λ=λ∗

=2μ′p
(
μpw−μ

)− λi = 0 (11.56)

∂L

∂λ

∣∣∣∣
w=ŵMM ,λ=λ∗

=1− i′w. (11.57)

Under the affine constraint and pre-multiplying Eq. (11.56) with w′ implies

λ∗ = 2ŵMM′μ′p
(
μpŵMM −μ

)
. (11.58)

Similar to the optimal weight for combining point forecast under MSFE, the
FONC as stated in Eqs. (11.56)–(11.58) forms a linear system. That is

(
2U −i
i′ 0

)(
ŵMM

λ∗
)
=
(

2μ′pμ
1

)
(11.59)
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where U = μ′pμp. Under the assumption that U is non-singular, then the coefficient
matrix in Eq. (11.59) has the inverse

(
1
2

[
U−1 −U−1i

(
i′U−1i

)−1
i′U−1

]
−U−1i

(
i′U−1i

)−1

− (i′U−1i
)−1

i′U−1 2
(
i′U−1i

)−1

)
.

Solving for ŵMM gives

ŵMM = U−1
[
μ′pμ− i

(
i′U−1i

)−1 (
i′U−1μ′pμ− 1

)]
. (11.60)

One potential drawback of this approach is that N ≥ K is a necessary condition
for U to have an inverse. While the existence of all N moments seems restrictive,
especially if K large, it is possible to replace the raw moment constraints with a
set of orthogonality conditions. This is in the same spirit as the generalized Method
of Moments proposed by Hansen (1982) which extend the method of moments by
replacing the moment constraints with a set of orthogonality conditions. In other
words, practitioners may be able to propose N distinct features of the distribution
that are important without imposing strict existence on higher order moments.

Let g(w) be a N × 1 vector of twice differentiable functions, then consider the
following optimization problem

ŵGMM = arg min
w

g′(w)g(w)

s.t. i′w =1.
(11.61)

Again, construct the associated Lagrangian function which leads to the following
first order condition

∂L

∂w

∣∣∣∣
w=ŵGMM ,λ=λ∗

=2
∂g′

∂w
g(w)λi = 0

∂L

∂λ

∣∣∣∣
w=ŵGMM ,λ=λ∗

=1− i′w = 0.

Using the similar argument as in the raw moment case, one can obtain

λ∗ = 2ŵGMM′ ∂g′

∂w

∣∣∣∣
w=ŵGMM′

g
(

ŵGMM′
)

and therefore ŵGMM must satisfy

(
IK − iŵGMM′

) ∂g′

∂w

∣∣∣∣
w=ŵGMM

g
(

ŵGMM
)
= 0. (11.62)
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The connection between ŵGMM and ŵKLIC can be established in several ways.
Perhaps the most straightforward approach is to consider the optimization problem
as presented in Eqs. (11.39) and (11.40) with additional moment constraints. That
is,

ŵR = arg min
w

−
∫
f (y) log w′p(y)dy

s.t. i′w =1

g (w) =0

(11.63)

and the associated Lagrangian is

L (w) = −
∫
f (y) log w′p(y)dy + λ0

(
1− i′w

)+ λ′g (w) . (11.64)

λ = (λ1, . . . , λN)′ denotes the vector of Lagrange multipliers associated with the N
moment constraints. The FONC in this case are

∂L

∂w

∣∣∣∣
w=ŵR ,λ=λ∗,λ0=λ∗0

=
∫
f (y)

p(y)
w′p(y)

dy − λ0i−μ′pλ = 0 (11.65)

∂L

∂λ0

∣∣∣∣
w=ŵR

=1−w′i = 0 (11.66)

∂L

∂λ

∣∣∣∣
w=ŵR

=g (w) = 0. (11.67)

Under the affine constraints and pre-multiplying Eq. (11.65) by w′ yields

λ∗0 = 1+ ŵR
∂g′

∂w
λ∗

Substituting this expression into Eq. (11.65) gives

E

(
p(y)

ŵR′p(y)

)
− i = −

(
IK − iŵR′

) ∂g′

∂w

∣∣∣∣
w=ŵR

λ. (11.68)

This expression is quite insightful for connecting ŵKLIC and ŵGMM . Note that the
left hand side of Eq. (11.68) contains the expression in the FONC for ŵKLIC as
shown in Eq. (11.49). If λ∗ = g(ŵGMM) then the right hand side of Eq. (11.68)
contains the expression in the FONC for ŵGMM as shown in Eq. (11.62). In that
case, if both sides are identically 0 then ŵR = ŵGMM = ŵKLIC .

The intuition behind this result is as follows. The equivalence between the two
optimal weight vectors can occur when the random variable associated with the
density pKLIC(y) = ŵKLIC′p(y) satisfies the orthogonality conditions, that is
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g
(
ŵKLIC

) = 0. In that case, the constraint is binding and λ∗ = 0 and the
FONC of the optimization as defined in Eq. (11.63) coincides with the FONC of
the optimization as defined in Eq. (11.61).

Even if the constraints are not binding, equivalence between ŵGMM and ŵKLIC

can still occur. That is, when ŵKLIC is also the minima for the quadratic form
g′(w)g(w), then clearly ŵKLIC = ŵGMM . At the present moment, the relation
between g(w) and KLIC is unclear. That is, given p(y) and p(y), is it possible
to generate g(w) so that ŵKLIC = ŵGMM? Such results will no doubt enhance
the current understanding of density forecast combination and it may also aid the
computation of the optimal weight given the computation ŵGMM does not require
numerical approximation when g(w) is a set of linear functions.

Note that it is possible to test if

H0 :ŵGMM = ŵKLIC

H1 :ŵGMM �= ŵKLIC .

Under the null,

z = E

(
p(y)

ŵGMM′p(y)

)
− i = 0

let zi be the ith element in z then

√
T

zi

SE(zi)

d∼ N(0, 1)

by Central Limit Theorem under appropriate set of regularity conditions. In practice,
the expectation can be estimated by Monte Carlo Integration method. That is

E

(
p(y)

ŵGMM′p(y)

)
≈ T −1

T∑

t=1

p(yt )
ŵGMM′p(yt )

.

11.5 Conclusion

This chapter provided an overview on averaging models and forecasts with a focus
on the theoretical foundation of forecast combination for both point forecast and
density forecast. Since the optimal weight can only be estimated, this chapter
provided some statistical properties of optimal weight estimate under both MSFE
and MAD. Specifically, this chapter derived the asymptotic distribution of the
optimal weight under MSFE. Due to the equivalence of the optimal weight under
MSFE and MAD, the chapter also provided the asymptotic distribution of optimal
weight under MAD.
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In terms of forecast combination for probability density, this chapter provided
several theoretical results concerning the performance of combining density fore-
cast. It also proposed a novel method of combining density based on the generalized
method of moments approach. It has shown the connection between the proposed
GMM method and the conventional approach of minimising KLIC. A formal testing
procedure had also been suggested to examine if the estimated weights between the
two approaches are equivalent in practice.

While the materials in this chapter were presented from an econometric perspec-
tive, some of the central ideas can be found in the machine learning literature. For
example, forecast combination via MSFE is closely related to model stacking, a
popular form of model ensemble techniques in addition to bagging and boosting.
The intimate connection between the theory presented here and those being
investigated in the machine learning literature should be an interesting and important
area of future research.

Throughout the chapter, it should be clear that the general theory of forecast
combination is still developing. Such theory is not only useful in enhancing current
understanding of forecast combination, it also has practical implications. The
‘forecast combination puzzle’ is an excellent example on the usefulness of theory
in addressing practical issues, which leads to the improvement of best practice in
forecasting.

Technical Proofs

Proof (Proposition 11.1) By definition

ŵMSET −w∗ =�̂��−1
T 1

(
1��̂��−1

T 1
)−1 −���−11

(
1����−11

)

√
T
(

ŵMSET −w∗
)
=√T

{
�̂��
−1
T 1

[(
1��̂��−1

T 1
)−1 −

(
1����−11

)−1
]
+
(
�̂��
−1
T −���−1

)
1
(

1����1
)−1
}

D→
√
T

η

[(
�̂��
−1
T −���−1

)
1
]

.

This implies

√
T vec

(
ŵMSET −w∗

)
a∼ √T η−1 (1′ ⊗ I

)
vec
(
�̂��
−1
T −���−1

)
.

Under Assumption ii, �̂��T has an asymptotic normal distribution, see for examples,
Cook (1951) and Iwashita and Siotani (1994). Then, by the delta method, it follows
that

√
T
(
ŵMSET −w∗

)
is normally distributed with the variance-covariance

B = 1

η2

(
1����−1 ⊗���−1

)
A
(
���−11⊗���−1

)
.
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This completes the proof. ��
Proof (Proposition 11.2) Corollary 3 in Chan and Pauwels (2019) showed that
ŵMADT = w∗ + op(1) and ŵMSFET = w∗ + op(1), the result then follows
directly from an application of Theorem 1 in Knight (2001). This completes the
proof. ��
Proof (Proposition 11.3) Note that

logp(y) = log (wp1(y)+ (1−w)p2(y))

≥w logp1(y)+ (1−w) logp2(y).

Therefore

− logp(y) ≤−w logp1(y)− (1−w) logp2(y)

−f (y) logp(y) ≤−wf (y) logp1(y)− (1−w)f (y) logp2(y)

−
∫
f (y) logp(y)dy ≤−w

∫
f (y) logp1(y)dy − (1−w)

∫
f (y) logp2(y)dy

H(p||f ) ≤wH(p1||f )+ (1−w)H(p2||f )
D(p, f ) ≤wD(p1, f )+ (1−w)D(p2, f ).

��
Proof (Proposition 11.4) It is sufficient to show that H(w′p||f )−H(pi ||f ) ≤ 0
for all i.

H(w′p||f )−H(pi ||f )

=
∫
f (y) log

(
pi(y)

w′p(y)

)
dy

=E
[

log

(
pi(y)

w′p(y)

)]

≤ logE

(
pi(y)

w′p(y)

)

≤0.

Proof (Proposition 11.5) The result is straightforward if the simple average, i/N
satisfied Eq. (11.50). Assuming that it does not, then the simple average outperforms
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an individual density in the KLIC sense implies

H

(
i′

N
p(y)||f

)
−H (pi(y)||f ) <0

−
∫
f (y) log

i′p(y)
N

dy +
∫
f (y) logpi(y)dy <0

∫
f (y) log

pi(y)

i′p(y)
dy < log

1

N
.
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Chapter 12
Bayesian Model Averaging

Paul Hofmarcher and Bettina Grün

12.1 Introduction

In recent years, macroeconomic forecasting has seen a rise in the application of
advanced statistical methods and models to address the challenges and opportunities
of “big data.” Big data is a relatively new phenomenon to economists, but following
Koop (2017), big data has the potential to revolutionize empirical macroeconomics,
as the information contained in these data sets could improve our forecasts and
our understanding of the macroeconomic environment. The era of big data has
emerged from the increased ease of collecting data from new sources, including, for
example, social media content, and the automatic processing of text files to extract
information. This increases the number of variables in the data set and calls for
suitable statistical methods which combine the information from traditional sources
with the new ones; for an overview on the new data sources being now available in
the big data area see Chap. 1.

In many macroeconomic forecasting applications the aim is to predict a variable
of interest, such as inflation, unemployment, growth, etc., based on a set of
covariates. For a numeric dependent variable linear regression is the standard
predictive model. However, the specification of a single linear model with a
specific set of covariates requires conclusive theory on which covariates to include.
Especially in the era of big data with an enormous number of new variables this
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might be challenging due to a lack of theory and the availability of a large number
of predictors which are potentially not all relevant. In addition to the forecasting
context this is also a virulent and challenging problem when aiming at identifying
relevant determinants for the dependent variable.

A naïve approach to resolve this problem is to use a data-driven approach to
select a single “best” model (e.g., via stepwise regression methods). This “best”
model would then be used to describe the relationships between the covariates
and the dependent variable and predict the dependent variable of interest. This
approach, however, neglects the uncertainty associated with the selection of this
specific model. This uncertainty is usually referred to as model uncertainty, i.e., the
uncertainty of choosing the appropriate set of covariates to be included in the model.
Disregarding this uncertainty in an empirical application has been shown to lead to
inferior predictive performance and misleading insights with respect to covariates
being determinants for the dependent variable.

One approach to account for model uncertainty is to use a modeling approach
which simultaneously includes all models from a set of possible models {M1, M2,
. . .}. In the regression case, usually the models in this set differ with respect to
the covariates included in the model. A statistical tool is needed which allows
to combine the models in this set to obtain the final model used for prediction
and assessing covariate importance. In statistics, Barnard (1963) was the first who
proposed a model combination to forecast air passenger data. Bates and Granger
(1969) compared a number of methods to combine two forecasts and indicated
that changing the weights of those methods might result in better forecasts than
constant weights. The modern theory of Bayesian model averaging (henceforth
BMA) was finally presented by Leamer (1978). BMA assumes that prior knowledge
is available on a set of possible models which contains the true model. Other forecast
combination approaches were proposed including frequentist averaging, which is
discussed and presented in detail in Chap. 11.

This work gives a coherent overview of BMA and its economic applications. For
a policy maker two veins of inference might be of interest: (1) to determine robust
determinants of the dependent variable of interest, like inflation or unemployment
and (2) to improve forecasting performance. Both veins can be addressed via BMA.
BMA represents a well-founded statistical approach to avoid selecting a specific
model, but is based on using an ensemble of models. Using an ensemble usually
has a better forecasting performance than any single model (Madigan & Raftery,
1994). A tutorial introducing BMA is provided in Hoeting, Madigan, Raftery, and
Volinsky (1999); Moral-Benito (2015) and Steel (2018) provide overview papers on
BMA and its use in economics.

This work is organized as follows: The next section gives an overview of the
use of BMA in economics. In particular, we list a number of relevant and recent
applications of BMA in economics. Section 12.3 describes the general methodology
of BMA for the linear model class including a description of widely used model and
parameter priors. Inference and posterior analysis under these priors is discussed.
Section 12.4 applies the presented BMA framework to forecast box office revenues.
The data set of this exercise is from Lehrer and Xie (2017). The data set includes
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not only traditional covariates such as budget and genre classification but also
variables derived from social media content. The BMA results are obtained with
the open-source package BMS (Zeugner & Feldkircher, 2015) available for the R
environment for statistical computing and graphics (R Core Team., 2019). Finally,
Sect. 12.5 concludes.

12.2 BMA in Economics

Inference under model uncertainty is a pervasive problem in economics, partic-
ularly when modeling or aiming at predicting macroeconomic variables. Model
uncertainty is caused by lack of theory or the abundance of competing theories not
excluding each other. In this case researchers are not guided by economic theory
to select the covariates to be included in the regression model (Brock & Durlauf,
2001). Today there is a huge strand of literature applying BMA methods to account
for model uncertainty in economics.

One of the most prominent examples of such a problem in economics is the
identification of robust determinants for economic long-term cross-country growth
(Fernández, Ley, & Steel, 2001; Sala-i-Martin, Doppelhofer, & Miller, 2004).
Modern growth theory has been an area with many potential covariates being
suggested and empirical evidence has struggled to resolve the open-endedness of
theory. The open-endedness of theory is caused by competing growth theories not
ruling out each other (see Brock and Durlauf, 2001). To assess the robustness of
empirical determinants of economic long-term cross-country growth, BMA has
been applied, among others, by Brock and Durlauf (2001), Danquah, Moral-Benito,
and Ouattara (2014), Eicher, Henn, and Papageorgiou (2012), Fernández et al.
(2001), Moral-Benito (2012), Sala-i-Martin et al. (2004). In the spirit of Acemoglu,
Johnson, and Robinson (2001), who argue that intellectual property rights are a
key determinant of long-term growth, Eicher and Newiak (2013) use a two stage
least squares BMA approach, developed by Lenkoski, Eicher, and Raftery (2014),
to study the influence of intellectual property rights on country development. Arin
and Braunfels (2018) study the impact of natural resources on long-term growth
using BMA methods.

Other economic applications of BMA include, e.g., the identification of indica-
tors for a financial crisis (Feldkircher, Horvath, & Rusnak, 2014), or the modeling of
aggregated default rates for firms (Hofmarcher, Kerbl, Grün, Sigmund, & Hornik,
2014). Wright (2008) uses BMA to forecast exchange rates and finds that BMA
results in slightly better out-of-sample forecasts than a random walk benchmark
model. Tobias and Li (2004) estimate the returns to education via BMA. Jetter and
Parmeter (2018) use BMA methods to identify robust determinants of corruption
among cultural, economic, institutional, and geographical factors. Time-varying
BMA approaches were developed by, e.g., Raftery, Karny, and Ettler (2010) to
model inflation and output forecasts and inter alia applied by Koop and Korobilis
(2012).
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12.2.1 Jointness

One of the aims of applying BMA is to identify robust determinants for the
dependent variable. Following an early discussion of Bayesian measures of vari-
able importance, posterior inclusion probabilities (PIPs) have become a standard
measure to achieve this and assess and interpret the results from BMA applications
(Hofmarcher, Crespo Cuaresma, Grün, Humer, & Moser, 2018). PIPs provide
valuable insight into the overall importance of a covariate. Regardless of which
other covariates are included in the regression model the PIP of a covariate reflects
its marginal inclusion probability and thus may be interpreted as a robust measure
of importance.

The drawback of PIPs is that they do not account for the interdependence of
inclusion and exclusion of variables. Using PIPs it is, for example, not possible to
determine if the importance of a variable is evenly spread across all potential model
specifications or it is specific to a certain combination of explanatory variables.
Further on, using solely PIPs we cannot infer whether two covariates tend to appear
together in model specifications (complements), are independently from each other
included, or are substitutes in terms of model inclusion.

To analyze the joint inclusion/exclusion of covariates so-called bivariate jointness
measures were introduced in the economic literature and a vivid discussion emerged
about the criteria or properties a bivariate jointness measure should fulfill. Doppel-
hofer and Weeks (2005)1 proposed a measure, which was criticized by Ley and Steel
(2007) and Strachan (2009) because it does not fulfill a set of desirable properties.
These authors then propose additional measures which were again criticized by
Doppelhofer and Weeks (2009b) due to non-desirable properties. Doppelhofer and
Weeks (2009b) again propose yet another measure. Finally, Hofmarcher et al. (2018)
present a rigorous list of properties which should be fulfilled by a suitable bivariate
jointness measure by merging two strands of literature: the BMA jointness literature
as well as the literature on interestingness measures for association rules in machine
learning (Glass, 2013; Wu, Chen, & Han, 2010). Hofmarcher et al. (2018) propose
a regularized version of Yule’s Q association coefficient as a suitable bivariate
measure to assess jointness. This measure meets all criteria in the list of desirous
properties for bivariate jointness measures.

Bivariate jointness measures only allow to analyze pairs of covariates instead
of groups of explanatories consisting of more than two covariates. An alternative
approach to investigate the interdependence structure of covariate inclusion in BMA
has been proposed by Crespo Cuaresma, Grün, Hofmarcher, Humer, and Moser
(2016) by describing the overall dependency structure of the covariates via latent
class analysis (LCA). The main idea of this approach is that the overall dependency
structure between the sampled models is driven by a latent discrete variable. This
latent variable groups the sampled models in such a way that the single covariates

1This working paper was published in a slightly different version as Doppelhofer and Weeks
(2009a).
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are included independently in the models within each latent group. By applying
LCA to the models sampled via BMA, we are able to capture the dependency
structure across included covariates through an unobserved latent discrete variable.
Conditional on this latent discrete variable covariate inclusion is independent. Such
a setting implies that PIPs within groups constitute sufficient information to describe
the importance of the variables and the differences of PIPs between groups cause the
marginal dependency of inclusion observed for different covariates.

12.2.2 Functional Uncertainty

The standard BMA approach relies on the assumption that the functional form of
the relationship between the variables and the mean of the dependent variable is
known. Usually, variables included in the model are assumed to have a linear effect
on the dependent variable. This implies that a unit change in the variable has the
same effect on the dependent variable regardless of the specific value the variable
has. Alternatively additional covariates can be derived from the observed variable to
model a non-linear functional relationship. For example, Henderson and Parmeter
(2016) manually added new covariates via polynomial terms of the original variables
and Tobias and Li (2004) defined piecewise linear functions based on the original
variables.

Functional misspecification occurs if only linear effects are included, but in
fact non-linear effects should be considered. In this case several issues may arise
which preclude the correct robust identification of effects (see Malsiner-Walli,
Hofmarcher, & Grün, 2019): (1) irrelevant covariates may be included into the
model to compensate for the missing non-linear effects and are overestimated in
terms of importance, (2) important non-linear covariates may not be identified due
to the functional misspecification, and (3) effects of covariates, which vary over the
covariate range, are forced to be constant over the entire covariate range. Inference
based on such a misspecified model may lead to incorrect conclusions.

To circumvent this, non-parametric as well as semi-parametric methods have
been suggested (see Henderson & Parmeter, 2016). For instance, local-linear least
square regressions are used in Henderson, Papageorgiou, and Parmeter (2011)
to investigate non-linearities of different economic growth determinants and in
Delgado, Henderson, and Parmeter (2014) to study the effect of education on
economic growth. Non-parametric methods, however, have the disadvantage that
they are only applicable for a small number of covariates requiring a pre-selection
of the relevant variables.

Semi-parametric methods using model matrix expansions to obtain more flexible
regression functions are discussed in Smith and Kohn (1996) to model housing
values, and in Koop and Tobias (2006) to study returns to education. Malsiner-
Walli et al. (2019) show how Bayesian semi-parametric regression methods in
combination with stochastic search variable selection (Scheipl, 2011; Scheipl,
Fahrmeir, & Kneib, 2012) can be used to address two model uncertainties simul-
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taneously: firstly, the model uncertainty with respect to the included covariates and
secondly, the uncertainty concerning the functional form of the relationship between
dependent and independent variables. In contrast to the non-parametric approaches
this approach allows to include a large number of variables. The drawback is that
different priors need to be employed than usually preferred in BMA applications.
This is necessary to be able to simultaneously estimate the smoothness parameters
in a computationally feasible way while accounting for model uncertainty.

12.3 Statistical Model and Methods

12.3.1 Model Specification

In the following we consider the standard BMA setting where the aim is to predict
or model a dependent variable y given a number of covariates x1, . . . , xK based on
a linear model. The assumption is that not all covariates are necessary, but only a
subset S ⊂ {1, . . . ,K} such that

y = β0 +
∑

s∈S
xsβs + ε,

with ε ∼ N(0, σ 2).
The selection of the set S is the model selection step and each S induces a

different model M. If there are K covariates and each covariate can either be
included or excluded, the total number of different selection sets and thus models
equals 2K . In addition one can associate with each model a 0/1 vector γ of length
K indicating if a covariate is included in the model or not.

The linear model represents the data model. In a Bayesian setting this is
complemented by priors on the parameters. For BMA one needs (1) model priors
and (2) regression parameter priors on the coefficients β and the error variance
σ 2. The posterior is obtained based on a sample with n observations such that
y = (y1, . . . , yn) is the vector of the observed values for the dependent variable and
xk = (x1k , . . . , xnk) is the vector of the observed values for the kth covariate. The
covariates are combined in the matrix X by column-wise stacking of the covariate
vectors.

The model prior gives non-zero prior weights to a specific set of models and zero
weight to all other models not included in this set. The Bayesian analysis then is
performed under the assumption that the true model is among the models which
have non-zero prior model weights. The posterior model probabilities obtained thus
need to be interpreted conditional on this assumption. The posterior probability of a
modelMj is then given by

p(Mj |y, X) ∝ p(y|X,Mj )p(Mj ). (12.1)
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Taking model uncertainty into account the posterior distribution of the parame-
ters given the data corresponds to

p(β0, β, σ 2|y, X) =
2K∑

j=1

p(β0, β, σ 2|y, X,Mj )p(Mj |y, X).

Conditional on fixing the model Mj with j ∈ {1, . . . , 2K} one can use general
Bayesian regression analysis methods to obtain the posterior p(β0, β, σ 2|y, X,Mj )

with β = (β1, . . . ,βK).

12.3.2 Regression Parameter Priors

The prior usually selected for (β0, β, σ 2) has the following characteristics:

(a) The intercept and the error variance are a-priori independent, while the regres-
sion coefficients depend a-priori on σ 2:

p(β0, β, σ 2) = p(β0)p(β|σ 2)p(σ 2).

(b) Uninformative, flat priors are used for the intercept and the error variance:

p(β0, σ 2) ∝ 1

σ 2
.

(c) Zellner’s g prior (Zellner, 1986) is used for the regression coefficients prior.
The regression coefficients are assumed to follow a normal distribution and are
a-priori correlated as implied by the covariate structure:

p(β|σ 2) ∼ N
(

0, gσ 2 (X′X
)−1
)

.

The hyper-parameter g influences how much the ordinary least squares (OLS)
estimates are shrunken towards zero. Different fixed values were proposed such
as the unit information prior with g = n recommended by Eicher, Papageorgiou,
and Raftery (2011). Alternatively also a hyper-prior may be put on g (Ley &
Steel, 2012). For g→∞ a flat prior emerges and this corresponds to using the
OLS estimator (Sala-i-Martin et al., 2004).

These priors are in general selected because they are uninformative where possible
and lead to computational efficient estimation. In particular the use of Zellner’s
g prior considerably simplifies estimation and posterior inference. For Zellner’s
g prior the posterior distribution of the model parameters is available in closed
form. The posterior mean and variance of the regression coefficients can be
analytically determined. Also the marginal likelihood of the data given a specific
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model is available in closed form. An alternative to Zellner’s g prior would be
the independence prior where the regression coefficients are assumed to follow a
normal distribution and are a-priori independent. However, estimation and posterior
inference are complicated. For a detailed comparison of the independence prior and
Zellner’s g prior see Malsiner-Walli et al. (2019).

12.3.3 Model Priors

Priors over models Mj , j = 1, . . . , 2K are usually constructed by exploiting the
one-to-one relationship between a model Mj and the binary covariate inclusion
vector γ j and assigning probabilities to the inclusion of covariates.

The specification of an appropriate model prior builds on two pieces of infor-
mation: firstly, the expected number of covariates included in the model and
secondly, if covariates are assumed to be included independent of the inclu-
sion of other covariates. In the following we will refer to model priors which
include covariates independently of the inclusion of other covariates as independent
model priors and model priors for which the a-priori inclusion of one covariate
depends on the inclusion of specific other covariates as dependent model pri-
ors.

Independent Model Priors

Several independent priors were proposed in the literature for the covariate inclusion
vector γ which can be used to represent a specific model. In the following we will
focus on the two most widely used independent model priors. These are the binomial
model prior proposed by Sala-i-Martin et al. (2004) and the extension to the beta-
binomial model prior put forward by Ley and Steel (2009).

Binomial Model Prior

A naïve approach to specify a model prior assigns the same probability to each
model Mj in the considered model class represented by the inclusion vector γ j .
This seems to represent an uninformative prior where a uniform distribution over
the model space is used. However, in the regression case where the inclusion of
different covariate sets is considered this prior puts unequal mass to models of
different size. For K covariates there are K different models of size one, while
there are

(
K
k

)
different models of size k. For this naïve model prior specification the

expected prior model size isK/2. The expected prior model size thus increases with
the number of potential explanatories and for many applications this prior would put
too much weight to large models containing many covariates.
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This naïve prior where all models have the same weight emerges if for each
covariate the prior inclusion probability is set to 1/2. Choosing different prior
inclusion probabilities generalizes this prior and allows to vary the prior expected
model size. This model prior was suggested by Sala-i-Martin et al. (2004). They
selected a prior expected model size k̄ and assumed that each covariate has a
prior inclusion probability of θ = k̄/K . For a chosen inclusion probability θ , the
probability of a specific model γ is given by

p(γ |θ) = θk (1− θ)K−k ,

where γ contains k covariates, i.e., ı′γ = k, with ı a vector of ones of length K .
A simple way to elicit θ is to determine the prior expected model size. The prior

expected model size implied by the binomial model prior equals θK with variance
θ(1− θ)K . Sala-i-Martin et al. (2004) argued that in terms of interpretability the
expected prior model size should not linearly increase with K . In their empirical
application, they choose θ in a way, that θK = 7, for their benchmark model. In
addition they also show that the choice of θ can have a substantial impact on the
results.

Beta-Binomial Model Prior

To increase the flexibility of the model prior and to reduce the influence of the prior
expected model size k̄, Ley and Steel (2009) proposed a hyper-prior on the inclusion
probability θ by imposing a beta distribution. This changes the prior for γ from the
binomial to the beta-binomial prior, with the hierarchical specification:

p(γ |θ) = θk(1− θ)K−k ,
θ ∼ Beta(a, b).

This gives

p(γ |a, b) = �(a + b)
�(a)�(b)

∫

�θ

θk(1− θ)(K−k)θa−1(1− θ)b−1dθ

= �(a + b)
�(a)�(b)�(a + b+K)�(a + k)�(b+K − k),

which leads to much less informative and therefore more flexible model priors.
Again the prior probability of a specific model does only depend on the number
of covariates included k, but not the specific covariates. A detailed discussion of
this model prior can be found in Ley and Steel (2009). They proposed to set a = 1
and b = (K − k̄)/k̄ to induce a prior expected model size of k̄ and provided a
rigorous comparison of the binomial and the beta-binomial model priors.
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Fig. 12.1 Prior model size distributions for the binomial and the beta-binomial model prior for
either K = 28 covariates (left) and K = 210 covariates (right). The prior expected model size k̄
is set to 7. The binomial model prior is drawn with dashed lines and triangles, the beta-binomial
prior with a = 1 and b = (K − k̄)/k̄ with full lines and bullets

Figure 12.1 indicates how the induced prior model size distributions differ for
the binomial and beta-binomial model priors for different number of covariates K
assuming an expected prior model size of k̄ = 7. The number of covariates are
set to 28 and 210 because this corresponds to the number of covariates included
in the different model specifications considered in the application in Sect. 12.4.
The binomial model prior has a clear mode close to the prior expected model size
and assigns most of its mass to model sizes close to the mode. This implies that
the choice of the prior expected model size is highly influential for the binomial
model prior. The beta-binomial prior has a mode at the smallest model size with
decreasing weights assigned when model size increases. This reflects that a-priori
smaller models are preferred and indicates that the prior expected model size is less
influential for this prior.

Dependent Model Priors

The beta-binomial prior has become a default prior in BMA applications. However,
as an independent model prior, this prior does not allow to vary the prior inclusion
probabilities for covariates in dependence of other covariates being included. This
limitation is particularly virulent in case interaction terms are to be included in the
linear model or if the covariates are highly correlated.
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Heredity Priors

Under independent model priors, the inclusion of an interaction effect does not
depend on the inclusion of the associated main effects. Masanjala and Papageorgiou
(2008), for example, treated interaction terms as normal covariates, which was
criticized by Crespo Cuaresma (2011), who argued that “the interpretation of an
interaction term parameter requires that the effect is exclusive to that particular
product of covariates and not driven through the independent effects of the interacted
variables.” He argued that a possible way to account for this problem is to restrict
the models considered to those where an interaction term is only included in case
the main effects are also part of the model. This approach corresponds to selecting a
model prior where the prior model probabilities are set to zero for models including
the interaction term without both main effects.

Priors which take the presence of main effects into account when considering
the inclusion of an interaction effect are referred to as heredity priors. Chipman
(1996) proposed two heredity priors for handling two-way interactions: the weak
and the strong heredity prior. The former prior enforces that at least one main effect
of the interaction term is included in the model, while the latter prior requires both
main effects to be included, i.e., models which include an interaction term but not
the associated main effects are down-weighted to zero. Crespo Cuaresma (2011)
argued in favor of the strong heredity prior.

Collinearity Adjusted Dilution Model Prior

Independent model priors do not take the collinearity between the potential covari-
ates into account, but assume two covariates are a-priori equally likely to be included
regardless of if they are independent or highly correlated. George (2010) criticized
this approach as putting disproportionate mass on parts of the covariate space
spanned by correlated covariates and proposed to adjust the prior weight of a model
γ by taking the value of the determinant of the correlation matrix of X given by
|Cγ | into account. Note that |Cγ | = 1 if the included covariates are uncorrelated
and equals zero if they are perfectly collinear. The prior probability of a specific
model γ is given by

p(γ |θ) ∝ f (|Cγ |)θk(1− θ)K−k ,

for some monotonic function f satisfying f (0) = 0 and f (1) = 1, e.g., the identity
function for f . The function f controls the down-weighting applied to a set of
covariates in dependence of their correlation structure compared to the binomial
model prior with θ = k̄/K .

Using the data set of Masanjala and Papageorgiou (2008), Moser and Hofmarcher
(2013) presented a rigorous analysis of different dilution model priors as well as the
heredity model prior. The results for their empirical application indicate that the
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PIP of interaction terms is sensitive to the prior selected, while the out-of-sample
predictive performance does not change with the model prior choice.

Dirichlet Process Model Priors

Grün and Hofmarcher (2018) merge the strands of literature where different model
priors are considered and post-hoc jointness analysis is suggested. They put forward
the idea of using a Dirichlet process model prior. This model prior constitutes a
natural choice if one aims at a-priori taking into account that different groups of
covariates may be relevant for the outcome variable.2 Using this model prior, the
covariate inclusion probability θ is assumed to vary between the groups and within
each group for each of the covariates.

12.3.4 Inference

For forecasting one is interested in the posterior distribution (or a point estimate
thereof) of a new observation y(n) given its associated covariate values x(n) and the
observed data y and X:

p(y(n)|x(n), y, X).

This posterior also includes the model choice, i.e., in BMA the model class
considered, and the prior specification. The model class considered is the linear
model with constant variance and a specific set of K potential covariates.

If the mean is used as forecast this can be determined using

ŷ(n) =
2K∑

j=1

(
E[β0|y, X,Mj ] + (x(n))′ E[β|y, X,Mj ]

)
p(Mj |y, X).

This is a weighted sum of the predicted mean given the posterior means of the
regression coefficients conditional on a specific model. The weights are equal
to the posterior model probabilities. For small values of K all models 2K can
be enumerated and this sum can be exactly calculated. Alternatively the sum is
approximated by summing over the models with non-negligible posterior model
probability.

2In the context of economic growth, this is in line with the model formulation in Durlauf,
Kourtellos, and Tan (2008) where competing groups of explanatory variables emerging from
different theories are assumed to be relevant.
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If Zellner’s g prior is used for the regression coefficients the posterior mean
and variance of the regression coefficients conditional on a specific model can be
determined in closed form. These quantities are given by

E[β0|y, X,Mj ] = ȳ,

E[β|y, X,Mj ] = g

1+ g β̂OLS,j ,

where ȳ = 1
n
ı′y and β̂OLS,j are the OLS estimates for model Mj . The posterior

model probabilities are available up to a normalization factor using the marginal
likelihood given by

p(y|X,Mj ) ∝ ((y − ȳı)′(y − ȳı))− n−1
2 (1+ g)− k2

(
1− g

1+ gR
2
OLS,j

)− n−1
2

,

where k is the number of covariates included in the model and R2
OLS,j is the propor-

tion of explained variance of modelMj when fitted with OLS. The posterior model
probabilities can be obtained by enumerating all possible models, determining the
marginal likelihoods for each of them and then calculating the posterior model
probabilities proportional to the marginal likelihoods times prior model probability.

If the model space is too large to be enumerated, Markov chain Monte Carlo
(MCMC) methods are usually employed to explore the space in a suitable way
to concentrate on models with non-negligible posterior model weight. MCMC
sampling may be used to either (1) determine a set of models with non-negligible
posterior model probability to be considered for determining the posterior model
probabilities or (2) use the relative frequencies of how often the different models
are visited as estimates for the posterior model probabilities.

Two different MCMC samplers have been suggested and are implemented in
standard software, e.g., the R package BMS. The birth-death sampler randomly
selects one of the K covariates and creates a proposed model by either dropping the
covariate from the current model if this covariate is included in the current model or
adding the covariate to the current model if this is not the case. The proposed model
is accepted with probability equal to the minimum of 1 and the ratio of the posterior
model probabilities of the proposed and current model. The reversible-jump sampler
(Madigan & York, 1995) extends the birth-death sampler by performing half of the
time a birth-death move and in the other half a swap move, where one covariate is
randomly dropped and another randomly added.

Both samplers perform only local moves and search for promising models in
the neighborhood of the current model. This means that—as usual for MCMC
sampling—the draws are auto-correlated and the model selected to start the sampler
influences how many burn-in iterations are required for the chain to converge to a
part of the model space with high posterior model probabilities. After omitting the
burn-in iterations the set of visited models I is determined and the point estimate
for a new observation n is obtained by using an approximation based on the results
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from the MCMC sampler

ŷ(n) =
∑

k∈I

(
E[β0|y, X,Mj ] + (x(n))′ E[β|y, X,Mj ]

)
̂p(Mj |y, X).

One can estimate ̂p(Mj |y, X) in two different ways. One may either use the
analytical formulas or determine the empirical relative frequencies how often the
model was visited during MCMC sampling.

12.3.5 Post-Processing

Further insights into the results of a BMA analysis are gained by determining and
inspecting the posterior inclusion probabilities (PIP), the posterior means of the
regression coefficients (PM), the posterior standard deviations of the regression
coefficients (PSD), and the conditional positive sign certainty (PSC). These quanti-
ties indicate if a covariate may be a robust determinant of the dependent variable or
not.

The posterior inclusion probability (PIP) for covariate k is given by

PIPk =
2K∑

j=1

1{γk = 1|Mj }p(Mj |y, X),

where 1{·} is the indicator function. The PIP is estimated by summing only over
the set of visited models I and plugging in suitable estimates ̂p(Mj |y, X). These
estimates may either be based on the analytical formulas or the empirical relative
frequencies how the model was visited during MCMC sampling. PIP is often
interpreted as measuring how important it is to include this variable in the model.

The posterior mean (PM) of the regression coefficient for covariate k is deter-
mined by

PMk =
2K∑

j=1

E(βk|y, X,Mj )p(Mj |y, X),

and the posterior standard deviation (PSD) of the regression coefficient for covariate
k by

PSDk =

√√√√√
2K∑

j=1

(var(βk|y, X,Mj )+ (E(βk|y, X,Mj )− PMk)2)p(Mj |y, X).
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Estimates may be obtained in a similar way to the PIP, i.e., by considering only
the set of visited models I and plugging in suitable estimates ̂p(Mj |y, X). PM
represents the posterior mean effect a unit change in the covariate k has on the
dependent variable and PSD is a measure for the uncertainty associated with the
estimated regression coefficient.

The conditional positive sign certainty (PSC) for covariate k is given by

PSCk =
∑2K
j=1 p(βk > 0|Mj , y, X)p(Mj |y, X)
∑2K
j=1 1{γk = 1|Mj }p(Mj |y, X)

and indicates how certain one is a-posteriori that this covariate has a positive effect
on the dependent variable. Again estimates may be obtained in a similar way than
for PIP, PM, and PSD.

While PIP is a measure of variable importance, PM indicates the robust estimate
of the effect of the regressor across all sampled models with PSD indicating the
uncertainty, and PSC is a measure for the posterior confidence in the sign of this
robust effect estimate being positive (Sala-i-Martin et al., 2004). For a covariate
to be identified as a robust determinant for the dependent variable, PIP would be
expected to be high and PSC either close to zero or one.

12.4 Application

The following data analysis is performed in R, an open-source environment for
statistical computing and graphics. Package BMS is used to obtain the BMA
analysis results.

12.4.1 Data Description

The application of BMA is illustrated using a data set consisting of all movies
released in the USA between October, 1 2010 and June, 30 2013 with budgets
between $20 and $100 million3 (see Lehrer & Xie, 2017). In total the data set
contains 94 movies and 26 potential variables to predict the opening weekend box
office revenues. The potential explanatories consist of characteristics of the film,
including genre classification and MPAA film ratings, but also information on the
budget and the scheduled number of weeks and screens the film will be on air. In
addition to this set of “classical” explanatories, covariates constructed from data

3Following Lehrer and Xie (2017), this sample selection criterion was proposed by IHS film
consulting and accounts for 41.4% of released movies.
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sources which have now only become available in the big data area are included
in this data set (see Chap. 1). These explanatories are constructed from Twitter
social media information. Based on Twitter messages posted in the weeks before
release volume and sentiment scores are constructed for specific time windows
before release. As pointed out in Chap. 1, forecasting with Twitter data has also
been considered in Asur and Huberman (2010) and Arias, Arratia, and Xuriguera
(2013).

Each film may be associated with twelve different genres with several genres
potentially being assigned. The Motion Picture Association of America (MPAA)
provides film ratings to help parents determine what films are appropriate for
their children. The following ratings are possible: general audiences (G), parental
guidance suggested (PG), parents strongly cautioned (PG-13), and restricted (R).

Twitter messages are transformed into sentiment scores, through an algorithm
developed by Hannak et al. (2012). In a message that mentions a specific film title
or key word, sentiment is calculated by examining the emotion words and icons that
are captured in the same Twitter message (see the supplemental material of Lehrer
and Xie 2017). Following Lehrer and Xie (2017) 75, 056 unique emotion words
and icons that appeared in at least 20 tweets are given a specific emotional value.
The sentiment score is estimated as a weighted average of those emotional values.
Sentiment scores are determined for five different time windows before release and
the variables are referred to in the following way such that, e.g., the variable T-21/-
27 represents the score for weeks 21–27 before release. In addition to the sentiment
scores, measures capturing the volume of the tweets are calculated for the same time
windows. In total, for the films analyzed, the Twitter message volume is 1, 100, 439.

12.4.2 Exploratory Data Analysis

A descriptive summary of the data is given in Tables 12.1 and 12.2. Table 12.1
contains information on the dependent variable and the “classical” explanatories,
whereas Table 12.2 summarizes the explanatories constructed based on the Twitter
social media information.

In Table 12.1, first the metric variables consisting of the dependent variable
(“Open box”), the film budget in million $ (“Budget”), the scheduled number of
weeks (“Weeks”), and the scheduled number of screens in hundreds (“Screens”) are
summarized. The mean and standard deviation (SD) are given as well as median
and the first quartile (Q1) and the third quartile (Q3). These results indicate that
the dependent variable as well as budget are right-skewed with the median being
substantially smaller than the mean and the distance between median and third
quartile being much larger than between median and first quartile. The variables
Weeks and Screens seem to be more symmetric.

Next the MPAA ratings are given. Each film can only have one of these categories
assigned and there is only a single film which is classified as G. In the subsequent
analysis we thus merge category G with PG to avoid including a categorical variable
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Table 12.1 Summary statistics of the dependent variable and covariates (without the covariates
constructed from the Twitter data)

Variable Mean SD Median Q1 Q3 MPAA % Genre % Genre %

Open box 19.1 18.5 14.9 9.5 23.0 G 1.1 Action 37.2 Family 6.4

Budget 50.0 20.4 44.8 35.0 65.0 PG 14.9 Adventure 16.0 Fantasy 7.4

Weeks 13.8 5.5 13.0 10.0 16.8 PG13 37.2 Animation 7.4 Mystery 8.5

Screens 30.0 5.2 30.3 27.4 33.4 R 46.8 Comedy 42.6 Romance 12.8

Crime 26.6 Sci-Fi 9.6

Drama 34.0 Thriller 24.5

Table 12.2 Summary statistics of the variables based on Twitter social medial information

Sentiment Volume

Variable Mean SD Median Q1 Q3 Variable Mean SD Median Q1 Q3

T-1/-3 74.3 2.1 74.8 74.0 75.5 T-1/-3 41.3 110.3 17.9 9.0 38.1

T-4/-6 74.3 2.1 74.8 73.8 75.4 T-4/-6 25.2 112.8 8.6 4.3 19.2

T-7/-13 74.3 1.8 74.7 73.8 75.4 T-7/-13 21.5 89.6 6.8 3.1 17.7

T-14/-20 74.1 2.4 74.7 73.8 75.5 T-14/-20 19.1 90.5 5.2 2.1 12.4

T-21/-27 73.7 3.1 74.6 73.4 75.4 T-21/-27 17.7 92.9 4.5 1.5 10.9

where one category occurs only very rarely. Regarding the genre categorizations
each film has at least one and up to three genres assigned. Nineteen percent of the
films have a single genre category assigned, 29% two genre categories, and the
majority of 53% have three genre categories assigned. The genre analysis indicates
that the most popular genre is Comedy which is attributed to 42.6% of the films
followed by Action (37.2%) and Drama (34%). Furthermore five genres are assigned
to less than 10% of the films.

The variables based on the Twitter social media information are summarized
in Table 12.2. The distribution of the sentiment scores remains rather stable over
time, whereas the volume increases the closer the time period is to the opening
date. Also the sentiment distribution is rather symmetric, whereas volume is right-
skewed. This suggests to transform the volume by taking the logarithm to obtain a
more symmetric distribution and to define the impact of changes in volume through
relative rather than absolute changes.

The distributions of sentiment and logarithmized volume are illustrated for the
last time period (T-1/-3) in Fig. 12.2. Qualitatively these distributions remain rather
similar for the other time periods. For the sentiment values there are always a
few films which have quite low numbers and are separated from the remaining
observations. For the logarithmized volume the mean value increases and the spread
decreases if the opening date gets closer. Both these measures remain for each film
rather stable over time with an average pairwise correlation of 0.84 for the sentiment
scores and 0.90 for the logarithmized volume values.
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Fig. 12.2 Histograms of sentiment and logarithmized volume values for the Twitter social media
information for T-1/-3

12.4.3 BMA Results

In the following the BMA methodology is applied to the open box office data set.
For the BMA analysis we employ a standard setting varying a few aspects with
respect to the model prior, the data pre-processing and the covariates included in the
model to indicate how results depend on these modeling choices.

The model specifications varied are:

• The use of a binomial or a beta-binomial model prior.
• Taking the logarithm of the dependent variable or not.
• Taking the logarithm of the volumes of the tweets or not.
• Including interactions between the dummy variables and the numeric covariates

or not.

If interaction terms are considered the data contain 210 potential covariates com-
pared to only 28 covariates if these are excluded. For both model priors the prior
expected model size is set to 7. The prior distributions for these settings are shown
in Fig. 12.1.

The regression parameters prior employed is the same for all model specifications
and consists of a flat prior for intercept and error variance and Zellner’s g prior for
the remaining regression coefficients with a hyper-prior put on g as suggested in
Ley and Steel (2012). In case interactions are included the heredity model prior is
used ensuring that interactions are only included in a model if the main effects are
also included.

Overall, these settings result in 16 different model specifications for BMA
analysis. The BMA analysis for each model specification is based on birth-death
MCMC sampling where 1,000,000 iterations are recorded after discarding 500,000
iterations as burn-in.
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Table 12.3 Summary of the BMA analysis results for the 16 different BMA specifications

Model Mean post. # models PMP Avg. shrinkage

Name prior log(y) log(volume) Interactions model size visited correlation (SD)

M-1 B ✓ ✓ ✓ 1.32 2972 0.9999 0.985 (0.019)

M-2 BB ✓ ✓ ✓ 1.08 744 1.0000 0.988 (0.017)

M-3 B ✗ ✓ ✓ 4.95 8358 0.9986 0.978 (0.017)

M-4 BB ✗ ✓ ✓ 4.60 5725 0.9988 0.977 (0.016)

M-5 B ✓ ✗ ✓ 1.32 2972 0.9999 0.985 (0.018)

M-6 BB ✓ ✗ ✓ 1.08 744 1.0000 0.988 (0.017)

M-7 B ✗ ✗ ✓ 4.95 8358 0.9986 0.978 (0.009)

M-8 BB ✗ ✗ ✓ 4.60 5725 0.9988 0.987 (0.009)

M-9 B ✓ ✓ ✗ 3.47 181,311 0.9996 0.960 (0.034)

M-10 BB ✓ ✓ ✗ 1.49 36,400 1.0000 0.978 (0.025)

M-11 B ✗ ✓ ✗ 6.35 308,900 0.9867 0.923 (0.050)

M-12 BB ✗ ✓ ✗ 6.25 214,324 0.9852 0.929 (0.053)

M-13 B ✓ ✗ ✗ 3.47 181,311 0.9996 0.963 (0.034)

M-14 BB ✓ ✗ ✗ 1.49 36,400 1.0000 0.983 (0.022)

M-15 B ✗ ✗ ✗ 6.50 222,544 0.9845 0.982 (0.011)

M-16 BB ✗ ✗ ✗ 6.25 214,324 0.9852 0.983 (0.011)

Table 12.3 lists the specification of the 16 different models and introduces names
for each model. These model names will be subsequently used to refer to them. In
addition the MCMC output of the BMA analysis is summarized by reporting the
mean posterior model size, the number of different models visited by the MCMC
sampling procedure, the correlation between the posterior model probabilities
determined using the analytic formulas as well as based on the empirical frequencies
from the MCMC chain and the posterior distribution of shrinkage factor implied by
the Zellner’s g prior including a hyper-prior on g.

The first column in the table gives the name for the BMA specification
with the following four columns providing the information on how the model
prior is set (binomial (B) or beta-binomial (BB) model prior), if the dependent
variable is logarithmized or not, if the Twitter volume variables are logarith-
mized or not and if the interactions between the dummy (Genre, Rating) and the
numeric covariates (Budget, Screens, Weeks, Twitter volume, Twitter sentiment)
are included.

The remaining four columns summarize the MCMC output. Column Mean
post. model size reports the average number of regressors included in the visited
models. This number varies between 1.08 (for model M-2) and 6.50 (for model
M-15). # models visited indicates the number of unique sampled models and
PMP correlation indicates how close the empirical frequencies and analytical
posterior model probabilities (PMPs) are measured by the Pearson correlation.
These values vary between 0.9845 and 1 indicating high congruence and thus
confirming convergence of the MCMC chain. The closer the PMP correlation
is to one the better is the approximation of the analytical PMPs by the empir-



378 P. Hofmarcher and B. Grün

ical frequencies. Column Avg. shrinkage reports the posterior mean shrinkage
factors of the g-prior with the corresponding posterior standard deviations in
parentheses. The prior distribution of the shrinkage factor is given by g

1+g ∼
Beta(1, a2 − 1) with a ∈ [2, 4] such that the prior mean corresponds to the
unit information prior. The average shrinkage factors are between 0.923 and
0.988 with rather small standard deviations. This indicates that the shrinkage
imposed on the regression coefficients is very small, corresponding to g ≈
49.

We can also infer from Table 12.3, that the mean posterior model size is smaller
if we take the logarithm of the dependent variable. E.g., model M-1 and M-3 differ
only with respect to if the logarithm of the dependent variable is taken or not, but
the mean posterior model size of model M-3 (4.95) is nearly 4 times larger than that
of M-1 (1.32).

In the following we will mainly focus on three model specifications, namely
models M-2, M-4, and M-11. M-2 is the model with the smallest mean number
of regressors of all considered specifications. M-4 differs from M-2 solely by not
taking the logarithm of the dependent variable. As a consequence the mean number
of regressors increases from 1.08 to 4.60, but also the number of visited models
increases to 5725. The specification of model M-11 results in both, one of the
highest number of mean regressors, and the highest number of visited models.
Compared to M-2 and M-4, model M-11 does not include interaction terms, i.e.,
the number of potential covariates is 28 for this specification compared to 210 in the
other two model specifications.

Figure 12.3 displays both the prior and the posterior model size distributions of
the mentioned models. From the prior model size distributions we can clearly infer
that the beta-binomial prior of models M-2 and M-4 is more flexible in terms of
model size than the binomial model prior of model M-11. Table 12.3 shows that not
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Fig. 12.3 Prior and posterior model size distributions for models M-2, M-4, and M-11
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only the choice of the model prior influences the mean posterior model size, but also
other model specifications. In addition we find that the mean posterior model size
distributions have modes at rather low values and put less weight on high model
sizes than the prior. This is because the expected prior model size is set to 7 and
the data seem to favor smaller models than proposed by the prior. This is more
pronounced for the beta-binomial prior which is less informative.

Next we present the covariate-specific BMA results for models M-2, M-4, and
M-11 in Tables 12.4, 12.5, and 12.6. In each of the tables the 20 most important
covariates, according to the PIP, are included in the rows. The first column contains
the PIPs, which correspond to the fraction of all models where this covariate is
included. PIP can be interpreted as the posterior probability that the variable is
included in the true model. In the following two columns PM and PSD present
the posterior mean, respectively, posterior standard deviation of the regression
coefficients for these 20 most important covariates.

For model M-2 we find that the covariate representing number of screens has a
PIP of 1, i.e., this variable is included in all sampled models, followed by Volume T-
1/-3 with a PIP of only 0.0210. This indicates that the simple linear regression model
with variable Screens as the only explanatory variable seems to already describe
the data well. Additionally, the variable Screens has a relative large posterior mean
regression coefficient in particular compared to the other covariates displayed in

Table 12.4 BMA coefficient
results for model M-2

PIP PM PSD PSC

Screens 1.0000 0.6916 0.0756 1.0000

Volume T-1/-3 0.0210 0.0039 0.0294 1.0000

Volume T-21/-27 0.0157 0.0028 0.0241 1.0000

Volume T-14/-20 0.0128 0.0023 0.0216 1.0000

Volume T-7/-13 0.0064 0.0009 0.0141 0.9521

Crime 0.0054 0.0011 0.0196 1.0000

Fantasy 0.0028 0.0008 0.0216 1.0000

Sentiment T-1/-3 0.0027 0.0002 0.0060 1.0000

Weeks 0.0023 −0.0001 0.0046 0.0000

Budget 0.0021 0.0003 0.0074 1.0000

Action 0.0016 0.0003 0.0092 1.0000

Mystery 0.0015 0.0000 0.0105 1.0000

Volume T-4/-6 0.0013 0.0002 0.0059 1.0000

Animation 0.0012 −0.0003 0.0126 0.0000

Drama 0.0010 −0.0001 0.0062 0.0000

Sentiment T-21/-27 0.0009 0.0000 0.0023 1.0000

Thriller 0.0008 −0.0001 0.0061 0.0000

Comedy 0.0006 −0.0001 0.0059 0.0000

Adventure 0.0004 0.0001 0.0057 1.0000

Sentiment T-4/-6 0.0004 0.0000 0.0021 1.0000

Top 20 covariates in terms of PIP
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Table 12.5 BMA coefficient
results for model M-4

PIP PM PSD PSC

Sci-Fi 0.9996 −0.9064 0.3379 0.0000

Screens 0.9994 0.3567 0.0651 1.0000

Volume T-1/-3 0.9220 0.1869 0.1055 1.0000

Volume T-1/-3#Sci-Fi 0.9036 1.8988 1.0698 1.0000

Volume T-4/-6 0.1195 −0.0080 0.0639 0.0260

Volume T-4/-6#Sci-Fi 0.1127 −0.3401 0.9831 0.0000

Screens#Sci-Fi 0.0999 0.2167 0.6760 0.9855

Budget 0.0493 0.0069 0.0335 1.0000

Sentiment T-1/-3 0.0484 0.0074 0.0354 1.0000

Sentiment T-4/-6 0.0441 0.0064 0.0326 1.0000

Weeks 0.0427 0.0064 0.0329 1.0000

Sentiment T-14/-20 0.0413 0.0058 0.0306 1.0000

Sentiment T-7/-13 0.0286 0.0039 0.0251 1.0000

PG13 0.0200 −0.0044 0.0352 0.0000

Family 0.0179 0.0065 0.0741 0.8526

Volume T-21/-27 0.0179 0.0021 0.0219 0.9867

Volume T-14/-20 0.0166 0.0023 0.0241 0.8833

Crime 0.0144 0.0017 0.0214 1.0000

Volume T-7/-13 0.0121 −0.0002 0.0238 0.3591

Fantasy 0.0106 0.0028 0.0383 0.9618

Top 20 covariates in terms of PIP

Table 12.6 BMA coefficient
results for model M-11

PIP PM PSD PSC

Screens 0.9957 0.3684 0.0933 1.0000

Volume T-1/-3 0.8343 0.3593 0.2416 1.0000

Weeks 0.6117 0.1292 0.1246 1.0000

Adventure 0.4320 0.1965 0.2679 1.0000

Animation 0.2570 −0.1460 0.3106 0.0001

Thriller 0.2420 0.0688 0.1513 1.0000

Sentiment T-1/-3 0.2192 0.0328 0.0924 0.9967

Budget 0.2189 0.0275 0.0656 1.0000

Sentiment T-4/-6 0.2052 0.0270 0.0879 0.9577

Volume T-4/-6 0.1969 −0.0386 0.1610 0.2136

Sentiment T-7/-13 0.1891 0.0235 0.0762 0.9666

Volume T-7/-13 0.1751 −0.0285 0.1435 0.2311

Sci-Fi 0.1698 0.0582 0.1727 1.0000

Sentiment T-14/-20 0.1461 0.0132 0.0583 0.8571

Drama 0.1446 −0.0280 0.0990 0.0017

Volume T-14/-20 0.1353 0.0130 0.0883 0.6175

Volume T-21/-27 0.1310 0.0171 0.0789 0.8523

Family 0.1251 0.0404 0.1673 0.9970

Fantasy 0.1229 0.0335 0.1401 0.9984

Sentiment T-21/-27 0.1163 0.0047 0.0454 0.5997

Top 20 covariates in terms of PIP
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Table 12.4. A further indicator to study the effect of a covariate is its positive sign
certainty (PSC). For variable Screens we find that this covariate enters all models
with a positive coefficient sign.

The only difference between models M-2 and M-4 is that model M-4 uses
the original dependent variable instead of the logarithmized dependent variable.
Table 12.5 presents the results for this specification. We find that, compared to
model M-2 the PIPs are more evenly spread between four covariates. These are
Sci-Fi, Screens, Volume T-1/-3, and the interaction term of Volume T-1/-3 and
Sci-Fi. All four covariates have a PIP above 0.9. Further, compared to model M-
2, the posterior mean of the regressions coefficient of variable Screens halves in
size. Volume T-1/-3 which has a PIP of solely 0.021 in model M-2 increases its
importance in model M-4 with a PIP of 0.9220. Also its posterior mean regression
coefficient changes from 0.0039 to 0.1869, while sign certainty remains close
to 1.

Model M-11 differs from models M-2 and M-4 by not taking interaction terms
into account. The results are summarized in Table 12.6. We find 13 covariates with
a PIP above 0.15, which is a huge increase in the number of important covariates
compared to model M-2 (where only one covariate has a PIP above 0.15) and model
M-4 (where 4 covariates have a PIP above 0.15). Table 12.6 shows that Screens,
the volume of tweets for weeks 1–3 before release (Volume T-1/-3), and Weeks
are the three most important covariates for predicting open box office revenues. All
those covariates have a positive posterior mean regression coefficient. Compared to
model M-4 Sci-Fi looses importance and is now ranked 13th. On the other hand,
variable Budget increases its importance with a PIP above 0.21 and a positive mean
coefficient. A graphical comparison indicating the differences of models M-2, M-4,
and M-11 in terms of PIPs is given in Fig. 12.4.
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M-11)
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12.4.4 Iterations Matter

The quality of the BMA output depends crucially on the number of MCMC
iterations. In particular in situations, where the sampler starts with some model
that is not a “good” one, many iterations are already required to reach the part of
the model space where models with high posterior model probabilities are located.
In this case the first batch of iterations will not draw models with a high posterior
model probability and are therefore usually discarded as burn-in iterations. However
there is no clear guidance on the number of iterations which should be removed.
Table 12.7 displays the estimated PIPs as well as the posterior means (PM) and

Table 12.7 Variation in PIPs for model M-11 when changing the number of burn-in and recorded
iterations (B corresponds to the number of discarded burn-in iterations, I to the number of recorded
iterations)

B = 1000, B = 1000, B = 100,000,

I = 1000 I = 1,000,000 I = 1,000,000

PIP PM PSD Rank PIP PM PSD Rank PIP PM PSD Rank

Screens 1.00 0.36 0.09 1 1.00 0.37 0.09 1 1.00 0.37 0.09 1

Volume T-1/-3 0.95 0.42 0.23 2 0.84 0.36 0.24 2 0.84 0.36 0.24 2

Adventure 0.60 0.26 0.27 3 0.44 0.20 0.27 4 0.44 0.20 0.27 4

Weeks 0.59 0.12 0.12 4 0.61 0.13 0.12 3 0.61 0.13 0.12 3

Budget 0.42 0.05 0.08 5 0.22 0.03 0.07 7 0.22 0.03 0.06 7

Animation 0.30 −0.18 0.34 6 0.25 −0.15 0.31 5 0.25 −0.14 0.31 5

Volume T-4/6 0.30 −0.08 0.20 7 0.19 −0.04 0.16 10 0.19 −0.04 0.16 10

Sentiment T-4/-6 0.27 0.04 0.09 8 0.21 0.03 0.09 9 0.20 0.03 0.09 9

Sentiment T-1/-3 0.26 0.04 0.09 9 0.22 0.03 0.09 8 0.22 0.03 0.09 8

Sentiment T-14/-20 0.20 0.01 0.07 10 0.15 0.01 0.06 14 0.14 0.01 0.06 15

Family 0.19 0.08 0.22 11 0.13 0.04 0.17 19 0.13 0.04 0.17 18

Sci-Fi 0.18 0.05 0.16 12 0.17 0.06 0.17 13 0.17 0.06 0.17 13

Sentiment T-21/-27 0.18 0.00 0.06 13 0.11 0.00 0.04 21 0.12 0.00 0.05 20

Volume T-7/-13 0.16 −0.03 0.14 14 0.18 −0.03 0.14 12 0.18 −0.03 0.14 12

Drama 0.16 −0.02 0.09 15 0.15 −0.03 0.10 15 0.15 −0.03 0.10 14

Thriller 0.15 0.04 0.12 16 0.24 0.07 0.15 6 0.23 0.07 0.15 6

R 0.15 0.01 0.07 17 0.11 0.01 0.07 22 0.10 0.01 0.06 22

Volume T-21/-27 0.15 0.02 0.07 18 0.13 0.02 0.08 17 0.13 0.02 0.08 16

Crime 0.13 0.00 0.07 19 0.09 0.01 0.06 26 0.09 0.01 0.06 26

Mystery 0.11 −0.00 0.09 20 0.09 −0.00 0.08 27 0.09 −0.00 0.08 27

Romance 0.10 −0.02 0.10 21 0.11 −0.02 0.10 20 0.11 −0.02 0.10 21

PG13 0.09 −0.01 0.05 22 0.09 −0.01 0.06 25 0.10 −0.01 0.06 24

Fantasy 0.08 0.02 0.11 23 0.13 0.04 0.14 18 0.12 0.03 0.14 19

Volume T-14/-20 0.06 −0.00 0.05 24 0.13 0.01 0.09 16 0.13 0.01 0.09 17

Sentiment T-7/-13 0.04 0.00 0.04 25 0.19 0.02 0.08 11 0.19 0.02 0.08 11

Comedy 0.01 −0.00 0.02 26 0.10 −0.01 0.06 23 0.10 −0.01 0.06 23

Action 0.01 −0.00 0.02 27 0.09 −0.00 0.06 24 0.10 −0.00 0.06 25
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posterior standard deviations (PSD) of the regression coefficients for model M-11
for different burn-in values as well as number of iterations. The first three columns
display the results for 1000 burn-in and 1000 recorded iterations. In columns 4–6 the
number of burn-in iterations remains constant but the number of recorded iterations
is increased to 1,000,000 and the last three columns provide the results for a burn-in
period of 1,000,000 iterations.

We can infer that the results are nearly identical for the last two specifications,
i.e., essentially the same results are obtained for 1,000,000 recorded iterations
regardless of the length of the burn-in period. Comparing the sampling setup
(B = 1000, I = 1000) with the other two specifications, we find that the importance
of some variables changes. For example Thriller is ranked 16th for (B = 1000,
I = 1000) but is on the 6th rank when the number of iterations is increased. This
indicates that the MCMC chain has not converged yet when B = I = 1000.

To check for convergence of the chain, one might inspect the correlation between
the empirical frequencies of the visited models and their analytical PMP. For
B = I = 1000 we find a PMP correlation of 0.2563, while for B = 1000,
I = 1,000,000, and B = 100,000, I = 1,000,000 we find PMP correlation
values above 0.993. While the correlation value for the first setup indicates poor
congruence between the results, the values of the other two settings for burn-
in/recorded iterations indicate a very high degree of congruence. For a visual
inspection of the congruence between analytical and MCMC-based PMPs we can
plot both measures. Figure 12.5 displays the best 250 models according to their
analytical PMP and plots their MCMC-based empirical frequency counts. On the
left we find the results for B = I = 1000 and on the right for B = 1000,
I = 1,000,000. The figure confirms the insights gained from inspecting the PMP
correlation values.
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Fig. 12.5 Convergence plot for model specification M-11 for a subset of 250 models. On the left
for I = B = 1000 and on the right for B = 1000, I = 1,000,000
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12.4.5 Assessing the Forecasting Performance

In order to evaluate the relative advantages of using different model specifications
in the context of open box office forecasting, we compare the forecasting ability
of the model specifications described in Table 12.3, making use of an out-of-
sample prediction exercise. Using the data set of Lehrer and Xie (2017) we shuffle
the data such that the n observations are split into nT training observations and
nE = n−nT evaluation observations. For nE we use a grid of nT ∈ {10, 20, 30, 40}.
When using the training set, all models M-1 to M-16 are estimated to evaluate the
forecasting performance of the different model specifications. The forecasts from
these strategies are then evaluated by calculating mean squared prediction errors
(MPE) and mean absolute errors (ABS). The mean squared prediction errors are
defined as

MPE = 1

nE

∑

f∈nE
(yf − E(yf |xf , ynT , XnT ))

2.

In an analogous way, the mean absolute errors are defined.
The following five models are compared: the two models determined with BMA

using either the relative frequency counts or the marginal likelihoods to determine
the posterior model weights, the two models having the highest posterior model
weight based on either of the two approaches to calculate the posterior model weight
and the full model including all main effects. The full model was also considered in
Lehrer and Xie (2017) as a benchmark model in their forecasting evaluation.

Focusing on the three models previously considered in detail, Tables 12.8, 12.9,
and 12.10 give the performance evaluation results for the models M-2, M-4, and
M-11 for different sizes nT of the training data sets. The results clearly indicate that
model M-2 performs worst. While a statistical model which complies better with
the assumptions might be obtained after transforming the dependent variable, the
predictive performance measured by equally weighting deviations on the original
scale deteriorates. For models M-4 and M-11 using the BMA approach to either

Table 12.8 Mean absolute and squared errors for model M-2

Relative frequency counts Marginal likelihoods

Crit. nE BMA Top model BMA Top model Full model

ABS 10 1.211 (0.245) 1.212 (0.245) 1.211 (0.245) 1.212 (0.245) 0.690 (0.253)

ABS 20 1.226 (0.208) 1.225 (0.207) 1.225 (0.207) 1.225 (0.207) 0.730 (0.182)

ABS 30 1.223 (0.170) 1.224 (0.168) 1.223 (0.170) 1.224 (0.168) 0.797 (0.178)

ABS 40 1.196 (0.168) 1.195 (0.168) 1.196 (0.168) 1.195 (0.168) 0.858 (0.167)

MPE 10 1.996 (0.805) 1.999 (0.802) 1.997 (0.805) 1.999 (0.802) 1.089 (1.185)

MPE 20 2.034 (0.684) 2.028 (0.680) 2.026 (0.682) 2.028 (0.680) 1.267 (1.148)

MPE 30 2.032 (0.552) 2.031 (0.543) 2.031 (0.552) 2.031 (0.543) 1.524 (1.247)

MPE 40 1.962 (0.559) 1.953 (0.552) 1.962 (0.559) 1.953 (0.552) 1.827 (1.517)
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Table 12.9 Mean absolute and squared errors for model M-4

Relative frequency counts Marginal likelihoods

Crit. nE BMA Top model BMA Top model Full model

ABS 10 0.5410 (0.216) 0.5470 (0.215) 0.5430 (0.215) 0.5470 (0.215) 0.6829 (0.209)

ABS 20 0.5436 (0.137) 0.5528 (0.136) 0.5422 (0.138) 0.5528 (0.136) 0.6809 (0.126)

ABS 30 0.5305 (0.085) 0.5452 (0.090) 0.5315 (0.085) 0.5452 (0.090) 0.7149 (0.122)

ABS 40 0.5602 (0.136) 0.5865 (0.140) 0.5617 (0.136) 0.5865 (0.140) 0.7825 (0.164)

MPE 10 0.9532 (1.328) 0.9791 (1.358) 0.9582 (1.328) 0.9791 (1.358) 1.0523 (0.906)

MPE 20 1.0073 (0.873) 1.0344 (0.884) 1.0070 (0.877) 1.0344 (0.884) 1.0725 (0.560)

MPE 30 0.9559 (0.591) 1.0342 (0.675) 0.9599 (0.589) 1.0342 (0.675) 1.1923 (0.429)

MPE 40 1.1278 (1.088) 1.1868 (1.098) 1.1293 (1.090) 1.1868 (1.098) 1.3854 (0.520)

Table 12.10 Mean absolute and squared errors for model M-11

Relative frequency counts Marginal likelihoods

Crit. nE BMA Top model BMA Top model Full model

ABS 10 0.5122 (0.202) 0.5528 (0.206) 0.5162 (0.202) 0.5528 (0.206) 0.6884 (0.211)

ABS 20 0.5231 (0.126) 0.5574 (0.133) 0.5279 (0.126) 0.5574 (0.133) 0.6863 (0.131)

ABS 30 0.5251 (0.103) 0.5650 (0.107) 0.5304 (0.102) 0.5650 (0.107) 0.7239 (0.121)

ABS 40 0.5401 (0.091) 0.5886 (0.107) 0.5465 (0.093) 0.5886 (0.107) 0.7827 (0.159)

MPE 10 0.8249 (1.199) 0.8631 (1.143) 0.8266 (1.190) 0.8631 (1.143) 1.0701 (0.922)

MPE 20 0.8621 (0.778) 0.9039 (0.760) 0.8659 (0.770) 0.9039 (0.760) 1.0808 (0.558)

MPE 30 0.8368 (0.570) 0.9002 (0.571) 0.8408 (0.565) 0.9002 (0.571) 1.1726 (0.412)

MPE 40 0.8635 (0.441) 0.9417 (0.437) 0.8705 (0.435) 0.9417 (0.437) 1.3679 (0.473)

obtain a combined model or select the model with the highest posterior model
probability leads to an improved predictive performance compared to the full model.
In addition a slightly better performance of the BMA based predictions compared
to a single model is indicated.

12.5 Summary

The era of big data increases the size of available data sets. Not only the number of
observations is increased, but also the number of available covariates. In particular
additional information becomes available by extracting data from social media and
creating new variables from text content. This aggravates the problem of model
uncertainty and makes it even more challenging to specify a suitable model based
on theory. In particular if predictive performance is a key criterion, an approach
which combines all potential models generally outperforms a single best model.
BMA is a principled statistical approach to take model uncertainty into account and
estimate predictive models with good forecasting capabilities. Pursuing a Bayesian
approach requires the specification of suitable priors as well as approximative
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estimation methods based on MCMC. In this paper a comprehensive overview on
model specification and estimation as well as inference tools for interpreting results
in BMA applications is given. For illustration the proposed methods are applied to a
data set aiming at predicting the box office revenues of films based on characteristics
such as budget and genre, but also information extracted from social media content.
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Chapter 13
Bootstrap Aggregating and Random
Forest

Tae-Hwy Lee, Aman Ullah, and Ran Wang

13.1 Introduction

The last 30 years witnessed the dramatic developments and applications of Bagging
and Random Forests. The core idea of Bagging is model averaging. Instead of
choosing one estimator, Bagging considers a set of estimators trained on the
bootstrap samples and then takes the average output of them, which is helpful in
improving the robustness of an estimator. In Random Forest, we grow a set of
Decision Trees to construct a “forest” to balance the accuracy and robustness for
forecasting.

This chapter is organized as follows. First, we introduce Bagging and some
variants. Second, we discuss Decision Trees in details. Then, we move to Random
Forest which is one of the most attractive machine learning algorithms combining
Decision Trees and Bagging. Finally, several economic applications of Bagging
and Random Forest are discussed. As we mainly focus on the regression problems
rather than classification problems, the response y is a real number, unless otherwise
mentioned.

13.2 Bootstrap Aggregating and Its Variants

Since the Bagging method combines many base functions in an additive form, there
are more than one strategies to construct the aggregating function. In this section,
we introduce the Bagging and its two variants, Subagging and Bragging. We also
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discuss the Out-of-Bag Error as an important way to measure the out-of-sample
error for Bagging methods.

13.2.1 Bootstrap Aggregating (Bagging)

The first Bagging algorithm was proposed in Breiman (1996). Given a sample and
an estimating method, he showed that Bagging can decrease the variance of an
estimator compared to the estimator running on the original sample only, which
provides a way to improve the robustness of a forecast.

Let us consider a sample {(y1, x1), . . . , (yN , xN)}, where yi ∈ R is the dependent
variable and xi ∈ R

p are p independent variables. Suppose the data generating
process is y = E(y|x)+ u = f (x)+ u where E(u|x) = 0 and V ar(u|x) = σ 2. To
estimate the unknown conditional mean function of y given x, E(y|x) = f (x), we
choose a function f̂ (x) as an approximator, such as linear regression, polynomial
regression, or spline, via minimizing the L2 loss function

min
f̂

N∑

i=1

(
yi − f̂ (xi)

)2
.

A drawback of this method is that, if f̂ (x) is a nonlinear function, the estimated
function f̂ (x) may suffer from the over-fitting risk.

Consider the bias–variance decomposition of mean square error (MSE)

MSE = E(y − f̂ (x))2

=
(
Ef̂ (x)− f (x)

)2 + V ar(f̂ (x))+ V ar(u)
= Bias2 + V ariance+ σ 2.

There are three components included in the MSE: the bias of f̂ (x), the variance of
f̂ (x), and σ 2 = V ar(u) is the variance of the irreducible error. The bias and the
variance are determined by f̂ (x). The more complex the forecast f̂ (x) is, the lower
its bias will be. But a more complex f̂ (x) may suffer from a larger variance. By
minimizing the L2 loss function, we often decrease the bias to get the “optimal”
f̂ (x). As a result, f̂ (x) may not be robust as it may result in much larger variance
and thus a larger MSE. This is the over-fitting risk. To resolve this problem, the
variance of f̂ (x) needs to be controlled. There are several ways to control the
variance, such as adding regularization term or adding random noise. Bagging is
an alternative way to control the variance of f̂ (x) via model averaging.

The procedure of Bagging is as follows:



13 Bootstrap Aggregating and Random Forest 391

• Based on the sample, we generate bootstrap sample {(yb1 , xb1 ), . . . , (x
b
N , ybN)} via

randomly drawing with replacement, with b = 1, . . . ,B.
• To each bootstrap sample, estimate f̂b(x) via minimizing the L2 loss function

min
f̂b(x)

N∑

i=1

(
ybi − f̂b(xbi )

)2
.

• Combine all the estimated forecasts f̂1(x), . . . , f̂B(x) to construct a Bagging
estimate

f̂ (x)bagging = 1

B

B∑

b=1

f̂b(x).

Breiman (1996) proved that Bagging can make prediction more robust. Several
other papers have studied why/how Bagging works. Friedman and Hall (2007)
showed that Bagging could reduce the variance of the higher order terms but have
no effect on the linear term when a smooth estimator is decomposed. Buja and
Stuetzle (2000a) showed that Bagging could potentially improve the MSE based
on second and higher order asymptotic terms but do not have any effects on the
first order linear term. At the same time, Buja and Stuetzle (2000b) also showed that
Bagging could even increase the second order MSE terms. Bühlmann and Yu (2002)
studied in the Tree-based Bagging, which is a non-smooth and non-differentiable
estimator, and found that Bagging does improve the first order dominant variance
term in the MSE asymptotic terms. In summary, Bagging works with its main effects
on variance and it can make prediction more robust by decreasing the variance
term.

13.2.2 Sub-sampling Aggregating (Subagging)

The effectiveness of Bagging method is rooted in the Bootstrap method, the
resampling with replacement. Sub-sampling, as another resampling method without
replacement, can also be introduced to the same aggregating idea. Compared to the
Bootstrap method, the Sub-sampling method often provides a similar outcome with-
out relatively heavy computations and random sampling in Bootstrap. Theoretically,
Sub-sampling needs weaker assumptions than the Bootstrap method.

Comparing to the Bootstrap, Sub-sampling method needs extra parameters. Let d
be the number of sample points contained in each sub-sample. Since sub-sampling
method draws samples without replacement from the original sample, the number of
sub-sample is M = (N

d

)
. Thus, instead of aggregating the base predictors based on

Bootstrap, we consider Sub-sampling aggregating, or Subagging, which combines
predictors trained on samples from sub-sampling.
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The procedure of Subagging is as follows:

• Based on the sample, construct M = (N
d

)
different sub-samples {(ym1 , xm1 ), . . . ,

(ymd , xmd )} via randomly drawing M times without replacement, where m =
1, . . . ,M .

• To each sub-sample, estimate f̂m(x) via minimizing the L2 loss function

min
f̂m(x)

d∑

i=1

(
ymi − f̂m(xmi )

)2
.

• Combine all the estimated models f̂1(x), . . . , f̂M(x) to construct a Subagging
estimate

f̂ (x)subagging = 1

M

M∑

m=1

f̂m(x).

Practically, we choose d = α ×N where 0 < α < 1. There are several related
research papers considered the similar settings for d (Buja and Stuetzle, 2000a,b).
Since the d is related to the computational cost, d = N/2 is widely used in practice.

13.2.3 Bootstrap Robust Aggregating (Bragging)

In Sects. 13.2.1 and 13.2.2, we have discussed Bagging and Subagging that are
based on bootstrap samples and sub-sampling samples, respectively. Although they
are shown to improve the robustness of a predictor, both of them are based on the
mean for aggregation, which may suffer from the problem of outliers. A common
way to resolve the problem of outliers is to use median instead of the mean. To
construct an outlier-robust model averaging estimator, a median-based Bagging
method is discussed by Bühlmann (2004), which is called Bootstrap Robust
Aggregating or Bragging.

The procedure of Bragging is the following:

• Based on the sample, we generate bootstrap samples {(yb1 , xb1 ), . . . , (y
b
N , xbN)} via

random draws with replacement, with b = 1, . . . ,B.
• With each bootstrap sample, estimate f̂b(x) via minimizing the L2 loss function

min
f̂b(x)

N∑

i=1

(
ybi − f̂b(xbi )

)2
.
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• Combine all the estimated models f̂1(x), . . . , f̂B(x) to construct a Bragging
estimate

f̂ (x)bragging = median
(
f̂b(x); b = 1, . . . ,B

)
.

To sum up, instead of taking the mean (average) on the base predictors in
Bagging, Bragging takes the median of the base predictors. According to Bühlmann
(2004), there are some other robust estimators, like estimating f̂b(x) based on
Huber’s estimator, but Bragging works slightly better in practice.

13.2.4 Out-of-Bag Error for Bagging

In Sects. 13.2.1–13.2.3, we have discussed Bagging and its two variants. In the
Bootstrap-based methods like Bagging and Bragging, when we train f̂b(x) on
the bootstrap sample, there are many data points not selected by resampling with
replacement with the probability

P
(
(xi , yi) /∈ Bootb

) =
(

1− 1

N

)N
→ e−1 ≈ 37%,

where Bootb is the bth bootstrap sample. There are roughly 37% of the original
sample points not included in the bth bootstrap sample. Actually, this is very useful
since it can be treated as a “test” sample for checking the out-of-sample error
for f̂b(x). The sample group containing all the samples not included in the bth
bootstrap sample is called the Out-of-Bag sample or OOB sample. The error that
the f̂b(x) has on the bth out-of-bag sample is called the Out-of-Bag Error, which is
equivalent to the error generated from the real test set. This is discussed in Breiman
(1996) in detail. The bth Out-of-Bag error is calculated by

êrrOOB,b =
∑N
i=1 I

(
(yi , xi) /∈ Bootb

)×Loss(yi , f̂b(xi))
∑N
i=1 I

(
(yi , xi) /∈ Bootb

)

= 1

Nb

Nb∑

i=1

Loss
(
ybi,OOB , f̂b(x

b
i,OOB)

)
.

The procedure of implementing the Out-of-Bag Error is the following:

• Based on the sample, we generate B different bootstrap samples {(yb1 , xb1 ), . . . ,
(ybN , xbN)} via randomly drawing with replacement.
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• To each bootstrap sample, estimate f̂b(x) via minimizing the loss function

min
f̂b(x)

N∑

i=1

Loss
(
ybi − f̂b(xbi )

)
.

• Compare the bth bootstrap sample to the original sample to get the bth Out-
of-Bag sample {(yb1,OOB , xb1,OOB), . . . , (y

b
Nb ,OOB , xbNb ,OOB)}, where Nb is the

number of data points for the bth Out-of-Bag sample.
• Calculate the Out-of-Bag error of f̂b(x) among all the Out-of-Bag samples

êrrOOB = 1

B

B∑

b=1

1

Nb

Nb∑

i=1

Loss
(
ybi,OOB , f̂b(x

b
i,OOB)

)

= 1

B

B∑

b=1

êrrOOB,b.

13.3 Decision Trees

Although many machine learning methods, like spline and neural networks, are
introduced as the base predictors in Bagging method, the most popular Bagging-
based method is the so-called Random Forest proposed by Breiman (2001). Random
Forest has been applied to many studies and becomes an indispensable tool for data
mining and knowledge discovery. Intuitively, the main idea behind Random Forest
is combining a large number of decision trees into a big forest via Bagging. In
this section, we concentrate on how to construct the base learner, Decision Tree,
for Random Forest. In Sect. 13.4, we discuss the Random Forest in detail. Several
effective variants of Random Forest are discussed in detail in Sect. 13.5.

13.3.1 The Structure of a Decision Tree

The basic idea of the decision tree has a long history and has been used in many areas
including biology, computer science, and business. Biologists usually introduce a
very large tree chart to describe the structure of classes containing animals or plants;
in computer science, tree structure is a widely used data type or data structure with a
root value and sub-trees of children with a parent node, represented as a set of linked
nodes; in business, the decision tree is a usual structure choice for a flowchart that
each internal node has a series of questions based on input variables.

Figure 13.1 gives an example of book data with the tree structure. Firstly,
in all kinds of books, we have economic books. Then, economic books contain
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Books

Economics

Microeconomics Macroeconomics

RBC New Keynesian

Fig. 13.1 A tree of structured data about economic books

Fig. 13.2 The components in a decision tree

books about macroeconomics, microeconomics, and others. If we concentrate on
macroeconomic books, it contains books about real business cycle (RBC) theory,
new Keynesian theory, etc.

First of all, let us explore the structure of the decision tree and clarify the names
of components in the decision tree. Figure 13.2 illustrates a decision tree with three
layers. We can see that there are four components in a decision tree: root nodes,
internal nodes, leaf nodes, and branches between every two layers. The root node is
the beginning of a decision tree. From the only one root node, there could be two
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or more branches connecting to the internal nodes in the next layer. Each internal
node is also called the parent node to the connected nodes in the next layer. The
nodes in the next layer are called child nodes or sub-nodes. Also, every internal
node contains a decision rule to decide how to connect to its sub-nodes in the next
layer. At the bottom, there are several leaf nodes. They are the end of one decision
tree and they represent different outputs for prediction. For example, to a regression
problem, each leaf node contains a continuous output. To a classification problem,
each leaf node contains a discrete output corresponding to the labels of classes.

Intuitively, all the tree structure methods share the same intuition: the recursive
splitting. Given a node, we split it into several branches connecting to its sub-nodes
in the next layer. Then, to each sub-node, we split it again to get more sub-nodes in
the next layer until the end of the decision tree.

In data mining and machine learning, the decision tree is widely used as a
learning algorithm called decision tree learning. We first construct the structure
of a decision tree structure. Each node contains a decision rule. To compute the
prediction of a decision tree, we feed the input to the root node and then propagate
through all the layers to a leaf node, which outputs the final prediction of the
decision tree. We discuss this procedure in detail via the following two examples.

Example 1 (People’s Health) Let us consider a classification problem about peo-
ple’s health. Suppose a people’s healthHeal depends on two explanatory variables,
weight W and height H . Health is a binary variable with two potential outcomes:
Heal = 1 means healthy and Heal = 0 means not healthy. The function of Heal
given H andW is

Heal = h(W ,H).

Now suppose we can represent this function via several decision rules. Based on
our experience, to a people with a large height, it is not healthy if this people have
a relatively small weight; to a people with a small height, it is not healthy if this
people have a large weight. We can write down these rules:

⎧
⎪⎪⎨

⎪⎪⎩

Heal = 1 if H > 180 cm and W > 60 kg
Heal = 0 if H > 180 cm and W < 60 kg
Heal = 1 if H < 180 cm and W < 80 kg
Heal = 0 if H < 180 cm and W > 80 kg.

We first consider height H . Based on the outcome of H , there are different decision
rules for weight W . Thus, it is straightforward to construct a tree to encode this
procedure.

In Fig. 13.3, the node containing H is the root node, which is the beginning of
the decision procedure. The node containingW is the internal node in the first layer.
In the second layer, there are four leaf nodes that give the final prediction of health.
For example, to a sample (H = 179cm, W = 60kg), according to the decision rule
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Fig. 13.3 A tree of people’s health

in the root node, we choose the lower part of branches since 179 < 180. Then, since
60 < 80 based on the decision rule in the internal node, we go to the third leaf node
and output Heal = 1 as the prediction. This decision tree encodes the four decision
rules into a hierarchical decision procedure.

Example 2 (Women’s Wage) Another example is about the classic economic
research: women’s wage. Suppose women’s wage depends on two factors: education
level Edu and working experience Expr . Thus, this is a regression problem. The
nonlinear function of women’s wage is

Wage = g(Edu,Expr).

If a woman has higher education level or a longer working experience, it is much
possible that woman have higher wage rate. As in Example 1, we suppose the
nonlinear function g can be represented by the following rules:

⎧
⎪⎪⎨

⎪⎪⎩

Wage = 50 if Expr > 10 years and Edu = college
Wage = 20 if Expr > 10 years and Edu �= college
Wage = 10 if Expr < 10 years and Edu = college
Wage = 0 if Expr < 10 years and Edu �= college.

In this case, we first consider the experience Expr . Based on it, we use different
decision rules for education Edu. This procedure can also be encoded into a
decision tree.
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Fig. 13.4 A tree of woman’s wage

Figure 13.4 illustrates the decision tree for predicting women’s wage. To a
woman who has 11 years of working experience with a college degree, it is more
likely that she has a higher wage rate. Thus the decision tree outcomes 50; if a
woman has 3 years of working experience without a college degree, we expect the
woman could have a hard time in searching for her job. Thus, the decision tree
reports 0.

13.3.2 Growing a Decision Tree for Classification: ID3 and
C4.5

In Sect. 13.3.1, we have discussed how a decision tree works. Given the correct
decision rules in the root and internal nodes and the outputs in the leaf nodes, the
decision tree can output the prediction we need. The next question is how to decide
the decision rules and values for all the nodes in a decision tree. This is related
to the learning or growing of a decision tree. There are more than 20 methods to
grow a decision tree. In this chapter, we only consider two very important methods.
In this section, we discuss ID3 and C4.5 methods for the classification problem.
In the Sects. 13.3.3 and 13.3.4, we will introduce the Classification and Regression
Tree (CART) method for the classification problem and the regression problem,
respectively.

Let us go back to the weight, height, and health example. Since there are two
explanatory variables, H and W , we can visualize the input space in a 2D plot.
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Fig. 13.5 Health data in 2D
plot

Figure 13.5 illustrates all the data points {(Heal1,W1,H1), . . . , (HealN ,WN ,HN)}
in a 2D plot. The horizontal axis is the weight W and the vertical axis represents
the height H . The red minus symbol means Heal = 0 and the blue plus symbol
represents Heal = 1.

Figure 13.6 illustrates the implementation of a decision tree in a 2D plot to
predict a person’s health. First of all, in level 1, the decision rule at the root node is
Height > 180 or not. In the 2D plot, this rule could be represented as a decision
stump which is a horizontal line at H = 180 cm. The decision stump splits the
sample space into two sub-spaces that are corresponding to the two sub-nodes in
level 1. The upper space is corresponding to H > 180 cm and the lower space
represents H < 180 cm.

Next, we have two sub-spaces in level two. To the upper spaces, we check the
rule at the right internal node,W > 60 kg or not. This can be represented as another
vertical decision stump at W = 60 kg to separate upper space to two sub-spaces.
Similarly, to the lower space, we also draw another vertical decision stump, which
is corresponding to the decision rule at the left internal node.

Finally, we designate the final output for each of the four sub-spaces that repre-
sent the four leaf nodes. In classification problems, given a sub-space corresponding
to a leaf node, we consider the number of samples for each class and then choose the
class with the most number of samples as the output at this leaf node. For example,
the upper left space should predictHeal = 0, the upper right space is corresponding
to Heal = 1. For the regression problems, we often choose the average of all the
samples at one sub-space as the output of this leaf node.

To sum up, each node in a decision tree is corresponding to space or a sub-space.
The decision rule in each node is corresponding to a decision stump in this space.
Then, every leaf node computes its output based on the average outputs belonging
to this leaf. To grow a decision tree, there are two kinds of “parameters” need to be
figured out: the positions of all the decision stumps corresponding to the non-leaf
nodes and the outputs of all the leaf nodes.
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Fig. 13.6 Grow a tree for health data

In decision tree learning, we often grow a decision tree from the root node to
leaf nodes. Also in each node, we usually choose only one variable for the decision
stump. Thus, the decision stump should be orthogonal to the axis corresponding to
the variable we choose. At first, we decide that the optimal decision stump for the
root node. Then, to two internal nodes in layer 1, we figure out two optimal decision
stumps. Then, we estimate the outputs to four leaf nodes. In other words, decision
tree learning is to hierarchically split input space into sub-spaces. Comparing the
two plots at the bottom of Fig. 13.6, we can see the procedure of hierarchical
splitting for a decision tree learning.
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Fig. 13.7 Sub-spaces generated by decision stumps

Thus, the core question is how to measure the goodness of a decision stump to
a node. An important measure of this problem is called impurity. To understand it,
we consider two decision stumps for one sample set.

Figure 13.7 shows the different cases of the sub-spaces split by two decision
stumps. To the left panel, H is selected for the decision stump. In two sub-spaces,
the samples have two labels. To the right panel, W is selected. The left sub-space
only contains samples with label Heal = 0 and the right sub-space only contains
samples with label Heal = 1. Intuitively, we can say that the two sub-spaces in the
left panel are impure compared to the sub-spaces in the right panel. The sub-spaces
in the right panel should have lower impurity. Obviously, the decision stump in the
right panel is better than the left panel since it generates more pure sub-spaces.

Mathematically, the information entropy is a great measure of impurity. The
more labels of samples are contained in one sub-space, the higher entropy of the
sub-space has. To discuss the entropy-based tree growing clearly, we introduce a
new definition: information gain. The information or entropy for an input space S is

Inf o(S) = −
C∑

c=1

pclog2(pc), (13.1)

where C is the total number of classes or labels contained in space S. pc is the
frequency of samples for one class in the space S. It can be estimated by

pc = 1

NS

∑

xi∈S
I (yi = c), (13.2)

where NS is the total number of samples in space S. I (yi = c) is an indicator
function measuring the label yi is the cth class or not.
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Suppose we choose D as a decision stump and it separates the space S into
two sub-spaces. For example, if we choose D as x = 5, the two sub-spaces are
corresponding to x < 5 and x > 5. Then, we calculate the distinct entropies for two
sub-spaces. Thus, if the space S is separated into v different sub-spaces, the average
entropy of S after splitting is

Inf oD(S) =
v∑

j=1

NSj

NS
× Inf o(Sj ), (13.3)

where v is the number of sub-spaces generated by D. To binary splitting, v = 2. Sj
is the j th sub-space and it satisfies: Si ∩ Sj = ø if i �= j and

⋃
i Si = S. NSj and

NS are the number of samples contained in Sj and S.
Obviously, the information or entropy for space S changes before and after

splitting based on decision stump D. Thus, we define the information gain of D
as

Gain(D) = Inf o(S)− Inf oD(S). (13.4)

Example 3 (Predicting Economic Growth) Consider an example of predicting eco-
nomic growth G based on two factors: inflation rate I and net export NX. Suppose
G is a binary variable where G = 1 for expansion and G = 0 for recession. Then,
the growth G is an unknown function of the inflation rate I and the net export NX

G = G(I ,NX).

From the left panel in Fig. 13.8, we can see the sample distribution of economic
growth G. For example, if there is high inflation rate I and high net export NX, we

Fig. 13.8 Plots for economic growth data
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observe the economic expansion where G = 1; if there are high inflation rate I but
low net export NX, the economy will be in recession with G = 0.

Let us consider a decision tree with only the root node and two leaf nodes to fit
the samples. In the right panel, we chooseD : I = 10% as the decision stump in the
root node. Thus, the space S is splitted into two sub-spaces S1 and S2. According to
Eq. (13.1), the information to the original space S is

Inf o(S) = −
2∑

c=1

pclog2(pc)

= −(p1log2(p1)+ p2log2(p2))

= −
(

4

8
log2

(
4

8

)
+ 4

8
log2

(
4

8

))

= 1,

where class 1 is corresponding to G = 0 and class 2 to G = 1. And p1 = 4
8 means

that there are 4 samples with G = 0 out of 8 samples.
After splitting, the information to the sub-space S1 is

Inf o(S1) = −
2∑

c=1

pclog2(pc)

= −p1log2(p1)+ 0

= −
(

2

2

)
log2

(
2

2

)
= 0.

The information to the sub-space S2 is

Inf o(S2) = −
2∑

c=1

pclog2(pc)

= −(p1log2(p1)+ p1log2(p1))

= −
(

2

6
log2

(
2

6

)
+ 4

6
log2

(
4

6

))

= 0.92.
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Based on Eq. (13.3), the average entropy of S after splitting is

Inf oD(S) =
v∑

j=1

NSj

NS
× Inf o(Sj )

= NS1

NS
× Inf o(S1)+ NS2

NS
× Inf o(S2)

= 2

8
× 0+ 6

8
× 0.92

= 0.69.

After splitting, the information decreases from 1 to 0.69. According to Eq. (13.3),
the information gain of D is

Gain(D) = Inf o(S)− Inf oD(S) = 0.31.

To sum up, we can find the best decision stump to maximizing the information
gain such that the optimal decision stump can be found. From the root node, we
repeat finding the best decision stump to each internal node until stopped at the leaf
nodes. This method for tree growing is called ID3 introduced by Quinlan (1986).

Practically, the procedure of implementing the decision tree for classification
based on ID3 is the following:

• Suppose the sample is {(y1, x1), . . . , (yN , xN)} where yi ∈ (0, 1) and xi ∈ R
p.

To the first dimension, gather all the data orderly as x1,(i), . . . , x1,(N).
• Search the parameter d1 respect toD1 : x1 = d1 through x1,(i) to x1,(N) such that

max
D1

Gain(D1) = max
D1

(
Inf o(S)− Inf oD1(S)

)
.

• Find the best D2 : x2 = d2, . . . ,Dp : xp = dp and then choose the optimal D
such that

max
D

Gain(D) = max
D

(Inf o(S)− Inf oD(S)) .

• Repeatedly run the splitting procedure until every node containing one label of
y. Finally, take the label of y from one leaf node as its output.

One problem this method suffer from is related to over-fitting. Suppose we have
N data points in space S. According to the rule that maximizing the information
gain, we can find that the optimal result is separating one sample into one sub-space
such that the entropy is zero in each sub-space. This is not a reasonable choice since
it is not robust to noise in the samples. To prevent that, we can introduce a revised
version of information gain from C4.5 method.
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C4.5 introduces a measure for information represented via splitting, which is
called Splitting Information

Split Inf oD(S) = −
v∑

j=1

NSj

NS
× log2

NSj

NS
, (13.5)

where v = 2 for the binary splitting.
Obviously, this is an entropy based on the number of splitting or the number of

sub-spaces. The more the sub-spaces are, the higher the splitting information we
will get. To show this conclusion, let us go back to the economic growth case (See
Fig. 13.9).

To the left case, the splitting information is computed based on Eq. (13.5) as

Split Inf oD(S) = −
v∑

j=1

NSj

NS
× log2

NSj

NS

= −
(
NS1

NS
× log2

NS1

NS
+ NS2

NS
× log2

NS2

NS

)

= −
(

2

8
× log2

2

8
+ 6

8
× log2

6

8

)

= 0.81.

Fig. 13.9 Grow a tree for economic growth prediction
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To the right case, the splitting information is

Split Inf oD(S) = −
v∑

j=1

NSj

NS
× log2

NSj

NS

= −
(
NS1

NS
× log2

NS1

NS
+ NS2

NS
× log2

NS2

NS
+ NS3

NS
× log2

NS3

NS

)

= −
(

2

8
× log2

2

8
+ 4

8
× log2

4

8
+ 2

8
× log2

2

8

)

= 1.5.

Thus, when there are more sub-spaces, the splitting information increases. In
other words, splitting information is the “cost” for generating sub-spaces. Now,
instead of information gain, we can use a new measure called Gain Ratio(D)

Gain Ratio(D) = Gain(D)

Split Inf o(D)
. (13.6)

When we generate more sub-spaces, the information gain increases but splitting
information is higher at the same time. Thus, to maximize the Gain Ratio of D, we
can make great trade-offs. This is the main idea of C4.5, an improved version of
ID3 introduced by Quinlan (1994).

Summarizing, the procedure of implementing the decision tree for classification
based on C4.5 is the following:

• Suppose the sample is {(y1, x1), . . . , (yN , xN)} where yi ∈ (0, 1) and xi ∈ R
p.

To the first dimension, gather all the data orderly as x1,(i), . . . , x1,(N).
• Search the parameter d1 respect toD1 : x1 = d1 through x1,(i) to x1,(N) such that

max
D1

Gain Ratio(D1) = max
D1

(
Gain(D1)

Split Inf o(D1)

)
.

• Find the best D2 : x2 = d2, . . . ,Dp : xp = dp and then choose the optimal D
such that

max
D

Gain Ratio(D) = max
D

(
Gain(D)

Split Inf o(D)

)
.

• Repeatedly run the splitting procedure until the Gain Ratio is less than 1. Finally,
take the most frequency label of y from one leaf node as its output.
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13.3.3 Growing a Decision Tree for Classification: CART

In Sect. 13.3.2, we have discussed related methods about how to grow a tree
based on ID3 and C4.5 methods. In this section, we introduce another way to
construct a decision tree, the Classification and Regression Tree (CART), which
not only features great performance but very easy to implement in practice for both
classification and regression tasks.

The main difference between ID3, C4.5, and CART is the measure of informa-
tion. ID3 and C4.5 choose the entropy to construct the Information Gain and Gain
Ratio. In CART, we introduce a new measure for deciding the best decision stump
called the Gini Index or Gini Impurity. The definition of Gini Impurity is

Gini(S) =
M∑

j=1

pj (1− pj ) = 1−
M∑

j=1

p2
j , (13.7)

whereM is the number of classes in node spaces S and pj is the frequency of class
j in node space S. Intuitively, this is the variance of the binary distribution. That is,
CART chooses the variance as the impurity measure.

Figure 13.10 illustrates the difference between entropy and Gini Impurity. Given
x-axis as the proportion of sample belonging to one class, we can see that two curves
are very similar. Then, we have the new Gini Impurity after binary splitting

GiniD(S) = NS1

NS
Gini(S1)+ NS2

NS
Gini(S2). (13.8)

where the NS ,NS1 ,NS2 are the numbers of sample points in space S, S1, S2,
respectively. Similarly to the information gain in ID3, we consider the difference
of Gini impurity as the measure of goodness of decision stump

�GiniD(S) = Gini(S)−GiniD(S). (13.9)

Fig. 13.10 Entropy (blue) and gini impurity (red)
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As we discuss in ID3 method, if we grow a decision tree via maximizing the
information gain in each node, it is the best choice that we split all the data points in
one space such that each sub-space contains one sample point. ID3 and CART may
suffer from this risk. C4.5 should be a better choice than ID3 and CART, but it has
a fixed rule to prevent over-fitting which cannot be adaptive to data.

To solve this problem, let us consider the total cost of growing a decision tree

T otal Cost = Measure of F it +Measure of Complexity. (13.10)

The total cost contains two main parts: the measure of fit is related to the goodness
of the model, as the error rate in classification problem; the measure of complexity
describes the power of the model. To balance the two measures in growing a decision
tree, we often choose the following function as the objective:

L = Loss(yi , xi; tree)+ λ�(numbers of leaf nodes).

The first term is related to the loss of the decision tree. To classification problem,
we can use the error rate on the samples as the loss. The second term is a measure
of complexity based on the number of leaf nodes. � is an arbitrary function like
the absolute function. λ is a tuning parameter balancing the loss and the complexity.
Many machine learning and regressions like Lasso and Ridge Regression follow this
framework. Also, since the second term penalizes on the number of leaf nodes, this
is also called pruning a decision tree.

The procedure of implementing the decision tree for classification based on
CART is the following:

• Suppose the sample is {(y1, x1), . . . , (yN , xN)} where yi ∈ {0, 1} and xi ∈ R
p.

To the first dimension, gather all the data orderly as x1,(i), . . . , x1,(N).
• Search the parameter d1 respect toD1 : x1 = d1 through x1,(i) to x1,(N) such that

max
D1

�GiniD1(S) = max
D1

(
Gini(S)−GiniD1(S)

)
.

• Find the best D2 : x2 = d2, . . . ,Dp : xp = dp and then choose the optimal D
such that

max
D

�GiniD(S) = max
D
(Gini(S)−GiniD(S)) .

• Based on the new decision stump, calculate the error rate for the decision tree
and the total loss function

L = error rate(yi , xi; tree)+ λ�(numbers of leaf nodes).
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• Repeatedly run the splitting procedure until the total loss function starting to
increase. Finally, take the most frequency label of y from one leaf node as its
output.

13.3.4 Growing a Decision Tree for Regression: CART

The Information Gain and Gini Impurity are very important measures when we are
implementing a classification problem. In economic research, we often consider
more regression problems with the continuous response. Thus, instead of the
information gain, we choose the variation to measure the goodness of a decision
stump

V ariation(S) =
N∑

i=1

(yi − ȳ)2, (13.11)

where N is the number of data points belong to the space S. After several splitting,
the space S is separated into v sub-spaces S1, . . . , Sv , we can define the average
variance after splitting the space S

V ariationD(S) = 1

v

v∑

j=1

V ariationj (S), (13.12)

where v is the number of the sub-spaces separated by D. Again, to binary splitting,
we have v = 2. Thus, we have a new information gain for regression method

Gain(D) = V ariation(S)− V ariationD(S). (13.13)

Based on the total cost in Eq. (13.10), we choose the same formula for regression

L = Loss(yi , xi; tree)+ λ�(numbers of leaf nodes),

where Loss(yi , xi; tree) is the L2 loss function.
Thus, the procedure of implementing the decision tree for regression based on

CART is the following:

• Suppose the sample is {(y1, x1), . . . , (yN , xN)} where yi ∈ R and xi ∈ R
p. To the

first dimension, gather all the data orderly as x1,(i), . . . , x1,(N).
• Search the parameter d1 respect toD1 : x1 = d1 through x1,(i) to x1,(N) such that

max
D1

Gain(D) = max
D1

(
V ariation(S)− V ariationD1(S)

)
.



410 T.-H. Lee et al.

• Find the best D2 : x2 = d2, . . . ,Dp : xp = dp and then choose the optimal D
such that

max
D

Gain(D) = max
D
(V ariation(S)− V ariationD(S)) .

• Based on the new decision stump, compute the loss for the decision tree and the
total loss function

L = Loss(yi , xi; tree)+ λ�(numbers of leaf nodes).

• Repeatedly run the splitting procedure until the total loss function starting to
increase. Finally, take an average of y from one leaf node as its output.

13.3.5 Variable Importance in a Decision Tree

In Sects. 13.3.2–13.3.4, we discussed how to grow a decision tree. In this section,
we consider another problem: how to measure the importance of the variable.

In the procedure of growing a decision tree, each time we split one internal node
into two child nodes, one variable should be selected based on the information gain
or variation gain. Thus, for an important variable, the decision tree should choose it
frequently among all the internal nodes. Conversely, the variables may be selected
just a few times if the variables are not very important. To the j th variable, Breiman,
Friedman, Stone, and Olshen (1984) defined a relative importance as

I 2
j =

T−1∑

t=1

e2
t I (v(t) = j), (13.14)

where T is the number of internal nodes (non-leaf nodes) in a decision tree, v(t)
is the variable selected by node t . et is the error improvement based on before and
after splitting the space via variable v(t). To regression task, it can be a gain of
variation. To classification problem, it is related to information gain of entropy or
the difference of Gini Impurity.

For example, let us consider a CART tree to a regression problem. Suppose
we split the t th node into two nodes based on variable j selected by the decision
stump D. Then, we can calculate the value of the information gain Gain(D) =
V ariation(S)− V ariationD(S). This is the error improvement et . Thus, consid-
ering all the internal nodes, we compute all the e2

t to get I 2
j .

If variable j is very important, the error improvement should be very large and
I (v(t) = j) often equals to 1 since variable j is usually selected. As a result, the
measure I 2

j is relatively large; conversely, if a variable is not very important, the
error improvement based on this variable cannot be so large, which leads to a small
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I 2
j . After we growing a decision tree on a training set, we often calculate it on the

test set.

13.4 Random Forests

Random Forest is a combination of many decision trees based on Bagging. In the
first paper about Random Forest, Breiman (2001) discussed the theories behind the
Random Forest and compared Random Forest with other ensemble methods. From
this section, we start to discuss Random Forests in detail.

13.4.1 Constructing a Random Forest

As we discussed in Sect. 13.2, Bagging method can generate a lot of base learners
trained on bootstrap samples and then combine them to predict. If we consider
combining a set of unbiased estimators or predictors, Bagging works by decreasing
the variances of the predictors but keeping the means unaffected.

For example, let us consider B numbers of unbiased estimators f1, f2, . . . , fB
with same variance σ 2. If they are i.i.d, it is easy to show that the variance of average
estimator is

V ar(g) = V ar
(

1

B

B∑

b=1

fb

)
= 1

B
σ 2. (13.15)

But if the unbiased estimators are correlated, the variance of the average estimator
is

V ar(g) = 1

B2V ar

(
B∑

b=1

fb

)

= 1

B2

⎛

⎝
B∑

b=1

V ar(fb)+ 2
∑

b �=c
cov(fb, fc)

⎞

⎠

= 1

B2
(Bσ 2 + (B2 −B)ρσ 2)

= ρσ 2 + (1− ρ)
B

σ 2,

(13.16)

where ρ is the correlation coefficient between two estimators.
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The variance of average estimator depends on the number of base estimators
and the correlation between estimators. Even if we can decrease the second term to
zero via adding increasingly large numbers of estimators, the first term remains at
the same level if the estimators are not independent. Similarly, in Bagging, even if
we can combine a lot of predictors based on Bootstrap, the variance cannot keep
decreasing if the predictors are dependent with each other.

In practice, since most of the bootstrap samples are very similar, the decision
trees trained on these sample sets are often similar and highly correlated with
others. Thus, average estimators of similar decision trees can be more robust
but do not perform much better than a single decision tree. That is the reason
why Bagging decision trees or other base learners may not work so well in
prediction.

Compare to Bagging decision trees, which only combines many trees based
on Bootstrap to decrease the second term (1−ρ)

B
σ 2, Random Forest also considers

controlling the first term ρσ 2. To decrease the correlation between decision trees,
Random Forest introduces the so-called random subset projection or random
feature projection during growing a decision tree. That is, instead of applying
all the variables in one tree, each decision tree chooses only a subset of variables
at each potential split in Random Forest. Also, comparing to the classic decision
tree, in Random Forest, decision trees are not necessarily pruned by penalizing the
number of leaf nodes but grow all the way to the end. Random subset projection
can significantly decrease the correlations between trees since different trees grow
on different sets of attributes, which leads to a smaller ρσ 2. But it could affect
the second term (1−ρ)

B
σ 2 and the unbiasedness of decision trees since they cannot

predict dependent variables based on all the attributes. Thus, we need to select
the number of variables to select in each split to balance the first and the second
term.

The procedure of constructing a Random Forest is the following:

• Generate B number of bootstrap sample sets.
• On each sample set, grow a decision tree all the way to the end.
• During growing a tree, randomly select m variables at each potential split

(random feature projection).
• Combine theB decision trees to a Random Forest. To regression, take the average

output among all the trees; to classification, consider the vote of all the trees.

We can choose the hyper-parameter m based on cross-validation but this is very
time-consuming when B is very large. Thus, to the classification task, m is often
chosen as 1 ≤ m ≤ √p; to regression task, we choose m as 1 ≤ m ≤ p/3, where
p is the number of variables. To the node size, for every decision tree, we grow it all
the way to the end for the classification task, while we grow to that every leaf node
has no more than nmin = 5 sample inside for regression task.
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13.4.2 Variable Importance in a Random Forest

In Sect. 13.3.5, we discussed the relative importance I 2
j to measure the importance

of a variable in a decision tree. Since Random Forest is a linear combination of
decision trees, we can introduce an average relative importance

I 2
j =

1

B

B∑

b=1

I 2
j (b), (13.17)

where I 2
j (b) is the relative importance for the bth decision tree

I 2
j (b) =

Tb−1∑

t=1

e2
t I (v(t)b = j). (13.18)

A drawback for this measure is that we need to check every node in a decision
tree. This is not very efficient if there is too many samples or large numbers of the
decision tree in a Random Forest.

Surprisingly, Random Forest provides a much simpler but very effective
way to measure the importance of variables via random permutation. That
is, for one variable, we perturb the samples by random permutation. For
example, after constructing a Random Forest, to the j th variable along all the
samples xj = (xj ,1, xj ,2, . . . , xj ,i , . . . , xj ,N), we randomly rearrange all the
x to generate a new series of samples x∗j = (x∗j ,1, x∗j ,2, . . . , x∗j ,i , . . . , x

∗
j ,N) =

(xj ,2, xj ,10, . . . , xj ,N−4, . . . , xj ,i+5), which is the original xj with random sample
order. Then, we test the Random Forest on that to get the error rate or mean
square error under random permutation. Intuitively, if one variable is not important,
comparing the test error on the original test sample, the test error on permutation
test samples should not change a lot since this variable may not usually be selected
by the nodes in a decision tree. Given a test set with Nt samples, the variable
importance under random permutation is

V Ij = 1

B

B∑

b=1

1

Nt

Nt∑

i=1

Loss(yi , treeb(x1,i , . . . ., x
∗
j ,i , . . .))−Loss(yi , treeb(x1,i , . . . ., xj ,i , . . .))

= 1

B

B∑

b=1

1

Nt

Nt∑

i=1

�Loss(yi , treeb(x1,i , . . . ., x
∗
j ,i , . . .)).

(13.19)

In practice, one way to estimate the test error is sample splitting. We split one
data set into a training set and a validation set and then estimate the test error on
the validation set. But this is not efficient because of the loss of samples. When we
discussed in Bagging in Sect. 13.2.4, in terms of Bootstrap sampling, all the Bagging
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methods could leave about one third sample points untouched, that are the Out-of-
Bag samples. Since Random Forest is a Bagging method, we can use the OOB error
as the test error. This is a very efficient way to implement since each time we add a
decision tree based on a new bootstrap sample, we can test the variable importance
on the new OOB samples.

Based on the OOB error, we redefine the measure of variable importance as

V IOOBj = 1

B

B∑

b=1

1

Nb

Nb∑

i=1

(Loss(yi,OOB , treeb(x1,i,OOB , . . . ., x∗j ,i,OOB , . . .))

−Loss(yi,OOB , treeb(x1,i,OOB , . . . ., xj ,i,OOB , . . . ; treeb)))

= 1

B

B∑

b=1

(
êrr∗OOB,b − êrrOOB,b

)

= 1

B

B∑

b=1

�êrrOOB,b,

(13.20)

where Nb is the sample size of the bth OOB sample.
The implementing procedure is the following:

• To bth bootstrap sample set, grow a decision tree.
• Find the sample point not contained in the sample set and construct the bth Out-

of-Bag sample set.
• Compute OOB error for the bth decision tree based on the OOB sample with and

without random permutation.
• Calculate V IOOBj to measure the j th variable importance.

One related topic is about the variable selection in Random Forest. Based on
the variable importance, we can compare the importance between two variables.
Thus, could we select relevant variables based on this measure? A simple way to
implement is designating a threshold value for variable importance and select the
variables with high importance only. But there is no theory about how to decide the
threshold value such that we can select relevant variables correctly. Recently, Strobl,
Boulesteix, Kneib, Augustin, and Zeileis (2008) and Janitza, Celik, and Boulesteix
(2016) considered the hypothesis testing to select variables in Random Forest.

The last but not the least, the issue of variable dependence need to be considered
when we measure the variable importance via random permutation. For example,
if we implement a linear model by regressing the level of health on weight and
height, the coefficient on the weight could be very unstable if weight and height
are highly correlated. Similarly, in random forest, if two variables are correlated, we
cannot get an accurate measure of importance via random permuting on the variable.
Strobl, Boulesteix, Zeileis, and Hothorn (2007) discussed the topics about the bias
in random forest variable importance.
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To resolve this issue, we need to check the dependence among all the variables.
Some methods like PCA could be introduced to decorrelate the variables, but they
may affect the interpretations of the variables. Strobl et al. (2008) proposed a method
called the conditional variable importance.

The implementing procedure is the following:

• Given variable xj , find a group of variables Z = {z1, z2, . . . , } that are correlated
with xj .

• To the bth decision tree, find out all the internal nodes containing the variables
in Z.

• Extract the cutpoints from the nodes and create a grid by means of bisecting the
sample space in each cutpoint.

• In this grid, permute the xj to compute the OOB accuracy. The OOB error of the
bth tree is the difference between OOB accuracy with and without permutation
given Z.

• Consider the average of all the trees’ OOB error as the forest’s OOB error.

13.4.3 Random Forest as the Adaptive Kernel Functions

Now we start to discuss some related theories behind Random Forest to uncover why
Random Forest works. Basically, Random Forest or decision tree ensemble methods
can be seen as a local method. For example, it is easy to find that the predicted value
of a given data totally depends on the average of yi in one of the leaf node. In other
words, the predicted value only depends on “neighborhood” samples belong to the
leaf node. Similarly, Breiman (2000) showed that Random Forest which is grown
using i.i.d random vectors in the tree construction are equivalent to a kernel acting
on the true margin.

Without loss of generality, let us consider a Random Forest with B decision trees
for a binary classification task. To one decision tree, suppose R as the area of one of
leaf node with the responses as R = +1 or R = −1. We have the labeling rule for
R = +1 to this leaf node

∫

R

P (+1|z)P (dz) ≥
∫

R

P (−1|z)P (dz), (13.21)

where z represents all the possible inputs included in the leaf node. Intuitively, by
considering all the samples in R, if more samples with the label as+1, the response
of R is +1. Otherwise, we label the response of R as −1.

Based on Eq. (13.21), we have the output +1 from a decision tree given an input
x when Eq. (13.22) holds

∫

Rx(θ)

P (1|z)P (dz) ≥
∫

Rx(θ)

P (−1|z)P (dz), (13.22)
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where Rx(θ) is the area of the leaf node containing x and θ is the parameter of the
decision tree. Let D(z) = P(1|z)− P(−1|z), then Eq. (13.22) can be written as

∫

Rx(θ)

D(z)P (dz) ≥ 0. (13.23)

According to Eq. (13.23), the prediction of the bth decision tree is

ŷ =
{

1 if
∫
Rx(θb)

D(z)P (dz) ≥ 0

−1 if
∫
Rx(θb)

D(z)P (dz) ≤ 0.

Now let us introduce an indicator function I (x, z ∈ R(θb)) to represent the event
z ∈ Rx(θb), we have

ŷ =
{

1 if
∫
I (x, z ∈ R(θb))D(z)P (dz) ≥ 0

−1 if
∫
I (x, z ∈ R(θb))D(z)P (dz) ≤ 0.

Obviously, the indicator function I (x, z ∈ R(θb)) can be seen as a kernel weighted
function K(x, z). Also, this kernel function is not smooth since it only considers
the sample in the leaf node R(θb). Intuitively, it means that one decision tree
can learn to construct a distribution plot and then works via the “hard” kernel
weighting.

Let us consider a Random Forest. Compare to a single decision tree, Random
Forest contains B decision trees. Assume in bth decision tree, the number of leaf
nodes is Tb. Thus, we can derive a kernel function for Random Forest

KRF (x, z) = 1

B

B∑

b=1

Tb∑

t=1

I (x, z ∈ Rt(θb)). (13.24)

This is a discrete kernel combining all the leaf nodes from B decision trees.
Additionally, when B →∞, we have

KRF (x, z) = 1

B

B∑

b=1

Tb∑

t=1

I (x, z ∈ Rt(θb))

→ Pθ(x, z ∈ A(θ)),
(13.25)

where A(θ) is the area based on the Random Forest and it contains infinite number
of leaf nodes from infinite decision trees. When B →∞, we can see that the kernel
function will converge to a probability measure. That is, the hard kernel function
will be a smoother kernel function when we have increasingly number of decision
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Fig. 13.11 2D plot of decision tree and KNN

trees. Thus, the final output for Random Forest in this case should be

ŷRF =
{

1 if
∫
KRF (x, z)D(z)P (dz) ≥ 0

−1 if
∫
KRF (x, z)D(z)P (dz) ≤ 0.

From another perspective, Lin and Jeon (2006) discussed Random Forest from
a point of view of K-nearest neighbor (KNN). To show the connection between
Random Forest and KNN, they proposed a new method called potential nearest
neighbor (PNN). They also showed that Random Forest could be converted to an
adaptive kernel smooth method described by PNN.

To sum up, Random Forest not only combines a large number of decision trees
to reduce the variance of prediction like bagging, but also decreases the dependence
among decision trees via random feature projection to get a much lower prediction
error than Bagging Decision Tree. Theoretically, Random Forest makes prediction
via constructing an adaptive kernel function. That is very similar to other local
methods such as nonparametric kernel method and KNN. Figure 13.11 illustrates
the difference between Decision Tree and KNN.

13.5 Recent Developments of Random Forest

As one of the most effective ensemble method in solving real-world issues, the
random forest also has many variants for different modeling tasks in statistics, data
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mining, and econometrics literature. In this section, we introduce several attractive
variants of Random Forest.

13.5.1 Extremely Randomized Trees

For Bagging method, we discussed its effectiveness related to the variance of
ensemble model. According to Eq. (13.16)

V ar(g) = ρσ 2 + (1− ρ)
B

σ 2,

the variance is decomposed into two parts: the first term ρσ 2 depends on the
correlation among base models and the second term (1−ρ)

B
σ 2 is related to the number

of base models.
Since we often combine a large number of base models, we can assume B goes

to infinity and the main part of the variance converges to ρσ 2. Thus, bagging can
largely decrease the second term.

Random Forest, besides controlling the second term via Bagging, also controls
the first term by decreasing the ρ via random feature projection simultaneously.
Because of the random feature projection, the decision tree suffers from a higher
bias. It means that we need to focus on decreasing correlations among decision
trees such that the ensemble model becomes more effective.

Random feature projection is not the only way to decrease the correlations.
Geurts, Ernst, and Wehenkel (2006) introduced another way to achieve the goal
and derived a new technique called the Extremely Randomized Trees (Extra-Trees).
Compare to Random Forest, Extra-Trees works on the original samples instead
of bootstrap samples. More importantly, Extra-Trees method generates the base
decision tree via a more random way to split sample space than the random feature
projection in Random Forest.

The Extra-Trees splitting algorithm is the following:

• To a node space in decision tree, first chooseK variables (x1, x2, . . . , xK) among
all the p variables.

• To all K attributes, randomly choose a splitting point to each one of them via
choosing a uniform number from (xmin, xmax) belong to this node.

• Compare the criteria among all the random splitting point and choose the attribute
xk giving the best splitting outcome.

• Choose variable xk and the random splitting point as the final decision stump in
this node.

• Stop splitting when the number of sample points = nmin.

Practically, we set K = √
p and nmin = 5 by default. But we can tune them

based on the cross-validation.
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Table 13.1 A summary of three ensemble methods

Names Main part of variance Bootstrap Hyper-parameters

Bagging decision trees ρσ 2 Yes B, nmin

Random forest ρσ 2 Yes B, m, nmin

Extremely randomized trees (1−ρ)
B
σ 2 No B, K , nmin

The key difference of constructing base decision trees between Random Forest
and Extra-Trees is the splitting rule for each node. In Random Forest, we choose
m variables and then find the optimal decision stump directly. But in Extra-Trees,
we choose K variables to randomly generate decision stump and then choose the
“optimal” decision stump. As a consequence, randomly growing decision trees in
extra-trees will be less dependent than the trees in Random Forest, which leads to
lower correlations ρ. Thus, even though Extra-Trees do not introduce Bootstrap,
it works well in many data mining and predicting tasks. This idea about being
“random” is also used in many other machine learning algorithms such as extreme
learning machine proposed by Huang, Zhu, and Siew (2006).

We summarize Bagging Decision Trees, Random Forest, and Extremely Ran-
domized Trees in Table 13.1.

13.5.2 Soft Decision Tree and Forest

Based on the previous discussion, we find that Random Forest and its variants
are based on the decision tree. The decision tree is growing via splitting the
space into optimal sub-spaces recursively and the function defined by a decision
tree is a non-smooth step function. The decision tree is naturally suitable for
implementing the classification problem because of the discrete outputs. Since most
economic problems are related to the regression problems, we could expect that
the decision tree should be so large that it can handle a smooth function “non-
smoothly.”

To resolve this problem, we can consider a “soft” decision tree instead of the
“hard” decision tree. Given a decision tree with only one root node and two leaf
nodes, it can have two possible outcomes

f (x) =
{
μ1 if g(x) > 0

μ2 if g(x) < 0,

where μ1 and μ2 are correspond to the first and second leaf nodes. g(x) is called
gate function. It decides which leaf node should be selected. We can also rewrite the
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formula based on an indicator function

f (x) = μ1 × I (g(x) > 0)+μ2 × (1− I (g(x) > 0)) .

For example, in women wage case we have discussed, the decision stump is D :
Expr = 10. Given that, we can use a gate function g(Expr) = Expr − 10 to
represent the decision stump

f (Expr) = μ1 × I (g(Expr) > 0)+μ2 × (1− I (g(Expr) > 0)) . (13.26)

That is, if Expr > 10, we choose the first leaf node and Expr < 10 choose the
second one.

Generally, to the mth node, we can use a similar function to represent its output

Fm(x) = FLm(x)× I (gm(x) > 0)+ FRm (x)× (1− I (gm(x) > 0)). (13.27)

If FLm(x) and FRm (x) are leaf nodes, we have FLm(x) = μL and FRm (x) = μR . If
not, they are corresponding to the child nodes in the next layer FLm(x) = FLm+1(x).
Because of the indicator function, the Fm(x) is a step function with two outcomes,
FLm(x) or FRm (x). It is a hard decision tree.

In Eq. (13.27), we can use a smooth gate function instead of the identity function
such that the decision tree is “soft” and Fm(x) is a smooth function. Let us change
the indicator function I (h) to a logistic function L(h), we have

Fm(x) = FLm(x)×L(gm(x))+ FRm (x)× (1−L(gm(x))), (13.28)

where L(h) = 1
1+e−h is a logistic function and gm(x) = βT x is a linear single index

function of input variables. In the soft decision tree, instead of selecting one from
two child nodes, a smooth Fm(x) is taking weighed average between FLm(x) and
FRm (x). In Fig. 13.12, we compare the hard decision tree with the soft decision tree.

Back to the women’s wage example, we choose L(g(Expr)) = 1
1+e−(Expr−10) .

That is, if Expr > 10, we consider the left node more and consider the right node
more when Expr < 10.

Compared to the hard decision tree, the soft decision tree has many advantages:

• Since soft decision tree can represent any smooth function, it is more suitable
to handle the regression problem than the original decision tree. That may be
the most important advantage since economic research often cares more about
the regression problem, such as economic growth rate prediction and derivative
estimation for partial effect analysis.

• Soft decision tree contains a bunch of differentiable gate functions, which means
we can train all the parameters via the Expectation-Maximization (EM) method
very quickly.
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Fig. 13.12 Hard decision tree and soft decision tree

• In all the leaf nodes of a soft decision tree, we could not only choose a constant
μ, but consider more flexible methods, like the linear formula or even the neural
networks.

• Because of its hierarchical structure, the soft decision tree is a local method as
the hard decision tree. Thus, it has similar theories and properties as other local
methods like kernel regression.

There are many research papers related to the soft version of the decision tree.
This first soft decision tree model is called hierarchical mixtures of experts (HME)
discussed by Jordan and Jacob (1994). Instead of growing a decision tree via
splitting recursively, in the HME method, we first designate the structure of a soft
decision tree, like the number of layers, then optimize all the parameters in this tree.

Consider a soft decision tree with S layers and one split in each node. Thus, the
number of total leaf nodes is 2S and the function of this soft decision tree is

fHME(x) =
2S∑

leaf=1

Pleaf (x)μleaf

=
2S∑

leaf=1

∏

p→leaf
Gp(x)μleaf ,

where p→ leaf means all the gate functions contained in the nodes located on the
path to the sth leaf node. According to Eq. (13.28), we have

Gp(x) = I (p = lef t)×L
(
gp(x)

)+ I (p = right)× (1−L (gp(x)
))

.
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Fig. 13.13 Hierarchical mixtures of experts

It decides the gate function for each node on the path. μleaf represents the function
in each leaf, which could be a constant, a simple linear function, or other nonlinear
models.

For example, Fig. 13.13 shows the structure of an HME with two layers. Let us
consider the path to the first leaf node p → 1. The path starts from the root node
in layer 0. Since the path chooses the left node, the node0, I (p = lef t) = 1 and
G0(x) should be

G0(x) = I (0 = lef t)×L(g0(x))+ (1− I (0 = lef t))× (1−L(g0(x)))

= L(g0(x)).

Then, the path contains the node1 at layer 1 and then choose the left node, the leaf1.
Thus, G1(x) should be

G1(x) = I (1 = lef t)×L(g00(x))+ (1− I (1 = lef t))× (1−L(g00(x)))

= L(g00(x)).

Thus, to Pleaf=1(x), we have

P1(x) =
∏

p→1

Gp(x) = G0(x)×G1(x)

= L(g0(x))×L(g00(x)).

(13.29)
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Similarly, to the path to leaf 2, we have

P2(x) =
∏

p→2

Gp(x) = G0(x)×G1(x)

= L(g0(x))× (1−L(g00(x))).

(13.30)

Now we find that HME is similar to a mixture model since
∑
leaf Pleaf (x) = 1.

Suppose the μleaf is a parameter, like mean, of a distribution Pleaf (y|x). Then we
have the conditional probability of y given x

P (y|x) =
2S∑

leaf=1

∏

p→leaf
Gp(x)Pleaf (y|x)

=
2S∑

leaf=1

Pleaf (x)Pleaf (y|x).

Thus, we can have the log-likelihood function of HME with unknown parameter β

L(y|x;β) =
N∑

i=1

logP(yi |xi;β)

=
N∑

i=1

log
2S∑

leaf=1

Pleaf (xi;β)Pleaf (yi |xi;β).

To optimize the likelihood function, Jordan and Jacob (1994) considered the
Expectation-Maximization (EM) to optimize it. The main idea behind EM is based
on the so-called complete log-likelihood function

Lc(y|x;β) =
N∑

i=1

2S∑

leaf=1

zleaf
∏

p→leaf
Gp(xi;β)Pleaf (yi |xi;β),

where zleaf are implicit variables that represent the indicators of leaf nodes. Take
the expectation of Lc(y|x;β), we have

Q(y|x;β) = Ez(Lc(y|x;β)) =
N∑

i=1

2S∑

leaf=1

E(zleaf )
∏

p→leaf
Gp(xi;β)Pleaf (yi |xi;β).
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To E(zleaf ), we have

E(zleaf ) = P(zleaf = 1|y, x,β)

= P(y|zleaf = 1, x,β)P (zleaf = 1|x,β)

P (y|x,β)

=
∏
p→leaf gp(x;β)P (y|x,β)

∑S2

leaf=1
∏
→leaf gp(x;β)P (y|x,β)

.

We can see that Q(y|x;β) is the lower bound of L(y|x;β) because of Jensen’s
inequality. The log-likelihood function L(y|x) is optimized if we can optimize the
lower boundQ(y|x;β). This is the key to the EM method.

To sum up, the training procedure for HME is as follows:

• Randomly initializes all the parameters β, then propagate forward the input to
get the distribution of xi .

• To each mini-batch, propagate forward all the x to the leaves to get the predicted
outputs. Then compute all the E(zi,leaf ) (E-step).

• Optimize the expectation likelihood functionQ(x, y;β) (M-step).
• Redo E-step and M-Step until that all the parameters converge.

One possible drawback to the soft decision tree method is that the HME could
lead to a long-time training process. More importantly, since HME needs a pre-
determined structure of a soft decision tree, it is not adaptive to data. To resolve this
issue, another way to implement soft decision trees was discussed by Irsoy, Yildiz,
and Alpaydin (2012). The authors introduced a new way to grow a soft decision
tree. In each node, they used gradient descent to find the optimal splitting line
then compare the predicting outcome between the two trees with and without the
new splitting line to decide that this new node should be added or not. Thus, this
method can adaptively learn the structure of soft decision tree and could be faster.
Similarly to Random Forest, Yildiiz, Írsoy, and Alpaydin (2016) constructed an
ensemble of soft decision trees via Bagging to explore the ensemble of soft decision
trees.

Basically, the soft decision tree method is not so popular as the decision tree
since the training process is slower than growing a decision tree. But in many recent
research papers, the soft decision tree shows the power for learning hierarchical
features adaptively. Kontschieder et al. (2015) proposed deep neural decision forest
that combines the convolutional neural network (CNN) feature extractor and tree
structure into one differential hierarchical CNN and implements it into the tasks
of computer vision. Frosst and Hinton (2017) explored the soft decision tree in
distilling the knowledge or features extracted by a neural network based on its
hierarchical structure. They found that the soft decision tree method can definitely
learn hierarchical features via training.
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13.6 Applications of Bagging and Random Forest
in Economics

13.6.1 Bagging in Economics

Recently, Bootstrap Aggregating is widely used in macroeconomic analysis and
forecasting. Panagiotelis, Athanasopoulos, Hyndman, Jiang, and Vahid (2019)
explored the performance of the ensemble a large number of predictors in predicting
macroeconomic series data in Australia. Precisely, they compared Bagging LARS
with Dynamic Factor Model, Ridge Regression, LARS, and Bayesian VAR, respec-
tively, on GDP growth, CPI inflation, and IBR (the interbank overnight cash rate
equivalent to the Federal funds rate in the USA). They found that Bagging method
can help in more accurate forecasting.

As discussed in this chapter, Bagging has been proved to be effective to
improve on unstable forecast. Theoretical and empirical works using classification,
regression trees, variable selection in linear and nonlinear regression have shown
that bagging can generate substantial prediction gain. However, most of the existing
literature on bagging has been limited to the cross-sectional circumstances with
symmetric cost functions. Lee and Yang (2006) extend the application of bagging to
time series settings with asymmetric cost functions, particularly for predicting signs
and quantiles. They use quantile predictions to construct a binary predictor and the
majority-voted bagging binary prediction and show that bagging may improve the
binary prediction. For empirical application, they presented results using monthly
S&P500 and NASDAQ stock index returns.

Inoue and Kilian (2008) considered the Bagging method in forecasting economic
time series of US CPI data. They explored how the Bagging may be adapted to
application involving dynamic linear multiple regression for the inflation forecast-
ing. And then they compare several models’ performances, including correlated
regressor models, factor models, and shrinkage estimation of regressor models (with
LASSO) with or without Bagging. Their empirical evidence showed that Bagging
can achieve large reductions in prediction mean squared error, even in challenging
applications such as inflation forecasting.

Lee, Tu, and Ullah (2014, 2015) and Hillebrand, Lee, and Medeiros (2014)
consider parametric, nonparametric, and semiparametric predictive regression mod-
els for financial returns subject to various hard-thresholding constraints using
indicator functions. The purpose is to incorporate various economic constraints
that are implied from economic theory or common priors such as monotonicity
or positivity of the regression functions. They use bagging to smooth the hard-
thresholding constraints to reduce the variance of the estimators. They show the
usefulness of bagging when such economic constraints are imposed in estimation
and forecasting, by deriving asymptotic properties of the bagging constrained
estimators and forecasts. The advantages of the bagging constrained estimators and
forecasts are also demonstrated by extensive Monte Carlo simulations. Applications
to predicting financial equity premium are taken for empirical illustrations, which
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show imposing constraints and bagging can mitigate the chance of making large
size forecast errors and bagging can make these constrained forecasts even more
robust.

Jin, Su, and Ullah (2014) propose a revised version of bagging as a forecast
combination method for the out-of-sample forecasts in time series models. The
revised version explicitly takes into account the dependence in time series data
and can be used to justify the validity of bagging in the reduction of mean
squared forecast error when compared with the unbagged forecasts. Their Monte
Carlo simulations show that their method works quite well and outperforms the
traditional one-step-ahead linear forecast as well as the nonparametric forecast
in general, especially when the in-sample estimation period is small. They also
find that the bagging forecasts based on misspecified linear models may work as
effectively as those based on nonparametric models, suggesting the robustification
property of bagging method in terms of out-of-sample forecasts. They then re-
examine forecasting powers of predictive variables suggested in the literature
to forecast the excess returns or equity premium and find that, consistent with
Welch and Goyal (2008), the historical average excess stock return forecasts
may beat other predictor variables in the literature when they apply traditional
one-step linear forecast and the nonparametric forecasting methods. However,
when using the bagging method or the revised version, which help to improve
the mean squared forecast error for unstable predictors, the predictive variables
have a better forecasting power than the historical average excess stock return
forecasts.

Audrino and Medeiros (2011) proposed a new method called smooth transition
tree. They found that the leading indicators for inflation and real activity are the
most relevant predictors in characterizing the multiple regimes’ structure. They also
provided empirical evidence of the model in forecasting the first two conditional
moments when it is used in connection with Bagging.

Hirano and Wright (2017) considered forecasting with uncertainty about the
choice of predictor variables and compare the performances of model selection
methods under Rao–Blackwell theorem and Bagging, respectively. They investi-
gated the distributional properties of a number of different schemes for model
choice and parameter estimation: in-sample model selection using the Akaike
Information Criterion, out-of-sample model selection, and splitting the data into
sub-samples for model selection and parameter estimation. They examined how
Bagging affected the local asymptotic risk of the estimators and their associ-
ated forecasts. In their numerical study, they found that for many values of the
local parameter, the out-of-sample and split-sample schemes performed poorly
if implemented in a conventional way. But they performed well if implemented
in conjunction with model selection methods under Rao–Blackwell theorem or
Bagging.
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13.6.2 Random Forest in Economics

To introduce Random Forest into economic research, many economic and statistic
researchers studied in extending the theory of random forest not only for forecasting
but for inference.

In the literature of economic inference, Strobl et al. (2008) discussed the
consistency of Random Forest in the context of additive regression models, which
sheds light on the forest-based statistical inference. Wager and Athey (2018)
studied in the application of random forest in economic research. They proposed
the Causal Forest, an unbiased random forest method for estimating and testing
the heterogeneous treatment effect. They first showed that classic Random Forest
cannot have unbiasedness because of Bagging. Then, they proposed the Causal
Forest which combines a bunch of unbiased Honest Tree based on Sub-sampling
aggregating. They also showed that Causal Forest is unbiased and has asymptotic
normality under some assumptions. Finally, they discussed the importance and
advantage of Causal Forest in applications to economic causal inference.

To the application of economic forecasting, Hothorn and Zeileis (2017) discussed
a new Random Forest method, the Transformation Forest. Based on a parametric
family of distributions characterized by their transformation function, they proposed
a dedicated novel transformation tree and transformation forest as an adaptive local
likelihood estimator of conditional distribution functions, which are available for
inference procedures. In macroeconomic forecasting, Random Forest is applied
in Euro area GDP forecasting (Biau and D’Elia, 2011) and financial volatility
forecasting (Luong and Dokuchaev, 2018). Finally, Fischer, Krauss, and Treichel
(2018) assess and compare the time series forecasting performance of several
machine learning algorithms such as Gradient Boosting Decision Trees, Neural
Networks, Logistic Regression, Random Forest, and so on in a simulation study.
Nyman and Ormerod (2016) explore the potential of Random Forest for forecasting
the economic recession on the quarterly data over 1970Q2 to 1990Q2.

13.7 Summary

In this chapter, we discuss the Bagging method and Random Forest. At first, we
begin with introducing Bagging and its variants, the Subagging and Bragging. Next,
we introduce Decision Tree, which provides the foundation of the Random Forest.
Also, we introduce the related theories about Random Forest and its important
variants like Extreme Random Trees and Soft Decision Tree. At last, we discussed
many applications of Bagging and Random Forest in macroeconomic forecasting
and economic causal inference.
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Chapter 14
Boosting

Jianghao Chu, Tae-Hwy Lee, Aman Ullah, and Ran Wang

14.1 Introduction

The term Boosting originates from the so-called hypothesis boosting problem
in the distribution-free or probably approximately correct model of learning. In
this model, the learner produces a classifier based on random samples from an
unknown data generating process. Samples are chosen according to a fixed but
unknown and arbitrary distribution on the population. The learner’s task is to find a
classifier that correctly classifies new samples from the data generating process as
positive or negative examples. A weak learner produces classifiers that perform only
slightly better than random guessing. A strong learner, on the other hand, produces
classifiers that can achieve arbitrarily high accuracy given enough samples from the
data generating process.

In a seminal paper, Schapire (1990) addresses the problem of improving the
accuracy of a class of classifiers that perform only slightly better than random
guessing. The paper shows the existence of a weak learner implies the existence of
a strong learner and vice versa. A boosting algorithm is then proposed to convert
a weak learner into a strong learner. The algorithm uses filtering to modify the
distribution of samples in such a way as to force the weak learning algorithm to
focus on the harder-to-learn parts of the distribution.

Not long after the relation between weak learners and strong learners is revealed,
Freund and Schapire (1997) propose the Adaptive Boost (AdaBoost) for binary
classification. AdaBoost performs incredibly well in practice and stimulates the
invention of boosting algorithms for multi-class classifications. On the other hand,
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researchers try to explain the success of AdaBoost in a more theoretical way, e.g.,
Friedman, Hastie, and Tibshirani (2000), Bartlett, Jordan, and McAuliffe (2006),
and Bartlett and Traskin (2007). Further understanding of the theory behind the
success of boosting algorithms in turn triggers a bloom of Boosting algorithm with
better statistical properties, e.g., Friedman (2001), Bühlmann (2003), and Mease,
Wyner, and Buja (2007).

Boosting is undoubtedly the most popular machine learning algorithm in the
online data science platform such as Kaggle. It is efficient and easy to imple-
ment. There are numerous packages in Python and R which implement Boosting
algorithms in one way or another, e.g., XBoost. In the following sections, we will
introduce the AdaBoost as well as other Boosting algorithms in detail together
with examples to help the readers better understand the algorithms and statistical
properties of the Boosting methods.

This chapter is organized as follows. Section 14.1 provides an overview on the
origination and development of Boosting. Sections 14.2 and 14.3 are an introduction
of AdaBoost which is the first practically feasible Boosting algorithm with its
variants. Section 14.4 introduces a Boosting algorithm for linear regressions, namely
L2Boosting. Section 14.5 gives a generalization of the above mentioned algorithms
which is called Gradient Boosting Machine. Section 14.6 gives more variants of
Boosting, e.g., Boosting for nonlinear models. Section 14.7 provides applications
of the Boosting algorithms in macroeconomic studies. In Sect. 14.8 we summarize.

14.2 AdaBoost

The first widely used Boosting algorithm is AdaBoost which solves binary clas-
sification problems with great success. A large number of important variables in
economics are binary. For example, whether the economy is going into expansion
or recession, whether an individual is participating in the labor force, whether a
bond is going to default, and etc. Let

π (x) ≡ Pr (y = 1|x)

and y takes value 1 with probability π (x) and −1 with probability 1− π (x). The
goal of the researchers is often to predict the unknown value of y given known
information on x.

14.2.1 AdaBoost Algorithm

This section introduces the AdaBoost algorithm of Freund and Schapire (1997). The
algorithm of AdaBoost is shown in Algorithm 1.
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Algorithm 1 Discrete AdaBoost (DAB, Freund & Schapire, 1997)

1. Start with weights wi = 1
n

, i = 1, . . . , n.
2. For m = 1 toM

a. For j = 1 to k (for each variable)

i. Fit the classifier fmj (xij ) ∈ {−1, 1} using weights wi on the training data.
ii. Compute errmj =∑n

i=1 wi1(yi �=fmj (xji )).

b. Find ĵm = arg minj errmj

c. Compute cm = log

(
1−err

m,ĵm
err

m,ĵm

)
.

d. Set wi ← wi exp[cm1(yi �=fm,ĵm
(x
ĵm ,i ))

], i = 1, . . . , n, and normalize so that
∑n
i=1 wi = 1.

3. Output the binary classifier sign[FM (x)] and the class probability prediction π̂(x) =
eFM (x)

eFM (x)+e−FM (x) where FM (x) =∑M
m=1 cmfm,ĵm

(x
ĵm
).

Let y be the binary class taking a value in {−1, 1} that we wish to predict.
Let fm (x) be the weak learner (weak classifier) for the binary target y that we
fit to predict using the high-dimensional covariates x in the mth iteration. Let errm
denote the error rate of the weak learner fm (x), and Ew (·) denote the weighted
expectation (to be defined below) of the variable in the parenthesis with weight w.
Note that the error rate Ew [1(y �=fm(x))] is estimated by errm =∑n

i=1wi1(yi �=fm(xi ))
with the weight wi given by step 2(d) from the previous iteration. n is the number
of observations. The symbol 1(·) is the indicator function which takes the value
1 if a logical condition inside the parenthesis is satisfied and takes the value 0
otherwise. The symbol sign(z) = 1 if z > 0, sign(z) = −1 if z < 0, and hence
sign (z) = 1(z>0) − 1(z<0).

Remark Note that the presented version of Discrete AdaBoost in Algorithm 1 as
well as Real AdaBoost (RAB), LogitBoost (LB), and Gentle AdaBoost (GAB)
which will be introduced later in the next section are different from their original
version when they were first introduced. The original version of these algorithms
only output the class label. In this paper, we follow the idea of Mease et al. (2007)
and modified the algorithms to output both the class label and the probability
prediction. The probability prediction is attained using

π̂(x) = eFM(x)

eFM(x) + e−FM(x) ,

where FM(x) is the sum of weak learners in the algorithms. �
Remark The only hyperparameter, i.e., the user specified parameter, in the
AdaBoost as well as other Boosting algorithms is the number of iterations, M .
It is also known as the stopping rule and is commonly chosen by cross-validation
as well as information criterion such as AICc (Bühlmann, 2003). The choice of the
stopping rule is embedded in most implementation of AdaBoost and should not be
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a concern for most users. Interesting readers could check Hastie, Tibshirani, and
Friedman (2009) for more details of cross-validation. �
The most widely used weak learner is the classification tree. The simplest classifi-
cation tree, the stump, takes the following functional form

f
(
xj , a

) =
{

1 xj > a

−1 xj < a,

where the parameter a is found by minimizing the error rate

min
a

n∑

i=1

wi1
(
yi �= f

(
xji , a

))
.

The other functional form of the stump can be shown as exchanging the greater and
smaller sign in the previous from

f
(
xj , a

) =
{

1 xj < a

−1 xj > a,

where the parameter a is found by minimizing the same error rate.

14.2.2 An Example

Now we present an example given by Ng (2014) for predicting the business cycles to
help the readers understand the AdaBoost algorithm. Consider classifying whether
the 12 months in 2001 is in expansion or recession using 3 months lagged data
of the help-wanted index (HWI), new orders (NAPM), and the 10yr-FF spread
(SPREAD). The data are listed in Columns 2–4 of Table 14.1. The NBER expansion
and recession months are listed in Column 5, where 1 indicates a recession month
and −1 indicates an expansion month. We use a stump as the weak learner (f ). The
stump uses an optimally chosen threshold to split the data into two partitions. This
requires setting up a finite number of grid points for HWI, NAPM, and SPREAD,
respectively, and evaluating the goodness of fit in each partition.

The algorithm begins by assigning an equal weight of w(1)i = 1
n

where n = 12
to each observation. For each of the grid points chosen for HWI, the sample of y
values is partitioned into parts depending on whether HWIi exceeds the grid point
or not. The grid point that minimizes classification error is found to be −0.044.
The procedure is repeated with NAPM as a splitting variable, and then again with
SPREAD. A comparison of the three sets of residuals reveals that splitting on the
basis of HWI gives the smallest weighted error. The first weak learner thus labels
Yi to 1 if HWIi < −0.044. The outcome of the decision is given in Column 6.
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Table 14.1 An example

Data: lagged 3 months f1(x) f2(x) f3(x) f4(x) f5(x)

HWI NAPM SPREAD HWI NAPM HWI SPREAD NAPM

Date −0.066 48.550 0.244 y < −0.044 <49.834 < −0.100 > −0.622 <47.062

2001.1 0.014 51.100 −0.770 −1 −1 −1 −1 −1 −1

2001.2 −0.091 50.300 −0.790 −1 1 −1 −1 −1 −1

2001.3 0.082 52.800 −1.160 −1 −1 −1 −1 −1 −1

2001.4 −0.129 49.800 −0.820 1 1 1 1 1 1

2001.5 −0.131 50.200 −0.390 1 1 −1 1 1 1

2001.6 −0.111 47.700 −0.420 1 1 1 1 1 1

2001.7 −0.056 47.200 0.340 1 1 1 1 1 1

2001.8 −0.103 45.400 1.180 1 1 1 1 1 1

2001.9 −0.093 47.100 1.310 1 1 1 1 1 1

2001.10 −0.004 46.800 1.470 1 −1 1 −1 1 1

2001.11 −0.174 46.700 1.320 1 1 1 1 1 1

2001.12 −0.007 47.500 1.660 −1 −1 1 −1 1 −1

c 0.804 1.098 0.710 0.783 0.575

Error rate 0.167 0.100 0.138 0.155 0

Ng (2014)

Compared with the NBER dates in Column 5, we see that months 2 and 10 are
mislabeled, giving a misclassification rate of 2

12 = 0.167. This is err1 of step 2(b).

Direct calculations give c1 = log( 1−err1
err1

) of 0.804. The weights w(2)i are updated
to complete step 2(d). Months 2 and 10 now each have a weight of 0.25, while
the remaining 10 observations each have a weight of 0.05. Three thresholds are
again computed using weights w(2). Of the three, the NAPM split gives the smallest
weighted residuals. The weak learner for step 2 is identified. The classification based
on the sign of

F2(x) = 0.804 · 1(HWI<−0.044) + 1.098 · 1(NAPM<49.834)

is given in Column 7. Compared with Column 5, we see that months 5 and 12
are mislabeled. The weighted misclassification rate is decreased to 0.100. The new
weights w(3)t are 0.25 for months 5 and 12, 0.138 for months 2 and 10, and 0.027
for the remaining months. Three sets of weighted residuals are again determined
using new thresholds. The best predictor is again HWI with a threshold of −0.100.
Classification based on the sign of F3(x) is given in Column 8, where

F3(x) = 0.804 · 1(HWI<0.044) + 1.098 · 1(NAPM<48.834) + 0.710 · 1(HWI<−0.100).

The error rate after three steps actually increases to 0.138. The weak learner in
round four is 1(SPREAD>−0.622). After NAPM is selected for one more round, all
recession dates are correctly classified. The strong learner is an ensemble of five
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weak learners defined by sign(F5(x)), where

F5(x) = 0.804 · 1(HWI<−0.044) + 1.098 · 1(NAPM<49.834) + 0.710 · 1(HWI<−0.100)

+0.783 · 1(SPREAD>−0.622) + 0.575 · 1(NAPM<47.062).

Note that the same variable can be chosen more than once by AdaBoost which
is the key difference from other stage-wise algorithms, e.g., forward stage-wise
regression. The weights are adjusted at each step to focus more on the misclassified
observations. The final decision is based on an ensemble of models. No single
variable can yield the correct classification, which is the premise of an ensemble
decision rule.

For more complicated applications, several packages in the statistical pro-
gramming language R provide off-the-shelf implementations of AdaBoost and
its variants. For example, JOUSBoost gives an implementation of the Discrete
AdaBoost algorithm from Freund and Schapire (1997) applied to decision tree
classifiers and provides a convenient function to generate test sample of the
algorithms.

14.2.3 AdaBoost: Statistical View

After AdaBoost is invented and shown to be successful, numerous papers have
attempted to explain the effectiveness of the AdaBoost algorithm. In an influential
paper, Friedman et al. (2000) show that AdaBoost builds an additive logistic
regression model

FM (x) =
M∑

m=1

cmfm (x)

via Newton-like updates for minimizing the exponential loss

J (F ) = E
(
e−yF(x)

∣∣∣ x
)

.

We hereby show the above statement using the greedy method to minimize the
exponential loss function iteratively as in Friedman et al. (2000).

After m iterations, the current classifier is denoted as Fm (x) = ∑m
s=1 csfs (x).

In the next iteration, we are seeking an update cm+1fm+1 (x) for the function fitted
from previous iterations Fm (x). The updated classifier would take the form

Fm+1 (x) = Fm (x)+ cm+1fm+1 (x) .
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The loss for Fm+1 (x) will be

J (Fm+1 (x)) = J (Fm (x)+ cm+1fm+1 (x))

= E
[
e−y(Fm(x)+cm+1fm+1(x))

]
. (14.1)

Expand w.r.t. fm+1 (x)

J (Fm+1 (x)) ≈ E
[
e−yFm(x)

(
1− ycm+1fm+1 (x)+

y2c2
m+1f

2
m+1 (x)

2

)]

= E
[
e−yFm(x)

(
1− ycm+1fm+1 (x)+

c2
m+1

2

)]
.

The last equality holds since y ∈ {−1, 1} , fm+1 (x) ∈ {−1, 1}, and y2 =
f 2
m+1 (x) = 1. fm+1 (x) only appears in the second term in the parenthesis, so

minimizing the loss function (14.1) w.r.t. fm+1 (x) is equivalent to maximizing the
second term in the parenthesis which results in the following conditional expectation

max
f
E
[
e−yFm(x)ycm+1fm+1 (x) |x

]
.

For any c > 0 (we will prove this later), we can omit cm+1 in the above objective
function

max
f
E
[
e−yFm(x)yfm+1 (x) |x

]
.

To compare it with the Discrete AdaBoost algorithm, here we define weight
w = w (y, x) = e−yFm(x). Later we will see that this weight w is equivalent to
that shown in the Discrete AdaBoost algorithm. So the above optimization can be
seen as maximizing a weighted conditional expectation

max
f
Ew [yfm+1 (x) |x] , (14.2)

where Ew (y|x) := E(wy|x)
E(w|x) refers to a weighted conditional expectation. Note

that (14.2) can be re-written as

Ew [yfm+1 (x) |x]
= Pw (y = 1|x) fm+1 (x)− Pw (y = −1|x) fm+1 (x)

= [Pw (y = 1|x)− Pw (y = −1|x)] fm+1 (x)

= Ew (y|x) fm+1 (x) ,
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where Pw (y|x) = E(w|y,x)P (y|x)
E(w|x) . Solve the maximization problem (14.2). Since

fm+1 (x) only takes 1 or −1, it should be positive whenever Ew (y|x) is positive
and −1 whenever Ew (y|x) is negative. The solution for fm+1 (x) is

fm+1 (x) =
{

1 Ew (y|x) > 0

−1 otherwise.

Next, minimize the loss function (14.1) w.r.t. cm+1

cm+1 = arg min
cm+1

Ew

(
e−cm+1yfm+1(x)

)

Ew

(
e−cm+1yfm+1(x)

)
= Pw (y = fm+1 (x)) e−cm+1 + Pw (y �= fm+1 (x)) ecm+1

∂Ew
(
e−cyfm+1(x)

)

∂cm+1
= −Pw (y = fm+1 (x)) e−cm+1 + Pw (y �= fm+1 (x)) ecm+1 .

Let

∂Ew
(
e−cm+1yfm+1(x)

)

∂cm+1
= 0,

and we have

Pw (y = fm+1 (x)) e−cm+1 = Pw (y �= fm+1 (x)) ecm+1 .

Solving for cm+1, we obtain

cm+1 = 1

2
log
Pw (y = fm+1 (x))
Pw (y �= fm+1 (x))

= 1

2
log

(
1− errm+1

errm+1

)
,

where errm+1 = Pw (y �= fm+1 (x)) is the error rate of fm+1 (x). Note that cm+1 >

0 as long as the error rate is smaller than 50%. Our assumption cm+1 > 0 holds for
any learner that is better than random guessing.

Now we have finished the steps of one iteration and can get our updated classifier
by

Fm+1 (x)← Fm (x)+
(

1

2
log

(
1− errm+1

errm+1

))
fm+1 (x) .

Note that in the next iteration, the weight we defined wm+1 will be

wm+1 = e−yFm+1(x) = e−y(Fm(x)+cm+1fm+1(x)) = wm × e−cm+1fm+1(x)y .
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Since −yfm+1 (x) = 2× 1{y �=fm+1(x)} − 1, the update is equivalent to

wm+1 = wm × e
(

log
(

1−errm+1
errm+1

)
1[y �=fm+1(x)]

)

= wm ×
(

1− errm+1

errm+1

)1[y �=fm+1(x)]
.

Thus the function and weight update are of an identical form to those used in
AdaBoost. AdaBoost could do better than any single weak classifier since it
iteratively minimizes the loss function via a Newton-like procedure.

Interestingly, the function F (x) from minimizing the exponential loss is the same
as maximizing a logistic log-likelihood. Let

J (F (x)) = E
[
E
(
e−yF(x)

∣∣∣ x
)]

= E
[
P (y = 1|x) e−F(x) + P (y = −1|x) eF(x)

]
.

Taking derivative w.r.t. F (x) and making it equal to zero, we obtain

∂E
(
e−yF(x)|x)
∂F (x)

= −P (y = 1|x) e−F(x) + P (y = −1|x) eF(x) = 0

F ∗ (x) = 1

2
log

[
P (y = 1|x)
P (y = −1|x)

]
.

Moreover, if the true probability is

P (y = 1|x) = e2F(x)

1+ e2F(x) ,

for Y = y+1
2 , the log-likelihood is

E (logL|x) = E
[

2YF (x)− log
(

1+ e2F(x)
)∣∣∣ x
]

.

The solution F ∗ (x) that maximizes the log-likelihood must equal the F (x) in the

true model P (y = 1|x) = e2F(x)

1+e2F(x) . Hence,

e2F ∗(x) = P (y = 1|x)
(

1+ e2F ∗(x)
)

e2F ∗(x) = P (y = 1|x)
1− P (y = 1|x)

F ∗ (x) = 1

2
log

[
P (y = 1|x)
P (y = −1|x)

]
.
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AdaBoost that minimizes the exponential loss yields the same solution as the logistic
regression that maximizes the logistic log-likelihood.

From the above, we can see that AdaBoost gives high weights to and thus, focuses
on the samples that are not correctly classified by the previous weak learners. This
is exactly what Schapire (1990) referred to as f iltering in Section 1.

14.3 Extensions to AdaBoost Algorithms

In this section, we introduce three extensions of (Discrete) AdaBoost (DAB) which
is shown in Algorithm 1: namely, Real AdaBoost (RAB), LogitBoost (LB), and
Gentle AdaBoost (GAB). We discuss how some aspects of the DAB may be
modified to yield RAB, LB, and GAB. In the previous section, we learned that
Discrete AdaBoost minimizes an exponential loss via iteratively adding a binary
weaker learner to the pool of weak learners. The addition of a new weak learner
can be seen as taking a step on the direction that loss function descents in the
Newton method. There are two major ways to extend the idea of Discrete AdaBoost.
One focuses on making the minimization method more efficient by adding a more
flexible weak learner. The other is to use different loss functions that may lead
to better results. Next, we give an introduction to three extensions of Discrete
AdaBoost.

14.3.1 Real AdaBoost

Algorithm 2 Real AdaBoost (RAB, Friedman, Hastie, and Tibshirani, 2000)

1. Start with weights wi = 1
n

, i = 1, . . . , n.
2. For m = 1 toM

a. For j = 1 to k (for each variable)

i. Fit the classifier to obtain a class probability estimate pm(xj ) = P̂w(y = 1|xj ) ∈ [0, 1]
using weights wi on the training data.

ii. Let fmj (xj ) = 1
2 log

pm(xj )

1−pm(xj ) .
iii. Compute errmj =∑n

i=1 wi1(yi �=sign(fmj (xji ))).

b. Find ĵm = arg minj errmj .
c. Set wi ← wi exp [−yifm,ĵm

(x
ĵm ,i )], i = 1, . . . , n, and normalize so that

∑n
i=1 wi = 1.

3. Output the classifier sign[FM (x)] and the class probability prediction π̂(x) = eFM (x)

eFM (x)+e−FM (x)
where FM (x) =∑M

m=1 fm(x).
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Real AdaBoost that Friedman et al. (2000) propose focuses solely on improving the
minimization procedure of Discrete AdaBoost. In Real AdaBoost, the weak learners
are continuous comparing to Discrete AdaBoost where the weak learners are binary
(discrete). Real AdaBoost is minimizing the exponential loss with continuous
updates where Discrete AdaBoost minimizes the exponential loss with discrete
updates. Hence, Real AdaBoost is more flexible with the step size and direction
of the minimization and minimizes the exponential loss faster and more accurately.
However, Real AdaBoost also imposes restriction that the classifier must produce a
probability prediction which reduces the flexibility of the model. As pointed out in
the numerical examples by Chu, Lee, and Ullah (2018), Real AdaBoost may achieve
a larger in-sample training error due to the flexibility of its model. On the other hand,
this also reduces the chance of over-fitting and would in the end achieve a smaller
out-of-sample test error.

14.3.2 LogitBoost

Friedman et al. (2000) also propose LogitBoost by minimizing the Bernoulli
log-likelihood via an adaptive Newton algorithm for fitting an additive logistic
regression model. LogitBoost extends Discrete AdaBoost in two ways. First, it
uses the Bernoulli log-likelihood instead of the exponential loss function as a loss
function. Furthermore, it updates the classifier by adding a linear model instead of
a binary weak learner.

Algorithm 3 LogitBoost (LB, Friedman, Hastie, and Tibshirani, 2000)

1. Start with weights wi = 1
n

, i = 1, . . . , n, F(x) = 0 and probability estimates p(xi) = 1
2 .

2. For m = 1 toM

a. Compute the working response and weights

zi = y∗i − p(xi)
p(xi)(1− p(xi))

wi = p(xi)(1− p(xi))

b. For j = 1 to k (for each variable)

i. Fit the function fmj (xji ) by a weighted least-squares regression of zi to xji using weights
wi on the training data.

ii. Compute errmj = 1 − R2
mj where R2

mj is the coefficient of determination from the
weighted least-squares regression.

c. Find ĵm = arg minj errmj
d. Update F(x)← F(x)+ 1

2fm,ĵ (xĵ ) and p(x)← eF(x)

eF (x)+e−F(x) .

3. Output the classifier sign[FM (x)] and the class probability prediction π̂(x) = eFM (x)

eFM (x)+e−FM (x)
where FM (x) =∑M

m=1 fm,ĵm
(x
ĵm
).
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In LogitBoost, continuous weak learner is used similarly to Real AdaBoost.
However, LogitBoost specifies the use of a linear weak learner while Real AdaBoost
allows any weak learner that returns a probability between zero and one. A more
fundamental difference here is that LogitBoost uses the Bernoulli log-likelihood as
a loss function instead of the exponential loss. Hence, LogitBoost is more similar
to logistic regression than Discrete AdaBoost and Real AdaBoost. As pointed out
in the numerical examples by Chu et al. (2018), LogitBoost has the smallest in-
sample training error but the largest out-of-sample test error. This implies that while
LogitBoost is the most flexible of the four, it suffers the most from over-fitting.

14.3.3 Gentle AdaBoost

Algorithm 4 Gentle AdaBoost (GAB, Friedman, Hastie, and Tibshirani, 2000)

1. Start with weights wi = 1
n

, i = 1, . . . , n.
2. For m = 1 toM

a. For j = 1 to k (for each variable)

i. Fit the regression function fmj (xji ) by weighted least-squares of yi on xji using weights
wi on the training data.

ii. Compute errmj = 1 − R2
mj where R2

mj is the coefficient of determination from the
weighted least-squares regression.

b. Find ĵm = arg minj errmj
c. Set wi ← wi exp[−yifm,ĵm

(x
ĵm ,i )], i = 1, . . . , n, and normalize so that

∑n
i=1 wi = 1.

3. Output the classifier sign[FM (x)] and the class probability prediction π̂(x) = eFM (x)

eFM (x)+e−FM (x)
where FM (x) =∑M

m=1 fm,ĵm
(x
ĵm
).

In Friedman et al. (2000), Gentle AdaBoost extends Discrete AdaBoost in the sense
that it allows each weak learner to be a linear model. This is similar to LogitBoost
and more flexible than Discrete AdaBoost and Real AdaBoost. However, it is closer
to Discrete AdaBoost and Real AdaBoost than LogitBoost in the sense that Gentle
AdaBoost, Discrete AdaBoost, and Real AdaBoost all minimize the exponential
loss while LogitBoost minimizes the Bernoulli log-likelihood. On the other hand,
Gentle AdaBoost is more similar to Real AdaBoost than Discrete AdaBoost since
the weak learners are continuous and there is no need to find an optimal step size
for each iteration because the weak learner is already optimal. As pointed out in
the numerical examples by Chu et al. (2018), Gentle Boost often lies between Real
AdaBoost and LogitBoost in terms of in-sample training error and out-of-sample
test error.
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14.4 L2Boosting

In addition to classification, the idea of boosting can also be applied to regressions.
Bühlmann (2003) propose L2Boosting that builds a linear model by minimizing the
L2 loss. Bühlmann (2006) further proves the consistency of L2Boosting in terms
of predictions. L2Boosting is the simplest and perhaps most instructive Boosting
algorithm for economists and econometricians. It is very useful for regression, in
particular in the presence of high-dimensional explanatory variables.

We consider a simple linear regression

y = xβ + u,

where y is the dependent variable, x is the independent variable and u ∼ N(0, 1).
Note that the number of independent variables x could be high-dimensional, i.e., the
number of independent variables in x can be larger than the number of observations.

This model, in the low dimension case, can be estimated by the ordinary least
squares. We minimize the sum of squared errors

L =
n∑

i=1

(yi − ŷi )2,

where

ŷi = xi β̂.

The solution to the problem is

β̂ = (X′X)−1X′y.

The residual from the previous problem is

ûi = yi − ŷi .

In the high-dimension case, the ordinary least-squares method falls down because
the matrix (X′X) is not invertible. Hence, we need to use a modified least-squares
method to get over the high-dimension problem.

The basic idea of L2Boosting is to use only one explanatory variable at a
time. Since the number of variables p is larger than the length of the sample
period n, the matrix X′X is not invertible. However, if we use only one variable
in one particular iteration, the matrix x′jxj is a scalar and thus invertible. In
order to exploit the information in the explanatory variables, in the following
iterations, we can use other explanatory variables to fit the residuals which are
the unexplained part from previous iterations. L2Boosting can be seen as itera-
tively using the least-squares technique to explain the residuals from the previous
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Algorithm 5 L2Boosting (Bühlmann, 2003)
1. Start with yi from the training data.
2. For m = 1 toM

a. For j = 1 to k (for each variable)

i. Fit the regression function yi = βm,0,j + βm,j xji + ui by least-squares of yi on xji .
ii. Compute errmj = 1−R2

mj where R2
mj is the coefficient of determination from the least-

squares regression.

b. Find ĵm = arg minj errmj
c. Set yi ← yi − β̂m,0,ĵm

− β̂
m,ĵm

x
ĵm ,i , i = 1, . . . , n.

3. Output the final regression model FM(x) =∑M
m=1 βm,0,ĵm

+ β̂
m,ĵm

x
ĵm

.

least-squares regressions. In the L2Boosting algorithm, we use the least-squares
technique to fit the dependent variable y with only one independent variable
xj . Then, we iteratively take the residual from the previous regression as the
new dependent variable y and fit the new dependent variable with, again, only
one independent variable xj . The detailed description of L2Boosting is listed in
Algorithm 5.

The stopping parameter M is the main tuning parameter which can be selected
using cross-validation or some information criterion in practice. Bühlmann (2003)
proposed to use the corrected AIC to choose the stopping parameter. According to
Bühlmann (2003), the square of the bias of theL2Boosting decays exponentially fast
with increasing M , the variance increases exponentially slow with increasing M ,
and limM→∞MSE = σ 2. L2Boosting is computationally simple and successful
if the learner is sufficiently weak. If the learner is too strong, then there will
be over-fitting problem as in all the other boosting algorithms. Even though it is
straightforward for econometricians to use the simple linear regression as the weak
learner, Bühlmann (2003) also suggest using smoothing splines and classification
and regression trees as the weak learner.

14.5 Gradient Boosting

This section discusses the Gradient Boosting Machine first introduced by Friedman
(2001). Breiman (2004) shows that the AdaBoost algorithm can be represented as
a steepest descent algorithm in function space which we call functional gradient
descent (FGD). Friedman et al. (2000) and Friedman (2001) then developed a
more general, statistical framework which yields a direct interpretation of boosting
as a method for function estimation. In their terminology, it is a “stage-wise,
additive modeling” approach. Gradient Boosting is a generalization of AdaBoost
and L2Boosting. AdaBoost is a version of Gradient Boosting that uses the expo-
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nential loss and L2Boosting is a version of Gradient Boosting that uses the L2
loss.

14.5.1 Functional Gradient Descent

Before we introduce the algorithm of Gradient Boosting, let us talk about functional
gradient descent in a general way. We consider F(x) to be the function of
interest and minimize a risk function R(F) = E(L(y,F)) with respect to F(x).
For example, in the L2Boosting, the loss function L(y,F(x)) is the L2 loss,
i.e., L(y,F(x)) = (y − F(x))2. Notice that we do not impose any parametric
assumption on the functional form of F(x), and hence, the solution F(x) is entirely
nonparametric.

The Functional Gradient Descent minimizes the risk function R(F) at each x
directly with respect to F(x). In each iteration m, like in gradient descent, we look
for a pair of optimal direction fm(x) and step size cm. The optimal direction at x is
the direction that the loss function R(F) decreases the fastest. Hence, the optimal
direction

fm(x) = Ey
[
−∂L(y,F(x))

∂F (x)

∣∣∣∣ x
]

F(x)=Fm−1(x)
.

The optimal step size cm can be found given fm(x) by a line search

cm = arg min
cm
Ey,xL(y,Fm−1(x)+ cmfm(x)).

Next, we update the estimated function F(x) by

Fm(x) = Fm−1(x)+ cmfm(x).

Thus, we complete one iteration of Gradient Boosting. In practice, the stopping
iteration, which is the main tuning parameter, can be determined via cross-validation
or some information criteria. The choice of step size c is of minor importance, as
long as it is “small,” such as c = 0.1. A smaller value of c typically requires a larger
number of boosting iterations and thus more computing time, while the predictive
accuracy will be better and tend to over-fit less likely.

14.5.2 Gradient Boosting Algorithm

The algorithm of Gradient Boosting is shown in Algorithm 6.
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Algorithm 6 Gradient Boosting (GB, Friedman, 2001)
1. Start with F0(x) = arg minconst

∑n
i=1 L(yi , const).

2. For m = 1 toM

a. calculate the pseudo-residuals rmi = −
[
∂L(yi ,F(xi ))
∂F (xi )

]

F(x)=Fm−1(x)
, i = 1, . . . , n.

b. fm(x) = arg minfm(x)
∑N
i=1(r

m
i − fm(xi ))2.

c. cm = arg minc
∑N
i=1 L(yi ,Fm−1(xi )+ cmfm(xi )).

d. Fm(x) = Fm−1(x)+ cmfm(x).
3. Output FM (x) =∑M

m=1 cmfm(x).

In theory, any fitting criterion that estimates the conditional expectation could be
used to fit the negative gradient at step 1(a). In Gradient Boosting, the negative
gradient is also called “pseudo-residuals” rmi and Gradient Boosting fits this
residuals in each iteration. The most popular choice to fit the residuals is the
Classification/Regression Tree which we will discuss in detail in Sect. 14.5.3.

14.5.3 Gradient Boosting Decision Tree

Gradient Boosting Decision Tree (GBDT) or Boosting Tree is one of the most
important methods for implementing nonlinear models in data mining, statistics,
and econometrics. According to the results of data mining tasks at the data mining
challenges platform,Kaggle, most of the competitors choose Boosting Tree as their
basic technique to model the data for predicting tasks.

Obviously, Gradient Boosting Decision Tree combines the decision tree and gra-
dient boosting method. The gradient boosting is the gradient descent in functional
space,

fm+1(x) = fm(x)+ λm
(
∂L

∂f

)

m

,

where m is the number of iteration, L is the loss function we need to optimize, λm
is the learning rate. In each round, we find the best direction −

(
∂L
∂f

)

m
to minimize

the loss function. In gradient boosting, we can use some simple functions to find out
the best direction. That is, we use some functions to fit the “pseudo-residuals” of the
loss function. In AdaBoost, we often use the decision stump, a line or hyperplane
orthogonal to only one axis, to fit the residual. In the Boosting Tree, we choose a
decision tree to handle this task. Also, the decision stump could be seen as a decision
tree with one root node and two leaf nodes. Thus, the Boosting Tree is a natural way
to generalize Gradient Boosting.

Basically, the Boosting Tree learns an additive function, which is similar to
other aggregating methods like Random Forest. But the decision trees are grown
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Algorithm 7 Gradient Boosting Decision Tree (Tree Boost, Friedman, 2001)

1. Initially, estimate the first residual via r0
i = −2(yi − ȳ) = −2(yi − f1(xi)).

2. For m = 1 toM

a. Based on new samples (rmi , xi), i = 1, . . . , n, fit a regression tree hm(x).
b. Let fm+1(x) = fm(x)+ λmhm(x), then, λm = arg minλ L(y, fm(x)+ λhm(x)).
c. Update fm+1(x) via fm+1(x) = fm(x)+ λmhm(x).
d. Calculate the new residual rm+1

i = −2(yi − fm+1(xi)), then update the new samples as

(rm+1
i , xi), i = 1, . . ..

3. Output the Gradient Boosting Decision Tree FM (x) =∑M
m=1 λmfm(x).

very differently among these methods. In the Boosting Tree, a new decision tree is
growing based on the “error” from the decision tree which grew in the last iteration.
The updating rule comes from Gradient Boosting method and we will dive into the
details later.

Suppose we need to implement a regression problem given samples (yi , xi), i =
1, . . . , n. If we choose the square loss function, the “pseudo-residual” should be

rmi = −
(
∂L
∂f

)

m
= −

(
∂(y−f )2
∂f

)

m
= 2(y − fm).

The algorithm of Gradient Boosting Decision Tree is shown in Algorithm 7.
According to Algorithm 7, the main difference between Gradient Boosting and

Boosting Tree is at step 1(a). In Boosting Tree, we use a decision tree to fit the
“residual” or the negative gradient. In other words, Boosting Tree implements the
Functional Gradient Descent by following the functional gradient learned by the
decision tree.

Additionally, to implement Gradient Boosting Decision Tree, we need to choose
several hyperparameters: (1) N , the number of terminal nodes in trees; (2) M , the
number of iterations in the boosting procedure.

Firstly, N , the number of terminal nodes in trees, controls the maximum allowed
level of interaction between variables in the model. With N = 2 (decision stumps),
no interaction between variables is allowed. With N = 3, the model may include
effects of the interaction between up to two variables, and so on. Hastie et al.
(2009) comment that typically 4 < N < 8 work well for boosting and results
are fairly insensitive to the choice of N in this range, N = 2 is insufficient for
many applications, and N > 10 is unlikely to be required. Figure 14.1 shows
the test error curves corresponding to the different number of nodes in Boosting
Tree. We can see that Boosting with decision stumps provides the best test error.
When the number of nodes increases, the final test error increases, especially
in boosting with trees containing 100 nodes. Thus, practically, we often choose
4 < N < 8.

Secondly, to the number of iterations M , we will discuss that in Sect. 5.4.1 in
detail, which is related to the regularization method in Boosting Tree.
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Fig. 14.1 Illustration of Gradient Boosting Decision Trees with different nodes (green: decision
stump; red line: tree with 10 leaf nodes; blue: tree with 100 leaf nodes)

14.5.4 Regularization

By following the discussion above, the Gradient Boosting Decision Trees method
contains more trees whenM is larger. A further issue is related to over-fitting. That
is, when there are increasingly large numbers of decision trees, Boosting Tree can
fit any data with zero training error, which leads to a bad test error on new samples.
To prevent the model from over-fitting, we will introduce two ways to resolve this
issue.

Early Stopping

A simple way to resolve this issue is to control the number of iterations M in
the Boosting Trees. Basically, we can treat M as a hyperparameter during the
training procedure of Boosting Trees. Cross-Validation is an effective way to select
hyperparameters including M . Since Boosting Trees method is equivalent to the
steepest gradient descent in functional space, selecting the optimal M means that
this steepest gradient descent will stop at theMth iteration.
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Shrinkage Method

The second way to resolve the problem of over-fitting is shrinkage. That is, we
add a shrinkage parameter during the training process. Let us consider the original
formula for updating Boosting Trees:

fm+1(x) = fm(x)+ λmhm(x). (14.3)

In the Boosting Trees, we first fit hm(x) based on a decision tree. Then, we optimize
λm for the best step size. Thus, we can shrink the step size by adding a shrinkage
parameter ν:

fm+1(x) = fm(x)+ νλmhm(x). (14.4)

Obviously, if we set ν = 1, Eq. (14.4) is equivalent to Eq. (14.3). Suppose we
set 0 ≤ ν ≤ 1, it can shrink the optimal step size λm to νλm, which leads to
a slower optimization. In other words, compared to the original Boosting Tree,
Shrinkage Boosting Tree learns the unknown function slower but more precise in
each iteration. As a consequence, to a given ν < 1, we need more steps M to
minimize the error. Figure 14.2 shows this consequence. To a binary classification
problem, we consider two measures: the test set deviations, which is the negative
binomial log-likelihood loss on the test set, and the test set misclassification error.
In the left and right panels, we can see that, with the shrinkage parameter less than

Fig. 14.2 Gradient Boosting Decision Tree (6 leaf nodes) with different shrinkage parameters
(blue: shrinkage ν = 0.6; red: no shrinkage)
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1, Boosting Tree typically need more iterations to converge but it can hit a better
prediction result. Friedman (2001) found that a smaller ν will lead to a larger optimal
M but the test errors in the new datasets are often better than the original Boosting
Tree. Although large M may need more computational resources, this method may
be inexpensive because of the faster computers.

14.5.5 Variable Importance

After training Boosting Tree, the next question is to identify the variable importance.
Practically, we often train boosting tree on a dataset with a large number of variables
and we are interested in finding important variables for analysis.

Generally, this is also an important topic in tree-based models like Random
Forest discussed in Chap. 13. Since Boosting Tree method is also an additive trees
aggregating, we can use I 2

j to measure the importance of a variable j :

I 2
j =

1

M

M∑

m=1

I 2
j (m),

and I 2
j (m) is the importance of variable j for the mth decision tree:

I 2
j (m) =

Tm−1∑

t=1

e2
t I (v(t)m = j),

where Tm is the number of internal nodes (non-leaf nodes) in the mth decision tree,
v(t)m is the variable selected by node t , and et is the error improvement based on
before and after splitting the space via variable v(t)m.

In Random Forest or Bagging Decision Tree method, we can measure the
variable importance based on the so-called Out-of-Bag errors. In Boosting Tree,
since there are no Out-of-Bag samples, we can only use I 2

j . In practice, OOB-

based method and I 2
j method often provide similar results and I 2

j works very well
especially whenM is very large.

Let us consider an example about the relative importance of variables for
predicting spam mail via Boosting Trees. The input variable x could be a vector
of counts of the keywords or symbols in one email. The response y is a binary
variable (Spam, Not Spam). We regress y on x via Boosting Tree and then
calculate the variable importance for each word or symbol. On one hand, the most
important keywords and symbols may be “!”, “$”, “free”, that is related to money
and free; on the other hand, the keywords like “3d”, “addresses”, and “labs” are not
very important since they are relatively neutral. Practically, the variable importance
measure often provides a result consistent with common sense.
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14.6 Recent Topics in Boosting

In this section, we will focus on four attractive contributions of Boosting in recent
years. First of all, we introduce two methods that are related to Boosting in time
series and volatility models respectively. They are relevant topics in macroeconomic
forecasting. The third method is called Boosting with Momentum (BOOM), which
is a generalized version of Gradient Boosting and is more robust than the Gradient
Boosting. The fourth method is called Multi-Layered Gradient Boosting Decision
Tree, which is a deep learning method via non-differentiable Boosting Tree and shed
light on representation learning in tabular data.

14.6.1 Boosting in Nonlinear Time Series Models

In macroeconomic forecasting, nonlinear time series models are widely used in
the last 40 years. For example, Tong and Lim (1980) discuss the Threshold
Autoregressive (TAR) model to describe the time dependence when the time series
is higher or lower than a threshold value. Chan and Tong (1986) propose the Smooth
Transition Autoregressive (STAR) model to catch the nonlinear time dependence
changing continuously between two states over time. Basically, nonlinear time
series models not only perform better than linear time series models but also provide
a clear way to analyze the nonlinear dependence among time series data.

Although nonlinear time series models are successful in macroeconomic time
series modeling, we also need to consider their assumptions and model settings so
that they can work for time series modeling. Unfortunately, in the era of big data,
they cannot handle the large datasets since they often contain more complicated time
dependence and higher dimensional variables along time that does not satisfy the
assumptions. Essentially, the Boosting method provides an effective and consistent
way to handle the time series modeling among big datasets especially with relatively
fewer assumptions required.

Robinzonov, Tutz, and Hothorn (2012) discuss the details of Boosting
for nonlinear time series models. Suppose we have a bunch of time series
dataset zt = (yt−1, . . . , yt−p, x1,t−1, . . . , xq,t−1, . . . , x1,t−p, . . . , xq,t−p) =
(yt−1, . . . , yt−p, xt−1, . . . , xt−p) ∈ R

(q+1)p, where zt is the information set at
time t , y is a series of endogenous variable with lags of p and (xt−1, . . . , xt−p) is a
q dimensional vector series with lags of p. Consider a nonlinear time series model
for the conditional mean of yt :

E(yt |zt ) = F(zt ) = F(yt−1, . . . , yt−p, x1,t−1, . . . , xq,t−1, . . . , x1,t−p, . . . , xq,t−p),

where F(zt ) is an unknown nonlinear function. Chen and Tsay (1993) discuss an
additive form of F(zt ) for nonlinear time series modeling, which is called Nonlinear
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Additive Auto Regressive with exogenous variables (NAARX):

E(yt |zt ) = F(zt )

=
p∑

i=1

fi(yt−i )+
p∑

i=1

f1,i (x1,t−i )+ . . .+
p∑

i=1

fq,i (xq,t−i )

=
p∑

i=1

fi(yt−i )+
q∑

j=1

p∑

i=1

fj ,i (xj ,t−i ).

To optimize the best F(zt ) given data, we need to minimize the loss function:

F̂ (zt ) = arg min
F(zt )

1

T

T∑

t=1

L(yt ,F(zt )).

For example, we can use L2 loss function L(yt ,F(zt )) = 1
2 (yt − F(zt ))2. If we

consider a parametric function F(zt ,β), we can have the following loss function:

β̂ = arg min
β

1

T

T∑

t=1

L(yt ,F(zt ;β)).

Since the true function of E(y|z) has the additive form, the solution to the
optimization problem should be represented by a sum over a bunch of estimated
functions. In Boosting, we can useM different weak learner to implement:

F(zt ; β̂M) =
M∑

m=0

νh(zt ; γ̂ m),

where ν is a shrinkage parameter for preventing over-fitting. Similar to original
gradient boosting, in each iteration, we can generate a “pseudo residual” term rm(zt )
which is

rm(zt ) = − ∂L(yt ,F)
∂F

∣∣∣∣
F=F(zt ;β̂m−1)

.

Thus, we can optimize γ̂ m based on the loss function

γ̂ m = arg min
γ

T∑

t=1

L(rm(zt ),h(zt ; γ )).
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Algorithm 8 Component-wise boosting with linear weak learner (Robinzonov et al.,
2012)
1. Start with yt from training data.
2. For m = 1 toM

a. For j = 1 to (1+ q)p (for each variable)

i. Fit the regression function yt = βm,0,j + βm,j zj ,t + ut by least-squares of yt on zj ,t on
the training data.

ii. Compute errmj = 1−R2
mj from the weighted least-squares regression.

b. Find ĵm = arg minj errmj .
c. Set yt ← yt − β̂m,0,ĵm

− β̂
m,ĵm

z
t ,ĵm

, t = 1, . . . , T .

3. Output the final regression model FM(z) =∑M
m=1 βm,0,ĵm

+ β̂
m,ĵm

z
ĵm

.

After that, we update the F(zt ; β̂m) as

F(zt ; β̂m) = F(zt ; β̂m−1)+ νh(zt ; γ̂ m).

Now go back to the NAARX model. Since each function f only contains one
variable, yt−i or xj ,t−i , we can construct same additive form via L2Boosting.
That is, in each iteration, we only choose one variable from the whole vector
zt = (yt−1, . . . , yt−p, . . . , xq,t−1, . . . , xq,t−p) and then fit a weak learner. This is
called Component-wise Boosting.

Robinzonov et al. (2012) discussed two methods of component-wise boosting
with different weak learners: linear weak learner and P-Spline weak learner. The
first method is called component-wise linear weak learner. For this method, we
choose a linear function with one variable of zt as a weak learner in each iteration.
The algorithm of Component-wise Boosting with linear weak learner is shown in
Algorithm 8.

Obviously, this method only provides a linear solution like an Autoregressive
model with exogenous variables (ARX). We can also consider more complicated
weak learner such that the nonlinear components could be caught. In the paper, P-
Spline with B base learners is considered as the weak learner. The algorithm of
Component-wise Boosting with P-Spline weak learner is shown in Algorithm 9.

14.6.2 Boosting in Volatility Models

Similarly to Boosting in nonlinear time series models for the mean, it is possible to
consider Boosting in volatility models, like GARCH. Audrino and Bühlmann (2016)
discussed volatility estimation via functional gradient descent for high-dimensional
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Algorithm 9 Component-wise boosting with P-Spline weak learner (Robinzonov
et al., 2012)
1. Start with yt from training data.
2. For m = 1 toM

a. For j = 1 to (1+ q)p (for each variable)

i. Fit the P-Spline with B Base learners ŷt = Splinem(zj ,t ) by regressing yt on zj ,t on the
training data.

ii. Compute errmj = 1−R2
mj from the P-Spline regression.

b. Find ĵm = arg minj errmj .
c. Set yi ← yt − ŷt , t = 1, . . . , T .

3. Output the final regression model FM(z) =∑M
m=1 Splinem(zĵm

).

financial time series. Matías, Febrero-Bande, González-Manteiga, and Reboredo
(2010) compare Boost-GARCH with other methods, like neural networks GARCH.

Let us begin with the classic GARCH(p, q) model by Bollerslev (1986):

yt = μ+ et , t = 1, . . . , T

et ∼ N(0,ht )

ht = c+
p∑

i=1

αie
2
t−i +

q∑

j=1

βjht−j .

We can implement a Maximum Likelihood Estimation (MLE) method to estimate
all the coefficients. Generally, consider a nonlinear formula of the volatility function
ht :

ht = g(e2
t−1, . . . , e2

t−p,ht−1, . . . .,ht−q) = g(E2
t ,Ht),

where E2
t = (e2

t−1, . . . , e2
t−p) and Ht = (ht−1, . . . .,ht−q). Similarly to NAARX

model, we can consider an additive form of the function g:

ht =
M∑

m=1

gm(E
2
t ,Ht).

For simplicity, let p = q = 1, we have:

ht =
M∑

m=1

gm(e
2
t−1,ht−1).



14 Boosting 455

Algorithm 10 Boost-GARCH (1,1) (Audrino & Bühlmann, 2016)
1. Start with estimating a linear GARCH (1,1) model:

yt = μ+ et , t = 1, . . . , T

et ∼ N(0,ht )

ht = c+ α1e
2
t−1 + β1ht−1

2. Getting the μ̂0, ĥt−1,0
3. For m = 1 toM

a. Calculate the residual:

e2
t ,m = (yt − μ̂m−1)

2

r(μ)t ,m = −
(
∂L

∂μ

)

m

= yt − μ̂t ,m
ĥt ,m

r(h)t ,m = −
(
∂L

∂ht

)

m

= 1

2

(
(yt − μ̂t ,m)2

ĥ2
t ,m

− 1

ĥt ,m

)

b. Fit a nonlinear base learner ŷt = fm(e2
t−1,ht−1) by regressing r(h)t ,m on e2

t−1,m, ĥt−1,m on
the training data.

c. Set ĥt ,m ← ĥt ,m−1 + fm(e2
t ,m−1, ĥt ,m−1).

4. Output the final regression model ĥt =∑M
m=1 fm(e

2
t−1,ht−1).

Thus, we can use L2Boosting to approximate the formula above. Since we use MLE
to estimate the original GARCH model, for Boost-GARCH, we can also introduce
the likelihood function for calculating the “pseudo residual” rt ,m instead of using
the loss function. Finally, Boost-GARCH can fit an additive nonlinear formula as
the estimation of ht :

ĥt =
M∑

m=1

fm(e
2
t−1,ht−1)

The algorithm of Boost-GARCH (1, 1) is shown in Algorithm 10.

14.6.3 Boosting with Momentum (BOOM)

In Sect. 14.5 on Gradient Boosting, we show that Gradient Boosting can be
represented as a steepest gradient descent in functional space. In the optimization
literature, gradient descent is widely discussed on its properties. First, gradient
descent is easily revised for many optimization problems. Second, gradient descent
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often finds out good solutions no matter the optimization problem is convex or non-
convex.

But gradient descent also suffers from some drawbacks. Let us consider the plots
of loss surface in Fig. 14.4. Suppose the loss surface is convex. Obviously, gradient
descent should converge to the global minimum eventually. But what we can see in
the plot (a) is that the gradient descent converges very slow and the path of gradient
descent is a zig-zag path. Thus, original gradient descent may spend a long time
on converging to the optimal solution. Furthermore, the convergence is worse in a
non-convex optimization problem.

To resolve this issue, a very practical way is to consider “momentum” term to the
gradient descent updating rule:

θm+1 = θm − λVm,

Vm = Vm−1 + ν
(
∂L

∂θ

)

m

,

where θm is the parameter we want to optimize at mth iteration and Vm is the
momentum term with another corresponding updating rule.

Basically, in original gradient descent method, we have Vm =
(
∂L
∂θ

)
m

. In (m+
1)th iteration, the parameter θm+1 is updated by following the gradient

(
∂L
∂θ

)
m

only.
But when we consider momentum term, the parameter θm is updated by following
the updating direction in previous iteration Vm−1 and the gradient

(
∂L
∂θ

)
m

together.
Intuitively, this is just like the effect of momentum in physics. When a ball is rolling
down from the top, even though it comes to a flat surface, it keeps rolling for a while
because of momentum.

Plot (b) in Fig. 14.3 illustrates the difference between Gradient Descent without
and with Momentum. Compared to the path of convergence in the plot (a), if we
consider momentum in gradient descent, the path becomes better and spends less
time on moving to the optimal solution which is shown in plot (b).

As the generalized version of gradient descent in function space, gradient boost-
ing may also suffer from the same problem when the loss surface is complicated.
Thus, a natural way to improve the gradient boosting method is considering the
momentum term in its updating rule. Mukherjee et al. (2013) discuss a general
analysis of a fusion of Nesterov’s accelerated gradient with parallel coordinate

Fig. 14.3 Gradient descent (a) without momentum and (b) with momentum
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descent. The resulting algorithm is called Boosting with Momentum (BOOM).
Namely, BOOM retains the momentum and convergence properties of the accel-
erated gradient method while taking into account the curvature of the objective
function. They also show that BOOM is especially effective in large scale learning
problems. Algorithm 11 provides the procedure of BOOM via Boosting Tree.

Obviously, the main difference between Boosting with Momentum and ordinary
Boosting Tree is a step to update Vm. Also, we have one more hyperparameter to
decide ν, which decides the fraction of gradient information saved for next iteration
updating of fm(x). Practically, we set 0.5 < ν < 0.9 but it is more reasonable to
tune ν via cross-validation.

Basically, this method can be generalized to Stochastic Gradient Boosting
discussed by Friedman (2002). Algorithm 12 shows the procedure of BOOM via
Stochastic Gradient Boosting Tree.

There some differences between BOOM with Boosting Tree and Stochastic
Boosting Tree. In Boosting Tree, we use all the n samples to update the decision

Algorithm 11 Gradient Boosting Decision Tree with momentum (Mukherjee et al.,
2013; Friedman, 2002)
1. Initially, estimate the first residual via r0

i = −2(yi − ȳ) = −2(yi − f1(xi)).
2. For m = 1 toM

a. Based on new samples (rmi , xi), i = 1, . . . , n, fit a regression tree hm(x).
b. Let Vm = Vm−1 + λmhm(x).
c. Let fm+1(x) = fm(x)+ νVm, then optimize λm via λm = arg minλ L(y, fm(x)+ νVm) =

arg minλ L(y, fm(x)+ ν(Vm−1 + λhm(x))).
d. Update fm+1(x) via fm+1(x) = fm(x)+ νVm.
e. Calculate the new residual rm+1

i = −2(yi − fm+1(xi)), then update the new samples as

(rm+1
i , xi), i = 1, . . . , n.

3. Output the Gradient Boosting Decision Tree FM (x) =∑M
m=1 νVm.

Algorithm 12 Stochastic Gradient Boosting Decision Tree with momentum
(Mukherjee et al., 2013; Friedman, 2002)
1. Initially, randomly select a subset of the samples (yi , xi), i = 1, . . . , ns , where 0 < ns < n.
2. Estimate the first residual via r0

i = −2(yi − ȳ) = −2(yi − f1(xi)).
3. For m = 1 toM .

a. Based on new samples (rmi , xi), i = 1, . . . , ns , fit a regression tree hm(x).
b. Let Vm = Vm−1 + λmhm(x).
c. Let fm+1(x) = fm(x)+ νVm, then optimize λm via λm = arg minλ L(y, fm(x)+ νVm) =

arg minλ L(y, fm(x)+ ν(Vm−1 + λhm(x))).
d. Update fm+1(x) via fm+1(x) = fm(x)+ νVm.
e. Calculate the new residual rm+1

i = −2(yi − fm+1(xi)), then update the new samples as

(rm+1
i , xi), i = 1, . . . , ns .

4. Output the Gradient Boosting Decision Tree FM (x) =∑M
m=1 νVm.
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tree in each iteration. But Stochastic Boosting Tree randomly selects ns
n

fraction
of samples to grow a decision tree in each iteration. When the sample size n is
increasingly large, selecting a subset of samples could be a better and more efficient
way to implement the Boosting Tree algorithm.

14.6.4 Multi-Layered Gradient Boosting Decision Tree

Last 10 years witnessed the dramatic development in the fields about deep learning,
which mainly focus on distilling hierarchical features via multi-layered neural
networks automatically. From 2006 deep learning methods have changed so many
areas like computer vision and natural language processing.

Basically, multi-layered representation is the key ingredient of deep neural
networks. Thus, the combination of multi-layered representation and Boosting Tree
are expected in handling very complicated tabular data analysis tasks. But there are
few research papers exploring multi-layered representation via non-differentiable
models, like Boosted Decision Tree. That is, the gradient-based optimization
method which is always used in training multi-layered neural networks cannot be
introduced in training multi-layered Boosting methods.

Feng, Yu, and Zhou (2018) explored one way to construct Multi-Layered Gradi-
ent Boosting Decision Tree (mGBDT) with an explicit emphasis on exploring the
ability to learn hierarchical representations by stacking several layers of regression
GBDTs. The model can be jointly trained by a variant of target propagation across
layers, without the need to derive back-propagation or to require differentiability.

Figure 14.4 provides the structure of a Multi-Layered Gradient Boosting Deci-
sion Tree. Fm,m = 1, . . . ,M are the M layers of a mGBDT. Similar to the
multi-layered neural networks, the input o0 is transformed to o1, . . . , oM via
F1, . . . ,FM . Then, the final output oM is the prediction of the target variable y. But

Fig. 14.4 Illustration of multi-layered Gradient Boosting Decision Tree
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all the Fm are constructed via Gradient Boosting Decision Tree, we cannot training
them via back-propagation method used in training multi-layered neural networks.
Feng et al. (2018) introduced another group of functions Gm,m = 1, . . . ,M and
corresponding variables zm,m = 1, . . . ,M .

Intuitively, the group of function Gm are introduced for achieving back-
propagation algorithm in non-differentiable Boosting Tree. To train Multi-layered
Gradient Boosting Decision Tree, firstly, we use “forward propagation” method to
calculate all the om,m = 1, . . . ,M . Secondly, to (om),Gm are trained to reconstruct
om via optimizing the loss function L(om,Gm(Fm(om))). That is, we train Gm
to learn “back-propagation.” Then, after training all the Gm,m = 1, . . . ,M , we
can do “back-propagation” to generate zm,m = 1, . . . ,M that represents the
information to each layer. Next, to the pairs of (zm, zm−1), we train Fm to optimize
another loss function L(zm,Fm(zm−1)). Finally, we can update all the Fm and Gm
via Boosting Tree method. Algorithm 13 shows the procedure of Multi-Layered
Gradient Boosting Decision Tree.

Algorithm 13 Multi-layered Gradient Boosting Decision Tree (Feng et al., 2018)
1. Input: Number of layers M , layer dimension dm, samples (yi , xi), i = 1, . . . , n. Loss function
L. Hyper-parameters α, γ , K1, K2, T , σ 2.

2. Initially, set F 0
m = Initialize(M , dm),m = 1, . . . ,M;

3. For t = 1 to T

a. Propagate the o0 to calculate om = F(om−1),m = 1, . . . ,M
b. ztM = oM − α ∂L(y,oM)

∂oM
c. For m = M to 2

i. Gtm = Gt−1
m

ii. onoisem−1 = om−1 + ε, ε ∼ N(0, diag(σ 2))

iii. Linvm = L(onoisem ,Gtm(F
t−1
m (onoisem )))

iv. for k = 1 to K1

A. rk = − ∂Linvm

∂Gtm(F
t−1
m (onoisem ))

B. Fit a decision tree hk to rk
C. Gtm = Gtm + γ hk

v. zm−1 = Gtm(zm)
d. For m = 1 toM

i. F tm = F t−1
m

ii. Lm = L(ztm,F tm(om−1)) using gradient boosting decision tree
iii. for k = 1 to K2

A. rk = − ∂Lm
∂F tj (om)

B. Fit a decision tree hk to rk
C. F tm = F tm + γ hk

iv. om = F tm(om−1)

4. Output the trained multi-layered gradient boosting decision tree.
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Feng et al. (2018) suggested to optimize Linv = L(onoisem ,Gtm(F
t−1
m (onoisem )))

instead of Linvm = L(om,Gtm(F
t−1
m (om))) to make the training of Gm more robust.

Also, the authors found that the multi-layered Gradient Boosting Decision Tree
is very robust to most hyperparameters. Without fine-tuning the parameters, this
method can achieve very attractive results.

Furthermore, consider the noisy loss function from the perspective of minimizing
the reconstruction error, this process could be seen as an encoding-decoding process.
First, in each layer Fm encodes the input via a nonlinear transform. Then,Gm learns
how to decode the transformed output back to the original input. This is similar to
the Auto Encoder method in deep learning. Thus, we can also use the Multi-layered
Gradient Boosting Decision Tree to do encoding-decoding, which shed a light on
implementing unsupervised learning tasks in the tabular data in economics.

14.7 Boosting in Macroeconomics and Finance

Boosting methods are widely used in classification and regression. Gradient Boost-
ing implemented in the packages, like XGBoost and LightGBM, is a very popular
algorithm among data science competitions and industrial applications. In this
section, we discuss four applications of boosting algorithms in macroeconomics.

14.7.1 Boosting in Predicting Recessions

Ng (2014) uses boosting to predict recessions 3, 6, and 12 months ahead. Boosting is
used to screen as many as 1500 potentially relevant predictors consisting of 132 real
and financial time series and their lags. The sample period is 1961:1–2011:12. In
this application, boosting is used to select relevant predictors from a set of potential
predictors as well as probability estimation and prediction of the recessions. In
particular, the analysis uses the Bernoulli loss function as implemented in the GBM
package of Ridgeway (2007). The package returns the class probability instead of
classifications. For recession analysis, the probability estimate is interesting in its
own right, and the flexibility to choose a threshold other than one-half is convenient.

14.7.2 Boosting Diffusion Indices

Bai (2009) uses boosting to select and estimate the predictors in factor-augmented
autoregressions. In their application, boosting is used to make 12 months ahead of
forecast on inflation, the change in Federal Funds rate, the growth rate of industrial
production, the growth rate of employment, and the unemployment rate. A sample
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period from 1960:1 to 2003:12 was used for a total of 132 times series. They use
two boosting algorithms, namely L2Boosting and Block Boosting.

14.7.3 Boosting with Markov-Switching

Adam, Mayr, and Kneib (2017) propose a novel class of flexible latent-state time
series regression models called Markov-switching generalized additive models for
location, scale, and shape. In contrast to conventional Markov-switching regression
models, the presented methodology allows users to model different state-dependent
parameters of the response distribution—not only the mean, but also variance,
skewness, and kurtosis parameters—as potentially smooth functions of a given set
of explanatory variables. The authors also propose an estimation approach based
on the EM algorithm using the gradient boosting framework to prevent over-fitting
while simultaneously performing variable selection. The feasibility of the suggested
approach is assessed in simulation experiments and illustrated in a real-data setting,
where the authors model the conditional distribution of the daily average price of
energy in Spain over time.

14.7.4 Boosting in Financial Modeling

Rossi and Timmermann (2015) construct a new procedure for estimating the covari-
ance risk measure in ICAPM model. First, one or more economic activity indices are
extracted from macroeconomic and financial variables for estimating the covariance
matrix. Second, given realized covariance matrix as the covariance matrix measure,
Boosting Regression Tree is applied in projecting realized covariance matrix on the
indices extracted in the first step. Lastly, predictions of the covariance matrix are
made based on the nonlinear function approximated by Boosting Regression Tree
and applied into the analysis of ICAPM method.

14.8 Summary

In this chapter, we focus on Boosting method. We start with an introduction of
the well-known AdaBoost. Several variants of AdaBoost, like Real AdaBoost,
LogitBoost, and Gentle AdaBoost are also discussed. Then, we consider in regres-
sion problem and introduce L2Boosting. Next, Gradient Boosting and Gradient
Boosting Decision Tree are discussed in theory and practice. Then, we introduce
the several variants of Gradient Boosting such as Component-wise Boosting and
Boost-GARCH for nonlinear time series modeling, Boosting with Momentum, and
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multi-layered Boosting Tree. Finally, we discuss several applications of Boosting in
macroeconomic forecasting and financial modeling.
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Chapter 15
Density Forecasting

Federico Bassetti, Roberto Casarin, and Francesco Ravazzolo

15.1 Introduction

Economic decision in real time is made under a high degree of uncertainty. One of
the prominent features of this uncertainty is that relevant information is missing at
the moment of the decision. This requires to build forecasts to try to track the future
evolution of the economic processes and to inform decision-makers. Researchers
recognized the fundamental importance of forecasts a long time ago; but the focus
was mainly on point forecasting. Point forecasting is often associated with the
mean of a distribution and it is optimal for highly restricted loss functions, such
as quadratic loss function. More generally, the value of a point forecast can be
increased by supplementing it with some measure of uncertainty and complete
probability distributions over outcomes provide information helpful for making eco-
nomic decisions; see, for example, Anscombe (1968) and Zarnowitz (1969) for early
works and the discussions in Granger and Pesaran (2000), Timmermann (2006),
and Gneiting (2011). Recently, probabilistic forecasts in the form of predictive
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probability distributions have become prevalent in various fields, including macro
economics with routine publications of fancharts from central banks, finance with
asset allocation strategies based on higher-order moments, and meteorology with
operational ensemble forecasts of future weather Tay and Wallis (2000), Gneiting
and Katzfuss (2014). For example in central bank forecasting, the Bank of England,
Norges Bank, Sveriges Riksbank publish so-called fancharts for macroeconomic
variables such as inflation and GDP growth.

This chapter reviews several methods to construct density forecasts for para-
metric models. The first method assumes a distribution for the errors and ignore
parameter uncertainty; the second method, bootstrapping, accounts for parameter
and error uncertainties in a frequentist environment; and the third method relies on
Bayesian inference. The three methods rely on different assumptions. We describe
them in the case of the simple linear regression models and provide tools to extend
the analysis to more complex models. We also discuss density combinations as a
tool to deal in the case there are several density forecasts and an a priori selection is
difficult. This is a challenging case for big data applications, where not all data have
predictive power. And we provide some evaluation tools to measure the accuracy
of density forecasts, accounting for the fact that the “true” density forecast is never
observed, even ex post.

Moreover, in order to cope with the fact that relevant information is missing at
the moment of decision, several papers (e.g., see Stock and Watson, 1999, 2002,
2005, 2014, and Bańbura, Giannone, and Reichlin, 2010) suggest to forecast with
large sets of data. The recent fast growth in (real time) big data allows researchers to
forecast variables of interest more accurately (e.g., see Choi and Varian, 2012; Einav
and Levin, 2014; Varian, 2014; Varian and Scott, 2014). Stock and Watson (2005,
2014), Bańbura et al. (2010), and Koop and Korobilis (2013) suggest that there
are also potential gains from forecasting using a large set of forecasts. However,
forecasting with big data sets including many forecasts and high-dimensional
models requires new modeling strategies, efficient inference methods, and extra
computing power possibly resulting from parallel computing. We refer to Granger
(1998) for an early discussion of these issues. In the application, we propose
Graphical Processor Units (GPUs) as a tool to reduce computation time based on
massively parallel computation and review the GPU computing functions introduced
in the MATLAB parallel computing toolbox to reduce the steep learning curve of a
dedicated programming language.

The structure of the chapter is organized as follows. Section 15.2 presents the
different methods to compute density forecasts. Section 15.3 describes density
combinations and Sect. 15.4 proposes different methods for density evaluation. Sec-
tion 15.5 introduces GPU computing and applies to examples based on Monte Carlo
(MC) simulations and an accept–reject algorithm to compute density. Section 15.6
concludes.
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15.2 Computing Density Forecasts

This section reviews several methods to construct density forecasts. We discuss
methodologies applied to a simple linear regression model:

yt = x′tβ + εt , t = 1, . . . , T , εt ∼ i.i.d.(0, σ 2) (15.1)

where θ = (β, σ 2) is a ((m+ 1)× 1) vector of parameters; β a (m× 1) vector
of coefficients; σ 2 the variance of the error term εt ; and xt is a (m × 1) vector
of covariates, which can include exogenous variables zt and lagged values of the
dependent variable, yt−p, p > 0.

We present three methods to deal with constructing density forecasts: assume
a distribution for the errors and ignore parameter uncertainty; bootstrapping for
accounting for parameter and error uncertainties in a frequentist environment; and
Bayesian inference. The three methods rely on different assumptions. The first one
requires to specify a distribution for a given model; the second one requires some
assumptions and can be applied to any model that respects such assumptions; the
third one requires prior information that are usually model dependent.

15.2.1 Distribution Assumption

The easiest method to compute a density forecast is to assume a given distribution
for the error term, e.g., εt ∼ N(0, σ 2) in (15.1), and to ignore parameter uncertainty.
The h−step ahead density prediction, with h > 1, conditional to information
available up to time T ,DT , results to

f (yT+h|DT ) = N(x′T+hb, s2) (15.2)

where b = (X
′
X)−1X

′
y, with y = (y1, · · · , yT )

′
a (T × 1) vector, X =

(x1, · · · , xT )
′

a (T ×m) matrix, and s2 = e′e/(T −m), with e = (y− Xb). In
the linear model (15.1) there is a closed-form solution accounting for parameter
uncertainty, see for example Hansen (2006). Simple modifications of that model
have also closed-form solution. For example, Clements and Galvao (2014) show
how to compute the variance of the MIDAS predictive density to also account for
parameter uncertainty.

The expression in (15.2) requires to know xT+h. This is possible only in limited
cases where the data generating process of X is known. In most cases, in particular
when xt includes also lags of yt , this condition is not valid. There are several
options to deal with it. For example, xT+h can fixed to include only information
up to time T , that is xT is a function of exogenous (z1, . . . , zT ) and lagged
dependent (yT , . . . , yT−p) variables. This strategy is often called direct forecasting
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and regressors in (15.1) should be changed accordingly. Otherwise, the system can
be iterated to produce future values, that is xT+j is computed conditional on xT+j−1
for j = 1, . . . ,h.

A special case is when xt contains only lags of yt . The density forecasts changes
expression. The variable yt can be expressed as a function of past errors and initial
values as

yt =
t−1∑

j=0

φjεt−j + π , εt ∼ i.i.d.N(0, σ 2)

where φj is the moving average parameter of order j , π summarizes the initial
conditions. Assuming that the past errors and coefficients are known, the conditional
expectation corresponds to the point forecast

yT+h =
T−1∑

j=h
φj εT+h−j + π

and the forecast error is
∑h−1
j=0 φjεt+h−j . It follows that the forecast error variance

is given by s2(h) = σ 2∑h−1
j=0 φ

2
j . The predictive density is therefore normally

distributed with mean given by the usual point forecast and variance given by the
above expression, N(x′T+hb, s2(h)).

15.2.2 Bootstrapping

Ignoring parameter and distribution uncertainties can be very costly, in particular
for small sample sizes and when the error distribution is not Gaussian, see Pascual,
Romo, and Ruiz (2001). A solution to it is to apply a bootstrapping approach. The
bootstrapping procedures are distribution-independent and account for parameter
uncertainty.

Earlier studies in economics have mostly focused on bootstrapping in linear
regressions and univariate autoregressions, see e.g., Berkowitz and Kilian (2000)
and Clements and Taylor (2001). More recently, bootstrapping procedures for more
advanced models have been proposed. These include models that deal with a large
amount of data such as factor models, see e.g., Goncalves and Perron (2014),
Djogbenou, Goncalves, and Perron (2015), Djogbenou, Goncalves, and Perron
(2017), models with mixed frequency information, see Aastveit, Gerdrup, Jore, and
Thorsrud (2014) and Mixed Data Sampling (MIDAS) models, see Aastveit, Foroni,
and Ravazzolo (2016).
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A Residual-Based Bootstrapping of Density Forecasts

We first consider a parametric residual-based bootstrap to derive forecast densities,
accounting for both parameter and shock uncertainty as in Berkowitz and Kilian
(2000) and Clements and Taylor (2001). The bootstrap procedure relies on the
algorithm in Davison and Hinkley (1997) (Section 7.2.4) for prediction in gen-
eralized linear models. The residual-based bootstrap is valid under the following
assumptions:

(A1) εt are i.i.d. with E(εt ) = 0, E(ε2
t ) = σ 2 with σ 2 <∞, and E(ε2(s+1)

t ) <∞
for s ≥ 3.

(A2) (ε1, ε2
1) satisfies Cramer’s condition, i.e., for every d > 0, there exists δ such

that sup||t ||>d exp(ε1, ε2
1)| ≤ exp(−δ).

(A3) x(m)tm+w−hm are exogenous fixed variables.
(A4) The process is stationary.

The steps conducted in the residual-based bootstrap are as follows.

1. Estimate equation (15.1), and obtain b.
2. For r = 1, . . . ,R, simulate ỹr ,t = xtb+ ẽr ,t , where ẽr ,t is resampled from ět ≡(

n
n−k
)0.5

et .1

3. Re-estimate (15.1) for each ỹr ,t , and obtain ỹr ,T+h, where the shock uncertainty
is included by resampling from ět .

Davison and Hinkley (1997) fix the value of yT equal to the value of the original
series.

In practice, R vectors of pseudo-random numbers are generated to replicate the
same properties of the residuals of the model, via the bootstrapping technique. For
each r = 1, . . . ,R replications, a new set of simulated data is generated, and a new
forecast ỹr ,T+h is obtained. The empirical distribution of

{
ỹr ,T+h

}R
r=1 is then our

density.
If the error terms in Eq. (15.1) are independent and identically distributed with

common variance, then we can generally make very accurate inferences by using the
residual bootstrap. Given the assumptions (A1)–(A4), Davison and Hinkley (1997)
discuss how the method is a generalization of the bootstrapping algorithm for linear
models and Bose (1988) provides proofs of its convergence.2

1Davidson and MacKinnon (2006) suggest to rescale the residuals so that they have the correct

variance by ět ≡
(
n
n−k
)0.5

êt .
2Bose (1988) focuses on linear AR models with imposed stationarity (see assumption (A4) above).
For an extension accounting for a possible unit root, see Inoue and Kilian (2002).
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Accounting for Autocorrelated or Heteroskedastic Errors

One limitation of the standard residual-based bootstrapping method above is that
it treats the errors as i.i.d. The i.i.d. assumption does not follow naturally from
economic models, and in many empirical applications the actual data are not well
represented by models with i.i.d. errors, see e.g. Goncalves and Kilian (2004)
and Davidson and MacKinnon (2006). Typically, economic and financial variables
exhibit evidence of autocorrelation and/or conditional heteroskedasticity. In these
cases, assumption (A1) is violated and the residual-based bootstrap is not valid.

Block bootstrap methods, suggested by Hall (1985) and Kunsch (1989), account
for autocorrelated errors. The block bootstrap divides the quantities that are
being resampled into blocks of b consecutive observations. The blocks can be
either overlapping or non-overlapping, nevertheless Andrews (2002) finds small
differences in performance between the two methods.

The wild bootstrap suggested by Wu (1986) and Liu (1988) is specifically
designed to handle heteroskedasticity in regression models. Goncalves and Kilian
(2004) have also shown that heteroskedasticity is an important feature in many
macroeconomic and financial series and apply the wild bootstrap to autoregressive
models.

A Block Wild Bootstrapping of Density Forecasts

To account for both autocorrelation and heteroskedasticity at the same time, we
suggest using a block wild bootstrap, first proposed by Yeh (1998). Djogbenou et al.
(2015, 2017) have recently proposed adapting the block wild bootstrap to the case
of factor models and Aastveit et al. (2016) to MIDAS models. Non-overlapping
blocks of size nT of consecutive residuals are formed. Assume that (T − h)/nT =
kT , where kT is an integer and denotes the number of blocks of size nT . For l =
1, . . . , bT and j = 1, . . . , kT , we let

y∗(j−1)nT+l+h = x(j−1)nT+lb+ e∗(j−1)nT+l+h

where

e∗(j−1)nT+l+h = ě(j−1)nT+l+h · νj
There are various ways to specify the distribution of νj . Davidson and Flachaire
(2008) assume that νj is a Rademacher random variable

νj =
{

1 with probability 1/2
−1 with probability 1/2
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Davidson and Flachaire (2008) study the wild bootstrap in the context of regression
models with heteroskedastic disturbances and find that, among several popular
candidates, this has the most desirable properties.

By replacing step 2 and 3 in the residual-based bootstrap above with the
block wild bootstrap it is possible to accommodate both serial correlation and
heteroskedasticity in ẽr ,t . Djogbenou et al. (2017) set the block size equal to h.

15.2.3 Bayesian Inference

A different approach to construct density forecasts rely on Bayesian inference.
Bayesian analysis formulates prior distributions on parameters that multiplied by
the likelihood results on parameter posterior distributions. Accounting for the
uncertainty on parameter posterior distribution, future probabilistic statements
derive without any further assumption. Moreover, prior distributions allow to impose
restrictions on the parameters if useful and necessary. However, a user must specify
prior statements before to start the analysis.

As example, we present the main derivation for model (15.1). The objective of
Bayesian inference is to compute a predictive density

f (yT+h|DT ) =
∫
p(yT+h, xT+h, θ |DT )dθ =

∫
l(yT+h|xT+h, θ ,DT )p(θ |DT )dθ

(15.3)

where DT = (y, X, xT+h) is the information set, l(yT+h|xT+h, θ) is the likelihood
of the model for time T + h, p(θ |DT ) is the parameter marginal distribution
computed with information up to time T .

Regarding the choice of the prior distribution, if the prior is conjugate then
the posterior and the predictive distribution can be computed analytically. If non-
conjugate priors are used, then posterior and predictive are in integral form and need
to be evaluated by means of numerical methods such as Monte Carlo simulation
methods. In the regression model, in practice one usually defines τ = 1/σ 2 and
assumes a conjugate normal-gamma prior

β|τ ∼ N(β, τ−1V), τ ∼ G(s−2, ν), β, τ ∼ NG(β, V, s−2, ν)

where β, V, s−2, and ν are parameters of the normal and gamma prior distributions.

Define V = (V−1 + X′X)−1, β = V(V−1β + bX′X), ν = ν + T , νs2 = νs2 +
νs2+ (b− β)′(V+ (X′X)−1)−1(b− β), νs2 = (y−Xb)′(y−Xb), the conditional

posteriors of β given σ 2 and σ 2 given β are

p(β|τ , y) ∼ N(β, τ−1V), p(τ |β, y) ∼ G(νs2, ν)
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See Koop (2003). The target is the marginal posterior distribution, that has a closed-
form solution for model (15.1) and Normal-gamma priors

β|DT ∼ t (β, s2V, ν)

τ |DT ∼ G(νs2, ν − 2)

The conditional and marginal predictive densities have also a closed-form solution,
see Koop (2003):

f (yT+h|β, σ ,DT ) ∼ N(xT+hβ, s 2̃x′X̃)

f (yT+h|DT ) ∼ t (xT+hβ, s2(IT + X̃VX̃), ν)

As in the normal and bootstrapping cases, computation is more complex when xT+h
is not available at time T and direct forecasting is avoided. The algorithm in (15.3)
generalizes to

f (yT+h|DT ) =
∫
l(yT+h|xT+h, θ)p(xT+h|X, θ)p(θ |DT )dθ (15.4)

Closed-form solutions do not exist for most of economic models, but simulation
methods can be used to compute the integral and derive the marginal predictive
density. Assume a set of random samples θ r , r = 1, . . . ,R from p(θ |DT ) is
available, then the predictive density in Eq. (15.4) can be approximated as follows

f̂R(yT+h|DT ) = 1

R

R∑

r=1

l(yT+h|xT+h, θ r )p(xT+h|X, θ r )

See Sect. 15.5 for an introduction to simulation methods.

15.3 Density Combinations

When multiple forecasts are available from different models or sources it is
possible to combine these in order to make use of all relevant information on
the variable to be predicted and, as a consequence, to produce better forecasts.
This is particular important when working with large database and selection of
relevant information a priori is not an easy task. Early papers on forecasting with
model combinations are Barnard (1963), who considered air passenger data, and
Roberts (1965) who introduced a distribution which includes the predictions from
two experts (or models). This latter distribution is essentially a weighted average of
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the posterior distributions of two models and is similar to the result of a Bayesian
Model Averaging (BMA) procedure. See Raftery, Madigan, and Hoeting (1997)
for a review on BMA, with a historical perspective and Hofmarcher and Grün
(2019) for a recent overview on the statistical methods and foundations of BMA.
Raftery, Gneiting, Balabdaoui, and Polakowski (2005) and Sloughter, Gneiting, and
Raftery (2010) extend the BMA framework by introducing a method for obtaining
probabilistic forecasts from ensembles in the form of predictive densities and apply
it to weather forecasting. McAlinn and West (2019) extend it to Bayesian predictive
synthesis.

Bates and Granger (1969) deal with the combination of predictions from different
forecasting models using descriptive regression. Granger and Ramanathan (1984)
extend this and propose to combine forecasts with unrestricted regression coeffi-
cients as weights. Terui and van Dijk (2002) generalize the least square weights
by representing the dynamic forecast combination as a state space with weights
that are assumed to follow a random walk process. Guidolin and Timmermann
(2009) introduce Markov-switching weights, and Hoogerheide, Kleijn, Ravazzolo,
van Dijk, and Verbeek (2010) propose robust time-varying weights and account
for both model and parameter uncertainty in model averaging. Raftery, Karny, and
Ettler (2010) derive time-varying weights in “dynamic model averaging,” following
the spirit of Terui and van Dijk (2002), and speed up computations by applying
forgetting factors in the recursive Kalman filter updating.

A different line was started by Ken Wallis in several papers, see for example
Wallis (2003, 2005, 2011) and Mitchell and Wallis (2011). Here the use of the full
predictive distribution is proposed when forecasting. Benefits and problems related
to it are discussed in detail. One focus has been to measure to the importance of
density combinations. Hall and Mitchell (2007) introduce the Kullback–Leibler
divergence as a unified measure for the evaluation and suggest weights that
maximize such a distance, see also Amisano and Geweke (2010) and Geweke and
Amisano (2011) for a compressive discussion on how such weights are robust to
model incompleteness, that is the true model is not included in the model set.
Gneiting and Raftery (2007) recommend strictly proper scoring rules, such as the
cumulative rank probability score. Billio, Casarin, Ravazzolo, and van Dijk (2013)
develops a general method that can deal with most of issues discussed above,
including time-variation in combination weights, learning from past performance,
model incompleteness, correlations among weights and joint combined predictions
of several variables. See, also Waggoner and Zha (2012), Kapetanios, Mitchell,
Price, and Fawcett (2015), Pettenuzzo and Ravazzolo (2016), Aastveit, Ravazzolo,
and van Dijk (2018), and Del Negro, Hasegawa, and Schorfheide (2016).

We refer to Aastveit, Mitchell, Ravazzolo, and van Dijk (2019) for a recent survey
on the evolution of forecast density combinations in economics. In the following we
provide some details on two basic methodologies, the Bayesian Model Averaging
(BMA) and the linear opinion pool (LOP), and discuss briefly some extensions.
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15.3.1 Bayesian Model Averaging

Let DT be the set of information available up to time t , then BMA combines the
individual forecast densities f (yT+h|DT ,Mj), i = 1, . . . ,N , into a composite-
weighted predictive distribution f (yT+h|DT ) given by

f (yT+h|DT ) =
N∑

j=1

P
(
Mj
∣∣DT

)
f (yT+h|DT ,Mj)

where P
(
Mj
∣∣DT

)
is the posterior probability of model j , derived by Bayes’ rule,

P
(
Mj
∣∣DT

)
= P

(
DT
∣∣Mj

)
P
(
Mj
)

∑N
j=1 P

(
DT
∣∣Mj

)
P
(
Mj
) , j = 1, . . . ,N

and where P
(
Mj
)

is the prior probability of modelMj , with P
(
DT
∣∣Mj

)
denoting

the corresponding marginal likelihood. We shall notice that the model posterior
probability can be written in terms of Bayes factors

P
(
Mj
∣∣DT

)
= αjb1j∑N

j=2 αjb1j

where αj = P(Mj )/P(M1) and b1j = P
(
DT
∣∣Mj

)
/P
(
DT
∣∣M1

)
, j = 2, . . . ,N

are the Bayes factors. An alternative averaging weighting scheme can be define by
using the predictive distributions

P
(
Mj
∣∣DT

)
= P

(
yT |DT−1,Mj

)
P
(
Mj
)

∑N
j=1 P

(
yT |DT−1,Mj

)
P
(
Mj
) , j = 1, . . . ,N

15.3.2 Linear Opinion Pool

Linear Opinion Pool (LOP) gives a predictive density f (yT+h|DT ) for the variable
of interest to be predicted at horizon T + h with h > 0, yT+h, using the information
available up to time T , DT , from a set of predictions generated by the models Mj ,
j = 1, . . . ,N .

f (yT+h|DT ) =
N∑

j=1

wj ,T+hf (yT+h|DT ,Mj)
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where wj ,T+h is the (0, 1)-valued weight given to model Mj computed at time T
and f (yT+h|DT ,Mj) is the density forecast of yT+h conditional on predictor Mj ,
and on the information available up to time T . The individual prediction can be
model based, parametric or non-parametric, or individual subjective predictions.
Each of these predictive densities must be non-negative for all the support of
yT+h and their cumulative density functions must add to 1. To guarantee that the
combined forecast density f (yT+h) also satisfies these features, some restrictions
can be imposed to the combination weights wj ,T+h, j = 1, . . . ,N . Sufficient
conditions are that weights are non-negative, wj ,T+h ≥ 0, j = 1, . . . ,N , and that
add to unity,

∑N
j=1wj ,T+h = 1.

Standard practice, see for example Hall and Mitchell (2007), Kascha and
Ravazzolo (2010), and Mazzi, Mitchell, and Montana (2014), is to use the cumula-
tive log score, see Eq. (15.5). The combination weights are computed as

wLSj ,T+h =
exp(ηLSj ,T )∑N
j=1 exp(ηLSj ,T )

where ηLSj ,T is the cumulative log score for modelMj at time T . We note that at time
T when predictions are made, the cumulative log score can be computed up to the
same time and therefore weights are based on the statistic ηLSj ,T , j = 1, . . . ,N . Such
statistic contains information on how the predictor Mj associated with prediction
f (yT+h|DT ,Mj) has performed in the past in terms of forecasting. Therefore, the
major difference between LOP and BMA is in weights definition. BMA weights
depend on model posterior probabilities; LOP weights are computed using distance
measures.

15.3.3 Generalized Opinion Pool

Following the notation used in Gneiting and Ranjan (2013), it is possible to define
a general pooling method as a parametric family of combination formulas. Let
FjT (yT+h) = F(T+h|DT ,Mj) denote the cdf of the density f (yT+h|DT ,Mj),
a generalized pool is a map

H :
[×NF→ F
(F1T (·), · · · ,FNT (·)) �→ F(·|ξ ,DT ) = H(F1T (·), . . . ,FNT (·), ξ)

indexed by the parameter ξ ∈ $, where $ is a parameter space and F is a
suitable space of distributions. Following (see DeGroot, Dawid, & Mortera, 1995;
DeGroot & Mortera, 1991) we consider pooling scheme of the form

H(F1T (·), . . . ,FNT (·), ξ) = ϕ−1

⎛

⎝
N∑

j=1

ωjϕ(FjT (·)
⎞

⎠
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where ϕ is a continuous increasing monotone function with inverse ϕ−1 and ξ =
(ω1, · · · ,ωN)′ is a vector of combination weights, with ω1 + . . . + ωN = 1 and
ωj ≥ 0, for all i. If ϕ(x) = x then we obtain the Linear Opinion Pool

F(yT+h|DT , ξ) =
N∑

j=1

ωjF (yT+h|DT ,Mj)

The harmonic opinion pool is obtained for ϕ(x) = 1/x

F(yT+h|DT , ξ) =
⎛

⎝
N∑

j=1

ωjF (yT+h|DT ,Mj)
−1

⎞

⎠
−1

whereas by choosing ϕ(x) = log(x) one obtains the logarithmic opinion pool

F(yT+h|DT , ξ) =
N∏

j=1

F(yT+h|DT ,Mj)
ωj

If ϕ is differentiable then the generalized combination model can be re-written in
terms of pdf as follows

f (yT+h|DT , ξ) = 1

ϕ′(F (yT+h|DT , ξ))

N∑

j=1

ωjϕ
′(F (yT+h|DT ,Mj))f (T+hy|DT ,Mj)

where ϕ′ denotes the first derivative of ϕ. The related density functions are

f (yT+h|DT , ξ) =
N∑

j=1

ωjf (yT+h|DT ,Mj)

f (yT+h|DT , ξ) = F(yT+h|DT , ξ)2
N∑

j=1

ωjF (yT+h|DT ,Mj)
−2f (yT+h|DT ,Mj)

f (yT+h|DT , ξ) = F(yT+h|DT , ξ)
N∑

j=1

ωjF (yT+h|DT ,Mj)
−1f (yT+h|DT ,Mj)

for the linear opinion pool, harmonic opinion pool and logarithmic opinion pool,
respectively. Generalized combination schemes have developed further in Kapetan-
ios et al. (2015) and Bassetti, Casarin, and Ravazzolo (2018). We illustrate the
three combination methods by assuming that two density forecasts are available,
F(yT+h|DT ,M1) ∼ N(4, 1) and F(yT+h|DT ,M2) ∼ N(0, 2), and an equally
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Fig. 15.1 Pdfs (left) and cdfs (right) of the two forecasting models F(y|DT ,M1) ∼ N(4, 1) and
F(y|DT ,M2) ∼ N(0, 2) (red solid lines) and of their linear (dashed), harmonic (dotted), and
logarithmic (dotted-dashed) combination

weighted pooling is used (ω1 = ω2 = 0.5). From Fig. 15.1 one can see that
harmonic and logarithmic pools concentrate the probability mass on one of the
model in the pool.

15.4 Density Forecast Evaluation

The density of the variable of interest yT+h at given time T + h is never observed.
This complicates the evaluation of density forecasts. In economics, there are two
main approaches to evaluate density forecasts. The first one is based on properties
of a density and refers to absolute accuracy. The second one is based on comparison
of different forecasts and refers to relative accuracy.

15.4.1 Absolute Accuracy

The absolute accuracy can be studied by testing forecast accuracy relative to the
“true” but unobserved density. Dawid (1982) introduced the criterion of complete
calibration for comparing prequential probabilities with binary random outcomes.
This criterion requires that the averages of the prequential probabilities and of the
binary outcomes converges to the same limit. For continuous random variables
Dawid (1982) exploited the concept of probability integral transform (PIT) that is
the value that a predictive cdf attains at the observations. The PITs summarize the
properties of the densities and may help us judge whether the densities are biased
in a particular direction and whether the width of the densities has been roughly
correct on average Diebold, Gunther, and Tay (1998). More precisely, the PITs
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represents the ex-ante inverse predictive cumulative distributions, evaluated at the
ex-post actual observations. The PIT at time T are

PITT+h =
∫ yT+h

−∞
f (yT+h|DT )dy

and should be uniformly, independently, and identically distributed if the h-step-
ahead forecast densities f (yT+h|DT ) conditional on the information set available
at time T , are correctly calibrated.

As an example assume that a set of observations are generated from a standard
normal, Yt ∼ N(0, 1), i.i.d. t = T + 1, . . . , T + 1000 and that four predictive cdfs
are used:

F(yT+h|DT ,M1) ∼ N(0.5, 1), F(yT+h|DT ,M2) ∼ N(0, 2)
F (yT+h|DT ,M3) ∼ N(−0.5, 1), F(yT+h|DT ,M4) ∼ N(0, 0.5)

The first model is wrong in predicting the mean of the distribution, the second one
is wrong in predicting the variance. In Fig. 15.2, which show the cdfs of PITs. In
each plot the red line indicates the PITs of the true model. Errors in mean induce
a cdf that overestimate (left plot) or underestimate (right plot), depending on error
sign, the “true” cumulative density function. Variance overestimation appears as
an underestimate in the left side of the distribution, and an overestimate in the
right side, whereas variance underestimation appears as an overestimate in the left
side of the distribution, and an underestimate in the right side. In both cases, the
discontinuity point corresponds at the mean, in which the two line intersect.

Calibration can be gauge by testing jointly for uniformity and (for one-step ahead
forecasts) independence of the PITs, applying the tests proposed by Berkowitz
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Fig. 15.2 Empirical cdfs of the PITs. Left: PITs generated by F(yT+h|DT ,M1) ∼ N(0.5, 1)
(dashed line), F(yT+h|DT ,M2) ∼ N(0, 2) (dotted line). Right: PITs generated by
F(yT+h|DT ,M3) ∼ N(−0.5, 1) (dashed line), F(yT+h|DT ,M4) ∼ N(0, 0.5) (dotted line). In
each plot the red solid line indicates the PITS of the true model (N(0, 1))
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(2001) and Knuppel (2015).3 Rossi and Sekhposyan (2013) extend the evaluation in
the presence of instabilities; Rossi and Sekhposyan (2014) apply to large database
and Rossi and Sekhposyan (2019) compare alternative tests for correct specification
of density forecasts.

15.4.2 Relative Accuracy

When moving to relative comparison, density forecasts can be evaluated by
the Kullback–Leibler Information Criterion (KLIC)-based measure, utilizing the
expected difference in the Logarithmic Scores of the candidate forecast densities;
see, for example, Mitchell and Hall (2005), Hall and Mitchell (2007), Kascha and
Ravazzolo (2010), and Billio et al. (2013). The KLIC is the distance between the
true density p(yT+h|DT ) of a random variable yT+h and some candidate density
f (yT+h|DT ,Mj) obtained from the model Mj and chooses the model that on
average gives the higher probability to events that actually occurred. An estimate
of it can be obtained from the average of the sample information, yT+1, . . . , yT+1,
on p(yT+h) and f (yT+h|DT ,Mj):

KLICj ,h = 1

T ∗
T∑

T=T
[lnp(yT+h|DT )− ln f (yT+h|DT ,Mj)]

where T ∗ = (T − T + 1). Although we do not know the true density, we can still
compare different densities, f (yT+h|Mj). For the comparison of two competing
models, it is sufficient to consider the Logarithmic Score (LS) given as

LSj ,h = − 1

T ∗
T∑

T=t
ln f (yT+h|DT ,Mj) (15.5)

for all j and choose the model for which this score is minimal.
Alternative, density forecasts can be evaluated on the continuous rank probability

score (CRPS); see, for example, Gneiting and Raftery (2007), Gneiting and Ranjan
(2013), Groen, Paap, and Ravazzolo (2013), and Ravazzolo and Vahey (2014). The
CRPS for the model j measures the average absolute distance between the empirical
cumulative distribution function (CDF) of yT+h, which is simply a step function in
yT+h, and the empirical CDF that is associated with model j ’s predictive density:

CRPSj ,T+h =
∫ +∞

−∞

(
F(yT+h|DT ,Mj)− I[yT+h,+∞)(yT+h)

)2
dyT+h

3For longer horizons, test for independence is skipped.
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where F is the CDF from the predictive density f (yt+h|DT ,Mj) of model j . The
sample average CRPS is computed as

CRPSj ,h = − 1

T ∗
T∑

T=t
CRPSj ,T+h

Smaller CRPS values imply higher precisions.
Finally, the Diebold and Mariano (1995) and West (1996) t-tests for equality of

the average loss (with loss defined as log score, or CRPS) can be applied.

15.4.3 Forecast Calibration

An expert is well-calibrated if the subjective predictive distribution (or density
function) agrees with the sample distribution of the realizations of the unknown
variable in the long run. When a predictive density F(y|DT ) is not well-calibrated,
a calibration procedure can be applied, by introducing a monotone non-decreasing
map

ψ :
[ [0, 1] → [0, 1]
F(·|DT , ξ) �→ F(·|DT , ξ) = ψ(F(·|DT ))

such that F(yT+h|DT , ξ) is well-calibrated. Bassetti et al. (2018) propose to use the
cdf of a mixture of Beta II distributions as calibration functional, that is

F(yT+h|DT , ξ) =
J∑

j=1

ωjBαj ,βj (F (yT+h|DT ))

with ξ = (α1, . . . ,αJ ,β1, . . . ,βJ ,ω1, . . . ,ωJ ) and αj ,βj > 0, ω1 + . . .+ ωJ = 1,
ωj ≥ 0, and Bα,β(u) the cdf of the Beta II distribution. This calibration functional
has the beta calibration scheme of Ranjan and Gneiting (2010) and Gneiting and
Ranjan (2013) as special case for J = 1 and allows for more flexibility in calibrating
in presence of fat tails, skewness, and multiple-modes.

As an example assume that a set of observations are generated from a standard
normal, yt ∼ N(0, 1), i.i.d. t = T + 1, . . . , T + n, n = 1000 and that the predictive
density results from the following linear pooling:

F(yT+h|DT ) ∼ 1

3
N(0.5, 1)+ 1

3
N(0, 2)+ 1

3
N(−0.5, 1)
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Fig. 15.3 PITs calibration exercise. Left: PITs generated by the true model (red solid), the
forecasting model F(y|DT ) (dashed), the beta calibrated model (dotted) and the beta mixture
calibrated model (dashed-dotted). Right: beta calibration function (solid) and the first (dashed) and
second (dotted) component of the beta mixture calibration function

Since the PITs of the density forecasts are not well-calibrated (dashed line, in the
left panel of Fig. 15.3), we apply the following calibration functions:

F(yT+h|DT , ξ) = Bα,β(F (yT+h|DT ))
F (yT+h|DT , ξ) = ωBα1,β1(F (yT+h|DT ))+ (1−ω)Bα2,β2(F (yT+h|DT ))

where the parameters α = 2.81 and β = 2.01 and α1 = 23.13, β1 = 6.61, α2 =
2.95, β2 = 3.19 and ω = 0.36 have been optimally chosen by maximizing the
likelihood function

l(yT+n|ξ) =
T+n∏

t=T+1

⎛

⎝
J∑

j=1

ωjBαj ,βj (F (yt |DT ))
⎞

⎠

with respect to ξ . For a Bayesian approach to the estimation of the calibration
function see Bassetti et al. (2018). The dashed line in the left panel suggests that
the beta calibration model is not able to produce well-calibrated PITs, whereas
the 2-component beta mixture functional (dotted-dashed line) allows for a better
calibration. The first mixture component Bα1,β1(u) for u ∈ (0, 1) (dotted line in
the right plot) is calibrating all the PITs, whereas the second component Bα2,β2(u)

(dashed line) is reducing the value of the PITs below the 60%. A Bayesian approach
to inference on the calibration functional can carried out by eliciting a prior on
the parameter ξ and then using Markov-chain Monte Carlo methods for posterior
simulation (e.g., see Robert & Casella, 2004). As an example consider the beta
calibration exercise of this section. We assume α,β ∼ Ga(2, 4) where Ga(c, d) is
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a gamma distribution with shape and scale parameters c and d, respectively and pdf

p(z) = 1

�(c)
c−d exp

(
− 1

d
z

)
zc−1, z > 0

Let p(ξ) = p(α)p(β) be the joint prior with ξ = (α,β). The joint posterior
distribution

p(ξ |DT+n) ∝ l(yT+n|ξ)p(ξ)

is not tractable, thus we apply a Metropolis-Hastings simulation algorithm (see
Sect. 15.5) which generates at the iteration r a candidate ξ∗ from the random-walk
proposal log ξ∗ = log ξ + ηr−1, ηt ∼ N2(0, diag{0.05, 0.05}), where ηr−1 is the
previous iteration random sample from the simulation algorithm. The MH samples
are used to estimate the posterior distribution of the calibrated PITs (left plot in
Fig. 15.4) and the calibration parameters (right plot).
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Fig. 15.4 PITs calibration exercise. Left: PITs generated by the true model (red solid), the
forecasting model F(y|DT ) (dashed), the Bayesian beta calibrated model (dotted) and the MCMC
posterior coverage (light gray lines). Right: beta calibration function (solid), he MCMC posterior
coverage (light gray lines), posterior mean (vertical dashed)
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15.5 Monte Carlo Methods for Predictive Approximation

In the next sections, we report some Monte Carlo (MC) simulation methods which
can be used for approximating predictive densities expressed in integral form. MC
simulation is an approximation method to solve numerically several optimization
and integration problems, and already found widespread application in economics
and business, e.g., see Kloek and van Dijk, 1978 and Geweke, 1989.

15.5.1 Accept–Reject

The Accept–Reject (AR) algorithm (Robert & Casella, 2004) is used to generate
samples from a density f (y) (called target density) by using an density g(y)
(called instrumental density). The AR algorithm iterates the following steps for
r = 1, . . . ,R

1. Generate xr from g and a uniform ur from U[0,1],
2. Accept and set yr = xr if ur ≤ f (xr)/g(xr)
As an example consider the target density

f (x) ∝ exp(−x2/2)(sin(6x)2 + 3 cos(x)2 sin (4x)2 + 1),

which is not easy to simulate, and assume the following instrumental density

g(x) ∝ exp(−x2/2)/
√

2π

which is the density of a standard normal distribution and is easier to simulate.
The top panel in Fig. 15.5 reports a graphical comparison of the two densities. The
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Fig. 15.5 Accept–Reject example. Left: target (dashed) and instrumental (solid) density. Right:
target histogram approximated with 1,000,000 draws
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bottom panel of Fig. 15.5 shows the simulated target density using the AR algorithm
based on 1,000,000 draws. See Listing 15.3 in the Appendix for the MATLAB code.

15.5.2 Importance Sampling

Let f (y) be a target density function, h a measurable function and

I =
∫
h(y)f (y)dy

the integral of interest. In importance sampling (IS) (see Robert & Casella,
2004, chapter 3) a distribution g (called importance distribution or instrumental
distribution) is used to apply a change of measure

I =
∫
f (y)

g(y)
h(y)g(y)dy

The resulting integral is then evaluated numerically by using i.i.d. samples
Y1, . . . ,YR from g, that is

IISR = 1

R

R∑

r=1

w(yr)h(yr)

where w(yr) = f (yr)/g(yr), r = 1, . . . ,R are called importance weights. A set of
sufficient conditions for the IS estimators to have finite variance is the following:

(B1) f (y)/g(y) < M ∀y ∈ † and Vf (h) <∞
(B1) Y is compact, f (y) < c and g(y) > ε ∀y ∈ Y

The condition (B1) implies that the distribution g has thicker tails than f . If the
tails of the importance density are lighter than those of the target then the importance
weight w(y) is not a.e. bounded and the variance of the estimator will be infinite for
many functions h. A way to address this issue is to consider the self-normalized
importance sampling (SNIS) estimator

ISNISR =
∑R
r=1w(yr)h(yr)∑R
r=1w(yr)

It is biased on a finite sample, but it converges to I by the strong law of large number.
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As an example let h(y) =
√∣∣y/(1− y)∣∣ and y follow a Student-t distribution

T(ν, θ , σ 2) with density

f (y) = �((ν + 1)/2)

σ
√
νπ�(ν/2)

(
1+ (y − θ)

2

νσ 2

)−(ν+1)/2

IR(y)

We study the performance of the importance sampling estimator when the following
instrumental distributions are used:

1. Student-t , t (ν∗, 0, 1) with ν∗ < ν (e.g., ν∗ = 7);
2. Cauchy, C(0, 1).

We shall recall that the Cauchy distribution C(α,β) has density function

g(y) = 1

πβ(1+ ((y − α)/β)2) IR(y)

where −∞ < α < +∞ and β > 0 and cumulative distribution function

G(y) =
(

1

2
+ 1

π
arc tan

y − α
β

)
IR(y)

The inverse cdf method can be applied in order to generate from the Cauchy: if
Y = G−1(U), where U ∼ U[0,1], then Y ∼ C(α,β). See Listing 15.4 in Appendix
for a MATLAB code. We generate 10000 draws from the instrumental distributions.
Figure 15.6 shows that the importance weights for Student-t and Cauchy are stable
(left panel), but the Cauchy proposal seems to converge faster than the Student-t
(right panel).
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Fig. 15.6 Importance sampling draws for the two different instrumental distributions. Left:
importance sampling weights w(Yj ). Right: importance sampling estimator
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15.5.3 Metropolis-Hastings

In IS and AR samples from a target distribution can be generated by using a
different distribution. A similar idea motivates the use of Markov chain Monte
Carlo methods, where samples are generated from an ergodic Markov chain process
with the target as a stationary distribution. A general MCMC method is the
Metropolis-Hastings (MH) algorithm. Let f (y) be the target distribution and q(x|y)
a proposal distribution. The MH algorithm (see Ch. 6–10 in Robert and Casella,
2004) generates a sequence of samples y1, . . . ,YR by iterating the following steps.
At the r-th iteration, given yr−1 from the previous iteration

1. generate x∗ ∼ q(x|yr−1);
2. set

yr =
{
x∗ with probability α(x∗, yr−1)

yr−1 with probability 1− α(x∗, yr−1)

where

α(x, y) = min

{
f (y)

f (x)

q(x|y)
q(y|x) , 1

}

The generality of the MH relies on the assumption that the target density is known up
to a normalizing constant, which is common in many Bayesian inference problems.
A drawback of the MH method is that the sequence of samples is not independent
and the degree of dependence depends on the choice of the proposal distribution.
In order to illustrate this aspect, we consider a toy example. Assume the target
distribution is a bivariate normal mixture 1/3N2(−ι, I2) + 2/3N2(ι, I2) where
ι = (1, 1)′ and I2 is the two-dimensional identity matrix and design a random-walk
MH algorithm with candidate samples X∗ generated from N2(yr−1, τ 2I2).

Figure 15.7 shows the output of 500 iterations of the MH sampler for different
values of the scale parameter τ (different panels). In each plot, the two-dimensional
random vectors yr , r = 1, . . . , 500 (red dots), the trajectory of the M.-H. chain (red
line connecting the dots), the initial value of the algorithm (blue dot) and the level
sets of the target distribution (solid black lines).

Left plot shows an example of missing mass problem. The scale of the proposal
is too small (τ 2 = 0.01), thus the M.-H. chain gets trapped by one of the mode and
is not able to visit the other mode. In this case one expects that the results of the
approximated inference procedure are sensitive to the choice of the initial condition
of the MH chain. The MH chain in the right plot has a better mixing and is able to
generate samples from the two components of the mixture.
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Fig. 15.7 Output of the Metropolis-Hastings for different choices of the random-walk scale
parameter, τ 2 = 0.01 (left) and τ = 1 (right). In each plot: the trajectory of the M.-H. chain
(red line), the initial value of the algorithm (blue dot) and the level sets of the target distribution
(solid black lines)

15.5.4 Constructing Density Forecasting Using GPU

There is a recent trend in using Graphical Processor Units (GPUs) for general,
non-graphics, applications (prominently featuring those in scientific computing)
the so-called General-Purpose computing on Graphics Processing Units (GPGPU).
GPGPU has been applied successfully in different fields such as astrophysics,
biology, engineering, and finance, where quantitative analysts started to use this
technology ahead of academic economists, see Morozov and Mathur (2011) for a
literature review. To date, the adoption of GPU computing technology in economics
and econometrics has been relatively slow compared to other fields. There are just
a few papers that deal with this interesting topic (e.g., see Casarin, Craiu, & Leisen,
2016; Casarin, Grassi, Ravazzolo, & van Dijk, 2015; Durham & Geweke, 2014;
Geweke & Durham, 2012; Morozov & Mathur, 2011; Vergé, Dubarry, Del Moral,
& Moulines, 2015). This is odd given the fact that parallel computing in economics
has a long history and specifically for this chapter computing density forecasts based
on bootstrapping or Bayesian inference requires extensive computation that can be
paralleled. The low diffusion of this technology in the economics and econometrics
literature, according to Creel (2005), is related to the steep learning curve of a
dedicated programming language and expensive hardware. Modern GPUs can easily
solve the second problem (hardware costs are relatively low), but the first issue
still remains open. Among the popular software used in econometrics (e.g., see
LeSage, 1998), MATLAB has introduced from the version R2010b the support to
GPU computing in its parallel computing toolbox. This allows for using raw CUDA
code within a MATLAB code and MATLAB functions that are executed on the
GPU. See Geweke and Durham (2012) for a discussion about CUDA programming
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in econometrics. As showed in the Appendix, using the build-in functions, GPGPU
can be almost effortless where the only knowledge required is a decent programming
skill in MATLAB.

15.6 Conclusion

This chapter reviews different methods to construct density forecasts based on
error assumptions, bootstrapping, and Bayesian inference. We describe different
assumptions of the three methods in the case of the simple linear regression models
and provide tools to extend the analysis to more complex models. We also discuss
density combinations as a tool to deal in the case there are several density forecasts
and an a priori selection is difficult. This is particular challenging in big data
applications where all the data are not useful. And we provide some evaluation tools
to measure the accuracy of density forecasts, accounting for the fact that the “true”
density forecast is never observed, even ex post.

As example, we present how to use GPU computing almost effortless with
MATLAB. The only knowledge required is a decent programming skill and a
knowledge of the GPU computing functions introduced in the MATLAB parallel
computing toolbox. We generate random numbers, estimate a linear regression
model and present a Monte Carlo simulation based on accept/rejection algorithm.
We expect large benefits in computational time when dealing with big database with
GPU computing.

Appendix

There is little difference between a CPU and a GPU MATLAB code as Listings 15.1
and 15.2, for example, show. The pseudo code, reported in the listings, generates
random variables Y and X and estimates the linear regression model Y = Xβ + ε,
on CPU and GPU, respectively.

The GPU code, Listing 15.2, uses the command gpuArray.randn to generate a
matrix of normal random numbers. The build-in function is handled by the NVIDIA
plug-in that generates the random number with an underline raw CUDA code. Once
the variables vY and mX are created and saved in the GPU memory all the related
calculations are automatically executed on the GPU, e.g., inv is executed directly on
the GPU. This is completely transparent to the user.
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If further calculations are needed on the CPU then the command gather transfers
the data from GPU to the CPU, see line 5 of Listing 15.2. There exist already a lot
of supported functions and this number continuously increases with new releases.4

1 iRows = 1000 ; iColumns = 5 ; % number o f rows and columns
2 mX = randn ( iRows , iColumns ) ; % g e n e r a t e random numbers
3 vY = randn ( iRows , 1 ) ;
4 vBeta = i n v (mX ’ ∗ mX) ∗ mX’ ∗ vY ;

Listing 15.1 MATLAB CPU code that generate random numbers and estimate a linear regression
model

1 iRows = 1000 ; iColumns = 5 ; % number o f rows and columns
2 mX = gpuArray . r andn ( iRows , iColumns ) ; % g e n e r a t e random

numbers
3 vY = gpuArray . r andn ( iRows , 1 ) ;
4 vBeta = i n v (mX ’ ∗ mX) ∗ mX’ ∗ vY ;
5 vBeta = g a t h e r ( vBeta ) ; % t r a n s f e r d a t a t o CPU

Listing 15.2 MATLAB GPU code that generate random numbers and estimate a linear regression
model

As further examples in Listings 15.3 and 15.4 we show the GPU implementation
of the accept/reject and the importance sampling algorithms presented in Sect. 15.5.

1 s a m p s i z e = 1000000; % sample s i z e t o use f o r examples
2 s i g = 1 ; % s t a n d a r d d e v i a t i o n o f t h e

i n s t r u m e n t a l d e n s i t y
3 samp = gpuArray . r andn ( samps ize , 1 ) .∗ s i g ; % s t e p 1 i n t h e A/ R

a l g o r i t h m
4 ys = exp ((− samp . ^ 2 ) / 2 ) .∗ ( s i n (6 ∗ samp ) . ^ 2 + 3 ∗ ( ( cos ( samp )

. ^ 2 ) . ∗ ( s i n (4∗ samp ) . ^ 2 ) ) + 1) ;
5 wts = ( 1 / s q r t (2∗ p i ) ) .∗ exp(−samp . ^ 2 / 2 ) ;
6 samp2 = gpuArray . r and ( samps ize , 1 ) ;
7 dens = samp ( samp2 <=( ys ) . / wts ) ; % s t e p 2 i n t h e A/ R a l g o r i t h m
8 t a r g e t = g a t h e r ( dens ) ; % s t e p 3 i n t h e A/ R a l g o r i t h m

Listing 15.3 Accept/reject MATLAB GPU code

4See for the complete list of functions http://www.mathworks.com/help/distcomp/using-gpuarray.
html.

http://www.mathworks.com/help/distcomp/using-gpuarray.html
http://www.mathworks.com/help/distcomp/using-gpuarray.html
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1 nIS = 10000; nu = gpuArray ( 1 2 ) ; n u s t a r = gpuArray ( 7 ) ;% number
o f s i m u l a t i o n s ; d e g r e e o f f reedom of t h e t a r g e t d e n s i t y ;
d e g r e e o f f reedom of t h e p r o p o s a l

2 muIS = gpuArray . nan ( nIS , 2 ) ;
3 wIS = gpuArray . nan ( nIS , 2 ) ;
4 x1 = rant_GPU ( nIS , n u s t a r ) ; % S t u d e n t t

p r o p o s a l s
5 x2 = t a n ( ( gpuArray . r and ( nIS , 1 ) − 0 . 5 ) ∗ p i ) ; % Cauchy

p r o p o s a l s
6 wIS ( : , 1 ) = w1_GPU( x1 , nu , n u s t a r ) ; % I m p o r t a n c e

w e i g h t s
7 wIS ( : , 2 ) = w3_GPU( x2 , nu ) ; % I m p o r t a n c e

w e i g h t s
8 muIS ( : , 1 ) = s q r t ( abs ( x1 . / (1 − x1 ) ) ) ;
9 muIS ( : , 2 ) = s q r t ( abs ( x2 . / (1 − x2 ) ) ) ;

10 muIScum ( : , 1 ) =cumsum ( muIS ( : , 1 ) .∗wIS ( : , 1 ) ) . / ( 1 : nIS ) ’ ;
11 muIScum ( : , 2 ) =cumsum ( muIS ( : , 2 ) .∗wIS ( : , 2 ) ) . / ( 1 : nIS ) ’ ;
12 %
13 % A d d i t i o n a l f u n c t i o n s
14 f u n c t i o n w = w1_GPU( x , nu , n u s t a r ) % S t u d e n t ’ s t w e i g h t s
15 w = tpdf_GPU ( x , nu ) . / tpdf_GPU ( x , n u s t a r ) ;
16 end
17 f u n c t i o n w=w3_GPU( x , nu ) % Cauchy w e i g h t s
18 w = tpdf_GPU ( x , nu ) . / pdfcauchy_GPU ( x , 0 , 1 ) ;
19 end
20 f u n c t i o n f = tpdf_GPU ( x , v ) % S t u d e n t ’ s t GPU pdf
21 k = f i n d ( v>0 & v< I n f ) ;
22 i f any ( k )
23 t e rm = exp ( gammaln ( ( v ( k ) + 1) / 2 ) − gammaln ( v ( k ) / 2 ) ) ;
24 f ( k ) = te rm . / ( s q r t ( v ( k ) ∗ p i ) .∗ (1 + ( x ( k ) . ^ 2 ) . / v

( k ) ) . ^ ( ( v ( k ) + 1) / 2 ) ) ;
25 end
26 end
27 f u n c t i o n f = pdfcauchy_GPU ( x , a , b ) % Cauchy GPU pdf
28 f = 1 . / ( p i .∗ b .∗ (1 + ( ( x − a ) . / b ) . ^ 2 ) ) ;
29 end

Listing 15.4 Importance sampling GPU code
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Chapter 16
Forecast Evaluation

Mingmian Cheng, Norman R. Swanson, and Chun Yao

16.1 Forecast Evaluation Using Point Predictive Accuracy
Tests

In this section, our objective is to review various commonly used statistical tests
for comparing the relative accuracy of point predictions from different econometric
models. Four main groups of tests are outlined: (1) tests for comparing two non-
nested models, (2) tests for comparing two nested models, (3) tests for comparing
multiple models, where at least one model is non-nested, and (4) tests that are
consistent against generic alternative models. The papers cited in this section (and
in subsequent sections) contain references to a large number of papers that develop
alternative related tests (interested readers may also refer to Corradi and Swanson
(2006b) for details).

Of note is that the tests that we discuss in the sequel assume that all competing
models are approximations to some unknown underlying data generating process,
and are thus potentially misspecified. The objective is to select the “best” model
from among multiple alternatives, where “best” refers to a given loss function, say.

M. Cheng (�)
Department of Finance, Lingnan (University) College, Sun Yat-sen University, Guangzhou, China
e-mail: chengmm3@mail.sysu.edu.cn

N. R. Swanson · C. Yao
Department of Economics, School of Arts and Sciences, Rutgers University, New Brunswick, NJ,
USA
e-mail: nswanson@economics.rutgers.edu; cyao@economics.rutgers.edu

© Springer Nature Switzerland AG 2020
P. Fuleky (ed.), Macroeconomic Forecasting in the Era of Big Data,
Advanced Studies in Theoretical and Applied Econometrics 52,
https://doi.org/10.1007/978-3-030-31150-6_16

495

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31150-6_16&domain=pdf
mailto:chengmm3@mail.sysu.edu.cn
mailto:nswanson@economics.rutgers.edu
mailto:cyao@economics.rutgers.edu
https://doi.org/10.1007/978-3-030-31150-6_16


496 M. Cheng et al.

16.1.1 Comparison of Two Non-nested Models

The starting point of our discussion is the Diebold-Mariano (DM: Diebold and
Mariano, 2002) test for the null hypothesis of equal predictive accuracy between
two competing models, given a pre-specified loss function. This test sets the
groundwork for many subsequent predictive accuracy tests. The DM test assumes
that parameter estimation error is asymptotically negligible by positing that the
number of observations used for in-sample model estimation grows faster than
the number of observations used in out-of-sample forecast evaluation. Parameter
estimation error in DM tests, which are often also called DM-West tests, is explicitly
taken into account of in West (1996), although at the cost of requiring that the loss
function is differentiable.

To fix ideas and notation, let ui,t+h = yt+h − fi(Zti , θ†
i ) be the h-step ahead

forecast error associated with the i-th model, fi(·, θ†
i ), where the benchmark model

is always denoted as “model 0”, i.e., f0(·, θ†
0 ). As θ†

i and thus ui,t+h are unknown,
we construct test statistics using θ̂i,t and ûi,t+h = yt+h − fi(Zti , θ̂i,t ), where θ̂i,t
is an estimator of θ†

i constructed using information in Zti from time periods 1 to
t , under a recursive estimation scheme, or from t − R + 1 to t , under a rolling-
window estimation scheme. Hereafter, for notational simplicity, we only consider
the recursive estimation scheme, and the rolling-window estimation scheme can be
treated in an analogous manner. To do this, split the total sample of T observations
into two subsamples of length R and n, i.e., T = R + n, where only the last n
observations are used for forecast evaluation. At each step, we first estimate the
model parameters as follows:

θ̂i,t = arg min
θi

1

t

t∑

j=1

q
(
yj − fi(Zj−1

i , θi)
)

, t ≥ R (16.1)

These parameters are used to parameterize the prediction model, and an h-step-
ahead prediction (and prediction error) is constructed. This procedure is repeated
by adding one new observation to the original sample, yielding a new h-step-ahead
prediction (and prediction error). In such a manner, we can construct a sequence of
(n− h+ 1) h-step-ahead prediction errors. For a given loss function, g(·), the null
hypothesis of DM test is specified as,

H0 : E
(
g(u0,t+h)− g(u1,t+h)

)
= 0

against

HA : E
(
g(u0,t+h)− g(u1,t+h)

)
�= 0
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Of particular note here is that the loss function g(·) used for forecast evaluation may
not be the same as the loss function q(·) used for model estimation in Eq. (16.1).
However, if they are the same (e.g., models are estimated by ordinary least square
(OLS) and forecasts are evaluated by a quadratic loss function, say), parameter
estimation error is asymptotically negligible, regardless of the limiting ratio of n/R,
as T →∞.

Define the following statistic:

Ŝn(0, 1) = 1√
n

T−h∑

t=R−h+1

(
g(̂u0,t+h)− g(̂u1,t+h)

)

then,

Ŝn(0, 1)− Sn(0, 1) = E
(
∇θ0g(u0,t+h)

) 1√
n

T−h∑

t=R−h+1

(θ̂0,t+h − θ†
0 )

−E
(
∇θ1g(u1,t+h)

) 1√
n

T−h∑

t=R−h+1

(θ̂1,t+h − θ†
1 )+ op(1)

(16.2)

The limiting distribution of the right-hand side of Eq. (16.2) is given by Lemma 4.1
and Theorem 4.1 in West (1996). From Eq. (16.2), we can immediately see that if
g(·) = q(·), then E

(∇θi g(ui,t+h)
) = 0 by the first order conditions, and parameter

estimation error is asymptotically negligible. Another situation in which parameter
estimation error vanishes asymptotically is when n/R→ 0, as T →∞.

Without loss of generality, consider the case of h = 1. All results carry over to
the case when h > 1. The DM test statistic is given by,

D̂Mn = 1√
n

1

σ̂n

T−1∑

t=R

(
g(̂u0,t+1)− g(̂u1,t+1)

)

with

σ̂n = Ŝgg + 2%F̂
′
0Â0Ŝh0h0 + 2%F̂

′
1Â1Ŝh1h1Â1F̂1

− 2%(F̂
′
1Â1Ŝh1h0Â0F̂0 + F̂ ′0Â0Ŝh0h1Â1F̂1)

+%(Ŝ ′gh1
Â1F̂1 + F̂ ′1Â1Ŝgh1)
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where for i, j = 0, 1, % = 1− ln(1+π)
π

, and qt (θ̂i,t ) = q
(
yt − fi(Zt−1

i , θ̂i,t )
)
,

Ŝhihj =
1

n

ln∑

τ=−ln
wτ

T−ln∑

t=R+ln
∇θ qt (θ̂i,t )∇θ qt+τ (θ̂j ,t )

′

Ŝghi =
1

n

ln∑

τ=−ln
wτ

T−ln∑

t=R+ln

(
g(̂u0,t )− g(̂u1,t )− 1

n

T−1∑

t=R

(
g(̂u0,t+1)− g(̂u1,t+1)

))

×∇θ qt+τ (θ̂i,t )′

Ŝgg =1

n

ln∑

τ=−ln
wτ

T−ln∑

t=R+ln

(
g(̂u0,t )− g(̂u1,t )− 1

n

T−1∑

t=R

(
g(̂u0,t+1)− g(̂u1,t+1)

))

×
(
g(̂u0,t+τ )− g(̂u1,t+τ )− 1

n

T−1∑

t=R

(
g(̂u0,t+1)− g(̂u1,t+1)

))

with wτ = 1− τ
ln−1 , and

F̂i = 1

n

T−1∑

t=R
∇θi g(̂ui,t+1), Âi =

(
− 1

n

T−1∑

t=R
∇2
θi
q(θ̂i,t )

)−1

Assumption 16.1 (yt ,Zt−1), with yt scalar and Zt−1 an�ζ -valued (0 < ζ <∞)
vector, is a strictly stationary and absolutely regular β-mixing process with size
−4(4+ψ)/ψ , ψ > 0.

Assumption 16.2 (i) θ† is uniquely identified (i.e., E(q(yt ,Zt−1, θi))) >

E(q(yt ,Zt−1, θ†
i ))) for any θi �= θ†

i ); (ii) q(·) is twice continuously differentiable
on the interior of &, and for & a compact subset of �'; (iii) the elements of ∇θ q
and ∇2

θ q are p-dominated on &, with p > 2(2+ψ), where ψ is the same positive
constant as defined in Assumption 16.1; and (iv) E(−∇2

θ q) is negatively definite
uniformly on &.

Proposition 16.1 (From Theorem 4.1 in West, 1996) With Assumptions 16.1
and 16.2, also, assume that g(·) is continuously differentiable, then, if as n → ∞,
ln→∞ and ln/n1/4 → 0, then as n, R→∞, under H0,

D̂Mn
d−→ N(0, 1)

Under HA,

Pr
(
n−1/2|D̂Mn| > ε

)
→ 1, ∀ε > 0
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It is immediate to see that if either g(·) = q(·) or n/R → 0, as T → ∞, the
estimator σ̂n collapses to Ŝgg . Note that the limiting distribution of DM test obtains
only for the case of short-memory series. Corradi, Swanson, and Olivetti (2001)
extends the DM test to the case of co-integrated variables and Rossi (2005) to the
case of series with high persistence. Finally, note that the two competing models are
assumed to be non-nested. If they are nested, then u0,t+h = u1,t+h under the null,
and both

∑T−h
t=R−h+1

(
g(̂u0,t+h)− g(̂u1,t+h)

)
and σ̂n converge in probability to zero

at the same rate if n/R → 0. Therefore the DM test statistic does not converge
in distribution to a standard normal variable under the null. Comparison of nested
models is introduced in the next section.

16.1.2 Comparison of Two Nested Models

There are situations in which we may be interested in comparing forecasts from
nested models. For instance, one of the driving forces behind the literature on
out-of-sample comparison of nested models is the seminal paper by Meese and
Rogoff (1983), who find that no models driven by economic fundamentals can beat
a simple random walk model, in terms of out-of-sample predictive accuracy, when
forecasting exchange rates. The models studied in this paper are nested, in the sense
that parameter restrictions can be placed on the more general models that reduce
these models to the random walk benchmark studied by these authors. When testing
out-of-sample Granger causality, alternative models are also nested. Since the DM
test discussed above is valid only when the competing models are non-nested, we
introduce alternative tests that address testing among nested models.

Clark and McCracken Tests for Nested Models

Clark and McCracken (2001) (CMa) and Clark and McCracken (2003) (CMb)
propose several tests for nested linear models, under the assumption that prediction
errors follow martingale difference sequences (this rules out the possibility of
dynamic misspecification under the null for these particular tests), where CMa tests
are tailored for the case of one-step-ahead forecasts, and CMb tests for the case of
multi-step-ahead forecasts.

Consider the following two nested models. The restricted model is,

yt =
q∑

j=1

βjyt−j + εt

and the unrestricted model is,

yt =
q∑

j=1

βjyt−j +
k∑

j=1

αjxt−j + ut (16.3)
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The null hypothesis of CMa tests is formulated as,

H0 : E(ε2
t )−E(u2

t ) = 0

against

HA : E(ε2
t )−E(u2

t ) > 0

We can immediately see from the null and the alternative hypotheses that CMa
tests implicitly assume that the restricted model cannot beat the unrestricted model.
This is the case when the models are estimated by OLS and the quadratic loss
function is employed for evaluation.

CMa proposes the following three different test statistics:

ENC − T = (n− 1)1/2 c

(n−1
∑T−1
t=R (ct+1 − c))1/2

ENC −REG = (n− 1)1/2 n−1∑T−1
t=R (̂εt+1(̂εt+1 − ût+1))

(n−1
∑T−1
t=R (̂εt+1 − ût+1)2n−1

∑T−1
t=R ε̂2

t+1 − c)1/2

ENC −NEW = n c

n−1
∑
t=1 û

2
t+1

where ct+1 = ε̂t+1(̂εt+1 − ût+1), c = n−1∑T−1
t=R ct+1, and ε̂t+1 and ût+1 are OLS

residuals.

Assumption 16.3 (yt , xt ) are strictly stationary and strong mixing processes, with
size −4(4+δ)

δ
, for some δ > 0, and E(y8

t ) and E(x8
t ) are both finite.

Assumption 16.4 Let zt = (yt−1, . . . , yt−q , xt−1, . . . , xt−q) and E(ztut |Ft−1) =
0, where Ft−1 is the σ -field up to time t − 1, generated by (yt−1, yt−2, . . . , xt−1,
xt−2, . . .). Also, E(u2

t |Ft−1) = σ 2
u .

Note that Assumption 16.4 assumes that the unrestricted model is dynamically
correct and that ut is conditionally homoskedastic.

Proposition 16.2 (From Theorem 3.1–3.3 in Clark and McCracken, 2001) With
Assumptions 16.3 and 16.4, under the null, (i) if as T → ∞, n/R → π > 0,
then ENC − T and ENC − REG converge in distribution to �1/�2 where
�1 =

∫ 1
(1+π)−1 s

−1W
′
sdWs and �2 =

∫ 1
(1+π)−1 W

′
sWsds, with Ws a k-dimensional

standard Brownian motion (here k is the number of restrictions or the number of
extra regressors in the unrestricted model).ENC−NEW converges in distribution
to �1. (ii) If as T →∞, n/R→ 0, then ENC − T and ENC −REG converge in
distribution to N(0, 1). ENC −NEW converges in probability to 0.
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Therefore, as T → ∞ and n/R → π > 0, all three test statistics have non-
standard limiting distributions. Critical values are tabulated for different k and π in
CMa. Also note that the above proposition is valid only when h = 1, i.e., the case
of one-step-ahead forecasts, since Assumption 16.4 is violated when h > 1. For this
case, CMb propose a modified test statistic for whichMA(h− 1) errors are allowed.
Namely, they propose using the following statistic:

ENC − T ′ =(n− h+ 1)1/2×
(n− h+ 1)−1∑T−h

t=R ĉt+h
(
(n− h+ 1)−1

∑j

j=−j
∑T−h
t=R+j K(

j
M
)(̂ct+h − c)(̂ct+h−j − c)

)1/2
,

where K(·) is a kernel and 0 ≤ K( j
M
) ≤ 1, with K(0) = 1 and M = o(n1/2), and

j does not grow with the sample size. Therefore, the denominator of ENC− T ′ is a
consistent estimator of the long-run variance when E(ctct+|k|) = 0 for all |k| > h.
Of particular note is that althoughENC−T ′ allows forMA(h−1) errors, dynamic
misspecification under the null is still not allowed. Also note that, when h = 1,
ENC − T ′ is equivalent to ENC − T .

Another test statistic suggested in CMb is a DM-type test with non-standard
critical values that are needed in order to modify the DM test in order to allow
for the comparison of nested models. The test statistic is:

MSE − T ′ =(n− h+ 1)1/2×
(n− h+ 1)−1∑T−h

t=R d̂t+h
(
(n− h+ 1)−1

∑j

j=−j
∑T−h
t=R+j K(

j
M
)(d̂t+h − d)(d̂t+h−j − d)

)1/2

where d̂t+h = û2
t+h − ε̂2

t+h and d = (n− h+ 1)−1∑T−h
t=R d̂t+h.

Evidently, this test is a standard DM test, although it should be stressed that the
critical values used in the application of this variant of the test are different. The
limiting distributions of the ENC − T ′ and MSE − T ′ are provided in CMb, and
are non-standard. Moreover, for the case of h > 1, the limiting distributions contain
nuisance parameters, so that critical values cannot be tabulated directly. Instead,
CMb suggest a modified version of the bootstrap method in Kilian (1999) to carry
out statistical inference. For this test, the block bootstrap can also be used to carry
out inference. (see Corradi and Swanson (2007) for details.)

Out-of-Sample Tests for Granger Causality

CMa and CMb tests do not take dynamic misspecification into account under the
null. Chao, Corradi, and Swanson (2001) (CCS) propose out-of-sample tests for
Granger causality allowing for possible dynamic misspecification and conditional
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heteroskedasticity. The idea is very simple. If the coefficients αj , j = 1, . . . , k in
Eq. (16.3) are all zeros, then residuals εt+1 are uncorrelated with lags of x. As a
result, including regressors xt−j , j = 1, . . . , k does not help improve predictive
accuracy, and the unrestricted model does not outperform the restricted model.

Hereafter, for notational simplicity, we only consider the case of h = 1. All
results can be generalized to the case of h > 1. Formally, the test statistic is

mn = n−1/2
T−1∑

t=R
ε̂t+1Xt

where Xt = (xt , xt−1, . . . , xt−k−1)
′
. The null hypothesis and the alternative

hypothesis are formulated as,

H0 : E(εt+1xt−j ) = 0, j = 0, 1, . . . , k − 1

HA : E(εt+1xt−j ) �= 0, for some j

Assumption 16.5 (yt , xt ) are strictly stationary and strong mixing processes, with
size −4(4+δ)

δ
, for some δ > 0, and E(y8

t ) and E(x8
t ) are both finite. E(εtyt−j ) =

0, j = 1, 2, . . . , q.

Proposition 16.3 (From Theorem 1 in Chao et al., 2001) With Assumption 16.5,
as T →∞, n/R→ π , 0 ≤ π <∞, (i) under the null, for 0 < π <∞,

mn
d−→ N(0,$)

with

$ =S11 + 2(1− π−1ln(1+ π))F ′MS22MF−
(1− π−1ln(1+ π))(F ′MS12 + S ′12MF)

where F = E(YtX
′
t ), M = plim( 1

t

∑t
j=q YjY

′
j )
−1, and Yj = (yj−1, . . . , yj−q)

′
.

Furthermore,

S11 =
∞∑

j=−∞
E((Xtεt+1 −μ)(Xt−j εt−j+1 −μ)′)

S22 =
∞∑

j=−∞
E((Yt−1εt )(Yt−j−1εt−j )

′
)

S12 =
∞∑

j=−∞
E((εt+1Xt −μ)(Yt−j−1εt−j )

′
)
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where μ = E(Xtεt+1). In addition, for π = 0,

mn
d−→ N(0, S11)

(ii) Under the alternative,

lim
n→∞Pr(|n−1/2mn| > 0) = 1

Corollary 16.1 (From Corollary 2 in Chao et al., 2001) With Assumption 16.5,
as T → ∞, n/R → π , 0 ≤ π < ∞, lT → ∞, lT /T 1/4 → 0, (i) under the null,
for 0 < π <∞,

m
′
n$̂

−1mn
d−→ χ2

k

with

$̂ = Ŝ11 + 2(1− π−1ln(1+ π))F̂ ′M̂Ŝ22M̂F̂

− (1− π−1ln(1+ π))(F̂ ′M̂Ŝ12 + Ŝ ′12M̂F̂ )

where F̂ = n−1∑T
t=R YtX

′
t , M̂ = (n−1∑T−1

t=R YtY
′
t )r

−1, and

Ŝ11 =1

n

T−1∑

t=R
(̂εt+1Xt − μ̂1)(̂εt+1Xt − μ̂1)

′

+ 1

n

lT∑

t=τ
wτ

T−1∑

t=R+τ
(̂εt+1Xt − μ̂1)(̂εt+1−τXt−τ − μ̂1)

′

+ 1

n

lT∑

t=τ
wτ

T−1∑

t=R+τ
(̂εt+1−τXt−τ − μ̂1)(̂εt+1Xt − μ̂1)

′

Ŝ12 =1

n

lT∑

τ=0

wτ

T−1∑

t=R+τ
(̂εt+1−τXt−τ − μ̂1)(Yt−1ε̂t )

′

+ 1

n

lT∑

τ=1

wτ

T−1∑

t=R+τ
(̂εt+1Xt − μ̂1)(Yt−1−τ ε̂t−τ )

′
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Ŝ22 =1

n

T−1∑

t=R
(Yt−1ε̂t )(Yt−1ε̂t )

′

+ 1

n

lT∑

τ=1

wτ

T−1∑

t=R+τ
(Yt−1ε̂t )(Yt−1−τ ε̂t−τ )

′

+ 1

n

lT∑

τ=1

wτ

T−1∑

t=R+τ
(Yt−1−τ ε̂t−τ )(Yt−1ε̂t )

′

with wτ = 1− τ
lT+1 . In addition, for π = 0,

m
′
nŜ
−1
11 mn

d−→ χ2
k

(ii) Under the alternative, m
′
nŜ
−1
11 mn diverges at rate n.

Note that a “nonlinear” variant of the above CCS test has also been developed by
the same authors. In this generic form of the test, one can test for nonlinear Granger
causality, for example, where the alternative hypothesis is that some (unknown)
function of the xt can be added to the benchmark linear model that contains no
xt in order to improve predictive accuracy. This alternative test is thus consistent
against generic nonlinear alternatives. Complete details of this test are given in the
next section.

16.1.3 A Predictive Accuracy Test that is Consistent Against
Generic Alternatives

The test discussed in the previous subsection is designed to have power against a
given (linear) alternative; and while it may have power against other alternatives, it
is not designed to do so. Thus, it is not consistent against generic alternatives. Tests
that are consistent against generic alternatives are sometimes called portmanteau
tests, and it is this sort of extension of the out-of-sample Granger causality test
discussed above that we now turn our attention to. Broadly speaking, the above
consistency has been studied in the consistent specification testing literature (see
Bierens (1990), Bierens and Ploberger (1997), De Jong (1996), Hansen (1996a),
Lee, White, and Granger (1993) and Stinchcombe and White (1998)).

Corradi and Swanson (2002) draw on both the integrated conditional moment
(ICM) testing literature of Bierens (1990) and Bierens and Ploberger (1997) and
on the predictive accuracy testing literature; and propose an out-of-sample version
of the ICM test that is consistent against generic nonlinear alternatives. This test
is designed to examine whether there exists an unknown (possibly nonlinear)
alternative model with better predictive power than the benchmark model, for a
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given loss function. A typical example is the case in which the benchmark model
is a simple autoregressive model and we want to know whether including some
unknown functions of the past information can produce more accurate forecasts.
This is the case of nonlinear Granger causality testing discussed above. Needless to
say, this test can be applied to many other cases. One important feature of this test
is that the same loss function is used for in-sample model estimation and out-of-
sample predictive evaluation (see Granger (1993) and Weiss (1996)).

Consider the following benchmark model:

yt = θ†
1 yt−1 + ut

where θ†
1 = arg minθ1∈&1 E(q(yt − θ1yt−1)). The generic alternative model is,

yt = θ†
2,1(γ )yt−1 + θ†

2,2(γ )ω(Z
t−1, γ )+ υt

where

θ
†
2 (γ ) = (θ†

2,1(γ ), θ
†
2,2(γ ))

′ = arg min
θ2∈&2

E
(
q
(
yt − θ2,1(γ )yt−1 − θ2,2(γ )ω(Z

t−1, γ )
))

The alternative model is “generic” due to the term ω(Zt−1, γ ), where the
function ω(·) is a generically comprehensive function, as defined in Bierens (1990)
and Bierens and Ploberger (1997). The test hypotheses are

H0 : E(g(ut )− g(υt )) = 0

HA : E(g(ut )− g(υt )) > 0

By definition, it is clear that the benchmark model is nested within the alternative
model. Thus the former model can never outperform the latter. Equivalently, the
hypotheses can be restated as

H0 : θ†
2,2(γ ) = 0

HA : θ†
2,2(γ ) �= 0

Note that, given the definition of θ†
2 (γ ), we have that

E

(
g
′
(υt )×

(
−yt ,−ω(Zt−1, γ )

)′)
= 0

Hence, under the null, we have that θ†
2,2(γ ) = 0, θ†

2,1(γ ) = θ
†
1 , and

E(g
′
(ut )ω(Z

t−1, γ )) = 0. As a result, the hypotheses can be once again be
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restated as,

H0 : E(g′(ut )ω(Zt−1, γ )) = 0

HA : E(g′(ut )ω(Zt−1, γ )) �= 0

The test statistic is given by

Mn =
∫
mn(γ )

2φ(γ )dγ

with

mn(γ ) = n−1/2
T−1∑

t=R
g
′
(̂ut + 1)ω(Zt , γ )

where
∫
φ(γ )dγ = 1, φ(γ ) ≥ 0, and φ(γ ) is absolutely continuous with respect to

Lebesgue measure.

Assumption 16.6

(i) (yt ,Zt) is a strictly stationary and absolutely regular strong mixing sequence
with size −4(4+ ψ)/ψ ,ψ > 0; (ii) g(·) is three times continuously differen-
tiable in θ , over the interior of &, and ∇θg, ∇2

θ g, ∇θg′ , ∇2
θ g

′
are 2r-dominated

uniformly in &, with r ≥ 2(2 + ψ); (iii) E(−∇2
θ g(θ)) is negative definite,

uniformly in &; (iv) ω(·) is a bounded, twice continuously differentiable
function on the interior of � and ∇γ ω(Zt , γ ) is bounded uniformly in �; (iv)
∇γ∇θg′(θ)ω(Zt , γ ) is continuous on &× �, � a compact subset of �d and is
2r-dominated uniformly in &× �, with r ≥ 2(2+ψ).

Assumption 16.7

(i) E(g
′
(yt − θ†

1 yt−1)) < E(g
′
(yt − θ1yt−1)),∀θ �= θ†; (ii) infγ E(g

′
(yt −

θ
†
2,1(γ )yt−1 + θ†

2,2(γ )ω(Z
t−1, γ ))) < E(g

′
(yt − θ2,1(γ )yt−1 + θ2,2(γ )ω

(Zt−1, γ ))),∀θ �= θ†(γ ).

Assumption 16.8 T = R+ n, and as T →∞, n/R→ π , with 0 ≤ π <∞.

Proposition 16.4 (From Theorem 1 in Corradi and Swanson, 2002) With
Assumptions 16.6–16.8, the following results hold: (i) Under the null,

Mn
d−→
∫
Z(γ )2φ(γ )dγ
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where Z is a Gaussian process with covariance structure

K(γ1, γ2) = Sgg(γ1, γ2)+ 2%μγ1A
†ShhA

†μγ2

+%μ′γ1
A†Sgh(γ2)+%μ′γ2

A†Sgh(γ1)

with μγ1 = E(∇θ1(g′(ut )ω(Zt , γ1))), A† = (−E(∇2
θ1
q(ut )))

−1, and

Sgg(γ1, γ2) =
∑

j

E(g
′
(us+1)ω(Z

s , γ1)g
′
(us+j+1)ω(Z

s+j , γ1))

Shh =
∑

j

E(∇θ1q(us)∇θ1q(us+j )
′
)

Sgh(γ1) =
∑

j

E(g
′
(us+1)ω(Z

s , γ1)∇θ1q(us+j )
′
)

and γ , γ1, and γ2 are generic elements of �.
(ii) Under the alternative, for ε > 0 and δ < 1,

lim
n→∞Pr

(
n−δ

∫
mn(γ )

2φ(γ )dγ > ε

)
= 1

The limiting distribution under the null is a Gaussian process with a covariance
structure that reflects both the time dependence and the parameter estimation error.
Therefore the critical values cannot be tabulated. Valid asymptotic critical values
can be constructed by using the block bootstrap for recursive estimation schemes,
as detailed in Corradi and Swanson (2007). In particular, define,

θ̃∗1,t = arg min
θ1

1

t

t∑

j=2

[g(y∗j − θ1y
∗
j−1)− θ

′
1

1

T

T∑

i=2

∇θg(yi − θ̂1yi−1)]

Then the bootstrap statistic is,

M∗
n =

∫
m∗n(γ )2φ(γ )dγ

where

m∗n(γ ) = n−1/2
T−1∑

t=R

(
g
′
(u∗t )ω(Z∗,t , γ )− T −1

T−1∑

i=1

g
′
(̂ut )ω(Z

i , γ )

)
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Assumption 16.9 For any t , s and ∀i, j , k = 1, 2, and for � <∞,

(i) E( sup
θ ,γ ,γ+

|g′(θ)ω(Zt−1, γ )∇kθ g
′
(θ)ω(Zs−1, γ+)|4) < �

where ∇kθ (·) denotes the k-th element of the derivative of its argument with respect
to θ .

(ii) E(sup
θ

|∇kθ (∇iθ g(θ))∇jθ g(θ)|4) < �

and

(iii) E(sup
θ ,γ
|g′(θ)ω(Zt−1, γ )∇kθ (∇jθ g(θ))|4) < �

Proposition 16.5 (From Proposition 5 in Corradi and Swanson, 2007) With
Assumptions 16.6–16.9, also assume that as T → ∞, l → ∞, and l/T 1/4 → 0,
then as T , n,R→∞,

Pr

(
sup
δ

∣∣∣∣
∗
Pr(
∫
m∗n(γ )2φ(γ )dγ ≤ δ)− Pr(

∫
mn(γ )

2φ(γ )dγ ≤ δ)
∣∣∣∣ > ε

)
→ 0

The above proposition justifies the bootstrap procedure. For all samples except a
set with probability measure approaching zero,M∗

n mimics the limiting distribution
of Mn under the null, ensuring asymptotic size equal to α. Under the alternative,
M∗
n still has a well defined limiting distribution, while Mn explodes, ensuring unit

asymptotic power.

In closing, note that θ̃∗1,t can be replaced with θ∗1,t if parameter estimation error is
assumed to be asymptotically negligible. In this case, critical values are constructed
via standard application of the block bootstrap.

16.1.4 Comparison of Multiple Models

The predictive accuracy tests that we have introduced to this point are all used to
choose between two competing models. However, an even more common situation
is when multiple (more than two) competing models are available, and the objective
is to assess whether there exists at least one model that outperforms a given
“benchmark” model. If we sequentially compare each of the alternative models with
the benchmark, we induce the so-called “data snooping” problem, where sequential
test bias results in the size of our test increasing to unity, so that the null hypothesis
is rejected with probability one, even when the null is true. In this subsection, we
review several tests for comparing multiple models and addressing the issue of data
snooping.
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A Reality Check for Data Snooping

White (2000) proposes a test called the “reality check,” which is suitable for
comparing multiple models. We use the same notation as that used when discussing
the DM test, except that there are now multiple alternative models, i.e., model
i = 0, 1, 2, . . . ,m. Recall that i = 0 denotes the benchmark model. Define the
following test statistic:

Ŝn = max
i=1,...,m

Ŝn(0, i) (16.4)

where

Ŝn(0, i) = 1√
n

T−1∑

t=R
(g(̂u0,t+1)− g(̂ui,t+1)), i = 1, . . . ,m

The reality check tests the following null hypothesis:

H0 : max
i=1,...,m

E(g(u0,t+1)− g(ui,t+1)) ≤ 0

against

HA : max
i=1,...,m

E(g(u0,t+1)− g(ui,t+1)) > 0

The null hypothesis states that no competing model among the set of m alternatives
yields more accurate forecasts than the benchmark model, for a given loss function;
while the alternative hypothesis states that there is at least one alternative model that
outperforms the benchmark model. By jointly considering all alternative models,
the reality check controls the family wise error rate (FWER), thus circumventing
the issue of data snooping, i.e., sequential test bias.

Assumption 16.10 (i) fi(·, θ†
i ) is twice continuously differentiable on the interior

of &i and the elements of ∇θi fi(Zt , θi) and ∇2
θi
fi(Z

t , θi) are p-dominated on &i ,
for i = 1, . . . ,m, with p > 2(2+ψ), where ψ is the same positive constant defined
in Assumption 16.1; (ii) g(·) is positively valued, twice continuously differentiable
on &i , and g(·), g′(·), and g

′′
(·) are p-dominated on &i , with p defined in (i); and

(iii) let cii = limT→∞ Var
(
T −1/2∑T

t=1(g(u0,t+1)− g(ui,t+1))
)

, i = 1, . . . ,m,

define analogous covariance terms, cji , j , i = 1, . . . ,m, and assume that cji is
positive semi-definite.

Proposition 16.6 (Parts (i) and (iii) are from Proposition 2.2 in White, 2000)
With Assumptions 16.1, 16.2, and 16.10, then under the null,

max
i=1,...,m

(
Ŝn(0, i)−√nE (g(u0,t+1)− g(ui,t+1)

)) d−→ max
i=1,...,m

S(0, i)
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where S = (S(0, 1), . . . , S(0,m))
′
is a zero mean Gaussian process with covariance

matrix given by V , with V an m×m matrix, and: (i) If parameter estimation error
vanishes, then for i = 0, . . . ,m,

V = Sgigi =
∞∑

τ=−∞
E
(
g(u0,1)− g(ui,1)

) (
g(u0,1+τ )− g(ui,1+τ )

)

(ii) If parameter estimation error does not vanish, then

V =Sgigi + 2%μ
′
0A

†
0C00A

†
0μ0 + 2%μ

′
iA

†
i CiiA

†
i μi

− 4%μ
′
0A

†
0C0iA

†
i μi + 2%Sgiq0A

†
0μ0 − 2%SgiqiA

†
i μi

where

Cii =
∞∑

τ=−∞
E(∇θi qi(y1+s ,Zs , θ†

i ))(∇θi qi(y1+s+τ ,Zs+τ , θ†
i ))

′

Sgiqi =
∞∑

τ=−∞
E
(
(g(u0,1)− g(ui,1))

)
(∇θi qi(y1+s+τ ,Zs+τ , θ†

i ))
′

A
†
i = (E(−∇2

θi
qi(yt ,Zt−1, θ†

i )))
−1, μi = E(∇θi g(ui,t+1)), and % = 1 −

π−1ln(1+ π). (iii) Under the alternative, Pr(n−1/2|Sn| > ε)→ 1 as n→∞.

Of particular note is that since the maximum of a Gaussian process is not
Gaussian, in general, the construction of critical values for inference is not
straightforward. White (2000) proposes two alternatives. The first is a simulation-
based approach starting from a consistent estimator of V , say V̂ . With V̂ , for each
simulation s = 1, . . . , S, one realization is drawn from m-dimensional N(0, V̂ ) and
the maximum value over i = 1, . . . ,m is recorded. Repeat this procedure for S
times, with a large S, and use the (1− α)-percentile of the empirical distribution
of the maximum values. A main drawback to this approach is that we need to
first estimate the covariance structure V . However, if m is large and the prediction
errors exhibit a high degree of heteroskedasticity and time dependence, the estimator
of V becomes imprecise and thus the inference unreliable, especially in finite
samples. The second approach relies on bootstrap procedures to construct critical
values, which overcomes the problem of the first approach. We resample blocks of
g(̂u0,t+1)− g(̂ui,t+1), and for each bootstrap replication b = 1, . . . ,B, we calculate

Ŝ∗(b)n (0, i) = n−1/2
T−1∑

t=R
(g∗(̂u0,t+1)− g∗(̂ui,t+1)) (16.5)
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and the bootstrap statistic is given by

S∗n = max
i=1,...,m

|Ŝ∗(b)n (0, i)− Ŝn(0, i)|

the (1− α)-percentile of the empirical distribution of B bootstrap statistics is then
used for inference. Note that in White (2000), parameter estimation error is assumed
to be asymptotically negligible. In light of this, Corradi and Swanson (2007) suggest
a “re-centering” bootstrap procedure in order to explicitly handle the issue of non-
vanishing parameter estimation error, when constructing critical values for this test.
The new bootstrap statistic is defined as,

S∗∗n = max
i=1,...,m

S∗∗n (0, i)

where

S∗∗n (0, i) =n−1/2
T−1∑

t=R
[(g(y∗t+1 − f0(Z

∗,t , θ̃∗0,t ))− g(y∗t+1 − fi(Z∗,t , θ̃∗i,t )))

− 1

T

T−1∑

j=1

(g(yj+1 − f0(Z
j , θ̂0,t ))− g(yj+1 − fi(Zj , θ̂i,t )))]

Note that S∗∗n (0, i) is different from the standard bootstrap statistic in Eq. (16.5),
which is defined as the difference between the statistic constructed using original
samples and that using bootstrap samples. The (1− α)-percentile of the empirical
distribution of S∗∗n can be used to construct valid critical values for inference in
the case of non-vanishing parameter estimation error. Proposition 2 in Corradi
and Swanson (2007) establishes the first order validity for the recursive estimation
scheme and Corradi and Swanson (2006a) outline the approach to constructing valid
bootstrap critical values for the rolling-window estimation scheme. Finally, note
that Corradi and Swanson (2007) explain how to use the simple block bootstrap
for constructing critical values when parameter estimation error is assumed to be
asymptotically negligible. This procedure is perhaps the most obvious method to
use for constructing critical values as it involves simply resampling the original
data, carrying out the same forecasting procedures as used using the original
data, and then constructing bootstrap statistics. These bootstrap statistics can be
used (after subtracting the original test statistic from each of them) to form an
empirical distribution which mimics the distribution of the test statistic under the
null hypothesis. Finally, the empirical distribution can be used to construct critical
values, which are the (1− α)-quantiles of said distribution.

From Eq. (16.4) and Proposition 16.6, it is immediate to see that the reality check
can be rather conservative when many alternative models are strictly dominated by
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the benchmark model. This is because those “bad” models do not contribute to the
test statistic, simply because they are ruled out by the maximum, but contribute
to the bootstrap statistics. Therefore, when many inferior models are included, the
probability of rejecting the null hypothesis is actually smaller than α. Indeed, it is
only for the least favorable case, in which E(g(u0,t+1)− g(ui,t+1)) = 0,∀i, that the
distribution of Ŝn coincides with that of

max
i=1,...,m

(
Ŝn(0, i)−√nE (g(u0,t+1)− g(ui,t+1)

))

We introduce two approaches for addressing the conservative nature of this test
below.

A Test for Superior Predictive Ability

Hansen (2005) proposes a modified reality check called the superior predictive
ability (SPA) test that controls the FWER and addresses the inclusion of inferior
models. The SPA test statistic is defined as,

Tn = max

{
0, max
i=1,...,m

Ŝn(0, i)√
ν̂i,i

}

where ν̂i,i = 1
B

∑B
b=1

(
1
n

∑T−1
t=R ((g(̂u0,t+1)− g(̂ui,t+1))− (g(̂u∗0,t+1)−

g(̂u∗i,t+1)))
2
)

.

The bootstrap statistic is then defined as,

T ∗(b)n = max

⎧
⎨

⎩0, max
i=1,...,m

{n
−1/2∑T−1

t=R (d̂
∗(b)
i,t − d̂i,t1{d̂i,t≥−AT ,i })√
ν̂i,i

}
⎫
⎬

⎭

where d̂∗(b)i,t = g(̂u∗0,t+1) − g(̂u∗i,t+1), d̂i,t = g(̂u0,t+1) − g(̂ui,t+1), and AT ,i =
1
4T

−1/4
√
ν̂i,i .

The idea behind the construction of SPA bootstrap critical values is that when
a competing model is too slack, the corresponding bootstrap moment condition is
not re-centered, and the bootstrap statistic is not affected by this model. Therefore,
the SPA test is less conservative than the reality check. Corradi and Distaso (2011)
derive a general class of SPA tests using the generalized moment selection approach
of Andrews and Soares (2010) and show that Hansen’s SPA test belongs to this
class. Romano and Wolf (2005) propose a multiple step extension of the reality
check which ensures tighter control of irrelevant models.
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A Test Based on Sub-Sampling

The conservative property of the reality check can be alleviated by using the sub-
sampling approach to constructing critical values, at the cost of sacrificing power
in finite samples. Critical values are obtained from the empirical distribution of a
sequence of statistics constructed using subsamples of size b̃, where b̃ grows with
the sample size, but at a slower rate (see Politis, Romano, and Wolf, 1999).

In the context of the reality check, as n→∞, b̃→∞, and b̃/n→ 0, define

Sn,a ,̃b = max
i=1,...,m

Sn,a ,̃b(0, i), a = R, . . . , T − b̃− 1

where

Sn,a ,̃b(0, i) = b̃−1/2
a+b̃−1∑

t=a

(
g(̂u0,t+1)− g(̂ui,t+1)

)

We obtain the empirical distribution of T − b̃− 1 statistics, Sn,a ,̃b, and reject the null
if the test statistic Ŝn is greater than the (1−α)-quantile of the empirical distribution.
The advantage of the sub-sampling approach over the bootstrap is that the test has
correct size when maxi=1,...,m E(g(̂u0,t+1)− g(̂ui,t+1)) < 0 for some i, while the
bootstrap approach delivers a conservative test in this case. However, although the
sub-sampling approach ensures that the test has unit asymptotic power, the finite

sample power may be rather low, since Sn,a ,̃b diverges at rate
√
b̃ instead of

√
n,

under the alternative. Finally, note that the sub-sampling approach is also valid in the
case of non-vanishing parameter estimation error because each statistic constructed
using subsamples properly mimics the distribution of actual statistic.

16.2 Forecast Evaluation Using Density-Based Predictive
Accuracy Tests

In Sect. 16.1, we introduced a variety of tests designed for comparing models
based on point forecast accuracy. However, there are many practical situations
in which economic decision making crucially depends not only on conditional
mean forecasts (e.g., point forecasts) but also on predictive confidence intervals or
predictive conditional distributions (also called predictive densities). One such case,
for instance, is when value at risk (VaR) measures are used in risk management
for assessment of the amount of projected financial losses due to extreme tail
behavior, e.g., catastrophic events. Another common case is when economic agents
are undertaking to optimize their portfolio allocations, in which case the joint
distribution of multiple assets is required to be modeled and fully understood.
The purpose of this section is to discuss recent tests for comparing (potentially
misspecified) conditional distribution models.
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16.2.1 The Kullback–Leibler Information Criterion Approach

A well-known measure of distributional accuracy is the Kullback–Leibler Infor-
mation Criterion (KLIC). Using the KLIC involves simply choosing the model
which minimizes the KLIC (see, e.g., White (1982), Vuong (1989), Gianni and
Giacomini (2007), Kitamura (2002)). Of note is that White (1982) shows that quasi
maximum likelihood estimators minimize the KLIC, under mild conditions. In order
to implement the KLIC, one might choose model 0 over model 1, if

E(ln f0(yt |Zt , θ†
0 )− ln f1(yt |Zt , θ†

1 )) > 0

For the i.i.d case, Vuong (1989) suggests using a likelihood ratio test for choosing
the conditional density model that is closer to the “true” conditional density,
in terms of the KLIC. Gianni and Giacomini (2007) suggests using a weighted
version of the likelihood ratio test proposed in Vuong (1989) for the case of
dependent observations, while Kitamura (2002) employs a KLIC-based approach
to select among misspecified conditional models that satisfy given moment con-
ditions. Furthermore, the KLIC approach has recently been employed for the
evaluation of dynamic stochastic general equilibrium models (see, e.g., Schorfheide
(2010), Fernández-Villaverde and Rubio-RamÍrez (2004), and Chang, Gomes,
and Schorfheide (2002)). For example, Fernández-Villaverde and Rubio-RamÍrez
(2004) show that the KLIC-best model is also the model with the highest posterior
probability.

The KLIC is a sensible measure of accuracy, as it chooses the model which on
average gives higher probability to events which have actually occurred. Also, it
leads to simple likelihood ratio type tests which have a standard limiting distri-
bution and are not affected by problems associated with accounting for parameter
estimation error. However, it should be noted that if one is interested in measuring
accuracy over a specific region, or in measuring accuracy for a given conditional
confidence interval, say, this cannot be done in as straightforward manner using the
KLIC. For example, if we want to evaluate the accuracy of different models for
approximating the probability that the rate of inflation tomorrow, given the rate of
inflation today, will be between 0.5 and 1.5%, say, we can do so quite easily using
the square error criterion, but not using the KLIC.

16.2.2 A Predictive Density Accuracy Test for Comparing
Multiple Misspecified Models

Corradi and Swanson (2005) (CSa) and Corradi and Swanson (2006a) (CSb)
introduce a measure of distributional accuracy, which can be interpreted as a
distributional generalization of mean square error. In addition, Corradi and Swanson
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(2005) apply this measure to the problem of selecting among multiple misspecified
predictive density models. In this section we discuss these contributions to the
literature.

Consider forming parametric conditional distributions for a scalar random
variable, yt , given Zt , where Zt = (yt−1, . . . , yt−s1 ,Xt , . . . ,Xt−s2+1), with s1, s2
finite. With a little abuse of notation, now we define the group of conditional
distribution models, from which one wishes to select a “best” model, as

{Fi(u|Zt , θ†
i )}i=1,...,m

and define the true conditional distribution as

F0(u|Zt , θ0) = Pr(yt+1 ≤ u|Zt)

Assume that θ†
i ∈ &i , where &i is a compact set in a finite dimensional

Euclidean space, and let θ†
i be the probability limit of a quasi-maximum likelihood

estimator (QMLE) of the parameters of the conditional distribution under model i.
If model i is correctly specified, then θ†

i = θ0. If m > 2, follow White (2000).
Namely, choose a particular conditional distribution model as the “benchmark”
and test the null hypothesis that no competing model can provide a more accurate
approximation of the “true” conditional distribution, against the alternative that at
least one competitor outperforms the benchmark model. Needless to say, pairwise
comparison of alternative models, in which no benchmark need be specified, follows
as a special case.

In this context, measure accuracy using the above distributional analog
of mean square error. More precisely, define the mean square (approxima-
tion) error associated with model i, in terms of the average over U of

E
(
(Fi(u|Zt , θ†

i )− F0(u|Zt , θ0))
2
)

, where u ∈ U , and U is a possibly unbounded

set on the real line, and the expectation is taken with respect to the conditioning
variables. In particular, model 1 is more accurate than model 2, if

∫

U

E((F1(u|Zt , θ†
1 )−F0(u|Zt , θ0))

2− (F2(u|Zt , θ†
2 )−F0(u|Zt , θ0))

2)φ(u)du < 0

where
∫
U
φ(u)du = 1 and φ(u)du ≥ 0, ∀u ∈ U ∈ �.

This measure integrates over different quantiles of the conditional distribution.
For any given evaluation point, this measure defines a norm and it implies a standard
goodness of fit measure. Note that this measure of accuracy leads to straightforward
evaluation of distributional accuracy over a given region of interest, as well as to
straightforward evaluation of specific quantiles. A conditional confidence interval
version of the above condition which is more natural to use in applications involving
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predictive interval comparison follows immediately, and can be written as

E
(
((F1(ū|Zt , θ†

1 )− F1(u|Zt , θ†
1 ))− (F1(ū|Zt , θ0)− F1(u|Zt , θ0)))

2

−((F2(ū|Zt , θ†
2 )− F2(u|Zt , θ†

2 ))− (F1(ū|Zt , θ0)− F1(u|Zt , θ0)))
2
)
≤ 0

Hereafter, F1(·|·, θ†
1 ) is taken as the benchmark model, and the objective is to

test whether some competitor model can provide a more accurate approximation of
F0(·|·, θ0) than the benchmark. The null and the alternative hypotheses are

H0 : max
i=2,...,m

∫

U

E((F1(u|Zt , θ†
1 )− F0(u|Zt , θ0))

2

−(Fi(u|Zt , θ†
i )− F0(u|Zt , θ0))

2)φ(u)du ≤ 0

versus

HA : max
i=2,...,m

∫

U

E((F1(u|Zt , θ†
1 )− F0(u|Zt , θ0))

2

−(Fi(u|Zt , θ†
i )− F0(u|Zt , θ0))

2)φ(u)du > 0

where φ(u) ≥ 0 and
∫
U
φ(u) = 1, u ∈ U ∈ �, U possibly unbounded. Note that

for a given u, we compare conditional distributions in terms of their (mean square)
distance from the true distribution. We then average over U. As discussed above,
a possibly more natural version of the above hypotheses is in terms of conditional
confidence intervals evaluation, so that the objective is to “approximate” Pr(u ≤
Yt+1 ≤ ū|Zt), and hence to evaluate a region of the predictive density. In that case,
the null and alternative hypotheses can be stated as

H ′0 : max
i=2,...,m

E(((F1(u|Zt , θ†
1 )− F1(u|Zt , θ f

1))

−(F0(u|Zt , θ0)− F0(u|Zt , θ0)))
2

−((Fi(u|Zt , θ†
i )− Fi(u|Zt , θ†

i ))

−(F0(u|Zt , θ0)− F0(u|Zt , θ0)))
2) ≤ 0
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versus

H ′A : max
i=2,...,m

E(((F1(u|Zt , θ†
1 )− F1(u|Zt , θ f

1))

−(F0(u|Zt , θ0)− F0(u|Zt , θ0)))
2

−((Fk(u|Zt , θ†
i )− Fi(u|Zt , θ†

i ))

−(F0(u|Zt , θ0)− F0(u|Zt , θ0)))
2) > 0

Alternatively, if interest focuses on testing the null of equal accuracy of two condi-
tional distribution models, say F1 and Fi , we can simply state the hypotheses as

H ′′0 :
∫

U

E((F1(u|Zt , θ†
1 )− F0(u|Zt , θ0))

2

− (Fi (u|Zt , θ†
i )− F0(u|Zt , θ0))

2)φ(u)du = 0

versus

H ′′A :
∫

U

E((F1(u|Zt , θ†
1 )− F0(u|Zt , θ0))

2

− (Fi (u|Zt , θ†
i )− F0(u|Zt , θ0))

2)φ(u)du �= 0,

or we can write the predictive density (interval) version of these hypotheses.
Of course, we do not know F0(u|Zt). However, it is easy to see that

E((F1(u|Zt , θ†
1 )−F0(u|Zt , θ0))

2 − (Fi(u|Zt , θ†
i )− F0(u|Zt , θ0))

2)

= E((1{yt+1 ≤ u} − F1(u|Zt , θ†
1 ))

2)

−E ((1{yt+1 ≤ u} − Fi (u|Zt , θ†
i ))

2)

(16.6)

where the right-hand side of Eq. (16.6) does not require any knowledge of the true
conditional distribution.

The intuition behind Eq. (16.6) is very simple. First, note that for any given u,
E(1{yt+1 ≤ u}|Zt) = Pr(yt+1 ≤ u|Zt) = F0(u|Zt , θ0). Thus, 1{yt+1 ≤
u}−Fi(u|Zt , θ†

i ) can be interpreted as an “error” term associated with computation
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of the conditional expectation under Fi . Now, for i = 1, . . . ,m

μ2
i (u) = E( (1{yt+1 ≤ u} − Fi (u|Zt , θ†

i ))
2)

= E(((1{yt+1 ≤ u} − F0(u|Zt , θ0))− (Fi(u|Zt , θ†
i )− F0(u|Zt , θ0)))

2)

= E((1{yt+1 ≤ u} − F0(u|Zt , θ0))
2)+E ((Fi (u|Zt , θ†

i )− F0(u|Zt , θ0))
2)

given that the expectation of the cross product is zero (which follows because 1
{yt+1 ≤ u} − F0(u|Zt , θ0) is uncorrelated with any measurable function of Zt ).
Therefore,

μ2
1(u)−μ2

i (u) = E( (F1 (u|Zt , θ†
1 )− F0(u|Zt , θ0))

2)

−E ((Fi (u|Zt , θ†
i )− F0(u|Zt , θ0))

2)
(16.7)

The statistic of interest is

Zn,j = max
i=2,...m

∫

U

Zn,u,j (1, i)φ(u)du, j = 1, 2,

where for j = 1 (rolling estimation scheme),

Zn,u,1(1, i) = 1√
n

T−1∑

t=R
((1{yt+1 ≤ u} − F1(u|Zt , θ̂1,t ,rol))

2

− (1{yt+1 ≤ u} − Fi(u|Zt , θ̂i,t ,rol))
2)

and for j = 2 (recursive estimation scheme),

Zn,u,2(1, i) = 1√
n

T−1∑

t=R
((1{yt+1 ≤ u} − F1(u|Zt , θ̂1,t ,rec))

2

− (1{yt+1 ≤ u} − Fi(u|Zt , θ̂i,t ,rec))
2)

where θ̂i,t ,rol and θ̂i,t ,rec are defined as

θ̂i,t ,rol = arg min
θ∈&

1

R

t∑

j=t−R+1

q(yj ,Z
j−1, θ), R ≤ t ≤ T − 1
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and

θ̂i,t ,rec = arg min
θ∈&

1

t

t∑

j=1

q(yj ,Z
j−1, θ), t = R,R + 1,R + n− 1

As shown above and in Corradi and Swanson (2005), the hypotheses of interest
can be restated as

H0 : max
i=2,...,m

∫

U

(μ2
1(u)−μ2

i (u))φ(u)du ≤ 0

versus

HA : max
i=2,...,m

∫

U

(μ2
1(u)−μ2

i (u))φ(u)du > 0

where μ2
i (u) = E( (1{yt+1 ≤ u} − Fi (u|Zt , θ†

i ))
2)

Assumption 16.11 (i) θ†
i is uniquely defined,

E(ln(fi(yt ,Z
t−1, θi))) < E(ln(fi(yt ,Z

t−1, θ†
i ))),

for any θi �= θ†
i ; (ii) ln fi is twice continuously differentiable on the interior of &i ,

and ∀&i a compact subset of �'(i); (iii) the elements of ∇θi ln fi and ∇2
θi

ln fi are
p-dominated on &i , with p > 2(2+ψ), where ψ is the same positive constant as
defined in Assumption 16.1; and (iv) E(−∇2

θi
ln fi) is negatively definite uniformly

on &i .

Assumption 16.12 T = R + n, and as T →∞, n/R→ π , with 0 < π <∞.

Assumption 16.13 (i) Fi(u|Zt , θi) is continuously differentiable on the interior of
&i and ∇θi Fi(u|Zt , θ†

i ) is 2r-dominated on &i , uniformly in u, r > 2, ∀i1; and (ii)
let

vii(u) = plimT→∞Var
( 1√
T

T∑

t=s
(((1{yt+1 ≤ u} − F1(u|Zt , θ†

1 ))
2 −μ2

1(u))

−((1{yt+1 ≤ u} − Fi(u|Zt , θ†
i ))

2 −μ2
i (u))

)
, ∀i

define analogous covariance terms, vj ,i (u), j , i = 2, . . . ,m, and assume that
[vj ,i (u)] is positive semi-definite, uniformly in u.

1We require that for j = 1, . . . ,pi , E(∇θFi(u|Zt , θ†
i ))j ≥ Dt(u), with

supt supu∈� E(Dt (u)2r ) <∞.
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Proposition 16.7 (From Proposition 1 in Corradi and Swanson, 2006a) With
Assumptions 16.1, 16.11–16.13, then

max
i=2,...,m

∫

U

(Zn,u,j (1 , i)−√n(μ2
1(u)−μ2

i (u)))φU (u)du

d−→ max
i=2,...,m

∫

U

Z1,i,j (u)φU(u)du

where Z1,i,j (u) is a zero mean Gaussian process with covariance Ci,j (u, u′)(j = 1
corresponds to rolling and j = 2 to recursive estimation schemes), equal to

E(

∞∑

j=−∞
((1{ys+1 ≤ u} − F1(u|Zs , θ†

1 ))
2 −μ2

1(u))× ((1{ys+j+1 ≤ u′}

−F1(u
′|Zs+j , θ†

1 ))
2 −μ2

1(u
′)))+E(

∞∑

j=−∞
((1{ys+1 ≤ u} − Fi(u|Zs , θ†

i ))
2 −μ2

i (u))

× ((1{ys+j+1 ≤ u′} − Fi(u′|Zs+j , θ†
i ))

2 −μ2
i (u

′)))− 2E(
∞∑

j=−∞
((1{ys+1 ≤ u}

−F1(u|Zs , θ†
1 ))

2 −μ2
1(u))× ((1{ys+j+1 ≤ u′} − Fi(u′|Zs+j , θ†

i ))
2 −μ2

i (u
′
)))

+4%jmθ†
1
(u)′A(θ†

1 )×E(
∞∑

j=−∞
∇θ1 ln f1(ys+1|Zs , θ†

1 )∇θ1 ln f1(ys+j+1|Zs+j , θ†
1 )
′)

×A(θ†
1 )mθ†

1
(u′)+ 4%jmθ†

i
(u)′A(θ†

i )×E(
∞∑

j=−∞
∇θi ln fi(ys+1|Zs , θ†

i )

×∇θi ln fi(ys+j+1|Zs+j , θ†
i )
′)×A(θ†

i )mθ†
i
(u′)− 4%jmθ†

1
(u, )′A(θ†

1 )

×E(
∞∑

j=−∞
∇θ1 ln f1(ys+1|Zs , θ†

1 )∇θi ln fi(ys+j+1|Zs+j ×A(θ†
i )mθ†

i
(u′)

−4C%jmθ†
1
(u)′A(θ†

1 )×E(
∞∑

j=−∞
∇θ1 ln f1(ys+1|Zs , θ†

1 )× ((1{ys+j+1 ≤ u}
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−F1 (u|Zs+j , θ†
1 ))

2−μ2
1(u)))+ 4C%jmθ†

1
(u)′A(θ†

1 )×E(
∞∑

j=−∞
∇θ1 ln f1(ys+1|Zs , θ†

1 )

×((1{ys+j+1 ≤ u} − Fi(u|Zs+j , θ†
i ))

2 −μ2
i (u)))− 4C%jmθ†

i
(u)′A(θ†

i )

×E(
∞∑

j=−∞
∇θi ln fi(ys+1|Zs , θ†

i )
′ × ((1{ys+j+1 ≤ u} − Fi(u|Zs+j , θ†

i ))
2 −μ2

i (u)))

+4C%jmθ†
i
(u)′A(θ†

i )×E(
∞∑

j=−∞
∇θi ln fi(ys+1|Zs , θ†

i )
′ × ((1{ys+j+1 ≤ u}

−F1(u|Zs+j , θ†
1 ))

2 −μ2
1(u)))

with

m
θ

†
i
(u)′ = E(∇θi Fi(u|Zt , θ†

i )
′(1{yt+1 ≤ u} − Fi(u|Zt , θ†

i )))

and

A(θ
†
i ) = A†

i = (E(−∇2
θi

ln fi(yt+1|Zt , θ†
i )))

−1

and for j = 1 and n ≤ R, %1 = (π − π2

3 ), C%1 = π
2 , and for n > R, %1 =

(1− 1
3π ) and C%1 = (1− 1

2π ). Finally, for j = 2,%2 = 2(1−π−1 ln(1+π)) and
C%2 = 0.5%2.

From this proposition, note that when all competing models provide an approx-
imation to the true conditional distribution that is as (mean square) accurate as that
provided by the benchmark (i.e., when

∫
U
(μ2

1(u)− μ2
i (u))φ(u)du = 0,∀i), then

the limiting distribution is a zero mean Gaussian process with a covariance kernel
which is not nuisance parameter free. Additionally, when all competitor models
are worse than the benchmark, the statistic diverges to minus infinity at rate

√
n.

Finally, when only some competitor models are worse than the benchmark, the
limiting distribution provides a conservative test, as ZP will always be smaller
than maxi=2,...,m

∫
U
(Zn,u (1, i)−√n(μ2

1(u)−μ2
i (u)))φ(u)du, asymptotically. Of

course, when HA holds, the statistic diverges to plus infinity at rate
√
n.

For the case of evaluation of multiple conditional confidence intervals, consider
the statistic

Vn,τ = max
i=2,...,m

Vn,u,u,τ (1, i)
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where

Vn,u,u,τ (1, i) = 1√
n

T−1∑

t=R
((1{u ≤ yt+1 ≤ u} − (F1(u|Zt , θ̂1,t ,τ )

−F1(u|Zt , θ̂1,t ,τ )))
2 − (1{u ≤ yt+1 ≤ u} − (Fi(u|Zt , θ̂i,t ,τ )−Fi(u|Zt , θ̂i,t ,τ )))2)

where s = max{s1, s2}, τ = 1, 2, and θ̂i,t ,τ = θ̂i,t ,rol for τ = 1, and θ̂i,t ,τ = θ̂k,t ,rec
for τ = 2.

We then have the following result.

Proposition 16.8 (From Proposition lb in Corradi and Swanson, 2006a) With
Assumptions 16.1, 16.11–16.13, then for τ = 1,

max
i=2,...m

(Vn,u,u,τ (1 , i) − √
n(μ2

1 −μ2
i ))

d−→ max
i=2,...m

Vn,i,τ (u, u)

where Vn,i,τ (u, u) is a zero mean normal random variable with covariance cii =
vii +pii + cpii , where vii denotes the component of the long-run variance matrix we
would have in absence of parameter estimation error, pii denotes the contribution
of parameter estimation error and cpii denotes the covariance across the two
components. In particular

vii = E
∞∑

j=−∞
(((1{u ≤ ys+1 ≤ u} − (F1(u|Zs , θ†

1 )− F1(u|Zs , θ†
1 )))

2 −μ2
1)

× ((1{u ≤ ys+1+j ≤ u} − (F1(u|Zs+j , θ†
1 )− F1(u|Zs+j , θ†

1 )))
2 −μ2

1))

+E
∞∑

j=−∞
(((1{u ≤ ys+1 ≤ u} − (Fi(u|Zs , θ†

i )− Fi(u|Zs , θ†
i )))

2 −μ2
i )

× ((1{u ≤ ys+1+j ≤ u} − (Fi(u|Zs+j , θ†
i )− Fi(u|Zs+j , θ†

i )))
2 −μ2

i ))

−2E
∞∑

j=−∞
(((1{u ≤ ys+1 ≤ u} − (F1(u|Zs , θ†

1 )− F1(u|Zs , θ†
1 )))

2 −μ2
1)

× ((1{u ≤ ys+1+j ≤ u} − (Fi(u|Zs+j , θ†
i )− Fi(u|Zs+j , θ†

i )))
2 −μ2

i ))



16 Forecast Evaluation 523

Also,

pii = 4m′
θ

†
1
A(θ

†
1 )E(

∞∑

j=−∞
∇θ1 ln fi(ys+1|Zs , θ†

1 )∇θ1 ln fi(ys+1+j |Zs+j , θ†
1 )
′)×A(θ†

1 )mθ†
1

+4m′
θ

†
i

A(θ
†
i )E(

∞∑

j=−∞
∇θi ln fi(ys+1|Zs , θ†

i )∇θi ln fi(ys+1+j |Zs+j , θ†
i )
′)×A(θ†

i )mθ†
i

−8m′
θ

†
1
A(θ

†
1 )E(∇θ1 ln f1(ys+1|Zs , θ†

1 )∇θi ln fi(ys+1+j |Zs+j , θ†
i )
′)×A(θ†

i )mθ†
i

Finally,

cpii = −4m′
θ

†
1
A(θ

†
1 )E(

∞∑

j=−∞
∇θ1 ln f1(ys+1|Zs , θ†

1 )

× ((1{u ≤ ys+j ≤ u} − (F1(u|Zs+j , θ†
1 )− F1(u|Zs+j , θ†

1 )))
2 −μ2

1)

+8m′
θ

†
1
A(θ

†
1 )E(

∞∑

j=−∞
∇θ1 ln f1(ys |Zs , θ†

1 )

× ((1{u ≤ ys+1+j ≤ u} − (Fi(u|Zs+j , θ†
i )− Fi(u|Zs , θi)))2 −μ2

i ))

−4m′
θ

†
i

A(θ
†
i )E(

∞∑

j=−∞
∇θi ln fi(ys+1|Zs , θ†

i )

× ((1{u ≤ ys+j ≤ u} − (Fi(u|Zs+j , θ†
i ) − Fi(u|Zs+j , θ†

i )))
2 −μ2

i ))

with

m′
θ

†
i

= E(∇θi (Fi(u|Zt , θ†
i ) − Fi(u|Zt , θ†

i ))

× (1{u ≤ yt ≤ u} − (Fi(u|Zt , θ†
i )− Fi(u|Zt , θ†

i ))))

and

A(θ
†
i ) = (E(− ln∇2

θi
fi(yt |Zt , θ†

i )))
−1

An analogous result holds for the case where τ = 2, and is omitted for the sake of
brevity.
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Due to the contribution of parameter estimation error, simulation error, and
the time series dynamics to the covariance kernel (see Proposition 16.7), critical
values cannot be directly tabulated. As a result, block bootstrap techniques are
used to construct valid critical values for statistical inference. In order to show
the first order validity of the bootstrap, the authors derive the limiting distribution
of appropriately formed bootstrap statistics and show that they coincide with the
limiting distribution given in Proposition 16.7. Recalling that as all candidate
models are potentially misspecified under both hypotheses, the parametric bootstrap
is not generally applicable in our context. Instead, we must begin by resampling b
blocks of length l, bl = T − 1. Let Y∗t = (� logX∗t , � logX∗t−1) be the resampled
series, such that Y∗2,. . . , Y∗l+1, Y ∗l+2,. . . , Y ∗T−l+2,. . . , Y∗T equals YI1+1,. . . , YI1+l ,
YI2+1,. . . , YIb+1,. . . , YIb+T , where Ij , i = 1,. . . , b are independent, discrete
uniform random variates on 1,. . . , T − 1+ 1. That is, Ij = i, i = 1,. . . , T − l with
probability 1/(T − l). Then, use Y ∗t to compute θ̂∗j ,T and plug in θ̂∗j ,T in order to

simulate a sample under model j , j = 1,. . . , m. Let Yj ,n(θ̂
∗
j ,T ), n = 2,. . . , S denote

the series simulated in this manner. At this point, we need to distinguish between the
case where δ = 0 (vanishing simulation error) and δ > 0 (non-vanishing simulation
error). In the former case, we do not need to resample the simulated series, as there
is no need to mimic the contribution of simulation error to the covariance kernel. On
the other hand, in the latter case we draw b̃ blocks of length l̃ with b̃l = S − 1, and
let Y∗j ,n(θ̂

∗
j ,T ), j = 1,. . . , m, n = 2,. . . , S denote the resampled series under model

j . Notice that Y ∗j ,2(θ̂
∗
j ,T ),. . . , Y∗j ,l+1(θ̂

∗
j ,T ),. . . , Y∗j ,S(θ̂

∗
j ,T ) is equal to Yj ,Ĩ1(θ̂

∗
j ,T ),. . . ,

Yj ,Ĩ1+l (θ̂
∗
j ,T ) . . . , Yj ,Ĩ b1+l (θ̂

∗
j ,T ) where Ĩi , i = 1,. . . , b̃ are independent discrete

uniform random variates on 1,. . . , S − l̃. Also, note that for each of the m models,
and for each bootstrap replication, we draw b̃ discrete uniform random variates (the
Ĩi) on 1, . . . , S − l̃, and that draws are independent across models. Thus, in our use
of notation, we have suppressed the dependence of Ĩi on j .

Thereafter, form bootstrap statistics as follows:

Z∗n,τ = max
i=2,...m

∫

U

Z∗n,u,τ (1, i)φ(u)du

where for τ = 1 (rolling estimation scheme), and for τ = 2 (recursive estimation
scheme)

Z∗n,u,τ (1, i) = 1√
n

T−1∑

t=R

(
(1{y∗t+1 ≤ u} − F1(u|Z∗,t θ̃∗1,t ,τ ))

2

− (1{y∗t+1 ≤ u} − Fi(u|Z∗,t θ̃∗i,t ,τ ))2
)

− 1

T

T−1∑

j=s+1

(
(1{yj+1 ≤ u} −F1(u|Zi , θ̂1,t ,τ ))

2− (1{yj+1 ≤ u} −Fi(u|Zj , θ̂i,t ,τ ))2)
)
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Note that each bootstrap term, say 1{y∗t+1 ≤ u} − Fi(u|Z∗,t , θ̃∗i,t ,τ ), t ≥
R, is re-centered around the (full) sample mean 1

T

∑T−1
j=s+1(1{yj+1 ≤ u} −

Fi (u|Zj , θ̂i,t ,τ ))2. This is necessary as the bootstrap statistic is constructed using
the last n resampled observations, which in turn have been resampled from the full
sample. In particular, this is necessary regardless of the ratio n/R. If n/R → 0,
then we do not need to mimic parameter estimation error, and so could simply use
θ̂1,t ,τ instead of θ̃∗1,t ,τ , but we still need to re-center any bootstrap term around the
(full) sample mean.

Note that re-centering is necessary, even for first order validity of the bootstrap,
in the case of over-identified generalized method of moments (GMM) estimators
(see, e.g., Hall and Horowitz (1996), Andrews (2002), Andrews (2004), Inoue and
Shintani (2006)). This is due to the fact that, in the over-identified case, the bootstrap
moment conditions are not equal to zero, even if the population moment conditions
are. However, in the context of m-estimators using the full sample, re-centering is
needed only for higher order asymptotics, but not for first order validity, in the sense
that the bias term is of smaller order than T −1/2. Namely, in the case of recursive
m-estimators the bias term is instead of order T −1/2 and so it does contribute to
the limiting distribution. This points to a need for re-centering when using recursive
estimation schemes.

For the confidence interval case, define

V ∗n,τ = max
i=2,...m

,V ∗nu,u,τ (1, i)

and

V ∗n,u,u,τ (1, i) = 1√
n

T−1∑

t=R

(
(1{u ≤ y∗t+1 ≤ u} − (F1(u|Z∗t , θ̃∗1,t ,τ )− F1(u|Z∗t , θ̃∗1,t ,τ )))

2

− (1{u ≤ y∗t+1 ≤ u} − (Fi(u|Z∗t , θ̃∗i,t ,τ )− F1(u|Z∗t , θ̃∗i,t ,τ )))2
)

− 1

T

T−1∑

j=s+1

(
(1{u ≤ yi+1 ≤ u} − (F1(u|Zj , θ̂1,t ,τ )− F1(u|Zj , θ̂1,t ,τ )))

2

− (1{u ≤ yj+1 ≤ u} − (Fi(u|Zj , θ̂i,t ,r)− F1(u|Zj , θ̂i,t ,τ )))2
)

where, as usual, τ = 1, 2. The following results then hold.

Proposition 16.9 (From Proposition 6 in Corradi and Swanson, 2006a) With
Assumptions 16.1, 16.11–16.13, also, assume that as T → ∞, l → ∞, and that
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l

T 1/4 → 0. Then, as T , n and R→∞, for τ = 1, 2

Pr
(

sup
v∈�

| ∗Pr
T

(
max
i=2,...m

∫

U

Z∗n,u,τ (1 , i)φ(u)du ≤ v)

−Pr
(

max
i=2,...,m

∫

U

Zμn,u,τ (1 , i)φ(u)du ≤ v)| > ε
)
→ 0

where Zμn,u,τ (1, i) = Zn,u,τ (1, i)−√n(μ2
1(u)−μ2

i (u)
)
, and where μ2

1(u)−μ2
i (u)

is defined as in Eq. (16.7).

Proposition 16.10 (From Proposition 7 in Corradi and Swanson, 2006a) With
Assumptions 16.1, 16.11–16.13, also assume that as T → ∞, l → ∞, and that
l

T 1/4 → 0. Then, as T , n and R→∞, for τ = 1, 2

Pr
(

sup
v∈�

| ∗Pr
T

(
max
i=2,...m

,V ∗n,u,u,τ (1, i) ≤ v)

−Pr
(

max
i=2,...m

,V μn,u,u,τ (1, i) ≤ v)| > ε
)
→ 0

where V μn,u,u,τ (1, i) = Vn,u,u,τ (1 , i)−√n(μ2
1(u)−μ2

i (u)
)
.

The above results suggest proceeding in the following manner. For brevity,
consider the case of Z∗n,τ . For any bootstrap replication, compute the bootstrap
statistic, Z∗n,τ . Perform B bootstrap replications (B large) and compute the quantiles
of the empirical distribution of the B bootstrap statistics. Reject H0, if Zn,τ is
greater than the (1 −α)th-percentile. Otherwise, do not reject. Now, for all samples
except a set with probability measure approaching zero, Zn,τ has the same limiting
distribution as the corresponding bootstrapped statistic when E(μ2

1(u) −μ2
i (u)) =

0,∀i, ensuring asymptotic size equal to α. On the other hand, when one or more
competitor models are strictly dominated by the benchmark, the rule provides a
test with asymptotic size between 0 and α. Under the alternative, Zn,τ diverges to
(plus) infinity, while the corresponding bootstrap statistic has a well defined limiting
distribution, ensuring unit asymptotic power.

From the above discussion, we see that the bootstrap distribution provides correct
asymptotic critical values only for the least favorable case under the null hypothesis,
that is, when all competitor models are as good as the benchmark model. When
maxi=2,...,m

∫
U
(μ2

1(u)− μ2
i (u))φ(u)du = 0, but

∫
U
(μ2

1(u)− μ2
i (u))φ(u)du < 0

for some i, then the bootstrap critical values lead to conservative inference. An alter-
native to our bootstrap critical values in this case is the construction of critical values
based on sub-sampling, which is briefly discussed in Sect. 16.1.4. Heuristically,
construct T − 2bT statistics using subsamples of length bT , where bT /T → 0.
The empirical distribution of these statistics computed over the various subsamples
properly mimics the distribution of the statistic. Thus, sub-sampling provides valid
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critical values even for the case where maxi=2,...,m
∫
U
(μ2

1(u) −μ2
i (u))φ(u)du = 0,

but
∫
U
(μ2

1(u) − μ2
i (u))φ(u)du < 0 for some i. This is the approach used by

Linton, Maasoumi, and Whang (2002), for example, in the context of testing for
stochastic dominance. Needless to say, one problem with sub-sampling is that unless
the sample is very large, the empirical distribution of the subsampled statistics may
yield a poor approximation of the limiting distribution of the statistic. Another
alternative approach for addressing the conservative nature of our bootstrap critical
values is the Hansen’s SPA approach (see Sect. 16.1.4 and Hansen (2005)). Hansen’s
idea is to re-center the bootstrap statistics using the sample mean, whenever the
latter is larger than (minus) a bound of order

√
2T log log T . Otherwise, do not

re-center the bootstrap statistics. In the current context, his approach leads to
correctly sized inference when maxi=2,...,m

∫
U
(μ2

1(u) − μ2
i (u))φ(u)du = 0, but∫

U
(μ2

1(u) − μ2
i (u))φ(u)du < 0 for some i. Additionally, his approach has the

feature that if all models are characterized by a sample mean below the bound, the
null is “accepted” and no bootstrap statistic is constructed.

16.3 Forecast Evaluation Using Density-Based Predictive
Accuracy Tests that are not Loss Function Dependent:
The Case of Stochastic Dominance

All predictive accuracy tests outlined in previous two parts of this chapter are
loss functions dependent, i.e., loss functions such as mean squared forecast error
(MSFE) and mean absolute forecast error (MAFE) must be specified prior to
test construction. Evidently, given possible misspecification, model rankings may
change under different loss functions. In the following section, we introduce a novel
criterion for forecast evaluation that utilizes the entire distribution of forecast errors,
is robust to the choice of loss function, and ranks distributions of forecast errors via
stochastic dominance type tests.

16.3.1 Robust Forecast Comparison

Jin, Corradi, and Swanson (2017) (JCS) introduce the concepts of general-loss
(GL) forecast superiority and convex-loss (CL) forecast superiority and develop
tests for GL (CL) superiority that are based on an out-of-sample generalization
of the tests introduced by Linton, Maassoumi, and Whang (2005). The JCS tests
evaluate the entire forecast error distribution and do not require knowledge or
specification of a loss function, i.e., tests are robust to the choice of loss function.
In addition, parameter estimation error and data dependence are taken into account,
and heterogeneity that is induced by distributional change over time is allowed for.
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The concepts of general-loss (GL) forecast superiority and convex-loss (CL)
forecast superiority are defined as follows:

(1) For any two sequences of forecast errors u1,t and u2,t , u1,t general-loss (GL)
outperforms u2,t , denoted as u1 &G u2, if and only if E(g(u1,t )) ≤ E(g(u2,t )),
∀g(·) ∈ GL(·), where GL(·) are the set of general-loss functions with
properties specified in Granger (1999); and

(2) u1,t convex-loss (CL) outperforms u2,t , denoted as u1 &C u2, if and only if
E(g(u1,t )) ≤ E(g(u2,t )), ∀g(·) ∈ CL(·), where CL(·) are the set of general-
loss functions which in addition are convex.

These authors also establish linkages between GL(CL) forecast superiority and
first(second) order stochastic dominance, allowing for the construction of direct tests
for GL(CL) forecast superiority. Define

G(x) =
(
F2(x)− F1(x)

)
sgn(x),

where sgn(x) = 1, if x ≥ 0, and sgn(x) = −1, if x < 0. Here, Fi(x) denotes the
cumulative distribution function (CDF) of ui , and

C(x) =
∫ x

−∞

(
F1(t)− F2(t)

)
dt1{x<0} +

∫ ∞

x

(
F2(t)− F1(t)

)
dt1{x≥0}

Assumption 16.14 g(·) : � → �+ is continuously differentiable, except for
finitely many points, with derivative ∇g(·), such that ∇g(z) ≤ 0, ∀z ≤ 0 and
∇g(z) ≥ 0, ∀z ≥ 0.

Proposition 16.11 (From Propositions 2.2 and 2.3 in Jin et al., 2017) With
Assumption 16.14, E(g(u1,t )) ≤ E(g(u2,t )), ∀g(·) ∈ GL(·), if and only if G(x) ≤
0, ∀x ∈ X, where X is the union of the supports of all forecast errors. Further, if∫ x
−∞(F1(t)− F2(t))dt1{x<0} and

∫∞
x
(F2(t)− F1(t))dt1{x≥0} are well defined for

each x ∈ X, then E(g(u1,t )) ≤ E(g(u2,t )), ∀g(·) ∈ CL(·) if and only if C(x) ≤ 0,
∀x ∈ X.

The above proposition establishes a clear mapping between GL (CL) forecast
superiority and first (second) order stochastic dominance. Intuitively, if we construct
a graph that contains a plot ofG(x) against x. When u1 &G u2, we expect all points
lie below or on the zero line. Similarly, if we construct a graph that contains a plot
of C(x) against x. When u1 &C u2, we expect all points lie below or on the zero
line as well.

The hypotheses tested in JCS are

H0 : max
i=1,...,m

E
(
g(u0,t+1)− g(ui,t+1)

)
≤ 0
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versus

HA : max
i=1,...,m

E
(
g(u0,t+1)− g(ui,t+1)

)
> 0

Given Proposition 16.11, the above hypotheses can be restated as

HTG0 = HTG−0 ∩HTG+0 : ( max
i=1,...,m

(F0(x)− Fi(x)) ≤ 0, ∀x ≤ 0
)

∩ ( max
i=1,...,m

(Fi(x)− F0(x)) ≤ 0, ∀x > 0
)

versus

HTGA = HTG−A ∪HTG+A : ( max
i=1,...,m

(F0(x)− Fi(x)) > 0, for some x ≤ 0
)

∪ ( max
i=1,...,m

(Fi(x)− F0(x)) > 0, for some x > 0
)

for the case of GL forecast superiority. Similarly, for the case of CL forecast
superiority, we have that

HTC0 = HTC−0 ∩HTC+0 : ( max
i=1,...,m

∫ x

−∞
(F0(x)− Fi(x)) ≤ 0, ∀x ≤ 0

)

∩ ( max
i=1,...,m

∫ ∞

x

(Fi(x)− F0(x)) ≤ 0, ∀x > 0
)

versus

HTCA = HTC−A ∪HTC+A : ( max
i=1,...,m

∫ x

−∞
(F0(x)− Fi(x)) > 0, for some x ≤ 0

)

∪ ( max
i=1,...,m

∫ ∞

x

(Fi(x)− F0(x)) > 0, for some x > 0
)

Of note is that the above null (alternative) is the intersection (union) of two different
null (alternative) hypotheses because of a discontinuity at zero. The test statistics
for GL forecast superiority are constructed as follows:

TG+n = max
i=1,...,k

sup
x∈X+

√
nĜi,n(x)

and

TG−n = max
i=1,...,k

sup
x∈X−

√
nĜi,n(x)
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with

Ĝi,n(x) =
(
F̂0,n(x)− F̂i,n(x)

)
sgn(x)

where F̂i,n(x) denotes the empirical CDF of ui , with

F̂i,n(x) = n−1
T∑

t=R
1{ui,t≤x}

Similarly, the test statistics for CL forecast superiority are constructed as follows:

T C+n = max
i=1,...,k

sup
x∈X+

√
nĈi,n(x)

and

T C−n = max
i=1,...,k

sup
x∈X−

√
nĈi,n(x)

with

Ĉi,n(x) =
∫ x

−∞
(
F̂0,n(x)− F̂i,n(x)

)
dx1{x<0} −

∫ ∞

x

(
F̂i,n(x)− F̂0,n(x)

)
dx1{x≥0}

= 1

n

n∑

t=1

{
[(u0,t − x)sgn(x)]+ − [(ui,t − x)sgn(x)]+

}
,

where [z]+ = max{0, z}.
Note that in order to reduce computation time, it may be preferable to construct

approximations to the suprema in statistics TG+, TG−, T C+, and T C− by taking
maxima over some smaller grid of points, XN = {x1, . . . , xN }, where N < n.
Theoretically, the distribution theory is unaffected by using this approximation, as
the set of evaluation points becomes dense in the joint support. We now require the
following assumptions.

Assumption 16.15

(i) {(yt ,Zti )′} is a strictly stationary and α-mixing sequence with mixing coeffi-
cient α(l) = O(l−C0), for some C0 > max{(q − 1)(q + 1), 1+ 2/δ}, with
i = 0, . . . ,m, where q is an even integer that satisfies q > 3(gmax + 1)/2.
Here, gmax = max{g0, . . . , gm} and δ is a positive constant;

(ii) For i = 0, . . . ,m, fi(Zti , θi) is differentiable a.s. with respect to θi in the

neighborhood &†
i of θ†

i , with sup
θ∈&†

0
||∇θfi(Zti , θi)||2 <∞;

(iii) The conditional distribution of ui,t given Zti has bounded density with respect
to the Lebesgue measure a.s., and ||ui,t ||2+δ <∞, ∀i.
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Assumption 16.16*

(i) {(yt ,Zti )′} is a strictly stationary and α-mixing sequence with mixing coef-
ficient α(l) = O(l−C0), for some C0 > max{rq/(r − q), 1 + 2/δ}, with
i = 0, . . . ,m, and r > q > gmax + 1;

(ii) For i = 0, . . . ,m, fi(Zti , θi) is differentiable a.s. with respect to θi in the

neighborhood &†
i of θ†

i , with sup
θ∈&†

0
||∇θfi(Zti , θi)||r <∞;

(iii) ||ui,t ||r <∞, ∀i.
Assumption 16.17 ∀ i and t , θ̂i,t satisfies θ̂i,t − θ†

i = Bi(t)Hi(t), where Bi(t) is a
ni ×Li matrix and Hi(t) is Li × 1, with the following:

(i) Bi(t)→ Bi a.s., where Bi is a matrix of rank ni ;
(ii) Hi(t) = t−1∑t

s=1 hi,s , R
−1∑t

s=t−R+1 hi,s , and R−1∑R
s=1 hi,s for the

recursive, rolling, and fixed schemes, respectively, where hi,s = hi,s(θ†
i );

(iii) E(hi,s(θ
†
i ) = 0; and

(iv) ||hi,s(θ†
i )||2+δ <∞, for some δ > 0.

Assumption 16.18

(i) The distribution function of forecast errors, Fi(x, θi) is differentiable with
respect to θi in a neighborhood &†

i of θ†
i , ∀i;

(ii) ∀i, and ∀ sequences of positive constants {ξn : n ≥ 1}, such that ξn → 0,
supx∈X sup

θ : ||θ−θ†
i ||≤ξn ||∇θFi(x, θ)sgn(x)−�†

i (x)|| = O(ξηn ), for some η >

0, where �†
i (x) = ∇θFi(x, θ†

i )sgn(x);

(iii) supx∈X ||�†
i (x)|| <∞,∀i.

Assumption 16.19*

(i) Assumption 16.8 (i) holds;
(ii) ∀i, and ∀ sequences of positive constants {ξn : n ≥ 1}, such that

ξn → 0, supx∈X sup
θ : ||θ−θ†

i ||≤ξn ||∇θ {
∫ x
−∞ Fi(t , θ)dt1{x<0} +

∫∞
x
(1 −

Fi(x, θ))dt1{x≥0}} − †
i (x)|| = O(ξηn ), for some η > 0, where

 
†
i (x) = ∇θ

{ ∫ x

−∞
Fi(t , θ

†
i )dt1{x<0} +

∫ ∞

x

(1− Fi(x, θ†
i ))dt1{x≥0}

}
;

(iii) supx∈X || †
i (x)|| <∞,∀i.

Assumptions 16.16* and 16.19* are needed for testing HTC0 . Note that the
first and third assumptions parallel those imposed by Linton et al. (2005), with
the uniform continuity conditions in Assumptions 16.18 and 16.19* strengthened.
Assumption 16.15 is needed in order to verify the stochastic equicontinuity of
the empirical process, for a class of bounded functions that appears in the TGn
test. Assumption 16.16* introduces a trade-off between mixing sizes and moment
conditions, and is used to verify the stochastic equicontinuity result for the possibly
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unbounded functions that appear in the T Cn test. For further details, see Hansen
(1996b). Assumptions 16.18 and 16.19* differ in the amount of smoothness
required. For the CL forecast superiority test, less smoothness is required. Finally, it
is worth stressing that Assumptions 16.8 and 16.17 are identical to Assumptions 1
and 2 in McCracken (2000), respectively.

Proposition 16.12 (From Theorem 3.1 in Jin et al., 2017)

(i) With Assumptions 16.8, 16.15–16.18, under HTG
−

0 ,

TG−n
d−→ max
i=1,...,m

sup
x∈Bg−i

[̃gi(x)+�i0(x)′Biυi0 −�10(x)
′B1υ10], if TG− = 0

−→ −∞, if TG− < 0

Under HTG+0 ,

TG+n
d−→ max
i=1,...,m

sup
x∈Bg+i

[̃gi(x)+�i0(x)′Biυi0 −�10(x)
′B1υ10], if TG+ = 0

−→ −∞, if TG+ < 0

where Bg−i = {x ∈ X− : F0(x) = Fi(x)} and Bg+i = {x ∈ X+ : F0(x) =
Fi(x)}, and

(
g̃i (·), υi0, υ10

)′
is a mean zero Gaussian process with covariance

function given by

�
g
i (x1, x2) = lim

T→∞E

⎛

⎜⎝
υ
g
i,n(x1, θ†

i )− υg0,n(x1, θ†
0 )√

nHi,n√
nH 0,n

⎞

⎟⎠

⎛

⎜⎝
υ
g
i,n(x2, θ†

i )− υg0,n(x2, θ†
0 )√

nHi,n√
nH 0,n

⎞

⎟⎠

′

with Hi,n = n−1∑T
t=R Hi(t), and υgi,n(x, θ) is an empirical process defined as

υ
g
i,n(x, θ) = 1√

n

T∑

t=R
{1{ui,t+τ (θ)≤x} − Fi(x, θ)}sgn(x)

(ii) With Assumptions 16.16*, 16.17, 16.19* and 7.5, under HTC
−

0 ,

T C−n
d−→ max
i=1,...,m

sup
x∈Bc−i

[̃ci(x)+ i0(x)′Biυi0 − 10(x)
′B1υ10], if T C− = 0

−→ −∞, if T C− < 0
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Under HTC
+

0 ,

T C+n
d−→ max
i=1,...,m

sup
x∈Bc+i

[̃ci(x)+ i0(x)′Biυi0 − 10(x)
′B1υ10], if T C+ = 0

−→ −∞, if T C+ < 0

where Bc−i = {x ∈ X− : ∫ x−∞(Fi(x) − F0(x))dx1{x<0}} and Bc+i = {x ∈
X+ : ∫∞

x
(F0(x)− Fi(x))dx1{x≥0}}. Similarly,

(
c̃i (·), υi0, υ10

)′
is a mean zero

Gaussian process with covariance function given by

�ci (x1, x2) = lim
T→∞E

⎛

⎜⎝
υci,n(x1, θ†

i )− υc0,n(x1, θ†
0 )√

nHi,n√
nH 0,n

⎞

⎟⎠

⎛

⎜⎝
υci,n(x2, θ†

i )− υc0,n(x2, θ†
0 )√

nHi,n√
nH 0,n

⎞

⎟⎠

′

where υci,n(x, θ) is an empirical process defined as

υci,n(x, θ) = 1√
n

T∑

t=R

{ ∫ x

−∞
[1{ui,t+τ (θ)≤s} − Fi(s, θ)]ds1{x<0}

−
∫ ∞

x

[1{ui,t+τ (θ)≤s} − Fi(s, θ)]ds1{x≥0}
}

The asymptotic null distributions of TG+n (TG−n ) and T C+n (T C−n ) depend on
the true model parameters and the distribution functions, Fi(·), i = 1, . . . ,m,
which implies that the asymptotic critical values for TG+n (TG−n ) and T C+n (T C−n )
cannot be tabulated. Therefore, the stationary bootstrap is used to approximate the
asymptotic null distributions of our test statistics. (Note that the block bootstrap can
also be used, as discussed in subsequent research by Corradi, Sin, and Swanson.)
The objective is to utilize bootstrap procedure that mimics the asymptotic null
distribution in the least favorable case, where F0(x) = . . . = Fm(x), ∀x ∈ X.

Define the bootstrap statistic as

TG∗+n = max
i=1,...,k

sup
x∈X+

√
n
(
Ĝ∗i,n(x)− Ĝi,n(x)

)

with

Ĝ∗i,n(x) =
(
F̂ ∗0,n(x)− F̂ ∗i,n(x)

)
sgn(x)

where F̂ ∗i,n(x) denotes the empirical CDF of resampled ui , i.e., u∗i . TG∗−n , T C∗+n
and T C∗−n can be defined analogously.
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Assumption 16.20 The smoothing parameter, Sn, determining the mean block
length in stationary bootstrap satisfies 0 < Sn < 1, Sn → 0 and nS2

n → ∞, as
n→∞.

Assumption 16.21 For any arbitrary ni × 1 vector, λi , with λ
′
iλi = 1, and ∀i, we

have (i)

Pr
[

lim sup
t≥R

n1/2 |λ′i (θ̂i,t − θ†
i )|

(λ
′
i�iλi loglog(λ

′
i�iλi)n)

1/2
= 1
]
= 1

for the recursive scheme, where �i = Bi[limT→∞ Var(n−1/2∑T
t=R+1Hi(t))]B

′
i .

(ii)

Pr
[

lim sup
t≥R

R1/2 |λ′i (θ̂i,t − θ†
i )|

(λ
′
i�iλi loglog(λ

′
i�iλi)R)

1/2
= 1
]
= 1

for the rolling scheme, where �i = Bi[limT→∞ Var(R−1/2∑T
t=R+1Hi(t))]B

′
i .

Proposition 16.13 (From Corollary 3.3 in Jin et al., 2017) With Assump-
tions 16.15–16.18, 16.20, and 16.21, and that (n/R)loglogR → 0, as T → ∞,
then

ρ
(
L[ max
i=1,...,m

sup
x∈X+

√
n(Ĝ∗i,n(x)− Ĝi,n(x))|U1, . . . ,UT+τ ],

L[ max
i=1,...,m

sup
x∈X+

√
n(Ĝi,n(x)−Gi(x))]

)
n−→ 0

and

ρ
(
L[ max
i=1,...,m

sup
x∈X−

√
n(Ĝ∗i,n(x)− Ĝi,n(x))|U1, . . . ,UT+τ ],

L[ max
i=1,...,m

sup
x∈X−

√
n(Ĝi,n(x)−Gi(x))]

)
n−→ 0

where ρ is any metric metrizing weak convergence, L[·] denotes the probability
law of the corresponding Hilbert space valued random variable, and Ut =
(yt ,Zt0, . . . ,Ztm)

′.

Therefore, the asymptotic null distribution of TG+n (TG−n ) can be approximated
by TG∗+n − TG+n (TG∗−n − TG−n ). Arguments in favor of using the stationary
bootstrap with T C+n and T C−n are similar.

To conduct inference, use the following approach due to Holm (1979).
Define qG

+
n,Sn
(1 − α) and qG

−
n,Sn
(1 − α) to be the (1 − α)-th sample quantile of
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TG∗+n and TG∗−n , respectively. Then, estimate bootstrap p-values, pG
+

B,n,Sn
=

1
B

∑B
s=1(T G

∗+
n ≥ TG+n ), and finally use the following rules:

Rule TG: Reject HTG0 at level α, if min
{
pG

+
B,n,Sn

, pG
−

B,n,Sn

}
≤ α/2;

Rule TC: Reject HTG0 at level α, if min
{
pC

+
B,n,Sn

, pC
−
B,n,Sn

}
≤ α/2;

Note that Holm bounds are equivalent to Bonferroni bounds when there are only
two hypotheses. From Proposition 16.13, it follows immediately that this test, when
implemented using the stationary bootstrap, has asymptotically correct size only in
the least favorable case, under the null, and is asymptotically biased towards certain
local alternatives.

Proposition 16.14 (From Theorem 4.1 in Jin et al., 2017) With Assump-
tions 16.8, 16.15–16.18, under HTGA ,

Pr
(
TG+n > qG

+
n,Sn(1− α)

)
→ 1, as T →∞

and

Pr
(
TG−n > qG

−
n,Sn(1− α)

)
→ 1, as T →∞

The above proposition ensures unit asymptotic power under the alternative.
Similar arguments apply to T C+n and T C−n as well. For details of the power of TG+n
(TG−n ) and T C+n (T C−n ) tests against a sequence of contiguous local alternatives
converging to the null, at rate n−1/2, see Jin et al. (2017).
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Part V
Further Issues



Chapter 17
Unit Roots and Cointegration

Stephan Smeekes and Etienne Wijler

17.1 Introduction

In this chapter we investigate forecasting with Big Data when the series in the
dataset may contain unit roots and be cointegrated. As most macroeoconomic time
series are at least very persistent, and may contain unit roots, a proper handling
of unit roots and cointegration is of paramount importance in macroeconomic
forecasting. The theory of unit roots and cointegration in small systems is well-
developed and numerous reference works exist to guide the practitioner, see, for
example, Enders (2008) or Hamilton (1994) for comprehensive treatments.

In this chapter, we discuss the problems that arise when extending the analysis
to high-dimensional data and consider solutions that have been proposed in the
literature. In particular, we discuss the applicability of the proposed methods for
macroeconomic forecasting, reviewing relevant theoretical properties and practical
issues. Moreover, by considering two Big Data applications—that are very different
in spirit—we illustrate the issues and analyse the performance of the various
methods in practically relevant situations.

The empirical literature dealing with unit roots and cointegration can essentially
be split into two different philosophies. The first approach is to apply an appropriate
transformation to each series such that one can work with stationary time series,
with the most common transformation taking first differences of a series with a unit
root. This is the most common approach in high-dimensional forecasting, as it only
involves ‘straightforward’ unit root or stationarity testing on each series. Indeed,
commonly used Big Data such as the FRED-MD and -QD datasets (McCracken

S. Smeekes (�) · E. Wijler
Department of Quantitative Economics, School of Business and Economics, Maastricht
University, Maastricht, The Netherlands
e-mail: s.smeekes@maastrichtuniversity.nl; e.wijler@maastrichtuniversity.nl

© Springer Nature Switzerland AG 2020
P. Fuleky (ed.), Macroeconomic Forecasting in the Era of Big Data,
Advanced Studies in Theoretical and Applied Econometrics 52,
https://doi.org/10.1007/978-3-030-31150-6_17

541

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31150-6_17&domain=pdf
mailto:s.smeekes@maastrichtuniversity.nl
mailto:e.wijler@maastrichtuniversity.nl
https://doi.org/10.1007/978-3-030-31150-6_17


542 S. Smeekes and E. Wijler

& Ng, 2016) already come with pre-determined transformation codes to achieve
stationarity. While this approach appears to be conceptually simple, we will argue in
this chapter that there are apparently minor issues that are often ignored in practice,
but which can have a big impact on the performance of consequent forecasts, in
particular when working with less established datasets.

The second approach is to model unit root and cointegration properties directly.
In small systems, this is commonly done through vector error correction models
(VECM), often using the popular maximum likelihood methodology developed by
Johansen (1995b). The rationale for this seemingly more complicated approach
is that ignoring long-run relations between the variables, as is done in the first
approach, means not incorporating all information into the forecaster’s model,
which may have a detrimental effect on the forecast quality. Extending these
techniques for modelling cointegration to high-dimensional settings requires a
careful rethink of how cointegration can be viewed in high dimensions, and is an
ongoing area of research. We will discuss recent contributions in this area and
analyse the respective merits and drawbacks of each method.

While the importance of the concept of cointegration for macroeconometric anal-
ysis cannot be understated, one might argue that for the specific goal of forecasting it
is not crucial. In the low-dimensional time series literature a large body of literature
exists which compares the relative merits of the two philosophical approaches for
forecasting, see, for instance, Clements and Hendry (1995), Christoffersen and
Diebold (1998), Diebold and Kilian (2000) and the references therein. Generally, the
conclusion is mixed, with the performance of each approach varying depending on
forecast horizon, dimensions of the models, estimation accuracy and even specific
applications and datasets. As this is no different in a high-dimensional context, we
make no attempt to classify one of these approaches as superior. Instead, we aim to
provide the practitioner with an overview of tools available to follow either line of
thought.

One could discern a third approach to unit roots and cointegration, which is to
ignore unit roots all together and estimate all forecasting models in levels. While
this approach is at first glance close to the first approach and one might have valid
reasons to prefer this approach, we do not recommend this in high-dimensional
problems. If cointegration is not present in (parts of) the data, these methods may
be very sensitive to spurious regression. The higher the dimensions of the data, the
more likely that spurious regression becomes an issue. In particular, given that many
methods discussed in this book perform some sort of dimensionality reduction or
variable selection, this may actually increase the likelihood of obtaining spurious
results. For instance, Smeekes and Wijler (2018b) investigate the sensitivity of
penalized regression methods to spurious results, and find that their variable selec-
tion mechanisms cannot properly distinguish between cointegrated and spurious
regressors. Low-dimensional solutions such as always including lagged levels to
avoid spurious regression are not possible in high-dimensional systems, as it would
require including too many variables, and the applied dimensionality reduction or
variable selection techniques might not be able to retain the lagged levels in the
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model. As such, we do not consider the approach of estimating everything in levels
further in this chapter.1

We also illustrate the discussed methods by two empirical applications. In
the first we forecast several US macroeconomic variables using the FRED-MD
database. This application tests the methods in a known macroeconomic context,
thus serving as a benchmark. In our second application, we consider nowcasting
unemployment using a dataset constructed from Google Trends with frequencies
of unemployment-related search terms. This second application not only serves to
highlight the potential of ‘modern’ Big Data sources for macroeconomic forecast-
ing, but also illustrates that in such Big Data applications, we have little theoretical
guidance to decide on unit root and cointegration properties, and proper data-driven
methods are needed.

Note that, as is common in the related high-dimensional literature, we focus
explicitly on point forecasts. As distributional theory changes when unit roots
are present, performing interval forecasts in the presence of unit roots and coin-
tegration is a much more challenging—and largely unresolved—issue in the
high-dimensional setting, especially as it adds to the complications of performing
inference in high dimensions already present without unit roots. Given the scarcity
of literature on this topic, we do not consider interval prediction in this chapter. This
is clearly a very important avenue for future research.

The remainder of this chapter is organized as follows: Section 17.2 describes the
general setup and introduces the cointegration model, along with some useful rep-
resentations for later use. We discuss how to transform high-dimensional datasets to
stationarity in Sect. 17.3, while Sect. 17.4 introduces high-dimensional approaches
for modelling cointegration. In Sect. 17.5 we apply the discussed methods to our
two empirical forecasting exercises. Finally, Sect. 17.6 concludes.

17.2 General Setup

In this section we describe a general model for cointegration to be used throughout
this chapter. Next to defining the model in the classical error correction form, we
also consider alternative representations that will be useful later in this chapter. As
is common in the literature, we denote a time series as I (d) if it has to be differenced
d times to achieve stationarity, and we will use I (1) interchangeably with a unit root
process, and I (0) with a stationary process.2

1Obviously, this caveat does not mean that forecasting in levels does not yield good results for
specific applications. The applied researcher is free to apply any of the methods discussed in this
book directly to (suspected) unit root series, but should simply be wary of the results.
2In fact, I (0) processes can be non-stationary, for example, through having time-varying uncondi-
tional variance. For ease of explanation we still use ‘stationary’ to describe I (0) processes though.
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Let zt denote an N -dimensional time series observed at time t = 1, . . . , T .
Assume that we can represent the series as

zt = μ+ τ t + ζ t , (17.1)

where μ is an N -dimensional vector of intercepts, τ is an n-dimensional vector
of trend slopes, and ζ t is the N -dimensional purely stochastic time series. This
stochastic component is given by

�ζ t = AB ′ζ t−1 +
p∑

j=1


j�ζ t−j + εt , (17.2)

where εt is the N -dimensional innovation vector. Generally the innovations εt will
be a martingale difference sequence, although we abstract from making too specific
assumptions at this point.

We can obtain the classical vector error correction model (VECM) for zt by
substituting (17.1) into (17.2):

�zt = AB ′ (zt−1 −μ− τ (t − 1))+ τ ∗ +
p∑

j=1


j�zt−j + εt , (17.3)

where τ ∗ = (IN −∑p

j=1 
j )τ . The long-run relations are contained in the N × r-
matrix B, while the N × r matrix A contains the corresponding loadings. Here the
variable r describes the number of cointegrating relations in the systems. If r = 0,
we adopt the convention that AB ′ = 0; in this case zt is a pure N -dimensional
unit root process. If r = N , all series are I (0). To ensure that zt is at most an
I (1) process, the lag polynomial C(z) := (1− z)− AB ′z −∑p

j=1 
j (1− z)zj
and matrices A and B should satisfy standard conditions that can be found in, inter
alia, Johansen (1995b). Under these assumptions, exactly N − r roots of the lag
polynomial C(z) are equal to unity, while the remaining r roots lie outside the unit
circle.

The typical interpretation of the VECM is that all series are I (1), but r
linear combinations of the series are I (0). However, it may also be the case that
some individual series within the VECM are actually I (0); these define ‘trivial’
cointegration relations as any linear combination of these series remain I (0). Thus
the setup allows for observing a dataset with a mix of I (0) and I (1) series.

From the Granger Representation Theorem (cf. Johansen, 1995b, p. 49), we can
obtain the common trend representation of (17.3), which is given by

zt = μ+ τ t +Cst + ut , (17.4)
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where C is an N ×N matrix of rank N − r ,3 st =∑t
i=1 εt are the stochastic trends

and ut is a stationary process. This representation shows that zt can be decomposed
in a deterministic process, an I (1) part of common trends, Cst , and a stationary
part ut .

To see the commonality of the trends, note that as C is of reduced rank, we
can define N × (N − r) matrices � and � such that C = ��′. Then defining the
N − r × 1-vector f t = �′st , we can write (17.4) as

zt = μ+ τ t +�f t + ut . (17.5)

We can now see the common trends as common factors, which provides a convenient
way to think about cointegration in high dimensions.

This brings us to an alternative way to represent cointegration through a common
factor structure from the outset. This form was considered by Bai and Ng (2004)
among others to investigate different sources of nonstationarity in a panel data
context. In this case we start from (17.5), assuming that the elements of both f t and
ut can be I (0) or I (1). The combination of the two then determines the properties
of the series zt . Consider a single series zi,t , which can be represented as

zi,t = μi + τi t + λ′if t + ui,t ,

where λ′i denotes the i-th row of �. Note that zi,t is I (0) only if both ui,t and λ′if t
are I (0), where the latter occurs if either all factors f t are I (0), or no I (1) factors
load on series i. Similarly, cointegration between series i and j requires that both
ui,t and uj ,t are I (0).

Remark 17.1 For expositional simplicity we do not consider I (2) variables here.
While the VECM can be extended to allow for I (2) series, see, e.g. Johansen
(1995a), in practice most cointegration analyses are performed on I (1) series. If
the data contains (suspected) I (2) series, these are generally differenced before
commencing the cointegration analysis.

Similarly, one could think of the data generating process (DGP) as being of
infinite lag order, rather than fixed order p. In this case the VECM with fixed order
can be thought of as an approximation to the infinite order model, where p should be
large enough to capture ‘enough’ of the serial correlation. Either way, in applications
p is generally not known and has to be estimated.

3If r = 0, we set C = 0.
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17.3 Transformations to Stationarity and Unit Root
Pre-testing

In this section we discuss how to determine the appropriate transformations—in
particular how often the series need to be differenced—in order to obtain only
stationary time series in our dataset. While established datasets, such as the FRED-
MD, come with an overview of the appropriate transformation for each series, this
is generally not the case and data-driven methods are needed. Thus, one normally
has to apply unit root or stationarity tests to determine the order of integration, and
the corresponding transformation. In this section we investigate how to approach
this pre-testing problem.

First, we investigate unit root tests in more detail, and highlight some of their
characteristics that one should take into account when considering high-dimensional
macroeconomic forecasting. Second, we discuss how to deal with the multiple
testing problem that arises from the fact that we need to combine unit root tests
on many time series.

17.3.1 Unit Root Test Characteristics

Even though the literature on unit root testing has grown exponentially since the
seminal paper of Dickey and Fuller (1979), discussing at length the characteristics
of various unit root tests, unit root pre-testing is often done in an automatic,
routine-like, way by considering classical tests such as augmented Dickey–Fuller
(ADF) tests. However, these tests have various problematic characteristics which
may accumulate when applied in high-dimensional problems. While we cannot
discuss all of these here, let us briefly mention some of particular relevance for
macroeconomic forecasting. An extensive overview of unit root testing is provided
by Choi (2015).4

Size Distortions

Standard unit root tests are very prone to size distortions. One source is neglected
serial correlation (cf. Schwert, 1989), while another is time-varying volatility
(Cavaliere, 2005). For both sources, bootstrap methods have proven a successful
means to counteract the size distortions; however, while for serial correlation any
‘off-the-shelf’ time series bootstrap method can be used (see Palm, Smeekes, and
Urbain, 2008, for an overview and comparison), dealing with general forms of

4Given the greater popularity of tests where the null hypothesis is a unit root over tests with
stationarity as the null, we focus exclusively on unit root tests here. However, most of the discussion
applies to stationarity tests as well.
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heteroskedasticity requires a unit root test based on the wild bootstrap (Cavaliere
& Taylor, 2008, 2009).

It should be noted that unconditional volatility changes pose a particular con-
cern for macroeconomic time series. Many datasets such as FRED-MD span the
period of the Great Moderation, which has significantly affected the volatility of
macroeconomic time series (Justiniano & Primiceri, 2008; Stock & Watson, 2003).
It would therefore appear wise to take potential volatility changes into account when
selecting an appropriate unit root test.

Power and Specification Considerations

The power properties of the different unit root tests proposed vary considerably,
and generally optimal tests do not exist. One particular source of variation is the
magnitude of the initial condition, where, for instance, the DF-GLS test of Elliott,
Rothenberg, and Stock (1996) is optimal when the initial condition is zero, but
the ADF test is much more powerful when the initial condition is large (Müller
& Elliott, 2003). An even larger source of variation is the presence or absence of a
deterministic trend. Unit root tests with a trend included (or, equivalently, unit root
tests performed on detrended data) are considerably less powerful than without trend
(performed on demeaned data). On the other hand, if a trend is not included when
the data do contain one, the unit root test is not correctly sized anymore (Harvey,
Leybourne, & Taylor, 2009).

While dealing with such issues is manageable in unit root testing for a single
series, this changes when considering large datasets. For instance, deciding whether
to include a trend in the unit root test can be based on a combination of theory, visual
inspection, pre-testing and comparing outcomes of different tests with or without a
trend. However, such an analysis has to be done manually for each series involved,
which quickly becomes problematic if the dimension of the dataset increases. This is
even more problematic for modern Big Datasets, such as Google Trends, for which
no theory exists to guide the practitioner, and where the dimension can become
arbitrarily large.

As such one would like to have an automatic way of choosing good specifications
for the unit root tests that may differ across series. One easy way is provided by
the union of unit root tests principle proposed by Harvey et al. (2009), Harvey,
Leybourne, & Taylor (2012), in which several unit root tests are performed, and
the unit root null hypothesis is rejected if one of the tests rejects (when corrected for
multiple testing). In particular, Harvey et al. (2012) consider a union of the ADF and
DF-GLS tests, both with and without linear trend, to cover uncertainty about both
trend and initial condition. Smeekes and Taylor (2012) consider a wild bootstrap
version of this test that is robust to time-varying volatility. The test statistic for
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series i takes the form

URi = min

((
xi

c
μ∗
i,GLS(α)

)
GLS

μ
i ,

(
xi

cτ∗i,GLS(α)

)
GLSτi ,

(
xi

c
μ∗
i,ADF (α)

)
ADF

μ
i ,

(
xi

cτ∗i,ADF (α)

)
ADFτi

)
,

(17.6)

where ADFi and GLSi are the ADF and DF-GLS test performed on series i,
while superscript μ and τ indicate whether the series are demeaned or detrended,
respectively. The bootstrap critical values such as cμ∗i,GLS(α) used in the scaling
factors are determined in a preliminary bootstrap step as the individual level α
critical values of the four tests. The variable xi is a scaling factor to which the
statistics are scaled. Any xi < 0 suffices to preserve the left-tail rejection region;
if one additionally takes xi the same value for all series i, test statistics become
comparable across series, which facilitates the multiple comparisons discussed in
the next subsection.

17.3.2 Multiple Unit Root Tests

Performing a unit root test for every series separately raises issues associated with
multiple testing. In particular, the probability of incorrect classifications rises with
the number of tests performed. If each test has a significance level of 5%, we may
also expect roughly 5% of the I (1) series to be incorrectly classified as I (0). In a
high-dimensional dataset this can quickly lead to a significant number of incorrectly
classified series. It will of course depend on the specific application whether this is
problematic—a priori we cannot say whether the ‘important’ series will be correctly
classified or not—but to avoid such issues one can formally account for multiple
testing.

There is a huge statistical literature about multiple testing; Romano, Shaikh, and
Wolf (2008b) provide an overview with a focus on econometric applications. Here
we briefly discuss the most prominent methods developed for the purposes of unit
root testing. Before discussing the different methods to control for multiple testing,
let us set up the general framework. Let UR1, . . . ,URN denote the unit root test
statistics for series 1 up toN , assuming they reject for small values of the statistics.5

It is important to choose the test statistics such that they are directly comparable, in
the sense that their marginal distributions are the same. If this is the case, then the

5We can assume this without loss of generality as any test statistic can be modified to indeed do
so.
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ranking

UR(1) ≤ . . . ≤ UR(R) ≤ UR(R+1) ≤ . . . ≤ UR(N), (17.7)

where UR(i) denotes the i-th order statistic of UR1, . . . ,URN , corresponds to a
ranking from ‘most significant’ to ‘least significant’. To ensure the comparability of
the test statistics, one needs to eliminate nuisance parameters from their distribution.
Hence, simply using the bootstrap to absorb nuisance parameters is not sufficient;
instead, one often needs to transform (for instance, to p-values) or scale the statistics
appropriately. In the union tests of (17.6), the scaling is done automatically by
setting xi = −1 for all units.

Given the ranking in (17.7), the objective is to find an appropriate cut-off point
R such that for all statistics less than or equal UR(R) the unit root hypothesis
is rejected, and for all statistics larger it is not rejected. How this threshold is
determined depends on how multiple testing is controlled for.

Controlling Generalized Error Rates

Generalized error rates provide multivariate extensions of the standard Type I error.
The most common is the familywise error rate (FWE), which is defined as the
probability of making at least one false rejection of the null hypothesis. This can
easily be controlled by the popular Bonferroni correction. However, this is very
conservative as it is valid under any form of dependence. On the contrary, if the
bootstrap is used to capture the actual dependence structure among the tests, one can
control for multiple testing without the need for being conservative. This approach
is followed by Hanck (2009), who controls FWE in unit root testing by applying the
bootstrap algorithm proposed by Romano and Wolf (2005).

While controlling FWE makes sense when N is small, in typical high-
dimensional datasets FWE becomes too conservative. Instead, one can control
the false discovery rate (FDR) originally proposed by Benjamini and Hochberg
(1995), which is defined as

FDR = E

[
F

R
1(R > 0)

]
,

whereR denotes the total number of rejections, and F the number of false rejections.
The advantage of the FDR is that it scales with increasing N , and thus is more
appropriate for large datasets. However, most non-bootstrap methods are either not
valid under arbitrary dependence or overly conservative. Moon and Perron (2012)
compare several methods to control FDR and find that the bootstrap method of
Romano, Shaikh, and Wolf (2008a), hereafter denoted as BFDR, does not share
these disadvantages and clearly outperforms the other methods. A downside of this
method however is that the algorithm is rather complicated and time-consuming
to implement. Globally, the algorithm proceeds in a sequential way by starting
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to test the ‘most significant’ series, that is, the smallest unit root test statistic.
This statistic is then compared to an appropriate critical values obtained from the
bootstrap algorithm, where the bootstrap evaluates all scenarios possible in terms
of false and true rejections given the current progression of the algorithm. If the
null hypothesis can be rejected for the current series, the algorithm proceeds to the
next most significant statistic and the procedure is repeated. Once a non-rejection
is observed, the algorithm stops. For details we refer to Romano et al. (2008a).
This makes the bootstrap FDR method a step-down method, contrary to the original
Benjamini and Hochberg (1995) approach which is a step-up method starting from
the least significant statistic.

Sequential Testing

Smeekes (2015) proposes an alternative bootstrap method for multiple unit root
testing based on sequential testing. In a first step, the null hypothesis that all N
series are I (1)—hence p1 = 0 series are I (0)—is tested against the alternative that
(at least) p2 series are I (0). If the null hypothesis is rejected, the p2 most significant
statistics in (17.7) are deemed I (0) and removed from consideration. Then the null
hypothesis that all remaining N −p2 series are I (1) is tested against the alternative
that at least p2 of them are I (0), and so on. If no rejections are observed, the final
rounds test pK I (0) series against the alternative of N I (0) series. The numbers
p2, . . . ,pK as well as the number of tests K are chosen by the practitioner based
on the specific application at hand. By choosing the numbers as pk = [qkN ], where
q1, . . . , qK are desired quantiles, the method automatically scales with N .

Unlike the BFDR method, this Bootstrap Sequential Quantile Test (BSQT) is
straightforward and fast to implement. However, it is dependent on the choice of
numbers pk to be tested; its ‘error allowance’ is therefore of a different nature to
error rates like FDR. Smeekes (2015) shows that, when pJ units are found to be
I (0), the probability that the true number of I (0) series lies outside the interval
[pJ−1,pJ+1] is at most the chosen significance level of the test. As such, there is
some uncertainty around the cut-off point.

It might therefore be tempting to choose pk = k − 1 for all k = 1, . . . ,N ,
such that this uncertainty disappears. However, as discussed in Smeekes (2015),
applying the sequential method to each series individually hurts power if N is large
as it amounts to controlling FWE. Instead, a better approach is to iterate the BSQT
method; that is, it can be applied in a second stage just to the interval [pJ−1,pJ+1]
to reduce the uncertainty. This can be iterated until few enough series remain to
be tested individually in a sequential manner. On the other hand, if p1, . . . ,pK are
chosen sensibly and not spaced too far apart, the uncertainty is limited to a narrow
range around the ‘marginally significant’ unit root tests. These series are at risk of
missclassification anyway, and the practical consequences of incorrect classification
for these series on the boundary of a unit root are likely small.

Smeekes (2015) performs a Monte Carlo comparison of the BSQT and BFDR
methods, as well as several methods proposed in the panel data literature such as Ng
(2008) and Chortareas and Kapetanios (2009). Globally BSQT and BFDR clearly
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outperform the other methods, where BFDR is somewhat more accurate than BSQT
when the time dimension T is at least of equal magnitude as the number of series
N . On the other hand, when T is much smaller than N BFDR suffers from a lack
of power and BSQT is clearly preferable. In our empirical applications we will
therefore consider both BFDR and BSQT, as well as the strategy of performing
individual tests without controlling for multiple testing.

Remark 17.2 An interesting non-bootstrap alternative is the panel method proposed
by Pedroni, Vogelsang, Wagner, and Westerlund (2015), which has excellent
performance in finite samples. However, implementation of this method requires
that T is strictly larger than N , thus severely limiting its potential for analysing Big
Data. Another alternative would be to apply the model selection approach through
the adaptive lasso by Kock (2016) which avoids testing all together. However, this
has only been proposed in a univariate context and its properties are unknown for
the type of application considered here.

Multivariate Bootstrap Methods

All multiple testing methods described above require a bootstrap method that can
not only account for dependence within a single time series, but can also capture
the dependence structures between series. Accurately modelling the dependence
between the individual test statistics is crucial for proper functioning of the multiple
testing corrections. Capturing the strong and complex dynamic dependencies
between macroeconomic series requires flexible bootstrap methods that can handle
general forms of dependence.

Moon and Perron (2012) and Smeekes (2015) use the moving-blocks bootstrap
(MBB) based on the results of Palm, Smeekes, and Urbain (2011) who prove validity
for mixed I (1)/I (0) panel datasets under general forms of dependence. However
the MBB has two disadvantages. First, it can only be applied to balanced datasets
where each time series is observed over the same period. This makes application
to datasets such as FRED-MD difficult, at least without deleting observations for
series that have been observed for a longer period. Second, the MBB is sensitive to
unconditional heteroskedasticity, which makes its application problematic for series
affected by the Great Moderation.

Dependent wild bootstrap (DWB) methods address both issues while still being
able to capture complex dependence structure. Originally proposed by Shao (2010)
for univariate time series, they were extended to unit root testing by Smeekes and
Urbain (2014a) and Rho and Shao (2019), where the former paper considers the
multivariate setup needed here. A general wild bootstrap algorithm for multivariate
unit root testing looks as follows:

1. Detrend the series {zt } by OLS; that is, let ζ̂ t = (̂ζ1,t , . . . , ζ̂N )′, where

ζ̂i,t = zi,t − μ̂i − τ̂i t , i = 1, . . . ,N , t = 1, . . . , T

and (μ̂i , τ̂i )′ are the OLS estimators of (μi , τi)′.
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2. Transform ζ̂ t to a multivariate I (0) series ût = (̂u1,t , . . . , ûN ,t )
′ by setting

ûi,t = ζ̂i,t − ρ̂i ζ̂i,t−1, i = 1, . . . ,N , t = 1, . . . , T ,

where ρ̂i is either an estimator of the largest autoregressive root of {̂ζi,t } using,
for instance, an (A)DF regression, or ρ̂i = 1.

3. Generate a univariate sequence of dependent random variables ξ∗1 , . . . , ξ∗N with
the properties that E∗ξ∗t = 0 and E

∗ξ∗2
t = 1 for all t . Then construct bootstrap

errors u∗t = (u∗1,t , . . . , u
∗
N ,t )

′ as

u∗i,t = ξ∗t ûi,t , i = 1, . . . ,N , t = 1, . . . , T . (17.8)

4. Let z∗t = ∑t
s=1 u∗s and calculate the desired unit root test statistics

UR∗1 , . . . ,UR∗N from {z∗t }. Use these bootstrap test statistics in an appropriate
algorithm for controlling multiple testing.

Note that, unlike for the MBB, in (17.8) no resampling takes place, and as such
missing values ‘stay in their place’ without creating new ‘holes’ in the bootstrap
samples. This makes the method applicable to unbalanced panels. Moreover,
heteroskedasticity is automatically taken into account by virtue of the wild bootstrap
principle. Serial dependence is captured through the dependence of {ξ∗t }, while
dependence across series is captured directly by using the same, univariate, ξ∗t
for each series i. Smeekes and Urbain (2014a) provide theoretical results on the
bootstrap validity under general forms of dependence and heteroskedasticity.

There are various options to draw the dependent {ξ∗t }; Shao (2010) proposes to
draw these from a multivariate normal distributions, where the covariance between
ξ∗s and ξ∗t is determined by a kernel function with as input the scaled distance
|s − t |/�. The tuning parameter � serves as a similar parameter as the block length
in the MBB; the larger it is, the more serial dependence is captured. Smeekes and
Urbain (2014a) and Friedrich, Smeekes, and Urbain (2018) propose generating {ξ∗t }
through an AR(1) process with normally distributed innovations and AR parameter
γ , where γ is again a tuning parameter that determines how much serial dependence
is captured. They label this approach the autoregressive wild bootstrap (AWB), and
show that the AWB generally performs at least as well as Shao’s (2010) DWB in
simulations.

Finally, one might consider the sieve wild bootstrap used in Cavaliere and Taylor
(2009) and Smeekes and Taylor (2012), where the series {̂ut } are first filtered
through individual AR processes, and the wild bootstrap is applied afterwards to the
residuals. However, as Smeekes and Urbain (2014b) show that this method cannot
capture complex dynamic dependencies across series, it should not be used in this
multivariate context. If common factors are believed to be the primary source of
dependence across series, factor bootstrap methods such as those considered by
Trapani (2013) or Gonçalves and Perron (2014) could be used as well.
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17.4 High-Dimensional Cointegration

In this section, we discuss various recently proposed methods to model high-
dimensional (co)integrated datasets. Similar to the high-dimensional modelling of
stationary datasets, two main modelling approaches can be distinguished. One
approach is to summarize the complete data into a much smaller and more
manageable set through the extraction of common factors and their associated
loadings, thereby casting the problem into the framework represented by (17.5).
Another approach is to consider direct estimation of a system that is fully specified
on the observable data as in (17.3), under the implicit assumption that the true DGP
governing the long- and short-run dynamics is sparse, i.e. the number of non-zero
coefficients in said relationships is small. These two approaches, however, rely on
fundamentally different philosophies and estimation procedures, which constitute
the topic of this section.6

17.4.1 Modelling Cointegration Through Factor Structures

Factor models are based on the intuitive notion that all variables in an economic
system are driven by a small number of common shocks, which are often thought
of as representing broad economic phenomena such as the unobserved business
cycle. On (transformed) stationary macroeconomic datasets, the extracted factors
have been successfully applied for the purpose of forecasting by incorporating
them in dynamic factor models (Forni, Hallin, Lippi, & Reichlin, 2005), factor-
augmented vector autoregressive (FAVAR) models (Bernanke, Boivin, & Eliasz,
2005) or single-equation models (Stock & Watson, 2002a,b). We refer to Chaps. 2
and 3 of this book for further details on these methods. Recent proposals are
brought forward in the literature that allow for application of these techniques
on non-stationary and possibly cointegrated datasets. In Sect. 17.4.1 the dynamic
factor model proposed by Barigozzi, Lippi, and Luciani (2017, 2018) is discussed
and Sect. 17.4.1 details the factor-augmented error correction model by Banerjee,
Marcellino, and Masten (2014, 2016). As both approaches require an a priori choice
on the number of common factors, we briefly discuss estimation of the factor
dimension in Sect. 17.4.1.

6Some recent papers such as Onatski and Wang (2018) and Zhang, Robinson, and Yao (2018)
have taken different, novel approaches to high-dimensional cointegration analysis. However, these
methods do not directly lend themselves to forecasting and are therefore not discussed in this
chapter.
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Dynamic Factor Models

A popular starting point for econometric modelling involving common shocks is the
specification of a dynamic factor model. Recall our representation of an individual
time series by

zi,t = μi + τi t + λ′if t + ui,t , (17.9)

where f t is the N − r × 1 dimensional vector of common factors. Given a set of
estimates for the unobserved factors, say f̂ t for t = 1, . . . , T , one may directly
obtain estimates for the remaining parameters in (17.9) by solving the least-squares
regression problem7

(
μ̂, τ̂ , �̂

)
= arg min

μ,τ ,�

T∑

t=1

(
zt −μ− τ t −�f̂ t

)2
. (17.10)

The forecast for the realization of an observable time series at time period T + h
can then be constructed as

ẑi,T+h|T = μ̂i + τ̂i (T + h)+ λ̂i f̂ T+h|T . (17.11)

This, however, requires the additional estimate f̂ T+h|T , which may be obtained
through an explicit dynamic specification of the factors.

Barigozzi et al. (2018) assume that the differenced factors admit a reduced-rank
vector autoregressive (VAR) representation, given by

S(L)�f t = C(L)νt , (17.12)

where S(L) is an invertible N − r × N − r matrix polynomial and C(L) is a
finite degree N − r × q matrix polynomial. Furthermore, νt is a q × 1 vector of
white noise common shocks with N − r > q. Inverting the left-hand side matrix
polynomial and summing both sides gives rise to the specification

f t = S−1(L)C(L)

t∑

s=1

νs = U(L)

t∑

s=1

νs = U(1)
t∑

s=1

νs +U∗(L) (νt − ν0) ,

(17.13)

where the last equation follows from application of the Beveridge–Nelson decom-
position to U(L) = U(1)+ U∗(L)(1− L). Thus, (17.13) reveals that the factors
are driven by a set of common trends and stationary linear processes. Crucially,

7Typically, the estimation procedure for f̂ t provides the estimates �̂ as well, such that only the
coefficients regulating the deterministic specification ought to be estimated.



17 Unit Roots and Cointegration 555

the assumption that the number of common shocks is strictly smaller than the
number of integrated factors, i.e. f t is a singular stochastic vector, implies that
rank (U(1)) = q − d for 0 ≤ d < q. Consequently, there exists a full column rank
matrix Bf of dimension N − r ×N − r − q + d with the property that B ′f f t is
stationary. Then, under the general assumption that the entries of U(L) are rational
functions of L, Barigozzi et al. (2017) show that f t admits a VECM representation
of the form

�f t = AfB ′f f t−1 +
p∑

j=1

Gj�f t−j +Kνt , (17.14)

where K is a constant matrix of dimension N − r × q.
Since the factors in (17.14) are unobserved, estimation of the system requires

the use of a consistent estimate of the space spanned by f t . Allowing idiosyncratic
components νi,t in (17.9) to be either I (1) or I (0), and allowing for the presence of a
non-zero constant μi and linear trend τi , Barigozzi et al. (2018) propose an intuitive
procedure that enables estimation of the factor space by the method of principal
components. First, the data is detrended with the use of a regression estimate:

z̃i,t = zi,t − τ̂i t ,

where τ̂i is the OLS estimator of the trend in the regression of zi,t on an intercept
and linear trend. Then, similar to the procedure originally proposed by Bai and Ng
(2004), the factor loadings are estimated as �̂ = √NŴ , where Ŵ is the N × (N −
r) matrix with normalized right eigenvectors of T −1∑T

t=1�z̃t�z̃′t corresponding
to the N − r largest eigenvalues. The estimates for the factors are given by f̂ t =
1
N

�̂
′
z̃t .

Plugging f̂ t into (17.14) results in

�f̂ t = AfB ′f f̂ t−1 +
p∑

j=1

Gj�f̂ t−j + ν̂t , (17.15)

which can be estimated using standard approaches, such as the maximum likelihood
procedure proposed by Johansen (1995b). Afterwards, the iterated one-step-ahead
forecasts �f̂ T+1|T , . . . ,�f̂ T+h|T are calculated from the estimated system, based

on which the desired forecast f̂ T+h|T = f̂ T +
∑h
k=1�f̂ T+k|T is obtained. The

final forecast for ẑi,T+h|T is then easily derived from (17.11).

Remark 17.3 Since the idiosyncratic components are allowed to be serially depen-
dent or even I (1), a possible extension is to explicitly model these dynamics. As a
simple example, each ui,t could be modelled with a simple autoregressive model,
from which the prediction ûi,T+h|T can be obtained following standard procedures
(e.g. Hamilton, 1994, Ch. 4). This prediction is then added to (17.11), leading to the



556 S. Smeekes and E. Wijler

final forecast

ẑi,T+h|T = μ̂i + τ̂i (T + h)+ λ̂i f̂ T+h|T + ûi,T+h|T .

This extension leads to substantial improvements in forecast performance in the
macroeconomic forecast application presented in Sect. 17.5.

Factor-Augmented Error Correction Model

It frequently occurs that the variables of direct interest constitute only a small
subset of the collection of observed variables. In this scenario, Banerjee et al. (2014,
2016), Banerjee, Marcellino, and Masten (2017), henceforth referred to as BMM,
propose to model only the series of interest in a VECM system while including
factors extracted from the full dataset to proxy for the missing information from the
excluded observed time series.

The approach of BMM can be motivated starting from the common trend
representation in (17.4). Partition the observed time series zt = (z′A,t , z

′
B,t )

′,
where zA,t is an NA × 1 vector containing the variables of interest. Then, we may
rewrite (17.4) as

[
zA,t

zB,t

]
=
[
μA
μB

]
+
[
τA

τB

]
t +
[
�A

�B

]
f t +

[
uA,t

uB,t .

]
(17.16)

The idiosyncratic components in (17.16) are assumed to be I (0).8 Furthermore,
both non-stationary I (1) factors and stationary factors are admitted in the above
representation. Contrary to Barigozzi et al. (2017), BMM do not require the factors
in (17.16) to be singular.

To derive a dynamic representation better suited to forecasting the variables of
interest, Banerjee et al. (2014, 2017) use the fact that when the subset of variables
is of a larger dimension than the factors, i.e. NA > N − r , zA,t and f t cointegrate.
As a result, the Granger Representation Theorem implies the existence of an error
correction representation of the form

[
�zA,t

f t

]
=
[
μA
μf

]
+
[
τA

τf

]
t +
[
AA

AB

]
B ′
[
zA,t−1

f t−1

]
+
[
eA,t

ef ,t

]
. (17.17)

8In principle, the proposed estimation procedure remains feasible in the presence of I (1) idiosyn-
cratic components. The theoretical motivation, however, relies on the concept of cointegration
between the observable time series and a set of common factors. This only occurs when the
idiosyncratic components are stationary.
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To account for serial dependence in (17.17), Banerjee et al. (2014) propose the
approximating model

[
�zA,t

f t

]
=
[
μA
μf

]
+
[
τA

τf

]
t +
[
AA

AB

]
B ′
[
zA,t−1

f t−1

]
+

p∑

j=1


j

[
�zA,t−j
�f t−j

]
+
[
εA,t

εf ,t

]
,

(17.18)

where the errors
(
ε′A,t , ε

′
f ,t

)′
are assumed i.i.d.

Similar to the case of the dynamic factor model in Sect. 17.4.1, the factors in
the approximating model (17.18) are unobserved and need to be replaced with their
corresponding estimates f̂ t . Under a set of mild assumptions, Bai (2004) shows that
the space spanned by f t can be consistently estimated using the method of principal
components applied to the levels of the data. Assume that f t =

(
f ′ns,t , f ′s,t

)′ where
f ns,t and f s,t contain rns non-stationary and rs stationary factors, respectively.
Let Z = (z1, . . . , zT ) be the (N × T ) matrix of observed time series. Then,
Bai (2004) shows that f ns,t is consistently estimated by f̂ ns,t , representing the
eigenvectors corresponding to the rns largest eigenvalues of Z′Z, normalized such

that 1
T 2

∑T
t=1 f̂ ns,t f̂

′
ns,t = I . Similarly, f s,t is consistently estimated by f̂ s,t ,

representing the eigenvectors corresponding to the next rs largest eigenvalues of

Z′Z, normalized such that 1
T

∑T
t=1 f̂ s,t f̂

′
s,t = I .

The final step in the forecast exercise consists of plugging in f̂ t =
(
f̂
′
ns,t , f̂

′
s,t

)′

into (17.18), leading to

[
�zA,t

f̂ t

]
=
[
μA
μf

]
+
[
τA

τf

]
t +
[
AA

AB

]
B ′
[
zA,t−1

f̂ t−1

]
+

p∑

j=1


j

[
�zA,t−j
�f̂ t−j

]
+
[
εA,t

εf ,t

]
.

(17.19)

Since in typical macroeconomic applications the number of factors is relatively
small, feasible estimates for (17.19) can be obtained from the maximum likelihood
procedure of Johansen (1995b). The iterated one-step-ahead forecasts�ẑA,T+1|T to
�ẑA,T+h|T are calculated from the estimated system, which are then integrated to
obtain the desired forecast ẑA,T+h|T .

Estimating the Number of Factors

Implementation of the factor models discussed in this section requires an a priori
choice regarding the number of factors. A wide variety of methods to estimate
the dimension of the factors is available. The dynamic factor model of Barigozzi
et al. (2017, 2018) adopts the estimation strategy proposed by Bai and Ng (2004),
which relies on first differencing the data. Since, under the assumed absence of
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I (2) variables, all variables in this transformed dataset are stationary, the standard
tools to determine the number of factors in the stationary setting are applicable. A
non-exhaustive list is given by Bai and Ng (2002), Hallin and Liška (2007), Alessi,
Barigozzi, and Capasso (2010), Onatski (2010) and Ahn and Horenstein (2013).

The factor-augmented error correction model of Banerjee et al. (2014, 2016)
adopts the estimation strategy proposed by Bai and Ng (2004), which extracts the
factors from the data in levels. While the number of factors may still be determined
based on the differenced dataset, Bai (2004) proposes a set of information criteria
that allows for estimation of the number of non-stationary factors without differenc-
ing the data.

Conveniently, it is possible to combine factor selection procedures to separately
determine the number of non-stationary and stationary factors. For example, the
total number of factors, say rns + rs , can be found based on the differenced dataset
and one of the information criteria in Bai and Ng (2002). Afterwards, the number
of non-stationary factors, rns , is determined based on the data in levels using one
of the criteria from Bai (2004). The number of stationary factors follows from the
difference between the two criteria. Recently, Barigozzi and Trapani (2018) propose
a novel approach to discern the number of I (0) factors, zero-mean I (1) factors and
factors with a linear trend. Their method however requires that all idiosyncratic
components are I (0).

17.4.2 Sparse Models

Rather than extracting common factors, an alternative approach to forecasting with
macroeconomic data is full-system estimation with the use of shrinkage estimators
(e.g. De Mol, Giannone, & Reichlin 2008; Stock & Watson 2012; Callot & Kock
2014) as discussed in Chap. 7 of this book. The general premise of shrinkage
estimators is the so-called bias–variance trade-off, i.e. the idea that, by allowing
a relatively small amount of bias in the estimation procedure, a larger reduction in
variance may be attained. A number of shrinkage estimators, among which the lasso
originally proposed by Tibshirani (1996), simultaneously perform variable selection
and model estimation. Such methods are natural considerations when it is believed
that the data generating process is sparse, i.e. only a small subset of variables
among the candidate set is responsible for the variation in the variables of interest.
Obviously, such a viewpoint is in sharp contrast with the philosophy underlying the
common factor framework. However, even in cases where a sparse data generating
process is deemed unrealistic, shrinkage estimators can remain attractive due to their
aforementioned bias–variance trade-off (Smeekes & Wijler, 2018b).

For expositional convenience, we assume in this section that either μ and τ are
zero or that zt is demeaned and detrended. Defining � = AB ′, model (17.3) is then
given by

�zt = �zt−1 +
p∑

j=1


j�zt−j + εt ,
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which in matrix notation reads as

�Z = �Z−1 +
�X+E, (17.20)

where �Z = (�z1, . . . ,�zT ), Z−1 = (z0, . . . , zT−1), 
 = (

1, . . . , 
p

)
and

�X = (�x0, . . . ,�xT−1), with xt =
(
z′t , . . . , z′t−p+1

)′
.

Full-System Estimation

Several proposals to estimate (17.20) with the use of shrinkage estimators are
brought forward in recent literature. Liao and Phillips (2015) propose an automated
approach that simultaneously enables sparse estimation of the coefficient matrices
(�, 
), including the cointegrating rank of � and the short-run dynamic lag
order in 
. However, while the method has attractive theoretical properties, the
estimation procedure involves non-standard optimization over the complex plane
and is difficult to implement even in low dimensions, as also noted by Liang and
Schienle (2019). Accordingly, we do not further elaborate on their proposed method,
but refer the interested reader to the original paper.

Liang and Schienle (2019) develop an automated estimation procedure that
makes use of a QR-decomposition of the long-run coefficient matrix. They propose
to first regress out the short-run dynamics, by post-multiplying (17.20) with M =
IT −�X′

(
�X′�X

)−1
�X, resulting in

�Z̃ = �Z̃−1 + Ẽ, (17.21)

with �Z̃ = �ZM , Z̃−1 = Z−1M and Ẽ = EM . The key idea behind the method
proposed by Liang & Schienle is to decompose the long-run coefficient matrix into

�′ = QR,

where Q′Q = IN and R is an upper-triangular matrix. Such a representation can
be calculated from theQR-decomposition of � with column pivoting.

The column pivoting orders the columns in R according to size, such that zero
elements occur at the ends of the rows. As a result, the rank of � corresponds to the
number of non-zero columns in R. Exploiting this rank property requires an initial
estimator for the long-run coefficient matrix, such as the OLS estimator

�̂OLS =
(
�Z̃Z̃

′
−1

) (
Z̃−1Z̃

′
−1

)−1
,

proposed by Liang and Schienle (2019). The QR-decomposition with column
pivoting is then calculated from �̂

′
OLS , resulting in the representation �̂OLS =
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R̂
′
OLSQ̂

′
OLS .9 Since the unrestricted estimator �̂OLS will be full-rank, R̂OLS is a

full-rank matrix as well. However, by the consistency of �̂OLS and the ordering
induced by the column-pivoting step, the last N − r columns are expected to
contain elements that are small in magnitude. Accordingly, a well-chosen shrinkage
estimator that penalizes the columns of R may be able to separate the relevant from
the irrelevant columns.

The shrinkage estimator proposed by Liang and Schienle (2019) is given by

R̂ = arg min
R

∥∥∥�Z−R′Q̂′
Z−1

∥∥∥
2

2
+ λ

N∑

j=1

∥∥r̂j
∥∥

2

μ̂j
, (17.22)

where R̂ = (
r̂1, . . . , r̂N

)
, with r̂j =

(
r̂1,j , . . . , r̂N ,j

)′,
∥∥r̂j
∥∥

2 =
√∑N

i=1 r̂
2
i,j and

μ̂k =
√∑N

i=k r̂2
k,i . Furthermore, λ is a tuning parameter that controls the degree

of regularization, with larger values resulting in more shrinkage. Weighting the
penalty for each group by μ̂j puts a relatively higher penalty on groups for which
the initial OLS estimates are small. The estimator clearly penalizes a set of pre-
defined groups of coefficients, i.e. the columns of R, and, therefore, is a variant of
the group lasso for which numerous algorithms are available (e.g. Friedman, Hastie,
& Tibshirani, 2010a; Meier, Van De Geer, & Bühlmann, 2008; Simon, Friedman,
Hastie, & Tibshirani, 2013). The final estimate for the long-run coefficient matrix is

obtained as �̂ = R̂
′
Q̂
′
OLS .

The procedure detailed thus far focuses solely on estimation of the long-run
relationships and requires an a priori choice of the lag order p. Furthermore, a
necessary assumption is that initial OLS estimates are available, thereby restricting
the admissible dimension of the system to N(p + 1) < T . Within this restricted
dimension, the short-run coefficient matrix 
 can be consistently estimated by OLS
and the corresponding lag order may be determined by standard information criteria
such as the BIC. Alternatively, a second adaptive group lasso can be employed to

obtain the regularized estimates 
̂ =
(

̂1, . . . , 
̂p

)
, see Liang and Schienle (2019,

p. 425) for details. The lag order is then determined by the number of non-zero
matrices 
̂i for i ∈ {1, . . . ,p}.

Wilms and Croux (2016) propose a penalized maximum likelihood estimator to
estimate sparse VECMs. Instead of estimating the cointegrating rank and coefficient
matrices for a fixed lag order, the method of Wilms & Croux enables joint estimation
of the lag order and coefficient matrices for a given cointegrating rank. Additionally,
the penalized maximum likelihood procedure does not require the availability of
initial OLS estimates and, therefore, notwithstanding computational constraints, can

9As part of their theoretical contributions, Liang and Schienle (2019) show that the first r columns
of Q̂ consistently estimate the space spanned by the cointegrating vectors B in (17.3), in an
asymptotic framework where the dimension N is allowed to grow at rate T 1/4−ν for ν > 0.
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be applied to datasets of arbitrary dimension. Under the assumption of multivariate
normality of the errors, i.e. εt ∼ N (0, �), the penalized negative log-likelihood is
given by

L (A, B, 
, �) = 1

T
tr
(
(�Z−AB ′Z−1 −
�X)′�(�Z−AB ′Z−1 −
�X)

)

− log |�| + λ1P1(B)+ λ2P2(
)+ λ3P3(�),
(17.23)

where � = �−1, and P1, P2 and P3 being three penalty functions. The cointegrating
vectors, short-run dynamics and covariance matrix are penalized as

P1(B) =
N∑

i=1

r∑

j=1

∣∣βi,j
∣∣ , P2(
) =

N∑

i=1

Np∑

j=1

∣∣φi,j
∣∣ , P3(�) =

N∑

i,j=1,i �=j

∣∣ωi,j
∣∣ ,

respectively. The use of L1-penalization enables some elements to be estimated
as exactly zero. The solution that minimizes (17.23) is obtained through an
iterative updating scheme, where the solution for a coefficient matrix is obtained by
minimizing the objective function conditional on the remaining coefficient matrices.
The full algorithm is described in detail in Wilms and Croux (2016, pp. 1527–1528)
and R code is provided by the authors online.10

Single-Equation Estimation

Frequently, the forecast exercise is aimed at forecasting a small number of time
series based on a large number of potentially relevant variables. The means of data
reduction thus far considered utilize either data aggregation or subset selection.
However, in cases where the set of target variables is small, a substantial reduction
in dimension can be obtained through the choice of appropriate single-equation
representations for each variable separately.

Smeekes and Wijler (2018a) propose the penalized error correction selector
(SPECS) as an automated single-equation modelling procedure on high-
dimensional (co)integrated datasets. Assume that the N -dimensional observed
time series admits the decomposition zt = (yt , x′t )′, where yt is the variable of
interest and xt are variables that are considered as potentially relevant in explaining
the variation in yt . Starting from the VECM system (17.20), a single-equation
representation for �yt can be obtained by conditioning on the contemporaneous
differences �xt . This results in

�yt = δ′zt−1 + π ′wt + εy,t , (17.24)

10https://feb.kuleuven.be/public/u0070413/SparseCointegration/.

https://feb.kuleuven.be/public/u0070413/SparseCointegration/
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where wt = (�x′t ,�z′t−1, . . . ,�z′t−p)′.11 The number of parameters to be esti-
mated in the single-equation model (17.24) is reduced to N(p+ 2)− 1 as opposed
to the original N2(p + 1) parameters in (17.20). Nonetheless, for large N the total
number of parameters may still be too large to estimate precisely by ordinary least
squares, if possible at all. Therefore, Smeekes and Wijler propose a shrinkage
procedure defined as

δ̂, π̂ = arg min
δ,π

T∑

t=1

(
�yt − δ′zt−1 + π ′wt

)2 + Pλ(δ, π). (17.25)

The penalty function takes on the form

Pλ(δ, π) = λG ‖δ‖ + λδ
N∑

i=1

ω
kδ
δ,i |δi | + λπ

N(p+1)−1∑

j=1

ω
kπ
π ,j

∣∣πj
∣∣ , (17.26)

where ωkδδ,i = 1/
∣∣∣δ̂Init ,i

∣∣∣
kδ

and ωkππ ,j = 1/
∣∣π̂Init ,j

∣∣kπ , with δ̂Init and π̂ Init being

some consistent initial estimates, such as OLS or ridge estimates. The tuning
parameters kδ and kπ regulate the degree to which the initial estimates affect the
penalty weights.

SPECS simultaneously employs individual penalties on all coefficients and a
group penalty on δ, the implied cointegrating vector. Absent of cointegration, this
cointegrating vector is equal to zero, in which case the group penalty promotes the
removal of the lagged levels as a group.12 In the presence of cointegration, however,
the implied cointegrating vector may still contain many zero elements. The addition
of the individual penalties allows for correct recovery of this sparsity pattern. This
combination of penalties is commonly referred to as the sparse group lasso and R
code is provided by the authors.13

In the single-equation model, the variation in yt is explained by contemporaneous
realizations of the conditioning variables xt . Therefore, forecasting the variable of
interest requires forecasts for the latter as well, unless their realizations become
available to the researcher prior to the realizations of yt . SPECS is therefore highly
suited to nowcasting applications. While not originally developed for the purpose of
forecasting, direct forecasts with SPECS can be obtained by modifying the objective
function to

T∑

t=1

(
�hyt − δ′zt−1 + π ′wt

)2 + Pλ(δ, π),

11Details regarding the relationship between the components of the single-equation model (17.24)
and the full system (17.3) are provided in Smeekes and Wijler (2018a, p. 5).
12From a theoretical point of view, the group penalty is not required for consistent selection and
estimation of the non-zero coefficients.
13https://sites.google.com/view/etiennewijler/code?authuser=0.

https://sites.google.com/view/etiennewijler/code?authuser=0
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where �hyt = yt+h − yt . The direct h-step ahead forecast is then simply obtained

as ŷT+h|T = yT + δ̂
′
zT−1 + π̂

′
wT .

17.5 Empirical Applications

In this section we evaluate the methods discussed in Sects. 17.3 and 17.4 in two
empirical applications. First we forecast several US macroeconomic variables using
the FRED-MD dataset of McCracken and Ng (2016). The FRED-MD dataset is a
well-established and popular source for macroeconomic forecasting, and allows us
to evaluate the methods in an almost controlled environment. Second we consider
nowcasting Dutch unemployment using Google Trends data on frequencies of
unemployment-related queries. This application not only highlights the potential
of novel Big Datasets for macroeconomic purposes, but also puts the methods to the
test in a more difficult environment where less theoretical guidance is available on
the properties of the data.

17.5.1 Macroeconomic Forecasting Using the FRED-MD
Dataset

We consider forecasting eight US macroeconomic variables from the FRED-MD
dataset at 1, 6 and 12 months forecast horizons. We first focus on the strategy
discussed in Sect. 17.3 where we first transform all series to I(0) before estimating
the forecasting models. We illustrate the unit root testing methods, and show the
empirical consequences of specification changes in the orders of integration. Next,
we analyse the methods discussed in Sect. 17.4, and compare their forecast accuracy.

Transformations to Stationarity

As the FRED-MD series have already been classified by McCracken and Ng
(2016), we have a benchmark for our own classification using the unit root testing
methodology discussed in Sect. 17.3. We consider the autoregressive wild bootstrap
as described in Sect. 17.3.2 in combination with the union test in (17.6). We set the
AWB parameter γ equal to 0.85, which implies that over a year of serial dependence
is captured by the bootstrap. Lag lengths in the ADF regressions are selected by the
rescaled MAIC criterion of Cavaliere, Phillips, Smeekes, and Taylor (2015), which
is robust to heteroskedasticity. To account for multiple testing, we control the false
discovery rate at 5% using the bootstrap method of Romano et al. (2008a) (labelled
as ‘BFDR’) and apply the sequential test procedure of Smeekes (2015) (labelled as
‘BSQT’) with a significance level of 5% and evenly spaced 0.05 quantiles such that
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pk = [0.05(k − 1)] for k = 1, . . . , 20. We also perform the unit root tests on each
series individually (labelled as ‘iADF’) with a significance level of 5%.

As some series in the FRED-MD are likely I (2), we need to extend the
methodology to detect these as well. We consider two ways to do so. First, we
borrow information about the I (2) series from the official FRED-MD classification,
and take first differences of the series deemed to be I (2). We then put these first
differences together with the other series in levels and test for unit roots. This
strategy ensures that the I (2) series are classified at least as I (1), and we only
need to perform a single round of unit root testing. Our second approach is fully
data-driven and follows a multivariate extension of the ‘Pantula principle’ (Pantula,
1989), where we first test for a unit root in the first difference of all series. The series
for which the null cannot be rejected are classified as I (2) and removed from the
sample. The remaining series are then tested in levels and consequently classified
as I (1) or I (0). In the results we append an acronym with a 1 if the first strategy is
followed, and with a 2 if the second strategy is followed.14

As a final method, we include a ‘naive’ unit root testing approach that we believe
is representative of casual unit root testing applied by many practitioners who,
understandably, may not pay too much detailed attention to the unit root testing.
In particular, we use the adf.test function from the popular R package ‘tseries’
(Trapletti & Hornik, 2018), and apply it with its default options, which implies
performing individual ADF tests with a trend and setting a fixed lag length as a
function of the sample size.15 Our goal is not to discuss the merits of this particular
unit root test procedure, but instead to highlight the consequences of casually using
a ‘standard’ unit root test procedure that does not address the issues described in
Sect. 17.3.

Figure 17.1 presents the found orders of integration. Globally the classification
appears to agree among the different methods, which is comforting, although some
important differences can be noted. First, none of the data-driven methods finds as
many I (2) series as the FRED classification does. Indeed, this may not be such a
surprising result, as it remains a debated issue among practitioners whether these
series should be modelled as I (1) or as I (2), see, for example, the discussion in
Marcellino, Stock, and Watson (2006).

Second, although most methods yield fairly similar classifications, the clear
outlier is BFDR2, which finds all series but one to be I (1). The FDR controlling
algorithm may, by construction, be too conservative in the early stages of the

14We take logarithmic transformations of the series before differencing when indicated by the
official FRED-MD classification. Determining when a logarithmic transformation is appropriate is
a daunting task for such a high-dimensional system as it seems difficult to automatize, especially as
it cannot be seen separately from the determination of the order of integration (Franses & McAleer,
1998; Kramer & Davies, 2002). Klaassen, Kueck, and Spindler (2017) propose a high-dimensional
method to determine an appropriate transformation model, but it is not trivial how to combine
their method with unit root testing. Therefore we apply the ‘true’ transformations such that we can
abstract from this issue.
15The lag length is set equal to !(T − 1)1/3".
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Fig. 17.1 Classification of the FRED-MD dataset into I(0), I(1) and I(2) series
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algorithm when few rejections R have been recorded, yet too liberal in the final
stages upon finding many rejections. Indeed, when testing the first differences of
all series for a unit root, the FRED classification tells us that for most of the series
the null can be rejected. When the algorithm arrives at the I (2) series, the unit
root hypothesis will already have been rejected for many series. With R being that
large, the number of false rejections F can be relatively large too without increasing
the FDR too much. Hence, incorrectly rejecting the null for the I (2) series will
fall within the ‘margins of error’ and thus lead to a complete rejection of all null
hypotheses. In the second step the FDR algorithm then appears to get ‘stuck’ in
the early stages, resulting in only a single rejection. This risk of the method getting
stuck early on was also observed by Smeekes (2015) and can be explained by the
fact that early on in the step-down procedure, when R is small, FDR is about as
strict as FWE. It appears that in this case the inclusion of the I (2) series in levels
rather than differences is just enough to make the algorithm get stuck.

Third, even though iADF does not control for multiple testing, its results are
fairly similar to BSQT and FDR1. It therefore appears explicitly controlling for
multiple testing is not the most important in this application, and sensible unit
root tests, even when applied individually, will give reasonable answers. On first
glance even using the ‘naive’ strategy appears not be very harmful. However, upon
more careful inspection of the results, we can see that it does differ from the other
methods. In particular, almost no I (2) series are detected by this strategy, and given
that there is no reason to prefer it over the other methods, we recommend against its
use.

Forecast Comparison After Transformations

While determining an appropriate order of integration may be of interest in itself,
our goal here is to evaluate its impact on forecast accuracy. As such, we next evaluate
if, and how, the chosen transformation impacts the actual forecast performance
of the BFDR, BSQT and iADF methods, all in both strategies considered, in
comparison with the official FRED classification.

We forecast eight macroeconomic series in the FRED-MD dataset using data
from July 1972 to October 2018. The series of interest consist of four real series,
namely real production income (RPI), total industrial production (INDPRO), real
manufacturing and trade industries sales (CMRMTSPLx) and non-agricultural
employees (PAYEMS), and four nominal series, being the producer index for
finished goods (WPSFD49207), consumer price index—total (CPIAUCSL), con-
sumer price index—less food (CPIULFSL) and the PCE price deflator (PCEPI).
Each series is forecast h months ahead, where we consider the forecast horizons
h = 1, 6, 12. All models are estimated on a rolling window spanning 10 years, i.e.
containing 120 observations. Within each window, we regress every time series on a
constant and linear trend and obtain the corresponding residuals. For the stationary
methods, these residuals are transformed to stationarity according to the results of
the unit root testing procedure. Each model is fitted to these transformed residuals,
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after which the h-step ahead forecast is constructed as an iterated one-step-ahead
forecast, when possible, and transformed to levels, if needed. The final forecast is
obtained by adding the level forecast of the transformed residuals to the forecast
of the deterministic components. We briefly describe the implementation of each
method below.

We consider four methods here. The first method is a standard vector autore-
gressive (VAR) model, fit on the eight variables of interest. Considering only
the eight series of interest, however, may result in a substantial loss of relevant
information contained in the remaining variables in the complete dataset. Therefore,
we also consider a factor-augmented vector autoregressive model (FAVAR) in the
spirit of Bernanke et al. (2005), which includes factors as proxies for this missing
information. We extract four factors from the complete and transformed dataset
and fit two separate FAVAR models containing these four factors, in addition
to either the four real or the four nominal series. Rather than focusing on the
estimation of heavily parameterized full systems, one may attempt to reduce the
dimensionality by considering single-equation models, as discussed in Sect. 17.4.2.
Conditioning the variable of interest on the remaining variables in the dataset results
in an autoregressive distributed lag model with M = N(p + 1) − 1 parameters.
For large N , shrinkage may still be desirable. Therefore, we include a penalized
autoregressive distributed lag model (PADL) in the comparison, which is based on
the minimization of

T∑

t=1

(
yht − π ′wt

)2 + λ
M∑

j=1

ω
kπ
π ,j

∣∣πj
∣∣ , (17.27)

where

yht =
{
yt+h − yt if yt ∼ I (1),
yt+h − yt −�yt if yt ∼ I (2).

(17.28)

Furthermore, wt contains contemporaneous values of all transformed time series
except yt , and three lags of all transformed time series. The weights ωkππ ,j are as
defined in Sect. 17.4.2. In essence, this can be seen as an implementation of SPECS
with the built-in restriction that δ = 0, thereby ignoring cointegration. Finally, the
concept of using factors as proxies for missing information remains equally useful
for single-equation models. Accordingly, we include a factor-augmented penalized
autoregressive distributed model (FAPADL) which is a single-equation model
derived from a FAVAR. We estimate eight factors on the complete dataset, which
are added to the eight variables of interest in the single-equation model. This is
then estimated in accordance to (17.27), with wt now containing contemporaneous
values and three lags of the eight time series of interest and the eight factors. The
PADL and FAPADL are variants of the adaptive lasso and we implement these in R
based on the popular ‘glmnet’ package (Friedman, Hastie, & Tibshirani, 2010b).
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The lag order for the VAR and FAVAR is chosen by the BIC criterion, with a
maximum lag order of three.

Our goal is not to be exhaustive, but we believe these four methods cover a wide
enough range of available high-dimensional forecast methods such that our results
cannot be attributed to the choice of a particular forecasting method and instead
genuinely reflect the effect of different transformations to stationarity. For the sake
of space, we only report the results based on the FAVAR here for 1 month and 12
months ahead forecasts, as these are representative for the full set of results (which
are available upon request). Generally, we find the same patterns within each method
as we observe for the FAVAR, though they may be more or less pronounced. Overall
the FAVAR is the most accurate of the four methods considered, which is why we
choose to focus on it.

We compare the methods through their relative Mean Squared Forecast Errors
(MSFEs), where the AR model is taken as benchmark. To attach a measure of
statistical significance to these MSFEs, we obtain 90% Model Confidence Sets
(MCS) of the best performing model. We obtain the MCS using the autoregressive
wild bootstrap as in Smeekes and Wijler (2018b). For the full details on the MCS
implementation we refer to that paper.

The results are given in Figs. 17.2 and 17.3. For the 1-month-ahead forecast the
results are close for the different transformation methods, but for the 12-months-
ahead forecasts, we clearly see big differences for the nominal series. Inspection of
the classifications in Fig. 17.1 shows that the decisive factor is the classification of
the dependent variable. For the three price series, the methods that classify these
as I (1) rather than I (2) obtain substantial gains in forecast accuracy. Interestingly,
the FRED classification finds these series to be I (2), and thus deviating from the
official classification can lead to substantial gains. These results are in line with the
results of Marcellino et al. (2006), who also find that modelling price series as I (1)
rather than I (2) results in better forecast accuracy.

As the outlying BFDR2 classification also classifies these series as I(1), this
‘lucky shot’ eclipses any losses from the missclassification of the other series.
However, for the real series it can be observed that BFDR2 does indeed always
perform somewhat worse than the other methods, although the MCS does not find
it to be significant everywhere.

Concluding, missclassification of the order of integration can have an effect
on the performance of high-dimensional forecasting methods. However, unless the
dependent variable is missclassified, the high-dimensional nature of the data also
ensures that this effect is smoothed out. On the other hand, correct classification of
the dependent variable appears to be crucial, in particular regarding the classification
as I (1) versus I (2).

Forecast Comparisons for Cointegration Methods

The forecast exercise for the methods that are able to take into account the
cointegrating properties of the data proceeds along the same lines as in Sect. 17.5.1.
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Fig. 17.2 MCS and relative MSFEs for 1-month horizon. Methods that are included in the MCS
are depicted in blue and methods that are excluded from the MCS are depicted in red
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Fig. 17.3 MCS and relative MSFEs for 12-month horizon. Methods that are included in the MCS
are depicted as blue and methods that are excluded from the MCS are depicted in red
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A noteworthy exception is that the time series that are considered I(1) in the FRED-
MD classification are now kept in levels, whereas those that are considered as I(2)
are differenced once. The methods included in the comparison are: (i) the factor
error correction model (FECM) by Banerjee et al. (2014, 2016, 2017), (ii) the
non-stationary dynamic factor model (N-DFM) by Barigozzi et al. (2017, 2018),
(iii) the maximum likelihood procedure (ML) by Johansen (1995b), (iv) the QR-
decomposed VECM (QR-VECM) by Liang and Schienle (2019), (v) the penalized
maximum likelihood (PML) by Wilms and Croux (2016), (vi) the single-equation
penalized error correction selector (SPECS) by Smeekes and Wijler (2018a) and
(vii) a factor-augmented SPECS (FASPECS). The latter method is simply the single-
equation model derived from the FECM, based on the same principles as the
FAPADL from the previous section. It is worth noting that the majority of these
non-stationary methods have natural counterparts in the stationary world; the ML
procedure compares directly to the VAR model, FECM compares to FAVAR and
SPECS and FASPECS to PADL and FAPADL, respectively. Finally, all methods
are compared against an AR model fit on the dependent variable, the latter being
transformed according to the original FRED codes.

We briefly discuss some additional implementation choices for the non-stationary
methods. For all procedures that require an estimate of the cointegrating rank,
we use the information criteria proposed by Cheng and Phillips (2009). The only
exception is the PML method, for which the cointegrating rank is determined by
the procedure advocated in Wilms and Croux (2016). Similar to Banerjee et al.
(2014), we do not rely on information criteria to select the number of factors, but
rather fix the number of factors in the implementation of the FECM and N-DFM
methods to four.16 In the N-DFM approach, we model the idiosyncratic components
of the target variables as simple AR models. The ML procedure estimates a VECM
system on the eight variables of interest. In congruence with the implementation
of the stationary methods, the lag order for FECM, N-DFM and ML is chosen by
the BIC criterion, with a maximum lag order of three. The QR-VECM and PML
methods are estimated on a dataset containing the eight series of interest and an
additional 17 variables, informally selected based on their unique information within
each economic category. Details are provided in Table 17.1. We incorporate only a
single lag in the QR-VECM implementation, necessitated by the requirement of
initial OLS estimates. SPECS estimates the model

yht = δ′zt−1 + π ′wt + εy,t ,

where yht is defined in (17.28), with the order of integration based on the original
FRED codes. Note that the variables included in zt are either the complete set of

16In untabulated results, we find that the forecast performance does not improve when the number
of factors is selected by the information criteria by Bai (2004). Neither does the addition of a
stationary factor computed from the estimated idiosyncratic component, in the spirit of Banerjee
et al. (2014). Both strategies are therefore omitted from the analysis.
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Table 17.1 Overview of the variables included for QR-VECM and PML

FRED code Description

Real RPI Real personal income

CMRMTSPLx Real manufacturing and trade industries sale

INDPRO IP index

PAYEMS All employees: total nonfarm

Nominal WPSFD49207 PPI: finished goods

CPIAUCSL CPI: all items

CPIULFSL CPI: all items less food

PCEPI Personal cons. expend.: chain index

Additional CUMFNS Capacity utilization: manufacturing

HWI Help-Wanted Index for United States

UNRATE Civilian unemployment rate

UEMPMEAN Average duration of unemployment (weeks)

HOUST Housing starts: total new privately owned

PERMIT New private housing permits (SAAR)

BUSINVx Total business inventories

M1SL M1 money stock

M2SL M2 money stock

FEDFUNDS Effective federal funds rate

TB3MS 3-month treasury bill

GS5 5-year treasury rate

GS10 10-year treasury rate

EXJPUSx Japan/US foreign exchange rate

EXUSUKx US/UK foreign exchange rate

EXCAUSx Canada/US foreign exchange rate

S.P.500 S&P common stock price index: composite

124 time series or the eight time series of interest plus an additional eight estimated
factors, depending on whether the implementation concerns SPECS or FASPECS,
respectively. Finally, all parameters that regulate the degree of shrinkage are chosen
by time series cross-validation, proposed by Hyndman and Athanasopoulos (2018)
and discussed in a context similar to the current analysis in Smeekes and Wijler
(2018b, p. 411).

Results are given in Figs. 17.4, 17.5 and 17.6. Considering first the 1-month
ahead predictions, we observe similar forecasting performance on the first three
real series (RPI, CMRMTSPLx, INDPRO) with almost none of the methods being
excluded from the 90% model confidence set. The employment forecasts of the AR
benchmark and the FAVAR approach are considered superior to those of the other
methods. On the four nominal series, the sparse high-dimensional methods display
relatively poor performance, regardless of whether they take into account potential
cointegration in the data. Overall, no clear distinction is visible between the non-
stationary and stationary methods, although this may not come as a surprise given
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Fig. 17.4 MCS and relative MSFEs for 1-month horizon. Methods that are included in the MCS
are depicted in blue and methods that are excluded from the MCS are depicted in red

the short forecast horizon. As usual, the AR benchmark appears hard to beat and is
not excluded from any of the model confidence sets here.

The forecast comparisons for longer forecast horizons display stronger differ-
entiation across methods. Our findings are qualitatively similar for the 6-month
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Fig. 17.5 MCS and relative MSFEs for 6-month horizon. Methods that are included in the MCS
are depicted in blue and methods that are excluded from the MCS are depicted in red

and 12-month horizons, and, for the sake of brevity, we comment here on the 12-
month horizon only. The results for the first three real series again do not portray
a preference for taking into account cointegration versus transforming the data.
Comparing ML to FECM and VAR to FAVAR, incorporating information across
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Fig. 17.6 MCS and relative MSFEs for 12-month horizon. Methods that are included in the MCS
are depicted in blue and methods that are excluded from the MCS are depicted in red

the whole dataset seems to positively affect forecast performance, a finding that
is additionally confirmed by the favourable performance of the penalized VECM
estimators. The FAVAR substantially outperforms on the employment series, being
the only method included in the model confidence set. On the nominal series,
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the single-equation methods perform well, again not showing any gain or loss in
predictive power by accounting for cointegration. The ML and N-DFM procedure
methods show favourable forecast accuracy as well, whereas the two penalized
VECM estimators appear inferior on the nominal series. The AR benchmark is
excluded for four out of eight series.

In summary, the comparative performance is strongly dependent on the choice
of dependent variable and forecast horizon. For short forecast horizons, hardly any
statistically significant differences in forecast accuracy are observed. However, for
longer horizons the differences are more pronounced, with factor-augmented or
penalized full system estimators performing well on the real series, the FAVAR
strongly outperforming on the employment series and the single-equation methods
appearing superior on the nominal series. The findings do not provide conclusive
evidence whether cointegration matters for forecasting.

17.5.2 Unemployment Nowcasting with Google Trends

In this section we revisit the nowcasting application of Smeekes and Wijler (2018a),
who consider nowcasting unemployment using Google Trends data. One of the
advantages of modern Big Datasets is that information obtained from internet
activity is often available on very short notice, and can be used to supplement
official statistics produced by statistical offices. For instance, internet searches
about unemployment-related issues may contain information about people being or
becoming unemployed, and could be used to obtain unemployment estimates before
statistical offices are able to produce official unemployment statistics.

Google records weekly and monthly data on the popularity of specific search
terms through its publicly available Google Trends service,17 with data being
available only days after a period ends. On the other hand, national statistical
offices need weeks to process surveys and produce official unemployment figures
for the preceding month. As such, Google Trends data on unemployment-related
queries would appear to have the potential to produce timely nowcasts of the latest
unemployment figures.

Indeed, Schiavoni, Palm, Smeekes, and van den Brakel (2019) propose a dynamic
factor model within a state space context to combine survey data with Google Trends
data to produce more timely official unemployment statistics. They illustrate their
method using a dataset of about one hundred unemployment-related queries in the
Netherlands obtained from Google Trends. Smeekes and Wijler (2018a) consider
a similar setup with the same Google Trends data, but consider the conceptually
simpler setup where the dependent variable to be nowcasted is the official published

17https://trends.google.com/trends.

https://trends.google.com/trends
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unemployment by Statistics Netherlands.18 Moreover, they exclusively focus on
penalized regression methods. In this section we revisit their application in the
context of the methods discussed in this chapter. For full details on the dataset,
which is available on the authors’ websites, we refer to Smeekes and Wijler (2018a).

Transformations to Stationarity

As for the FRED-MD dataset, we first consider the different ways to classify the
series into I(0), I(1) and I(2) series. However, unlike for the FRED data, here we
do not have a pre-set classification available, and therefore unit root testing is a
necessity before continuing the analysis. Moreover, as the dataset could easily be
extended to an arbitrarily high dimension by simply adding other relevant queries,
an automated fully data driven method is required.

This lack of a known classification also means that our first strategy as used in
Sect. 17.5.1 has to be adapted, as we cannot differ I(2) series a priori. In particular,
for our first strategy we assume that the series can be at most I(1), and hence we
perform only a single unit root test on the levels of all series. Our second strategy is
again the Pantula principle as in Sect. 17.5.1. Within each strategy we consider the
same four tests as before.19

The classification results are given in Fig. 17.7. Generally they provide strong
evidence that nearly all series are I(1), with most methods only finding very few
I(0) and I(2) series. Interestingly, one of the few series that the methods disagree
about is the unemployment series, which receives all three possible classifications.
From our previous results we may expect this series, our dependent variable, to be
the major determinant of forecast accuracy. Aside from this result, the most striking
result is the performance of the naive tests that find many more I(0) variables than
the other methods. One possible explanation for this result may be the nature of the
Google Trends data that can exhibit large changes in volatility. As standard unit root
tests are not robust to such changes, a naive strategy might seriously be affected, as
appears to be the case here.

Forecast Comparison

We now compare the nowcasting performance of the high-dimensional methods.
Given our focus on forecasting the present, that is, h = 0, for a single variable,
there is little benefit in considering the system estimators we used before. Therefore
we only consider the subset of single-equation models that allow for nowcasting.

18Additionally, this means the application does not require the use of the private survey data and is
based on publicly available data only.
19As Google reports the search frequencies in relative terms (both to the past and other searches),
we do not take logs anywhere.
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Specifically, we include SPECS as described in Sect. 17.4.2 as well as its modifica-
tion FASPECS described in Sect. 17.5.1 as methods that explicitly account for unit
roots and cointegration. Furthermore, we include PADL and FAPADL as described
in Sect. 17.5.1. For all methods, the modification for nowcasting is done by setting
h = 0, where we implicitly assume that at time t the values for the explanatory
variables are available, but that for unemployment is not. This corresponds to the
real-life situation.

For SPECS we model unemployment as (at most) I (1), given that this is its
predominant classification in Fig. 17.7. Additionally, we include all regressors in
levels, thereby implicitly assuming these are at most I (1) as well, which is again
justified by the preceding unit root tests. For PADL and FAPADL we transform the
series to stationarity according to the obtained classifications. Again we consider an
AR model as benchmark, while all other implementational details are the same as
in Sect. 17.5.1.

Our dataset covers monthly data from January 2004 until December 2017 for
unemployment obtained from Statistics Netherlands, and 87 Google Trends series.
We estimate the models on a rolling window of 100 observations each, leaving 64
time periods for obtaining nowcasts. We compare the nowcast accuracy through
relative Mean Squared Nowcast Error (MSNE), with the AR model as benchmark,
and obtain 90% Model Confidence Sets containing the best models in the same way
as in Sect. 17.5.1.

Figure 17.8 presents the results. We see that, with the exception of the PADL—
iADF1 method, all methods outperform the AR benchmark, although the 90%
MCS does not find the differences to be significant. Factor augmentation generally
leads to slightly more accurate forecasts than the full penalization approaches,
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but differences are marginal. Interestingly, the classification of unemployment
appears to only have a minor effect on the accuracy, with I (0), I (1) and I (2)
classifications all performing similarly. This does not necessarily contradict the
results in Sect. 17.5.1, as differences were only pronounced there for longer forecast
horizons, whereas the forecast horizon here is immediate. Finally, we observe that
the SPECS methods are always at least as accurate as their counterparts that do
not take cointegration into account. It therefore seems to pay off to allow for
cointegration, even though differences are again marginal.

17.6 Conclusion

In this chapter we investigated how the potential presence of unit roots and
cointegration impacts macroeconomic forecasting in the presence of Big Data.
We considered both the strategies of transforming all data to stationarity, and of
explicitly modelling any unit roots and cointegrating relationships.

The strategy of transforming to stationarity is commonly thought of as allowing
one to bypass the unit root issue. However, this strategy is not innocuous as often
thought, as it still relies on a correct classification of the orders of integration of all
series. Given that this needs to be done for a large number of series, there is a lot
of room for errors, and naive unit root testing is not advised. We discussed potential
pitfalls for this classification, and evaluated methods designed to deal with issues of
poor size and power of unit root tests, as well as controlling appropriate error rates
in multiple testing.

Next we considered modelling unit roots and cointegration directly in a high-
dimensional framework. We reviewed methods approaching the problem from two
different philosophies, namely that of factor models and that of penalized regression.
Within these philosophies we also highlighted differences among the proposed
methods both in terms of underlying assumptions and implementation issues.

We illustrated these methods in two empirical applications: the first considered
forecasting macroeconomic variables using the well-established FRED-MD dataset,
while the second considered nowcasting unemployment using Google Trends data.
Both applications showed that transforming to stationarity requires careful consid-
erations of the methods used. While the specific method used for accounting for
multiple testing generally only led to marginal differences, a correct classification of
the variable to be forecasted is critically important. We therefore recommend paying
specific attention to these variables. Moreover, as occasionally some methods can
deliver strange results, in general it is advisable to perform the classification using
multiple approaches, to ensure that the classification found is credible.

The applications also demonstrated that there is no general way to model
cointegration that is clearly superior. Indeed, the results do not show a clear
conclusion on whether cointegration should be taken into account. This result,
perhaps unsurprisingly, mirrors the literature on low-dimensional time series. It
therefore remains up to the practitioner to decide for their specific application if,
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and if yes how, cointegration should be modelled for forecasting purposes. Overall,
the methods we consider in this chapter provide reliable tools to do so, should the
practitioner wish to do so.

Concluding, several reliable tools are available for dealing with unit roots
and cointegration in a high-dimensional forecasting setting. However, there is no
panacea; a single best approach that is applicable in all settings does not exist.
Instead, dealing with unit roots and cointegration in practice requires careful
consideration and investigation which methods are most applicable in a given
particular application. We also note that the field is rapidly developing, and major
innovations are still to be expected in the near future. For instance, interval or density
forecasting in high-dimensional systems with unit roots remains an entirely open
issue. As high-dimensional inference is already complicated by issues such as post-
selection bias, extending this to the unit root setting is very challenging indeed.
Such tools however will be indispensable for the macroeconomic practitioner, and
therefore constitute an exciting avenue for future research.
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Chapter 18
Turning Points and Classification

Jeremy Piger

18.1 Introduction

It is common in studies of economic time series for each calendar time period to
be categorized as belonging to one of some fixed number of recurrent regimes.
For example, months and quarters of macroeconomic time series are separated into
periods of recession and expansion, and time series of equity returns are divided
into bull vs. bear market regimes. Other examples include time series measuring the
banking sector, which can be categorized as belonging to normal vs. crises regimes,
and time series of housing prices, for which some periods might be labeled as arising
from a “bubble” regime. A key feature of these regimes in most economic settings
is that they are thought to be persistent, meaning the probability of each regime
occurring increases once the regime has become active.

In many cases of interest, the regimes are never explicitly observed. Instead,
the historical timing of regimes is inferred from time series of historical economic
data. For example, in the USA, the National Bureau of Economic Research
(NBER) Business Cycle Dating Committee provides a chronology of business
cycle expansion and recession dates developed from the study of local minima
and maxima of many individual time series. Because the NBER methodology is
not explicitly formalized, a literature has worked to develop and evaluate formal
statistical methods for establishing the historical dates of economic recessions and
expansions in both US and international data. Examples include Hamilton (1989),
Vishwakarma (1994), Chauvet (1998), Harding and Pagan (2006), Fushing, Chen,
Berge, and Jordá (2010), Berge and Jordá (2011), and Stock and Watson (2014).
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In this chapter I am also interested in determining which regime is active based
on information from economic time series. However, the focus is on real-time
prediction rather than historical classification. Specifically, the ultimate goal will
be to identify the active regime toward the end of the observed sample period
(nowcasting) or after the end of the observed sample period (forecasting). Most of
the prediction techniques I consider will take as given a historical categorization of
regimes, and will use this categorization to learn the relationship between predictor
variables and the occurrence of alternative regimes. This learned relationship will
then be exploited in order to classify time periods that have not yet been assigned to
a regime. I will also be particularly interested in the ability of alternative prediction
techniques to identify turning points, which mark the transition from one regime to
another. When regimes are persistent, so that there are relatively few turning points
in a sample, it is quite possible for a prediction technique to have good average
performance for identifying regimes, but consistently make errors in identifying
regimes around turning points.

Consistent with the topic of this book, I will place particular emphasis in this
chapter on the case where regime predictions are formed in a data-rich environment.
In our specific context, this environment will be characterized by the availability of a
large number of time-series predictor variables from which we can infer regimes. In
typical language, our predictor dataset will be a “wide” dataset. Such datasets create
issues when building predictive models, since it is difficult to exploit the information
in the dataset without overfitting, which will ultimately lead to poor out-of-sample
predictions.

The problem of regime identification discussed above is an example of a
statistical classification problem, for which there is a substantial literature outside
of economics. I will follow the tradition of that literature and refer to the regimes as
“classes,” the task of inferring classes from economic indicators as “classification,”
and a particular approach to classification as a “classifier.” Inside of economics,
there is a long history of using parametric models, such as a logit or probit,
as classifiers. For example, many studies have used logit and probit models to
predict US recessions, where the model is estimated over a period for which the
NBER business cycle chronology is known. A small set of examples from this
literature include Estrella and Mishkin (1998), Estrella, Rodrigues, and Schich
(2003), Kauppi and Saikkonen (2008), Rudebusch and Williams (2009), and Fossati
(2016). Because they use an available historical indicator of the class to estimate
the parameters of the model, such approaches are an example of what is called a
“supervised” classifier in the statistical classification literature. This is in contrast
to “unsupervised classifiers,” which endogenously determine clustering of the data,
and thus endogenously determine the classes. Unsupervised classifiers have also
been used for providing real-time nowcasts and forecasts of US recessions, with
the primary example being the Markov-switching framework of Hamilton (1989).
Chauvet (1998) proposes a dynamic factor model with Markov-switching (DFMS)
to identify expansion and recession phases from a group of coincident indicators,
and Chauvet and Hamilton (2006), Chauvet and Piger (2008), and Camacho, Perez-
Quiros, and Poncela (2018) evaluate the performance of variants of this DFMS
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model to identify NBER turning points in real time. An important feature of
Markov-switching models is that they explicitly model the persistence of the regime,
by assuming the regime indicator follows a Markov process.

Recently, a number of authors have applied machine learning techniques com-
monly used outside of economics to classification problems involving time series
of economic data. As an example, Qi (2001), Ng (2014), Berge (2015), Davig
and Smalter Hall (2016), Garbellano (2016), and Giusto and Piger (2017) have
applied machine learning techniques such as artificial neural networks, boosting,
Naïve Bayes, and learning vector quantization to forecasting and nowcasting US
recessions, while Ward (2017) used random forests to identify periods of financial
crises. These studies have generally found improvements from the use of the
machine learning algorithms over commonly used alternatives. For example, Berge
(2015) finds that the performance of boosting algorithms improves on equal weight
model averages of recession forecasts produced by logistic models, while Ward
(2017) finds a similar result for forecasts of financial crises produced by a random
forest.

Machine learning algorithms are particularly attractive in data-rich settings. Such
algorithms typically have one or more “regularization” mechanisms that trade off
in-sample fit against model complexity, which can help prevent overfitting. These
algorithms are generally also fit using techniques that explicitly take into account
out-of-sample performance, most typically using cross-validation. This aligns the
model fitting stage with the ultimate goal of out-of-sample prediction, which
again can help prevent overfitting. A number of these methods also have built-in
mechanisms to conduct model selection jointly with estimation in a fully automated
procedure. This provides a means to target relevant predictors from among a large
set of possible predictors. Finally, these methods are computationally tractable,
making them relatively easy to apply to large datasets.

In this chapter, I survey a variety of popular off-the-shelf supervised machine
learning classification algorithms for the purpose of classifying economic regimes
in real time using time-series data. Each classification technique will be presented
in detail, and its implementation in the R programming language will be discussed.1

Particular emphasis will be placed on the use of these classifiers in data-rich
environments. I will also present DFMS models as an alternative to the machine
learning classifiers in some settings. Finally, each of the various classifiers will be
evaluated for their real-time performance in identifying US business cycle turning
points from 2000 to 2018.

As discussed above, an existing literature in economics uses parametric logit
and probit models to predict economic regimes. A subset of this literature has
utilized these models in data-rich environments. For example, Owyang, Piger, and
Wall (2015) and Berge (2015) use model averaging techniques with probit and
logit models to utilize the information in wide datasets, while Fossati (2016) uses
principal components to extract factors from wide datasets to use as predictor

1http://www.R-project.org/.

http://www.R-project.org/
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variables in probit models. I will not cover these techniques here, instead opting
to provide a resource for machine learning methods, which hold great promise, but
have received less attention in the literature to date.

The remainder of this chapter proceeds as follows: Section 18.2 will formalize
the forecasting problem we are interested in and describe metrics for evaluating
class forecasts. Section 18.3 will then survey the details of a variety of supervised
machine learning classifiers and their implementation, while Sect. 18.4 will present
details of DFMS models for the purpose of classification. Section 18.5 will
present an application to real-time nowcasting of US business cycle turning points.
Section 18.6 concludes.

18.2 The Forecasting Problem

In this section I lay out the forecasting problem of interest, as well as establish
notation used for the remainder of this chapter. I also describe some features of
economic data that should be recognized when conducting a classification exercise.
Finally, I detail common approaches to evaluating the quality of class predictions.

18.2.1 Real-Time Classification

Our task is to develop a prediction of whether an economic entity in period t + h is
(or will be) in each of a discrete number (C) of classes. Define a discrete variable
St+h ∈ {1, . . . ,C} that indicates the active class in period t +h. It will also be useful
to define C binary variables Sct+h = I (St+h = c), where I () ∈ {0, 1} is an indicator
function, and c = 1, . . . ,C.

Assume that we have a set of N predictors to draw inference on St+h. Collect
these predictors measured at time t in the vector Xt , with an individual variable
inside this vector labeledXj ,t , j = 1, . . . ,N . Note thatXt can include both contem-
poraneous values of variables as well as lags. I define a classifier as Ŝct+h (Xt ), where
this classifier produces a prediction of Sct+h conditional on Xt . These predictions
will take the form of conditional probabilities of the form Pr (St+h = c|Xt). Note
that a user of these predictions may additionally be interested in binary predictions
of Sct+h. To generate a binary prediction we would combine our classifier Ŝct+h (Xt )
with a rule, L (), such that L

(
Ŝct+h (Xt )

) ∈ {0, 1}. Finally, assume we have available
T observations on Xt and St+h, denoted as {Xt , St+h}Tt=1. I will refer to this in-
sample period as the “training sample.” This training sample is used to determine
the parameters of the classifier, and I refer to this process as “training” the classifier.
Once trained, a classifier can then be used to forecast Sct+h outside of the training
sample. Specifically, given an XT+q , we can predict ScT+q+h using ŜcT+q+h

(
XT+q

)

or L
(
ŜcT+q+h

(
XT+q

))
.
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I will also be interested in the prediction of turning points, which mark the
transition from one class to another. The timely identification of turning points in
economic applications is often of great importance, as knowledge that a turning
point has already occurred, or will in the future, can lead to changes in behavior
on the part of firms, consumers, and policy makers. As an example, more timely
information suggesting the macroeconomy has entered a recession phase should
lead to quicker action on the part of monetary and fiscal policymakers, and ulti-
mately increased mitigation of the effects of the recession. In order to predict turning
points we will require another rule to convert sequences of Ŝct+h (Xt ) into turning
point predictions. Of course, how cautious one is in converting probabilities to
turning point predictions is determined by the user’s loss function, and in particular
the relative aversion to false positives. In the application presented in Sect. 18.5, I
will explore the real-time performance of a specific strategy for nowcasting turning
points between expansion and recession phases in the macroeconomy.

18.2.2 Classification and Economic Data

As is clear from the discussion above, we are interested in this chapter in
classification in the context of time-series data. This is in contrast to much of
the broader classification literature, which is primarily focused on classification in
cross-sectional datasets, where the class is reasonably thought of as independent
across observations. In most economic time series, the relevant class is instead
characterized by time-series persistence, such that a class is more likely to continue
if it is already operational than if it is not. In this chapter, I survey a variety of
off-the-shelf machine learning classifiers, most of which do not explicitly model
persistence in the class indicator. In cases where the forecast horizon h is reasonably
long, ignoring persistence of the class is not likely to be an issue, as the dependence
of the future class on the current class will have dissipated. However, in short
horizon cases, such as that considered in the application presented in Sect. 18.5,
this persistence is more likely to be important. To incorporate persistence into the
machine learning classifiers’ predictions, I follow Giusto and Piger (2017) and allow
for lagged values to enter the Xt vector. Lagged predictor variables will provide
information about lagged classes, which should improve classification of future
classes.2

Economic data is often characterized by “ragged edges,” meaning that some
values of the predictor variables are missing in the out-of-sample period (Camacho
et al., 2018). This generally occurs due to differences in the timing of release dates
for different indicators, which can leave us with only incomplete observation of

2When converting Ŝct+h (Xt ) into turning point predictions, one might also consider conversion
rules that acknowledge class persistence. For example, multiple periods of elevated class probabil-
ities could be required before a turning point into that class is predicted.



590 J. Piger

the vector XT+j . There are a variety of approaches that one can take to deal with
these missing observations when producing out-of-sample predictions. A simple,
yet effective, approach is to use k nearest neighbors (kNN) imputation to impute
the missing observations. This approach imputes the missing variables based on
fully observed vectors from the training sample that are similar on the dimension
of the non-missing observations. kNN imputation is discussed in more detail in
Sect. 18.3.3.

18.2.3 Metrics for Evaluating Class Forecasts

In this section I discuss metrics for evaluating the performance of classifiers.
Suppose we have a set of T̃ class indicators, Sct+h, and associated classifier
predictions, Ŝct+h (Xt ), where t ∈ &. Since Ŝct+h (Xt ) is interpreted as a probability,
an obvious metric to evaluate these predictions is Brier’s quadratic probability score
(QPS), which is the analogue of the traditional mean squared error for discrete data:

QPS = 1

T̃

∑

t∈&

C∑

c=1

(Sct+h − Ŝct+h (Xt ))2

The QPS is bounded between 0 and 2, with smaller values indicating better
classification ability.

As discussed above, in addition to predictions that are in the form of probabilities,
we are often interested in binary predictions produced as L

(
Ŝct+h (Xt )

)
. In this case,

there are a variety of commonly used metrics to assess the accuracy of classifiers. In
describing these, it is useful to restrict our discussion to the two class case, so that
c ∈ {1, 2}.3 Also, without loss of generality, label c = 1 as the “positive” class and
c = 2 as the “negative” class. We can then define a confusion matrix:
where T P is the number of true positives, defined as the number of instances of
c = 1 that were classified correctly as c = 1, and FP indicates the number of false
positives, defined as the instances of c = 2 that were classified incorrectly as c = 1.
FN and TN are defined similarly.

A number of metrics of classifier performance can then be constructed from this
confusion matrix. The first is Accuracy, which simply measures the proportion of
periods that are classified correctly:

Accuracy = T P + TN
T P + TN + FP + FN

3Generalizations of these metrics to the multi-class case generally proceed by considering each
class against all other classes in order to mimic a two class problem.
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Of course, Accuracy is strongly affected by the extent to which classes are balanced
in the sample period. If one class dominates the period under consideration, then it
is easy to have very high accuracy by simply always forecasting that class with high
probability. In many economic applications, classes are strongly unbalanced, and as
a result the use of Accuracy alone to validate a classifier would not be recommended.
Using the confusion matrix we can instead define accuracy metrics for each class.
Specifically, the true positive rate, or T PR, gives us the proportion of instances of
c = 1 that were classified correctly:

T PR = T P

T P + FN
while the true negative rate, or TNR, gives us the proportion of instances of c = 2
that were classified correctly:

TNR = TN

TN + FP
It is common to express the information in TNR as the false positive rate, which is
given by FPR = 1− TNR.4

It is clear that which of these metrics is of primary focus depends on the relative
preferences of the user for true positives vs. false positives. Also, it should be
remembered that the confusion matrix and the metrics defined from its contents
are dependent not just on the classifier Ŝct+h (Xt ), but also on the rule L used to

4In the classification literature, TPR is referred to as the sensitivity and TNR as the specificity.
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convert this classifier to binary outcomes. In many cases, these rules are simply of
the form:

L
(
Ŝct+h (Xt )

) =
{

1 if Ŝct+h (Xt ) > d
2 if Ŝct+h (Xt ) ≤ d

such that c = 1 is predicted if Ŝct+h (Xt ) rises above the threshold d, and 0 ≤ d ≤
1 since our classifier is a probability. A useful summary of the performance of a
classifier is provided by the “receiver operator characteristic” (ROC) curve, which
is a plot of combinations of T PR (y-axis) and FPR (x-axis), where the value of d
is varied to generate the plot. When d = 1 both T PR and FPR are zero, since both
T P and FP are zero if class c = 1 is never predicted. Also, d = 0 will generate
T PR and FPR that are both one, since FN and TN will be zero if class c = 1
is always predicted. Thus, the ROC curve will always rise from the origin to the
(1,1) ordinate. A classifier for which Xt provides no information regarding Sct+h,
and is thus constant, will have T PR = FPR, and the ROC curve will lie along the
45 degree line. Classifiers for which Xt does provide useful information will have
an ROC curve that lies above the 45 degree line. Figure 18.1 provides an example
of such a ROC curve. Finally, suppose we have a perfect classifier, such that there
exists a value of d = d∗ where TPR = 1 and FPR = 0. For all values of d ≥ d∗, the
ROC curve will be a vertical line on the y-axis from (0,0) to (0,1), where for values
of d ≤ d∗, the ROC curve will lie on a horizontal line from (0,1) to (1,1).

As discussed in Berge and Jordá (2011), the area under the ROC curve (AUROC)
can be a useful measure of the classification ability of a classifier. The AUROC
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Fig. 18.1 Example receiver operator characteristic (ROC) curve
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for the 45 degree line, which is the ROC curve for the classifier when Xt has no
predictive ability, is 0.5. The AUROC for a perfect classifier is 1. In practice, the
AUROC will lie in between these extremes, with larger values indicating better
classification ability.

In the application presented in Sect. 18.5, I consider both the QPS and the
AUROC to assess out-of-sample classification ability. I will also evaluate the ability
of these classifiers to forecast turning points. In this case, given the relative rarity
of turning points in most economic applications, it seems fruitful to evaluate
performance through case studies of the individual turning points. Examples of such
a case study will be provided in Sect. 18.5.

18.3 Machine Learning Approaches to Supervised
Classification

In this section I will survey a variety of off-the-shelf supervised machine learning
classifiers. The classifiers I survey have varying levels of suitability for data-rich
environments. For all the classifiers considered, application to datasets with many
predictors is computationally feasible. Some of the classifiers also have built-in
mechanisms to identify relevant predictors, while others use all predictor variables
equally. Where relevant, I will discuss the wide-data attributes of each classifier
below.

All of the classifiers that I discuss in this section involve various specification
choices that must be set in order to implement the classifier. In some cases, these
choices involve setting the value of a parameter, while in others they may involve
the choice between two or more variants of the classifier. Following the machine
learning literature, I refer to these various choices as tuning parameters. While
these tuning parameters can be set a priori, in this chapter I instead implement
the commonly used procedure of cross-validation to set the tuning parameters
automatically in a data-based way. In the following subsection I briefly describe
cross-validation, before moving to discussions of the individual classifiers.

18.3.1 Cross-Validation

The central idea of cross-validation is to randomly partition the full training sample
into a new training sample and a (non-overlapping) evaluation sample. For specific
values of the tuning parameters, the classifier is trained on the partition of data
labeled the training sample, and is then used to classify the partition labeled the
evaluation sample. The performance of the classifier on the evaluation sample is
recorded for each point in a grid for the tuning parameters, and the values of the
tuning parameters with the best performance classifying the evaluation sample are
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selected. These optimal values for the tuning parameters are then used to train
the classifier over the full training sample. Performance on the evaluation sample
is generally evaluated using a scalar metric for classification performance. For
example, in the application presented in Sect. 18.5, I use the AUROC for this
purpose.

In k-fold cross-validation, k of these partitions (or “folds”) are randomly
generated, and the performance of the classifier for specific tuning parameter values
is averaged across the k evaluation samples. A common value for k, which is the
default in many software implementations of k-fold cross-validation, is k = 10. One
can increase robustness by repeating k-fold cross-validation a number of times, and
averaging performance across these repeats. This is known as repeated k-fold cross-
validation. Finally, in settings with strongly unbalanced classes, which is common
in economic applications, it is typical to sample the k partitions such that they reflect
the percentage of classes in the full training sample. In this case, the procedure is
labeled stratified k-fold cross-validation.

Cross-validation is an attractive approach for setting tuning parameters because
it aligns the final objective, good out-of-sample forecasts, with the objective used
to determine tuning parameters. In other words, tuning parameters are given a
value based on the ability of the classifier to produce good out-of-sample forecasts.
This is in contrast to traditional estimation, which sets parameters based on the
in-sample fit of the model. Cross-validation is overwhelmingly used in machine
learning algorithms for classification, and it can be easily implemented for a wide
variety of classifiers using the caret package in R.

18.3.2 Naïve Bayes

We begin our survey of machine learning approaches to supervised classification
with the Naïve Bayes (NB) classifier. NB is a supervised classification approach
that produces a posterior probability for each class based on application of Bayes
rule. NB simplifies the classification problem considerably by assuming that inside
of each class, the individual variables in the vector Xt are independent of each
other. This conditional independence is a strong assumption, and would be expected
to be routinely violated in economic datasets. Indeed, it would be expected to be
violated in most datasets, which explains the “naïve” moniker. However, despite
this strong assumption, the NB algorithm works surprisingly well in practice. This
is primarily because what is generally needed for classification is not exact posterior
probabilities of the class, but only reasonably accurate approximate rank orderings
of probabilities. Two recent applications in economics include Garbellano (2016),
who used a NB classifier to nowcast US recessions and expansions in real time,
and Davig and Smalter Hall (2016), who used the NB classifier, including some
extensions, to predict US business cycle turning points.



18 Turning Points and Classification 595

To describe the NB classifier I begin with Bayes rule:

Pr (St+h = c|Xt) ∝ f (Xt |St+h = c) Pr (St+h = c) (18.1)

In words, Bayes rule tells us that the posterior probability that St+h is in phase c is
proportional to the probability density for Xt conditional on St+h being in phase c
multiplied by the unconditional (prior) probability that St+h is in phase c.

The primary difficulty in operationalizing (18.1) is specifying a model for Xt to
produce f (Xt |St+h = c). The NB approach simplifies this task considerably by
assuming that each variable in Xt is independent of each other variable in Xt ,
conditional on St+h = c. This implies that the conditional data density can be
factored as follows:

f (Xt |St+h = c) =
N∏

j=1

fj
(
Xj ,t |St+h = c

)

where Xj ,t is one of the variables in Xt . Equation (18.1) then becomes

Pr (St+h = c|Xt) ∝
⎡

⎣
N∏

j=1

fj
(
Xj ,t |St+h = c

)
⎤

⎦Pr (St+h = c) (18.2)

How do we set fj
(
Xj ,t |St+h = c

)
? One approach is to assume a parametric

distribution, where a typical choice in the case of continuous Xt is the normal
distribution:

Xj ,t |St+h = c ∼ N
(
μj ,c, σ

2
j ,c

)

where μj ,c and σ 2
j ,c are estimated from the training sample. Alternatively, we could

evaluate fj
(
Xj ,t |St+h = c

)
non-parametrically using a kernel density estimator fit

to the training sample. In our application of NB presented in Sect. 18.5, I treat the
choice of whether to use a normal distribution or a kernel density estimate as a
tuning parameter.

Finally, Eq. (18.2) produces an object that is proportional to the conditional
probability Pr (St+h = c|Xt). We can recover this conditional probability exactly
as:

Pr (St+h = c|Xt) =

[
N∏
j=1
fj
(
Xj ,t |St+h = c

)
]

Pr (St+h = c)

C∑
c=1

([
N∏
j=1
fj
(
Xj ,t |St+h = c

)
]

Pr (St+h = c)
)

Our NB classifier is then Ŝct+h (Xt ) = Pr (St+h = c|Xt).
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The NB classifier has a number of advantages. First, it is intuitive and inter-
pretable, directly producing posterior probabilities of each class. Second, it is
easily scalable to large numbers of predictor variables, requiring a number of
parameters linear to the number of predictors. Third, since only univariate properties
of a predictor in each class are estimated, the classifier can be implemented
with relatively small amounts of training data. Finally, ignoring cross-variable
relationships guards against overfitting the training sample data.

A primary drawback of the NB approach is that it ignores cross-variable
relationships potentially valuable for classification. Of course, this drawback is also
the source of the advantages mentioned above. Another drawback relates to the
application of NB in data-rich settings. As Eq. (18.2) makes clear, all predictors are
given equal weight in determining the posterior probability of a class. As a result, the
performance of the classifier can deteriorate if there are a large number of irrelevant
predictors, the probability of which will increase in data-rich settings.

Naïve Bayes classification can be implemented in R via the caret package,
using the naive_bayes method. Implementation involves two tuning parame-
ters. The first is usekernel, which indicates whether a Gaussian density or a
kernel density estimator is used to approximate fj

(
Xj ,t |St+h = c

)
. The second is

adjust, which is a parameter indicating the size of the bandwidth in the kernel
density estimator.

18.3.3 k-Nearest Neighbors

The k-nearest neighbor (kNN) algorithm is among the simplest of supervised clas-
sification techniques. Suppose that for predictor data Xt , we define a neighborhood,
labeled Rk (Xt ), that consists of the k closest points toXt in the training sample (not
including Xt itself). Our class prediction for St+h = c is then simply the proportion
of points in the region belonging to class c:

Ŝct+h (Xt ) =
1

k

∑

Xi∈Rk(Xt )
I (Si+h = c)

In other words, to predict Sct+h, we find the k values of X that are closest to Xt , and
compute the proportion of these that correspond to class c.

To complete this classifier we must specify a measure of “closeness.” The most
commonly used metric is Euclidean distance:

d(Xt ,Xi) =

√√√√√
N∑

j=1

(Xj ,t −Xj ,i )2
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Other distance metrics are of course possible. The regionRk (Xt ) can also be defined
continuously, so that training sample observations are not simply in vs. out of
Rk (Xt ), but have declining influence as they move farther away from Xt .

kNN classifiers are simple to understand, and can often provide a powerful
classification tool, particularly in cases where Xt is of low dimension. However,
kNN is adversely affected in cases where the Xt vector contains many irrelevant
predictors, as the metric defining closeness is affected by all predictors, irregardless
of their classification ability. Of course, the likelihood of containing many irrelevant
predictors increases with larger datasets, and as a result kNN classification is not
a commonly used classifier when there are a large number of predictors. Other
approaches, such as the tree-based methods described below, are preferred in data-
rich settings, in that they can automatically identify relevant predictors.

As was discussed in Sect. 18.2.2, in many applications some values of the
predictor variables will be missing in the out-of-sample period. It is also possible
to have missing values in the training sample. A simple and effective approach to
handle missing values is to apply a kNN type procedure to impute the missing
values. Specifically, suppose we have a vector Xt that is only partially observed.
Segment this vector into X∗t and X̃t , where X∗t holds the N∗ variables that are
observed and X̃t holds the N − N∗ variables that are not observed. Define a
neighborhood, labeled Rk

(
X∗t
)
, that consists of the k closest points to X∗t over the

portion of the training sample for which there are no missing values. Closeness can
again be defined in terms of the Euclidean metric:

d(X∗t ,X∗i ) =

√√√√√
N∗∑

j=1

(X∗j ,t −X∗j ,i )
2

We then impute the missing variable values contained in X̃t using the mean of those
same variables in Rk

(
X∗t
)
:

X̃
imputed
t = 1

k

∑

Xi∈Rk(X∗t )
X̃i

kNN classification can be implemented in R via the caret package, using the
knn method. The knn method involves a single tuning parameter, k, which indi-
cates the value of k. Also, when implementing any machine learning classification
method in R using the caret package, kNN imputation can be used to replace
missing values via the preProc argument to the train function.
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18.3.4 Learning Vector Quantization

Learning Vector Quantization (LVQ) is a classifier that forms predictions on the
basis of the closeness of Xt to some key points in the predictor space. In this
sense it is like kNN, in that it generates predictions based on a nearest-neighbor
strategy. However, unlike kNN, these key points are not collections of training
sample data points, but instead are endogenously learned from the training sample
data. LVQ is widely used in real-time classification problems in a number of fields
and applications, and was used in the economics literature by Giusto and Piger
(2017) to identify US business cycle turning points in real time. LVQ methods were
developed by Teuvo Kohonen and are described in detail in Kohonen (2001).

To describe LVQ it is useful to begin with vector quantization (VQ). A VQ
classifier relies on the definition of certain key points, called codebook vectors,
defined in the predictor space. Each codebook vector is assigned to a class, and
there can be more than one codebook vector per class. We would generally have
far fewer codebook vectors than data vectors, implying that a codebook vector
provides representation for a group of training sample data vectors. In other words,
the codebook vectors quantize the salient features of the predictor data. Once these
codebook vectors are singled out, data is classified via a majority vote of the nearest
group of k codebook vectors in the Euclidean metric.

How is the location of each codebook vector established? An LVQ algorithm
is an adaptive learning algorithm in which the locations of the codebook vectors
are determined through adjustments of decreasing magnitude. Denote our codebook
vectors as vi ∈ RN , i = 1, . . . ,V , let g = 1, 2, . . . ,G denote iterations of the
algorithm, and let αg be a decreasing geometric sequence where 0 < α < 1. Given
the initial location of the codebook vectors, the LVQ algorithm makes adjustments
to their location as described in Algorithm 15:

This LVQ algorithm is very simple. A data vector is considered, and its nearest
codebook vector is identified. If the class attached to this codebook vector agrees
with the actual classification of the data vector, its location is moved closer to

Algorithm 15 Learning vector quantization (Kohonen 2001)

Initialize v0
i , i = 1, . . . ,V

for g = 1 to G do.
for t = 1 to T do.

Identify the single codebook vector vg−1∗ closest to Xt in the Euclidean metric.
Adjust the location of vg∗ according to:

v
g∗ = vg−1∗ + αg(Xt − vg−1∗ ) if Xt and vg−1∗ belong to the same class

v
g∗ = vg−1∗ − αg(Xt − vg−1∗ ) otherwise

end for
end for
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the data vector. If the selected codebook vector does not classify the data vector
correctly, then it is moved farther from the data vector. These adjustments are made
in a simple linear fashion. These calculations are repeated for each data vector in
the dataset. When the data has all been used, a new iteration is started where the
weight αg , which controls the size of the adjustment to the codebook vectors, is
decreased. This continues forG iterations, with the final codebook vectors given by
vGi , i = 1, . . . ,V .

Once the final codebook vectors are established, the LVQ classifier produces a
prediction, Ŝt+h (Xt ), via a majority voting strategy. First, we identify the k closest
codebook vectors to Xt in the Euclidean metric. Second, the predicted class for Xt
is set equal to the majority class of these k codebook vectors. Denote this majority
class as c∗. Then:

Ŝct+h (Xt ) = 1, if c = c∗

Ŝct+h (Xt ) = 0, otherwise

Here I have laid out the basic LVQ algorithm, which has been shown to work
well in many practical applications. Various modifications to this algorithm have
been proposed, which may improve classification ability in some contexts. These
include LVQ with nonlinear updating rules, as in the generalized LVQ algorithm
of Sato and Yamada (1995), as well as LVQ employed with alternatives to the
Euclidean measure of distance, such as the generalized relevance LVQ of Hammer
and Villmann (2002). The latter allows for adaptive weighting of data series in the
dimensions most helpful for classification, and may be particularly useful when
applying LVQ to large datasets.

LVQ classification can be implemented in R via the caret package using the
lvq method. The lvq method has two tuning parameters. The first is the number
of codebook vectors to use in creating the final classification, k, and is labeled k.
The second is the total number of codebook vectors V , and is labeled size. To
implement the classifier, one must also set the values ofG and α. In the lvqmethod,
G is set endogenously to ensure convergence of the codebook vectors. The default
value of α in the lvq method is 0.3. Kohonen (2001) argues that classification
results from LVQ should be largely invariant to the choice of alternative values of
α provided that αg → 0 as g → ∞, which ensures that the size of codebook
vector updates eventually converges to zero. Giusto and Piger (2017) verified this
insensitivity in their application of LVQ to identifying business cycle turning points.

The LVQ algorithm requires an initialization of the codebook vectors. This
initialization can have effects on the resulting class prediction, as the final placement
of the codebook vectors in an LVQ algorithm is not invariant to initialization. A
simple approach, which I follow in the application, is to allow all classes to have
the same number of codebook vectors, and initialize the codebook vectors attached
to each class with random draws of Xt vectors from training sample observations
corresponding to each class.
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18.3.5 Classification Trees

A number of commonly used classification techniques are based on classification
trees. I will discuss several of these approaches in subsequent sections, each of
which uses aggregations of multiple classification trees to generate predictions.
Before delving into these techniques, in this section I describe the single classifi-
cation trees upon which they are built.

A classification tree is an intuitive, non-parametric, procedure that approaches
classification by partitioning the predictor variable space into non-overlapping
regions. These regions are created according to a conjunction of binary conditions.
As an example, in a case with two predictor variables, one of the regions might be
of the form {Xt |X1,t ≥ τ1,X2,t < τ2}. The partitions are established in such a way
so as to effectively isolate alternative classes in the training sample. For example,
the region mentioned above might have been chosen because it corresponds to cases
where St+h is usually equal to c. To generate predictions, the classification tree
would then place a high probability on St+h = c if Xt fell in this region.

How specifically are the partitions established using a training sample? Here I
will describe a popular training algorithm for a classification tree, namely the clas-
sification and regression tree (CART). CART proceeds by recursively partitioning
the training sample through a series of binary splits of the predictor data. Each new
partition, or split, segments a region that was previously defined by the earlier splits.
The new split is determined by one of the predictor variables, labeled the “split
variable,” based on a binary condition of the form Xj ,t < τ and Xj ,t ≥ τ , where
both j and τ can differ across splits. The totality of these recursive splits partition the
sample space into M non-overlapping regions, labeled A∗m, m = 1, . . . ,M , where
there are T ∗m training sample observations in each region. For all Xt that are in
region A∗m, the prediction for St+h is a constant equal to the within-region sample
proportion of class c:

P cA∗m =
1

T ∗m

∑

Xt∈A∗m
I (St+h = c) (18.3)

The CART classifier is then:

Ŝct+h (Xt ) =
M∑

m=1

P cA∗m I
(
Xt ∈ A∗m

)
(18.4)

How is the recursive partitioning implemented to arrive at the regions A∗m?
Suppose that at a given step in the recursion, we have a region defined by the
totality of the previous splits. In the language of decision trees, this region is called a
“node.” Further, assume this node has not itself yet been segmented into subregions.
I refer to such a node as an “unsplit node” and label this unsplit node generically
as A. For a given j and τ j we then segment the data in this region according to
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{Xt |Xj ,t < τ
j ,Xt ∈ A} and {Xt |Xj ,t ≥ τ j ,Xt ∈ A}, which splits the data in this

node into two non-overlapping regions, labeled AL and AR , respectively. In these
regions, there are T L and T R training sample observations. In order to determine
the splitting variable, j , and the split threshold, τ j , we scan through all pairs {j , τ j },
where j = 1, . . . N and τ j ∈ TA,j , to find the values that maximize a measure of
the homogeneity of class outcomes inside of AL and AR .5 Although a variety of
measures of homogeneity are possible, a common choice is the Gini impurity:

GL =
C∑

c=1

P c
AL
(1− P c

AL
)

GR =
C∑

c=1

P c
AR
(1− P c

AR
)

The Gini impurity is bounded between zero and one, where a value of zero indicates
a “pure” region where only one class is present. Higher values of the Gini impurity
indicate greater class diversity. The average Gini impurity for the two new proposed
regions is

G = T L

T L + T RGL +
T R

T L + T RGR (18.5)

The split point j and split threshold τ j are then chosen to create regions AL and AR

that minimize the average Gini impurity.
This procedure is repeated for other unsplit nodes of the tree, with each additional

split creating two new unsplit nodes. By continuing this process recursively, the
sample space is divided into smaller and smaller regions. One could allow the
recursion to run until we are left with only pure unsplit nodes. A more common
choice in practice is to stop splitting nodes when any newly created region would
contain a number of observations below some predefined minimum. This minimum
number of observations per region is a tuning parameter of the classification tree.
Whatever approach is taken, when we arrive at an unsplit node that is not going to
be split further, this node becomes one of our final regions A∗m. In the language of
decision trees, this final unsplit node is referred to as a “leaf.” Algorithm 16 provides
a description of the CART classification tree.

Classification trees have many advantages. They are simple to understand,
require no parametric modeling assumptions, and are flexible enough to capture
complicated nonlinear and discontinuous relationships between the predictor vari-
ables and class indicator. Also, the recursive partitioning algorithm described above

5In a CART classification tree, TA,j is a discrete set of all non-equivalent values for τ j , which
is simply the set of midpoints of the ordered values for Xj ,t in the training sample observations
relevant for node A.
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Algorithm 16 A single CART classification tree (Breiman, Friedman, Olshen, and
Stone 1984)
1: Initialize a single unsplit node to contain the full training sample
2: for All unsplit nodes Au with total observations > threshold do
3: for j = 1 to N and τ j ∈ TAu ,j do
4: Create non-overlapping regions ALu = {Xt |Xj ,t < τ

j ,Xt ∈ Au} and
ARu = {Xt |Xj ,t ≥ τ j ,Xt ∈ Au} and calculate Ḡ as in (18.5).

5: end for
6: Select j and τ j to minimize Ḡ and create the associated nodes ALu and ARu .
7: Update the set of unsplit nodes to include ALu and ARu .
8: end for
9: For final leaf nodes, A∗m, form P cA∗m as in (18.3), for c = 1, . . . ,C and m = 1, . . .M

10: Form the CART classification tree classifier: Ŝct+h (Xt ) as in (18.4).

scales easily to large datasets, making classification trees attractive in this setting.
Finally, unlike the classifiers we have encountered to this point, a CART classi-
fication tree automatically conducts model selection in the process of producing
a prediction. Specifically, a variable may never be used as a splitting variable,
which leaves it unused in producing a prediction by the classifier. Likewise, another
variable may be used multiple times as a splitting variable. These differences result
in varying levels of variable importance in a CART classifier. Hastie, Tibshirani, and
Friedman (2009) detail a measure of variable importance that can be produced from
a CART tree.

CART trees have one significant disadvantage. The sequence of binary splits, and
the path dependence this produces, generally produces a high variance forecast. That
is, small changes in the training sample can produce very different classification
trees and associated predictions. As a result, a number of procedures exist that
attempt to retain the benefits of classification trees while reducing variance. We
turn to these procedures next.

18.3.6 Bagging, Random Forests, and Extremely Randomized
Trees

In this section we describe bagged classification trees, their close variant, the
random forest, and a modification to the random forest known as extremely
randomized trees. Each of these approaches averages the predicted classification
coming from many classification trees. This allows us to harness the advantages
of tree-based methods while at the same time reducing the variance of the tree-
based predictions through averaging. Random forests have been used to identify
turning points in economic data by Ward (2017), who uses random forests to identify
episodes of financial crises, and Garbellano (2016), who uses random forests to
nowcast US recession episodes. Bagging and random forests are discussed in more
detail in Chap. 13 of this book.
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We begin with bootstrap aggregated (bagged) classification trees, which were
introduced in Breiman (1996). Bagged classification trees work by training a large
number, B, of CART classification trees and then averaging the class predictions
from each of these trees to arrive at a final class prediction. The trees are different
because each is trained on a bootstrap training sample of size T , which is created
by sampling {Xt , St+h} with replacement from the full training sample. Each tree
produces a class prediction, which I label Ŝcb,t+h (Xt ), b = 1, . . . ,B. The bagged
classifier is then the simple average of the B CART class predictions:

Ŝct+h (Xt ) =
1

B

B∑

b=1

Ŝcb,t+h (Xt ) (18.6)

Bagged classification trees are a variance reduction technique that can give substan-
tial gains in accuracy over individual classification trees. As discussed in Breiman
(1996), a key determinant of the potential benefits of bagging is the variance of the
individual classification trees across alternative training samples. All else equal, the
higher is this variance, the more potential benefit there is from bagging.

As discussed in Breiman (2001), the extent of the variance improvement also
depends on the amount of correlation across the individual classification trees
that constitute the bagged classification tree, with higher correlation generating
lower variance improvements. This correlation could be significant, as the single
classification trees used in bagging are trained on overlapping bootstrap training
samples. As a result, modifications to the bagged classification tree have been
developed that attempt to reduce the correlation across trees, without substantially
increasing the bias of the individual classification trees. The most well-known of
these is the random forest (RF), originally developed in Breiman (2001).6

An RF classifier attempts to lower the correlation across trees by adding another
layer of randomness into the training of individual classification trees. As with a
bagged classification tree, each single classification tree is trained on a bootstrap
training sample. However, when training this tree, rather than search over the entire
set of predictors j = 1, . . . ,N for the best splitting variable at each node, we
instead randomly choose Q << N predictor variables at each node, and search
only over these variables for the splitting variable. This procedure is repeated to
train B individual classification trees, and the random forest classifier is produced
by averaging these classification trees as in Eq. (18.6). Algorithm 17 provides a
description of the RF classifier.

When implementing an RF classifier, the individual trees are usually allowed
to grow to maximum size, meaning that nodes are split until only pure nodes
remain. While such a tree should produce a classifier with low bias, it is likely to
be unduly influenced by peculiarities of the specific training sample, and thus will

6Other papers that were influential in the development of random forest methods include Amit and
Geman (1997) and Ho (1998).
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Algorithm 17 Random forest classifier (Breiman 2001)
1: for b = 1 to B do
2: Form a bootstrap training sample by sampling {Xt , St+h} with replacement

T times from the training sample observations.
3: Initialize a single unsplit node to contain the full bootstrap training sample
4: for All unsplit nodes Au with total observations > threshold do
5: Randomly selectQ predictor variables as possible splitting variables. Denote

these predictor variables at time t as X̃t
6: for Xj ,t ∈ X̃t and τ j ∈ TAu ,j do
7: Create two non-overlapping regions ALu = {Xt |Xj ,t < τ

j ,Xt ∈ Au} and
AR = {Xt |Xj ,t ≥ τ j ,Xt ∈ Au} and calculate Ḡ as in (18.5).

8: end for
9: Select j and τ j to minimize Ḡ and create the associated nodes ALu and ARu .

10: Update the set of unsplit nodes to include ALu and ARu
11: end for
12: For final leaf nodes, A∗m, form P cA∗m as in (18.3), for c = 1, . . . ,C and m = 1, . . .M

13: Form the single tree classifier: Ŝcb,t+h (Xt ) as in (18.4).
14: end for

15: Form the Random Forest classifier: Ŝct+h (Xt ) = 1
B

B∑
b=1
Ŝcb,t+h (Xt ).

have high variance. The averaging of the individual trees lowers this variance, while
the additional randomness injected by the random selection of predictor variables
helps maximize the variance reduction benefits of averaging. It is worth noting that
by searching only over a small random subset of predictors at each node for the
optimal splitting variable, the RF classifier also has computational advantages over
bagging.

Extremely Randomized Trees, or “ExtraTrees,” is another approach to reduce
correlation among individual classification trees. Unlike both bagged classification
trees and RF, ExtraTrees trains each individual classification tree on the entire
training sample rather than bootstrapped samples. As does a random forest, Extra-
Trees randomizes the subset of predictor variables considered as possible splitting
variables at each node. The innovation with ExtraTrees is that when training the
tree, for each possible split variable, only a single value of τ j is considered as the
possible split threshold. For each j , this value is randomly chosen from the uniform
interval [min(Xj ,t |Xj ,t ∈ A),max(Xj ,t |Xj ,t ∈ A)]. Thus, ExtraTrees randomizes
across both the split variable and the split threshold dimension. ExtraTrees was
introduced by Geurts, Ernst, and Wehenkel (2006), who argue that the additional
randomization introduced by ExtraTrees should reduce variance more strongly than
weaker randomization schemes. Also, the lack of a search over all possible τ j for
each split variable at each node provides additional computational advantages over
the RF classifier. Algorithm 18 provides a description of the ExtraTrees classifier.

RF and ExtraTrees classifiers have enjoyed a substantial amount of success
in empirical applications. They are also particularly well suited for data-rich
environments. Application to wide datasets of predictor variables is computationally
tractable, requiring a number of scans that at most increase linearly with the number
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Algorithm 18 Extremely randomized trees (Geurts et al. 2006)
1: for b = 1 to B do
2: Initialize a single unsplit node to contain the full training sample
3: for All unsplit nodes Au with total observations > threshold do
4: Randomly selectQ predictor variables as possible splitting variables. Denote

these predictor variables at time t as X̃t
5: for Xj ,t ∈ X̃t do
6: Randomly select a single τ j from the uniform interval:

[min(Xj ,t |Xj ,t ∈ Au),max(Xj ,t |Xj ,t ∈ Au)]
7: Create two non-overlapping regions ALu = {Xt |Xj ,t < τ

j ,Xt ∈ Au} and
AR = {Xt |Xj ,t ≥ τ j ,Xt ∈ Au} and calculate Ḡ as in (18.5).

8: end for
9: Select j to minimize Ḡ and create the associated nodes ALu and ARu .

10: Update the set of unsplit nodes to include ALu and ARu
11: end for
12: For final leaf nodes, A∗m, form P cA∗m as in (18.3), for c = 1, . . . ,C and m = 1, . . .M

13: Form the single tree classifier: Ŝcb,t+h (Xt ) as in (18.4).
14: end for

15: Form the ExtraTrees classifier: Ŝct+h (Xt ) = 1
B

B∑
b=1
Ŝcb,t+h (Xt ).

of predictors. Also, because these algorithms are based on classification trees, they
automatically conduct model selection as the classifier is trained.

Both RF and ExtraTrees classifiers can be implemented in R via the caret
package, using the ranger method. Implementation involves three tuning
parameters. The first is the value of Q and is denoted mtry in the caret
package. The second is splitrule and indicates whether a random forest
(splitrule= 0) or an extremely randomized tree (splitrule= 1) is trained.
Finally, min.node.size indicates the minimum number of observations allowed
in the final regions established for each individual classification tree. As discussed
above, it is common with random forests and extremely randomized trees to allow
trees to be trained until all regions are pure. This can be accomplished by setting
min.node.size= 1.

18.3.7 Boosting

Boosting has been described by Hastie et al. (2009) as “one of the most powerful
learning ideas introduced in the last twenty years” and by Breiman (1996) as
“the best off-the-shelf classifier in the world.” Many alternative descriptions and
interpretations of boosting exist, and a recent survey and historical perspective is
provided in Mayr, Binder, Gefeller, and Schmid (2014). In economics, several recent
papers have used boosting to predict expansion and recession episodes, including
Ng (2014), Berge (2015), and D opke, Fritsche, and Pierdzioch (2017). Boosting is
described in more detail in Chap. 14 of this book.
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The central idea of boosting is to recursively apply simple “base” learners to a
training sample, and then combine these base learners to form a strong classifier.
In each step of the recursive boosting procedure, the base learner is trained on
a weighted sample of the data, where the weighting is done so as to emphasize
observations in the sample that to that point had been classified incorrectly. The
final classifier is formed by combining the sequence of base learners, with better
performing base learners getting more weight in this combination.

The first boosting algorithms are credited to Schapire (1990), Freund (1995),
and Freund and Schapire (1996) and are referred to as AdaBoost. Later work
by Friedman, Hastie, and Tibshirani (2000) interpreted AdaBoost as a forward
stagewise procedure to fit an additive logistic regression model, while Friedman
(2001) showed that boosting algorithms can be interpreted generally as non-
parametric function estimation using gradient descent. In the following I will
describe boosting in more detail using these later interpretations.

For notational simplicity, and to provide a working example, consider a two class
case, where I define the two classes as St+h = −1 and St+h = 1. Define a function
F (Xt) ∈ R that is meant to model the relationship between our predictor variables,
Xt , and St+h. Larger values of F (Xt) signal increased evidence for St+h = 1,
while smaller values indicate increased evidence for St+h = −1. Finally, define a
loss function, C(St+h,F (Xt)), and suppose our goal is to choose F (Xt) such that
we minimize the expected loss:

ES,XC(St+h,F (Xt )) (18.7)

A common loss function for classification is exponential loss:

C(St+h,F (Xt)) = exp (−St+hF (Xt ))

The exponential loss function is smaller if the signs of St+h and F (Xt ) match than
if they do not. Also, this loss function rewards (penalizes) larger absolute values of
F (Xt) when it is correct (incorrect).

For exponential loss, it is straightforward to show Friedman et al. (2000) that the
F (Xt) that minimizes Eq. (18.7) is

F (Xt) = 1

2
ln

[
Pr (St+h = 1|Xt)

Pr (St+h = −1|Xt)
]

which is simply one-half the log odds ratio. A traditional approach commonly found
in economic studies is to assume an approximating parametric model for the log
odds ratio. For example, a parametric logistic regression model would specify:

ln

[
Pr (St+h = 1|Xt)

Pr (St+h = −1|Xt)
]
= X′t β
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A boosting algorithm alternatively models F (Xt) as an additive model (Friedman
et al. 2000):

F (Xt ) =
J∑

j=1

αjTj
(
Xt ;βj

)
(18.8)

where each Tj
(
Xt ;βj

)
is a base learner with parameters βj . Tj

(
Xt ;βj

)
is usually

chosen as a simple model or algorithm with only a small number of associated
parameters. A very common choice for Tj

(
Xt ;βj

)
is a CART regression tree with

a small number of splits.
Boosting algorithms fit Eq. (18.8) to the training sample in a forward stagewise

manner. An additive model fit via forward stagewise iteratively solves for the loss
minimizing αjTj

(
Xt ;βj

)
, conditional on the sum of previously fit terms, labeled

Fj−1 (Xt ) =
j−1∑
i=1
αiTi (Xt ;βi). Specifically, conditional on an initial F0 (Xt ), we

iteratively solve the following for j = 1, . . . , J :

{αj ,βj } = min
αj ,βj

T∑

t=1

C
(
St+h,

[
Fj−1 (Xt )+ αjTj

(
Xt ;βj

)])
(18.9)

Fj (Xt ) = Fj−1 (Xt )+ αjTj
(
Xt ;βj

)
(18.10)

Gradient boosting finds an approximate solution to equation (18.9)–(18.10)
via a two-step procedure. First, for each j , compute the “pseudo-residuals” as the
negative gradient of the loss function evaluated at Fj−1 (Xt ):

ej ,t+h = −
[
∂C(St+h,F(Xt))

∂F (Xt )

]

F(Xt )=Fj−1(Xt )

Next, a CART regression tree Tj
(
Xt ;βj

)
is fit to the pseudo-residuals. Specifically,

a tree is trained on a training sample made up of {ej ,t+h,Xt }Tt=1, with the final tree
containing M non-overlapping leaves, A∗m,j , m = 1, . . . ,M . The CART regression
tree predicts a constant in each region:

Tj
(
Xt ;βj

) =
M∑

m=1

ēm,j I (Xt ∈ A∗m,j )

where ēm,j is the simple average of ej ,t+h inside the leaf A∗m,j , and βj represents
the parameters of this tree, which would include details such as the split locations
and splitting variables. These are chosen as described in Sect. (18.3.5), but as the
pseudo-residuals are continuous, a least squares criterion is minimized to choose
βj rather than the Gini impurity. Notice that because the tree predicts a constant
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in each regime, the solution to equation (18.9) involves simply a single parameter
optimization in each of theA∗m,j regions. Each of these optimizations takes the form:

γm,j = min
γ

∑

Xt∈A∗m,j

C
(
St+h,Fj−1 (Xt )+ γ

)
, m = 1, . . . ,M

Given this solution, Eq. (18.10) becomes

Fj (Xt ) = Fj−1 (Xt )+
M∑

m=1

γm,j I (Xt ∈ A∗m,j ) (18.11)

As discussed in Friedman (2001), gradient boosting is analogous to AdaBoost
when the loss function is exponential. However, gradient boosting is more general,
and can be implemented for any differentiable loss function. Gradient boosting
also helps expose the intuition of boosting. The gradient boosting algorithm
approximates the optimal F(Xt) through a series of Newton steps, and in this
sense boosting can be interpreted as a numerical minimization of the empirical
loss function in the space of the function F(Xt). Each of these Newton steps
moves Fj (Xt ) in the direction of the negative gradient of the loss function, which
is the direction of greatest descent for the loss function in F(Xt) space. Loosely
speaking, the negative gradient, or pseudo-residuals, provides us with the residuals
from applying Fj−1(Xt ) to classify St+h. In this sense, at each step, the boosting
algorithm focuses on observations that were classified incorrectly in the previous
step.

Finally, Friedman (2001) suggests a modification of Eq. (18.11) to introduce a
shrinkage parameter:

Fj (Xt ) = Fj−1 (Xt )+ η
M∑

m=1

γm,j I (Xt ∈ A∗m,j )

where 0 < η ≤ 1 controls the size of the function steps in the gradient based
numerical optimization. In practice, η is a tuning parameter for the gradient boosting
algorithm.

Gradient boosting with trees as the base learners is referred to under a variety of
names, including a gradient boosting machine, MART (multiple additive regression
trees), TreeBoost, and a boosted regression tree. The boosting algorithm for our two
class example is shown in Algorithm 19.

Upon completion of this algorithm we have FJ (Xt ), although in many applica-
tions this function is further converted into a more recognizable class prediction.
For example, AdaBoost uses the classifier sign(FJ (Xt )), which for the two class
example with exponential loss classifies St+h according to its highest probability
class. In our application, we will instead convert FJ (Xt ) to a class probability by
inverting the assumed exponential cost function, and use these probabilities as our
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Algorithm 19 Gradient boosting with trees (Friedman 2001)

1: Initialize F 0 (Xt ) = min
γ

T∑
t=1
C(St+h, γ )

2: for j = 1 to J do

3: ej ,t+h = −
[
∂C(St+h ,F(Xt ))

∂F (Xt )

]

F(Xt )=Fj−1(Xt )
, t = 1 . . . T

4: Fit T
(
Xt ;βj

)
to {ej ,t+h,Xt }Tt=1 to determine regions A∗m,j , m = 1, . . .M

5: γm,j = min
γ

∑
Xt∈A∗m,j

C
(
St+h,Fj−1 (Xt )+ γ

)
, m = 1, . . .M

6: Fj (Xt ) = Fj−1 (Xt )+ η
M∑
m=1

γm,j I
(
Xt ∈ A∗m,j

)

7: end for

classifier, Ŝt+h. Again, for the two class case with exponential loss:

Ŝc=1
t+h (Xt ) =

exp(2FJ (Xt ))

1+ exp(2FJ (Xt ))

Ŝc=−1
t+h (Xt ) = 1

1+ exp(2FJ (Xt ))
Gradient boosting with trees scales very well to data-rich environments. The

forward-stagewise gradient boosting algorithms simplify optimization considerably.
Further, gradient boosting is commonly implemented with small trees, in part to
avoid overfitting. Indeed, a common choice is to use the so-called stumps, which
are trees with only a single split. This makes implementation with large sets of
predictors very fast, as at each step in the boosting algorithm, only a small number
of scans through the predictor variables is required.

Two final aspects of gradient boosting bear further comment. First, as discussed
in Hastie et al. (2009), the algorithm above can be modified to incorporate K > 2
classes by assuming a negative multinomial log likelihood cost function. Second,
Friedman (2001) suggests a modified version of Algorithm 19 in which, at each
step j , a random subsample of the observations is chosen. This modification, known
as “stochastic gradient boosting,” can help prevent overfitting while also improving
computational efficiency.

Gradient boosting can be implemented in R via the caret package, using the
gbm method. Implementation of gbm where regression trees are the base learners
involves four tuning parameters. The first is n.trees, which is the stopping point
J for the additive model in Eq. (18.8). The second is interaction.depth,
which is the depth (maximum number of consecutive splits) of the regression trees
used as weak learners. shrinkage is the shrinkage parameter, η in the updating
rule Eq. (18.3.7). Finally, n.minobsinnode is the minimum terminal node size
for the regression trees.
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18.4 Markov-Switching Models

In this section we describe Markov-switching (MS) models, which are a popular
approach for both historical and real-time classification of economic data. In
contrast to the machine learning algorithms presented in the previous section, MS
models are unsupervised, meaning that a historical time series indicating the class is
not required. Instead, MS models assume a parametric structure for the evolution of
the class, as well as for the interaction of the class with observed data. This structure
allows for statistical inference on which class is, or will be, active. In data-rich
environments, Markov-switching can be combined with dynamic factor models to
capture the information contained in datasets with many predictors. Obviously, MS
models are particularly attractive when a historical class indicator is not available,
and thus supervised approaches cannot be implemented. However, MS models have
also been used quite effectively for real-time classification in settings where a
historical indicator is available. We will see an example of this in Sect. 18.5.

MS models are parametric time-series models in which parameters are allowed to
take on different values in each of C regimes, which for our purposes correspond to
the classes of interest. A fundamental difference from the supervised approaches we
have already discussed is that these regimes are not assumed to be observed in the
training sample. Instead, a stochastic process assumed to have generated the regime
shifts is included as part of the model, which allows for both in-sample historical
inference on which regime is active, as well as out-of-sample forecasts of regimes. In
the MS model, introduced to econometrics by Goldfeld and Quandt (1973), Cosslett
and Lee (1985), and Hamilton (1989), the stochastic process assumed is a C-state
Markov process. Also, and in contrast to the non-parametric approaches we have
already seen, a specific parametric structure is assumed to link the observedXt to the
regimes. Following Hamilton (1989), this linking model is usually an autoregressive
time-series model with parameters that differ in the C regimes. The primary use of
these models in the applied economics literature has been to describe changes in the
dynamic behavior of macroeconomic and financial time series.

The parametric structure of MS models comes with some benefits for classifi-
cation. First, by specifying a stochastic process for the regimes, one can allow for
dynamic features that may help with both historical and out-of-sample classification.
For example, most economic regimes of interest display substantial levels of
persistence. In an MS model, this persistence is captured by the assumed Markov
process for the regimes. Second, by assuming a parametric model linking Xt to
the classes, the model allows the researcher to focus the classification exercise on
the object of interest. For example, if one is interested in identifying high and low
volatility regimes, a model that allows for switching in only conditional variance of
an AR model could be specified.7

7MS models generally require a normalization in order to properly define the regimes. For example,
in a two regime example where the regimes are high and low volatility, we could specify that
St+h = 1 is the low variance regime and St+h = 2 is the high variance regime. In practice this is
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Since the seminal work of Hamilton (1989), MS models have become a very
popular modeling tool for applied work in economics. Of particular note are
regime-switching models of measures of economic output, such as real gross
domestic product (GDP), which have been used to model and identify the phases
of the business cycle. Examples of such models include Hamilton (1989), Chauvet
(1998), Kim and Nelson (1999a), Kim and Nelson (1999b), and Kim, Morley, and
Piger (2005). A sampling of other applications includes modeling regime shifts
in time series of inflation and interest rates (Ang and Bekaert, 2002; Evans and
Wachtel, 1993; Garcia and Perron, 1996), high and low volatility regimes in equity
returns (Dueker, 1997; Guidolin and Timmermann, 2005; Hamilton and Lin, 1996;
Hamilton and Susmel, 1994; Turner, Startz, and Nelson, 1989), shifts in the Federal
Reserve’s policy “rule” (Kim, 2004; Sims and Zha, 2006), and time variation in
the response of economic output to monetary policy actions (Garcia and Schaller,
2002; Kaufmann, 2002; Lo and Piger, 2005; Ravn and Sola, 2004). Hamilton and
Raj (2002), Hamilton (2008), and Piger (2009) provide surveys of MS models, while
Hamilton (1994) and Kim and Nelson (1999c) provide textbook treatments.

Following Hamilton (1989), early work on MS models focused on univariate
models. In this case, Xt is scalar, and a common modeling choice is a pth-order
autoregressive model with Markov-switching parameters:

Xt = μSt+h + φ1,St+h
(
Xt−1 −μSt+h−1

)+ · · · + φp,St+h
(
Xt−p −μSt+h−p

)+ εt
εt ∼ N

(
0, σ 2

St+h

)

(18.12)

where St+h ∈ {1, . . . ,C} indicates the regime and is assumed to be unobserved, even
in the training sample. In this model, each of the mean, autoregressive parameters
and conditional variance parameters are allowed to change in each of the C different
regimes. Hamilton (1989) develops a recursive filter that can be used to construct
the likelihood function for this MS autoregressive model, and thus estimate the
parameters of the model via maximum likelihood.

A subsequent literature explored Markov-switching in multivariate settings. In
the context of identifying business cycle regimes, Diebold and Rudebusch (1996)
argue that considering multivariate information in the form of a factor structure
can drastically improve statistical identification of the regimes. Chauvet (1998)
operationalizes this idea by developing a statistical model that incorporates both
a dynamic factor model and Markov-switching, now commonly called a dynamic
factor Markov-switching (DFMS) model. Specifically, if Xt is multivariate, we
assume that Xt is driven by a single-index dynamic factor structure, where the
dynamic factor is itself driven by a Markov-switching process. A typical example

enforced by restricting the variance in St+h = 2 to be larger than that in St+h = 1. See Hamilton,
Waggoner, and Zha (2007) for an extensive discussion of normalization in the MS model.



612 J. Piger

of such a model is as follows:

Xstdt =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

λ1 (L)

λ2 (L)

...

λN (L)

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

Ft + vt

where Xstdt is the demeaned and standardized vector of predictor variables, λi (L)
is a lag polynomial, and vt =

(
v1,t , v2,t , . . . , vN ,t

)′ is a zero-mean disturbance
vector meant to capture idiosyncratic variation in the series. vt is allowed to be
serially correlated, but its cross-correlations are limited. In the so-called exact factor
model we assume that E(vi,t vj ,t ) = 0, while in the “approximate” factor model vt
is allowed to have weak cross-correlations. Finally, Ft is the unobserved, scalar,
“dynamic factor.” We assume that Ft follows a Markov-switching autoregressive
process as in Eq. (18.12), with Xt replaced by Ft .

Chauvet (1998) specifies a version of this DFMS model where the number of
predictors is N = 4 and shows how the parameters of both the dynamic factor
process and the MS process can be estimated jointly via the approximate maximum
likelihood estimator developed in Kim (1994). Kim and Nelson (1998) develop a
Bayesian Gibbs-sampling approach to estimate a similar model. Finally, Camacho
et al. (2018) develop modifications of the DFMS framework that are useful for
real-time monitoring of economic activity, including mixed-frequency data and
unbalanced panels. Chapter 2 of this book presents additional discussion of the
DFMS model.

As discussed in Camacho, Perez-Quiros, and Poncela (2015), in data-rich
environments the joint estimation of the DFMS model can become computationally
unwieldy. In these cases, an alternative, two-step, approach to estimation of model
parameters can provide significant computational savings. Specifically, in the
first step, the dynamic factor Ft is estimated using the non-parametric principal
components estimator of Stock and Watson (2002). Specifically, F̂t is set equal to
the first principal component of Xstdt . In a second step, F̂t is fit to a univariate
MS model as in Eq. (18.12). The performance of this two-step approach relative to
the one-step approach was evaluated by Camacho et al. (2015), and the two-step
approach was used by Fossati (2016) for the task of identifying US business cycle
phases in real time.

For the purposes of this chapter, we are primarily interested in the ability of MS
models to produce a class prediction, Ŝct+h. In an MS model, this prediction comes in
the form of a “smoothed” conditional probability: Ŝct+h = Pr

(
St+h = c|X̃T

)
, c =

1, . . . ,C, where X̃T denotes the entire training sample, X̃T = {Xt }Tt=1. Bayesian
estimation approaches of MS models are particularly useful here, as they produce
this conditional probability while integrating out uncertainty regarding model
parameters, rather than conditioning on estimates of these parameters.
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In the application presented in Sect. 18.5 I will consider two versions of the
DFMS model for classification. First, for cases with a small number of predictor
variables, we estimate the parameters of the DFMS model jointly using the Bayesian
sampler of Kim & Nelson (1998). Second, for cases where the number of predictor
variables is large, we use the two-step approach described above, where we estimate
the univariate MS model for F̂t via Bayesian techniques. Both of these approaches
produce a classifier in the form of the smoothed conditional probability of the class.
A complete description of the Bayesian samplers used in estimation is beyond the
scope of this chapter. I refer the interested reader to Kim and Nelson (1999c), where
detailed descriptions of Bayesian samplers for MS models can be found.

18.5 Application

In this section I present an application of the classification techniques presented
above to nowcasting US expansion and recession phases at the monthly frequency.
In this case, St+h ∈ {1, 2}, where St+h = 1 indicates a month that is a recession and
St+h = 2 indicates a month that is an expansion. As I am interested in nowcasting,
I set h = 0. As the measure of expansion and recession regimes, I use the NBER
business cycle dates, which are determined by the NBER’s Business Cycle Dating
Committee. I will evaluate the ability of the alternative classifiers to accurately
classify out-of-sample months that have not yet been classified by the NBER,
and also to provide timely identification of turning points between expansion and
recession (peaks) and recession and expansion (troughs) in real time.

Providing improved nowcasts of business cycle phases and associated turning
points is of significant importance because there are many examples of turning
points that were not predicted ex ante. This leaves policymakers, financial markets,
firms, and individuals to try to determine if a new business cycle phase has already
begun. Even this is a difficult task, with new turning points usually not identified
until many months after they occur. For example, the NBER has historically
announced new turning points with a lag of between 4 and 21 months. Statistical
models improve on the NBER’s timeliness considerably, with little difference
in the timing of the turning point dates established.8 However, these models
still generally identify turning points only after several months have passed. For
example, Hamilton (2011) surveys a wide range of statistical models that were
in place to identify business cycle turning points in real time, and finds that such
models did not send a definitive signal regarding the December 2007 NBER peak
until late 2008.

There have been a number of existing studies that evaluate the performance of
individual classifiers to nowcast US business cycle dates. In this chapter I contribute
to this literature by providing a comparison of a broad range of classifiers, including

8See, e.g., Chauvet and Piger (2008), Chauvet and Hamilton (2006), and Giusto and Piger (2017).
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several that have not yet been evaluated for the purpose of nowcasting business
cycles. In doing so, I also evaluate the ability of these classifiers to provide improved
nowcasts using large N vs. small N datasets. Most of the existing literature has
focused on small N datasets, usually consisting of four coincident monthly series
highlighted by the NBER’s Business Cycle Dating Committee as important in their
decisions. Notable exceptions are Fossati (2016), Davig and Smalter Hall (2016),
and Berge (2015), each of which uses larger datasets to classify NBER recessions
in real time.

For predictor variables, I begin with the FRED-MD dataset, which is a monthly
dataset on a large number of macroeconomic and financial variables maintained
by the Federal Reserve Bank of St. Louis. The development of FRED-MD is
described in McCracken and Ng (2015). I use the most recent version of this dataset
available, which as of the writing of this chapter was the vintage released at the
end of November 2018. This vintage provides data for 128 monthly series covering
months from a maximum of January 1959 through October 2018. I then delete six
series that are not regularly available over the sample period, and add seven series
on manufacturing activity from the National Association of Purchasing Managers,
obtained from Quandl (www.quandl.com). I also add seven indices of “news implied
volatility” as constructed in Manela and Moreira (2017). The addition of these series
is motivated by Karnizova and Li (2014), who show that uncertainty measures have
predictive power for forecasting US recessions. Finally, I restrict all series to begin
in January 1960, which eliminates missing values during 1959 for a number of
series.

For all series that are from the original FRED-MD dataset, I transform the
series to be stationary using the transformation suggested in McCracken and Ng
(2015), implemented using the Matlab code available from Michael McCracken’s
website. For the seven NAPM series and NVIX series, I leave the series without
transformation. In some cases, the transformation involves differencing, which uses
up the initial observation. To have a common starting point for our sample, I begin
measuring all series in February 1960. The final raw dataset then consists of 136
series, where all series begin in February 1960 and extend to a maximum of October
2018.

In the analysis I consider three alternative datasets. The first, labeled Narrow
in the tables below, is a small dataset that uses four coincident indicators that
have been the focus of much of the US business cycle dating literature. These
series are the growth rate of non-farm payroll employment, the growth rate of
the industrial production index, the growth rate of real personal income excluding
transfer receipts, and the growth rate of real manufacturing and trade sales. The
second dataset, labeled Real Activity, is a larger dataset consisting of the 70 variables
that are in the groupings “output and income,” “labor market,” “housing,” and
“consumption,” orders and inventories’ as defined in McCracken and Ng (2015).
These variables define the real activity variables in the dataset, and as such target the
most obvious variables with which to date turning points in real economic activity.
The third dataset, labeled Broad, consists of all the variables in the dataset.

www.quandl.com
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To evaluate the performance of the classifiers using these datasets, I conduct
a pseudo out-of-sample nowcasting exercise that covers the last two decades.
Specifically, consider an analyst applying a classification technique in real time at
the end of each month from January 2000 to November 2018. For each of these
months, I assume the analyst has a dataset covering the time period that would have
been available in real time. That is, I accurately replicate the real-time data reporting
lags the analyst would face. The reason this is a pseudo out-of-sample exercise
is that I do not use the vintage of each dataset that would have been available in
real time, as such vintage data is not readily available for all the variables in our
dataset. Chauvet and Piger (2008) show that data revisions do not cause significant
inaccuracies in real time dating of turning points. That said, interesting future work
would replicate this analysis with a fully vintage dataset.

In each month, the analyst uses the available dataset to train the supervised
classifiers over a period for which the NBER classification of St is assumed known.
At each month, the lag with which the NBER classification is assumed known is
allowed to vary, and is set using the approach taken in Giusto and Piger (2017).
Specifically, I assume that: (1) The date of a new peak or trough is assumed to be
known once it is announced by the NBER. (2) If the NBER does not announce a
new peak within twelve months of a date, then it is assumed that a new peak did
not occur at that date. Twelve months is the longest historical lag the NBER has
taken in announcing a new business cycle peak. (3) Once the date of a new turning
point is announced by the NBER, the new NBER business cycle phase (expansion
or recession) is assumed to last at least 6 months. Since the unsupervised DFMS
classifier does not require knowledge of the NBER classification, I estimate the
parameters of this model over the full period for which the predictor data is available
to the analyst. After training, the analyst then uses the classifier to classify those
months through the end of the relevant sample of predictor variables for which the
NBER dates are not known.

Somewhat more formally, suppose the data sample of predictor variables avail-
able to the analyst ends in time H , and the NBER dates are known through time
H − J . Then the supervised classifiers would be trained on data through H − J ,
and the DFMS model would be estimated on data through H . After training and
estimation, all classifiers will be used to classify the unknown NBER dates from
month H − J + 1 through H , and the accuracy of these monthly classifications
will be evaluated. I will also use these out-of-sample classifications to identify new
business cycle turning points in real time.

Before discussing the results, there are several details of the implementation to
discuss. First, when the analyst applies the classifiers to predict the NBER date
out of sample, the most recent data to be classified will be incomplete due to
differential reporting lags across series. In general, I handle these “ragged edges”
by filling in the missing values using kNN imputation, as discussed in Sect. 18.3.3,
prior to performing any subsequent analysis. Second, for the supervised classifiers,
I classify St on the basis of the contemporaneous values of the predictor variables
(month t) and the first lag (month t − 1). That is, the Xt vector contains both
the contemporaneous and first lag of all variables in the relevant sample. For the
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unsupervised DFMS approach, all available values of Xt are used in forming the
smoothed posterior probability for each class. Third, for each dataset, I replace
outliers, defined as data points that are greater than four standard deviations from the
mean, with the median of a six quarter window on either side of the outlier. Finally,
as is typical in the classification literature, I standardize and demean all variables
prior to analysis.9

For each of the supervised classifiers, I use the caret package in R to train and
form predictions. In each case, repeated, stratified k-fold cross-validation is used for
tuning parameters, with k set equal to 10, and the number of repeats also set equal
to 10.10 The objective function used in the cross-validation exercise was AUROC.
Default ranges from caretwere used in tuning parameters. Note that both the kNN
imputation for missing values, as well as outlier detection, were done separately on
each fold of the cross-validation exercise, which prevents data from outside the fold
from informing the within-fold training.

For the unsupervised DFMS model, we must specify a specific version of
the Markov-switching equation to apply to the factor Ft . In order to provide a
comparison to the existing literature, I use specifications that most closely match
those in existing studies. Specifically, for the model applied to the narrow dataset,
for which the DFMS model is estimated jointly, I follow Chauvet (1998) and Kim
and Nelson (1999b) and allow the factor to follow an AR(2) process with regime
switching in mean:

Ft = μSt + φ1
(
Xt−1 −μSt−1

)+ φ2
(
Xt−2 −μSt−2

)+ εt
εt ∼ N

(
0, σ 2

)

For the DFMS model applied to the real activity dataset, for which the DFMS model
is estimated via a two-step procedure, I follow Camacho et al. (2015) and use a
simple AR(0) process with a switching mean:

Ft = μSt + εt
εt ∼ N

(
0, σ 2

)

I do not consider the broad dataset for the DFMS model, as the diversity of series in
this dataset is likely not well described by only a single factor as is assumed by the
DFMS model.

9In unreported results, I also considered a version of each supervised classifier that classified based
on predictor variables formed as principal components from the relevant dataset. The performance
of this version of the classifier was similar in all cases to the results applied to the full dataset of
individual predictors.
10This is a relatively small number of repeats, and was chosen to reduce the computational
burden of the recursive out-of-sample nowcasting exercise. In unreported results, I confirmed the
robustness of several randomly chosen reported results to a larger number of repeats (100).
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Table 18.1 presents the QPS and AUROC statistics for each classifier applied
to each dataset, calculated over all the out-of-sample observations in the recursive
nowcasting exercise. There are several conclusions that can be drawn from these
results. First of all, in general, the AUROC statistics are very high, suggesting that
each of these classifiers has substantial ability to classify expansion and recession
months out of sample. Second, there are only relatively small differences in these
statistics across classifiers. The DFMS model applied to the narrow dataset provides
the highest AUROC at 0.997, which is very close to perfect classification ability,

Table 18.1 Out-of-sample evaluation metrics for alternative classifiers

Classifier QPS AUROC

Naïve Bayes

Narrow 0.058 0.990

Real activity 0.064 0.974

Broad 0.074 0.968

kNN

Narrow 0.030 0.989

Real activity 0.033 0.978

Broad 0.055 0.990

Random forest/extra trees

Narrow 0.034 0.988

Real activity 0.032 0.988

Broad 0.036 0.989

Boosting

Narrow 0.043 0.980

Real activity 0.037 0.978

Broad 0.039 0.982

LVQ

Narrow 0.043 0.938

Real activity 0.046 0.930

Broad 0.038 0.952

DFMS

Narrow 0.041 0.997

Real activity 0.047 0.992

Ensemble

Narrow 0.034 0.992

Real activity 0.029 0.993

Broad 0.031 0.993

Notes: This table shows the quadratic probability score (QPS) and the area under the ROC
curve (AUROC) for out-of-sample nowcasts produced from January 2000 to October 2018 by
the supervised and unsupervised classifiers discussed in Sects. 18.3 and 18.4
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while the kNN classifier applied to the narrow dataset produces the lowest QPS.
However, most classifiers produce AUROCs and QPS values that are reasonably
close to these best performing values.

Third, Table 18.1 suggests that the out-of-sample evaluation metrics are only
moderately improved, it at all, by considering predictor variables beyond the narrow
dataset. The differences in the evaluation statistics that result from changing dataset
size are small, and in many cases these changes are not in a consistent direction
across the QPS vs. AUROC. Overall, these results do not suggest that considering
a larger number of predictors over the narrow dataset is clearly advantageous for
nowcasting business cycle phases in US data. Note that some of this result likely
comes because there is limited room for improvement over the narrow dataset.

Table 18.1 also presents results for a simple ensemble classifier, which is formed
as the average of the alternative classifiers. The ensemble classifier averages the
classification from all six classifiers for the narrow and real activity dataset, and
averages the classification of the five supervised classifiers for the broad dataset. By
averaging across approximately unbiased classifier that is not perfectly correlated,
an ensemble classifier holds out the possibility of lower variance forecasts than
is produced by the individual classifiers. Interestingly, the ensemble classifiers
perform well in this setting, with the ensemble classifier applied to the real activity
dataset having the lowest QPS and second highest AUROC of any classifier/dataset
combination in the table.

The results in Table 18.1 do not speak directly to the question of identifying
turning points (peaks and troughs) in real time. To evaluate the ability of the
classifiers to identify turning points, we require a rule to transform the classifier
output into turning point predictions. Here I employ a simple rule to identify a new
turning point, which can be described as follows: If the most recent known NBER
classified month is an expansion month, a business cycle peak is established if
Ŝ1
t (Xt ) ≥ 0.5 for the final month in the out-of-sample period. Similarly, if the most

recent known NBER classified month is a recession month, a business cycle trough
is established if Ŝ1

t (Xt ) < 0.5 for the final month in the out-of-sample period. This
is a rather aggressive rule, which puts a high value on speed of detection. As such,
we will be particularly interested in the tendency of this rule to identify false turning
points.

Table 18.2 shows the performance of each classifier for identifying the four US
business cycle turning points over the 2000–2018 time period. In the table, the dates
shown are the first month in which the analyst would have been able to identify a
turning point in the vicinity of the relevant turning point. For example, consider the
column for the December 2007 business cycle peak. An entry of “Mar 2008” means
that an analyst applying the classifiers at the end of March 2008 would have detected
a business cycle peak in the vicinity of the December 2007 peak. Because there is
a minimum 1 month lag in data reporting for all series in the FRED-MD dataset,
the analyst would have been using a dataset that extended through February 2008 to
identify this turning point. An entry of “NA” means that the relevant turning point
was not identified prior to the NBER Business Cycle Dating Committee making the
announcement of a new business cycle turning point.
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Table 18.2 Out-of-sample turning point identification for alternative classifiers

Peaks Troughs

Classifier Mar 2001 Dec 2007 Nov 2001 Jun 2009 False turning points

Naïve Bayes

Narrow Feb 2001 May 2008 Jan 2002 Sep 2009 False Peak: Sep 2005

Real activity Feb 2001 Mar 2008 Mar 2002 Feb 2010 False Peak: Nov 2010

Broad Oct 2001 Mar 2008 Jan 2002 Feb 2010 None

kNN

Narrow May 2001 May 2008 Jan 2002 Aug 2009 None

Real activity NA Sep 2008 Jan 2002 Aug 2009 None

Broad NA NA Nov 2001 Jul 2009 None

Random forest/extra trees

Narrow May 2001 May 2008 Jan 2002 Aug 2009 None

Real activity NA May 2008 Mar 2002 Aug 2009 None

Broad NA Oct 2008 Jan 2002 Aug 2009 None

Boosting

Narrow May 2001 May 2008 Jan 2002 Aug 2009 False Trough: Nov 2008

Real activity May 2001 Nov 2008 Dec 2001 Sep 2009 None

Broad May 2001 Nov 2008 Dec 2001 May 2009 None

LVQ

Narrow May 2001 May 2008 Feb 2002 Aug 2009 False Peak: Sep 2005

Real activity Sep 2001 Mar 2008 Mar 2002 Aug 2009 False Peak: Oct 2010

Broad May 2001 Mar 2008 Feb 2002 Aug 2009 None

DFMS

Narrow May 2001 May 2008 Jun 2002 Sep 2009 False Peak: Sep 2005

Real activity Apr 2001 April 2008 Apr 2002 May 2010 None

Ensemble

Narrow May 2001 May 2008 Jan 2002 Aug 2009 False Peak: Sep 2005

Real activity Jul 2001 May 2008 Mar 2002 Sep 2009 None

Broad Mar 2001 May 2008 Mar 2002 Sep 2009 None

Notes: This table shows the earliest month that an analyst would have identified the four NBER
business cycle turning points over the January 2000 to October 2018 out-of-sample period using
the supervised and unsupervised classifiers discussed in Sects. 18.3 and 18.4. An entry of “NA”
means the relevant turning point was not identified prior to the NBER Business Cycle Dating
Committee making the announcement of a new business cycle turning point

I begin with the two business cycle peaks in the out-of-sample period. If we
focus on the narrow dataset, we see that most of the classifiers identify the March
2001 business cycle peak by the end of May 2001, and the December 2007 peak by
the end of May 2008. This is a very timely identification of both of these turning
points. For the March 2001 peak, identification at the end of May 2001 means
that the classifiers identified this recession using data through April 2001, which
was the very first month of the recession. For the December 2007 peak, Hamilton
(2011) reports that other real-time approaches in use at the time did not identify



620 J. Piger

a business cycle peak until late 2008 or early 2009, and the NBER business cycle
dating committee announced the December 2007 peak in December 2008. Thus,
identification at the end of May 2008 is relatively very fast. This timely performance
does come with a single false business cycle peak being called for several, although
not all, of the classifiers. The date of this false peak was in September 2005 for most
classifiers.

If we move to the larger real activity and broad datasets, in most cases the
performance of the classifiers for identifying business cycle peaks deteriorates. Two
of the classifiers, kNN and random forests, fail to identify the 2001 business cycle
peak, while several classifiers identify peaks more slowly when using the larger
datasets than the narrow dataset. There are some cases where moving from the
narrow to the real activity dataset does improve with detection. The primary example
is the DFMS model, where three of the four turning points are identified more
quickly when using the real activity dataset, and the false peak that occurs under
the narrow dataset is eliminated. Overall, a reasonable conclusion is that there are
limited gains from using larger datasets to identify business cycle peaks in real time,
with the gains that do occur coming from the use of the real activity dataset with
certain classifiers.

Moving to troughs, the five supervised classification techniques identify troughs
very quickly in real time when applied to the narrow dataset. For the November
2001 trough, these classifiers identify the trough by January or February of 2002,
while the June 2009 trough is identified by August or September of 2009. This
is impressive considering the very slow nature of the recovery following these
recessions. As an example, the NBER business cycle dating committee did not
identify the November 2001 troughs until July 2003 and the June 2009 trough until
September 2010. This performance was achieved with only a single false trough
identified by one algorithm, Boosted Classification Trees. The DFMS classifier
was somewhat slower to detect these troughs than the other classifiers, although
still substantially faster than the NBER announcement. Finally, consistent with the
results for peaks, larger datasets did not substantially improve the timeliness with
which troughs were identified on average.

Given the small number of turning points in the out-of-sample period, it is hard
to distinguish definitively between the performance of the individual classifiers. If
one were forced to choose a single classifier for the purpose of identifying turning
points, both the kNN classifier and the random forest classifier applied to the narrow
dataset were quick to identify turning points while producing no false positives. The
other classifiers had similar performance, but produced a single false positive. That
said, the kNN classifier and random forest classifier both failed to identify business
cycle peaks when applied to the larger datasets, which may give us some pause as to
the robustness of these classifiers. If one looks more holistically across the various
datasets, the boosting algorithm emerges as a possible favorite, as it identifies
all four turning points for all four datasets, and does so with speed comparable
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to the top set of performers for each dataset. Finally, the ensemble classifier has
overall performance similar to the boosting algorithm. We might also expect, given
the potential effect of averaging on reducing classifier variance, that the ensemble
classifier will be the most robust classifier across alternative out-of-sample periods.

18.6 Conclusion

In this chapter I have surveyed a variety of approaches for real-time classification
of economic time-series data. Special attention was paid to the case where classifi-
cation is conducted in a data-rich environment. Much of the discussion was focused
on machine learning supervised classification techniques that are common to the
statistical classification literature, but have only recently begun to be widely used
in economics. I also presented a review of Markov-switching models, which is an
unsupervised classification approach that has been commonly used in economics
for both historical and real-time classification. Finally, I presented an application to
real-time identification of US business cycle turning points based on a wide dataset
of 136 macroeconomic and financial time series.
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Chapter 19
Robust Methods for High-Dimensional
Regression and Covariance Matrix
Estimation

Marco Avella-Medina

19.1 Introduction

Statistical models are used in practice as approximations to reality. They are stylized
mathematical constructions built under certain assumptions and justified from a
purely theoretical point of view, by the statistical properties that they enjoy. One
should naturally wonder how a statistical procedure behaves if the assumptions upon
which the model is constructed fail to hold. This question has arguably become
even more important with the large sizes of modern data sets being analyzed as
more complex models inevitably lead to more assumptions. This motivates the
development robust procedures that are less sensitive towards stochastic deviations
from the assumed models.

Many modern scientific works analyze high-dimensional data sets using sta-
tistical models where the number of unknown parameters of interest p is very
large relative to the sample size n. While many of the first motivating examples
came from successful work genomics and biology (Alizadeh et al., 2000; Golub
et al., 1999; Perou et al., 2000), the power of these techniques and the increasing
availability of electronic data have also motivated their study in the social sciences.
Two notorious examples of active research areas that have benefited from recent
work in this direction are the literature in causal inference (Athey & Imbens, 2017;
Athey, Imbens, & Wager, 2018; Chernozhukov et al., 2017) and finance (Ait-Sahalia
& Xiu, 2017; Bai & Wang, 2016; Fan, Furger, & Xiu, 2016).

A ubiquitous theme in high-dimensional statistics is the need to assume appro-
priate low dimensional structure, as this is the key condition that ensures the
existence of valid statistical methods in high-dimensional regimes. In particular,
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many regularization approaches have been studied in this context. Sparsity inducing
regularization techniques have proved to be particularly useful when the ambient
dimensional space is very large, but one assumes an intrinsic sparse dimensional
parameter space. In regression settings this could mean that there is a very large
number of covariates that one would like to include as predictors of some response
variable, but it is believed that only a handful of those unknown regressors have real
predictive power. In the context of covariance matrix estimation, a sparsity condition
could mean that the population covariance matrix is banded or that its off diagonal
elements decay very fast to zero.

In this chapter we review two ways of weakening distributional assumptions that
are commonly made in the context of high-dimensional regression and covariance
matrix estimation. The first approach that we describe builds on the theory of
robust statistics pioneered by Hampel (1971, 1974) and Huber (1964). Book
length exposition of this area include Hampel, Ronchetti, Rousseeuw, and Stahel
(1986), Huber (1981), and Maronna, Martin, and Yohai (2006). Here contamination
neighborhoods are defined to account for small, but arbitrary deviations from a
targeted generative process that explains the majority of the data. The second
approach that we will describe extends popular high-dimensional techniques that
were developed under strong sub-Gaussian assumptions to heavy tailed scenarios.
For this we build on robust statistics ideas to construct mean estimators that
achieve finite sample Gaussian-type deviation errors in the presence of heavy
tails. This particular property turns out to be a key one for successful sparse
covariance matrix estimation and many other high-dimensional matrix estimation
problems.

The outline of this chapter is as follows. In Sect. 19.2 we review some of the basic
ideas of robust statistics by introducing small neighborhood contamination models,
M-estimators, and influence functions. In Sect. 19.3 we show how robust statistics
ideas can be extended to high-dimensional regression settings by considering
penalized M-estimators for generalized linear models. In Sect. 19.4 we discuss the
problem of covariance matrix estimation in high dimensions and explain how one
can obtain optimal rates of convergence for this problem by regularizing a suitable
initial estimator that builds on M-estimators. In Sect. 19.5 we discuss how the ideas
of Sects. 19.3 and 19.4 can be extended to other models, before we conclude in
Sect. 19.6.

19.2 Robust Statistics Tools

19.2.1 Huber Contamination Models

Let us start by reviewing how Huber formalized the robustness problem in Huber
(1964). Let Fθ be the assumed parametric model and consider the ε-neighborhood
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Pε(Fθ ) of Fθ :

Pε(Fθ ) = {G|G = (1− ε)Fθ + εH , H an arbitrary distribution } .

The basic idea is to study the behavior of statistical procedures such as estimators
and tests in Pε(Fθ ). This captures the idea that the assumed model Fθ might only
be approximately correct. Huber formalized a minimax approach that views the
robustness problem as a game between the Nature, which chooses a distribution
G in the neighborhood Pε(Fθ ) of the model Fθ , and the Statistician, who chooses
an estimator for θ in a given class {ψ} of estimators. The payoff of the game is the
asymptotic variance V (ψ ,G) of the estimator under a given distribution in Pε(Fθ ).
The statistician solves this problem by choosing a minimax strategy that minimizes
the asymptotic variance at the least favorable distribution in the neighborhood,
leading to a robust estimator.

In the simple normal location model with mean parameter μ one wishes to
estimate the unknown mean parameter μ using a given iid sample of normally
distributed observations z1, . . . , zn drawn from the distribution �μ. The solution
to the minimax problem in Pε(�μ) is the Huber estimator, i.e., the estimator Tn that
solves the estimating equation

n∑

i=1

ψc(zi − Tn) = 0, (19.1)

where ψc(r) = min{cmax(−c, r)} is the so-called Huber function displayed in
Fig. 19.1. The constant c is a tuning parameter that controls the trade-off between
efficiency at the model�μ and robustness. The extreme cases c = ∞ and c = 0 lead

-2
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Fig. 19.1 Huber’s function is displayed in red. The blue line corresponds to the case where c = ∞
in which the Huber estimator becomes the sample mean
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respectively to the efficient but non-robust mean estimator and the highly robust but
inefficient median estimator. The Huber estimator can be interpreted as an iterative
reweighted mean estimator since (19.1) can be written as a

Tn =
∑
i=1wc(ri)zi∑
i=1wc(ri)

where ri = zi − Tn are the residuals and the weights are defined by wc(ri) =
ψc(ri)/ri . Therefore observations with residuals smaller than c will get weight 1,
while those large residuals receive smaller weights. The Huber function is of central
importance in robust statistics and the idea of “huberizing” is a general and simple
way of devising new robust estimators. Huber’s minimax theory is a fundamental
building block of robust statistics and leads to elegant and exact finite sample results.
However, it has also been difficult to extend it to general parametric models. An
alternative approach to robustness that has proven to be more easily extended to
more complicated models is discussed next. A more extended overview can be found
in Avella-Medina and Ronchetti (2015).

19.2.2 Influence Function and M-Estimators

Hampel (1974) opened one of the main lines of research in the robustness literature
by formalizing the notion of local robustness, i.e., the stability of statistical proce-
dures under moderate distributional deviations from ideal models. In this setting
the quantities of interest are viewed as functionals of the underlying generating
distribution. Typically, their linear approximation is studied to assess the behavior
of estimators in a neighborhood of the model. Here the influence function plays
a crucial role in describing the local stability of the functional analyzed. For a
statistical functional T (F ), it is defined as

IF (z; T ,F) = lim
ε→0

T ((1− ε)F + ε�z)− T (F )
ε

,

where �z is the distribution which puts mass 1 at any point z (Hampel, 1974;
Hampel et al., 1986).

The influence function allows for an easy assessment of the relative influence
of individual observations on the value of an estimate. If it is unbounded, a
single outlier could cause trouble. Furthermore, if a statistical functional T (F ) is
sufficiently regular, a first order von Mises expansion (von Mises, 1947) leads to the
approximation

T (G) ≈ T (F )+
∫
IF (z;F , T )d(G− F)(z), (19.2)
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where IF (z;F , T ) denotes the influence function of the functional T at the
distribution F . Considering the approximation (19.2) over an ε neighborhood of
the model Fε = {G|G = (1− ε)F + εH ,H arbitrary}, we see that the influence
function can be used to linearize the asymptotic bias of T (·) in a neighborhood of
the ideal model F . Consequently a bounded influence function implies a bounded
approximate bias.

A particularly useful class of estimators can be defined as follows. Let z1, . . . , zn
be a sample of iid m-dimensional observations, where Zi ∼ F and define the
functional T (F ) through the implicit equation

T (F ) : EF [ψ(Zi; T (F ))] = 0, (19.3)

where � : R
m × R

p → R
p. The sample version obtained by plugging in the

empirical distribution F = F̂ in (19.3) defines the M-estimator Tn = T (F̂ ) as
the solution of the equation

n∑

i=1

ψ(zi; Tn) = 0. (19.4)

M-estimators enjoy several nice and useful properties:

• M-estimators generalize regular maximum likelihood estimators, which can be
obtained by choosing the score function ψ(z; θ) = ∂

∂θ
log fθ (z) in (19.4), where

fθ (·) is the density of the assumed parametric model.
• For a given parametric model Fθ , the condition EFθ [ψ(Zi; θ)] = 0 implies
T (Fθ ) = θ , i.e., Fisher consistency for the M-estimator.

• Under general conditions (Huber, 1967, 1981), M-estimators are asymptotically
normal:

√
n(Tn − T (F )) D−→ N(0,V (ψ ,F)),

where

V (ψ ,F) = M(ψ ,F)−1Q(ψ ,F)M(ψ ,F)−T
M(ψ ,F) = − ∂

∂θ
EF [ψ(Z; T (F ))]

Q(ψ ,F) = EF [ψ(Z; T (F )) ·ψ(Z; T (F ))T ].

• The influence function of the function T is

IF (z;ψ ,F) = M(ψ ,F)−1ψ(z; T (F )),

i.e., it is proportional to ψ(·; T (F )) and bounded if the latter is bounded.
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In the following sections we will use M-estimators as building blocks for
constructing robust high-dimensional estimators of generalized linear models and
sparse covariance matrices.

19.3 Robust Regression in High Dimensions

In this section we review some of the results of Avella-Medina (2017) and Avella-
Medina and Ronchetti (2018) on penalized M-estimation.

19.3.1 A Class Robust M-Estimators for Generalized Linear
Models

Generalized linear models (McCullagh & Nelder, 1989) include standard linear
models and allow the modeling of both discrete and continuous responses belonging
to the exponential family. The response variables Y1, . . . ,Yn are drawn indepen-

dently from the densities f (yi; θi) = exp
[{
yiθi − b(θi)

}
/φ + c(yi ,φ)

]
, where

a(·), b(·), and c(·) are specific functions and φ a nuisance parameter. Thus E(Yi) =
μi = b′(θi) and var(Yi)= v(μi) = φb′′(θi) and g(μi) = ηi = xTi β0, where
β0 ∈ Rd is the vector of parameters, xi ∈ Rd is the set of explanatory variables and
g(·) the link function.

In this context we will construct penalized M-estimators by penalizing the class
of loss functions proposed by Cantoni and Ronchetti (2001). These losses can be
viewed as a natural robustification of the quasilikelihood loss of Wedderburn (1974),
leading to the robust quasilikelihood

ρn(β) = 1

n

n∑

i=1

QM(yi , x
T
i β), (19.5)

where the functionsQM(yi , xTi β) can be written as

QM(yi , x
T
i β) =

∫ μi

s̃

ν(yi , t)w(xi)dt − 1

n

n∑

j=1

μj∫

t̃

E
{
ν(yi , t)

}
w(xj )dt

with ν(yi , t) = ψ{(yi − t)/√v(t)}/√v(t), s̃ such that ψ{(yi − s̃)/√v(s̃)} = 0 and
t̃ such that E[ψ{(yi − s̃)/√v(s̃)}] = 0. The function ψ(·) is bounded and protects
against large outliers in the responses, and w(·) downweights leverage points in
the covariates. The estimator of β̂ of β0 derived from the minimization of this loss
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function is the solution of the estimating equation

1

n

n∑

i=1

{
ψ(ri)

1√
v(μi)

w(xi)
∂μi

∂β
− a(β)

}
= 0, (19.6)

where ri = (yi −μi)/√v(μi) and a(β) = n−1∑n
i=1 E{ψ(ri)/

√
v(μi)}w(xi)∂μi/

∂β ensures Fisher consistency and can be computed as in Cantoni and Ronchetti
(2001). Although here we focus the robust quasilikelihood loss, the results pre-
sented in this section are more general. Indeed, as explained in Avella-Medina
and Ronchetti (2018), they also apply for the class of bounded deviance losses
introduced in Bianco and Yohai (1996) and for the class of robust Bregman
divergences of Zhang, Guo, Cheng, and Zhang (2014).

19.3.2 Oracle Estimators and Robustness

Sparsity is one of the central assumptions needed in high-dimensional regression.
Specifically, one supposes that the true underlying parameter vector has many zero
components and without loss of generality we write β0 = (βT1 ,βT2 )

T , where β1 ∈
Rk , β2 = 0 ∈ Rd−k , k < n and k < d. In particular, this allows to consider scenarios
where the number of unknown parameters p is larger than the sample size n.

Oracle estimators have played an important role in the theoretical analysis of
many high-dimensional procedures. They are defined as the ideal estimator we
would use if we knew the support A = {j : β0j �= 0} of the true parameter β0, say
maximum likelihood for the set of nonzero parameters. Such estimators can also be
used for a simple robustness assessment of more complicated penalized estimators.
Indeed, an oracle estimator, whose robustness properties can be easily assessed
with standard tools such as the ones reviewed in Sect. 19.2 serves as a benchmark
for a best possible procedure that is unfortunately unattainable. For example, since
likelihood-based estimators in general do not have a bounded score function, they do
not have a bounded influence function and are not robust in this sense. It follows that
we could expect that in a neighborhood of the model, a penalized M-estimator based
on a loss function with a bounded derivative could behave even better than classical
non-robust oracle estimators. Clearly an appropriate benchmark estimator under
contamination will only be given by a robust estimator that remains stable in Pε(F ).

19.3.3 Penalized M-Estimator

Penalized methods have proved to be a good alternative to traditional approaches
for variable selection, particularly in high-dimensional problems. By allowing
estimation and variable selection simultaneously, they overcome the high compu-
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tational cost of variable selection when the number of covariates is large. Since
their introduction for the linear model (Breiman, 1995; Frank & Friedman, 1993;
Tibshirani, 1996), many extensions have been proposed (Efron, Hastie, Johnstone,
& Tibshirani, 2004; Tibshirani, 2011; Yuan & Lin, 2006; Zou & Hastie, 2005).
Their asymptotic properties have been studied when the number of parameters is
fixed (Fan & Li, 2001; Knight & Fu, 2000; Zou, 2006) and a large literature treats
the high-dimensional case, where the number of parameters is allowed to grow as
the sample size increases (Bühlmann & van de Geer, 2011). These results provide
strong arguments in favor of such procedures.

A first natural candidate for obtaining a robust high-dimensional estimator based
on the quasilikelihood loss (19.5) is to include a �1 regularization penalty, thus
defining the new objective function

ρn(β)+ λn
d∑

j=1

|βj |, (19.7)

where λ > 0 is a tuning parameter that controls the amount of sparsity induced
by the penalty term. The estimator β̂ obtained by minimizing (19.7) is a natural
extension of the lasso estimator (Tibshirani, 1996). Given the extensive literature
showing the desirable properties of the lasso for sparse high-dimensional problems
(Loh & Wainwright, 2015; Negahban, Ravikumar, Wainwright, & Yu, 2012), one
can also expect our robust lasso to inherit those good properties of lasso estimators.
The following theorem confirms this intuition. The main technical challenge that
needs to be addressed for this problem is that robust quasilikelihood function is not
guaranteed to be convex, even in low dimensions. The key observation that allows us
to overcome this obstacle is that one can show that the nonconvexity of this problem
is not too severe in the sense that for large n, with high probability, (19.5) satisfies
the restricted strong convexity condition of Loh and Wainwright (2015), which in
turn suffices to consistency. The result also holds if we replace the lasso penalty by
a decomposable penalty as defined in Loh and Wainwright (2015). The following
result appeared in Avella-Medina and Ronchetti (2018, Theorem 4).

Theorem 19.1 Denote by β̂ the robust lasso obtained by solving (19.7) with λn =
O{(n−1 log d)1/2}. Further let k = o(n1/2) and log d = o(n1/2). Then, under
Conditions 4–6 in Avella-Medina and Ronchetti (2018) we have

‖β̂ − β0‖2 = O
{(
k log d

n

)1/2}
,

with probability at least 1− 4e−γ κn , where γ is some positive constant and κn =
min(n/k2, log d).

Theorem 19.1 tells us that consistency is achievable even when d > n, but it
tells us nothing about the quality of the support recovery. In particular, can we
guarantee that we found all the 0 components of β0? In order to address this question
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one needs to consider more sophisticated penalty functions and assume minimal
signal conditions on the nonzero components of β0. Indeed, it has been shown that
in general the lasso cannot be consistent for variable selection (Fan & Lv, 2011;
Meinshausen & Bühlmann, 2006; Yuan & Lin, 2006; Zhao & Yu, 2006; Zou, 2006).
One valid alternative is to consider a two stage procedure where one first fits an
initial lasso estimator and uses it for the construction of a second stage adaptive
lasso estimator. More precisely, given the initial lasso estimates β̃, we define the
weights of the adaptive lasso estimator as

ŵj =
{

1/|β̃j |, |β̃j | > 0,
∞, |β̃j | = 0,

j = 1, . . . , d. (19.8)

As a result of the above weights, the slope parameters that are shrunk to zero by the
initial estimator are not included in the robust adaptive lasso minimization of the
problem

ρn(β)+ λn
d∑

j=1

ŵj |βj |, (19.9)

where we define ŵj |βj | = 0 whenever ŵj = ∞ and βj = 0. Let {(xi , yi)}ni=1
denote independent pairs, each having the same distribution.

Theorem 19.2 below appeared in Avella-Medina and Ronchetti (2018, Theo-
rem 3). It shows that given an initial consistent estimate, the robust adaptive lasso
enjoys oracle properties provided there is an appropriate scaling of the sparsity
and ambient dimension of the problem. In particular, it requires that k � n and
log d = O(nα) for some α ∈ (0, 1/2). An additional minimum signal strength
condition is needed in order to guarantee variable selection consistency, i.e., sn =
{|β0j | : β0j �= 0} is such that sn � λn.

Theorem 19.2 Assume Conditions 4–6 in Avella-Medina and Ronchetti (2018)
and let β̃ be a consistent initial estimator with rate rn = {(k log d)/n}1/2 in
�2-norm defining weights (19.8). Let log d = O(nα) for α ∈ (0, 1/2). Further
let the number of nonzero parameters be of order k = o(n1/3) and assume
the minimum signal is such that sn � λn with λn(nk)1/2 → 0 and λnrn �
max{(k/n)1/2, n−α(log n)1/2}. Finally, let v be a k-dimensional vector with ‖v‖2 =
1. Then, there exists a minimizer β̂ = (β̂1, β̂2)

T of (19.9) such that as n→∞,

(a) sparsity: pr(β̂2 = 0)→ 1;
(b) asymptotic normality: n1/2vTM11Q

−1/2
11 (β̂1 − β1)→ N(0, 1) in distribution.

As in Zou (2006), the existence of an initial consistent estimator is the key
for obtaining variable selection consistency in Theorem 19.2. Combined with
Theorem 19.1, it implies that using the robust lasso as initial estimator for its
adaptive counterpart yields an estimator that satisfies the oracle properties. One
should however be aware of the limitations of estimators satisfying the oracle
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properties as stated in Theorem 19.2. Indeed, unlike the consistency result for
the lasso, the adaptive lasso requires an additional minimal signal strength con-
dition in order to establish variable selection consistency. In the fixed-parameter
asymptotic scenario considered above, it requires that the nonzero coefficients
will be asymptotically larger than O(n−1/2). As shown by Leeb and Pötscher
(2005, 2008, 2009), in the presence of weaker signals the distribution of estimators
satisfying the oracle properties can be highly non-normal regardless of the sample
size. Some recent proposals for uniform post-selection inference do not require
minimal signal conditions on the nonzero coefficients. Representative work in
this direction includes Belloni, Chen, Chernozhukov, and Hansen (2012), Belloni,
Chernozhukov, and Kato (2015), Javanmard and Montanari (2014), Lee, Sun, Sun,
and Taylor (2016), Zhang and Zhang (2014). This is a promising direction for future
research.

19.3.4 Computational Aspects

There are some non-trivial aspects to be considered for the computation of the
estimator introduced in the above section. In particular, the optimization of the
objective function is more complicated than in standard non-penalized setups due to
the presence of a non-differentiable penalty function and a tuning parameter.

Fisher Scoring Coordinate Descent

The sparsity inducing penalty function given by the weighted �1 norm in (19.9)
requires the implementation of non-standard gradient descent algorithms. For this
it suffices to consider the lasso penalty where ŵj = 1 (j = 1, . . . , d). Indeed,
the adaptive lasso estimator can be computed with the same algorithm after one
reparametrizes the adaptive lasso problem as discussed in Zou (2006, Section 3.5).

The main idea of our algorithm is to consider a coordinate-descent-type algo-
rithm based on successive expected quadratic approximations of the quasilikelihood
about the current estimates. In this way the optimization of the penalized robust
quasilikelihood boils down to iteratively solving weighted least squares lasso
problems. Specifically, for a given value of the tuning parameter, we successively
minimize via coordinate descent the penalized weighted least squares loss

‖W(z−Xβ)‖2
2 + λ‖β‖1 (19.10)

whereW = diag(W1, . . . ,Wn) is a weight matrix and z = (z1, . . . , zn)T a vector of
pseudo-data with components

W2
i = E{ψ(ri)ri}v(μi)−1w(xi)

(
∂μi

∂ηi

)2
, zi = ηi +

ψ(ri)−E
{
ψ(ri)

}

E{ψ(ri)ri} v(μi)
1/2 ∂ηi

∂μi
.
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These are the robust counterparts of the usual expressions appearing in the iterative
reweighted least squares algorithm for GLM; cf. Appendix E.3 in Heritier, Cantoni,
Copt, and Victoria-Feser (2009). This coordinate descent algorithm is therefore
a sequence of three nested loops: (a) outer loop: decrease λ; (b) middle loop:
update W and z in (19.10) using the current parameters β̂λ; (c) inner loop: run
the coordinate descent algorithm on the weighted least squares problem (19.10).
Interestingly, contrary to non-sparse and differentiable problems, coordinate descent
type algorithms have empirically been shown to run fast provided one incorpo-
rates some tricks that significantly speed up computations (Friedman, Hastie, &
Tibshirani, 2010). Our algorithm differs from the one of Friedman et al. (2010) in
the quadratic approximation step, where we compute expected weights. This step
assures that W has only positive components in Poisson and binomial regression
when using Huberized residuals, which guarantees the convergence of the inner
loop. For classical penalized log-likelihood regression with canonical link, the two
algorithms coincide. The initial value of the tuning parameter in our algorithm is
λ0 = n−1‖WXT z‖∞, with W and z computed with β = 0. This guarantees that
the initial solution is the zero vector. We then run our coordinate descent algorithm
and solve our lasso problem along a grid of decreasing values of tuning parameters
that defines a solution path for the slope parameters. The middle loop uses current
parameters as warm starts. In the inner loop, after a complete cycle through all the
variables we iterate only on the current active set, i.e., the set of nonzero coefficients.
If another complete cycle does not change this set, the inner loop has converged,
otherwise the process is repeated. The use of warm starts and active set cycling
speeds up computations as discussed in Friedman et al. (2010, p. 7).

Tuning Parameter Selection

One can choose the tuning parameter λn based on a robust extended Bayesian
information criterion. Specifically we select the parameter λn that minimizes

EBIC(λn) = ρn(β̂λn)+
( log n

n
+ γ log d

n

)
|suppβ̂λn |, (19.11)

where |suppβ̂λn | denotes the cardinality of the support of β̂λn and 0 ≤ γ ≤ 1
is a constant. We use γ = 0.5. We write β̂λn to stress the dependence of the
minimizer of (19.9) on the tuning parameter. In an unpenalized setup, a Schwartz
information criterion was considered by Machado (1993), who provided theoretical
justification for it by proving model selection consistency and robustness. In the
penalized sparse regression literature, Lambert-Lacroix and Zwald (2011) and Li,
Peng, and Zhu (2011) used this criterion to select the tuning parameter. In high
dimensions Chen and Chen (2008, 2012), and Fan and Tang (2013) showed the
benefits of minimizing (19.11) in a penalized likelihood framework.
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19.3.5 Robustness Properties

The theoretical results of Sect. 19.3.3 showed that if there is no contamination, the
robust estimators obtained by penalizing the robust quasilikelihood preserve the
good properties of its likelihood-based counterparts. The hope is that the resulting
estimator is more stable when a small fraction of the data is contaminated, at best as
stable as a robust oracle estimator as discussed in Sect. 19.3.2. In this subsection we
will see in what sense that intuition is correct and illustrate it in simulated examples.

Finite Sample Bias

The asymptotic results given in Sect. 19.3.3 generalize to a shrinking contamination
neighborhood where ε → 0 as n → ∞, as long as ε = o(λn). Furthermore,
if the contamination neighborhood does not shrink, but instead produces a small
nonasymptotic bias on the estimated nonzero coefficients and the minimum signal
is large enough, Avella-Medina and Ronchetti (2018, Theorem 6) showed that one
can obtain correct support recovery and bounded bias. In particular, with high
probability, one can obtain robust estimators β̂ satisfying

(a) sparsity: β̂2 = 0;
(b) �∞-norm: ‖β̂1 − β1‖∞ = O(n−ζ log n+ ε).
where ζ is such that sn ≥ n−ζ log n. This statement is in the spirit of the infinitesimal
robustness approach to robust statistics discussed in Sect. 19.2.2 and can be viewed
as an extension, to a contaminated neighborhood, of the weak oracle properties
derived in Fan and Lv (2011, Theorem 2).

Let us illustrate numerically the performance of classical and robust versions of
both the lasso and adaptive lasso in a contaminated generalized linear model. For
the robust estimators we use the loss function given by (19.6) with ψ(r) = ψc(r),
the Huber function. We take as the target model a Poisson regression model with
canonical link g(μi) = logμi = xTi β, where β = (1.8, 1, 0, 0, 1.5, 0, · · · , 0)T

and the covariates xij were generated from standard uniforms with correlation
cor(xij , xik) = ρ|j−k| and ρ = 0.5 for j , k = 1, . . . , d. This setup is reminiscent
of example 1 in Tibshirani (1996). The response variables Yi were generated
according to the Poisson distribution P(μi) and a perturbed distribution of the form
(1− b)P(μi)+ bP(νμi), where b ∼ Bin(1, ε). The latter represents a situation
where the distribution of the data lies in a small neighborhood of the model that can
produce for instance overdispersion. We set c = 1.5, ν = 1, 5, 10, and ε = 0.05.
The sample sizes and dimensionality were respectively n = 50, 100, 200 and d =
100, 400, 1600. We implemented the Fisher scoring coordinate descent algorithm as
discussed in Sect. 19.3.4 with a grid of values λ of length 100 decreasing on the
log scale. We stopped the algorithm when the tuning parameter gave models of size
greater than or equal to 20, 30, and 40 respectively when n was 50, 100, and 200.
The tuning parameters were selected by BIC and the simulation size was 100. We
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Fig. 19.2 The plots show the L2 error of the classical and robust versions of the lasso, adaptive
lasso, and oracle. The severity of the contamination ν = 1, 5, 10 increases from left to right and the
sample size and dimensionality of the problems (n, d) = {(50, 100), (100, 400), (200, 1600)} from
top to bottom

show the performance of the classical lasso (L) and adaptive lasso (AL), the robust
lasso (RL) and adaptive robust lasso (RAL) as well as the classical oracle (O) and
the robust oracle (RO) estimators. Figure 19.2 illustrates the estimation error of the
different estimators while Fig. 19.3 illustrates the model selection properties.

It is clear that without contamination the classical procedures and their robust
counterparts have a very similar performance. As expected from our theoretical
results the estimation error of all the penalized estimators seems to converge to
zero as the sample size increases despite of the fact that the parameter dimension
increases at an even faster rate. The picture changes drastically under contamination
for the classical estimators as they give poor estimation errors and keep too
many variables. On the other hand, the robust estimators remain stable under
contamination. In particular the robust adaptive lasso performs almost as well
as the robust oracle in terms of L2-loss and is successful in recovering the true
support when n = 100, 200 even under contamination. In this example the robust
adaptive lasso outperforms the classical oracle estimator under contamination.
The poor L2 error of the classical penalized estimators under contamination is
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Fig. 19.3 The plots show the cardinality of the support of the classical and robust ver-
sions of the lasso and adaptive lasso. The severity of the contamination ν = 1, 5, 10
increases from left to right and the sample size and dimensionality of the problems (n, d) =
{(50, 100), (100, 400), (200, 1600)} from top to bottom

likely to stem from the large number of noise variables they tend to select in this
situation.

Influence Function

Given the discussion in Sect. 19.2.2, it is very natural to seek to assess the
robustness properties of penalized M-estimators using the influence function.
One should expect that loss functions leading to bounded-influence M-estimators
can also be used to construct bounded-influence penalized M-estimators. In par-
ticular, intuitively a loss function with a bounded gradient function � should
guarantee robustness. This intuition turns out to be correct, but requires a new
notion of influence function established in Avella-Medina (2017). Indeed, the
typical tools used to derive the influence function of M-estimators suffer from a
major problem when considering penalized M-estimators: they cannot handle non-
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differentiable penalty functions which are necessary for achieving sparsity (Fan &
Li, 2001).

The usual argument used to obtain the influence function of M-estimators is as
follows. One can look at the M-functional T (Fε) defined by (19.3) evaluated at Fε,
as the solution to an implicit equation depending on two arguments T (Fε) and ε.
Taking this perspective (19.3) becomes g(T (Fε), ε) = 0 and the derivative of T (Fε)
with respect to ε can be computed using the implicit function theorem. Because
nondifferentiable penalties do not lead to estimating equations of the form (19.3),
an alternative approach is required.

One possible way to circumvent the technical difficulties entailed by a nondiffer-
entiable penalty functions P(·) is to define a sequence of smooth penalty functions
{Pm(·)} such that limm→∞ Pm(·) = P(·). This trick can be used to define a limiting
form of the influence function of penalized M-estimators obtained using smooth
penalty functions Pm., denoted by T (F ;Pm). These estimators are defined as the
minimizers of

 λ(θ;F ,Pm) = EF [L(Z, θ)] + Pm(θ; λ).

We let IFPm(z; T ,F) be the influence function of T (F ;Pm) and define the influence
function of T (F ) as

IF(z;F , T ) := lim
m→∞ IFPm(z;F , T ).

A natural question that arises from this definition is whether the limit depends
on the sequence {Pm} chosen. In order to answer this question we first show that
the limiting M-functional limm→∞ T (F ;Pm) is unique as well as its influence
function. Furthermore, the resulting influence function will also be bounded if
and only if � is bounded. Interestingly the limiting influence function can still
be viewed as a derivative but now in the sense of distribution theory of Schwartz
(Schwartz, 1959). See Avella-Medina (2017) for rigorous statements. Figure 19.4
complements the simulation results shown above by considering a uniform grid
of values of ε ∈ [0, 0.1] and ν = 5. It clearly shows that the robust lasso
and adaptive lasso remain stable under moderate contamination whereas their
classical counterparts are not. Indeed, even very small amounts of contamination
completely ruin the performance of the classical procedures. It is interesting
to note that although our robust estimators clearly outperform the likelihood-
based methods under contamination, their performance start to deteriorate as the
amount of contamination approaches 10%. This reflects the local nature of the
robustness of bounded-influence estimators. Indeed, the robustness properties of our
quasilikelihood loss stem from the boundedness of its derivative. This particular
feature guarantees that just as the M-estimators analogues, our robust penalized
quasilikelihood estimators will have a bounded influence function. Therefore they
are only expected to have a bounded bias in a small contamination neighborhood of
the model as shown in our simulations.
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Fig. 19.4 The boxplots show the performance measured by the L2-loss of classical and robust
counterparts of the lasso and adaptive lasso as the contamination increases

19.4 Robust Estimation of High-Dimensional Covariance
Matrices

In this section we introduce some key ideas arising in the presence of high-
dimensional data when the object of study is the unknown population variance
matrix. We will then discuss how to introduce robustness considerations by
reviewing some results obtained in Avella-Medina, Battey, Fan, and Li (2018).

19.4.1 Sparse Covariance Matrix Estimation

The range of open statistical challenges posed by high-dimensional data, in which
the number of variables p is larger than the number of observations n, is still
intimidating. Among the most relevant challenges is high-dimensional covariance
matrix and inverse covariance (precision) matrix estimation. In fact, almost every
procedure from classical multivariate analysis relies on an estimator of at least one
of these objects. The difficulty in achieving consistency in certain meaningful matrix



19 Robust Methods for High-Dimensional Problems 641

norms leaves classical multivariate analysis unable to adequately respond to the
needs of the data-rich sciences.

Consistent covariance matrix estimation in high-dimensional settings is achiev-
able under suitable structural assumptions and regularity conditions. For instance,
under the assumption that all rows or columns of the covariance matrix belong
to a sufficiently small �q -ball around zero, thresholding (Bickel & Levina, 2008;
Rothman, Bickel, Levina, & Zhu, 2008) or its adaptive counterpart (Cai & Liu,
2011) give consistent estimators of the covariance matrix in spectral norm for data
drawn from a sub-Gaussian distribution. Here we will focus on a subset of the class
S+(R,p) of positive definite symmetric matrices with elements in R. In particular,
we assume that �∗ = (σ ∗uv) belongs to the class sparse matrices

Uq{s0(p)} =
{
� : � ∈ S+(R,p), max

u

p∑

v=1

(σ ∗uuσ ∗vv)(1−q)/2|σ ∗uv|q ≤ s0(p)
}

,

(19.12)

where each column is assumed to be weakly sparse in the sense that they are all
required to lie in a �q ball of size s0(p). The columns of a covariance matrix
in Uq{s0(p)} are required to lie in a weighted �q -ball, where the weights are
determined by the variance of the entries of the population covariance. The class
Uq{s0(p)} was introduced by Cai and Liu (2011), slightly generalizing the class
of matrices considered in Bickel and Levina (2008) and Rothman, Levina, and Zhu
(2009).

Assuming the population covariance matrix lies in (19.12), a valid estimation
approach is to regularize the sample covariance matrix

�̂ = (̂σuv) = 1

n

n∑

i=1

(
Xi −X

)(
Xi −X

)T

with X1, . . . ,Xn independent and identically distributed copies of X ∈ R
p and

X = n−1∑n
i=1Xi . Clearly �̂ is a very poor estimate of � when p is large relative

to the sample size n and will not even be positive definite if p > n. One can
however show that simple elementwise shrinkage and thresholding of the sample
covariance can lead to consistent estimation. More precisely, we can let τλ(·) be a
general thresholding function for which

(i) |τλ(z)| ≤ |y| for all z, y that satisfy |z− y| ≤ λ;
(ii) τλ(z) = 0 for |z| ≤ λ;

(iii) |τλ(z)− z| ≤ λ, for all z ∈ R.

Similar thresholding functions were set forth in Antoniadis and Fan (2001) and
proposed in the context of covariance estimation via thresholding in Rothman et al.
(2009) and Cai and Liu (2011). Some examples of thresholding functions satisfying
these three conditions are the soft thresholding rule τλ(z) = sgn(z)(z − λ)+, the
adaptive lasso rule τλ(z) = z(1− |λ/z|η)+ with η ≥ 1 and the smoothly clipped
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absolute deviation thresholding (SCAD) rule (Rothman et al., 2009). The hard
thresholding rule τλ(z) = z1(|z| > λ) does not satisfy (i), but leads to similar
results. The adaptive thresholding estimator is defined as

�̂T = (̂σTuv) =
{
τλuv (̂σuv)

}

where σ̂uv is (u, v)th the entry of �̂ and the threshold λuv is entry-dependent.
Equipped with these adaptive thresholds, Cai & Liu (2011) establish optimal rates
of convergence of the resulting estimator under sub-Gaussianity of X. The latter
condition requires the existence of b > 0 such that E(exp[t{X1,u −E(X1,u)}]) ≤
exp(b2t2/2) for every t ∈ R and every u = [p], and [p] denotes {1, . . . ,p}. Such a
light-tail distributional condition is crucial in high dimensions as discussed in next
subsection.

19.4.2 The Challenge of Heavy Tails

The intuition behind the success of thresholding covariance matrix estimators
is fairly simple. Even though the sample covariance is a poor high-dimensional
estimator, each of the entries of this matrix are consistent estimators of their respec-
tive population pairwise covariance. Hence elementwise shrinkage approaches
should lead to valid consistent estimation as long as one can guarantee a uniform
control over the convergence of all the pairwise sample covariances. Concentration
inequalities provide a way to guarantee such a uniform control and are in fact one
of the cornerstones of the theory of high-dimensional statistics. Assuming that the
distribution of the data generating process is sub-Gaussian, typically allows to derive
exponential concentration inequalities (Boucheron, Lugosi, & Massart, 2013). This
is critical for instance for the empirical mean, since this estimator cannot concentrate
exponentially unless we assume that the underlying data generating process is sub-
Gaussian (Bubeck, Cesa-Bianchi, & Lugosi, 2013). Proposition 1 in Avella-Medina
et al. (2018) provides a similar negative result for the sample covariance matrix.
This has non-trivial consequences for the problem of high-dimensional covariance
matrix estimation as it rules out regularizing the sample covariance. Indeed, it cannot
satisfy (19.13) in the presence of heavy tails, i.e., if one only wants to assume a few
finite moments.

Since sub-Gaussianity seems to be too restrictive in practice, Avella-Medina et al.
(2018) suggested new procedures that can achieve the same minimax optimality
when data are leptokurtic. Inspection of the proofs of Bickel and Levina (2008) and
Cai and Liu (2011) reveals that sub-Gaussianity is needed merely because those
thresholding estimators regularize the sample covariance matrix. Indeed, minimax
optimal rates of convergence are achievable within a larger class of distributions if
the sample covariance matrix is replaced by some other pilot estimator that exhibits
better concentration properties.
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More precisely, for a p-dimensional random vector X with mean μ, let �∗ =
E
{
(X−μ)(X−μ)T } and let �̃ = (̃σuv) denote an arbitrary pilot estimator of�∗ =

(σ ∗uv) where u, v ∈ [p]. The key requirement for adaptive elementwise shrinkage on
�̃ to give optimal covariance estimation is that

pr[max
u,v
|̃σuv − σ ∗uv| ≤ C0{(logp)/n}1/2] ≥ 1− εn,p, (19.13)

where C0 is a positive constant and εn,p is a deterministic sequence converging
to zero as n,p → ∞ such that n−1 logp → 0. It is important to notice that
even though the estimation error that (19.13) controls is uniform over p(p − 1)/2
different elements, we only want to pay a logarithmic price in the dimension p
in the high probability error bound. Provided this condition holds true, adaptive
thresholding will deliver rates of convergence that match the optimal minimax
rates of Cai and Liu (2011) even under violations of their sub-Gaussianity condi-
tion.

To accommodate data drawn from distributions violating sub-Gaussianity, one
could replace the sample covariance matrix �̂ by another pilot estimator �̃
satisfying Eq. (19.13) under weaker moment conditions. The resulting adaptive
thresholding estimator �̃T is defined as

�̃T = (̃σTuv) =
{
τλuv (̃σuv)

}
, (19.14)

where σ̃uv is (u, v)th the entry of �̃ and the threshold λuv is entry-dependent. As
suggested by Fan, Liao, and Mincheva (2013), the entry-dependent threshold

λuv = λ
( σ̃uuσ̃vv logp

n

)1/2
(19.15)

is used, where λ > 0 is a constant. This is simpler than the threshold used by Cai
and Liu (2011), as it does not require estimation of var(̃σuv) and achieves the same
optimality. In the next subsection we show how to use tools from robust statistics to
construct pilot estimators that have the required elementwise convergence rates of
Eq. (19.13).

19.4.3 Revisting Tools from Robust Statistics

Robust statistics, as described in Sect. 19.2, provides a formal framework for
understanding how deviations from an assumed model affect statistical methods. In
particular, it provides an effective mathematical formulation to the problem of the
presence of outliers through a framework that allows us to understand the impact
of stochastic deviations from model assumptions on statistics of interest. In this
paradigm one is worried about the presence of a small fraction of observations that
is not generated from the idealized posited statistical model. One can however think
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of other ways of ensuring some degree of robustness of a statistical procedure. In
particular, it is fairly natural to seek for methods that extend the validity of some
classical methods to more flexible classes of models. One can for instance seek to
relax light tail distributional assumptions by assuming instead that few number of
population moments are finite. Although such an approach is not always guaranteed
to give robust estimators in the sense of Huber and Ronchetti (1981), the resulting
estimates are natural appealing alternatives to classical estimators.

Here we will describe a Huber-type M-estimator as an alternative to the sample
covariance. Crucially, the resulting pilot estimator achieves the same elementwise
deviations as the sample covariance matrix under a Gaussian random sample, even
when in the presence of heavy tails. Let Yuv = (Xu − μ∗u)(Xv − μ∗v). Then σ ∗uv =
E(Yuv) = μ∗uv − μ∗uμ∗v where μ∗u = E(Xu), μ∗v = E(Xv), and μ∗uv = E(XuXv).
We propose to estimate σ ∗uv using robust estimators ofμ∗u,μ∗v , andμ∗uv . In particular,
replacingZi in Eq. (19.1) byXi,u,Xi,u andXi,uXi,v gives Huber estimators, μ̃cu, μ̃cv ,
and μ̃cuv , of μ∗u, μ∗v , and μ∗uv respectively, from which the Huber-type estimator of
�∗ is defined as �̃c = (̃σ cuv) = (μ̃cuv − μ̃cuμ̃cv).

We depart from the ideas discussed in Sect. 19.2 by allowing c to grow to
infinity as n increases. The reason is that our goal here differs from those of
Huber and the theory of robust statistics (Huber, 1964; Huber & Ronchetti, 1981).
There, the distribution generating the data is assumed to be a contaminated version
of a given parametric model, where the contamination level is small, and the
objective is to estimate model parameters of the uncontaminated model. The tuning
parameter c is therefore typically fixed at a value guaranteeing a given level of
efficiency if the underlying distribution is indeed the uncontaminated model. For
instance, in the location model, choosing c = 1.345 guarantees 95% efficiency
if the data generating distribution is Gaussian. Our goal is instead to estimate the
mean of the underlying distribution, allowing departures from sub-Gaussianity.
In related work, Fan, Liu, and Wang (2015) show that when c is allowed to
diverge at an appropriate rate, the Huber estimator of the mean concentrates
exponentially fast around the true mean when only a finite second moment exists.
In a similar spirit, we allow c to grow with n in order to alleviate the bias. An
appropriate choice of c trades off bias and robustness. We build on Fan et al.
(2015) and Catoni (2012), showing that our proposed Huber-type estimator satisfies
Condition (19.13).

The following proposition lays the foundations for our analysis of high-
dimensional covariance matrix estimators under infinite kurtosis. It extends
Theorem 5 in Fan et al. (2015), and gives rates of convergence for Huber’s estimator
of E(Xu) assuming a bounded 1+ ε moment for ε ∈ (0, 1]. The result is optimal
in the sense that our rates match the minimax lower bound given in Theorem 3.1
of Devroye, Lerasle, Lugosi, and Oliveira (2017). The rates depend on ε, and when
ε = 1 they match those of Catoni (2012) and Fan et al. (2015).

Proposition 19.1 Let δ ∈ (0, 1), ε ∈ (0, 1], n > 12 log(2δ−1), and Z1, . . . ,Zn be
independent and identically distributed random variables with meanμ and bounded
1+ ε moment, i.e., E(|Z1 − μ|1+ε) = v < ∞. Take c = {vn/ log(2δ−1)}1/(1+ε).
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Then with probability at least 1− 2δ,

|μ̃c −μ| ≤ 7+√2

2
v1/(1+ε)

{
log(2δ−1)

n

}ε/(1+ε)
,

where μ̃c is as defined in (19.1).

Proposition 19.1 allows us to show that the elementwise errors of the Huber-type
estimator are uniformly controlled in the sense of (19.13). This is the building block
of the following result (Avella-Medina et al., 2018, Theorem 3) that establishes the
rates of convergence for the adaptive thresholding estimators.

Theorem 19.3 Suppose �∗ ∈ Uq{s0(p)} and assume max1≤u≤p E(|Xu|2+ε) ≤
κ2
ε . Let �̂Tc be the adaptive thresholding estimator (19.14) and (19.15) based on the

Huber pilot estimator �̃c with c = K(n/ logp)1/(2+ε) forK ≥ 2−1(7+√2)κε(2+
L)ε/(2+ε) and L > 0. Under the scaling condition logp = O(n1/2) and choosing
λuv = λ{̃σcuuσ̃ cvv(logp)/n}ε/(2+ε) for some λ > 0, we have, for sufficiently large n,

inf
�∗∈Uq {s0(p)}

pr

{
‖�̂Tc −�∗‖2 ≤ Cs0(p)

( logp

n

) ε(1−q)
(2+ε)

}
≥ 1− εn,p,

where εn,p ≤ C0p
−L for positive constants C0 and L.

The rates match the minimax optimal rates established in Cai and Liu (2011) as
long as the underlying distributions have bounded fourth moments, i.e., when ε = 2.
It does not prove that these rates are minimax optimal under 2+ ε finite moments.
However, the proof expands on the elementwise max norm convergence of the pilot
estimator, which is optimal by Theorem 3.1 of Devroye et al. (2017). This is a strong
indication that our rates are sharp.

19.4.4 On the Robustness Properties of the Pilot Estimators

The construction in the previous subsection will lead to an unbounded influence
function when n goes to infinity since we need a diverging constant c. Consequently,
the resulting estimators will not be asymptotically robust in the sense of Hampel
et al. (1986). This does not contradict the fact that the estimators give optimal mean
deviation errors in small samples even under heavy tails. In fact, it is unclear whether
the two goals are compatible, i.e., whether one can construct estimator with such
finite sample guarantees while remaining asymptotically robust in the sense of the
influence function.

As shown in Avella-Medina et al. (2018), one can also construct rank-based pilot
estimators using Kendall’s tau and obtain optimal rates of convergence provided
the underlying distribution is elliptical. Such a result only requires the existence
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of finite second moments, but imposes additional structure on the data generating
process through the ellipticity assumption. From a robust statistics such rank-based
pilot estimators and variants such as Ma and Genton (2001) can be expected to lead
to good robustness properties in the spirit of Sect. 19.2 given the results of Loh and
Tan (2018).

19.5 Further Extensions

In this section we discuss how to extend the ideas described in the previous two
sections in related regression and sparse matrix estimation problems.

19.5.1 Generalized Additive Models

Generalized additive models (GAM) are a natural nonparametric extension of the
GLM discussed in Sect. 19.3. They relax the linear dependence of the transformed
mean and assume the more flexible formulation

g(μi) = η0(Xi) = β0 +
d∑

j=1

fj (Xij ),

where now each fj is a smooth and integrable unknown function of the scalar
variable xj . In other words the transformed mean m(x) = β0 +∑d

j=1 fj (xj ) has
an additive form. The ideal population optimization problem that one would like to
solve in a perfectly specified GAM is

max
f

(
E
[
�
{
Y ,β0 +

d∑

j=1

fj (Xj )
}])

,

where � denotes the log-likelihood of the random pair (Y ,X) and f lies in some
Hilbert space H. In practice we can estimate the unknown smooth functions fj
using polynomial spline approximations of the form fj (·) ≈ ∑Kn

l=1 βjlBjl(·) =
BTj (·)β[j ], where the Bjl(·) are some known spline basis functions for all j =
1, . . . , d. One can combine this spline approach with the robust quasilikelihood
introduced in Sect. 19.3 in order to gain some robustness. One can also introduce
sparsity inducing penalty functions p(‖fj‖; λ) = λwj‖fj‖ for j = 1, . . . , d, where
wj is some weight function. Hence we can consider a robust group lasso estimator
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for GAM defined by

β̃ = argmax
β

[
En

{
QM(Y , g−1

(
β0 +

d∑

j=1

BTj (Xj )β[j ]
)}
− λn

d∑

j=1

√
dj‖β[j ]‖2

]
,

whereEn denotes the expectation with respect to the empirical distribution and dj is
the dimension of parameter vector used in the approximation of the fj . This robust
group lasso approach has been recently studied in Avella-Medina and Ronchetti
(2019) where it is shown that under appropriate regularity conditions the above
estimator leads to consistent estimation and variable selection.

19.5.2 Sure Independence Screening

When the number of covariates is very large compared to the sample size, one can
complement lasso-type variable selection methods with simple screening rules that
help finding potential variables of interest in a first stage. The basic idea that we
describe here is an extension of the sure independence screening idea of Fan and
Lv (2008) to the GLM/GAM setup described above. One of the simplest versions of
sure independence screening for the linear regression model is based on estimated
parameters β̂Mj obtained by running marginal univariate regressions using each of
the standardized covariates. One can then define the set of screened covariates as

S̄τn = {1 ≤ j ≤ d : |β̂Mj | ≥ τn},

for a given threshold τn. Conditions under which the above screening rule keeps
the subset of important variables with high probability have been studied in
Fan and Lv (2008). A non-exhaustive list of extensions of this methodology to
more complicated models includes GLM, additive models, and varying coefficients
proposed respectively in Fan and Song (2010), Fan, Feng, and Song (2011), and
Fan, Ma, and Dai (2014). Following this line of work, Avella-Medina and Ronchetti
(2019) considered a natural extension of sure independence screening to a robust
GAM setup by considering marginal nonparametric fits f̂ Mj obtained by solving

argmin
f0∈R,fj∈ϕn

En

{
QM(Y , g−1

(
f0 + fj (Xj )

)}
,

where ϕn is a space of spline functions. These marginal fits can then be used to
select a set of variables by the screening rule

Ŝτn = {1 ≤ j ≤ d : ‖f̂ Mj ‖2
n ≥ τn}. (19.16)
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Once we have reduced the dimension of the initial problem based on the screening
rule (19.16), we can apply more refined group lasso methods as discussed in the
previous subsection. The success of this operation relies on whether the screening
procedure does not mistakenly delete some important variables. In other words the
procedure should have the sure screening property of Fan and Lv (2008). Sufficient
conditions for establishing such sure screening properties for (19.16) can be found
in Avella-Medina and Ronchetti (2019).

19.5.3 Precision Matrix Estimation

The inverse covariance matrix or precision matrix is of great interest in many proce-
dures from classical multivariate analysis and is central for understanding Gaussian
graphical models. Similar to the high-dimensional covariance matrix estimation
problem, one cannot expect to consistently estimate a very high-dimensional pre-
cision matrix without structural assumptions. Consequently, sparsity assumptions
on the columns of the precision matrix motivates the use of penalized likelihood
approaches such as the graphical lasso (Friedman, Hastie, & Tibshirani, 2008; Yuan
& Lin, 2007) and the constrained �1-minimizer of Cai, Liu, and Luo (2011), Cai,
Liu, and Zhou (2016) Yuan (2010), both of which lead to consistent estimation
under regularity condition. In fact, under appropriate sub-Gaussian distributional
assumptions, Cai et al. (2016) establish that their adaptive constrained �1-minimizer
is minimax optimal within the class sparse precision matrices

Gq(cn,p,Mn,p) =
{
� ∈ S+(R,p) : max

v

p∑

u=1

|ωuv|q ≤ cn,p, ‖�‖1 ≤ Mn,p,

1

M1
≤ λmin(�) ≤ λmax(�) ≤ M1

}
,

where 0 ≤ q ≤ 1,M1 > 0 is a constant andMn,p and cn,p are positive deterministic
sequences, bounded away from zero and allowed to diverge as n and p grow. In this
class of precision matrices, sparsity is imposed by restricting the columns of �∗ to
lie in an �q -ball of radius cn,p (0 ≤ q < 1).

Analogously to the covariance matrix estimation problem discussed Sect. 19.4,
Avella-Medina et al. (2018) also show that the optimal rates of estimation of the
precision matrix �∗ = (�∗)−1 can be attained without sub-Gaussian assumptions.
Indeed, the adaptive constrained �1-minimization estimator of Cai et al. (2016) gives
optimal rates of convergence as long as it is applied to a pilot estimator satisfying

pr[max
u,v

∣∣(�̃�∗ − Ip)uv
∣∣ ≤ C0{(logp)/n}1/2] ≥ 1− εn,p, (19.17)
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where C0 and εn,p are analogous to (19.13), and Ip denotes the p × p identity
matrix. While Eq. (19.17) holds with �̃ = �̂ under sub-Gaussianity of X, it
fails otherwise. More precisely, it follows from Theorem 4 and Lemma 10 in
Avella-Medina et al. (2018) that if max1≤u≤p E(|Xu|2+ε) ≤ κ2

ε one can construct
an estimator with optimal rates of convergence as long as we have the scaling
conditions cn,p = O{n(1−q)/2/(logp)(3−q)/2}, Mn,p = O{n/ logp)ε/2}, and
(logp)/n1/3 = O(1). In particular one can construct an adaptive estimator
�̂H using similar ideas to those of Cai et al. (2016) but regularizing the Huber-
type estimator introduced in Sect. 19.4.3, instead of the sample covariance matrix.
Choosing c = K(n/ logp)1/(2+ε) for some K > 0 and a sufficiently large n one
can show that

inf
�∗∈Gq (cn,p ,Mn,p)

pr

{
‖�̃H −�∗‖2 ≤ CM1−q

n,p cn,p

( logp

n

) ε(1−q)
(2+ε)

}
≥ 1− εn,p,

(19.18)

where εn,p ≤ C0p
−L for positive constants C0 and L. The rates in (19.18) match

the minimax optimal ones of Cai et al. (2016) when ε = 2.

19.5.4 Factor Models and High-Frequency Data

For many economics applications the covariance matrix estimation techniques
described in Sect. 19.4 are too stylized. For example the class of sparse matri-
ces (19.12) might not be appropriate to model covariance structure of stock returns.
In this case however, factor models such as the celebrated Fama-French model
(Fama & French, 1993) can capture an alternative low dimensional structure in the
data. In other applications an iid framework is also too simplistic. For instance high-
frequency financial data cannot be directly tackled by the techniques developed
in Sect. 19.4 since in this setting the observations are typically neither identically
distributed nor independent.

Despite the obvious limitations of the setting presented in Sect. 19.4, the same
idea of constructing an initial estimator with good elementwise convergence
properties under heavy tails is more broadly applicable. Indeed, combining this idea
with appropriate regularization techniques it can be successfully exploited to deliver
more robust estimators of approximate factor models in high dimensions and high-
frequency settings (Fan & Kim, 2018; Fan, Wang, & Zhong, 2019).
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19.6 Conclusion

We showed that old ideas from robust statistics can provide an interesting set of
tools to effectively tackle high-dimensional problems. In particular, we showed that
they can be used to obtain procedures that are less sensitive to the presence of
outliers and heavy tails. Indeed, some ideas from M-estimation can be extended to
high-dimensional regression problems by including appropriate sparsity inducing
regularization techniques. In regression settings we showed that when robust losses
are used, the resulting penalized M-estimators allow to deal with data deviating
from the assumed model and give more reliable inference even in the presence of a
small fraction of outliers. Furthermore M-estimators can also be used to construct
estimators that exhibit good finite sample deviations errors from a target parameter.
This is of paramount importance in the context of covariance matrix estimation
where it is critically important to have access to good initial estimators with good
elementwise convergence properties in the presence of heavy tails.
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Chapter 20
Frequency Domain

Felix Chan and Marco Reale

20.1 Introduction

Frequency domain has always played a central role in analysing and forecasting time
series. Yet, the popularity of frequency domain techniques in the empirical literature
remains relatively low due to their seemingly high requirement in mathematics.
Indeed, much of the theoretical foundation in frequency domain analysis was built
on integral transform theory. As such, many of the more practical techniques
from frequency domain are hidden behind the somewhat intimidating mathematical
details.

The purpose of this chapter is to provide an overview of the recent techniques
from frequency or time-frequency domains to analyse time series. The main
objective is to provide readers an appreciation on some of the central ideas
behind frequency domain and to demonstrate these ideas through some empirical
examples. The cost of this approach is the sacrifice of mathematical rigour which is
unfortunately inevitable. This is akin to the spirit in Granger and Hatanaka (1964)
where the main objective is to highlight the central idea of spectral analysis rather
than presenting a rigours mathematical treatment.

This does not, however, diminish the importance of mathematical rigour. It is
the hope of the authors that the chapter generates sufficient interest through this
‘layman approach’ and encourages readers to seek a more precise introduction of
the subject. Several excellent references are provided within the chapter and readers
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are strongly encouraged to consult with these references to fill the theoretical gaps
in this chapter.

This chapter focuses on three specific applications of time series analysis in
frequency domain, namely Granger causality, forecasts based on wavelet decompo-
sition and the ZVAR model using the generalised shift operator. The organisation
of the chapter is as follows: Sect. 20.2 provides some technical background in
spectral analysis. Section 20.3 discusses Granger causality from the frequency
domain perspective. The concept of wavelets will be introduced in Sect. 20.4 as
a generalisation of Fourier analysis. An empirical example on forecasting asset
returns using wavelet decomposition will also be presented. Section 20.5 introduces
the Generalised Shift Operator and the ZVAR model. An application of the ZVAR
model to generate forecasts at a frequency that is different from the sampling
frequency of the data will also be discussed. Its forecasting performance will be
examined by two Monte Carlo experiments. Finally, Sect. 20.6 will contain some
concluding remarks.

20.2 Background

This section provides some basic definitions and concepts that will be used for the
rest of the chapter. The main idea here is to establish a connection between time and
frequency domains. The section first considers a class of deterministic functions
which can be written in terms of both time and frequencies. It then introduces a
convenient transform to switch between the two representations. This is followed by
extending the analysis to stochastic functions and establishes the analogue results,
which lead to the well-known Spectral Representation Theorem.

Let x(t) be an analytic function in t with the following representation

x(t) =
∞∑

k=−∞
akφk(t), (20.1)

where φk(t) : X → Y , k ∈ Z forms a set of basis functions. The domain, X,
and the range, Y , can both be the subsets of R or C. In this chapter, t bears the
interpretation of time, so X ⊆ R

+. Assume there exists a set of orthogonal basis
functions, ψk(t) : X→ Y such that

∫

X

φk(t)ψl(t)dt = δkl (20.2)

where ψl(t) denotes the complex conjugate of ψl(t) and δkl denotes the delta
function with

δkl =
{

1 k = l
0 k �= l.
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If ψk(t) is a real-valued function then ψk(t) = ψk(t). As it will become clear
later, ψl(t) = φl(t) in some cases. In those cases, {φk(t)}∞k=−∞ forms the set of
orthogonal basis functions.

The basic idea of Eqs. (20.1) and (20.2) is to provide a starting point to analyse a
class of functions that can be expressed as a linear combination of a set of functions
with special features. To an extent, this can be viewed as the deterministic analogue
of a moving average process where the time series can be expressed as a linear
combination of a set of independently and identically distributed random variables.

If x(t) is known and conditional on the set of orthogonal basis functions, the
coefficient ak can be calculated as

ak =
∫

X

x(t)ψk(t)dt ∀k ∈ Z. (20.3)

To see this, consider

x(t)ψk(t) =
∞∑

l=−∞
alφl(t)ψk(t)

∫

X

x(t)ψk(t)dt =
∞∑

l=−∞
al

∫

X

φl(t)ψk(t)dt

=
∞∑

l=−∞
alδlk

=ak .

This is a generalisation of the well-known Fourier transform. When

φl(t) = exp

(
2πi

l

T
t

)
and ψk(t) = 1

T
φk(t)

where i denotes the complex number, i = √−1, then Eq. (20.1) is the Fourier series
of the function x(t) and the coefficients,

ak = 1

T

∫ T /2

−T /2
x(t) exp

(
−2πi

k

T
t

)
dt

= 1

T
x̂(k)

where x̂(k) denotes the Fourier Transforms of x(t). The specification of φl(t)
introduces the concept of frequency into this analysis. Since exp(iwt) = cos(wt)+
i sin(wt), the coefficients, ak , are the Fourier Transforms of x(t) at particular
frequencies k/T scaled by 1/T . Note that in this case, X = [−T /2, T /2] and the
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scaling factor, 1/T , leads to another representation of x(t). To derive this, substitute
the expression above into Eq. (20.1) which gives

x(t) =
∞∑

k=−∞

1

T
x̂(k) exp

(
2πi

k

T
t

)

=
∞∑

k=−∞
x̂(s) exp (2πist)�s

where s = k/T and �s = k

T
− k − 1

T
= 1

T
. The last line in the expression above

is a Riemann sum and since T can be set arbitrary, as T →∞, the last line becomes

x(t) =
∫ ∞

−∞
x̂(s) exp (2πist) ds (20.4)

which is the inverse Fourier transform. Thus (x(t), x̂(k)) denotes the Fourier
transform pair, where x(t) admits a Fourier series representation when φk(t) =
exp

(
2πi

k

T
t

)
and ψk(t) = 1

T
φk(t).

Perhaps more importantly, Eq. (20.4) provides a connection between time and
frequencies. Specifically, it expresses the function x(t) at each time point as a
sum of functions over all frequencies. The coefficients ak , k ∈ R, express the
characteristic of the function x(t) in each frequency in terms of a sum of functions
over time domain. Together, they establish a mathematical connection between time
and frequency domains for the function x(t).

The discussion so far assumed x(t) is a deterministic function. Many of the
concepts extend to the case where x(t) is a stochastic process in a seemingly natural
way. It must be stressed here that while some of the results carry over to stochastic
processes in an expected way, the mathematics required to demonstrate these is
substantial. A common starting point is to consider the coefficients ak in Eq. (20.1)
to be independent random variables such that ak ∼ D

(
0, σ 2

k

)
with the additional

condition that σ 2
k are absolute summable. That is,

∞∑

k=∞
|σk| <∞.

In other words, the coefficients ak , k ∈ Z, represent the random components in x(t).
Since x(t) is still assumed to follow Eq. (20.1), the variance of x(t)will therefore be
the sum of variances of ak . The condition above is a sufficient condition to ensure
the existence of the second moment of x(t) under this setting.

Since ak are functions of frequencies and not time, x(t) is likely to be auto-
correlated, that is, E [x(t)x(t − h)] �= 0 for some h > 0. One way to analyse this is
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to define the Weiner auto-covariance function as

Cw(h) = lim
T→∞

1

2T

∫ T

−T
x(t)x(t − h)dt . (20.5)

Note that this is a continuous time version of the auto-covariance estimator for
discrete time series data. See Koopmans (1995) for further exposition. At this
point of discussion, the following simplifying assumptions will be useful. Let

φk(t − h) = φk(t)φk(−h) with φk(0) = 1 and ψk(t) = 1

T
φk(t). Now substitute

Eq. (20.1) into Cw(h) gives

Cw(h) = lim
T→∞

∞∑

k=−∞
a2
k

1

2T

∫ T

−T
φk(t)φk(t − h)dt

+
∞∑

k=−∞

∞∑

l=−∞
k �=l

akal
1

2T

∫ T

−T
φk(t)φl(t − h)dt

= lim
T→∞

∞∑

k=−∞
a2
k

1

2

∫ T

−T
φk(t)ψk(t − h)dt +

∞∑

k=−∞

∞∑

l=−∞
k �=l

akal
1

2

∫ T

−T
φk(t)ψl(t − h)dt

=
∞∑

k=−∞
a2
kφk(h).

The last line follows from Eq. (20.2). Let C(h) = E

[
x(t)x(t − h)

]
= E [Cw(h)],

this implies

C(h) =
∞∑

k=−∞
σ 2
k φk(h). (20.6)

The expression on the right-hand side gives an expression for the auto-covariance
structure from the frequency domain perspective. When h = 0,

E [x(t), x(t)] =
∞∑

k=−∞
σ 2
k

which bears the interpretation that the variance of x(t) is the sum of the variances
associated with each φk(t). In the special case that

φk(t) = exp

(
2πi

k

T
t

)
= cos

(
2π
k

T
t

)
+ i sin

(
2π
k

T
t

)
,

σ 2
k is the variance associated with the frequency k/T .
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An important feature about the auto-covariance function as defined in Eq. (20.6)
is that it is also the spectral representation of the auto-covariance function. In fact,
the spectral representation theorem gives

C(h) =
∫ ∞

−∞
φk(h)dF (k) (20.7)

and

x(t) =
∫ ∞

−∞
φk(t)da(k) (20.8)

where F(k) and dF(k) are the spectral distribution and spectral density of the
time series x(t), respectively. Compare to Eq. (20.6), it can be shown that F(k) =∑
k E|ak|2 and thus Eq. (20.7) gives the continuous frequency version of Eq. (20.6).

In order words, it extends the values of k from being an integer (discrete time series)
to a real number (continuous time series).

The importance of this result cannot be overstated. It establishes a rigorous
mathematical relation between the variance-covariance structures of discrete time
series and its continuous counterpart. This is also reflected by Eq. (20.8) which can
be viewed as a random continuous version of Eq. (20.1) where da(k) plays the role
of the coefficient, ak . In other words x(t) can be expressed as a continuous sum
of a (infinitely uncountable) set of independently distributed random variables, i.e.,
da(k). An implication is that x(t) can therefore be approximated with a discrete sum
of independently distributed random variables under suitable regularity conditions.
In other words, it allows one to interpret a discrete time series as a continuous
time series sampled at a regular interval. For a rigorous treatments of these, see
Koopmans (1995).

The discussion in this section relates several concepts together. Under certain
conditions, it is possible to express both discrete and continuous time series in
terms of time or in terms of frequencies. More importantly, it is possible to switch
between these representations by leveraging the orthogonality property of the basis
functions. It is also possible to interpret a discrete time series as a continuous time
series sampled at a regular interval. Big data, especially in the form of tall and huge
data, represents a higher sampling frequency, which leads to better approximation of
the underlying continuous time series using discrete data. The mathematical results
presented above provide a mean to leverage the information in tall and huge data.

20.3 Granger Causality

Apart from understanding the relations between different economic and finance
variables, one aspect of Granger Causality is its ability to examine the contribution
of additional variables in forecasting. In fact, earlier definition of causality is related
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to the reduction of forecast variance. That is, if the forecast variance of xt is reduced
when yt and its past values are included in the forecast model, then yt is said
to ‘cause’ xt . Despite its age, Zellner (1979) still contains valuable philosophical
discussion on the different definitions of causality and their testing in econometrics.

The empirical literature over the past decades has investigated Granger causality
in the following fashion. Assume xt =

(
x1t , . . . , xpt

)′ is a p× 1 vector of variables
which admits the following Autoregressive (AR) representation,


(B)xt = εt

where 
(B) = Ip−∑r
i=1 
iB

i with B being the backward (lag) operator such that
Bxt = xt−1. The random vector εt ∼ D

(
0p, �

)
is assumed to be a vector of random

variables such that E (εtετ ) = 0p×p for t �= τ . The variance-covariance matrix, �

is typically assumed to be positive definite with an inverse that can be decomposed
as �−1 = GG′ so that there exist a p × 1 random vector, ηt ∼ D

(
0p, Ip

)
and

εt = Gηt .
Thus, if any of the off-diagonal elements in 
i are non-zero, then there exists

Granger causality. For example, if the (2, 1) elements in 
1 is non-zero, then x1t
Granger causes x2t . Similarly, if the (1, 2) element in 
1 is non-zero then x2t
Granger causes x1t .

Properties of various estimators for 
i are well established in the literature,
so test of statistical significance in the off-diagonal elements in 
i can be typi-
cally conducted using standard software packages. For details and examples, see
Hamilton (1994) and Lütkepohl (2005).

Interestingly, tests for Granger causality using frequency domain techniques can
be traced back to the seminal work of Granger (1963) and Granger (1969). Some of
the more recent advances include Breitung and Candelon (2006), Geweke (1982),
Granger and Lin (1995), Hosoya (1991). An interesting trend is that most of the
latest developments considered both stationary and co-integrated series, see for
example, Granger and Lin (1995) and Breitung and Candelon (2006).

These techniques are becoming quite popular among empirical researchers in
both economics and finance. For examples, see Bahmani-Oskooee, Chang, and Ran-
jbar (2016), Benhmad (2012), Bouri, Roubaud, Jammazi, and Assaf (2017), Croux
and Reusens (2013), Joseph, Sisodia, and Tiwari (2014), Tiwari and Albulescu
(2016), Tiwari, Mutascu, Albulescu, and Kyophilavong (2015) for their applications
in finance and see Aydin (2018), Bahmani-Oskooee et al. (2016), Bozoklu and
Yilanci (2013), Li, Chang, Miller, Balcilar, and Gupta (2015) , Shahbaz, Tiwari, and
Tahir (2012), Sun, Chen, Wang, and Li (2018), Tiwari (2012) for their applications
in economics.

These empirical studies highlighted two interesting developments. First, some
of these studies, such as Croux and Reusens (2013) and Tiwari et al. (2015),
obtained empirical evidence on the link between macroeconomic variables and
financial variables. Previous empirical studies on establishing connection between
financial markets and macroeconomic performance have not been overwhelmingly
successful. These recent studies highlighted the importance of examining Granger
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causality in frequency domain as a complementary technique to the conventional
time domain techniques. Recent studies also seem to move towards time-frequency
domain analysis, with a specific focus on wavelets which will be the main focus in
the next section.

The following exposition of Granger causality follows closely Granger (1963,
1969) which forms the foundation of Granger causality test in frequency domain.
First, let us consider a bivariate Vector Autoregressive system

xt =φ11(B)xt + φ12(B)yt + εxt (20.9)

yt =φ21(B)xt + φ22(B)yt + εyt (20.10)

where φij (B) =
∑pij
k=1 φij ,kB

k denotes a polynomial in the backward operator B
for all i, j = 1, 2. These polynomials do not have to share the same order and the
orders are not particularly important at this stage. It is assumed, however, that all
roots of 1 − φii (x) lie outside of the unit circle, i.e., both yt and xt are strictly
stationary. The case when one of the roots lies on the unit circle is still an area of
active research, see for examples Granger and Lin (1995), Breitung and Candelon
(2006) and Breitung and Schreiber (2018).

As discussed previously, the central idea of testing Granger causality in time
domain is to consider the following hypotheses1

H0 :φ12 = 0 (20.11)

H1 :φ12 �= 0 (20.12)

for testing y Granger causes x and

H0 :φ21 = 0 (20.13)

H1 :φ21 �= 0 (20.14)

for testing x Granger causes y. The testing procedure often follows the log-ratio

principle. Let �̂
R

x be the estimated variance-covariance matrix of εxt with the
restriction that φ12(B) = 0 and �̂x be the estimated variance-covariance matrix
of εxt in Eq. (20.9). Testing the null in Eq. (20.11) can be done via the test statistic

ML
y→x = log

(
|�Rx |
|�x |

)
∼ χ2(r) (20.15)

where |�| denotes the determinant of the matrix � and r is the number of parameter
in φ12. The testing of the null in Eq. (20.13) can be done in a similar fashion.

1Note that φij (B) and φij denote two different objects. The former denotes the lag polynomial
whereas the latter denotes the vector of coefficients.



20 Frequency Domain 663

The analogue in frequency domain can be derived as follows: Recall the spectral
representation of a time series as defined in Eq. (20.8) which allows one to
convert the time domain representation of a time series into its frequency domain
representation. To do this, first set the index k to a frequency parameter, w ∈ (0,π),
let φw = exp (iwt) and da(K) = dX(w) and substitute these into Eq. (20.8) gives

xt =
∫ π

−π
exp (iwt) dX(w)

which is the frequency domain representation of xt . Similar approach can be
constructed for yt , εxt and εyt . Substitute their frequency domain representations
to Eqs. (20.9) and (20.10) gives

∫ π

−π
exp (iwt)

{
[1− φ11 (exp (iw))] dX(w)− φ12 (exp (iw)) dY (w)− dεx(w)

} =0

(20.16)
∫ π

−π
exp (iwt)

{−φ21 (exp (iw)) dX(w)+ [1− φ22 (exp (iw))] dY (w)− dεy(w)
} =0.

(20.17)

These imply

[
a11 a12

a21 a22

] [
dX(w)

dY (w)

]
=
[
dεx(w)

dεy(w)

]
(20.18)

where

a11 =1− φ11 (exp (iw))

a12 =− φ12 (exp (iw))

a21 =− φ21 (exp (iw))

a22 =1− φ22 (exp (iw)) .

Let A = {aij } and if A−1 exists then dX(w) and dY (w) can be expressed in terms
of the independent components dεx(w) and dεy(w), respectively. That is,

[
dX(w)

dY (w)

]
= 1

|A|
[
a22 −a12

−a21 a11

] [
dε(w)

dεy(w)

]
(20.19)

with |A| = a11a22 − a12a21. For ease of exposition, let us assume dεx(w)
and dεy(w) are independent. The case where they are not independent will be
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considered later in this section. Under independence

E

([
dεx(w)

dεy(w)

] [
dεx(w) dεy(w)

] ) =
[
σ 2
x 0
0 σ 2

y

]
.

Using this property, the power and cross spectrum of xt and yt can be derived as

E

([
dX(w)

dY (w)

])
= 1

|A|2
[

a2
22σ

2
x − a2

12σ
2
y −a21a22σ

2
x − a11a12σ

2
y

−a22a21σ
2
x − a11a12σ

2
y a2

21σ
2
x + a2

11σ
2
y

]

(20.20)

where the power spectra for xt and yt are the elements on the main diagonal namely,

fx(w) =
a2

22σ
2
x − a2

12σ
2
y

|A|2 (20.21)

fy(w) =
a2

21σ
2
x + a2

11σ
2
y

|A|2 (20.22)

respectively. Note the matrix is symmetric by construction, the cross spectrum is the
off-diagonal element, that is

Cr(w) = −a21a22σ
2
x − a11a12σ

2
y

|A|2 . (20.23)

The cross spectrum has two main components, one contains information about
Granger causality from xt to yt , while the other contains information about Granger
causality from yt to xt . Specifically, if yt does not Granger cause xt , then a12 = 0
and if a21 = 0 then there is no evidence that xt Granger causes yt . A unique aspect
of this approach is that the cross spectrum is a function of frequency w and so
are a12 and a21. This means that a12 may be 0 at some frequencies but not others.
Therefore, the cross spectrum gives a possible mean to test Granger causality at
different frequencies.

This idea was further developed by Geweke (1982) and Hosoya (1991). Consider
once again the bivariate system of Eqs. (20.9) and (20.10). Let εt =

(
εxt , εyt

)′ and
E
(
εtε

′
t

) = GG′ for some non-singular matrix G, then εt = Gηt , where ηt =(
ηxt , ηyt

)′ with E(ηtη
′
t ) = I. Let 	(B) = 
(B)G−1 with


(B) =
[

1− φ11(B) −φ12(B)

−φ21(B) 1− φ22(B)

]
(20.24)
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and

	(B) =
[
ψ11(B) ψ12(B)

ψ21(B) ψ22(B)

]
. (20.25)

This allows one to write the bivariate system in terms of its Wold decomposition
with uncorrelated errors, that is,

[
xt

yt

]
=
[
ψ11(B) ψ12(B)

ψ21(B) ψ22(B)

] [
ηxt

ηyt

]
. (20.26)

Follow a similar argument as before in deriving the power spectra and the cross
spectrum, it can be shown that

fx(w) =
{∣∣ψ11 [exp(iw)]

∣∣2 + ∣∣ψ12 [exp(iw)]
∣∣2
}

. (20.27)

Similar to the previous case, yt Granger causes xt if ψ12(1) �= 0 and the power
spectra of xt as stated above provides a natural way to test this. Hosoya (1991)
proposed the following measure of causality

My→x(w) = log

(
|fx(w)|∣∣ψ11 [exp(iw)]

∣∣2

)

= log

(
1+

∣∣ψ12 [exp(iw)]
∣∣2

∣∣ψ11 [exp(iw)]
∣∣2

)
. (20.28)

My→x ≥ 0 and equals to 0 if and only if |ψ12 [exp(iw)] | = 0 and therefore a
measure of overall causality can be constructed by summing My→x(w) over all
frequencies and that is

My→x =
∫ π

−π
My→x(w)dw. (20.29)

Note that both
∣∣ψ11 [exp(iw)]

∣∣2 and
∣∣ψ12 [exp(iw)]

∣∣2 can be estimated from
the estimated parameters in Eqs. (20.9) and (20.10). Therefore, My→x(w) can also
be estimated empirically. Let M̂y→x be a consistent estimator of My→x based on
T observations, by assuming the appropriate regularity conditions, Hosoya (1991)
proposed the following test statistics

W(w) = T M̂2
y→x(w)V −1(�̂)

d∼ χ2(1) (20.30)
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where �̂ denotes a consistent estimator for the parameter vector in Eqs. (20.9)
and (20.10) and

V (�) = ∂M̂y→x
∂�′

∣∣∣∣
�̂

�(�)
∂M̂y→x
∂�

∣∣∣∣
�̂

(20.31)

with �(�) being the variance-covariance matrix of �̂.
As one may suspect, the test statistics as defined in Eq. (20.30) is difficult to

compute due to the presence of various derivatives which are nonlinear functions
of the parameter estimates. Interestingly, these numerical challenges can be largely
avoided. Breitung and Candelon (2006) shows that the null hypothesis

H0 : My→x(w) = 0 (20.32)

is equivalent to

H0 : R(w)φ12 = 0. (20.33)

R(w) =
[

cos(w) cos(2w) . . . cos(pw)
sin(w) sin(2w) . . . sin(pw)

]
. (20.34)

Therefore, a standard F-test for the hypothesis in Eq. (20.33), which is approxi-
mately F(2, T − 2p12) distributed, can be used to test hypothesis (20.32). In other
words, the problem has been reduced into testing a set of linear restrictions, which
is much simpler to implement. The procedure is summarised in Procedure 1.

Procedure 1 Granger causality test in frequency domain
1: Set w such that w ∈ (0,π).
2: Construct R(w) as defined in Eq. (20.34).
3: Obtain a consistent estimate of φ12 in Eq. (20.9) and calculate the residual sum of squares,
RSSUR .

4: Construct the restricted model by imposing the restrictions as implied by the hypothesis in
Equation (20.33) into Equation (20.9).

5: Obtain an estimate of the coefficients in the restricted model and calculate the residual sum of
squares, RSSR .

6: Construct the test statistic:

F = (RSSR −RSSUR)/2

RSSUR/T − 2p12
.

7: F is distributed approximately F(2, T − 2p12) and thus the testing of Hypothesis (20.33) can
be carried out in the usual fashion.
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Step 4 in Procedure 1 imposes the restrictions into the VAR system. One way to
do this is to partition R(w) and φ12 such that

R(w)φ12 =
[
R1(w)|R2(w)

] [φ1
12

φ2
12

]

=R1(w)φ
1
12 +R2(w)φ

2
12

where R1(w) is a non-singular matrix and the restrictions can then be imposed
by setting φ1

12 = R−1
1 (w)R2(w)φ

2
12. The same procedure with the suitable

modification can also be used to test H0 : Mx→y = 0.
Breitung and Candelon (2006) also extend this approach for bivariate co-

integrated system with a focus on long-run causality in a Vector Error Correction
(VECM) framework. The overall result is that, if xt and yt are both I (1) and co-
integrated, then most of the results in Breitung and Candelon (2006) hold. The
analysis becomes much more complicated if the two time series are of different
orders of integration.

20.4 Wavelet

Recall Eq. (20.1), where the function x(t) is written in terms of a linear combination
of a set of basis functions, φk(t). When φk(t) = exp (iωkt), the expression gives
a trigonometry series representation of x(t). Each basis function, φk(t) depends
on one parameter namely, ωk , which represents a specific frequency. A natural
extension is to allow φk(t) to depend on more than one parameter. The motivation of
such extension is that when φk(t) only depends on the frequency, ωk , it assumes that
the contribution of that frequency is fixed over time. In other words, the coefficient
ak is assumed to be a fixed constant when x(t) is a deterministic function and ak
is a random variable with finite and constant second moment over time when x(t)
is a stochastic process. This is restrictive for macroeconomic forecasts because the
contributions of different frequencies may vary over time due to factors such as
policy changes and therefore, the ability to capture the contribution of a particular
frequency at a particular time point would be desirable. One way to approach this
is to allow the basis functions to include two parameters where one would bear the
interpretation of frequency while the other would represent the location in time.
Recall Eq. (20.3), the coefficient can be calculated as

ak =
∫

X

x(t)ψk,τ (t)dt . (20.35)

Therefore, if the dual function, ψk,τ (t), contains two parameters, k and τ , then the
coefficient will also be a function of the two parameters.
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One approach to incorporate the two parameters is to replace the variable t with
t − τ
ηk

. The frequency parameter in this case is ωk = η−1
k with ηk > 0 ∀k. The

parameter τ can then be interpreted as the control on the location of time, t , and thus
serves the purpose of shifting the location of time for a particular frequency. The
appropriate basis functions, φk,τ (t), are called wavelet functions and because it has
the ability to analyse the contribution of a particular frequency at a particular time
point, wavelet analysis is often referred to as a time-frequency domain technique.

The introduction of the additional parameter introduces an extra layer of
complexity in terms of the orthogonal nature of the dual functions. So far it is
assumed that φk(t) is orthonormal for k ∈ Z following Eq. (20.2). The definition of
orthogonality must be modified when there are two parameters. One way to proceed
is to let � = {φk,τ (t) : k ∈ Z

+, τ ∈ Z
}

be a set of basis functions for L2(R) such
that

∫

X

φk,τ1(t)φk,τ2(t)dt = 0 τ1 �= τ2.

The fact that φk,τ (t) ∈ L2(R) means that
∫ |φk,τ (t)|2dt < ∞ which ensures

the wavelet functions possess certain desirable properties. Moreover, the condition
above means that φk,τ (t) is orthogonal to its integer translation. In other words, it
is orthogonal to its own time location shifts but no assumption is being made about
the inner product with its dilation, i.e., different values of k.

Now if one is willing to impose an additional structure on� namely, let Vk be the
subspace spanned by φk,τ (t) for τ ∈ Z such that Vk ⊆ L2(R) and V0 ⊂ V1 . . . ⊂ Vk .
That is, the spaces spanned by the wavelet functions with lower k values are nested
within those spanned by wavelet functions with higher k values. In such case, one
can write

V1 = V0 ⊕W0

whereW0 denotes the orthogonal complement of V0 with respect to the space V1. In
other words, V1 is being decompose into V0 and its orthogonal complements, W0.
Repeated applications of this expression gives

Vk = V0 ⊕W0 ⊕ . . .⊕Wk−1.

Figure 20.1 provides a graphical representation of this decomposition. Consider
the space V0 which is spanned by φ0,τ (t) and note that all φ0,τ (t) are orthogonal to

Fig. 20.1 Wavelet
decomposition

0

1
2

0 1
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each other by construction over all values of τ . Next, consider V1. By construction
and as shown in Fig. 20.1, V1 consists of V0 and its complement W0. Since V1 is
spanned by φ1,τ (t) which are orthogonal to each other over all values of τ and since
V0 is a subspace of V1, W0 must be an orthogonal complement to V0. Repeat this
argument, one can see that the L2(R) space can be decomposed into V0 and a set of
orthogonal complements, {Wk}∞k=0.

Therefore, if there exists a set of orthonormal basis for Wk , ψk,τ , that can be
derived from φk,τ , then any continuous function in f (t) ∈ Vk can be expressed as a
linear combination of φ0,τ and ψj ,τ , j = 0, . . . , k. Since � is a set of basis function
of L2(R), this implies all continuous function in L2(R) can be expressed as a linear
combination of φ0,τ and ψj ,τ , j = 1, . . . , k as k→∞.
Two technical questions arise naturally. Do functions ψk,τ (t) actually exist? If so,
under what conditions can they be derived from φk,τ (t)? The question concerning
existence can be ensured by the following conditions

1.
∫

X

φ1,0(t)dt = 0.

2.
∫

X

φ1,0(t)φ1,0(t)dt = 1.

3.
∫

X

φk,τ1(t)φk,τ2(t)dt = 0 τ1 �= τ2.

4. Let f (t) ∈ Vk,τ then there exits {ak,τ } τ ∈ R, such that

f (t) =
∞∑

τ=−∞
ak,τ φk,τ (t)

5. Let Vk be the space spanned by φk,τ (t), then Vk ⊂ Vk+1.
6. f (t) = 0 is the only function in

⋂∞
k=0 Vk .

Conditions 1 to 4 ensure φk,τ forms an orthonormal basis for Vk for each k.
Condition 5 ensures Vk is a sequence of increasing subspaces and Condition 6
ensures separability of each Vk , k ∈ Z

+. Under Conditions 1–6, it can be shown
that there exists a set of orthonormal basis functions, {ψk,τ (t) : k ∈ Z

+, τ ∈ Z} that
spanW0 ⊕W1 ⊕ . . .Wk . For details see Bachman, Narici, and Beckenstein (2000).

Under existence, the generation of ψk,τ (t) from φk,τ (t) can be achieved by the
familiar Gram–Schmidt process. For notational convenient, define the inner product
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between g(t) : X→ Y and f (f ) : X→ Y as

< f (t), g(t) >=
∫

X

f (t)g(t)dt .

Consider the following iterative procedures

ψ∗0,τ (t) =φ0,τ (t)

ψ∗1,τ (t) =φ1,τ (t)−
< ψ∗0,τ (t),φ1,τ (t) >

< ψ∗0,τ (t),ψ
∗
0,τ (t) >

ψ∗0,τ (t)

ψ∗2,τ (t) =φ2,τ (t)−
< ψ∗0,τ (t),φ2,τ (t) >

< ψ∗0,τ (t),ψ
∗
0,τ (t) >

ψ∗0,τ (t)−
< ψ∗1,τ (t),φ2,τ (t) >

< ψ∗1,τ (t),ψ
∗
1,τ (t) >

ψ∗1,τ (t)

...

ψ∗k,τ (t) =φk,τ (t)−
k∑

j=0

< ψ∗j ,τ (t)φk,τ (t) >

< ψ∗j ,τ (t),ψ
∗
j ,τ (t) >

ψ∗j ,τ (t)

...

and let

ψk,τ (t) =
ψ∗k,τ (t)√

< ψ∗k,τ (t),ψ∗k,τ (t) >
k ∈ Z.

It is straightforward to check that � = {ψk,τ (t) : k ∈ Z
+, τ ∈ Z} form a set of

orthonormal functions. Under the Conditions 1 to 6, it can also be shown that �
form sets of basis functions forWk , k ∈ Z

+. For details, see Bachman et al. (2000).
An implication of these theoretical foundations is that a time series {x(t)}t∈Z,

under certain conditions, can be decomposed as a linear combination of wavelets
and scaling functions. That is,

x(t) = 1√
T

∞∑

τ=∞
ak0,τ φk0,τ (t)+ 1√

T

∞∑

k=k0

∞∑

τ=−∞
bk,τψk,τ (t) (20.36)

where

ak0,τ = 1√
T

T∑

t=1

x(t)φk0,τ (t) (20.37)

bk,τ = 1√
T

T∑

t=1

x(t)ψk,τ (t). (20.38)
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Define

u(t) = 1√
T

∞∑

τ=∞
ak0,τ φk0,τ (t) (20.39)

vk(t) = 1√
T

∞∑

k=k0

∞∑

τ=−∞
bk,τψk,τ (t). (20.40)

The series u(t) is often called the approximation series, where vk(t) are called
the detail series. One interpretation of this decomposition is that the approximation
series contains the “smoothed” version of the original series where the detail series
capture the additional components.

Intuitively the approximation series contains most of the major characteristics
of the time series, or characteristics that persist over time. The detail series capture
the more irregular aspects of the time series. Note that the approximation series
is a single sum whereas the detail series are double sums. This suggests that the
level of details, that is, the amount of irregular characteristics of the time series, is
controlled by the k parameter. The higher is k, the more ‘details’ can be captured
by this decomposition. Obviously, over-fitting may appear to be a concern with high
k but the availability of big data, especially ‘tall’ data, may lead to an opportunity
to increase the number of detail series without the risk of over-fitting and allows
potentially more interesting dynamics to be revealed. This would be an interesting
area for future research.

From a forecasting perspective, one approach is to forecast the approximation
and detail series independently. This is feasible since these series are orthogonal
by construction. The aggregation of these independent forecasts will then form
the forecast of the original series. This is one of the most popular approaches in
forecasting economic and financial time series using wavelets. See for examples,
Conejo, Plazas, Espínola, and Molina (2005), Kriechbaumer, Angus, Parsons, and
Rivas Casado (2014) and Berger (2016).

Before providing a demonstration of forecasting using wavelets, it would be
useful to introduce some wavelet functions. Since the original proposal of wavelet
analysis, there are now over 100 different wavelet functions. The choice of the
wavelet functions is application dependent and it is mostly empirically driven.
Interestingly, but perhaps not surprisingly, the forecast performance is closely
related to the choice of wavelets as demonstrated in the next subsection.

Among the different choice of wavelets, the Haar family remains one of the most
popular. The Haar function is defined to be

φ(t) = 1[0,1)(2t)− 1[0,1)(2t − 1) (20.41)
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where

1[0,1)(t) =
{

0 t �∈ [0, 1)

1 t ∈ [0, 1).

This leads to the wavelet family by defining

φk,τ = kφ (kt − τ) k = 2j , j , τ ∈ Z. (20.42)

The popularity of the Haar family is due to its simplicity. As implies by Eq. (20.41),
the Haar family is essentially a set of rectangular waves with different width and
height. The superposition of these rectangles is able to produce a wide range of
shape to approximate any given signal.
Another popular choice is the Daubechies family which extends the Haar family
by imposing varying number of vanishing moments, rather than defining them
via the scaling and dilation of a father wavelet. As such, it has no closed form
expression. For more details see Daubechies (1992). The appropriate choice of
wavelet functions is still an area of active research. To the best of the author
knowledge, there is no known criteria to select the best wavelet function. See
Bachman et al. (2000) for some useful discussion.

20.4.1 Wavelet Forecasting

This subsection provides a demonstration of wavelet decomposition and its potential
application for forecasting. Let pt be the logarithmic transform of an asset price at
time t and consider its returns calculated as

rt = 100 log

(
pt

pt−1

)
.

In general, rt forms a stationary process and assume its underlying data generating
process is square-integrable, then returns can be represented as Eq. (20.36).

To consolidate the idea, let pt be the daily closing price for Intel Incorporate
(ticket: Intc) from 2nd August, 2004 to 28nd February 2018. This gives a total of
3416 observations and Fig. 20.2 shows the closing prices and the corresponding
returns.

The ability of predicting the dynamics of asset returns has been one of the
most popular topics in financial econometrics. It is generally acknowledged that
if one considers rt a random variable, then the prediction of its first moment is
difficult. This can be demonstrated through the autocorrelations and the partial
autocorrelations as shown in Figs. 20.3 and 20.4. As can be seen in the figures, the
autocorrelation structure in the return data is complicated. A closer look to the graph
reveals that a set of selected lags namely, 1, 4 and 24, are statistically significant.



20 Frequency Domain 673

Fig. 20.2 Daily closing price for Intel Core

Similar structure can also be found in the partial autocorrelation graph. Given the
returns series is second order stationary, the Wold decomposition asserts that the
series can be approximated arbitrarily well by a moving average process. In other
words, one should be able to develop an ARMA(p, q) model for this series and use
it for forecasting purposes.
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Fig. 20.3 Autocorrelation of Intel corporation returns. Note: The blue lines denote the confidence
intervals and the red dots denote the actual estimates

Fig. 20.4 Partial autocorrelation of Intel corporation returns. Note: The blue lines denote the
confidence intervals and the red dots denote the actual estimates

The question is therefore the determination of the lag orders, p and q. While
there exist powerful techniques to determine the optimal lag for fitting purposes, the
forecast performance based on these techniques is not always clear. An alternative
is to decompose the series using wavelets and develop a forecasting model for
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Fig. 20.5 Autocorrelations of wavelet decompositions. Note: The blue lines denote the confidence
intervals and the red dots denote the actual estimates. The panel on the top right-hand corner
contains the autocorrelation plot of the approximation series whereas the remaining panels contain
the autocorrelation plots of the four detail series

each of the approximation and detail series. To justify this approach, consider the
autocorrelation and partial autocorrelation graphs of the approximation and detail
series as shown in Figs. 20.5 and 20.6.

Interestingly, the autocorrelation and the partial autocorrelation functions reveal
a much clearer picture on the autocorrelation structure of each wavelet series. In
principle, it should be relatively simpler to establish a forecast model for each of
these series than the original series. The sum of the forecasts from each of the
wavelet series can be used as a forecast of the original series.

For purpose of demonstration, this section specifies four different models to
forecast the Intel returns. For each model, the first 3000 observations are used as
the training set to estimate the parameters. The four models will then each produce
a 1-day ahead forecasts for the Intel returns. The next observation in the sample will
then be included in the training set to estimate the models again to produce the next
1-day ahead forecast. This procedure will be repeated until the training set contains
the full sample.

The four models are (1) ARMA model, (2) Haar wavelet at level 5, (3) Haar
wavelet at level 6 and (4) Daubechies wavelets at level 3. The lag order of the
ARMA model as well as the ARMA models of the decomposed series is determined
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Fig. 20.6 Partial autocorrelations of wavelet decompositions. Note: The blue lines denote the
confidence intervals and the red dots denote the actual estimates. The panel on the top right-hand
corner contains the partial autocorrelation plot of the approximation series whereas the remaining
panels contain the partial autocorrelation plots of the four detail series

by maximal AIC with the upper bound set at 12 lags for both AR and MA terms.
The procedure of constructing wavelet forecasts can be found in Procedure 2. The
computation is carried out using the Statsmodels (see Seabold & Perktold, 2010)
and Pywavelet (see Lee et al., 2006) modules in Python 3. The latter module handles
Steps 5 to 17 in Procedure 2. The forecasts of the approximation and detail series
are constructed using the same procedure as in (1). The forecast performances
are measured by both Mean Squared Forecast Error (MSFE) and Mean Absolute
Deviation (MAD) and the results can be found in Table 20.1. The plot of the out-of-
sample forecasts against the original series can be found in Fig. 20.7.

As shown in Table 20.1, the forecast performances of wavelet functions are
generally better than the traditional ARMA model in this case. However, the choice
of wavelet functions is clearly of some importance here. While the Haar wavelets
generally did perform well, the Daubechies wavelet did worse than the ARMA
model in terms of MSFE but slightly better than the ARMA model in MAD. This
may be due to a small number of outliers and indeed, the decomposition of series in
the presence of outliers and extreme observations would appear to be an important
area of future research in wavelet analysis.
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Procedure 2 Wavelet forecast
1: Choose a wavelet function φk,τ (t).
2: Set k0 = 0.
3: Set an upper bound of k, k̄ ∈ Z

+.
4: Set an upper bound for τ , τ̄ ∈ Z

+.
5: Given the time series x(t), t = 1, . . . , T :
6: for k = k0 . . . k̄ do
7: for τ = −τ̄ . . . τ̄ do
8: Construct ψk,τ (t) using the Gram-Schmidt as presented above, replacing the inner

product by the dot product. That is

< ψ∗k,τ (t),φk,τ (t) >=
T∑

t=1

ψ∗k,τ (t)φk,τ (t).

9: Construct the coefficients ak,τ and bk,τ using Equations (20.37) and (20.38), respec-
tively.

10: end for
11: end for
12: Construct the approximation series u(t) using Equation (20.39).
13: Construct out-of-sample forecasts for u(t). That is, construct û(t), t = T + 1, . . . , T + h.
14: for k = k0 . . . k̄ do
15: Construct vk(t) using Equation (20.40).
16: Construct out-of-sample forecasts for vk(t). That is, construct v̂k(t), t = T + 1, . . . , T +h.
17: end for
18: x̂(t) = û(t)+ v̂k(t) gives the forecast of the original series x(t) for t = T + 1, . . . , T + h.

Table 20.1 Forecast
performance comparison

ARMA Harr 4 Harr 6 DB 3

MSFE 1.806393 1.237853 1.233023 1.894574

MAD 0.903027 0.716970 0.715708 0.826051

Figure 20.7 also reveals that the wavelet functions seem to be able to produce
forecasts with much higher degree of variation that matches the original series.
While the forecasts produced by ARMA model captured the mean of the time series
reasonably well, it does not share the same degree of variability as the wavelet
forecasts.

Before finishing the discussion of wavelets, one natural question is whether it is
possible to test Granger causality using wavelet functions rather than trigonometry
functions as discussed in Sect. 20.3. The motivation of such approach hinges on
the fact that macroeconomic time series often exhibited structural breaks due
to extreme events and policy changes. Therefore, it is not difficult to imagine
that Granger causality may change over different frequencies and different time
locations. Wavelets analysis seems to provide such flexibility.

While research in this area is still ongoing, preliminary work seems to be
promising. Olayeni (2016) and the references within provide some of the most
recent research in this area.
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Fig. 20.7 Wavelet and ARMA forecasts. Note: This contains the plot of the original series (in
blue), the forecast series by Haar family (in red) and the forecast series by the ARMA model (in
green)

20.5 ZVAR and Generalised Shift Operator

This section introduces the Generalised Shift Operator and its application to the
development of the ZVAR model. The exposition follows closely to Wilson, Reale,
and Haywood (2016) whose authors are often credited to be the inventors of the
ZVAR model. Its acronym was justified by the use of the letter Z for the generalised
shift operator. Wilson et al. (2016), however, light-heartedly used the letter Z
to mean an ultimate model in the autoregressive family. Roughly speaking, the
generalised shift operator generalises the familiar lag (backward shift) operator to
allow continuous shifting, rather than shifting discretely. Consequently, it has the
ability to produce forecast at a higher frequency based on data sampled at lower
frequency.

An important point to note here is that this approach cannot create additional
information on the dynamics between each discrete time point. All it does is utilising
information from existing observations and provide a process that connects each
discrete time point. This is similar to a polynomial spline in spirit which connects
each discrete time point based on some approximation function. Unlike traditional
spline approach, however, ZVAR can produce forecasts which cannot be achieved
with traditional spline approach. This is due to the fact that most spline techniques
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are originated as an attempt to construct a smooth function that would pass through a
certain set of points. This would require a minimum a starting point and an end point.
However, splines do not generally produce values past the end point which makes
it difficult to produce out-of-sample forecasts. ZVAR also provides a description
of the dynamics of the variables similarly to a typical ARMA type models, which
allows one to understand the dependence structure of the time series.

Another interesting feature of the ZVAR model is that it has the ability to carry
past information in an extremely parsimonious way. This facilitates greatly with the
modelling of tall data, where potentially many lags are required to produce sensible
forecasts.

20.5.1 Generalised Shift Operator

The generalised shift operator Z is defined as

Zθ = B − θ
1− θB (20.43)

where B denotes the standard backward shift (lag) operator such that Bxt = xt−1
where xt is a k× 1 vector of time series. Also worth noting is that the inverse of the
Z operator is

Z−1 = 1− θB
B − θ = B−1 − θ

1− θB−1 (20.44)

and thus when θ = 0, Z−1 defines the forward shift (lead) operator such that
Z−1xt = xt+1. A special feature of this operator is that the amount of “shifting” is
governed by the parameter, θ ∈ (−1, 1), and more specifically, Zθxt ≈ xt−l where
l = (1+ θ)(1− θ)−1 when xt is a slowly varying time series. See Wilson et al.
(2016) for further discussion. Now define s(k)t = Zkθxt , then it is straightforward to

show that the state variable, s(k+1)
t satisfies the following recursive relation

s(k+1)
t = s(k)t−1 − θs(k)t + θs(k+1)

t−1 . (20.45)

To see this, consider

s(k+1)
t =Zθ s(k)t

= B − θ
1− θB s(k)t

(1− θB) s(k+1)
t =s(k)t−1 − θs(k)t−1

s(k+1)
t =s(k)t−1 − θs(k)t + θs(k+1)

t−1 .
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On surface, skt appears to represent xt−kl , that is, it shifts the time series back by the
value of kl. However, an important feature about skt is that it does not just contain
the information of xt−kl but rather, it carries the information from the past values of
xt−kl . To see this, consider

Zθxt =(B − θ)(1− θB)−1xt

= (1− θB)−1 (xt−1 − θxt )

=
(

1− θ2
) ∞∑

i=0

θiBi+1xt − θxt ,

The last line follows by replacing (1− θB)−1 with its Taylor expansion. The first
term in the last line suggests that s1

t contains a weighted sum of all past values of xt .
This would be useful in modelling tall data with many time series observations as the
number of required lags may be reduced due to this representation. The expression
above is also useful in understanding the impact of the generalised shift operator on
time series. Let �(h) denotes the auto-covariance function of xt and consider the
variance-covariance matrix of st and xt , that is

E
(
stx′t
) =E

[(
1− θ2

) ∞∑

i=0

θixt−i−1xt − θxtx′t

]

=
(

1− θ2
) ∞∑

i=0

θi�(i + 1)− θ �(0).

Now assume that �(l) = φ�(l − 1) = φl�(0) where φ measures the persistence of
xt and is assumed to be less than 1.

E
(
stx′t
) =

[
φ(1− θ2)

∞∑

i=0

(θφ)i − θ
]

�(0)

=
[
φ

1− θ2

1− φθ − θ
]

�(0).

Therefore the amount of “shifting” implied by the Z operator can be calculated by
solving

φl = φ 1− θ2

1− φθ − θ

which gives

l =
log

∣∣∣∣φ
1−θ2

1−φθ − θ
∣∣∣∣

log |φ| (20.46)
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and a straightforward application of L’Hôpital’s rule shows that

lim
φ→1

l = 1+ θ
1− θ . (20.47)

Hence, for a reasonably persistent time series, Zxt ≈ xt−l with l = (1+ θ)(1−
θ)−1. However, the approximation will behave poorly when φ = θ because
Eq. (20.46) suggests that l → −∞ as φ → θ . Figure 20.8 contains two plots
that demonstrate the performance of the approximation. The first plot shows the
difference between l and (1+ θ)(1− θ)−1 over different levels of persistence with
θ = 0.5 while the surface plot shows the difference between l and (1+ θ)(1− θ)−1

over different levels of persistence and θ values.
As expected, the approximation does reasonably well as long as φ �= θ but it

does tend to deviate further as θ approaches φ.
Given the relation between the lag order and the parameter in the generalised

shift operator, it is then possible to ‘shift’ the time series to any l ∈ (0, 1) as long as

θ = l − 1

1+ l (20.48)

lies in (−1, 1), which is clearly the case for l ∈ [0, 1]. Therefore it is possible to
forecast using low frequency data at higher frequency. For example, assume xt was
observed at quarterly frequency and let θ = −0.5, then Zxt ≈ xt+1/3 which is the
value of the first month in the next quarter.

20.5.2 ZVAR Model

Given the relation between the lag order and the generalised shift operator, the
ZVAR model can then be used to forecast high frequency observations using lower
frequency data. Following Wilson et al. (2016), define the general form of the ZVAR
model as

L
(
Zρxt |Ft−1

) =
p∑

i=1

ξis
(i−1)
t (20.49)

where L denotes the linear projection of the first argument onto the second with
Ft−1 containing all past values of xt up to t − 1.

For quarterly data, clearly if ρ = −0.5, then Zρxt = xt+1/3, in that case,
Eq. (20.49) becomes a predictive model for the first month of the next quarter based
on past values of xt . Similarly, set ρ = −0.2 then Zρxt ≈ xt+2/3 which turns
Eq. (20.49) into a predictive model for the second month of the next quarter. Finally,
when ρ = 0, Eq. (20.49) reverts to a standard predictive model for the next time
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period. This can be summarised as follows:

L (Z−0.5xt |Ft−1) =
p∑

i=1

ξ1
i s(i−1)
t (20.50)

L (Z−0.2xt |Ft−1) =
p∑

i=1

ξ2
i s(i−1)
t (20.51)

L (Z0xt |Ft−1) =
p∑

i=1

ξ0
i s(i−1)
t . (20.52)

The coefficient vectors, ξ i for i = 0, 1, 2 where ξ i =
(
ξ i1, . . . , ξ ip

)′
can be obtained

via least squares type estimators. Specifically, let Xi =
(
Z−1
ρ s0, . . . ,Z−1

ρ s(p−1)
)

where s(k) =
(

s(k)1 , . . . , s(k)T
)′

with ρ = −0.5,−0.2, 0 for i = 1/3, 2/3, 1,

respectively, then

ξ̂
i = (X′iXi

)−1 X′iZ−1
ρ x. (20.53)

Upon obtaining the coefficient estimates, the forecasts of each month in a quarter
can be obtained in a straight forward manner by using Eqs. (20.50)–(20.52).

20.5.3 Monte Carlo Evidence

This subsection conducts some Monte Carlo experiments to examine the perfor-
mance of the proposed method. The basic idea is to simulate data at the monthly
frequency but only utilises quarterly data for purposes of estimating the ZVAR
model as defined in Eqs. (20.50)–(20.52). These models will then be used to produce
monthly forecasts and their forecast performance will be compared to the true
model with full set of observations, i.e., true model using monthly observations.
The forecast performance will also be compared with the following misspecified
VAR(1) model.

xit = φ1xit−1 + εit , i = 1, . . . , 3 (20.54)

The idea here is to examine the performance of a ZVAR model using quarterly
data (less information) with a misspecified time series model using monthly data
(full information).



684 F. Chan and M. Reale

Two different data generating processes are considered in this subsection. The
first DGP follows:

⎛
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⎠ =
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(20.55)

and the second DGP follows:
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(20.56)

In both cases, the variance-covariance matrix of (ε1t , ε2t , ε3t )
′, denoted by � is

� =
⎛

⎝
0.02 −0.03 −0.01
−0.03 0.06 0.025
−0.01 0.025 0.0125

⎞

⎠ . (20.57)

The number of replications is 1000 for both DGPs. For each replication, 40 years
of monthly data will be simulated by the DGP as stated in Eqs. (20.55) and (20.57),
which results in 480 observations in total. The first 30 years of data will be used
for estimation purposes with the last 10 years reserved for one-step ahead dynamic
forecasts. In other words, the first 360 observations will be used to estimate the
parameters in the model with the last 120 observations to be used for out-of-sample
forecasts.
The forecast performance as measured by Mean Squared Error (MSFE) can be
found in Tables 20.2 and 20.3 for DGPs as stated in Eqs. (20.55) and (20.56),

Table 20.2 Forecast performances from DGP following Eq. (20.55)

True DGP Estimated true DGP ZAR monthly ZAR quarterly VAR(1)

x1t 0.020078 0.048147 0.048249 0.055375 0.054211

x2t 0.059929 0.142581 0.143016 0.148263 0.147091

x3t 0.012472 0.029940 0.030420 0.040075 0.040065

Table 20.3 Forecast performances from DGP following Eq. (20.56)

True DGP Estimated true DGP ZAR monthly ZAR quarterly VAR(1)

x1t 0.019941 0.022553 0.022581 0.041691 0.043512

x2t 0.059887 0.039426 0.040137 0.103939 0.114036

x3t 0.012487 0.049332 0.088825 0.106217 0.121554
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respectively. In each case, the forecast performance of ZVAR using quarterly
data is compared to other four cases namely, forecasts produced by the true
model (no estimation), forecasts produced by estimated true model (correct ARMA
specification with estimated parameters using the first 360 observations), estimated
ZVAR model using monthly data and an VAR(1) model.

The results broadly follow expectation. That is, the true model performs better
than the estimated true model, the ZVAR model based on monthly data performs
closely to the estimated true model, while ZVAR based on quarterly data performs
worse than the other three cases. This is to be expected because the ZVAR model
based on monthly data provided a close approximation to the true model in terms of
model specification but the performance would be worse than the true model or the
estimated true model due to finite sample errors in estimation. The performance
of the ZVAR model using quarterly data would be worse than the other three
models because it does not utilise the full data set and therefore, it does not
have access to full information. Interestingly, ZVAR using quarterly data performs
marginally better than the misspecified VAR(1) model under Eq. (20.56) but not
under Eq. (20.55). The reason for that may be due to the fact that Eq. (20.54) does
not allow any information from the other time series and this appears to be more
important than having less observations in this case.

Obviously, all information should be utilised if available. The main contribution
here is that, in the absence of full information, ZVAR still seems to be able to
produce forecasts that out-perform a misspecified model with full observations. It
may therefore prove to be a useful tool in the presence of big data when the sampling
frequency of each variable may not be consistent across the whole dataset.

20.6 Conclusion

This chapter provided an overview on three topics in time series analysis which
share a common foundation in frequency domain namely, series decomposition
based on Fourier Series and wavelets as well as the generalised shift operator. One
common theme of these techniques is their ability to express complex structures as
compositions of simpler ones. This allows the analysis of complex time series to be
divided as a sequence of much simpler processes and thus contributes to the analysis
of big and possibly complex data.

Wavelet analysis can be interpreted as a generalisation of Fourier analysis.
The Spectral Representation Theorem provided a powerful justification of approx-
imating a second order stationary process as a linear combination of complex
exponentials. This result extends to wavelet analysis in the sense that any continuous
function in L2 can be expressed as a linear combination of wavelets. However,
in the case when the continuous function is a stochastic process, there is yet no
known result similar to that of the spectral representation theorem. Thus, deriving
the conditions in which a stochastic process admits a wavelet representation would
appear to be an important area of future research, especially given the potential
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contribution of wavelets to forecast complex processes as demonstrated in this
chapter.

As data becomes more widely available in terms of its frequency and accessibil-
ity, models with the ability to capture long memory with parsimonious representa-
tions would provide a convenient tool for forecasters. The ZVAR model based on the
generalised shift operator provides one of these tools. In addition, the ZVAR model
has the ability to ‘shift’ along the data set continuously, even when the data must
be sampled discretely. This potentially allows forecasters to produce forecasts at the
frequency that is most relevant, rather than being restricted to the same sampling
frequency as the data.
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Chapter 21
Hierarchical Forecasting

George Athanasopoulos, Puwasala Gamakumara, Anastasios Panagiotelis,
Rob J. Hyndman, and Mohamed Affan

21.1 Introduction

Accurate forecasting of key macroeconomic variables such as Gross Domestic
Product (GDP), inflation, and industrial production, has been at the forefront of
economic research over many decades. Early approaches involved univariate models
or at best low dimensional multivariate systems. The era of big data has led to the
use of regularisation and shrinkage methods such as dynamic factor models, Lasso,
LARS, and Bayesian VARs, in an effort to exploit the plethora of potentially useful
predictors now available. These predictors commonly also include the components
of the variables of interest. For instance, GDP is formed as an aggregate of
consumption, government expenditure, investment, and net exports, with each of
these components also formed as aggregates of other economic variables. While the
macroeconomic forecasting literature regularly uses such sub-indices as predictors,
it does so in ways that fail to exploit accounting identities that describe known
deterministic relationships between macroeconomic variables.

In this chapter we take a different approach. Over the past decade there has been
a growing literature on forecasting collections of time series that follow aggregation

G. Athanasopoulos (�) · A. Panagiotelis
Department of Econometrics and Business Statistics, Monash University, Caulfield, VIC,
Australia
e-mail: George.Athanasopoulos@monash.edu; Anastasios.Panagiotelis@monash.edu

P. Gamakumara · R. J. Hyndman
Department of Econometrics and Business Statistics, Monash University, Clayton, VIC, Australia
e-mail: Puwasala.Gamakumara@monash.edu; Rob.Hyndman@monash.edu

M. Affan
Maldives Monetary Authority (MMA), Malé, Republic of Maldives
e-mail: mohamed.affan@mma.gov.mv

© Springer Nature Switzerland AG 2020
P. Fuleky (ed.), Macroeconomic Forecasting in the Era of Big Data,
Advanced Studies in Theoretical and Applied Econometrics 52,
https://doi.org/10.1007/978-3-030-31150-6_21

689

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31150-6_21&domain=pdf
mailto:George.Athanasopoulos@monash.edu
mailto:Anastasios.Panagiotelis@monash.edu
mailto:Puwasala.Gamakumara@monash.edu
mailto:Rob.Hyndman@monash.edu
mailto:mohamed.affan@mma.gov.mv
https://doi.org/10.1007/978-3-030-31150-6_21


690 G. Athanasopoulos et al.

constraints, known as hierarchical time series. Initially the aim of this literature was
to ensure that forecasts adhered to aggregation constraints thus ensuring aligned
decision-making. However, in many empirical settings the forecast reconciliation
methods designed to deal with this problem have also been shown to improve
forecast accuracy. Examples include forecasting accidents and emergency admis-
sions (Athanasopoulos, Hyndman, Kourentzes, & Petropoulos, 2017), mortality
rates (Shang & Hyndman, 2017), prison populations (Athanasopoulos, Steel, &
Weatherburn, 2019), retail sales (Villegas & Pedregal, 2018), solar energy (Yagli,
Yang, & Srinivasan, 2019; Yang, Quan, Disfani, & Liu, 2017), tourism demand
(Athanasopoulos, Ahmed, & Hyndman, 2009; Hyndman, Ahmed, Athanasopoulos,
& Shang, 2011; Wickramasuriya, Athanasopoulos, & Hyndman, 2018), and wind
power generation (Zhang & Dong, 2019). Since both aligned decision-making
and forecast accuracy are key concerns for economic agents and policy makers
we propose the application of state-of-the-art forecast reconciliation methods to
macroeconomic forecasting. To the best of our knowledge the only application of
forecast reconciliation methods to macroeconomics focuses on point forecasting for
inflation (Capistrán, Constandse, & Ramos-Francia, 2010; Weiss, 2018).

The remainder of this chapter is set out as follows: Section 21.2 introduces the
concept of hierarchical time series, i.e., collections of time series with known linear
constraints, with a particular emphasis on macroeconomic examples. Section 21.3
describes state-of-the-art forecast reconciliation techniques for point forecasts,
while Sect. 21.4 describes the more recent extension of these techniques to proba-
bilistic forecasting. Section 21.5 describes the data used in our empirical case study,
namely Australian GDP data, that is represented using two alternative hierarchical
structures. Section 21.6 provides details on the setup of our empirical study
including metrics used for the evaluation of both point and probabilistic forecasts.
Section 21.7 presents results and Sect. 21.8 concludes providing future avenues for
research that are of particular relevance to the empirical macroeconomist.

21.2 Hierarchical Time Series

To simplify the introduction of some notation we use the simple two-level hierarchi-
cal structure shown in Fig. 21.1. Denote as yTot,t the value observed at time t for the
most aggregate (Total) series corresponding to level 0 of the hierarchy. Below level
0, denote as yi,t the value of the series corresponding to node i, observed at time t .
For example, yA,t denotes the t th observation of the series corresponding to node A
at level 1, yAB,t denotes the t th observation of the series corresponding to node AB
at level 2, and so on.

Let yt = (yTot,t , yA,t , yB,t , yAA,t , yAB,t , yBA,t , yBB,t , yBC,t )
′ denote a vector con-

taining observations across all series of the hierarchy at time t . Similarly denote as
bt = (yAA,t , yAB,t , yBA,t , yBB,t , yBC,t )

′ a vector containing observations only for the
bottom-level series. In general, yt ∈ Rn and bt ∈ Rm where n denotes the number
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Fig. 21.1 A simple two-level
hierarchical structure Total

A

AA AB

B

BA BB BC

of total series in the structure,m the number of series at the bottom level, and n > m
always. In the simple example of Fig. 21.1, n = 8 and m = 5.

Aggregation constraints dictate that yTot = yA,t + yB,t = yAA,t + yAB,t + yBA,t +
yBB,t + yBC,t , yA,t = yAA,t + yAB,t and yB = yBA,t + yBB,t + yBC,t . Hence we can
write

yt = Sbt , (21.1)

where

S =

⎛

⎜⎜⎝

1 1 1 1 1
1 1 0 0 0
0 0 1 1 1

I 5

⎞

⎟⎟⎠

is an n×m matrix referred to as the summing matrix and Im is an m-dimensional
identity matrix. S reflects the linear aggregation constraints and in particular how
the bottom-level series aggregate to levels above. Thus, columns of S span the linear
subspace of Rn for which the aggregation constraints hold. We refer to this as the
coherent subspace and denote it by s. Notice that pre-multiplying a vector in Rm by
S will result in an n-dimensional vector that lies in s.

Property 21.1 A hierarchical time series has observations that are coherent, i.e.,
yt ∈ s for all t . We use the term coherent to describe not just yt but any vector in s.

Structures similar to the one shown in Fig. 21.1 can be found in macroeconomics.
For instance, in Sect. 21.5 we consider two alternative hierarchical structures for the
case of GDP and its components. However, while this motivating example involves
aggregation constraints, the mathematical framework we use can be applied for any
general linear constraints, examples of which are ubiquitous in macroeconomics.
For instance, the trade balance is computed as exports minus imports, while the
consumer price index is computed as a weighted average of sub-indices, which are
in turn weighted averages of sub-sub-indices, and so on. These structures can also
be captured by an appropriately designed S matrix.
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Fig. 21.2 A simple two-level
grouped structure AX AY A

BX BY B

X Y Total

An important alternative aggregation structure, also commonly found in macroe-
conomics, is one for which the most aggregate series is disaggregated by attributes
of interest that are crossed, as distinct to nested which is the case for hierarchical
time series. For example, industrial production may be disaggregated along the lines
of geography or sector or both. We refer to this as a grouped structure. Figure 21.2
shows a simple example of such a structure. The Total series disaggregates into yA,t
and yB,t , but also into yX,t and yY,t , at level 1, and then into the bottom-level series,
bt = (yAX, yAY, yBX, yBY)

′. Hence, in contrast to hierarchical structures, grouped
time series do not naturally disaggregate in a unique manner.

An important implementation of aggregation structures are temporal hierarchies
introduced by Athanasopoulos et al. (2017). In this case the aggregation structure
spans the time dimension and dictates how higher frequency data (e.g., monthly) are
aggregated to lower frequencies (e.g., quarterly, annual). There is a vast literature
that studies the effects of temporal aggregation, going back to the seminal work of
Amemiya and Wu (1972), Brewer (1973), Tiao (1972), Zellner and Montmarquette
(1971) and others, including Hotta and Cardoso Neto (1993), Hotta (1993),
Marcellino (1999), Silvestrini, Salto, Moulin, and Veredas (2008). The main aim of
this work is to find the single best level of aggregation for modelling and forecasting
time series. In this literature, the analyses, results (whether theoretical or empirical),
and inferences, are extremely heterogeneous, making it very challenging to reach a
consensus or to draw firm conclusions. For example, Rossana and Seater (1995)
who study the effect of aggregation on several key macroeconomic variables state:

Quarterly data do not seem to suffer badly from temporal aggregation distortion, nor are
they subject to the construction problems affecting monthly data. They therefore may be
the optimal data for econometric analysis.

A similar conclusion is reached by Nijman and Palm (1990). Silvestrini et al.
(2008) consider forecasting French cash state deficit and provide empirical evidence
of forecast accuracy gains from forecasting with the aggregate model rather than
aggregating forecasts from the disaggregate model.

The vast majority of this literature concentrates on a single level of temporal
aggregation (although there are some notable exceptions such as Andrawis, Atiya,
and El-Shishiny (2011), Kourentzes, Petropoulos, and Trapero (2014)). Athana-
sopoulos et al. (2017) show that considering multiple levels of aggregation via
temporal hierarchies and implementing forecast reconciliation approaches rather
than single-level approaches results in substantial gains in forecast accuracy across
all levels of temporal aggregation.
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21.3 Point Forecasting

A requirement when forecasting hierarchical time series is that the forecasts adhere
to the same aggregation constraints as the observed data; i.e., they are coherent.

Definition 21.1 A set of h-step-ahead forecasts ỹT+h|T , stacked in the same order
as yt and generated using information up to and including time T , are said to be
coherent if ỹT+h|T ∈ s.

Hence, coherent forecasts of lower level series aggregate to their corresponding
upper level series and vice versa.

Let us consider the smallest possible hierarchy with two bottom-level series,
depicted in Fig. 21.3, where yTot = yA + yB. While base forecasts could lie
anywhere in R3, the realisations and coherent forecasts lie in a two dimensional
subspace s ⊂ R3.
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Fig. 21.3 Representation of a coherent subspace in a three dimensional hierarchy where yTot =
yA + yB. The coherent subspace is depicted as a grey two dimensional plane labelled s. Note that
the columns of s1 = (1, 1, 0)′ and s2 = (1, 0, 1)′ form a basis for s. The red points lying on s can
be either realisations or coherent forecasts
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21.3.1 Single-Level Approaches

A common theme across all traditional approaches for forecasting hierarchical time
series is that a single level of aggregation is first selected and forecasts for that
level are generated. These are then linearly combined to generate a set of coherent
forecasts for the rest of the structure.

Bottom-Up

In the bottom-up approach, forecasts for the most disaggregate level are first
generated. These are then aggregated to obtain forecasts for all other series
of the hierarchy (Dunn, Williams, & Dechaine, 1976). In general, this con-
sists of first generating b̂T+h|T ∈ Rm, a set of h-step-ahead forecasts for the
bottom-level series. For the simple hierarchical structure of Fig. 21.1, b̂T+h|T =
(ŷAA,T+h|T , ŷAB,T+h|T , ŷBA,T+h|T , ŷBB,T+h|T , ŷBC,T+h|T ), where ŷi,T+h|T is the h-
step-ahead forecast of the series corresponding to node i. A set of coherent forecasts
for the whole hierarchy is then given by

ỹBU
T+h|T = Sb̂T+h|T .

Generating bottom-up forecasts has the advantage of no information being lost due
to aggregation. However, bottom-level data can potentially be highly volatile or very
noisy and therefore challenging to forecast.

Top-Down

In contrast, top-down approaches involve first generating forecasts for the most
aggregate level and then disaggregating these down the hierarchy. In general,
coherent forecasts generated from top-down approaches are given by

ỹTD
T+h|T = SpŷTot,T+h|T ,

where p = (p1, . . . ,pm)′ is an m-dimensional vector consisting of a set of
proportions which disaggregate the top-level forecast ŷTot,T+h|T to forecasts for the

bottom-level series; hence pŷTot,T+h|T = b̂T+h|T . These are then aggregated by the
summing matrix S.

Traditionally, proportions have been calculated based on the observed historical
data. Gross and Sohl (1990) present and evaluate twenty-one alternative approaches.
The most convenient attribute of these approaches is their simplicity. Generating
a set of coherent forecasts involves only modelling and generating forecasts for
the most aggregate top-level series. In general, such top-down approaches seem to
produce quite reliable forecasts for the aggregate levels and they are useful with
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low count data. However, a significant disadvantage is the loss of information due
to aggregation. A limitation of such top-down approaches is that characteristics
of lower level series cannot be captured. To overcome this, Athanasopoulos et al.
(2009) introduced a new top-down approach which disaggregates the top-level based
on proportions of forecasts rather than the historical data and showed that this
method outperforms the conventional top-down approaches. However, a limitation
of all top-down approaches is that they introduce bias to the forecasts even when the
top-level forecast itself is unbiased. We discuss this in detail in Sect. 21.3.2.

Middle-Out

A compromise between bottom-up and top-down approaches is the middle-out
approach. It entails first forecasting the series of a selected middle level. For
series above the middle level, coherent forecasts are generated using the bottom-
up approach by aggregating the middle-level forecasts. For series below the middle
level, coherent forecasts are generated using a top-down approach by disaggregating
the middle-level forecasts. Similarly to the top-down approach it is useful for when
bottom-level data is low count. Since the middle-out approach involves generating
top-down forecasts, it also introduces bias to the forecasts.

21.3.2 Point Forecast Reconciliation

All approaches discussed so far are limited to only using information from a single
level of aggregation. Furthermore, these ignore any correlations across levels of a
hierarchy. An alternative framework that overcomes these limitations is one that
involves forecast reconciliation. In a first step. forecasts for all the series across all
levels of the hierarchy are computed, ignoring any aggregation constraints. We refer
to these as base forecasts and denote them by ŷT+h|T . In general, base forecasts
will not be coherent, unless a very simple method has been used to compute them
such as for naïve forecasts. In this case, forecasts are simply equal to a previous
realisation of the data and they inherit the property of coherence.

The second step is an adjustment that reconciles base forecasts so that they
become coherent. In general, this is achieved by mapping the base forecasts ŷT+h|T
onto the coherent subspace s via a matrix SG, resulting in a set of coherent forecasts
ỹT+h|T . Specifically,

ỹT+h|T = SGŷT+h|T , (21.2)

where G is an m× n matrix that maps ŷT+h|T to Rm, producing new forecasts for
the bottom level, which are in turn mapped to the coherent subspace by the summing
matrix S. We restrict our attention to projections on s in which case SGS = S.
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This ensures that unbiasedness is preserved, i.e., for a set of unbiased base forecasts
reconciled forecasts will also be unbiased.

Note that all single-level approaches discussed so far can also be represented
by (21.2) using appropriately designed G matrices, however, not all of these will
be projections. For example, for the bottom-up approach, G = (0(m×n−m) Im

)
in

which case SGS = S. For any top-down approach G = (p 0(m×n−1)
)
, for which

SGS �= S.

Optimal MinT Reconciliation

Wickramasuriya et al. (2018) build a unifying framework for much of the previous
literature on forecast reconciliation. We present here a detailed outline of this
approach and in turn relate it to previous significant contributions in forecast
reconciliation.

Assume that ŷT+h|T is a set of unbiased base forecasts, i.e., E1:T (ŷT+h|T ) =
E1:T [yT+h | y1, . . . , yT ], the true mean with the expectation taken over the
observed sample up to time T . Let

êT+h|T = yT+h|T − ŷT+h|T (21.3)

denote a set of base forecast errors with Var(êT+h|T ) = Wh, and

ẽT+h|T = yT+h|T − ỹT+h|T

denote a set of coherent forecast errors. Lemma 1 in Wickramasuriya et al. (2018)
shows that for any matrix G such that SGS = S, Var(ẽT+h|T ) = SGWhS

′G′.
Furthermore Theorem 1 shows that

G = (S′W−1
h S)−1S′W−1

h (21.4)

is the unique solution that minimises the trace of SGWhS
′G′ subject to SGS = S.

MinT is optimal in the sense that given a set of unbiased base forecasts, it returns
a set of best linear unbiased reconciled forecasts, using as G the unique solution
that minimises the trace (hence MinT) of the variance of the forecast error of the
reconciled forecasts.

A significant advantage of the MinT reconciliation solution is that it is the first
to incorporate the full correlation structure of the hierarchy via Wh. However,
estimating Wh is challenging, especially for h > 1. Wickramasuriya et al. (2018)
present possible alternative estimators for Wh and show that these lead to different
G matrices. We summarise these below.

• Set Wh = khIn for all h, where kh > 0 is a proportionality constant. This
simple assumption returns G = (S′S)−1S′ so that the base forecasts are
orthogonally projected onto the coherent subspace s minimising the Euclidean
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distance between ŷT+h|T and ỹT+h|T . Hyndman et al. (2011) come to the same
solution, however, from the perspective of the following regression model

ŷT+h|T = SβT+h|T + εT+h|T ,

where βT+h|T = E[bT+h | b1, . . . , bT ] is the unknown conditional mean of
the bottom-level series and εT+h|T is the coherence or reconciliation error with
mean zero and variance V . The OLS solution leads to the same projection
matrix S(S′S)−1S′, and due to this interpretation we continue to refer to this
reconciliation method as OLS. A disadvantage of the OLS solution is that the
homoscedastic diagonal entries do not account for the scale differences between
the levels of the hierarchy due to aggregation. Furthermore, OLS does not
account for the correlations across series.

• Set Wh = khdiag(Ŵ 1) for all h (kh > 0), where

Ŵ 1 = 1

T

T∑

T=1

êt ê
′
t

is the unbiased sample estimator of the in-sample one-step-ahead base forecast
errors as defined in (21.3). Hence this estimator scales the base forecasts using
the variance of the in-sample residuals and is therefore described and referred to
as a weighted least squares (WLS) estimator applying variance scaling. A similar
estimator was proposed by Hyndman et al. (2019).

An alternative WLS estimator is proposed by Athanasopoulos et al. (2017) in
the context of temporal hierarchies. Here Wh is proportional to diag(S1)where 1
is a unit column vector of dimension n. Hence the weights are proportional to the
number of bottom-level variables required to form an aggregate. For example,
in the hierarchy of Fig. 21.1, the weights corresponding to the Total, series A
and series B are proportional to 5, 2 and 3 respectively. This weighting scheme
depends only on the aggregation structure and is referred to as structural scaling.
Its advantage over OLS is that it assumes equivariant forecast errors only at the
bottom level of the structure and not across all levels. It is particularly useful
in cases where forecast errors are not available; for example, in cases where the
base forecasts are generated by judgemental forecasting.

• Set Wh = khŴ 1 for all h (kh > 0) to be proportional to the unrestricted sample
covariance estimator for h = 1. Although this is relatively simple to obtain
and provides a good solution for small hierarchies, it does not provide reliable
results as m grows compared to T . This is referred to this as the MinT(Sample)
estimator.
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• Set Wh = khŴD

1 for all h (kh > 0), where Ŵ
D

1 = λDdiag(Ŵ 1)+ (1− λD)Ŵ 1
is a shrinkage estimator with diagonal target and shrinkage intensity parameter

λ̂D =
∑
i �=j V̂ar(r̂ij )
∑
i �=j r̂2

ij

,

where r̂ij is the (i, j)th element of R̂1, the one-step-ahead sample correlation
matrix as proposed by Schäfer and Strimmer (2005). Hence, off-diagonal
elements of Ŵ 1 are shrunk towards zero while diagonal elements (variances)
remain unchanged. This is referred to as the MinT(Shrink) estimator.

21.4 Hierarchical Probabilistic Forecasting

A limitation of point forecasts is that they provide no indication of uncertainty
around the forecast. A richer description of forecast uncertainty can be obtained
by providing a probabilistic forecast, also commonly referred to as a density
forecast. For a review of probabilistic forecasts, and scoring rules for evaluating
such forecasts, see Gneiting and Katzfuss (2014). This chapter and Chapter 16
respectively provide comprehensive summaries of methods for constructing density
forecasts and predictive accuracy tests for both point and density forecasts. In recent
years, the use of probabilistic forecasts and their evaluation via scoring rules has
become pervasive in macroeconomic forecasting, some notable (but non-exhaustive)
examples are Geweke and Amisano (2010), Billio, Casarin, Ravazzolo, and Van
Dijk (2013), Carriero, Clark, and Marcellino (2015) and Clark and Ravazzolo
(2015).

The literature on hierarchical probabilistic forecasting is still an emerging area of
interest. To the best of our knowledge the first attempt to even define coherence in
the setting of probabilistic forecasting is provided by Taieb, Taylor, and Hyndman
(2017) who define a coherent forecast in terms of a convolution. An equivalent
definition due to Gamakumara, Panagiotelis, Athanasopoulos, and Hyndman (2018)
defines a coherent probabilistic forecast as a probability measure on the coherent
subspace s. Gamakumara et al. (2018) also generalise the concept of forecast
reconciliation to the probabilistic setting.

Definition 21.2 Let A be a subset1 of s and let B be all points in Rn that are
mapped onto A after premultiplication by SG. Letting ν̂ be a base probabilistic
forecast for the full hierarchy, the coherent measure ν̃ reconciles ν̂ if ν̃(A) = ν̂(B)
for allA.

1Strictly speakingA is a Borel set.
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In practice this definition leads to two approaches. For some parametric dis-
tributions, for instance the multivariate normal, a reconciled probabilistic forecast
can be derived analytically. However, in macroeconomic forecasting, non-standard
distributions such as bimodal distributions are often required to take different
policy regimes into account. In such cases a non-parametric approach based on
bootstrapping in-sample errors proposed Gamakumara et al. (2018) can be used.
These scenarios are now covered in detail.

21.4.1 Probabilistic Forecast Reconciliation in the Gaussian
Framework

In the case where the base forecasts are probabilistic forecasts characterised by
elliptical distributions, Gamakumara et al. (2018) show that reconciled probabilistic
forecasts will also be elliptical. This is particularly straightforward for the Gaussian
distribution which is completely characterised by two moments. Letting the base
probabilistic forecasts be N(ŷT+h|T , �̂T+h|T ), then the reconciled probabilistic

forecasts will be N(ỹT+h|T , �̃T+h|T ), where

ỹT+h|T = SGŷT+h|T (21.5)

and �̃T+h|T = SG�̂T+h|TG′S′. (21.6)

There are several options for obtaining the base probabilistic forecasts and in
particular the variance covariance matrix �̂. One option is to fit multivariate models
either level by level or for the hierarchy as a whole leading respectively to a �̂

that is block diagonal or dense. Another option is to fit univariate models for each
individual series in which case �̂ is a diagonal matrix. A third option that we employ
here is to obtain �̂ using in-sample forecast errors, in a similar vein to how Ŵ 1
is estimated in the MinT method. Here the same shrinkage estimator described in
Sect. 21.3.2 is used. The reconciled probabilistic forecast will ultimately depend on
the choice of G; the same choices of G matrices used in Sect. 21.3 can be used.

21.4.2 Probabilistic Forecast Reconciliation in the
Non-parametric Framework

In many applications, including macroeconomic forecasting, it may not be rea-
sonable to assume Gaussian predictive distributions. Therefore, non-parametric
approaches have been widely used for probabilistic forecasts in different disci-
plines. For example, ensemble forecasting in weather applications (Gneiting, 2005;
Gneiting & Katzfuss, 2014; Gneiting, Stanberry, Grimit, Held, & Johnson, 2008),
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and bootstrap-based approaches (Manzan & Zerom, 2008; Vilar & Vilar, 2013).
In macroeconomics, Cogley, Morozov, and Sargent (2005) discuss the importance
of allowing for skewness in density forecasts and more recently Smith and Vahey
(2016) discuss this issue in detail.

Due to these concerns, we employ the bootstrap method proposed by Gamaku-
mara et al. (2018) that does not make parametric assumptions about the predictive
distribution. An important result exploited by this method is that applying point
forecast reconciliation to the draws from an incoherent base predictive distribution,
results in a sample from the reconciled predictive distribution. We summarise this
process below:

1. Fit univariate models to each series in the hierarchy over a training set from
t = 1, . . . , T . Let these models denoteM1, . . . ,Mn.

2. Compute one-step-ahead in-sample forecast errors. Collect these into an n× T
matrix Ê = (ê1, ê2, . . . , êT ), where the n-vector êt = yt − ŷt |t−1. Here, ŷt |t−1
is a vector of forecasts made for time t using information up to and including
time t − 1. These are called in-sample forecasts since while they depend only on
past values, information from the entire training sample is used to estimate the
parameters for the models on which the forecasts are based.

3. Block bootstrap from Ê; that is, choose H consecutive columns of Ê at random,
repeating this process B times. Denote the n×H matrix obtained at iteration b

as Ê
b

for b = 1, . . . ,B.

4. For all b, compute ϒ̂
b = {γ̂ b1, . . . , γ̂ bn}′ ∈ Rn×H : γ̂ bi,h = f (Mi , êbi,h) where,

f (.) is a function of fitted univariate model in step 1 and associated error. That
is, γ̂i,h is a sample path simulated from fitted model Mi for ith series and error
approximated by the corresponding block bootstrapped sample error êbi,h which

is the (i,h)th element of Ê
b
. Each row of ϒ̂

b
is a sample path of h forecasts

for a single series. Each column of ϒ̂
b

is a realisation from the joint predictive
distribution at a particular horizon.

5. For each b = 1, . . . ,B, select the hth column of ϒ̂
b

and stack these to form an
n×B matrix ϒ̂T+h|T .

6. For a given G matrix and for each h = 1, . . . ,H , compute ϒ̃T+h|T =
SGϒ̂T+h|T . Each column of ϒ̃T+h|T is a realisation from the joint h-step-ahead
reconciled predictive distribution.

21.5 Australian GDP

In our empirical application we consider Gross Domestic Product (GDP) of
Australia with quarterly data spanning the period 1984:Q4–2018:Q3. The Australian
Bureau of Statistics (ABS) measures GDP using three main approaches namely
Production, Income, and Expenditure. The final GDP figure is obtained as an
average of these three figures. Each of these measures is aggregates of economic
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variables which are also targets of interests for the macroeconomic forecaster. This
suggests a hierarchical approach to forecasting could be used to improve forecasts
of all series in the hierarchy including the headline GDP.

We concentrate on the Income and Expenditure approaches as nominal data are
available only for these two. We restrict our attention to nominal data due to the
fact that real data are constructed via a chain price index approach with different
price deflators used for each series. As a result, real GDP data are not coherent—the
aggregate series is not a linear combination of the disaggregate series. For similar
reasons we do not use seasonally adjusted data; the process of seasonal adjustment
results in data that are not coherent. Finally, although there is a small statistical
discrepancy between each series and the headline GDP figure, we simply treat this
statistical discrepancy, which is also published by the ABS, as a time series in its
own right. For further of the details on the data please refer to Australian Bureau of
Statistics (2018).

21.5.1 Income Approach

Using the income approach, GDP is calculated by aggregating all income flows.
In particular, GDP at purchaser’s price is the sum of all factor incomes and taxes,
minus subsidies on production and imports (Australian Bureau of Statistics, 2015):

GDP = Gross operating surplus+Gross mixed income

+Compensation of employees

+ Taxes less subsidies on production and imports

+ Statistical discrepancy (I).

Figure 21.4 shows the full hierarchical structure capturing all components aggre-
gated to form GDP using the income approach. The hierarchy has two levels of
aggregation below the top-level, with a total of n = 16 series across the whole
structure and m = 10 series at the bottom level.

21.5.2 Expenditure Approach

In the expenditure approach, GDP is calculated as the aggregation of final con-
sumption expenditure, gross fixed capital formation (GFCF), changes in inventories
of finished goods, work-in-progress, and raw materials and the value of exports
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Fig. 21.4 Hierarchical structure of the income approach for GDP. The pink cell contains GDP
the most aggregate series. The blue cells contain intermediate-level series and the yellow cells
correspond to the most disaggregate bottom-level series

less imports of the goods and services (Australian Bureau of Statistics, 2015). The
underlying equation is:

GDP = Final consumption expenditure+Gross fixed capital formation

+Changes in inventories+ Trade balance+ Statistical discrepancy (E).

Figures 21.5, 21.6, and 21.7 show the full hierarchical structure capturing all
components aggregated to form GDP using the expenditure approach. The hierarchy
has three levels of aggregation below the top-level, with a total of n = 80 series
across the whole structure and m = 53 series at the bottom level. Descriptions of
each series in these hierarchies along with the series ID assigned by the ABS are
given in the Tables 21.1, 21.2, 21.3, and 21.4 in the Appendix.

Figure 21.8 displays time series from the income and expenditure approaches.
The top panel shows the most aggregate GDP series. The panels below show series
from lower levels for the income hierarchy (left panel) and the expenditure hierarchy
(right panel). The plots show the diverse features of the time series with some
displaying positive and others negative trending behaviour, some showing no trends
but possibly a cycle, and some having a strong seasonal component. These highlight
the need to account for and model all information and diverse signals from each
series in the hierarchy, which can only be achieved through a forecast reconciliation
approach.
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Fig. 21.5 Hierarchical structure of the expenditure approach for GDP. The pink cell contains GDP,
the most aggregate series. The blue and purple cells contain intermediate-level series with the series
in the purple cells further disaggregated in Figs. 21.6 and 21.7. The yellow cells contain the most
disaggregate bottom-level series

21.6 Empirical Application Methodology

We now demonstrate the potential for reconciliation methods to improve forecast
accuracy for Australian GDP. We consider forecasts from h = 1 quarter ahead up
to h = 4 quarters ahead using an expanding window. First, the training sample is
set from 1984:Q4 to 1994:Q3 and forecasts are produced for 1994:Q4 to 1995:Q3.
Then the training window is expanded by one quarter at a time, i.e., from 1984:Q4
to 2017:Q4 with the final forecasts produced for the last available observation in
2018:Q1. This leads to 94 1-step-ahead, 93 2-steps-ahead, 92 3-steps-ahead, and 91
4-steps-ahead forecasts available for evaluation.

21.6.1 Models

The first task in forecast reconciliation is to obtain base forecasts for all series
in the hierarchy. In the case of the income approach, this necessitates forecasting
n = 16 separate time series while in the case of the expenditure approach, forecasts
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Fig. 21.6 Hierarchical structure for Gross Fixed Capital Formations under the expenditure
approach for GDP, continued from Fig. 21.5. Blue cells contain intermediate-level series and the
yellow cells correspond to the most disaggregate bottom-level series

for n = 80 separate time series must be obtained. Given the diversity in these
time series discussed in Sect. 21.5, we focus on an approach that is fast but also
flexible. We consider simple univariate ARIMA models, where model order is
selected via a combination of unit root testing and the AIC using an algorithm
developed by Hyndman, Koehler, Ord, and Snyder (2008) and implemented in
the auto.arima() function in Hyndman, Lee, and Wang (2019). A similar
approach was also undertaken using the ETS framework to produce base forecasts
(Hyndman & Khandakar, 2008). Using ETS models to generate base forecasts had
minimal impact on our conclusions with respect to forecast reconciliation methods
and in most cases ARIMA forecasts were found to be more accurate than ETS
forecasts. Consequently for brevity, we have excluded presenting the results for
ETS models. However, these are available from github2 and are discussed in detail
in Gamakumara (2019). We note that a number of more complicated approaches
could have been used to obtain base forecasts including multivariate models such

2The relevant github repository is https://github.com/PuwasalaG/Hierarchical-Book-Chapter.

https://github.com/PuwasalaG/Hierarchical-Book-Chapter
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Fig. 21.7 Hierarchical structure for Household Final Consumption Expenditure under the expen-
diture approach for GDP, continued from Fig. 21.5. Blue cells contain intermediate-level series and
the yellow cells correspond to the most disaggregate bottom-level series

as vector autoregressions, and models and methods that handle a large number of
predictors such as factor models or least angle regression. However, Panagiotelis,
Athanasopoulos, Hyndman, Jiang, and Vahid (2019) show that univariate ARIMA
models are highly competitive for forecasting Australian GDP even compared
to these methods, and in any case our primary motivation is to demonstrate the
potential of forecast reconciliation.

The hierarchical forecasting approaches we consider are bottom-up, OLS, WLS
with variance scaling and the MinT(Shrink) approach. The MinT(Sample) approach
was also used but due to the size of the hierarchy, forecasts reconciled via this
approach were less stable. Finally, all forecasts (both base and coherent) are
compared to a seasonal naïve benchmark (Hyndman & Athanasopoulos, 2018); i.e.,
the forecast for GDP (or one of its components) is the realised GDP in the same
quarter of the previous year. The naïve forecasts are by construction coherent and
therefore do not need to be reconciled.
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Fig. 21.8 Time plots for series from different levels of income and expenditure hierarchies

21.6.2 Evaluation

For evaluating point forecasts we consider two metrics, the Mean Squared Error
(MSE) and the Mean Absolute Scaled Error (MASE) calculated over the expanding
window. The absolute scaled error is defined as

qT+h = |ĕT+h|T |
(T − 4)−1

∑T
t=5 |yt − yt−4|

,
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where ĕt+h is the difference between any forecast and the realisation,3 and 4 is used
due to the quarterly nature of the data. An advantage of using MASE is that it is a
scale independent measure. This is particularly relevant for hierarchical time series,
since aggregate series by their very nature are on a larger scale than disaggregate
series. Consequently, scale dependent metrics may unfairly favour methods that
perform well for the aggregate series but poorly for disaggregate series. For more
details on different point forecast accuracy measures, refer to Chapter 3 of Hyndman
and Athanasopoulos (2018).

Forecast accuracy of probabilistic forecasts can be evaluated using scoring rules
(Gneiting & Katzfuss, 2014). Let F̆ be a probabilistic forecast and let y̆ ∼ F̆ where
a breve is again used to denote that either base forecasts or coherent forecasts can
be evaluated. The accuracy of multivariate probabilistic forecasts will be measured
by the energy score given by

eS(F̆T+h|T , yT+h) = E
F̆
‖y̆T+h − yT+h‖α −

1

2
E
F̆
‖y̆T+h − y̆∗T+h‖α ,

where yT+h is the realisation at time T +h, and α ∈ (0, 2]. We set α = 1, noting that
other values of α give similar results. The expectations can be evaluated numerically
as long as a sample from F̆ is available, which is the case for all methods we employ.
An advantage of using energy scores is that in the univariate case it simplifies to the
commonly used cumulative rank probability score (CRPS) given by

CRPS(F̆i , yi,T+h) = E
F̆i
|y̆i,T+h − yi,T+h| − 1

2
E
F̆i
|y̆i,T+h − y̆∗i,T+h|,

where the subscript i is used to denote that CRPS measures forecast accuracy for a
single variable in the hierarchy.

Alternatives to the energy score were also considered, namely log scores and
variogram scores. The log score was disregarded since Gamakumara et al. (2018)
prove that the log score is improper with respect to the class of incoherent
probabilistic forecasts when the true DGP is coherent. The variogram score gave
similar results to the energy score; these results are omitted for brevity but are
available from github and are discussed in detail in Gamakumara (2019).

21.7 Results

21.7.1 Base Forecasts

Due to the different features in each time series, a variety of ARIMA and seasonal
ARIMA models were selected for generating base forecasts. For example, in the

3Breve is used instead of a hat or tilde to denote that this can be the error for either a base or
reconciled forecast.
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Fig. 21.9 Mean squared errors for naïve and ARIMA base forecasts. Top panels refer to results
summarised over all series while bottom panels refer to results for the top-level GDP series. Left
panels refer to the income hierarchy and right panels to the expenditure hierarchy

income hierarchy, some series require seasonal differencing while other did not.
Furthermore the AR orders vary from 0 to 3, the MA orders from 0 to 2, and
their seasonal counterparts SAR from 0 to 2 and SMA from 0 to 1. Figure 21.9
compares the accuracy of the ARIMA base forecasts to the seasonal naïve forecasts
over different forecast horizons. The panels on the left show results for the Income
hierarchy while the panels on the right show the results for the Expenditure
hierarchy. The top panels summarise results over all series in the hierarchy, i.e.,
we calculate the MSE for each series and then average over all series. The bottom
panels show the results for the aggregate level GDP.

The clear result is that base forecasts are more accurate than the naïve forecasts,
however, as the forecasting horizon increases, the differences become smaller. This
is to be expected since the naïve model here is a seasonal random walk, and for
horizons h < 4, forecasts from an ARIMA model are based on more recent
information. Similar results are obtained when MASE is used as the metric for
evaluating forecast accuracy.
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One disadvantage of the base forecasts relative to the naïve forecasts is that
base forecasts are not coherent. As such we now turn our attention to investigating
whether reconciliation approaches can lead to further improvements in forecast
accuracy relative to the base forecasts.

21.7.2 Point Forecast Reconciliation

We now turn our attention to evaluating the accuracy of point forecasts obtained
using the different reconciliation approaches as well as the single-level bottom-
up approach. All results in subsequent figures are presented as the percentage
changes in a forecasting metric relative to base forecasts, a measure known in the
forecasting literature as skill scores. Skill scores are computed such that positive
values represent an improvement in forecasting accuracy over the base forecasts
while negative values represent a deterioration.

Figures 21.10 and 21.11 show skill scores using MSE and MASE respectively.
The top row of each figure shows skill scores based on averages over all series. We
conclude that reconciliation methods generally improve forecast accuracy relative to
base forecasts regardless of the hierarchy used, the forecasting horizon, the forecast
error measure or the reconciliation method employed. We do, however, note that
while all reconciliation methods improve forecast performance, MinT(Shrink) is
the best forecasting method in most cases.

To further investigate the results we break down the skill scores by different
levels of each hierarchy. The second row of Figs. 21.10 and 21.11 shows the skill
scores for a single series, namely GDP which represents the top-level of both
hierarchies. The third row shows results for all series excluding those of the bottom
level, while the final row shows results for the bottom-level series only. Here,
we see two general features. The first is that OLS reconciliation performs poorly
on the bottom-level series, and the second is that bottom-up performs relatively
poorly on aggregate series. The two features are particularly exacerbated for the
larger expenditure hierarchy. These results are consistent with other findings in
the forecast reconciliation literature (see for instance Athanasopoulos et al., 2017;
Wickramasuriya et al., 2018).

21.7.3 Probabilistic Forecast Reconciliation

We now turn our attention towards results for probabilistic forecasts. Figure 21.12
shows results for the energy score which as a multivariate score summarises
forecast accuracy over the entire hierarchy. Once again all results are presented
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Fig. 21.10 Skill scores for point forecasts from alternative methods (with reference to base
forecasts) using MSE. The left panels refer to the income hierarchy while the right panels refer
to the expenditure hierarchy. The first row refers to results summarised over all series, the second
row to top-level GDP series, the third row to aggregate levels, and the last row to the bottom level
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Fig. 21.11 Skill scores for point forecasts from different reconciliation methods (with reference
to base forecasts) using MASE. The left two panels refer to the income hierarchy and the right
two panels to the expenditure hierarchy. The first row refers to results summarised over all series,
the second row to top-level GDP series, the third row to aggregate levels, and the last row to the
bottom level
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Fig. 21.12 Skill scores for multivariate probabilistic forecasts from different reconciliation meth-
ods (with reference to base forecasts) using energy scores. The top panels refer to the results for the
Gaussian approach and the bottom panels to the non-parametric bootstrap approach. Left panels
refer to the income hierarchy and right panels to the expenditure hierarchy

as skill scores relative to base forecasts. The top panels refer to results assuming
Gaussian probabilistic forecasts as described in Sect. 21.4.1 while the bottom panels
refer to the non-parametric bootstrap method described in Sect. 21.4.2. The left
panels correspond to the income hierarchy while the right panels correspond to
the expenditure hierarchy. For the income hierarchy, all methods improve upon
base forecasts at all horizons. In nearly all cases the best performing reconciliation
method is MinT(Shrink), a notable result since the optimal properties for MinT have
thus far only been established theoretically in the point forecasting case. For the
larger expenditure hierarchy results are a little more mixed. While bottom-up tends
to perform poorly, all reconciliation methods improve upon base forecasts (with the
single exception of MinT(Shrink) in the Gaussian framework four quarters ahead).
Interestingly, OLS performs best under the assumption of Gaussianity—this may
indicate that OLS is a more robust method under model misspecification but further
investigation is required.

Finally, Fig. 21.13 displays the skill scores based on the cumulative ranked
probability score for a single series, namely top-level GDP. The cause of the poor
performance of bottom-up reconciliation as a failure to accurately forecast aggregate
series is apparent here.
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Fig. 21.13 Skill scores for probabilistic forecasts of top-level GDP from different reconciliation
methods (with reference to base forecasts) using CRPS. Top panels refer to the results for Gaussian
approach and bottom panels refer to the non-parametric bootstrap approach. The left panel refers
to the income hierarchy and the right panel to the expenditure hierarchy

21.8 Conclusions

In the macroeconomic setting, we have demonstrated the potential for forecast
reconciliation methods to not only provide coherent forecasts, but to also improve
overall forecast accuracy. This result holds for both point forecasts and probabilistic
forecasts, for the two different hierarchies we consider and over different forecasting
horizons. Even where the objective is to only forecast a single series, for instance
top-level GDP, the application of forecast reconciliation methods improves forecast
accuracy.

By comparing results from different forecast reconciliation techniques we draw a
number of conclusions. Despite its simplicity, the single-level bottom-up approach
can perform poorly at more aggregated levels of the hierarchy. Meanwhile, when
forecast accuracy at the bottom level is evaluated, OLS tends to break down in some
instances. Overall, the WLS and MinT(Shrink) methods (and particularly the latter)
tend to yield the highest improvements in forecast accuracy. Similar results can be
found in both simulations and the empirical studies of Athanasopoulos et al. (2017)
and Wickramasuriya et al. (2018).

There are a number of open avenues for research in the literature on forecast
reconciliation, some of which are particularly relevant to macroeconomic appli-
cations. First there is scope to consider more complex aggregation structures, for
instance in addition to the hierarchies we have already considered, data on GDP and
GDP components disaggregated along geographical lines are also available. This
leads to a grouped aggregation structure. Also, given the substantial literature on the



714 G. Athanasopoulos et al.

optimal frequency at which to analyse macroeconomic data, a study on forecasting
GDP or other variables as a temporal hierarchy may be of interest. In this chapter
we have only shown that reconciliation methods can be used to improve forecast
accuracy when univariate ARIMA models are used to produce base forecasts. It will
be interesting to evaluate whether such results hold when a multivariate approach,
e.g., a Bayesian VAR or dynamic factor model, is used to generate base forecasts,
or whether the gains from forecast reconciliation would be more modest. Finally,
a current limitation of the forecast reconciliation literature is that it only applies
to collections of time series that adhere to linear constraints. In macroeconomics
there are many examples of data that adhere to non-linear constraints, for instance
real GDP is a complicated but deterministic function of GDP components and price
deflators. The extension of forecast reconciliation methods to non-linear constraints
potentially holds great promise for continued improvement in macroeconomic
forecasting.

Appendix

See Tables 21.1, 21.2, 21.3, 21.4.

Table 21.1 Variables, series IDs and their descriptions for the income approach

Variable Series ID Description

Gdpi A2302467A GDP(I)

Sdi A2302413V Statistical discrepancy (I)

Tsi A2302412T Taxes less subsidies (I)

TfiCoeWns A2302399K Compensation of employees; Wages and salaries

TfiCoeEsc A2302400J Compensation of employees; Employers’ social contributions

TfiCoe A2302401K Compensation of employees

TfiGosCopNfnPvt A2323369L Private non-financial corporations; Gross operating surplus

TfiGosCopNfnPub A2302403R Public non-financial corporations; Gross operating surplus

TfiGosCopNfn A2302404T Non-financial corporations; Gross operating surplus

TfiGosCopFin A2302405V Financial corporations; Gross operating surplus

TfiGosCop A2302406W Total corporations; Gross operating surplus

TfiGosGvt A2298711F General government; Gross operating surplus

TfiGosDwl A2302408A Dwellings owned by persons; Gross operating surplus

TfiGos A2302409C All sectors; Gross operating surplus

TfiGmi A2302410L Gross mixed income

Tfi A2302411R Total factor income
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Table 21.2 Variables, series IDs and their descriptions for expenditure approach

Variable Series ID Description

Gdpe A2302467A GDP(E)

Sde A2302566J Statistical discrepancy(E)

Exp A2302564C Exports of goods and services

Imp A2302565F Imports of goods and services

Gne A2302563A Gross national exp.

GneDfdFceGvtNatDef A2302523J Gen. gov.—National; Final consumption
exp.—Defence

GneDfdFceGvtNatNdf A2302524K Gen. gov.—National; Final consumption
exp.—Non-defence

GneDfdFceGvtNat A2302525L Gen. gov.—National; Final consumption exp.

GneDfdFceGvtSnl A2302526R Gen. gov.—State and local; Final consumption
exp,

GneDfdFceGvt A2302527T Gen. gov.; Final consumption exp.

GneDfdFce A2302529W All sectors; Final consumption exp.

GneDfdGfcPvtTdwNnu A2302543T Pvt.; Gross fixed capital formation (GFCF)

GneDfdGfcPvtTdwAna A2302544V Pvt.; GFCF—Dwellings—Alterations and
additions

GneDfdGfcPvtTdw A2302545W Pvt.; GFCF—Dwellings—Total

GneDfdGfcPvtOtc A2302546X Pvt.; GFCF—Ownership transfer costs

GneDfdGfcPvtPbiNdcNbd A2302533L Pvt. GFCF—Non-dwelling construction—New
building

GneDfdGfcPvtPbiNdcNec A2302534R Pvt.; GFCF—Non-dwelling construction—

New engineering construction

GneDfdGfcPvtPbiNdcSha A2302535T Pvt.; GFCF—Non-dwelling construction—

Net purchase of second hand assets

GneDfdGfcPvtPbiNdc A2302536V Pvt.; GFCF—Non-dwelling construction—Total

GneDfdGfcPvtPbiNdmNew A2302530F Pvt.; GFCF—Machinery and equipment—New

GneDfdGfcPvtPbiNdmSha A2302531J Pvt.; GFCF—Machinery and equipment—

Net purchase of second hand assets

GneDfdGfcPvtPbiNdm A2302532K Pvt.; GFCF—Machinery and equipment—Total

GneDfdGfcPvtPbiCbr A2716219R Pvt.; GFCF—Cultivated biological resources

GneDfdGfcPvtPbiIprRnd A2716221A Pvt.; GFCF—Intellectual property products—

Research and development

GneDfdGfcPvtPbiIprMnp A2302539A Pvt.; GFCF—Intellectual property products—

Mineral and petroleum exploration

GneDfdGfcPvtPbiIprCom A2302538X Pvt.; GFCF—Intellectual property
products—Computer software

GneDfdGfcPvtPbiIprArt A2302540K Pvt.; GFCF—Intellectual property
products—Artistic originals

GneDfdGfcPvtPbiIpr A2716220X Pvt.; GFCF—Intellectual property products Total

GneDfdGfcPvtPbi A2302542R Pvt.; GFCF—Total private business investment

GneDfdGfcPvt A2302547A Pvt.; GFCF

GneDfdGfcPubPcpCmw A2302548C Plc. corporations—Commonwealth; GFCF

(continued)
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Table 21.2 (continued)

Variable Series ID Description

GneDfdGfcPubPcpSnl A2302549F Plc. corporations—State and local; GFCF

GneDfdGfcPubPcp A2302550R Plc. corporations; GFCF Total

GneDfdGfcPubGvtNatDef A2302551T Gen. gov.—National; GFCF—Defence

GneDfdGfcPubGvtNatNdf A2302552V Gen. gov.—National; GFCF—Non-defence

GneDfdGfcPubGvtNat A2302553W Gen. gov.—National; GFCF Total

GneDfdGfcPubGvtSnl A2302554X Gen. gov.—State and local; GFCF

GneDfdGfcPubGvt A2302555A Gen. gov.; GFCF

GneDfdGfcPub A2302556C Plc.; GFCF

GneDfdGfc A2302557F All sectors; GFCF

Table 21.3 Variables, series IDs and their descriptions for changes in inventories—expenditure
approach

Variable Series ID Description

GneCii A2302562X Changes in Inventories

GneCiiPfm A2302560V Farm

GneCiiPba A2302561W Public authorities

GneCiiPnf A2302559K Private; Non-farm Total

GneCiiPnfMin A83722619L Private; Mining (B)

GneCiiPnfMan A3348511X Private; Manufacturing (C)

GneCiiPnfWht A3348512A Private; Wholesale trade (F)

GneCiiPnfRet A3348513C Private; Retail trade (G)

GneCiiPnfOnf A2302273C Private; Non-farm; Other non-farm industries

Table 21.4 Variables, series IDs and their descriptions for household final consumption—
expenditure approach

Variable Series ID Description

GneDfdHfc A2302254W Household Final Consumption Expenditure

GneDfdFceHfcFud A2302237V Food

GneDfdFceHfcAbt A3605816F Alcoholic beverages and tobacco

GneDfdFceHfcAbtCig A2302238W Cigarettes and tobacco

GneDfdFceHfcAbtAlc A2302239X Alcoholic beverages

GneDfdFceHfcCnf A2302240J Clothing and footwear

GneDfdFceHfcHwe A3605680F Housing, water, electricity, gas and other fuels

GneDfdFceHfcHweRnt A3605681J Actual and imputed rent for housing

GneDfdFceHfcHweWsc A3605682K Water and sewerage charges

GneDfdFceHfcHweEgf A2302242L Electricity, gas and other fuel

GneDfdFceHfcFhe A2302243R Furnishings and household equipment

GneDfdFceHfcFheFnt A3605683L Furniture, floor coverings and household goods

GneDfdFceHfcFheApp A3605684R Household appliances

(continued)
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Table 21.4 (continued)

Variable Series ID Description

GneDfdFceHfcFheTls A3605685T Household tools

GneDfdFceHfcHlt A2302244T Health

GneDfdFceHfcHltMed A3605686V Medicines, medical aids and therapeutic
appliances

GneDfdFceHfcHltHsv A3605687W Total health services

GneDfdFceHfcTpt A3605688X Transport

GneDfdFceHfcTptPvh A2302245V Purchase of vehicles

GneDfdFceHfcTptOvh A2302246W Operation of vehicles

GneDfdFceHfcTptTsv A2302247X Transport services

GneDfdFceHfcCom A2302248A Communications

GneDfdFceHfcRnc A2302249C Recreation and culture

GneDfdFceHfcEdc A2302250L Education services

GneDfdFceHfcHcr A2302251R Hotels, cafes and restaurants

GneDfdFceHfcHcrCsv A3605694V Catering services

GneDfdFceHfcHcrAsv A3605695W Accommodation services

GneDfdFceHfcMis A3605696X Miscellaneous goods and services

GneDfdFceHfcMisOgd A3605697A Other goods

GneDfdFceHfcMisIfs A2302252T Insurance and other financial services

GneDfdFceHfcMisOsv A3606485T Other services
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