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Preface

In the last few years there have been rapid advances in the research into low-
dimensional materials (such as graphene) and artificially engineered materials (such
as photonic crystals or band-gap materials) that involve sample growth and fab-
rication on the nanometer or micrometer length scales. The role of surfaces and
interfaces becomes emphasized in these systems. Such developments have led to a
renewed need for a wider use and application of advanced theoretical techniques,
such as those for the many-body theoretical methods for condensed matter physics.
However, the increased interest in fundamentals of the interactions between light
and matter has placed a focus on many concepts and models developed in the field
of quantum optics (e.g., those involving coherent states).

Our intention in writing this book is to provide a text that is genuinely introduc-
tory in scope and is at a suitable level for the nonspecialists (not just for those in
theoretical physics) wanting to use the tools of many-body theory. Hence, although
the book has been kept relatively concise, we have also incorporated “new” topics
such as those mentioned previously that are not typically found in textbooks on
many-body theory. Our book allows its readers to learn the basics of a range of
techniques and to take in a number of applications and examples before eventually
moving on to one of the excellent texts that cover material at an advanced or
specialized level. In keeping with this pedagogical approach, we have provided
problems (more than 100 in total) at the end of each chapter to introduce additional
applications. As an extra teaching tool, a solutions manual is made available to
course instructors.

The material in this book is organized as follows. The operator methods of
second quantization, including those applied to coherent states and their time evo-
lution, are the main topics of Chapters 1 and 2. Examples of some many-body sys-
tems and the techniques of solving for the wavelike excitations are given. Green’s
functions are formally introduced in Chapter 3 in both the real-time and imaginary-
time techniques, and important results are established connecting them (and their
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xii Preface

frequency Fourier transforms) to the correlation functions and excitation spectra
relevant to experiments. Then Chapters 4 and 5 cover the evaluation of Green’s
function by the equation-of-motion method, either exactly (within a theoretical
model) or more typically using so-called decoupling approximations. Next, Chap-
ter 6 involves linear response theory and the connection between Green’s func-
tions and response functions (or generalized susceptibilities). Chapter 7 deals with
the application of the preceding techniques to systems exhibiting localization of
the excitations (e.g., at the surfaces or interfaces in a finite sample or due to the
structural symmetrybreaking by the presence of impurities). In Chapters 8 and 9
the development and application of the imaginary-time Green’s functions to dia-
grammatic perturbation theory (Feynman diagrams) are presented. The treatment is
mostly carried out for boson and fermion systems, but examples of unconventional
diagram methods, such as those required for spin systems at general temperatures,
are also included.

The target readership of this book includes physicists, chemists, materials scien-
tists, applied mathematicians, and engineers. They could be based in universities,
industries and/or research laboratories. The book’s level of presentation is appro-
priate for graduate students and researchers.

We are indebted to our many colleagues, collaborators, and mentors who directly
or indirectly have influenced this book and provided ideas. Among others, it is
a pleasure to give special mention to A. Akbari-Sharbaf, E. L. Albuquerque,
M. Babiker, R. E. Camley, N. N. Chen, R. Loudon, A. A. Maradudin, E. Meloche,
M. H. Naderi, H. T. Nguyen, T. M. Nguyen, M. Soltanolkotabi, and D. R. Tilley.
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1

Introduction to Second Quantization

In many-body theory we are concerned with studying systems that have a large
number of particles interacting with one another. Some examples of many-body
systems in condensed matter physics, many of which we will explore later in this
book, are

• The interacting fermion gas (e.g., electrons in a metal or semiconductor);

• The interacting boson gas (e.g., phonons in a crystalline solid; or optical excita-
tions, such as polaritons, in solids);

• Magnetic systems (e.g., spin waves, or magnons, due to interacting spins in a
ferromagnet);

• Excitations in quantum fluids, such as liquid helium (3He and 4He), including
properties related to superfluidity and superconductivity;

• Electronic excitations and topological excitations in novel low-dimensional sys-
tems, such as graphene;

• Plasma excitations in solids, where the charged particles may undergo a collec-
tive behavior (called plasmons) distinct from the individual particle behavior;
and

• The interaction of light with atoms (as in quantum optics) and the scattering of
light by solids.

Additionally, with the technological advances in materials science in recent years
for producing finite-sized elements (often in arrays) with one or more of the dimen-
sions on the nanometer scale, there is now an immense interest in systems with
surfaces and interfaces that play an important role in the properties of these artificial
materials, including photonic crystals, superlattices, and so forth.

The usual first-order or second-order perturbation theory of elementary quantum
mechanics in terms of the wave functions (see, e.g., [1, 2]) is generally of limited
use for such systems because we typically do not know the wave functions and
also, even if we did know them, the interactions may be too strong to proceed.

1



2 Introduction to Second Quantization

Alternatively, the number of particles in the system may be so large as to render
the method impractical for summations over the states of the particles (e.g., in a
macroscopic-sized metallic system the number of “free” electrons may be of the
order of Avogadro’s number, or ∼ 1023, depending on the size of the system). There-
fore, we need new mathematical tools and a different formulation of perturbation
theory: This brings us, in particular, to the methods of second quantization of the
operators and to quantum-mechanical Green’s functions.

We will make use of the standard results of statistical mechanics, where appli-
cable. Usually (but not always) this will be in the context of equilibrium statistical
mechanics, where there are the standard methods for calculating equilibrium aver-
ages for grand-canonical and canonical ensembles (see, e.g., [3, 4]). Suppose we
have a system of N particles in a volume V . Often the system will be sufficiently
large that we can regard it as being infinite, that is, we can take N → ∞ and
V → ∞, such that the average particle density N/V is finite (the usual “thermo-
dynamic limit”). In other contexts we may need to study localized excitations near
the boundaries of finite systems.

We want the theory to provide predictions about properties such as the ground-
state energy and also the excitations of the system from its ground state. This
might bring up issues of finding the best set of coordinate variables to describe
the excitations. We want to carry out these calculations at any temperature, in
general, and so considerations of the phase transitions in the system will be relevant.
Some examples of the latter are the Curie temperature TC in a ferromagnet, the
transition temperature to superconductivity in some materials, and the so-called
λ-transition in liquid 4He between helium I and the lower-temperature helium II
phase that exhibits superfluidity. Other applications that may involve the use of
many-body theory include the scattering of light or particles (such as in Raman
light scattering [RLS], inelastic neutron scattering [INS], etc.), transport-related
properties (including electrical conductivity, thermal conductivity, quantum Hall
effect, etc.), and other collision problems (e.g., electrons at surfaces or in random
or impure media).

The main topics of this introductory chapter are second quantization and exam-
ples of its basic applications to systems. Regarding terminology, first quantization
usually refers to the elementary quantum mechanics as taught in an undergraduate
physics course: The classical position and momentum are replaced by operators,
which may be noncommuting in general. The analysis proceeds through the use of
a “wave” equation (Schrödinger’s equation) resulting in quantization of the energy
levels, for example. In second quantization we go one step further because the
elementary approach becomes impractical for many-body systems, as already men-
tioned. The main outcome is that the field variables for the system are raised to
having the status of operators, for example, as demonstrated by P. A. M. Dirac in
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1927 for the electromagnetic field. A description emerges in terms of particle-like
entities (the photons in the electromagnetic field case) that can be acted upon by
creation and annihilation operators.

The creation and annihilation operators are introduced in the next section, first
through a mathematical example and then for the electromagnetic field in free
space. Generalizations to bosons and fermions in second quantization are presented
in Section 1.2. Then in Section 1.3 we describe the creation and annihilation opera-
tors required for coherent states, as frequently encountered in quantum optics. The
remaining sections of this chapter are taken up with examples of Hamiltonians in
second quantization that are of interest in many-body theory, and we show how to
obtain solutions in some simple cases by using operator techniques.

1.1 Creation and Annihilation Operators

1.1.1 Quantum-Mechanical Simple Harmonic Oscillator

We start by considering, just as a mathematical example, the quantum-mechanical
simple harmonic oscillator (SHO) in one dimension (1D). It is well known, of
course, that the energy eigenvalues and wave functions can be found by solving the
time-independent Schrödinger equation [1]. As an alternative approach, however,
we review here the use of creation and annihilation operators for this model system.
The Hamiltonian can be written as

H = p2

2m
+ 1

2
mω2x2, (1.1)

where p = −i∂/∂x is the momentum operator, x is the position along the 1D axis,
and we employ units such that h̄ = 1. The constants in the potential energy term
(proportional to x2) are m as the mass of the particle and ω as the classical angular
frequency of the oscillations.

We now define new operators a† and a by

a† = (2mω)−1/2(mωx + ip),

a = (2mω)−1/2(mωx − ip). (1.2)

By using the commutation property [x,p] = i from elementary quantum mechanics
(QM), it is easy to prove that

[a,a†] = 1 (1.3)

for the new operators, while the Hamiltonian can be expressed as

H = ω

(
a†a + 1

2

)
. (1.4)
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Here we are employing a standard notation that [A,B] = AB − BA for the com-
mutator between any two operators A and B.

Several other convenient properties of the a† and a operators can readily be
established, as follows.

• If ψα denotes an eigenfunction of the Hamiltonian H with an eigenvalue written
as αω, then a†ψα is also an eigenfunction of H, and it has the eigenvalue (α +
1)ω.

Proof We are given the property that Hψα = αω ψα and are asked to prove that
Ha†ψα = (α + 1) ωa†ψα. The starting point is to note from Equation (1.4) that
Ha† = ω

(
a†aa† + 1

2a
†
)

and a†H = ω
(
a†a†a + 1

2a
†
)
. Therefore, by subtraction

we have

Ha† − a†H = ωa†
(
aa† − a†a

) = ωa†.

This leads to Ha†ψα = a†Hψα+ωa†ψα = αωa†ψα+ωa†ψα = (α + 1) ωa†ψα,
which proves the result.

• The quantity aψα is another eigenfunction (provided it is nonzero) of the Hamil-
tonian H, but it has the eigenvalue (α − 1)ω.

Proof This is similar to the previous property, and the result follows after we
have shown that Ha − aH = −ωa.

• The eigenvalues of the Hamiltonian correspond to α = (
n + 1

2

)
, where integer

n = 0,1,2, . . ..

Proof We suppose ψ0 denotes the ground-state eigenfunction and the smallest
eigenvalue is α0ω. By definition, we must have aψ0 = 0 because there is no
lower state. Its eigenvalue is easily found by considering

Hψ0 = ω

(
a†a + 1

2

)
ψ0 = ωa†aψ0 + 1

2
ωψ0 = 1

2
ωψ0.

Therefore, the ground state ψ0, henceforth denoted using Dirac’s “ket” notation
as |0〉 (see [5]), has the eigenvalue 1

2ω. It then follows that the first excited state
|1〉 is proportional to a†|0〉 and has the eigenvalue (1 + 1

2)ω, while the second
excited state |2〉, which is proportional to (a†)2 |0〉, has the eigenvalue (2 + 1

2)ω,
and so on. The nth excited state is

|n〉 ∝ (a†)n|0〉
and has the eigenvalue (n + 1

2)ω. Hence, the eigenvalue equation becomes

H |n〉 =
(

n + 1

2

)
ω |n〉 . (1.5)
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Figure 1.1 Representation of energy levels for the first four eigenstates of a
quantum-mechanical simple harmonic oscillator in 1D. The horizontal axis is
the displacement x and the parabolic curve represents the potential energy term
1
2mω2x2.

The energy levels for a 1D harmonic oscillator for the first few eigenstates are
represented schematically in Figure 1.1. We note that the energy levels are evenly
spaced.

• The normalized eigenfunctions have the properties that

a†|n〉 = √
n + 1|n + 1〉 and a|n〉 = √

n|n − 1〉. (1.6)

Proof From the previous properties we know that

a†|n〉 = cn |n + 1〉 .

This follows because they have the same eigenvalue. To find the constant cn, we
premultiply each side by its Hermitian conjugate, noting that the Hermitian con-
jugate of the ket |n〉 is the bra 〈n|. This yields 〈n| aa† |n〉 = (cn)

2 〈n + 1| n + 1〉,
and so

(cn)
2 = 〈n| aa† |n〉 = 〈n| (1 + a†a) |n〉 = 〈n|

(
ω−1H + 1

2

)
|n〉

= 〈n|
(

n + 1

2
+ 1

2

)
|n〉 = n + 1,

which proves that cn = √
n + 1 (ignoring any complex phase factor). The second

result can be proved in a similar way.
One can show (e.g., by iteration) that the eigenstates after normalization are

|n〉 = (a†)n

√
n!

|0〉 . (1.7)
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• The combination a†a has the eigenvalue n corresponding to the eigenfunction
|n〉 of the nth state.

Proof We use a†a|n〉 = (ω−1H− 1
2

)|n〉 = (n + 1
2 − 1

2

)|n〉 = n|n〉. This means
that a†a behaves as a number operator. In other words, when it operates on the
nth excited state it gives us the number n as the eigenvalue.

To summarize, the main conclusions are as follows. Rather than working in terms
of the original QM operators p and x, we have found new operators a† and a such
that a† takes us from one state to the next highest. In other words, it acts as a creation
operator for an excitation. Conversely the operator a takes us from one state to the
next lowest. So, it acts as an annihilation operator for an excitation. Also we have
shown that a and a† satisfy a simple commutation relation and that the operator
combination a†a acts as a number operator.

1.1.2 Electromagnetic Field in Free Space

As a second example we now show that creation and annihilation operators are
also useful concepts in electromagnetism. In this case, the second-quantization
techniques were introduced by Dirac [6] in 1927 for the electromagnetic fields.
Quantization of the electromagnetic (EM) field, along with the introduction of
the concept of photons, are crucial ideas in quantum optics. We now outline the
arguments to show that, after quantization, the EM field can be seen as being
equivalent to a collection of harmonic oscillators.

We start with Maxwell’s equations in vacuum (i.e., in the absence of charges and
currents), which can be stated as (see, e.g., [7, 8])

∇ · B = 0, ∇ × H = ∂D
∂t

,

∇ · D = 0, ∇ × E = −∂B
∂t

. (1.8)

The magnetic flux density B and the magnetic intensity H are related by B = μ0H
in SI units and the relation between the electric displacement field D and electric
field E is D = ε0E. Here μ0 and ε0 are the magnetic permeability and electric
permittivity of free space, respectively, obeying μ0ε0 = c−2 where c is the speed of
light in vacuum. The EM fields in vacuum can be conveniently determined by using
the magnetic vector potential A(r,t) in a specific gauge. Normally, the Coulomb
gauge, for which ∇ · A = 0, is chosen. In this case, both B and E can be obtained
from A(r,t) by taking

B = ∇ × A, E = −∂A
∂t

. (1.9)
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Substituting Equation (1.9) into (1.8) gives the wave equation for A(r,t) in the form

∇2A(r,t) = 1

c2

∂2A(r,t)
∂t2

. (1.10)

We may now separate A(r,t) into two terms that involve the normalized eigen-
modes uj (r) by writing

A(r,t) =
∑

j

√
1

2ωjε0

[
aj (t)uj (r) + a

†
j (t)u

∗
j (r)
]

. (1.11)

Here j is an index labeling the modes and aj (t) are complex coefficients. Substi-
tuting Equation (1.11) into (1.10) gives(

∇2 + ω2
j

c2

)
uj (r) = 0 (1.12)

and

∂2aj (t)

∂t2
+ ω2

j aj (t) = 0. (1.13)

The second expression leads to a characteristic time dependence like aj (t) =
aj exp(−iωj t). Also the eigenmodes uj (r) satisfy the transversality condition

∇ · uj (r) = 0, (1.14)

and they form a complete orthonormal set:∫
u∗

j (r)uj ′(r)dV = δj,j ′,

where δj,j ′ is the Kronecker delta, defined as being equal to unity if j = j ′ and
zero otherwise. If we assume periodic boundary conditions for A(r,t), which is
restricted to the interior of a cubical box with sides of length L (and hence volume
V = L3), it follows that the solutions for uj (r) are expressible in a plane-wave
form as

uj (r) = 1√
V

êj,λe
ikj ·r.

Here |kj |2 = ω2
j /c

2 and êj,λ (with λ = 1,2 as labels for the two transverse direc-
tions) is the unit vector that specifies the polarization of the field. The components
of the wave vector kj must satisfy

kjx = 2π

L
njx with njx = 0, ± 1, ± 2, . . . ,

with similar results for the y and z components.
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Equation (1.14) implies that êj,λ ·kj = 0, which means that the vectors
{
ê1,ê2,k

}
are an orthogonal basic set. Hence, the form of A(r,t) is

A(r,t) =
∑

j

∑
λ=1,2

√
1

2ωjε0V
êj,λ

[
aje

i(kj ·r−ωj t) + a
†
j e

−i(kj ·r−ωj t)
]

. (1.15)

From Equation (1.9) we see that the magnetic and electric fields can be written as

H(r,t) = −i

cμ0

∑
j

∑
λ=1,2

√
ωj

2ε0V
(êj,λ × kj )

[
aje

i(kj ·r−ωj t) − a
†
j e

−i(kj ·r−ωj t)
]
,

E(r,t) = i
∑

j

∑
λ=1,2

√
ωj

2ε0V
êj,λ

[
aje

i(kj ·r−ωj t) − a
†
j e

−i(kj ·r−ωj t)
]

. (1.16)

Finally, the Hamiltonian of the multimode EM field is found from

H = 1

2

∫ (
ε0|E|2 + μ0|H|2) dV ,

which leads to

H = 1

2

∫ (
ε0

∣∣∣∣∂A
∂t

∣∣∣∣2 + 1

μ0
|∇ × A|2

)
dV

= 1

2

∑
j

ωj

(
aja

†
j + a

†
j aj

)
. (1.17)

In the preceding expression the aj and a
†
j are scalar complex numbers, but we

have been careful to preserve their order in products. Then, to accomplish the
EM field quantization, we choose aj and a

†
j to be mutually adjoint operators. The

photons are bosons, and so the quantization rules (as in the previous example for
the SHO) are [

aj,a
†
j ′

]
= δj,j ′,

[
aj,aj ′

] =
[
a

†
j,a

†
j ′

]
= 0. (1.18)

Therefore, the Hamiltonian may be rewritten as

H =
∑

j

ωj

(
a

†
j aj + 1

2

)
, (1.19)

which has the same form as Equation (1.4) for a single quantum-mechanical SHO
in 1D, except that there is a summation over the mode index j . Thus, we interpret
aj and a

†
j as annihilation and creation operators for mode j of the EM field in this

oscillator description.



1.2 Second Quantization for Bosons and Fermions 9

1.2 Second Quantization for Bosons and Fermions

We now demonstrate how the essential features of the operator formalism devel-
oped in the previous section can be generalized through the process of second quan-
tization to apply to systems of N identical boson or fermion particles occupying a
volume V .

1.2.1 Boson System

Here we suppose that the complete set of single-particle wave functions are speci-
fied as {φ1,φ2,φ3, . . .}. Then, for the total system we assume there are n1 particles
in state 1, n2 particles in state 2, and so forth, such that N = n1 + n2 + · · · gives
the total number of particles.

If we were to follow a standard description in terms of wave functions, the
argument would go broadly as follows. We could denote the total wave function
for the system of N particles as �n1,n2,...(x1,x2, . . . ,xN), where xi denotes the set
of coordinates describing the ith particle. This function must be symmetric with
respect to the interchange of any two particles. Next, we could attempt to construct
an expression for � in terms of the single-particle wave functions as

�n1,n2,...(x1,x2, . . . ,xN) = A
∑
P

φi1(x1)φi2(x2) · · · φiN (xN),

where the set {i1,i2, . . . ,iN } of integers has label 1 occurring n1 times, label 2
occurring n2 times, and so forth. The summation is over all the permutations
P of the particle coordinates x1,x2, . . . ,xN for the N identical particles, and
A = (n1! n2! · · · /N! )1/2 is a normalization constant. It is easy to realize that this is
not helpful because often we do not know the one-particle wave functions {φi}, and
in any case it would not be practical to construct � as mentioned in the preceding
text because of the very large numbers typically involved.

Therefore, we look for a different approach, based on second quantization and
guided by the previous calculations for the simple harmonic oscillator and EM field.
We start by recognizing that one, potentially useful, way to specify � is by giving
the number of particles in each available single-particle state (as n1 particles in state
1, and so on). Thus, we may choose to denote

� = |n1,n2, . . . ,ni, . . .〉 , (1.20)

where ni is the occupation number of the ith state. This is often called the occupa-
tion number representation. We will require the wave function to be orthogonalized
and normalized, so that〈

n′
1,n

′
2, . . .

∣∣ n1,n2, . . .〉 = δn1,n′1δn2,n′2 . . . (1.21)
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Figure 1.2 Schematic representation for the role of the a
†
i and ai operators on the

ladder of energy levels for the ith state of a boson system.

for any two states. We next define creation and annihilation operators for the ith
state (by analogy with the relationships for the SHO) as

a
†
i |n1,n2, . . . ,ni, . . .〉 =

√
ni + 1|n1,n2, . . . ,ni + 1, . . .〉 “creation,”

ai |n1,n2, . . . ,ni, . . .〉 = √
ni |n1,n2, . . . ,ni − 1, . . .〉 “annihilation.”

(1.22)

The effects of the a
†
i and ai operators may be envisioned schematically in terms of

a ladder of energy levels as represented in Figure 1.2. Of course, the levels may not
be equally spaced in general. Notice that the occupation numbers for all other states
are unaffected in Equation (1.22).

From the preceding definitions we can deduce some of the properties of the
operators. First we see that

a
†
i ai |n1,n2, . . . ,ni, . . .〉 = √

nia
†
i |n1,n2, . . . ,ni − 1, . . .〉

= ni |n1,n2, . . . ,ni, . . .〉 ,
so the number operator for the ith state is a

†
i ai . Also it follows that

aia
†
i |n1,n2, . . . ,ni, . . .〉 =

√
ni + 1ai |n1,n2, . . . ,ni + 1, . . .〉

= (ni + 1) |n1,n2, . . . ,ni, . . .〉 ,
and so by subtraction (aia

†
i − a

†
i ai)|n1,n2, . . . ,ni, . . .〉 = |n1,n2, . . . ,ni, . . .〉.

Therefore, we have the simple result that [ai,a
†
i ] = 1 for the commutator.

The arguments may be extended to show that any two operators referring to
different states i and j commute, and so the same commutation relations as in
Equation (1.18) are applicable.
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It should be remarked that the preceding results are general in the sense that
we have not specified the labels i and j in physical terms (they are just labels for
the states). In any specific application we would choose the most convenient labels
(e.g., position, wave vector, spin projection).

1.2.2 Fermion System

The essential difference now relates to the intrinsic symmetry of the particles. For
fermions the total wave function � has to be antisymmetric with respect to inter-
changing the coordinates of any two identical particles in the system. As in Equa-
tion (1.20), we use the occupation number representation, which is now assumed
to be correctly antisymmetrized, as well as being orthogonalized and normalized.
According to the Pauli exclusion principle, no two identical particles can occupy
the same quantum state, so the only possibilities for the occupation numbers are
ni = 0 or 1 for any single-particle state i.

One part of the definition of the creation operator for state i must be that

a
†
i |n1,n2, . . . ,ni = 1, . . .〉 = 0. (1.23)

for an occupied state because it is impossible to add a particle to an already occu-
pied state. For the creation operator acting on an unoccupied state (with ni = 0) the
corresponding definition must be of the form

a
†
i |n1,n2, . . . ,ni = 0, . . .〉 = ci |n1,n2, . . . ,ni = 1, . . .〉 , (1.24)

where ci is a constant. The analogy with the boson case would suggest taking
ci = √

ni + 1 = 1 for ni = 0 , but this choice turns out to have inconvenient
consequences later. Instead we choose (as described, e.g., in [9]) to define ci =
(−1)li where li is an integer defined by

li =
i−1∑
j=1

nj = number of particles with j < i. (1.25)

The corresponding definition of the annihilation operator for the ith state becomes

ai |n1,n2, . . . ,ni, . . .〉 =
{

0 if ni = 0,
(−1)li |n1,n2, . . . ,ni − 1, . . .〉 if ni = 1.

(1.26)

With these chosen definitions we next examine the properties of the operators in
the fermion case. Initially it seems inconvenient (and arbitrary) to have the (−1)li

factors, but we shall eventually see that it does not matter.
First, it is easy to verify the property that

a
†
i ai |n1,n2, . . . ,ni, . . .〉 = ni |n1,n2, . . . ,ni, . . .〉 , (ni = 0,1), (1.27)
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so the number operator for the ith state is again given by a
†
i ai , just as in the boson

case. Also it can be checked that

aia
†
i |n1,n2, . . . ,ni, . . .〉 = (1 − ni)|n1,n2, . . . ,ni, . . .〉, (ni = 0,1).

Then, by adding these last two expressions we conclude that(
aia

†
i + a

†
i ai

)
|n1,n2, . . . ,ni, . . .〉 = |n1,n2, . . . ,ni, . . .〉 , (1.28)

which leads to the property that aia
†
i + a

†
i ai = 1. In particular, we note the appear-

ance of a plus sign on the left-hand side. Accordingly, we introduce the shorthand
anticommutator notation that {A,B} = AB + BA for any two operators, and so
our preceding result is {ai,a

†
i } = 1. This may be extended to show that any two

operators referring to different states anticommute, and so

{ai,a
†
j } = δi,j, {ai,aj } = {a†

i ,a
†
j } = 0. (1.29)

In summary, an important difference between the two types of statistics is
that boson operators satisfy commutation relations, while the fermion operators
satisfy anticommutation relations. Otherwise, the operators have the analogous
creation and annihilation properties, and the same a†a combination acts as a
number operator.

1.3 Coherent States

It is helpful to pursue further the role of creation and annihilation operators, along
with the analogies to SHOs, by introducing the concept of coherent states. The
pioneering work in the field of quantum optics was carried out by R. J. Glauber
[10–12], who received the 2005 Nobel Prize in physics for his contributions to the
quantum theory of optical coherence. As we shall see, there are some interesting
analogies between coherent states and wave packets in QM, including the property
that specific minimum-uncertainty conditions are obtained for coherent states.

Subsequently, coherent states have found applications in other areas of physics
where there is wavelike behavior and superposition. Some examples of wave-
like excitations, which we will discuss later, include spin waves (or magnons),
phonons, and polaritons in condensed matter systems. Some textbooks giving
detailed accounts of coherent states, mainly with a focus on quantum optics, are
[13–17].

1.3.1 Basic Definitions for Coherent States

Coherent states are specifically QM states of quantum harmonic oscillators that
have dynamics similar to the wavelike behavior of classical harmonic oscillators.
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They may be introduced in various alternative ways, but here we start by defining
a coherent state |α〉 as the unique (apart from the overall phase) eigenstate of the
annihilation operator a. Thus, we write

a|α〉 = α|α〉, (1.30)

with normalization such that 〈α|α〉 = 1. Because the operator a turns out not to be
Hermitian, any eigenvalue α may in general be a complex number that we write as
α = |α|eiθ . This quantity will behave analogously to the complex wave amplitude
in classical optics. We note that the previous zero-occupation state (or vacuum state)
denoted by |0〉 is, in fact, a coherent state with the special property α = 0.

More generally, coherent states (including those with α �= 0) can be easily
generated using the coherent-state displacement operator D(α) as introduced by
Glauber [10]. This operator is defined by

D(α) = exp(αa† − α∗a), (1.31)

where α is an arbitrary complex number, while a† and a are the creation and
annihilation operators. Now, using the convenient operator identity that

e(A+B) = eAeBe−1/2[A,B], (1.32)

which is valid provided the commutator [A,B] commutes with both A and B indi-
vidually, we can rewrite D(α) in an alternative form as a product of exponential
terms. The result is easily found to be

D(α) = e−|α|2/2eαa†
e−α∗a . (1.33)

As an aside, we comment that Equation (1.32) is a particular case of the Zassenhaus
formula [18], for which the reader is taken through a proof in Problem 1.4.

Starting from Equation (1.33), the displacement operator is easily seen to be uni-
tary because D†(α) = D−1(α) = D(−α). We also note three important properties
of the displacement operator as follows:

D†(α)aD(α) = a + α, D†(α)a†D(α) = a† + α∗, and

D(α + β) = D(α)D(β) exp[−i Im(αβ∗)]. (1.34)

A mathematical procedure to generate a coherent state |α〉 from the vacuum state
can now be established by using the displacement operator. We consider the product
aD(−α)|α〉, for which it can be shown that

aD(−α)|α〉 = D(−α)D†(−α)aD(−α)|α〉
= D(−α)(a − α)|α〉 = 0.
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Here we have used the unitary property of D(α) as well as Equations (1.30) and
(1.34). It follows, therefore, that D(−α)|α〉 = 0 can be rearranged as

D(α)|0〉 = |α〉. (1.35)

This gives us the useful result that a coherent state is equivalent to the vacuum state
displaced by the D(α) operator.

1.3.2 Simple Properties of Coherent States

The wave aspect of the coherent state |α〉 is evident from the previous subsection.
Now, by contrast, we want to illustrate the particle aspect of the coherent state by
expanding the coherent state in the so-called Fock basis of number states |n〉 of the
SHO. We write the expansion as

|α〉 =
∞∑

n=0

cn|n〉,

where the cn are scalar coefficients to be determined. It is straightforward to see
that

〈n|α〉 =
∞∑

n′=0

cn′ 〈n|n′〉 = cn,

which follows as a consequence of the completeness property for the states |n〉.
Thus, we can write

|α〉 =
∞∑

n=0

|n〉〈n|α〉, (1.36)

so we next need to evaluate the quantities 〈n|α〉.
By using Equation (1.7) we obtain

〈n|α〉 = αn

√
n!

〈0|α〉, (1.37)

and therefore

|α〉 = 〈0|α〉
∞∑

n=0

αn

√
n!

|n〉.

From the condition for normalization, the overall scalar coefficient 〈0|α〉 in the
preceding expression can be determined to be e−|α|2/2. Therefore, the expansion of
a coherent state in terms of the states |n〉 is finally obtained as

|α〉 = e−|α|2/2
∞∑

n=0

αn

√
n!

|n〉. (1.38)
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The substitution of Equation (1.7) into the preceding equation establishes the con-
nection with the vacuum state |0〉 as being

|α〉 = e−|α|2/2
∞∑

n=0

(αa†)n

n!
|0〉

= eαa†−|α|2/2|0〉. (1.39)

Some other useful properties of the coherent states of the EM field are summa-
rized in the following text for later reference.

• The probability P(n) of having n photons in a coherent state |α〉 is given by a
Poisson distribution:

P(n) = |〈n|α〉|2 = |α|2ne−|α|2

n!
. (1.40)

This follows from the analysis given in the preceding text after ensuring the
normalization for a probability function.

• The coherent states satisfy a minimum-uncertainty relation in terms of position
and momentum. The proof follows from Equation (1.2), which can be rewritten
as

x = (2mω)−1/2(a + a†),

p = −i(mω/2)1/2(a − a†). (1.41)

By taking the expectation values (averages) over a coherent state, we find

〈x〉α = (2mω)−1/2(α + α∗),

〈x2〉α = (2mω)−1
[
1 + (α + α∗)2

]
,

and so for the mean square deviation in the position we have

(x)2
α = 〈x2〉α − 〈x〉2

α = 1

2mω
.

In a similar manner, it may be shown for the mean square deviation in the
momentum that (p)2

α = (mω/2), and so

(x)2
α (p)2

α = 1/4. (1.42)

The preceding result establishes the special property of the coherent states that
they correspond to the minimum-uncertainty states.

• The coherent states are not orthogonal because they are easily shown to have the
property that

|〈β|α〉|2 = e−|β−α|2 �= 0. (1.43)
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• The coherent states form an overcomplete set of states (see, e.g., [17]), satisfying
in general ∫

|α〉〈α| d2α = π . (1.44)

The factor of π is a consequence of the normalization. It follows that any coher-
ent state can be expanded in terms of other coherent states by using

|β〉 = 1

π

∫
|α〉〈α|β〉 d2α. (1.45)

1.4 Model Hamiltonians for Interacting Boson or Fermion Particles

So far, we have introduced the creation and annihilation operators in some relatively
straightforward cases like the quantum-mechanical SHO and the vacuum EM field,
but we have not discussed the form of the Hamiltonian in second quantization
for other, often more complicated, systems. That is the purpose of the present
section, where we begin in Subsection 1.4.1 with a description of single- and
two-particle operators as a preliminary before giving a specific derivation of a
model Hamiltonian of wider applicability in Subsection 1.4.2. Other examples will
follow later.

1.4.1 Single- and Two-Particle Operators

Here we will explore some general properties of single- and two-particle operator
contributions to the Hamiltonian in terms of the creation and annihilation operators
a

†
l and al for a particle labeled l (= 1,2, . . . ,N) in a many-body system of N

identical particles. We start by considering an operator H(1) for the system defined
as the sum of single-particle operators h(l), meaning operators related to that one
particle only, as in

H(1) =
N∑

l=1

h(l). (1.46)

For instance, if the Hamiltonian H(1) consists only of the kinetic energy contribu-
tions, then h(l) = −(1/2m)∇2

l is the corresponding single-particle operator with m

denoting the particle mass. More generally, h(l) might also contain potential energy
contributions due to external influences, such as for electrons moving in a periodic
potential for a lattice of ions or for atoms in a lattice vibrating about their fixed
equilibrium positions.
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Thus, if h is the single-particle operator for any one particle and its matrix
elements (in the basis set |i〉 of one-particle states) are written as hij = 〈i|h|j〉,
then its contribution to H(1) is just∑

i,j

hij |i〉〈j |.

Therefore, on extending the argument to a system consisting of N particles we have
simply

H(1) =
∑
i,j

hij

N∑
l=1

|i〉l〈j |l,

or, expressed in terms of the creation and annihilation operators introduced by
analogy with the previous sections, we obtain

H(1) =
∑
i,j

hij a
†
i aj . (1.47)

As mentioned, such a term may have various physical interpretations. For exam-
ple, if hij has only diagonal terms (i.e., when hij = εiδi,j ) we have

H(1) =
∑

i

εia
†
i ai, (1.48)

which is just like the quadratic term in the previous SHO examples. However, if
some off-diagonal terms of hij are nonzero, the contribution to H(1) describes the
creation of a particle in state i and the annihilation of a particle in a different state
j , which is a process sometimes called hopping in electronic systems with lattice
potentials. There is a further discussion of this in Subsection 1.4.3 (and then later
in Chapters 2 and 5).

Similarly, we may next introduce two-particle operators, which involve a sum
over terms depending on distinct pairs of operators, as in

H(2) = 1

2

∑
l,l′( �=l)

f (l,l′).

Here f (l,l′) might represent, for example, the Coulomb potential energy between
two charged particles. Following the procedure used in the single-particle case, this
may be reexpressed in terms of the creation and annihilation operators as

H(2) = 1

2

∑
i,j,i′,j ′

〈
ij
∣∣f ∣∣i ′j ′〉 a†

i a
†
j ai′aj ′ . (1.49)

The detailed steps to arrive at such a result are shown for the following example
in Subsection 1.4.2, but we note that there are now four creation and annihilation
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operators (two of each). This is a consequence of there being a double summation
over particles in the original expression for H(2), rather than the single summation
as for H(1).

In summary, the anticipated form of a total Hamiltonian that comprises single-
and two-particle operators will be the sum of expressions with the same form as in
Equations (1.47) and (1.49).

1.4.2 Gas of Bosons or Fermions with Pairwise Interactions

To take a specific case we now consider a gas of N identical boson or fermion parti-
cles in a volume V , where the particles can move freely except for their interactions
with one another (i.e., there is no external potential energy for the present). In this
example the Hamiltonian is given by the sum of two parts as

H = T̂ + Ŵ . (1.50)

The first term represents the total kinetic energy, which can be expressed as

T̂ = − 1

2m

N∑
l=1

∇2
l (1.51)

for particles of mass m. The second term represents two-particle pairwise potential
interactions, with each energy term taken to depend only (for simplicity) on the
distance apart of the pair of particles, as in

Ŵ = 1

2

N∑
l,s( �=l)

w
(|rl − rs |

)
. (1.52)

The factor of 1
2 appearing here avoids double counting.

We now transform each of the contributions in Equation (1.50) into the second-
quantization notation, bearing in mind the preliminary results of the previous sub-
section. Here we will focus on macroscopically large systems, for which it is typi-
cally convenient to employ a wave-vector representation. As an often-made approx-
imation, we assume the wave functions to have the form of plane waves appropriate
to particles in a box of volume V . Thus, we write

�k(r) = 1√
V

eik·r, (1.53)

and these wave functions satisfy the orthonormality property that

1

V

∫
d3r �∗

k(r)�k′(r) = δk,k′ . (1.54)
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The allowed values for the components of the wave vector k can be written down
by assuming periodic boundary conditions as was done in Subsection 1.1.2. Pro-
ceeding now by analogy with Equation (1.47) in the discussion of single-particle
operators, we have for the kinetic energy term in the Hamiltonian

T̂ =
∑
k,k′

Tk,k′ a†
k′ak, (1.55)

where

Tk,k′ = 1

V

∫
d3r ei(k−k′)·r k2

2m
.

However, making use of the following mathematical identity:

1

V

∫
d3r ei(k−k′)·r = δk,k′, (1.56)

which can be shown to hold when discrete wave vectors are involved (see Prob-
lem 1.6), we conclude that the Hamiltonian contribution in terms of creation and
annihilation operators is simply

T̂ =
∑

k

k2

2m
a

†
kak. (1.57)

This is just the result that might be expected because a
†
kak is the number operator

for particles that each have a kinetic energy equal to k2/2m.
For the pairwise potential energy part, we need to proceed cautiously because of

the commuting (or anticommuting) properties of the boson (or fermion) operators.
We first rewrite Equation (1.52) by separating out the excluded double summation
term. Then we change from summations over individual particles to integrations
over the (macroscopically large) volume of the system, giving

Ŵ = 1

2

N∑
l=1

N∑
s=1

w(|rl − rs |) − 1

2

N∑
s=1

w(0)

= 1

2

∫ ∫
ρ(r)w(|r − r′|)ρ(r′)d3r d3r ′ − 1

2

∫
ρ(r′)w(0)d3r ′,

where ρ(r) is the density of particles at the position r. Next, we may introduce
a†(r) and a(r) as the operators creating and annihilating a particle at the position r,
so that

ρ(r) = a†(r)a(r) (1.58)

from the usual number-operator property. However, because we are using plane-
wave states it follows that
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a†(r) = 1√
V

∑
k

a
†
ke

ik·r , a(r) = 1√
V

∑
k′

ak′e−ik′·r , (1.59)

which leads to

ρ(r) = 1

V

∑
k,k′

a
†
kak′ei(k−k′)·r. (1.60)

It is also convenient at this stage to define the Fourier components v(q) of the
interaction term by

w(|r − r′|) =
∑

q

v(q)e−iq·(r−r′). (1.61)

Substituting all this into the preceding expression for the potential energy leads to
the result

Ŵ = 1

2V 2

∑
k1,k′

1,k2,k′
2,q

v(q)a
†
k1

ak′
1
a

†
k2

ak′
2

×
∫ ∫

d3r d3r ′ e−iq·(r−r′)ei(k1−k′
1)·rei(k2−k′

2)·r′

− 1

2V

∑
k1,k′

1,q

v(q)a
†
k1

ak′
1

∫
d3r ′ei(k1−k′

1)·r′
.

This can be simplified using the identity in Equation (1.56), which removes
the integrations over r and r′. Also some of the wave vectors are eliminated,
giving

Ŵ = 1

2

∑
k1,k2,q

v(q)a
†
k1

ak1−qa
†
k2

ak2+q − 1

2

∑
k1,q

v(q)a
†
k1

ak1

= 1

2

∑
k1,k2,q

v(q)a
†
k1

a
†
k2

ak2+qak1−q. (1.62)

We have also used the commutation properties (for bosons) or the anti-commutation
properties (for fermions) to get to the final result, which is the same in each case.
Putting everything together leads to

H =
∑

k

k2

2m
a

†
kak + 1

2

∑
k1,k2,q

v (q) a
†
k1

a
†
k2

ak2+qak1−q. (1.63)

We notice that each term conserves the number of particles as well as the overall
wave vector. A useful visualization of the two-particle term is shown in Figure 1.3.
Later, when we introduce formal diagrammatic perturbation theory in Chapter 8,
this kind of diagram will take on a rigorous and quantitative significance.
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Figure 1.3 Schematic representation of the pairwise potential interaction term in
second quantization as in Equation (1.62). The solid lines denote particles being
either created or annihilated at the interaction vertex denoted by the dashed line.
The labeling of the diagram explicitly shows the overall conservation of the wave
vector, and the wave-vector transfer involving v(q).

Electron Gas with Coulomb Interactions

A case of special importance (e.g., in metals and semiconductors) is when the
particles are electrons, which are fermions, interacting using the Coulomb repulsion
between the charged particles. An additional factor is that we may, in general, need
to include the spin degrees of freedom corresponding to the spin quantum number
ms being equal to 1

2 or − 1
2 . The spin states will be labeled by σ , which takes the

possible values ↑ and ↓ for the spin projections “up” and “down,” respectively. The
Hamiltonian of the system generalizes straightforwardly to become

H =
∑
k,σ

k2

2m
a

†
k,σ ak,σ + 1

2

∑
k1,σ1,k2,σ2,q

v(q)a
†
k1,σ1

a
†
k2,σ2

ak2+q,σ2ak1−q,σ1 . (1.64)

In terms of the spatial variables the Coulomb potential energy (with screening
included) is given by

w
(∣∣r − r′∣∣) = e2 exp(−λ|r − r′|)

4πε0|r − r′| , (1.65)

where λ is a positive screening parameter. It can easily be shown (see Problem 1.7)
that the Fourier transform v(q) of this interaction for a 3D system is

v(q) = e2

ε0(q2 + λ2)
. (1.66)

In the limit of there being no screening (λ → 0) we notice that v(q) is proportional
to 1/q2. This result for v(q) is different for systems with a different dimension-
ality (e.g., for a 2D charge sheet localized at a semiconductor heterojunction, as
discussed also in Problem 1.7).

1.4.3 Hopping Potential and the Hubbard Model

It follows from the introductory discussion given in Subsection 1.4.1 for hopping
that we may now write the correponding contribution Hh to the Hamiltonian in
second quantization as
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Hh =
∑
r,r′

t (r − r′)a†
r ar′ (1.67)

when expressed in the position representation. Here we employ the conventional
notation t (r − r′) for the hopping between the two positions. The spatial form
of the result is particularly relevant for systems where the tight-binding model
of solid state physics (see, e.g., [19, 20]) is a good approximation for obtaining
the electronic wave functions. This approach is assumed, for example, in some
calculations described for graphene-based structures in later chapters.

The hopping term is also an important ingredient in the treatment of electron
correlations in metals using the Hubbard model [21]. The Hubbard Hamiltonian is
obtained from Equation (1.67) by adding another term, denoted by HU , to represent
the Coulomb repulsion effects if two electrons are at the same atomic site. As
a consequence of the Pauli exclusion principle, the only way in which this can
happen is when one electron at the site has spin up and the other has spin down.
The Hubbard Hamiltonian in its simplest form can be expressed as

H = Hh + HU =
∑
r,r′,σ

t (r − r′)a†
r,σ ar′,σ + U

∑
r

nr,↑nr,↓, (1.68)

where nr,σ = a†
r,σ ar,σ is the number operator for electrons with spin projection σ .

Because the possible eigenvalues of nr,σ are restricted to 0 and 1, we see that the
second term in Equation (1.68) is equal to U when nr,↑ = nr,↓ = 1 and zero in
all other cases. As we shall see later in Chapter 5, although it is possible to solve
exactly for each term of Equation (1.68) on its own, only approximate solutions of
the Hubbard Hamiltonian in 2D and 3D are so far available.

It is sometimes useful to reexpress the hopping result in Equation (1.67) in terms
of wave-vector labels and the corresponding creation and annihilation operators,
rather than the position labels. This transformation is discussed, for example, in the
context of a hopping model for 2D graphene (see Chapter 2 for complete graphene
sheets and Chapter 7 for graphene nanoribbons). A wave-vector transformation of
the hopping term in 3D systems is also employed in Chapter 5 for the description
of the Hubbard model applied to metal-insulator transitions.

1.5 Hamiltonian Diagonalization Methods

As examples, we now present two physically distinctive cases of more complicated
many-body systems for which the Hamiltonian can first be simplified, and then a
solution can be found for the approximate Hamiltonian by a “diagonalizing” trans-
formation applied to that Hamiltonian. This approach will be useful in introducing
the concept of “quasiparticles” in interacting systems.
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1.5.1 Example for an Interacting Boson Gas

We employ the Hamiltonian already derived in Equation (1.63), and we assume now
that the interaction is both repulsive and weak, i.e., v(q) is positive and small for all
|q|. Specifically, in this calculation we shall assume that v(q) is weak enough that
most of the boson particles are in the single-particle ground state (so they have zero
momentum and hence zero wave vector). This is the regime of the so-called Bose–
Einstein condensation (BEC) where the occupation number of the single-particle
ground state becomes macroscopically large. The 2001 Nobel Prize in physics was
awarded for the experimental detection of BEC in a dilute gas of alkali atoms at
ultralow temperatures [22].

We start from a consideration of the total number N of particles, which can be
written as

N = a
†
0a0 +

∑
k

′
a

†
kak. (1.69)

Here the prime symbol following the summation symbol means that the zero wave-
vector term (k = 0) in a sum over k is excluded. Denoting N0 as the number of
particles in the ground state, we have a

†
0a0 = N0 and, therefore, it follows that

a0a
†
0 = N0 + 1 ≈ N0 because N0 � 1. Because the occupation of the ground

state is macroscopically large, those creation and annihilation operators at k = 0
behave classically and so essentially a

†
0 ≈ a0 ≈ N

1/2
0 . With this in mind, we can

now rewrite the Hamiltonian by separating out the zero wave-vector terms in the
summations and replacing the a

†
0 and a0 operators as mentioned in the preceding

text. This gives

H =
∑

k

′
εka

†
kak + 1

2
N2

0 v(0) + N0

∑
k

′
v(k)a

†
kak

+ 1

2
N0

∑
k

′
v(k)(a

†
ka

†
−k + aka−k)

+ N
1/2
0

∑
k,q

′
v(q)

(
a

†
ka

†
qak+q + a

†
kak−qaq

)

+ 1

2

∑
k1,k2

′
v(0)a

†
k1

a
†
k2

ak2ak1

+ 1

2

∑
k1,k2,q

′
v(q)a

†
k1

a
†
k2

ak2+qak1−q ,

where εk = k2/2m is the particle energy. By inspection we conclude that the
last three terms in the preceding equation that involve the pairwise interaction are
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negligible compared with the other terms when N0 � 1. Next we can approximate
by replacing N0 with N in the remaining terms.

Therefore, apart from an unimportant constant term, we have now arrived at an
approximate (or “reduced”) Hamiltonian HR given by

HR =
∑

k

′[
εk + Nv(k)

]
a

†
kak + 1

2

∑
k

′
Nv(k)

(
a

†
ka

†
−k + aka−k

)
. (1.70)

This Hamiltonian still incorporates the leading-order effects of the particle interac-
tions through the appearance of terms like v(k), but it is quadratic in the operators.
We will next show that we can solve for HR exactly with the following procedure.
First we comment that, if we could somehow rewrite the preceding expression as

HR =
∑

k

′
Ekα

†
kαk, (1.71)

where the α
†
k and αk operators are new boson creation and annihilation operators

(undetermined as yet), then this would just represent a Hamiltonian for noninteract-
ing particles with a modified energy Ek (also undetermined). From this perspective
the interactions would have been taken into account through a changed energy.

While we do not necessarily know in advance if this is possible, we look for an
operator transformation to achieve the preceding result and to find Ek. The simplest
possibility is to try using a linear relationship (known in this context as a Bogoliubov
transformation) that produces a mixing between the original and new operators with
the form

a
†
k = skα

†
k + tkα−k and ak = skαk + tkα

†
−k, (1.72)

where sk and tk are unknown scalar functions, which we assume to be real. For the
operators to be boson operators they must satisfy

[αk,α
†
k′] = δk,k′ and [αk,αk′] = [α†

k,α
†
k′] = 0. (1.73)

However, we also know that [ak,a
†
k′] = δk,k′ and we use this to find conditions on

sk and tk because

[ak,a
†
k′] = [skαk + tkα

†
−k,sk′α†

k′ + tk′α−k′]

= (s2
k − t2

k)δk,k′ .

Therefore, it is necessary that s2
k − t2

k = 1, which can be automatically satisfied if
we denote

sk = cosh θk and tk = sinh θk. (1.74)

The final step in the calculation is to find the unknown θk. This can be done using
the Hamiltonian HR, which when rewritten in terms of the new operators becomes
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HR =
∑

k

′ {
cosh(2θk)

[
εk + Nv(k)

]+ sinh(2θk)Nv(k)
}
α

†
kαk

+ 1

2

∑
k

′ {
sinh(2θk)

[
εk + Nv(k)

]+ cosh(2θk)Nv(k)
} (

α
†
kα

†
−k + αkα−k

)
.

(1.75)

This will have the required form postulated earlier provided the second term van-
ishes, which is the case if θk is chosen such that

sinh(2θk)
[
εk + Nv(k)

]+ cosh(2θk)Nv(k) = 0.

The condition for this to be satisfied is

tanh(2θk) = −Nv(k)

εk + Nv(k)
. (1.76)

From the coefficient of the first term in Equation (1.75) for HR we conclude that

Ek = cosh(2θk)
[
εk + Nv(k)

]+ sinh(2θk)Nv(k)

=
{[

εk + Nv(k)
]2 − [Nv(k)

]2}1/2

= {εk
[
εk + 2Nv(k)

]}1/2
. (1.77)

The situation can now be summed up as follows. We know that, if we had a
system of noninteracting bosons, the exact Hamiltonian is simply

H =
∑

k

εka
†
kak, (1.78)

where εk = k2/2m is the particle kinetic energy. By contrast, for the weakly
interacting boson system, we have just verified that the approximate Hamiltonian
HR can be transformed into Equation (1.71). As mentioned earlier, this is like the
Hamiltonian for noninteracting particles, but with a modified energy Ek and new
boson operators. We refer to these “particles” as quasiparticles of energy Ek and
the αk operators are known as the quasiparticle operators.

Application to Liquid 4He

In simplified terms the low-temperature superfluid phase of liquid 4He below its
λ-transition at around 2.2 K, otherwise known as liquid He II, is an example of
a weakly interacting gas of bosons with a repulsive potential [23]. Therefore, it
is of interest to compare the predictions of the preceding theory with the known
excitation spectrum for He II, at least in qualitative terms. To do so, we assume the
general form for v(k) as a function of k ≡ |k| to be as sketched in Figure 1.4, i.e.,
it tends to a constant value at small k and decreases sharply at large k values.
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Figure 1.4 Schematic form of a simplified interaction potential v(k) plotted
against the magnitude of the wave vector for comparison with liquid He II.

At sufficiently small k we will have v(k) → v(0), and so using εk = k2/2m in
Equation (1.77) we arrive at

Ek → k

(
Nv(0)

m

)1/2

. (1.79)

Hence, the excitation spectrum for small k is predicted to be similar to that for an
acoustic phonon, i.e., its energy is proportional to k. However, for large k we will be
in the regime where v(k) becomes very small, and it follows from Equation (1.77)
that

Ek = (k2/2m)
{
1 + [4mNv(k)/k2

]}1/2

≈ (k2/2m) + Nv(k) → k2/2m. (1.80)

We see that the excitation spectrum for large k becomes like that for a free particle,
as expected. Overall, the predicted behavior for Ek versus k has a minimum at
an intermediate value of k for reasonable values of the parameters, and it has the
form sketched in Figure 1.5. Historically, the excitations near to the minimum are
known as rotons, and they were first postulated for He II by Landau [24] to interpret
specific heat measurements. This general form of the phonon-roton spectrum has
been verified by inelastic neutron scattering (INS) experiments (see, e.g., [25])
on He II, which provides a more direct technique to probe the excitation. The
experimental data reported in [25] at a temperature of 1.12 K are qualitatively very
similar to the behavior predicted in Figure 1.5.

1.5.2 Example for Spin Waves in a Ferromagnet

As a second example of diagonalization of a Hamiltonian to obtain an approx-
imation to the excitation spectrum, we consider a Heisenberg ferromagnet with
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"roton"

E

k /2m

"phonon"

2

k

k

Figure 1.5 Schematic form of dispersion curve from the simplified theory in
Subsection 1.5.1 to be compared with the phonon-roton dispersion curve for liquid
He II (see text).

nearest-neighbor interactions between the spins (or their localized magnetic
moments) at lattice sites in an insulating material.

Suppose we consider a pair of spins for electrons located at different atomic sites.
We describe them by the vector operators Si and Sj corresponding to positions
denoted by ri and rj in the ferromagnetic material. It is well known (see, e.g.,
[19, 26, 27]) that the dominant contribution to the interaction energy is due to the
short-range Heisenberg exchange mechanism and is usually written as −Ji,j Si · Sj .
Here Ji,j is the QM exchange interaction, which is related to an overlap integral
between the electronic wave functions. For a ferromagnet we have each Ji,j > 0,
so that the spins have a tendency to align parallel to each other at low temperatures
(below the critical or Curie temperature TC).

For a lattice of spins forming a crystal, the total Hamiltonian is

H = −1

2

∑
i,j

Ji,j Si · Sj − gμBB0

∑
i

Sz
i , (1.81)

where we have included the Zeeman energy due to an applied magnetic field of
magnitude B0 in the z direction (with g denoting the Landé factor and μB the Bohr
magneton). The exchange term Ji,j depends on the separation of the sites i and j ,
and typically it is nonzero for nearest neighbors only (otherwise the overlap of wave
functions is negligible). The preceding result for a ferromagnet is known as the
Heisenberg Hamiltonian, and the model ignores other possible contributions such
as those from magnetic dipole-dipole interactions and crystal-field anisotropies.
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We consider both of these extra terms later. Nevertheless, within these limitations,
Equation (1.81) provides us with a useful model for investigating the dynamics of
spin systems.

An obvious difference here compared with our previous discussions is that the
Hamiltonian contains spin operators, which are neither boson nor fermion opera-
tors. Instead they satisfy a set of commutation relations like those for the angular
momentum operators in QM [1, 2], namely[

Sx
i ,S

y

j

] = iSz
i δi,j,

[
S

y

i ,S
z
j

] = iSx
i δi,j,

[
Sz

i ,S
x
j

] = iS
y

i δi,j . (1.82)

Often it is helpful to define new combinations of these spin operators by introducing

S+ = Sx + iSy, S− = Sx − iSy, (1.83)

and so the basic commutation relations can then be reexpressed as[
S+

i ,S−
j

] = 2Sz
i δi,j,

[
S+

i ,Sz
j

] = −S+
i δi,j,

[
S−

i ,Sz
j

] = S−
i δi,j . (1.84)

We see that the result of a commutator between two spin operators is another
operator (or zero), but not a scalar quantity as it was for bosons.

One way to deal with the preceding difficulty is to look for a transformation
to rewrite the set of spin operators (S+, S− and Sz) in terms of boson or fermion
operators. This can be done in several ways, but one particularly useful form is

S+
i =

√
2S

(
1 − a

†
i ai

2S

)1/2

ai, S−
i =

√
2Sa

†
i

(
1 − a

†
i ai

2S

)1/2

,

and Sz
i = S − a

†
i ai . (1.85)

This is the Holstein–Primakoff (HP) transformation [28] for spin quantum number
S, where the a† and a operators are boson operators satisfying the usual rela-
tions that [ai,a

†
j ] = δi,j and [ai,aj ] = [a†

i ,a
†
j ] = 0. It may be verified that the

preceding representation correctly reproduces the spin commutation relations (see
Problem 1.11).

Next we use the HP transformation to study the excitations in Heisenberg ferro-
magnets at low temperatures, meaning well below the Curie temperature (T � TC).
In this case, the spins are well aligned along the direction of the applied magnetic
field (taken as defining the z direction), and so Sz

i ≈ S for each spin, implying that
a

†
i ai � S on average. This allows us to approximate the square root terms in the

operator expressions according to the binomial expansion by writing(
1 − a

†
i ai

2S

)1/2

≈ 1 − a
†
i ai

4S
+ · · · .

Therefore, at T � TC we have the approximate result that

S+
i ≈

√
2Sai, S−

i ≈
√

2Sa
†
i , Sz

i = S − a
†
i ai, (1.86)
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where we are now neglecting terms that are cubic or higher order in the boson
operators.

It is necessary to reexpress the Heisenberg Hamiltonian in terms of boson oper-
ators using the previously mentioned approximate form and continuing to neglect
the higher-order terms. First, we have in component form

H = −1

2

∑
i,j

Ji,j

(
Sx

i Sx
j + S

y

i S
y

j + Sz
i S

z
j

)− gμBB0

∑
i

Sz
i

= −1

2

∑
i,j

Ji,j

{
1

2

(
S+

i S−
j + S−

i S+
j

)+ Sz
i S

z
j

}
− gμBB0

∑
i

Sz
i , (1.87)

which leads to

H ≈ −1

2
S2
∑
i,j

Ji,j − gμBB0NS − 1

2
S
∑
i,j

Ji,j

{
aia

†
j + a

†
i aj − a

†
i ai − a

†
j aj

}
+ gμBB0

∑
i

a
†
i ai . (1.88)

where N is the (macroscopically large) number of spins in the system.
We have arrived at a quadratic expression in terms of the operators, together

with some constant terms, and the next step will be to rewrite this in terms of
quasiparticles (just as in the previous subsection). It is shown in the text that follows
that it can be achieved very simply here by defining a Fourier transform that takes
us from position labels to wave-vector labels. We write

a
†
i = 1√

N

∑
k

a
†
ke

ik·ri , ai = 1√
N

∑
k

ake
−ik·ri , (1.89)

and also we introduce Fourier components of the exchange interaction by

Ji,j = 1

N

∑
k

J (k)e−ik·(ri−rj ). (1.90)

Then it may easily be verified by the substitution of Equations (1.89) and (1.90)
into (1.88) that the Hamiltonian has the quasiparticle form

H = E0 +
∑

k

Eka
†
kak. (1.91)

Here E0 represents the energy of the ferromagnetic system when all spins are
aligned parallel to the applied field (i.e., when the system is in the ground state)
and Ek is just the quasiparticle energy. We obtain

E0 = −N

{
gμBB0S + 1

2
S2J (0)

}
, (1.92)

Ek = gμBB0 + S
{
J (0) − J (k)

}
. (1.93)
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Figure 1.6 Schematic of the spin-wave dispersion relation given by Equa-
tion (1.93). The plot shows Ek plotted against the component kx for k = (kx,0,0).

Figure 1.7 Classical interpretation (shown here in 1D) of a spin wave in a
ferromagnet: (a) the ground state; (b) a single spin reversal; (c) a spin wave
(viewed in perspective); and (d) a spin wave (viewed from above).

These excitations are known as spin waves (SWs or magnons), and their dispersion
relation corresponds to Equation (1.93) for Ek as a function of wave vector k. As an
example, it is easy to show (see Problem 1.12) that for a body-centerd cubic (b.c.c.)
ferromagnet (such as Ni for one of its phases) the expression for J (k) is

J (k) = 8J cos

(
1

2
kxa

)
cos

(
1

2
kya

)
cos

(
1

2
kza

)
, (1.94)

where J denotes the exchange coupling to the eight nearest neighbors and a is
the lattice constant. A sketch of the dispersion relation is shown in Figure 1.6 for
k = (kx,0,0), so the wave-vector component ranges from zero to the Brillouin zone
boundary value at kx = π/a. The SWs have a simple classical interpretation as pre-
cessing spins with a small phase difference between one spin and its neighbors (see
Figure 1.7). The SWs are excitations that have a lower energy than, for example, the
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energy corresponding to the reversal of a single spin. The overall form of Ek across
the Brillouin zone of wave vectors has been well verified in various ferromagnets
by inelastic neutron scattering (see, e.g., [19]).

Problems

1.1. Prove the results for the commutators given in the following text. They
involve the momentum operator p (defined as −i∇ with h̄ = 1) for a particle
and the position operator r, both in 3D:[

exp(−ik · r),p
] = k exp(−ik · r),[

exp(−ik · r),p2
] = exp(−ik · r)(2k · p − k2).

Here k is a constant vector and we denote k2 = k · k.

1.2. Using the discussion given in Subsection 1.1.2, evaluate the following com-
mutators that involve the magnetic vector potential and the EM field vari-
ables. These variables are specified at different positions r and r′ (but the
same time t):

[An(r,t),Em(r′,t)], [An(r,t),Am(r′,t)], [Hn(r,t),Hm(r′,t)],

[En(r,t),Em(r′,t)], and [Hn(r,t),Am(r′,t)].

1.3. Show that the boson operators a and a† satisfy the commutation relations

[a,f (a,a†)] = ∂f

∂a†
and [a†,f (a,a†)] = −∂f

∂a
,

where f is a differentiable function of the operators. Hence (or otherwise)
show that

e−αa†af (a,a†)eαa†a = f (aeα,a†e−α).

1.4. Prove from first principles that, if the commutator of any two operators A

and B is a scalar quantity, then the following identities hold:

(a) exp(λA)B exp(−λA) = B + λ[A,B],

(b)
d

dλ
(exp(λA) exp(λB)) = (A + B + λ[A,B])

× exp(λA) exp(λB), and

(c) exp(λA) exp(λB) = exp

(
λ(A + B) + λ2

2
[A,B]

)
.

Here λ denotes a real scalar quantity. Hence (or otherwise) show that the
displacement operator D(α) = exp

(
αa† − α∗a

)
for coherent states, which

was defined in Equation (1.31), can be rewritten as in Equation (1.33).
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1.5. For a coherent state |α〉, defined as in Section 1.3, show that |α〉〈α| has the
properties that

a†|α〉〈α| =
(

α∗ + ∂

∂α

)
|α〉〈α|, and |α〉〈α|a =

(
α + ∂

∂α∗

)
|α〉〈α|.

1.6. Prove the validity of the representation quoted in Equation (1.56) for the
Kronecker delta, where k and k′ are two discrete wave vectors for plane-
wave states in a system of volume V . You may assume the system volume
to be a cube with sides of length L (so V = L3) parallel to the x, y, and z

coordinate axes and apply periodic boundary conditions over the length L.

1.7. For an interacting electron gas, prove that the interaction term v(q) in the
wave-vector representation takes the form quoted in Equation (1.66) when
the the spatial interaction in a 3D system has the screened Coulomb form
quoted in Equation (1.65). Hence, confirm that v(q) is proportional to 1/q2

in the limit of negligible screening. Next repeat this question for an electron
gas in the 2D case (a charged sheet), showing that v(q) tends to a constant at
small q and for negligible screening.

1.8. Evaluate the commutators [a†
q,H] and [a†

qaQ,H], when the a† and a operators
are boson operators and the Hamiltonian H is given by

H =
∑

k

Eka
†
kak,

where Ek is the quasiparticle boson energy.

1.9. By analogy with discussion later in Section 5.6, it is convenient in super-
conductivity theory to introduce creation and annihilation operators for
pairs of electrons. We define b

†
k = c

†
k,↑c

†
−k,↓ and bk = c−k,↓ck,↑, where

c† and c are fermion operators and ↑ and ↓ denote the spin projections
up and down, respectively. Show that b† and b satisfy the following mixed
(anti)commutation relations.

[bk,b
†
k′] = (1 − nk,↑ − n−k,↓)δk,k′,

[bk,bk′] = 0,

{bk,bk′ } = 2bkbk′(1 − δk,k′),

where we denote nk,σ = c
†
k,σ ck,σ (with σ =↑ or ↓).

1.10. The calculation given in Subsection 1.5.1 for the weakly interacting boson
gas with most of the particles in the k = 0 state may be extended to study
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other properties. For example, the number of particles F(k) with wave vector
k in the quasiparticle ground state, denoted by |φ0〉, can be calculated using

F(k) = 〈φ0| a†
kak |φ0〉 .

By reexpressing a
†
kak in terms of the quasiparticle operators and using the

ground-state property that they satisfy αk |φ0〉 = 0 for all k, derive an expres-
sion for F(k) in terms of the quantities k2/2m and Nv(k) as defined in
Subsection 1.5.1.

Make a rough sketch of F(k) versus |k| for the special case when v(k) is
a positive constant (independent of k). In this special case show that F(k)

has an approximate power-law dependence on k = |k| in both of the small-k
and large-k limits, i.e., show that it behaves asymptotically like kλ where λ

is a constant. Deduce the values of λ in each of these limits.

1.11. Evaluate the commutators [S+
i ,S−

j ] and [S±
i ,Sz

j ] for spin one-half operators
by making use of the HP transformation in Equation (1.85) and the properties
of boson operators. Express your results in terms of spin operators, and check
that your results are consistent with Equation (1.84).

1.12. Verify Equation (1.94) for the exchange term J (k) at wave vector k in a
b.c.c. ferromagnetic lattice with nearest-neighbor exchange. Derive also the
corresponding expressions for J (k) in the case of a s.c. lattice with nearest-
neighbor exchange.

1.13. The coupling between SWs and phonons may be described by the Hamilto-
nian

H =
∑

k

[
ωka

†
kak + �kb

†
kbk + ck(akb

†
k + a

†
kbk)

]
,

where a
†
k and ak are the boson operators to create and annihilate a SW of

energy ωk, while b
†
k and bk are the boson operators to create and annihilate a

phonon of energy �k. Also ck is a real, positive coupling coefficient between
the two fields. Show that a transformations to new boson operators, given by

ak = Ak cos(φk) + Bk sin(φk) and bk = Bk cos(φk) − Ak sin(φk)

with φk representing a real quantity, can be used to reexpress the Hamiltonian
in a quasiparticle (or diagonalized) form as

H =
∑

k

[
εkA

†
kAk + EkB

†
kBk

]
.

Find the value of φk to achieve this, and deduce the quasiparticle energies εk

and Ek.
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Time Evolution and Equations of Motion

In this chapter we discuss the time evolution of quantum-mechanical (QM)
systems with a focus on the operator properties. This aspect of their behavior can be
described in terms of three possible representations (or pictures) that differ in their
treatment of the time dependence. The most common divisions are the Schrödinger,
Heisenberg, and interaction pictures. In the Schrödinger picture the operators are
time independent whereas all the time dependence is put into the wave functions. In
the Heisenberg picture, by contrast, all the time dependence is associated with the
operators and the wave functions do not change with time. In the interaction picture
(sometimes known as the Dirac representation), there is an intermediate situation,
with the time dependence being shared between the wave functions and operators,
depending on the Hamiltonian. The interaction picture can be particularly useful
when the system is acted on by time-dependent external forces or potentials. This
last approach provides a pathway to important developments in quantum field
theory and diagrammatic perturbation methods that were pioneered by F. J. Dyson,
R. P. Feynman, and others.

Starting from general considerations of the time evolution of quantum systems,
the operator equation of motion can be established. Then, by solving this equation
(either individually for a single operator or sometimes as a set of coupled operator
equations), the technique can be applied to examples of many-body systems to
deduce properties of the excitation spectrum. This is done here as a preliminary
stage before we introduce the more powerful method of Green’s functions in Chap-
ter 3. Some of the applications to be considered in this chapter include the forced
quantum harmonic oscillator, acoustic and optic phonons in 1D systems, electronic
excitations in 2D graphene sheets, density fluctuations in an interacting electron
gas (plasmon modes), and a revisiting of the weakly interacting boson gas problem
from Section 1.5.

34
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2.1 Operator Methods in Different Quantum Pictures

2.1.1 Schrödinger and Heisenberg Pictures

In the usual description employed in elementary QM (see, e.g., [1, 2]) the wave
function is time dependent, whereas the operators do not (normally) have any
explicit time dependence. This is referred to as the Schrödinger picture. The time-
dependent Schrödinger equation is written as

i
d

dt
|φS(t)〉 = H|φS(t)〉, (2.1)

where H is the time-independent Hamiltonian. This expression can be integrated to
give the formal solution for the Schrödinger wave function |φS(t)〉 as

|φS(t)〉 = e−iHt |φS(0)〉, (2.2)

which puts all the time evolution of the wave function into the exponential operator.
As mentioned, in the Schrödinger picture we have dA/dt = 0 for any operator
A, but for an observable, such as the expectation value 〈A〉 = 〈φS(t)|AS |φS(t)〉
corresponding to the operator AS = AS(0) ≡ A, this time independence may not
be applicable. In particular, it follows that

i
d

dt
〈A〉 = i

{(
d

dt
〈φS(t)|

)
A|φS(t)〉 + 〈φS(t)| d

dt
A|φS(t)〉 + 〈φS(t)|A d

dt
|φS(t)〉

}
= −〈φS(t)|HA|φS(t)〉 + 〈φS(t)|AH|φS(t)〉
= 〈φS(t)|[A,H]|φS(t)〉 = 〈[A,H]〉,

where the Schrödinger Equation (2.1) was used to simplify the preceding expres-
sion. Thus we see that, if the operator A commutes with the Hamiltonian H, the
expectation value 〈A〉 is a constant of motion; otherwise it will be time dependent.

By contrast, in the Heisenberg picture a transformation is defined to make the
operators time dependent, while the wave functions become time independent. This
is achieved by defining the new wave function in terms of the time-independent
H as

|φH(t)〉 = eiHt |φS(t)〉 = eiHt e−iHt |φS(0)〉 = |φS(0)〉, (2.3)

The result is obviously independent of t , and we denote it simply by |φH 〉. We
suppose that any operator A (in the Schrödinger picture) becomes AH(t) in the
Heisenberg picture, and we need to find this quantity. The connection is that any
QM matrix element must be the same in each picture, and so

〈φ′
H |AH(t)|φH 〉 = 〈φ′

S(t)|A|φS(t)〉.
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However, we know that 〈φ′
S(t)|A|φS(t)〉 = 〈φ′

H |eiHtAe−iHt |φH 〉 from Equa-
tion (2.3), and therefore the required result is

AH(t) = eiHtAe−iHt . (2.4)

It is seen that the time derivatives of the wave function and operator in the
Heisenberg picture are

d

dt
|φH 〉 = d

dt
|φS(0)〉 = 0,

and

d

dt
AH(t) = iHeiHtAe−iHt − ieiHtAe−iHtH = iHAH(t) − iAH (t)H.

Hence the equation of motion for the operator is

d

dt
AH(t) = i [H,AH (t)] . (2.5)

It follows that the Hamiltonian H remains time independent in the Heisenberg
picture (because it commutes with itself). More generally, an additional term
eiHt (∂A/∂t)e−iHt could be included on the right-hand side [17].

Later in this chapter we will present several examples in which Equation (2.5)
is employed to study the frequencies (or energies) of the excitations in many-body
systems. This will include a second look at some of the systems that were treated
in Section 1.5 using diagonalization transformations.

We note that in the Heisenberg picture the time evolution of the system is deter-
mined either by integrating the operator equation of motion or by using frequency
Fourier transforms. In the Schrödinger picture the system evolution is found by
integrating the Schrödinger equation. In both cases we get the same answers, and
thus we may use whichever specific picture is more convenient. For example, the
magnetic and electric fields in Equation (1.16) of Subsection 1.1.2 are in the Heisen-
berg picture. However, in some calculations such as for the interaction between
fields and atoms, it may be more convenient to use the Schrödinger picture.

The interaction picture, which we consider next, is usually convenient if we
want to study the effect of a small interaction term Hint (t) when it is added to
the Hamiltonian of a solved system H0 (see, e.g., [29, 30]). Another application
of the interaction picture, which also illustrates the use of coherent states, is given
later in Section 2.2.

2.1.2 Interaction Picture and the Time Evolution Operator

To solve problems where there is a time-dependent term in the Hamiltonian, it is
often convenient to work in the interaction picture, which is defined in the following
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text. It is helpful first to write the Hamiltonian in the form H = H0+Hint (t), where
H0 denotes the “free” (or noninteracting) Hamiltonian of the system and is gener-
ally time independent. The extra term Hint (t) represents an external perturbation
part, which is typically assumed to be weak compared to H0.

We start by considering the Schrödinger Equation (2.1). Bearing in mind that the
total Hamiltonian H is now time dependent, the equation can be formally integrated
to give

|φS(t)〉 = U(t)|φS(0)〉. (2.6)

This provides us with the definition of the unitary time-evolution operator U(t),
which gives us |φS(t)〉 at any time t > 0 in terms of the initial value |φS(0)〉 at
t = 0. This operator satisfies the differential equation

i
d

dt
U(t) = HU(t), (2.7)

subject to the initial condition that dU(t)/dt = 0 at t = 0.
First, in the absence of Hint (t) the time evolution of the noninteracting Hamilto-

nian H0 is given by

i
d

dt
U0(t) = H0U0(t), (2.8)

which may be integrated to yield the solution

U0(t) = exp

[
−i

∫ t

0
H0(τ )dτ

]
. (2.9)

If H0 is independent of time (which might typically be the case) we have simply
U0(t) = exp (−iH0t), as in Subsection 2.1.1.

Now we introduce another form of the wave function, denoted by |φint (t)〉, which
will represent the wave function in the interaction picture:

|φint (t)〉 = U
†
0 (t) |φS(t)〉 . (2.10)

This relation can also be rearranged using the unitary property to give

|φS(t)〉 = U0(t) |φint (t)〉 . (2.11)

To study the time evolution of the wave function in the interaction picture we will
find an equation of motion for the operators. We first substitute Equation (2.11) into
the Schrödinger equation to obtain

i
d

dt
U0(t)|φint (t)〉 = HU0(t)|φint (t)〉. (2.12)
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After some straightforward algebraic manipulation (as in Problem 2.1), this
equation gives the time dependence more explicitly in the form

i
d

dt
|φint (t)〉 = Vint (t)|φint (t)〉, (2.13)

where we define the form of the Hamiltonian expressed in the interaction picture as

Vint (t) = U
†
0 (t)Hint (t)U0(t) . (2.14)

This result is just a unitary transformation of Hint (t). Our conclusion is that the
wave function |φint (t)〉 satisfies a Schrödinger equation with the interaction picture
Hamiltonian Vint (t) as defined in Equation (2.14).

The time-evolution operator in the interaction picture, denoted by Uint (t), is
defined by analogy with Equation (2.6) as having the basic property

|φint (t)〉 = Uint (t) |φint (0)〉 . (2.15)

From Equations (2.11) and (2.15) it follows that

|φS(t)〉 = U0(t)Uint (t) |φint (0)〉 = U0(t)Uint (t) |φS(0)〉 .

Then, by comparing the preceding result with Equation (2.6), we see that

U(t) = U0(t)Uint (t).

We require the equation of motion in the interaction picture. If we start from
〈A〉 = 〈φS(t)|A|φS(t)〉 in the Schrödinger picture, the expectation value of an
operator A can be reexpressed as

〈A〉 = 〈φS(0)|U †(t)AU(t)|φS(0)〉
= 〈φS(0)|U †

intU
†
0 (t)AU0(t)Uint (t)|φS(0)〉

= 〈φint (t)|Aint |φint (t)〉.
Here we have used Equation (2.15) to arrive at the definition for the operator Aint

that

Aint = U
†
0 (t)AU0(t). (2.16)

To summarize, the important results obtained here relating to the interaction
picture are the wave equation in (2.13) and the equation of motion that

d

dt
Aint = i [H0,Aint ] , (2.17)

which is deduced directly from Equation (2.16).
As a simple check on some limiting cases, we note that for H0 = 0 we have H =

Hint (t), and, therefore, dAint/dt = 0 and i(d/dt)|φS(t)〉 = H|φS(t)〉, yielding the
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Schrödinger picture. By contrast, for Hint (t) = 0 we have H = H0, and, therefore,
idA/dt = [A,H0] and (d/dt)|φS(t)〉 = 0, yielding the Heisenberg picture.

The Dyson Series

In our discussion of the interaction picture we introduced the time evolution opera-
tor Uint (t) by Equation (2.15). We now show how a solution for Uint (t) in the form
of a perturbation expansion, known as the Dyson series, can be obtained.

First, by differentiating Equation (2.15) we find that

d

dt
|φint (t)〉 = d

dt
Uint (t)|φint (0)〉.

Then, substituting Equation (2.13) into the preceding equation leads to

i
d

dt
Uint (t) = Vint (t)Uint (t),

which is subject to the initial condition Uint (0) = 1. Integrating both sides of the
preceding equation with respect to time over the time interval from 0 to t , we find

Uint (t) = 1 − i

∫ t

0
dt1Vint (t1)Uint (t1), (2.18)

where we have used the initial condition. Note that this is only a formal solution (as
an integral equation) because U appears on the left-hand side and then again within
the integral on the right-hand side.

We may now proceed by substituting the formal solution for U into the right-
hand side, giving

Uint (t) = 1 − i

∫ t

0
dt1Vint (t1) + (−i)2

∫ t

0
dt1Vint (t1)

∫ t1

0
dt2Uint (t2).

This process may be continued iteratively on the right-hand side to give a series
expansion, which is the Dyson series in the form

Uint (t) = 1 − i

∫ t

0
dt1Vint (t1) + (−i)2

∫ t

0
dt1Vint (t1)

∫ t1

0
dt2Vint (t2)

· · · + (−i)n

∫ t

0
dt1Vint (t1)

∫ t1

0
dt2Vint (t2)· · ·

∫ tn−1

0
dtnVint (tn) + · · · .

(2.19)

We note that the general term in the preceding Dyson series is a time-ordered
expression because t > t1 > t2 > · · · > tn−1 > 0 and the operators Vint at
different times do not commute with one another in general. It is possible to use
symmetry properties to rewrite the limits of the integral in Equation (2.19) in a
more convenient form. To help in doing this, we introduce an ordering operator for
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Figure 2.1 Domains of integration for Uint (t) in the 2D space defined by the time
variables t1 and t2.

the t-labels as follows. The operator T̂W is defined so that it rearranges the order
of any product of operators in such a way that the associated t-labels decrease on
reading from left to right.

Suppose we examine the effect of this operator for the second-order term only
in the Dyson series (the term with a product of two Vint terms). In the 2D space
defined by t1 and t2 we see from Figure 2.1 that an integration is required over the
domain labeled as D1. Suppose we consider, however, the related integral over a
square, which can be split into two parts as

(−i)2
∫ t

0
dt1

∫ t

0
dt2T̂W {Vint (t1)Vint (t2)} = (−i)2

∫ ∫
D1

dt1dt2Vint (t1)Vint (t2)

+ (−i)2
∫ ∫

D2

dt1dt2Vint (t2)Vint (t1)

= 2(−i)2
∫ ∫

D1

dt1dt2Vint (t1)Vint (t2).

The last step follows because the time labels involved are just interchangeable
(dummy) integration labels. Hence the second-order term in the expansion in Equa-
tion (2.19) is equivalent to

(−i)2

2

∫ t

0
dt1

∫ t

0
dt2T̂W {Vint (t1)Vint (t2)} .

Generalizing the preceding argument to the higher-order terms in Equation (2.19),
we arrive at the Dyson series in an alternative form as

Uint (t) = 1 +
∞∑

n=1

(−i)n

n!

∫ t

0
dt1

∫ t

0
dt2 · · ·

∫ t

0
dtn

× T̂W {Vint (t1)Vint (t2) · · · Vint (tn)} . (2.20)
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A shorthand for the preceding result, which is sometimes convenient to employ,
involves rewriting it in an exponential form as

Uint (t) = T̂W

[
exp

{
−i

∫ t

0
dt1 Vint (t1)

}]
. (2.21)

As a word of caution, we must keep in mind that the exponential expansion in the
preceding expression must always be made before doing the integration, otherwise
the role of the T̂W operator is not meaningful.

It will be seen later, in Chapter 8, that a formalism analogous to the Dyson
series described here is used for the S-matrix expansion as an important step in
establishing a diagrammatic perturbation theory using Green’s functions.

2.2 Forced Quantum Harmonic Oscillator

In this section, we use the interaction picture in QM to study the behavior of
a harmonic oscillator acted on by a time-dependent external force. This system
will also serve as an example in which coherent states play an important role. A
more general account of the time evolution of coherent states is given afterward in
Section 2.3.

The forced harmonic oscillator (FHO) presents a problem of some significance
in QM because it is one of the relatively few nontrivial problems that can be solved
exactly in 1D. It allows us to know exactly how the states of the FHO evolve with
time. As background the FHO was first examined using the path integral technique
by Feynman [31]. Later Husimi [32] and Kerner [33] found an exact solution of
the Schrödinger equation for this system. Interestingly it was shown [34] that the
evolution of the quantum FHO leads to coherent states.

The Hamiltonian for the forced system in 1D (with position coordinate x and
momentum operator p, as before) can be written as

H = p2

2m
+ 1

2
mω2x2 − xf (t), (2.22)

where f (t) is a time-dependent external force that is switched on at time t =
0, so that f (t) → 0 as t → 0. We assume the system to be initially in the
oscillator ground state |0〉 at time t = 0, and we are interested here in obtaining the
state of the forced system at any later time t . It follows from the previous section
that in the interaction picture this state can be found from |φint (t)〉 = Uint (t)|0〉.
The Hamiltonian may be expressed as H = H0 + Vint (t), where H0 refers to the
unperturbed system and is given by Equation (1.4) in second-quantized form, while
Vint (t) = −xintf (t) is the potential energy in the interaction picture. On employing
Equation (2.16) we obtain xint (t) in operator form as
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xint = [a exp(−iωt) + a† exp(iωt)
]
/
√

2mω, (2.23)

where we have also used Equation (1.2). Therefore, we find

Vint (t) = F(t)[a exp(−iωt) + a† exp(iωt)], (2.24)

where we have defined F(t) = −f (t)/
√

2mω as a shorthand.
We now refer to the Dyson series in Equation (2.21) to obtain Uint for the system.

For this purpose it is very convenient to use the Magnus expansion [18, 35], which
allows a time-dependent interaction (Vint in this case) to be expanded in a series
of integral terms involving nested commutators of increasing order. Specifically, its
application to Uint allows us to write

Uint (t) = exp
[
V

(1)
int (t) + V

(2)
int (t) + V

(3)
int (t) + · · ·

]
, (2.25)

where the lowest order terms in the preceding exponent are

V
(1)
int (t) = (−i)

∫ t

0
dt1Vint (t1),

V
(2)
int (t) = (−i)2

2!

∫ t

0
dt1

∫ t1

0
dt2 [Vint (t1),Vint (t2)],

V
(3)
int (t) = (−i)3

3!

∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3 {[Vint (t1),[Vint (t2),Vint (t3)]]

+ [Vint (t3),[Vint (t2),Vint (t1)]]} . (2.26)

The higher-order terms have increasing products of Vint in nested commutators. The
validity of the expansion requires Vint to be small; in fact, convergence is ensured
only if t is sufficiently small that |Vint |t � 1.

The relevance of the preceding identity in the context of the FHO is that, in this
case, we have the commutator property

[Vint (t1),Vint (t2)] = −2iF (t1)F (t2) sin[ω(t1 − t2)] (2.27)

at any two time labels t1 and t2. This is easily proved (see Problem 2.3) by using
Equation (2.24) and the commutation properties of the boson operators a and a†.
The useful result is that the right-hand side of the preceding equation is a scalar
quantity and not an operator. Consequently, the higher-order commutators like
[Vint (t),[Vint (t1),Vint (t2)] ] are zero. This means that V

(3)
int (t) and all higher-order

terms in Equation (2.25) are identically zero and the expansion terminates. Using
this simplification we obtain an explicit solution for the Dyson series as
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Uint (t) = exp

{
−i

∫ t

0
dt1Vint (t1) − 1

2

∫ t

0
dt1

∫ t1

0
dt2[Vint (t1),Vint (t2)]

}
.

(2.28)

To explore further the consequences of this result we define two scalar quantities
ξ(t) and ζ(t) by

ξ(t) = −i

∫ t

0
dt1F(t1)e

iωt1,

ζ(t) =
∫ t

0
dt1F(t1)

∫ t1

0
dt2F(t2) sin[ω(t1 − t2)].

The insertion of these expressions into the time evolution operator in Equation
(2.28) then leads to

Uint (t) = exp{ξ(t)a† − ξ ∗(t)a + iζ(t)}
= eiζ(t) exp{ξ(t)a† − ξ ∗(t)a} = eiζ(t)D[ξ(t)]. (2.29)

In the last step we have employed the definition of the coherent-state displacement
D from Equation (1.31).

Now that we have obtained the time evolution operator for the FHO we can
examine the state of the system in the interaction picture. We note that, if the initial
state at t = 0 is the ground state |0〉, the state of the system at a later time t is
given by

|φint (t)〉 = Uint (t)|0〉
= eiζ(t)D[ξ(t)]|0〉 = eiζ(t)|ξ(t)〉, (2.30)

where Equation (1.35) has been employed. We see that the ground state in the FHO
evolves into a coherent state, which has the property of minimum uncertainty.

Next we consider the situation in which the initial state is a coherent state
|φint (0)〉 = |α〉 and we examine the time evolution of this coherent state in the
FHO. By employing Equations (1.35) and (2.29) we obtain

|φint (t)〉 = Uint (t)|α〉 = Uint (t)D(α)|0〉
= eiζ(t)D[ξ(t)]D(α)|0〉.

We may now substitute Equation (1.31) into the preceding equation to find

|φint (t)〉 = eiζ(t) exp{ξ(t)a† − ξ ∗(t)a} exp{αa† − α∗a}|0〉.
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Next, if we use the expansion given by Equation (1.32), we obtain

|φint (t)〉 = eiζ(t) exp

{
1

2
(ξ(t)α∗ − ξ ∗(t)α)

}
× exp{(α + ξ(t))a† − (α∗ + ξ ∗(t))a} |0〉.

Finally, employing Equation (1.35) one more time, we arrive at the important result
that

|φint (t)〉 = eiζ(t) exp

{
1

2
(ξ(t)α∗ − ξ ∗(t)α)

}
D[α + ξ(t)]|0〉

= eiζ(t) exp

{
1

2
(ξ(t)α∗ − ξ ∗(t)α)

}
|α + ξ(t)〉

= eiγ (t) |α + ξ(t)〉. (2.31)

Here the phase term appearing in the last line has been shown to correspond to
γ (t) = ζ(t) − (i/2)[ξ(t)α∗ − ξ ∗(t)α]. We may conclude, therefore, that when
the FHO starts in a coherent state |α〉 at t = 0 it will evolve with time into other
coherent states that are specified by |α + ξ(t)〉. Other aspects of the time evolution
of the FHO will be examined later (see Subsection 6.4.2).

2.3 Time Evolution of Coherent States

Continuing with the discussion of the basic properties of coherent states given in
Section 1.3, we now address the time evolution of a coherent state |α(t)〉. As in
Chapter 1, this will be done in terms of the simple harmonic oscillator (SHO)
Hamiltonian. In addition to the general references given previously for coherent
states, we mention that another useful reference for the time evolution is the book
by Bongaarts [36].

By analogy with Equation (2.2) we have the formal result that |α(t)〉 =
e−iHt |α(0)〉, where H is the time-independent SHO Hamiltonian. Therefore, using
the expansion in terms of harmonic oscillator states obtained in Equation (1.38) we
find

|α(t)〉 = e−iHt e−|α(0)|2/2
∞∑

n=0

(
α(0)

)n
√

n!
|n〉

= e−|α(0)|2/2
∞∑

n=0

(
α(0)

)n
√

n!
e−i(n+1/2)ωt |n〉.

We have used Equation (1.5) in the second line of the preceding text. Then, with
the aid of Equation (1.7) it follows that
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|α(t)〉 = e−|α(0)|2/2 e−iωt/2
∞∑

n=0

(
α(0)a†e−iωt

)n
n!

|0〉

= exp
[− |α(0)|2 /2 − iωt/2 + α(0)a†e−iωt

] |0〉
= e−iωt/2

∣∣e−iωtα(0)
〉
. (2.32)

We have now established the important property that a coherent state remains coher-
ent as it evolves with time.

Furthermore, from the preceding expression we see that α(t) = e−iωtα(0) for
the evolving coherent state, and so it follows that

d

dt
α(t) = −iωα(t) = −iω Re[α(t)] + ω Im[α(t)]. (2.33)

Thus, equating real and imaginary parts on both sides of the preceding equation,
we have

d

dt
Re[α(t)] = ω Im[α(t)],

d

dt
Im[α(t)] = −ω Re[α(t)]. (2.34)

Finally, we may examine the time dependence of the expectation values for the
position and momentum operators x and p by using

〈x(t)〉 = 〈α(t)|x|α(t)〉, 〈p(t)〉 = 〈α(t)|p|α(t)〉. (2.35)

From Equation (1.2) we note that

x(t) =
√

1

2mω
(a† + a), p(t) = i

√
mω

2
(a† − a) (2.36)

in terms of the boson creation and annihilation operators. Therefore, we have

〈x(t)〉 =
√

1

2mω
〈α(t)|(a† + a)|α(t)〉

=
√

1

2mω

(
α(t) + α∗(t)

) =
√

2

mω
Re[α(t)]. (2.37)

In a similar way, it is found that

〈p(t)〉 =
√

2mω Im[α(t)]. (2.38)

From the previously mentioned equations we may conclude

d

dt
〈x(t)〉 =

√
2

mω

d

dt
Re[α(t)] =

√
2ω

m
Im[(α(t)] = 〈p(t)〉

m
, (2.39)

and similarly

d

dt
〈p(t)〉 = −mω2 〈x(t)〉 . (2.40)
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This analysis, culminating in Equations (2.39) and (2.40), has shown that the expec-
tation values of x and p satisfy the classical equations of motion. The significance
is that the classical limit of QM can be studied by using coherent states.

In concluding this section we remark that, due to the connection with the oscilla-
tor model, the applicability of coherent states extends beyond the original concept
for photons in quantum optics to other wavelike excitations. For example, the appli-
cability to magnons (spin waves) was developed in [37, 38].

2.4 Lattice Dynamics for Phonons

We now turn from the rather formal results considered so far in this chapter for the
QM time evolution to make some applications to excitations in condensed matter
systems. We start by considering phonons.

The simplest treatment of lattice dynamics, as a description of the quantized
vibrational waves or phonons in solids, can be developed in terms of mass-and-
spring arrangements in 1D chains of atoms, as in [9, 19, 20, 39] for example. For a
fuller discussion of lattice dynamics the 3D character of the crystal structure has to
be included (see, e.g., [40, 41]). In an alternative approach, calculations for phonons
as waves in continuous elastic media are presented later in Chapters 6 and 7.

2.4.1 Monatomic Chain

Here we consider the simplest case of the monatomic lattice shown in Figure 2.2,
where an infinite number of identical masses m are joined by identical springs
(with spring constant C). We assume un is the longitudinal displacement of the
mass labeled n from its equilibrium position denoted as x0n. Then the instantaneous
position is denoted by xn = x0n +un. Therefore, the Hamiltonian for small (elastic)
displacements in the system is given by

H =
∑

n

p2
n

2m
+ C

2

∑
n

(un − un+1)
2, (2.41)

where pn denotes the momentum for mass n.

Figure 2.2 A simple 1D model for vibrational waves in a monatomic lattice with
identical masses m coupled by identical springs with constant C. The longitudinal
displacement of the nth mass is denoted by un.
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Quantization is introduced into the theory by the usual commutator condition
between operators that [un,pm] = iδn,m. The next step involves making a trans-
formation to wavenumber coordinates (i.e., taking a 1D Fourier transform) for the
momentum and the displacement as

pn = 1√
N

∑
k

pke
ikxn, un = 1√

N

∑
k

uke
ikxn, (2.42)

where k is the wavenumber. Substitution of Equation (2.42) into the Hamiltonian
(2.41) leads to

H =
N∑

n=1

1

2m

∑
k,k′

1

N
pkpk′ei(k+k′)xn + C

2

∑
n

1

N

[∑
k

uk

{
eikxn − eik(xn+a)

}]2

.

Here a denotes the equilibrium distance between adjacent masses. Further simplifi-
cation comes about by noting the Kronecker-delta relationship (the analogue of the
property stated in Equation (1.56) for 3D wave vectors) that

1

N

N∑
n=1

ei(k+k′)xn = δk,−k′ . (2.43)

We find after further manipulation that the Hamiltonian is

H =
∑

k

(
1

2m
pkp−k + 1

2
mω2

kuku−k

)
, (2.44)

where

ωk =
√

2C

m
{1 − cos(ka)} =

√
4C

m
| sin(ka/2)|. (2.45)

Some limiting cases for small and large wavenumbers are

ω2
k =

{
(Ca2/m)k2, for ka � 1,
4C/m, for ka = π .

(2.46)

From the first line of the previously mentioned expression we see that the mode
behaves like a sound wave with ωk = vk, where v2 = Ca2/m, in the long-
wavelength limit. The second line in the equation provides the maximum frequency,
which occurs at the Brillouin zone boundary k = π/a in 1D.

We note that the other convenient way to derive the dispersion relation in Equa-
tion (2.45) is to use the equation-of-motion method [39]. The Newtonian equation
of motion for any mass in the chain is given by
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m
d2un

dt2
= −C(un − un−1) + C(un+1 − un)

= −C(2un − un−1 − un+1). (2.47)

The set of coupled equations (for different n) is solved by using Bloch’s theorem
for the 1D system (see, e.g., [19, 20, 39]). This theorem is a symmetry requirement
following from the translational invariance of the 1D lattice of atoms under dis-
placements by a. In the present case, it tells us to seek wavelike solutions of the
form

un = u exp[i(kan − ωkt)], (2.48)

where ωk is the angular frequency. Substituting Equation (2.48) into (2.47) just
leads to the same expression as in Equation (2.45).

The conclusion from Equation (2.44) is that the Hamiltonian has the form of a
simple harmonic oscillation for each wavenumber. By analogy with the procedure
in Chapter 1 we may define creation and annihilation operators as

ak = 1√
2

(
uk

lk
+ ip−klk

)
,

a
†
k = 1√

2

(
uk

lk
− ip−klk

)
, (2.49)

with the shorthand notation that lk = 1/
√

mωk . These operators obey the usual
boson commutation relations in terms of the 1D wavenumbers:

[ak,a
†
k′] = δk,k′, [ak,ak′] = [a†

k,a
†
k′] = 0.

Now, by using Equation (2.49) and the commutation relations that [un,H] =
i dun/dt and [uk,pk′] = iδk,k′ , the Hamiltonian in Equation (2.44) may be
reexpressed as

H =
∑

k

ωk

(
a

†
kak + 1/2

)
. (2.50)

A typical dispersion relation is shown in Figure 2.3 for ωk versus ka. We see, as
anticipated, that when k → 0 the relationship becomes linear and also ωk vanishes
at zero wavenumber, i.e. there is a soft-mode behavior at zero wavenumber (as
indicated by the dotted circle in the figure).

2.4.2 Diatomic Chain

As an extension we next consider the 1D diatomic lattice shown in Figure 2.4,
where all the connecting springs are identical (and of length a), but there are
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Figure 2.3 Dispersion relation showing a plot of the angular frequency ωk versus
dimensionless wavenumber ka for the acoustic phonon mode in a monatomic 1D
lattice (see the text).

Figure 2.4 The 1D chain model for vibrational waves in a diatomic lattice with
alternating masses m1 and m2 coupled by springs C. The periodicity length is 2a.

alternating masses m1 and m2 along the chain. We will assume that m1 > m2, for
convenience. We may visualize the system as consisting of a repeated pattern of
“cells” (labeled by n) with each cell of length 2a consisting of a mass m1 and a
mass m2. The Hamiltonian in this case can be written as

H =
∑

n

[
u̇2

n

2m1
+ v̇2

n

2m2

]
+ C

2

∑
n

[
(un − vn)

2 + (un − vn−1)
2
]
, (2.51)

where un (or vn) denotes the longitudinal displacement from its equilibrium posi-
tion of the mass m1 (or m2) in cell n. Here the dot denotes a time derivative
d/dt .

We may proceed as in the case of a monatomic chain to find the dispersion rela-
tion for any mode. Here it is convenient to follow the equation-of-motion method.
Newton’s equations of motion for the masses m1 and m2, respectively, are

m1ün + C (2un − vn − vn−1) = 0,

m2v̈n + C (2vn − un − un+1) = 0. (2.52)
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Following Bloch’s theorem as before, we now look for solutions of the form

un = u exp[i(kan − ωkt)] and vn = v exp[i(kan − ωkt)],

where u and v are amplitude factors. Substituting for un and vn in Equation (2.52)
we obtain

m1ω
2
k = C

u

(
2u − veika − ve−ika

) = 2C
(

1 − v

u
cos(ka)

)
,

m2ω
2
k = C

v

(
2v − ue−ika − ueika

) = 2C
(

1 − u

v
cos(ka)

)
. (2.53)

Then, by eliminating u/v, the implicit dispersion relation for the diatomic chain is
found to be (

1 − m1ω
2
k

2C

)(
1 − m2ω

2
k

2C

)
= cos2(ka),

which can be rearranged to give the result

ω2
k = C

(
1

m1
+ 1

m2

)
± C

[(
1

m1
+ 1

m2

)2

− 4 sin2(ka)

m1m2

]1/2

. (2.54)

We see now that there are two modes in the excitation spectrum, corresponding
to the upper and lower signs. This is to be expected on general principles because
there are two atoms in each unit cell. As a check, if we put m1 = m2 = m we find
that one solution becomes the same as in Equation (2.45) for the monatomic case.
The interpretation of the other branch is left for consideration in Problem 2.5.

The dispersion relations of the two modes in the general case have the form
shown in Figure 2.5. The lower (or acoustic) phonon branch occupies the fre-
quency range ω ≤ (2C/m1)

1/2, while the higher (or optic) phonon branch occupies
(2C/m2)

1/2 ≤ ω ≤ [2C(m1 + m2)/m1m2]1/2. It is useful to examine the rela-
tive phases of the atomic displacements for the two modes, which we will do for
wavenumber k = 0. In this case, it is found from Equations (2.53) and (2.54) that

u/v =
{

1, for the acoustic phonon,
−m2/m1, for the optic phonon.

(2.55)

Thus, for the acoustic mode, the direction and the amplitude of the oscillations of
both masses are the same and they are in phase. By contrast, however, for the optic
mode the two masses oscillate in opposite directions and the heavier one has the
smaller amplitude.
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Figure 2.5 Illustration of the dispersion relations for acoustic and optic phonons in
a 1D diatomic chain. The scaled angular frequency ωkm

1/2
1 /C1/2 is plotted versus

the dimensionless wavenumber ka. We employed Equation (2.54) with parameter
values corresponding to m1 = 2m2. The Brillouin zone boundary is at ka =
π/2 � 1.57.

2.5 The Interacting Boson Gas Revisited

For the next application we briefly reconsider the earlier calculation given in Sub-
section 1.5.1 for the excitation spectrum of a weakly interacting boson gas at suffi-
ciently low temperatures that most of the particles are in the single-particle ground
state, as in a Bose–Einstein condensation (BEC). We recall that an approximate,
or reduced, Hamiltonian HR was obtained in Equation (1.70), which was solved
by making a Bogoliubov transformation to a new set of operators. It will be shown
here that the use of the operator equation of motion provides an alternative approach
without requiring an explicit transformation to be found.

We begin by rewriting the expression for HR more conveniently as

HR =
∑

k

′ [
Aka

†
kak + Bk(a

†
ka

†
−k + aka−k)

]
, (2.56)

where Ak and Bk are simply shorthands for [(k2/2m) + Nv(k)] and Nv(k)/2,
respectively. From the operator equation of motion in Equation (2.5) it follows that
ak satisfies

d

dt
ak = i[HR,ak].

The commutator on the right-hand side of the preceding expression can easily be
evaluated, keeping in mind that the only contributions come when the wave-vector
labels in the commutators match. The result leads to



52 Time Evolution and Equations of Motion

d

dt
ak = −iAkak − 2iBka

†
−k , (2.57)

so we see that this equation provides a coupling between the operators ak and a
†
−k.

Another similar equation of motion can be formed for a
†
−k, giving

d

dt
a

†
−k = iAka

†
−k + 2iBkak. (2.58)

The equation of motion for the a
†
−k operator couples back to the ak operator.

To find the excitations we seek solutions of the coupled Equations (2.57) and
(2.58) that have a normal-mode time variation like exp(−iωt), where ω is the
angular frequency of an excitation. This means that we can make the replacement
d/dt → −iω, which yields the following pair of equations:

(ω − Ak)ak = 2Bka
†
−k and (ω + Ak)a

†
−k = 2Bkak. (2.59)

The solutions for the frequency (and hence for the energy h̄ω because we use units
such that h̄ = 1) are seen to be ω = ±Ek, where

Ek =
√

A2
k − 4B2

k . (2.60)

Comparison of Equation (2.60) with the expression obtained for the quasiparticle
energy in Subsection 1.5.1 verifies that the same dispersion relation has indeed been
obtained by the equation-of-motion method.

2.6 Exchange and Dipole-Exchange Spin Waves

A simple introduction to SWs at low temperatures T � TC was given in Subsec-
tion 1.5.2 for a ferromagnet described by the Heisenberg exchange Hamiltonian.
Here we will supplement that calculation of the dispersion relation by adding the
effects of magnetic dipole-dipole interactions, which turn out to be of significance
for the SWs at sufficiently small wave vectors in the Brillouin zone. Here we will
for convenience employ the operator equation-of-motion method.

The total spin Hamiltonian can now be written as H = Hex + Hdip, where
Hex is just the previous expression in Equation (1.81) that included the exchange
interactions plus an applied magnetic field term, whereas Hdip is the extra term
describing the dipolar interactions between all sites (see, e.g., [7, 26, 39]):

Hdip = 1

2

(
μ0g

2μ2
B

4π

)∑
i,j

{
Si · Sj

r3
ij

− 3(rij · Si)(rij · Sj )

r5
ij

}
. (2.61)

Here rij is the vector joining the sites i and j . By contrast with the short-range
exchange interactions between nearest neighbors, the dipolar interactions fall off
more slowly with distance apart of the atomic sites.
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Despite the more complicated form of the preceding expression compared with
the exchange term, we may follow the same approach as in Subsection 1.5.2 by
employing the Holstein–Primakoff (HP) transformation from the spin operators to
boson operators. Also we will approximate the HP transformation for low temper-
atures as in Equation (1.85). After some straightforward but lengthy algebra (see
Problem 2.7) it is found that the previous Equation (1.91) for the Hamiltonian in
second quantization and in the wave-vector representation becomes generalized to

H =
∑

k

{
P(k)a

†
kak + Q(k)a

†
ka

†
−k + Q∗(k)aka−k

}
, (2.62)

where we have dropped an unimportant constant term to focus on the dynamics.
Here the coefficients P(k) and Q(k) are given by

P(k) = gμBB0 + S[J (0) − J (k)] − S

[
Dzz(0) + 1

2
Dzz(k)

]
,

Q(k) = 1

4
S[Dxx(k) − Dyy(k) + 2iDxy(k)].

The Fourier-transformed exchange terms J (k) were defined previously in Subsec-
tion 1.5.2, and the Dαβ(k) are corresponding terms for the dipole-dipole interac-
tions (with α and β denoting Cartesian components):

Dαβ(k) = μ0g
2μ2

B

4π

∑
r

3rαrβ − |r|2δα,β

|r|5 exp(−ik · r) . (2.63)

Here the sum over r is over all lattice translation vectors (but excluding the r = 0
term).

When we form the operator equation of motion for ak using Equations (2.5) and
(2.62) we find that ak is coupled to the a

†
−k operator through the dipolar terms. The

equation of motion is

d

dt
ak = −iP (k)ak − 2iQ(k)a

†
−k , (2.64)

while the corresponding equation for a
†
−k is found to be

d

dt
a

†
−k = iP (k)a

†
−k + 2iQ∗(k)ak. (2.65)

Then we may follow the same steps to find the excitation energy or frequency as
used earlier in Section 2.5. These steps include making the replacement d/dt →
−iω in Equations (2.64) and (2.65) leading to ω = ±Ek as a consistency condition,
where

Ek =
√

|P(k)|2 − 4|Q(k)|2. (2.66)
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This result for the dipole-exchange SW regime shows how the previous SW disper-
sion relation for a Heisenberg ferromagnet in Equation (1.93) becomes generalized
when the dipole-dipole interactions are included. It is known that another physical
effect due to the dipolar terms (see, e.g., [26]), apart from modifying the dispersion
relation for the SWs, is that the precession of the spin vectors becomes elliptical,
rather than the circular precession depicted in Figure 1.7 for the Heisenberg ferro-
magnet case.

An approximate analytic evaluation of the dipole-dipole sums in Equation (2.63)
was given in [42] by assuming a s.c. lattice structure and small wave vectors such
that L−1 � |k| � a−1, where L is of the order of the sample dimensions and
a is the lattice parameter. This allows the dipole-dipole sums to be related to the
sample magnetization M0. On using these results it is found that the SW dispersion
corresponding to Equation (2.66) approximates at small |k| to

Ek = [{gμBB0 + SJ (ak)2 + gμBμ0M0 sin2 θ
} {

gμBB0 + SJ (ak)2
}]1/2

.

(2.67)

Here the notation is that the wave vector k has magnitude k and is at an angle
θ relative to the z direction, which is the magnetization direction. The sample
demagnetizing factor has been taken as zero for simplicity. We notice that the SW
energies (or frequencies) now depend on the direction, as well as the magnitude, of
the propagation wave vector k. Equation (2.67), which is sometimes known as the
Kittel formula, generalizes the result obtained in Subsection 1.5.2 in the absence of
the dipole-dipole interactions.

In the limit of very small k, such that SJa2k2 � gμBμ0M0 when exchange
effects are negligible, there is a further simplification of Equation (2.67) to

Ek = gμB

[
B0(B0 + μ0M0 sin2 θ)

]1/2
. (2.68)

This dipole-dominated SW, known as the magnetostatic mode, ranges between
gμBB0 and gμB[B0(B0 + μ0M0)]1/2 as the angle θ is varied. This behavior has
been well verified by ferromagnetic resonance (FMR) experiments [26].

2.7 Electronic Bands of Graphene

Graphene is a 2D (monolayer) form of carbon that has been the subject of intense
investigations since its experimental fabrication [43] was demonstrated in 2004.
Graphene provides a remarkable example of a 2D elemental crystal lattice, and it
has been shown to display special electronic properties including zero-gap features
in its dispersion relation for the electronic excitations. It has amazing versatil-
ity, whether in pristine condition as a single sheet or when defects, impurities or
adatoms are present. The introduction of edges (as in graphene nanoribbons) has
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Figure 2.6 Lattice structure for a single sheet of graphene, where each carbon
atom lies on one of two interpenetrating sublattices A and B (shown as gray and
black circles, respectively). A possible choice of unit cell is shown with the lattice
vectors a1 and a2.

led to the study of novel types of localized edge modes known as topological edge
modes (to be discussed in Chapter 7) and to speculations about associated magnetic
properties. Reviews of graphene are given, for example, in [44, 45].

In this section we describe the graphene structure and then we employ a hopping
model for the electrons (in a tight-binding approximation) to derive the band struc-
ture of electronic excitations in this material using the operator equation-of-motion
method. The graphene lattice structure for a single sheet is shown in Figure 2.6. It
has a 2D hexagonal or honeycomb structure with two interpenetrating sublattices of
carbon atoms denoted by A and B. The A and B sites are characterized by having
different bond directions (with a relative rotation of 60◦). There are two carbon
atoms per unit cell, and a possible choice for the basic lattice vectors a1 and a2 is
shown in Figure 2.6 corresponding to

a1 =
√

3a0

2
(
√

3, − 1), a2 =
√

3a0

2
(
√

3,1). (2.69)

Here a0 � 0.14 nm denotes the nearest-neighbor carbon-carbon distance. It is easily
shown that the vectors of the 2D reciprocal lattice are (see Problem 2.9)

b1 = 2π

3a0
(1, −

√
3), b2 = 2π

3a0
(1,

√
3). (2.70)

Next we need a Hamiltonian to describe the electronic states in graphene,
where each carbon atom contributes three σ -bonded electron and one π-bonded
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electron in a sp2-hybridized scheme. The wave functions for the π electrons are
only nonzero out of the plane and form much weaker bonds than the in-plane σ

electrons. As a consequence, it turns out to be the π electrons that control the
density of electronic states near the Fermi level, and to a good approximation it is
assumed that they can be treated within the tight-binding model (see, e.g., [20]). In
the notation of second quantization this means that the Hamiltonian for the electrons
may be expressed in terms of a hopping Hamiltonian as in Subsection 1.4.3. In the
present case, we assume for simplicity that the hopping is restricted to the nearest
neighbors (along the carbon-carbon bonds in Figure 2.6). We write

H = −
∑
i,j

tij (a
†
i bj + H.c.), (2.71)

where H.c. denotes Hermitian conjugate. Also i and j refer to sites on the A and B

sublattices, respectively, a
†
i (and ai) and b

†
j (and bj ) are the corresponding creation

(and annihilation) operators for the electrons, and tij is the hopping parameter
(assumed to have the value t between all nearest neighbors and zero otherwise).
A negative sign has been included on the right-hand side of Equation (2.71) so that
t > 0 for graphene.

By analogy with the examples in the previous two sections, we may proceed by
forming the operator equations of motion for ai and bj (which turn out to be coupled
to one another) using Equations (2.5) and (2.71). After the operators have been
Fourier transformed from the site representation to a 2D wave-vector representation
with k = (kx,ky), we find

d

dt
ak = i[H,ak]

= −it

{
2 exp

(
1

2
ikxa0

)
cos

(√
3

2
kya0

)
+ exp

(− ikxa0
)}

bk (2.72)

and
d

dt
bk = i[H,bk]

= it

{
2 exp

(
−1

2
ikxa0

)
cos

(√
3

2
kya0

)
+ exp (ikxa0)

}
ak. (2.73)

The trigonometric factors here are deduced using Figure 2.6. Next we find the nor-
mal mode solutions by making the replacement d/dt → −iω in Equations (2.72)
and (2.73). After some straightforward algebra we find that the solutions are
ω = ±Ek where

Ek = t

[
4 cos2

(√
3

2
kya0

)
+ 4 cos

(√
3

2
kya0

)
cos

(
3

2
kxa0

)
+ 1

]1/2

. (2.74)
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Figure 2.7 Dispersion relation for a 2D graphene sheet, showing the scaled energy
Ek/t plotted against the dimensionless wavenumber component

√
3kya0/π . The

bands of electronic modes, arising as kxa0 varies, appear as the shaded regions.
The vertical dashed lines correspond to the edges of the first Brillouin zone.

This dispersion relation for a complete graphene sheet has several remarkable
features, as reviewed in [44]. We note that the excitation energy is symmetric
about zero energy (as measured relative to the Fermi energy), although this
is no longer the case if the small effects of next-nearest-neighbor hopping are
included (see Problem 2.10). In Figure 2.7 we show a plot of the energy versus
the scaled wavenumber ky , which ranges across the Brillouin zone from −π/

√
3a0

to π/
√

3a0. Because kx may also vary, we obtain energy bands that are shown as
shaded regions with boundaries in this type of plot. It may be noted, in particular,
that there are special points labeled as K and K ′ where Ek = 0. These are known
as the Dirac points, and it is their existence that gives rise to many of the special
electronic properties of graphene, as we will see in later chapters.

For an electronic excitation close to the K point we can easily deduce from
Equation (2.74) that the approximate dispersion relation is

Ek � t

√
δ2
x + 3δ2

y (|δx | � 1, |δy | � 1), (2.75)

where δx = π − 3
2kxa and δy = π

3 −
√

3
2 kya are the rescaled dimensionless wave-

vector components used in making the previously mentioned expansions.

2.8 Density Fluctuations in an Electron Gas

We now study some more properties of fermion systems, this time in 3D, by consid-
ering the density fluctuations in an electron gas. This may be realized, for example,
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in a metal or semiconductor where an electron gas plasma moves in a background of
positively charged quasistatic ions that provide the overall charge neutrality. This is
often referred to as the “jellium” model. It is helpful to start with the noninteracting
gas in 3D as a special case, and then we introduce the interactions afterward to
obtain a description of the plasma oscillations or “plasmons.”

2.8.1 Noninteracting Fermion Gas

In the absence of any interaction terms, the Hamiltonian is given simply by

H =
∑

k

k2

2m
a

†
kak, (2.76)

where m plays the role of an effective mass and k is the wave vector for the
electrons. We now consider the effect of the operator ρ†

q(k) defined by

ρ†
q(k) = a

†
k+qak. (2.77)

This creates an electron of wave vector k + q and also destroys an electron (thereby
creating a “hole,” or the absence of an electron) of wave vector k. We will first
examine its effect on the ground state of the noninteracting system, which is just
a Fermi sphere in wave-vector space with all the electronic states filled up to a
maximum value kF , which is related to the Fermi energy by εF = k2

F /2m. We will
ignore the effects of temperature here, noting that the Fermi–Dirac (FD) distribution
function at temperature T = 0 is simply

n0
k =

{
1, k ≤ kF

0, k > kF

. (2.78)

The effect of the operator ρ†
q(k) is illustrated schematically in Figure 2.8. By the

Pauli exclusion principle, we must have |k + q| > kF and |k| < kF . Therefore, the
overall effect of the operator is to create a particle-hole pair with total wave vector
equal to q. The energy of the excitation (for the electron-hole pair) is simply

ω0(k,q) = (k + q)2

2m
− k2

2m
= q2 + 2k · q

2m
. (2.79)

For a given magnitude q of the wave vector q it follows that the maximum value of
ω0(k,q) is (q2 + 2kF q)/2m, whereas the minimum value is either (q2 − 2kF q)/2m

if q > 2kF or 0 if q ≤ 2kF . Hence the prediction is for a continuum of particle-hole
states with energies lying between the maximum and minimum values just stated.
This behavior is sketched as the shaded region in Figure 2.9.

Next, by including the Coulomb-type interactions, we will show that a new type
of electron-hole excitation may occur with its energy lying outside the continuum
region.
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Figure 2.8 The effect of the operator ρ
†
q(k) in creating an electron outside the

filled Fermi sphere and leaving a hole (or absence of an electron) inside the sphere.

Figure 2.9 Schematic dispersion relations for the electron-hole excitations in an
interacting electron gas, showing the continuum of states (shaded region), as in
Equation (2.79), and the additional plasmon mode when Coulomb interactions are
included (see Subsection 2.8.2).

2.8.2 Interacting Fermion Gas

We now study the effect of the particle-hole operator ρ†
q(k) defined in Equa-

tion (2.77) by using the full form of the Hamiltonian as given in Equation (1.63).
The first step is to form the operator equation of motion for ρ†

q(k), which is found
from the expression
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d

dt
ρ†

q(k) = i[H,ρ†
q(k)] . (2.80)

Using the anticommutation properties of the fermion operators to simplify the pre-
ceding commutator, it may be verified that

[H,ρ†
q(k)] = ω0(k,q)ρ†

q(k)

− 1

2

∑
k′

v(q)
(
a

†
k+qak+k′ − a

†
k+q−k′ak

)(∑
k′′

ρ
†
k′(k′′)

)

− 1

2

∑
k′

v(q)

(∑
k′′

ρ
†
k′(k′′)

)(
a

†
k+qak+k′ − a

†
k+q−k′ak

)
. (2.81)

This result is very complicated to interpret, but we remark first that if the inter-
actions are neglected the equation reduces to

[H,ρ†
q(k)] = ω0(k,q)ρ†

q(k), (2.82)

where ω0(k,q) was defined in Equation (2.79). The equation of motion (2.80) then
becomes

d

dt
ρ†

q(k) = iω0(k,q)ρ†
q(k). (2.83)

This is just an oscillator equation with a time dependence like ρ†
q(k) ∝ exp[iω0(k,

q)t], which corresponds to the excitation frequency found before, as might be
expected.

In the case in which there are interactions, a complete solution of Equation (2.81)
is not possible, but we can look for a simplification as an approximation for the
right-hand side. To express everything in terms of the particle-hole ρ†

q(k) operator
we consider making the replacement(

a
†
k+qak+k′ − a

†
k+q−k′ak

)
→ 〈a†

k+qak+k′ 〉 − 〈a†
k+q−k′ak〉

= 〈a†
k+qak+q〉δq,k′ − 〈a†

kak〉δq,k′

= (n0
k+q − n0

k)δq,k′ .

The approximation is in the first line and consists of replacing the chosen combi-
nation of operators, specifically those that do not directly involve ρ†

q(k), by their
average value. This corresponds to ignoring some fluctuation effects in the system
in a mean-field sense, and it is an example of a decoupling approximation. In the
second line we have made use the wave-vector conservation property of the system
as represented by the Kronecker deltas, and in the last line n0

k is the Fermi–Dirac
distribution function at zero temperature, as mentioned previously.
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The type of approximation proposed here is based on the simplest qualitative
reasons, and a justification comes later through any success in the predictions
that follow. We shall be discussing decoupling approximations more generally in
Chapter 5. Also, in Chapter 9 as an example of the diagrammatic perturbation
technique, we shall consider the density fluctuations of an electron gas once more.
It will be shown there that the decoupling approximation made here is consistent
with choosing a particular set of Feynman diagrams in a low order of perturbation.

On using the decoupling approximation we find that Equation (2.81) takes the
form

[H,ρ†
q(k)] = ω0(k,q)ρ†

q(k) − v(q)
(
n0

k+q − n0
k

)∑
k′′

ρ†
q(k

′′). (2.84)

We will solve this by determining what is the quasiparticle operator. Therefore,
by analogy with Equation (2.82), we would like to rewrite Equation (2.84) in the
simple form

[H,P †
q ] = �(q)P †

q , (2.85)

where �(q) denotes the quasiparticle energy, and P †
q is the quasiparticle operator

to create an interacting electron-hole pair with total wave vector q. The solution is
far from being obvious, but using linear superposition we may try forming it as

P †
q =

∑
k

A(k,q)ρ†
q(k), (2.86)

where the scalar coefficients A will need to be determined self-consistently later.
On substituting for P †

q in Equation (2.85) we obtain∑
k

A(k,q)[H,ρ†
q(k)] =

∑
k

�(q)A(k,q)ρ†
q(k).

Now by using Equation (2.84) to replace the commutator, we find∑
k

A(k,q)ω0(k,q)ρ†
q(k) −

∑
k

A(k,q)v(q)
(
n0

k+q − n0
k

)∑
k′′

ρ†
q(k

′′)

=
∑

k

�(q)A(k,q)ρ†
q(k).

Rearranging this expression gives∑
k

A(k,q) {ω0(k,q) − �(q)} ρ†
q(k) =

∑
k

A(k,q)v(q)
(
n0

k+q − n0
k

)∑
k′′

ρ†
q(k

′′).

(2.87)
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This result still looks fairly formidable, but we can make some progress by
examining the functional form of the preceding equation for A(k,q). We note that
the right-hand side has the form of a scalar function multiplied by∑

k′′
ρ†

q(k
′′).

The left side will have a similar form if A(k,q) {ω0(k,q) − �(q)} is a function that
is overall independent of k. We denote it by B(q), and therefore we have shown
that

A(k,q) = B(q)

{ω0(k,q) − �(q)} .

If we now choose to denote

ρ†
q =

∑
k

ρ†
q(k) =

∑
k′′

ρ†
q(k

′′), (2.88)

then Equation (2.87) becomes

B(q)ρ†
q =

∑
k

B(q)v(q)

(
n0

k+q − n0
k

)
ω0(k,q) − �(q)

ρ†
q. (2.89)

Some factors cancel out (including the unknown function B), and as a consistency
condition we have now arrived at∑

k

n0
k − n0

k+q

�(q) − ω0(k,q)
= 1

v(q)
. (2.90)

This is our main result in this section because it represents an implicit dispersion
relation from which the quasiparticle energy �(q) can be deduced.

To analyze this result we first rewrite the expression by splitting the left-hand
side into two terms and then make a change of variable k + q → k′ in the second
term, yielding∑

k

n0
k

�(q) − ω0(k,q)
−
∑

k′

n0
k′

�(q) − ω0(k′ − q,q)
= 1

v(q)

or ∑
k

n0
k

[
1

�(q) − ω0(k,q)
− 1

�(q) − ω0(k − q,q)

]
= 1

v(q)
.

Next, by substituting for ω0(k,q) from Equation (2.79) and rearranging, we have

∑
k<kF

[(
�(q) − k · q

m

)2

−
(

q2

2m

)2
]−1

= m

q2v(q)
. (2.91)
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This alternative form of the result in Equation (2.90) is particularly useful. We
shall examine the solution for the case of Coulomb interactions in 3D, for which
the expression for v(q) is quite simple (see Subsection 1.4.2). In the absence of
screening we have v(q) ∝ 1/q2, and so we obtain

∑
k<kF

[(
�(q) − k · q

m

)2

−
(

q2

2m

)2
]−1

= ε0m

e2
, (2.92)

with no q dependence on the right-hand side. In the case of q = 0 this expression
gives ∑

k<kF

(
1

�(0)

)2

= ε0m

e2
.

The left-hand side of the preceding equation simply reduces to n0/[�(0)]2, where
n0 = N/V is the number of electrons per unit volume. Therefore, we have deduced
that

�(0) =
(

n0e
2

ε0m

)1/2

. (2.93)

This is known as the plasma frequency, and it corresponds to the natural frequency
of oscillations in a classical electron gas plasma (see, e.g., [20]).

For small nonzero q we may find solutions of Equation (2.92) by inserting
a power-series expansion for �(q) into the left-hand side. Then by equating
coefficients of powers of q on both sides of the equation, we may deduce (see
Problem 2.13 ) that

�(q) = �(0)

[
1 +

( 3ε0k
2
F

10mn0e2

)
q2 + O(q4)

]
. (2.94)

At sufficiently small q this energy can be much larger than the maximum of the
electron-hole continuum band, which was discussed earlier. The quasiparticle exci-
tation corresponding to �(q) is known as a plasmon and it is included schematically
as the additional excitation branch in Figure 2.9.

Problems

2.1. By using the operator equation-of-motion method as described in Sub-
section 2.1.2, verify that the time evolution of the wave function in the
interaction picture proceeds in accordance with Equation (2.14).

2.2. The Hamiltonian of the forced harmonic oscillator (FHO) was specified in
Equation (2.22) in terms of momentum and position variables. Show that this
Hamiltonian can be rewritten in the notation of second quantization as
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H = ω(a†a + 1/2) − h(t)(a† + a),

where a† and a are the creation and annihilation operators. Find the relation-
ship between h(t) and the force f (t) in Equation (2.22).

2.3. The Hamiltonian for a FHO may be expressed as H = H0 + Vint (t), where
H0 refers to the unperturbed system and Vint (t) is the time-dependent poten-
tial energy in the interaction picture. Using the Baker–Campbell–Hausdorff
identity stated in the text that follows (in terms of any two operators X and Y )

eXYe−X = Y + [X,Y ] + 1

2!
[X, [X,Y ]] + 1

3!
[X, [X, [X,Y ]]] + · · · ,

verify that Vint (t) is as quoted in Equation (2.24). Next show that the commu-
tation relation [Vint (t1),Vint (t2)] at any two time t1 and t2 is a scalar quantity
given by Equation (2.27).

2.4. The following Hamiltonian H describes the coupling between two sets of
bosons, one described by operators a and a† and the other by operators b

and b†:

H = λa†a + ε
(
ab† + a†b

)
.

Here λ and ε are positive constants and the two sets of operators are indepen-
dent (i.e., they commute with one another). Evaluate the commutators [a,H]
and [b,H], and hence use the operator equations of motion to find da/dt

and db/dt . Assuming time dependences like exp(−iωt), deduce the value or
values for the frequency ω of the coupled mode(s). Sketch the form of your
results for ω plotted as a function of the coupling strength ε.

2.5. Consider the diatomic chain where the mode frequencies for longitudinal lat-
tice vibrations (phonons) are given by Equation (2.54). Now take the special
case of m1 = m2 ≡ m in Subsection 2.4.2 and show that

ω2
k = 2C

m

(
1 ± cos(ka)

)
.

One of the preceding solutions is the same as for the monatomic chain (as
expected). What is the interpretation of the other solution? As a hint, consider
what has happened in this limit regarding the Brillouin zone boundary wave
vector.

2.6. Consider a system of bosons for which a
†
k and ak are the creation and anni-

hilation operators at wave vector k and the Hamiltonian is

H =
∑

k

[
F(k)a

†
kak + 1

2
G(k)(a

†
ka

†
−k + aka−k)

]
.
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Here F(k) and G(k), which are real functions of the wave vector k, sat-
isfy F(k) > G(k) > 0. Use the operator equation of motion to calculate
the time derivative da

†
k/dt . Show that this equation couples a

†
k to another

operator, whose time derivative you should also calculate. Now assume time
dependences like exp(−iωt) in the coupled equations to solve for the positive
frequency ω of the excitations. Sketch the form of the dispersion relation for
ω versus k = |k| when

F(k) = αk2 + exp(−k2) and G(k) = exp(−k2),

assuming α is a positive constant.

2.7. Consider a ferromagnet described by the dipole-exchange Hamiltonian, as
obtained from Equations (1.81) and (2.61). Apply the HP transformation
from spin operators to boson operators at low temperatures to verify that the
previous Heisenberg Hamiltonian in Equation (1.91) expressed in second-
quantized form generalizes to the Hamiltonian given by Equation (2.62).

2.8. The Hamiltonian for a single spin with quantum number S = 1
2 placed in a

static magnetic field B0 along the z direction is given by H = −γB0S
z ≡

−ωLSz, where ωL is known as the Larmor frequency of the system. Assume
that the system is initially (at t = 0) in a superposition state such that
|φ(0)〉 = α0|u〉 + β0|d〉, and it evolves at later time t into

|φ(t)〉 = α(t)|u〉 + β(t)|d〉,
where |u〉 and |d〉 denote, respectively, the normalized spin “up” and “down”
eigenstates of H. Find (a) the functions α(t) and β(t) and then (b) the time
evolution of the longitudinal spin average 〈Sz(t)〉, as well as 〈Sx(t)〉 and
〈Sy(t)〉 in the transverse directions.

2.9. Consider the graphene lattice structure for a single sheet, as depicted in
Figure 2.6, and verify that the vectors of the 2D reciprocal lattice are given
by Equation (2.70), as stated.

2.10. Generalize the operator calculation given in Section 2.7 for a single sheet
of graphene to include the extra effects of next-nearest-neighbor hopping t ′,
in addition to the nearest-neighbor hopping t considered previously. Show
that the electronic dispersion relation, which was previously given by Equa-
tion (2.74), is modified and is no longer symmetric about the zero of energy.

2.11. Use the Heisenberg Hamiltonian of Subsection 1.5.2, together with Equa-
tions (1.81) and (2.5), to find the operator equations of motion for each of
the Cartesian components Sx

r , S
y
r , and Sz

r of the spin vector Sr at any site r
in the crystal. Next, by interpreting the spins on the right-hand side of these
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equations as being classical vectors, prove that the result for dSr/dt may be
written in terms of vector (or cross) products as

i
dSr

dt
= J

∑
δ

(Sr−δ × Sr − Sr × Sr+δ) + gμBSr × B0.

Here B0 is a vector of magnitude B0 along the z direction and the vector δ

connects site r to its nearest neighbors. The preceding result is equivalent
to the expression obtained directly from the torque equation of motion for
exchange-coupled classical spin vectors [9].

2.12. Consider a free particle with mass m and charge e placed in a uniform mag-
netic field B0 along the z direction. Its Hamiltonian is

H = 1

2m
(p − e

c
A)2,

where p is the particle momentum and A is the magnetic vector potential
corresponding to the applied field. By using the EM gauge in which A =
(− 1

2B0 y, 1
2B0 x,0) obtain the operator equations of motion for the position

and momentum of the particle and deduce the general form of the trajectory.

2.13. Use Equation (2.92) derived for the implicit dispersion relation of a plasmon
to verify the power series expansion quoted in Equation (2.94). Specifically,
confirm that the q2 term has the coefficient quoted and that terms proportional
to q and q3 vanish.
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Formal Properties of Green’s Functions

The operator methods developed in the previous two chapters, including the
equation-of-motion formalism, have been useful tools for calculating certain
properties of the excitations in many-body systems, especially the frequencies
(or energies) of these excitations. Some other properties, however, such as the
statistical weighting or relative intensities that depend on the amplitudes of the
excitations, are not so readily obtained. The statistical weighting may be different
for the different excitations existing in a system, and this quantity will typically
depend on parameters such as the wave vector and temperature. For interpreting
the results of an experiment using inelastic light scattering, for example, it would
be important to know the intensities as well as the frequencies corresponding to
the excitation peaks in the measured spectrum. Green’s functions provide us with a
powerful technique for making such an analysis: they will be introduced formally
in this chapter and then utilized throughout the rest of this book.

The Green’s functions defined in the following sections will be expressible
in terms of statistical-mechanical thermal averages of the products between two
quantum-mechanical (QM) operators. They are, however, the analogues of the
classical Green’s functions introduced by G. Green in the 1820s that are now
extensively used in mathematics for solving the differential equations in boundary-
value problems (see, e.g., [46]). For completeness, the classical functions are briefly
surveyed later in this chapter. We remark that the connection between the classical
and QM counterparts will not be at all obvious to begin with, but it should become
apparent later, particularly when we describe applications using linear response
theory in Chapter 6. The operators appearing in the equilibrium thermal averages
will have time labels associated with them (through a modified Heisenberg picture)
because we want to study the dynamical behavior. As a generalization of the
operators (and the Green’s functions) having real-time labels, we shall see that it
is also formally of interest to investigate the analogous quantities with imaginary
time labels. This may seem surprising at first, but there are useful properties in

67
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both cases when Fourier transforms are made from a time to a frequency domain.
In particular, the imaginary-time Green’s functions are required in the development
of Feynman diagrammatic techniques, as discussed in later chapters.

General references for Green’s functions in condensed matter physics are to be
found in the books by Mahan [47], Economou [48], Rickayzen [49], and Coleman
[50]. Some other texts that have a particular focus on diagrammatic perturbation
techniques are by Abrikosov et al. [51] and Mattuck [52].

3.1 Real-Time Green’s Functions

We start by introducing the Green’s functions (GFs) with a dependence on real-
time labels because these quantities can be more straightforwardly related to phys-
ical properties and there are analogies with the equation-of-motion methods in
Chapter 2. As mentioned earlier, the definitions involve equilibrium thermal aver-
ages of products of operators, so it is helpful to review some basic results from
statistical mechanics.

3.1.1 Equilibrium Thermal Averages

Many-body systems typically have a very large number of interacting particles, for
which it is possible that the energy eigenvalues and the number of particles (or
quasiparticles in some cases) may vary. For this reason it is appropriate to work in
terms of a grand canonical ensemble when discussing equilibrium thermal averages.
We will assume here an undergraduate background in statistical physics, as covered
for example in the standard text books by Reichl [3] and Pathria [4].

We start by recalling the formal result that the equilibrium thermal average 〈A〉
corresponding to any operator A in a grand canonical ensemble is given by

〈A〉 = 1

Q

∑
i

〈i|A|i〉e−β(Ei−μNi), (3.1)

where Q is the grand partition function defined as

Q =
∑

i

e−β(Ei−μNi). (3.2)

Here |i〉 represents a state of the system with energy Ei and number of particles Ni .
We denote β = 1/kBT as before, and μ is the chemical potential.

For our purposes it is usually convenient to rewrite these results in a compact
form using the trace (Tr) notation, defining as usual

Tr(A) =
∑

i

Aii or
∑

i

〈i|A|i〉. (3.3)
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When the previous results from statistical physics are expressed in the new notation
we have

〈A〉 = 1

Q
Tr
{
Ae−β(H−μN )

}
, (3.4)

Q = Tr
{
e−β(H−μN )

}
. (3.5)

Here H denotes the total Hamiltonian and N is the number operator for the system.
One of the properties of the trace that will be useful later is that it is invariant

under cyclic permutations of a product of any number of operators. This means, for
example, in the case of a product of three operators that Tr(ABC) = Tr(BCA) =
Tr(CAB). The stated property can easily be proved first for a product of just two
operators, using the definition in Equation (3.3) and the rule for matrix multipli-
cation. Then it can be generalized to a product of any number of operators by
induction.

3.1.2 Definitions of the Green’s Functions

Following the methods used in the pioneering work by Zubarev [53], we introduce
Green’s functions (GFs) mathematically as functions of any two QM operators A

and B that are associated with real-time labels t and t ′, respectively. The physical
significance of these quantities will gradually emerge later after their properties
have been established. We first define the so-called retarded and advanced GFs by

Retarded Green’s functions:

gr(A;B | t − t ′) = −iθ(t − t ′)〈[A(t),B(t ′)]ε〉. (3.6)

Advanced Green’s functions:

ga(A;B | t − t ′) = iθ(t ′ − t)〈[A(t),B(t ′)]ε〉. (3.7)

Several explanations are needed to take in the preceding notations. First, θ(t) is the
unit step function defined by

θ(t) =
{

1 (t > 0)

0 (t < 0)
. (3.8)

Then the time dependences of the operators are defined as

A(t) = ei(H−μN )tA e−i(H−μN )t . (3.9)

This expression is similar to the one given in Equation (2.4) for the operator
A transformed to the Heisenberg picture, except that H has been replaced by
(H − μN ). Finally, we define

[A(t),B(t ′)]ε = A(t)B(t ′) − εB(t ′)A(t), (3.10)
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where ε is a constant that can take the values 1 or −1. Therefore, the preceding
quantity represents either a commutator if ε = 1 or an anticommutator if ε = −1. It
is important to emphasize that the actual value of ε can be chosen according to what
is convenient in any particular case. Normally, however, we would take ε = 1 if A

and B are boson operators and ε = −1 if A and B are fermion operators because
we would then have commutation or anticommutation relations, respectively, in the
definitions. If A and/or B are neither boson nor fermion operators (e.g., they could
be spin or angular momentum operators), there is no clear indication of the choice
for ε.

Also we note that the retarded GF is nonzero only when t > t ′, whereas the
reverse is true for the advanced GF. This property will lead to implications regarding
causality, which we will discuss later. For completeness, although it is redundant to
do so, we will now define a third type of real-time GF by

Causal Green’s functions:

gc(A;B | t − t ′) = −i〈T̂WA(t)B(t ′)〉, (3.11)

where T̂W is known as the Wick time-ordering operator, and it is defined by

T̂WA(t)B(t ′) =
{

A(t)B(t ′) if t > t ′

εB(t ′)A(t) if t < t ′

= θ
(
t − t ′

)
A(t)B(t ′) + θ

(
t ′ − t

)
εB(t ′)A(t). (3.12)

In other words, when T̂W acts on the product A(t)B(t ′), it leaves it unchanged if
t > t ′, but otherwise it inverts the order of the operators and multiplies them by ε

if t < t ′.
We notice that none of the three types of GFs is defined at t = t ′ because of

the discontinuity for the unit step function when this occurs. It will be shown later
that, in general, the GFs have a discontinuity at t = t ′. It is evident that all three
of the GFs provide information about correlations in the system, i.e., they give
information about the time-dependent averages 〈A(t)B(t ′)〉 and 〈B(t ′)A(t)〉 that
describe correlations between one operator at time t and another operator at time
t ′. Because two operators are involved in the GFs, these quantities are sometimes
referred to as two-time GFs.

One of the simple properties of GFs, which we will next establish, is that they
depend on the time labels t and t ′ only through the time difference (t −t ′). It is clear
from the GF definitions that the preceding statement will be true if the constituent
correlation functions 〈A(t)B(t ′)〉 and 〈B(t ′)A(t)〉 have the property of depending
only on (t − t ′). To show that this is the case we first consider

〈
A(t)B(t ′)

〉
. From the

definition of the thermal average in Equation (3.4) and by introducing the shorthand
notation that H = H − μN , we have
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〈A(t)B(t ′)〉 = Q−1Tr(eiHtAe−iHt eiHt ′Be−iHt ′e−βH)

= Q−1Tr(eiH(t−t ′)Ae−iH(t−t ′)Be−βH).

In the preceding equation we have employed the invariance property for cyclic
permutation of the operators within the trace, as well as the result that e−iHt ′ and
e−βH commute, to advance from the first to second line of the equation. The sec-
ond line is evidently a function of (t − t ′). A similar conclusion can be reached
for the other correlation function 〈B(t ′)A(t)〉, and so the stated result holds for
the GFs.

Regarding an alternative notation we mention that a double angular bracket form,
as in � A(t);B(t ′) �r , is sometimes used in the literature for the retarded GF
denoted here as gr(A;B | t − t ′). Whenever it is convenient we shall abbreviate our
notation to just gr(t − t ′) in cases in which the choice of operators is implicit.

3.1.3 Equations of Motion

We may start with the definition of any one of the preceding GFs, say the retarded
GF in Equation (3.6), and differentiate it with respect to one of its time labels, say t .
The result is

d

dt
gr(A;B | t − t ′) = d

dt

{−iθ(t − t ′)〈[A(t),B(t ′)]ε〉
}

= −i
dθ(t − t ′)

dt
〈[A(t),B(t ′)]ε〉− iθ(t − t ′)

〈[
dA(t)

dt
,B(t ′)

]
ε

〉
.

(3.13)

Next we can simplify the terms appearing in the last line. For the first term we may
use the result

dθ
(
t − t ′

)
dt

= δ
(
t − t ′

)
. (3.14)

This can easily be proved by noting the delta-function property that∫ t

−∞
δ(t ′′ − t ′)dt ′′ =

{
0 if t < t ′

1 if t > t ′
.

The right-hand side is just the definition of θ(t−t ′). Then we differentiate both sides
with respect to t to obtain the required result. Hence the first term in Equation (3.13)
becomes

−iδ(t − t ′)〈[A(t),B(t ′)]ε〉 = −iδ(t − t ′)〈[A(t),B(t)]ε〉
= −iδ(t − t ′)〈[A(0),B(0)]ε〉 = −iδ(t − t ′)〈[A,B]ε〉,
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where we have used the property that the correlation functions depend only on the
time difference. Next we observe that the second term in the last line of Equa-
tion (3.13) can be rewritten using the GF definition as

gr(dA/dt;B | t − t ′).

On employing the operator equation of motion (2.5) to replace dA/dt , this GF is
seen to be the same as igr([H,A];B | t − t ′). Putting all these results together, it
follows that the retarded GF equation of motion becomes

d

dt
gr(A;B | t − t ′) = −iδ(t − t ′)〈[A,B]ε〉 + igr([H,A];B | t − t ′).

It may easily be verified that exactly the same final result holds for the advanced
and causal GFs, even though some of the intermediate steps are different. Thus we
can write quite generally (dropping the r , a, and c subscripts) that

d

dt
g(A;B | t − t ′) = −iδ(t − t ′)〈[A,B]ε〉 + ig([H,A];B | t − t ′). (3.15)

We note that the last term in the preceding expression, which is just another GF,
always involves a commutator, whereas the other term on the right-hand side may
be a commutator or anticommutator (according to the choice made for ε).

Later we shall come back to Equation (3.15) as a differential equation that we
can, in principle, solve to obtain the required GF g(A;B | t − t ′) with which we
started. However, the feasibility of obtaining a solution depends on the form of
the last term in Equation (3.15), and usually we may only be able to obtain an
approximate solution except in simple cases.

3.2 Time Correlation Functions

Here we explore further some of the properties of the correlation functions. We
have already shown that the correlation functions appear in the definitions of all
the GFs and that they depend on the time only through the difference (t − t ′). We,
therefore, introduce the convenient shorthand notations that

FBA(t − t ′) = 〈B(t ′)A(t)〉, FAB(t − t ′) = 〈A(t)B(t ′)〉, (3.16)

according to the order of the operators. We can next define a frequency Fourier
transform for one of these by

FBA(t − t ′) =
∫ ∞

−∞
J (ω)e−iω(t−t ′)dω, (3.17)

where ω is a real angular frequency and the transformed quantity J (ω) is usually
called the spectral function or spectral intensity of the correlation function. In broad
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terms, it provides us with a measure of the strength associated with each frequency
in the Fourier spectrum. In a similar manner we may choose to define another
spectral function J ′(ω) for the other correlation function, giving

FAB(t − t ′) =
∫ ∞

−∞
J ′(ω)e−iω(t−t ′)dω. (3.18)

Because the same two operators A and B are involved, we might speculate that
there could be a connection between the two correlation functions FBA(t − t ′) and
FAB(t − t ′), and hence between their respective spectral functions. This is indeed
the case, as we show in the following text.

Starting with the time correlation function FAB , we can make use of the definition
of the equilibrium thermal average and the property of invariance of the trace under
cyclic permutation of the operators to show that

〈A(t)B(t ′)〉 = Q−1Tr
{
eiHtAe−iHt eiHt ′Be−iHt ′e−βH

}
= Q−1Tr

{
eiHt ′Be−iHt ′e−βHeiHtAe−iHt

}
.

With further algebraic rearrangement and then using the definition in Equa-
tion (3.9), we obtain

〈A(t)B(t ′)〉 = Q−1Tr
{
B(t ′)eiH(t+iβ)Ae−iH(t+iβ)e−βH

}
= Q−1Tr

{
B(t ′)A (t + iβ) e−βH

}
= 〈B(t ′)A(t + iβ)

〉
. (3.19)

Therefore, we have established a connection between the two correlation func-
tions as

FAB(t − t ′) = FBA(t − t ′ + iβ). (3.20)

This result formally relates the two correlation functions in the time domain through
a shift by the imaginary interval iβ.

The implications of the preceding result for the spectral functions J (ω) and
J ′(ω) can readily be seen. We substitute Equations (3.17) and (3.18) into (3.20)
to obtain ∫ ∞

−∞
J ′(ω)e−iω(t−t ′)dω =

∫ ∞

−∞
J (ω)e−iω(t−t ′+iβ)dω.

Then, equating the integrands on each side of the preceding equation and cancelling
out common factors, we deduce that there is a simple relation between J ′(ω) and
J (ω), which is given by

J ′(ω) = J (ω) eβω (β = 1/kBT ). (3.21)
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An important consequence of the preceding result is that we can work in terms
of a single spectral function, say J (ω), and this provides information about both
correlation functions. It should not be a surprising outcome that there is a close
connection between the spectral functions, bearing in mind that the same two oper-
ators are involved.

Eventually we want to be able to calculate correlation functions because they
are the quantities that have the most direct connection with what is measured in
an experiment. We demonstrate this connection by examples in later chapters. Typ-
ically, however, the correlation functions are difficult to evaluate from their def-
initions or through an equation of motion. Instead, the usual approach is first to
evaluate the corresponding GF, which turns out to be an easier task, and afterward
we deduce the correlation functions from the GF. For this, we need to examine
more closely the relationships between GFs and correlation functions, which is
conveniently accomplished using frequency Fourier transforms.

3.3 Spectral Representations

By analogy with the expressions for the Fourier transforms of correlation functions,
we may define a frequency Fourier transform for any of the three GFs by

g(t − t ′) =
∫ ∞

−∞
G(ω)e−iω(t−t ′)dω. (3.22)

Here ω is an angular frequency as before, and G(ω) denotes a frequency Fourier
component for the GF. The inverse relation of the preceding transform is easily
shown to be

G(ω) = 1

2π

∫ ∞

−∞
g(t)eiωtdt . (3.23)

We now explore some results for G(ω) in the different cases, while working
toward a connection with the spectral intensity J (ω) of the correlation functions.

3.3.1 Retarded Green’s Functions

From Equations (3.6) and (3.23), and with the subscript r for retarded included, we
have

Gr(ω) = 1

2π

∫ ∞

−∞
(−i)θ(t) {〈A(t)B(0)〉 − ε〈B(0)A(t)〉} eiωtdt

= 1

2πi

∫ ∞

−∞
θ(t) {FAB(t) − εFBA(t)} eiωtdt . (3.24)
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This may be expressed, using Equations (3.17) and (3.20), in terms of the spectral
intensity J (ω) as

Gr(ω) =
∫ ∞

−∞
dω′ J (ω′)

(
eβω′ − ε

) 1

2πi

∫ ∞

−∞
θ(t) ei(ω−ω′)tdt . (3.25)

We next show how to simplify this by employing the following integral repre-
sentation of the step function:

θ(t) = i

2π

∫ ∞

−∞

e−ixt

(x + iη)
dx, (3.26)

where η denotes a positive infinitesimal quantity (with the understanding that the
limit η → 0 is taken). We detour briefly to provide a proof for this result.

Proof Here we use complex analysis in terms of the contour integration method
and the theorem of residues (see textbooks on mathematical methods, e.g., [54,
55]) to evaluate the right-hand side of the preceding integral. Thus we consider the
related contour integral

i

2π

∮
C

e−izt

(z + iη)
dz

for a complex variable z, where the contour C goes all the way along the real axis
and is closed at infinity in the complex plane to form a loop. By convention, it is
anticlockwise. The integrand has just one simple pole at z = −iη, and there are
two cases to consider, depending on whether t > 0 or t < 0.

First, taking t > 0, we choose the contour as C = C1 in the lower half-
plane, as shown in Figure 3.1. With this choice the contribution from the part
of the semicircle at infinity is negligible, which follows because we can write

Figure 3.1 The two choices of contours (C1 and C2) used in proving the integral
representation for the step function θ(t) in Equation (3.26).
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e−izt = e−i(x+iy)t = e−ixt eyt . Thus, with t > 0 and y < 0, it is seen that e−izt → 0
as |z| → ∞. The simple pole at z = −iη is enclosed by the contour, and so

i

2π

∫ ∞

−∞

e−ixt

(x + iη)
dx = −i

2π

∮
C1

e−izt

(z + iη)
dz

= −i

2π
× 2πi × (residue at z = −iη)

= e−ηt → 1 (as η → 0).

Therefore, the integral is 1 when t > 0. However, when t < 0 we must choose
the contour C2 in the upper half plane (see Figure 3.1). The contribution from
the semicircle is again negligible as |z| → ∞, but this time no pole is enclosed.
Therefore, the integral is 0 for t < 0. Hence we have proved that the integral is
equal to the step function θ(t).

We now return to the problem of simplifying Equation (3.25). As part of the
right-hand side of this expression we have an integral involving θ(t), which we can
rewrite using Equation (3.26) as

1

2πi

∫ ∞

−∞
θ(t)ei(ω−ω′)tdt = 1

2πi

∫ ∞

−∞
ei(ω−ω′)tdt

i

2π

∫ ∞

−∞

e−ixt

(x + iη)
dx

= 1

4π2

∫ ∞

−∞

dx

(x + iη)

∫ ∞

−∞
ei(ω−ω′−x)tdt .

We next employ the well-known integral representation for the Dirac delta function
that

δ(y) = 1

2π

∫ ∞

−∞
eiytdt (3.27)

for any real variable y. This leads to

1

2πi

∫ ∞

−∞
θ(t)ei(ω−ω′)tdt = 1

2π

∫ ∞

−∞

dx

(x + iη)
δ(ω − ω′ − x)

= 1

2π

(
1

ω − ω′ + iη

)
.

Substituting this result back into Equation (3.25) gives the following useful rela-
tionship between Gr(ω) and J (ω):

Gr(ω) = 1

2π

∫ ∞

−∞

J (ω′)(eβω′ − ε)

ω − ω′ + iη
dω′. (3.28)

3.3.2 Advanced and Causal Green’s Functions

The derivation for the advanced GF follows in the same general way as the case
mentioned previously, starting from Equation (3.7). The final result, quoted here
for reference, is
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Ga(ω) = 1

2π

∫ ∞

−∞

J (ω′)(eβω′ − ε)

ω − ω′ − iη
dω′. (3.29)

We note that the only difference compared with the retarded case is a change in sign
before the imaginary term in the denominator.

Again, in the case of the causal GF the derivation follows in the same general
way as before, starting from Equation (3.11). The final result is

Gc(ω) = 1

2π

∫ ∞

−∞
J (ω′)

{
eβω′

ω − ω′ + iη
− ε

ω − ω′ − iη

}
dω′, (3.30)

which is slightly more complicated than the previous cases because both types of
denominator terms now appear.

3.4 Real and Imaginary Parts of Green’s Functions

We have seen in Section 3.3 that the expressions for the Fourier transforms of the
GFs all involve denominators like

1

ω − ω′ ± iη

with the understanding that η → 0. Hence the GFs are complex quantities with real
and imaginary parts. We shall now deduce expressions for these real and imaginary
parts, showing that they are not independent of one another but are intricately
connected.

We shall need to make use of the following symbolic identity:

1

x ± iη
= P

(
1

x

)
∓ iπδ(x), (3.31)

where x denotes any real variable, η is a positive infinitesimal, and P denotes that
the Cauchy principal value is taken in any integration over x.

Proof We will show the proof of Equation (3.31), by taking the case of the lower
set of signs, namely

1

x − iη
= P

(
1

x

)
+ iπδ(x).

This relation is equivalent to stating that, for any real analytic function f (x) in the
integrand, we must have

lim
η→0

∫ ∞

−∞

f (x)dx

x − iη
= P

∫ ∞

−∞

f (x)dx

x
+ iπ

∫ ∞

−∞
f (x)δ(x)dx

= P
∫ ∞

−∞

f (x)dx

x
+ iπf (0). (3.32)
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Starting from the integral on the left-hand side of the preceding result, we will split
the range of integration (which goes from −∞ to ∞) into three separate segments
by writing

lim
η→0

∫ ∞

−∞

f (x)dx

x − iη
= lim

η→0,τ→0

{∫ −τ

−∞

f (x)dx

x − iη
+
∫ τ

−τ

f (x)dx

x − iη
+
∫ ∞

τ

f (x)dx

x − iη

}
.

The preceding is true for τ taking any positive value (because we are free to split
up the range of integration in any way), and so there is no loss of generality in
assuming that η � τ . In other words, we are taking the double limit in the order
that η → 0 first and then τ → 0. Proceeding now with the evaluation, we find that
the right-hand side of the preceding equation can be rearranged and expanded as

lim
τ→0

{∫ −τ

−∞

f (x)dx

x
+
∫ ∞

τ

f (x)dx

x

}
+ lim

η→0,τ→0

∫ τ

−τ

[
f (0) + xf ′(0) + O(x2)

]
dx

x − iη
.

With some further rewriting it becomes equal to

P
∫ ∞

−∞

f (x)dx

x
+ f (0) lim

η→0,τ→0

∫ τ

−τ

dx

x − iη

= P
∫ ∞

−∞

f (x)dx

x
+ f (0) lim

η→0,τ→0

{
2i tan−1(τ/η)

}
= P

∫ ∞

−∞

f (x)dx

x
+ iπf (0).

This is seen to be the required result, and we may develop the proof for the other
set of signs in Equation (3.31) in a very similar manner.

It is now straightforward to make use of Equation (3.31) to obtain the expressions
for the real and imaginary parts of the various GFs. From Equations (3.28), (3.29),
and (3.30) the results are found to be

Re Gr(ω) = Re Ga(ω) = Re Gc(ω)

= 1

2π
P
∫ ∞

−∞

J (ω′)
(
eβω′ − ε

)
dω′

ω − ω′ (3.33)

for the real parts, while the imaginary parts satisfy

Im Gr(ω) = −Im Ga(ω) = −1

2

(
eβω − ε

)
J (ω), (3.34)

Im Gc(ω) = −1

2

(
eβω + ε

)
J (ω). (3.35)

It is striking that all three GFs have the same real part, and that their differences arise
only from their imaginary parts. Some important consequences of the previously
mentioned results are the Kramers–Kronig relations and the fluctuation-dissipation
theorem, and each of these is described in the following subsections.
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3.4.1 Kramers–Kronig Relations

We may eliminate the J (ω′) factor within the integrand of Equation (3.33) to reex-
press the right-hand side in terms of the imaginary parts of any of the GFs by using
Equations (3.34) and (3.35). The results for the three types of GFs are obtained as

Re Gr(ω) = − 1

π
P
∫ ∞

−∞

Im Gr(ω
′) dω′

ω − ω′ , (3.36)

Re Ga(ω) = 1

π
P
∫ ∞

−∞

Im Ga(ω
′) dω′

ω − ω′ , (3.37)

Re Gc(ω) = − 1

π
P
∫ ∞

−∞

Im Gc(ω
′)
(
eβω − ε

)
dω′(

ω − ω′)(eβω + ε
) . (3.38)

These results show that the real and imaginary parts of the GFs are intricately
related through integral expressions.

We see that the connection between the real and imaginary parts is particularly
simple for the retarded and advanced GFs, and the results that we have just obtained
in Equations (3.36) and (3.37) represent examples of Kramers–Kronig relations,
which have a more general validity for a class of complex functions that are analytic
in either the upper or lower half of the complex plane (see, e.g., the discussion
by Landau and Lifshitz [56]). The significance of the results may be viewed as a
consequence in the frequency (or energy) domain of the fact that the retarded and
advanced GFs in the time domain are nonzero only when t > t ′ or vice versa. They
are related, therefore, to ideas of causality in these cases. We shall come back to
this topic to explore some applications of the Kramers–Kronig relations in later
chapters, particularly in Chapter 6 in the context of linear response theory.

As a further comment, it can be shown that the relationships obtained here
are bidirectional in the sense that the imaginary part of Gr(ω), for example,
can be expressed as an integral over an expression that contains the real part of
Gr(ω). Thus the “inverse” relation to Equation (3.36) for the retarded GF is found
to be

Im Gr(ω) = 1

π
P
∫ ∞

−∞

Re Gr(ω
′) dω′

ω − ω′ . (3.39)

The proof involves further use of the method of contour integration in the complex
frequency plane, and is left as a problem (see Problem 3.4).

The Kramers–Kronig relations have allowed us to express the real (or imaginary)
part of the GF in terms of its imaginary (or real) part. It follows that the complete GF
can be rewritten in an integral form in terms of either its real part only or imaginary
part only. For example, from the preceding results we may take
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Gr(ω) = Re Gr(ω) + iIm Gr(ω)

= Re Gr(ω) + i

π
P
∫ ∞

−∞

Re Gr(ω
′) dω′

ω − ω′

= i

π

∫ ∞

−∞

Re Gr(ω
′) dω′

ω − ω′ + iη
,

where η is a positive infinitesimal quantity (η → 0) as before. Alternatively, we
can write

Gr(ω) = Re Gr(ω) + iIm Gr(ω)

= − 1

π
P
∫ ∞

−∞

Im Gr(ω
′) dω′

ω − ω′ + iIm Gr(ω)

= − 1

π

∫ ∞

−∞

Im Gr(ω
′) dω′

ω − ω′ + iη
.

3.4.2 Fluctuation-Dissipation Theorem

We can rearrange the results obtained in Equations (3.34) and (3.35) for the imag-
inary parts of the GFs so that they become expressions for the spectral intensity,
giving in the case of the retarded GF the result that

J (ω) = −2(
eβω − ε

) Im Gr(ω) . (3.40)

The alternative expressions using the other two GFs are

J (ω) = 2(
eβω − ε

) Im Ga(ω), J (ω) = −2(
eβω + ε

) Im Gc(ω). (3.41)

The preceding results are particularly important, because they provide us with a
direct way of deducing the spectral function J (ω), and hence the time correlation
functions, once we have calculated any of the GFs, either Gr(ω), Ga(ω), or Gc(ω).
The results are usually known collectively as the fluctuation-dissipation theorem
because in many physical applications (as we will see later) the imaginary part of
the GF may be related to the dissipative (or “frictional”) effects in a system, while
the spectral function contains information about the excitations (or “fluctuations”)
in a related property of the system.

A case of special interest for the preceding results, usually for a retarded GF
when we take ε = 1 (as would typically be the situation with bosons or with spin
operators), occurs when βω � 1 (or more explicitly when h̄ω � kBT ) for the
relevant frequencies. This is the “high-temperature” or “classical” regime for which
Equation (3.40) in the retarded GF case simplifies to

J (ω) = −
(

2

βω

)
Im Gr(ω) = −

(
2kBT

h̄ω

)
Im Gr(ω). (3.42)
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Figure 3.2 The complex ω̃ = ω + iω′′ plane for frequency (or energy). The gray
lines just above and below the real axis for the analytically continued GF represent
the retarded and advanced GFs, respectively, at a real frequency ω.

The preceding form of the fluctuation-dissipation theorem is often derived directly
(e.g., for a damped oscillator model) assuming classical properties for the spectrum
of fluctuations and the equipartition theorem [39, 56, 57].

3.4.3 Analytic Continuation for Green’s Functions

In the previous expressions, we have taken ω to be a real variable representing
the frequency (or it could alternatively have been described in terms of energy
E, through the relation E = h̄ω recalling that we employ units such that
h̄ = 1).

As a matter of convenience we can now try to extend the previous results (in a
formal or mathematical sense) to complex frequencies. This process is generally
known as analytic continuation and it is useful for the retarded and advanced GFs,
Gr(ω) and Ga(ω). The essential idea behind the method is that we introduce a
complex frequency ω̃ = ω + iω′′. The complex ω̃ plane is, therefore, as depicted in
Figure 3.2 with real and imaginary axes.

The previous definitions given for Gr(ω) and Ga(ω) apply only along the real
(or ω) axis. Suppose, however, we consider defining a new GF as a function of this
complex ω̃, by the expression

G(ω̃) = 1

2π

∫ ∞

−∞

J (ω′)
(
eβω′ − ε

)
dω′

ω̃ − ω′ , (3.43)

where the integration variable ω′ is real. This is known as the analytically continued
GF, and it is a function defined in the complex plane. From the form of the integrand
we see that it is an analytic function everywhere, except along the real axis where
there is a singularity.

We now would like to see what this means and whether it represents more than
just a mathematical curiosity. Suppose we put ω̃ = ω+ iη (which holds at all points
along the upper gray line in Figure 3.2) in Equation (3.43), where η is a positive
infinitesimal as before. Then it follows that we have
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G(ω + iη) = 1

2π

∫ ∞

−∞

J (ω′)
(
eβω′ − ε

)
dω′

ω − ω′ + iη
= Gr(ω), (3.44)

where the last step makes use of Equation (3.28). Similarly, if we now suppose
ω̃ = ω − iη (which holds at all points along the lower gray line in Figure 3.2), we
obtain

G(ω − iη) = 1

2π

∫ ∞

−∞

J (ω′)
(
eβω′ − ε

)
dω′

ω − ω′ − iη
= Ga(ω), (3.45)

where the last step follows from Equation (3.29).
To summarize, we have found here that immediately above the real axis the ana-

lytically continued GF G(ω̃) corresponds to the retarded GF, whereas immediately
below the real axis G(ω̃) corresponds to the advanced GF. Also it follows that there
is a discontinuity across the real frequency axis, because

G(ω + iη) − G(ω − iη) = Gr(ω) − Ga(ω)

= −i
(
eβω − ε

)
J (ω), (3.46)

where we have used the preceding two equations, together with Equations (3.33)
and (3.34). By rearranging the preceding result, we see that an alternative statement
of the fluctuation-dissipation theorem for J (ω) is

J (ω) = −1(
eβω − ε

) Im
{
G(ω + iη) − G(ω − iη)

}
. (3.47)

For the present there is no particular meaning that we attach to the analytically
continued GF at other points in the complex frequency plane, apart from just below
and just above the real axis. Later, when we study GFs in the context of diagram-
matic perturbation methods, we will examine the behavior along the imaginary-
frequency (or ω′′) axis. This is the case with the Matsubara GFs that we introduce
in the next section.

3.5 Imaginary-Time Green’s Functions

The typical situation in interacting many-body systems is that there may be no
systematic or rigorous procedures for calculating the real-time GFs, except for
special cases. Nevertheless, there are various approximation methods that have been
developed for the real-time GFs, and these will be covered in the next few chapters
of this book. By contrast, however, perturbation methods (usually expressed in
terms of a diagrammatic representation) are applicable for another type of GF that
is defined with imaginary-time labels.



3.5 Imaginary-Time Green’s Functions 83

As a bridge to these perturbation methods, which are the main topics for
Chapters 8 and 9, we give here a brief introduction to the imaginary-time GFs.
These were proposed by T. Matsubara and are sometimes known as Matsubara
GFs [58]. The connection between the imaginary-time GFs and the real-time
(specifically the retarded and advanced GFs described earlier) will eventually be
established here by employing the concept of analytic continuation.

The so-called imaginary-time (or Matsubara) GFs, which we shall denote as
gM(τ − τ ′) to distinguish them from the previous real-time GFs, can be defined
formally by

gM(τ − τ ′) = −〈T̂W Ǎ(τ )B̌(τ ′)〉. (3.48)

As before, A and B are any two QM operators, the angular brackets 〈· · · 〉 denote
an equilibrium thermal average (taken with respect to the Hamiltonian H), and T̂W

is the Wick time-ordering operator defined in Equation (3.12). The labels τ and τ ′

that are associated with the operators take real values in this case. In fact, we will
see later that they may be restricted to a particular finite range, which depends on
the temperature T for the system (assuming T �= 0). The definitions for the τ (and
τ ′) dependences of the operators in this formalism are that

Ǎ(τ ) = eHτAe−Hτ, (3.49)

and similarly for B̌(τ ′). We notice that these transformations are like those used
for the modified Heisenberg picture in Equation (3.9), and they again involve the
combination H = H − μN . The difference is that in Equation (3.9) the exponents
were pure imaginary, whereas they are real in the previously mentioned definition
for Ǎ(τ ). It is in this sense that τ (and τ ′), although they are specified here as real
parameters, play a role analogous to that for an “imaginary” time.

We note here that care must be taken in forming the Hermitian conjugates of
the τ -dependent operators. For example, using Ǎ†(τ ) = eHτA†e−Hτ , it can easily
be checked that Ǎ†(τ ) �= [Ǎ(τ )]†. In fact the Hermitian conjugate of Ǎ(τ ) is
Ǎ†(−τ).

Another comment regarding the imaginary-time GFs is that they depend on τ and
τ ′ only through the difference term τ − τ ′, as implicitly assumed in the definition
in Equation (3.48). This result follows by analogy with the result found for the
GFs in the real-time formalism (and the proof using properties of the trace and the
definition for a thermal average is very similar). Without loss of generality, we can
therefore limit our consideration to the function

gM(τ) ≡ −〈T̂W Ǎ(τ )B̌(0)
〉
. (3.50)
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3.5.1 Periodicity and Antiperiodocity in Imaginary Time

An important property of the imaginary-time GF, written as in Equation (3.50) is
that it obeys either a periodicity or antiperiodicity condition over an interval β for
the τ variable, where we denote β = 1/kBT as before and consider T �= 0. The
property may be stated as follows:

gM(τ) = ε gM(τ + β), (3.51)

where ε was defined earlier as having the possible values ±1, so with ε = 1 (as
typically for boson) we have periodicity whereas with ε = −1 (as typically for
fermions) we have antiperiodicity.

Proof There are two cases to consider, depending on the sign of τ . Taking the case
of τ < 0, we have

gM(τ) = −〈T̂W Ǎ(τ )B̌(0)〉 = −ε〈B̌(0)Ǎ(τ )〉
= −ε

1

Q
Tr
[
e−βHBeHτAe−Hτ

]
= −ε

1

Q
Tr
[
eHτAe−Hτ e−βHB

]
,

where we have employed properties of the trace and the definition of thermal aver-
age in Equation (3.4). With further rearrangement this yields

gM(τ) = −ε
1

Q
Tr
[
e−βHe(τ+β)HAe−(τ+β)HB

]
= −ε

1

Q
Tr
[
e−βHǍ(τ + β)B̌(0)

]
= −ε 〈Ǎ(τ + β)B̌(0)〉 = ε gM(τ + β).

This proves the required result when τ < 0. The case of τ > 0 is treated similarly.

If Equation (3.51) is applied twice in succession to the GF we obtain

gM(τ) = ε gM(τ + β) = ε2 gM(τ + 2β) = gM(τ + 2β). (3.52)

This result means that the imaginary-time GF is always periodic with a period equal
to 2β. Consequently, without loss of generality we are free to choose τ to satisfy
−β < τ < β. Also, because of this periodicity, it follows that we may expand
gM(τ) as a Fourier series in this chosen interval. The expansion can be written in
the form

gM(τ) = 1

β

∞∑
m=−∞

e−iωmτG(iωm). (3.53)
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The overall 1/β factor appearing in the preceding expansion is optional, but
it is included for later convenience. The quantities G(iωm) denote the Fourier
components for the imaginary-time GF. The summation in Equation (3.53) is
over the full spectrum of frequencies denoted by ωm. It is now straightforward to
show that these frequencies are discrete, which is why we have a summation in
Equation (3.53) rather than an integration. In fact, there is an infinite number of
frequency values, and they take a different form for bosons and for fermions. To
see this, we substitute Equation (3.53) into (3.51) giving

1

β

∞∑
m=−∞

e−iωmτG(iωm) = ε
1

β

+∞∑
m=−∞

e−iωm(τ+β)G(iωm).

This leads to the consistency condition that we must have exp(−iωmβ) = ε,
implying for ωm that

ωm =
⎧⎨
⎩

(2m + 1)π/β for fermions (ε = −1)

2mπ/β for bosons (ε = 1)

, (3.54)

where m can take all integer values from −∞ to ∞. The frequencies ωm are
sometimes known as Matsubara frequencies. They depend on temperature through
β = 1/kBT and form a discrete (rather than continuous) set provided T �= 0. The
frequencies are always nonzero for fermions but can be zero (when m = 0) for
bosons. In the zero-temperature limit (when β → ∞) the interval between adjacent
frequencies, given by 2π/β tends to zero and the frequency spectrum becomes
continuous in this limit.

It is of interest for us to obtain the inverse Fourier transformation to Equa-
tion (3.53). We start by noting that this will have the form

G(iωm) = β
1

2β

∫ β

−β

dτ eiωmτgM(τ)

= 1

2

∫ 0

−β

dτ eiωmτgM(τ) + 1

2

∫ β

0
dτ eiωmτgM(τ).

In the second line in the preceding equation we have split the range of integration
into two parts. Then, by introducing a change of variable to τ̃ = τ + β in the first
term in this line and subsequently using the property stated in Equation (3.51), it
may be shown that the two terms are equal to one another. The details are left for
Problem 3.6. The outcome is that we can now write the inverse Fourier transforma-
tion more concisely as

G(iωm) =
∫ β

0
dτ eiωmτgM(τ). (3.55)

The “frequency” labels represented by iωm are, of course, pure imaginary numbers.
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3.5.2 The Lehmann Representation

Here we will show that there is a simple connection between the imaginary-time
GF and its corresponding real-time retarded GF. This convenient result is achieved
in terms of their frequency Fourier transforms using what is known as the Lehmann
representation.

The starting point is the definition in Equation (3.50) for the imaginary-time
GF. We choose to employ a representation of the complete set of quantum states
of H, and so we write H|j〉 = Ej |j〉. This means that the single-particle energy
eigenvalues Ej are measured here with respect to the chemical potential μ. When
τ > 0 it follows that we have

gM(τ) = −〈Ǎ(τ )B̌(0)〉 = − 1

Q
Tr
[
e−βHeHτAe−HτB

]
= − 1

Q

∑
j

〈j |e−βHeHτAe−HτB|j〉.

Then we can employ the completeness property of the states that∑
j ′

|j ′〉〈j ′| = 1 (3.56)

to obtain a decomposition in terms of the matrix elements of A and B individu-
ally as

gM(τ) = − 1

Q

∑
j,j ′

〈j |e−βHeHτAe−Hτ |j ′〉〈j ′|B|j〉

= − 1

Q

∑
j,j ′

e−βEj eτ(Ej −Ej ′ )Aj,j ′Bj ′,j .

Here we have denoted Aj,j ′ = 〈j |A|j ′〉 and Bj ′,j = 〈j ′|B|j〉 as a shorthand for
the matrix elements.

Now we substitute the preceding result into the right-hand side of Equa-
tion (3.55) to find initially that

G(iωm) = −
∫ β

0
dτ

1

Q

∑
j,j ′

e−βEj eτ(iωm+Ej −Ej ′ )Aj,j ′Bj ′,j

= − 1

Q

∑
j,j ′

e−βEj
eiωmβe(Ej −Ej ′ )β − 1

iωm + Ej − Ej ′
Aj,j ′Bj ′,j .

Then, after using the property that exp(iωmβ) = ε for the boson and fermion
Matsubara frequencies, the preceding result can be expressed as
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G(iωm) = 1

Q

∑
j,j ′

e−βEj − εe−βEj ′

iωm + Ej − Ej ′
Aj,j ′Bj ′,j . (3.57)

Following an analogous derivation by H. Lehmann in [59], the preceding type
of result for the frequency Fourier transform of a GF in terms of a summa-
tion over matrix elements of the operators is often referred to as the Lehmann
representation.

We may next go through a very similar procedure to obtain the Lehmann rep-
resentation for the case of the real-time retarded GF Gr(ω) in terms of the same
operators. The main results are quoted in the following text (with the details being
left to Problem 3.8). Using Equation (3.6) and setting t ′ = 0, because only the time
difference is relevant, we find

gr(t) = −iθ(t) {〈A(t)B(0)〉 − ε〈B(0)A(t)〉}
= −iθ(t)

1

Q

∑
j

{
e−βEj 〈j |eiHtAe−iHtB|j〉 − ε e−βEj 〈j |BeiHtAe−iHt |j〉

}

= −iθ(t)
1

Q

∑
j,j ′

{
e−βEj ei(Ej −Ej ′ )tAj,j ′Bj ′,j − ε e−βEj ′ ei(Ej −Ej ′ )tAj,j ′Bj ′,j

}
.

(3.58)

The Fourier transform of the preceding retarded GF at frequency ω, as defined in
Equation (3.23), can then be obtained in the form

Gr (ω) = 1

2πQ

∑
j,j ′

e−βEj − εe−βEj ′

ω + Ej − Ej ′ + iη
Aj,j ′Bj ′,j, (3.59)

which provides us with the required Lehmann representation. Again η denotes a
positive infinitesimal quantity.

By now comparing the right-hand sides of Equations (3.57) and (3.59) we see
that the only difference regarding the summation parts is in the denominator term.
The important result is that, if we have already calculated the imaginary-time GF
G(iωm), we may directly obtain the corresponding retarded GF Gr (ω) by making
the simple replacement iωm → ω + iη. There is also the overall factor of (1/2π)

to take account of when comparing G(iωm) and Gr (ω): this is a consequence of
the conventions adopted for the respective Fourier transforms. We will make use of
this connection between the GFs when developing the diagrammatic perturbation
method in Chapter 8. We note that the quantities iωm lie along the imaginary axis
in the complex ω̃ plane, as seen in Figure 3.3.
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Figure 3.3 Representation of the imaginary quantities iωm in the complex fre-
quency (or ω̃) plane, where ωm denote the Matsubara frequencies, for (a) bosons
and (b) fermions.

3.6 Methods of Evaluating Green’s Functions

There are three main methods that we shall be following throughout this book to
calculate the GFs and to deduce other information from them (such as the excita-
tion frequencies, the spectral intensities, and correlation functions). Briefly, these
methods are

• The equation-of-motion method. This employs the equation of motion for the
real-time (usually the retarded) GFs as derived earlier in this chapter. Because
exact solutions are possible only in a few special cases, the method is typically
employed in conjunction with a so-called decoupling approximation.

• The linear response function method. This involves finding the linearized
response of an unperturbed system to a small (either real or fictitious) per-
turbation that couples to the excitations of the system. It will be shown that the
response functions are related to the retarded GFs in a straightforward fashion.

• The diagrammatic perturbation method. This makes use of the imaginary-time
GFs, involving a formal perturbation expansion. The technique employs an
important result known as Wick’s theorem (to simplify the process of taking
thermal averages) and a Feynman diagrammatic representation (to simplify the
algebra).

Here and in the next few chapters we lay the foundations for the first of these
methods, which is summarized in Subsection 3.6.2. The other two methods are left
until later (see Chapter 6 for the linear response function method and Chapters 8
and 9 for the diagrammatic perturbation method).
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It is worthwhile at this stage, however, to give a brief survey in Subsection 3.6.1
of the “classical” GFs used in mathematics. In part, this is done for complete-
ness, but it will also enable certain comparisons and analogies with the quantum-
mechanical GFs to be highlighted later.

3.6.1 Survey of Classical Green’s Functions

Suppose we consider the problem in mathematics of solving a linear differential
equation for y as a function of the real variable x, having the form

L y(x) − λ y(x) = f (x), (3.60)

where L denotes a Hermitian differential operator (usually a linear combination
of terms involving powers of d/dx), λ is a constant, and f (x) on the right-hand
side is an inhomogeneous term. In general, initial-value boundary conditions would
also be specified. Note that in the absence of f (x) we would have a homogeneous
eigenvalue equation.

A common procedure used to solve Equation (3.60) involves expanding both
y(x) and f (x) in terms of the eigenfunctions yn(x), with n = 1,2,3, . . ., of the
operator L, giving

y(x) =
∑

n

an yn(x) , f (x) =
∑

n

bn yn(x). (3.61)

A connection between the coefficients an and bn can simply be obtained by sub-
stituting the previously mentioned expressions into Equation (3.60) and using the
orthogonality properties of the eigenfunction. In this way it can be deduced that

y(x) =
∑

n

bn yn(x)

λn − λ
,

denoting λn as the eigenvalue corresponding to eigenfunction yn(x). Then, by uti-
lizing the inverse expansions to those in Equation (3.61), the preceding result can
be rewritten as

y(x) =
∫

G(x,x ′) f (x ′) dx ′. (3.62)

The quantity G(x,x ′) is just the classical GF, and it can be expressed formally as

G(x,x ′) =
∑

n

yn(x) y∗
n(x

′)
λn − λ

. (3.63)

The preceding results hold quite generally for any f (x), but suppose we now
take the inhomogeneous term to consist of a delta function at the origin, i.e., we
choose f (x) = δ(x). Equation (3.62) then gives
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y(x) =
∫

G(x,x ′) δ(x ′) dx ′ = G(x,0).

As a minor extension it follows that the classical GF G(x,x ′) can be obtained as
the solution of

(L − λ)G(x,x ′) = δ(x − x ′). (3.64)

The preceding result nicely illustrates a physical interpretation of the classi-
cal GF. Specifically, G(x,x ′) represents the solution (as a function of x) for the
differential equation when the source term has the form of a “spike” at x ′, i.e.,
f (x) = δ(x − x ′). We shall later refer to analogies with Equations (3.63) and
(3.64) when we discuss the linear response methods in Chapter 6.

3.6.2 The Green’s Function Equation-of-Motion Method

We have already obtained a formal equation of motion given in Equation (3.15) for
any real-time GF g(A;B | t − t ′) of the operators A and B. This equation relates
the time derivative of the GF to a static correlation function, multiplied by δ(t − t ′),
plus another GF that depends on the form of the Hamiltonian of the system.

This equation will now be reexpressed more conveniently in the frequency repre-
sentation. We define a Fourier transform from time labels to frequency by analogy
with Equation (3.22), so that

g(A;B | t − t ′) =
∫ ∞

−∞
G(A;B | ω)e−iω(t−t ′)dω. (3.65)

The quantities G(A;B | ω) are the Fourier components of the original GF. It then
follows that we have for the time derivative

d

dt
g(A;B | t − t ′) = d

dt

∫ ∞

−∞
G(A;B | ω)e−iω(t−t ′)dω

= −i

∫ ∞

−∞
ω G(A;B | ω)e−iω(t−t ′)dω.

Using the GF equation of motion as quoted previously in Equation (3.15), along
with the integral representation for the delta function in Equation (3.27), we deduce
that

−i

∫ ∞

−∞
ω G(A;B | ω)e−iω(t−t ′)dω = −i〈[A,B]ε〉 1

2π

∫ ∞

−∞
e−iω(t−t ′)dω

+ i

∫ ∞

−∞
G([H,A];B | ω)e−iω(t−t ′)dω.
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Finally, on equating the terms appearing as the integrands on both sides of the
equation (and cancelling out common factors), we arrive at the important result that

ω G(A;B | ω) = 1

2π
〈[A,B]ε〉 − G([H,A];B | ω). (3.66)

This will be taken to represent our standard form of the equation of motion for
real-time GFs. In a few special cases, we might find that the operator [H,A] is
straightforwardly related to the operator A, and then we can just solve the preceding
equation of motion for the original GF G(A;B | ω). More typically, however, the
new GF appearing on the right-hand side of Equation (3.66) is more complicated
than the original GF. We could next repeat this process by writing down its equation
of motion, generating yet another GF. Sometimes this process might terminate after
a finite number of stages (as we shall see in examples later), or in principle it might
just seem to continue indefinitely.

In practice, in the absence of any algebraic termination leading to a closed set of
coupled equations, we will usually try to get an approximate solution by imposing
a termination to the process after a chosen finite number of steps: this will involve
looking for an approximation to simplify the GF that appears on the right-hand side
of the last equation. This is usually called a decoupling approximation.

We will illustrate this process with examples in the following chapters, starting
with cases where the GF equations are exactly solvable (in Chapter 4) and next
considering approximation methods (starting in Chapter 5).

Problems

3.1. The Hamiltonian H for a spinless particle of mass m confined in 3D to the
interior of a cubical box with sides of length L is H = −(h̄2/2m)∇2. It is
assumed that the walls of the box are inpenetrable and the potential energy
inside the box is zero. Write down the QM energy eigenvalues for the particle
and hence an expression for the partition function Q in a canonical ensemble.
Then evaluate Q assuming that the summation over states can be replaced by
integral(s). Finally show that the thermal average (expectation value) for the
energy of the particle is

〈H〉 = 3

2
kBT

in accordance with the equipartition theorem.

3.2. Verify the results quoted in Subsections 3.3.2 for the form taken by the
advanced and causal GFs when they are reexpressed in the frequency rep-
resentation. Do this by analogy with the proofs given for the retarded GF
Gr(ω) in the previous subsection.
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3.3. Prove that the relationship

g∗(A;B | t − t ′) = εg(A†;B† | t − t ′)

applies for both retarded and advanced GFs. Here ε is the ±1 factor appearing
in the GF definitions, and the * denotes complex conjugate. Deduce also
the relationship between the retarded and advanced GFs G(A;B | ω) and
G(B;A | ω) in the frequency representation.

3.4. By using the method of contour integration (or otherwise), verify the quoted
result in Equation (3.39) for the inverse Kramers–Kronig relation in the case
of the retarded GF.

3.5. Suppose that an analytically continued GF G(A;B | ω̃) at the complex fre-
quency label ω̃ is given by

G(A;B | ω̃) = 2ω̃

(ω1 − ω̃)(ω2 − ω̃)
,

where ω1 and ω2 are real frequencies that satisfy ω2 > ω1 > 0. What is
the corresponding retarded GF at any real frequency label ω? Deduce the
spectral intensity J (ω) in the preceding case. You might find it helpful to use
partial fractions in reexpressing the preceding GF.

3.6. Prove the Fourier transformation result for the imaginary-time GFs as quoted
in Equation (3.55), starting from the previous equation in the text.

3.7. The two-time GFs defined in this chapter can be generalized to cases where
three or more operators are involved. For the imaginary-time GFs we may
take the definition

gM(τ1,τ2,τ3, . . . ,τn) = (−i)n
〈
T̂W

{
Ǎ(τ1)B̌(τ2)Č(τ3) · · ·

}〉
,

where Ǎ is given by Equation (3.49) and T̂W is the Wick time-ordering oper-
ator. Show that if 0 < τi ≤ β we have

gM(τ1,τ2, . . . ,τi = 0, . . . ,τn) = −εgM(τ1,τ2, . . . ,τi = β, . . . ,τn),

where ε = ±1.

3.8. Provide the detailed steps for the derivation of the Lehmann representation
for the retarded GF Gr(ω) that was broadly outlined in the text. Specifically,
you should derive Equation (3.58) and show how this can be used to obtain
the final result in Equation (3.59).
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3.9. The final expression for the retarded GF at frequency ω in the Lehmann
representation is given by Equation (3.59). Use this equation to find the
spectral function J (ω) in terms of the Lehmann representation. Then show
that in the case of boson or fermion systems with A = a and B = a†, the
spectral function J (ω) satisfies∫ ∞

−∞
dωJ (ω) = 1,

which is an example of a sum rule.

3.10. Starting from Equation (3.11) derive the equation of motion for the causal
GF and show that the final form of the result in the frequency representation
is just the same as that for the retarded GF in Equation (3.66) of Subsec-
tion 3.6.2.

3.11. It is known from Maxwell’s equation that the magnetic vector and scalar
potentials for an EM wave of angular frequency ω satisfy, in general, the
inhomogeneous Helmholtz equation. The corresponding classical GF g(r,r′)
in 3D therefore satisfies

∇2g(r,r′) + k2g(r,r′) = δ(r − r′),

where k = ω/c and c is the vacuum light speed. Assuming there is only an
outward wave solution as

∣∣r − r′∣∣→ ∞, show that the GF is

g(r,r′) = − eik|r−r′|
4π |r − r′| .



4

Exact Methods for Green’s Function

In this chapter we present some calculations for real-time Green’s functions (GFs),
as well as related quantities such as the spectral intensities and correlation func-
tions, where the results may be obtained exactly for the particular model Hamilto-
nian under consideration without any further approximation being involved. Such
models or systems are necessarily relatively simple, and may have involved phys-
ical approximations or the neglect of certain effects at an earlier stage in arriving
at the model. Nevertheless, they are instructive to consider as an illustration of the
general methods and to act as a springboard for the subsequent extensions to be
considered in later chapters.

For the present we shall follow the GF equation-of-motion method that was
outlined in Section 3.6. Various calculations will be given where the equations of
motion have an exact solution, enabling us to explore the basic properties of the GFs
in the complex frequency plane and the correlations in the system. In some cases,
there may be several coupled equations of motion (e.g., for “mixed” excitations
involving more than one boson or fermion field). The initial examples in this chapter
will be covered in some detail in order to establish the methodology.

4.1 Noninteracting Gas of Bosons or Fermions

On setting v(q) = 0 for the pairwise interaction term in the earlier Hamiltonian
expression derived for a boson or fermion gas (see Subsection 1.4.2), we are left
just with the kinetic energy term in the Hamiltonian and we may write

H = H − μN =
∑

k

Eka
†
kak. (4.1)

Here Ek = (k2/2m) − μ denotes the particle energy expressed relative to the
chemical potential μ. We now choose to take A = ak and B = a

†
k in Equation (3.66)

to evaluate retarded GFs of the type G(ak;a†
k | ω) at frequency ω. The behavior in

94
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the real-time domain will also be discussed. Afterward, as a simple exercise to
demonstrate consistency we show how this may be done for the corresponding
imaginary-time GFs, where we employ a direct evaluation from the definitions,
instead of the equation of motion as was done for the real-time GFs.

4.1.1 Case of Bosons

For bosons we choose the parameter ε = 1 so that we get commutation relations in
the definitions of the GFs in Equations (3.6), (3.7), and (3.11). For the terms appear-
ing on the right-hand side of Equation (3.66) we have 〈[A,B]ε〉 = 〈[ak,a

†
k]〉 = 1

and

[H,A] =
∑

k′
Ek′[a†

k′ak′,ak] = Ek[a†
kak,ak] = −Ekak. (4.2)

Hence the equation of motion for this GF becomes

ω G(ak;a†
k | ω) = 1

2π
+ Ek G(ak;a†

k | ω),

so we clearly have a situation in which the new GF appearing on the right-hand side
is the same as the one with which we started. We have simply

(ω − Ek)G(ak;a†
k | ω) = 1

2π
. (4.3)

If we have ω �= Ek, we can just divide both sides of the preceding equation by
(ω − Ek). This would not, however, yield the general solution, valid for all real
frequency ω, which takes the form

G(ak;a†
k | ω) =

(
1

2π

)
1

ω − Ek
+ f δ(ω − Ek). (4.4)

Here f is a constant, representing just the arbitrary constant expected in the general
solution of the first-order differential equation for the GF in the time representation.
One way to deduce f is to substitute Equation (4.4) back into the defining expres-
sion for the real-time GF (whether it be retarded, advanced, or causal). We expect
to find a different value of f for each kind of GF. An alternative (and usually much
better) way is to write down directly the analytically continued GF, which was
introduced in Subsection 3.4.3. Because this GF has a discontinuity on the real axis
and it is analytic elsewhere in the complex ω̃ plane, we have in this case

G(ak;a†
k | ω̃) =

(
1

2π

)
1

ω̃ − Ek
, (4.5)

This has a simple pole corresponding to ω̃ = Ek on the real axis at the particle
energy Ek.
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Now, for the retarded GF, we previously obtained in Equation (3.44) the rela-
tionship that G(ω + iη) = Gr(ω). Therefore, we have

Gr(ak;a†
k | ω) =

(
1

2π

)
1

ω − Ek + iη

= 1

2π
P
(

1

ω − Ek

)
− i

2
δ(ω − Ek). (4.6)

Here η denotes a positive infinitesimal as before, and we have used the identity
in Equation (3.31) to obtain the second line of the preceding equation. The result
corresponds to f = −i/2 in Equation (4.4).

Similarly, for the advanced GF, we previously deduced in Equation (3.45) that
G(ω − iη) = Ga(ω), and so

Ga(ak;a†
k | ω) =

(
1

2π

)
1

ω − Ek − iη
. (4.7)

We conclude that this corresponds to f = i/2 in Equation (4.4). Finally, to get
the value of f for the causal GF we would need to go back to the definition of the
causal GF. This is much less convenient than for the retarded or advanced GFs, and
it is found that the result is

f = − i

2
coth

(
1

2
βEk

)
. (4.8)

Note also that the causal GF has an explicit temperature dependence (in the imagi-
nary part), unlike the other types of GFs.

We can now use any of the previously mentioned GF results to deduce the
spectral intensity J (ω) by application of the fluctuation-dissipation theorem as in
Equation (3.40). Doing this in terms of the retarded GF, we find

J (ω) = −2(
eβω − 1

) Im Gr(ω) = −1

π
(
eβω − 1

) Im( 1

ω − Ek + iη

)
. (4.9)

Therefore, we conclude that

J (ω) = 1

(eβω − 1)
δ(ω − Ek), (4.10)

and so, for a noninteracting boson gas, the spectral intensity consists of a single
delta-function spike, i.e., only one Fourier component is present corresponding to
the frequency ω = Ek. We notice that the total (or integrated) spectral intensity is
finite because ∫ ∞

−∞
J (ω) dω =

∫ ∞

−∞

dω

eβω − 1
δ(ω − Ek) = 1

eβEk − 1
.
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Next we can deduce the time correlation functions. For example, using Equa-
tion (3.17) we have

〈a†
k(t)ak(t

′)〉 =
∫ ∞

−∞
J (ω)e−iω(t−t ′)dω = exp

[− iEk(t − t ′)
][

exp(βEk) − 1
] . (4.11)

As a special case, if we now take the limiting situation of the time labels becoming
equal, we obtain the result that the number of bosons with wave vector k is

nk ≡ n(Ek) = 〈a†
kak〉 = 1[

exp(βEk) − 1
] . (4.12)

In other words, we recover the well-known Bose–Einstein distribution function, as
expected. As a comment on notation, we will express the full form of the distribu-
tion function as n(Ek) at energy Ek, but when there is no ambiguity we will often
use the shorthand form nk.

We note that it is usually preferable to solve for the GFs in the frequency domain,
as done in this subsection. Even if our objective is to find a time correlation function
(e.g., for comparison with an experiment), the typical procedure is to deduce the
spectral intensity J (ω) from the GF by using the fluctuation-dissipation theorem
and then transform to the time-dependent correlation functions.

In the present example, we could alternatively obtain the GF in the time domain
by using Equation (3.15), which becomes here

d

dt
gr(ak;a†

k | t − t ′) = −iδ(t − t ′)〈[ak,a
†
k]〉 + igr([H,ak];a†

k | t − t ′).

The two terms on the right-hand side simplify because [ak,a
†
k] = 1 and [H,ak] =

−Ekak (see, e.g., Problem 1.8). Therefore, we have after some minor rearrangement(
i
d

dt
− Ek

)
gr(ak;a†

k | t − t ′) = δ(t − t ′).

The solution for the time-dependent GF is simply

gr(ak;a†
k | t − t ′) = −iθ(t − t ′) exp[−iEk(t − t ′)], (4.13)

as can be verified by substituting back into the preceding differential equation.

4.1.2 Case of Fermions

We make the same choices for the Hamiltonian and for the operators in the GF as
in the previous subsection, except that now we choose ε = −1 to have anticommu-
tation relations in the definitions of the GF. It must be kept in mind, however, that
the general equation of motion always has a term involving a commutator of one of
the operators with the Hamiltonian.
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It is easy to prove that Equations (4.3)–(4.7) for the GFs apply in the fermion
case, just as in the boson case, although some of the intermediate steps are different.
Hence the expressions for the retarded and advanced GFs in the energy represen-
tation are formally the same as before (with the same values of the constant f ).
However, the result for the causal function is different, leading to

f = − i

2
tanh

(
1

2
βEk

)
. (4.14)

The spectral intensity in the fermion case is found to be

J (ω) = 1(
eβω + 1

)δ(ω − Ek). (4.15)

Again it is proportional to a delta function at ω = Ek, but it now becomes multi-
plied by a Fermi–Dirac (FD) factor, rather than the Bose–Einstein (BE) factor as
previously.

Similarly for the time correlation function we have

〈a†
k(t)ak(t

′)〉 =
∫ ∞

−∞
J (ω)e−iω(t−t ′)dω = exp

[− iEk(t − t ′)
][

exp(βEk) + 1
] , (4.16)

whereas for the thermal average the FD distribution function is recovered as

nk ≡ n(Ek) = 〈a†
kak〉 = 1[

exp(βEk) + 1
] . (4.17)

The same comment regarding notation applies as after Equation (4.12).

4.1.3 The Green’s Functions in the Imaginary-Time Formalism

We now reexamine the calculation for noninteracting bosons by using in this case
the imaginary-time (or Matsubara) GF formalism. The Hamiltonian is again taken
to be as in Equation (4.1), while from Equation (3.50) the imaginary-time GF can
be written as

gM(τ) = −〈T̂W ǎk(τ )ǎ
†
k(0)〉

= −θ(τ )〈ǎk(τ )ǎ
†
k〉 − θ(−τ)〈ǎ†

kǎk(τ )〉. (4.18)

To obtain ǎk(τ ) we employ its definition in Equation (3.49) and we differentiate
with respect to the τ label, giving
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d

dτ
ǎk(τ ) = d

dτ

(
eHτ ake

−Hτ
)

= [H,ǎk(τ )]

=
∑

k′
Ek′[a†

k′ak′,ǎk(τ )]

=
∑

k′
Ek′(−δk,k′)ǎk′(τ ) = −Ek ǎk(τ ).

Thus, after integrating, we have the simple property that

ǎk(τ ) = e−Ekτ ǎk(0) = e−Ekτ ak. (4.19)

Next, by substituting (4.19) into (4.18) for the GF, we obtain

gM(τ) = −θ(τ )〈aka
†
k〉e−Ekτ − θ(−τ)〈a†

kak〉e−Ekτ .

For bosons we have 〈a†
kak〉 = nk = 1/[exp(βEk) − 1] and 〈aka

†
k〉 = 1 + nk.

Therefore, the preceding GF result can be expressed more simply as

gM(τ) = −e−Ekτ {θ(τ )[1 + nk] + θ(−τ)nk}. (4.20)

By using Equation (3.55) the frequency Fourier transform of this GF can be
found as

G(iωm) =
∫ β

0
dτ eiωmτgM(τ)

= − [1 + nk]
∫ β

0
dτ eiωmτ e−Ekτ

= − [1 + nk]
e(iωm−Ek)β − 1

iωm − Ek
.

Next we use the property of Matsubara boson frequencies that eiωmβ = 1, and
following some other straightforward algebra the final GF expression is found to be
(see Problem 4.2)

G(iωm) = 1

iωm − Ek
. (4.21)

By inspection, it is clear that if the replacement iωm → ω + iη is made in the
preceding equation and an overall factor of (1/2π) is introduced, the result for the
retarded GF in (4.6) is regained. This is in accordance with the general property
established in Subsection 3.5.2.

For fermions we may follow step-by-step the same approach as used previ-
ously for the boson case. The only differences are some changes of sign due to
having anticommutation relations between the fermion operators instead of boson
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commutation relations. It is found, however, that Equation (4.19) for the trans-
formed operators still applies in the fermion case, but Equation (4.20) becomes
modified to

gM(τ) = e−Ekτ {−θ(τ ) [1 − nk] + θ(−τ)nk} , (4.22)

where we now have nk = 1/[exp(βEk) + 1] as the Fermi–Dirac (FD) distribution
function. For the frequency Fourier transform of the GF we obtain

G(iωm) =
∫ β

0
dτ eiωmτgM(τ) = [nk − 1]

∫ β

0
dτ eiωmτ e−Ekτ

= [nk − 1]
e(iωm−Ek)β − 1

iωm − Ek
= 1

iωm − Ek
. (4.23)

We notice that the final result for G(iωm) is formally the same as in Equation (4.21)
for the boson case.

4.2 Green’s Functions for a Graphene Sheet

Already in Section 2.7 we calculated the dispersion relation for the electronic exci-
tation energy Ek as a function of the 2D wave vector k in graphene by using the
operator equation-of-motion method. Now we use the GF equations of motion to
obtain the retarded GFs with the form G(ak;a†

k | ω), G(ak;b†
k | ω), G(bk;a†

k | ω),
and G(bk;b†

k | ω), where the a and b operators refer to the A and B sublattice sites,
respectively, of graphene.

On constructing the GF equations of motion for each of the preceding four GFs
using Equation (3.66), we obtain the following expressions:

ωG(ak;a†
k | ω) = 1

2π
+ tFkG(bk;a†

k | ω), (4.24)

ωG(ak;b†
k | ω) = tFkG(bk;b†

k | ω), (4.25)

ωG(bk;a†
k | ω) = tF ∗

k G(ak;a†
k | ω), (4.26)

ωG(bk;b†
k | ω) = 1

2π
+ tF ∗

k G(ak;b†
k | ω), (4.27)

where Fk is a complex factor defined as

Fk = 2 exp

(
1

2
ikxa0

)
cos

(√
3

2
kya0

)
+ exp (−ikxa0) (4.28)

and the other notation is the same as before in Section 2.7.
The solutions of the preceding coupled equations for the individual GFs (in the

analytically continued form) are then easily found to be given by
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G(ak;a†
k | ω̃) = G(bk;b†

k | ω̃) = ω̃

2π(ω̃2 − E2
k)

, (4.29)

G(ak;b†
k | ω̃) = Fk

2π(ω̃2 − E2
k)

, (4.30)

G(bk;a†
k | ω̃) = F ∗

k

2π(ω̃2 − E2
k)

. (4.31)

We have denoted Ek = t |Fk|, which can be shown after some simple algebra to be
identical to the dispersion relation written explicitly in Equation (2.74). As might
be expected, all the GFs have energy poles at ±Ek.

The spectral intensities corresponding to each of the preceding GFs may readily
be obtained, e.g., by first replacing ω̃ → ω + iη to get the retarded GFs and then
applying the fluctuation-dissipation theorem given in Equation (3.40). For example,
corresponding to G(ak;a†

k | ω) we have for the spectral intensity

Ja−a(ω) = 1

4
(
eβω + 1

) {δ (ω − Ek) + δ (ω + Ek)} . (4.32)

Hence there are two delta-function spikes in this case and they are weighted by
different thermal factors (when evaluated at the two values of ω specified by the
delta functions). We note that a useful mathematical identity for delta functions
that can be employed when obtaining the preceding result (and elsewhere) is

δ{f (x)} =
∑

i

1

|f ′(xi)| δ(x − xi) (4.33)

for a function f (x) of a real variable x, where f ′ = df/dx and {xi} denotes the
distinct values of x (with i = 1,2, . . .) at which f (x) = 0.

4.3 Interaction of Light with Atoms

As another GF application we consider the interaction of light (photons) with
atoms. Here we examine the simplest case when just one two-level atom interacts
with a quantized single-mode of an optical cavity, as represented schematically in
Figure 4.1(a). This example can be well described in the framework of the Jaynes–
Cummings (JC) model [60–64], which is extensively employed in quantum optics
[13, 14, 65–67]. This model, as well as its extension to the Dicke model treated
later, is mathematically simple.

4.3.1 Derivation of Jaynes–Cummings Model

In Subsection 1.1.2 we showed that the quantized optical (electromagnetic) field
can be described by a simple harmonic oscillator. Also, it was established that
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Figure 4.1 Schematic illustration of (a) the Jaynes–Cummings model of a simple
two-level atom placed in an optical cavity; (b) the Dicke model in which there are
several atoms.

the Hamiltonian for the field may be written as Hf = ωf a†a, where ωf is the
angular frequency of the single-mode quantized field (photon). The boson operator
a† creates a photon and the operator a annihilates a photon. The ground state
|0〉 can be interpreted as the vacuum state with no photon and the eigenstate |n〉
will correspond to the state of the EM field with n photons. We next consider
introducing a two-level atom into the system. This is an atom that consists of only
two eigenstates: the ground state denoted by |g〉 and the excited state denoted by
|e〉. In this Hilbert space of atomic states we can use the Pauli spin matrices for spin
half as

σx =
(

0 1
1 0

)
, σ y =

(
0 −i

i 0

)
, σ z =

(
1 0
0 −1

)
, (4.34)

and

σ+ =
(

0 1
0 0

)
, σ− =

(
0 0
1 0

)
. (4.35)

The operators σ+ and σ− are the raising and lowering operators of the atom with
the properties that σ+ = |e〉 〈g| and σ− = |g〉 〈e|, while σ z is the atomic inversion
operator given by

σ z = |e〉 〈e| − |g〉 〈g| . (4.36)

The Hamiltonian for the atom can then be specified by Ha = 1
2ωaσ

z, with ωa

representing the energy difference between the ground state |g〉 and the excited
state |e〉.
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There is also another term required in the total Hamiltonian of the system
because of the interaction between the atom and the field. A possible interaction
process is that one photon is absorbed, and thus the atom becomes excited from its
ground state |g〉 to the state |e〉. The operator describing this process is σ+a. The
other possibility is the reverse process with the emission of a photon while the atom
drops back to the ground state. This latter process is described by the operator σ−a†.
Note that both of these processes conserve the energy. In general, we can include
two other processes given by σ+a† and σ−a in the Hamiltonian, which are not
energy conserving but are allowed by QM. The interaction part of the Hamiltonian
is then simply written as Haf = g(σ+ + σ−)(a + a†), where g is the coupling
constant for the strength of the interaction. The complete JC Hamiltonian is then

HJC = Hf + Ha + Haf

= ωf a†a + 1

2
ωaσ

z + g(σ+ + σ−)(a + a†). (4.37)

To study the time dependence of the previously mentioned processes it is conve-
nient to go to the interaction picture. According to the definition in Equation (2.14)
we have

Hint
af = eiH0tHaf e−iH0t, (4.38)

where H0 = Hf + Ha is the unperturbed part. It is found that

Hint
af = exp

{
i
[
ωf a†a + 1

2
ωaσ

z
]
t
}

[g(σ+ + σ−)(a + a†)]

× exp
{− i

[
ωf a†a + 1

2
ωaσ

z
]
t
}
.

Because the field operators a† and a commute with the atom operators σ±,z,
we may rearrange the exponential operator terms and utilize the 2 × 2 matrix
representation as

Hint
af = exp

{
iωf a†at

}
exp

{
i
1

2
ωaσ

zt

}
g(σ+ + σ−)(a + a†)

× exp
{−iωf a†at

}
exp

{
−i

1

2
ωaσ

zt

}
= g exp

{
iωf a†at

}
(a + a†) exp

{−iωf a†at
}

(4.39)

× exp

[
it

( 1
2ωa 0
0 − 1

2ωa

)](
0 1
1 0

)
exp

[
−it

( 1
2ωa 0
0 − 1

2ωa

)]
.

The result after some further simplification becomes (see Problem 4.5)

Hint
af = g

{
σ+a exp

[−i
(
ωf − ωa

)
t
]+ σ−a† exp

[
i
(
ωf − ωa

)
t
]

+ σ−a exp
[−i

(
ωf + ωa

)
t
]+ σ+a† exp

[
i
(
ωf + ωa

)
t
]}

. (4.40)
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We may now introduce an approximation to the preceding expression. This is
done on the physical basis that two of the terms included (those proportional to σ−a

and σ+a†) are rapidly oscillating terms and thus their effect can be neglected com-
pared with the other two more slowly evolving terms. This is known as the rotating
wave approximation (RWA). We may revert to the Schrödinger picture after carry-
ing out the approximation, and we obtain the total JC Hamiltonian under RWA as

HJC = ωf a†a + 1

2
ωaσ

z + g
(
σ+a + σ−a†

)
. (4.41)

This completes our derivation of the JC model Hamiltonian.
A generalization of the JC model to systems consisting of N two-level atoms

is known as the Dicke model or Tavis–Cummings model [68–70]. A schematic
illustration is presented in Figure 4.1(b). It is the basic model for describing the
collective interaction of light and matter. The Dicke model reduces to the JC model
for the N = 1 case. In the Dicke model, N atoms interact cooperatively with
a quantized single-mode of the optical field (with frequency ωf ), and the Dicke
Hamiltonian in the RWA can be written as

HD = ωf a†a + ωaS
z + g

(
S+a + S−a†

)
. (4.42)

Here ωa is the frequency of any one of the atoms, while S±,z are collective atomic
operators defined by

S± =
N∑

i=1

σ±
(i) and Sz = 1

2

N∑
i=1

σ z
(i). (4.43)

The new operators, by analogy with Equation (4.36), are

σ+
(i) = |ei〉 〈gi | , σ−

(i) = |gi〉 〈ei | , and σ z
(i) = |ei〉 〈ei | − |gi〉 〈gi | , (4.44)

with |gi〉 and |ei〉 being the ground and excited states, respectively, of the ith atom.
The collective atomic operators satisfy the usual angular momentum commutation
relations in QM [1, 2].

4.3.2 Green’s Functions of the Jaynes–Cummings Model

For simplicity, we now employ the JC model with the Hamiltonian in Equa-
tion (4.41) to obtain the GFs. We take A = σ− and B = σ+ in Equation (3.66) to
evaluate real-time GFs of the type G(σ−;σ+ | ω), and also we choose ε = 1 so that
we get commutation relations in the definitions of the GFs. The equation of motion
of the preceding GF is found from

ωG(σ−;σ+ | ω) = 1

2π

〈[
σ−,σ+]

ε

〉− G(
[
HJC,σ−] ;σ+ | ω). (4.45)
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For the commutators, it is easily verified that [σ+,σ−] = σ z and[
HJC,σ−] = −ωaσ

− + gσ za, (4.46)

so the GF equation of motion is

ωG(σ−;σ+ | ω) = − 1

2π

〈
σ z
〉+ ωaG(σ−;σ+ | ω)

− g
〈
σ z
〉
G(a;σ+ | ω). (4.47)

The expectation value of the atomic inversion operator 〈σ z〉 is −1 at zero tempera-
ture and we assume this to be the case throughout the rest of the calculation.

We see that Equation (4.47) contains another GF of the form G(a;σ+ | ω).
Hence, by making the choices A = a and B = σ+, the equation of motion of this
other GF is

ωG(a;σ+ | ω) = −G(
[
HJ−C,a

] ;σ+ | ω)

= ωf G(a;σ+ | ω) + gG(σ−;σ+ | ω).

To summarize, we find that the two GFs (in their analytically continued form) are
related by

G(a;σ+ | ω̃) = g(
ω̃ − ωf

)G(σ−;σ+ | ω̃), (4.48)

and after inserting this into Equation (4.47) we obtain the required GF as

G(σ−;σ+ | ω̃) = 1/2π

ω̃ − ωa − [ g2/(ω̃ − ωf )]
. (4.49)

This is consistent with a result obtained in [71].
By identifying the poles of the GF as the solutions for real ω at which the

denominator of the GF vanishes, we get the excitation spectrum from the condition
that

ω − ωa − g2

ω − ωf

= 0. (4.50)

This produces two solutions ω = ω± corresponding to

ω± = ωf + ωa

2
±
√

(1/4)
(
ωf − ωa

)2 + g2

= ωa − δ

2
± 1

2

√
δ2 + 4g2. (4.51)

In the second form of the preceding expression for ω± the notation is that ωR ≡√
δ2 + 4g2 is called the Rabi splitting, and δ ≡ (ωa − ωf ) is a detuning parameter.

The behavior of the modes when the frequencies are plotted versus the detuning
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Figure 4.2 Illustration of the energy spectrum plotted versus δ/g for the Jaynes–
Cummings (JC) model. When δ = 0 the two branches are separated by an amount
ωR = 2g corresponding to the Rabi splitting ωR at that value of δ.

factor is illustrated in Figure 4.2. The modes are seen to be strongly coupled (and
split by an amount ωR = 2g) when δ = 0, but they are relatively decoupled
(and unperturbed) otherwise.

We conclude from Equations (4.49) and (4.51) that the corresponding retarded
GF can be expressed as

Gr(σ
−;σ+ | ω) = 1

2π

(
ω − ωf + iη

)
(ω − ω+ + iη) (ω − ω− + iη)

. (4.52)

To deduce other quantities, such as the spectral intensity J (ω), we apply the
fluctuation-dissipation theorem, as quoted in Equation (3.40), to the preceding
retarded GF. This is left to be done as Problem 4.6.

If the GFs and coupled modes are to be generalized to cases in which there
are multiple two-level atoms, it is appropriate to use the Dicke model with the
Hamiltonian given by Equation (4.42). This calculation is more complicated than
in the JC case, but it is partially explored in Problem 4.7.

4.4 Dipole-Exchange Ferromagnet

In this section we consider a ferromagnet with an applied magnetic field along
the direction of net magnetization. The Hamiltonian is taken to include both short-
range exchange and long-range dipole-dipole interactions as in Section 2.6 (see also
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[39, 72]). We recall the result established earlier that, after applying the Holstein–
Primakoff (HP) transformation, the expression for the Hamiltonian is given in terms
of boson operators by Equation (2.62).

To find the GFs, thereby supplementing our earlier results for the SW frequen-
cies, we now choose A = ak and B = a

†
k in Equation (3.66). This will enable us to

evaluate GFs of the type G(ak;a†
k | ω). Also in this case we choose ε = 1 so that we

have commutation relations in the definitions of the GFs. For the terms appearing
on the right-hand side of Equation (3.66) we use 〈[A,B]ε〉 = 〈[ak,a

†
k]〉 = 1 and

[
H,A

] =
∑

k′

{
P(k′)

[
a

†
k′ak′,ak

]+ Q(k′)
[
a

†
k′a

†
−k′,ak

]+ Q∗(k′)
[
ak′a−k′,ak

]}
= −

∑
k′

{
P(k′)δk,k′ak′ + Q(k′)a†

k′δk,−k′ + Q(k′)δk,k′a†
−k′

}
= −P(k)ak − [Q(−k) + Q(k)] a

†
−k.

Hence the GF equation of motion becomes

ωG(ak;a†
k | ω) = 1

2π
+ P(k)G(ak;a†

k | ω)

+ [Q(−k) + Q(k)] G(a
†
−k;a†

k | ω). (4.53)

There is a new GF on the right-hand side which in turn needs to be calculated.
Then we choose A = a

†
−k and B = a

†
k in Equation (3.66) to evaluate the GF

G(a
†
−k;a†

k | ω). For the terms appearing on the right-hand side of the equation of
motion for the GF we have 〈[A,B]ε〉 = 〈[a†

−k,a
†
k]〉 = 0 and

[
H,A

] =
∑

k′

{
P(k′)

[
a

†
k′ak′,a†

−k

]+ Q(k′)
[
a

†
k′a

†
−k′,a

†
−k

]+ Q∗(k′)
[
ak′a−k′,a†

−k

]}
=
∑

k′

{
P(k′)a†

k′δ−k,k′ + Q∗(k′)ak′δk,k′ + Q∗(k′)δ−k,k′a−k′
}

= P(−k)a
†
−k + [Q∗(k) + Q∗(−k)

]
ak.

Therefore, the equation of motion in this case is

ωG(a
†
−k;a†

k | ω) = −P(−k)G(a
†
−k;a†

k | ω)

− [Q∗(k) + Q∗(−k)
]
G(ak;a†

k | ω), (4.54)

and hence the corresponding analytically continued GFs are related by

G(a
†
−k;a†

k | ω̃) = − [Q∗(k) + Q∗(−k)]

(ω̃ + P(−k))
G(ak;a†

k | ω̃). (4.55)
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Substituting Equation (4.55) into Equation (4.53) leads to

G(ak;a†
k | ω̃) = 1/2π

ω̃ − P(k) + {|2Q(k)|2/[ω̃ + P(k)]} . (4.56)

where we assumed P(k) = P(−k) and also Q(k) = Q(−k). To find the excitation
energy at real ω, we consider the condition for the denominator of the preceding
equation to vanish. This occurs when

ω − P(k) + |2Q(k)|2
ω + P(k)

= 0,

giving the quadratic equation ω2 − (P (k))2 + 4|Q(k)|2 = 0. This has the solutions
ω = ±Ek, where Ek represents the dispersion relation for the dipole-exchange
SW modes, and is the same as obtained in Equation (2.66) using the operator
equation-of-motion method. The result in Equation (4.56) can be rewritten in a
more convenient form for the corresponding retarded GF as

Gr(ak;a†
k | ω) =

(
1

2π

)
ω + P(k) + iη

(ω + iη)2 − E2
k

. (4.57)

In the limiting case of the Heisenberg ferromagnet (when the dipolar terms are
put equal to zero) this GF result simplifies to

Gr(ak;a†
k | ω) =

(
1

2π

)
1

ω − Ek + iη
, (4.58)

where Ek = P(k) now represents the SW energy and it is defined by Equa-
tion (1.93). Also, in this limit, it can be seen that Gr(a

†
−k;a†

k | ω) = 0, which is
related to the property that the spin precession has become circular (rather than
elliptical).

4.5 Paramagnet with Crystal-Field Anisotropy

In paramagnets the magnetic interactions between different spin sites, which typ-
ically are due to exchange and/or magnetic dipole-dipole effects, are negligibly
small. Consequently, there is no spontaneous magnetization in zero applied mag-
netic field, as there is in a ferromagnet below TC .

The spin Hamiltonian for a paramagnet typically consists of the Zeeman term
due to an applied magnetic field together with (in some cases) effects of the mag-
netic anisotropy at any atomic spin site in the crystal lattice. An example is the
single-ion crystal-field anisotropy [26, 73], which arises from a coupling between
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the atomic spin-orbit interaction and the crystalline electric fields. We assume here
that the spin Hamiltonian has the form

H = −gμBB0

∑
i

Sz
i − D0

∑
i

(Sz
i )

2, (4.59)

where B0 is the applied magnetic field in the z direction, as in Equation (1.81), and
D0 is a coefficient for the single-ion uniaxial anisotropy. The latter term is typical
for many noncubic crystals.

Suppose we now consider evaluating the GF g(S+
n ;S−

m | t−t ′), where n and m are
site labels, or equivalently the Fourier-transformed GF denoted by G(S+

n ;S−
m | ω).

The choice of taking ε = 1 is convenient, because the spins satisfy commutation
relations. For evaluating the terms in the GF equation of motion (3.66) we require〈[
S+

n ,S−
m

]〉 = 2
〈
Sz

n

〉
δn,m and[

H,S+
n

] = −gμBB0

∑
i

[
Sz

i ,S
+
n

]− D0

∑
i

[
(Sz

i )
2,S+

n

]
= −gμBB0S

+
n − D0(S

z
nS

+
n + S+

n Sz
n).

The second line of the preceding equation is deduced using the spin commutation
results stated in Equation (1.84). The required GF equation of motion becomes after
rearranging the terms

(ω − gμBB0)G(S+
n ;S−

m | ω) = 1

π

〈
Sz

n

〉
δn,m + D0G({Sz

nS
+
n + S+

n Sz
n};S−

m | ω).

(4.60)

We see here that there is a new GF on the right-hand side that is not related in
any obvious way to the GF that we seek to evaluate. The general procedure (in the
absence of making an approximation) is to form the equation of motion for this new
GF. Using the spin commutation relations again, the new GF equation is found to
be (see Problem 4.8)

(ω − gμBB0)G({Sz
nS

+
n + S+

n Sz
n};S−

m | ω)

= 1

π

{
3〈(Sz

n)
2〉 − S(S + 1)

}
δn,m

+ D0G
({

(Sz
n)

2S+
n + 2Sz

nS
+
n Sz

n + S+
n (Sz

n)
2
} ;S−

m | ω) . (4.61)

This has given rise to another (more complicated) GF, so the situation is not encour-
aging.

It is possible, nevertheless, to proceed further in the calculation if we assume a
specific value for the spin quantum number S, as we will illustrate below for the
simplest cases of S = 1/2 and S = 1.
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4.5.1 Spin S = 1/2

In this case, we may conveniently employ the representation in terms of the spin-
half Pauli matrices, which were quoted in Equation (4.35), taking S+

n → 1
2(σ

x +
iσ y), S−

n → 1
2(σ

x − iσ y), and Sz
n → 1

2σ
z. Then, on replacing the spin operators by

their representation as 2 × 2 matrices, we have

(Sz
nS

+
n + S+

n Sz
n) → 1

4

(
1 0
0 −1

)(
0 1
0 0

)
+ 1

4

(
0 1
0 0

)(
1 0
0 −1

)
.

When the right-hand side of the preceding equation is simplified using the matrix
multiplication properties, it is seen that it reduces to zero. Consequently, the GF
G({Sz

nS
+
n + S+

n Sz
n};S−

m | ω) in Equation (4.60) vanishes, enabling us to obtain the
required G(S+

n ;S−
m | ω) directly. The next steps then become similar to the earlier

GF calculation for the noninteracting bosons. In particular, for the analytically
continued GF (in the complex ω̃ plane) we have the result

G(S+
n ;S−

m | ω̃) =
〈
Sz

n

〉
π (ω̃ − gμBB0)

δnm. (4.62)

There is a simple pole in the GF equal to gμBB0, which is just the spacing
between the two quantized energy levels of the paramagnet (noting that the eigen-
values of Sz are ±1/2 in units such that h̄ = 1). The fact that the term proportional
to D0 in the Hamiltonian has no effect is to be expected because the eigenvalues of
(Sz)2 have the same value of 1/4 for both of the spin-up and spin-down quantized
levels.

From Equation (4.62) it is then straightforward to find the spectral intensity and
the time correlation functions.

4.5.2 Spin S = 1

In the next case of S = 1 the spin operators can be represented in terms of 3 × 3
matrices (just as for the QM angular momentum operators), where here we need
only

S+
n →

√
2

⎛
⎝ 0 1 0

0 0 1
0 0 0

⎞
⎠ , Sz

n →
⎛
⎝ 1 0 0

0 0 0
0 0 −1

⎞
⎠ . (4.63)

We may use these relationships in the GF Equations (4.60) and (4.61). First we
find in this case that the spin combination {Sz

nS
+
n + S+

n Sz
n} is non-vanishing, so the

term proportional to the anisotropy coefficient D0 does not disappear from the GF
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Figure 4.3 The unequal spacing between the energy eigenvalues of a S = 1
paramagnet with crystal-field anisotropy as found from Equation (4.59).

equations. Also it follows that there is a simplification for the products of matrices
given by

((Sz
n)

2S+
n + 2Sz

nS
+
n Sz

n + S+
n (Sz

n)
2) →

√
2

⎛
⎝ 0 1 0

0 0 1
0 0 0

⎞
⎠→ S+

n . (4.64)

Therefore, the extra GF Equation (4.61) reduces to

(ω − gμBB0)G({Sz
nS

+
n + S+

n Sz
n};S−

m | ω) = 1

π

{
3〈(Sz

n)
2〉 − 2

}
δn,m

+ D0G(S+
n ;S−

m | ω). (4.65)

We now see that Equations (4.62) and (4.65) give us a pair of coupled equations
that can be solved by eliminating G({Sz

nS
+
n +S+

n Sz
n};S−

m | ω) to find the original GF
G(S+

n ;S−
m | ω). After some straightforward algebra the result for the analytically

continued GF is found to be

G(S+
n ;S−

m | ω̃) = 〈Sz
n〉(ω̃ − gμBB0) + {3〈(Sz

n)
2〉 − 2

}
D0

π(ω̃ − gμBB0 − D0)(ω̃ − gμBB0 + D0)
δn,m. (4.66)

This GF now has two distinct poles, occurring at the values gμBB0 ± D0. These
just correspond to the spacing between the three energy eigenvalues of the Hamil-
tonian when S = 1 (see Figure 4.3). Again it is a straightforward matter to use the
fluctuation-dissipation theorem to deduce the spectral weights and the correlation
functions (see Problem 4.9).

The method that we have described here for the two lowest spin quantum num-
bers can be generalized to higher values of S. This necessitates having an increasing
number (in fact, 2S) of coupled GF equations to achieve a closed set. It follows that
the approach is practical only for relatively low spin values.



112 Exact Methods for Green’s Function

Problems

4.1. Verify in the case of causal GFs, that the values quoted for the constant f are
as given in Equations (4.8) and (4.14) for noninteracting boson and fermion
systems, respectively.

4.2. Work through the intermediate steps required for the derivation of the
Matsubara GF G(iωm) in Equation (4.21) for noninteracting bosons and
fermions, starting from the result for gM(τ) in Equation (4.20).

4.3. Consider N weakly interacting boson particles with most of the particles con-
densed into the k = 0 state. Using the approximate form of the Hamiltonian
HR as obtained in Equation (1.70), derive the equation of motion for the GF
G(ak;a†

k | ω) in the frequency representation (choose ε = 1). Show that it is
necessary to write down another GF equation of motion to obtain a closed
set of equations. Do this and hence solve for the previously mentioned GF
in the frequency representation. Now use the fluctuation-dissipation theorem
to obtain the corresponding spectral function. Also deduce an expression for
the thermal average 〈a†

kak〉.
4.4. According to Equation (2.50), the quantized longitudinal vibrations of a

monatomic lattice of atoms can be described in terms of non-interacting
phonons with the Hamiltonian

H =
∑

k

ωk(a
†
kak + 1/2),

where a
†
k and ak are the phonon creation and annihilation operators at

wavenumber k. The frequency ωk is given by Equation (2.46). Derive the
retarded GF Gr(ak;a†

k | ω), and then use the result to deduce another retarded
GF corresponding to Gr({ak − a

†
−k};{a†

k − a−k} | ω). This combination
commonly occurs in electron–phonon problems.

4.5. Verify the form taken by the interaction Hamiltonian for the Jaynes–
Cummings (JC) model, as quoted in Equation (4.40), starting from Equa-
tion (4.39).

4.6. Use the JC Hamiltonian in Equation (4.41) and the fluctuation-dissipation
theorem to obtain the corresponding spectral function for the GF in Equa-
tion (4.49).

4.7. The interaction of N two-level atoms with a single quantized mode of the
optical field can be described by the Dicke Hamiltonian in Equation (4.42).
Follow the same approach as in Subsection 4.3.2 to obtain the equation of
motion for the GF G(S−;S+ | ω) using the Dicke Hamiltonian. Show that
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the right-hand side of the equation of motion contains a new GF (but do not
solve for it).

4.8. Assuming a paramagnetic system described by the spin Hamiltonian in Equa-
tion (4.59), the equation of motion for the GF G(S+

n ;S−
m | ω) is given by

Equation (4.60). As discussed, it involves another GF that can be written
in the form

G({Sz
nS

+
n + S+

n Sz
n} ;S−

m | ω).

Obtain the equation of motion for the preceding GF, verifying that it can
be expressed as in Equation (4.61) for general value of the spin quantum
number S.

4.9. The analytically continued GF for a paramagnet with spin quantum number
S = 1 is given by Equation (4.66). Use this result to deduce the correspond-
ing spectral function. Obtain results for the behavior of the poles and their
contributions to the spectral function when the limit is taken of D0 → 0.
Next discuss the behavior of these quantities when D0 �= 0 and the limit
is taken of zero temperature (assuming 〈Sz

n〉 and 〈(Sz
n)

2〉 both tend to 1 in
this case).

4.10. A model Hamiltonian was quoted in Problem 1.13 for the coupling between
SWs and phonons. Now, instead of using a diagonalizing transformation as
before, derive the GF equations of motion for G(ak;a†

k | ω) and G(bk;b†
k | ω).

Show that these equations are coupled to other GFs and solve for the preced-
ing two GFs in the retarded case. Next write down the explicit form taken by
these results for the case of an acoustic phonon (with �k = v|k| where v is
the sound velocity) and a magnon (approximated by ωk = ω0, independent
of k). For the interaction term you may assume that ck = c0, independent of
k, and also that c0 � ω0.

4.11. For the previous Problem 4.10 in the absence of an interaction term in
the Hamiltonian, there would be a crossover of the dispersion curves for
ωk and �k (plotted versus |k|) at |k| = ω0/v. What are the solutions for
the quasiparticle energies in the vicinity of the crossover when c0 �= 0?
Make rough sketches of the previously mentioned quantities (versus |k|)
going from |k| = 0 up to large |k|. Show that with the previous assump-
tions there is a stability condition requiring |k| > c2

0/ω0v for the lower
branch.

4.12. When Cr3+ ions in a low concentration are embedded in a suitable host
crystalline lattice, they may behave as a paramagnet with the Hamiltonian
given by Equation (4.59) and spin quantum number S = 3/2. Now extend
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the GF calculation for G1 ≡ G(S+
n ;S−

m | ω̃) given in Subsection 4.5.2 for
S = 1 to apply to the Cr3+ case with S = 3/2. You should expect that
three coupled GF equations will be required. These equations are for G1,
and also for

G2 = G({Sz
nS

+
n + S+

n Sz
n} ;S−

m | ω) and

G3 = G({(Sz)2S+ + SzS+Sz + S+(Sz)2};S− | ω).

For S = 3/2 you will need to introduce a 4 × 4 matrix representation for
the spin operators (as in standard QM text books for the angular momen-
tum states). Use these results to simplify the new GF generated in the third
equation of motion, showing that it reduces to a multiple of G2.

4.13. The particle-hole operators ρ†
q(k) and ρ†

q were defined in Section 2.8 for
an electron gas. It was shown in Equation (2.79) that the spectrum for den-
sity fluctuations for a noninteracting gas corresponds simply to ω0(k,q) =
Ek+q − Ek, where Ek = (k2/2m) − μ in the notation of Section 4.1. Now
start by considering the frequency-dependent GF G(ρ†

q(k);ρq|ω). Obtain its
equation of motion for the noninteracting case using Equation (3.66) with
ε = 1, and show (by summing over the wave vector k) that the result for the
retarded GF G(ρ†

q;ρq|ω) is

G(ρ†
q;ρq|ω) = 1

2π

∑
k

n0
k+q − n0

k

Ek+q − Ek + ω + iη
,

where the notation follows Section 2.8. The summation term on right-hand
side of the preceding equation is known as the Lindhard function.



5

Green’s Functions Using Decoupling Methods

In this chapter we consider some further examples that make use of the real-time
Green’s functions (GFs) and their equations of motion. These cases will generally
involve applications to theoretical models with a greater complexity or with more
significant interaction schemes between the particles or spins than was the case
in Chapter 4, so that usually an exact calculation is no longer possible. Typically,
this is because the coupled GF equations do not form a closed set, and new GFs
are generated in each successive equation of motion. Therefore, some form of
approximation becomes necessary to obtain a solution.

In many of the examples the approximations may involve introducing a so-
called decoupling to simplify products between operators, leaving a finite set of
GF equations. These approximations may be physically reasonable, but difficult
to justify in advance. The approach will contrast with the rigorous perturbation
expansion techniques, which will be considered in Chapters 8 and 9 using the
imaginary-time GFs.

5.1 Hartree–Fock Theory for an Interacting Fermion Gas

Here we seek to generalize the GF calculation given in Section 4.1, which included
the case of a noninteracting gas of fermions or bosons. Now we will include the
effects of the quartic interaction terms, which are assumed to be sufficiently weak.
This calculation will be done in the first instance for fermion systems, for which
the approximations to be made are more appropriate and are analogous to Hartree–
Fock theory for the electron states in atoms. Afterward we will briefly consider
what happens if the same approach is applied to the boson case.

We now employ the full form of the second-quantized Hamiltonian as derived
earlier in Subsection 1.4.2, where

H =
∑

k

Eka
†
kak + 1

2

∑
k1,k2,q

v(q)a
†
k1

a
†
k2

ak2+qak1−q (5.1)

115
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with Ek = (k2/2m) − μ. At this stage, we ignore for simplicity the effects due to
spin labels. As in the noninteracting case for fermions in Subsection 4.1.2, we eval-
uate real-time GFs of the type G(ak;a†

k | ω) in the frequency representation. We
employ the general GF equation of motion as in Equation (3.66), and we choose
ε = −1 so that we get anticommutation relations in the definitions of the GFs.

In evaluating the terms on the right-hand side of Equation (3.66) we see that
〈{ak,a

†
k}〉 = 1 and also

[H,ak] =
∑

k′
Ek′[a†

k′ak′,ak] + 1

2

∑
k1,k2,q

v(q)[a†
k1

a
†
k2

ak2+qak1−q,ak]

= −Ekak −
∑
k1,q

v(q)a
†
k1

ak1+qak−q. (5.2)

Hence the GF equation of motion becomes

ωG(ak;a†
k | ω) = 1

2π
+ EkG(ak;a†

k | ω)

+
∑
k1,q

v(q)G(a
†
k1

ak1+qak−q;a†
k | ω), (5.3)

which generalizes the result in Equation (4.3) where it was assumed that v(q) = 0.
Next, we could, in turn, proceed by writing down the equation of motion for the
new GF on the right-hand side of Equation (5.3). We would find, however, that this
gives us a more complicated GF, and so on in a seemingly unending chain.

To find an approximate solution our strategy is to make a decoupling approxima-
tion in the series of equations. The simplest such procedure is to look for a suitable
decoupling for the GF on the right-hand side of Equation (5.3), i.e., we seek a
way to approximate the GF G(a

†
k1

ak1+qak−q;a†
k | ω). With this in mind, we focus

on the product of the three operators appearing on the left of the GF, specifically
a

†
k1

ak1+qak−q.
Before proposing a specific decoupling for this case, it is worthwhile to digress

briefly regarding decoupling schemes in general. As a simple example, suppose
we are considering a decoupling of a product of just two operators in a product
AB on the left of the GF G(AB;C | ω). We note that the product can be formally
reexpressed as

AB = A〈B〉 + 〈A〉B + (A − 〈A〉)(B − 〈B〉) − 〈A〉〈B〉.
Now, provided that at least one of the thermal averages 〈A〉 or 〈B〉 is nonzero, it
seems reasonable in the spirit of mean-field theory [74] to neglect the fluctuation
term (A − 〈A〉)(B − 〈B〉) in the preceding expression because it is of second order
in small quantities. The last term in the preceding equation is just a constant, which
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will not give rise to a GF term. Hence we arrive at a GF decoupling approximation
of the form

G(AB;C | ω) → 〈A〉 G(B;C | ω) + 〈B〉 G(A;C | ω). (5.4)

The preceding mean-field argument for systems where the fluctuations are relatively
small will generalize in an obvious manner to products of three or more operators.

Returning now to the problem at hand for the electron gas, a physically appealing
approximation is to write initially

a
†
k1

ak1+qak−q ≈ 〈a†
k1

ak1+q〉ak−q − 〈a†
k1

ak−q〉ak1+q

+ a
†
k1

〈ak1+qak−q〉. (5.5)

Here we are considering each operator in turn and replacing the product of the
other two operators by its average value. There are three terms in the preceding
expression because there are three ways of doing this. This is following the same
arguments as in the previous example leading to Equation (5.4). Also, we remark
that the negative sign in one term is due to the anticommutation property of the
fermion operators (i.e., we have changed the order of the operators being averaged).
A rough justification for the decoupling in this case is that we neglect the fluctuation
of a

†
k1

ak1+q about its average value 〈a†
k1

ak1+q〉 for the first term, along with a similar
argument for the other terms.

Some further simplification of Equation (5.5) is now possible due to the symme-
tries occuring in the Hamiltonian H of the system and the fact that the definition
of the equilibrium thermal average depends on H (see Chapter 3). The symmetry
properties inherent in each term of H are conservation of the wave vector and
conservation of the number of particles, from which it follows that these must be
conserved quantities in any equilibrium thermal average. Hence, without any more
approximation for the terms in Equation (5.5), these considerations lead us to write

〈a†
k1

ak1+q〉 = 〈a†
k1

ak1〉δq,0 and 〈a†
k1

ak−q〉 = 〈a†
k1

ak1〉δk1,k−q

because of conservation of wave vector, and

〈ak1+qak−q〉 = 0

because of conservation of the number of particles. The decoupling approximation
for the product of the three operators then becomes

a
†
k1

ak1+qak−q ≈ δq,0〈a†
k1

ak1〉ak − δk1,k−q〈a†
k1

ak1〉ak, (5.6)

or in terms of the GF it gives the simplification

G(a
†
k1

ak1+qak−q;a†
k | ω) ≈ (δq,0 − δk1,k−q)〈a†

k1
ak1〉 G(ak;a†

k | ω). (5.7)
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When this decoupling approximation is substituted back into Equation (5.3) we
have an implicit expression for the required GF as

ωG(ak;a†
k | ω) = 1

2π
+ Ek G(ak;a†

k | ω)

+
∑

k1

{v(0) − v(k − k1)}〈a†
k1

ak1〉 G(ak;a†
k | ω). (5.8)

This can be rearranged as

(ω − Wk)G(ak;a†
k | ω) = 1

2π
, (5.9)

where

Wk = Ek +
∑

k1

{v(0) − v(k − k1)}〈a†
k1

ak1〉. (5.10)

Equation (5.9) is formally the same result as in the noninteracting case, except
that Ek has been replaced by Wk. Therefore, all the subsequent results that were
obtained previously in the noninteracting case (such as for the different real-time
GFs, the spectral function, and the correlation functions) still apply, but with the
replacement throughout that Ek → Wk. In summary, instead of having particles
with energy Ek as in the noninteracting case, we now have quasiparticles with a
modified energy Wk.

The thermal average appearing on the right-hand side of Equation (5.10) repre-
sents the number of quasiparticles with wave vector k1 and is given by

〈a†
k1

ak1〉 = 1

exp(βWk1) + 1
(5.11)

by analogy with Equation (4.17). From Equations (5.10) and (5.11) it is clear that
we have two relationships from which, in principle, a self-consistent solution for
Wk can be obtained. They provide us with the self-consistent form of the Hartree–
Fock equations.

In some cases, a further approximation may be appropriate. For example, if the
interaction term v in the Hamiltonian is sufficiently small, we may argue that Ek and
Wk are not too different, allowing us to replace Wk with Ek in Equation (5.11), i.e.,
we will just use the same distribution function as for the noninteracting particles.
Then from Equation (5.10) we have approximately

Wk = Ek +
∑

k1

{v(0) − v(k − k1)}
exp(βEk1) + 1

. (5.12)

The GF decoupling approximation made earlier in Equation (5.7) is difficult to
justify a priori by rigorous means, although we have presented general reasons
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for it. Typically, the suitability of any decoupling approximation is supported by
general physical arguments, and the “justification” for the approximation comes
afterward in terms of the success for the predictions made. Broadly, the preced-
ing Hartree–Fock (or HF) theory is fairly good as an approximation provided the
relative correction to the particle energy is small, meaning∣∣∣∣∣∣

∑
k1

{v(0) − v(k − k1)}
exp(βEk1) + 1

∣∣∣∣∣∣�
k2

2m
. (5.13)

In conclusion, it is worth mentioning that if we want to improve on the HF
theory, we could in principle defer the decoupling approximation to a later
stage. Specifically we could write down an equation of motion for the new
GF G(a

†
k1

ak1+qak−q;a†
k | ω) in Equation (5.3) and then employ a decoupling

approximation in its equation of motion.

Application of the Theory to Interacting Bosons

Suppose now we try applying the HF-type theory to a weakly interacting boson
system. We may start with the same form of Hamiltonian and again evaluate GFs
of the type G(ak;a†

k | ω), but we choose ε = 1 consistent with the commutation
properties of bosons. After going through the various steps as described in the
preceding text, we find that the GF equation of motion is identical to Equation (5.3).
However, the analogous decoupling approximation in this case becomes

G(a
†
k1

ak1+qak−q;a†
k | ω) ≈ (δq,0 + δk1,k−q)〈a†

k1
ak1〉 G(ak;a†

k | ω).

In particular, there is a difference in sign on the right-hand side compared with
Equation (5.7) because bosons satisfy commutation relations. Hence the expression
for the quasiparticle energy becomes modified to

Wk = Ek +
∑

k1

{v(0) + v(k − k1)}〈a†
k1

ak1〉, (5.14)

where the number of boson quasiparticles is now given self-consistently by

〈a†
k1

ak1〉 = 1

exp(βWk1) − 1
.

We conclude that this form of decoupling theory for bosons would be useful only
under much more restrictive conditions than for a gas of fermions. It may be valid
only provided the temperature is sufficiently high that there are very few bosons
in the zero-wave-vector (zero-energy) ground state. In other words, we must have
T � T0 where T0 is the Bose–Einstein condensation temperature. If T < T0 the
occupation number of the k = 0 state becomes macroscopically large (∼ N), and
the term
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k1

{v(0) + v(k − k1)}〈a†
k1

ak1〉

“blows up” because of the zero momentum term. However, if T � T0 most of the
particles will be in the zero-energy ground state, and we have the situation already
analyzed in Subsection 1.5.1 using diagonalization of the reduced Hamiltonian in
second quantization.

5.2 Random Phase Approximation for Ferromagnets

We recall that in Section 1.5.2 the Heisenberg Hamiltonian was introduced as a
model for an exchange-dominated ferromagnet with the dipole-dipole interactions
being neglected. The spin Hamiltonian was given in Equation (1.81), where the
parameters included the exchange interaction Ji,j (> 0) between neighboring spin
sites i and j and an applied field B0 acting in the z direction of magnetization.

Previously, we solved for the spin waves (SWs) as the quasiparticles at low
temperatures T � TC by using the Holstein–Primakoff (HP) transformation from
spin operators to boson operators. The approximate Hamiltonian when expressed
in terms of the boson operators was (apart from a constant)

H =
∑

k

Eka
†
kak

as in Equation (1.91), where the quasiparticle (SW) energy at wave vector k was
found to be

Ek = gμBB0 + S {J (0) − J (k)} .

Using this bosonic representation the GFs could be written down, as we described
for ferromagnets in Section 4.4 with the magnetic dipole-dipole interactions also
being taken into account.

An alternative approach, which we want to pursue here, is to calculate the GFs
by working directly in terms of the spin operators. This will be done without having
to transform to boson operators and without assuming low temperatures, so the GF
calculation is potentially of wider applicability.

Specifically, we seek to evaluate the GF Fourier components G(S+
n ;S−

m | ω)

where n and m are site labels, making the choice ε = 1 giving commutation rela-
tions, by analogy with the calculation for paramagnets in Section 4.5. To construct
the GF equation of motion we again use the commutator average that 〈[S+

n ,S−
m ]〉 =

2〈Sz
n〉δnm. Then [H,S+

n ] must be found using the full spin Hamiltonian H, which
can be rewritten in component form as in the second line of Equation (1.87). It
follows that we need to evaluate four types of commutators corresponding to the
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spin terms in this equation. This may be done making use of the operator identity
[XY,Z] = X[Y,Z] + [X,Z]Y, yielding, eventually (see Problem 5.1),[

H,S+
n

] =
∑

i

Jin(S
z
nS

+
i − Sz

i S
+
n ) − gμBB0S

+
n . (5.15)

The GF equation of motion, which is obtained using Equations (3.66) and (5.15)
becomes

ω G(S+
n ;S−

m | ω) =
(

1

2π

)
2〈Sz

n〉δn,m + gμBB0 G(S+
n ;S−

m | ω)

−
∑

i

Jin

{
G(Sz

nS
+
i ;S−

m | ω) − G(Sz
i S

+
n ;S−

m | ω)
}

. (5.16)

It is seen that two new GFs of a similar type have appeared on the right-hand side
in the preceding equation. If we were to write down their GF equations of motion,
we would find that an even more complicated product of operators arises, so we
eventually have to resort to an approximation. The simplest way to proceed is to
solve Equation (5.16) approximately by decoupling the new GFs on the right-hand
side. In the same spirit as in Equation (5.4), along with its application to HF theory
earlier in this chapter, we now make the approximation

G(Sz
i S

+
n ;S−

m | ω) ≈ 〈Sz
i 〉G(S+

n ;S−
m | ω). (5.17)

In effect, we are ignoring the fluctuations in Sz
i and replacing the operator by its

average value 〈Sz
i 〉. We notice that there could be another decoupled term having

the form 〈S+
i 〉G(Sz

n;S−
m | ω), but this vanishes because 〈S+

i 〉 = 〈Sx
i 〉 + i〈Sy

i 〉 = 0
for the system magnetized along the z direction. Similarly, for the other GF in
Equation (5.16) we have

G(Sz
nS

+
i ;S−

m | ω) ≈ 〈Sz
n〉G(S+

i ;S−
m | ω). (5.18)

The preceding decoupling is called the random phase approximation (or RPA).
After applying the decoupling approximation, the equation of motion for the GF is
simply{

ω − gμBB0 −
∑

i

〈Sz
i 〉Jin

}
G(S+

n ;S−
m | ω) = 1

π
〈Sz

n〉δn,m

−
∑

i

Jin〈Sz
n〉 G(S+

i ;S−
m,| ω).

Because all the sites in an infinite lattice are equivalent to one another, it follows
that 〈Sz

i 〉 = 〈Sz
n〉 ≡ 〈Sz〉, independent of the site label. Also at this stage we

make a further transformation of the GF from the site labels to a wave-vector
representation by
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G(S+
n ;S−

m | ω) = 1

N

∑
k

Gk(ω) exp[ik · (rn − rm)],

where N is the total number of spins. In the decoupled GF equation of motion we
will denote the Fourier transform of the exchange interaction by J (k), as defined in
Equation (1.90). Also for the Kronecker delta we will use

δn,m = 1

N

∑
k

exp [ik · (rn − rm)] .

Then the equation of motion becomes simply{
ω − gμBB0 − 〈Sz〉J (0)

}
Gk(ω) = 1

π
〈Sz〉 − 〈Sz〉J (k)Gk(ω),

which may be rewritten as

{ω − Ek}Gk(ω) = 1

π
〈Sz〉, (5.19)

with the generalized definition that now

Ek = gμBB0 + 〈Sz〉{J (0) − J (k)}. (5.20)

We can solve Equation (5.19) for the GFs by following the same procedure as
described in Chapter 4. Thus, the analytically continued GF in the complex ω̃-plane
is

Gk(ω̃) = 〈Sz〉
π{ω̃ − Ek} . (5.21)

As before, if ω̃ = ω + iη we obtain the retarded GF, and if ω̃ = ω − iη we obtain
the advanced GF.

We see that the GFs have a simple pole at Ek, which is given by Equation (5.20),
and this is, therefore, the quasiparticle energy or frequency. At low temperatures
(T � TC) we have 〈Sz〉 → S, and Ek becomes the same expression as quoted
earlier for the SW energy at low T . Equation (5.20), therefore, represents a sim-
ple description of how the SWs become generalized at higher T . So far 〈Sz〉 is
undetermined, but it is an important quantity to evaluate, because it is proportional
to the magnetization in the ferromagnet and it appears as a parameter in both
Equations (5.20) and (5.21). We can, in fact, obtain it self-consistently using the
correlation functions related to the GF, as we will show next.

From the fluctuation-dissipation theorem in Equation (3.40) the spectral intensity
J (ω) is related to the retarded GF, denoted here as Gr

k(ω), by

J (ω) = −2

(eβω − 1)
Im Gr

k(ω) = −2

(eβω − 1)
Im

〈Sz〉
π{ω − Ek + iη},
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where we used Equation (5.21). It follows, therefore, that

J (ω) = 2 〈Sz〉(
eβω − 1

)δ(ω − Ek),

which consists of a single delta-function contribution. Transforming to the time
correlation function using Equation (3.17), we find

〈S−
k (t ′)S+

k (t)〉 =
∫ ∞

−∞
Jk(ω)e−iω(t−t ′)dω = 2〈Sz〉

{eβEk − 1}e
−iEk(t−t ′).

If we take the case of equal time labels, this simplifies to give for the static correla-
tion function

〈S−
k S+

k 〉 = 2〈Sz〉
{eβEk − 1} . (5.22)

The Fourier transform back to the site labels is defined by

〈S−
n S+

m〉 = 1

N

∑
k

exp[ik · (rn − rm)]〈S−
k S+

k 〉,

and in the special case of equal sites (n = m) this becomes a sum rule

〈S−
n S+

n 〉 = 1

N

∑
k

〈S−
k S+

k 〉. (5.23)

Now, the result of combining Equations (5.22) and (5.23) leads to a general
equation of state for the ferromagnet as

〈S−
n S+

n 〉 = 2〈Sz〉 1

N

∑
k

1

{eβEk − 1}, (5.24)

for any site n. We have referred to this result as an equation of state because it can
be used to deduce the thermal average 〈Sz〉 self-consistently.

For simplicity, we outline in the following text how this would be done when
the spin quantum number S = 1

2 , but the calculation is capable of generalization to
higher spin values (see, e.g., [75]). We make use of the following two identities for
spins at the same site:

S+S− − S−S+ = 2Sz and S+S− + S−S+ = 1. (5.25)

The first of these identities is the commutator and holds for any spin S, while the
second is specifically for S = 1

2 (as may be verified using the Pauli spin matrices).
Therefore, we have S−S+ = 1/2 − Sz, which implies on taking averages that
〈S−S+〉 = 1/2 − 〈Sz〉. Together with Equation (5.24) this last result leads to

1

2
− 〈Sz

〉 = 2
〈
Sz
〉 1

N

∑
k

1{
eβEk − 1

}, (5.26)
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which is the specific form of the equation of state when S = 1
2 . We now see that the

pair of Equations (5.20) and (5.26) connect the two unknowns 〈Sz〉 and Ek. Thus
we can, in principle, solve for these two quantities as a function of the variables
such as temperature or applied field B0. We shall give a broad account below of
how to do this for three special cases.

5.2.1 Low Temperatures (T � TC)

When T � TC the spins are all well aligned in the z direction, and so we have
〈Sz〉 ≈ 1

2 . Replacing 〈Sz〉 by 1
2 on the right-hand side of Equation (5.26) gives the

approximate result for the spin deviation as

1

2
− 〈Sz〉 = 1

N

∑
k

nk,

where nk is the Bose–Einstein thermal factor for the number of SWs at temperature
T (recalling that we defined β = 1/kBT ):

nk = [exp {β[gμBB0 + (1/2){J (0) − J (k)}]} − 1
]−1

. (5.27)

If B0 = 0 for the applied field the sum over k may be estimated analytically,
as described in many of the standard solid-state physics books (see, e.g., [19, 20]
for details). Briefly, the argument depends on noting that nk becomes very large in
the region where k = |k| is small (compared with a Brillouin zone boundary wave
vector) because it behaves then as

nk = [exp(αk2/kBT ) − 1]−1, (5.28)

where α is a geometric constant that depends on the lattice structure. For example,
using the expression for J (k) given in Equation (1.94) for a b.c.c. ferromagnet, we
conclude that α = Ja2/2 in this case. Also, for this (or any other cubic) structure,
the sum over k can be replaced by a 3D integral as

1

N

∑
k

1

exp(αk2/kBT ) − 1
→ λa3

∫
d3k

exp(αk2/kBT ) − 1

→ 4πλa3
∫ kc

0

k2dk

exp(αk2/kBT ) − 1
.

Here λ is a numerical factor depending on the lattice structure, and the upper limit
of integration (the cutoff value kc) is chosen by approximating the Brillouin zone
in k space by a sphere of radius kc. In fact, at low enough temperatures we are
justified in replacing the integration limit by infinity, and it is then straightforward
to conclude that the integral is proportional to T 3/2. Hence we have the result to
leading order that
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Sz
〉 ≈ 1

2
− c T 3/2, (5.29)

where c is a constant. This is referred to as Bloch’s law, giving the decrease in the
magnetization due to the thermally excited SWs as varying with a 3/2 power of
temperature.

5.2.2 High Temperatures (T � TC)

In this case 〈Sz〉 will become vanishingly small, but it will still be nonzero pro-
vided we assume there is an applied field B0. Here we introduce a scaled magnetic
susceptibility χ defined by

χ = lim
b→0

〈Sz〉
b

, (5.30)

where for convenience we denote b = gμBB0. Because this is a zero-field suscepti-
bility, the preceding definition of χ is equivalent to taking a derivative with respect
to b. Equation (5.26) then becomes

1

2
− χb = 1

N

∑
k

2χb

exp[βb + βχb{J (0) − J (k)}] − 1
.

For small enough b the denominator can be simplified by employing a power-series
expansion of the exponential to yield

1

2
= 1

N

∑
k

2χb

βb + βχb{J (0) − J (k)} + O(b2)
,

which simplifies in the limit of b → 0 to become

1

2
= 1

N

∑
k

2χ

β[1 + χ{J (0) − J (k)}] .

Note that this has become independent of b and it provides us with an implicit
solution for χ at high temperature (or small β). An explicit solution can be devel-
oped as a series expansion in increasing powers of β, giving

χ = 1

4
β + 1

16
J (0)β2 + 1

64

{
1

N

∑
k

[
J 2(0) − J 2(k)

]}
β3 + O(β4). (5.31)

The first two terms on the right-hand side are essentially exact (as compared with
the results of rigorous high-T series expansion methods), but the β3 term deviates
from the exact result (see [75]). Nevertheless, the approximate theory is found to
be relatively successful.
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5.2.3 Estimation of the Critical Temperature (T ≈ TC)

We now take B0 = 0 for the applied field in Equation (5.26) and we want to find the
value of the temperature T (or the corresponding value of β) at which 〈Sz〉 → 0 as
we approach the critical temperature from below. We start with the zero-field result
expressed as

1

2
− 〈Sz〉 = 2〈Sz〉 1

N

∑
k

1

exp [β〈Sz〉{J (0) − J (k)}] − 1
.

When T is close to but less than TC , we know that 〈Sz〉 is very small, and so the
term in the exponential is also very small. Expanding the exponential as a power
series gives

1

2
− 〈Sz〉 = 2〈Sz〉 1

N

∑
k

1

1 + β〈Sz〉{J (0) − J (k)} + O(〈Sz〉2) − 1

= 2

N

∑
k

1

β{J (0) − J (k)} + O(〈Sz〉) .

Taking the limit that 〈Sz〉 → 0 as T → TC from below, we find

1

2
= 2

N

∑
k

1

βC {J (0) − J (k)}, (5.32)

where βC = 1/kBTC . Hence the final result is

TC = 1

4kB

[
1

N

∑
k

1

{J (0) − J (k)}

]−1

. (5.33)

This is normally a better estimate for TC for ferromagnets than that given by mean-
field theory (see, e.g., [19]), which is just J (0)/4kB for S = 1/2.

It can also be shown that we arrive at the same estimate of TC as in Equa-
tion (5.33) by letting T approach TC from above and examining the condition for the
susceptibility χ to diverge (again for B0 → 0). This is considered in Problem 5.2.

5.3 Random Phase Approximation for Antiferromagnets

If the nearest-neighbor exchange interaction in a crystal lattice has the opposite sign
from that in the ferromagnetic case, then the preference at low temperatures will be
for an antiparallel (rather than parallel) alignment between neighboring spins. Often
we can think of simple antiferromagnets in terms of there being two interpenetrating
sublattices, which we label arbitrarily as A (for spin “up”) and B (for spin “down”),
as shown schematically in Figure 5.1. Some examples of two-sublattice antiferro-
magnets where the dominant exchange is between nearest-neighbor spin sites on
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Figure 5.1 Schematic illustration of a simple two-sublattice antiferromagnet (with
spins arranged on a 2D square lattice), where the nearest neighbors of spins on
sublattice A (spin-up) lie on sublattice B (spin down), and vice versa.

opposite sublattices are FeF2 (with a tetragonal rutile structure) and RbMnF3 (with
a cubic perovskite structure) [76].

For simplicity we shall ignore here the long-range magnetic dipole-dipole
interactions. The Heisenberg exchange Hamiltonian can then be written in the
form

H =
∑
i,j

Ji,j Si · Sj − gμBBan

∑
i

Sz
i + gμBBan

∑
j

Sz
j, (5.34)

where Ji,j is again positive (but note that we have different factors in front of the
summation), with i and j referring to spin sites on sublattices A and B, respectively.
We have included Zeeman-type terms to describe an effective anisotropy field of
magnitude Ban, which acts in the z direction and −z direction for sublattices A

and B, respectively. This anisotropy field helps to stabilize the antiferromagnetic
ordering, and typically it arises due to the single-ion anisotropy mentioned in Sec-
tion 4.5. For simplicity, we assume there is no external applied field (B0 = 0), and
so by symmetry we may write either 〈Sz

n〉 = 〈Sz〉 if site label n corresponds to
sublattice A or 〈Sz

n〉 = −〈Sz〉 if n is on sublattice B.
We will now evaluate GFs of the form G(S+;S− | ω) for the operators at vari-

ous sites. The same method as in the previous section for the ferromagnetic case
will be followed, but there will be some differences of sign because the exchange
now has a different sign and because the previous applied magnetic field term
is replaced by Zeeman terms with ±Ban due to the anisotropy. We will see that
once again new GFs of the type G(SzS+;S− | ω) are formed on the right-hand
side of the GF equations of motion, and we may employ the RPA decoupling to
simplify them.

For example, starting with G(S+
n(A);S−

m | ω), where n(A) means that the site n

is considered to be on sublattice A, we can form the GF equation of motion from
Equation (3.66). This can be decoupled using RPA, just as in the ferromagnetic
case, and after some straightforward algebra we find that
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ω − gμBBan +

∑
j

〈Sz
j 〉Jj,n(A)

}
G(S+

n(A);S−
m | ω)

= 1

π
〈Sz

n(A)〉δn(A),m +
∑

j

Jj,n(A)〈Sz
n(A)〉G(S+

j ;S−
m | ω). (5.35)

This simplifies slightly when the thermal averages are replaced by the value appro-
priate to their sublattice (noting also that j will be on sublattice B) when we assume
that the exchange couples only nearest neighbors. Thus, taking m(A) and m(B) to
refer to other sites on sublattices A and B, respectively, we have the two cases{

ω − gμBBan − 〈Sz〉
∑

j

Jj,n(A)

}
G(S+

n(A);S−
m(A) | ω)

= 1

π
〈Sz〉δn(A),m(A) + 〈Sz〉

∑
j

Jj,n(A)G(S+
j ;S−

m(A) | ω) (5.36)

and {
ω − gμBBan − 〈Sz〉

∑
j

Jj,n(A)

}
G(S+

n(A);S−
m(B) | ω)

= 〈Sz〉
∑

j

Jj,n(A)G(S+
j ;S−

m(B) | ω). (5.37)

Another similar pair of coupled GF equations is obtained when we make the other
sublattice choice to consider G(S+

n(B);S−
m | ω), namely{

ω + gμBBan + 〈Sz〉
∑

i

Ji,n(B)

}
G(S+

n(B);S−
m(B) | ω)

= − 1

π
〈Sz〉δn(B),m(B) − 〈Sz〉

∑
i

Ji,n(B)G(S+
i ;S−

m(B) | ω) (5.38)

and {
ω + gμBBan + 〈Sz〉

∑
i

Ji,n(B)

}
G(S+

n(B);S−
m(A) | ω)

= −〈Sz〉
∑

i

Ji,n(B)G(S+
i ;S−

m(A) | ω), (5.39)

where i is on sublattice A.
We can solve the set of Equations (5.36)–(5.39), just as in the ferromagnetic case,

by transforming from the site labels to a wave-vector representation. The wave-
vector Fourier components are defined as before, except that the previous Gk(ω)

now has sublattice labels for each spin involved in the GF, so there are four related
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quantities conveniently denoted by GAA
k (ω), GAB

k (ω), GBA
k (ω), and GBB

k (ω). They
form a set of coupled equations that can be reexpressed as{

ω − gμBBan − 〈Sz〉J (0)
}
GAA

k (ω) − 〈Sz〉J (k)GBA
k (ω) = 〈Sz〉

π
,{

ω − gμBBan − 〈Sz〉J (0)
}
GAB

k (ω) − 〈Sz〉J (k)GBB
k (ω) = 0,{

ω + gμBBan + 〈Sz〉J (0)
}
GBB

k (ω) + 〈Sz〉J (k)GAB
k (ω) = −〈Sz〉

π
,{

ω + gμBBan + 〈Sz〉J (0)
}
GBA

k (ω) + 〈Sz〉J (k)GAA
k (ω) = 0. (5.40)

These linear equations are easily solved to give the results for the analytically
continued GFs at complex frequency ω̃ as

GAA
k (ω̃) = GBB

k (−ω̃) = 〈Sz〉[gμBBan + 〈Sz〉J (0) + ω̃]

π[ω̃2 − Ek
2]

,

GAB
k (ω̃) = GBA

k (ω̃) = −〈Sz〉2J (k)

π[ω̃2 − Ek
2]

, (5.41)

where

Ek = [{gμBBan + 〈Sz〉J (0)}2 − {〈Sz〉J (k)}2
]1/2

. (5.42)

Equation (5.42) is the SW dispersion relation for a two-sublattice antiferromag-
net at any finite temperature T below the critical temperature, or Néel temperature,
TN . The temperature dependence of Ek arises from the 〈Sz〉 factors and from the Ban

term. Both quantities decrease with increasing temperature. Typically, it is found for
the anisotropy field that Ban ∝ 〈Sz〉s where the index s lies between 1 and 2. The
dispersion relation is seen to be quite different from the ferromagnetic dispersion
relation given by Equation (5.20). At wave vector k = 0 the antiferromagnetic SW
energy becomes

E0 = [gμBBan{gμBBan + 2〈Sz〉J (0)}]1/2
. (5.43)

All four GFs in Equation (5.41) have poles in the complex ω̃-plane at ±Ek, so there
are two branches to the spectrum, compared to just one branch in the ferromagnetic
case. They are, however, degenerate in magnitude in this case. In Figure 5.2 we
illustrate the form of the SW dispersion curve at low temperatures (T � TN ) for
two values of the anisotropy field assuming an antiferromagnet with a s.c. lattice
structure for the spin sites. The two signs for the poles of the GF are a conse-
quence of the fact that the spin precession on one sublattice is in the opposite sense
from that on the other sublattice. The expression on the right-hand side of Equa-
tion (5.43) corresponds to the antiferromagnetic resonance (AFMR) frequency.
Typically (unless Ban is very small), its value lies in the infrared region of the
electromagnetic spectrum. AFMR and Raman scattering (of light) are both useful
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Figure 5.2 Example of the SW dispersion relation Ek in Equation (5.42) in
dimensionless units (where Ek/SJ is plotted versus kxa/π and we take ky =
kz = 0) for a s.c. antiferromagnet at T � TN . Curves for two values of the
effective anisotropy field are shown, corresponding to gμBBan/SJ = 0.2 (curve
X) and 0.001 (curve Y).

experimental techniques [19] to probe the antiferromagnetic SWs. The degeneracy
in the magnitudes of the two SW branches that we have in the present calculation
is removed when there is a nonzero applied magnetic field B0 �= 0 to produce a
splitting.

Finally, from the GFs in Equation (5.41) we can straightforwardly work out the
spectral intensities and time correlation functions, just as in the ferromagnetic case.

5.4 Electron Correlations and the Hubbard Model

The Hubbard model, which was briefly introduced in Subsection 1.4.3, involves
an interplay between the site-to-site hopping in a many-electron system and the
Coulomb repulsion effects involving two electrons at the same atomic site (one
electron with spin up and the other with spin down). The Hamiltonian was quoted
in Equation (1.68) and is applicable when inter-site screening effects are sufficiently
large that the Coulomb effects between electrons at different sites can be ignored.

Despite the relative simplicity of the model, it provides useful insights into the
physics of strongly correlated electronic systems and the criteria for metal-insulator
transitions, which are sometimes referred to as Mott transitions. The model is par-
ticularly relevant for narrow-band transition-metal compounds where the electron
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correlations are large. It embodies many of the same physical concepts as the earlier
Stoner model in magnetism, which was thoroughly investigated for materials with
wider bands. In his original work Hubbard [21] employed the model that bears
his name to investigate how the strong correlations can lead to a splitting of an
electronic band into nonoverlapping subbands. Some thorough accounts of this
topic can be found in the books by Madelung [77], Mott [78], and Yosida [79],
as well as in Hubbard’s original papers [21, 80, 81].

Here we will briefly discuss some limiting cases of the model and provide GF
approximation schemes that are applicable in the wide and narrow electron band
cases, depending on the ratio t/U where t is the nearest-neighbor hopping param-
eter and U is the Coulomb energy defined in Subsection 1.4.2. We start by consid-
ering the effect of the individual terms in Equation (1.68).

First we note that a Hamiltonian consisting only of the hopping term Hh (pro-
portional to t) is exactly solvable using either the operator equation of motion or the
GF equation of motion, by analogy with the calculations carried out for graphene
in Chapters 2 and 4, respectively. It is a simple exercise to repeat those calculations
for the case of a 3D cubic lattice instead of the 2D bipartite honeycomb lattice
applicable for a graphene sheet. The expression for the electronic band energy εk at
wave vector k in 3D is

εk = −2t[cos(kxa) + cos(kya) + cos(kza)] (5.44)

for a s.c. material with the lattice constant a (see Problem 5.5). Therefore, the total
band width is W = 6t . Also it can be shown that the single-particle electronic GF
will have a simple pole at this same quantity, giving

G(aσ ;a†
σ | ω) =

(
1

2π

)
1

ω − εk + iη
(5.45)

for the retarded GF at angular frequency ω, where a†
σ and aσ are the fermion

creation and annihilation operators correspond to the electron spin state σ (equal to
↑ or ↓).

However, for a Hamiltonian that consists only of the Coulomb repulsion term HU

in Equation (1.68), the physical outcome depends on the filling factor for the band.
We have labeled the different atomic sites by i and we suppose there are N of these.
Because only two electrons (one with spin up and the other with spin down) can
occupy each site i as a consequence of the Pauli exclusion principle, a completely
full band would have 2N electrons. The case of special interest, which we will
pursue further, is that of a half-filled band, i.e., N electrons distributed between the
N sites. Clearly, the state with the lowest overall energy will be when every site
is singly occupied. Further, the motion of any charge would lead to an unoccupied
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site and a doubly occupied site, consequently increasing the energy by an amount
U . For this reason the system would behave as an insulator at low temperature.

Next we will examine two physical situations where both terms of the Hubbard
Hamiltonian contribute, taking initially the case in which hopping has only a small
effect compared with the dominant Coulomb term.

5.4.1 Case in Which the Coulomb Term Is Dominant

This is the case when t/U � 1 (or W/U � 1) and we may use QM perturbation
theory to include the hopping effects. The unperturbed part of the Hamiltonian is
taken as HU , and the perturbation is Hh. The correction to the electron energy at
any given site i comes in second order of perturbation through the following virtual
process. An electron at site i can transfer (hop) to one of the nearest-neighbor sites
i ′, which becomes doubly occupied. Then one of the electrons at i ′ does a return
hop to site i, resulting in a net exchange of electrons. The process is only possible,
however, if the electron spins at the two sites were originally antiparallel because
the parallel case is excluded by the Pauli exclusion principle. The energy correction
is just −2t2/U for the pair of sites, and so the effective Hamiltonian in second order
of perturbation is

H(2) = −2t2

U

∑
〈i,i′〉

∑
σ,σ ′

a
†
i,σ ′ai′,σ ′a†

i′,σ ai,σ , (5.46)

where 〈i,i ′〉 indicates that the summations are taken over distinct nearest-neighbor
sites.

It is interesting that the preceding approximate Hamiltonian can be related to the
Heisenberg exchange model [79, 82] because it can be reexpressed (as we show
next) in terms of spin operators as

H(2) = 4t2

U

∑
〈i,i′〉

{
Si · Si′ − 1

4

}
. (5.47)

One way to establish the equivalence between Equations (5.46) and (5.47) is to
make use of the following relationship between the spin components S+

i , S−
i , and

Sz
i at site i and the fermion creation and annihilation operators for the electrons:

S+
i = a

†
i,↑ai,↓ , S−

i = a
†
i,↓ai,↑ ,

Sz
i = 1

2

(
a

†
i,↑ai,↑ − a

†
i,↓ai,↓

)
. (5.48)

We notice that the defining expressions for S+
i and S−

i involve spin-flip combina-
tions, as expected for the spin raising and lowering operators, while the expression
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for Sz
i gives the net spin polarization. This result in Equation (5.48) is sometimes

referred to as the coupled-fermion representation (see, e.g., [27]). It may easily be
verified, using the standard properties of fermion operators, that the spin operators
defined in Equation (5.48) correctly reproduce the spin commutation properties as
quoted in Equation (1.84). This is left for Problem 5.6, together with the subsequent
steps that are needed to prove the equivalence of Equations (5.46) and (5.47).

To summarize the preceding result, we have demonstrated that the Hubbard
model with one electron per site (the half-filling case) and strong Coulomb interac-
tions (U � W ) reduces to the antiferromagnetic Heisenberg Hamiltonian typical of
an insulator. Also we see from Equation (5.47) that the antiferromagnetic exchange
constant JAF is given by

JAF = 4t2

U
= W 2

9U
> 0. (5.49)

The assumed half-filling is a necessary requirement for this result to hold.

5.4.2 Case of Hartree–Fock-Type Decoupling

Both terms of the Hubbard Hamiltonian in second quantization are included here,
and we place no restriction on the electronic filling factor. Instead we assume that
the Coulomb term will be approximated by making a decoupling in the same spirit
as the HF theory of Section 5.1. However, instead of proceeding as before it is
advantageous to utilize the property that the Coulombic term HU in Equation (1.68)
is already factorized as a product of the number operators due to correlation effects.
This suggests a decoupling approximation of the form (in terms of site labels
i and j )

ni,↑ni,↓ → 〈ni,↑〉ni,↓ + ni,↑〈ni,↓〉 + 〈ni,↑〉〈ni,↓〉. (5.50)

The last term is just a constant and can be henceforth ignored for the excitation
spectrum. When the preceding result is combined with the hopping term in the
Hubbard Hamiltonian we find (apart from the constant term) that

H =
∑
i,j,σ

{
ti,j + U〈ni,σ 〉} a

†
i,σ aj,σ, (5.51)

where σ denotes the spin projection that is opposite to that for the state with the
label σ .

Despite the simplification achieved by the preceding result, it is still very com-
plicated to continue further because of the different possibilities for 〈ni,↑〉 and
〈ni,↓〉, which in turn determine the magnetic phase. For example, if the numbers
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of electrons with spin up and spin down are equal, without there being any long-
range order, we have a paramagnetic phase. Other possible states are ferromagnetic
(when the numbers of electrons with spin up and spin down are different, giving a
net magnetization) and antiferromagnetic (when the numbers of electrons with spin
up and spin down are equal, but there is short-range order as in a two-sublattice
model).

Thorough review accounts of the complexities involved in obtaining self-
consistent solutions from Equation (5.51) or similar results, including descriptions
of the various conflicting results in the published literature, have been given by
Herring [83] and Mahan [47]. Qualitatively, the spin-up and spin-down electronic
bands (each with band width W ) are split in energy by an amount of order U by the
Coulomb term. We can conclude that if U � W the bands will still overlap and a
metallic behavior is expected. However, an insulating behavior would be associated
with U � W when the bands are well separated. At some intermediate stage, when
U and W are comparable with one another, the possibility of a metal-insulator
transition arises.

As a simplified calculation we outline in the following text how the theory
develops further in the particular case when it is assumed that 〈ni,σ 〉 ≡ 〈nσ 〉 =
〈a†

σ aσ 〉 independent of the site label i. It then follows that Equation (5.51) can be
simplified slightly and rewritten in terms of effective spin-up and spin-down band
energies as

H =
∑

k

[{
εk + U〈n↓〉

}
a

†
k,↑ak,↑ + {εk + U〈n↑〉

}
a

†
k,↓ak,↓

]
. (5.52)

We have transformed to the wave-vector k representation for the operators.
The 〈n↑〉 and 〈n↓〉 factors can now be determined self-consistently by using, for

example,

〈n↑〉 = 1

N

∑
k

〈a†
k,↑ak,↑〉 = − 1

N

∑
k

n(ω)

π
Im

1

ω − εk − U〈n↓〉 + iη

= 1

N

∑
k

n
(
εk + U〈n↓〉

)
δ
(
ω − εk − U〈n↓〉

)
, (5.53)

where we have applied the fluctuation-dissipation theorem from Equation (3.40)
to relate the correlation function to the imaginary part of the relevant GF. Here
η denotes a positive infinitesimal, as before, and n(ω) denotes the Fermi–Dirac
distribution factor (which includes the chemical potential μ). In the last line
of the preceding equation the imaginary part was taken using the identity in
Equation (3.31).
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As a final step, if we introduce a density-of-states function Z(ε) for an electron
with energy ε in the unperturbed band, we obtain for 〈n↑〉 and similarly for 〈n↓〉

〈n↑〉 =
∫

Z(ε) n
(
εk + U〈n↓〉

)
dε, (5.54)

〈n↓〉 =
∫

Z(ε) n
(
εk + U〈n↑〉

)
dε. (5.55)

The preceding two equations, when taken together with

n0 ≡ 〈n↑〉 + 〈n↓〉 (5.56)

as specifying the total band filling factor, are sufficient in principle to enable a
solution for 〈n↑〉, 〈n↓〉, and n0 to be obtained (assuming a model form for the
density-of-states function is adopted). Various examples are given in the references
cited earlier.

5.5 The Anderson Model for Localized States in Metals

In this section, we continue to discuss other properties of the electrons in metals,
along with their associated magnetic moments. A topic that has been of ongoing
interest concerns the electron correlations and magnetic states when metallic
impurities are present in another host metal or when a dilute alloy is formed.
Thus, when a low concentration of a transition metal element is dissolved in
a “nonmagnetic” metal (one that is not ferromagnetic, antiferromagnetic, or
ferrimagnetic), the resulting material either may or may not exhibit a localized
magnetic moment. For example, the introduction of Cr or Fe into a host of Au or
Cu results in localized moments, but the introduction of the same materials into Al
does not (see, e.g., [85]).

A simplified, but nevertheless useful, model for the behavior of localized spins
(typically d-state electrons) interacting with the conduction (or s-state) electrons in
a host metal was introduced by Anderson [84]. Clear critical reviews of this model
can also be found, for example, in [9, 26, 85–87].

In the basic form of the Anderson model, the Hamiltonian contains a term H0

for the kinetic energy of the conduction (s) electron band in the metal, with states
filled up to the Fermi energy εF , as mentioned in Subsection 2.8.1. Similarly,
there is a term Hd that represents the contribution of a localized state (such as a
d electron), treated for simplicity as nondegenerate. In addition, two extra terms
are required. One of these gives the interaction between the conduction electrons
and the localized state, and will be denoted by Hsd . It will produce a mixing,
or hybridization, of the individual s and d states. The other term is a Coulomb
repulsion term HU acting between two electrons on an impurity site, by analogy
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with a similar term in the Hubbard model. The total Hamiltonian can therefore be
written as H = H0 + Hd + Hsd + HU , where the component terms are

H0 =
∑
k,σ

εka
†
k,σ ak,σ,

Hd =
∑

σ

εdd
†
σ dσ,

Hsd =
∑
k,σ

(
Vka

†
k,σ dσ + V ∗

k ak,σ d†
σ

)
,

HU = Und,↑nd,↓. (5.57)

Here a
†
k,σ and ak,σ are the creation and annihilation operators for the conduction

electrons of the host material with energy εk, wave vector k, and spin projection σ .
The operators d†

σ and dσ describe an impurity electron with energy level εd , which
can couple with the conduction electrons through the sd interaction term Vk, which
is taken to be positive. Finally, U is the onsite Coulomb repulsion and nd,σ = d†

σ dσ

is the number operator for the d-electrons with spin projection σ .
Before starting the GF calculation it is helpful if we try to anticipate what might

occur in this physical situation. We suppose, for simplicity, that there is just one
localized electron, which of course will have two possible spin orientations. If we
assume for the moment that it has spin up, then another electron with spin down will
“feel” the Coulomb repulsion of the spin-up electron, and so its unperturbed energy
(which necessarily lies below the Fermi energy) will be increased by an amount U .
This may possibly take it to an energy state above the Fermi energy. Furthermore,
the mixing of s and d states (through the term Hsd) may act to raise the energy
of a spin-up state and lower the energy of a spin-down state, so it is plausible that
a cooperative effect may occur with a persisting localized moment. This situation
is illustrated schematically in Figure 5.3, which we will also refer to again later
in this section. The preceding scenario will now be explored, and we model it
mathematically using the GF method, starting with the special case of U = 0.

5.5.1 Zero Onsite Coulomb Energy

We first look at the case when the effects of U are absent because it turns out
that we may then obtain exact expressions for the required GFs. We start with the
GF G(dσ ;d†

σ | ω) in terms of the operators for the impurity electrons and use the
equation of motion (3.66). Also we choose ε = −1 so that we get anticommutation
relations in the definitions of the GFs. The equation of motion is found from

ω G(dσ ;d†
σ | ω) = 1

2π
〈{dσ,d

†
σ }〉 − G([H,dσ ];d†

σ | ω). (5.58)
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Figure 5.3 Illustration of some basic features of the Anderson model for metals.
The density of states for the spin-up and spin-down s bands are shown, together
with the split levels for the d-states. See the text in Section 5.5 for further
discussion.

For the commutator on the right-hand side it is easily shown that

[H,dσ ] =
∑
σ ′

εd[d†
σ ′dσ ′ ,dσ ] +

∑
k,σ ′

[(Vka
†
k,σ ′dσ ′ + V ∗

k ak,σ ′d†
σ ′), dσ ]

= −
(

εddσ +
∑

k

V ∗
k ak,σ

)
.

On inserting this result into Equation (5.58) we find

ω G(dσ ;d†
σ | ω) = 1

2π
+ εd G(dσ ;d†

σ | ω) +
∑

k

V ∗
k G(ak,σ ;d†

σ | ω). (5.59)

We see that the right-hand side contains another GF corresponding to a mixing
between the conduction and impurity electrons. Next, this new GF is found from its
equation of motion as

ω G(ak,σ ;d†
σ | ω) = 0 − G([H,ak,σ ];d†

σ | ω).

Evaluating the commutator for the term on the right-hand side gives

[H,ak,σ ] = −(εkak,σ + Vkdσ ),

and so we obtain the new GF equation of motion as

ω G(ak,σ ;d†
σ | ω) = εk G(ak,σ ;d†

σ | ω) + Vk G(dσ ;d†
σ | ω).

This can be rearranged (for the analytically continued GFs) as

G(ak,σ ;d†
σ | ω̃) = Vk

ω̃ − εk
G(dσ ;d†

σ | ω̃). (5.60)
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Then it is seen that Equations (5.59) and (5.60) lead to

ω̃ G(dσ ;d†
σ | ω̃) = 1

2π
+ εd G(dσ ;d†

σ | ω̃) +
∑

k

|Vk|2
ω̃ − εk

G(dσ ;d†
σ | ω̃).

After some rearrangement we obtain the result for the analytically continued GF at
complex ω̃ as

G(dσ ;d†
σ | ω̃) =

(
1

2π

)
1

ω̃ − εd − �(ω̃)
. (5.61)

with

�(ω̃) =
∑

k

|Vk|2
ω̃ − εk

. (5.62)

At first sight we seem to have a GF that is formally rather similar to that quoted
in Equation (4.49) for the Jaynes–Cummings (JC) model. There is, however, an
important difference because the quantity �(ω̃) in the present case involves a sum-
mation over a wave vector k, so we cannot just multiply by (ω̃ − εk) to simplify the
denominator of the GF, as we did previously. Instead, we need to examine the role
of �(ω̃), which is sometimes known as a self-energy for reasons that will become
apparent in Chapter 8. Here � appears as an extra term in the denominator of
Equation (5.61), so it looks like a “correction” term to the impurity energy εd . This
requires more interpretation at this stage because � is, in fact, a complex quantity
with a real and imaginary part.

The procedure to follow is that explained in Chapter 3, i.e., we obtain the retarded
GF by everywhere making the replacement that ω̃ → ω + iη. For the self-energy
term this leads to

�(ω + iη) =
∑

k

|Vk|2
ω − εk + iη

= P
∑

k

|Vk|2
ω − εk

− iπ
∑

k

|Vk|2δ(ω − εk), (5.63)

where we have used the identity in Equation (3.31). The real (principal value) part
is often relatively small or can be interpreted as a modification (a slight shift) to
εd for the pole in Equation (5.61). The effect of the imaginary part, however, is
of greater significance [90]. In the case of host materials with wide structureless
conduction bands, it is often a good empirical approximation to write the preceding
imaginary term as a constant denoted by −i� with any ω dependence of � being
ignored. This value can be related to the density of states in the conduction band
because
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� = π
∑

k

|Vk|2δ(ω − εk) ≈ π |V |2
∑

k

δ(ω − εk) = π |V |2 Z. (5.64)

Here |V | denotes an average value of |Vk| for the wide conduction band, and in
the last step of the preceding equation we have used the result that the density of
states Z for an excitation with dispersion relation εk is equal to the wave-vector
summation of the delta function (see, e.g., [20]).

An effect of the self-energy function (approximated as mentioned in the preced-
ing text) is to give rise to a broadening of the spectral function, provided the density
of states Z is nonzero. The spectral intensity Jσ (ω) corresponding to the GF in
Equation (5.61) now can be deduced by application of the fluctuation-dissipation
theorem. First, Equation (5.61) can be rewritten as

G(dσ ;d†
σ | ω) =

(
1

2π

)
1

ω − εd + i�
=
(

1

2π

)
ω − εd − i�

(ω − εd)2 + �2
.

This gives us the result at effectively zero temperature (meaning kBT � εF , which
is typically a good approximation for a metal) that

Jσ (ω) = �/π

(ω − εd)2 + �2
. (5.65)

This represents a Lorentzian-like intensity function, centered at ω = εd and with
width 2�. At this stage there is no dependence of Jσ (ω) on σ .

5.5.2 Inclusion of the Onsite Coulomb Energy

Now we consider the general case in which U �= 0 bringing in an additional term in
the Hamiltonian. We will find that exact solutions for the GFs are no longer possible
from the equations of motion. The starting point is again G(dσ ;d†

σ | ω). When
forming its equation of motion we find that the commutator of the Hamiltonian
with dσ has an extra term, becoming

[H,dσ ] = −
(

εddσ +
∑

k

V ∗
k ak,σ + Udσnd,σ

)
,

where the notation σ again indicates the spin projection that is opposite to σ . Hence
the modified GF equation of motion, which replaces Equation (5.59), is

ω G(dσ ;d†
σ | ω) = 1

2π
+ εd G(dσ ;d†

σ | ω) +
∑

k

V ∗
k G(ak,σ ;d†

σ | ω)

+ U G(dσnd,σ ;d†
σ | ω). (5.66)

The other GF equation obtained previously for G(ak,σ ;d†
σ | ω) is found to be

unchanged, so Equation (5.60) still holds.
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It is evident that Equation (5.66) contains another new GF on the right-hand
side, and we now seek a solution by using a decoupling approximation for it that
is similar to those made in the previous sections of this chapter (e.g., the RPA
decoupling for ferromagnets). Hence we write

G(dσnd,σ ;d†
σ | ω) ≈ 〈nd,σ 〉 G(dσ ;d†

σ | ω),

where we are ignoring fluctuations in the number operator for the d electrons
and replacing the operator by its average value. This is again a mean-field type
of approximation. The other term arising in the decoupling of the product dσnd,σ̄

would give a contribution proportional to 〈dσ 〉, which is equal to zero. The decou-
pled equation of motion for the GF in Equation (5.66) is therefore

ω G(dσ ;d†
σ | ω) = 1

2π
+ [εd + U〈nd,σ 〉] G(dσ ;d†

σ | ω)

+
∑

k

V ∗
k G(ak,σ ;d†

σ | ω). (5.67)

The use of Equations (5.66) and (5.67) then leads us to conclude that Equa-
tion (5.61) for the analytically continued GF is generalized to

G(dσ ;d†
σ | ω̃) =

(
1

2π

)
1

ω̃ − εd − U〈nd,σ 〉 − �(ω̃)
, (5.68)

where the expression for the self-energy � in Equation (5.62) still applies.
Next we may again make an analytic continuation to obtain the retarded GF as

described in the previous subsection. By analogy with the analysis given there, we
now have the results that

G(dσ ;d†
σ | ω) =

(
1

2π

)
ω − ε′

d − U〈nd,σ 〉 − i�

[ω − ε′
d − U〈nd,σ 〉]2 + �2

(5.69)

and

Jσ (ω) = �/π

[ω − ε′
d − U〈nd,σ 〉]2 + �2

. (5.70)

In the preceding two equations we have denoted ε′
d = εd + Re(�), where the

real part of the self-energy, Re(�), can be found from the right-hand side of Equa-
tion (5.63) and provides a small correction (or shift) to the energy εd . The infinitesi-
mal quantity η does not appear in the preceding equations because it can be assumed
that η � �.

We now see that, in general, there are distinct Lorentzian peaks predicted at
energies ε′

d + U〈nd,↓〉 when σ =↑ and at ε′
d + U〈nd,↑〉 when σ =↓. Hence there

may be a splitting, depending on the 〈nd,σ 〉 values. For example, if 〈nd,↓〉 = 1
and 〈nd,↑〉 = 0, we have the situation depicted in Figure 5.3 (but without the peak
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broadening effects due to �). It can easily be deduced that in the limit when Vk → 0
(but U �= 0), the spectral function Jσ (ω) has two delta-function spikes at the values
ω = εd and ω = εd + U (see Problem 5.7).

A useful result following from Equation (5.70) is that it can be used to deduce
the magnetization due to the electron-spin polarizations. The magnetization is pro-
portional to the difference in the average numbers of up and down spins, so we
denote

m = 〈nd,↑〉 − 〈nd,↓〉,
where

〈nd,↑〉 =
∫

dω n(ω)J↑(ω) =
∫

dω n(ω)(�/π)

[ω − ε′
d − U〈nd,↓〉]2 + �2

. (5.71)

At very low (effectively zero) temperature the Fermi–Dirac thermal occupation
function n(ω) can be replaced by a step function that limits the range of integration
to ω < 0, and so we obtain

〈nd,↑〉 =
∫ 0

−∞

dω(�/π)

[ω − ε′
d − U〈nd,↓〉]2 + �2

= 1

π
cot−1

(
ε′
d + U

〈
nd,↓

〉
�

)
. (5.72)

From this, together with a similar result for the spin-down occupation number
〈nd,↓〉, we end up with a pair of coupled equations given by

cot(πnd,↑) =
(

nd,↓ + ε′
d

U

)
U

�
,

cot(πnd,↓) =
(

nd,↑ + ε′
d

U

)
U

�
. (5.73)

From an analysis of the condition for the preceding pair of equations to have
a self-consistent solution with m �= 0 (or nd,↓ �= nd,↑), we have a model for
studying the conditions for the occurrence of a net magnetization in this system
(see Problem 5.8).

5.6 Microscopic Theory of Superconductivity

The microscopic theory of superconductivity was developed in the 1950s, culmi-
nating in the BCS theory due to Bardeen, Cooper, and Schrieffer [88], who were
awarded the 1972 Nobel Prize in physics. Various alternative formulations of the
BCS theory were made soon after its publication [89–91] and here we will outline
some calculations using the equation-of-motion method for the operators and
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real-time GFs. There are two stages in the development of the theory: one is
to establish a model Hamiltonian in second quantization to account for super-
conductivity, and the other is to obtain the solutions of this Hamiltonian for the
superconducting state.

The starting point for obtaining a Hamiltonian to describe the interacting
electrons in a superconductor has some broad similarities to the material in Subsec-
tion 1.4.2. In second quantization there could be single-particle terms (including the
kinetic energy and the potential energy of the lattice) and a two-particle interaction
that is quartic in the fermion operators and involves an interaction (denoted here by
V ). However, instead of the interaction depending on a single wave-vector transfer
q (as depicted in Figure 1.3), a more complicated wave-vector dependence might
be expected as well as a spin dependence. It was suggested by Cooper [92], in work
leading up to the BCS theory, that a “pairing effect” occurs between an electron
with wave vector and spin projection specified by (k, ↑) and another electron with
(−k, ↓), or vice versa.

The Cooper pairs are electrons interacting through a net attractive term that
involves virtual phonons in the surrounding lattice. The basic idea is that, due to
the electron–phonon interaction, a phonon can be emitted by one electron and
reabsorbed by the other member of the pair to produce this effect. We will defer the
discussion of interaction processes of this type until Chapter 9 using diagrammatic
perturbation methods for GFs. The BCS Hamiltonian corresponds to making two
main assumptions: one is to ignore any background lattice potential, and the second
is to introduce the pairing effect just mentioned as the dominant interaction. We
will write

H =
∑
k,σ

εka
†
k,σ ak,σ +

∑
k,k′

V (k,k′)a†
k↑a

†
−k↓a−k′↓ak′↑. (5.74)

From the dynamics of the electron–phonon interaction, it may be deduced (see
Chapter 9) that V (k,k′) is effectively nonzero only within a small range of values
for k and k′ close to the Fermi surface [92]. Often it is assumed, for simplicity,
that

V (k,k′) =
{ −V0 if |εk| < ωD and |εk′ | < ωD,

0 otherwise.
(5.75)

Here V0 is a positive constant, the particle energy εk is measured relative to the
Fermi energy, and ωD denotes the Debye energy (see, e.g., [19, 20]) for the phonons
participating in the process. Henceforth, in this section, we shall follow a convenient
shorthand notation used in the superconductivity field by writing k for the state
specified by (k, ↑) and −k for the state (−k, ↓). Then the BCS Hamiltonian in
Equation (5.74) can be reexpressed as
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H =
∑

k

εk(a
†
kak + a

†
−ka−k) − V0

∑
k,k′

a
†
ka

†
−ka−k′ak′ (5.76)

within the subspace of the paired electrons.
By using Equation (2.5) we will obtain the equations of motion for the operators

ak and a
†
−k, which are found to represent a coupled pair. On replacing the time

derivatives in the equations according to d/dt → −iω for the excitations, we find

(ω − εk)ak = a
†
−kV0

∑
k′

a−k′ak′, (5.77)

(ω + εk)a
†
−k = akV0

∑
k′

a
†
k′a

†
−k′ . (5.78)

Next, provided the condition |εk| < ωD required in Equation (5.75) is satisfied,
we may replace the products of the pair of operators within the k′ summations in
Equations (5.77) and (5.78) by their averages. This is a mean-field type of simpli-
fication made in the same spirit as the decoupling approximation for the HF theory
in Section 5.1, where there is also an average taken for products of two operators.
Here we define the complex quantities

� = V0

∑
k′

〈a−k′ak′ 〉 and �∗ = V0

∑
k′

〈a†
k′a

†
−k′ 〉, (5.79)

and we ignore any weak k-dependence that may be associated with �. After the
decoupling approximation has been made, Equations (5.77) and (5.78) may be
written in a matrix form as(

εk �

�∗ −εk

)(
ak

a
†
−k

)
= ω

(
ak

a
†
−k

)
. (5.80)

The nontrivial solutions of the preceding equation are simply ω = ±Ek corre-
sponding to the eigenvalues of the 2 × 2 matrix, where

Ek =
√

ε2
k + �2

0 (5.81)

and we have defined �0 = |�| > 0. We now see that that �0 represents an energy
gap in the spectrum of electronic excitations. The prediction of a gap above the
ground state is among the major achievements of the BCS theory and a necessary
condition for superconductivity.

The eigenvectors of the preceding 2 × 2 matrix, which are the quasiparticle
operators denoted as αk and α

†
−k, are related to the original operators through

a linear transformation (a Bogoliubov type of transformation similar to that in
Subsection 1.5.1). We may express the transformation in the present case as

ak = ukαk + vkα
†
−k , a−k = ukα−k − vkα

†
k. (5.82)
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It is easily shown that the new operators are also fermion operators satisfying the
usual anticommutation relations, provided the condition u2

k + v2
k = 1 is satisfied.

It is assumed that uk and vk are, respectively, even and odd functions of the wave
vector: they satisfy uk = u−k and vk = −v−k. It follows from Equations (5.80) and
(5.82) that

εkuk + �vk = Ekuk

for the coefficients defining the quasiparticle operators. After taking the square
modulus of each side and rearranging the terms, we find

2ukvk

u2
k − v2

k

= �0

εk
.

If we now write uk = cos θk and vk = sin θk, the preceding result implies that the
angle θk is related to the energy gap by

tan(2θk) = �0/εk. (5.83)

Several other properties follow from the preceding analysis, and we refer to [9]
for a more detailed account. Thus, for example, it may be shown that the BCS
ground state (denoted by |BCS〉), is related to the vacuum state |0〉 by

|BCS〉 =
∏

k

(−1/vk)α−kαk|0〉 =
∏

k

(uk + vka
†
ka

†
−k)|0〉. (5.84)

Here the factor of (−1/vk) in the first expression is included just to ensure the
normalization condition that 〈BCS|BCS〉 = 1. Also the second step has been made
by using the inverse transformation to Equation (5.82), as well as the property that
ak|0〉 = a−k|0〉 = 0 for the vacuum state (see Problem 5.9). Next we can use
Equation (5.84) to evaluate αk|BCS〉, which leads to

αk |BCS〉 = αk

∏
k′

(−1/vk′)α−k′αk′ |0〉

=
⎛
⎝∏

k′ �=k

(−1/vk′)α−k′αk′

⎞
⎠× (1/vk)α−kαkαk |0〉 = 0.

The last part vanishes because it contains the fermion operator product αkαk with
the same wave vector. The preceding result proves that |BCS〉 acts as the “vacuum”
state for the quasiparticle operator αk, as might be anticipated.

Another result that arises from this version of the BCS theory is the self-
consistent calculation of the gap �0 by using Equation (5.79). We now see that

〈a−kak〉 = 〈BCS|(ukα−k − vkα
†
k)(ukαk + vkα

†
−k)|BCS〉, (5.85)



5.6 Microscopic Theory of Superconductivity 145

where the preceding average is taken with respect to the BCS ground state. When
the products of operators are considered, the only surviving term is

〈BCS|(ukα−k)(vkα
†
−k)|BCS〉.

This can be manipulated into the form ukvk〈BCS|(1−α
†
−kα−k)|BCS〉, which simply

reduces to ukvk. Thus, we have the result from Equation (5.79) that

� = V0

∑
k′

uk′vk′ = 1

2
V0

∑
k′

sin(2θk′). (5.86)

On noting that the right-hand side of the preceding equation is real and using
Equation (5.83), we find that the energy gap in the zero-temperature limit satisfies
the condition

1 = 1

2
V0

∑
k′

(
1

Ek′

)
= 1

2
V0

∑
k′

⎛
⎝ 1√

ε2
k′ + �2

0

⎞
⎠ . (5.87)

An estimate of �0 can be obtained from the preceding result if the summation
over k′ is replaced by an integral. It can be shown (see, e.g., [9, 23]) that an
expression of the approximate form

0 � ωD

{
sinh

(
1

ZF V0

)}−1

(5.88)

is obtained, where ZF is the density of energy states near the Fermi surface.
It should be pointed out that, although we have been following an equation-of-

motion method for the operators in this section, a generalization to evaluate the
analogous GF equations of motion can be made. For example, we can form the
equation of motion for G(ak;a†

k | ω). In doing so, we would find after a similar
decoupling approximation to the one described in the preceding text that this
GF is coupled to G(a

†
−k;a†

k | ω). In turn, the equation of motion for this latter
GF couples to G(ak;a†

k | ω), and it is an easy matter to calculate the solution
for each GF (see Problem 5.10). As might be expected, the GFs have poles at
ω = ±Ek.

Finally, we comment that the outstanding development in superconductivity
since the advent of the BCS theory was the experimental discovery of the so-
called high-temperature superconductors (HTSCs) by Bednorz and Müller [93]
in 1986. The “conventional” superconductors prior to this discovery had critical
temperatures Tc below about 30 K (a limitation related to the Cooper pairing
mechanism involving phonons), but some of the new superconductors have Tc

values well in excess of 100 K. The development of theories for HTSCs is still a
matter of ongoing research.
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Problems

5.1. Consider an exchange-dominated ferromagnet represented by the spin
Hamiltonian in Equation (1.87). Verify that the commutation relation [H,S+

n ]
can be written in the form quoted in Equation (5.15).

5.2. Starting from the equation-of-state result in Equation (5.26) for a Heisenberg
ferromagnet, prove that the same expression for the Curie temperature TC

as specified in Equation (5.33) is obtained by applying the condition for
the magnetic susceptibility χ to diverge as the temperature T approaches
TC from above (assuming a nonzero applied field B0, which is eventually
allowed to tend to zero).

5.3. Consider a Heisenberg ferromagnet in which there is an additional hyperfine
coupling between each electronic spin Si and the nuclear spin denoted by Ii

at the same site. The Hamiltonian is

H = −1

2

∑
i,j

Ji,j Si · Sj +
∑

i

AIi · Si − gμBB0

∑
i

Sz
i − gNμNB0

∑
i

I z
i ,

where Ji,j is the exchange interaction, A is the hyperfine coupling constant,
B0 is an applied magnetic field in the z direction, g and μB are the g-factor
and Bohr magneton for an electron, and gN and μN are the corresponding
quantities for a nuclear spin. The electronic and nuclear spins each satisfy
the usual commutation relations among themselves, and they are assumed to
commute with each other. Derive the equation of motion satisfied by the GF
G(S+

m;S−
n | ω), and make a decoupling approximation (as in RPA) to decou-

ple products of any spins of different types and/or at different sites. Show
that the resulting equation contains another GF of the form G(I+

m ;S−
n | ω)

and write down its equation of motion. Next, prove that the pair of equations
form a closed set and solve them by transforming to a wave-vector repre-
sentation to obtain the original GF. Discuss the form of the SW solution(s)
corresponding to the poles of this GF.

5.4. The four coupled equations of motion for a Heisenberg antiferromagnet in
zero applied magnetic field (B0 = 0) after RPA decoupling are quoted in
Equation (5.40). Use these results to verify Equation (5.41) as the solutions
for the analytically continued GFs and Equation (5.42) for the SW dispersion
relation Ek.

5.5. By following the analogous steps as used for graphene in Sections 2.7 and
4.2, prove the dispersion relation quoted in Equation (5.44) for the electronic
bands in a 3D s.c. solid and the GF result in Equation (5.45). Note in this
case that there is just a single lattice of equivalent sites.
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5.6. Verify the result stated in Subsection 5.4.1 that Equation (5.48) is a valid rep-
resentation of the spin-half operators (i.e., check that the usual spin commu-
tation relations are recovered). Next, prove that Equations (5.46) and (5.47)
are equivalent, as stated. The property that (a

†
i,↑ai,↑ + a

†
i,↓ai,↓) = 1 may be

useful.

5.7. Consider the Anderson model in Section 5.5 in the absence of the hybridiza-
tion term (Vk = 0) but including the Coulomb repulsion (U �= 0). Extend
the results given there to obtain the spectral intensity function in this special
case.

5.8. By solving the coupled Equations (5.73) in the Anderson model of Sec-
tion 5.5, deduce the regions of magnetic (m �= 0) and nonmagnetic (m = 0)
behavior in terms of the parameters of the model.

5.9. Show that the relationship between the BCS ground state, denoted as |BCS〉,
and the vacuum state |0〉 is as quoted in Equation (5.84).

5.10. Considering the BCS Hamiltonian as in Equation (5.76), form the equation
of motion for G(ak;a†

k | ω). Show that it involves a new GF of the form
G(a

†
−k;a†

k | ω), and use the RPA decoupling to simplify the result. Next obtain
the equation of motion for the new GF and show that it couples to GFs of the
form G(ak;a†

k | ω). Solve the set of coupled GF equations to find the solutions
for the individual GFs. Verify that each GF has poles at ω = ±Ek, with Ek

given by Equation (5.81).

5.11. In Problem 4.13 the GFs G(ρ†
q(k);ρq|ω) and G(ρ†

q;ρq|ω) were calculated for
a fermion gas in the absence of interactions. Now, by using the GF equation-
of-motion method (or otherwise), calculate these GFs with the effects of the
interaction v(q) included through a decoupling approximation of the same
form as in the text following Equation (2.83). In particular, show that the
expression for G(ρ†

q;ρq|ω) has an additional pole (compared to the noninter-
acting case), giving rise to the plasmon branch.



6

Linear Response Theory and Green’s Functions

We now consider physical situations in which there is a time-dependent perturba-
tion applied to a system that initially is described by a time-independent Hamil-
tonian and is in thermal equilibrium. In doing so, we will be extending various
results for the time evolution of quantum many-body systems that were established
in Chapter 2 in an operator formalism. Here we will be particularly concerned with
studying the role of Green’s functions (GFs) in determining the time dependences.

This topic will lead us directly into linear response theory, in which we consider
the time evolution of a system in response to a sufficiently weak time-dependent
perturbation. One of the main objectives will be to establish a formal connection
between linear response functions and GFs. On the one hand, this may provide us
with another method to calculate real-time GFs, as an alternative to the equation-
of-motion method used so far. On the other hand, if we independently know the
relevant GFs, it leads us to useful results for the overall time evolution of the system.

An important mathematical tool in carrying out the calculations will be the
density matrix (or density operator). This was introduced into quantum mechanics
by von Neumann in the 1920s (see [94]), and later found applications in statis-
tical physics, e.g., see the excellent review by ter Haar [95]. The density matrix
is useful for studying the ensemble averages and other properties of operators
in nonequilibrium situations. After employing the density matrix here to develop
linear response theory, we establish the useful connections with GFs and we also
discuss the related concept of generalized susceptibility functions. We will pro-
vide examples of calculating GFs by the linear response method. This topic has
applications to transport properties through deriving the Kubo formula, e.g., an
electric field might be switched on causing a flow of electrons, and we would want
to calculate the electrical conductivity. It will also be shown how some scattering
problems can be treated within a similar formalism.

148



6.1 The Density Matrix 149

6.1 The Density Matrix

The density matrix is introduced following the approach in statistical physics
textbooks (see, e.g., [4, 56, 96, 97]). We envisage an ensemble consisting of
many (R � 1) identically prepared systems, all of which are characterized by
a Hamiltonian H that may be time dependent in general. We denote by |ψk〉 the
time-dependent normalized wave function corresponding to the kth system in this
ensemble. The time-dependent Schrödinger equation can be written as

i
d |ψk〉

dt
= H |ψk〉 , (k = 1,2, . . . ,R). (6.1)

We also introduce a complete set of orthonormal functions |n〉, so that the wave
functions at any time t can be expanded as

|ψk〉 =
∑

n

ck
n(t) |n〉 . (6.2)

Here the time-dependent coefficients satisfy ck
n(t) = 〈n | ψk〉. The state of the kth

system in the ensemble can now be described in terms of the set of coefficients
{ck

n(t)} for different n, and it follows that

i
d

dt
ck
n(t) = i

d

dt
〈n | ψk〉 = i〈n | d

dt
ψk〉 = 〈n |H |ψk〉

= 〈n |H
∑
m

ck
m(t) |m〉 =

∑
m

〈n |H |m 〉ck
m(t). (6.3)

As a further property we note that∑
n

|ck
n(t)|2 = 1

for the complete and orthonormal set. Therefore, each |ck
n(t)|2 factor can be

interpreted as the probability of finding the kth system in the state |n〉 at time t .
We now define the density matrix, denoted by ρ, as the operator with matrix

elements given by

ρmn = 1

R

R∑
k=1

ck
m(t)

{
ck
n(t)
}∗

. (6.4)

In other words, the (m,n) matrix element of ρ is the ensemble average of
ck
m(t){ck

n(t)}∗. We note, in particular, that a diagonal element ρnn of this matrix
is just the ensemble average of the probability |ck

n(t)|2. Because the probabilities
add to give unity, it follows that ρ has the property that

Tr(ρ) = 1. (6.5)
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Another property, which we will employ extensively in this chapter, is that the mean
value (over the ensemble) for any operator A is given by

〈A〉 = Tr(ρA). (6.6)

This follows by starting from the definition of the mean value from QM that

〈A〉 = 1

R

R∑
k=1

〈ψk |A| ψk〉.

Then, from the expansion in Equation (6.2) and the definition of ρ, we have

〈A〉 = 1

R

R∑
k=1

∑
m,n

ck
m(ck

n)
∗〈n|A|m〉

=
∑
m,n

ρmnAnm =
∑
m

(ρA)mm.

The last term is just Tr(ρA) by definition, proving the stated result. In the special
case of thermal equilibrium we know from statistical mechanics that the mean value
is given by Equation (3.4), and so it follows in the equilibrium case that

ρ = e−β(H−μN )

Tr
{
e−β(H−μN )

} = 1

Q
e−β(H−μN ), (6.7)

where we recall that β = 1/kBT is related to the temperature T . Of course,
Equation (6.7) will not apply in a nonequilibrium situation.

An important result that we require for later use is that the density matrix ρ

satisfies the following equation of motion:

i
dρ

dt
= [H,ρ]. (6.8)

This can be proved using the definition of ρ in Equation (6.4), which gives

i
dρmn

dt
= 1

R

R∑
k=1

i
d

dt

(
ck
m(t){ck

n(t)}∗
)

= 1

R

R∑
k=1

i

(
dck

m(t)

dt
{ck

n(t)}∗ + ck
m(t)

d{ck
n(t)}∗
dt

)
.

Then, using Equation (6.3) and the definition of ρ one more time, this becomes

i
dρmn

dt
=
∑

p

(〈m|H|p〉ρpn − ρmp〈p|H|n〉) = (Hρ)mn − (ρH)mn,
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which proves the stated property. It is important to notice the difference in sign
for the preceding result in Equation (6.8) compared with Equation (2.5) for the
equation of motion of an operator in the Heisenberg picture.

6.2 Linear Response Theory

Here we will consider calculating the response of a system (that is otherwise unper-
turbed and in equilibrium) to a small time-varying external perturbation. We write
for the total Hamiltonian

H = H0 + H1,

where H0 describes the unperturbed system and H1 is the time-dependent per-
turbation. As a boundary condition, we assume that at t = −∞ the system is
in equilibrium (with a density matrix equal to ρ0) and it is unperturbed. Because
dρ0/dt = 0, it follows from Equation (6.8) that [H0,ρ0] = 0. The perturbation is
then switched on, starting at t = −∞, and at any later time t we denote ρ = ρ0+ρ1.
From Equation (6.8) we have

i
dρ

dt
= [H0 + H1,ρ0 + ρ1],

and so it follows that

i
dρ1

dt
= [H0,ρ0] + [H0,ρ1] + [H1,ρ0] + [H1,ρ1].

The first term on the right-hand side is zero, as just noted, while the last term will be
neglected because it is of second order in the small quantities H1 and ρ1. Therefore,
making a linear approximation, we have

i
dρ1

dt
= [H0,ρ1] + [H1,ρ0]. (6.9)

We now seek to solve this equation for ρ1 without further approximation, using
the boundary condition that H1 = 0 and ρ1 = 0 at t = −∞. To accomplish this,
we introduce a new operator defined by

ρ̃1 = eiH0t ρ1 e−iH0t . (6.10)

On differentiating this with respect to time t , we find

d

dt
ρ̃1 = iH0e

iH0tρ1e
−iH0t − ieiH0tρ1H0e

−iH0t + eiH0t
dρ1

dt
e−iH0t .

Then, by using Equation (6.9) and rearranging the terms, it is easy to show that

d

dt
ρ̃1 = −ieiH0t [H1,ρ0]e−iH0t .
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Integrating both sides of this equation from time −∞ to time t gives

ρ̃1 = −i

∫ t

−∞
eiH0t

′
[H1,ρ0]e−iH0t

′
dt ′,

and on transforming back to ρ1 we arrive at the formal solution

ρ1 = −i

∫ t

−∞
eiH0(t ′−t) [H1,ρ0] e−iH0(t ′−t)dt ′. (6.11)

It follows, therefore, for the time-dependent average corresponding to any oper-
ator A, that Equation (6.6) gives

〈A〉 = Tr(ρA) = Tr(ρ0A) + Tr(ρ1A) = 〈A〉0 + Tr(ρ1A), (6.12)

where 〈A〉0 denotes an average for the unperturbed system (i.e., using the Hamilto-
nian H0). Then, from the preceding expression for ρ1, we obtain

〈A〉 = 〈A〉0 − i

∫ t

−∞
Tr
{
eiH0(t

′−t)[H1,ρ0]e−iH0(t ′−t)A
}

dt ′. (6.13)

This is an important result in its own right, and we will employ it later in appli-
cations to transport theory. For other applications, however, including making a
connection with GFs, it is useful to rewrite the Tr term in Equation (6.13). Denoting
this by I we have

I = Tr
{
eiH0(t

′−t)H1ρ0e
−iH0(t

′−t)A − eiH0(t
′−t)ρ0H1e

−iH0(t
′−t)A

}
= Tr

{
eiH0(t

′−t)H1e
−iH0(t

′−t)ρ0A − ρ0e
iH0(t

′−t)H1e
−iH0(t

′−t)A
}
,

where the second line in the preceding equation follows because ρ0 and H0 com-
mute. Next we define

H1(t) = eiH0tH1e
−iH0t, (6.14)

which is like transforming to the interaction picture in QM (see Chapter 2), so that
we can write

I = Tr
{
H1(t

′ − t)ρ0A − ρ0H1(t
′ − t)A

}
= Tr

{
ρ0AH1(t

′ − t) − ρ0H1(t
′ − t)A

}
.

Here we used the property that products of operators under the Tr are invariant
under cyclic permutation. Finally we obtain I in the form

I = Tr
{
ρ0[A,H1(t

′ − t)]
} = 〈[A,H1(t

′ − t)]〉0.

As a result of all these manipulations, we conclude that Equation (6.13) for the
time-dependent average can be expressed alternatively as
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〈A〉 = 〈A〉0 − i

∫ t

−∞
〈[A,H1(t

′ − t)]〉0 dt ′. (6.15)

In summary, this last result tells us that to calculate an average 〈A〉 for a nonequi-
librium system at time t we may instead calculate a different average, namely
the correlation function 〈[A,H1(t

′ − t)]〉0, which is for the unperturbed system.
Then this average may be used in Equation (6.15). The unperturbed correlation
function could be evaluated, if necessary, by the methods discussed earlier for
equilibrium systems, e.g., by calculating the corresponding GF from its equation
of motion. Equation (6.15) leads us more directly, however, to the introduction of
linear response functions.

6.3 Response Functions and Green’s Functions

We now suppose, in our previous development of linear response theory, that the
perturbation H1 has the specific form

H1 = −Bf (t), (6.16)

where B is a QM operator and f (t) is a scalar function that describes the time
dependence of the interaction. For example, if we consider a particle moving along
the x axis in 1D and subject to a position-independent, time-varying force f (t),
then the potential energy corresponding to H1 is −xf (t). Alternatively, if we have
a magnetic system and a time-varying magnetic field Bx(t) acting in the x direction
is switched on, such that b(t) = gμBBx(t), then the Zeeman energy of interaction is

H1 = −
∑

i

gμBBx(t)Sx
i = −b(t)

∑
i

Sx
i ,

where the sum is over all magnetic sites. This is the physical situation in experi-
ments for ferromagnetic resonance (FMR), which we will return to later, as well as
other examples.

Substituting Equation (6.16) into (6.15) for the average 〈A〉, and assuming for
simplicity that 〈A〉0 = 0 for the unperturbed system, we have

〈A〉 = −i

∫ t

−∞
〈[A,B(t ′ − t)]〉0f (t ′)dt ′.

From Equation (3.6) we recall the definition of a retarded GF for an “unperturbed”
system (with Hamiltonian H0) in the commutator case as being

gr(A;B | t − t ′) = −iθ(t − t ′)〈[A(t),B(t ′)]〉
when ε is chosen as 1. The right-hand side of the GF is just the same as −iθ(t − t ′)
〈[A,B(t ′ − t)]〉 because the dependence is only on the difference in time labels
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(see Subsection 3.1.2). Therefore, the preceding linear response result can be reex-
pressed as

〈A〉 = −
∫ ∞

−∞
gr(A;B | t − t ′)f (t ′)dt ′. (6.17)

Essentially, this expression tells us that the “response” produced in a local observ-
able A (as measured by 〈A〉) is related linearly through an integral to the perturbing
“force term” f (t ′), which couples to another operator B. Consequently, the GF
gr(A;B | t − t ′) can be thought of as a “response function.” This interpretation is
reminiscent of the role of the classical GFs in mathematics (see Subsection 3.6.1).
For example, there is a formal analogy between the preceding Equation (6.17) and
Equation (3.62).

The integral on the right-hand side of Equation (6.17) can be thought of as a
convolution in the time domain between two functions, one of which depends on
t ′ and the other (the GF) depends on the difference t − t ′. This suggests that there
may be a simplification if we take Fourier transforms from the time to the frequency
domain. The Fourier transform of the GF was defined previously in Equation (3.65),
and now we transform the time-dependent quantities 〈A〉 and f (t) in a similar way
by writing

〈A〉 =
∫ ∞

−∞
〈A〉ωe−iωtdω, (6.18)

f (t) =
∫ ∞

−∞
F(ω)e−iωtdω. (6.19)

The inverse transformation to Equation (6.18) gives

〈A〉ω = 1

2π

∫ ∞

−∞
〈A〉eiωtdt

= − 1

2π

∫ ∞

−∞

∫ ∞

−∞
gr(A;B | t − t ′)f (t ′)eiωtdt ′dt, (6.20)

where we employed Equation (6.17) to obtain the second line in the preceding
equation. After substituting Equations (3.65) and (6.19) into Equation (6.20) we
eventually conclude (as in Problem 6.1) that

〈A〉ω = −2πG(A;B | ω)F(ω). (6.21)

This result can be useful in either of two ways, depending on the context. On
the one hand, if we can calculate the GF G(A;B | ω), then we can find the time-
dependent average 〈A〉, initially in terms of its Fourier components 〈A〉ω, for any
given choice of time dependence in the perturbation term that transforms to F(ω).
On the other hand, if we can find 〈A〉ω by some other method, then the GF can be
found from
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G(A;B | ω) =
(

− 1

2π

) 〈A〉ω
F (ω)

. (6.22)

The preceding expression illustrates the role of the GF as being proportional to
a linear response function (or more simply a response function): a perturbation
specified by F(ω) is applied to the system and the response in terms of 〈A〉ω is
found, which gives (apart from a proportionality factor) the required GF. In the
following text, we first mention some properties of the response function, and next
we define a generalized susceptibility function. Then we examine some examples
to illustrate the general principles.

• Causality Relation

Causality is a statement of the temporal relation between cause and effect. The
function that describes the response is necessarily zero before the source input
has been applied. It means that the response function g(A;B | t − t ′), or more
simply g(t − t ′), is zero for t < t ′, which is evident from the definition adopted
in Section 3.1 for the retarded GF. Therefore, from the expression for the Fourier
transform of g(t − t ′) in Equation (3.22), we must have∫ ∞

−∞
G(ω)e−iω(t−t ′)dω = 0 for t < t ′. (6.23)

If we extend this to become a contour integral in the complex frequency plane, so
that part of the contour is along the real axis and the contour is completed around
a semicircle at infinity, it is evident when t < t ′ that we should choose the contour
to be in the upper half-plane for convergence (like the contour C2 in Figure 3.1).
Then we conclude for the contour integral to vanish there cannot be any poles of
the integrand in the upper half-plane. This means G(ω) is analytic in the upper
half-plane, and this is a direct consequence of the causality.

• Time Interval Invariance

We have already shown in Chapter 3 that the time correlation functions (and hence
the GFs) depend on the labels t and t ′ only through the time interval (t − t ′). The
choice for the zero (or origin) for measuring the time is arbitrary. This is already
evident from the form of Equation (6.17).

• Impulse Response Functions

If the perturbing force is an impulsive spike in time, applied at say time t ′ = 0,
and represented as a unit delta function f (t ′) = δ(t ′), we obtain 〈A〉 = −g(t)

from Equation (6.17). Therefore, −g(t) describes the behavior of the system in
the presence of an abrupt perturbation. In this case, −g(t) would often be called
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the impulse response function. Again there is an analogy with the classical GFs in
Subsection 3.6.1, in particular with Equation (3.64).

A different assumption for the time dependence of f (t ′) may also be adopted.
For example, a harmonic form as f (t ′) ∝ e−iωt ′ is often convenient when studying
the excitation frequencies in a system (as for the operator equations of motion in
Chapter 2).

6.4 Response Functions and Applications

To illustrate further some of the basic concepts of linear response theory, we next
introduce the concept of the generalized susceptibility as an application of the
method, and then we consider a 1D damped harmonic oscillator as a classical
example.

6.4.1 The Generalized Susceptibility

The response of the system to the perturbation is typically related to an external
field through a response function or equivalently a generalized susceptibility. To
obtain an expression for the susceptibility we consider the perturbation in the form
given by Equation (6.16). The perturbation involves an operator B and a scalar
time-dependent function f (t), for which we seek a response in terms of 〈A(t)〉 for
operator A. In the absence of the perturbation we will assume that the QM average
of A is zero, but in the presence of the perturbation 〈A(t)〉 becomes nonzero with a
value that can be found following Equation (6.17) as

〈A(t)〉 = −
∫ ∞

−∞
g(t − t ′)f (t ′)dt ′, (6.24)

where g is the appropriate GF providing the response. We now know, however,
that causality requires that g(t − t ′) = 0 for t < t ′. To satisfy this property
Equation (6.24) becomes expressible as

〈A(t)〉 = −
∫ t

−∞
g(t − t ′)f (t ′)dt ′, (6.25)

which is just the same as

〈A(t)〉 = −
∫ ∞

0
g(ξ)f (t − ξ)dξ . (6.26)

Here we have changed variables by defining ξ = t − t ′ (and thus we have
dξ = −dt ′).

By means of a Fourier transformation, any time-dependent function can be
thought of as being built up of many single-frequency components, each of which
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has a time-dependent factor like e−iωt . For such a monochromatic driving function,
on putting f (t) = F(ω)e−iωt , Equation (6.26) becomes

〈A(t)〉 = −
∫ ∞

0
g(ξ)F (ω)e−iω(t−ξ)dξ

= −F(ω)e−iωt

∫ ∞

0
g(ξ)eiωξdξ . (6.27)

We note that the only time dependence of 〈A(t)〉 is through the factor of e−iωt ,
because the integration over ξ is independent of t . Thus a harmonic driving force
f (t) = F(ω)e−iωt produces a harmonic response that can be written as 〈A(t)〉 =
〈A〉ωe−iωt , where

〈A〉ω = −F(ω)

∫ ∞

0
g(ξ)eiωξdξ .

We may now follow convention [56] by defining a generalized susceptibility
function χ(ω) as

χ(ω) = 〈A〉ω
F (ω)

, (6.28)

which in this simple case is just a response function related to the GF by

χ(ω) = −
∫ ∞

0
g(ξ)eiωξdξ . (6.29)

The concept of a generalized susceptibility is more typically employed in cases
where the driving function f (t) is real (unlike in the example just given), and so
the response produced in the system is real. An effect of the force is to change
of the state of the system, along with there being an absorption of energy that is
dissipated within the system. We can develop the preceding arguments to show the
connection between the generalized susceptibility or response function χ(ω) and
the absorption (or dissipation) of energy due to the force f (see, e.g., [56]). To
illustrate this point, we will consider a case in which the function f (t) is real and
takes the simple form

f (t) = 1

2
(f0e

−iωt + f ∗
0 eiωt ). (6.30)

Using the definition of χ(ω) we may then prove that

〈A(t)〉 = 1

2

[
χ(ω)f0e

−iωt + χ∗(ω)f ∗
0 eiωt

]
. (6.31)
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We see from the preceding example, and from Equation (6.26) in general, that
the frequency-dependent generalized susceptibility χ(ω) may be complex, but it
satisfies

χ(ω) = χ∗(−ω). (6.32)

The real and imaginary parts of χ(ω) must therefore obey

Re[χ(ω)] = Re[χ(−ω)] and Im[χ(ω)] = −Im[χ(−ω)],

so the real part is a symmetric (or even) function of the frequency, and the imaginary
part is an antisymmetric (or odd) function.

It follows that the average energy dissipation per unit time, or dW/dt , due to the
force in Equation (6.30) can be found from the average value of the time derivative
of the Hamiltonian in Equation (6.16):

dW

dt
= dH1

dt
= −df (t)

dt
〈A(t)〉.

By inserting Equation (6.31) for 〈A(t)〉 into the preceding expression and averaging
over the period 2π/ω of the force, we find (see Problem 6.2)

dW

dt
= iω

4

[
χ∗(ω) − χ(ω)

] |f0|2 = ω

2
Im [χ(ω)] |f0|2. (6.33)

We see that the imaginary part of χ(ω) is directly related to the energy dissipation,
which is an expression of the result obtained more generally as the fluctuation-
dissipation theorem for the GFs (see Subsection 3.4.2).

6.4.2 Dissipation and Response for an Oscillator

We consider the damped harmonic oscillator as an example to illustrate the dissipa-
tive process. The classical equation of motion in 1D for an oscillator in the presence
of a driving force f (t) has the form

d2u

dt2
+ �

du

dt
+ ω2

0u = f (t). (6.34)

Here u specifies the coordinate being driven, � is the friction (or damping) constant,
and ω0 denotes angular frequency for the natural resonance. The average displace-
ment 〈u(t)〉 is related to the force f (t) following Equation (6.17), and so in this
case

〈u(t)〉 = −
∫ ∞

−∞
gr(t − t ′)f (t ′)dt ′, (6.35)
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where gr(t − t ′) is the retarded GF for the system. To find gr(t) for this system we
first consider the Fourier transform relationship

gr(t) =
∫ ∞

−∞
dω Gr(ω)e−iωt . (6.36)

By substituting Equations (6.35) and (6.36) into (6.34), we deduce that

Gr(ω) =
(

− 1

2π

)
1

ω2
0 − ω2 − i�ω

. (6.37)

The corresponding generalized susceptibility function is, therefore

χ(ω) = 1

ω2
0 − ω2 − i�ω

, (6.38)

It is clear by inspection that the symmetry property stated in Equation (6.32) is
satisfied.

The real and imaginary parts of Gr(ω) are easily written down from Equa-
tion (6.37), giving

Re[Gr(ω)] =
(

− 1

2π

)
ω2

0 − ω2(
ω2

0 − ω2
)2 + �2ω2

,

Im[Gr(ω)] =
(

− 1

2π

)
�ω(

ω2
0 − ω2

)2 + �2ω2
. (6.39)

These quantities are shown plotted as functions of ω in Figure 6.1. In accordance
with general principles, Re[Gr(ω)] and Im[Gr(ω)] must obey the Kramers–Kronig
relations given in Equation (3.36).

Finally, we consider some consequences of the functional form in the complex
ω̃-plane of the generalized susceptibility in Equation (6.38). The complex poles of
this function correspond to

ω̃ = − i�

2
±
√

ω2
0 − �2

4
, (6.40)

so the two main cases that arise are

• The underdamped regime: ω2
0 > �2/4. Both of the poles have a negative imagi-

nary part, and so they lie in the lower half plane (in agreement with causality).

• The overdamped regime: ω2
0 < �2/4. Both of the poles are pure imaginary and

lie on the negative imaginary axis (again in agreement with causality).
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Figure 6.1 The real part (dashed line) and imaginary, or dissipative, part (solid
line) of the GF in Equation (6.38) for the damped harmonic oscillator, plotted as a
function of ω. For illustration we have taken �/ω0 = 0.1.

6.5 Phonons in an Infinite Elastic Medium

As an example of response functions in condensed matter systems, we consider an
infinite, isotropic elastic medium with a longitudinal vibrational wave (longitudinal
acoustic phonon) propagating in one direction taken as the z direction. This
calculation will introduce properties relating to the spatial dependence of the
response function or GF. The relevant acoustic wave equation in elasticity is well
known [98] as

ρ
∂2u

∂t2
− ρv2

L

∂2u

∂z2
= 0, (6.41)

where u is the displacement in the z direction, ρ is the density of the medium,
and vL is the acoustic velocity. Suppose we now add a driving term (acting as
a perturbation), which we choose to represent a harmonic point force of angular
frequency ω applied at position z′. In other words, we choose

f (z,t) = f0

A
e−iωt δ(z − z′).

Here f0 is an amplitude and A is the (macroscopically large) area of the medium in
the xy-plane perpendicular to the wave propagation. This force term corresponds
to an interaction energy
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H1 = −
∫ ∫ ∫

u(z)f (z,t)dxdydz

= −f0e
−iωt

∫
u(z)δ(z − z′)dz = −f0e

−iωtu(z′).

We now add the preceding force term to the wave equation of motion and we
solve for u(z). Because H1 couples to u(z′) and we are using a harmonic time
representation, we expect to deduce the GF G(u(z);u(z′) | ω) from the response
function. So, with the driving force included, the wave equation in Equation (6.41)
becomes generalized to

ρ
∂2u

∂t2
+ ρ�

∂u

∂t
− ρv2

L

∂2u

∂z2
= f0

A
e−iωt δ(z − z′), (6.42)

where we have also added a small damping term (with coefficient � > 0). Assum-
ing a time dependence as exp(−iωt), this simplifies to become

d2u

dz2
+ q2u = − f0

ρv2
LA

δ(z − z′), (6.43)

where we have defined a complex quantity q by

q2 = ω (ω + i�)

v2
L

. (6.44)

There are two solutions for q, and without loss of generality we may choose the
root with Re(q) > 0. It is easy to show that this also has Im(q) > 0.

The solution of the preceding differential equation for the z dependence of u

is found, as usual, from a complementary function plus a particular integral. The
complementary function is

aeiqz + be−iqz, (6.45)

where a and b are constants. This function diverges as |z| → ±∞ when Im(q) > 0,
and so we must have a = b = 0. We are left with the particular integral, which is
of the form

u(z) = c exp(iq|z − z′|), (6.46)

where c is a constant. This last step (along with obtaining the value of the con-
stant c) can be verified by substituting it back into the differential equation, taking
care to check that the correct behavior is obtained when z − z′ → 0 or ±∞. First,
if we denote q = q1 + iq2 with q1 > 0 and q2 > 0, we have

exp(iq|z − z′|) = exp(iq1|z − z′|) exp(−q2|z − z′|),
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and this clearly tends to zero as z − z′ → ±∞. So the solution is bounded at these
points, as required physically. Next, when z �= z′ we can write

u =
{

u+ = c exp(iq[z − z′]), z > z′

u− = c exp(−iq[z − z′]), z < z′.
(6.47)

It is easily verified that u+ and u− satisfy the differential equation in their respective
regions. Finally, we examine the behavior as z − z′ → 0. Clearly, there is no
discontinuity between u+ and u−, but there is a slope discontinuity of 2iqc because

d

dz
u± = ±iqu± → ±iqc as |z − z′| → 0.

Another expression for the slope discontinuity is obtained by integrating the differ-
ential equation with respect to z over an infinitesimal range from z′ − δ to z′ + δ

(where δ → 0), giving∫ z′+δ

z′−δ

(
d2u

dz2
+ q2u

)
dz = − f0

ρv2
LA

∫ z′+δ

z′−δ

δ(z − z′)dz.

This yields (
du

dz

)
z′+δ

−
(

du

dz

)
z′−δ

= − f0

ρv2
LA

= 2iqc.

Hence we conclude for the constant that c = if0/(2ρv2
LqA) and the particular

integral is

u(z) = if0

2ρv2
LqA

exp
(
iq
∣∣z − z′∣∣) . (6.48)

Finally, applying Equation (6.22) gives the result for the GF as

G(u(z);u(z′) | ω) = − i

4πρv2
LqA

exp(iq|z − z′|). (6.49)

This result illustrates the expected spatial dependence, i.e., it depends on the co-
ordinates only through the separation |z − z′|, due to translational invariance. The
result looks more familiar, however, when it is reexpressed in terms of the wave-
vector representation, as follows. If k is the wavenumber in the z direction, then we
need

G(k,ω) =
∫ ∞

−∞
e−ik(z−z′)G(u(z);u(z′) | ω)d(z − z′).
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Denoting ζ = z − z′, the integral can be written as

G(k,ω) = − i

4πρv2
LqA

∫ ∞

−∞
e−ikζ eiq|ζ |dζ

= − i

4πρv2
LqA

{∫ ∞

0
e−ikζ eiqζ dζ +

∫ 0

−∞
e−ikζ e−iqζ dζ

}
.

The remaining integrals can easily be done, and the final result is

G(k,ω) = 1

4πA(ω2 + iω� − v2
Lk2)

, (6.50)

where q has been rewritten in terms of ω, assuming the damping to be small. Note
that in the zero-damping limit this has poles at ω = ±vLk, as expected because vLk

is the angular frequency of the acoustic phonon with wavenumber k.

6.6 Application to the Kubo Formalism

In the present section, we apply the linear response approach to derive a Kubo
formula for transport-related phenomena such as the electrical conductivity, thereby
providing a connection with correlation functions (and hence GFs). This method
represents an alternative to the Boltzmann equation approach in which the concept
of a collision time plays an important role (see textbooks on statistical physics,
such as [4, 56, 96, 97]). This treatment of electrical conductivity is followed by
analogous applications of Kubo-like formulas to the magnetic susceptibility and
dielectric response function (see, e.g., [87, 100]).

6.6.1 The Electrical Conductivity

Here we assume a system of electrons (with charges −e) at instantaneous positions
denoted by rn, where n = 1,2, . . . ,N . A uniform electric field E is applied, which
causes a flow of the charges giving us a current. We will show how to calculate
the electrical conductivity for the system, as an example of how this can be done
for transport properties more generally by using the linear response formalism of
Section 6.2.

We note that the perturbation Hamiltonian in this case is

H1 = e
∑

n

rn · E. (6.51)

Now we employ Equation (6.13), choosing the operator A for this application to
be a component of the current density, denoted as Jμ where μ is a Cartesian
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component. There is no net current flow in the absence of the perturbation, meaning
〈J μ〉0 = 0, and so

〈Jμ〉 = −i

∫ t

−∞
Tr
{
eiH0(t

′−t)[H1,ρ0]e−iH0(t
′−t)J μ

}
dt ′

= −i

∫ t

−∞
Tr
{

[H1,ρ0]eiH0(t−t ′)J μe−iH0(t−t ′)
}

dt ′, (6.52)

where a cyclic permutation of the operators under the trace has been made to obtain
the second line of the equation. Then using the definition as in Equation (6.14) we
may write

〈Jμ〉 = −i

∫ t

−∞
Tr
{
[H1,ρ0]Jμ(t − t ′)

}
dt ′

= −i

∫ ∞

0
Tr

{[
e
∑
n,ν

rν
nEν,ρ0

]
Jμ(ξ)

}
dξ . (6.53)

In the last line we have denoted ξ = t − t ′ and substituted for H1 using Equa-
tion (6.51). Also ν denotes a Cartesian component. Because the components σμν of
the conductivity tensor are defined by

〈Jμ〉 =
∑

ν

σμνE
ν, (6.54)

we obtain a formal expression for the electrical conductivity as

σμν = −i

∫ ∞

0
Tr

{[
e
∑

n

rν
n,ρ0

]
Jμ(ξ)

}
dξ .

Noting now that for the unperturbed system of electrons we have the density matrix
ρ0 = Q−1

0 e−βH0 with Q0 = Tr(e−βH0), the preceding result becomes

σμν = − i

Q0

∫ ∞

0
Tr

{[
e
∑

n

rν
n,e

−βH0

]
Jμ(ξ)

}
dξ . (6.55)

The preceding form of the expression for the conductivity is not very practical
because it depends on the instantaneous positions of all the charges and there is no
obvious way to evaluate the trace. It turns out to be convenient to use the following
identity, which holds for any QM operator A:

[A,e−βH0 ] = −ie−βH0

∫ β

0
eλH0

dA

dt
e−λH0dλ. (6.56)
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For the proof we start by considering the quantity eβH0 [A,e−βH0 ] and we formally
differentiate this expression with respect to β, giving

d

dβ

{
eβH0 [A,e−βH0 ]

} = d

dβ

{
eβH0Ae−βH0 − A

}
= eβH0H0Ae−βH0 − eβH0AH0e

−βH0

= eβH0 [H0,A]e−βH0 = −ieβH0
dA

dt
e−βH0 .

In the last step, we have used the operator equation of motion with respect to the
unperturbed system. On integrating both sides with respect to β we find

eβH0 [A,e−βH0 ] = −i

∫ β

0
eλH0

dA

dt
e−λH0dλ.

This can now be rearranged to give the required result in Equation (6.56).
Next we use this identity with the choice of the operator A being taken as

A = e
∑

n

rν
n,

which brings in another current operator through

dA

dt
= e

∑
n

drν
n

dt
= −J ν .

Then, using this result in Equation (6.56) leads us to[
e
∑

n

rν
n,e

−βH0

]
= −ie−βH0

∫ β

0
eλH0J νe−λH0dλ

= −ie−βH0

∫ β

0
J ν(−iλ) dλ,

where we use the operator definition that J ν(t) = eiH0t J νe−iH0t , as before, but
with a complex time label corresponding to t = −iλ in this case.

On substituting the preceding result into Equation (6.55), we find that

σμν = 1

Q0

∫ ∞

0
dξ

∫ β

0
dλTr

{
e−βH0J ν(−iλ)J μ(ξ)

}
,

which is just equivalent to

σμν =
∫ ∞

0
dξ

∫ β

0
dλ〈J ν(−iλ)J μ(ξ)〉0. (6.57)

This is known as the Kubo formula for the electrical conductivity [99]. It relates a
matrix element of the conductivity to a current-current correlation function, which
is to be evaluated for the equilibrium system. Our result shows that it is necessary
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only to calculate a GF of the type G(Jμ;J ν | ω) from which the correlation function
may be deduced by using the fluctuation-dissipation theorem. The final step would
involve substituting the correlation function into Equation (6.57) and carrying out
the integrations.

6.6.2 Other Kubo Formulas

Here we discuss two other applications more briefly by considering how Kubo-
type formulas may be obtained for the magnetic susceptibility and for the dielectric
response function.

The Magnetic Susceptibility

In this case, we consider a material subjected to a magnetic field and examine the
linear response of the system to the field. We assume that the time-varying magnetic
field is spatially homogeneous. The perturbation Hamiltonian for this situation is
simply the Zeeman energy

H1 = −m · B(t) = −
∑

ν

gμBBν(t)
∑

n

Sν
n, (6.58)

where ν is a Cartesian component, m is the total magnetic moment of the sample,
and Sn is the spin at any magnetic site n. The magnetization M (or magnetic
moment per unit volume) is defined by

M = 1

V
〈m〉 = gμB

V

∑
n

〈Sn〉. (6.59)

Now we employ Equation (6.17), choosing the operator A for this application to be
any component Mμ of the magnetization M, so that at time t we have

�Mμ(t) ≡ {Mμ(t) − Mμ(0)} = gμB

V

∑
n

{〈Sμ
n (t)〉 − 〈Sμ

n (0)〉}

= −(gμB)2

V

∑
n,m,ν

∫ ∞

−∞
dt ′Bν(t ′) g(Sμ

n ;Sν
m | t − t ′). (6.60)

We note that at least one of the equilibrium components (at t = 0) of the magne-
tization will be nonvanishing in a ferromagnetic material. The preceding equation
can be used to define the magnetic susceptibility tensor:

χμν
n,m(t,t ′) = −μ0

V
(gμB)2g(Sμ

n ;Sν
m | t − t ′), (6.61)

where μ0 denotes the vacuum permeability. The preceding result, which is an ana-
logue of the Kubo formula applied to the magnetic susceptibility, shows that it
is sufficient to calculate a retarded GF of the type g(Sμ

n ;Sν
m | t − t ′) to study the

magnetic response of the system.
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Inserting Equation (6.61) into Equation (6.60) leads to

�Mμ(t) = 1

μ0

∑
n,m

∑
ν

∫ ∞

−∞
dt ′χμν

n,m(t − t ′)Bν(t ′).

Alternatively, in terms of frequency Fourier transforms on the right-hand side, we
have

�Mμ(t) = 1

μ0

∑
n,m

∑
ν

∫ ∞

−∞
dω e−iωtχμν

n,m(ω)Bν(ω).

Two particular forms of the magnetic susceptibility are usually of interest. If
z denotes the direction of net magnetization, the longitudinal susceptibility is
defined as

χzz
n,m(ω) = −μ0

V
(gμB)2G(Sz

n;Sz
m | ω), (6.62)

and the transverse susceptibility takes the form

χ+−
n,m(ω) = −μ0

V
(gμB)2G(S+

n ;S−
m | ω). (6.63)

The latter expression enters into the FMR response of the system, and we recall that
this form of GF gives the SW frequencies (see Section 5.2).

The Dielectric Response Function of an Electron Gas

As another example, we now obtain the dielectric function ε(q,ω) by studying the
response function for an electron gas to an external charge density ρext (r,t). A
Fourier transform of the external charge density that will take us from position
labels to wave-vector labels is defined by

ρext (r,t) =
∫ ∞

−∞
dωρext (ω)e−iωt . (6.64)

The interaction between the electrons and ρext (r,t) is given by the Hamiltonian

H1(t) =
∫ ∞

−∞
d3r

∫ ∞

−∞
d3r ′ρ(r)w(|r − r′|)ρext (r′,t), (6.65)

where ρ(r) is the charge density of the conduction electrons and w(|r − r′|) is the
electron–electron interaction as in Section 1.4.

Next we reexpress the preceding result in terms of wave vectors. A Fourier
transform of ρ(r) is defined by

ρ(r) = 1

V

∑
q

ρqe
iq·r. (6.66)
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Here we are assuming that the electrons occupying a volume V may all interact
with one another. Therefore, Equation (6.64) becomes

ρext (r,t) = 1

V

∫ ∞

−∞
dω
∑

q

ρext
q (ω)eiq·re−iωt . (6.67)

We will adopt a Coulomb interaction between charges, so w(|r − r′|) is taken to be
as in Equation (1.65) in the absence of screening (λ → 0) for simplicity. Then its
Fourier components v(q) are given by Equation (1.66). After some straightforward
algebraic manipulation the interaction Hamiltonian H1 takes the form

H1(t) =
∫ ∞

−∞
dω e−iωt

∑
q

v(q)ρ−qρ
ext
q (ω). (6.68)

We remark that in the presence of the perturbation we will have a nonzero
induced charge ρin, for which the expectation value can be calculated by linear
response theory. The total charge density produced in the electron gas is given by

ρtot (r,t) = ρext (r,t) + ρin(r,t). (6.69)

At this stage, we introduce the frequency-dependent dielectric response function
ε(q,ω) from electromagnetism by

ρtot
q (ω) = ρext

q (ω)

ε(q,ω)
, (6.70)

where ρtot
q (ω) is the Fourier transform of ρtot (r,t). From the preceding equations

we obtain the induced charge density as

ρin
q (ω) =

(
1

ε(q,ω)
− 1

)
ρtot

q (ω). (6.71)

So far the treatment has been classical, but now we will make use of second
quantization by replacing the electron density term ρ−q in Equation (6.68). Specif-
ically, using Equations (2.77) and (2.88), it is clear that the property ρ†

q = ρ−q is
satisfied. Therefore, H1 becomes

H1 =
∑

q

ρ†
q f (t,q), (6.72)

where the time-dependent, scalar perturbing term f (t,q) is given by

f (t,q) = v(q)

∫ ∞

−∞
dω e−iωtρext

q (ω).

We may next examine how the induced charge density ρin responds to this per-
turbation. For this purpose we will find 〈ρin(r,t)〉 in accordance with the previous
linear response theory by writing
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〈ρin(r,t)〉 = (〈ρq(t)〉 − 〈ρq(0)〉)
= −

∫ ∞

−∞
dt ′f (t ′,q) g(ρq;ρ†

q | t − t ′).

In the last line we have used Equation (6.17) and the overall translational symmetry.
After Fourier transforming the preceding equation we obtain

〈ρin
q (ω)〉 = −v(q)ρext

q (ω)G(ρq;ρ†
q | ω). (6.73)

The dielectric function is now found in terms of a retarded GF because it follows
from Equation (6.71) that

1

ε(q,ω)
= 1 − v(q)G(ρq;ρ†

q | ω). (6.74)

This result is a Kubo formula analogous to the expression (6.57) for the electrical
conductivity response. To help understand the preceding result we may examine
two limiting cases. First, if ε(q,ω) is very large, Equations (6.73) and (6.74) give
the result that 〈ρin〉 = −ρext . This means that the induced charges in the electron
gas produce a complete screening of the perturbation charges. Second, in the limit
of ε(q,ω) → 0, we must have a singular behavior for the GF. It can then be seen
that the poles of the GF correspond to the plasmon frequencies, as considered in
Problem 5.11 (see also Section 9.2).

6.7 Inelastic Light Scattering

Here a brief discussion will be presented for the dynamics of the inelastic scatter-
ing of light, which technically may be either Raman scattering (RS) or Brillouin
light scattering (BLS) depending on details of the experimental technique. The
theoretical formalism is essentially the same in either case. In these processes
the incoming light (or photon) is scattered out from the sample with a changed
frequency and wave vector, due to the interactions that have taken place within the
sample. These interactions may involve scattering by the crystal excitations, for
example, by phonons due to the thermal disorder in the crystal lattice, or by SWs
due to fluctuations in the magnetization, as in Figure 6.2. Some general references
on inelastic light scattering are [76, 101].

The interaction of the EM field (light) with the system may be expressed in a
general form through the perturbing Hamiltonian

H1 =
∑
μ,ν

∑
r

E
μ

1 χμν(r)Eν
2 .

Here χμν(r) may be interpreted as a component of the polarisability (or electric
susceptibility) tensor at position r with μ and ν denoting Cartesian coordinates.
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Figure 6.2 Schematic of the inelastic scattering of light, showing the incident light
with angular frequency ω1 and wave vector k1 together with a component of the
scattered light specified by ω2 and wave vector k2.

The vectors E1 and E2 refer to the incident and scattered electric fields, respectively
(assumed to be independent of position inside the sample).

We assume that in the scattering process the system undergoes a transition from
a state |α〉 with energy Wα to another state |α′〉 with energy Wα′ . From Fermi’s
golden rule the transition probability per unit time is proportional to

|〈k1,α|H1|k2,α
′〉|2δ(ω1 + Wα − ω2 − Wα′).

To arrive at the differential cross section d2σ/d�dω2 for the light scattered into an
elementary solid angle d� with frequency between ω2 and ω2 + dω2, we have to
divide the above expression by the incident light flux (proportional to |E1|2), then
sum over all final states of the system, and finally average over all initial states of
the system (assuming a probability distribution that we denote by Pα). All these
steps combine to give

d2σ

d�dω2
∝
∑
α,α′

Pα

∣∣〈k1,α|H1

∣∣k2,α
′〉∣∣2

|E1|2 |E2|2
δ(ω + Wα − Wα′),

where ω = ω1 − ω2 is the frequency shift of the light. The extra division by |E2|2
is just for convenience later, and also it symmetrizes the preceding expression.

On substituting for the interaction term H1 in the matrix element of states, we
have

〈k1,α|H1|k2,α
′〉 =

∑
μ,ν

E
μ

1 Eν
2

∑
r

〈k1,α|χμν(r)|k2,α
′〉

=
∑
μ,ν

E
μ

1 Eν
2

1

N

∑
r

〈α|χμν(r)ei(k1−k2)·r|α′〉

=
∑
μ,ν

E
μ

1 Eν
2 〈α|χμν(k1 − k2)|α′〉,

where plane-wave representations for the photon states |k1〉 and |k2〉 have been
employed by writing, for example,
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|k1〉 = 1√
N

e−ik1·r, |k2〉 = 1√
N

e−ik2·r,

where N is the number of atoms in the scattering volume. Also we have introduced
a wave-vector Fourier transform for the polarisability by

χμν (q) = 1

N

∑
r

χμν (r) eiq·r.

We may now express the differential cross section for light scattering as

d2σ

d�dω2
∝
∑

μ,ν,γ,δ

E
μ

1 Eν
2E

γ

1 Eδ
2

|E1|2|E2|2 Iscatt,

where we define the factor Iscatt for the scattered intensity by

Iscatt =
∑
α,α′

Pα〈α|χμν(k1 − k2)|α′〉〈α′|{χγδ(k1 − k2)}∗|α〉 δ(ω + Wα − Wα′).

The preceding expression can be rewritten by using the delta function representa-
tion

δ(ω + Wα − Wα′) = 1

2π

∫ ∞

−∞
dt ei(ω+Wα−Wα′ )t .

From this result, and employing the notation k = k1 − k2 for the change in wave
vector, we have

Iscatt = 1

2π

∫ ∞

−∞
dt eiωt

∑
α,α′

Pαe
i(Wα−Wα′ )t〈α|χμν(k)|α′〉〈α′|{χγδ(k)}∗|α〉

= 1

2π

∫ ∞

−∞
dt eiωt

∑
α,α′

Pα〈α|eiHtχμν(k)e−iHt |α′〉〈α′|{χγδ(k)}∗|α〉,

where H = H − μN is the Hamiltonian of the system.
On defining, as previously, A(t) = eiHtAe−iHt for any operator A, we now

have

Iscatt = 1

2π

∫ ∞

−∞
dt eiωt

∑
α,α′

Pα〈α|χμν(k,t)|α′〉〈α′|{χγδ(k,0)}∗|α〉.

Next we may make use of the completeness property for the states that∑
α′

|α′〉〈α′| = 1,
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which leads to

Iscatt = 1

2π

∫ ∞

−∞
dt eiωt

∑
α

Pα〈α|χμν(k,t){χγδ(k,0)}∗|α〉

= 1

2π

∫ ∞

−∞
dt eiωt〈χμν(k,t){χγδ(k,0)}∗〉. (6.75)

Putting together all the preceding steps, our final result for the light scattering
cross-section can be expressed as

d2σ

d�dω2
= F

∑
μ,ν,γ,δ

ê
μ

1 ê ν
2 ê

γ

1 ê δ
2

∫ ∞

−∞
dt eiωt〈χμν(k,t)χγ δ(k,0)}∗〉, (6.76)

where ê1 and ê2 are the unit vectors in the direction the incident and scattered
electric fields, E1 and E2, respectively. The proportionality factor has been denoted
by F on the right-hand side of Equation (6.76), and according to [76, 101] it is
given by

F = ω1ω
3
2n2V̄

16π2c4n1
, (6.77)

where n1 and n2 are the values of the refractive index at the incident and scattered
light frequencies respectively, and V̄ is the scattering volume within the sample.

The usual approach to be followed for evaluating the time-correlation function
〈χμν(k,t)χγ δ(k,0)∗〉, which appears in the integrand of Equation (6.76), is to cal-
culate the corresponding GF of the form G(χμν(k);χγδ(k)∗ | ω) and then use the
fluctuation-dissipation theorem. The light-scattering mechanism varies according
to the type of excitation that may be involved. Typically, one may expand χμν as a
power series in terms of the generalized coordinate (or the normal-mode variable)
Qj at any site j for the excitation, giving

χμν = χ
μν

0 +
∑

j

χ
μνλ

1 Qλ
j +
∑
j,j ′

χ
μνλλ′
2 Qλ

jQ
λ′
j ′ + · · · . (6.78)

Here the χ coefficients on the right-hand side represent optical coupling parameters.
In the case of light scattering from phonons, for example Qj may be a component
of the strain, which is just a spatial derivative of the lattice displacement uj at
site j (see, e.g., [56, 101]). To take a specific physical situation, we calculated in
Section 6.5 the GF G(u(z);u(z′) | ω) for an infinite elastic medium, considering for
simplicity atomic displacements u(z) in the z direction only, i.e., it is the case of a
longitudinal elastic wave travelling in the z direction. The component of the strain
in this case is uzz = duz/dz, and hence the corresponding strain-strain GF can be
found from the result in Equation (6.49) by using
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G(uzz(z);uzz(z′) | ω) = ∂

∂z

∂

∂z′ G(u(z);u(z′) | ω). (6.79)

From this and Equation (6.49) we may easily obtain

G(uzz(z);uzz(z′) | ω) = − iq

4πρv2
LA

exp(iq|z − z′|). (6.80)

The simplest (lowest-order) GF terms contributing to the light-scattering response
are usually those having the form

G(Qj ;Q∗
j ′ | ω).

In this case, it follows that it is Equation (6.80), multiplied by the appropriate
elasto-optic coupling coefficients for the strength of the light scattering [101],
that should be used together with Equation (6.76). The resulting description is
for light-scattering processes involving the creation or annihilation of a single
excitation (one phonon, in this case). The higher-order terms in the expansion in
Equation (6.78) correspond to scattering processes that involve several excitations
simultaneously.

As a final comment in this section, we note that the cross-section for scattering
of particles (such as neutrons or electrons) can be expressed in terms of correlation
functions, and hence GFs, by following a very similar procedure to the case of
inelastic light scattering described here (e.g., see [102]).

Problems

6.1. By making the substitutions into Equation (6.20) as outlined in Section 6.3,
verify that the linear response result quoted in Equation (6.21) is obtained.

6.2. With the interaction Hamiltonian taking the form in Equation (6.16) and
using Equation (6.31), show that the average energy dissipation per unit time
due to the force specified by Equation (6.30) is as quoted in Equation (6.33).

6.3. Use Equation (6.56) to show that the retarded commutator GF involving any
two operators A and B can be expressed as

g(A;B | t − t ′) = −θ(t − t ′)
∫ β

0
dλ
〈
eλH0(dB/dt ′) e−λH0A(t)

〉
.

6.4. Consider a particle of mass m moving along a fixed direction with velocity v

in a viscous fluid. The equation of motion is

dv

dt
+ �

m
v = 1

m
f (t),
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where � is a damping coefficient and f (t) is the driving force. If the driving
force is a delta function f (t) = δ(t), show that the GF (or the impulse
response function) can be expressed as g(t) = −(1/m)e−t/τ with τ = m/�.

Suppose now we have a harmonic driving force with f (t) = f0(ω)e−iωt .
By using Equation (6.17) to find the expectation value of 〈v(t)〉 (or other-
wise), deduce that the response produced in the velocity is also harmonic with
the form v0(ω)e−iωt . Hence show that the generalized susceptibility χ(ω) for
the system is proportional to

τ

m

(
1 + iωτ

1 + ω2τ 2

)
.

Sketch the real and imaginary parts of χ(ω) as a function of ω.
6.5. Consider a driven harmonic oscillator corresponding to a particle of mass

m and angular frequency ω0 for free oscillations. Assume that the external
coupling term has the form −xf (t). Find an expression for the response
function of the average displacement and obtain the susceptibility function.

6.6. Suppose a uniform electric field E is applied at time t = 0 to the electrons
in a metal causing them to accelerate at a rate dv/dt = eE/m, with e and m

being the charge and the mass of the electrons, respectively. Show that, after
a small time interval δt , the electron flow (assumed to be in 1D) corresponds
to a current density J = ne2Eδt/m, where n is the electron density.
Suppose the impulsive application of the electric field is now over and the
amplitude of the current drops off as e−t/τ . Find the conductivity σ = J/E

of this system.
6.7. Consider the Brownian (random) motion of a particle with mass m and veloc-

ity v(t) at time t when it is immersed in a fluid with viscosity �. For sim-
plicity, consider the motion in 1D only and assume that the total force on the
particle is dominated by a frictional force proportional to the velocity. Find
the susceptibility function for the Brownian particle.

6.8. Suppose the susceptibility function for the motion (in 1D) of a particle of
mass m immersed in a fluid is given by χ(ω) = (� − imω)−1, where � is
a friction term. Verify that the Kramers–Kronig relations (3.36) are satisfied
for this susceptibility.

6.9. In a macroscopic theory the semiclassical torque equation of motion for the
magnetization in a ferromagnet is

dM/dt = γ (M × B),

where M and B denote the total effective magnetization and magnetic field,
respectively, and γ is the gyromagnetic ratio. In the dipole-dipole limit where
exchange can be neglected, we can write both of these fields in terms of
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a static part and a fluctuating part (with angular frequency ω in the form
M = M0 îz + m(r) exp(−iωt) and B = B0 îz + μ0h(r) exp(−iωt). Here
M0 and B0 are the static components, both taken to be in the z direction of
magnetization (where îz denotes a unit vector). The fluctuating parts involve
small terms m(r) and h(r). Show that in the linear response approximation
the equation of motion implies the susceptibilty relationship⎛

⎝ mx

my

mz

⎞
⎠ =

⎛
⎝ χa iχb 0

−iχb χa 0
0 0 0

⎞
⎠
⎛
⎝ hx

hy

hz

⎞
⎠ ,

where χa = ωmω0/(ω
2
0 − ω2) and χb = ωmω/(ω2

0 − ω2). We have defined
the effective angular frequencies by ω0 = γB0 and ωm = γM0.

6.10. Typically, in magnetic resonance experiments (e.g., electron spin resonance
or nuclear magnetic resonance) a static external magnetic field B0 = B0 îz (in
the notation of the previous Problem 6.9) is applied to a paramagnetic system.
The static magnetization of the system has the magnitude M0 = χ0B0, with
χ0 denoting the static susceptibility of the system. A weak transverse oscillat-
ing pumping field corresponding to h(t) = hx(t)îx +hy(t)îy is also applied to
the sample. In this case, the system can be described by the following torque
equation of motion:

d

dt
Mα = γ (M × B(t))α − �α(Mα − M0

α),

where α = x,y,z are Cartesian components and B(t) = B0 + μ0h(t).
Damping is included through the coefficients �α, and M0

α is the equilib-
rium value of the magnetization. Assuming �z = 1/T1 and �x,y = 1/T2,
where T1,2 are relaxation times, find the responses of the various components
of the magnetization to the transverse field when Mz = M0. Deduce the
explicit form for Mx(t) when the transverse field is harmonic, taking h(t) =
h0 cos(ωpt)îx .
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Green’s Functions for Localized Excitations

In this chapter we present some further examples of Green’s function (GF) calcula-
tions, obtained either from the equation-of-motion approach or from linear response
theory. The emphasis here will be on the spatial localization aspects of the quasipar-
ticles or excitations. In general, localization of the excitations within a system may
occur due to some breaking of the translational symmetry that would otherwise
exist in an effectively infinite crystal lattice, where there are no boundary effects
to be considered explicitly. Mode localization can arise in various circumstances.
For example, there may be localization close to isolated impurities or defects in a
lattice, at the surfaces of a 3D material, at the lateral edges of a 2D material like
graphene, or at the interfaces between different layered materials.

Due to the symmetry breaking as produced in the previously mentioned exam-
ples, there may be modifications in the bulk modes or excitations (e.g., through
changes induced in their spectral intensities as a function of position) as well as the
occurrence of additional spatially decaying or modulated excitations in the vicinity
of impurities or near surfaces and interfaces. Some general references covering
these properties, typically with regard to the mode frequencies and/or amplitudes,
for several different kinds of excitations are [39, 103–108]. By contrast, the topics
in this chapter are directed more specifically toward applications of the GF and
linear response methods.

7.1 Acoustic Phonons at Surfaces

So far, we have discussed phonons in solids using both a lattice dynamics approach
(the infinite linear chain model) in Chapter 2 and a continuum theory of waves in
an elastic medium in Chapter 6. Specifically, in Section 6.5 we used linear response
theory to calculate GFs of the form G(u(z);u(z′) | ω) for the acoustic phonons in an
infinite elastic medium. We recall that u(z) denotes the longitudinal displacement

176
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for an elastic wave traveling in the z direction. Here we will introduce the effects
of a planar surface by considering a semi-infinite medium that fills the half space
z < 0, while the region with z > 0 is taken to be a vacuum.

Previously, in Section 6.5 we required a solution of the wave equation that was
bounded at infinity for both z → ±∞. Following the same approach here, it is
necessary only that the solution is bounded for z → −∞ inside the semi-infinite
medium, while additionally it satisfies a boundary condition at the surface (which
corresponds to the plane z = 0). The simplest elastic boundary condition is the
requirement for zero stress at the free surface, implying

du

dz
= 0 at z = 0. (7.1)

At this stage we may refer back to Equations (6.41)–(6.43), which still apply in the
present linear response calculation, provided the impulse point with coordinate z′

and the response point with coordinate z are both within the semi-infinite medium.
For the complementary function, which has the same general form as in Equa-
tion (6.45), it is necessary that the constant a = 0 for the solution to be bounded as
z → −∞. With the particular integral found as in Equation (6.48), it follows that
the complete solution for u(z) can be written as

u(z) = b exp(−iqz) + if0

2ρv2
LqA

exp(iq|z − z′|). (7.2)

Finally, we must apply the boundary condition at z = 0 stated in Equa-
tion (7.1) to determine the constant b. It is easily verified that this gives b =
if0/(2ρv2

LqA) exp(−iqz′). Hence the linear response result for the GF of the
semi-infinite medium is

G(u(z);u(z′) | ω) = − i

4πρv2
LqA

{
exp
(
iq|z − z′|)+ exp

(− iq(z + z′)
)}

. (7.3)

The dependence of the preceding GF on the distances −z and −z′ from the surface
is typical of what is found in many other cases for excitations in a semi-infinite
medium. In Equation (7.3) there are two terms, one involving |z − z′| and the other
−(z + z′). The former quantity represents the distance for direct propagation from
the impulse (source) point to the response point, whereas the second term involves
the path length for propagation involving a surface, as represented schematically in
Figure 7.1.

The preceding calculation of the GF for the semi-infinite medium can be straight-
forwardly generalized to the case of a finite-thickness film (see Problem 7.1). There
are now two surfaces, one at z = 0 and the other at z = −L, where L is the
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Figure 7.1 Schematic illustration of the dependence on z and z′ for the two
exponential terms of the GF in Equation (7.3), which applies for the acoustic
phonons in a semi-infinite elastic medium.

film thickness. The same mathematical steps may be followed, and it should not
be surprising that the GF result is similar to Equation (7.3) but with additional
exponential terms such as exp(iq(2L + z + z′)) representing a wave propagating
between the points with z and z′ involving the lower surface.

Apart from the displacement-displacement type of GF discussed in the preceding
text for the phonons, it is often of interest (e.g., for applications to inelastic light
scattering [101]) to study the strain-strain GFs such as G(uzz(z);uzz(z′) | ω).
As mentioned in Section 6.7, the longitudinal strain component is uzz(z) =
duz(z)/dz ≡ du(z)/dz because we are considering only longitudinal displace-
ments in the z direction for this example. The relatively simple connection
between the strain-strain GF and the displacement-displacement GF was given
by Equation (6.79). Hence, using Equation (7.3) it follows that in the semi-infinite
case we have

G(uzz(z);uzz(z′) | ω) = − iq

4πρv2
LA

{
exp
(
iq|z − z′|)− exp

(− iq(z + z′)
)}

.

(7.4)

Applications of the preceding result, by analogy with what was done for the
infinite elastic medium in Section 6.5, can be made to include surface effects in
inelastic light scattering (see [109]). Also it is a simple matter to deduce the spectra
of mean-square displacement 〈|u(z)|2〉ω or mean-square strain 〈|uzz(z)|2〉ω as a
function of distance −z from the surface by taking z′ = z in Equations (7.3)
or (7.4), respectively, and then applying the fluctuation-dissipation theorem as in
Equation (3.40). For example, in the case of the mean-square strain we find

〈|uzz(z)|2〉ω = {n(ω) + 1}
πρv2

LA
Im
[
iq{1 − exp(−2iqz)}] , (7.5)



7.2 Surface Spin Waves in Ferromagnets 179

0 3 6 9 12
|z|

0

0.5

1

1.5

m
ea

n-
sq

ua
re

 s
tr

ai
n

Figure 7.2 Schematic illustration of the dependence of the mean-square strain
〈|uzz(z)|2〉ω when plotted versus distance |z| from the surface of a semi-infinite
elastic medium, taking q2 = 0.2 q1. The mean-square strain is expressed here in
units of its value within an infinite crystal and |z| is in units of π/q1.

where n(ω) = (eβω − 1)−1 is the Bose–Einstein thermal population factor for a
phonon with frequency ω. If we denote q = q1 + iq2 with q1 > 0 and q2 > 0, as
before in Section 6.5, we have

〈|uzz(z)|2〉ω � {n(ω) + 1}
πρv2

LA
q1
{
1 − exp(2q2z) cos(2q1z)

}
, (7.6)

assuming weak damping (so that q2 � q1). This quantity is zero at the surface
(z = 0) and oscillates strongly as a function of |z| with wavelength π/q1 near
the surface. Further into the material, the oscillations decrease in amplitude, and
〈|uzz(z)|2〉ω tends to a constant value (the same value as found for an infinite crystal)
when |z| � 2π/q2. A numerical example to illustrate this behavior is given in
Figure 7.2.

7.2 Surface Spin Waves in Ferromagnets

In this next application we will investigate the spectrum of the SWs in a 3D
Heisenberg ferromagnet with a planar surface. The objectives will be to study how,
by using GFs, the bulk SWs are modified near a surface and also to show that
localized surface SWs may exist under certain conditions. Specifically, we consider
a b.c.c. ferromagnet such as Ni, and we take the case of a semi-infinite material with
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Figure 7.3 Schematic illustration of a semi-infinite b.c.c. Heisenberg ferromagnet
with a (100) oriented surface (shown shaded) in the yz plane. The layers of atoms
parallel to the surface are labeled with integer n (= 1,2,3, . . .) starting at the
surface.

a (100) oriented surface. We have already shown in Subsection 1.5.2 that the bulk
SW dispersion relation in an infinite Heisenberg ferromagnet at low temperatures
T � TC and in the absence of dipole-dipole interactions is given by Equa-
tions (1.93) and (1.94).

The assumed geometry for the semi-infinite ferromagnet is illustrated in
Figure 7.3, where we take all the spins to be aligned in the z direction parallel
to the surface, which lies in the yz plane. We show the spins at the vertices of a
cube (with sides equal to the lattice parameter a) in black and those at the body-
centered sites in gray. The scheme for labeling the atomic layers parallel to the
surface is indicated, and so the distance of layer n from the surface layer is given
by (n−1)a/2. Each spin in layer n is coupled by the exchange J to its eight nearest
neighbors in layers n − 1 or n + 1, with the exception of the spins in layer n = 1,
which are coupled only to their four nearest neighbors in layer 2.

We will employ the Holstein–Primakoff (HP) transformation from spin operators
to boson operators at low temperatures, as was done in Sections 1.5 and 2.6, so the
Hamiltonian H in the site representation is again given by Equation (1.81) where
the summations are now restricted to the sites in the semi-infinite ferromagnet.
We can Fourier transform to a “mixed” representation for the boson operators in
which there is a 2D wave vector k‖ = (ky,kz) parallel to the surface and a layer
number n perpendicular to the surface. Therefore, we choose to study GFs of the
form G(an(k‖);a†

n′(k‖) | ω), where the appropriate form of H in this representation
can be expressed (apart from a constant term) as

H =
∑

k‖

∑
n,n′

An,n′(k‖)a†
n(k‖)an′(k‖). (7.7)
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The summations here are over the layer indices n and n′, which range from 1 to ∞.
It can be straightforwardly shown for the b.c.c. geometry that (see Problem 7.3) the
only nonzero terms in the array An,n′(k‖) are

A1,1(k‖) = gμBB0 + 4SJ,

An,n(k‖) = gμBB0 + 8SJ , (n > 1),

An,n+1(k‖) = An+1,n(k‖) = −4SJγ (k‖) , (n ≥ 1), (7.8)

where we have introduced the 2D structure factor defined by γ (k‖) =
cos
(

1
2kya

)
cos
(

1
2kza

)
. All the other An,n′(k‖) terms are zero because the exchange

couples only the nearest-neighbor sites. It follows that when we construct the GF
equations of motion for Gn,n′ ≡ G(an(k‖);a†

n′(k‖) | ω), keeping n′ to be fixed, we
obtain the coupled equations

(ω − gμBB0 − 4SJ )G1,n′ − 4SJγ (k‖)G2,n′ = δ1,n′/2π , (n = 1),

(ω − gμBB0 − 8SJ )Gn,n′ − 4SJγ (k‖)
{
Gn−1,n′ + Gn+1,n′

}
= δn,n′/2π , (n > 1). (7.9)

The equation for n = 1 is different from the others because there are fewer nearest
neighbors for a spin in the surface layer.

Next we may divide throughout by a factor 4SJγ (k‖) to rewrite the set of cou-
pled equations (7.9) in a matrix form as

M Gn′ = bn′, (7.10)

Here the matrix elements of the column matrix Gn′ are the required GFs for a fixed
value of n′, and M is a matrix having the form

M =

⎛
⎜⎜⎜⎜⎜⎝

d + � −1 0 0 · · ·
−1 d −1 0 · · ·
0 −1 d −1 · · ·
0 0 −1 d · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠ . (7.11)

The quantity d is related to the excitation frequency ω by

d = gμBB0 + 8SJ − ω

4SJγ (k‖)
, (7.12)

whereas � depends only on the wave vector through

� = − 1

γ (k‖)
. (7.13)

Finally, the inhomogeneous term bn′ in Equation (7.10) is a column matrix with
matrix elements defined by
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(bn′)n = δn,n′/[8πSJγ (k‖)]. (7.14)

The formal solution for the GFs from Equation (7.10) is given by Gn′ = M−1bn′ ,
so it becomes necessary to find the inverse of the matrix M. Fortunately, this is
relatively straightforward because M has a special form known as a tridiagonal
matrix (or TDM), i.e., its only nonzero matrix elements are on the leading diagonal
and on the two diagonals on either side. In addition, the matrix elements are the
same along the leading diagonal, except at the top left-hand corner. With this in
mind, it is convenient to separate M into two parts as M0 + D, where

M0 =

⎛
⎜⎜⎜⎝

d −1 0 · · ·
−1 d −1 · · ·
0 −1 d · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎠ , D =

⎛
⎜⎜⎜⎝

� 0 0 · · ·
0 0 0 · · ·
0 0 0 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎠ . (7.15)

Unperturbed TDMs having the same form as M0 are frequently encountered
in surface and interface problems when the interactions are short range, such as
between nearest neighbors only (see, e.g., [110, 111]). In fact, we shall come across
another example involving graphene nanoribbons (GNRs) later in this chapter.

It is known from linear algebra that the inverse of the unperturbed matrix M0 can
be written as

(M−1
0 )i,j = xi+j − x |i−j |

x − x−1
, (7.16)

where x is a variable (which may be complex in general) defined by

x + x−1 = d (7.17)

and |x| ≤ 1. In the present case d is related to the frequency ω by Equation (7.12).
Although it is no straightforward matter to prove Equation (7.16) from first princi-
ples (see [112] for a derivation), it may readily be checked by matrix multiplication
that the right-hand side of Equation (7.16) is indeed the inverse. We refer to Prob-
lem 7.4 for more details.

Given the preceding result for the inverse of M0, the inverse of M can next be
deduced by using

M−1 = (M0 + D)−1 = (I + M−1
0 D)−1M−1

0 , (7.18)

where I is the unit matrix. It is then a simple algebraic exercise to evaluate the terms
on the right-hand side of the preceding equation by using the result quoted for M−1

0

together with the fact that D is a sparse matrix, which has only one nonzero matrix
element. In this way it can be verified that
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(M−1)i,j = 1

x − x−1

[
xi+j

(
1 + x−1�

1 + x�

)
− x |i−j |

]
. (7.19)

From the formal properties of the matrix M as described in Equations (7.15)–(7.19),
it becomes a matter of simple algebra to obtain the solutions for the GFs in this case.
The results are

G(an(k‖);a†
n′(k‖) | ω) = 1

8πSJγ (k‖)(x − x−1)

[
xn+n′

(
1 + x−1�

1 + x�

)
− x |n−n′|

]
.

(7.20)

We turn now to the physical interpretation of these rather formal expressions
for the GFs. First, each GF involves numerator factors of x to an integer power.
If the parameter x behaves like a propagating phase factor (i.e., if x = eiθ with
θ being real), we have a description of bulk SW modes. This can be seen, in fact,
by putting x = exp(i 1

2kxa). Then, using Equations (7.12) and (7.17), we find that
d = 2 cos( 1

2kxa) and the solution for the mode frequency is ω = ωB(kx,k‖). In this
context kx represents the third wave-vector component and

ωB(kx,k‖) = gμBB0 + 8SJ

[
1 − cos(

1

2
kxa)γ (k‖)

]
. (7.21)

Comparison with Equations (1.93) and (1.94) shows that the preceding result is
just equivalent, as expected, to the SW dispersion relation found previously for an
infinite b.c.c. ferromagnet. More significantly, another excitation frequency may be
found from the factor (1 + x�) appearing in the denominator of Equation (7.20)
for the GF. The pole corresponds to x = −1/� = γ (k‖), which satisfies the
requirement |x| < 1 for a localized (spatially decaying) mode, except when k‖ = 0.
The frequency for the surface SW is found using Equations (7.12) and (7.17) to be
ω = ωS(k‖), where

ωS(k‖) = gμBB0 + 4SJ
[
1 − γ 2(k‖)

]
. (7.22)

It can be verified that there are no further poles in the GF Equation (7.20)
that give rise to SW excitations. In particular, the denominator factor (x − x−1)

yields only frequencies that are already included in the bulk SW band. The disper-
sion relations represented by Equations (7.21) and (7.22) for a semi-infinite b.c.c.
ferromagnet are illustrated in Figure 7.4. In this plot of the scaled SW frequency
against the 2D in-plane wave vector |k‖|, we have a surface SW branch that splits
off from a band (shown shaded) representing the bulk SWs at different ky values.
This bulk band has lower and upper boundaries corresponding to kx = 0 and π/a,
respectively.
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Figure 7.4 Example of SW dispersion relations in a semi-infinite b.c.c. ferromag-
net with a (100) surface. The band of bulk SW modes (shaded) and a surface SW
branch (split off below the bulk continuum) are shown plotted against the scaled
ky component of the in-plane wave vector (taking the other component kz = 0 for
simplicity). The Brillouin zone boundary is at ky = π/a. We denote b = gμBB0.

7.3 Edge Modes in Graphene Nanoribbons

The lattice structure for a 2D sheet of graphene in the xy plane was depicted in
Figure 2.6, showing the two types of sublattice sites labeled as A and B. If the sheet
is terminated to form an edge, there are two high-symmetry directions, described
as zig-zag (ZZ) and armchair (AC), in which this may occur. Thus, for example, in
Figure 2.6 the vertical sides of the segment of the lattice shown are ZZ edges, while
the horizontal parts at the top and bottom are AC edges. For an infinitely extended
graphene sheet the bulklike electronic bands were calculated in Section 2.7 using
the operator equations of motion, and a generalization of this result to obtain the
GFs was given in Section 4.2.

Now we turn our attention to the localized modes that may exist near an edge
in a finite graphene sheet. Specifically, we will consider a nanoribbon with parallel
ZZ edges as shown in Figure 7.5. The case of AC edges could also be studied
in a similar way, but it turns out to be less interesting. For our chosen geome-
try the nanoribbon is assumed to be infinite in the y direction, so the lattice has
translational symmetry in this direction, allowing a Fourier transform from site
labels to a 1D wave vector ky to be made. In the x direction, however, there is
no translational symmetry, and we introduce a labeling of the rows according to
an integer n (= 1,2,3, . . . ,N), where N is the (even) total number of rows. Also,
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Figure 7.5 Geometry of a graphene nanoribbon with zig-zag (ZZ) longitudinal
edges. The nanoribbon is infinitely long in the y direction, and the rows are labeled
with an integer n across the width (in the x direction). In this example there are
N = 8 rows.

we now have the possibility that the nearest-neighbor hopping energy (which was
denoted as t in the interior or bulk case) can have a modified value denoted by
te for nearest neighbors at either edge of the nanoribbon. With these changes we
seek to modify the GF equation-of-motion approach used for the infinite sheet in
Section 4.2 to apply to the nanoribbon geometry. Instead of having a 2D wave-
vector Fourier transform from site labels as previously for a graphene sheet, there
is now just the 1D wave vector ky along the y direction and the row number n

instead of the x coordinate. It can be seen from Figure 7.5 that the odd or even n

values correspond to all sites being either on the A or B sublattice, respectively.
For simplicity, we discuss here the case in which N is sufficiently large that only

one edge needs to be considered (i.e., the case of a semi-infinite nanoribbon). An
extension of the calculation to the case of finite-width nanoribbons can be found in
[113]. It is convenient for the fermion operators of this system to denote

cn(ky) =
{

an(ky) if n is odd
bn(ky) if n is even

, (7.23)

enabling us to reexpress the tight-binding Hamiltonian in Equation (2.71) in a form
that is convenient for a nanoribbon as

H = −1

2

∑
ky,n,n′

[
τn,n′(ky)c

†
n(ky)cn′(ky) + τn,n′(−ky)cn(ky)c

†
n′(ky)

]
, (7.24)
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where the factor of 1
2 is introduced to avoid double counting. The transformed

hopping factor τn,n′(ky) satisfies τ1,2(qy) = τ2,1(qy) = teβ(ky) near the ZZ edge,
whereas when n > 1 and n′ > 1 we have

τn,n′(ky) = t
[
β(ky)δn,n′∓1 + δn,n′±1

]
. (7.25)

The upper (lower) signs refer to the cases of n odd (even), and we have defined the
structure factor

β(ky) = 2 cos

(√
3

2
kya0

)
. (7.26)

The electronic excitations can be investigated by using the GF equation-of-
motion method, generalizing what was done for the infinite-sheet GFs of graphene
in Section 4.2. From Equations (3.66) and (7.24) we deduce (with no need for any
decoupling approximation) that

ωG(cn(ky);c†
n′(ky) | ω) = 1

2π
δn,n′ −

∑
m

τn,m(ky)G(cm(ky);c†
n′(ky) | ω). (7.27)

Choosing now Gn,n′ as a convenient shorthand for G(cn(ky);c†
n′(ky) | ω) and taking

a fixed value of n′, the first few of the preceding coupled equations (starting from
the edge at n = 1) are given explicitly by

ω G1,n′ = 1

2π
δ1,n′ − teβ(ky)G2,n′, (n = 1),

ω G2,n′ = 1

2π
δ2,n′ − t G3,n′ − teβ(ky)G1,n′, (n = 2),

ω G3,n′ = 1

2π
δ3,n′ − tβ(ky)G4,n′ − t G2,n′, (n = 3),

ω G4,n′ = 1

2π
δ4,n′ − t G5,n′ − tβ(ky)G3,n′, (n = 4), (7.28)

and so on. At this stage we might reasonably expect to be able to follow an approach
similar to the TDM method used in the previous section. To do so here, however,
we will need to take account of the graphene geometry where odd and even rows
consist of sites on A and B sublattices, respectively. This property is easily dealt
with because we note that the odd-n equations in (7.28) can be used to eliminate
the odd-n GFs from the even-n equations. For example, on substituting the n = 1
and n = 3 equations in the preceding text into the n = 2 equation, we deduce that
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ω2 − t2 − t2

e β2(ky)
]
G2,n′ − t2β(ky)G4,n′ = 1

2π

[
ωδ2,n′ − teβ(ky)δ1,n′ − tδ3,n′

]
.

The process may be continued with other odd and even equations.
The end result, after some straightforward algebra, is that we arrive at a new set

of coupled finite-difference GF equations that involve only the even-n GF equa-
tions (i.e., those from the sublattice B). These equations can then be recast into
a form involving TDMs like in Section 7.2. The coupled equations take on the
same matrix form as Equation (7.10) provided we redefine the terms appropriately.
Specifically, the matrix elements of the column matrix Gn′ consist only of the GFs
with n even:

Gn′ =

⎛
⎜⎜⎜⎝

G2,n′

G4,n′

G6,n′
...

⎞
⎟⎟⎟⎠ . (7.29)

The matrix M can be written in the same form as Equation (7.11), provided we now
redefine

d = (ω/t)2 − β2(ky) − 1

β(ky)
, (7.30)

and � is a parameter describing the perturbation due to the ZZ edge of the nanorib-
bon at n = 1. It is given by

� =
(

1 − t2
e

t2

)
β(ky). (7.31)

Finally, the column matrix bn′ can be shown to have only very few (in fact, three
or less) nonzero elements, depending on the values for n and n′. For example, if
n′ = 1 we have

(b1)n = ω

2πt2β(ky)
δn,1. (7.32)

Using the preceding results, together with the formal solutions obtained previously
in Equations (7.16)–(7.19), it is now straightforward to solve for the individual GFs
G(cn(ky);c†

n′(ky) | ω) of the graphene problem. The results found initially will be
for even n only, but then the odd-n results can be deduced using the coupled GF
expressions in Equation (7.28).

To simplify matters we will quote here only some of the GF results, taking
the case in which one of the row labels refers to the ZZ edge with n′ = 1 (see
Problem 7.6 for the derivations). It is found that
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G1,1 = G(c1(ky);c†
1(ky) | ω) = 1

2πω
+ t2

e β(ky)

2πt2ω(1 + x�)
x (n = 1), (7.33)

Gn,1 = G(cn(ky);c†
1(ky) | ω) = tex

1/2[β(ky) + x−1]

2πtω(1 + x�)
xn/2 (odd n > 1), (7.34)

Gn,1 = G(cn(ky);c†
1(ky) | ω) = −te

2πt2(1 + x�)
xn/2 (even n). (7.35)

Much of the interpretation of these GF results follows analogously to that given
for ferromagnets in the previous section, but we will see that there is a novel
additional property that is rather special for graphene. First, when |x| = 1 (or
x = eiθ with θ being real), the xn/2 factors behave like a phase propagation term
with respect to distance from the edge. This is characteristic of bulklike propagating
modes, by analogy with the previous section. In fact if we put x = exp(i3kxa0/2)

and use Equations (7.17) and (7.30) we deduce that the corresponding solution for
the frequency is

ωB(kx,ky) = ±t

√
β2(ky) + 2β(ky) cos(3kxa0/2) + 1. (7.36)

This is identical to the standard form of the dispersion relation for the electronic
band in an infinite graphene sheet (see Section 2.7), where kx is a real wave-vector
component in the x direction.

Contrasting with the bulk-mode case, any poles of the preceding GFs with
|x| < 1 must correspond to localized modes, meaning edge modes in this graphene
example because the xn/2 factors now describe an attenuation with distance from
the edge. One obvious way in which this can occur is through the factor (1 + x�)

appearing in the denominator for all cases in Equations (7.33)–(7.35), so we
conclude that there is an edge mode for x = −1/�, but it exists only provided that
the localization condition that |�| > 1 can be satisfied. Solving for the dispersion
relation then gives the edge-mode frequency as

ωE(ky) = ±t

√
(t2

e /t2)β2(ky) + [t2
e /(t2

e − t2)]. (7.37)

The localization condition for this type of edge mode can be satisfied either if
(te/t) <

√
0.5 (≈ 0.71), which makes � > 1, or if (te/t) >

√
1.5 (≈ 1.22), which

makes � < −1. These cases represent, respectively, the acoustic and optic edge
modes because they come below and above the bulk band of electronic modes, as
illustrated by the numerical examples in Figure 7.6. We note, in particular, that there
will be no edge modes of this type if te = t because � then vanishes. Therefore,
they arise specifically as a consequence of the edge hopping te being sufficiently
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Figure 7.6 Example of the dispersion relations of electronic modes in a semi-
infinite graphene nanoribbon. The energies or frequencies for the bulk bands
(shaded), two examples of acoustic edge modes (A1 with te/t = 0.3, A2 with
te/t = 0.2), two examples of optic edge modes (O1 with te/t = 1.7, O2 with
te/t = 1.8), and the zero edge mode (Z) are shown plotted against scaled wave-
vector component ky in the length direction. Only the positive frequencies are
shown in this figure.

modified. Two examples for each type of localized mode (acoustic and optic) are
shown in the figure for different te/t ratios. The same modes occur at negative
energies, i.e., in the valence band. We note that, as te/t is decreased (below 0.71),
the acoustic edge mode is split off to a greater degree corresponding to increased
localization near the edge [113]. An analogous type of behavior holds for the optic
edge modes.

There is, however, another edge-mode effect that is rather more subtle and can
be seen only from the odd-n GF results quoted in Equations (7.33) and (7.34) for
the semi-infinite nanoribbon. It is evident that these particular GFs also have poles
(vanishing denominators) at ω = 0, coinciding with the Fermi frequency, and this
will be the case even when te = t . A simple rearrangement of Equations (7.17) and
(7.30) leads to an expression for ω2 in terms of x as

ω2 = t2[β(ky) + x][β(ky) + x−1]. (7.38)

This implies therefore that ω = 0 occurs either when x = −β(ky) or when x =
−1/β(ky). In fact, it is the former condition that correspond to an edge mode, as
can be seen if we rewrite Equation (7.34) as
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G(cn(ky);c†
1(ky) | ω) = −te

2πt2(1 + x�)

√
xβ(ky) + 1

β(ky) + x
xn/2 (odd n > 1). (7.39)

We may conclude that this type of edge mode exists only on the odd rows of the
semi-infinite graphene nanoribbon. Also the localization condition that must be
satisfied is |β(ky)| < 1, and so ky must lie in the range 2π/3

√
3 < |kya0| < π/

√
3

in the first Brillouin zone. This excitation is often referred to as the zero edge mode
because it corresponds to ω = 0 in the semi-infinite GNR (i.e., it occurs at the Fermi
frequency). This mode was first predicted by Fujita et al. [114], and it is an example
of a topological edge mode. It is seen as the flat line in Figure 7.6 extending from
the Dirac points (labeled K and K ′) to the Brillouin zone boundary. The occurrence
of these Dirac points, corresponding to values of the 2D wave vector for which
the electronic spectrum is gapless, is one of the properties that makes graphene of
such special interest. The wave vectors for K and K ′ in our notation are (kx,ky) =
(2π/3a0, ± 2π/3

√
3a0).

7.4 Photonic Bands in Multilayer Superlattices

Next, we consider applications to the excitations in periodic multilayer structures,
or superlattices. A simple structural arrangement is to build up the multilayers
by having alternating thin films of two materials, denoted as A and B, to form a
· · · ABABAB · · · pattern of layer growth (see Figure 7.7) deposited on a substrate
material. A feature that makes these structures of special interest occurs when all
the A layers have identical properties (for composition, thickness dA, etc.) to one

Figure 7.7 Geometry and notation for the calculation of the photonic (optical)
band structure of a two-component alternating periodic superlattice with the layers
labeled as A and B.
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another and likewise for the properties of all the B layers. The overall structure is
then formed by repeats of the same basic AB building block, which has thickness
D = dA + dB . If there are many repeats of this basic unit, then it is clear that a new
symmetry operation emerges for this artificial structure, namely, there are transla-
tion operations in the z direction through a periodicity length D. A consequence
is that there is a corresponding new Brillouin zone for excitation wave vectors in
the z direction that extends in reciprocal space from −π/D to π/D. Because D

may be engineered to be (for example) several hundred nanometres and therefore
much larger than the atomic-scale lattice parameter of either constituent material, it
follows that the artificial Brillouin zone will typically be much smaller than the
crystal Brillouin zone. This can be advantageous as regards some experimental
techniques for studying the excitations in superlattices, and we give an example
in the following text for the optical properties. A general reference covering excita-
tions in superlattices is the book by Cottam and Tilley [39].

In general, the bands for the excitations in superlattices (giving their frequency
vs. wave vector relationships) can be very complicated. Recently, the properties
for the occurrence and manipulation of such bands have led to the tremendous
interest in band-gap materials, initially in the photonics case for photonic band
gaps (PBGs) in optics (see [108] for a thorough review). Also, there have been
analogous developments for other excitations, such as SWs or magnons. Applica-
tions to devices and materials in magnonics are reviewed in, e.g., [115]. Here as an
example we present a simple formulation for a 1D photonic band-gap material (a
photonic “crystal”).

We will consider alternating layers of two materials as in Figure 7.7, where the
layer thicknesses dA and dB are both assumed to be large compared with the atomic
lattice parameters of the materials. Further, it will be assumed that the dielectric
functions are εA and εB , taken for simplicity to be the bulk dielectric constants
(treated as constants independent of the excitation angular frequency ω). This is
sometimes referred to as the bulk slab model of a superlattice. We will employ
standard results from electromagnetism for the optical wave propagation in the lay-
ers. Two cases arise, depending on whether the waves have s-polarization (meaning
that the electric field vector E is in the y direction) or p-polarization (with E in the
xz plane). A 1D wave-vector component Q enters into the calculations through the
analogue of Bloch’s theorem (see Chapter 2) in the form

E(z + D) = exp(iQD)E(z), (7.40)

while all the EM field components will be taken to have a dependence on x and t

like exp(iqxx − iωt). We are allowing for the possibility of a wave vector qx in the
x direction parallel to the planar interfaces corresponding to oblique incidence of
the optical waves at each interface.



192 Green’s Functions for Localized Excitations

In this example, we will present for brevity just the calculation for s-polarization.
With ε denoting the relevant dielectric function and c being the speed of light in a
vacuum, the EM wave equation (see, e.g., [7, 8]) for the electric field E is

ε
∂2E
∂t2

− c2∇2E = 0. (7.41)

In any layer the solution for the Ey component, as required for s-polarization, will
be a superposition of a forward- and a backward-traveling wave in the z direction.
Two alternative forms can be written down, depending on whether the phases are
expressed relative to the lower (L) or the upper (U ) interface of each layer, giving

Ey = aL
l exp[iqAz(z − lD)] + bL

l exp[−iqAz(z − lD)]

= aU
l exp[iqAz(z − lD − dA)] + bU

l exp[−iqAz(z − lD − dA)]

in an A layer (with lD ≤ z ≤ lD +dA). The amplitude terms are as indicated. Here
qAz must satisfy

q2
Az + q2

x = εAω2/c2. (7.42)

For the corresponding electric field in the adjacent layer B in the same cell l (with
lD + dA ≤ z ≤ (l + 1)D) and with qBz defined similarly to Equation (7.42), we
have

Ey = dL
l exp[iqBz(z − lD − dA)] + eL

l exp[−iqBz(z − lD − dA)]

= dU
l exp[iqBz(z − (l + 1)D)] + eU

l exp[−iqBz(z − (l + 1)D)].

Next, on switching over to a matrix notation for these results applied to the A

and B layers, we conclude that the amplitudes in the preceding two equations are
related by

|uU
l 〉 = FA|uL

l 〉 , |wU
l 〉 = FB |wL

l 〉, (7.43)

where in the case of an A layer we denote

|uL,U
l 〉 =

(
a

L,U
l

b
L,U
l

)
and FA =

(
fA 0
0 f −1

A

)
(7.44)

with the phase term fA = exp(iqAzdA). There are similar results for the B layer.
The standard EM boundary conditions (see, e.g., [7, 8]) at the z = lD + dA and

z = (l + 1)D interfaces include the requirements that Ey and Hx are continuous
(and so Ey and ∂Ey/∂z must be continuous). These conditions lead to additional
relationships between the column matrices of the coefficients, and in matrix form
the requirements can be stated compactly as

XA|uU
l 〉 = XB |wL

l 〉 and XB |wU
l 〉 = XA|uL

l+1〉, (7.45)
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where

Xi =
(

1 1
qiz −qiz

)
, i = A,B. (7.46)

The preceding equations may now be combined to give

|uL
l+1〉 = T |uL

l 〉. (7.47)

This expression relates the amplitudes in cell l to those at the equivalent part in cell
l + 1, thereby introducing a new 2 × 2 matrix T known as the transfer matrix. It is
given explicitly by

T = X−1
A XBFBX−1

B XAFA. (7.48)

The transfer matrix has some useful properties that relate to the spectrum of
excitations in the superlattice. First, it satisfies det T = 1, which can be proved
from the form of the matrix products in Equation (7.48). Second, Bloch’s theorem
in Equation (7.40) is equivalent to the condition |uL

l+1〉 = exp(iQD)|uL
l 〉, and

therefore we have the property that

[T − exp(iQD)I ]|uL
l 〉 = 0,

where I is the unit 2 × 2 matrix. There is a similar equation obtained by relating
|uL

l−1〉 to |uL
l 〉, giving

[T −1 − exp(−iQD)I ]|uL
l 〉 = 0.

Then, by adding the preceding two equations, we deduce that

[T + T −1 − 2 cos(QD)I ]|uL
l 〉 = 0. (7.49)

This result holds for any cell l, and so from the property that (T + T −1) = Tr(T )I ,
it follows that we must have

cos(QD) = 1

2
Tr(T ). (7.50)

This is an important result because it provides us with an implicit dispersion
relation for the excitation frequencies of the superlattice in terms of the Bloch wave
vector Q provided that we evaluate the transfer matrix T . An explicit evaluation
(see Problem 7.8) shows that in the present example the diagonal matrix elements
of T (as required for the trace) are

T1,1 = fA[fB(qAz + qBz)
2 − f −1

B (qAz − qBz)
2]

4qAzqBz

,

T2,2 = f −1
A [f −1

B (qAz + qBz)
2 − fB(qAz − qBz)

2]

4qAzqBz

. (7.51)
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Figure 7.8 Dispersion curves for the frequency (expressed in terms of ωD/c)
versus the Bloch wave vector (in terms of QD/π ) for normal-incidence optical
waves in a 1D photonic crystal consisting of a two-component alternating periodic
superlattice. The assumed parameters are dA = dB = 0.5D, εA = 3 and εB = 2.
The photonic band gaps are shown as the shaded areas.

When these results are substituted into Equation (7.50) we find after some straight-
forward algebra that the dispersion relation for s-polarization is

cos(QD) = cos(qAzdA) cos(qBzdB) − gs sin(qAzdA) sin(qBzdB), (7.52)

where

gs = 1

2

(
qBz

qAz

+ qAz

qBz

)
.

The calculation for the case of p-polarization is very similar to the preceding.
Briefly, it is found that Equation (7.52) is still applicable provided gs is replaced by
a different quantity gp. In fact, the dispersion equation in the general form repre-
sented by Equation (7.52) occurs commonly for excitations in periodic structures,
and it is sometimes referred to as a Rytov equation because its first derivation is
attributed to Rytov in the context of acoustic waves in superlattices [116].

We present a numerical example of a superlattice dispersion relation in Fig-
ure 7.8 for the special case of normal incidence where qx = 0 and the distinction
between s- and p-polarizations vanishes. The plot is in dimensionless units for
the excitation frequency ω versus Q. In the reduced-Brillouin-zone scheme used
here the dispersion curves are “folded back” and band gaps open up at Q = 0
and Q = π/D. In this example, the band gaps (or stop bands) are relatively
large because we have assumed a significant difference, or mismatch, between the
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dielectric constants of the adjacent layers. If the dielectric constants are taken to be
close in value, the gaps shrink to a small value.

7.5 Impurity Modes in Ferromagnets

In this section, we consider the mode localization in an infinite material when there
is a single substitutional impurity embedded in the lattice, giving rise to a breaking
of the translational (and other) symmetries of the lattice in that vicinity. Additional
modes or excitations may occur associated with the impurity, as well as the modes
of the pure material. In ferromagnets and antiferromagnets there have been exten-
sive experimental studies by inelastic neutron scattering and Raman scattering (see,
e.g., [76, 103] for reviews). While the term “impurity mode” serves as a general
description, a distinction of terminology is sometimes made between a defect
mode occurring outside the band of bulk SWs and a resonance mode within the
SW band.

To illustrate how a theory for the modes may be developed using a GF formalism,
we consider the relatively straightforward case of a simple-cubic (s.c.) Heisenberg
ferromagnet with nearest-neighbor exchange interactions. The calculations may,
however, be readily extended to other lattice structures and/or to antiferromagnets.
The approach described here is analogous to that developed by Wolfram and Call-
away [117]. Our first step is to obtain the difference between the Hamiltonian
when the impurity is present and that for the pure system (without the impurity).
The differences occur only within a small cluster of atomic spin sites situated at
and around the actual impurity site. For the situation represented in Figure 7.9

Figure 7.9 Cluster of atomic spin sites formed by an impurity spin (labeled 1) and
its six nearest neighbors (labeled 2,3, . . . ,7) in a Heisenberg ferromagnet with s.c.
lattice structure. The exchange interaction between the impurity and its nearest
neighbors is J ′.
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we assume that the impurity is located at a site labeled 1: in general, it may be
a magnetic impurity with spin quantum number S ′ and with modified exchange
interaction J ′ to its six nearest neighbors in the pure material. The spin quantum
number is denoted by S in the pure material, and the nearest-neighbor exchange is
denoted by J as before (in Subsection 1.5.2).

Within a low-temperature bosonic approximation the total Heisenberg Hamilto-
nian H is given by the previous Equation (1.88). In the present context this may
be separated into two parts as H = H0 + H′, where H0 is the Hamiltonian for
the pure ferromagnet and H′ represents the perturbation due to the impurity. It is
straightforward to show that

H′ = JS

{
ξa

†
1a1 + ζ

7∑
n=2

a†
nan − γ

7∑
n=2

(a
†
1an + a†

na1)

}
, (7.53)

where the summations run over the six nearest neighbors of the impurity site at 1,
and we have defined the following quantities measuring the perturbation:

ξ = J ′

J
− 1 , ζ = J ′S ′

JS
− 1, γ = J ′

J

√
S ′

S
− 1. (7.54)

Next we introduce GFs of the same general form G(a;a† | ω) as we considered
previously for ferromagnets (e.g., as in Section 4.4 and again earlier in the present
chapter). Here we want the GFs to be in a site-dependent representation to deal
with the spatial effects localized around the impurity, and so we define G

(0)
i,j (ω) =

G(ai;a†
j | ω) for the pure ferromagnet, while Gi,j (ω) is the corresponding quantity

for the impure ferromagnet. The GF for the translationally invariant pure system is
already known in the 3D wave-vector representation. Thus, using Equation (4.58)
and transforming to the site representation, we have for the retarded GF the
expression

G
(0)
i,j (ω) = 1

N

∑
k

exp[ik · (ri − rj )]

(
1

2π

)
1

ω − Ek + iη
, (7.55)

where N is the (macroscopically large) number of sites in the ferromagnet and Ek

is the dispersion relation for bulk SWs at low temperatures T � TC as given in
Equation (1.93).

Our objective now is to find Gi,j (ω) for the ferromagnet with an isolated impu-
rity, and to do so we follow an approach analogous to that introduced in [103, 117]
where a generalized matrix formalism is employed for impure systems. Noting
that the GF equation of motion in Chapter 3 is an inhomogeneous finite-difference
equation in terms of site labels, we write
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Gi,j (ω) = G
(0)
i,j (ω) +

∑
i′,j ′

G
(0)

i,i′(ω)Vi′,j ′Gj ′,j (ω).

Here Vi′,j ′ describes the impurity-host interaction and so is related to the perturba-
tion Hamiltonian H′ as quoted in Equation (7.53). In an obvious matrix shorthand
notation (with respect to the site labels) the preceding equation can be reexpressed
more transparently as

G = G(0) + G(0)VG. (7.56)

It is relevant to note that we are dealing here with matrices of dimension 7 × 7
because there are only seven sites (labeled as the cluster in Figure 7.9) involved
in the perturbation Hamiltonian H′. After some straightforward rearrangement of
Equation (7.56) we may write the formal solution for G as

G = (I − G(0)V)−1G(0)

= G(0) + G(0)VG(0) + G(0)VG(0)VG(0) + · · · . (7.57)

The expression in the first line is often referred to as a Dyson equation and its
expansion (given in the second line) shows that events for multiple scattering of the
host magnons by the defect are incorporated. If we now examine the poles of G
using the first line of Equation (7.57), it is evident that any new poles (other than
those already present in G(0) for the pure system) must come from the (I−G(0)V)−1

factor and therefore correspond to the condition that

det(I − G(0)V) = 0. (7.58)

Returning now to the specific example of a single impurity in a s.c. Heisenberg
ferromagnet, we deduce from Equation (7.53) for H′ that the form of the host-
impurity scattering matrix V is

V = 2πJS

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ −γ −γ −γ −γ −γ −γ

−γ ζ 0 0 0 0 0
−γ 0 ζ 0 0 0 0
−γ 0 0 ζ 0 0 0
−γ 0 0 0 ζ 0 0
−γ 0 0 0 0 ζ 0
−γ 0 0 0 0 0 ζ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (7.59)

where the impurity-related parameters ξ , ζ , and γ are defined in Equation (7.54).
Also from considerations of cubic symmetry it follows that there are only four
independent GF matrix elements of G(0) for the pure system. These can be identified
in terms of the distance apart of the pairs of sites in the cluster in Figure 7.9. This
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distance can take the values 0 as in the case of G
(0)

1,1 and similar pairs of sites, a as

for G
(0)

1,2, 2a as for G
(0)

2,3, and
√

2a as for G
(0)

2,4. Using Equation (7.55) it follows that

G
(0)

1,1(ω) = 1

2πN

∑
k

1

ω − Ek + iη
,

G
(0)
1,2(ω) = 1

2πN

∑
k

cos(kxa)

ω − Ek + iη
,

G
(0)

2,3(ω) = 1

2πN

∑
k

cos(2kxa)

ω − Ek + iη
,

G
(0)

2,4(ω) = 1

2πN

∑
k

cos(kxa) cos(kya)

ω − Ek + iη
. (7.60)

The determinantal condition expressed in Equation (7.58), which leads to the
results for the frequency ω of the impurity modes, can now be implemented by
substituting the explicit forms discussed in the preceding text for G(0) and V. After
some lengthy but straightforward algebraic manipulation, it is found (see Prob-
lem 7.9) that the result may be factorized as

det(I − G(0)V) = [DA(ω)]3[DB(ω)]2DC(ω). (7.61)

Here the individual terms are

DA(ω) = ζ [G(0)

2,3(ω) − G
(0)

1,1(ω)] + 1/(2πJS),

DB(ω) = ζ [2G
(0)

2,4(ω) − G
(0)

1,1(ω) − G
(0)

2,3(ω)] + 1/(2πJS),

while DC(ω) comes from a 2 × 2 determinant and can be expressed in terms of the
preceding GFs and the impurity parameters.

We turn now to some numerical results. As mentioned earlier in this section it
is useful to distinguish between defect modes, which are nonresonant with any of
the bulk SWs of the pure host material, and resonance modes, which occur for ω

within the band of bulk SWs. The latter are more complicated because the terms
(ω − Ek + iη) appearing in the denominators in Equation (7.60) will effectively
vanish for some value(s) of the wave vector k making the numerical evaluation of
the spatial GFs more difficult. For simplicity, therefore, we focus on the defect-
mode case for which it is found [117] that solutions do indeed occur corresponding
to each of the factors in Equation (7.61) when ω is above the top of the bulk SW
band. This quantity corresponds to energy (gμBB0 + 12JS) in the s.c. geometry.

Some examples of calculations for the defect modes are shown in Figure 7.10.
Here we plot (in dimensionless units) the frequencies of the modes versus J ′/J
for different values of this exchange ratio. Depending on the value of J ′/J , there
can be three modes, labeled according to convention [117] in the figure as s, p,
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Figure 7.10 Frequencies of the defect modes associated with an isolated magnetic
impurity embedded in a s.c. ferromagnet. The figure shows the dimensionless
quantity (ω − b)/SJ , where b = gμBB0, plotted versus the exchange ratio J ′/J .
We have assumed S′ = 2 and S = 1 for the spin quantum numbers of the impurity
and host atoms, respectively. The mode frequencies lie above the bulk SW band,
which extends up to the value 12 for this plot. The mode labels are as described in
the text.

and d, which come from the factors on the right-hand side of Equation (7.61). It
can be shown that the s mode corresponds to a mode that is highly localized near
the impurity, whereas the p and d modes are more spread out over the nearest
neighbors to the impurity.

Problems

7.1. Consider a finite-thickness elastic film with thickness L. Its two planar sur-
faces correspond to z = 0 and z = −L. Extend the linear response theory
in Section 7.1 to obtain the GFs G(u(z);u(z′) | ω) and G(uzz(z);uzz(z′) | ω)

for the film. You should employ the stress-free boundary condition in Equa-
tion (7.1) at both surfaces.

7.2. The boundary condition employed in Section 7.1 was that for a stress-free
surface. Suppose, instead of Equation (7.1), a zero-displacement boundary
condition is applied, i.e., it is required that u(z) = 0 at z = 0. Deter-
mine how the subsequent calculations given in Section 7.1 for the GFs
G(u(z);u(z′) | ω) and G(uzz(z);uzz(z′) | ω) will be modified for this case.
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7.3. Verify that the nonzero coefficients An,n′(k‖) have the form quoted in Equa-
tion (7.8) for the calculation of the surface SWs in a semi-infinite b.c.c.
ferromagnet.

7.4. Verify that the inverse of the matrix M0 is as quoted in Equation (7.16). In
other words, prove that when the matrix given by Equation (7.16) is either
premultiplied or postmultiplied by the matrix M0 in Equation (7.15) the result
is the unit matrix.

7.5. In Section 7.2 we found that for a b.c.c. Heisenberg ferromagnet a surface
SW is predicted decaying with distance away from the (100) surface of a
semi-infinite material. Now consider the same situation, but for a Heisenberg
ferromagnet with a s.c. structure and nearest-neighbor exchange only. Show
that there cannot be a localized surface SW in this case when all nearest-
neighbor exchange interactions have the bulk value J .

7.6. A set of GFs that describes correlations between any two sites in the semi-
finite graphene lattice with a ZZ edge is given by Equation (7.27). The GFs
can be written in a matrix form Gn′ = M−1bn′ with the definitions being
given in Section 7.3. Derive explicit expression for the GFs to verify the
results for the special cases that are quoted in Equations (7.33)–(7.35).

7.7. Extend the analysis used in the previous Problem 7.6 for a semi-infinite
graphene lattice with a ZZ edge to obtain expressions for the GFs denoted
as G2,2 and G4,2. Note that you will now need to take n′ = 2 for part of your
derivation. Verify that there is no contribution from these GFs to the spectral
intensity of the zero mode.

7.8. For the example of a periodic multilayer (or superlattice) considered in Sec-
tion 7.4, use Equation (7.48) and the preceding expressions to verify that the
diagonal elements of the transfer matrix T are as quoted in Equation (7.51).
Then show that the Rytov Equation (7.52) can be deduced as an implicit
expression for the mode frequencies.

7.9. For the model of an isolated impurity in a s.c. Heisenberg ferromagnet (as in
Section 7.5) use the explicit forms for V in Equation (7.59) and the matrix
elements of G(0) in Equation (7.60) to construct (I − G(0)V) in the 7 × 7
matrix representation. Then verify the result quoted in Equation (7.61) for
the impurity modes.

7.10. Consider a ferromagnetic medium occupying the half space x < 0, so there
is a single surface in the yz-plane corresponding to x = 0. The in-plane
magnetization M0 is taken to be in the z direction and the external medium
(where x > 0) is a vacuum. Calculate the magnetic excitations (SWs) of this
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system in the dipolar limit (neglecting exchange) by extending Problem 6.9
as follows. The relevant Maxwell’s equations for the fluctuation terms m(r)
and h(r) in the magnetostatic case are ∇×h = 0 and ∇·(h+m) = 0. The first
of these equations is automatically satisfied if we introduce the magnetostatic
scalar potential ψ by h = ∇ψ . Show that the second equation implies

(1 + χa)

(
∂2ψ

∂x2
+ ∂2ψ

∂y2

)
+ ∂2ψ

∂z2
= 0,

using the susceptibility relation from Problem 6.9. This holds in all space,
including the vacuum region (where χa = 0). Next, assume SWs with the
in-plane wave vector along the y direction, i.e., q‖ = (qy,0), and look for
solutions of the above equation with the form

ψ(x,y,z) =
{

a1 exp(−|qy |x) exp(iqyy), for x > 0,
a2 exp(−iqxx) exp(iqyy), for x < 0.

Here qx is a wavenumber (complex, in general) in the x direction. Show
that there are two possible SW modes: one corresponds to the frequency
±[ω0(ω0 +ωm)]1/2 and the other to [ω0 + 1

2ωm]. The first is a bulk mode and
the second is a localized surface mode (called the Damon–Eshbach mode)
which exists only if qy < 0.
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Diagrammatic Perturbation Methods

Starting in this chapter, a perturbative Green’s function (GF) technique will be
established in a form that is applicable to interacting boson and fermion many-
body systems in second quantization. The method will be expressed in terms of the
imaginary-time (or Matsubara) GFs, which were introduced already in Section 3.5,
rather than the real-time GFs that we have mainly employed so far. The results
will eventually be formulated in terms of a diagrammatic representation, which
offers many advantages over following purely algebraic procedure. The theory will
be developed here for finite temperatures, incorporating the standard results from
equilibrium statistical physics.

We shall see that, on the one hand, the method has the considerable advantage
(compared with the previous GF equation-of-motion and linear response methods)
that approximations can be introduced systematically through a rigorous expansion
parameter in a controlled fashion by including contributions up to a particular
chosen order. In this way, the diagrammatic method avoids the arbitrariness some-
times involved in previous decoupling approximations or linearization procedures.
Therefore, it is often advantageous for higher-order calculations. On the other hand,
a drawback potentially is that the method is harder to learn and can sometimes be
more complicated to apply.

Detailed descriptions of the standard diagrammatic perturbation formalism, as
applied to bosons and fermions, interacting through a scalar pairwise interaction
potential, can be found in various text books on the many body theory of condensed
matter systems (see, e.g., [48, 49, 51, 52, 118, 119]). Some similar material also
occurs in books on the quantum field theory of particles (e.g., [120–122]), where
the treatment is often relativistic and/or restricted to a zero-temperature formalism.

202
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8.1 The Grand Partition Function

For developing the perturbation technique it is convenient to write the previous
Hamiltonian for a system of interacting bosons or fermions in second quantiza-
tion as

H = H0 + H1. (8.1)

Here H0 denotes the Hamiltonian for the noninteracting particles, which can be
expressed as

H0 =
∑

k

Eka
†
kak, (8.2)

with typically Ek = (k2/2m) − μ. The perturbation term H1 is due to the inter-
actions between particles and will be taken to have the same form as in Equa-
tion (1.62):

H1 = 1

2

∑
k1,k2,q

v(q)a
†
k1

a
†
k2

ak2+qak1−q. (8.3)

We recall that v(q) is the Fourier transform with respect to wave vector of the
pairwise interaction potential, and it depends on the nature and strength of the
interaction. The operators satisfy [ak,a

†
k′]ε = δk,k′ , etc., where ε is equal to 1 (for

commutators) or −1 (for anticommutators) in the case of bosons and fermions,
respectively.

The equilibrium thermal averages are defined as before. Hence, for an operator
A the average with respect to the full Hamiltonian can be written as

〈A〉 = 1

Q
Tr
(
Ae−βH) with Q = Tr

(
e−βH) . (8.4)

If we know Q we can in principle calculate all other thermodynamic quantities of
the system in equilibrium, so this will be our goal for now. Notice here that we have
conveniently absorbed the effect of the chemical potential μ into Ek, so we are
continuing to use a grand canonical ensemble and Q is the grand partition function.

8.1.1 Thermal Averages for the Unperturbed System

Suppose, as a preliminary step, we wish to calculate the corresponding grand parti-
tion function Q0 for the unperturbed system. We have

Q0 = Tr
{

exp(−βH0)
} = Tr

{
exp

(
−β
∑

k

Eka
†
kak

)}

= Tr

{∏
k

exp
(− βEka

†
kak
)}

,



204 Diagrammatic Perturbation Methods

where a
†
kak represents the number operator. For the case of fermions the number

operator can only have eigenvalues 0 and 1, and so

Q0 =
∏

k

(
1 + e−βEk

)
. (8.5)

For the case of bosons the number operator has eigenvalues 0,1,2,3, . . . , and so

Q0 =
∏

k

(
1 + e−βEk + e−2βEk + e−3βEk + · · · )

=
∏

k

(
1

1 − e−βEk

)
. (8.6)

We can then use the preceding results for Q0 to evaluate simple averages for the
unperturbed system, such as 〈a†

kak〉0 because

〈a†
kak〉0 = 1

Q0
Tr

{
a

†
kak exp

(
−β
∑

k′
Ek′a†

k′ak′

)}

= 1

Q0

∂

∂(−βEk)
Tr

{
exp

(
−β
∑

k′
Ek′a†

k′ak′

)}

= − 1

Q0

∂Q0

∂(βEk)
.

After substituting for Q0 this gives (consistent with our earlier notation)

nk ≡ n(Ek) = 〈a†
kak〉0 = 1

exp(βEk) − ε
, (8.7)

as expected, for the Bose–Einstein (ε = 1) and Fermi–Dirac (ε = −1) distribution
functions.

By extension, it can be shown for other unperturbed averages involving pairs of
operators that

〈a†
kak′ 〉0 = δk,k′

exp(βEk) − ε
, 〈a†

ka
†
k′ 〉0 = 〈akak′ 〉0 = 0.

8.1.2 The S-Matrix Expansion

Corresponding to the full Hamiltonian of the interacting system we have by defi-
nition Q = Tr{e−βH} for the grand partition function. Then, to relate full averages
to the unperturbed averages, we introduce the so-called S-matrix operator S(β),
which is defined as having the property that [49, 52, 119]

e−βH = e−βH0S(β). (8.8)
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If we can evaluate S(β) then we can in principle evaluate the partition function for
the interacting system. We note that

Q = Tr
{
e−βH} = Tr

{
e−βH0S(β)} = Q0

1

Q0
Tr
{
e−βH0S(β)

}
,

and so

Q = Q0 〈S(β)〉0. (8.9)

It follows that we need a way to solve for S(β) and then to take its unperturbed
average. This can be achieved by differentiating Equation (8.8) with respect to β to
give initially

−He−βH = −H0 e−βH0 S + e−βH0
∂S

∂β
,

from which it follows after rearranging that

∂S

∂β
= −eβH0He−βH + eβH0H0 e−βH0S

= −eβH0(H0 + H1)e
−βH0S + eβH0H0 e−βH0S

= −eβH0H1 e−βH0S.

This result can be rewritten compactly as

∂S

∂β
= −H1(β) S, (8.10)

where we have introduced the notation for any operator A that

A(β) = eβH0A e−βH0 . (8.11)

The initial condition (or boundary condition) on the differential Equation (8.10) is
that S = 1 when β = 0, which follows from the definition of S.

Integrating both sides of Equation (8.10) now gives us a formal solution for the
S-matrix as

S(β) = 1 −
∫ β

0
H1(τ )S(τ)dτ . (8.12)

By repeatedly iterating for S on the right-hand side we get the series

S(β) = 1 −
∫ β

0
dτ1H1(τ1) +

∫ β

0
dτ1

∫ τ1

0
dτ2H1(τ1)H1(τ2) − · · ·

+ (−1)n

∫ β

0
dτ1

∫ τ1

0
dτ2 · · ·

∫ τn−1

0
dτnH1(τ1)H1(τ2) · · ·H1(τn) + · · · ,

(8.13)
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where the nth order term in the expansion is displayed. In this form the result is not
particularly convenient because the limits of integration involve the τ -labels. At this
stage it is helpful to point out a similarity with the analysis given in Subsection 2.1.2
for the expansion of the time evolution operator in a Dyson series. Specifically, the
preceding Equation (8.13) is similar in form to Equation (2.19). Accordingly, we
now rewrite Equation (8.13) in a more useful way by defining the ordering operator
T̂W for the τ -labels. As before, the ordering operator rearranges the operators in an
order with the associated τ labels increasing from right to left. Also, it introduces
a overall factor of (−1)A where the integer A is the number of interchanges of
fermion operators to achieve the reordering. For boson operators we will simply
have A = 0. By following now the same procedures as in Subsection 2.1.2 for the
Dyson series (including the geometric arguments presented as in Figure 2.1), we
can rewrite the second-order term in the expansion in Equation (8.13) as

1

2

∫ β

0
dτ1

∫ β

0
dτ2T̂W {H1(τ1)H1(τ2)} .

We note that in the preceding case we always have (−1)A = 1, even for fermion
systems, because H1 contains an even number of operators. Generalizing the pre-
ceding argument, we obtain the S-matrix expansion in the form

S(β) = 1 +
∞∑

n=1

(−1)n

n!

∫ β

0
dτ1

∫ β

0
dτ2 · · ·

∫ β

0
dτn

× T̂W {H1(τ1)H1(τ2) · · ·H1(τn)} . (8.14)

In a similar way to Equation (2.21), a shorthand form for the preceding result can
be introduced as

S(β) = T̂W

[
exp

{
−
∫ β

0
dτH1(τ )

}]
. (8.15)

We must keep in mind that the exponential expansion must always be made before
doing the integration, otherwise the role of the T̂W operator is not meaningful.

8.2 Wick’s Theorem

It follows from Equations (8.9) and (8.14) that to calculate Q for the interacting sys-
tem we need to be able to calculate unperturbed averages like 〈T̂W {H1(τ1)H1(τ2) · · ·
H1(τn)}〉0. Because each H1 contains an even number of creation or annihilation
operators, we need to calculate expressions like

〈T̂W {b1b2b3 · · · bm}〉0,
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where each bi denotes an ak or a
†
k operator and m is an even positive integer. Each bi

operator has a label τ associated with it. Wick’s theorem is an important algebraic
result that eventually enables us to reexpress the preceding average over a product
of m operators in terms of averages over products of pairs of operators, like〈

T̂W

{
bibj

}〉
0

.

When (or if) this can be done, and bearing in mind that we already know the
results for unperturbed averages over pairs of operators, it becomes possible to
make a complete evaluation of Q in terms of a perturbation expansion [123, 124].
Ultimately, it is this property that will lead us to a convenient representation of the
expansion terms using Feynman diagrams.

We first need a few mathematical results and definitions involving products of
operators and their thermal averages. Proofs of the main steps in establishing Wick’s
theorem are provided here, but in a first reading of this material it may be preferable
to focus on the results and return to the proofs later.

The τ -Dependence of Operators

The τ -dependence of the individual operators corresponds to

ak(τ ) = ake
−Ekτ, a

†
k(τ ) = a

†
ke

Ekτ . (8.16)

Proof For the ak(τ ) operator we have from the earlier definition

ak(τ ) = eH0τ ake
−H0τ = eEkτa

†
kakake

−Ekτa
†
kak . (8.17)

We now use the following operator identity (known as the Baker–Campbell–
Hausdorff identity [14]) to make an expansion in terms of a series of nested
commutators:

eXYe−X = Y + [X,Y ] + 1

2!
[X, [X,Y ]] + 1

3!
[X, [X, [X,Y ]]] + · · · . (8.18)

We came across a special case of this identity earlier (see Problem 1.4), but the
general result here can be verified (for example) by expanding both sides in powers
of X and Y and equating terms. Choosing X = Ekτa

†
kak and Y = ak, we have

[X,Y ] = Ekτ [a†
kak,ak] = −Ekτak, (8.19)

which holds for bosons and fermions. This result leads to

ak (τ ) = ak − (Ekτ) ak + · · · + (−1)n

n!
(Ekτ)n ak + · · ·

= ake
−Ekτ, (8.20)

as required. The proof for the creation operator is similar. Note that the Hermitian
conjugate of ak (τ ) is a

†
k (−τ) , and not a

†
k (τ ).
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Reduction of Operator Products

Unperturbed averages that involve a product of m operators, where m is an even
integer greater than 2, can be rewritten in terms of unperturbed averages over
products of (m − 2) operators, using

〈b1b2b3 · · · bm〉0 = �(βEk)
{〈[b1,b2]εb3 · · · bm〉0 + ε〈b2[b1,b3]b4 · · · bm〉0

+ · · · + εm−2〈b2b3b4 · · · [b1,bm]〉0
}
, (8.21)

where we define

�(βEk) =
{

(1 − εe−βEk)−1 if b1 = ak

(1 − εeβEk)−1 if b1 = a
†
k

. (8.22)

Proof To be specific, we will take the case of b1 = ak (but the other case when
b1 = a

†
k follows in a similar fashion). Therefore, we have

〈akb2b3 · · · bm〉0 = Tr {akb2b3 · · · bmρ0} ,

where we write ρ0 = Q−1
0 e−βH0 for the equilibrium (unperturbed) density matrix.

Now we can reexpress the product akb2 using

akb2 = [ak,b2]ε + εb2ak.

It follows, on using this result repeatedly for ak, that we may obtain

akb2b3 · · · bmρ0 = [ak,b2]εb3 · · · bmρ0 + εb2akb3 · · · bmρ0

= [ak,b2]εb3 · · · bmρ0 + εb2[ak,b3]εb4 · · · bmρ0 + · · ·
+ εm−2b2b3 · · · bm−1[ak,bm]ερ0

+ εm−1b2b3 · · · bmakρ0.

For the operator product akρ0 in the last term we also have

akρ0 = Q−1
0 ake

−βH0 = Q−1
0 e−βH0eβH0ake

−βH0

= ρ0ak(β) = e−βEkρ0ak.

Substituting this into the preceding result and taking the Tr operation of both sides
of the equation, we find

Tr
{
akb2b3 · · · bmρ0

} = Tr
{
[ak,b2]εb3 · · · bmρ0

}
+ εTr

{
b2[ak,b3]εb4 · · · bmρ0

}+ · · ·
+ εm−2Tr

{
b2b3 · · · bm−1[ak,bm]ερ0

}
+ εm−1e−βEkTr

{
b2b3 · · · bmρ0ak

}
.
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We may now use the cyclic invariance property of Tr to conclude that the last term
on the right-hand side is just the same as

εe−βEkTr
{
akb2b3 · · · bmρ0

}
.

Putting these results together and rearranging, we find(
1 − εe−βEk

)〈akb2b3 · · · bm〉0 = 〈[ak,b2]εb3 · · · bm〉0

+ ε〈b2[ak,b3]εb4 · · · bm〉0 + · · ·
+ εm−2〈b2b3 · · · bm−1[ak,bm]ε〉0.

After further rearrangement this gives us the required result.
We notice that all the terms on the right-hand side involve a commutator (or

anticommutator), which gives either a scalar factor or zero. Therefore, the surviving
terms have two fewer operators in the product. The result obtained here will be
useful because, when it is applied successively, we can eventually break down
averages over products with a large number of operators into products with just
two operators.

Definition of Limited Contractions

The right-hand side of Equation (8.21) contains terms involving a commutator or
anticommutator (depending on ε) of the form

[ak(τ1),bi(τi)]ε or [a†
k(τ1),bi(τi)]ε.

In the first case, if bi = ak′ the result is zero, whereas if bi = a
†
k′ we have

[ak(τ1),a
†
k′(τi)]ε = exp {Ek (τi − τ1)} [ak,a

†
k′]ε

= exp {Ek (τi − τ1)} δk,k′ . (8.23)

This leads us to define a quantity that we shall (for the time being) refer to as a
limited contraction of the annihilation operator ak with any other boson or fermion
operator as being equal to

[ak(τ1),bi(τi)]ε
1 − εe−βEk

,

where the denominator term comes from Equation (8.22). In other words, for a lim-
ited contraction we take the operator ak(τi), form its (anti)commutator with bi(τi),
and divide by the denominator shown. We shall denote this operation algebraically
in a shorthand by〈

akb2b3 · · · bi · · · bm

〉
0 ≡ 1

1 − εe−βEk
〈b2b3 · · · [ak(τ1),bi(τi)]ε · · · bm〉0,

(8.24)
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where the overhead line connects the two operators (ak and bi in this case) that are
involved in the limited contraction.

In the second case that arises from the preceding discussion, the result is zero if
bi = a

†
k′ , whereas if bi = ak′ the result is

[a†
k(τ1),ak′(τi)]ε = exp{−Ek(τi − τ1)}[a†

k,ak′]ε

= −ε exp{−Ek(τi − τ1)}δk,k′ . (8.25)

Then, by analogy with the previous case we define the limited contraction of a
creation operator a

†
k with any other operator to be

[a†
k(τ1),bi(τi)]ε
1 − εeβEk

,

and we use the same overhead line notation as previously. Notice, however, that the
denominator factor is different in the two cases.

To summarize the outcome, it follows that the results in Equations (8.21) and
(8.22) can be expressed symbolically in a convenient shorthand as〈

b1b2b3 · · · bm

〉
0 = 〈b1b2b3 · · · bm

〉
0 + ε

〈
b1b2b3b4 · · · bm

〉
0

+ · · · + εm−2
〈
b1b2b3 · · · bm

〉
0. (8.26)

We see that the initial unperturbed thermal average of m operators can be for-
mally evaluated by taking a limited contracted of the first operator with each of
the other operators in turn. Because the result of taking a limited contraction is a
scalar quantity, each nonzero term on the right-hand side has (m − 2) operators
remaining.

Products of Limited Contractions

By extension of the previous result we shall now show that

〈b1b2b3 · · · bm〉0 =
∑[

(−1)A ×
{

Product of all limited
contractions taken in pairs

}]
, (8.27)

where A is the number of interchanges of fermion operators needed to bring the
contracted operators together (i.e., to be positioned adjacently in the product).

Proof The simplest way is to use the mathematical method of induction in terms
of the integer label m. We consider first the case of m = 2, for which we know
already that the only two nonzero possibilities are

〈a†
k(τ1)ak′(τ2)〉0 = 〈a†

kak〉0 δk,k′ eEk(τ1−τ2) = δk,k′ eEk(τ1−τ2)

eβEk − ε
, (8.28)
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where we have used the earlier result obtained in Section 8.1 for the thermal distri-
bution function, and similarly

〈ak(τ1)a
†
k′(τ2)〉0 = 〈aka

†
k〉0 δk,k′ eEk(τ2−τ1)

= {1 + ε〈a†
kak〉0} δk,k′ eEk(τ2−τ1)

= δk,k′ eEk(τ2−τ1)

1 − εe−βEk
. (8.29)

On comparing the right-hand sides of Equations (8.28) and (8.29) with the defini-
tions given of limited contractions, we see that these are just the results as specified,
so it has been established that Equation (8.27) is true for the case of m = 2.

Next it follows directly from Equation (8.26) that, if the result in Equation (8.27)
holds for m = M (with M denoting any positive even integer), then it must be so
for m = M + 2. Therefore, by induction, it holds for any positive even integer,
as stated.

Definition of Contractions

The remaining requirement for Wick’s theorem is to include the effect of the order-
ing operator T̂W , which we defined earlier. This will be achieved through a minor
generalization of our previous definition of a limited contraction.

With this in mind, we now define in symbols a contraction of two operators
bi(τi) and bj (τj ) by

︷ ︸︸ ︷
bi(τi) · · · bj (τj ) =

{
bi(τi) · · · bj (τj )

εbj (τj ) · · · bi(τi)

if τi > τj

if τi < τj

,

where we use
︷ ︸︸ ︷· · · · · · to denote a contraction and · · · · · · to denote a limited contrac-

tion as defined before. The preceding definition is sufficient except in the special
case in which the τ -labels are equal for two of the contracted operators. We will
need to choose a convention to deal with this particular case, and we shall adopt the

following rule: if τi = τj , which gives rise to
︷ ︸︸ ︷
bi(τi) · · · bj (τi), then we interpret this

as being

lim
η→0

︷ ︸︸ ︷
bi(τi + η) · · · bj (τi) , (8.30)

i.e., our chosen convention is to add a positive infinitesimal η to the first operator
(the one on the left).

Wick’s Theorem and Examples

The full form of Wick’s theorem, which is basically just a minor extension of the
result in Equation (8.27), can now be stated as
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〈T̂W {b1b2b3 · · · bm}〉0 =
∑[

(−1)A ×
{

Product of all T̂W -ordered
contractions taken in pairs

}]
.

(8.31)

The definition of the integer A is as before.

Proof This result follows immediately as a generalization of Equation (8.27),
where we had an analogous result in terms of limited contractions. The only dif-
ference comes because the T̂W -ordering of the products has been included in the
present result, both on the left-hand side and for the contractions on the right-
hand side. Also the sign factors (the powers of ε needed in the fermion case)
are automatically taken care of by being absorbed into the chosen definition of a
contraction.

As a simple example, taking the case of m = 4 and fermion operators, the
application of Wick’s theorem gives us the result

〈T̂W {b1b2b3b4}〉0 = 〈T̂W {b1b2}〉0〈T̂W {b3b4}〉0

+ (−1)〈T̂W {b1b3}〉0〈T̂W {b2b4}〉0

+ (−1)2〈T̂W {b1b4}〉0〈T̂W {b2b3}〉0. (8.32)

In this case, there are only three distinct ways to form pairs of operators (for the
contractions), and each −1 factor comes from an interchange of the left-to-right
order of the fermion operators. A similar result holds for bosons when m = 4,
except that all the terms on the right-hand side would have + signs. Of course,
some of the terms appearing in Equation (8.32) may be equal to zero because the
contractions are nonzero only when one operator is an ak and the other is an a

†
k with

the same value of the wave vector k.
The complexity of the algebraic expressions arising from Wick’s theorem

increases rapidly for larger m values. Thus, when m = 8, we have 7 × 5 × 3 = 105
terms when the contractions in pairs are formed. This fact strongly points the way to
developing an approach to implement Wick’s theorem that is not purely algebraic.
Eventually, we will be led to a diagrammatic (or graphical) representation of the
terms as being more practical.

8.3 The Unperturbed Imaginary-Time Green’s Function

For a product of just two operators (m = 2) we have already shown that the only
nonzero limited contractions (and hence the only nonzero contractions) are those
for an ak(τ1) operator with an a

†
k(τ2) operator, or vice versa.

We now use this property to define a GF for the unperturbed system by writing

g0
M,k(τ1 − τ2) = −〈T̂Wak(τ1)a

†
k(τ2)〉0. (8.33)
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We note that this is just identifiable as being same as the imaginary-time (or Mat-
subara) GF defined previously in Equation (3.50) of Chapter 3, but in the case of
the thermal average being taken with respect to the unperturbed Hamiltonian H0.
From Wick’s theorem we can also reexpress this imaginary-time GF equivalently
in terms of the contraction notation as

g0
M,k(τ1 − τ2) = −

︷ ︸︸ ︷
ak(τ1)a

†
k(τ2) . (8.34)

Therefore, from our previous expressions for nonzero contractions it follows that
if τ1 > τ2 we have

g0
M,k(τ1 − τ2) = −〈aka

†
k〉0e

Ek(τ2−τ1) = −(1 + εnk)e
Ek(τ2−τ1), (8.35)

whereas if τ1 < τ2 we have

g0
M,k(τ1 − τ2) = −ε〈a†

kak〉0e
Ek(τ2−τ1) = −εnke

Ek(τ2−τ1). (8.36)

We recall that the unperturbed distribution function nk is defined in Equation (8.7)
for bosons and fermions.

In principle, we can now put everything together to evaluate the terms like
〈T̂W {H1(τ1)H1(τ2) · · ·H1(τn)}〉0 as required for the S-matrix expansion in Sec-
tion 8.1. From Equation (8.14) we would then have for the unperturbed average of
the S matrix

〈S(β)〉0 = 1 +
∞∑

n=1

(−1)n

n!

∫ β

0
dτ1

∫ β

0
dτ2 · · ·

∫ β

0
dτn

× 〈T̂W {H1(τ1)H1(τ2) · · ·H1(τn)}〉0. (8.37)

In a final step we would use Equation (8.9) to obtain the partition function Q for
the interacting system. Rather than summing over all orders of perturbation (for n

ranging from 1 to ∞), we would normally in practice introduce an approximation
by including all terms up to a chosen finite value of n.

8.4 Diagrammatic Representation

Instead of proceeding algebraically (which soon becomes tedious in terms of apply-
ing Wick’s theorem and dealing with the preceding integrations over the τ -labels),
it is convenient to relate the GF formalism to a diagrammatic representation that
makes it easier to keep track of all the terms. We shall see in the next few pages
how this can be done in a manner that systematically deals with all the products
that come about when applying Wick’s theorem. The diagrams are often referred
to as Feynman diagrams following the pioneering work by R. P. Feynman, who
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Figure 8.1 The diagrammatic representation of a H1(τi) interaction vertex, show-
ing the four lines either emerging from (as a creation operation) or terminating at
(as an annihilation operation) the vertex.

introduced a diagram representation in term of lines (representing a GF or “propa-
gator” evolving in real time) and interaction vertices [125–127]. In the formalism
to be presented here we shall, in fact, be using the imaginary-time GF, so there is
no useful notion in the same sense of forward and backward propagation in time.

As a starting point, we consider the nth order term in the expansion of 〈S(β)〉0

in Equation (8.37). This term involves a product of n of the H1(τi) factors, each of
which contains products like

1

2
v(q)a

†
k1

a
†
k2

ak2+qak1−q. (8.38)

We will choose to represent each H1(τi) as in Figure 8.1. The interaction v(q) is
drawn as a broken line carrying the wave-vector (or momentum) label q, and it is
also labeled with the appropriate imaginary time τ . The full lines leaving and enter-
ing the vertex represent the creation and annihilation operators, respectively, at that
vertex. In this chapter, we will be attaching a quantitative significance to the broken
and full lines, along with their labels, rather than the schematic representation that
was previously depicted in Figure 1.3.

A complete diagram is formed by drawing a vertex as described in the preced-
ing text for each H1(τi), and then joining up the full lines in all possible ways
(consistent with the direction of arrows and the wave-vector conservation). For
the simplest case of a diagram with just one interaction vertex (with label τ1)
there are only two possibilities, as shown in Figure 8.2(a). The correspondence
between Wick’s theorem and those diagrams in Figure 8.2(a) can be illustrated by
considering Equation (8.32) when applied specifically to the terms of the interaction
Hamiltonian Equation (8.38) in first order:

〈T̂Wv(q)a
†
k1

a
†
k2

ak2+qak1−q〉0 = v(q)〈T̂Wa
†
k1

a
†
k2

〉0〈T̂Wak2+qak1−q〉0

− v(q)〈T̂Wa
†
k1

ak2+q〉0〈T̂Wa
†
k2

ak1−q〉0

+ v(q)〈T̂Wa
†
k1

ak1−q〉0〈T̂Wa
†
k2

ak2+q〉0. (8.39)

These are just the three terms expected as in Equation (8.32). The first term here
involves averages 〈T̂Wa

†
k1

a
†
k2

〉0 and 〈T̂Wak2+qak1−q〉0 that are identically zero (their
contraction yields zero), while the other two terms involve contractions between an
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Figure 8.2 The diagrammatic representation: (a) the only two first-order diagrams
with no external lines; (b) an example of one of the diagrams in second order.

a† and an a operator. The latter quantities are just the imaginary time GFs, which
can be represented as the solid lines in Figure 8.2(a). After taking account of the
wave-vector conservation, the nonzero terms on the right-hand side of the preceding
equation reduce to (for fermions)

−v(q)〈T̂Wa
†
k1

ak1〉0〈T̂Wa
†
k1−qak1−q〉0 + v(0)〈T̂Wa

†
k1

ak1〉0〈T̂Wa
†
k2

ak2〉0,

where the two terms are in a one-to-one correspondence with the two diagrams
shown in Figure 8.2(a).

More generally, in the nth order of perturbation there will be n vertices, and the
lines must then be connected in all possible ways, giving a complete set of Feynman
diagrams. As an example, in Figure 8.2(b) just one of the second-order diagrams is
shown. We will return to discuss this process further at a later stage.

With each full line in any diagram that begins at a vertex labeled τ2 and ends at
a vertex τ1, it follows that we must associate a factor

g0
M,k(τ1 − τ2),

where k is the wave-vector label for the line. Typically, the τ -labels will refer to dif-
ferent vertices, as in Figure 8.2(b). In some cases, however, the τ -labels may be the
same, as in Figure 8.2(a), and the labeling convention adopted in Equation (8.30)
must be put into practice, as we describe in later examples.

Finally, to complete the evaluation of the total contribution of any diagram to
〈S(β)〉0, it is also necessary to carry out several other steps that consist of

• Including the (−1)A factor (from Wick’s theorem);

• Including the (−1)n/n! factor (from the expansion of S(β));

• Summing over all wave-vector labels (from the expression for H1); and

• Integrating with respect to each τi label from 0 to β (from the expansion
of S(β)).
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Before attempting to go through these steps, it is convenient to discuss some ways
in which carrying them out can be simplified in the diagrammatic context.

The Linked-Cluster Theorem

The various diagrams may be classified as being either linked or unlinked, depend-
ing on whether they form one connected entity (between vertices) or if they have
several unconnected parts. The first-order diagrams are (by neccessity) all linked,
but the diagrams in second order (and higher) are not necessarily so. As a simple
exercise, it is instructive to try drawing some second- and/or third-order diagrams,
finding examples of linked and unlinked diagrams. We remark that the diagram in
Figure 8.2(b) is a linked diagram, because there is a network of connections (by GF
lines) between all the vertices (dashed lines). By contrast, the second-order diagram
formed by drawing the two first-order diagrams in Figure 8.2(a) alongside one
another as a single entity would be an unlinked diagram. The alternative terms con-
nected and unconnected are also used in this context, instead of linked and unlinked.

From Equation (8.9) and our proof of Wick’s theorem in Section 8.2, we have
established for the partition function Q that

Q

Q0
= 〈S(β)〉0 =

∑ [
All distinct diagrams with no external lines

]
. (8.40)

Here “all” means that we must include both linked and unlinked diagrams (without
making any distinction), and “with no external lines” means that all the GF lines
have to join up (i.e., they correspond to all possible contractions being made in
pairs). We emphasize this latter point here because later in this chapter we shall
come across other diagrams with external lines.

By detailed counting arguments based on the number of possible contractions
giving either linked or unlinked diagrams and also by using permutation theory, it
can be proved that

ln

(
Q

Q0

)
=
∑[

All distinct linked diagrams
with no external lines

]
. (8.41)

This result is known as the linked-cluster theorem. The proof involves some spe-
cialized mathematics and will not be given here, but very good discussions can be
found in [50, 51]. The use of this theorem simplifies the analysis by allowing us to
restrict attention to the evaluation of a smaller number of diagrams (i.e., only the
linked or connected ones). This procedure then leads to the natural logarithm of
Q/Q0, instead of Q/Q0.

The appearance of a logarithmic term on the left-hand side of Equation (8.41) is
very convenient in view of some standard definitions in thermodynamics. Because
we are working, in general, in a grand canonical ensemble (see, e.g., [3]) it is
convenient to make use of the so-called grand potential �, which is one of
the thermodynamic potentials. It applies for systems that are held at the same



8.4 Diagrammatic Representation 217

temperature and chemical potential as the environment, but the particle number can
vary. It satisfies the defining relationship to the grand partition function that

ln(Q) = −β�, (8.42)

where again β = 1/kBT . By forming various partial derivatives of � we may
deduce other thermodynamic quantities, e.g., the mean number of particles corre-
sponds to

〈N〉 = −
(

∂�

∂μ

)
T ,V

.

With the introduction of the thermodynamic potential we see that Equation (8.41)
becomes

�� ≡ (� − �0) = − 1

β

∑[
All distinct linked diagrams

with no external lines

]
. (8.43)

Here �� is the correction to the thermodynamic potential due to the perturbation
terms, and �0 is the unperturbed part of the thermodynamic potential given by
(−1/β) ln Q0.

The Factor (−1)A

We recall the definition of the integer A, which appears in Wick’s theorem in
Equation (8.31), as being the number of interchanges of fermion operators required
to bring about the set of contractions for Wick’s theorem. For a boson system, we
have simply A = 0 and so the (−1)A factor is unity. For the fermion case, however,
we need to know how to interpret this factor diagrammatically. Fortunately, this
turns out to be very simple.

In terms of the corresponding diagrams, it is possible to prove that each closed
fermion loop corresponds to an odd number of interchanges of fermion operators.
Therefore, we may associate a factor of −1 with each closed (or complete) fermion
loop. It is necessary only to count up how many such loops there are in any partic-
ular diagram, and the (−1)A algebraic factor coming from Wick’s theorem can be
replaced by the simple diagrammatic rule:

“For any diagram, we include an overall factor of (−1)L, where L is the number of
closed fermion loops.”

As an exercise, try finding the (−1)A values corresponding to the first- and second-
order diagrams in Figure 8.2 for the fermion case. Another case for consideration
is included in Problem 8.1.

Symmetry Factors

There is a rather subtle property concerning the proper way in which the different
contractions that correspond to Wick’s theorem should be counted in terms of the
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Figure 8.3 Some examples of third-order free-energy diagrams used for consider-
ation of symmetry factors.

diagrammatic representations. It eventually leads to the concept of a symmetry
factor to be associated with any diagram.

We will explore these ideas by considering some examples, starting with the
third-order diagrams shown in Figure 8.3. It is obvious that they must all eventually
lead to the same contribution on evaluation (because they differ only by a permuta-
tion of the τ -labels, and the τ -labels are dummy variables that are later integrated
from 0 to β).

In general, we shall get the same contribution from sets of diagrams that differ
only in that their τ -labels are permuted. Such diagrams are said to be topologically
the same. As a consequence, it would seem to be sufficient to consider only one
member of the set, and to correct for this by introducing a factor n! in the case of
nth order diagrams. This would seem to cancel out nicely with the 1/n! coming
from the S-matrix expansion as in Equation (8.37). However, this would represent
an oversimplification, which can lead to an incorrect counting of diagrams. The
reason is that some of the n! diagrams might not be distinct diagrams (i.e., they
might correspond to the same set of contractions in applying Wick’s theorem,
and so they should be counted once). One way to think about this situation is
as follows. Suppose we have some diagrams that have their τ -labels inserted, so
that the vertices are labeled with {τ1,τ2, . . . ,τn} in a nth-order diagram. If any one
of these diagrams can be “deformed” (through a repositioning of the vertices and
the connecting GF lines, without breaking any of the lines or connections) into
another one of the diagrams, then those two diagrams come from the same set of
contractions and are not distinct.

A specific example to illustrate the preceding argument is provided by the three
labeled third-order diagrams shown in Figure 8.3, which all have three vertices
that connect the two different GF loops. Clearly, there are 3! = 6 such diagrams
in total (from considering all possible permutations of the three τ -labels). There is
an important distinction to be made, however, for the three examples shown. It is
evident that diagram (a) can be continuously deformed into diagram (b), but it can-
not be deformed into diagram (c). This is because diagrams (a) and (b) correspond
to even permutations (those with the same cyclic order) of the labels 1, 2, and 3,
whereas diagram (c) corresponds to an odd permutation.
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In this case, the diagrams that differ only in having their labels in the same
cyclic order are not to be regarded as distinct diagrams because they correspond
to the same set of contractions in Wick’s theorem, as explained. The only distinct
cases here are those corresponding to the odd and the even permutations. Hence,
the overall counting factor here is (1/3! ) × 2 = 1/3. In a more general case,
we will evaluate only one of the diagrams of a particular (topological) type, and
we introduce a symmetry factor denoted generally as 1/p to allow for the correct
counting (of distinct contractions). It follows that in the preceding example, we have
p = 3. We shall see further examples of the use of symmetry factors in subsequent
diagrammatic calculations.

Transformation to Matsubara Frequencies

Rather than working in terms of the τ -labels that are associated with the vertices
and therefore also with the GF lines between vertices, it is convenient to transform
to a “frequency” representation by using the following identity for the unperturbed
GFs:

g0
M,k(τ ) = 1

β

∑
m

exp(−iωmτ)

iωm − Ek
, (8.44)

where the ωm are the discrete Matsubara frequencies that were defined in Equa-
tion (3.54). As discussed, they take a different form for bosons and fermions. A
proof of the important result quoted in Equation (8.44) is presented in the following
text. First we remark, on comparing the preceding result with Equation (3.53), that
the Fourier-transformed imaginary-time GF G0

k(iωm) for the unperturbed system is
given by

G0
k(iωm) = 1

iωm − Ek
. (8.45)

This result is consistent, as expected, with the Matsubara GF expression deduced
in Subsection 4.1.3 for noninteracting systems.

Proof First we will take the case of fermions and τ < 0 for Equation (8.44). It
follows from Equation (8.36) that the appropriate expression for the unperturbed
GF is

g0
M,k(τ ) = e−Ekτ

eβEk + 1
. (8.46)

Next we consider a related contour integral in the complex plane that corresponds
to ∫

C

e−ωτdω

(ω − Ek)(eβω + 1)
, (8.47)

where the contour C is taken to be as shown in Figure 8.4(a) with the closure
being at ±∞ on the imaginary axis. The poles enclosed by this contour are those
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Figure 8.4 Contours and poles for the contour integration used in Fourier trans-
forming the unperturbed GF in Section 8.3, showing (a) the original contour and
(b) the deformed contour.

associated with the term (eβω + 1) in the denominator of the contour integral. They
occur when eβω = −1, which means

ω = (2m + 1)iπ

β
≡ iωm.

This result provides us with the connection to the Matsubara frequencies for
fermions defined in Equation (3.54). It is now a straightforward step to use the
residue theorem in complex analysis to prove that∫

C

e−ωτdω

(ω − Ek)(eβω + 1)
= 2πi

1

β

∑
m

exp(−iωmτ)

iωm − Ek
. (8.48)

The preceding result follows because the contour encloses an infinite sequence of
poles (for ω) at discrete points along the imaginary axis, as shown, whereas the
other pole on the real axis at ω = Ek is not enclosed and does not contribute.

Next, we continuously deform the contour C by “opening it out” so that it
becomes as shown in Figure 8.4(b). The form of the exponential factors allows
the modified contour to be completed at ±∞ on the real axis without there being
any contribution to the integral from this part. Now the only pole enclosed is the
one on the real axis at ω = Ek. We use the residue theorem again to evaluate the
same integral, but with the modified contour. This gives
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C

e−ωτdω

(ω − Ek)
(
eβω + 1

) = 2πi
e−Ekτ

eβEk + 1
= 2πig0

M,k(τ ). (8.49)

By comparing the right-hand side of Equation (8.49) with that in Equation (8.48)
we see that the required result stated in Equation (8.44) for τ < 0 is obtained. With
only minor changes the proof can be carried out for fermions when τ > 0.

There is a very similar proof for the case of bosons, again treating τ < 0 and
τ > 0 separately. The only essential difference is that the poles now associated
with a term (eβω − 1) appearing in the denominator of the contour integral occur
for eβω = 1, which means that

ω = 2miπ

β
≡ iωm

for the boson case, consistent with Equation (3.54).

8.4.1 The τ -Dependence of a Vertex

One advantage of the previous result, in which we obtained a “frequency” rep-
resentation for the GFs, is that we arrive at an easy way of dealing with the τ -
dependence of any vertex in a diagram. It follows from Equation (8.44) that the
overall τ -dependence of a vertex comes from

exp
[
τ(iωm1 + iωm2 − iωm3 − iωm4)

]
.

When the τ -label is integrated over, with the limits of integration being taken
from 0 to β as in Equation (8.37), there are two cases depending on whether �ωm ≡
(ωm1 + ωm2 − ωm3 − ωm4 ) is zero or otherwise. First, if �ωm �= 0, we can perform
the integration as specified to obtain

exp
[
β(iωm1 + iωm2 − iωm3 − iωm4)

]− 1

(iωm1 + iωm2 − iωm3 − iωm4)
. (8.50)

This result can immediately be simplified because, using the definitions for the
Matsubara frequencies, we see that

iωm1 + iωm2 − iωm3 − iωm4 = 2iπ

β
(m1 + m2 − m3 − m4)

≡ 2iπ

β
M, (8.51)

where M denotes a nonzero integer, irrespective of whether we have boson or
fermion operators. This is equivalent to stating that the sums or differences of an
even number of Matsubara frequencies is always formally the same as a boson
frequency. Then we see by using Equation (8.51) that the exponential term in the
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numerator of Equation (8.50) is unity, implying a zero result for the τ -integration.
However, when �ωm = 0, we have simply an integration over unity leading to a
factor of β. Hence, in general we conclude that in the frequency representation each
vertex gives rise to a factor of βδm1+m2,m3+m4 . This Kronecker delta just corresponds
to a frequency conservation condition at each vertex.

It can therefore be seen that there is a great advantage in using the frequency
representation in which iωm labels are associated with each GF line because the
τ -integration required for each vertex is automatically taken care of when we make
use of the frequency conservation condition at that vertex.

8.4.2 Rules for Perturbation Summation

We can now put together all the results for evaluating diagrams obtained so far and
summarize them in terms of a straightforward set of rules as follows:

Draw all the topologically distinct linked diagrams with no external lines, and
then calculate the contribution of each diagram according to the rules stated in
the following text. The sum for the set of diagrams gives their contribution to
�� = � − �0.

1. Label the diagrams (both full lines and vertex lines) with wave vector and
frequency so that these quantities are conserved at each end of the vertex.

2. Associate a factor 1
2βv(q) with each vertex line, where q is the wave vector

along the vertex.

3. For each full line associate a factor (1/β)G0
k(iωm), where k and iωm are the

wave vector and frequency along the full line.

4. Include an extra factor of (−1/β).

5. Include a factor (−1)L/p, where L is the number of closed fermion loops and
p is the symmetry number.

6. Include a factor (−1)n, where n is the number of vertices in the diagram.

7. Finally, sum over all wave-vector and frequency labels within the conservation
restrictions imposed by rule 1.

It turns out that there is an additional diagram rule needed, which we will intro-
duce later as required.

8.4.3 Examples of Evaluating Diagrams

We take the case of fermion systems in the following examples. The simplest
diagrams are the first-order diagrams shown earlier in Figure 8.2(a), where each
one has been labeled with wave vector and frequency as described earlier. We start
with the diagram on the right for which it is necessarily the case that q = 0 along
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the vertex. Also, we must have p = 1 because this is a first-order diagram. By
applying the set of diagrammatic rules we find∑

k1,k2

∑
m1,m2

1

2
βv(0)

(
− 1

β

)(
1

β

)2
(−1)2

1
(−1)1G0

k1
(iωm1)G0

k2
(iωm2)

= v(0)

2β2

∑
k1,m1

G0
k1

(iωm1)
∑

k2,m2

G0
k2

(iωm2). (8.52)

The two sets of double summations in the last line are independent of one another.
Suppose we consider either one of them, say∑

k1,m1

G0
k1

(iωm1) =
∑

k1

{∑
m1

1

iωm1 − Ek1

}
.

We could in principle evaluate the frequency summation by a contour integral
method similar to that used for the proof of Equation (8.44). In its preceding form,
however, it does not converge properly at infinity in the complex ω plane. We
can deal with this difficulty by recalling the convention adopted earlier in Equa-
tion (8.30) for a contraction in Wick’s theorem when the GF line begins and ends
at the same τ label, as is the case here. It involved adding an infinitesimal to τ in
the first label. The consequence now is that it leads us to an extra rule, which can
be stated as follows:

Extra diagram rule: If a line is self-contracted (meaning that it starts and ends on
the same interaction vertex), then we include a convergence factor of exp(iωmη),
where iωm is the frequency label and η denotes a positive infinitesimal.

Then, using Equation (8.44) and setting τ = −η, we have∑
k1,m1

exp(iωm1η)G0
k1

(iωm1) =
∑

k1

β

eβEk1 + 1
= β

∑
k1

nk1, (8.53)

from which it follows that the contribution from the diagram on the right in
Figure 8.2(a) is simply

1

2

∑
k1,k2

v(0)nk1nk2 .

In a similar way the contribution from the other diagram in Figure 8.2(a) is found
to be given by∑

k1,q

∑
m1,m2

1

2
βv(q)

(
− 1

β

)(
1

β

)2
(−1)1

1
(−1)1

× exp(iωm1η)G0
k1

(iωm1) exp(iωm2η)G0
k1−q(iωm2)

= − 1

2β2

∑
k1,q

v(q)

[∑
m1

exp(iωm1η)G0
k1

(iωm1)

]
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×
[∑

m2

exp(iωm2η)G0
k1−q(iωm2)

]

= −1

2

∑
k1,q

v(q)nk1nk1−q.

The two diagrams appearing in Figure 8.2(a) are the only topologically distinct
first-order diagrams. On adding the two contributions just found in the preceding
text, we conclude (after some relabeling of wave vectors as dummy summation
variables) that the total result for �� in first order of perturbation is

�� = 1

2

∑
k1,q

{v(0) − v(q)} nk1nk1−q. (8.54)

The preceding result was derived for fermions, but it is easy to show that the
corresponding result for the boson case is simply

�� = 1

2

∑
k1,q

{v(0) + v(q)} nk1nk1−q, (8.55)

where the distribution functions are now those for Bose–Einstein statistics.
In the second order of perturbation theory (n = 2), where each diagram has two

interaction vertices, there are several diagrams to evaluate for ��, even when we
remember that only the linked (or connected) diagrams need to be considered. One
of these diagrams is shown in Figure 8.2(b). It is instructive (see Problem 8.1) to
draw all the topologically distinct linked diagrams in second order and to evaluate
one of them (e.g., the diagram in Figure 8.2(b)).

8.5 The Interacting Imaginary-Time Green’s Function

In the diagrammatic context as used so far, we have employed only the non-
interacting (or unperturbed) GFs. These featured as the solid lines in the Feynman
diagrams, having been formally defined in Equation (8.33) and taking the values
found in Equations (8.35) and (8.36). For the interacting GF case we already
introduced the corresponding imaginary-time GF following Equation (3.50) as

gM,k(τ1 − τ2) = −〈T̂W ǎk(τ1)ǎ
†
k(τ2)〉, (8.56)

where the transformed operators ǎ(τ ) and ǎ†(τ ) at any label τ are related to the
corresponding a and a† operators and the full Hamiltonian H according to Equa-
tion (3.49).

Recalling now the definition of the S-matrix in Equation (8.8) and using the
definition for an equilibrium thermal average, we can eventually reexpress the GF
definition as
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gM,k(τ1 − τ2) = −〈T̂Wak(τ1)a
†
k(τ2)S(β)〉0

〈S(β)〉0
. (8.57)

The algebraic proof of the preceding result, which can be omitted in a first reading,
proceeds as follows. We introduce a new operator S defined in terms of τ labels by

S(τ1,τ2) = T̂W

[
exp

{
−
∫ τ1

τ2

dτH1(τ )

}]
. (8.58)

This is a generalization of the shorthand result for the S-matrix in Equation (8.15),
and it must be interpreted in the same fashion. Clearly, we have the identity that
S(β) = S(β,0). Also, for any τ ′ satisfying τ1 < τ ′ < τ2, we have

S(τ1,τ2) = T̂W

[
exp

{
−
∫ τ ′

τ2

dτH1(τ ) −
∫ τ1

τ ′
dτH1(τ )

}]

= T̂W

[
exp

{
−
∫ τ ′

τ2

dτH1(τ )

}
exp

{
−
∫ τ1

τ ′
dτH1(τ )

}]

= S(τ1,τ
′)S(τ ′,τ2).

We may note that, due to the effect of the T̂W operator, the steps in the derivation are
not as trivial as it seems at first. Next it follows from the above property that when
τ1 > τ2 we have other similar relationships like S(τ1,τ2) = S(τ1,0)

(
S(τ2,0)

)−1

and S(β,τ ) = S(β)
(
S(τ,0)

)−1
. From these results (see Problem 8.5), taken

together with the definition of the S-matrix in Equation (8.8), we may arrive at the
GF expression quoted in Equation (8.57).

It is now evident that both the numerator and denominator parts of the right-
hand side in Equation (8.57) include factors of S(β). Therefore, it follows from the
S-matrix expansion in Equation (8.13) that we again have thermal averages of the
form 〈T̂W {b1b2b3 · · · bm}〉0, where m denotes an even integer. Hence, we can use
Wick’s theorem, as before, to express the results in terms of summations over all
contractions of the operators in pairs.

The outcome from the previously mentioned discussion is that we can again
set up a diagrammatic representation for the GF terms in Equation (8.57) in a very
similar manner to what was done previously for contributions to the thermodynamic
potential �. The only essential difference arises from the extra operator terms that
appear in the numerator of Equation (8.57), as well as the S(β) in the denominator.
Specifically, the extra a

†
k operator in the numerator of the interacting GF gives an

external line (meaning one that does not begin at a vertex) and the extra ak operator
gives another external line (one that does not end at a vertex). Hence, we have
two external lines in any diagram for the GF, so in general they look schematically
like Figure 8.5 where the shaded area represents any other allowed diagrammatic
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Figure 8.5 The general form of a diagrammatic contribution to the interacting
GF, as discussed in the text. By contrast with the previous closed diagrams,
there are now two external GF lines representing the role of the extra creation
and annihilation operators, a

†
k(τ2) and ak(τ1), respectively, in the numerator of

Equation (8.57).

Figure 8.6 Some examples of contributions to the interacting GF in (a) the first
order (n = 1) and (b) the second order (n = 2) of perturbation.

structure of lines and interaction vertices, drawn as before. By contrast, the previous
diagrams for the thermodynamic potential were closed diagrams with no external
lines. Some simple examples of diagrams for the interacting GF are shown in
Figure 8.6.

Fortunately, there are simplifications that arise, just as before for the closed
diagrams for the thermodynamic potential. It can again be proved that a linked
cluster theorem applies. What happens in this case is that the end result of restricting
attention to only the linked (or connected) diagrams has the effect of cancelling out
exactly the 〈S(β)〉0 term in the denominator of Equation (8.57). Hence, the formal
result for evaluating the GF becomes rather conveniently

gM,k(τ1 − τ2) =
∑[

All distinct linked diagrams
with two external lines

]
. (8.59)

Again, just as before, it is very cumbersome to evaluate the diagrams directly
using the τ -labels because these have to be integrated over. The solution again is to
define a transformation to a frequency representation by analogy with the result for
the noninteracting GF. Following Equation (3.53) we write the GF as

gM,k(τ ) = 1

β

∞∑
m=−∞

e−iωmτGk(iωm), (8.60)

where the imaginary frequency iωm is defined for the boson and fermion cases by
the same expressions as before. At any interaction vertex (with two lines entering
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and two leaving) we will have conservation of frequency, as before, but the external
lines will carry a fixed imaginary frequency iωm (as well as the wave vector k). We
note that, in the case of the noninteracting GF, the previous result was that quoted
in Equation (8.44).

We can now write down a set of diagrammatic rules for calculating the interact-
ing GF that are closely analogous to those used for the thermodynamic potential �.

Diagrammatic Rules for Evaluating Gk(iωm)

Draw all the topologically distinct linked diagrams with one external line (k,iωm)

entering and another external line (k,iωm) leaving. Calculate the contribution of
each diagram to Gk(iωm) according to the rules given in the following text.

1. Label the diagrams so that the wave vector and frequency are conserved at each
vertex.

2. Associate a factor βv(q) with each vertex, where q is the wave vector along the
vertex.

3. For each full line associate a factor (1/β)G0
k(iωm), where k and iωm are the wave

vector and frequency along the line. Also include an extra factor of exp(iωmη)

if the line is self-contracted.
4. Include a factor (−1)L/p, where L is the number of closed fermion loops and

p is the symmetry number.
5. Include a factor (−1)n, where n is the number of vertices in the diagram.
6. Finally, sum over all wave-vector and frequency labels within the restrictions

imposed by rule 1.

It is important to comment that we do not sum over the external k and iωm because
these are fixed labels. Note that most of these rules are the same or similar to the
previous case of those used for �, where there were no external lines.

Proper Self-Energy and Dyson’s Equation

We now introduce the concept of self-energy (and proper self-energy, in particular).
First, we note that some examples (in no special order) of simple diagrams for
Gk(iωm) are shown in Figure 8.7.

It becomes immediately apparent by inspection that, even using just the two
simple loop structures chosen here, there are many diagrams that can be formed,
and the process of selecting them appears to be rather haphazard. Therefore, it is
useful if we can develop a more systematic procedure for writing down a series of
contributions to Gk(iωm). One approach, which can be followed quite generally,
is to classify the sum of all diagrams involving a particular structure of vertices
(e.g., the loop structures that occur in some parts of Figure 8.7). This process is
represented by the diagrammatic series shown in Figure 8.8.
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Figure 8.7 Some diagrammatic structures that contribute to the interacting GF
Gk(iωm) in low orders of perturbation.

Figure 8.8 A diagrammatic series leading to Dyson’s equation. There are GF lines
G0 joining the shaded parts, which are labeled as � and explained in the text.

Here the interacting GF Gk(iωm) is denoted by a heavy arrowed line, while the
noninteracting GF G0

k(iωm) is denoted by a (lighter) arrowed line, as before. By
the conservation properties, all the lines mentioned in the preceding text carry the
same labels (k,iωm). The shaded parts denote any diagrammatic structure (with an
arbitrary number of interactions) having the special property that it cannot be sepa-
rated into two parts by breaking one GF line. Some examples of proper self-energy
diagrams are shown in Figure 8.9(a); the diagrams in Figure 8.9(b) are not proper
self-energies because the breaking of one line would separate them into two parts.

The summation of the series of diagrams represented by Figure 8.8 can be
expressed as

Gk(iωm) = G0
k(iωm) + G0

k(iωm)(1/β)�(k,iωm)G0
k(iωm)

+ G0
k(iωm)(1/β)�(k,iωm)G0

k(iωm)(1/β)�(k,iωm)G0
k(iωm) + · · · .

It can be seen by a process of iteration with the last term on the right-hand side of
the preceding expression that this is just the same as

Gk(iωm) = G0
k(iωm) + G0

k(iωm)(1/β)�(k,iωm)Gk(iωm). (8.61)
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Figure 8.9 Some examples of self-energy diagrams that (a) are proper and (b) are
not proper.

The preceding result is known as Dyson’s equation. It gives a connection between
G and G0 for any choice of the proper self-energy �. A separate calculation must
be made for � using the diagrammatic rules.

Leaving aside the evaluation of � until later, we can easily rearrange Dyson’s
equation into an alternative form as

[G0
k(iωm)]−1 = [Gk(iωm)]−1 + (1/β)�(k,iωm). (8.62)

If Equation (8.45) for the noninteracting GF is substituted into the preceding equa-
tion, the result for the interacting GF can easily be obtained more explicitly as

Gk(iωm) = 1

iωm − Ek − (1/β)�(k,iωm)
. (8.63)

In other words, the interacting GF is obtained from the noninteracting GF by mak-
ing the formal replacement

Ek → Ek + (1/β)�(k,iωm). (8.64)

Because any pole of the interacting GF corresponds to the vanishing of its energy
denominator, we have arrived at a procedure to find the poles in any order of
perturbation (for �). It is necessary to replace the discrete imaginary frequency
iωm by a (usually complex) frequency label ω̃ through an analytic continuation as
in Chapter 3, and then we look for the self-consistent solution(s) of

ω̃ − Ek − (1/β)�(k,ω̃) − i(1/β)�(k,ω̃) = 0. (8.65)

Here the proper self-energy �, which might be complex in general, has been
expressed in terms of its real and imaginary parts as � = � + i�.

Although Equation (8.65) should be solved self-consistently, it is often possible
to find approximate solution(s). For example, if the interaction terms are weak
(implying that the real and imaginary parts of � are small), the solution for ω̃
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will still be approximately real and close to Ek and so we can consider replacing
�(k,ω̃) and �(k,ω̃) by �(k,Ek) and �(k,Ek), respectively. Hence, an approximate
solution of Equation (8.65) is

ω̃ = Ek + (1/β)�(k,Ek) + i(1/β)�(k,Ek). (8.66)

The physical interpretation of the preceding result is as follows. The real part of
the preceding expression shows that the energy Ek for a free particle is modified,
or renormalized, to become Ek + �Ek, where

�Ek = (1/β)�(k,Ek). (8.67)

The occurrence of an imaginary part (usually known as the damping) in the pole of
the GF is inversely related to a decay time (or lifetime) of the particle. If we write
the complex solution for the frequency as ω̃ = ω − iω′′, then it is clear for any
Fourier component that

exp(−iω̃t) = exp{−i(ω − iω′′)t} = exp(−iωt) exp(−ω′′t). (8.68)

This confirms that the real part ω is related to the renormalized frequency, as
deduced in the preceding text, while the lifetime Tk of the excitation is given by

Tk = 1

ω′′ = −β{�(k,Ek)}−1. (8.69)

Examples for the evaluation of self-energy diagrams to calculate the interact-
ing GFs, as well as the renormalized energy and damping of the excitations, will
be given in the next chapter. In some simple theories, such as those where the
proper self-energy is calculated only to some relatively low order in the perturbation
expansion, we might find that � is real. In these cases, we have a renormalization
for the energy of the excitation but the damping is zero.

Problems

8.1. One of the Feynman diagrams contributing to the thermodynamic potential
� in second order of perturbation is depicted in Figure 8.2(b). Add to this
by drawing all the other topologically distinct linked diagrams that occur in
second order.

8.2. Draw four examples of third-order diagrams that contribute to the thermody-
namic potential � for an interacting boson or fermion system. Keep in mind
that only the linked, or connected, diagrams with the appropriate number of
interaction vertices are to be considered.

8.3. The Feynman diagram shown in Figure 8.10 represents a second-order con-
tribution to the thermodynamic potential �. In terms of the labeling scheme
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Figure 8.10 A diagram representing a second-order contribution to the thermody-
namic potential (see Problem 8.3). A labeling scheme is included.

Figure 8.11 Another diagram representing a second-order contribution to the
thermodynamic potential (see Problem 8.4).

shown in the figure, employ the diagrammatic rules to obtain an expression
for the contribution to � for the case of a fermion system. Do not in this case
carry out the summations over the internal frequencies or wave vectors, but
indicate where they should be applied.

8.4. The Feynman diagram shown in Figure 8.11 represents another second-order
contribution to the thermodynamic potential �. Insert wave-vector and fre-
quency labels as appropriate, and employ the diagrammatic rules to obtain
an expression for the contribution to � for the case of a boson system. Now
carry out the summations over the internal frequencies (noting that a double
pole arises in one of the summation).

8.5. By using the properties described in the text for the generalized quantity
S(τ1,τ2), which was defined in Equation (8.58), prove that Equation (8.56)
can be rewritten in terms of unperturbed thermal averages as stated in Equa-
tion (8.57). It will help to make use of some of the properties of the trace (Tr)
operator and the definition in Equation (8.8).

8.6. Evaluate the contribution to the proper self-energy for a boson system arising
from the Feynman diagram shown in Figure 8.12(a). Next use your result to
deduce the contribution (if any) to the renormalized energy and the damping
of a boson due to this self-energy term.
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Figure 8.12 Two diagrammatic contributions to the self-energy of the interacting
GF Gk(iωm) (see Problems 8.6 and 8.7).

Figure 8.13 A contribution to the proper self-energy �(k,iωm) (see Problem 8.8).

8.7. Repeat the previous Problem 8.6, but taking in this case the proper self-energy
contribution of a boson system to be represented by the Feynman diagram
shown in Figure 8.12(b).

8.8. Consider the diagrammatic contribution to the proper self-energy �(k,iωm)

shown in Figure 8.13 for an interacting fermion system. Label this diagram
with appropriate wave vectors and frequencies (consistent with the conserva-
tion properties at vertices). Then write down a formal expression for its total
contribution in terms of the different factors that arise from the application of
the diagram rules. Do not attempt to carry out any of the summations.

8.9. In Section 8.5 it was shown that the calculation for the modified poles of
a renormalized GF requires finding the self-consistent solution of Equa-
tion (8.65), and we gave an approximate solution in Equation (8.66). Now
obtain, as follows, an improved solution in the special case where the self-
energy is real (i.e., there is no damping). Instead of simply replacing the
frequency label by Ek in the self-energy, suppose we now make a Taylor
series expansion about the point with ω = Ek on the real axis. Keeping only
the lowest-order terms, deduce the leading-order correction to the result given
in Equation (8.66).
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Applications of Diagrammatic Methods

In this final chapter, we present some applications and examples of the diagram-
matic perturbation methods that were developed in Chapter 8. Sometimes it will
be the case that certain topics or systems that were analyzed in the earlier chapters
of this book using either the Green’s function (GF) equation-of-motion method
(typically in conjunction with a decoupling approximation) or the linear response
approach can also be revisited in terms of the diagrammatic perturbation theory and
developed further. Some examples of this occur with Hartree–Fock (HF) theory and
with plasmon excitations (both in an interacting electron gas). In some other cases,
we will take advantage of the perturbation approach to study some higher-order
effects that might not be reliably taken into account using decoupling approxima-
tions or linear response methods (e.g., interactions between SWs in ferromagnets).

In addition, we also consider some applications involving other types of diagram-
matic formalisms. These include the scattering of particles by random distributions
of static impurities and unconventional diagrammatic techniques applied directly
to spin operators. The latter case requires a special treatment because the spin
operators behave neither as bosons or fermions, so our proof of Wick’s theorem
given in Chapter 8 does not apply.

9.1 Hartree–Fock Theory for Fermions

The simplest contributions to the proper self-energy for the interacting GF Gk(iωm)

in the perturbation treatment are those arising in first order, i.e., they come from dia-
grams with just one interaction vertex. The only diagrams of this type for �(k,iωm)

are those shown in Figure 9.1, where the external points are understood to have the
labels {k,iωm} entering and leaving, and we will sum the contributions from the
two diagrams to get the total proper self-energy in first order of perturbation.

233
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Figure 9.1 The two first-order Feynman diagrams for the proper self-energy
�(k,iωm), corresponding to Hartree–Fock theory for an interacting fermion gas.

First we consider diagram (a), which can be labeled with wave vector and fre-
quency as shown. On applying the diagram rules given in Section 8.5 of Chapter 8
for this case we obtain

�(a)(k,iωm) =
∑
k′,m′

βv(0)

(
1

β

)
(−1)2

1
exp(iωm′η)G0

k′(iωm′)

=
∑

k′
v(0)

∑
m′

exp(iωm′η)G0
k′(iωm′) = β

∑
k′

v(0)nk′, (9.1)

where the frequency summation in the final stage has been carried out as before
in Chapter 8, taking account of the occurrence of a convergence factor exp(iωm′η)

due to a self-contracted GF line. In the final expression nk′ denotes the Fermi–Dirac
(FD) distribution function. Similarly, for diagram (b) we find

�(b)(k,iωm) =
∑
k′,m′

βv(k − k′)
(

1

β

)
(−1)

1
exp (iωm′η)G0

k′(iωm′)

= −β
∑

k′
v(k − k′)nk′ . (9.2)

On summing these two diagrammatic contributions, we find that the total proper
self-energy in first order is

�(k,iωm) = β
∑

k′

{
v(0) − v(k − k′)

}
nk′ . (9.3)

We notice that, in the present first-order perturbation approximation, � is real and is
also independent of the external frequency label iωm. It follows therefore (e.g., from
the replacement scheme given in Equation (8.64)) that the renormalized energy is

Ek +
∑

k′

{
v(0) − v(k − k′)

}
nk′ . (9.4)

This result is just the diagrammatic equivalent of the HF theory, which we discussed
earlier in Chapter 5 in terms of a decoupling approximation. Comparison can be
made, for example, with Equation (5.10). Clearly there is no contribution to the
damping in this order of perturbation.
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An advantage of the diagrammatic technique is that it presents a means to
improve on HF theory. To do so, we would need to evaluate all diagrams for the
proper self-energy that have two interaction vertices. Suppose we now denote the
total proper self-energy up to second order as �(1) + �(2), where �(1) is the first-
order contribution made up of the two diagrams that we already evaluated. It is
a useful exercise to draw the set of distinct diagrams contributing to the proper
self-energy in second order. You should be able to find six (see Problem 9.1).
It turns out (as can be directly established by evaluating each of them) that four
of these diagrams give real contributions to �(2). Therefore they renormalize the
energy, but they do not contribute to the damping. There are two of the second-
order diagrams, however, that give a complex contribution to �(2) and, therefore,
they may lead to a damping of the excitations, as well as to a renormalization
of the energy.

As an example, we will evaluate here one of these diagrams, specifically the one
shown in Figure 9.2. Applying the diagram rules in stages, we obtain

∑
q,m′

β2v2(q)

(
1

β

)
1

iωm − iωm′ − Ek−q
F 0(q,iωm′), (9.5)

where F 0(q,iωm′) denotes the contribution from the GF loop, which is defined
in Figure 9.3 and is part of the diagram in Figure 9.2. We will evaluate this loop

Figure 9.2 One of the diagrams contributing to the proper self-energy of Gk(iωm)
in second order of perturbation. It is evaluated in Section 9.1 as an example.

Figure 9.3 The diagrammatic definition of the GF loop F 0(q,iωm′) for fermions
as used in Section 9.1.
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diagram separately because it will provide a useful result for later, as well as being
needed here. It is given by

F 0(q,iωm′) = (−1)

(
1

β

)2 ∑
k′,m′′

1

(iωm′′ + iωm′ − Ek′+q)(iωm′′ − Ek′)

= − 1

β2

∑
k′

1

(iωm′ + Ek′ − Ek′+q)

∑
m′′

exp(iωm′′η)

×
[

1

(iωm′′ − Ek′)
− 1

(iωm′′ + iωm′ − Ek′+q)

]
,

where partial fractions have been used and then the exp(iωm′′η) factor has been
introduced to take care of the convergence of the individual terms for the frequency
summation. The preceding frequency summations over index m′′ are now of the
same type as encountered previously and lead to

F 0(q,iωm′) = − 1

β

∑
k′

nk′ − nk′+q

(iωm′ + Ek′ − Ek′+q)
. (9.6)

In obtaining this form of the result, we have been able to simplify one of the thermal
factors by using the property that

1

exp[β(Ek′+q − iωm′)] + 1
= 1

exp(βEk′+q) + 1
= nk′+q.

This is obtained on realizing that the internal label iωm′ behaves like a boson
frequency because it is the difference between two fermion frequencies.

It follows that the contribution to the proper self-energy of the complete diagram
in Figure 9.2 is now given by∑

k′,q,m′

−v2(q){nk′ − nk′+q}
(iωm − iωm′ − Ek−q)(iωm′ + Ek′ − Ek′+q)

. (9.7)

Finally, the m′ summation can be made (e.g., after using partial fractions once
again). The final result is straightforwardly found (see Problem 9.2) to be of the
form

β
∑
k′,q

f (k,k′,q)

(Ek′+q − Ek′ + Ek−q − iωm)
, (9.8)

where the function f (k,k′,q) in the numerator depends on the wave-vector labels
and also on β (through the thermal population factors).

To find the contribution to the damping of the quasiparticle excitation Ek from
this diagram, the procedure identified in Section 8.5 can be followed. Thus we
replace iωm by its approximate solution Ek − iη (where η is a positive infinitesimal
as before), giving for the inverse lifetime
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1

Tk
= − 1

β
�(k,Ek − iη) = − 1

β
Im�(k,Ek − iη)

= π
∑
k′,q

f (k,k′,q)δ(Ek′+q − Ek′ + Ek−q − Ek), (9.9)

where the imaginary part has been taken using the identity in Equation (3.31). It is
seen that the delta function δ(Ek′+q − Ek′ + Ek−q − Ek) ensures the conservation
of both energy and wave vector. Physically, the preceding damping term describes
a scattering process in which an incoming fermion excitation of energy Ek scat-
ters from another (thermally excited) fermion of energy Ek′ to produce a pair of
outgoing fermions with energies Ek′+q and Ek−q.

9.2 Density Fluctuations in an Electron Gas

We have considered this topic already in terms of an operator equation-of-motion
method with a decoupling approximation in Section 2.8 (see also Problem 5.11).
Eventually, it led to a description of plasmons. The same problem will now be
reexamined in terms of the diagrammatic method, and we will show that the choice
of a particular type of simple diagrammatic chain structure leads to the same formal
result as previously.

As before, we introduce the operator ρ†
q(k) = a

†
k+qak, which creates an electron

of wave vector k + q and destroys an electron of wave vector k. The net effect is the
formation of an electron-hole pair with total wave vector q. We will also make use
of the operator ρ†

q, which is obtained by summing over all k as in Equation (2.88).
Then a new imaginary-time GF can be defined by

gM(ρ†
q;ρq | τ1 − τ2) = −〈T̂Wρ†

q(τ1)ρq(τ2)〉. (9.10)

The frequency Fourier components of this GF will be denoted by F(q,iωm), where
iωm is a boson frequency label (because sums and differences of two fermion
frequencies are involved). We can now represent the diagrammatic contributions
to F(q,iωm) in terms of the noninteracting GF lines G0 for fermions and the usual
interaction vertices. The diagrams for F(q,iωm) will have a total of four external
fermion lines (two associated with the first operator in the definition, and two more
associated with the second operator). Therefore, they will have the general form
as shown in Figure 9.4, where the shaded part denotes an allowed structure made
up of any number of G0 lines and interaction vertices. It is a simple exercise to try
drawing some examples of diagrams for F(q,iωm) that are of first order and second
order in the perturbation (see Problem 9.3).

In fact, the lowest-order contribution for F (q,iωm) is the zeroth-order diagram
that has no interaction vertices, and consists only of a single loop of GF lines.
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Figure 9.4 The general form of a diagrammatic contribution to F(q,iωm) with its
four external GF lines, as discussed in the text.

Figure 9.5 Structure of the three categories of diagrams contributing to F (q,iωm)
in first order and higher (see the text).

In other words, this is just the loop diagram drawn in Figure 9.3 and evaluated
earlier as a component of a diagram for the proper self-energy. Hence, in the non-
interacting case, the result is just the expression already denoted by F 0(q,iωm′) and
quoted in Equation (9.6). We note that the poles of this quantity occur at iωm′ =
Ek+q − Ek, which is as expected because this is just the noninteracting pair energy
discussed previously in Section 2.8. For a fixed value of q (but variable k) it gives
the continuum band of energy states as described previously.

Next, we consider the inclusion of the interaction vertices in the calculation of
the GF to study the plasmon properties. We may distinguish three topologically
different types of diagrammatic contributions, as sketched in Figure 9.5. Cases (a)
and (b) correspond just to the renormalization of one or two, respectively, of the
individual fermions. They will give an energy shift (and eventually a damping) of
the individual fermions, and the overall effect is a modification of the continuum of
energy states predicted in the noninteracting limit. Case (c) is more interesting and
represents a renormalization of the electron-hole pair, and so it might be expected
to lead to new physical effects.

We start by considering, as an example, the sequence of diagrams represented in
Figure 9.6. These consist of “chains” formed by linking F 0 loops and interaction
vertices in an alternating fashion. They correspond to a geometric series that can be
summed to give

F(q,iωm) = F 0(q,iωm) − F 0(q,iωm)βv(q)F 0(q,iωm) + · · ·

= F 0(q,iωm)

1 + βv(q)F 0(q,iωm)
.
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Figure 9.6 A sequence of chain diagrams contributing to F(q,iωm).

Figure 9.7 Some ladder diagrams contributing to F(q,iωm).

Therefore, in addition to the pole contained within F 0 (which we have already seen
gives rise to an electron-hole continuum of states), the renormalized GF in this case
has addition poles that correspond to the condition βv(q)F 0(q,iωm) = −1. Using
Equation (9.6) this can be rearranged and written as∑

k

nk − nk+q

iωm + Ek − Ek+q
= 1

v(q)
. (9.11)

The preceding result can now be recognized as the equivalent of the plasmon disper-
sion relation in Equation (2.90) that was obtained previously by using an operator
equation-of-motion and decoupling method. The analogous calculation based on
the GF equation of motion was introduced in Problem 5.11. The connection was
also pointed out to the Lindhard function, which is essentially the left-hand side of
Equation (9.11) with the analytic continuation iωm → ω + iη.

Thus, we conclude that the selection of the “chain” diagrams in the present case
is just related to the RPA-type of decoupling used before. However, the inclusion of
other diagrams within our present formalism, like the “ladder” diagrams shown in
Figure 9.7, would represent additional effects previously neglected. It can be shown
explicitly that the ladder series does not give rise to plasmon effects and mostly
the diagrams have the same types of poles as F 0(q,iωm). The diagrams that give
rise to the renormalization of the plasmon excitations (through plasmon-plasmon
scattering, etc.) are more complicated and will not be described here.

9.3 Electron–Phonon Interactions

Here we discuss the application of the diagrammatic methods to electron-phonon
interactions, as a first example of interacting fields (one fermion and one boson
field). There are several reasons why electron–phonon interactions are of interest.
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For example, an effect on the electrons is that they can be scattered to different
states and hence there is a contribution to the electrical conductivity. However, an
effect on the phonons is to provide a mechanism for the damping of acoustic waves
in a metal or semiconductor. Also, in conventional superconductors the electron–
phonon interaction provides an explanation for the formation of Cooper pairs of
electrons, as required in the BCS theory of superconductivity (see Section 5.6).
Hence there has been a strong focus on electron–phonon interactions in the litera-
ture (see, e.g., review accounts in [9, 49, 128]).

For a system of interacting electrons and phonons we may write the total Hamil-
tonian in a second-quantized form as

H =
∑

k

Eka
†
kak +

∑
q

ωq

{
b†

qbq + 1

2

}
+ Hd, (9.12)

where Ek = (k2/2m∗) − μ denotes the electron energy measured relative to the
chemical potential and m∗ is an effective mass. The a and b operators refer to
the electrons and phonons, respectively. Also, ωq is a phonon frequency as in the
model Hamiltonian in Equation (2.50) for a longitudinal acoustic phonon. More
generally, this term may have a summation over several phonon branches (acoustic
or optic, and longitudinal or transverse). The mechanism for the interaction term
Hd between the electrons and phonons is typically based on the concept of the
deformation potential. In essence, if there is a phonon propagating in an ionic
crystal (or metal), there will be a displacement of the ions that will modulate the
interionic wave functions (typically taken as Bloch functions) of the ideal lattice of
ions. The leading-order effect is similar to a linear modulation of the electron-band
energy (e.g., see the book by Rickayzen [49] for a particularly elegant derivation),
which eventually gives

Hd =
∑
k,q

f (k,q)a
†
kak+q(bq − b

†
−q). (9.13)

Here f (k,q) is a strength factor for the electron–phonon interaction, and it takes
a form that depends on the electronic band structure of the material and the type
of phonon being considered. In some cases, for example with longitudinal acoustic
phonons (see [9, 128]), we can approximate by writing

f (k,q) = i

(
C1|q|√
2dωq

)
, (9.14)

where C1 is an elastic constant and d is the density of the material. The k-
dependence is neglected for f in this model. In other cases, the dependence of f

on q may be quite different, and we might simply approximate by writing f = iD,
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where D is a real constant. We note that the quoted form of Equation (9.13) is
applicable for so-called Normal (N) processes, where the total wave vector for the
creation operators is equal to that for the annihilation operators. More generally,
Umklapp (U) processes may also occur in which the two wave-vector quantities
differ by a reciprocal lattice vector.

The next step is to introduce a diagrammatic formalism. We define unperturbed
GFs for the electron and phonon systems, respectively, in the Matsubara frequency
representation by

G0
el(k,iωm) ≡ G0(ak;a†

k | iωm) = 1

iωm − Ek
, (9.15)

G0
ph(q,iωm) ≡ G0({bq − b

†
−q};{b†

q − b−q} | iωm)

= 2ωq

(iωm)2 − (ωq)2
. (9.16)

The definition of the phonon GF given here reflects the combination in which the
phonon operators appear in Equation (9.13). The final form of the expression in
Equation (9.16) can be deduced following Problem 9.4. The preceding GFs will be
represented by full lines and wavy lines, respectively. We note that iωm are fermion
and boson imaginary frequencies in the electron and phonon cases, respectively.
The interaction vertices corresponding to the terms in Hd are shown in Figure 9.8(a)
and (b) where a phonon is either being emitted or absorbed, respectively. The black
circle represents a factor for the interaction strength f (k,q).

At first sight it might seem that the previous proof of Wick’s theorem in Chapter 8
is not applicable here. This is because Hd contains an odd number of boson or
fermion operators, rather than an even number as assumed previously. However,
it will be seen that all the diagrammatic contributions of relevance involve the

Figure 9.8 The individual interactions contained in the Hamiltonian Hd for
electron–phonon interactions representing (a) phonon emission and (b) phonon
absorption. The second-order diagram (c) represents the virtual process in which
a phonon is emitted and reabsorbed, resulting in a scattering of a pair of electrons.
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Figure 9.9 The proper self-energy diagrams considered for the electronic GF due
to the electron–phonon interactions.

electron–phonon interactions in pairs, so the requirements for Wick’s theorem are
satisfied. Next we present two applications involving electron–phonon interactions.

9.3.1 Polarons

In the absence of electron–phonon interactions, the unperturbed electronic GF
G0

el(k,iωm) has a simple pole at energy Ek as in Equation (9.15). An effect of
electron–phonon interactions will be to modify (renormalize) Ek through processes
involving the emission and subsequent reabsorption of phonons. We therefore
arrive at a picture of an electron being surrounded by its “cloud” of phonons, as the
electron moves through the lattice causing distortions. The composite entity, which
is known as a polaron, has been a topic of extensive studies (see, e.g., [129–131]
for reviews).

A note of caution here is that the electron–phonon interaction is not necessarily
weak. It can be quite strong in some materials and/or for some phonon branches,
so a perturbation expansion in terms of Hd vertices will not then be appropriate. In
the following, we will consider situations in which a diagrammatic expansion using
Hd is valid. Then the lowest-order proper self-energy contributions to the electronic
GF come from the two diagrams shown in Figure 9.9.

We note first that diagram (a) will be zero in many cases. For example, if the
interaction strength f has the form given by Equation (9.14), then it vanishes for
q = 0. Even when f does not take this simple form, the diagrammatic contribution
may be unimportant [49]. Turning now to diagram (b) we find that the proper self-
energy is given formally by

�el(k,iωm) = 1

β

∑
q,m′

|f (k,q)|2 G0
el(k − q,iωm − iωm′)G0

ph(q,iωm′)

= 2

β

∑
q,m′

ωq |f (k,q)|2
(iωm − iωm′ − Ek−q)

[
(iωm′)2 − (ωq)2

] . (9.17)



9.3 Electron–Phonon Interactions 243

It is a straightforward, but lengthy, task to carry out the summation over the
imaginary boson frequency iωm′ (see Problem 9.5) by using the same methods
as described in the previous sections of this chapter. The poles for iωm′ in the
preceding equation occur at (iωm − Ek−q) and at ±ωq, from which it can be
concluded that the expression for �el(k,iωm) has energy denominators of the form
(iωm − Ek−q ± ωq). Further evaluation would depend on the detailed form of
f (k,q) and the unperturbed electron and phonon dispersion relations.

9.3.2 Cooper Pairs in Superconductivity

At this point, we refer back to the BCS theory of superconductivity covered in
Section 5.6. There we mentioned that the electron–phonon interaction was respon-
sible for the attractive component of the effective interaction between two electrons
in the formation of Cooper pairs specified by (k, ↑) and (−k, ↓), or vice versa.
We now present some results to justify this assumption, which was summarized in
Equations (5.74) and (5.75).

We turn our attention to Figure 9.8(c), which describes an interaction (a scatter-
ing event) between two electrons in which a phonon of wave vector q is emitted
and then reabsorbed. In a full QM description we also include the virtual process
in which the creation of a phonon with wave vector q is equated to annihilation
of a phonon with wave vector −q, and vice versa. These processes are of second
order in the electron–phonon vertex (the black circles in the figure) and involve a
wavy phonon GF line for G0

ph(q,iωm). The effective interaction that acts in com-
bination with the Coulomb (or screened Coulomb) interaction, denoted by v(q)

in Equation (1.64), is obtained from |f (k1,q)|2G0
ph(q,iωm). Using Equation (9.16)

this leads us to
2ωq |f (k1,q)|2
(iωm)2 − (ωq)2

. (9.18)

We notice that the preceding result depends on the imaginary frequency iωm. As in
the discussion given in Section 8.5 for the self-energy, the appropriate approximate
procedure is make the analytic continuation of iωm to a real quantity corresponding
to the net excitation energy. In the present context this energy is just the pair
energy corresponding to the external electronic GF lines, and so can be written
as (Ek1 − Ek1−q). Therefore, we arrive at an expression for the effective interaction
energy in the form

2ωq |f (k1,q)|2
(Ek1 − Ek1−q)2 − (ωq)2

. (9.19)

This quantity is seen to be negative, representing an attraction between the
electrons, whenever |Ek1 − Ek1−q| < ωq; otherwise the contribution represents a
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repulsion. If the electron–phonon interaction is sufficiently strong, the attractive
term may overcome the repulsive effects of the (screened) Coulomb interaction.
The condition for |Ek1 − Ek1−q| to be smaller than the phonon energy is usually
satisfied by having both electron energies lying close to the Fermi energy εF ,
specifically within a range from about εF − ωD to εF + ωD where ωD denotes
the Debye energy for the phonons. This leads us to the condition quoted in
Equation (5.75).

9.4 Boson Expansion Methods for Spin Waves

We now use the diagrammatic methods for further discussion of SWs in Heisenberg
ferromagnets at low temperatures and, in particular, to investigate the nature of
the interactions between SWs. These interactions are expected to lead to a renor-
malization of the SW energy and (in a sufficiently high order of perturbation) to
a SW damping. The Heisenberg Hamiltonian from Chapter 1, when rewritten in
component form, is just

H = −1

2

∑
i,j

Ji,j

{
1

2
(S+

i S−
j + S−

i S+
j ) + Sz

i S
z
j

}
− b

∑
i

Sz
i , (9.20)

where we employ the shorthand b = gμBB0, with B0 denoting the applied magnetic
field taken in the z direction.

It should be emphasized at this point that the diagrammatic method as developed
in Chapter 8 does not apply directly to spin systems. For example, the proof outlined
for Wick’s theorem was valid specifically for operators with the boson commutation
relations or the fermion anticommutation relations. The spin operators do satisfy
commutation relations, as discussed in Chapter 1, but the result is either zero or
another spin operator and not a scalar. The available options to circumvent this
difficulty for the spin systems are typically the following:

• Either we seek to develop a modified version of Wick’s theorem and a new
diagrammatic method specifically for spin systems;

• Or we transform from the spin operators to a representation in terms of boson
or fermion operators, and then we may use the standard techniques (although
Wick’s theorem might still need generalizing in some cases).

We will give examples of both methods, but in the present section we will employ
the second approach, by making use of the Holstein–Primakoff (HP) transformation
from spin to boson operators as described in Chapter 1, where the full transfor-
mation is quoted in Equation (1.85). As before, we will focus on studying the
excitations in Heisenberg ferromagnets at low temperatures (T � TC). In this case,
the spins are well aligned, so Sz

i ≈ S for each spin, implying a
†
i ai � S, as explained
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before. We once again use this property to approximate the square root terms in the
HP transformation, but now we go to higher terms in the binomial expansion so that
the interaction effects previously ignored can be included. We have(

1 − a
†
i ai

2S

)1/2

≈ 1 − a
†
i ai

4S
− a

†
i aia

†
i ai

32S2
+ · · · , (9.21)

and so it follows that

S+
i =

√
2S

[
ai − a

†
i aiai

4S
− · · ·

]
,

S−
i =

√
2S

[
a

†
i − a

†
i a

†
i ai

4S
− · · ·

]
, (9.22)

with Sz
i = S − a

†
i ai as before. When these expressions are substituted into the

Hamiltonian in Equation (9.20) we may write the result as

H = E0 + H0 + H1 + · · · , (9.23)

where E0 is a scalar constant, corresponding to the ground-state energy as quoted in
Equation (1.92). The next two terms H0 and H1 are, respectively, quadratic and
quartic in the boson operators (because there are no odd-order terms in H for
the Heisenberg Hamiltonian). We shall neglect the other higher-order terms, which
should be justified provided T � TC .

First, considering only the H0 term, we have as before

H0 = −1

2
S
∑
i,j

Ji,j

{
aia

†
j + a

†
i aj − a

†
i ai − a

†
j aj

}+ b
∑

i

a
†
i ai, (9.24)

which on Fourier transforming to a wave-vector representation, as in Equa-
tions (1.89) and (1.90), becomes

H0 =
∑

k

Eka
†
kak. (9.25)

This is the quasiparticle form of the Hamiltonian, and Ek is the SW energy at low
temperatures, as given in Equation (1.93). Hence we have the result Ek = b +
S{J (0) − J (k)} and we recall that J (k) was defined as the wave-vector Fourier
transform of the exchange interaction.

Next, we include the effects of the Hamiltonian term H1 as a perturbation. This
will provide the leading-order description of any interactions between the SWs and
is given by
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H1 = 1

2

∑
i,j

Ji,j

{
1

4

(
a

†
j a

†
j aiaj + a

†
i a

†
j aiai + a

†
i a

†
j ajaj + a

†
i a

†
i aiaj

)− a
†
i a

†
j aiaj

}
.

Here we have used the fact that i and j always refer to different sites, allowing us to
interchange the order of some operators. Then, on transforming to the wave-vector
representation, we eventually obtain

H1 = 1

2

∑
k,k′,q

[
1

4

{
J (k) + J (k′) + J (k + q) + J (k′ − q)

}− J (q)

]
a

†
ka

†
k′ak′+qak−q.

(9.26)

It can be seen that this result is formally very similar to our standard form
of the interaction (perturbation) term in a boson or fermion gas, except for the
replacement of the interaction energy, which previously depended only on q, with
a more complicated quantity that depends on k and k′ as well as q. In other words,
we have the replacement v(q) → v(k,k′,q) for the interaction vertex, where

v(k,k′,q) = 1

4

{
J (k) + J (k′) + J (k + q) + J (k′ − q)

}− J (q). (9.27)

In particular, we see that when all the wave-vector labels are put equal to zero
we have the property that v(0,0,0) = 0, so the interaction is weak at small wave
vectors. Nevertheless, apart from the differences mentioned in the preceding text,
we can use all the previous formulation of the diagrammatic perturbation method.
Thus the noninteracting GF defined with respect to H0 is

G0(k,iωm) = 1

iωm − Ek
, (9.28)

where iωm is a boson frequency.
To carry out the renormalization of this GF in first order of perturbation theory,

we need the proper self-energy diagrams. These are formally the same as those
shown in Figure 9.1 for the HF theory, except that now we are dealing with boson
statistics. Hence, the only differences are that there are no closed fermion loops in
the present case and that the factor v for each interaction vertex is more compli-
cated. The frequency summations are unchanged, except that we get Bose–Einstein
(BE) thermal factors instead of the Fermi–Dirac (FD) factors. For diagram (a), in
this case we find

−β
∑

k′
v(k,k′,0)nk′ = −β

∑
k′

[
1

2

{
J (k) + J (k′)

}− J (0)

]
nk′,

while for diagram (b) the result is

−β
∑

k′
v(k,k′,k − k′)nk′ = −β

∑
k′

[
1

2

{
J (k) + J (k′)

}− J (k − k′)
]

nk′ .



9.5 Scattering by Static Impurities 247

Combining these two expressions, we see that the full result for the proper self-
energy in first order is therefore

�(k,iωm) = −β
∑

k′

[
J (k) + J (k′) − J (k − k′) − J (0)

]
nk′ . (9.29)

It follows from expressions in Section 8.5 that the renormalized SW energy is
Ek + �Ek, where the correction term due to the interactions is

�Ek = β−1Re�(k,iωm)

=
∑

k′

{
J (0) + J (k − k′) − J (k) − J (k′)

}
nk′ . (9.30)

We notice that the proper self-energy �(k,iωm), as evaluated in first order, is real
and has no dependence on the frequency label iωm. Consequently, there is no
damping in this order of perturbation. From the expression for the energy shift
in Equation (9.30) it can be shown at small k = |k| that �Ek is proportional
to k2 multiplied by a temperature-dependent factor (see Problem 9.6). A general
theory of SW interactions was originally developed by Dyson [132] without the
use of GF methods, and the combination of exchange terms in curly brackets in
Equation (9.30) is often referred to as the Dyson vertex.

To obtain a contribution to the SW damping, it would be necessary to go to
the next order of perturbation to consider self-energy diagrams that are of second
order in the interaction vertices (e.g., by close analogy with the situation for the
interacting fermion gas considered in Section 9.1).

9.5 Scattering by Static Impurities

As an example of a different kind of application of the diagrammatic perturbation
theory, we next consider the scattering of particles, which may be either bosons
or fermions, by a set of static impurities (see, e.g., [135, 136] for a discussion of
the model). Some examples of applications would be in transport theory for the
scattering of electrons in a metal by impurity sites or in the theory of randomly
mixed alloys or certain collisions problems involving excitations and static (or
quasistatic) centers.

9.5.1 General Formalism

In such cases as mentioned in the preceding text, we can start with a Hamiltonian
in the second quantized form, which we may write rather generally as

H ≡ H0 + H1 =
∑

k

Eka
†
kak +

∑
k1,k2

A(k1,k2)a
†
k2

ak1 . (9.31)
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Here the first term has the standard form for noninteracting particle with a
†
k and ak

being the creation and annihilation operators, respectively, and Ek = (k2/2m) − μ

as before. The extra term H1, which involves an interaction strength A(k1,k2),
describes a form of scattering for the particles. Specifically, it is taken to depend
on the wave vectors k1 and k2 of the incident and scattered particles. Note that
the total Hamiltonian for the particles no longer conserves the wave vector for the
particles (because momentum can be transferred to the scattering centers), but it
does conserve the number of particles. To study the dynamical properties of the
system we define the interacting imaginary-time GF as

gM,k,k′(τ1 − τ2) = −〈T̂W ǎk(τ1)ǎk′(τ2)〉, (9.32)

where the thermal average is with respect to the full Hamiltonian H given in the
preceding text, and we use the notation

ǎk(τ ) = eHτ ake
−Hτ, (9.33)

as previously in Chapters 3 and 8. Notice that the preceding definition of the GF is
just a direct generalization of the previous case to include the possibility of k �= k′.

It is important to realize that the previous proof of Wick’s theorem still holds
because we again have an even number of boson or fermion operators in the Hamil-
tonian. Also Fourier transforms can be made with respect to the τ -labels to a
representation in terms of the imaginary frequency iωm. Therefore, we will deal
with a GF quantity denoted by Gk,k′(iωm). In the noninteracting case (where we take
the Hamiltonian to be H0) we have the same result as previously, and necessarily
we have k = k′ because H0 conserves wave vector. We may write

G0
k,k′(iωm) = δk,k′

1

iωm − Ek
≡ δk,k′ G0

k(iωm). (9.34)

By contrast, in a diagrammatic representation that includes the effect of the
perturbation H1 we now have interaction vertices that do not require wave-vector
conservation and they can be represented as in Figure 9.10. We note that there are
now just two GF lines associated with the vertex, one entering and one leaving.
Although we have k1 �= k2 in general, there is still frequency conservation for the
GF lines. This can easily be seen by a simple modification of the arguments in
Subsection 8.4.1.

The complete diagrams that contribute to the interacting GF now appear at
first sight to be all very simple, consisting only of the infinite series on the right
in Figure 9.11(a). The resulting renormalized GF will be drawn as a heavy line
as on the left. The infinite series of diagrams is equivalent to the result shown
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Figure 9.10 An interaction vertex for scattering from the static impurities. The
factor A(k1,k2) associated with the vertex (dashed line) describes the scattering
of the particles, and there are two GF lines (with k1 �= k2) entering and leaving
the vertex.

Figure 9.11 (a) The infinite series of diagrams contributing to the GF defined in
Equation (9.32); and (b) the equivalent Dyson equation in diagrammatic form. In
both cases, the renormalized GF is shown by the heavy line.

diagrammatically in Figure 9.11(b), as can be seen by an iteration process. The
equivalent algebraic expressions to Figures 9.11(a) and (b) are, respectively,

Gk,k′(iωm) = G0
k(iωm)δk,k′ + G0

k(iωm)A(k,k′)G0
k′(iωm)

+
∑
k′′

G0
k(iωm)A(k,k′′)G0

k′′(iωm)A(k′′,k′)G0
k′(iωm) + · · · ,

(9.35)

and

Gk,k′(iωm) = G0
k(iωm)δk,k′ +

∑
k′′

G0
k(iωm)A(k,k′′)Gk′′,k′(iωm). (9.36)

If the summation over k′′ is rewritten as an integration (in the usual way), the pre-
ceding result in Equation (9.36) becomes an integral equation for Gk,k′(iωm), and so
it represents only an implicit result for the GF. In some special cases, the functional
form of the scattering amplitude A(k,k′′), which depends on the spatial distribution
of the impurities (among other factors), might be sufficiently simple that this inte-
gral equation can be solved exactly. An example is when the scattering amplitude
is a separable function of the wave vectors, i.e., when A(k,k′′) = α(k) α(k′′) for
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a specified function α. However, in most cases, including the case of a random
distribution of a large number of impurities, an exact solution will no longer be
possible. An approximation scheme becomes necessary, and this can be developed
using a modified diagrammatic perturbation approach as outlined in the following
subsection.

9.5.2 Random Impurities

Here we consider the situation when the distribution of impurities can be taken as
random in terms of their spatial coordinates. We will eventually work in terms of a
mean value of the GF, taken over this random distribution of impurities. We shall
indicate such configurational mean values by placing a curly bracket around them,
e.g., by {G} for the GFs or by {A} for the scattering amplitude.

The first step is to determine expressions for the configurational averaging over
individual scattering amplitudes and products of these amplitudes. We keep in mind
that the interaction (scattering) term at a general point r, due to the impurities at
different points Ri , will have the form∑

i

A(r − Ri) a†
r ar

in the position representation. In the wave-vector representation, however, this
becomes

A(k1,k2) = 1

V

∫ ∑
i

A(r − Ri)e
i(k1−k2)·rd3r, (9.37)

where V is the volume of the system. With N denoting the total number of atoms
this can be rewritten as

A(k1,k2) = 1

V

∫ ∑
i

A(r − Ri)e
i(k1−k2)·(r−Ri )ei(k1−k2)·Ri d3r

≡ 1

N
A(k1 − k2)

∑
i

ei(k1−k2)·Ri . (9.38)

Now we take an average of this quantity over a random distribution of impurities
(meaning a random set of values for Ri). This leads to

{A(k1,k2)} = 1

N
A(k1 − k2)

{∑
i

ei(k1−k2)·Ri

}

= N0

N
A(k1 − k2) δk1,k2 = c0A(0) δk1,k2, (9.39)



9.5 Scattering by Static Impurities 251

where N0 is the (large) number of impurities. For some cases to be considered later
we will assume the concentration c0 = N0/N to be small.

Next, for an average over a product of two amplitude terms we find by following
similar arguments that

{A(k1,k2) A(k′
1,k

′
2)}

= 1

N2
A(k1 − k2) A(k′

1 − k′
2)

⎧⎨
⎩∑

i,j

ei(k1−k2)·Ri+i(k′
1−k′

2)·Rj

⎫⎬
⎭

= 1

N2
A(k1 − k2) A(k′

1 − k′
2)

⎧⎨
⎩
(∑

i �=j

+
∑
i=j

)
ei(k1−k2)·Ri+i(k′

1−k′
2)·Rj

⎫⎬
⎭

= N0(N0 − 1)

N2
[A(0)]2 δk1,k2 δk′

1,k
′
2
+ N0

N
[A(k1 − k2)]

2 δk1+k′
1,k2+k′

2
.

In the third line of the preceding equation we have split the double sums over all i

and j into two parts: one part corresponding to i �= j , which has N0(N0 −1) terms,
and the other part corresponding to i = j , which has N0 terms. Then, because the
number of impurities is large (N0 � 1), we have to a good approximation

{A(k1,k2)A(k′
1,k

′
2)} � c2

0[A(0)]2 δk1,k2 δk′
1,k

′
2
+ c0[A(k1 − k2)]

2 δk1+k′
1,k2+k′

2
.

(9.40)

This configurational averaging process could be continued for mean values
involving three or more factors of A(k1,k2). We would have a series of terms with
various weighting factors, and with each depending on Kronecker deltas for the
wave-vector labels. The algebra, however, becomes rapidly very complicated for
products of more than two amplitude terms, and so we look for a modified diagram
technique to represent the averaged terms.

To establish this technique we note that the nth order term (i.e., the one with n

vertices) in the expansion of the GF Gk,k′ is found from∑
k2,··· ,kn

G0
k G0

k2
· · ·G0

kn
G0

k′ A(k,k2) · · · A(kn,k′),

and so the corresponding term in the averaged {Gk,k′ } will be∑
k2,··· ,kn

G0
k G0

k2
· · ·G0

kn
G0

k′
{
A(k,k2) · · · A(kn,k′)

}
. (9.41)

This result follows because no averaging is needed over the GFs in Equation (9.41)
because they are the G0 terms for the unperturbed system. Therefore, the expression
involves the mean value over a product of n factors of the A terms.
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Figure 9.12 The contributions to the averaged interacting GF {Gk,k′ } for a system
with random impurities in order (a) n = 1 and (b) n = 2.

We now represent the first-order (n = 1) term as in Figure 9.12 where the cross
at one end of the vertex is used to indicate that a mean has been taken. Because
{A(k,k′)} is proportional to δk,k′ we have the convenient property of wave-vector
conservation for the crossed (averaged) vertex. Also, from Equation (9.39) for
n = 1, we see that the contribution of the first-order diagram is

1

β
G0

k(iωm)G0
k′(iωm) c0A(0) δk,k′ = 1

β

[
G0

k(iωm)
]2

c0A(0).

Next we look at the modified diagrams for the averaged GF in the second order,
where there are the two diagrammatic terms corresponding to the expression in
Equation (9.40) for the {AA} average. We see once again that the Kronecker deltas
on the wave-vector labels are automatically taken care of by wave-vector conserva-
tion at the crossed vertices. This process of representation with crossed vertices can
be continued to higher orders with n ≥ 3, and some examples for diagrams of this
type are shown in Figure 9.13. We note that the order of perturbation is given by
the number of dashed interactions (the vertices) and not by the number of crosses.

We are now in a position to summarize the procedure by stating the rules for eval-
uating any GF diagram for the boson or fermion systems with random impurities:

1. Label the diagram so that wave vector is conserved at any crossed vertex and the
imaginary frequency is continuous along each GF line.

2. Associate a factor of (1/β)G0
k(iωm) with each line, where k is its wave-vector

label and iωm is its frequency label.

3. Associate a factor of βA(q) with each vertex line, where q is the wave vector
along the line.

4. Associate a factor of the impurity concentration c0 with each cross.
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Figure 9.13 Some examples of higher-order (n ≥ 3) diagrams contributing to the
GF {Gk,k′ } for a system with random impurities.

Figure 9.14 The first-order proper self-energy contribution to the GF for a system
with random impurities. Choices for the wave-vector and frequency labels have
been inserted.

5. Include a factor (−1)n/p, where n is the number of vertices and p is the sym-
metry number.

6. Finally, sum over all internal wave-vector and frequency labels.

Example of Calculating the Interacting Green’s Functions

As in most of the GF examples discussed previously, we follow a systematic
approach to calculate the interacting GF by first choosing a proper self-energy,
from which the renormalized energy (and the damping, if there is any contribution)
can then be deduced.

The simplest proper self-energy diagram is that shown in Figure 9.14, which can
readily be evaluated to give the result for the first-order proper self-energy that

�(1)(k,iωm) = −βc0A(0). (9.42)

We note that this is a real constant, which is independent of the wave vector k and
the frequency iωm. It follows that the renormalized energy in this first order is

Ek + 1

β
�(1) = Ek − c0A(0), (9.43)
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Figure 9.15 The series of “one-cross” diagrammatic proper self-energies to the
GF for a system with random impurities.

Figure 9.16 The second-order proper self-energy contribution to the GF for a
system with random impurities. The wave-vector and frequency labels have been
inserted.

which merely shifts the energies by a constant. This correction is equivalent to a
mean-field approximation and the damping is zero for this level of approximation.

For a higher-order renormalization beyond that just considered, we could take
account of the infinite set of “one-cross” diagrams as represented by the series
shown in Figure 9.15. The diagrams can be thought of as a summing up all the
scattering events (single scattering and multiple scattering) that occur at a single
impurity. Because they are one-cross diagrams, they give an overall contribution
that is proportional to c0. If the concentration c0 of impurities is small, as may
sometimes be the case (e.g., for a dilute metallic alloy), these diagrams would be
expected to provide the dominant contribution to the self-energy �.

We have already obtained the result for the first member of the series, and we
have shown that it gives rise to the expression in Equation (9.42). As a further
example we consider the evaluation of the next (second-order) diagram in the series,
which is shown again in Figure 9.16 with the relevant labels inserted to help us in
following the diagram rules. The result obtained for the self-energy contribution is

�(2)(k,iωm) =
∑

k1

(−1)2

(
1

β

)
G0

k(iωm)β2A2(k − k1) c0

= c0 β
∑

k1

A2(k − k1)

iωm − Ek1

. (9.44)
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This expression depends explicitly on frequency, as well as on the external wave
vector. Therefore, to obtain the renormalized energy and damping we need to evalu-
ate the self-energy when an analytic continuation is made for the frequency. Specifi-
cally, we take as an approximation iωm → ω̃ → Ek−iη, as discussed in Chapter 8.
This leads to

�(2)(k,Ek − iη) = c0 β
∑

k1

A2(k − k1)

(Ek − Ek1 − iη)

= c0 β

⎡
⎣∑

k1

A2(k − k1)

(Ek − Ek1)
+ iπ

∑
k1

A2(k − k1)δ(Ek − Ek1)

⎤
⎦ .

Therefore, combining the contributions from the pair of one-cross diagrams just
considered, we conclude that the renormalized energy is

Ek + 1

β

[
�(1) + Re�(2)(k,Ek − iη)

] = Ek − c0A(0) + c0

∑
k1

A2(k − k1)

(Ek − Ek1)
,

(9.45)

and the reciprocal lifetime (damping) to the same order is

1

Tk
= πc0

∑
k1

A2(k − k1)δ(Ek − Ek1). (9.46)

More accurate results for the renormalized energy and damping could presumably
be obtained by including all the higher-order diagrams in the one-cross series shown
in Figure 9.15. This is more difficult because it usually requires the solution of
a complicated integral equation. However, the preceding results as given will be
good approximations provided the interaction (the scattering amplitude A) is weak
enough.

A further type of generalization would be needed if the concentration of impu-
rities is higher, requiring the evaluation of diagrams that are proportional to c2

0, c3
0,

and so on. These are the diagrams where multiple crosses occur. Then, for example,
the third-order diagram in Figure 9.17(a), which is proportional to c0, would be
comparable to that in Figure 9.17(b), which is proportional to c2

0.

Figure 9.17 Comparison of two third-order proper self-energy diagrams:
(a) a one-cross diagram and (b) a two-cross diagram.
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9.6 Diagrammatic Techniques for Spin Operators

As a final topic we consider alternative diagrammatic formulations that are spe-
cific for spin systems. As mentioned previously, a major drawback of the previous
diagrammatic formulation in Section 9.4 for the Heisenberg ferromagnet is that
it employed the HP transformation to make a power-series expansion in terms
of boson operators. Such an expansion will be useful only at relatively low tem-
peratures below TC , where the convergence of the operator expansions in Equa-
tion (9.22) is rapid. At higher temperatures (even below TC) this is not the case, and
so the applicability of this approach is restricted.

9.6.1 The Drone-Fermion Method

One way to overcome this problem is to employ a different kind of representation
for the spin operators that does not require an expansion and for which a modified
form of Wick’s theorem can be established. An example of a technique for doing
this makes use of the drone-fermion (DF) representation, which was originally
proposed for spin S = 1/2 systems (see [27, 133]). The representation can be
expressed as

S+
j = φ

†
j cj , S−

j = c
†
jφj , Sz

j = 1/2 − c
†
j cj . (9.47)

Here the cj operators are fermion operators at site j , satisfying the usual anticom-
mutation relationships, while the φj operators are subsidiary (or “drone”) operators
that anticommute with any of the c operators and obey among themselves

φ
†
j = φj and φjφi + φiφj = 2δi,j . (9.48)

It is a straightforward exercise to verify using Equations (9.47) and (9.48) that the
spin commutation relationships, as quoted in Equation (1.84), are recovered (see
Problem 9.7). It is also seen from Equation (9.47) that c

†
j cj is the number operator

for the longitudinal spin deviation at site j . The role of the φj operators is to enable
the spin commutation relations to be reproduced.

The diagrammatic perturbation method in terms of the DF representation was
introduced for Heisenberg ferromagnets by Spencer [133] and for dipole-exchange
ferromagnets by Cottam [134]. Here we will take the simpler case of Heisenberg
ferromagnets, as in Section 9.4, for which there are only exchange interactions. On
rewriting the spin Hamiltonian in Equation (9.20) in terms of the DF operators using
Equation (9.47) we obtain H = H0 + H1, ignoring an unimportant constant term.
Here H0 has a diagonalized form that involves c operators only (see Problem 9.8):

H0 =
{
b + 1

2
J (0)

}∑
k

c
†
kck, (9.49)
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where we have made a Fourier transform of the operators to a wave-vector repre-
sentation as before. The interaction term H1 is

H1 = − 1

2N

∑
k1,k2,q

[
J (q)c

†
k1+qc

†
k2−qck2ck1 + 1

2
J (q)

{
φ

†
k1+qc

†
k2−qφk2ck1 + H.c.

}]
.

(9.50)

An important difference to note at this point compared with the boson expansion
method in Section 9.4 is that there are no higher-order expansion terms being
neglected, as was the case for Equation (9.26) where the products of more than
four operators were neglected in a low-temperature approximation.

We introduce GFs associated with the c and φ operators by defining

gM,k(τ ) = −〈T̂W čk(τ )č
†
k(0)〉 , dM,k(τ ) = −〈T̂W φ̌k(τ )φ̌

†
k(0)〉. (9.51)

The Fourier components of the corresponding quantities when transformed to the
frequency representation as in Chapter 8 will be denoted by Gk(iωm) and Dk(iωm),
respectively, where ωm is a fermion frequency. The expressions for these GFs when
they are evaluated with respect to the unperturbed Hamiltonian H0 are easily found
to be

G0
k(iωm) = 1

iωm − b − 1
2J (0)

, D0
k(iωm) = 2

iωm

. (9.52)

The first of these results follows straightforwardly by analogy with Equation (8.45).
The form of the second result is a consequence of there being no φ

†
kφk term in H0,

leading to a pole for iωm at zero, while the factor of 2 comes from Equation (9.48).
Because H0 and H1 both involve an even number of operators that satisfy simple

anticommutation relationships, one would expect Wick’s theorem to apply here, and
this was indeed proved to be the case [133]. Hence a diagrammatic representation
can be established in which there are two interaction vertices corresponding to the
terms in H1. These vertices are depicted in Figure 9.18, where the black and gray
lines correspond to the G0

k(iωm) and D0
k(iωm) GFs, respectively, and the dashed line

represents an exchange interaction. The interaction vertices in (a) and (b) will be
referred to as longitudinal and transverse, respectively, because they originate from
either the SzSz or the spin-flip S+S− parts of the Heisenberg Hamiltonian.

The rules for evaluating any diagrammatic contribution to Gk(iωm) or Dk(iωm),
or any related self-energy term, are very similar to those given in Section 8.6 for
Gk(iωm) in the single-field boson or fermion case. They may be stated as follows:

1. Label the diagrams so that wave vector and frequency are conserved at each
vertex.

2. Associate factors −βJ (q) and − 1
2βJ (q)with each longitudinal and transverse

vertex, respectively, where q is the wave-vector transfer.
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Figure 9.18 The (a) longitudinal and (b) transverse interaction vertices in the
drone-fermion method. The black and gray lines denote the noninteracting GFs
G0

k(iωm) and D0
k(iωm), respectively, while the dashed line denotes an exchange

interaction vertex.

3. For each full line associate a factor (1/β)G0
k(iωm) or (1/β)D0

k(iωm), as appro-
priate, where k and iωm are the wave vector and frequency along the line. Also
include an extra factor of exp(iωmη) if the line is self-contracted.

4. Include a factor (−1)L/p, where L is the number of closed GF loops and p is
the symmetry number.

5. Include a factor (−1)n, where n is the number of vertices in the diagram.

6. Finally, sum over all wave-vector and frequency labels within the restrictions
imposed by rule 1.

9.6.2 The 1/z Expansion

We now come to the crucial matter of how to choose the important diagrams to eval-
uate. We stress that this cannot be done here in terms of the number of interaction
vertices because the factors like βJ (q) are not generally small. In this problem
a suitable parameter of smallness will be 1/z, where z is the effective number
of spins that interact with any given spin (e.g., z = 8 in a b.c.c. ferromagnet
with nearest-neighbor exchange only). We shall see below that the lowest order
(1/z)0 results are equivalent to mean-field theory, and so the results in order (1/z)1

and higher represent successive improvements to mean-field theory through the
inclusion of spin-fluctuation effects. The use of 1/z expansions has a long history
in the theory of ferromagnetism and antiferromagnetism, and it precedes the drone-
fermion method (see, e.g., [138, 139]).

In the present context, the rule for determining the 1/z dependence is as follows
[133, 134]: if there are m independent wave-vector labels that appear explicitly in
the arguments of at least one of the vertex factors and which are eventually summed
over, the dependence of that diagram is (1/z)m.

Briefly, the justification comes by noting that the Curie temperature in mean-field
theory corresponds to kBTC = J (0)/4 for a spin S = 1/2 Heisenberg ferromag-
net (see Section 5.2.3). Now J (0) = zJ̄ , where J̄ denotes an average exchange
interaction between neighboring spins, implying that J̄ is of order (1/z)TC . On
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Figure 9.19 Examples of diagrammatic contribution to the GF G0
k(iωm), showing

(a) the simplest bubble diagram and (b) a treelike structure derived from the bubble
diagram.

transforming to the site representation, each vertex factor proportional to J (q) gives
a Ji,j term multiplied by an exponential factor and summed over the separation
vector rij . After integration with respect to τ , each vertex yields a factor βJ̄ which
is of order 1/z. There remain the summations over rij terms that occur in factors
like exp(−iq · rij ). If a particular wave-vector label appears in the argument of one
(or more) of the J (q), the summation over that wave vector will give a Kronecker
delta relating the different rij and thereby removing one of the rij summations. We
must keep in mind that the unperturbed GFs in Equation (9.52) have no explicit
wave-vector dependence. Each independent rij summation that remains after the
previously mentioned process contributes a factor of order z. Therefore, if there are
n vertices in a diagram and m independent wave vectors to be summed over, the
overall dependence is (1/z)nzn−m, or (1/z)m as stated earlier.

The lowest-order renormalization to consider for the GFs comes from the dia-
grammatic contributions with (1/z)0 dependence, i.e., those diagrams that involve
no wave-vector summations. It is easy to convince oneself that there are no dia-
grams of this type for D0

k(iωm), whereas for G0
k(iωm) the “bubble” diagram shown

in Figure 9.19(a) provides the simplest contribution. Furthermore, the analogous
“treelike” structures such as those shown in Figure 9.19(b) are also of order (1/z)0

and must be included. A systematic way to incorporate all such contributions into
G0

k(iωm) is represented by Figure 9.20 which is a type of Dyson equation like that
in Subsection 9.5.1.

In proceeding now to the self-consistent evaluation of the GF in order (1/z)0,
we note that the bubble diagram shown in Figure 9.19(a) corresponds formally
to one of the HF diagrams already calculated in Section 9.1. By comparing with
Equation (9.1) we see that the self-energy term here is

−βJ (0)
∑

k′
〈c†

k′ck′ 〉. (9.53)
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Figure 9.20 Representation of a Dyson equation for the lowest-order (1/z)0

renormalization of the GF G0
k(iωm). The renormalized GF is shown by the heavy

line.

Then, from the Dyson equation represented in Figure 9.20, we have (see also Prob-
lem 9.9) [

G0
k(iωm)

]−1 = [Gk(iωm)]−1 − J (0)
∑

k′
〈c†

k′ck′ 〉, (9.54)

which leads to the result that the GF Gk(iωm) in order (1/z)0 is given by

Gk(iωm) = 1

iωm − γ
. (9.55)

Here γ , which is real and independent of the external label k, is defined by

γ = b +
{

1

2
−
∑

k′
〈c†

k′ck′ 〉
}

J (0) = b + 〈Sz〉0 J (0). (9.56)

The simplification in the last step in the preceding equation occurs because the term
in curly brackets represents the average 〈Sz〉0 at any spin site in order (1/z)0, as can
be seen by averaging the expression for Sz in Equation (9.47). Also, using the FD
distribution function, we arrive at a consistency condition that

〈Sz〉0 = 1

2
− 1

exp(βγ ) + 1
= 1

2
tanh

(
1

2
βγ

)
. (9.57)

Equation (9.57) is now recognizable as being the well-known result for the lon-
gitudinal spin average (proportional to the magnetization) according to mean-field
theory (see, e.g., [19, 20]).

To summarize, at this stage we have carried out the renormalization of the drone-
fermion GFs to lowest order (1/z)0 and shown that the results are equivalent to
mean-field theory. The interesting stage comes next when we proceed to higher
order(s) and incorporate a description of the magnons (or SWs). We present only a
brief overview of this method (and related techniques) in the following paragraphs;
further details may be found, for example, in [134, 137, 140].

We have seen previously (e.g., in Section 5.2) that the SW excitations can be
investigated by studying GFs of the form G(S+;S− | iωm). Therefore, in view of
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Figure 9.21 Diagrams contributing to the GF G(S+
k ;S−

k | iωm) defined in Equa-
tion (9.58) and leading to spin waves: (a) the general form of any contribution and
(b) the series of lowest-order chain diagrams.

the definitions in Equation (9.47), we introduce the imaginary-time GF that has the
wave-vector and frequency Fourier components as follows:

G(S+
k ;S−

k | iωm) =
∑
q,q′

G(φ
†
q′cq′+k;c†

q+kφq | iωm). (9.58)

It is important to realize that the overall iωm label attached to this GF is a boson
frequency because it comes from the sum or difference between two fermion fre-
quencies. The general diagrammatic form of a contribution to the preceding GF is
as depicted in Figure 9.21(a), where the shaded area represents any allowed set of
single-particle GF lines (black or gray lines) and exchange interaction vertices. Its
form is chosen in accordance with the 1/z classification. In lowest order the contri-
butions are simply those with no internal wave-vector label appearing in a vertex,
keeping in mind that k in Equation (9.58) is a fixed external label. Hence it follows
that the sequence of single transverse loop and chain diagrams in Figure 9.21(b)
provides the required contribution.

We start by considering the first loop diagram, for which it follows from appli-
cation of the diagrammatic rules that the contribution is

2

β2

∑
m′

1

(iωm′ − γ )(iωm′ − iωm)
. (9.59)

Two noteworthy points here are that the preceding iωm′ is a fermion frequency and
that we have included the (1/z)0 renormalization of the internal lines (so it is γ that
appears in the denominator). The summation over iωm′ is straightforward to carry
out on noting that the preceding summation is formally analogous to that already
analyzed for Equation (9.6), but with different values for the poles. Hence the result
in the present case is found to be (see Problem 9.10)
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2〈Sz〉0

β(iωm − γ )
, (9.60)

where we have made use of the mean-field Equation (9.57) to simplify the numer-
ator. Finally, we need to sum of the sequence of chain diagrams represented by
Figure 9.21(b), which yields a geometric series leading to

G(S+
k ;S−

k | iωm) = 2〈Sz〉0

β(iωm − γ )
+ 2〈Sz〉0

β(iωm − γ )

(
−1

2
βJ (k)

)
2〈Sz〉0

β(iωm − γ )
+ · · ·

= 2〈Sz〉0

β
(
iωm − γ + 〈Sz〉0 J (k)

) . (9.61)

We see now that the GF in Equation (9.61) has a simple pole at a quantity Ek

given by

Ek = γ − 〈Sz〉0 J (k) = b + 〈Sz〉0
[
J (0) − J (k)

]
. (9.62)

This result can be recognized as being very similar to that for the SW energy found
in Equation (5.20) using the GF equation-of-motion method with a RPA decoupling
approximation. A point of difference between the two calculations is that in the
present case we have employed the 1/z expansion, and so we can proceed to the
next order of the expansion to renormalize the SW excitations (see, e.g., [137] for
calculations of the energy shift and damping that are valid over a wide range of
temperatures below TC). Examples of two diagrams that have to be considered in
the next order in 1/z are shown in Figure 9.22; they both have one internal wave
vector q that needs to be summed over.

Some final considerations relating to this topic are as follows. The DF repre-
sentation quoted in Equation (9.47) and the ensuing diagrammatic method are for
spin systems with S = 1/2. Any direct extensions to higher spin values turned
out to be difficult initially because of the complicated form of Wick’s theorem,
but an alternative generalization of the DF method to other spin values that satisfy
2S + 1 = 2n, where n is any positive integer, was made by Psaltakis and Cottam

Figure 9.22 Two diagrams for the renormalization of the spin waves.
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[140]. Another closely related diagrammatic method, applicable to spin values other
than just S = 1/2, was introduced by Vaks et al. [141, 142].

Problems

9.1. Draw the set of distinct diagrams contributing to the proper self-energy (see
Section 9.1) in the second order.

9.2. Consider the first-order diagram in Figure 9.2 for the proper self-energy,
corresponding to HF theory for an interacting fermion gas. Show that the final
result for the contribution to the proper self-energy is given by Equation (9.8).

9.3. Draw six diagrams as examples for contributions to the GF loop F(q,iωm)

in the first and the second order of perturbation.

9.4. Verify that the unperturbed GF for the phonon system has the form quoted in
Equation (9.16). You may assume the symmetry property that ωq = ω−q.

9.5. A diagram for a proper self-energy contribution to the electronic GF due to
the electron–phonon interactions is shown in Figure 9.9(b). A formal expres-
sion for that self-energy (after application of the diagram rules) is quoted in
Equation (9.17). Now carry out the summation over the internal frequency
iωm′ and show that the expression for �el(k,iωm) has energy denominators
of the form (iωm − Ek−q ± ωq).

9.6. The energy shift for renormalized SWs in Heisenberg ferromagnets at
T � TC is given by Equation (9.30). Taking the case of a b.c.c. structure,
verify that in the limit of small wave vector k (such that k2a2 � 1 where
k = |k|) the energy shift is proportional to k2 multiplied by a temperature-
dependent factor.

9.7. Verify using Equations (9.47) and (9.48) for the DF representation that the
spin commutation relationships quoted in Equation (1.84) are satisfied.

9.8. Go through the steps of rewriting the Heisenberg Hamiltonian in Equa-
tion (9.20) in terms of the DF operators using Equation (9.47) to obtain
H = constant +H0 + H1, showing that H0 and H1 have the form quoted in
Equations (9.49) and (9.50).

9.9. A representation of a Dyson equation for the lowest-order (1/z)0 renormal-
ization of the GF G0

k(iωm) is presented in Figure 9.20. From the Dyson
equation in the figure and Equation (9.53) for the self-energy term, verify
that the GF Gk has the form quoted in Equation (9.55), where γ is defined in
Equation (9.56).
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Figure 9.23 Series of electron-hole ring diagrams (see Problem 9.11).

9.10. Consider the infinite series of diagrams in Figure 9.21(b) that contribute to
the GF G(S+;S− | iωm) using the DF method. Show that the contribution
arising from the first loop diagram (i.e., a single loop) has the form quoted in
Equation (9.60). Then sum the Dyson series to verify Equation (9.61).

9.11. Consider the series of electron-hole ring diagrams depicted in Figure 9.23.
Taking account of the symmetry factor p to be associated with a general
diagram and using the result in Equation (9.6) for a single electron-hole
loop F 0, obtain an expression for the sum of all ring diagrams. Show that
it involves a logarithmic term that depends on the boson frequency iωm (but
do not attempt to carry out this frequency summation).
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density of states, 56, 135, 137–9, 145
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Helmholtz equation, 93
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impulse response functions, 155, 174
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impurity electron, 135–7
impurity mode, 195, 196, 198
induction (method of), 210
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inversion operator, 102, 105

Jaynes–Cummings model, 101, 104, 106, 112, 138
jellium, 58

Kittel formula, 54
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lattice dynamics, 46–50
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Lehmann representation, 86, 87, 92
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light scattering

Brillouin scattering, 169
Raman scattering, 169, 195

Lindhard function, 114, 147, 239
linear approximation, 151
linear response function, 155
linear response theory, 148, 163, 168, 176, 202
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linked-cluster theorem, 216
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lowering operator, 102, 132

magnetic flux density, 6
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magnonics, 191
Magnus expansion, 42
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Maxwell’s equations, 6, 93, 201
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metal-insulator transitions, 22, 130, 134
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Néel temperature, 129
neutron scattering, 2, 26, 31, 195
noninteracting Green’s function, see unperturbed

Green’s function
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256

occupation number representation, 9, 11
operators
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orthogonal, 8, 11, 89
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particle-hole operator, 59, 60
partition function, see grand partition function
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Pauli matrices, 102, 110, 123
perturbation method, 37, 39, 41, 83, 88, 132, 151,

153–6, 160, 163, 166, 168, 169, 187, 196, 197,
203, 207, 215, 217, 222, 224, 229–31, 233, 234,
237, 242, 244–8, 250, 252, 256, 257, 263

phase transition, 2, 22, 25, 130, 134, 135
phonon, 26, 46, 142, 145, 160, 169, 172, 176, 239
phonon-roton spectrum, 26
photon, 6, 8, 15, 101–3, 169, 170
photonic bands, 190, 191
photonic crystal, 191, 194
plasma frequency, 63, 169
plasmon, 1, 34, 58, 63, 233, 237–9
Poisson distribution, 15
polarisability, 169
polariton, 1, 12
polarons, 242
pole (of Green’s function), 75, 76, 95, 101, 105, 110,

111, 122, 129, 131, 138, 145, 155, 159, 163, 169,
183, 188, 189, 197, 220, 221, 229, 230, 238, 239,
242, 243, 257, 261, 262

principal value (Cauchy), 77, 138
propagator, 214
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quantum optics, 3, 6, 12, 101
quasiparticles, 22, 25, 29, 33, 52, 61–3, 68, 118–20,

122, 143, 144, 176, 236, 245

Rabi splitting, 105
raising operator, 102, 132
random phase approximation (RPA), 120, 121, 126,

146, 147, 239
reciprocal lattice, 55, 65, 241
renormalization, 230, 235, 238, 239, 244, 246, 254,

259–61, 263
resonance modes, 195, 198
response function, see linear response function
rotating wave approximation (RWA), 104
roton, 26
Rytov equation, 194, 200

S-matrix, 41, 204–6, 213, 218, 224, 225, 231
s-polarization, 191, 192, 194
scattered intensity, 171
scattering (of excitations), 233, 237, 240, 243, 247–9,

254, 255
Schrödinger picture, 34–6, 38, 39, 104
Schrödinger’s equation, 2, 3, 35–8, 41, 149
screened Coulomb, 32
second quantization, 2, 3, 9, 16, 21, 53, 56, 65, 142,

203, 247
self-energy, 138, 140, 227, 242

proper, 227–31, 233–6, 238, 242, 246, 247, 253,
263

semiconductor, 1, 21, 58, 240
semi-infinite medium, 177, 178, 180, 184, 189, 190,

200
simple harmonic oscillator, 3, 5, 6, 9, 12, 44, 48, 101
soft mode, 48
spectral function, 72–4, 80, 88, 92, 96, 98, 101, 106,

110, 112, 118, 122, 130, 139, 141, 147, 176
spin Hamiltonian, 27, 52, 106, 109–11, 127, 146, 256
spin operators, 28, 33, 53, 65, 70, 80, 110, 120, 132,

133, 136, 233, 244, 256
spin wave, see magnon
spin-orbit interaction, 109
statistical weighting, see spectral function
step function, 69, 70, 75, 76
Stoner model, 131
strain-strain GF, 172, 178, 199

sum rule, 93, 123
superconductivity

BCS theory, 141–5, 147, 240, 243
high temperature, 145, 240

superlattice, 190, 191, 193, 194, 200
surface mode, 176, 177, 179, 182, 183, 199
susceptibility, generalized, 148, 155–7, 174
symmetry factor, 217, 219, 222, 227, 253, 258

Tavis–Cummings model, see Dicke model
tensor operator, 164, 166, 170
thermal average, 67, 68, 73, 83, 98, 116–8, 123, 128,

203, 207, 210, 213, 224, 225, 231, 248
thermodynamic potential, 216, 217, 225–7, 230
tight-binding model, 22, 55, 56, 185
time evolution operator, 35–7, 39, 41, 43, 44, 63, 206
time-ordering operator, 70, 83, 206, 211, 212
topological mode, 1, 55
trace, 68, 71, 73, 83, 84, 164, 193
transfer matrix, 193, 200
translational symmetry, 169, 184
transport property, 2, 148, 152, 163, 247
tridiagonal matrix, 182, 186, 187
two-time GFs, see Green’s functions

Umklapp process, 241
unperturbed Green’s function, 95, 97–100, 104, 106,

108, 131, 136, 219, 220, 228, 229, 237, 238, 241,
246, 258, 259, 263

vertex, diagrammatic, 21, 214, 215, 221–3, 225–7,
233, 243, 246–8, 252, 257–9, 261

wave equation
elastic, 160, 161, 177
electromagnetic, 7, 192, 201
Schrödinger, 35, 38

Wick ordering operator, see time-ordering operator
Wick’s theorem, 88, 206, 207, 211–5, 217–9, 223,

225, 233, 241, 242, 244, 248, 256, 257, 262

Zassenhaus formula, 13
Zeeman energy, 27, 108, 127, 153, 166
zero edge mode, 189, 190
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