
Migrating to AWS
 A Manager’s Guide
How to Foster Agility, Reduce Costs, and
Bring a Competitive Edge to Your Business

Jeff Armstrong
Foreword by Jonathan Bauer

Jeff Armstrong

Migrating to AWS:
A Manager’s Guide

How to Foster Agility, Reduce Costs,
and Bring a Competitive Edge to Your Business

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-07424-3

[LSI]

Migrating to AWS: A Manager’s Guide
by Jeff Armstrong

Copyright © 2020 Jeff Armstrong. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Jennifer Pollock
Development Editor: Amelia Blevins
Production Editor: Kate Galloway
Copyeditor: nSight, Inc.
Proofreader: Shannon Turlington

Indexer: nSight, Inc.
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

July 2020: First Edition

Revision History for the First Edition
2020-06-26: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492074243 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Migrating to AWS: A Manager’s Guide,
the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the publisher’s views.
While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492074243

Table of Contents

Foreword. ix

Preface. xiii

Part I. Migration Foundation

1. Why Should I Migrate to Amazon Web Services?. 3
Cloud Technology Benefits 4

Scalability and Dynamic Consumption 4
Geographic Diversity 9
Easy Access to Newer Technologies 16
Availability 18
Increased Security 19

Cloud Business Benefits 23
Reduced Expenditures and Support 23
No Commitment 28
Business Agility 29
Disaster Recovery/Business Continuity 31
Decreased Vendor Lock-in 34
Change to Operational Expenditures 35

Converting Your Why into an FAQ 37
How to Build the FAQ 37
Wrapping It Up 38

2. What Are the Risks and Their Mitigation?. 41
Technology Risks 42

Security 42

iii

Application Connectivity 54
Technology Diversity 58
Perception of Increased Technical Complexity 61

Business Risks 63
Reputation 63
Staffing and Expertise Loss 65
Contractual Obligations 67
Cost Regulation 69

Building Your Guiding Principles 71
Wrapping It Up 71

Part II. Phases of Migration

3. Discovering Your Workloads. 77
Discovery and Assessment Tooling 78

Server Discovery 79
Compute 83

Latest Instances 84
CPU Type 85
Relational Database Service 86
Partial Run Rate 86
Auto Scaling 87
License Model 88

Storage 90
EBS Volume Types 90
Network File System Replacement 92
Windows Server Replacement 92
Instance Store Volumes 93

Network 93
Overall Outbound Bandwidth 93
Elastic Load Balancers 94
Classic Elastic Load Balancer 95
Application Load Balancer 95
Network Load Balancer 97

Ancillary AWS Service Charges 97
Assessing Connectivity Requirements 97
Wrapping It Up 100

4. Building Your Business Case. 101
Estimating Your Timeline 102

Number of Servers 102

iv | Table of Contents

Number of Servers Moved per Day 102
Delay Buffer 103
Employee Vacation and Holidays 103
Putting the Equation Together 105

What Does a Business Case Look Like? 106
The Narrative 106

Introduction 106
FAQ 107
Closing 108

The Forecast 109
Trimming the Fat 111
Run Rate Modeling 114
Migration Costs 116
Run Rate Modifiers 124
Agility Savings 129
Assumptions 135

Cost Burn-Up/Burn-Down 137
Wrapping It Up 139

5. Addressing Your Operational Readiness for AWS. 141
Why Your Operations Change After Migration 142
Business Operations 143
Building a Pyramid 144

The Foundation: Executive Sponsor 144
The Base: IT Prototyping 145
Building Onto Your Base: Department Expansion 154
Finishing the Apex 155

Finance Capabilities 156
Unconstrained Resources 157
Misconfigured Pipelines 158
Cost Management 158
Lack of Chargeback/Showback 160

Wrapping It Up 161

6. Defining Your Landing Zone and Cloud Governance. 163
Landing Zone 164

Account Structure 164
Recommended Accounts 167
Landing Zone Deployment Methods 171

Cloud Governance 171
AWS Support 172
Region Management 173

Table of Contents | v

Account Management 175
Access and Authorization 179
Key Management Service 181
Business Continuity 183

Wrapping It Up 185

7. Planning Your Migration. 187
Who Needs a Plan 187
Agile, Waterfall, or Combination Plan 188
Preplanning 189
Blocker Analysis 189

Technology Blockers 190
Business Blockers 192

Development Methodologies 198
Migration Tooling Selection 200

CloudEndure 200
Database Migration Service 201
DataSync 202
Third-Party Tooling 203

Building Your Plan 203
Creating a Migration Timeline 205
Planning Tooling 206
Laying Down the 90% 208
Finalizing the 90% 212
Polishing the 10% 213

Wrapping It Up 214

8. Refactoring, Retooling, and Final Preparations. 215
Refactoring 215

Potential Refactoring Targets 217
Estimating Run Rate After Refactoring 227
Building the Business Case for Refactoring 230
Final Thoughts on Refactoring 232

Retooling 232
Web Application Firewall 233
Systems Manager 233
CloudFront 234

Final Preparations 234
Application Deep Dive and Planning 235

Application Status 235
Team Bandwidth 235
Technical Details 236

vi | Table of Contents

Technical Migration Plan 237
Testing Process 237
Cutover Process 238
Rollback Process 239

Closing 239

Index. 241

Table of Contents | vii

Foreword

I’m a golfer (thanks in advance for the sympathy)—I started playing as a teenager. As
a kid, I played baseball and tennis. When it was time to play golf, I just picked up a
club. How hard could it be? I already understood foot position, grip, weight shift, and
follow-through. To suggest I wasn’t very good for the first 15 years I played golf
would grossly understate just how bad I was at the sport. What I came to realize was
that, while there were numerous similarities, the subtleties of the swing in each sport
were very different and appreciating the differences was important. We’ll get back to
this.

For the first 15 years of my professional career, I worked in IT. I managed large IT
programs in the mid-late 1990s, during the boom of the large enterprise resource
planning (ERP) transformations. There were several drivers for these transformations
as the year 2000 approached. For some companies, significant growth over the past
several years—including expansion from the “dot-com” explosion—led to the need
for transformation and reengineering. Global companies needed to transform as well,
but the scale and architectural constraints imposed by their geographic requirements
often led to ERP instances in multiple geographic regions. Lastly, for companies with
large legacy mainframe systems, the large ERP was a means of fixing the most famous
Y2K problem: six-digit date mathematics.

By the time 2001 rolled around, many CIOs were challenged to quantify the value
their recent large ERP programs delivered. In the early 2000s, many companies
intended to transform by leveraging an ERP implementation, but the programs
became so complex and costly that they dropped the transformative aspects of the
effort and resorted to simply implementing the technology, failing to deliver many of
the anticipated results. Then, a couple years later, many CIOs and their key business
colleagues went through an ERP “second wave” effort. These programs were much
less technology focused. Instead, the focus was on the transformational agenda: opti‐
mizing processes, reducing costs, standardizing operations and architectures around
the globe, and getting products to market faster. Most companies recognized the
needed benefits.

ix

I would suggest that both analogies are relevant to the world in which we find our‐
selves today, migrating workloads to the cloud.

On one level, migrating to the cloud is like other significant IT activities, but it’s
important to look at the details. Like every good IT shop, there is a strategy, tightly
linked to the business objectives, and a team of people with the right knowledge and
skills to execute. Migrating to the cloud is no different; what is different is that the
skills, knowledge, methods, and capabilities required to migrate, execute, and then
operate migrated workloads are often different than those required in our traditional
“on-prem” world.

In 2020, we find ourselves in an analogous situation, as many CIOs haven’t realized
the benefits for moving workloads to the cloud. There are several reasons. First, we
see corporations start their cloud journey without defining why they plan to move
workloads to the cloud. What’s the strategy? Are you trying to close data centers?
Reduce IT costs? Are you trying to move critical workloads to the cloud to take
advantage of cloud native services? For those companies that do define these goals,
there is inadequate governance that prioritizes investments to help guide the com‐
pany toward achieving its strategy. As a result, workloads get to production with
inconsistent architectures—perhaps on different clouds, inefficiently using cloud
resources, and, frequently, without the necessary security to keep the information
safe. It can be difficult to correct these issues quickly. Shifting to the cloud effectively
and efficiently requires a thoughtful plan and a good deal of preparation from the
business and IT.

Second, to migrate workloads to the cloud and operate them, a company needs cloud
skills in many areas. Most of the skills categories resemble those categories required
in their on-prem world. The topics are well known: infrastructure, security, develop‐
ment/programming skills, tools, DevOps, and much more. Some of these topics are
reasonably easy to understand and appreciate—for example, the good migration tools
available on the market are easy to review and score. However, the effort to transition
from your traditional software development life cycle to DevOps takes time and prac‐
tice from people in both IT and the business.

Just as the golfer with an awesome baseball and tennis swing needs to adjust to the
nuances of golf, so must an organization transition from “on-prem” to cloud skill sets
and processes.

Let’s compare the golfer’s skills to the shift toward cloud—we will evaluate the stance,
the swing, and the grip. The golf stance is the cloud landing zone: it’s the foundation
on which everything is built. There are so many options that influence your workload
performance, your backup and disaster recovery options, and your global data stor‐
age requirements. The company strategy will provide requirements that affect the
landing zone design. Your migration swing is the set of tools used to execute the
migration. The swing moves the objects from location A to B. There are tool sets that

x | Foreword

can be used to automate the movement of applications into their landing zones,
including mission-critical mainframe workloads. The grip is the reliable set of hands
that are required to execute the swing. Instead of holding a seven-iron, you’re placing
your hands on the AWS console, and you need the right skills and knowledge to exe‐
cute successfully. Building a team with the required cloud skill sets to migrate and
operate cloud workloads is frequently underestimated.

One of the guiding principles I’ve used throughout my career is this: it’s very difficult
to manage that which you’ve never done. When you don’t have experience, your
advice is more academic, and for large, complex technology projects, relevant experi‐
ence is important. I met Jeff Armstrong two years ago at AWS. He’s had an amazing
technology career in numerous roles—from software engineer to technology execu‐
tive to consultant—and he has never strayed far from the technology. For the past
several years, he’s helped customers migrate workloads to AWS and has firsthand
experience with the many decisions companies have to make throughout the cloud
migration journey.

This book is a result of those experiences. Successfully moving workloads to the
cloud has strategy, technology, process, and human aspects to it. Documenting a
thoughtful, coordinated, holistic approach up front will dramatically reduce the chal‐
lenges a client encounters on this journey. Jeff shares an extensive discussion of the
many levers a company can pull when embarking on a migration—you won’t need
them all on any given migration effort, but over time, you will pick and choose sev‐
eral of them depending on the specific situation. If you are newer to cloud migra‐
tions, you may find it beneficial to “power scan” the book to appreciate the multiple
topics, and then go back and read it carefully.

With that, I’m off to hit a bucket of balls…

— Jonathan Bauer
Principal, Deloitte Consulting–US AWS Lead Alliance Partner

Chicago, IL
May 2020

Foreword | xi

Preface

Sam sits at her desk. It is late, but she doesn’t know how late. The clock on the wall
clicks away behind her. No reason to look at it; she has not gotten around to changing
the battery for days. The second hand sits there one step forward, one step back. Sam
feels the same way; how did she get here? She scans around the office. The only thing
she sees is her reflection in the dark glass of her window. Pressing her palms against
her eyes, she tries to relieve the stabbing pressure behind them. She saw this migra‐
tion project as a way to boost her career, stand out as an innovator and leader, and
clear a path from IT director to VP. Instead of receiving praise for the company’s suc‐
cess, fear of termination sinks in.

Sam’s company started its migration project four months ago, and it is now consum‐
ing her life. Project delays are driving up costs, and outages are affecting their cus‐
tomers’ experience. The CIO is growing impatient with the issues and has begun to
question Sam’s capabilities. I have worked hard to become the director of IT; I need this
migration to go smoothly, she thinks. Sam saw migrating to AWS as a catalyst to
improve her company’s agility and drive more ambitious changes. In the past couple
of years, the competition from startups has become fierce, and as an enterprise com‐
pany, they cannot keep up with their competitors’ release cycles. By moving to AWS,
they could gain agility and become competitive again. If this project were successful,
it would gave her career a significant boost. With the unforeseen issues piling on, she
now fears her decision to migrate was a mistake.

“Samantha, I like your migration plan, but do you expect that we can meet these
timelines?” asks her VP. Sam snaps out of her flashback, planted back in the chair in
her boss’ office. It is 10 a.m., and the sun is shining through the windows, warming
her feet.

“As long as the stakeholders meet with the migration team and give the information
required,” she affirms.

“And these costs, are these correct?” asks her VP, raising his brow. Sam replies, “There
may be a change of plus or minus five percent, but I’m confident we are close.” The

xiii

VP agrees to take her plan forward to the executive team for approval. Sam stands,
proud and tall; she has won over the VP and is confident that executive management
will follow. One step closer, she thinks with a smile as she walks out of the room.

If you are reading this book, you may have been in this situation before. A high-
stakes opportunity is at your feet that will elevate your career, but fear, uncertainty,
and doubt (FUD) seep into the situation and prevent you from moving forward with
confidence. It is only natural, and I assure you I too have suffered this pain and can
sympathize with you. However, this feeling is unnecessary and easy to allay. This
book aims to deliver you the knowledge and information you need to obliterate FUD.
This book supplies a comprehensive look at migrating to AWS and offers real-life
insight into the things that work, the things that do not, and the things you should
look out for. I want you to be like Sam, squash the FUD, stand proud, and take your
career to the next level.

Who This Book Is For
This book is not a technical how-to book but addresses the process of migration
through the lens of a manager. As we walk through the migration process, we will dis‐
cuss not only the process itself but also risks, benefits, and potential roadblocks that
may arise as you go through your migration. Any IT operations manager, develop‐
ment manager, migration project manager, CIO, or CTO will find value in this book.
To help you understand the subjects deeply, we will walk through numerous scenar‐
ios and deconstruct what went right and what went wrong in each. These scenarios
will allow you to draw similarities to your situation, company, and applications. This
depth will prepare you and give you confidence to face these situations when you
encounter them in your company.

What This Book Covers
This book covers the migration process from inception through final application
planning. In my experience, the business and management aspects of migration easily
account for 90% of the effort in a migration. Unfortunately, many overlook their
importance and focus solely on the technical aspects. Following the techniques and
insight in this book will ensure that you have a successful migration, and that you
maximize your agility and cost savings along the way. We will cover:

• Why you should migrate to AWS
• The risks and how to mitigate them
• Discovering your workloads
• Building your business case
• Addressing your operational readiness

xiv | Preface

• Defining your landing zone and governance
• Planning your migration
• Refactoring, retooling, and final preparations

Each chapter will not only help you understand the process but will help you develop
the necessary deliverables to ensure success. For instance, in Chapter 1, we will walk
through creating a “why” narrative and FAQ for your migration to help communicate
the business value to the rest of the management team. These deliverables signifi‐
cantly increase momentum and gain buy-in. The result is that you will not only gain
valuable migration knowledge but also tangible processes and deliverables to increase
success and decrease delays.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

Preface | xv

This element indicates a warning or caution.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/migrating-to-AWS.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

xvi | Preface

http://oreilly.com
http://oreilly.com
https://oreil.ly/migrating-to-AWS
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Acknowledgments
Although my name might be on the cover, a book is by no means a one-person show.
This book would not be possible without the endless support of a host of people. The
first person that I want to thank is my wife, April Armstrong, for being super suppor‐
tive and forgoing many morning conversations over coffee to allow me to write.
Without her, I would not have been able to complete the project. I wouldn’t be a par‐
ticularly good dad if I didn’t give a shout-out to my kids, Natalie and Hailey, for giv‐
ing up some more time with me so I could work on the book. Whether they know it
or not, my family gives me my relentless drive to be more tomorrow than I am today.

Special thanks also go out to my coworkers William Ying and Manas Srivastava, who
provided feedback and inspiration, even if they weren’t conscious of it. I would also
like to thank Pi Zonooz, Danielle Adams, and Kamal Arora for guiding me on how to
get my book approved through management, public relations, and legal.

The technological world is full of fast-paced changes and conflicting terminologies. If
it weren’t for my tech reviewers John Culkin and Mark Wilkins, this book wouldn’t be
as polished as it is. I want to take the time to thank you for reading and providing
your detailed feedback.

Of course, this book wouldn’t be a reality at all if it weren’t for all the hard-working
folks at O’Reilly Media. I want to thank Kathleen Carr, my acquisitions editor, who
worked on getting my proposal approved so my idea could become a reality. My
acquisitions editor Jennifer Pollock and my production editor Kate Galloway did an
excellent job of ensuring that my book got over the finish line. Last but certainly not
least, a huge thanks goes out to my development editor Amelia Blevins for putting up
with me and my quirks as a first-time author. Amelia, without you, I don’t know if I
could have finished. You are a fountain of positive energy and inspiration.

Preface | xvii

PART I

Migration Foundation

Welcome to the first part of Migrating to AWS: A Manager’s Guide. In this portion of
the book, we will talk about the foundational aspects of migration. Chapters 1 and 2
discuss the benefits and the risks of AWS, and how to mitigate them. During these
two chapters, we will build a detailed understanding of these concepts and create key
deliverables that enable you to communicate this information effectively to other
constituents throughout the company. Migration to AWS isn’t a project that you
tackle only with the IT department. Other migrations you may have done in the past,
such as migrating from physical to virtual servers, or migration of one VMware-
based data center to another, could remain compartmentalized within IT. Migrating
to AWS allows your company to become more agile and increase business value. To
facilitate these capabilities, you will need the cooperation of the entire organization.
Compartmentalizing within IT should not occur while migrating to AWS, nor would
it be advisable, because you will not reap the maximum benefit. We will cover agility
and business value benefits in depth in Chapter 1.

I want to take this opportunity to clarify the use of some language used in the book.
Throughout this book, there will be two words that I use extensively, spend and com‐
pute. They will, however, appear in a different context than you are familiar with see‐
ing. Before the cloud, spend and compute were mostly used as verbs, as in I have to
compute how much my wife spends on kitchen carpets and hand towels for every holi‐
day. However, in the context of the cloud, these words are often used as a noun as
well. You will see sentences such as Storage tiering will reduce your cloud spend. In this
context, spend means the amount of money spent on your AWS bill. You will also see
sentences such as AWS Auto Scaling will reduce your overall compute usage. Compute,
in this case, is the servers that you will use to run your programs, rather than a

calculation. The reason that compute is used rather than instance, virtual machine, or
server is because the processing power in AWS is decoupled from storage and net‐
working. Also, compute in AWS might refer to a serverless technology where you
wouldn’t use a server or instance. I am also kidding about the hand towels and car‐
pets. She doesn’t buy them for every holiday.

Before we get started, I want to cover some basic concepts on AWS pricing and how
you can find this information. Throughout the book, I will refer to the current cost of
services to help highlight the savings and costs associated with deploying specific sol‐
utions to AWS. When I do this, I will reference all prices from the us-east-1 region.
We will cover what regions are in Chapter 1. At this stage, what you need to know is
that regions are where AWS deploys infrastructure throughout the globe, and they
might have different pricing based on location. However, where your company is
located may require you to look up pricing for a region other than us-east-1. It is also
possible that AWS pricing might have decreased, and the costing listed in this book
may no longer be accurate. I would suggest you research the latest costing directly
from AWS for any analysis you perform.

Looking up the current pricing for AWS is easy. AWS has located all its pricing under
the same URL structure on its website. The structure is https://aws.amazon.com/ +
service name + /pricing. For instance, the URL to access EC2 pricing is https://
aws.amazon.com/ec2/pricing. For ease of use, Table I-1 shows the most frequently
used AWS services.

Table I-1. AWS pricing URLs

Service URL
EC2 https://aws.amazon.com/ec2/pricing/

RDS https://aws.amazon.com/rds/pricing/

Elastic Load Balancing https://aws.amazon.com/elasticloadbalancing/pricing/

Lambda https://aws.amazon.com/lambda/pricing/

Elastic Block Store (EBS) https://aws.amazon.com/ebs/pricing/

Amazon S3 https://aws.amazon.com/s3/pricing/

DynamoDB https://aws.amazon.com/dynamodb/pricing/

Now that we have covered the contents of Part I, and how to look up AWS pricing so
you can directly relate it to your business and locality, let’s move on to Chapter 1 and
discuss the benefits of migrating to AWS.

https://aws.amazon.com/
https://aws.amazon.com/ec2/pricing
https://aws.amazon.com/ec2/pricing
https://aws.amazon.com/ec2/pricing/
https://aws.amazon.com/rds/pricing/
https://aws.amazon.com/elasticloadbalancing/pricing/
https://aws.amazon.com/lambda/pricing/
https://aws.amazon.com/ebs/pricing/
https://aws.amazon.com/s3/pricing/
https://aws.amazon.com/dynamodb/pricing/

1 Simon Sinek, Start with Why: How Great Leaders Inspire Everyone to Take Action (New York: Porfolio, 2011).

CHAPTER 1

Why Should I Migrate to
Amazon Web Services?

I wondered whether putting such a loaded question as the first chapter of my book
was a good idea. The actual list of reasons to migrate to AWS could be as long as this
book, but like Simon Sinek says, “Always start with why.”1 Thus, I felt it prudent. The
biggest roadblock you will encounter is people’s reluctance toward change. Migrating
to AWS from your current platform is a change to the way people operate and the
skills required. A sound narrative around the why will allow you to inspire the people
around you and deliver better results while removing reluctance. This chapter will
delve into many technological and business benefits gained by migrating to the cloud.
With this information, you can provide the why to the upper levels of management
and staff.

As you read this chapter, I encourage you to think about the situations your company
is experiencing and how these benefits relate.

A way that has worked well in the past for communicating the why to coworkers is
through a set of frequently asked questions (FAQ). Later in this chapter, we will walk
through building out your FAQ to communicate the why to upper management and
staff. You can accomplish this by anticipating the questions they will be asking and
constructing answers based on the benefits your company will realize. By completing
this exercise, you will gain acceptance and lessen detractors. You are increasing the
probability of success and efficacy of the transition.

3

Cloud Technology Benefits
AWS offers several benefits with the latest cutting-edge technologies. However, not all
these technologies and their benefits apply to every company. Instead of walking
through every benefit, we will walk through the technical benefits that apply to every
company. They may not be flashy, but they create a solid base on which you build
your infrastructure. By taking advantage of these benefits while you migrate to AWS,
you will reap enough capital and time savings to fund the testing of more advanced
technologies. I have been able to save companies millions of dollars using these meth‐
ods, which they can then reinvest in innovation. I agree that automatically transcrib‐
ing customer support calls and analyzing for customer sentiment is an awesome and
powerful tool for your business. However, I believe that migration is one of the crawl-
before-you-walk situations. As a manager, your primary concern is to ensure that
your migration meets your business needs and regulations. Implementing the latest
cutting-edge AI is secondary; after all, the infrastructure you have today is what pays
the bills and provides your current customer value.

Scalability and Dynamic Consumption
When you migrate to AWS, you need to focus on diverging your thinking from how
you used to operate on-premises infrastructure. Many of the conventional design pat‐
terns and operational processes are anti-patterns in the cloud. For scalability and con‐
sumption, many of these anti-patterns show up early in your migration. It is best to
identify and move past them quickly. Changing your existing thought process around
on-premises scalability will immediately afford you cost savings and agility when
comparing it to scalability in the cloud. Before we cover these new patterns and why
the on-premises patterns are anti-patterns, we will walk through the scalability AWS
offers you. Again, as you read, it might make sense to jot down some notes about
your applications and how these scaling methods might improve your capabilities.

Vertical scaling
Vertical scaling is the practice of adding compute and memory to a server to increase
the performance available to the workload. I liken it to being Amish and plowing my
field. I am plowing a new row, but the soil gets hard. To complete my plowing, I
unhitch my quarter horse, go to the barn, and get a bigger draft horse. Vertical scaling
is not a novel idea for the cloud. It has been there the whole time in your data center,
and in my experience, it is the go-to method of improving performance and increas‐
ing capacity. However, with migrating to AWS comes some key differences.

When you have your infrastructure running in AWS, you have a pay-as-you-go
dynamic consumption model instead of a prepaid model. I like to explain it like the
tides: the moon’s gravity pulls on the earth and raises the water level of the ocean as it
passes. This analogy mirrors the usage of your infrastructure throughout the day—

4 | Chapter 1: Why Should I Migrate to Amazon Web Services?

the pull on your resource load ebbs and flows. Just like the tide, you end up with a
high and low watermark. The difference with the cloud is that you only pay for what
you use; you only must buy at the low watermark. Then you incrementally pay for
more consumption during the high usage times. On-premises, you have to prepurch‐
ase at the high watermark. To complicate the issue further, you must forecast your
consumption for the life of the hardware, which will be over or under the actual con‐
sumption. Underutilized resources are a drain on your company’s funding, and over-
utilized resources provide a poor user experience. The purchase of on-premises
equipment in my analogy can be pictured like building a dock. If you place the dock
too high, you will have to put in ladders for people to get to their boats. If you place
the dock too low, they will be sloshing around in the water. AWS is a floating dock
and eliminates both issues; it rises and lowers, providing optimal conditions.
Figure 1-1 shows what prepaid purchasing and consumption looks like over its
lifetime.

Figure 1-1. Infrastructure costs over time

Figure 1-1 does an excellent job of showing how the purchase of on-premises equip‐
ment under- or over-fits your company’s needs. If you compare the dotted line, which
stands for your need, and the solid line, which represents your capital expenditures,
you will see how far the gap between them ebbs and flows. At one point, the demand
exceeds the capacity of the infrastructure, indicated where the line is dashed, meaning
that you do not have enough capacity to service customers. I would say not having
enough capacity is not common. Most people, including me, buy more than they
need, so a situation like that never arises. Having consistently underperforming IT
resources is a good reason for your manager to ask you to empty your desk. The
important thing this graph shows is how you must purchase not only for the high
watermark, but also for well above it. The overage ensures enough capacity, and all
the space between the dotted and solid lines is wasted capital. The dynamic ability of
AWS eliminates this overage and lost capital, allowing you to use those funds for
other business needs.

If you think back in your recent history, you may remember a conversation much like
the following scenario.

Cloud Technology Benefits | 5

Scenario 1-1
The server for Tom’s meme generator is seeing a lot more traffic these days. He must
address the performance. He has looked at the CPU and memory usage. It has two
allocated CPUs, and Tom is seeing spikes of up to 100% usage multiple times
throughout the day. The memory usage is within limits; it must be the rendering pro‐
cess for the graphics that is taking too much of the CPU. Tom has looked at the
VMware cluster, and he has plenty of capacity. He considers adding just two more
CPUs to compensate.

This is a prevalent scenario, both on-premises and in the cloud. There are a few
things I would like to draw attention to that will change after you migrate to AWS.
First, instance is AWS nomenclature for a server or virtual machine from the Elastic
Compute Cloud (EC2) service, and these terms can be used interchangeably. How‐
ever, I will use instance whenever I am talking about a server in AWS, and server or
virtual machine to indicate a server on-premises. The second is the statement “mem‐
ory usage is within limits.” When working with instance sizing in AWS, you cannot
adjust CPU and memory separately. You must find the smallest instance that meets
the memory or CPU target, and whichever is not your target goes along for the ride.
In this example, the CPU capacity is your target. When you increase by two more
CPUs in AWS, your memory will increase as well. Third, it may be better to use hori‐
zontal scaling instead, to spin up more instances when needed to address the load
instead of making a permanent vertical change. We will discuss horizontal scaling in
the next section.

AWS offers a capability called Optimize CPUs for Amazon EC2
instances. This capability allows you to set the number of CPUs
when you launch an instance. The setting cannot be modified later
and does not alter the run rate of the instance. These limitations
may not be immediately evident when reading the documentation
and make it appear that AWS operates like on-premises capabili‐
ties. The primary reason for the Optimize CPUs function is for the
software licensing base on CPU count and edge-use cases when
CPU is low while also requiring high RAM.

Let’s take a look at another possible scenario.

6 | Chapter 1: Why Should I Migrate to Amazon Web Services?

Scenario 1-2
Mary is looking into some performance issues that have been affecting her company’s
end-of-the-month accounting process since the latest software service pack. It looks
like the patch introduced more CPU load into the process. She will have to add more
CPU power to the server to meet the deadline requirements of the month-end batch
processing.

In this situation, AWS can shine by reducing your costs of operation. As mentioned
before, while on-premises, you must purchase equipment to meet your high water‐
mark, so you have already committed funding to operate your environment. Allocat‐
ing more CPU power to address batch processing is irrelevant to the costs of
operation. However, in AWS, you are purchasing at the low watermark, and it is best
to stay there.

You may be wondering how you address the performance issue. It is best to solve this
scenario by using temporary vertical scaling. You know when this workload will come
up, and you know it is only temporary. It would not make sense to increase the
capacity to address the batch process permanently. Using scheduled events or third-
party software, you can schedule the scaling up of this server before the workload and
then scale it back down after it completes the work. Temporary scaling would give
you the most cost-effective operation.

You may wonder why we did not cover horizontal scaling for this
situation. For an application like an accounting system, it is com‐
mercial off-the-shelf software (COTS) and not commonly engi‐
neered for horizontal scaling.

Horizontal scaling
Although vertical scaling adds more capacity to a single server, horizontal scaling
allows you to add more servers to meet the load for your application. Using my
Amish analogy again, if the soil got too hard, I would hitch a second horse to finish
my plowing instead of getting a bigger horse. Again, with the AWS pay-as-you-go
model, you can gain significant cost reduction by using horizontal scaling. To achieve
horizontal scaling, AWS offers two crucial services, Elastic Load Balancing and AWS
Auto Scaling.

Cloud Technology Benefits | 7

Always start with horizontal scaling and work back from there to
find technical reasons why it will not work. Only then revert to ver‐
tical scaling.

Windows servers that are attached to a domain require special con‐
sideration. These servers need special scripting to add and remove
themselves to the domain during horizontal scaling events.

Elastic Load Balancing. You may remember I had said that vertical scaling was typically
the go-to method of scaling on-premises. To implement horizontal scaling on-
premises, you would have to buy a load balancer. The increased capital, maintenance,
and care-and-feeding soft costs are a significant deterrent to using load balancers for
capacity needs. Implementing on-premises load balancers is seen more often when
there is a specific high-availability concern, or there is limited ability to scale verti‐
cally. With load balancing, the dynamic consumption in AWS again provides a con‐
siderable advantage. You only pay for the load balancing you need, so there are no
up-front costs. You will also benefit from a serverless technology. The Elastic Load
Balancing in AWS does not have any servers you need to maintain or patch, reducing
your soft costs. As you can see, load balancing in AWS is more attractive, making
horizontal scaling for performance more accessible.

The term serverless means a lot of things to different people and
companies. In the context I use it, as represented in this book, it
refers to any service that doesn’t require you to manage servers or
infrastructure. Obviously, there are servers somewhere doing the
work; you just don’t need to care about them.

AWS Auto Scaling. While the Elastic Load Balancing service provides the network
connectivity between the users of your application and the servers, the AWS Auto
Scaling service contains the needed logic to control the expansion and contraction of
the server pool. Without this expansion and contraction, your costs would again be
static and less efficient. Auto Scaling has multiple triggers available to add and
remove capacity from your application server pool. You can use CPU usage, memory
usage, and disk input/output operations per second (IOPS) for a needs-based option.
Another option, if you know when your load will occur, is auto-scaling using a sched‐
ule. The AWS Auto Scaling service also allows you to set a minimum number of
servers and can act as a high-availability orchestrator, ensuring that a minimum
amount of compute is available to service your customers. The way you look at

8 | Chapter 1: Why Should I Migrate to Amazon Web Services?

availability and disaster recovery (DR) also changes, but I will touch on that later in
“Disaster Recovery/Business Continuity” on page 31.

Let us take a second to think back to the conversation with Tom about the CPU
capacity needs for the meme generator application in “Scenario 1-1” on page 6. In
this scenario, it makes perfect sense to switch from a vertical scaling solution used
on-premises to horizontal scaling in the cloud. Using this method will produce the
best experience for your customers while supplying your company with the best cost
consumption available. When CPU usage rises as more people generate memes, the
auto-scaling service adds a server to meet the load. When the server is online and
available, auto-scaling will add it to the load balancer to service customers’ requests.
The process works in reverse when load drops, returning to your baseline settings.
There are a few caveats to using horizontal scaling, though. Your servers need to be
stateless. Stateless means that no specific configuration or data lives on the server, and
the server can be deleted with no adverse effects on the overall operation. Another
caveat might be that you need preconfigured instance images created to reduce
instance launch time.

You can use sticky sessions on a load balancer to ensure that the
same server always services users as a potential workaround. How‐
ever, if the server is removed from a load balancer, users will still
experience adverse effects.

Geographic Diversity
Now that we have covered scalability, let us cover another key AWS benefit: geo‐
graphic diversity. Think about your data center(s). Where are they? How far apart are
they? How many are there? If you manage a smaller operation, then the answer is
probably few, and if you have more than one, they are probably not far apart. I can
tell you from my experience that my data centers at one company were only seven
miles apart. Not exactly geographically diverse, but better than the solution was
before, having a single data center. If you are a large enterprise, you probably have
two or more data centers, and they are most likely farther apart. However, how close
are they to your users? How is the remote office in Brazil connected to your data cen‐
ter in New York?

I have migrated many Fortune 500 companies and a few smaller companies to AWS.
Throughout my experience, I can tell you that no matter what your configuration is,
when you migrate to AWS, you can do it better. AWS has impressive geographic
diversity, and you can use that to your advantage for high-availability and disaster
recovery concerns and bring the services closer to your customers for a faster user
experience. To highlight how you can take advantage of this capability, we will walk
through how AWS deploys its infrastructure. There are regions and availability zone

Cloud Technology Benefits | 9

(AZ) concepts, as shown in Figure 1-2. AWS provides a website with an interactive
globe detailing its regions, network connectivity, and points of presence.

Do not try to extend your company into many regions for the sake
of diversity. There should be a compelling business reason, because
there may be additional costs associated with it.

Regions
AWS regions are a collection of availability zones that have data centers in a geo‐
graphic area. The concept of regions is very foreign when compared to on-premises
operations. On-premises you don’t have the ability to create a comparable infrastruc‐
ture design. You don’t have the economy of scale to create such a vast infrastructure.

Figure 1-2. AWS region components

To help understand the concept, we can draw a similarity to how the United States is
segmented. A region could represented by an individual state. Within a state there are
counties (parishes if you live in Louisiana, or boroughs in Alaska), and they represent
availability zones. The last aspect of a region in AWS is the data centers; you can think
of these as the cities within a county. At the time of writing, the AWS infrastructure
consists of the regions shown in Table 1-1.

10 | Chapter 1: Why Should I Migrate to Amazon Web Services?

https://infrastructure.aws

Table 1-1. AWS regions

Region name Region
US East (N. Virginia) us-east-1

US East (Ohio) us-east-2

US West (N. California) us-west-1

US West (Oregon) us-west-2

Africa (Cape Town) af-south-1

Asia Pacific (Hong Kong) ap-east-1

Asia Pacific (Mumbai) ap-south-1

Asia Pacific (Osaka-Local) ap-northeast-3

Asia Pacific (Seoul) ap-northeast-2

Asia Pacific (Singapore) ap-southeast-1

Asia Pacific (Sydney) ap-southeast-2

Asia Pacific (Tokyo) ap-northeast-1

Canada (Central) ca-central-1

China (Beijing) cn-north-1

China (Ningxia) cn-northwest-1

EU (Frankfurt) eu-west-1

EU (Ireland) eu-central-1

EU (London) eu-west-2

EU (Milan) eu-south-1

EU (Paris) eu-west-3

EU (Stockholm) eu-north-1

Middle East (Bahrain) me-south-1

South America (São Paulo) sa-east-1

AWS does not offer all services in every region. Refer to the AWS
Region Table to ensure that all the services you require are available
before migration.

Data proximity. When you are getting ready to migrate to AWS, you will want to
think about your users and their location, and select the region closest to them. These
could be internal or external users, or both. The benefit AWS brings over conven‐
tional on-premises data centers is that you do not have to limit yourself to just one or
two regions. You have at your disposal every AWS region across the globe. There are
no sunk costs associated with launching a new region like there are with a data center.
You do not have to lease space or purchase power conditioning, fire suppression,

Cloud Technology Benefits | 11

https://oreil.ly/18uh1
https://oreil.ly/18uh1

security, racks, and all the other things needed to launch a data center properly. AWS
has taken care of this for you. Because of the multitenant and the pay-as-you-go
models, you only need to pay for the infrastructure you use in that region. Let’s look
at a few scenarios to help you get an idea of how you might use regions in your
migration.

Scenario 1-3
Sam’s company is located in Washington, DC, and all of its corporate users are located
in that office except for a few remote sales users. The largest customer using its online
application—representing 90% of the consumption—is in Seattle, and the rest of the
users are spread across the United States.

Let us take a second to walk through this scenario as if we were Sam. Most of the cor‐
porate users are in Washington, DC. The first thing you want to do is pick an AWS
region with proximity to your staff to reduce latency. An obvious choice would be the
us-east-1 region in Virginia. Selecting Virginia ensures that the bulk of the internal
users have the lowest latency possible. The speed of light is fixed; there is not much
we can do to make data transmission faster. Selecting something close like Virginia is
not unique to the cloud; her data center is probably within a few hundred miles of the
corporate headquarters already. However, when you think about the second state‐
ment, how the largest customer is in Seattle, this is where design planning in AWS
shifts. AWS has regions all around the US; it would make sense to place some infra‐
structure to support her biggest client in Seattle. I would choose the us-west-2 region
in Oregon as a second deployment location, specifically for her online application.
The beautiful part is that Sam need not worry about all the components of a data cen‐
ter. She only has to concentrate on and pay for the servers required for her biggest
customer. Deploying in two regions like this on-premises would be costly.

Scenario 1-4
Bill’s company is located in Chicago and New York City. The offices are about equal in
size. Bill’s company has a website, but most of its infrastructure supports internal
operations, and the company does not have to worry about external customer access.
Bill has his servers in each office, and they serve most data to their respective offices.
However, there is one internally built application in New York that the Chicago office
also uses.

In Bill’s situation, I would recommend starting with latency to find out how the base
deployment would look. Since the servers in the offices only serve the local office in
which they are located, there will not be much traffic crossing the country. I would

12 | Chapter 1: Why Should I Migrate to Amazon Web Services?

recommend that Bill use the us-east-2 region in Ohio for the Chicago servers and
us-east-1 for his New York servers. Using this configuration should give his users the
lowest latency to their respective servers. Since his company has a website, but it is
not an essential customer application, I would suggest that Bill place it in a single
region in AWS. Bill can make his website faster for customers by using Amazon
CloudFront, a content distribution network (CDN). Using CloudFront will increase
performance without the complexity of more servers in other regions. Lastly, Bill has
an internally developed application that both offices use. Since this application is pri‐
vately built, Bill can take advantage of the two regions with some minor reprogram‐
ming. This design provides a multimaster (you can write data in both places) and
multiregion solution, which would give the best performance and availability.

Scenario 1-5
Brittany has a similar situation to Bill. The servers in her company are only for inter‐
nal staff. However, her company only has one office in Columbus, OH, and a third
party hosts its website.

Brittany has the most straightforward selection process. Her entire user base is loca‐
ted in Columbus, OH. I would suggest she use the us-east-2 region in Ohio to host
her infrastructure since a third party hosts her website. Where to locate their site does
not affect her decision. Brittany may want to replicate her data to a second region for
disaster recovery purposes, but I’ll touch on that in the section “Disaster Recovery/
Business Continuity” on page 31.

Data locality and privacy regulations. There has been much talk about the General Data
Protection Regulation (GDPR) in the European Union (EU). This regulation, along
with others, has raised concerns with IT management on how to meet the data sover‐
eignty requirements it imposes. Since AWS has regions located around the globe, it is
easy to control data storage sovereignty according to the country where the regula‐
tions exist. Data locality is only part of the puzzle. You also may need to validate that
the data does not cross borders during transactions. Just storing the data in the cor‐
rect country does not rubber-stamp all your infrastructure and operations if you have
processing outside of the designated region. However, having all the AWS regions
available to you gives you a significant advantage over on-premises deployments
where you may need to acquire new data centers to meet the regulations.

One important caveat that I want to point out for data sovereignty is that some coun‐
tries don’t have more than one region. For instance, if you have regulations in Canada
that require data to be stored in the country, you will have limited options at this time
for multiregion deployment. Currently, AWS only has the Canada central region (ca-
central-1). AWS continues to add new regions all the time, and this may not always be

Cloud Technology Benefits | 13

the case for Canada, but it is essential to consider your DR requirements for
sovereignty. AWS has sufficiently covered the US and EU, but areas like South Amer‐
ica and Asia-Pacific may require added consideration. It is important to note that
every region has at least two availability zones. For most companies, this may supply
enough availability to cover your requirements for DR while maintaining sovereignty.

AWS has a special region called GovCloud where government enti‐
ties can host their infrastructure in AWS and meet strict guidelines
at the federal, state, and local levels.

Availability zones
Thinking back to my state analogy, the cities represented the actual data centers; the
counties were the availability zones (AZs) in an AWS region. AZs play a key role in
high availability within a region. AWS connects AZs with low-latency fiber-optic net‐
working, allowing data to move between them with ease. The zones are also geo‐
graphically separated, so an event like a flood or tornado in one zone will not affect
the others. To make it easier to visualize, you can think of an availability zone as a
single data center. Most regions have three availability zones to choose from for the
deployment of infrastructure. To help solidify the concept, let’s walk through a hypo‐
thetical AWS region.

Scenario 1-6
One AZ in our region exists in Chicago, and this AZ has three data centers connected.
The second AZ is located in Milwaukee, WI, and has three data centers connected at
its location. Finally, the third AZ is in Rockford, IL, and it too has three data centers
connected. That means there are three AZs and nine data centers in this hypothetical
region. AWS does not publish the distance between AZs or where any of the existing
AZs are located. Therefore, this example is an estimation. However, you should have a
good understanding of the relationships between regions and AZs, and the impor‐
tance of the geographic separation of the AZs.

The AZs and their separation are a significant benefit over conventional data centers.
Many companies have the equivalent of two regions in their on-premises deployment
but only a single AZ. A data center will typically be found close to the principal office
and then a second in a distant location for disaster recovery purposes. The concept of
availability zones rarely exists on-premises. Similar to the shift in thinking with scal‐
ing and regions, there also needs to be a shift in thinking on how you address availa‐
bility in your infrastructure design. Shifting your thought process allows you to take

14 | Chapter 1: Why Should I Migrate to Amazon Web Services?

advantage of the benefits of AZs. Let’s look at a scenario to help you get an idea of
how you might use AZs in your migration.

Scenario 1-7
Jim’s company runs an application on the web that allows customers to transfer funds
to friends and family in an instant. The primary data center for Jim’s application is in
New York, and the disaster recovery site is in California. Jim has been having issues
with the Structured Query Language (SQL) server hardware, and there have been
some outages that are unacceptable. He sees the potential to solve this problem by
using SQL mirroring to create a second copy of the database. The mirror copy will
allow Jim’s SQL server to failover if the primary server’s hardware fails, and to con‐
tinue his application’s operation. Jim located the second mirror server in New York
because the latency to California was too high and would affect his users’ experience.
Before Jim migrates to AWS, he wants to better understand how he can use AZs to his
maximum benefit.

Jim has increased his availability, but he has not improved his geographic diversity. If
his primary data center goes offline, Jim will still have to failover to the disaster recov‐
ery site in California. I don’t know about you, but thinking about DR used to give me
heartburn. Our DR was all designed and verified, and we had done failover testing.
However, testing is usually just one piece at a time, not an entire data center. Would it
all work in the event of a disaster? It should is the answer. I dislike it should. I want
sure things, and the best way to have a sure thing in a disaster is to shift your thinking
from DR to business continuity (BC). On-premises, Jim would have a challenging
time incorporating BC into his application and making it highly available. Business
continuity is much easier to achieve in AWS thanks to AZs. Availability zones are
geographically diverse within a region, giving them separate power and communica‐
tion feeds. They are also far enough apart that a tornado would only affect one AZ.
Jim could reconfigure his application when he migrates into AWS. He can use two
AZs for his SQL server mirror and his web servers. His aim should be to create a
highly available and continuous operation if one AZ were to go offline.

AZs and disaster recovery
The AWS AZs are one of the most critical changes that help businesses when they
migrate to AWS. Disaster recovery on-premises is a hard problem to solve; it never
gets the love, attention, and funding it should. It ends up being a drain on resources
and a significant source of stress for management. I think back to my days in bank‐
ing, where DR is critical. It would be so much easier to change the conversation to BC
and add some years back onto my life. When you migrate to AWS, I encourage you to
pay particular attention to how you can deploy your infrastructure in multiple AZs to
achieve business continuity.

Cloud Technology Benefits | 15

I want to bring attention to a design pattern that comes up many times with AZ
deployment. You must not fall into the same trap. Many companies deploy and con‐
figure two AZs in a region and think they have all the availability they need. Who can
fault their logic? They have two deployments; when one fails, the other takes over. I
would encourage you to think long-term. What happens when an AZ fails, but it was
because of a natural disaster? The failed AZ will not come back online soon. In this
situation, you would have to redeploy the second set of infrastructure to another AZ.
If you only have set up two AZs and one is now offline, you would have to construct a
new AZ deployment. All the while, you are still feeling the pressures of being in a
failed state. I recommend deploying at least three AZs from the start, to address any
potential AZ failure.

Easy Access to Newer Technologies
With scalability and geographic diversity, we touched on the physical benefits of
AWS; now, we are going to cover a logical benefit with easy access to newer technolo‐
gies. In the early days of AWS, the services were limited to a few such as Simple Stor‐
age Service (S3) for object storage and Elastic Compute Cloud (EC2) for compute.
AWS now offers dozens of services, from managed database platforms like Relational
Database Service (RDS) to AI tools like SageMaker. Access to new technologies
allows companies to adopt and expand their capabilities and innovate for their cus‐
tomers more readily. To highlight how access to these technologies can improve any
company, I want to show it using a very drastic comparison. The addition of these
more advanced services, coupled with the pay-as-you-go model, has changed the
ability of small startups to compete with Fortune 500 organizations. Think of a box‐
ing match. In one corner is the startup—small, but fast. In the other corner is the
incumbent Fortune company—big, but slow. In this boxing match, the opponents are
not evenly matched. The smaller, more agile company can outmaneuver the large
incumbent, but its success depends on landing enough punches before the big com‐
pany can wind up and knock them down.

To give an example of what this might look like, let us look at some technologies AWS
can economically provide to startups. An example of a costly technology to imple‐
ment on-premises is data warehousing and analytics. For a startup to get into analyt‐
ics, it would have to generate a substantial amount of investment to buy the needed
hardware to store and process massive amounts of data. The expenditure of this size
takes funding away from vital company functions such as paying staff wages. Day-one
operations of a startup doing analytics on-premises could cost tens or hundreds of
thousands of dollars for initial hardware expenditures. The procurement of large
amounts of hardware by a large incumbent company is easy. Paying hundreds of
thousands is not hard; the difficulty for a large company is in the time to execute.

16 | Chapter 1: Why Should I Migrate to Amazon Web Services?

By launching in AWS, this same startup would have easier access to new technologies
like analytics for two reasons. The first is that AWS has many advanced technology
services available for a startup to choose from in the analytics space. There is Amazon
S3 object storage for storing vast amounts of data in a way that is cost effective. Ama‐
zon QuickSight offers business intelligence tooling, and services like Amazon Athena
and AWS Glue supply data processing and querying capabilities. Offering the services
alone is not a special sauce. When you couple these advanced technology services
with the pay-as-you-go model, you have the proper ingredients to incite competition
by dropping the significant capital expenditure and removing the barrier to entry.

Inexpensive and easy access to these new technologies allows any company to test,
experiment, and innovate in ways never before possible. The number one thing pre‐
venting companies from experimentation and innovation is the fear of failure. Failure
on-premises is a very costly endeavor, leaving extra or specialized hardware and soft‐
ware sitting on shelves instead of cash in the bank. After migrating to AWS, the acces‐
sibility of technology and the low cost of failure can enable your company to innovate
and deliver improved results for your customers. Let us look at what accessibility to
new technologies might look like for your company.

Scenario 1-8
Amy works for a hospital, and someone from purchasing is asking the IT department
to create an AI program to estimate supply need. Some supplies are expiring before
they use them. However, sometimes if they order less, they run out. She is looking for
a program to estimate when and how many to order based on historical patient data.

On-premises, Amy would have her work cut out for her to make this request happen.
She would need to deploy some servers to do the AI model training. Depending on
which machine learning algorithm is selected, Amy may need to buy some specialized
hardware to run the computations. Amy will also have to solve the problem of who
will program and maintain this AI application, which requires a specialized skill set.
All these items create a significant roadblock to adoption. Amy does not have easy
access to new technology. However, after Amy’s company migrates to AWS, she
would have a much simpler time implementing this request. AWS has a service called
Amazon Forecast that does this AI computation. Amy would not have to worry about
servers, hardware, or a specialized AI programming skill set to test this technology.
Amy could use her current IT staff and programmers to implement a proof of con‐
cept (POC) and only pay for the training time in hours, data storage in gigabytes
(GB), and generated forecasts ($0.238, $0.088, and $0.60 per 1,000, respectively).

Cloud Technology Benefits | 17

Availability
We have already discussed geographic diversity and scaling and how they can
increase your availability. However, these are not the only capabilities AWS offers to
enhance your availability. There are many technological ways AWS increases availa‐
bility, but let us focus on a select few that are most likely to be relevant to your needs.

If you look at the history of AWS, you can see that the offerings continue to be cre‐
ated serverless, like the elastic load balancers we discussed before. Since you are not
deploying any servers, you do not control quantity or deployment location. AWS
designs these services to be highly available for you, relieving this workload and stress
from your life. I am sure you will appreciate less work and stress. You will not be sit‐
ting on the beach sipping piña coladas, but it is one less thing to worry about postmi‐
gration. The way AWS accomplishes this higher level of availability for these
serverless offerings is by fully exploiting the availability zone concept to deliver them.
Here are two scenarios detailing how you might use these services in your environ‐
ment to gain higher availability as opposed to your on-premises configuration.

Scenario 1-9
Keith works for a financial services company that provides an online application to a
host of banks throughout the US. The application generates and stores reports on a
Windows file server where the web servers can access them. On-premises, Keith’s
team has deployed only one server. They had thought about replicating the files to a
second server. However, they only have one active data center. They decided that the
extra management of another server was not an efficient use of their resources. Keith
is wondering whether there is a better way to deploy this solution when they migrate
to AWS.

In Keith’s deployment, there is a better way of architecting this solution in AWS to
increase his availability. In this situation, my recommendation would be to move the
report files to Amazon S3. S3 is an object store and is perfect for storing data that
needs to be downloaded from the internet. S3 is also one of the serverless offerings
from AWS and is designed for high availability. S3 replicates your files between all the
AZs in a region automatically and provides 11 nines of durability. What are 11 nines
of durability? It means there is a 99.999999999% probability your file still exists on
the storage. I have heard it is probable that S3 data will outlive humanity. I am not a
mathematician, so I cannot validate the claim. However, doing some napkin math, it
sounds plausible. By making a few minor alterations to the application, Keith can
achieve high availability, almost unimaginable durability, and confidence in the ongo‐
ing workload on his staff.

18 | Chapter 1: Why Should I Migrate to Amazon Web Services?

AWS provides 11 nines of durability, not availability. It is important
to remember the difference. The AWS service-level agreement
(SLA) guarantees that the data exists in storage, not that it is always
available to be retrieved. Rest assured, their track record has been
pretty darn good.

Scenario 1-10
Kathy is the manager of data management at a large insurance agency. They run a
high-performance computing (HPC) cluster for actuarial computation. The servers
themselves are stateless and do not store any data, but they access petabytes of data on
a large storage device via the network file system (NFS) protocol. Kathy wants to
migrate this application to AWS to take advantage of the vast scaling capabilities to
run these computations faster and more cost-effectively. She needs to devise a way of
storing the data that provides high availability. The storage device has redundant con‐
trollers to continue serving data if one fails. However, last year, there was a leak in the
data center roof that disrupted the network, causing tens of thousands in lost revenue.
Kathy wants to ensure that physical data center issues do not disturb the operation.

Kathy’s situation is not unique. I based this scenario on my real-life experience with
one of my data centers. Water raining down in a data center is not a good thing, and
something you never thought about addressing. Come to think of it, this is the same
data center that had part of the wall collapse. Construction workers were removing a
pedestrian bridge next door. A crane slammed a massive piece of concrete into the
wall. These are the situations when life is stranger than fiction. I could not make this
stuff up, and neither can you—that is the point. You cannot think of all the things that
can happen to your data center and, like Kathy, it is best to address this in your
deployment. For Kathy’s implementation, it would make sense to use the Amazon
Elastic File System (EFS) to store the data for her HPC cluster. EFS supports the NFS
protocol required for the operation of her cluster and offers redundant data storage
across AZs. This service is a serverless offering and does not require any input for this
availability.

Increased Security
In keeping with the trend of logical benefits, AWS offers another with increased secu‐
rity. A few years ago, people were fearful regarding the security of their data in the
cloud. I can partially understand their reluctance. I say partially because large soft‐
ware as a service (SaaS) providers like Box had a booming business. People were not
afraid to put their business data on those platforms. It is ironic to me that those same
people feared placing the rest of their data on AWS. For most, the fear of moving
their data to AWS has passed. After breaches, large companies have stated that if they

Cloud Technology Benefits | 19

were on AWS, the breach would not have happened, or it would have had less impact.
Zero trust and least privilege are best practices in AWS. These two methodologies are
quite effective in securing your environment. The benefit in AWS is that it makes the
implementation of these principles quite easy.

Zero trust
Trust security on-premises has mostly remained unchanged for the past few decades.
Most networks have a three-zone deployment. An internet zone exists for connecting
to the internet and hosting other devices, like firewalls and virtual private network
(VPN) controllers. Behind that, there is an edge zone or demilitarized zone (DMZ)
that hosts the web servers and email servers.

Further into your network, there is an internal zone that hosts your private servers
and data. Some companies deploy a fourth zone where printers and workstations
exist, which allows further separation from the private servers. Having zones was a
good security design for networks 20 years ago. The problem with this design is that
there is a level of trust for each zone. You do not trust the internet, somewhat trust
the edge, and fully trust the private zone. This concept sounds good when you think
about it, but after all the recent corporate breaches that have occurred, you can see
why it is dated. Once you pierce the veil of the edge or internal zones, you can skip
around like Dorothy on the yellow brick road. This design implements perimeter
security. Break through the perimeter, and there is little to stop you from poking and
prodding the rest of the servers until you break into them.

Zero trust is when no server trusts any other server. If you can break into a server in
the edge zone, you cannot communicate to any other servers in that zone unless
allowed by design. Instead of happy Dorothy, you end up in a cold dark cell, like Al
Capone, contemplating your rapidly declining health. Zero trust restricts your blast
radius from any attacks, thus making your environment more secure. Nothing says
you cannot do this on-premises. I implemented this security for a bank I worked for.
It took a long time to implement, and it cost tens of thousands of dollars for the tech‐
nology and tens of thousands more in employee effort.

AWS Security Groups are a significant benefit to zero trust security and do not cost
tens of thousands of dollars. Security groups cost nothing. Security groups are how
AWS implements firewalls in AWS. A security group provides an external firewall to
your instance or group of instances; it is not a piece of software running on the
instance itself. Like a firewall, it controls all the traffic flowing into your instance and
blocks anything that you have not explicitly permitted. To make management even
easier, you do not have to control traffic by just IP addresses either. Security groups
allow you to reference other security groups. This referenceability makes managing
security even less burdensome than it is on-premises. When you assign or unassign
instances from a security group, the security group automatically adjusts without

20 | Chapter 1: Why Should I Migrate to Amazon Web Services?

manual intervention, whereas changing servers and IP addresses on-premises
becomes an issue if firewall rules are not updated and become stale. By referencing a
security group as a source when a server is added or removed, it is automatically
inserted or removed from the security group. This automation ensures that there are
no old, static references.

Make sure your team breaks the habit of using IP addresses for
AWS resources and switches to security group references.

Let us look at a scenario where this would happen on-premises.

Scenario 1-11
John runs a web server in his edge zone, and it reaches back into a database back end.
John needs a lot of performance for the database, so he has set up three servers in the
internal zone. The web server needs to talk to these three servers, so John adds a fire‐
wall rule referencing the three database server IP addresses. Later, John gets new
servers with more processing power, and he decides that he only needs two servers
when he rebuilds them. A few months later, John’s web server was hacked because of a
missing patch on the operating system. It was discovered during forensics that the
hacker was able to log on to six other web servers in the edge zone. The damage did
not end there. The hacker could also get into the payroll system because John never
removed the third IP address from the firewall rule when the server was decommis‐
sioned. The IP address ended up being repurposed to the database server for the pay‐
roll system, granting access from the web server. After the incident, upper
management asked John to be successful at another company.

If John’s servers had been in AWS, most of this attack would have been blocked. The
web server compromise would have still occurred—John did not effectively manage
the security and remove the vulnerability. However, once the attacker had gotten into
the web server, they would not have been able to jump from the server to another
server so easily. By implementing zero-trust security group rules, the hacker could
not have moved to the other servers in the edge zone. They would not have a way of
getting there, and the second that John removed the third database server, it would
no longer be in the security group. Therefore, access to the payroll database server
would have been blocked as well.

Cloud Technology Benefits | 21

Least privilege
Least privilege is controlling authorization to the smallest level of access to do the
work required. You can think of it as security at an airport. As a passenger, you can
get through the security checkpoint, but you cannot get on the wrong plane or enter a
storage room. The woman who works the counter at Starbucks can get through the
security checkpoint and enter the storage room, but she cannot get on any plane or
the tarmac. A baggage handler can get on the tarmac and into the baggage processing
rooms, but he cannot get onto a plane or into a storage room. This is least privilege:
everyone gets the access they need to do their job, nothing more.

AWS considers security job zero, by which they mean that it’s even more important
than priority number one. A lot of thought has gone into how access controls work.
AWS offers very fine-grained control over the capabilities of each service through a
service called Identity and Access Management (IAM). This control allows you, like
the airport, to give only the access needed to operate a particular service. The count‐
less permissions AWS services offer are segmented into list, read, tagging, and write.
Table 1-2 details the capabilities associated with these permissions.

Table 1-2. AWS IAM permissions

Permission Access
List Allows access to list components for a service, such as instances or security groups

Read Allows access to read the properties of components like the configuration of an
instance

Tagging Allows access to add or remove descriptive tags to resources

Write Allows the changing of properties of a resource like adding another disk to an
instance

By using these individual access controls, you can grant access to a minimal subset of
actions. Why would you want to do this, and why is it a benefit to security in AWS? It
boils back down to blast radius. If an attacker were to gain access to a set of creden‐
tials, you want to limit the actions they can perform to limit the amount of damage
they can do. Let us look at a scenario without least privilege set up and see what can
happen.

Scenario 1-12
Rob is migrating to AWS and needs to set up access for his performance monitoring
team to log on to the AWS console to look at server performance. Rob is in a rush and
does not implement least privilege. Instead, he grants admin-level rights to the per‐
formance support desk. He will have more time to take care of limiting the permis‐
sions in a week or two. A few weeks pass, and Rob has forgotten to update the
security. Someone on the performance team left their credentials on their desk on a

22 | Chapter 1: Why Should I Migrate to Amazon Web Services?

sticky note. Late one night, a malicious security guard found the sticky note. Feeling
slighted for not getting a raise, he logged on to the company’s AWS account and
started clicking around and deleting things. By the time Rob and his team had figured
out what had happened, the malicious actor had removed half of their infrastructure.

A situation like Rob’s is not unique to the cloud. Just like scaling on-premises is possi‐
ble, so is least privilege. It is just more difficult to implement on-premises. When you
are working on-premises, there are dozens of places where you need to implement
security: firewalls, switches, hypervisors, and the list continues. It is like an office full
of desks, and you need to go around to each desk and lock the drawers. After you
migrate and start using AWS services, your task of securing becomes a lot easier.
Instead of focusing on securing every desk in the office, you just need to secure the
office. IAM works as the door to your infrastructure. Every user passing through that
door gets their authorization as they pass through. IAM allows you to assign the list,
read, tagging, and write permissions as your users enter, to give you granular control.

Cloud Business Benefits
Although there are significant technical benefits in migrating to AWS, there are a
number of business benefits as well. I consider the business benefits significantly
more attractive than the technical ones. It is a bit like beginning a relationship. The
technical benefits attract you in the first place, whereas the business aspects are the
mental attractions that keep the relationship growing and interesting. Although the
technical benefits might be a why when you start migrating to AWS, they will quickly
become a how after the technical hurdles are resolved. Just like the world of love, the
physical side of the equation can wane as it becomes ordinary and expected. Sure,
AWS will come out with new services and capabilities to spice up the technical side;
however, it all comes back to the business side of the house. You do not implement
technology for technology’s sake—there is always a business driver behind it. That is
why I want to bring to the forefront the business benefits that migrating to AWS will
offer you.

The business benefits are going to have staying power as a why-driver in your busi‐
ness for far longer than any technical driver. Because of the longevity of these motiva‐
tions, it makes sense to attribute extra time to evaluating and thinking about how
they relate directly to your company. Crafting a great why around these benefits will
provide a compelling story to drive and maintain motivation in stakeholders and staff
for your migration.

Reduced Expenditures and Support
We have already covered the concept of pay as you go and purchasing your infrastruc‐
ture at the low watermark, so we don’t want to dive into those waters any deeper (pun

Cloud Business Benefits | 23

intended). However, these are not the only ways that AWS can help to reduce your
costs relating to IT expenditures. When discussing the benefits of AWS regarding
costs, I like to break them down into two buckets. In the first bucket, we have the
hard costs associated with running your environment. These are the costs for equip‐
ment, software, services, power, fire suppression, and the like. They are very tangible
and easy to measure. On the other side of the question, the second bucket contains
the soft costs associated with your estate. These costs, such as staff time for patching,
racking equipment, performing backups, and others, are tough to measure. These
soft costs are the parasite attached to your IT budget that sucks the life out of it.
These costs, if saved, would provide your company with more IT funding for innova‐
tion and delivering value to your customers.

Hard costs
I just said that hard costs are easy to measure, but now I’m going to qualify that heav‐
ily. They are easy to measure if you measure them. When you talk about hardware like
servers and switches, I am sure that you have an accurate measure. You purchased
them, they are on your books as a depreciating asset, and you can probably tell me
exactly how much that costs you. Once you step beyond hardware, things might get a
bit trickier. For instance, if you do not have a colocated or dedicated off-site data cen‐
ter, accounting for individual costs becomes difficult. I have detailed two examples
here that show just how drastic the difference in cost allocation can be.

Scenario 1-13
Andrea works for an advertising company that does ad placement in magazines and
newspapers. As the VP of IT, she is responsible for the entire IT budget for her com‐
pany and is keen on knowing where her expenditures are year over year. Andrea’s
company is midsized and has a decent-sized infrastructure estate. Several years ago,
they moved their equipment out of their office building and into a colocation facility.
Andrea buys equipment new from Dell and has it shipped directly to the facility and
racked by their staff. Andrea pays for a single rack at the facility that has 8KvA of elec‐
tricity. The facility takes care of all power, internet feeds, generator, fire suppression,
and battery backup power.

Andrea has a pretty easy job. Everything that Andrea needs to run a data center is
sold to her with a cute little bow on top. She knows exactly what all these items cost
her, and she does not have to worry about accounting for them. AWS does not offer
any simplification to Andrea in terms of how she accounts for costs. The cost of run‐
ning her systems in AWS will also be delivered in one bill with a nice bow on it.
Andrea might have some unused capacity in her rack if it is not chock-full of equip‐
ment. She may benefit from AWS because she would not have to pay for that extra

24 | Chapter 1: Why Should I Migrate to Amazon Web Services?

capacity. When comparing the cost-benefit to AWS, Andrea will have an easy time
performing the analysis.

Scenario 1-14
The medical software company that Jim works for has an extensive infrastructure that
is located in two data centers in its central office location. Jim wants to analyze how
much his data center is costing him compared to what it would cost to run it in AWS.
Jim starts to dig into his costs but is having a hard time breaking things out. Since the
data centers are on-site, the power bill is for the full facility, and he does not know
how much the equipment uses. He ran into the same issue when he went to cost out
the HVAC expenses. The contract for the service includes the whole building, so he
cannot allocate that either. To make matters even more frustrating, he ran into the
same issue with the generator and fire suppression. The only item that Jim could ade‐
quately account for besides the equipment was the battery backup system. That sys‐
tem is only used in the data centers.

Believe it or not, I run into Jim’s situation all the time. Many companies have no idea
what the actual costs are to run their infrastructure. Like Jim, things just grew organi‐
cally on-premises, and there was no real separation from an accounting perspective.
It will be difficult for Jim to make a cost comparison between on-premises expenses
and AWS. Since his costs are not attributed directly, Jim will have to make some
assumptions. He can base them on the square footage of these data centers or use an
industry standard as a baseline. AWS can help in this area by using the total cost of
ownership (TCO) tool available online. I have found that the estimates AWS provides
are not viewed favorably by some management. They feel it is more marketing mate‐
rial than qualitative data, and would prefer data from an unbiased third party. If
you would like to build your estimations by hand, you can use the AWS Pricing Cal‐
culator.

The AWS Pricing Calculator does not support costing on all AWS
services, but its capabilities continue to grow over time.

The economy of scale that AWS offers businesses in hard costs is a substantial benefit.
It has more servers than any one company could have. It uses specialized equipment
and can drive down acquisition and operational costs. These savings are then
transferred to its customers. Even the largest companies in the world, ones with large-
scale infrastructures themselves, choose to migrate to AWS and shut down their data
centers. The reason is quite simple: they are not in the data center business. Their
business is offering some other service or product to their customers. Since data

Cloud Business Benefits | 25

https://calculator.aws
https://calculator.aws

centers are not their business, they cannot have the scale of AWS and thus the cost
savings. If these massive companies cannot do it as effectively as AWS, imagine what
migration can do for your company.

Soft costs
One of the most exciting benefits of AWS is related to soft costs. When you migrate to
AWS, there are a lot of services available to help reduce the soft costs of operating
your environment. In addition to eliminating the costs, the services can also help to
reduce risk. One of the best services for reducing soft costs postmigration is RDS, a
managed database service. This management means that AWS handles patching of
the operating system, backup of the databases, and patching the database engine. This
automation eliminates much of the effort needed from your staff to perform these
functions. Many hours a year of staff time would be dedicated to installing the
patches and checking to ensure that backups were occurring. Operations like these
are a time suck and provide no value to customers. Customers want their data backed
up, but they do not care how it happens, nor are they willing to pay for it. They see it
as unavoidable and part of your problem, not theirs. Customers are looking for prod‐
uct capabilities, updates, and bugs fixed. AWS helps you with these non-value-adding
functions, like database patching, and frees up the time for your staff to work on
those value-adding items that customers want.

This form of soft cost savings is prevalent throughout the platform. If you think
about all the items required to run a data center, you will start to see these savings.
For instance, running a data center involves battery backup systems. These systems
need maintenance and testing. If you run your own data center, these tasks fall on
your shoulders to complete. Depending on your risk profile, you could be testing
your backup systems every year, quarter, or month. Again, this provides no value to
your customers besides them expecting your systems to be online when they need
them. You can take this a layer deeper and think about the time required to negotiate
contracts for your communications lines and HVAC support contracts. All these
items consume your time and effort, and the real cost of this time is tough to quan‐
tify. When I think back to my data centers and the time required to manage them, I
would have preferred to outsource all of that and worry about running my software.
If you are using a colocation data center, many of these are already outsourced for
you, and you don’t have to worry about them.

If we take one step above the operational requirements for a data center and start
looking at things like network and hypervisors, you’ll see a trend where AWS can save
you even more time. For instance, in AWS, you do not need to worry about managing
the hypervisor. Patching your VMware environment or Microsoft Hyper-V becomes
outdated. The hypervisor is part of the EC2 product you do not have to think about
anymore. You consume the EC2 instances. AWS worries about the underlying hard‐
ware and operating system and patching. The same holds for elastic load balancing.

26 | Chapter 1: Why Should I Migrate to Amazon Web Services?

In your on-premises environment, you would have to patch your load balancer and
maintain all security and updating of the hardware when it expires. The same holds
for your storage subsystem, because AWS manages the storage subsystem for you.
You consume the elastic block store (EBS) volumes. You do not have to worry about
managing how much disk capacity is available, how much storage will be needed, or
how much maintenance contracts cost.

Reduction of soft costs can easily surpass hard cost savings.
Employee salaries are most likely your company’s greatest expendi‐
ture. Now this doesn’t meant that you should be handing out pink
slips like candy at Halloween, but it does mean that your staff will
have more time to add business value.

The last major component we will cover that reduces operations soft costs is the fire‐
wall. Firewalls are another critical network communication device that you must
manage, patch, and update. By using AWS Security Groups, you eliminate a signifi‐
cant amount of soft costs related to maintaining your environment. In addition, AWS
has a networking service called Network ACLs that offers a second layer of security
by implementing a Layer 3 firewall.

I could go on about all the capabilities AWS has that can save you these costs. I
wanted to highlight a few of the important ones to get you thinking about other areas
where your employees use a lot of their time to do mundane tasks—tasks that you can
outsource and have managed by somebody else. Your product or service is what your
company does best; it is what makes it unique. That is why you are in business. I will
repeat that multiple times throughout the book. It is an essential concept, one I want
ingrained in your being. It will help you with detractors later. Some staff will be reluc‐
tant to make changes, and fearful of obsolescence and additional workload. You will
be able to show how their working life will improve by working on more interesting
duties that will lessen their reluctance to move forward. I like to say it like this:
nobody went to college or training classes to learn to perform monotonous tasks.
They learned for another reason—to build a product, to create magnificent databases,
or to make good money. I assure you, none of them were dreaming about work a
robot could do.

There are many more services available in AWS to help reduce your workload on soft
cost tasks that we will not review. There are tools to back up your data, there are tools
to apply patches, and there are even tools to manage licenses. When used together,
they are a formidable weapon against wasted time and effort. You will have to
determine where your company has significant waste in operational tasks and deter‐
mine whether there is a service or capability that will help to lessen it. Table 1-3 is a
list of some additional services that could lessen your soft cost postmigration.

Cloud Business Benefits | 27

Table 1-3. Cost-reducing services

Service Capability Service information
AWS Backup Provides automated backup for a number of

AWS services
https://aws.amazon.com/backup/

AWS Systems
Manager

Provides systems management automation
such as software installation and patching

https://aws.amazon.com/systems-manager/

AWS License
Manager

Automates and manages software licensing
in AWS

https://aws.amazon.com/license-manager/?nc2=h_m1

Do not use soft costs in your business justification unless you can
absolutely quantify them. Failure to do so could lead to them being
thrown out and possibly jeopardizing your migration. I have seen
managers get into sticky situations where upper management
thought they were pushing an agenda by providing “fluff ”
numbers.

No Commitment
When you are building on-premises, it is a lot like buying a new car. You put much
effort into the evaluation to make sure it is a good fit. You will be together for the next
three to five years, and you’d better make the best of it. It is the second-largest
expense you will have after your house. It is a significant commitment that has a
major impact on your life. Like with your car, the commitment is what makes busi‐
nesses apprehensive about trying new things. It is a lot scarier to fail fast when failing
costs hard dollars that are hard to recoup. Let’s face it—computer hardware depreci‐
ates faster than your last car. A car will at least bottom out somewhere along the
curve because it still performs the function of driving from A to B. Not the case with
computer hardware; the value can continue to travel right down to zero because the
software designed to run on it can no longer run. This depreciation leads to much
fear of failing fast. Failing fast means that hardware you buy today might not work as
expected with the concept you were testing, and now you have this hardware sitting
around collecting dust. Do this a few times, and you have tens or hundreds or thou‐
sands of pieces of equipment lying around. What happens? You do not fail fast. You
do not want to fail at all, so you do not innovate, and your company gets its lunch
handed to it by a startup.

Do not tell my wife of 17 years this, but commitment is bad. At least when it comes to
IT. AWS does not have any commitments. You can spin up a server, or test out a busi‐
ness concept or product enhancement. If it does not work out, destroy it and stop
paying. Now your ability to test and fail takes a much smaller bite out of your budget.
Failing fast means that you spend insignificant amounts of money multiple times
until you find something that works and delivers on the product or feature that your
customers want. It is like a fresh new product you see on the web that you want to try,

28 | Chapter 1: Why Should I Migrate to Amazon Web Services?

https://aws.amazon.com/backup/
https://aws.amazon.com/systems-manager/
https://aws.amazon.com/license-manager/?nc2=h_m1

but you are afraid it might not deliver on its promises. However, then you see that
there is a money-back guarantee if you are not satisfied. Now your fear of failure is
gone, so you move forward with your purchase. The no-commitment aspect of AWS
is the same warm safety blanket you like to wrap yourself in before trying that new
product.

One of the benefits you can take advantage of is around employee testing. Through‐
out my career, I have had many staff members that loved to tinker and try things out.
I see this as an excellent business advantage. People can solve problems in ways never
expected or thought of through experimentation. However, it would be best if you put
some guardrails around experimentation. You must make sure your data is secure
and your costs do not get out of hand. In AWS, you can set up a sandbox account that
allows your staff to try new things, learn, and experiment in a controlled manner. You
can set spending limits and alarms for this account to keep costs low. From a security
aspect, you can prevent access to production data to limit data leakage.

Furthermore, you can run automated cleanup scripts to purge deployed infrastruc‐
ture to keep costs low and shadow IT to a minimum. All these items provide a safe
place where your staff can help you deliver better value to your customers while chal‐
lenging themselves and staying mentally engaged with their work. It is a win–win all
around.

Although AWS is typically no-commitment, you can have situa‐
tions where there that require commitment. They are typically tied
to discount programs in which you guarantee a specific spend to
receive a discount. This is known as the Enterprise Discount
Program (EDP).

Business Agility
Another business benefit you can leverage when you migrate is business agility, which
is exceptionally critical for long-term survival. If you look at the companies that have
struggled and failed recently—Sears, Kodak, Toys R Us, and Blockbuster, to name a
few—their inability to adapt and change is what sped up their demise. The bottom
line is that business agility translates into increased competitiveness, increased ability
to adapt to changing market conditions, and increased revenue.

Agility is the number one benefit of migration. Make sure that you
address this in your why FAQ.

Cloud Business Benefits | 29

I’ve noticed that in all the companies I have helped migrate to AWS, gaining business
agility was the most challenging benefit to achieve, yet the most fruitful. It is difficult
because there are many people involved—usually different departments, and different
teams within departments. They need to cooperate as a cohesive whole to reap the
benefits of agility. These teams are traditionally very siloed in a company. Unfortu‐
nately, when working with people and these silos, change does not come quickly.
Many times, the reluctance to change leads to considerable roadblocks. One reason I
find it vital to come up with the why narratives is that it will help move the process
along and drive synergies between the silos.

If you were to go back about five years, you would not hear the words business agility
mentioned within the context of IT. IT was there to provide the technology services
the business required. Typically, you had long cycles for development using waterfall
design methodologies, or you were running commercial off-the-shelf software. How‐
ever, things have changed in recent years. The combination of Agile software devel‐
opment methodology and automated deployment pipelines has changed how the
business looks at IT. It is not unheard of today for companies to release ten produc‐
tion updates every day. When you compare that to your on-premises system, you will
see the dramatic difference these tools facilitate. AWS has created a suite of products
for the automation of the building and deployment of infrastructure and software.
However, these services on their own are not especially useful. For instance, AWS
CodePipeline allows you to automate the building and deployment of software.
Unfortunately, if the software cannot be automatically installed and requires user
intervention, an automated deployment pipeline is not extremely useful.

Put another way, agility is the combination of tooling and people process. Unfortu‐
nately, as an IT manager, the responsibility will fall to you to address this disconnect.
IT will be the central point of contact between all the other teams, divisions, and busi‐
ness units within an organization. This centralization gives the IT manager a unique
perspective to create a uniform mode of operation across the entire company. Let’s
dive into the following scenario, which shows how agility can affect a company.

Scenario 1-15
Judy works for a large firm that manufactures pet supplies. The software that Judy’s
company uses for sales, logistics, and the manufacturing floor is built in-house. The
software works well for this unique business and has been evolving over the last 20
years. It was last updated about two years ago, although the development team has
been working on new features. In the previous year, a new competitor came into the
market and is applying much pressure to Judy’s company. Her competitor is also run‐
ning custom in-house software for its operations, but it is much more advanced. Its
software has real-time analytics and AI that aids the logistics and warehousing func‐
tions. Judy’s management has also heard that the competitor’s software does real-time
pricing updates based on current stock and production. This capability ensures that

30 | Chapter 1: Why Should I Migrate to Amazon Web Services?

product does not sit in the warehouse for extended periods. The sales team got the
scoop from a long-term client who also buys from that company. They told the sales
team that the competition has a much better purchasing website and a streamlined
return process that is done online rather than over the phone. The customer also said
that within the next week, the other company is offering an API that will allow its sys‐
tem to hook in automatically to reorder everyday products like dog food. Also, last
week, their competitor released an update to forecast order quantity based on past
purchases.

I have seen some exceptionally large and successful companies in a comparable situa‐
tion to Judy’s. They created their internal tooling long before the current wave of
technologies. Their competition is newer and was built in a cloud-native state, which
gives them several advantages. In Judy’s case, the competitor is using analytics and AI
and can push out updates at least weekly. For her company to compete on a level
playing field, it will have to implement quite a few changes:

• Implement a continuous integration and continuous development (CI/CD)
pipeline

• Regression-test two years of changes before updating the production
environment

• Train staff and customers on the two years of changes

Once the update is pushed out to production, they can think about switching to an
agile development methodology. All the while, Judy will need to ensure that the men‐
toring, training, and motivation of the staff is in place to ensure the successful
outcome.

Disaster Recovery/Business Continuity
When I started my career, DR was not thought about by many companies. For many
years, the extent of my DR plans was a tape backup that was stored in a fireproof safe.
The term proof should not have even been used–it was more of a fire delay and did
not guarantee that the temperature of the fire would not melt my tapes. As the years
progressed, so did the importance of DR. IT moved from just running an accounting
system to become a critical part of the business. Today, IT might be your business,
and without it, you won’t be in business long. DR is a large part of your current
budget and a critical part of your processes.

When companies migrate to AWS, they should try to move the focus from DR to BC.
Business continuity is more concerned with operations continuing than recovering
from a complete failure. I am sure you will agree with me that continuity is better
than recovery. Who wants to recover when it is so much easier to continue? With the
capabilities of the AWS infrastructure behind you, it is easier to create a BC plan that

Cloud Business Benefits | 31

can meet your required objectives. Those objectives are the recovery point objective
(RPO) and recovery time objective (RTO). To help remember these concepts, I
always think about the RPO objective as the sell-by date on my milk. How old can it
(the data) get before it is of no use to me? I remember the RTO as how long I take to
get to the store to get more milk, or how long I can be offline.

Using AWS AZs in your design allows you to meet near-zero RTO and near-zero
RPO by deploying your applications in an active/active or active/passive configura‐
tion. Active/active means that your applications are running on at least two servers at
the same time. You could do this with a load balancer in front of the servers. Active/
passive is similar, but one of the servers is replying to requests at any given time. In
case of a failure in an active/passive deployment, the second server takes over for the
primary. Congratulations, you now have a near-zero RPO/RTO BC design in AWS.
This design will allow you to survive the failure of one AZ and continue operations
without interruption. The question you must ask yourself is whether this is enough
protection for your business. What if an entire region goes down? If you ask that
question and the answer is, That is unacceptable, then there is more BC/DR work to
be done.

Using the benefits of AWS regions, you can expand your infrastructure to account for
an entire region failure. However, depending on your implementation and your
requirements, there can be a significant difference in cost, depending on your imple‐
mentation. You will need to decide whether your company wants cross-region DR or
BC. Cross-region DR is less expensive but has a much higher RTO and RPO, whereas
cross-region BC costs more because there must be more active infrastructure running
to accommodate the lower RTO/RPO. Let us walk through two scenarios to show
how your DR/BC might look after migrating to AWS.

Scenario 1-16
Kevin works for a local school district and is thinking about migrating to AWS. The
school runs all 12 servers in an on-site data center in the district office. They connect
the schools to the head office via VPN tunnels over the internet. Kevin’s systems do
not have remarkably high RPO or RTO requirements. The district requires all sys‐
tems to be online within 24 hours, a typical RTO. The district is less concerned with
RPO, because all the data in the systems is stored on hard copy for at least a week. In
the event of data loss, grades and attendance can be reentered from the hard copy. To
accommodate the RPO, tape backups are taken every Friday and removed from the
site. Even though it is not expected, Kevin would like to improve upon the RPO.

Meeting the district requirements will not be a difficult task to achieve, given the
capabilities of AWS. Since there is such a high RTO and RPO, it makes little sense to
deploy BC and continue with a DR strategy. Kevin will be able to snapshot (take a

32 | Chapter 1: Why Should I Migrate to Amazon Web Services?

copy of the data at the block level) the servers using an automated system called Data
Lifecycle Manager (DLM). DLM supports an RPO as low as 2 hours, which is better
than the requirement of 168 hours. Since Kevin only has 12 servers, it would not be
that hard for him to manually redeploy instances to another AZ within the required
RTO of 24 hours. If an AZ failed, Kevin could start up new servers and attach the
latest snapshots to them in about six hours, leaving plenty of time to spare. It would
be best if Kevin deployed his 12 servers in three AZs. This configuration ensures that
only 4 servers could go down at a time instead of 12. Deploying in this configuration
would save him four more hours in redeploying instances.

Scenario 1-17
The local restaurant chain that Amelia works for runs 52 servers in a colocation
facility. The servers run the website, online ordering, and restaurant point-of-sale sys‐
tems. Her company has set an RTO of only four hours. It has not analyzed how much
downtime costs and thinks four hours is acceptable. Amelia disagrees and wants her
servers to stay online. Having their website down for four hours is unacceptable.

Amelia should look at changing from a DR to a BC thought process. She has enough
systems with high business criticality to call for it. By using some of the benefits of
AWS, Amelia can deploy her applications to three AZs and use load balancing and
auto-scaling to provide availability. By moving her database backend to Amazon
RDS, she can benefit from active/passive database availability. With this configura‐
tion, Amelia will reduce her RTO/RPO to virtually instantaneous. To add another
layer of protection, she can implement DLM with four-hour snapshots and replicate
them to another region for DR capability. She can restore her servers if an entire
region goes down for an extended period.

BC is not a concept you associate with cost savings, but with AWS and the regions
with three AZs, you can cut 25% of your costs while still providing the same level of
availability. It depends on the capabilities of your application, but if your applications
can support it, you can save a considerable amount. This savings is another benefit of
AWS regarding BC.

Scenario 1-18
Jimmy works for an advertising company that runs a critical application on the web.
To meet the RPO/RTO requirement of his application, he deployed an active/passive
cluster. Each half of the cluster is in a separate data center to supply redundancy for a
regional outage. Jimmy is moving his company to AWS and needs to replicate this
level of availability.

Cloud Business Benefits | 33

Jimmy will save some money moving his application to AWS. Let us say that Jimmy’s
production server costs $100 a month to run. To meet his availability and BC require‐
ments, Jimmy has a second server in another data center. This server also costs $100 a
month to have online to receive database updates and be prepared to serve traffic.
Jimmy is paying 200% for his application: 100% to serve the application, and 100% to
be available for failover. Since Jimmy is in the United States, he has at least three AZs
available to him. When he migrates his servers, he can use auto-scaling and a load
balancer to change his application to an active/active cluster instead. In this configu‐
ration, Jimmy can deploy three servers that serve 50% of the load, meaning that he
will pay $50 a month for each server, bringing his total to $150 instead of $200. In this
configuration, Jimmy can have one server or AZ fail and still be able to serve all of his
load, even while saving 25% of his ongoing costs.

Determine whether your company needs more than one region to
meet its availability requirements. Many executives want more than
one, but the business does not justify the expense. They want the
Lamborghini when a Dodge Hellcat is just fine.

Decreased Vendor Lock-in
Whenever I hear the words vendor lock-in regarding migrating to AWS, I have to
scratch my head. If anything, migrating to AWS opens more options rather than
restricting them. When you built out your infrastructure on-premises, you accepted a
lot of vendor lock-in. You could change your storage area network (SAN) vendor or
server hardware vendor, but you would do that when you had to refresh hardware.
When you bought that hardware, you were locked into it for three to five years. It was
not like you could buy a SAN from Dell EMC and then a year later buy disk capacity
from Hewlett-Packard to expand it. It just does not work that way, and the same goes
for your hypervisor. Sure, you can change from VMware to Hyper-V, but the level of
effort to accomplish that is high.

When you migrate to AWS, you exchange your hardware for bits and bytes. If you
were to upload my server to AWS and have it run there, you could take that server the
next day and move it to Azure. By moving to the cloud, you cut the strings to your
hardware. There are some costs for outbound data from the cloud providers generat‐
ing a small cost to move, but those movement costs exist everywhere, even on-
premises, so I consider them moot. Converting your systems to purely data makes
them more mobile than ever before. Running instances in AWS offers you more
mobility benefits than you could ever have on-premises; it all ties back to the pay-as-
you-go model and the lack of commitments.

Real vendor lock-in comes into play when you use proprietary services that are only
offered by one vendor. I have heard many managers state that they only want to use

34 | Chapter 1: Why Should I Migrate to Amazon Web Services?

services available in all the clouds so they have mobility and can change vendors. This
mentality does not bode well for your career long-term. Keeping your infrastructure
in lockstep with the lowest common denominator ensures that you will never have a
competitive advantage in your marketplace. Your competition will move forward
with adopting lock-in technologies to add value to their businesses. It is like buying a
Corvette and then never leaving first gear. Some amount of lock-in is unavoidable,
and when a lock-in situation arises, it is important to ask yourself whether it is good
for your business.

Be leery when discussions shift to multicloud. It is the surest way to
see your costs skyrocket. You have to start paying for everything
twice. Twice the security tooling, twice the audits, and potentially
twice the staff, depending on skill sets.

Change to Operational Expenditures
A benefit of migrating to AWS and adopting a pay-as-you-go model is that you
switch from a capital expenditure to an operating expenditure. On the surface, it is
not immediately visible why this is a benefit, and some see it as a negative. If you pur‐
chased a server on-premises and depreciate it, meaning to expense the wear and tear
of the asset over several years, you end up with a fixed monthly expense for that hard‐
ware. After migration, you exchange this form of accounting for a variable operating
cost. This change does not seem like a good thing from an accounting perspective;
you are going from a fixed monthly expense to a variable expense. Many people pre‐
fer a fixed, known variable for expenses, and the addition of a variable expense makes
them uneasy.

Even though the expense is variable, I still see it as a benefit over on-premises. To
have the benefit of a fixed monthly server expense, you must buy it. The purchase of
hardware means that you are drawing down on your cash account, which you then
create an asset account for in my accounting system. Once you have the asset account
set up, you can divide the total cost of the server by the number of months you plan
to keep it. Many companies use 36 months or 3 years as their depreciation schedule.
You have to draw down your cash account. That money is gone, and it is not available
to do other things like pay staff or buy more advertising. This is not the case in
AWS—you do not have that drawdown, and your cash is still available to drive the
business forward.

You still may be asking about the variable cost and its unpredictability. I see this as a
benefit. It is not always the easiest construct to understand how it is a benefit, so let’s
look at the following scenario to get a better understanding.

Cloud Business Benefits | 35

Scenario 1-19
Duke works for an online application company that helps users park in the Chicago
area. The company still has not launched the application, so it does not have a user
base yet. It migrated a year ago to AWS, and the bill has been around $850. The CFO
asked Duke what the bill will be when the site goes live, and the user base ramps up.
Unfortunately, Duke cannot provide those exact numbers, but he has created a scien‐
tific wild-ass guess (SWAG). Duke knows from the application testing and data foot‐
print that an individual user has a cost of $0.55 a month, plus or minus 10%. With
this knowledge, Duke can say that for every 100,000 users, the costs will be $49,500 to
$60,500. What Duke does not know is how successful the launch campaign will be
and how many users they will gain.

To explain how Duke’s situation and variable cost is a benefit, let’s break down some
numbers. Duke’s platform is running in a steady state with no users at around $850 a
month. This cost translates into Duke’s fixed cost for his product. No matter how
many users are on the platform, it will cost around $850 a month to produce the
product for them to consume. The variable cost is the per-user cost of $0.55. The sum
of the variable cost goes up for every user added linearly. Now for the best part: since
the cost is based on consumption—the users—the revenue scales linearly as well.
These numbers help Duke’s company create predictions about how much it will cost
and how much they will make. It will not tell them anything about their market pene‐
tration, or how many users did not like the application and canceled the service.
However, Duke’s CFO will feel a lot more comfortable with a variable cost knowing
that it is tied to their user base. If you were to compare this scenario to Duke running
his application on-premises, he would have to buy a large amount of hardware for his
expected demand. The cost would be fixed, but it would also be more costly and
fixed, even if the company only obtained ten thousand users at launch instead of one
hundred thousand.

If you want more predictability in your bill and have a relatively static consumption,
you can purchase AWS reserved instances. A reserved instance is a prepaid EC2
instance rather than the pay-as-you-go model and offers you a discounted price. You
pay for a reserved instance up front and then amortize the cost over the year. It forms
a function remarkably similar to deprecation because you pay up front and then
expense back 1/12th of that cost every month. AWS also offers three-year reserved
instances, but I frown on those for many reasons I will get to in “Run Rate Modeling”
on page 114.

36 | Chapter 1: Why Should I Migrate to Amazon Web Services?

Sometimes the pay-as-you-go model does not work for everyone; it
limits some capabilities for small and medium businesses to speed
up deprecation. Your accountant might want to reduce your tax
burden, using IRS Section 179. Before migrating, it will be essential
to talk to your account or CFO and determine the right course of
action in these circumstances and how to address the issue.

Converting Your Why into an FAQ
In this chapter, we have covered much ground regarding how, with a little change,
you can reap a significant number of technical and business benefits by migrating to
AWS. I hope that as you read the various scenarios explaining some of these changes,
you were able to reflect on your personal experience and draw similarities. You
should have a good baseline to build out your FAQ for migrating to AWS, using your
notes as a guide.

Why are we building out an FAQ for migration? Well, people will ask questions; it is a
given. I like to build out an FAQ ahead of time with answers to questions I feel people
are most likely to ask. For one, it shows you have spent much time looking at the
project through their eyes. This connection gives them the sense that you feel their
pain and understand their viewpoint. Empathy will gain you support quickly. The fact
is that, by doing this exercise, you will understand their perspective! The next thing
the FAQ does is get the general concerns off the table right away and allow you to get
to work faster. I am sure that you do not want to be in more meetings discussing the
same detractions repeatedly. As you work and communicate with teams, you may
find that you did not capture all the thoughts and ideas that people have. That is OK.
It is all part of the process. It will be important to capture their questions and answer
those questions as well. The chances are high that someone else in your organization
will ask it again.

How to Build the FAQ
The first step to building out your FAQ is to decide on the audience. This audience
may be management, a development team, your staff, or a business unit. You will go
through this exercise multiple times using a different audience to flush out your FAQ.
For the purpose of this exercise, we will use upper management. Now that we have
our audience, you need to put yourself in their shoes and think of questions or objec‐
tions that they might have about migrating to AWS. Let’s step through two questions
that you might get from upper management and think about how we would craft a
response based on the knowledge we have gained from this chapter.

How much more is AWS going to cost us?
—CIO

Converting Your Why into an FAQ | 37

You can bet you will get asked this question, and it is a very fair question. The prob‐
lem with this question is that they have a predisposed attitude to think AWS will be
more instead of less. It would be an excellent idea to rewrite this question in a more
neutral stance. You want people to decide on their own and not be influenced either
way by the questions in your FAQ. “How will our infrastructure costs change after
migration?” would be a better way to phrase this question.

To answer this question, it would be important to focus on the high- and low-
watermark buying aspects of your infrastructure. For added support, you can also
include any applications that can save costs through an updated BC model and save
25% of those costs. It is important to draw vision from your company’s inner work‐
ings as much as possible to personalize it and make it real for them.

How will this migration affect our staff and operational expenses?
—CFO

This is another very common question that comes from upper management. It’s
trickier to answer. Technically, your operational costs will go up from an accounting
perspective because of the shift from a capex to an opex model for your infrastruc‐
ture. It might be an excellent idea to separate that into another question and answer
for the FAQ. Then you can reword this question into “How will this migration affect
our staff ’s productivity?” Now you can answer this question with all the soft-cost sav‐
ings that you have thought about earlier.

The next step in the process is to continue iterating to all the teams and departments
your migration to AWS will affect. It will be a time-consuming process, but it will
help overall by reducing the friction to change. As you go through more teams, the
number of net new questions will decrease because many of the groups will have the
same concerns. The viewpoints and motivations for their questions will change
depending on their position. Based on this different viewpoint, you might not add
another item to the FAQ but add more to the answer to address the additional con‐
cern instead.

Wrapping It Up
We covered much ground in this chapter, reviewing the technology and business ben‐
efits of migrating to AWS. The fact of the matter is that we just scratched the surface,
and there are many more ways to benefit from migration. Again, these are the bene‐
fits that universally apply to anyone migrating and were the most important to cover.
Every company that I have migrated to the cloud has leveraged AWS to benefit its
unique aspect and scenario. AWS could be looked at as the largest Erector Set in the
world. It allows you to build a Shannon number of possible solutions.

38 | Chapter 1: Why Should I Migrate to Amazon Web Services?

Claude Shannon was a mathematician who theorized the lower
bound of the game tree complexity in chess, which results in about
10120 possible unique games. This number is known as the Shannon
number.

By now, you should have a solid understanding of how your company can uniquely
leverage the benefits of AWS by relating the scenarios and explanations to your expe‐
rience. You should have a solid FAQ built that helps to address users’ concerns and
move the conversation forward. Lastly, you might have some ideas for what the future
holds for additional benefits postmigration.

Converting Your Why into an FAQ | 39

CHAPTER 2

What Are the Risks and Their Mitigation?

A ship in harbour is safe, but that is not what ships are built for.
—John A. Shedd, Salt from My Attic

Risk is unavoidable; your job as management is to mitigate those risks as much as
possible and accept the rest. I have seen many people try to remove all risk from their
migration, and this is impossible. You can spend hours and hours analyzing the situa‐
tion, trying to account for every permutation of risk, start your migration, and get hit
with an outage you had never even thought of. Just like in my story from Chapter 1
about the concrete crashing through the data center wall, you cannot account for
everything.

What you do not want to run into with your migration is analysis paralysis. One of
the unfortunate truths of any migration is that you are running portions of your
infrastructure in two places at the same time. Double infrastructure means doubling
some amount of cost. There are no magic migration fairies that come down and
sprinkle migration dust and poof, you are in the cloud. Analysis paralysis elongates
this period and puts your migration and company budget at risk. You want to address
and mitigate the most significant risks to your migration. Then remind yourself that
there will be some bumps along the road that you need to address on the fly.

This chapter aims to help you understand the significant risks to be mitigated. Many
of these items require retooling in your thought process, such as the benefits in Chap‐
ter 1. Like before, I will walk you through different scenarios to help you relate to
your situation so you can mitigate your risks and implement a successful migration.

The output that this chapter will help you build is a list of guiding principles. Having
a set of guiding principles for cloud operation will help create a solid foundation for
your company to operate in the cloud and reduce your technological and business
risks. You can create this set of principles and always follow them unless there is a

41

good business reason to deviate. One guiding principle might be that you always
design for multi-AZ deployment in AWS. Another might be that you always have
stateless application servers. These standards ensure that every department and team
follows best practices and designs and builds toward standards that meet your busi‐
ness and regulatory goals.

Technology Risks
Technology risks are what everyone defaults to when they think about risk while
migrating a workload. I define a technology risk as a risk that is directly affected by
implementing technology or technology processes. Most technology risks manifest
because people are not aware of the changes in security and the way systems run.
They try to apply the design patterns they used on-premises in the cloud, which are
many times anti-patterns. Lack of understanding creates confusion, poor migrations,
failures, unneeded expenditures, and potentially an inability to migrate. This chapter
aims to help you understand these differences in technology and the way security
works. It is better to revamp your process and get people on your team to realize that
they need to change their security processes. It also would be an excellent idea to cre‐
ate some common design patterns you see in your environment as a blueprint to fol‐
low. The blueprints will help create a baseline understanding with the teams of what
good looks like.

Security
For security risks associated with migrating your workloads to the cloud, it boils
down to four significant concepts:

• Implementation of a proper landing zone
• Implementation of the practice of least privilege
• Understanding of the shared responsibility model
• Use of contemporary and legacy security patterns in AWS

If you can address these four fundamental concepts before migration, you reduce the
risk of your workloads in AWS. If you look at many of the security events that have
happened related to AWS and other clouds, such as the Capital One breach, they all
have boiled down to a lack of proper controls on the resources in the environment.
The breaches were not due to the failure of the cloud provider to secure its service. If
you can follow these four concepts, you will have a more secure environment than
you ever had on-premises.

42 | Chapter 2: What Are the Risks and Their Mitigation?

Landing zone implementation
Starting with a good security foundation is critical to ensuring the security of your
workloads. In AWS, foundational security, compliance, and the base deployment of
your infrastructure are called a landing zone. The landing zone provides baseline
security controls and guardrails, account structure to segment environments, and
last, security notifications. AWS has a service to automate the deployment of a land‐
ing zone for you called AWS Control Tower. The landing zone gives your company a
baseline from a security and compliance standpoint. There may be additional
requirements based on your environment and regulations to meet your company-
specific needs. However, by using Control Tower, you can address many of your
needs and requirements with a low effort from your engineering team. The landing
zone deployed by Control Tower is not for every company. AWS gears the service
toward enterprises, and not necessarily small and medium businesses.

AWS Control Tower requires the AWS Organizations service,
which allows for central management and governance of your AWS
accounts.

There are several important items that you want to address in your landing zone. By
targeting these items, you ensure that you have a solid baseline for security and com‐
pliance. Ensuring that they are correct from the start saves you significant amounts of
effort later, trying to rectify an improper deployment. I have had a few clients who
did not start with the correct landing zone. This oversight created significant security
issues, cost overruns, and shadow IT (servers and applications that fall outside of a
known state yet are still running). I have detailed these essential items, as follows:

• Account structure
• Baseline security compliance monitoring
• Baseline logging for security groups
• Baseline security roles
• Configuration of crucial AWS services
• Protected logging

You may notice that I call some baseline. The reason for this is that you set them up
across the entire environment and accounts uniformly. However, you can build on
them for each account to meet specific needs, such as tighter control in the produc‐
tion account.

Technology Risks | 43

Account structure. A key advantage in how you can segment your infrastructure and
reduce risk in AWS is to use separate accounts for environments and logging. Each
account is separate just like individual customers in AWS; you have access to them,
unlike other customer accounts like Netflix, because you set them up and have root
access. Each account has its own unique security roles and configurations. An
account compartmentalizes your blast radius from attacks and issues that might arise
from service limits. By segmenting your account into development, testing, and pro‐
duction accounts, you can compartmentalize access for each use case. For example, in
the development account, you can enable access for developers to create AWS resour‐
ces without using infrastructure as code (IaC). However, in the testing and produc‐
tion accounts, you want to enforce best practices, only deploy by IaC, and lock down
those accounts. Locking down is quite easy when using separate accounts. Using sep‐
arate accounts also gives you more control over data leakage and enables you to
ensure that developers use only anonymized data. Having a distributed account struc‐
ture also affords you fine-grained network control and command over who is allowed
to make those connections, enabling you to dictate which subnets can even commu‐
nicate with one another.

Baseline security and compliance monitoring. By using services such as AWS Config
rules, Amazon GuardDuty, and Amazon CloudWatch, you can configure a set of
baseline compliance and security monitoring in your entire AWS estate. With these
tools, you can scan your entire AWS environment for items such as EBS volumes that
are not encrypted, root accounts without multi-factor authentication (MFA) activa‐
ted, root account logins, and more. These controls help you reduce security risks by
notifying you when these items do not comply or an action was taken. Another criti‐
cal takeaway when you migrate to AWS is automation. Try to automate everything—
this is a crucial point. By using these security and compliance monitoring alerts, you
prevent someone from having to check manually, and you reduce errors and decrease
response time.

Baseline logging for security groups. AWS allows you to log the ACCEPT and REJECT
notifications for instances running in your VPC, or Virtual Private Cloud (a per-
customer segmented network). These notifications are generated by the security
groups attached to your instances based on the rules you have established. You can
set up a VPC flow log to capture these notifications in Amazon CloudWatch, which
allows you to investigate any blocked communications quickly. The Amazon Cloud‐
Watch service offers a managed logging solution. Typically, packets are blocked
because of improper security group configuration. Another side benefit of this con‐
figuration is that you can set up CloudWatch metric filters and create alarms to send
notifications for items such as high packet drop count and other proactive security
measures.

44 | Chapter 2: What Are the Risks and Their Mitigation?

Baseline security roles. It is best practice to establish security roles throughout the
accounts to segment authorization between teams. A role establishes the level of
access users have to your AWS environment. You should establish these roles with
least privilege and allow multiple levels of access. Common suggested levels are a
read-only role for audit and a role for system admins to start and stop instances. A
full administrator role should be used sparingly.

Configuration of crucial AWS services. As part of your landing zone deployment, you
should be configuring some key AWS services regarding security. These services help
to protect your environment and are very cost-effective to implement. Many services
can be enabled, but I will focus on the ones I like the best. The reason I love these
services is that they provide a critical security function but have a minimal cost asso‐
ciated with them:

CloudTrail
AWS can log API calls in the environment by using a service called CloudTrail.
Programs not only log these API calls, but also every time someone uses the AWS
command-line interface (CLI) tools and the AWS console. CloudTrail is a vital
part of your forensic toolkit and should be enabled in every account and every
region.

Although AWS enables the CloudTrail service by default, it only
stores seven days of activity. This retention period is not sufficient
to secure your environment properly. CloudTrail should be imple‐
mented fully with at least a 90-day retention. I recommend a reten‐
tion period of one year for CloudTrail.

Config
The Config service from AWS allows AWS to track the state of configuration in
your environment. Think of it as a photographic memory of how things were
configured in the past. This tool serves a dual purpose in your environment. It is
a tool for forensic investigation but also for debugging issues that arise from a
change in the environment. You can see how that server was configured before
an outage and restore the changes made to the security group.

Inspector
On-premises, you might use a vulnerability scanner like Nessus or Qualys, but
AWS has a service called AWS Inspector. A vulnerability scanner is a specialized
security tooling that looks at all the servers in your environment and identifies
unpatched security flaws. Inspector is not as fully featured as the tools mentioned
above, but it will meet the vulnerability scanning needs of many organizations at
a significantly lower cost. It would be a good idea to investigate its capabilities

Technology Risks | 45

and supported operating systems to see whether it makes sense for your company
and lowers your cost.

GuardDuty
GuardDuty is an AI-powered malicious-activity scanner in AWS. It is purpose-
built to test and notify you of the risks in your AWS environment by monitoring
VPC flow logs, Domain Name Service (DNS) logs, and CloudTrail logs that we
discussed earlier. It aggregates all this information and looks at your environment
as a cohesive whole. You can find more information about the threats that
GuardDuty recognizes online.

An example of a GuardDuty finding might indicate that a known bad host was
performing a port scan of your web server. GuardDuty would notify you of this
scan, which host was performing the scan, and the AWS instance that was affec‐
ted. By using this information, you could validate that the host is still running
properly and that no breach was performed by the bad actor.

Protected logging. With CloudTrail enabled to log your API calls, the next step is to
reduce your risks, and forensic capabilities are designed to ensure that these logs are
protected from modification. The best way to accomplish this is to create another
AWS account for logging and auditing so these critical logs can be sent there for pro‐
tection. This protection prevents a malicious actor from changing your environment
and then editing the records to remove their API calls.

For a recap, here is a scenario to help build on the items discussed here.

Scenario 2-1
Hanna has recently started working for a large grocery chain in the Midwest. They
are currently about six months into their migration to AWS and have moved 10 work‐
loads into production. Hanna’s predecessor decided to leave after the migration
project had mixed results. There were many issues with cost, and someone on the
development team accidentally terminated a production server. This oversight caused
an outage with 10 stores’ point-of-sale systems and cost the company tens of thou‐
sands in lost revenue. They were never able to track down who it was because Cloud‐
Trail was not active. The CEO was excited for Hanna to come on board with her
previous experience with AWS migration. He is hoping that she can get the company
back on track and resolve the issues. Hanna performed an in-depth discovery on the
AWS infrastructure and design, and deduced that there was no preplanning put into
place before migrating systems. There was not a landing zone or any of the recom‐
mended baseline security. Hanna is recommending that they build out a new landing
zone and move the instances to the new landing zone before migrating any new
workloads.

46 | Chapter 2: What Are the Risks and Their Mitigation?

https://oreil.ly/dCn40

Hanna has her work cut out for her. From the sounds of it, they have one account set
up, which is going to make segmenting security between environments more difficult.
It also sounds like they have not implemented least privilege, because someone in the
development team deleted a protection server. This error should never have been
possible with adequately implemented security. Without CloudTrail, Config, and
VPC flow logs activated, it will be hard to do any forensics if a security event does
occur. Hanna’s situation is an excellent example of how not to migrate to AWS.

Unfortunately, I have seen a scenario like Hanna’s before. In a rush to save money or
get out of a data center with an expiring contract, people jump headfirst into migrat‐
ing without thoughtful planning. In the end, it costs the company even more money.
The cost overrun happens because you must stop migrating to get the baseline con‐
figuration and landing zone correct before you can move and jeopardize your opera‐
tions and security. A little preplanning goes a long way with mitigating security and
operational risk in AWS.

When we started this chapter, I stated that it would be a good idea to create some
guiding principles for your operation in the cloud. When it comes to the landing
zone, a guiding principle is not prudent because your landing zone is a one-time
design and deployment. In the future, you might add new accounts, but they follow
the original design pattern that incorporates all the features used in the current
accounts. When creating a guiding principle, it is essential to evaluate whether it is
against a set or variable pattern. You only want to create guiding principles for vari‐
able patterns. Ensuring that guiding principles are created for variable patterns
ensures that best practice is maintained, and you mitigate risks. The next section on
least privilege implementation is an excellent example of a variable pattern.

Least privilege implementation
When you migrate to AWS, one risk with least privilege is that most companies do
not have a full understanding of how their systems interface on-premises or who
owns them. I have been guilty of saying, “Don’t turn that server off—we don’t know
what it does, but things break if we turn it off.” There is much churn in IT staff, and I
have walked into this situation more times than I would like to admit. With a situa‐
tion such as this, it is hard to set up roles to manage said systems when you do not
have all the information about the server. The more servers you have on-premises,
the higher the probability of this situation. In a perfect world, I could tell you who
owns a server, how it should be deployed, and the level of access their development
team and support team need to do their jobs. The lack of information around this
tribal, unwritten knowledge—only passed on by storytellers around the water
cooler—is a real threat to your implementation of least privilege.

This lack of knowledge leads to the second risk of least privilege implementation in
AWS: giving up. Least privilege is not easy. Sometimes it can take a considerable

Technology Risks | 47

amount of work if you are doing something advanced. Once I was building a server‐
less application using the Serverless Framework. Wanting to implement least privilege
down to the lowest level by granting every read, write, and tag function, I went
through 36 iterations of the AWS role during its development to achieve that. Your
roles will not be that complicated for general use and limited to EC2 and other core
services, but it is essential not to give up, throw your hands in the air, and assign
admin-level privileges to get the ball rolling. The probability of you coming back and
fixing it later is low; you will not remember it until there is a breach, and then it will
be too late.

A guiding principle that would be logical for the implementation of least privilege
could be that you review all security for least privilege before the application goes live
in AWS. This forethought would ensure that every application that is ever launched
in AWS has the proper security review performed and validated before customers and
employees begin using it. This evaluation ensures that you properly mitigate the risks
associated with the erroneous privileges that have plagued companies and landed
them in the press or testifying before Congress.

Shared responsibility model
The shared responsibility model is a concept that often confuses people when they
first migrate to the cloud. This confusion is what can lead to security holes in the
environment. When you move your workloads to AWS, you are giving up some con‐
trol of the components in your environment. These are things like the physical data
center, the networking equipment, HVAC, fire suppression, network stack, and fire‐
walls. You are also giving up control over your hypervisor. AWS manages and main‐
tains the hypervisor. When you give up control over these items, you also give up
responsibility. Since you do not own the data center and the equipment in it, you are
not responsible for its management and security. That is Amazon’s responsibility and
seems self-explanatory, but these are the lower tiers of the responsibility model. Once
you move up the responsibility model, it can become confusing.

An excellent example of this potential confusion would be Amazon S3. As I stated
before, Amazon S3 is an object storage service that allows you to store files and serve
them to the web or an application. Amazon handles the servers and storage back end.
AWS handles all the security of those components for you. However, you handle the
security of individual files and buckets (a storage location you created). A sizable
number of breaches you hear about that are tied to S3 are caused by faulty access con‐
trol. Customers put the files out in an S3 bucket, and then they improperly secure
them. They grant access to it publicly when it should not be, or they do not remove
access when employees leave.

There are many different security consumption models in AWS based on different
services and technologies. Knowing where the responsibility lies amid so many

48 | Chapter 2: What Are the Risks and Their Mitigation?

services is often challenging. Amazon has recently added more security information
in its documentation that does a respectable job of addressing this. You can locate the
specific security documentation in each service’s developers guide. This documenta‐
tion covers data protection, identity access management, logging, monitoring, com‐
pliance validation, resilience, infrastructure security, and security best practices.
Amazon designed this documentation to address the confusion over securing the ser‐
vice and to clarify where responsibility falls. Here are a few scenarios to help show the
shared responsibility model.

Scenario 2-2
The bank where Kim works is migrating to AWS. Kim’s team operates the data center
on-premises in the head office and is responsible for the infrastructure, information
security, and help desk. Kim’s team operates on VMware and Cisco equipment in the
data center that runs Windows workloads primarily. About three years ago, the bank
replaced the aging storage with a unit from EMC. The Security Officer has asked her
to update the Responsibility assignment, or RACI, matrix for their servers postmigra‐
tion. RACI stands for responsible, accountable, consulted, and informed. The RACI
covers:

• Patching of servers
• Patching of the firewalls
• Maintenance of firewall rules
• Patching of the hypervisor
• Patching of the switches
• Patching of the software
• Patching of the storage subsystem
• Monitoring of system performance
• Monitoring of system availability
• Testing of the backup generator
• Testing of fire suppression
• Testing of the battery backup system

In Kim’s situation, there will be many changes to the items listed in the RACI. How‐
ever, since Kim is still running servers on EC2, many responsibilities again fall to her
team. Let us step through each of these to understand better how the responsibility
shifts and why:

Technology Risks | 49

Patching of servers
In AWS, patching of the servers does not change, and Kim’s team will still handle
them. The reason for this is that AWS does not have access to your servers and
could not update them if it wanted to. Only you can log on to your servers. AWS
offers the Systems Manager service to aid you with patch management. It will still
be the responsibility of Kim’s team to manage this service and the approval of
patches.

Patching of firewalls
By using the security groups in AWS, Kim’s team will no longer have to patch any
firewalls, because AWS maintains them.

Maintenance of firewall rules
AWS doesn’t manage the security group rules for your server. AWS does not have
any idea what software is running on your server, so it cannot decide what traffic
to allow in and out. Kim’s team needs to create and manage the rule set. Also,
since Kim should switch to a zero-trust model, her team will need to research all
the communications between the servers and create the corresponding rules.

Patching of the hypervisor
The hypervisor is another item that Kim’s team need not worry about going for‐
ward. AWS maintains the hypervisor; Kim’s team will have no access to it.

Patching of the switches
AWS delivers the networking layer as the VPC and is a managed service. Kim’s
team will not have to patch switches.

Patching of the software
Patching of the software on servers falls on the shoulders of Kim’s team. Just like
patching servers, AWS has no access to your EC2 instances.

Patching of the storage subsystem
Unlike her on-premises storage, Kim will not need to worry about patching the
operating system of her subsystem. In AWS, Kim’s team will use EBS to store data
for the servers, and EBS is a managed service. Kim’s team will only need to man‐
age the space allocated to servers to ensure that they have enough storage. Kim’s
team will need to monitor the free space of the disks themselves. AWS has no
access to the contents of the drive to evaluate free space.

Monitoring of system performance
AWS has a service called Amazon CloudWatch. CloudWatch is a metric and
monitoring tool that captures some aspects of system performance. Since AWS
does not have access to the system, not all the performance metrics you may need
are available by default. The most common ones AWS cannot report natively are
disk usage, as previously stated, and memory usage. These can be monitored in

50 | Chapter 2: What Are the Risks and Their Mitigation?

CloudWatch only if you enable an agent on your operating system to report
them. AWS also does not monitor any usage metrics by default. Kim’s team will
need to create CloudWatch alarms to track and send notifications if they are out
of tolerance.

Monitoring of system availability
Like the monitoring of system performance, AWS offers metrics that monitor
system availability. The system and instance status checks monitor your system
and report positive or negative status information to CloudWatch. It will be Kim’s
team’s responsibility to create alarms on these if they wish to be notified. The sys‐
tem status checks monitor for items such as a power failure and hardware issues,
whereas the instance status checks monitor the network of your instance by
sending an address resolution protocol (ARP) request to the network interface.

Testing of the backup generator, fire suppression, and battery backup system
These items are all provided as part of the AWS region and availability zones, and
Kim’s team need not worry about any of these items. Since Kim works at a bank,
compliance audits might require proof of these items taking place along with
other audit checks. AWS provides comprehensive, third-party audit and compli‐
ance reports to customers in the AWS Artifact service. From Artifact, customers
can access audit reports such as Payment Card Industry (PCI), Service Organiza‐
tion Control (SOC), ISO, FFIEC, and more. You can find the complete list online.

Here is a scenario that will demonstrate the changes necessary when refactoring your
application from an EC2 server-based technology to a managed serverless technol‐
ogy. Refactoring to serverless has a dramatic effect on your company’s
responsibilities.

Scenario 2-3
Margot’s company is migrating to AWS and wants to move a large data store from the
NFS server on-premises to Amazon S3. It serves the data to mobile application users
via web servers. The NFS server has both public and private customer files. Margo
wants to explain the reduction-of-management benefits of moving this data to S3. She
wants to compare the security responsibilities between the two designs regarding:

• Web server patching
• Web server security controls
• Storage server patching
• Storage server security controls

Since Margo is changing from a server-based solution on-premises to a serverless
technology on AWS, she must be mindful of how her team’s role in securing the

Technology Risks | 51

https://aws.amazon.com/compliance/programs

environment changes. Failure to understand the responsibility model and overstating
the responsibility of AWS can have severe repercussions. Let us walk through these
items to get a clear understanding of how her team’s role changes:

Web server patching
When Margo’s team moves the data from an NFS server to S3, new capabilities
will be available over a standard file share. S3 can serve files to the web. This
hosting allows Margo’s team to eliminate the servers required to serve this data to
the internet. Her customers’ mobile application instance fetches the data from S3.
S3 hosting ends her need for patching the web servers.

Web server security controls
Since there are no web servers, people would probably think there are no servers
to apply security controls. This perception is only partially correct; because Mar‐
go’s NFS server has both public and private files, there needs to be security con‐
trols on S3 to protect those files. Margo’s team might want to implement signed
URLs for those private files to ensure that other parties do not access them.

Storage server patching
Since there are no more NFS servers to serve the data to the web servers, Margo’s
team will not have to patch the server, and she can show that this is an additional
soft cost saving.

Storage server security controls
The storage server security controls are like the web server controls. Even though
there will not be an NFS server anymore, Margo needs to make sure that only the
proper users have access to the data. She would not want to have a rogue
employee with access steal or damage confidential customer data.

By now, you should understand how the changes in responsibility can lead to risks
and unintended circumstances if not adequately understood before and during
migration. A guiding principle that makes sense for the shared responsibility model is
that you create a RACI for each class of application you are migrating. For example,
this would mean that you would establish a RACI for COTS applications, internally
developed conventionally designed applications, and internally developed cloud
native applications.

Legacy security patterns
Using legacy security patterns in AWS affects not only your security posture but also
performance. The legacy security patterns that cause the most critical issues are the
ones that create a choke point in the infrastructure. There are many ways to create
choke points. However, the most common one I see is trying to implement zoned
security by using contemporary firewalls rather than relying on security groups.

52 | Chapter 2: What Are the Risks and Their Mitigation?

Another issue I see is when there is an implementation of a network intrusion pre‐
vention system (IPS).

These choke points also cause a commingling of application environments. Your
development, testing, and production environments will all be traversing the same
security equipment. The shared communication pathway leads to the possibility that
a malfunctioning development application can negatively affect your production
workloads, whereas, if you shift your thought process on security to better align with
cloud technology, these issues can be avoided.

Contemporary zoning. Using contemporary zoning and firewalls versus using security
groups and zero trust affects both security and performance. As we discussed earlier,
zero trust gives the smallest attack surface possible, allowing only the required com‐
munications to pass between machines. Implementing zoned security with a firewall
ditches zero trust. Zero trust is like locking all the rooms in your house; a burglar
would not only need to break into the front door but then also every other door to
steal anything. In contrast, using zoned security is like only locking your front door
and allowing a burglar easy access to find your prized TV and computer, and be long
gone before the police arrive.

Not only does the contemporary zoning design pattern not have the best security
available in AWS, but it also can cause performance issues. To run a contemporary
firewall in AWS, it needs to run on an EC2 instance, which creates a scaling issue in
terms of CPU and network performance. A firewall is not a type of technology that
can scale horizontally, because it is stateful. A firewall holds the state and session of
every inbound and outbound communication. Because of this capturing of state, it
cannot scale out because it would drop connections when it scaled back down. Since
you cannot scale horizontally, you must scale vertically, and it must have enough
capacity to meet your high watermark. Vertical scaling unnecessarily adds costs to
your infrastructure. I hope it is clear why using this contemporary pattern is a bad
idea.

Network IDS/IPS. Similar to using a contemporary firewall in AWS, using a contempo‐
rary network intrusion detection system/intrusion prevention system (IDS/IPS)
causes many of the same issues. It creates a single point of failure and a scaling issue.
The best design pattern for applications in AWS is using the horizontal scaling
method. When your horizontally scaling applications scale out to meet your needs
and the network IDS/IPS is a static size, you run into performance issues. A better
solution than this contemporary design is to use a host-based IDS/IPS, which ensures
that your IDS/IPS capabilities scale out at the same rate as your application. Host-
based IDS/IPS removes the bottleneck and ensures that your environment stays
secure.

Technology Risks | 53

Legacy security patterns are another concept where a guiding principle does not
always make sense. For many companies, the designs around these concepts are a set
it and forget it item. However, if your company does many mergers and acquisitions,
it may make sense to have a guiding principle to address these concerns long-term.
When undergoing mergers and acquisitions, you don’t know the state of the pur‐
chased environment, and it would be essential to ensure a proper review to mitigate
the risk.

Application Connectivity
As you migrate your workloads, there may be potential risks involved regarding the
interconnectivity of applications on-premises and the cloud. Latency and bandwidth
are the two primary concerns, but security group misconfiguration can also be a
potential issue. When you are assessing risks regarding network connectivity in this
stage of your migration, you will not have any data on how much bandwidth you
need. However, you probably have a good idea about latency requirements based on
the design of the application. To help illuminate how your applications might be
impacted, we will cover some scenarios. First, it makes sense to talk about the con‐
nectivity available in AWS for a solid understanding of the options available and
which fits your scenario.

Virtual private network
A site-to-site virtual private network (VPN) is a popular option for connectivity in
small and potentially medium businesses. I would not recommend VPN for larger
organizations because of performance limitations and potential costs due to the num‐
ber of required connections. VPN is an internet-based communication method to
encrypt your data between two locations. The downfall of using a VPN is that the
path is at the mercy of the internet. It may not be the same every time because of
things like a rogue backhoe digging up a fiber optic line. Potentially different paths
mean potentially different latency. If you are migrating an application that needs to
communicate back to an on-premises location that is latency sensitive, this can be an
issue. The second issue with VPN is that there is a limited amount of bandwidth
available, and once you reach the threshold, look at other connectivity methods.
Often, a hidden risk of using a VPN is that it is sharing bandwidth with all your other
internet traffic. This traffic is often inconsistent and unpredictable. If you are using a
VPN, it would be an excellent idea to implement quality of service (QoS) on your
networking equipment. QoS ensures that the VPN has priority over other traffic so
that your back-end operations operate unhindered.

54 | Chapter 2: What Are the Risks and Their Mitigation?

VPNs are not capable of transitive routing between accounts or
VPCs. Transitive routing is the ability to use AWS as an intermedi‐
ary router between two sites. For instance, data center A cannot
connect to AWS and then route traffic to data center B. There is an
advanced service from AWS called Transit Gateway that has this
capability, but that is outside the scope of this book. Figure 2-1 vis‐
ualizes this concept for you.

Figure 2-1. Transitive routing

Direct connect
AWS Direct Connect offers a dedicated link between your data center and the AWS
region that you are migrating your infrastructure to. To connect with Direct Connect,
you work with a telecom provider to establish a point of presence on that network,
which connects to the Direct Connect termination point in the AWS region. This
form of communication ensures dedicated and constant bandwidth and latency.
Direct Connect does not traverse the internet, so you do not have the issues associ‐
ated with a VPN. Direct Connect can also provide a significant amount of bandwidth
by aggregating multiple 10 GB connections. Direct Connect is the less risky choice,
but it costs more than a VPN. If you already have a multiprotocol label switching
(MPLS) network set up, then the use of Direct Connect would be appropriate. Many
MPLS network providers, such as Verizon and AT&T, already have connectivity to
AWS regions. MPLS would provide connectivity at a smaller incremental cost since
they already brought the circuit into your locations.

Internet
It does not happen often, but some companies can migrate to AWS and use an inter‐
net connection. It is limited most of the time to newer startups that use applications
that are internet hosted and have internet-based internal applications. Companies
that can operate this way use a bastion host in AWS to connect to the back-end sys‐
tems. A bastion host is a hardened instance that can withstand attacks and allows IT
staff access to backend servers by using the Secure Shell (SSH) protocol for Linux
servers and Remote Desktop protocol (RDP) for Windows servers. Using the bastion
allows them to perform maintenance and support, eliminating the need for a VPN or
Direct Connect altogether.

Technology Risks | 55

Now that we have covered the connectivity to AWS, we can dive into a few scenarios
to highlight the decision process. These will help you feel more comfortable making a
decision to reduce your company’s exposure to connectivity issues.

Scenario 2-4
Emma works for a small advertising firm that has been in business for 20 years. The
company hosts several applications in an on-site data center that Emma’s team needs
to migrate to AWS. There are seven applications that serve multiple functions, includ‐
ing file server, accounting, and collaborative design platforms. Emma’s company has
about 100 users, of whom 50 are designers who work from home. The files the com‐
pany creates are typically 2–20 MB in size.

From the sound of it, Emma has a lot of COTS applications that potentially have been
in use for many years. The potential age of these applications shows that most, if not
all, require network connectivity of some sort and are not internet-enabled. Since the
total application count is low and the size of the working documents is small, VPN
appears to be a satisfactory solution for Emma’s company. Since half of the company’s
staff works remotely, it makes sense for Emma to deploy a client VPN in AWS for
those uses. That would mean that much of the available bandwidth for communica‐
tion will be distributed over 51 points of presence because each user would have their
internet connection.

One potential issue for Emma is the accounting system. A system like that would run
on a relational database for data storage. A database might introduce a latency issue,
depending on how the application is programmed. If it makes many individual quer‐
ies to the database, all the round-trip requests and answers, although small individu‐
ally, could add up to large delays. For instance, if one query has a round trip of 10
milliseconds and a single screen has 100 queries on it, it would take one second to
load the screen. A one-second refresh time is not bad, but what happens if the latency
of the VPN is 100 milliseconds? Now the screen is taking 10 seconds to refresh, and
this would make the application unusable. It is improbable that Emma’s application is
written that poorly, but it is essential to think about this when assessing connectivity
risk.

Scenario 2-5
The consulting firm where Steve works is a nationwide provider of management con‐
sulting for small and medium businesses. It has several hundred employees who work
out of the New York and San Francisco offices. Besides the office staff, there are sev‐
eral thousand traveling consultants that are located across the US. Steve’s team main‐
tains all the applications across the organization. Except for the expense tracking

56 | Chapter 2: What Are the Risks and Their Mitigation?

application, the rest of the applications are not internet accessible. The company has
256 applications in total and a backbone between the two offices provided by Verizon
MPLS. All the remote consultants connect to the network via client VPN.

Steve, like Emma, has many older and non-internet-enabled applications that require
direct network connectivity. Most of the staff connect through the VPN, so it would
make sense for Steve to move or set up a new client VPN in AWS to address the
remote users’ connectivity. Moving the VPN would ensure the shortest route to the
applications and the highest redundancy for his users. Based on the volume of users
who are still left in the offices, set at several hundred, VPN will not be a good option.
That high of a user count requires significant bandwidth, and Direct Connect would
be a better option. Since Steve has already established MPLS connections to his offi‐
ces through Verizon, it would make sense to talk to Verizon about AWS connectivity.
Direct Connect would offer Steve the bandwidth and low latency that would perform
best.

Let us look at another scenario of how using only internet connectivity might look for
a company.

Scenario 2-6
Scott’s company is still in startup mode and just finished its first round of series B
funding. It provides an application that does AI business analytics. Because of the
rapid growth, the company wants to migrate to AWS so it can scale the application
better. The application is web-based, and the company is integrating the prototype
admin interface from an internally facing web application to the externally facing cli‐
ent application. Scott deployed Google G Suite for its document editing and storage,
and purchased several online applications, like monday.com and FreshBooks, for
internal admin functions. There are 23 people at the company, and now, since the ser‐
ies B is closed, they expect to hire 10 more in the next 6 months.

It sounds like Scott has only a few systems on-premises, and they only run the client-
facing application. Because they have not completed integrating the admin interface
into the main application, Scott might need to run a VPN temporarily to allow
admins to control the application. However, in the long term, it sounds like Scott will
not need a VPN at all. If the development team uses CI/CD to deploy servers and has
proper log aggregation from the servers to CloudWatch, Scott might not even need a
bastion host. The lack of a bastion host would provide the least cost and best perfor‐
mance scenario for his company.

A guiding principle that makes sense for application connectivity could be that you
analyze any application for connectivity concerns during the development and testing

Technology Risks | 57

environment migration. Evaluating the application performance in the early phases
ensures that you thoroughly test and resolve risks before migrating the production
environment where users would be affected. Some risk will remain because the devel‐
opment and testing environments may not see as much load as production, but the
risk will be significantly diminished. An important point to remember is that as an IT
manager, your job is to mitigate risks, not eliminate them.

Technology Diversity
Operating in AWS is a significant divergence from running on-premises. The inter‐
faces and capabilities differ significantly from VMware or Hyper-V. Virtualization
and the legacy hypervisors were the next step in technology evolution from bare
metal servers. With it, they brought the latest advancements in technology and pro‐
pelled the world into a new and more effective operating pattern. No matter what
they do, they can never truly compete with the cloud. AWS evolved from Amazon’s
knowledge of virtualization. It is this new paradigm shift that has allowed the capabil‐
ities to reach further than virtualization. AWS now brings with it the latest advance‐
ments in technology and is propelling the world forward just as virtualization did a
decade earlier.

Whenever you move from one technology to another, you run into the risk of tech‐
nology diversity. The risk usually manifests as a lack of knowledge and experience in
modern technology compared to the platform being replaced. Another way that this
can manifest is more of a split-brain situation, where one staff member has the expe‐
rience with the older platform and another has the experience with the new, and they
need to operate together to complete the task. When migrating to AWS, you have the
potential to experience both situations. It could be in the stakeholder’s business unit,
the development teams, or the operations and support departments. There are many
ways to address this risk; I will focus on staff assessment and training, and contractors
and consulting. Throughout my experience, these have been the most effective ways
to address technology diversity risk.

Staff assessment and training
AWS diverges from on-premises technology because it takes the approach that every‐
thing should be code, even your infrastructure. The primary interface is API based,
and everything else branches off from there. The web console, CloudFormation tem‐
plates, and the AWS CLI all communicate back to the AWS API. To harness the
power of AWS fully, you need staff capable of using more programmatic interfaces
rather than using a web console. Most of your staff are still using the consoles of your
hypervisor with little automation. Pointing and clicking while manually performing
operations repeatedly is not efficient. You need to train your staff on a new skill set.
Your engineering teams need to learn more about infrastructure and compute capa‐
bilities. Your infrastructure staff must learn more about programming and markup

58 | Chapter 2: What Are the Risks and Their Mitigation?

languages like JSON and YAML. While operating in AWS, your development teams
and operations teams merge—this is where the term DevOps originates.

To assess the current state of capabilities in your staff, I would suggest doing a simple
skills gap analysis by using a survey. I would not overthink this step and get too com‐
plicated with the questions and what capabilities you are gauging. The critical part of
this process is not the questions, but how staff receives the survey. You do not want to
create an environment where a skills assessment may threaten your team. It is essen‐
tial to frame the subject as training for upcoming changes and enhancement of their
capabilities. You do not want your staff to think it is a threat to their job or position. If
that were to occur, then you would not get back results conducive to their real capa‐
bilities, which doesn’t help your company or them.

Once your gap analysis survey is complete, you will have a good idea of what kind of
training ramp-up you need for a successful migration. As an added byproduct, you
identify your first cloud champions who already possess skill sets between infrastruc‐
ture and development. If properly motivated and energized, this staff can help other
staff with the transition, by both leading by example and coaching.

Training for your staff should follow many paths. First, your staff should learn
Python, which is a prevalent language in the cloud that many people use to perform
automated management tasks. There are many projects on sites like GitHub that can
help you automate or give you a baseline to build on for your needs. To do this, you
need staff who can understand the language. There are many trainings available
online, and at local community colleges and universities. A favorite of mine is Code‐
cademy; it offers many programs for free and has a paid program for more advanced
classes.

AWS also writes most of its examples in Python, so learning
Python is a good choice.

Another vital skill set for AWS is operations. There are many training sites and pro‐
grams available on the internet to train your staff. However, I believe the best way to
learn AWS is by doing. AWS offers a free tier for most services. The free tier allows
your staff to test the platform without running up their bill. The low cost continues if
they stay within the constraints of the free tier. As far as AWS training, I have two go-
to training sites that I recommend to companies migrating to AWS. The first is Linux
Academy, which provides a solid training platform for learning how to do things in
AWS and perform daily duties. The second site I recommend is A Cloud Guru; this
site is an excellent resource for people looking to pass the AWS certification exams.
There are many more sites out there, and more continue to be added every day.

Technology Risks | 59

https://github.com
https://www.codecademy.com
https://www.codecademy.com
https://linuxacademy.com
https://linuxacademy.com
https://acloud.guru

Training your existing staff on AWS is a great approach to take for employee morale
and job satisfaction. However, it is not the best for your migration timeline. It takes
time for your staff to receive training, experiment, and then gain proficiency through
experience. It is essential to take this timeline into account when you are doing your
migration planning. We will discuss this in more depth in Chapter 6.

Contractors and consulting

There is no compression algorithm for experience.
—Andy Jassy, CEO Amazon Web Services

When evaluating your staffing requirements for your migration, it is important not to
forget about the use of contractors and consultants. Using them can seem expensive.
However, their expertise helps you meet your migration timeline and reduce not only
your technical risk but also business risks. Consultants and contractors have been
working with AWS and doing migrations for some time and have gained not only
technical experience, but also implementation experience. One of the greatest advan‐
tages of contractors and consultants is that they work for many companies in many
industries. This experience gives them a very diverse set of views that typical employ‐
ees do not have an opportunity to gain. Together these forms of experience reduce
your risk by knowing how to do something and what works in practice. They can also
act as mentors to your staff, providing an additional training resource. It would be
important to combine the experience for your staff, the project timeline, and your
budget before deciding on consultants and contractors.

Although consultants and contractors are valuable for their expertise, they are not
without their issues. It is important to ensure that you set the expectations that your
staff is to be involved as part of the process, and that the consultants create proper
documentation and runbooks. Integration can be a concern with consultants as they
are not as entrenched with your team as a contractor would be.

Having been in IT leadership and getting bitten by this myself, I know what kind of
long-term pain improper documentation can cause. Some consulting companies can
be unscrupulous about enabling clients to be self-supporting in the long term. Their
primary drive can be to run up billings and keep you on the hook. I experienced this
firsthand with a backup solution. My predecessor needed a backup system and con‐
tracted with a consulting company for design and implementation. The setup was so
complicated that even slight changes required the firm to come back on-site and
implement the changes. We were spending upwards of $8,000 in a year just on main‐
taining the system. When I asked for documentation so my team could take over, I
ended up with a two-page document. It was more of a high-level design overview, and
the firm wanted dozens of consulting hours to document the solution properly. Lack
of knowledge transfer is a form of vendor lock-in that many people overlook.

60 | Chapter 2: What Are the Risks and Their Mitigation?

The guiding principles around technology diversity will be very specific to your com‐
pany’s needs. The principles will depend on your staff ’s level of experience and the
company’s appetite for consultant and contractor fees. An excellent way to frame the
guiding principles for technology diversity is around triggers based on thresholds.
For instance, a technology diversity guiding principle could state that consultants or
contractors will be acquired if the training timeline for staff disrupts the migration of
an application for more than two weeks. This principle ensures that the company is
willing to accept some risk to train staff and keep knowledge inside the company
while establishing a mitigating factor.

Perception of Increased Technical Complexity
When you first migrate to AWS, you will do much lifting and shifting for your work‐
loads, that is, to pick them up as they are and move them into AWS without modifi‐
cation. Lift and shift is the fastest and most efficient way to migrate. Moving your
workloads in this fashion produces the shortest timeline and lowers your period of
duplicate spending. However, there may be a few workloads that need to be rebuilt
during migration due to the legacy technology that is not supported on AWS. Unsup‐
ported technology might be a mainframe, and after you are migrated and have shut
down your on-premises resources, you will want to refactor your applications.

Refactoring is converting from a legacy design to a more efficient cloud design. On-
premises, your applications are most likely monolithic, running on a single server or
a cluster of servers if they are large enough. These applications were built as separate
entities with all functions clumped together. After migration, you can take advantage
of new services and create a distributed application environment. In a distributed
application, you split the individual functions of the applications into their compo‐
nents. Instead of running a single server with a single application, you could run doz‐
ens of AWS services running dozens or even hundreds of functions.

When some people look at the design of a distributed application, they see much
complexity that was not part of the application before. They get apprehensive about
adopting the new model. I can understand this apprehension and perception. It dif‐
fers significantly from the designs they would have seen in the past. Figure 2-2 details
the design of a three-tier web application.

Technology Risks | 61

Figure 2-2. Three-tier application design

This design is a good representation of the contemporary on-premises design as a
monolith. It has three layers and three servers, but other than that, it is a relatively
simple design. In Figure 2-3, I have converted the three-tier web application to a serv‐
erless design.

Figure 2-3. Serverless application design

As you can see at first glance, it looks a lot more complicated than the original design.
However, when you operate in a distributed design mode, you do not have to
develop, test, and deploy the components at once. You can focus on and update the

62 | Chapter 2: What Are the Risks and Their Mitigation?

individual parts that need attention. It may look complicated at the macro-level, but
when working on an application, you do not work at the macro-level; you work at the
micro-level, with only a small part of your code, and this significantly decreases the
complexity. The propensities to disrupt the rest of the application’s code is mini‐
mized. The perception of complexity is just that, perception. In practice, the dis‐
tributed nature of the application decreases risk, rather than increasing it.

When establishing a guiding principle around technology complexity, it makes sense
to focus on education. After all, what you are working against with this risk is a per‐
ception of complexity. The best way to combat an incorrect perception is through
knowledge. A solid guiding principle for your company might focus on training any
new business units on a high-level overview of these changes in design concepts. This
principle will lay a good foundation and curb any confusion before the design discus‐
sions later in the process.

Business Risks
When you migrate workloads, there are a host of potential business risks. I define a
business risk as a risk with causality driven by situational events and planning rather
than directly influenced by technology. Except for a significant security breach, a lot
of technical risks can be swept under the carpet and become invisible to customers
and investors. This level of visibility is not the case with business risks. Risks such as
reputational and contractual obligations and expertise loss can have a much more
public impact. We will walk through these risks, and discuss how they might manifest
in your migration and how you can properly mitigate them.

Reputation
The worst business risk to me is the reputational risk, and when you migrate a work‐
load, this risk is hard to avoid but should be easy to mitigate. I want to say I have
never seen this kind of risk play out in the real world, but that is not true; I have seen
it happen to companies. What I can say is that it is avoidable, and the tarnish to those
companies’ reputations should never have occurred. However, I will give you the
secret to mitigating this risk. The recipe is straightforward: one part proper planning,
one part proper testing, and one part proper security review. It may seem like a sim‐
ple cocktail, but just like Bond’s Vesper martini, it is a recipe for success. It sort of
sounds like something that you would read in a fortune cookie. You might think to
yourself, well duh, and you would be correct. The problem is that your project man‐
agers, developers, and engineers all have good intentions. No one wants your com‐
pany to be in the news; they did not make a mistake on purpose. Good intentions do
not prevent issues; the correct process does. This recipe ensures success.

Business Risks | 63

When talking about risk and planning, we are not discussing your overall migration
plan. It is the planning that is done around the actual migration process itself on an
application-by-application basis. This plan will capture the caveats and uniqueness of
each application. It ensures that your team accounts for all the aspects of the work‐
load migration. Some people think this level of detail is overkill and unnecessary. I
agree with them, too, in one circumstance: when everything goes right. For those who
know of Murphy and his law, may I suggest having this level of detail. We will cover
these planning processes in depth in Chapter 8. However, it is essential to highlight
them here because they are directly responsible for the mitigation of reputational risk.
A good application migration plan will have at a minimum:

Application discovery
Ensures that all the components of an application and its history are collected for
evaluation. That you know as many known variables as possible. This informa‐
tion leaves you only the unknown variables as the residual risk.

A technical migration plan
Covers the technology used in the actual migration process for the individual
application and addresses its particular needs.

A testing process
It is as simple as it sounds, to plan to test the application and its functions prop‐
erly before cutover.

A cutover process
The cutover processes for each application are somewhat different from each
other, and a cutover plan ensures that all the nuances are captured before the
actual cutover.

A rollback process
Things go wrong, and they go wrong in unexpected ways. The best way to
address this in a migration is to have a preplanned rollback process. Often the
path to migrate to and the path to migrate from are not the same as one would
expect.

Planning ensures that you minimize reputational risks by limiting the amount of sur‐
face area that leads to outages during migration. In my experience, having the right
level of planning ensures that even when things go wrong, you still end up with a
good result. Yes, you still might be running on-premises with a failed migration, but
you are not offline in a failed state.

Building a guiding principle for addressing proper planning is straightforward. It
should ensure that all levels of planning are put in place for all application migration.
This mitigating factor ensures that you would not be caught in a state where your
users or customers need your application and find it unavailable.

64 | Chapter 2: What Are the Risks and Their Mitigation?

Staffing and Expertise Loss
As we have discussed before, change and people do not often mix. When you migrate
to AWS, a few people might become uncomfortable with the change, or the potential
change in their duties. When your company works in the cloud, things are not com‐
partmentalized into beautiful little silos like storage, compute, backup, and the like.
With the move from conventional infrastructure to code-based deployment, the
blending of these technologies comes into play. One possible way you might see staff‐
ing risk is through attrition. Typically, two things happen that cause employee attri‐
tion when you are working toward migration to AWS. The main items to be
concerned about are employees feeling like they have little value in your future state
and employees who don’t want to expand their tool set.

People’s fear of being replaced or becoming inadequate can quickly be addressed
through open lines of communication and training. People fear uncertainty and inse‐
curity, and it is your responsibility to ensure that your staff is aware of their place in
the future version of your company. Depending on your current structure and how
your teams are laid out, this change could be as disruptive to your company as a
merger or acquisition. As we discussed before, migrating to AWS and adopting a
more DevOps agile model will change the structure of your company. For small and
medium-sized businesses, this is not as much of an issue because people wear more
hats and have cross-functional duties. However, large enterprises that have silos for
functions like backup and storage will exhibit this issue more often. Let us look at
how this might be exhibited in a large company.

Scenario 2-7
Stan has been employed as a backup engineer at a retail company for the last 15 years.
He has been a devoted employee, has had three promotions in that time, and is now a
senior engineer. This past year, Stan’s company has been looking at migrating to AWS,
and Stan is getting concerned. He does not know much about networking or servers
and has primarily been focused on backup software, technology, and processes. As he
understands it, much of his workload will be replaced by automated snapshots and
AWS Backup. A substantial portion of the corporate data footprint that will be mov‐
ing to Amazon S3 will not require backup. Over the last few months, Stan has tried to
talk to his manager about how he feels like he might be phased out. Unfortunately, his
manager has been too busy to meet. He wants to learn new skills but does not even
know where to start. After a few months more, the uncertainty was too much for Stan
to handle, and he got a new job at another company.

I urge you to please not let a situation like Stan’s arise at your company. Stan was a
dedicated employee with a long tenure and a deep understanding of the company.
There is no doubt that he had a significant amount of tribal knowledge that will be

Business Risks | 65

irreplaceable given his tenure. With some training and shifting into a different type of
role, Stan could have provided the company with many more years of experience. He
also could potentially save the company thousands of dollars of wasted effort because
of his expertise in company operations. Stan would have known precisely where data
existed in every nook and cranny of the company infrastructure to ensure that it was
adequately protected in AWS. Let us look at another situation on how you can experi‐
ence staffing risk.

The following is another scenario with a different twist to highlight expertise loss.

Scenario 2-8
In the last six months, Bette’s company has started moving some workloads to AWS.
Her manager has provided training materials online so that Bette can learn new skills
and expand her capabilities. Currently, Bette is an engineer on the VMware team, and
she has doubts about learning a new set of tools. Bette feels that she spent much time
learning VMware over the years, and she does not want to switch. She thinks that the
cloud is a fad, like grid computing, and does not think it has long-term staying power.
After her manager assigned additional training, Bette quit and walked out the door.

If I am honest, it is not an undesirable thing that Bette walked out the door. She is not
the kind of employee that you want around for the long term because she will not
adapt to the changes required to make your company successful. This fact will be
increasingly true as we see accelerated change in IT as time goes on. The problem lies
with the tribal knowledge that she had, which just walked out the door. You would
not have prepared for her departure by capturing as much information as possible.
Someone who exhibits Bette’s mentality probably does not play well with others and
hordes information as well, compounding the issue. This book is not about the man‐
aging process or people, so I will not get into ways of resolving this issue. However, I
want to make you aware that a change such as migration to AWS can be an impetus
to people with Bette’s mindset. Since you are migrating to AWS and must perform
analysis of the infrastructure and systems, you can use this as an opportunity to
document your infrastructure and systems. This updated documentation will
decrease the amount of tribal knowledge in your company, reducing your risk.

I would not create a guiding principle around staffing risk as part of the migration
plan. It might come across as contrived and impersonal. That is not to say that I do
not think it is an important principle to develop. However, I would not openly adver‐
tise it along with the other principles. As a manager, I would discuss the risks with
other leaders and develop it as a part of the overall management strategy.

66 | Chapter 2: What Are the Risks and Their Mitigation?

Contractual Obligations
A risk that many companies run into is existing contractual obligations. This kind of
risk can manifest itself in a few ways. One that you probably think of right away is
your data center contracts. When you are moving into AWS, you will not need all that
space in your data center anymore. You might not need it at all, depending on the
type of business you are in. However, there are other types of contracts you might
uncover as well, such as third-party support and software licensing. Let us cover these
three types in these scenarios to get a better understanding of those risks and how to
mitigate them.

Scenario 2-9
Bob works for a media company that is looking to migrate to AWS out of its coloca‐
tion data center. The vendor had locked the company into a 5-year contract that will
expire in 18 months. Bob has decided to close the racks in the data center and move
everything to AWS. The contract allows for a month-to-month lease at a 25%
upcharge on the 5-year contract monthly fee. If Bob continues with a month-to-
month contract, he will need to give a 60-day notice of termination.

Based on this scenario, I would say that Bob has it easy. He has 18 months left on his
contract, and they will even allow him to keep his racks on a month-to-month basis.
Having the ability to stay in the colocation after the initial contract relieves some
stress around the migration plan and timeline, in case something goes wrong and the
project sees delays. On the other side, he does have a 60-day notice period and a 25%
upcharge that will drastically affect his budget. As far as data center contracts go, I
would say that Bob is in a rather good spot. It is not uncommon for colocation data
centers to require an entire year’s extension. This length of extension can put compa‐
nies in a bind with migration timelines if the contract end date doesn’t line up with
the migration timeline.

Let’s take a look at a data center’s scenario for a third-party support contract.

Scenario 2-10
The financial services company that Ben works for has a vast Oracle application
estate. It has hundreds of servers running Oracle products and databases. To reduce
costs a few years ago, it stopped paying Oracle for support, and instead went with a
third-party company and limited the Oracle contract to licensing. About three
months into the migration, the team ran into an issue with a workload that they had
migrated to AWS. Upon calling the support company and disclosing that the

Business Risks | 67

workload was in AWS, they refused to support the issue until it was reproduced with
on-premises hardware.

Unfortunately, this kind of scenario happens when there is no technical reason for it.
The cloud is just another form of virtualization and does not have any impact on soft‐
ware running on the instances themselves. When I first started using VMware in my
companies, I had the same issue, with some vendors unwilling to support it. Running
into a support issue like this can cause many headaches around having to reproduce
the issue, taking valuable time away from your migration efforts. It would make sense
to do a cursory review of the software support contracts as part of your application
discovery. The review will ensure that you do not run into this issue while under
pressure and constraints. If caught ahead of time, the possibility exists to negotiate an
addendum to the contract before moving the workload.

Lastly, we will review the following scenario to cover software licensing.

Scenario 2-11
Mike is migrating some IBM workloads to AWS for his bank. One of the workloads
he needs to evaluate is an IBM Connect:Direct middleware product. IBM bases its
software licensing on CPU power, called a processor value unit (PVU). PVUs are
based on the type of CPU, as well as how many cores are available. Mike is concerned
about his licensing costs going up with migrating to AWS; the server Connect:Direct
is running on is quite old and does not have as much power. His current on-premises
server has 50 PVU per core, and AWS EC2 is 70 PVU per core. At first, Mike thought
he would have to pay more for AWS EC2 licensing. When Mike was reviewing his
application discovery information, he noticed that his server was only running at a
10% CPU location, and the server was grossly over-provisioned. By properly sizing
his system, Mike was able to reduce his licensing costs during his migration.

While moving workloads to different hosting options in Mike’s scenario, it does not
matter whether it is on-premises or AWS due to the IBM licensing model. However,
other vendors have licensing concerns based on how they count licenses for CPUs
and cores. To minimize your risks for license compliance, it is important to review it
as part of your application discovery and ensure that you address any discrepancies.
Companies like Oracle and Microsoft have taken a very hostile stance to software
noncompliance and have remarkably high penalties.

When considering a guiding principle for contractual obligations, I suggest that you
review all the licensing for the applications as part of the application discovery pro‐
cess. This principle will ensure that any contractual risk is identified and mitigated

68 | Chapter 2: What Are the Risks and Their Mitigation?

before migration. To wait may put you in a difficult spot with a lack of support in the
cloud or inability to continue your on-premises data center after migration delays.

Cost Regulation
One area where risks change significantly with migrating to AWS is cost regulation.
Since AWS is a pay-as-you-go model based on consumption, your cost is based on
your consumption. The problem arises when there are no proper controls around
finances and spending in AWS. When operating on-premises, you have a hard stop
on spending. You purchased the hardware, and you cannot consume any more than
what you have available. The fact that you can scale on demand and use a nearly
infinite amount of compute power can be a double-edged sword without proper
preparation.

The key to mitigating this risk is through properly tagging AWS resources and
chargeback or showback. By implementing these processes, you will have a way to
track who or what is causing increased spending in AWS and resolve the issue before
it gets out of hand. These processes will also ensure that you keep shadow IT to a
minimum. It will be important that someone from finance is involved in your migra‐
tion planning process to understand and offer input into the financial aspects of
infrastructure in AWS. This tight integration of IT and accounting will be a new con‐
cept for both business units but is essential for proper cost controls.

AWS can also set billing alerts through the CloudWatch service. Billing alerts are very
effective at watching your overall bill, but since they operate at the macro level, they
are not effective at minimizing costs.

Resource tagging
AWS allows the tagging of resources to help identify and control them across your
infrastructure. Tags can be used for identification, cost tracking, automation, and
even access controls. Unfortunately, when many companies start, they do not under‐
stand the power of tagging and do not implement a good tagging strategy. Proper tag‐
ging will eliminate not only your cost risk but also much manual work, overall. There
are several items that I suggest adding to the tags for your infrastructure. Right now,
we will focus on EC2 tagging, but you can use most of these tags for other types of
infrastructure as well. By using tags, you can see costs related to applications, business
units, or financial cost centers based on your tagging scheme. The AWS Cost
Explorer and Billing and Cost Management console both support cost allocation by
tag. As a starting point, I would recommend using the tags in Table 2-1 as a baseline
and modifying them as necessary to address your individual company’s needs. The
key items necessary for reducing cost risk are the department, the cost center, and the
environment.

Business Risks | 69

Table 2-1. Recommended tagging

Tag Value
OS Operating system

OS Version Operating system major version

Department The department that the resource belongs to

Cost Center The cost center for this resource

Backup Indicate whether Data Lifecycle Manager should target the instance backup

Inspect Indicate whether AWS Inspector should inspect the instance for vulnerabilities

Environment To distinguish between development, test, load test, and production

Owner The person responsible for the resource

Data Classification The classification of the data stored on the server

Compliance The level of compliance for the resource such as PCI or FedRAMP

Patch Indicate whether AWS Systems Manager or other tooling should apply patches

Tagging can be as straightforward or as complex and detailed as you would like,
based on your company’s needs. Currently, AWS allows up to 50 tags for EC2. Tag
keys can have a maximum length of 128 characters and values of 256 in length. These
tagging limits allow for much flexibility to address a plethora of applications, includ‐
ing configuration, backups, and even email addresses.

Chargeback and showback
Once your tagging is in place, the next place to look to reduce your cost risk is
chargeback or showback. Many companies in the small and medium business space
do not do chargebacks. The IT budget is lumped into a big bucket that you, as a man‐
ager, must claw and borrow to get. Then business units keep showing up at the tap
like it is two-dollar Tuesday. At least on-premises, the tap would eventually run dry,
and you could not provide any more resources. Unfortunately, this is not the case
with AWS, because the tap never runs dry. To control costs, you will need to charge,
or at least show, back costs, so business units drink responsibly. I have had a develop‐
ment team tell me that they need their development servers to have 16 CPUs and 64
GB of random access memory (RAM), even though they were using less than 5% of
the capacity. Once chargebacks went into place and they could see that severe cost
hitting their budget, they magically only needed 2 CPUs and 16 GB of RAM. Without
teeth, your costs can grow uncontrollably.

Tagging enforcement
You have implemented tagging and chargebacks, everyone is on board with the strat‐
egy, and the CFO is happy. The only problem is that your bill keeps growing, and you
are having trouble tracking it down. When you review your Cost Management con‐
sole, you identify resources that are not tagged. You are probably thinking about how

70 | Chapter 2: What Are the Risks and Their Mitigation?

you can address people in your organization about not properly tagging resources.
Thankfully, AWS has a feature called Config Rules, which allows you to create rules to
enforce compliance in your organization. Config Rules enable you to set up a rule
that will stop, terminate, or notify you of tagging noncompliance based on a configu‐
ration specific to your needs. Tagging enforcement is the last step in closing the loop
on mitigating your risk of cost overruns in AWS. Because of the capabilities of AWS
Config Rules, a guiding principle around cost regulation is not necessary. I would
instead suggest creating a tagging policy as part of your landing zone design and
implementing AWS Config Rules to enforce the policy.

Building Your Guiding Principles
Throughout this chapter, we went through multiple scenarios and ideas for guiding
principles that will assist you in mitigating the technical and business risks associated
with migrating your workloads to AWS. As part of your initial preparation for migra‐
tion, it would be vital to thoroughly flesh out these principles so that they are relevant
to your situation and needs. I also want to point out that there is no rule or reason to
limit yourself to only one guiding principle per risk. Any additional principles will
help to flesh out additional mitigating factors and further reduce risk. You may also
identify additional risks that are relevant to your situation that were not outlined in
this chapter. The purpose of focusing on the risks in this chapter was to identify the
situations and risks that will affect most companies universally.

Wrapping It Up
Chapters 1 and 2 are designed to help you lay a solid foundation for your migration
to AWS. Now that you have completed the exercise of creating your why FAQ and
your guiding principles, we are ready to start diving into how to start preparing and
planning for your migration. By creating these constructs, you have ensured that you
can answer detractors’ questions and risk concerns identified by management and
business unit leaders. Being able to address these concerns quickly and with confi‐
dence will assure colleagues of your capabilities and boost confidence in the ability of
your organization to navigate the migration successfully.

Building Your Guiding Principles | 71

PART II

Phases of Migration

Before we get any deeper into the discussion about migration, I think it is vital that
we review the actual migration process. We will detail what the phases of migration
look like from a high level. This review will help paint a picture of what that process
looks like long-term and what endpoint you are aiming for. There is no set rule on
what migration should look like. Figure II-1 illustrates my process, which has been
curated by years of experience. I designed it as a blueprint to show you a path, but it
is not a recipe to be followed word for word. You and your company’s unique needs
could require some adjustments. That is perfectly OK and encouraged; this should be
an agile process.

Figure II-1. Phases of migration

Let’s walk through the phases and discuss at a high level what each entails. We are
drawing a map of where we are, and where we need to be:

Discovering your workloads
The first phase in the migration process is the discovery phase. In this phase, you
will probably use tooling to discover your applications and servers. This phase
must come first. Without it, you cannot do any of the work in the later phases.

Executing a well-crafted discovery phase provides a solid foundation for all the
rest of your migration efforts.

Building the business case
Once you have discovered everything in your environment, the next phase in the
process is to build your business case. The business case shows the value of
migration to AWS and delivers it in a format that upper management and the
board of directors can understand. It tells the story of your migration for the next
few years and details key business drivers for the migration. Often the business
case will come from the why FAQ that you developed as part of Chapter 1, with
components from the discovery phase.

Addressing operational readiness
Once you have the approval from the executive team to move forward with
migration, the next phase in the process is to address your operational readiness.
As we discussed in Chapters 1 and 2, the cloud offers many benefits regarding
agility and cost optimization, but it requires a retooling of staff and processes.
The purpose of addressing your operational readiness is to ensure that major
operational changes are addressed prior to migration.

Defining your landing zone and governance
One of the items that I like to place a little further up in the migration is the
design of the landing zone and cloud governance. Some like to leave this phase
until after migration planning is done, but by including it earlier in the process,
you can have a team start to work on the deployment of your landing zone and
governance controls while you are still planning your migration. This parallel
planning will save a month or two in the overall process. In this phase, you will
define your account structure and controls to ensure that the safety and security
of AWS infrastructure is maintained.

Planning the migration
Planning for the migration entails using the data from the discovery phase to lay
out your migration in waves of servers and applications. You will base these
waves on the dependency between the applications and the availability of the
business units responsible for the applications. The business units are the staff
members who will need to test the applications for migration, or possibly to
develop new code.

Evaluating for refactoring
After all the previous steps have taken place, your team might have identified
some applications that would benefit from refactoring—that is, changing the
application to use more cloud native resources to drive down costs or deliver bet‐
ter customer value. In this phase of migration, you will dive deeply into those
applications to determine whether you should refactor them. You are looking for

indicators of whether you should refactor as part of the main migration or if you
should move them as is and refactor postmigration.

Application deep dive and planning
Application deep dive and planning is a repetitive phase that takes place before
migrating each application. This phase ensures that you capture every possible
piece of known information and that proper migration and rollback planning
have taken place. The deep-dive phase is specifically designed to mitigate busi‐
ness risk and ensure a smooth migration and cutover.

This was just a short introduction to the phases, and we will talk about them in much
more depth in the following chapters. I felt it prudent to give a snapshot of the whole
process so you will not have to guess what comes next and can see how the phases
link as you read. In Chapter 3, we will review the discovery phase in depth.

CHAPTER 3

Discovering Your Workloads

Now that we have built the foundation for why you should migrate and the risks that
you should avoid, it is time to get into the real meat of migration. The first step in any
migration is to assess what you have in your environment. You need to determine
how many servers you have, how much storage you use, and what the components of
your network are, such as load balancers. In Chapter 8, we will talk about application
discovery and planning. That is when you need to capture rules from the firewalls,
but they are OK to skip for now. Right now, we will concentrate on the major
components.

The reason you need to perform an in-depth discovery of your workloads is so you
can assess costing, create a business justification, and conduct migration planning.
You cannot plan and cost for servers and applications that you do not know about.
Your natural reaction will probably be to assume that you know all about your infra‐
structure. Alternatively, you have an elaborate configuration management database
(CMDB) that contains all the information you need. That may be true. In my experi‐
ence, the level of knowledge and documentation about a company’s environment for
medium and large enterprises is about 70% correct. Seventy percent rivals house odds
in Vegas. I do not know about you, but I will not bet my career on those odds. There
are processes and tooling available that make the discovery effort easier and more
efficient.

This chapter will walk through the various tooling requirements to ease your discov‐
ery. From there, we will dive deeply into compute, storage, and network, respectively.
We will highlight things that you should look out for and ways to optimize your
spend postmigration to AWS.

77

Discovery and Assessment Tooling
There are several tools that you can use for discovery. AWS has tooling for applica‐
tion discovery, server discovery, and cost analysis, but this tooling is geared for
medium- and large-sized companies with hundreds or thousands of servers. For
smaller companies, I would suggest a more manual method. The time it takes to set
up and configure the assessment software for smaller companies might not make
sense compared to the time spent entering data.

For medium- and larger-sized organizations, the use of tooling makes sense. The big‐
ger your organization, the higher the probability that you are unaware of the state of
your infrastructure. More teams mean more cracks for information to fall through
and get lost. This lost information will affect your costs and timelines during migra‐
tion. Missing information could also lead to unexpected outages when servers that
were not identified are subsequently left off the migration plan. This oversight costs
dearly when tightly coupled ancillary servers are left on-premises and cause outages
or poor performance.

A lot of third-party tools can perform discovery, but there is much flux in the market,
and capabilities and limitations often change. For instance, in the past two years,
ATADATA, Movere, and TSO Logic were all purchased by different firms. Deloitte
purchased ATADATA in 2018; it can no longer be purchased by consumers and is
offered in tandem with services. Microsoft purchased Movere in 2019, and I am sure
that it will limit the capabilities to only Azure. AWS purchased its own discovery tool
called TSO Logic in early 2019. Providers continue to seek competitive advantages by
purchasing these tools and limiting the capabilities to enhance that competitive edge.

Besides the flux caused by mergers and acquisitions in the market, there is an addi‐
tional amount of flux added by the advancement of the tools themselves. The migra‐
tion tooling market still is not mature. Many features can still be added to tooling to
optimize it and add more value, such as features around cost management, reserved
instance recommendation, business case development, license optimization, and oth‐
ers that are being added all the time.

Since many changes are happening around migration tooling, we will not focus on
any specific tools. Instead, we will cover the capabilities that you should look for in
your discovery tooling. I want to ensure that you get the most value and the capabili‐
ties necessary to ensure a successful migration. I consider these capabilities the mini‐
mum required to assess for migration accurately. There are many more capabilities
that may be appropriate for your company, and you should take those into account
when evaluating tooling.

78 | Chapter 3: Discovering Your Workloads

Server Discovery
When looking for a discovery tool, there are several baseline features that you need to
have to migrate to the cloud. Without these key items, you cannot plan and evaluate
costs for your environment. The key items your discovery tooling should have are:

Server identification
The type of server, operating system, operating system version, operating system
patch level, CPU type, CPU speed, number of CPUs, number of CPU cores, and
amount of memory

CPU and memory utilization
The amount of actual CPU and memory usage by the server over a period of
weeks

Disk capacity
The disk capacity and disk space used for all disks in the system

IOPS usage
The usage of input/output per second for disk read and write operations over a
period of weeks

There are two kinds of server discovery collector methodologies: agent-based and
agentless. They both have pros and cons, and both will have to be approved by your
information security team, which will need to ensure that the tool meets internal
security and any regulatory requirements. The tooling will scan and touch all the
servers in your environment to find what you have. The methodologies have different
security profiles, and it is essential to understand the difference.

Agent-based collector
The agent-based collector is the more secure method of assessing your environment.
An agent is a piece of software that is deployed to every server and relays important
server telemetry back to a central repository. By installing an agent, you allow the tool
to collect the data locally without the need for inbound network connectivity. The
agent then sends that information back to the discovery tool for aggregation via an
outbound channel. Since the agent is only communicating with the discovery tool, it
will communicate on a limited number of ports, usually standard HTTPS over port
443. Most security teams like this: it has a small compute footprint and is encrypted
to ensure that traffic is not intercepted. Since you locate the agent on the server, it has
unfettered access and can see the applications, performance, and network connectiv‐
ity with a high level of detail and precision.

Agent-based collectors add a number of compute and memory capacity require‐
ments. These capacity requirements are typically small, but when you have thousands
of servers, it is something to be aware of. Anything multiplied by thousands can add

Discovery and Assessment Tooling | 79

up to a large number quickly. I have never run into a capacity issue in any of the
migrations I have done. However, if your hardware is near max capacity, it would be
necessary to factor the usage into your decision.

Another issue regarding agent-based collectors is that you must deploy them to all
your servers. Doing this manually makes little sense. Most companies use some exist‐
ing tooling like Windows Group Policy or Chef to install the agents across the infra‐
structure. This method works well and allows your staff to work on an exception
basis on servers that had issues rather than having to touch all of them to install the
agent.

Agentless collector
Agentless collectors use a host of technologies to access data on the servers from a
central location. Typically, they need some form of administrative access, allowing
them to log on to servers and retrieve information. Also, some types of access, such as
Windows Management Instrumentation (WMI), require many ports on the servers to
be opened to allow the collector to probe the instrumentation. This opening of ports
significantly increases a server’s attack surface and makes it more susceptible to
attack. Because of the access to the environment that an agentless collector uses,
many security departments are uncomfortable with this style of deployment and
won’t approve its use.

Since agentless collectors are not located on the system themselves, they might not
have access to as much information as an agent-based collector. They should be able
to provide the minimum amount of data required to achieve a proper discovery, but
they may not have access to provide advanced features. It would be essential to evalu‐
ate which type of collector you need before purchasing your tooling to ensure that
you can use the entire feature set; otherwise, you might pay for features you will not
be able to use.

Instance right-sizing
Discovering your servers and capturing the details about them is the bare minimum.
From there, the tooling should analyze the performance data to evaluate the actual
system usage and perform right-sizing. Right-sizing is when you take a server’s on-
premises usage into account and factor that usage into the instance selection process.
This adjustment will provide an instance that optimizes your spend in AWS. It is
important to right-size your instances in AWS due to a few features of modern hyper‐
visors. These features are:

80 | Chapter 3: Discovering Your Workloads

• Sharing and deduplication of memory
• Sharing of CPU resources
• Thin provisioning of disk

When you migrate to AWS, these capabilities are not available. AWS grants you pre‐
cisely the amount of resources per instance that you pay for, and those resources are
not shared with other customers or instances. In my experience, all of the companies
I have migrated have over-allocated resources because of this sharing. This fact means
that every company can benefit from right-sizing instances in AWS to save costs.

I have seen over-allocation of at least 50% in the estates I have migrated. Some have
gone as high as 90%. These are not small numbers and could cost large companies
millions or tens of millions in additional and unnecessary AWS costs. It is vital to
ensure that the tooling you select for your discovery can perform right-sizing calcula‐
tions and adequately optimize the instance types.

Another item that should be evaluated with right-sizing capabilities is CPU aging. A 2
GHz CPU that was released five years ago will not have the same capabilities as a 2
GHz CPU that was just released. CPU power continues to increase even though clock
rates remain the same. The tool that is evaluating your estate should be able to take
this into account and adjust the recommended instance size as necessary. Failure to
make these adjustments will, again, overinflate your AWS spend.

Disk right-sizing
Right-sizing your disks is another important feature your tooling should have.
Because of thin provisioning on hypervisors like VMware and SANs themselves,
many disks are larger on-premises than they need to be. Just like over-allocating CPU
and memory, this leads to additional spend for resources you do not need. There are
two things that I like to see regarding right-sizing disks.

First, I like to see that the tool adds an amount of free space to the disk. Using this
method ensures that you remove unnecessary space and minimizes costs. The second
item I look for is a tool that can optimize disks for IOPS requirements. In AWS, you
get a certain number of IOPS per gigabyte of storage. For standard solid state drive
(SSD) disks called gp2, you get three IOPS per gigabyte. This allocation means that a
1 TB disk will have 3,000 IOPS allocated to it. When you right-size a disk, both size
used and IOPS requirement should be taken into account to ensure optimal perfor‐
mance and cost.

One additional item I like to see but is not a requirement is that the right-sizing algo‐
rithm includes free-space decay. This decay should be based on disk size rather than
on a flat percentage or number of gigabytes to add. If you were to add 30% of free
space to a 10 GB drive as a buffer, you would end up with 13 GB of storage. This 3 GB

Discovery and Assessment Tooling | 81

of space makes sense to have available to the system as free space. If you were to take
1,000 GB of space and add 30%, you would allocate 300 GB of free space. That num‐
ber is starting to be out of line with typical data growth rates. Three hundred giga‐
bytes is about enough space to hold six feature-length movies in 4K format. The
problem compounds itself as you increase the space used. By implementing a decay
into the calculation, the free space will go down by percentage as the space used goes
up. This decay ensures that you don’t over-allocate free space and, again, drive up
your costs in AWS unnecessarily.

Application discovery
Knowing what servers you have and how much CPU and memory they need is a big
piece of the migration puzzle but is not the only one. Another vital piece is knowing
what applications you have installed on those servers. When it comes down to it,
moving a server is easy. AWS has a tool called CloudEndure that can copy the blocks
on the disk of an on-premises server to AWS. The tool is super easy to use. I say that
if I had enough bananas, I could train a monkey to do it; it is that easy. The more
difficult part of a migration is knowing what is on the server. The applications on the
server determine what other servers it has to talk to, what business unit is in charge of
it, and which customers access it.

Since what is running on the servers has more impact than the server itself, your tool
should discover what applications you installed. I recommend that it capture not only
what is installed, but also what version is installed. This information helps you later
during application discovery and planning around what needs to be done to migrate.
The version is relevant because vendors do not certify some software on the cloud
except for more current releases. Having this information will allow you to assess the
risk associated with support for that application and mitigate it before migration. If
your tool cannot collect this information, you will have to collect it manually, which
will increase the manual effort and your timeline.

Dependency mapping
The last piece that a discovery tool should include is dependency mapping, which
looks at the traffic between servers and maps out which servers communicate with
one another for you. When an application is first deployed, your team will be familiar
with the state and the other systems it communicates with. However, as we have cov‐
ered before, attrition, continual evolution, and poor documentation move you further
and further from a known state. With migration, knowing these interconnections is
vital to the success of your migration. As we mentioned in Chapter 2, not knowing
enough about the estate is a business risk that we all want to avoid. Dependency map‐
ping is an important part of mitigating this risk. It also helps you later when planning
out your migration waves.

82 | Chapter 3: Discovering Your Workloads

One item I like to see but is not completely necessary is the ability to blacklist servers
from the dependency mapping. It is common to have servers in your infrastructure
that every other server communicates with. An excellent example of this would be
servers for Microsoft Active Directory (AD). Since AD performs all your authentica‐
tion and authorization, it is obvious that nearly every server will communicate with
it. These types of servers introduce a level of noise to the dependency mapping that is
unnecessary. The ability to blacklist servers like AD, security, and logging servers will
significantly reduce the level of noise and make the dependency tree more
understandable.

If you can find a tool that has these features, you will have optimized the discovery
and assessment phase of your migration. Unfortunately, that may not be as easy as it
sounds. Your company might have some specific needs that you would like to address
during your assessment. For instance, you might have some specific needs around
licensing information and have found a tool that meets that need for you. However,
the tool does not have IOPS optimization for disks. Since it cannot adjust disk space
for IOPS, this is something that your engineering team will have to review by hand.

Compute
After you have selected your discovery tool and you have run it against your environ‐
ment, you will end up with a list of all of your servers and the corresponding instan‐
ces that the tool recommends you use in AWS. I would love to say you are all set and
ready to move on to the next phase of the process. Unfortunately, this is not the case.
All the tooling currently on the market needs a little polish to yield the best result.
The fact of the matter is that some of the benefits you can get from the cloud are
items that require human intervention to determine whether they can be used. For
instance, a tool cannot tell whether or not your deployment of a custom web applica‐
tion can support horizontal scaling. These types of decisions will have to be addressed
by someone on your team. This section aims to educate you on the items that you
and your team should address after discovery to refine your run rate numbers.

An important point to remember is the amount of estimation that needs to occur.
You are trying to make a reasonable estimate of what it will take to migrate and run in
AWS, but you are not looking for to the penny accuracy. Until you reach the applica‐
tion deep-dive phase, some items, such as the capability to scale horizontally, will be
assumptions. I liken it to blasting a rocket into space versus landing on the moon.
Right now, you are just blasting into space. You can add more thrust to get it there,
and if you overshoot a little, it is not a big deal. Later on, the deep-dive and planning
phase is when you will need precision to land on the moon.

Compute | 83

Latest Instances
Once your tool discovers all your servers and attempts to right-size your instances,
there may be some additional massaging required. Many tools on the market load all
of the available systems on AWS into their tool and then scan this list to find suitable
matches. What I have found is that not all the tools are good at weeding out the older
instance types. Amazon names its instance types, starting with a letter to signify the
class. The class designates what type of workloads or capabilities the instance has.
Table 3-1 shows the current instance family available in AWS.

Table 3-1. Instance families

Class Class name Use case
C CPU Optimized Instances that favor higher-performance CPUs

M General Purpose Balanced compute, memory, and networking performance

T Burstable Instance Lower-cost instances that consume CPU credits over a baseline
CPU allotment

A General Purpose ARM Custom AWS CPUs supporting advanced RISC machine (ARM)
workloads

R, X, Z Memory Optimized Instances that favor large memory capacity

P, G, F Accelerated Computing
(GPU)

Use hardware accelerators (GPU/FPGAs) to accelerate floating
point and graphics calculations.

I, D, H Storage Optimized Favor high sequential read/write access to high-performance
local storage

After the letter comes a number that signifies the generation of the instance. The
higher the number, the newer the generation. So an M5 is newer than an M4, and a
T3 is newer than a T2 instance type. After the generation there is a period, followed
by instance size: small, medium, large, and so on. I have included the current instance
sizes in Table 3-2.

Table 3-2. Instance sizes

Size Instance ratio
nano 0.25

micro 0.5

small 1

medium 2

large 4

xlarge 8

2xlarge 16

3xlarge 24

4xlarge 32

84 | Chapter 3: Discovering Your Workloads

Size Instance ratio
6xlarge 48

8xlarge 64

9xlarge 72

10xlarge 80

12xlarge 96

16xlarge 128

18xlarge 144

24xlarge 192

32xlarge 256

Instance ratios are used as a way to know how instances stack from
an AWS Reserved Instance (RI) perspective. We will cover RIs and
their cost savings in depth in “Reserved instances” on page 124.
Amazon Linux reserved instances can be stacked or split if there is
no exact match for the purchased instance type. For example, two
t3.large reserved instances can be stacked and cover a single
t3.xlarge running instance.

The issue that comes into play with some tools is that they are always looking for the
lowest price. Unfortunately, the lowest price does not always equal the best perfor‐
mance. Typically, the latest-generation instances are slightly less expensive than the
previous ones, but that is not always true. Here your tooling may pick an older
instance type based on that cost. However, newer instances will provide better perfor‐
mance that would offset that small difference in price and be cheaper overall.

An excellent example of this is the latest T3 instances. AWS builds the T3 instances
on the new Nitro engine; they are 30% more performant than the T2 instances per
dollar. If your tool were to select a T2 instance because it was two cents cheaper per
hour, this recommendation could cost you much more because the system perfor‐
mance is 30% lower. Therefore, I recommend that you have your team review all of
the instances selected and ensure that they are the latest generation available.

CPU Type
One of the newer additions to AWS is the ability to choose instance types that have
different CPU manufacturers and capabilities. Before AWS released these options, the
only processors available were from Intel. Today AWS offers Intel, ARM, and AMD
CPUs. Switching your CPU type can save you some additional money over the stan‐
dard Intel instances. However, there are some caveats. ARM instances will not run all
software. To use the ARM-based instances, you will need to be running a Linux OS
running software that is compiled for ARM CPU instruction sets. This CPU change

Compute | 85

works great for web servers and Java applications but will not work for Windows
workloads or COTS software.

The story is different for AMD CPUs. AMD is compatible with the x86 instruction
set. This point means that you can use AMD and Windows and all the COTS applica‐
tions you have in your estate without issue. The AMD CPU instances are about 10%
cheaper than Intel, and that can lead to many cost savings for large companies. Not all
instance classes have AMD counterparts; it will not be a question of AMD versus
Intel but rather how much AMD.

However, this is another area where many discovery tools fall short by not offering
you a way to select CPU types when they are making instance recommendations.
Unfortunately, your team will most likely have to review all the instance types and
manually select AMD or ARM equivalents.

Relational Database Service
We mentioned in “Soft costs” on page 26 that AWS offers a service called RDS. To
recap, RDS is a service that manages several types of relational database management
system (RDBMS) platforms for you. It offloads applying OS patches, RDBMS patches,
storage capacity expansion, and backups from your staff as part of its integrated man‐
agement, thus freeing your team to not worry about those items. The RDS service
offers you significant soft-cost savings for your company. Most discovery tooling can‐
not map the servers running RDBMS to RDS. The tooling will map what you have
and make an EC2 recommendation. If you were to migrate your databases directly to
EC2 in this way, you would be leaving a major benefit of migration off the table.

Like CPU types and using the latest instances, the onus will fall to your team to
ensure that your servers on-premises are appropriately mapped to RDS instances
where applicable. Making this change won’t save you hard costs or make an impact
on your run rate, but it will save you cost, time, and headaches in the long run.

Partial Run Rate
An area where discovery tooling needs some human assistance is with instances that
have a partial run rate. With AWS, you pay only for what you use, so it makes sense to
turn off certain types of servers so that you do not have to pay for them. This makes
sense in development and testing environments. Your development and testing teams
probably do not work around the clock as your customers do. This timing means that
instead of running those servers 24/7, you can turn them off at night and turn them
back on in the morning before people start working. Say you run your development
and test servers for 10 hours a day to address teams coming in early and leaving later
in the day. That would mean that those servers will run for only 50 hours a week as
opposed to 168 hours. Performing shutdown and startup means that you will save

86 | Chapter 3: Discovering Your Workloads

70% of the run rate for those systems. That is significant savings and one that most
companies can take advantage of.

It would be a good idea to have your team review your development and testing
servers to see whether you can benefit from this type of savings. You may have to
adjust some manual calculations to compensate if your tool cannot set a partial run
rate.

Auto Scaling
You might have noticed that quite a few items need human intelligence to make
adjustments to your discovery. Auto scaling is no different. Your chosen discovery
tool will not be able to determine whether your application is stateless or not. Your
team might not have that level of detail at this stage of the process, because they
haven’t dived deeply enough. What we are looking for here is an educated guess about
whether the application can use auto scaling so that you can build it into the costing
model. It is a safe bet to assume that most web applications are stateless. Making this
assumption allows you to adjust the run rate for servers that are part of a web server
farm to compensate for auto scaling. Let us look at this scenario for more clarity.

Scenario 3-1
Robert’s company has a web farm that runs its main website. The website is a
business-to-business platform that is used mostly Monday through Friday, with some
intermittent weekend usage. The high point of weekday usage occurs on Wednesday,
when most customers are putting in their orders for the following week. Robert’s
team has noted that 12 servers are running in the farm currently.

Let us break down Robert’s scenario and determine what his run rates should look
like after migration to AWS for this web farm. First, Robert’s team should ensure that
they have the best availability they can have. That means that three of the servers in
the web farm should be running 100% of the time. Having three servers, each one in a
different AZ, ensures the best uptime for Robert’s customers. The three servers will
also provide the baseline performance that the company needs on the weekends and
low points during the week. We also know that usage reaches the peak on Wednesday,
so that day we know we need all 12 servers online. What we can do now is apply a
normal distribution curve to the 9 remaining servers with the high point at 12 on
Wednesday. What we end up with is three servers set to 100% of the time, four
servers running for 71% of the time, nine servers running for 43% of the time, and
two servers running 14% of the time. This distribution is visualized in Figure 3-1.

Compute | 87

Figure 3-1. Server distribution

When Robert sees the usage in real life, the numbers will not line up with what we
have calculated here. Robert’s company will see an ebb and flow throughout the day,
and servers will spin up and down to compensate. The important thing to focus on
for the cost model is that Robert’s team approximated a more realistic run rate for 12
servers that were running all the time. Ultimately, we are creating another SWAG.
The resolution for the data that Robert has is in days, and his customer usage and
auto scaling has a resolution of minutes. It would be impossible to model any more
precisely with the limited data at Robert’s disposal. Remember the mantra, blasting
into space.

License Model
We have covered run rates, CPU types, and auto scaling, and now we are headed for
the homestretch for compute. There are a couple of ways to purchase licenses in AWS
when it comes to operating systems and RDBMS engines. You can bring your own
license (BYOL) or purchase it as part of the service. Both RDS and EC2 offer this
capability, and both models have their benefits and drawbacks.

License included, or bring your own
BYOL can offer some benefits in AWS. It depends on the software, the type of license,
and the type of instance required in AWS. To be up-front, this is a bit of a moving
target. Companies like Oracle and Microsoft are changing their license agreements
often, and it can be a bit of an obstacle to navigate. Microsoft licensing can be so
complex that some consulting companies have staff dedicated to evaluating it for cus‐
tomers and making recommendations on how to comply prior to an audit.

My biggest issue with BYOL is that some require you to use dedicated instances, dedi‐
cated hosts, or possibly bare-metal instances. Using these instance types requires
more work on your end, and you take a step toward looking more like an on-
premises data center. For instance, when you use dedicated hosts, you purchase a host
in a single AZ. To add high-availability (HA) and BC capabilities, you need to extend

88 | Chapter 3: Discovering Your Workloads

them into another AZ, which means purchasing another host. You also must be aware
of which applications and instances you place on a dedicated host and balance out the
load. As you can see, this looks less like the cloud and more like a management
hassle.

My recommendation on BYOL: Just say no.

The license-included model allows you to purchase the license for Windows, SQL
Server, or Red Hat as part of the EC2 service. I prefer the license-included model.
There are a couple of benefits to using it over the BYOL model. The first benefit is
that you eliminate that licensing risk. You know that your instances are covered from
a licensing perspective. Thus, you do not have to worry about them in an audit. Com‐
panies like Oracle and Microsoft are making a business of going after companies for
using software that is not licensed. The worst part about this scheme is that often you
are out of compliance because the licensing models are so convoluted. You can get hit
with huge fines just because there was a misunderstanding. They don’t care whether
there was intent to steal licensing or not—you still get the fines. The penalties allowed
by law are up to $150,000 per title infringed. According to The Software Alliance,
underreporting of licenses used is the largest and most common infraction.

The second benefit to using the license-included model is that, because you are aim‐
ing to be more agile and dynamic in the cloud, you are only paying for the licenses
that you are using. If you BYOL and are running an auto scaling group, you will have
to purchase licensing for the high-water mark. Eliminating this cost is yet another
way to save capital by migrating to AWS from on-premises. This savings is not just
concerning auto scaling either: you can see this benefit when you try out some new
capabilities in a sandbox.

You might be asking yourself why you should forgo the licenses that you already have.
Well, that is a good point and one I want to call out. About 90% of the companies I
have migrated have chosen to scrap their on-premises licensing based on the risk
associated with license compliance and the cost of managing those licenses by staff.
The fines for noncompliance reach into the hundreds of thousands of dollars. The
management and internal auditing of licenses have costs in the tens of thousands.
Putting these costs together, these companies felt that it was a better investment to
retire the licenses they had.

When you are working on your discovery, your team should be validating that your
tooling is using the license model properly. Evaluating licensing ensures that license

Compute | 89

http://bsa.org

costs are included in your run rate. Most discovery software allows for the configura‐
tion of licensing, and this should not be a significant area of concern.

We have covered a lot of ground regarding discovery and compute resources. Your
tooling will help you a lot by reducing the manual work required to detail your envi‐
ronment. However, as you have seen, your team still needs to do a lot of manual work
to complete the discovery process properly and to ensure that the optimal state is
attained. Doing more work on the up-front processes will provide a smoother migra‐
tion later.

Storage
Now that we have covered the additional items to manually review for migration, it is
time to move on to storage. Not as many items need manual review when it comes to
storage. For most instances, having the standard SSD storage known as gp2 is the best
choice for most servers. However, there are a few options that make sense some of the
time. In this section, we will review those types and some places you might want to
implement them. In addition, we will also cover some special instances that offer ben‐
efits by modifying standard storage for database servers and NFS servers.

As long as the tooling you selected to perform your discovery supports right-sizing
disks, most of the storage work will have been done for you. If it doesn’t, your team
will have to put in quite a bit of effort to verify that the disk sizing is correct so that
you minimize your costs. EBS does offer dynamic storage increases after volume
deployment. This feature enables you to increase your capacity (not decrease) if your
free space is becoming low. This ability reduces risk when sizing disks too small. You
can always go back and make them larger later. The same cannot be said when mak‐
ing volumes too large. They cannot be made smaller. Thus it’s better to err on the
smaller side.

EBS Volume Types
Most of your servers in AWS will use EBS volumes for storage. EBS is similar in use
to SAN storage that you would use on-premises. It is connected to the instance by a
network and is not connected directly to the host server by a disk controller. EBS
offers redundancy like a Redundant Array of Inexpensive Disks (RAID) in a conven‐
tional SAN. AWS handles this redundancy for you. Therefore, you do not have to
configure it on your servers.

EBS volumes are only redundant in a single AZ. If an AZ goes off‐
line, the volume will be offline as well. EBS volumes are not replica‐
ted outside of the AZ. For redundancy, snapshots of EBS volumes
should be taken to recover the volume to another AZ.

90 | Chapter 3: Discovering Your Workloads

AWS offers four types of EBS volumes. These four storage types cover virtually every
type of use case you could have. The four types are gp2, io1, st1, and sc1. For 95% of
workloads, gp2 will probably be your volume of choice. The other 5% will be made
up of a mix of the rest of the volume types:

gp2
The gp2 SSD disk offers remarkably high input/output (I/O) at 3 IOPS per GB
and decent throughput as well. It works well for everyday workloads like web
servers and database servers. It is also very cost-effective at only $0.10 per GB in
the us-east-1 region as of this writing.

io1
You would use the io1 storage when you need extremely high IOPS for perfor‐
mance workloads. I have not seen io1 used as often as you would think. You
might also think that you would see it in situations like database servers where
I/O is high. In my experience, I have found that the ratio of storage to I/O
requirement matches quite well with the gp2 volume type. For instance, you
might have an Oracle server that needs 30,000 IOPS. But that same server needs
10 TB of disk capacity. Well, 10 TB of disk gives you 30,000 IOPS. There is no
reason to stray from gp2 for that use case. I have found io1 to be useful when you
need a high amount of IOPS but little storage. A workload where you needed
30,000 IOPS but only 100 GB of storage would be an ideal case for io1 storage.

st1 and sc1
I lump sc1 and st1 together because they are similar. These storage types are mag‐
netic disks, not SSD. You know, those things the Flintstones used that went
clickity-click-click and tended to crash, taking all your family photos with it. This
storage does not have a lot of I/O capability, but it does have a high throughput.
The throughput is well above gp2 at 500 megabytes per second. This type of disk
works well with consecutive read/write data, such as database backups.

Sc1 and st1 disks have a minimum size of 500 GB. Keep this in
mind, because it might inflate costs over gp2, depending on the
original disk size.

Although AWS offers you these four options, you will probably only need gp2 storage
for your instances. Some people think they will save money by using the magnetic
storage types but forget that they need a minimum of 500 GB. This oversight quickly
elevates the cost. Start with gp2 and work down from there if you think you have a
special use case.

Storage | 91

Network File System Replacement
An item that should be addressed as part of the manual review and polishing for stor‐
age is the replacement of network file system (NFS) servers in your environment.
AWS offers a service called Elastic File System (EFS) that manages NFSs. This service
allows you to forget managing and patching any NFS server instances, saving you soft
costs. As a bonus, EFS is a cross-AZ service. This service offers multi-AZ redundancy
as a native feature. Having this prevents you from having to create an HA solution for
NFS yourself, saving even more engineering time. I have not seen a discovery tool to
date that can make a judgment call on replacing NFS servers. Since this decision will
not be made for you, I would suggest that you have your team do a review for any
NFS servers in your environment and adjust accordingly.

I want to point out that the cost at first looks high. EFS in us-east-1 costs $0.30 per
consumed gigabyte at the time of writing. This price is three times the cost of EBS
storage, because the EFS service replicates data two more times for a total of three
AZs. Two things to keep in mind are that the service probably provides greater availa‐
bility over your original on-premises design and you do not have the costs of servers
with EFS. These features might make EFS more palatable when you consider these
capabilities.

Very large data footprints can become very costly in EFS. AWS
introduced EFS life cycle management and an infrequently
accessed storage tier, which has a lower price point. However, for
exceptionally large data sets, it may make sense to use a combina‐
tion of EFS and S3 to minimize expenditures.

Windows Server Replacement
EFS is not the only service that offers the ability to decrease soft costs for storage
management. AWS launched Amazon FSx in 2018. FSx is a managed file server ser‐
vice that provides Windows and Lustre network file system support. The FSx service
provides the ability to replace Windows file servers in your environment with a man‐
aged service, easing their management after you migrate them to AWS. Like RDS and
other services, AWS manages the operating system (OS), backups, and patching,
allowing you and your team to focus on delivering customer value.

In late 2019, AWS released multi-AZ capabilities for FSx for Windows. Unlike EFS,
which is always redundant across AZs, you must select the multi-AZ deployment
option with FSx. Also, the pricing is different based on whether you choose multi-AZ
or single-AZ deployment. During discovery, you should establish if your file servers
that are migrated to FSx require the availability of multi-AZ to maximize storage
savings.

92 | Chapter 3: Discovering Your Workloads

Instance Store Volumes
There is one last type of storage that AWS offers that may be of use for certain work‐
loads. Instance store volumes are disks that are available on certain instance types.
These instance store volumes are local to the host and offer very high I/O and
throughput. These high-performant volumes work very well for intense I/O work‐
loads. A critical concern with instance store volumes is that they are ephemeral. This
means that when a server is stopped, the disk is wiped out, and the data is no longer
available. This erasure limits this storage to a particular use case and is not for general
server storage. Ephemeral storage works great for high-speed processing applications
where the data can be re-created with ease, such as for video transcoding, image
manipulation, or HPC.

Like most items we have talked about in this chapter, flagging disks for instance store
volumes is not something that any discovery tool will be able to do. It is not aware of
the software and storage patterns on the disk that would allow this kind of decision to
be automated. In fact, your team may not be aware of the applicability of the applica‐
tion for instance stores. Like we discussed with auto scaling, this is an item for which
your team may be able to hypothesize which servers could use or benefit from this
type of disk and adjust later in the process.

Network
Since you must manually review for auto scaling, it makes sense that you also must
manually account for load balancers in AWS. I have not seen a discovery tool that can
scan load balancers and paths. However, since you are probably changing from verti‐
cal scaling to horizontal scaling, there would be nothing to discover. Load balancers
can add a modicum of cost, making it important to review and ensure that it accu‐
rately represents them in your discovery and costing.

The other item that we will touch on is the costs for outbound bandwidth. AWS does
not charge for data coming into the estate, but it does charge for data that is leaving.
There are several costs per gigabyte, depending on what service is reporting that data
usage. Typically, data is not a huge expense, but it is important to understand the cir‐
cumstances of when you will be charged.

Overall Outbound Bandwidth
Many companies get nervous when they hear that AWS charges for outbound band‐
width. The number one reason I think this fear exists is that no one knows how much
data they are pushing outside of their network. They imagine this huge number of
gigabytes, and at the base rate of $0.09 a gigabyte, that can be scary. If you are not
accounting for bandwidth today on-premises, then it will not be substantial enough
to concern yourself about it in AWS either. For example, media companies like Getty

Network | 93

Images or The Wall Street Journal would account for data on-premises. For a media
company, outbound data is the bulk of its business, and outbound traffic would be a
sizable expense in AWS. But then again, it was on-premises as well.

For every other company that does not track its outgoing bandwidth, I typically add
an uplift onto the expense of EC2 to accommodate outbound bandwidth. I have
found that adding 8–10% is more than adequate to accommodate for outbound data
charges. This uplift should be added to the EC2 expense only, and should not include
EBS, S3, and load balancers. If you were to have an EC2 spend of $10,000 a month,
the estimated data charge would be $800–$1,000.

Data out is another situation where you are strapping on more rocket power to get
into space. The costing for data out is very complex. There are different charges in
regions, between regions, over Direct Connect, EC2 to CloudFront, and CloudFront
to the internet. It would be much more effort than I would want to spend to calculate
it for landing on the moon. Using the 8–10% uplift will give you a worst-case scenario
since all the other data out charges are less than EC2 to the internet.

Elastic Load Balancers
When your team went through and decided which applications would use auto scal‐
ing, they accounted for changes to spend based on the changes in instance count and
run time. However, this does not consider the additional spend for elastic load bal‐
ancers (ELBs) in AWS. ELBs in AWS have three consumption models. There is a
baseline cost for activating and running an ELB. You then add to that unique charges
based on the type of load balancer you are using.

An ELB also gives you the ability to offload Secure Socket Layer/Transport Layer
Security (SSL/TLS) encryption from your servers: the load balancers do that work
and decrease the load on your servers. The ELB, in this case, would talk to the back‐
end servers over unencrypted HTTP. Typically, I recommend against this design
because I believe it is too cheap to run SSL/TLS not to use it. I would rather have the
extra layer of encryption and be able to tell any auditors that everything is encrypted
in transit. I use ELBs to offload the SSL/TLS from the client connection and then con‐
figure the ELB to create an SSL/TLS session to the source servers. This design offers
another layer of protection for your servers, with the load balancers working as an
intermediary rather than passing traffic directly through. Your team might not have
gotten to this level of granularity with your EC2 costing adjustments for auto scaling.
However, it might be a good topic of discussion to ensure that this is not the case.

An added benefit of using SSL/TLS on the AWS load balancers is that you get SSL
certificates for free from the AWS Certificate Manager (ACM) service. On-premises
SSL certificates are an additional cost of around $100 a year for a single host/subdo‐
main certificate. You can get wildcard certificates to help drive down costs, but then
you forsake security. ACM offers you free host/subdomain certificates, and you do

94 | Chapter 3: Discovering Your Workloads

not have to sacrifice security. AWS has three load balancer types: classic ELB (not to
be confused with the generic ELB acronym for all the services), Application Load Bal‐
ancer (ALB), and Network Load Balancer (NLB).

ACM certificates are only free for AWS load balancers and Cloud‐
Front. You cannot use them for non-AWS services and servers.

Classic Elastic Load Balancer
The classic ELB is a holdover from the days before VPCs existed in AWS. It works
fine with VPCs, but the NLB has supplanted it. The classic ELB is a Layer 4 network
device, meaning that it cannot see inside protocols to do advanced routing. It accepts
traffic and can route it based on ports. The ELB cannot do much more than that. For
many instances, this is just fine. However, I typically see ALBs being deployed today
instead, for reasons we will cover shortly.

Ultimately, I would suggest not deploying classic ELB anymore, since the new NLB
service has outdone it. If you do use a classic ELB, then keep in mind that your costs
will include not only the monthly ELB fee but also the data-out charges. Since you
applied an uplift to the EC2 spend, these charges should already be accounted for and
need not be added in again.

Application Load Balancer
The ALB was introduced a few years ago and is a vast improvement over the classic
ELB. An ALB is a Layer 7 network device, so it can understand protocols such as
HTTP and can redirect traffic to different server pools based on the URL. This level
of integration gives you many capabilities to split your application. Integration is crit‐
ical when you want to refactor your application in more cloud-native designs. Using
an ALB allows you to merge load balancers. Besides being able to look inside a URL,
ALBs can also see what host or subdomain you are trying to reach. This vision allows
you to use one ALB for up to one hundred different destinations. This function can‐
not span to different security zones, AWS regions, or accounts. You can’t use just one
ALB to “rule them all,” nor would you want to.

For costing out ALB, you need to plan for how many ALBs you will need plus the
number of Load Balancer Capacity Units (LCUs). AWS makes an LCU from four dif‐
ferent consumptions: new connections, active connections, processed bytes, and rule
evaluations. You are charged for the highest of those consumptions, not for all of
them. An LCU contains:

Network | 95

1 4 load balancers × $0.0225 per hour × 730 hours in a month = $65.70

• 25 new connections per second
• 3,000 active connections per minute
• 1 GB per hour for EC2 instances, containers, and IP addresses
• 1,000 rule evaluations per second

Together these create the cost basis of your ALB implementation. Let’s look at this
scenario to get a better understanding of how you could cost out an ALB.

Scenario 3-2
Anna’s company is migrating to AWS, and it has 17 web server farms moving to the
cloud. Some of these web farms are under unique domain names, and some are sub‐
domains of their whizbangcheezeinacan.com. Anna has asked her team to cost out
the load balancing functions for these 17 web server farms because she is concerned
the cost will be high. Anna had decided that they will run all their websites in two
different regions for redundancy. They are the number one cheese-in-a-can manufac‐
turer in the world and have an image to uphold. Besides the 17 production web server
farms, Anna’s company also has 17 development servers and 17 test servers where
they develop and test before the production release.

First let’s look at how we have to split up the ALBs for Anna’s environment. ALBs
cannot go across regions, so her company will need at least two ALBs. They also can‐
not cross accounts and environments, which means that there needs to be at least
four ALBs. That is two for production, one for testing, and one for development. For
Anna, the baseline cost of her ALBs will be $65.70 based on the cost in the us-east-1
region at the time of writing.1

After figuring the cost of the ALB, you need to start using a bit of fuzzy math. You
won’t have all the details required to calculate the LCU cost for the ALBs. If I am hon‐
est, I am not a fan of the way ALB costs are calculated. The model is convoluted and
impossible to predict without running a proof of concept (POC) to gather actual sta‐
tistics. I recommend multiplying the cost of the ALBs—in this case, $65.70—by four.
The multiplication covers the cost of the ALBs and gives you some breathing room
for the LCU charges. In this example, the total estimated charges would be $262.80.
The data charges that you put in for an uplift will also give you a buffer, because the
instances behind the ALB will not go directly out to the internet. Essentially, those
charges can be added to the $262.80 as well.

96 | Chapter 3: Discovering Your Workloads

Network Load Balancer
The NLB is very similar to the classic ELB. It, too, is a Layer 4 network device, so it
cannot see and cooperate with the protocol higher up the stack. The NLB is the
replacement for the classic ELB and offers a few new capabilities. The NLB works on
not only Transmission Control Protocol (TCP)—which would include HTTP and
HTTPS protocols—but also on User Datagram Protocol (UDP), and supports off‐
loading Transport Layer Security (TLS), which deprecated SSL in 2015. One of the
benefits of the NLB is that it supports static IP addresses. A significant change from
the classic ELB is that NLBs don’t support security groups. With an NLB, you have to
allow the source IP addresses of the NLB on the target instances.

Unfortunately, the consumption model for the NLB is like that of the ALB. You pay
for the NLB per hour and then for LCUs on top of that. The LCU consumption mod‐
els are different from the ones for ALB. For the NLB, the consumption is based on
new connections, active connections, and processed bytes. I suggest doing the same
for NLB as we did for ALB: multiply the NLB base charge by four to create a buffer
for the LCU charges.

The NLB service does not support sticky sessions. If you need
sticky sessions, use an ALB or classic ELB.

Ancillary AWS Service Charges
When you first migrate your company to AWS, quite a few services will be deployed
as part of your landing zone, and their costs need to be accounted for. Like outbound
bandwidth, these services are things that you cannot calculate out. The services that
need to be included are things like Simple Notification Service (SNS), Config, and
CloudWatch. These services are all billed by consumption and are serverless. Since
you will not know how many API calls you will make or how many alarms AWS will
send, it will be an impractical use of time to cost these out. I recommend a 5% uplift
on EC2 spend to accommodate for these charges. Again, if your run rate is $10,000
for EC2, you would spend about $500 a month for these ancillary services.

Assessing Connectivity Requirements
Thus far, we have covered servers, storage, and network. However, it would be a great
disservice not to talk about connectivity. After all, connectivity could be a large
expense, and as we talked about in “Application Connectivity” on page 54, it can be a
significant business risk as well. Now that you have completed your discovery, you
will have a much better picture of how things connect and interoperate. Choosing

Ancillary AWS Service Charges | 97

your connectivity to AWS is probably best served by following a decision tree. You
will want to choose your connectivity based on your business needs and not on the
bottom line. I have seen migrations go belly up because the main deciding factor for
connectivity was cost. If you want to have a successful migration, you need to give
your users and customers the best experience—an experience that doesn’t deviate
from what they have grown accustomed to while using servers on-premises.

In Figure 3-2, you can see a straightforward decision tree that will help you decide
what kind of connectivity you require to best serve your customers and users.

Figure 3-2. Connectivity decision tree

The tree starts with internet access; it is the most cost-effective but has the highest
level of restrictions on its use. From there, the tree works down to VPN. VPNs are
relatively cost-effective but have limitations with scale. You may arrive at Direct Con‐
nect, which offers you the best service and scale. Let’s walk through each of the deci‐
sion points to ensure a clear understanding of why you could choose a yes or no
answer:

98 | Chapter 3: Discovering Your Workloads

Do all of your applications have web access?
You cannot have only internet access if your applications do not have a web inter‐
face. This limitation makes only internet access a nonstarter.

Do any of your applications require protocols that cannot be encrypted?
Some older applications might use web protocols but cannot be encrypted, such
as File Transfer Protocol (FTP) and HTTP. A situation like this would again push
you to a VPN solution.

Do any of your applications have poor authentication controls?
Even if an application can support HTTPS and has password protection, that
does not mean that it should be on the internet. If your application has an eight-
character limit with only alphabetic characters, you would not want it exposed.
Another item to include here is if the application does not support account lock‐
out and failed password attempts. It would leave you exposed to brute-force
attacks.

Do any of your applications have latency restrictions?
The latency of VPN is not static and depends on the path and amount of traffic
on specific legs as your packets head for AWS. If you need low latency, consider
Direct Connect.

Do any of your applications have high bandwidth requirements?
VPN is limited in the amount of bandwidth it can push through the tunnel at
1.25 GBps. This limit is based on the AWS VPN device; your internet pipe and
the hardware you have on-premises may further reduce VPN capabilities. If you
have high bandwidth needs for your application, Direct Connect is your path.

Do you require many AWS accounts or environments?
VPN cannot do transitive routing. If you have many accounts and environments,
you will need many VPN connections. The high VPN count will add not only to
your cost but also to your complexity and soft management costs. Direct Con‐
nect can have 50 virtual interfaces (VIFs) that can connect to 50 accounts.

Fifty VIFs is the maximum hard limit from AWS. The number of
VIFs depends on your provider and the bandwidth purchased.
Your limit may be lower.

Do you have a resiliency requirement?
Although AWS offers two VPN tunnels that are deployed to two different AZs in
AWS, the limitation of the internet between your office and AWS still exists.
Direct Connect typically offers the ability to have more redundancy in the net‐
work between you and AWS.

Assessing Connectivity Requirements | 99

Do all of your applications have a high bandwidth aggregate?
Even if you do not have an application that has a high bandwidth requirement,
you might have a high aggregate bandwidth requirement. You will need to add up
all of your bandwidth requirements and make sure the total does not exceed your
VPN capability.

At this point, by following the connectivity decision tree, you should have arrived at a
decision as to how you will connect AWS to your offices. Most likely, you will have a
VPN or Direct Connect connection to AWS. If you wanted to, you could find several
ways to work around some limitations and move forward with a lower tier of connec‐
tivity. For instance, you could use AWS Workspaces, a virtual desktop service, for a
desktop that would allow you to get around needing a VPN. A virtual desktop would
ensure that the data that needs to be communicated from a desktop to the server
would be protected because that data would never traverse the internet.

The question that you will need to ask yourself is how many workarounds you want
to support. For example, if you had an environment where you had 25 web-based
applications and one old legacy application used by a handful of people, then maybe
using Workspaces as a workaround makes sense. However, if you had five web-based
applications and 20 legacy applications with hundreds of users, it makes little sense.
At that point, you are trading the maintenance of a VPN for the maintenance of a
large virtual desktop estate. When in doubt, say no and move to a higher tier.

Wrapping It Up
In this chapter, we talked about several discovery items that must be done manually. I
would love to tell you that the marketplace is ramping up to offer these kinds of capa‐
bilities soon, but unfortunately, this is not the case. Advancements are being made,
but to have all of these manual items included will take some time for vendors to
implement.

I also want to point out that you don’t have to implement all or any of these items if
you don’t want to. It is perfectly fine to use what assessment tools suggest and run
with that. It will be just as good as on-premises and provide you all the capabilities
you currently have. But then what would be the point of migrating to AWS if you are
not going to take advantage of the benefits we discussed in Chapter 1?

The important thing to remember is that over time, you want to start moving to AWS
services that offer the most automated management. Those services are what will
increase employee satisfaction, increase agility, and reduce soft costs. Your timeline
might not allow the level of detailed analysis required to review these items. You can
always come back and perform these analyses later and make changes to your envi‐
ronment. I cannot stress enough how important it is not to treat AWS like a data
center.

100 | Chapter 3: Discovering Your Workloads

CHAPTER 4

Building Your Business Case

Migrate, then iterate.
—Nate Gandert, Chief Technology Officer/Chief Product Officer Getty Images

Now that you have completed your discovery and made all the manual adjustments,
it is time to build your business case. You may be wondering why you need a business
case. Very few companies get a mandate down from the board level telling them to
move to the cloud. It does happen, but usually there is some significant business
objective that they need to address in those scenarios. For the rest of us, we need to
show why we should move to the cloud. Unfortunately, the story usually centers on
costs, even though agility is the real business value.

When it comes to migration, costs are high. You must operate in two environments
for some period, which drives the bulk of your expenses. You will have training, con‐
sulting, and potentially software fees as well. Migration also causes a significant dis‐
ruption to your business units and their timelines. To be blunt, moving forward with
migration without having the buy-in of senior leadership is a sure way to get walked
out the door. The business case conveys the information that you have gathered about
your environment and relays that to management in a digestible format.

The bulk of this chapter will address hard costs, because they are the easiest to get
business alignment on and approval to migrate. There are also a few areas to high‐
light where your costs might go up when you compare them to on-premises. In these
situations, it is essential to highlight the additional benefits your company will receive
from them. The story really should be more about agility and the capabilities your
company will get by moving to AWS. Agility is not always quantifiable. That makes it
hard to use in your business case since you cannot directly tie savings or increased
revenue to that agility. All is not lost, though; there are some agility benefits you can
quantify, and we will cover those in this chapter.

101

An unseen benefit of the business case process is that senior leadership may ask some
questions and require investigation that you hadn’t thought of previously. This pro‐
cess guarantees that all the bases are covered and ensures a higher level of long-term
success.

Estimating Your Timeline
To craft a proper business case, you need to know how long your migration will run.
The length of your migration has a significant effect on the cost of your migration. It
will affect your double expenditure, tooling, and any consulting fees. We have not dis‐
cussed migration planning yet; we will cover it later, in Chapter 7. For now, we will
estimate the length based on three factors:

1. The number of servers you have to migrate
2. The number of servers you estimate can be moved per day
3. A buffer for unexpected timeline delays to create the estimated timeline.

Number of Servers
The bulk of the effort in migration comes from the number of servers that you have
on-premises. It boils down to the logistics of touching those servers and moving
them. You will have to install agents on the box to migrate it to AWS, disable network
adapters postmigration on the source server, perform a smoke test, and conduct other
operations during your migration. Even with automation, it will still be the largest
bucket of time.

Number of Servers Moved per Day
Calculating the number of servers that can be migrated per day can be tricky. It
depends on the level of AWS experience of the staff that is performing the migration.
It also depends on the types of applications and whether the staff has done migrations
in the past. When I was a consultant and computing the level of effort for projects, I
would use two servers per day per engineer. These were experienced AWS engineers
with multiple migrations under their belt. It would be safe to use this number if you
are using consultants or contractors. If you are using your staff, you should target one
half to one server per day.

You may ask yourself how your engineers will start the migration and have a server
migrated every day. That is a very good question; these numbers are averages. When
you migrate servers, you do it in waves and typically have a cutover at night or on the
weekend. You might migrate 10 servers with 2 engineers on Saturday, but it would
take all week to do the prep work.

102 | Chapter 4: Building Your Business Case

Delay Buffer
Delays happen. I do not think I have ever had a project that wasn’t delayed. In my
management’s eyes, I do not miss any targets because I am adamant about including a
buffer. Early in my career, I used to keep my timelines tight because I thought it
would look good for me to propose a project with a short and optimal timeline. The
first time I had to extend a project was not that big of a deal. But the third, fourth,
and fifth times, I started to cringe every time I had to tell management I had to
extend the timeline. This oversight was a painful lesson to learn.

Since then, I typically like to err on the side of caution, or as I call it, pulling a Scotty.
If you think back to all those Star Trek episodes, they always asked Scotty to do some‐
thing incredible. The timeline he was given was always too short to accomplish the
task, and he would give a longer one. However, somehow Scotty would still pull it off
and beat his estimated timeline. For his efforts, they always saw Scotty as the hero. I
like to be Scotty when I run forecasts. I would rather estimate a little higher and be
praised when the dust settles than shoot low and miss it. It is better to strap on a little
extra rocket power to reach exit velocity and not need it than come up short.

For migrations, I would typically add a 10–20% margin of error as a buffer to the
migration timeline. If working with an experienced migration team, I would lean
toward 10%. Likewise, I would shift toward 20% with a less-experienced team.
Besides the team’s capabilities, what type of software you have also affects the migra‐
tion timeline buffer. For instance, if you have a lot of COTS applications, your time‐
line has less risk than if you have a lot of internally developed software. The reason
for this shift in risk is that COTS applications are highly documented and have been
moved to AWS by other companies. Blog posts and forum answers are available to
help your team resolve any issues. When you have a lot of internally developed appli‐
cations, the reverse is most likely correct. Typically, documentation is not as strong,
and a high degree of tribal knowledge has been lost over time. Since you are the only
company that runs the software, there will be no resources on the web to reference
either. Because of these factors, I push the buffer toward 20% for companies with
large estates of internally developed software.

Before we can move on to see how to incorporate the delay buffer, first we need to
touch on employee vacations and holidays. They are a significant component of a
migration timeline.

Employee Vacation and Holidays
An often overlooked component of timeline planning is employee vacations and holi‐
days. Employee vacations can have a significant effect on your timeline, and I have
seen it forgotten in quite a few estimates. Likewise, holidays can affect the timeline as
well, but potentially not how you would expect.

Estimating Your Timeline | 103

I do not want you to fall into the trap of not thinking about employee vacations.
Doing this will delay your migration. The effect gets worse the larger your company
is, and the larger your team is, the more vacations you need to consider. The larger
the company, the more servers and the longer the timeline, too. The longer the time‐
line, the more vacation the staff takes. Vacation will have less effect on small compa‐
nies that do not have many servers, because the timeline will be so much shorter. Let
us look at the following scenario to highlight how vacation can affect your timeline.

Scenario 4-1
Beth is preparing her migration timeline and wants to compensate for her staff ’s
vacation times. She has a migration team of six. Her infrastructure is large, and they
anticipate that it will take a year to migrate everything. Beth’s company also has a
decent vacation policy and allows staff four weeks of vacation per year.

The impact on the migration timeline for Beth’s situation is sizable. Since she has six
staff members on the migration and each have a month of vacation time, she has six
months of potential vacation. That is half a year of a full-time person’s effort. Since
there are roughly 20 workdays in a month multiplied by six months, that’s 120 days of
effort if her team can migrate 1.25 servers per day, which equals out to 150 servers of
missing effort if Beth does not compensate.

Holidays can also wreak havoc on your migration timeline. Most people immediately
think about days off and people not being there to work. To be honest, that aspect has
little effect on your timeline. What can really hurt is the potential blackout dates that
come along with holidays. This is especially true in the retail industry. It is common
for a retail chain to have blackout dates from Thanksgiving until after the New Year.
That is around one and a half months of inability to migrate. One company that I
worked for had blackout dates around every holiday. Valentine’s Day, St Patrick’s Day,
the Fourth of July, and more all came along with one-week blackouts. The impact
because of holidays will be very specifically based on your company’s individual
needs.

I like to compensate for vacation and holidays by decreasing the overall number of
engineers that is put into the equation. In “Scenario 4-1” on page 104, Beth would
reduce her number of staff from six to five and one-half engineers. This will resolve
the discrepancy for the effort that is missing during their vacations. Now that we have
all the components, we can move on to putting them into the timeline equation.

104 | Chapter 4: Building Your Business Case

Putting the Equation Together
Now that you have the number of servers, the number of servers per day, the
employee time off, and the buffer in mind, we can put it all together to come up with
the total length of the migration. To do this, I have created an equation to use that will
calculate your total migration period. It takes a number of inputs, which are the items
that we have just discussed.

Equation 4-1. Timeline equation

timeline = servers
engineers × servers per daybuffer /work days

Let us look at another scenario to see how a timeline might look with some actual
data points.

Scenario 4-2
Richard is migrating his server estate to AWS; his company has 1,400 servers that will
be migrated, and 103 are being left on-premises. Richard’s staff is new to AWS, but he
has two members of his four-person team that have done migrations to AWS before.
The company runs mostly COTS software, only 10% of which is internally developed
applications.

Richard will end up with an equation that looks something like:

timeline = 1,400
4 × 1.251.13 /5

He has 1,400 servers that will be migrated by four engineers, who can move one and a
quarter servers per day. Because half of his staff is trained on AWS, the assumption is
that an engineer can move just over one server per day. Last, since Richard’s company
has nearly all COTS and half of his staff have migrated before, a buffer of 13% makes
sense. Richard’s staff works a standard workweek, so it all gets divided by five to
determine how many weeks of total effort are necessary. Richard’s complete migra‐
tion timeline is 63.28 weeks, or just about 14.5 months long. Based on the number of
servers that Richard has, these numbers sound about right based on industry norms.

Now that the timeline is completed, we can start working on the business case. You
may be wondering why the migration timeline was completed before the business
case and not included as part of it. The fact is that it is inconsequential compared to
the rest of the information that will be conveyed to management. You can simply note

Estimating Your Timeline | 105

it and how you arrived at it in the assumptions, which we will discuss later in this
chapter.

What Does a Business Case Look Like?
Typically, I have followed the format of starting a business case with a written narra‐
tive about the migration and the benefits that migrating to the cloud will bring the
company. After the narrative, I follow up with a five-year financial forecast that paints
the picture of the savings of moving to the cloud. Finally, I follow up with all the
details and outputs of the discovery in an appendix for people to review if they want
to. Typically, senior leadership does not concern itself with the nitty-gritty details.
However, once a while, the members will want to validate details for an area they are
responsible for. In the next few sections, we will dive into detail on each of the com‐
ponents of a business case.

The Narrative
The narrative is the most critical piece of the business case. It is your opportunity to
communicate the business benefits that migration to AWS will have. I like narratives
because you get to craft a story around the future success of your company. People
are more engaged with a story than they are with a PowerPoint flush with a bunch of
bullets. Reading a narrative engages people’s imagination and has enough detail for
them to envision the future. Other forms of communication leave more questions
than answers. There is only so much information that you can cram into a slide
before it becomes incomprehensible.

Introduction
But where do you start? An excellent and logical place to start is an intro that includes
the current state of your infrastructure. I like to focus on some positives and nega‐
tives, without any on-premises bashing. It would be best if you appeared impartial, or
at least balanced. If you come across as bashing the current state, you run the risk of
alienating the leaders that you are trying to get on board with your plan. Your com‐
pany has been in business for a while, and on-premises has been doing the job. You
are trying to convince the same leaders that you or your predecessor did before.
These same leaders approved the purchase of the equipment and tooling that is cur‐
rently running in the data center. Your predecessor might even be the CIO now, and
you do not want to call their baby ugly. Doing so will not fare very well for approval,
but it will win yourself a major detractor that might have the sway to stall the whole
thing. Keep it factual and keep bias to a minimum, and you will gain more support.

106 | Chapter 4: Building Your Business Case

FAQ
You have written your introduction covering the current state. Now it is time to start
diving into the benefits that will be achieved by migrating to the cloud. The best place
to start would be to review the FAQs that you created in Chapter 1. You have already
spent significant time developing the questions that you feel will be asked by business
units, development teams, and management. At this point, you need to build a com‐
pelling story around those specific questions. Let us take a look at this FAQ example
and how you might craft a compelling story.

FAQ Question 1
Question

How is this migration going to affect our staff and operational expenses?

Narrative Story
Through the past five years, we have seen an increase in operational expenses to
maintain our infrastructure. This increase is mostly due to our migration from
bare metal servers to virtualization. The ease of deployment and level of consoli‐
dation in our infrastructure has allowed us to increase the number of virtual
machines (VMs) rapidly. This expansion is not a negative because we have been
able to support the business in new ways that were not possible before. Unfortu‐
nately, a side effect of VM sprawl is that our operational costs have gone up line‐
arly. By migrating to AWS and using the Systems Management Service (SSM)
and CI/CD tooling, we will be able to reduce our operational expenses. Not only
will we stave off linear increases in expenses, but we will see an exponential
decline in expenses for the infrastructure we have deployed.

SSM will enable us to automate patch remediation as well as apply configuration
details to servers without manual intervention. This automation will enable us to
apply security changes to meet regulatory guidelines with minimal effort. Cur‐
rently, we use group policy for security on Windows but do not have a solution
for Linux. Using SSM will give us a single point of management for both operat‐
ing systems.

While performing our infrastructure discovery, we identified that our most sig‐
nificant application is a prime candidate for automated deployment by using a
CI/CD pipeline. Automating the deployment will save us 45 staff hours per
release and allow us to release more often. By using the pipeline, we can increase
our deployments from once a quarter to every week with ease.

As you can see in “FAQ Question 1” on page 107, we did not take a hard-line, nega‐
tive stance against the on-premises infrastructure. We stated that there would be
some benefits from migrating to AWS. The narrative also leads them down a path

The Narrative | 107

that hopefully fills in the details they need to form an opinion and limit questions. Let
us take a look at how you shouldn’t write a narrative.

FAQ Question 2
Question

What is wrong with the way we currently run our infrastructure?

Narrative Story
During our analysis of our on-premises equipment, we found that most of the
hardware was archaic and well past its useful lifetime. The aging hardware has
led to a horrible user experience. Many people complain that the order
processing system “just plain sucks.” Many of the operating systems are no longer
supported by the vendor and are running on borrowed time. We are just count‐
ing the days until we are compromised.

We also discovered that your uninterruptible power supply is at its end of life,
and the batteries are leaking. There is no telling whether the system would even
keep our servers online in the event of a power failure. Our HVAC system is
overpowered for the data center now that we have virtualized everything. Since it
is too large, we had to activate the reheater to heat the air before cooling it so that
we can correctly remove the humidity. The reheater is adding a considerable
expense to our electric bill. Our infrastructure is past its prime and running on
borrowed time.

As you can see, this FAQ takes a very different position in the way that it tells a story.
The narrative comes off very biased toward the cloud. It also paints a pretty bleak pic‐
ture for the current state on-premises. The problem that you will run into, using this
stance, is that it is your job to ensure that all these discrepancies are addressed. Writ‐
ing a narrative like this might be signing your own death warrant.

You can continue to progress through the FAQ and pick out the questions where you
can build a compelling and exciting story. Some items, like converting to SSD using
gp2 EBS volumes, might be a fascinating story to someone technical. However, it
probably will not resonate very well with upper levels of management. Using the
wrong questions can bore your audience and slow excitement.

Closing
The last part of the narrative should be the closing. It should include a short recap of
the essential items that you have discussed. In my closings, I like to envision the
future and highlight capabilities that have not yet been used by the company but
could be after migration to AWS. The closing is where you can put some out-of-the-
box thinking in play and create a vision of some new capability or added customer

108 | Chapter 4: Building Your Business Case

value. Once your migration is complete and your data is in AWS, there will be a
whole host of capabilities that you can tap into. Artificial intelligence and augmented
reality are two prevalent technologies that people are thinking of new and creative
ways to use across a host of industry verticals.

I tend to stay away from silver bullet technologies for my envi‐
sioned future. These would be technologies that, for some reason
or another, get massive amounts of traction for solving every prob‐
lem on the planet. The most recent one is blockchain. Not too long
ago, you could not read any tech website without a mention of
blockchain to solve a problem. Tennis elbow? Not a problem; rub
on some blockchain twice a day. There is no such thing as a silver
bullet. In my experience, any technology that is touted as a signifi‐
cant change rarely becomes one. It either dies or becomes a niche
player. Blockchain, grid computing, next-gen firewalls, and others
have all been on the solve-the-world’s-problems train, and they
have all derailed. Technologies that change the world take a long
time to do so. Look at virtualization, artificial intelligence, virtual
reality, and even AWS. These technologies took at least a decade or
more to reach a level of maturity to change the world, and some are
just starting to gain traction. You want your picture of the future to
be obtainable and not fanciful.

The Forecast
You have now written your narrative and painted a wonderful picture of all the bene‐
fits and issues that will be resolved by moving to the cloud. Now it is time to get to
the brass tacks. You will have to show how much the migration to AWS will cost.
Nothing is free, especially when it comes to migration. The double-spend during
migration is a major hindrance. However, the spend will not come out to be exactly
twice. You should see a cost differential between on-premises and the cloud. In addi‐
tion, you should see some burn-down on the costs of your on-premises equipment as
you migrate. When it comes to burn-down, there is some complexity, and we will
cover that in greater detail later, in “Cost Burn-Up/Burn-Down” on page 137.

The important thing to capture in the forecast is when you will start to save money by
migrating to AWS. Any good senior leader or board of directors will recognize that
the savings will not be instantaneous. It is safe to say that a typical board will look at a
three-to-five year return on a major investment like migrating to AWS. Typically, I
have seen a return on investment in as little as 18 months, depending on the compa‐
ny’s situation. However, I would say that two to three years is probably more com‐
mon. There is a possibility that companies do not save money by migrating to AWS.
Let us look at a scenario that details how this might occur.

The Forecast | 109

Scenario 4-3
Stefan’s company has decided to move to AWS from its current data center located in
the main corporate office. Stefan’s company runs a few SQL servers, a few file servers,
the accounting server, and the corporate website. On-premises, Stefan’s company runs
everything virtualized off a single VMware host with local storage attached. Stefan’s
predecessor had the server replaced four years ago. The company does not have any
other data centers. Data center is probably not the word Stefan would use to describe
his computer closet.

Hopefully, you can see some significant issues with the way Stefan’s firm has deployed
the infrastructure. The biggest problem is that there is no redundancy in anything it
is doing on-premises. The company probably does not have fire suppression, genera‐
tors, or physical security. From a technical standpoint, there is no redundancy for the
server or its storage. Stefan’s predecessor ran the environment as thin as they possibly
could. When you compare this type of on-premises deployment to AWS, it could
easily cost twice as much to run in AWS. AWS has all these capabilities built in, and it
would be impossible to get the costs to align. In this scenario, it is vitally important to
focus on the availability benefits that AWS brings to the table over the on-premises
environment rather than costs.

The forecast should include several items over a period of at least five years. A good
forecast will include:

• Estimated run rate
• Costs for migration, like tooling and consultant fees
• Run rate modifiers, like reserved instances
• Agility savings

Some of these items, like run rate, will come from your discovery, and some, like agil‐
ity savings, will need to be calculated by hand based on your company’s situation. You
will want to paint a picture using very high-level costs so that it is easy to digest and
understand. The forecast should fit on a single page and should have no more than 10
to 15 rows of data. Add any more, and you risk confusing your audience. Providing
spreadsheet after spreadsheet of server lists will not help anyone understand the big‐
ger picture. That information can be saved for the detail section at the end. In addi‐
tion, some items, which I call run rate modifiers, will adjust your overall numbers to
approximate costs, like reserved instances.

110 | Chapter 4: Building Your Business Case

Figure 4-1 shows an example of a typical forecast that I would create. It includes all
the essential details but makes them as digestible as possible. You can also see that I
include a list of assumptions at the bottom that detail where those assumptions were
made. You can make the format anything you would like, but simplicity is key. You do
not want to overburden the consumer with unnecessary details.

Figure 4-1. Forecast example

The last piece that we have to cover is removing the applications that you are not
going to migrate to the cloud or, rather, trim the fat. Just like your rib eye at a classy
steak joint, you want to remove the stuff from the edges that makes your migration
less appealing.

Trimming the Fat
Before we can accurately perform run rate modeling, we have to trim some fat. The
fat that I am talking about is the applications that you are not going to move to AWS.
Amazon has created a methodology called the seven R factors (Refactor, Redeploy,
Rehost, Repurchase, Retire, Re-platform, Retain). There were originally six, but Rede‐
ploy became a new R factor with more companies having containers or deployment
pipelines on-premises. The factors exist to help you categorize your applications to
determine whether and how you should migrate your applications to the cloud.

The Forecast | 111

Your discovery tool found everything that you have on-premises and can provide you
the right-sized instances. What the discovery tooling cannot do is tell you whether
you should move an application. This classification will be a manual process that
needs to be completed before we can do accurate run rate modeling. You, of course,
do not want to account for costs in AWS that will not move or will be retired. That
would inflate your numbers and make your business case less appealing and inaccu‐
rate. We are now going to touch on the seven R factors, what they mean, the estima‐
ted percentage of your migration for each R, and how you should apply them.

Refactor
Refactoring is the most complex way to migrate to AWS and should be the lowest
percentage of your overall migration. Refactoring means converting an existing mon‐
olith and dated application into a new, highly decoupled, and cloud-native architec‐
ture. The problem with refactoring apps is that often it takes an extended period to
complete the work. This extended timeline means that you are spending more on
your overall migration running the application in two places or extending your data
center footprint for longer periods. The biggest benefit of refactoring, though, is that
you will run your applications more smoothly, have a higher degree of availability,
have reduced management overhead, and save costs. Refactoring will probably be 5%
or less of your migration at this point. In Chapter 8, we will discuss some low-
hanging fruits that you can harvest in the initial migration.

Redeploy
The primary use of Redeploy is when you already have a deployment pipeline or con‐
tainers on-premises. If you already have a deployment pipeline and are migrating,
you are essentially changing the endpoint of that deployment. Most tooling already
has plugins for AWS. Instead of doing any migration work, you will point the pipeline
to AWS instead of to VMware or Hyper-V on-premises.

The same is true if you use containers. Since containers are self-contained workloads,
you shift that container over to AWS rather than to on-premises hardware. Of course,
there is some more work around migrating these types of workloads, such as DNS
changes and whatnot, but the overall effort is lower than, say, a lift and shift or rehost.
It is hard to say how much of your migration will be redeployed, because it is highly
dependent on your applications.

Rehost
Rehosting will be the bulk of your migration, primarily for speed. When you rehost,
you lift and shift the workload into the cloud. The faster it gets to the cloud, the faster
you can start turning off resources on-premises. Speed is increased using the block-
level CloudEndure replication tool. Rehost is the least sexy migration method but

112 | Chapter 4: Building Your Business Case

most often the most effective. You get a block-for-block copy of your server into
AWS. Your migration will probably consist of 80% rehost workloads.

Repurchase
Sometimes software ages out in your IT infrastructure. These applications are often
small, neglected ones that serve an important purpose but do not gain a lot of atten‐
tion. This lack of attention lets them get old and decrepit, but they still work, so they
never get replaced. When you migrate to AWS, it is a great time to age out these
applications permanently and replace them with something newer. I have run into
quite a few old Visual Basic programs in this category. If possible, I would look at
replacing any applications with a SaaS tool, so you do not have to worry about main‐
taining it going forward. Based on my experience, repurchase will probably account
for around 5% of your migration.

Retire
Sometimes you do not need software anymore once you move to AWS. Typically, this
software boils down to infrastructure management tools that existed to maintain on-
premises workloads. Things like log aggregation, Simple Network Management Pro‐
tocol (SNMP) monitoring, and other monitoring tools are no longer required once
you move to AWS and use native functionality. This reduction saves you both hard
costs and soft management costs. The retire R factor is not used very much and will
probably account for less than 5% of your migration.

Re-platform
When you re-platform something, you change a small aspect of the application,
doing no major architecture changes. This change would be like converting from a
database server to RDS. Another potential change would be to upgrade an older Win‐
dows OS to a newer, supported version. The key thing to remember here is that you
are not making any major changes, like moving from Microsoft SQL to MySQL. Re-
platforming is typically more prevalent than many other R factors in the migrations I
have been involved with. There are quite a few older operating systems out there that
it might surprise you to see you are still running. In addition, if you want to use RDS
for peace of mind and to save on some management, you could easily see 20% of your
migration be classified as re-platform.

Retain
The last R factor is retain. When you retain a workload, you leave it as is on-premises.
Several items will show up in the retain column, but most of it will be applications
that need to remain on-premises to keep your offices running. Active Directory
would be a good choice to retain on-premises, because you want users to authenticate

The Forecast | 113

locally. Other systems might include security systems, Dynamic Host Configuration
Protocol (DHCP) servers, and other network management facilities.

Legacy systems might be another item in this category. You will not be migrating your
mainframe to AWS because it does not support the hardware. However, since these
types of workloads were not detected through your discovery tooling, it will not affect
your run rate and probably will not even be listed.

You will probably retain less than 5% of your infrastructure.

Now that you know how to classify all your applications, it is time to review and
apply your R factors. When you are done, you will need to capture the run rate for
the rehost, re-platform, redeploy, and refactor decisions. These are the run rates that
will be put into your forecast. You will not enter them individually. Instead, you
should sum those numbers up for a combined total.

Now that you have a high-level understanding of what goes into a forecast, let us dive
into detail for the individual items. We will cover what the item is, why it is important
to include, how to calculate it, and what assumptions to list. Microsoft Excel, Google
Sheets, or a similar spreadsheet software will be required to create the forecast and
perform the necessary calculations. A sample file is available as add-on content for
this book. You can access the file at AWS Forecast.

Run Rate Modeling
The run rate that came out of your discovery process is one of the most important
items that need to be included in your forecast. What we want to use here is your
modified number that was output by your discovery tooling, which you then adjusted
based on the manual discovery items your team reviewed and trimmed by using the
R factors. When you start this process, you want to put the full run rate that you have
come up with in the input cells for EC2 (C3), Storage (C4), and S3 Storage (C5).
Later, you will apply formulas to adjust the numbers based on your inputs, but for
now, start with the full run rate. As of now, your forecast should look something like
Figure 4-2.

114 | Chapter 4: Building Your Business Case

https://oreil.ly/4fq4l

Figure 4-2. Forecast step 1

Breaking up storage and compute costs as shown in Figure 4-2 will make it easier to
compute additional costs. In “Overall Outbound Bandwidth” on page 93 and “Ancil‐
lary AWS Service Charges” on page 97, you may recall, I recommend adding an uplift
to the EC2 spend for these items. Breaking out the compute and storage costs allows
easier viewing and adjustment of those percentages.

Once you have entered your run rates in the forecast, you can enter your uplift per‐
centages in cells F3 and F4 for bandwidth and ancillary services, respectively. These
are customizable, so you can manually adjust your settings if the output numbers do
not align with your expectations. Sometimes you may need to adjust your settings up
or down a few percentage points to arrive at a number that reflects your estimated
usage. When adjusting, remember to be like Scotty from Star Trek and add a buffer.
Once you enter this data, your forecast should look like Figure 4-3.

The Forecast | 115

Figure 4-3. Forecast step 2

Migration Costs
Migration cost is not just about the double run rate between on-premises and cloud
expenses. Cost is associated with staff time, tooling, consulting, and data transfer
costs. When you combine all these expenses, you get an accurate picture of how
much the migration will cost. Failure to include any of them can skew the migration
cost significantly in favor of the cloud. If you do not include them, it gives any oppo‐
sition the ability to discredit your business case and can potentially derail your initia‐
tive. I firmly believe in painting the most accurate picture I can. Most times, it is
completely evident how the cloud will benefit the company and has a large potential
to drive down costs.

Although I aim to provide an accurate picture, I do not focus on providing mundane
and monotonous details. I also do not waste too much time trying to get “landing on
the moon” numbers when “launching into space” numbers for many of these cate‐
gories will do. In the next few sections, we will dive into these additional expense cat‐
egories and how to account for them. We will also cover the potential pitfalls of
calculating them and how to avoid wasting time.

116 | Chapter 4: Building Your Business Case

Tooling costs
AWS has a whole host of tools to help you migrate to the cloud; some of them are
free, and some charge fees. Although the tooling from AWS is great, it does not
always have the features that your company requires to get the job done. When you
run into this circumstance, you have to select an additional tool that will cost more.

Let’s run through the tooling AWS offers. These tools assist in migration, and you
need to know how to account for those fees. Table 4-1 shows a list of the current tools
available from AWS and their use cases.

Table 4-1. AWS migration tooling

Tool Purpose
CloudEndure Block-level server replication tool

Snowball Physical storage device for “through the mail transfer”

Server Migration Service (SMS) Importation of VMs from on-premises

DataSync Transfer of files to AWS

Command-line tools Transfer files to S3

Schema Conversion Tool Converts DB schemas from one engine to another

Database Migration Service (DMS) Migrates data between database servers

As you can see, AWS has a healthy portfolio for migrating your systems and data to
the cloud. These purpose-built tools fill their roles very well, but unfortunately, all
have different consumption and costing models. These different consumption models
can seem daunting when you first try to calculate them out. It is not that hard because
we are going to estimate for many of them:

CloudEndure
the AWS tool for migrating servers is now free after Amazon purchased it in
2019. Although the tool is free to use, there is a charge for the instances required
to manage the replication. CloudEndure deploys a replication instance for every
15 source disks that you replicate. To estimate the cost of using CloudEndure,
you need to find the maximum number of servers that you will be replicating
during any of your migration waves. You will want to take the number of servers
weekly that you calculated after reading “Estimating Your Timeline” on page 102.
In “Scenario 4-1” on page 104, the weekly estimate was five servers. Since 5 is
well under the 15 allowed, Richard would only need one replication instance. At
the time of writing, a t3.medium instance in us-east-1 is $0.0416 per hour. Multi‐
plying this price by 730 hours will result in a cost of $30.368 per month. Richard’s
total cost of CloudEndure for his 14.5-month migration is $440.336.

The Forecast | 117

Snowball
AWS Snowball is a physical device that is shipped to your office. You then load
this device with data and send it back to AWS. AWS will load all the data on it
into S3. In all the migrations that I have done, I have never used Snowball. This is
because the data you need to move needs to be relatively static. It takes days to
load the data, ship the device, and have it loaded later. Ultimately, the companies
that I worked with decided to send everything over the network rather than use
Snowball. Using the network allowed them to bypass the synchronization that
would be required after AWS loaded the data. If you do have data that would
work well with Snowball, such as old backup data, Snowball costs $200 for a 50
TB device or $250 for 80 TB of storage at the time of writing. With that fee, you
get 10 days of on-site time included. If you need the device for more than 10
days, you pay $15 per day. If you are going to use Snowball, I suggest that you
prep your data and have everything ready to go before requesting the device
through the AWS console.

Server Migration Service
Typically, I do not advise using SMS. It only works with virtual machines and is
not compatible with physical devices. For most companies, this means that you
would need to use two tools instead of one. Since CloudEndure is free and does
both physical and virtual machines, I suggest using that tool instead. SMS works
by uploading snapshots of VMs to S3 and then creating EBS snapshots. Finally,
SMS creates an Amazon Machine Image (AMI) for final consumption and
deployment in AWS. An AMI is like a template in VMware terminology. The
SMS service itself is free. However, because of the design, there are small num‐
bers of EBS snapshots and S3 storage fees. Overall, these fees are modest and you
should consider them part of the uplift for miscellaneous AWS charges we dis‐
cussed in “Run Rate Modeling” on page 114.

DataSync
DataSync is a newer service from AWS that facilitates moving data from on-
premises to S3 or EFS on the file level instead of the server level. This service
allows you to transfer data from a SAN or Network Attached Storage (NAS)
device with Windows or NFS file shares to AWS. DataSync is a welcome addition
as a tool. Before DataSync, most of this type of migration work was done with
scripting and the AWS CLI, which was not the most robust solution. DataSync
itself has a fee of $0.04 per GB in the us-east-1 region at the time of writing. This
service is straightforward to forecast, based on the amount of data you need to
transfer. For instance, if you had a NAS device with 1 TB on an NFS share, you
would multiply 1,024 GB by $0.04 for a total of $40.96. The $40.96 does not cover
the cost of the storage itself, so that will need to be accounted for as well. If it is a
small amount of data, the uplift numbers you put in will probably cover it, but if

118 | Chapter 4: Building Your Business Case

you have dozens or hundreds of terabytes, you will probably want to include
those costs as a separate line item.

Command-line tools
If you have a small number of files to move to S3, then using the command-line
tools from AWS would be the most comfortable option. None of these tools has a
cost, but you will pay for the resources they consume. Since using the command-
line tools is not advised for transferring large amounts of data, the uplift should
cover the data consumption costs in the forecast.

Schema Conversion Tool
The Schema Conversion Tool allows you to change the database engine for your
database. This tool will enable you to switch from one database engine to
another, for instance, Oracle to MySQL. The tool is only one piece of the puzzle,
though. To change your database engine successfully, you will need to update
your software to address the changes necessary in SQL nuances, triggers, and
stored procedures. Fortunately, the SCT is free and doesn’t have to be accounted
for in any forecasts.

Database Migration Service
DMS allows you to transfer data from on-premises to the cloud using asynchro‐
nous mirroring. This service enables you to transfer data from a standalone
server to AWS RDS. The benefit of using DMS is that it dramatically reduces
your outage window for cutover when moving databases, because the service
keeps the source and destination in lockstep. If you were to use a backup-and-
restore method to transfer your database to RDS, you would experience a much
larger outage window. The DMS service uses an AWS instance to do the heavy
lifting of your database. It sits between your source and destination. This instance
manages the communications and synchronization of the databases and is where
the cost of DMS originates. For DMS, I would recommend an instance size of
r4.large or larger. Some smaller instances are allowed, like T2/3, but I would not
use those to transfer production workloads. At the time of writing, an r4.large
instance in us-east-1 costs $0.21 per hour. Running this instance for a month
works out to be $153.30. Each replication instance is limited to 20 sources and
destinations. This limit means that you can only have 10 pairs of servers in repli‐
cation per instance. If you need more than that, you will need to account for
another DMS replication instance.

If you are not changing database engines or moving to RDS, I
would use CloudEndure to transfer the server instead of the
database.

The Forecast | 119

In Figure 4-4, you can see that I’ve included tooling in cell C6 on the forecast spread‐
sheet. The total of tooling should be inserted here. The spreadsheet will automatically
populate the tooling in row 14 based on the migration percentages in row 10. We will
discuss the “Migration percentages” on page 127 and their use later. If you are plan‐
ning to use any non-AWS tooling for your migration, you will need to get the pricing
from the vendor and add it to the cost of any AWS tooling.

Figure 4-4. Forecast step 3

Consulting fees
In Chapter 2, we discussed “Contractors and consulting” on page 60 and how they
can reduce your business risks through their experience. Many times, consultants and
contractors are looked at as expenses during a migration. However, it is important to
demonstrate that their experience and capabilities will most likely decrease your
timeline. They will also reduce overall risk during the migration. Using consultants is
not something to be avoided but rather a tactical decision to help the company along
and reduce its migration length. Overall, the dollar amount for consultants will not
be small. People are usually the company’s greatest expense. Unless you have an exist‐
ing budget that can cover consulting fees, it is important to put them into the migra‐
tion forecast.

Consulting fees should be rather easy to obtain. When using consultants, you are
offloading the management of your migration to a third party, along with the effort to

120 | Chapter 4: Building Your Business Case

move your resources. This abstraction allows the consulting firm to price out the
entirety of the project for you. The consulting firm will provide you a statement of
work (SOW) based on the items that you wish it to complete. The SOW will give you
the total amount along with a set of success criteria and work expected to be done.
This information can then be recorded in the forecast on row 8. Unfortunately, there
is no standard way to split the consulting fees over the entirety of the migration, so
you will have to split these fees over the migration years as you see fit. There are no
modifiers on the sheet to assist.

When it comes to contractors’ fees, they are not as easy to obtain, because you need
to calculate them manually. Since you retain management with contractors, you need
to determine the level of effort for your migration. Right now, in Chicago, I know that
contractors can get typically around $100–$150 per hour. Many contractors work
through a placement firm as well, so you will need to add 35% on top of those fees if
you use a placement firm. If you do not source your contractor, you are looking at
$135–$195 an hour with the added overhead. High-end contractors who work with
large enterprises can see rates as high as $300 an hour. Experience plays a big part in
pricing for contractors. I would make sure to get certification validation numbers for
any claimed certifications and validate that they indeed hold them at the AWS certifi‐
cation site. The more certifications a contractor holds, the more they will charge. You
will want to make sure you are getting your money’s worth.

Another option for contractors to be released soon is AWS IQ, a service that allows
AWS-certified individuals to register and offer their services available to companies
using the platform. The service automatically validates their certifications when they
register their account, saving you that step. The service also facilitates payment
through the existing AWS marketplace system. The system allows your contractors’
fees to show up as part of your AWS bill, reducing the burden on your finance
department. AWS IQ charges a minimal 3% fee on top of the contractors’ fee for the
use of the service.

If you are using a search firm, AWS IQ, or a contractor directly, you will still have to
estimate the number of hours you will need such services. Unfortunately, the amount
of time you will need a contractor’s services is particular to your company’s needs,
migration timeline, and current staff capabilities. You will need to assess all these
items to determine how long and how many contractors you will require. Once you
arrive at that length, you can compute how much it will cost to employ them for that
period. Let us look at the following scenario to see what a contractor calculation
might look like.

The Forecast | 121

http://aws.amazon.com/verification
http://aws.amazon.com/verification

Scenario 4-4
At Becca’s company, her team is preparing to migrate to AWS. She has calculated that
her migration will take around 15 months, based on her current staff. She needs to cut
her migration timeline down to nine months and has decided to bring on contractors.
She has looked in her area of Charlotte, NC, and found that AWS contractors cost
about $145–$188 per hour. When Becca calculated her timeline using her internal
staff, she found that her staff could migrate approximately 1.5 servers per day each,
and the company has 1,365 servers in total. Becca has three internal staff, so her cal‐
culation is 1,365 servers / 1.5 servers per day / 3 engineers / 20 working days per month
= 15.16 months. Becca needs to figure out how many contractors she needs to meet
her revised timeline of nine months.

Working backward, Becca’s team can migrate approximately 90 servers per month.
Currently, her timeline is six months too long. If you multiply 90 by 5, you end up
with 450 servers that would not be migrated by month nine. If we divide the overage
back into nine months, her intended target, we end up with 50. Becca will need
enough contract staff to cover an additional 50 servers per month to meet her revised
deadline. If Becca were to target contractors that have AWS experience and have done
migrations before, she could get a migration rate of two servers per day from them.
With 20 working days in a month, one highly experienced contractor could move 40
servers. Becca needs two to cover her overage and will decrease her overall migration
risk, because a second contractor raises the monthly capability to 80 additional
servers per month. That is 30 servers more than she needs, further reducing risk.

Based on Becca’s need, she will need to account for 2,880 hours of contractor expen‐
ses. I would suggest estimating at a higher rate of $188 per hour to ensure greater
flexibility. Becca would enter $541,440 into the cell C15 for year one, as shown in
Figure 4-5. We know that it is year one because her optimal migration timeline is nine
months.

122 | Chapter 4: Building Your Business Case

Figure 4-5. Becca’s forecast

After computing your consulting and contractor fees, you will have an accurate pic‐
ture of how much it will cost to perform your migration. The forecast sheet will also
show you how much your ongoing costs will be postmigration, which you will be able
to compare to your current infrastructure operating costs. I hesitate to say the return
on investment when compared to on-premises, because often it is comparing apples
to oranges. But I would say that for most companies, you will see a reduction in costs
when you compare the AWS run rate to on-premises costs. After entering your con‐
sulting and contractor fees, your forecast should look like Figure 4-6.

The Forecast | 123

Figure 4-6. Forecast step 4

Run Rate Modifiers
Now that you know how much everything will cost, it is time to apply run rate modi‐
fiers so you can adjust spend based on variables that are highly dependent on a com‐
pany’s circumstances. A multitude of options can affect your run rate; that is one of
the beautiful things about AWS. However, I will focus on the largest and most com‐
monly applicable levers available. These levers are reserved instances, savings plans,
migration percentages, agility savings, and management savings.

Reserved instances
Reserved instances (RIs) are probably the easiest way to save a significant amount of
money running in AWS. A reserved instance is when you agree to use an instance of a
specific type and operating system for a period of one or three years. By agreeing to
use the instance for a longer period, you are offered a discount on the total run rate
for that instance. The discount you receive is based on how long you purchase your
RI for and how much you prepay. There are options to prepay all the instance cost,
called an all up-front RI, down to no up-front prepayment. Of course, the highest dis‐
count is offered on the three-year all up-front RI purchase. RI purchases can save you
an average of 40% for one year and 60% for three years. However, I am not a fan of
three-year RIs for these four reasons:

124 | Chapter 4: Building Your Business Case

Contrary to agility
The number one benefit of AWS is business agility, so why would you lock your‐
self into a three-year instance? In three years, a new service might come out that
is serverless or on-demand that might save you thousands.

Instances improve
AWS continually releases new instance types; some of these are significantly
faster than their predecessors. You have locked yourself into a Ford when you
could have a Tesla.

Cash outlay
You have to pay for your servers up front for the biggest benefit, so you have a
large cash outlay like you do for on-premises operations (although you use amor‐
tization instead of deprecation).

Decreased pricing
AWS drops the pricing on instances from time to time. With a three-year reser‐
vation, you’ve already bought it and can’t take advantage of the decrease.

You can resell reserved instances on a marketplace and purchase convertible reserved
instances. These two capabilities allow you either to change your RI, as with converti‐
ble reserved instances, or to sell off, using the marketplace, but you have to ask your‐
self whether you really want your staff to be wasting time with these levels of
mundane management. Or do you want them to add business value?

There are many reasons and methodologies to purchase reserved instances, and I
could easily write half a book on the subject. I will instead focus on an easy way to
adjust your forecast to compensate for purchasing RI. Including instance information
in the forecast would reduce its life span and increase its complexity. Ultimately, we
don’t need that level of precision. Instead, we will work with generic discounts based
on RI type and length.

To adjust the RI footprint on the forecast, you change the percentage in cell H3. The
percentage represents the amount of the estate that is not reserved. Typically, I recom‐
mend 10–20% to be left as on-demand. This on-demand buffer ensures that your RIs
are always used. Since RI is based on OS and instance size, if you are not running an
instance with that configuration, the RI will go unused. Therefore, leaving a percent‐
age as on-demand ensures that all your RIs are used. The on-demand percentage also
allows you to change your environment. For instance, after you migrate, you might
update an application so that it can support auto scaling. By changing the application
to use auto scaling, the reserved instances that were purchased for the application will
be left available when the application scales back during low periods.

If your infrastructure has much auto scaling, then you may want to adjust the per‐
centage up, and if you use a lot of COTS applications without auto scaling, and do not
change often, you will want to adjust the percentage of on-demand lower. If your

The Forecast | 125

company is small and you do not have many servers, you will probably have an excel‐
lent idea about your estate and its growth. When this is the case, you will want to
have a very low on-demand rate.

Savings Plans
In 2019, AWS released a new capability to buy compute resources called Savings
Plans. Savings Plans offer a discount when you guarantee to use resources, just like
reserved instances. The primary difference between Savings Plans and reserved
instances is that Savings Plans offer a significant amount of flexibility. Savings Plans
are purchased based on the amount of compute you intended to run per instance
family. See Table 3-1 for a refresher. In addition, Savings Plans are not tied to any
region as RIs are. This means that you can significantly reduce your risk and manage‐
ment overhead by using Savings Plans.

Of course, there is a potential downside to using Savings Plans. The level of savings in
a Savings Plan is about 10% less than purchasing RIs. If you have a medium-sized
business, then I suggest using Savings Plans. If you are a very large enterprise, the
10% decrease in savings might justify your increased employee overhead for manag‐
ing RI purchases. For a small business, I would stick with RIs, because you probably
know your compute infrastructure usage intimately. There are no specific cells to
accommodate Savings Plans in the forecast template. If you plan to use Savings Plans
instead of RIs, you should change the percentage in cell H4 from 40%, which is the
average RI savings, to 27%. You make this change because the average cost reduction
of a one-year savings plan is 27%. At this stage in the process, Figure 4-7 should be a
similar representation of your inputs.

126 | Chapter 4: Building Your Business Case

Figure 4-7. Forecast step 5

You can use a combination of a Savings Plan and RIs. However, I
would advise against doing this unless you really comprehend the
ramifications of using both.

Migration percentages
Migrating to AWS is not an instantaneous process. No form of migration is an instan‐
taneous process. If you think back to recent history, you will see the same timelines
migrating from physical servers to virtual machines, even by VMware from one data
center to another. In this regard, migrating to AWS is not anything new. It is only the
capabilities that have changed.

You’ve already gone through discovery. You know how many servers you have. You
have calculated how much work your team can perform, and you have accounted for
contractors and consultants. You have entered all these values into the Microsoft
Excel forecast. As it sits right now, you have five years of spend and each year is the
same, the full migrated run rate.

Since we are talking about run rate modifiers, we will adjust the migration percen‐
tages that are on row 10. The sheet starts with the value of 100% across all five years.
It is as if a magical fairy migrated all your servers for you. Now you want to go back

The Forecast | 127

and adjust them based on your timeline. For instance, if you have a two-year time‐
frame, you have approximately 50% in year one, and years two through five will
remain at 100%. If you have a three-year migration, it would be 33% for year one,
followed by 66% for year two, and 100% for years three through five.

A large enterprise should anticipate a three-year migration timeline. A small business
should be estimated at less than a year for its migration, and medium-sized busi‐
nesses would be about two years. Once you enter all the information, it will automati‐
cally calculate the run rate based on those percentages.

You might have noticed that we are just working with percentages here, and this goes
back to my analogy of blasting into space. We haven’t done migration planning and,
therefore, don’t have the minute details. Like many processes before, we don’t want to
get stuck in the tar of more information right now and have it slow down your migra‐
tion process. We will cover migration planning later, in Chapter 7, and cover the
timeline in more detail. At this stage in the process, Figure 4-8 should resemble your
inputs.

Figure 4-8. Forecast step 6

128 | Chapter 4: Building Your Business Case

Agility Savings
When assisting companies with migrating to AWS, I always emphasize the impor‐
tance of doing as much lift and shift as possible: copying servers block for block to
AWS, not focusing on refactoring or making significant changes to the application or
infrastructure. I make this suggestion because while you are migrating, you are
spending twice as much. I focus as much as possible on decreasing the timeline and
decreasing those costs. There are a couple of areas that I do recommend capturing the
low-hanging fruit for agility and management savings. I would not classify these
changes as refactoring but rather as augmentation. These are changes that I recom‐
mend companies take advantage of and are easy to obtain.

After all, agility and reduced workload are the main reasons people want to migrate
to AWS. It makes sense to take advantage of some of those capabilities from the get-
go. I will talk primarily about deployment pipelines and the AWS Service Catalog.
These services are the most effortless capabilities to consume. They can even work
with COTS applications, making them applicable to nearly any workload and
company.

Automated deployment
Deployment pipelines are what many associate with internally built applications, but
that is not always the case. Pipelines could be used for the deployment of COTS appli‐
cations as well. Typically, I see deployment pipelines for COTS applications in highly
secured environments. In a high-security environment, you would want to rehydrate
your servers every week. Rehydration is the process of destroying the old machines
and creating new machines with the latest patches and applications installed. You
would do this in a high-security environment because it ensures that any potential
malware, virus, or trojan is removed. Rehydration helps reduce the attack footprint of
the COTS servers and can be a vital tool for managers in regulated environments
such as financial services. However, for most people, you want a deployment pipeline
for your internal applications.

Deployment pipelines help significantly reduce the manual overhead associated with
deployment and testing. On-premises, you most likely have an individual on the
engineering team or operations team who would receive the application once it was
built and deploy the application. Not only does this cost your company hard dollars
with manual effort, but it is a tedious and mundane task that can demoralize employ‐
ees. Manual deployment is also prone to human error, which leads to security con‐
cerns and customer outages. By employing a deployment pipeline, you reduce all
these risks and their associated costs.

The service that Amazon has for pipelines is called CodePipeline. It can be triggered
manually by a person or automatically triggered based on several triggers, such as

The Forecast | 129

when a new file is deployed to S3 or when a new check-in is made in your code repos‐
itory, or you can schedule it with a CloudWatch event. Out of these options, I have
seen most companies deploy automatically after a code check-in. You could also cre‐
ate a pipeline that has to be triggered manually, although I have not seen it in prac‐
tice. However, I do see manual checks implemented in an automatic pipeline, such as
approvals before the production release.

CodePipeline has many capabilities. However, we will look at a few key capabilities,
such as automated unit testing, load testing, and other functions that help reduce
employee overhead further. CodePipeline does charge for its use. However, the cost is
very low unless you have some very specific use cases. These might be when you are
using a lot of unit testing or load testing that would increase the cost. I would say that
the uplift for miscellaneous AWS services that you already have in your forecast is
enough to cover CodePipeline.

Right now, we are talking about forecasts and want to recognize potential savings by
using CodePipeline in your environment. To do this, we will need to find out some
information to calculate those savings. The first piece of data will be the average cost
per hour for personnel who do your deployments. It is essential to calculate the actual
employee load, not just the base salary. You will want to make sure that your hourly
rate also includes vacation, benefits, and payroll overhead to get real representation.
For the sake of this exercise, we will use $100 per hour as our employee rate. The next
piece of information we need is how much time it takes to perform a deployment of
your software. This number would be the amount of time that it takes an engineer to
get the software, log on to the server, perform any backups, install the updates, and
perform smoke testing and any other functional test. Let us use four hours per envi‐
ronment for our exercise. The last piece of information we need is how often updates
are applied. Typically, updates are most frequent in development environments, less
frequent in test environments, and significantly less frequent in the production envi‐
ronments. You want to find out how often you deploy for each of those environments
to calculate accurately how much an automated deployment will save you. For this
exercise, we will use one implementation for development per week, one deployment
per month in test, and one deployment every three months for production. These
numbers are a typical average that I see at most companies.

Let’s start doing some math. We will take the 4 times of 4 hours, for a total of 16 hours
per month spent deploying the development environment. That is 2 days of effort per
month in a year that is equal to 24 days, or more than an entire working month. The
24 days is just for the development environments. Next, we want to calculate just how
much that costs. We said we’ll use $100 an hour, so let’s multiply 100 by 8 hours,
bringing the daily total to $800. Now we multiply that $800 by the 24 days of effort
for the year. That brings the total to $19,200. As you can see, this is a major expense
for your company. Now that we have the development cost, we want to repeat the
process for the test and production environments.

130 | Chapter 4: Building Your Business Case

For the test environment, it will be one-fourth the cost of development, because it is
deployed only once a month. Test will take four hours per month or one day every
two months, which works out to be six days for the year. We multiply six days by $800
to get the total cost of the test at $4,800 per year.

Production is only being deployed once every quarter. Production will be two days
per year or $1,600 in employee effort. You can see that this company is spending tens
of thousands of dollars ($25,600) to deploy the application, so automating the deploy‐
ment of applications can save your company a significant number of dollars. This cost
represents just one application. Most companies deploy multiple applications or sev‐
eral pieces to a large application. This application sprawl leads to a significant number
of wasted company resources and potentially multiple headcounts.

You want to repeat this operation for any application that you can deploy automati‐
cally and update your total savings in cell C7. You do not wish to do this for an appli‐
cation that currently requires a significant number of manual changes and
configurations. These would need to be automated. That will take longer to set up,
and it will extend your migration timeline, reducing any savings that you would have
achieved.

The wonderful part of deploying CodePipeline automated deployment is that you can
significantly increase your company’s agility. Your company probably is not rolling
out as many updates to your product as you would like. It is not because the develop‐
ers are not making changes. It is because the cost of deployment is substantial, and
the risks that are involved with it counteract the benefits. Once you create your pipe‐
line, you can significantly increase the number of production updates that you are
doing and deliver value to your customers faster. It is not uncommon to hear compa‐
nies that have adopted an agile and automated deployment process to push as many
as 10 production updates per day. This velocity is a vast improvement for time to
market over most companies that roll out updates only every quarter or longer.
Development deployments could be done daily or multiple times per day. Testing and
production could follow suit to reach multiple production updates per day. To obtain
this level of agility, your company will have to invest in more than a simple deploy‐
ment pipeline and increase the automated testing to ensure a quality release.

Service Catalog
AWS Service Catalog is a service that allows you to create products with CloudFor‐
mation templates, which deploy AWS infrastructure as code (IaC). CloudFormation
enables you to automate the majority of your AWS infrastructure deployment. For
example, look at the following code snippet:

InstanceSecurityGroup:
 Type: AWS::EC2::SecurityGroup
 Properties:
 GroupDescription: Allow http from the internet

The Forecast | 131

 VpcId:
 Ref: myVPC
 SecurityGroupIngress:
 - IpProtocol: tcp
 FromPort: 80
 ToPort: 80
 CidrIp: 0.0.0.0/0
 SecurityGroupEgress:
 - IpProtocol: tcp
 FromPort: 80
 ToPort: 80
 CidrIp: 0.0.0.0/0

Your operations team can then allow access to these products by semitechnical staff
to deploy the infrastructure required for their workloads. Service Catalog is an excel‐
lent way to save money postmigration to AWS. I have seen many companies signifi‐
cantly reduce the strain on their operations department by implementing Service
Catalog.

In many companies, the operations team or cloud management team is a choke point
and single point of failure in the deployment of infrastructure. By implementing Ser‐
vice Catalog, you allow your business units to deploy their infrastructure, thereby
reducing the dependency on your operations team. This enablement removes the
choke point, reduces delays, and overall increases the quality of service.

When you are planning to migrate to AWS, I recommend approaching Service Cata‐
log by looking for repeating patterns in your current applications. The identification
of these repeating patterns allows you to maximize the impact of Service Catalog.
Your team can then translate those repeating patterns into infrastructure as code and
a Service Catalog product. Once the products are complete and added to the catalog,
access rights can be assigned to allow employees to deploy them.

Finding out how much you have saved by Service Catalog is different for every com‐
pany. To help with assessing your savings, we will look at two scenarios. The follow‐
ing scenario focuses on the automated deployment of EC2 instances, and “Scenario
4-6” on page 134 addresses S3 buckets with corporate hardening applied.

Scenario 4-5
Bridget’s company migrated to AWS about four months ago; at the time, it didn’t con‐
sider rolling out Service Catalog. Before Bridget commits the resources to deploy cat‐
alog products, she wants to find out how much it will cost for the effort. She will then
compare this to how much she will save by enabling company staff to self-serve.

Bridget’s organization has 14,026 servers and has identified 403 applications during
the discovery phase of migration. It is a mixture of COTS and internally developed
software. Many design patterns and software were purchased over a period of 25

132 | Chapter 4: Building Your Business Case

1 $100 × 3.5 × 80 = $28,000.
2 $100 × 15 × 8 = $12,000.

years. One of the problems that Bridget’s company is faced with is being in a regulated
industry. Its regulations require many systems to be validated after deployment. This
requirement imposes a significant load on Bridget’s team. Not only do they have to
create the system and deploy the software, but a second member of her crew must
come back and validate that all configurations are correct.

For the past few months, Bridget’s team has been manually creating, hardening, and
validating new system images. They create these images for deployment every time
AWS puts out an updated OS image. Bridget would like to automate this process and
enable staff to deploy their own systems. Currently, Bridgette’s team deploys, on aver‐
age, 80 systems per month, and it takes three and a half hours to apply the hardening
and validation.

When reviewing your infrastructure for patterns, you will often ingest a lot of noise.
If your company is like Bridget’s, it probably has many servers, applications, and
design patterns. However, sometimes the answer is staring you right in the face, and
you must clear the fodder to see it. I purposely added much extraneous information
into this scenario to demonstrate this fact. We are looking for repeating patterns to
optimize the impact of Service Catalog. It does not matter how many servers or apps
Bridget has. You might have started going down the mental path of thinking about
the infrastructure side: how servers, load balancers, auto scaling groups, and similar
items were laid out. For your infrastructure, these might be viable options. In
Bridget’s case, the fact that her company is regulated and it has to put three and a half
hours of effort into deploying each system is a massive amount of energy.

If we use $100 an hour for her operations team for easy calculations, we see that it is
costing the company $28,000 a month to deploy these servers,1 or $336,000 a year.
Now I don’t know about you, but I don’t want that number in my budget, and I’m
sure my staff would much rather do something more interesting.

To calculate how much Bridget will ultimately save, we also need to calculate the
amount of time it will take for her team to create the Service Catalog product. Based
on the description of her environment, I think it would be overly safe to say three
weeks of effort to perform the work. This timeline would include creating the
required CloudFormation and automation scripts and testing of the product once it
was completed. Based on the cost per hour, it will cost Bridget’s company $12,000 to
create the product.2 Next, we need to know how much it will cost to deploy the prod‐
uct. Let us say that it takes 10 minutes to log on to the AWS console, select the prod‐
uct, configure its options, and deploy. That means it would cost Bridget’s company

The Forecast | 133

3 $(100/6) × 80 × 12 = $16,000.
4 $336,000 - 12,000 - 16,000 = $308,000

$16,000 of employee effort to deploy the same servers over a one year period.3

Bridget’s company will save a total of $308,000 in year one by implementing this
product.4 That is a significant return on investment and would be very worthwhile for
the company to implement.

Scenario 4-6
Kurt’s cloud engineering manager has come to him with the proposal to create a Ser‐
vice Catalog product for deploying S3 buckets for the company. Currently, the cloud
team does this deployment. The process is not entirely manual; they have created
CloudFormation templates that deploy the infrastructure. The cost is not in the
implementation of the S3 bucket but instead in the management of the overall pro‐
cess. The cloud engineering team supports the entire global company with several
hundred thousand employees and dozens of business units. The engineering team is
deploying thousands of them a year. Even though it only takes about five minutes to
deploy the S3 bucket, about an hour of total effort is necessary due to the documenta‐
tion and ticketing process. The engineering manager would like to create the Service
Catalog product and have it deployed directly from the ServiceNow ticketing and
workflow system, which would eliminate all of the workload on the team.

In total, the cloud engineering team deployed 3,546 buckets last year for a total of 1.7
person-years of effort (3,546 / 2,080 = 1.7), bringing the total cost to the company to
$354,600 per year, based on an average engineer hourly cost of $100.

I would love to say that it is an absurd scenario that would never happen. However,
this is one of those life is stranger than fiction situations. It is by no means odd to see a
mundane technical task overloaded with administrative burden. Kurt wants to save
the $354,600 that his company is currently spending on a mundane and low-value
task. ServiceNow has a connector that Kurt’s company can leverage that would enable
employees to deploy AWS infrastructure directly without logging on to AWS. Using
the connector enables his company to leverage the existing workflow and approval
capabilities of ServiceNow without the manual intervention of the cloud engineering
team. Even if Kurt has to pay for consulting services to set up the connector to inter‐
face with the AWS Service Catalog, he still achieves a significant return on investment
(ROI) in the first year.

Service Catalog can offer significant savings for your company, depending on your
organization’s size. Obviously, if your company has only a few dozen people, the
return on investment would probably not justify the cost of implementation. The

134 | Chapter 4: Building Your Business Case

service catalog also allows you to help maintain financial expenditures by only
approving infrastructure sizes appropriate for your organization. Users will often also
have an improved user experience. Service Catalog will enable them to see the prod‐
ucts easily that they have already deployed, and when an update is published, they
will be automatically notified.

Now that you see a couple of ways Service Catalog and pipelines can save significant
amounts of money for your organization, it’s time to enter it in the forecast work‐
sheet. These savings are designed to be entered in cell C7, Agility Savings. At this
point in the process, your forecast should resemble Figure 4-9.

Figure 4-9. Forecast step 7

Assumptions
Now that we have covered everything in the forecast, it is important to discuss
assumptions around technology, capabilities, and costs. Throughout this book, we
have made numerous assumptions. We have talked about migration percentages and
agility savings and approximation of the bandwidth charges, to name a few. In total,
you probably made dozens of assumptions throughout the process. Unfortunately,
human nature dictates that when you write something down, you set it in stone.
Inevitably, someone will read that and expect it to be 100% accurate. That is why doc‐
umenting your assumptions is critically important.

The Forecast | 135

You might be wondering what assumptions you should document. It is not uncom‐
mon for me to record 30 assumptions, although I cull those items from a significantly
more extensive list. Typically, I do not document obvious assumptions. For instance, I
would not list that the migration timeline is an estimate; this is an undeniable truth
because you do not have a crystal ball. What I would recommend documenting are
things like the employee overhead per hour for the cloud engineering team that you
used in an agility savings assessment. To assist you in generating your assumptions
and getting the creative juices flowing, I have included a list of potential assumptions
in Table 4-2. These assumptions cannot be used verbatim, but they should be usable
with some minor tweaking and adjustment. It may also give you other ideas that are
relevant to your environment.

Table 4-2. Assumption examples

Assumption Assumption
Outbound bandwidth costs are assumed at 10%
of EC2 run rate

Miscellaneous AWS services are assumed as
10% of EC2 run rate

Employee overhead for the cloud engineering
team is $100 per hour

Engineers can migrate two servers per day on
average

Application WidgetWidow takes four hours to
deploy

Holidays have been included in the migration
timeline

Vacation time of three weeks per engineer is
included in the timeline

Auto scaling groups have a minimum of three
baseline instances

Microsoft SQL servers will be migrated to RDS Oracle databases will be migrated to MySQL on
Aurora

Development instances will only run during office
hours

Values used in the migration timeline
calculation

RDS deployments will run in multiple-AZ mode
for redundancy

80% of the infrastructure will use one-year
reserved instances

The Excel workbook has a section named “Assumptions” for the documentation of
your assumptions. This allows them to remain with the forecast and eliminates a sig‐
nificant number of questions. In my experience, it is best to document them with the
forecast directly instead of as an addendum or additional document. This proximity
allows easy flipping of back-and-forth between the assumptions and the forecast for
easier analysis and ensures their visibility. With your assumptions documented, your
forecast should now look like Figure 4-10.

136 | Chapter 4: Building Your Business Case

Figure 4-10. Forecast step 8

Cost Burn-Up/Burn-Down
The burn-down rate and burn-up rate refer to the incremental decrease and increase
of spending as you migrate your infrastructure. When you migrate servers to AWS,
you burn up, as in adding more cost to your run rate in Amazon. The other half of
the equation is the burn-down: as you migrate off, you recoup some costs on the on-
premises equipment. However, these two rates are not equal. The burn-up rate is typ‐
ically a linear path with a small amount of stepping as you migrate applications. An
example of a burn-up can be seen in Figure 4-11.

Cost Burn-Up/Burn-Down | 137

Figure 4-11. Burn-up example

Figure 4-11 shows a company migrating from on-premises to AWS. As you can see,
the overall trend is quite linear but has steps as each of the significant migration
waves are completed. Some of the waves had applications with more server counts,
which is why some of the steps are larger than others. In Figure 4-12, you can see a
burn-down graph, which is significantly different from the burn-up.

Figure 4-12. Burn-down example

When you are migrating from on-premises, the removal of a server does not neces‐
sarily indicate the removal of all the underlying infrastructure. This latent removal is
not true for physical servers such as a large database server where the equipment is
removed immediately. However, most companies have a highly virtualized infrastruc‐
ture. In such an infrastructure, most components are shared among dozens to poten‐
tially hundreds of thousands of servers. In the typical case, you will have to remove
many servers on-premises to see cost reduction. Therefore, the steps in Figure 4-12
are significantly longer in duration and shorter in decreased spend when compared to
burn-up. Most of the cost reduction in the burn-down does not occur until the very
end of the migration. This reduction is when the most significant components of the

138 | Chapter 4: Building Your Business Case

on-premises infrastructure can be shut down, such as SANs and the facilities them‐
selves.

Typically, I do not include a burn-down analysis in the migrations that I have worked
on, mostly because of the amount of effort that would be required to compute it. To
calculate the burn-down, you need to know which servers are physical and virtual,
and if the latter, what host and SAN they are attached to. It would be best if you then
allocated the appropriate costs for those assets to those servers and where they are in
the migration to create a burn-down. Burn-down calculations add several weeks to an
overall migration timeline and yield a very low value to the business. Burn-down
analysis also cannot occur until after the migration planning phase and is not
included in the forecast. The reason I have included it in this chapter is that for many
people, it makes sense to include burn-down as part of the financial forecast. At first
glance, this does make sense, but once you understand what is required to complete a
burn-down properly, you will see how it is impractical to include it in the forecast.

Wrapping It Up
In the grand scheme of things, building your business case is probably one of the
smaller efforts in the migration process. Most of the information is already available
from the previous processes, and it is more about adjusting and properly conveying
the material that is important for the business case. Building the narrative is probably
the lengthiest process. However, thankfully, you should have a good source of infor‐
mation from the FAQs that were built as part of Chapter 1.

The business case is a pivotal point in your migration to AWS; it’s the final piece that
conveys your intent, costs, and business value. At this point, you will be at a cross‐
roads; one path takes you forward to your migration, and the other leaves you on-
premises. I cannot express enough how important the business case is in taking your
company forward in its competitive capabilities by migrating. It deserves attention
and should not be viewed as onerous. Hopefully, your business case shows the value
you have uncovered, and your migration efforts are approved. To prepare you better
to start migration, Chapter 5 will cover addressing your company’s operations in
preparation for migration, and how to build a successful story that you can carry for‐
ward to other departments to gain adoption.

Wrapping It Up | 139

CHAPTER 5

Addressing Your Operational Readiness
for AWS

We have covered much ground in your migration journey so far. At this point in the
process, you have just received approval for your migration, based on your business
case. Many people at this phase of the process think it is time to move resources. I
would not recommend that approach. There is still a hefty amount of planning you
need to do if you want your migration to go forward without significant disruptions.
One of the critical areas that needs planning is your operations once you move into
AWS. In this chapter, we will cover how to address your operational readiness to
ensure that you reduce your risk of operating in the cloud.

Many consulting firms and even AWS have a phase in migration around assessing
your operational readiness. I see nothing fundamentally wrong with this approach.
Still, it has been my experience that many companies find little value in evaluating
their readiness. Let me explain. Most companies looking to migrate into the cloud do
not have any applications there currently. Maybe they have some, but they are limited
to disaster recovery or development. They have yet to use the cloud in a meaningful
way. They know they are not ready to operate production workloads. Therefore, there
is no reason to assess their readiness. Performing analysis for a company at this stage
usually ends up with a spreadsheet filled with red boxes denoting inefficiencies that
they need to resolve. Ultimately, you end up calling their baby ugly and pointing out
many things they already know.

Instead of this approach, we will come at it from another direction. We will assume
that you are not ready and do not have any of the vital operational items in place. We
will show you proactively what you need to address and why. This way, you save the
time that would be spent evaluating your current state. If your operations were ready
for the cloud, you probably wouldn’t be reading this book in the first place because

141

you have migrated. Hopefully, this approach will move your project forward faster by
eliminating the analysis piece and going directly into solving the problem.

This chapter will not cover every possible aspect of operating in the cloud. Instead, it
will focus on the key areas that every customer should address. These items are what
should be considered a minimum point of entry in cloud consumption. By focusing
on these items now, you will prevent issues for your company long-term. We will
focus on the business operational changes, because they differ significantly from con‐
temporary on-premises thought. Before jumping into details, we will first discuss in
more depth why these changes are necessary.

Why Your Operations Change After Migration
We have previously covered some areas where your operations will change after you
migrate. I covered many of these items in Chapter 1, such as “Change to Operational
Expenditures” on page 35 and “Disaster Recovery/Business Continuity” on page 31.
Operating in AWS gives you a very different tool set to operate with when compared
to on-premises operations. The services AWS provides have been engineered toward
reducing your operational burden by taking over mundane management tasks. Even
though your staff will no longer have to perform a lot of these mundane actions, it
does not mean that no work will be involved. As you transition to increasingly man‐
aged services, you need to realign your operations to address those shifts. The net of
the situation is that your staff will indeed have less work. However, the work that
remains becomes significantly more important than the remedial actions that were
replaced.

Sometimes when I mention to companies that the work they will do will become
more critical and more valuable, they become nervous. Many people associate a
higher-value task as more complicated. For example, if you work in a regulated envi‐
ronment on-premises, you must perform a lot of remedial actions. These actions are
usually around securing the physical environment, a perspective that is managed by
AWS once you migrate. AWS has removed the work of managing access logs and vid‐
eotapes. Left in its place is a simple yet significantly more valuable action of collecting
the documents having to do with regulations and compliance from the AWS Artifact
service and delivering them to your auditors.

AWS Artifact is a service that allows you access to download audit
and compliance documents. You can find the AWS ISO certifica‐
tions, Service Organization Control (SOC) reports, Payment Card
Industry (PCI), and other regulatory documents there.

Operational changes are not something new. The difference is that the changes are
more significant when you are operating in the cloud, in comparison to previous

142 | Chapter 5: Addressing Your Operational Readiness for AWS

changes throughout technological history. The last significant technological change
that made a substantial impact on operations was the transition from mainframe to
workstation/server-based computing. The workstation/server model differs signifi‐
cantly from that of the mainframe, which had one central compute node and dozens
of terminals that received screens from the mainframe. The terminals performed no
processing themselves. Therefore, when companies transitioned to the workstation/
server model, a significant number of operational changes needed to take place. Items
such as updating and patching the workstations were completely foreign. The more
recent transition from physical servers to virtualized servers also entailed operational
changes, although they were not as significant as the transition from the mainframe.
Virtual machines offered consolidation but operated fundamentally the same as their
bare metal predecessors. Migrating to the cloud introduces a significant amount of
operational process change, just like the transition from mainframes did. You can use
this parallelism between mainframe and the cloud to help frame your thought
process.

It is essential to keep an open mind and understand that operating in the cloud is not
the same as operating on-premises. You could continue to work in the cloud as you
did on-premises. However, in the timeless words of the movie Mr. Mom, Miriam
Flynn as Annette said, “You’re doing it wrong.” By continuing to operate as you did
on-premises, you are not taking full advantage of the capabilities and benefits for
your business.

Business Operations
Since the primary driver for migration is business-related, it makes sense that the
greatest number of changes required to your operations exist on the business side of
things. You might ask, “Are there not changes to technology that require changes in
my operations?” The answer is absolutely. However, take a second to think back on
the past couple of years of your business. Think about all the changes that took place,
both technologically and business process–related. You will quickly discover that you
have implemented dozens of technology changes and maybe different web frame‐
works, languages, and applications. Now think about all the operational business
changes you made. The list is a lot shorter and might bring images of the Hindenburg
to mind.

The fact of the matter is that technology changes all the time; we are used to it and
used to adapting to it operationally within IT. Business operational changes involve
people across significant swaths of your organization. Many of these often-siloed seg‐
ments of your business are not used to that rate of change. Let me be very direct: your
company’s ability to shift business processes directly relates to how well your organi‐
zation adopts the cloud.

Business Operations | 143

Now that we have covered why your operations need to change, we can discuss how
you can go about making these changes an integrated part of your business. In the
next sections, we will cover my process for adopting and transferring operational
changes throughout your organization. I call my process building a pyramid.

Building a Pyramid
I call my method building a pyramid for two reasons. First, for all things to succeed,
you need a strong foundation, like the rock under the base of a pyramid. When
migrating to AWS, the strong foundation is represented by your executive sponsor. It
is that leadership that gives strength, validity, and purpose to your message. Without
this foundation, you are building your pyramid on sand. Second, to transform your
organization, you will not need a handful of people. You will need everyone’s help,
just as though you are building a pyramid.

In Figure 5-1, you can see that my process has four major components. The founda‐
tion, or executive sponsorship, is the stone foundation. The base of the pyramid is
where you create and refine the new processes inside of the IT organization. These
changes include items such as change management and security and compliance, to
name a few. Once you have established your base—the correct operations internally
in IT—you can then add the next layer to the pyramid, the department expansion
layer. It is in this phase that you reach out to a key department to envelop it into the
new processes. This department helps you prove out your processes and build an ally
external to IT. Once you have created an ally and additional sponsor for the changes,
you can finally assemble the apex, in which you deploy the changes to the rest of your
organization.

Figure 5-1. The operational pyramid

The Foundation: Executive Sponsor
Before we delve into addressing the processes that need to be changed to be ready to
operate properly in AWS, we need to cover the foundation of a vital component to the
success of the implementation. To drive the changes in the business, you will need an
executive sponsor (see Figure 5-2). A high-level C-suite executive is preferable
because that person has the clout and leadership strength required to drive the

144 | Chapter 5: Addressing Your Operational Readiness for AWS

business units to a common goal. Having lower management from the IT organiza‐
tion as your executive sponsor will more than likely impede progress. You will have a
more difficult time getting the rest of the organization on board with the transforma‐
tion. This alignment is required to be effective. A great candidate would be the chief
operating officer. For obvious reasons, the officer in charge of operations would be
the ideal candidate for operational change.

Figure 5-2. The operational pyramid foundation

I cannot stress enough how important it is for your cloud journey to have a C-suite
executive as your executive sponsor. I have seen migrations fail when the appointed
individual is not a member of the C-suite. In the company I am recalling, the execu‐
tive sponsor was the director of the cloud department. Unfortunately, this sponsor
did not have the authority or leadership panache to get the job done. In this circum‐
stance, the only part of the IT organization that he could get on board was a single
development team and the team that created hardened virtual machine templates for
use by other departments. Without the security and business units on board, he could
not drive the business results and agility the company was looking to achieve. Having
an actual executive-level sponsor is vital to your company’s long-term success.

The other important factor to consider is whether your executive sponsor wants to
see it work or make it work. There are two types of people that will work on a task.
The first is in the see it work crowd, tasked with completing objectives that they do
not believe in deeply. They work at the issue until they see or do not see it work. At
this point, they will stop. The second group is the make it work crowd, who are deeply
passionate and inspired by the situation and will do everything in their power to
make it work. They will not give up at the first sign of trouble and will power through
the issues until the task is complete. I hope it is obvious what type of person you want
to be your executive sponsor. They will need to navigate some tough situations with
parts of the company that are resistant to change, and they will need the drive to see it
through.

The Base: IT Prototyping
When it is time to build the base of our pyramid, starting in IT is probably the best
choice because this is where you have the largest sphere of influence. The staff proba‐
bly understands the impact of migrating to AWS more than other departments, and it
gives you the ability to crack a few eggs without affecting many people or revenue
streams. You can test out methods and processes within the comfort of your own
home, if you will. Once you have established that base, you can take the lessons and
processes that you learned and move forward with other departments. The key

Building a Pyramid | 145

concepts you need to address in the base are security and compliance, change man‐
agement, and agility. We will cover these in the next few sections and discuss why
they are important to your base and some potential processes to target. At this stage,
your pyramid should look like Figure 5-3.

Figure 5-3. The operational pyramid base

Security and compliance
When you were operating on-premises, the IT security department probably handled
your security operations in their entirety. The security department made and
reviewed any changes to firewalls and other security equipment. The security depart‐
ment would create a single choke point in the cloud if this design were to continue.
Also, this single-threaded concept does not work very well with automated deploy‐
ment in the cloud. When you migrate to AWS, your security and compliance opera‐
tions need to change from being the doers to being the reviewers. To reach the
highest level of velocity, you will want to deploy as many automated systems and
automate as many processes as possible. You will also want to push the deployment of
infrastructure out from the IT department and into the hands of developers as IaC.
To meet these automation requirements, you need to retool as many components of
your security and compliance as possible with a new operational process.

Since your development teams throughout the company can deploy by IaC, they
become the individuals that create the necessary security rules for the application.
They are the ones that have the most intimate knowledge of how the application
interoperates between its pieces and what communications need to be allowed to
maintain least privilege. The question to answer is how the security team reviews it.
Since you are operating your infrastructure as IaC, you should be checking it into a
source code repository to keep it safe and track changes. This code repository then
becomes the vehicle used to facilitate security review by the security team. Your
deployment pipeline can orchestrate this review process. You can include a security
review checkpoint in the process, which will prevent the code from being deployed
until security reviews it and approves it. Once approved, the pipeline will continue to
deploy the code into the environment.

Security can review the security of the deployed application though the source code
repository. On the first commit or saving of the code to the repository, the security
team will need to review all the IaC to determine whether it includes all the security
and compliance controls that your company requires. Once they complete this
review, they can approve it in the pipeline, and the deployment process continues.

146 | Chapter 5: Addressing Your Operational Readiness for AWS

This process gives you a true two-party review of your security controls. The person
who implemented the control is not the same person from the security team who
reviewed and approved it. This duality works well with certain compliance control
frameworks such as those found in banking.

When the next commit happens, the pipeline will then again ask for a security review
of the code. However, the security team does not have to review the entire application
again. Since you are using a code repository, the security team can perform a differ‐
ence evaluation between the last code the security team reviewed and the new code.
This difference comparison will highlight all the changes that have occurred, and the
security team only reviews those. It streamlines the process compared to on-premises.

One of the critical components of creating your base is being able to demonstrate the
essential concepts and their new processes to other departments within your com‐
pany. Security and compliance are no exception. Security becomes increasingly
important as time goes on. Criminals have found that finding victims through tech‐
nology is lucrative, and this is why I have positioned security and compliance as the
first and most important cornerstone in your pyramid. Strong security will ensure
that your company makes an unappealing target for criminals. You want your com‐
pany to be as unenticing to potential hackers as possible. By developing this pattern
within the IT department, you can demonstrate to other departments how the new
cloud methodology streamlines the process. You can demonstrate how it ensures a
proper security review and enables your staff to implement security directly without
having to wait for the security team to do it for them.

Change management
Change management is another area where significant changes take place regarding
the operational process. Your existing change management process probably is not a
good fit when implementing automated pipelines. Many change management pro‐
cesses require a review by a change board that meets on a specified cadence. This
method does not fit well with the continuous nature of automated deployment. Con‐
temporary change management processes are quite honestly an agility inhibitor. Let
us review this scenario to see how damaging a legacy change management process
can be.

Scenario 5-1
Tim is consulting for a financial services company thinking about moving to the
cloud. The company is very large and has many siloed divisions and departments
across the globe. The change management process is very slow to navigate and imple‐
ment changes. Last month, Tim needed to get some firewall changes put in place to

Building a Pyramid | 147

allow a new server to communicate with an existing server. He was told that it would
take 45 days for the firewall changes to be implemented.

I have a confession to make; in this scenario, I am Tim, and this happened. You may
think this story is total garbage, but I assure you it is true. You probably would not
believe me if I told you they made a mistake on the work order on the first attempt
and made me wait another 45 days to fix their error. Sadly, this is also true. This sce‐
nario is a prime example of how business processes can impede business progress.

Ultimately, this kind of situation cannot last if you want your company to remain via‐
ble in the long term. Acting like this is like buying a Ferrari and leaving it with an
empty tank in your garage while your competition is lapping the track. Now, this sce‐
nario is an extreme instance that I thank the electron gods I have never seen again.
However, it does an excellent job of illustrating the business process traps lurking
around the corner and dropping your company’s agility into a tar pit.

The whole point of change management is to decrease corporate risk. Risk manage‐
ment ensures that situations such as the following occur:

• Two major changes are not implemented at the same time
• Production changes are not made outside of maintenance windows
• Rollback plans exist
• Proper testing was done

Ultimately, you want to make sure that any changes done don’t affect your customers
or your company’s operations. You are probably putting together a good story in your
head about why a conventional process might not be advantageous in the cloud, and
you would be right. We want to change the process, but we also want to ensure that it
still addresses the critical items we listed. We just do not want to throw caution to the
wind and scrap the process altogether.

Let’s walk through these four significant items and address how they are de-risked in
the cloud and how a revised change management process might look. These four
items are not the end all be all, but they are solid items that would apply to every
business. You may have some others specific to your business, such as compliance
reviews, documentation updates, and other things you want to de-risk:

Simultaneous changes
When you work on-premises, many of your systems, equipment, and databases
are very intertwined and heavily connected. This interconnection creates an
inherent amount of risk to other applications. When you update more than one
application, database engine, SAN controller, and so on, you can disrupt opera‐
tions of a tertiary system. It then becomes difficult to trace the cause of the issue.

148 | Chapter 5: Addressing Your Operational Readiness for AWS

Was it the changes you made in application A or was it the firmware update you
applied to the firewall? When you migrate to AWS, the posture of your systems
changes drastically. In AWS, you can create very decoupled applications that do
not intersect as they do on-premises.

Moreover, you are not responsible for the networking, firewall, NAT gateways,
and all the other AWS managed services. Together these inherently de-risk per‐
forming changes at the same time. An additional de-risking factor is that you will
be doing many more updates with a much smaller change volume. Instead of
performing a major update once every six months, you will perform a couple of
small changes per day in the development environment.

Maintenance windows
When you move to an automated deployment model as we discussed in “Auto‐
mated deployment” on page 129, you can control the pipeline and when it per‐
forms actions. You could set constraints so that development timelines can
operate at any given point in time, but production only happens after midnight.
You might also want to limit production changes to the weekends or some other
time of low usage. Having a programmatic control significantly decreases the risk
of production changes being implemented outside of the maintenance window.

Rollback plans
When you migrate to AWS, the need for rollback plans does not disappear. Just
like most of the other items that we talked about previously, it is something that
becomes more automated in the cloud. With the advanced technologies available
to you in AWS, you can use more advanced deployment methods such as blue-
green and canary. These deployment methods allow you to build rollback into
the process itself with automation. This automation allows you to de-risk
changes made to your application in AWS, ensuring that a rollback plan exists by
default.

Proper testing
Testing is another item required for change management that can be automated
in the cloud to reduce change risk. With an automated deployment model, test‐
ing can be included as part of your pipeline and automated like rollbacks and
maintenance windows. You can perform different types of testing, such as unit
tests, performance testing, code quality tests, and code security testing, to name a
few. Thresholds for all these tests can be set, and deployments can fail if they do
not meet your criteria. By implementing these tests, you mitigate the testing risk
that would require review by a contemporary on-premises change review
meeting.

Since you can automate and mitigate most of the risks involved with deployment in
AWS, we can now cover what a new change management process might look like. We
just covered how the implementation of deployment pipelines significantly reduces

Building a Pyramid | 149

your risk when changing your environment. As you can probably see, your change
management process after migration will be a meld of technology and process.
Therefore, many companies struggle after they migrate. They have not modified their
change management process to consume the agility fully that the cloud has to offer.

My recommendation is to implement your change management processes within
your deployment pipelines and other automated processes. By combining the two
processes, you eliminate the possibility of steps being missed or change management
not occurring and being bypassed by staff. You can implement security reviews, roll‐
back, testing, and maintenance windows all as part of the process, as we have just dis‐
cussed. It may also make sense to include manual approval for production
deployment as the final step to ensure that everything is correct and there are no
extenuating circumstances that should prevent the change from going through. A
good example of this might be a change blackout window during Thanksgiving week.
Although the change is safe, you might not want to roll it out until the next week,
when potential exposure is lower.

Change management can also be automated if you implement it as
part of your service management system. ServiceNow is a tool that
has adapters that interface with AWS, and I have seen many com‐
panies succeed at implementing their change management as a
ServiceNow workflow.

Build pipelines are just one example of how the process can be integrated directly into
technology. Change management can also be integrated into items such as golden
template creation, EC2 instance patching, and VPC deployment, to name a few. The
level of automation and risk mitigation is only limited by your imagination. AWS
provides the hooks and tooling to automate nearly everything on the platform.

It is vitally important to experiment with the different processes in your organization,
because they are unique to you. This experimentation continues to build the base of
your operational pyramid. Just like security and compliance, you want to demon‐
strate that the processes work before taking them to other parts of the organization. It
is always more effective to show someone a proven path than to talk about
hypotheticals.

Agility
Agility is a difficult topic to discuss or define, because it is not just one item, such as
automated deployment, or using an agile method of software development. The root
of agility goes much deeper into the organization itself. Business agility is the ability
of a company to respond to changing market conditions rapidly. It isn’t something
you can just buy and say you’re agile, and unfortunately, slapping a label of “agile” on
something does not make it so. Agility is a collection of processes, technology, and

150 | Chapter 5: Addressing Your Operational Readiness for AWS

https://www.servicenow.com

company spirit. Unfortunately, nailing down what creates agility in an organization
isn’t something we can cover within the scope of this book. Instead, we will focus on
the few items that have been known to stifle agility. It may take you many years to
reeducate your entire company on being more agile. Still, it will only take you a few
days to stop doing these items to help your agility along. The three main items that
we will address are:

• Teams that are too large: loss of traction
• Too many cooks in the kitchen: decision atrophy
• Process for process’s sake: wasted cycles

These three items are probably the biggest offenders in slowing down your operations
and your overall agility.

Large teams. I find team size and efficacy quite an interesting conundrum. You would
think that if you want to get something done faster, adding more people to the mix
would accomplish that goal. However, this is hardly the case in most instances. You
need to find the sweet spot where efficiency and efficacy are maximized, when adding
just one more person will reduce the efficacy. When you keep increasing team size,
you become increasingly efficient at doing the wrong things. As you add people, they
spend too much time on questions like who should do what. Smaller teams are much
easier to manage.

Just as it makes sense to break up your monolithic applications in AWS, an excellent
way to achieve agility is to break up your monolithic teams as well. By breaking up
your teams to work on smaller segments of work, you create efficiency within the
overall team. It will reduce those extra cycles that were wasted and make your com‐
pany more deliberate in its execution. Amazon is a firm believer in small teams, and
it is one of the major reasons that it continues to be agile, given its massive size. Ama‐
zon adheres to the concept of a two-pizza team. This rule is employed throughout
Amazon, and it states that no team can be bigger than you can feed with two pizzas.
Small teams = agility.

To see how breaking up teams makes an improvement, you will need to take some
measurements, so you have something to evaluate. Items that make useful yardsticks
are things like:

• How long does it take to complete a new software release?
• How long does it take to see a shift in competition and react?
• How long does it take to hire a new employee?
• How long does it take to approve features to add to applications?

Building a Pyramid | 151

There are many kinds of project management techniques and software. It would be
difficult to make any direct recommendations on how to measure them. You will have
to assess your situation and determine the best metrics to use for your evaluation. In
addition, there might be a ticketing system, HR systems, or another tooling that exists
outside of project management that will be able to provide insight. One potential risk
in breaking apart your teams is that you are disrupting employees’ reporting struc‐
ture. Whenever you make an organizational change, it has the potential to make
employees uncomfortable. As we discussed in Chapter 2 in the section “Staffing and
Expertise Loss” on page 65, you should be aware of employees’ potential fears and
address them appropriately.

Too many cooks. I did not want to use the cliché too many cooks in the kitchen, but it
sums up the issue so perfectly. In this case, we are not talking about too many people
on a team but, instead, too many people involved in the decision-making process. I
cannot count how many times I have been in a meeting where everyone had a say in a
decision. We would just go around and around and around the table, and nothing
would ever get accomplished. I have seen this increasingly as of late as business has
changed. In the United States, we created companies in a hierarchical structure based
on the military chain of command. The upper tiers develop the plan. As you trickle
down the ranks, the lower tiers figure out how to execute and make it a reality. More
recently, I have observed a trend in which the company tries to make the process
more inclusive among the ranks, allowing lower tiers of management and staff to be
more in control of their destiny. However, in being more democratic and inclusive,
they have sacrificed decisiveness.

I am not bashing the new process at all; on the contrary, I believe it helps with
employee morale and can extract great ideas from a larger audience. The issue is that
no one in those meetings is empowered to decide. This lack of a decision maker
causes the merry-go-round of decision making to carry on indefinitely.

I experienced this firsthand when I was working as a consultant. The company I was
working for deployed eight people to work on a customer. Five of these eight people
thought they were in charge. Every meeting had infighting, and we never made deci‐
sions, because there were too many cooks. What was worse was that those five people
started doing what they thought was best and were sending very mixed signals to the
client. The project was on the brink of failure.

The client was upset, and we were told we had a week to get everything in order, or
they would cancel the contract. To be honest, I did not do much other than lay down
the proverbial law and make decisions. I was not supposed to be in charge of the
project, but no one else had done it up to this point and corralled the others. I heard
everyone’s opinions and made a decision. This strategy aligned everyone to a com‐
mon goal, squashed the infighting and vying for position, and increased our custom‐
er’s confidence.

152 | Chapter 5: Addressing Your Operational Readiness for AWS

Your situation might not be as dire as this one. However, this sort of situation hap‐
pens to some extent in every company I have worked for or with. The way to address
this issue is to ensure that a decision maker is involved in every meeting. Ultimately,
there should probably be a process for how meetings work and what is expected. This
level of administration for meetings might sound odd, but articles are circulating
around the internet about how Amazon doesn’t allow presentations in their meetings.
Google actually had, or possibly still has, a rule that a decision maker needs to be
appointed for every meeting. Having controls for meetings works, and appointing a
decision maker is more common than one would think and will drive your agility.

Process for process’s sake. One thing that can slow down agility is process for the sake
of process. I have worked for quite a few startups and small companies and some very
large companies. One item that allows smaller companies to be agile and move
quickly is the lack of processes that are not completely necessary for the operation of
the business. When a company is small and lean, you only have time to do what is
necessary. Many processes are not added until much later. If you need to take a day of
vacation, you ask your boss, and all is well. Later, as the company grows, a process is
added because the number of employees goes up, and you need some process to keep
things running smoothly.

Where things start to derail is when process starts getting invented for no necessary
reason. I am reminded of a company that was particularly bad in this area. Its mental‐
ity was that to be a big business, it had to act like a big business. This company, which
was of a decent size, started to implement every possible process you could imagine.
Everything had to be done as if we were General Electric with thousands upon thou‐
sands of employees. In the end, not much work ever got done because you were too
busy filling out paperwork.

For every process you consider implementing, you need to ask yourself whether this
process would make things more efficient or detract from accomplishment. Not all
processes need to be scrapped; some need to be adjusted to remove the bloat that is
slowing you down. Just remember the mantra: process is good, filling out forms in
triplicate is bad.

Calling out these three items will help you gain some agility in your organization.
They won’t guarantee that your company will become like Amazon or a startup, but
they will help. These changes are just the tip of the proverbial iceberg, because there
are many other things to implement to gain maximum agility. However, as part of
building the base to your pyramid, you should have some good discussion points for
other teams, specifically on how you optimized your processes and removed the dead
weight by following these suggestions.

Building a Pyramid | 153

Building Onto Your Base: Department Expansion
Now that you have spent the time within the IT department building your solid base,
addressing your agility, security, compliance, and change management, it’s time to
add the department expansion layer (see Figure 5-4). At this phase, you will look for a
team you have worked with in the past that you know is open to change and willing
to work closely with IT. You have built a functioning base and can demonstrate that it
worked for IT. You can show the improvements it made and how you could optimize
it and get more work done. Unfortunately, managers in other departments will take it
with a grain of salt. They will say, “Well, that’s IT; your teams are used to this kind of
change.” That is why it is so important to take your next step with an ally of IT.

Figure 5-4. The operational pyramid expansion layer

By working with a friendly team, you are building your credibility with a business
unit outside of IT. By working with this team, repeating the processes and enhance‐
ments you made within IT allows you to create that next great story. That story will
buy credibility with other units within the company because they will be more willing
to accept that it is something they can accomplish, and not just an IT thing.

There will probably be issues with some changes within this pilot department or busi‐
ness unit. They are not IT and are probably not as accustomed to change as the IT
staff. It will be critical for IT to keep the lines of communication open and establish a
cadence with the team to ensure that any issues are addressed as soon as possible. The
worst possible thing that could happen in this critical stage is that the team becomes
disillusioned with the process. If this were to happen, you would not have a great
showcase for the rest of your organization. It is important to keep the positive energy
and excitement for the process high.

I have had great success with this method of building my pyramid in the past. When I
was prototyping virtual desktops when they were first coming out, they were a great
play for the company to meet some critical disaster recovery issues that we were hav‐
ing. We prototyped them initially in IT, but this was not a very good indication of
how end users would respond. IT staff will just fix the problem and move on without
really thinking much about it. The automatic repair will lead to a poor end-user expe‐
rience when those nontechnical users run into those same issues.

154 | Chapter 5: Addressing Your Operational Readiness for AWS

To rectify this issue, I used this method: I built the base in IT and then used the
investment department to refine it before mass rollout. I chose a department where
the VP was a friend of mine. By forming this alliance, I guaranteed that I would have
cooperation on her team. On the opposing side, I was personally motivated to ensure
that my team did not screw it up and provided excellent service and attention. Her
department was the gold star standard that I wanted to promote. Even if they are a
friend to IT, you still need to put your best foot forward.

Finishing the Apex
Once you have completed your work and built a success story with the pilot team, it
is time to take your success forward to the rest of the company as shown in
Figure 5-5. Having a great story to tell is a fantastic way to sell your ideas to the other
areas of the business. Being able to sell is not something that most IT management
thinks about, but it is what you are doing. It is just a different type of sales from sell‐
ing products and services to clients. An IT manager effective at selling has more over‐
all success in their career. We are not talking about used car salespeople, but it is
selling nonetheless.

Figure 5-5. The operational pyramid apex

Ultimately, now you are selling your new processes to a team that might not even
know they need your product. Your product is agility and a refined process to make
that agility a reality. You could draw a similarity between cloud processes and opera‐
tions when the first iPod was released. There was nothing like it; at first glance, it
seemed odd that you would need a device that stored every piece of music you ever
had and bring it with you. Apple solved a problem that consumers did not even know
they had. This example is very similar to your operational situation. You can use this
similarity to help you envision how you will communicate to the teams; you are sell‐
ing a vision.

At this point, you need to craft your message and your value proposition for those
departments. It would make sense to create an overall storyboard to walk your poten‐
tial clients through what their journey would look like and the added value it brings.
You have done this twice before with your pilot and the base built in IT. You have the
data; now, it is just about crafting a compelling story. Feel free to refer to your whys

Building a Pyramid | 155

from Chapter 1 to help draw inspiration from your narrative to inspire people to
adopt your improved processes.

You might think this is overkill, and to be honest, when I first started in IT I would
have said the same thing. In the earlier parts of my career, this was a mistake in my
judgment. Things that seemed so simple and obvious to me are not so simple and
obvious to people who do not understand the technology or concepts. I did not see
success until I abandoned that mentality. Remember your overall goals for cloud
migration and the benefits that it brings to your company. If the message about oper‐
ations doesn’t transform your company, you won’t be able to maximize the potential
of the cloud and will revert to an on-premises state.

Finance Capabilities
With building a pyramid, we walked through the process of driving operational
changes through the entire organization. The items that we discussed are universal
across all of your business departments. However, one department needs special
attention when you migrate to AWS. One of the biggest operational changes will
occur in your finance and accounting departments. The change to operating expense
from capital expense and the ability to consume an endless supply of resources
requires some retooling in how you account for and allocate those expenses. Without
the proper controls, it is easy to see your costs spiral out of control. Shadow IT or
systems that are created and forgotten about and not shut down can become a signifi‐
cant problem if not contained. These are critical items to keep costs under control
and why we will cover these financial operations controls separately.

One story that can exemplify this problem comes from a client I was consulting on a
discovery and migration planning project. They had not yet migrated to AWS, but
this example shows how the lack of these types of controls can lead to issues in the
cloud. The customer wanted my firm to evaluate their 9,600 servers on-premises and
determine what should be moved to the cloud and what they should leave behind.
This client was a highly agile company that made a lot of changes and innovations.
However, they did not have any good controls in place from a financial perspective to
ensure that they kept expenditures in check.

While evaluating, we found that around 6,000 of the 9,600 servers they were running
were unnecessary. I was shocked, and I had a hard time wrapping my head around
how they even got to this point. After having many conversations with staff during
the application interview process, the problem became evident. Time after time, we
heard the same thing: “I thought those servers were shut down two years ago”; “That
was a pilot we did for some new service a few years back”; “Those servers were spun
up to test and update in a nonproduction environment.” The reasons were different
but all very similar. They needed a system temporarily and, for some reason or
another, forgot to shut it back down again. Nearly two-thirds of their entire

156 | Chapter 5: Addressing Your Operational Readiness for AWS

infrastructure was unnecessary. Because of the company’s growth, the expansion of
their on-premises infrastructure was masked and thought to be part of that growth.

This example is, hopefully, one in a million. Still, with the nearly unlimited capacity
of AWS you can experience this type of runaway infrastructure without the proper
operations. Some ways that this occurs in AWS are:

• Unconstrained resources
• Misconfigured pipelines
• Poor tagging
• Lack of chargeback/showback

We will discuss further how these items can contribute to financial risk while operat‐
ing in the cloud and how you can address your finance operations to mitigate said
risk.

Unconstrained Resources
Unconstrained resources refer to resources that are provisioned in AWS that should
be constrained by process. You need to have some control over who can deploy and
how they deploy. You should have some process to approve resources and sizes to be
deployed and ensure that they are properly shut down when no longer necessary.
This process can be implemented in several ways. For instance, you can use Service
Catalog as discussed in “Service Catalog” on page 131, or you could use a service
management tool like ServiceNow. Honestly, you could use a spreadsheet and email if
you had to. The point is that it is essential to have control to prevent the sprawl of
servers.

Besides the control of resources being deployed into the environment, it is also
important to implement a sandbox account for developers. By creating a sandbox
account and the necessary processes, you can ensure that developers do not leave test
and prototype infrastructure running long-term. You want your developers to play
with new technology. You in no way want to inhibit their innovation. That innovation
will enable your company to surpass your competition, but you also do not want to
give them your Amex card for a shopping spree. Typically, I implement a sandbox
account and allow developers a free-for-all area in which to play with any of the AWS
technologies, but buyer beware. Anything that lives in that account will be purged on
a daily or weekly basis. This action does two things. First, it makes sure your bill stays
lean by deleting all the resources. Second, it ensures that your developers get comfort‐
able with IaC. If they want to pilot something for a few days or weeks, they will
deploy it repeatedly. They will quickly learn that the best way to do that is to follow
company policy and use IaC.

Finance Capabilities | 157

You can source AWS account cleanup scripts from GitHub. There
are several available, depending on your company’s needs. A popu‐
lar one is AWS-Nuke.

Misconfigured Pipelines
Pipelines are a blessing to companies. The capabilities they bring and the sheer vol‐
ume of monotonous work they remove are astronomical. However, if they are
improperly configured, they are also a way to drive up your bill quickly. There is a
multitude of reasons for how this can happen, but here we’ll cover the largest.

Most deployments want some form of rollback so that if something goes wrong, you
can revert your environment to the last known good state as fast as possible. This
process is to reduce the impact on your customers. The deployment can be done with
blue-green deployments. In such a deployment, you deploy a completely new set of
infrastructures to support your application, install the application, and then cut over
to this new set of servers. But what would happen if there was something wrong with
the cleanup part of this process? At some point, you are running on the new version
and no longer need the older one; you have no intention of rolling back. If this pro‐
cess does not work out properly, you can end up with servers always being created
and never removed. You can imagine the damage that this could do to your AWS bill.
Imagine if you were super agile and did 10 production updates a day! Yikes!

Thankfully, it is easy to address your process to compensate for this malfunction. You
could do something as simple as using a notification to alert you when the cleanup
portion of the pipeline is complete. It is not the best solution, though; although sim‐
ple, it is best to avoid true positive email notifications. They turn into just noise, but
eventually, someone will notice that they didn’t get the email and investigate what was
going on with the process.

The better way to address this would be through tagging of the infrastructure
attached to the pipeline, monitoring the spend, and looking for anomalies. This anal‐
ysis can be accomplished by using the AWS Cost Explorer tool to monitor spend by
using cost allocation tags.

Cost Management
Tagging is the most important component of the cost process in AWS. It is how you
can allocate the costs to departments, applications, teams, even specific developers or
purchase orders if you wish. It has also been known for large companies to use tag‐
ging based on marketing events so they could directly tie the cost of supporting a
marketing campaign to the revenue it generated. Without tagging, everything ends
up in big buckets by service on your AWS bill.

158 | Chapter 5: Addressing Your Operational Readiness for AWS

https://github.com
https://oreil.ly/YSpA3

We covered tagging in “Resource tagging” on page 69, which you can refer to for a
refresher on risk mitigation and tagging suggestions. Besides those concepts, I also
want to include some information here about the AWS Cost Explorer. The Cost
Explorer is a service that allows you to create and generate reports about your AWS
usage and graphically display them. You can think of it as a business intelligence tool
for your AWS costs. It allows you to break down your costs by service or region,
account, and tagging. This tool allows you to see the costs associated with any tags
you configure.

To enable the use of tags for cost exploration, you need to enable them first in the
billing console. The configuration can be a hangup for some because the setting is not
in the AWS Cost Explorer console. You need to access your billing dashboard and
select Cost Allocation Tags from the menu on the left, as shown in Figure 5-6.

Figure 5-6. Cost allocation tags

From there, you can use the User-Defined Cost Allocation Tags section to add any
tags you wish to show up in the various billing tooling AWS offers. You select the
tags that you wish to use by clicking the checkboxes and then clicking the Activate
button, as shown in Figure 5-7. It would also be beneficial to enable the
aws:cloudformation:stack-name tag. Being able to see the cost of a CloudFormation
stack can be very fruitful, especially if tagging was not properly implemented on the
resources contained in the stack.

Finance Capabilities | 159

Figure 5-7. Cost allocation tag activation

The Cost Explorer service also allows you to export the data in a comma-separated
values (CSV) format. This reporting allows your finance team to import to Microsoft
Excel and do more advanced analysis. You can put many automations in place with
Cost Explorer to perform the collection and downloading of the reports for you. It is
possible to automate the process completely if you have a large company with many
departments. If you are a smaller organization, it might be enough to create a role
that has access to the Cost Explorer service and allow finance to interface directly.

I cannot emphasize it enough to have your tagging schema designed and imple‐
mented before migrating to AWS. Without the proper implementation, it can take
much effort to go back and rework which resources belong to which department.
Without proper tagging, it will be significantly more difficult to track down cost over‐
runs and where they are coming from.

Lack of Chargeback/Showback
We briefly touched on this topic in “Chargeback and showback” on page 70. When
you migrate, your financial operational processes must change. You will take on a
more agile and fluid infrastructure than you had in the past, and your financial pro‐
cesses must adjust to compensate. Think back for a second on how you did budgeting
on-premises. You probably created your budget once a year and checked it every so
often when you were making purchases to make sure you were not going over. In the
cloud, this could be a risky process, given the dynamic nature of the consumption.

Chargeback and showback are the best ways to give teeth to controlling your depart‐
ment’s spending in AWS. Most large enterprises already have this practice in place
and it probably is not a significant change. However, small and medium businesses
probably do not practice it as much. It is also possible that your organization might

160 | Chapter 5: Addressing Your Operational Readiness for AWS

practice this partially. One company I worked for, where I was in charge of the IT
budget, was good at charging back to the business when it was launching a new prod‐
uct or service. It would have to include the capital for the IT infrastructure as part of
its business case, and then it would be allocated against the business unit. This pro‐
cess was great in the short term because it did not affect my budget immediately. The
unfortunate part was that after year one, the responsibility for the funding to keep the
application running fell under the IT budget, and an increase in spending was my
responsibility to justify.

If you were to follow the nonchargeback model or partial chargeback model in the
cloud, you would put the burden of monitoring all the resources and the appropriate
level of spend on the IT team. Unfortunately, the result is that IT would not have the
resources or the time to track the expenditures appropriately. It would default to hav‐
ing more funding approved. The result would be that your cloud costs would con‐
tinue to increase over time with no checks and balances to ensure that they were
appropriate.

By changing your financial operational processes, you can spread this workload to all
the departments to crowdsource the work. By having chargebacks, you ensure that
the department will address any cost overruns because of the impact on its profit and
loss (P&L) statement.

Wrapping It Up
By addressing the concerns we discussed in this chapter, you should be on the way to
a much smoother and successful long-term journey. By following the building of your
pyramid, you will craft a successful change in your company’s operational process.
You built your foundation by getting a strong executive sponsor to spearhead adop‐
tion of cloud operations. You built your base of operational readiness in the IT
department and refined the processes. Once you completed your base, you worked
with a single department to gain adoption outside of IT. Finally, you put the apex on
the pyramid by rolling out the operational processes to the rest of the organization.
The concepts discussed in this chapter are probably the most difficult to implement
and will take a significant amount of time, much longer than the migration itself.

The processes covered in this chapter are not an end state, because technologies and
staff capabilities will require refinement of your company’s operations. Your processes
need to be just as agile as the technologies and development methodologies that you
employ. The key to long-term survival in today’s business economy is the ability to
adapt continually.

These are the last vital items to be addressed before you can start rolling out your
environment in AWS and begin your migration. In the next chapters, we will get into
the meat of migration, starting with Chapter 6.

Wrapping It Up | 161

CHAPTER 6

Defining Your Landing Zone and
Cloud Governance

Now that you have addressed your operational readiness for AWS, it is time to
address the design of your landing zone and cloud governance. The concept of a
landing zone was introduced in Chapter 2. As previously discussed, the landing zone
provides baseline security controls and guardrails, account structure to segment envi‐
ronments, and security notifications. Now we will cover specific design concepts and
best practices to build on and round out your understanding. We will follow the land‐
ing zone discussion with cloud governance, which comprises the controls developed
for your operations in the cloud to maintain stability and security. By addressing
these items now, your team can start the deployment of the landing zone and gover‐
nance controls while you are performing your migration plan, which we will discuss
in the next chapter. This parallel workflow will save a month or two on your migra‐
tion timeline. You might want to postpone the deployment of your landing zone if
there will be a lapse in time between your migration plan and your actual migration.
By deploying the landing zone, you will start to incur AWS costs because resources
such as NAT gateways and VPNs will be online at this time. If you expect a delay
between planning and the start of migration, it might make sense to hold off on the
landing zone until you are closer to your start date.

Frequently, the landing zone and cloud governance don’t get the attention they
deserve because companies view them as necessary components and matter of course
and gloss over them. This chapter will highlight just how important these concepts
are for your business—they are the foundation of everything you do in the cloud. In
Chapter 5, we talked about building the foundation of your pyramid with the support
of your executive leader to ensure successful adoption of cloud operations. Similarly,
you need to build a foundation here for your actual cloud deployment. If you were to
build a house, a great amount of time and effort would go into the design, validation,

163

and inspection to ensure that the foundation would support your home. Although it’s
a necessity and uninteresting, your foundation isn’t something you, the city officials,
or your general contractor would just gloss over. You wouldn’t want a crooked and
crumbling cloud deployment any more than you would want a crooked and crum‐
bling house. Let’s start building that foundation with the landing zone.

Landing Zone
Think of a landing zone as like an airport. In your landing zone, you can think of
your accounts as airport runways where your workloads land, depending on the crite‐
ria, such as whether you need an account for PCI compliance. You can consider the
logging controls to be like the airport taxiways in which your vital access logs are gui‐
ded to your protected logging account. Similarly, your security and compliance con‐
trols are like the airport control tower. If any of these items were missing from an
airport, it would be utter chaos. The same rules hold true for your AWS environment.
The first concept we will cover regarding your landing zone is account structure and
how that relates to your company’s size and structure.

Account Structure
When it comes to landing zone deployment, the one thing that you really need to get
right from the start is your account structure. It doesn’t get much attention on the
internet, and quite a few companies struggle with how to structure their accounts.
Your account structure is very specific to your organization’s business unit structure
and how you account for costs in the finance department. I break down the account
structure into three classes:

1. Business unit–based
2. Environment-based
3. A hybrid model that incorporates both concepts

We will cover these in detail in the next sections.

All structures should have a base design that is consistent between all three for the
baseline security controls. There is no set way to accomplish this, but there should be
a master billing account, shared services, and an audit or logging account at a mini‐
mum. AWS Landing Zone also deploys a security account for security operations for
a service such as the AI-powered threat-detection service, AWS GuardDuty. How‐
ever, it is not uncommon to see these services used for the master account instead.

164 | Chapter 6: Defining Your Landing Zone and Cloud Governance

Business unit–based
A business unit–based account structure gives each business unit an account to hold
its resources. One of the main reasons for this is cost control and chargeback. Tagging
is not guaranteed to be correct or added to all resources. In companies with many
business units, these potential missteps can be seen as potential risks that should be
avoided. To prevent this situation, a designated business unit account automatically
bills all resources for that account to that account. That way, costs are allocated and
don’t get lost.

Large companies often have merger and acquisition and divestiture activities. Having
a business unit–based account structure facilitates this type of workload shifting. A
business unit account can be added and removed from your organization with ease.
The account would just need to be either added or severed from your logging, master,
and shared accounts. In the case of divestiture, the account could then be transferred
to a new master billing account when you give the root account credentials to the
purchasing company. There is, of course, much work to be done around access man‐
agement when you take over an AWS account, but that is out of the scope for this
book.

The business unit account structure also helps companies with regulatory compliance
requirements that vary between accounts. Having the unit separated by account
allows you to control the access and security controls by account. You can then
restrict the accounts with compliance requirements without affecting any other busi‐
ness units. If you were to have an environment-based account structure, you would
have to restrict all the business units to accomplish this same regulatory control.

Most often, I recommend the use of an environment or hybrid model. I don’t use the
business unit model very often because I have a deep security and compliance back‐
ground, and I don’t feel that the business unit model will provide the required level of
segmentation between the environments. That said, in an unregulated company or a
company with many COTS applications in play, where development and testing envi‐
ronments aren’t as extensive, the business unit model makes sense.

Environment-based
In an environment-based account structure, you distribute your workloads to
accounts based on the environment that they belong in, that is, development, testing,
or production. This account structure works well for smaller organizations without
an expensive estate. This design is simple and easy to maintain but requires proper
tagging to ensure that your finance department can appropriate costs correctly.

Unlike the business unit design, the environment structure is not conducive to divest‐
itures. In a divestiture, part of the organization is being sold off or segmented, and
any workloads that are contained in an environmental account will have to be

Landing Zone | 165

migrated out of the source company’s account because it contains other workloads
that are not part of the divestiture. Those workloads will have to be placed into a new
account under the purchaser’s control. In the reverse circumstance, when you merge
or purchase a company, you must migrate the new workloads into your existing
environmental accounts even if they already use AWS. This limitation is another rea‐
son the environmental design is not the best choice for larger organizations.

The major benefit of the environment-based account structure is the ability to seg‐
ment the controls and data that are used in your different environments. This struc‐
ture is especially beneficial to regulated industries such as health care and financial
services. These industries require customer personally identifiable information (PII)
to be protected. By grouping accounts by environment, you ensure that no data leaks
to environments lower than production without some form of obfuscation. The envi‐
ronment design also allows you to control the access controls by environment. This
level of control enables you to give more rights in the development environment to
engineers and developers but more restrictive controls in production.

Hybrid model
The hybrid account model is a combination of the business-unit and environment-
based design models. In this design, each business unit gets separate accounts for
development, testing, and production. Although this design is the most complex and
contains the largest number of accounts, it gives the greatest level of flexibility. Not
only does it work well with mergers and acquisition activities, but it also is conducive
to segmenting the environments.

I would say that if you have over 300 servers, the hybrid model would be the best
choice for you. With anything lower than that, the overhead of operating the extra
accounts probably does not make sense. For each new account, you will also have
more federation groups in your directory services to manage access, further increas‐
ing management overhead. You can automate most of the deployment, using IaC and
compliance tooling. The real level of effort with the many accounts created by using
the hybrid model comes into play with access and authorization hygiene, which must
include auditing access to ensure that the correct people in your company have access
and others do not.

You may be beginning to think that having all these new accounts adds a burden to
the finance department. The number of environments and the number of business
units should be consistent across all three design methods. The difference is in the
financial firewalling that occurs in the business and hybrid models; they ensure that
all costs are properly associated.

166 | Chapter 6: Defining Your Landing Zone and Cloud Governance

Recommended Accounts
Although the account structure covers the bulk of your environment, several required
accounts are outside that structure. Accounts such as logging and shared services cre‐
ate a fundamental layer to the infrastructure upon which you build your account
structure. You will connect these too, either logically or by a network connection, to
the other accounts that you deploy in your selected account structure. The other
accounts we will discuss are the sandbox account and the PCI account. If necessary
for your business, you will use these accounts to offer segmentation in your environ‐
ment to increase security and compliance.

Shared services
The shared services account hosts the services that all the other accounts access. This
account would hold software deployments like Active Directory, Chef, Ansible, Salt,
Splunk, Elastic, and security tooling like Nessus. The shared services account creates
a hub-and-spoke design by which all other accounts communicate, as shown in
Figure 6-1. By using this design methodology, you eliminate the need to deploy these
types of resources repeatedly in each account.

Figure 6-1. Hub-and-spoke access

The shared services account also can host your bastion hosts. A bastion host is a
hardened instance that can withstand attacks and allows IT staff access to backend
servers by using the Secure Shell (SSH) protocol for Linux servers and Remote Desk‐
top Protocol (RDP) for Windows servers. Although you can access your servers
directly through VPN or Direct Connect connections, I would instead recommend
the use of bastion hosts to access your servers. It provides an additional layer of secu‐
rity for your servers that a hacker would need to penetrate to gain access to your
environment. It also allows you to eliminate routing your on-premises workstation
segment to your critical database segment. In this design, the only way to access your
critical data layer would be to use a bastion host or the server that directly needs the
data on the database server.

Landing Zone | 167

For larger organizations that need many administrators to access
the bastion hosts, I recommend the use of Amazon Workspaces, a
virtual desktop interface (VDI) environment that grants each user
their own virtual workstation to operate from. This design allows
for an additional layer of protection from malware by segmenting
the users individually versus using a service such as Remote Desk‐
top Services. With Remote Desktop Services, the server allows
many users to access it at the same time by presenting each user
with their own desktop session. By using workspaces instead, you
also lessen your blast radius from an outage. Depending on your
Remote Desktop Services deployment, an outage could offline all
your administrators at once.

The shared services account is also a good account to locate certain AWS services,
such as Amazon Chime (enterprise video conferencing), Amazon QuickSight (busi‐
ness intelligence tooling), and Amazon Route 53 (DNS). You can also share these
services between environments and accounts. The master account should be reserved
for command and control functions. It would be best not even to have a VPC in your
master account. Eliminating the VPC will ensure that no servers are deployed there.
One service that should be deployed to the master account rather than to the shared
account is Route 53 and domain restrictions. Route 53 doesn’t need any ancillary
services to operate, and every account uses it, making this the only recommended
candidate for the master account.

A good practice for deploying DNS in AWS is to host the domain
name registration in the master account (mydomain.com). Once
that is set up, you can create subdomains for each account
(dev.mydomain.com, test.mydomain.com). You can delegate
authority for the subdomains in the master domain. The Route 53
subdomains will then become an authority for all hosts in their
subdomains. Using this configuration allows you to implement
DNS configuration easily for server deployments through Cloud‐
Formation, which cannot span accounts to enter DNS records.

Hopefully, you now see that the shared services account plays a critical role in your
environment and makes maintaining security through consolidation easier. Next, we
will cover another critical account, the logging account.

Logging account
The logging account or audit account, depending on your nomenclature, is the
account that stores all the AWS Config and CloudTrail logs in your account structure.
This account is one of the most important in your whole landing zone design. The
sole purpose of this account is to protect the logs in a read-only fashion. This

168 | Chapter 6: Defining Your Landing Zone and Cloud Governance

segmentation prevents anyone from manipulating them. The best way for an attacker
to get away with their attack would be to cover their tracks. They would also want to
cover up ongoing theft. The best way to do this is to erase the evidence of their access
by manipulating these two services’ log files. By creating the logging account, you cre‐
ate a safe haven for these logs where they cannot be manipulated.

In AWS, you can allow access to resources through several avenues. You can grant
access to users, groups, and roles and trust specific AWS services. Trusting specific
AWS services is a critical security component. For instance, this trust allows you to
create S3 buckets that can only be accessed by AWS services. If you want to create a
location that can only be read, you can create an AWS role that allows write access to
the AWS Config and CloudTrail services (individually, not together). This control will
allow only those services to write to the buckets. You can then create policies and
roles for your users that only allow read access to those buckets. You can further pro‐
tect those buckets by setting explicit “deny write” access rules that trump all allow
actions for more security. If that is not enough, you can activate S3 versioning. This
control will keep modified versions of files so you can always go back in time and see
what the file looked like originally. This setting also prevents someone from perma‐
nently deleting files, and the previous versions will still be stored. Your logging
account can become your impenetrable fortress of security. Well, at least an impene‐
trable hall of records to see when an attack happened, how the access was gained, and
what was done during the attack. Adding a logging account is critical for your busi‐
ness and should be included in your landing zone deployment. Next, we will cover
the sandbox account; although optional, it is a critical component.

Sandbox account
We have touched on the sandbox account twice before in this book, in Chapters 1 and
5, but it bears repeating here because the sandbox account is one of the most critical
accounts for your company’s innovation. One office I worked in had a sign on the
wall that said, “Create something today, even if it sucks.” This is my mantra, and I try
to practice it every day. I end up trying many things; often they break and suck, but
when they do not, it feels like magic, and something new and awesome is created.
That is what the sandbox account is for. This is where the magic happens.

You cannot innovate if your staff is afraid to get in there and experiment and break
things. However, it is perilous to test things in your other accounts, which is where
the sandbox comes into play. This special account is segmented from the rest of your
environment; it isn’t part of the hub-and-spoke model with shared services. This iso‐
lation prevents any experiments from disrupting your daily operations or raising con‐
cerns about data leakage. The sandbox account is quite honestly the best way to move
your company forward. Hopefully, you now see how important this often overlooked
account is, and you incorporate it into your design.

Landing Zone | 169

We now have one last optional account to cover: the Payment Card Industry (PCI)
account, which should be deployed if you are processing credit cards and need to
store card data.

Payment card industry data security standard
For companies that need to meet the Payment Card Industry Data Security Standard
(PCI-DSS or PCI), a special account configuration would be most advantageous. In
PCI, the term infectious data refers to cardholder data (CHD), which contains critical
credit card information such as card numbers, zip codes, and so on. PCI classifies this
data as Category 1. Any system that stores, transmits, or processes cardholder data is
a Category 1 system and is within the scope of a PCI audit. Category 1 systems can
become infectious when other systems have unrestricted network access to those
systems.

If you were to put your PCI Category 1 systems in with your production environ‐
ment, it would increase the scope of your PCI audit and therefore increase your audit
costs. If you are paying attention to what has been said about least privilege, you
might wonder why putting a PCI Category 1 system in the production environment
would increase the scope. Least privilege would ensure that those servers would be
segmented through security groups and would not have access to PCI systems.
Unfortunately, auditors will want you to prove that they do not have access to the
servers. Proving a negative is not a pleasant experience. You must show that every
production server that is not in the PCI scope has the proper security group rules to
prevent access to CHD systems. If you have dozens or hundreds of servers in this
account, it will become very costly and time-consuming.

The better solution is to create a separate PCI account to store Category 1 CHD sys‐
tems. By creating another account to store these systems, you create a barrier between
servers that is easier to prove and keeps your PCI scope contained. Congratulations,
you have just decreased the cost of your audit significantly. I suggest taking this a step
further to reduce expenses by deploying a new managed directory to run the environ‐
ment. AWS offers managed Active Directory services that reduce the burden of man‐
agement. AWS takes care of the updates and security patching; your company only
needs to worry about the group policy and user controls. By creating a managed
directory explicit for your PCI environment, you significantly reduce your audit
scope. A separate directory accomplishes this by removing all the users, groups, and
policies that are in your main corporate directory from the scope. This segmentation
allows auditors to audit the controls and users explicitly for PCI account and server
management. AWS account segmentation and managed directory services make it
significantly cheaper to manage your PCI environment than you could ever do
on-premises.

170 | Chapter 6: Defining Your Landing Zone and Cloud Governance

We have covered the additional required accounts, logging, and shared services, as
well as the optional PCI and sandbox accounts and what they mean for your environ‐
ment. Before we can move forward with deployment, we need to touch on how you
can deploy your landing zone.

Landing Zone Deployment Methods
Many design concepts should be considered for a landing zone, but we will only
cover the account structure here. There are a couple of ways to deploy a landing zone
in AWS, depending on your needs and company size. Unless you are a small com‐
pany, it makes sense to use the AWS Control Tower service to deploy your landing
zone. Control Tower is a service that automates the deployment of AWS Landing
Zone, which really isn’t a service but a product, like software you would buy. For
small companies, the AWS Landing Zone product might be too expensive to operate.
You get little control over the base deployment to turn off some features that a smaller
company might want. For instance, the AWS landing zone deployed by Control
Tower uses highly available NAT gateways to all accounts. For a smaller company, it
might not make sense to spend an additional $75 a month for two other gateways in
the second and third availability zones.

Since most companies will probably be using Control Tower, we will not dive into the
technical specifics of a landing zone deployment. If you wish to deploy a landing
zone, there are several deployment packages on GitHub that you can use or use as
reference points. I would not recommend building your landing zone by hand
without IaC. It will be very hard to maintain compliance or add new accounts if nec‐
essary. You should start with a base configuration found online in IaC and modify it
based on your specific business needs.

Now that we have covered the landing zone, account structure, and deployment in
depth, we can move on to the second critical component of your landing zone
deployment, cloud governance.

Cloud Governance
Mentioning cloud governance is enough to send chills down the spine of an IT man‐
ager’s back. It is the technology, people, and processes associated with your cloud
operations. Typically, cloud governance means risk mitigations put in place that make
doing your job in IT more difficult. Thankfully, the items that we will discuss here
will not have a marked impact on your ability to complete work. They will, however,
ensure that your environment stays secure. Since the infrastructure in AWS is so vast,
and the ways to access it are plentiful, some controls need to be in place to ensure that
your engineers and admins stay in their lanes.

Cloud Governance | 171

https://github.com

1 For more information about support plans, visit the AWS website.

We will not be diving too deeply into the realm of technical controls and service con‐
trols. Instead, we will focus on several higher-level items that need to be configured
and selected that are of interest to the IT manager. Items such as AWS Support Plans,
business continuity, and access and authorization can significantly affect the opera‐
tions of your business. I recommend defining these cloud governance items before
deployment of your landing zone and migration to create policies on how and when
changes should be made. As with most items in the cloud, they need to be able to
change and shift based on your company’s current needs. These are not, nor should
they be, set in stone. We will first look at AWS support, which is a vital service to have
when something goes wrong. Often, it isn’t addressed at the beginning of migration
and ends up an afterthought. By addressing it first, you ensure that if something goes
sideways, you will have the support you need.

AWS Support
AWS support falls into the process category of cloud governance. When something
breaks, you follow a process or workflow to resolve the issue. When operating in the
cloud, many of the items that would have been addressed internally, such as manag‐
ing the hypervisor, are managed by AWS. This shift in responsibility means that you
might need to involve AWS to resolve an issue. Without the proper level of support,
your company may be left floundering, unable to resolve the issue on your own.
Amazon offers different levels of support, based on the requirements of your busi‐
ness. The support runs from free (no support, only limit increases) to over $15,000
per month for Enterprise Support.1 Support is not a flat fee, either. A base fee is
charged (based on the level selected), and then an additional fee is charged (based on
the amount of spend in each account). For Enterprise Support, the additional fee is
based on an aggregate of all your account charges.

The question at this point in your migration is what kind of support your business
needs. If you are a large enterprise, the question is very easy to answer. If you chose
the hybrid account structure, you would have many accounts for your business units
and environments. Since AWS charges for support by account for service levels lower
than Enterprise, these charges could rack up quickly if you choose the Business tier.
For instance, if you have 100 accounts and choose business-level support at $100 a
month, you would spend nearly the same amount as Enterprise Support without the
added benefits.

If you are a medium-sized organization, the question is a little harder to answer. You
need to choose your support based on the workloads you are running and how vital
their operations are to your business. Based on the criticality of the environment for a
medium-sized business, Enterprise Support probably makes sense. In the grand

172 | Chapter 6: Defining Your Landing Zone and Cloud Governance

https://aws.amazon.com/premiumsupport/plans

scheme of things, the cost of Enterprise Support for a medium-sized business will not
be a significant expense compared to your resource consumption.

For smaller organizations, support gets even trickier. A small company will most
likely not be consuming massive amounts of resources, and support will be a major
part of the spend. Even if a small organization uses the environment-based account
structure, it would still end up with six accounts that need support. For a small orga‐
nization, a minimum of $600 a month could be a sizable amount of the overall spend.
If you are a smaller organization, you may want to investigate using the Developer
Support level for lower-level environments such as development and testing. How‐
ever, the small amount of money that you would save is likely not worth the delays in
support. The support SLAs for the Business level of support is significantly better,
with less than one hour response time for a production system outage versus up to 12
hours for Developer Support.

The important part is to decide on your support level before you move resources into
AWS. You do not want to run into an issue without this critical piece of cloud gover‐
nance. You want your support in place when the accounts are rolled out, especially if
you will move forward with Enterprise Support, which comes with a Technical
Account Manager (TAM). The TAM is a technical point of contact that can assist
with guidance and best practices for deployment into the cloud. Both can be a great
resource to ensure that your environment is as healthy as it can be.

As part of the support exercise, create a policy stating when you will shift your sup‐
port levels. It’s unlikely that you would downgrade your level of support, but some‐
times you will want to raise it. The big question is when you should upgrade to
Enterprise Support. After all, $15,000 a month is a large nut to crack if you have a
smaller infrastructure. As with most critical things in a business such as security, the
question you should probably ask is how much it will cost not to have it. The adage
“an ounce of prevention is worth a pound of cure” is a good yardstick to follow with
leveling up to Enterprise Support. If your workloads are critical to your business and
having those offline for any amount of time will cost you significantly more than
$15,000, then go for Enterprise Support.

Region Management
The AWS regions all around the globe are a benefit and potentially a risk to your
company if not properly managed. All regions launched prior to 2019 are enabled by
default. This default means that engineers can spin up resources in any region around
the globe, even if you do not want them to. You want to avoid a governance risk if you
have data sovereignty and regulatory concerns. Having all regions available can also
pose a risk for data leakage. Without control of the regions that are being used, it is
possible for a bad actor that has access to AWS to deploy resources that may not be
discovered if stored in an obscure region.

Cloud Governance | 173

2 There are other ways and tools to ensure that resources are not created in other regions that are outside the
scope of this book.

Region management should be a cloud governance item that is put in place with the
deployment of your landing zone. It should be limited to only the regions required
for the operation of your business. The newest regions are disabled by default, and
you do not need to take any action to account for these. Unfortunately, the controls
that are in place for new regions are not available for the older regions that were
deployed by AWS before 2019. Those regions require you to implement controls in
IAM to prevent access to them.2

Another cloud governance item that should be created before migration is the con‐
trols and criteria governing how new regions are enabled to meet changing business
objectives. At some point in time, your business may very well require the use of
additional regions that were not activated as part of your initial migration. Establish‐
ing the criteria and controls necessary to expand regions safely at the outset is a vital
governance action. You do not want your business to have region sprawl any more
than you want server sprawl. By establishing new regions, you start to duplicate
expenses for items such as NAT gateways and security controls. Your business con‐
trols for region expansion should consider the costs and increased risk of region
sprawl.

Having a strong landing zone deployment in place will help lessen
region-sprawl risk. However, your blast radius continues to
increase with each region.

Some items that may be indicators for region expansion are:

• Increased business continuity capabilities
• Business expansion into new regions
• New data sovereignty concerns
• Customer latency issues

These items are just some potential triggers that could be part of your expansion con‐
trols. There are potentially others, but these items probably cover the requirements
for most companies. I would recommend a policy that details these triggers and what
approvals, such as security, should be involved.

174 | Chapter 6: Defining Your Landing Zone and Cloud Governance

Account Management
Now that we have covered how to add governance for region controls, we will move
on to account management governance. We talked about account structure in “Land‐
ing Zone” on page 164. However, this is not the only item regarding accounts that
needs to be addressed at this point in your migration. There are a couple of account
governance items that need to be discussed: consolidated billing and root account
management. Without these governance items in place, you can run into some billing
and security issues. The concept of creating an account and having it align to a struc‐
ture are key components to your landing zone. However, along with those structural
actions, you need corresponding governance controls to maintain your security pos‐
ture and cost controls.

Consolidated billing
Consolidated billing is an AWS capability that allows a company to roll account bills
into a central account called a master payer. Consolidated billing makes paying your
AWS bill significantly easier because it acts as a single point of contact for your
finance team. Most companies will want to activate consolidated billing across the
entirety of their estate. However, some organizations, primarily very large companies,
may want to have more than one consolidated billing account.

One of the primary reasons for more than one billing account is that a company is
multinational and set up with multiple legal entities around the globe. Whether you
have more than one billing account is ultimately determined by how your company
splits apart its finances. If your company has separate profit and loss (P&L) for each
entity, then it may make sense to have multiple master payer accounts. The business
unit accounts under that legal entity would roll into each of their respective master
payer accounts. This structure would simplify the finance controls and contain them
within each entity. The alternative would be to have one master payer set up under
the main corporate entity. The drawback to this approach is that the main corporate
entity would have to charge the legal entities around the globe for the consumption of
resources.

As you can see, having one master payer with global entities could be a significantly
larger amount of effort. This effect would most likely be more work for the finance
team than the multiple master payer model would be. One item that you forgo when
using the multiple master account structure is the savings you get from some services
based on consumption. AWS prices services such as S3 and data transfer on a gradu‐
ated scale. If you use more, you pay less per gigabyte as your consumption rises.
When you break your spending into multiple master payer accounts, you segment
your consumption and your savings. People’s salaries are most likely your company’s
largest expense, and saving effort for your finance teams probably outweighs the sav‐
ings on these services.

Cloud Governance | 175

Using multiple master payer accounts can also complicate the use of an Enterprise
Discount Program (EDP). The EDP is a program in which companies guarantee a
certain amount of AWS spend and will prepay to receive a discount on that consump‐
tion. When you have multiple master payer accounts, you would need more than one
EDP, which increases the burden on your legal teams around the globe. Each of these
legal entities will have to negotiate and sign its EDP contracts.

The EDP program is only available for AWS customers that spend
more than $1 million a year on services.

For small, medium, and even large corporations that do not have these multinational
entity concerns, the answer is much less complicated. For the companies that fall into
this category, your master payer account is all that is necessary. You may want to
sketch a brief policy if it becomes necessary to split your master payers and describe
what the triggers for that split may look like. I would say that of all the items listed
here, creating new master payer accounts will be highly improbable.

Root account management
You would think that securing and maintaining your root accounts would be an obvi‐
ous practice. Unfortunately, if you google “AWS root credentials compromised,” you
will find link after link of people saying their account was compromised. Each AWS
account that we discussed will have a root account. Your root AWS accounts have
access to everything in the account and have the power to delete the account itself.
The root account can also disable other users, groups, and roles. With the right
know-how, an attacker could disable your ability to log on to the account to stop
them. You could say that your root account is the one ring to rule them all.

There are primarily four ways in which you can become a victim of root account
compromise:

1. The exposure of root access keys
2. Password compromise by an internal bad actor
3. brute-forcing the password
4. failure to follow best practice and create access keys for your root user.

All four can be easily avoided if you secure your root account properly. The last thing
you want is your company to be listed in any of those Google search results.

The first thing that should be done when setting up your landing zone is the creation
of a backup administrator account. Once you create this account, you should no

176 | Chapter 6: Defining Your Landing Zone and Cloud Governance

longer require the use of your root account. Your root account should not be used
ever once the backup administrator is created. The next step in securing your root
accounts is to create a hardened password. AWS IAM has a maximum password
length of 128 characters. Do you need your root password to be that long? Probably
not, but I use 32 to 64 characters and a password manager to store it. You do not want
your password to be brute-forced; making it long and complex is the best way to do
that. You do not want anyone memorizing it either.

There are 10 tasks that always require access to the AWS root
account, such as changing the AWS support plan or closing the
account. You can find a complete list online.

The next step is to secure your root account with a physical multi-factor authentica‐
tion (MFA) device. I am a personal fan of the Yubico YubiKey, which is very easy to
use and is highly reliable. I deployed more than 6,000 of them for a banking applica‐
tion, and as part of my testing, I sent them through the washing machine multiple
times without issue (not by design but great validation nonetheless). It is very impor‐
tant to have a physical device and not just a software token, because a physical device
can be locked up in a safe or vault, adding another layer of protection. By implement‐
ing a physical MFA device, you prevent two potential attacks: (1) brute-force attacks,
which, even if a hacker were to guess your password would not yield the physical
MFA device; and (2) the internal bad actor. By implementing a physical MFA device,
even the bad actor would not be able to gain access to your root account.

The final piece for securing your root accounts is never to create access keys for the
root account. Just as you do not want people logging on to the console, you also do
not want them logging in through the command-line interface or programmatically
by using the root access key credentials. You want to implement least privilege in
AWS, and allowing the root account to have access keys to the environment program‐
matically is the opposite of least privilege. To help drive the root security point home,
let us look at three scenarios in which people’s accounts were compromised.

Scenario 6-1
Tonya got a frantic call from the CIO this morning. Their website was under a dis‐
tributed denial of service (DDoS) attack, and customers couldn’t access the site.
Tonya’s company provides online storage for customers’ documents. When Tonya
arrived at work, she logged on to the AWS console to see how hard their servers were
being hit and whether there was any way she could scale them to absorb the load.
Upon logging on to the console, she saw a message in one of the EC2 instance tags
that said they needed to pay a ransom of $200,000 to stop the DDoS attack. Tonya
immediately let the CIO know what was going on and changed the root user

Cloud Governance | 177

https://oreil.ly/UzeRH

password to resecure the account. Tonya checked the servers, and everything looked
OK; the private keys to log on to the servers were not in AWS, so the attacker had no
way to log on to them. The CIO talked to the CEO, and they decided that since they
had changed the root user password, the account was safe and they were not going to
pay the ransom. Later that day, Tonya and all the engineers lost access to the AWS
console again. This time, the site went offline. By the end of the day, Tonya’s entire
AWS estate was obliterated, and the company was forced to file for bankruptcy and
was dissolved.

There are a number of things that Tonya’s company didn’t do right in this scenario.
The obvious one, which started the whole incident, is that the root account was not
protected by MFA and could be brute-forced. If MFA had been implemented, the
attack wouldn’t have been possible, even if the password had been discovered. The
root account should always be MFA-activated. The second mistake is that they were
obviously using the root account as the password, which was easy to guess so that
administrators could easily remember it. Using the root account for daily activities is
also against best practice in AWS. The final death blow to Tonya’s company wasn’t the
fact that they didn’t pay the ransom but that they didn’t do any forensics to see imme‐
diately what the attackers had done. If they had done so, they would have seen how
the attackers gained access and what changes were made.

If you follow the guidance in this chapter, you won’t make the mistakes that Tonya’s
company made. In addition, if your accounts were somehow compromised, your
proper account structure and logging account would give you the ability to perform
proper forensics and investigate what was done. You would be able to see whether the
attacker created another IAM user as a back door to continue gaining access even
after you changed the access keys. Let’s look at another scenario about how your
account could be compromised.

Scenario 6-2
Betty’s company recently started working in AWS. It runs an open source project and
has a paid subscription plan for enterprise customers that wish to use its product
commercially. To allow access to its AWS environment, it created access keys for the
root account so it could get started right away. It has a client that is pushing for it to
support AWS, and that client is a major source of revenue for it. For the first phase of
support in AWS, the company released an open source package to deploy a few AWS
components automatically, based on custom configurations. About two weeks after
the release of the new tool, it started getting billing alarms in AWS stating that it had
spent over $15,000. They were quite concerned, because they were running only two
servers in AWS at the time.

178 | Chapter 6: Defining Your Landing Zone and Cloud Governance

Unfortunately, this scenario happens quite a bit. People will inadvertently check in
code with access keys embedded in it without obfuscating them first. Hackers scan
sites like GitHub for AWS access keys to exploit. They use these keys to create botnets
or ransom your infrastructure. Therefore, it is vital not to create access keys for your
root account. If these keys were to escape your environment, it would expose all your
infrastructure to attackers. The first step that Betty should have taken was to create a
new user with only the permissions required and save the root account for emergency
use only.

Scenario 6-3
Maria works as the CIO of a large US firm that performs tax services for the public.
The firm runs its call center on AWS Connect. Last week, it had to let an engineer in
the cloud department go for poor work performance. When Maria was driving in to
work today, she received a frantic call from the manager of her cloud team. It appears
that the AWS account that hosted their Connect call center is gone. They cannot log
on with the root credentials nor with those of any other users. The whole call center is
offline, and no customers can call in for support or to ask questions. The tax deadline
is nearing, and it is Maria’s company’s busiest time. They cannot afford to be offline.
They later realized that the engineer they let go had the AWS root credentials and was
able to commandeer their account.

One would think that with the number of stories floating around the web about inci‐
dents like this one that people would make sure this doesn’t occur. Just like the other
scenarios, this is completely avoidable. Maria’s cloud team should never have been
using the root account for any operations, and the engineer should not have had
access to the password. They also should have been using MFA, so if someone did
have the password, they still would not have gotten access.

Hopefully, these scenarios demonstrate, in a very real way, the risks involved with
managing your AWS root accounts. Hopefully, you address them properly and
promptly with the deployment of your landing zone. Next, we will cover some addi‐
tional access and authorization governance items that will further reduce your risk of
operating in AWS. These access and authorization controls will ensure that your envi‐
ronment stays secure by reducing the overall complexity of IAM controls.

Access and Authorization
We covered why you need to secure your root accounts, but now it is time to dive into
how to protect the rest of your accounts in AWS. There are two key items that I want
to cover to achieve that. The first is a single sign-on, and the second is IAM user
accounts. These two key cloud governance items will ensure the long-term security of
your AWS environment. We will cover when to use them and when not to use them.

Cloud Governance | 179

We will also detail the reasons for these contexts so you can gain a strong understand‐
ing of their importance. In the end, you should have a solid plan forward as well as a
policy to ensure that your environment is secured.

Single sign-on by federation
You can probably remember a time when there weren’t any single sign-on capabilities
in any of your applications. Managing security in this environment was a total night‐
mare. You had to create users in a bunch of disparate systems, the password criteria
settings were never the same, and your users had multiple accounts and passwords to
manage. You do not want to repeat this pattern in AWS; implement account federa‐
tion instead. Your AWS estate will hold all your sensitive infrastructure. The last thing
you would want to do is create separate IAM user accounts for your administrators.
You would be creating yet another set of accounts for you and your administrators to
manage.

By implementing SAML Federation, you have one directory to control the access
your administrators have and one account to disable when they leave the company.
The most common way to achieve this in AWS is to create an IAM identity provider
that uses Security Assertion Markup Language (SAML) authentication against your
directory. There are several ways to do this, but the most common pattern I have seen
is the implementation of Active Directory federation through Active Directory Feder‐
ation Services (ADFS), Okta, SailPoint, and more. Alternatively, for organizations
that use Google Suite, Google single sign-on (SSO) capabilities are available. Both sol‐
utions provide the single sign-on capabilities that your organization should be look‐
ing for to secure your environment.

By using federation and single sign-on, you also decrease the learning curve for the
staff that provisions access in your environment. They will use the same tooling they
have in the past. For example, in a company that is using Active Directory, your team
would create user groups that correlate with AWS roles. Let us say that you have a
built-in role in AWS that allows the administration of your Amazon Chime configu‐
ration, which is a conferencing tool like WebEx. You would then have a group in
Active Directory that represents this role. To grant Chime administrative access, all
that would be necessary is to add the required administrator to that Chime group in
Active Directory. When the user accesses the login portal, they will be represented
with the Chime role for the correct AWS account. If you use IAM users and groups,
all management actions would need to be performed in AWS and require additional
training.

As a cloud governance item, you will want to construct a policy that states that all
administrator, operator, and developer access is to be provided by federation. The
policy should specifically state that IAM user accounts will not be used for these pur‐
poses. The policy should also contain the contexts in which you should include the

180 | Chapter 6: Defining Your Landing Zone and Cloud Governance

instances in which you would use IAM user accounts, which we will detail in the next
section.

IAM user accounts
Federated account access is the preferred method for administrators to access the
AWS console and CLI. Still, there are situations in which you will want to create an
IAM user, but they should be used sparingly, primarily for the reasons we just dis‐
cussed in “Single sign-on by federation” on page 180. The two situations I recom‐
mend using an IAM user for are when you need a service account for a third-party
tool, and when you create the backup root account, which we discussed in “Root
account management” on page 176.

Many third-party tools are available to supplement and augment AWS capabilities.
Many of these tools help with cloud governance, deployment, security, and reserved
instance recommendations. These services will need access to your environment to
perform the actions that you want to supplement. Creating a user in your directory
service would not be the best method for these types of services due to the complexity
of receiving long-term (90-day) access keys. This situation would be a good use case
to create a user account specifically for the tooling and assign the appropriate role to
that user. The primary method that third-party services use to connect to your AWS
account is by access keys. By creating an IAM user, you give yourself a bit more con‐
trol over how these accounts can access AWS. When you create an account, adding a
password is optional. By not creating a password, you disallow the user from
accessing the AWS console, forcing only API access to your account. Even without a
password, you can create the required access keys for the user’s account. These access
keys are then used by the third-party service to perform its work.

Although we have already covered the need for a backup root account to protect your
master root account, I do want to make one more point around IAM policy as you
are crafting it. Because IAM users are a critical part of cloud governance, you will
want to define the reasons for using an IAM user, such as for connecting to a third-
party service we just covered. It’s also important to define whether they are author‐
ized to log on to the console. You want to make sure that the number of IAM users
you have stays low. User sprawl increases risk and management, and a well-defined
cloud governance policy will ensure that the number of accounts is kept to a
minimum.

Key Management Service
The AWS Key Management Service (KMS) is the service that creates and manages
encryption keys for your company. By default, AWS creates a master customer key
that can be used in most of the services. You can use this key, but it would be better to
create new keys to help with the blast radius in case of key compromise. If you create

Cloud Governance | 181

more KMS keys, you protect yourself on two fronts: key compromise and blast radius
due to key access. The greater your key segmentation, the more refined the access you
can grant to those keys, lessening exposure. In addition, the more keys you use, the
fewer systems will be affected by any one key compromise. As a cloud governance
item, establishing the KMS key controls and policy during landing zone construction
will save you from needing to change keys later on.

If you use the default key to encrypt everything and that key is somehow compro‐
mised, you have potentially exposed all of your data. This exposure would occur even
if you created another key and still used it across all your estate. At the time of writ‐
ing, KMS keys cost $1 in the us-east-1 region. At this price point, it makes sense to
break up encryption in your environment to create more segmentation and decrease
your blast radius for this type of compromise. How you break up your infrastructure
depends on the size of your company and which account structure you have selected
to use. For instance, if you are a small company, and you have selected an
environment-based account approach, then it would make sense to create at least one
KMS key for each account. This deployment type is very cost-effective yet offers a
good deal of segmentation. If you have a larger organization, you could use a per-
account KMS key for all of the business units, or even down to hybrid account
structure.

Using an account-based KMS key structure helps minimize the blast radius for key
compromise, but it can cause another problem. When you create keys based on
account, all the engineers and developers need access to that account key. Now you
have a potential issue with blast radius due to the expanded scope of employees who
have access. If you cannot trust your employees, then who can you trust? Unfortu‐
nately, there are bad eggs out there who are the exception to the rule and do some‐
thing malicious. Your engineers’ account might also be compromised, and the bad
actor would have access to your keys. It is these one-off situations that you need to
protect yourself from. It may make sense for larger organizations to break down their
KMS keys further to segment and protect the company as much as needed. You may
want to make it a policy to segment your encryption by the development team, or
potentially by the application. This level of segmentation will allow you to constrain
the access to those keys further and reduce your attack footprint.

Regulated companies may also want to add a component to their KMS governance
policy to address specific workloads. For instance, if you must meet PCI compliance,
you may want to detail how those specific workloads are all encrypted individually
with their KMS keys. This policy will allow you to severely limit the blast radius for
key exposure and key compromise. It makes sense to use this approach for all the reg‐
ulatory requirements such as Health Insurance Portability and Accountability Act
(HIPAA) and Gramm-Leach-Bliley Act (GLBA). Again, a well-crafted cloud gover‐
nance policy early in the process will save you from the significant work of trying to
rectify it later.

182 | Chapter 6: Defining Your Landing Zone and Cloud Governance

Business Continuity
Business continuity is the last cloud governance item that we will discuss. As we
touched on in “Disaster Recovery/Business Continuity” on page 31, the major change
that you should address during migration is the mindset change from disaster recov‐
ery to business continuity (BC). To achieve the desired state, it becomes critical to
create some BC governance controls to control the way applications are deployed in
AWS. Your business units and engineers will then use these BC governance controls
to determine how each of your applications are deployed to AWS.

Not all applications can be adapted to a higher level of BC. Legacy applications can be
very difficult to change into a highly available design. These same applications might
not have an adequate return on investment to refactor, either. On the other hand,
having a highly available application increases the cost of operation. Not all applica‐
tions require a higher level of availability; therefore, those costs are unnecessary.

Because of the possible deficiencies that some applications may have, and the lack of
business necessity, it becomes prudent to construct BC governance using a tiered
approach. This isn’t new to AWS and the cloud. The concept has been around for
some time on-premises. I recommend the bronze, silver, gold, and platinum
approach to BC. Although this approach is not sexy or new (it’s been around on-
premises for years), highly effective constructs rarely are. These four tiers should
cover nearly all of your BC needs. They will, however, have very different designs
based on the new capabilities at your disposal in AWS. We will now cover the recom‐
mended configurations for each of these tiers, which are primarily geared toward
legacy-type applications. Cloud-native applications would look different, but legacy
applications are what you will be migrating.

Bronze
In the bronze tier, you won’t have any business continuity. This tier is reserved for
applications that have no critical business impact and are safe to be brought back
online. The critical difference that happens in AWS as opposed to on-premises at the
bronze tier is that in the event of an AZ failure, at least one if not more AZs are avail‐
able to you to restart the system in. To have that level of redundancy in AWS, you will
need to take snapshots of the server. You can do this with DLM, custom scripts, or
manually if changes do not occur often. EBS snapshots are stored in S3, and just like
everything else in S3, they are replicated to the other availability zones. This replica‐
tion allows your staff to easily restore a snapshot of the server to a volume in another
AZ and bring that server online. What would have taken a long time on-premises can
be quite short in AWS. This timeline depends on the level of workload for your staff
at the time of the event. This tier is the cheapest method of recovery available in AWS.

Cloud Governance | 183

Legacy applications, such as those written in Visual Basic, will fall
into the bronze tier due to their limited capabilities.

Silver
Now that we have covered the basics, let us cover applications that have some sort of
business impact and need to be online faster than bronze. It is at the silver tier in
AWS where you move from DR to BC. Because of the multi-AZ capabilities of AWS,
the silver tier introduces multi-AZ HA capabilities. In this tier, database servers
would operate in an active/passive mode across two AZs. The application servers and
web servers would exist in at least two AZs fronted by a load balancer in an active/
active configuration. This design can withstand the failure of one AZ and automati‐
cally failover to a second AZ with no disruption.

Failure without disruption is based on the technology used to repli‐
cate and failover the database tier.

Gold
In the gold tier, we are explicitly talking about applications that have a significant
impact on your business. These are applications that not only need to survive an AZ
failure but also the failure of a complete region. In this tier, you can use AWS native
technologies such as region copy and DMS to replicate data from one region to
another. In the gold configuration, servers are made HA, using the same methods as
the silver tier. Then the servers are replicated using snapshots and cross-region copy
to another region. The snapshots allow a cold image of the servers to be available in
the event of a complete region failure. These servers would be restored from the
snapshots before resuming operations. For the database tier, the databases could be
replicated from one region to another by using DMS. The DMS not only can replicate
servers for migration, but it can also be used as a long-term replication tool. The ben‐
efit of using DMS is that it replicates asynchronously and does not affect the perfor‐
mance of the production environment. DMS allows your database to remain in
lockstep with the primary region; this allows the database to be considered hot and
readily available for use.

Most applications will fall into the gold tier of business continuity.

184 | Chapter 6: Defining Your Landing Zone and Cloud Governance

Platinum
In AWS, the pinnacle of business continuity is the platinum tier. In this tier, all
servers and databases are replicated and operating in more than one region at the
same time. This tier is the most expensive and should only be used for the business-
critical servers that always need to be available. Unfortunately, many applications can‐
not support this level of redundancy without some modifications. At the platinum
tier, servers would be deployed with multi-AZ configurations in multiple regions and
balanced by Route 53 DNS based on geolocation or latency. This configuration is not
inherently complicated, because most applications can deal with this type of deploy‐
ment. However, it gets trickier with the multiregion database implementation. There
are many ways to solve this problem, but they are much too technical for this book.
The database tier will most likely be the limiting factor for the platinum level.

Only the most critical applications will require the platinum tier
and may be limited due to technical constraints. Most often, an
application may require significant code changes to be able to han‐
dle this level of availability.

Wrapping It Up
When you address the key cloud governance and landing zone issues we discussed in
this chapter, you add strength to your base deployment, and you ensure that your ini‐
tial migrations are successful. The proper cloud governance ensures that you do not
have to rework designs around security and compliance issues. At this point, the pre‐
work for your migration is complete, and your team can start deploying the landing
zone in preparation for migration. Many more items must be discussed for cloud
governance, but those discussed here should give you a decent start on the process.

In Chapter 7, we will cover migration planning, which can be done in tandem with
the deployment of your landing zone. We will cover technology blocker analysis,
migration planning, and how to categorize your applications by using the seven Rs
method. Migration planning accounts for the second-largest component of your
migration to AWS.

Wrapping It Up | 185

CHAPTER 7

Planning Your Migration

Well, we have finally made it to planning your migration. We have covered all the
required preliminary work and can now get to the meat of the process. Migration
planning will consume a lot of the information you have already gathered as part of
your discovery process, which we covered in Chapter 3. The discovery information
not only forms the rough version of your plan, but also helps you maintain the con‐
straints between dependencies as you refine your plan. However, before we can start,
we need to review a few things, such as what kind of methodologies to use for the
plan, plus blockers and changes in your business that have occurred since you started
the overall process. Once we address these items, we can move forward with develop‐
ing a comprehensive migration plan. To start the process, let’s look at what types of
companies need a plan.

Who Needs a Plan
Not every migration needs a plan. Let me rephrase: not every migration needs a docu‐
mented plan. If you are a small business and have only a handful of servers, you can
probably create a plan in your head. If you do not fall into the small-business cate‐
gory, you will need a migration plan. The larger your estate, the more complex your
plan becomes. Unfortunately, the complexity is not linear, either. With the increase in
application sprawl, you will experience exponential growth in complexity. The more
applications you have, the greater the level of interconnectivity between them. You
will also have more teams to account for in a larger organization, which is another
reason having a plan is critical.

It is common for a very large migration to have multiple iterations of a plan. You
should not consider your plan as set in stone, either. There needs to be a certain
amount of flexibility in your plan, and it should be considered somewhat agile. You
never know when something unexpected will happen, such as an application update

187

that needs to take precedence over migrating it. There are other potential disruptions
as well. Critical staff leaving a department, funding issues, and the occasional reor‐
ganization are just some potential issues you might face. You need to be flexible to
adapt to these changes. Since the possibility exists that you can’t be completely agile,
we need to discuss what types of plans you can use, and we will cover those next.

Agile, Waterfall, or Combination Plan
There is a lot of talk in the migration world about using agile methodologies to
migrate your workloads to the cloud. To be clear, we are specifically talking about the
migration plan and execution at this point. We will cover development methodolo‐
gies later in this chapter. Unfortunately, you can only be partially agile with your
migration due to dependencies, and ultimately, a lot of waterfall might be included in
your migration. A waterfall plan flows in a predetermined and unmovable path, just
like a waterfall in a stream. You must progress from A to B to C before you can get to
D. Your migration might require a predetermined path for certain applications. For
instance, Active Directory, Chef, file servers, and other highly shared components
need to be moved over first, because many or all of your applications depend on
them. You may also use some form of waterfall methodologies in your migration in
application subsets, due to a smaller interdependence within that application cluster.
Databases are also often tightly coupled to applications, causing a dependency that
cannot be migrated out of order. Ultimately, you will end up with an agile waterfall or
a combination of both types. Sections of your plan will need to be sequential but have
many surrounding pieces that are agile. Be as agile as possible, but do not be obstinate
and think you can make the whole migration agile.

You will want to plan your migration in sprints. Although a sprint is an agile term
meaning a time-boxed level of work effort, nothing says you can’t put a waterfall
effort in a sprint. Waterfall sprints become fixed and can’t be moved, whereas an agile
workload sprint can be moved at will.

It doesn’t matter whether a sprint will contain an agile or waterfall work effort. It is
important to set the sprint length properly for your migration. I have found that a
sprint size of two weeks works well for most applications. Some small applications
could be completed in a week’s time frame, but most will require two. In one project I
worked on, the project manager was attempting to create one-week sprints. This
length of sprint might make sense with a development team working on small appli‐
cation modifications and feature requests. When migrating to AWS, a one-week
sprint does not afford enough time to complete the required amount of work for
most applications. Depending on how complex your applications are, you might need
three or four weeks, but in this circumstance, you can couple two two-week sprints
and achieve the same effect without overcomplicating the migration of smaller apps.

188 | Chapter 7: Planning Your Migration

I like to make a sprint equal to the time it takes to move an application in its entirety.
You can break an application down further into the individual pieces and have
shorter sprints. Still, I find that shorter sprints add a bit of management overhead that
people are not ready to absorb. Besides, most teams are not used to running in an
agile fashion. They can get overwhelmed with the level of management required for
smaller sprints. When it comes to migration, there is no right way to split up your
work (even though there are probably plenty of people who will tell you otherwise).
You need to determine what your team can work with and the level of management
overhead you can absorb.

If you are working with a consulting firm, the process will be different. It will be the
one running the project with its project managers and engineering staff. It will use its
methods, and sprint lengths will be based on its process. Its teams will be much more
coordinated and used to the work involved with migrating, because they do it so fre‐
quently. Although consulting firms can be more effective at migrating you to AWS,
remember the risks I talked about in “Contractors and consulting” on page 60. You
must ensure that you create the proper documentation to take the work over after
they have walked out of the building.

Preplanning
Several components go into the migration planning phase. The bulk of your time will
be spent evaluating the applications and determining which method of migration, or
lack of migration, you will use. Amazon uses a specific methodology called the seven
Rs that we will touch on a bit later in greater detail. The rest of the process will be
dedicated to a bit of preplanning that occurs. You will need to address three precursor
items before the planning portion. First, it is important to review your infrastructure
and company to determine whether there are any technology or business blockers.
Second, once that is complete, you move into selecting methodologies for develop‐
ment. Third, the last item before planning is selecting the tooling that you will use to
do the workload migrations. When you complete these three items, we finally move
into migration planning.

Blocker Analysis
Even though we have put much effort into crafting a great migration story, built a
business case, made a thorough discovery on your infrastructure, and addressed
operational readiness, a few technical and business blockers will interrupt your
migration. We will address a few technical blockers, such as outdated and
unsupported operating systems. From there, we will cover a few business blockers
that might have come up since you started your migration, such as mergers and
acquisitions. There are not that many, and it will not take much effort, but addressing
these blockers is important nonetheless. With each step, we refine the process a little

Preplanning | 189

more and get closer and closer to landing on the moon. At this point, you have
already blasted into space. Let us look at some technology blockers first.

One thing that I want to make sure to say is that it is OK to leave
something behind on-premises. Sometimes it just makes sense if
the blocker is too costly to rectify. Having all of your infrastructure
in the cloud is great, but it isn’t always practical.

Technology Blockers
In Chapter 3 we talked about discovering your workloads and how you locate your
systems and applications. If your company has been around for a while, there is a
high probability that you have some legacy technology that was not discovered in the
initial discovery process. Now is the time to put a final point on the discovery and
determine whether any technology blockers can cause an issue during your migra‐
tion. These blockers will boil down to three categories: unsupported and outdated
operating systems, and unsupported hardware. We will cover these in more depth in
the next sections.

Unsupported and outdated operating systems
You may run into some operating systems in your environment that are not sup‐
ported by AWS. These operating systems (OS) are different from ones that are unsup‐
ported by the vendor. In this case, the OS is not supported by AWS and cannot run.
The primary cases that I have seen are the Solaris operating system or macOS (if you
had an old Apple server hiding somewhere). These operating systems are unique in
that they run on x86 hardware, which might give you the impression that you could
run it on AWS, but the drivers needed to support the virtualized hardware, such as
the network and disk controller, are not available and would be a critical blocker to
running it on AWS.

Unfortunately, the applications that run on these servers will need to be ported and
recompiled, repurchased, or potentially refactored. To be able to recompile, you need
to own the source code and have the capabilities to make that kind of change within
your team. If you do not own the source code, then you are at the mercy of the ven‐
dor. If the vendor still exists, there may be a possibility of converting your license
from Solaris to Linux to enable you to move the application to AWS. If the vendor for
the software no longer exists, then you have little recourse other than leaving the
server as is on-premises or purchasing a compatible replacement tool.

Beyond some unsupported operating systems, migrations often run into problems
with outdated operating systems as well. Almost every migration that I have been a
part of has had some form of outdated operating system running on-premises. You
could have Windows 2003 somewhere in your environment, or maybe an outdated

190 | Chapter 7: Planning Your Migration

1 Mainframe migration has a very different process than migrating typical IT workloads and is outside the
scope of this book.

version of Red Hat. It does not matter what vendor it comes from; if it is unsuppor‐
ted, it is a risk to your migration. Without correcting this issue, you do not receive
security updates and critical patches for those operating systems. These bugs and
security flaws are significant business risks, even if they are only on one server. After
all, a chain is only as strong as its weakest link, and you could have a paper clip in
your chain depending on the issues with the operating system. Before you migrate to
AWS, you will want to address these issues.

Sometimes the software that runs on an outdated operating system cannot run on a
newer version of the OS. Although this may seem like a dead end, all hope is not lost.
Some tools can package up your application and make it compatible with newer oper‐
ating systems. One such tool is part of the End of Support Migration Program (EMP)
at AWS. The tool is an Application Compatibility Packaging solution. This tooling
allows you to package a legacy application into a container to run it on a new operat‐
ing system. The term container in this context is not the same containerization
referred to in the Docker technology. It is just another case of technology reusing a
naming convention. If you are familiar with Microsoft App-V and VMware ThinApp,
the concepts are very similar. An application emulation bubble might be a better term.
This packaging technology allows you to bridge the gap between the time you
migrate and the point in time at which you have to replace the application while still
maintaining security and patching of the OS.

You may be tempted to move outdated operating systems to the
cloud since you can bolster your security model in AWS. Avoid
falling into this trap. Although you can increase segmentation, you
still cannot remove the flaws. You only make them harder to access.

Unsupported hardware
The second major technology blocker that you will run into while migrating to AWS
is incompatible hardware. At this point, most of the world is probably running on x86
hardware. However, there are still significant portions that run on mainframes, mid‐
frames, and other RISC CPU–based hardware. These types of hardware are not sup‐
ported in AWS, and alternatives will have to be sought out to replace them or leave
them on-premises.

One of the concerns about leaving them on-premises, particularly for mainframes, is
that usually the ancillary systems cannot move as well.1 Many ancillary systems,
meaning any applications that are required to talk to mainframes, need low latency to
perform their work, and the round-trip time to and from AWS is too long to be

Blocker Analysis | 191

practical for your business. Your company then sees a large and most likely business-
critical chunk of your infrastructure left behind. The ultimate impact can be quite
negative, because these critical systems then become less agile than the rest of your
applications. The mainframe, in effect, becomes a massive anchor holding your busi‐
ness back. The decision to leave your mainframe alone and not refactor it to a more
cloud-friendly environment can have a major impact on your overall business long-
term. This decision should be given the proper amount of thought and should not be
taken lightly.

Business Blockers
When you started your migration process, you were operating under a set of business
assumptions. These assumptions did not preclude you from moving to the cloud and
are why you began the process in the first place. Since you began the migration pro‐
cess, several months may have passed, and business objectives and the assumptions
around its operations might have shifted. At this point in the process, you will want to
reevaluate these assumptions and determine whether any potential business blockers
need to be addressed. You will want to address them now or build them into your
migration plan.

Only a few blockers will pop up now. Some of these items might be very sensitive,
such as mergers, acquisitions, and divestitures. In contrast, others are just a shift in
priorities and objectives caused by major bugs or competitive needs. In addition to
mergers and acquisitions (M&A) activities, we will cover changes in management
and priority shifts. These major categories involve several subcomponents such as
divestitures for M&A or vertical management changes that can affect your migration
plan. We will cover these individually in detail and demonstrate how they may affect
your schedule and how to compensate for them.

M&A activities
Mergers and acquisitions can affect your migration plans significantly. Unfortunately,
depending on your position in the company, you may not always be privy to M&A
activities until the later stages in the process (or potentially after the deal has closed).
Consuming an entire IT staff and infrastructure can have an enormous impact on
your migration timeline and costs, depending on the source state of the acquired
company. If the company you have just purchased is in AWS, you are in luck, because
the impact is not as significant. If the company’s estate is on-premises, your entire
migration plan might shift in favor of moving the acquired resources first, with your
existing estate taking a back seat in the process. If you do have to consume on-
premises estate, you would have to start a discovery process on the infrastructure to
determine what is there and what your run rate would look like. You will not have to
build a new business case, but as you learned in Chapter 3, you cannot properly cre‐
ate a plan without the details contained in the discovery.

192 | Chapter 7: Planning Your Migration

Let us look at the items that you would need to address if you acquired a company
that was already in AWS. When you consume an existing AWS account, the primary
changes will be the master payer, alignment to your governance controls, and any
modifications to the federated access to the AWS accounts. If you have been following
along and following best practices, then the consumption of AWS accounts and align‐
ment to your controls should not be an overwhelming amount of work. If your teams
have been following best practices, the items that need to be implemented to align the
accounts are already programmed in IaC and can be readily deployed. Since the land‐
ing zone controls and governance that we discussed in Chapter 6 are the bulk of the
items needed, you should be in the process of deploying them now or have already
completed them. The two things that your team will have to do manually is switch the
master payer account to your master payer and configure tagging on existing resour‐
ces in the consumed accounts. These two items ensure that the resources are properly
paid for, there is no interruption in service, and the resources are properly charged
back to the relevant business units.

If the company being purchased is a divestiture, additional work
will need to be done for access controls and your directory service.
Since the users that operated and consumed the resources in the
AWS accounts were in the selling entity’s directory, you will have to
migrate those users and transform the permissions of the access
controls to new users in your directory. This work can significantly
add to the migration timeline. It doesn’t matter whether the infra‐
structure is on-premises or in AWS; the level of effort is the same.

On the other hand, if you are the company being purchased, the news could be awe‐
some or a total disaster for your existing planning. If the acquiring company is not in
AWS, the probability of your migration going forward is probably low. You most
likely will have new management, and it might want to start over at the business case
and make its own decision about the process. If it is already in AWS, the news is
probably good, and it will be much more receptive to your plan and existing docu‐
mentation because of its own experience. Ultimately, either way, there will be a high
level of disruption to your existing thoughts on migration, governance, landing zone,
federation, and a whole host of other items if your company is being purchased. Out‐
side of the discovery and business case, much of the work will need to be reviewed
and adjusted to compensate for the corporate changes.

Divestitures
In a divestiture, or when your company sells off a business unit, the impact on your
migration will not be very large. It will probably make migrating easier than before
because there will be fewer workloads to move. The complication that divestitures
create is in the retention of on-premises resources. When a part of your company is

Blocker Analysis | 193

sold off, part of the contract details how long the purchasing company has to move
the relevant resources to its ecosystem. These contractual obligations can affect your
burn-down, as we discussed in Figure 4-12. Depending on how your migration time‐
line aligns with the divestiture timeline, you could end up having to leave services
and equipment on-premises longer than you expected.

The other issue that can arise from divestiture is that some of your staff might be
moving to the new company. It would not be unheard of for IT staff to be divided up
with the sale of a portion of the company. A purchasing company will want to mini‐
mize the impact that tribal IT knowledge would have on the acquisition. This impact
can be greater with a larger number of internally developed applications. If your com‐
pany has mostly COTS applications, this risk is minimized for the purchasing com‐
pany. If staff will be changing companies, you will need to keep this in mind when
adjusting your timeline for migration. As we discussed in Chapter 4 in “Estimating
Your Timeline” on page 102, you should recompute the amount of work that your
new and reduced team can perform based on its skill set. After you can recalculate the
capabilities of your reduced team, you can adjust your timeline.

Changes in management
Finally, we arrive at changes in management. When there are shifts in management at
a company, there is always disruption. The old managers are out, and the new manag‐
ers are in, and they want to make a name for themselves. Unfortunately, when they
come in, the first thing that they want to do is make a bunch of changes. These
changes are not necessarily bad. Often companies can become stale, and a fresh out‐
side look can inject new life into a company. Other times, changes can just be for the
sake of not doing it like the last guy, and these changes are often a waste of everyone’s
effort. In the following sections, we will cover vertical management changes (such as
in your management) and horizontal changes (such as in your peers). Both manage‐
ment changes can have negative effects on your migration. However, their effects will
be felt differently.

Vertical changes. The change in your management chain can have a significant impact
on your migration. I would say the risk is the same if you are an IT manager or a CIO.
The higher up the change, the greater the potential risk to your migration. For
instance, if you are an IT manager and have a director, VP, and CIO above you, a
change to your direct manager will probably have little effect on your efforts. But as
you climb the ladder closer to the CEO, the risk goes up. A new CIO might come in
and say no to the cloud completely, or they might come in and say that everything is
going to the Google Cloud Platform (GCP). Of course, the reverse might come into
play as well, and they mandate that the company will move to the cloud. The fact of
the matter is that you just cannot know until it happens. Hopefully, if you did have a
change in your management during this process up to now, you know where they
stand. If not, you can follow the processes that we discussed in Chapter 4, such as in

194 | Chapter 7: Planning Your Migration

your why narrative and FAQ, for gaining traction and acceptance. It can be unfortu‐
nate to have to restate your business case; it can feel like you are starting over, but
your company needs to move forward. You have shown the value to the business
before, and you can do it again.

The level of impact by a vertical management change can also be affected by the size
of your company. A larger organization is a lot harder to get moving in a direction.
Thus, once it is headed in that direction, it becomes a lot harder to shift and take into
a new direction. If you work for one of these larger organizations, you will have less
potential risk of your migration being derailed. I have personally experienced this in a
couple of migrations that I worked on. The companies were all in the Fortune 1000
and had made changes to IT management during the migration assessment and busi‐
ness case. In each of these instances, the company had committed to migrating
already. It had committed to AWS and consulting firms, and potentially even made
public statements to the shareholders. In these cases, even though no workloads had
yet been moved, it would have been career suicide for new management to derail the
effort.

The risk of migration derailment increases as you move down to smaller organiza‐
tions. For a small company, there can be a significant risk, because it does not have
the momentum that larger organizations have. You will be at the mercy of the new
manager’s bias, good or bad.

Horizontal changes. In a horizontal management change, a peer manager changes
during the migration process. Unlike in a vertical manager change, there is less
impact on your migration with this type of change (unless it was your chosen depart‐
ment for expanding upon the base of your pyramid that we discussed in Chapter 7).
This is not to say that this won’t have any impact at all and you will be sipping marti‐
nis on the beach at sunset tonight. Rather, it does not have the potential to derail the
entire migration. The new manager could still throw up roadblocks for moving a par‐
ticular business unit to AWS. Just as with a change in vertical managers, you may
want to go through the FAQ process with them to answer any questions they have
and reassure them about any potential concerns.

Ultimately, the only thing that a horizontal management change will affect is the
migration timeline. Since they are coming in late to the game, they might not feel at
ease with the migration, given their overall understanding of the company. They must
learn the people, processes, and applications for the business, and the migration will
just add more fuel to the fire. If you were to purposely move the migration of that
business unit’s applications toward the end and give them more time to onboard
before that kind of disruption, you could probably earn quite a few brownie points
with them. This positive action is something to keep in mind as you complete the
migration planning process.

Blocker Analysis | 195

Priority shifts
Another thing that might have changed since you began the migration process is a
shift in priorities. Let’s face it, the world does not stand still, waiting for us IT manag‐
ers to get everything we need all lined up and ready. Business priorities shift, based on
current trends in the marketplace, economy, and political situation. As with most of
the topics we have talked about previously, there is a never-ending litany of items that
we could cover, and we need to hone our focus. Instead, we will cover major applica‐
tion bugs and competitive requirements, which can affect many of your business
units and are quite common to many companies.

Major bugs. Nobody likes bugs, and it goes without saying that no one likes major
ones. It does not matter whether you are running mostly COTS or you develop your
own software; bugs can still affect your migration. In my experience, major bugs only
affect a particular business unit and not the entire enterprise. Most enterprise-wide
applications have become quite refined, and most big bugs have been worked out.
When was the last time there was a major bug in your email or SQL server? You
might not even remember. This is not the case with internally developed software and
why major bugs typically affect only one business unit. When it comes to your migra‐
tion, the question you must answer is how your timeline will be affected. The answer
lies in whether the application in question is COTS or internally developed.

With an internally developed program, you have more control over the release of
updated software. When you encounter major bugs in your application that need to
be addressed by internal engineering teams, the impact is reflected in your migration
plan. You should be able to move a couple of other applications around to compen‐
sate for the repair of the bug. This adjustment will ensure that the engineering team
will have its full focus on migration when necessary. Its undivided attention is neces‐
sary for a successful migration. Typically, the impact to your plan should be relatively
small if the development team is using an agile development model. If the team uses
waterfall and intends to put the fix out in a new release rather than with a hotfix, you
may need to adjust your plan and your timeline. The timeline might need to be
extended to address any delays due to the long release cycle.

If you have a major bug in your COTS application, the potential for your migration
timeline to extend is significantly higher. You are at the mercy of your vendor’s
release timeline, and unless you are a major customer for the vendor, you probably
do not have enough sway to make the vendor change it. Depending on how long it
will take to get the new release, you might have to extend your timeline. I would not
suggest moving the application to AWS before the bug fix, because you are potentially
changing a causality variable from a known state to an unknown. This might cause
the application to work properly without a fix, and you will never know whether it
will happen again. For instance, the bug might be caused by a race condition that is
now changed based on the amount of RAM and CPU that is available. This condition

196 | Chapter 7: Planning Your Migration

then might reoccur in the future when load increases, and RAM and CPU become
constrained again.

The only time that I would recommend moving an application to AWS prior to
receiving a bug fix is when the timeline is too far out of bounds. For instance, if your
software vendor is telling you that the fix won’t be available until the next major
release is out in six months, it might make sense to move that application ahead of
that time. You obviously can’t put your migration on hold, supporting your environ‐
ments for one trailing application.

Competitive requirements. The business world is a highly competitive one. There is
constant vying for position between companies, each of them striving to be a market
leader. Sometimes a competitor puts out a product or feature that your company
must address. Without it, your company will continue to lose customers, and you
need to address it sooner rather than later. In this situation, you have two options
regarding how it will affect your migration plan: delaying the migration or accelerat‐
ing it. Depending on the capabilities that your company needs to enhance to remain
competitive, you might want to accelerate the migration to AWS.

AWS offers an amount of agility that you cannot replicate on-premises. Not only can
you accelerate the deployment of new versions by using automated tooling, but you
can also try a new technology without any sunk equipment costs. By migrating the
application to AWS sooner, you open the door to better data analytics, artificial intel‐
ligence/machine learning (AI/ML), specific database options such as a cryptographic
ledger, and the internet of things (IoT). These services would be available instantly to
developers once the application was moved.

You might be tempted start creating new resources in the cloud and
leave the application on-premises, but this will introduce potential
latency and data transfer concerns.

On the reverse side, it might make sense to leave the application on-premises longer
and move it to a position later in your plan. If the application does not need any of
the new features available on AWS, it might make sense for your company to just
leave it for the time being and focus on adding the new features rather than concern‐
ing the engineering team with moving it. The priority is addressing the business
need, not your migration.

With any priority shift, the important part is to keep your eye on the ball, and the ball
is your business. I have seen many managers get hung up on the migration and lose
sight of the main purpose. Moving your company forward is the main purpose;
sometimes that does not prioritize the migration, and sometimes it does. Migration is

Blocker Analysis | 197

2 For more information on these principles, you can read the full manifesto online.

a bit like the water moving down a river. It can’t be rigid, or it will get hung up on the
rocks and not go anywhere. You need to be fluid and adaptive.

Now that we have addressed how priority shifts might affect your migration, it is time
to look at development methodologies that need to be selected prior to building your
plan.

Development Methodologies
You might be asking why we are looking at selecting development methodologies at
this point during the migration planning phase rather than later in the process. At
first glance, it might make sense to talk to the development teams about what method
they prefer when you are migrating their applications. However, this is one time
when you need to drive business agility forward. Your company probably doesn’t
have a consistent method of development, and it might not be agile. Some prerequi‐
sites are required in the cloud to truly gain the agility that you are looking for in your
business. Having an outdated development methodology will not give you that agility.
Like we talked about in “Building a Pyramid” on page 144 in Chapter 5, you can lev‐
erage the IT department to set a new standard on how your company operates.
Because we want to drive agility in the business, this is a good point in the migration
at which to discuss development methodology. In addition, by choosing your meth‐
odology now, you will also lay the framework for the AWS tooling that you will need
to support your agile deployments to meet those needs, such as CodePipeline and
CodeGuru. This preparedness ensures that the first migrated applications follow best
practices and will not need to be reworked postmigration.

Throughout this book, I have probably mentioned agility a thousand times. You can‐
not be agile if you do not develop your application in an agile way. A couple of busi‐
ness units in your organization might still follow the waterfall development
methodology. These business units will have to be coached to change those methods
to maximize the benefits of AWS. You might think that you could save this change for
a later time, but I have worked with enough companies to know that you will never
come back around to it. The best day to inject agility in the business is today. Envel‐
oping it into the migration process forces the issue and increases the return on invest‐
ment of your migration immediately.

Before we get into these individually, let’s go over some core principles of agile devel‐
opment. There are 12 principles from the Agile Manifesto that are instrumental in all
agile methods and can serve you as a guiding north star as you communicate the
necessity of agile development to your business units.2 We will touch on a couple that
are particularly relevant to agility in the cloud:

198 | Chapter 7: Planning Your Migration

https://agilemanifesto.org

Customer satisfaction
This principle is my favorite, and it aligns well with the Amazon leadership prin‐
ciple of being customer-obsessed. The problem with the waterfall methodology is
that you do not know how the customer feels about your software until the whole
release is out the door (or potentially during beta testing), which is much too late.
By this stage in the release cycle, you cannot afford to go back and change much
to address the issue because you are too far along in the process. If you miss the
mark with the customer, why even bother shipping the release? By using an agile
methodology, you can receive customer feedback sooner and adjust to meet
those needs faster with less rework.

Working software measures progress
When working in an agile methodology, you can directly measure progress by
how much of the software is working. Each time you release a new feature, it is
rolled out to your customers and becomes usable immediately. This acceleration
means that you continually add to customer satisfaction as you go. There is no
“big bang” release to talk about, but customers would prefer an incremental
improvement that will help them today rather than waiting for months for all the
features to arrive. Many features that are released in a waterfall method might not
apply to every customer. You essentially make your customers wait for features
they might not use. This is not the case with an agile methodology.

As you can probably see, these two principles play well with the cloud story. You want
to provide a high level of customer satisfaction quickly, hopefully making your com‐
petition play catch-up all the time, putting it on the defensive. Now let us look at the
types of agile methodologies and their key components.

There are several agile methodologies in the wild. We will not cover them all in-
depth, but we will go over the most popular to give you an overview. This baseline
knowledge will enable you to assist your teams in selecting the proper methodology
for their product and team:

Extreme programming
Extreme programming (XP) focuses on iterative small releases that allow you to
adjust requirements based on customer feedback. Where XP differs the most
from other methodologies is that it focuses on code quality by using program‐
ming methods like test-driven development (TDD). In TDD, you write the unit
test before you write the actual code. By working backward, you make sure that
your code does what it is supposed to, from the get-go. If you automate the unit
testing using a deployment pipeline, you get instant feedback on your code qual‐
ity, and the defective code is never deployed. The pipeline will fail out of the unit
tests and send an error message. This error handling allows your programmers to
address the issue quickly.

Development Methodologies | 199

Scrum
Scrum is probably the most common agile methodology. In Scrum, work is com‐
pleted in units of work called sprints. Sprints usually last from two weeks to two
months, whereas XP work is split into a maximum of one- to two-week sprints.
Scrum does not prescribe any engineering methods like TDD and instead focuses
solely on project management. Scrum is also more rigid than XP and does not
allow for the changing of priorities once a sprint starts. Because Scrum is closer
to waterfall than XP, it would probably be the methodology of choice when con‐
verting to agile. This framework allows your team to keep its familiar engineering
methods and keeps priorities locked in for the sprint.

Feature-driven development
Feature-driven development (FDD) is a bit different from other methodologies
in that it starts from the required feature and works backward from there. I par‐
ticularly like the FDD methodology because it starts with the customer and the
features that they desire. In today’s competitive economy, time to market (TTM)
is critical, and FDD focuses on delivering usable software in a short period.

These are the three most popular methodologies that I see deployed. There are more,
such as Crystal, Kanban, and Lean. I would begin with one of the three most popular
methodologies to get started. Once your teams become more comfortable working in
an agile mode, they can experiment and use methodologies that might fit their partic‐
ular needs better, or even blend methods to create their own. I view agile frameworks
as a great starting point and adapt them to my own needs as necessary. Once you
have selected your development methodology, you can move on to selecting your
tooling for migration.

Migration Tooling Selection
Migrating to AWS requires tooling. You do not want to have to re-create all your
servers in AWS. You want to be able to capture the work that was done on-premises
and move that into AWS. AWS offers two main tools that you will want to use and,
potentially, some third-party tooling. Of course, the tooling from AWS is essentially
free, save for some instance costs. However, sometimes you require some additional
functionality, which is where third-party tools come into play. The primary AWS
tools that we will cover are CloudEndure, Database Migration Service, and DataSync.
The selection of tooling is not just about which tools to use but also when to use
them, which we will discuss in the next sections.

CloudEndure
CloudEndure is a block-level replication tool that can copy the disk drives of your
servers to AWS asynchronously, so that the data only needs to be committed to the
source server for operations to continue. Thus, it does not affect the performance of

200 | Chapter 7: Planning Your Migration

your applications, which is a very important fact to remember, because business own‐
ers might become concerned that CloudEndure will slow the performance of their
application on-premises. It will be your number one tool for migration. CloudEndure
does an excellent job, has a very simple user interface, and is integrated with AWS
Migration Hub, a service that essentially creates a single pane of glass or a unified
console or dashboard for management of your migration activities.

CloudEndure is used when you want to replicate a server in its entirety from on-
premises to the cloud. It isn’t really designed for partial migrations in which not all
the drives and data are replicated. Typically, you would do this to replicate application
servers and, possibly, web and database servers. Most of the time you only want to
replicate one web server in a web farm. A typical use case for this feature is when
there are many servers in a load-balanced cluster. Since all the servers are the same
(or should be), you only need to replicate one. You then create an image of that repli‐
cated server to add to an auto scaling group. The auto scaling group would then han‐
dle the spin-up and termination of servers for you. This scaling saves you from
replicating all the servers.

In my opinion, CloudEndure is the only service you should use to migrate your
servers to AWS. There are other options, but they are not seamless or as easy to use.
They ultimately create more work for your staff and will drive up the cost of your
migration. CloudEndure can work from both physical and virtual servers, so there is
only one tool to learn. Other tools, like the AWS Server Migration Service, only sup‐
port virtual servers from VMware and Hyper-V. The other tools also work using
snapshot technology, making the migration timeline longer than CloudEndure, with
its continual replication the only logical choice.

You won’t use CloudEndure for moving database servers if you will use AWS Rela‐
tional Database Service. To perform that kind of migration, you would use DMS,
which we will cover in the next section.

Database Migration Service
Database Migration Service will probably be your second most used AWS tool to
migrate to AWS. To recap, DMS runs on an AWS instance and connects to the source
database and the destination database. It then replicates the database asynchronously
to the destination. Like CloudEndure, the asynchronous replication does not affect
the performance of the production on-premises database and application. As part of
the operational cost savings, you will want to move as many database servers as you
can to RDS. As discussed before, RDS will save your teams a lot of effort with patch‐
ing, backups, and high availability that you will want to take advantage of.

DMS can also help you move data from one database engine to another. For instance,
you might want to migrate from an Oracle database engine to MySQL. DMS can help
you move the data between them. Unfortunately, this is only part of the equation. You

Migration Tooling Selection | 201

will most likely have to perform a significant number of code changes in your appli‐
cation as well. These manual code changes are what usually derail database engine
conversion.

Unlike CloudEndure, which competes against AWS Server Migration Service, AWS
does not have any competing products for DMS. It will be your only option while
using AWS native tooling. There are other options in the market that can perform the
same type of asynchronous replication, such as GoldenGate. Unless you need some
enhanced capabilities such as partial or multiregion replication, DMS will most likely
fit your needs.

DataSync
AWS DataSync is a newer service to AWS and a welcome addition. DataSync allows
for the easy transfer of files between on-premises file servers and NAS devices to
Amazon S3, Amazon FSx, and Amazon EFS. DataSync was released in late 2018;
before DataSync, you would have to use third-party tooling and the AWS CLI tools to
achieve the same data transfer. DataSync offers many additional features that make it
much more desirable than using command-line tools or third-party software. Data‐
Sync works by deploying resources into AWS that receive data from agents you install
that have access to the source data. DataSync can automatically scale the resources in
the cloud to accommodate increased load during transfer.

When you migrate to AWS, you will want to move away from standalone NFS and
Windows file servers. By running your conventional servers in AWS, you will not off‐
load any of the management tasks associated with them. By using DataSync, you can
transfer the data from those on-premises servers to the managed services in AWS and
reduce your management overhead. If possible, transferring files to S3 object storage
will be the cheapest option, with the largest number of storage tiering options avail‐
able. However, to use S3, your application will need some code changes to shift from
local files or shares to S3 locations.

Ultimately, DataSync will be your third most used AWS tooling for migrating.

DataSync can also be used for disaster recovery capabilities by rep‐
licating files to other locations.

202 | Chapter 7: Planning Your Migration

3 ATADATA can no longer be purchased by itself and comes as part of Deloitte services.

Third-Party Tooling
AWS has done a pretty good job of providing the tool sets required to migrate your
workloads into the cloud. With the three tools we discussed, 90% of companies will
have everything that they need. However, some companies may need some additional
capabilities that are not available in the native tooling.

When it comes to a block-copy tooling product like CloudEndure, few other options
offer a significantly different feature set. You probably will not have to deviate from
CloudEndure unless you want something that can upgrade your OS at the same time.
For instance, Deloitte’s ATADATA can perform an update of an older OS like Win‐
dows 2003 while it does the migration.3 There are many tools in this space, and cover‐
ing them is outside the scope of this book. My recommendation is to start with
CloudEndure and then deviate if there is something you need to accomplish that is
outside its feature set.

For database and file replication, there may be additional requirements for which you
will need to use third-party tooling. For instance, if you want to split a data set into
multiple regions based on country, this would need to be handled by something other
than DMS, because it is outside its capabilities. Work like this would require some‐
thing custom. Although DMS can change database engines, it still performs these
conversions as a whole database. If you need to do anything more advanced, you will
need to look elsewhere or build some custom scripting. We will touch on some exam‐
ples of where you might need some additional tooling in Chapter 8, when we discuss
application refactoring.

Building Your Plan
We have now looked at the tooling that you will use and your development method‐
ologies. We also looked at how your business priorities might have shifted since you
started your migration process. Now it is time to start building your plan. The good
news is that about 80–90% of your migration plan has already been created for you.
That’s right, most of your migration plan is already done through application discov‐
ery mapping, which we discussed in “Dependency mapping” on page 82 in Chapter 3.

When you discovered your workloads, you should have obtained dependency map‐
ping as well (if your selected tooling supported it). If you do have dependency data,
your life will be much easier. I would estimate that 90% of a migration plan can be
derived directly from the dependency mapping. The other 10% will have to be based
on the availability of the business units. Their involvement will be necessary to do the

Building Your Plan | 203

testing and any code modifications required to migrate the workloads. This effort is
something that no tooling could know and requires manual planning. To solidify the
concept of dependencies, let’s review the next scenario.

Scenario 7-1
Hailey has an application (application A) that talks to the database (application B).
Since application A is directly querying the database of application B, she cannot sep‐
arate these two applications. By accessing the database directly over a chatty database
protocol, she creates a latency dependency. When her users query a database through
the application, they are often looking for many pieces of information from many
tables. This querying creates many round trips from Hailey’s application A server to
the application B database server. In these applications, her users are not querying for
a result like they would from a REST API, which would require one or a handful of
round trips.

In Hailey’s case, her applications are tightly coupled and have to be moved together.
Figure 7-1 demonstrates the link between her application stacks visually. This will
happen throughout your estate, which is why 80–90% of your plan will be completed
for you through dependency mapping. Agility in migration is a function of the level
of applications and several applications that are tightly coupled together. For most of
the migrations I have been involved with, several blocks of applications are coupled.
However, there is typically enough flexibility to create a viable plan without issue.
Although it is a rare occurrence, you can get into trouble when you have a single
application that is a linchpin in your entire infrastructure.

Figure 7-1. Application latency

In this instance, the company had a master database that was used by at least half of
its applications. There was no way to create a migration wave that could contain half
of those applications. It would be way too risky to attempt to move half of the

204 | Chapter 7: Planning Your Migration

infrastructure at once. To accommodate this migration, we needed to create two-way
replicas of the database so that we could “move” a copy of the database to AWS. Once
this database copy was in AWS and on-premises, we could create a migration plan
based on the now smaller application blocks. Hopefully, you will not run into this
kind of situation in your environment. They are not the easiest problems to solve and
are very bespoke, based on your exact needs and technology.

Now that we have built some background on the level of effort required to create a
migration plan, let us look at the steps required and how to go about the overall pro‐
cess. First, we will cover your migration timeline and planning tooling, because it is
vitally important to streamline the process. Then we will cover planning the 90%,
based on your discovery analysis and, finally, wrap up with the 10% refining process.

Creating a Migration Timeline
In Chapter 4, we talked about “Estimating Your Timeline” on page 102, which
detailed how to ballpark your migration timeline. We are going to use this timeline as
your starting point and apply any adjustments based on the priority shifts that we dis‐
cussed earlier in this chapter. For instance, let us say that you had projected 13
months to migrate your infrastructure in your timeline estimate. However, a competi‐
tive situation has arisen that will block three of your major applications from getting
migrated. That team needs three more months to complete the new features to com‐
pensate for the changes in the market. At this point, you will want to start with a
timeline that is 16 months in total to compensate. When we get to planning, we can
work on consolidating the timeline. However, it is best to start with a longer timeline
and not attempt to squeeze everything into a shorter one.

In some instances, you might be constrained on how long your migration can take.
You might not be able to extend your timeline because you must vacate your data
center. In this instance, you will have to work around that timeline and instead com‐
pensate with resources. In this type of situation, I would start with the maximum
number of months you have to vacate the on-premises data center and then subtract
20%. If you must be out of your data center in 10 months, then I would set the time‐
line at 8 months. This will give you a buffer to absorb things going wrong in your
migration. The adage of hope for the best and plan for the worst is very prudent in
migrating. If you want to be like Scotty, plan using the 80% and disclose the full time
to everyone else; when you come in under time, you will be the hero.

Now that we have a revised timeline target, let us look at which tooling to use for
building your migration plan.

Building Your Plan | 205

Planning Tooling
There is a lot—actually, I need a better word. There is a colossal number of project
management tools out in the world today: Microsoft Project, monday.com, Airtable,
Trello, and Jira, just to name a few off the top of my head. However, I prefer to use
tools you can get at your local grocery store: sticky notes and whiteboard markers.
Yes, I am a very tech-centric guy, but it is hard to beat the collaboration that you can
get with a team in front of a whiteboard moving around sticky notes. I will explain
my method, which I have used on some very complex migration plans. You can make
it your own or use a tool on the computer. The overall process will be the same, no
matter which tool you decide to use. The reason I shy away from technology-based
tooling for this aspect is that you will be working with a multitude of teams through‐
out the organization. These teams may or may not understand the tool that you
decide to use, and that causes delays and frustration. Everyone can move a sticky
note. You can always move your plan to another tool once it has been completed.

When I do migration planning, I start with a unit of migration. One sticky note
equals one unit of migration. This sticky note represents the effort of one migration
sprint. As we discussed previously, in “Agile, Waterfall, or Combination Plan” on page
188, a sprint is at least two weeks of effort. If you have a small application with no
dependencies, then a single unit of migration should be enough to migrate the appli‐
cation. As the applications get more complex, you need more units and expand the
application in question by using more sticky notes. For example, you have an applica‐
tion that will take four weeks to migrate due to its complexity, and you have two
weeks in your sprints. You will need two sticky notes stuck together to represent that
application. By using the sticky notes, you will be physically representing the level of
effort for the application migration.

Obviously, having a bunch of sticky notes floating around will not help much for
planning your migration. This is where the whiteboard comes into play. I start by
marking an entire large whiteboard with threats of impending death if someone were
to erase it. Once I protect it from would-be deletion, I draw out the migration time‐
line. The important part to capture here is that it must be drawn to scale, from both a
timeline perspective and from the sticky note size. If you have sprints that are two
weeks long and a six-month migration timeline, then you should have a line drawn
out with 12 tick marks, with the names of the months on every second line.
Figure 7-2 demonstrates what your whiteboard should look like at this point.

206 | Chapter 7: Planning Your Migration

Figure 7-2. Migration timeline

Once you have your timeline drawn out, you need to draw in your workstreams. A
workstream is a team or person who does the actual migration work. Typically, I
would put two engineers on each workstream. Having two increases the probability
of success and the ability to absorb staff outages due to vacations and sick days more
effectively. Without two engineers, you would have to stop the migration work for
that workstream when an engineer was out. If you have 10 engineers, then you would
have 5 migration workstreams. To represent this in your migration plan, you need to
draw in five additional horizontal lines, because we need to create spaces for the
sticky notes to fit. Remember, we need to draw this to scale. Figure 7-3 shows what
your migration plan should look like at this stage.

Figure 7-3. Migration workstreams

At this point, your migration plan is ready to be populated. I know it does not look or
sound like much at this point, but the collaborative ability that this old-school

Building Your Plan | 207

method enables is pretty darn hard to beat. The worst thing that you could do at this
point is single-thread the management of your migration plan. You will need to bring
in key stakeholders to discuss the migration plan and their business units’ capabili‐
ties, and you want to be able to change things on the fly easily for everyone to see
immediately. The sense of collaboration that they will get from this experience will go
a long way toward winning their hearts and minds.

Laying Down the 90%
Now that we have the migration plan on a whiteboard in a state that we can work
with, we can start building out the plan with actual data. Before we get started, there
are several things that we need from previous steps in the migration process. We will
need:

• All of your application discovery information
• All the application dependency information
• The level of effort that your team can achieve

Once we have these pieces of information, we can start to calculate the level of effort
to move each application. The level of complexity is a function of the number of
servers an application has, the age of the deployment, whether code changes need to
be made, the number of dependents, and the number of dependencies. Here is an
equation to help you with the formula.

Equation 7-1. Timeline Equation

LOE = servers × code factor × age factor + dependents + dependencies × 0.1
team capabilities × sprint days

The components of the equation and potential values are shown in Table 7-1.

Table 7-1. Equation variables

Item Value
Servers The number of servers for the application

Code factor The factor if code changes are required: 1 for no changes, 1.5 for moderate changes, and 2 for extensive
changes

Age factor The factor for the last time an application was updated: 1 for less than one year and 2 for one year or
more

Dependents The number of dependent applications

Dependencies The number of applications that this application depends on

Team capabilities The total number of servers per day for the entire migration team

Sprint days The total number of business days in your sprints

208 | Chapter 7: Planning Your Migration

I will start by saying that I am not a mathematician, and by no means is this formula
the be all and end all when it comes to determining the level of the migration effort—
but you must start somewhere, and this is the line I have drawn in the sand. It is effec‐
tive at estimation and will be defendable to management. There are many variables in
the migration of workloads, and humans are involved, which will always make things
tricky. The amount of work that is completed per person will not be consistent across
your whole team. A modicum of guesswork will always make its way into your plan‐
ning and migration. There are too many items in motion to have a completely accu‐
rate number. If you were to try to get to complete certainty, you would spend way too
much time in the weeds looking everywhere for variables to account for. In the end,
you will not accomplish much.

Let us start your migration plan with an easy application. Look at your discovery
information and find an application with no dependencies or dependents (outside of
Active Directory). We will plug that information into the formula. For demonstration
purposes, we will say that your application has one server, was updated in the past
year, requires no code changes, and has no dependencies or dependents. Ultimately,
you will end up with this equation:

Equation 7-2. Simple application equation

0.13 = 1 × 1 × 1 + 0 + 0 × 0.1
1.5 × 5

When this equation is computed, you end up with a value of 0.13, which signifies the
level of effort (LOE) to move this application. In this case, because the resulting value
is less than one, the level of effort in sprints gets rounded up to one. At this point, we
can write down the application name, the business unit, and the LOE on one sticky
note, and add it to one of the workstreams. Since you will be working with many
business units (BU) and applications, it helps to color-code the sticky notes by the BU
so that BU leaders can see with one look the workstreams and applications that affect
their teams.

That example was easy and gave you an idea of the process. Now let us look at an
application that is a bit more complex. For demonstration purposes, let us say that the
more complex application has 10 servers, was updated in the past year, requires no
code changes, and has seven dependencies and no dependents. You will end up with
this equation to denote its level of effort:

Equation 7-3. Semicomplex application equation

1.426 = 10 × 1 × 1 + 0 + 7 × 0.1
1.5 × 5

Building Your Plan | 209

For this application, you end up with a level of effort score of 1.426. This score indi‐
cates that you will need two sprints of effort. You can’t really round down effort, only
up, which might require more buffer time in your migration plan. Now you know
that you will need two sticky notes to signify this application on your migration plan.

Before you can place this application on the plan, you will need to compute the com‐
plexity of its dependency applications as well. These seven applications will need to be
part of the same sprint potentially. I say potentially because those seven dependencies
will only need to be part of the same sprint if they are tightly coupled.

Before we get any deeper into planning, let us look at some scenarios of what is and
what is not a tightly coupled application.

Scenario 7-2
Jim’s company runs an application called Ariana Pequeño (AP). The AP application
performs the credit card processing and invoicing for the company’s online website
that sells sheet music subscriptions. It has one server and depends on the database for
website application. No applications depend on the AP application, because it per‐
forms a standalone operation. Jim’s team needs to migrate the applications to the
cloud, but they are running into some issues with the development team’s time
required for migrating the web application. Jim needs to determine whether the AP
app and the web app are tightly coupled.

Jim’s Ariana Pequeño application is, in fact, tightly coupled. The fact that the AP
application uses the web application database directly creates this tight coupling.
Unfortunately, in Jim’s circumstance, he will have to move both applications at the
same time, once the web app team is ready. Let us look at another and more complex
example.

Scenario 7-3
The migration team at Kara’s company, CamperSmiths, wants to move four applica‐
tions into AWS that depend on the manufacturing system. The four applications per‐
form operations for the website. One application queries the inventory number to
update the website database. The second application is the website itself, which is not
dependent on the manufacturing system but depends on the three other applications.
The third application is a customer connectivity application that sends emails and
contacts sales representatives. This application depends on the website database. The
fourth and final application is a forecasting tool that uses the production line infor‐
mation from the manufacturing system to predict availability and updates the website
database. Applications one and four communicate to the manufacturing system

210 | Chapter 7: Planning Your Migration

through a REST API. Kara’s team needs to fit these applications into the migration
plan and figure out which ones are tightly coupled.

In Kara’s scenario, five applications need to be evaluated to see how they move
together, not four. Often, obvious connections can be missed when looking at your
infrastructure. There are four applications, but we forgot the manufacturing system
altogether, making five the total count. I know this seems obvious and common
sense, but life happens, and simple mistakes arise. There are two major apps in Kara’s
environment: the website and the manufacturing system. She then has three minor
systems left that provide ancillary services. The inventory application queries the
manufacturing system, and it does this through a REST API, making it loosely cou‐
pled. However, the inventory application updates the website database directly. This
connection will cause tight coupling between the website and inventory applications.
These two applications will need to move together. Application three, the one that
performs customer and sales interactions, works with the website database. In this
circumstance, the application may or may not be tightly coupled, depending on the
volume of interactions with the database. If their site is very popular and has thou‐
sands of sales requests a day, the applications would be tightly coupled. In the other
case, with very few interactions, it would be safe to say that the applications are
loosely coupled. The lower interaction and round-trip latency will not affect custom‐
ers. The forecasting application, again, talks to the website database, making it tightly
coupled, but the forecasting application also talks to the manufacturing system
through the API, making that connection loosely coupled.

In the end, Kara’s team will plan to move the website, forecasting application, inven‐
tory application, and possibly the customer connectivity application, based on the
number of sales requests per day. The manufacturing system is loosely coupled and
can be moved separately.

REST APIs are considered loosely coupled because they are
designed to be operated over the open internet. REST provides
reduced round trips by providing more finalized data than direct
database queries, thus reducing round-trip latency. These scenarios
are to demonstrate how applications can be coupled and, being
connected by database and API, were used because they are very
common. Your applications might have different communications
requirements that need to be evaluated based on your specific use
case.

Building Your Plan | 211

Finalizing the 90%
Now that you understand how to determine whether an application is tightly cou‐
pled, we can get back to our example application with seven dependencies. In this
example, we will say that three of the applications are tightly coupled and the remain‐
ing four are not. For simplicity, we will also say that these seven applications only
require one sprint to complete. Now that we have all the necessary information, we
can place the sticky notes into our migration plan. The main application with two
sprints needs to be placed first and occupies two sprint locations. The three tightly
coupled applications need to occupy workstreams adjacent to the primary applica‐
tion. However, since the coupled applications only require one sprint of effort, they
need to be placed in the second position to coincide with the cutover phase of the
primary application migration.

If you were to place the three coupled applications in the first available sprint for the
other workstreams, they would be migrated before the primary application and be
decoupled accidentally. Once you place the coupled applications, you can backfill
with the other four applications in any available position on the board. At this point,
your migration plan should look like Figure 7-4.

Figure 7-4. Migration plan

You can now continue putting all the applications and their dependencies into the
plan, using the same process and level-of-effort calculations. For each application
with dependencies, you need to evaluate the coupling to ensure that the tightly cou‐
pled applications are moved together. In the end, you should end up with a migration
plan that looks like Figure 7-5.

212 | Chapter 7: Planning Your Migration

Figure 7-5. Primary migration plan

Once you reach this point, we need to work on the final phase of planning, which is
to polish the last 10% of the plan.

Polishing the 10%
You might be wondering why I broke the planning phase into 90% and 10% blocks
even though after the 90% phase, the whole migration plan is filled out. The 90% rep‐
resents the amount of the plan that can be laid out without having to be manipulated.
The discovery tooling that you used found the dependencies in your environment
and the number of servers, but it has no idea what is going on in your business units.
The last 10% is the massaging and polishing of the plan that occurs from good old-
fashioned collaboration with the business units.

My preferred method of finalizing the plan is to invite the business unit stakeholders
down to your conference room with your migration plan on the whiteboard and walk
them through the migration. You are pointing out to them the key applications they
own and when they will be migrated. If this process goes perfectly, they will say it
sounds great and be on their merry way, but wouldn’t you know it, life rarely works
out that way. The accounting department might have issues around a month, quarter,
or year-end close dates. Other teams might have issues with existing release dates or
vacation schedules. These are the items that you need to address by moving the sticky
notes around the board and working out the kinks in your plan. You may have to
iterate this process more than once. Moving to accommodate team A may cause a
new conflict in team B’s schedule. Hopefully, you can get through the process with
only two iterations to ensure that everything works for all teams.

You might find that you just cannot accommodate the needs of a particular team. I
have run into this before, and there are three options to remedy it. The first option is
to start their migration before the main migration during the landing zone build-out.

Building Your Plan | 213

This option is not the most desirable, though, because some security and governance
guardrails might not be in place. Your second option would be to add another work‐
stream. This option will increase the cost of your migration, but it will allow for the
greatest flexibility. The third and final option would be to extend the migration time‐
line to accommodate the business unit’s needs. This option is not the most desirable
either, because it increases costs by running the equipment in your on-premises data
center longer than anticipated. This option might not even be possible if you must
vacate your data center.

Wrapping It Up
Your plan is done! It has probably been quite some time since you began your migra‐
tion process, but you finally see the fruits of your labor. In this chapter, we converted
the raw data from your discovery into a finely tuned plan that is refined and polished
like fine silver. At this point, if your landing zone deployment is completed, you could
start your migration process, which involves the application of deep dives and final
prep and planning during the migration sprints. We will be covering this process in
detail in Chapter 8. But before we get into that, I want to cover evaluating your work‐
loads for refactoring.

214 | Chapter 7: Planning Your Migration

CHAPTER 8

Refactoring, Retooling, and
Final Preparations

Change the way you look at things, and the things you look at change.
—Dr. Wayne Dyer, A Conversation with Wayne Dyer

With the bulk of your planning effort completed during Chapter 7, we will now move
on to looking one last time at your applications for refactoring opportunities. To
recap what we covered in Chapter 4, refactoring is making significant application
design changes to adopt cloud-native technologies and services. I have been beating
my drum about the power of lifting and shifting your infrastructure to AWS as fast as
possible to help reduce your double spend during the process. It would be a huge dis‐
service not to talk about refactoring your applications and gaining some benefit from
those changes. We want to look for easy changes with maximum impact on your
business but low impact on your timeline and budget.

Once we cover refactoring, we will move on to what I call retooling. Retooling isn’t as
drastic as refactoring. You will make changes to your application’s code. However,
there are capabilities in AWS that you can bolt onto existing applications to increase
their availability and performance for your customers and decrease even more man‐
agement overhead. Finally, we will cover the final preparations required for migrating
applications, the application deep-dive analysis.

Refactoring
You will probably have no trouble getting your development teams onboard with
refactoring your applications. It is new and interesting work, and developers love to
tinker. However, it is critically important to use restraint at this point in the process. I
have seen many refactoring efforts go off the rails and drive costs significantly higher.

215

The number one reason that refactoring efforts derail is due to continual refactoring.
Once a refactoring effort starts, developers tend to continually refine the design as
AWS releases new services and capabilities. Although more cloud capabilities are
awesome and will probably drive your costs down and your capabilities up in the
long run, this continued refactoring prolongs the development cycle. The longer your
development cycle, the longer your migration, and that is something you want to
avoid. The key is to develop a design and stick with it through to the completion of
the refactoring. Your team will need to resist the urge to try out the next shiny object
from AWS. Although there may be a good business reason to adopt a newly released
technology, I would still exercise extreme caution while expanding your scope at this
stage.

Another potential pattern that I want to shine a light on is when a company seeks to
refactor on-premises before migrating the application to AWS. The reason I believe
this occurs is that companies feel more comfortable in the on-premises space. Adding
cloud to the mix might feel like an additional risk or introduce delays. I strongly cau‐
tion against this tactic. If you were to refactor on-premises, your capabilities in non‐
cloud native tooling such as containers would be limited. Although you can change
your database engine or even your file storage to S3 over the internet, it becomes
much harder to adopt more cloud capabilities after these high-level services are
implemented.

Another thing to consider is the fact that as you are refactoring on-premises, some of
your equipment might age out and need to be replaced rather than decommissioned.
At this point, you are effectively buying food for a dead horse. You will end up
migrating, and that new hardware will not be used or used to its full potential. Refac‐
toring during or after the migration is a better and more cost-effective course of
action than doing so while still on-premises.

Everyone knows the Pareto principle, but you might recognize it by its more com‐
mon name, the 80/20 rule. By this principle, 20% of something (the cause) accounts
for 80% of something else (the effect). You can see this principle in many places in
business and life. It is not uncommon to see a company where 20% of its customers
account for 80% of its sales, which means that by focusing on the most effective 20%,
you can gain 80% of the benefit. This principle also holds for migration to AWS and
refactoring.

When we defined refactoring, the word major was used to describe the changes. To
me, major can mean many changes to the design or a significant impact on the busi‐
ness. It is this latter statement that we want to focus on. The key takeaway from this
exercise is to be able to determine which changes could be made to your applications
in the smallest way possible yet still have a significant impact on your business. This
impact might not just be from a cost perspective, either. It is crucial to incorporate
other potential business effects as well, such as better performance for customers, the

216 | Chapter 8: Refactoring, Retooling, and Final Preparations

ability to deliver new key functionality, reduced management overhead, or increased
processing performance.

Now that we have covered the type of refactoring and impact we are looking to
achieve with the 80/20 rule, let us take a look at what some potential targets look like.

Just to be clear, we are not looking for mathematical precision here.
The 80/20 rule is more of a metaphor for the type of impact and
level of effort we are seeking.

Potential Refactoring Targets
These two criteria are quite important when looking at targets for a refactoring effort.
We need to target services that will make a big enough dent in a business or cost
issue, and we need to find the right applications to target. Together, these ingredients
make the special sauce for your refactoring efforts, and we didn’t even need mayon‐
naise. In the next two sections, we will cover some key points to look for and avoid
when selecting applications and services. From there, we will dive into some sugges‐
tions of which services to look at for targets. We will cover some very specific infor‐
mation on those services and why they make good candidates.

Applications to target
When you start looking at your applications for refactoring, you can eliminate a few
types right from the start. For one, you cannot refactor any COTS applications since
you do not have access to the source code. You can adopt some AWS services with
COTS, but only if the vendor supports them in the first place. There are a few instan‐
ces of this kind of support. However, there has not been much traction in the market‐
place. Many COTS vendors are instead focusing on driving hosted solutions in an
SaaS model instead. You cannot fault them for this decision; it makes good business
sense, because they can deliver customer value faster in this model than contempo‐
rary on-premises deployment. If your COTS vendor did add support for AWS serv‐
ices, the most common implementations I’ve seen are for S3 and additional support
for PostgreSQL and MySQL (which are not AWS specific but make adopting Amazon
Aurora possible). Vendors implement these two capabilities because they can be used
on-premises and in the cloud. Implementing these capabilities is not technically a
refactoring, but I would encourage you to take advantage of them nonetheless to keep
driving your hard and soft costs lower.

Although COTS applications should be avoided during this stage, several types of
internally developed applications make good targets for refactoring. I would avoid
Visual Basic applications and those that are written in C. Visual Basic is a dated lan‐
guage and will not have the level of support needed to adapt to the cloud effectively.

Refactoring | 217

1 Some of these books include Cloud Native Architectures: Design High-Availability and Cost-Effective Applica‐
tions for the Cloud by Farr et al. (Packt Publishing); Cloud Native Transformation: Practical Patterns for Inno‐
vation by Dobson et al. (O’Reilly); and Cloud Native by Scholl et al. (O’Reilly).

In addition, since C is a lower-level language, it takes more coding effort to make the
necessary changes than higher-level languages do. Instead, start with applications that
are written in Java and .NET (preferably .NET Core). These languages also account
for the largest number of enterprise applications, so they will give you the biggest
pool to choose from.

In addition to the language used, it would be wise to target applications that are
under active development and that have not become stagnant. As we discussed in
Chapter 2, tribal knowledge loss can be a real problem for a company. The longer an
application has not been under development, the greater the risk that some of that
tribal knowledge has been lost. If you were to refactor an application that has not
been updated in a year or two, you could increase your risk significantly. Injecting any
more risk into your refactoring effort is not something that we want to do. Increased
timelines mean increased migration costs, and we are trying to minimize that as
much as possible. Now that we know what applications we should be looking at, let us
look at which services make good targets.

Services to target
AWS has several services that would be great candidates for refactoring your applica‐
tions. Unfortunately, many of them do not fall into the realm of our 80/20 rule. For
instance, AWS has a service called Simple Notification Service (SNS), which provides
a notification service. Although a great service that removes a lot of management
overhead from staff, it will not make a significant impact on your business. Another
service that has a lot of potential is a queuing service called Simple Queuing Service
(SQS), which is a fully managed serverless service that provides a lot of capabilities at
a very low cost. However, again, it won’t move the needle enough for the kind of
impact that we are looking for, so it should not be considered during refactoring.

In the next sections, we will cover the services that make good targets. We won’t take
a technical deep dive, but we will cover some high-level points around refactoring
requirements, which will give you a good understanding and starting point. The rea‐
son I chose these services is that they are highly applicable and effective for a large
number of companies. Many books are available that dive into refactoring and appli‐
cation redesign, and can assist you with major refactoring efforts and those technical
deep dives.1 Remember, we are looking for low-impact, high-return changes within
our business and management scope.

218 | Chapter 8: Refactoring, Retooling, and Final Preparations

https://oreil.ly/cloud-nat-tr
http://bit.ly/cloud-native-1e

Database engine change. One of the refactors that we will look at as a potential target
is changing your database engine so you can adopt newer technologies and/or drive
down licensing costs. For much of IT’s history, very few database options were avail‐
able. Oracle, DB2, Microsoft SQL—and relational database technology in general—
have reigned supreme in the database space. Since these were the only commercially
available options, virtually all applications shoehorned their capabilities into the rela‐
tional model and these vendors. Over time, with the expansion of the internet and
online companies, additional open source options arrived, such as MySQL and Post‐
greSQL. Although startups were eager to adopt these new database engines, by and
large, most software vendors have not due to lack of commercial support and indus‐
try stigma.

Over time, a few factors have made what CEO of AWS Andy Jassy calls the old-guard
databases less and less attractive. One of the reasons for the decrease in attractiveness
is that the relational database is no longer the only option. AWS offers several data‐
base services that offer NoSQL, blockchain, data warehouse, and graph databases.
These options mean that you no longer need to shoehorn your application into a rela‐
tional model when others would be better suited. The second reason that these data‐
base engines have become less attractive is that the vendors continue to increase the
pricing on the licenses. Unfortunately, it is hard to track the cost increases over time
due to technology changes such as multiple CPUs and multiple cores and the subse‐
quent license changes around them. I can tell you from personal experience that the
difference between Microsoft SQL Server 2008 and SQL Server 2012 rose around
$100,000 between the two versions. These versions shifted from per-CPU licensing to
per-core licensing, drastically increasing the cost. In my use case, the licensing
changed from two CPUs to eight cores, and that caused a large spike in cost.

Remember that changing the database engine is only possible if
you have access to the application source code. You cannot change
the database engine for COTS software unless the vendor supports
it.

Now that we understand why changing the database engine makes sense, let’s look at
some specifics that ensure that refactoring your application will meet the 80/20 rule.
The main thing we need to look at is the reason for changing your database. Chang‐
ing your database to another type, such as NoSQL, would be a significant change to
your codebase. That kind of change will push you outside of the 20% limit. However,
keeping with the same database type and choosing another relational database engine
could save you significant money. Before we can determine whether changing the
database vendor will save you money, we have to determine the level of effort neces‐
sary to make the change. AWS provides a tool called the Schema Conversion Tool
(SCT), which can analyze your current database structure and let you know how

Refactoring | 219

much of it can be converted automatically between engines. The SCT will generate a
detailed report of your schema and stored procedures and let you know if items can‐
not be converted automatically, providing detail of what needs to be addressed by
your developers. To meet our requirement of low level of effort, I would suggest that
all items show an automated conversion of at least 95% in the SCT report. Anything
more would slow down your migration, and I would recommend that the conversion
be saved for postmigration.

Once you have identified an application that can benefit from a database engine
change and meets the 80/20 criteria, you will need to make an adjustment to your
migration timeline. The process you will need to mimic is the same as we talked
about in “Polishing the 10%” on page 213. Your timeline will need to be adjusted to
account for the addition of engineering and testing time required to change the data‐
base engine.

S3 object storage. Another possible refactoring change that can meet our 80/20 rule is
moving file storage from a Windows or Linux file share or local storage to Amazon
S3. Moving files to S3 offers better availability (multi-AZ), advanced functionality
(signed URLs, requester pays), and reduced hard and soft costs. To recap what we
have covered before, S3 is object-based storage rather than block-type storage used
for a local file system. The beauty of S3 is that it is multi-AZ, highly performant, and
takes all the management overhead off your teams. The other benefit is that S3 is very
cost-effective when compared to EBS and EFS storage costs. At the time of writing, S3
has multiple storage tiers with costs of $0.023 per GB in the us-east-1 region, and can
go down to as little as $0.004 per GB for the S3 Glacier storage tier. When compared
to the $0.10 per GB cost of EBS, you can quickly see how S3 can meet your 80% effect
target, because storage can be a large portion of your AWS spend.

In addition to being low cost and having multiple storage tiers, S3 also offers life cycle
management and intelligent tiering. All of these capabilities create a significant effect
on your business and can qualify for the 80% criteria. With intelligent tiering, S3 uses
AI to determine usage patterns for your data in S3 and automatically life-cycles data
between tiers for you. The life cycle management capability allows you to establish
rules for migrating data between storage tiers manually, based on hard timelines. As
an example, we can state that you allow customers to upload files to your web server,
and they typically use them within the first day, but sometimes it could take a month.
Your customers will sometimes access these files within the next six months, and
rarely within the year. In this instance, both the life cycle and intelligent tier capabili‐
ties would allow you to keep data in the standard S3 tier for the first month, move the
files to infrequent access after the first month, and finally move them to the glacier
tier after six months. This tiering provides you with very effective cost control that
wouldn’t be available to you using standard server storage.

220 | Chapter 8: Refactoring, Retooling, and Final Preparations

Now that we have established how S3 can meet your 80% goal, let us take a look at
what it would take to convert from standard storage such as EBS volumes. We will do
this to establish whether moving the data to S3 meets our 20% level-of-effort target.
We need to look at two pieces when determining the level of effort needed to make
this kind of change. We need to know how hard it will be to migrate the data, and we
need to know how much engineering effort will be needed to make the required code
changes.

AWS has a newer service called DataSync that allows you to migrate data from on-
premises to S3 directly. The service is a better choice than building any internal
scripting or using third-party tools, due to its deduplication and compression capa‐
bilities. Simply put, DataSync allows you to transfer more data faster. The service is
agent-based and very easy to set up, lowering the level of effort needed to start the
process. The remaining question to answer is how much time it will take to transfer
the data and how that changes your timeline. Since you were planning to move this
data anyway by lifting the server into AWS, you have already established a timeline
for this data transfer, so it is included in your plan. A block-level replication tool like
CloudEndure does not have the ability to do compression and deduplication like
DataSync. In effect, by using DataSync, you may actually decrease your timeline to
move the data. Now that we have established that the data moving will meet your
requirements, let us take a look at the code changes required.

Typically when you are talking about making a code change from a local file API call
to an S3 API call, the code change is not difficult. The complexity comes in how
many places those API calls are made in your code. The more places to change, the
more the refactoring will add to your timeline. Sure, you can search and replace to
make all the code changes at once. However, the bulk of the workload and considera‐
ble effort comes with the regression testing required. Every function that reads or
writes to S3 will need to be tested and verified that it still works as intended. Unfortu‐
nately, I cannot provide any guidance on what would be considered acceptable,
because refactoring is highly dependent on your engineering and testing teams’ capa‐
bilities and size. You will have to review this information and make a judgment call
based on your company’s specific situation.

Just like changing database engines, once you have committed to making an S3 appli‐
cation refactor, you will use the process we talked about in “Polishing the 10%” on
page 213. You will want to account for the changes in your timeline required to make
the necessary code changes and testing.

Containerization. Containerizing applications is another refactoring effort that could
meet our 20% target. Containerization is a form of virtualization to extract the appli‐
cations and their components into a virtualized layer rather than into the whole OS,
like a VMware or Hyper-V virtual machine. Containerization is beneficial because it
lets you eke out a bit more economy of scale by running a bunch of containers on a

Refactoring | 221

cluster rather than on individual machines. The individual servers with full operating
systems create additional overhead. You can gain further benefits by using the AWS
Fargate service that manages the container subsystems for you, further decreasing
your soft costs for the management overhead.

Three questions come into play when thinking about refactoring into containers. The
first is whether it will make enough of an impact to meet our 80% impact target. The
second is whether you can even containerize your applications. Last, what would
good targets look like? For the first, I have seen containerization save a significant
amount of money when an application has very disparate operations on a single
server. For example, let us say that you have an application that imports files. The files
are very large and require a lot of processing power when they arrive. They also arrive
inconsistently throughout the day. In addition, the application has many other com‐
ponents that do not use nearly the same amount of processing power. In a conven‐
tional design, you would have to configure your server to accommodate the largest
amount of load that would come from importing the files, even though most of the
time the system is nearly idle. You have a lot of wasted capacity in this situation. The
situation is further exacerbated when you have a cluster of these servers running to
meet customer demand and redundancy targets.

If you split this application into containers, you could scale the individual compo‐
nents based on their individual need rather than on the whole. When new files came
in, that process could scale to meet the need and scale back down to near zero for the
rest of the time. You can potentially save thousands in this situation, depending on
the overall scale of your application. What you would want to avoid during refactor‐
ing is looking at applications that would not yield this kind of benefit. Containerizing
a constant usage application that runs on one server would not be a good choice.

To answer the third question—what kind of applications make good targets?—it is
easier if we look at which applications will not make a good choice. Since we want to
convert these applications quickly, we can eliminate some immediately, such as .NET
applications. If you are not running .NET Core today, the likelihood of converting
to .NET Core to run in containers is lower. This likelihood is especially true if you are
using WinForms, which is only supported on Windows and, therefore, will require
quite a bit of retooling. The same holds for the Windows Communication Founda‐
tion (WCF) technology, another Windows-only capability that needs to be replaced
when moving to .NET Core. Any applications that predate .NET are also poor
choices, such as Visual Basic (VB). In the case of VB, most of those applications are
small, client-based apps that do not make sense for our 80% impact rule, either. They
would require a new web-based interface to be created to gain any benefit.

Applications that make good targets are applications that are already running in .NET
Core and Java. .NET Core can run on Linux, making it a good choice as the back end
to the containerization services on AWS. Java is a virtualized language already,

222 | Chapter 8: Refactoring, Retooling, and Final Preparations

running in the Java Virtual Machine (JVM), also making it a good choice. With Java,
the code needs to be Java-native, which allows you to port an application from AIX to
containers running on AWS on x86 equipment and expand your migration
capabilities.

Asking these questions will ensure that you are selecting a good potential candidate
for refactoring into containers. Once you find a suitable target, the next question that
you must ask is how easily you can split out the individual components based on the
code structure. At this point, things can get tricky. Many business processes in appli‐
cations do not align with the underlying code. Look back at the earlier example with
the file import process. Although the file import is a separate business process, the
application code might be shared among other processes. This intermingling of code
makes it very difficult to split the application apart. Unfortunately, you will have to
communicate with the engineers of the application and see whether the processes that
you have in mind can be easily extracted out of the application.

Although I haven’t seen this kind of benefit come up much in the migrations that I
have done, when things do align, it has a potential for significant impact, which is
why we have covered it here. Remember, if you do locate an application that fits these
criteria, you will again have to adjust your timeline to compensate.

Redshift data warehouse. Changing a data warehouse is another service that would
make a good target for refactoring. AWS has a service called Redshift that can signifi‐
cantly reduce costs while providing more capabilities for scaling. If you are running a
data warehouse on-premises, you are probably running it on Oracle or Microsoft
SQL Server. I have seen quite a few Microsoft SQL database servers running a data
warehouse, and I can tell you they can end up being very large instances. For one
company, I specifically remember the instances were somewhere around $16,000 per
month, each. With contemporary databases, you usually end up scaling vertically
instead of horizontally, and this leads to high costs. It is far cheaper to use a few
smaller instances than one gargantuan one.

You are probably using a business intelligence (BI) tool as well to consume the data in
a more usable format. This tooling will also use at least one server to run, although
the cost of that server is probably not significant enough to meet your 80% impact
target. The licensing of your BI tool, on the other hand, is a different story. During
refactoring, I recommend you compare the cost of your current BI license to Amazon
QuickSight, which offers a fully serverless managed BI tool at a significantly lower
price point. I was able to save one company over $800,000 a year by converting it to
Redshift and QuickSight from Microsoft SQL and Tableau. With savings like that, it is
easy to see how moving your data warehouse can meet your 80% target.

The question left to answer is whether moving the data warehouse will meet the 20%
target with the level of effort required to refactor. There are three major components

Refactoring | 223

to a data warehouse refactoring to look at to determine the level of effort needed.
These are: (1) How will the data be moved into the new data warehouse? (2) How
many queries need to be rewritten? (3) How many reports need to be re-created in
the BI tooling?

Moving the data
When it comes to moving your data from a legacy database platform to Redshift,
you will want to use the DMS service that we discussed in “Database Migration
Service” on page 201. You would use a similar process to the one we just talked
about in “Database engine change” on page 219. You first need to identify that
the schema can easily be converted using the SCT. You will want to verify that the
schema has a very large automatic conversion rate to keep the level of effort on
the refactor low. Then you would move the data between the old on-premises
server and the new Redshift cluster in AWS, using DMS.

Query rewrites
When it comes to rewriting your queries, Redshift does not have the same inter‐
nal structure that conventional relational database engines have. Redshift is a col‐
umnar database instead of a row-based database. This design makes it very fast
for looking up data for analytics but slow for individual row updates. Redshift
also does not enforce primary and foreign key constraints, so your application
must handle that. Ultimately, the queries you used for your conventional row-
based system will not be appropriate for Redshift, and you will need to rewrite
your queries for them to work properly. If your application needs a significant
number of queries, it might push the level of effort past our 20% target.

Report rewrites
Although converting your BI tooling is a great way to save soft and hard costs,
unfortunately, there is no way today to transfer your reports out of your old sys‐
tem and into Amazon QuickSight. Therefore, you will need to evaluate how
much effort would be needed to re-create these reports. Your timeline delta boils
down to the number of reports that you need. I was tempted to say the number of
reports that you have, but let’s face it, several reports are probably no longer
needed that you can skip altogether.

Once you have evaluated these three items for the level of effort required, you can
determine whether changing your data warehouse is indeed a viable 80/20 target.
Once you make this decision, you can look at adjusting your timeline accordingly to
compensate.

Static website. One of the capabilities that AWS offers that isn’t looked at often from
the aspect of refactoring is moving your website (or part of it) to a static site. A static
website is one in which you do not use a server to generate the web pages but use
static HTML files that are served to your customers instead. Many websites can

224 | Chapter 8: Refactoring, Retooling, and Final Preparations

benefit from moving some or all capabilities to static files. One of the best use cases is
your company’s landing page. Typically, the landing page does not have a lot of
dynamic content on it because the user has not logged on or selected anything yet.
This page is also the one in which you have the greatest number of users that do not
follow through with other activities. A user will visit your site to check out what your
company is about and leave. It makes sense to refactor this content to static pages and
let AWS do most of the heavy lifting. This offloading allows your servers to do the
more important work for real visitors while having more resources available to them.

A common misnomer is that a static site cannot have dynamic content, but this is not
true. The important differentiation to make is that a dynamic site creates each web
page for every visit and every user, whereas a static site pulls the pages from static
files and receives dynamic data from an API. Many new single-page applications
(SPA) commonly written in the React or Angular frameworks operate in this model.
The pages, images, and JavaScript are all loaded out of an S3 bucket, and the data is
retrieved from another AWS service called Amazon API Gateway. API Gateway pro‐
vides the serverless API resources to connect to AWS Lambda or Amazon EC2 com‐
pute resources to return dynamic data. The SPA then renders the data on the client
side, rather than the server side. Based on this model, you can see how it can signifi‐
cantly reduce the overhead on your servers as it offloads it to the AWS services and
the clients themselves.

The question of whether this meets our 80% target rests solely on the level of load
that your website gets. If your website runs an online application, the probability is
high that moving some of it to a static type of hosting makes sense. It is important to
highlight the word some. Because you are running an application, there is no way for
you to convert it to static and meet the 20% effort target. This would require far too
much testing and engineering.

If your website does not get a lot of traffic, then it probably won’t make much sense to
convert it to static files as part of the migration. With little load, it probably runs on a
single server, or potentially a small cluster fronted with a load balancer for redun‐
dancy. The spend for these items, even on an annualized basis, probably does not
make sense to include at this stage of the process. It would be better to leave the site
refactoring for postmigration as an ongoing effort to reduce costs, using AWS capa‐
bilities. I would recommend this type of refactoring to be done as part of a website
redesign to optimize your company’s expenditures.

Mail server. Mail relay servers used for sending outbound mail from your applica‐
tions are one potential item you can easily remove from your infrastructure as part of
a refactoring. For smaller companies, this probably is not relevant, but medium-sized
businesses or enterprises can save a decent amount of cash. Amazon has a service
called Simple Email Service (SES) that allows you to send and receive email for appli‐
cations. It is not a replacement for your actual email server, which collects your users’

Refactoring | 225

email, but it is best used for relay servers. Typically, you see these attached to web
applications that send large amounts of email that you don’t want disrupting your pri‐
mary employee email server.

The primary benefit of using SES is that it’s a fully managed service, and you don’t
have to worry about maintaining highly available email servers.

I often feel like a broken record, saying that because a service is
managed it reduces your soft costs. Hopefully, I am driving home
the point that AWS takes a lot of burden off your staff.

As with other AWS services, SES saves you the cost of the servers themselves as well
as a load balancer and the soft costs that go along with patching and maintaining that
server. You might be surprised to learn that an enterprise could have a dozen or so of
these email servers strewn through its infrastructure.

The best and most attractive part of refactoring to use SES is that it requires an
extremely low level of effort. If you can, I would suggest that you implement SES
using the AWS API. Refactoring your application a little more deeply to use SES
through the AWS API with a software development kit (SDK) will require a little
more effort to implement. You can also implement SES using an SMTP connection,
as you have for your existing mail server. However, using an SDK allows you greater
control over access, by using IAM roles versus the username and password of the
SMTP connection. Using IAM is not only more secure, but you have less configura‐
tion overhead for your application, because access will be granted to an EC2 instance
through an IAM instance role that grants access to send email. This design alleviates
manual mail server configuration from your application.

You can choose to use the SMTP method initially; this will prevent you from having
to make modifications to your migration timeline. I would suggest you use this con‐
figuration method during migration. You can come back and make code changes to
use the API later after you have migrated.

AWS offers several other capabilities for refactoring that we could
discuss. However, those that we have covered should give you a
strong foundation for refactoring, and that applies to many compa‐
nies. You can take a look at the AWS website to see whether there
are any other services your company can implement to address
other major pain points.

Before we finish up your migration plan with all of your refactoring efforts, we first
need to double-check the math on run rates for these changes. In addition, we will
also want to put together a business case for the refactoring efforts by application, so

226 | Chapter 8: Refactoring, Retooling, and Final Preparations

https://aws.amazon.com

that you can easily convey the benefit to the necessary stakeholders. In the next two
sections, we will cover how to address these two items.

Estimating Run Rate After Refactoring
There is a high probability that the biggest driver in refactoring your application is
cost. It might not be directly related to EC2 compute costs, but it will be costs none‐
theless. In the following sections, we will focus on the changes in the run rate by
refactoring your application. We will discuss other potential savings in the follow-on
section on business cases.

When it comes down to it, migrating to the cloud always seems to default to talking
about the run rate and savings, even though this is not the compelling business story
for migrating to AWS. The good news is that calculating run rates are a well-trodden
path, and we can calculate your numbers and craft a compelling story to drive the
refactoring. Refactoring causes a unique problem in that it can become difficult to
calculate the differences in run rate between the contemporary design and the refac‐
tored one. Some of the types of refactoring that we discussed, such as containeriza‐
tion, don’t paint a very clear picture, since the savings depend on your code and how
the individual components of your application are laid out.

To highlight how your costs might look, we don’t want to talk in generalizations about
costs and AWS services. Instead, it is better to cover in detail each of the refactoring
items that we just discussed and highlight how the run rates would be affected
directly. The following walkthroughs will help you draw similarities and conclusions
about the run rates in your environment and allow you to craft your run rates.

Database engine change
When it comes to changing database engines, not much adjustment might be
required to run rates. It all depends on whether you selected Amazon RDS or Aurora
as the database endpoint. Both RDS and Aurora support the MySQL and PostgreSQL
engines, but they have vastly different capabilities. In the case of RDS, you most likely
will not have any difference in run rates. RDS supports a single or failover multi-AZ
deployment. In most cases, this will mimic your current environment exactly. You
will have a single server that supports the entire load of your application and a second
to take over in case of primary failure. This lack of change makes me hesitate to say
that changing the engine will reduce your compute requirements. Instead, changing
the database engine will mostly affect your licensing costs.

If you have selected Aurora as the destination, some additional capabilities might
change your costs. Aurora has two capabilities that reduce costs. The first is that you
can scale Aurora horizontally with read-only servers for read queries, which will
allow you to use a number of smaller servers to meet your requirements. Typically,
many smaller servers are more cost-effective than single large ones. The second

Refactoring | 227

capability that Aurora offers for driving down costs is Aurora Serverless. In this con‐
figuration, Aurora will scale up and down to meet your load, so you only pay for what
you use. In addition, Aurora Serverless has the capability of turning off completely
while not in use to save you additional cash.

To address these changes in compute spend, you will have to extract the size and
count of instances that your discovery tool suggested for your selected application.
You can add these up separately to get your original run rate. If you will use read rep‐
licas to spread the load moving your database servers into Aurora, you will need to
look at the percentage of read queries versus the write queries that are being run
against your current server. Once you determine those percentages, you can estimate
how you can break up the server. For simplicity, let us use the 80/20 rule again. We
will state that 20% of your queries are write and 80% are read. In this instance, you
can split your single large server into five smaller servers. Your write node services
the 20% of write requests, and your 80% of read requests is serviced by the 4 other
nodes, with 20% of the read load each. If you had a monster database server that was
running a 32xlarge instance type, you could change this single server instance into
five 8xlarge servers and still have a little room to spare.

If you are planning to run Aurora Serverless, it could be tricky to calculate the differ‐
ence in spend since you have both the ability to scale and the ability to turn off. At
this point in the process, I do not think it is worthwhile for you to go down the rabbit
hole, trying to calculate the difference to that level of minutia. Instead, you should
take the average server capacity that you have and then calculate the run rate for that
capacity. Once you have that cost, you would then divide it by the number of hours in
a week and determine how many hours you will not need it running. Then subtract
those hours from the weekly rate. From there, you can easily calculate the annual cost
by multiplying by the 52 weeks in a year.

S3 object storage
Luckily, calculating the cost difference in S3 over EBS is much easier than calculating
the database engine change we just covered. When you move your data from S3, you
are most likely substituting EBS costs. To calculate the run rate, you can simply multi‐
ply the number of gigabytes of data that you are refactoring in your application by the
S3 storage rate for your chosen AWS region. If you are using tiering, you can further
refine this cost by estimating the percentage of S3 standard storage and S3 infrequent
access storage and calculate the new storage costs.

To refine the EBS costs that are in your current estimate, you will need to take the
gigabytes that you are refactoring plus the 30% storage buffer. Remember, I recom‐
mend a buffer to be added to your used disk capacity so that you will not run out of
space. When you use S3, you do not need this space, because you can continually
expand your footprint without running out of capacity.

228 | Chapter 8: Refactoring, Retooling, and Final Preparations

Containerization
Computing savings based on containerization is probably the hardest of all the items
that we have discussed. Multiple levels of complexity need to be considered. You have
a shared operating system container, shared subsystem and library containers, and
individual container scales based on usage independently. To make matters a bit more
complicated, you might not have been able to split your application into as many
microservices as you had hoped. If you want, you can get into the gritty details of
how much CPU power is required by each process and create a detailed spreadsheet
of your expected load. The other option is putting your finger in the air and creating
a SWAG of how much savings you will have. The latter is usually how I end up com‐
ing up with a number to estimate savings.

Data warehouse
Computing the changes in cost between Redshift and your conventional database
looks very similar to Amazon Aurora. Redshift also switches from a single-node data‐
base to a multinode deployment. In the case of Redshift, we need to divide the total
compute capacity by the number of nodes needed. The major difference that Redshift
has from other compute resources in AWS is that the disk capacity is tied to the
instance type. There are two classes of instances in Redshift: a compute preference
class and a disk preference class. The first step is to determine whether you need the
compute preference instance class. You can determine the required capacity by look‐
ing at the load of your queries. Once you determine which class you need, you can
divide your data storage requirements by the amount of available storage for the
selected instance. For example, a ds2.8xlarge instance is a dense storage instance that
supports 16 TB of storage. If you had 28 TB of data, you would need two nodes to
meet your storage requirement. This example might not be the best, because you
might be out of storage in short order, depending on your capacity expansion. Once
you know how many Redshift nodes you will need, you can calculate out your new
run rate on an annualized basis, using the one-year RI pricing. I recommend using
the RI pricing because data warehouse capacity does not change and is consistent.
Using RIs ensures your lowest cost option.

Like changing your database engine, most of the savings will be licensing savings. You
will be replacing your expensive engine license and potentially saving the expense of
your visualization software such as Tableau. We will address items like this in “Build‐
ing the Business Case for Refactoring” on page 230.

Static website
If you are refactoring your website to use static hosting capabilities in AWS, you will
need to adjust the run rate of your web servers and EBS storage. Before we can calcu‐
late your new run rate, we need to determine what percentage of your site is being
converted. Once we have that number, we can take that cost from your EC2 spend to

Refactoring | 229

get the new run rate. Let us say that your website allows for the refactoring of 10% of
its content. Using this information, we can look at the EC2 spend on your web server
farm. We will use the spend that was determined by your discovery tooling. To find
your new run rate, you would simply multiply the total EC2 cost by the remaining
required capacity. If your EC2 spend was estimated at $500 a month, you would mul‐
tiply that by 0.9 to get a result of $450 per month in new spend. Spending on web
servers becomes a bit of a moving target with load balancers and auto scaling. This
situation is yet another example of when simplicity is probably your best course of
action.

Once you compute your EC2 costs, you can do the same for your EBS storage costs.
When you move to a static hosting situation, you store your data in S3. You would
mimic the process that we just discussed to estimate S3 object storage costs. You need
to find the total storage your static content will use and then divide that up using
your estimates of how much data will be used all the time in S3 standard, and how
much will be used infrequently. You will then be able to calculate the combined total
cost of your website storage. On the reverse side, you can also back out the storage
from the EBS cost, using the same method as for your S3 storage in GBs plus your
EBS storage buffer.

Mail server
Finally, we come to the last refactoring that we discussed with the mail server change,
using SES. In the grand scheme of your migration, the run cost for SES probably does
not matter. AWS gives you 62,000 email messages for free each month (no idea why it
is 62K; it seems to be a very odd number to me), and then they charge $0.10 for every
1,000 email messages you send after that. Even if you send a million email messages,
it will only cost you less than $100. You can easily cover the cost of SES in the uplifts
that we talked about in “Run Rate Modeling” on page 114. The important item to
address with mail server refactoring is the removal of the run rate for your mail
servers from your forecast, because this can be a large number.

Unfortunately, you can probably see that some run rate modeling isn’t very easy to
calculate, and we end up performing some SWAG calculations. I do not hate SWAG
numbers, but I see them as unavoidable. I do try to limit them to the lowest number
in my calculations as possible. With the addition of each one, you potentially move
further and further away from reality. Now that we have these numbers nailed down,
we can move on to building the business case for refactoring.

Building the Business Case for Refactoring
Now that we have covered how you can calculate changes in run rates, it’s time to cre‐
ate your business case, which justifies the refactoring of the application, the addi‐
tional timeline, and the efforts involved. There may be some preexisting negativity

230 | Chapter 8: Refactoring, Retooling, and Final Preparations

toward refactoring, and it’s important to demonstrate that you are not just chasing a
new shiny object.

The tendency to want to implement the newest thing is not only an
engineering issue. I have run into plenty of what I call magazine
managers who want the latest thing they read about in a magazine
to be implemented as soon as possible, the technical limitations be
damned.

We will be following the same path as we did for the migration business case. In
Chapter 3, you performed your discovery, which gave you the run rate for your whole
migration. Then in Chapter 4, we created the migration business case. We will be
doing the same here now that you have your refactored run rates. Making a business
case for refactoring isn’t anywhere near as complex as the business case you worked
on for the migration itself. Unlike your migration business case that had a narrative,
an FAQ, and a closing, we will just focus on the closing for the refactoring effort.

For each application that you are refactoring, I would recommend at most a one-page
narrative that explains the refactoring effort. Avoid getting too burdened with justifi‐
cation at this point in your migration, and remember that the purpose of your refac‐
toring is to target the easy wins for migration that will not significantly affect your
timeline or costs in a negative way. If you were justifying a large refactoring post-
migration, such as redesigning a major application into a serverless model that could
cost months of engineering time, then a more elaborate justification would be
appropriate.

When writing the narrative, focus your argument on the 80/20 rule and how you
used that to target the application and services. This elaboration on your process will
set the tone for the rest of the document by establishing that your method focuses on
driving high-value changes to the application. By setting this tone, you will supplant
any negativity that likely started to hatch the second you mentioned making applica‐
tion changes.

After you go over the selection methodology, move on to discussing the downfalls of
the current technology in use. The refactored items that we talked about mostly focus
on costs (agility items tend to take longer to refactor that are outside our 20% target),
so feel free to center your story on that.

In addition to the run rate savings, we don’t want to leave out the significant cost sav‐
ings that can be had if you refactor your database engine or data warehouse. In the
previous section, we just talked about the run rate modeling in the refactored mode.
Those costs did not include the savings that you get by cutting out your high licens‐
ing costs. Oracle and Microsoft SQL licensing adds up to some pretty significant
numbers, and you will want to make sure that you include those savings as well. In

Refactoring | 231

the end, items such as license cost savings make up the greatest business drivers. It is
important not to dismiss license costs savings. For instance, a company that I was
working with intended to see three-million-dollar annual savings by getting rid of
their Oracle databases. A story like that can make a career in very short order, and
that is why it is so important to investigate license costs thoroughly.

The last item that I would suggest putting into your narrative is a short list of risks.
Let’s be honest. Nothing is risk free. Getting your risks out in the open right away
rather than trying to sweep them under the carpet shows that you are a stronger
manager. When I was in management, and someone on my team brought me a pro‐
posal that did not have any risks or potential negatives in it, I would immediately ask
them to add them before we would continue discussions. I wanted them to provide
an honest, unbiased view.

Final Thoughts on Refactoring
One important thing to remember is that it’s OK if you couldn’t find any applications
to refactor at this point in the process. You might just have a lot of COTS applications
that limit your capabilities to change. On the other hand, you might be working with
older technology that would not fit into our target for low-hanging fruit. Maybe the
changes you want to make will extend your timeline longer than you can accommo‐
date. Whatever the reason, there is always the day after your migration to come back
and take a new look at what you can do with AWS. Now that we have looked at refac‐
toring, I wanted to touch on what I call retooling.

Retooling
There are always some new capabilities that you can easily add using AWS services
that were not available to you on-premises. I do not consider these to be refactoring
per se, but rather net new additions to your capabilities. These items often add a lot of
value for companies and do not have a very high price point, but they don’t require
changes to your application itself. It is true that they will increase your costs above
what you had on-premises, but the value that they add to your business is well worth
the expense. The three items that we will cover in the next sections are the AWS Web
Application Firewall (WAF), AWS Systems Manager, and Amazon CloudFront. These
specific services have been chosen because they increase your collective security pos‐
ture and improve your customer experience.

Retooling typically happens as part of your individual application migrations. How‐
ever, it makes sense to create a guiding principle on their use prior to getting into the
application deep-dive analysis. During that analysis, your team can determine
whether their implementation is appropriate for the application.

232 | Chapter 8: Refactoring, Retooling, and Final Preparations

Web Application Firewall
The Web Application Firewall (WAF) is a network Layer 7 firewall service, which
means that this firewall can understand protocols and not just IP addresses and ports.
This additional capability allows it to see inside the HTTPS and HTTP protocols and
look for malicious attacks. The WAF service is also serverless, so there are no servers
to maintain and patch and no capacity and scaling to worry about. Basically, the WAF
enables you to apply a significant level of protection to your web servers with nearly
zero effort. In addition, AWS released a new version of WAF that includes redefined
rulesets that detect such attacks as cross-site scripting and SQL injection attacks.

The WAF is also extremely cost-effective compared to on-premises capabilities. The
WAF charges $5 for a web access control list (ACL) and $1 per rule (at the time of
writing). One of the best parts of how AWS has set pricing for WAF is that managed
rulesets only count for one rule. For example, the AWS SQL injection managed rule‐
set has five rules but only costs $1 because it is managed. If you were to write your
own rules, you would be charged $1 per rule. That is still a great deal considering the
costs that you would have to endure on-premises.

I would consider running WAF on all web-facing applications to add another layer of
inexpensive security protection. AWS WAF can secure Amazon CloudFront, Amazon
API Gateway, and the Application Load Balancer.

Systems Manager
AWS Systems Manager is a tool that, like most others I’ve suggested, is serverless and
offers your company the ability to manage your instances and apply patches. If you
are running Chef, Puppet, Salt, or Ansible on-premises, then using Systems Manager
Service (SSM, not to be confused with Server Migration Service, SMS) would be con‐
sidered a refactoring instead of an additional capability. If this is the case, I suggest
that you do not convert to Systems Manager during the migration. However, if you
are not running any of these capabilities, then I suggest that you implement SSM dur‐
ing migration. SSM has many capabilities, but the most relevant ones are the ability to
control instance state and apply instance patches.

The ability to control instance state allows you to ensure that the configuration you
deploy to your instances stays in compliance. Using SSM state manager allows you to
control Windows settings as well as install Windows features. You can also use the
state manager to install software. These capabilities allow you to add a high level of
automation to your environment and save your company a significant amount of soft
costs. During migration, you will want to automate as many security-related controls
as possible to ensure continued security compliance. These controls might look like
firewall rules that are deployed to instances.

Retooling | 233

The second highly effective feature of SSM is the Patch Manager. Patch Manager
allows you to deploy patches to your instances automatically for both Linux and Win‐
dows during a maintenance window. In addition to rolling out patches on a schedule,
the patch manager can deploy patches based on the release date. This feature comes
in very handy by allowing you to test patches before you roll them out to your pro‐
duction environment. For instance, you can allow patches to be deployed to develop‐
ment immediately when they are released. You can follow this up with the testing
environment to be deployed after seven days. Finally, you can configure your produc‐
tion environment to roll patches out after 14 days. These delays ensure that the
patches that roll out to production have had at least 14 days to incubate and be tested
prior to deployment. These delays ensure that your customers never experience an
outage due to a patch that affects the operations of your application.

CloudFront
The last service to consider adding to your infrastructure is Amazon CloudFront. We
touched on CloudFront in Chapter 1, but to recap, CloudFront is a content delivery
network that brings your data closer to your end users through caching. Not only can
CloudFront increase your customers’ satisfaction, but it can also increase your web
server security by providing another abstraction layer before your servers. Cloud‐
Front will be your first line of defense in the event of a denial of service attack before
it hits your web servers. It would be advantageous to put CloudFront in front of all
your web servers. The cost of CloudFront can actually reduce your data transmission
rates because it is cheaper to send data out of CloudFront than from standard AWS.

When you couple CloudFront with AWS WAF, you create a layered security that
greatly increases your ability to absorb and defend from various types of attacks. Like
most AWS services, CloudFront is completely serverless and offers you these capabili‐
ties without the need for managing and patching. You could replicate some of the
capabilities of CloudFront on your own by using proxy servers, but that won’t offer
you the security or global scale that is available using CloudFront.

Final Preparations
Now that we have covered the additional features that you can add to your environ‐
ment to boost your capabilities for a small incremental cost, it is time to move to the
final phase and prepare for application migration. At this point, you have discovered
your workloads, created your business case, worked through creating your migration
plan, and figured out what applications you can refactor to maximize your cost opti‐
mizations in AWS. You are now ready to start your migration process. Although this
book does not include the technical documentation to use the tools that we talked
about, there are several resources on the web such as A Cloud Guru, which we dis‐
cussed before, as well as AWS Support YouTube, AWS blogs, and online learning

234 | Chapter 8: Refactoring, Retooling, and Final Preparations

https://acloud.guru
https://oreil.ly/m6fzB
https://aws.amazon.com/blogs

from O’Reilly. The last item that we will cover is application deep dive and planning,
in which we will discuss the various pieces of an application-level migration plan.

Application Deep Dive and Planning
In Chapter 3, we covered discovering your workloads in a broader sense. Now, we
will cover the detailed discovery you’ll need to perform for each application in your
portfolio just before migration. This discovery may sound like a lot of work, but
much of the information among your applications will be the same. The process will
get faster as you progress through your applications. I will detail the critical items to
cover here, but there are many more that are important to your success.

Application Status
When you are assessing for migration, you will want to know the current status of
your application. Look for the following things: when the application was last upda‐
ted, whether the application version is current, and whether there any pending
updates, to name a few. You are looking for this information because it gives you a
good indication of the level of knowledge the stakeholders have regarding the opera‐
tions of the application. An application that has not been updated in a long time or is
one or more releases behind is an indication of poor knowledge. As we discussed
before in “Staffing and Expertise Loss” on page 65, turnover and the loss of tribal
knowledge in IT is an issue. When an application has not been updated in quite some
time, the probability that the tribal knowledge has left the building with Elvis is
higher. Why is this important? The tribal knowledge in question is the nitty-gritty
details about what broke and how to fix it that are not in any instructions. During
your migration, these small pieces of information are critical to meeting your time‐
line and quality goals. The perfect situation for migration is when the application has
been recently updated and is on the latest version.

Application version currency is not a huge issue in migrating to AWS from a techni‐
cal perspective. Version currency becomes an issue about what version the vendor
supports in the cloud. It is common for vendors not to certify older versions to run in
AWS, which can create an issue when you call support. From a technical perspective,
EC2 is just another form of virtualization, and today’s operating systems are abstrac‐
ted from the application layer. These abstractions mitigate any issues with changing
drivers for network cards and so on. Therefore, application currency is purely a busi‐
ness problem.

Team Bandwidth
Sometimes internally developed applications need slight modification to make them
work in AWS, and some developer time is necessary. Another common occurrence is
when the application could benefit from a slight refactoring that significantly reduces

Application Deep Dive and Planning | 235

https://www.oreilly.com/online-learning

costs. In either of these situations, you need to make sure prior to migration that the
development team performing the work has the necessary bandwidth, and that the
refactoring does not overlap with other migrations taking place that need the same
development team. Team contention like this can lead to delays in migration that
drive up costs or, worse, rushed work that ends up in downtime. Either of these sce‐
narios results in business repercussions that you want to avoid.

Another issue that you will want to query from the business unit is the amount of
testing required and the number of staff members available to complete the testing.
From there, you can assess how long you will need the testing staff and can determine
whether they have the available bandwidth to complete the testing within the migra‐
tion timelines. If there is a discrepancy, you may need to bring in outside help for the
business unit or adjust your migration timeline to compensate. Failing to address the
testing bandwidth leads to inadequate testing or program delays. Either of these sce‐
narios drives up costs unnecessarily.

Technical Details
Some technical details need to be captured during application discovery as well. Some
technical constraints have a large business impact that need to be considered for
migration timelines and risk. For instance, I worked for companies that still used FTP
as a mode of transferring files between themselves and customers. Since FTP is an
insecure protocol, many customers block it on their firewalls to prevent their users
and servers from using it. To be able to connect to our FTP server, many of the cus‐
tomers would have to put exception rules in their firewalls to allow their servers to
communicate. We had nearly one thousand customers connecting to this server. As
you can imagine, moving this type of server could have a substantial impact on your
migration effort and migration timeline, in addition to the reputational risk associ‐
ated with it.

If you were to migrate this server without prior knowledge of how it operated, it
could have a potentially negative effect on hundreds of customers, which could affect
revenue and the company’s reputation. Because of this risk, it is vital to capture tech‐
nical details. Unfortunately, it is impossible to cover all of the potential technical
items that might come up, but here is a list of a few to give you an idea of what to look
out for:

• Permissible IP addresses
• Nonstandard TCP ports for protocols
• Permissible domains in proxy servers and firewalls
• License keys tied to server network card MAC addresses

236 | Chapter 8: Refactoring, Retooling, and Final Preparations

Technical Migration Plan
The technical migration plan details the types of technologies that will be used to per‐
form the migration. There are multiple AWS services available for migrating servers
and data based on your use case. For migrating substantial amounts of older static
data, there are Snowball and Snowmobile physical devices. These devices are sent to
you, either by truck or UPS/FedEx. Once you have the device, you can copy data over
to it and then send the device back to AWS, which loads the data into S3.

For databases, there is the Database Migration Service (DMS). For migrating servers,
there is CloudEndure. Which of the technologies you use is based on volume and the
acceptable age of the data. For instance, the Snowball device takes about seven days to
ship and load the data into S3 and become available for use. If your application has a
10-minute cutover time and you need data that is current up to the second, Snowball
would not be a desirable choice for this application. Your technical migration plan
should detail these typologies and how they will be represented for each component
of your application.

Testing Process
One place that you do not want to overlook is the testing process. The testing process
details the testing that needs to happen pre- and postcutover. Typically, I like to see a
significant amount of precutover testing, because this leads to less testing later in the
process during cutover when stress is high and time is short. Testing is such an
important part of the migration because of the changes to infrastructure that might
be necessary to take full advantage of the benefits of AWS. Enhanced HA, better DR,
and dynamic scaling all implement some amount of change to your environment and
could cause issues that lead to poor customer satisfaction. Let us look at an example
of how you might encounter risk related to testing.

Scenario 8-1
Bethany is migrating her three-tier web application from her colocation data center
into AWS. As part of the migration, she wants to take advantage of making her web
servers highly available. She wants to put a load balancer and an auto scaling group in
to maintain the lowest cost possible. Bethany failed to create a testing plan for the
application. Since it was a simple web application, she figured she would have one of
the engineers log on to the application and make sure that everything was online, and
that they could log on. During the cutover, everything worked great. The next
Monday, when customers started logging on to the application, they started to experi‐
ence all sorts of problems with the site, and they kept getting logged out randomly.

Application Deep Dive and Planning | 237

Bethany’s story is a good example of why you want to thoroughly test your applica‐
tion ahead of time. In her case, she had performed a smoke test during the migration,
which is OK only when you have done robust testing ahead of time. Her web applica‐
tion was stateful, and by using auto scaling and a load balancer without sticky ses‐
sions, her users had a poor experience. If she had performed proper testing ahead of
time, they would have run into this issue and identified the need for the sticky session
configuration on the load balancer before customers experienced the problem. Sticky
sessions ensure that the same user lands on the same server every time. The load bal‐
ancer maintains the connection for the duration of the session rather than for the
server with the least load. By only performing a smoke test to ensure that the servers
were online, they did not increase the load enough or cause a scaling action to expose
the problem. Adequate testing is a vital step in migration.

Cutover Process
It is common for migrations to focus solely on the technical aspects of migration and
completely forget about the organization of the cutover. In migration terms, the cut‐
over is the process of changing the application from running on-premises to running
in AWS. The technology used for the migration influences how long cutover can take,
but there might be additional business items to be aware of. Obviously, knowing
when you need to cut over is an important item. Whether the cutover needs to be on
the weekend or needs to have a data validation are also important questions to ask.
The idea is to capture as many caveats as possible that the business unit knows prior
to the migration.

By documenting the cutover process, you minimize the time needed for cutover and
ensure that all necessary steps have been addressed. Typically, the issues that I have
seen during cutover are due to sequencing problems. Here is a scenario that details
how a sequencing problem can derail your cutover due to poor preparation.

Scenario 8-2
Kurt’s team is performing a cutover of their global accounting application from their
in-house data center to AWS. They did not create a cutover plan because the applica‐
tion is simple, with only an application server and database server. The team is using
the CloudEndure tool from AWS, which performs ongoing block-level disk replica‐
tion to copy the application server into AWS. For the database server, they decided to
set up a new RDS instance in AWS and restore a backup of the on-premises database.
During the cutover, they took a backup of the database and restored it to the RDS
instance in AWS. Once they had completed that, they used CloudEndure to deploy
the application server in AWS and shut down the one on-premises. After the migra‐
tion, an accountant in Singapore opened an IT support ticket stating that their work
had been lost and asking what happened.

238 | Chapter 8: Refactoring, Retooling, and Final Preparations

Kurt has experienced a classic case of a cutover sequencing issue. During the cutover,
the team failed to stop the application prior to the database backup. This timing
allowed an employee who was not aware of the intended outage to access the system
and do work between the database backup and the application server being shut
down. This discrepancy in timing allowed the database to get out of sync with the last
backup. In this scenario, Kurt would have performed some diagnostics to find out
what happened. Once it was discovered, there would have to be another database
backup and restoration along with another application outage. Kurt’s simple applica‐
tion migration ended up costing the company hundreds or thousands of dollars more
than it should have due to poor cutover planning.

Rollback Process
In migrations as well as in life, we always plan on things going correctly, but we do
not always plan for when they don’t. When planning for migration, you want to
ensure that you have created a rollback plan so that if something does go wrong, you
can revert to the previous on-premises version. The processes of cutover and rollback
are not necessarily done in the same order; they can even be a different process alto‐
gether. Often rollback consists of destroying or stopping the new AWS version of the
servers and reactivating the on-premises version. Other issues that might arise con‐
cern DNS changes, specifically the time-to-live values that might cause issues for cus‐
tomers trying to access your site. I have found that performing a mental exercise of
walking through the rollback with business stakeholders, developers, and your engi‐
neering staff will flush out much of the process and caveats. A rollback is easier than a
cutover because the original state of the application is not destroyed and can be made
functional with minimal effort.

Closing
Sam’s chair creaks as she leans back. She just checked her project management soft‐
ware, and everything is on track for the cutover Sunday evening. Not bad, she thinks.
It’s two p.m. on Friday, and everything is on schedule. Feeling the warmth on her
arm, she turns her attention to the kids in the park across the street. The blue of the
sky is inviting, and the leaves dance gently. She decides to pack up her things and
head home to spend some time with her kids. On the way out, she stops by the vice
president’s office.

“Tom, just wanted to let you know that we are all set for our production cutover of
the accounting system this weekend,” she says from the doorway. She is a little anx‐
ious holding her laptop bag, wondering if he will notice.

“That’s great, Samantha, everyone is impressed with the progress that has been made
with the migration so far.” The corners of her mouth turn up, even though she’s trying
to be humble. “I see you have your laptop, why don’t you just put that back on your

Closing | 239

desk?” Tom suggests. “You have earned some free time.” Sam gives a gentle nod and
walks back to her desk to leave her laptop behind.

When it comes to migration, Benjamin Franklin had it right with “an ounce of pre‐
vention is worth a pound of cure.” Hopefully, this book has demonstrated how short‐
sightedness can cause you more issues, frustration, and, potentially, your future
success. Most of the follies in migration can be prevented with proper research and
planning, items that are so often passed over in an attempt to reduce timelines and
cost.

At this point in the process, you’ve done the research and planning and are ready to
begin your migration. Since this book is focused on the managerial aspects and not
on the technical implementation of migration, here is where we must part ways. I
wish you good luck on your migration—though if you made it here, luck isn’t
necessary.

240 | Chapter 8: Refactoring, Retooling, and Final Preparations

Index

Symbols
.NET, 218, 222

A
ACCEPT notifications, 44
accounts, 44

access and authorization, 179-182
hub-and-spoke design, 167
management of, 175-179
overall structure, 164-166
recommended accounts, 167-171

ACM (AWS Certificate Manager) certificates,
94-95

Active Directory Federation Services (ADFS),
180

administrator role, 45
agent-based collectors, 79-80
agentless collectors, 80
Agile Manifesto, 198
agile plans, 188-189
agility, 29-31, 150-151

business, 125
development methodologies, 198-200
savings with, 101, 129-135

AI (artificial intelligence), 197
alarms, 51
ALB (Application Load Balancer), 95-96
Amazon leadership principles, 199
Amazon Machine Image (AMI), 118
Amazon Web Services (AWS)

benefits of, 3-39
migration tooling, 117, 200-203
operational readiness for, 141-161
pricing, 2, 175

regions, 10
support, 172-173

AMD CPUs, 85
AMI (Amazon Machine Image), 118
Angular, 225
Ansible, 233
API Gateway, 225
Apple servers, 190
Application Compatibility Packaging, 191
application deep dive and planning, 75,

235-239
Application Load Balancer (ALB), 95-96
applications

.NET, 222
connectivity, 54-58
containerizing, 221-223
discovery of, 82
distributed, 61
latent, 204
legacy, 184
migrating, 75
migration plan, 64
refactoring, 74, 215-232
retooling, 215
serverless, 62
single-page, 225
status assessment, 235
targets for refactoring, 217-218
technical details, 236-237
three-tier design, 62
timeline equations for, 209
trimming the fat, 111-114
version currency, 235

ARM CPUs, 85

241

Artifact, 51, 142
artificial intelligence (AI), 197
Asia-Pacific, 14
assumptions

documenting, 135-136
examples, 136

ATADATA (Deloitte), 78, 203
Athena, 17
audit account, 168-169
audit documents, 142
audit reports, 51
Aurora, 217, 227
Aurora Serverless, 228
authentication controls, 99
authorizations, 179-182
Auto Scaling, 7, 8-9, 87-88
automation, 44, 129-131
availability, 18-19
availability zones (AZs), 10, 14-15

and disaster recovery, 15-16
regional, 14

AWS (see Amazon Web Services)
AWS blogs, 234
AWS Certificate Manager (ACM) certificates,

94-95
AWS IQ, 121
AWS Support YouTube, 234
AZs (see availability zones)

B
Backup, 28

recommended tagging for, 70
testing, 51

bandwidth
outbound, 93-94
requirements for, 99
team, 235

bastion hosts, 55, 167-168
battery backup system, 51
BC (business continuity), 15, 31-34, 183-185
BI (business intelligence) tools, 223
billing

alerts, 69
ancillary service charges, 97
consolidated, 175-176

blackout dates, 104
blockers, 189-198
Box, 19
bring your own license (BYOL), 88-90

bronze tier, 183
bugs, major, 196-197
building a pyramid, 144-156
business benefits, 23-37
business blockers, 192-198
business case

components of, 106
for migration, 74, 101-139
narrative for, 106-109
for refactoring, 230-232

business continuity (BC), 15, 31-34, 183-185
business intelligence (BI) tools, 223
business operations, 143-144
business risks, 63-71
business unit accounts, 165-165
BYOL (bring your own license), 88-90

C
C, 217
Canada, 13
cardholder data (CHD), 170
cash outlay, 125
CDNs (content distribution networks), 13
certifications

ISO, 142
SSL certificates, 94

change management, 147-150
chargeback, 70, 160-161
CHD (cardholder data), 170
Chef, 80, 188, 233
Chime, 168, 180
classic ELB, 95
classification tags, 70
cleanup scripts, 158
CLI (command-line interface) tools, 45
cloud business benefits, 23-37
cloud governance, 74, 163-164

AWS support, 172-173
definition, 171-185

A Cloud Guru, 59, 234
cloud technology benefits, 4-23
CloudEndure

costs, 117
feature set, 203, 221
moving servers with, 82, 119, 200-201
purpose, 117

CloudFormation templates, 131
CloudFront, 13, 232, 234
CloudTrail, 45

242 | Index

CloudWatch, 44, 50-51
billing alerts, 69
charges for, 97

CMDB (configuration management database),
77

Codeacademy, 59
CodeGuru, 198
CodePipeline, 30, 129-131, 198
command-line interface (CLI) tools, 45
command-line tools, 117, 119
commercial off-the-shelf software (COTS), 7,

196, 217
commitment, 28-29
competitive requirements, 197-198
compliance

baseline monitoring for, 44
IT prototyping for, 146-147

compliance documents, 142
compliance tags, 70
compute

definition, 2
discovery, 83

Config, 45, 97
Config Rules, 44, 71
configuration management database (CMDB),

77
connectivity

application, 54-58
decision tree, 98
internet, 55-58
requirements for, 97-100

consolidated billing, 175-176
consultants, 60-61, 120-123
containerization, 221-223, 229
content distribution networks (CDNs), 13
continuous development and continuous inte‐

gration (CI/CD), 31
(see also business continuity)

contractors, 60-61, 121
contractual obligations, 67-69
Control Tower, 43, 171
cost allocation tags, 159-160
cost center tags, 70
Cost Explorer, 158, 159-160

Billing & Cost Management dashboard, 69,
159

cost management, 158-160
cost regulation, 69-71
costs, 101

additional cost-reducing services, 28
ancillary service charges, 97
assumptions, 135
burn-up/burn-down, 137-139
estimating run rate after refactoring,

227-230
estimating savings, 229
forecasting, 109-136
migration, 116-123
operational expenditures, 35-37
reductions, 23-28
tooling, 117-120

COTS (commercial off-the-shelf software), 7,
196, 217

CPUs
aging of, 81
types of, 85-86
usage, 79

cryptographic ledgers, 197
Crystal, 200
customer satisfaction, 199
cutover, 238-239
cutover plan, 64

D
data analytics, 197
data centers, 67
data classification tags, 70
Data Lifecycle Manager (DLM), 33
data locality, 13
data out, 94
data proximity, 11-13
data warehouse, 223-224, 229
data: moving, 224
Database Migration Service (DMS), 184,

201-202, 237
costs, 119
purpose, 117

databases, 184, 188
engine change, 219-220, 227-228
migrating, 237
old guard, 219

DataSync, 202, 221
costs, 118
purpose, 117

DB2, 219
decision makers, 152-153
delay buffer, 103
Deloitte, 78, 203

Index | 243

demilitarized zone (DMZ), 20
department tags, 70
dependency mapping, 82-83
deployment, automated, 129-131
design, hub-and-spoke, 167
development methodologies, 198-200
DHCP (Dynamic Host Configuration Proto‐

col), 114
Direct Connect, 55, 57, 99
disaster recovery (DR), 31-34, 184

(see also business continuity)
AZs and, 15-16

discovery
application deep dive and planning, 235-239
tools for, 78-83
workload, 73, 77-100

disk capacity, 79
disks: right-sizing, 81-82
distributed application, 61
diversity

geographic, 9-16
technology, 58-61

divestitures, 165, 193-194
DLM (Data Lifecycle Manager), 33
DMS (see Database Migration Service)
DMZ (demilitarized zone), 20
DNS (Domain Name Service), 46, 168, 185
documents

audit, 142
compliance, 142
report rewrites, 224

Domain Name Service (DNS), 46, 168, 185
DR (see disaster recovery)
durability, 18
Dyer, Wayne, 215
dynamic consumption, 4
Dynamic Host Configuration Protocol

(DHCP), 114
DynamoDB, 2

E
EBS (see Elastic Block Store)
EC2 (see Elastic Compute Cloud)
EDP (Enterprise Discount Program), 29, 176
EFS (Elastic File System), 19, 92, 202
80/20 rule, 216
Elastic Block Store (EBS), 27

cost estimates, 228
costs, 230

pricing URL, 2
volume types, 90-91

Elastic Compute Cloud (EC2), 6, 16, 26, 225
allowed tagging, 70
costs, 230
expenses, 94
license model, 88
license-included, 89
pricing URL, 2

Elastic File System (EFS), 19, 92, 202
Elastic Load Balancing (ELB), 7-8, 94

classic ELB, 95
pricing URL, 2

EMP (End of Support Migration Program), 191
employee vacations and holidays, 103-104
encryption, 94, 99
encryption keys, 181-182
End of Support Migration Program (EMP), 191
Enterprise Discount Program (EDP), 29, 176
Enterprise Support, 172-173
environment tags, 70
environment-based accounts, 165-166
European Union (EU), 13
executive sponsor, 144-145
expertise loss risk, 65-66
extreme programming (XP), 199

F
FAQ (see frequently asked questions)
feature-driven development (FDD), 200
federation, 180
file servers, 188

(see also servers)
file storage, 220-221, 228

(see also storage)
File Transfer Protocol (FTP), 99
finance capabilities, 156-161
fire suppression system, 51
firewalls, 20, 233

(see also Web Application Firewall)
contemporary, 53
patching, 50
rules for, 50

flow logs, 46
Forecast, 17, 109-136

example, 111, 123
recommended components, 110
sample file, 114
step 1, 115

244 | Index

step 2, 116
step 3, 120
step 4, 124
step 5, 127
step 6, 128
step 7, 135
step 8, 137

Franklin, Benjamin, 240
frequently asked questions (FAQ), 3, 37-38

building, 37-38
examples, 107, 108

FSx, 92, 202
FTP (File Transfer Protocol), 99

G
Gandert, Nate, 101
General Data Protection Regulation (GDPR),

13
geographic diversity, 9-16
Getty Images, 94
GitHub, 59, 158, 171
GLBA (Gramm-Leach-Bliley Act), 182
Glue, 17
gold tier, 184
GoldenGate, 202
Google Suite, 180
GovCloud region, 14
governance, 74
gp2 storage, 91, 91
Gramm-Leach-Bliley Act (GLBA), 182
GuardDuty, 44, 46, 164
guiding principles, 71

H
hard costs, 24-26, 101
hardware, 34

unsupported, 191-192
x86, 190

Health Insurance Portability and Accountabil‐
ity Act (HIPAA), 182

holidays, 103-104
horizontal changes, 195
horizontal scaling, 7-9
HTTP, 99
hub-and-spoke design, 167
hybrid accounts, 166
Hyper-V, 201
hypervisor, 26, 50

I
IaC (infrastructure as code), 44, 131
Identity and Access Management (IAM), 22-23

permissions, 22
user accounts, 181

IDS (intrusion detection system), 53
infectious data, 170
infrastructure as code (IaC), 44, 131
input/output operations per second (IOPS), 8,

79
inspection tags, 70
Inspector service, 45, 70
instance families, 84
instance ratios, 85
instance sizes, 84
instances

definition, 6
latest, 84-85
new types, 125
pricing on, 125
reserved, 36, 85, 124-126
right-sizing, 80-81
store volumes, 93-93

Intel CPUs, 85
internet access, 98
internet connectivity, 55-58
internet of things (IoT), 197
intrusion detection system (IDS), 53
intrusion prevention system (IPS), 53
io1 storage, 91
IOPS (input/output operations per second), 8,

79
IoT (internet of things), 197
IPS (intrusion prevention system), 53
IQ (AWS), 121
ISO certifications, 142
IT prototyping, 145-153

J
Jassy, Andy, 60, 219
Java, 218, 222
JSON, 59

K
Kanban scheduling, 200
Key Management Service (KMS), 181-182

Index | 245

L
Lambda, 2, 225
landing zone, 43-47, 163-164

definition, 74, 164-171
deployment methods, 171
essential items, 43
key AWS services for security, 45-46

latency restrictions, 99
latency, application, 204
LCUs (Load Balancer Capacity Units), 95
leadership, 199
Lean methodology, 200
least privilege, 20, 22-23, 47-48
legacy applications, 184
legacy security patterns, 52-54
legacy systems, 114
legacy technology, 190
License Manager, 28
license model, 88-90
licenses

bring your own license (BYOL), 88-90
included, 89
ways to purchase, 88-90

licensing, 68, 229, 231
Linux Academy, 59
Linux servers, 55, 167
Load Balancer Capacity Units (LCUs), 95
load balancing (see Elastic Load Balancing)
logging

baseline, 44
protected, 46-47

logging account, 168-169
Lustre, 92

M
M&A (mergers and acquisitions), 192-193
machine learning (ML), 197
macOS, 190
magazine managers, 231
mail servers, 225-227, 230
mainframes, 191
maintenance windows, 149
management changes, 194-198
media companies, 94
memory utilization, 79
mergers and acquisitions (M&A), 192-193
MFA (multi-factor authentication), 44, 177
Microsoft, 78
Microsoft Active Directory (AD), 83, 113

AWS managed services, 170
federation implementation, 180
migration, 188

Microsoft SQL, 219, 231
Microsoft SQL Server, 223
migrating to AWS

benefits of, 3-39
blockers, 189-198
business case, 101-139
business case for, 74
costs, 116-123
executive sponsor, 144-145
final preparations for, 234-235
forecast, 109-136
guiding principles, 71
operational readiness for, 141-161
percentages, 127-128
phases of, 73-75
planning for, 64, 74, 187-214
risk mitigation, 41-71
timeline creation, 205
timeline estimation, 102-106
tooling, 117
tooling selection, 200-203
workload discovery, 77-100
workstreams, 207

Migration Hub, 201
ML (machine learning), 197
monitoring availability, 51
monitoring performance, 50
Movere, 78
moving data, 224
MPLS (multiprotocol label switching), 55
multi-factor authentication (MFA), 44, 177
multiple accounts or environments, 99
multiprotocol label switching (MPLS), 55
MySQL, 201, 217, 219

N
narratives, 106-109
Network ACLs, 27
network discovery, 93-97
network file system (NFS), 92
network intrusion detection system/intrusion

prevention (IPS/IDS) system
contemporary, 53

Network Load Balancer (NLB), 97
NFS (network file system), 92
NLB (Network Load Balancer), 97

246 | Index

notifications, 44

O
object storage, 220-221, 228
Okta, 180
online learning, 235
operating systems (OS)

recommended tagging, 70
unsupported and outdated, 190-191

operational expenditures, 35-37
operational pyramid, 144

apex, 155-156
base, 145-153
building, 144-156
expansion layer, 154-155
foundation, 144-145

operational readiness, 74, 141-161
Optimize CPUs function, 6
Oracle, 201, 219, 223, 231
Organizations service, 43
OS (see operating system)
outbound bandwidth, 93-94
owner tags, 70
O’Reilly online learning, 235

P
Pareto principle, 216
partial run rate, 86
Patch Manager, 234
patch tags, 70
pay-as-you-go model, 37
Payment Card Industry Data Security Standard

(PCI-DSS, or PCI), 142, 170, 182
percentage migrations, 127-128
performance monitoring, 50
personally identifiable information (PII), 166
physical MFA devices, 177
PII (personally identifiable information), 166
pipelines, 158
planning

agile, 188-189
building your plan, 203-214
combination, 188-189
finalizing the 90%, 212-213
laying down the 90%, 208-211
migration, 64, 74, 187-214
needs for, 187-188
polishing the 10%, 213-214
preplanning, 189

rollback plans, 149
technical migration plan, 237
testing, 64
tooling for, 206-208
waterfall, 188-189

platinum tier, 185
PostgreSQL, 217, 219
preplanning, 189
pricing, 2, 175

on instances, 125
Reserved Instance, 229
URLs for, 2

Pricing Calculator, 25
priority shifts, 196
privacy regulations, 13
process management, 153-153
progress measurement, 199
project management, 152, 206
prototyping, 145-153
Puppet, 233
pyramid building (see operational pyramid)
Python, 59

Q
quality of service (QoS), 54
query rewrites, 224
QuickSight, 17, 168, 223, 224

R
R factors, 111, 189
RAID (Redundant Array of Inexpensive Disks),

90
RDP (Remote Desktop protocol), 55, 167
RDS (see Relational Database Service)
re-platforming, 113
React, 225
read-only role, 45
recommended accounts, 167-171
recovery point objective (RPO), 32
recovery time objective (RTO), 32
Red Hat, 191
redeployment, 112
Redshift, 223-224, 229
Redundant Array of Inexpensive Disks (RAID),

90
refactoring, 112, 215-232

business case for, 230-232
potential targets, 217-227

region management, 173-174

Index | 247

Region Table, 11
regions, 10-11

availability zones, 14
GovCloud, 14

regulatory documents, 142
rehosting, 112
REJECT notifications, 44
Relational Database Service (RDS), 16, 26, 86,

201, 227
license model, 88
pricing URL, 2

Remote Desktop protocol (RDP), 55, 167
Remote Desktop Services, 168
report rewrites, 224
repurchase, 113
Reserved Instances (RIs), 36, 85, 124

pricing, 229
resiliency requirements, 99
resource tagging, 69-70

(see also tagging)
resources, 157-157
REST APIs, 211, 211
retain R-factor, 113-114
retire R-factor, 113
retooling, 215, 232
right-sizing

disk, 81-82
instance, 80-81

RIs (see Reserved Instances)
risk assessments, 232
risk management, 148

(see also change management)
risk mitigation, 41-71
rollback plans, 149
rollback process, 64, 239
root accounts, 176-179

securing, 177
tasks that require access to, 177

Route 53, 168, 185
routing, transitive, 99
RPO (recovery point objective), 32
RTO (recovery time objective), 32
run rate modeling, 114-115, 227-230
run rate modifiers, 124-128

S
S3 (see Simple Storage Service)
SageMaker, 16
SailPoint, 180

Salt, 233
SAML (Security Assertion Markup Language),

180
SAML Federation, 180
sandbox account, 169
Savings Plans, 126
sc1 storage, 91
scalability, 4
scaling

horizontal, 7-9
temporary, 7
vertical, 4-7

Schema Conversion Tool (see SCT)
Scrum, 200
SCT (Schema Conversion Tool), 117, 119, 219
Secure Shell (SSH) protocol, 55, 167
Secure Socket Layer/Transport Layer Security

(SSL/TLS) encryption, 94
security, 19-23

baseline monitoring, 44
baseline roles, 45
IT prototyping, 146-147
key AWS services for, 45-46
layered, 234
legacy patterns, 52-54
technology risks, 42-54

Security Assertion Markup Language (SAML),
180

security controls, 52
Security Groups, 20-21, 27, 44
Server Migration Service (SMS), 201, 233

costs, 118
purpose, 117

serverless design, 62
serverless technology, 8
servers

definition, 6
discovery of, 79-83
distribution of, 88
identification of, 79
migrating, 237
number of, 102
number per day, 102
patching, 50
stateless, 9
virtual, 201

Service Catalog, 131-135
service charges, ancillary, 97

248 | Index

Service Organization Control (SOC) reports,
142

service-level agreement (SLA), 19
ServiceNow tool, 150
SES (Simple Email Service), 225-226, 230
7R factors, 111, 189
Shannon number, 39
Shannon, Claude, 39
shared responsibility model, 48-52
shared services account, 167-168
Shedd, John A., 41
showback, 70, 160-161
silver tier, 184
Simple Email Service (SES), 225-226, 230
Simple Notification Service (SNS), 97, 218
Simple Queuing Service (SQS), 218
Simple Storage Service (S3), 16, 52, 202

costs, 220, 228
durability, 18
moving to, 220-221
pricing URL, 2
security, 48
support for, 217

Sinek, Simon, 3
single sign-on (SSO), 180
single-page applications (SPA), 225
SLA (service-level agreement), 19
SMS (see Server Migration Service)
Snowball, 117, 118, 237
SNS (Simple Notification Service), 97, 218
SOC (Service Organization Control) reports,

142
soft costs, 26-28, 52
software

major bugs in, 196-197
patching, 50
working, 199

software licensing, 68, 229
(see also License Manager)

Solaris, 190
South America, 14
SPA (single-page applications), 225
spend, 1
sponsor, executive, 144-145
sprints, 188-189, 200, 206
SQS (Simple Queuing Service), 218
SSH (Secure Shell) protocol, 55, 167
SSL certificates, 94

SSL/TLS (Secure Socket Layer/Transport Layer
Security) encryption, 94

SSM (Systems Manager Service), 233-234
SSO (single sign-on), 180
st1 storage, 91
staff assessment and training, 58-60
staff loss risk, 65-66
sticky sessions, 9, 97
storage, 90-93

EBS costs, 230
EBS volume types, 91-91
instance volumes, 93-93
moving to S3, 220-221
patching, 50
S3, 228

support, 23-28, 234
switches: patching, 50
Systems Manager, 28, 232, 233-234
Systems Manager Service (SSM), 233-234

T
Tableau, 223, 229
tagging, 69-70, 158-160

cost allocation tags, 159-160
enforcement of, 70-71
recommended tags, 70

TAM (Technical Account Manager), 173
TCO (total cost of ownership) tool, 25
TCP (Transmission Control Protocol), 97
TDD (test-driven development), 199
team bandwidth, 235
team size, 151-152
Technical Account Manager (TAM), 173
technical complexity, 61-63
technical details, 236-237
technical migration plan, 64, 237
technology, 58-61

access to, 16-17
assumptions, 135
blockers, 190-192
cloud benefits, 4-23
legacy, 190

technology risks, 42-63
templates, 131
temporary scaling, 7
test-driven development (TDD), 199
testing, 29, 149, 236, 237-238

backup generator, fire suppression, and bat‐
tery backup system, 51

Index | 249

planning for, 64
third-party support, 67
third-party tools, 181, 200, 203
time to market (TTM), 200
timeline for migration

creating, 205
equation for, 105-106
estimating, 102-106

TLS (Transport Layer Security), 97
tooling, 117

planning, 206-208
retooling, 232-234
selection for, 200-203
third-party, 181, 200, 203

tooling costs, 117-120
total cost of ownership (TCO) tool, 25
training, 58-60
training sites, 59
Transit Gateway, 55
transitive routing, 55
Transmission Control Protocol (TCP), 97
Transport Layer Security (TLS), 97
TSO Logic, 78
TTM (time to market), 200

U
UDP (User Datagram Protocol), 97
user accounts, 181
User Datagram Protocol (UDP), 97

V
vacations and holidays, 103-104
VB (Visual Basic), 184, 217, 222
VDI (virtual desktop interface), 168
vendor lock-in, 34-35
vertical changes, 194-195
vertical scaling, 4-7
VIFs (virtual interfaces), 99
virtual desktop interface (VDI), 168
virtual interfaces (VIFs), 99
virtual machines, 6
Virtual Private Cloud (VPC), 44
virtual private networks (VPNs), 54-55

bandwidth requirements, 99

controllers, 20
virtual servers, 201
Visual Basic (VB), 184, 217, 222
VMWare, 201
VPC (Virtual Private Cloud), 44
VPNs (see virtual private networks)

W
WAF (Web Application Firewall), 232, 233
waterfall plans, 188-189
WCF (Windows Communication Foundation),

222
web access, 99
Web Application Firewall (WAF), 232, 233
websites

dynamic content, 225
static, 224-225, 229-230

Windows 2003, 190
Windows Communication Foundation (WCF),

222
Windows Group Policy, 80
Windows Management Instrumentation

(WMI), 80
Windows servers, 55, 92, 167
WMI (Windows Management Instrumenta‐

tion), 80
working software, 199
workload discovery, 73, 77-100
Workspaces, 168
workstreams, 207

X
x86 hardware, 190
XP (extreme programming), 199

Y
YAML, 59
Yubico YubiKey, 177

Z
zero trust, 20-21, 53
zoning, contemporary, 53

250 | Index

About the Author
Jeff Armstrong has 25 years of information technology experience, working in sev‐
eral industry verticals for startups and Fortune 100 companies alike. For the past six
years, he has been working as an architect in the mass migration space, four of which
have been exclusively cloud migrations to AWS. He has evaluated, designed, or
migrated more than 150,000 workloads in that time. Jeff is also an avid programmer,
having worked in nine different languages throughout his career. He has obtained
nine AWS certifications, is CISSP certified, and also holds the Certified Ethical
Hacker (CEH) and Computer Hacking Forensic Investigator (CHFI) security
certifications.

Jeff believes in self-innovation and continued education. He holds a bachelor’s degree
in business administration, a master’s degree in information technology and assur‐
ance, and is pursuing his doctorate in business administration. He also holds a certifi‐
cate in strategy and innovation from MIT Sloan and a certificate in executive
leadership from Cornell.

Colophon
The animal on the cover of Migrating to AWS: A Manager’s Guide is an upland sand‐
piper (Bartramia longicauda), a species of migratory shorebird also known as the
upland plover or grass plover. Unlike other North American shorebirds, the upland
sandpiper does not inhabit wetlands or mudflats and instead prefers grasslands,
meadows, dry tundras, and prairies. Their native breeding habit covers parts of
Alaska, Canada, the Midwest, and New England, but they are most commonly found
in the Great Plains region.

Upland sandpipers are large birds (about 12 inches long) with small, distinctive
round heads, large eyes, and long legs and necks. Their bodies and wings are speckled
brown with white around the eyes and along the throat and belly. They forage for
food by walking quickly through short grass and pecking at various seeds and insects,
including grasshoppers, crickets, beetles, ants, and fly larvae. During mating season
the males perform aerial displays and flight calls as they circle the breeding territory.
These birds are not particularly territorial, so while they do mate and tend their
young in pairs, some breeding adults will forage and rest together in small groups.
Baby sandpipers are downy and active from the time they hatch, and can leave the
nest and feed themselves almost immediately.

While migrating to South American grasslands for the winter, upland sandpipers
have been known to nest in unusual places such as beaches, airports, pastures, and
even ballfields. These birds are so closely associated with native prairies that they are
considered an indicator species whose absence would signal a problem with the

habitat. Though they are considered threatened in many parts of the US due to loss of
habitat and declining numbers, the International Union for Conservation of Nature
considers the upland sandpiper a species of “Least Concern” because the global popu‐
lation is still trending upward. Many of the animals on O’Reilly covers are endan‐
gered; all of them are important to the world.

The cover illustration is by Karen Montgomery, based on a black and white engraving
from British Birds. The cover fonts are Gilroy Semibold and Guardian Sans. The text
font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the
code font is Dalton Maag’s Ubuntu Mono.

There’s much more
where this came from.
Experience books, videos, live online
training courses, and more from O’Reilly
and our 200+ partners—all in one place.

Learn more at oreilly.com/online-learning

©
20

19
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

https://oreilly.com

	Cover
	Copyright
	Table of Contents
	Foreword
	Preface
	Who This Book Is For
	What This Book Covers
	Conventions Used in This Book
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Part I. Migration Foundation
	Chapter 1. Why Should I Migrate to Amazon Web Services?
	Cloud Technology Benefits
	Scalability and Dynamic Consumption
	Geographic Diversity
	Easy Access to Newer Technologies
	Availability
	Increased Security

	Cloud Business Benefits
	Reduced Expenditures and Support
	No Commitment
	Business Agility
	Disaster Recovery/Business Continuity
	Decreased Vendor Lock-in
	Change to Operational Expenditures

	Converting Your Why into an FAQ
	How to Build the FAQ
	Wrapping It Up

	Chapter 2. What Are the Risks and Their Mitigation?
	Technology Risks
	Security
	Application Connectivity
	Technology Diversity
	Perception of Increased Technical Complexity

	Business Risks
	Reputation
	Staffing and Expertise Loss
	Contractual Obligations
	Cost Regulation

	Building Your Guiding Principles
	Wrapping It Up

	Part II. Phases of Migration
	Chapter 3. Discovering Your Workloads
	Discovery and Assessment Tooling
	Server Discovery

	Compute
	Latest Instances
	CPU Type
	Relational Database Service
	Partial Run Rate
	Auto Scaling
	License Model

	Storage
	EBS Volume Types
	Network File System Replacement
	Windows Server Replacement
	Instance Store Volumes

	Network
	Overall Outbound Bandwidth
	Elastic Load Balancers
	Classic Elastic Load Balancer
	Application Load Balancer
	Network Load Balancer

	Ancillary AWS Service Charges
	Assessing Connectivity Requirements
	Wrapping It Up

	Chapter 4. Building Your Business Case
	Estimating Your Timeline
	Number of Servers
	Number of Servers Moved per Day
	Delay Buffer
	Employee Vacation and Holidays
	Putting the Equation Together

	What Does a Business Case Look Like?
	The Narrative
	Introduction
	FAQ
	Closing

	The Forecast
	Trimming the Fat
	Run Rate Modeling
	Migration Costs
	Run Rate Modifiers
	Agility Savings
	Assumptions

	Cost Burn-Up/Burn-Down
	Wrapping It Up

	Chapter 5. Addressing Your Operational Readiness for AWS
	Why Your Operations Change After Migration
	Business Operations
	Building a Pyramid
	The Foundation: Executive Sponsor
	The Base: IT Prototyping
	Building Onto Your Base: Department Expansion
	Finishing the Apex

	Finance Capabilities
	Unconstrained Resources
	Misconfigured Pipelines
	Cost Management
	Lack of Chargeback/Showback

	Wrapping It Up

	Chapter 6. Defining Your Landing Zone and Cloud Governance
	Landing Zone
	Account Structure
	Recommended Accounts
	Landing Zone Deployment Methods

	Cloud Governance
	AWS Support
	Region Management
	Account Management
	Access and Authorization
	Key Management Service
	Business Continuity

	Wrapping It Up

	Chapter 7. Planning Your Migration
	Who Needs a Plan
	Agile, Waterfall, or Combination Plan
	Preplanning
	Blocker Analysis
	Technology Blockers
	Business Blockers

	Development Methodologies
	Migration Tooling Selection
	CloudEndure
	Database Migration Service
	DataSync
	Third-Party Tooling

	Building Your Plan
	Creating a Migration Timeline
	Planning Tooling
	Laying Down the 90%
	Finalizing the 90%
	Polishing the 10%

	Wrapping It Up

	Chapter 8. Refactoring, Retooling, and Final Preparations
	Refactoring
	Potential Refactoring Targets
	Estimating Run Rate After Refactoring
	Building the Business Case for Refactoring
	Final Thoughts on Refactoring

	Retooling
	Web Application Firewall
	Systems Manager
	CloudFront

	Final Preparations
	Application Deep Dive and Planning
	Application Status
	Team Bandwidth
	Technical Details
	Technical Migration Plan
	Testing Process
	Cutover Process
	Rollback Process

	Closing

	Index
	About the Author
	Colophon

