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Preface

A model is an abstract expression of objects to study and embodies the high intelligence of
human beings in perception of the real world. Simulation is an important way of understand-
ing and even changing the real world. Modeling is taken as the foundation for simulation,
especially for the simulation of complex systems (e.g., systems of systems). With the contin-
uous growth of complexity and diversity of systems to be studied, models are becoming more
complicated and diversified. How to build a right model is the core issue in simulation. Al-
though the importance of the engineering idea is gradually recognized in applications involv-
ing the full model lifecycle, currently no complete theory, philosophy, or technology system is
available.

To meet the challenges in the development and management of complex system models,
this book gives a systematic introduction to the concept of model engineering (ME). We aim at
setting up a generic, normalized, and quantifiable engineering methodology for ME. Our ap-
proach is to explore the basic principles in model construction, management, and mainte-
nance to best deal with the data, processes, and organizations/people involved in the full
life cycle of a model. We believe this is the key to guarantee the credibility of the model
life cycle.

This book shows state-of-the-art research of the authors that relates to ME for simulation,
including model construction, model lifecycle process management, model library manage-
ment, model description, management and execution, model composition and reuse, quan-
titative measurement of model credibility, model validation and verification, applications of
model engineering, etc.

This book appears in conjunction with the “Theory of Modeling and Simulation, 3rd Edi-
tion,” in which the system theoretic and DEVS-based concepts developed for modeling and
simulation (M&S) will contribute to a solution of problems raised by the holistic approach of
ME for simulation.

As the first book that systematically introduces the concept of model engineering, this book
tries to draw the attention of researchers to establish a generic methodology on ME indepen-
dent of specific application fields. ME should be a subdiscipline of M&S.

Moreover, ME can be used not only in the domain of M&S, but also in other fields that need
modeling and model management.

Lin Zhang
Bernard P. Zeigler
Yuanjun Laili
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CHAPTER

1

Introduction to Model Engineering
for Simulation

Lin Zhang®", Bernard P. Zeigler”, Laili Yuanjun*''
*School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
"Engineering Research Center for Complex Product Advanced Manufacturing Systems, Ministry of
Education, Beijing, China “RTSync Corp. and Arizona Center for Integrative Modeling and
Simulation, Tucson, AZ, United States

1 BACKGROUND

Simulation has been widely accepted as an important computational approach for human
beings to understand and change the objective world (Mittal et al., 2017).

Modeling and simulation (M&S) play a vital role in many critical fields, such as economy,
aerospace, information, biology, material, energy, advanced manufacturing (Fowler and
Rose, 2004), agriculture, education, military, transportation (Mahmassani, 2001), ecosystems
(Holling, 2001), pharmaceuticals, and health.

The systems to which M&S are being applied are increasingly complex, thus requiring sig-
nificant advances in its science and technology. Various sorts of mathematical theories have
been applied to approximate, analyze, predict, and optimize complex systems. However, our
understanding of the features that make systems complex, for example, nonlinearity, uncer-
tainties, emergence, and the dynamic interactions among components, continues to remain in
an initial stage. As an alternative approach to understanding of complex systems, simulation
has special advantages in the design, analysis, development, optimization, control, mainte-
nance, and training. In the past decades, many simulation technologies have been developed,
which include discrete event simulation (Fishman, 2013), agent-based simulation (Drogoul
et al., 2003), runtime infrastructure (RTI)-based federation simulation (Perumalla et al.,
2003), and so on. Simulation can facilitate quick understanding of a system’s behavior and
can enable analysis, training, and decision-making on the system without actually testing
it in the real world (Zeigler et al., 2018; De Jong, 2002; Karnopp et al., 2012; Oren and Zeigler,
1979; Oren et al., 2012; Ouyang, 2014; Stevens et al., 2015; Zeigler et al., 2016).

Model Engineering for Simulation 1 © 2019 Elsevier Inc. All rights reserved.
https://doi.org/10.1016/B978-0-12-813543-3.00001-9
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Simulation Operation and process of the system over time

FIG.1 A model within a simulation.

Simulation is a model-based activity; it uses models as a basis to imitate the operation of a
real-world process or system over time for managerial or technical decision-making (INSF,
2006; DoD, 2007). A model that is adequate for the purposes of simulation adequately repre-
sents the key characteristics, behaviors, and functions of the simulated object for these pur-
poses. If the object is a complex system, a set of models is required for representing its
components, which are then composed to create a model of the whole system. The composed
model can be seen as a surrogate for the targeted system, whereas simulation represents the
operation and process of the system over time, as shown in Fig. 1.

It is critical to formulate the objectives (or requirements) underlying a simulation activity.
Constructing a model that adequately achieves these objectives is critical for the success of a
simulation application. Take the development of missiles as an example. The early developed
“Bristol Bloodhound” was successfully launched with 79 model-based events and required
only 92 calibrated launches. In contrast, not using M&S, the development of “NIKE-I missile”
had to be physically tested 1000 times. Of course, if the simulation model is established with
mistakes or unstable factors, the decision and analysis results applied to the real system may
lead to catastrophic consequences. The “Three Mile Island” accident is a typical example of
using an unreliable system model to train people. This model flaw led to misoperation on the
real system and caused more than a billion dollar economic loss.

Later we will present a detailed definition of “credibility” and how constructing the right
model is critical to credible simulation results.

As the number of system components continues to grow and their interactions change
dynamically, the performance of a complex system varies constantly and evolves gradually
to a System of Systems (SoS) (Keating et al., 2003). Such system refers to a collection of ded-
icated subsystems that pool their components and capabilities together to offer more func-
tionality and performance than simply the sum of these constituent systems. An SoS is
featured by:

* alarge number of components and complex relationships,
¢ decentralized dynamics with strong uncertainty,
* huge amounts of data to be processed.

To analyze it using simulation, basic models designed from bottom up must be established
to support testing the mechanisms needed to coordinate the component behaviors so as to
enable the SoS to achieve its global requirements (Zeigler et al., 2016). That means that the



1 BACKGROUND 3

engineers (who typically come from different domains) need to take the time to establish col-
laboratively new models for every component of every subsystem in an SoS. If the simulation
requirement changes slightly, specific models may need to be rebuilt. To avoid the cumber-
some remodeling process, model reuse and composition become critical model-based
activities.

Many studies have been carried out on the reuse of existing models for different kinds of
SoS from the perspective of system engineering. The most typical research includes model-
driven simulation (MDS) (McGinnis and Ustun, 2009), dynamic data-driven application sys-
tem (DDDAS) (Darema, 2004), and model-based system engineering (MBSE) (Wymore, 1993).
The research on MDS has fully shown the importance of models and established a framework
for the design of tool-independent metamodel. This metamodel contains the simplest descrip-
tion of the state, action, and process of the corresponding executable simulation model. By
using a unified modeling language, it will be easily reused to perform the simple workflow
of different systems and then guide the refinement of the existing simulation model for new
system analysis. As shown in Fig. 2, such metamodel is taken as a middleware to bridge the
gap between a real-world system (or object) and a similar or matched simulation model. On
the contrary, the research on DDDAS tries to directly reuse the entire system model by a feed-
back control loop, as shown in Fig. 3. On one hand, the simulation data is collected to
reconfigure the running model. On the other hand, the model itself will control the adaptation
of the simulation process for generating the required result. Such a two-way control mecha-
nism enables the existing model to be executed in a dynamic way and adapt to a wide range of
systems.

Both of these paradigms put their main focus on how to establish a reusable model for a
wide range of objects and how to adapt it to different simulation requirements. However,
only a single model or a small group of models are considered for reuse. For different classes
of models, the metamodel or the closed-loop control mechanism must be specifically
redesigned.

Simulation results
System Tool- |ndependent Slmulatlon
L requirements L performance models L models
Refined
Refinement feedbacks | models

FIG. 2 The framework of a model-driven simulation.

Simulation process
- J\

) Simulation
model Refinement feedbacks results

FIG. 3 The framework of a dynamic data-driven application system.
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Different from these two paradigms, MBSE was proposed to manage the models and their
related knowledge established in the whole life cycle of system engineering instead of just the
documentation (Estefan, 2007). It refers to the use of a model as a basic element to describe
customer requirements and to design, analyze, and verify a required system. Most research
on MBSE considers the design, storage, collaboration, and test of reusable models with
respect to different stages of system engineering on a conceptual level and passes the
technical implementation mechanisms to different domain engineers. Consequently, MBSE
research has not addressed how to manage existing multidisciplinary simulation models
and compose them together to form a valid and credible simulation system in a rapid manner.

This chapter analyzes in depth the current challenges in the modeling of complex systems
(especially SoSs). It also introduces the concept of model engineering (ME), its key technol-
ogies, and provides an overview of this book.

2 MAIN CHALLENGES ON MODEL LIFE CYCLE

A system, especially a complex system, can be generally divided into three layers, the sys-
tem layer, the subsystem layer, and the component layer, as shown in Fig. 4. It is the dynamic
collaboration between different components that enables the whole SoS perform much more
functionalities than the simple sum of multiple subsystems (Nielsen et al., 2015). To form a
complete and credible SoS simulation, the model established for each component should pos-
sess the following properties:

¢ the model must be credible,

¢ the model should be fully adapted to multidisciplines,

¢ the model should be able to connect to each other and respond to different inputs
dynamically, and

* the model may process large amounts of data.

These properties have brought many obstacles for engineers to establish an efficient
(or even a right) SoS. Although the concept and framework of SoS have been addressed by
researchers many times, there have been very few attempts to establish a complete SoS
simulation system or a group of extendable models for SoS simulation. The main challenges
are summarized as follows.

System of systems

Component ) NN @ T

FIG. 4 Three layers of system of systems.
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2.1 The Credibility of a Composed SoS System Model Is Hard to Verify

Most of the existing verification-and-validation (V&V) methods are designed for a single
model under a specific environment (Law, 2008; Sargent, 2009; Tremblay and Dessaint, 2009).
They focus mainly on the consistency, uncertainty, and sensitivity validation of simulation
results compared with the desired results (or real-system results) (Moriasi et al., 2007; Moss,
2008; Park et al., 2010). The design knowledge, the development environment, the refinement
process, and the maintaining way which also directly influence the credibility of the model
are ignored. When the model is rebuilt, refined, or reused in a new environment, its credibility
is hard to be reassessed by the previous V&V method.

In addition, all of the component models are right and independently verified does not
mean that the composition of them is also right and credible. On one hand, it is still lack
of complete and unified criteria to verify if a composed system model is fully reliable
under a specific circumstance. On the other hand, the methods for verifying and validat-
ing the composed system model with dynamic changes and inside interactions are still
very rare.

2.2 Existing Models Are Hard to Extend and Interoperate

Without a uniform specification for the modeling, simulation, and model maintenance pro-
cess, the model can be built into any shape. By hundreds of simulation software and tools,
millions of simulation models have been well established for different domains. However,
as most of them cannot be extended into a new environment, the increased number of models
actually makes no sense. Model reuse can only be carried out under a standard M&S archi-
tecture. Till now, there is still lack of a basic scalable model, standard process, and interdis-
ciplinary rules to support fast model reuse and system construction. It is even unable to
determine if a model is reusable before testing it in the targeted environment.

Even if a model is reusable, it is hard to interoperate with others in a new environment.
First of all, the inputs and outputs (I/O) of the model are usually fixed. Without full matching
with the I/O, it cannot be set up in a right way. Second, due to the runtime environment
barrier and nonuniform simulation process, these models cannot even be executed under
cooperative circumstances. That is why most of the existing collaborative simulation is car-
ried out in a distributive manner with independent execution environment. Moreover, each
component of such a collaborative simulation requires a member engineer to maintain it in
real time. How to make a model more adaptable for a new execution environment and how
does it respond to both the environment and other models autonomously are still two crucial
problems in the domain of M&S.

2.3 Crucial Data and Knowledge Produced and Processed by the Model Is Lost

Traditionally, engineers or researchers primarily concern about the simulation results pro-
duced by a system model. Nonetheless, the data produced throughout the process that the
model is defined, implemented, refined, and maintained is ignored. To refine a model in a
changing situation, some real-time model calibration methods have been proposed, which
enables a series of real-time simulation data to be analyzed and stored. Nowadays, engineers
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start to put emphasis on the knowledge extraction and process normalization of M&S.
History information becomes more and more important in M&S and system construction.
However, large amounts of interaction data, disciplinary knowledge, and management data,
which is a fundamental basis to determine if a model will be credibly reused, if a group of
models are composable and suitable for new requirement, and if the whole composed system
model is reliable has yet to be well stored, analyzed, and applied.

On the whole, very few studies have focused on the life cycle of the model, the manage-
ment of interdisciplinary models, and make use of them for SoS construction. How can a
model or a group of models efficiently evolve, adapt, and cooperate for complex systems
is still an open question to be solved.

3 THE CONCEPT OF ME

To focus on the life-cycle management of simulation models and guarantee the credi-
bility of SoS modeling and simulation, the concept of ME is introduced in this section. We
will formally define the life cycle of a model and connect each stage in the life cycle, so as
to make the existing model better to reuse, combine, and evolve in a credible and
standard way.

The life cycle of a model defined in ME is shown in Fig. 5. It contains six steps, that is, prob-
lem definition, model design, model construction, model configuration, VV&A (verification,
validation, and accreditation), model application, and model maintenance.

Definition Model Han-
v dler

Design

v

- Standardize
Construction % Update
v a Evolve
Evolution Data w Knowledge \ Activity \ Compose

Similarity Accuracy Integrity Reliability  ~  ......

Application

Maintenance

Credibility
FIG. 5 Model life cycle: the main focus of ME.
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Based on this cycle, ME is defined as a general term for theories, methods, technologies,
standards, and tools relevant to a systematic, standardized, quantifiable engineering method-
ology that guarantees the credibility of the full life cycle of a model with the minimum cost
(Zhang, 2011, Zhang et al., 2014a):

(1) ME regards the full life cycle of a model as its object of study, which studies and
establishes a complete technology system at the methodology level based in order to
guide and support the full model life-cycle process such as model construction, model
management, and model use for complex systems.

(2) ME aims to ensure credibility of the full model life cycle, integrate different theories and
methods of models, study and find the basic rules independent of specific fields in the
model life cycle, establish systematic theories, methods and technical systems, and to
develop the corresponding standards and tools.

(3) ME manages the data, knowledge, activities, processes, and organizations/people
involved in the full life cycle of a model, and takes into account the time period, cost, and
other metrics of development and maintenance of a model.

(4) Here the credibility of a model includes functional and nonfunctional components.
Functional components are a measurement of the correctness of functions of the model
compared to the object being modeled. Nonfunctional components include features
related to the quality of a model, such as availability, usability, reliability, accuracy,
integrity, maturity, ability of modelers as well as management of the modeling process.
Credibility is a relative index with respect to the purpose of modeling and simulation.
Evaluation of credibility includes objective and subjective evaluation. Objective
evaluation is mainly based on data and documents, while subjective evaluation is mainly
based on expertise. Quantitative definition and measurement of credibility will be one of
the most important research topics of ME.

4 KEY TECHNOLOGIES OF ME

According to the framework of the Body of Knowledge of Model Engineering given in
Zeigler and Zhang (2015) and Zhang et al. (2014a,b), technologies involved in ME can be
divided into the following categories (Fig. 6) including general technologies, model construc-
tion technologies, model management technologies, model analysis and evaluation technol-
ogies, and supporting technologies. Some key technologies in the categories will be discussed
in this section.

4.1 General Technologies

4.1.1 Modeling of the Model Life-Cycle Process

In accordance with the standards of ME, modeling of the model life-cycle process means to
build a structural framework of activities that usually happen in the life cycle. As demon-
strated in Fig. 7, the framework is a visible pipeline to show the state of a model related to
the key stages, key elements, and key data of its life-cycle management. It is also designed
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Body of knowledge of model engineering

Visualization technology of mode!

1 engineering Model engineering standards and norms

Support environment and tools of model . .
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FIG. 6 Key technologies of model engineering.
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FIG. 7 A model of the model life-cycle process.
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as a reference to evaluate the life-cycle cost and comprehensive efficiency and to improve both
the model and the management strategy.

4.1.2 Model Engineering Life-Cycle Management

The life-cycle management of ME is carried out for managing data (development data and
runtime data), knowledge (common knowledge shared by different models and the domain
knowledge), activities, tools (especially M&S tools and model evaluation tools), and person
(the modeler, the tester, and the user). Data/knowledge management technology focuses
mainly on the data and knowledge in model, runtime environment, and the whole model life
cycle. It includes the methods for key data extraction during the ME life cycle, knowledge
classification from multidisciplines, information learning throughout modeling and simula-
tion, and data/knowledge storage for further improvement, as shown in Fig. 8.

In the near future, we expect that the number of multidisciplinary models will grow and
the assembly and disassembly of systems, data, and models will continue to become more
complex.

Accordingly, data mining strategies and knowledge extraction algorithms used in ME
must become much more: (1) scalable, to adapt to a wider arrangement of domain information,
(2) efficient, to implement intelligent system construction, and (3) stable, to ensure credible sim-
ulation and model management.

ME life-cycle management also consists of monitoring the processes of model
reconfiguration, evolution, and maintenance, and the multilayer optimization of modeling
practices, operational workflows, and maintenance schemes to realize an efficient risk/cost
control and speedup throughout the whole life cycle of a model.

4.2 Model Construction Technologies

A large amount of research on model construction (modeling) has accumulated over the
years in the M&S domain. From the point of view of ME, some issues for modeling methods
are of most concern. Such issues include: (1) acquisition and management of model require-
ments, (2) model specifications and modeling languages, (3) modeling process management,
and (4) conceptual model construction.

Big data

Data/knowledge Data/knowledge of Data/knowledge in
in model runtime environment mode