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Preface
Amodel is an abstract expression of objects to study and embodies the high intelligence of
human beings in perception of the real world. Simulation is an important way of understand-
ing and even changing the real world. Modeling is taken as the foundation for simulation,
especially for the simulation of complex systems (e.g., systems of systems). With the contin-
uous growth of complexity and diversity of systems to be studied, models are becomingmore
complicated and diversified. How to build a right model is the core issue in simulation. Al-
though the importance of the engineering idea is gradually recognized in applications involv-
ing the full model lifecycle, currently no complete theory, philosophy, or technology system is
available.

To meet the challenges in the development and management of complex system models,
this book gives a systematic introduction to the concept ofmodel engineering (ME).We aim at
setting up a generic, normalized, and quantifiable engineering methodology for ME. Our ap-
proach is to explore the basic principles in model construction, management, and mainte-
nance to best deal with the data, processes, and organizations/people involved in the full
life cycle of a model. We believe this is the key to guarantee the credibility of the model
life cycle.

This book shows state-of-the-art research of the authors that relates to ME for simulation,
including model construction, model lifecycle process management, model library manage-
ment, model description, management and execution, model composition and reuse, quan-
titative measurement of model credibility, model validation and verification, applications of
model engineering, etc.

This book appears in conjunction with the “Theory of Modeling and Simulation, 3rd Edi-
tion,” in which the system theoretic and DEVS-based concepts developed for modeling and
simulation (M&S) will contribute to a solution of problems raised by the holistic approach of
ME for simulation.

As the first book that systematically introduces the concept ofmodel engineering, this book
tries to draw the attention of researchers to establish a generic methodology on ME indepen-
dent of specific application fields. ME should be a subdiscipline of M&S.

Moreover,ME can be used not only in the domain ofM&S, but also in other fields that need
modeling and model management.

Lin Zhang
Bernard P. Zeigler

Yuanjun Laili
xiii
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C H A P T E R
1

Introduction to Model Engineering
for Simulation

Lin Zhang*,†, Bernard P. Zeigler‡, Laili Yuanjun*,†
*School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
†Engineering Research Center for Complex Product AdvancedManufacturing Systems,Ministry of

Education, Beijing, China ‡RTSync Corp. and Arizona Center for Integrative Modeling and

Simulation, Tucson, AZ, United States
1 BACKGROUND

Simulation has been widely accepted as an important computational approach for human
beings to understand and change the objective world (Mittal et al., 2017).

Modeling and simulation (M&S) play a vital role in many critical fields, such as economy,
aerospace, information, biology, material, energy, advanced manufacturing (Fowler and
Rose, 2004), agriculture, education, military, transportation (Mahmassani, 2001), ecosystems
(Holling, 2001), pharmaceuticals, and health.

The systems to whichM&S are being applied are increasingly complex, thus requiring sig-
nificant advances in its science and technology. Various sorts of mathematical theories have
been applied to approximate, analyze, predict, and optimize complex systems. However, our
understanding of the features that make systems complex, for example, nonlinearity, uncer-
tainties, emergence, and the dynamic interactions among components, continues to remain in
an initial stage. As an alternative approach to understanding of complex systems, simulation
has special advantages in the design, analysis, development, optimization, control, mainte-
nance, and training. In the past decades, many simulation technologies have been developed,
which include discrete event simulation (Fishman, 2013), agent-based simulation (Drogoul
et al., 2003), runtime infrastructure (RTI)-based federation simulation (Perumalla et al.,
2003), and so on. Simulation can facilitate quick understanding of a system’s behavior and
can enable analysis, training, and decision-making on the system without actually testing
it in the real world (Zeigler et al., 2018; De Jong, 2002; Karnopp et al., 2012; €Oren and Zeigler,
1979; €Oren et al., 2012; Ouyang, 2014; Stevens et al., 2015; Zeigler et al., 2016).
1 # 2019 Elsevier Inc. All rights reserved.
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FIG. 1 A model within a simulation.

2 1. INTRODUCTION TO MODEL ENGINEERING FOR SIMULATION
Simulation is a model-based activity; it uses models as a basis to imitate the operation of a
real-world process or system over time for managerial or technical decision-making (NSF,
2006; DoD, 2007). A model that is adequate for the purposes of simulation adequately repre-
sents the key characteristics, behaviors, and functions of the simulated object for these pur-
poses. If the object is a complex system, a set of models is required for representing its
components, which are then composed to create a model of the whole system. The composed
model can be seen as a surrogate for the targeted system, whereas simulation represents the
operation and process of the system over time, as shown in Fig. 1.

It is critical to formulate the objectives (or requirements) underlying a simulation activity.
Constructing a model that adequately achieves these objectives is critical for the success of a
simulation application. Take the development of missiles as an example. The early developed
“Bristol Bloodhound” was successfully launched with 79 model-based events and required
only 92 calibrated launches. In contrast, not usingM&S, the development of “NIKE-I missile”
had to be physically tested 1000 times. Of course, if the simulation model is established with
mistakes or unstable factors, the decision and analysis results applied to the real system may
lead to catastrophic consequences. The “Three Mile Island” accident is a typical example of
using an unreliable systemmodel to train people. This model flaw led to misoperation on the
real system and caused more than a billion dollar economic loss.

Later we will present a detailed definition of “credibility” and how constructing the right
model is critical to credible simulation results.

As the number of system components continues to grow and their interactions change
dynamically, the performance of a complex system varies constantly and evolves gradually
to a System of Systems (SoS) (Keating et al., 2003). Such system refers to a collection of ded-
icated subsystems that pool their components and capabilities together to offer more func-
tionality and performance than simply the sum of these constituent systems. An SoS is
featured by:

• a large number of components and complex relationships,
• decentralized dynamics with strong uncertainty,
• huge amounts of data to be processed.

To analyze it using simulation, basic models designed from bottom upmust be established
to support testing the mechanisms needed to coordinate the component behaviors so as to
enable the SoS to achieve its global requirements (Zeigler et al., 2016). That means that the
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engineers (who typically come from different domains) need to take the time to establish col-
laboratively newmodels for every component of every subsystem in an SoS. If the simulation
requirement changes slightly, specific models may need to be rebuilt. To avoid the cumber-
some remodeling process, model reuse and composition become critical model-based
activities.

Many studies have been carried out on the reuse of existing models for different kinds of
SoS from the perspective of system engineering. The most typical research includes model-
driven simulation (MDS) (McGinnis and Ustun, 2009), dynamic data-driven application sys-
tem (DDDAS) (Darema, 2004), andmodel-based system engineering (MBSE) (Wymore, 1993).
The research onMDS has fully shown the importance of models and established a framework
for the design of tool-independentmetamodel. Thismetamodel contains the simplest descrip-
tion of the state, action, and process of the corresponding executable simulation model. By
using a unified modeling language, it will be easily reused to perform the simple workflow
of different systems and then guide the refinement of the existing simulation model for new
system analysis. As shown in Fig. 2, such metamodel is taken as a middleware to bridge the
gap between a real-world system (or object) and a similar or matched simulation model. On
the contrary, the research on DDDAS tries to directly reuse the entire systemmodel by a feed-
back control loop, as shown in Fig. 3. On one hand, the simulation data is collected to
reconfigure the runningmodel. On the other hand, themodel itself will control the adaptation
of the simulation process for generating the required result. Such a two-way control mecha-
nism enables the existingmodel to be executed in a dynamicway and adapt to awide range of
systems.

Both of these paradigms put their main focus on how to establish a reusable model for a
wide range of objects and how to adapt it to different simulation requirements. However,
only a single model or a small group of models are considered for reuse. For different classes
of models, the metamodel or the closed-loop control mechanism must be specifically
redesigned.
FIG. 2 The framework of a model-driven simulation.

FIG. 3 The framework of a dynamic data-driven application system.
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Different from these two paradigms, MBSE was proposed to manage the models and their
related knowledge established in the whole life cycle of system engineering instead of just the
documentation (Estefan, 2007). It refers to the use of a model as a basic element to describe
customer requirements and to design, analyze, and verify a required system. Most research
on MBSE considers the design, storage, collaboration, and test of reusable models with
respect to different stages of system engineering on a conceptual level and passes the
technical implementation mechanisms to different domain engineers. Consequently, MBSE
research has not addressed how to manage existing multidisciplinary simulation models
and compose them together to form a valid and credible simulation system in a rapidmanner.

This chapter analyzes in depth the current challenges in the modeling of complex systems
(especially SoSs). It also introduces the concept of model engineering (ME), its key technol-
ogies, and provides an overview of this book.
2 MAIN CHALLENGES ON MODEL LIFE CYCLE

A system, especially a complex system, can be generally divided into three layers, the sys-
tem layer, the subsystem layer, and the component layer, as shown in Fig. 4. It is the dynamic
collaboration between different components that enables the whole SoS perform much more
functionalities than the simple sum of multiple subsystems (Nielsen et al., 2015). To form a
complete and credible SoS simulation, themodel established for each component should pos-
sess the following properties:

• the model must be credible,
• the model should be fully adapted to multidisciplines,
• the model should be able to connect to each other and respond to different inputs

dynamically, and
• the model may process large amounts of data.

These properties have brought many obstacles for engineers to establish an efficient
(or even a right) SoS. Although the concept and framework of SoS have been addressed by
researchers many times, there have been very few attempts to establish a complete SoS
simulation system or a group of extendable models for SoS simulation. The main challenges
are summarized as follows.
System of systems

Subsystem

Component

FIG. 4 Three layers of system of systems.



52 MAIN CHALLENGES ON MODEL LIFE CYCLE
2.1 The Credibility of a Composed SoS System Model Is Hard to Verify

Most of the existing verification-and-validation (V&V) methods are designed for a single
model under a specific environment (Law, 2008; Sargent, 2009; Tremblay and Dessaint, 2009).
They focus mainly on the consistency, uncertainty, and sensitivity validation of simulation
results compared with the desired results (or real-system results) (Moriasi et al., 2007; Moss,
2008; Park et al., 2010). The design knowledge, the development environment, the refinement
process, and the maintaining way which also directly influence the credibility of the model
are ignored.When themodel is rebuilt, refined, or reused in a new environment, its credibility
is hard to be reassessed by the previous V&V method.

In addition, all of the component models are right and independently verified does not
mean that the composition of them is also right and credible. On one hand, it is still lack
of complete and unified criteria to verify if a composed system model is fully reliable
under a specific circumstance. On the other hand, the methods for verifying and validat-
ing the composed system model with dynamic changes and inside interactions are still
very rare.
2.2 Existing Models Are Hard to Extend and Interoperate

Without a uniform specification for themodeling, simulation, andmodelmaintenance pro-
cess, the model can be built into any shape. By hundreds of simulation software and tools,
millions of simulation models have been well established for different domains. However,
as most of them cannot be extended into a new environment, the increased number of models
actually makes no sense. Model reuse can only be carried out under a standard M&S archi-
tecture. Till now, there is still lack of a basic scalable model, standard process, and interdis-
ciplinary rules to support fast model reuse and system construction. It is even unable to
determine if a model is reusable before testing it in the targeted environment.

Even if a model is reusable, it is hard to interoperate with others in a new environment.
First of all, the inputs and outputs (I/O) of the model are usually fixed. Without full matching
with the I/O, it cannot be set up in a right way. Second, due to the runtime environment
barrier and nonuniform simulation process, these models cannot even be executed under
cooperative circumstances. That is why most of the existing collaborative simulation is car-
ried out in a distributive manner with independent execution environment. Moreover, each
component of such a collaborative simulation requires a member engineer to maintain it in
real time. How to make a model more adaptable for a new execution environment and how
does it respond to both the environment and other models autonomously are still two crucial
problems in the domain of M&S.
2.3 Crucial Data and Knowledge Produced and Processed by the Model Is Lost

Traditionally, engineers or researchers primarily concern about the simulation results pro-
duced by a system model. Nonetheless, the data produced throughout the process that the
model is defined, implemented, refined, and maintained is ignored. To refine a model in a
changing situation, some real-time model calibration methods have been proposed, which
enables a series of real-time simulation data to be analyzed and stored. Nowadays, engineers
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start to put emphasis on the knowledge extraction and process normalization of M&S.
History information becomes more and more important in M&S and system construction.
However, large amounts of interaction data, disciplinary knowledge, and management data,
which is a fundamental basis to determine if a model will be credibly reused, if a group of
models are composable and suitable for new requirement, and if the whole composed system
model is reliable has yet to be well stored, analyzed, and applied.

On the whole, very few studies have focused on the life cycle of the model, the manage-
ment of interdisciplinary models, and make use of them for SoS construction. How can a
model or a group of models efficiently evolve, adapt, and cooperate for complex systems
is still an open question to be solved.
3 THE CONCEPT OF ME

To focus on the life-cycle management of simulation models and guarantee the credi-
bility of SoS modeling and simulation, the concept of ME is introduced in this section. We
will formally define the life cycle of a model and connect each stage in the life cycle, so as
to make the existing model better to reuse, combine, and evolve in a credible and
standard way.

The life cycle of amodel defined inME is shown in Fig. 5. It contains six steps, that is, prob-
lem definition, model design, model construction, model configuration, VV&A (verification,
validation, and accreditation), model application, and model maintenance.
Definition

Design

Construction

VV&A

Application

Maintenance

Model Han-
dler

Init Execute Output……

Data Knowledge Activity

Standardize

Update

Evolve

Compose

Process

Similarity Accuracy Integrity Reliability ... ...

Evolution

Credibility

FIG. 5 Model life cycle: the main focus of ME.
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Based on this cycle, ME is defined as a general term for theories, methods, technologies,
standards, and tools relevant to a systematic, standardized, quantifiable engineeringmethod-
ology that guarantees the credibility of the full life cycle of a model with the minimum cost
(Zhang, 2011, Zhang et al., 2014a):

(1) ME regards the full life cycle of a model as its object of study, which studies and
establishes a complete technology system at the methodology level based in order to
guide and support the full model life-cycle process such as model construction, model
management, and model use for complex systems.

(2) ME aims to ensure credibility of the full model life cycle, integrate different theories and
methods of models, study and find the basic rules independent of specific fields in the
model life cycle, establish systematic theories, methods and technical systems, and to
develop the corresponding standards and tools.

(3) ME manages the data, knowledge, activities, processes, and organizations/people
involved in the full life cycle of a model, and takes into account the time period, cost, and
other metrics of development and maintenance of a model.

(4) Here the credibility of a model includes functional and nonfunctional components.
Functional components are a measurement of the correctness of functions of the model
compared to the object being modeled. Nonfunctional components include features
related to the quality of a model, such as availability, usability, reliability, accuracy,
integrity, maturity, ability of modelers as well as management of the modeling process.
Credibility is a relative index with respect to the purpose of modeling and simulation.
Evaluation of credibility includes objective and subjective evaluation. Objective
evaluation is mainly based on data and documents, while subjective evaluation is mainly
based on expertise. Quantitative definition and measurement of credibility will be one of
the most important research topics of ME.
4 KEY TECHNOLOGIES OF ME

According to the framework of the Body of Knowledge of Model Engineering given in
Zeigler and Zhang (2015) and Zhang et al. (2014a,b), technologies involved in ME can be
divided into the following categories (Fig. 6) including general technologies, model construc-
tion technologies, model management technologies, model analysis and evaluation technol-
ogies, and supporting technologies. Some key technologies in the categories will be discussed
in this section.
4.1 General Technologies

4.1.1 Modeling of the Model Life-Cycle Process

In accordance with the standards of ME, modeling of themodel life-cycle process means to
build a structural framework of activities that usually happen in the life cycle. As demon-
strated in Fig. 7, the framework is a visible pipeline to show the state of a model related to
the key stages, key elements, and key data of its life-cycle management. It is also designed
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as a reference to evaluate the life-cycle cost and comprehensive efficiency and to improve both
the model and the management strategy.

4.1.2 Model Engineering Life-Cycle Management

The life-cycle management of ME is carried out for managing data (development data and
runtime data), knowledge (common knowledge shared by different models and the domain
knowledge), activities, tools (especially M&S tools and model evaluation tools), and person
(the modeler, the tester, and the user). Data/knowledge management technology focuses
mainly on the data and knowledge in model, runtime environment, and the whole model life
cycle. It includes the methods for key data extraction during the ME life cycle, knowledge
classification from multidisciplines, information learning throughout modeling and simula-
tion, and data/knowledge storage for further improvement, as shown in Fig. 8.

In the near future, we expect that the number of multidisciplinary models will grow and
the assembly and disassembly of systems, data, and models will continue to become more
complex.

Accordingly, data mining strategies and knowledge extraction algorithms used in ME
must becomemuchmore: (1) scalable, to adapt to awider arrangement of domain information,
(2) efficient, to implement intelligent system construction, and (3) stable, to ensure credible sim-
ulation and model management.

ME life-cycle management also consists of monitoring the processes of model
reconfiguration, evolution, and maintenance, and the multilayer optimization of modeling
practices, operational workflows, and maintenance schemes to realize an efficient risk/cost
control and speedup throughout the whole life cycle of a model.
4.2 Model Construction Technologies

A large amount of research on model construction (modeling) has accumulated over the
years in the M&S domain. From the point of view of ME, some issues for modeling methods
are of most concern. Such issues include: (1) acquisition and management of model require-
ments, (2) model specifications and modeling languages, (3) modeling process management,
and (4) conceptual model construction.
FIG. 8 The main considerations in model data/knowledge management.
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4.2.1 Acquisition and Management of Model Requirements

The model life cycle starts with requirements. Accurate requirement acquisition is the key
to credibleM&S. However, requirement acquisition andmanagement is very challenging due
to the uncertainty and ambiguity in the systems being modeled. Research on requirement ac-
quisition is needed to improve the means to extract, describe, parse, and validate require-
ments via automated or semiautomated means. Similarly, research is needed on the
management of requirements to formulate how to reflect changing requirements to influence
model construction and maintenance in an accurate and timely manner.

To acquire accurate model requirements for system simulation, we need to get as much
information aswe can to understand (1) the underlyingmodeling objectives of the simulation,
(2) the nature of the targeted system, and (3) the kind of environmental conditions that are
required. Therefore, an analytical strategy is particularly important in which we hierarchi-
cally decompose the structural requirements for further design and model matching, as illus-
trated in Fig. 9.

Additionally, system features (user demand, system structure, and environmental condi-
tions) extracted from the above strategymust be stored andmanaged by category of the facet.
When a new requirement comes in, these facets will be used to match similar models and
existing domain knowledge to support rapid system construction.

4.2.2 Model Specification and Language

Model specification is informed by the detailed description of system simulation require-
ments, model input/output, model functionalities, model activities/states, and the related
domain rules. As shown in Fig. 10, the model requirement is not only a documental or struc-
tural description about what kind of model we need, but also a simple and uniform represen-
tation of the general features possessed by a targeted system. These features should specify
some common rules corresponding to system components and their interconnections. Simi-
larly, at the component level, the specification for the metamodel (which performs some
domain-independent functionalities/states/activities) and the domain rule (which repre-
sents some domain-dependent state transformation mechanisms) should be prebuilt. By
FIG. 9 Acquisition and decomposition of model requirement.



FIG. 10 Different levels of model specification.
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dividing a general domain model into a metamodel and domain rule, a domain model is eas-
ily assembled and disassembled for efficient reuse. In addition, this division enables the
modeling data/knowledge to be clearer and easier to manage.

Although a model can be built by different sorts of lower-layer model languages, a unified
upper-layer language is still necessary for the engineers to construct a new system model
efficiently or to transform an existing one to meet the simulation demand. Following the
vision of the above specifications, an upper-layermodel language should also clearly describe
theouter structure and inner behavior of a systemandbeable to transform intomultiple lower-
layer model languages, as represented in Fig. 11.
4.2.3 Modeling of Process Management

Two kinds of efforts are necessary to guarantee the credibility of a model. One is to do
VV&A after the model is built. The other is to manage and optimize the modeling process.
VV&Ahas important implications to discover model problems and defects, but it clearly does
not and cannot solve the problem of how to acquire a correct model. Especially for complex
systems, due to the complexity and uncertainty of the system, the modeling process can be
very complicated, which makes VV&A of a model also extremely difficult. Even if the defects
are found via VV&A, the modification of the model will be very difficult and expensive.
FIG. 11 Upper-layer model language.
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Therefore, it is very important to structure and optimize themodeling process. Consequently,
methods are needed to measure the degree of formality and optimization (maturity) of
modeling and simulation processes. A highly structured level of organizational capabilities
and the use of proven processes applied tomodeling can guarantee, to a large extent, the cred-
ibility of a model (Fujimoto et al., 2017).

Capability maturity model (CMM) and CMM integration (CMMI), originating in software
engineering, can be introduced to establish a capability maturity model for the modeling and
simulation process (MS-CMMI) (Zhang and Mckenzie, 2017). Such an approach can enhance
themanagement efficiency and personnel capabilities in high-qualitymodel construction and
management. Related research opportunities include MS-CMMI evaluation, optimization,
risk analysis, and control of modeling processes, notional mappings with CMMI, etc.
4.3 Model Management Technologies

Modelmanagement consists of coremethodologies and technologies that guarantee highly
efficient and credible composition, sharing, reuse, evolution, and maintenance.
4.3.1 Model Library

A scalable model library is key to implement efficient ME. It should be able to handle het-
erogeneous models by using a formal description language, recognize multidisciplinary
model features, and enable a fast indexing and location of similar/suitable model for a task
specification, as demonstrated in Fig. 12. The main techniques with respect to model library
are model classification criteria, model storage mode, model indexing schemes, and ways of
searching for models. In contrast to a database, the model library stores and processes not
only model descriptions, but also their instances and interconnection relationships.
Currently, there is lack of techniques for establishing a model library.
Formal &
standardized
language

Generic
multidisciplinary
model libraries
(e.g., for FBS)

Model
generation

Task
specification

Electrical

Mechanical

Software

Model
simulation

Model
application

FIG. 12 A simple scheme for establishing a model library.
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4.3.2 Model Evolution

Model evolution is one of the most important innovations proposed in ME. From the
separated metamodel and domain knowledge point of view, ME aims at using models as
a service and enabling them to evolve autonomously to a new improved version instead
of through manual refinement. Borrowing the idea of incremental learning, model evolution
refers to an incremental adaptation process to make the specific model more scalable and
credible to the current system requirements.

The factors including parameters, states, behaviors, and functions in metamodel and dif-
ferent sorts of domain knowledge such as additional domain parameters, action rules,
constraints, and domain-related functions are all able to be updated as modules of a simula-
tion system, as shown in Fig. 13. To enable the metamodel and domain knowledge to update
autonomously over time, we need to establish dynamic connections between system require-
ments and these lower-layer factors in line with the historical data from the model life cycle.
These connections, which can be trained by the existing incremental learning algorithms and
intelligent multiagent system-based strategies, will then guide the factors of a model to
change toward the ones connected to the most similar requirements.
4.3.3 Model Reconfiguration

Different from model refinement in the stages of application and maintenance, model
reconfigurationmeans to change part of the model during its runtime. It is an important basis
to implement model reuse with a minimum roll-back design cost. According to the above-
mentioned model specification, a model should be designed to hold multiple functionalities
and flexible interfaces. How to dynamically choose suitable functionalities and domain
FIG. 13 Time-dimensional model evolution scheme.
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knowledge to ensure accurate response in simulation is the main concern of model
reconfiguration methods. Specifically, it can be divided into lower-layer reconfiguration
and upper-layer reconfiguration.

LOWER-LAYER RECONFIGURATION

The lower-layer model reconfiguration method is only for a metamodel which is indepen-
dent of the domain knowledge. It includes functional reconfiguration, structural
reconfiguration, and parameter reconfiguration, as shown in Fig. 14. Specifically, structural
reconfiguration refers to a combined multiple metamodel to form a larger one with more
functionalities.

UPPER-LAYER RECONFIGURATION

On the contrary, upper-layer reconfiguration is directly related to domain knowledge and
the practical simulation environment, as shown in Fig. 15. Thus, it can be divided into
domain-related reconfiguration and simulation-related reconfiguration. The domain-related
part is responsible for selecting an add-on domain knowledge (i.e., domain functionalities,
domain parameters, and constraints) to amodel, while the simulation-related reconfiguration
is set up to determine the environmental parameters and simulation engine-related settings to
assure a correct and fluent simulation process. Obviously, model reconfiguration is a complex
dynamic optimization problem, in which the two-level variables can be either determined in
two steps or in one time.

4.3.4 Model as a Service

With the development of cloud-based technologies, a heterogeneous model with its exe-
cution engine can be integrally encapsulated as a service. That is to say, not only ametamodel
FIG. 14 Lower-layer model reconfiguration.
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and a domain component model can be encapsulated, a composed system model is also
capable of being encapsulated. This makes the execution of different sorts of models easier
in any cloud-based environment. To implement flexible model sharing, the scheme of
cloud-based servitization1 of simulation model can be illustrated in Fig. 16. First of all, a uni-
form servitization template (i.e., a service class) should be designed previously for different
levels of model. When a system construction requirement arrives, the suitable models will be
deployed or replicated into different virtualized cloud resources to support a distributed
simulation.
4.3.5 Model Composition

Model composition is a technology established on the flexible model reuse scheme. It is
designed to realize more intelligent model collaboration and system construction when the
number of models is too large to be implemented with manual selection. In the research of
model composition, the two critical problems are how to match suitable models to form a
valid candidate set and how to select the best models for a collaborative system simulation.
The former matching problem can be solved by some feature-based or domain-based model
1Servitization is a new concept that has two meanings from IT and business perspectives. From the IT

perspective, it means the service encapsulation of objects with service-oriented technology. From the business

perspective, it is defined as “the innovation of organization’s capabilities and processes to better createmutual

value through a shift from selling product to selling Product-Service Systems,” where a product-service

system is “an integrated product and service offering that delivers value in use” and a “servitized organization

is onewhich designs, builds and delivers an integrated product and service offering that delivers value in use”

(http://andyneely.blogspot.com/2013/11/what-is-servitization.html).

http://andyneely.blogspot.com/2013/11/what-is-servitization.html


FIG. 16 Cloud-based servitization of simulation models.
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classification and model clustering methods, while the latter model selection has to be con-
sidered under different conditions, that is, offline condition and online condition.
OFFLINE MODEL COMPOSITION

Different from the general service composition, the collaboration between models are not
usually performed in a strict sequential or directed acyclic manner. Feedback cycles and
concurrenciesmay exist simultaneously in their collaborative topology. Therefore, traditional
algorithms designed for service composition may not applicable. As listed in Fig. 17, an
offline model composition method should be able to recognize each kind of connection in
a specific collaborative topology (extracted from a standardized system simulation require-
ment) and generate feasible solutions with the consideration of sequencing rules, cycling
rules, and concurrency rules between the candidate models.
FIG. 17 A scheme for offline model composition.
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ONLINE MODEL COMPOSITION

Online model composition is executed during the real-time simulation process based on a
given offline composition scheme. The main workflow of an online model composition
method is drawn is Fig. 18. Specifically, it is driven by online evaluation of the current system
state comparedwith a desired state. If the online adjustment threshold is reached, themethod
will perform the adjustment in four steps, that is, candidate adjustment, domain rule adjust-
ment, connection adjustment, and parameter adjustment from the top down. After the online
refinement, the evaluation model will continue to monitor the system state and determine
whether a further modification is required. In other words, an online model composition
method should be performed at a high speed and provide a feasible solution at different levels
and thus is more difficult to design.
4.4 Analysis and Evaluation Technologies

Model evaluation is a very traditional topic in the domain ofM&S. InME, it means not only
the VV&A of a model, but also the evaluation of the whole process of ME.
4.4.1 The VV&A of a Model

In the past decades, different authoritative organizations and researchers have established
a few standards for the VV&A of a nonseparable model. However, little research has been
done on the evaluation of models in a composed situation and in its further maintenance pro-
cess. As demonstrated in Fig. 19, the bridge between the existing model evaluation indicators
and the models in different layers of system construction is a key to implement the efficient
evaluation of the model life cycle.

In addition,most current research focuses on qualitative analysis, and quantitative and for-
malized analysis methods are lacking, so VV&A quantitative analysis and formalized anal-
ysis technology are still the main research content in the ME.
FIG. 18 A general workflow of an online model composition method.



FIG. 19 Gap existing between the evaluation indicators and the models in different layers.
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4.4.2 The Evaluation of the Whole Process of ME

The quality of the ME process will directly determine the quality of a model in its design,
implementation, application, and maintenance. To ensure the control and management
quality of ME, key issues from both the control stages and the management process should
be extracted first for the construction of evaluation indicators, as illustrated in Fig. 20. With a
suitable set of indicators to cover the whole process of ME fully, the existing expert scoring
mechanisms such as Fuzzy-AHP and TOPSIS can be directly applied to assess it. Because the
process of ME is not a one-time execution workflow but a long-accumulated management
framework, the evaluation must be carried out based on historical information. Thereby, a
case library is also a fundamental element in evaluation to quantify the quality of theME pro-
cess and so as to form a hybrid evaluation mechanism for fast ME evaluation.

Research topics related to evaluation also include quantitative analysis of the complexity
and uncertainties in risk analysis and control of ME processes, quantitative measurement of
model life-cycle quality and cost, etc.
FIG. 20 A scheme for the evaluation of the ME process.



FIG. 21 A comprehensive evaluation scheme.
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With the combination of model life-cycle evaluation andME process evaluation, a compre-
hensive evaluation scheme can be drawn as in Fig. 21 to guide further optimization and cal-
ibration targeted to the whole ME framework.
4.4.3 Model Maturity Definition and Evaluation

The maturity of a model is a very important index for model composition, sharing, and
reuse. Maturity definition of a model is not an easy job since different models have different
features, different application requirements, and different execution environments. Model
maturity will be a comprehensive index related to multidimensional features as illustrated
in Fig. 22. Research effort need to bemade on the definition and evaluation ofmodelmaturity.
4.5 Supporting Technologies

The supporting technologies for the implementation of ME primarily consist of the trans-
parent visualization ways for model life cycle and operational platform to enable fundamen-
tal execution of activities involved in the whole process of ME, as illustrated in Fig. 23.
FIG. 22 Factors for determining model maturity.



FIG. 23 A vision on the support environments for the implementation of ME.
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5 THE LAYOUT OF THE BOOK

This book contains 19 chapters that cover some of the technologies listed above. Chapter 2
discusses a computational approach to representing and evaluating the parameters and
approximate morphisms between pairs of models within ME for simulation, which lays a
basis for later chapters that discuss the support for model repositories. Chapter 3 discusses
unified approaches tomodeling. Chapters 4 and 5 deal with challenges andmethods ofmodel
composition and reuse. Chapters 6 and 7 discuss the requirements, resolutions, and trends of
verification, validation, and accreditation (VV&A) for complex simulation models. Chapters
8–10 address the quantitative analysis and evaluation of different characteristics of models,
which include quantitative methods for model credibility evaluation, quality assessment and
improvement approaches, and the methodologies for graphical models. Chapters 11 and 12
discuss validation and implementation of DEVS models. Chapter 13 describes a generic con-
cept for the development of a model management system. Chapters 14–16 deals with model
execution and simulation algorithms. Chapter 17 introduces a modeling and simulation
environment with DEVSim++. Chapters 18 and 19 provide two application examples of ME.
6 ROLE OF THEORY OF MODELING AND SIMULATION

The theoretical concepts developed specifically for M&S can contribute to a solution of
problems raised by the holistic approach of ME for simulation. This book is appearing in con-
junction with a companion volume, “Theory of Modeling and Simulation, third Edition”
(Zeigler et al., 2018). This theory presents a framework for M&S that formalizes the basic en-
tities (Models, Simulators, Experimental Frames) and relationships between them (Modeling
Validity, Simulation Correctness) that are fundamental to productive formulation of research
on keyME technologies. For example, the theory of M&S is an important element in the Body
of Knowledge supportingME research. Acquisition andmanagement of requirements can be
structured around the essential role of experimental frames in formalizing modeling objec-
tives. The theoretical concepts of iterative system specification and model formalisms under-
pin theory-based conceptual model construction and model specification languages.
Research onME analysis and evaluation technologies can profit from the use of the extensive
theory of system morphisms that underlie the validity and correctness relationships
expressed in the theory. Finally, model management technologies can fruitfully formulate
the necessary domain-independent generic model construction and composition processes.
These can be based on the structure/behavior and hierarchical closure under coupling prop-
erties established within the theory of M&S.
7 CONCLUSION

MEdeals with themodel life-cycle credibility and scalability problem for complex systems,
especially Systems of Systems. ME is supposed to be taken as a subdiscipline of M&S, which
aims at providing standardized, systematic, and quantifiable management and control to
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guarantee the credibility of the model life cycle. In this book, we systematically introduce the
concept of ME, present some state-of-the-art research on ME-related theories and technolo-
gies, and provide some solutions to ME problems.

Moreover, ME can be used not only in the domain ofM&S, but also in other fields that need
modeling and model management.
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1 INTRODUCTION

This chapter is written in conjunction with the companion book to this volume, Theory of
Modeling and Simulation, third edition. Readers are encouraged to refer to that book for the-
oretical background that is not explicitly covered here. In particular, that forum presents a
framework, called the modeling and simulation framework (MSF) which includes an ap-
proach to test the relation between detailed models and their abstractions (Zeigler et al.,
2018; Zeigler and Nutaro, 2016; Zeigler, 2016).

The framework recognizes that the complexity of a model can be measured objectively by
its resource usage in time and space relative to a particular simulator, or class of simulators.
Furthermore, properties intrinsic to the model are often strongly correlated with complexity
independent of the underlying simulator. Successful modeling can then be seen as valid
simplification, that is, reduction of complexity to enable a model to be executed on
resource-limited simulators and at the same time, creating morphisms that preserve behavior
and/or structural properties, at some level of resolution, and within some experimental frame
of interest. Indeed, according to the framework, there is always a pair of models involved, call
them the base and lumped models.

In this chapter we lay the basis for later chapters that discuss support for model reposito-
ries. We discuss a computational approach to represent and evaluate parameter and to ap-
proximate morphisms between the base and lumped models within model engineering for
simulation. Here, the base model is typically “more capable” and requires more resources
25 # 2019 Elsevier Inc. All rights reserved.

00002-0

https://doi.org/10.1016/B978-0-12-813543-3.00002-0


26 2. SIMULATION-BASED EVALUATION OF MORPHISMS FOR MODEL LIBRARY ORGANIZATION
for interpretation and simulation than the lumped model. By the term “more capable,” we
mean that the base model is valid within a larger set of experimental frames (with respect
to a real system) than the lumped model. Here we note that the terms “base” and
“lumped” are terms employed with the framework to denote the full range of possible pairs
of models in which the first is more capable (e.g., more detailed, disaggregated, high resolu-
tion, fine-grained) than the second (less detailed, aggregated, low resolution, coarse-grained.)

Some typical distinctions often drawn between base and lumped models with respect to
agent modeling are presented in Table 1 (Zeigler, 2016; NPS Faculty, n.d.; Bathe et al., 1988).

However, the important point is that within a particular experimental frame of interest the
lumped model might be just as valid as the base model. Furthermore, the trade-off between
the performance and the accuracy (Tekinay et al., 2012) is a fundamental consideration where
performance refers to the computational resources used in a simulation run and accuracy re-
fers to the validity of a model with respect to a referent system within an experimental frame
(Zeigler et al., 2018). Use of computational resources, tied to a simulator’s time and space de-
mands, in generating the model’s behavior are correlated with its scope/resolution product
(Zeigler et al., 2018).
TABLE 1 Some Fundamental Distinctions Between Base and Lumped Models

Base Model Lumped Model

Objectives 1. Results traceable to specific performance
data and assumptions

2. Evaluate subtle differences in weapons,
sensors, or tactics

3. Understand how different inputs affect
combat performance

1. Predict overall results
2. Include small numbers of parameters
3. Parameter values amenable to

identification from feasibly
obtainable data

Representation Individual agents as separate entities Aggregate entities into groups typically
respecting command hierarchy

Entity attributes
and variables

Location in space and time, position in social
or other hierarchies, perception of the
situation: threats and opportunities,
capabilities, etc. updated at event
occurrences or time steps

Averaged entity values attributed to groups
Discrete events compounded into rates for
groups
Global state sets, cross products of
individual state sets

Interaction
processes

Decomposed into sequences of events and
activities
Tracking of individual behaviors

Processes aggregated into group level
formulae abstracting individual behavior

Timingmechanisms Coordinate the event sequences for the
numerous participants so that subtle
interaction patterns can be modeled

Micro stochastic sequences can be
aggregated into macro behaviors using law
of large numbers expressed more simply in
stochastic or deterministic form

Computational
complexity
(Scope/resolution/
interaction product)

Lean toward large scope, high resolution,
and unconstrained interaction

Lean toward smaller scope, low resolution,
and constrained interaction
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In this chapter we discuss a computational approach to represent and evaluate parameter
and to approximate morphisms between pairs of models within model engineering for sim-
ulation. We set the foundation for simulation-based computation of metrics for departure
from strict structure preservation, tying approximate satisfaction of structural conditions
to the resulting behavioral error. In the following, we relate the approach to multiresolution
modeling (MRM) and discuss the advantages of maintaining base/lumped model pairs as
well as the global organization of repositories around such pairs.
2 MULTIRESOLUTION MODELING

We now place this overview of base model/lumped model concepts within the context of
MRM, the construction of a family of models at multiple levels of resolution. Nearly two de-
cades have passed since Davis and Bigelow (1998, 2002) recommended that MRM should be-
come the underlying paradigm behind the development ofmajor defense simulation projects.
They stated thatMRM is essential for exploratory analysis ofmilitary design spaces because it
is neither cognitively nor computationally possible to keep track of all relevant variables and
causal relationships and the associated resource-based metrics of model complexity grow
faster than available computational power. Today, the importance of having models with
multiple levels of abstractions is better appreciated and research in the last decades has
formed a foundation toward a better understanding of the roadblocks to such endeavors
(see Hofmann (2004) for an array of references). However, despite significant advances
(Davis and Tolk, 2007; Davis, 1993, n.d.; Davis and Hillestad, 1993, 1992), much research is
still needed, for example, in how to use high-resolution models to better understand when
deterministic and stochastic aggregations are valid, a paradigm shift away from using such
models to solely drive high-fidelity simulations.

A typical multiresolution scenario applicable to defense investigates the operational differ-
ences between low-level military entities such as individual tanks and the aggregated high-
level units, for example, battalions or platoons when moving in a battlefield. Attributes of an
aggregated entity like a tank battalion are often determined by applying an aggregation map-
ping to the attributes of its individual entities. Themapping can group a set of tanks to a single
tank battalion together with a function to derive holistic attribute values, for example, an av-
erage speed of a tank battalion, from the constituent individual tank speeds. (Disaggregation
is the inverse mapping.) Tekinay et al. (2012) confirmed earlier results that showed significant
performance gains within acceptable accuracy when using such spatiotemporal aggregations
for battlefield scenarios using different spatial resolutions and scales (Moon, 1996).
2.1 Distinguishing Abstraction, Resolution, and Fidelity for Systems of Systems

However much of such research needs to be better framed to form a stronger foundation
for the future. As pointed out recently, simulationists often conflate the terms abstraction, res-
olution, and fidelity, taking them to be closely or inversely related when in fact closer exam-
ination reveals they are largely independent. Using preliminary formalization—abstraction
level is inversely related to the size of a model’s structural content, resolution is an ordering
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relation based on inclusion of structural content, and fidelity refers to the degree of intersec-
tion between a model’s structural content and that of a “complete” model of the real world—
Moon and Hong (2013) show that only two out of six pairwise implications hold. A deeper
analysis can be made by employing the MSF to cast the issue into one or more problems
concerning the morphisms (structure/behavior preservation relations) between pairs of
models viewed as dynamic systems at different levels of specification.

Systems of systems (SoS) may be modeled at different levels of abstraction, resolution, or
fidelity but both low and high levels are perhaps equally lacking in their ability to truthfully
reflect the system properties. Models may be constructed at lower abstraction levels that sup-
port faster simulation and logic-based verification, for example, model checking of proper-
ties. Models may also be constructed at abstraction levels that are purported to be closer
to reality. In the first case, what is left out may invalidate the proof of a property and in
the second case, doubt may be raised concerning the extent and credibility of the available
knowledge to support the details demanded by the model (Zeigler and Nutaro, 2016; Zeigler,
2016). In general, the question becomes, how can we ensure that errors introduced in the
aggregation/disaggregation processes lie within acceptable limits? Furthermore, interopera-
tion of models at different levels of abstraction presupposes effective ways to develop and
correlate the underlying abstractions (Zeigler, 2016; Davis and Tolk, 2007).

In the sequel, we discuss computational evaluation of morphisms within model library or-
ganization including execution control of experimentation and simulation for base/lumped
model behavior comparison. We then discuss an example of such evaluation involving com-
bat attrition modeling including characterization of approximate morphisms, lumpability
zone evaluation, and lumpability zone dependence on parameters. Finally, conclusions are
drawn and several implications for model engineering are discussed including the advan-
tages of maintaining base/lumped model pairs in addition to isolated model developments,
and the global organization of repositories around such pairs.
3 MORPHISM EVALUATION WITHIN MODEL
LIBRARY ORGANIZATION

To set the backdrop for the focus on parameter and approximate morphisms for model
library organization we overview the process of model construction and execution as illus-
trated in Fig. 1. The process begins with the model building objective underlying the simu-
lation study to be performed. This leads to the extraction of particular model and
experimental frame components from a repository of such components and the construction
of model and experimental frame pair under consideration. The means for such objective-
based extraction may be supplied by the System Entity Structure/Model Base (SES/MB)
methodology described in the literature (Rozenblit and Zeigler, 1986) and the companion vol-
ume (Zeigler et al., 2018). Chapter 18 of this volume (Pawletta and Durak, n.d.) reviews the
SES/MB framework and presents an infrastructure based on the SES/MB and some exten-
sions that can be used for modeling and simulation of versatile dynamic systems.

The model and frame pair is an input to the execution process involving simulation and
observation as shown in Fig. 1. We breakdown the execution control process in the next
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section in order to lay the basis for the operationalization of the morphism concept as a
comparison of base and lumped models within a common (or interconvertible)
experimental frame.

However, the subsequent exploration of the model within the frame is not dependent on
the genesis process.
3.1 Execution Control of Experimentation

The internals of the execution control of simulation are sketched in Fig. 2. As indicated in
Fig. 1, theModelAndFrame component is derived from themodel construction phase and the
simulator is attached to it so that simulation functions can be applied to it. Such functions
include the ability to start and stop the execution as well moving forward for one iteration
(which is equivalent to resuming and pausing). The ability to employ the same standardized
simulator with all types of models pulled from the repository is a feature of the Discrete Event
Simulate Observe Report

Transducer

Model

AcceptorGenerator

Execution control

Start

Simulator

Model and frame

Experimental frame

Model
and frame

FIG. 2 Simulator in control of experimental frame coupled to model.
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System Specification (DEVS) formalism and greatly eases the process but is not an essential
requirement. The functions just enumerated, however, are indispensable for the following
formulation and may not be easily achieved with legacy software components. The three
types of components in an experimental frame, EF are as follows:

Generators—generate the input trajectories to the model.
Acceptors—check conditions for termination.
Transducers—collect data from the model while it is being executed.

More background on the functionality of these components and their modular represen-
tation is available in Zeigler et al. (2018). The overall functionality of the experimental frame is
not necessarily decomposable into the explicit modular elements depicted in Fig. 2. The ex-
plicit form is convenient for portraying the execution control process presented next.

Execution control process (see Fig. 2)

1. Create a Simulator, sim and attach it to the ModelAndFrame, mf
2. Access the Acceptor, and Transducer (acc, and trans resp.) components of mf
3. Tell sim to start (which starts the Generator and thereby the rest of the mf)
4. Until all iterations done {
5. For each iteration
6. If simulator is not running return to Step 1
7. Tell sim to do one iteration,
8. Query acc for termination condition
9. If acc returns true {

10. Tell sim to stop
11. Query trans for results and report them
12. }}

We illustrate the basic computational approach to testing ofmodel abstraction by starting
with a simple example. A homomorphism illustrated in Fig. 3A is centered on a correspon-
dence between the base and lumpedmodel states. The correspondence is defined by a map-
ping from the base model states to the lumped model states. The mapping becomes a
homomorphism if it is preserved under transitions, that is, for every base state and its
corresponding lumped state the respective states to which they transit also correspond
to the mapping.

Calling upon the functionalities of the executive control process we show how to compu-
tationally test the existence of a prospective homomorphism in the following pseudocode:
LISTING 1 COMPUTATIONAL TEST OF HOMOMORPHISM

1. Create a Simulator, bsim and attach it to the BaseModelAndFrame, bmf
2. Create a Simulator, lsim and attach it to the LumpedModelAndFrame,

lmf
3. Access the Transducer, btrans component of bmf
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4. Access the Transducer, ltrans component of lmf
5. Tell bsim to start (which starts bmf in its initial state)
6. Tell lsim to start (which starts lmf in its initial state, assumed

to be corresponding to that of bmf)
7. Until all iterations done {
8. Tell bsim to do one state transition of bm
9. Tell lsim to do one state transition of lm

10. Query btrans for the current state of bm, bmState
11. Query ltrans for the current state of lm, lmState
12. bmState’ = Correspondence(bmState)
13. Compare: If bmState’ �= lmState, break and report not homomorphic
14. }
15. Tell bsim to stop
16. Tell lsim to stop
17. Report homomorphism confirmed

Referring to Fig. 3B and Listing 1, lines 1 and 2 create simulators for each of the base and
lumped model pairs. In lines 3 and 4, access (e.g., a pointer is defined) to the transducers of
each model pair is obtained. Each transducer receives the name of the state of the model it is
linked after a state transition. In lines 5 and 6, the simulators are each model pair are started
which in turn start their attached models that are set to be in corresponding states. Line 7
starts a cycle in which a number of iterations is performed in which each model is made
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to take one state transition at each iteration. Successive states are compared for correspon-
dence. If all corresponding state pairs satisfy such preservation of correspondence and of out-
put, a successful confirmation of homomorphism is declared otherwise a failure of
homomorphism is declared.
3.2 Control of Simulation for Morphism Evaluation

An elaboration of the overall methodology depicted in Fig. 1 that shows how to implement
the test of homomorphism in the pseudocode of Listing 1 is shown in Fig. 4.

The process assumes that parameter values and initial states are inputs that are used to
direct it toward meeting the objectives of interest. These parameter values inform the con-
struction of the base and lumped model-frame pairs under the SES/MB methodology. The
lumped pair construction may also be informed by output parameters from the construction
of the base pair and only known from its construction. After construction of the lumped and
base model pairs, simulators are attached and started which starts the models in default
states. Once started, the desired initial states conforming to the correspondence to be
checked are established and the simulators are executed in iterative fashion according to
the pseudocode for homomorphism testing given above.

The homomorphism depicted in Fig. 3 can be stated more generally to be applicable to a
wider set of aggregation processes as illustrated in Fig. 5. For such a morphism to hold, the
models are set in corresponding states and simulated for possibly different numbers of tran-
sitions until corresponding states are encountered. As noted before, all pairs of corresponding
statesmust be congruent in thismanner for themorphism to hold. A specific case iswhere one
(macro) transition in the lumped model is realized by several (micro) transitions in the
base model.
Default states

Parameter
morphism
parameter

values

Start base and
lumped

simulators

Run
simulators

Results

Initial states

Construct
lumped

model and frame

Construct base
model and frame

Parameters

Parameters

FIG. 4 Control of model and experimental frame simulation for relative validity.
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3.3 Implementing Parameter Morphism Evaluation

In the following, we refer the reader to Chapter x of this volume (Pawletta and Durak, n.d.)
for an introduction to the SES/MB methodology.

Referring to the execution control process of Listing 1, pseudocode for the comparison of
results obtained from the base and lumped models is outlined as follows:
LISTING 2 SES-BASED CONTROL OF BASE AND LUMPED MODEL
EXECUTION

1. Specify SESs for the families of base model/frame pair and lumped
model/frame pairs, respectively

2. For desired number of samples {
a. Set the external parameter values for both base and lumped models

(including random number seeds)
b. Prune the SES to obtain a Pruned Entity Structure (PES)
c. Use the PES to automatically construct base model and frame pair
d. Extract the parameter values emerging from the base model and set

them in the lumped model
e. Similar to 2(b) and (c), invoke the SES and PES to automatically

construct lumped model and frame pair
f. Call the executive control processes for the base model/frame and

lumped model/frame pairs to obtain the results at the termination
state

3. }
4. Compare the obtained results (perform statistical computations)

In the next section, we provide an example of lumpability evaluation in the domain of
combat modeling. This as an instance of empirically testing the quality of an approximate
parameter morphism.
4 EXAMPLE: COMBAT ATTRITION MODELING

Davis (1993) set forth an example of combat simplified model construction that could be
understood and worked through in detail. Zeigler (2016) showed that such a pair-of-models
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approach leads to better results overall than the development of low- and high-resolution
models separately and independently. Benefits include the ability to perform mutual
cross-calibration avoiding difficulties in harmonization of the underlying ontologies and abil-
ity to better correlate system outcome predictions. We revisit a pair of models similar to those
developed in Zeigler (2016) where continuous time Markov (CTM) modeling in DEVS
(Zeigler et al., 2018) was used to express base and lumped models with an explicit morphism
relation between them. Two opposing forces of equal size and unit fire power are arrayed
against each other (Fig. 3).

We start with the lumped model which is simpler to work with than the more detailed
base model. The state of the lumped model is a pair (n, m) where n and m are the number
of units (e.g., tanks) contained within blue and red forces. (We use the blue/red termi-
nology instead of attacker/defender in line with the symmetry of the equal capabilities.)
Each force has the same firing rate of FR (e.g., in rounds/min) and assuming units fire
independently the combined rate of x units is x*FR. Assuming each receiving unit has
the same vulnerability—probability of being killed, pk—the probability of y units being
killed is y*pk. So in state (x,y) the rate of killing the other side is (x*FR)(y*pk)¼x*y*pk*FR.
In CTM modeling terms, the state (m,n) transitions to the states (m �1,n) or (m,n �1) with
the same rate m*n*pk*FR, respectively (Zeigler, 2017). (Note that, as we will return to
later, the kill rates will be different if firing capabilities and vulnerabilities are different.)
Here in the usual way, a CTM model assumes that at most one event occurs to cause a
transition, namely, one of the units is killed, in any state. The base model treats the units
of the opposing forces individually so that the pair (m,n) is disaggregated to a pair of
vectors of dimensions m and n populated by 0s (dead) and 1s (alive) which sum to m
and n, respectively. The starting state (n,n) is disaggregated to a pair of all 1 vectors of
dimension n, for example, (1,1, …1) representing all tanks in the group having the same
firing rate. When a unit is killed its corresponding coordinate is set to 0. Assuming uni-
formity of interaction (from which we back-off soon) the fire is uniformly distributed over
the opposing side so that each opposing unit has the same probability of receiving fire
and being killed, pk. Thus when there are x blues and y reds, the probability of killing
an individual red unit is x*FR*pk. Strictly this holds for large numbers of units and then
the average number of y red units killed will be y*FR*pk*x. Mapping the disaggregated
state (xi) (yi) back to lumped model state (x,y) we see that the attrition rate agrees with the
lumped model formulation.

This argument is given more rigor by using the concepts of morphism of systems in
this case applied to Markov models. Let us consider the situation in a base model state
shown in the upper left corner of Fig. 6. The aggregation mapping makes a correspon-
dence to the lumped model state in which the individual units are summed to get the
totals of each side still alive. Now a transition in the lumped model will be an event
in which one of the units is killed thereby reducing the total by 1 as shown (shown as
a blue casualty, but the same holds for a red one). If there is a transition in the base model
such as shown which kills a particular blue unit in the same average elapsed time then
the aggregation mapping will continue to relate base and lumped states. By induction on
transitions, the average time to reach a terminating state (in which one of the side’s num-
bers reach zero) for each model is the same.
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4.1 Approximate Morphisms

Let us examine the condition that justifies the homomorphism, called the lumpability con-
dition. Considering fire from the blue to the red side, uniformity can be formulated as the
following requirements: (a) emitted fire uniformity: every blue unit distributes the same
total fire volley to the red group; (b) received fire uniformity: every red unit receives
the same fire volley from the blue group. While the effect of departure from uniformity
due to couplings between pairs of units, here we assume such coupling uniformity pertains
but that the base model vulnerability parameters, pki may not be the same for all units i
within a force group.

To consider such heterogeneous distributions of values, we set up a mapping from base
model parameters to lumped model parameters that can be defined as follows:

For each block of components (blue and red force groups) the mapping of vulnerability
parameters is an aggregation which sends the individual values to their average (mean)
value:

FBlock : Base Parameters!Lumped Parameters
FBlock pkij i¼ 1, ::,NBlock

� �� �¼ pkBlock ¼MeanBlock pkij i¼ 0, ::,NBlock

� �� �
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where pki are the individual vulnerability values in a block and pkBlock is their mean value

assigned to the lumped block.

This is a particular instance of a parameter morphism, where themorphism not only sets up a
correspondence between states but also maps basemodel parameter values to lumped values
for which the correspondence is expected to hold.

Since the morphism is expected to hold exactly only when exact uniformity within bocks
holds, we measure the departure from uniformity by employing

LumpedSTDLumped ¼ STD pkij i¼ 0, ::,NBlock

� �� �

namely, the standard deviation relative to the mean. Note that strict uniformity holds

(all block vulnerability parameter values are equal) if, and only if, the standard deviation
vanishes as required for such a measure.

The relaxed morphism concept, enabled by allowing departure from uniformity in param-
eter mappings, is called an approximate morphism (Zeigler et al., 2018). To operationalize this
concept, we need to characterize the error we can expect from a lumped model which
assumes exact uniformity. In other words, an approximate morphism must also be accompa-
nied by information that indicates the departure from exact homomorphism in relation to the
departure from uniformity. This information can be compiled into a lumpability zone statistic
that characterizes the neighborhood of the LumpedSTD near zero in which acceptable
predictions of the lumped model may be obtained.
4.2 Lumpability Zone Evaluation

To illustrate the lumpability zone information about an approximate morphism that might
be carried along with its definition, we performed an empirical investigation of the attrition
model in Fig. 6 using the process outlined in the SES-based comparison of results obtained
from the base and lumped models. Referring to Fig. 4, in this case, the external parameter
values passed to both base and lumped models are the mean vulnerability and firing rates.
The parameter values emerging from the construction of the base model and passed to the
lumped model are the initial sizes of the opposing forces.

All runs startedwith 100 blue units while the number of red units ranged from 40 to 60. The
fire rate was uniform at 0.1 shots/unit time and the same for both sides and the output to
input couplings were uniform all to all. However the vulnerability was variable, sampled
from a beta distribution with mean 0.5 and standard deviation (std) ranging from 0.05 to
0.25 in steps of 0.05. The beta distribution std. was verified to give a good prediction of
the LumpedSTD for the vulnerability actually observed. Note: The largest variance possible
for the beta distributionwith mean 0.5 is 0.25. Also, since the beta distribution does not accept
0 as a std., the starting point for the base model bypassed the distribution and set the vulner-
ability to a constant 0.5. Overall, 30 pseudorandom samples were taken for each setting of the
base model. The lumped model was constructed with the same fire rate and mean vulnera-
bility as the base model and 30 samples were taken for each red/blue configuration as deter-
mined by the basemodel. Themean and standard deviation of the termination times obtained
for the base model are presented in Table 2 and drawn in Fig. 7. We see that the termination



TABLE 2 Termination Time Comparison for Base and Lumped Models

LumpSTD

Base Mean

Termination Time

Base STDTermination

Time

Lumped Mean

Termination Time Error %Error

0 184 126 182 2 1.09

0.05 149 90 �33 �22.15

0.1 154 100 �28 �18.18

0.15 159 117 �23 �14.47

0.2 354 195 172 48.59

0.25 568 488 386 67.96

Remark: If base and lumped disagree it could be that the base is at fault. In the present case, at first we failed to note the restriction of the beta

function to a nonzero standard deviation. Setting this parameter to zero led to very small termination times for the base model relative to the lumped

model. This led us to search for the cause of the disparity and eventually led to detecting the source of the error as violation of the beta function

parameter in the base model.
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FIG. 7 Lumpability zone determination for opposing force ratio of 2:1.
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time sharply rises after the LumpSTD of 0.15 suggesting that the lumpability zone is in the
region [0,0,0.15]. The lumped model mean termination time was 182 which agrees well with
the base model with fixed vulnerability. We note that it is higher than the values within the
zone but lower than those outside it.We note that the standard deviation of the lumpedmodel
termination time is high compared to the mean, as are those of the base model. This indicates
that the processes are highly variable (cf. a log normal distribution where the standard devi-
ation can be much higher than the mean).
4.3 Lumpability Zone Dependence on Parameters

The formulation of morphisms in terms of shared (or interconvertible) parameters, and the
computational implementation just discussed, promotes exploration of the quality of
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approximation over parts (or all) of the parameter and state spaces of the models. For exam-
ple, as illustrated in Fig. 8 the size of the lumpability zone significantly depends on parameter
values. The relative size of the zone for the attrition example with 2:1 force ratio in Fig. 8 is
approximately 60% (¼0.15/0.25). This size shrinks when the forces are equal in strength be-
cause of the sensitivity to nonuniformity when firing rates and vulnerabilities are equally bal-
anced. On the other hand, the size expands to 100% when one side completely dominates the
other and the sensitivity to small variations becomes only a second-order effect.

Another look at the dependence of approximate morphism quality is illustrated in Fig. 9.
Here the mean termination times of the base and lumped models are plotted for increasing
opposing force sizes. Agreement is very close for sizes larger than 50, while the approxima-
tion is not so good for smaller numbers. Note that termination times increase to a maximum
for small numbers and then decrease with increasing sizes. This suggests that the increase in
aggregate fire intensity with increasing shooters overcomes the low vulnerabilities to result in
high-casualty rates. Interestingly, the simulation run times for the base model grow much
0
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FIG. 9 Base versus lumped termination for increasing component numbers.
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more rapidly for larger sizes than for the lumped model. Taking the lumpability zone as
[100,1000] we see that in this zone we have high accuracy with short executions of the lumped
model without trade-offs.

The computational approach for the evaluation of approximate morphism error makes it
possible to quantify, test, and characterize the extent to which, and conditions under which,
aggregations and simplifications of simulations may be usefully employed.
5 CONCLUSIONS AND FURTHER RESEARCH

5.1 Summary

This chapter presented a computational approach to evaluate the approximate morphisms
(structure/behavior preservation relations) between pairs of models within model engineer-
ing for simulation. Based on the SES/MBmethodology andmultifaceted modeling we set the
foundation for simulation-based computation of metrics for departure from strict structure
preservation, tying approximate satisfaction of structural conditions to the resulting
behavioral error.
5.2 Implications for Research in Model Engineering

There are several implications for model engineering.

5.2.1 Creation of Base/Lumped Pairs

As suggested base/lumped model pairs offer significant advantages over isolated model
developments. We first review such advantages before proceeding to discuss the global or-
ganization of repositories around such pairs. The methodology offers an approach seeking
and focusing on lumping processes with high effectiveness. This should inform the develop-
ment and performance measurement of automated aggregation algorithms to construct good
lumped models. The dependence of error on departure from strict structure preservation,
once quantified, can then drive the choice of level of resolution (given a level of tolerable error,
the maximum allowable reduction in resolution can be determined).

The implications of this characterization of approximate system morphisms for
multiresolution modeling and simulation can be enumerated as follows:

• From the examples studied, approximate lumpability as measured by lumpability zone
size may be quite restricted but nevertheless much less restrictive than strict lumpability.

• In view of this, the proposed process can support seeking to develop, and focusing on,
processes with high effectiveness (low error with respect to uncontrolled construction).

• The relative volume of the lumpability zone can be taken as the probability of getting a
useful approximation using the lumping process. The smaller this probability, the greater
the challenge for automated aggregation algorithms to construct good lumped models.
The performance of such a method should be measured against the expected number of
random trials to hit upon a lumpedmodel within the lumpability zone which is the inverse
of the lumpability ratio.
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• The size of the lumpability zone significantly depends on the parameter values. Although
potentially involved in computation performance/accuracy trade-offs, it may happen that
in a lumpability zone we have high accuracy with short executions of the lumped model
without trade-offs.

5.2.2 Organization of Repository Around Base/Lumped Model Pairs

Once created, base/lumped model pairs need to be stored in the repository for retrieval
and use. Morphisms between pairs automatically organize models into lattice-like structures
that allow inference of induced pairings by transitivity. Focusing on experimental frames, it is
critical to have an ability to ask whether there are any frames that meet given objectives and
whether there are models that can work within such frames. The relation that determines if a
frame can logically be applied to a model is called applicability and its converse is called
accommodation. Notice that validity of a model in a particular experimental frame requires,
as a precondition, that the model accommodates the frame. The degree to which one exper-
imental frame is more restrictive in its conditions than another is formulated in the derivability
relation. A more restrictive frame leaves less room for experimentation or observation than
one fromwhich it is derivable. So it is easier to find a model that is valid in a restrictive frame
for a given system. In fact, applicability may be reduced to derivability. Let the scope frame of
the model represent the most relaxed conditions under which it can be experimented with
(this is clearly a characteristic of the model). Then a frame is applicable to a model, if it is
derivable from the scope frame of themodel. Thus parametermorphisms interconnect within
an overarching structure of derivability relations.

The morphism-based organization just discussed can extend a recently proposed MSF to
support a holistic analysis of health-care systems (Traor�e et al., 2017). This provides a strat-
ification of the levels of abstraction into multiple perspectives and their integration in a com-
mon simulation framework. In each of the perspectives, models of different components of
health-care system can be developed and coupled together to accommodate experimental
frames that are characteristic of these perspectives. Influences of other perspectives on the
parameter values of any one of them are reflected through explicit assumptions and simpli-
fications. Components of the various perspectives are integrated to provide a holistic view of
the health-care problem and system under study. The resulting global model can be coupled
with a holistic experimental frame to derive results that cannot be accurately addressed in any
of the perspective taken alone.

5.2.3 Tool Sets for Parameter Morphism Evaluation and Model Base Organization

Creation of base/lumped pairs and their imposition of an organization of models in a re-
pository need to be supported by appropriate data structures and tool sets. Support for such
tools could consist of implementations of operations and workflow orchestrator implications
such as those roughly suggested in Table 3.

5.2.4 Time Scale Relations and System Entity Structure

Santucci et al. (2016) propose an extension of the SES that introduces new elements to en-
able it to support the concepts of abstraction and time granularity in addition to its existing
expression of composition and component specialization. In relation to abstraction, we note
that the approach of this chapter is to consider a pair of models, base and lumped, with a



TABLE 3 Example Operations and Workflow Orchestrators

Simulation Control Evaluation

n-array operations e.g.,
Operation(base,lumped,
ef )

makeSimulation(sim,base,lumped,ef )
StartSimulation(sim)
RunSimulation(sim,iteration)
getResults(sim)

Compare(base,lumped,ef )
ComputeLumpabilityZone(base,
lumped,ef )
ComputeBackgroundLevel(base,
ef )

Workflow implications StartSimulation(base,lumped) ¼>

StartSimulation(base) and
StartSimulation(lumped) etc.

CompareWith(base,lumped) ¼>

StartSimulation(base,lumped)
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morphism relation between them. To extend the SES to represent such pairs, and indeed
hierarchies of such pairs, amounts to compressing the separate SESs for such models into
a family of models represented by a single SES. To do this Santucci et al. introduced two types
of specialization relations for abstraction and time granularity and associated specification of
mappings. Further research is required to investigate whether there are better ways to
manage abstraction and time granularity with the SES, possible implementation approaches,
formalizations, and computational support along the lines of this chapter.

We note that Chapter x of this volume (Pawletta and Durak, n.d.) offers a computational
infrastructure that can support the operations needed in Table 3.
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Unified Approaches to Modeling
Mamadou K. Traor�e

University of Clermont Auvergne, LIMOS CNRS UMR 6158, Aubière, France
1 INTRODUCTION

During model development of complex systems, two questions arise at the early stage of
the process:

• A model for what?
• How to specify it?
1.1 Model for What?

Models are built to support system requirements, design, analysis, verification, and vali-
dation activities beginning in the conceptual design phase and continuing throughout devel-
opment and later life cycle (Estefan, 2007). The core underlying principle is that the efficient
design and development of a complex system requires an iterative process of modeling, per-
formance evaluation, logical analysis for requirement verifications, and implementation
(prototyping) for runtime testing (Hong and Kim, 2006). This iterative process is necessary
to reveal subtle knowledge about the systems, which are, in most cases, beyond intuition.
Moreover, a violation of requirement(s) or undesired behavior at this stage can be a signal
of a fundamental flaw in the design that must be resolved early to forestall costly errors in
the final system (Zeigler and Nutaro, 2016). Therefore, the system under study (which
may be a physical system or a nonexistent conceptualized system) is represented as a model,
possibly consisting of interacting components, using an appropriate formalism. The informa-
tion represented in the model, and the choice of an appropriate formalism to write the model
are determined by a number of factors such as the questions to be answered about the system,
the properties of the system to be analyzed, the capabilities of the available model solver, the
analyst’s experience, etc. A set of algorithms and protocols, referred as the model solver,
manipulate this model to generate some results. These results provide feedback as more
knowledge about the system under study to the analyst. Hence, the knowledge gained from
43 # 2019 Elsevier Inc. All rights reserved.
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each iteration may serve as a guide for a deeper understanding of the system’s behavior and
the influences it may have on its environment or which the environment may have on it.
Alternatively, it may serve as a feedback to revise the designed model and/or requirements
until an acceptable level of satisfaction of critical requirements is guaranteed before commit-
ting time and resources to the implementation of the system. Efforts to automate such as pro-
cess are referred to as Model-Driven Engineering (Mittal and Martı́n, 2013; Bocciarelli and
D’Ambrogio, 2014).

As depicted in Fig. 1, depending on the questions to be answered about the system under
study, models employed in the iteration loops to mine the desired knowledge of the system
are often built for one of the three major analysis methodologies: (1) simulation, (2) formal
analysis, and (3) enactment. These methodologies promote reasoning about systems from
somewhat divergent viewpoints. A viewpoint can be defined, in the general context of soft-
ware and systems engineering, as a description of appropriate machinery consisting of do-
main, languages, specifications, and methodologies to capture and process one or more
related engineering or technical concerns about a system and the information associated with
such concerns (Finkelstein et al., 1992; Kurpjuweit andWinter, 2007). However, often they are
necessarily required in combinations for sound system designs.

Simulation allows compressing time (i.e., use logical time approximation) and evaluatingor
analyzing amodel over a specified period and under scenarios or environment defined by the
experimental frame (EF). In modeling and simulation (M&S), an EF defines the objective(s),
assumptions, and constraints of a simulation study and the context within which a system
is observed or the validity of the model is evaluated (Zeigler et al., 2000; Traor�e and Muzy,
2006). The results obtained from a simulation studymay be used to infer or forecast a system’s
behavior and performance, identify problems and their causes, etc. Comprehensive lists of
problems that are suitable for simulation and the possible uses of simulation results are pro-
vided in Maria (1997) and Carson (2004).

Formal analysis methods (FM) are mathematically based languages, techniques, and tools
that permit the specification, verification, and development of software and hardware sys-
tems in a systematic manner (Wing, 1990; Clarke andWing, 1996). The goal of FM is to unveil
and correct subtle and very expensive errors that may result in system failures (Clarke and
Wing, 1996). The likelihood of having such errors in a system design increases as the system
grows in scale and functionality; hence, the need for a systematic use of FM at some strategic
FIG. 1 Isolated analysis practices and some related modeling formalisms.
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phases of a systems development process to enhance the developers’ understanding of the
system through early revelations of ambiguities, inconsistencies, and violations of specifica-
tion requirements. The overall motivation for this will be the eventual construction of com-
plex systems that operate reliably (Clarke and Wing, 1996). Similar to the way an EF defines
the objectives and context of a simulation study of a system, the requirement proposes the pre-
miseonwhich the logical andsymbolic reasoningabout a system isbasedusingFM. In essence,
the requirement is an abstract specification of a collection of properties (or evaluation criteria)
that need to be satisfied by a system under study (Lamsweerde, 2000). It serves as a contract
between the client and system developers (Wing, 1990). The logical analysis of the combined
operational model of the system and requirement helps to verify that the former satisfies the
latter. In some cases, counterexamples are generated to illustrate the violationswhere require-
ments arenotmet.Anempirical surveyof thewhys andwherefores ofusingFM ispresented in
Hall (2007).

Enactment is, in a general software engineering context, the mechanism for the execution
or interpretation of software process definitions, whichmay involve live interactions with the
environment and external actors like human-in-the-loop, to provide supports that are consis-
tent with the process definitions (Dowson and Fernstr€om, 1994). It is most known in business
process management (BPM) (Van Der Aalst et al., 2003; Jeston and Nelis, 2014) as the execu-
tion of a business workflow (Kouvas et al., 2010), that is, the (semi) automation of business
processes during which information and work lists are passed from one participant to an-
other for necessary actions (Ottensooser and Fekete, 2007). In service engineering and
human-computer interaction, enactment refers to the manifestation of the functionalities
represented by a system’s prototype (Holmlid and Evenson, 2007). A system prototype is de-
scribed as a representation of the functionality, but not the appearance, of a finished artifact
that can be used as a proof that a certain theory, concept, or technology works, or otherwise
(Holmquist, 2005). Here, we describe enactment as executing a system operational model,
that is, one that can be executed in a suitable software environment (Bruno and Agarwal,
1995), to act out its behavior by using the physical clock time (as opposed to the simulation
logical time), as the reference for the scheduling and execution of events (Aliyu et al., 2015).
An enactmentmodel should practically stand in for the real system in a physical environment
through the manifestation of its expected characteristics.
1.2 How to Specify It?

It is important to see the relationship between modeling formalisms and analysis method-
ologies. The latter are concerned with the overall process that makes use of models, while the
former are tools used among others within this process to describe models. Therefore, the use
of a unique formalism or multiple formalisms (which refers to multiformalism modeling) is
guided by the objectives of the underlying analysis. We focus on unified modeling
approaches in that context. We classify the unified modeling approaches in the literature into
two categories based on whether they fall within one of the hyperplanes of Fig. 1 or are
integrating two or three hyperplanes. They are:

• Unified analysis-specific modeling approaches, which aim at facilitating analysis in one
specific hyperplane (i.e., simulation, formal methods, or enactment)
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• Unified multianalysis modeling approaches, which combine methods from different
hyperplanes of Fig. 1 (e.g., simulation combined with FM, or simulation combined with
enactment, or enactment combined with FM, or all three methods combined).

In the remaining part of this chapter, we review contributions to unified modeling
approaches, with this distinction in mind. Section 2 presents the methodology-specific
unified modeling approaches, while Section 3 presents the multianalysis unified modeling
approaches. Section 4 concludes the chapter.
2 UNIFIED ANALYSIS-SPECIFIC MODELING APPROACHES

Unifying approaches under this category reside in isolation in one of the three orthogonal
hyperplanes of Fig. 1. The fundamental objective, which is shared by most approaches in this
category, is usually to alleviate the complexity and rigor of direct system specificationwith the
underlying formalism through high-level modeling interfaces. It is particularly meant to ad-
dress the lack of requisite logic and mathematical skills to deal with most formalisms. More-
over, these approaches are generally motivated, inter alia, by the possibility of making the
underlying formalisms and their capabilities accessible to wider communities including
nonexpert users, ease of communication among stakeholders, and (semi) automated synthesis
of executable analysis codes from the high-level models.

Usually, the development of unified modeling formalisms in this category follows one of
the following prevalent styles: (1) interfacing, (2) federation, and (3) subsumption. Even if
frontiers between these styles are thin, each has salient lineaments that help to identify
whether a given approach falls under it or not.
2.1 Formalism Interfacing

A practical way to approach the unification of heterogeneous specifications is to interface
them; that is, to use a third party as a glue to combine them. In his seminal work identified as
multimodeling (Fishwick, 1995), Paul Fishwick proposes to interface different models by
means of the object-oriented paradigm, where each model is encapsulated in an object,
and intermodel communication is ensured by method calls.

Multimodeling brings an interesting light to the question of multiformalism, by proposing
a classification of abstractions and indicating, for each class, a family of adequate formalisms:

• Conceptual models (CMs) describe, at the highest level of abstraction, the general
knowledge about the system under study. Their purpose is to highlight system entities (or
classes) as well as the relationships between them. They therefore constitute a knowledge
base for subsequent abstractions. UML or natural languages are examples of adequate
formalism for this abstraction level.

• Declarative models provide systems description in terms of sequences of events that move
the system from one state to another. This level of abstraction is adequate to represent
the dynamics of objects identified in the CM. Sequential automata (for passive objects)
or Petri nets (for active objects) are adequate formalisms for this abstraction level.
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• Functional models provide system descriptions in terms of sequences of functions (the
outputs of the ones feeding the inputs of the others), arranged such that the final
treatment performed by the system is found downstream of this sequence. Such a level of
abstraction specifies the flow of processing within the system. Queueing networks or
functional block diagrams are examples of adequate formalism for this abstraction level.

• Constraint (or conservative) models provide system descriptions in terms of laws and
constraints. Differential equations or difference equations are examples of adequate
formalism for this abstraction level.

• Spatial models focus on describing the decision rules for systems operation. Themain idea,
at this level of abstraction, is to represent global decisions as the fruit of the interactions of
multiple local decisions. Cellular automata or multiagent systems are examples of
adequate formalism for this abstraction level.

Fishwick suggests first building a CM of the system, and then breaking this model into
declarative/functional/constrained/spatial hierarchies. The operational semantics of the
resulting multimodel is obtained by the object-oriented implementation and integration of
time management mechanisms (i.e., sequential/parallel simulation algorithms), or the use
of simulation tools/environments such as SIMPACK (Fishwick, 1995). One can notice that
even if Fishwick has developed his approach in the context of simulation, the methodology
still stands from both the enactment and the formal analysis perspectives. A notable example
in formal analysis is μSZ (Bussow et al., 1997).
2.2 Formalism Federation

Formalism federation consists of adding the existing formalisms and consecrating this sum
as a new formalism. This comes from the desire to unify different (and possibly overlapping)
views of the same system (i.e., different sets of interrelated concepts) that are traditionally
expressed in different formalisms. A classic categorization of views is the separation between
static, dynamic, and functional views. Another classification, more system-theoretically ori-
ented is the distinction between structure and behavior. Prominent federated formalisms are
UML and SysML.

UML, for Unified Modeling Language (Rumbaugh et al., 2004), is a standard object-
oriented notation for software systems design, with the underlying unifying approach is
to integrate static, dynamic, and functional views of a system, independent of any specific
software development process (e.g., XP, RUP) or technology (e.g., Java, .NET). It also involves
a profiling mechanism, which allows building generic extensions for customizing UML for
particular domains and platforms. Class diagrams, component diagrams, and package dia-
grams mainly provide the static view in UML. Activity diagrams, sequence diagrams, state
machine diagrams, and collaboration diagrams mainly provide the dynamic view. Use case
diagrams mainly provide the functional view. It is known that these diagrams do not have
formal semantics and no precise operational semantics is defined to make them executable.
For example, activity diagrams semantics are described by informal texts. Each existing tool
for modeling activity diagrams implements its own operational semantics. This implementa-
tion freedom is intentional since the goal of UML is to provide a unified framework for var-
ious application domains (like embedded systems, real time systems, or computer networks)
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with different needs. This freedommakes the validation problem of UMLmodels dependent
form semantic choices of available tools. Some tools with limited capabilities exist for validat-
ing OCL and UML specifications (Martin et al., 2007). The adequate use of OCL constraints
helps a lot to avoid ambiguities, but even then tool support is lacking. A more precise subset
of UML, called Foundational UML (fUML) (Object Management Group, 2013), is defined
for specification of executable UMLmodels. The fUML subset defines a semantics called base
semantics. However, a small subset may make the formal verification of models feasible or
decidable, but at the same time, it restricts the expressiveness of the language. In the opposite,
a large subset is very expressive in modeling; however, it is difficult or impossible to do for-
mal verification. The way of combining UML diagrams, OCL, and action semantics to deliver
complete implementation code (mostly in Java, C#, and C++) for a system is not part of the
UML standard leading to individual solutions that fail to consistently keep the link between
the diagrams and the generated code.

SysML, for Systems Modeling Language (Object Management Group, 2010), is a standard
graphical modeling language that customizes UML (by the profile mechanism) for the spec-
ification, analysis, design, verification and validation of systems including hardware, soft-
ware, and processes. SysML is more expressive and flexible than UML. SysML reuses a
subset of UML (activity diagrams, use-case diagrams, sequence diagrams, state diagrams,
and package diagrams), and adapt class diagrams to be block definition diagrams. SysML
also adds new diagrams (requirement diagrams, parametric diagrams). A broad range of
UML tools supports SysML, and its diagrams can be exchanged between tools by using
the standard XMI format. The advantages of SysML over UML for systems engineering is that
SysML requirement diagrams can be used to efficiently capture functional, performance, and
interface requirements, whereas UML is subject to the limitations of use-case diagrams to
define high-level functional requirements. Also, SysML parametric diagrams can be used
to define performance and quantitative constraints precisely, while UML provides no
straightforward mechanism to capture this sort of essential performance and quantitative
information.
2.3 Formalism Subsumption

Formalism subsumption is the act of defining a model of computation (rather than a lan-
guage) that subsumes the semantics of different formalisms. In the context of simulation, an
important step was taken in this approach with the advent of the DEVS (for Discrete Event
Systems Specification) paradigm, which laid the foundation of a theory of M&S (Zeigler,
1976). Rooted in systems theory, DEVS proposes a unifying framework for all discrete-event
systems specification formalisms (Vangheluwe, 2000). Various DEVS extensions have been
proposed to deal with other kinds of systems, including the DEV&DESS hybrid systems
modeling formalism (Zeigler et al., 2000), the DSDEVS variable structure systems modeling
formalism (Barros, 1997), and a host of others.

A prominent DEVS-based methodology is DUNIP (Mittal, 2007; Mittal and Martı́n, 2013).
DUNIP, for DEVS Unified Process, aims at exploring the integration of various concepts that
had been developed through decades of research in DEVS-based simulation methodology,
and applying it to the design and analysis of Systems of Systems in a full systems engineering
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life cycle. The overall objective of the framework is to harness the benefit of automated trans-
formations in MDE to bind different phases of a rigorous MBSE process backed by the DEVS
theory for a transparent simulation of Systems of Systems in a net-centric M&S setup. The
fundamental visions of and MDSE processes in DUNIP are comprehensively captured in
the DEVSML 2.0 stack (Mittal and Martı́n, 2013), which is a multilayered architecture with
infrastructures at the different layers that work together to realize theM&S-based verification
of discrete-event systems on a stand-alone or net-centric simulation platform. The top layer of
DEVSML 2.0 stack contains the DEVS Modeling Language version 2.0 (DEVSML 2.0), a tex-
tual DSL for expressing systems’ structure and behavior based on DEVS theory. A model
written in DEVSML 2.0 is persisted in XML and considered as a Platform-IndependentModel
(PIM) tomake it compatiblewith DEVS-based simulators implemented inmultiple platforms.
The PIM in the DEVSML 2.0 layer is transmitted through some DEVS-compliant middleware
and APIs (in the lower layers) to a net-centric infrastructure that generates and deploy
platform-specific simulation codes on a distributed multiplatform federation of simulation
engines based on Java, C++, etc. at the bottom of the stack. DEVSML 2.0 also serves as the
interface to integrate DUNIP with Domain-Specific Languages (DSL) such as Business
Process Modeling Notations (White, 2004), UML, and SysML, so that the domain experts
can create system models in the problem domains and transform them (semi) automatically
to DEVSML 2.0-compatible format. In essence, DUNIP fosters the federation of diverse
DEVS-based simulation engines to provide a transparent simulation support for DSLs via
a net-centric virtual machine. Hence, it shields the modeler from the rigor of direct system
specification with raw DEVS constructs through high-level concrete syntax for DEVSML
2.0 and the possibility of transforming domain-specific models into the XML format of
DEVSML 2.0 for onward transformation to DEVS-based simulation codes.
3 UNIFIED MULTIANALYSIS MODELING APPROACHES

One significant benefit of the approaches presented in the previous section is the separa-
tion of analysis concerns between hyperplanes of Fig. 1. This means that the modeler in each
hyperplane creates a specification of the system under study from the point of view of the
hyperplane while abstracting away from the peculiarities of the methodologies in the other
two hyperplanes, thereby leading to a considerably simplified and focusedmodel in each hy-
perplane. However, since a comprehensive study of a system often requires combinations of
multiple analysis methodologies, onewould likely need to create separatemodels of the same
system in each of the three orthogonal hyperplanes. The implication of this is that disparate
models of the same system would be needed. Dealing with multiple disconnected views of
the system in the different hyperplanes can be susceptible to miscommunication among do-
main experts (Bajaj et al., 2012). Moreover, the creation and, more importantly, the repeated
update of the different models during the iterations of analysis processes can be hard since
any change in the system variable may require that all models in the different hyperplanes be
manually updated.

The required synergy of different analysis approaches can be achieved through a disci-
plined combination of them, so that they provide complimentary, rather than competitive,
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answers to evolving design questions. Recent publications such as Tolk and Hughes (2014)
and Bocciarelli and D’Ambrogio (2014) suggest that there are growing interests, both in ac-
ademia and industry, in the systematic combinations of disparate MBSE approaches to max-
imize the synergy between the different disciplines. The practical adoption of this
collaborative approach to computational analysis of systems is, however, being constrained
directly or indirectly by the same forces inhibiting the wide adoption of individual analysis
methodologies especially by nonexpert users. A number of reasons have been identified in
the literature for this shortfall. Chief among them are the following:

• Computational analysis methodologies often rely on some mathematics- and/or logic-
based formalisms for the specification and manipulation of systems. This is necessary to
ensure formal reasoning with models with precise semantics and devoid of ambiguities
and inconsistencies. Domain users, however, seldom have the requisite skills to deal with
such formalisms; they are considered as low-level expressions that do not match with the
high-level artifacts which domain users are often accustomed to. Therefore, high-level
modeling interfaces are required on top of families of formalisms, to make them accessible
to nonexpert users. Surveys of some of such interfaces for discrete event simulation
(Franceschini et al., 2014) and FM (Kefalas et al., 2003) highlight their features. It is
important to note, however, that the tools vary in their capabilities to express different
aspects of complex systems. Hence, accessibility to nonexpert users is still open to further
research.

• Another source of concern which directly constrains the study of a system using multiple
analysis methodologies is that there are usually little chances of portability of models
between methodologies. This usually requires manual, or at best semiautomated, creation
and updating of separate models, in different formalisms, of yet the same system for
different kinds of analysis. This task can be time consuming and error prone.

These problems have been continuously acknowledged, and addressed through unifying
modeling approaches, including the following two prevalent styles: (1) formalism transfor-
mation and (2) formalism weaving.
3.1 Formalism Transformation

Arguably, because of the limited chances of sharing systemmodels among disparate anal-
ysis methodologies, different techniques rarely coexist in the same environment. Formalism
transformation addresses the pairwise integration of system models and MBSE processes in
the different hyperplanes of Fig. 1. This is usually done by identifying correspondences be-
tween elements of chosen formalisms in the different hyperplanes, in order to define themap-
ping rules between them, so that a model in one hyperplane may be used to drive the (semi)
automated synthesis of models in other hyperplanes. Examples of such combined use of sim-
ulation and formal analysis include Kuhn et al. (2003), Traor�e (2006), Trojet and Berradia
(2015), and Yacoub et al. (2014). Similarly, several proposals have been made to bridge the
gap between enactment and FM (Lano et al., 2004; Lilius and Paltor, 1999; Shah et al.,
2009; Laleau et al., 2010), while some efforts to achieve pairwise integration of simulation
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and enactment are reported in Kapos et al. (2014), Risco-Martı́n et al. (2009), Schamai et al.
(2009), and Shaikh and Vangheluwe (2011).

Noteworthy is the model-driven development for modeling and simulation (MDD4MS)
approach proposed by Çetinkaya in her doctoral thesis (Çetinkaya, 2013). She argued that
though the importance of simulation CM to the accurate development of M&S models was
widely acknowledged in the literature, the systematic transformation of CMs, through inter-
mediate models, to executable simulation models had not been sufficiently studied. She de-
scribed the CM and two other models required in anM&S process as follows: (1) a CM, which
is a nonexecutable higher-level abstraction of the system under study, that represents the
structure of the system and what will be modeled in the future executable simulation model;
(2) a platform-independent simulation model (PISM), which is a mathematical description of
the processes and activities in the CM so that mathematical or computational analyses can be
manually conducted; (3) a platform-specific simulation model (PSSM), which is derived from
the PISM and the details of a specific execution platform toward the synthesis of an executable
model that can allow the simulation to be carried out on a machine. Çetinkaya argued that
nonconsumption of the CM in any development iteration involving other models creates a
semantics gap between CM and PISM that may lead to lack of model continuity in all stages
of model development. To address this problem, she proposed the MDD4MS framework to
manage the simulation process that encompasses the three stages of model development.
Fundamentally,MDD4MSmirrors the layered architecture of theOMG’smodel-driven archi-
tecture (MDA) framework (Mellor, 2004), with CM, PISM, and PSSM in the place of MDA’s
CIM, PIM, and PSM respectively. This generic framework was concretized with the CM,
PISM, and PSSM created based on BPMN, DEVS, and the Java-based DEVS Distributed
Simulation Object Library—DEVSDSOL (Seck and Verbraeck, 2009), respectively.With trans-
formation rules written in ATLAS Transformation Language, ATL ( Jouault et al., 2006), sub-
stantial parts of the PISM—which is manually refined—can be obtained from the CM through
a partial model transformation process. Though not explicitly stated, the transformation is
“partial” apparently because the mapping of the BPMN (source formalism) to DEVS (target
formalism) is not surjective, that is, there is no guarantee that every element of the target for-
malism has the corresponding element(s) from which it can be derived in source formalism.
The refined PISM is used in another partial model transformation process to generate a PSSM
based onDEVSDSOL. Though not explicitly stated or claimed by Çetinkaya, the BPMN-based
CM can arguably be independently refined to an enactment model. If it is considered in this
sense, thenwe can reasonably say that an enactmentmodel is being transformed into a DEVS-
based model for simulation.
3.2 Formalism Weaving

Formalism weaving is the creation of a pivotal formalism by weaving the metamodels of
existing formalisms to create a domain-specific language (DSL). The DSL’s abstract syntax is
specified to capture the concepts described in the underlying formalisms, while the concrete
syntax is developed with high-level cognitive notations to shield the DSL’s users from the
complexity of the underlying formalisms. Intuitively, the operational/execution/logical
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frameworks of the underlying formalisms provide semantics domains for the DSL. As
regards unification, formalismweaving differs from formalism transformation for the follow-
ing three main reasons:

• While formalism transformation bridges two methodologies by establishing the rules of
mapping one existing formalism into another existing one, formalism weaving creates a
third formalism as the language of unification.

• To achieve the complete unification with formalisms weaving, there is still need to make
use of formalisms transformation to define the semantics of the newly created formalism.

• The essence of formalism transformation is to bridge two languages, therefore realizing
pairwise integration of their corresponding supported methodologies. Under usual
circumstances, transformation rules are defined such that one model expressed in the
source formalism is given as the input and a model specified in the target formalism is
obtained as the output. Contrariwise, formalism weaving has the potential to integrate
more than two formalisms, therefore opening the way to integration of methodologies,
each residing in one of the three hyperplanes of Fig. 1. The high-level language for system
specification (HiLLS) has been introduced to achieve this goal.

HiLLS is a system modeling language for constructing multianalysis system models,
which helps domain experts express knowledge from various analysis perspectives in one
single model (Aliyu et al., 2016). It can be formalized as a structure hA, C, MAC, D, {Si}i2D,
{MAS

i )i2D}i, in which A is the abstract syntax, C is the concrete syntax, andMAC is the function
mapping C to A. A special feature of HiLLS is that instead of having one single semantic do-
main, a family D of semantic domains is defined, each of which being represented by its ab-
stract syntax Si (i2D). A set {MAS

i )i2D of corresponding semantic mappings is then
established, each of which maps A to one Si. By defining D as {DEVS, Object-Z, UML}, HiLLS
enables its multiple analysis capabilities including simulation, formal analysis, and system
enactment. Indeed, while the mapping to DEVS provides the operational semantics for
FIG. 2 HiLLS formalism structure.
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simulation, the mapping to Object-Z (Smith, 2012) makes HiLLS models amenable to formal
analysis, and the mapping to UML allows defining the operational semantics for enactment.
These mapping operations can be seen as filtering activities, since A is built by weaving con-
cepts from {Si}i2D, using metamodel integration techniques proposed by Emerson and
Sztipanovits (2006), as shown by Fig. 2. At the other hand,weaving operations imply semantic
alignment be done between concepts coming from different sources. Therefore, the semantic
unity of HiLLS-specified models is ensured by construction. Moreover, a concrete syntax is
defined for graphically representing HiLLS models, which makes it easy for domain experts
to learn, share, and discuss modeled systems. HiLLS visual representations are inspired by
UML class diagram, system control-oriented transition diagrams, and Z schemas. Further-
more, the domain set D can be extended if need be to integrate formalism support for other
analysismethodologies, provided the new concepts are alignedwith the ones already existing
in A, and that additional semantic mapping functions are defined to filter HiLLS toward tar-
get formalisms.
4 CONCLUSION

This chapter has explored unifying modeling approaches in the context of model engi-
neering. The model-based design and development of a complex system may require an
iterative process of modeling, performance evaluation, logical analysis for requirement
verifications, and prototype implementation for runtime testing. Such iterations of analy-
sis processes are often necessary for early revelations of subtle knowledge about the sys-
tems, which are, in most cases, beyond intuition. An undesired behavior discovered in the
analysis of a system can be a signal of a fundamental flaw in the system’s design; such
discovery must be made at an early stage of development to forestall costly errors in
the final system. Questions about different aspects of a system are usually best answered
using some specific analysis methodologies; for instance, system’s performance and be-
havior in some specified EFs can be efficiently studied using appropriate simulation meth-
odologies. Similarly, verification of properties such as liveness, safeness, and fairness are
better studied with appropriate formal methods while enactment methodologies may be
used to verify assumptions about some time-based and human-in-the-loop activities and
behaviors. Therefore, an exhaustive study of a complex (or even seemingly simple) system
often requires the use of different analysis methodologies to produce complementary an-
swers to likely questions.

There is no gainsaying that a combination of multiple analysis methodologies offers more
powerful capabilities and rigor to test system designs than can be accomplished with any of
themethodologies applied alone.While this exercise will provide (near) complete knowledge
of complex systems and helps analysts to make reliable assumptions and forecasts about their
properties, its practical adoption is not commensurate with the theoretical advancements,
and evolving formalisms and algorithms, resulting from decades of research by practitioners
of different methodologies. This shortfall has been linked to the prerequisite mathematical
skills for dealing with most formalisms, which is compounded by little portability of models
between tools of different methodologies that makes it mostly necessary to bear the hard task
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of creating andmanaging several models of the same system in different formalisms. Another
contributing factor is that most of the existing computational analysis environments are ded-
icated to specific analysis methodologies (i.e., simulation, or formal analysis, or enactment)
and are usually difficult to extend to accommodate other approaches.

Thus, one must learn all the formalisms underlining the various methods to create models
and go round to update all of them whenever certain system variables change. The aim of
unifying the modeling approaches is to alleviate the burdens on users of multiple formalisms
that support these analysis methodologies. This chapter has reviewedmajor unification strat-
egies along the three dimensions of simulation, formal methods, and enactment.
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1 INTRODUCTION

Model composition is combining or connecting separate models into an integrated compos-
ite model. The composite model is typically of a system, phenomenon, process, or scenario
that is itself composed of the systems, phenomena, processes, or scenarios modeled by the
component models. Composability is the capability to select and compose models in various
combinations into simulation systems to satisfy specific user requirements. Its defining char-
acteristic is that different simulation systems can be composed from different sets of models,
each suited to some distinct purpose, and the different possible model compositions will be
usefully valid. For nearly two decades composability has been an important research objec-
tive, especially in the defense-related modeling and simulation community, but general
composability remains a challenging goal. Composability research has included both theoret-
ical investigation of the limits and potential of model composition and practical implemen-
tation of frameworks and standards intended to provide useful composability capabilities.

In modeling and simulation, reusing an existing model for a new application has the
potential to reduce the time, effort, and expense of development and testing. Moreover,
model reuse may add credibility to the new application if the model was validated for its pre-
vious use or is familiar to the stakeholder community because of long-standing use. Because
the models to be reused are usually implemented as software components, general software
reuse techniques are often applicable, albeit with special considerations arising from the fact
that the software components are implementations of models.

Model composition and reuse are not the same idea, but they are closely related. Models
that are not composable can be reused, but composability is an important enabler for reuse,
and reuse of a software implementation of a model may require that it be composable with
other models. This chapter will define and explain model composition and reuse, survey
selected research (both theoretical and applied) relevant to them, describe practical
57 # 2019 Elsevier Inc. All rights reserved.
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58 4. MODEL COMPOSITION AND REUSE
implementations of frameworks and standards that have been developed to support them,
and identify several open research questions relevant to them.
2 MODEL COMPOSITION

This section begins by providing definitions of key terminology relating to model compo-
sition, beginning with composability itself. Model composition is then explained from a
theoretical perspective, including a review of prior work in composability theory. Finally,
practical aspects of model composition are discussed including discussion of the different
levels at which models may be composed and different types of standards and frameworks
that support model composition.
2.1 Definitions and Concepts1

Composability has been a goal of developers of simulation systems for at least two de-
cades, especially in the US defense-related modeling and simulation community. For exam-
ple, composability was mentioned multiple times in the requirements document for the US
Army’s one semiautomated forces (OneSAF) simulation system (US Army, 1998). Earlier
published calls for composability research include Harkrider and Lunceford (1999) and
Castro et al. (2002); more recent calls include Tolk et al. (2015) and Fujimoto (2016).

As composability became an increasingly important issue in simulation system develop-
ment, different definitions of the term appeared in the simulation research literature. They
were generally similar in concept but often differed in emphasis or level. The fact that
composability could mean different things in different contexts had been noted earlier
(Page and Opper, 1998). The following definitions of composability from the literature illus-
trate the variations on the theme:

The ability to rapidly configure, initialize, and test an exercise by logically assembling a simulation from a
pool of reusable components. JSIMS (1997)

The ability to create, configure, initialize, test, and validate an exercise by logically assembling a unique
simulation execution from a pool of reusable system components in order to meet a specific set of objectives.
Harkrider and Lunceford (1999)

The ability to build new things from existing pieces. Pratt et al. (1999)

The ability to compose models/modules across a variety of application domains, levels of resolution and
time scales. Kasputis and Ng (2000)

The following standard definition of composability was proposed: Composability is the ca-
pability to select and assemble simulation components in various combinations into valid
1Portions of this section were adapted and updated from Petty and Weisel (2003a).
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simulation systems to satisfy the specific user requirements (Petty and Weisel, 2003a).2 The
defining characteristic of composability is that different simulation systems can be composed
in a variety of ways, each suited to a specific purpose, and the different compositions will be
valid.3 Composability is more than just the ability to put simulations together from compo-
nents; it is the ability to combine and recombine, to configure and reconfigure, sets of com-
ponents selected from those available into different simulation systems to meet
different needs.

When assembling simulation components into a simulation system, the components to be
composed may be drawn from a library or repository of components, as suggested in Fig. 1.4

That library might include multiple network interfaces, different user interfaces, a range of
classes of implemented entity models, a variety of implemented physical models at different
levels of fidelity, and so on. Different sets of components from the repository may be com-
posed into different simulation systems. The components may be reused in multiple simula-
tion systems.

Discussions on composability often differ on the question as to what is being composed
and what is formed by the composition. A number of different answers can be found in
the literature; they will be referred to as levels of composability. Nine levels of composability
are documented here.5 These levels have been drawn from various sources, some of which
2At least one source adds “meaningfully” at the end of this definition of composability (Davis and Anderson, 2003).

3In modeling and simulation terminology, a valid model recreates the modeled characteristics of the real-world

system it models with sufficient fidelity or accuracy to be useful (Balci, 1998; Petty, 2010).

4The screen images in the figure are two semiautomated forces systems (Petty, 1995), OneSAF (left) and VR-Forces

(right). The images are intended only to suggest two similar but different simulation models resulting from different

compositions of components. No assertion is intended that the actual OneSAF or VR-Forces software have any

software components in common.

5In this list the levels are named after the unit of composition, that is, the components being composed. Another

method of naming the levels is after the result of composition, that is, what is produced from the components. Some

sources in the literature have adopted the former convention (Page and Opper, 1998; JSIMS, 1997), others the latter

(Post, 2002).
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explicitly or implicitly include several of the levels defined here in composability (e.g., Biddle
and Perry, 2000). Composability levels from different sources that were essentially the
same have been combined. Those listed here have different meanings and implications,
but there may be some overlap in component and scale between them.

• Application. Applications such as simulations, real C4I systems, networks, communications
equipment, and auxiliary software components are composed into simulation events,
exercises, or experiments (Post, 2002). For this to be a level of composability, rather than
simply software integration, the compositionmust be done in a way that allows combining
and recombining the applications into different systems and events. (The distinction
between composition and integration will be discussed in more detail later.) This level of
composability has also been called “event-level” (Post, 2002).

• Federate. Federates are composed into persistent federations.6 A federation is persistent if it
is reused for a number of different purposes (such as events, exercises, or experiments),
though possibly with some changes to the set of federates that have been composed. The
composition may be supported by an interoperability protocol, such as high-level
architecture (HLA), aggregate level simulation protocol (ALSP), or distributed interactive
simulation (DIS).7 Examples of this level of composability include the Joint Training
Confederation and the Combat Trauma Patient Simulation (Petty and Windyga, 1999).
This level of composability has also been called “federation-level” (Post, 2002).

• Package. Preassembled packages comprising sets of models that form a consistent subset of
the battlespace are composed into simulations (Page and Opper, 1998; JSIMS, 1997).

• Parameter. Parameters are used to configure preexisting simulations (Page and Opper,
1998; JSIMS, 1997). Some sources also include in this level of composability, which may be
called the “simulation” level, the idea that a limited pool of packages may be composed
into simulations. Here that is included in package level.

• Module. Software modules8 are composed into software executables. The executables may
be federates in a federation or stand-alone simulation systems. The OneSAF family of
software products has this level of composability (US Army, 1998; Courtemanche and
Burch, 2000; Courtemanche and Wittman, 2002).

• Model. Separate models of smaller-scale processes or objects9 are composed into composite
models of larger-scale processes or objects. For example, models of platform/entity
6The terms “federate” and “federation” have specific meanings in the context of the High-Level Architecture (HLA)

distributed simulation interoperability protocol. Here they are being used with more generic meanings analogous to

their HLAmeanings to denote simulation applications linked together, but not necessarily with the HLA distributed

simulation interoperability protocol.

7DIS is Distributed Interactive Simulation, ALSP is Aggregrate Level Simulation Protocol, and HLA is High Level

Architecture.

8The term “software component” is also usedwith this meaning, and if used here, wouldmake this the “component”

level of composability. However, in this report the term “component” is used in a general sense as the unit of

composition at any level.

9Here “object” means simulated real-world object, not software object. The former is not always implemented as the

latter and assuming so is an oversimplification. Even if a real-world object class, such as an aircraft type, is

implemented as a software object class, it is not correct to assume that the subcomponents of that real-world object

class, such as sensors andweapons, are implemented as subclasses of the software object class, that is, a mixing of is-a

and part-of relationships.
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subsystems, such as sensors and weapons, may be composed into composite models of
platforms/entities, such as aircraft (Post, 2002).Models of physical processes, such aswind
and rain, may be composed into composite models of larger-scale physical phenomena,
such as weather. The various weather models, in turn, may be composed into a climate
model. The composite models may be implemented as modules or federates. This level of
composability was a design goal of both ModSAF (Ceranowicz, 1994) and OneSAF
(Henderson and Rodriquez, 2002). This level of composability has also been called “object-
level” (Post, 2002), “component” ( JSIMS, 1997), and “reconfigurable models” (Diaz-
Calderon et al., 2000).

• Data. Sets of data are composed into databases. The data sets may be initially separate
because they describe different entities, are from different sources, or represent different
aspects of some common phenomena. For example, different data sets were composed to
represent electronic warfare entities and actions in DIS (Wood and Petty, 1995).

• Entity. Platforms/entities are composed into groupings such as military units, force
structures, and scenario orders of battle (Post, 2002). This level of composition may be
hierarchical, with several layers of groupings having composed into higher-level
groupings. This level of composition is typically donewith data, rather thanwith software,
as in ModSAF and WARSIM. This level of composition has also been called “federate-
level” (Post, 2002).

• Behavior. Low-level atomic behaviors are composed into high-level composite behaviors,
which are to be executed by autonomous simulation entities in a computer generated
forces system or constructive simulation. The behaviors may be expressed in a variety of
forms. Examples include hierarchically organized finite state machines as used inModSAF
and its variants (Calder et al., 1993) and process flow diagrams (Peters et al., 2002).

Composability can be understood from both syntactic and semantic perspectives (Pratt et al.,
1999; Ceranowicz, 2002).10 Syntactic composability, that is, the actual implementation of com-
posed models, requires that the components that implement the models be constructed so
that their implementation details, such as parameter passing mechanisms, external data
accesses, and timing assumptions are compatible for all of the different configurations that
might be composed. The question in syntactic composability is whether the components
can be connected and effectively exchange data. In contrast, semantic composability is the
question as to whether the models that make up the composed simulation system can be
meaningfully composed, that is, if their combined computation is semantically valid. Syntac-
tic composability is necessary but not sufficient to produce semantic composability.
3 THEORETICAL LIMITS AND POTENTIAL FOR MODEL
COMPOSITION11

From the beginning of the modeling and simulation community’s interest in
composability, the need for a theoretical understanding of the issues involvedwas recognized
10Some early sources use the terms engineering composability and modeling composability as equivalent to

syntactic composability and semantic composability, respectively.

11Portions of this section were adapted and updated from Petty and Weisel (2003b), Petty et al. (2003b,, 2005).

A similar review of composability theory results appeared in Balci et al. (2017).
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(Davis et al., 2000; Kasputis and Ng, 2000). The latter source is clear: “We are discovering that
unless models are designed to work together, they don’t (at least not easily and cost effec-
tively). Without a robust, theoretically grounded framework for design, we are consigned
to repeat this problem for the foreseeable future” (Kasputis and Ng, 2000).

Beginning in the late 1990s, several research efforts developed important elements of a the-
ory of composability. That work, which was based on mathematical logic and computability
theory, was intended to establish a firm theoretical basis for understanding composability in
general, and in particular, the formal characteristics of a composition of models. The signif-
icant outcomes of that work include the following:

• Standard definitions of composability and related terms (Petty and Weisel, 2003a), which
have subsequently been widely used (e.g., Davis and Anderson, 2003; Mielke and Phillips,
2003; Davis and Anderson, 2004; Porcarelli et al., 2005; Waziruddin et al., 2003; Szabo and
Teo, 2012; Benali and Bellamine-Ben Saoud, 2011; Fujimoto, 2016; Peng et al., 2017).

• Formal (i.e., theoretical) definitions ofmodel, simulation, and validity that are consistent with
their common informal meanings but are precise enough to support formal reasoning
(Petty and Weisel, 2003b; Petty et al., 2003b).

• Determination of the computational complexity of algorithmic processes for selecting
models to be composed from a repository (Page and Opper, 1999; Petty et al., 2003a).

• Determination that a simple form of composition is theoretically sufficient to assemble any
composite model (Petty, 2004).

• Formal resolution of the central question as towhethermodels that are separately valid can
be assumed to remain valid when composed (Weisel et al., 2003; Weisel, 2004).

• Surveys and assessments of practical software engineering approaches to achieving
composability (Weisel et al., 2004; Petty et al., 2014, 2016).

Concepts closely related to composability include interoperability and integratability; com-
pared to composability, they focus less onmodeling semantics andmore on technical connec-
tivity at the software and hardware levels, respectively (Page et al., 2004). All of these
concepts were integrated in a single overarching conceptual framework, known as the Levels
of Conceptual Interoperability Model (Tolk and Muguira, 2003; Turnitsa, 2005), which defines
levels or degrees to which models can exchange and consistently interpret data.

Verifying that a composition of components satisfies its requirements specification was the
subject of Mahmood (2013). A comprehensive model verification framework was proposed
and three theoretical verification approaches (algebraic analysis using Petri nets, state-space
analysis using colored Petri nets, and model checking using communicating sequential pro-
cesses) were investigated within that framework. Stemming from the same work, the related
concept of pragmatic composability takes the context within which a composite model executes
into consideration. The computational costs of validating a composition of models using
multiple validation approaches were compared in Szabo and Teo (2012).

A process calculus for reasoning about software components (not necessarily models) and
patterns of composition was introduced in Achermann and Nierstrasz (2005). Other existing
simulation-oriented theories and methodologies that address some of the same ideas as
composability theory include discrete event system specification (DEVS) (Zeigler et al.,
2000), semantic descriptors (Kasputis et al., 2004), base object models (BOM) (SISO, 2006),
denotational semantics (Mosses, 1990), model-based systems engineering (MBSE)
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(Wymore, 1993), ontological descriptions of the simulation domain (Collins and Clark, 2004;
Collins, 2004), and interoperability analysis (Harmon, 1996). The common goal of the compar-
isons was to improve composability theory with the insights of these theories. The two most
closely related to composability theory were DEVS and MBSE; comparisons can be found in
Weisel et al. (2005) for DEVS and Mielke et al. (2005) for MBSE.
3.1 Theoretical Limits of Model Composition

Of course, all simulations that are executed on computers are subject to the theoretical
limits of computation, as embodied in computational complexity theory (Garey and Johnson,
1979) and computability theory (Davis et al., 1994). These limits are encountered infrequently
in the day-to-day practice of modeling and simulation.12 However, composability seems to
push the boundaries of computation’s theoretical limits; several operations associated with
or implied by the definition of composability are constrained by the theory of computation.

In practice, model developers often assume, whether explicitly or implicitly, that model
validity is preserved under composition, that is, if two models have been determined sepa-
rately to be valid, then those models (and equivalently, software components implementing
those models) may be composed and the resulting composite model will necessarily or
automatically be valid. Therefore, a key question for composability theory is whether validity
actually is preserved by composition. In otherwords, if twomodels are separately valid, can it
be assumed that their composition is necessarily valid?

To address this specific question a series of formal theoremswere developed and proved in
the early 2000s. They considered several increasingly inclusive classes of models, starting
from a very simple class and ending with a “computable” class that includes all models that
can be executed on a digital computer. They also considered several increasingly sophisti-
cated validity metrics, including a “trajectory metric” that formalizes a simulation practi-
tioner’s intuitive notion of error accumulating over the course of a simulation execution.
Ultimately it was shown that in general, with the exception of some unrealistically simple
combinations of model classes and validity metrics, the composition of two separately valid
models cannot be assumed to be valid (Weisel et al., 2003; Weisel, 2004). Of course, this result
does not imply that separately valid models are never valid when composed; rather it means
that they cannot be assumed to be valid.

Experienced simulation practitioners are generally aware of this at a practical level. In
practical terms, two separately valid models may nevertheless produce results that are inva-
lid when they are composed. A composite model must be validated after it is composed even
if its components are understood to be valid. For example, see Bunus and Fritzson (2004) for a
focused discussion of structural and numerical inconsistencies that may arise when compos-
ing components that implement physics-based models based on differential equations.

Note that because this result is based on computability theory, it is general to all computer-
based simulations and applies regardless of whether the specific mechanism or framework is
12The exception to this assertion is the inherently discrete nature of computation and the consequent finite numerical

precision of digital computers, which leads inescapably to discretization errors when numerically integrating the

continuous differential equations of physics-based models (Colley, 2010). This issue is considered regularly for some

simulation practitioners.
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used to compose themodels. No software framework or theory of simulation that operates on
digital computers can guarantee the validity of a composition of models.

From a computability theory viewpoint, any algorithm that executes on a digital computer,
including any model to be composed and the component that implements it, is a computable
function (Davis et al., 1994; Petty, 2004). Thereforemodel compositionmay be understood as a
special case of function composition, where the functions are restricted to be computable.
Multiple seemingly different mathematical forms of function composition have been defined.
It might be assumed that these different forms of function composition would have some
effect on what can and cannot be achievable by model composition. It turns out that they
do not, at least at a theoretical level. Using induction on the number of models to be com-
posed, it was proven that simple composition, that is, composition of the form of f(g(x)), or
more generally, f1(f2(…fn(x)…), is sufficient to assemble any composite model (Petty, 2004).
Other nonsimple forms of composition add no additional compositional or computational
power. Consequently, theoretical analysis of model composition may rely on simple compo-
sition without loss of generality.

Given a library or repository of composable simulation components, assembling a simu-
lation system requires selecting a subset of those components that will collectively meet
the user’s objectives (Clark et al., 2004). The process of selecting a set of components to be
composed from a repository of available components that will satisfy a given set of simulation
system requirements is known as component selection. This deceptively simple problem is a
general software engineering issue, applicable to any repository of components, regardless
of whether or not those components are implementations of models (Kaur et al., 2014). In
the software engineering context, component selection is sometimes also known as specifica-
tion matching (Beizer, 1995).

There are two computational problems subsumed in component selection. The first prob-
lem is determining which requirements each component satisfies. This may be done either
prior to component selection for a simulation (“What are the requirements this component
satisfies?”) or as needed when a set of requirements for a simulation system are provided
to the repository (“Does this component satisfy any of the system’s requirements?”). Given
an answer to the first problem, the second problem is then to select a set of components that
collectively meet all of the system requirements. Both these problems are well known in the
software engineering context; they are summarized, respectively, as “How do we describe
software components in unambiguous, classifiable terms?” and “[H]owdo you find the [com-
ponents] that you need?” in Pressman and Maxim (2015).

As can be easily seen the first of the two component selection problems is problematic. Sup-
pose a (perfectly reasonable) requirement for a component is that its execution terminates,
rather than entering a nonterminating loop, for all inputs. Determining if a computation will
terminate is known as the “halting problem” (Turing, 1936), and has been proven
uncomputable in general. Even for system requirements that are in principle algorithmically
decidable, those determination may require superpolynomial computation time and thus be
infeasible in practice (Page and Opper, 1999). The consequence of these results is that deter-
mination of the requirements satisfied by a component have to be done by nonalgorithmic
methods, such as heuristic assessment or manual (i.e., human) labeling; the requirements
so identified could be recorded in metadata associated with the component (Fox et al., 2004).

The second of the two component selection problems is computationally difficult even if
the first has been solved, that is, even if the requirements satisfied by each of the components
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in the repository have somehow been determined. In initial work on this problem, four var-
iants of the second component selection problem based on two forms of objectives decidabil-
ity (bounded and unbounded) and two forms of composition (emergent and nonemergent)
were defined, and the bounded nonemergent variant of the component selection problem
was proven to be NP complete (Page and Opper, 1999). In subsequent work, an additional
form of composition (antiemergent) was defined, leading to two additional variants of the
problem, and then a general form of the second component selection problem that subsumes
all six variants was defined. That general form separates the problem of determining which
objectives a component or composition satisfies from the problem of selecting a set of com-
ponents tomeet the objectives by invoking an oracle for the former problem. The general form
was proven to be NP complete (intractable in general) even if the requirements satisfied by a
component or composition are known (Petty et al., 2003a; Petty, 2006).13

Component selection is not the only aspect of composability subject to theoretical limita-
tions; three others are mentioned here. First, the testing of components to be composed or
reused is sometimes done with automated software design checkers. Determining if the de-
sign of a software component, expressed as a set of logical constraints, can reach an unaccept-
able state is NP complete ( Jackson, 2006). Second, a library or repository of composable
components, as with any software component library, will require configuration manage-
ment. The operation of finding a sequence of configuration management operations to trans-
form a set of components from an initial state to an end state that meets a given set of
requirements is NP complete (Sun, 2006; Sun and Couch, 2007). Finally, a common objective
of composability research and engineering is to develop a form of specification for a compo-
nent sufficiently powerful to allow algorithmic processing of the component based on its
specification, including selection for composition, validity determination within a composi-
tion, and testing (Morse et al., 2004). Such specifications area sometimes known as metadata
or metamodels. Some component specification formalisms have been developed and pro-
posed (Achermann and Nierstrasz, 2005). However, given a component specification
expressed in a formalism powerful enough to specify a model, determining if an execution
of the component will halt is uncomputable (Overstreet, 1982; Overstreet and Nance, 1985).

Of course, simulation practitioners faced with a theoretical limit on a computational task
cannot simply abandon the enterprise of modeling and simulation. Instead, to accomplish
their objectives they must seek a heuristic solution, that is, a method that works well in most
situations, even if it is not theoretically complete or perfect. Several heuristic solutions to the
theoretical problems of model composition have been developed. An independent study of
heuristics to select a set of components to compose models have shown that such selection is
possible in situations where simplifying assumptions can be made regarding the property of
emergence, which is the question as to whether a composition of components satisfies some
objective that none of the components satisfies individually (Fox et al., 2004). The selection
heuristic studied used a greedy approach, a standard algorithmic method (Cormen
et al., 2001).
13In computational complexity theory, an “oracle” is a notional process that can perform any arbitrary computation in

a single operation. Oracles are used to separate different parts of computation in order to study the parts’ individual

complexity.
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3.2 Frameworks and Standards for Practical Model Composition14

Although a theoretical understanding of model composition and composability is impor-
tant, much composability research and development has been aimed at developing methods
to achieve composability in practical implementations of simulation systems. The overall
problem of developing components and a framework for those components so that they
can be assembled and reassembled effectively and efficiently, which will be referred to as
composability engineering, requires that the components be constructed so that their implemen-
tation details are compatible for the different compositions of components that might be
composed.

In early composability engineering, some module level composability was achieved using
dynamically loadable modules (Franceschini et al., 1999) and special purpose architectures
that supported forms of composability were designed (Biddle and Perry, 2000). A study of
the degree to which object frameworks could achieve a composable semiautomated forces
architecture concluded that composability based on object frameworks is “an implementation
issue” (Courtemanche and Burch, 2000). Multiple efforts worked toward allowing the com-
position of autonomous behaviors into more complex composite behaviors (von der Lippe
et al., 2000; Peters et al., 2002). These efforts have achieved varying degrees of success with
respect to theoretical composability. However, in practical situations the degree to which the
theory is satisfied is not as important as usefulness of the composability capabilities present in
the system to the developers and users of the system.

A range of technologies, tools, protocols, standards, control mechanisms, interfaces, and
processes have been developed with the intention of enabling rapid, efficient, and flexible
assembly of simulation systems from components in a practical setting. Broadly speaking
these technologies may be classified into five approaches: common library, product line,
interoperability protocol, object model, and formal. Table 1 summarizes these approaches;
each is then described in turn.

The common library approach depends on an organizing framework for a library of reusable
softwaremodules or components. The librarymay include components with varying levels of
composability, that is, some of the modules may be composable with all or most of the com-
ponents in the library, whereas other components may work with only a small subset of the
other components. Ordinarily, none of the components in a common library is a stand-alone
model or simulation system that can be executed individually, although there can be excep-
tions. The components in the library are made composable, or reusable, through compliance
with a shared common interface. The modules interoperate with the other modules in the
library, or a subset of them, through the common interface. In addition to the common inter-
face, the organizing framework may include tools, services, and standards. The components
may share a common set of assumptions about the simuland15 and how it should bemodeled.
The componentsmay be developed collectively as part of the common library from the outset,
or they may be developed independently and integrated later. A notable example of a
14Portions of this section were adapted and updated from Petty et al. (2014).

15The simuland is the system, phenomenon, entity, or process to be simulated, that is, it is the subject of a model.



TABLE 1 Approaches to Composability Engineering

Approach

Level(s) of

Composability Example(s)

Common library Package
Module
Model

JMASS (Handley et al., 2000; Meyer, 2001)

Product line Module
Model
Entity

OneSAF (Wittman and Harrison, 2001; Courtemanche and
Wittman, 2002)

Interoperability
protocol

Federate CTPS (Petty and Windyga, 1999)
CATT (Marshall, 1999)
CCTT (Marshall, 1999)
MATREX (RDECOM, 2008)
Joint Training Confederation (Fischer, 1996)
JSIMS (Carlisle et al., 2003)

Object model Model Base object models (SISO, 2003, 2006)

Formal Model MBSE (Wymore, 1993)
DEVS (Zeigler et al., 2000)
ForSyDe (Attarzadeh-Niaki and Sander, 2016)

Adapted from Weisel, E.W., Petty, M.D., Mielke, R.R., 2004. A survey of engineering approaches to composability. In: Proceedings of the Spring

2004 Simulation Interoperability Workshop, Arlington VA, April 18–23, pp. 722–731.
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simulation system developed using the common library approach was the Joint Modeling
and Simulation System (JMASS) (Handley et al., 2000; Meyer, 2001).

The product line approach is based on a self-contained software development system that
utilizes a library of simulation components and an automated (or semiautomated) process for
combining those components into specific simulation “products.” The intent is to produce
multiple related simulation products with as much sharing of components as possible; this
is accomplished through careful preplanning of the overall product line. The simulation
development system also allows modification and reuse of the components in new products.
It ensures that the appropriate data transfer protocol is used for intercomponent and
interproduct communication. The components may be written by different teams and still
work together in various combinations as long as they comply with the product line specifi-
cation, which may be quite detailed. This approach often utilizes behavior, entity, model, or
module levels of composability. Composition of behavior, entity, model, or module level
components results in composites that are composite behaviors, military units, composite
models, or executables.

Several simulation systems use the product line approach. Of special interest is the
OneSAF system. OneSAF is a constructive entity-level combat model and simulation system;
it is widely used by the US Army (Wittman and Harrison, 2001; Courtemanche andWittman,
2002; Parsons et al., 2005; Petty, 2009). The OneSAF product line architecture framework is
used to define software components, including their services and interface, and the products
they compose. OneSAF products are made up of one or more components. These products
include a military scenario planner, a model composer, a simulation generator, an exercise
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configuration and setup manager, a simulation core, a simulation controller, an interface
to real-world command and control systems, an after action review tool, and a software
maintenance environment. OneSAF is well documented; useful sources include US Army
(1998), Courtemanche and Burch (2000), Franceschini et al. (2003), Henderson and Rodriquez
(2002), Henderson (2003), Grainger and Henderson (2003), Parsons et al. (2005), Reece
et al. (2005), and Petty (2009), among many others.

The interoperability protocol approach is based on the run-time exchange of simulation data
or services among independently executing simulation applications (Tolk, 2012). This ap-
proach is typically based on using a standard distributed simulation interoperability protocol
such as DIS (Hofer and Loper, 1995; Loper, 1995), the HLA (Dahmann et al., 1998; Petty and
Gustavson, 2012), or the Test and Training Enabling Architecture (TENA) (Noseworthy,
2008). Independent simulation models and support utilities, executing on multiple computa-
tional platforms connected by a network, are composed into distributed simulation systems.
During the execution of a simulation, the applications exchange data about the state of the
portion of the overall simulation each is responsible. In this approach, the components that
are composed can execute independently, but they interoperate by sending and receiving
data via the protocol.

A large number of simulation systems use the interoperability protocol approach. Exam-
ples include the Combat Trauma Patient Simulation (CTPS) (Pettitt et al., 1998, 2009; Petty and
Windyga, 1999), the Combined Arms Tactical Trainer (CATT) (Marshall, 1999), the Close
Combat Tactical Trainer (CCTT) (Marshall, 1999), the Modeling Architecture for Technology,
Research, and Experimentation (MATREX) (RDECOM, 2008) the Joint Training Confedera-
tion (Fischer, 1996; Tufarolo and Page, 1996), and the Joint Simulation System (JSIMS)
(Carlisle et al., 2003). These are just examples; there are many others.

The object model approach to composability engineering depends on a standard for model
or component specifications, not implementations as with the interoperability protocol
approach. Compliance with the object model standard is intended to facilitate interoperabil-
ity among compliant components, and thus by extension reusability in a multiple systems.
The components are not individually stand-alone simulation systems; they are instead
intended to be composed with other compliant components. The object model standard en-
ables interaction of the models with supporting tools and services as well, primarily through
distributed simulation interoperability protocols. This approach utilizes the model level of
composability.

An implementation of this approach is the BOM standard (SISO, 2003; Petty and
Gustavson, 2012). According to that standard, a BOM is meant to be a “reusable package
of information representing an independent pattern of simulation interplay” that will im-
prove “interoperability, reuse, and composability, by providing ‘patterns’ and ‘components’
of simulation interplay that can be used as building blocks in the assembly of simulations and
enterprises of simulations” (SISO, 2003). The BOM specification provides a simulation
standard that allows combat model developers and simulation engineers to create modular
conceptual models and composable object models, which can be used as the basis for a sim-
ulation or simulation environment (SISO, 2006). The BOM concept is based on the assumption
that components of models, simulations, and federations can be either decomposed or newly
developed, and then reused as building blocks in the development of a new simulation or a
federation.
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Two types of BOMs have been defined (SISO, 2003). Interface BOMs have messages and
triggers related to one or more class of objects and provide a reusable pattern of interplay.
An encapsulated BOM includes additional information, such as behaviors to be modeled.
A simulation system is constructed by the composition of individual BOMs. Composite
BOMs can be converted to a High-Level Architecture Federation Object Model to support in-
teroperability via the HLA protocol (M€oller et al., 2007).

In the formal approach, models and compositions of models are specified using a special-
ized formal mathematical notation. The formal approach to composability is motivated by a
desire to unambiguously specify the structure and behavior of a composite model. This ap-
proach often utilizes the model level of composability. The DEVS (Zeigler et al., 2000) is an
example of a simulation formalism which supports composability through the use of
“coupled” (i.e., composite) models using “ports” (i.e., interfaces). The MBSE (Wymore,
1993) is another formal notation, syntactically quite different from but semantically very sim-
ilar to DEVS, that has analogous properties and limits (Mielke et al., 2005). The Formal System
Design (ForSyDe) methodology is a more recent formal modeling methodology offering
composability andmodel composition capabilities; it was designed specifically for embedded
and cyber-physical systems (Attarzadeh-Niaki and Sander, 2016).
3.3 Model Reuse16

Composability and reusability are distinct concepts and properties (Balci et al., 2011;
Mahmood, 2013), but they are closely related. Models that are not composable can be reused,
but composability is an important enabler for reuse (Igarza and Sautereau, 2001). The effective
reuse of previously developed simulation software components is both one of the motivating
goals and defining characteristics of composability.17 In this section, various aspects of reuse,
related to both software in general and simulation software in particular are surveyed.

In both software engineering in general andmodeling and simulation in particular, reusing
amodule or component has the potential to save time, effort, and expense for development or
testing. Moreover, in modeling and simulation reuse may add credibility to the new applica-
tion if the component underwent verification and validation for its previous uses. Unfortu-
nately, the reuse of software components, data sets, and other assets in modeling and
simulation development is neither as frequent nor as effective as it could be, and as a conse-
quence, the potential benefits of reuse are not being fully realized (Petty et al., 2010).
3.4 Definitions and Concepts

The concept of a component is fundamental in the context of both general software reuse
and simulation frameworks. A component can be variously defined as (1) a reusable software
module that implements and encapsulates a set of related functionality and potentially
16Portions of this section were adapted and updated from Petty et al. (2010, 2014).

17Arguably, composability is a special case of software reuse, in that it is possible to reuse software inways that do not

fit the definition of composability, but all composability involves reuse by definition. Furthermore, any type of

software may be reused, but composability is only concerned with simulation software.
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communicates with other components via an interface; (2) a unit of executable or source code
that is available for reuse (Mili et al., 2002); and (3) an interchangeable unit of software that
conforms to a specification and has a known set of inputs and expected output behavior but
with implementation details that may be hidden or unknown (Morse et al., 2004).

In the context of modeling and simulation software, software components may implement
simulation models or simulation support utilities. The former, which when a distinction is
necessary will be referred to as model components, implement a model and thus are capable
of simulating all or part of some real-world system of interest, such as physics-based model
of aircraft flight dynamics (e.g., Cimini et al., 1992). The latter, which will be referred to as
support components, provide nonmodeling support functionality specific to a simulation im-
plementation, such as a future event list in a discrete event simulation (e.g., Banks et al.,
2010). Nevertheless, both types of components are software components, and as such have
all the properties and attributes of software components in general.

In software engineering, reuse is “using a previously developed asset again, either for the
purpose for which it was originally developed or for a new purpose or in a new context”
(Petty et al., 2010). In this context, an asset may be software components, software design
diagrams, data sets, software documentation, or other artifacts of software development pro-
cess. For brevity and simplicity, hereinafter assets will be assumed to be primarily software
components, unless otherwise stated. Reusability is “the degree to which an artifact, method,
or strategy is capable of being used again or repeatedly” (Balci et al., 2011). Repeated use is
using a previously developed asset for substantially the same purpose or in the same context
as previous uses; for example, running another training exercise using the same federation as
the last training exercise. Repeated use is considered to be a special case of reuse; it may not
require the use of specialized reuse mechanisms.

Supplemental information associated with a component that helps software developers to
select and use the component is known as metadata. Metadata, in general, is “structured,
encoded data that describe characteristics of information-bearing entities to aid in the iden-
tification, discovery, assessment, and management of the described entities” (ALCTS, 2000).
In modeling and simulation, metadata associated with a software component that
implements a model can describe the model’s functionality, intended uses, underlying
assumptions, and modeling uncertainties. The goal of such metadata is to facilitate appropri-
ate reuse and reduce inappropriate reuse of the component (Morse et al., 2004; Taylor
et al., 2015).
3.5 Software Reuse in General

As already suggested, simulation software reuse is, in large part, a special case of general
software reuse. Reuse is a major issue in general software engineering and is documented in
an extensive literature that includes both emerging results for researchers and practical ad-
vice for developers. At considerable peril of oversimplification, the software reuse literature
can be partitioned into three broad topical areas, each with its own large literature, of which
only representative examples can be mentioned:

• Methods for implementing reusable software components. These methods include code-level
software engineering practices such as structured programming ( Jensen, 1979), object-
oriented development (Meyer, 1988) [both of which enables reuse by producing reusable
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classes and depends on reuse in the form of inheritance (Cox, 1986)], and software testing
(Deutsch, 1979; Beizer, 1983). It has been argued that simulation composability and
software engineering component-based software development are fundamentally the
same (Bartholet et al., 2004).

• Technical capabilities enabling software reuse. These capabilities include software
architectures ( Jacobson et al., 1997), component repositories (dos Santos et al., 2009), class
libraries (Mili et al., 2002), and discovery mechanisms (Hummel and Atkinson, 2004).

• Management practices enabling and exploiting software reuse. These practices include software
development processes (Royce, 1998; Mili et al., 2002) and business case incentives
( Jacobson et al., 1997).
3.6 Special Considerations for Model Reuse

Reuse has, of course, been a major goal within simulation software development as well.
The work on general software reuse applies to simulation software development essentially
because simulation software development is, for the most part, a special case of general
software development. Inmodeling and simulation the components that are being composed,
and the way in which these components are composed, may vary (Petty and Weisel, 2003a).
The same is true at a more general level in software reuse. Modeling and simulation assets of
different types, such as models or data, may be reused. Even within a single type of asset, the
scope or size of the reused asset is quite variable. Consider reusable source code assets; such
assetsmay be classes, modules, libraries, federates, andmore, and any of these can be usefully
reused in a suitable context.

We define a unit of reuse as the size and nature of the reusable asset. Table 2 provides def-
initions and examples of units of reuse among reusable assets. In the table, units of reuse are
organized into two types and listed. For each unit, the form in which that unit is expressed is
stated, examples are identified, and explanatory comments are provided.

Reusable modeling and simulation assets may be reused in different ways. This may de-
pend on the unit of reuse, that is, a source codemodulewill be reused in away different than a
terrain file. However, in some cases even a single unit of reuse may be reused in different
ways in different circumstances.We define amode of reuse asway, ormethod, a reusable asset
is reused. Table 3 provides definitions and examples ofmodes of reuse among reusable assets.
In the table, modes of reuse are related to when in the system development process that mode
is used. Table 4 cross references the modes of reuse with the units of reuse to which the
modes apply.

There are modeling and simulation-specific aspects of simulation software development
that relate to reuse. Four examples are given, as follows:

• Interoperability protocols. The development of distributed simulation interoperability
protocols, such as DIS, HLA, and TENA, have all been motivated in part by the express
expectation that they would increase reuse (Hofer and Loper, 1995; Dahmann et al., 1998;
Noseworthy, 2008).

• Modeling and simulation standards. In addition to interoperability protocols, standards
of various types have been defined with the intent of increasing reuse of the
standardized assets (Henninger et al., 2009); examples include natural environment



TABLE 2 Units of Reuse

Type Unit Expressed as Example(s) Comment(s)

Model Component Source code
Object code

Network interface
Event queue class
Java library
classes

Reusable software package that encapsulates a set
of related functionality and communicates with
other components via an interface. Encapsulated
unit with a known set of inputs and expected
output behavior where the details may be hidden
or unknown. An interchangeable element of a
system that conforms to a specification.
AKA package or module, but compare to Module.
Within one but not necessarily all federates in a
federation; compare to Middleware.

Module Source code Search algorithm
Coordinate
conversion

Reusable “chunk” of code that does not satisfy
definition of Component, i.e., not encapsulated,
with no defined interface.
May be reused via “copy and paste.”
Compare to Component.

Middleware Source code
Object code

RTI
TENA
middleware
MATREX

Within all federates in a federation; compare to
Component.

Stand-alone
model

Source code
Object code

Workforce model
Most CFD models

Complete implemented model that will execute
as-is, e.g., an Arena model of an assembly line.
Analogous to a federate but not interoperable.

Federate Source code
Object code

Gateway
OneSAF
JTLS

Complete federate, reusablewithoutmodification,
though it may be modified.

Federation Source code
Object code

EnviroFed Existing Federation rerun for new exercise or
experiment.
Data (e.g., scenario) may change from earlier uses.

Service Source code
Object code

Web validation
service

Similar to a component, with encapsulated
functionality and interface, but not available for
integration; rather invoked with RPC, web, SOA,
GIG, etc.

Modeling
method (or
paradigm)

Text
UML

Discrete event
Monte Carlo
Lanchester
equations
Finite state
machines

Set or organizing principles and common
algorithms and data structures for a class of
models.
Category of models with common basis.
Concepts and structure reused, but model(s)
reimplemented.

Model
specification

Text
UML

Dead reckoning
models
Radar return
equation

Precise specification for a model that, if
implemented properly, will produce anticipatable
results.
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TABLE 2 Unitsof Reuse—cont’d

Type Unit Expressed as Example(s) Comment(s)

Conceptual
model

Text
UML

Various Single conceptual model may have multiple
implementations. Conceptual models may be
modified and/or composed.

Data Terrain file Custom
binary
XML

OTF JNTC
CTDB Ft. Knox

The unit here is the specific terrain file, not the file
format.

Performance
data file

Custom
binary
Text
XML

Ph/Pk tables The unit here is the specific performance data file,
not the file format.

Other data
files

Custom
binary
Text
XML

Various Potentially reusable data files come in a variety of
categories: Configuration file, Scenario file, Visual
model file, Symbol/Icon file, etc.

Data model HLA OMT
ER
Diagrams
UML

RPR FOM
Various BOMs
TENA data model

The unit here is the data model, i.e., the structure
of the data, not the actual data values.
Could be categorized as type Model, rather than
type Data.

TABLE 3 Modes of Reuse

Mode When Description

Use method Design Implement model using concepts and conventions of modeling method.

Follow
specification

Implementation Implement model using details of model specification.

Integrate source Compile Integrate source code component/module/middleware unchanged into a
body of source code.

Link object Link Link object code component/middleware into a body of object code.

Modify source Implementation Make modifications to a source code reuse unit, then reuse as appropriate for
the unit.

Modify data Execution Makemodification to a data reuse unit, then reuse as appropriate for the unit.

Use as-is Execution Reuse unit unchanged.

Invoke service Execution Invoke or call reuse unit offered as service via RPC, web, SOA, GIG, etc.

Use method Design Implement model using concepts and conventions of modeling method.
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TABLE 4 Reuse Units and Modes

Units

Modes

Use

Method

Follow

Spec

Integrate

Source

Link

Object

Modify

Source

Modify

Data

Use

As-Is

Invoke

Service

Component X X X X

Module X X X

Middleware X X X X

Stand-alone
model

X X

Federate X X

Federation X X

Service X

Modeling
method

X

Model
specification

X

Conceptual
model

X

Terrain file X X

Performance
data file

X X

Other data
files

X X

Data model X X
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data (Mamaghani, 1999), simulation data exchange models (SISO, 1999), asset discovery
metadata (MSCO, 2009), and aerodynamic models (Hildreth and Jackson, 2009).

• Systems engineering processes. Systems engineering processes for development of simulation
systems have been produced that explicitly encourage reuse at various steps within the
process [e.g., the Federation Development and Execution Process (FEDEP) (IEEE, 2003)
and the Distributed Simulation Engineering and Execution Process (DSEEP) (IEEE, 2010)].

• Conceptual modeling. A simulation conceptual model has been defined as “a repository of
high-level conceptual constructs and knowledge specified in a variety of communicative
forms… intended to assist in the design of any type of large-scale complete [modeling and
simulation] application” (Balci et al., 2011) and as documentation of “those aspects of the
simuland that are to be represented and those that are to be omitted” (Petty, 2010).
Extensions to the Balci-Ormsby approach for designing large-scale simulations using
conceptual models (Balci and Ormsby, 2007) specifically intended to enable reuse and
composability have been developed (Balci et al., 2011). A number of benefits are expected
to follow from a properly constructed conceptual model, several of which could enable
reuse and composability (Seo et al., 2017).
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Reuse has been used, supported, and advocated in a variety of ways in simulation software
development; some selected interesting examples arementioned. Reuse ofmodeling and sim-
ulation assets is seen as an essential technology (Bizub et al., 2009) in developing integrated
Live-Virtual-Constructive simulation systems. Successful reuse and schedule risk mitigation
were demonstrated using a configuration-controlled repository in a large simulation exper-
iment (Kleinhample, 2009). Open architecture, object-oriented development, and product line
techniques produced a library of reusable assets in the context of developing naval training
applications (Belanger et al., 2009). Recent research into applications of conceptual models
has considered reuse of conceptual models, which are claimed to be more easily reused than
implemented models (Asaduzzaman, 2009). Finally, for composability and reuse to succeed
in practical applications, business issues such as the protection of intellectual property and
the economics of developing reusable software must be resolved ( Joshi and Winters, 2009).
4 IMPLEMENTATION CONSIDERATIONS

This section discusses two important considerations regarding the implementation of re-
usable or composability components for modeling and simulation software. Such compo-
nents must be stored and later found to be composed or reused, and before they are
stored they must be implemented in a manner that supports composition and reuse.
4.1 Implementing Composable and Reusable Components

The goals of reusability and composability affect the implementation of models as compo-
nents. The additional cost of producing reusable, compared to single-use, software has long
been recognized (Brooks, 1975; Royce, 1998). Of course, subsequent development ismade eas-
ier by the reuse of previously developed components. A contributing cause of the additional
development effort for a simulation component that implements a model is the need to doc-
ument the modeling assumptions and validity limits of the model. Good modeling practices,
such as using parameters instead of constants, checking inputs for validity limits, and striving
for clarity in model implementation, are beneficial to the development of reusable and
composable components that embody those models. Not as obvious is that the reverse rela-
tionship is also present; the goals of reusability and composability support good modeling
practices, for example, the requirement to document a model’s assumptions and limits of
validity would help the modeler to consider his/her models more carefully at the outset.

The scope, in terms of what the component models, of components that implement models
of the real world can vary considerably, from a single model of a narrowly defined domain-
specific object (e.g., a model of a radio transmitter) to a complex model of many objects and
their interactions (e.g., a campaign-level combat model), but the former is more common and
more amenable to description in component metadata. The proper scope or functionality of a
component cannot be readily given in rules that are applicable in all situations, but the
composability definition of “satisfies user requirements” provides a guideline; a component
should have capabilities that are useful to potential users as a unit, neither too small nor too
large. The criteria for making that determination will necessarily depend on the application.
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There is often an assumption by developers and potential users that any component that
has been placed in a repository is valid, at least within the bounds stated in its component
specification. A component’s validity constraints are the limits or bounds within which the
component’s model is deemed valid, and may be defined at a low level in terms of physical
parameter values, time step sizes, and so on, or at a high level in terms of valid applications for
the component. As already noted, the validity of individual components does not mean a
composition of them can be assumed to be valid (Weisel et al., 2003), and thus compositions
of components must be validated. Validating a composition could use traditional validation
methods, such as comparing model output data to simuland observation data (Balci, 1998;
Petty, 2010). In addition, composition validation could exploit a composition’s component
structure, such as automatically comparing the domains of validity for each component with
the data they are receiving from other components in the composition.

Components can be integrated and used with other components only through well-
defined interfaces associated with each component and documented in the component spec-
ification. A component interface should define “… a set of properties, methods, and events
through which external entities can connect to, and communicate with, the component”
(Krieger and Adler, 1998). A broadly interpreted interface is essentially synonymous with
the component specification, or metadata. A narrower, and perhaps more useful, definition
of component interface focuses on the application programming interface that is required for
components within the framework. In some cases components would have customizable as-
pects that could be modified at runtime through the interface.
4.2 Repositories and Metadata

Implementation of a library of components, and using those components to develop
simulation systems, will likely occur in a collaborative team context. Automated infra-
structures to support collaboration composable development will be important. Reuse
and composability depend on a component-oriented organizing framework for the
dynamic registration, discovery, and composition of components that include models,
algorithms, services, and systems, to simplify the development of new simulations from
the currently existing components. Some useful characteristics of such a framework are
as follows:

• Dynamic component registration and discovery, supported by a directory (or directories)
of registered components and repositories.

• Semantic query, search, and reasoning capabilities for component selection, supported by
component specifications (i.e., metadata).

• Distributed processing across multiple platforms, systems, services, and domains.
• Support for intelligent and polymorphic proxies for components.
• Automated composition processes to combine components.
• Virtual repositories that include version control.
• Ability to save compositions and composition templates.
• Compliance with relevant standards.
• Software authentication and information exchange services.
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Components, by definition, conform to a specification. That specification is the basis for the
component’s metadata. Component metadata can be used to guide the processes of selecting
a set of components to be reused for a specific purpose and potentially for determining if a
selected set of components can be composed. Component metadata could potentially contain
a wide range of information; categories of simulation component metadata are as follows:

• Infrastructure: name, version, dependencies.
• Technology: implementation language, operating system, compiler version.
• Interfaces: syntax, data definitions, standards.
• Applications: run modes, performance, intended uses.
• Modeling: assumptions, time model, range of validity.
• Provenance: developers, prior uses, validation history.

Component “provenance” or “pedigrees,” histories of a component’s development, vali-
dation, and previous use are useful to support future use of a component. Documentation of
the systems in which a component was used and the other components it had been composed
with can provide valuable insight into when and how that component should be used in new
systems. The provenance should include a record of design decisions built into the
component.
5 SUMMARY AND FUTURE RESEARCH

At a conceptual level, the content of this chapter can be summarized as shown in Fig. 2. In
the figure, “Composability and interoperability” and “Reuse” are capabilities which are con-
sidered to be valuable, and “frameworks” and “standards” are technologies that enable those
capabilities.18 The arrows’ labels summarize the means through which the technologies and
goals support each other; their direction shows that the “from” technology or goal supports
the “to” technology or goal.

Model reuse has multiple motivations, including the reduction of development costs by
avoiding redundant development efforts and the increased confidence of reusingmodels that
may have already been validated. Thesemotivations havemademodel reuse amajor research
area. Nevertheless, although progress has been made, model reuse continues to be less fre-
quent and less effective than it could be, and arguably, should be (Petty et al., 2010). Indeed,
composability was recently described as “still our biggest simulation challenge” (Taylor
et al., 2015).

Additional research, both theoretical and practical, is needed to increase and enhance
model composition and reuse. Selected research topics, organized into three categories
(composability theory, metadata and reuse, and reuse automation) are listed as follows
(Balci et al., 2017).
18As defined earlier, “composability” and “interoperability” are not the same thing. However, they are both concepts

that involve models and components working together, and so are combined for this figure.



FIG. 2 Relationships among reuse-related topics.Adapted from Petty, M.D., Kim, J., Barbosa, S.E., Pyun, J., 2014. Soft-
ware frameworks for model composition. Model. Simul. Eng. 2014, 18 pages. doi:10.1155/2014/492737.
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5.1.1 Composability Theory

• Theoretical implications and consequences of composing models, understood as a special
class of computable functions, in terms of the composition’s combined computation.

• Formalisms and notations for expressing and abstracting model compositions.
• Validity effects of composing models at differing levels of abstraction (Fujimoto, 2016).
• Applications or insights from related theories, including model theory, category theory,

and algorithmic information theory, for model composition.
• Models structures and modes of model composition that may preserve validity, or aspects

of validity, under composition (Tolk et al., 2015).
5.1.2 Model Metadata

• Formalisms and formal languages for expressing model metadata, such as predicate
calculus or ontology languages.

• Identification and enumeration of model characteristics, assumptions, and abstractions
that should be represented in metadata.

• Standardized vocabularies or lexicons for model metadata.
• Algorithms to automatically generate metadata from a model’s implementation as a

component, or to verify metadata against a component.
5.1.3 Reuse Automation and Frameworks

• Algorithms or heuristics to automate or semi-automate the selection and composition of
models (or their component implementations) (Fujimoto, 2016).
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• Effective practical model reuse patterns, analogous to practical software design patterns
(Gamma et al., 1995).

• Automated support for verification and validation of compositions, perhaps based on the
composed components’ metadata.

• Software frameworks designed to support and facilitate models (Petty et al., 2014).
• Model development and implementation standards specifically designed to enhance

model reusability (Fujimoto, 2016).
Acknowledgments

Some portions of this chapter are based on research conducted in collaboration with the Johns Hopkins University
Applied Physics Laboratory and supported by the US Department of Defense; this work is described in Petty et al.
(2010). Other portions are based on research performed in collaborationwith REALTIMEVISUAL Inc. and supported
by the Republic of Korea’s Agency for Defense Development; this work is described in Petty et al. (2014). The Sim-
ulation Interoperability Standards Organization gave permission for the adaptation of portions of the authors’ prior
Simulation InteroperabilityWorkshop publications. Earlier versions of some portions of this chapter were developed
from the same original research mentioned above and were documented in the final report of a workshop organized
by the US National Science Foundation, later published in Balci et al. (2017). The US Army and VT M€AK gave per-
mission to the use images on the left and right screen, respectively, in Fig. 1, which is gratefully acknowledged.
References

Achermann, F., Nierstrasz, O., 2005. A calculus for reasoning about software composition. Theor. Comput. Sci.
331 (2–3), 367–396.

Asaduzzaman, A., 2009. Conceptual modeling of multicore high performance computing systems.Proceedings of the
2009 Huntsville Simulation Conference, Huntsville, AL, October 28–29.

Association for Library Collections and Technical Services, Committee on Cataloging: Description and Access,
Task Force on Metadata, 2000. Final Report, June 16. Online at: http://www.libraries.psu.edu/tas/jca/ccda/tf-
meta6.html.

Attarzadeh-Niaki, S., Sander, I., 2016. An extensiblemodelingmethodology for embedded and cyber-physical system
design. Simul.: Trans. Soc. Model. Simul. Int. 92 (8), 771–794.

Balci, O., 1998. Verification, validation, and testing. In: Banks, J. (Ed.), Handbook of Simulation: Principles, Method-
ology, Advances, Applications, and Practice. John Wiley & Sons, New York, NY, pp. 335–393.

Balci, O., Ormsby, W.F., 2007. Conceptual modelling for designing large-scale simulations. J. Simul. 1 (3), 175–186.
Balci, O., Arthur, J.D., Ormsby, W.F., 2011. Achieving reusability and composability with a simulation conceptual

model. J. Simul. 5 (3), 157–165. https://dx.doi.org/10.1057/jos.2011.7.
Balci, O., Ball, G.L., Morse, K.L., Page, E., Petty, M.D., Tolk, A., Veautour, S.N., 2017. Model reuse, composition, and

adaptation. In: Fujimoto, R., Bock, C., Chen, W., Page, E., Panchal, J.H. (Eds.), Research Challenges in Modeling
and Simulation for Engineering Complex Systems. Springer-Verlag, Cham, Switzerland, pp. 87–116.

Banks, J., Carson, J.S., Nelson, B.L., Nicol, D.M., 2010. Discrete-Event System Simulation, fifth ed. PrenticeHall, Upper
Saddle River, NJ.

Bartholet, R.G., Brogan, D.C., Reynolds, P.F., Carnahan, J.C., 2004. In search of the philosopher’s stone: simulation
composability versus component-based software design.Proceedings of the Fall 2004 Simulation Interoperability
Workshop, Orlando, FL, September 19–24.

Beizer, B., 1983. Software Testing Techniques. Van Nostrand Reinhold, New York, NY.
Beizer, B., 1995. Black-Box Testing. John Wiley & Sons, New York, NY.
Belanger, W., McInnis, S., Beatty, W., 2009. Component reuse across multiple modeling and simulation programs.

Proceedings of the 2009 Huntsville Simulation Conference, Huntsville, AL, October 28–29.
Benali, H., Bellamine-Ben Saoud, N., 2011. Towards a component-based framework for interoperability and

composability in modeling and simulation. Simul.: Trans. Soc. Model. Simul. Int. 87 (1–2), 133–148.

http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0010
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0010
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0015
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0015
http://www.libraries.psu.edu/tas/jca/ccda/tf-meta6.html
http://www.libraries.psu.edu/tas/jca/ccda/tf-meta6.html
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0025
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0025
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0030
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0030
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0035
https://doi.org/10.1057/jos.2011.7
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0045
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0045
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0045
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0050
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0050
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0055
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0055
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0055
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0060
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0065
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0070
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0070
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0075
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0075


80 4. MODEL COMPOSITION AND REUSE
Biddle, M., Perry, C., 2000. An architecture for composable interoperability.Proceedings of the Fall 2000 Simulation
Interoperability Workshop, Orlando, FL, September 17–22.

Bizub, W., Wallace, J., Ceranowicz, A., Powell, E., 2009. Next-generation live virtual constructive architecture frame-
work.Proceedings of the 2009 Interservice/Industry Training, Simulation, and Education Conference, Orlando,
FL, November 30–December 3 2009.

Brooks, F.P., 1975. The Mythical Man-Month: Essays on Software Engineering. Addison-Wesley, Reading, MA.
Bunus, P., Fritzson, P., 2004. Automated static analysis of equation-based components. Simul.: Trans. Soc. Model.

Simul. Int. 80 (7–8), 321–345.
Calder, R.B., Smith, J.E., Courtemanche, A.J., Mar, J.M.F., Ceranowicz, A.Z., 1993. ModSAF behavior simulation and

control.Procedings of the Third Conference on Computer Generated Forces and Behavioral Representation,
Orlando, FL, March 17–19, pp. 347–356.

Carlisle, P., Babineau, W., Wuerfel, R., 2003. The Joint Simulation System (JSIMS) federation management toolbox.
Proceedings of the Fall 2003 Simulation Interoperability Workshop, Orlando, FL, September 14–19.

Castro, P.E., Antonsson, E., Clements, D.T., Coolahan, J.E., Ho, Y., Horter, M.A., Khosla, P.K., Lee, J., Mitchiner, J.L.,
Petty, M.D., Starr, S., Wu, C.L., Zeigler, B.P., 2002. Modeling and Simulation in Manufacturing and Defense
Systems Acquisition, Pathways to Success. National Research Council, Washington, DC.

Ceranowicz, A.Z., 1994. ModSAF capabilities.Proceedings of the Fourth Conference on Computer Generated Forces
and Behavioral Representation, Orlando, FL, May 4–6, pp. 3–8.

Ceranowicz, A.Z., June 10, 2002. Composability Wrapup, Personal Communication.
Cimini, F.C., Campbell, C.E., Petty, M.D., 1992. A simple flight dynamics model for computer generated forces.

Proceedings of the Southeastern Simulation Conference 1992, Pensacola, FL, October 22–23pp. 41–47.
Clark, J., Clarke, C., De Panfilis, S., Granatella, G., Predonzani, P., Sillitti, A., Succi, G., Vernazza, T., 2004. Selecting

components in large COTS repositories. J. Syst. Softw. 73 (2), 323–331.
Colley, W.N., 2010. Modeling continuous systems. In: Sokolowski, J.A., Banks, C.M. (Eds.), Modeling and Simulation

Fundamentals: Theoretical Underpinnings and Practical Domains. John Wiley & Sons, Hoboken, NJ, pp. 99–130.
Collins, J.B., 2004. Standardizing an ontology of physics for modeling and simulation.Proceedings of the Fall 2004

Simulation Interoperability Workshop, Orlando, FL, September 19–24.
Collins, J.B., Clark, D., 2004. Towards an ontology of physics.Proceedings of the 2004 European Simulation Interop-

erability Workshop, Edinburgh, Scotland, June 28–July 1.
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C., 2001. Introduction to Algorithms, second ed. The MIT Press,

Cambridge, MA.
Courtemanche, A.J., Burch, R.B., 2000. Using and developing object frameworks to achieve a composable CGF archi-

tecture.Proceedings of the Ninth Conference on Computer Generated Forces and Behavioral Representation,
Orlando, FL, May 16–18, pp. 49–62.

Courtemanche, A.J., Wittman, R.L., 2002. OneSAF: a product line approach for a next-generation CGF.Proceedings of
the Eleventh Conference on Computer Generated Forces and Behavioral Representation, Orlando, FL, May 7–9,
pp. 349–361.

Cox, B.J., 1986. Object-Oriented Programming: An Evolutionary Approach. Addison-Wesley, Reading, MA.
Dahmann, J.S., Kuhl, F., Weatherly, R., 1998. Standards for simulation: as simple as possible but not simpler: the high

level architecture for simulation. Simulation 71 (6), 378–387.
Davis, P.K., Anderson, R.H., 2003. Improving the Composability of Department of Defense Models and Simulations.

RAND National Defense Research Institute, Santa Monica, CA.
Davis, P.K., Anderson, R.H., 2004. Improving the composability of DoDmodels and simulations. J. Def.Model. Simul.

1 (1), 5–17.
Davis, M.D., Sigal, R., Weyuker, E.J., 1994. Computability, complexity, and languages. In: Fundamentals of Theoret-

ical Computer Science, second ed. Morgan Kaufmann, San Diego, CA.
Davis, P.C., Fishwick, P.A., Overstreet, C.M., Pegden, C.D., 2000. Model composability as a research investment:

responses to the featured paper.Proceedings of the 2000 Winter Simulation Conference, Orlando, FL, December
10–13, pp. 1585–1591.

Department of Defense Modeling and Simulation Coordination Office, February 20, 2009. Modeling and Simulation
(M&S) Community of Interest (COI) Discovery Metadata Specification (MSC-DMS), Version 1.2. On-line at:
http://www.msco.mil/resource_discovery.html. [(Accessed 17 March 2009)].

Deutsch, M.S., 1979. Verification and validation. In: Jensen, R.W., Tonies, C.C. (Eds.), Software Engineering. Prentice-
Hall, Englewood Cliffs, NJ, pp. 329–408.

http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0080
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0080
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0085
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0085
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0085
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0090
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0095
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0095
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0100
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0100
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0100
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0105
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0105
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0110
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0110
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0110
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0115
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0115
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0120
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0120
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0125
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0125
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0130
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0130
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0135
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0135
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0140
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0140
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0145
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0145
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0150
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0150
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0150
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0155
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0155
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0155
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0160
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0165
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0165
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0170
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0170
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0175
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0175
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0180
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0180
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0185
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0185
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0185
http://www.msco.mil/resource_discovery.html
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0195
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0195


81REFERENCES
Diaz-Calderon, A., Paredis, C.J.J., Khosla, P.K., 2000. Organization and selection of reconfigurable models.
In: Proceedings of the 2000 Winter Simulation Conference, Orlando, FL, December 10–13, pp. 386–393.

dos Santos, R.P., Werner, C.M.L., da Silva, M.A., 2009. Incorporating information of value in a component repository
to support a component marketplace infrastructure.Proceedings of the 10th IEEE International Conference on
Information Reuse & Integration, Las Vegas, NV, August 10–12, pp. 266–271.

Fischer, M.C., 1996, Joint training confederation.Proceedings of the First International Simulation Technology and
Training Conference, Melbourne, Australia, March 25–26.

Fox, M.R., Brogan, D.C., Reynolds, P.F., 2004. Approximating Component Selection.Proceedings of the 2004 Winter
Simulation Conference, Washington, DC, December 5–8pp. 429–434.

Franceschini, D., Zimmerman, J., McCulley, G., 1999. CGF system composability through dynamically loadable
modules.Proceedings of the Eighth Conference on Computer Generated Forces and Behavioral Representation,
Orlando, FL, May 11–13pp. 341–347.

Franceschini, D.J., Hawkes, K.R., Graffuis, S., 2003. System composition in OneSAF.Proceedings of the Spring 2003
Simulation Interoperability Workshop, Kissimmee, FL, March 30–April 4.

Fujimoto, R.M., 2016. Research challenges in parallel and distributed simulation. ACMTrans.Model. Comput. Simul.
26 (4) (Article 22).

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995. Design Patterns: Elements of ReusableObject-Oriented Software.
Addison-Wesley, Upper Saddle River, NJ.

Garey, M.R., Johnson, D.S., 1979. Computers and Intractability, A Guide to the Theory of NP-Completeness. W.H.
Freeman and Company, New York, NY.

Grainger, B., Henderson, C., 2003. Battlespace composition in the OneSAF objective system.Proceedings of the Spring
2003 Simulation Interoperability Workshop, Kissimmee, FL, March 30–April 4.

Handley, V.K., Shea, P.M., Morano, M., 2000. An introduction to the Joint Modeling and Simulation System (JMASS).
Proceedings of the Fall 2000 Simulation Interoperability Workshop, Orlando, FL, September 17–22.

Harkrider, S.M., Lunceford, W.H., 1999. Modeling and simulation composability.Proceedings of the 1999 Interser-
vice/Industry Training, Simulation and Education Conference, Orlando, FL, November 29 1999–December 2,
pp. 876–881.

Harmon, S.Y., 1996. Interoperability between distributed simulations I: interacting models of physical processes.
Proceedings of the 15th Workshop on the Interoperability of Distributed Interactive Simulation, Orlando, FL,
September 16–20.

Henderson, C., 2003. Model execution in the OneSAF objective system.Proceedings of the Spring 2003 Simulation
Interoperability Workshop, Kissimmee, FL, March 30–April 4.

Henderson, C., Rodriquez, A., 2002. Modeling in OneSAF.Proceedings of the Eleventh Conference on Computer
Generated Forces and Behavioral Representation, Orlando, FL, May 7–9pp. 337–347.

Henninger, A.E., Morse, K.L., Loper, M.L., Gibson, R.D., 2009. Developing a process forM&S standards management
within DoD.Proceedings of the 2009 Interservice/Industry Training, Simulation, and Education Conference,
Orlando, FL, November 30–December 3.

Hildreth, B., Jackson, E.B., 2009. Benefits to the simulation training community of a new ANSI standard for the
exchange of aero simulation models.Proceedings of the 2009 Interservice/Industry Training, Simulation, and
Education Conference, Orlando, FL, November 30–December 3.

Hofer, R.C., Loper, M.L., 1995. DIS Today. Proc. IEEE 83 (8), 1124–1137.
Hummel, O., Atkinson, C., 2004. Extreme harvesting: test driven discovery and reuse of software components.-

Proceedings of the 2004 IEEE International Conference on Information Reuse and Integration, Las Vegas, NV,
November 8–10, pp. 66–72.

Igarza, J., Sautereau, C., 2001. Distribution, use and reuse: questioning the cost effectiveness of re-using simulations
with and without HLA.Proceedings of the Fall 2001 Simulation Interoperability Workshop, Orlando, FL, Septem-
ber 9–14.

Institute of Electrical and Electronics Engineers, 2003. IEEE Std 1516.3-2003—IEEE Recommended Practice for High
Level Architecture (HLA) Federation Development and Execution Process (FEDEP), New York, NY.

Institute of Electrical and Electronics Engineers, 2010. IEEE Std 1730-2010 (Revision of IEEE Std 1516.3-2003)—IEEE
Recommended Practice for Distributed Simulation Engineering and Execution Process (DSEEP), New York, NY.

Jackson, D., 2006. Dependable Software by Design. Scientific American, New York, NY, pp. 68–75.
Jacobson, I., Griss, M., Jonsson, P., 1997. Software Reuse: Architecture, Process, and Organization for Success. ACM

Press, New York, NY.

http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0200
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0200
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0205
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0205
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0205
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0210
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0210
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0215
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0215
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0220
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0220
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0220
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0225
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0225
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0230
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0230
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0235
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0235
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0240
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0240
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0245
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0245
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0250
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0250
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0255
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0255
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0255
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0260
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0260
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0260
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0265
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0265
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0270
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0270
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0275
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0275
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0275
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0280
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0280
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0280
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0285
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0290
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0290
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0290
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0295
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0295
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0295
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0300
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0305
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0305


82 4. MODEL COMPOSITION AND REUSE
Jensen, R.W., 1979. Structured programming. In: Jensen, R.W., Tonies, C.C. (Eds.), Software Engineering. Prentice-
Hall, Englewood Cliffs, NJ, pp. 221–328.

Joshi, B., Winters, J.D., 2009. The legal fork in the OTD roadmap–what lies ahead? Proceedings of the 2009 Interser-
vice/Industry Training, Simulation, and Education Conference, Orlando, FL, November 30–December 3.

JSIMS Composability Task Force, September 30, 1997. JSIMS Composability Task Force Final Report.
Kasputis, S., Ng, H.C., 2000. Composable simulations.Proceedings of the 2000 Winter Simulation Conference,

Orlando, FL, December 10–13, pp. 1577–1584.
Kasputis, S., Osvalt, I., McKay, R., Barber, S., 2004. Semantic descriptors ofmodels and simulations.Proceedings of the

Spring 2004 Simulation Interoperability Workshop, Arlington, VA, April 18–23.
Kaur, P., Singh, J., Singh, H., 2014. Component selection repository with risk identification.Proceedings of the 2014

International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India,
March 5–7, pp. 524–531.

Kleinhample, R.C., 2009. Reuse—don’t throw out the baby with the bathwater.Proceedings of the 2009 Interservice/
Industry Training, Simulation, and Education Conference, Orlando, FL, November 30–December 3.

Krieger, D., Adler, R., 1998. The emergence of distributed component platforms. IEEE Comput, 43–53.
Loper, M.L., 1995. Introduction to distributed interactive simulation. In: Clarke, T.L. (Ed.), Distributed Interactive

Simulation Systems for Simulation and Training in the Aerospace Environment. SPIE Optical Engineering Press,
Bellingham, WA, pp. 3–15.

Mahmood, I., 2013. A Verification Framework for Component Based Modeling and Simulation: “Putting the Pieces
Together” (Ph.D. Thesis). KTH School of Information and Communication Technology.

Mamaghani, F., 1999. SEDRIS as a standard for interchange virtual world data sets.Proceedings of IEEE Virtual
Reality 1999, Houston, TX, March 13–17, p. 74.

Marshall, H.A., 1999. SAF in CATT training systems, update 1999.Proceedings of the Eighth Conference on Computer
Generated Forces and Behavioral Representation, Orlando, FL, May 11–13, pp. 277–283.

Meyer, B., 1988. Object-Oriented Software Development. Prentice-Hall, New York, NY.
Meyer, R.J., 2001. Joint Modeling and Simulation System (JMASS): what it does, and what it doesn’t! Proceedings

of the Spring 2001 Simulation Interoperability Workshop, Orlando, FL, March 25–30.
Mielke, R.R., Phillips, M.A., 2003. Development and application of an academic battle lab.Proceedings of the 2003 In-

terservice/Industry Training, Simulation and Education Conference, Orlando, FL, December 1–4, pp. 1371–1380.
Mielke, R.R., Petty, M.D., Weisel, E.W., 2005. A comparison of model-based systems engineering and composability

theory.Proceedings of the Huntsville Simulation Conference 2005, Huntsville, AL, October 25–27, pp. 300–308.
Mili, H., Mili, A., Yacoub, S., Addy, E., 2002. Reuse Based Software Engineering: Techniques, Organization, and

Controls. John Wiley & Sons, New York, NY.
M€oller, B., Gustavson, P., Lutz, B., L€ofstrand, B., 2007. Making your BOMs and FOMmodules play together.Proceed-

ing of the 2007 Fall Simulation Interoperability Workshop, Orlando, FL, September 16–21.
Morse, K.L., Petty, M.D., Reynolds, P.F., Waite, W.F., Zimmerman, P.M., 2004. Findings and recommendations from

the 2003 composable mission space environments workshop.Proceedings of the Spring 2004 Simulation Interop-
erability Workshop, Arlington, VA, April 18–23, pp. 313–323.

Mosses, P.D., 1990. Denotational semantics. In: van Leeuwen, J. (Ed.), Handbook of Theoretical Computer Science,
Volume B—Formal Models and Semantics. Elsevier, Amsterdam, The Netherlands, pp. 573–631.

Noseworthy, J.R., 2008. The Test and Training Enabling Architecture (TENA)—supporting the decentralized
development of distributed applications and LVC simulations.Proceedings of the 12th IEEE/ACM Interna-
tional Symposium on Distributed Simulation and Real-Time Applications, Vancouver, Canada, October
27–29, pp. 259–268.

Overstreet, C.M., 1982. Model Specification and Analysis for Discrete Event Simulation (Ph.D. Dissertation). Virginia
Polytechnic Institute and State University.

Overstreet, C.M., Nance, R.E., 1985. A specification language to assist in analysis of discrete event simulationmodels.
Commun. ACM 28 (2), 190–201.

Page, E.H., Opper, J.M., 1998. Theory and practice in user-composable simulation systems.Presentation for DARPA
Advanced Simulation Technology Thrust, October 30.

Page, E.H., Opper, J.M., 1999. Observations on the complexity of composable simulation.Proceedings of the 1999
Winter Simulation Conference, Phoenix, AZ, December 5–8, pp. 553–560.

Page, E.H., Briggs, R., Tufarolo, J.A., 2004. Toward a family of maturity models for the simulation interconnection
problem.Proceedings of the Spring 2004 Simulation Interoperability Workshop, Arlington, VA, April 18–23,
pp. 1059–1069.

http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0310
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0310
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0315
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0315
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0320
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0320
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0325
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0325
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0330
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0330
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0330
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0335
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0335
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0340
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0345
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0345
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0345
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0350
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0350
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0355
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0355
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0360
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0360
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0365
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0370
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0370
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0375
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0375
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0380
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0380
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0385
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0385
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0390
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0390
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0390
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0390
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0395
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0395
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0395
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0400
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0400
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0405
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0405
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0405
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0405
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0410
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0410
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0415
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0415
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0420
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0420
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0425
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0425
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0430
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0430
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0430


83REFERENCES
Parsons, D., Surdu, J., Jordan, B., 2005. OneSAF: a next generation simulation modeling the contemporary operating
environment.Proceedings of the 2005 European Simulation Interoperability Workshop, Toulouse, France, June
27–29.

Peng, D., Warnke, T., Haack, F., Uhrmacher, A.M., 2017. Reusing simulation experiment specifications in developing
models by successive composition—a case study of the Wnt/β-catenin signaling pathway. Simul.: Trans. Soc.
Model. Simul. Int. 93 (8), 659–677.

Peters, S.D., LaVine, N.D., Napravnik, L., Lyons, D.M., 2002. Composable behaviors in an entity based simulation.
Proceedings of the Spring 2002 Simulation Interoperability Workshop, Orlando, FL, March 10–15.

Pettitt, M.B., Goldiez, B.F., Petty, M.D., Rajput, S., Tu, H., 1998. The combat trauma patient simulator.Proceedings of
the 1998 Spring Simulation Interoperability Workshop, Orlando, FL, March 9–13, pp. 936–946.

Pettitt, M.B., Mayo, M., Norfleet, J., 2009. Medical simulation training simulations. In: Cohn, J., Nicholson, D.,
Schmorrow, D. (Eds.), The PSI Handbook of Virtual Environment Training and Education: Developments for
the Military and Beyond, Volume 3: Integrated Systems, Training Evaluations, and Future Directions. Praeger
Security International, Westport, CT, pp. 99–106.

Petty, M.D., 1995. Computer generated forces in distributed interactive simulation. In: Clarke, T.L. (Ed.), Distributed
Interactive Simulation Systems for Simulation and Training in the Aerospace Environment, SPIE Critical Reviews
of Optical Science and Technology. In: vol. CR58. SPIE Press, Bellingham, WA, pp. 251–280.

Petty, M.D., 2004. Simple composition suffices to assemble any composite model.Proceedings of the Spring 2004
Simulation Interoperability Workshop, Arlington, VA, April 18–23, pp. 299–307.

Petty, M.D., 2006. Corrigendum to ‘computational complexity of selecting components for composition’.Proceedings
of the Fall 2006 Simulation Interoperability Workshop, Orlando, FL, September 10–15, pp. 489–490.

Petty, M.D., 2009. Behavior generation in semi-automated forces. In: Nicholson, D., Schmorrow, D., Cohn, J. (Eds.),
The PSI Handbook of Virtual Environment Training and Education: Developments for the Military and Beyond,
Volume 2: VE Components and Training Technologies. Praeger Security International, Westport, CT, pp. 189–204.

Petty, M.D., 2010. Verification, validation, and accreditation. In: Sokolowski, J.A., Banks, C.M. (Eds.), Modeling and
Simulation Fundamental: Theoretical Underpinnings and Practical Domains. John Wiley & Sons, Hoboken, NJ,
pp. 325–372.

Petty,M.D.,Gustavson, P., 2012. Combatmodelingwith the high level architecture and base objectmodels. In: Tolk,A.
(Ed.), Engineering Principles of Combat Modeling and Distributed Simulation. John Wiley & Sons, Hoboken, NJ,
pp. 413–448.

Petty, M.D., Weisel, E.W., 2003a. A composability lexicon.Proceedings of the Spring 2003 Simulation Interoperability
Workshop, Orlando, FL, March 30–April 4, 2003, pp. 181–187.

Petty,M.D.,Weisel, E.W., 2003b. A formal basis for a theory of semantic composability.Proceedings of the Spring 2003
Simulation Interoperability Workshop, Orlando, FL, March 30–April 4 2003, pp. 416–423.

Petty, M.D., Windyga, P.S., 1999. A high level architecture-based medical simulation. Simulation 73 (5), 279–285.
Petty, M.D., Weisel, E.W., Mielke, R.R., 2003a. Computational complexity of selecting components for composition.

Proceedings of the Fall 2003 Simulation Interoperability Workshop, Orlando, FL, September 14–19, pp. 517–525.
Petty, M.D., Weisel, E.W., Mielke, R.R., 2003b. A formal approach to composability.Proceedings of the 2003 Interser-

vice/Industry Training, Simulation and Education Conference, Orlando, FL, December 1–4, pp. 1763–1772.
Petty, M.D., Weisel, E.W., Mielke, R.R., 2005. Composability theory overview and update.Proceedings of the Spring

2005 Simulation Interoperability Workshop, San Diego, CA, April 3–8, pp. 431–437.
Petty, M.D., Morse, K.L., Riggs,W.C., Gustavson, P., Rutherford, H., 2010. A reuse lexicon: terms, units, andmodes in

M&Sasset reuse.Proceedingsof theFall 2010Simulation InteroperabilityWorkshop,Orlando,FL,September20–24.
Petty, M.D., Kim, J., Barbosa, S.E., Pyun, J., 2014. Software frameworks for model composition. Model. Simul. Eng.

2014, 18 pages, https://doi.org/10.1155/2014/492737.
Petty, M.D., Kim, J., Park, S., Lee, S., 2016. Amethodology for quantitative assessment of the features and capabilities

of software frameworks for model composition. Int. J. Model. Simul. Sci. Comput. 7 (1) 21 pages, https://doi.org/
10.1142/S1793962315410020.

Porcarelli, S., Castaldi, M., Di Giandomenico, F., Bondavalli, A., Inverardi, P., 2005. A framework for reconfiguration-
based fault-tolerance in distributed systems. In: de Lemos, R., Gacek, C., Romanovsky, A. (Eds.), Architecting
Dependable Systems, Volume 2, Lecture Notes in Computer Science. Springer-Verlag, New York, NY.

Post, G.M., June 12, 2002. J9 Composability Summary Comments, Personal Communication.
Pratt, D.R., Ragusa, L.C., von der Lippe, S., 1999. Composability as an architecture driver.Proceedings of the 1999 In-

terservice/Industry Training, Simulation and Education Conference, Orlando, FL, November 29 1999–December 2,
pp. 882–891.

http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0435
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0435
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0435
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0440
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0440
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0440
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0440
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0445
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0445
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0450
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0450
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0455
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0455
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0455
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0455
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0460
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0460
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0460
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0465
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0465
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0470
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0470
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0475
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0475
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0475
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0480
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0480
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0480
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0485
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0485
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0485
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0490
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0490
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0495
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0495
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0500
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0505
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0505
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0510
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0510
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0515
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0515
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0520
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0520
https://doi.org/10.1155/2014/492737
https://doi.org/10.1142/S1793962315410020
https://doi.org/10.1142/S1793962315410020
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0535
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0535
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0535
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0540
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0540
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0540


84 4. MODEL COMPOSITION AND REUSE
Pressman, R.S., Maxim, B.R., 2015. Software Engineering: A Practitioner’s Approach, eighth ed. McGraw Hill
Education, New York, NY.

Reece, D.A., McCormack, J., Zhang, J., 2005. A case-based behavior design aid for OneSAF.Proceedings of the Four-
teenth Conference on Behavior Representation in Modeling and Simulation, Universal City, CA, May 16–19,
pp. 191–199.

Royce, W., 1998. Software Project Management: A Unified Framework. Addison-Wesley, Reading, MA.
Seo, K., Hong, W., Kim, T.G., 2017. Enhancing model composability and reusability for entity-level combat simula-

tion: a conceptual modeling approach. Simul.: Trans. Soc. Model. Simul. Int. 93 (10), 825–840.
Simulation Interoperability Standards Organization, 1999. SISO-STD-001.1-1999: Real-time Platform Reference

Federation Object Model (RPR FOM 1.0).
Simulation Interoperability Standards Organization, October 10, 2003. Base Object Model (BOM) Template Specifi-

cation Volume I—Interface BOM, SISO-STD-003.1-2003-DRAFT-V0.7.
Simulation Interoperability Standards Organization, 2006. Base Object Model (BOM) Template Specification, SISO-

STD-003-2006. Online at:www.sisostds.org. [(Accessed 7 May 2011)].
Sun, Y., August 2006. Complexity of System Configuration Management. (Ph.D. Dissertation). Tufts University.
Sun, Y., Couch, A., 2007. Complexity of system configuration management. In: Bergstra, J., Burgess, M. (Eds.), Hand-

book of Network and System Administration. Elsevier, Amsterdam, The Netherlands, pp. 623–652.
Szabo, C., Teo, Y.M., 2012. An analysis of the cost of validating semantic composability. J. Simul. 6 (3), 1–12.
Taylor, S.J.E., Khan, A., Morse, K.L., Tolk, A., Yilmaz, L., Zander, J., Mosterman, P.J., 2015. Grand challenges for

modeling and simulation: simulation everywhere—from cyberinfrastructure to clouds to citizens. Simul.: Trans.
Soc. Model. Simul. Int. 91 (7), 648–665.

Tolk, A., 2012. Standards for distributed simulation. In: Tolk, A. (Ed.), Engineering Principles of Combat Modeling
and Distributed Simulation. John Wiley & Sons, Hoboken, NJ, pp. 209–241.

Tolk, A., Muguira, J.A., 2003. The Levels of Conceptual Interoperability Model (LCIM).Proceedings of the Fall 2003
Simulation Interoperability Workshop, Orlando, FL, September 14–19, pp. 53–62.

Tolk, A., Balci, O., Combs, C.D., Fujimoto, R., Macal, C.M., Nelson, B.L., Zimmerman, P., 2015. Do we need a national
research agenda for modeling and simulation?.Proceedings of the 2015 Winter Simulation Conference, Hunting-
ton Beach, CA, December 6–9pp. 2571–2585.

Tufarolo, J.A., Page, E.H., 1996. Evolving the VV&A process for the ALSP joint training confederation.Proceedings of
the 1996 Winter Simulation Conference, Coronado, CA, December 8–11, pp. 952–958.

Turing, A.M., 1936. On computable numbers, with an application to the entscheidungs-problem. Proc. Lond. Math.
Soc. Ser. 2 42, 230–265 (Correction, ibid. 43, 544–546, 1937).

Turnitsa, C.D., 2005. Extending the Levels of Conceptual Interoperability Model.Proceedings 2005 Summer Simula-
tion Multiconference, Cherry Hill, NJ, July 24–28, pp. 479–487.

U. S. Army Research, Development, and Engineering Command, 2008. MATREX simulation architecture.Proceed-
ings of the 2008 Department of Defense Modeling and Simulation Conference, Orlando, FL, March 10–14 Online
at:www.matrex.rdecom.army.mil. [(Accessed 7 May 2011)].

United States Army, August 21, 1998. One Semi-Automated Forces Operational Requirements Document, Version
1.1. Online Document at URL:http://www-leav.army.mil/nsc/stow/saf/onesaf/onesaf.htm/.

von der Lippe, S., McCormack, J.S., Kalphat, M., 2000. Embracing temporal relations and command and control in
composable behavior technologies.Proceedings of the Ninth Conference on Computer Generated Forces and
Behavioral Representation, Orlando, FL, May 16–18, pp. 183–192.

Waziruddin, S., Brogan, D.C., Reynolds, P.F., 2003. The process for coercing simulations.Proceedings of the Fall 2003
Simulation Interoperability Workshop, Orlando, FL, September 14–19.

Weisel, E.W., May 2004. Models, Composability, and Validity (Ph.D. Dissertation)Old Dominion University.
Weisel, E.W., Mielke, R.R., Petty, M.D., 2003. Validity of models and classes of models in semantic composability.

Proceedings of the Fall 2003 Simulation Interoperability Workshop, Orlando, FL, September 14–19, pp. 526–536.
Weisel, E.W., Petty,M.D.,Mielke, R.R., 2004. A survey of engineering approaches to composability.Proceedings of the

Spring 2004 Simulation Interoperability Workshop, Arlington, VA, April 18–23, pp. 722–731.
Weisel, E.W., Petty, M.D., Mielke, R.R., 2005. A comparison of DEVS and semantic composability theory.Proceedings

of the Spring 2005 Simulation Interoperability Workshop, San Diego, CA, April 3–8, pp. 956–964.
Wittman, R.L., Harrison, C.T., 2001. OneSAF: a product line approach to simulation development.Proceedings of the

European 2001 Simulation Interoperability Workshop, London, UK, June 25–27.

http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0545
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0545
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0550
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0550
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0550
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0555
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0560
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0560
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0565
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0565
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0570
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0570
http://www.sisostds.org
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0580
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0585
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0585
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0590
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0595
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0595
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0595
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0600
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0600
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0605
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0605
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0610
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0610
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0610
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0615
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0615
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0620
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0620
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0625
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0625
http://www.matrex.rdecom.army.mil
http://www-leav.army.mil/nsc/stow/saf/onesaf/onesaf.htm/
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0640
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0640
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0640
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0645
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0645
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0650
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0655
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0655
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0660
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0660
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0665
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0665
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0670
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0670


85REFERENCES
Wood, D.D., Petty, M.D., 1995. Electronic warfare and distributed interactive simulation. In: Clarke, T.L. (Ed.),
Distributed Interactive Simulation Systems for Simulation and Training in the Aerospace Environment, SPIE
Critical Reviews of Optical Science and Technology. In: vol. CR58. SPIE Press, Bellingham, WA, pp. 179–194.

Wymore, A.W., 1993. Model-Based Systems Engineering. CRC Press, Boca Raton, FL.
Zeigler, B.P., Praehofer, H., Kim, T.G., 2000. Theory of Modeling and Simulation: Integrating Discrete Event and

Continuous Complex Dynamic Systems, second ed. Academic Press, San Diego, CA.

http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0675
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0675
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0675
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0680
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0685
http://refhub.elsevier.com/B978-0-12-813543-3.00004-4/rf0685




Model Engineering for Simulation

https://doi.org/10.1016/B978-0-12-813543-3.
C H A P T E R
5

Service-Agent-Based Model
Composition

Lin Zhang, Chun Zhao, Feng Li
School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
1 INTRODUCTION

Model composition is one of the key technologies of model engineering and an important
way of constructing large-scale complex systems (e.g., systems of systems). Especially for
complex simulation systems, different component models have to be selected with respect
to different simulation scenarios to rapidly build a new simulation system. This places great
demands on the degree of automation and intelligence of model composition. In recent years,
it is becoming a trend to encapsulate models into services and realize model compositions
with the help of service composition technologies.

The concept of cloud simulation was proposed by Li et al. (2009), in which modeling and
simulation (M&S) resources were encapsulated into services to be shared by M&S users with
the support of the cloud simulation platform. This idea was also named as modeling & sim-
ulation as a service (MSaaS), which is a concept that combines service-based approaches and
cloud computing (Cayirci, 2013; Siegfried et al., 2014). NATO Modeling and Simulation
Group MSG-131 defined M&Saas as: “MSaaS is a means of delivering value to customers
to enable or support modeling and simulation user applications and capabilities as well as
to provide associated data on demand without the ownership of specific costs and risks.”
As such, MSaaS is an architectural and organizational approach that promotes abstraction,
loose coupling, reusability, composability, and discovery of M&S services. The objective of
MSaaS is to effectively and efficiently support operational requirements and to improve de-
velopment, operation, and maintenance of M&S applications. Cayirci (2013) pointed out that
MSaaS is a model for provisioning M&S services on demand from a cloud service provider
(CSP), which keeps the underlying infrastructure, platform, and software requirements/
details hidden from the users. Siegfried et al. (2014) indicated that technical development
in the area of cloud computing technology and service-oriented architectures (SOAs) offers
opportunities to better utilize M&S capabilities.
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88 5. SERVICE-AGENT-BASED MODEL COMPOSITION
Tolk et al. (2006) and Tolk (2013) presented the idea of composable M&S services. The
levels of conceptual interoperability model (LCIM) was developed to manage the basic chal-
lenges of service interoperation. The model theory was used to investigate definitions of in-
teroperability and composability and to provide the implications for verification and
validation procedures, model-based approaches, and simulation interoperability standards.
Zeigler et al. (2000) and Zeigler and Sarjoughian (2012) developed a set of generic SOA-based
models based on the discrete event system specification (DEVS) framework so that “virtual
build and test” of systems of systems comply with SOA standards. Wang and Wainer (2016)
proposed a cloud-based simulation (CBS) architecture to deploy resources as services, named
Cloud Architecture for Modeling and Simulation as a Service. Guo et al. (2011) presented an
architecture and provided a specification for simulation software as a service and service-
oriented experiment, which can support automatic deployment of simulation services for
carrying out experiments. Tsai et al. (2011) introduced the concept of simulation software-
as-a-service (SimSaaS) with a multitenancy architecture configuration model and a cloud-
based runtime to support rapid simulation development in an elastic cloud environment.
Walker et al. (2016) showed that how Galaxy tools can be used to realize the idea of models
and simulations as a service (MaSS), in which models and simulations were delivered as easy
to use, on-demand web services (WSs) accessed through the user’s browser. Galaxy allows
users to seamlessly customize and run simulations on cloud computing resources. Wang
and Wainer (2014) proposed a simulation as a service methodology with application for
crowd modeling, simulation, and visualization and presented a method based on a distrib-
uted architecture with simulation in the cloud, and composition using workflows.

In the process of model composition, there are two fundamental phases, namely model
matching and model coupling. Many researchers are involved in the research of model
matching which ranges from manual combination to fully automatic algorithms. Clarke
and Walker (2002) proposed a standard design language for aspect-oriented software devel-
opment which can provided a means to assess these languages and their incompatibilities.
Fleurey et al. (2010) proposed a generic framework for composition. This framework is inde-
pendent of a modeling language. A method that shows how the generic composition is
specialized for class diagrams has been illustrated. Mandelin (2006) represented models
and diagrams as graphs whose nodes have attributes such as name, type, connections, and
containment relations. Based on probabilistic models, high-quality correspondences can be
found using search algorithms. Nejati et al. (2007) described two operators for manipulating
hierarchical state charts, which involve match and merge. Match operator is heuristic, which
can improve the accuracy of matching based on both static and behavioral properties of the
models. Meanwhile, merge operator preserves the hierarchical structure of the input models.
In this way, merges that preserves the semantics of models were constructed automatically.
Semantic composition methods have gained more attention in the past decade. The imple-
mentation of semantic composition was based on rule-based languages and framework.
Aiming at the problem of lacking declarative semantic definition, Rubin et al. (2008) proposed
a new declarative procedure for model matching and merging. Based on this procedure,
property-driven framework for model composition was presented. Reddy et al. (2005)
presented a more advanced composition procedure based on signatures rather than names
and the conflicts that occurred during composition. Clarke and Walker (2001) presented a
means to solve design problem by separating the design of cross-cutting requirements into
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composition patterns. Rubin et al. (2008) proposed a declarative approach for model compo-
sition, which could augment and strengthen existing structural and heuristic approaches.
Li et al. (2018) proposed a service network-based method for service composition and sched-
uling in the cloud simulation environment, which can reflect the characteristic of uncertainty
of composition paths in the cloud environment.

In addition, some researchers paid their attentions onmodel composition tools. In order to
merge two or more models and implement composition in the context of the systems biology
markup language, Randhawa et al. (2007) developed a Windows-based modeling tool. To
make modelers build model easily, Randhawa et al. (Randhawa et al., 2009) presented a
model aggregation process. In this process, models were defined in terms of components that
were designed for the purpose of being combined. An online model composition tool for sys-
tem biologymodels was proposed by Coskun et al. (2012, 2013), whichwas an all-in-one web-
based solutions that supported advanced SBML functionalities. As amodeling and simulation
environment, MS4 Modeling Environment (MS4 Me™) was developed (Zeigler and
Sarjoughian, 2012), which supported model coupling based on DEVS concepts and theory.

Although SOAhas beenwidely used in variety of areas, most service compositionmethods
still lack intelligence and are difficult to realize automatic composition of services, especially
for services in a dynamic and uncertain environment. To deal with service composition prob-
lems like the deficiency of intelligence and adaptability to complex and large-scale environ-
ments, the concept of SA was proposed by Si et al. (2009). The combination of service and
agent will take advantages of both technologies so that a service has the ability to perceive
and adapt to environments (Liu et al., 2014; Zhao et al., 2017). When a model is encapsulated
into an SA, model composingwill be more effective and adaptive. This chapter will introduce
a model composition approach based on the SA.
2 CONCEPT OF SA

An agent is an entity that canmake a responsewith sensors and adapt to environments. An
agent is assumed to be rational and can achieve its goals through learning or knowledge.

Many researchers think that agent technology started a new paradigm for software devel-
opment after the object-oriented technology (Chen and Cheng, 2010; Siegfried et al., 2014).
The concept of agent has been used in many areas, such as manufacturing, real-time control
systems, electrical commerce, network management, transportation systems, information
management, scientific computing, health-care, entertainment, etc. Agent technology can sig-
nificantly improve the analysis capability of systems with the following features (Mccoy and
Natis, 2003):

(1) the system is generally composed of distributed component systems;
(2) the component systems exist in a dynamic environment;
(3) the component systems need to interact with each other flexibly.

Aswe know, SOAprovides an architecture for new generation information systems,which
is flexible, easy to integrate, and implement, but the service itself in SOA does not have
intelligence or self-adaption capacity. By using the agent, a service in SOA can be changed
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from passive invocation to active searching, pushing, and adapting. In this sense, the agent
can extend the service function, and make service intelligent so as to spontaneously respond
to and adopt to the surrounding environments and understand the customers’ needs better,
and therefore a service becomes an SA (Zeigler and Sarjoughian, 2012).

Based on the basic agent model, this section proposes an SA modeling method. This
method expands semantics of the BDI model (belief, desire, intention), and focuses on the de-
scription of agent’s perception, scheme, behavior, coordination, cooperation, and finally
forms a semantic BDI agent. Then this agent is used to model the service and form an SA.

Paper by Norvig and Russell (1995) put forward the simple agent model, which describes
the interaction between an agent and an environment as well as the internal handling mech-
anism. In this model, a simple agent is only based on current perceptual behavior without
considering other historical data. The function of the agent is based on the operation rule
of agent function, that is, if!condition! then!action. This function can be realized only
if the environment of the agent is visible. Some agents can also contain current status
information.

An SA is an intelligent encapsulation of a service, or can be regarded as an agent that drives
a service. An SA can be both a service provider and a service demander. In a simulation en-
vironment, an SA has two roles that can ensure that every SA has an opportunity to gain
profit. Fig. 1 depicts a conceptual model of an SA.

In Fig. 1, we can see that an SA is composed of two parts: core services and intelligence
module. Services contain basic service description, service interface, service status, data,
etc., whereas the intelligence module includes a knowledge library, an environment sensor,
a clock controller, and a processor. The knowledge library is used to store the status, basic
data, rules, and function data of an SA. The environment sensor can bemanaged by amessage
queue. The clock controller generates motivation to trigger the function of the SA. The pro-
cessor includes the functions of service providers and service demanders.
Clock
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ServiceService

Description

Func data

Basic data

Rule

State
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FIG. 1 Conceptual model of an SA.
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Core services represent a basic business, a function, or a component. In order to make
service matching easier, a detailed description of a service is needed. The tag is an ideal
way of description. It can not only describe functions and attributes from different perspec-
tives but also build a fast and flexible classification mechanism. The service interface is used
to establish the inputs and outputs of a service. Each interface has more than one ports.
A service composition can be established if interfaces of services match. Service status
changes as time passes. Service status is like a small data library and it saves static and
dynamic data until service is canceled. The service information belongs to basic information
which can be described and recorded by Web Service Description Language (WSDL).

The clock controller is the excitation trigger of an SA. As the clock controller vibrates, the
function of the SA is triggered to complete each response. The vibration frequency of the clock
controller is synchronized with the service center, which can enable the service center to col-
lect SA information. The service center is the management center of SAs, which provides the
bulletin board, environment information, supply and demand information of SAs, and other
related information.

The knowledge library is used to store data that is generated during the initialization and
running processes of an SAwhich include status data, basic data, rule data, and function data.
Status data is real-time information of the SA including busy, idle, etc. Basic data is used to
record static data and other basic properties that describe the SA. An address book of the SA’s
friends (other SAs that have relationships with the SA) is also included in the basic date. Rule
data is the formal description of behavior rules in the process of SA negotiation. Function data
is the real-time data and history data in the process of SA execution.

The environment sensor is used for interaction between an SA and its environment, among
which the environment includes service center and other SAs. Communications between
them are based onmessages. Themessages are encapsulated intomessage packets and stored
inmessage queues to be invoked by the SA. An SA realizes publishing and searching behavior
through messages and the service center.

Processor is the core module of an SA. When an SA is in different roles, there are different
functions to support the roles. The clock controller is used to trigger the execution of every
function. Real-time data and history data are stored in data memory. For example, service
providers possess the functions of service publishing and service transactions. Service users
have the characteristics of demand publishing and demand bidding. Both service monitoring
and service execution will operate core services.
3 SA CONSTRUCTION OF A MODEL

3.1 Service Description of a Model

The objective of service description is to enable models: (1) to be published and invoked;
(2) to be found and matched with requirements; and (3) to be coupled through interface
matching. As a result, service description of a model can be established as follows:

SE¼< SID,RSID, InfoState, Interface, InfoBasic,FuncTempl,FuncData,FuncCall,FuncOrder >

where SID is the only identity of a service used to specify a service in the environment.
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RSID is the only identity of a model. The mappings between services and models are
many-to-many, namely, one model can be encapsulated into different services, while differ-
ent models can also form one service by cooperation.

Infostate is current state information. There are five kinds of state information representing
five status of a service:

Infostate ¼ Check, Publish, Idle, Busy,Unavailablef g
Check represents a checking process for a service. In this process, the service cannot
be used.
Publish is a status that the manager confirms services can be invoked. At this status,

services are in an open situation but cannot be used.
Idle is the status that the service is published and ready to be invoked.
Busy is a status that a service is in use. It means that this service is busy now and it cannot

accept other tasks.
Unavailable means a service is not available now. It occurs because of service maintenance

or malfunctions.
Interface refers to service interface that is one important part of a service. Interfaces can be

used to make a decision that if services can be invoked or composed. It can also be used to
validate if service inputs satisfy requirements and if the outputs can be used. The structure of
Interface is shown in Eq. (1).

Interface¼< Input,Output> (1)

Input¼<< Interface1,Vaule1> , < Interface2,Vaule2>⋯< Interfacen,Vaulen> ,Rule> (2)

Output¼<< Interface1,Vaule1> , < Interface2,Vaule2>⋯< Interfacen,Vaulen> ,Rule> (3)

Interfaces are divided into inputs and outputs. Their basic functions are displayed in

Eqs. (2), (3).

The internal functions of a model consist of FuncTempl, FuncData, FuncCall, FuncOrder.
FuncTempl plays the template function that can provide description templates for models.
FuncData is the data function, in which static data is a basic description of a model. It rep-

resents the data that cannot be accumulated, while, dynamic data is accumulated data
over time.

FuncCall is the invoking function, which can be described by WSDL and invoked by WEB.
FuncOrder is the command function, which is designed for models that cannot be physically

connected to a network or a cloud. In this case, tasks can be completed by sending an order to
a person or a team who can operate the model.
3.2 SA Description of a Service

An SA conducts service update and service encapsulation with the intelligent features of
an agent. In a simulation platform, an SA can simulate users’ behaviors and conduct cooper-
ation and interaction among different services.

An SA serves not only as a service provider but also as a service demander. Hence, it has
the characteristics of both providers and demanders at the same time.
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An SA can be represented as follows:

SA¼< SAID,SID, Infostate, Infobasic,Msgsa,ClkSA,Func>

Among which:

SAID is the unique identification of an SA.
SID is the unique identification of a service, which is used to determine a specific service

encapsulated by an SA.
Infostate is the status information used to describe dynamic information of an SA. There are

four information states: working, prepared, searching, and waiting.
Infobasic is the basic information of an SA. Unlike Infostate, Infobasic is more like a data library

that can store basic descriptions, rules, and data.
Msgsa is themessage controller among different SAs.Messages are represented bymessage

queues.
ClkSA is the clock of an SA. Different SA clocks have different clock response frequencies.

Func will be stimulated when clock is triggered.
Func represents the basic behaviors of an SA. The behaviors of a Func are the process of

negotiation among SAs.
4 A MODEL COMPOSITION METHOD BASED ON SA

After a model has been encapsulated as an SA based on Section 3, the composition process
of SAswill be given in this section.When SAs are used to support a composition process, their
characteristics of self-organization can be used to negotiate with each other to establish a
chain of SAs, and therefore obtain a composition of models accordingly.

The model composition process is shown in Fig. 2. The service demander submits an
application for services; the client side receives the task and search for the appropriate SA
to issue task demands to it. Upon receipt of the port notification, the SA will establish orga-
nizations as the organizer to complete service composition. The organizer will preserve a set
of abstract service composition templates of cooperators required for the completion of this
kind of tasks in its own knowledge library. Each of the SAs owns a set of address lists, of
which one of the organizer includes individual information of the SAs that corresponds with
the template. The organizer makes the decision on the characters on which to cooperate
with through searching templates; and by searching the address list, it selects the appropriate
SAs to form the candidate set, to which it will send requests for cooperation and then form the
cooperative organization (composition) according to their responses. After all the roles of the
template receive responses, the organization will be formed and the notification of start will
be sent. If the current record in the organizer’s address list falls short of cooperation for the
completion, it could be expanded according to the expansion strategy. Since the organizer
itself is a service provider as well, it has to fulfill its own portion of tasks and notify each other
the beginning of work after completing its tasks according to the matching relation of the
forward and the backward level. The last SA to complete the task shall send the result back
to the Client. During the whole procedure, the organizer is able to save the information of
cooperation for later updating after the end of cooperation.
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FIG. 2 SA-based model composition process.
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In fact, in order to form the service composition, the organizator’s work of searching for
cooperator itself is one of the tasks of the SA. From this point of view, aside from being in
the prepared state or the working state, the SA could be in the state of “organizer’s searching
for cooperator.” However, the actual states of the roles as organizers and cooperators are dif-
ferent. The organizer needs to preserve a set of service composition template and its
corresponding address list of acquaintances, with which it will check out acquaintances’
states and complete organization work. Service composition template records the ways for
matching between the forward and backward levels of different types of services; of course,
it is limited to the types of services, the real SA is embodied in the address list of acquain-
tances. The address list and the service composition template constitute the framework of
the cognitive world of SA together. These can only be achieved by the building ontology.
As for the cooperator, it is required to respond to the requests of the organizer. Therefore,
every SA bears two types of states—the searching state as organizer and the waiting state
as cooperator. The sequence of the states is: the prepared state, the searching state, the waiting
state, and the working state (Fig. 3).

Behaviors in each state are described as follows:

(1) In the working state, the SA provides services and receives outputs from its previous
stage. It delivers the result to the next SA once its own work is finished. Information of
other organizationmembers is therefore necessary. Basic information contains names and
addresses. The organizer releases such information with an “organization formed”
notification.



FIG. 3 Individual state transition model.
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Both organizers and cooperators eventually evolve to working state and return to pre-
pared state irrespective of whether their work is accomplishable or not.
(2) In the prepared state, all behaviors are blocked for a new message to come. The messages
are classified into three categories. Firstly, if the message is from the client port, the SA
either becomes an organizer to enter searching state or updates its library according to the
message content. Secondly, if the message is a composition request from the organizer, it
replies and waits for further acknowledgment. The organizer accepts its reply if the
organization member role is still vacant. Agreement is reached as the SA will become a
cooperator in waiting state and wait for start notification. At last, if other messages arrive,
it will reenter the prepared state with nothing done. Prepared state is both the SA’s initial
state and the eventually returned state through a service composition experience.

(3) Waiting state is for the cooperators. In this state, the cooperator receives other
organization members’ ID information and in/out match information from organizer.
When a work start notification is received, the cooperator exits this state and enters
working state.
The cooperator is designed to help its organizer find other cooperators to continue the
work of forming the organization. This is a complement of “organizers seek for cooper-
ators” behavior. The SAs in prepared state are also permitted to assist search. This tiny
behavior is of much importance for its wide range of involved SAs. The resulting effect
would be discussed later. In waiting state, the cooperator may also receive cancellation
and return to the prepared state.
(4) Searching state is for the organizers. There are different search modes for an organizer.
Mode selection is due to the client port’s requirements such as highest quality or minimal
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resource assumption. Search mode determines how to choose appropriate cooperators.
Templates provide information about the roles are needed. Contacts provide their links,
including ID and address. Cooperators’ ID information includes name, service type,
service quality, and resource consumption, aswell as agent credit level and agent benefits.
By default, the organizer adopts “first come first serve” strategy to choose cooperators.
For example, if the client port requires minimal resource consumption, the organizer will
sort and search its acquaintances referring to resource information in its contacts.
Acquaintances of historically less resource consumption will be added into the result set.
If anyone in the set responds, it would be accepted to be a cooperator of the organization.
Secondly, once a model is published on a server with a WSDL file, it becomes a WS.
Consumers or agents could use an application programming interface (API) to call it.
An SA is wrapped and publishedwithin a service container after the states have been suc-
cessfully designed. As a result, agents running in web servers become WSs.
5 A TOOL PROTOTYPE FOR MODEL COMPOSITION AND A
CASE STUDY

A software prototype has been developed by using JADE4.1 (Java Agent Development
Framework) platform to perform model composition with SA-based method. The JADE is
a multiagent system (MAS) software development platform in JAVA language. This platform
enables multiagent negotiation; WSs are published in a Tomcat container; WSs package by
WSIG (JADE Web Service Integration Gateway) plug-in. The purpose of WSIG is to achieve
the integration of MAS and WS architecture.

There are two key points throughout our development experience. Firstly, agent behavior
sequence and communication language need to be taken into account. Secondly, well-defined
domain ontology is necessary to support information exchange between SAs and between
SAs and users.

A hotel booking model is used to demonstrate the system. A test page with basic service
information is depicted in Fig. 4. After inputting a simple object access protocol (SOAP) text,
we click on “send” button and wait until system responds. The first element is a functional
request for M Service; the second element is nonfunctional for high quality. Success informa-
tion will return in the end.

In the SA test system, “WX” represents a hotel-booking model. “SS” represents the online
flight reservationmodel. “FS” represents a scenic site model. “LJD” represents shoppingmall
model. “YD” represents the return ticket model.

As shown in Fig. 5, the port notifiedWX service 1 to be the organizer. It discovered from its
own template that the sequence of service composition was WX-SS-FS-LJD-YD. And its ad-
dress list of acquaintances included FS service 1, LJD service 1, YD service 1, and YD service 2.

After WX service 1 enters into the searching state, it sent the request generated by the
organization to these friends (acquaintances). YD service 1 has been performing another task
already, it would not respond to the request now as it was in working state. Also, FS service 1
has formed an organization with the organizer WX service 2 already. Though it would not
respond, it could help search for other cooperators. YD service 2 and LJD service 1 were both



FIG. 4 System test page.

FIG. 5 Collaboration of service-agents.
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in the prepared state; they agreed to form the organization, for which WX service 1 replied:
wait for notification, at which they entered into the waiting state. For the reason that no
appropriate character could be found, WX service 1 requested for a second-level search,
which is required for the waiting or prepared friends (acquaintances) to search their own
address lists. FS service 1 found its friend SS service 1; YD service 2 found its friend FS service
2. By then, all the types of roles in the template have found their cooperators—the organiza-
tion was thus completed.

Fig. 6 depicts the view from Sniffer Agent. Sniffer Agent is a special agent to monitor other
agents’ communication in our system. Here the port YJ, the organizer WX2, and the last SA
YD2 are listed to show service combination process.

The first purple arrow indicates user input is sent in message form to the port YJ. The sec-
ond gray arrowmeans YJ informsWX2 to be an organizer. Four gray messages in lines 3, 4, 5,
7 indicate WS2 sends cooperation requests to four SAs with a high-quality limitation. Three
blue messages in lines 6, 8, 9 are three responses. Response from YD2 is highlighted in red
(line 11). Arrows in lines 10, 12, 13, 14 are “cooperation-accepted” notifications. Receivers en-
ter waiting state. The following gray arrows in lines 15–18 are cancellation notifications to the
FIG. 6 Sniffer agent interface.
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SS1, FS1, LJD1, and YD1. Arrows in lines 19–22 indicate that the organizer tells who will re-
ceive their work output. SAswork in sequential in this template.WX2 begins first and notifies
the next SA in line 23 when it finishes. In the end, YD2 receives begin notification from its last
cooperator (line 24) and sends the final result to YJ. YJ then displays a success notification in
the UI web page.
6 CONCLUSIONS

The automatic and efficient model composition technology is the key for the construction
of complicated system models. As of now, agent technologies and service-oriented
approaches are playing increasingly important roles in terms of the construction and compo-
sition of complicated systemmodels. This chapter probes into amodel composition approach
that is based on SA, involving the advantages of both agents and services. The concept of SA is
introduced. The conceptual model of an SA is given and a method of encapsulating a model
into an SA is developed. Based on the operating principles of an SA, this chapter introduces
an approach of automatic model composition and develops a preliminary prototype system
to realize the approach. However, the complexity of model composition means that the pro-
posed approach of this chapter just represent a preliminary methodology framework, which
is still far away from the implementation of the automatic model combination for a complex
system. Many open problems still need to be carefully studied, including the QoS descrip-
tions of models, the multiparameter model matching based on semantics, the clustering of
models, the optimization of model composition pathway, the verification, validation and
evaluation of composed models, etc.
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1 INTRODUCTION—THE NEED FOR QUALITY ASSURANCE
OF COMPUTER-BASED SIMULATION

Generation of new knowledge as well as product innovations is mainly based on three pil-
lars of enabling methods: application of fundamental axioms and natural laws, application of
experiments in real scenarios, and application of computer-based modeling and simulation.
The latter one, modeling and simulation (M&S) is of increasing importance as the most pow-
erful and flexible approach that provides additional or even new opportunities for various
kinds of application domains: M&S provides new learning and training capabilities, serves
as tool for decision support as well as a tool for the analysis and evaluation of the existing
or even planned systems and processes. InnovativeM&S concepts—such as component-based
modeling, parallel and distributed simulation, collaborative or agent-based simulation—as
well as rapid advancements of computer and communication technologies are driving forces
for increasing M&S performance and range of applications.

As a result, these advancements generally lead to an increasing complexity of application
scenarios and corresponding M&S. A measure for M&S state complexity can be defined as
the total numbers of input, output, and state variables spanning the whole state space of an
M&S. This results in new challenges for model designs and simulation implementations as
well as quite often to tremendous amounts of data. While in the past simulations were
mostly used for systems analysis or training, meanwhile M&S technologies are also used
101 # 2019 Elsevier Inc. All rights reserved.

00006-8

https://doi.org/10.1016/B978-0-12-813543-3.00006-8


102 6. VERIFICATION, VALIDATION, AND ACCREDITATION (VV&A)—REQUIREMENTS, STANDARDS, AND TRENDS
for modeling and evaluation of socio-technical systems, including challenges of adequate
representation of human behavior and uncertainties. Increasing systems and corresponding
M&S complexities can also show emergent system behavior, for example, in agent-based
simulation, which seem to be far from real behavior, even unrealistic, as it has never been
thought about.

Besides benefits of M&S innovations and advances, increasing risks with respect to quality
ofM&S design, development, and operation have to be considered, especially regarding cred-
ibility and utility of input data used for simulation as well as output data and their interpre-
tation. As demonstrated by real cases, the use of erroneousmodels, faulty simulations, invalid
data, or interpretation errors (e.g., Challenger accident) can lead to severe situations, wrong
decisions, erroneous and safety-critical training results, or to economic damages. Especially
in the context of the increasing importance of multifacetedM&S applications efficient quality
control, utility, and credibility assurancemechanisms have to be applied to avoid such safety-
critical, expensive, and other unwanted side effects. This requires the application of standard-
ized system engineering processes not only for M&S design, development, operation, and
maintenance, but also for quality control. Quality control has to be performed at different
levels—project level, product level, and at the technical level. Quality assurance measures
should include measures to establish credibility by proving correctness and validity, as well
as utility with respect to the aims and purposes of a specified M&S application. In summary,
quality assurance measures include project-specific planning of an M&S verification, valida-
tion, and acceptance or accreditation (VV&A) process, tailoring of an adequate set of VV&A
activities, and a corresponding selection of efficient verification and validation (V&V)
techniques.

At first, this chapter presents a brief overview of terminology and basic concepts applied in
the context of model engineering. Regarding M&S development and application as a specific
systems engineering process, multiple M&S development phases have to be distinguished.
According to classical engineering processes, eachM&S phase delivers an intermediate prod-
uct together with its documentation. Each of these phase products as well as the documen-
tation can be subject of V&V. In this regard, integrated V&V strategies and activities, as well
as several M&S quality- and efficiency-related concepts have been developed. These include,
for example, international guidelines and standards for M&S documentation, for generalized
V&V planning processes, for multistage tailoring, and for M&S use risk identification and
analysis. Findings and lessons learned from the application of these guidelines and standards
in several use cases are finally summarized.
2 BASIC TERMINOLOGY

Following J. Rothenberg´s definition, a model can be defined as a symbolic, abstract, cost-
effective, and safe referent of something else for some specific cognitive purpose (Shannon,
1975). Most of the human´s everyday reasoning and decision-making processes are based on
mental models. Mental models are being used for analyzing scenario-specific situations or for
making decisions. The understanding and analysis of real-world problems require—at least in
general—simplification and abstraction of reality as humans are only able to conclude inter-
dependencies between about 5–7 parameters at the same time.
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As mental models are built intuitively and based on experiences, they belong to the
category of inductive models. Inductive modeling approaches (Bridewell et al., 2008) enable
reasoning that concludes on similar situations or cases. In contrast, the majority of computer-
based models and simulations used nowadays for analyses, for decision-making, or for
education and training are designed and applied as deductive models expressing qualitative
or quantitative dependencies between goal, input, and state parameters. Interdependencies
between these parameters can be described by mathematical formulas, by numerical algo-
rithms, or by logical algorithms. The following text focuses on the design and application
principles of these kinds of deductive models.

Along these lines, and in accordance with Maisel and Gnugnoli (1972), simulation can be
defined as a (numerical) technique for conducting experiments on a computer; this technique
involves certain types of mathematical and logical models that describe real-world behavior
or the behavior of a system over a period of time. This definition describes simulation explic-
itly as a technique for solving and using models by means of computers. This definition also
indicates that (computer-based) simulation is a multistage process which differentiates be-
tween stages like conceptual model (CM) design, its formal description, technical solution,
and experimental applications.

For collecting evidences of correctness, validity and utility of models, and simulations and
data, some general principles and specific techniques for M&S V&V can be applied. An
informal but clear distinction between these terms has been presented by Balci (1997): appli-
cation of verification techniques provides evidences for M&S correctness (“Is the model
right?”) opposed to validation techniqueswhich can provide evidences for validity and utility
of an M&S regarding its specific application goals and constraints (“Is it the right model?”).
Meanwhile, multiple and more precise definitions for V&V are provided by national and
international standards, like in IEEE, NATO, SISO, or DoD standards.

In GM-VV-Volume 1 (SISO-Guide-GM-VV, 2012–2013), the following definitions are
established:

• Verification: The process of providing evidence justifying the M&S system’s correctness.
• Validation: The process of providing evidence justifying the M&S system’s validity.

Validity is the property of an M&S system’s representation of the simuland to correspond
sufficiently enough with the referent for the intended use. The simuland is the system or
process that is simulated by a simulation while the referent is “… the codified body of
knowledge about a thing being simulated” (IEEE STD 1516.4, 2007).

• Acceptance: The process that ascertains whether an M&S system is fit for its intended use.
• Accreditation: The official certification that amodel, simulation, or federation ofmodels and

simulations are acceptable for use for a specific purpose.
• Tailoring: The modification of V&V processes, V&V organization, and V&V products to fit

agreed risks, resources, and implementation constraints (SISO-Guide-GM-VV, 2012–2013).
Project demands like use risk, time schedules, limited resources, or intellectual property
rights can be constraints that have to be considered while planning M&S and VV&A
activities. Therefore, project-specific tailoring of M&S activities including V&V planning is
required in general.

These and some alternative but closely related definitions of internationalM&S-related ter-
minology can be found in SISO-GUIDE-GM-VV-001.1-2012 (Volume 1, SISO-Guide-GM-VV,
2012–2013).
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As mentioned above, more and more M&S applications incorporate significant uncer-
tainties such as environmental or human behavior, especially in socio-technical models and
simulations. In such cases, complete validation as defined above is often not feasible. Instead,
to provide at least some confidence inM&S results, Plausibility checks should be performed as
far as possible, for example, by face validation performed by domain experts.
3 M&S AS SYSTEMS ENGINEERING PROCESS

As alreadymentioned in the introductory subchapter, in the past M&S have been used pri-
marily for the analysis and training purposes in natural sciences and engineering disciplines.
With the increasing range of application domains, the complexity of systems, processes that
are simulated as well as respective experiences have demonstrated that M&S developments
and maintenance should be processed similar to other systems engineering processes
(Kossiakoff et al., 2011): each M&S development and maintenance process should be
phase-oriented structured in such a way that each process phase has a specific subgoal, de-
livers an (intermediate) phase or work product alongwith its documentation. Thework prod-
uct and its documentation can be seen as the specification for the processing of the next M&S
phase, etc. (see Fig. 1). Similar to typical systems engineering processes, a generic M&S pro-
cess can be instantiated and tailored according to the specific project goals, demands, and
requirements.

This generic M&S development process is not limited to M&S in engineering disciplines
but should be also considered for modeling of socio-technical systems and processes. In gen-
eral, M&S developments are not following a straightforward development process like in wa-
terfall models (Bell and Thayer, 1976). Instead, in practice most M&S developments are
iterative processes caused by adaptations, refinements, or maintenance of intermediate work
products. A revision of a work product in phase i may result in corresponding revision in
phase (i+1) as schematically indicated on the right-hand side of Fig. 1. As a result, each
M&S phase of a distinct M&S project will offer a set of different intermediate work product
FIG. 1 M&S development as engineering process.
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versions related to work product versions in foregoing and subsequent M&S phases. Major
advantages of following such a generic multiphase development process including a graph-
like version control structure of its work products and documentation are as follows:

• retrace of essential steps and decisions during M&S development and lifetime,
• backtracking of potential weaknesses or even errors regarding a specific M&S design,

implementation, adaptations, or updated versions,
• providing source information for quality assurance, especially for phase-oriented V&V,
• enables opportunities for efficient reusability of intermediate work products,
• offering a basis for overall M&S process management.
4 A GENERIC GUIDELINE AND META-MODEL FOR M&S
DOCUMENTATION AND QUALITY ASSURANCE

In accordance with a multiphase M&S process described in Fig. 1, an M&S documentation
guideline has to define core requirements of structure and content of M&S development
phases, work products, and corresponding documentation. These guidelines should provide
templates for documenting an M&S project and its associated V&V efforts throughout the
entire M&S development life cycle. As shown in Figs. 1 and 2, essential elements of documen-
tation guidelines can be adapted from already existing international guidelines like the
Generic Methodology for Verification and Validation (GM-VV) (SISO-Guide-GM-VV,
2012–2013).
Meta-model of the model documentation guideline

Role concept Document templates Methodology

Methods

Model development life cycleTask Responsibility

Stakeholder
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side

IV&V

Contractor
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Document
structure

Time Cost Application
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Document
topic
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product
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FIG. 2 Overview of the model documentation guideline (Wang and Lehmann, 2010).
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As demonstrated in Fig. 2, a meta-model for M&S documentation includes major elements
such as a role concept, documentation templates, a catalogue of basic modeling, implemen-
tation and V&V methods, tool support, as well as a tailoring concept (Wang et al., 2009).

The structure of a generic M&S development guideline can be based on a meta-model,
which serves as basis to describe the core elements and their interrelations of M&S develop-
ment. Such core elements are, for example, roles and responsibilities, work products and doc-
umentation templates, V&V activities, and a tailoring concept. The meta-model should
specify semantics and relationships between these core elements. In addition, this meta-
model for M&S development includes descriptions of different abstraction levels to meet
the specific needs of each user group of this guideline.
4.1 Roles and Responsibilities

In order to define functional tasks and competencies for persons participating in M&S de-
velopment, in its documentation and V&V activities, a well-structured role concept should be
introduced. During the process of project planning, roles have to be assigned to individuals or
organizational units including certain responsibilities, for example, contributory or decisive
responsibilities. While several roles may support in the creation of a work product, exactly
one responsible role can be assigned to each work product and its documentation. An M&S
project will generally involve three parties, namely participants from the sponsor side, the
developer side, and the independent V&V (IV&V) agent or institution (Arthur and Nance,
2000; Balci, 2010; Lewis, 1992). The role concept presented here has offered an organization-
independent orientation for projectmanagement. Fig. 3 shows the basic relationships between
roles, their responsibilities, and tasks as part of a meta-model for M&S development.
4.2 Documentation Templates

To facilitate the proposedmodel documentation activities and to avoid misinterpretations,
concrete requirements regarding structure and content of each intermediate work product
created during theM&S life cycle should be specified in the form of documentation templates
(Fig. 4). A structured process for developing M&S applications and conducting their V&V
should be applied as reference process, for example, as developed by Brade (2000) andWang
and Lehmann (2007a,b).

As shown in Fig. 4, a documentation guideline should also provide detailed documenta-
tion templates for intermediate work products in all M&S development phase, such as for the
description of sponsor needs (SNs), for structured problem description (SPD), for specifica-
tion of CM, formal model (FM), executable model (EM), and for simulation results (SRs). This
documentation structure is in accordance with GM-VV and is basically compatible with other
international M&S development concepts (such as Balci and Saadi, 2002; Banks et al., 2010;
Sargent, 2015), M&S development guidelines and standards like REVVA (Brade and Jaquart,
2005), IEEE 1516.4 (2007), or DoD Standard Practice (DoDMIL-STD-3022, 2008). Basically, this
template concept can be directly applied in an M&S project or project-specific adaptation as
required.



FIG. 4 Documentation templates for M&S work products (Wang and Lehmann, 2010).

FIG. 3 Roles, responsibilities, and tasks (Wang and Lehmann, 2010).
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4.3 Methodological Support

Generic M&S development and documentation guidelines as proposed in this subchapter
should also include recommendations regarding the selection of design, implementation, and
analysis methods, selection of supporting tools, as well hints to other standardized develop-
ment processes, for example, the V-Modell XT, the official guideline for German government
sponsored IT development processes like M&S (Kuhrmann et al., 2005; Wang and Lehmann,
2008). Like other M&S development and documentation guidelines and standards, the
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V-Modell XT offers additional opportunities for developers and users to select efficient
methods of preparing work products and documents, as well as for data and information
exchange among all involved project participants. As proposed in the chapter “Generic Con-
cept and Architecture for Efficient Model Management” of this book, an M&S management
system can efficiently offer these supporting services.
Application of M&S Tailoring

Regardingdifferentcharacteristicsoforganizationstructures,project requirements, resources
and budgets, in general M&S development and documentation guidelines need some kind of
project-specific adaptation, respectively, tailoringprior to its project-related application. For this
purpose, consideration of a multistage tailoring concept is recommended, which enables the
project-specific selection of essential intermediate work products, documents, development ac-
tivities, and roles forM&Sdevelopmentandapplications. Inaddition, tailoringdecisions should
be considered not only for V&Vplanning and for the execution of V&Vactivitieswith respect to
primary M&S goals, but also in view of available resources and constraints, such as specified
budget,projectmilestones, anddeadlines,aswell asspecific applicationconstraints.Byapplying
these tailoringmechanisms described in detail in Section 6, all M&S phases, activities and roles,
corresponding work products, and documentations relevant and significant for an intended
M&Sapplicationpurpose aswell as expected range ofM&Sapplications andM&S lifetimehave
to be taken into account. Inmost cases tailoring implies a reduction in project resources and po-
tential overhead.
5 A GENERALIZED V&V CONCEPT—THE “V&V TRIANGLE”

As Fig. 5 illustrates, two closely related task groups of V&V activities (model V&V and data
V&V) are specified for application as part of M&S development (Brade, 2000; Wang and Leh-
mann, 2007a). As an example in Fig. 5, this model development process defines five modeling
phases (depicted by black boxes) and their related work products plus documentation
(depicted by ellipses). These development phases symbolize sets of activities to transform
one intermediate work product of phase (i) to its succeeding intermediate work product of
phase (i +1). For each transformation step, work product (i) has to be considered as specifi-
cation for producing the succeeding work product of phase (i +1). Tasks of V&V subphase
activities are to check internal completeness and consistency of this work product. In addi-
tion, to check the transformation process from work product (i) to work product (i +1), ful-
fillment and consistency with all previous work products have to be verified and validated.
Each V&V activity as well as their results has to be documented in a V&V report (as depicted
by the gray boxes). V&V report (ij) describes the results of the V&V activities performed by
verifying and/or validating the transformation from work product of phase (i) to the work
product of phase ( j).

As described above, an extensive execution of a V&V process results in a triangle-like ma-
trix of V&V reports. The columns of the matrix represent the V&V main phases, which are
associated with the work products (also referred to as intermediate products); while



FIG. 5 The “V&V Triangle” (Brade, 2000; Wang and Lehmann, 2007a).
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intersections between the columns and rows split the V&Vmain phases into V&V subphases.
During V&V, each work product is examined for internal consistency and completeness with
respect to the intended purpose of themodel. Subsequently, the transformation consistency is
checked by pairwise comparison of all work products. Regarding model V&V, one work
product is input to a V&V phase, numbered 1–5. Each V&V phase is again split into sub-
phases, each with a defined subaim to detect the internal defects or transformation defects.
In each subphase numbered as x.1, the absence of internal defects in each particular work
product should be demonstrated. For example, in subphase 1.1, it should be ensured that
the problem description is free of misunderstandings and inconsistencies, and in subphase
3.1, a syntax check can be applied to the FM for comparison of the chosen formalism. In
any other subphase, the pairwise comparison between the current work product and each
previous work product can be performed to confirm the absence of transformation defects.
For instance in subphases 3.2, 3.3, and 3.4, the FM could be compared with the CM, the
SPD, and also with the SNs.

With respect to data V&V, two types of data should be distinguished: raw data
and processed data. Raw data are obtained directly from different sources, which offer the
required input data for an M&S application, but which are in general unstructured and
unformatted data. Processed data are, however, created by analyzing, editing, transforming,
and adapting raw data for or during the modeling process. Thus, data V&V involves credi-
bility assessment of raw data and processed data, which are essential for creating a work
product. It should be noted that raw data are usually only relevant for specifying work prod-
ucts in early M&S development phases, for example, for SPD and CM. But in general, raw
data are not directly applicable for work products like FM and other succeeding work prod-
ucts. Therefore, the associated V&V of raw data are undefined for certain work products
(Wang and Lehmann, 2007a).
6 TAILORING OF M&S, V&V ACTIVITIES

As obvious by the description of Fig. 5, an extensive implementation of a V&V process is
very time consuming and resource intensive. In general, M&S tailoring can lead to reduction,
extension, specialization, or to balancing of M&S activities, intermediate work products, and
V&V activities as a consequence of project requirements and constraints. According to Fig. 6,
tailoring actions are feasible at different M&S development levels: on process, product, sub-
ject, and/or role level (Wang et al., 2009). At the beginning of an M&S project, by “static” tai-
loring, a V&V plan should be discussed by all the three stakeholders of an M&S project
(project sponsor, M&S developer, and independent V&V agent) and finally deployed: only
M&S intermediate work products accessible and relevant for this project are determined,
produced, documented, and are subject of V&V which implies a focus to a project’s use risks,
constraints, complexity, and required and available resources (Wang et al., 2009; SISO-Guide-
GM-VV, 2012–2013). While during project execution certain project goals or requirements as
well as resource constraints may change, the original V&V plan could be adapted (“dynamic”
tailoring).

In the same way, but depending in addition on the availability and accessibility of M&S
work products, V&V tailoring can be considered. For example, regarding availability of



FIG. 6 Multistage tailoring process (Wang et al., 2009).
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M&S resources and use risk constraints specified for a concrete project or M&S application—
those tailoring actions can consider a reduction in the amount of V&V activities.

Fig. 7 demonstrates consequences of tailoring by reduction: if on the product level thework
product “formalmodel” is not available or not accessible, this leads to a reduction in adequate
V&V activities and missing V&V result reports 3.1, 3.2, and 3.3, as well as to missing V&V
reports 4.2 and 5.3. If—in addition—some data are not available at the subject level, this can
also lead to a reduction in V&V activities and missing V&V reports 2.3 and 4.5. A reason
for tailoring an FM could be intellectual property rights held by a developer, his or her insti-
tution, so that this work product is not accessible for external review. Those tailoring actions
can result not only in significant reduction in V&V efforts and costs but also in an increase in
M&S use risks (Lehmann, 2014).
7 COST-BENEFIT-BASED SELECTION OF V&V TECHNIQUES

Quality and credibility assessment of M&S applications requires not only systematic plan-
ning and conducting VV&A activities as part of the V&V plan, but also selection and
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FIG. 7 Tailoring consequences of product and subject levels (Lehmann, 2014).
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application of suitable V&V techniques for the purpose of gathering reliable evidences.
Whether or not a V&V technique is appropriate to perform a particular V&V activity depends,
on the one hand, on characteristics of this technique, and on the other hand, on work product
and context where it will be applied. In practice, due to lack of information or knowledge
about characteristic features of V&V techniques as well as their strength, weaknesses and
application potentials, only a quite limited number of techniques are considered and repeat-
edly used in anyV&V context and anyM&Sproject constellation, although a variety of almost
100 V&V techniques are well known and documented in literature, for example, Balci’s
taxonomy (Balci, 1997, 1998). Therefore, mechanisms have to be developed supporting selec-
tion and application of V&V techniques depending on the project-specific requirements, each
respective available work product, data, and related documentation in a systematic and
efficient manner.

From the pool of V&V techniques documented in literature (e.g., Balci, 1998; Beizer, 1990;
Sargent, 2011), we have defined a characterization scheme for the classification of the most
common V&V techniques according to their scope of application, efficiency of use, and
required skills and efforts for their application. Fig. 8 illustrates this characterization
approach.
FIG. 8 Basic concept for selection of V&V techniques (Wang, 2013).



FIG. 9 V&V technique selection (Wang, 2013; Lehmann and Wang, 2017).
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As shown in Fig. 9, the selection of suitable techniques for each phase in a V&V process is
based on the analysis and evaluation of the:

• techniques collected and characterized in the V&V catalog and
• results of the above-mentioned multistage tailoring process which determines the relevant

work products, activities, and documentation depending on specified project constraints,
M&S goals, M&S requirements, and acceptance criteria.

Fig. 10A shows the proposed characterization scheme, which is used to build the V&V
techniques catalog. The attributes are organized in two categories: Applicability and Cost
of a V&V technique. The category Applicability includes attributes referring to:

• usability of a V&V technique to perform a V&V activity;
• operational conditions;
• relevance and dependency of V&V results.

On the other hand, the category Cost includes the information related to the effort and
exposure time required for understanding and mastering a V&V technique, preparing test
data, and executing test processes.



FIG. 10 (A) V&V technique characterization scheme (Wang, 2013; Lehmann and Wang, 2017) and (B) examples
(Wang, 2013; Lehmann and Wang, 2017).

114 6. VERIFICATION, VALIDATION, AND ACCREDITATION (VV&A)—REQUIREMENTS, STANDARDS, AND TRENDS



1158 INTERNATIONAL STANDARDS AND GUIDELINES
Applicability and Cost are similar to the two sides of a coin. The selection of a V&V
technique with best effectiveness and lowest costs, as well, is hardly achievable in practice.
For example, a certain objective V&V technique may appear more effective compared to a
subjective one, but its application can be associated with high costs. Therefore, when
selecting V&V techniques, both types of technique characteristics should be analyzed
and evaluated taking into consideration the specified project goals, requirements, and
its environment. Consequently, a reasonable balance between cost and benefit should
be achieved.

Considering V&V technique characteristics (Balci, 1998; IEEE STD 1028, 1997; Gilb and
Graham, 1993; Schulmeyer andMackenzie, 2000), Fig. 10B shows the comparison of the three
V&V techniques reviews, inspections, and animation/visualization.
8 INTERNATIONAL STANDARDS AND GUIDELINES

To show that these generic M&S development as well as VV&A process models described
in the previous sections are in accordance with well-established international guidelines and
standards, those guidelines and their characteristics most relevant in this context will be
briefly summarized in this section. Nowadays relevant for quality assurance of M&S by
VV&A are: SISO-Guideline-GM-VV (2012–2013), Federation Development and Execution
Process (FEDEP) (IEEE STD 1516, 2010), VV&A overlay to FEDEP (IEEE STD 1516.4, 2007),
and risk-based tailoring of VV&A (RTO-TR-MSG-054, 2012).
Generic Methodology for Verification and Validation (GM-VV)

The GM-VV includes a guideline for the development of a V&V plan, V&V activities, and
corresponding selection of V&V techniques. This GM-VV guideline can be considered for
every kind and application category of modeling and simulation. In GM-VV documentation,
a generic approach of themost relevant decisions, processes, and activities is presentedwhich
should be considered as part of an M&S project.

In GM-VV-Volume 1.1, terminology and basic approaches for performing VV&A is
comprehensively described. The proposed methodology recommends the definition of the
project- and application-specific acceptance goal defined at beginning of the project by the
project sponsor. In a next step, this acceptance goal has to be broken down into a set of
acceptability criteria which—if fulfilled—will confirm that the acceptance goal of this M&S
application can be achieved. In the following step, V&V planning assessment has to be
performed which indicates how the acceptability criteria can be verified and validated by
selection and execution of adequate V&V activities and techniques. Based on this a V&V plan
can be established at begin of the project which might be revised during execution due to
unexpected project-related constraints. The execution of this V&V plan will provide items
of evidence which could be used to check if the fulfillment of acceptability criteria can be
confirmed.
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From an organizational and management point of view, V&V activities as part of a V&V
plan should be performed on several levels:

• on the technical level concerning all engineering activities that have to be processed for
receiving recommendation for acceptance;

• on project level concerning all management activities required to enable the technical
efforts for performing the planned V&V activities;

• on the enterprise level, enabling all required support to ensure feasibility of V&V activities.

InGM-VV-Volume1.2,descriptionsof implementationoptions for thisgenericmethodology,
V&V processes, etc., are described in detail. Volume 1.3 is a reference guide linking this
methodology to literature relevant in this context, to similar or connected M&S approaches,
development guidelines, and standards.

In addition to this GM-VV guideline it is recommended to check the VV&Adocumentation
guideline (DoD MIL-STD-3022, 2008) issued by the US Department of Defense which is also
served as valuable input for the GM-VV.
9 FEDERATION DEVELOPMENT AND EXECUTION PROCESS
(FEDEP) AND VV&A OVERLAY TO FEDEP

Regarding quality assurance measures for distributed simulation and their applications as
federations of simulation federates, two other guidelines or standards (FEDEP and VV&A
Overlay to FEDEP) should be considered. Both are related to HLA federations, their correct-
ness, validity, and utility with respect to the project goals.

According to IEEE STD 1516 (2010), the FEDEP distinguishes seven work products as in-
termediate products for federation development and its documentation. Corresponding to
these sevenM&S development phases, in IEEE STD 1516.4 (2007) corresponding V&V checks
and reports are recommended in the VV&A overlay (see Fig. 11).
FIG. 11 FEDEP and VV&A overlay.
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Risk-Based Tailoring of VV&A

Beside detailed descriptions regarding the activities and documentation of the VV&A
overlay, another guideline describes precisely how identification and determination of
M&S use risks can be performed, which is issued by the RTO technical report (RTO-TR-
MSG-054, 2012).

This is a detailed guideline for risk-based tailoring of VV&A processes as an Overlay to
simulation federations according HLA. Foundational work is documented in this guideline
on applying use risk as a tailoring mechanism for the VV&A overlay. This report includes
components of tailoring guidance. The resulting product is the V&V Composite Model
(see Appendix 1 in this report) which describes the components of the V&V processes
(i.e., phases, activities, and tasks) which can be selected in order to match the risk and
resource constraints of the V&V efforts in the context of other relevant policies, standards,
and guidelines. The V&V Composite Model is a superset of the possible activities and the
context in which these activities can be tailored into working V&V processes. In Section 3
of this report the V&V Composite Model is described in detail.
10 PRACTICAL APPLICATIONS AND EXPERIENCES

As described in the introductory section of this chapter, there is an increasing awareness
among M&S sponsors and developers, that quality assurance of M&S developments and ap-
plications becomes an essential part of M&s projects to avoid or at least minimize M&S use
risks—risks that might heavily influence training results or rational decision-making. This sec-
tion describes major experiences gained by several case studies inwhich the proposed quality
and credibility assurance strategies according to the recommendations and guidelines
presented in Sections 3–8 were performed and evaluated.
10.1 Case Studies

All the case studies were sponsored by either government agencies or industrial institu-
tions. M&S development had been performed by professional simulation companies and
V&V activities executed by independent institutions as V&V agent. Two case studies were
concerned with developments of training simulators while the others concerned M&S pro-
jects with constructive simulation (e.g., agent-based simulation) used as decision
supporting tools.

These studies were primarily focused on the analysis of feasibility and effectiveness of
M&S development processes and documentation guidelines in accordance with international
guidelines. In addition, three case studies were especially useful for evaluating the applica-
bility and effectiveness of the “V&V Triangle” concept and the proposed multistage tailoring
(see Wang and Lehmann, 2010; Wang et al., 2009) regarding M&S correctness, utility, and ac-
ceptability criteria.

Major purpose of the third case study—evaluation of decision options regarding scenario-
based composition and operation ofmilitary convoys—was an overall evaluation of efficiency,
effectiveness, and resource requirements of the proposed M&S-/V&V guidelines in the case
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of agent-based constructive simulation. V&V techniques applied were primarily desk
checking, walk through, inspections, visualization, and face validation of subject matter
experts (SMEs) to assess consistency and completeness of work products, as well as evidences
for the fulfillment of acceptability criteria (Wang, 2011). Desk checking was selected to inves-
tigate the created model specifications. This technique is also known as self-inspection and
can be performed by several V&V agents independently. The benefits of selecting this
technique are that desk checking is easy and cost-effective. In addition, it is particularly useful
in the initial phases of M&S development processes (Balci, 1998).

In many case studies, detailed information required for model design is missing, vague,
and unclear. Quite often information required about the real system and its dynamic behavior
is incomplete or even missing. Accordingly, tailoring decisions have to be determined
concerning the selection and intensity of V&V activities to be applied. All project part-
ners—sponsor, developer, and V&V agent—should be involved in this tailoring process. In this
context it has been shown that the involvement of SMEs in M&S specification, development,
and V&V planning and tailoring is beneficial. These studies indicate that V&V techniques like
inspections, face validation, and visualization/animation are very useful. As described in the
V&V techniques catalog, techniques like inspections, walkthrough are team-based and their
execution requires active involvement of several different project roles, such as sponsor,
model designer, model implementer, and V&V agent. Nevertheless it has to be taken into
account that planning and organizing such V&V activities are both complex and time
consuming.
10.2 Major Lessons Learned

This section presents major findings obtained by the application of the proposed M&S de-
velopment, VV&A planning and tailoring concepts and guidelines in the case studies men-
tioned above. Major findings are as follows:

• The proposed M&S development and documentation guideline was perceived as
beneficial by project sponsors as well as by M&S developers. Coaching of guidelines prior
to their application turned out as important and effective effort to support novice M&S
developers. A tool-supportedM&S development and documentation guideline in the form
of “living documents” should be available, allowing permanent updates and adjustments
(Wang and Lehmann, 2008, 2010).

• Following these experiences, M&S developments, V&V, and documentation guidelines
require additional resources (time, budget, experts). By repeated application, however, it
has become a very effective way of improvingM&S development, operation, maintenance,
reuse, and refinement as demonstrated by two case studies performed by the same M&S
developers.

• The proposed “V&V Triangle” concept can be efficiently used for performing
management and technical activities. (According to the IEEE standard 1059, a V&V
effort consists of two types of tasks: management tasks and technical tasks.) While
management tasks refer to activities such as planning, organizing, and monitoring of
V&V efforts, technical tasks refer to the quality assurance procedures, such as analyzing,
evaluating, reviewing, and testing the M&S development processes and work products.
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Results of the case studies indicate that the “V&V Triangle” is a comprehensible and
efficient tool for planning V&V activities and for executing the examinations.

• Both tailoring approaches—static as well as dynamic tailoring—are required and beneficial.
Static tailoring has to be arranged at the begin of an M&S project so that all efforts of M&S
development, V&V, and documentation can be determined and planned at an early stage.
However, experiences from two case study projects indicate that usually still a
considerable amount of information, data, resources, etc., are unavailable at this stage, or
certain requirements have changed over time. Therefore, dynamic tailoring performed
during the M&S life cycle has to be considered besides static tailoring. Thus, a refined
mechanism of dynamic adaptation in the course of a project was developed and integrated
in an overall tailoring concept (Wang and Lehmann, 2008, 2010).

• Special attention should be given to intellectual property rights (IPR) protection. An
approach to solving this problem was proposed as follows: the V&V agent specifies
detailed V&V requirements. An inspector from the quality assurance department of the
developer performs the specified V&V and documents V&V process and results of each
test case. Final acceptability assessment of the V&V agent takes into account also these
V&V protocols and results from the developer side.

• The expenditure of M&S and V&V documentation and V&V has to be considered and
planned at the tendering stage of an M&S project. In order to prevent model
documentation and V&V from becoming a burden or even useless, because of time and
cost pressures during project execution, project sponsors should request calculation of
planned documentation and V&V efforts in their project proposal and budget accepted by
the project sponsor.
11 CONCLUSIONS

This chapter summarizes current status, demands, and perspectives for quality assurance
of M&S and their data developments and applications over their life cycle. Main focus in this
context is the importance of performing adequate VV&A activities accompanying the overall
M&S life cycle. At first and for clarification, basic terminology of M&S and VV&A are briefly
summarized followed by description of basic M&S development processes in accordance
with systems engineering principles. The main focus of this chapter concerns the description
of the proposed V&V planning process, resulting V&V activities, and the selection criteria for
V&V techniques. It is demonstrated that the proposed genericM&S and V&V processes are in
accordance with already existing IEEE and SISO standards like GM-VV or the VV&A overlay
for the FEDEP. Finally, some general experiences and lessons learned by the application of the
proposed M&S and V&V processes in case studies are shared.

Regarding permanently increasing complexity and uncertainties within the wide range of
M&S applications, such guidelines are urgently required to assure the required quality, cred-
ibility, and utility of its results. M&S acceptability criteria and use risks have to be driving
factors for the determination of the amount of M&S documentation, tests, and V&V activities
to be performed. For selecting appropriate V&V techniques, the information about the char-
acteristics of techniques and their potential applications is of crucial importance. The
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characterization approach in this chapter proposes an integrated process to identify, gather,
and to use (reuse) all relevant information, so that uncertainties regarding the selection of
V&V techniques can be mitigated and consequently more reliable V&V evidence can be
achieved. The project-specific technique selection is also a conceptual extension of the existing
multistage tailoring process.

Experience and feedback from all stakeholders—M&S sponsors, developers, and V&V
agents—applying these concepts and its related guidelines in the case studies were very pos-
itive. A consequent next challenge requires research of effective methods for M&S use risk
identification, evaluation, and management. Professional international organizations like
IEEE or SISO are supporting current research and standardization efforts in regard to this
challenge.
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1 INTRODUCTION

1.1 Background

Nowadays, simulation users andmodelers have the common sense that a simulation has to
be proved to possess acceptable similarity to the real-world origin in the application domain
before use. The concept of “credibility,” which represents an acceptability measure, is well
known in the simulation community. However, as we all know, credibility assessment is
not an easy job.

Model is the core of a simulation system. Its credibility influences the whole system’s cred-
ibility to a great extent. In the verification, validation, and accreditation (VV&A) framework
(IEEE, 1997), the model credibility is mainly achieved by the work of “validation.” Thus
model validation is actually essential for determining the credibility of the simulation.

Simulation model is not a simple object. It usually contains multiple inputs, outputs, and a
sophisticated processing mechanism (Zhang, 2011; Zhang et al., 2014). The credibility of a
simulation model is influenced by many factors. Naturally it is well known that the model
credibility can be measured as the similarity between model outputs and real-world outputs
by the same input. However, this approach remains an unsolved problem. How to compare
two series of data in the application domain? How to calculate the similarity between a single
output and its real-world reference through a bunch of simulation datasets? How to make an
aggregation of those individual output similarity to represent total credibility? How to take
an insight into themodel and find the cause of credibility deficiency?We have to answer these
questions before getting a convincing result.
123 # 2019 Elsevier Inc. All rights reserved.
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Although a lot of earlier study has been conducted to realize model validation, we still
need a thorough solution to determine the model credibility in practical VV&A process. This
chapter presents “what to do” and “how to do” with achieving the goal. Furthermore, the
chapter provides a case study to explain the use of the methods introduced in the earlier
sections.
1.2 Scope and Fundamentals

Model validation aims at achieving model credibility. Because the primary principle
is comparing the simulation outputs and “real” world outputs, the model under validation
must be runable by some means. The other prerequisite of model validation is that the
outputs of the “real” world can be observable, or at least there is adequate expert knowledge
on them.

When the outputs are valid, we need appropriate validation techniques to compare them,
and need acceptability criteria to judge whether the model is acceptable. Although there is no
regulation on qualitative or quantitative results, some simulation users and validation agen-
cies prefer to get a quantitative credibility which is able to make a direct comparison between
similar models.

Model validation is a comprehensive work.We can deduce howmany specific jobs have to
be involved in model validation. Fig. 1 shows the essentials of model validation, which are
indicated by the subjects marked with a round-corner rectangle.
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(1) Factor space

The simulation model needs a factor space (Wang, 1992; Li et al., 2000) to describe and or-
ganize the credibility indicators. In early days the AHP (analytic hierarchical process) (Saaty,
1997) hierarchy is widely used. However, researchers and VV&A engineers prefer to use a
network instead nowadays.

(2) Experiment design

Various initial states and uncertain factors make the model outputs different at each
running. In order to gather the outputs as thoroughly as possible, and meanwhile reduce
the simulation times, we must perform an experiment design, such as the orthogonal design
(Su et al., 2016), Latin hypercube design (Shields and Zhang, 2016), etc.

(3) Sensors and expert knowledge

We need sensors deployed on the “real-” world object to get the observed outputs. How-
ever, many physical quantities are hard or even impossible to measure. In this case, we have
to use expert knowledge instead.

(4) Data preprocessing

The data has to be preprocessed to meet the requirements of certain techniques. For exam-
ple, the Theil inequality coefficient (TIC) (Kheir and Holmes, 1978) method requires that two
data series are alignedwith the horizontal axis attribute (usually time). In this case, we have to
perform interpolation methods, etc.

(5) Techniques (similarity analysis methods)

Appropriate techniques are used to perform similarity analysis between simulation and
observed data. There are three major categories of techniques: statistics analysis methods,
time domain analysis methods, and frequency domain analysis.

(6) Result unification

There has to be a unified description of the similarity analysis results so that they can be
compared and aggregated. The conversion must be based on the mechanism of each tech-
nique, and results in the range of credibility, monotonically increasing, and same difference
amplitude.

(7) Credibility aggregation

We need a way to aggregate the partial credibility to the total credibility, if a quantitative
result is required. The aggregation method, or the calculation function, is selective from tak-
ing the minimum, weighted average, neural network composition, etc.

(8) Acceptability criteria

Once the credibility is achieved,we need the acceptability criteria to determinewhether the
model is acceptable or not. Acceptability criteria must be measurable. The value of it must be
carefully calculated according to the tolerance of simulation.
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(9) Defect tracing

If the credibility result is negative, it is natural for the user to wonder which part of the
model causes credibility deficiency. The factor space can be used to search and locate the
"fault node" by assessing the impact of partial credibility to the total one.

(10) The model validation process

All the essential work above forms a model validation process, which usually needs the
workflow (WfMC, 1995) technique to drive. Because the model validation process is synchro-
nized with the model development process, the workflow must have the ability of coupling
(WfMC, 1996).
1.3 Relation to VV&A

The concept of VV&A is well known by the IEEE 1278.4 standard, Recommended Practice
Guide for Distributed Interactive Simulation — Verification, Validation, and Accreditation
(IEEE, 1997). It integrates all jobs which are involved in simulation credibility assessment,
and categorizes them into three kinds of work. VV&A covers a much wider range of work
than model validation, but holds the same purpose of assuring that the simulation has an ac-
ceptable credibility before use. Fig. 2 shows the relation between model validation and
VV&A.
1.4 Approach of Model Validation

A model validation approach must fulfil the fundamentals of credibility assessment, and
has the ability to achieve a convincing credibility result. Fig. 3 shows an example of the
approach of model validation.

The execution procedures of the approach are explained as below:

(1) Build a model validation process

Use workflow or OA (office automation) tools (Ke et al., 2005) to build a model validation
process, which is able to be facilitated automatically, or plan a practical schedule of model
validation calendar.

(2) Build a factor space

Collect all indicators that influenced model credibility, reveal their relationship, and use a
modeling method (AHP, MADN (Fang et al., 2011; Fang et al., 2012), etc.) to build a factor
space of model validation.
Verification Accreditation

Validation

Model validation

FIG. 2 Relation between model validation and VV&A.



FIG. 3 A practical approach of model validation.
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(3) Prepare validation data

Use the experiment design methods (orthogonal design (Su et al., 2016), Latin hypercube
design (Shields and Zhang, 2016), etc.) to select the initial condition of the simulation model
and run to obtain the simulation data, and use sensors or expert knowledge to obtain the
observed data of the corresponding node in the factor space.

(4) Perform data preprocessing

Use appropriate methods (singular value elimination, time sequence consistency
processing, moving average filtering, etc.) to perform data preprocessing on simulation
and observed data to match the similarity analysis method in the next step.

(5) Perform similarity analysis

Use appropriate methods (statistics analysis, time domain analysis, frequency domain
analysis, etc.) to “compare” the preprocessed simulation and observed data.

(6) Perform result unification

Use appropriate formula to convert the analysis results into a unified credibility descrip-
tion, according to the similarity analysis method used in the earlier step.

(7) Determine if all nodes are analyzed

If in the validation process, determine whether the final outputs of the model are all ana-
lyzed. If in the defect tracing process, determine whether the intermediate outputs and initial
inputs of the model are all analyzed.

(8) Proceed to the next node

If the answer is “No” in Step 7, go back to the factor space, proceed to the next node which
needs to be analyzed, and cycle to Step 3.

(9) Determine if in the defect tracing process

If the answer is “Yes” in Step 7, determine if it is in the defect tracing process.

(10) List model defects

If the answer is “Yes” in Step 9, list all detected nodes of model defect which induce the
credibility deficiency.

(11) Perform credibility aggregation

If the answer is “No” in Step 9, use an appropriate method (taking theminimum,weighted
average, neural network composition, etc.) to aggregate the partial credibility into the total
one.

(12) Determine if the credibility is acceptable

According to the acceptability criteria of the model, determine if the total credibility is
acceptable.
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(13) Draw the conclusion

If the answer is “Yes” in Step 12, gather the partial credibility and the total credibility to
present the conclusion of model validation.

(14) Perform defect tracing

If the answer is “No” in Step 12, go back to the factor space, perform defect tracing on lower
nodes which are required to be analyzed further, and cycle to Step 3 until all nodes of the
model defect are located.
2 FACTOR SPACE OF MODEL VALIDATION

Factor space is a systematically organized structure which contains all indicators and their
relationship that influence model credibility (Fang et al., 2017a). Because of the complexity
and intricate mechanism of the model, it is hard to achieve the credibility by a certain
mathematical formula. In most cases, the total credibility of a model is determined by the
decision-making way, such as:

O¼ a1, a2,…, anf g
A¼ < n1, n2,…, nj > , < c1, c2,…, ck >

� �

Fc ¼ f v1, v2,…, vj
� � (1)

where O is a complex object which can be granted as the model. a1�an are the subobjects or

components after decomposition. A is a factor space which contains all influencing aspects of
O. n1�nj and c1�ck are the indicators and their relationship. Fc is the final result. v1�vj are the
partial results mapped with n1�nj. f is the aggregation function.

Apparently, factor space A and aggregation function f are critical to the final result. Con-
ventionally, A is often built by an AHP hierarchy (Saaty, 1997), and f is selected as the
weighted average function. However, the relation between factors is not always linear,
and the influence of the factor is not always transferred through layers one by one. Actually
the similarity between themodel and the “real” world is affected by the accumulation of error
in the computational process of the model, but not decided by the weighted average value
through adjacent layers in the AHP hierarchy, or something like that. Model validation needs
a better method to reveal the factors and their influence on model credibility.
2.1 Network Definitions

Here, we introduce a network-based method (Fang et al., 2011; Fang et al., 2012) to build
the factor space of model validation. Define the factor space as a directional graph of radial
distributed nodes, which can be expressed as the quadruple:

F¼ <N,V> ; < L,A>f g (2)

where F is a factor space. N and V are the node set and value set; L and A are the link set and

attribute set mappedwith each other. Set the link direction as from the attribute-holding node
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to the attribute-receiving node. For example, a structural link of the traditional hierarchy has
the direction from the child node to the parent node. According to the requirements of model
validation, further develop element definitions of the network as in the following:

Def. 1 Define N¼ {n1,n2,…,nk} as the “Node set” and N¼ N̂[ eN, where N̂ is the certain node
set and eN is the uncertain node set. If ni 2N, use t(ni) to indicate the node’s type and t(ni)2
{regular, sufficient, inherited}. If ni 2 eN, use c(ni) as the transit condition of ni, and c(ni)2 {0,1}.
Def. 2 Define V¼ {v1,v2,…,vk} as the “Value set”. If t(N)2 {regular, sufficient}, V and N are
mapped with each other. Use vi¼v(ni) to indicate the value of node ni which is mapped
withvi.
Def. 3 Define L¼ {l1, l2,…, lk} as the “Link set” and L¼ L̂[ eL, where L̂ is the certain link set and eL
is the uncertain link set. Use t(li) to indicate the link’s type, and t(li)2 {regular, sufficient,ultra,
equivalent,contraditory, inherited, traced}. If li 2 eL, use c(li) as the transit condition of li, and c(li)2
{0,1}. Use l¼ (no,nd) to indicate a link from node no to node nd and no¼b(l); nd¼ e(l).
Def. 4 Define A¼ {a1,a2,…,ak} as the “Attribute set” and A is the one-one mapped with L. Use
ai¼a(li) to indicate the attribute of link liwhich is mappedwith ai. If t(li)2 {equivalent, inherited,
traced}, thenai2∅.

Make definitions below to indicate various types of network elements:

Def. 5 If l2L, t(l)¼ regular and l¼ (no,nd), define a(l)2 [0,1] as the weight distributed from nd to

no. If Nc¼ {n j (n,nd)2Lc}, Lc 2 L and t(Lc)¼ regular, then
Pk

i¼1ak lkð Þ¼ 1, lk2Lc and k¼d(Lc).
Def. 6 If n2 eN^ c nð Þ¼ 1, which makes n2 N̂, define n as the “Recovered node.” If
n2 eN^ c nð Þ¼ 0, define n as the “Rubbish node,” and it need to be deleted from the network.
Def. 7 If l2 eL^ c lð Þ¼ 1, which makes l2 L̂, define l as the “Recovered link.” If l2 eL^ c lð Þ¼ 0,
define l as the “Rubbish link,” and it need to be deleted from the network.
Def. 8 If n2N, t(n)¼ sufficient and v(n)¼1, then the sufficient link from n breaks. If v(n)¼0,
then n needs to supplement the additional brother node, which is defined as the “Shadow
node” and of value 0.
Def. 9 If l2L, l¼ (no,nd), and t(l)¼ultra, define a(l)2 [0,1] as the “Acceptability threshold”. If
v(no)<a(l), then v(nd)¼0, and define no as the “Key node” of nd, nd as the “Super conduct
node” of no. If v(no)�a(l) then l2 eL and c(l)¼0.
Def. 10 If l2L, l¼ (no,nd), and t(l)¼ inherited^ t(no)¼ inherited, then the subnetwork under nd
has to be replicated to no, and the new nodes are defined as inherited nodes, whose physical
meaning will be given by no.
Def. 11 If l2L, l¼ (no,nd), and t(l)¼ contradictory, define .a(l)2 [0,1]. as the “Contradiction

percentage” of no to nd. v ndð Þ¼ v ndð Þ v ndð Þ� 1� a lð Þ � v noð Þ
1� a lð Þ � v noð Þ v ndð Þ> 1� a lð Þ � v noð Þ

�
, where v(no) is the

source node value and v(nd) is the destination node value.
Def. 12 If l2L, l¼ (no,nd), and t(l)¼ equivalent, define no and nd as “Mirror node,” and v(nd)¼
v(no).
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Def. 13 If l2L, l¼ (no,nd), and t(l)¼ traced, define nd as the “Traced node.” v(nd) is irrelevant to
v(no).
Make definitions below to express the network structure:
Def. 14 If •n¼ {x jx2N^ (x,n)2L}, define •n as the “Preset” of n. If n•¼ {x jx2N^ (n,x)2L},
then define n• as the “Postset” of n.
Def. 15 If (no,nd)2L, define no as the “Child node” of nd, and nd as the “Father node” of no. If
(no,na)2L and (nd,na)2L, define no and nd as the “Brother nodes.” If n•¼∅, define n as the
“Root node.” If n• 6¼∅ and •n 6¼∅, define n as the “Branch node.” If •n¼∅, define n as
the “Leaf node.”
Def. 16 Set power operator satisfies (n•)0¼n, (n•)1¼n•, (n•)2¼ (n•)• … If nd2 (no
•)s1, nd2 (no

•)s2,
… , nd2 (no

•)sk, define S(no!nd)¼ {s1, s2,…, sk} as the “Distance set” from no to nd. Nonnegative
integers s1�sk are all distances from no to nd. If n0 is a root node, abbreviate S(n!n0) as Sn.
Def. 17 If NL¼ {n1,n2,…,nk}, 8n2NL makes •n\NL¼∅ and n•\NL¼∅, and 8no, nd2NL,
8sk2Sno

, 8sm2Snd
makes Max(sk)¼Max (sm), define NL as a “Layer” of the network, which

is the Max(sk)–th layer. Define r(no) as the “Order” of node no andr(ni)¼Max (sk).
Def. 18 Define D as the “Depth” of the network, and 8n2N, 8sk2Sn, D¼Max (sk).
Def. 19 Define E as the “Span” of the network, while NL(i )¼ {n1(i ),n2(i ),…,nk(i )} is the node set
of the i-th node layer, i¼1, 2, …, D and E¼Max [k(i)].
Def. 20 DefineNa[La as a “Path” from node n1 to nd, whileNa¼ {n1,n2,…,nk}, La¼ {l1, l2,…, lk},
li¼ (ni,ni+1)2La, i¼1, 2, …, k�1, and lk¼ (nk,nd).
Def. 21 If 9smakes nd2 (no
•)s. Define no to nd as “Reachable.” If 8smakes nd 62 (no

•)s, define no to
nd as “Unreachable,” and can be marked ass(no!nd)¼∞.
Def. 22 If s(no!nd)>1 and s(no!nd) 6¼∞, define no as the “Offspring node” of nd; nd is the
“Ancestor node” of no, and they are “Lineal relative nodes.” If s(no!nd)¼∞ and no, nd are
not brother nodes, define no and nd as “Collateral relative nodes.”
2.2 Structural Rules

In order to use the network to perform model validation, we must define rules to regulate
its structure and operation. The rules below should be followed when use the factor space
network to validate simulation models.

Rule 1 If n2N, then •n[n• 6¼∅. If l2L and l¼ (n1,n2), then n1 6¼∅ and n2 6¼∅. (There is no
isolated node or link in the factor space.)
Rule 2 IfN0¼ {n j•n¼∅}, then d(N0)¼1 and N0�N. (There is only one root node in the factor
space.)
Rule 3 If n2N, t(n)¼ "sufficient" and l¼ (n,nd)2L, then t(l)¼ "sufficient". (The link which starts
from a sufficient node is a sufficient link.)
Rule 4 If n2 eN, then l¼ n, ndð Þ 2 eL. (The link which has a source of uncertain node is an un-
certain link.)
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Rule 5 If nr 2 eN, c(nr)¼0, Nc¼ {n1,n2,…,nk}, 8nc2Nc makes nc to nr reachable, and 8ns 2 N̂
makes nc to ns unreachable, then 8nc2Nc makes c(nc)¼0. (If the offsprings of a rubbish node
have no certain ancestors, they are all rubbish nodes.)
Rule 6 If nr 2 eN, c(nr)¼0, lrb ¼ nr, nið Þ 2 eL, and lre ¼ ni, nrð Þ 2 eL, then c(lrb)¼c(lre)¼0. (The uncer-
tain link which starts from or ends with a rubbish node is a rubbish link.)
2.3 Graphic Illustration

In order to express the factor space network visually, we define the necessary graph ele-
ments to provide a graphic illustration. The graph element set is mapped with all definitions
and follows the rules. Fig. 4 shows an example of the graphic illustration of the factor space.

The graphic illustration is explained below:

(1) Use single-lined figure (circle or rectangle) to present a regular node, double-lined figure
to present sufficient node and a double-lined round-cornered rectangle to present the
inherited node.

(2) Mark the node name or number in the node figure, and mark the node value and the
transit condition outside nearby.

(3) Use a directional line segment to present the link, and use the line end to present the link
type. The solid arrow end presents a regular link, circle end presents a sufficient link,
double-arrow end presents an ultralink, equality-sign end presents an equivalent link,
FIG. 4 An example of the graphic illustration of the factor space.
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slash-sign end presents a contradictory link, hollow arrow end presents a traced link, and
the slash-signed circle end presents an inherited link.

(4) Mark the attribute by the link. To avoid intersection of links, fold the link and mark the
source and target node at the folded link.

(5) Use a solid-lined figure to present a certain element, and use a dot-lined figure to present
an uncertain element.

2.4 Credibility Aggregation

Dynamic elements (uncertain and sufficient node/link) affect the structure of the factor
space. The credibility aggregation cannot be performed unless the network is static, which
means the dynamic elements have to be analyzed first.

Because the destination of a traced link has no effect on the value of its origin, the traced
links do not contribute to credibility aggregation. The origin of a traced link usually repre-
sents the model input or output, where we can perform similarity analysis to get partial cred-
ibility directly. When going through the factor space downwards, the credibility aggregation
stops when the tracing links appear.

When the dynamic analysis is done, the credibility aggregation can be achieved by the fol-
lowing procedure:

(1) Go through the factor space downwards, and stop at the destinations of traced links.
Perform similarity analysis by comparing the simulation and real-world outputs, and get
partial credibility on these nodes after result unification. Generally, the partial credibility
can be achieved by

C nð Þ¼ 1�kO nð Þ�O n0ð Þk
kO n0ð Þk

����
I nð Þ¼I n0ð Þ

(3)

where I(n) and O(n) are the simulation input and output of the node, I(n
0
) and O(n

0
) are the
corresponding real-world input and output, and k �k represents the norm of the variant.
According to the technique used, C(n) can be achieved by statistics analysis, time domain
analysis, or frequency domain analysis methods together with their result unification
formulas.

(2) If the destination of the traced link is lack of real-world output, then go down along
the path further to find a node whose real-world output is valid, and get the value of
the node by similarity analysis. The partial credibility of the upper node which has no
real-world output can be achieved by error analysis via the computational process of the
model:

C n2ð Þ¼ 1�kf 2�C n1ð Þð Þ �O n1ð Þð Þ� f O n1ð Þð Þk
kO n2ð Þk (4)
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where n1 is the node which has real-world output, C(n1) is its partial credibility, and O(n1) is
its simulation output. n2 is the node which has no real-world output, C(n2) is its partial
credibility, and O(n2) is its simulation output. f is the computational function of the model
from n1 to n2.

(3) Use appropriate algorithm to aggregate the total credibility on the root node, by gathering
the partial credibility on the destinations of the traced links along the decomposition paths
of factor space:

C¼ f vi, vi+ 1,…, vi+ kð Þ (5)

where C is the total credibility; vi�vi+k are the partial credibility on the destination nodes of

the traced links; f is the aggregation function. f can be the method of taking the minimum, and
weighted average, etc., and can be different across the layers in factor space. Take the
weighted average method as an example. The partial credibility of a node in the path of links
other than a traced link can be achieved by

vi ¼
Yd

s¼1

ws �
Xp

k¼1

vk �wk � ckð Þ+ 1�v0i
� � �

Xq

n¼1

vn �wnð Þ
" #

Xp

k¼1

wk +
Xq

n¼1

wn ¼ 1;ws ¼ 0; vs < a lsð Þ
1; vs � a lsð Þ

� (6)

where vi is the value of a node ni in the path of links other than traced link; vk is the value of

certain and uncertain child nodes of ni; ck is the transit condition of an uncertain child node;wk

is the regular weight of the child node; p is the number of child nodes; vi
0
is the value of suf-

ficient child node of ni; vn is the value of shadow child nodes of ni; wn is the regular weight of
the shadow child node; q is the number of shadow child nodes; ws is the “ultraweight” of the
ultralink which ends with ni; vs is the value of the ultralink origin; a(ls) is the acceptability
threshold of the ultralink; and d is the number of ultralinks.

Because the value of a shadow node is 0, Formula (6) can be simplified as

vi ¼
Yd

s¼1

ws �
Xp

k¼1

vk �wk � ckð Þ (7)

The total credibility of the root node can be aggregated by
v0 ¼
Xq

i¼1

vi �
Yki

m¼1

wm �
Yki;p

m¼2;r¼1

wm,r � cm
 !" #

wm,r ¼ 0; vm,r < a lm,rð Þ
1; vm,r � a lm,rð Þ

� (8)

where v0 is the value of the root node n0; vi is the partial credibility on node ni of traced link

destination; q is the number of the traced link destination; wm is the regular weight of the
ancestor node of ni; ki is the ancestor node number of ni;wm, r is the ultraweight of the ultralink
on the path from ni to n0; p is the ultralink number; vm, r is the value of ultralink origin; a(lm, r) is
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the acceptability threshold of the ultralink; and cj is the transit condition of the uncertain
ancestor node of ni.
2.5 Priority Analysis

Because of the existence of ultralink, the destination of traced link has priority in the factor
space network. Priority analysis can be realized by the fact that the bigger the possible discard
of subnetwork is, the higher the priority of the node owns. Because the shadow node value is
0, it is no need to analyze the priority of shadow nodes.

Set L
_� L, 8 l_2 L

_
, t l

_� 	
¼ }ultra}; set L

_

i � L
_
, L
_

i 6¼∅ as the ultralink set which is on the path

from ni to n0; if it satisfies Condition 1: 8 l_i 2 L
_

i makes v b l
_

i

� 	� 	
< a l

_

i

� 	
and Condition 2:

8 l_2 L
_^ l

_62L_i makes v b l
_� 	� 	

� a l
_� 	

, then the priority of node ni is

p nið Þ¼ d Nsð Þ+ d Nrð Þ (9)

where p(ni) is the priority of ni,Ns is the node set which needs to be validated if Condition 1 is

true, and Nr is the node set which needs to be validated if both Conditions 1 and 2 are true. If
L
_

i ¼∅, then d(Ns)¼0, and Formula (9) can be simplified as

p nið Þ¼ d Nrð Þ (10)

3 TECHNIQUES OF MODEL VALIDATION

We usually use appropriate techniques (similarity analysis methods) to achieve partial
credibility on the destination of traced links in the factor space network. By the analysis mech-
anism, techniques can be categorized into “qualitative analysis” and “quantitative analysis.”
If the simulation and observed data are plenty, it is natural to perform quantitative analysis
rather than qualitative one. This section discusses the quantitative analysis.

The destination of traced links is usually an output of the model, whatever it is a final one
or an intermediate one. By the nature of the output, it can be categorized into “static
performance” and “dynamic performance” of themodel. Static performance is time invariant,
and suitable to be analyzed by statistics analysis methods. Dynamic performance is time var-
iant, and suitable to be analyzed by time domain and frequency domain analysis methods.

It has to be stated that any output of a model has more than one series of simulation data
under different conditions. All these series of data contribute to reflect the model behavior. So
it is more likely that a similarity analysis method is used more than once on the same node in
the factor space, or even more than one method is used to get a comprehensive result.
3.1 Data Preprocessing

In most cases, the simulation and observed data cannot meet the requirements of the sim-
ilarity analysis method, which makes that they have to be preprocessed before the
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comparison. Generally, there are three kinds of data preprocessing methods: singular value
elimination, time series alignment, and moving average filtering. Moreover, singular value
elimination and hypothesis test of statistics analysis need the data accords with normal
distribution.
3.1.1 Normality Test

There are two typical normality test methods: W test (Shapiro-Wilk test) and D test
(D0 Agostino test). The two methods have different statistical quantities.

(1) W test (Rahman and Govindarajulu, 1997)

Suppose x1, x2,…, xn is the samples from population X and sequenced as x1�x2,…,�xn. n
is the volume of the samples and n<50. For the hypothesis ofH0 :X is normally distributed by
N(μ,σ2) and H1 :X is not normally distributed, use the statistical quantity below to perform
a test:

W¼

Xm

i¼1

ai,n xn+ 1�i�xið Þ
" #2

Xn

i¼1

xi�xð Þ2
(11)

where m is the biggest positive integer which is less than or equal to n/2 and x is the average

value of xi series. ai, n is the calculation parameter, and it can be acquired in the table which
provides data for each of the sample volume from 1 to 50. Given the significance level α, the
rejection region of the hypothesis is W�Wα. In other words, if W > Wα the population X is
normally distributed, where Wα can be obtained by a W test lookup table.

(2) D test (D’Agostino et al., 1990)

Suppose x1, x2,…, xn are the samples frompopulationX, n is the volume of the samples. For
the hypothesis of H0 :X is normally distributed by N(μ,σ2) and H1 :X is not normally distrib-
uted, use the statistical quantity below to perform a test:

D¼

Xn

i¼1

i�n+ 1

2


 �
xi

ffiffiffi
n

pð Þ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

xi�xð Þ2
s (12)

The approximate, normalized random variant of D is
Y¼
ffiffiffi
n

p
D�0:28209479ð Þ
0:02998598

(13)

Given the significance level α, the rejection region of the hypothesis is Y�Yα/2, where

Yα/2 can be get by a table look-up.
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3.1.2 Singular Value Elimination

There are two typical singular value elimination methods: Pauta method and Grubbs
method. Both the methods require that the data population is normally distributed.

(1) Pauta method (Gao et al., 2014)

Suppose x1, x2, …, xn is the samples from population X which is normally distributed by
N(μ,σ2), n is the volume of the samples. The average value of the samples is x. The standard
deviation can be calculated as

s¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

xi�xð Þ2

n�1

vuuut
(14)

Given the sample deviation Δxl ¼ xl�x, l¼1, 2,…, n, if |Δxl | >3s then treat xl as a singular

value. Because if n�10 any xi will satisfy |Δxi | �3s, the Pauta method is usually used when
n>10.

(2) Gubbs method (Grubbs, 1950)

Suppose x1, x2,…, xn are the samples from population X, which is normally distributed by
N(μ,σ2), n is the volume of the samples. The average value of the samples is x, and the sample
deviation is Δxi ¼ xi�x, i¼1, 2, …, n. The singular value can be determined by

|Δxi|> k n, αð Þσ (15)

α is the significance level, which shows that the probability of the error exceeds	kσ. α is usu-

ally selected as 0.01 or 0.05. k is determined by n and α, and can be get by a table look-up. σ is
the variance of the sample.
3.1.3 Time Series Alignment

Usually the simulation and the observed data series are not mappedwith each other by the
time stamp or other common physical quantity on the x-axis. However, the typical time do-
main analysis methods require that the two series are aligned and each of the data is paired,
such as TIC and GRA (gray relational analysis) (Deng, 1995). In this case, time series align-
ment has to be performed, which mainly uses the Lagrange interpolation (Golub and Ortega,
1993) to pair the two series.

Suppose the value of a real function f(x) in the interval [a,b] is yi¼ f(xi), i¼0, 1, 2, …, n. To
estimate the value of f(x) on a point x in the interval [a,b], search in the polynomial classMn to
find y(x)2Mn and let yi¼ f(xi), i¼0, 1, 2, …, n. Use y(x) as the estimation of f(x). Call x is the
interpolation point and y(x) is the interpolation polynomial. It can be proved that y(x)2Mn is
unique.

Use Li(x), i¼0, 1, 2, …, n to present a polynomial of degree n, which satisfies

Li xj
� �¼ 0, i 6¼ j

1, i¼ j

�
, i, j¼ 0,1,2,…,n (16)
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We can make an interpolation function as
Li xð Þ¼ x�x0ð Þ x�x1ð Þ⋯ x�xi�1ð Þ x�xi+ 1ð Þ⋯ x�xnð Þ
xi�x0ð Þ xi�x1ð Þ⋯ xi�xi�1ð Þ xi�xi+ 1ð Þ⋯ xi�xnð Þ (17)

Then the Lagrange interpolation polynomial is
y xð Þ¼
Xn

i¼0

f xið ÞLi xð Þ (18)

3.1.4 Moving Average Filtering

Most of the frequency domain analysis methods require that the two datasets are smooth,
such as the windowed spectrum estimation and maximum entropy spectrum estimation.
However, the simulation and observed data are not smoothmost of the time.Moving average
filtering (Smith, 2013) is a low-pass filtering method, which picks up m sample data contin-
uously before and after the current sample point, and calculates the moving average value of
all points by sequence to eliminate the glitch interference.

Suppose the time series data y(t) is formed by the certain part f(t) and the uncertain part e(t).
Selectm and letm¼2n+1. Pick upm sample data before and after a sample point yi, i¼n+1, n
+2,…,N�n, and use the arithmetic average value of them as the filtered value fi to eliminate
the interference of ei, as the formula shows:

fi ¼ yi ¼ 1

2n+ 1

Xn

j¼�n

yi+ j, i¼ n+ 1,n+2,…,N�n (19)

The two ends of yi (i¼1, 2,…, n, N�n+1,…, N) cannot be filtered by Formula (19), and it

has to be added by some means. The moving average filtering of Formula (19) is actually an
equal weighted average method. However, the nearer the sample data goes from yi, it has
more effect, and on the contrary it has less effect. So the sample points in the filtering interval
[i�n, i+n] have different weights on influencing the filtered valueyi:

fi ¼ yi ¼
Xq

j¼�p

wjyi+ j, i¼ p+ 1,p+2,…,N�q,
Xq

j¼p

wj ¼ 1 (20)

wherewj is the weight coefficient. p, q are any of the positive integers less thanm, andm¼p+q

+1. If p¼q¼n and wj¼1/(2n+1), Formula (20) turns into Formula (19). Practically, engineers
usually use equal weighted center smoothing with p¼q¼2�5, or unequal weighted smooth-
ing with p¼q¼2�3.
3.2 Statistics Analysis

Statistics analysis methods are mainly used to validate time-invariant outputs. They can
get the primary characteristics of the time-invariant output which reflects the behavior of
the physical quantity being validated. When the simulation is run multiple times, the statis-
tical performance of the output approaches to the behavior of the model. Basically, there are
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two types of statistics analysis methods frequently used in model validation: parameter
estimation and hypothesis test. Usually the methods require that the data population is
normally distributed.

3.2.1 Parameter Estimation

Point estimation is mostly used to perform parameter estimation. Take the moment esti-
mation (Linton, 2017) as an example. Mostly the population of time-invariant simulation
and observed data are normally distributed. Suppose the mean value μ and the variance
σ2>0 of the population are unknown but exist. If n!∞, the order-k moment of the sample
converges to the order-k moment of the population, which makes

μ1 ¼E Xð Þ¼ μ
μ2 ¼E X2

� �¼D Xð Þ+ E Xð Þ½ 
2 ¼ σ2 + μ2

�
(21)

Then we can induce
μ¼ μ1
σ2 ¼ μ2�μ21

�
,

μ1 ¼ a1 ¼ 1

n

Xn

i¼1

Xi

μ2 ¼ a2 ¼ 1

n

Xn

i¼1

X2
i

8
>>><

>>>:

(22)

μ̂¼ a1 ¼X

σ̂2 ¼ a2� a21 ¼
1

n

Xn

i¼1

X2
i �X

2 ¼ 1

n

Xn

i¼1

Xi�X
� �2

8
><

>:
(23)

The result shows that themean value and variance of the sample are the estimation ofmean

value and variance of the population. Similarly, we can derive the same result for the max-
imum likelihood estimation. So inmodel validation, we can calculate themean value and var-
iance of the simulation and observed data, and compare them to determine the likelihood of
whether they belong to one population. Moreover, we can also use interval estimation
(DeGroot and Schervish, 2011a) to do the same thing.

3.2.2 Hypothesis Test

Usually we use parameter hypothesis test in model validation, which requires that the
population is normally distributed. There are four types of parameter hypothesis test
methods: u test, t test, χ2 test, and F test. These four methods are used according to the dif-
ferent condition of the population parameter. Take u and t test (mean value tests) as examples.

(1) u test (DeGroot and Schervish, 2011b)

Suppose there are populationX�N(μ1,σ1
2) andY�N(μ2,σ2

2). x1, x2,⋯, xn1
is the sample from

X and its volume, mean value, and variance are n1,x,s
2
1. y1, y2,⋯, yn2

is the sample from Y and
its volume, mean value, and variance are n2,y,s

2
2.

If the variances of the two populations are known as σ1, σ2, we can test the hypothesis
H0 :μ1¼μ2. If H0 is valid, u is normally distributed by N(0,1). Given a confidence level α,
the border value uα/2 can be determined by table look-up, which makes



u¼ x�y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ21
n1

+
σ22
n2

s

P uj j � uα=2
� �¼ α

8
>>>>><

>>>>>:

(24)

If we know that a physical output of the model is normally distributed and the variance of
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the simulation and real-world output are σ1, σ2 (usually σ1¼σ2), with a given simulation and
observed data samples, we can calculate themean value of them. If ju j�uα/2, it means that the
simulation output is not similar enough to the “real” world, and vice versa.

(2) t test (DeGroot and Schervish, 2011c)

If the variances of the two populations are unknown, we can test the hypothesisH0 :μ1¼μ2.
If H0 is valid, t is distributed by t(n1+n2�2). Given a confidence level α, the border value tα/
2(n1+n2�2) can be determined by a table lookup, which makes

t¼ x�y

Sw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1
+

1

n2

r

Sw ¼ n1�1ð Þs21 + n2�1ð Þs22
n1 +n2�2

P tj j � tα

2

n1 +n2�2ð Þ
8
<

:

9
=

;
¼ α

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

(25)

By a given simulation and observed data samples, we can calculate the mean value and

variance of them. If j t j�tα/2(n1+n2�2), it means the simulation output is not similar enough
to the “real” world, and vice versa.
3.3 Time Domain Analysis

Time domain analysis deals with time-variant physical output of the model which has a
gradually changing curve in the X-Y plane. Usually the X-axis presents the time, and the
Y-axis presents the quantity of the physical output. There are twomajor time domain analysis
methods: TIC and GRA. They examine the distance or gradient between two data curves
point by point, and use it as the error norm to calculate the similarity.

(1) TIC method (Kheir and Holmes, 1978)

The TIC method is an abbreviation of the Theil inequality coefficient, which uses an in-
equality coefficient called TIC to present the error norm between two data curves. Suppose
there are two time series of X¼ {x1,x2,…,xn} and Y¼ {y1,y2,…,yn}, we use the normalized
mean square error as the error norm to present the difference between two time series, like
the formula
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ρ X, Yð Þ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

xi�yið Þ2
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

xi
2

s

+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

yi
2

s (26)

It presents a normalized distance error between two curves. If ρ¼0 it shows that the

two time series are totally equal. On the contrary, if ρ¼1 it shows that the two time series
are totally unequal. So the function of TIC is monotone decreasing. Because the distribu-
tion of ρ cannot be determined, engineers usually use the threshold of 0.3 to judge the
similarity between the two time series. If ρ�0.3, the two series are treated as “similar
enough.”

(2) GRA method (Deng, 1995)

GRA is abbreviated from gray relational analysis, which was proposed by Deng Junlong. It
uses the gray relational degree to present the changing trend (distance, direction, speed, etc.)
of the two series. Usually the GRA uses the distance and gradient to measure the relational
degree.

Suppose X0¼ {x0(1),x0(2),…,x0(n)} is an observed time series, and Xi¼ {xi(1),xi(2),…,xi(n)}
is the multiple simulation data series. There are several kinds of gray relational degree. The
Deng’s relational degree is the earliest proposed:

γ X0,Xið Þ¼ 1

n

Xn

k¼1

γ x0 kð Þ, xi kð Þð Þ

γ x0 kð Þ, xi kð Þð Þ¼
min

i
min

k
x0 kð Þ�xi kð Þj j+ ρmax

i
max

k
x0 kð Þ�xi kð Þj j

x0 kð Þ�xi kð Þj j+ ρmax
i

max
k

x0 kð Þ�xi kð Þj j

(27)

where jx0(k)�xi(k)j is the absolute difference of X0 and Xi at moment k,

min i mink x0 kð Þ�xi kð Þj j is the minimum difference of poles, and max i maxk x0 kð Þ�xi kð Þj j is
the maximum difference of poles. ρ is the discrimination coefficient. ρ2 [0,1] and ρ is usually
set to 0.5.

The modified relational degree uses a combined function to reduce the end error of Deng’s
relational degree:

γm X0,Xið Þ¼ γ X0,Xið Þ� αRm + 1�αð ÞRe½ 


Rm ¼ 1

N

XN

k¼1

|x0 kð Þ�xi kð Þ|
|x0 kð Þ|+ ε

Re ¼ |x0 Nð Þ�xi Nð Þ|
|x0 Nð Þ|+ ε

8
>>>>>>><

>>>>>>>:

,ε¼ E jX0j½ 
 x0 kð Þ< 0:01
0 x0 kð Þ� 0:01

�
(28)

where α2 [0,1] is a balance coefficient which is often selected as 0.5. Rm is the mathematical

expectation of relative error. Re is the relative error of end moment. N is the volume of data
series. ε is the compensation factor.
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3.4 Frequency Domain Analysis

Frequency domain analysis deals with time-variant physical output of the model which
has a dramatically changing curve in the X-Y plane. Usually the X-axis presents frequency,
and the Y-axis presents the power spectral density of the physical output. There are twomajor
frequency domain analysis methods: windowed spectrum estimation andmaximum entropy
spectrum estimation. They examine the power spectral density between two data curves, and
use the F test to determine whether the two series are similar enough.

(1) Windowed spectrum analysis (Montgomery and Conard, 1980)

The prerequisite of a spectrum analysis is that the two time series are stationary. If not, they
have to be processed by some method first, such as the moving average filtering.

Suppose {Xt}¼ {Xt; t2N} is a general stationary series with the average value of EXt¼μ, and
its autocovariance function rx(t, t+k) is only relevant to the time interval k. Mark the average
value and autocovariance function as μx and rx(k). The spectral density function can be
expressed as

Sx ωð Þ¼
X+∞

k¼�∞
rx kð Þe�ikω, ω2 �π, π½ 
,

X∞

k¼0

rkj j<∞ (29)

where {rk} is the autocovariance function series of the stationary series. If the stationary series

{Xt}¼ {Xt; t2N} is ergodic, the ensemble average of the sample can be substituted by the time
average. Use the Fourier transform of r

_
x kð Þ, we can achieve the estimation of Sx(ω):

S
_

x ωð Þ¼
XN�1

k¼�N + 1

r
_
x kð Þe�ikω ¼ 1

N

XN

l¼1

xle
�iωl

�����

�����

2

¼ IN ωð Þ, �π<ω< πð Þ (30)

where IN(ω) is the periodogram, which is not a consistent estimate of the spectral density. Al-

though the average value is convergent to the real value, the variance does not tend to be zero.
It can be proved that, if we use 2N�1 r

_
x kð Þ to estimate the spectral density, nomatter how big

the N is, the variance of the periodogram is always not less than the average square of the
estimated value, which is E2[I(ω)].

So the end influence of r
_
k to the estimation of spectral density must be reduced. One of the

easiest ways is omitting some end parts, which means to add a window to r
_
x kð Þ. Generally,

define the window function w(k) as

w kð Þ¼ 0 |k|�M
1 k¼ 0

�
, |w kð Þ|� 1,w kð Þ¼w �kð Þ (31)

Then after adding the window function, the estimation of spectral density S
_

x ωð Þ is
S
_

x ωð Þ¼
XM

k¼�M

w kð Þr_x kð Þe�ikω,ω2 �π, π½ 
 (32)

whereM is the cutoff point or maximum delay, which is often set as
ffiffiffiffi
N

p
or

ffiffiffiffi
N3

p
. w(k) is called
as the time window or the delay window, whose width is 2M+1.
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(2) Maximum entropy spectrum estimation (Theodoridis and Cooper, 1981)

Burg adopted the concept of entropy and proposed the maximum entropy spectral es-
timation. Its main idea is that preserve the information out of the measuring interval as
best as possible, and make prediction extrapolation to the area out of the sample data. The
principle is when using the known autocorrelation function to make extrapolation to the
unknown autocorrelation function, the entropy of the system probability space should be
maximal.

If {xt, t2Z} is normally stationary, the entropy can be calculated as

HX ¼ 1

2
log 2πeð Þ+ 1

4π
I Sð Þ

I Sð Þ¼
Zπ

�π

logS ωð Þdω

8
>>>>><

>>>>>:

(33)

where I(S) is called as the “spectral entropy.” Obviously the bigger the spectral entropy is, the

more the randomness of the time series. This is consistent with the original definition of en-
tropy. Thenmaximumentropy spectrum estimation can be expressed as: find an estimation of
power spectral density S

_
ωð Þ and make the spectral entropy I(S) maximum. This problem can

be solved by the Lagrange multiplier method.
It can be proved that for the normally distributed random process, the maximum entropy

spectrum estimation is equivalent to the spectral estimation of the AR (auto-regressive)
model, which makes

S
_

n ωð Þ¼ σ2

1 +
Xn

k¼1

φke
�jωk

�����

�����

2
(34)

where (φ1,φ2,⋯,φn,σ
2) satisfies the Y-W (Yule-Walker) formula:
Rn

1

φ1

⋮

φn

2

6666664

3

7777775

¼

σ2

0

⋮

0

2

6666664

3

7777775

Rn ¼

r 0ð Þ r 1ð Þ ⋯ r nð Þ
r 1ð Þ r 2ð Þ ⋯ r n�1ð Þ
⋮ ⋮ ⋱ ⋮

r nð Þ r n�1ð Þ ⋯ r 0ð Þ

2

6666664

3

7777775

> 0 (35)

Maximum entropy spectral estimation needs to find the parameter (φ1,φ2,⋯,φn,σ
2).
Levinson-Durbin proposed a fast recursion algorithm to solve the problem:

φ 1ð Þ
1 , σ 1ð Þ
� 	2
 �

, φ 2ð Þ
1 , φ 2ð Þ

2 , σ 2ð Þ
� 	2
 �

,⋯ φ nð Þ
1 ,⋯, φ nð Þ

n , σ nð Þ
� 	2
 �

(36)

where the superscript represents the recursion times. The Levinson-Durbin recursion for-

mula is
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φ kð Þ
k ¼�

r kð Þ+
Xk�1

i¼1

φ k�1ð Þ
i r k� ið Þ

σ k�1ð Þð Þ2

φ kð Þ
i ¼φ k�1ð Þ

i +φ kð Þ
k φ k�1ð Þ

k�1 , i¼ 1,2,…,k�1

σ kð Þ� �2 ¼ 1� φ kð Þ
k

� 	2 �
σ k�1ð Þ� �2

σ 0ð Þ� �2 ¼ r 0ð Þ

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

(37)

Levinson-Durbin method is fast and convenient. It can be proved that when the spectral

density is smooth, the method can achieve an estimation of the spectral density with excellent
precision. However, when the spectral density has sharp peaks, the Levinson-Durbinmethod
usually cannot discriminate them or will have peak offsets in the estimation.

(3) The compatibility test of the spectral estimation

After using the spectral estimation to obtain the spectral density estimation S
_

ωð Þ, we need
to perform the compatibility test to determine if the two samples of simulation and observed
data belong to the similar population. If the spectral density of {xt} is S(ω), and its estimation is
S
_

ωð Þ, for the windowed spectrum estimation Jenkins andWatts proved that when {xt} is nor-
mally distributed the formula below comes into existence, which shows that rS

_
ωð Þ=S ωð Þ is χ2

distributed (DeGroot and Schervish, 2011d) by the degree of freedom r:

rS
_

ωð Þ=S ωð Þ! χ2r (38)

Given the two data series of {xt} and {yt}, t¼1, 2,…,N; Sx(ω) and Sy(ω) are the spectral den-_ _

sity of them, respectively, and Sx ωð Þ and Sy ωð Þ are the spectral density estimation achieved
by windowed spectral estimation, with the hypothesis H0 :Sx(ω)¼Sy(ω), giving the formula

F¼ S
_

x ωð Þ
S
_

y ωð Þ
! F r, rð Þ

r¼ 2N

M

Z ∞

�∞
w uð Þ2du

8
>>>>><

>>>>>:

(39)

where N is the series length, w(u) is the window function, andM is the maximum delay. Fur-

ther we can obtain the formula of F test (DeGroot and Schervish, 2011e):

P
S
_

x ωð Þ
S
_

y ωð Þ
< Fα=2,r,r

2

4

3

5[ S
_

x ωð Þ
S
_

y ωð Þ
> F1�α=2,r,r

2

4

3

5

8
<

:

9
=

;
¼ α (40)

Fα/2, r, r and F1�α/2, r, r can be obtained by table-lookup, and α is usually set as 0.01–0.05. When
_ _ _ _

Sx ωð Þ=Sy ωð Þ< Fα=2,r,r or Sx ωð Þ=Sy ωð Þ> F1�α=2,r,r, the hypothesis should be denied, which
means the power spectral density of the two data series are not consistent. Otherwise, the
two data series have acceptable similarity. Engineers usually select the concerned frequency
bands and make compatibility test on each of the frequency points in the bands.
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4 RESULT UNIFICATION OF MODEL VALIDATION

Inevitably, different techniques adopt different metrics to present the similarity between
simulation and observed data. For example, the hypothesis test achieves a Boolean result
of acceptance or rejection, but the TIC analysis achieves a rational number in [0,1] interval
with the monotone decreasing. The resultant forms are totally different. This problem causes
difficulty in the credibility aggregation of the simulation model. The result has to be
transformed into a unified description throughout the nodes in the factor space.

The result after unification needs to realize the following.

(1) Unified range: The result after unification must have the range of [0,1].
(2) Monotonically increasing: The result after unification must have a monotonically

increasing characteristic, which means 0 represents totally incredible
and 1 represents completely credible. The bigger the number is, the more credibility
it has.

(3) Unified amplitude: The results after unification must have the same credibility extent
according to the nature of the techniques used. This guarantees that the aggregation is
rational.

In order to satisfy the three principles, the result unification formula must be derived
by the nature of each technique. Here, we derive and propose some result unification
formulas for statistics analysis, time domain analysis and frequency domain analysis
methods.

4.1 Statistics Analysis Result Unification

We mainly talk about the hypothesis test of statistics analysis methods. If the alternative
hypothesis is accepted, it means a small probability event happens. In this case, we can con-
sider that the partial credibility is zero. If the original hypothesis is accepted, the level of the
partial credibility should be discriminated. We can use the probability of false acceptance β to
regulate the hypothesis test result into credibility description. Use 1�β as the partial credi-
bility when the original hypothesis is accepted.

Use t test as an example to explain the solving process of 1�β. Suppose that μ1 and μ2 are
the mean value of simulation data population and reference data population, respectively.
Build the hypothesis of H0 :μ1¼μ2, H1 :μ1 6¼μ2, μ1¼μ2+δ. Regarding the simulation and
observed sample, X and Y are the mean value, s1

2 and s2
2 are the variance, n and m are the

volume, and δ is the maximum error that can be tolerated. The partial credibility can be
derived as

1�β¼ 2�T T�1 1�α

2

� 	
� δ

Sw

ffiffiffiffiffiffiffiffiffiffiffiffi
1

m
+
1

n

r

2

664

3

775�T T�1 1�α

2

� 	
+

δ

Sw

ffiffiffiffiffiffiffiffiffiffiffiffi
1

m
+
1

n

r

2

664

3

775

S2ω ¼
n�1ð Þs21 + m�1ð Þs22

n+m�2

8
>>>>>>><

>>>>>>>:

(41)
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4.2 Time Domain Analysis Result Unification

We mainly talk about TIC and GRA of the time domain analysis.

(1) TIC method

Practically there are two kinds of application of TIC in similarity analysis. One is the
non-segmental calculation and the other is the segmental calculation. Regarding the
non-segmental calculation, as the result of TIC has the range of [0,1] but with amonotonically
decreasing characteristic, we can use 1�ρ to make the unification from the TIC result to
partial credibility, where ρ is the Theil inequality coefficient.

Regarding segmental calculation, if there are n segments, and m segments have the ρ
exceeded threshold 0.3, it means the engineers can discriminate the difference ofm partitions
in total n partitions between simulation and observed data series. Consider the discrimination
as an event A, and its probability is θ. Suppose the appearance times of A is X, then X belongs
to the binomial distribution b(n,θ):

P X¼mj θð Þ¼Cm
n θ

m 1�θð Þn�m (42)

Consider θ is a random quantity, which can be described by a probability density distri-

bution. Use the posterior Bayes estimation to calculate the distribution, which combines
the prior Bayes estimation of the probability density and the information of the current sam-
ple. We can derive the mathematical expectation of θ:

E θð Þ¼
Z1

0

θh θj xð Þdθ¼m+ 1

n+ 2
(43)

This value is the correction of the discrimination in segmented TIC. The higher the

value is, the lower the similarity achieved. So we can construct the result unification for seg-
mented TIC:

CTIC ¼
1�m+ 1

n+2
, experienced

1�m

n
, nonexperienced

8
><

>:
(44)
(2) GRA method

The GRAmethod uses the gray relational degree γ to represent the similarity between two
data series. γ has the range of [0,1] and a monotonically increasing characteristic, which is
consistent with the definition of credibility. In order to regulate the acceptability threshold
of GRA to the acceptability criteria of the model, we can use the result unification:

CGRA ¼
1�Ct

1� γt
γ� γtð Þ+Ct, γ 2 γt, 1½ 

Ctγ

γt
, γ 2 0, γt½ 


8
>><

>>:
(45)
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where γt is the acceptability threshold of GRA, and Ct is the acceptability criteria of the model.

Generally, we can set γt¼0.8, Ct¼0.7. The result unification can be illustrated as in Fig. 5.
4.3 Frequency Domain Analysis Result Unification

The result unification from frequency domain analysis to partial credibility is actually the
work of F test result unification. Given the two data series of {xt} and {yt}, t¼1, 2,…,N, S

_

x ωð Þ
and S

_

y ωð Þ are the spectral density estimation, and δ is themaximum tolerance of error, we can
make the original hypothesis H0 and the alternative hypothesis H1 as

H0 :
Sy ωð Þ
Sx ωð Þ¼ 1,H1 :

Sy ωð Þ
Sx ωð Þ 6¼ 1,

Sy ωð Þ
Sx ωð Þ¼ 1 + δ (46)

If β is the false acceptance and α is the significance level, we can derive 1�β as
1�β¼ 1�F F�1 1�α

2

� 	
1 + δð Þ

� 	
+ F

1

F�1 1�α

2

� 	 1 + δð Þ

0

B@

1

CA (47)

If the final F test of the frequency domain analysis shows that the alternative hypothesis

is accepted, the partial credibility of the similarity analysis is zero. Otherwise, if the original
hypothesis is accepted, the partial credibility should be calculated by the above formula.
5 DEFECT TRACING OF MODEL VALIDATION

From the view of simulation engineers, validation should have the ability to locate model
defects, if the conclusion of the credibility assessment is negative. In other words, the model
credibility needs to have the traceability. Actually, the quantitative credibility of a rational
number in [0,1] alone has no traceability. The number is helpful to determine the credibility
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level of the model, but cannot reveal the parts of the model that cause the credibility
deficiency.

The factor space network gives the opportunity to locate model defects. A factor space pos-
sesses partial credibility on intermediate nodes, which can be used to trace the origin of the
credibility deficiency. Here, we propose a method which combines orthogonal design and
Sobol’s method to find defect points out of traced links (Zhang et al., 2013), and use path trac-
ing to find defect points on these links.
5.1 Orthogonal Design

Orthogonal design (Su et al., 2016) is a mathematical statistics method, which is used to
solve the optimization of multifactor-multilevel experiments. According to the partial cred-
ibility in the factor space, categorize factors into two sets: negative factor set P1¼ {pi2P j0�v(-
si)<δ} and positive factor set P2¼ {pi2P jδ�v(si)�1}. δ represents the acceptability criteria.
Without loss of generality, suppose P1¼ {p1,p2,…,pn1

} and P2¼ {pn1+1,pn1+2,…,pn}, 1�n1�n.
According to the negative factors p2, p3, …, pn1

, select a suitable 2-level orthogonal table
La(2

c), which satisfies c�n1�1. Draw n1�1 columns from La(2
c) optionally, and construct

an extend table:

LT2a 2n1ð Þ¼ 1ð Þa�1 La 2n1�1
� �

2ð Þa�1 La 2n1�1
� �


 �
(48)

Set the two levels of negative factor pi as v(si) and δ, i¼1, 2, …, n1, and we can obtain 2a

experiments by the extended table L2a

T (2n1). The concerned negative factor p1 is located in
the first column.

Use the credibility aggregation formula to calculate the total credibility by different exper-
iments, and we can obtain the results of: v1(S), v2(S), …, v2a(S). |vi+a(S)�vi(S) | , i¼1, 2, …, a,
reflects the credibility change when the negative factor p1 is improved. We can use the nor-
mally distributed membership cloud (Fig. 6) to determine the deficiency level of p1.

Use |vi+a(S)�vi(S)| to calculate a five-dimensional vectorMi¼ (mi1,mi2,mi3,mi4,mi5),mij�0,
i¼1, 2, …, a, j¼1, 2, 3, 4, 5. Table 1 shows the parameters of each deficiency level in the
membership cloud.

The deficiency level of the negative factor p1 can be determined by the formula below and
the maximum membership principle.

M¼
Xa

i¼1

mi1=a,
Xa

i¼1

mi2=a,…,
Xa

i¼1

mi5=a

 !

(49)

5.2 Sobol’s Method

Sobol’s method (Sobol, 1990) is a global sensitivity analysis method based on variance de-
composition, which was proposed by I.M. Sobol in 1990. Its principle is to decompose the
multivariant function into a constant, single-variant function and a combined-variant



TABLE 1 The Parameters of Each Deficiency Level in the Membership Cloud

Defect Level

Parameter

Expectation Entropy Hyper Entropy

Slight 0.015 0.005 0.0005

Moderate 0.030 0.005 0.0005

Medium 0.045 0.005 0.0005

Heavy 0.060 0.005 0.0005

Severe 0.075 0.005 0.0005

Slight

M
em

be
rs

hi
p

Moderate Medium Heavy Severe

Degree of  variability

0.0400.0350.0300.0250.0200.0150.0100.0050

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.045 0.050 0.055 0.060 0.065 0.070 0.075 0.080 0.085 0.090

FIG. 6 The normally distributed membership cloud of the credibility deficiency level.
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function, and use the variance of multivariant function and each subitem to calculate the sen-
sitivity of different variants.

If themodel is modified to rectify the negative factor, it is possible to influence other factors
related to themodified one. This requires sensitivity analysis on the negative factor. Themore
the sensitivity achieved, themore the possibility that it will have a negative influence on other
related factors. Take the negative factor p1 as an example.

First determine the factor set related to p1:M(p1)¼ {pi2P jsi\ s1 6¼∅}\{p1}, i¼1, 2,…, r, and
set the sampling interval of coupled factors pi as: [(1�τ)�v(si), (1+ τ)�v(si)], pi2M(p1). τ
represents the amplitude and usually τ¼10%.

In the sampling interval, use the Latin hypercube design (Shields and Zhang, 2016) to ob-
tain the sample set. In order to guarantee the precision of sensitivity, the sample number
should be no less than 200 times of the number of coupled factors. First make two separate
Latin hypercube samplings, and get two experiment plans An�r and Bn�r, where n represents
the experiment times and r represents the number of coupled factors. Replacing the j-th
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column in plan A with the j-th column in plan B makes AB
j , and replacing the j-th column

in plan B with the j-th column in plan A makes BA
j . Then the first-order sensitivity Si and

the total sensitivity STi
of pi are

Si ¼Di=D
STi

¼ 1�D�i=D
(50)

In Formula (50), D is the total variance of the credibility aggregation function; Di
is the parameter variance of pi; and D� i is the irrelevant variance of pi. They can be
calculated by

D¼ 1

n

Xn

k¼1

f 2 Að Þk�
1

n

Xn

k¼1

f Að Þk
" #2

Di ¼ 1

n

Xn

k¼1

f Að Þkf B
j
A

� 	

k
� 1

n

Xn

k¼1

f Að Þk
" #2

D�i ¼ 1

n

Xn

k¼1

f Að Þkf A
j
B

� 	

k
� 1

n

Xn

k¼1

f Að Þk
" #2

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

(51)

In Formula (51), f(x) represents the total credibility aggregated by the experiment plan x,

and the subscript k represents the k-th experiment in the plan.

Usually we take the total sensitivity as the criteria to determine whether the coupled factor
pi is sensitive to the total credibility, with a threshold of 0.6. If it is sensitive, when the origin
factor (negative factor) p1 is rectified, the engineers should pay attention to the chain reaction
of the coupled factorpi.
5.3 Path Tracing

Because the total credibility is achieved by the factor space network, which has traced links,
we can use the partial credibility on the validation path of negative nodes to realize defect
tracing. The path tracing can be performed by the following procedures:

(1) Use orthogonal design and Sobol’s method to locate the negative factors other than the
destination of traced links.

(2) Along the validation path in the factor space which contains the negative
factors, make further validation to get partial credibility on the destination of
traced links, and determine if it is a negative node by comparing with the acceptability
criteria.

(3) If there is a destination of iteration paths, make validation of its initial input, related
constants, and other variants which are irrelevant to the iteration variant (Fang
et al., 2017b).

(4) When the validation path reaches the leaf node, the defect tracing is over.
(5) Collect all the negative nodes in the tracing, and take the nodes with the lowest order as

the origin which induces the deficiency of the model credibility.
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6 CASE STUDY

In this section, we use a 6-DOF (degree of freedom) flight vehicle model to present how the
validation approach is applied, and explain the process of factor space building, similarity
analysis, result unification, credibility aggregation, and defect tracing. The example shows
a walk-through of the method in a practical way.
6.1 Introduction to the Model

The 6-DOF flight vehicle model is the fundamental part of aerodynamic simulation sys-
tems, whose credibility is critical to the correct application of the simulation. The model is
mainly formed by the vehicle’s dynamic and kinetic differential equations, which are used
to achieve the position and attitude of the vehicle:

dx

dt
¼Vx ¼V cosθcosψv

dy

dt
¼Vy ¼V sinθ

dz

dt
¼Vz ¼�V cosθsinψv

8
>>>>><

>>>>>:

m
dVx

dt
+ gx


 �
¼�CxqSM +Px

m
dVy

dt
+ gy


 �
¼Cα

y α+ αwð ÞqSM +Py

m
dVz

dt
+ gz


 �
¼�Cβ

z β + βwð ÞqSM +Pz

8
>>>>>><

>>>>>>:

(52)

gx, gy, gz
� �¼ f x, y, z, R0x, R0y, R0z,A0, B0, J, fM, Ra

� �
(53)

Cx, C
α
y , C

β
z

h i
¼ f Ma, x, y, z, R0x, R0y, R0z,A0, B0, fM, Ra

� �
(54)

α+ αw, β + βw½ 
 ¼ f x, y, z, ϕ, ψ , γ, R0x, R0y, R0z,A0, B0,Vw,Aw

� �
(55)

dϕ

dt
¼ωy1 sinγ +ωz1 cosγ

dψ

dt
¼ 1

cosϕ
ωy1 cosγ�ωz1 sinγ
� �

dγ

dt
¼ωx1 � tanϕ ωy1 cosγ�ωz1 sinγ

� �

8
>>>>><

>>>>>:

(56)

Jx1
dωx1

dt
+ Jz1 � Jy1
� �

ωy1ωz1 ¼Mx1

Jy1
dωy1

dt
+ Jx1 � Jz1ð Þωx1ωz1 ¼My1

Jz1
dωz1

dt
+ Jy1 � Jx1
� �

ωx1ωy1 ¼Mz1

8
>>>>><

>>>>>:

Mx1 ¼ d00γ3x€δγ + d00γ3z€δγ

My1 ¼ b00ψ3x€δψ + b00ψ3z€δψ

Mz1 ¼ b00ϕ3x€δϕ + b00ϕ3z€δϕ

8
>><

>>:
(57)

€δϕ, €δψ , €δγ
� �¼ f x, y, z, ϕ, ψ , γ,Vx,Vy,Vz,ωx1 ,ωy1 ,ωz1 ,…

� �
(58)

The model uses the dynamic and kinetic differential equations of the mass center motion

(Eqs. 52–55) to calculate the flight vehicle’s position. In the equations there are self-iteration
variants of x, y, z, and cross iteration variants of ϕ, ψ , γ, which use the last moment value to
solve the algebraic equations of the current moment.



TABLE 2 The Physical Meaning of the 6-DOF Flight Vehicle Model Variants

Variant Meaning Variant Meaning Variant Meaning

x, y, z Position q Dynamic pressure Ma Mach

ϕ, ψ , γ Attitude angle SM Sectional area Vw Wind velocity

Vx, Vy,
Vz

Velocity Px, Py, Pz Thrust Aw Wind direction

gx, gy,
gz

Gravity acceleration R0x, R0y,
R0z

Radius vector ωx1
, ωy1

,
ωz1

Rotational angular
velocity

m Mass A0 Launch direction Jx1, Jy1, Jz1 Rotary inertia

θ Trajectory tilt angle B0 Launch point latitude Mx1
, My1

,
Mz1

Rotating moment

ψv Trajectory deflection
angle

J Gravitational potential
coefficient

δϕ, δψ, δγ Rudder angle

Cx, Cy
α,

Cz
β

Aerodynamic
coefficient

fM Earth gravitational
constant

d
00
3x
γ , d

00
3z
γ

b
00
3x
ψ , b

00
3z
ψ

b
00
3x
ϕ , b

00
3z
ϕ

Moment coefficient of
inertia

α+αw
β+βw

Velocity
transformation angle

Ra Earth equator radius
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The model uses the dynamic and kinetic differential equations of the around mass center
motion (Eqs. 56–58) to calculate the flight vehicle’s attitude. In the equations there are self-
iteration variants of ϕ, ψ , γ and cross iteration variants of x, y, z, which use the last moment
value to solve the algebraic equations of the current moment.

The physical meaning of the variants in Eqs. (52)–(58) are illustrated in Table 2.
6.2 The Factor Space of Model Validation

Build the factor space network of model validation, as shown in Fig. 7.
The factor space shows that the model’s credibility is aggregated by the partial credibility

of mass center motion and aroundmass center motion, which are presented by the position x,
y, z and attitude ϕ, ψ , γ. The aggregation function is taking the minimum when the partial
credibility is not less than 0.8. If any of the partial credibility is less than 0.8, the total cred-
ibility of the model is forced to be zero.

Go down along the paths of x, y, z and ϕ, ψ , γ, we can see that the partial credibility of x, y, z
is relevant to ϕ, ψ , γ and itself and the partial credibility of ϕ, ψ , γ is relevant to x, y, z and itself.
This is a cross iteration, which makes it impossible to aggregate the total credibility upwards
from the leaf nodes by conventional methods like AHP.

Meanwhile, because of the cross iteration between mass center motion and around mass
center motion, when the total credibility is unacceptable, it is very likely to get an unaccept-
able partial credibility on all the nodes of x, y, z and ϕ, ψ , γ. This brings the difficulty of model



FIG. 7 The factor space of the 6-DOF flight vehicle model validation.
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defect tracing. Because the comparison of a single-step simulation and observed data ismean-
ingless to a continuous simulation, it is useless to locate the defect points by break-point
analysis.
6.3 Similarity Analysis and Result Unification of Model Validation

First validate the final output of the model: x, y, z and ϕ, ψ , γ. Table 3 shows the simulation
and observed data of the flight vehicle’s position x, y, z.

The curves of the flight vehicle’s position are shown in Fig. 8:
Use modified gray relational degree (Formula 28) to validate the nodes of x, y, z, and use

result unification formula of GRA (Formula 45) to convert the results into partial credibility.
We get the results of: C(x)¼0.662, C(y)¼0.601, C(z)¼0.636. It is obvious that all the partial
credibility is less than the acceptability threshold a¼0.8 of the ultralinks. So the total credi-
bility of the flight vehicle model is forced to zero.

Table 4 shows the simulation and observed data of the flight vehicle’s attitude ϕ, ψ , γ.
Curves of the flight vehicle’s attitude are shown in Fig. 9:
Also use modified gray relational degree to validate the nodes of ϕ, ψ , γ, and use the result

unification formula of GRA to convert the results into partial credibility. We get the results of:
C(ϕ)¼0.694, C(ψ)¼0.514, C(γ)¼0.531. The result is also unacceptable. Thus we need make
defect tracing to locate what causes the model’s credibility deficiency.
6.4 The Defect Tracing of Model Validation

According to the path tracing procedure (explained in Section 5.3), go downwards through
the factor space and validate the nodes other than x, y, z and ϕ, ψ , γ, and meanwhile validate
the initial input of x, y, z and ϕ, ψ , γ.
TABLE 3 The Simulation and Observed Data of the Flight Vehicle’s Position x, y, z

Time (s)

Simulation

x(m)

Observed

x’(m)

Simulation

y(m)

Observed

y’(m)

Simulation

z(m)

Observed

z’(m)

0.100 150.757 150.755 20 799.960 20 799.960 0 0

0.200 294.326 294.315 20 799.850 20 799.850 0 0

0.300 437.884 437.861 20 799.670 20 799.670 0 0

…… …… …… …… …… …… ……

25.100 34 685.460 34 323.240 16 460.620 16 592.120 118.865 114.550

25.200 34 814.140 34 448.610 16 422.750 16 555.970 119.754 115.399

…… …… …… …… …… …… ……

49.800 62 228.430 60 814.420 1 368.693 2 639.631 403.060 392.137

49.900 62 315.850 60 897.090 1 287.806 2 567.734 403.434 392.968

50.000 62 402.990 60 979.460 1 206.855 2 495.826 403.761 393.779



(A) (B)

(C)

FIG. 8 Curves of the flight vehicle’s position: (A) position x, (B) position y, and (C) position z.

TABLE 4 The Simulation and Observed Data of the Flight Vehicle’s Position ϕ, ψ , γ

Time (s) Simulation ϕ(°) Observed ϕ
0
(°) Simulation ψ(°) Observed ψ

0
(°) Simulation γ(°) Observed γ

0
(°)

1.000 �3.125 �3.125 �0.363 �0.363 �6.201 �6.207

2.000 �5.449 �5.439 �0.567 �0.567 �5.072 �5.087

3.000 �6.219 �6.203 �0.555 �0.555 �4.543 �4.559

…… …… …… …… …… …… ……

26.000 �20.101 �19.837 �0.455 �0.463 �1.568 �1.598

27.000 �20.536 �20.255 �0.46 �0.468 �1.543 �1.574

…… …… …… …… …… …… ……

48.000 �33.716 �32.407 �0.189 �0.351 4.198 1.979

49.000 �34.601 �33.213 �0.009 �0.256 6.753 3.475

50.000 �35.459 �33.999 0.271 �0.127 10.814 5.431



(A) (B)

(C)

FIG. 9 Curves of the flight vehicle’s attitude. (A) Pitch angle ϕ, (B) Yaw angle ψ , (C) Roll angle γ.
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Given the initial values of the simulation and observed data, it is proved that x(0)¼x
0
(0)¼0,

x(0)¼x
0
(0)¼0, x(0)¼x

0
(0)¼0, ϕ(0)¼ϕ

0
(0)¼0, ψ(0)¼ψ

0
(0)¼0, γ(0)¼ γ

0
(0)¼0. Here we take the

wind speed Vw and rudder angles δϕ, δψ, δγ as an example to explain the defect tracing. Other
nodes have been proved to be acceptable.

Table 5 shows the simulation and observed data of the wind speed Vw.
The curve of the wind speed is shown in Fig. 10:
Use the modified gray relational degree to validate the node of Vw, and use the result uni-

fication formula of GRA to convert the results into partial credibility. We get the result of:
C(Vw)¼0.733. Given a¼0.8 as the acceptability criteria, the partial credibility of the wind
speed is unacceptable. This shows that it is a defect point that causes the credibility failure
of x, y, z.

Further we analyze the node of rudder angles δϕ, δψ, δγ. Table 6 shows the simulation and
observed data of the rudder angles.



TABLE 5 The Simulation and Observed Data of the Wind Speed Vw

Time (s)

Simulation

Vw (m/s)

Observed

Vw

0
(m/s)

0.100 13 13

0.200 13 13

0.300 13 13

…… …… ……

25.100 16.37 15.564

25.200 16.601 15.785

…… …… ……

49.800 18.386 22.279

49.900 18.187 22.014

50.000 17.987 21.748

FIG. 10 The curve of the wind speed.
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The curves of the rudder angles are shown in Fig. 11:
Also use the modified gray relational degree to validate the nodes of δϕ, δψ, δγ, and use the

result unification formula of GRA to convert the results into partial credibility. We get
the results of: C(δϕ)¼0.659, C(δψ)¼0.419, C(δγ)¼0.699. The result is also unacceptable. This
shows that they are defect points that cause the credibility failure of ϕ, ψ , γ.



TABLE 6 The Simulation and Observed Data of the Rudder Angles δϕ, δψ, δγ

Time (s) Simulation δϕ(°) Observed δϕ
0
(°) Simulation δψ(°) Observed δψ

0
(°) Simulation δγ(°) Observed δγ

0
(°)

1.000 �0.22 �0.216 1.824 1.823 �0.007 0.001

2.000 0.039 0.042 5.306 5.298 �0.017 �0.018

…… …… …… …… …… …… ……

26.000 �0.169 �0.147 8.064 8.461 �0.046 �0.042

27.000 �0.15 �0.13 7.561 7.966 �0.041 �0.038

…… …… …… …… …… …… ……

48.000 �0.009 �0.008 1.28 1.744 �0.009 �0.008

49.000 �0.011 �0.008 1.345 1.835 �0.012 �0.01

50.000 �0.014 �0.008 1.438 1.937 �0.017 �0.012

(A) (B)

(C)

FIG. 11 The curves of the flight vehicle’s rudder angles: (A) Elevator angle δϕ, (B) Rudder angle δψ, and
(C) Aileron angle δγ.
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6.5 Result Analysis of Model Validation

According to the results achieved by the approach for model validation, the partial cred-
ibility of the flight vehicle’s position and attitude is less than the acceptability threshold
a¼0.8. Thus, the total credibility of the model is zero, which means the model is not
acceptable.

Go downwards through the factor space shown in Fig. 7, in the branches of the flight ve-
hicle’s position and attitude, we find the initial values of the cross iteration variants x(0), y(0),
z(0) and ϕ(0), ψ(0), γ(0) are all correct, but the partial credibility of wind speedVw and δϕ, δψ, δγ
are unacceptable.

Thus, we canmake the conclusion that given the prerequisite of themodel’s computational
functions are all correct, the deficiency of the total credibility is caused by the submodels of
wind speed and rudder angles. This gives the model developers a direction to rectify the
model and make it better to be applied in simulation. Moreover, because the rudder angles
are outputs of the control model, the developers should also make an inspection of the flight
vehicle’s control model.
7 SUMMARY AND DISCUSSION

Model validation is the core of VV&A, which contributes to the simulation credibility
assessment to a great extent. It involves various types of work, and needs appropriate
techniques in different fields. Model validation is a system engineering but not a single job.

The major objective of model validation is to achieve the credibility and locate the defect
factors which induce the possible deficiency of credibility. In order to accomplish a thorough
model validation and get a comprehensive credibility, we have to build a factor space that
reveals the model structure and computational mechanism. A network view is getting more
and more adopted than an AHP hierarchy.

Similarity analysis is the most convincing way to measure how close the mode represents
the real-world object in the application domain. Different techniques are selective on different
nodes in the factor space, and the analysis result needs unification to a partial credibility de-
scription, which allows credibility aggregation to achieve the total credibility of the model.

The traceability of themodel credibility is an issuewhich is often neglected but actually one
of the most concerned thing by the simulation developer and the user. The orthogonal design
and Sobol’s method can provide a way to locate the negative factor and assess its defect level.
Meanwhile, we can perform the path tracing in the factor space to find model defect origins.

However, there are somemore specific problems remained.How to use and selectmultiple
model execution data to perform the similarity analysis? How to realize a white-box valida-
tion when some intermediate outputs of the model are unobservable in the real world? How
tomake a similarity analysis when the output is in some special form (e.g., PWM; pulse width
modulation)? How to develop a synthetic environment which is open to provide services to
model validation instead of separated tools? The questions need future work to have better
and practical answers.

Model validation is the essence of VV&A, and its story never ends.



160 7. A PRACTICAL APPROACH TO MODEL VALIDATION
References

D’Agostino, R.B., Albert, B., D’Agostino, J.R.B., 1990. A suggestion for using powerful and informative tests of nor-
mality. Am. Stat. 44 (4), 316–321.

DeGroot, M.H., Schervish, M.J., 2011a. Probability and Statistics, fourth ed. Pearson, Boston, MA, pp. 485–493.
DeGroot, M.H., Schervish, M.J., 2011b. Probability and Statistics, fourth ed. Pearson, Boston, MA, pp. 587–596.
DeGroot, M.H., Schervish, M.J., 2011c. Probability and Statistics, fourth ed. Pearson, Boston, MA, pp. 576–586.
DeGroot, M.H., Schervish, M.J., 2011d. Probability and Statistics, fourth ed. Pearson, Boston, MA, pp. 626–630.
DeGroot, M.H., Schervish, M.J., 2011e. Probability and Statistics, fourth ed. Pearson, Boston, MA, pp. 599–603.
Deng, J.L., 1995. Grey relational analysis: a new method for multivariate statistical analysis. J. Statist. Res.

3, 43–48.
Fang, K., Ma, P., Yang, M., 2012. The MAD network for virtual protocol systems credibility evaluation. Comput.

Integr. Manuf. Syst. 18 (5), 1054–1060.
Fang, K., Yang,M., Zhang, Z., 2011. In: TheMAD network for credibility evaluation of computer simulation.Proceed-

ings of 13th IEEE Joint International Computer Science and Information Technology Conference, Chongqing.
vol. 03. pp. 636–642.

Fang, K., Zhou, Y., Zhao, E., 2017a. Discussion for the factor space of simulation model validation. J. Syst. Eng.
Electron. 39 (11), 2592–2602.

Fang, K., Zhou, Y., Zhao, K., 2017b. Validation method for simulation models with iteration operation. J. Syst. Eng.
Electron. 39 (2), 445–450.

Gao, Z.Q., Liu, B., Gao, H., Meng, X.W., et al., 2014. The correlation between the cylinder pressure and the ion current
fitted with a Gaussian algorithm for a spark ignition engine fuelled with natural-gas-hydrogen blends. Proc. Inst.
Mech. Eng. D 228 (12), 1480–1490.

Golub, G., Ortega, J.M., 1993. Scientific Computing: An Introduction with Parallel Computing. Academic Press,
Boston, MA, pp. 91–135.

Grubbs, F.E., 1950. Sample criteria for testing outlying observations. Ann. Math. Stat. 21 (1), 27–58.
IEEE, 1997. Recommended Practice Guide for Distributed Interactive Simulation – Verification, Validation and Ac-

creditation. IEEE, USA, pp. 2–8.
Ke, F., Yang, M., Wang, Z., 2005. In: The HITVICE VV&A environment.Proceedings of 2005 Winter Simulation

Conference, Orlando, FL, USA. vol. V1-4. pp. 1220–1227.
Kheir, N.A., Holmes, W.M., 1978. On validating simulation models of missile systems. Simulation 30 (4), 117–128.
Li, H., Philip Chen, C.L., Yen, V.C., et al., 2000. Factor spaces theory and its applications to fuzzy information

processing: two kinds of factor space canes. Comput. Math. Appl. 40, 835–843.
Linton, O., 2017. Probability, Statistics and Econometrics. Academic Press, London, UK, pp. 151–174.
Montgomery, D.C., Conard, R.G., 1980. Comparison of simulation and flight-test data for missile systems. Simulation

34 (2), 63–72.
Rahman, M.M., Govindarajulu, Z., 1997. A modification of the test of Shapiro and Wilk for normality. J. Appl. Stat.

24 (2), 219–236.
Saaty, T.L., 1997. In: Modeling unstructured decision problems: a theory of analytical hierarchy.Proceedings of the

First International Conference on Mathematical Modeling. vol. V1. pp. 59–77.
Shields, M.D., Zhang, J.X., 2016. The generalization of latin hypercube sampling. Reliab. Eng. Syst. Saf. 148, 96–108.
Smith, S.W., 2013. Digital Signal Processing: A Practical Guide for Engineers and Scientists. Newnes, Amsterdam/

Boston, pp. 277–284.
Sobol, I.M., 1990. On sensitivity estimates for nonlinear mathematical models. Matem. Mod. 2 (1), 112–118.
Su, L.S., Zhang, J.B.,Wang, C.J., 2016. Identifyingmain factors of capacity fading in lithium-ion cells using orthogonal

design of experiments. Appl. Energy 163, 201–210.
Theodoridis, S., Cooper, D.C., 1981. Application of themaximumentropy spectrum analysis technique to signalswith

spectral peaks of finite width. Signal Process. 3 (2), 109–122.
Wang, P., 1992. Factor space and descriptions of concepts. J. Softw. (1), 30–40.
WfMC, 1995. The Workflow Reference Model. Available from: http://www.wfmc.org.
WfMC, 1996. Workflow Management Coalition Audit Data Specification. Available from: http://www.wfmc.org.
Zhang, L., 2011. In: Model engineering for complex system simulation. Keynote speech.58th CAST (Chinese Associ-

ation for Science and Technology) Forum on New Academic Views, October 15, Lijiang, Yunnan, China.

http://refhub.elsevier.com/B978-0-12-813543-3.00007-X/rf0010
http://refhub.elsevier.com/B978-0-12-813543-3.00007-X/rf0010
http://refhub.elsevier.com/B978-0-12-813543-3.00007-X/rf0015
http://refhub.elsevier.com/B978-0-12-813543-3.00007-X/rf0020
http://refhub.elsevier.com/B978-0-12-813543-3.00007-X/rf0025
http://refhub.elsevier.com/B978-0-12-813543-3.00007-X/rf0030
http://refhub.elsevier.com/B978-0-12-813543-3.00007-X/rf0035
http://refhub.elsevier.com/B978-0-12-813543-3.00007-X/rf0040
http://refhub.elsevier.com/B978-0-12-813543-3.00007-X/rf0040
http://refhub.elsevier.com/B978-0-12-813543-3.00007-X/rf0045
http://refhub.elsevier.com/B978-0-12-813543-3.00007-X/rf0045
http://refhub.elsevier.com/B978-0-12-813543-3.00007-X/rf0050
http://refhub.elsevier.com/B978-0-12-813543-3.00007-X/rf0050
http://refhub.elsevier.com/B978-0-12-813543-3.00007-X/rf0050
http://refhub.elsevier.com/B978-0-12-813543-3.00007-X/rf0055
http://refhub.elsevier.com/B978-0-12-813543-3.00007-X/rf0055
http://refhub.elsevier.com/B978-0-12-813543-3.00007-X/rf0060
http://refhub.elsevier.com/B978-0-12-813543-3.00007-X/rf0060
http://refhub.elsevier.com/B978-0-12-813543-3.00007-X/rf0065
http://refhub.elsevier.com/B978-0-12-813543-3.00007-X/rf0065
http://refhub.elsevier.com/B978-0-12-813543-3.00007-X/rf0065
http://refhub.elsevier.com/B978-0-12-813543-3.00007-X/rf0070
http://refhub.elsevier.com/B978-0-12-813543-3.00007-X/rf0070
http://refhub.elsevier.com/B978-0-12-813543-3.00007-X/rf0075
http://refhub.elsevier.com/B978-0-12-813543-3.00007-X/rf0080
http://refhub.elsevier.com/B978-0-12-813543-3.00007-X/rf0080
http://refhub.elsevier.com/B978-0-12-813543-3.00007-X/rf0085
http://refhub.elsevier.com/B978-0-12-813543-3.00007-X/rf0085
http://refhub.elsevier.com/B978-0-12-813543-3.00007-X/rf0090
http://refhub.elsevier.com/B978-0-12-813543-3.00007-X/rf0095
http://refhub.elsevier.com/B978-0-12-813543-3.00007-X/rf0095
http://refhub.elsevier.com/B978-0-12-813543-3.00007-X/rf0100
http://refhub.elsevier.com/B978-0-12-813543-3.00007-X/rf0105
http://refhub.elsevier.com/B978-0-12-813543-3.00007-X/rf0105
http://refhub.elsevier.com/B978-0-12-813543-3.00007-X/rf0110
http://refhub.elsevier.com/B978-0-12-813543-3.00007-X/rf0110
http://refhub.elsevier.com/B978-0-12-813543-3.00007-X/rf0115
http://refhub.elsevier.com/B978-0-12-813543-3.00007-X/rf0115
http://refhub.elsevier.com/B978-0-12-813543-3.00007-X/rf0120
http://refhub.elsevier.com/B978-0-12-813543-3.00007-X/rf0125
http://refhub.elsevier.com/B978-0-12-813543-3.00007-X/rf0125
http://refhub.elsevier.com/B978-0-12-813543-3.00007-X/rf0130
http://refhub.elsevier.com/B978-0-12-813543-3.00007-X/rf0135
http://refhub.elsevier.com/B978-0-12-813543-3.00007-X/rf0135
http://refhub.elsevier.com/B978-0-12-813543-3.00007-X/rf0140
http://refhub.elsevier.com/B978-0-12-813543-3.00007-X/rf0140
http://refhub.elsevier.com/B978-0-12-813543-3.00007-X/rf0145
http://www.wfmc.org
http://www.wfmc.org
http://refhub.elsevier.com/B978-0-12-813543-3.00007-X/rf0160
http://refhub.elsevier.com/B978-0-12-813543-3.00007-X/rf0160


161FURTHER READING
Zhang, L., Shen, Y., Zhang, X., et al., 2014. In: The model engineering for complex system simulation.Proceedings of
the I3M Multiconference, September 10–12, Bordeaux, France.

Zhang, Z., Fang, K., Wu, F., et al., 2013. In: Detection method for credibility defect of simulation based on Sobol’
method and orthogonal design.Proceedings of the 2013 Asia Simulation Conference, Singapore.
Further Reading

Ke, F., Zhao, K., Zhou, Y., 2017. In: Amethod for obtaining the credibility of a simulationmodel.Proceedings of EMSS
(European Modeling & Simulation Symposium) 2017, Barcelona, Spain.

http://refhub.elsevier.com/B978-0-12-813543-3.00007-X/rf0165
http://refhub.elsevier.com/B978-0-12-813543-3.00007-X/rf0165
http://refhub.elsevier.com/B978-0-12-813543-3.00007-X/rf0170
http://refhub.elsevier.com/B978-0-12-813543-3.00007-X/rf0170
http://refhub.elsevier.com/B978-0-12-813543-3.00007-X/rf0175
http://refhub.elsevier.com/B978-0-12-813543-3.00007-X/rf0175




Model Engineering for Simulation

https://doi.org/10.1016/B978-0-12-813543-3.
C H A P T E R
8

Quantitative Measurements of Model
Credibility

Megan Olsen*, Mohammad Raunak*
*Department of Computer Science, Loyola University Maryland, Baltimore, MD, United States
1 INTRODUCTION

The field of modeling and simulation (M&S) has grown rapidly in usage and influence,
with computational simulations created to study many fields by computer scientists, engi-
neers, and experts in the studied domain such as natural science (physics, chemistry, biology,
etc.), computing, engineering, operations research, ecology, and social science. The 2016
Winter Simulation Conference, for example, had 20 tracks including 7 tracks focused on dif-
ferent fields to which simulation is applied. Government agencies, especially defense and the
defense-related industry, rely heavily on simulation of systems of all scales (FDA, 2010;
Zeltyn et al., 2011), and billions of dollars and human lives are dependent on the changes
made based on these studies.

A variety of M&S approaches are used in each domain, including system dynamics
models, models that focus on event-based changes to system state (discrete-event simulation
[DES]), and models that focus on autonomous entities interacting in a spatial environment
(agent-based model [ABM] or individual-based model). The choice of approach depends
on the type of system being studied and the purpose of the study. For instance, a hospital
could be studied using any of these approaches, such as an ABM to study crowd control
in hallways, or a DES to study flow of patients through an ED. Increasingly, models are
defined that are a hybrid of these techniques.

For a model to be used and trusted, it must be credible. There are many steps that contrib-
ute to building a credible model, including technical steps such as verification and validation
(V&V). There are also steps involving people such as ensuring that those in management or
decision-making positions understand the assumptions of the model, their involvement, and
the interactions between them and themodel developers (Law, 2015). This chapter focuses on
the technical aspect of building a credible model, specifically validation.
163 # 2019 Elsevier Inc. All rights reserved.
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164 8. QUANTITATIVE MEASUREMENTS OF MODEL CREDIBILITY
1.1 The Role of Verification and Validation in Modeling and Simulation

Models in general are developed to facilitate understanding and analysis of often large and
complex systems. Simulation models, in particular, are developed and utilized to study nat-
ural systems such as population mobility or cancer cell growth (Abbott, 2002); systems that
are yet to be built such asmissile defense or nuclear reactors (Ender et al., 2010); or systems for
which making changes in the real-life/runtime environment to study their impact is very ex-
pensive or dangerous, such as the process of patient care in a hospital ED (Raunak et al., 2009)
or automotive control (Ray et al., 2009). Whenever a simulation model is developed, it is
constructed with some purpose in mind. Often the objectives include better understanding
the dynamics of the system being modeled, or for performing “what-if” analyses to identify
optimum policy or resource allocation to be implemented on the real system.

A crucial step of any simulation-based study, whether the system under study (SUS) is me-
chanical/electrical, natural, or theoretical, is to ensure that the simulation model is credible,
as established by the process and results of verifying and validating the model. Establishing
model credibility thus includes that the model (a) is internally consistent with no known
errors (verification) and (b) mimics the SUS’s behavior to a level of confidence necessary
for making the model useful for its intended application (validation).

Without proper V&V, predictions with confidence cannot bemade about the SUS based on
simulation results. Validation in particular is a crucially important part of building confi-
dence in the results derived from a simulation model. In essence, verification is testing
how the model was built, and validation is assessing what has been modeled and whether
the model can sufficiently reproduce the behavior of the real system for its simulation pur-
pose. There are many steps within the M&S process where each must be applied to achieve
high confidence in the M&S (Balci, 2010).
1.2 The Simulation Validation Process

Researchers have studied the development of valid and credible simulation models for de-
cades, with a large part of this research effort focusing on the process and principles of V&V
(Sargent, 2011; Balci, 1998, 2010; Banks, 1998; Kleijnen, 1995; Law, 2015). The high-level activ-
ities of developing a simulation model (Fig. 1) begin with the study of the system in the real
world, which we refer to as the SUS. From the analysis of the SUS, a conceptual model is de-
veloped. There ismuch debate aboutwhat constitutes a conceptualmodel; to some it is a set of
planned abstractions, to others it is a model written using a formalism, and to many it is
System
under study 

Simulation
model 

Conceptual
model 

Analysis & modeling Realization

Operational validation

Experimentation 
and updatingCM validation

Construction

V&V

FIG. 1 The high-level steps of simulation development. The system under study is used as a reference for valida-
tion of both the conceptual model and the implemented simulation model. Verification ensures that the simulation
model correctly represents the conceptual model. Data validity is not shown.
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something in the middle and may include a number of documents (Bair and Tolk, 2013). For
this chapter, we assume that the conceptual model is a concrete artifact that includes the as-
sumptions and abstractions being used to design a model, as well as a working definition of
the structure and expected behaviors, as possible. Beyond that the format is irrelevant.

Although not shown in Fig. 1, ensuring the validity of the data used to run themodel is also
necessary. Sargent describes three processes for data validity: “(1) collecting and maintaining
data, (2) testing the collected data using techniques such as internal consistency checks, and
(3) screening the data for outliers and determining if the outliers are correct” (Sargent, 2010).
These steps must be performed before the data can be used.

The first set of model validation tests are performed to ensure that the conceptual model,
whatever form it is in, is consistent with the SUS it is intended to represent and the purpose
with which it is being created. Once a validated conceptual model exists, a software imple-
mentation of the conceptual model is constructed as the simulation model.

Before experiments can be performed on the simulation model with the expectation of de-
riving insights about the SUS, it must be both verified and validated as faults may occur dur-
ing the translation of the conceptual model to the computerized model. Such faults are
discovered and fixed using the usual software testing and verification techniques, benefiting
from many years of software testing and verification research (Bertolino, 2007). Operational
validation is performed to give credence to the computerized model as a valid model of the
SUS for the model’s purpose. This last set of validation is the most expansive (Sargent, 2010;
Banks, 1998; Balci, 1998).

More than 75 verification, validation, and testing (VV&T) techniques are presented in the
Handbook of Simulation for discrete-event-based simulation models, categorized into four
groups: informal, static, dynamic, and formal (Balci, 1998). Informal techniques, such as re-
views, walkthroughs, and inspection, are commonly used approaches for validating simula-
tion models. The dynamic techniques are useful primarily for verifying the simulation code
and are usually not directly applicable for model validation. The state of the art in validation
primarily includes such techniques as manual review and inspection, degenerative tests,
comparing with other models simulating the same SUS, and visualization. Additional dy-
namic techniques specifically for validation often rely on data from the SUS, and are preferred
when data are available (Sokolowski and Banks, 2010; Sargent, 2007). Standard operational
validation techniques include animation, face validation, results validation, Turing tests,
and comparisons to other models (Sargent, 2010).

Many standard validation techniques are not as easily applied to complex system simula-
tions, which are particularly difficult to validate (Taylor et al., 2013). Often expert knowledge
is the safest approach for validating these systems, and recent work has examined how to best
organize and utilize that knowledge (Reynolds, 2010; Reynolds and Wimberly, 2011).
Stochasticity is one of the primary sources of difficulty in complex system validation. One
recent approach to this problem is Bayesian Statistical Model Checking, which builds on pre-
vious statistical model checking algorithms and scales to larger problems ( Jha, 2010; Jha et al.,
2009). Robust generative validation has also been suggested, specifically for ABMs (Yilmaz
et al., 2011), which are generally both stochastic and complex. Additionally, metamorphic val-
idation can provide a pseudo-oracle when data of the real systemdoe not exist for comparison
(Raunak and Olsen, 2015). As Nicol points out, properly performing V&V is a real challenge
in M&S, but must be solved for the field to move forward (Taylor et al., 2013).
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1.3 The Need for Quantifying Model Credibility

Model credibility is acutely connected with the validation aspect of V&V activities
performed throughout the development and usage life cycle of a simulationmodel. However,
model validation-related activities have generally been characterized as a necessarily quali-
tative approach in the sense that there is no standard way to quantify the level of confidence
gained in the model through validation. In recent years, simulation experts have asked the
crucial question of whether the field of M&S, as it is now practiced, is sufficiently scientific.
One concern is the lack of reproducibility and reuse of simulation models, caused by issues
such as unavailable code, unclear validation, or poorly defined conceptual models. It is not
clear that all simulation practitioners believe that these goals are necessary for the field, but it
is generally agreed that a simulation’s results cannot be credible if the simulation is not val-
idated (Uhrmacher et al., 2016).

Another concern is to have unifying theories and frameworks throughout the M&S cycle.
One of the crucial areas of this cycle, validation of simulation models, has suffered from lack
of a rigorous standard. It is well accepted that validation of simulation models is difficult to
ascertain, especially in published papers where validation details are often not included
(Raunak and Olsen, 2014b; Fone et al., 2003). Moreover, validity is not usually independently
verified due to the lack of replication of simulation models (Taylor et al., 2013; Bair and Tolk,
2013; Uhrmacher et al., 2016). To trust the recommendations based on any simulation study, a
well-documented and communicated V&V effort is necessary. It is also a crucial part of
enabling the results of a simulation experiment to be replicated. If a simulation model cannot
be properly validated, then it is unlikely that its results will be easily reproduced if the model
is implemented in a different way.

To properly communicate and document the validation process, it is necessary to ascertain
how much validation has been performed. This assessment is crucial in answering a set of
related research questions: howmuch validation is sufficient, and when should one stop val-
idation activity on a simulationmodel? There is a parallel set of research questions in the soft-
ware testing community: how much testing is sufficient, and when to stop testing software?
That research has been successfully guiding the software testing community over the last few
decades, leading to the development of useful metrics such as statement coverage, branch
coverage, mutation coverage, and other structural coverage-based testing criteria (Zhu
et al., 1997). Useful metrics such as combinatorial coverage have also been developed to
measure the coverage of the input space of an application. All of these metrics and methods
lead to quantifying how much testing on a software system has been performed, and thus
determining how confident one can be about the software being fault-free.

In the area of M&S, there is a gap between the validation recommendations of researchers
and the actions of the rapidly growing population of simulation practitioners (Raunak and
Olsen, 2014b). Although there are simulations that are adequately validated, this is not true
for all. Without a metric to capture and communicate the level of validation performed on a
simulation model, and thus a quantified measure of the model credibility, it is difficult to
communicate if a model has achieved an appropriate level of confidence for decisions made
about the original system based on its findings. The rest of this chapter describes a process for
quantifying validation coverage to enable communication and documentation of the valida-
tion process and confidence level in the model’s correctness for increased model credibility,
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reproducibility, and reuse. After the process is described, two ABM examples and one DES
example are used to demonstrate its application.
2 A GENERIC FRAMEWORK FOR QUANTIFIED
VALIDATION COVERAGE

Many steps are required to obtain model credibility. Model validation is the most impor-
tant part of these steps requiring rigorous technical work, but it is often not well documented,
and therefore is the focus of this chapter. For any simulation model of reasonable complexity,
it is usually infeasible to perform complete (100%) validation. The scenario is no different in
the case of verifying software systems. It is well known and accepted that exhaustive testing,
testing with all possible input values and operating condition, is infeasible for any reasonably
sized software. Nevertheless, research in testing has led to quantitative measurements for in-
creasing confidence in the software systems being fault free. Similarly, in simulation model-
ing we must validate our models as best as possible with the challenges of resource
constraints in terms of time, money, and data. One crucial aspect of this effort is to properly
document the details of the validation performed in some standardized fashion.

To properly validate a simulationmodel, and to articulate aswell as quantify the validation
work, we must be able to determine the aspects of the SUS that can be validated within the
simulation model. This step is required regardless of the type of simulation model being val-
idated, or the way inwhich it was developed. The framework outlined in this chapter is based
on the fourmain properties shown in the experimental frame (Fig. 2): purpose, behavior, data,
and structure. The purpose guides us, defining why the model was built and what type of
questions may be asked of it. The behavior and structure of the model are based on that pur-
pose. Behaviors are essentially the observable external manifestation, which can be consid-
ered as pairs of input and its related output; given a certain state/input of the model, how
should it act? The structure is the internal design of the system, such as the steps of the system
or the components of the system. Data are viewed in two pieces: the data used to create the
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FIG. 2 The high-level validation process. We purposefully leave out the verification steps, and other steps toward
building a credible model that do not focus on validation, to avoid overwhelming the reader.
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model are validated through structural validation, and the data used to execute themodel are
validated using data validation. When we discuss data in this chapter, we will generally be
referring to the latter instance.

The difference between behavior and structure for validation may initially cause trouble
for some readers. Behaviors include any observable emergent information, such as the rate
in which patients are able to move through an ED in a discrete-event-based ED simulation,
or the way scent diffuses in the environment of an ABM of predator and prey. Structure in an
ABM refers to the underlying agent properties, environment, and agent interactions, whereas
structure in a DES includes the logical flow and details of the events, resources, their con-
straints, and interactions. The structure should ideally match the underlying structure of
the SUS, albeit some details are abstracted out in the model. Some structural elements can
be explicitly and independently validated through the conceptual model. The rest are vali-
dated indirectly through behavior validation. This difference is because structure invariably
affects the behavior, and thus behavior validation indirectly validates the structure. However,
to have full confidence in a model, performing indirect structure validation is not sufficient;
we need to also perform direct structural validation, where applicable, to ensure that the
model is correctly representing the processes and environment.

In Fig. 2, we show the high-level validation aspect of the simulation process, particularly to
highlight the relationship between structural, behavioral, and data validation. A more de-
tailed process of when to apply behavioral validation can be seen in Kl€ugl (2008), the
high-level simulation modeling process can be seen in Law (2015), and a detailed process
of V&V can be seen in Balci (2012). The experimental frame contains all information related
to the source system, including its data, purpose, behavior, and structure. Validation requires
referring back to this frame. The conceptual model is validated via structural validation, the
runnable simulation model is validated using operational validation that validates both be-
havior as well as its underlying structure, and then the model is calibrated and further val-
idated to ensure that calibration does not break the model. At the end of this process, we get a
model that is adequately validated for its purpose. Note that validation does not occur only at
the end, but also throughout the process. Whenever verification or validation fails on the sys-
tem, we return to themodel to make improvements or modifications and then the subsequent
steps are repeated. We do not show verification steps in Fig. 2 as they are not part of the con-
fidence calculation, which is the focus of this chapter. Nevertheless, verification is crucial to
ensure that the runnable model is credible in terms of its technical elements.

To calculate the level of confidence in the model, one has to consider all three levels in
which the model should be validated: behavior, structure, and data. Each level has a different
set of relevant validation techniques that are already in the literature, and will be discussed in
the following sections.
2.1 Structural Validation

The structure of a model is indirectly validated through behavioral validation, but for the
highest possible confidence in a model it should be directly validated as well. Forrester and
Senge (1980) recommend five of the tests listed in Table 1 for explicitly validating structure.
Althoughmany techniques have theword “verification” in the name, they are validation tests
as they compare the model to the real system.



TABLE 1 Proposed Ranking of the Most Common Structure Validation Techniques With Their Maximum
Possible Level of Confidence

Potential Creation

Technique (st) Acronym Confidence (c(st)) Data Other

Parameter verification PV 2 Yes No

Dimensional consistency DC 2 Yes No

Structure verification SV 3 No Yes

Extreme condition EC 3 No Yes

Boundary adequacy BA 4 Yes Yes

Notes: The first two tests are relevant for model creation data, the middle tests are relevant for other structural elements, and the last

test is relevant in both cases. The abbreviations are used in the later examples.
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Wecan consider two types of structure: data used todesign themodel (“creationdata,” not to
beconfusedwith inputdata for runningthesimulation), andstructuralelements thatarenotdata
such as process, interactions, environment, and abilities. Likewise, we can consider the valida-
tion techniques toeachapply tooneorboth typesof elements.Parameterverificationanddimen-
sional consistency tests validate the model creation data used for the design of the model. The
parameter verification test evaluates whether the values adequately represent the real system.
The dimensional consistency test can reveal incorrect structure assumptions when run with
the parameter verification test, and is another simple way to increase model confidence.

Structural verification and extreme condition tests analyze the environment, interactions,
process, and abilities in the structure. The structure verification test verifies that any structure
found in the model is also found in the source system, by comparison to the system’s orga-
nization, decision making, and assumptions. Generally the structure verification test is ini-
tially performed by the modeler, but for full confidence it should also be performed by an
expert on the real system (often known as a domain expert or subject matter expert). Extreme
condition tests at the structural level determine that the model can accept and likely function
with extreme values and scenarios; if it cannot, then a change in structure is needed.

The boundary adequacy test determines if the correct level of abstraction has been chosen
by analyzing both model purpose and model boundaries, which correlates to both types of
structural elements. Detailed discussion of these techniques can be found in Forrester and
Senge (1980). Most of these tests are focused on the conceptual model, as they check the ab-
stractions, assumptions, and data used to design the model as opposed to testing a running
simulation model as would be done via operational validation. The exception is extreme con-
dition tests, which in modern systems need to be run on an executable simulation model,
depending on the type of conceptual model and the problem being solved. This framework
supports extreme condition tests being run at different stages as appropriate for the model, at
the modeler’s discretion.

To have full confidence in the structural integrity and validity of a simulation model, all
structural validation tests should be successfully administered. However, like other stages of
the model development and experiments, there may be constraints that prevent a particular
structural validation test from being applied, or a scenario in which the test only validates
some aspects of the structure. In those cases, the confidence in the model must be calculated.

To calculate confidence in the structural integrity, we must determine the level of confi-
dence we have gained via our validation activities. Each structural validation technique
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may be applied with varying levels of success. In this case, each structural validation tech-
nique sti has the potential confidence level c(sti) attainable via successful application as shown
in Table 1. This confidence level is based on Forrester and Senge (1980) and Zengin and
Ozturk (2012); the scale of the numbers is not important, only their values relative to
each other.

Each structural validation test may validate a specific percentage of the model. For
instance, we may test all extreme conditions in our model, but perhaps only 80% of the ele-
ments were validated by this test. We have thus gained confidence in our model, but not full
confidence as we are aware of extreme condition test failures that must be fixed before
trusting the model’s results in all cases. To determine our overall confidence in the model
structure, let S¼ {s0, s1,…, sn} be the set of all structural elements to be validated, where each
si is either a model creation data element (s 2 SM) or not (s 2 SS); thus S¼ SM[SS. We deter-
mine to what extent each structural element has been validated via each relevant validation
test (stk) as a value v(si, stk) 2 [0, 1]. The calculation of the level of confidence we have achieved
via applying structural validation technique stk is p(stk) as shown in Eq. (1), where SK ¼ SM if
sti is amodel creation data technique, SK¼ SS if it is a procedural structure technique, or SK¼ S
if the technique is applicable to both structure types.

pðstkÞ¼

X
s2SK

vðs,stkÞ

js2 SKj : js2 SKj> 0

�1 : o:w:

8>><
>>:

(1)

If there are five structural elements that can be tested via extreme condition tests (ec), and

three of the elements are fully validated with extreme condition tests but two are only 50%
validated, then p(ec) ¼ 0.8. We propose that overall confidence in the structure of the model
may be quantified as in Eq. (2), where R represents the relevant structural validation tech-
niques, that is, R ¼ {stkjp(stk) 6¼ � 1}, and the potential confidence c(r), where r 2 R, is defined
as in Table 1.

sc¼ 100*

X
r2R

cðrÞ*pðrÞ
X
r2R

cðrÞ (2)

If all relevant tests are applied successfully to each structural element, we gain the highest

possible confidence in themodel’s structure (100%). If, as in our simple example, all structural
validation tests are fully passed except extreme condition tests which have a P value of .8,
then our overall confidence in the structure of this model is 95.7%. Recall that this confidence
value is in the correctness of the structure matching the source system, not the percentage of
the model that has been validated.
2.2 Behavioral Validation

To calculate our confidence in the behavioral validity of a model, we first determine the
behaviors of the model that need to be validated. We consider behaviors to encompass an
observable result from themodel, pairedwith the inputs or parameters that define the system
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that creates that output. In general, behaviors are the aspects of a simulation that most people
first consider when discussing validation, and are generally validated using operational val-
idation techniques.

To aid in determining the behaviors of a model, we propose utilizing the aspects of the rel-
evant modeling type as described in the next section for finding validatable elements. How to
define behaviors will vary depending on the type of simulation model being validated. Once
we have identified all behaviors that must be validated, we must determine the applicable
validation techniques for each of them. A single operational validation technique may apply
to many different behaviors, and each behavior will often be validated with more than one
applicable technique.

Not all validation techniques will contribute equally toward building confidence in the
simulation model. By applying any validation technique successfully, we increase our
confidence in the validity of the model. However, which validation technique(s) should be
applied for each behavior? We propose utilizing rankings such as those in Table 2. Each com-
monly accepted technique is listedwith a suggested relative level of confidence increase from
its successful application.

The proposed ranking is based on a survey of the most commonly used validation tech-
niques (Raunak and Olsen, 2014a), a discussion of their uses (Sargent, 2010), and the authors’
experience. We rate animation the lowest as it can be misleading and hide underlying issues,
but rank trace data and results validation the highest as they can be powerful techniques
when the required data exists. We rate expert validation (face validation, Turing test) slightly
below the validation involving data due to the potential for human error. We have ranked
metamorphic testing similar to the level of model comparison as it can be highly effective
in finding anomalies in the model. Like some other techniques listed in the table, metamor-
phic validation may not be easily applicable for all types of models. Additional techniques
exist and can be ranked as necessary given the purpose of the model. This ranking is
TABLE 2 Ranking of the Most Common Validation Techniques With the Maximum
Level of Confidence They Can Provide for a Given Behavior

Maximum

Technique Abbreviation Confidence

Animation A 3

Degenerate tests DT 4

Internal validity IV 5

Turing tests TT 5

Face validation (expert) FV 7

Sensitivity analysis SA 7

Metamorphic validation MV 8

Model comparison MC 8

Trace data TD 10

Results validation RV 10

Notes: The abbreviations are used in the later examples.
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subjective and used only for the purpose of illustration. More research and case studies from
the community will be needed to establish a more generally accepted ranking of validation
techniques.

Given a simulation model to validate, techniques are chosen based on their usefulness
in creating the highest possible confidence in the model. There may be more validation
techniques that are applicable than are necessary to achieve a reasonable level of high con-
fidence in the model. For the highest model confidence, however, we must apply every
applicable validation technique successfully. If it is not possible to apply all applicable
techniques for any reason, we can use the following process to calculate our level of
confidence.

The calculation of behavior confidence takes into account a simulation model’s behaviors,
the applicable validation techniques by behavior, and the successfully applied validation
techniques. Let B ¼ {b0, b1, …, bn} be the set of behaviors to be validated for a particular
simulation model, and T ¼ {t0, t1, …, tm} be the list of available validation techniques for op-
erational validation such as those in Table 2. Each of these elements has an associated confi-
denceweightingw(ti), defined as in Table 2. For bi, the weightw(bi) is determined based on the
impact of this behavior for model validation, and w(bi)> 0. For instance, a behavior may have
a very strong effect on overall validation, or may be almost trivial. In the simplest case all
behavior weights are equal.

When performing validation it is possible that a single validation technique is applied suc-
cessfully and validates multiple behaviors simultaneously. Therefore, a validation technique
must be paired with some set D�PðBÞ, where jDj� 1 and P(B) denotes the power set of B.
A validation technique ti may be used multiple times when validating a single simulation,
each time used to validate a different set of behaviors by focusing on a different aspect of
the simulation model and/or using different sets of available data or experts. We must con-
sider a single validation approach vi 2V as a triplet vi¼ hti, di, cii, where ti 2 T, di 2D is a set of
bjs, and ci is the confidence gain from applying ti to di. There can only be one ti 2 vi, as each
validation technique is considered independently, although it may validate more than one bi
with one application. Each bj and ti may be duplicated as many times as necessary in V. Fig. 3
demonstrates the relationship between v, t, and b.

The ci 2 vi represents the confidence gain from ti’s successful application. It is based on the
weight of each behavior in di represented as w(bj), and the weight of the validation technique
w(ti) as seen in Eq. (3). Therefore, higher importance behaviors contribute more to our con-
fidence in the system. Additionally, more powerful validation techniques contribute more
to our confidence than less powerful techniques.
b0 b1

b2

b3

b4

t0

t1
t3

t4

v0

v1 v2

v3

v4

t2b5

FIG. 3 A visualization of each element of a vi. Each ti is a validation technique, each bj is a behavior, each dotted
circle around a set of bj is a di, and each full shape is a vi. Note that each bj can be in multiple vi. The size of the shape
represents ci.



ci ¼wðtiÞ*
Xdij j

j¼0

wðbjÞ, where bj 2 di (3)

Recall that confidence is basedonwhat validation techniques are applied successfully. Each

1732 A GENERIC FRAMEWORK FOR QUANTIFIED VALIDATION COVERAGE
validation technique successfully applied raises our confidence in the validity of themodel. To
quantify this level we must define the highest possible confidence. We base the maximum
confidence on the potential validation approaches P¼ {v0, v1,…, vp}, where P�V; and which
validation approaches succeeded,A¼ {v0, v1,…, va}, whereA�P. We assume that any valida-
tion approach vi that succeeded, did so for all bj2 di. Finally,wemay calculate our confidence in
the behaviors across the entire simulation model bc as in Eq. (4).

bc¼ 100*

X
cijci 2 vi^vi 2AX
cijci 2 vi^vi 2P

(4)

Our level of confidence in the behavioral aspect of the simulation model is therefore a real

number, 0 � bc � 100, where 100 represents the highest possible confidence. Note that, just
like passing of all test cases in a test suite does not guarantee that a software is fault-free, con-
fidence in a simulation model does not equal correctness. Thus the confidence value does not
imply that the simulation model is correct. A confidence level of 100 implies that the simu-
lation model has been validated to the fullest extent possible by currently known techniques.
2.3 Data Validation

During the process of developing and experimenting with simulation models, we deal
with two types of data: the data used to build the model and the data used to run the model.
By the term data validity in this case, we refer to the validation of data used to run the model.
Data used for building the model are part of the model structure and thus validated through
structural validity.

We propose that “Goodness of Fit” and “Face Validity” are the minimum validation
techniques necessary for data validation (Sargent, 2005). Either technique could be applied
multiple times, as for instance the goodness-of-fit test should be used to validate each distri-
bution within the model. Additional techniques can also be added as appropriate.

All applicable validation tests should be run on all input data to achieve maximum con-
fidence that we are using the correct data for our simulation. To calculate confidence in
the data, we need to enumerate the list of data I ¼ {i0, i1,…, ir}. This list is part of the model’s
experimental frame, and we assume that the modelers will collect it as part of their modeling
and validation work.

LetDP¼ {dp0, dp1,…, dpp} denote the set of applicable data validation techniques. For each
dataset ij we have the set of successfully applied data validation techniques ADPj �DP. If we
assume that all data validation techniques are equally important, then c(ij), the confidence in
each dataset ij, can be computed by Eq. (5). By dataset we refer to any set of data used to run
the model, such as a distribution or input value range.

cðijÞ¼ 100*
jADPjj
jDPj (5)
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A simulation modeler may decide that some input data are more important to validate

than others. In that case, we propose incorporating the relative importance of the input data
by attaching weights to each ij denoted as w(ij). The overall confidence in data validity is then
defined as in Eq. (6).

dc¼

XjIj

j¼0

cðijÞ*wðijÞ
X

wðijÞ
(6)

2.4 Overall Confidence

Once we have confidence in the behavior, structure, and input data of the simulation
model, we can define confidence in the model as a whole. We propose that having proper
behaviors and structures are equally important. However, as behavioral validation indirectly
validates some aspects of structure, and direct structural validation is slightly limited in
whether the final simulation model truly represents the SUS correctly due to its focus on face
and data validation on the conceptual model, their validation confidence levels should not
equally influence our overall confidence in the simulation model. Additionally, data valida-
tion is crucial for correct behavioral validation, but very hard to perform completely across all
data for the system. In reality, the data used for running a simulation are often considered to
be valid based on its source and collection method. In many scenarios, such level of data val-
idation may be sufficient. We therefore propose the following calculation for overall model
confidence mc:

mc¼ 0:5bc+ 0:3sc+ 0:2dc (7)

where bc, sc, and dc are as defined previously. If no structural validation is performed, the

highest possible confidence in the model’s correctness is 70%; no data validation means a
max of 80%; and no behavioral validation means a max of 50%, which we would consider
inadequate. However, generally all three will be performed, often achieving less than
100% confidence level in each area. The previous calculation will provide a high-level view
of overall confidence.
2.5 Publication of Model Confidence

We propose that model confidence should not only be calculated for each model, but that
high-level details of those calculations should be included in published papers. In the exam-
ples in the next section we provide a table format that includes a listing of validatable ele-
ments, the level of validation achieved via validation techniques, and the resulting model
confidence calculations sc, bc, dc, and mc. For suitably complex models it will not be possible
to include a full table in a publication with current chapter page limits; however, at the bare
minimum these four values should be included in the chapter with a summary of the valida-
tion performed, with the full table available on the authors’ website, or an appendix. For sim-
ulation models that are made publicly available, this information should accompany the files
as well.



1753 SPECIFIC FRAMEWORK: ABMS
2.6 Module Validation

Complex simulations are generally made of many modules that may be validated sepa-
rately, and then the overall system validated as a whole. Each module should be validated
as described earlier, with an overall mc score calculated. These values should be reported.
The structure, behavior, and data of the integrated model must also be validated, and calcu-
lated as earlier. The final confidence level in the overall model will be a weighted average of
the confidence scores of the independent modules and the integration of the modules. The
weights for each module should be relative to their size and impact on the overall system.
3 SPECIFIC FRAMEWORK: ABMS

To apply the coverage calculation on an ABM, the first step is to define the structural and
behavioral elements of the model and the input data that would ideally be validated. Struc-
ture relates to the structure of agents in their attributes and abilities, as well as the environ-
ment in terms of its design, topology, methods of interaction by agents, and the relationships
of agents. Observable behaviors in an ABM may relate to resources, the environment, agent
actions or state changes, and agent interactions (Fig. 4). Structure is generally defined in the
conceptual model documents, and behaviors are expected to be observed when the simula-
tionmodel is run. Recall that behaviors that are not predictable, such as unexpected emergent
Nonagent entities (va1)

Resource availability
Non-agent entity change

Agent spatial
environment (va2)

Mobility direction
Mobility rate
World scale

Agent lifecycle
events (va3)

Birth/creation rate
Death/termination rate

Maturation rate

Agent state (va4)(A)

(B)

Rate of state change
Cause of state change 

Agent interactions (va5)

Agent-agent
Agent-resource

Agent structure (va6)

Agent attributes
Agent abilities

Environment structure
(va7) 

Environment
Grid topology

Interaction methods
Agent relationships

Process

FIG. 4 The aspects of an ABM that should be validated, to be used as a guide for determining validatable elements.
For any givenmodel not all aspects may be relevant. Datamay relate to any aspect. (A) Behavior aspects; (B) structure
aspects.
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behavior or the results of a what-if scenario, are not validatable. Instead, the modeler should
focus on validating the aspects of the model that can be shown to match the SUS’s known
behavior, such that the results of such what-if scenarios can be trusted.

After determining what elements of the model must be validated, and validation is
performed, the calculation of coverage is the same as previously discussed. The role of struc-
ture, behavior, and data will of course vary based on the type of system modeled. To dem-
onstrate its general applicability, the following examples display the application of this
approach to two different types of agent-based simulations: a predator-prey model on a
two-dimensional grid and a networked ABM.
3.1 Example: Tasmanian Devils

We examine an agent-based predator-preymodel of Tasmanian Devils, a carnivorousmar-
supial found only in the Tasmanian island of Australia that suffers from a deadly transmit-
table cancer known as Devil Facial Tumor Disease. The purpose of this simulation is to study
the rate of interactions between devils, and whether or not a newly proposed road through
their habitat will endanger their survival as the disease is transmitted by biting, which pri-
marily occur during eating. A road could theoretically increase biting as devils eat road kill.

In this simulation, devils move in a two-dimensional grid either randomly or toward prey
if the prey’s scent is within their neighborhood. As devils are primarily scavengers, prey
appears in random locations at a fixed rate to mimic carcasses. Prey emits a scent gradient
that decays over time, which devils follow when hungry. Devil hunger decreases as they
eat, and is of a fixed level each day. The simulation logs how frequently devils meet while
eating, to help determine the overall rate of disease transmission through biting. The simu-
lation supports adding a road, which provides another source of food via roadkill, to ask how
this concentrated food source affects devil interactions (Fay et al., 2011).

3.1.1 Defining Validatable Elements

The simulationmust be validated to show that the nonroad scenario adequately represents
current devil interactions, so that we can add a road into the simulation and ask how it affects
devil interactions. The way in which the road is added must also be validated.

A large portion of this model that must be validated is structure as opposed to behavior
(Table 3). The structure includes information on how the environment has been abstracted,
how the devils’ behaviors have been abstracted, and how the road will be implemented. The
first six structural elements are related to the environmental or agent representation, and the
rest are data used to design the model.

The primary behavioral element to validate is the devils’ social network, which is not ex-
plicitly modeled but emerges and should represent known social structures of the Tasmanian
Devils for themodel to be valid. Additionally, the rates at which devils eat shouldmimic their
eating habits in the wild, denoting that theyway they find prey adequately represents the real
system. The way scent is diffused should appear reasonable in level, rate, and distance. If the
structure has been properly validated, and the simulation model has been verified to match
that conceptual model, then the results can be trusted for studying the impact of the road on
devil interactions.



TABLE 3 Structural, Behavioral, and Data Elements of the Tasmanian Devils Model That Must Be Validated

Structural Validation

Applied Techniques

Element PV DC SV EC BA

Foraging area 1 1 1

Road representation 0.5 0 1

Devil prey finding strategy 1 0 1

Roadkill representation 1 0 1

Devil movement strategy 1 0 1

Time representation 1 0 1

Prey creation data (appearance, size, decay) 1 1 1

Devil population density 1 1 1

Devil movement rate 1 1 1

Roadkill appearance rate 1 1 1

World size 1 1 1

Structural confidence by technique (p(sti)) 1 1 0.916 0.167 1

Overall structural confidence (sc) 80.34%

BEHAVIORAL VALIDATION

Element w(bj) Applicable Techniques Applied Techniques

Devil social network 1 A, FV, SA, MV, RV A, FV, SA, RV

Devil hunger over time 0.75 A, FV, SA, MV, RV A, FV, SA, MV

Scent diffusion 0.75 A, FV, SA A, FV, SA

Devil attraction to prey 0.75 A, FV, SA, MV A, FV, SA

Overall behavioral confidence (bc) 76.82%

DATA VALIDATION

Element wi Applicable Techniques Applied Techniques

Scent diffusion rate 1 GF, FV GF, FV

Overall data confidence (dc) 100%

Model confidence (mc) 82.51%

Notes: For structure we note the success of applied techniques, and for behavior and data we list the applicable techniques and their

success. Technique acronyms are defined in Tables 1 and 2. For each set we show the calculation, and then the final validation

coverage.
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3.1.2 Validation

To track the level of confidence gain via validation of the system, we must note the appli-
cable validation techniques and which ones have been applied. Table 3 shows the validation
techniques for each structure, behavior, and data element. For structural validation, each el-
ement is listed with a value between 0 (not applied or failed) and 1 (fully successful) denoting
the level of successful application of each relevant validation technique. The data used in cre-
ating the conceptual model, including prey appearance/size/decay, devil density, devil
movement levels, roadkill appearance rates, and world size were validated using parameter
verification and dimensional consistency. Each of these rates is based on data on the real sys-
tem, and verified by a subject matter expert. These rates combined with the structural aspects
of the foraging area, road representation, how devils find prey, how roadkill and prey are
represented, and how time is represented were examined together by a subject matter expert
to determine that adequate boundaries were chosen for the abstraction and that the structure
was correct. In this case, we see that the model creation data are fully validated using all three
relevant techniques, extreme condition testing was only performed for one element, and
structural verification was fully successful on all structure elements except the road represen-
tation. This validation leads to a 80.34% confidence level in the structure. For each element
that we further validate with extreme condition testing, we can increase our confidence in
the structure by 3.57%.

For behavioral validation the applicable techniques are listed by acronym, followed by a
list of applied techniques. Sensitivity analysis was used to determine how all behaviors are
affected by changing the prey size, prey appearance rate, prey decay rate, scent diffusion rate,
and devil movement rate. Although most of these rates are part of the data used to create the
model, they can be tweaked in calibration to ensure that the abstraction leads to the expected
behaviors. Metamorphic validation was used to validate devil hunger over time, and results
validation was used to compare the devil social network to known studies on interaction net-
works between Tasmanian Devils in the wild. Animation was used to validate all behaviors.

The values of each of these techniques are used in combination with the behavior’s weight
to calculate confidence gained (ci) by applying validation techniques to specific behaviors,
which are not denoted in the table. In this example, based on Table 3 we have the following
validation approaches for our model (vi ¼ hti, di, cii), which are used to calculate our confi-
dence bc:

1. v0 ¼ hA, (b0), 3i, applied
2. v1 ¼ hA, (b1, b2, b3), 6.75i, applied
3. v2 ¼ hFV, (b0, b1, b2, b3), 22.75i, applied
4. v3 ¼ hSA, (b0, b1, b2, b3), 22.75i, applied
5. v4 ¼ hMV, (b0), 8i, not applied
6. v5 ¼ hMV, (b1), 6i, applied
7. v6 ¼ hMV, (b3), 6i, not applied
8. v7 ¼ hRV, (b0), 10i, applied
9. v8 ¼ hRV, (b1), 7.5i, not applied

Our final model confidence in the Tasmanian Devils model is 82.51%. Applying results
validation to devil hunger changes over time would increase model confidence to 86.55%.
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Applying all missing behavioral validation techniques increases the model confidence to
94.102%, as behavioral validation has the strongest weight in our overall confidence calcula-
tion. This confidence level provides a summary of themodel confidence, but Table 3 provides
important details on what aspects of the model are best supported by the applied validation
techniques.
3.2 Example: Gossip Propagation

The second example is an ABM of gossip propagation in a social network, which is natu-
rally modeled as a graph. Each node in the graph represents a person capable of spreading
gossip about some target node. Some nodes are liars, whichmutate the bit string that is passed
as gossip. The gossip propagates from node to node based on the strength of connection be-
tween those nodes and how long the gossip has been propagated so far. Gossip that has been
propagating for some time has a weaker strength than fresh gossip, which will cause nodes to
no longer wish to spread the information. Each node must determine what to believe about a
particular piece of gossip, and the simulation compares the overall belief of the network based
on various decision strategies. After a piece of gossip is no longer spreading through the net-
work, nodes are assigned a fitness score denoting how close their beliefswere to the truth. The
purpose of this simulation is to study human gossip decision rules and gossip propagation
(Laidre et al., 2013).
3.2.1 Defining Validatable Elements

The elements of themodel that could be validated are shown in Table 4. The environmental
structure in this model includes the agent network, the definition of who can message an
agent, and the process of gossip spread. The agent structure in this model includes the agents’
property of an agent’s memory. It also includes an agents’ abilities: strategy for choosing gos-
sip to believe, an agent’s decision to share gossip, and the approach to distorting gossip before
sharing. The behaviors that must be validated in this model include the gossip fidelity
decrease, the rate of sharing with other agents, and the changes to agent beliefs as gossip
is spread. The input data to validate are the number of liars and the number of observers,
as well as a message length and loss rate. The final input data are the heterogeneity of agents
in terms of their gossiping strategies.
3.2.2 Validation

Table 4 shows the confidence in the correctness of themodel based onwhich of the possible
validation techniques were applied. The format of this table was explained in Section 3.1. We
have high confidence in the structure of the model as boundary adequacy succeeded on all
structural elements, extreme condition tests were applied and succeeded on the majority of
elements, and structural verification succeeded fully on all but three elements. The creation
data on the number of agents were also successfully validated against data on social network
sizes in human populations. Most of the applicable behavior validation techniques were also
successfully applied, using the following validation approaches:



TABLE 4 Structural, Behavioral, and Data Elements of the Networked ABM Gossip Model That Must Be
Validated

Notes: For structure we note the success of applied techniques, and for behavior and data we list the applicable techniques and their

success. Technique acronyms are defined in Tables 1 and 2. For each set we show the calculation, and then the final validation

coverage.
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1. v0 ¼ hA, (b0, b1, b2, b3, b4, b5), 18i, applied
2. v1 ¼ hSA, (b0, b1, b2, b3, b4, b5), 42i, applied
3. v2 ¼ hFV, (b0, b1, b2, b3), 28i, applied
4. v3 ¼ hRV, b1, 10i, not applied
5. v4 ¼ hMV, b2, 8i, applied
6. v5 ¼ hMV, b3, 8i, applied
7. v6 ¼ hMV, b5, 8i, applied

This model has been very well validated for behaviors, with the lowest validation confi-
dence in the data. For this type of model it can be difficult to ascertain the correct input to
exactly mimic a human system; however, given the strong structural and behavioral valida-
tion, the model can still be trusted to give interesting insights on how gossip strategies and
communication networks may impact the spread of gossip. The way the results are
interpreted are only dampened by the lower input data validation score. Thus, denoting
the confidence in structure, behavior, and data separately can increase our understanding
of a model’s validity and the types of questions that may be asked of it.
4 SPECIFIC FRAMEWORK: DISCRETE-EVENT MODELS (DES)

DESs differ from ABMs in their focus on discrete sequences of events, as opposed to
autonomous agents making decisions. As with ABMs, the first step for computing model
confidence requires listing all structural and behavioral elements of the model as well as
input data that should be validated. Structure includes how the logical flow and resources
mimic the real system, including resource attributes, the queuing model, and how events
are designed and ordered. Observable behaviors are often related to the rates at which re-
sources are used, or characteristics or rates of requests for resources as the simulation runs
(Fig. 5). Input data can be related to either structural or behavioral element.
4.1 Example: Hospital Emergency Department

We illustrate the process of quantifying model credibility for DES by applying it on a DES
of patient flow in the ED of a hospital (Raunak et al., 2009; Raunak and Osterweil, 2012). This
simulation model was developed to model the Emergency Department of BayState Medical
Center in West Springfield, MA. The model focuses on the patient care path of walk-in
patients in an ED. The purpose of the model is to investigate the impact of process changes
in ED patient care, such as immediate placement of an incoming patient inside the EDwhen a
bed is available, followed by bedside registration in parallel with patient treatment. To
understand how to compute the credibility score on the simulation model, we need to be
acquainted with the patient care process in an ED.

Patient care at a typical ED encompasses a series of sequential activities starting with the
new patient’s arrival. A patient may arrive as either a walk-in or through an ambulance. The
walk-in patients are first seen by a triage nurse for determination of a triage acuity level. The
patient is then sent to the registration clerk. The registration clerk enters the patient’s
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insurance and other information into the system and generates an ID band. The patient then
waits in the waiting room if a bed is not available. Once a bed becomes available, the patient
is placed in the bed and is assessed by a nurse, followed by the attending doctor. The doc-
tor’s assessment may result in additional tests or procedures. Afterward the doctor makes a
final assessment and decides whether to admit or discharge the patient. The simulation cy-
cle ends with the patient either discharged or admitted into the inpatient unit of the hospital.
The simulation model defines makeup and availability of a number of resources such as
doctors, nurses, clerks, beds, X-ray machines, etc. Patient arrival rates and different service
time distributions are examples of input data needed to run the executable simulation of
this model.
4.1.1 Defining Validatable Elements in the ED Model

The ED model needs to represent a reasonable patient arrival distribution, resource com-
binations with specific attributes and abilities, the treatment process, and potential conges-
tion. All elements must be validated to achieve a high confidence level for the credibility
of the model.

The structural elements of the ED model include the process of treatment for a patient
as defined by the ED workflow. The structural elements also include attributes and abil-
ities of resources such as doctors, nurses, registration clerks, and beds. The abilities define
what tasks can be performed by a particular agent resource such as a doctor or nurse. For
example, a nurse can perform an initial assessment of a patient, and assign an initial acuity
level. A doctor is capable of ordering tests and performing procedures on the patient. Sim-
ilarly, attributes of a bed resource define if it has facilities particularly suited for certain
types of patients. Table 5 shows the structural elements that need to be validated: ED
workflow, treatment bed attributes, and abilities of a number of resources such as doctors,
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nurses, and registration clerks. There is also one model creation data in this model: the rate
at which patients are arriving, which must match the distribution in a real hospital.

This particular simulationmodel, based on its purpose, needs tomimic the real-world pro-
cess and the experience of walk-in patients in an ED. Thus the behavior validation needs to
ensure that such emergent information as the average waiting time experienced by patients
and the average length of stay (LOS) for patients are consistent with the defined workflow
and allocated resourcemix. Additionally, other observable information such as the utilization
rate of the resources (doctors, nurses, beds, clerks, etc.) should also be validated.

The input data elements, which are required for running an ED simulation, include the
mix of resources used for a particular simulation run. This mix includes the number of
doctors, nurses, registration clerks, and beds. Moreover, the distribution of tests and pro-
cedures performed on the patients are important input data for running the ED
simulation model.
4.1.2 Computing Model Credibility Score for ED Model

To compute the confidence gained by validating the ED simulation, we identify all appli-
cable validation techniques for structural, behavioral, and input data validation and the tech-
niques that have been successfully applied in each case. Table 5 shows a summary of the
validation techniques that were applied and how they contribute toward computing a mea-
surement of the ED model’s credibility. The format of the table was described in Section 3.1.

We have relatively high confidence in the structural elements of the ED model. All struc-
tural elements were fully verified by a subject matter expert (SV), and validated by checking
the boundary adequacy (BA). Extreme condition tests were successfully applied on some of
the structural elements, but not all. The applied validation techniques result in an 87.14% con-
fidence level in the structure.

The behavior validation section of Table 5 lists the abbreviated names of both the applica-
ble validation techniques and the ones that were applied to validate each of the behavior el-
ements. Degenerate tests, face validation, model comparison, metamorphic validation, and
results validation were applicable to all behavior elements and they were all successfully
applied. Even though sensitivity analysis was applicable, no behavioral element of this par-
ticular EDmodel was validated using this technique. To compute the confidence level gained
by applying these validation techniques on the behaviors in Table 5, we define the following
validation approaches for our model (vi ¼ hti, di, cii):
1. v0 ¼ hDT, (b0, b1, b2, b3, b4, b5), 16i, applied
2. v1 ¼ hFV, (b0, b1, b2, b3, b4, b5), 28i, applied
3. v2 ¼ hSA, (b0, b1, b2, b3, b4, b5), 28i, not applied
4. v3 ¼ hMC, (b0, b1, b2, b3, b4, b5), 32i, applied
5. v4 ¼ hMV, (b0, b1, b2, b3, b4, b5), 32i, applied
6. v5 ¼ hRV, (b0, b1, b2, b3, b4, b5), 40i, applied

The behavior computation results in a confidence level of 84.09% in the behavior of our ED
model. The input data are all primarily validated using face validation. In this example, we



TABLE 5 Structural, Behavioral, and Data Elements of the Emergency Department Model

Structural Validation

Applied Techniques

Element PV DC SV EC BA

ED workflow 1.0 1.0 1

Treatment bed attributes 1.0 0 1

Doctor abilities 1.0 0.5 1

Nurse abilities 1.0 0.5 1

Registration clerk abilities 1.0 0 1

Patient arrival rate 1.0 1.0 1

Struc. conf. by technique (p(sti)) 1.0 1.0 1.0 0.4 1.0

Overall structural confidence (sc) 87.14%

BEHAVIORAL VALIDATION

Element w(bj) Applicable Techniques Applied Techniques

Avg. wait time for bed 1 DT, FV, SA, MC, MV, RV DT, FV, MC, MV, RV

Avg. LOS in ED 1 DT, FV, SA, MC, MV, RV DT, FV, MC, MV, RV

Doctor util. rate 0.5 DT, FV, SA, MC, MV, RV DT, FV, MC, MV, RV

Nurse util. rate 0.5 DT, FV, SA, MC, MV, RV DT, FV, MC, MV, RV

Reg. clerk util. rate 0.5 DT, FV, SA, MC, MV, RV DT, FV, MC, MV, RV

Bed util. rate 0.5 DT, FV, SA, MC, MV, RV DT, FV, MC, MV, RV

Overall behavioral confidence (bc) 84.09%

DATA VALIDATION

Element wi Applicable Techniques Applied Techniques

No. of doctors 0.5 FV FV

No. of nurses 0.5 FV FV

No. of reg. clerks 0.5 FV FV

No. of beds 0.5 FV FV

Distr. of tests performed 1 GF, FV GF, FV

Distr. of procedures performed 1 GF, FV GF, FV

Overall data confidence (dc) 100%

Model confidence (mc) 88.19%

Notes: For structure we note the success of applied techniques, and for behavior and data we list the applicable techniques and their

success. Technique acronyms are defined in Tables 1 and 2. For each set we show the calculation, and then the final model

credibility score.
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achieve 100% input data validation. With all three parts of our model confidence at hand, we
can now compute the overall model credibility score for our ED example as in Eq. (8).

mc¼ 0:3*87:14 + 0:5*84:09 + 0:2*1:0¼ 88:19% (8)

In this example, we have a relatively highmodel credibility score sincemost of the validatable

elements have validation techniques that were applicable for validating different validatable
elements of the model.
5 SUMMARY AND DISCUSSION

There are many activities necessary to produce a credible model, including demonstrating
V&V, useful animations, and buy-in by managers or higher-level decision makers (Law,
2015). A key step is validation of a model, increasing confidence that the model matches
the SUS. Although validation is done to some extent on most models, there is no standard
on how to quantify the amount of confidence gained through validation. As can be seen from
the survey of 192 health care simulation papers in Raunak and Olsen (2014b), less than half of
papers provide a detailed validation section, and almost 24% of papers make no mention of
validation at all.

This chapter described amodel confidence metric for quantifying the amount of validation
performed, and thus the level of confidence gained, on a simulation model. Structure is val-
idated on the conceptual model, behavior and structure are validated in the simulation
model, and input data are validated to ensure that they adequately match the real-world
SUS. Validatable elements of structure and behavior are determined, potential validation
techniques are listed, and as validation is successfully performed our confidence increases.
The calculation of model confidence represents how many of these relevant techniques were
successful, weighted by importance.

The usage of this model confidence calculation was demonstrated with an agent-based
predator-prey model, an agent-based networked model, and a discrete-event hospital simu-
lation model. These examples show a variety of applications, the suggested table format for
sharing information on the confidence calculation, and how to interpret the results of the
model confidence score. In each case a standard template was used to summarize the valida-
tion that was performed and the level of confidence gained in the model’s correctness.

Although this chapter focuses onABMsandDESmodels, themodel confidence calculation is
applicable toany simulationparadigm.For instance,hybridmodels andDEVSmodels are easily
analyzed using this approach. Hybrid models are becoming more common, where aspects of
different paradigms are used in the same model. A hybrid ABM and DES model, for example,
would be validated by validatable elements being found for each approach, likely following the
modular systemprocessdescribed in this chapter.DEVScanbeused todescribe systems that are
event-based in both inputs and outputs (Zeigler andMuzy, 2017), and thus naturally fitwith the
DES approach described in this chapter as outlined in Olsen and Raunak (2015).

We strongly encourage the use of this model confidence score to communicate the credi-
bility of themodel as related to its validation. Thismodel confidence score is of a similar struc-
ture to coverage calculations in software testing. Just as in software testing, a coverage
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criterion is only one element necessary for quantifying validation of a simulation model. We
urge our fellow researchers to consider additional model confidence calculations to increase
the trust in model results, and the ability to reuse models.
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School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
1 INTRODUCTION

Simulation has been increasingly used to study complex systems in real world, which pro-
vides a faster, cheaper, andmore flexible alternative than physical experiments (Zeigler et al.,
2000). With the expansion of simulation objects, it is more and more imperative to compose a
number of domain models to implement a comprehensive and dynamic system analysis
(Zeigler and Zhang, 2015).

In a cross-domain system,multidisciplinarymodels are required to interactwith each other
asmodular elements. Their activities, temporal information, function transformation, and the
related knowledge base are changed autonomouslywith a series of deterministic or nondeter-
ministic logics. The interaction process among these models introduces more complex time
constraints and evolutionary characteristics. On one hand, they should be sufficiently flexible
with add-on uncertainty features to adapt themselves to a dynamic synthetics along with
changing environments (Zeigler, 1990). On the other hand, they ought to be well organized
throughout its life cycle to ensure proper support for system execution.

As a simulation system that is not credible has no practical significance and application
value (Law and Kelton, 2000), the credibility evaluation of the system models is of the most
importance.

The credibility of a simulation model can be roughly defined as the degree of its adaptabil-
ity to the simulation purpose, which is usually determined by a similarity between the model
and the target system ( Jiao et al., 2007). This is no longer suitable for a complex composite
system for two reasons. First, the dynamic essence of a complex system determines that
the similarity of a model within a limited number of testing is not convincible since both
the model and the prototype system are changing over time. Second, the input data andman-
agement issues on a model other than its similarity are also decisive factors on its credibility
189 # 2019 Elsevier Inc. All rights reserved.
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for a simulation purpose. Therefore, the credibility of a simulation model is redefined in
NASA-STD-7009 (2013) as the quality to elicit belief or trust in its long-term performance.

Generally, a simulation model is evaluated by verification, validation, and accreditation
(VV&A) (Balci, 1997) activities to decide whether a model is able to work correctly, whether
it is consistent with the simulation purpose andwhether it is adaptable to the practical use. As
the verification can be accomplished by some logical checkingmethods introduced from soft-
ware engineering (Berard et al., 2001; Sargent, 2013) and the accreditation is carried by users
or experts’ documentation (Gass, 1993; Sargent et al., 2015), most research attention in model-
ing and simulation (M&S) has been paid on model validation (Sargent, 2015; Schmidt, 2006;
Teknomo, 2016).

At present, there are three main methods to evaluate the credibility of simulation models:
quantitative analysis, qualitative analysis, and comprehensive analysis. The existing qualita-
tive methods for validating complex simulation systems are based on questionnaire design
and expert scoring (Bai et al., 2017; Ma et al., 2017; Teferra et al., 2014). On one hand, a ques-
tionnaire is designed for a specificmodel, which is subjective and hard to extend. On the other
hand, experts should be certificated with high professional knowledge to perform scoring.

Quantitative analysis refers mainly to the consistency validation of simulation results with
the real-world objects (Feinstein and Cannon, 2001; Huang et al., 2013; Pater et al., 2014). The
measurement of accuracy betweenmodel outputs and real data ismade according to different
sorts of performance criteria. It has high accuracy and strong objectiveness. However, quan-
titative analysis usually requires a large number of reference data from real world, which is
rare or even unavailable for most simulation objects. Moreover, many important internal and
external features other than the simulation results have yet been considered.

In comprehensive analysis, some intelligent algorithms, such as Bayesian algorithms
(Mahadevan and Rebba, 2005), metaheuristics (Chiappone et al., 2016) and neural networks
(NNs) (Zhu et al., 2015), and so on, are introducedwith a large amount of historical simulation
data to mapping the nonlinear relationships between model validation metrics (Liu et al.,
2008) and subject matter expert scores. However, researches onminingmodel internal factors
account for its overall credibility are still limited.

According to the above-mentioned problems, this chapter presents a broader framework to
unify the complete process ofmodel credibility measurement and provides a guideline for the
user to evaluate different sorts of underlayer models in a composite complex system. First of
all, the NASA Standard on M&S (2013) is introduced to guide the establishment of an indi-
cator system for a model by its internal and external available features. Afterward, the
existing qualification, quantification, and intelligent methods are classified and incorporated
to map the model features, the historical data, and the simulation results to different indica-
tors (i.e., credibility metrics). Last but not the least, we elaborate how to integrate these indi-
cators to finally generate an objective credibility score for the user to understand whether the
model is credible enough and how to improve it.
2 RELATED WORKS

Quantitative analysis, qualitative analysis, and comprehensive analysis which combine
both quantitative study and qualitative study are widely used to validate the credibility of
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simulation models. Quantitative analysis is to establish a mathematical model to represent
the relationships between the simulation results and the evaluation indicators. Qualitative
analysis is a kind ofmethodwhich depends on rigorous techniques for gathering high-quality
data and the credibility of experts. Comprehensive analysis research is set up by using dif-
ferent learning algorithms. There is a great debate between those evaluation methods in early
literature (Beck, 1993; Williams et al., 2004). In practice, these three methods have different
advantages and disadvantages (Dubois and Prade, 1998). A consensus has been gradually
reached that the important challenge is how tomatch appropriate methods to empirical ques-
tions and issues.

Most of the research on qualitative analysis is based on questionnaire design and expert
scoring. For example, Schruben (1980) proposed the Turing test method that is based on rel-
evant experts to process output data from a simulation model. Beydoun et al. (2013) devel-
oped a set of evaluation methods for models based on experts scoring, simulation
requirements, and simulation environment. Buchmann et al. (2016) analyzed the relationship
between agent heterogeneity, model structure, and the detailed data used to represent model
performance. Regarding the mutual trust of agents, Schreiber designed amultiagent network
model for the coevolution of agents (Schreiber and Carley, 2013). Schmidt et al. (2007)
established a method of calculating the credibility of a certain model based on fuzzy theory.
However, Velayas and Levary (1987) indicated that this method has a strong subjectivity;
qualitative aspects of the evaluation and the actual use of emptied weight may lack the expert
scoring. In addition, most of the qualitative methods are time consuming and inextensible.
Therefore, qualitative analysis is not widely used in isolation.

Currently, quantitative analysis research on evaluating the credibility of a simulation
model is based on the traditional evaluation method and the comparison between the simu-
lation data and the practical data (Sarin et al., 2008). For example, Acar (2015) indicates that
the prediction capability of metamodeling can be improved by combining various types of
models in the form of aweighted average ensemble in order tominimize the rootmean square
cross-validation error (RMSE-CV) and the root mean square error (RMSE). To ensure the per-
formance, stability, and security of simulation models, researchers provide a set of general
indices used for credibility evaluation of simulation model by using mathematical error,
information theory, parameter estimation, nonparametric test, and distance judgments
(Hora and Campos, 2015; Sterling and Taveter, 2009). These indices can be used not only
for themultiagent simulationmodel evaluation in the fields of transportation, manufacturing,
economy, and so on (Lee et al., 2015; Papalambros et al., 2010; Schoenharl and Madey, 2008),
but also for the evaluation of machine learning algorithms, such as fitting NNs and clustering
algorithms (Liu et al., 2013; Vinh et al., 2010; Wang and Chen, 2014). However, in these stud-
ies, the opinions of experts in the relevant scientific research are ignored. So it can only be
used for models with a high level of data integrity and consistency. In some models, such
as the simulation workflow, quantifiable indices are on a small scale (Louzao et al., 2011).
It is hard for quantitative analysis to evaluate the simulation credibility, especially in the
strategic analysis of a composed model with insufficient simulation data.

Comprehensive analysis is a newly emerging method for the validation of simulation
models. It combines the subjective expert scoring and the objective calculation of model per-
formances by using historical training data. Typical examples include the credibility evalu-
ation theory based on probability and evidence (Ferson, 2009; Zeigler and Nutaro, 2016),
fuzzy set theory (Liu and Yang, 2009;Martens et al., 2007), multiple attribute decision-making
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theory (Papalambros et al., 2010), knowledge-based system (Min et al., 2010), and so on. Con-
sidering the frequent changes in simulation requirements and the complexmechanism of real
objects, a number of methods on evaluating the credibility of simulation model based on sto-
chastic probability distributions have been proposed in recent years, such as validation based
on cumulative density function comparison, and so forth (Bogojevi and Anin, 2016; Velayas
and Levary, 1987). Ferson (2009) and Ferson et al. (2008) designed the u-pooling region index.
Li et al. (2014) proposed multivariate probability integral transformation (PIT). Chan (2011)
and Chan et al. (2010) investigated the use of interaction statistics as a metric for detecting
emergent behaviors from the agent-based simulation. Dornheim et al. proposed a hybrid
linear expectation model to calculate the reliability of complex system automatically and
efficiently (Dornheim and Brazauskas, 2011). Liang et al. (2014) proposed a new method of
reliability measurement which is based on a dynamic Bayesian network. However, research
on the impact of internal factors of using comprehensive analysis is still limited.

In general, the research on validation technology of simulation system has matured. Many
standards and documents are formed while the study of model credibility evaluation is also
in progress. The biggest challenge has become how to efficiently and effectively select specific
indicators and the most suitable methods to form a comprehensive credibility evaluation.
Currently, none of the existingmethods has considered the relationship construction between
the model credibility and its internal factors other than its simulation results. Few studies
have considered themanagement issue, evolutionary dynamics, and uncertain characteristics
of a simulation model.

Hence, a guideline for model credibility measurement under a dynamic requirement is
important and necessary to a complex system.
3 A GENERAL FRAMEWORK FOR MODEL CREDIBILITY
MEASUREMENT

In this section, we briefly describe the life cycle of a reusable simulation model in an ever-
changing environment. Based on the NASA-STD-7009 standard, an indicator system is
designed to demonstrate a full-dimensional view on the issues which are able to influence
model credibility directly. By selecting available indicators, the existing methods are incor-
porated into five steps to generate a comprehensive evaluation process on model credibility
measurement.
3.1 The Life Cycle of a Reusable Model

Generally, the life cycle of a model is drawn by its requirement, design, construction,
VV&A, application, and maintenance states. Due to the reuse scheme in model engineering,
the life cycle of a reusablemodel for a complex system can be specialized as the whole process
since it is initiated from a prototype and until it is expired from the current simulation envi-
ronment, as shown in the top layer of Fig. 1.

A reusable model defines the model which is capable of being applied to another process
after the current simulation is finished. To overcome the domain barrier, the reusable model
should embrace the most common features across multiple domains and be able to assemble
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with different domain functions. Therefore, we define its basic prototype with common fea-
tures as the conceptual model and the domain-dependent feature as the add-on function. For
example, the pedestrianmodel in either a railway station or a street belongs to the same object
and can be crossly applied for different simulation purposes. By combining the conceptual
model and some add-on functions, an instance model is established to represent an applica-
tion version of the reusable model.

In a particular simulation system, a model should act in line with its knowledge rules and
perform a systematic evolutionary process with temporal outputs, changing states, and
varied behaviors. A calibration strategy is also introduced as a selective stage to adjust the
application environment, the instance model, and the conceptual model for the new require-
ment. After the simulation is finished, a maintenance mechanism is carried out to update the
instance model, and store some critical information for further reuse.

Because the instance model is constructed based on the conceptual model and the add-on
functions, operated in a dynamic interactive environment and driven by its historical data,
the instantiation, application, and maintenance steps together determine whether the reus-
able model is credible for the current simulation purpose from different angles.
3.2 An Indicator System for Model Credibility Measurement

Focusing on credibility evaluation, the NASA-STD-7009 provides eight factors to describe
the fidelity of a model, which are verification, validation, input pedigree, result uncertainty,
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result robustness, use history, M&S management, and people qualification. They cover fully
the main issues during the model life cycle. Thus the standard can be seen as a reference on
establishing multidimensional metrics for different models.

As demonstrated in the middle layer of Fig. 1, an indicator system for the credibility mea-
surement should be able to cover the design, implementation, application, and maintenance
features of a model.

In the first place, the verification is executed in the design stage in which the processing
logic and its related functionalities are tested. It is normally represented by a Boolean variable
to decide whether themodel is right logically and functionally. The validation is placed in the
implementation stage to make sure the long-term performance of a model satisfies the
simulation requirement in a steady environment. It involves the consistency of some testing
results corresponding to the practical demands, the capability maturity, the matching degree
to the target object, the fitness of different objectives, the violation of constraints, and so on.

In the second place, the input pedigree is measured in the application stage to findwhether
some knowledge base or environmental data is introduced to drive model execution. The un-
certainty factor is contained in both the implementation stage and the application stage to
embody the static and dynamic features of a model. In the implementation stage, the instan-
tiation of a model involves a lot of probabilistic parameters and several response rules, which
enforces the model output change over time. In the application stage, more complex environ-
mental influences and interactions produce much more varying states and behaviors to the
model. Besides, the robustness factor which is reflected in the application stage should be
evaluated if there exists distinct disturbance in the simulation environment.

In the third place, the use history of a model can be introduced to assess its success rate,
quality, and degree of adaptation on the current simulation purpose, if available. This factor
further includes historical user scoring, historical application domain, use of frequency, etc.
Last but not the least, theM&Smanagement factor and the personnel factor reveals the overall
quality and professionality of amodel from another side. They can bemeasured by the degree
of standardization, the qualification level, the completeness of the related documentation, the
update period, and so forth.

The mapping between the eight standard factors and the evaluation scopes is illustrated in
Fig. 2. On account of various domain features and simulation environments, the exact metrics
for different credibility factors should be set according to the available data extracted from the
model. It is noted that not all of these eight factors are necessarywhen no available data can be
obtained from its corresponding scope.
3.3 The Comprehensive Evaluation Process

As is known, the existing VV&A methods are established to evaluate only one aspect of a
simulation model or a composite simulation system. To cover all factors mentioned in the
NASA-STD-7009 fully, we propose a unified and extensive process to evaluate the credibility
of a simulation model, as illuminated in the bottom layer of Fig. 1. Based on an indicator sys-
tem, it consists mainly of five steps, that is, (1) indicator quantification, (2) indicator
weighting, (3) critical data sampling, (4) performance prediction, and (5) model optimization.
Steps (1), (2), and (5) are necessary for every model while the other two are selective.



Verification

Validation

Input pedigree

Uncertainty

Robustness

Use history

Management

Personnel

C
re

di
bi

lit
y 

fa
ct

or

Design

Implementation

Application

Management

T
he evaluation scope

FIG. 2 The evaluation scopes of the eight credibility factors.

1953 A GENERAL FRAMEWORK FOR MODEL CREDIBILITY MEASUREMENT
(1) Indicator quantification

Indicator quantification means to calculate the value of each metric listed in the indicator
system. It includes the estimation of simulation result consistency, the assessment of model
capability maturity, the deduction of its uncertainty and sensitivity, the calculation of some
other intermediate variables, and so on. This step covers what exactly the existing validation
methods do. For instance, statistical testing can be introduced to calculate the consistency of
model output with its practical target. Fuzzy set theory can be applied to rate the capability
maturity. Bayesian methods can be used to calculate the metrics related to model uncertainty
and sensitivity. If a metric is unable to be quantified, the classical qualification methods such
as the analytic hierarchy process (AHP) and gray relational analysis (GRA) can then be
adopted to incorporate expert experiences and generate a synthetic score for it.

(2) Indicator weighting

To integrate multiple metrics and generate an objective credibility score, the most com-
monly used way is the weighting scheme with expert scoring, as shown in Eq. (1):

E¼ 100
Xn

i¼1

ωiXi (1)

where E represents the credibility score of a specific model, n refers to the number of metricsP

in the indicator system, wi indicates the weights of the ith metric, and it satisfies n

i¼1ωi ¼ 1.
For more intuitive understanding, the credibility score is usually scaled to the range [0, 100].
In this scheme, experts are required to give a rate between every two metrics to determine
which of them ismore important. The state-of-the-art qualificationmethods are applied again
to provide the value of the weights.

(3) Critical data sampling

To understand the long-term quality of a model throughout its life cycle, the critical data
related to its application configuration, its metric values, and the corresponding credibility
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score should be stored. On one hand, this data is the basis to assess the use history factor. On
the other hand, it can be applied as a group of training samples for predicting further model
features and states. However, we cannot store all critical data of any single model because of
the limit memory space. Thenwe need the sampling strategy to help us determinewhich data
to be stored. Currently, most typical sampling strategies, such as the Monte Carlo sampling,
Gaussian sampling, and Gibbs sampling, are adaptable to select critical samples from hun-
dred times of simulations, so the details would not be covered here.

(4) Performance prediction

To simulate a complex system in a dynamic environment, the model should be able to
frequently update its structure and behaviors along with its neighborhood components.
Clearly, a model is credible at present does not fully represent that it is credible in its whole
life cycle. Therefore, performance prediction is a very important way to understand amodel’s
long-term quality. Especially with the development of multiagent-based simulation (MAS)
and system of systems (SoS), it becomes more and more imperative. Although few studies
have focused on this topic, existing classification and regression algorithms, such as NNs,
support vector machine (SVM), and Gaussian mixture model (GMM), are able to be directly
used to construct the relations between the model features, their metric values, and the
credibility score.

Once the relations have been established, steps (1) and (2) can be replaced by this training
model to directly estimate the credibility score automatically. The evaluation process
will then be largely accelerated without cumbersome expert scoring and mathematical
quantification.

(5) Model optimization

The credibility score of a model is calculated not only to evaluate whether it is suitable
for the current simulation purpose but also to improve it. Model optimization refers to the
reverse adjustment and update process to guarantee the high credibility of a model.

If the credibility score is obtained by steps (1) and (2), we can figure out which metric got
low value and which got high weight. According to the mapping relations between the met-
rics and their dependent variables, the drawbacks of the model are easy to be inferred. In this
case, a deterministic calibration method can be introduced to adjust the model. If the score is
deduced by a prediction method, some critical data of the model and similar ones should be
extracted to analyze the reason. Irrespective of the reason for deduction or for the calibration,
it is very common and efficient to usemetaheuristics, such as the genetic algorithm (GA), par-
ticle swarm optimization (PSO), and memetic algorithm (MA), to adjust the model blindly
and search for an optimal configuration with a high credibility score.
4 THE CREDIBILITY EVALUATION OF SIMULATION
WORKFLOW MODEL

To verify the feasibility of the above comprehensive process, an experimental analysis
based on a simulation workflow model is carried out.
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4.1 The Simulation Workflow Instance

Simulation workflow is a top-level model for the design and analysis of the complex sys-
tem. It can be constructed in XML scheme. In this chapter, it is represented as a directed graph
S¼ (N, E). The node setN of the directed graph consists of three types, active nodeNa, logical
node Nl, and event node Ne.

The active node is a detailed description of a short simulation subprocess with a specific
environment. It specifies the simulation parameters, interfaces, and prerequisites of the
related underlayer model with a group of events.

The logical node is defined as the AND/OR/NOR conditions among different active
nodes. It is designed as a compensation of the edges to describe clearly the execution condi-
tions of each active node and make them cooperated in a strict order.

Besides, the event node represents the start event (when the simulation prerequisites are
satisfied and the simulation parameters are well configured), the stimulate event (which can
be seen as an outside precondition for an active node) and the end event (when all of the active
nodes are finished) of a specific process.

With a group of directed edges, these active nodes can be designated to guide the related
underlayer models separately in a distributed manner. Typically, it has no input and output
data during simulation. Fig. 3 shows an example of the simulation workflow.
4.2 Indicator Quantification and Weighting for the Simulation Workflow Model

To analyze the simulation workflow from a quantitative perspective, we consider mainly
16 internal features, as listed in Table 1, which can be quantitatively calculated from the spe-
cific simulation workflow.We directly use the eight factors as evaluationmetrics and provide
eight simple equations to represent the relation between the features and the metrics.
FIG. 3 An example of the simulation workflow.



TABLE 1 Notations of the Internal Features in Simulation Workflow

Symbol Name Range Symbol Name Range

Pmatch Interface matching degree between
nodes

[0, 1] Nhistory Number of historical data [0, 200]

Pintegrity Parameter configuration integrity [0, 1] Phist_cons The consistency of the historical
configuration

[0, 1]

T̂ Estimated execution time(s) [30, 150] Nstimulate Number of external stimulate events [0, 10]

T Average practical execution time(s) [30, 150] Npara Number of incentive parameters [0, 100]

Vt Variance of execution time [0, 3] Nex_para Number of external incentive
parameters

[0, 20]

No Average number of overtime
activities

[0, 100] Pf Average failure rate of active node [0, 1]

Nactive Number of active nodes [0, 100] Ps Success rate of historical usage [0, 1]

Nlogic Number of logical nodes [0, 100] Nmodel Number of models linked to the
workflow

[0, 100]
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Assume the eight evaluation indices to be {Xi2 [0,1]j i2 [1,8]}. Then the above-mentioned
equations can be expressed as follows:

X1 ¼Pintegrity �Pmatch (2)

X2 ¼Pmatch 1� T� T̂
�� ��

T̂
Vt

 !

(3)

X3 ¼ 1� Nlogic +Nstimulate

Nlogic +Nactive +Nstimulate
� Nex-para

Npara
(4)

X4 ¼Pintegrity �Ps � e
� Nstimulate +Nex-para

Nactive +N log ic +Npara

� �

(5)

X5 ¼ e
�Nmodel

Nactive (6)

X6 ¼Phist-cons �Ps � e�
1

Nhistory (7)

X7 ¼ 1�Pf

� � � e�
Nmodel �No

N2
active (8)

X8 ¼Phist-consPintegrityPs 1�Pf

� �
(9)
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It should be noticed that all of these equations can be replaced or modified into any
other forms in accordance with the simulation objects and the working environment of
the model.

To further obtain the relationship between these evaluation indices and the final credibility
value, we adopt the classical AHP algorithm to incorporate expert scoring on the weighting
process. According to the mechanism of AHP, experts need to judge the importance of the
eight indices and finish the judgment matrix as shown in Table 2. The mathematics method
is used to test the consistency of each matrix and obtain the eigenvector, so that the weight
relationship of each factor can be obtained. Due to the limited space, the process of AHP will
not be repeated here.

Clearly, it requires two steps to structure the two-layer relations between the workflow
features, the evaluation metrics, and the credibility value. Both quantitative deductions of
the evaluation metrics by some empirical equations and qualitative calculation of their
weights based on expert scoring should be carried out for amodel. How to establish the direct
influence of these features on the final model credibility is still challenging. To solve this prob-
lem, we apply two offline learning algorithms and two incremental learning algorithms for
efficient validation of simulation workflow in the next section.
4.3 Online Establishment of Empirical Evaluation Model

In order to make full use of the historical data and implement more efficient validation, we
adopt two offline algorithms, that is, single hidden layer back-propagation (BP) NN and ex-
treme learning machine (ELM) (Huang et al., 2006), and two online algorithms, that is, evolv-
ing neofuzzy neuron (eNFN) (Silva et al., 2014) and fast incremental Gaussian mixture model
(FIGMM) (Pinto and Engel, 2015), to train the empirical evaluation model.

In this section, a landing simulation workflow for the aircraft is adopted to verify the per-
formance of the proposed procedure and compare the four selected learning algorithms in
generating the empirical evaluation model. There are a total of 2000 historical data for aircraft
landing with different environment and different workflow structures. All the data come
from a real simulation system, which includes hundreds of simulation workflows for differ-
ent aircraft with changing flight missions.

Table 3 provides an evaluation sample for a specific simulation workflow. According to
Eq. (2)–(9), the eight evaluation indices can be scored as shown in Table 4.

In qualitative analysis, the experts need to judge the importance of the eight metrics
according to the basic AHP. Take the scoring case shown in Table 5 as an instance. The eigen-
vectors of the eight subfactors are 0.1175, 0.1107, 0.1412, 0.0989, 0.1248, 0.0831, 0.1507, and
0.1731, which are the final weights of them. By Eq. (9), the final credibility is 90.25. Then
the data from Table 3 can be used as the input and the final credibility as the output of the
training and testing samples.

Based on these historical evaluation data, the prediction results of BP and ELM are shown
in Table 6.

It can be seen that BP and ELM have the great ability of prediction when the amount of
training data are large. It is clear that the prediction error of the ELM is smaller than that
of BP as the training data source is a significant amount, yet BP can show a better-fitting effect



TABLE 2 Judgment Matrix of Eight Subfactors

Score Completeness Accuracy Independence Uncertainty Robustness Historical Use Reliability Reproducibility

Completeness 1 2

Accuracy 0.5 1

Independence 1

Uncertainty 1

Robustness 1

Historical use 1

Reliability 1

Reproducibility 1
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TABLE 3 An Evaluation
Sample for a Specific Workflow

Index Value

Pmatch 1

Pintegrity 0.9039

T̂ 142.85

T 143.71

Vt 3.5152

No 3

Nactive 27

Nlogic 6

Nhistory 24

Phist_cons 0.9632

Nstimulate 5

Npara 21

Nex_para 7

Pf 0.0392

Ps 1

Nmodel 3

TABLE 4 Quantitative Scores of the Eight Evaluation Indices

Quantitative Value On 100 Scale

Completeness 0.9039 90

Accuracy 0.8847 88

Independence 0.9035 90

Uncertainty 0.8007 80

Robustness 0.8948 89

Historical use 0.9239 92

Reliability 0.9490 94

Reproducibility 0.9254 93
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TABLE 5 Judgment Matrix of the Eight Evaluation Indices

Score Verification Accuracy Input Uncertainty Robustness Historical Data People Management

Verification 1 1.277 0.783 1.63 0.783 1.277 0.783 0.613

Accuracy 0.783 1 0.783 1.63 0.783 1.277 0.783 0.613

Input 1.277 1.277 1 1.277 1.63 1.63 0.783 0.783

Uncertainty 0.613 0.613 0.783 1 0.783 1.63 0.783 0.613

Robustness 1.277 1.277 0.613 1.277 1 1.63 0.783 0.783

Historical data 0.783 0.783 0.613 0.783 0.613 1 0.613 0.481

People 1.277 1.277 1.63 1.277 1.277 1.63 1 0.783

Management 1.63 1.63 1.277 1.63 1.277 2.08 1.277 1

TABLE 6 Experiment Results of BP and ELM

Name

Amount of

Training

Data

Amount of

Testing

Data

Average

Prediction-

Error

Average

Prediction-Error in

Percentage

Percentage of

Prediction-

Error>2

Percentage of

Prediction-

Error>5

BP 1900 100 0.6175 0.7313 0.03 0

ELM 1900 100 0.4511 0.5430 0.01 0

BP 1500 500 0.9434 1.131 0.110 0.002

ELM 1500 500 0.4434 0.547 0.014 0

BP 50 1950 1.9404 2.6678 0.3508 0.04221

ELM 50 1950 2.7028 3.694292 0.605 0.1292
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as the data source is limited. The average percentage of prediction error is maintained at
about 1%, which is certainly in the great ability of prediction. BP can stabilize the
prediction-error value by 3% though the data source is limited. In summary, BP and ELM
can be a good simplification way of calculating the credibility of simulation workflow instead
of experts.

Similarly, the experimental results of eNFN are shown in Figs. 4–8, while the results of
FIGMM are shown in Fig. 9.

As shown in Fig. 4, the prediction error decreases as the amount of input data increases at
the beginning, the prediction error will be stable in a certain area when it is decreased to a
certain extent, Due to the limited number of samples, the prediction error are not as small
as the offline learning algorithms after the stability. Fig. 5 shows the prediction error of
500 data sets based on this algorithm. Fig. 6 shows the prediction error of last 1500 datasets
based on this algorithm. The absolute error of the average error is about 3.9125.

The above experimental results are obtained using the triangular membership function.
We can also use the Gaussian curve membership function to replace the triangular member-
ship function as a comparison task. Fig. 7 shows the prediction error of 500 data sets based on
the Gaussian curve membership function. Fig. 8 shows the prediction error of the last 1500
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data sets based on this algorithm. The mean prediction error based on the membership func-
tion of the Gaussian curve is slightly reduced to 3.221 compared with the triangle member-
ship function.

Compared with the above eNFN, the mean prediction error of FIGMM is 3.5574 as shown
in Fig. 9, which is slightly smaller than the triangle membership function-based eNFN and
larger than the Gaussian membership function-based one.

Compared with these four learning algorithms, the results of offline learning algorithms
are in high precision, but it cannot improve their learning ability as the database increased
or the evaluation environment changed. On the contrary, incremental learning algorithms
allow new data to update the empirical model and make the prediction shift with time.
Although the prediction error is increased to some extent, it is much more efficient in such
evaluation tasks and can be extended to more dynamic circumstances.

To be more specific, the results show that BPNN and ELM can be a good way of simpli-
fication for calculating the credibility of simulation workflow without expert scoring. ELM
shows the highest accuracy while the average prediction error is about 0.45. BPNN shows
a high accuracy with an average prediction error of 1.94. Although FIGMN and ENFN have
bigger prediction errors, they are still in great learning ability.
5 CONCLUSION

This chapter focused on incorporating multiple VV&A methods and the state-of-the-art
intelligent method to evaluate the credibility of a simulation model. Considering mainly
the simulation requirement of a complex system and its dynamic environment, the critical
issues that influencemodel credibility during its configuration, application, andmaintenance
procedures are elaborated. Based on a NASA standard, we illustrated how to establish a
complete indicator system to cover different features of a simulation model and discussed
the different situations. More importantly, a comprehensive process for model credibility
measurement was established and detailed. It is able to unify the evaluation process of
different simulation models, largely accelerate it, and extend it to make a further model
improvement. A case study based on a simulation workflow model was also carried out to
verify the feasibility of such a process.
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1 INTRODUCTION

Model engineering is an emerging discipline addressing the whole modeling life cycle,
aiming at the same time for low system and software development costs, and high product
quality. This can be achieved with a systematic, standardized, and quantifiable methodology
that consists of theories, processes, technologies, standards, and tools (Zeigler and Zhang,
2015; Zhang et al., 2014). With modeling- and simulation-based approaches to systems and
software engineering on the rise, model quality has become an integral part of system quality
(D’Ambrogio and Durak, 2016). While system quality assessment and improvement has been
well addressed, the model quality issues still lack the attention they deserve.

A system architecture is defined as the blueprint of a system or systems, which enables
systems engineers to visualize the proposed systems, analyze the problem, and specify the
solution architecture (Wang and Dagli, 2008). Executable system architecture models are be-
coming increasingly popular (Tolk and Hughes, 2014). From the early steps of systems engi-
neering, simulation of architecture models are used to conduct analysis through
computational experimentation. The importance of model-centric engineering can be seen
in the fact that model-based development has turned into a standard software development
approach for various industrial domains, such as the automotive (Broy et al., 2013) and aero-
space (Amundson et al., 2015) sectors. ED-218/DO-331 (RTCA/EUROCAE, 2012a), the
model-based development and verification supplement to ED-12C/DO-178C Software
Considerations in Airborne Systems and Equipment Certification (RTCA/EUROCAE,
2012b), describes two kinds of models: specification models and design models. Specification
209 # 2019 Elsevier Inc. All rights reserved.
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models are used for abstract representation of functional requirements, performance charac-
teristics, interface descriptions, or safety properties of software systems, whereas design
models refer to an abstract specification of the software to be developed on component level.
These designmodels1 specify, for example, internal data structures, data and control flows, or
the software architecture itself. DO-331 promotes simulation for verification of specification
models and design models. Simulation is becoming a crucial part of model-based development,
allowing early validation of system and software properties before software implementation
has even started.

In this chapter, we presented an overview of model quality assessment and improvement
methods and techniques based on the standards and practices from automotive and aeronau-
tics domain. The chapter first introduced the quality aspects inmodel development where the
indicators of model quality as well as the sources of error in model engineering were
discussed. We also highlighted the reference workflows for model-based development and
the integrated quality assurance approaches for model engineering. Afterward, various
model quality assurance procedures were discussed one by one. Types of constructive pro-
cedures, such as process improvement, modeling guidelines, model checking and repair,
model refactoring, and tool qualification were introduced using references from recent
literature and examples from our own research where appropriate. In terms of analytical
procedures, the verification in model-based development was examined, and then
complemented with model-based testing.
2 QUALITY ASPECTS OF MODEL DEVELOPMENT

Although certain communities still use textual modeling, graphical modeling is today an
industry standard. In graphicalmodel development, model size, and accordinglymodel com-
plexity are described using a graphical combination of the number of blocks, their intercon-
nection, subsystems/super blocks and hierarchical levels (St€urmer et al., 2010). The
calculation of the resulting model volume is based on the Halstead metrics for code, which
has been adapted to software models. St€urmer and Pohlheim (2012) further noted that the
large models in the automotive domain may reach up to 15,000 blocks, 700 subsystems,
and 16 hierarchical levels. The flight dynamics model of the German Aerospace Center
(DLR) Advanced Technology Research Aircraft (ATRA) Airbus A320 developed in
MATLAB/Simulink is about 25,000 blocks, and 2000 subsystems. Such a scale in graphical
modeling makes quality analysis, assessment, and improvement a challenging task. It re-
quires an integrated approach for quality assurance of models as a part of the entire systems
development process supported by a proper combination of tools, methodologies, and
techniques.

The aim of model quality assurance is to identify model problems as early as possible. The
common quality assurance methods that are applied can be classified under three topics: use
1Design models are also often called implementation models, since they define implementation details and are often

used as a basis for automatic controller code generation.
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of modeling guidelines, manual review of models against requirement specifications, and
testing the models with simulation. Besides the model being the core artifact of quality assur-
ance, other artifacts of model engineering, such as textual requirements, test specifications,
test reports, and review reports are also addressed.

Fig. 1 presents a graphical representation of the indicators of model quality. It starts with
the requirements management where the realization levels of requirements indicate the
model quality. In model analysis, model complexity measurements, checking of guideline
compliancy,model reviews, and static testing can be listed as key activities for reaching a high
model quality. Testing from its specification to its reporting is vital on the quality of the
model. Finally, issue tracking is an important quality management task.
Issue tracking

Issue tracking

Model analysis

Model complexity

Functional requirements Safety requirements

Guideline compliance

Model review

Static testing

Issues and bugs

Test coverage

Test results

Test implementations

Test specifications

Model quality

Test management

FIG. 1 Indicators of model quality. Redrawn from St€urmer, I., Pohlheim, H., 2012. Model quality assessment in practice:

how to measure and assess the quality of software models during the embedded software development process. In: Embedded Real

Time Software and Systems, Toulouse, France.
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2.1 Model-Based Development and Reference Workflow

Today, model-based development is widely applied in various safety-critical domains
such as the automotive and aerospace sector. Safety-critical domains are characterized by
the strict requirements they impose on the engineering processes. Accordingly, ISO 26262
is the standard for functional safety of electrical, electronical, and software components of
road vehicles (ISO, 2011). DO 178C and its European equivalent ED-12C are about software
consideration in certification of airborne systems (RCTA/EUROCAE, 2012b). Both ISO 26262
and ED-12C/DO-178C address the model-based development aspects with special annexes
that are devoted to this approach. Keeping these standards in mind, a model-based develop-
ment process is depicted in Fig. 2. The seamless use of executable models is characteristic of
systems design in model-based development.

First, the specification model is developed based on the textual requirements. It describes the
behavior of the system to be developed. It includes algorithm specifications for transforma-
tion of input signals, events, and states which are almost always described using floating
point arithmetic. The design model is developed through revision of the specification model
by the implementation experts with regard to the requirements of the production code, such
as the realization of fixed point arithmetic or substituting model elements that are not
supported by the particular code generator.

Code generation is a model-to-text transformation which results in targeted source code.
Eventually, the code is compiled and an object code is reached for a particular system ele-
ment. The object code is ultimately deployed on a target platform, such as microcontroller
(MCU) or digital signal processor (DSP).

Many publications present model-based development workflows, each of which utilizes a
particular set of tools. Similar to what has been presented in Fig. 2, Estrada et al. (2013) intro-
duced best practices in the MathWorks ecosystem for DO-178 compliant model-based devel-
opment. A further example would be from Eisemann (2016) who discusses how dSPACE
Target Link (dSPACE, 2017) and tools by BTC Embedded Systems (2017), namely BTC
EmbeddedSpecifier and BTC EmbeddedTester, can be integrated into a model-based
FIG. 2 Model-based development workflow.
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development workflow based onMathWorks products to achieve up to highest ED-12C/DO-
178C Design Assurance Level.
2.2 Sources of Error in Model Development

The sources of error in model development were listed by St€urmer et al. (2005) as design
errors, arithmetic errors, tool errors, hardware errors, runtime errors, and interface errors. De-
sign errors are caused due to inappropriate construction of a model. It can be a failure of the
specification model not conforming to its requirements, or a design model that does not cor-
respond to its specification model. Arithmetic errors usually arise in design models due to
imprecise representation or improper conversions. Tool errors correspond to issues that come
up due to bugs in the toolchain or an inappropriate configuration of the tool itself. Any prob-
lem in the target environment may lead to hardware errors. Problems with scheduling and/
or resource mismatches are categorized under runtime errors. Lastly, interface errors occur
due to problems between the generated code and the wrapper software or custom code, such
as drivers or the operating system API. All these error types need to be addressed by the ac-
tivities relating to model quality assurance.
2.3 Integrated Quality Assurance

The assurance of quality in model engineering can be achieved through constructive pro-
cedures, such as adaptation of standards and guidelines, and analytical procedures, such as
verification and testing.

Constructive procedures aim at assurance that the development is carried out according to
a systematic process usually described in standards or guidelines. These procedures try to
minimize the possibility of errors. A major standard to be mentioned here is the ISO/IEC/
IEEE 15288:2015 (ISO/IEC/IEEE, 2015), which provides a common process framework for
describing the life cycle of systems. It focuses on defining stakeholder needs and required
functionality early in the development cycle, specifying requirements, then proceeding with
design synthesis and system verification and validation, while addressing a problem in its
entirety. The life cycle of a system spans the period from the system conception through to
its retirement. The current version of the standard is the product of a coordinated effort by
the IEEE and ISO/IEC, and replaces the ISO/IEC 15288:2008 (second edition), which was
technically revised in conjunction with a corresponding revision of the ISO/IEC/IEEE
12207 (for software life-cycle processes).

Model engineering is regarded as an integral part of systems engineering. INCOSE defines
model-based systems engineering (MBSE) as the formalized application of modeling, to sup-
port system requirements, design, analysis, verification, and validation throughout the life
cycle of systems (INCOSE, 2007). Therefore, the constructive procedures should also be car-
ried out in an integrative fashion. This includes adapting the systems engineering life-cycle
process to involve models as artifacts and supporting it with further standards, guidelines,
methods, and techniques for model engineering, which also considers further modeling
guidelines, model checking, and qualification of tools that are developed for model engineer-
ing and further code generation.
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Analytical procedures include verification activities. As indicated in Fig. 2, model verifi-
cation in themodel-based development process involvesmethods and techniques that ensure
the modeling flaws have been detected and avoided. Code verification then includes testing
the autogenerated code and assuring it conforms to the model.
3 CONSTRUCTIVE PROCEDURES IN MODEL QUALITY ASSURANCE

3.1 Process Improvement

Process improvement is crucial in systems development. Capability Maturity Model In-
tegration (CMMI) is a state of the art, well-employed framework which provides essential
practices for process improvement (SEI, 2010). CMMI is one of the quality management
tools which target continuous process improvement. There are three types of CMMI: CMMI
for development, CMMI for services, and CMMI for acquisition. CMMI for development
consists of four categories: project management, engineering, support, and process manage-
ment. Each category deals with certain process areas. For example, the engineering process
areas are requirements development (RD), technical solution (TS), product integration (PI),
verification (VER), and validation (VAL). Each process area has specific goals and specific
practices to reach those goals. CMMI assesses capability and maturity levels based on how
well organizations perform in achieving specific goals and adhering to practices in partic-
ular process areas. Integrated model quality assessment requires identifying goals and
specifying practices for model engineering within CMMI. Mahmoodi et al. (2017)
conducted such a study for simulation engineering. They assessed CMMI Engineering pro-
cess areas for simulation life-cycle processes in order to optimize its full potential in the sim-
ulation domain. This tailored CMMI integrates IEEE Recommended Practice for Distributed
Simulation Engineering and Execution Process (DSEEP) (IEEE, 2010) requirements into
CMMI engineering process areas to reach a higher level of process coverage and quality
in simulation systems engineering, comprehensively covering all its process areas.
Similarly, a study should explore the requirements of model engineering and attempt to
integrate them into frameworks like CMMI.
3.2 Modeling Guidelines

Modeling guidelines are important for maintainability. They increase the readability of the
model, and facilitate expendability, testing, and reuse (St€urmer et al., 2008). Through the use
of modeling guidelines, the experience relating to good and bad modeling practices can be
collated. They are useful for modelers as a reference for quality assurance tasks (Hu et al.,
2012). Guidelines are usually inspected and verified by modeling experts andmade available
to a wider group of modelers. They prevent regularly occurring problems in model design
and can reduce the amount of reworking significantly (Eisemann, 2006).

Among others (Ferrari et al., 2009; Eisemann, 2006; Erkkinen, 2005; Ohata and Komori,
2009), a particularly good example of well-employed guidelines are those specified by the
MathWorks Automotive Advisory Board (MAAB) (MAAB, 2015). The guidelines appear
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in various categories: model layout, arithmetical problems, exception handling and tool or
project-specific constraints.

Table 1—taken from St€urmer et al. (2008)—elaborates on these categories.
Model layout guidelines ensure readability, maintainability, and portability. An exam-

ple layout guideline is depicted in Fig. 3. It mandates all sum blocks must be rectangular. It
also states that the size of a sum block should be selected to avoid overlapping input
signals.

Further examples can be listed as follows:

• Signals should not cross each other or other blocks.
• In-ports should be located on the left-hand side (LHS) whereas outports should be on the

right-hand side (RHS).
• Every element of a model should be connected.

While guidelines about arithmetic operations address typical problems such as avoiding
division by zero, exception handling guidelines ensure the robustness of the model. Two
TABLE 1 Categories of Modeling Guidelines

Category Aim/Goal

Model layout Increase readability, maintainability, portability

Arithmetical problems Prevent typical arithmetical problems (e.g., division by zero, fixed-
point limitations)

Exception handling Increase robustness of the model

Tool-specific considerations Address tool-specific considerations, e.g., ensuring that the model can
be tested with model testing tools such as MTest (Model Engineering
Solutions, 2007) and TPT (Piketec GmbH, 2017)

Project-specific guidelines Naming conventions

Correct

Add
Incorrect

AddSmall

FIG. 3 An example layout guideline from MAAB (2015).
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noteworthy example tools that support model engineering are MTest (Model Engineering
Solutions, 2007) by Model Engineering Solutions GmbH and TPT (Piketec GmbH, 2017) by
Piketec GmbH. There are usually modeling guidelines associated with the use of such tools.
MTest and TPT both require that the interface of model modules should be well defined.
Finally, there may also be project-specific guidelines, such as naming conventions.
3.3 Enforcement of Modeling Guidelines and Model Repair

Modeling guideline checking involves a static model analysis. It verifies that the model
design adheres to selected modeling guidelines. The manual effort required to check guide-
line compliance is too high. Such checks can be turned into constructive procedures, only if
tool support is available.

The two most popular tools in the industry used for enforcing modeling guidelines for
Simulink or TargetLink models are MES Model Examiner® and Simulink Model Advisor®.
MES Model Examiner®(Stuermer et al., 2014) is the most common tool used for checking
Simulink and TargetLink modeling guidelines in the area of safety-critical software develop-
ment and is particularly tailored to the requirements of the automotive sector. Simulink
Model Advisor®(Popinchalk, 2008) is another example of amodeling guideline checking tool.
It automatically checks aMATLAB/Simulinkmodel or its subset for some commonmistakes.
It supports MAAB Guidelines, as well as other model checks associated with safety stan-
dards, such as DO-178B/DO-331 or ISO 26262.

St€urmer et al. (2008) identified the automation of model repairing as the crucial challenge.
He proposed MATLAB Simulink and Stateflow Analysis and Transformation Environment
(MATE) (St€urmer et al., 2007) which complements the analysis capabilities of commercial
model checking tools with constructive model quality improvement. The capabilities pro-
vided by MATE in 2007 included automatic repair functions for straightforward repair func-
tions; interactive repair functions for ones that require user feedback; design pattern
instantiation such as if-then-else or switch-case constructs and model “beautifying” opera-
tions for a better model layout.
3.4 Model Refactoring

Model refactoring or reconstruction is listed as one of the key model engineering technol-
ogies. Zeigler and Zhang (2015) described it as adjusting the internal structure without chang-
ing the external functions of the models with a view to optimization of model performance,
understandability, maintainability, and adaptability.

Refactoring has been used in classical software development as an evolutionary modern-
ization technique, in order to incrementally alter the structure of an artifact to achieve a better
quality, while keeping its behavior unchanged. Fowler described refactoring as a process of
cleaning up the code to improve its design after it has been written (Fowler and Beck, 1999).
With refactoring, code is tidied up in order to keep its shape. Chikofsky and Cross (1990)
classified refactoring as one of the appearance of restructuring, which is essentially a trans-
formation from one form to another at the same abstraction level while maintaining
functionality and semantics.
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While common practice is employed over commercial modeling and simulation tools in
model engineering activities within the context of model-based design, such as MATLAB/
Simulink, refactoring is a labor intensive and repetitive task. Durak (2016) encouraged model
developers to develop modification scripts following a well-established methodology. He
proposed a model refactoring approach that is accessible, maintainable, and adoptable by
modelers based on pragmatic model transformations for Scilab/Xcos, which is an open
source model-based design and simulation environment (Campbell et al., 2010).

The proposed approach by Durak (2016) provides an application programming interface
(API) to conduct in placemodel-to-model transformations for refactoring. The transformation
operation involvesmatching the LHS pattern in themodel being transformed and replacing it
with the RHS pattern in place (Czarnecki andHelsen, 2006). Pattern specificationmetamodels
for the LHS can be obtained by subjecting the original languagemetamodel to relaxation, aug-
mentation, and modification (K€uhne et al., 2009). Accordingly, Durak proposes an Xcos
refactoring metamodel (Fig. 4) for the LHS pattern specification derived from the Xcos
metamodel employing relaxation and augmentation. Regular expressions are proposed in or-
der to define the constraints as the values of attributes in LHS pattern structure as an augmen-
tation. Not all the fields of the Xcos metamodel are suitable for constraint definition; the Xcos
metamodel is simplified for refactoring purposes as a relaxation. Furthermore, all the data
types of the parameter values are specified as strings in order to enable the application of
regular expressions in the simplification.

It is suggested that the RHS pattern—that is, the replace pattern—be specified using the
same structure as the model conforming to the Xcos metamodel (Fig. 5).

The specification problem in model transformation addresses the definition of the precon-
dition and the postcondition, namely the LHS and the RHS. Czarnecki andHelsen (2003) pro-
posed variables, patterns, and logic that are used to specify LHS and RHS. Variables are
defined as the elements from the source and target. Patterns are defined as model fragments
with zero or more variables. Lastly, the logic refers to the constraints on the model elements.
Durak (2016) suggested the variables of the transformation as the objects of the Xcos diagram
with their attributes. Afterward, patterns can be introduced as the composition of these ele-
ments. Logic specification that employs regular expressions is recommended.

Following the aforementioned approach for the specification of the patterns, Durak (2016)
proposed an API for both atomic operations and the overall transformation process. Atomic
functions include finding, adding, deleting, and replacing a block and, similarly, finding,
adding, deleting, and replacing a link. Furthermore, getting the list of connected blocks
and the list of connecting links between the blocks is also proposed as an atomic function.
While these atomic model transformation functions provide the modeler with the building
blocks for developing their own algorithms tomanipulate or transform theirmodels, the com-
posite model transformation functions find subdiagram, add subdiagram, delete
subdiagram, replace subdiagram, and an overall find and replace are proposed for complex
refactoring tasks (Table 2).

It would be helpful to demonstrate the proposed approach by using a refactoring scenario.
Sometimes, as exemplified in Fig. 6, rather than using a gain block, which multiplies its input
signal with the constant value defined as the parameter of the block, modelers use explicitly
product blocks to multiply a signal with a constant value. Although it is mathematically cor-
rect, gain blocks enhance readability by reducing the number of blocks.



FIG. 4 Xcos refactoring metamodel. Redrawn from the metamodel presented in Durak, U., 2016. Pragmatic model transformations for refactoring in Scilab/Xcos.
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FIG. 5 Xcosmetamodel. Redrawn from the metamodel presented in Durak, U., 2016. Pragmatic model transformations for refactoring in Scilab/Xcos. Int. J. Model.
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TABLE 2 Composite Transformation Functions

Function Name Input Arguments Output Arguments

Find subdiagram Diagram List of indexes for matching blocks

Pattern to be searched

List of indexes for the constraining objects List of indexes for matching links

List of constraining attributes List of constraints

Add subdiagram Diagram Updated diagram

Pattern to be added

Delete subdiagram Diagram Updated diagram

List of indexes of the blocks to be deleted

Replace subdiagram Diagram Updated diagram

List of indexes for the blocks to be replaced

New structure

Find and replace Diagram Updated diagram

Pattern to be searched (LHS)

List of indexes for the constraining objects (Logic)

List of constraining attributes (Logic)

List of constraints (Logic)

pattern to be inserted (RHS)

Adapted fromDurak, U., 2016. Pragmatic model transformations for refactoring in Scilab/Xcos. Int. J.Model. Simul. Sci. Comput. 7(01), 1541004.
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To fix the issue, manual review and refactoring take time and cannot guarantee full cov-
erage. For this refactoring task, the modeler develops a script using the proposed API. The
sample listing for the script is given in Listing 1. It calls find_subdiagram to identify the blocks
that match the specified pattern. The blocks and the associated links are first removed from
the diagram. Then a gain block is added and required links are constructed. The script
searches for a matching subdiagram and conducts the replacement operation until no match
is found. The resulting model is depicted in Fig. 7.
3.5 Tool Qualification

Referring to the aforementioned categorization for sources of error in model engineering,
tool qualification targets possible tool errors and potential incorrect usage of a tool. The con-
structive procedures for model quality assurance mandate standards for the qualification of
tools in modeling engineering as they are identified as a possible source of errors that may
influence code quality undetected.

ED-215/DO-330 Software Tools Qualification Considerations (RTCA/EUROCAE, 2012c)
is the extension for ED-12C/DO-178C which introduces a software tool for life-cycle pro-
cesses (Fig. 8).
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1. // import the searched sub−diagram
2. importXcosDiagram(’productwithconstantblock.xcos’)

3. searched_subdiagram = scs m

4. // import the diagrams to be refactored
5. importXcosDiagram (’quadrotor.xcos’)

6. dl = get diagrams (scs m)

7. // no particular selection constraints
8. attributelist =[]

9. constraintlist=[]

10. // for every diagram
11. for i = 1: size ( ”dl” )
12. //get the list of matched blocks and links
13. [matched_block_list matched_link_list]=find_subdiagram(dl(i),...

14. searched_subdiagram, attribute_list, constraint_list)

15. // get the index of const and product
16. while size (matched_block_list)>0
17. for j =1: size (matched_block_list)
18. if dl(i).objs(matched_block_list(j)).gui==”CONST”
19. const_index = j;

20. elseif diagram_list(i).objs(matched_block_list(j)).gui==”PRODUCT”
21. product index = j

22. end 
23. end
24. // get the value for the gain
25. gain_value = dl(i).objs(matched_block_list(const_index)).model.rpar

26. // delete the const block
27. delete_block(dl(i), matched_block_list(const_index))

28. gain_block = GAINBLK(”define”) // create a gain block
29. gain_block.model.rpar = gain_value // set the gain value
30. // replace it with the product block
31. replace(d(i), matched_block_list(product_index), gain_block)

32. // check for any other match
33. [matched_block_list matched_link_list]=find_subdiagram(dl(i), ... 

34. searched subdiagram, attribute_list, constraint_list)

35. end
36. end
LISTING 1 Listing for sample refactoring script. Adapted from Durak, U., 2016. Pragmatic model transformations for

refactoring in Scilab/Xcos. Int. J. Model. Simul. Sci. Comput. 7(01), 1541004.
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ED-215/DO-330 enables qualification based on the conformance to its requirements which
are listed in the form of objectives and activities. The required qualification level of a tool,
namely the tool qualification level (TQL), is based on its use and its potential impact on
the software life-cycle process. There are five qualification levels—from TQL1 to TQL5.
TQL 1 is the most rigorous that demands coverage of all objectives and requirements while
TQL 5 is the least rigorous with minimum objective and requirement coverage. Determina-
tion of TQL is described in RTCA/EUROCAE (2012b) in detail.

ISO 26262 also requires the evaluation of each software tool and asks for a corresponding
tool qualification (ISO, 2011). Evaluation is conducted to determine a tool confidence level
(TCL) based on tool impact (TI), and tool error detection (TD) level. While TI is the possibility
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FIG. 8 The tool life-cycle processes according to DO-330.
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of tool errors leading to a safety requirement violation, TD is the likelihood of detecting or
preventing the error (Slotosch et al., 2012).

Tool qualification is applicable to software development tools, such as compilers or code
generation tools, and software verification tools such as static analyzers or simulationmodels.
Within the context ofmodel engineering, tool qualification is a concern for simulationmodels,
model checking and repair tools, however particularly for code generators and model-based
testing tools. Various efforts regarding tool qualification have been made. In 2004, St€urmer
and Conrad (2004) presented a test suite-oriented approach for certifying code generators.
Later Conrad et al. (2010) presented tool qualification efforts in the MathWorks ecosystem
that address both ISO 26262 and ED-12B/DO-178B. Recently, Wagner et al. (2017) introduced
a qualification of a modeling guideline checkers for airborne systems.
4 ANALYTICAL PROCEDURES IN MODEL QUALITY ASSURANCE

4.1 Verification in Model-Based Development

Testing is the major verification method conducted as an analytical quality assurance
activity. In traditional software engineering, the focus is on testing the functionality of the
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code and ensuring its correct behavior; whereas in model-based development, the model is
tested against its requirements and the code can be verified against the executable model by
means of dynamic testing. This difference has significant advantages; because code behavior
can be tested before code implementation has even started, resulting in a very early
verification of functional requirements. However, in model-based testing, both model and
code are stimulated with the same input then the two outputs are compared with respect
to certain acceptance criteria.

As depicted in Fig. 9, testing in model-based development is carried out at different stages
of the development process:

• Model-in-the-Loop (MiL) checks the validity of the model with respect to the functional
requirements within the development environment. This simulation is executed on the
host PC. The simulation results are used as a reference (expected values) for the following
software verification steps.

• Software-in-the-Loop (SiL) analyzes the generated code against possible arithmetic problems
(e.g., over-/underflow), and to measure code coverage. The designed model used during
MiL is compiled and executed on the host PC with the same stimuli used for MiL.
Test model

Code generator

Code

»

Test output (Experimental HW)

Test output

Compare
results

Test stimuli
MiL

SiL

PiL

HiL

Test output (model)

Test output (Host PC)

FIG. 9 Testing in model-based development (St€urmer et al., 2005).
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• Processor-in-the-Loop (PiL) verifies the code behavior on the target processor and measures
code efficiency (profiling,memoryusage, etc.). The generated code is (cross-) compiled using
the project’s target compiler. Afterward, the code is executed on experimental hardware,
which contains the same processor as the target system (such as an evaluation board) but
contains additional resources for storing and exchanging test data and test results.

• Hardware-in-the-Loop (HiL) checks the software on the target hardware with its electrical
interfaces. The software embedded into the target hardware is connected to a real-time
simulation system simulating the plant and is executed.
4.2 Model-Based Testing

Model-based testing is described as a proposal for automating test case generation from a
test specification, also called the “test model”, instead of implementing test cases manually
(Zander, 2009). It further enhances the flexibility and adaptability of the testing infrastructure
by automating the test case design (Utting and Legeard, 2010).

Model-based development proposes that a formal system model is derived based on the
system requirements. In the next step, executable model components can be generated from
the formal system model. As presented in Fig. 10 which is adapted from Roßner et al. (2012),
in model-based testing, the same system requirements are used to derive a test model that is
able to generate a single test case or a test suite for a system under test (SUT). Test cases de-
scribe the intended behavior of the SUT that needs to be tested. The idea is that test cases are
abstracted in a test model, and then amodel-based testing tool is employed to generate a set of
concrete test cases from that model.

A test case is composed of an input stimulus to be fed into a SUT, called test inputs, and the
expected behavior of SUT. The expected behavior is determined using a test oracle which also
contains a judgment unit to decide the verdict. Schmidt et al. (2016) claimed that a specifica-
tion of a set of test models on an abstract level is desirable for model-based testing of complex,
modular models with diverse testing objectives. They aim to reduce the complexity of test
models on the implementation level. The test case is formalized using the experimental frame
concept, first introduced by Zeigler (1976), as a specification of a limited set of circumstances
under which a system or model has to be observed. In Fig. 11, the structure of a test case is
proposed as an EF structure, consisting of a generator, an acceptor and a transducer, coupled
with the system under investigation; in this case, the model under test (MUT) (Fig. 11).
Requirements

System model

derive

generate

testing select

generate

derive

Test model

Test caseSUT Test suite

FIG. 10 Model-based testing. Based on
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FIG. 11 Test case formalized as an experimental frame (Schmidt et al., 2016).
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The generator produces the test inputs. The test oracle is made up of an acceptor and a
transducer. The transducer calculates measures in the form of performance indices, compar-
ative values, statistical values, etc. that can be assessed by the acceptor. The acceptor corre-
sponds to a decision unit that decides the success of a test case.

The approach proposed by Schmidt et al. (2016) is based on the idea of having a collection
of all possible model components to compose a test case, namely a model base (MB) and uti-
lizing a transformation framework to automatically construct an executable test model. They
employed the System Entity Structure and Model Base (SES/MB) framework (Zeigler et al.,
2000) for an interactive or automatic generation of an executable simulation model (Fig. 12).
The SES ontology, which was specifically developed to represent a family of modular, hier-
archical systems, was used to model a family of test cases. Pruning which resolves variabil-
ities and derives a distinct system structure with corresponding parameter settings, is used to
derive a specific test scenario. Translation is then employed to collect test model elements
from the MB and generate an executable test case. Based on the SES/MB toolbox (Pawletta
et al., 2014), the proposed infrastructure was prototyped in MATLAB/Simulink and utilized
in testing of flight simulationmodels (Durak et al., 2015). A screenshot from the infrastructure
implementation is given in Fig. 13.
FIG. 12 System entity structure
and model base framework
(Schmidt et al., 2016).



FIG. 13 SES/MB Toolbox for model-based testing (Schmidt et al., 2016).
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5 CONCLUSION

As the modeling and simulation-based approach is becoming common practice in systems
development, integrated approaches to assure the quality of models are being usedmore and
more. Model quality assessment and improvement methodologies and practices are becom-
ing more crucial in model engineering. Furthermore, safety-critical domains such as the aero-
nautics and automotive industries are recognizing model-based development as common
practice and are endorsing standards to assure model quality.

This chapter provides an overview of model quality assessment and improvement
methods and techniques. After introducing the indicators of model quality and sources of
error in model engineering, an integrated quality assurance approach is promoted for model
engineering activities in model-based development. In this context, the chapter provides a
background for various constructive and analytical model quality assurance procedures such
as modeling guidelines, model checking and refactoring, or model-based testing. It extends
the discussions and exemplifies the tools and techniques about the procedures with the ref-
erences from the recent literature and examples from authors’ own research where
appropriate.

While the chapter focusses on model engineering in context of model-based development,
the quality assurance procedures introduced in this chapter are well-transferable to other
model engineering applications.
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C H A P T E R
11
Validation of DEVS Models Using
AGILE-Based Methods

L. Capocchi, J.F. Santucci
SPE Laboratory (UMR CNRS 6134), University of Corsica, Corte, France
1 INTRODUCTION

This chapter deals with validation via simulations of discrete event system specification
(DEVS) models at the early phases of the design process. DEVS is a widely used formalism
in the framework of discrete-event simulation of complex systems. The validation of models
is traditionally a step, which is relegated at the end of the design process: once the models
have been defined and coded, experiments are conducted in order to validate them using sim-
ulation. However, this traditional way to perform validation of models is often an expensive
and time-consuming activity, and the resulting quality of the models is still poor. Conse-
quently, new approaches for coping with these challenges are necessary. The same remarks
can be formulated when dealing with software testing. Considering software testing, one
emerging trend is stronger integration of testing as early as possible in the design process
of a program. For that reason software engineering has proposed newdesign and test as Agile
methods, which include test-driven development (TDD) (Fraser et al., 2003) and behavioral-
driven development (BDD) (Solis and Xiaofeng, 2011) methods.

In order to go on with the analogy between modeling and simulation (M&S) and software
engineering, one can imagine applying BDD and TDDAgile methods to the design and test of
DEVS models. Our main objective is to develop an approach that is able to use different soft-
ware testing techniques stemming from software engineering (Agile test methods to be more
specific) that are applied to design of DEVS models in order to improve quality assurance of
the resulting DEVS models while proposing inexpensive and no time-consuming activity.

Our approach consists in applying the BDD method for the design of DEVS models. In or-
der to achieve this goal, we have carefully performed a correspondence between the BDD
method when applied to software and the BDD method which has to be applied to design
of DEVS models.
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Therefore, the problem is to perform a BDD method when defining DEVS models. Defin-
ing such a method in the DEVS M&S context requires the resolution of the following basic
problems:

1. To define a semiformal format for the behavioral specification of the test for any atomic
models involved in a DEVS model.

2. To define how to generate parameters for a test from a specification document of the tests
of DEVS models.

3. To define how to perform the previously defined tests using simulations.

To solve these problems we propose:

1. to define a semiformal format from the natural specifications of FD-DEVS as proposed by
Zeigler (see Zeigler and Sarjoughian (2012) for a description);

2. to use the specificity of the Python language to generate a test (by means of the decorator
programming concept); and

3. to perform the tests by combining software engineering programming concepts such as
decorators, patch, and mocking objects in order to perform the tests using DEVS
simulations in the framework of the DEVSimPy (Capocchi et al., 2011) environment.

DEVSimPy is a collaborative general user interface implemented in Python language
allowing us to experiment with new approaches inside the DEVS formalism. To ensure this,
we use DEVSimPy plug-ins in order to be more generic.

The next part of the chapter discusses related work on similar problems in validation of
DEVS models inspired by the software engineering techniques. Section 3 briefly introduced
the DEVS formalism and the DEVSimPy framework before the presentation of the main no-
tions involved in Agile test methods. In Section 4 an overview of the proposed approach is
briefly presented. Section 5 presents in details the different aspects involves in DEVS model
validation using Agile methods. Section 5.1 is devoted to the definition of the semiformal for-
mat chosen for the user to write the behavioral specification of the tests as required in a BDD
method. In Section 5.2 we describe how we have been able to generate the test parameters,
which will be used to validate the models. Section 5.3 presents how the tests are performed
using simulations within the DEVSimPy framework by integrating decorators, patches, and
mocking objects into DEVSmodels. In Section 5.4 the integration of the tests performed at the
internal level (behavior of atomic models) into coupled models is described. This integration
is called external testing. Section 5.5 is dedicated to present the architecture of the DEVSimPy
plug-in allowing to implement the proposed approach in previous sections. The last part will
permit to conclude and to give a brief overview of future work we envision.
2 RELATED WORK

Today, it is essential to take into account the verification and validation (V&V) processes in
the field of the M&S of systems (Pace, 2004). Concerning the M&S of discrete-event models,
many research works have been develop to validate a model of a system using simulations.
Basically, simulations are preformed and compared against the requirements. The model is
validated if all of the considered simulation results comply with the modeler’s expectations.
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Hollmann et al. (2012, 2014) propose to apply the model-based testing (MBT techniques
like the test template framework in the model simulation process. The idea of their work
is to enable modelers to define a set of testing criteria (rules) to conduct simulations of DEVS
models in order to validate them. The specification of these rules can be realized using formal
language and then to contribute to the automatization of the validation by simulations pro-
cess. Note that the proposed technique does not run the simulations and requires to be inte-
grated in the simulation process.

Labiche and Wainer (2005) highlight the open research area of the V&V of DEVS models
and give open research paths in the field of DEVS modeling V&V. They propose to
explore new techniques to incorporate automated testing facilities mostly used in the Soft-
ware Engineering field to the testing framework based on DEVS Experimental Framework
and the CD++ toolkit. Saadawi and Wainer (2013) introduce an extension of the DEVS
formalism called Rational Time-Advance DEVS (RTA-DEVS) allowing the formal checking
of real-time systems using standard model-checking algorithms and tools. The correctness
of models is guaranteed by verifying DEVS models using the timed automata theory
and tools.

Zengin et al. (2010) and Zengin and Ozturk (2012) give a good introduction of V&V of
DEVS simulation models and apply their approach in the DEVS-Suite environment. Based
on technique developed by Forrester and Senge (1980), they used a case example Open
Shortest Path First DEVS (OSPF-DEVS) simulator to perform V&V tests.

Olamide and Kaba (2013) propose a framework allowing a model-based verification using
the simplified model checking tools. It is based on comparison of trajectories and events of
DEVS-Driven Modeling Language simulation models with real system. The authors claim
that “This framework provides a model refinement iterative procedure that helps to enhance
the DEVS Simulation Model, correct errors, or adapt to changing contextual requirements”
and validate their approach on the case study of a GSM telecommunication system by
checking and refining the model.

Jianpeng et al. (2014) propose a model-driven methodologies to specify a unified model-
driven design and validation approach to service-oriented architecture. The methodology
consists first to extend of the DEVS modeling language to support nondeterministic state
transition and use this extension as a model transformation intermediary to bring together
Model-Driven Service Engineering with Service-oriented architecture Modeling Language
and M&S methodology based on DEVS.

Most of the previous approaches briefly presented earlier are based on software engineer-
ing techniques (Labiche and Wainer, 2005; Hollmann et al., 2012, 2014). There are many
manners to test a DEVS model (atomic or coupled model). Li et al. (2011) focus on the vali-
dation of DEVS formalism implementation. The approach described in Byun et al. (2009) con-
cerns the correctness of a given simulation. It proposes a framework allowing to check all the
possible paths involved in a given simulation model. In Hu et al. (2007), test agents are
presented. This chapter proposes a definition of a test agent, which is connected to the
I/O of a given model and is used to point out the behavioral information concerning the
model. The test is performed using this information. However, the proposed approach is
not a generic one since test agent should be specific to a given model. In this chapter, the
proposed solution is derived from the software engineering domain but with exploitation
of Agile test methods.
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3 BACKGROUND

3.1 DEVS Formalism

The DEVS formalism is fully described in the companion volume to this book (Bernard
et al., 2018). Here we only review aspects needed for this presentation. DEVS provides a
means of specifying amathematical object called a system. Basically, a system has a time base,
inputs, states, outputs, and functions for determining next states and outputs given current
states and inputs. The DEVS formalism is a simple way in order to characterize how discrete-
event simulation languagesmay specify discrete-event systemparameters. It ismore than just
ameans of constructing simulationmodels. It provides a formal representation discrete-event
systems capable of mathematical manipulation just as differential equations serve this role.
Furthermore by allowing an explicit separation between the modeling phase and simulation
phase, the DEVS formalism is one of the best ways to perform an simulation of systems using
a computer.

In the DEVS formalism, onemust specify: (i) basic models fromwhich larger ones are built,
and (ii) how these models are connected together in hierarchical fashion. An atomic model
allows specifying the behavior of a basic element of a given system. Connections between dif-
ferent atomic models can be performed by a coupled model. A coupled model tells how to
couple (connect) several component models together to form a new model. This latter model
can itself be employed as a component in a larger coupled model, thus giving rise to hierar-
chical construction.

An atomic DEVS model (AM in Fig. 1) can be considered as an automaton with a set of
states and transition functions allowing the state change when an event occur or not. Regard-
ing the initial version of the DEVS formalism called “classical with port,” when no events oc-
cur, the state of the atomic model can be changed by an internal transition function called δint.
When an external event occurs, the atomic model can intercept it and change its state by ap-
plying an external transition function called δext. The life time of a state is determined by a
time advance function called ta. Each state change can produce output message via an output
function called λ. A simulator is associated with the DEVS formalism in order to exercise in-
structions of coupledmodel to actually generate its behavior. The architecture of a DEVS sim-
ulation system is derived from the abstract simulator concepts (Bernard, 1976) associated
with the hierarchical and modular DEVS formalism.
FIG. 1 DEVS atomic model in action.
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Finite and Deterministic Discrete Event System Specification (FD-DEVS) (Pace, 2004) has
been inherited from classic DEVS in order to model and analyze discrete-event systems
in both simulation and verification ways. With regard to natural language specification,
FD-DEVS offers a support for XML translation or graphic representation.
3.2 DEVSimPy Software

There are many tools, which provide a user interface dedicated to help the user to define
DEVS models and to perform simulations. A nonexhaustive list can be done: PowerDEVS
(Bergero and Kofman, 2011), DEVSim++ (Kim et al., 2010), DEVS-Suite (Kim et al., 2009),
VLE (Quesnel et al., 2007), DEVSimPy (Capocchi et al., 2011), CD++Builder (Bonaventura
et al., 2013), MS4Me (Zeigler and Sarjoughian, 2012), etc. Special attention will be given to
DEVSimPy (stand for DEVS simulator in Python), which is a collaborative M&S software.

DEVSimPy (Python Simulator for DEVS models) (Capocchi et al., 2011) is a user-friendly
interface for collaborativeM&S of DEVS systems implemented in Python language. Python is
a programming language known for its simple syntax and its capacity to allow modelers to
implement quickly their ideas (Langtangen, 2005). The DEVSimPy project uses the Python
programming language and provides a GUI based on PyDEVS (Bolduc and Vangheluwe,
2001) API in order to facilitate both the coupling and the re-usability of PyDEVSmodels. This
API is used in the excellent multimodeling GUI software named ATOM3 (De Lara and
Vangheluwe, 2002), which allows to use several formalism without focusing on DEVS.
DEVSimPy is an open source project under GPL V3 license and its development is supported
by the University of Corsica Computer Science research team. It uses the wxPython graphic
library, which is a wrapper of the most popular WxWidgets C library ( Julian et al., 2005).

Themain goal of the DEVSimPy environment is to facilitate themodeling of DEVS systems
using the GUI dynamic libraries and the drag and drop functionality. With DEVSimPy,
models can be stored in a dynamic library in order to be reused and shared (left panel in
Fig. 2). The creation of dynamic libraries composed with DEVS components is easy since
the user is coached by dialogues and wizard during the building process. With DEVSimPy,
complex systems can be modeled by a coupling of DEVS models and the simulation is
performed in a automatic way. Moreover, DEVSimPy allows the extension (or the overwrite)
of their functionalities in using special plug-ins managed in a modular way. The user can en-
abled/disabled a plug-in using a simple dialogwindow.We propose in this chapter to use the
extension capability offered byDEVSimPy plug-ins in order to implement amodel-based val-
idation of DEVS models.
3.3 Agile Test Methods

Agile methods (Cockburn, 2002) are the increasingly common practice throughout the
lifecycle to develop a software iteratively. These methods may include: the TDD (Fraser
et al., 2003) method and its extension/revision, that is the BDD (Solis and Xiaofeng, 2011)
method. TDD is a software development methodology, which essentially states that for each
unit of software, a software developer must: (i) first define a test set for the unit, (ii) then
implement the unit, (iii) finally verify that the implementation of the unit makes the tests



FIG. 2 DEVSimPy general interface.
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succeed. BDD is a specialized version of TDD, which focuses on behavioral specification of
software units. It is based on: (i) the use of examples to describe the behavior of a given ap-
plication or code units; (ii) the use of feedback and regression testing fromprevious examples;
(iii) the use of “Mocks” (Mock, 2012) replacing the code modules, which have not yet been
written.

The main steps of the BDD method can be summarized by the following points:

1. BDD test of any units of software should be specified in a document written in a
semiformal format composed by a set of scenario.

2. The specification document has to be read and each scenario of the document is breaking
up into meaningful clauses. Each individual clause is transformed into some parameters
defining a given test.

3. The framework then executes the tests of each scenario.

In this chapter, we present a set of main BDD characteristics, which are used to implement
the test of DEVS model.
4 PROBLEM DESCRIPTION

The context of the proposed work relates to the cycle of software development. Tradition-
ally software development corresponds to a logical and intuitive approach described in Fig. 3.

The basic approach of such traditional cycle is that we code first and then we perform
the tests.

As explained in Section 1, we have developed an analogy between software engineering
design process and DEVS model design process. From a software engineering point of view,
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the structure of the software is first defined, then the implementation of the related classes
and functions is performed, and finally the implementation is executed in order to find errors
(as it can be seen in the engineering part in Fig. 3). The same kind of development cycle is used
for DEVS model development: the structure of models is first defined, models are then
implemented and the obtained implementation is simulated in order to find potentials errors
(as it can be seen in theDEVS part in Fig. 3). If errors are raised during simulation, they have to
be fixed one by one and verified each time by simulation.We also can deduce numerous prob-
lems from a validity and productivity points of view from Fig. 3.

• The models cannot take into account all the situations and the predictions have a low
reliability because of the uncertainty observability of the produced results.

• The behavior of the developed models has high probability to be erroneous and it will
certainly be necessary to adjust certain parameters or certain functions.

• The maintenance, the refactoring, or the evolution of a model cannot guarantee the
preservation of the behavior.

• The samemodel implemented in various environments is completely different. It can raise
problems from the perspective of a standardization.

In Section 5 we focus on the developed solution in order to propose an embedded mech-
anism allowing to automatically take into account the test part at the beginning phase of the
design process of DEVS models.
5 PROPOSED SOLUTION

As described earlier, the traditional cycle for DEVS model design raises numerous prob-
lems. The proposed approach is summarized in Fig. 4.

We have developed a solution by analogy with the BDD approach defined in the software
engineering domain. As shown in Fig. 4 (engineering part) this approach consists in firstly



FIG. 4 Proposed behavior-driven development cycle.
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defining the structure of the software to be designed and immediately after to write the test
specifications. Then the designer can implement and at the same time test the class and func-
tions of the software to be designed. The same kind of development cycle is proposed for the
design of DEVS models as it is shown on the DEVS part of Fig. 4. The only difference is that
the specifications writing and the model implementation are performed using an M&S
framework. The simulation engine is used in order to perform the tests. Concerning the pos-
sible relation with the DEVS experimental frame, DEVS defines this notion as an entity,
which provides inputs to a simulation model and decides its outputs. Experimental frames
can be specified with the same formalism used to specify the simulation model itself. Our
approach uses the DEVS experimental frame in order to perform the test of the models by
using simulation.

Implemented behavior in a DEVS model is directly tested. This brings numerous
advantages:

1. The produced code is reliable.
2. The basic elements of the DEVS model can be tested one after the other.
3. Even if there is an evolution of the implementation of the DEVS model, the behavior

remains the same.

The proposed approach has been implemented in the framework of the DEVSimPy envi-
ronment. The design and test process has been introduced in this Python programming
language-oriented simulation environment. In order to propose a generic implementation
we choose to define a DEVSimPy plug-in dedicated to:

• the automatic generation of test scenario and
• the execution of the test scenario using the simulation kernel.
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The plug-in involves the definition of a Behavioral Test Generator engine (called BTG)
allowing to transform the test specifications into a test code, which will be executed in order
to validate the DEVS model under test. Fig. 5 describes explicitly how a user is going to de-
velop the design and test proposed methodology.

The user has first to write the FD-DEVS test specifications. Then he/she has to implement
part of (or completely) a model corresponding to the previously written specifications. The
DEVSimPy plug-in will allow to:

• generate testable code from the FD-DEVS specification (using the BTG engine);
• integrate the testable code into the DEVS model already defined by the user; and
• simulate the integration of the testable code and the already defined DEVS

model part.

If the result of the simulation points out an invalid DEVS model definition, the user has to
rewrite the DEVS model and again execute the plug-in.
5.1 Test Scenario Specification

Specification is an important point when dealing with a BDD approach for DEVS formal-
ism. It gives a manner to describe the test patterns associated with the behavior of a DEVS
model, which has to be defined and implemented. Instead of defining a new language we
choose to select an already defined language, which allows to describe DEVS modeling
scheme under a semiformal natural language. The pseudo-natural language described in
Zeigler and Sarjoughian (2012), which is inspired from the grammar detailed in Hong and
Kim (2006), has been adapted in order to offer a language for specifying test patterns of a fu-
ture DEVSmodel. In order to use this specification language, we have defined a parser for the
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FD-DEVS grammar with simple parse (SimpleParse, 2006) tool helping. The proposed gram-
mar follows the hierarchy depicted in Fig. 6.

From this diagram the grammar shown in Listing 1 can be generated at an EBNF format.

L I S T I N G 1 DEVS SPECIFICATION OF THE
GENERATOR MODEL

to start hold in generate for time 10!
after generate output Job!
from generate go to generate!
when in generate and receive Stop then go to passive!

L I S T I N G 2 EBNF SPECIFICATION LANGUAGE
GRAMMAR
An example of a generator DEVS model specification using the ENBF format is given in
Fig. 7. Fig. 7 shows that the information are involved by the specification of Listing 2.
5.2 Test Scenario Generation

The purpose of the test scenario generation is to transform the previous specification (that
can be considered as an abstract model in the MBT activity) into test scenario (derived test
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cases in the field of MBT) and integrate them into the DEVS simulation models. In order to
realize this transformation, we have defined a BTG engine which is a parser. Its goal is to
transform the specification (which are expressed using the language presented in
Section 5.1 and named “Spec” in Fig. 8) into an adapted test code. Fig. 8 describes how the
parser is usedwhen a user has to develop the code corresponding to aDEVSmodel (an atomic
model in this case).

The transformation is based on important information deduced from the specification and
called “critical data.” These “critical data” are determined by the BTG and injected as test code
into the DEVS model to be implemented. Two cases have to be considered: (1) if the DEVS
model has been already coded by the user, the injection will be performed using the software
engineering decorator notion (Python, 2003); (2) if the DEVS model has not already been
implemented, the injection will be performed using the mocking objects (Mock, 2012) notion.
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These two cases are illustrated by the following two pedagogical examples. An example of a
resulting test code corresponding to case 1 is given in Fig. 9.

In this example the user has already written the code of an atomic DEVS model. It corre-
sponds to the behavior, which has been specified in Fig. 7 (see Section 5.1). The example high-
lights how the internal transition is modified using decorators in order to implement the test
scenarios. In the presented example the test scenario, which has been injected, corresponds to
the behavior involved by the line 3 of Fig. 7 in the generator DEVSmodel specification: “from
generate go to generate.” This means that the injected test scenario allows to check that the
state remains the same after the execution of the internal transition when the model is in the
“generate” state.

Fig. 10 gives an example of the use of mocking objects, which corresponds to case 2.
In Fig. 10 we suppose that the external transition of the DEVS model to be tested has not

been already implemented. From the specification we have been able to deduce the critical
data, which are expressed as follows: for inputs 1 and 2, the output should be 1 while for in-
puts 2 and 3, the outputs should be 3. The use of patches and mocking objects is highlighted
by the introduction of a MagicMock object (from line 10 to 14 of Fig. 10). The external
FIG. 9 FDDEVS to decorator example.



FIG. 10 Simple method patching example.
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transition (“extTransition” function is patched with the previously mentioned MagicMock
object). This example points out how the behavior of DEVS functions can be defined using
mocking objects when a DEVS model has not been totally implemented.
5.3 Test Execution

Fig. 11 describes how the DEVSimPy plug-in:

• is integrated into the simulation kernel; and
• is able to select between the injection of decorators and patches (mocking objects).

In order to select which kind of injection has to be performed during the simulation, we use
an important property of the Python programming language called dynamic introspection: it
is possible to know if a python object is completely implemented or not at any time of the
execution of a given python script. Fig. 11 details how this property is used in order to dy-
namically (during the simulation phase) detect if a given DEVS function has been (or has
not been) already implemented. At time t0 (initialization of the simulation phase), the
DEVSimPy plug-in is executed:

1. It refers to the specifications associated with the DEVS model being implemented
and tested.

2. It executes the BTG engine, which allows to transform the previous specifications into
decorators or patches according to model introspection.
DEVSimPy
Plug-in

Atomic
modelSimulator

t0
init

Specifications

@decorator
#patch

FIG. 11 Sequence diagram of the DEVSimPy plug-in.



246 11. VALIDATION OF DEVS MODELS USING AGILE-BASED METHODS
3. It ends by returning into the DEVSimPy simulation kernel in order to go on with the
simulation.

The definition of this DEVSimPy plug-in as described earlier permits a user to perform de-
sign and test of DEVS models as presented in Fig. 5.

Execution of the scenario will lean on decorators and patches. Here, the simulation is the
heart of the test. The point is that with this strategy, we really test a behavior and not just
structure or variable.

To illustrate this, we have implemented a plug-in on DEVSimPy environment, which can
take care of this strategy.With aspect-oriented programming (AOP) helping, the plug-in gets,
on the fly, models on the start of simulation and decorates transitional functions with
implemented decorators in specifications. When developers create their models, they have
to do two things:

1. write specifications (Spec); and
2. implement the model, just to pass the created test.

These two steps are looped and the second step leads to a major problem. How to execute
tests on the DEVS model while implementing them by simulating the execution of the test
scenario?

We have to generate, according to specifications, decorators or patches. For example, you
have to write your first step specification of external transition and now you want to imple-
ment it in your atomic model but you know that without having implemented the rest, it is
impossible for you to simulate it! So, we can fix this problem! At the moment t0 of the sim-
ulation, the plug-in is initialized and retrieves specifications from atomic models. When it is
done, the parser transforms specifications (Spec) into test code (decorator or patch according
to model introspection) and then the plug-in links test code to the model.

We have seen the global work of the example plug-in that realizes the new vision of
behavioral testing with DEVS but we have not seen the progress of the simulation in a user
point of view.
5.4 External Testing

Previous sections dealt only with internal testing that focus on the behavior of the model
like states and transition functions. Another part of the test is to see a coupled model under
test as a black box in which events are sent on input ports and the output ports are observed
and compared with the requirements.

In order to be able to point out an error raised in a coupled model M1, we propose the fol-
lowing process (see Fig. 12: from a given specification (called spec1), we are able to test the
model M1. When the model has been validated, we can refactor it. Two possible solutions
appear:

• a new model M1* is validated by spec1; and
• the new model M1* raises errors.

If the re-factoring model raises errors, two possibilities have to be considered: (1) a simple
re-factoring error or (2) the spec1 no longer corresponds toM1. In this last described case, new



FIG. 12 Methodology for external testing.
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specifications have to be defined (according to theM2model). In the former case we just have
to test the M1*model. To test the model like a black box, we only have to execute it and look
what happen. We have an input dataset already described in the specification.
5.5 DEVSimPy Plug-In Architecture

The plug-in architecture is open for extensions and at the same time extremely linked to
EBNF grammar presented in Section 5.1. In order to explain each part of the plug-in, we begin
with the main classes which have been defined.

The generator interface is the base of all delegated generator objects. It implements global
functions to all components and other abstract functions that need to be specific to a gener-
ator. They are the following:

• update_fnc(self): to update the function name string;
• conditional_structure(self, data): to define conditional structure of the returned code specific

to the component; and
• specif_checker(self ): return a string which contains different equality in order to check

specification.

These functions serve to keep the plug-in open to possible extensions, an API to extend the
grammar. If grammar needs to be extended, all we need to do is to add its grammar words
(see Fig. 6) and make a new related class that extends the GeneratorInterface.

Fig. 13 shows all available classes.
The responsible class of test code management is CodeGenerator (Fig. 14). Two important

methods are called:

• dispatch: populate obj_list with dynamic required objects and call propagate.
• propagate: call generate method for each object in obj_list.

The dispatch method implements a dependency injection—by populating dynamically
obj_list with instances of required generators objects—in order to limit dependency in the
code but not in the execution. Thanks to the dependency injection, the plug-in operating



FIG. 13 Class diagram of the generator interface and related objects.

FIG. 14 CodeGenerator class diagram.
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protocol is easily updated. Methods call each other thanks to theGeneratorInterface but behave
differently depending on the calling object. For example, generator method call decorator and
patch method that generates different codes depending on whether the object is supposed to
generate the test for ext_transition or int_transition.
6 CONCLUSION AND PERSPECTIVES

This chapter introduced an approach allowing to perform the test of DEVS models at the
very early phases of the design. The main idea is to apply the concepts which have been de-
fined in the software engineering domain in the framework of the Agile community. We de-
scribed how the BDD design and test methodology stemming from the software engineering
domain can be applied to the design of DEVSmodels.We presented howwehave adapted the
three main steps of the BDD methodology:
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1. Definition of a semiformal language allowing test specification using the DEVSSpecL
language.

2. Generation of the test scenarios using the definition of a BTG using the notion of decorators
and patches.

3. Execution of the test scenario using the concepts of dynamic introspection and mocking
objects.

The resulting Design and Test DEVS approach has been validated in the framework of the
DEVSimPy environment. The three previous steps have been integrated into a DEVSimPy
plug-in. We have also described how to integrate the test of atomic model into a process
allowing to deal with coupled model (external testing). The future work will concentrate
in the validation using the design of more complex DEVS models.
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1 INTRODUCTION

Over the past decade, numerous efforts have been made to define activity in modeling and
simulation (Kung and S€olvberg, 1986; Liu and Meersman, 1992; Muzy et al., 2011, 2013; Hu
and Zeigler, 2013; Muzy and Hill, 2011). Recently, the concept of activity has been introduced
for discrete-event system specification (DEVS) (Zeigler et al., 2000) models as the number of
transition function executions and can be used to profile DEVSmodels. Furthermore, in order
to analyze models, DEVS designers can correlate the number of transition functions (which
has some language complexity) with the CPU time consumed by a DEVS transition function.
These two kinds of metrics, the number of transition executions and CPU, are available only
during the simulation (simulation-based metrics). However, having a means to compute a
priori analytic activity of components may be useful in order to anticipate the computation
of theDEVSmodel complexity. Among the list of potential metrics, those stemming from soft-
ware engineering are particularly of interest for Model Complexity analysis because: (i) they
are most popular metrics in software engineering; (ii) they have strong implications for soft-
ware testing; and (iii) they can be used as an estimation of the time required for the execution
of the DEVS transition functions. A model complexity is measured in terms of the time and
space required to simulate it. Zeigler et al. (2000) claim that the complexity of a model
depends on the amount of detail in it, which in turn, depends on the size (number of com-
ponents), resolution (number of states per component), and interaction (number of couplings
per component). In order to validate the interest of analytic and simulation activity metrics in
the framework of Model Complexity analysis, we have defined and implemented a DEVS
activity pattern profiling based on both simulation and analytic metrics.
251 # 2019 Elsevier Inc. All rights reserved.
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In Zeigler et al. (2000), the concept of activity is specifically introduced for DEVSmodels as
the number of transition functions executions over some time interval. Furthermore, from this
concept of activity several activity metrics can be defined and used to profile DEVS models.
Profiling consists of collecting statistics about the models activity during a simulation.
Usually, memory usage, duration, frequency of calls, CPU usage, and occupation are col-
lected during the simulation. These metrics are available only during the simulation (called
in this chapter as simulation activity). However, having a means to compute a priori activity of
components (called in this chapter as analytic activity or static activity) may be worth when
simulating a model (or parts of it) for the first time when we are looking to accelerate the
simulation process. Then, during the simulation, analytic activity can be corrected using sim-
ulation measurements.

In this chapter, we introduce two kinds of analytic metrics: the first one derived from
McCabe Cyclomatic Complexity metric (MCC) (McCabe, 1976) to compute analytic activity
and the second one derived from program performancemeasurements (Park and Shaw, 1990;
Shaw, 1989). Both analytic and simulation activity metrics have been implemented through a
plug-in of the DEVSimPy (DEVS Simulator in Python language) environment and applied to
DEVSmodels. DEVSimPy (Capocchi et al., 2011) is being developed at the Science Pour L’En-
vironment (SPE) laboratory of the University of Corsica and is an open source project under
GPL v3 license. The DEVSimPy environment is based on the PyDEVS API (Bolduc and
Vangheluwe, 2001; Tendeloo, 2018) and aims at facilitating researches in the SPE group in
order to introduce and to validate new concepts around DEVS formalism.

This chapter is organized as follows: Section 2, dedicated to background and related work,
allows to present the issues associated with DEVS Model Complexity analysis (pointing out
the need of both analytic and simulation metrics). This second section also introduces the
DEVS formalism and the DEVSimPy environment. Section 3 deals with the simulation met-
rics based on activity notions and introduces the two kinds of analytic metrics that we have
developed. Section 4 deals with the implementation of these metrics in a DEVSimPy plug-in
called activity tracking. Section 5 is dedicated to the validation based on two complex case
studies: asynchronous electrical machine and IEEE 802.3 CSMA/CD protocol. The obtained
results, which highlight the relationship between the differentmetrics, are presented in detail.
Finally, some conclusions and perspectives are given.
2 BACKGROUND

2.1 The Activity-Tracking Paradigm in the DEVS Formalism

The activity notion for a DEVS system is commonly referred as the number of transition
functions executions (Muzy and Hill, 2011). Usually the activity notion is referred as quan-
titative activity (QA). The activity concept on the other hand has been used to connect infor-
mation processing and energy consumption as proposed inMuzy et al. (2011). In this case it is
called weighted activity (WA) and allows for example when counting the number of transi-
tions to compute the weight of a transition proportionally to the time spent in state before the
transition. In both cases (for the QA and WA notions) the activity is a notion defined at the
simulation level and computed during the simulation (see Fig. 1). However, activity of a
DEVS system can be tracked using two approaches: considering the modeling level and/
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FIG. 1 AT paradigm at the modeling and simulation levels.
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or the simulation level (Muzy et al., 2011). Fig. 1 shows the position of the activity tracking
(AT) process in these two levels.

We can distinguish two kinds of AT metrics: (i) at the modeling level, the metrics are
computed without any DEVS simulations (they are called analytic metrics) and (ii) at the
simulation level, the metrics are computed by performing the DEVS simulation process (they
are called simulation-based metrics). From both modeling and simulation levels, tracking the
activity of a DEVS model can be considered as:

1. counting the number of state-to-state transitions in a model over some time interval—
commonly referred to as QA (Muzy and Hill, 2011);

2. counting the number of weighted state transitions over some time interval—commonly
referred to as WA (Hu and Zeigler, 2013);

3. computing the MCC (McCabe, 1976) of transition functions—which can be used to
measure the complexity of a model;

4. estimating the CPU using a metric based on software performance measurements; and
5. measuring the user CPU time in order to measure the time spent on the processor running

the code of the transition functions.

These five metrics will be presented in Section 3.
2.2 Activity Concept in System Engineering

Activity is a concept and refers to the state transition distribution in the components of a
system (Hu and Zeigler, 2013). Activity metrics have been used to speed up simulation in the
form of AT, which focuses computational resources on component based on their activity
level. The concept of activity can be exploited in the field of the model engineering and more
specially in system engineering with System of Systems (SoS). SoS is a composition of sys-
tems, which component systems have legacy properties. Activity can be used as engineering
methodology in order to estimate the complexity of an SoSmodel for its construction, manage-
ment, and maintenance. Depending on the definition of complexity, the activity analysis can
improve the structural and behavioral properties of SoS during the design process.
2.3 DEVS Formalism and DEVSimPy Framework

The DEVS formalism was introduced by Zeigler in the 1970s (Zeigler, 1976) for modeling
discrete-event systems in a hierarchical andmodularway. DEVS is fully described in the com-
panion volume to this book (Zeigler et al., 2018). Here we only review aspects needed for this
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presentation. DEVS formalizes what a model is, what it must contain, and what it does not
contain (experimentation and simulation control parameters are not contained in the model).
Moreover, DEVS is universal and unique for discrete-event system models. Any system that
accepts events as inputs over time and generates events as outputs over time is equivalent to a
DEVS model. DEVS allows automatic simulation on multiple different execution platforms,
including those on desktops (for development) and those on high-performance platforms
(such as Clusters or High Performance Computer). With DEVS, a model of a large system
can be decomposed into smaller component models with couplings between them. DEVS
formalism defines two kinds of models: (i) atomic models that represent the basic models
providing specifications for the dynamics of a subsystem using function transitions and
(ii) coupled models that describe how to couple several component models (which can be
atomic or coupledmodels) together to form a newmodel. This hierarchy inherent to theDEVS
formalism can be called a description hierarchy by allowing the definition of a model using a
hierarchical decomposition.

An atomic DEVS model can be considered as an automaton with a set of states and tran-
sition functions allowing the state change when an event occur or not. When no events occur,
the state of the atomic model can be changed by an internal transition function noted δint.
When an external event occurs, the atomic model can intercept it and change its state by
applying an external transition function noted δext. The lifetime of a state is determined by
a time advance function called ta. Each state change can produce output message via an out-
put function called λ. A simulator is associated with the DEVS formalism in order to exercise
instructions of coupled model to actually generate its behavior. The architecture of a DEVS
simulation system is derived from the abstract simulator concepts associated with the hier-
archical and modular DEVS formalism.

DEVSimPy1 (Python Simulator for DEVS models) (Capocchi et al., 2011) is a user-friendly
interface for collaborative M&S of DEVS systems implemented in the Python2 language.
DEVSimPy is an open source project under GPL V3 license and its development is supported
by the University of Corsica “Pasquale Paoli” Computer Science research group. The
DEVSimPy project uses the Python programming language for providing a GUI (based on
wxPython3 graphic library) for the PyDEVS and PyPDEVS4 (Van Tendeloo and Vangheluwe,
2014) (the parallel DEVS implementation of PyDEVS) APIs. DEVSimPy has been set up to
facilitate both the coupling and the re-usability of the PyDEVS classic DEVS models and
the PyPDEVS Python Parallel DEVS models. Moreover, the DEVSimPy architecture is based
on anMVC (Model-View-Controller) pattern coupled with the oriented aspect programming
concept, which renders the user interface and the simulation kernel (PyDEVS or PyPDEVS)
independent. User can select the desired simulation kernel on DEVSimPy models, which are
compatible with (a wrapper is delegate for this) the Py(P)DEVS simulators. In this way, when
the simulator code sources are updated, the DEVSimPy GUI part is not affected. It should be
1See https://github.com/capocchi/DEVSimPy.

2See http://python.org.

3See http://www.wxpython.org.

4See http://msdl.cs.mcgill.ca/projects/DEVS/PythonPDEVS.

https://github.com/capocchi/DEVSimPy
http://python.org
http://www.wxpython.org
http://msdl.cs.mcgill.ca/projects/DEVS/PythonPDEVS
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noted that PyDEVS and PyPDEVS are also used in the multimodeling GUI software named
ATOM3 and its promising successor ATOMPM (Van Mierlo et al., 2015).

With DEVSimPy models can be stored in a library in order to be reused and shared (1 in
Fig. 2). More specifically, a DEVSimPy model is a compressed file composed by a python
file (behavioral specifications according to Py(P)DEVS specifications) and a text file
(graphical view according to wxWidgets API). When a model is instantiated, the
corresponding compressed file is extracted and (i) the graphical representation is built
from the text file and (ii) the behavior is instantiated from the Python file. Thus the view
and the behavior of a model are split and an user can change a behavior of a model (by
changing the python file) without changing its graphical view. The same strategic storing
approach was taken in Fard and Sarjoughian (2015) where the data for every atomic model
are stored in two flat files (Domain and Diagram files). A set of DEVSimPy models con-
stitutes a shared library due to the fact that all models can be loaded or updated from an
external location such as from a file server (Dropbox, GoogleDrive, GitHub, etc.), which
could be also considered as a kind of “online model store.” However, it should be stated
that this concept of model store can significantly extended with the concept of model
repositories as discussed in Chapter 16 of Zeigler and Sarjoughian (2013) or in Sarjoughian
and Elamvazhuthi (2009).

Nevertheless, a python file with Py(P)DEVS specifications is embedded byDEVSimPy that
transforms it into an object with a default graphical view when it is dropped in the interface
(2 in Fig. 2). The creation of dynamic libraries composed with DEVS components is easy since
the user is coached by dialogues and wizards during the building process. With DEVSimPy,
complex systems can be modeled by a coupling of DEVS models (2 in Fig. 2) and the simu-
lation is performed in an automatic way. Moreover, DEVSimPy allows the extension (or the
override) of their features in using special plug-ins managed in a modular way (Santucci and
Capocchi, 2013). The philosophy of DEVSimPy is to be an open, extensible, and participative
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environment for the developers. A plug-in manager is proposed in order to expand the func-
tionalities of DEVSimPy allowing their enabling/disabling through a dialog window. For
example, the plug-in “Blink” is proposed to visualize the activity of models during the
simulation. It is based on a step-by-step approach and illuminates each active model with
a color, which depends on the executed transition function. Section 4 presents the AT
DEVSimPy plug-in with a specific focus on its setting and use.
3 DEVS MODEL ACTIVITY TRACKING METRICS

3.1 Simulation-Based Activity Metrics

Simulation-based metrics are considered during the execution of a program (simulation
process). Concerning the activity of DEVSmodels, the CPU user time computed and updated
during the simulation can be weighted by the quantitative activity.

Muzy andHill (2011) define the QA of a system as “the number of discrete-events received
by the system, over a simulation time period.” According to Hu and Zeigler (2013), a measure
of activity can be considered as a measure of information processing by counting over some
time interval the number of state-to-state transitions in a model. In other words, it is the num-
ber of transitions in a given time interval. The QA is a notion defined at themodeling level but
quantified (tracked) during the simulation. Muzy and Zeigler (2012) give the following def-
inition of the total activity for an atomic DEVS model AMi in a simulation time interval:

QAAMi
¼QAδint

AMi
+QAδext

AMi
(1)

where QAδext
AMi

(respectively, QAδint
AMi

) is the external (respectively, internal) activity. The exter-

nal (respectively, internal) activity is defined as a natural number equal to the sum of DEVS
external (respectively, internal) transitions δext (respectively, δint) execution. InMuzy andHill
(2011), the activity of a coupled DEVS model CM is defined as the sum of the total activity of
its N atomic models QAAMi

with i 2{1, …, N}:

QACM ¼
X

i21,…,N
QAAMi (2)

Let consider the definition of activity given in Eq. (1) (respectively, Eq. 2) as the definition

of the QA for an atomic (respectively, coupled) model.

CPU user time is the time spent on the processor running your program’s code (or code in
libraries) while system CPU time is the time spent running code in the operating system ker-
nel on behalf of your program. We are interested here in the CPU user time for an atomic
DEVS model AMi:

CPUAMi
¼CPUδint

AMi
+CPUδext

AMi
(3)

According toHu and Zeigler (2013),WA for a component i2D is the sum ofweighted state

transitions over some time interval T:

WA¼WAint +WAext (4)
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where WAext (respectively, WAint) is the external (respectively, internal) transition-weighted

activity computed as follows:

WA0
ext ¼WAext +wextðx,sÞ (5)

WA0
int ¼WAint +wintðsÞ (6)

where wext(x, s) (respectively, wint(s)) is the external (respectively, internal) transition

weighting function, which must be implemented by the modelers.

An example of the implementation of these function has been given in Hu and Zeigler
(2013) by allocating the weight of a transition proportionally to the time spent in state before
the transition. As it has been defined for the QA, the WA for a coupled model CM is equal to
the sum of the WA of all atomic models included in D (the set of references to lower-level
components):

WACMðTÞ¼
X

i21,…,N
WAAMi (7)

3.2 Analytic-Based Activity Metrics

Getting a good activity metrics of models, in order to evaluate their performance for exam-
ple, during the simulation is very difficult. These activitymetrics can be defined frommetrics,
which have been defined in software engineering. A software metric is usually used to deter-
mine the degree of maintainability of software products. However, softwaremetrics may also
be used to predict the execution time consumption of functions or methods of an object. In
DEVS modeling and simulation context, these kinds of metrics can be employed to evaluate
the analytic and simulation activity of models.

3.2.1 McCabe Complexity

Among the list of recommended metrics proposed in most of software engineering sub-
fields (Halstead complexity (Halstead, 1977), McCabe complexity (McCabe, 1976), Coupling
(Stevens et al., 1974; Beck and Diehl, 2011), etc.), MCC (McCabe, 1976) has been chosen
because: (i) it is one of the most popular metrics in software engineering; (ii) it has strong
implications for software testing; and (iii) it can be used as an estimation of the time required
for the execution of the transition functions.

MCC depends only on the decision structure of a program. The cyclomatic number of a
directed graph G, where each node corresponds to a block program, is a graph-theoretic
complexity:

MCCðGÞ¼ e�n+ p

where e is the number of edges of the graph, n the number of nodes of the directed graph, and

p the number of connected components (exit nodes). This number depends on the number of
linearly independent paths, that is, to the decision (if statement, conditional loops, etc.) struc-
ture of a program.

MCC usually correlates with the amount of work required to test a program; therefore, it is
used to have ameasure of the test complexity of a program. However, in DEVSmodeling and
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simulation context,MCC can be used at atomic function level considering thewhole functions
as a “block program.” Indeed, the higher the number of independent decision paths, themore
the system is expected to be an event hub of high CPU activity: if the MCC of an atomic func-
tion is high, there is a significant probability that the time spent in the function execution will
be high too. Moreover, the MCC can be considered as a metric, which provides useful feed-
back to the DEVS designers during the modeling phase.

For DEVS model, we can defined the McCabe Activity (MCA) of an atomic model AMi as:

MCAAMi
¼MCCδext +MCCδint (8)

3.2.2 Program Performance Measurements Metrics

In software engineering, profiling (“program profiling” and “software profiling”) is a form
of program analysis that measures, for example, the time complexity of a program, the usage
of particular instructions, or the frequency and duration of function calls (Park and Shaw,
1990; Shaw, 1989). Profiling is achieved by instrumenting the program source code. Such kind
of techniques performs the investigation of a program’s behavior using information gathered
as the program executes. A code profiler is a performance analysis tool that, most commonly,
measures only the frequency and duration of function calls. Generally program execution
time is measured from program initiation at presentation of some inputs to termination at
the delivery of the last outputs. Several different measures of software performance are of
interest: (i) worst-case execution time—the longest execution time for any possible combina-
tion of inputs; (ii) best-case execution time—the shortest execution time for any possible com-
bination of inputs; and (iii) average-case execution time for typical inputs. We have to point
out that defining a metric based on code execution is language dependant. We present in
Section 4 how using the Python language we have been able to use the timeit module
(Beazley and Jones, 2013). Indeed, during the coding phase, one can want to know how long
it takes for a particular function to run. This topic is known as profiling or performance
tuning. Python has a couple of profilers built into its Standard Library like the timeitmodule.
This module uses a platform-specific method to get the most accurate run time of a specific
function by running the code n number of times and returning a list of times it took to run
(best case, worst case, and average case).
4 IMPLEMENTATION OF ANALYTIC AND SIMULATION ACTIVITY

Built upon definitions of activity metrics given in the previous section, DEVSimPy imple-
ments a new plug-in called AT. This plug-in increases the handling of the recent definition of
the activity metrics thus opening new perspectives for the use of AT in DEVS formalism.
DEVSimPy plug-in AT is generic and can be applied to any DEVSmodels. It does not require
any modification of the DEVS simulation algorithm and does not require any additional
methods in DEVS models to operate.

The DEVSimPy AT plug-in works the following way:

• The user enables the plug-in (see Fig. 3) and chooses the set of DEVSimPy atomic models
for AT (see Fig. 4). Before the simulation, the DEVS models are scanned in a recursive



FIG. 3 Activation of AT plug-in in DEVSimPy preferences.

FIG. 4 AT plug-in configuration.
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way to collect all atomic models selected by the user in the plug-in interface. The external
and internal transition functions of all selected models are decorated with a new
method aimed at introducing at AT computation of these functions. A decorator
function adds a new attribute to the DEVS object in a dynamic way (offered by the Python
language combined with the use of oriented aspect programming) for each transition
function. This new attribute is a dictionary key with the simulation time associated at the
CPU of the tracked transition function. Moreover, knowing the code of the transition
functions for each selected atomic DEVS model, the associated MCA metric can be
performed before the simulation. We also compute how long it takes to execute the
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transition functions using the python timeit module. In the same way, the coupling
metrics can be computed from coupling relationships between models inside all coupled
models.

• The user can now perform the simulation of the model during which the QA metric is
measured by counting the number of executions of DEVS transition functions. From the
previous dictionary, QA is measured by counting the number of its keys after the
simulation. In the same way the simulation time that a model waits for the coordinator to
give it a *message is also computed (difference between simulation times stored in
dictionary).

• Finally, when the simulation is over, the plug-in offers tables resuming all of the computed
metrics.

While the simulation is running, the plug-in offers dynamically, among others, the
QActivity,WActivity, CPU,MCA,Worst_case, and Best_casemetrics for each trackedmodel.
5 VALIDATION

5.1 Asynchronous Electrical Machine Use Case

The model used for the experiments contains 49 atomic models, 15 coupled models, 203
coupling, and 3 levels of encapsulation between coupled models. It models an asynchronous
electrical machine (Yazidi et al., 2010) employed for the diagnosis of eolian motors. We sim-
ulate this model during 1 second andwe compute for each trackedmodel (via the AT plug-in)
the three metrics: QA, WA, and MCA. The two first ones are computed over the simulation
time while the MCC analytic metric is obtained before the simulation starting.

Fig. 5 depicts the 49 ordered models (identified by ID) according to the MCA metric. We
can note that there is a significant gap between the 16models with the highestMCAvalue (75)
and the 9 models with the lowest MCC value (2). In Fig. 6, for each component i 2D, normal-
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NQAi ¼ QAi

QAmax
with QAmax ¼ maxfQAi j i2Dg

is compared with normalized CPU metrics
NCPUi ¼ CPUi

CPUmax
with CPUmax ¼ maxfCPUi j i2Dg

It can be seen that normalized activity corresponds mostly to normalized CPU.

Fig. 7 depicts the distribution of normalized NMCA

NCPU ratio. It can be seen that normalized
NMCA constitutes a good prediction for most of components. Correct prediction concerns
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27 components over the 49 ones. NMCAoverestimates the other components. Thismeans that
for some components, NMCA predicts they will have more activity. However, during the
simulation, these overestimation could be dynamically corrected.

One can ask: “Why would we still care about correcting the analytic activity as soon as we
have found the simulation activity, instead of simply using the dynamic activity?” Analytic
activity can depend on initial state but also on input event (for fire spread a cell can receive
water or not impacting its simulation activity). Therefore, a component with a high analytic
activity could have a low level of activity at the beginning of the simulation. However, the
level of activity can increase during the simulation, which was anticipated by the high-level
analytic activity. The analytic activity allows to anticipate the high-level activity and to take
faster decision/prediction (e.g., for load balancing in a case of distributed simulation).
5.2 The IEEE 802.3 CSMA/CD Protocol Use Case

This section introduces a pedagogical example allowing to validate the proposed
approach. This case study concerns the IEEE 802.3 CSMA/CD (Carrier Sense,Multiple Access
with Collision Detection) protocol (Zeigler, 1976). The CSMA/CD protocol is designed for
networks with a single channel and specifies the behavior of stations with the aim of mini-
mizing simultaneous use of the channel (data collision). The basic structure of the protocol
is as follows: when a station has data to send, it listens to the medium, after which, if the
medium was free (no one transmitting), the station starts to send its data. On the other hand,
if the medium was sensed busy, the station waits a random amount of time and then repeats
this process.

In Fig. 8, we have presented theDEVS automatamodel of the stationmodel. A station starts
by sending its data. If there is no collision, then, after λ time units, the station finishes sending
its data. On the other hand, if there is a collision, the station attempts to retransmit the packet
where the scheduling of the retransmission is determined by a truncated binary exponential
FIG. 8 Station model automata.
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back-off process. The delay before retransmitting is an integer number of time slots (each of
length slot time). The number of slots that the stationwaits after the nth transmission failure is
chosen as a uniformly distributed random integer. Once this time has elapsed, if the medium
appears free the station resends the data (event send), while if the medium is sensed busy
(event busy) the station repeats this process.

The medium is initially ready to accept data from any station (event send). Once a station
starts sending its data there is an interval of time (at most σ), representing the time it takes for
a signal to propagate between the stations, in which the medium will accept data from the
other station (resulting in a collision). After this interval, if the other station tries to send data
it will get the busy signal (busy). When a collision occurs, there is a delay (again at most σ)
before the stations realize there has been a collision, after which the mediumwill become free
(represented by the event CD). If the stations do not collide, thenwhen a station finishes send-
ing its data (event end) themedium becomes idle. Themedium state automata is summarized
in Fig. 9.

Fig. 10 depicts the DEVSimPy model of the case study. “Station_1” and “Station_2” can be
considered as the model AM1 and the “Medium_3” as the model AM2. Simulation has been
performed during 1000 seconds (simulation time).

Fig. 11 shows the setup interface of AT plug-in in DEVSimPy for the DEVS model of the
case study. Once the user has enabled the plug-in activation, he/she has to select both the
atomic models, functions (δext, δint, λ, or ta) and type AT (analytic or simulation) under
investigation.
FIG. 9 Medium model automata.
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FIG. 10 The CSMA/CD protocol DEVSimPy model.

FIG. 11 The setup of the AT DEVSimPy plug-in.
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Fig. 12 gives a summary of obtained results concerning simulation-based activity metrics.
The results of the three metrics introduced in Section 3.1 are presented: QA (QActivity
column), the WA (WActivity column), and the CPU user time (CPUs column).

Fig. 13 gives the obtained results concerning the analytic-based metrics. The two metrics
presented in Section 3.2: the MCCmetric (MCC column) and the program performance mea-
surements metrics (Worst_case and Best_case columns).



FIG. 12 Simulation activity results.

FIG. 13 Analytic activity results.
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6 CONCLUSION AND FUTURE WORK

In this chapter, analytic and simulation activity metrics have been presented with a special
attention about their relationships. Concerning the analytic activity metric, the new MCC
activity metric (MCA) of a DEVS model as well as a software performance measurement
(timeit python module based) metric are presented. For simulation activity metrics, the
well-known QA and WA metrics have been used in the context of profiling the activity
distribution over components. BothMCA and QAmetrics have been compared with the user
CPU time of the DEVS transition functions are introduced. The MCA, QA, WA, CPU,
and timeit-based metrics have been implemented through a plug-in of the DEVSimPy
(DEVS Simulator in Python language) environment and applied to a case study. It is clear that
MCA and the timeit-based metrics constitute a good approximation allowing a priori
estimation of component simulation overheads.

The main perspective concerns the improvement of the simulation algorithm using the ac-
tivity metrics. Structure modification of abstract simulators will be guided by a combination
of both activities associated with a parallel and distributed simulation algorithm. DEVSimPy
framework already integrates PyPDEVSAPI thus exploiting parallel and distributed features.
We plan also to use an activity prediction model, which requires that the user provides
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(domain-specific) knowledge about how a specific model will use computational resources
when simulated with a specific simulator. Furthermore, in order to avoid the break of the
model-simulator abstraction (due the fact that the modeler needs some knowledge about
the simulator’s operation), we plan to explore the use of Domain-Specific Language to auto-
mated the construction of the activity prediction model.

We also work on PDEVS protocol performance prediction using activity patterns with Fi-
nite Probabilistic DEVS. We propose to model the PDEVS protocol using a Markov Contin-
uous TimeModel, which is set up using two parameters: (i) the probability of a state giving an
output according to input patterns and (ii) the rate of the coordinator’s release of imminent.
These parameters are computed using activity metrics described in this chapter and inserted
into the PDEVS modeling scheme in order to predict the performance of a PDEVS protocol in
the framework of distributed simulations (Zeigler, 2017).
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1 INTRODUCTION—DEMANDS FOR M&S MANAGEMENT

For an increasing range of application domainsmodeling and simulation is becomingmore
and more a key enabling technology for various purposes, such as the following:

• for education and training
• for analysis and evaluation of systems, processes
• as planning tool for procurement and
• for decision support.

All these models, simulations, and data (M&S) are developed and applied with a specific
purpose in mind, in a well-defined context and under specified restrictions for application.
Therefore, these M&S should be subsequently used only within this context.

There is an increasing demand for reducing M&S design, development, and maintenance
resources and costs as well as considering new requirements arising from demands to apply
an M&S as part of distributed or network-centric environment. Often continuously changing
context conditions or an increasing complexity of applications impose new requirements on
the easy accessibility of permanently updated information of an M&S life cycle—its design,
implementation, usage and adaptations, etc. In addition, due the complexity and multiple
applications of manymodels, simulations and their data, measures for quality and credibility
assurance are receiving more and more importance. Like in many engineering disciplines,
application, respectively, adaptation of systems engineering principles should be considered
for all phases of M&S lifetime (see, e.g., Kossiakoff et al., 2011).
269 # 2019 Elsevier Inc. All rights reserved.

00013-5

https://doi.org/10.1016/B978-0-12-813543-3.00013-5


270 13. GENERIC CONCEPT AND ARCHITECTURE FOR EFFICIENT MODEL MANAGEMENT
In order to cope with all these demands, it is required to specify and document in a central
repository for each M&S:

• scope of the application (training, analysis, decision support, procurement);
• traces of all activities regarding M&S usage, maintenance, verification and validation

results, redesigns, or adaptions in respect of all M&S lifecycle phases;
• coupling with or integration of other models or submodels as well as with real systems

forming a distributed simulation platform;
• experiences obtained by users in context of each application and reusability opportunities.

In order to match these demands, the development as well as documentation of the
models, their simulation application as well as their input and output data (M&S) has to sat-
isfy the following criteria:

• All phases of M&S—from task specification, conceptual and formal model design,
implementation of the simulation platform, as well as corresponding data analyses and
interpretation—have to be executed according to a well-defined, standardized M&S
development process. This development process has to include detailed guidelines on the
required phase products and corresponding documentation.

• Simulationmodels have to be comparable in order to decide whether a specific coupling or
integration is feasible and makes sense.

• A standardized set of phase products and the corresponding documentation enables the
evaluation of opportunities for coupling or integration of different models for a specific
purpose and within a specific scenario.

• The variety of potential users requires the provisioning of different views on the
documentation of M&S. Finally, the user should be able to decide upon the information
presented to him whether a specific model, simulation, or even data is suitable for an
intended specific purpose and how to apply them (Neches et al., 1991; Arnold et al., 2005).

• Models, simulations, data, and scenarios have to be managed and provided to users in a
suitable, controlled way.

These demands may be met by applying organizational and technical measures. In accor-
dance with basic system engineering principles, this chapter proposes a sound and solid con-
ceptual framework of amodelmanagement system (MMS) (Herrmann et al., 2017) which is of
crucial importance for the success of such an integrated approach for M&S design, develop-
ment, maintenance, and operation.
2 REQUIREMENTS AND DESIGN PRINCIPLES FOR AN MMS

As mentioned above, management and permanent accessibility to updated and valid doc-
umentation regarding anM&Sdevelopment, its applications, and users during all stages of its
lifetime are crucial for its effectiveness as well as for efficient quality control and credibility
assurance. As prerequisite, M&S design, development, application, and maintenance pro-
cesses should follow well-experienced principles of systems engineering (e.g., Kossiakoff
et al., 2011). In this regard, a model management supporting system (MMS) must satisfy three
fundamental categories of requirements which are complementary to one another:
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• The MMS must integrate the domain-specific concepts for model development,
documentation and quality assurance, and VV&A (Wang and Lehmann, 2007a, 2010;
Wang et al., 2009a; Sargent, 2011; Lehmann and Wang, 2017).

• The MMS must offer project organization support for carrying out the domain-specific
concepts.

• The MMS must support ever-increasing complexity requirements. Its fundamental
concepts must therefore intrinsically support high flexibility and upgradeability of the
architecture and its use.

On the basis of the experience in other technical fields, we therefore decided to consider
Model Engineering as an engineering discipline like any other fields, and tomanagemodel con-
ception, development, usage, maintenance, and quality control as a pure engineering process.
2.1 Domain-Specific Concepts

ThemainMMSdesignmotivation for the domain-specific concepts formodel development
andVV&Aconsists in subjecting themodeldevelopment process to a structured approachand
to systematically document, according to predefined templates, each of the individual phases
of this structured approach, as well as the products of each of these individual phases.

Fig. 1 shows the seven phases of the model development process as well as the seven
corresponding phase products, see alsoWang and Lehmann (2007b) andWang and Lehmann
(2010). The process starts with the Preliminary phase and endswith the Interpretation phase, pos-
sibly after iterations caused by error detections, requiring adjustments or new versions. Each
of these phases, as well as each of the products of each phase must be documented according
FIG. 1 Model development process (Lehmann, 2014).
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to predefined, standardized but tailorable templates (Wang et al., 2009b). As an example, in
Fig. 1, the phase product Structured Problem Definition is also represented as a project objectives
report (or documentation) which is the concrete product resulting from the Problem Defini-
tion phase. All phase products of phase i form the basic specification or prerequisite for the
work to be performed in phase i +1. In Wang and Lehmann (2010), we have also specified
precisely the roles of team members within each phase of an M&S project. This proposed
concept of M&S roles guarantees that responsibilities as well as contributors of the project
are known and visible for all project members. Fig. 2 shows an overview of the model doc-
umentation as well as the closely related concepts and products which are produced during
the model development process.

The specialized aspects and functions of theMMS are however not only restricted tomodel
development, they are really intended to cover the entire life cycle of the model. In particular,
the aspects of model use, reuse, and replacement must be supported. Additional documen-
tation and quality assurance concepts have been developed for these further model life cycle
phases as well. As starting points for these documentation and quality assurance measures,
the family of products developed during the model development phases was enlarged to
include products relevant to further phases of the model life cycle. Examples for these addi-
tional products include experiment descriptions and scenario definitions.

The use cases in these further phases of the model life cycle include, for instance, support
for integrating existing data bases, for taking over documentation from existing repositories,
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FIG. 3 High-level overview of the architec-
ture of the proposed model management sys-
tem (MMS) (Lehmann, 2014; Herrmann et al.,
2017).
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as well as for designing and conducting experiments. For instance, they offer component
search and coupling support, the follow-up documentation of models, as well as extended
search and output possibilities (queries, reports, documentation).

Fig. 3 illustrates an overview of the architecture of the proposed MMS, including the use
caseswhich are to be supported. Especially, Fig. 3 highlights that the various user groups (like
end user, developer, etc.) have very different demands and therefore will use theMMSwithin
very different use cases. Each use case in turn combines processes and data in a coherent way,
thereby providing the exact right amount of information needed by the user within the actual
use case. Technically, the use cases and processes are built on top of basic (domain-
independent) functionalities like workflows and version management. These functionalities
operate on so-called structures (e.g., a model is a structure) which are described and
documented by a multitude of associated data fields. All components shown in Fig. 3 are
explained in detail in Section 3.
2.2 Project Organization Support

Clearly, the functional demands on the MMS are very closely related with the project
organization demands. In fact, the project support functions (e.g., search functions, coupling
assessment) are fundamental for the usability of the MMS and are certainly applicable within
various use cases. The basis for the project support functions comprises low level and tech-
nical functionalities, which are either context independent or which only become useful
through being linked to a specialized context. The MMS supports interactive and collabora-
tive functions (e.g., know-how exchange, Wiki, Blog) as well as general administrative
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functions such as workflow and role management, version management, history manage-
ment, problem management, change management, document management, and configura-
tion management.
2.3 Flexibility

Fig. 4 provides an overview of the use cases resulting from the requirements analysis and
the supporting functions on which these use cases are built.

Strategic user expectations are always coupled with an MMS meeting these requirements.
Such expectations include, for instance, the use of theMMS as central model catalogwithin an
organization, the integration of the MMS in the existing experimental environments and sim-
ulation environments as well as enabling the constitution of competence networks. The
FIG. 4 Overview of the MMS use cases and of the supporting functions on which these use cases depend
(Herrmann et al., 2017).
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heterogeneity of the user community as well as the future requirements and developments
which will result from it has to be continually integrated into the MMS concept. Therefore,
the MMS concept was developed so that the supported use cases can be flexibly and adap-
tively designed and also they tolerate extensions (within certain limits), that is, so that addi-
tional use cases can be seamlessly integrated into the existing MMS concept.
3 MMS CONCEPT

3.1 The MMS Meta-Concept as Design Pattern

A straight modeling of predetermined domain-specific requirements is not the goal of our
MMS concept, because the prescribed ability to support numerous unfocused and incomplete
future requirements precludes this straightforward but unupgradeable approach.

The usual approach to develop a partial solution for each management requirement, inde-
pendent of the other requirements, is neither desired nor implementable for a future-proof
MMS concept and MMS development. Such an ad hoc approach would contradict the basic
premise of the coordinating and centralizing function of an MMS in which the fundamental
core is a unitary and consistent domain model.

How can a common concept support this multiplicity of unfocused, still unknown future
requirements? A possible solution is to develop a structurally abstract MMS meta-concept.
The result of this abstraction is a design pattern for requirements and problems of a specific
problem class. The advantage of this abstract design pattern is that it permits in principle a
unitary representation of all requirements and problems, present and future, known and yet
unknown.

In summary, the intention of the MMS meta-concept is to provide a design pattern within
which the presently known documentation requirements in the domain of M&S can be
implemented, while being general and flexible enough to be able to seamlessly integrate a
large array of still unknown additional requirements as they might arise in the future. The
MMS meta-concept is modeled using Unified Modeling Language (UML), according to
Object Management Group (2009).
3.2 Problem Class

The problem class is defined by determining the ideas on which most of the requirements
are based. These ideas do not exist on the abstraction level of the domain-specific problems
which are very specific requirements. Rather they are the commonalities underlying most of
the individual requirements.

This problem class can be identified as well as conceptually modeled on a higher level of
abstraction. It can be imagined as a kind of frame in which the actual problem expressions can
be fitted in their appropriate locations. The specific requirements must be understood as in-
stantiation of this general problem class.

The resulting meta-concept allows to represent the specificity of the requirements, and in a
way this meta-concept is a design pattern for a specific class of requirements and problems.
The problem class of the MMS is the description of real-world entities in the application
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domain of M&S. The design pattern for this problem class enables the modeling of real-world
structures and the description of the identified entities.

In this manner, the meta-concept of the MMS is in principle usable for all use cases which
perform any kind of documentation tasks or which retrieve description data. However,
semantic consistency requirements restrict the application domain of the MMS meta-concept
to a limited semantic field which is definable without contradiction. This is due to the fact that
for all core elements (i.e., the structures, data fields, and roles as described in the following) of
the specific domain model first clarity and unicity of meaning must be guaranteed; and sec-
ond disjoint meanings between these elements must be ensured. Since the meaning of a term
is dependent on the context of its use, this context must be restricted according to specialized
fields in order to exclude the possibility of multiple meanings. In the case of the MMS, this
context is the application domain of M&S.

Requirements which go beyond the mere description of modeled entities and beyond the
mere providing information about these entities (for instance, actual coupling of components)
must therefore be excluded from the concept. These functionalities have to be considered
separately and added using a different structural concept.
3.3 Benefits of the MMS Meta-Concept

Introducing a design pattern to describe the use cases seem to be lots of effort for unclear
reasons. We believe that the strict use of the proposed design patterns helps to meet the var-
ious (and continuously evolving) requirements, thus leading to considerable benefits:

• Most notably, following the design pattern ensures that all use cases are modeled (and
subsequently implemented) in the same way. This eases the comparability of use cases
and allows to define globally valid quality requirements. Specific requirements may be
defined once in the meta-concept, and are in turn applied to all use cases. As an example,
the meta-concept states that all activities are executed by specific roles. Assigning an
activity to a single person or a whole organization is therefore prohibited.

• A direct consequence of this is that the MMS is based on a consistent domain model.
Especially, this implies that all parts (roles, data fields, structures, views)may be reused. In
fact, they are modeled just once and have to be reused. When creating a new use case,
already existing parts have to be reused and only parts, which are not yet included in the
domain model have to be added. The meta-concept forces the modeler/developer to reuse
the existing parts and secures the consistency of the domain model. As an example, a data
field for the description of the “Problem statement”may be referenced in several use cases.

• The MMS domain model is limited to the domain of modeling and simulation. This
limitation is necessary to ensure the unambiguousness of the concepts defined within the
domain model.
3.4 The MMS Meta-Concept in Detail

The basis of the MMS meta-concept as design pattern is the strict separation of static ele-
ments (domain model) and dynamic elements (model management), as depicted in Fig. 5.

The strength of the MMS meta-concept as design pattern resides in its ability to define un-
limited interaction possibilities with the modeled entities. These interaction possibilities



FIG. 5 The very fundamental idea of the MMS meta-concept is to separate the static and dynamic elements
(Herrmann et al., 2017).
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represent user-specific views in the application domain of M&S, and are modeled as USE
CASES. The design pattern covers these use cases in their dynamic and static aspects.
(Note: Terms in small capitals explicitly denote classes which are part of the MMS meta-
concept.)

Each modeled USE CASE may and will in general extend the domain model of the MMS.
This can occur because additional real-world entities must be documented or because addi-
tional description data fields must be assigned to the existing or newly modeled entities. The
first priority when introducing these extensions is to use the existing STRUCTURES and
DATA FIELDS. If new aspects must be introduced at all, these must be integrated as conser-
vatively and as generically as possible in the structure model and data model, taking care of
integrating them as seamlessly as possible with the existing ones.

The goal is to saturate the domain model with STRUCTURE and DATA FIELD definitions
by integrating a sufficiently large number of USE CASES, so that the resulting MMS ends up
being based on a consistent, comprehensive, and self-consolidated domain model for the
problem class.

3.4.1 Static Elements: MMS Domain Model

Structures: The domain model of the MMS consists of a representation of the entities
relevant for the problem class. These entities are modeled in their inner and outer relations
as STRUCTURES.
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This modeling of STRUCTURES makes it possible to explicitly work with the modeled
entities like MODEL, PHASE MODEL, and SUBMODEL in the MMS. Especially, every
instance of such a STRUCTURE can be described by data fields.

An example is the structure of a model as shown in Fig. 6: A MODEL is internally struc-
tured in seven PHASE MODELS, with three of them (CM, FM, EM) including at least one
SUBMODEL, which itself can include sub-SUBMODELS. This example is taken from the
use case “Development accompanying model documentation.” A further use case, for
FIG. 6 All entities handled by the MMS, like a MODEL for example, are represented in the MMS meta-concept as
STRUCTURES and have to be modeled explicitly with their inner and outer relations (Herrmann et al., 2017).
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example, “Model usage (experimentation)”might define a new structure (e.g., “Experiment”)
which could reuse the already existing structure EM.

Data fields: Since the problem class of the MMS is the description of real-world entities
(which are represented in the MMS meta-concept as STRUCTURES) in the application
domainM&S and since a central requirement is tomaintain the consistency of the datamodel,
the STRUCTURES have been conceptually separated from their description. For this reason,
the MMS structure model is supplemented by a separate data model, in which all possible
description aspects in the application domain are modeled in the form of DATA FIELDS.

In principle it would be sufficient to model the DATA FIELDS as an unstructured set of
classes. But to ensure a clear overview and understanding, an aspect-oriented description hi-
erarchy was modeled internally to the MMS, the leaves of this hierarchy being the DATA
FIELD classes. Fig. 7 shows an overview of the most general categories of the representation
aspects as well as an example of a branch of this hierarchy.

The main benefit of using separate DATA FIELD classes is the possibility to reuse data
fields for describing various structures. For example, a data field “Classification/Copyright”
might be used for models as well as experiments.

Views and accesses: Only the actual instantiation of a STRUCTURE is associated with
specific description data (instantiated DATA FIELDS). This association is determined by a
predefined and prespecified USE CASE.

The link between the DATA FIELDS on the one hand and the STRUCTURES on the other
hand are the VIEWS AND ACCESSES, which define how structures are described by the
DATA FIELDS. For every USE CASE, there are one or more association possibilities of DATA
FIELDS to STRUCTURES. It is possible to specify several views as, for instance, several
FIG. 7 MMS data model: Overview of the hierarchy of DATA FIELDS, including a selection of DATA FIELDS for
CONSTRUCTION ASPECTS (Herrmann et al., 2017).



FIG. 8 MMSmeta-concept: VIEWSANDACCESSES are the linking element between theDATAFIELDS on the one
hand and the STRUCTURES on the other hand (Herrmann et al., 2017).
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combinations of DATA FIELDS might be desired for describing a STRUCTURE (e.g., a
model). The totality of these associations constitutes the third pillar of the MMS domain
model: the Views and Accesses.

As shown in Fig. 8 the description of a STRUCTURE has two aspects: Firstly, it must be
clear which data fields will be used in order to describe the entity, out of the large pool of
available DATA FIELDS. The DATA FIELDS are then associated to STRUCTURES as spe-
cific description templates. These content description templates are calledMAPPING TEM-
PLATES. They are further subdivided into use case-specific mappings (STRUCTURE
VIEWS) and general mappings (STRUCTURE DESCRIPTIONS) internally defined within
the MMS.

A small example may clarify this. If we consider a structure (like a “model”), the structure
description of this structure contains all data fields which are currently defined (e.g., “Problem
statement,” “Input parameters,” or “Simulation results”). A single structure view refers only to
a subset of these data fields. A structure view for the use case “Model documentation” might
only refer to the “Problem statement” and “Input parameters.” Another structure view, related
to the use case of model usage, might refer to the “Simulation results.”

To summarize, the structure description contains all data fields related to a specific struc-
ture. The structure views in turn refer to the specific subset of data fields which is required
within the current use case.

Secondly, the DATA FIELDS must be accessible, either to read them or for data manage-
ment. The simple content description is not sufficient as the user of the MMSmust actually be
able to read or write data. For this reason the content patterns must be cast in a specific form
and the access rights and access methods of the user must be defined. The ACCESS TEM-
PLATES are the interfacing templates which perform the tasks of formatting the content
description and controlling user access. For this purpose, each ACCESS TEMPLATE uses
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specific MAPPING TEMPLATES, according to the user-specific view and use case. The
ACCESS TEMPLATES which are read-only are called OUTPUT TEMPLATES, those granting
writing privileges are called CHANGE TEMPLATES.

While the structure views define only the subset of data fields which is required within the
current use case, the ACCESS TEMPLATES define the order of these data fields and the access
rights of the users. An actual system implementing this MMS meta-concept would provide a
user interface which is defined by the CHANGE TEMPLATES.

MAPPING TEMPLATES therefore describe which DATA FIELDS serve the description of
which STRUCTURE from which perspective. The ACCESS TEMPLATES use this content de-
scription structure and make it available in a manner suitable to the current user, so that he
can actually work with these DATA FIELDS.

3.4.2 Dynamic Elements: Model Management

The selection of which views to be used and thereby actually receive data is determined
individually by each USE CASE. A USE CASE is defined by the association of the process
description and the participating ROLES (dynamic aspect), as well as by the used views with
their related STRUCTURES and the DATA FIELDS (static aspect) describing them.

Processes: The dynamic aspects aremodeled by processeswhich carry out theUSECASES.
Such a process defines the sequencing order, the relations to generated products (in the form
of MAPPING TEMPLATES and ACCESS TEMPLATES) as well as the participating ROLES.
Fig. 9 shows an example of such a modeled process suitable for carrying out the model doc-
umentation which is itself part of the overall process for the USE CASE development accom-
panying model documentation.

It exhibits how the PHASE MODEL specific documentation versions are produced and
how the model documentation (in a certain version-specific form) results from putting the
PHASE DOCUMENTS together. In particular, project specific tailored Change Templates
for phase specific model documentation are used here.

Roles: ROLES define task fields and responsibilities within a process (see also Fig. 2).
Instantiated processes (WORKFLOWS) associate ROLES to actual people. These ROLES
are similarly defined in the ACCESS TEMPLATES, which are also USE CASE specific. The
ACCESS TEMPLATES statically define the access rights of ROLES to DATA FIELDS, that
is, the access rights are not defined in the processes themselves. The actual execution of a pro-
cess thus clearly defines who takewhich Roles (via theWorkflow) andwhich Roles can access
which Data Field instances, and how they access them (via the instantiated Access
Templates).

Fig. 10 represents the overall architecture of the MMS meta-concept and clarifies how
ROLES are integrated in it.

3.4.3 Execution of a Use Case in the MMS

The execution of a USE CASE in the MMS is carried out along the following steps:

• Triggering and execution of a WORKFLOW.
• Instantiation of the ROLES and corresponding allocation of actual persons.
• Selection and instantiation of views, respectively, ACCESS TEMPLATES.
• Instantiation (and versioning) of STRUCTURES.



FIG. 9 Process for performing model documentation (Herrmann et al., 2017).
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FIG. 10 Overview of the overall architecture of the MMS meta-concept (Lehmann, 2014; Herrmann et al., 2017).
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• Instantiation of DATA FIELDS and allocation of these DATA FIELD instances to the STRUCTURE

instances (according to the view).
• Content processing of the DATA FIELDS during the WORKFLOW execution.

The USE CASE execution results in additional STRUCTURE instances and associated
description data (DATA FIELD instances) stored in the MMS dataset.
4 FORMALIZATION OF THE MMS CONCEPT

In order to enable further investigations the MMS concept had to be formalized in an
unambiguous and computationally accessible way while reflecting the static elements
(domain model) and dynamic elements (model management) of the MMS concept. The
MMS domain model was formalized as ontology using the Web Ontology Language
(OWL) (Gómez-P�erez et al., 2004). Building upon the model development process (Fig. 1)
and the related products (Fig. 2), the devised MMS concepts were structured and formalized,
defining the scope of the MMS ontology.

ThisMMS ontology is intended to represent the core datamodel of theMMS conceptwhich
supports the model development process (including documentation) as described in



FIG. 11 High-level overview about the OWL formalization
of the static elements of the MMS meta-concept, that is, of the
MMS domain model (Herrmann et al., 2017).
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Section 2.1. The basic MMS ontology modeling pattern directly reflects the static elements of
theMMS concept (see Fig. 11) and is therefore composed of threemain components, as shown
in Fig. 11:

• Structures: they model real-world structures like, for example, a model version, phase
model, or configuration.

• Data fields: they represent places where the actual data of the structure description
are stored.

• Views and accesses: they define how structures and data fields are associated with
each other.

Eachof the classes shown inFig. 9hasmultiple relations toother classeswhicharedefinedas
OWL object properties, like, for example, hasDocumentation and hasDatafields for relating
models with their documentation and these documents with the necessary data fields.
All the object properties are modeled with their corresponding inverse relations, like inverse-
Of_hasDocumentation and inverseOf_hasDatafield in order to permit easy navigation within
the data.

Just like theMMS concept itself, theMMS ontology relies strictly on the separation of struc-
tures (like models or model documentation), their description via the data fields, and the
interconnection of the structure and its describing data fields. The main advantage of this
modeling pattern of strict separation is that it manages and maintains a large number of con-
cepts in a clear and simple structure away from their corresponding data in order to:

• avoid the complexities of frequently handling or moving massive amounts of data
whenever the usage or structure of this data (or related concepts) changes;

• avoid multiple occurrences in the structure of the same data, which could cause data
maintenance problems or data inconsistencies; and

• facilitate concept matching between different sources when seeking to integrate them into
the MMS ontology.
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During the formalization process and the subsequent development of a demonstrator
(see next section), it turned out that the capabilities of the target system with respect to the
ontology support directly influence the ontology development. In order to evaluate the
limitations resulting from this constraint, two ontologies were designed. The first task
consisted in developing a custom-made ontology for the demonstrator which uses only very
simple language concepts. The second task was to develop an ontology which resembles the
MMS concept (originally modeled in UML) as closely as possible in a system-independent
way. In order to maintain computability even in this case, no language concepts higher than
OWL DL were used.

It is interesting to note that the difference between these two ontologies—a system-
dependent ontology using only very basic constructs and a system-independent one—are
rather small. In our case, this means that a rather simple formalization standard is sufficient
for formalizing the (rather complex) MMS concept.

Due to the nature of ontologies, the MMS ontology (irrespective of whether system-
independent or not) covers only the static aspects of the use case “development accompa-
nying model documentation” (i.e., structures, data fields, views, and accesses). The dynamic
elements (i.e., the model management consisting of workflows, assignment of roles, etc.)
have not been formalized beyond the devised UML model. In fact, the dynamic elements
had to be implemented directly within the demonstrator by writing Java code for
performing the necessary functionalities. It has to be remarked that this is purely an imple-
mentation issue and not a conceptual problem; upcoming releases of the underlying
software (or some other software systems) might be able to make use of externally devel-
oped workflow descriptions using some standard exchange format like the XML Process
Definition Language (XPDL).
5 MMS DEMONSTRATOR

5.1 Purpose of the Demonstrator

In order to show the potential and flexibility of the devised MMS concept, several well-
selected parts were exemplary implemented within an existing software framework and
made available for experimental usage. This MMS demonstrator mainly serves three
purposes:

• Demonstration of the practical applicability of the MMS concept.
• Illustration of the benefits of formalizing the MMS concept as an ontology.
• Confirmation that the ontology has a well-chosen design.

By implementing a selected use case (development accompanying model documentation)
including all its relevant concepts, the applicability and implementability of the underlying
MMS concept should be evaluated. In addition, it should be evaluated whether the various
demands on anMMS can bemet. Therefore, the demonstrator was developed in close contact
with the users and could be tested during an extensive 1-week workshop. As most partici-
pants of this workshop were the same as those who contributed to the requirements analysis
a direct comparison between the user’s expectations and their fulfillment was possible.
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5.2 Scope of the Demonstrator

Due to the purpose of the demonstrator and the central importance of model documenta-
tion, the whole model development process (as described in Section 2.1) is actually
represented within the demonstrator. This includes especially the following aspects:

• Representation of models, phase models, and submodels.
• Representation of model documentation along all phases of the model development

process.
• Definition of workflows and roles, as well as access rights associated with specific steps

and roles within these workflows.
• In addition to the phase-oriented documentation, an aspect-oriented view on the

model documentation was also modeled and implemented. In contrast to the default
view which is oriented along the phases of the model development process, the
aspect-oriented view combines the data fields according to a few well-defined topics.

In order to provide these desired aspects all necessary structures (Model, Phase Model,
Submodel as well as the respective versions of these structures) along with the required data
fields were modeled. Besides the central domain-specific functionalities (i.e., supporting the
model development and documentation process), the demonstrator provides additional tech-
nical functionalities required for executing this use case:

• Version management for selected concepts (Models, Documentation).
• Role- and task-specific user interface.
• User friendly templates for data input as well as several output possibilities for

selected data.
• Searching and browsing within the model catalog.
• Management of further model-associated data (responsible person, model status,

annotations).

As indicated, two different access templates to the model documentation have been
implemented: phase-oriented and aspect-oriented.
5.3 Technical Realization

The MMS demonstrator is based on the framework WebGenesis (Fraunhofer IITB, 2018).
Basically, WebGenesis is a three-tier system consisting of a database backend, an application
server, and a client (typically a browser). In this context, a notable feature ofWebGenesis is its
capability of directly importing an OWL ontology for the use as internal data model.

At this point, the chosen approach via a formalization of the MMS concept as ontology
shows its benefits: the development of the ontology can be done with powerful external tools
and is (in the best case) completely independent of the actual software environment used for
the demonstrator.
5.4 Evaluation of the MMS Demonstrator

TheMMS demonstrator implements a selected subset of theMMS concept and shows prac-
tically how the realized functionality was built from the MMS meta-concept in a component-
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oriented way. Furthermore, by using the underlying technical and ontological structures, the
demonstrator illustrates in a very straightforwardway the extensive conceptual and technical
flexibility and extensibility of the MMS with regard to future use cases. Last but not least,
technical constraints of the system used for the current implementation could be identified.

The evaluation of the demonstrator took place in form of a 1-week workshop. This work-
shop was attended by a heterogeneous user groupwhich carried out different example usage
scenarios (individual work and teamwork with varying roles) and documented several sim-
ulation models for which real model documentation (according to the model development
process) was available. All participants agreed that the modeled and implemented documen-
tation process as well as the roles and document templates are reasonable and target into the
right direction. In general, the realization of this process within the demonstrator was consid-
ered good. Due to the fact that the demonstrator did not focus especially on the usability,
many improvements regarding the design of the user interface were suggested.

Based on the results from the demonstrator development of itself as well as of the evalu-
ation workshop two main conclusions can be drawn:

1. The implementation of the MMS concept in a software system is straightforward, while at
the same time remaining very closely to the MMS concept. Although the MMS concept
itself is quite complex and partly a bit abstract, it is also part of theMMS concept to hide this
complexity from the user. The evaluation of the demonstrator shows that this complexity
can be hidden very well, especially if supported by a well-designed user interface.
Furthermore, the evaluation results gained from the experiences of the users support the
overall conclusion that the MMS demonstrator provides a very good foundation. With
regard to the necessary domain expertise the demonstrator was easily and plausibly usable
for the use case development accompanying model documentation.

2. The underlying software system WebGenesis proved to be a very good foundation as
ontologies can be directly imported and used. Although WebGenesis provides lots of
additional functionalities, the demonstrator showed that a fair amount of extra effort is
necessary for an optimal implementation of the MMS concept (especially regarding the
ontology expressivity, version management as well as user and role management).

In summary, theMMS concept can be implementedwithout anymajor changes to the basic
modeling concepts. Besides the applicability of the MMS concept, the model development
process also received a very positive feedback during the user evaluation. Integrated into
the MMS meta-concept, the model development process is one of the many use cases which
are of central importance during the whole life cycle of a model. The successful implemen-
tation of this use case demonstrates that the MMS meta-concept itself—as abstract as it may
look like—is very powerful on the one hand, but on the other hand remains easy to use as
it is only visible in the form of well-defined domain-specific use cases.
6 SUMMARY AND OUTLOOK

This chapter addresses urgent demands for support of an effective model, simulation and
data (M&S) management and proposes a conceptual and technical approach for the imple-
mentation of a model management system (MMS). It describes both a structural concept
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as well as an exemplary implementation of such an M&S management tool along with
supporting the complete model life cycle, thereby also integrating all further relevant prod-
ucts of an domain-specific M&S.

The proposed MMS is conceptually based on phase-oriented model development and
accompanying documentation processes. Due to amultitude of further or currently unknown
requirements regarding management functionalities as well as with regard to formal as well
as technical aspects, it was necessary to develop a modular and flexible MMS concept. This
wasmainly achieved by developing a genericMMSmeta-concept which serves as design pat-
tern and therefore permits implementation of a wide variety of use cases within a consistent
and clear framework. This formally defined MMS meta-concept with its exact specifications
for instantiation of various kinds of data involved, its strict definition in regard to an imple-
mentation of extensions makes it possible to handle the enormous complexity of user
demands within an application domain of M&S in a consistent manner.

The MMSmeta-concept as central aspect of the overall MMS concept serves as design pat-
tern for arbitrary documentation processes within the designated application domain of
M&S. Within this design pattern specific use cases need to be modeled (like the M&S design
and implementation process, see, e.g., Figs. 1 and 2) which are finally instantiated and exe-
cuted by a team of developers where each of them serves a well-defined role.

It is crucial to mention that all use cases of the MMS collaborates with a single, consistent
domainmodel which consists of the (object) structures to be handled as well as the data fields
describing these (object) structures. Integration of new use cases can be done in a very con-
sistent way without having to change the domain model, although some new use cases may
require the extension of the domain model for new data fields. Each use case is accompanied
by a set of user-specific views onto the relevant parts of the domainmodel. Actually each view
associates a structure with a very specific set of data fields, thereby presenting each user
exactly the information needed within the current situation (for performing a task according
to his or her role. The definition of roles and access rights (either to read or write specific data
fields) is modeled by using the so-called access templates which define precisely the possible
actions of a role, respectively, of a user within a workflow.

The MMS concept as a whole has been modeled (implemented) in an object-oriented way
using UML. Static aspects of a domain-like object structures, data fields, views, and access
rights were subsequently formalized as OWL ontology. For the implementation of an
MMS demonstrator, this ontology was imported to the already available software system
WebGenesis. Dynamic aspects like processes and roles were directly taken from the MMS
concept and implemented in Java as an extension of the underlying software system.

Finally, a user assessment of the MMS demonstrator implementation revealed that the
MMS meta-concept is not just very powerful, but at the same time very comfortable to work
with. This is due to the fact that users do not experience the complexity of the meta-concept
but instead can work efficiently with the predefined use cases defined within the framework
of the MMS meta-concept.
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1 INTRODUCTION

Cloud infrastructures provide rapid resource provision for on-demand computational re-
quirements. Cloud simulation environments are largely client-server architectures with mul-
tiple slave nodes solving problems through Monte Carlo methods. A cloud simulation is not
the same as a distributed simulation. A cloud implementation of anM&S application does not
ensure that the infrastructure will scale and complexity inherent in distribution simulation is
addressed. In addition, implementing distributedmodeling and simulation (M&S) services in
cloud infrastructure is a nontrivial problem (Cayirci, 2013). Having a cloud-based deploy-
ment does not guarantee that a distributed simulation infrastructure is a “given.” Both have
different architectures. However, cloud computing brings on-demand resources and technol-
ogies like virtualization and containerization. Incorporating cloud computing for distributed
M&S infrastructure then is a logical thing to get the best of both technologies and capitalize on
the Moore’s law with minimal increase in physical hardware costs.

In this chapter, we describe a methodology to deploy a formal discrete-event dynamic sys-
tem simulation infrastructure based on discrete-event systems (DEVS) formalism, known as
DEVS/SOA (Mittal, 2007; Mittal et al., 2009) in a distributed cloud environment. DEVS is
component-based M&S framework founded on mathematical systems theory. DEVS also
supports model continuity through a simulation-based development and testing life cycle
(Hu and Zeigler, 2005). This means that the mapping of high-level requirement specifications
into lower-level DEVS formalizations enables such specifications to be thoroughly tested in
virtual simulation environments in cloud environments before being easily and consistently
transitioned to operate in a real environment for further testing and fielding.

A scalable M&S architecture has distinct M&S layers. In order to deploy in cloud environ-
ment, sufficient automation is needed at both the simulation layer and the modeling layer.
291 # 2019 Elsevier Inc. All rights reserved.
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This can now be achieved by current practices in DevOps implemented using Docker tech-
nology. DevOps, a recent buzzword, provides methodologies to automate developer op-
erations, such as compiling, building, releasing, testing through executable scripts.
DevOps has recently been applied to DEVS component-based models (as “nodes”)
(Mittal and Risco-Martı́n, 2017). This automated deployment of various “DEVS nodes”
under a single administrative control is defined as a DEVS Farm. A DEVS Farm can be
readily deployed and put to use for distributed simulation. A cloud infrastructure is
not the only means to deploy a DEVS Farm. The high-level architecture (HLA) can also
serve to perform these distributed simulations as well. An example is given in another
chapter presented in this book, entitled DEVSim++ME: HLA-compliant DEVS modeling/sim-
ulation environment with DEVSim++, which describes a model engineering environment
with support for the development of HLA-compliant DEVS models for discrete-event sys-
tems. This chapter is more focused on a cloud-based M&S methodology utilizing the
concept of Simulation as a Service (SaS).

DEVS Unified Process (DUNIP) leverages the above advancements along with the foun-
dational DEVS. It was conceptualized by Mittal (2007) during his doctoral work in collab-
oration with Jos�e L. Risco-Martı́n and Bernard Zeigler (Mittal et al., 2009). From the
original SOA-based implementation, it is evolved in the last 10 years to include constructs
like domain-specific languages (DSLs), metamodeling, model-driven engineering, auto-
mated code-generation, model-based testing, test-suite generation and the more recent,
microservices, and containerization support. DUNIP has been applied to M&S of
netcentric System of Systems engineering (SoSE) for its extensibility, modularity, flexibil-
ity, and explicit semantics. This chapter provides an overview of the state of the art on
DUNIP. It describes model management, model engineering, and model execution mech-
anisms in DUNIP.

The chapter is organized as follows. Section 2 presents the discrete-event world-view on
why it is important to understand discrete-event system in a formal way, especially when
applying M&S to SoSE. Section 3 provides an overview of DUNIP. Section 4 describes the
modeling infrastructure within DUNIP through its two major elements: the DEVS modeling
language (DEVSML) and the improved DEVSML Stack Version 3.1. Section 5 provides the
simulation infrastructure details in a Cloud environment with Docker containerization sup-
port. Section 6 discusses model engineering in DUNIP using metamodeling concepts,
followed by model integration and interoperability considerations in Section 7. Finally, this
chapter is concluded in Section 8.
2 DISCRETE-EVENT WORLDVIEW

2.1 Overview

A simulation is an imitation of some real thing, state of affairs, or process in action. The act
of simulating something generally entails representing certain key characteristics or dynamic
behaviors of a selected physical or abstract system.

Simulation is used in many contexts, including the modeling of natural systems or human
systems in order to gain insight into their functioning. Other contexts include simulation of
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technology for performance optimization, safety engineering, testing, training, and educa-
tion. Simulation can also be used as a prediction tool to show the eventual real effects of
alternative conditions and courses of action.

Key issues in developing a simulation technology include acquisition of valid source
information about the referent, selection of key characteristics and behaviors, the use of
simplifying approximations and assumptions within the simulation model, and fidelity
and validity of the simulation outcomes.

A computer simulation attempts to simulate an abstract model (that is computationally
represented) of a particular system. A system is part of the real world under study and that
can be identified from the rest of its environment for a specific purpose. Such a system is
called a real system because it is physically part of the real world. The state of a system is
defined as that collection of variables necessary to describe a system at a particular time, rel-
ative to the objectives of a study.

Systemsmay be categorized in two types: discrete and continuous. A discrete system is one
for which the state variables may change only at discrete values of time. It is also known as
discrete-time system. A continuous system is one whose state is capable of changing at any
instant of time. It is also known as continuous-time signal system. Few systems in practice are
wholly discrete or wholly continuous, but it will be usually possible to classify a system as
being either discrete or continuous (Law and Kelton, 2000). In this chapter we are focused
on discrete systems.

Continuing with the notion of system, a few things are common at the systems level:
(1) there is a large number of components, (2) hierarchy is used to manage the large number
of components and complexity, (3) interactions among components play a vital role in sys-
tem’s behavior, (3) a system has a boundary, (4) a system manifests outward behavior and
internal states, and (5) a system interacts with the environment.

A netcentric system is a system that utilizes standards to integrate and operate in a network
centric environment. The network, which can be managed through a cluster, a data center, or
the cloud, is the underlying communication mechanism. Usage of widely adopted standards
facilitates integration and interoperability.

At the complex system level, things become a bit more complicated in the sense that the
complex systems are inherently dynamic due to a lot of moving parts. A system may trans-
form into a complex system. A complex system exhibits: nonlinear behavior, dramatic
changes, low predictability, etc.

To model and simulate such a variety of systems (complex, centralized, or distributed),
recently identified as an open system concept in Mittal and Risco-Martı́n (2013b), the DEVS
specification has been selected as the heart of DUNIP. DEVS is a theoretical framework to
define, implement, and simulated such heterogeneity in a consistent way. In the following,
we briefly describe this formalism.
2.2 The Discrete-Event System Specification

DEVS is a general formalism for discrete-event system modeling based on set theory
(Zeigler et al., 2000). The DEVS formalism provides the framework for informationmodeling,
which gives several advantages to analyze and design complex systems: completeness,
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verifiability, extensibility, and maintainability. Once a system is described in terms of the
DEVS theory, it can be easily implemented using an existing computational library. The par-
allel DEVS (PDEVS) approach was introduced, after 15 years of the inception of Classic DEVS
(Zeigler et al., 2018). Currently, PDEVS is the prevalent DEVS, implemented inmany libraries.
PDEVS accounts for the confluent condition, that is, a time instant at which both internal and
external events becomes imminent. In the following, unless it is explicitly noted, the use of
DEVS implies PDEVS.

DEVS enables the representation of a system by three sets and five functions: input set (X),
output set (Y ), state set (S), external transition function (δext), internal transition function (δint),
confluent function (δcon), output function (λ), and time advance function (ta).

DEVS models are of two types: atomic and coupled. Atomic DEVS processes input events
based on their model’s current state and condition, generates output events and transition to
the next state. The coupled model is the aggregation/composition of two or more atomic and
coupled models connected by explicit couplings.

Particularly, an atomic model is defined by the following equation:

A¼hX,Y,S,δext,δint,δcon,λ, tai (1)

where
• X is the set of inputs described in terms of pairs port-value:

p2 IPorts,v2Xp

� �
• Y is the set of outputs, also described in terms of pairs port-value:

p2OPorts,v2Yp

� �
• S is the set of sequential states.
• δext : Q�Xb ! S is the external transition function. It is automatically executed when an

external event arrives to one of the input ports, changing the current state if needed.
– Q ¼ (s, e)s 2 S, 0 � e � ta(s) is the total state set, where e is the time elapsed since the last

transition.
– Xb is the set of bags over elements in X.

• δint : S! S is the internal transition function. It is executed right after the output (λ)
function and is used to change the state S.

• δcon : Q�Xb ! S is the confluent function, subject to δcon(s, ta(s),∅)¼ δint(s). This transition
decides the next state in cases of collision between external and internal events (i.e., an
external event is received and elapsed time equals time-advance). Typically, δcon(s, ta(s), x)
¼ δext(δint(s), 0, x).

• λ : S!Yb is the output function. Yb is the set of bags over elements in Y. When the time
elapsed since the last output function is equal to ta(s), then λ is automatically executed.

• taðsÞ : S!R+
0 [∞ is the time advance function.

The formal definition of a coupled model is described as:

M¼hX,Y,C,EIC,EOC, ICi (2)
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where
• X is the set of inputs, also described in terms of pairs port-value:

p2 IPorts,v2Xp

� �
• Y is the set of outputs, also described in terms of pairs port-value:

p2OPorts,v2Yp

� �
• C is a set of DEVS component models (atomic or coupled). Note that C makes this
definition recursive.

• EIC is the external input coupling relation, from external inputs ofM to component inputs
of C.

• EOC is the external output coupling relation, from component outputs of C to external
outputs of M.

• IC is the internal coupling relation, from component outputs of ci2C to component outputs
of cj 2 C, provided that i6¼j.

Given the recursive definition of M, justified by closure under coupling (Zeigler et al.,
2018), a coupled model can itself be a part of a component in a larger coupled model system
giving rise to a hierarchical DEVS model construction.
3 DEVS UNIFIED PROCESS

3.1 Overview

DUNIP is based on an open system concept. An open system is a dynamical system that
can exchange energy, material, and information with the outside world through its
reconfigurable interfaces over a period of time. An open system also possesses the capability
to form complex hierarchical structures enabling them to compete and cooperate at the same
time. In fact, the mechanism to reorganize in a hierarchical structure is one of the basic
requirements to manage complexity. The open systems are also characterized by emerging
behavior and evolving structure.

In order to have an executable adaptive System of System (SoS) model, DUNIP must pro-
vide capabilities to model an open system. In addition, a process also needs to be defined that
allows the development of an executable open system.Much of the open systemdevelopment
hinges on the variable structure capability within a component-based system. Desired char-
acteristics of an open system modeling framework are the ability to add or remove hierarchi-
cal components, change connections among components, and lastly, modify the behavior of a
component as it evolves per its surroundings. While the first two capabilities are structural in
nature and have been documented in DEVS literature, the third one is behavioral modifica-
tion at runtime. This capability is the most difficult to achieve. The DEVS open systems
approach underlying DUNIP gives it strong formal foundation to developM&S complex sys-
tem software capable of designing emergent behaviors (Mittal, 2013).
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In an SoS, systems and/or subsystems often interact with each other because of interop-
erability and integration requirements. These interactions are achieved by efficient commu-
nication among the systems using either peer-to-peer communication or through central
coordinator in a given SoS. Since the systems within SoS are operationally independent,
interactions among systems are generally asynchronous in nature. A simple yet robust solu-
tion to handle such asynchronous interactions (specifically, receiving messages) is to throw
an event at the receiving end to capture the messages from single or multiple systems. Such
system interactions can be represented effectively as discrete-event models. In discrete-event
modeling, events are generated at random time intervals as opposed to some predetermined
time interval seen commonly in discrete-time systems. More specifically, the state change of a
discrete-event system happens only upon arrival (or generation) of an event, not necessarily
at equally spaced time intervals. To this end, a discrete-event model is a feasible approach in
simulating the SoS framework and its interaction. There are many discrete-event simulation
engines that can be used in simulating interaction in a heterogeneousmixture of independent
systems. The main advantage of DEVS is its effective mathematical representation and its
support to distributed simulation.

DEVS formalism has been in existence for over 40 years. It has been applied to multiple
domains and many of the continuous, discrete or hybrid formalisms can be reduced to the
DEVS formalism (Zeigler et al., 2018). DEVS is based on Systems theory with its hierarchy
of system specifications and closure under coupling properties. DUNIP is focused on DEVS
and is the consummation of howDEVS can be applied to SoSs design and analysis in full sys-
tems engineering life cycle setup (Mittal, 2007). DUNIP is not a single concept but an integra-
tion of various concepts that have been developed over the years in DEVS research. These
concepts have now evolved into an integrated process that facilitates complex systems
M&S. Combining the Systems theory, M&S framework, and model-continuity principles, it
leads naturally to a life cycle development process, originally referred as Bifurcated
Model-Continuity-Based Life CycleMethodology (Zeigler et al., 2005): a precursor to DUNIP.

DUNIP isauniversalprocessand isapplicable inmultipledomains.However, theunderstated
objective of DUNIP is to incorporate DEVS formalism as the binding factor at all phases of this
developmentprocess.Fig. 1 illustrates theDUNIP,adaptedfromMittal andRisco-Martı́n (2013b).

The important concepts and the process within DUNIP are listed below:

1. Requirements specification using DSLs: DSLs are used to specify system requirements and
definitions. This item is described in Section 4.

2. Platform-independent modeling at lower levels of systems specification using DEVS DSL: This is
performed through the DEVSML, which is also presented in Section 4.

3. Model structures at higher level of system resolution using system entity structures (SES):
This item is focused on the role of SES (Zeigler and Sarjoughian, 2013) at higher levels
of systems specification and a model-based repository framework in which
components stored in a repository can be used for systems development, which is
briefly mentioned in Section 4.

4. Platform-specific modeling (PSM), that is, DEVS implementations on different platforms: Sections
4 and 5 show how platform-independent DEVSmodels can be implemented in a platform-
specific language such as JAVA, C#, or C++.

5. Netcentric execution in a distributed setup: Section 5 presents several frameworks for DEVS
execution, with details on the DEVS simulation architecture, distributed message
management and cross-platform execution of DEVS PIMs. It will show how to define a



State-
machines
(FDDEVS)

SysML /
UML

Message-
based

restricted
NLP

BPMN-
BPEL-based

scenario

DoDAF/UAF-
based

scenario

M2M, M2DEVS, M2DEVSML
Transformations

DEVS behavior
requirements at
lower levels of

system
specifications

DEVS structural
requirement levels
at higher of  system

specifications

Simulation
execution

DEVS/Cloud

Test models/
observers/

Federations

Transparent
simulators

Platform-
specific
models
(PSMs)

DEVS
experimental

frames

Models to web services
or hardware-in-loop/

DEVS agents

Verification
&

validation

DEVSML
Platform

independent
models (PIMs)

Databases &
event stores

Real-time
execution

Dynamical
systems
theory

DSLs

FIG. 1 The DEVS Unified Process. (Improved from Mittal, S., Risco-Martı́n, J.L., 2013. Netcentric System of Systems

Engineering With DEVS Unified Process. CRC Press, Boca Raton, FL, p. 712.)

2974 MODELING INFRASTRUCTURE
DEVS/Cloud simulation engine based on DEVS/SOA (and supported by xDEVS (Risco-
Martı́n et al., 2017)) to achieve distributed execution.

6. Automated test model generation using DEVS PIMs: Automated generation of DEVS
observers and test agents from DEVS platform-independent models is discussed at length
in Mittal and Risco-Martı́n (2013b). It describes how DEVS DSL plays a critical role in
achieving this capability.

7. Interfacing of models with real-time systems: DEVS can act as a production system and can
interface with live services, hardware-in-the-loop, and live, virtual, and constructive
environments (Mittal et al., 2015).

8. Verification and validation (V&V): The subject of V&V is a critical aspect in developing
any theory or the modeling thereof. Without valid models, the theory cannot be
tested. Without verified models, model’s correctness cannot be ensured. Experimental
frame (EF) design for V&V is addressed in Mittal and Risco-Martı́n (2013b).
4 MODELING INFRASTRUCTURE

DUNIP defines the modeling infrastructure (as well as the simulation infrastructure)
through the DEVSML framework (currently in its version 3.0 (Mittal and Risco-Martı́n,
2017)). The DEVSML 3.0 framework has two pieces: the language and the stack. In the follow-
ing we describe these two pieces.
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4.1 DEVSML: A Language

A DSL is a dedicated language for a specific problem domain and is not intended to solve
problems outside it. For example, HTML, Verilog, VHDL, etc., are DSLs for very specific do-
main. A DSL can be a textual or a graphical language or a hybrid one. A DSL builds abstrac-
tions so that the respective domain experts can specify their problem well suited to their
domain understandingwithout payingmuch attention to the general-purpose computational
programming languages such as C, C++, Java, etc., which have their own learning curve. The
notion of domain-specificmodeling arises from this concept and the DSL designers are tasked
with creating a domain-specific modeling language. If a DSL is also meant for simulation
purposes, then one more task of mapping a specific DSL to a general-purpose computational
language is also on the cards. There are manyDEVSDSLs that implement a subset of rigorous
DEVS formalism. One example of DEVS DSL is DEVSpecL (Hong and Kim, 2006), built on
Backus-Naur Form (BNF) grammar. DSLwriting tools, like Xtext, Ruby, etc., focusing directly
on the Extended BNF (EBNF) grammar provide a much easier foundation to develop the
Abstract Syntax Tree for Model-to-Model (M2M) transformations. The rich integration and
code generation capabilities with open source tools like Eclipse give them strong acceptance
in the software modeling community.

The DEVSML standard has coexisted through different DEVS DSL, like the DEVSML
(Mittal and Douglas, 2012) based on Finite Deterministic DEVS (Hwang and Zeigler,
2007), an earlier developed XML-based XFD-DEVS (Mittal et al., 2012), and an expanded
specification of XFD-DEVS in Mittal and Risco-Martı́n (2013b). Like any language, the
DEVSML also has certain reserved keywords, as shown in Table 1. A DEVSML file is of
the extension .fds and the specification language contains three primary element types, that
is, the Atomic, the Coupled, and the Entity. While the atomic DEVS formalism has a notion of
ports (input and output), the DEVSML has a notion of messages specified as Entity structures
that are eventually transformed to port definitions. The DEVSML grammar is specified using
Eclipse Xtext EBNF notation and is available in Mittal and Douglas (2012) and Mittal and
Risco-Martı́n (2013b).

Once the DEVSML has been designed, the implementation of a DEVSML editor is quite
straightforward, using, for example, Xtext DEVSML editors in eclipse. The current
implemented framework, named DEVSML Studio (Mittal and Risco-Martı́n, 2016), allows
the user a complete validation mechanism to check both DEVSML structure and behavior,
as well as assistance with some automatic tasks, like dynamic code generation. Fig. 2 shows
the DEVSML Studio atomic model rendition and Fig. 3 shows the simulation run in the
Eclipse DEVSML Studio (Dunip Technologies LLC, 2015).
4.2 DEVSML Stack

The purpose of the DEVSML Stack is to integrate the transparent modeling framework
with the inclusion of DSLs (like the DEVSML) through various transformations. DEVSML
Stack describes how platform-independent DSLs can be transformed in this framework
and eventually become operational in conjunction with the DEVS formalism.

One of the greatest advantages of DEVS is that model and simulator are completely
decoupled. It allows the modeler to construct model in a platform of his choice. The ability



TABLE 1 DEVSML Keywords (Mittal and Risco-Martı́n, 2013b)

Package Import Entity

extends coupled models

interfaceIO couplings atomic

ic eoc eic

vars state-time-advance state-machine

start in confluent deltint

deltext outfn sigma

continue reschedule ignore-input

input-only input-first input-later

infinity int double

String boolean input

output S: S’’:

this X:[] Y:[]

FIG. 2 DEVSML Studio showcasing the textual and autogenerated graphical DEVS state machine in Eclipse Inte-
grated Development Environment (Dunip Technologies LLC, 2015).
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FIG. 3 DEVSML Studio showcasing the simulation log in a textual and autogenerated graphical UML Sequence
Diagram in Eclipse IDE (Dunip Technologies LLC, 2015).
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to execute DEVS models in multiple platforms and languages has already been achieved and
demonstrated, as summarized in Moreno et al. (2009). In all these cases, the design of DEVS
models was dependent on the language where the underlying assumption always has been
“everything is an Object.” In the new DEVSML framework, this concept has evolved to
“everything is a model” (Mittal and Risco-Martı́n, 2013b) and there are two choices. Either
the DSL designer takes the DSL directly to the execution code, which involves no transforma-
tions but only code generation to the native programming language, or she/he works with an
existing framework that guarantees execution in formal systems theoretic way. If the DSL
designer opts for the second option, choosing DEVS as a framework is recommended due
to its rich history of model specification and simulator development. This ability provides
a scalable solution and has inherent advantages for programmatic integration and M&S in-
teroperability. Having a process to transform any DSL to DEVS components, especially to the
DEVSML platform-independent specification, then has obvious advantages.

DEVSML 3.0 Stack was proposed in Mittal and Risco-Martı́n (2017), is improvised as Ver-
sion 3.1 in Fig. 4. Starting at the bottom of Fig. 4, the execution layer of the DEVS/Cloud sim-
ulator is built upon DEVS simulators in native languages (e.g., C++, .NET, Java, etc.) that may
get deployed as individual Docker containers as detailed in Section 5. The containers are built
from the container images (templates) stored in the persistence layer. The next layer is the
distributed communication and coordination layer that manages the containerization. This
layer also incorporates the Docker scripts that build containers. Above that is the DEVS/
Cloud layer that implements DEVS coordinators and simulators to perform distributed
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simulations along with the required local databases for microservice implementation. Next is
the DEVS Middleware and the DEVS/SOA Service layer that makes available the DEVS
modeling and DEVS simulation services for multifarious clients. It is this Service/
Middleware layer that enables the transparent M&S framework. Finally, at the top, we have
the DSLs and various service clients that utilize the DEVS M&S services. To achieve model
interoperability, DEVS models can be encoded in any given language that conforms to
DEVSML Application Programming Interface (API). Otherwise, DEVS wrappers can wrap
the component’s behavior as a DEVS model (Mittal et al., 2015). The coupled models are then
specified using a platform neutral format (e.g., XML/JSON).

We need to make a clear distinction here that the DEVS modeling “language” is a DEVS
modeling specification language that is anchored to DEVS simulation layer using the simu-
lation relation in DEVSMiddleware API. Consequently, a DEVSML specifiedmodel is a bona
fide DEVS executable. The idea of including other DSLs at the top layer of the stack was a
major addition in DEVSML Stack Version 2.0, which also added three transformations at
the top layer:

1. model-to-model (M2M)
2. model-to-DEVSML (M2DEVSML)
3. model-to-DEVS (M2DEVS)

The key idea being: domain specialists (the end-user) need not delve in the DEVS world to
reap the benefits of DEVS framework. The end-user as indicated in Fig. 4 will developmodels
in their own DSL and the DEVS expert along with the DSL designer will help develop the
M2M and M2DEVSML transformation to give a DEVS backend to the DSL models. While
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M2DEVSML transformation delivers an intermediate DEVS DSL (the DEVSML DSL), the
M2DEVS transformation directly anchors any DSL to platform-specific DEVS. On a reverse
note, a DEVS expert is ideally suited to develop DSLs in other domains as developing trans-
formations like M2DEVS and M2DEVSML need not be negotiated with the DSL expert.
A DEVS expert with DEVSML skill set can perform a dual job of both the DSL and DEVSML
experts.

The addition of M2M, M2DEVSML, and M2DEVS transformations to the DEVSML Stack
adds true model and simulator transparency to a net-centric M&S distributed infrastructure.
The transformations yield platform-independent DEVSmodels (PIMs) that can be developed,
compared, and shared in a collaborative process within the domain. Working at the level of
DEVS DSL allows the models to be shared among the broad DEVS community that brings
additional benefits of model integration and composability. DEVSML 3.0 stack allows DSLs
to interact with DEVS middleware through an API. This capability enables the development
of simulations that combine and execute DEVS and non-DEVS models (Moreno et al., 2009).
This hybrid M&S capability facilitates interoperability. The scale is provided by the underly-
ing distributed (or Cloud) infrastructure that is largely made of virtualization technologies
and utilizes platform-as-a-service (PaaS) capabilities provided by containerization, as
described in the next section. To support containers, a persistence layer is added in the pro-
posed DEVSML Version 3.1 to account for databases and event stores. Database may store
various container images and event stores help preserve runtime state in a microservices-
based execution (Mittal and Risco-Martı́n, 2017).
5 EXECUTION (SIMULATION) INFRASTRUCTURE

The DEVSML execution infrastructure is mainly based on the Cloud capabilities provided
by one of its simulation engines, following the scheme of the DEVS VirtualMachine proposed
in Mittal and Risco-Martı́n (2013b). Then, using containers, a swarm of DEVS/Cloud simu-
lators can be created, ready to perform distributed simulations.

Any microservices architecture is primarily an orchestration of stateless services. In a
component-basedM&S framework such as DEVS, a component-model has to be transformed
to a stateless service and addresses two fundamental microservice architecture requirements:
distributed data management and shared event stores. In the following, we discuss how the
above aspects are handled at the modeling and simulation execution layers such that the
model’s state and inherent information can be externalized.
5.1 Modeling Layer Implementation

A DEVS model consists of ports (input and output), states, and state-variables (including
model name, current state, next state, time-of-last-event, time-of-next-event, and elapsed-
time) and the four characteristic functions:

ðδext,δint,δcon,λðsÞÞ:
In a microservices-based rendition of a DEVS model, we have to partition these elements
into the two buckets (of distributed data management and event stores) to achieve scalability



TABLE 2 Partitioning Atomic DEVS M&S Elements for Microservices Implementation

Atomic DEVS Model

Specification

M&S

Element

Data

Management

Event

Store Comments

X Model x Input events

Y Model x Output events

name Model x Model name

tl Simulator x Time of last event

tn Simulator x Time of next event

phase Model x Current phase of the
model

v1, v2, …, vn Model x Values and their data
types

TABLE 3 Partitioning Coupled DEVS M&S Elements for Microservices Implementation

Coupled DEVS Model

Specification

M&S

Element

Data

Management

Event

Store Comments

X Model x Input events

Y Model x Output events

M1, M2, …, Mn Model x Subcomponent names

IZ Model x Set of influencers

Zi�d Model/
simulator

x Mapping of influencer outports to
influence’s inports
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through stateless execution of amodular DEVS component. TheDEVS state-machine needs to
be separated with the operations on the state-variables inside the DEVS atomic model com-
ponent. The first bucket is the model’s state that is stored in state-variables, which have to be
serialized in a local database for that model. This implies that all the operations on these vari-
ables through the four characteristic functions will be through the accessor functions (i.e., get
and set). The second bucket is of the shared event store that is used for the input X and output Y
sets. The X and Y sets are transformed into declarative events (that may be implemented as a
complex data type) into a shared event store. Likewise, the DEVS atomic simulator compo-
nents are partitioned as well. Table 2 shows the partitioning of atomic DEVS elements (both
M&S layers). Table 3 shows the coupled DEVS elements partitioning. The above partitioning
allows the model to become stateless, which then can be containerized.
5.2 Simulation Layer Implementation

The simulation layer architecture will focus on the simulator and coordinator execution
and how they implement the DEVS simulation protocol in an abstract-time manner. The
architecture again has to account for the above two requirements: distributed data
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management and event stores. The DEVS simulation protocol defines the relationship
between the model and its underlying simulator. The application of microservices provides
resiliency at both the model and the simulator levels, to the effect that a large number of
simulator instances with corresponding model instances can now be created when the data
exchange between themodel and the simulator is accurately partitioned (as in Tables 2 and 3).

We shall illustrate the microservices-based DEVS/Cloud simulation architecture
implementation with the help of the classic EF-P example (Fig. 5). EF-P model contains
two components: the EF and processor (P) models (Mittal and Risco-Martı́n, 2013b). The
hierarchical EFP model in Fig. 5A is flattened toward a generator-processor-transducer
(GPT) model depicted in Fig. 5B. Next, according to Fig. 5C, each of the three submodels
in GPT, is mapped to a separate DEVS/Cloud node (container). Although, they all can also
belong to a single container. One node can thus contain one or more DEVS models with their
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corresponding local databases to store model’s data (Column 3 in Table 2). The node is se-
lected through the simulation configuration file. For illustration purposes, Fig. 5C shows
three nodes each corresponding to a single submodel in GPT. One simulator is then created
for each atomic model. Due to the symmetrical architecture, each node also contains a blue-
print of a coordinator. The simulation configuration file designates one of the nodes as the
root coordinator. At the end, models’ state and output events are always managed by their
corresponding simulators, using the local databases and global event stores, respectively.
Model output events are propagated through synchronous communication between the
model-simulator pair, using the aforementioned set and get accessors. It should be
highlighted that if the DEVS model is not flattened in the simulation configuration file, then
the coupled information in Table 3 is stored as well.

The event store is implemented using various event cloud technologies such as Esper and
provides a means to perform model-integrated systems engineering in which M&S itself is a
part of the systems engineering (Mittal and Risco-Martı́n, 2013a). The event stores are usually
implemented as event clouds which lend themselves to complex event processing that can do
streaming analytics as well as design monitors that can detect advanced spatiotemporal pat-
terns between the messages flowing between the components. All the containers and global
event store interface through a load balancer that divides the load on each container node
through various load-balancing policies.

In the following, we briefly explain the automated deployment of a DEVS/Cloud node
using Docker.
5.3 Implementation of the DEVS/Cloud Support

ADocker Image is a read-only template used to instantiate Docker containers. Each image
is definedwith several layers that compose the final image structure. The Docker registry also
called Docker Hub is a Docker Image repository. Images can be downloaded or uploaded.
The Docker Hub has a considerable amount of images ready to use. Finally, a Docker Con-
tainer is the runtime component of the Docker Image. Multiple containers can be instantiated
from the same Docker Image in an isolated context. Docker container can be run, started,
stopped,moved, and deleted. To start, Dockermust be installed in the hostmachine. Formore
information, the reader should be refer to the Docker official web page (Docker, 2017).

To build our DEVS/Cloud Dockerfile, we start from a DEVS/SOA complete WAR file
(Mittal et al., 2009), which includes the xDEVS simulation engine (with support for simulators
and coordinators as a service) and several DEVS example models. The corresponding Docker
Image must then include a minimal runtime environment that contains the DEVS/SOA de-
pendencies: LinuxOS, Oracle Java 8, and an application service such asApache Tomcat. Next,
the .war file will be deployed into the webapps directory of Apache Tomcat.

Fig. 6 depicts a Dockerfile structure. An excerpt of the source code of this file is shown in
Mittal and Risco-Martı́n (2017). As shown in Fig. 6, the Dockerfile must start with a base im-
age. In our case, the base image is Ubuntu. Next, MySQL and Java 8 are added. The final step
is to add Apache Tomcat. Finally, more security constraints can be added to the Dockerfile.
Once the Dockerfile is completed, we can show and stop container through the docker ps and
docker rm commands on the host OS that has the Docker daemon running.
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Figs. 5 and 6 show a transparent simulation infrastructure with DEVSML Stack Version 3.0
that incorporates container services for automated DEVS/Cloud deployments.
6 MODEL ENGINEERING IN DUNIP

6.1 Model-Based/Model-Driven Flavors

The “model-based (MB)” and “model-driven (MD)” terms and initials have been used in a
variety of system and software-related acronyms, such as MBD, MDSD, MDD, MDA, MBSE,
MDE, and many others. Although there is a consensus that these approaches suggest the sys-
tematic use of models as the primarymeans of a process and facilitate the use of DSLs, there is
not a common understanding of the terminology (Mittal and Risco-Martı́n, 2013b). The def-
initions of the frequently referred acronyms and the objectives of those approaches are sum-
marized following:

1. MBE: Model-based engineering (MBE) originated in the 1980s in parallel with the
evolution of the Computer-Aided Design (CAD) and Model-Based Design (MBD)
techniques. The main goal in MBE was to support the system development process during
the design, integration, validation, verification, testing, documentation, and maintenance
stages (Zeigler, 1976a,b; Wymore, 1993).

2. MBSE: In systems engineering, the application of the MBE principles is called as Model-
Based Systems Engineering (MBSE) (Zeigler, 1976a; Wymore, 1984; Zeigler and Chi, 1993).
MBSE provides the required insight in the analysis and design phases, enhances better
communications between the different participants, and enables effective management of
the system complexity.

3. MDE: Model-driven engineering (MDE) is a system development approach that uses
models to support various stages of the development life cycle (Atkinson and Kuhne, 2003;
Schmidt, 2006) and can be seen as a subset ofMBE.MDE relies on technologies to automate
model transformations thereby increasing productivity within MBE. It produces well-
structured and maintainable systems because of its focus on formally defined models,
metamodels, and meta-metamodels.
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4. MDA: Model-driven architecture (MDA) is a software design and development approach
that provides a set of guidelines for specifying and structuring models (Object
Management Group, 2003), relies on the Meta Object Facility (MOF) (Object Management
Group, 2006)MDAprovides a natural mechanism to definemodels and to transform them.
It prescribes the use of metamodels and meta-metamodels for specifying the modeling
languages without any necessity to be domain specific.

5. MDD or MDSD: The application of the MDE principles in software engineering is called
Model-Driven Development (MDD) or Model-Driven Software Development (MDSD)
(Volter et al., 2006). The modern era of MDD started in the early 1990s and now offers a
notable range of methods and tools. Different specifications such as MDA (Object
Management Group, 2003), MIC (ISIS, 1997), Eclipse Modeling Project, and Microsoft
Software Factories are some of the conceptual applications of MDD principles.

6. MIC: Model Integrated Computing (MIC) refines the MDD approaches and provides an
open integration framework to support formal analysis tools, verification techniques, and
model transformations in the development process (ISIS, 1997). MIC allows the synthesis
of application programs from models by using customized Model Integrated Program
Synthesis (MIPS) environments (e.g., Generic Modeling Environment [GME]). The meta-
level of MIC provides metamodeling languages, metamodels, metamodeling
environments, and metagenerators for creating domain-specific tool chains on the
MIPS level.

MBE andMBSE utilize the systemsV&Vmethodologies to themodel development process
relating back to the system requirements for systems test and evaluation.MDE is one area that
serves both the software and systems engineering as it is domain independent. Model-Driven
Systems Engineering (MDSE) gives MB/MBSE various model engineering, transformation,
and tools fromMDE that speed upmodel development through the metamodeling construct.
The development of various editors based on MDE concepts involve advanced software
engineering and code generation techniques. DUNIP (through its DEVSML Stack) is posi-
tioned as anMDSE that employs both the systems engineering andMDE paradigm in an agile
manner (Mittal and Risco-Martı́n, 2013a).
6.2 Model Management in DUNIP

DEVSML and DUNIP are focused toward interoperability at the application level, specif-
ically, at the modeling level and hiding the simulator engine as a whole. Our vision and so-
lution development is along the lines of Model-as-a-Service (MaaS), Simulation-as-a-Service
(SimaaS), and ultimately, DEVS-as-a-Service (DaaS). We would like the user or designer to
code the behavior in any of the programming languages, ideally a DSL of his choice and
let the DEVSML 3.1 stack develop the transformations. The DEVSML Stack is responsible
for taking a DSL or a coupled DEVSML model, integrating code within their DSLs and
delivering us with an executable model that can be simulated on any DEVS platform (local,
virtual, distributed, or cloud).

The user can integrate his model from a model repository stored in any web location. It
may contain publically available models of legacy systems or proprietary standardized
models. Together they will provide more benefit to the industry as well as to the user, thereby
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truly realizing the model-based paradigm. In addition, the following aspects handle the
model management in DUNIP:

1. Use of DSLs and guidance for model transformation: The DSLs can be platform-dependent
or platform-independent. Through the model transformations (M2M, M2DEVSML, and
M2DEVS), anyDSL can be brought in DUNIP. Using the underlyingmetamodel, a DSL can
be mapped to the DEVSML metamodel.

2. Alignment with Systems Theory: The alignment reflects the presence of explicit interfaces
between components and strong data-type exchange mechanisms between the interfaces.
This facilitates unambiguous message exchange in an explicitly connected system.

3. Support for component reusability: DEVS, and consequently DUNIP, is a component-
based framework. A component in DEVS is defined by two aspects: structure and
behavior. Likewise, anyDSL or aDEVS-wrapped component has an explicit interface and a
defined behavior. This makes it available for its inclusion in a repository with a knowledge
about the structure and behavior stored in the metadata for that component.

4. Code generation, execution, and deploymentmechanisms: DEVSML 3.1 Stack has a service
layer that keeps the code generation (for transformations), the execution layer (simulation),
and the deployment (on cloud) transparent from the end-user and model workflows. The
service layer hence implements Maas, Simaas, and DaaS.
7 MODEL INTEGRATION AND INTEROPERABILITY

Interoperability is a quality that denotes the ability of diverse-independent systems to
work together at a functional level. If two or more systems are capable of communicating
and exchanging data between themselves to address a situation or solve a problem, the over-
all systemmanifests interoperability between these systems. Theword “system” can be a gen-
eral concept for an organism, component, or an agent. Interoperability facilitates model
extensibility and full integration. Thus, achieving a high degree of interoperability in simu-
lation continues to be a prime objective within the research community and this age of
heterogeneity. The main reason is to assist the confluence between the large variety of legacy
simulation frameworks and the latest simulation applications, not limited to augmented
reality and virtual simulation.

During the last 10 years, a DEVS standard has been under development to support inter-
operability of DEVS models implemented in different platforms as well as with legacy sim-
ulations. Fig. 7 illustrates an architectural approach proposed to accommodate the various
combinations and permutations of possible application. The basic idea was to define two sets
of interfaces; the DEVS model interface and the DEVS simulator interface, as well as a DEVS
simulation protocol that operates between the two.

DUNIP and its DEVSML construct (at both M&S layers) supports this conceptual architec-
ture. At the modeling layer, DEVSML supports DEVSJAVA and xDEVS engines (Risco-Mart-
ı́n et al., 2017). xDEVS contains wrappers for other DEVS M&S engines like DEVSJAVA,
aDEVS, or CD++. At the simulation layer, DEVSML implements xDEVS compatibility, with
support for sequential, parallel, and distributed simulations.



FIG. 7 Conceptual architecture of standard.
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7.1 Integration at the Modeling Level

As mentioned earlier, DEVSML takes advantage of the existing DEVS model implementa-
tion interface in xDEVS (Risco-Martı́n et al., 2017). To support the modeling requirements
implemented as in Fig. 7, the xDEVS API specifies an interface for both atomic and coupled
models, which allows us to adapt the implementation to the DEVSML standard stated in
Section 5. The compatibility of DEVS-to-DEVS models is tackled with the use of wrappers
(Mittal et al., 2009). Fig. 8 shows how the DEVS-to-Non-DEVS interoperability is solved.
To start with, the DEVSML model interface is derived from the xDEVS interface (Fig. 8).
The xDEVS to DEVS mapping implements DEVS formalism specifications. These DEVS
models can be implemented as full DEVSmodels or otherwise act as an adapter for non-DEVS
integration, for example, Matlab integration (Risco-Martı́n et al., 2009).

Via the DEVSML simulator environment incorporated through the xDEVS framework
(with all its sequential, parallel, and distributed capabilities), we are capable of modeling
and simulating atomic and coupled models that share the same semantics given by the DEVS
FIG. 8 Integration at the modeling level.
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mathematical specifications or through DEVSML specifications. Themodels may differ in the
computing environment implementation or deployment. As we have seen, implementations
of both DEVS and non-DEVS “compliant” models (using an adequate wrapper for the case of
non-DEVS models) that share a common DEVS interface can interoperate. As the DEVSML
simulator remains unchanged, it is able to simulate and facilitate interoperable DEVS model
implementations.
7.2 Integration at the Simulation Level

The previous methodology can be extended for the xDEVS simulation framework (left-
hand side of Fig. 7). As explained earlier, xDEVS provides DEVS-based simulators as services,
which are based on standard communication technologies. Each atomic or coupled compo-
nent may be implemented using different simulation engines, called platforms. Fig. 9 depicts
an example of multiplatform DEVS model. The DEVSML Stack acts as the framework
interoperating two different simulation platforms (Fig. 5).
8 SUMMARY

The DEVS formalism, based on systems theory, provides a framework and a set of M&S
tools for SoSE (Mittal and Risco-Martı́n, 2013b). A DEVS model is a system-theoretic concept
specifying inputs, states, outputs, similar to a state machine. Critically different, however, is
that it includes a time-advance function that enables it to represent discrete-event systems, as
well as hybrids with continuous components, in a straightforward platform-neutral manner.
DEVS provides a robust formalism for designing systems using event-driven, state-based
models in which timing information is explicitly and precisely defined.

DUNIP is categorically designed to interface with service-oriented and cloud-based sys-
tems to bring an interoperable M&S environment that may include hardware-in-the-loop
or software-in-the-loop (e.g., service systems). Netcentric systems can be modeled effectively
FIG. 9 Cross platform coupled model.



TABLE 4 Mapping of M&S T&E Capability Requirements and DUNIP

Desired M&S Capability for T&E Solutions Provided by DEVS Technology in DUNIP

Support for executable architectures using M&S such
as mission-based testing for Cloud-based systems

DEVS Unified Process provides methodology and Cloud
infrastructure for integrated development and testing
(Mittal, 2007)

Interoperability and cross-platformM&S using Cloud Simulation architecture is layered to accomplish the
technology migration or run different technological
scenarios. Provide net-centric composition and integration
of DEVS validated models using Cloud Computing

Automated test generation and deployment in
distributed simulation

Separate amodel from the act of simulation itself, which can
be executed on single or multiple distributed platforms.
With its bifurcated test and development process,
automated test generation is integral to this methodology

Test artifact continuity and traceability through
phases of system development

Provide rapid means of deployment using model-
continuity principles and concepts like “simulation
becomes the reality” (Hu and Zeigler, 2005)

Real-time observation and control of test environment Provide dynamic variable-structure component modeling
to enable control and reconfiguration of simulation on the
fly. Provide dynamic simulation tuning, interoperability
testing and benchmarking

311DISCLAIMER
using the DEVS formalism and consequently can leverage DUNIP. To provide a brief over-
view of the current DEVS capabilities within DUNIP, Table 4 outlines howDEVS can provide
solutions to the challenges in netcentric design and evaluation.

The realization of netcentric DUNIP has the following pieces:

1. DEVSML Stack: the central concept
2. Distributed simulation in Cloud environment over SOA
3. Netcentric DEVS Virtual Machine (both client and server)
4. Design, development, and deployment of netcentric systems with DEVS
5. Containerization support for efficiency, scalability, and scalable deployment
6. Interfacing with event-driven architectures and live, virtual, and constructive

environments that incorporate both hardware-in-the-loop and software-in-the-loop

DUNIP offers an integrated approach to bring in various DSLs in a methodical way to the
DEVS ecosystem such that they could become a part of a larger SoS. This is very much a
needed capability when it comes to complexmultidisciplinaryM&Swheremodels frommul-
tiple domains need to be brought in together. DUNIP incorporates the latest inMDE, DevOps,
and Cloud technologies to deliver a reliable M&S environment for rapid test and evaluation.
Further improvements will be made as new technologies appear on the horizon.
DISCLAIMER

The author’s affiliation with the MITRE Corporation is provided for identification pur-
poses only, and is not intended to convey or imply MITRE’s concurrence with, or support
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for, the positions, opinions, or viewpoints expressed by the author(s). Approved for Public
Release. Distribution Unlimited. Case Number: PR_17-3254-10.
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1 INTRODUCTION TO DEVS AND STATE-OF-THE-ART PARALLEL
COMPUTING TECHNIQUES

Discrete event system specification (DEVS) is a modular and hierarchical formalism for
modeling and analyzing general systems that can be discrete event systems, which may be
described by state transition tables, continuous state systems, which may be described by dif-
ferential equations, and hybrid continuous state and discrete event systems. In DEVS, a sim-
ulation system is composed of atomicmodels (AMs) and coupledmodels (CMs). TheAMs are
expressed in a basic formalism. The CMs are expressed using the CM specification—
essentially providing component and coupling information.

However, DEVS falls short of addressing the following issues:

• Due to the rapid development of modeling and simulation (M&S) and software
technology, some problems of DEVS have emerged. On the one hand, it is difficult to
describe dynamic system behaviors of CMs using DEVS. On the other hand, advanced
computer science technology including automata is widely used. As a result, the combined
method is proposed by some researches. For example, visual state transition chart is
combined with DEVS by extending finite state machine (FSM).

• Although DEVS introduces modeling formalisms and simulation algorithms, it does not
provide implementation specifications for parallel simulation development. TheDEVS can
be integrated with distributed simulation specification such as high-level architecture
(HLA), but it is difficult to handle the high communication cost. Therefore, it is desirable if
we can design parallel DEVS executionswith stand-alone computer node to avoid this cost.
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Hardware accelerators, such as general-purpose graphics processing units (GPGPUs), are
promising parallel platforms for high-performance computing. The GPGPU provides an in-
expensive, highly parallel system to application developers. There has been growing research
and industry interest in accelerating applications with GPGPUs. It has shown several advan-
tages to run computation intensive and data-parallel applications compared to CPU
platforms.

There are hundreds of applications accelerated by GPU. Various works aim to exploit the
data parallelism of the applications and accelerate them with GPU. For example, the Ising
model (Hawick et al., 2011) is a computation intensive model, which is used to analyze phase
transitions occurring in statistical mechanics and many other systems including social net-
works, physical computer networks, and web page relationships on the World Wide Web
(Hawick et al., 2011). The model can be set up on any graph or network where spin nodes
interact with their nearest neighboring nodes according to a Hamiltonian or energy func-
tional. It is noticeable that the calculation of the Hamiltonian actually resembles the situation
where an agent tries to interact with other agents in a grid environment. Wende (2010)
showed how the calculation of Hamiltonian could be resolved with Metropolis algorithm
on a GPU.

When data parallelism is not obvious to utilize GPU efficiently it is necessary to transform
the problem into a data-parallel one. Hong et al. (2011) introduced a GPU implementation of
the level synchronous breadth first searching (BFS) algorithm to explore a graph. The CPU
version of the algorithm uses queues. However, to accommodate the GPU programming,
the authors changed the queue-based algorithm into anO(N) array-based algorithm. The con-
current processing on the array can make the graph exploration in parallel.

There are two network models: the fluid-based TCP model and the adaptive antenna
model. These two models were converted into computation-intensive representations. With
careful mapping, the data structures are positioned in the GPU memory. To be specific, the
arrays of real numbers in CPU-based algorithms are represented in GPU as two-dimensional
(2D) textures of floating point data values. The intermediate results are stored in GPU’s tex-
ture memory to be used for subsequent passes of computation, so that the costly data transfer
between the CPU and the GPU is avoided. In addition, to handle the GPU-based function calls
with two or more outputs, the authors used multiple rendering targets to write multiple tex-
tures in a single pass so that good performance was achieved.

Perumalla (2008) and Perumalla et al. (2009b) introduced a method to simulate vehicle
movement on a GPU by using a field-basedmodel. This model maps the real-world road data
onto a 2D lattice, with each cell in the lattice representing the possibility of turning either left/
right or up/down. Cells are processed in parallel byGPU threads.Whenever there is a vehicle
in a cell, its route can be calculated according to the turning probability of the cell.

Speeding up discrete event simulation is an important topic in parallel and distributed
simulation. The requirement that events be processed in causal order restricts the parallelism
that can be achieved. StudyingGPU execution strategies for parallel discrete event simulation
helps us understand the challenges and difficulties of using GPU in simulation. The major
challenge is to exploit the parallelism from the application.

In another work of Perumalla (2006b), the author studied efficient implementation of
discrete event simulations on the GPU. The particular application is a diffusion simulation
(e.g.,heat transmissionandgasdiffusion)which isquite computationally intensive.Theauthor
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proposed a time-driven approach and an event-driven approach to simulate this scenario. The
time-driven approach is inefficient, because each logical process (LP) recalculates its local state
in every time advancement, but this implementation could be quite easily migrated to GPU.
The event-driven approach is efficient, but it is hard to be implemented onGPU. To bridge this
gap, the authorproposedahybridapproach.The clockadvancementmechanism is the sameas
the event-driven approach in which the clock advances to the timestamp of nearest future
event. However, in each time advancement multiple events are extracted and aligned to the
same timestamp to be simulated concurrently, which is similar to the time-driven approach.
The author fully elaborated how the extraction was done in the paper. The hybrid approach
demonstrates good speedups in the scenarios with large problem size in both CPU and
GPU implementations.

In the work of Park and Fishwick (2010, 2011), the authors proposed data structures for
processing events in parallel. The future event list (FEL) is decomposed into sub-FELs which
are then assigned to GPU threads for concurrent processing. However, in their work, the it-
erative data transfer between the host and the device is a bottleneck.

In summary, to take advantage of the GPU architecture, applications with higher data par-
allelism aremore beneficial. Besides, the data structures are usually organized into arrays and
the dynamic memory allocations are often avoided.
2 DEVS-BASED MESOSCOPIC TRAFFIC SIMULATION FRAMEWORK
ON GPU

As shown in Fig. 1, a road network is modeled as nodes, links, segments, and lanes, which
correspond to AMs in DEVS. And the traffic system can be regarded as a CM. The nodes cor-
respond to intersections of the actual road network, while links represent unidirectional path-
ways between nodes. Each link is divided into a number of segments, according to geometry
features. Each segment contains lanes. Each lane contains a number of vehicles, which are
located on the lane. Each lane has capacity constraints at the upstream end and the down-
stream end, referred to as the input capacity and the output capacity. A queue occurs in a
lane if vehicles cannot pass the lane. A spill-back occurs if a lane is blocked, which means
the length of the queue on the lane is equal to the length of the lane.

According to the vehicle’s status (moving or in queue), its location is updated using the
following rules. If a vehicle is located in the moving part of a link, its speed is determined
by a speed-density relationship on the density of the link, and its location is then updated
using the speed. Example speed-density relationships can be found in the land authority pub-
lication such as the manual of Transportation Research Board (2000). In this paper, the
Node
Link

Segment Lane

FIG. 1 Network-related terminologies used in this paper.
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following equation in Yan et al. (2014) and Transportation Research Board (2000) is used to
compute the speed of a link:

v¼ v0∗ 1� k

kjam

� �β
 !α( )

(1)

where v0 is the free-flow speed, k is the density, kjam is the jam density, and α, β are

configurable parameters to be determined for each link through calibration. In this paper,
α¼1.0 and β¼0.05.

If a vehicle is located in the queue part of a link, there are two possible conditions:

If the vehicle is at the head of the queue (at the exit of the link), it can leave the queue only if
the current link has output capacity left, and the downstream link has sufficient empty
space and sufficient input capacity. If both conditions are satisfied, the vehicle can pass the
current link to the next time step. Otherwise, the vehicle stays at the exit of the link.
If the current vehicle is not first in the queue (i.e., there are other queuing vehicles ahead of
it), it can only advance as far as vehicles in front of it do (assuming no space is left between
any two consecutive queuing vehicles). The distance is then determined by how many
vehicles have left the head of the queue during the same time step.
2.1 The Simulation Framework for CPU/GPU

In this chapter, we use the CPU and the GPU to enhance the performance of a traditional
time-stepped mesoscopic traffic simulation enabled by the entry-time-based supply frame-
work (ETSF), as described in Yan et al. (2014).

In most existing GPU-based simulations (Perumalla et al., 2009a; Strippgen and Nagel,
2009; Singapore-MIT Alliance for Research and Technology (SMART) & DynaMIT, n.d.),
CPU code plays a role of a master thread that controls the program flow. The GPU code,
on the other hand, spawns a bunch of worker threads to execute compute-intensive parts
of the program in parallel, thus accelerating the overall program. Here each worker thread
is mapped to an AM instance of DEVS. However, this way of implementation has two short-
comings for traffic simulations. First, the demand part, including vehicle generation, depar-
ture time choice, and path choice, is often dynamically generated in real time and thus it is not
easy for the demand part to be executed on the GPU memory structure. Second, central
processing unit (CPU) is not fully used, which is a waste of resources to some extent.

To tackle these problems, we design a new simulation framework making full use of CPU
and GPU. In this framework, the GPU is responsible for the supply part of mesoscopic traffic
simulation, which includes speed calculation, vehicle movement on a road and between
roads, and queue calculation. A key feature of supply simulation is that the simulation of
a road is just related to its surrounding roads, which fits GPU’s data-parallel requirement.
Further, the CPU is responsible for the demand part and the input/output (I/O) part of
the mesoscopic traffic simulation, which includes vehicle generation, departure time choice,
pre-trip route choice, en-trip route choice, and pushing simulation results to files. A key fea-
ture of demand simulation is that vehicles make decisions based on the information on the
global road network. Fig. 2 shows the mesoscopic traffic simulation framework on CPU/



FIG. 2 Mesoscopic traffic simulation framework on CPU-GPU. The supply and demand simulation components
are CMs in DEVS.
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GPU, which explains the logic procedure and the simulation time management. This frame-
work is suitable for general time-stepped mesoscopic traffic simulation (Ben-Akiva et al.,
2001, 2012; Mahmassani et al., 1992).

The traditional simulation time, which controls the turnover of the system status, is
divided into three components: a demand time (td), a supply time (ts), and an I/O time (tio).
A traffic simulation is completed only if td, ts, and tio all reach the simulation end. In other
words, the simulation is completed when all components have reached the simulation end
time. In this framework, multiple time steps enable to identity the exact progress of different
components in a traffic simulation.Note that, at an instantaneous time, the three time steps can
be different. The time management in this framework is controlled by three rules:

• Rule 1: td>¼ ts
• Rule 2: ts>¼ tio
• Rule 3: td<¼ ts + DFD

First, td is not smaller than ts because, only if vehicles entering the simulation at time t are
generated, the supply simulation at t can start.

Second, ts is not smaller than tio because, only if the supply simulation at t is completed, the
simulation results at t can be outputted to files.

The third rule involves a concept in traffic simulation: demand feedback delay (DFD),
which is a multiple of the simulation time tick 4 t. Vehicles generated at time t require the
simulated results at t�DFD, for departure time choices and route choices. The minimum
value of DFD is 1s, which means vehicles have real-time instantaneous information about
the global traffic status in last time step (e.g., 1s), and DFD tends to be larger in real-world
traffic systems.

In the logic procedure in Fig. 3, steps 1 and 2 initialize the required data structures on the
CPU and the GPU, including the road network, traffic scenario configurations, and other pa-
rameters. After initialization, the CPU controls the simulation logic, in order to manage the
simulation time and to make full use of computational resources. Without breaking the three
rules in time management, the following tasks can be executed in parallel:

• Task 1: The supply simulation CM at time ts on GPU (steps 3–5).
• Task 2: The demand simulation CM at time td on CPU (steps 6–8).
• Task 3: Push simulation results at time tio to files (steps 9–10).

Within a loop of the logic procedure, the CPU first checkswhether the GPUhas finished the
supply simulation at time ts. If yes, the simulation results on the GPU (e.g., road-based speed
and density) are copied to the CPU, and the supply time ts is advanced. Then, the supply sim-
ulation at the next time step is started on theGPU.Note that the CPUwill not wait for the GPU
supply simulation to finish. If the supply simulation on the GPU is ongoing, the CPU checks
whether the demand simulation can be started. If the simulation results required for demand
simulation are available, the demand simulation will be started on the CPU. Otherwise, the
CPU checks whether there are available simulation results that need to be written into files.
The CPUwill continue the loop until the three time steps ts, td, and tio all reach the simulation
end. The logic of the supply simulation and the demand simulation are explained in Barcelo
(2010) and Yan et al. (2014).



FIG. 3 Road network and vehicle modeling on the CPU.
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2.2 Data Structure of Road Network and Vehicle on GPU

For parallel computing performance, the data structure in the GPU memory is completely
different from CPU’s, due to the thread hierarchy and the memory hierarchy in the GPU.
Fig. 3 shows the road network and vehicle on the CPUmemory. A road network is composed
of a list of links and a list of nodes. Each link consists of a number of segments, and each node
consists of a list of upstream and downstream links. Each segment consists of multiple lanes,
and each lane contains a number of lane connections. Each lane also has access to vehicles that
are moving on the lane.

2.2.1 Data Structure of CPU Versus GPU

From the perspective of implementation, the data structures in the CPU memory and the
GPU memory have two key differences.

First, on the CPU memory, the large number of road elements and vehicles are stored in
random separated memory spaces, and the objects connect with each other using pointers.
While on the GPU memory, these elements are kept in arrays in a continuous memory space
and different elements connect with each other using the index inside the array. The reasons
for doing this on the GPU memory are to make it easy to copy the entire road network from
the CPU memory to the GPU memory and, more importantly, to allow efficient coalesced
memory access, which means a group of GPU threads in a warp tend to access continuous
memory space.

Second, on the CPUmemory, dynamic memory allocation (e.g., as done by the STL vector,
which applies for additional memory space just when it is immediately required) is widely
used in the data structure of a road network and vehicles, because of its flexibility and
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efficiency. However, on the GPUmemory, dynamic memory allocation has to be replaced by
static memory allocation, which utilizes a sufficiently large amount of memory space in the
beginning. It is a limitation of GPU programming because it is not efficient to do random
memory access. In our GPU framework, it uses “start & end indexes” to store the containing
relationships.

Third, it is good to use shared memory if possible, as does the matrix multiplication exam-
ple shown in NVIDIA (2014). However, it is not easy to use sharedmemory in our traffic sim-
ulation framework. There exist two problems. (1) In the matrix multiplication example, the
submatrix is stored in shared memory because it will be used multiple times during multi-
plication. However, in our traffic scenario, each lane computes its speed, queue length with-
out using the other lane’s data. This means there is little need to use shared memory. (2)
Considering the case in Section 4with 100,000 vehicles, we need 99.95MB for lanes. However,
each shared memory per block is only 48kB. Using shared memory will lead to multiple sec-
tions with various thread indexes. As such, only global memory is used in our kernel
functions.

To illustrate these technical points, Fig. 4 shows the data structure of an ideal grid road
network and vehicle modeling on the GPU memory.
2.2.2 Data Structure of Ideal Grid Versus Real Road Network

Compared with the ideal grid network modeling on the GPUmemory, the real-world net-
work data structure is shown in Fig. 5. This design uses indexes in data structures to save
memory space. The design details are introduced as follows.
FIG. 4 Ideal grid road network and vehicle modeling on the GPU.



FIG. 5 Realistic road network and vehicle modeling on the GPU.



324 15. GPU PARALLELISM-ORIENTED TRAFFIC MODELING AND SIMULATION
1. Realistic road network modeling is more complex. Each link of an ideal grid road network
only has one segment and its lane, but there are often two or more lanes in a real network.
Correspondingly, in the design of a GPU memory, a grid road network has only
“lane_index” whereas there is “lane_start_index” and “lane_end_index” for each segment
in a realistic road network. For example, if a segment has four lanes, then this index can be 1
and 4 (if the segment is the first segment in the network) or more likely to be (X and X+3);
X is the index of the first lane in the whole network.

2. In a grid network, all lanes’ lengths are equal, and the scope of vehicles’ indices is thus
fixed. We only need to get “vehicle_index” on the lane to know the ID of the vehicle on the
lane. But in a real network, we need to get “vehicle_start_index” and “vehicle_end_index”
of each lane because the length of each lane is different. For instance, about struct
“LaneOnGPU,” the usage of attributes “vehicle_start_index” and “vehicle_end_index” is
to define global start and end index of vehicles on the network. These two attributes mean
that the scope of vehicles’ index on a lane, for example, if a lane is 1000m long, and each
vehicle is 5m long, then the index is X�X+199, where X depends on other lanes in the
network.

3. Considering of the complexity of real network topology, “lane_connection” is proposed in
road modeling, which does not exist in the ideal grid road network because these
connections are easily predetermined. The struct “LaneConnection” is devised to contain
localized lane-connection information. It answers the question of “which upstream lanes
are allowed to enter the downstream lane in an intersection.”

4. Global path selections of vehicles are stored in CPUmemory, and each vehicle has its own
path. For struct “LaneOnGPU,” the usage of attributes “vehicle_num” is to define the
number of vehicles at a time t. “vehicle_start_index” and “vehicle_end_index” define the
physical limitation of total number of vehicles; they are constant values. But
“vehicle_num” changes as the simulation advances.

To further illustrate the above points, an example road network is illustrated to further
explain the data structure in the GPUmemory. Fig. 6A represents a real-world road network.
The road network consists of a main road with one on-ramp and one off-ramp. The road net-
work is then modeled as six nodes and five segments in Fig. 6B. The two nodes of interest are
nodes 1 and 2 (as N1 and N2 in Fig. 6B). Node 1 has two upstream segments and one down-
stream segment; node 2 has one upstream segment and two downstream segments. Themain
road has two lanes; the on-ramp and off-ramp roads have one lane. The length of segment 3
(S3) is 200m; the length of all other segments are 100m. The length of a vehicle is 5m.

The data structure of the road topology in the GPUmemory is shown in Fig. 6C. First, con-
tinuous memory spaces (e.g., tables) are used to keep nodes, segments, lanes, etc. Second,
each element has a special ID (or index), which indicates its location in the table. For example,
the segment S1 is the first element in the segment table. Third, a pair of start/end indexes is
used to store the relationship between nodes and segments, segments and lanes, lanes and
vehicles.

Moreover, complex lane-connection rules are directly modeled in our data structure
model. For example, as shown in the lane-connection table, the on-ramp segment 2 contains
only one lane (lane3), and lane3 is only connected to one lane of segment 3 (lane5). It means, in
this example, vehicles on segment 2 cannot pass to the other lane of segment 3 (lane4).



(A)

(C)

(B)

FIG. 6 Example to show the arrays designed for node, segment, lane connection, and vehicle index for a typical
road topology: (A) example road topology, (B) simulated road topology in traffic simulation, and (C) data structure in
the GPU memory (* means the ID does not exist in the figure).
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Meanwhile, each lane in segment 3 has a space for 40 vehicles, but the other lanes have a space
for 20 vehicles. Thus, each lane in segment 3 reserves 40 vehicle ID space. An attribute
“on_road_vehicle_num” is used to determine how many vehicles are on the lane at a time
and which vehicle IDs are valid.
2.3 Thread and Partition of Road Network

We assume that a traffic system can be divided into numerous disjoint small partitions and
assign each GPU thread to simulate several partitioned traffic models. This approach can sig-
nificantly reduce the total execution time if the partitioning solution is well designed.
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Normally, we have two choices to partition a traffic network. The first is to assign vehicles
to threads. This approach assigns a new vehicle to the least workload thread. It is more
appropriate for microscopic simulation where each vehicle has rich behaviors and more
computing load.

The second is to assign road lanes or segments to threads. This approach is good for our
mesoscopic simulation because of its better cache performance, as vehicles on the same road
segment are processed in an order by the same thread. Besides, road segment-based proper-
ties (e.g., the average speed) can be efficiently calculated in this approach. In other words,
according to current GPU architecture, the cost mainly comes from thememory access of traf-
fic models on different threads. Thus, we think it is of high priority is to achieve coalesced
memory access of vehicles on the same road segment.

As such, we choose the latter approach, where each node and all upstream road segments
connected with this node correspond to each GPU thread. For instance, the road topology
shown in Fig. 6B is computed with four GPU threads, as shown in Fig. 7.

In the proposed assignment method, all upstream road segments, which are connected to
the same node, are processed together by the same GPU thread. Besides, all these upstream
road segments are stored in a continuous structure in the GPU memory (as discussed in
Section 3.2). It allows an efficient way to deal with conflicts among vehicles from different
upstream road segments in order to enter into and cross the node.
2.4 Kernel Functions of Supply Simulation on the GPU

To apply the above data structure design and network partition method, the supply com-
ponent of our mesoscopic simulation on GPU consists of four key functions:

(1) cpu_update ()
(2) kernel function: pre_vehicle_passing ()
(3) kernel function: vehicle_passing ()
(4) copy_simulation_results_to_cpu ()

The first function allows the CPU to change the status of the traffic simulation before
starting the supply simulation at the next time step. For example, if an incident happens,
the road capacity is reduced. The CPU updates the new capacity to the road network on
the GPU memory before simulating the next time step. Another example is en-trip route
S1

S2

S3

S7

S9

N1

N2

N3

N4

FIG. 7 Four GPU processing areas in an example road topology.
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choices. En-trip route changing behavior is simulated on the CPU, and then the new routes
are copied to the GPU.

The second function is a GPU kernel function updating the status of each lane (e.g., density,
speed, and tp (Yan et al., 2014)) before passing vehicles to the downstream lanes. The update
unit of this kernel function is a lane, which means each lane is simulated on a GPU thread.
This kernel function first loads vehicles that passed through this road at the previous time
step. After that, it loads new generated vehicles into the lane. Then, the kernel function cal-
culates the speed of the lane based on the speed-density relationship (Barcelo, 2010; Yan et al.,
2014). After that, the kernel function calculates tp. The method to calculate tp is explained in
our previous work (Yan et al., 2014). For this kernel function, the detailed procedure is shown
in Algorithm 1.

The third is also a GPU kernel function scanning vehicles on the lane and passes a number
of downstream vehicles to the next lane. The update unit of this kernel function is each node.
As discussed in Section 3.3, each node and its upstream lanes are simulated on a GPU thread.
It is because vehicles from upstream lanes might conflict with each other when crossing the
node to the same next lane. One example is shown in Fig. 8. In this small road network, node 1
has two upstream lanes: lane 1 and lane 4. Thus, vehicles on lane 1 and lane 4 are processed on
the same GPU thread, to remove the potential conflicts. Moreover, as shown in Fig. 7, because
each lane has only one upstream node, from where vehicles might pass, there is no conflict
when updating nodes in parallel. There are four rules to determinewhether a vehicle can pass
from a lane to the next lane, which are explained in our previous work (Yan et al., 2014). Af-
terward, if a vehicle crosses from the current lane to the next lane, the corresponding output
ALGORITHM 1

P R E _ V EH I C L E _ P A S S I NG

1: Start n GPU threads (n is the number of lanes)

2: For each GPU thread

3: … for each vehicle in the buffered space of the lane do

4: … … if there is space on the lane do

5: … … … transfer the vehicle from the buffered space to the lane;

6: … if there are vehicles in the buffered space of the lane do

7: … … shift vehicles in the buffered space;

8: … for each newly generated vehicle on the lane do

9: … … if there is space on the lane do

10: … … … load the newly generated vehicle to the lane;

11: … … elseif there is space on the buffered space of the lane do

12: … ...... load the newly generated vehicle to the buffered space;

13: … … else

14: … ... ... cannot load the newly generated vehicle

15: … update the density of the lane;

16: … update the speed of the lane;

17: … update other attributes (e.g., tp) of the lane.
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FIG. 8 A node and its upstream links are updated on the same GPU thread.
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capacity of the lane, the input capacity, and empty space of the next lane are updated. Finally,
the vehicle ID should be removed from the current lane and inserted into the next lane.

The details of this kernel function are further explained in Algorithm 2.
The divergence possibility of if…else in these two algorithms seems to be a little big. But it is

almost inevitable according to their traffic processing logic. It is difficult to improve it because
wemust guarantee the precise results (such as lane speed and queue length) of the traffic sim-
ulation. We can find the metric of branch-taken ratio in Table 1 that the divergence ratio is
indeed a little high. But we can still gain 2.37 speedup (see Fig. 14) of a Singapore network
running on GPU, which is to some extent acceptable.

The last function copies the simulated results, which include the speed, density, flow,
queue length, and empty space of each road, from the GPU memory to the CPU memory.
As shown in Fig. 5, these data are stored in a contiguous GPU memory space in order to re-
duce the time cost of data transfer from the GPU memory to the CPU memory.

Further, the above two kernel functions are developed as shown in Fig. 9B. Further, the
program comparison of CPU and GPU is illustrated in Fig. 9.
ALGORITHM 2

V EH I C L E _ P A S S I NG

1: Start m GPU threads (m is the num-

ber of nodes)

2: For each GPU thread

3: …while the node has left capacity during

the time step do

4: … … obtain the vehicle on upstream

road segments of the node which has the

maximum waiting time

5: … … if the vehicle finishes the trip do

6: … ... ... remove the vehicle from the

upstream road segment;

7: …… elseif the corresponding down-

stream road segment has left buffered space

do

8: … ... ... transfer the vehicle to the buff-

ered space of the downstream road segment;

9: … ... ... update the vehicle’s status;

10: … ... ... update the node’s status;

11: … ... ... update the upstream road

segment’s status;

12: … … else

13: … ... ... update the upstream road

segment as blocked during the time step;

14: … end of while



TABLE 1 Profile of Major GPU/CUDA Kernel Functions

ID Measurement

Grid Kernel

Function 1 (G1):

pre_vehicle_passing

Singapore Kernel

Function 1 (S1):

pre_vehicle_passing

Grid Kernel

Function 2

(G2):

vehicle_passing

Singapore

Kernel

Function 2 (S2):

vehicle_passing

1 Launched GPU threads 20,352 (106 blocks) 9600 (50 blocks) 10,368 (54
blocks)

3264 (17 blocks)

2 GPU occupancy
(theoretical/achieved)
(%)

94/79.01 93.75/76.5 94/78.28 93.75/23.63

3 Registers (used/
available)

4224/65,536 4032/65,536 3456/65,536 2880/65,536

4 Transaction per second
(load/store)

2.55/4.53 2.32/5.26 4.26/1.58 4.97/1.14

5 Branch taken ratio (%) 60.62 60.05 66.44 27.62

6 Instruction serialization
(%)

0.988 1.12 3.698 1.209

7 Instruction per clock
(IPC) (measurement/
maximum)

0.355/4.0 0.364/4.0 0.307/4.0 0.148/4.0

8 Warp issue efficiency
(no eligible %)

90.35 91.43 93.22 96.06

9 Issue Stall Reasons
(execution dependency)
(%)

18.73 15.41 4.33 4.98

10 CUDA achieved
GFLOPS

8.950 6.257 0.0104 0.00012
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As shown in Fig. 9, in the serial program on CPU, the computation of each lane is achieved
by using a loop body. The second lane starts computing when we finish the computation of
the first lane. Meanwhile, to reduce the time cost and improve efficiency, the loop body and
the loop control variable disappear in the parallel program on GPU. Instead, we assign each
lane to a thread in GPU to compute all the lanes in parallel. Also, the __global__ prefix is
added to the function that tells the compiler to generate GPU code and not CPU code when
compiling this function and to make that GPU code globally visible from within the CPU.
3 EXPERIMENTS

The traffic scenario is simulated on two types of platforms: the CPU and CPU/GPU. Only
the total time cost of the supply simulation during the 1000 simulation ticks is measured in
this experiment. The CPU platform includes an Intel Core i5-4200H CPU @ 2.80GHZ, 8G



(A)

(B)
FIG. 9 Program comparison of the supply part: (A) computation of all the lanes on CPU and (B) computation of all
the lanes on GPU.

330 15. GPU PARALLELISM-ORIENTED TRAFFIC MODELING AND SIMULATION
memory, 500GB SATA 7.2K RPM. The GPU platform is a GeForce GTX 950M, which has 640
CUDA cores and 2GB global memory. The supply simulations on the CPU and the GPU fol-
low the same logic. The source codes are implemented using C++ on Ubuntu 12.04 and com-
piled using g++_4.6.3 and CUDA 6.5. The release version executable file is used to measure
the time cost.
3.1 Experiment Design and Analysis

Two cases of experiments were carried out in order to evaluate the computation efficiency
of CPU/GPU in artificial grid and real-world traffic scenarios.

First, an artificial large grid road network (uniform rectangular grid), which is similar to
the road network topology in our companion work (Xu et al., 2014), is designed with 10,201
nodes and 20,200 unidirectional links. The length of each link is 1000m. Each node has an
index from 0 to 10,200, indicating the store location on the GPU memory. Each link also
has an index from 0 to 20,199. In all, 100,000 vehicles are loaded into the road network during
1000 simulation ticks (each tick is 1s). Vehicles are loaded into this network from nodes in the
top and in the left, which are moving to the bottom and to the right. Each vehicle randomly
picks a route from the pre-calculated candidate routes before starting a trip. En-trip route
choice (Barcelo, 2010) is not included in this traffic scenario.

Second, a real-world Singapore expressway system traffic simulation is studied. As shown
in Fig. 10, the expressway system consists of expressway segments and ramps connecting
local roads with the expressway. The network has been modeled using a detailed represen-
tation of the length, geometry, and lanes of each segment. The expressway system is made up
of 3179 nodes, 9419 lanes, and 3388 segments. Distribution of each segment length is shown in
Fig. 11 . Most segment lengths are in the range of (300, 600). There are some short segments,
which aremostly on-ramps or off-ramps, and there are also a few long segments. The demand
is modeled as trips from 4106 OD pairs. Each origin is an on-ramp, where vehicles enter the



FIG. 10 Singapore expressway road network.
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FIG. 11 Distribution of segment lengths in Singapore expressway.
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expressway system from local roads, and each destination is an off-ramp, where vehicles de-
part the network. The configuration and calibration of the ODmatrix use the samemethods as
in DynaMIT (Singapore-MIT Alliance for Research and Technology (SMART) & DynaMIT, n.
d.; Xu et al., 2014), and the calibrated ODmatrices in one period: peak hours (7:00 a.m. to 8:00
a.m.) are used in this section. In particular, there are in total 100,000 vehicles loaded into the
peak traffic scenario during 1000 simulation ticks (each tick is 1s). The routes of vehicles are
pre-calculated using a path size logit model (Ben-Akiva and Bierlaire, 1999), and routes are
not changed during the traffic scenarios.
3.2 Results and Analysis

The execution time results are shown in Figs. 12 and 13, and the corresponding speedup in
Fig. 14. Also, the detailed profiling data of two major kernel functions are listed in Table 2.

Two groups of configurations are investigated. The first is for the artificial grid; the second
is for the Singapore network. Each result is executed 20 times, and the average time cost is
shown in Figs. 12 and 13. The speedup is measured by comparing the time cost of supply
simulation on a GPU to the time cost of supply simulation on a CPU core.

In Fig. 14, we can observe that when the number of vehicles is 100,000, the simulation of
grid on GPU obtains a speedup of 10.00 and that of the realistic network is 2.37. We can ob-
serve that, compared with the speedup on the artificial large grid road network, the speedup
on the Singapore expressway is much lower. The main reasons are as follows.

First, due to the data structure difference discussed in Section 3.2, the times of memory
access in the Singapore road network is more than that in the ideal grid road network. For
instance, in the Singapore road network, thememory needs to access each lane’s length. How-
ever, in the ideal grid road network, each lane is 1000m, so there is no need to access memory.
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Second, in the artificial grid road network, roads have the same length, and vehicles on
roads are directly stored inside roads. However, in the Singapore expressway, roads have
different lengths from 50 to 2000m (see Fig. 11). Instead of directly storing the vehicles,
the “start & end indexes” are used as introduced in Section 3.2. The “start & end indexes”
make the usage of memory space more flexible. It is important to load the whole city-scale
traffic simulations into the GPU memory. However, accessing a vehicle on a road requires
twice the memory accesses. More memory accesses make the proposed framework less
efficient.

Third, the number of GPU threads launched on the Singapore expressway is smaller than
the grid road network. It makes the GPU occupancy lower.

Fourth, the artificial grid road network is more structured. For example, most nodes have
two downstream links and two upstream links. However, the Singapore expressway network
topology is more complicated. It makes the memory access less coalesced.

Besides the above reasons,more detailed analysis ofmemory copy time and execution time
efficiency is studied in the following two subsections, where both cases have 100,000 cars.

Table 1 presents the profile of two kernel functions in the framework: pre_vehicle_passing
and vehicle_passing. For the former, the threads are launched to compute the lanes. For the
latter, the threads are to compute the nodes.

Please note that a table explaining the profiling measures illustrated in Table 1 is included
in Table 2.

The analysis of these main GPU performance profiling measurements of the four kernel
functions, that is, G1, G2, S1, S2, is studied as follows.

First, the simulation thread units in these two kernel functions are lanes and nodes. The
block size (blockDim.x) used in these experiments is 192. In these four traffic scenarios, G1
launched 20,352 GPU threads and S2 launched 3264 threads. The former gains the highest
occupancy, and the latter has the lowest occupancy.

Second, most of the occupancies of these kernel functions are high, which indicates the
GPU cores are sufficiently utilized. Only the occupancy of the Singapore kernel function 2
(S2) is the lowest because the number of threads launched is the smallest. The main reason
is each thread of S2 has to compute and update the status of each node, that is, has to move
the vehicles to the buffered space of the downstream lane. The number of nodes is less than
that of lanes. Meanwhile, the computation cost of S2 is less than that of S1, which is deter-
mined by their designed functions as discussed in Section 3.2.

Third, even after moving internal variables from the global memory to registers, registers
are not a bottleneck, which means registers are enough for use in these four kernels.

Fourth, as proposed in Section 3.2, the data of lanes, nodes, and vehicles are stored into
designed arrays; thus, threads in a warp can access a contiguous memory space, known as
coalesced memory access. The number of memory transactions per request (both load and
store) for these two kernel functions is small (<5.5), which indicates thememory access is well
coalesced. In addition, G2 and S2 have less store transactions, which means they have less
data to store from kernel to global memories because the vehicles of nodes are transferred
to the buffered space of the downstream road lane, which means less data are transferred
to the global memory to update the lanes.

Fifth, the branch-taken ratio (within threads in the same warp) varies for the kernel func-
tions. This means the threads in these kernels do not take exactly the same branch because



TABLE 2 Brief Introduction to GPU Performance Metrics

ID Measurement Brief Introduction

1 Launched GPU threads Equal to block size * the number of threads in a block. The block size is
defined according to the number of parallel threads

2 GPU occupancy (theoretical/
achieved)

Occupancy is defined as the ratio of active warps on an SM to the
maximum number of active warps supported by the SM. Occupancy
varies over time aswarps begin and end, and can be different for each SM

3 Registers (used/available) The SM has a set of registers shared by all active threads. If this factor is
limiting active blocks, it means the number of registers per thread
allocated by the compiler can be reduced to increase occupancy

4 Transaction per second (load/
store)

This metric is the average number of L1 transactions required per
executed global memory instruction, separately for load and store
operations. For this metric, the lower the better. How many transactions
are actually required varies with the access pattern of the memory
operation and is also dependent on the compute capability of the target
device

5 Branch taken ratio (%) Total number of executed branch instructions with a uniform control
flow decision

6 Instruction serialization A flow control instruction is considered to be divergent if it forces the
threads of awarp to execute different execution paths. If this happens, the
different execution paths must be serialized, since all of the threads of a
warp share a program counter; this increases the total number of
instructions executed for this warp. For this metric, the lower the better

7 Instruction per clock (IPC)
(measurement/maximum)

The average number of issued instructions and executed instructions per
cycle accounting for every iteration of instruction replays. The higher
numbers indicate more efficient usage of the available all resources

8 Warp issue efficiency (no eligible
%)

The warp issue efficiency (no eligible) segment shows how frequently
issue stalls occur. The lower of no eligible warp means more efficient the
code runs on the target device

9 Issue Stall Reasons (execution
dependency)

The issue stall reasons capturewhy an activewarp is not eligible, an input
required by the instruction is not yet available. Execution dependency
stalls can potentially be reduced by increasing instruction-level
parallelism

10 CUDA achieved GFLOPS The number of double precision accuracy floating point instructions
executed per second. The higher the better
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roads have a different number of entering vehicles and a different number of passing vehicles,
and the number of upstream links and number of vehicles on nodes are different. The branch-
taken ratio for kernel S2 is much less (27.62%). This is expected because the divergence in Al-
gorithm 2 (see Section 3.4) is less than Algorithm 1. Also, in S2 the number of nodes is less and
the number of vehicles passing to downstream roads varies in different types of road
topologies.

Sixth, the instruction serialization ratio of these two kernel functions are low (<4%). This
means that the branch taken ratio does not cause performance loss in these kernels.
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Seventh, the metric of instruction per clock (IPC) for these kernel functions is below 0.4,
which is far below the hardware’s peak value (4.0). Regarding our framework, it is mainly
because almost all the data (e.g., the road network and vehicles) is stored in the global mem-
ory, which causes high memory access latency. As illustrated in Table 1, we need 546.98MB
for lanes and 75.35MB for nodes in S1 and S2.However, each sharedmemory per block is only
48kB. This requires complex data division techniques and programming skills to divide the
memory into sections and handle the issue of various blocks. As such, only global memory is
used in our kernel functions, and the memory access latency is not completely hidden by
thousands of threads.

Eighth and ninth, the no eligible warp issue efficiency is high for all four kernels (>90%),
and the execution dependency of this issue’s stall reason count is<20%. Thismeans themem-
ory access latency is the main reason, which is the same as the low IPC, that is, almost all data
are loaded from and stored into global memory. It is difficult to use highly efficient shared
memory because its size is small, only 48kB per block. If we want to use it, the 546.98MB
of lanes needs to be divided into 11,396 sections. This will lead to lots of branches taken in
the kernel functions, which will inevitably results in low efficiency.

Tenth, the achieved GFLOPS for the two kernel functions are also lower than the hard-
ware’s peak, which is again related to the above-mentioned dilemma of global memory
latency.
3.3 Discussions

This section discusses additional thoughts about running mesoscopic traffic simulations
on the CPU/GPU platform. First, it is beneficial to run the demand simulation on the
CPU, the supply simulation on the GPU, and the data communication between the CPU
and the GPU in an asynchronous way. In the proposed framework, the supply simulation
on the GPU is the bottleneck, and the time costs of the other two tasks are almost hidden.
Second, the memory access latency is a bottleneck in the proposed mesoscopic traffic simu-
lation framework. In mesoscopic simulation frameworks, the update of a road depends on its
own road status (e.g., road density and queue status) and requires a small number of param-
eters from its downstream roads. There is little shared data access among nearby roads and
nodes, which limits the usage of the more efficient shared memory in the GPU. We believe
this is the bottleneck that prevents us from achieving a higher simulation speedup on the
GPU. And the problem in general is that we should design better data structure to utilize
shared memory to enable high performance.
4 CONCLUSIONS AND FUTURE WORK

The main contributions of chapter are listed as follows.

1. A comprehensive systems of systems (SoS) simulation framework, including AMs of
nodes, links, and vehicles, is proposed to run demand and supply coupled components on
the CPU and GPU, respectively, with designed asynchronous simulation step
management. For the demand part, real-time demands are periodically generated using
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calibrated data. For the supply part, road networks and vehicles are modeled and run with
GPU kernel functions.

2. To enable real-world networks’ critical parts, including variable lengths of segments and
links, CPU linked list structures are converted to more complex GPU array structures.
Moreover, to decrease global data access latency, kernel functions are elaborately designed
using more registers and memory bandwidth.

3. The proposed mesoscopic traffic simulation framework is demonstrated to simulate
100,000 vehicles moving on an ideal grid network, and the supply traffic simulation on a
GPU (GeForce GT 950M) gets 10.0 times speedup, comparedwith running the same supply
simulation on a CPU core (Intel i5). However, in order to test a real-world Singapore
expressway network, the speedup is only 2.37. This is mainly due to the data structure
difference between the two networks.

4. The proposed traffic simulation framework on CPU/GPU offers an innovative and high-
performance solution in order to reduce the computational cost of various dynamic traffic
assignment (DTA) models including various components such as nodes, links, and
vehicles.

To extend GPU-based traffic simulation of real networks, we think that future works
should focus on the optimization of SoS component data structure alleviating memory access
time. For those systems that have some already existing models, it is better to design better
shared memory utilization algorithm to enable components’ data sharing.
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A model built with the classical worldviews of discrete-event simulation is inseparable
from its realization in a particular software package (Schriber et al., 2014). This fact can be
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tion package or when a model outlives the simulation package with which it is constructed
and must be rebuilt in a more modern venue. The classical worldviews offer a more imme-
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simulation. One of their intrinsic aspects is a foundation in the serial computing paradigm,
which prohibits parallelization in any simple or automatic way (see, e.g., Fujimoto, 2000).

At the same time, modeling approaches for discrete-event systems that resolve these issues
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simulation execution that these worldviews enable. Another influencing factor is that many
(possibly most) commercially available and open source tools for discrete-event simulation
are based on the classical worldviews, and the large number of models relying on these tools
make impractical fundamental changes to their essential algorithms.

This chapter reviews the classical worldviews and then presents a new approach to
discrete-event simulation that preserves their most attractive features. An important part
of this new approach is a two-phase simulation procedure derived from the simulation algo-
rithm for cellular automata, coupled difference equations, and other synchronous models.
The two-phase procedure is motivated by asynchronous cellular automata, which incorpo-
rate important elements of synchronous models while being efficiently simulated with
discrete events (Fatès, 2013; Nutaro, 2010). Following the approach by Zeigler (1984), we will
conclude by showing how the proposed two-phase approach is realizable in the discrete-
event system specification (DEVS). This points naturally towards two-phase approaches to
the other worldviews, which are likewise realizable in DEVS.

The new simulation procedure is described via an abstract algorithm that has numerous,
distinct realizations. This has the practical effect of enabling parallel execution of a discrete-
event model while preserving familiar modeling constructs. It also serves to separate the
model construction and simulator implementation. In particular, it is sufficient for the
modeler to assume execution via the abstract algorithm while the builder of a simulation tool
is free to choose any implementation that yields the required behavior. A tertiary effect of the
two-phase approach is to enable modeling synchronous systems within the discrete-event
framework.
1 CLASSICAL WORLDVIEWS

The three classical approaches to discrete-event simulation are event scheduling, activity
scanning, and process-oriented (see, e.g., Zeigler et al., 2000; Mansharamani, 1997; Muzy
et al., 2013). In each worldview, the model’s state variables change only at specific points
in time, and a discrete-event simulation is characterized by the irregular spacing of these time
points. The location of events in time are specified by the model via mechanisms native to the
each worldview. While there are numerous variations on these three worldviews, we will
limit our discussion to their simplest incarnations. This facilitates detailed discussions of
implementation choices and their consequences while providing a foundation on which
the proposed revisions of these worldviews can be carried into a more sophisticated setting.
1.1 Event Scheduling

The conceptual simplicity of the event scheduling worldviewmakes it particularly appeal-
ing, and it can form the basis for the more sophisticated activity scanning and process-
oriented worldviews. An event in this worldview comprises a time stamp indicating when
the event will occur and an event handler that changes the state of the model at that time.
Pending events are placed into a data structure called the future event list that stores events
in time stamp order, with the earliest event (i.e., smallest time stamp) at the front and most
distant event at the back.
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A simulation proceeds by removing the event at the front of the future event list, updating
the simulation clock to the time stamp of this event, and executing the event handler. These
steps are repeated until no more events remain in the future event list or some other desired
stopping condition is met. When the event handler is executed, it may modify the state of the
model, insert events into the future event list, delete events from the future event list, or take
any combination of these actions.

A primary contributor to the execution time of an event scheduling simulation is the com-
putational complexity of the future event list. This list must allow for inserting an event and
for removing the event with the least time stamp. It may also allow removal of (i.e., canceling)
an arbitrary event. Data structures suitable for realizing the future event list and their relative
merits have been discussed in several places (see, e.g., the brief survey in Mansharamani
(1997)).

The simplest data structure is a list. An event is inserted by traversing the list in order,
starting at the first event, until the time stamp of the event to be inserted is less than the time
stamp of the most recently inspected event. If no such event is found then the new event is
inserted at the end of the list. Otherwise, the new event is inserted into the list at the position
immediately preceding the most recently inspected event. An event is removed by finding it
via traversal from front to back and then deleting it from the list.

This implementation of the future event list imposes a first in, first out (FIFO) policy on the
ordering of simultaneous events. For example, suppose the future event list contains the time
stamps 1, 2, 4, 5 and we must insert a new event with time stamp 4. The underline distin-
guishes the new event from the existing event at time 4. Using the insertion procedure
described previously, the event list becomes 1, 2, 4, 4, 5. If no more events are scheduled
at time 4 then the existing event (i.e., the first one to be inserted) will be processed before
the new event. Hence, the processing is FIFO.

In this example we compare the new time stamp with four others. We can avoid some of
these comparisons by changing how an event is inserted. The new procedure inserts an event
by traversing the list in order from front to back until the time stamp of the event to be inserted
is less than or equal to the time stamp of the most recently inspected event. If no such event is
found then the new event is inserted at the end of the list. Otherwise, the new event is inserted
into the list at the position immediately preceding the most recently inspected event.

Using this procedure the event list becomes 1, 2, 4, 4, 5. This is in time stamp order, requires
just three comparisons of time stamps, and is not the same list as before. In this case, the
execution order of simultaneous events is last in, first out (LIFO). An execution of the model
using this LIFO list may produce a different result than an otherwise identical simulation
using the FIFO list.

The choice of future event list, and its impact on the ordering of simultaneous events, high-
lights one important reasonwhy amodel cannot be disentangled from its simulation tool. The
previous examples also illustrate the difficulty of parallelizing a simulation built on this
worldview. While it may appear natural to execute events with the same time stamp in
parallel (after all, they occur simultaneously in the simulation), race conditions in the event
handlers may produce unanticipated and incorrect results.

For instance, suppose the event at time
_
4 sets a variable v to maxðv,0Þ and the adjacent

event at time 4 increments v by one. In the FIFO simulation, the new state following this se-
quence of events is maxðv+ 1,0Þ. In the LIFO simulation, it is maxðv,0Þ+1. When the two
events are executed in parallel we might obtain either answer.



344 16. SIMULATING DISCRETE-EVENT MODELS IN THE CLASSIC WORLDVIEWS
If both answers are sensible then we should expect each to occur with a given frequency in
the system beingmodeled, and the statistics of the outcomes should to be an invariant feature
of themodel. However, if we naively rely on the race condition to produce these statistics then
our conclusions will depend solely on how the computational platform schedules parallel
tasks. Specifically, the frequency of each outcome will be particular to the computer hard-
ware, operating system, and workload, and no characterization of the simulator’s statistics
can give us useful information about the model’s behavior.
1.2 Activity Scanning

The activity scanning worldview distinguishes two types of events: future events and con-
ditional events. Both types can change the state of the model and modify the future event list.
Future events are scheduled as in an event scheduling simulation. Conditional events are
activated when a rule is satisfied by the model’s state, and a distinct rule may be attached
to each conditional event. Conditional events can simplify the construction of a model,
and this is the primary appeal of the activity scanning approach.

The simulation procedure for an activity scanning model builds on the event scheduling
approach by adding a step inwhich the conditional events are scanned for satisfaction of their
rules. A step in this simulation begins by removing the first event from the future event list,
updating the simulation clock to match its time stamp, and executing its event handler. Next
the simulator scans the conditional events. Upon encountering the first conditional event
whose rule is satisfied, its event handler is executed, and then the list is scanned again. This
scan and execute step is repeated until no conditional event is ready to execute. When this
happens, the simulator advances to the next event in the future event list.

As with the event scheduling approach, the manner in which events are inserted into the
event lists plays an important role in determining the outcome of a simulation. For example,
suppose there are conditional events a and b and the future event list is an FIFO list. Further
suppose that a and b each schedule a future event with time stamp one. Indicate these future
events by 1a and 1b, respectively. If the rules for a and b are satisfied and they are scanned in
the order a, b then the resulting sequence of events will be a, b, 1a, 1b. If the conditional events
are scanned in the order b, a then the sequence of events is b, a, 1b, 1a.

If we also perform simulations with a future event list that is LIFO then there are two more
possible sequences of events. These are a, b, 1b, 1a and b, a, 1a, 1b. Moreover, it is possible that a
and b negate the satisfaction of one anothers rules. If so then the set of possible outcomes
grows again to include a, 1a if the conditional events are order a, b or b, 1b if the conditional
events are ordered b, a. As with the event scheduling worldview, simultaneous events link a
model’s behavior to how the event lists are implemented and they require sequential execu-
tion to avoid spurious statistics.
1.3 Process Oriented

The process-oriented worldview dispenses with explicit events by replacing these with
processes that operate on the state of the system. A process can be in one of two modes: ex-
ecuting or waiting. The simulation clock is fixed while a process is executing, and changes to
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the model state occur at the current simulation time. A process switches from executing to
waiting upon issuing a wait statement. The argument to the wait statement is the condition
under which the process will resume execution. When this condition is satisfied, execution
begins at the instruction immediately following the wait statement.

Wait statements cause time to advance in a process-oriented simulation. For example, if the
process invokes a statement wait for 5 seconds then it will enter the wait mode and remain
suspended for 5 seconds of simulation time. After this interval, execution resumes with
the simulation clock advanced by 5 seconds. A wait condition can depend on variables other
than time. For instance, if there is a variable v and the process invokes a statement wait until
v � 0 then the process will be suspended until some other process causes v � 0 to be true.

The powerful illusion of this approach is that each process comprises a single, unbroken
sequence of instructions. The wait statements appear as blocking calls, which are familiar to
most programmers. This illusion is made possible with coroutines, within which the instruc-
tions for a process are programmed. To the programmer, a coroutine looks like any other
procedure. To the simulation engine, the coroutine consists of at least two items. These are

1. variables created within the coroutine, that is, the procedure’s local variables; and
2. an instruction pointer indicating which instruction is to be executed next.

Variables local to the coroutine are not accessible to other coroutines. Exchanges of data
between coroutines occur via variables that are shared in the global address space.

In one implementation of the process-oriented approach, the simulation engine allows for
a single executing coroutine. The other, suspended coroutines are kept in two lists. The first is
a future event list for coroutines that have indicated an explicit activation time in their
suspending wait statement. The second is a conditional event list, and a coroutine is placed
into this list if its wait statement includes an activation condition depending on variables
other than time. A suspended coroutine can be in both lists. For example, if the activation
condition is wait for 5 seconds or v � 0 then the coroutine enters the future event list with a
time stamp 5 seconds in the future and enters the conditional event list with the activation
rule v � 0.

Because processes are realized as coroutines, wemay use the two terms interchangeably to
describe the simulation procedure. Initially, each coroutine is placed onto the future event list
with a time stamp equal to zero. The process at the front of the future event list executes until
it calls wait. At that time, the process is suspended and placed into the future and conditional
event lists as is appropriate to its activation condition. Next, the simulator scans the condi-
tional event list for a coroutine that can be activated. If one is found then it is removed from
the future and conditional event lists to become the new executing process. Otherwise the
simulation clock is advanced to the time stamp of the first coroutine in the future event list
and that process becomes the new executing process. This procedure is repeated until the
future and conditional event lists are empty, which indicates that all processes are perma-
nently suspended, or until some other stopping criteria are met.

The future and conditional event lists in this approach are clearly related to those in the
activity scanning worldview. Indeed, if we required wait statements to indicate a future time
or an activation condition, but not both, then the activity-oriented simulation procedure could
be used to select the process that will execute. In the more general case, it is only necessary to
modify the activity scanning approach such that it removes the executing coroutine from both
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lists. The implications of event ordering in an activity scanning simulation have direct analogs
with the ordering of coroutine execution in a process-oriented simulation.
2 SIMULTANEOUS ACTIONS

As we have seen, a procedure for handling simultaneous events is not intrinsic to the clas-
sical worldviews. Moreover, this situation is unique to discrete-event models. For instance,
when modeling the motion of two objects using differential equations the question “who
moves first?” does not occur because simultaneous action is intrinsic to the mathematics of
the model. Similarly, when we model with interacting automata or coupled difference equa-
tions, the question of which system should act first at a given time does not occur because
simultaneity is intrinsic to the mathematical formulation.

To illustrate how simultaneity is resolved in these types ofmodeling approaches let us con-
sider a one-dimensional cellular automaton in which each cell is influenced by its two neigh-
bors. These are a particular instance of discrete time models, and their simulation procedure
is identical to that used for simulating coupled difference equations and explicit numerical
algorithms for continuous systems (see, e.g., Wolfram, 2002; Nutaro, 2010; Zeigler et al.,
2000, 2018). We can view the cellular automata as a collection of connected models each in
the form of a function

q
0 ¼ δðq,ul,urÞ (1)

where q is the present state of the cell, q0 is the new state, and the new state is a function of

q and the input ur and ul supplied by the neighboring cells.

In the familiar synchronous approach to simulating this cellular automaton, the natural
numbers are used for time and the state of each cell is changed at times 1, 2, 3, …. The sim-
ulation procedure has three steps.

1. For each cell, calculate its left input ul and right input ur as functions of the states of the cells
to the left and right.

2. For each cell, calculate its new state q0 to be δ(q, ul, ur).
3. Advance the simulation clock by one and go to Step 1.

To demonstrate this procedure, consider a cellular automaton for which the state of a cell is
0 or 1 and its left and right input are the states of the adjacent cells. Define

δðq,ul,urÞ¼ q+ ul +ur (2)

where + is binary addition. That is, 1 + 1 ¼ 0, 0 + 1 ¼ 1 + 0 ¼ 1, and 0 + 0 ¼ 0. A simulation of

this model with five cells having alternating initial states is shown in Table 1. The cells at the
edges receive their left or right input from the cell at the opposite edge of the space.

If the real numbers are used for time and updates for each cell may occur at any point in
time then this gives us the most general case of an asynchronous cellular automata. The syn-
chronous cellular automata described earlier are a special instance of this general case (for a
review, see Fatès, 2013). Now suppose for amoment that in a particular asynchronous cellular



TABLE 1 Simulation Using Eq. (2)

Time State

0 0 1 0 1 0

1 1 1 0 1 1

2 1 0 0 0 1

3 0 1 0 1 0

4 1 1 0 1 1

5 1 0 0 0 1
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automaton no two cells update themselves simultaneously. It is trivial to define an event
scheduling simulation for this model.

In this simulation there is a single type of event which we will call δ and a one-dimensional
array of numbers that are the states of the cells. If there are n> 1 cells andwe denote the array
element at position 1 � k � n by qk then the event δ calculates the new state q0k to be

q0k ¼
qk + qk�1 + qk+1 if 2� k< n,
qk + qn + qk+ 1 if 1¼ k< n,
qk + qk�1 + q1 if 2� k¼ n:

8
<

:
(3)

The simulation begins by placing an event into the future event list for each cell kwith a time

stamp equal to the time of its first update. The event for cell k changes its state and schedules a
new event for cell k at a future instant commensurate with its update internal.

To demonstrate this simulation, consider five cells that update at intervals 1 and the
irrational intervals

ffiffiffi
2

p
, e, π, and the golden ratio Φ¼ð1 + ffiffiffi

5
p Þ=2, respectively. These update

intervals ensure no two events will occur simultaneously. The first five events in this simu-
lation are calculated in Table 2.

Can we construct a single, event-oriented simulation that handles the case in which some
cells may experience simultaneous updates while others do not? For instance, suppose that
the cell updating at intervals of length

ffiffiffi
2

p
is changed to update at intervals of length 2. In this

case collisions will occur at even times 2, 4, …. The correct behavior in this situation is to
TABLE 2 Asynchronous Simulation Using
Eq. (2)

Time State

0 0 1 0 1 0

1 1 1 0 1 0

ffiffiffi
2

p
1 0 0 1 0

Φ 1 0 1 1 0

e 1 0 1 0 0

π 1 0 1 0 1
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evaluate the new states for the cells at k ¼ 1 and k ¼ 2 as we did with the synchronous algo-
rithm. That is, compute the input of both cells and then change their states. Our event-
oriented simulation does not do this and so it will give an incorrect result.

The asynchronous cellular automaton illustrates the circumstance in which to update one
variableweneed information about another variable but events are scheduled thatwillmodify
both variables at the same simulation time. Consequently, the order of the events determines
the future course of the model and, for the cellular automata, all possible orderings are incor-
rect.Consequently,wecannot solve thisproblemingeneralwith the event-orientedsimulation
approach or the activity scanning and process-oriented simulations derived from it.

The other circumstance where the ordering of simultaneous events matters happens when
a single variable will be modified by two or more events. We can illustrate this problem with
an extension of the asynchronous cellular automaton such that functions δ1 and δ2 operate on
each cell but at possibly distinct rates. In the case of a collision, there are four types of cells:
those that apply δ1 then δ2, those that apply δ2 then δ1, those that apply only δ1, and those that
apply only δ2. Again, there is no single, event-oriented simulation that correctly handles a
model in which this circumstance arises.
3 REVISING THE CLASSICAL WORLDVIEWS

Simultaneous events as they occur in asynchronous cellular automata and all other types of
synchronous systems can be properly resolved by augmenting the classical worldviews. We
begin by resolving the problem in which to update one variable we need information about
another variable but events are scheduled that will modify both variables at the same time.
The simulation procedure for cellular automata manages this situation with two phases. In
the first phase, we gather copies of the data that will be used to update the model’s state.
In the second phase, we use these copies when applying δ to update the relevant state vari-
ables. This two-phase approachmakes the order inwhich the events are applied unimportant.

These two phases can be realized in the event-oriented worldview by adding to each event
a function that gathers data needed by the event handler. The augmented event is defined by
its scheduled time of execution, event handler, and the new input preparation function. The
input preparation function is used to implement the two-phase approach to updating the
model’s state. In the first phase, we advance the simulation clock to the time of the first event
in the future event list, extract all events from the future event list that have this time stamp,
and execute their input preparation functions. These functions may be executed in any order,
or even in parallel, because they do not modify state variables. In the second phase, we
execute the event handlers, which may also be done in any order, or even in parallel, if no
two events modify the same variable.

Nowwe turn to the problem in which a single variable is modified by two or more simulta-
neous events. To address this issue, let us identify a partitioning of the state variables such that
each event acts on a single partition. Partitions are called logical processes in the field of parallel
discrete-event simulation (Fujimoto, 2000) and atomic models in DEVS (Zeigler et al., 2000).

Practitioners using logical processes or DEVS typically construct these partitions by hand
in the course of designing the simulation model, and this approach is natural if we intend a
parallel execution from the outset. The question of how to identify partitions automatically
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offers an interesting topic for future research, with work by Zeigler et al. (2000, 2018) and
Zeigler (1984) on the relationships between modular and nonmodular modeling methods
offering an attractive point of departure. In what follows we assume the partitions to be given
and do not further consider their origin.

Our augmented simulation procedure is aware of these partitions, and it associates with
each partition a state transition function responsible for invoking the event handlers that act
on it. The purpose of this function is to manage simultaneous events in a manner appropriate
to the model. The simultaneous events acting on a given partition must execute sequentially,
but the partitions may change state in parallel. The augmented simulation procedure is sum-
marized as follows.

1. Advance the simulation clock to the time of the first event in the future event list.
2. Gather and remove from the future event list all events with time stamps equal to the

current simulation time. These are the imminent events.
3. Execute the input preparation function of each imminent event.
4. Partition the imminent events into lists according to the partition each acts upon and pass

each list to the state transition function of its partition.
5. Go to Step 1.

This algorithm makes possible a general-purpose, event-oriented simulation for cellular
automata. In this simulation, the state variable for each cell occupies its ownpartition. The input
preparation function for partition k makes copies of variables qk+1 and qk�1 (or qn, qk+1 for the
leftmost cell; qk�1, q1 for the rightmost) and stores these as ur, k and ul, k. The event handler
calculates δ. The ordering function for each partition makes the event selection described at
the end of Section 2.

The augmented simulation procedure can mimic the classical event-oriented worldview
with an FIFO scheduler. To do so, we define a single partition and omit implementations
of the input preparation functions. The state transition function executes events in the order
that they appear in its list. To include event cancelation it is necessary for the state transition
function to be aware of canceled events and skip these if they appear in its list.
3.1 Activity Scanning

An augmented activity scanningworldview can be constructed by introducing conditional
events into the preceding event-oriented simulation. Each conditional event is constrained to
act on a single partition, but its activation rule may examine variables in many partitions.
Conditional events are activated following Step 4 of the event-oriented simulation described
in Section 3. As before, there are two phases. In the first, the conditional events are scanned to
find those eligible for activation and to invoke their input preparation functions. In the second
phase, the eligible events are passed to their partition’s state transition function. These scan
and execute steps are repeated until no conditional events may be activated. The simulation
procedure is as follows.

1. Get the smallest time stamp from the front of the future event list and advance the
simulation clock to this time.

2. Gather and remove from the future event list all events with time stamps equal to the
current simulation time. These are the imminent events.
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3. Execute the input preparation function of each imminent event.
4. Partition the imminent events into lists according to the partition each acts upon, and pass

each list to the state transition function of its partition.
5. Scan the conditional events and select the events whose activation rules are satisfied.
6. If no events are selected, go to Step 1.
7. Execute the input preparation functions of the selected events.
8. Partition the selected events into lists according to the partition each acts upon, and pass

each list to the state transition function of its partition.
9. Go to Step 5.

Steps 3–5, 7, and 8 all offer opportunities for parallel execution. The input preparation func-
tions may be executed in parallel because these do not modify state variables, and the con-
ditional events may be scanned in parallel for the same reason. The state transition
functions of the partitions may be executed in parallel, even if the events within their lists
must be executed sequentially.
3.2 Process Oriented

In the process-oriented worldview, the processes form a natural partitioning of the state
variables if each process modifies only its own state variables and observes shared variables
only as part of its activation condition. This process-oriented simulationmay be implemented
using the activity scanning procedure in Section 3.1 to decide when a waiting coroutine must
resume execution. Because the events do not operate directly on the process state variables, it
is sufficient for the event handlers to resume execution of the coroutine and then return when
that routine is suspended by a wait.
4 REALIZING THE WORLDVIEWS IN A DEVS

We now show how the simulation approach constructed in Section 3.1 can be realized in a
coupled DEVS. The process-oriented worldview may be realized on top of the activity scan-
ning simulation as described in Section 3.2, and a simple restriction produces the event sched-
uling worldview. By basing an implementation on DEVS we set the stage for parallel
execution of the classical worldviews by embedding them into a parallel simulation of aDEVS
model (see Zeigler et al., 2000, 2018; Zeigler, 1984).

An unusual feature of this implementation will be that the input preparation functions,
which we have described as gathering or pulling information from other partitions, are
invoked within the output function of an atomic model. This would appear to reverse the
proper role of the output function, which is intended to push information to other atomic
models, although a precedence for this type of pull mechanism appears in Barro’s Heteroge-
neous Flow System Specification (Barros, 2002). We choose to pull, rather than push, because
it is convenient for building models that will run on a shared memory multiprocessor.

This convenience could be done away with by forcing the time advance of the atomic
model to be zero following the execution of any event and requiring the output function
to project state variable values that must be visible to other partitions. The input preparation
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functions would be invoked during the internal, external, and confluent transitions of the
atomic model using a local copy of the relevant data from other partitions. This would occur
after updating these copies using the projections supplied as input to the external and
confluent transitions. In this way, the proposed implementation can be transformed into
one suitable for a distributed memory parallel computer.

Each partition of the activity scanning model is embodied in a DEVS atomic model. The
state of this atomic model comprises a future event list, a list of conditional events, a list
of events to be scheduled for other partitions, the current simulation time, a mode which
may be F or C, and the state variables of the partition. The mode indicates whether our next
action will be to process future events (F) or conditional events (C). Upon creation, the atomic
model sets its mode to F and the current time to zero.

The time advance function of this atomic model returns one of three values.

1. the difference between the next future event and current time if the mode is F;
2. infinity if the future event list is empty and the mode is F; or
3. zero, which occurs when the mode is C.

Upon expiration of the time advance, the output function of the atomicmodel is invoked. If
themode is F then the output function invokes the input preparation functions of the events at
the front of the future event list. Otherwise, the mode is C and output function scans the list of
conditional events, selects those that can be activated, and invokes their input preparation
functions.

If there are events to be scheduled for other partitions or events that will act on this par-
tition then the output function emits one or more messages. Events for other partitions are
sent to their destinations, where these events will appear as input to the external or confluent
transition function. A message is also sent to all partitions, which are interested in this par-
tition’s variables. This message notifies those partitions that a change of value is imminent.

If the coupling between atomic models that realize a partition are specified by the modeler
then messages are directed to only the relevant partitions. If the modeler is uncertain about
what this coupling should be, then the safest assumption is all to all coupling and each mes-
sage is broadcast to every atomicmodel. Like the problem of automatic partitioning described
earlier, the question of automatically deriving couplings is of considerable practical interest.
As before, prior work on modular and nonmodular modeling formalisms is an attractive
starting point for investigating this issue (Zeigler et al., 2000, 2018; Zeigler, 1984).

A partition changes state in one of three ways. An external transition occurs if the atomic
model receives a message prior to the expiration of its time advance. An internal transition
occurs if the time advance expires prior to receiving a message. A confluent transition occurs
if a message arrives simultaneously with expiration of the time advance.

When an external transition occurs, the atomic model is supplied with time that has
elapsed since the prior change of state. The current time variable of the atomic model is ad-
vanced by this amount. The mode is set to C to induce a scan of the conditional events that
could be activated by the new variable values in the signaling partition. If events have arrived
from other partitions then these are placed into the future or conditional event list as
appropriate.

When an internal transition occurs, the atomic model advances its current time variable by
the amount of the time advance. If the mode is F then the imminent events are removed from
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the future event list and passed to the partition’s state transition function. If themode isC then
the conditional events suitable for activation are passed to the partition’s state transition func-
tion. If any future or conditional events were found and processed then the mode becomes C.
Otherwise the mode becomes F. A confluent transition performs the steps of an internal tran-
sition followed by those of an external transition. Regarding the confluent transition, this is
not the only possible definition and some latitude for themodeler could be allowed regarding
how the new values of the partition’s variables are calculated given the collection of simul-
taneous events.
5 CONCLUDING REMARKS

This chapter has introduced a new approach to the classical worldviews of event sched-
uling, activity scanning, and process-oriented simulations. This new approach enables par-
allel implementations of these worldviews by employing distinct phases of the simulation
for gathering input data and computing new values for state variables. The two phasesmirror
the simulation approach for synchronous models such as cellular automata and interacting
difference equations, and they extend the scope of the classical worldviews to naturally in-
clude these types of models.

One approach to a parallel implementation embeds the augmented worldview in a DEVS
model, and we have presented one such implementation in this chapter.1 This particular im-
plementation can leverage the DEVS simulation protocol to process events in parallel simul-
taneously active partitions (see Zeigler et al., 2000, 2018). Indeed, this is a generalization of the
approach introduced in Zeigler (1984), where it was shown how the classical worldviews can
be embedded in a sequentially executing (classical) DEVS model. The same approach of em-
bedding the augmentedworldview in a DEVSmodel can also enable parallel execution based
on optimistic and conservative simulation algorithms (see Nutaro, 2010; Nutaro and
Sarjoughian, 2004).

An attractive feature of the proposed approach is its compatibility with the fundamental
modeling constructions of existing, sequentially executing simulation tools. This creates the
possibility of extending existing, classically oriented simulation packages to include features
for parallel execution while maintaining compatibility with legacy models. Such an extension
would permit maintainers of legacy models to incrementally exploit these new features and
provide new models with the opportunity to leverage parallel computing from the start. The
widespread availability of parallel computing in the form of multicore computers has created
a corresponding interest by modelers to use this computing power. At the same time, the dif-
ficulty of using algorithms developed chiefly for high performance has greatly hindered their
application in practice (Fujimoto, 1993; Zeigler et al., 2015). The proposed approach offers a
practicalmeans of bridging the gap betweenmodern parallel computers andwidely used, but
sequentially executing, packages for discrete-event simulation.
1Source code is available as part of the ADEVS simulation package, which is available online at http://web.ornl.gov/

�nutarojj/adevs and http://sourceforge.net/projects/adevs.

http://web.ornl.gov/~nutarojj/adevs
http://web.ornl.gov/~nutarojj/adevs
http://sourceforge.net/projects/adevs
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1 INTRODUCTION

Because modern society is becoming more complex and evolving more quickly, a model
engineer should be able to develop a proper simulation model quickly and correctly. There-
fore, themodel engineer should be equippedwith a proper theoretical background onmodels
as well as development skills. Although various model engineering tools are available, an
engineer cannot build a simulation model alone. Experts from various domains should
collaborate with each other to develop the model.

Among the various model engineering tools, the DEVSim++ME (hereafter referred to as
ME) toolset has been actively utilized in various fields as a tool for collaboration, develop-
ment, and experiments. The design philosophy of ME is to help a model engineer design,
develop, and extend a simulation model easily and acquire data from the simulation model
effectively.

The ME toolset adopts the DEVS formalism as a foundation of the modeling tool, and it
provides the execution environment, so that model engineers can design models and imple-
ment them in the DEVSim++ simulation environment. After implementing the simulation
model, the model engineer may want to ensure that the model meets the requirement spec-
ifications and that the implementation meets the model’s design; in that case, the model en-
gineer may utilize the MVali and MVeri tools. To extend the simulation model for
interoperation, the model engineer may use KHLA Adaptor and FOM2CPPClass. For the
model engineer, analyzing the simulation results from the developed simulation model is
also important. In that case, the model engineer may use DEXSim from the ME toolset to
conduct multiple experiments throughout distributed computing resources.
355 # 2019 Elsevier Inc. All rights reserved.
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This chapter introduces a system-theory-based model engineering environment to help
model systems related to the simulation objective and gather simulation data from the sim-
ulation model. We employ the discrete event system specification formalism, known as the
DEVS formalism, as a conceptual modeling tool and the ME toolset as the M&S environment.
The DEVS formalism is fully explained in the companion volume to this book (Zeigler et al.,
2018). Here, we only introduce the aspects needed for its use in this chapter.
2 BACKGROUND

2.1 DEVS Formalism

The DEVS formalism is used to capture the behaviors of discrete event systems (DESs) in a
set-theoreticmanner.Modelersmay specify the behaviors of the coremodels and the system’s
hierarchical structures in a modular fashion. The atomic model is the core model that gener-
ates the model’s behaviors, and a coupled model defines the model’s hierarchical structure.
The coupled model may comprise multiple atomic or coupled models to build a complicated
model and may create complex behaviors by executing itself. The following sections intro-
duce the notations of the DEVS formalism and its simulation algorithms (Kim et al., 1996).

2.1.1 Definitions of the DEVS Formalism

In DEVS-based model engineering, a modeler may capture a system’s behavior using an
atomic model and a coupled model. The atomic model has three sets and four functions with
which to capture the atomic behavior of a system component. The three sets are the input
event set X, the output event set Y, and the state set S. The four functions are the external
transition function δext, the internal transition function δint, the output function λ, and the
time-advance function, ta. Fig. 1 shows the notation of the atomic model.

Amodelermaymodel two types of system behaviors using the atomicmodel: (1) behaviors
after external events and (2) behaviors without external events. The former can bemodeled as
an external transition function, which determines the next state based on the previous state
and the external events. For the latter, the internal transition specifies the behavior. Also, the
output function and time-advance function are used to specify the output events that can be
generated by the given atomic model. Therefore, the atomic model’s behavior can be viewed
AM = < X, Y,S,dext,dint, l, ta >

, where
X : a set of input events;
Y : aset of output events; 
S : a set of sequential states;
dext : Q × X → S, an external transition function,

where Q= {( s,e)| s∈Sand 0≤e≤ta(s)},total state set of M;
dint : S → S,an internal transition function;
l : S → S, an output function;
ta : S → R0,∞, time advance function

FIG. 1 Notation of the atomic model.



CM = < X, Y, M, EIC, EOC, IC, SELECT>

, where
X : a set of input events;
Y : a set of  output events;
M : a set of  all component models;
EIC CM.X × M.X, external input coupling;
EOC M.Y × CM.Y, external output coupling;
IC M.Y × M.X, internal coupling;
SELECT: 2M– Φ → M, tie-breaking function

FIG. 2 Notations of the coupled model.
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as an event sequence influenced by external input events X that generates output events Y.
Since the state set S represents the unique description of an atomic model, the model engineer
may just specify the model’s next state inside of the external transition function. If an external
event arrives at the elapsed time e, which is less than or equal to ta(s) as specified by the time-
advance function ta, then a new state s

0
is computed by the external transition function δext.

Then, a new ta(s
0
) is calculated, and the elapsed time e is set to zero.

A coupled model CM consists of components that can be atomic models or coupled
models. Similar to the atomic model, the coupled model uses three sets and four functions
to model the system’s structure and generates the behaviors of a composite system. The first
two sets of the coupledmodel are the input event setX and the output event set Y. The last set
of the coupledmodel, which is different from the atomicmodel, is themodel set {Mi}. The four
functions of the coupledmodel are the external input coupling function EIC, the external out-
put coupling function EOC, the internal coupling function IC, and the tie-breaking function
SELECT. Fig. 2 shows the notation of the coupled model.

The elements of the model set {Mi} can be atomic models and another coupled model.
Therefore, a modeler may compose the given model to build a complex simulation model
using structure-defining functions. The EIC function connects the external input event to a
model that exists inside of the coupled model. On the other hand, the EOC function connects
the output event from the internal models of the coupled model to the outside of the coupled
model. In addition, the IC function resolves the connections among the internal models.
Finally, the SELECT function resolves the execution order among the simulation models.
Mainly, the coupled model contains several models as components. Consequently, some
models can be executed in the same time frame and may generate conflicting behaviors. In
that case, the SELECT function solves the execution priority among the conflicting models.
The SELECT function is used to order the processing of simultaneous internal events for
sequential simulation. Thus, all of the events occurring at the same time in a system can
be ordered by this function.
2.1.2 Simulation Algorithms of the DEVS Formalism

The simulation algorithms of the DEVS formalism use the abstract simulator concept for
simulation, as proposed by Zeigler (1984). The concept defines a virtual processor that pro-
cesses the model dynamics specified by the DEVS formalism. In other words, the simulation
engine triggers the abstract simulators to be executed, and the simulators interpret the
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specifications of the DEVS model. Therefore, the DEVS model may not contain other
computer code or may only contain the code for generating model dynamics.

There are three types of virtual processors: simulator, coordinator, and root-coordinator.
The first processor is a simulator for an atomic model. The coordinator is used to interpret the
coupled model. Finally, the root-coordinator is a special coordinator that controls the entire
simulation and is not associated with any other models (Zeigler et al., 1994).

Fig. 3 shows a diagram of a simulator algorithm. The simulator algorithm processes four
types of messages: the external event (x, t), star message (∗, t), output event (y, t), and done
message (done, tN). Since the simulator is associated with an atomic model, the model is
always a leaf node of the simulation structure. Therefore, the model may generate an output
message and a done message, but it cannot receive output messages or done messages. In
other words, the coordinator algorithm converts the output message into an external input
event message.

When a simulator receives the external event (x, t), the simulation algorithm processes the
external event using the external transition function of the associated atomic model. As
shown in Fig. 3, M :δext denotes the external transition function of the associated atomic
model. When the simulation algorithm finishes processing the external transition function,
the simulation algorithm invokes the time-advance function to calculate the next deadline
of the model. After calculating the next event time, the simulator algorithm sends the done
message with the next event time, which is an amount of time to wait.

When the elapsed time of the simulationmeets the next event time, the simulator algorithm
will receive the star message. Then, the algorithm will execute the output function (M: λ) and
the internal transition function (M: δint). After executing the output function, the simulator
sends the output message (y, t), if one exists. Based on the DEVS formalism, the state of
the atomic model may be changed. Therefore, the algorithm calculates the new deadline
for the model and sends it to the coordinator.

Fig. 4 shows a diagram of a coordinator algorithm. The difference between the coordinator
and root-coordinator is that the root-coordinator is not associated with any other models, and
it decides the simulation components to be executed. Therefore, the root-coordinator does not
route the message (y, t) to the parent but it routes the message (y, t) to the children. The sim-
ulation flow of the coordinator algorithm starts with the wait state. When other processors
send a message (x, t), it routes that message based on the EIC function and waits until every
Wait

M:dext
M: l
M:dint

ta

(x, t) (*,t) 

(done, tN)

(y,t) 

FIG. 3 Simulator algorithm for the atomic model.
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FIG. 4 Coordinator algorithm for coupled model.
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child model sends the (done, tN) message. When the coordinator receives every (done, tN)
message from the childmodels, the coordinator algorithm calculates theminimumnext event
time and sets the time of the (done, tN) message. Then, the coordinator sends its (done, tN)
message to its parent model.

When a coordinator receives the starmessage (∗, t), it identifies the imminent components i∗.
Note that the coordinator may contain multiple components, and the components may request
the samenext event time; so, the coordinator should resolve the execution order. In this case, the
coordinator algorithm will utilize the SELECT function. Since a model engineer provides the
SELECT function, that model engineer is responsible for resolving the execution priority in
the simulation model. Also, the coordinator waits until the imminent component sends the
(done, tN) message. During the execution, a child component model may send an output mes-
sage (y, t). In this case, the coordinator should consider two cases. The first is a message to the
component inside of the coupledmodel. Then, the coordinator algorithmuses the IC function to
route the message. For the second case, the coordinator should use the EOC function to deliver
the output message outside. After receiving the done message from every imminent compo-
nent model, the coordinator may reschedule the minimum next event time.
2.2 IEEE1516 Standards for Simulation Interoperation

IEEE1516 standards are well-known standards for a distributed architecture and its imple-
mentation for interoperation between heterogeneous simulations. Mainly, the IEEE1516 stan-
dards consist of the distributed architecture, the high-level architecture (HLA), its
implementation, the runtime infrastructure (RTI), and the federate development process
and execution process (FEDEP) for developing a simulation with interoperable simulators.

2.2.1 High-Level Architecture

The HLA provides a common framework for the modeler to compose various
simulators concerning the overall simulation objective in an extensible and scalable manner
(IEEE Standards Association, 2012). To achieve the simulation objective, a space known as the
federation can be created for simulators to collaborate and achieve given simulation
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objectives. Each member of the federation is referred to as a federate. Therefore, the HLA de-
fines the services for the federates of a given federation to interact with each other.

The HLA of the IEEE1516 standards contains the HLA rules, the federate interface spec-
ification, an object model template (OMT), and the FEDEP, which are a set of basic rules that
define the interoperability and the responsibilities of the federates and federation for HLA-
compliant simulations. Also, the federate interface specification (HLAWorking Group, 2000)
provides a specification that a simulation may perform, or be asked to perform, during the
simulation. It includes RTI services that are available to each simulation and the callback func-
tions that each federate must provide to the RTI.

The OMT (Simulation Interoperability Standards Committee, 2000) is a standard descrip-
tion for a data model in the federation. The OMT is a common template for specifying the
simulation information regarding a hierarchy of object classes, their attributes, and so on.
The OMT is used to describe the simulation object model (SOM), which describes the infor-
mation that the federate can produce or consume, and the federation object model (FOM),
which is the conceptual data model for the information exchanged between federates within
the federation.

The FEDEP mainly defines a process framework for federation developers and model
engineers. The standard utilizes the HLA for interoperating heterogeneous simulators by
adopting a systems engineering approach. Accordingly, the modelers may easily construct
a federation by following FEDEP.

2.2.2 Runtime Infrastructure

The HLA defines the rules and interface among the heterogeneous simulators, and model
engineering researchers need to implement the middleware for interoperation. The
middleware of the HLA is called RTI and is software that supports the federation execution
and conforms to the IEEE1516 standards. The RTI provides several services to the federates
for them to exchange data and synchronizes the simulation time during the simulation. The
RTI has a local RTI component (LRC) to provide interoperation services to each federate in the
federation. Therefore, the RTI may utilize distributed computing resources to execute distrib-
uted simulations.

For multiple simulators to interoperate, a federation developer integrates an RTI library
and embeds the RTI service code within the federate. The RTI library contains the RTI exec-
utive, the RTI ambassador, and the federate ambassador. RTI providers provide the library as
software components, so that the developer may choose appropriate software components
based on their development environment. The RTI ambassador and the federate ambassador
control the information exchange among the federates. In general, the RTI ambassador com-
ponent contains the services API provided by the RTI. A federate may invoke services
through the given interface to request a service. The federate ambassador component is, in
general, a pure virtual class that defines the callback functions for the federate developer
to implement processing the data from other federates through the RTI. The callback func-
tions provide a mechanism for the RTI to invoke operations and communicate back to the
federate. While the RTI ambassadors are built into the RTI, federate ambassadors are written
by the simulation developer for each federate.

The RTI improves the scalability of distributed simulations by controlling the amount of
data exchanged among the federates. The data distributed in an HLA federation can be
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broken down into attributes and interactions. Attributes are properties of objects, while
interactions are events that involve two or more objects. The FOM is an essential model of
federation. The FOM defines the data elements of the entire federates of a given federation.
The developer defines the data types, units of measurement, and attribute names. These data
are used to provide information about the simulation to the RTI during runtime. The RTI does
not transfer data that is not declared in the FOM. Before initiating a simulation, each federate
registers itself to the RTI using the declaration management service and declares its publish
and subscribe information. As a result, a federate can receive the data, which are subscribed
before the simulation, from the RTI. Moreover, a federate can publish data that the federate
declared to publish.
3 DEVSim++ME TOOLSET

In general, the purpose of model engineering is to model a system easily and correctly, so
model engineers can gather data from the model quickly and analyze the data effectively. For
example, another chapter of this book, (Chapter 14) introduces model management and ex-
ecution methods based on scalable M&S architectures. Modelers can use several tools to help
them model a system and acquire data from the model. For example, modelers may utilize
popular programming languages, such as C++ or Java, to build amodel from scratch.While a
modeler can build a simulation model without using an M&S environment, it may require
significantly more time and funding to develop the model. On the other hand, a modeler
may employ M&S environments, such as MS4 Me (Seo et al., 2013) or VLE (Quesnel et al.,
2009), which offer many supporting features, to build DEVS models more quickly and reli-
ably. This chapter describes the advantages that the DEVSim++ME toolset offers over other
existing environments, especially when targeting DEVS models for deployment in HLA-
distributed simulations.

This section introduces DEVSim++ME. The ME toolset is a total solution for modeling en-
gineers to capture a system’s behavior effectively, verify and validate their model easily, and
manage the execution of the models to acquire simulation data efficiently. In addition, model
engineers may use the ME to build and execute their models efficiently or compose existing
simulators to construct a union of simulators to build a simulation with one simulation
objective utilizing HLA/RTI. This section introduces the tools of the ME and its design
philosophy.
3.1 Organization of the DEVSim++ME Toolset

The ME toolset is designed to help model engineers build and construct their model effec-
tively. The ME tools can be placed into four categories: (1) modeling, (2) simulation and
interoperation, (3) validation and verification, and (4) data acquisition.

For modeling, the ME supports the DEVS formalism. Since the DEVS formalism is set-
theoretic and may model a system in hierarchical and modular form, the ME utilizes
object-oriented programming languages, especially the C++ programming language, to rep-
resent a model. Therefore, the ME provides a template for essential models, so model
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engineers can easily extend their model by composing various simulation models or inherit
useful features from other simulation models (Roberts and Dessouky, 1998; Zeigler
et al., 2000).

Further, the ME environment manages the execution of the simulation and supports the
interoperation of simulations. After amodel engineer designs amodel usingmodel templates
from the ME, the ME simulation environment executes the model using simulation
algorithms from the DEVS formalism. Moreover, the ME provides model engineers with
interoperation support features. When model engineers want their models to interoperate with
othermodels, the model engineers should understand the interoperation standards, integrate
interoperation services into their model, and control the simulation to interoperate with other
simulation models. Furthermore, the model engineer may utilize the adaptor for
interoperation in the DEVSim++ toolset.

There are several things to consider for the validation and verification (V&V) of a simula-
tion model. First, to build a new simulation model, engineers should express their ideas in a
design document using formal representations. Afterward, the model engineer may imple-
ment the model using a programming language. The implementation can then be checked
to prove whether the computer simulation code has been developed correctly against the
design documents. The ME provides V&V tools to help model engineers build models cor-
rectly, including popular design document tools, PowerPoint and Visio.

Finally, the ME provides a distributed simulation execution framework to acquire data
effectively. As the efficiency of the computing environment increases, a model engineer
can not only utilize local computing resources but also any computing resources, especially
multi-core supercomputers, at the remote site. Approaches to improving the simulator’s per-
formance can be placed into two categories: those that improve the simulator itself and those
that reduce the data-acquisition time. The former approaches consider the parallelism of the
simulation model. Therefore, the model engineer should consider modifying existing simu-
lators to support multicore environments. Unfortunately, modifying the existing simulator to
support a multi-core environment is not an easy task. The engineer should consider adopting
other formalisms, such as parallel DEVS (Chow and Zeigler, 1994), to support the multicore
environment as well as develop models to enable parallel execution in the simulators.
Chapters 15 and 16 in this book discuss methods for simulating discrete event models on
high-performance simulators.

On the other hand, reducing data-acquisition time is a simple method of utilizing multi-
core environments. In general, the model engineer may analyze data after conducting exper-
iments involvingmassive simulation scenarios. Since the objectives inM&S include analyzing
the data quickly and providing alternative solutions over time, model engineers may take
advantage of reduced data-acquisition times when analyzing the data. Among the various
methods that utilize multi-core environments, the parallel execution of a simulation is the
simplest. Note that parallel simulation and parallel execution of a simulation are different
methods. The former method is used to execute multiple simulation models simultaneously
with a given scenario, while the latter method involves executing one simulator withmultiple
scenarios. Chapter 13 of the companion volume to this book discusses a theory for under-
standing the relative costs in terms of time and effort between parallel simulation of a model
and parallel execution of multiple models (Zeigler et al., 2018).
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Fig. 5 shows the model-development process and the corresponding ME tools. When a
model engineer wants to model a system, the engineer may utilize the DEVS formalism to
capture the behavior and characteristics of the system. Since the DEVS formalism is hierar-
chical and modular in nature, the model engineer may easily build a model or construct a
complex model using existing models. After designing a model, the model engineer may
write design documents. Therefore, the model engineer can use the DEVS formalism to de-
scribe the model rigorously. After writing the design documents, the model engineer can
validate the model documents against the model’s requirements using MVali, which checks
the consistency between Unified Modeling Language (UML) diagrams and the developed
DEVS models. After the validation, the model engineer may proceed to develop a computer
simulation model using DEVSim++, which is a simulation environment based on the C++
programming language (Kim and Park, 1992) that supports theDEVS formalism. This enables
the model engineer to translate descriptions of the atomic model and coupled model into the
atomic model and coupled model classes. In addition, DEVSim++ controls the execution of
the DEVS models. When the model engineer finishes developing the simulation model, he or
she may utilize the MVeri tool to check the computer simulation code against the modeling
document. TheMVeri tool automatically embeds the probe and verification code into the sim-
ulation code using an aspect-oriented programming language. Additionally, the engineer
may utilize the KHLA Adaptor and FOM2CPP tools to transform the simulation code into
an interoperable form (Kim et al., 2006). Finally, DEXSim supports experiments with the
developed simulation model by gathering simulation data from distributed computing
resources. We will provide more details about these tools later.
3.2 Model Development Tool: DEVSim++

As indicated above, DEVSim++ is a simulation environment for the DEVS formalism
based on the C++ programming language. It was developed in and has evolved from 1992
and has beenwidely utilized to implement variousmodels in C++. Since the DEVS formalism
and object-oriented concepts havemany things in common, DEVSim++ has adopted C++ as a
model description language. In addition, DEVSim++ was implemented using C++ so that a
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model engineer may utilize various third-party libraries to extend his or her simulation
models. For instance, the simulation model may be given visualization capability by
connecting it to the SIMDIS tool using the network library.

DEVSim++ realizes the DEVS formalism and executes the virtual processor of the simu-
lation model to implement abstract simulator concepts. For a dynamic structure, DEVSim
++ supports various extensions of the DEVS formalism, such as dynamic DEVS (Barros,
1997), variable-structure DEVS (Hu et al., 2005), and multi-resolution-model DEVS formal-
isms. In addition, DEVSim++ can be used for modeling and simulating real-time and inter-
active systems. During such development, model engineers must implement the atomic
model and coupled model to complete their simulators. To help them, DEVSim++ provides
template codes and the CModel, CAtomic, and CCoupled classes.

Fig. 6 shows the class diagram of the template models in DEVSim++. The CModel class is
the parent class of the CAtomic and CCoupled classes. In addition, the CModel class may be
utilized as an interface for the DEVSim++ simulation engine. The CModel class provides the
basic structure to themodel engineers to implement a DEVSmodel. The CModel class defines
the common attributes of the atomic and coupledmodels. In particular, the CModel class con-
tains attributes such as the name of the model, information about the input/output ports, the
state of the model, and time. In addition, the CModel class has common functions for both
atomic and coupled models. For example, the CModel class provides AddInPorts and
AddOutPorts methods, which the CAtomic and CCoupled models inherit. Furthermore,
CModel

CCoupled

+ AddInPort (char*): Boolean
+ RemoveInPort(char*): void
+ AddOutPort (char*): Boolean
+ RemoveOutPort(char*):void

+ WhenRcvX (msg:CDEVSMessage): Boolean
+ WhenRcvStar (msg:CDEVSMessage): Boolean 
+ WhenRcvY (msg:CDEVSMessage): Boolean
+ WhenRcvDone (msg:CDEVSMessage): Boolean

+ AddComponent (num:Integer, ...): Boolean
+ AddRuntimeComponent (model:CModel *): Boolean
+ AddCoupling (src_model :CModel*, src_port:string, 

dst_model:CModel , dst_port:string ): Boolean
+ RemoveCoupling(src_model :CModel, src_port:string, 

dst_model:CModel , dst_port:string ): Boolean
+ SetPriority(num:Integer , ...);

+ WhenRcvX (msg:CDEVSMessage): Boolean
+ WhenRcvStar (msg:CDEVSMessage): Boolean 
+ WhenRcvY (msg:CDEVSMessage): Boolean
+ WhenRcvDone (msg:CDEVSMessage): Boolean

+ WhenRcvX (msg:CDEVSMessage): Boolean
+ WhenRcvStar (msg:CDEVSMessage): Boolean 
+ WhenRcvY(msg:CDEVSMessage): Boolean
+ WhenRcvDone (msg:CDEVSMessage): Boolean

+ ExtTransFn(msg:CDEVSimMessage ): Boolean
+ IntTransFn(): Boolean
+ OutputFn(msg:CDEVSimMessage ): Boolean
+ TimeAdvancedFn (): TimeType 
+ Continue(flag:Boolean):void
+ Cancel(flag:Boolean):void

CAtomic

FIG. 6 Class diagrams of models in DEVSim++.
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the CModel contains interface functions for the abstract simulation algorithm such as
WhenRcvX, WhenRcvY, WhenRcvDone, and WhenRcvStar, which are implemented by
CAtomic and CCoupled.

These class designs display the important design philosophy of DEVSim++: the separation
of concerns. The objective of model engineers is to model a system’s behaviors. Therefore,
model engineers concentrate on modeling and implementing a model’s behavior rather than
on implementing simulation algorithms. When provided with model template code, the
model engineers may focus on expressing the behaviors and implementing the simulation
models. In addition, the simulation engine has an advantage under the philosophy. Asmodel
engineers can develop their simulation model freely, the simulation engine of the DEVSim++
should have preliminary information of the simulation model to execute it. However, by uti-
lizing the polymorphism features of the object-oriented programming paradigm, the simula-
tion engine may consider the CAtomic and CCoupled models as CModel class instances and
execute the simulation based on the CModel class.1
3.3 Model Verification and Validation Tools: MVeri and MVali

Model engineering is a multidisciplinary process, and various experts participate in devel-
oping a model over long periods. Many faults may occur during the research and develop-
ment phases due to human error. As a result, verification and validation (V&V) of a
simulation model are important in the model engineering domain, and the model engineer
should check that the models are well designed in relation to the simulation’s objectives
and environments.

In general, as indicated above, V&V involves successive steps of checking the consistency
among design documents and software code. The first step is to rigorously define the require-
ments specification using UML or System Modeling Language (SysML) (Fowler, 2004;
Friedenthal et al., 2014). Therefore, a model engineer may check the UML or SysML diagrams
to make sure the diagrams are well described and embrace the requirements. Then, a model
1The CAtomic class is the structural template of the atomic model in DEVSim++. The abstract simulation algorithm

for the atomic model is implemented within the CAtomic class. If a model engineer wants to make a new

atomic model, he or she may define three sets and complete four functions. The model engineer can utilize the

AddInPorts and AddOutPorts functions to define three sets.

The CCoupled class is the structural template of the coupled model in DEVSim++. Similar to the CAtomic class,

the CCoupled class has three types of attributes and four functions that implement the simulation algorithm.

The model engineers may inherit from the CCoupled class to implement the coupled model. In particular, a

model engineer adds input and output ports using functions from the CModel class to express the input and output

event set. The coupled model has another set with which to express the system components. Accordingly, the

model engineer can use the AddComponent function to addmodels to the coupledmodel. In addition, the CCoupled

model has the AddCoupling function to connect the components. The function may connect the external input

event ports to internal components’ input event ports. In addition, the function may be used to connect the internal

components’ output ports to the coupled model’s output ports. Similarly, the function may be used to connect

the output ports and input ports among internal components. Finally, the CCoupled class has the SetPriority

function, which can resolve the priority among component models.
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engineer may compare the modeling results and the requirements specification. During this
step, the model engineer checks the consistency of event sequences that are generated from
the UML/SysML diagrams and DEVS model. Finally, the model engineer checks the event
sequences of the DEVS models and the generated event sequences of the computer
simulation model.

In the ME toolset, MVali and MVeri support the V&V of a model (Byun et al., 2009; Kim,
2008). MVali is a model-validation tool that examines the model’s specifications against the
requirements. An important feature of MVali is that the tool adopts commercial software for
its input/output data format. To appeal to a wide variety of disciplines, MVali utilizes
Microsoft Visio and PowerPoint. MVali processes UML and DEVS models, which are
modeled using Visio stencils, and generates the verification results in PowerPoint files. In this
way, the model engineer can directly present MVali results at review meetings.

Fig. 7 shows the requirement template in theMEenvironment. The requirement template of
ME contains necessary information based on the user’s requirements. In particular, the tem-
plate is used to specify a model’s static structure, dynamic behavior, and timing information.
Amodel’s static structure contains the class type, attributes, andoperationsof eachobject in the
simulation. The dynamic behavior specifies the interactions among messages and operation
sequences in ascending order. Finally, the timing information denotes the time consumption
for each operation. In addition, if a model’s behavior cannot be denoted in a single table, the
requirement template of the MEwill include ID, name, precedents, and successor fields to or-
ganize the model’s behaviors. Then, the model engineer draws the class diagrams, sequence
diagram, and DEVS diagrams using Visio. Fig. 8 shows the validation process using MVali.

As shown in Fig. 8, a model engineer utilizes Visio to capture the structural and event
sequences of a system using class diagrams and sequence diagrams from the requirements.
In addition, as indicated, the system’s behavior characteristics may be specified using DEVS
diagrams in Visio. Then, Visio converts each diagram into XML documents. Finally, MVali
accepts the generated XML documents and produces the verification results in PowerPoint
format.
ID DDocument I D Name SScenario Name

Goal Goal of a scenario

Precedents DDocument I D of a precedent scenario

Successors DDocument I D of a next scenario

Participated object

Trigger event AAn event to initiate a scenario

Main scenario
Step Action

Time
consumption

Sub - scenario
Step Action

Time
consumption

Notes

FIG. 7 Requirement template for V&V in ME toolset.
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The MVeri tool checks the DEVS model against the computer simulation code. The design
philosophy of the MVeri tool is to resolve the traditional testing problems and code-tangling
and code-scattering problems during verification.

The code-tangling problem in model verification is that probe code should be injected to
extract desired event sequences during the simulation. Since the probe code is not part of the
model’s behaviors, injecting and removing the probe code are likely to be a source of much
human error. Similarly, code-scattering errors arise when removing code that specifies the
components that generate the simulation logs. Such pernicious and accidental effects can
be resolved with the MVeri tool.

The MVeri tool utilizes aspect-oriented programming (AOP) to do away with manually
injecting the probe code into the simulation code, as shown in the Fig. 9. In addition, the
MVeri tool utilizes duplicated simulation code, so that the model engineer can leave the sim-
ulation code unaltered when the MVeri tool cannot find a problem. On the other hand, the
engineer can modify the simulation code when the MVeri tool finds a problem.

To utilize the MVeri tool, a model engineer may simply define the probe points and de-
scribe the verification code. Then, the MVeri tool combines the probe code with the given
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simulation code. After the synthesis, the MVeri tool verifies the event sequences against the
DEVS diagram, which has been verified by the MVali tool.
3.4 Distributed Simulation Replications Tool: DEXSim

With the theoretical basis of the SSMS concept, the ME has a distributed simulation rep-
lication tool called the Distributed Execution Simulation (DEXSim) framework (Choi et al.,
2014). The DEXSim framework can accelerate the simulation experiments by replicating
the simulation application to local computing resources or distributed computing resources.
The design philosophy of the DEXSim framework is to model a model engineer to support
automated execution of simulation executions while maximizing the computing utilization.
In particular, the tool simulates the behavior of a model engineer, which means it finds the
idle computing resource and allocates the simulation scenarios to the resource.

To support a heterogeneous execution environment, DEXSim was designed to utilize the
HLA/RTI. The key components of the DEXSim are the federation DEXSim and the federate
DEXSim, as shown in Fig. 10.

Federation management (FM) is a service for federate DEXSim management. In the HLA/
RTI, the FM service defines how federates create, join, and resign from the federation. In the
DEXSim framework, the federation and the federate DEXSim are the federates in the HLA/
RTI, which are involved in exchanging node information and simulation results. Therefore, a
model engineer may easily append an additional computing resource by executing federate
DEXSim on the computer. Then, federate DEXSimmay join the experiment environment and
receive the necessary data for the experiment.

In addition, DEXSim utilizes declaration management (DM) and object management (OM)
services to control and deploy simulation data to each federate DEXSim. As the federation
DEXSim controls the experiment and distributes the data for the experiment centrally, it
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3693 DEVSim++ME TOOLSET
publishes the process control message and the necessary data, while the federate DEXSim
subscribes the messages using the DM services. The federation DEXSim utilizes the object
of the OM services to distribute the simulator, scenario, and scenario list files. Therefore,
when an additional computing resource joins the DEXSim framework, necessity data can
be synchronized by OM services. Moreover, as the federate DEXSim subscribes the process
control messages, the federation DEXSim can control the local execution environment
through federate DEXSim by sending a process control message as an interaction.

Finally, the DEXSim uses the time management (TM) services for abnormal situation-
handling schemes for the DEXSim framework. In the HLA/RTI, each federate manages
the local time and coordinates data exchange with other members of a federation based on
the local time. To implement the abnormal situation-handling scheme for the DEXSim frame-
work, the federation DEXSim does not proceed its local time until it receives each experiment
status. When the federation DEXSim receives the experiment status of the federate DEXSim,
the federation DEXSim decides on the abnormal terminations or abnormal occupancy of rep-
licated simulators under certain conditions, which are given by the engineer.
3.5 RTI Interfacing Tool: KHLA Adaptor and FOM2CPPClass

When model engineers want to make an interoperable simulation model, they must select
the appropriate RTI vendor and implement the simulation model using an RTI software de-
velopment kit provided by an RTI vendor. In addition, the model engineers must understand
the time synchronization concepts and implement the time synchronization using HLA/RTI.
This process is an entry barrier for the software engineers to develop an interoperable
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simulation model. In general, the software engineers are used to working with typical net-
work protocols, such as TCP/IP and UDP, rather than using IEEE 1516 standards. The design
philosophy of the ME’s RTI interfacing tool bridges this gap. The RTI interfacing tool, the
KHLA Adaptor, and FOM2CPPClass help software engineers to build an interoperable sim-
ulation model without any knowledge of IEEE1516 standards. The KHLA Adaptor is an
interoperation manager that controls the interoperation of a simulation using HLA/RTI pro-
tocols and converts simulation messages into HLA-compliant messages.

Another problem of the RTI interfacing is the halting simulation problem. The halting
simulation problem originates from the conservative time synchronization method. In
HLA/RTI, the federation gathers all time requests from the federates and broadcast the time
grant message to the federates. Therefore, if a federate does not send the time request mes-
sage, the federation cannot determine whether the federate is normal but is taking some time
to complete the message or is not normal and has entered an infinite loop situation.

The key idea of the KHLAAdaptor is to provideHLA-compliant interoperation features to
a simulation model that does not consider the interoperation among simulators at the design-
ing phase. In other words, the simulation model and the KHLA Adaptor simulate an inter-
operable simulation model of the given model. To make the simulation model and the
adaptormimic the federate, the KHLAAdaptor becomes the interoperation engine of the sim-
ulation model. The KHLA Adaptor utilizes two types of network libraries, which are the
TCP/IP network library and the RTI library, at the same time. As the KHLA Adaptor should
mimic every service of the RTI, the KHLA Adaptor provides the templates of the services.
Therefore, when a model engineer wants to use the special services of the HLA/RTI, the en-
gineer may choose to override the necessary interfaces. Fig. 11 shows the interoperation con-
cept of the KHLA Adaptor.
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FIG. 11 Concept of the KHLA Adaptor.
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As shown in Fig. 11, the KHLAAdaptor is an interoperation engine for a simulation model
that participates in the HLA/RTI network. When the simulation model crashes due to un-
usual reasons, the KHLA Adaptor may send a time request and receive a time grant message
for the crashed simulation model. In addition, the KHLA Adaptor may receive simulation
data and keep them during the simulation. Then, the simulation model may restore the sim-
ulation progress based on the received simulation data.

FOM2CPPClass is designed to help a model engineer reduce the number of tedious jobs
involved in developing interoperable simulators. The FOM2CPPClass translates the FOM
data into C++ class code. During the federation’s development, the most time consuming
and most tedious task is developing code for encoding and decoding the simulation mes-
sages, whichmay be exchanged during the simulation. As all the simulationmessages during
the simulation are described in the FOM, the model engineers should refer to the FOM to
build a code for data marshaling. The FOM2CPPClass generates the code skeletons for model
engineers to enhance their productivity. The FOM2CPPClass extracts information from two
files: the Object Model Definition file and a template file, which contains the information
about the user-defined types. First, the FOM2CPPClass processes objects and interactions.
Each object and interaction structure contains attributes and parameters. Therefore, the
FOM2CPPClass generates the data marshaling code for each attribute and parameter using
the template code. When a model engineer wants to customize the marshaling code, the
model engineer should insert additional code into the code skeletons.

Additionally, when a model engineer wants to use other RTI interfacing tools, the model
engineer may use the FOM2CPPClass tool by changing the template class. As the
FOM2CPPClass is separated from the KHLA Adaptor, any RTI interfacing tools that utilize
C++ as a programming language may use the FOM2CPPClass to generate a code skeleton for
the interoperation of a simulation.
4 M&S PROCESS USING DEVSim++ME

In general, model engineering is amultidisciplinary field inwhich various technologies are
involved to build a domain-specific model. For example, assume a stakeholder wants to build
a weather forecast model. It is probable that the stakeholder will execute the model in a
supercomputing environment. Consequently, software engineers will participate to develop
the weather forecast model. To develop the weather forecast model, the software engineer
should process theweather data from the past few years. However, the engineers cannot com-
plete the weather forecast model without the help of a meteorologist because of their lack of
knowledge of meteorology. Therefore, developing a complex domain-specific model is tough
work, andmodel engineers should consider defining a development process for themodel. In
particular, the model engineers should consider how to proceed with collaborative research
among various experts, such as domain experts, M&S experts, and platform experts.

The domain experts are those who have special knowledge of a given domain and who
understand the system that requires modeling. The domain knowledge includes use case sce-
narios, workflows, and mathematical formulas. The domain experts usually write the sys-
tem’s requirement specification and check the model against this specification. The M&S
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experts are the experts whomodel a systemwith a stakeholder’s objectives inmind. TheM&S
experts quantize the system to be executed in the high-performance computing system. Fur-
thermore, the M&S experts may help the domain experts to analyze the simulation results
from themodel (Sung and Kim, 2012). The platform experts are the engineers who implement
the model into the computer simulation software and deploy the software to the real systems.

Fig. 12 shows the process of modeling a system to develop the corresponding simulation
model. This process is an objective-driven abstraction of a given system. To develop a
simulation model, modelers, the domain experts, and the M&S experts develop design doc-
uments. In this projection phase, modelers must ask themselves what needs to be considered
andwhat needs to be ignored to design the simulationmodel. The simulation objective drives
these questions. Based on the simulation objective, the modeler may choose the essential part
of the system to express the system’s behavior. The results of the phase are the design
documents. The design documents contain the necessary information to develop the simula-
tion model. After the projection phase, the modelers decide the level of details of the simu-
lation model. As the simulation models are executed on the computer system, each model
should be quantized into a computer simulation model. The platform expert may implement
the simulation model using various simulation tools. The most important aspect of the pro-
cess is that the system and the developed simulation model are not the same in all aspects.
However, both the system and the simulation model behave identically with regard to the
given objective.

The following subsections introduce the cooperative model development process using
ME in the defense domain.
4.1 Characteristics of M&S for a Domain-Specific Defense System

In general, the M&S for a domain-specific defense system can be categorized into three
types of defense M&Ss: training, analysis, and acquisition. The training model is used to ver-
ify the system functionalities and operations of soldiers in a real-world situation. The training
model should provide real-time simulation and human-in-the-loop simulation. As the oper-
ator may intervene in the training, the training simulation model should support an external
event handling mechanism that may change the simulation results. In addition, the model
should support a recovery method to respond to an unexpected situation during the training.
Finally, the model should support the replay functionality to aid the after-action review (Page
and Smith, 1998).

The analysismodel is a simulationmodel to analyze the effectiveness and performance of a
system. To examine the performance and the effectiveness of a system, the simulation model
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should provide a Monte Carlo simulation method. In addition, the model should be fast
enough to analyze the simulation results, as the model needs to be able to examine massive
scenarios. To enhance the simulation speed, the analysis model adopts the logical time sim-
ulation method. The difference between real-time simulation and logical time is the waiting
time handling mechanism in the simulation engine. During the simulation, the simulation
engine will collect the next event time from the models; it will then select the minimum event
time from among the submitted next event times and will send the grant message to the
model that submits the minimum event time. During this process, the real-time simulation
waits for the difference between the elapsed time and the minimum event time. For example,
when a minimum next event time is 1.5s and the unit of real-time simulation is 1s, the
real-time simulation method will wait for 1.5s to proceed with the simulation. Therefore,
the real-time simulation is called a wall-clock time simulation. Unlike the real-time simula-
tion, in the logical time simulation method the simulation engine does not wait and just pro-
cesses the next event. Consequently, when a model engineer utilizes the logical time
simulation, the simulation enginemay utilize high-performance computing resources tomax-
imize its performance as much as possible andmay finish the simulation as quick as possible.

The final model of the defense M&S is the acquisition model. The objective of the acqui-
sition model is to acquire various pieces of information to decide whether the real equipment
has correct functionality and meets the performance specification. The acquisition model is
essential in the defense ofM&S, as the deployment of amilitary system requires an astronom-
ical budget. In addition, the simulation results should provide the theoretical foundation for
the deployment of themilitary system. The simulationmust examine various combinations of
scenarios to provide theoretical confidence. Therefore, the model should be equipped with a
Monte Carlo simulationmethod and hardware-in-the-loop simulation to test the equipment’s
hardware and software.
4.2 Expert Cooperation in Defense System Modeling

As various experts collaborate during the development of an M&S application, the model
engineer should distribute the appropriate tasks to the experts and shouldmanage the overall
development process. Interestingly, collaboration among various experts in system develop-
ment is not a new concept. The collaborative process has been proposed in the hardware/soft-
ware codesign and system integration fields (Adams and Thomas, 1996; Chittister and
Haimes, 1996; Weiming et al., 2008). The collaborative process focuses on allocating the right
research and development resources to the right places.

Similarly, the collaborative development process of the defense M&S requires three
experts—the military experts, the M&S experts, and the platform experts—who collaborate
to build a defense M&Smodel (Sung and Kim, 2012). The primary role of the military experts
is to analyze the given system and specify the requirements concerning the simulation objec-
tives based on the military knowledge. TheM&S experts maymodel the discrete behaviors of
the system and develop the discrete event model concerning the requirements. Finally, the
platform experts realize the conceptual model as a computer simulation model. In addition,
the platform experts implement the experimental environments to help the domain experts
and M&S experts conduct the experiments.



Operational requirement;
conceptual model logic

Simulation requirement:
model design, 

simulator implementation

Functional requirement:
graphical user interface, etc.

Platform 
experts

Military
experts

M&S

experts

Defense
M&S

–Textbook

–Field manual/technical manuals

–Field experience

–Engineering/physics knowledge

of weapon systems

– Modeling theory 

– Simulation algorithm 

– Interoperation of simulation

– Statistical analysis

– Machine learning

– Programming skills

– Software engineering knowledge

– Hardware knowledge

– Networking, etc.

FIG. 13 Collaboration among experts in defense M&S.

374 17. DEVSim ++ ME: HLA-COMPLIANT DEVS MODELING/SIMULATION ENVIRONMENT WITH DEVSim ++
As shown in Fig. 13, themilitary experts should understand the content of the textbook, the
field manual, and the technical manuals. As the defense M&S model should be executed
according to the military doctrine, the military experts should develop the requirements rig-
orously and completely. In addition, the military experts may be requested to share their field
experiences tomake the defenseM&Smodel resemble the real-world system. Finally, themil-
itary experts should decide on the level of sharing information of the military system. This
role is one of the essential reasons as to why experts should collaborate in defense M&S.
In particular, the model of the defense M&S cannot guarantee the correctness or validity
of the simulation results when other experts do not have domain knowledge. However, such
information may be confidential so that other experts may not access the information. There-
fore, the military experts should participate deeply in the development of the defense
M&S model.

TheM&S experts must have confidence in theM&S theories, such asmodeling know-how,
simulation algorithms, interoperation of simulation, and knowledge of simulation data anal-
ysis. Finally, the platform experts must deal with the software. They should have program-
ming skills, knowledge of software and hardware development, and knowledge of how to
utilize network libraries.
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By experts cooperating, the defenseM&S systemmay be developed. To develop the system
successfully, the model engineer must consider three types of requirements of the develop-
ment of the M&S application. The first requirement specification is the operational require-
ment. The operational requirement contains the conceptual model logic. Therefore, the
military experts and theM&Sexpert collaborate todecide themodel logics concerning the sim-
ulation objectives. The second requirement specification is the simulation requirements. For
the simulation requirements, the M&S experts and the platform experts collaborate to decide
the structure design of amodel from the perspective of software engineering. In addition, they
cooperate to specify other simulation requirements, such as the interoperation of the simula-
tion features and the hardware-in-the-loop simulation.

The final requirements specification is the functional requirements. As the end-users of the
M&S application are the military experts, the military expert and the platform expert coop-
erate to decide the functional requirements of the simulationmodel. For instance, the military
expert may want to use 3D visualization tools to visualize the simulation status or use
separate windows that display the simulation results in graph form. Therefore, the military
expert and the platform expert must collaborate to develop the functional requirements
concerning the development period and the budgets.
4.3 Cooperative Model Development Process Using DEVSim++ME

As the previous subsections showed, the development of the defense M&S software is a
cooperative process with various experts. During the development phases, each expert group
has its role and shares some information to model a defense system, transfer the phase out-
comes to other groups, and refine their outcomes based on the phase outcomes. However,
cooperation among expert groups, which have different characteristics and cultures, is very
difficult work. For instance, most of the requirement specifications are written in natural lan-
guage; so, each expert groupmaymisunderstand the documents andmay produce unwanted
outcomes. Moreover, when an expert is involved in the development process, the expert may
produce human errors and thereby delay the entire process. To resolve the problems, the
model engineer may utilize the tools in the ME toolset.

The ME toolset provides a tool to describe the model rigorously, and the tool effectively
manages the models to conduct simulation experiments. Furthermore, the ME toolset pro-
vides semi- or fully automatic supports for the development process so that the ME tool
may prevent human error in advance (Kim et al., 2011b).

Fig. 14 shows the relationship between the development process of the defense M&S and
the ME tool. As shown in Fig. 14, the domain expert, the M&S expert, and the platform
expert cooperate to develop the model requirements and specifications. They then decide
on the object-orientedmodeling architecture for the simulationmodel. The next phase is the
modeling phase. In this phase, the M&S expert and military expert separate the modeling
tasks. The M&S expert models the DES modeling, and the military expert models the do-
main model. During this phase, the military expert and the M&S expert may utilize the
MVali tool to verify the DEVS model against the requirements. After modeling the DES
and the domain model, the M&S expert and the platform expert will implement the model
based on the modeling results. During the implementation phase, the experts may utilize
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the DEVSim++ to implement the model efficiently. To verify the implementation against
the requirement, the experts may also utilize the MVeri tool. Furthermore, DEXSim can
be utilized to test the developed model. By executing multiple scenarios simultaneously,
the experts may find the glitches easily and quickly. When they find the glitches, they
can refine the requirement specification, the model, and the implementation based on
the testing results. Finally, the experts may utilize KHLA Adaptor and FOM2CPPClass
to make the simulation model into an interoperable simulation model. By utilizing the
KHLAAdaptor as an interoperation engine, the expertsmay easily add interoperation func-
tionalities to the simulation model.
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5 EXAMPLE CASE STUDIES

This section introduces empirical studies using the ME toolset. The ME toolset is a total
solution to build a simulator; however, a model engineer may use an individual tool to de-
velop a model, construct interoperable simulators, apply the V&V process, and utilize mas-
sive computation resources to acquire simulation data.

Inparticular,ME toolsets have been applied andverified to support themilitary branches of
theRepublic ofKorea since 2002. They have been used tomodel variousmilitary systems, such
as submarines, torpedo, aircraft, etc., and to support simulation experiments, such as Monte
Carlo simulation. In addition, ME toolsets have been used to develop a hardware-in-the-loop
simulation, virtual-constructive simulation interoperation, and hybrid simulations. During
the development, the model engineers have used ME tools to validate and verify the require-
ments, test the implementation, gather simulation results efficiently, and interoperate the
model with other simulation models. Although the ME has been applied to various military
domains, this section introduces the Naval Warfare Simulator for anti-torpedo (NWSimAT)
warfare and anti-air-to-surface ship missile warfare simulation.

Naval warfare is combat involving various maritime systems, such as surface ships, war-
ships, torpedos, and decoys (Kim et al., 2011a; Seo et al., 2014). In addition, various combat
systems may participate in the battle with marine systems. For example, an aircraft may fire
an air-to-surface missile (ASM) at a surface ship. The surface ship may then utilize a defense
system to intercept the missile. Although there are many simulation objectives in naval war-
fare, this section introduces a naval warfare simulator that gives the survival rates for a sur-
face ship. Therefore, the main simulation objective is to maximize the survival ratio of an
underwater-to-surface warfare situation and an air-to-surface warfare situation.

In the underwater-to-surface warfare situation, a surface ship detects an underwater threat
andmay evade the threat using variousmeans. In particular, theNWSimAT detects a torpedo
and utilizes various decoys to evade the threat. In the air-to-surface warfare situation, a sur-
face ship detects a threat from the sky. As this threat has high speed, the surface ship should
utilize effective countermeasures to evade the threat. Therefore, the naval warfare simulator
analyzes the survival rate of the countermeasure tactics based on the distance between the
threat and the surface ship.

Fig. 15 shows the developed naval warfare simulations and the relationship among ME
tools and the simulations.

As shown in Fig. 15, the various model engineers utilized the ME toolset throughout the
development of the naval warfare simulator (the NWSimAT). The initial design of the
NWSimAT is to analyze the countermeasure tactics against the torpedo, the development
of which is supported by the ME. If the requirement of the NWSimAT evolved later, the
interoperation features of the ME would support the evolution.

Details of the development process of the NWSimAT and use of the ME toolset are
presented in Appendix A.
6 CONCLUSION

This chapter introduced the DEVSim++ME, a development environment for model engi-
neering. Although theME toolset supports the entire process of amodel’s development, there
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is still room to contribute to model engineering tools. As the demand for the modeling and
simulation field grows, newmodel engineering tools will be needed to enable various domain
experts to participate in developing models and conducting simulation experiments in var-
ious scenario settings. In summary, the DEVSim++ ME toolset offers advantages over other
existing environments, especially when targeting DEVS models to be deployed in the HLA-
based distributed simulation. These include ease of modeling, automatic model verification
and validation, distributed experimentation of a single simulation with multiple scenarios,
and extending non-interoperable DEVS models to HLA-compliant ones. The toolset utilizes
the full features of the C++ programing language, which allows modelers to easily utilize
algorithms and equations in existing C++ codes in the full development phase. Automatic
model verification and validation can be done by MVeri and MVali tools, respectively.
DEXSim utilizes computing resources efficiently to run a single model with multiple scenar-
ios in a parallel/distributedmanner. Finally, KHLAAdaptor implements a full set of services
and callbacks defined in HLA, by which non-interoperable DEVSmodels are easily extended
to HLA-compliant ones.
APPENDIX A: EXAMPLE CASE STUDY: NAVAL WARFARE
SIMULATOR FOR ANTI-TORPEDO SIMULATION

NWSim for Anti-Torpedo (NWSimAT) analyzes the effectiveness of anti-torpedo warfare
tactics and its countermeasure system, the decoy system. In addition, NWSimAT may be uti-
lized to determine the performance indices of the underwater weapon system. To build
NWSimAT, various model engineers collaborated to model the anti-torpedo system. First,
the model engineers identified the systems involved in the anti-torpedo warfare situation.

Fig. A.1 shows the conceptual process of the anti-torpedo warfare situation.
As shown in Fig. A.1, the surface ship, the submarine, the torpedo, and the decoy are the

system components of anti-torpedo warfare. When a hostile submarine detects a friendly



FIG. A.1 Operations of naval warfare for anti-torpedo tactics.

379APPENDIX A: EXAMPLE CASE STUDY: NAVAL WARFARE SIMULATOR FOR ANTI-TORPEDO SIMULATION
surface ship in the operating area, the hostile submarine launches a torpedo at the surface
ship. When the surface ship detects the torpedo and identifies it as a threat, the torpedo
launches the decoy system and makes a detour to evade the threat. The torpedo system
may be deceived by the decoys. When the torpedo is deceived, the torpedo may utilize the
sensor and apply various search patterns to find the surface ship. If the torpedo is not de-
ceived, the torpedo will shoot down the surface ship.
A.1 Initial Modeling of Anti-Torpedo Simulation

To model the combat between a surface ship and a torpedo, the model engineer models
the surface ship, submarine, torpedo, and decoy. Each surface ship, torpedo, and subma-
rine model contains a maneuver model and a sensor model. Therefore, the models may
move and detect the other simulation models. Every model of the NWSimAT is modeled
using the DEVS formalism. Coupled Model was used to model the surface ship, the
submarine, and the torpedo, as the models are a platform for subsystems, such as an en-
gine, a sensor, and a C2. In addition, Atomic Model was used to model the behaviors of the
subsystem. Fig. A.2 illustrates the Coupled Model and the Atomic Model of the surface
ship. As shown in Fig. A.2, a surface ship may have several types of equipment, such
as sensors, a command and fire control system model, and a launcher. Therefore, the
model engineer may compose different types of surface ships based on the simulation
objectives. The left side of Fig. A.2 illustrates the Damage Atomic Model. The Damage
Atomic Model receives the damage from the other platform and calculates it. It then com-
putes the damage status and broadcasts the message to the other models. The Damage
Atomic Model may then be reused by other platforms such as the submarine, the torpedo,
and the aircraft.
A.2 Extension of Anti-Torpedo Simulation

When the first version of the anti-torpedo simulation was developed, the model engineers
used the simulator to analyze the survival rate of the surface ship. Then, the model engineers
wanted to test a new type of decoy system, the mobile decoy system. As the existing decoy
system is a static system, it mimics the sound patterns of the surface ship at the landing
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FIG. A.3 Extended NWSimAT.
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location. However, the mobile decoy system has a maneuver system so that the decoy may
move in various directions. Therefore, the decoy systemmay deceive the sensor system of the
torpedo easily.

As there was no mobile decoy system existing at that time, the model engineers designed
and implemented the mobile decoy system based on the static decoy system. Therefore, the
engineers designed the mobile decoy system as a coupled model, and they inserted the static
decoy model and the maneuver model into it. As the DEVS formalism has modular charac-
teristics and the DEVSim++ supports the modularity of the DEVS formalism, the engineers
could extend the existing anti-torpedo simulation by simply composing themobile decoy sys-
tem and reusing the existing simulation models. Fig. A.3 shows the execution status of the
extended version of the anti-torpedo simulation.
A.3 V&V of the Naval Warfare Simulator

Amodel engineer may utilize MVali andMVeri to apply the V&V process to the models of
NWSimAT. To build a correct model, the model engineers developed the requirements spec-
ification tables. Fig. A.4 shows the portion of the requirement specification for a submarine
and its requirement table.

As shown in Fig. A.4, a model engineer may identify the behaviors of the participated sim-
ulation object and its time constraints easily. The dotted line of Fig. A.4 displays the mapping
between the underlined statements in the requirement specifications and the statements in
the requirement table.

A.3.1 Validation Using MVali

After defining the requirements, the model engineer should draw the class diagram,
sequence diagram, and DEVS diagram. Fig. A.5 shows each diagram based on the
requirements.

Finally, the model engineer may use MVali to generate the verification table. Fig. A.6
shows the verification table of an engagement scenario involving a submarine.
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FIG. A.5 Requirement diagrams from requirement specification.
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FIG. A.6 Verification results of the MVali tool.
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As shown in Fig. A.6, the MVali tool generates possible event sequences from the UML
diagrams and checks the execution sequence against the DEVS diagrams. In the verification
table, the column “V” denotes the verified event sequences that can be checked against the
event sequences in the DEVS graphs.

A.3.2 Verification Using MVeri

Once a model engineer confirms that the DEVS diagrams match the UML diagrams using
the MVali tool, they may develop the simulation model based on the DEVS diagrams. The
model engineers may use various tools to develop their models; however, if they use the
DEVSim++ as a development tool, they may utilize the MVeri tool to verify their code.
In general, a simulation model contains the domain-specific logics and the discrete event-
specific behaviors simultaneously, which means that verification of the model code can be
a difficult job. To check the model’s behavior, the model engineer should inject a probe code
and check the execution sequence against the DEVS diagram. Consequently, the model en-
gineer may make a mistake when he or she checks the model manually.



01:aspect CMveri
02:{
03:    Stateinfo* LUTable;
04:
05:     CMveri() {
06:          LUTabl = new Stateinfo(); e
07:     }
08:     pointcut ext_trans () = execution("% MobileDecoy:: ExtTransFn(...)"); 
09:     pointcut int_trans () = execution("% MobileDecoy:: IntTransFn(...)");
10:     pointcut output() = execution("% MobileDecoy:: OutputFn(...)");
11:     pointcut timeadv () = execution("% MobileDecoy:: TimeAdvanceFn(...)");
12:     pointcut close () = destruction("VerificationModel");
13: public:
14:     advice close() :before ()
15:     {
16:          tjp->target()->VeriTable ->PrintOn();
17:          std:: cin.get();
18:     }
19:};

FIG. A.7 Example of aspect in MVeri.

385APPENDIX A: EXAMPLE CASE STUDY: NAVAL WARFARE SIMULATOR FOR ANTI-TORPEDO SIMULATION
Fig. A.7 shows a code snippet from theMVeri tool. As introduced in Fig. A.7, theMVeri tool
utilizes the aspect-oriented programming features. The CMveri aspect has several pointcuts:
ext_trans, int_trans, output, timeadv, and close. Each pointcut denotes the probe point. This
probepoint is the location atwhich themodel engineer should inject the probe code.However,
when themodel engineer utilizes theMVeri tool, theMVeri tool automatically injects theprobe
code into the pointcut location.

Fig. A.8 shows an example of the timeadv pointcut. When the DEVSim++ simulation en-
gine executes the simulation algorithm, the engine may invoke the time advanced function.
Then, the timeadv advice will be activated and will execute the code. Line 07 in Fig. A.8 re-
cords the previous state, and the MVeri tool proceeds with the simulation. After the execu-
tion, themodel may change its state and return the time advanced value. Then, theMVeri tool
01: advice timeadv() : around ()
02:{
03:      std::string mname = tjp->target()->GetName();
04:
05:      if(strcmp(mname.c_str(),LUTable->ModelStateList.at(0)->modelname.c_str())==0)
06: {
07: int previous Status = tjp->target() ->state;
08: tjp->proceed ();
09: 
10: CTraceEle* pLOG = new  CTraceEle("TA");  
11: pLOG->Present_State= LUTable->GetStateName(mname, previousStatus);
12: pLOG->TimeAdvance= *(tjp->result());
13:
14: CCoupled* pRoot = DEVSINTERFACE_PTR->GetModel();
15: CModel* pModel = pRoot->GetComponent ("VerificationModel ");
16: DEVSINTERFACE_PTR->SendTSOMessage( pModel, mname.c_str(), pLOG, tjp->target()->GetTime());
17: }
18: else
19: tjp ->proceed ();
20:}

FIG. A.8 Example of probe code in MVeri.



FIG. A.9 Verification results of MVeri.
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gathers the information from the simulation model and sends it to the verification model,
which checks the event sequence. Fig. A.9 shows the verification results of the MVeri tool.

As illustrated in Fig. A.9, the MVeri tool generates verification reports from the simulation
model code. The first region shows the violated event sequences. The violated event se-
quences may occur because amodel engineer maymake amistake or refine themodel during
the development. Therefore, the violated sequence may be the evidence to correct the code or
the model specification.

The dotted line region shows the specified model behavior by a model engineer. The MVeri
tool continuouslymonitors the execution sequence of the simulationmodel and checkswhether
it is verifiedornot. Theverified sequences are thedesired sequences forwhich themodel should
begenerated,and thenot-verifiedsequencemeans that theMVeri tool cannot confirmthebehav-
ior because it did not appear during the simulation. Therefore, the model engineer may change
the initial condition and execute the simulation again to monitor the behavior.
A.4 Interoperation of the Naval Warfare Simulator

To increase the fidelity of a simulationmodel, model engineersmay consider twomethods:
rebuilding themodel from scratch or enhancing themodel based on the existingmodel. There
are pros and cons to eachmethod. For instance, rebuilding the simulation model from scratch
may involve redesigning the entire simulation based on the previous development experi-
ence so that the new simulation model may have high fidelity and other useful functionalities
that had not been considered before. However, building a simulation from scratch requires
lots of time and a high budget. Besides, enhancing the model from the existing model may
save time and funding by reusing the existing simulation model, but it may be difficult to
improve the model, as themodel engineers should understand the behavior of the simulation
model and the model’s source code. To tackle the problem, the ME gives the interoperation
tools to the model engineers.



FIG. A.10 Extension of the NWSimAT using KHLA Adaptor.
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Fig. A.10 shows the interoperation version of the anti-torpedo simulation. The left side of
Fig. A.10 shows the RTI and the pairs of the KHLA Adaptor and the simulation model. The
right side of Fig. A.10 shows the control user interface of the anti-torpedo simulation. As
shown in Fig. A.10, the model engineers may control the multiple simulators and the KHLA
Adaptors. Therefore, model engineers may develop a control program using a graphical user
interface to control each KHLA Adaptor and the simulation model. Fig. A.11 shows the ex-
ecution status of the interoperable simulation. The left side of Fig. A.11 shows the simulation
visualization tool, SIMDIS (Bigelow and Kowalchuk, 2012). By utilizing the KHLA Adaptor,
the model engineers may easily attach the 3D visualization tool.
A.5 Data Acquisition of the Naval Warfare Simulator

Amodel engineermay develop a naval air defense simulator to validate an anti-air defense
doctrine for the sea. The main objective of the simulator is to assess the survival ratio of the
surface ship in response to various anti-air defense doctrines. In general, many warships
adopt defense strategies based on the distance of the threats. The strategies divide the defense
stages based on the distance. To lessen the threats from a long-distance target to a short-
distance target, the surface ship tries to lessen the threat level by utilizing three types of
weapon systems.

The three types of weapon systems are the Ship to Air Missile (SAM), Electrical Warfare
(EW), and Closed In Weapon System (CIWS). When the surface ship detects the threat, the
Command & Control (C2) system commands and operates the weapon systems. Fig. A.12
gives an example of scenarios involving naval air defense.

When multiple missiles approach a surface ship, the C2 system of the surface ship may
detect the missiles that exist within the detection radius of the surface ship. Then, the C2



FIG. A.11 Execution screen of the NWSimAT.

Level 1
SAM 

Level 2
EW 

Level 3  
CIWS 

Pk: Probability of  kill
SAM: Surface to air missile
EW: Electronic warfare
CIWS: Close-in weapon systems

Surface ship

Evade ASM using
countermeasures

ASM 
(anti-ship missile)

Phase 3: CIWS defense

Phase 2: EW defense

Phase 1: SAM defense

FIG. A.12 Scenario example of anti-air-to-ship missile tactics.



FIG. A.13 Control software of the DEXSim.
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system of the surface ship should decide to utilize the surface ship’s weapon systems. When
the missiles are within the firing range of SAM, the C2 may allocate SAM to eliminate the
threat. If the SAM fails, the surface ship may utilize the EW method. Again, if the EW
method fails, the surface ship will use the last countermeasure system, the CIWS. When
the CIWS cannot intercept the missile, the surface ship will be destroyed by the missile.
During the experiments, the simulation procedure will continue to execute all possible
combinations of the input parameters. In addition, if a model engineer decides to replicate
the scenario 100 times to achieve confidence in the statistical evaluation, he or she should
conduct the experiments 7200 times. Fig. A.13 shows the federation DEXSim and the status
of the federate DEXSim.

As model engineers may share the computing environment, several experiments may be
executed on the DEXSim environment. Fig. A.14 shows the data acquisition time of the
NWSimAT with 7200 scenarios in a homogeneous environment. In addition, Fig. A.15 shows
the data acquisition time in a heterogeneous environment.

As Figs. A.14 and A.15 show the data acquisition time of the NWSim decreases linearly as
the computing resources increase linearly. However, when the number of the process
increases, the DEXSim may occupy more computing resources so that the NWSim cannot
utilize some computing resources.
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1 INTRODUCTION

The development of versatile technical systems requires enhancements of methods and
tools for effective modeling, simulation, and control. Aerospace systems (Sampigethaya
and Poovendran, 2013) and smart factories according to the “Industrie 4.0” trend
(Hermann et al., 2016) are typical examples. They aremodular structures aggregated by smart
components, which communicate and cooperate with each other andwith humans, andmake
decentralized decisions. Following the definition in Lee (2008), such systems are cyber-
physical systems (CPS). The term versatile here emphasizes that these systems are flexible,
reconfigurable, and reactive. Flexibility means the ability to adapt quickly and with little ef-
fort, within the limits of a given range, to changing conditions. Reconfigurability describes the
ease with which a system can be employed for different purposes or objectives by quickly
changing or adapting its physical units or controls. Flexibility and reconfiguration of a system
in this sense implies a reactive behavior according to changing conditions. Such characteris-
tics have been of interest in control engineering for many years and are part of industrial au-
tomation problems, as shown in Hummer et al. (2006).

In software engineering, versatility is considered under the term variability and often in
the context of Software Product Line (SPL) engineering, although not necessarily in combi-
nation with reactivity. Bosch (2013) considers SPL engineering as an approach for managing
393 # 2019 Elsevier Inc. All rights reserved.
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functionality for a family of products, in Apel et al. (2016) variability has been defined as the
ability to derive different products from a common set of core assets, and in Jezequel (2012)
variability is described as a characteristic of a software system that can be configured, custom-
ized, or extended for employment in a particular context. Moreover, Jezequel (2012) empha-
sizes that the basic idea of the SPL engineering process is the same as in traditional
engineering disciplines, which use modeling techniques. According to Pohl (2006),
SPL engineering is subdivided into domain engineering and application engineering. Do-
main engineering focuses on core assets development and subsequently, application engi-
neering addresses the usage of the core assets to develop a final product based on
customer requirements. In addition, Jezequel mentions, that the variability itself has to be
modeled to handle complex variability problems and that thewhole process needs some form
of automation. Several concepts of this kind of automation are known as model-driven engi-
neering (MDE) and are discussed in Cretu and Dumitriu (2015). MDE methods are well ac-
cepted in several engineering disciplines, particularly in industrial automation, automotive,
aerospace, or robotics. MDE methods that have been developed in software engineering are
often inspired by and used for solving software-intensive technical applications, such as in
Hummer et al. (2006), Zander (2008), and Haber et al. (2013).

Many of the problems discussed in software engineering or other engineering disciplines
regarding versatility or reactivity have been studied—if not before, then simultaneously—
by the modeling and simulation (M&S) community focusing on system theory. In this con-
text, we would like to point out the work on multifaceted and variable structure modeling
(Zeigler, 1984; Zeigler and Praehofer, 1989; Rozenblit and Zeigler, 1993; Zeigler et al., 2000;
Couretas, 2006; Zeigler and Hammonds, 2007; Zeigler and Sarjoughian (2013)Seo et al.,
2014; Pawletta et al., 2016a,b; Santucci et al., 2016), variable and dynamic structure systems
simulation (Pawletta and Pawletta, 1995; Barros, 1997; Uhrmacher, 2001; Kim and Kim,
2001; Pawletta et al., 2002; Hu et al., 2003; Park and Hunt, 2006; Mittal et al., 2006), or dy-
namic model updating with multimodels ( €Oren, 1987; Yilmaz and €Oren, 2004). Last but not
the least, Chapter 2 presents structure variations for achieving a desired behavioral
approximation.

To model the variability of a product, an SPL model defines features and variation
points, where different variants of a product can be derived for varying requirements. Fea-
tures represent abstract system characteristics and variation points denote selection possi-
bilities for deriving a distinct variant. According to the layers of the meta-object-facility
(MOF) hierarchy in OMG (2006), variability mechanisms can be defined at different levels
of abstraction. They can be specified using a variant or variability model at the metamodel
layer. This type of a variability model is combined with reusable core assets, organized in a
library or implemented as a 150% model, such as in Dziobek et al. (2008), Steiner et al.
(2013), and Lackner et al. (2014). Then, using MDE-based transformation methods, execut-
able system models or target code for real devices are generated. This approach is basically
comparable with the System Entity Structure and Model Base (SES/MB) approach in M&S,
as described in Zeigler (1984), Zeigler and Praehofer (1989), and Zeigler et al. (2000). Par-
ticularly, in software for technical systems, variability and core assets are often modeled
directly on the system level in combination with specific configuration methods, such as
in Hummer et al. (2006), Zander (2008), Kliemannel et al. (2010), and The Math Works
(2017). These approaches are partly comparable with methods developed for variable
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and dynamic structure systems simulation in M&S, such as in Barros (1997), Uhrmacher
(2001), Kim and Kim (2001), Pawletta et al. (2002), Hu et al. (2003), Park and Hunt
(2006), and Mittal et al. (2006). However, there is often a gap between the theoretical re-
search in the M&S stage and the development of appropriate tools and infrastructures
for engineers.

This chapter introduces a novel infrastructure for the M&S of versatile and reactive tech-
nical systems, based on an extended concept of the SES/MB. It briefly introduces the basic
theory and discusses some extensions to make it more pragmatic for implementation in an
engineering tool or infrastructure such as MATLAB/Simulink. According to the previously
introduced concepts, an SES specifies a set of structures of system designs, including varia-
tion points. A system design is defined by its system structure and parameter configuration.
The core assets are specified as a set of configurable basic models, which are organized in an
MB. Moreover, the SES/MB framework defines a set of transformation methods for generat-
ing executable simulation models (SMs). Besides an extended concept of the SES/MB frame-
work, the presented infrastructure consists of an execution unit (EU) and an overall
experiment control (EC) to enable automated, reactive processing of SES models in combina-
tion with different model bases during the experiment.

The chapter is organized as follows. Section 2 gives an overview to the new infrastructure
and summarizes essential basics of the underlying SES/MB framework. In Section 3, an ad-
vanced industrial robot (IR) control is introduced as a typical example of a versatile technical
system and the basics of a model-based control design using the simulation-based control
(SBC) approach following Pawletta et al. (2009) are described. This robotic example is then
used to demonstrate the basic steps of domain and application engineering in Section 4, using
the new infrastructure. After that, Section 5 provides a short insight into a toolbox implemen-
tation for MATLAB/Simulink. The chapter concludes with our results and provides an out-
look to some future works.
2 INFRASTRUCTURE BASED ON AN EXTENDED SES/MB APPROACH

The infrastructure is based on the SES/MB framework and extends it by an EU and EC
unit. Starting with a general overview to the several components and their complex interac-
tions, we explain how the infrastructure can be used for the M&S of versatile dynamic sys-
tems. In this context, we discuss the problem of state consistency and suggest an experimental
frame (EF) for such systems corresponding with the other elements of the infrastructure.
Then, we summarize basic concepts for modeling system variability using system entity
structures and introduce some extensions to that approach.
2.1 General Overview of the Infrastructure

In this context, the M&S of versatile systems comprises of: (i) modeling of a set of alterna-
tive system configurations, also called multifaceted modeling, and (ii) automated, reactive
generation of system configurations, which are executable within a simulation environment.



FIG. 1 Procedure model and classic SES/MB framework.
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The first part can be tackled using the classic SES/MB framework as introduced in Zeigler
et al. (2000); for the second, the framework has to be extended.

Fig. 1 illustrates the procedure model for the M&S of a versatile system based on the
concept of the classic SES/MB approach and the corresponding framework presented in
Zeigler et al. (2000). As part of the domain engineering phase, the versatile system has to be an-
alyzed regarding its different system configurations. That means, possible system structures,
parameter configurations, and core assets have to be identified. The result is a set of conceptual
system structures, including possible parameter configurations and a set of conceptual basic sys-
tem components, which can be composed in a modular, hierarchical manner. As illustrated in
Fig. 1, the next step in the domain engineering phase is called formal modeling and implemen-
tation. The dynamic behavior of the conceptual systems has to be modeled. This results in
formal basic systems or models, which have to be implemented as reusable software or model
components with defined input and output interfaces and organized in an MB. On the other
hand, the conceptual system structures and parameter configurations have to be modeled
with an SES, which defines simulator-independent links to basic models in the MB. That
means, the resulting SES is a formal model of all possible system configurations. In the application
engineering phase, executable models are generated with the transformation methods called
pruning and build. This step is summarized in Fig. 1 under the term deployment. Based on
user requirements, the pruning operation derives a unique formal system structure with
parameter configurations from the SES. The result is a decision-free tree structure, called
pruned entity structure (PES). Then, an explicit executable model can be generated using a
simulator-dependent build method based on the information of PES and basic software
components from the MB.



FIG. 2 Extended SES/MB-based infrastructure.
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The classic SES/MB framework does not define techniques for an automated, reactive gen-
eration of explicit executable models. For such a task of deployment, the framework has to be
extended, as illustrated in the infrastructure in Fig. 2. The interactions between individual
components of the infrastructure are described in more detail in Fig. 3.

Besides the SES/MB framework, the infrastructure consists of an EU and an overall EC unit
to enable automated, reactive processing of an SES in combination with an MB during exper-
imentation runtime. Therefore, the classic SES/MB framework is extended by an input and
output interface using SES variables (SESvar). The selection of a particular system configuration
depends on the current settings of the SESvar.

The EC manages the order of explicit system configurations that have to be generated.
Based on an arbitrary application-dependent algorithm, the EC computes current settings
for the SESvar as inputs for the SES/MB framework to generate an executable SM or a set
of SMs. However, in this paper, we will stick to one SM. The EC transmits the SM to an
EU. Additionally, the EC configures and starts the EU. It provides the necessary settings
of simulation execution parameters, and initiates the execution. The EU performs three major
tasks: (i) linking an SM with a simulation engine (simulator), (ii) executing a simulation run,
and (iii) collecting the results. Once the execution is complete, it returns the results to the su-
perior EC. The EC collects all intermediate results from the EU. Depending on its internal al-
gorithm and current dataset, it starts a new cycle or finishes the experiment. Finally, the EC
provides the overall results to the user or another software component.

A first application of the introduced infrastructure was published in Schmidt et al. (2016)
for solving reactivemodel-based testing problems in the domain of aeronautics.Moreover, the
authors show that it is useful to extend the SM by an EF according to Zeigler (1984). The con-
cept of EF supports more generalized systemmodels, calledmodel under study (MUS) in Fig. 2.
Thus, the SM consists of the MUS and a corresponding EF, as illustrated in Fig. 2.



FIG. 3 Sequence diagram describing interactions among infrastructure components.
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At this point, it should be emphasized that the dynamic structure and parameter config-
urations are notmodeled on the systemmodel level, but on the higher abstraction level of SES.
Thus, the problem of state consistency between reconfigurations cannot be handled inside the sys-
tem model alone. This problem is solved in the infrastructure of the EC unit using the intro-
duced SESvar and the concept of EF. The basic structure and function of an appropriate EF is
discussed in the next subsection.
2.2 Structure of a Corresponding EF

The general concept of the EF was introduced by Zeigler (1976), further elaborated in
Zeigler (1984) and has been continuously advanced and applied, such as in Rozenblit
(1991), Zeigler et al. (2000), Traorè and Muzy (2006), and Ponnusamy et al. (2014). Basically,
according to Zeigler (1984), an EF specifies “a limited set of circumstances under which a sys-
tem or model is to be observed or subject to experimentation.” In the case explored by this
paper, this means the circumstances of the simulation experiment with the MUS. Hence,
the EF has to generate admissible input values X for the MUS and has to observe its output
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values Y. In addition, the EF has to control the initialization, continuation, and termination of
an experiment. Therefore, Zeigler introduces a set of run control variables, in short C. While
the concept of EF can be implemented in various ways, Zeigler recommends a modular and
structured model specification for a coupled EF structure—consisting of a generator (GEN),
acceptor (ACC), and transducer (TRA)—which can be connected via external inputs and out-
puts to a set of corresponding MUSs. Based on this theory, we derived the basic EF structure
in Fig. 4, which is compatible with the infrastructure described in Fig. 2.

The basic EF consists of at least two GEN subtypes, an ACC and a TRA. At the start time of
an experiment, the ACC sends a startinit event to the generator GENinit, which sends the ini-
tial conditions to the MUS. After a successful initialization of the MUS, determined by eval-
uating the control variables C, the ACC sends a start event to the generator GENproc. During
the continuation phase of a simulation run, the GENproc delivers theMUS input values X and
the TRA receives the MUS output values Y and computes control variables C for the ACC.
Based on its current input values, the ACC determines whether a simulation run will be con-
tinued or has to be terminated. In case of termination, the ACC sends a stop event to the TRA,
which reacts by computing and sending the set of summarymappings SU as output values of
EF. Simultaneously, the ACC sends an output value verdict to EF, which indicates whether
the simulation run has been valid or invalid. Of course, this is a basic EF structure and,
depending on the application, it can define additional coupling relations.

The EF outputs verdict and SU correspond to the results of the EU in Fig. 3. Thus, the set SU
can contain state variables, which have to be saved for the initialization of a subsequent sim-
ulation run. The EC unit can select, save, and transmit these values as the new values of
SESvar to the SES/MB framework to start configuration for the next experiment. Our basic
EF structure specifies no inputs from outside because the total set of admissible configura-
tions to build an SM, consisting of an MUS and an EF, are specified in the SES. The config-
uration of an SM is only determined by the pruning method, depending on the current
settings of SESvars, and the build method using basic models from the MB. Hence, the MB
has to also organize basic models to build an appropriate EF.
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2.3 Basic Concepts of the System Entity Structure and Some Extensions

Following Zeigler and Hammonds (2007), the SES itself is an ontology that reflects system
engineering concepts of hierarchical decomposition and specialization. We will focus on con-
cepts of the SES, which are important for modeling a set of modular, hierarchical SM config-
urations and for building an executable SM using basic models from an MB. This
consideration is based on the baseline definitions in Zeigler andHammonds (2007). Addition-
ally, we briefly introduce the concept of SES Variables (SESvars) and SES Functions (SESfcn)
from Pawletta et al. (2014). Fig. 5 part one (Fig. 5p1) and Fig. 5 part two (Fig. 5p2) illustrate
essential concepts that shall be discussed. To start with, an example SES and MB (Fig. 5a) is
analyzed, with individual sections examined in Fig. 5b–f. These figures show a section of the
SES on the left side and the specified model structures of the respective section on the right.

The modeling of an SES is based on six axioms: (i) uniformity, (ii) strict hierarchy,
(iii) alternating mode, (iv) valid brothers, (v) attached variables or more general attributes, and
(vi) inheritance. An SES can be represented as a directed labeled tree (Fig. 5a). The tree nodes
are divided into two fundamental types, entity and descriptive nodes, which alternate. Entity
nodes describe system elements and the system itself (root node). Descriptive nodes express
relationships between entities and are subdivided into: aspect, specialization, and multiaspect
nodes. The different types of descriptive nodes are marked with different edge types (one,
double, or triple vertical lines) and usually with a specific name suffix; in this case: Dec
for aspect node, Masp for multiaspect node, and Spec for specialization node.

The entities specify basic, coupled, or abstracted models. Basic models are always
represented by leaf nodes. They define a specific attribute mb that specifies a link to a
corresponding MB (Fig. 5a). They can define more attributes (para) for configuring the
referenced basic model.

Coupled models are always described by a subsequent aspect node (Fig. 5b). An aspect
describes a decomposition relationship between its parent entity and its children entity
nodes, whereby the coupling relations—the external input (EIC), internal (IC) and external
output (EOC) couplings—are defined as attribute. Each coupling relation is defined as a
four-tuple(from entity, port name, to entity, port name).

Alternative system compositions can be described using aspect siblings, as at entity B with
its successors B1Dec and B2Dec (Fig. 5c). The selection is specified by an additional aspect
node attribute called an aspect rule. In the example given, the aspect rule, named arule, uses
an SESvar, named SESvar1.

The multiaspect node is a special kind of aspect node (Fig. 5d). It stands for a multiplicity
relationship that specifies that the parent entity is a composition of multiple entities of the
same type. Hence, it defines an additional attribute, called numRep, to specify the multiplic-
ity. The multiplicity can be defined by a fixed value, an interval, or variable depending on an
SESvar or SESfcn. Note that depending on the multiplicity, several coupling relationships
have to be defined and that during the pruning process, the replications are numbered. Dif-
ferent parameter configurations of replications can be defined by multisets.

A specialization describes the taxonomy of an entity (Fig. 5e). The parent entity node rep-
resents an abstractedmodel and the children entity nodes are possible specializations. In con-
trast to the AND relationship of aspect and multiaspect, a specialization describes an XOR
relationship regarding its children. The selection is defined by an attribute called the selection
rule—named srule in Fig. 5e—analogous to the aspect rule for aspects. During the pruning



FIG. 5 Fig. 5 p1: An example SES andMB (a) and the basic concept of aspect (b) and aspect siblings (c). p2: The basic
concept of multi-aspect (d), specialization (e) and selection constraints (f).
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operation, the parent entity and the selected child entity will be aggregated according to the
inheritance axiom. Fig. 5e illustrates only the simplest case for a specialization with name and
attribute aggregation. More complex cases are described in Zeigler and Hammonds (2007).

Moreover, the SES supports the specification of cross-tree relations, called selection con-
straints, which are defined by directed edges (Fig. 5f). A selection constraint determines that
the selection of a certain node causes the selection of other nodes. Selection constraints can be
combined with aspect and selection rules.

The concept of SESvar has been introduced as an input interface for an SES and for general
cross-tree information exchange between node attributes. SESvars, which represent input
variables for an SES, require a value assignment before the pruning operation. In addition,
semantic conditions can be defined using SESvar. Such conditions can limit the value range
of SESvar and can exclude specific system configurations. In the example, in Fig. 5c–e,
SESvar1 was used in the aspect rule arule to select the aspects B1Dec or B2Dec and SESvar2
in the selection rule srule of the specialization CSpec. If, for example, we want to exclude
the system configuration B1Dec with the specialization C3, this can be specified with the fol-
lowing semantic condition: SESvar1==‘B1’^¬(SESvar2==‘C3’). Semantic conditions
are always checked before pruning.

The concept of SESfcn has been introduced to specify complex variability within node at-
tributes with minimal effort and to keep a lean SES tree. Typical examples include the defi-
nition of varying coupling relations, varying port numbers of systems, or the definition of
variable parameter configurations in attributes. The multiaspect node in Fig. 5d is considered
as an example. Note that depending on the multiplicity attribute numRep, several coupling
relationships have to be defined. This can be specified using an SESvar, named NUM, for
the multiplicity attribute numRep and the subsequent SESfcn, named cplg.

cplg(children, parent, num)
for i=1 to num
cplg(i)={(parent, ‘in’, children(i), ‘in’), –EIC
(children(i),‘out’, parent, ‘out’)} –EOC
end
return(cplg)

Then, the DMasp node in Fig. 5d can simply define the attributes:

{numRep=NUM; couplings=cplg(children,parent,NUM)}

The SESfcn cplg is evaluated during the pruning operation. For effective coding of SESfcn,
the implicit attributes parent and children are introduced for each SES node. They encode the
parent and children node names, respectively. Our practical experience showed that an
SESfcn can often be used for a variable configuration of attributes at several nodes. The above
SESfcn cplg specifies a general case of a parallel coupling structure.
3 A ROBOT CONTROL AS EXAMPLE FOR A VERSATILE SYSTEM

IR applications are typical examples of versatile technical systems because modern IRs are
the most flexible and reconfigurable units in manufacturing. We introduce a classical
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advanced robotic control problem. Then, we briefly discuss the SBC approach as basic for the
subsequent problem solution. The robotic control example will be used as a basis for expla-
nations in the subsequent section.

3.1 Problem Statement

Fig. 6 shows the layout of the robot application that will be studied. The overall goal is to
identify different part types at an input buffer (IB) and to transport them with an IR to a part
type depending on the output buffer (OB1…OBn). The part types are randomly distributed in
the IB. We assume that every time the next part for handling is located at a fixed pick position
for the IR. Before handling by the IR, the part type has to be identified using an electronic scale
(SCA). Depending on this first identification, only some exclusive part types need a second
identification by an image sensor (CAM). After successful identification of the current part,
the IR picks it up, moves it to the corresponding part type dependent OB, and places it at a
fixed location.

The control software (CS) needs to be designed for a variable number of different part
types. Thus, the problem is versatile, because the number of OBs depends on the total number
of part types and the necessary identification operations depend on the current part type.
3.2 The Simulation-Based Control Approach

The control development should be carried out stepwise and should bemodel based, using
reusable basic models following (e.g., the SBC) approach introduced in Pawletta et al. (2009).
Fig. 7 illustrates schematically the SBC approach. This approach uses an SM and refines it
stepwise across the development phases: planning, automation, and operational use of the
CS. During transition from planning to the automation phase, the SM is separated into a con-
trol model (CM) and a process model (PM) for a clear arrangement of the control design.

The transition from the automation to the operational phase is usually known as code gen-
eration. Depending on the real-time requirements of the control application, the SBC ap-
proach distinguishes between explicit and implicit code generation. The first type is the
classical method for high real-time requirements in conjunction with mostly embedded con-
troller hardware using a compiler. For applications with rather slow timing, like our robot
example, implicit code generation is suitable. Then, the SM from the automation phase can
be extended by an interface model (IM) and directly used as a CS (Freymann et al., 2016).
FIG. 6 Layout of the robotic application.



FIG. 7 Simulation-based control (SBC) approach.
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The IMprovides a process interface enabling a software-in-the-loop (SIL) control according to
the definition inAbel and Bollig (2006). Following the SBC approach, the CS always includes a
PM. Thus, observer concepts can easily be realized.

In Schwatinski et al. (2012), Maletzki (2014), and Freymann et al. (2016), the SBC approach
has been successfully applied for task-oriented control (TOC) applications. According to
Siciliano (2008), the principle of TOC is to divide a control problem into a set of tasks and their
couplings. Tasks are logical, mostly independent, abstract operations. Once identified, tasks
are coupled together to map the control problem. However, a TOC specification is not exe-
cutable directly because tasks are an abstract description of operations. To perform tasks, a
transformation method is required. All tasks have to be transformed into control commands
in order to execute them. In the SBC approach, the CM contains the TOC specification. The
PM still has a component-oriented structure according to the elements of the real process and
is also the place of generalized task transformation. That means the CM and PM are indepen-
dent of vendor-specific robots. Vendor-specific task mapping is the domain of the IM. Sub-
sequently, we will focus our considerations only relating to the SM requirements in the
automation phase. Details for developing a corresponding IM can be found in Freymann
et al. (2016).
4 DOMAIN AND APPLICATION ENGINEERING
OF THE ROBOT CONTROL

This section presents the principal steps of domain and application engineering using the
introduced infrastructure through the example of the robot control. We start with a system
analysis and the conceptual modeling of core assets regarding basic system components
and system structures. Then the basic steps for formal modeling and for implementing a suit-
ableMB are explained, with a particular focus on themodeling of systemdesignswith an SES.
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Finally, the deployment of the SES/MB-based robot control is shown by discussing the basics
of an appropriate algorithm for an EC.
4.1 Analysis and Conceptual Modeling

Taking into account the problem constraints defined in the robot control example, the re-
quirements of SBC, and the previous considerations relating to the EF mentioned in
Section 2.2, we can derive the general conceptual system structure for an SM of our robot ap-
plication as illustrated in Fig. 8.

The SM (sm) is made up of an MUS, comprising of a control model (cm) and a process
model (pm), and a corresponding EF (ef). Note that the original SM from Fig. 7 is now the
mus. The conceptual structure of the EF has already been analyzed and illustrated in
Fig. 4. The entity gen in Fig. 8 represents a general GEN component that can be further
decomposed or organized as a complex, configurable basic model in anMB. The same applies
to the acceptor acc and the transducer tra.

The further decomposition of pm is given by the real system layout in Fig. 6. The decom-
position of control model (cm) results from the task-based control design. Each component
can be implemented as a configurable basic model and stored in an MB:

• scale (sca), image sensor (cam), input buffer (ib), robot (ir), and a generalized output
buffer (ob).
The decomposition of cm results from the task-based control design. Based on the problem
description, the following four tasks can be derived and implemented as configurable basic
models for storing in an MB.

• identification using the SCA (isca); identification using the CAM (icam); picking a part
with the IR at the IB (pick); and moving the part with the IR to an OB and placing it (place)

The task place is a composite task, which involves moving and placing a part. As the two
single tasks themselves are simple, combining them in one basic model reduces the total com-
plexity. The tasks are executed in the order:

• identification of each new part using SCA at IB,
• second identification of only exclusive parts using CAM at IB, depending on the previous

identification result with the SCA,
FIG. 8 SES tree representing the con-
ceptual system structure of an SM for
the robot control.
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• picking the part with the IR at IB and moving/placing it at the corresponding OB.

In addition to the identification and robot control, the concurrent arrival of randomly
distributed part types at the IB has to be modeled in the pm, but this operation has no
direct effect on the cm. Moreover, it can be assumed that both identification tasks require
a negligible period of time. Hence, the concurrent part arrival at the IB has to be con-
sidered only during the pick-and-place task of the IR. Based on these considerations, the
entire problem can be modeled using three system structures, illustrated as conceptual
block models in Figs. 9 and 10. The system structures for both identification operations
differ only in the basic model for the identification device (sca j cam) in the pm and
for the control task (isca j icam) in the cm. In contrast, the pick-and-place operation with
the IR requires quite a different system structure. Note that this system structure
depends on the number of part types, because they influence the number of OBs in
the system. The system structure in Fig. 10 contains only the coupling relations for
two OBs.
mus
cm

isca

icam

cam

datastart

pType

results to EC
{verdict, su = (pType)}
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pTypestop
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stop
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FIG. 9 Conceptual system structure for both identification operations.



FIG. 10 Conceptual system structure for the pick-and-move/-place operation.

4074 DOMAIN AND APPLICATION ENGINEERING OF THE ROBOT CONTROL



408 18. MODELING AND SIMULATION OF VERSATILE TECHNICAL SYSTEMS
Subsequently, we will summarize some essential characteristics regarding the system
structures. As discussed in Section 2.2, the initialization, continuation, and termination of
the simulation is controlled by an EF. Both identification operations (Fig. 9) require no specific
initialization. The current part identification is started by the two consecutive events of acc
(msg#1) and gen (msg#2). Then, the identification task (isca j icam) in cm sends an event
(msg#3) to the identification device (sca j cam) in pm, which returns the identification data
as an event (msg#4) to the task model in cm. Based on these data, the identification task
(isca j icam) determines the part type (pType) and sends this information (msg#5) to the tra
in ef, which relays the pType (msg#6) to the acc. The acc evaluates the identification result
and stops the continuation phase with an event (msg#7) to the tra, whereupon the tra and
the acc produce an EOC event of ef (msg#8)—the acc yields a verdict regarding the experiment
and the tra a summary mapping su¼ (pType). These output events are essential for the further
process. In the case where verdict¼¼ false, the experiment was wrong; otherwise, the result in
tra.su is valid and the information in pType determines the next step. This can be a second
identification using the image sensor (cam) or a pick-and-place operation with the IR. In
the second case, the part type information in pType is necessary to initialize the system
structure.

The system structure for performing a pick-and-place task (mus in Fig. 10) with the IR
needs three pieces of information for initialization: (i) the stocking in IB, (ii) the stocking in
each OB, and (iii) the previously identified type (pType) of the part to be actually handled
by the IR. The initialization phase is started by an event from acc (msg#1) to gen, which sends
initialization events to the ib and to each ob in pm (msg#2a, #2b). They send an initialization
finish event to the acc (msg#3a, #3b). In case of successful initialization, the acc starts the actual
execution phase (“continuation”) with an event to the gen (msg#4), which randomly generates
new parts (msg#50) for the ib in pm that reports each state change (msg#500) to the tra in ef. Ad-
ditionally, the gen sends the previously identified pType as event to the pick task in cm (msg#6),
whereupon the pick operation using the IR (ir) is executed (msg#7, #8, #9, #10). We assume
that the basic model ir of IR is configured with the trajectories to the location points at the IB
and at each OB. After receiving the finish event (msg#10), the pick task starts the place task in
cm (msg#11). Based on the information in pType (#msg11), the place task basic model deter-
mines the appropriate OB (ob1…ob_n) and sends the corresponding buffer address with an
event (msg#12) to the ir in pm to execute the handling operation, which finishes with the si-
multaneous events (msg#13a, #13b). Then, the place task sends the pType to tra in ef (msg#14a).
Analogous to the ib in pm, each ob reports its state to tra (msg#14b). The termination phase by
the acc is principally identical to the system structure for the identification operations, but the
output su of tra contains as additional information the last states of ib and each ob in pm.
4.2 Formal Modeling

According to the procedure model set out in Fig. 1, the next steps are:

1. the formal modeling of basic models, their implementation and organization in anMB and
2. the formal modeling of all system configurations regarding their structure and parameter

configuration with an SES.



FIG. 11 MB with basic models for the robotic application.
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Since the first set of steps is commonly known, we will only consider the basic models that
have to be implemented. The set of appropriate basic models for the MUS (mus) have already
been discussed in the previous subsection. Regarding the basic models for the EF (ef), it is
suitable to develop different basic models for the structures in Figs. 9 and 10. Accordingly,
Fig. 11 shows the resulting MB.

Using the infrastructure introduced in Section 2, the different system configurations of the
versatile system can be mapped to a set of executable SMs, which are linked in the deploy-
ment phase using the execution unit (EU) of the infrastructure. Subsequently, the main steps
for developing a corresponding SES are explained.

The SES tree is illustrated in Figs. 12 and 13. Before discussing the SES tree, the following
set of SESvar is defined through some semantic relations.

SETofPartTypes ...input parameter for SES
NUMob = jSETofPartTypesj // jj for cardinality



FIG. 12 SES main tree for the robotic control example.

FIG. 13 SES subtree for the pick-and-place operation.
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PTYPE E {SETofPartTypes[NIL}
STATEib ...vector with state of input buffer occupancy
STATEob ...matrix with state of each output buffer occupancy
PHASE E {TASKisca, TASKicam, TASKpickplace}

The SES has to model three different configurations for an SM according to Figs. 9 and
10. For this reason, the decomposition of the SM (sm) is specified with the two aspect sib-
lings identDec and pickPlaceDec. The subtree of identDec specifies the system structures of
the two different identification operations and the other one, depicted in detail in
Fig. 13, the system structure of the part handling operations using the IR. The selection
is specified as an aspect rule with the subsequent conditions in the respective attribute
{ar1} of the nodes identDec and pickPlaceDec node. It depends on the current setting of
the SESvar PHASE.

identDec:ar1={PHASE==TASKisca j PHASE==TASKicam}
pickPlaceDec:ar1={PHASE==TASKpickplace}

Additionally, each aspect node specifies the decomposition of sm into an MUS (mus)
and EF (ef) and defines the coupling relationships as attributes ({c1},{c6}) analogous to the
theory in Fig. 5c. The node names for the two MUS and EF are different because of the
SES uniformity axiom.

The SES in Fig. 12 specifies the same EF (ef1) for both identification operations. The
aspect node ef1Dec defines its decomposition in a generator (gen1), acceptor (acc1), and
transducer (tra1) and the coupling relationships as attribute {c2}. The leaf nodes specify
the link to a basic system in the MB in their attributes (Fig. 11), as shown at node gen1.
The decomposition of the mus1 in a control model (cm1) and a process model (pm1) is
modeled with the aspect node musDec and its corresponding attribute {c3}. The subse-
quent aspect nodes cm1Dec and pm1Dec describe the decomposition of cm1 and pm1,
respectively. The entities task and device represent abstract systems, which are special-
ized by their subsequent specialization nodes taskSpec or deviceSpec. The selection is
described by the selection rule in attribute {s1} and depends on the value in the SESvar
PHASE. The selection of the corresponding identification device is defined with the
Selection Constraints edges.

taskSpec:s1={PHASE==TASKisca ! isca;
PHASE==TASKicam ! icam}

The SES part of the pick-and-place handling operation using the IR, the subtree of the as-
pect pickPlaceDec, is depicted in Fig. 13. Besides the actual MUS (mus2), it specifies a specific
EF (ef2) with its coupling relations in attribute {c7}. As described in Section 4.1 (Fig. 10), the
generator (gen2) has to provide initialization data for the IB (ib) and for each OB (ob) and
information about the part type to be handled by the IR (ir). All these data are defined as
attributes of node gen1 using SESvar.

Regarding the MUS (mus2), the control model (cm2) is specified as a simple static
composition of the pick-and-place task (cm2Dec). The structure of the process model
(pm2) depends on the number of part types, because it influences the number of output
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buffers in the system, as defined by the SESvar setting NUMob=jSETofPartTypesj in
the beginning. Based on this fact and the conceptual model structure in Fig. 10, the as-
pect pm2Dec defines the decomposition of pm2 in an IB (ib), IR (ir), an entity obs—which
is further refined—and auxiliary components such as the part switch (switch) and com-
ponents for decomposing and composing vector-based data (demuxiniOB, muxfiniOB,
muxstateOB). Of course, the coupling relationships of pm2, defined in the attribute
{c10}, are also influenced by the number of OBs in the system, which means they depend
on the current setting of the SESvar NUMob. This variability in the coupling relations
can be specified using an SESfcn, as shown in the subsequent code excerpt and the
specification in {c10} is the corresponding SESfcn call: {couplings=cplg_c10
(children,parent,NUMob)}.

cplg_c10(children,parent,num)
// static couplings
...
// variable couplings between entity switch and entity obs
for i=1 to num
cplg(i)={(children.switch,out(i), children.obs,in.partin)}
end
...
return(cplg)

The decomposition of the entity obs in a variable number of type identical entities (ob),
which represent the output buffers, is specified by the multiaspect node obsMasp. It has
the following attribute definitions:

{numRep=NUMob;
couplings=cplg_c11(children,parent,NUMob)}

The specification of SESfcn cplg_11 is similar to the one above. Besides the coupling rela-
tions, the input/output port configurations of some basic systems—such as those specified at
the entities switch andmuxfiniOB—depend on the number of OBs in the system,which is spec-
ified using the SESvar NUMob.
4.3 Deployment Using the Infrastructure

Subsequently, the deployment of the SES/MB-based robot CM, using the infrastructure
shown in Fig. 2, is presented. For this, it is necessary to implement the application-dependent
algorithm for the EC, which links the classic SES/MB framework with the EU. The following
algorithm shows the major steps for the robot control.

For complex problems, it is advisable to develop the algorithm using formal approaches,
such as finite state machines as presented for a model-based testing application in aviation in
Schmidt et al. (2016).



LISTING 1 Specification of the experiment control for the robot application.

4134 DOMAIN AND APPLICATION ENGINEERING OF THE ROBOT CONTROL



414 18. MODELING AND SIMULATION OF VERSATILE TECHNICAL SYSTEMS
5 PROTOTYPE IMPLEMENTATION IN MATLAB/SIMULINK

The suggested infrastructure has been prototyped using the SES toolbox for MATLAB/
Simulink (Pawletta et al., 2014). The SES toolbox provides a graphical environment for
SES-based modeling within MATLAB. It comprises a graphical editor and different methods
like (i) pruning for derivation of a PES from an SES, (ii) flattening for hierarchy reduction of an
PES, (iii)merging to synthesize various SES into a large one, and (iv) validity checking of the SES
and PES, for example, to see whether it satisfies the general SES or the PES axioms and the
specific semantic conditions. All the methods can be called from the GUI of the SES toolbox.
Fig. 14 shows a view of the GUI with the SES parts tailored for the robotic control example.
Furthermore, an MB analogous to Fig. 11 was implemented using MATLAB/Simulink and
MATLAB/SimEvents.

The GUI consists of a menu bar, tab bar, and the three subwindows: Node Properties (left),
SES Hierarchy (middle), and general Global Settings (right). In the middle subwindow, an SES
tree can be edited in a manner similar to a data manager. Node attributes like coupling re-
lationships or selection rules are edited and displayed in the left subwindow, Node Properties.
In the view displayed above, the aspect rule for choosing the identDec or pickplaceDec aspect is
displayed. Global properties and cross-tree relations of an SES, such as SES Variables, SES
Functions, and Semantic Conditions, are managed in the subwindow Global Settings. After
the SES is specified using the GUI, it can be saved as a MATLAB specific mat file or an
XML file.
FIG. 14 Overview of the SES for the robot application using the SES toolbox.



FIG. 15 Generated simulation model for the identification task in Fig. 9.
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Moreover, the toolbox implements an API in order to enable access from other computa-
tional components, such as an EC unit, which can be, for instance, a MATLAB program. Ad-
ditionally, the API provides a generic build method for generating SMs for different EUs,
using basic models from a corresponding MB.

Fig. 15 shows the generated SM using the infrastructure for the identification task
according to Fig. 9 and the SES in Fig. 12. It should be pointed out that the output ports verdict
of acc1 and su of tra1 in Fig. 15 are different from those in Fig. 9. The reason is that these ports
are modeled using the ToWorkspace blocks from the MATLAB/Simulink library within the
corresponding basic models.

The build method can be configured via MATLAB scripts depending on the specific EU.
Currently, the toolbox supports the generation of Simulink models, including SimEvents,
Simscape, and Stateflow components (Pawletta et al., 2016b) and MATLAB DEVS models
(Deatcu et al., 2017). Moreover, first experiments for generating Dymola and OpenModelica
models have been carried out. The toolbox can be used for free and downloaded after a reg-
istration, according to the information in Pawletta et al. (2015).
6 CONCLUSION AND FUTURE WORK

Technical systems are evolving to be smarter and more connected. Networks of technical
systems are showing versatile and reactive characteristics, which map to enhanced and adap-
tive feature sets that have never been achieved. Yet, the advancement is not without con-
straints. All fields of study in technical systems development now face various new
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challenges. One of the important questions in the field of model engineering is how to model
and simulate versatile systems where reactive dynamic variability in the system structure is
indispensable.

This chapter presented an approach based on SES/MB. SES/MBwas extended to tackle the
characteristic challenges of versatile systems. SES was introduced as a means of conceptual
system structure modeling in order to tackle variability. Thereafter, the SES/MB framework
was enriched and expandedwith various components such as EC or EU, and various features
such as SES Functions. It was proposed as a mechanism to simulate reactive systems with
dynamic reconfiguration. The proposed infrastructure was explained in detail, using an ex-
ample from the domain of industrial robotics. We also presented a prototype implementation
of the infrastructure.

Future technical systems are expected to be open, autonomous, decentralized, networked,
adaptive, and emergent. Effectivemodel engineeringmethodologies are necessary to support
M&S-based development.

Research in the future is expected to explore two different fields. One is to advance the
proposed methodology in order to achieve a well-accepted engineering technique supported
by proper tools. This requires further application to cases from various domains, such as from
aeronautics for multiple drone scenarios or from the automotive industry for autonomous
and connected cars.

The second involves investigating machine learning for dynamically evolving conceptual
system structures that is reflected to run time expending SES trees. Then, we can begin with a
baseline of all possible system configurations, while the system will uncover more configu-
ration possibilities by itself.
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Traorè, M.K., Muzy, A., 2006. Capturing the dual relationship between simulation models and their context. Simul.

Model. Pract. Theory 14 (2), 126–142.
Uhrmacher, A.M., 2001. Dynamic structures in modeling and simulation—a reflective approach. ACMTrans. Model.

Comput. Simul. 11 (2), 206–232.
Yilmaz, L., €Oren, T.I., 2004. In: Dynamic model updating in simulation with multimodels: a taxonomy and a generic

agent-based architecture.Proceedings Summer Computer Simulation Conference, San Jose, CA, USA, pp. 3–8.
Zander, J., 2008. Model-based Testing of Real-Time Embedded Systems in the Automotive Domain. (Ph.D. thesis).

Technical Univ. Berlin, Berlin.
Zeigler, B.P., 1976. Theory of Modeling and Simulation. Wiley Interscience, New York.
Zeigler, B.P., 1984. Multifaceted Modelling and Discrete Event Simulation. Academic Press, London.
Zeigler, B.P., Hammonds, P.E., 2007. Modeling and Simulation-Based Data Engineering. Elsevier Academic Press,

London.
Zeigler, B.P., Praehofer, H., 1989. In: Systems theory challenges in the simulation of variable structure and intelligent

systems.International Conference on Computer Aided Systems Theory, EUROCAST ‘89, pp. 41–51.
Zeigler, B.P., Sarjoughian, H.S., 2013. Guide to Modeling and Simulation of Systems of Systems. Springer Interna-

tional Publishing AG, Cham, Switzerland.
Zeigler, B.P., Praehofer, H., Kim, T.G., 2000. Theory ofModeling and Simulation, second ed. Academic Press, London.

http://refhub.elsevier.com/B978-0-12-813543-3.00018-4/rf0165
http://refhub.elsevier.com/B978-0-12-813543-3.00018-4/rf0165
http://refhub.elsevier.com/B978-0-12-813543-3.00018-4/rf0165
http://refhub.elsevier.com/B978-0-12-813543-3.00018-4/rf0170
http://refhub.elsevier.com/B978-0-12-813543-3.00018-4/rf0170
http://refhub.elsevier.com/B978-0-12-813543-3.00018-4/rf0175
http://refhub.elsevier.com/B978-0-12-813543-3.00018-4/rf0175
http://refhub.elsevier.com/B978-0-12-813543-3.00018-4/rf0180
http://refhub.elsevier.com/B978-0-12-813543-3.00018-4/rf0180
http://refhub.elsevier.com/B978-0-12-813543-3.00018-4/rf0185
http://refhub.elsevier.com/B978-0-12-813543-3.00018-4/rf0185
http://refhub.elsevier.com/B978-0-12-813543-3.00018-4/rf0190
http://refhub.elsevier.com/B978-0-12-813543-3.00018-4/rf0190
http://refhub.elsevier.com/B978-0-12-813543-3.00018-4/rf0195
http://refhub.elsevier.com/B978-0-12-813543-3.00018-4/rf0195
http://refhub.elsevier.com/B978-0-12-813543-3.00018-4/rf0200
http://refhub.elsevier.com/B978-0-12-813543-3.00018-4/rf0200
http://refhub.elsevier.com/B978-0-12-813543-3.00018-4/rf0205
http://refhub.elsevier.com/B978-0-12-813543-3.00018-4/rf0210
http://refhub.elsevier.com/B978-0-12-813543-3.00018-4/rf0210
https://ch.mathworks.com/videos/variant-configuration-management-in-simulink-80677.html
https://ch.mathworks.com/videos/variant-configuration-management-in-simulink-80677.html
http://refhub.elsevier.com/B978-0-12-813543-3.00018-4/rf0220
http://refhub.elsevier.com/B978-0-12-813543-3.00018-4/rf0220
http://refhub.elsevier.com/B978-0-12-813543-3.00018-4/rf0225
http://refhub.elsevier.com/B978-0-12-813543-3.00018-4/rf0225
http://refhub.elsevier.com/B978-0-12-813543-3.00018-4/rf0230
http://refhub.elsevier.com/B978-0-12-813543-3.00018-4/rf0230
http://refhub.elsevier.com/B978-0-12-813543-3.00018-4/rf0230
http://refhub.elsevier.com/B978-0-12-813543-3.00018-4/rf0235
http://refhub.elsevier.com/B978-0-12-813543-3.00018-4/rf0235
http://refhub.elsevier.com/B978-0-12-813543-3.00018-4/rf0240
http://refhub.elsevier.com/B978-0-12-813543-3.00018-4/rf0245
http://refhub.elsevier.com/B978-0-12-813543-3.00018-4/rf0250
http://refhub.elsevier.com/B978-0-12-813543-3.00018-4/rf0250
http://refhub.elsevier.com/B978-0-12-813543-3.00018-4/rf0255
http://refhub.elsevier.com/B978-0-12-813543-3.00018-4/rf0255
http://refhub.elsevier.com/B978-0-12-813543-3.00018-4/rf0260
http://refhub.elsevier.com/B978-0-12-813543-3.00018-4/rf0260
http://refhub.elsevier.com/B978-0-12-813543-3.00018-4/rf0265


Model Engineering for Simulation

https://doi.org/10.1016/B978-0-12-813543-3.
C H A P T E R
19
Model Validation of Control Systems
With an Application in Abnormal

Driving State Detection
Weicun Zhang*, Ying Liu†

*School of Automation and Electrical Engineering, University of Science and Technology Beijing,

Beijing, China †School of Automation Science & Electrical Engineering, Beihang University,

Beijing, China
1 INTRODUCTION

Model is always built for some certain application purpose (Zhang, 2011). Thus, model val-
idation can be conducted through application effectiveness. From the view point of method-
ology, practice is the sole criterion for testing the truth. Consequently, to judge whether the
model is good or bad, the sole evaluation criterion should be practiced, that is, the effective-
ness of model in application. To be specific in a closed-loop control system, for a given input
signal, the effectiveness of the model should be evaluated according to some certain differ-
ence index between the model output and the real plant output. If the difference index cannot
meet the requirement of engineering application, or if the requirement needs to be increased
with the progress of practice, then we need to further improve (change) the model.

We may use a logic diagram as shown in Fig. 1 to express the relationship between the
model and the practice, which is a reciprocal feedback progress.

In the above-described process of modeling and practice, modeling methods, model types,
and model validation methods are all in a dynamical progress. Thus, related research and
innovation are always necessary.

Model validation refers to all stages frommodel construction to model utilization. We will
focus on the model validation in application stage; meanwhile we also pay attention to model
validation inmodeling stage. Formodel validation inmodeling stage, we need to consider the
419 # 2019 Elsevier Inc. All rights reserved.
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FIG. 1 Modeling and practice (including model validation).
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complexity of themodel, that is, model should be as simple as possible. Thus, themodel order
information is usually considered as penalty item in performance index, such as, Akaike
information criterion (AIC), and finalprediction error (FPE) (YangandGu,1986;Akaike, 1969).
2 MODELVALIDATIONBASEDONPERFORMANCEEVALUATIONOF
CONTROL SYSTEM

Applying the above-mentioned observations to control system application,wehave the logic
diagram for control system performance evaluation in control system. In Fig. 2, modelM can be
obtained by any possible means (first-principle modeling, system identification, etc.). Based on
model M, controller C is designed according to a given control strategy (robust control, adap-
tive, predictive control, etc.), P is the real plant (including the environment of application).

Aswell known, the basic requirements of a control system are: stability, accuracy, and quick-
ness. In detail, the closed-loop system is stable; the system output signal tracks the reference
signal (steady-state error is zero or small enough), and the transient process is quite short.

Classical performance evaluation of control systems (Harris et al., 1999; Huang and Shah
Sirish, 1999) relies on the difference between the reference signal and the real plant output,
that is, e(k)¼yr(k)�y(k). There are some problems with the classical evaluation method:

(1) When reference signal changes, so will the difference signal e(k), which will disturb the
evaluation index.

(2) The basis for performance evaluation (comparison) is the best performance of minimum
variance control of the plant. The correctness of the basis also depends on the accuracy of
the model.
Controller
C

Controlled 
object

P

Reference
input

System
output

Model
M

Model output 
error

FIG. 2 Sketch map for model validation in control system.
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To improve the above-mentioned situation, based on virtual equivalent system (VES) the-
ory (Zhang, 2010), we propose in this research an alternative performance index em(k)¼ym
(k)�y(k) to replace the classical one, that is, e(k)¼yr(k)�y(k). With this new performance in-
dex, hopefully the two problems listed above can be solved or improved.

Initially VES concept and methodology was put forward to give a unified analysis of the
stability and convergence of self-tuning control systems. Later on, it was also successfully
adopted to analyze the stability of multiple model adaptive control (MMAC), active distur-
bance rejection control (ADRC), and U-model-based nonlinear control, etc.

Actually, VES could be used for stability analysis of all kinds of model-based control sys-
tems. Along this line of thinking, it also paves a new way for performance evaluation of con-
trol systems that are designed based on some certain models.

Fig. 3 shows the concept of VES, which is equivalent, in the input-output sense, to its orig-
inal system as shown in Fig. 2.

Owing to the equivalence in the input-output sense between the VES and its corresponding
real control system, the stability and performance of these two systems are also equal. Thus,
some difficult analysis problems of complex control systems become easy to deal with. The
main merit of VES is that with the help of VES, original nonlinear dominant (nonlinear in
structure) problem can be converted into a linear dominant (linear in structure) problemwith
a nonlinear compensation signal.

According to VES theory, system as shown in Fig. 3 can be decomposed into two subsys-
tems, as shown in Figs. 4 and 5, respectively.

Then we have the following conclusions.
If a control system as shown in Fig. 2 satisfies the following condition:

In design stage, controller C and M formulate a stable and tracking closed-loop system
with prescribed performance index.
Model output error is quite small (detailed error index will be given in the later sections).
Then the real control system as shown in Fig. 2 is stable with prescribed performance
index, that is to say that the performance index of real control system (Fig. 2) will converge
to that of the “ideal” control system (Fig. 4).
FIG. 3 Sketch map of the VES for original
system (Fig. 2).

FIG. 4 Decomposed subsystem 1.



FIG. 5 Decomposed subsystem 2.
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3 DRIVER’S ABNORMAL STATE DETECTION

As an application of VES-based control system model validation, this section provides an
engineering application, that is, driver’s abnormal state detection based on system perfor-
mance evaluation.

It is worth pointing out that in this application, the model is a controller model, that is, a
model for driving behavior of a human driver. The input signal of the controller/driver
model is the lane departure signal (vehicle lateral displacement), which can be calculated
in accordance with the detection of the two white lines of the lane. The output signal of
the controller/driver model is the steering angle.

Considering that normal driving behavior corresponds to normal driving data, abnormal
driving behavior corresponds to abnormal driving data, and vice versa, we may regard
driver-vehicle-road as a closed-loop control system (Chen and Ulsoy, 1997, 2001; Pilutti
and Ulsoy, 1999).

Our basic idea is to use system identification (modeling) method to build a normal driving
behavior model with normal driving data. The normal model is then used to fit the real driv-
ing data of unknown driving state, then the fitting error is used to evaluate and monitor the
driver’s state with statistical process control (SPC) approach, that is, the control charts tools
(Zhang and Yang, 2000; Liang and Qian, 2003). If the fitting error is evidently different from
that of normal driving state, then abnormal driving state is recognized.

It should be noted that Pilutti and Ulsoy (1999) have also adopted system identification
method to detect abnormal driving state, but in a different way, that is, the variation in model
parameters, which is difficult to be realized for online detection.
3.1 Experiment Design and Data Acquisition

The data in this research were collected from the driving simulator VR-4, which was de-
veloped in University of Science and Technology Beijing. Five regular drivers, who have
driver licenses with different driving experiences, and different ages, were arranged to drive
the simulator in some typical highway scenario. The fitting error analysis indicates that the
ARMAX model can yield residuals close to white noise. This implies the ARMAX model
structure is a better choice than other parametric model structure. The FPE criterion was used
to determine the model structure and time delay. The effectiveness of the proposed method-
ology was verified by comparing five driver’s eye closure time with the alarm points on the
SPC charts of model fitting error.
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3.2 Modeling (System Identification)

3.2.1 Pretreatment of the Data

The time period from sobriety to drowsiness differs from one driver to another. So the
experiment data lengths are also chosen differently. The original data sampling frequency
is 60Hz, to make the modeling data more efficient, the secondary sampling frequency set
at 10Hz.

Although generally speaking, every driver has his own time period from sobriety to
drossiness, during the beginning 15min they are all in normal driving state. During the be-
ginning 2min, the driving behavior may be unstable. Having taken into account all these con-
siderations, we selected the data period from 3 to 12min as the normal data for each driver
modeling. To avoid “data saturation” in least-squares (LS) identification algorithm, the
10-min modeling data were divided into 10 equal groups. Each group of data was used to
obtain corresponding model parameters. And then the final model parameters are obtained
by making average of the 10 group parameters.
3.2.2 Identification of the Model Structure

Model structure is the first thing we need to decide in model identification/modeling.
Model structures include auto-regressive with eXtra inputs (ARX) model, auto-regressive
moving average with eXtra inputs (ARMAX) model, and Box Jenkins (BJ) model.

Through comparison and analysis, we found that the parameters of ARMAX are fewer
than that of BJ, the residual error index of ARMAX is less than that of ARX. Then we finally
choose the following ARMAX model as driver behavior model:

A q�1
� �

δ kð Þ¼B q�1
� �

S kð Þ+C q�1
� �

e kð Þ (1)

where S(k) is the system input signal, that is, vehicle lateral displacement, δ(k) the system out-

put signal, that is, steering wheel angle, and e(k) is white noise. A(q�1), B(q�1), and C(q�1) are
polynomials. After model structure is determined, FPE criterion (Zhang and Yang, 2000;
Liang and Qian, 2003) is adopted to select the order and time delay of the ARMAX model.

FPE¼
1 +

n

N

1� n

N

�LS (2)

where N is the data length; n is the model order; and L is the lost function.

Lost function L is defined as follows:

L¼ 1

N

XN

k¼1

e2 kð Þ (3)

Through calculations based on MATLAB, the final model structure for five experiment

driver is determined as follows:

A q�1
� �¼ 1 + a1q

�1 + a2q
�2

B q�1
� �¼ b1q

�1 + b2q
�2

C q�1
� �¼ 1 + c1q

�1 + c2q
�2

8
<

:
(4)
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Then Eq. (1) can be rewritten as
δ kð Þ+ a1δ k�1ð Þ+ a2δ k�2ð Þ¼ b1S k�1ð Þ
+b2S k�2ð Þ+ e kð Þ+ c1e k�1ð Þ+ c2e k�2ð Þ (5)

3.2.3 Parameter Estimation

There are many parameter estimation algorithms, among them LS algorithm is the most
widely used one. Considering recursive LS with forgetting factor (Li and Hu, 2006) has
advantages of light calculation and memory burden, and suitable for tracking time varying
parameters, we adopted it in this research.

In detail, from Eq. (5), we define

θ¼ a1, a2, b1, b2, c1, c2½ �T
h kð Þ¼ �α k�1ð Þ, �α k�2ð Þ, S k�1ð Þ, S k�2ð Þ, e k�1ð Þ, e k�2ð Þ½ �T

�

ê kð Þ¼ z kð Þ�hT kð Þθ̂ k�1ð Þ
h kð Þ¼ �α k�1ð Þ, �α k�2ð Þ, S k�1ð Þ, S k�2ð Þ, ê k�1ð Þ, ê k�2ð Þ½ �T

θ̂ kð Þ¼ θ̂ k�1ð Þ+K kð Þ z kð Þ�hT kð Þθ̂ k�1ð Þ� �

K kð Þ¼P k�1ð Þh kð Þ β + hT kð ÞP k�1ð Þh kð Þ� ��1

P kð Þ¼ 1

β
I�K kð ÞhT kð Þ� �

P k�1ð Þ

8
>><

>>:

P 0ð Þ¼ 106I
ê kð Þ¼ 0, k< 0
β¼ 0:995

where I is an identity matrix with appropriate dimensions.

With the above-described algorithm and experiment data, we can readily obtain each

driver’s behavior model as shown in Eq. (1) with specified parameters.
3.2.4 Model Validation

As for model validation, hypothesis test (significance level α¼0.05) was used to complete
the task of model validation. In detail, if the model fitting residual signal is approximately a
zero-mean white noise, then the model is validated (Zhou, 2006). To be specific, the model-
fitting residual is given by

ε kð Þ¼ δ kð Þ� δ̂ kð Þ (6)

There are different approaches to test if the model-fitting error is a white noise. With the

help of MATLAB functions, the related hypothesis test can be readily done. Thus, the details
are omitted here.

According to the above-mentioned methodology, all the five driver’s experiment driving
data and corresponding models have passed the model validation. That is to say that the
modeling process (model structure identification and parameter estimation) is effective.
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3.3 Abnormal Driving State Detection Based on SPC Control Charts

3.3.1 Statistical Process Control

The SPC is also known as statistical performance monitoring (SPM). It is used to monitor if
the production process is satisfactorily under control. Its main measure is the control chart,
which was originally proposed by Shewhart. Later, cumulative sum control chart (CUSUM)
was put forward by Page (1961), exponentially weighted moving average control chart
(EWMA) was also proposed by Roberts (1959), both are improvements of Shewhart
control chart.
3.3.2 Shewhart Control Chart

Suppose process output data are mutually independent, and we have

Yt ¼ μ+ εt

where μ is a constant mean value, εt�N(0,σ2), then we have
Yt �N μ, σ2
� �

Randomly selecting N samples, denoted by Yti, from the population with sample size n,

then the sample mean is

Yt ¼
Xn

i¼1

Yti=n (7)

For the control chart, we adopt the statistic variable
Y¼
XN

t¼1

Yt=N (8)

Then the upper control limit (UCL), the lower control limit (LCL), and the centerline of the

control chart are as follows:

UCL
LCL

¼Y�3
δ
ffiffiffi
n

p , CL¼Y (9)

In this research, Yt refers to the model fitting error et, with N¼20, and n¼60. Then the fol-

lowing situations are regarded as abnormal:

(1) et is out of the boundaries of �3σ.
(2) There are at least two points, out of three continuous points, within the range between

μ�3σ and μ�2σ.
3.3.3 EWMA Control Chart

The statistical variable of traditional Shewhart control chart is composed of current obser-
vations without considering history observations. EWMA is an improvement of Shewhart
control chart, in which the statistic variable is

Zi ¼ ryi + 1� rð ÞZi�1, i¼ 1,2,…
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where Z0 ¼Y, 0� r�1 is a smooth factor. The choice of r has a significant influence on the

sensitivity of EWMA control chart.

The UCL, the LCL, and the centerline are as follows:

UCL
LCL

¼Y�3
R

d2
ffiffiffi
n

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r 1� 1� rð Þ2i
� 	

2� r

vuut
(10)

where R is the sample range, d2 is a constant related to n, and σ¼R= d2
ffiffiffi
n

pð Þ.

The following situations of Zi will be regarded as abnormal:

(1) Zi is out of the boundaries of UCL and LCL.
(2) There are at least two points, out of three continuous points, within the range between

μ�3σ and μ�2σ.
(3) There are more than 10 continuous points ascending or descending.

3.3.4 Experimental Results

According to the SPC-based abnormal state detectionmethods for five drivers’ experiment
driving data, we obtain the abnormal driving state detection results; see from Figs. 6–10,
respectively. Each subfigure consists of two parts: the upper part is the alarm points detected
by eye closure time period, which is a standard method for driver’s fatigue detection; the
lower part is the alarm points proposed by five rules of two control charts (Shewhart control
chart and EWMA control chart) of model fitting error. Eye closure time period and frequency
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FIG. 6 Abnormal state detection for driver 1.
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FIG. 7 Abnormal state detection for driver 2.
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FIG. 8 Abnormal state detection for driver 3.
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FIG. 9 Abnormal state detection for driver 4.
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FIG. 10 Abnormal state detection for driver 5.
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are the well-known standard for detecting abnormal driving state. The experiment results
show that the abnormal driving state detection method proposed in this research is effective.

From Figs. 6–10, wemay conclude the effectiveness of the proposedmodel/system perfor-
mance evaluation in abnormal state (fatigue) detection of driver’s behavior over
experiment data.
4 CONCLUSIONS

A control system model validation approach is proposed based on system performance
evaluation (with the help of SPC control chart). As an example, an abnormal driving state
detection model is verified with five drivers’ experiment data which were collected on the
driving simulator VR-4. It should be pointed out that the sample size of driving experiments
is limited. In the future researchwork, somemore general driving experiments and other pro-
cess control system monitoring experiments will be conducted to validate and improve the
proposed system performance evaluation methodology.
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