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Preface

Since the first edition of Modern Cosmology was published in 2003, cosmology has made
dramatic advances, both theoretical and experimental. We thought (as perhaps many oth-
ers) that it would be useful to revise the first edition to reflect these developments. On
the one hand, the changes in the cosmological landscape are significant: the old Euclidean
�m = 1 (“sCDM”) model was on its last legs in 2003 (though it dominated many of the plots
in the first edition) and has now passed on; measurements of polarization and weak lens-
ing were in their infancy; optimism about WIMP detection was high; Markov Chain Monte
Carlo sampling was not yet in widespread use; and baryon acoustic oscillations had not
been detected (one of us apparently thought they were “barely (if at all) detectable”). On
the other hand, the basics have not changed much: the same equations still govern the
evolution of the universe; the core paradigm of cosmology is still that large-scale structure
in the universe emerged from gravitational collapse of small perturbations generated very
early in time; the CMB and large-scale structure are still thought to be the primary way of
learning about cosmology; and analysis is more important than ever.

This new edition improves on the old not just by updating plots to reflect the more re-
cent results, but also by restructuring and filtering the old material so that it now satisfies
not just one author but two. A total of three new chapters have been added. The most sig-
nificant addition in terms of content is nonlinear structure formation (Ch. 12) which has
become a major focus of cosmology over the past decade; but the new material on the
above-mentioned baryon acoustic oscillations, the Sunyaev–Zel’dovich effect, CMB lens-
ing, as well as Markov Chain Monte Carlo is also worth highlighting.

We are grateful to many colleagues for their contributions to this second edition.
Michael Blanton kindly provided glorious pictures of large-scale structure. Julien Lesgour-
gues was of crucial help in producing the plots of results of the CLASS code in Chs. 8–9.
Giovanni Cabass helped make Fig. 9.4. Florian Beutler provided Fig. 11.7, and Lindsey
Bleem supplied us with Fig. 12.10.

We are further indebted to Elisabeth Krause for feedback that helped improve many
chapters, but Ch. 8 and Ch. 14 in particular. We also thank Vincent Desjacques and
Donghui Jeong for their comments on Ch. 12. FS thanks the members of the 2019 Garch-
ing book club—Alex Barreira, Philipp Busch, Chris Byrohl, Giovanni Cabass, Dani Chao,
Daniel Farrow, Laura Herold, Jiamin Hou, Martha Lippich, Kaloian Lozanov, Leila Mirza-
gholi, Minh Nguyen, Yuki Watanabe, and Sam Young—for their innumerable comments
and suggestions, as well as for pointing out many errors. FS is also very grateful to the Junge
Akademie for enabling several writing retreats. SD thanks Nianyi Chen, Biprateep Dey, and
Kuldeep Sharma for getting the hint right in Exercise 1.2, and Troy Raen for comments on
Ch. 2.

xv



xvi Preface

Many thanks go to Robert Smith, for pointing out errors in Exercise 7.7, to Tom Craw-
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getting the factors of 2 in the Compton collision term correct.
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mistakes therein which, where still relevant, were corrected here. Undoubtedly, errors
are also lurking in this edition; any corrections and feedback are most welcome under
modcosmology@gmail.com.

Finally, FS thanks SD for making this second edition possible (which generally requires
a first edition), and for making an offer he could not refuse. SD is extremely grateful that
the person best suited to write this book agreed to be a co-author.

Scott Dodelson
Pittsburgh, PA, United States

Fabian Schmidt
Garching, Germany

October 1, 2019
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1
The concordance model of
cosmology

Einstein’s discovery of general relativity in the previous century enabled us, for the first
time in history, to come up with a compelling, testable theory of the universe. The real-
ization that the universe is expanding and was once much hotter and denser allows us to
modernize the deep age-old questions “Why are we here?” and “How did we get here?” The
updated versions are now “How did the elements form?”, “Why is the universe so smooth?”,
and “How did galaxies form within this smooth universe?” Remarkably, these questions
and many like them have quantitative answers, answers that can be found only by com-
bining our knowledge of fundamental physics with our understanding of the conditions in
the early universe. Even more remarkably, these answers can be tested against astronom-
ical observations. Before going into depth, we begin with a broad-brush overview of our
current state of knowledge on the history of the universe in this chapter and the next.

The success of the Big Bang paradigm rests on a number of observational pillars: the
Hubble diagram that measures expansion; light element abundances that are in accord
with Big Bang Nucleosynthesis; temperature and polarization anisotropies in the cosmic
microwave background that agree well with theory; and multiple probes of large-scale
structure that also agree with the concordance model that will be described in this Chapter.
This success has come at a price, however: we are now forced to introduce several ingre-
dients that go beyond the Standard Model of particle physics (for a quick overview, see
Box 1.1):

• dark matter and dark energy, which together dominate the energy budget of the uni-
verse over most of its lifetime;

• a mechanism generating the small initial perturbations out of which structure formed,
the most popular explanation being inflation.

1.1 A nutshell history of the universe
We have solid evidence that the universe is expanding. This means that early in its history
the distance between us and distant galaxies was smaller than it is today. It is convenient
to describe this effect by introducing the scale factor a, whose present value is set to 1 by
convention. At earlier times, a was smaller than it is today. We can imagine placing a grid in
space as in Fig. 1.1 which expands uniformly as time evolves. Points on the grid, which cor-
respond to observers at rest, maintain their coordinates, so the comoving distance between
two points—which just measures the difference between coordinates, and can be obtained

Modern Cosmology. https://doi.org/10.1016/B978-0-12-815948-4.00007-3
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2 Modern Cosmology

FIGURE 1.1 Expansion of the universe. The comoving distance between points x1, x2 on a grid that serves as a
coordinate system remains constant as the universe expands; in this case, |x2 − x1| = 1. The physical distance is
proportional to the comoving distance times the scale factor, so it grows as time evolves.

by counting grid cells as indicated in Fig. 1.1—remains constant. However, the physical dis-
tance is proportional to the scale factor, and the physical distance does evolve with time.

A directly related effect is that the physical wavelength of light emitted from a distant
object is stretched out proportionally to the scale factor, so that the observed wavelength is
larger than the one at which the light was emitted. It is convenient to define this stretching
factor as the redshift z:

1 + z ≡ λobs

λemit
= aobs

aemit
= 1

aemit
. (1.1)

In addition to the scale factor and its evolution, the smooth universe is characterized by
one other parameter, its geometry. There are three possibilities: Euclidean, open, or closed
universes. These different possibilities are best understood by considering two freely trav-
eling particles which start their journeys moving parallel to each other. In a Euclidean
universe, often also called a “flat universe,” the particles behave as Euclid himself expected
them to: their trajectories remain parallel as long as they travel freely. If the universe is
closed, the initially parallel particles gradually converge, just as in the case of the 2-sphere
all lines of constant longitude meet at the North and South Poles. The analogy of a closed
universe to the surface of a sphere runs even deeper: both are spaces of constant posi-
tive curvature, the former in three spatial dimensions and the latter in two. Finally, in an
open universe, the initially parallel paths diverge, as would two marbles rolling off a sad-
dle.

General relativity connects geometry to energy. Accordingly, the total energy density
in the universe determines the geometry: if the density is higher than a critical value, ρcr,
which we will soon see is approximately 10−29 g cm−3, the universe is closed; if the density
is lower, it is open. A Euclidean universe is one in which the energy density is precisely
equal to critical. This seems unlikely to happen, and yet all observations indicate that the
universe is Euclidean to within errors! We will later see that inflation provides a natural
explanation for this fact.

To understand the history of the universe, we must determine the evolution of the scale
factor a with cosmic time t . Again, general relativity provides the connection between this
evolution and the energy in the universe. Fig. 1.2 shows how the scale factor increases as
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FIGURE 1.2 Evolution of the scale factor of the universe with cosmic time. The universe today corresponds to the
upper-right corner of the plot, where a(t0) = 1 and the temperature T = 2.73 K. When the universe was very young,
radiation was the dominant component, and the scale factor increased as t1/2. At the indicated point, the universe
transitioned to matter domination, during which a(t) ∝ t2/3. Very recently, the expansion law changed again due to
dark energy, with a(t) transitioning to an exponential function of time.

the universe ages, with the convention that a = 1 today. Note that the dependence of a on
t varies as the universe evolves. At early times, a ∝ t1/2 while at later times the dependence
switches to a ∝ t2/3. How the scale factor varies with time is determined by the evolution
of the energy density in the universe. At early times, radiation dominates, while at later
times, nonrelativistic matter accounts for most of the energy density. In fact, one way to
explore the energy content of the universe is to measure changes in the scale factor. We
will see that, partly as a result of such an exploration, we now know that a has been growing
faster than t2/3 very recently, a signal that a new form of energy has come to dominate the
late-time cosmological landscape.

To quantify the change in the scale factor and its relation to the energy, it is useful to
define the Hubble rate

H(t) ≡ 1

a

da

dt
, (1.2)

which measures how rapidly the scale factor changes. For example, if the universe is Eu-
clidean and matter dominated, so that a ∝ t2/3, then H = (2/3)t−1. Throughout this book,
a subscript 0 will denote the value of a quantity today. H0 ≡ H(t0) is known as Hubble’s
constant. Thus, in a Euclidean, matter-dominated universe (not ours!), the product H0t0

equals 2/3.
More generally, general relativity predicts that the scale factor is determined by the

Friedmann equation (which we will derive in Ch. 3):

H 2(t) = 8πG

3

[
ρ(t) + ρcr − ρ(t0)

a2(t)

]
(1.3)

where G is Newton’s constant; ρ(t) is the energy density in the universe as a function of
time with ρ(t0) its value today; and ρcr is the aforementioned critical density. It is a constant



4 Modern Cosmology

given by

ρcr ≡ 3H 2
0

8πG
. (1.4)

Eq. (1.3) allows for the possibility that the universe is not Euclidean: if it were Euclidean,
the sum of all the energy densities today would equal the critical density, and the last term
in Eq. (1.3) would vanish. If the universe is not Euclidean, the curvature contribution scales
as 1/a2. In most of this book we will work within the context of a Euclidean universe since
there are several persuasive arguments, both observational and theoretical, that support
this assumption. We will learn about these arguments in Ch. 2 and Ch. 7.

To use the Friedmann equation, we must know how the energy density evolves with
time. This turns out to be a complicated question because ρ in Eq. (1.3) is the sum of
several different components, each of which scales differently with time. Consider first
nonrelativistic matter, which means that the energy of a given constituent particle is es-
sentially equal to its rest mass energy, which remains constant with time. The energy
density of a collection of these particles is therefore equal to the rest mass energy times the
number density. When the scale factor was smaller, the densities were necessarily larger.
Since number density is inversely proportional to volume, it should be proportional to a−3.
Therefore the energy density of nonrelativistic matter scales as a−3.

Apart from matter, a sea of massless photons permeates the universe, as first discov-
ered in 1965. These photons have traveled freely since the universe was very young. Today,
their wavelengths lie in the microwave regime, so they comprise what is called the cosmic
microwave background (CMB). The CMB has a perfect black-body spectrum with a very
well-measured temperature of T0 = 2.726 ± 0.001 K today (Fixsen, 2009). Our redshift rela-
tion Eq. (1.1) allows us to derive how this temperature evolved over the history of the uni-
verse. Since λ = c/ν ∝ a, the frequency ν of any photon decays as 1/a with the expansion.
The black-body spectrum is a function of ν/T , so we can describe this effect equivalently
by stating that the temperature of the radiation as a function of time is given by

T (t) = T0

a(t)
. (1.5)

In the next chapter, we will rederive this result in a complementary way. At early times,
then, the temperature was higher than it is today. The energy density of black-body radi-
ation scales as T 4 ∝ a−4, as indicated in Fig. 1.3. Via Eq. (1.3), this implies that the Hubble
parameter at early times evolves as H ∝ T 2.

Fig. 1.3 illustrates how the different contributions to ρ(t) in Eq. (1.3) vary with the scale
factor. Early on, because of the a−4 scaling, radiation was the dominant constituent of the
universe, but today, matter and dark energy, which could be a cosmological constant, dom-
inate the landscape. We will have more to say about dark energy later, but for now simply
note that whether it does indeed contribute to the energy exactly as the constant depicted
in Fig. 1.3 is still an open question.

Let us introduce some numbers. The expansion rate is a measure of how fast the uni-
verse is expanding, determined by measuring the velocities of distant galaxies and dividing
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FIGURE 1.3 Energy density as a function of scale factor for different constituents of the Euclidean fiducial cosmology,
whose parameters are listed in Appendix B.3: nonrelativistic matter (∝ a−3), radiation (∝ a−4), and a cosmological
constant. All are in units of the critical density today. Even though matter and the cosmological constant appear to
dominate today, at early times, the radiation density was largest. The epoch at which the energy densities of matter
and radiation are equal is aeq, while the epoch at which the densities of matter and cosmological constant match
is a�.

by their distance from us (Sect. 1.2). So the expansion is usually written in units of velocity
per distance. The Hubble constant is parameterized by a dimensionless number h defined
via

H0 = 100 h km s−1 Mpc−1

= h

0.98 × 1010 years
= 2.13 × 10−33 eV

�
h (1.6)

where h has nothing to do with Planck’s constant �. The astronomical length scale of a
megaparsec (Mpc) is equal to 3.0856 × 1024 cm. Current measurements yield h � 0.7. Since
Edwin Hubble’s initial measurement in 1929, the value of the Hubble constant has been
subject to vigorous debate, and even now there is some controversy about its precise value,
at the 5% level. For this reason, it has become customary to use h−1 Mpc as the unit of
length in cosmology. With this unit, and some associated units such as h−1 M� for masses
(M� denotes a solar mass), the Hubble constant drops out of many computations, so that
they become insensitive to its precise value. We will follow this convention throughout the
book as well.

The predicted age for a Euclidean, matter-dominated universe, (2/3)H−1
0 , is then

6.5h−1 Gyr. You will show in Exercise 1.2 that the age of a universe with a cosmological
constant is larger (for fixed h). In fact one of the original arguments in favor of a cosmolog-
ical constant was to make the universe older and thus compatible with the age estimates
of the oldest observed stars (which are older than 10 billion years).

Newton’s constant in Eq. (1.4) is equal to 6.67 × 10−8 cm3 g−1 s−2. This, together with
Eq. (1.6), enables us to get a numerical value for the critical density:

ρcr = 1.88h2 × 10−29 g cm−3. (1.7)
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FIGURE 1.4 Interaction rates as a function of the scale factor. When a given rate becomes smaller than the expansion
rate H , that reaction falls out of equilibrium. Top scale gives (kB times) the temperature of the universe, an indication
of the typical kinetic energy per particle.

An important ramification of the higher densities and temperatures in the past is that
the rates for particles to interact with each other, which typically scale as the density
squared, were also much higher early on. Fig. 1.4 shows some important rates as a function
of the scale factor. For example, when the temperature of the universe was greater than sev-
eral MeV/kB, the rate for electrons and neutrinos to scatter was larger than the expansion
rate. Thus, before the universe could double in size, a neutrino scattered many times off
the ubiquitous electrons. All these scatterings brought the neutrinos into equilibrium with
the rest of the cosmic plasma. This is but one example of a very general, profound fact: if
a particle scatters with a rate much greater than the expansion rate, that particle stays in
equilibrium. Otherwise, it falls out of equilibrium with the other species and “freezes out.”
Since rates were typically large, the early universe was a relatively simple environment: not
only was it very smooth, but many of its constituents were in equilibrium. Ch. 2 explores
some manifestations of the equilibrium conditions, while Ch. 4 touches on several cases
where equilibrium could not be maintained because the reaction rates dropped beneath
the expansion rate.

1.2 The Hubble diagram
If the universe is expanding as depicted in Fig. 1.1, then galaxies should be moving away
from each other. We should therefore see galaxies receding from us. Hubble (1929) first
found that distant galaxies are in fact all apparently receding from us, i.e. redshifted. He
also noticed the trend that the velocity increases with distance. This is exactly what we
expect in an expanding universe, for the physical distance between two galaxies is d = ax
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FIGURE 1.5 A modern version of the Hubble diagram from the Hubble Space Telescope Key project (Freedman et
al., 2001). Each point corresponds to a galaxy whose distance has been estimated using pulsating stars known as
Cepheid variables. The recession velocity for each galaxy is then corrected using a model for the peculiar velocity
field in the neighborhood of the Milky Way. The lines show the prediction of the Hubble-Lemaître law with different
values of H0 (in kms−1 Mpc−1), as indicated.

where x is the comoving distance.1 In the absence of any comoving motion, ẋ ≡ dx/dt = 0
(no peculiar velocity), the relative velocity v is therefore equal to

v = d

dt
(ax) = ȧx = H0 d (v � c), (1.8)

where overdots indicate derivatives with respect to time t . Therefore, the apparent velocity
should increase linearly with distance (at least at low redshift) with a slope given by H0, the
Hubble constant. Eq. (1.8) is known as the Hubble-Lemaître law. The value of the constant
is simply determined by measuring the slope of the line in the Hubble diagram shown in
Fig. 1.5.

In the next chapter, we will generalize the distance-redshift relation to larger distances,
where Eq. (1.8) breaks down. Instead of recession velocities, this more rigorous derivation
will be based on the stretching of the wavelength of light encoded in Eq. (1.1). For now, let
us just point out that the distance-redshift relation depends on the energy content of the
universe. Data from a variety of sources point to a current best-fit scenario that is Euclidean
and contains about 70% of the energy in the form of a cosmological constant, or some
other form of dark energy. This now forms the concordance cosmology that will be our
working model throughout.

1
This is strictly true only for small values of z, or equivalently recession velocities much smaller than the speed

of light c. We will discuss the subtleties associated with properly defining distances in an expanding universe in
Sect. 2.2.
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FIGURE 1.6 Predicted primordial abundances (lines) of helium (top) and deuterium (bottom) as a function of the
physical baryon density in units of ρcr, ωb = �bh2. The subscript P on the y-axes denotes that these are the primordial
abundances; YP Is the ratio of the mass density in helium to the total mass density in protons and neutrons, while
yD is defined as 105 times the ratio of deuterium to hydrogen. The horizontal bands show astrophysical constraints
on abundances, while the vertical band indicates the constraint based on CMB anisotropies, as measured by the
Planck satellite experiment. In case of deuterium, the predictions are uncertain due to imperfect knowledge of
certain nuclear reaction rates. Nevertheless, there is striking agreement between BBN (combined with astrophysical
measurements) and the CMB. From Planck Collaboration (2018b).

1.3 Big Bang nucleosynthesis
Armed with an understanding of the evolution of the scale factor and the densities of the
constituents in the universe, we can extrapolate backwards to explore phenomena at early
times. When the universe was much hotter and denser, and the temperature was of order
1 MeV/kB, there were no neutral atoms or even bound nuclei. The vast amounts of high-
energy radiation in such a hot environment ensured that any atom or nucleus produced
would be immediately destroyed by a high-energy photon. As the universe cooled well be-
low typical nuclear binding energies, light elements began to form in a process known as
Big Bang Nucleosynthesis (BBN). Knowing the conditions of the early universe and the rel-
evant nuclear cross-sections, we can calculate the expected primordial abundances of all
the elements (Ch. 4).

Fig. 1.6 shows the BBN predictions for the abundances of helium and deuterium as a
function of the mean baryon density, essentially the density of ordinary matter (Sect. 2.4) in
the universe, in units of the critical density. The predicted abundances, in particular that
of deuterium, which we will explore in detail in Ch. 4, depend on the density of protons
and neutrons at the time of nucleosynthesis. The combined proton plus neutron density
is equal to the baryon density since both protons and neutrons have baryon number one
and these are the only baryons around at the time.

The horizontal lines in Fig. 1.6 show the current measurements of the light element
abundances. The deuterium abundance is measured in the intergalactic medium at high
redshifts by looking for a subtle absorption feature in the spectrum of distant quasars (see
Burles and Tytler, 1998; Cooke et al., 2018 and Exercise 1.3). These measurements of the
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abundances, combined with BBN calculations, give us a way of measuring the baryon den-
sity in the universe, constraining ordinary matter to contribute at most 5% of the critical
density (note that the x-axis in Fig. 1.6 is the baryon density divided by the critical density,
but multiplied by h2 � 0.5). Since the total matter density today is significantly larger than
this—as we will see throughout the book—nucleosynthesis provides a compelling argu-
ment for matter that is comprised of neither protons or neutrons. This new type of matter
has been dubbed dark matter because it apparently does not emit light. One of the central
questions in physics now is: “What is the Dark Matter?”

1.4 The cosmic microwave background
Another phenomenon that falls out of energetics and a qualitative understanding of the
evolution of the universe is the origin of the CMB. When the temperature of the radiation
was of order 104 K (corresponding to energies of order an eV), free electrons and protons
combined to form neutral hydrogen. Before then, any hydrogen produced was quickly ion-
ized by energetic photons. After that epoch, at z � 1100, the photons that comprise the
CMB ceased interacting with any particles and traveled freely through space. When we
observe them today, we are thus looking at messengers from an early moment in the uni-
verse’s history. They are therefore the most powerful probes of the early universe. We will
spend an inordinate amount of time in this book working through the details of what hap-
pened to the photons before they last scattered off of free electrons, and also developing
the mathematics of the free-streaming process since then. Among many other aspects, we
will understand how the CMB constrains the baryon density independently, and in agree-
ment with BBN as shown in Fig. 1.6, providing a ringing confirmation of the concordance
model.

For now, we are only concerned with the crucial fact that the interactions of photons
with electrons before last scattering ensured that the photons were in equilibrium. That is,
they should have a black-body spectrum. The specific intensity of a gas of photons with a
black-body spectrum is

Iν = 4π�ν3/c2

exp[2π�ν/kBT ] − 1
. (1.9)

Fig. 1.7 shows the remarkable agreement between this prediction (see Exercise 1.4) of Big
Bang cosmology and the observations by the FIRAS instrument aboard the COBE satel-
lite. In fact, the CMB provides the best black-body spectrum ever measured. We have
been told2 that detection of the 3K background by Penzias and Wilson in the mid-1960s
was sufficient evidence to decide the controversy in favor of the Big Bang over the Steady
State universe, an alternative scenario without any expansion. Penzias and Wilson, though,
measured the radiation at just one wavelength. If even their one-wavelength result was

2
For a fascinating first-hand account of the history of the discovery of the CMB, see Ch. 1 of Partridge (2007).
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FIGURE 1.7 Intensity of cosmic microwave radiation as a function of frequency from Far InfraRed Absolute Spec-
trophotometer (FIRAS), an instrument on the COBE satellite. The line shows a black-body spectrum with T0 = 2.728 K.
The error bars on the measurements are smaller than the width of the line! From Fixsen et al. (1996).

enough to tip the scales, the current data depicted in Fig. 1.7 should send skeptics from
the pages of physics journals to the far reaches of radical internet chat groups.

The most important fact we learned from our first 25 years of surveying the CMB was
that the early universe was very smooth. No anisotropies were detected in the CMB. This
period, while undoubtedly frustrating for observers searching for anisotropies, solidified
the view of a smooth Big Bang. The satellite mission COBE discovered anisotropies in the
CMB in 1992, indicating that the early universe was not completely smooth. There were
small perturbations in the cosmic plasma, with fractional temperature fluctuations of or-
der 10−5. By now, these small fluctuations have been mapped with exquisite precision, and
the state of the art is to look for even more subtle effects such as CMB polarization and the
effect of the intervening matter distribution through gravitational lensing. To understand
all of these effects, we must clearly go beyond the smooth background universe and look
at deviations from smoothness, or inhomogeneities. Inhomogeneities in the universe are
often simply called structure.

1.5 Structure in the universe
The existence of structure in the universe was known long before the detection of CMB
anisotropies: various efforts to map out the distribution of galaxies in the local universe
clearly showed that they are not distributed homogeneously. The number of galaxies and
volume covered by such surveys has grown exponentially. Two surveys in particular broke
new ground: the Sloan Digital Sky Survey (SDSS; Fig. 1.8) and the Two Degree Field Galaxy
Redshift Survey (2dF), which between them compiled the redshifts of, and hence the dis-
tances to, over a million galaxies. Projects over the ensuing decades have and will provide
deeper and more detailed maps than these ground-breaking surveys, by orders of magni-
tude.
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FIGURE 1.8 A slice through the distribution of the main galaxy sample in the northern part of the SDSS survey, with
us the observers situated at the bottom center (z = 0). Each dot depicts the position of a galaxy, with color chosen
to represent the actual color of the galaxy (i.e., red (dark gray in print version) dots correspond to redder galaxies).
Image Credit: Michael Blanton and the Sloan Digital Sky Survey (SDSS) Collaboration.

The galaxies in Fig. 1.8 are clearly not distributed randomly: the universe has structure
on large scales. To understand this structure, we must develop the tools to study pertur-
bations around the smooth background. We will see that this is straightforward in theory,
as long as the perturbations remain small. To compare theory with observations, we must
thus try to avoid regimes that cannot be described by small perturbations. As an extreme
example, we can never hope to understand cosmology by carefully examining rock forma-
tions on Earth. The intermediate steps—collapse of matter into a galaxy; star formation;
planet formation; geology; etc.—are much too complicated to allow comparison between
linear theory and observations. In fact, perturbations to the matter on small scales (less
than about 10 Mpc) have become large in the late universe; that is, the fractional den-
sity fluctuations on these scales are not small, but comparable to or larger than unity. We
say that these scales have grown nonlinear. On the other hand, large-scale perturbations
are still small (quasi-linear). So they have been processed much less than the small-scale
structure. Similarly, anisotropies in the CMB are small because they originated at early
times and the photons that we observe from the CMB do not clump on their way to us.
Because of this, the best ways to learn about the evolution of structure and to compare
theory with observations are to look at anisotropies in the CMB and at large-scale structure
(LSS), i.e. how galaxies and matter are distributed on large scales. However, we will learn
in Chs. 12–13 that valuable cosmological information can also be extracted from smaller,
nonlinear scales provided we choose our observables wisely.

It is paramount therefore to develop statistics that can empower us to compare maps
like that shown in Fig. 1.8 to theories while isolating large scales from small scales. For this
purpose, it is often useful to take the Fourier transform of the distribution in question; as
we will see, working in Fourier space makes it easier to separate large from small scales.
The most important statistic in the cases of both the CMB and the large-scale structure
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FIGURE 1.9 The power spectrum Pg(k) of the luminous galaxy (CMASS) sample measured in data release 9 of the
SDSS-III BOSS survey (points). The solid line is the theoretical prediction from the concordance model (Sect. 1.6),
including nonlinear corrections (which we will introduce in Ch. 12). The inset zooms in on the region showing the
baryon acoustic oscillation (BAO) feature, which can be used as a standard ruler. From Anderson et al. (2012).

is the two-point function, short-hand for two-point correlation function. When measured
using Fourier-space fields, it is called the power spectrum.

Consider the number density of galaxies in the SDSS survey, as an example. If the den-
sity of galaxies as a function of position is ng(x), and its mean over the whole survey is ng,
then we can characterize the inhomogeneities with δg(x) = (ng(x) − ng)/ng, or its Fourier
transform δ̃g(k) (see Box 5.1). By construction, the mean of the field δg(x) is equal to zero.
We then consider the galaxy power spectrum Pg(k), which is defined via

〈δ̃g(k)δ̃∗
g(k′)〉 = (2π)3δ

(3)
D (k − k′)Pg(k). (1.10)

Here the angular brackets denote an average over the whole ensemble, and δ
(3)
D (·) is the

Dirac delta function which constrains k = k′. The details aside, which we will get to in
Ch. 11, Eq. (1.10) indicates that the power spectrum is the spread, or the variance, in the
distribution. If there are lots of very under- and overdense regions, the power spectrum
will be large, whereas it is small if the distribution is smooth (the power spectrum vanishes
identically in a homogeneous universe). Fig. 1.9 shows the measured power spectrum of
the galaxy distribution in the SDSS/BOSS survey. We will get to understand its shape, and
the interesting oscillatory feature around k � 0.1h Mpc−1, in Ch. 8.

The best measure of anisotropies in the CMB also is the two-point function, of the in-
tensity on the sky in this case (Ch. 9). There is a technical difference because the CMB
temperature is a two-dimensional field, measured everywhere on the sky (i.e., with two
angular coordinates but no third coordinate corresponding to distance). Instead of Fourier
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FIGURE 1.10 Upper panel: Anisotropies in the CMB as measured by the Planck satellite (points). The line shows the
best-fit prediction by the concordance model of cosmology, based on initial conditions as predicted by inflation.
The model involves only six free parameters; its beautiful prediction matches the data almost perfectly. The x-axis
is multipole moment (e.g., l = 1 is the dipole, l = 2 the quadrupole) where large angular scales correspond to low l;
the y-axis is the variance of the temperature fluctuations as a function of scale (Dl ≡ l(l + 1)C(l)T 2

0 /2π ; we will learn
what C(l) is in Ch. 9). The characteristic signature of inflation is the series of peaks and troughs, a signature that
has been impressively verified by experiment. Lower panel: Difference between data and best-fit model. Notice the
change in y axis between l < 30 and l ≥ 30 in this panel. From Planck Collaboration (2018b).

transforming the CMB temperature, then, one typically expands it in spherical harmon-
ics, a basis appropriate for a 2D field on the surface of the sphere. Therefore, the power
spectrum of the CMB is a function of multipole moment l, not wave number k. Dozens
of groups have made measurements of the CMB power spectrum since the discovery of
anisotropies in 1992. COBE’s measurements were at the very largest angles, i.e. low l. The
definitive measurement was supplied by the Planck satellite in 2018, shown in Fig. 1.10.

One key difference between the map of the CMB and that of the structure in the current
universe is the “contrast,” or amplitude of structure. The very young universe, as mapped
out by CMB experiments, was very smooth, while maps of the current universe as depicted
in Fig. 1.8 convince us that the universe is very inhomogeneous today. How did the uni-
verse evolve from smooth to clumpy? The simple answer, at the same time one of the most
powerful underpinnings of modern cosmology, is that gravity forced more and more mat-
ter into overdense regions, so that a region starting out with only a small, 10−4 fractional
overdensity evolved, over billions of years, to become much denser than the homogeneous
universe today and in fact the site at which a galaxy formed. During this process, small-
scale perturbations grew nonlinear first, and then hierarchically assembled to form larger
structures.
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Fig. 1.9 and Fig. 1.10 both show theoretical curves which are the result of precision cal-
culations within this paradigm of hierarchical gravitational instability, and which agree
well with the data. The main goal of much of this book is to develop a first-principle
understanding of these theoretical predictions. Indeed, understanding the development
of structure in the universe has become the major goal of most cosmologists today. The
growth of structure is fundamentally governed by an ongoing competition between grav-
itational instability, i.e. the tendency of an overdense region to collapse under its own
gravity, and the outward pull exerted by the expanding background. Thus, structure is sen-
sitive to the same physics as the background universe itself: its composition, evolution,
and curvature. We can then look for consistency between the evolution of the background
universe and the growth of structure. This provides a stringent test of our cosmological
model as well as the theory that underlies it, general relativity.

While trying to understand the evolution of structure in the universe, we will be forced
to confront the question of what generated the initial conditions, that is, the primordial
perturbations that were the seeds for this structure. This will lead us to the third important
aspect of cosmology (after dark matter and dark energy) that goes beyond the Standard
Model of particle physics: the theory of inflation. Chapter 7 introduces this fascinating
proposal that the universe expanded exponentially fast when it was but 10−35 s old. The
discoveries of the past two decades have elevated inflation from a theoretical idea with
aesthetic appeal to a testable hypothesis. CMB measurements have confirmed most of the
basic predictions of inflation, including the absence of spatial curvature.

1.1 Standard Model of particle physics
The Standard Model of particle physics describes the known fundamental particles in nature
and how they interact. The particles can be divided into two classes: spin-1/2 fermions and
integer-spin bosons.
Fermions are the constituents of matter: the quarks, out of which baryons are built, and the
leptons such as electrons and neutrinos. There are three generations with two quarks each for a
total of six quarks, denoted u, d; s, c; b, t . Each generation of quarks is associated with a pair of
leptons. For example, the u, d pair is associated with the electron and its neutrino: e−, νe. The
other lepton pairs are μ−, νμ and τ−, ντ . The vast majority of matter in the universe is made up
of the first generation, with the exception of neutrinos, which are mixed between the different
generations. Unlike leptons, quarks do not exist on their own, but they form bound states under
the strong interaction. Baryons, the most important ones being the proton and neutron, are
made out of three quarks. Mesons are composed of a quark–antiquark pair.
Bosons contain the spin-1 (vector) force carriers, the most famous of which is the photon which
mediates the electromagnetic force. There are eight gluons (massless, like the photon) that me-
diate the strong force. The weak force, responsible for example for neutron decay, is mediated
by three massive bosons: the Z, W+ and W−. These force mediators are complemented with the
spin-0 (scalar) Higgs boson. The Higgs couples to all massive fermions as well as the W and Z

bosons. This coupling gives mass to the particles through the Higgs’ homogeneous background
field value.

The Standard Model has remained largely intact since its inception, gaining more and more
experimental verification every year. However, neutrino masses are now a confirmed piece of
physics beyond the Standard Model. Moreover, the evidence cosmologists have uncovered—
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that there is a need for dark matter, dark energy, and new physics leading to inflation—clearly
shows that the Standard Model is not the final word in particle physics.

1.6 �CDM: the concordance model of cosmology
We are now ready to summarize the concordance model of cosmology: a Euclidean uni-
verse that is dominated today by non-baryonic cold dark matter (CDM) and a cosmological
constant, with initial perturbations generated by inflation in the very early universe. Since
all measurements are currently consistent with dark energy being a cosmological constant
�, this concordance model of cosmology has become known as (flat) �CDM. It is worth
noting that none of these ingredients are part of the Standard Model of particle physics
(Box 1.1)! Let us thus briefly discuss the status of these three ingredients.

CDM: The “Cold” part of this moniker comes from requiring the dark matter particles to
be able to clump efficiently in the early universe. If they are hot instead, i.e., have large ve-
locities, structure will not form at the appropriate levels; among others, this excludes the
known neutrinos from being dark matter candidates. We have argued that BBN and the
CMB imply the existence of non-baryonic matter. However, observations of structure in
the universe independently lead to the conclusion that there must be dark matter. The in-
homogeneities expected in a model without dark matter are far too small. In Ch. 8, we will
come to understand the reason why a baryon-only universe would be so smooth. More-
over, dark matter is a familiar concept to astronomers; the first suggestion was put forth by
Zwicky (1933), based on galaxy velocities within clusters. Ample evidence also comes from
the rotation curves of galaxies. Indeed, a mismatch between the matter inferred from grav-
ity and that which we can see in the form of baryons exists on all galactic and extragalactic
scales, and it always points toward roughly 5 times more dark matter than baryons.

What is this new form of matter? And how did it form in the early universe? So far, we
know only its overall abundance and the fact that it must be cold. The most popular idea
currently is that the dark matter consists of elementary particles produced during early
moments of the Big Bang. In Ch. 4, we will explore this possibility in detail, arguing that
dark matter may have been produced when the temperature of the universe was of order
hundreds of GeV/kB. As we will see, the hypothesis that dark matter consists of fundamen-
tal relics from the early universe is being rigorously tested experimentally.

Cosmological constant: Evidence from a variety of sources, but most famously from
distant supernovae (starting with Riess et al., 1998; Perlmutter et al., 1999) suggests that
there must be energy, dark energy, besides ordinary matter and radiation. Unlike dark
matter, this component does not cluster strongly. We already discussed the possibility that
this new form of energy remains constant with time, i.e., acts as a cosmological constant, a
possibility first introduced (and later abandoned) by Einstein. Cosmologists have explored
other forms though, many of which behave quite differently from the cosmological con-
stant. We will see more of this in Sect. 2.4.6.
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A typical physicist confronted with the need to introduce a cosmological constant
might at first be quite puzzled: since an expanding universe dilutes the density of par-
ticles, it seems impossible to find a fundamental particle that can be the source of dark
energy. On the other hand, the notion that empty space itself carries energy, so that the
density remains constant even as the universe expands, is consistent with Heisenberg’s
uncertainty principle and our understanding of quantum mechanics, which has virtual
particles and anti-particles popping in and out of existence for brief moments of time,
thereby contributing to the vacuum energy. Unfortunately, when one comes to try to quan-
tify the value of the cosmological constant using what we know about quantum field theory
and these vacuum fluctuations, the value obtained is much larger than the value required
to explain cosmological observations (Exercise 1.5). Dark energy then is more than simply
a parameter used to fit the observed universe: it is a supreme puzzle for physics, one that
has spawned thousands of papers and ideas, but one that remains unsolved.

Inflation: The most plausible mechanism for generating the initial perturbations that
grew into the structure observed today is dubbed inflation. It posits the existence of a brief
epoch very early in the universe, during which the scale factor grew exponentially rapidly
with time. The epoch of inflation therefore shares some features with our universe today:
the dominant form of energy remained roughly constant as the universe expanded, and
the identity of the substance driving this rapid expansion is unknown in both cases. How-
ever, the scales are much different: the energy density provided by the substance that drove
inflation was likely at least 60 orders of magnitude larger than the dark energy density to-
day. Since the energies associated with inflation were likely so large, they are very difficult
to probe experimentally. However, we will see that there is at least one signature of infla-
tion that is within reach of experiments and—if detected—would shed light on physics at
unprecedented energy scales.

1.7 Summary and outlook
As a way of summarizing the features of an expanding universe that we have outlined
above and that we will explore in great detail in the coming chapters, let us construct a
time line. We can equivalently characterize any epoch in the universe by the time since
the Big Bang; by the value of the scale factor at that time; by the redshift freely travel-
ing photons have experienced from then until today or by the temperature of the cos-
mic background radiation. For example, today, t � 13.7 billion years; a = 1; z = 0; and
T = 2.73 K = 2.35 × 10−4 eV/kB . Fig. 1.11 shows a time line of the universe using both time
and temperature as markers. The milestones indicated on the time line range from those
that involve known physics (nucleosynthesis and the CMB) to those that go beyond the
Standard Model of particle physics (inflation and dark energy).

The time line in Fig. 1.11 shows the dominant component of the universe at various
times. We do not know what dominated the energy budget of the universe at very early
times after the end of inflation. We do know, however, that the universe was dominated by
radiation at the latest by the time BBN occurred. Eventually, since the energy of a relativis-
tic particle falls as 1/a while that of a nonrelativistic particle remains constant at m, matter
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FIGURE 1.11 A history of the universe. Any epoch can be associated with either temperature (top scale) or time
(bottom scale). Also indicated are the types of constituents that dominate at any given time. At very early times, we
do not know whether the universe was always radiation dominated.

overtook radiation. At relatively recent times, the universe has become dominated not by
matter, but by dark energy, whose density remains approximately constant with time.

The classical results in cosmology can be understood in the context of a smooth uni-
verse. Light elements formed when the universe was several minutes old, and the CMB
decoupled from matter at a temperature of order kBT ∼ 1/4 eV, when the universe was
380,000 years old. Heavy elementary particles may make up the dark matter in the uni-
verse; if they do, their abundance was fixed at very high temperatures of order kBT ∼
100 GeV or higher.

In this book, we will be mostly interested in the perturbations around the smooth uni-
verse. At the beginning of the time line, we allow for a brief period of inflation, during which
primordial perturbations were produced. These small perturbations began to grow when
the universe became dominated by matter. The dark matter grew more and more clumpy,
simply because of the attractive nature of gravity. An overdensity of dark matter of 1 part
in 1000 when the temperature was 1 eV grew to 1 part in 100 by the time the temperature
dropped to 0.1 eV. Eventually, at relatively recent times, perturbations in the matter ceased
to be small; they became the nonlinear structure we see today. The observed anisotropies
in the CMB tell us what the universe looked like when perturbations were very small, so
they are a wonderful probe of the latter. Moreover, the CMB anisotropies provide a precise
characterization of the initial conditions needed for detailed analytic and numerical stud-
ies of the growth of structure. To give you an idea of the road ahead, Fig. 1.12 charts the
way through the various ingredients going into this calculation that we will get to know in
subsequent chapters of the book.

Some of the elements in the time line we have discussed may well be incorrect. How-
ever, since most of these ideas are testable, the data from the first half of the 21st century
will tell us which parts of the time line are correct and which need to be discarded. This in
itself seems more than sufficient reason to study the CMB and large-scale structure.

Exercises
1.1 Suppose (incorrectly) that H scales as temperature squared all the way back until the

time when the temperature of the universe was 1019 GeV/kB (i.e., suppose the uni-
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FIGURE 1.12 An outline of the remainder of this book. The homogeneous universe is mostly described in Chs. 2–4,
while Chs. 5–6 derive the equations governing the (linear) inhomogeneous universe. Ch. 7, which starts with some
mysteries about the homogeneous universe and motivates the theory of inflation, also describes the generation of
perturbations, which we then follow forward by solving the perturbation equations (Chs. 8–9). This allows us to
predict the CMB (Chs. 9–10) and obtain results on large-scale structure (LSS), such as galaxy clustering (Ch. 11). We
then study the nonlinear evolution of perturbations to the matter in Ch. 12, before turning to gravitational lensing
in Ch. 13. The final chapter of the book is devoted to how we go about extracting cosmological information from
data based on the predictions we derived throughout the book. The arrows indicate how each chapter builds on
results of previous chapters.

verse was radiation dominated all the way back to the Planck time). Also suppose that
today the dark energy is in the form of a cosmological constant �, such that ρ� to-
day is equal to 0.7ρcr and ρ� remains constant throughout the history of the universe.
What was ρ�/(3H 2/8πG) back then? The purpose of this estimate is to illustrate how
odd (or unnatural) is the value of �. For a variety of reasons (see Exercise 1.5), one
would expect its natural value to yield an energy density comparable to the ambient
density at the Planck time.

1.2 Assume the universe today is Euclidean with both matter and a cosmological con-
stant, the latter with energy density that remains constant with time. Integrate
Eq. (1.2) to find the present age of the universe (since radiation dominated only dur-
ing a small fraction of the universe’s age, including only matter and the cosmological
constant is a good approximation). That is, assume that ρ(t0) = ρcr and use Eq. (1.3)
to write

dt = H−1
0

da

a

[
�� + 1 − ��

a3

]−1/2

(1.11)

where �� is the ratio of energy density in the cosmological constant to the critical
density (see Eq. (2.71)). Integrate from a = 0 (when t = 0) until today at a = 1 to get the
age of the universe today. In both cases below the integral can be done analytically.
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(a) First do the integral in the case when �� = 0.
(b) Now do the integral in the case when �� > 0. Hint: Define a new integration vari-

able x ≡ ln(1/a3) and then use the fact that
∫

dx√
1 + αex

= −2 coth−1
(√

αex + 1
)

. (1.12)

(c) For fixed H0, which universe is older?
1.3 Using the reduced masses of hydrogen and deuterium, and the fact that the Lyman-α

(n = 2 → n = 1) transition in H has a wavelength 1216 Å, find the wavelength of the
photon emitted in the corresponding transition in D. Astronomers often define c�λ/λ

to characterize the splitting of two nearby lines. What is this quantity for the H–D pair?
1.4 Convert the specific intensity in Eq. (1.9) into an expression for what is plotted in

Fig. 1.7, the energy per area, time, frequency and steradian. Show that the peak of a
2.73 K black-body spectrum does lie at 1/λ � 5 cm−1. What frequency does this corre-
spond to?

1.5 The ground state energy of the harmonic oscillator is �ω/2. This ground state energy
carries through to quantum field theory where the fluctuations of fields even in empty
space lead to an energy density equal to

ρvacuum =
∫

d3p

(2π�)3

�ω

2
(1.13)

where the integral corresponds to a sum over all possible momentum modes and,
for a particle with mass m, the energy is equal to �ω = √

m2c4 + p2c2. The integral di-
verges, but this simply reflects the fact that above a certain scale Emax = pmaxc, there
is likely to be new physics that changes the fundamental degrees of freedom. Cal-
culate this integral for electrons for two values: Emax = 10mec

2 (which is extremely
conservative, because we certainly know about physics above this energy scale) and
Emax = mPlc

2 = 1.2 × 1019 GeV (the scale above which quantum mechanical correc-
tions to gravity become large). Compare the values obtained with the value of the dark
energy density today ρ� � 3 × 10−11 eV4/(�c)3. Caveat: There is some disagreement in
the literature as to whether this way of handling the divergence is correct (Martin,
2012); however, everyone agrees that there is a big problem.
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The expanding universe

Just as the early navigators of the great oceans required sophisticated tools to help them
find their way, we will need modern technology to help us work through the ramifications
of an expanding universe. In this chapter, we introduce the metric and the distribution
function, the first of which underlies general relativity and the second, statistical mechan-
ics. We will use this language to derive some of the basic features of the smooth, expanding
universe: the redshifting of light, the notion of distance needed to understand the argu-
ments for dark energy, the evolution of the energy density with scale factor, and the epoch
of equality aeq shown in Fig. 1.3. We then go on to perform a cosmic inventory, identifying
those constituents of the universe that dominate the energy budget at various epochs.

Implicit in this discussion will be the notion that the universe is smooth, more pre-
cisely: spatially homogeneous. That is, the densities of the various constituents such as
matter and radiation do not vary in space. To make things even simpler, we will work
under the assumption—which is observed to be correct and the reason for which is
understood—that all the constituents have equilibrium distributions, as defined and ex-
plored in Sect. 2.3.

These simple assumptions form the basic framework within which cosmologists oper-
ate and around which they perturb, so that a good grasp of this “zeroth-order universe”
is essential. In subsequent chapters, we will see that the deviations from smoothness and
the equilibrium distributions are the source of much of the richness we observe in the uni-
verse.

From this chapter onward, we use units in which

�= c = kB = 1. (2.1)

Many research papers employ these units, so it is important to get accustomed to them.
Please work through Exercise 2.1 if you are uncomfortable with the idea of setting the speed
of light, or Planck’s and Boltzmann’s constants to 1.

2.1 Expanding space
On the one hand, the expansion of the universe and the perturbations that make it in-
teresting are governed by general relativity. On the other hand, most of cosmology can
be learned with only a passing knowledge of this formidable theory. Very roughly, we can
break down relativity into two parts. The first is the idea of general covariance: any physical
phenomenon can be described within any desired frame of reference, with the same result.
Einstein realized that this principle requires that space and time (unified through special
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relativity) are curved. To describe a curved spacetime, we introduce the metric, which tells
us the distance between two points in time and space. The second part of general relativity
relates spacetime, via the metric, to all the stuff that is contained within it, such as mat-
ter and radiation. This part of relativity is summarized in the form of Einstein’s equations,
which we will introduce in Ch. 3. In this chapter, we will deal only with expanding space
and the metric that describes it, which are aspects of the first part of Einstein’s theory, and
independent of Einstein’s equations.

2.1.1 The metric

Rigorously defined, the metric returns the actual physical distance between two infinitesi-
mally close points in spacetime defined in some arbitrary coordinate system. It will be an
essential tool in our quest to make quantitative predictions in an expanding universe. In
fact, long before Einstein, physicists such as Newton and Maxwell used a spacetime met-
ric. However, their use of a metric was implicit, since they did not distinguish between
space and the coordinates that describe it. Going back to Fig. 1.1 from Ch. 1, we see that
even if one knows the components of a separation vector between two points, say two grid
points in that figure, the physical distance associated with this vector requires additional
information; in this case, the value of the scale factor a(t) at that time.

We are familiar with the metric for the Cartesian coordinate system (x, y) which says
that the square of the physical distance between two points separated by dx and dy in a
2D plane is (dx)2 + (dy)2. However, if we use polar coordinates (r, θ) instead, the square of
the physical distance no longer is the sum of the square of the two coordinate differences.
Rather, if the differences dr and dθ are small, the square of the distance between two points
is (dr)2 + r2(dθ)2. This distance is invariant : an observer using Cartesian coordinates to
calculate it would get the same result as one using polar coordinates. Thus another way of
stating what a metric does is this: it turns observer-dependent coordinates into invariants.
Mathematically, in the 2D plane, the invariant distance squared is dl2 = ∑

i,j=1,2 gij dxidxj .
The metric gij in this 2D example is a 2 × 2 symmetric matrix. In Cartesian coordinates
(x1 = x, x2 = y) the metric is simply the identity matrix

gij
Cartesian=

(
1 0
0 1

)
, (2.2)

while in polar coordinates (x1 = r, x2 = θ) it instead becomes

gij
polar=

(
1 0
0 r2

)
. (2.3)

Note that gij can also depend on location (in this case through r). Both forms of the metric
describe the same space: a 2D plane.

The concept of a metric really comes into its own when considering more general,
curved spaces. Consider the surface of the Earth, which we can roughly approximate as
a sphere. There are various ways to assign coordinates to a point on the Earth’s surface.
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Plotting them on a flat piece of paper results in a map. But is there a coordinate system
such that the resulting map accurately reflects distances, areas, and angles, like the Carte-
sian coordinates do for Euclidean space? The answer is no: the Earth’s surface is curved,
and no such coordinate representation exists. Fig. 2.1 illustrates this. The Mercator co-
ordinates (top panel) preserve angles,1 which make them useful for navigation. But they
strongly distort apparent distances and areas, especially near the poles. Another choice
are the Winkel–Tripel coordinates, which reduce the apparent distortion of distances and
areas, but instead feature a distortion of angles. This apparent problem for map-making
does not pose a real problem for us, however: we know that we must use the metric to
calculate distances, areas, and angles. And while the metric looks different in different co-
ordinates, the result will be independent of which coordinates we use.

For us as physicists, another reason we use the metric is that, by describing curved
spacetime, it incorporates gravity. Instead of thinking of gravity as an external force and
talking of particles moving in a gravitational field, we can include gravity in the metric and
talk of particles moving freely in a distorted or curved spacetime. The underlying princi-
ple is again general covariance: as Einstein realized, an observer in a uniform gravitational
field makes exactly the same measurements as one in an accelerated reference frame.

In four spacetime dimensions the invariant includes time intervals as well, so that

ds2 =
3∑

μ,ν=0

gμνdxμdxν (2.4)

where the indices μ and ν range from 0 to 3 (see Box 2.1), with the first one reserved for
the time-like coordinate (e.g., x0 = t) and the last three for spatial coordinates. As in spe-
cial relativity, the time-time component of the metric has the opposite sign of the purely
spatial components. Here, we will choose the “mostly positive” metric convention, where
the spatial metric components are positive, following standard convention in cosmology.
In Eq. (2.4) we have explicitly written down the summation sign, but from now on we will
use the convention that repeated indices are summed over. gμν is symmetric, so it has four
diagonal and six independent off-diagonal components.

The metric provides the connection between values of the coordinates and the physi-
cal measure of the interval ds2. This interval is often called the proper-time interval. To see
why, imagine an observer sitting with a watch. This observer naturally chooses a coordi-
nate system {t,x} within which she remains at the origin and where the time coordinate
corresponds to the time shown by her watch. Now define two spacetime events as the
points where the observer’s watch shows 12:00:00 and 12:00:01. Since the observer does
not move with respect to the xi , we have dxi = 0 and thus the invariant interval becomes
ds2 = g00dt2 = −(1 s)2. Thus, apart from the minus sign, the proper-time interval is pre-
cisely the time elapsed according to the observer’s watch. Another observer, moving with

1
This means that the angle between straight lines connecting a given point on the map with two other nearby

points is the same as would be measured on the actual surface of the Earth.
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FIGURE 2.1 The surface of the Earth represented in two different coordinate systems: Mercator coordinates (top)
and Winkel–Tripel coordinates (bottom). The Mercator coordinates preserve angles but visually greatly distort areas:
Greenland appears to be larger in area than Australia, despite having less than a third of Australia’s area in reality.
The Winkel–Tripel coordinates improve this, at the price of distorting angles. No flat representation of the Earth’s
surface can be faithful in both areas and angles, because it is curved. The metric, however, allows us to correctly
compute distances, areas, and angles regardless of the coordinates chosen. Image credit: Daniel R. Strebe (2011), CC
BY-SA 3.0.

respect to the first, may assign a different dt and dxi but will compute an identical value of
the proper-time interval ds for the same two events. The negative sign means that the pair
of events are separated by a time-like interval, while events that have a positive proper-
time interval are separated by a space-like interval; two events with ds2 = 0 are connected
by light rays.

2.1 Indices
In three dimensions, a vector A has three components, which we refer to as Ai , with the super-
script i taking the values 1, 2, or 3. The dot product of two vectors is then

A · B =
3∑

i=1

AiBi ≡ AiBi (2.5)

where we have introduced the Einstein summation convention of not explicitly writing the
∑

sign when an index (in this case i) appears twice. Similarly, matrices can be written in compo-
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nent notation. For example, the product of two matrices M and N is

(MN)ij = MikNkj (2.6)

again with implicit summation over k.
In relativity, two generalizations must be made. First, every vector has a fourth component,

the time component. Since the spatial indices run from 1 to 3, it is conventional to use 0 for the
time component. Greek letters are used to represent all four components, so Aμ = (A0,Ai). The
second, more subtle, feature of relativity is the distinction between upper and lower indices, the
former associated with contravariant, the latter with covariant vectors. One goes back and forth
with the metric tensor, so that

Aμ = gμνAν; Aμ = gμνAν. (2.7)

A contravariant vector and a covariant vector can be contracted to produce an invariant, a
scalar. For example, the statement that the four-momentum squared of a massless particle must
vanish is

P 2 ≡ PμPμ = gμνPμP ν = 0. (2.8)

Just as the metric can turn an upper index on a vector into a lower index, the metric can be
used to raise and lower indices on tensors with an arbitrary number of indices. For example,
raising the indices on the metric tensor itself leads to

gμν = gμαgνβgαβ . (2.9)

If the index α = ν, then the first term on the right is equal to the term on the left, so if the com-
bination of the last two terms on the right force α to be equal to ν, then the equation is satisfied.
Therefore,

gνβgβα = δν
α, (2.10)

where δν
α is the Kronecker delta, which is equal to the identity matrix: identical to zero unless

ν = α in which case it is 1. Thus, gμν is the inverse of gμν .

Special relativity is described by the Minkowski spacetime with the metric: gμν = ημν ,
where

ημν =

⎛
⎜⎜⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ . (2.11)

This is the metric implicitly used by Maxwell in deriving his equations of electromag-
netism. It describes a spacetime that is not curved.

Now, what is the metric that describes the expanding universe? Let us return to the grid
depicted in Fig. 1.1. Two grid points move away from each other, such that the distance
between the two points is always proportional to the scale factor a(t). If the coordinate
(i.e., comoving) distance today is x0, the physical distance between the two points at some
earlier time t was a(t)x0 with a today, a0, equal to one. At least in a Euclidean (or “flat,”
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as opposed to open or closed) universe, the metric then is almost the Minkowski metric,
except that spatial coordinates must be multiplied by the scale factor. This suggests that
the metric in an expanding, Euclidean universe is

gμν =

⎛
⎜⎜⎝

−1 0 0 0
0 a2(t) 0 0
0 0 a2(t) 0
0 0 0 a2(t)

⎞
⎟⎟⎠ . (2.12)

This is the Friedmann–Lemaître–Robertson–Walker (FLRW) metric for a Euclidean uni-
verse.

In order to determine how the function a(t) evolves with time, we need to know the
composition of the homogeneous constituents in the universe, and we need to use Ein-
stein’s equations, as noted in Eq. (1.3). We will turn to that in Sect. 3.1. When perturbations
are introduced, the metric will become more complicated and will in addition depend on
the location in space. Therefore, Eq. (2.12) will be generalized to include functions that de-
pend on both time and space and quantify deviations from uniformity. These perturbed
parts of the metric will be determined by the inhomogeneities in the matter and radiation.

Before that, however, let us consider how matter and radiation behave within an ex-
panding spacetime, and how we can go from infinitesimal invariant intervals to actual
finite distances.

2.1.2 The geodesic equation

In Minkowski space, particles travel in straight lines unless they are acted on by a force.
Not surprisingly, the paths of particles in more general spacetimes are more complicated.
In a curved space, the notion of a straight line gets generalized to a geodesic, the shortest
path (or, in general extremal path) between two points. Quite beautifully, general relativity
states that this is precisely the path followed by a particle in the absence of any forces apart
from gravity. To express this in equations, we must generalize Newton’s law with no forces,
d2x/dt2 = 0, to accommodate more general coordinate systems and spacetimes.

The machinery necessary to generalize d2x/dt2 = 0 is perhaps best introduced by start-
ing with a simple example: free particle motion in a Euclidean 2D plane. In that case, the
equations of motion in Cartesian coordinates xi = (x, y) are

d2xi

dt2
= 0. (2.13)

However, if we use polar coordinates x′i = (r, θ) instead, the equations for a free particle
look significantly different. The fundamental difference between the two coordinate sys-
tems is that the basis vectors for polar coordinates r̂ , θ̂ vary in the plane. Therefore, the
coordinates r and θ do not satisfy d2x′i/dt2 = 0.
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To determine the equation satisfied by a free particle in polar coordinates, we can start
from the Cartesian equation and then transform. In particular,

dxi

dt
= ∂xi

∂x′j
dx′j

dt
. (2.14)

∂xi/∂x′j is called the transformation matrix going from one coordinate system to another.
In the case of Cartesian to polar coordinates in 2D, x1 = x′1 cosx′2 and x2 = x′1 sinx′2, so the
transformation matrix is

∂xi

∂x′j =
(

cosx′2 −x′1 sinx′2
sinx′2 x′1 cosx′2

)
. (2.15)

Therefore, the geodesic equation becomes

d

dt

[
dxi

dt

]
= d

dt

[
∂xi

∂x′j
dx′j

dt

]
= 0. (2.16)

The derivative with respect to time acts on both terms inside the brackets. If the derivative
acting on the transformation matrix vanished, the geodesic equation in the new coordi-
nates would still be d2x′i/dt2 = 0. In the case of polar coordinates, though, this derivative
does not vanish, and we can apply the chain rule to obtain

d

dt

(
∂xi

∂x′j

)
= ∂2xi

∂x′j ∂x′k
dx′k

dt
. (2.17)

The geodesic equation in the new coordinates therefore becomes

d

dt

[
∂xi

∂x′j
dx′j

dt

]
= ∂xi

∂x′j
d2x′j

dt2
+ ∂2xi

∂x′j ∂x′k
dx′k

dt

dx′j

dt
= 0. (2.18)

To get this in a more recognizable form, note that the term multiplying the second time
derivative d2x′j /dt2 is the transformation matrix. If we multiply the equation by the inverse
of this transformation matrix, then the second time derivative will stand alone, leaving

d2x′l

dt2
+

⎡
⎣({

∂x

∂x′

}−1
)l

i

∂2xi

∂x′j ∂x′k

⎤
⎦ dx′k

dt

dx′j

dt
= 0. (2.19)

You can check that this rather cumbersome expression does indeed give the correct equa-
tions of motion in polar coordinates. This is the geodesic equation in a non-Cartesian
coordinate system.

It is convenient to define the Christoffel symbol, 	l
jk , to be the coefficient in brackets in

Eq. (2.19). Note that by definition it is symmetric in its lower indices j and k. In a Cartesian
coordinate system describing a Euclidean space, the Christoffel symbol vanishes and the
geodesic equation is simply d2xi/dt2 = 0. But in general, the Christoffel symbol does not
vanish; its presence describes geodesics in nontrivial coordinate systems. In a nontrivial
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FIGURE 2.2 A particle’s path xμ(λ) is parametrized by λ, which monotonically increases from its initial value λ1 to its
final value λ2. The tangent to the path is given by the vector dxμ/dλ (arrow).

spacetime such as the expanding universe it is not possible to find a coordinate system in
which the Christoffel symbol vanishes identically, so the geodesic equation is essential.

There are two small changes we need to make when importing the geodesic equation
(2.19) into relativity. The first is trivial: allow the indices to range from 0 to 3 to include
time and the three spatial dimensions. The second is also not too surprising: since time
is now one of our coordinates, fixing the evolution parameter to be the time coordinate
does not always work (although it certainly is a possible choice in many cases). Instead,
we introduce a parameter λ which monotonically increases along the particle’s path as in
Fig. 2.2. The geodesic equation then becomes

d2xμ

dλ2
+ 	μ

αβ

dxα

dλ

dxβ

dλ
= 0. (2.20)

We derived this equation transforming from a Cartesian basis, so that the Christoffel sym-
bol is given by the term in square brackets in Eq. (2.19). It is almost always more con-
venient, however, to obtain the Christoffel symbol from the metric directly. A convenient
formula expressing this dependence is

	μ
αβ = gμν

2

[
∂gαν

∂xβ
+ ∂gβν

∂xα
− ∂gαβ

∂xν

]
. (2.21)

Note again that the raised indices on gμν are important: gμν is the inverse of gμν (see
Box 2.1). So gμν in the Euclidean FLRW metric is similar to gμν , the only difference being
that its spatial elements are 1/a2 instead of a2.

To understand how particles move in an expanding universe, then, we first need to cal-
culate the Christoffel symbol. The starting points are the general expression in Eq. (2.21)
and the FLRW metric in Eq. (2.12). First we compute the components with upper index
equal to zero, 	0

αβ . Since the metric is diagonal, the factor of g0ν vanishes unless ν = 0 in
which case it is −1. Therefore,

	0
αβ = −1

2

[
∂gα0

∂xβ
+ ∂gβ0

∂xα
− ∂gαβ

∂x0

]
. (2.22)
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The first two terms here reduce to derivatives of g00. Since the FLRW metric has constant
g00, these terms vanish, and we are left with

	0
αβ = 1

2

∂gαβ

∂x0
. (2.23)

The derivative is nonzero only if α and β are spatial indices, which will be identified with
Roman letters i, j running from 1 to 3. Since x0 = t , we have

	0
00 = 0,

	0
0i = 	0

i0 = 0,

	0
ij = δij ȧ a. (2.24)

It is a straightforward and useful exercise to show that 	i
αβ is nonzero only when one of its

lower indices is zero and one is spatial, so that

	i
0j = 	i

j0 = δij

ȧ

a
(2.25)

with all other 	i
αβ zero.

This has been a long, rather formal subsection, opening with the generalization of the
geodesic equation to curved spacetime and then proceeding with a calculation of the
Christoffel symbol in the expanding universe described by the FLRW metric. We can now
enjoy the fruits of our labor by applying this formalism to a single particle. In particular, let
us see how a particle’s energy changes as the universe expands. We will do the calculation
here for a massless particle; an almost identical problem for a massive particle is relegated
to Exercise 2.3.

Start with the four-dimensional energy-momentum vector P α = (E,P ), whose time
component is the energy. We use this four-vector to define the parameter λ in Eq. (2.20):

P α = dxα

dλ
. (2.26)

This is an implicit definition of λ. Fortunately, one never needs to find λ explicitly, for it can
be directly eliminated by noting that

d

dλ
= dx0

dλ

d

dx0

= E
d

dt
. (2.27)

The reason we define λ as the affine parameter in this way is that it allows us to treat both
massive and massless particles. For massive particles, the proper time (i.e. what the watch
of an observer traveling along with the particle would show) is a more intuitive choice, but
this does not work for massless particles, since they travel along geodesics with vanishing
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proper-time interval, ds = 0. In any case, the trajectories of particles are independent of
what affine parameter we choose to describe them.

In the FLRW metric, the 0-component of the geodesic equation (2.20) then becomes

E
dE

dt
= −	0

ijP
iP j (2.28)

where the equality holds since only the spatial components of 	0
αβ are nonzero. Inserting

these components leads to a right-hand side equal to −δij aȧP iP j . A massless particle has
energy-momentum vector (E,P ) with zero magnitude:

gμνP
μP ν = −E2 + δij a

2P iP j = 0, (2.29)

which enables us to write the right-hand side of Eq. (2.28) as −(ȧ/a)E2. Therefore, the
geodesic equation yields

dE

dt
+ ȧ

a
E = 0, (2.30)

the solution to which is

E = E0

a
. (2.31)

This confirms our hand-waving argument in Ch. 1 that the energy of a massless particle
should decrease as the universe expands since it is inversely proportional to its wave-
length, which is being stretched along with the expansion. In Ch. 3 we will rederive this
result in yet another way using the Boltzmann equation.

One final comment about the relation between energy and momentum for a massless
particle as expressed in Eq. (2.29). If we define

pi = aP i, (2.32)

we have E2 = δijp
ipj , so that we can identify p with the physical momentum (while P i

is the momentum defined with respect to the comoving grid). In terms of the physical
momentum, the well-known relation

E = p where p ≡ |p| (2.33)

continues to hold, which is why we will mostly use this version of particle momentum.

2.2 Distances
We can anticipate that measuring distance in an expanding universe will be a tricky busi-
ness. Referring back to the expanding grid of Fig. 1.1, we immediately see two possible
ways to measure distance, the comoving distance which remains fixed as the universe ex-
pands or the physical distance which grows simply because of the expansion. Frequently,
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neither of these two measures accurately describes the process of interest. For example,
light leaving a distant galaxy at redshift 3 starts its journey towards us when the scale factor
was only a quarter of its present value and ends it today when the universe has expanded
by a factor of 4. Which distance do we use in that case to relate, say, the luminosity of the
galaxy to the flux we see?

The starting point for the calculation of distances is the comoving (or coordinate) dis-
tance which refers to the coordinate grid and is simple to define mathematically. Consider
the comoving distance between a distant light source and us. In a small time interval dt ,
light travels a comoving distance dx = dt/a (recall that we are setting c = 1), so the total
comoving distance traveled by light that began its journey from an object at time t when
the scale factor was equal to a (or redshift z = 1/a − 1) is

χ(t) =
∫ t0

t

dt ′

a(t ′)
=

∫ 1

a(t)

da′

a′2H(a′)
=

∫ z

0

dz′

H(z′)
. (2.34)

Here we have changed the integration over t ′ to one over a′, which brings in the additional
factor of ȧ = aH in the denominator, and finally to z′. As the final expression makes clear,
for small redshifts z we can write the comoving distance as χ ≈ z/H0 (verifying our hand-
waving discussion of the Hubble diagram at small redshifts in Sect. 1.2). The behavior at
larger redshift in the fiducial concordance cosmology is depicted in Fig. 2.3.

Before relating the comoving distance to observables, let us take a quick detour to con-
sider the comoving distance η that light could have traveled (in the absence of interactions)
since t = 0,

η(t) ≡
∫ t

0

dt ′

a(t ′)
. (2.35)

The reason this distance is so important is that no information could have propagated
further on the coordinate grid than η since the beginning of time. Therefore, regions sep-
arated by distances greater than η are not causally connected. If they appear similar, we
should be suspicious! We can think of η then as the comoving horizon. We can also think
of η, which is monotonically increasing, as a time variable and call it the conformal time.
Just like the time t , the temperature T , the redshift z, and the scale factor a, we can use η as
time variable to describe the evolution of the universe. In fact, for most purposes η is the
most convenient time variable, so when we begin to study the evolution of perturbations,
we will use it instead of t . In some simple cases, η can be expressed analytically in terms
of a (Exercise 2.6). For example, in a matter-dominated universe, η ∝ a1/2, while η ∝ a in a
radiation-dominated universe.

A classic way to determine distances in astronomy is to measure the angle θ subtended
by an object of known physical size l (“standard ruler”). Since this angle is small (almost
always in astronomy), the distance to that object is

dA = l

θ
. (2.36)
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FIGURE 2.3 Three distance measures in the Euclidean expanding universe in the concordance cosmological model:
the comoving distance χ , the angular diameter distance dA, and the luminosity distance dL.

This relation defines the angular diameter distance dA. To compute the angular diameter
distance in an expanding universe, we first note that the comoving size of the object is
l/a, where a is the scale factor when the light is emitted. The comoving distance out to
the object is given by Eq. (2.34), so the angle subtended in a Euclidean universe is θ =
(l/a)/χ(a). Comparing with Eq. (2.36), we see that the angular diameter distance is

dEuc
A = a χ = χ

1 + z
. (2.37)

Note that the angular diameter distance is equal to the comoving distance at low redshift,
but actually decreases at very large redshift (Fig. 2.3). At least in a Euclidean universe,
objects at large redshift appear larger than they would at intermediate redshift! This is a
consequence of the fact that the entire universe was smaller (in the sense that each grid
cell in Fig. 1.1 was smaller), and hence the emitting galaxy and we observers were physi-
cally much closer.

The superscript “Euc” is a warning that Eq. (2.37) holds only in a Euclidean universe.
Let us define the curvature parameter

�K = 1 − �0, (2.38)

where �0 is the ratio of total to critical density today, including contributions from matter,
radiation, and any other form of energy such as a cosmological constant (we will systemat-
ically introduce the � notation in Sec. 2.4). If the curvature is nonzero, �K �= 0, the angular
diameter distance generalizes to

dA = a

H0
√|�K|

{
sinh[√�KH0χ] �K > 0,

sin[√−�KH0χ] �K < 0.
(2.39)

Note that both of these expressions reduce to the Euclidean case in the limit that the cur-
vature density �K goes to zero. If �K > 0, the universe is open and dA is larger than in the
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Euclidean case; conversely, for �K < 0, a closed universe, dA is smaller than in the �K = 0
case (see Fig. 9.14 for an intuitive illustration of these trends).

Another way of inferring distances in astronomy is to measure the flux from an object of
known luminosity (“standard candle;” with the discovery of gravitational-wave sources, we
now also have “standard sirens,” to which all of the following applies as well). For nearby
objects, the flux F observed at a distance d from a source of known luminosity L is

F = L

4πd2
, (2.40)

since the total luminosity through a spherical shell with area 4πd2 is constant and equal
to L. How does this result generalize to an expanding universe? Again it is simplest to work
on the comoving grid, this time with the source centered at the origin. The flux we observe
is

F = L(χ)

4πχ2(a)
(2.41)

where L(χ) is the luminosity through a comoving spherical shell with radius χ(a). To fur-
ther simplify, let us assume that the photons are all emitted with the same energy. Then
L(χ) is this energy multiplied by the number of photons passing through a comoving
spherical shell per unit time. In a fixed time interval, photons travel farther on the co-
moving grid at early times than at late times since the associated physical distance at early
times is smaller. Therefore, the number of photons crossing a shell in a fixed time interval
will be smaller today than at emission, smaller by a factor of a. Similarly, the energy of the
photons will be smaller today than at emission, because of expansion. Therefore, the en-
ergy per unit time passing through a comoving shell at a distance χ(a) (i.e., our distance)
from the source will be a factor of a2 smaller than the luminosity at the source. The flux we
observe therefore will be

F = La2

4πχ2(a)
(2.42)

where L is the luminosity at the source.2 We can then use Eq. (2.40) to define the luminosity
distance in a Euclidean expanding universe:

dEuc
L ≡ χ

a
. (2.43)

The luminosity distance is also shown in Fig. 2.3. We thus have dL = dA/a2, and this relation
also holds in curved universes, so Eq. (2.39), when divided by a2, similarly yields dL for
�K �= 0.

All three distances are larger in a universe with dark energy than in one without. This
follows from the fact that dark energy leads to an expansion that is accelerating. Thus, for

2
In general there is one more difference that needs to be accounted for: the observed luminosity is related to

the emitted luminosity at a different wavelength. Here we have assumed a detector which counts all the photons.
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a fixed expansion rate H0 today, the universe was expanding more slowly in the past if dark
energy is present. We have already seen in Ch. 1 that a universe with dark energy is older.
This also means that light emitted at a given redshift (i.e. scale factor) had more time to
travel, and hence covered a larger distance. Distant objects will therefore appear fainter to
us than if the universe was dominated by matter only.

2.3 Evolution of energy
After having familiarized ourselves with the expanding spacetime, we now turn to the con-
stituents of the universe. How do we characterize matter, radiation and other stuff in the
universe? For now, we are again interested only in the smooth background universe, so
only the mean quantities are of interest. There is no mean net momentum or velocity, since
this would break the isotropy of the universe. Essentially, we are left with the mean den-
sity and pressure as the only properties of the various constituents that are relevant for
the background universe. Just as the energy and momentum of a particle are combined
into a relativistic 4-momentum, the energy density and pressure can be combined into a
relativistic tensor, the energy-momentum tensor, which in the isotropic smooth universe
assumes a very simple form:

T μ
ν =

⎛
⎜⎜⎝

−ρ 0 0 0
0 P 0 0
0 0 P 0
0 0 0 P

⎞
⎟⎟⎠ (2.44)

where P is the pressure. This simple form is just a consequence of the symmetries of the
FLRW metric. The fact that it appears to be the energy-momentum tensor of an ideal fluid
at rest should not mislead us; several constituents in the universe in fact do not behave as
fluids. The energy-momentum tensor is precisely the entity appearing on the right-hand
side of the Einstein equations so deriving it will become a routine calculation for us.

How do the components of the energy-momentum tensor evolve with time? To gain
intuition, consider first the case of a fluid in the absence of gravity, and when veloci-
ties are negligible. The pressure and energy density in that case evolve according to the
continuity equation, ∂ρ/∂t = 0, and the Euler equation, ∂P/∂xi = 0. Can this also be pro-
moted to a 4-component conservation equation for the energy-momentum tensor, per-
haps ∂T μ

ν/∂xμ = 0? Almost: as explained in Box 2.2, coordinate derivatives of tensors have
no meaning by themselves in general relativity, as they are coordinate-dependent. Instead,
we have to use the covariant derivative:

∇μT μ
ν ≡ ∂T μ

ν

∂xμ
+ 	μ

αμT α
ν − 	α

νμT μ
α = 0. (2.45)

This is the general-relativistic version of the continuity and Euler equations, or, more gen-
erally, the statement of local energy and momentum conservation.
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2.2 Tensors and derivatives
In curved space, the metric is important not only for calculating distances, but also for taking
derivatives. As always, the starting point is that physical conclusions should be independent
of the coordinates chosen. Consider first a simple function φ(x) defined on the curved space,
which we call a scalar. When changing coordinates xμ → x̂μ, it transforms almost trivially as

φ̂(x̂) = φ(x[x̂]). (2.46)

That is, the function φ just depends on which physical point in space the coordinates x or x̂

point to in their respective coordinate system.
We can generate a covariant vector from a scalar φ(x) by using the partial derivative with

respect to the coordinates:

Aμ = ∂

∂xμ
φ . (2.47)

Aμ points in the direction where φ changes most rapidly, and one can hence think of this vector
as an arrow. If we change coordinates, we now have, via the chain rule [cf. Eq. (2.14)]

Âμ = ∂

∂x̂μ
φ̂ = ∂xα

∂x̂μ

∂

∂xα
φ = ∂xα

∂x̂μ
Aα . (2.48)

This transformation law applies generally to all covariant (lower-index) vectors, regardless of
whether they are given by a derivative of a scalar or not. More generally, for a two-index tensor
such as the metric, we have

ĝμν = ∂xα

∂x̂μ

∂xβ

∂x̂ν
gαβ . (2.49)

Now, can we take a derivative of a vector to obtain a tensor, such as Mμν = ∂μAν? The answer is
no: this object does not obey the tensor transformation law, as can be verified by taking a deriva-
tive of Eq. (2.48). However, the metric allows us to construct a covariant derivative ∇μ such that
∇μAν is a tensor. Thus, whenever one takes a derivative of a vector or tensor in relativity to
generate a new physical field, it should be the covariant derivative.

What spoils the transformation law for the ordinary derivative of a vector is the same term,
∂2xα/∂x̂μ∂x̂ν , that led us to introduce the Christoffel symbols in the geodesic equation in
Sect. 2.1.2. Indeed, the Christoffel symbols are all we need to define the covariant derivative.
You can verify that

∇μAν ≡ ∂μAν − 	α
μνAα (2.50)

satisfies the proper tensor transformation law Eq. (2.49). For this, our previous definition of
Christoffel symbols as the term in brackets in Eq. (2.19), generalized to four dimensions, is use-
ful. Similarly, for contravariant vectors we have (note the change in sign)

∇μAν ≡ ∂μAν + 	ν
μαAα. (2.51)

For tensors, we have one Christoffel term for each index. For example,

∇μTν
κ = ∂μTν

κ − 	λ
μνTλ

κ + 	κ
μλTν

λ. (2.52)
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As an example application of the covariant derivative, you can show, using Eq. (2.26), that the
geodesic equation (2.20) can be written in the compact, manifestly covariant form

Pα∇αPμ = 0. (2.53)

Eq. (2.45) consists of four separate equations (ν = 0,1,2,3). Let us apply them to the
case of a smooth expanding universe described by the FLRW metric, as captured by
Eq. (2.44). We begin with the ν = 0 component, which is

∂T μ
0

∂xμ
+ 	μ

αμT α
0 − 	α

0μT μ
α = 0 . (2.54)

Since we are assuming isotropy, T i
0 vanishes, so the indices μ in the first term and α in the

second must be equal to zero:

−∂ρ

∂t
− 	μ

0μρ − 	α
0μT μ

α = 0. (2.55)

From Eqs. (2.24)–(2.25), 	α
0μ vanishes unless α, μ are spatial indices equal to each other,

in which case it is ȧ/a. So, the conservation law in an expanding universe reads

∂ρ

∂t
+ ȧ

a
[3ρ + 3P] = 0. (2.56)

Rearranging terms, we have

a−3 ∂[ρa3]
∂t

= −3
ȧ

a
P . (2.57)

The conservation law can be applied immediately to glean information about the scal-
ing of both matter and radiation with the expansion. Nonrelativistic matter has effectively
zero pressure,3 so

∂[ρma3]
∂t

= 0, (2.58)

implying that the energy density of matter follows ρm ∝ a−3. We anticipated this result
in Ch. 1 based on the simple notion that the particle mass remains constant, while the
number density scales as the inverse volume. The application to radiation also offers no
surprises. Radiation has Pr = ρr/3 (Exercise 2.9), so working from Eq. (2.56),

∂ρr

∂t
+ ȧ

a
4ρr = a−4 ∂[ρra

4]
∂t

= 0. (2.59)

3
Recall that we set c = 1 here; we are really comparing P with ρc2.
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Therefore, the energy density of radiation ρr ∝ a−4, accounting for the decrease in energy
per particle as the universe expands.

We can summarize the cases of matter and radiation in one equation, and generalize
the evolution results to other constituents, by defining the equation of state parameter ws ,

ws ≡ Ps

ρs

, (2.60)

where s stands for any constituent of the universe. Matter corresponds to w = 0, radiation
to w = 1/3, and, as we will see later, a cosmological constant has w = −1. However, the
equation of state does not have to be time-independent in general. Eq. (2.56) can be inte-
grated to find the evolution of any constituent s with a time-dependent equation of state
ws(a):

ρs(a) ∝ exp

{
−3

∫ a da′

a′ [1 + ws(a
′)]

}
ws=const∝ a−3(1+ws). (2.61)

The second proportionality holds if ws is time-independent.
Let us briefly mention the ν = i part of Eq. (2.45). It turns out that in the smooth back-

ground universe, this equation is trivially zero. This follows from the fact that the spatial
part of the metric is isotropic, since the universe is expanding equally in all directions, and
that matter does not have any peculiar motions in the smooth universe. The Euler equa-
tion is naturally trivial if the velocity vanishes! Unsurprisingly, this will change once we
begin to allow for structure in the universe.

So far, we have phrased the properties of different constituents in the universe in terms
of their mean density and pressure. These are macroscopic quantities. Microscopically,
within a volume centered on any given point, matter and radiation are composed of many
interacting (or non-interacting) particles of different species. These can be described sta-
tistically by their distribution functions. Given an infinitesimal volume element d3x cen-
tered around point x and time t , the distribution function fs(x,p, t) counts the number
of particles of a given species s within an infinitesimal momentum-space element d3p.4

The total energy density of a given species is then obtained by summing the energy over
all phase-space elements, weighted by the number of particles:

∑
fs(x,p, t)Es(p) with

Es(p) = √
p2 + m2

s . How many phase-space elements are there in a region of 6D volume
d3xd3p? By Heisenberg’s principle, no particle can be localized into a region of phase space
smaller than (2π�)3, so this is the size of a fundamental element. Therefore, the number of
phase-space elements in d3xd3p is d3xd3p/(2π�)3 (see Fig. 2.4). Dividing by the volume
d3x yields the energy density in species s, which is

ρs(x, t) = gs

∫
d3p

(2π)3
fs(x,p, t)Es(p) (2.62)

4
Recall that by p here we mean not the comoving momentum P defined in Eq. (2.26), but rather the physical

momentum defined in Eq. (2.32).
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FIGURE 2.4 Phase space of position and momentum in one dimension. The volume of each cell is 2π�, the smallest
region into which a particle can be confined because of Heisenberg’s principle. To count the appropriate number of
cells, therefore, the phase-space integral in one dimension must be

∫
dxdp/(2π�).

where gs is the degeneracy of the species (e.g., equal to 2 for the photon for its two spin
states), and we have gone back to � = 1.

The macroscopic pressure within a given volume element corresponds to the force ex-
erted per unit area on a fictitious boundary wall by the elastic collisions of the particles.
For simplicity, let us consider N nonrelativistic particles in a volume V . Then the pressure
in the x direction is given by

P = N

V
mv2

x = 1

3

N

V
m|v|2, (2.63)

where vx is the RMS velocity in the x-direction of the particles, and we have used the fact
that the velocity dispersion and hence the pressure are isotropic. Thus, the pressure is
given by 2/3 of the sum over the kinetic energies of the particles within that volume. It
can thus be similarly expressed as an integral over the distribution function, which after
generalizing m|v|2 → p2/Es(p), which also holds for relativistic particles, becomes

Ps(x, t) = gs

∫
d3p

(2π)3
fs(x,p, t)

p2

3Es(p)
. (2.64)

Through most of the early universe, reactions proceeded rapidly enough to keep parti-
cles in equilibrium, with different species sharing a common temperature. We will often
want to express the energy density and pressure in terms of this temperature. In equi-
librium at temperature T , bosons, such as photons, have Bose–Einstein distributions,
fs(x,p, t) = fBE(Es(p)), with

fBE(E) = 1

e(E−μ)/T − 1
, (2.65)



Chapter 2 • The expanding universe 39

and fermions, such as electrons, have Fermi–Dirac distributions,

fFD(E) = 1

e(E−μ)/T + 1
, (2.66)

with μ being the chemical potential. It should be noted that these equilibrium distribu-
tions do not depend on position x or on the direction of the momentum p̂, simply on the
magnitude p via Es(p).

For photons and neutrinos, the chemical potential is much smaller than the temper-
ature. Photon number is not conserved (e.g., photons can be created and destroyed in
double-Compton scattering, which is very efficient in the early universe), while for neu-
trinos, there is likely only a very small asymmetry between particles and anti-particles. In
these cases, then, the distribution function depends only on E/T and the pressure satisfies
(Exercise 2.9)

∂Ps

∂T
= ρs +Ps

T
. (2.67)

This relation can be used to show that the entropy density in the universe scales as a−3. To
see this, let us rewrite the continuity equation (2.57) as

a−3 ∂
[
(ρ +P)a3

]
∂t

− ∂P
∂t

= 0. (2.68)

In the background universe, we can rewrite the derivative of the pressure with respect to
time in terms of the temperature as (dT /dt)(∂P/∂T ), which also holds for multiple con-
stituents. So,

a−3 ∂[(ρ +P)a3]
∂t

− dT

dt

ρ +P
T

= a−3T
∂

∂t

[
(ρ +P)a3

T

]
= 0. (2.69)

So the entropy density5

s ≡ ρ +P
T

(2.70)

scales as a−3. This scaling holds for the total entropy of all species in equilibrium (i.e. with
the same temperature) as well as individual species in general. In fact, even if two species
have different temperatures, the sum of their entropy densities still scales as a−3. We will
make use of this fact shortly when computing the relative temperatures of neutrinos and
photons in the universe.

5
Technically, there is another term in the entropy density—proportional to the chemical potential—but, as

mentioned above, this term is usually irrelevant in cosmology. Even with nonzero chemical potential, though,
the entropy density scales as a−3.
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2.4 Cosmic inventory
Armed with an expression for the energy density of a given particle species (Eq. (2.62)),
and a knowledge of how it evolves in time (Eq. (2.57)), we can now tackle quantitatively
the question of how much energy is contributed by the different constituents of the uni-
verse. Note that a constituent can be made up of several particle species (e.g., electrons
and nuclei in the case of baryons), but each has to have the same equation of state (e.g.,
nonrelativistic or ultra-relativistic).

It will be useful to have all energy densities in the same units. The simplest way to do
this is to divide all energy densities by the critical density today, Eq. (1.4), and define the
density parameters6

�s ≡ ρs(t0)

ρcr
, (2.71)

where s stands for any constituent of the universe: cold dark matter (c), baryons (b), pho-
tons (γ ), neutrinos (ν), and a cosmological constant (�) or dark energy. We will also use a
subscript r for all radiation constituents (photons and ultra-relativistic neutrinos), and m
for the total nonrelativistic matter: �m = �b + �c.

Thus, we can write the density of constituent s as a function of scale factor as

ρs(a) = �sρcra
−3(1+ws), (2.72)

assuming that its equation of state ws is time-independent. Now recall that ρcr = 3H 2
0 /8πG,

and that H0 is not perfectly known. This means that any precise constraint on the physi-
cal mean density of baryons ρb, say, really constrains the parameter combination �bh2.
For this reason, constraints are often phrased in terms of this combination of parameters
in the literature, and it is even given its own symbol: ωs ≡ �sh

2; indeed, we have already
encountered this combination in the label of the x-axis in Fig. 1.6.

2.4.1 Photons

The majority of the radiation contribution to the cosmic energy budget is in the form of
the cosmic microwave background (CMB). Given its black-body nature, i.e. Bose–Einstein
distribution function, the energy density associated with this radiation is

ργ = 2
∫

d3p

(2π)3

p

ep/T − 1
. (2.73)

The factor of 2 in front of Eq. (2.73) accounts for the two spin states of the photon. The
energy of a given state is simply equal to p since the photon is massless. The chemical po-
tential is zero; we expect this theoretically because early in the universe, photon number is

6
The critical density can be defined as a time-dependent quantity by replacing H0 in Eq. (1.4) with H(t). Cor-

respondingly, time-dependent density parameters �s(t) are sometimes used in the literature. In this book, apart
from Ch. 12, we will always define ρcr ≡ ρcr,0 and �s ≡ �s,0 to be at today’s epoch t0, and refrain from adding a
subscript 0.
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not conserved. We also know it observationally because the spectrum of the CMB has been
measured so accurately. The limits on a chemical potential are μ/T < 9×10−5, as obtained
from data of the FIRAS instrument aboard the COBE satellite (Fixsen et al., 1996), so μ can
be safely ignored. Moreover, as we mentioned in Ch. 1, FIRAS measured the temperature
of the CMB extraordinarily precisely: T0 = 2.726 ± 0.001 K (Fixsen, 2009). Since there is no
angular dependence in the integrand of Eq. (2.73), the angular integral yields a factor of 4π

and we are left with a one-dimensional integral. Define the integration variable x ≡ p/T :
then

ργ = 8πT 4

(2π)3

∫ ∞

0
dx

x3

ex − 1
. (2.74)

The integral can be expressed in terms of the Riemann ζ function (Eq. (C.29)); it is 6ζ(4) =
π4/15, so that we finally have

ργ = π2

15
T 4. (2.75)

Since we derived that the energy density of radiation scales as a−4 (Eq. (2.59)), the temper-
ature of the CMB must scale as a−1. In fact, with both E ∝ 1/a for each photon and T ∝ 1/a,
we see from Eq. (2.65) that the expansion of the universe preserves the equilibrium form
of the distribution function.

We thus have for the photon density parameter today

�γ h2 = 2.47 × 10−5. (2.76)

To get this result, it is useful to remember the conversion between Kelvin and eV: 11605 K =
1 eV. So, photons make up a very small fraction of the universe’s energy budget today. To
reiterate an important point: ργ in Eq. (2.75) depends only on time. This is because we have
used the zeroth-order Bose–Einstein distribution function for the photons. In fact there
are small perturbations around this zeroth-order distribution function. These do have a
spatial and momentum dependence and correspond to the anisotropies in the CMB.

2.4.2 Baryons

Following standard conventions in cosmology, we refer to all ordinary matter, i.e. nuclei
and electrons, as baryons, even though this is technically incorrect as electrons are leptons.
However, nuclei are so much more massive than electrons that virtually all of the mass is
in the baryons. Unlike the CMB, baryons cannot be simply described with an equilibrium
distribution function. This is because baryons come in many different phases: diffuse neu-
tral gas and ionized plasma, stars and planets, compact objects, and so on. This makes a
baryonic inventory much more difficult.

There have been many attempts at a direct count of baryons in the past (Fukugita et al.,
1998; Shull et al., 2012) One approach is to count the amount of baryons in stars and diffuse
gas in galaxies and groups of galaxies, although hot ionized gas (with temperatures less
than a keV) is difficult to detect, making such estimates uncertain. A second way to count
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baryons is by looking at the spectra of distant quasars, extremely bright active galactic nu-
clei. The amount of light absorbed from these beacons is a measure of the intervening
hydrogen, and hence the baryon density. However, the amount of mean absorption per
hydrogen atom depends on the thermal state of the intergalactic medium, which is not
very well known.

Let us thus focus on measurements in the early universe, which rely on straightfor-
ward nuclear and atomic physics: Big Bang Nucleosynthesis (BBN) and the CMB. The
abundance of light elements formed during BBN (Sect. 1.3) depends on the total physical
baryon density in the universe, and thus constrains �bh2 (see Fig. 1.6 and the discussion
after Eq. (2.72)). We will see how this works in Ch. 4. Deuterium is most sensitive to the
baryon density, and measurements of the fractional amount of deuterium in high-redshift
absorption systems combined with BBN yield �bh2 = 0.0222 ± 0.0005 (Cooke et al., 2018).

The baryon density also affects the plasma oscillations in the early universe, whose im-
prints we see as anisotropies in the CMB, as shown in Fig. 1.10. We will derive the details in
Ch. 9. The Planck team constrained the baryon density to be �bh2 = 0.0225±0.0003 (Planck
Collaboration, 2018b), a constraint which is only weakly dependent on the assumed cos-
mological model.

Given that current best estimates of the Hubble constant give h � 0.7, these two spec-
tacularly precise constraints agree on a baryon density �b that is roughly 5% of the critical
density today. Notice that these early-universe measurements also include any baryonic
matter that would be very difficult to count in today’s universe, for example if it had col-
lapsed into quiescent black holes or neutron stars. Nevertheless, the astrophysical con-
straints are also largely in agreement with this value given the estimated uncertainties.
Finally, the total matter density in the universe is larger than this by a factor ∼ 6, so more
than 80% of the matter in the universe has to be non-baryonic.

2.4.3 Dark matter

As we mentioned in Ch. 1, the overwhelming evidence for (non-baryonic) dark matter is
not a new revelation to astronomers, who have found corresponding evidence within our
Milky Way and local group, as well as other galaxies and clusters of galaxies. But how do we
measure the total density of matter? Unlike for baryons, we cannot use nuclear and atomic
physics, but have to rely on gravity.

The anisotropies in the CMB (Ch. 9) provide a measurement of the physical matter
density parameter �mh2. The sensitivity of the CMB to the matter density is both due
to the effect of matter on the expansion history in the early universe, as well as the fact
that dark matter dominates the gravitational potential wells which also leave their im-
print in the CMB anisotropies. Assuming the concordance model, the Planck team re-
ported �mh2 = 0.1431 ± 0.0025 (Planck Collaboration, 2018b). Therefore, again invoking
our knowledge of the Hubble constant, the CMB observations are consistent with a matter
density equal to about 30% of the critical density.
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The distance-redshift relation in the late universe, as probed by standard candles and
rulers, constrains �m alone. When combined with the CMB, the constraint becomes very
tight, yielding �m = 0.311 ± 0.006.

As we will see in Ch. 11 and Ch. 13, large-scale structure provides two beautiful ways
to probe gravitational potential wells and hence the amount of matter: galaxy velocities
and gravitational lensing. Velocities are probed through the characteristic distortion they
imprint on the three-dimensional statistics of galaxy number counts. Gravitational lens-
ing is detected through the statistics of galaxy shapes. As an example, measurements of
weak gravitational lensing and galaxy clustering using the first year of data from the Dark
Energy Survey resulted in a constraint of �m = 0.27+0.03

−0.02 (Abbott et al., 2018). The slight dis-
crepancy between this number and those driven mostly by the CMB is useful to point out
(even though both may have changed slightly by the time you read this) because it (i) high-
lights the robust conclusion from all probes that the total matter density is roughly 30% of
the critical density and (ii) acknowledges that at any given time, there are often hints of
tension in the values of parameters inferred from different probes. Whether these are sim-
ply statistical fluctuations that will go away with more data, or indicate profound cracks in
the concordance model, is one of the exciting open questions in modern cosmology.

Finally, another way of measuring the total mass density is to pick out observations
sensitive to �b/�m and use the value of �b, determined through either BBN or CMB, to
infer the matter density. Massive galaxy clusters are perhaps the most promising target,
since most of the baryonic mass in a galaxy cluster is in the form of hot gas which is ob-
servable through its thermal X-ray emission or the so-called Sunyaev–Zel’dovich (SZ) effect
(see Sect. 12.5 and Sect. 11.3, respectively). If this ratio is characteristic of the universe as a
whole—it probably is to a good approximation—then the cosmic baryon to matter ratio is
�b/�m = (0.089 ± 0.012)h−3/2 (Mantz et al., 2014). Since baryons make up about 5% of the
critical density, the total matter density is inferred again to be roughly 30% of the critical
density.

We conclude that there is now agreement among a wide variety of probes that the total
matter density in the universe is about 30% of the critical density, with 80% of that being
in the form of non-baryonic dark matter.

2.4.4 Neutrinos

The next constituent we need to consider are neutrinos. Unlike photons and baryons, cos-
mic neutrinos have not been observed directly, so arguments about their contribution to
the energy density are necessarily theoretical. However, these theoretical arguments are
quite strong, based on very well-understood physics. Moreover, the CMB anisotropies con-
strain the total density in relativistic particles �rh

2 in the early universe. Experiments such
as the Planck satellite have found clear evidence for an amount of relativistic particles (in
addition to the known photons) that is consistent with the expected neutrino contribution.

Let us sum up what we know about these particles:



44 Modern Cosmology

• There are three generations of neutrinos7.
• There is one spin degree of freedom each for the neutrino and antineutrino of each

generation.
• Neutrinos are fermions and follow the Fermi–Dirac distribution function when in equi-

librium.

We can use this information to evaluate the energy density of neutrinos in the universe,
relating it to the photon energy density ργ for convenience. The first two items on the list
imply that the degeneracy factor of neutrinos is equal to 6. The third means we need to
change the denominator in the integrand in Eq. (2.73) to ep/T + 1. The resulting Fermi–
Dirac energy integral is smaller by a factor of 7/8 compared to the corresponding Bose–
Einstein integral. Finally, since the energy density of a massless particle scales as T 4, we
can write

ρν = 3 × 7

8
×

(
Tν

T

)4

ργ . (2.77)

We then only need to determine Tν , which, as you might have guessed from how we wrote
this equation, is different from the photon temperature T .

For this, let us first consider the production of neutrinos in the early universe. A ba-
sic understanding of the interaction rates of neutrinos (Fig. 1.4) enables us to argue that
neutrinos were once kept in equilibrium with the rest of the cosmic plasma. At later times,
they lost contact with the plasma because their interactions are weak. The tricky part in
determining the neutrino temperature is the annihilation of electrons and positrons when
the cosmic temperature was of order the electron mass. Neutrinos lost contact with the
cosmic plasma slightly before this annihilation, so they inherited almost none of the as-
sociated energy. The photons, which acquired the vast majority of it, are therefore hotter
than the neutrinos.

We can account for the annihilation of electrons and positrons by using the fact that
the total entropy density s (Eq. (2.70)) scales8 as a−3. Massless bosons contribute 2π2T 3/45
to the entropy density for each spin state, while massless fermions contribute 7/8 of this,
and particles whose masses are larger than the temperature at that time contribute neg-
ligibly (Exercise 2.11). Before e+e−-annihilation, the relevant fermions are electrons and
positrons (two spin states each), and (anti-)neutrinos (six, as we counted above). The
bosons are photons (two spin states). So at a = a1 before annihilation,

s(a1) = 2π2

45
T 3

1

[
2 + 7

8
(4 + 6)

]

7
There is also the possibility that other types of neutrinos exist. These would have no interactions with the

rest of the Standard Model particles, so are called sterile neutrinos. Even if they do exist, in many models their
interactions with ordinary neutrinos are extremely weak and they have a very small cosmic abundance. Therefore,
we neglect them here.

8
As mentioned in the footnote in Sect. 2.3, this works regardless of our imperfect knowledge of the neutrino

chemical potential.
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= 43π2

90
T 3

1 (2.78)

where T1 is the common temperature at a1. After annihilation, at a2, the electrons and
positrons have gone away and the photon and neutrino temperatures are no longer iden-
tical: we must distinguish between them. On the other hand, all other remaining particles
are much more massive and contribute negligibly. Therefore, the entropy density is

s(a2) = 2π2

45

[
2T 3 + 7

8
6T 3

ν

]
. (2.79)

Equating s(a1)a
3
1 with s(a2)a

3
2 leads to

43

2
(a1T1)

3 = 4

[(
T

Tν

)3

+ 21

8

]
a2

(Tν(a2)a2)
3. (2.80)

But, neglecting the very small amount of energy received from e±, the neutrino tempera-
ture scales as a−1 throughout, so a2Tν(a2) = a1T1. Therefore, the ratio of the two tempera-
tures is

Tν

T
=

(
4

11

)1/3

, (2.81)

which continues to hold up until today. So, using Eq. (2.77), we obtain the neutrino density
as

ρν = 3 × 7

8
×

(
4

11

)4/3

ργ . (2.82)

It is tempting to use this result together with Eq. (2.76) to infer that the energy density of
neutrinos today is �νh

2 = 1.68 × 10−5. However, observations in 1998 of neutrino oscilla-
tions (Fukuda et al., 1998) proved that neutrinos are not massless, as already hinted at from
earlier observations of solar neutrinos (Bahcall, 1989). These measurements imply that the
sum of masses of neutrinos of all generations has to be at least 0.06 eV.9 In the early uni-
verse (up until recombination), the neutrino masses are indeed entirely negligible, so that
Eq. (2.82) holds. However, later on neutrinos transitioned from relativistic to nonrelativistic
as the temperature dropped beneath their mass. The same happened to other massive par-
ticle species as well, but unlike other species, this transition happened relatively recently
for neutrinos which leads to interesting effects on the growth of structure.

Since neutrinos have mass, we need to go further to determine their energy density
today. For a single neutrino generation with mass mνi

, the energy density is

ρνi
= 2

∫
d3p

(2π)3

1

ep/Tν + 1

√
p2 + m2

νi
. (2.83)

9
The oscillation experiments are sensitive to mass differences, m2

2 − m2
1, so the actual constraint is that the

mass squared difference is of order 10−3 eV2.
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FIGURE 2.5 Energy density of one generation of massive neutrinos relative to the energy density of the photons.
At high temperatures, the ratio is a fixed constant; at low temperatures, the neutrino behaves like nonrelativistic
matter (scaling as a−3) and so begins to dominate over the photon density (which scales as a−4).

This is similar to our expression for the photon density except that the nonzero mass is in-
cluded and the distribution function is of Fermi–Dirac form. Note that the distribution is
not strictly speaking a Fermi–Dirac distribution because the argument of the exponential
is p, not the energy. This follows from the fact that after neutrinos decoupled they were no
longer kept in equilibrium by scattering processes. Rather, they simply maintained their
initial distribution (which was determined when the mass was much smaller than the
temperature and therefore irrelevant) with the particle momenta redshifting as the uni-
verse expands; you can derive this in Exercise 3.9. At high temperatures, Eq. (2.83) reduces
to one third of Eq. (2.82), so when considering neutrinos in the early universe, it is often
sufficient to use Eq. (2.82). Indeed, we will do this shortly when we come to estimate the
epoch at which the energy density of matter equals that of radiation. At sufficiently late
times, when Tν  mνi

, the energy density for a single massive neutrino is mνi
nνi

, just like
for baryons and dark matter, with the neutrino number density nνi

= 3nγ /11 for a single
generation (Exercise 2.12). As can be seen from Fig. 2.5, the transition takes place when
Tν ∼ mνi

. Numerically, we obtain for the total neutrino density parameter today

�νh
2 =

∑
i mνi

94 eV
(2.84)

where the sum is over the masses of all three neutrinos.
Those who trafficked in both astrophysics and particle physics (Gershtein and Zel’dovich,

1966; Szalay and Marx, 1976; Cowsik and McClelland, 1972) early on noted that the simple
observation that the total density was not much greater than the critical density leads to
constraints on neutrino mass that are much more stringent than those that were then ob-
tainable from laboratory experiments. When the need for non-baryonic dark matter first
became evident, a number of cosmologists (e.g., Gunn et al., 1978) proposed neutrinos
as the natural candidate. Subsequent studies (Bond et al., 1980; White et al., 1983) of the
structure of the universe with neutrinos as the dominant dark matter constituent showed
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features that differ significantly from the actual universe (see Ch. 12). Nonetheless, the
possibility that neutrinos might make up a fraction of the total density reemerged in the
1990s. We can then hope to detect a trace amount of neutrinos—corresponding to masses
smaller than an eV—by observing its effect on large-scale structure (Ch. 8).

2.4.5 Epoch of matter–radiation equality

The epoch at which the energy density in matter equals that in radiation is called matter–
radiation equality. It has a special significance for the generation of large-scale structure
and for the development of CMB anisotropies, because perturbations grow at different
rates in the two different eras (note that for large-scale structure, there is a third era: that
of dark energy domination today; see Exercise 2.14). It is therefore a useful exercise to cal-
culate the epoch of matter–radiation equality. To do this, we need to compute the energy
density of both matter and radiation, and then find the value of the scale factor at which
they were equal.

Using Eq. (2.76) and Eq. (2.82), we see that, as long as Tν is much larger than all neutrino
masses, the total energy density in radiation is

ρr

ρcr
= 4.15 × 10−5

h2a4
≡ �r

a4
. (2.85)

To calculate the epoch of matter–radiation equality, we equate Eqs. (2.85) and (2.72) to find

aeq = 4.15 × 10−5

�mh2
. (2.86)

A different way to express this epoch is in terms of redshift z; the redshift of equality is

1 + zeq = 2.38 × 104�mh2. (2.87)

Note that, as the amount of matter in the universe today, �mh2, goes up, the redshift of
equality also goes up.

2.4.6 Dark energy

We now know that there is an additional ingredient in the universe’s energy budget, dark
energy, a substance whose equation of state w is neither 0 (as it would be if the substance
was nonrelativistic) or 1/3 (ultra-relativistic), but rather close to −1. A multitude of inde-
pendent pieces of evidence has accumulated for the existence of dark energy, a substance
that has this negative equation of state and does not participate in gravitational collapse.
For one, we have strong evidence that the universe is Euclidean, with total density param-
eter close to 1. Since �m = 0.3 is very far from 1 (and radiation is totally negligible today),
something that does not clump as does matter has to make up this budgetary shortfall.
Second, the expansion of the universe is accelerating, as measured by standard candles
and rulers. As we will see in Ch. 3, accelerated expansion (ä > 0) occurs only if the domi-
nant constituent in the universe has a negative equation of state, i.e. negative pressure.
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FIGURE 2.6 Hubble diagram from the Pantheon sample of Type Ia supernovae. The top panel shows the distance
modulus m − M, the difference of apparent and standardized absolute magnitudes of each Supernova (Eq. (2.88)),
vs. redshift. The bottom panel shows the residuals relative to the prediction of the best-fitting Euclidean �CDM
cosmology. The data unequivocally require the presence of dark energy. From Scolnic et al. (2018).

Evidence that �m � 0.3 has been accumulating since about 1980, and theoretical ar-
guments that the total density is equal to the critical density are tied to inflation, which
was proposed around the same time. The latter claims were bolstered by observations of
the CMB in the late 1990s (Ch. 9). Around the same time, two groups (Riess et al., 1998,
Perlmutter et al., 1999) observing supernovae reported direct evidence for an accelerat-
ing universe, one that is best explained by postulating the existence of dark energy. The
evidence is based on measurements of the luminosity distance. As discussed in Sect. 2.2,
the luminosity distance depends on the how rapidly the universe expanded in the past:
dL ∝ ∫

dz/H(z). An accelerating universe, one in which the expansion rate was lower in the
past, would therefore have larger luminosity distances, and therefore standard candles like
supernovae would appear fainter.

More concretely, the luminosity distance of Eq. (2.43) can be used to find the apparent
magnitude m of a source with absolute magnitude M . Magnitudes are related to fluxes and
luminosities via m = −(5/2) log(F ) + constant and M = −(5/2) log(L) + constant. Since the
flux scales as d−2

L , the apparent magnitude m = M + 5 log(dL) + constant. The convention
is that

m − M = 5 log

(
dL

10pc

)
+ K (2.88)

where K is a correction (“K-correction”) for the shifting of the spectrum into or out of the
observed wavelength range due to expansion. m − M is referred to as distance modulus.

The two groups in 1998 measured the apparent magnitudes of dozens of Type Ia super-
novae, which are known to be standardizable candles, i.e., they have absolute magnitudes
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FIGURE 2.7 Constraint on the parameters (�m,��) quantifying the contribution of matter and cosmological con-
stant to the cosmic energy budget from the Type Ia supernovae whose distance-redshift diagram is shown in Fig. 2.6
(filled contours). Here, a curved universe is allowed, with parameters corresponding to a Euclidean (or “flat”) uni-
verse indicated by the line. The constraints from SNe clearly require an accelerating universe and that �� > 0. Also
shown are the constraint contours of one of the original discovery papers (Riess et al., 1998). From Scolnic et al.
(2018).

that can be determined from other observables, in particular the characteristic time it
takes for the luminosity to decay after the peak. In practice, this is quite an involved anal-
ysis, requiring precise photometry and calibration. A more recent version of the result, a
diagram of distance modulus vs. redshift, is shown in Fig. 2.6. By carefully accounting for
statistical and systematic errors in the distance estimation, one can then obtain the best-fit
parameters describing the expansion history of the universe. The result is shown in Fig. 2.7,
based on the assumption that dark energy is a cosmological constant, but not restricted
to a Euclidean universe. The two free cosmological parameters are then the matter den-
sity parameter �m and the corresponding parameter �� for the cosmological constant.
A universe with � = 0 (and hence �� = 0) is not compatible with observations. Instead,
supernovae point to the concordance value of �� � 0.7. Fig. 2.7 also shows the parame-
ter constraints obtained by one of the original discovery analyses. Clearly, the supernova
measurements have improved significantly since then.

Moreover, we now have yet another piece of independent evidence for dark energy: the
Baryon Acoustic Oscillation (BAO) standard ruler (shown in Fig. 1.9) provides both a mea-
surement of the angular diameter distance to a given redshift and the distance interval
corresponding to a certain redshift interval. This is the derivative of the comoving dis-
tance with respect to redshift, dχ/dz = 1/H(z); we will see in Ch. 11 precisely how the BAO
measurements lead to these constraints. A compilation of these measurements is shown
in Fig. 2.8, along with the prediction of the Euclidean concordance cosmology including
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FIGURE 2.8 Measurements of ȧ = aH = H(z)/(1+z) from standard candles (data point at z � 0) and the BAO standard
ruler in the galaxy distribution (points at higher redshift). The line shows the best-fitting Euclidean �CDM model
to the CMB and BAO measurements at z < 1. There is direct evidence that the comoving expansion rate decreases
at higher redshifts (as expected if the universe is dominated by matter) but then increases again at low redshifts
(requiring the existence of dark energy). From Planck Collaboration (2018b).

a cosmological constant. What is striking about this measurement is not merely that it
allows for independent constraints on dark energy; it beautifully shows us directly that
the expansion of the universe is accelerating. In a universe with matter and radiation (or
any constituent with vanishing or positive pressure), the quantity H(z)/(1 + z) = aH = ȧ

is monotonically decreasing. Indeed, the higher-redshift data points in Fig. 2.8 show this.
However, we see that aH has to increase in order to meet up with the locally measured
Hubble rate. So, standard candles and rulers now allow us to see the presence of dark en-
ergy directly.

The existence of dark energy can be inferred not only using probes that measure the ex-
pansion history directly (sometimes called geometric probes). The accelerated expansion
also directly affects the evolution of structure in the universe. We will see how this happens
in Ch. 9, and discuss observable ramifications in Ch. 11. Growth of structure probes in-
dependently support the Euclidean concordance cosmology with �� � 0.7. A compelling
argument for the existence of dark energy is that both geometric (background) and dy-
namic (structure) probes agree on the same cosmological model.

So far, we have always talked about the cosmological constant �, with the one free pa-
rameter being the energy density associated with it, �� in Fig. 2.7. However, this is only
the simplest possibility for what dark energy could be, and introducing a constant carries
its own set of problems (see Exercise 1.5). This is why we use “dark energy” rather than
cosmological constant as a moniker. One generalization is to make the constant dynami-
cal, turning the energy density associated with � into the potential energy of a scalar field
V (φ). This possibility is often referred to as quintessence. Yet another possibility is to mod-
ify general relativity itself, so that the acceleration is due to a modified behavior of gravity.
For the reader interested in an overview of the model landscape, Mortonson et al. (2014)
and Frieman et al. (2008) provide brief and comprehensive treatments of dark energy, re-
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FIGURE 2.9 Constraints, assuming a Euclidean universe, placed by different probes on the matter density (�m) and
constant equation of state of the dark energy w = wDE. A cosmological constant corresponds to w = −1. The con-
straints from supernovae, the BAO standard ruler, as well as the CMB all point towards a concordance model with
wDE close to −1. From Scolnic et al. (2018).

spectively; Joyce et al. (2016) and Clifton et al. (2012) do the same for modified gravity. Most
pressing for us is the question of how we can distinguish among these possibilities given
the data. Do we have to laboriously repeat the analysis of supernovae, BAO, and so on for
each model of dark energy?

Fortunately not: as we argued at the beginning of Sect. 2.3, the form Eq. (2.44) of the
energy-momentum tensor is completely general and is dictated by the symmetries of the
FLRW spacetime. Hence, defining pressure via the equation of state wDE(a), and given the
continuity equation (2.57), whose solution is Eq. (2.61), the effect of a general dark energy
on the expansion history is completely determined by the function wDE(a).10 The cos-
mological constant, as we will see in Sect. 3.1, simply adds a term �δμ

ν to the Einstein
equations (when written with one upper index). Comparing this with Eq. (2.44) shows that
the cosmological constant effectively has an energy-momentum tensor that is of perfect
fluid form, with P = −ρ ∝ � which implies an equation of state of w� = −1. For a dynam-
ical dark energy (e.g. quintessence), wDE ≥ −1 (but still significantly below 0). Measuring
the dark energy density as a function of cosmic time (i.e. at different redshifts) then allows
us to constrain wDE and hence distinguish between different dark energy scenarios.

Fig. 2.9 shows a current example of constraints on wDE, assuming a Euclidean universe.
This figure drives home two points. First, so far all measurements are consistent with a
cosmological constant; models with values of wDE very different from −1 are ruled out.

10
If general relativity is modified, we have to be a bit careful here. Nevertheless, one can always derive an

equation of state dark energy would have to have in general relativity in order to produce the expansion history
of a given modified gravity model.
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Hence, � remains our default scenario, resulting in the concordance �CDM model of cos-
mology. Second, different probes constrain the two parameters in different strengths, i.e.
they have different parameter degeneracies, which also applies to parameters that are being
left to vary but are not shown in Fig. 2.9, such as H0. This means that it is highly beneficial
to combine different cosmological probes. Over the past two decades, cosmologists have
learned to appreciate that the power of the total combined measurements truly is more
than the sum of the parts.

2.5 Summary
The smooth universe is described by the Friedmann–Lemaître–Robertson–Walker metric
given in Eq. (2.12), which implies that physical distances are related to coordinate (comov-
ing) distances with the time-dependent scale factor a(t). By deriving the geodesic equation
in this metric, we found that the physical momentum of particles decays as 1/a. For mass-
less particles like photons, this means that their energy redshifts as 1/a as well.

Measuring distances in the expanding universe is tricky, but all relevant distances can
be obtained from the comoving distance between us and a source at redshift z:

χ(z) =
∫ z

0

dz′

H(z′)
. (2.89)

Another important distance is that which light could have traveled since t = 0. This, also
called the conformal time, is

η =
∫ t

0

dt ′

a(t ′)
=

∫ ∞

z

dz′

H(z′)
. (2.90)

The two quantities are simply related by

χ(z) = η0 − η(z), (2.91)

where η0 ≡ η(z = 0). The conformal time will be the natural time variable when we come
to consider the evolution of perturbations in the universe.

Photons in the universe have a Bose–Einstein distribution with zero chemical poten-
tial, so their energy density can be determined by measuring their temperature. Neutrinos
are almost as abundant as photons, but there is some uncertainty in their energy density
because of our ignorance of the neutrino masses (there is a lower limit of 0.06 eV for the
sum of their masses and an upper limit of about 1 eV). In the early universe, this uncer-
tainty is irrelevant since the temperatures are so much larger than the neutrino masses, so
neutrinos behave relativistically. Thus, the uncertainty in neutrino mass affects neither Big
Bang Nucleosynthesis at temperatures of order 1 MeV nor the epoch of matter–radiation
equality at temperatures of order 1 eV. The neutrino temperature is a factor of (4/11)1/3

smaller than the photon temperature. This, and the difference in statistics, implies that a
single generation of massless neutrino has an energy density equal to 0.23 times that of
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photons at those early times. Once Tν  mνi
, this neutrino generation with mass mνi

con-
tributes to �νh

2 with mνi
/94 eV. In addition to photons and neutrinos, the universe consists

of baryons (�b � 0.05); dark matter (�c � 0.25); and dark energy (�DE � 0.7), a constituent
with negative pressure that, so far, is consistent with being a cosmological constant.

There is significantly more energy today in nonrelativistic matter and dark energy than
in radiation. However, since the energy density of radiation scales as a−4 while that of
matter as a−3, the very early universe was radiation dominated. The equality epoch at
which the matter density was equal to the radiation density delineates these two regimes:
aeq = 4.15 × 10−5/�mh2.

Exercises
2.1 Convert the following quantities by inserting the appropriate factors of c, �, and kB:

(a) T0 = 2.726 K → eV
(b) ργ = π2T 4

0 /15 → eV4 and g cm−3

(c) 1/H0 → cm
(d) mPl ≡ √

�c/G = 1.2 × 1019 GeV → K, cm−1, s−1

2.2 Show that the geodesic equation gets the correct equations of motion for a particle
traveling freely in two dimensions using polar coordinates. You can get the Christof-
fel symbols one of two ways (or both!) and then proceed to (b).
(a) Get the Christoffel symbol either directly from the term in brackets in Eq. (2.19)

or from the 2D metric

gij =
(

1 0
0 r2

)
(2.92)

using Eq. (2.21). Show that the only nonzero Christoffel symbols are

	2
12 = 	2

21 = 1

r
; 	1

22 = −r (2.93)

with 1, 2 corresponding to r, θ .
(b) Write down the two components of the geodesic equation using these Christof-

fel symbols. Show that these give the correct equations of motion for a particle
traveling in a plane.

2.3 Find how the energy of a massive, nonrelativistic particle changes as the universe
expands. Recall that in the massless case we used the fact that gμνP

μP ν = 0. In this
case, we have gμνP

μP ν = −m2.
2.4 Show that the geodesic equation we derived in a Euclidean universe implies that, for

massless particles,

d2x

dη2
= 0 (2.94)

where η is the conformal time. This very important result says that, in comoving
coordinates (η,x), photons travel on straight lines as in Minkowski space.
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2.5 At early times, the cosmological constant can be neglected. Using this approxima-
tion, integrate Eq. (1.3) in a Euclidean universe to obtain a(t). Using T (t) = T0/a(t),
determine the times when the cosmic temperature was 0.1 MeV and 1/4 eV. We will
see in Ch. 4 that these were the temperatures during two crucial epochs: Big Bang
Nucleosynthesis and recombination.

2.6 Derive some simple expressions for the conformal time η as a function of a.
(a) Show that η ∝ a1/2 in a matter-dominated universe and η ∝ a in one dominated

by radiation.
(b) Consider a Euclidean concordance universe with equality at aeq, at early times

so that the effect of � can be neglected. Show that

η = 2√
�mH 2

0

[√
a + aeq − √

aeq
]
. (2.95)

What is the conformal time at z = 1100?
2.7 Consider a galaxy of physical size 5 kpc. What angle would this galaxy subtend if

situated at redshift 0.1? Redshift 1? Do the calculation in a Euclidean universe, first
matter-dominated and then for the fiducial concordance cosmology.

2.8 How is the energy density of a gas of photons with a black-body spectrum related to
the specific intensity of the radiation? That is, what is the relation between ργ and Iν

defined in Eq. (1.9)?
2.9 (a) Compute the pressure of a relativistic species in equilibrium with temperature T .

Show that P = ρ/3 for both Fermi–Dirac and Bose–Einstein statistics.
(b) Suppose the distribution function depends only on E/T as it does in equilibrium

in the absence of a chemical potential. Find dP/dT . A simple way to do this is to
rewrite df/dT in the integral as −(E/T )df/dE and then integrate Eq. (2.64) by
parts.

2.10 Plot dL(z), dA(z), and m − M as a function of redshift for a Euclidean, matter-
dominated universe (this can be done analytically) and for the fiducial Euclidean
concordance cosmology (for this you need to evaluate numerically a 1D integral).
Neglect the K correction for m − M . Compare with Fig. 2.6.

2.11 Consider the entropy density, s, defined in Eq. (2.70). For a massless particle, you
showed in Exercise 2.9 that P = ρ/3, so s = 4ρ/3T . Express s as a function of T for
both bosons and fermions (assumed massless) in equilibrium with zero chemical
potential. Show that the entropy density for a massive particle in equilibrium (T 
m;μ = 0) is exponentially suppressed.

2.12 Show that the number density of one generation of neutrinos and anti-neutrinos in
the universe today is

nνi
= 3

11
nγ = 112 cm−3.
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For this calculation, you will also have to compute the photon number density; both
nνi

and nγ can be expressed in terms of Riemann zeta functions (Eq. (C.30)). Using
this result, verify Eq. (2.84).

2.13 Consider the following two scenarios. Each has energy density equal to the critical
density divided up between only two components: a cold, dark matter particle and a
neutrino. The neutrino in each case has the standard abundance and temperature.
The only difference between the two scenarios is in one the neutrino is massless
while in the other it has a mass of 0.06 eV. Plot the energy density as a function of
scale factor in each of these scenarios. Note that they should agree very early on
(in each case there is only a relativistic neutrino early on) and very late. The only
difference comes in the middle.

2.14 Determine the epoch of dark energy-matter equality assuming that the dark energy
is a cosmological constant.



3
The fundamental equations of
cosmology

Cosmology is, essentially, an application of general relativity coupled with statistical me-
chanics. The only relevant long-range force is gravity, which also provides the background
spacetime within which matter moves, as we have seen in the last chapter. Since cos-
mology deals with the evolution of the entire universe, we are not interested in the fate
of individual particles. Instead, we care about the collective, average behavior of matter,
which is described by statistical mechanics. This is why essentially all results in cosmology
can be derived from the combination of two equations: the Einstein equations on the grav-
ity side, and the Boltzmann equations of statistical mechanics for matter and radiation.

These are formidable equations, and their application can quickly get technical. In this
chapter, we will present the general form of the Einstein and Boltzmann equations, and
describe their physical content. We will then apply them to the homogeneous universe,
which, for the Einstein equations, allows us to derive the Friedmann equation (1.3). These
results will also allow us to compute the expansion history and thermal history of the uni-
verse in this chapter and the next. Further, with the experience we gain in this chapter,
there will be nothing particularly difficult about the subsequent chapters which deal with
perturbations in the universe. So, becoming familiar with the framework laid out in this
chapter will pay off greatly when going through the rest of the book.

3.1 Einstein equations
In the previous chapter, we have dealt with gravity only in terms of the metric, which gives
us a notion of distances and straight lines (geodesics) in general spacetimes. These results
were built on the principle of general covariance alone. We now turn to the second as-
pect of general relativity, which relates the metric to the constituents of the universe. This
second part is contained in the Einstein equations, which relate the Einstein tensor de-
scribing the geometry to the energy-momentum tensor of matter.1 This set of equations
can be summarized as the following celebrated tensor equality (Fig. 3.1):

Gμν + �gμν = 8πGTμν. (3.1)

1
Relativists often refer to anything that appears on the right-hand side of the Einstein equations as “matter,”

even though this in general includes radiation and other constituents. We occasionally use this nomenclature
too, so beware.
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FIGURE 3.1 The Einstein equations painted on the wall of a building in Leiden, the Netherlands. The drawing illus-
trates gravitational lensing, cf. Fig. 3.4. Painting by Jan-Willem Bruins (TegenBeeld); photograph by Vysotsky—Own
work, CC BY-SA 4.0 (https://commons.wikimedia.org/w/index.php?curid=50130596).

Here Gμν is the Einstein tensor defined through

Gμν ≡ Rμν − 1

2
gμνR. (3.2)

Rμν is the Ricci tensor, which depends only on the metric and its derivatives; R, the Ricci
scalar, is the contraction of the Ricci tensor (R ≡ gμνRμν). Further, � is the famous cosmo-
logical constant, G is Newton’s constant, and Tμν is the energy-momentum tensor, whose
expression in the background universe we have already encountered in Sect. 2.3. Thus, the
left-hand side of Eq. (3.1) is a function of the metric, the right a function of the constituents
of the universe: the Einstein equations relate the two.

The simplicity of Eq. (3.1) belies the rich physics encoded in the Einstein equations.
They govern the evolution of the smooth universe as well as the growth of structure within
it. On small scales, Newtonian gravity is included, as we will see in Sect. 3.3, as are black
holes which we will not deal with in this book. We will later encounter a different purely
general-relativistic effect contained in Eq. (3.1) though: gravitational waves.

https://commons.wikimedia.org/w/index.php?curid=50130596
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The Ricci tensor is most conveniently expressed in terms of the Christoffel symbols
[Eq. (2.21)],

Rμν = �α
μν,α − �α

μα,ν + �α
βα�β

μν − �α
βν�

β
μα. (3.3)

Here commas denote derivatives with respect to x. So, for example, �α
μν,α ≡ ∂�α

μν/∂xα .
Let us now assume the FLRW form of the metric as an ansatz and derive the Einstein

equations Eq. (3.1) for a metric of this form. The (curved) FLRW metric is in fact the most
general form of metric that is spatially homogeneous, and thus is the appropriate ansatz
for the homogeneous universe. While the FLRW metric in general has curved spatial slices,
we assume a Euclidean universe throughout this derivation as it illustrates the essential
features. We leave it as an exercise (Exercise 3.5) to derive the Einstein equations in a
curved universe. Although Eq. (3.3) looks formidable, we have already done a big part of
the work by computing the Christoffel symbol in an FLRW universe in Sect. 2.1.2.

Before embarking on the computation, let us pause to think about what we expect.
We know that the Christoffel symbols are proportional to the first derivative of the met-
ric with respect to the coordinates. Thus, from the structure of Eq. (3.3), the Ricci tensor
involves (i) terms that are proportional to the second derivatives of the metric, and (ii)

terms that involve the first derivatives squared. Due to the simplicity of the FLRW metric
(for the Euclidean case we assume here), which involves only a single function of time a(t),
we immediately see that all components of Rμν are either proportional to (i) ä or (ii) ȧ2.
We can say even more about the Ricci scalar R: as a scalar, it cannot depend on our choice
of coordinates. But the absolute value of a(t) can always be changed by multiplying the
spatial coordinates by a constant; recall that we chose them such that a(t0) = 1. So, R can-
not depend on ä but must involve ä/a; similarly, it can only depend on (ȧ/a)2 = H 2. Our
computation then comes down to only computing the constants in front of each term. This
type of symmetry consideration is very useful to check whether the results of a computa-
tion make physical sense. So let us proceed.

By working through the math, we find that there are only two sets of nonvanishing com-
ponents of the Ricci tensor: one with μ = ν = 0 and the other with μ = ν = i. Consider

R00 = �α
00,α − �α

0α,0 + �α
βα�β

00 − �α
β0�

β
0α. (3.4)

Recall that in our case the Christoffel symbol vanishes if its two lower indices are zero, so
the first and third terms on the right vanish. Similarly, the indices α and β in the second
and fourth terms must be spatial. We are left with

R00 = −�i
0i,0 − �i

j0�
j

0i . (3.5)
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Using Eq. (2.25) leads directly to

R00 = −δii

∂

∂t

(
ȧ

a

)
−
(

ȧ

a

)2

δij δij

= −3

[
ä

a
− ȧ2

a2

]
− 3

(
ȧ

a

)2

= −3
ä

a
. (3.6)

The factors of 3 on the second line arise since δij δij = δii signifies a sum over all three spatial
indices, counting 1 for each. The space-space component is left as an exercise; it is

Rij = δij [2ȧ2 + aä]. (3.7)

The next ingredient in the Einstein equations is the Ricci scalar, which we can now com-
pute since

R ≡ gμνRμν

= −R00 + 1

a2
Rii . (3.8)

Again the sum over i leads to a factor of 3, so

R = 6

[
ä

a
+
(

ȧ

a

)2
]

. (3.9)

As expected, it contains only ä/a and (ȧ/a)2. Beyond cosmology, the Ricci scalar is useful to
figure out whether a given metric describes a curved space or just Euclidean space written
in strange coordinates (Exercise 3.1).2

We are now ready to write down the Einstein equations. Before that, let us do one final
manipulation involving the cosmological constant. Nothing, of course, prevents us from
moving the � term to the right-hand side of Eq. (3.1), since it just involves the metric
tensor. We can then formally define the cosmological-constant contribution to the stress-
energy tensor:

T(�)
μ

ν = − �

8πG
δμ

ν =

⎛
⎜⎜⎝

−ρ� 0 0 0
0 −ρ� 0 0
0 0 −ρ� 0
0 0 0 −ρ�

⎞
⎟⎟⎠ , where ρ� ≡ �

8πG
(3.10)

is the effective energy density of the cosmological constant. We see then that P� = −ρ�, or
in other words, w� = −1, where we have used the energy-momentum tensor in Eq. (2.44)

2
Note, however, that there are famous examples of curved spaces where R happens to vanish, such as the

Schwarzschild black hole solution where R is zero away from the singularity.
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to make this identification. We have thus shown that the equation of state of the cosmolog-
ical constant is exactly −1. From the evolution of the energy density (Eq. (2.61)) we know
that this had to be so: for any other w�, the effective energy density of the cosmological
constant would not be constant. The big advantage of including � on the right-hand side
of the Einstein equations is that it is then very easy to generalize all results to a non-�,
dynamical form of dark energy.

Let us then proceed to derive the equation for the scale factor in a homogeneous uni-
verse; in fact, we need to consider only the time-time component of the Einstein equations:

R00 − 1

2
g00R = 8πGT00. (3.11)

The terms on the left sum to 3ȧ2/a2, and the component T00 of the energy-momentum
tensor is simply the energy density ρ. So we finally have

(
ȧ

a

)2

= 8πG

3
ρ, (3.12)

where recall that ρ now includes ρ� (or, in general, ρDE). This is termed the first Friedmann
equation (in Exercise 3.4 you will derive the second Friedmann equation). In case this was
your first time deriving an explicit form of the Einstein equations: congratulations! This is
not an easy task in general.

To get this equation into a form closer to Eq. (1.3), recall that (ȧ/a)2 is the square of the
Hubble rate and that the critical density was defined as ρcr ≡ 3H 2

0 /8πG. So, dividing both
sides by H 2

0 leads to

H 2(t)

H 2
0

= ρ(t)

ρcr
=

∑
s=r,m,ν,DE

�s [a(t)]−3(1+ws). (3.13)

Here the energy density ρ counts the energy density from all species: matter, radiation,
neutrinos, and dark energy. In the second equality, we have used Eq. (2.71) and assumed a
constant equation of state for all components (this is not quite correct at least for neutri-
nos, but the generalization is simple). In our derivation, we have assumed that the universe
is Euclidean. Hence, Eq. (3.13) does not contain a term corresponding to the curvature of
the universe. This is simple to add following Eq. (1.3). Defining �K ≡ 1 − �0 ≡ 1 −∑

s �s ,
we have

H 2(t)

H 2
0

=
∑

s=r,m,ν,DE

�s [a(t)]−3(1+ws) + �K [a(t)]−2. (3.14)

This equation is all we need to calculate the evolution of the homogeneous universe.
In Sect. 3.3.1, we will go beyond the background universe to include perturbations. We

will then encounter a whole host of additional gravitational physics, including the gener-
alization of Newton’s theory of gravity to an expanding universe.
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3.2 Boltzmann equation
After having treated gravity in the homogeneous universe, let us now turn to the equations
governing matter and radiation. In cosmology, we are not interested in the fate of individ-
ual particles, but in their behavior in a statistical sense. Hence let us consider a collection
of particles occupying some region of space, as we did in Sect. 2.3. In classical physics,
these particles are completely described by the set {xi ,pi} of their positions xi and mo-
menta pi . We can then define the distribution function, as in Sect. 2.3, by relating it to the
number of particles in a small phase-space element around (x,p):

N(x,p, t) = f (x,p, t)(�x)3 (�p)3

(2π)3
. (3.15)

In the limit of a large number of particles within the volume element considered, f (x,p, t)

approaches a continuous function describing the state of the collection of particles, and
we no longer need to keep track of individual particles. We already saw that the appropri-
ate integration measure (in natural units) is given by d3xd3p/(2π)3. Note that we do not
need to include the energy as a separate variable, since, at any point in phase space, E is
completely determined by (x,p).

Now we would like to derive an equation governing this distribution function. This
equation should uniquely follow from the equations of motion obeyed by the individ-
ual particles. Let us begin by neglecting any particle–particle interactions. Then, the only
forces acting on the particles are long-range forces, which we can describe through a force
field (more precisely, acceleration field) a(x,p, t). This could for example be gravity, in
which case a = −∇(x, t), where the gravitational potential  (defined in Eq. (3.49) below)
is independent of the particle momenta, or it could be the Lorentz force due to electro-
magnetic fields. Then, using the definition of the momentum p, the equations of motion
for nonrelativistic particles are

ẋ = p

m
; ṗ = ma(x,p, t). (3.16)

The number of particles is conserved, which we can formalize by stating that the total time
derivative of f vanishes,

df (x,p, t)

dt
= 0 where

d

dt
= ∂

∂t
+ ẋ · ∇x + ṗ · ∇p (3.17)

is the total (rather than partial) time derivative, and ∇x , ∇p denote the gradient with re-
spect to the arguments x and p, respectively. Inserting the equations of motion, this be-
comes

∂f (x,p, t)

∂t
= −ẋ · ∇xf (x,p, t) − ṗ · ∇pf (x,p, t)

= − p

m
· ∇xf (x,p, t) − ma(x,p, t) · ∇pf (x,p, t). (3.18)
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That is, the rate of change ∂f/∂t of the distribution function is determined by how many
particles move in and out of the phase-space volume element considered, or equivalently
that the phase-space volume occupied by a collection of particles is conserved (Fig. 3.2).
The catch is that these particles themselves are moving through phase space in compli-
cated ways in general. This catch makes the problem more difficult than it seems from
Eq. (3.17).

Further, if particle–particle interactions are relevant, then this equation must be mod-
ified to include a source term, a collision term, on the right-hand side, which describes
how particles are moved from one phase-space element to another (typically at the same
position x):

df

dt
= C[f ]. (3.19)

We will turn to deriving such collision terms in Sect. 3.2.3.
The payoff of all this work is that the distribution function allows us to derive all macro-

scopic properties of the collection of particles, such as density and pressure, as we have
already seen in Sect. 2.3. Of particular importance is the energy-momentum tensor Tμν ,
since it appears on the right-hand side of the Einstein equations Eq. (3.1). The relativistic
expression for the energy-momentum tensor given a distribution function f (x,p, t) is

T μ
ν(x, t) = g√−det[gαβ ]

∫
dP1dP2dP3

(2π)3

P μPν

P 0
f (x,p, t), (3.20)

where the degeneracy factor g counts how many different particle states are in fact de-
scribed by the distribution function f . P μ = dxμ/dλ is the comoving momentum defined in
Eq. (2.26) and Pμ = gμνP

ν , while the physical momentum p is related to P i via Eq. (2.32). We
can raise and lower indices on this tensor by acting on P μPν with the metric. The deriva-
tion of Eq. (3.20) is quite subtle (Ma and Bertschinger, 1995), so let us just briefly go through
the different factors in this equation. The energy-momentum tensor essentially gives the
current density of the 4-momentum carried by the particles with distribution function f .
The momentum integral over f , which gives the particle number density, weighted by Pν

yields the 4-momentum density. In order to obtain the current, we have to multiply by the
velocity P μ/P 0, just like in the case of a charge current j = nv. Then, the prefactor involv-
ing the determinant of the metric is essentially a geometric factor which is necessary in
order to ensure that T μ

ν obeys the correct conservation law: ∇μT μ
ν = 0. In Exercise 3.7,

you will show that in the homogeneous universe, Eq. (3.20) leads to the relations for the
energy density and pressure we have introduced in Sect. 2.3.

3.2.1 Boltzmann equation for particles in a harmonic potential

Let us begin our journey with the Boltzmann equation with the case of nonrelativistic
particles governed by a simple x2 potential in one dimension. This Boltzmann equation
exhibits all essential features of the full general-relativistic versions of the Boltzmann equa-
tion we will encounter in the next section, but the algebra is much less cumbersome. So
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FIGURE 3.2 Phase space for a set of collisionless particles in a harmonic potential. The initial distribution at t1 moves
in phase space to reach a different position at time t2. The phase-space volume occupied by the particles is conserved
throughout the evolution. In case of the harmonic potential, even the shape of the phase-space volume remains the
same, while in general it gets distorted in the course of time evolution.

here the physics will be quite transparent. It will be useful to keep this example in mind
when the algebra threatens to obscure the physics in the following chapters.

Consider free particles living in a one-dimensional harmonic potential well. Their en-
ergy then is simply

E = p2

2m
+ 1

2
kx2, (3.21)

where k is the spring constant. The distribution function is now a function of three scalar
arguments f = f (x,p, t). Fig. 3.2 illustrates the movement through phase space of a distri-
bution of such particles (throughout, we consider the collisionless case C[f ] = 0). The full
time derivative df/dt vanishes since the number of particles in the bunch at t1 equals that
at t2. What changes over time is the location of the particles in phase space themselves.
Alternatively, we can think of x and p as independent variables (not dependent on t) and
take partial derivatives of f with respect to t , x, and p. All of these partial derivatives are
nonzero, but the appropriate weighted sum of the three vanishes [Eq. (3.17)].

To determine the coefficients ẋ and ṗ in Eq. (3.17), we must use the equations of motion,
i.e. the one-dimensional version of Eq. (3.16). Via Newton’s force law, we have

ẋ = p

m
and ṗ = −kx. (3.22)

When generalizing to the relativistic case, these familiar equations will be replaced by the
geodesic equation we have derived in Sect. 2.1.2. The collisionless Boltzmann equation for
the present case is then

∂f

∂t
+ p

m

∂f

∂x
− kx

∂f

∂p
= 0. (3.23)
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The second term here governs how rapidly the particle moves in real space; the coefficient
in front is just the velocity, v = p/m. The last term governs how quickly particles lose or
gain momentum.

In order to solve the Boltzmann equation, which is a partial differential equation in the
three variables (x,p, t), we need to know the initial conditions on the distribution function.
Even without these, though, the Boltzmann equation offers some useful insights. Consider
a static distribution, defined by ∂f/∂t = 0 (as opposed to df/dt = 0, which always holds).
Such a distribution, also called an equilibrium distribution, means that the number of par-
ticles with a given momentum p stays the same in a statistical sense at each point in space
x. Of course, this does not mean that the particles themselves don’t move. A general solu-
tion for the equilibrium distribution is

f (p,x) = fEQ(E[p,x]); (3.24)

that is, f is a function only of energy E. To see that this is indeed a solution, consider

p

m

∂f (E)

∂x
− kx

∂f (E)

∂p
= df

dE

[
p

m

∂E

∂x
− kx

∂E

∂p

]
= 0, (3.25)

where the second equality follows from Eq. (3.21). So any function of the energy alone is
an equilibrium distribution. In the absence of collisions, as we have assumed here, which
equilibrium distribution is the correct one depends entirely on the initial conditions. How-
ever, if there are interactions, then an equilibrium distribution also needs to make the
collision term vanish: C[fEQ] = 0. This will in general drive f to one of the familiar equilib-
rium distributions that we introduced in Sect. 2.3.

3.2.2 Boltzmann equation in an expanding universe

So far, we have studied the Boltzmann equation in the Minkowski-space context (cf.
Eq. (3.16)), as appropriate for lab experiments on Earth. Let us now derive the general-
ization to an expanding spacetime. As we know from Sect. 2.1.2, the equations of motion
Eq. (3.16) get generalized to the geodesic equation, and the three-momentum p is corre-
spondingly promoted to a four-vector

P μ ≡ dxμ

dλ
(3.26)

where λ again parametrizes the particle’s path, as in Eq. (2.20) (and again we will not need
to specify λ explicitly). However, the distribution function for a given collection of particles
remains a function defined on a six-dimensional phase space: first, we keep track of time
separately as before, and second, the four-momentum of each particle obeys the mass-
shell constraint

P 2 ≡ gμνP
μP ν = −m2, (3.27)
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where m is the particle rest mass (which could be zero, e.g. for photons). Defining the norm
of the three-momentum p, by generalizing Eq. (2.32) to

p2 ≡ gijP
iP j , (3.28)

Eq. (3.27) becomes, for the FLRW metric,

E2 ≡ (P 0)2 = p2 + m2. (3.29)

Thus, we have eliminated P 0 in favor of p, and we can write a relativistic Boltzmann
equation for a distribution function f (x,p, t) as before. It is convenient to separate the
dependence on p into a dependence on its magnitude p ≡√

p2 and its unit vector p̂i = p̂i ,
which satisfies δij p̂

i p̂j = 1 by definition. We expect that p̂i is proportional to the comoving
momentum P i ; call the proportionality constant C:

P i ≡ Cp̂i. (3.30)

To determine the coefficient C, we can use Eq. (3.28):

p2 = gij p̂
i p̂jC2

= a2δij p̂
i p̂jC2

= a2C2. (3.31)

Eq. (3.31) tells us that C = p/a, so whenever we encounter P i , we can always eliminate it
in favor of p, p̂i via

P i = p

a
p̂i . (3.32)

We can now write Eq. (3.17) as

df

dt
= ∂f

∂t
+ ∂f

∂xi
· dxi

dt
+ ∂f

∂p

dp

dt
+ ∂f

∂p̂i
· dp̂i

dt
. (3.33)

Again, in this section we are attempting to derive the Boltzmann equation only for the
smooth, expanding universe. As we have seen in Sect. 2.1.2, the direction of the particle
momentum does not change in an expanding universe (even though its magnitude does).
Thus, we can immediately drop the last term, ∝ dp̂i/dt , in Eq. (3.33).

Next let us reexpress the second term on the right-hand side, ∝ dxi/dt , by recalling that
P i ≡ dxi/dλ and P 0 ≡ dt/dλ. Therefore,

dxi

dt
= dxi

dλ

dλ

dt

= P i

P 0
= p

E

p̂i

a
, (3.34)
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where we have used Eq. (3.29) and Eq. (3.32). Next up is an equation for dp/dt . For this, let
us recall that the time component of the geodesic equation (2.20) can be written as

dP 0

dλ
= −�0

αβP αP β. (3.35)

We can rewrite the derivative with respect to λ as a derivative with respect to time mul-
tiplied by dt/dλ = P 0. Using the Christoffel symbols for the FLRW metric [Eq. (2.21)], we
obtain

P 0 dP 0

dt
= −�0

ijP
iP j . (3.36)

The mass-shell relation Eq. (3.29), written in the form P 0dP 0/dt = (1/2)d(E2)/dt , and
Eq. (2.24) then lead to

p
dp

dt
= −Hp2 ⇒ dp

dt
= −Hp. (3.37)

This equation says that the physical momentum of any particle decays as 1/a in an unper-
turbed expanding universe, a fact we already know from the previous chapter. We finally
obtain the Boltzmann equation in the homogeneous expanding universe:

∂f

∂t
+ p

E

p̂i

a

∂f

∂xi
− Hp

∂f

∂p
= C[f ]. (3.38)

One might wonder why we have kept the contribution from ∂f/∂xi here, as it is unneces-
sary given the assumption of a homogeneous universe. The answer is simply that keeping
this term was easy enough, and we will need its generalization later when dealing with
perturbations.

Eq. (3.38) is valid for all particles. However, we will frequently encounter two limits of
these Boltzmann equations: in the relativistic limit, when p � m, we have E � p and thus
obtain

∂f

∂t
+ p̂i

a

∂f

∂xi
− Hp

∂f

∂p
= C[f ]. (3.39)

This applies to photons as well as neutrinos while they are relativistic. In the opposite non-
relativistic limit, p � m so that E � m. Eq. (3.38) becomes

∂f

∂t
+ p

m

p̂i

a

∂f

∂xi
− Hp

∂f

∂p
= C[f ]. (3.40)

Note in particular that the coefficient in front of the second term is now small, suppressed
by the speed |v| = p/m.

Now let us derive how the Boltzmann equation helps us to calculate the evolution of the
number density of the species under consideration. The number density n(x, t) is simply
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given by the integral of f (x,p, t) over all momenta. So let us integrate Eq. (3.38) over p,
using the fact that in the homogeneous universe, ∂f/∂xi = 0:

∫
d3p

(2π)3

∂f

∂t
− H

∫
d3p

(2π)3
p

∂f

∂p
=
∫

d3p

(2π)3
C[f ]. (3.41)

The second term on the left-hand side can be dealt with by integrating by parts:

∫
d2p̂

(2π)3

∫ ∞

0
p2dp p

∂f

∂p
= −3

∫
d2p̂

(2π)3

∫ ∞

0
p2dpf (p), (3.42)

where we have used that, for any regular distribution function, p3f (p) vanishes at p = 0 as
well as at infinity. Eq. (3.41) becomes

dn(t)

dt
+ 3Hn(t) =

∫
d3p

(2π)3
C[f ]. (3.43)

In the absence of collisions, the particle number decays as a−3, as we already knew: as
the comoving grid expands, the volume of a region containing a fixed number of particles
grows as a3. Therefore, the physical number density of these particles falls off as a−3. How-
ever, collisions can change that behavior if the integral over momentum of the collision
term does not vanish. We will consider collisions next.

3.2.3 Collision terms

The effect of direct particle interactions is, in the Boltzmann realm, referred to as “col-
lisions.” Collisions include scattering as well as pair creation, annihilation, and particle
decay. A common type of process is a reaction where particles of type 1 and 2 interact to
form particles of type 3 and 4:

(1)p + (2)q ←→ (3)p′ + (4)q ′ , (3.44)

where the subscripts indicate momenta. Note that this includes scattering of electrons and
photons for example, if we choose (1) = (3) = (e−) and (2) = (4) = (γ ); or annihilation, if
we choose (1) = (e−), (2) = (e+) and (3) = (4) = (γ ). Moreover, all microscopic physical
processes conserve momentum and energy:

p + q = p′ + q ′; E1(p) + E2(q) = E3(p
′) + E4(q

′), (3.45)

where Es(p) =√
p2 + m2

s denotes the energy-momentum relation for particle s [Eq. (3.29)].
Each type of particle has its respective distribution function fs(x,p, t), s = 1,2,3,4. Often
in cosmology, different states (e.g. spin) have the same distribution function. So, instead of
following them with separate functions, we will assign appropriate statistical weights gs .

How does the reaction Eq. (3.44) affect the evolution of the distribution functions fs of
the particles involved? First, we are dealing with a local interaction in space and time, so all
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FIGURE 3.3 Illustration of the effect of collisions on the phase-space distribution function for particle (1), i.e. the
collision term C[f1(p, x, t)], in a 1D setting. Consider the blue (dark shaded) cell at x, p. The forward reaction in
Eq. (3.44) removes particles from f1(x,p, t) in proportion to the product f1f2, and adds them to the distribution
function for particle (3) and (4) in the lower light-shaded cell. The reverse reaction on the other hand adds to
f1(x,p, t), in proportion to the abundance of (3) and (4) particles in the lower light-shaded cell. All collisions happen
locally, i.e. at a fixed position x. We have assumed that the particular momenta shown are kinematically allowed,
and not included the factors for stimulated emission or Pauli blocking here for simplicity.

the distribution functions are evaluated at (x, t), and we only need to determine the mo-
mentum arguments. For f1(x,p, t), for example, Eq. (3.44) means that we have to subtract
the particles of type 1 that get scattered away from momentum p by the forward reaction,
and add the particles of type 1 that get scattered to momentum p by the reverse reaction
(Fig. 3.3). Therefore we must sum over all other momenta (q,q ′,p′) which affect f1(p).
Schematically, then, the collision term is

C[f1(p)] =
p+q=p′+q ′∑

q,q ′,p′
δ
(1)
D (E1(p) + E2(q) − E3(p

′) − E4(q
′)) |M|2

× {f3(p
′)f4(q

′) − f1(p)f2(q)}, (3.46)

where the Dirac delta function enforces energy conservation. Here, the scattering ampli-
tude squared |M|2 depends on the microphysical details of the interaction and can be
computed using Feynman diagrams. Since we are dealing with a 2-particle interaction, the
scattering rate depends on the product of distribution functions f1f2 (forward reaction)
and f3f4 (reverse reaction). Moreover, the amplitude for forward and reverse reactions is
the same. Here and in the following, we no longer write the arguments x, t of the distribu-
tion functions, since they are all evaluated at the same x and t .

There is one ingredient we have neglected in Eq. (3.46): quantum effects such as stim-
ulated emission (or Bose enhancement) and the Pauli exclusion principle (or Pauli block-
ing). These increase or suppress the reaction rate depending on the occupation of the final
state. Including them amounts to adding factors of (1 ± f3)(1 ± f4) to the forward reac-
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tion, and (1 ± f1)(1 ± f2) to the reverse reaction. In each case, a plus sign applies when the
corresponding particle is a boson, and a minus sign when it is a fermion. Pauli blocking
is particularly obvious: if the state of fermion 1 corresponding to momentum p is already
occupied, the factor (1 − f1(p)) is zero, and the inverse reaction with this final state does
not happen, as required. Conversely, if particle 1 is a boson, the corresponding reaction
rate is enhanced, as bosons like to occupy the same state.

Finally, we can put in the appropriate factors in Eq. (3.46) to properly perform the sums
over phase space. First, as in Fig. 2.4, the volume element in phase space is d3p/(2π)3

[really d3p/(2π�)3]. Second, in the relativistic setting the phase-space integrals are four-
dimensional, over the three components of momentum and the energy. However, the en-
ergy is constrained by the on-shell condition Eq. (3.29), which requires Es = (p2 + m2

s )
1/2.

We can thus perform the energy integral as follows:

∫
d3p

∫ ∞

0
dE δ

(1)
D (E2 − p2 − m2) =

∫
d3p

∫ ∞

0
dE

δ
(1)
D

(
E −√

p2 + m2
)

2E
. (3.47)

Performing the integral over E with the delta function yields a factor of 1/2E. To summa-
rize, the infinitesimal phase-space volume element to integrate over for each particle i is
d3pi/[(2π)32Ei(pi)]. With this, the collision term becomes

C[f1(p)] = 1

2E1(p)

∫
d3q

(2π)32E2(q)

∫
d3p′

(2π)32E3(p′)

∫
d3q ′

(2π)32E4(q ′)
|M|2

× (2π)4δ
(3)
D [p + q − p′ − q ′] δ

(1)
D [E1(p) + E2(q) − E3(p

′) − E4(q
′)]

×
{
f3(p

′)f4(q
′)
[
1 ± f1(p)

] [
1 ± f2(q)

]
− f1(p)f2(q)

[
1 ± f3(p

′)
] [

1 ± f4(q
′)
]}

. (3.48)

Again, the delta functions enforce energy and momentum conservation. This result holds
in general for any 2-particle interaction of the type in Eq. (3.44), where several of the par-
ticles 1,2,3,4 could be of the same species. All the microphysical details of this interaction
are encoded in the amplitude squared |M(p,q,p′,q ′)|2, which in general depends on the
momenta of the particles involved. Eq. (3.48) can be straightforwardly generalized to pro-
cesses involving fewer particles, such as particle decay, by assembling the collision term
out of the amplitude, appropriate products of distribution functions, and integrals over
momenta. We will encounter concrete examples in the next two chapters.

3.3 Beyond the homogeneous universe
So far, we have derived the Einstein and Boltzmann equations in the homogeneous uni-
verse. This is already sufficient to calculate the thermal history of the universe which is the
topic of Ch. 4, including the production of dark matter, Big Bang Nucleosynthesis, and the
formation of the first atoms. We will now go beyond the smooth universe and consider the
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presence of inhomogeneities, which will occupy us for most of the rest of the book. Readers
should feel free to jump ahead to Ch. 4, and come back to this section later.

Due to the simplicity of the smooth universe, we were able to get away without any
approximations and derive the exact Einstein and Boltzmann equations. The universe with
structure, however, is a far more complicated (and richer) case than the homogeneous
universe. For this reason, we will have to rely on some approximations, the most important
being that the deviations of the spacetime from the FLRW form are small. Fortunately, this
approximation is very accurate in the realm of cosmology, as we will see.

3.3.1 Perturbed spacetime

To begin, we must specify the form of the metric, accounting for perturbations around the
smooth universe described by Eq. (2.12). Whereas the smooth universe is characterized
by a single function, a(t), which depends only on time and not on space, the perturbed
universe requires two more functions,  and �, both of which depend on space and time.
In terms of these, the metric can be written as

g00(x, t) = −1 − 2(x, t),

g0i (x, t) = 0,

gij (x, t) = a2(t)δij [1 + 2�(x, t)] . (3.49)

In the absence of  and �, Eq. (3.49) is simply the FLRW metric of the zeroth-order homo-
geneous, Euclidean cosmology. Conversely, in the absence of expansion (a(t) = 1) this met-
ric describes a weak gravitational field. The perturbations to the metric are , which corre-
sponds to the Newtonian potential and governs the motion of slow-moving (nonrelativis-
tic) bodies; and �, the perturbation to the spatial curvature which, from Eq. (3.49), can also
be interpreted as a local perturbation to the scale factor: a(t) → a(x, t) = a(t)

√
1 + 2�(x, t).

In general, there is a tight relation between � and , as we will see in later chapters.
The typical magnitude of metric perturbations , � in our universe is less than 10−4.

For this reason, it is an excellent approximation to work at linear order in these quantities.
This means that we neglect all terms that are quadratic or of higher order in them. We will
work under this approximation, which greatly simplifies the calculations, throughout the
entire book.

There are two technical points about the metric in Eq. (3.49) that you do not need to
worry about for most of this book, but which nonetheless are important to be aware of. We
will cover these issues in Ch. 6, when we study gravity in the inhomogeneous universe in
more detail. First, one can break up perturbations into those behaving as scalars, vectors,
and tensors under a transformation from one 3D spatial coordinate system to another.
Eq. (3.49) contains only scalar perturbations. On the other hand, tensor perturbations cor-
respond to gravitational waves, which we know to exist. To take these into account, gμν

requires other functions besides  and �. For now we focus solely on the scalar perturba-
tions; these are by far the most important ones for the origin and evolution of structure in
the universe.
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The other feature of Eq. (3.49) worth noting is that its form corresponds to a particular
choice of coordinates, or gauge. The simplest way to understand this gauge freedom is to
think back to electricity and magnetism. There, the vector potential Aμ and its derivatives
contain all possible information about the electric and magnetic fields. Since the physical
E and B fields remain unchanged if the derivative of a scalar field, ∂μϕ, is added to Aμ,
there is some residual freedom in choosing the potential (for example, one often chooses
A0 = 0 or ∂μAμ = 0). In our case of perturbations to the metric, a similar freedom exists.
Even if only scalar perturbations are considered, there is still considerable freedom in the
variables one can choose to describe the fluctuations. While any physical result must be
independent of the gauge choice, it is possible to use a gauge that looks quite different
from Eq. (3.49) and still describes the same physics. For the record, the gauge in Eq. (3.49)
is called the conformal Newtonian gauge.

The first computation we did when we studied the FLRW metric Eq. (2.12) was to com-
pute the Christoffel symbols [Eqs. (2.24–2.25)]. Now we need to do the same for the first-
order terms, those that are linear in �, . First let us consider �0

μν , which can be written
in terms of the metric as

�0
μν = 1

2
g0α[gαμ,ν + gαν,μ − gμν,α] (3.50)

where again ,α means the derivative with respect to xα . The only nonzero component of
g0α is the time component, which is the inverse of g00 = −1 − 2. So, to first order in the
perturbations, g00 = −1 + 2, and

�0
μν = −1 + 2

2
[g0μ,ν + g0ν,μ − gμν,0]. (3.51)

Take each component in turn: first the one with μ = ν = 0. Each of the terms in square
brackets is identical, so the brackets give g00,0 = −2̇. Since we are interested only in first-
order terms, the factor of 2 out in front can be dropped and we are left with

�0
00 = ̇. (3.52)

The next possibility is that one of the indices μ or ν is spatial and the other time. It
doesn’t matter which one is which, since the Christoffel symbol is symmetric in its lower
indices. In this case, only one of the terms in brackets in Eq. (3.51) is nonzero, g00,i = −2,i .
Once again, since this is of first order, we can drop the factor of 2 in front, leading to

�0
0i = �0

i0 = ,i. (3.53)

Finally, if both lower indices in Eq. (3.51) are spatial, the first two terms in brackets vanish
since g0i = 0 and only the last term survives, leaving

�0
ij = 1 − 2

2

∂

∂t
[δij a

2(1 + 2�)]. (3.54)
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There is a zeroth-order term here, the one we computed in Eq. (2.24), and three first-order
terms:

�0
ij = δij a

2[H + 2H(� − ) + �̇] (3.55)

with H = ȧ/a.
Computing the Christoffel symbols �i

μν , will be left as an exercise. They are

�i
00 = 1

a2
,i,

�i
j0 = �i

0j = δij (H + �̇),

�i
jk = [δij ∂k + δik∂j − δjk∂i]�. (3.56)

Note that, at zeroth order, the only nonvanishing component is �i
j0, in agreement with

Eq. (2.25). By convention, both δij and spatial derivatives ∂k live in Euclidean space, so we
can freely interchange their upper and lower indices. This is standard convention in the
cosmology literature when working with a Euclidean background universe.

You can already guess what we have to do next in order to obtain the desired Einstein
equations for gravity: compute the Ricci tensor Eq. (3.3) and Ricci scalar for the perturbed
metric to obtain the left-hand side; and compute the perturbed energy-momentum ten-
sor for the right-hand side. Indeed, nothing stops us from doing those calculations right
away. However, we will defer this to Ch. 6 for two reasons: first, it is useful to think a little
more carefully about how to parametrize the tensors Gμν and Tμν in a perturbed universe;
second, we can already get quite far with the Boltzmann equation in an expanding back-
ground alone. So let us continue with the latter.

3.3.2 The geodesic equation

In order to derive the Boltzmann equation, we need to know how particles move within
the perturbed spacetime. Again, this is determined by the geodesic equation which we
considered in Sect. 2.1.2, and which we now extend to include the spacetime perturbations
�, . In particular, our goal is to calculate dxi/dt , dp/dt , and dp̂i/dt to insert into Eq. (3.33).

The mass-shell constraint for a particle with mass m is now given by

gμνP
μP ν = −(1 + 2)(P 0)2 + p2 = −m2, (3.57)

where again

p2 ≡ gijP
iP j . (3.58)

We will continue to define the energy as E(p) ≡√
p2 + m2. In the massless case, we obvi-

ously have E = p. We can now eliminate the time component of P μ through

P 0 = E√
1 + 2

= E(1 − ). (3.59)
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This last equality holds since we are doing first-order perturbation theory in the small
quantity . Similarly, we can use Eq. (3.58) to derive P i . This yields the four-momentum of
a massive particle in a perturbed FLRW spacetime (which includes the massless case):

P μ =
[
E(1 − ),pi 1 − �

a

]
. (3.60)

Here, we have defined pi through

pi = p p̂i where p̂i = p̂i (3.61)

is a unit vector satisfying δij p̂
i p̂j = 1 as before. Eq. (3.60) allows us to eliminate P 0 and

P i in favor of E(p), p, the magnitude of the momentum, and p̂i whenever they occur.
Moreover, plugging these into Eq. (3.20) yields the expressions for the energy-momentum
tensor in terms of the distribution function in the presence of metric perturbations (see
Exercise 3.12) which we will need later.

Next, recall that (Eq. (3.26)) P i ≡ dxi/dλ and P 0 ≡ dt/dλ. Therefore, at linear order in
perturbations

dxi

dt
= dxi

dλ

dλ

dt

= P i

P 0
= p̂i

a

p

E
(1 − � + ) . (3.62)

The remaining term to be calculated is dpi/dt , from which we can deduce dp/dt and
dp̂i/dt . This proceeds via the geodesic equation just as in the homogeneous case in
Sect. 3.2.2. The only difference is that we now have to deal with a larger number of Christof-
fel symbols due to the perturbations in the metric. While the calculation might appear
cumbersome, it is straightforward, and the results will be useful in several different appli-
cations. In any case, we will only have to do it once! Throughout, we restrict to linear order
in perturbations. To begin, let us evaluate the derivative of pi along the geodesic:

dpi

dλ
= d

dλ

[
(1 + �)aP i

]

= P i d

dλ
[(1 + �)a] + (1 + �)a

dP i

dλ
. (3.63)

The first term can be computed using that d/dλ = P μ∂/∂xμ, which yields

d

dλ
[(1 + �)a] = P 0a[H + �̇] + aP k�,k. (3.64)

The second term can be evaluated using the geodesic equation:

dP i

dλ
= −�i

αβP αP β

= −
[
�i

00P
0P 0 + 2�i

0jP
0P j + �i

jkP
jP k

]
. (3.65)
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Fortunately, the Christoffel symbols in the first and last terms here are already of first order,
so that we can insert the zeroth-order expressions for P 0, P i . The term 2�i

0jP
0P j contains

the zeroth-order contribution. Using Eq. (3.56), we obtain

dP i

dλ
= −E

{
E

a2
,i + 2

(
H + �̇

) pi

a
(1 −  − �) + 2

a2

pi

E
pk�,k − p2

a2E
�,i

}
. (3.66)

Eq. (3.63) thus becomes, via Eq. (3.60),

dpi

dλ
= E(1 − )

{
[H + �̇]pi + pk�,k

pi

aE

}

− E

{
E

a
,i + 2

(
H + �̇

)
pi(1 − ) + 2

a

pi

E
pk�,k − p2

aE
�,i

}
. (3.67)

Finally, we can convert the total derivative with respect to λ into a derivative with respect
to t , using that dpi/dt = (P 0)−1dpi/dλ:

dpi

dt
= [H + �̇]pi + pk�,k

pi

aE

−
{

E

a
,i + 2

(
H + �̇

)
pi + 2

a

pi

E
pk�,k − p2

aE
�,i

}
, (3.68)

which can be simplified to

dpi

dt
= − (H + �̇

)
pi − E

a
,i − 1

a

pi

E
pk�,k + p2

aE
�,i . (3.69)

This is our desired result for the time evolution of the momentum pi along the geodesic.
From now on, we will be able to always use the quantities {E,p, p̂i = p̂i}, i.e. the energy
and physical momentum, rather than the comoving momentum P μ. Using that

dp

dt
= d

dt

√
δijpipj = δij

pi

p

dpj

dt
, (3.70)

for the magnitude of the momentum, we arrive at the corollary

dp

dt
= − [H + �̇

]
p − E

a
p̂i,i − 1

a

p2

E
p̂k�,k + p2

aE
p̂i�,i

= − [H + �̇
]
p − E

a
p̂i,i . (3.71)

Eq. (3.71) describes the change in the magnitude of the momentum of a particle as it
moves through a perturbed FLRW universe. While it took us quite some effort, we could
have almost guessed its form without any calculation: the first term accounts for the loss
of momentum due to the Hubble expansion (equivalent to the cosmological redshift and
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FIGURE 3.4 Sketch illustrating how the curvature of spacetime induced by a massive cluster of galaxies deflects the
trajectories of passing light rays. The same curvature also keeps the galaxies in orbit within the cluster. Both effects
are described by Eq. (3.72). From www.cfhtlens.org.

decay of peculiar velocity). Recalling that we can interpret � as the fractional perturba-
tion to the local scale factor, and that H = ȧ/a, we see that H + �̇ is the local expansion
rate. Thus, the first two terms in Eq. (3.71) contain the cosmological redshift including its
local perturbation. The last term describes the effect that a particle traveling into a well,
such that p̂i∂/∂xi < 0, gains energy; conversely, as it leaves the well, it loses energy. For
nonrelativistic particles, this is familiar from Newtonian physics; it also holds for photons,
however, in which case it corresponds to the gravitational redshift effect, which can be ob-
served on Earth using precision atomic physics experiments.

Note that the terms involving �,i and pk�,k in Eq. (3.69) have canceled in Eq. (3.71).
They do not change the particle’s momentum at linear order, but they do change the direc-
tion of the momentum. To see this, we can derive the time derivative of p̂i from Eq. (3.69):

dp̂i

dt
= 1

p

dpi

dt
− pi

p2

dp

dt

= E

ap

[
δik − p̂i p̂k

](p2

E2
� − 

)
,k

. (3.72)

http://www.cfhtlens.org/public/what-gravitational-lensing


Chapter 3 • The fundamental equations of cosmology 77

Spatial gradients in the potentials change the trajectories of both massive and massless
particles. Behind the mathematics, recall that the geodesic equation defines the notion of
straight lines in curved space, where � and  capture the additional sources of curvature
due to structure in the universe. This geometric content is illustrated in Fig. 3.4, which
schematically shows a cluster of galaxies that distorts spacetime, leading to deflection of
light rays passing by. It also deflects the motions of the galaxies within the cluster, which
move in the same curved spacetime.

Consider first nonrelativistic particles with p � E. In this case, the term involving �

is highly suppressed, so only , the perturbation to g00, is relevant. Newtonian physics
says that dp/dt = −m∇, and you can check that Eq. (3.69) recovers this for nonrelativistic
particles, up to an additional factor 1/a. But this factor is also straightforward, since the
spatial gradient we are taking is with respect to the comoving coordinate xk , while Newton’s
force law refers to physical coordinates ax. Next, consider photons. Then, p/E = 1 and
both � and  contribute equally to the deflection. For � = −, which we will see holds
in many cases, this leads to the famous factor of 2 increase in the deflection of photons
predicted by Einstein’s theory over Newton and confirmed by measurements during the
1919 total solar eclipse. The effects described by Eq. (3.72) will become important when we
study large-scale structure and gravitational lensing. Finally, notice that the deflection of
nonrelativistic particles is much stronger than that of light. Indeed, photons are not bound
to the cluster shown in Fig. 3.4 while matter and galaxies are. Mathematically, this is due
to the factor E/p in front which becomes large for nonrelativistic objects; physically, this
happens because the curvature has more time to deflect the trajectories of slow-moving
objects as compared to massless particles that travel at the speed of light.

With the geodesic equation, we have everything we need to write down the Boltzmann
equation in the perturbed universe.

3.3.3 The collisionless Boltzmann equation for radiation

The Boltzmann equation for radiation, i.e. ultra-relativistic particles, in the perturbed uni-
verse is a straightforward generalization of the treatment in Sect. 3.2.2 which led us to
Eq. (3.39). Moreover, we have done the hard part already by computing the expressions
for dxi/dt [Eq. (3.62)] and dpi/dt [Eq. (3.69)]. We simply specialize them to the case m = 0,
i.e. E = p. We can then write Eq. (3.33) as

df

dt
= ∂f

∂t
+ ∂f

∂xi

p̂i

a
(1 − � + ) − ∂f

∂p

{[
H + �̇

]
p + 1

a
pi,i

}

+ ∂f

∂p̂i

1

a

[
(� − ),i − p̂i p̂k (� − ),k

]
. (3.73)

This is the complete, linear-order left-hand side of the Boltzmann equation for radiation.
However, we can simplify it further by making use of our knowledge of the zeroth-order
distribution function f (x,p, t). In the homogeneous universe, this distribution is of the
Bose–Einstein form Eq. (2.65). This equilibrium distribution obviously does not depend on
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position x, but it also does not depend on the direction of the momentum vector p̂ since it
is isotropic. We now make the ansatz that the deviations from the equilibrium distribution
of radiation in the inhomogeneous universe are of the same order as the spacetime pertur-
bations �, . We will see in subsequent chapters that this ansatz not only makes our life
much easier, but is indeed valid.

With this working assumption, we can immediately drop the last term, ∝ ∂f/∂p̂i , in
Eq. (3.73). Recall that ∂f/∂p̂i is nonzero only if we consider a perturbation to the zeroth
order f ; i.e., it is a first-order term. But so is the term which multiplies it. So we can neglect
it.

Further, it is easy to see that the potentials in the second term ∝ ∂f/∂xi in Eq. (3.73)
are higher order as well, because they multiply ∂f/∂xi which is a first-order term (again,
the zeroth-order distribution function does not depend on position). We finally obtain the
Boltzmann equation for radiation consistently expanded to linear order:

df

dt
= ∂f

∂t
+ p̂i

a

∂f

∂xi
−
[
H + �̇ + 1

a
p̂i ∂

∂xi

]
p

∂f

∂p
. (3.74)

Eq. (3.74) will lead us directly to the equations governing CMB anisotropies.

3.3.4 The collisionless Boltzmann equation for massive particles

We now perform the analogous derivation for particles that are not ultra-relativistic. This
actually requires very little additional work. We start again from Eq. (3.33), and insert
Eq. (3.62), Eq. (3.71), and Eq. (3.72):

df

dt
= ∂f

∂t
+ ∂f

∂xi

p̂i

a

p

E
(1 − � + ) − p

∂f

∂p

[
H + �̇ + E

ap
p̂i,i

]

+ ∂f

∂p̂i

E

ap

[(
p2

E2
� − 

)
,i

− p̂i p̂k

(
p2

E2
� − 

)
,k

]
. (3.75)

We can now make the same assumptions about the zeroth-order distribution function of
the massive particles as made for photons, namely that it is independent of position x and
direction of the momentum vector p̂. This leads us to the linear-order Boltzmann equation
for massive particles:

df

dt
= ∂f

∂t
+ p

E

p̂i

a

∂f

∂xi
−
[
H + �̇ + E

ap
p̂i,i

]
p

∂f

∂p
. (3.76)

Eq. (3.76) reduces to Eq. (3.74) in the massless limit as it must. The main difference between
the two is the presence of factors of p/E, or velocity, which by definition become unity for
ultra-relativistic particles. For nonrelativistic matter on the other hand, the linear ansatz
for the distribution function assumed here breaks down in the late universe. This will lead
us to generalize the Boltzmann equation to nonlinear order in Ch. 12.
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3.4 Summary
Almost all of cosmology consists of a series of applications of two fundamental equations
of physics: the Einstein equations describing gravity; and the Boltzmann equation of sta-
tistical mechanics describing matter and radiation. In this chapter, we have provided a
concise summary of these equations and applied them to the smooth and, in the case of
the Boltzmann equation, perturbed universe.

The full Einstein equations are

Gμν ≡ Rμν − 1

2
gμνR = 8πGTμν, (3.77)

where we have included the cosmological constant (or other form of dark energy) on the
right-hand side. Applied to the FLRW metric and assuming a Euclidean universe, we de-
rived the Friedmann equation for the scale factor a(t):

H 2(t)

H 2
0

= ρ(t)

ρcr
=

∑
s=r,m,ν,DE

�s [a(t)]−3(1+ws). (3.78)

Later chapters will be wholly devoted to studying perturbations around the homogeneous
universe. Including these, we write the perturbed metric as

g00(x, t) = −1 − 2(x, t),

g0i (x, t) = 0,

gij (x, t) = a2(t)δij [1 + 2�(x, t)] , (3.79)

and work to linear order in ,� throughout. Deferring the derivation of the Einstein equa-
tions in the perturbed universe to Ch. 6, we solved the geodesic equation in the perturbed
universe in this chapter. The comoving momentum becomes

P μ =
[
E(1 − ),pi 1 − �

a

]
, (3.80)

where E =√
p2 + m2 is the proper energy and p is the physical momentum. The geodesic

equation yields

dpi

dt
= − (H + �̇

)
pi − E

a
,i − 1

a

pi

E
pk�,k + p2

aE
�,i , (3.81)

a compact relation which contains such diverse physics as Newtonian dynamics and grav-
itational lensing and which we will make use of many times throughout this book.

The Boltzmann equation involves two parts: the left-hand side is a total time derivative
df/dt expressing the conservation of the distribution function f (x,p, t) in the absence of
collisions. This time derivative includes the effect of gravity as well. In the homogeneous
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universe, the left-hand side becomes

df

dt
= ∂f

∂t
+ p

E

p̂i

a

∂f

∂xi
− Hp

∂f

∂p
. (3.82)

Including structure in the universe via the perturbed metric Eq. (3.49), and assuming that
all perturbations are small so that we can work to linear order in them, the Boltzmann
equation becomes

df

dt
= ∂f

∂t
+ p

E

p̂i

a

∂f

∂xi
−
[
H + �̇ + E

ap
p̂i,i

]
p

∂f

∂p
. (3.83)

The second part of the Boltzmann equation is the collision term C[f ] on the right-hand
side. It captures all microscopic scattering, pair production, annihilation, and decay pro-
cesses. In particular, for a 2-particle scattering process

(1)p + (2)q ↔ (3)p′ + (4)q ′ , (3.84)

we derived the following collision term:

a C[f1(p)] = a

2E1(p)

∫
d3q

(2π)32E2(q)

∫
d3p′

(2π)32E3(p′)

∫
d3q ′

(2π)32E4(q ′)
|M|2

× (2π)4δ
(3)
D [p + q − p′ − q ′] δ

(1)
D [E1(p) + E2(q) − E3(p

′) − E4(q
′)]

×
{
f3(p

′)f4(q
′)
[
1 ± f1(p)

] [
1 ± f2(q)

]
− f1(p)f2(q)

[
1 ± f3(p

′)
] [

1 ± f4(q
′)
]}

. (3.85)

The distribution function in turn tells us what the energy-momentum tensor is that we
have to put on the right-hand side of the Einstein equations. The general expression valid
in the perturbed universe is Eq. (3.20). It looks more formidable than it is; as you can show
in Exercise 3.12, Eq. (3.20) together with Eq. (3.80) yields the following energy-momentum
tensor in the perturbed universe for a single species with degeneracy factor g:

T 0
0(x, t) = −g

∫
d3p

(2π)3
E(p)f (x,p, t),

T 0
i (x, t) = g a(1 + � − )

∫
d3p

(2π)3
pif (x,p, t),

T i
j (x, t) = g

∫
d3p

(2π)3

pipj

E(p)
f (x,p, t). (3.86)

Notice that these simple expressions apply to the energy-momentum tensor with one
raised index. In fact, the integral over pif (x,p, t) in T 0

i will turn out to be of first order
in perturbations, so that we can drop the potentials � −  in the prefactor as they lead to
a second-order contribution.
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Exercises
3.1 Calculate the curvature scalar, i.e. the 2D trace of the Ricci tensor, for the metric of 2D

Euclidean space written in polar coordinates. Make use of the results of Exercise 2.2.
3.2 Find the metric, Christoffel symbols, geodesic equation, and Ricci scalar for a

2 + 1-dimensional spacetime given by the surface of a sphere with radius r.
(a) Using coordinates t , θ , φ, the metric is

gμν =
⎛
⎝ −1 0 0

0 r2 0
0 0 r2 sin2 θ

⎞
⎠ . (3.87)

Show that the only nonvanishing Christoffel symbols are �θ
φφ , �φ

φθ , and �φ
θφ .

Express these in terms of θ .
(b) Use these and the geodesic equation to find the equations of motion for a mas-

sive particle in this spacetime.
(c) Find the Ricci tensor. Show that contraction of this tensor leads to

R ≡ gμνRμν = 2

r2
. (3.88)

3.3 Fill in some of the blanks left in our derivation of the Einstein equations.
(a) Compute the Christoffel symbol �i

αβ for a Euclidean FLRW metric.
(b) Compute the spatial components of the Ricci tensor in a Euclidean FLRW uni-

verse, Rij . Show that the spacetime component, Ri0, vanishes.
3.4 Show that the space-space component of the Einstein equations in a Euclidean uni-

verse is

ä

a
+ 1

2

(
ȧ

a

)2

= −4πGP (3.89)

where P = δ
j
iT

i
j /3 is the total pressure. Combine this with Eq. (3.12) to derive the

second Friedmann equation:

ä

a
= −4πG

3
[ρ + 3P] . (3.90)

3.5 Apply the Einstein equations to the case of an open universe. The spacetime interval
in an open universe is3

ds2 = −dt2 + a2(t)

{
dr2

1 + �KH 2
0 r2

+ r2(dθ2 + sin2 θdφ2)

}
(3.91)

where r, θ , φ are 3D spherical coordinates, and �K is the curvature parameter.

3
This interval also describes a closed universe with �K < 0, but the coordinates chosen here then do not cover

the entire universe, so we assume the universe to be open.
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(a) First, compute the Christoffel symbols. Show that the only nonzero ones are
equal to

�i
0j = Hδi

j ; �0
ij = gijH ; �i

jk = gil

2
[glj,k + glk,j − gjk,l]. (3.92)

(b) Show that the components of the Ricci tensor are

R00 = −3
ä

a
,

Rij = gij

[
ä

a
+ 2H 2 − 2�KH 2

0

a2

]
. (3.93)

(c) From these, compute the Ricci scalar, and then derive the time-time component
of the Einstein equations. Compare with Eq. (3.14).

3.6 By inserting Eq. (2.60) into Eq. (3.90), derive under what conditions the expansion of
the universe is accelerating, assuming there is only a single constituent. What is the
requirement for acceleration if there are multiple components s with equations of
state ws?

3.7 Eq. (3.20) gives the general-relativistic expression for the energy-momentum tensor
in terms of the distribution function. Connect this to the expression Eq. (2.44) for the
energy-momentum tensor in the homogeneous universe, with components given in
Eq. (2.62) and Eq. (2.64).
(a) Using our results for P μ, derive Pμ and show that the spatial components Pi are

constant.
(b) Show that the time-time component of Eq. (3.20) agrees with the expression for

the energy density given in Eq. (2.62).
(c) Show the same for the pressure given in Eq. (2.64).

3.8 Derive the fluid equations for a collection of collisionless particles in a one-
dimensional harmonic potential, by taking the moments of Eq. (3.23). That is, take
the zeroth moment by integrating the equation over dp/(2π) to obtain an equation
that relates the number density n to the fluid velocity u, where

n(x, t) ≡
∫ ∞

−∞
dp

2π
f (x,p, t); u(x, t) ≡ 1

n(x, t)

∫ ∞

−∞
dp

2π

p

m
f (x,p, t). (3.94)

Then, take the first moment by multiplying the Boltzmann equation by p and then
integrating. Note that this equation governs the evolution of the fluid velocity u and
depends on the second moment, which contains the velocity dispersion. Neglect the
velocity dispersion to close the set of equations, and make a mental note that this is
quite general: when taking moments of the Boltzmann equation, the time evolution
of each moment depends on a higher-order moment, so some approximation must
be made in order to close the set of equations.
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3.9 Derive the time evolution of the zeroth-order distribution function for massive
neutrinos, by using the zeroth-order Boltzmann equation (3.38) and assuming the
Fermi–Dirac distribution as initial condition in the early universe (when neutrinos
decoupled).
(a) Show that any distribution function of the form f (p, t) = f (Eν[p0a(t)]) solves

the Boltzmann equation.
(b) By matching to the initial conditions at an early scale factor adec, show that p0 =

p/adec, and that the distribution function becomes

f (0)
ν (p, t) = fFD

[
Eν(a(t)p/adec)/Tdec

]
, (3.95)

where Tdec is the temperature of the thermal neutrinos at adec.
(c) Plot the neutrino distribution function at z = 100, 10, 1 and 0, for two cases:

mν = 0.06 eV and mν = 0 (you can use the latter case to verify that you recover
the correct result for massless neutrinos). Use adec = 10−9 and Tdec = Tν,0/adec,
where Tν,0 is the extrapolated neutrino temperature today (see Eq. (2.81)).

(d) Show that, for this value of adec, Tdec � mν for realistic neutrino masses, and
show that in this regime the distribution function matches Eq. (2.83). Here we
have neglected any neutrino chemical potential, which is accurate as long as
μν � Tdec.

3.10 Derive Eq. (3.76), the Boltzmann equation for a massive particle at linear order, from
Eq. (3.75).

3.11 Show that the temperature of nonrelativistic matter scales as a−2 in the absence
of interactions. Start from Eq. (3.38) and assume a form fc ∝ e−(E−μ)/T ∝ e−p2/2mT .
Justify this ansatz. Note that this argument does not apply in the presence of inter-
actions: for example, the temperature of electrons and protons scales as a−1 as long
as they are tightly coupled to the photons.

3.12 Derive Eq. (3.86), by using the perturbed metric Eq. (3.49), and inserting Eq. (3.60)
into Eq. (3.20).

3.13 Show that the spatial curvature in conformal Newtonian gauge is equal to 4k2�/a2.
To do this, compute the three-dimensional Ricci scalar arising from the spatial part
of the metric gij in Eq. (3.49).



4
The origin of species

The very early universe was hot and dense. As a result, interactions among particles oc-
curred much more frequently than they do today. As an example, a photon in the visible
band today can typically travel across much of the observable universe without deflection
or capture, so it has a mean free path greater than 1028 cm. When the age of the universe
was equal to 1 sec, though, the mean free path of a photon was about the size of an atom.
Thus, in the time it took the universe to expand by a factor of 2, a given photon inter-
acted many, many times. These multiple interactions kept many of the constituents in the
universe in equilibrium. Nonetheless, there were times when reactions could not proceed
rapidly enough to maintain equilibrium conditions. Not coincidentally, these times are of
the utmost interest to cosmologists.

Indeed, we will see in this chapter that out-of-equilibrium phenomena played a role
in (i) the formation of the light elements during Big Bang Nucleosynthesis; (ii) recom-
bination of electrons and protons into neutral hydrogen; and possibly in (iii) the pro-
duction of dark matter in the early universe. It is important to understand that all three
phenomena are the result of nonequilibrium physics and that all three can be studied
with the same formalism: the Boltzmann equation in the homogeneous universe, as in-
troduced in Sect. 3.2. Sects. 4.2–4.4 of this chapter are simply applications of this general
formula.

To summarize, in this chapter we will go beyond our treatment in Ch. 2 by considering
out-of-equilibrium processes in the universe, but we still work within the framework of a
homogeneous universe. In succeeding chapters, we will then move beyond uniformity and
explore distribution functions for matter and radiation that depend on both position and
direction of propagation.

4.1 The homogeneous Boltzmann equation revisited
Suppose that we are interested in the number density n1 of species 1. For simplicity, we
will assume that the only process affecting the abundance of this species is a reaction with
species 2 producing two particles, imaginatively called 3 and 4. Schematically, 1 + 2 ↔
3+4; i.e., particle 1 and particle 2 can annihilate producing particles 3 and 4, or the inverse
process can produce 1 and 2. The Boltzmann equation for this system in an expanding
universe was derived in Sect. 3.2.2, and the corresponding collision term in Sect. 3.2.3.
Combining the general results Eq. (3.43) and Eq. (3.48), we obtain the following evolution
equation for n1:
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a−3 d(n1a
3)

dt
=

∫
d3p1

(2π)32E1

∫
d3p2

(2π)32E2

∫
d3p3

(2π)32E3

∫
d3p4

(2π)32E4

× (2π)4δ
(3)
D (p1 + p2 − p3 − p4)δ

(1)
D (E1 + E2 − E3 − E4)|M|2

× {f3f4[1 ± f1][1 ± f2] − f1f2[1 ± f3][1 ± f4]}. (4.1)

Here, Ei stands for Ei(pi) and fi for fi(pi, t). We have thus obtained an integrodifferen-
tial equation for the phase-space distributions. Further, in principle at least, it must be
supplemented with similar equations for the other species. In practice, these formidable
obstacles can be overcome for many practical cosmological applications. The first, most
important, realization is that scattering processes typically enforce kinetic equilibrium.
That is, scattering takes place so rapidly that the distributions of the various species take
on the generic Bose–Einstein/Fermi–Dirac forms (Eq. (2.65) and Eq. (2.66)) with equal tem-
perature T for each species. This form condenses all of the freedom in the distribution into
the functions of time T and μ. If annihilations were also in equilibrium, the sum of the
chemical potentials μi in any reaction would have to balance. For example, the reaction
e+ + e− ↔ γ + γ would lead to μe+ + μe− = 2μγ . In the out-of-equilibrium cases we will
study, the system will not be in chemical equilibrium and we will have to solve a differen-
tial equation for μ. The great simplifying feature of kinetic equilibrium, though, is that this
differential equation will be a single ordinary differential equation, as opposed to the very
complicated form of Eq. (4.1).

We will typically be interested in systems at temperatures smaller than E − μ. In this
limit, the exponential in the Bose–Einstein and Fermi–Dirac distributions is large and
dwarfs the ±1 in the denominator. Thus, another simplification emerges: we can ignore
the complications of quantum statistics, and the distributions follow the Boltzmann dis-
tribution of a classical dilute gas:

f (E) → eμ/T e−E/T . (4.2)

In addition, the Pauli blocking/Bose enhancement factors in the Boltzmann equation can
be neglected. This is because f (E) � 1 in the limit of Eq. (4.2).

Under these approximations, the last line of Eq. (4.1) becomes

f3f4[1 ± f1][1 ± f2] − f1f2[1 ± f3][1 ± f4]
→ e−(E1+E2)/T

{
e(μ3+μ4)/T − e(μ1+μ2)/T

}
. (4.3)

Here we have used energy conservation, E1 + E2 = E3 + E4. We will use the number densi-
ties themselves as the time-dependent functions to be solved for, instead of μ. The number
density of species s is related to μs via

ns = gse
μs/T

∫
d3p

(2π)3
e−Es(p)/T , (4.4)
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where gs is the now familiar degeneracy factor of the species. It will also be useful to define
the species-dependent number density for μs = 0 as

n(0)
s ≡ gs

∫
d3p

(2π)3
e−Es(p)/T =

⎧⎨
⎩ gs

(
msT
2π

)3/2
e−ms/T ms � T ,

gs
T 3

π2 ms � T .
(4.5)

In particular, we have the very useful relation n
(0)
γ = 2T 3/π2. With this definition, eμi/T can

be rewritten as ni/n
(0)
i , so via Eq. (4.4) we have

e(μ3+μ4)/T − e(μ1+μ2)/T = n3n4

n
(0)
3 n

(0)
4

− n1n2

n
(0)
1 n

(0)
2

. (4.6)

With these approximations, the Boltzmann equation now simplifies enormously. Define
the thermally averaged cross section as

〈σv〉 ≡ 1

n
(0)
1 n

(0)
2

∫
d3p1

(2π)32E1

∫
d3p2

(2π)32E2

∫
d3p3

(2π)32E3

∫
d3p4

(2π)32E4
e−(E1+E2)/T

× (2π)4δ
(3)
D (p1 + p2 − p3 − p4)δ

(1)
D (E1 + E2 − E3 − E4)|M|2, (4.7)

which in general depends on the temperature T . Then, the Boltzmann equation becomes

a−3 d(n1a
3)

dt
= n

(0)
1 n

(0)
2 〈σv〉

{
n3n4

n
(0)
3 n

(0)
4

− n1n2

n
(0)
1 n

(0)
2

}
. (4.8)

We thus have a simple ordinary differential equation for the number density of each
species. Although the details will vary from application to application (see Table 4.1), we
will always start from this equation when tracking abundances.

One qualitative note about Eq. (4.8). The left-hand side is of order n1/t , or, since the
typical cosmological time is H−1, n1H . The right-hand side is of order n1n2〈σv〉. Therefore,
if the reaction rate for a single particle of type 1, n2〈σv〉, is much larger than the expansion
rate, then the terms on the right side will be much larger than the one on the left. The only
way to maintain equality then is for the individual terms on the right to cancel. Thus, when
reaction rates are large, Eq. (4.8) approaches

n3n4

n
(0)
3 n

(0)
4

= n1n2

n
(0)
1 n

(0)
2

. (4.9)

This equation is equivalent to the condition μ1 +μ2 = μ3 +μ4, the relation we have referred
to as chemical equilibrium above. The same relation is also known under the names of
nuclear statistical equilibrium and Saha equation.
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Table 4.1 The most important reactions dis-
cussed in this Chapter. In the last row, X denotes a
dark matter particle, while ψ denotes lighter par-
ticles produced upon annihilation.

1 2 ↔ 3 4

Neutron–proton ratio n νe or e+ ↔ p e− or νe

Recombination e p ↔ H γ

Dark matter production X X ↔ ψ ψ

4.2 Big Bang nucleosynthesis
Of the various epochs in the early universe, we have seen in Ch. 1 that Big Bang Nucle-
osynthesis (BBN) is of particular importance, as it produced the light elements we see in
the universe and can be used to constrain cosmology. BBN happened when the temper-
ature of the universe cooled to 1 MeV. At that point in time, the cosmic plasma consisted
of:

• Relativistic particles in equilibrium: photons, electrons and positrons. These were
kept in close contact with each other by electromagnetic interactions such as e+e− ↔
γ γ . Besides a small difference due to fermion/boson statistics, these all had the same
abundances.

• Decoupled relativistic particles: neutrinos. At temperatures a little above 1 MeV, the
rate for processes such as νe ↔ νe that keep neutrinos coupled to the rest of the plasma
dropped beneath the expansion rate. Neutrinos therefore share the same temperature
as the other relativistic particles (but see Sect. 2.4.4), and hence are roughly as abun-
dant, but they do not couple to them.

• Nonrelativistic particles: baryons. If there had been no asymmetry in the initial num-
ber of baryons and anti-baryons, then both would be completely depleted by 1 MeV.
However, such an asymmetry has to exist, since otherwise we would observe a uni-
verse almost completely devoid of baryons. Comparing the abundance of baryons to
photons, we find nb/s ∼ 10−10 today.1 Since this ratio remains constant throughout the
expansion (as long as the baryon number density is conserved), this also quantifies
the baryon–antibaryon asymmetry in the early universe. As you can compute in Ex-
ercise 4.6,

ηb ≡ nb

nγ

= 6.0 × 10−10
(

	bh2

0.022

)
. (4.10)

There are thus many fewer baryons than relativistic particles in the universe.

Our task in this section will be to determine what nuclei the protons and neutrons end
up in, and in which amounts. Were the system to remain in equilibrium throughout, the
final state would be dictated solely by energetics, and all baryons would relax to the nuclear

1
s is the entropy density, which scales as a−3, as we saw in Ch. 2.
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state with the lowest energy per baryon, iron (Fig. 4.1). However, nuclear reactions, whose
rates scale as the second—or higher—power of the density, are too slow to keep the system
in equilibrium as the universe expands. In principle then, we need to solve the equivalent
of Eq. (4.8) for all the nuclei, i.e., a set of coupled differential equations. In practice, at least
for a qualitative understanding of the result, we can make use of two simplifications that
obviate the need to solve the full set of differential equations.

The first simplification is that essentially no elements heavier than helium are produced
at appreciable levels. So the only nuclei that we need to trace are hydrogen and helium, and
their isotopes: deuterium, tritium, and 3He. The second simplification is that, even in the
context of this reduced set of elements, the physics splits up neatly into two parts since
above T 
 0.1 MeV, no light nuclei form: only free protons and neutrons exist. Therefore,
we first solve for the neutron/proton ratio and then use this abundance as input for the
synthesis of helium and isotopes such as deuterium (see Box 4.1).

4.1 Lightning Introduction to Nuclear Physics
Atomic nuclei are characterized by two numbers: the atomic number Z gives the number of
protons in the nucleus (and hence its charge), and is unique to each element; the mass num-
ber A is the total number of neutrons and protons in the nucleus. Nuclei with different A but
the same Z are referred to as isotopes. The mass number is denoted by a superscript before the
name of the element. So, a single proton p can be equivalently written as the hydrogen nucleus
1H. A deuterium nucleus consists of a proton and a neutron and is written as 2H or D; one
proton and two neutrons make tritium, 3H. Nuclei with Z = 2 are helium; these can have one
neutron (3He) or two (4He).

The total mass of a nucleus with Z protons and A − Z neutrons differs slightly from the sum
of masses of the individual protons and neutrons. This difference is called the binding energy,
which is defined as

BN ≡ Zmp + (A − Z)mn − mN (4.11)

where mN is the mass of the nucleus. For example, the mass of deuterium is 1875.62 MeV while
the sum of the neutron and proton masses is 1877.84 MeV, so the binding energy of deuterium
is BD = 2.22 MeV. Nuclear binding energies are typically in the MeV range, which explains why
Big Bang Nucleosynthesis occurs at temperatures a bit lower than 1 MeV even though nuclear
masses are in the GeV range.

Neutrons and protons can interconvert via weak interactions:

p + ν̄ ↔ n + e+; p + e− ↔ n + ν; n ↔ p + e− + ν̄ (4.12)

where all the reactions can proceed in either direction. The light elements are built up via nu-
clear interactions. For example, deuterium forms from p +n → D. Then, D + D → n+ 3He, after
which 3He + D → p + 4He produces 4He. Here the final-state nuclei are usually in an excited
state, and then relax to the ground state by emitting one or more photons.

Both of these simplifications—no heavy elements at all and only n/p above 0.1 MeV—
rely on the physical fact that, at high temperatures, comparable to nuclear binding ener-
gies, any time a nucleus is produced in a reaction, it is destroyed by a high-energy photon.
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FIGURE 4.1 Binding energy per nucleon as a function of mass number A of nuclei (data are from Audi et al., 2003).
The stars indicate the three isotopes most relevant for BBN: D (A = 2), 3He (A = 3), and 4He (A = 4). Among the light
elements, 4He is a crucial local maximum. Nucleosynthesis in the early universe essentially stops at 4He because of
the lack of tightly bound isotopes at A = 5 − 7. In the high-density environment of stars, three 4He nuclei fuse to
form 12C, but the low baryon number precludes this process in the early universe.

This fact is reflected in the fundamental equilibrium equation (4.9). To see how, let us
consider this equation applied to deuterium production, n + p ↔ D + γ . Since photons
have nγ = n

(0)
γ (the chemical potential μγ is extremely small), the equilibrium condition

becomes

nD

nnnp

= n
(0)
D

n
(0)
n n

(0)
p

. (4.13)

Using Eq. (4.5) for the quantities on the right-hand side leads to

nD

nnnp

= 3

4

(
2πmD

mnmpT

)3/2

e[mn+mp−mD]/T , (4.14)

the factor of 3/4 being due to the number of spin states (3 for D and 2 each for p and n).
In the prefactor, mD can be set to 2mn = 2mp, but in the exponential the small difference
between mn + mp and mD is important: indeed the argument of the exponential is equal to
the binding energy of deuterium, BD = 2.22 MeV (see Box 4.1), divided by the temperature.
Therefore, as long as equilibrium holds,

nD

nnnp

= 3

4

(
4π

mpT

)3/2

eBD/T . (4.15)

Both the neutron and proton density are proportional to the baryon density, so using nn 

np 
 nb = ηbn

(0)
γ we roughly have

nD

nb
∼ ηb

(
T

mp

)3/2

eBD/T . (4.16)
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As long as BD/T is not too large, the small prefactor dominates this expression—recall the
smallness of the baryon-to-photon ratio ηb, Eq. (4.10).

The small baryon-to-photon ratio thus inhibits nuclei production until the temperature
drops well beneath the nuclear binding energy. Physically, this happens because there are
so many photons around that, even though photons with energies of order the nuclear
binding energy are in the exponentially suppressed tail of the Bose–Einstein distribution
(since T � BD), any given nucleus will still encounter at least one such photon within a
Hubble time until the temperature drops even further. So, at temperatures above 0.1 MeV,
virtually all baryons are in the form of neutrons and protons. When the temperature falls
to 0.1 MeV, roughly, deuterium and helium are produced, but the reaction rates are by now
too low to produce any heavier elements. Fig. 4.1 explains this. The lack of a stable isotope
with mass number 5 implies that heavier elements cannot be produced via 4He + p → X.
In stars, the triple-alpha process 4He + 4He + 4He → 12C produces heavier elements, but in
the early universe, by the time that 4He can form the densities are far too low to allow three
nuclei to find one another within a Hubble time.

4.2.1 Neutron abundance

We begin by solving for the neutron–proton ratio. Protons can be converted into neutrons
via weak interactions, p+e− → n+νe for example. As we will see, reactions of this sort keep
neutrons and protons in equilibrium until T ∼ MeV. Thereafter, one must solve Eq. (4.8) to
track the neutron abundance.

From Eq. (4.5), the proton/neutron equilibrium ratio in the nonrelativistic limit (so that
Ei(p) = mi + p2/2mi) is

n
(0)
p

n
(0)
n

= e−mp/T
∫

dp p2e−p2/2mpT

e−mn/T
∫

dp p2e−p2/2mnT
. (4.17)

The integrals here are proportional to m3/2. The resulting ratio (mp/mn)
3/2 is sufficiently

close to unity that we can neglect the mass difference. However, in the exponential the
mass difference is very important, and we are left with

n
(0)
p

n
(0)
n

= eQ/T (4.18)

with Q ≡ mn − mp = 1.293 MeV. Therefore, at high temperatures, there are as many neu-
trons as protons. As the temperature drops beneath 1 MeV, the neutron fraction goes down.
If weak interactions operated efficiently enough to maintain equilibrium indefinitely, then
it would drop to zero (even if free neutrons were stable). The main task of this section is
to find what happens in the real world where weak interactions are not so efficient. It is
convenient to define

Xn ≡ nn

nn + np

, (4.19)
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that is, Xn is the ratio of neutrons to total nuclei. In equilibrium,

Xn → Xn,EQ ≡ 1

1 + n
(0)
p /n

(0)
n

. (4.20)

To track the evolution of Xn, let us start from Eq. (4.8), with 1 = neutron, 3 = proton, and 2,
4 = leptons in complete equilibrium (nl = n

(0)
l ). Then,

a−3 d(nna
3)

dt
= n

(0)
l 〈σv〉

{
npn

(0)
n

n
(0)
p

− nn

}
. (4.21)

We have already determined the ratio n
(0)
n /n

(0)
p = e−Q/T and we can identify n

(0)
l 〈σv〉 as λnp,

the rate for neutron → proton conversion since it multiplies nn in the loss term. Also, if we
rewrite nn on the left as (nn + np)Xn, then the total density times a3 can be taken outside
the derivative, leaving

dXn

dt
= λnp

{
(1 − Xn)e

−Q/T − Xn

}
. (4.22)

Eq. (4.22) is a differential equation for Xn as a function of time. It turns out that it is simpler
to solve once we recast the equation using a new evolution variable x,

x ≡ Q
T

. (4.23)

The left-hand side of Eq. (4.22) then becomes ẋ dXn/dx, so we need an expression for ẋ =
−xṪ /T . Since T ∝ a−1,

1

T

dT

dt
= −H = −

√
8πGρ

3
, (4.24)

with the second equality following from Eq. (3.12). Nucleosynthesis occurs in the radiation-
dominated era, so the main contribution to the energy density ρ comes from relativistic
particles. Recall from Ch. 2 that the contribution to the energy density from relativistic
particles is

ρ = π2

30
T 4

⎡
⎣ ∑

s=bosons

gs + 7

8

∑
s=fermions

gs

⎤
⎦ (s relativistic)

≡ g∗
π2

30
T 4. (4.25)

The effective numbers of relativistic degrees of freedom, g∗, is a function of the tempera-
ture. At temperatures of order 1 MeV, the contributing species are: photons (gγ = 2), neu-
trinos (gν = 6), and electrons and positrons (ge+ = ge− = 2). Adding up leads to g∗ 
 10.75,
roughly constant throughout the regime of interest. Then, Eq. (4.22) becomes

dXn

dx
= xλnp

H(x = 1)

{
e−x − Xn(1 + e−x)

}
. (4.26)
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FIGURE 4.2 Evolution of the neutron-to-proton ratio nn/np = Xn/(1−Xn) in the early universe. The solid curve shows
the full numerical result. The long-dashed curve shows the equilibrium prediction (with �m ≡ Q), while the short-
dashed curve shows the decay factor exp(−t/τn). The neutron abundance falls out of equilibrium at T ∼ 1 MeV, and
BBN sets in at T ∼ 0.1 MeV, leading to the sharp drop in the neutron abundance. From Steigman (2007).

In Exercise 4.5, you will integrate this equation numerically to track the neutron abun-
dance. It turns out that when T =Q (i.e., when x = 1), the conversion rate is 5.5 s−1, some-
what larger than the expansion rate. As the temperature drops beneath 1 MeV, though, the
reaction rate falls as T 3, while the expansion rate falls as T 2, so conversions become ineffi-
cient, and we expect a departure from the equilibrium result.

Fig. 4.2 shows the evolution of Xn (in fact, a more precise calculation which includes
proper statistics, nonzero electron mass, and changing g∗). The neutron fraction Xn does
indeed fall out of equilibrium once the temperature drops below 1 MeV: it freezes out
at roughly 0.15 (corresponding to the y-axis ratio equal to 0.18) once the temperature
drops below 0.5 MeV. Here, the term “freezing out” or “freeze-out” means the inability of
annihilations to keep the particle’s abundance at its equilibrium value. At temperatures
below 0.1 MeV, two reactions we have not included yet become important: neutron decay
(n → p + e− + ν) and deuterium production (n + p → D + γ ), i.e. the beginning of BBN.
Deuterium production, which we will study in the next section, leads to the sharp drop at
T 
 0.1 MeV.

First, decays can be added trivially by multiplying the neutron abundance with a fac-
tor of e−t/τn , where the neutron lifetime is τn = (885.7 ± 0.8) s. By the time decays become
important, electrons and positrons have annihilated, so g∗ in Eq. (4.25) is 3.36 and the
time-temperature relation is (Exercise 2.5):

t = 132 s
(

0.1 MeV
T

)2

. (4.27)

We will see shortly that production of deuterium, and other light elements, begins in
earnest at Tnuc ∼ 0.07 MeV. By then, decays have depleted the neutron fraction by a factor



94 Modern Cosmology

FIGURE 4.3 Evolution of the mass fraction in light elements during BBN (SBBN stands for “standard BBN”). The lower
x axis shows temperature, while the upper x axis shows time. The abundance of deuterium peaks during BBN and
then decays as deuterium gets processed to helium as well as trace amounts of other elements. From Pospelov and
Pradler (2010).

of exp[−(132/886)(0.1/0.07)2] = 0.74. So the neutron abundance at the onset of nucleosyn-
thesis is 0.15 × 0.74, or

Xn(Tnuc) = 0.11. (4.28)

We now turn to light element formation to understand the ramifications of this number.

4.2.2 Light element abundances

A useful way to approximate light element production is that it occurs instantaneously at
a temperature Tnuc when the energetics compensates for the small baryon-to-photon ra-
tio. Let us consider deuterium production as an example, with Eq. (4.16) as our guide. The
equilibrium deuterium abundance is of order the baryon abundance (i.e. if the universe
stayed in equilibrium, all neutrons and protons would form deuterium) when the right-
hand side of Eq. (4.16) is of order unity, or

ln(ηb) + 3

2
ln(Tnuc/mp) ∼ − BD

Tnuc
. (4.29)

Eq. (4.29) suggests that deuterium production takes place at Tnuc ∼ 0.07 MeV.
Since the binding energy of helium is larger than that of deuterium, the exponential fac-

tor eB/T favors helium over deuterium. Indeed, Fig. 4.3 illustrates that helium is produced
almost immediately after deuterium. Virtually all remaining neutrons at T ∼ Tnuc then are
processed into 4He. Since two neutrons go into 4He, the final 4He abundance is equal to
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half the neutron abundance at Tnuc. Often, results are quoted in terms of mass fraction;
then,

YP ≡ 4n(4He)

nb
= 2Xn(Tnuc), (4.30)

which yields a final helium mass fraction of 0.22. This rough estimate, obtained by solving
a single differential equation, is in remarkable agreement with a full numerical calculation,
which can be fit via (Olive, 2000)

YP = 0.2262 + 0.0135 ln(ηb/10−10). (4.31)

One important feature of this result is that it depends only logarithmically on the
baryon fraction via ηb, which is inherited from Eq. (4.29). You might think that the expo-
nential sensitivity to Tnuc in the decay fraction would turn this into a linear dependence.
However, Tnuc is sufficiently early that only a small fraction of neutrons have decayed: the
exponential in this regime is linear in the time. Therefore, the final helium abundance
maintains only a logarithmic dependence on the baryon density. This weak dependence
on 	bh2 is clearly visible in Fig. 1.6, which also shows that the prediction agrees well with
the observations (horizontal shaded band). The best indication of the primordial helium
abundance comes from the most unprocessed gas, indicated by a elemental composition
that is close to the primordial one, i.e. elements heavier than Helium are virtually absent.

Fig. 4.3 shows that not all of the deuterium gets processed into helium. A trace amount
remains unburned, simply because the reaction that eliminates it, D + p → 3He + γ , is not
completely efficient. While deuterium is depleted via these reactions after Tnuc, it eventu-
ally freezes out at a mass fraction of order 3 × 10−5. If the baryon density is low, then the
reactions proceed more slowly, and the depletion is not as effective. Therefore, low baryon
density inevitably results in more deuterium; the sensitivity is quite stark, as illustrated in
Fig. 1.6. This fact, combined with the possibility of measuring deuterium in high-redshift
gas clouds by looking for absorption in the spectra of distant QSOs (see Sect. 1.3), turns the
deuterium abundance into an important probe of the baryon density.

4.3 Recombination
After BBN is complete, the ordinary matter in the universe consists of protons, electrons,
photons, helium nuclei and trace amounts of heavier nuclei (the neutrinos have decoupled
by now, and no longer play a role). The next important epoch is when the Compton scat-
tering between photons and electrons is no longer efficient enough to keep the photons
tightly coupled to the baryons (electrons and baryons remain tightly coupled by Coulomb
scattering throughout). This decoupling epoch happens as the temperature drops below
∼ 1 eV when the number of free electrons drops dramatically. When T ≥ 1 eV, there is
still very little neutral hydrogen. Energetics of course favor the production of neutral hy-
drogen with a binding energy of ε0 = 13.6 eV, but the high photon/baryon ratio, with the
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correspondingly large number of photons in the high-energy tail of the Bose–Einstein dis-
tribution, ensures that any hydrogen atom produced will be immediately ionized. This
phenomenon is identical to the delay in the production of light nuclei we saw above, re-
played on the atomic scale. Eventually, however, the number of photons with energy above
ε0 has redshifted sufficiently for neutral hydrogen to form. This epoch is known as recom-
bination, although that is clearly a misnomer: electrons and protons combine, but not
re-combine since this is the first time neutral atoms form in the universe.

Helium is another asterisk to the qualitative account given above and the more quanti-
tative one we turn to below. Helium atoms capture single electrons much earlier than do
hydrogen atoms since the binding energy is Z2ε0 = 54.4 eV. The binding energy of the sec-
ond electron—the one that makes helium neutral—at 24 eV is also larger than 13.6 eV, so
the full recombination to neutral helium occurs earlier than that of neutral hydrogen. How-
ever, since there are relatively few helium atoms, the vast majority of electrons remain free.
For the purposes of decoupling, then, helium recombination plays only a small role, so we
will neglect helium in what follows. Percent-level predictions for the CMB anisotropies do
need to account for helium.

As long as the reaction2 e−+p ↔ H+γ remains in equilibrium, the condition in Eq. (4.9)
(with 1 = e, 2 = p, 3 = H) ensures that

nenp

nH
= n

(0)
e n

(0)
p

n
(0)
H

. (4.32)

This is the Saha equation. We can go further here by recognizing that the neutrality of the
universe ensures that ne = np. Let us define the free electron fraction

Xe ≡ ne

ne + nH
= np

np + nH
, (4.33)

where the denominator is equal to the total number of protons (again neglecting helium).
Using Eq. (4.5) for the quantities on the right-hand side of Eq. (4.32) leads to

X2
e

1 − Xe

= 1

ne + nH

[(
meT

2π

)3/2

e−[me+mp−mH]/T

]
(4.34)

where we have made the familiar approximation of neglecting the small mass difference
of H and p in the prefactor. The argument of the exponential is −ε0/T . The denominator
ne +nH (or np +nH) is equal to the baryon density, ηbnγ ∼ 10−9T 3. So when the temperature
is of order ε0, the right-hand side is of order 109(me/T )3/2 
 1015. In that case, Eq. (4.34) can
be satisfied only if the denominator on the left is very small, that is if Xe is very close to 1:
all hydrogen is ionized. Only when the temperature drops far below ε0 does appreciable
recombination take place. As Xe falls, the rate for recombination also falls, so that equilib-
rium becomes more difficult to maintain. Thus, in order to follow the free electron fraction

2
In the following, p stands for free protons and H for neutral hydrogen, i.e., a proton with an electron attached.



Chapter 4 • The origin of species 97

accurately, we need to solve the Boltzmann equation, just as we did for the neutron–proton
ratio.

In this case, Eq. (4.8) for the electron density becomes

a−3 d(nea
3)

dt
= n(0)

e n(0)
p 〈σv〉

{
nH

n
(0)
H

− n2
e

n
(0)
e n

(0)
p

}

= nb〈σv〉
{

(1 − Xe)

(
meT

2π

)3/2

e−ε0/T − X2
enb

}
(4.35)

where the last line follows since the ratio n
(0)
e n

(0)
p /n

(0)
H is equal to the term in square brackets

in Eq. (4.34). Meanwhile, since nba3 is constant it can be passed through the derivative on
the left after expressing ne as nbXe, so that

dXe

dt
=

{
(1 − Xe)β − X2

enbα(2)
}

(4.36)

where the ionization rate is typically denoted

β ≡ 〈σv〉
(

meT

2π

)3/2

e−ε0/T (4.37)

and the recombination rate

α(2) ≡ 〈σv〉. (4.38)

The recombination rate has superscript (2) because recombination to the ground state
(n = 1) is not relevant. Ground-state recombinations lead to production of an ionizing
photon, and this photon immediately ionizes a neutral atom. The net effect of such a
recombination is zero: no new neutral atoms are formed this way. The only way for re-
combination to proceed is via capture to one of the excited states of hydrogen; to a good
approximation (see Exercise 4.7), this rate is

α(2) = 9.78
α2

m2
e

(ε0

T

)1/2
ln

(ε0

T

)
. (4.39)

The Saha approximation, Eq. (4.34), does a good job predicting the redshift of recombi-
nation, but fails as the electron fraction drops and the system goes out of equilibrium.
Therefore, the detailed evolution of Xe must be obtained by a numerical integration of
Eq. (4.36) (Exercise 4.7). Results from a numerical integration including additional compli-
cations in the recombination rate (see Exercise 4.7) as well as helium are shown in Fig. 4.4.

We have seen that the neutron/proton ratio affects the abundance of light elements
today. Similarly, the evolution of the free electron abundance has major ramifications for
observational cosmology. Recombination at z∗ ∼ 1000 is tied to the decoupling of photons
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FIGURE 4.4 Free electron fraction as a function of redshift. The solid line shows the full numerical solution in the
fiducial cosmology (given by the CLASS code), while the dotted line is the equilibrium result (the Saha approximation,
Eq. (4.34)). Recombination takes place at z ∼ 1000 corresponding to T 
 0.23 eV. The equilibrium result correctly
identifies the redshift of recombination, but not the evolution of Xe, which is important for an accurate prediction
of the CMB anisotropies.

from matter.3 This decoupling, in turn, directly affects the pattern of anisotropies in the
CMB that we observe today. Nowadays, sophisticated calculations of the time evolution of
Xe(t) are employed in the numerical calculation of CMB anisotropies, which are accurate
to the subpercent level.

Now that we have a clear understanding of the evolution of Xe, we can move on to
determine the epoch of decoupling. Decoupling occurs roughly when the rate for photons
to Compton scatter off electrons becomes smaller than the expansion rate.4 The scattering
rate is

neσT = XenbσT (4.40)

where σT = 0.665 × 10−24 cm2 is the Thomson cross section, and we continue to ignore
helium, thereby assuming that the total number of hydrogen nuclei (free protons + hydro-
gen atoms) is equal to the total baryon number. Since the ratio of the baryon density to the
critical density is mpnb/ρcr = 	ba−3, nb can be eliminated in Eq. (4.40) in favor of 	b:

neσT = 7.477 × 10−30 cm−1Xe 	bh2 a−3. (4.41)

Dividing by the expansion rate leads to

neσT

H
= neσT

H0

H0

H
= 0.0692a−3Xe 	bh

H0

H
. (4.42)

3
Notice from Fig. 1.4 that even though photons stop scattering off electrons at z ∼ 1000, electrons do scatter

many times off photons until much later. This is not a contradiction: there are many more photons than electrons.
4

In Ch. 9 we will define a more precise measure of decoupling, making use of the visibility function, the proba-
bility that a photon last scattered at a given redshift. Using the visibility function, we will show that a CMB photon
today most likely last scattered at a slightly higher redshift than inferred by the simple estimate made here.



Chapter 4 • The origin of species 99

The ratio on the right depends on the Hubble rate, which is given in Eq. (1.3). From that
equation or from Fig. 1.3, we see that at early times, the main contribution comes from
either matter or radiation, so H/H0 = 	

1/2
m a−3/2[1 + aeq/a]1/2. Therefore,

neσT

H
= 123Xe

(
	bh2

0.022

)(
0.14

	mh2

)1/2 (
1 + z

1000

)3/2 [
1 + 1 + z

3360

0.14

	mh2

]−1/2

. (4.43)

At large redshift z � 103, Xe = 1 so the scattering rate is much larger than the expansion
rate. As z drops to 103, Xe begins to drop precipitously, and Eq. (4.43) shows that the scat-
tering rate drops below the expansion rate when Xe drops below ∼ 10−2; this is the epoch
when photons decouple. From Fig. 4.4, we see that Xe drops very quickly from unity to
10−3. Therefore, decoupling takes place during recombination.

Let us forget all we just learned and ask what would happen if the universe remained
ionized throughout its history. In that hypothetical case, Xe = 1, and Eq. (4.43) can be triv-
ially solved to find the redshift of decoupling. Setting the right-hand side to 1 leads to

1 + zdecouple = 39

(
0.022

	bh2

)2/3 (
	mh2

0.14

)1/3

(no recombination). (4.44)

Eq. (4.44) tells us that even if the gas had remained ionized throughout the history of the
universe, eventually the photons would have decoupled simply because expansion made
it more difficult to find the increasingly dilute electrons.

The bulk of the diffuse gas in the universe today is ionized. So, at some point in the uni-
verse’s history, reionization of hydrogen must have taken place. Observations of the most
distant quasars suggest that reionization took place at z > 6 (Bouwens et al., 2015). We will
see in Ch. 9 and Ch. 10 that the Compton scattering of photons re-enabled after reion-
ization leads to imprints in the CMB which can be used to constrain when reionization
happened, with the best current measurements (Planck Collaboration, 2018b) pointing to
reionization at z < 10. The details of this last phase transition of the universe are still very
much an open question, however.

4.4 Dark matter
We saw in Ch. 1 that there is strong evidence for non-baryonic dark matter in the universe,
with 	c 
 0.26. The evidence is compelling but purely gravitational so that it gives very few
clues about the identity of the dark matter. This fact, coupled with the creativity of theo-
rists, has led to proposed dark matter candidates spanning some 90 orders of magnitude in
mass! There are a corresponding slew of experiments devoted to searching for particles (or
other entities) that could be the dark matter. It is impossible to cover the physical motiva-
tion behind all of these candidates, so in the bulk of this section we will focus on just one:
a weakly interacting massive particle (WIMP). For decades, the WIMP was the odds-on fa-
vorite to be the dark matter, and that may still hold true, but the lack of evidence for new
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particles in the relevant mass range has reduced the odds considerably and sent the com-
munity searching for other candidates. Nonetheless, an understanding of why the WIMP
attained its favored status is easy to obtain using the tools we developed in this chapter.

The story of a generic WIMP “X” begins at very early times (high temperatures), when
X was in equilibrium with the rest of the cosmic plasma, but then experienced freeze-out
as the reaction rate for annihilation dropped below the expansion rate. Indeed, were the
particle kept in equilibrium indefinitely, its abundance would be suppressed by e−mX/T :
there would be no X particles in the observable universe. The purpose of this section, then,
is to solve the Boltzmann equation for such a particle, determining the epoch of freeze-out
and its relic abundance. The hope is that, by fixing its relic abundance so that 	X 
 0.26, we
will learn something about the fundamental properties of the particle, such as its mass mX

and annihilation cross section. We then might use this knowledge to detect the particles in
a laboratory.

In the generic WIMP scenario, two heavy particles X can annihilate producing two light
(essentially massless) particles ψ that are part of the Standard Model (e.g., they could be
photons or neutrinos or quarks). The light particles are assumed to be very tightly coupled
to the cosmic plasma, so they are in complete equilibrium (chemical as well as kinetic),
with nψ = n

(0)
ψ . There is then only one unknown, nX, the abundance of the heavy particle.

We can use Eq. (4.8) to solve for this abundance:

a−3 d(nXa3)

dt
= 〈σv〉

{(
n

(0)
X

)2 − (nX)2
}

. (4.45)

To go further, recall that the temperature typically scales as a−1, so if we multiply and divide
the factor of nXa3 inside the parentheses on the left by T 3, we can remove (aT )3 outside the
derivative, leaving T 3d(nX/T 3)/dt . Let us then define

Y ≡ nX

T 3
. (4.46)

The differential equation for Y becomes

dY

dt
= T 3〈σv〉{Y 2

EQ − Y 2}, (4.47)

with YEQ ≡ n
(0)
X /T 3. As in Sect. 4.2, it is convenient to introduce a new time variable,

x ≡ mX/T (4.48)

since mX sets a rough scale for the temperature during the epoch of interest. Very high
temperature corresponds to x � 1, in which case reactions proceed rapidly so Y 
 YEQ.
Since the X particles are relativistic at these epochs, the m � T limit of Eq. (4.5) implies
that Y 
 1. For high x, the equilibrium abundance YEQ becomes exponentially suppressed
(e−x). Ultimately, X particles will become rare because there are not enough Standard
Model particles of sufficient energy to produce a pair of X particles, which requires a
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center-of-mass energy of 2mX. To change from t to x, we need the Jacobian dx/dt = Hx.
For WIMPs with masses of GeV or larger, dark matter production occurs deep in the ra-
diation era where the energy density scales as T 4, so H = H(mX)/x2. Then the evolution
equation becomes

dY

dx
= − λ

x2

{
Y 2 − Y 2

EQ

}
, (4.49)

where the ratio of the annihilation rate to the expansion rate is parameterized by

λ ≡ m3
X〈σv〉

H(mX)
. (4.50)

In many theories λ is a constant, but in some, the thermally averaged cross section is tem-
perature dependent; this leads to slight numerical changes in the following but unchanged
qualitative solutions.

Eq. (4.49) is a form of the Riccati equation, for which in general there are no analytic
solutions. In this case, though, we can make use of our understanding of the freeze-out
process to get an analytic expression for the final freeze-out abundance Y∞ ≡ Y(x = ∞).
Let us review this understanding in the context of Eq. (4.49). For x ∼ 1, the left-hand side
is of order Y while the right is of order Y 2λ. We will see that λ is typically quite large, so as
long as Y is not too small, the right-hand side must zero itself by setting Y = YEQ. At late
times, as YEQ drops precipitously, the terms on the right-hand side will no longer be much
larger than the one on the left. In fact, well after freeze-out, Y will be much larger than YEQ:
the X particles will not be able to annihilate fast enough to maintain equilibrium. Thus at
late times,

dY

dx

 −λY 2

x2
(x � 1). (4.51)

We integrate this from the epoch of freeze-out xf until very late times x = ∞ to get

1

Y∞
− 1

Yf

= λ

xf

. (4.52)

Typically, Y at freeze-out, denoted as Yf , is significantly larger than Y∞, so a simple approx-
imation is

Y∞ 
 xf

λ
. (4.53)

This yields the scaled abundance of X in terms of the freeze-out temperature, which we
have not determined. Although more precise determinations are possible (Exercise 4.8),
a simple order-of-magnitude estimate for the dark matter problem is xf 
 20.

Fig. 4.5 shows the numerical solution to Eq. (4.49) for two different values of λ. The
abundances do track the equilibrium abundances until mX/T ∼ 10, after which they level
off to a constant. The rough estimate Y∞ ∼ xf /λ is seen to be a reasonable approximation
for the relic abundance. Note that particles with larger cross sections (e.g. in the figure
λ = 109) freeze out later, and this later freeze-out implies a lower relic abundance.
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FIGURE 4.5 Abundance of a heavy stable particle X as a function of inverse temperature mX/T . The dotted line
shows the equilibrium abundance. Two different solid curves show the heavy particle abundance for two different
values of λ, the ratio of the annihilation rate to the Hubble rate.

There is one more piece of physics needed in order to determine the present-day abun-
dance of these heavy particle relics. After freeze-out, the heavy particle density simply falls
off as a−3. So its energy density today (at a0 = 1) is equal to mX(a1/a0)

3 times its number
density at a1, where a1 corresponds to a time sufficiently late that Y has reached its asymp-
totic value, Y∞. The number density at that time is Y∞T 3

1 , so

ρX,0 = mXY∞T 3
0

(
a1T1

a0T0

)3


 mXY∞T 3
0

30
. (4.54)

The second equality here is nontrivial. You might expect that aT remains constant through
the evolution of the universe, so that the ratio a1T1/a0T0 would be unity. It is not, for the
same reason that the CMB and neutrinos have different temperatures. We saw in Ch. 2 that
photons are heated by e± annihilation, while neutrinos which have already decoupled are
not. Similarly, as the universe expands, photons are heated by the annihilation of the zoo
of particles with masses between 1 MeV and mX, which we will assume to be larger than
∼100 GeV, so T does not fall simply as a−1. You can show in Exercise 4.9 that as a result
(a1T1/a0T0)

3 
 1/30. Finally, to find the fraction of critical density today contributed by X,
insert our expression for Y∞ and divide by ρcr:

	X = xf

λ

mXT 3
0

30ρcr

= H(mX)xf T 3
0

30m2
X〈σv〉ρcr

. (4.55)

To find the present density of heavy particles, then, we need to compute the Hubble rate
when the temperature was equal to the X mass, H(mX), for which we need the energy
density when the temperature was equal to mX. The energy density in the radiation era is
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FIGURE 4.6 WIMPs (X) can annihilate into Standard Model (SM) particles in the early universe leading to a calculable
relic abundance, as discussed in this section. The same type of process enables indirect detection, where we observe
the products of the annihilation of two dark matter particles in space. Annihilations are mediated by some unknown
fundamental interactions (depicted by the hatched region in the center). These also enable the reverse process,
where two Standard Model particles produce two WIMPs; searches for these are ongoing at colliders. Finally, a third
search method is to turn the interaction on its side and search for the recoil of a nucleus that has been hit by a WIMP,
so-called direct detection.

given by Eq. (4.25) with g∗ a function of the temperature. Therefore,

	X =
[

4π3Gg∗(mX)

45

]1/2
xf T 3

0

30〈σv〉ρcr
. (4.56)

We see that 	X does not explicitly depend on the mass of the X particle.5 So it is mainly
the cross section that determines the relic abundance.

Let us now see what order of magnitude is needed to get dark matter today, i.e., to
get 	Xh2 
 0.1. At the temperatures of interest for dark matter production, T ∼ 100 GeV,
g∗(mX) includes contributions from all the particles in the Standard Model (three genera-
tions of quarks and leptons, photons, gluons, weak bosons, and the Higgs boson) and so is
of order 100. Normalizing g∗(mX) and xf by their nominal values leads to

	Xh2 = 0.1
(xf

20

)(
g∗(mX)

100

)1/2 2 × 10−26 cm3 sec−1

〈σv〉 (4.57)

where we have reinstated the speed of light to get the dimensions of 〈σv〉 correct. The fact
that this estimate gives the correct relic abundance for 〈σv〉 ∼ 10−26 cm3/ s is taken as a
good sign: there are several theories that predict the existence of particles with cross sec-
tions in this range.

Apart from the abundance of dark matter, a further important property we can calculate
is the temperature of the dark matter today. In Exercise 4.10, you will find that it is very
small: WIMPs are an example of cold dark matter, which is what is required to explain the
structure in the universe we see today.

5
There is a weak implicit dependence on mass in the freeze-out temperature xf and in g∗, which is to be

evaluated when T = mX .
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FIGURE 4.7 Constraints on the dark matter annihilation cross section from Fermi γ -ray observations as a function of
mass for different annihilation channels (the final states are indicated in each panel). Regions above the solid curve
are excluded, and the horizontal dashed line gives the target, the cross section needed to produce the correct relic
abundance (Eq. (4.57)). From Ackermann et al. (2014).

The very interaction—annihilation into Standard Model particles—that determines the
relic density of a WIMP also opens up three possibilities for detection, as depicted in
Fig. 4.6. The first is to exploit the annihilation process itself. Two dark matter particles
in space can annihilate and produce Standard Model particles that will leave a signa-
ture in a detector. The exact nature of the signature depends on the details of the model;
for example, dark matter particles that annihilate into quarks and anti-quarks will ulti-
mately produce a shower of lighter particles including photons. Telescopes such as the
Fermi Large Area Telescope are sensitive to high-energy (γ -ray) photons so can detect this
signal, which has been dubbed indirect detection (in contrast to the more “direct” mea-
surement discussed below). Fig. 4.7 shows the constraints from Fermi data for 6 different
annihilation channels. These were obtained by focusing on small nearby galaxies that have
relatively large dark matter abundances (dwarf galaxies), as inferred from the velocity dis-
persions of the stars. Note that indirect detection is more powerful in excluding low mass
dark matter particles (since the interaction rate scales as n2

X ∝ 1/m2
X at fixed dark matter

density), and indeed for many channels has excluded regions below mX ∼ 10 GeV.
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FIGURE 4.8 Constraints on the dark matter-nucleus scattering cross section from various low-background laboratory
experiments (cross sections above the solid lines are excluded), as a function of WIMP mass. Contours show the
expected parameter space in a subset of supersymmetry models that have natural WIMP candidates (Buchmueller et
al., 2012). The dashed lines were projections at the time this plot was produced, but the constraints have since been
largely attained, indicating the rapid progress in the field. From Schumann (2012).

Fig. 4.6 shows that two other detection possibilities are available: for one, the reverse
process in colliders, where colliding high-energy protons could produce pairs of massive
dark matter particles. Finally, we can flip the interaction on its edge, where an incoming
dark matter particle in our Galaxy imparts some of its kinetic energy to a nucleus in a large
detector. This process is exploited in direct detection experiments. Although it is challeng-
ing to detect these reactions because the rate is so low, there has been enormous progress
over the past several decades by introducing novel techniques for separating the signal
from the backgrounds, by building larger detectors, and by housing these in underground
sites to further reduce backgrounds. Fig. 4.8 gives an indication of this progress in sev-
eral ways. First, a similar plot shown in the first edition of this book (published about ten
years before Fig. 4.8 was made) showed constraints that limited the cross section6 to be
above 10−41 cm2. In just ten years then, the constraints improved by almost three orders
of magnitude. The dashed contours give a sense of where Schumann (2012) projected the
constraints would lie when experiments such as LUX and XENON ramped up. And, indeed
in 2019, the experiments had approached those expected marks, another three orders of
magnitude tighter. The hatched region at the bottom of the plot has not yet been attained,
but likely will be. Beneath that, the background of cosmic neutrinos provides a natural ex-

6
The dark matter–nucleon cross section that is constrained by direct detection experiments differs from the

annihilation cross section that determines the relic abundance, although in a given model, both can be calcu-
lated.
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perimental limit on how low we will be able to probe WIMP cross sections through direct
detection.

Given how rapidly WIMP models are being eliminated by direct detection experiments
and the lack of evidence for new heavy particles at colliders, the community is investigat-
ing a wide variety of alternatives to WIMP dark matter. The thermal freeze-out scenario
puts tight constraints on the mass and cross section of the dark matter particle. How-
ever, there are also nonthermal means of producing dark matter. One example is the
axion, a fundamental particle hypothesized for independent reasons, that—if it exists—
was produced during the phase transition where quarks condensed into baryons. Axions,
as bosons, are produced in the ground state, forming a Bose–Einstein condensate. One of
the interesting features of axions is that they can serve as cold dark matter even though
they are very light (� 1 eV), and experimental efforts are under way to look for evidence of
axion dark matter. In the meantime, cosmologists have begun to investigate dark matter
candidates as light as 10−21 eV, and as heavy as several solar masses (in the form of black
holes)! The perceived troubles of the WIMP have opened up a slew of possibilities for new
dark matter candidates and innovative ways of detecting them.

4.5 Summary
The light elements in the universe formed when the temperature of the cosmic plasma was
of order 0.1 MeV. Since the completion of BBN, roughly a quarter of the mass of the baryons
is in the form of 4He, the remaining in the form of free protons with only trace amounts of
deuterium, 3He, and lithium.

The universe remained ionized until the temperature dropped well below the ionization
energy of hydrogen. The epoch of recombination—at which time electrons and protons
combined to form neutral hydrogen—is at redshift z∗ ∼ 1100 corresponding to a temper-
ature T∗ ∼ 0.25 eV. Before recombination, photons and electrons and protons were tightly
coupled with one another because of Compton and Coulomb scattering. After this time,
photons traveled freely through the universe without interacting, so the photons in the
CMB we observe today offer an excellent snapshot of the universe at z∗.

The details of both nucleosynthesis and recombination are heavily influenced by the
fact that the reactions involved eventually become too slow to keep up with the ex-
pansion rate. This feature may also be responsible for the production of dark matter in
the universe. We explored the popular scenario wherein a massive, neutral stable par-
ticle stops annihilating when the temperature drops significantly beneath its mass. The
present-day abundance of such a particle can be determined in terms of its annihilation
cross section, as in Eq. (4.57). Larger cross sections correspond to more efficient annihi-
lation and therefore a lower abundance today. Roughly, thermally averaged cross sections
〈σv〉 ∼ 2 × 10−26 cm3 sec−1 are needed to match the dark matter abundance observed to-
day. Such cross sections and the requisite stable, neutral particles emerge fairly naturally
in extensions of the Standard Model of particle physics, such as supersymmetry, although
no (non-gravitational) evidence of them has so far been found in the laboratory, in as-
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trophysical objects, or in accelerators (Figs. 4.7–4.8). One thus should not discount other
well-motivated scenarios where dark matter is produced non-thermally, such as axions.

Despite the existence of a large spectrum of viable dark matter models, the predictions
for cosmological observables we will derive in the following chapters are entirely inde-
pendent of the microscopic nature of dark matter. They only rely on two properties of
dark matter: that it is cold and weakly interacting. Apart from these properties, all predic-
tions only depend on a single, well-constrained number, the overall amount of dark matter
parametrized by 	c.

Exercises
4.1 Compute the equilibrium number density (i.e., with zero chemical potential) of a

species with mass m and degeneracy g = 2 in the limits of large and small m/T for
both bosons and fermions. You will find Eqs. (C.29) and (C.30) helpful for the high-T
Bose–Einstein and Fermi–Dirac limits.

4.2 Track the e± density through annihilation assuming ne± = n
(0)

e± . This assumption
holds during the BBN epoch because electromagnetic interactions (e.g., e+ + e− ↔
γ + γ ) keep them in equilibrium. When does the density fall to 1% of the photon en-
ergy density? If ηb 
 6 × 10−10, at what temperature do you expect ne− to depart from
n

(0)

e− ?
4.3 Suppose that there were no baryon asymmetry so that the number density of

baryons exactly equaled that of anti-baryons. Determine the final relic density of
(baryons+anti-baryons). At what temperature is this asymptotic value reached?

4.4 Compute the rate for neutron-to-proton conversion, λnp, following the steps given
below. There are two processes which contribute to λnp: n+νe → p+e− and n+e+ →
p+νe. Assume that all particles can be described by Boltzmann statistics and neglect
the mass of the electron. With these approximations the two rates are identical.
(a) Use Eq. (4.7) to write down the rate for n + νe → p + e−. Perform the integrals

over heavy particle momenta to get

λnp = n(0)
νe

〈σv〉 = π

4m2

∫
d3pν

(2π)32pν

e−pν/T

×
∫

d3pe

(2π)32pe

δ
(1)
D (Q+ pν − pe)|M|2. (4.58)

(b) The amplitude squared is equal to |M|2 = 32G2
F(1 + 3g2

A)m2
ppνpe, where gA is the

axial-vector coupling of the nucleon. This can be related to the neutron lifetime
via τ−1

n = λ0G
2
F(1 + 3g2

A)m5
e/(2π3), where the phase-space integral

λ0 ≡
∫ Q/me

1
dxx(x −Q/me)

2(x2 − 1)1/2 = 1.636. (4.59)
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Carry out the integrals in Eq. (4.58) to get the rate, λnp in terms of τn. Do not forget
to multiply by 2 for the two different reactions. You should obtain (Bernstein,
2004)

λnp = 255

τnx5
(12 + 6x + x2). (4.60)

4.5 Solve the rate equation (4.26) numerically to determine the neutron fraction as a
function of the temperature. Ignore decays. For this, use the rate λnp derived in the
previous exercise, Eq. (4.60). Plug in numbers to show that the Hubble rate at x = 1 is

H(x = 1) =
√

4π3GQ4

45
× √

10.75 = 1.13 s−1. (4.61)

Solve the ordinary differential Eq. (4.26) numerically. Alternatively you can follow the
semi-analytic route given by Bernstein et al. (1989). Compare your results (of either
approach) with Fig. 4.3, and the asymptotic result at x = ∞ with the result in the text,
Xn(x = ∞) = 0.15.

4.6 Determine ηb in terms of 	bh2. Show that it is given by Eq. (4.10).
4.7 Solve for the evolution of the free electron fraction during recombination. Do not

compare your results with Fig. 4.4 until you finish part (d). Assume the fiducial Eu-
clidean �CDM cosmology.
(a) Use as an evolution variable x ≡ ε0/T instead of time in Eq. (4.36). Rewrite the

equation in terms of x and the Hubble rate at T = ε0.
(b) Using the methods of Sect. 4.4, find the final freeze-out abundance of the free

electron fraction, Xe(x = ∞).
(c) Numerically integrate the equation from (a) from x = 1 down to x = 1000. What

is the final frozen-out Xe?
(d) Peebles (1968) argued that even captures to excited states of the hydrogen atom

would not be important except for the fraction of times that the n = 2 state de-
cays into two photons, or expansion redshifts the Lyman alpha photon (n = 2 →
1) so that it cannot pump up a ground-state atom. Quantitatively, he multiplied
the right-hand side of Eq. (4.36) by the correction factor,

C = �α + �2γ

�α + �2γ + β(2)
(4.62)

where the two-photon decay rate is �2γ = 8.227 s−1; Lyman alpha production is
β(2) = βe3ε0/4T ; and

�α = H(3ε0)
3

nH(8π)2
(4.63)

where H is the expansion rate and nH is the number density of hydrogen (which
you can set to nb(1 − Xe)). Do this and show how it changes your final answer.
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Now compare the freeze-out abundance with the result of (c) and the evolution
with Fig. 4.4.

4.8 Find an approximation to the freeze-out temperature of annihilating heavy particles
by setting xf such that n(0)(xf )〈σv〉 = H(xf ).

4.9 Typically the temperature of the cosmic plasma cools as a−1 with the expansion.
However, when particles annihilate, they deposit energy into the plasma, thereby
slowing the cooling. Use the fact that the entropy density (Eq. (2.70)) scales as a−3 to
compute the ratio of (aT )3 at T = 10 GeV (a time when WIMPs might have decou-
pled) to its present value today.

4.10 In Exercise 3.11, you showed that a thermal distribution of nonrelativistic particles
which do not interact has a temperature which scales as a−2, as opposed to that of
relativistic particles which we have seen scales as a−1. So Tdm ∝ T 2. Fix the normal-
ization by requiring Tdm = T when each is equal to the dark matter mass. Estimate
the typical thermal velocity of a dark matter particle with mass equal to 100 GeV
when the photon temperature is 1 eV, and when it is equal to 2.7 K.



5
The inhomogeneous universe:
matter & radiation

Starting from this chapter, we will be interested in the anisotropies in the cosmic distri-
bution of photons and inhomogeneities in the matter. We have already become familiar
with the equations that we must solve: the Einstein and Boltzmann equations introduced
in Ch. 3, with one Boltzmann equation each for each species in the universe. Unlike Ch. 4,
wherein we were interested solely in the evolution of the homogeneous number density of
the different species, here we must account for the spatial and directional dependence of
the distribution function f (x,p, t). This turns out to complicate the algebra significantly,
but, with the tools described in Ch. 3, we are poised to tackle these complications system-
atically, as essentially one long homework problem. The set of equations we will ultimately
arrive at is quite simple and of clear physical content.

The photons are affected by gravity and by Compton scattering with free electrons. The
electrons are in addition tightly coupled to the protons. Both of these, of course, are also
affected by gravity. The metric that determines the gravitational forces is influenced by
all these components plus the neutrinos and the dark matter. Thus, to solve for the dis-
tributions of any of these components, we need to simultaneously solve for all the other
components.

In order not to lose track of the big picture, it is useful to visualize the various inter-
actions described by the Boltzmann and Einstein equations between nucleosynthesis and
recombination as in Fig. 5.1. At the end of this chapter, we will have in hand the evolution
equations for perturbations in all relevant species in the universe, which takes us a big step
closer to calculating actual cosmological observables. The main ingredient missing will be
how to solve for the metric perturbations that appear in the Boltzmann equations, that is,
gravity, which we will turn to in the next chapter. Hence, this chapter will derive how mat-
ter, photons and neutrinos behave in a given expanding spacetime with perturbations.

In principle, we should also include perturbations to the dark energy density, which
always exist if the dark energy is not a cosmological constant. In practice, though, most
viable models of dark energy predict that the perturbations are very small and only became
relevant very recently. For our purposes then, we are justified in neglecting the dark energy
as a source of perturbations to the metric.

We will begin with the Boltzmann equation for the photons, including a detailed deriva-
tion of the collision term. Following a similar pattern, we then derive the Boltzmann equa-
tions for dark matter, baryons, and neutrinos.

Modern Cosmology. https://doi.org/10.1016/B978-0-12-815948-4.00011-5
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FIGURE 5.1 The ways in which the different components of the universe interact with each other. The connections
are encoded in the coupled Boltzmann–Einstein equations. The tight coupling between electrons and nuclei through
Coulomb scattering allows us to treat them as a single component, for which we use the conventional name baryons.
We do not consider perturbations to the dark energy (which are absent in the case of the cosmological constant), so
dark energy only enters in the background metric.

5.1 The collisionless Boltzmann equation for photons
We begin with the Boltzmann equation for photons. We have derived the left-hand side of
this, at linear order in perturbations, in Sect. 3.3.3, leading to Eq. (3.74):

df

dt
= ∂f

∂t
+ p̂i

a

∂f

∂xi
− p

∂f

∂p

[
H + �̇ + p̂i

a

∂�

∂xi

]
. (5.1)

To go further we must now expand the photon distribution function f about its zeroth-
order Bose–Einstein form. We will do this in a way that may seem odd at first. Let us write

f (x,p, p̂, t) =
[

exp

{
p

T (t)[1 + �(x, p̂, t)]
}

− 1

]−1

. (5.2)

Here the zeroth-order temperature T is a function of time only, not space. In the smooth
universe, photons are distributed homogeneously, so T is independent of x, and isotropi-
cally, so T is independent of the direction of propagation p̂. Now that we want to describe
perturbations about this smooth universe, we need to allow for a perturbation to the dis-
tribution function, which is characterized by the fractional temperature perturbation �,
which could also be called δT /T . � allows for inhomogeneities in the photon distribution
(it depends on x) as well as anisotropies (it also depends on p̂). Recall from Sect. 1.5 that
in the end we observe the temperature perturbations on our “CMB sky.” That is, what we
measure is � as a function of p̂, which is the arrival direction of the photon, at a fixed
location xEarth and time t0: δT /T (p̂) = �(xEarth, p̂, t0).

Note that we assume here that � does not depend on the magnitude of the momen-
tum p. We will soon see that this is a valid assumption at the order we work in, following
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directly from the fact that the magnitude of the photon momentum is virtually unchanged
by the dominant form of interaction, Compton scattering.1

The perturbation � is small, so in keeping with the assumption of small �, � that went
into the derivation of Eq. (5.1), we expand Eq. (5.2) to first order in �:

f (x,p, t) � 1

ep/T (t) − 1
+

(
∂

∂T

[
exp

{
p

T (t)

}
− 1

]−1
)

T (t)�(x, p̂, t)

= f (0)(p, t) − p
∂f (0)(p, t)

∂p
�(x, p̂, t). (5.3)

In the last line we have identified the zeroth-order distribution function as the Bose–
Einstein distribution with zero chemical potential,

f (0) ≡
[
exp

{p

T

}
− 1

]−1
, (5.4)

and made use of the fact that, for this function, T ∂f (0)/∂T = −p∂f (0)/∂p.
We can now separate the Boltzmann equation (5.1) into a zeroth-order equation for

f (0), and a first-order equation for the perturbation �. The zeroth-order part is nothing but
Eq. (3.39) derived in Ch. 3 (without the p̂i∂f/∂xi term which vanishes at the background
level):

df

dt

∣∣∣∣
zero order

= ∂f (0)

∂t
− Hp

∂f (0)

∂p
= 0. (5.5)

We have set df/dt here equal to zero, i.e., set the collision term on the right-hand side of
Eq. (3.39) to zero. That corresponds to the statement that the collision terms will be pro-
portional to � and other perturbations to the homogeneous universe. There is a profound
reason for this: the zeroth-order distribution function is set precisely by the requirement
that the collision term vanishes. Another, perhaps more familiar way of saying this is to
point out that any collision term includes the rate for the given reaction and for its inverse.
If the distribution functions are set to their equilibrium values, the rate for the reaction
precisely cancels the rate for its inverse. If a given component is out of equilibrium, col-
lisions will drive it toward its equilibrium distribution. This is the reason we expected a
Bose–Einstein distribution in the first place.

Returning to Eq. (5.5), we can rewrite the time derivative as

∂f (0)

∂t
= ∂f (0)

∂T

dT

dt
= −dT /dt

T
p

∂f (0)

∂p

1
Although we will only deal with elastic scattering of photons and electrons here, which is technically known

as Thomson scattering, we will stick to the more general term “Compton” throughout. We will later encounter
inelastic scattering in Sect. 11.3.
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so that the zeroth-order equation becomes[
−dT /dt

T
− ȧ

a

]
∂f (0)

∂p
= 0. (5.6)

Thus dT /T = −da/a or T ∝ 1/a, a relation that is familiar by now (Sect. 2.4.1).
We now extract the equation for the deviation of the photon temperature from its

zeroth-order value, i.e., an equation for �, from Eq. (5.1). To do this, we insert the expan-
sion of Eq. (5.3) everywhere we encounter f :

df

dt

∣∣∣∣
first order

= −p
∂

∂t

[
∂f (0)

∂p
�

]
− p

p̂i

a

∂�

∂xi

∂f (0)

∂p
+ H�p

∂

∂p

[
p

∂f (0)

∂p

]

− p
∂f (0)

∂p

[
�̇ + p̂i

a

∂�

∂xi

]
. (5.7)

Consider the first term on the right-hand side here. The time derivative on f (0) can be
rewritten as a temperature derivative so

−p
∂

∂t

[
∂f (0)

∂p
�

]
= −p

∂f (0)

∂p

∂�

∂t
− p�

dT

dt

∂2f (0)

∂T ∂p

= −p
∂f (0)

∂p

∂�

∂t
+ p�

dT/dt

T

∂

∂p

[
p

∂f (0)

∂p

]
. (5.8)

The second line follows here since ∂f (0)/∂T = −(p/T )∂f (0)/∂p. The second term on this
second line cancels the third term on the right in Eq. (5.7), so we can finally write down the
left-hand side of the Boltzmann equation for �:

df

dt

∣∣∣∣
first order

= −p
∂f (0)

∂p

[
�̇ + p̂i

a

∂�

∂xi
+ �̇ + p̂i

a

∂�

∂xi

]
. (5.9)

The first two terms here correspond to a derivative along light rays (null geodesics) in
the homogeneous universe. They describe how the distribution function evolves in the
absence of collisions, also known as “free streaming.” The last two account for the gravita-
tional effect of perturbations. Note that every time x appears it is multiplied by a, the scale
factor. This must happen, for physical distances are ax. This equation for � is not com-
plete, since we know that at first order in perturbations, there will be a nonzero collision
term. We turn to that next.

5.2 Collision terms: Compton scattering
Our task in this section is to determine the influence Compton scattering has on the
photon distribution function. This follows the general treatment of collision terms in
Sect. 3.2.3, and is similar to our applications in Ch. 4, except that we now have to include
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perturbations to the distribution functions. Recall that in Ch. 4 we considered processes
that are out of chemical equilibrium, but could always rely on kinetic equilibrium. We will
now deal with the absence of kinetic equilibrium as well. This is crucial in order to accu-
rately follow the photon distribution through recombination and hence to the observed
CMB anisotropies.

The scattering process of interest is

e−(q) + γ (p) ↔ e−(q ′) + γ (p′), (5.10)

where the momentum of each particle is indicated. We are interested in the photon distri-
bution evaluated at momentum p (with magnitude p and direction p̂). Therefore we must
integrate over all other momenta (q,q ′,p′) which affect f (p), as done in Sect. 3.2.3. From
Eq. (3.48), the collision term is

C[f (p)] = 1

2E(p)

∫
d3q

(2π)32Ee(q)

∫
d3q ′

(2π)32Ee(q ′)

∫
d3p′

(2π)32E(p′)
∑

3 spins

|M|2

× (2π)4δ
(3)
D [p + q − p′ − q ′] δ

(1)
D [E(p) + Ee(q) − E(p′) − Ee(q

′)]
× {fe(q

′)f (p′) − fe(q)f (p)}. (5.11)

We have explicitly included the sum over the final spin states of the outgoing electron and
the photon (two each) and the electron with which the photon with momentum p scat-
ters. Note that, unlike the case in Sect. 4.1, we have not integrated over the final photon
momentum p. Again, this reflects our need to understand how photons traveling in differ-
ent directions interact: we will see that the collision term depends on p̂.

In Eq. (5.11), we have neglected stimulated emission and Pauli blocking, which would
lead to factors of 1 + f (for the photons) and 1 − fe (for the electrons) with the appropriate
momenta. Pauli blocking is never important after the time of electron–positron annihila-
tion because the occupation numbers fe are very small; we have used this fact in Sect. 4.2
as well. We will see below why the stimulated emission factors drop out. The photon en-
ergies in Eq. (5.11) are simply E(p) = p and E(p′) = p′. On the other hand, we assume the
nonrelativistic limit for electrons. This is completely sufficient at the time of recombina-
tion where the typical kinetic energies of electrons, of order T , are much smaller than the
electron mass. We thus have

E(p) = p ∼ T , while

Ee(q) − me = q2/(2me) ∼ T ⇒ q ∼ T

√
2me

T
. (5.12)

Here, we have used the fact that, close to equilibrium, typical photon energies and kinetic
energies of electrons are of order T . We see that the electron momenta are much larger
than the photon momenta, since me/T 	 1.

Now, using the three-dimensional momentum delta function to do the q ′ integral in
Eq. (5.11), we have
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C[f (p)] = π

2mep

∫
d3q

(2π)32me

∫
d3p′

(2π)32p′ δ
(1)
D

[
p + Ee(q) − p′ − Ee(|q + p − p′|)]

×
∑

3 spins

|M|2{fe(q + p − p′)f (p′) − fe(q)f (p)}. (5.13)

To go further, we need to understand the kinematics of nonrelativistic Compton scattering.
The most important feature of this process for our purposes is that very little energy is
transferred. In particular,

p′ − p = Ee(q) − Ee(q + p − p′) = q2

2me

− (q + p − p′)2

2me

� (p′ − p) · q
me

, (5.14)

where the last approximate equality holds since, from Eq. (5.12), q is much larger than p

and p′. Since p and p′ are of the same order, the right-hand side is at most of order 2pq/me

(if p′ � −p). Using Eq. (5.12), this means that the fractional change in photon energy is
at most |p′ − p|/p � 2q/me ∼ 2

√
2T/me � 1. Thus, nonrelativistic Compton scattering is

nearly elastic and p′ � p. In the end, this justifies why we have written � as a function
of p̂ but not p. Further, it then makes sense to expand the final electron kinetic energy
(q + p − p′)2/(2me) around its zeroth-order value of q2/(2me). The delta function can be
expanded as

δ
(1)
D

[
p − p′ + Ee(q) − Ee(|q + p − p′|)]

� δ
(1)
D (p − p′) + (p′ − p) · q

me

∂

∂p
δ
(1)
D (p − p′)

= δ
(1)
D (p − p′) + (p − p′) · q

me

∂

∂p′ δ
(1)
D (p − p′) (5.15)

where the second equality makes use of the fact that, for a general function f of the dif-
ference of two variables, ∂f (x − y)/∂x = −∂f (x − y)/∂y. This formal expansion is to be
understood as part of the integrand over p′. Once we do the integral, the derivatives of
delta functions will be handled by integrating by parts. With this expansion, and using the
fact that fe(q + p − p′) � fe(q) (which follows from p, p′ � q), the collision term becomes

C[f (p)] = π

8m2
ep

∫
d3q

(2π)3
fe(q)

∫
d3p′

(2π)3p′
∑

3 spins

|M|2

×
{

δ
(1)
D (p − p′) + (p − p′) · q

me

∂δ
(1)
D (p − p′)

∂p′

}
{f (p′) − f (p)}. (5.16)

We now realize why we could ignore stimulated emission in the regime of interest. Includ-
ing stimulated emission changes the final factor in braces to {f (p′)[1 + f (p)] − f (p)[1 +
f (p′)]}. The additional terms in brackets simply cancel.

To proceed, we need the amplitude squared for Compton scattering. In the low-energy
limit of interest to us, a textbook result2 is that

2
See for example exercise 11.2 in Srednicki (2007).
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1

2

∑
4 spins

|M|2 = 24πσTm2
e

(
1 + [p̂ · p̂′]2

)
(5.17)

where σT is the Thomson cross-section. If we are content with averaging over the polar-
ization states of the photon with momentum p as well (hence the prefactor 1/2), then we
can use this expression for

∑
3 spins |M|2. We will in fact make one more simplification and

perform an angle-average of Eq. (5.17). This turns the factor in parentheses into 4/3, and
we obtain ∑

3 spins

|M|2 = 32πσTm2
e (spin- and angle-average). (5.18)

Ignoring the angular dependence changes the final collision term by a numerically sub-
dominant contribution. It would simply distract us here, so we ignore it in the following.
You can remedy this in Exercise 5.4.

By averaging over spin states of both the ingoing and outgoing photons, we are ignor-
ing the effect of polarization of the radiation field. In reality, the amplitude for Compton
scattering has a polarization dependence, which in fact leads to a small polarization of
the CMB (Bond and Efstathiou, 1984; Polnarev, 1985). It turns out that the information
carried by the CMB polarization spectrum is extremely valuable, which is why we will de-
vote considerable time in Ch. 10 to understanding polarization. Compton scattering also
couples polarization and temperature perturbations, so an accurate determination of the
latter requires a treatment of the former. Again, we will neglect this small effect here in the
derivation of the collision term.

Once we have assumed that
∑

spins |M|2 is independent of the momenta involved, we
can multiply out the terms in brackets in Eq. (5.16) keeping only terms first order in energy
transfer. The q integral simply gives a factor of ne/2 (the 2 accounting for the two spin states
of the electron, i.e. ge = 2), for terms that are independent of q. Terms that contain a factor
of q/me, on the other hand yield neub/2 where ub is the bulk velocity of the electrons (the
subscript “b” indicates that it is the same velocity as that of the baryons, as we will see
below). So,

C[f (p)] = 2π2neσT

p

∫
d3p′

(2π)3p′

{
δ
(1)
D (p − p′) + (p − p′) · ub

∂δ
(1)
D (p − p′)

∂p′

}

×
{

f (0)(p′) − f (0)(p) − p′ ∂f (0)

∂p′ �(p̂′
) + p

∂f (0)

∂p
�(p̂)

}

= neσT

4πp

∫ ∞

0
dp′p′

∫
d
′

[
δ
(1)
D (p − p′)

(
−p′ ∂f (0)

∂p′ �(p̂′
) + p

∂f (0)

∂p
�(p̂)

)

+(p − p′) · ub
∂δ

(1)
D (p − p′)

∂p′ (f (0)(p′) − f (0)(p))

]
, (5.19)
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where 
′ is the solid angle spanned by the unit vector p̂′. Here, we have only indicated the
dependence of p̂, p̂′ for �, since the dependence on x, t is irrelevant in the derivation of
the collision term (it is always the same x, t since collisions are local). On the first line, we
have broken up the difference f (p′)−f (p) into a zeroth-order piece,3 which cancels as ex-
pected, and a first-order part which can be neglected when multiplying the velocity term.

There are only two terms in Eq. (5.19) which depend on p̂′ and which therefore must be
accounted for when integrating over solid angle 
′. First, there is the perturbation to the
distribution function, �(p̂′

). It is convenient at this stage to introduce the monopole

�0(x, t) ≡ 1

4π

∫
d
′�(p̂′

,x, t). (5.20)

The monopole �0 is an integral of the photon perturbation at any given point over all
photon directions. In other words, it corresponds to the fractional perturbation in the
angle-averaged photon flux at a given position x and time t (but phrased as a temper-
ature perturbation via the Bose–Einstein distribution). We will later generalize this to a
whole sequence of multipole moments, integrals of the full distribution function weighted
by functions of the directions p̂ (Eq. (5.66)). Note that, as Fig. 5.2 shows, we cannot ab-
sorb this monopole into the definition of the zeroth-order temperature since the latter is
constant over all space.

The second term in Eq. (5.19) which depends on p̂′ is the explicit factor p̂′ ·ub. This term
integrates to zero since ub is a vector that is independent of p, p′. Thus, the integration over
solid angle leaves

C[f (p)] = neσT

p

∫ ∞

0
dp′p′

[
δ
(1)
D (p − p′)

(
−p′ ∂f (0)

∂p′ �0 + p
∂f (0)

∂p
�(p̂)

)

+ p · ub
∂δ

(1)
D (p − p′)

∂p′ (f (0)(p′) − f (0)(p))

]
. (5.21)

Now the p′ integral can be done: in the first line by trivially integrating over the delta func-
tion and in the second by integrating by parts. We are left with

C[f (p)] = −p
∂f (0)

∂p
neσT[�0 − �(p̂) + p̂ · ub] (5.22)

Already, we can anticipate the effect of Compton scattering on the photon distribution. In
the absence of a bulk velocity for the electrons (ub = 0), the collision term serves to drive �

to �0. That is, when Compton scattering is very efficient, only the monopole perturbation
survives; all anisotropies are washed out at each point in space (Fig. 5.2). Intuitively, strong
scattering means that the mean free path of a photon is very small. Therefore, photons

3
Note that we are expanding in two small quantities simultaneously: the small perturbations and the small

energy transfer. Here, we are breaking up f (p′) − f (p) into terms at zeroth and first order in the small perturba-
tions.
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FIGURE 5.2 A plane-wave temperature perturbation (k is horizontal, as indicated) and its effect on tightly coupled
photons. Dark (white) regions represent hot (cold) spots in the electron temperature. If Compton scattering is very
efficient, the photons observed at a given point last scattered very nearby, within the circles which denote the
last-scattering surfaces for observation points indicated by dots. The temperature on these surfaces is very close
to uniform, so the distribution is almost completely described by its monopole. However, different circles (corre-
sponding to different observers) have different temperatures due to the perturbation. So the monopole varies in
space.

arriving at a given point in space last scattered off electrons that are very nearby. These
nearby electrons had a temperature very similar to the local one. Therefore, photons from
all directions have the same temperature, so that the flux from any direction is equal to the
angle-averaged flux: �(x, p̂, t) = �0(x, t).

The situation changes slightly if the electrons carry a bulk velocity. In that case, a dipole
moment will be generated in the photon distribution, determined by the amplitude and
direction of the electron velocity. Still, higher-order moments such as the quadrupole van-
ish. Thus Compton scattering produces a photon distribution that is extremely simple to
categorize: it has only a nonvanishing monopole and dipole. This is equivalent to saying
that the photons behave like a fluid. Indeed, strong scattering, or tight coupling, produces
a situation wherein the photons and electrons behave as a single fluid. Compton scat-
tering ceases to be efficient at photon-baryon decoupling, so photons no longer behave
like a fluid after recombination. However, the Boltzmann approach remains valid after de-
coupling and also captures the essential physics of free streaming that characterizes the
photons’ long journey from decoupling to our detectors.

5.3 The Boltzmann equation for photons
We can now collect the left- and right-hand sides of the Boltzmann equations from the
previous two sections. A few more definitions will complete the first goal of this chapter,
a linear equation for the perturbation to the photon distribution. Equating Eqs. (5.9) and
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(5.22) leads to

�̇ + p̂i

a

∂�

∂xi
+ �̇ + p̂i

a

∂�

∂xi
= neσT[�0 − � + p̂ · ub]. (5.23)

At this point, it is convenient to introduce the conformal time η, defined in Eq. (2.35), as
our time variable. In terms of the conformal time, the Boltzmann equation becomes

�′ + p̂i ∂�

∂xi
+ �′ + p̂i ∂�

∂xi
= neσTa[�0 − � + p̂ · ub]. (5.24)

Here, and from now on, primes will denote derivatives with respect to conformal time η,
while dots continue to signify derivatives with respect to physical time t .

5.1 The virtues of Fourier space
Consider a field δ(x, t) that obeys a linear partial differential equation, for example

∂2

∂t2
δ + f (t)

∂

∂t
δ + g(t)∇2� = 0, (5.25)

in terms of another field �(x, t). What is noteworthy about this equation apart from its linearity
is that the coefficients are functions of time t only. In fact, in cosmology this property follows
directly when studying small perturbations around a smooth universe: the only x dependence
can be due to perturbations, and we work to linear order in them. A partial differential equation
of the form Eq. (5.25) is particularly well-suited to working in Fourier space. Let us define spatial
Fourier transforms through

δ(x) =
∫

d3k

(2π)3
eik·x δ̃(k), (5.26)

from which follows

δ̃(k) =
∫

d3x e−ik·xδ(x). (5.27)

Derivatives with respect to x acting on δ(x) become algebraic relations in Fourier space:

∂δ(x, t)

∂xi
→ iki δ̃(k, t). (5.28)

Note that ki is a 3D vector in Euclidean space so that ki = ki ; you do not need a factor of gij to

go back and forth, just as is the case for the derivatives ∂i . The same goes for the velocity u i
b and

other 3-vectors. We will often characterize a mode by the magnitude of its wavevector: k = |k|.
Convention: Throughout this book, with few exceptions, we will drop the tilde on Fourier-

transformed quantities, so that, for example,

δ̃(k) → δ(k). (5.29)

This convention is used in much of the literature. Despite appearances, it is rarely confusing,
because Fourier-space fields can be distinguished by their argument as in the above equation,
and equations in Fourier space usually have factors of k and no spatial derivatives.
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With these relations, Eq. (5.25) becomes, in Fourier space,

∂2

∂t2
δ + f (t)

∂

∂t
δ − g(t)k2� = 0. (5.30)

The partial differential equation magically turned into a set of ordinary differential equations
which, moreover, are decoupled: we can solve the equation independently for each k, without
knowing the solution for other values of k′. Another way of saying this is that every Fourier
mode evolves independently. Instead of solving an infinite number of coupled equations, which
is what Eq. (5.25) represents, we can solve for one k-mode at a time. At linear order, this trick
works every time in cosmology.

Eq. (5.24) is a linear partial differential equation coupling � to the other variables �, �,
and ub, which also evolve according to linear equations. This simplification arises because
the perturbations are small. Perturbations to the CMB remain small at all cosmological
epochs, while perturbations to matter are only small in the early universe. They eventually
grow to become nonlinear and form collapsed objects such as galaxies, requiring new tools
we will develop in Ch. 12.

As argued in Box 5.1, we should solve Eq. (5.24) in Fourier space. Before transforming to
Fourier space, let us make two more definitions. First, the cosine of the angle between the
wavenumber k and the photon direction p̂ is denoted as μ:

μ ≡ k · p̂
k

. (5.31)

From now on, μ will be the variable describing the direction of photon propagation.4

A good way to think of μ is to go back to Fig. 5.2. The wavevector k is pointing in the direc-
tion in which the temperature is changing; it is parallel to the gradient (k is horizontal in
the figure). Thus, �(k,μ = 1) describes photons traveling in the direction of the gradient k,
along which the temperature is changing. Conversely, �(k,μ = 0) describes photons trav-
eling perpendicular to the gradient, i.e. a direction along which the temperature remains
the same (vertically in the figure). While we do not distinguish Fourier-space fields in terms
of notation (see Box 5.1), the appearance of μ in an equation automatically means that it
is written in Fourier space.

In cosmology, velocities are generally longitudinal, that is, the velocities point in the
same direction as k:

ub(k, η) = k

k
ub(k, η). (5.32)

This is equivalent to saying that the velocity is irrotational (in real space, ∇ × u = 0). So,
ub · p̂ = ubμ. Next, we define the optical depth

τ(η) ≡
∫ η0

η

dη′neσTa. (5.33)

4
We will no longer encounter the chemical potential μ here and in the following chapters.
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At late times, the free electron density is small, so τ � 1, while at early times, it is very large.
Note that we have defined the limits of integration in such a way that

τ ′ ≡ dτ

dη
= −neσTa. (5.34)

With these definitions, we are finally left with the Boltzmann equation for photons:

�′ + ikμ� + �′ + ikμ� = −τ ′ [�0 − � + μub
]
. (5.35)

Notice that different Fourier modes k are decoupled: we can solve for each value of k and
μ independently.

5.4 The Boltzmann equation for cold dark matter
The derivation of the Boltzmann equation for any other constituent in the universe pro-
ceeds by repeating the same steps as we did for the photons. Of particular importance is
the evolution of the dark matter. In all viable models of structure formation, dark matter
plays an important role in the growth of structure through its gravitational effect. As in the
case of photons, the Boltzmann equation is the correct starting point for describing the
evolution of dark matter.

There are several ways in which the dark matter distribution differs from that of the
photons. First, at epochs long after its production, dark matter by definition does not in-
teract with any of the other constituents in the universe. Thus we need not deal with any
collision terms.5 Second, cold dark matter, in contrast to the photons, is nonrelativistic;
typical velocities of dark matter particles are much less than the speed of light.

Thus, the appropriate version of the Boltzmann equation to use is the collisionless
Boltzmann equation for massive particles, Eq. (3.76) that we derived in Sect. 3.3.4:

∂fc

∂t
+ p

E

p̂i

a

∂fc

∂xi
−

[
H + �̇ + E

ap
p̂i�,i

]
p

∂fc

∂p
= 0. (5.36)

The main difference from the corresponding equation for radiation is the presence of fac-
tors of p/E, or velocity. For dark matter particles, these velocity factors suppress any free
streaming, as we will shortly see.

In the massless case, to proceed further we used our knowledge of the distribution func-
tion. Namely, we knew that the zeroth-order distribution function was Bose–Einstein, and
we perturbed around this zeroth-order solution. For cold dark matter particles, we do not
need such detailed information about the zeroth-order distribution function. All we need
to know is that these particles are very nonrelativistic. Therefore, increasingly higher-order
powers of p will be negligible: only terms with (p/m)0 and (p/m)1 need be retained. That

5
Unless the dark matter is strongly self-interacting, a scenario which has gained attention in recent years

(Tulin and Yu, 2018). We will not consider this possibility here though.
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is, we will neglect terms of order (p/m)2. This means that we include the bulk motion of
dark matter, but not its velocity dispersion, and hence treat the dark matter as an effective
fluid. We return to a more detailed justification, and limits, of this approximation in Ch. 12.

Then, instead of assuming a form for fc, we take moments of Eq. (3.76) (see Exer-
cise 3.8). First, multiply both sides by the phase space volume d3p/(2π)3 and integrate.
This leads to

∂

∂t

∫
d3p

(2π)3
fc + 1

a

∂

∂xi

∫
d3p

(2π)3
fc

pp̂i

E(p)
− [

H + �̇
] ∫

d3p

(2π)3
p

∂fc

∂p

−1

a

∂�

∂xi

∫
d3p

(2π)3

∂fc

∂p
E(p)p̂i = 0. (5.37)

Note that, since they are independent variables, the integral over p passes through the
partial derivatives with respect to xi and t . Integration by parts shows that the last term
vanishes. The remainder of the terms are all relevant, though. To simplify, let us recall that
the dark matter density is6

nc =
∫

d3p

(2π)3
fc, (5.38)

while the fluid velocity is defined as

ui
c ≡ 1

nc

∫
d3p

(2π)3
fc

pp̂i

E(p)
. (5.39)

Notice that we use the notation u for fluid velocities, to be distinguished from the velocities
of individual particles. It is important to remember the physical distinction between the
two: the former describes the bulk motion of matter averaged over many particles, and
could be much smaller than the individual particle velocities (although not in the case of
cold dark matter).

The first two terms in Eq. (5.37), then, can be simply expressed in terms of the velocity
and the density. The third term can be integrated by parts:∫

d3p

(2π)3
p

∂fc

∂p
= 1

(2π)3

∫ ∞

0
dp p3 ∂

∂p

∫
d
fc

= −3
1

(2π)3

∫ ∞

0
dpp2

∫
d
fc

= −3nc. (5.40)

So the zeroth moment of the Boltzmann equation leads to the cosmological generalization
of the continuity equation:

∂nc

∂t
+ 1

a

∂(ncu
i
c)

∂xi
+ 3

[
H + �̇

]
nc = 0. (5.41)

6
Here we have incorporated the spin degeneracy gc into the phase space distribution fc to avoid irrelevant

factors of gc throughout the derivation.
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The first two terms here are the standard continuity equation from fluid mechanics. The
last term arises due to the FLRW metric and its perturbations, in particular the dilution by
the expansion of space (recall that H + �̇ corresponds to the local perturbed Hubble rate).

To go further, we can separate zeroth-order and first-order terms in Eq. (5.41). The ve-
locity is of first order as is �, so the only zeroth-order terms are

∂n̄c

∂t
+ 3Hn̄c = 0 (5.42)

where n̄c is the zeroth-order, homogeneous part of the density. Equivalently, we have

d(n̄ca
3)

dt
= 0 ⇒ n̄c ∝ a−3, (5.43)

a relation we proved in Ch. 2 by using the conservation of the energy-momentum tensor.
Now let us extract the first-order part of Eq. (5.41). All factors of nc multiplying the first-

order quantities uc and � may be set to n̄c. Everywhere else, we need to expand nc out to
include a first-order perturbation. In particular, we will set

nc(x, t) = n̄c(t)[1 + δc(x, t)] (5.44)

which defines the first-order piece as n̄cδc. Since the energy density of matter is equal to
mass times nc, δc is also the fractional overdensity, δρc/ρc, of the dark matter. After dividing
by n̄c, the first-order equation is therefore

∂δc

∂t
+ 1

a

∂ui
c

∂xi
+ 3�̇ = 0. (5.45)

As it stands, we have introduced two new perturbation variables for the dark matter,
the density perturbation δc and the velocity uc. Eq. (5.45) is only one equation, though, for
these two variables. We need another. To get it, we return to the unintegrated Boltzmann
equation (5.36). We have just taken its zeroth moment; to extract a second equation, let
us take its first moment. In particular, multiply Eq. (5.36) by (d3p/(2π)3)pp̂j /E and then
integrate. The first moment equation is then

∂

∂t

∫
d3p

(2π)3
fc

pp̂j

E
+ 1

a

∂

∂xi

∫
d3p

(2π)3
fc

p2

E2(p)
p̂i p̂j − [

H + �̇
] ∫

d3p

(2π)3

∂fc

∂p

p2p̂j

E

−1

a

∂�

∂xi

∫
d3p

(2π)3

∂fc

∂p
pp̂ip̂j = 0. (5.46)

The first two terms are straightforward: the first is the time derivative of ncu
i
c while the

second can be safely neglected since it is of order (p/E)2. The last two integrals must be
handled more carefully, though, because of the derivatives acting on fc. Let us do the inte-
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gration by parts explicitly in the third term. The integral is

∫
d3p

(2π)3

∂fc

∂p

p2p̂j

E
=

∫
d


(2π)3
p̂j

∫ ∞

0
dp

p4

E

∂fc

∂p

= −
∫

d


(2π)3
p̂j

∫ ∞

0
dpfc

(
4p3

E
− p5

E3

)
. (5.47)

The first term, ∝ −4p3/E, yields −4ncu
j
c upon integration, while the term involving

p5/E3 = (p2/E2)(p3/E) is negligible following our counting. The same steps carry through
for the last term in Eq. (5.46); the one additional fact we need is that∫

d
p̂ip̂j = δij 4π

3
. (5.48)

So the first moment of the Boltzmann equation is

∂(ncu
j
c)

∂t
+ 4Hncu

j
c + nc

a

∂�

∂xj
= 0. (5.49)

This equation has no zeroth-order parts, since the velocity is a first-order quantity. There-
fore, we need to extract only the first-order terms, which allows us to set nc → n̄c every-
where. Using the time dependence we found in Eq. (5.43) we arrive at

∂u
j
c

∂t
+ Hu

j
c + 1

a

∂�

∂xj
= 0. (5.50)

Eq. (5.45) and Eq. (5.50) are the two equations governing the evolution of the density
and the velocity of the cold dark matter. The momentum conservation, or Euler equation
(5.50) does not have the standard (u · ∇)u term, since any term with two factors of u is
manifestly of second order (this term will appear in Ch. 12 when we study dark matter be-
yond linear perturbations). An interesting feature of the two equations is generic to this
process of integrating the Boltzmann equations to get the fluid equations: the integrated
Boltzmann equation for the lth moment depends on the moment of order l + 1; e.g. the
equation for the density (zeroth moment of the distribution function) depends on the ve-
locity (first moment). This process of integrating leads to an infinite hierarchy of equations
for the moments of the distribution function. Indeed, we will see that this is one way of
solving the Boltzmann equation for the photons, Eq. (5.35). In the case of CDM, we have
closed the hierarchy by setting the next, second, moment to zero, following our assump-
tion that the dark matter is cold. Specifically, we have dropped all terms of order (p/E)2 and
higher. Thus, Eq. (5.45) and Eq. (5.50) are a closed set of equations for the cold dark matter
distribution.7 For particles with larger velocities, such as massive neutrinos, the hierarchy
cannot be simply closed in this way, and we need to keep higher moments.

7
We still need equations for the gravitational potentials � and �. These come from Einstein’s equations, which

are the topic of the next chapter.
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Let us finally rewrite Eq. (5.45) and Eq. (5.50) in terms of conformal time η and in Fourier
space. The continuity equation becomes

δc
′ + ikuc + 3�′ = 0. (5.51)

where again we have assumed that the velocity is irrotational so ui
c = (ki/k)uc. The Euler

equation is

uc
′ + a′

a
uc + ik� = 0. (5.52)

This equation at least partly justifies our assumption that uc is irrotational, since it says
that uc is sourced by the gradient of a scalar potential �. Any curl component would have
to be set in the initial conditions for the velocity.

5.5 The Boltzmann equation for baryons
The next component of the universe that requires a set of Boltzmann equations are the
electrons and protons. These components are often grouped together and called baryons.
This obvious misnomer is motivated by the fact that the energy density of these coupled
particles is dominated by the rest masses of the protons and neutrons making up the hy-
drogen and helium nuclei. In the following, we will simply speak of protons although one
should keep in mind that this includes helium as well as trace amounts of heavier nuclei.

Electrons and protons are coupled by Coulomb scattering (e+p ↔ e+p). The Coulomb
scattering rate is much larger than the expansion rate at all epochs of interest. This tight
coupling forces the electron and proton overdensities to a common value:

ρe − ρ̄e

ρ̄e

= ρp − ρ̄p

ρ̄p

≡ δb (5.53)

where we bow to common usage with the subscript b. Similarly, the velocities of the two
species are forced to a common value,

ue = up ≡ ub. (5.54)

After recombination, when electrons and nuclei first form atoms, this tight coupling re-
mains, while the neutral atoms are now decoupled from the photons. Because of their
tight mutual coupling and correspondingly small mean free path, and the fact that they
are nonrelativistic since T � me, electrons and nuclei can be treated as a nonrelativistic
fluid and we only have to take the first two moments of their Boltzmann equation, as we
did for dark matter. However, we will need to keep track of the coupling to photons via
Compton scattering.

The procedure of taking moments of the Boltzmann equation to derive equations for δb

and ub then proceeds just as in the case of CDM, for the left-hand-side at least. The zeroth
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moment that led us to Eq. (5.51) for CDM correspondingly yields

δ′
b + ikub + 3�′ = 0, (5.55)

after switching to Fourier space and conformal time. Here we have put the right-hand side
to zero, despite collisions, since the collisions preserve the number of electrons and pro-
tons. This holds for Coulomb scattering, where e− + N ↔ e− + N , as well as for Compton
scattering e− + γ ↔ e− + γ . At the epochs we will be interested in, around and after re-
combination, reactions that change the number of electrons and nucleons such as pair
production, annihilation and nuclear reactions are irrelevant. The continuity equation
with vanishing source term precisely captures this number conservation.

The second equation for the baryons is obtained by taking the first moments of the
Boltzmann equations for electrons and baryons and adding them together. We did some-
thing similar for the dark matter; there we first multiplied by p/E and then integrated over
all momenta. Here we do the same but without the 1/E factor. Since all particles involved
are nonrelativistic, our results from the dark matter case carry over as long as we multiply
them by a factor of m. The left-hand side of the integrated electron equation, for example,
will look exactly like the left-hand side of Eq. (5.49) except it will be multiplied by me. The
proton equation will be multiplied by mp. Since the proton mass is so much larger than
the electron mass, the sum of the two left-hand sides will be dominated by the protons. So,
following Eq. (5.49), we have

mp

∂(nbu
j

b)

∂t
+4Hmpnbu

j

b + mpnb

a

∂�

∂xj
= F

j
eγ (x, t). (5.56)

This time, the collision term F eγ does not vanish. The first moment of the Boltzmann
equation describes momentum conservation. While the number of electrons and nuclei
is preserved, their momentum is not, since Compton scattering transfers momentum be-
tween photons and electrons, captured by the force density F eγ . The electrons in turn
transfer it immediately to the nuclei.8 Dividing both sides by ρb = mpn̄b, we are left with

∂u
j

b

∂t
+ Hu

j

b + 1

a

∂�

∂xj
= 1

ρb
F

j
eγ (x, t). (5.57)

Again, so far we have followed the same steps as in the derivation of the first moment of
the dark matter Boltzmann equation.

The final step is to evaluate the integrated collision term on the right-hand side, for
which we will use a convenient shortcut. We have argued that F eγ describes the mo-
mentum transfer between photons and electrons. Since momentum is conserved in each
scattering event, this force term has to be precisely equal and opposite to the force term
appearing in the photon analog of the baryon Euler equation. To get this equation, we

8
In principle, photons also scatter off the nuclei, but this interaction is suppressed so strongly, by m2

e/m2
p <

10−6, that it is entirely sufficient to include only the electron scattering term.
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have to take the first moment of the photon Boltzmann equation, specifically the photon
collision term Eq. (5.22).

First, let us switch to Fourier space. Anticipating that the direction of the force term F eγ

will be aligned with the wavevector k, we multiply the Fourier-space version of Eq. (5.22)
by k̂j before taking the first moment. In addition, since the momentum neu

i
e of electrons

counts both spin states, i.e. it is twice the first moment of the distribution function, we
have to multiply the collision term by a factor of 2. Together with the minus sign from
momentum conservation, this implies that we multiply Eq. (5.22) by −2pμ and integrate
over p, the photon momentum:

1

ρb
k̂iF

i
eγ (x, t) = −2neσT

ρb

∫
d3p

(2π)3
pμ

[
−p

∂f (0)

∂p

][
�0 − �(μ) + μub

]

= 2neσT

ρb

∫ ∞

0

dp

2π2
p4 ∂f (0)

∂p

∫ 1

−1

dμ

2
μ

[
�0 − �(μ) + μub

]
. (5.58)

The integral over p can be done by integrating by parts: it is −2ργ , since the back-
ground energy density of photons ργ is twice the momentum integral over pf (0)(p). The
μ-integration over the first and third terms is straightforward—the first term vanishes,
while the third gives ub/3. The integral over the second term yields the first moment of the
perturbation �. Recall the definition of the zeroth moment �0 of the photon distribution
in Eq. (5.20). It makes sense therefore to define the first moment, the dipole, as

�1(k, η) ≡ i

∫ 1

−1

dμ

2
μ�(μ,k, η) (5.59)

where the factor of i follows convention. So Eq. (5.58) becomes

1

ρb
k̂iF

i
eγ (x, t) = −neσT

4ργ

ρb

[
i�1 + 1

3
ub

]
. (5.60)

In order to see why the dipole of the radiation field appears in the Euler equation for
the baryons, recall that what matters is a net momentum transfer between the photons
and electrons. In an isotropic radiation field, no net momentum transfer will happen. On
the other hand, if there is a dipole, then more energetic photons come from one direction
than from the opposite direction. Electrons moving in the direction of the higher tempera-
ture will be facing a headwind, resulting in a drag force pointing in the opposite direction.
This effect is known as Compton drag. More precisely, F i

eγ is a force density (analogous to
a pressure gradient) exerted by scattering of photons off the electrons. The force density is
given by the collision rate (neσT) multiplied by the mean momentum transfer in each col-
lision, which is of order of the photon density times the dipole of the photon distribution.

We now have an expression for the collision term which can be inserted into Eq. (5.57),
and, after switching to conformal time, we have

ub
′ + a′

a
ub + ik� = τ ′ 4ργ

3ρb

[
3i�1 + ub

]
. (5.61)
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Why is there a factor of the baryon energy density in the denominator? That is, since
photons scatter primarily off electrons, why does the total baryon density (which is dom-
inated by protons) appear in this velocity equation? Physically, it arises from the fact that
moving electrons is difficult because they are tightly coupled to protons via Coulomb
scattering. If the proton was infinitely heavy, so ρb → ∞, Compton scattering would not
change the electron velocity at all; it would not have any impact on the combined proton-
electron fluid. We derived Eq. (5.61) by setting ne = np = nb, that is, we assumed that
hydrogen is completely ionized. However, the result turns out to be valid even if there is
an appreciable amount of neutral hydrogen, so that ne < nb. Indeed after recombination,
most protons are bound in neutral hydrogen atoms. And even before recombination, a
small fraction are in helium atoms or ions. However, even neutral hydrogen and helium
are tightly coupled to electrons and protons (see Exercise 5.6), so our result Eq. (5.61) in-
deed describes all baryons.

5.6 The Boltzmann equation for neutrinos
Finally, we turn to the remaining abundant species of particles, the neutrinos, with distri-
bution function fν(x,p, t). Let us proceed in analogy to the photons, since the neutrinos
follow an equilibrium distribution with a temperature Tν(a) at zeroth order (see Sect. 2.4.4
and Exercise 3.9), and they are relativistic in the early universe. So we can again phrase
the perturbation to their distribution function in terms of a temperature perturbation, de-
noted N (x,p, η), just as we did for the photons in Sect. 5.1; that is, we write

fν(x,p, t) =
[

exp

{
p

Tν(t)[1 +N (x, p̂, t)]
}

+ 1

]−1

=
[

1 −N (x,p, t)p
d

dp

]
f (0)

ν (p), (5.62)

where f
(0)
ν (p) = [ep/Tν(a) + 1]−1 is the zeroth-order neutrino distribution and the second

line expands to linear order in N . During the epochs of interest, that is, from neutrino
decoupling onward, any non-gravitational interactions of neutrinos are negligible, so the
appropriate Boltzmann equation is the collisionless Boltzmann equation for massive par-
ticles, Eq. (3.76):

dfν

dt
= ∂fν

∂t
+ p

Eν(p)

p̂i

a

∂fν

∂xi
−

[
H + �̇ + Eν(p)

ap
p̂i�,i

]
p

∂fν

∂p
= 0. (5.63)

Inserting Eq. (5.62), the zeroth-order terms cancel (by construction f
(0)
ν obeys the homo-

geneous Boltzmann equation), and we obtain at first order

∂N
∂t

+ p

Eν(p)

p̂i

a

∂N
∂xi

− Hp
∂N
∂p

+ �̇ + Eν(p)

ap
p̂i�,i = 0. (5.64)
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Now we convert to conformal time derivatives and move to Fourier space, yielding

N ′(k,p,μ,η) + ikμ
p

Eν(p)
N − Hp

∂

∂p
N = −�′ − ikμ

Eν(p)

p
�, (5.65)

which is our desired first-order Boltzmann equation for neutrinos. Apart from the absent
collision term, it differs from that for the photons through the factors of p/Eν(p), which
reduce to unity when the neutrinos are relativistic. At late times, when the temperature
drops below mν , the first factor of p/E on the left reflects the slow-down in free streaming
due to the sluggish massive neutrinos. The factor of E/p in the final term reflects the fact
that slow-moving neutrinos spend more time in potential wells and hence their motion
will be more influenced by them.

An important point to notice is that we can no longer assume that N is independent
of p, i.e. that it only depends on p̂, x, η; hence the additional third term in Eq. (5.65)
which does not appear in the equation for �. This is because neutrinos in different parts
of the distribution move differently once they are no longer ultra-relativistic. For exam-
ple, p/Eν(p) can be very different for neutrinos in the low-energy tail of the distribution
than for those in the high-energy tail. For the same reason, we need different distribution
functions for the different neutrino mass states. Fortunately, if we are only interested in
the behavior of neutrinos up to recombination, then we can set p/Eν(p) = 1 in Eq. (5.65),
and neglect the p-dependence of N , reducing it to the collisionless version of the photon
Boltzmann equation; then, we can further describe all three neutrino generations with a
single N . We will make use of this simplification in later chapters, but will also learn that
including neutrino masses becomes very important in the late universe.

5.7 Summary
The constituents of the universe are not distributed completely uniformly in space—the
only exception to this is the cosmological constant, which we have consequently ignored in
this chapter. To describe the evolution of the perturbations, we have to solve the perturbed
Boltzmann equations which we derived in this chapter. For the nonrelativistic components
such as the dark matter and the baryons, the Boltzmann equation can be simplified sig-
nificantly by taking moments in terms of the particle momentum, and keeping only the
lowest-order moments: the overdensity δc(x, t) (δb(x, t)) and the velocity uc(x, t) (ub(x, t))
for dark matter (baryons). As explained in Box 5.1, it is convenient to transform the lin-
ear evolution equations to Fourier space. Then, the evolution of a mode associated with
wavevector k is independent of any other Fourier modes. Further, we will find it conve-
nient to use conformal time η as the evolution variable. To summarize, we have equations
for δc(k, η), δb(k, η), uc(k, η), and ub(k, η). The scalar velocities here are the components
parallel to k; these are the only ones that are cosmologically relevant.

Relativistic particles such as photons and neutrinos require more information to char-
acterize. They have not only a monopole perturbation (the equivalent of δc) and a dipole
(the equivalent of a velocity), but also a quadrupole, octopole, and higher moments as
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FIGURE 5.3 Some Legendre polynomials. Note that the higher-order ones vary on smaller scales than the low-order
ones do. In general Pl crosses zero l times between −1 and 1.

well. In other words, the photon distribution depends not only on x and time but also on
the direction of propagation of the photon, p̂. In Fourier space, therefore, the photon per-
turbations depend not only on k and η but also on p̂ · k̂, which we defined as μ. Thus, the
photon perturbation variable is �(k,μ,η). Neutrino perturbations require a separate vari-
able, N (k,p,μ,η) (in fact, one for each mass eigenstate), with an additional dependence
on p due to the fact that neutrinos have mass. Fortunately, we can neglect neutrino masses
and the p-dependence of N at least up until recombination.

We found it useful to define the monopole (Eq. (5.20)) and dipole (Eq. (5.59)) of the pho-
ton distribution. We know that these moments, �0(k, η) and �1(k, η), do not completely
characterize the photon distribution. Instead, we need the general, lth multipole moment
of the temperature field, defined as

�l(k, η) ≡ 1

(−i)l

∫ 1

−1

dμ

2
Pl (μ)�(μ,k, η), (5.66)

where Pl is the Legendre polynomial of order l (Eq. (C.2)). The quadrupole corresponds to
l = 2, octopole to l = 3, etc. The higher Legendre polynomials have structure on smaller
scales (see Fig. 5.3), so the higher moments capture information about the small-scale
anisotropies of the radiation field. The photon perturbations can be described either by
�(k,μ,η) or by a hierarchy of moments, �l(k, η). The same multipole expansion can be
applied to the neutrino distribution.

We have postponed a discussion of polarization until Ch. 10, but mentioned in Sect. 5.2
that a completely accurate treatment of anisotropies in the temperature requires an incor-
poration of polarization effects. Again, waiting until Ch. 10 for more formal definitions, let
us call the photon polarization field �P . Upon Fourier transforming, it too depends on k,
μ, and η, and we denote its Legendre multipole decomposition as �P,l .
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We now collect the equations we have derived for the photons, dark matter, baryons,
and neutrinos:

�′ + ikμ� = −�′ − ikμ� − τ ′
[
�0 − � + μub − 1

2
P2(μ)�

]
(5.67)

with

� = �2 + �P,2 + �P,0. (5.68)

Eq. (5.67) is the Boltzmann equation for photons we have derived, with one change, the
last term P2�/2, which requires some explanation. First, note that it is proportional to the
second Legendre polynomial, P2(μ) = (3μ2 − 1)/2. From Eq. (5.68), one of the new terms
then is P2�2/2; this term accounts for the angular dependence of Compton scattering,
which we ignored in Sect. 5.2. The other parts of � represent the fact that the temperature
field is also coupled to the polarization field �P . While we postpone the discussion of the
equation for �P , it is worth mentioning that �P is sourced only by the quadrupole �2 of
the temperature distribution, and none of the other temperature moments.

The remaining equations are

δc
′ + ikuc = −3�′, (5.69)

uc
′ + a′

a
uc = −ik�, (5.70)

δ′
b + ikub = −3�′, (5.71)

ub
′ + a′

a
ub = −ik� + τ ′

R
[ub + 3i�1], (5.72)

N ′ + ikμ
p

Eν(p)
N − Hp

∂

∂p
N = −�′ − ikμ

Eν(p)

p
�. (5.73)

In the equation for the baryon velocity (5.72), the ratio of photon to baryon density has
been replaced by R, defined as9

1

R(η)
≡ 4ργ (η)

3ρb(η)
. (5.74)

The derivations in this chapter are based on the seminal paper of Ma and Bertschinger
(1995). While it skips many of the steps presented here, we highly recommend it as fur-
ther reading (it also has the added virtue of equations in both conformal-Newtonian and
synchronous gauges; see the exercise below).

9
Not to be confused with the ratio of photon to baryon number, ηb, which is constant with time and much

smaller!
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Exercises
5.1 The metric in synchronous gauge is

g00(x, t) = −1,

g0i (x, t) = 0,

gij (x, t) = a2(t)[δij + hij (x, t)], (5.75)

with perturbations in Fourier space given by

h̃ij (k = kêz, t) =
⎛
⎝ −2ñ(k, t) 0 0

0 −2ñ(k, t) 0
0 0 h̃(k, t) + 4ñ(k, t)

⎞
⎠ . (5.76)

In this exercise, we keep the Fourier-space tilde explicit. Here we have chosen the
wavevector k to lie in the z direction. Following the steps in Sect. 3.3, derive the equiv-
alent of Eq. (5.35) in synchronous gauge:

�̃′ + ikμ�̃ + 1

2
μ2h̃′ + 2P2(μ)ñ′ = −τ ′ [�̃0 − �̃ + μub

]
. (5.77)

5.2 Start from the zeroth-order unintegrated Boltzmann Eq. (5.5). Integrate this equation
over all momenta to show that the number density falls off as a3.

5.3 Show that the Pauli blocking factor 1−fe can be set to 1 at all times from BBN through
recombination. First find fe, which depends on Te and μe, as a function of tempera-
ture and number density using the results and approximations of Sect. 4.1 (i.e. assume
that Te � me). Then, show that in this regime fe is much less than 1.

5.4 Account for the angular dependence of Compton scattering. Start from Eq. (5.16) but
instead of using the angle-averaged amplitude-squared Eq. (5.18), take the correct
polarization-averaged expression Eq. (5.17). Show that accounting for the angular de-
pendence introduces the factor of (1/2)P2(μ)�2 presented in Eq. (5.67).

5.5 Derive the continuity equation by using the Boltzmann equation, rederiving the re-
sults of Sect. 2.3 that were based on the energy-momentum tensor. Multiply the
zeroth-order part of Eq. (3.76) by d3p/(2π)3 E(p) and integrate. Show that the result-
ing equation is identical to Eq. (2.56).

5.6 Show that electrons, nuclei, and atoms are tightly coupled all the way through recom-
bination.
(a) Compute the ratio of the Coulomb scattering rate to the Hubble rate. You may

assume that all electrons and protons are ionized.
(b) Show that the rate for neutral hydrogen to scatter off free protons is always much

larger than the expansion rate even when the ionization fraction is on the order
of 10−4 (cf. Fig. 4.4).



6
The inhomogeneous universe:
gravity

In the previous chapters, we took care of all non-gravitational interactions via the Boltz-
mann equations, and took into account the effects of gravity on the particle distributions.
This formalism led to the set of Eqs. (5.67)–(5.73). We now need to supplement these equa-
tions with an account of how the perturbations to the particle distributions in turn affect
the gravitational field. For this, we need the Einstein equations of general relativity. In
Ch. 3, we derived the homogeneous solution of the Einstein equations. Here, we will ex-
pand perturbatively to linear order around the zeroth-order homogeneous solution. This
calculation is completely straightforward. While a bit long, working through it is a “must-
do-once” exercise so the steps are presented in some detail. First though, we will think
about how to best break down the 10 independent Einstein equations, and how we choose
our coordinates.

6.1 Scalar–vector–tensor decomposition
In the previous chapter, we have seen that the transformation to Fourier space simpli-
fied the perturbed Boltzmann equations considerably, by decoupling the different Fourier
modes k. The Einstein equations are a tensor equality and correspondingly comprise a set
of equations that are in general coupled. However, there exists a decomposition of these
equations that again allows us to decouple different modes. In fact, we have already implic-
itly relied on this result when writing the perturbed metric in the simple form of Eq. (3.49).
We thus need to begin with this decomposition.

Let us consider an FLRW spacetime that is perturbed by a small amount. That is, we
write the metric as

g00(t,x) = −1 + h00(t,x),

g0i (t,x) = a(t)h0i (t,x) = a(t)hi0(t,x),

gij (t,x) = a2(t)
[
δij + hij (t,x)

]
, (6.1)

where h00, h0i , hij are metric perturbations that are functions of space and time, and all of
whose components are assumed to be small in magnitude. In this chapter, we will mostly
use the physical time t . Keep in mind that t and the conformal time η are always related
through dt = adη, so that going back and forth is a simple variable transformation that
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does not touch the perturbations and is unrelated to the coordinate choice we will discuss
below.

When we introduced the perturbed metric in Sect. 3.3, we assumed a special form of
hμν :

h00 = −2�,

h0i = 0,

hij = 2�δij , (6.2)

which we referred to as conformal-Newtonian gauge. Now let us take some time to study
the perturbed FLRW metric more systematically. First, this will help us isolate the relevant
components of the Einstein equations for the perturbed metric (which are the ultimate
goal of this chapter). Second, we will see that the two potentials �, � are not sufficient to
capture all gravitational physics.

Technically, we want to classify the components of the general metric in Eq. (6.1) via
their behavior under spatial rotations. The time-time component h00 is a 3-scalar, i.e. it
remains unchanged under spatial rotations, since it does not have a spatial index. To keep
the discussion general, and not confined to conformal-Newtonian gauge, we will define
this scalar h00 = −2A, with signs and factors of 2 here and in the following being a matter
of convention. The time-space perturbation h0i is a 3-vector. So let us decompose it into
longitudinal and transverse parts captured by two functions, B and Bi :

h0i = − ∂B

∂xi
− Bi where Bi

,i ≡ ∂Bi

∂xi
= 0. (6.3)

Here, we use the comma notation to indicate ordinary partial (not covariant) derivatives
with respect to coordinates, B,i ≡ ∂B/∂xi . Notice again that here and throughout, we raise
and lower spatial indices with δij , the appropriate spatial background metric for a Eu-
clidean universe, and employ the sum convention over repeated indices. Thus, the first
part of h0i is the gradient of a 3-scalar function B(t,x), while the second is a divergence-
less 3-vector Bi(t,x). We will refer to the first as the “scalar,” and the second as the “vector”
contribution. In Fourier space, Eq. (6.3) becomes simpler:

h0i (t,k) = −ikiB(t,k) − Bi(t,k) , with kiBi = 0. (6.4)

Next up is hij , which is a symmetric 3-tensor. Consider first its scalar contributions. We
already know that one such contribution is simply proportional to the Kronecker delta, as
written in Eq. (6.2), which we in general shall call D. But we can also generate a symmetric
3-tensor by taking two spatial derivatives of a scalar E. Similarly, we can construct a vector
contribution to hij by taking a derivative of a divergence-free vector field Vi . Thus, we have

hij = 2Dδij − 2E,ij + Vi,j + Vj,i (scalar and vector), (6.5)

where Vi
,i = 0, and we made sure that the vector contribution is symmetric in i and j . Is

this the complete decomposition of hij ? The answer is no: there is another component of
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hij that cannot be written through derivatives acting on a scalar or a vector. One way to
see this is to count degrees of freedom: hμν is a symmetric tensor in four dimensions, and
thus contains 10 free functions (16 minus the six symmetry constraints on the off-diagonal
components). So far, we have identified four scalar functions (A, B, D, E) and two trans-
verse vectors (Bi , Vi); due to the transversality constraint, each vector contains two free
functions. Thus we have so far enumerated eight functions in the metric. The two remain-
ing ones are referred to as the tensor degrees of freedom, which we write as hTT

ij . We will
see in Sect. 6.4 that they describe very important physics, namely propagating gravitational
waves.

To summarize, our spatial metric perturbation becomes, in Fourier space,

hij = 2Dδij + 2kikjE + ikiVj + ikjVi + hTT
ij . (6.6)

Here, we have concentrated on the decomposition of the metric. But there was nothing
particular about hμν , and we can do the exact same formal decomposition with any tensor,
for example the energy-momentum tensor. A very important result in relativity, the decom-
position theorem, states that perturbations of each type—scalar, vector, and tensor—evolve
independently at linear order.1 That is, if some physical process in the early universe sets
up tensor perturbations, these do not induce scalar perturbations as they evolve. Con-
versely, to determine the evolution of scalar perturbations, we will not have to worry about
possible vector or tensor perturbations. This is the justification for why we were able to ne-
glect vector and tensor contributions in the perturbed metric up to now. The fundamental
reason why the decomposition theorem holds is that the background FLRW metric is spa-
tially isotropic. So, in going to Fourier space (which decouples different perturbations due
to the homogeneity of the FLRW metric, see Box 5.1), and performing a scalar/vector/ten-
sor decomposition, we have used the symmetries of the FLRW metric to our maximum
advantage.

You probably noticed another difference between the metric perturbation in Eq. (6.2)
and the general expressions we derived below it: even when restricting to scalar perturba-
tions only, do we not need B,i and E,ij in h0i and hij , respectively? The reason we do not
will become clear once we consider the effect of coordinate transformations.

6.2 From gauge to gauge
The effect of coordinate transformations on spacetime scalars, vectors, and tensors is de-
scribed in Box 2.2. In the context of perturbation theory in relativity, a choice of coordinates
is often referred to as gauge, and we will frequently use that term also. The ability to move
back and forth between different gauges is useful when dealing with cosmological pertur-
bations. Often, the equations simplify considerably in one gauge (one example is the spa-

1
This decomposition refers to 3-scalars, 3-vectors, 3-tensors, not to be confused with spacetime scalars such

as a field φ(x), spacetime vectors such as the momentum Pμ, and tensors such as the metric gμν . We should
apologize for this confusing nomenclature, which, however, is widely used in the literature.
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tially flat slicing when calculating perturbations generated during inflation, Sect. 7.4.3),
while quantities that we actually measure observationally are more naturally calculated in
another. So, different gauges have their advantages for different parts of the “cosmological
perturbations” problem.

Let us start out with a scalar field φ(x), where in this section x stands for a spacetime lo-
cation (t,x). We will encounter such a field when studying inflation in the next chapter. We
are interested in small perturbations around the homogeneous universe, so we separate φ

into background and perturbation:

φ(x) = φ̄(t) + δφ(t,x), (6.7)

where the background field can only depend on t since the background universe is homo-
geneous. We now want to derive how Eq. (6.7) changes when we transform coordinates to
x → x̂(x). In keeping with our interest in perturbations, it is sufficient to consider small co-
ordinate transformations as well; otherwise, the transformed field would in general have
large (unphysical) perturbations. Hence, we perform a Taylor series of x̂(x) in x, and keep
only the zeroth-order piece, which is a shift in coordinates. That is, we write

t → t̂ = t + ζ(t,x),

xi → x̂i = xi + ξ ,i(t,x), (6.8)

where the time shift is ζ while the spatial coordinate shift is written as the gradient of an-
other scalar function ξ , since we are considering only scalar perturbations for now (we will
get back to this point below).

Treating δφ, ξ , and ζ as first-order perturbations, the scalar transformation law (Box 2.2)

φ̂(x̂) = φ(x[x̂]) = φ(t̂ − ζ, x̂ − ∇ξ) (6.9)

becomes (see Exercise 6.3)

ˆδφ(t,x) = δφ(t,x) − dφ̄(t)

dt
ζ(t,x), (6.10)

where we have dropped the hats on the coordinates for clarity. In other words, while the
scalar φ(x) itself transforms trivially, i.e. φ̂(x̂) = φ(x), its perturbation δφ does not. This is
because, in order to define a perturbation, we need to assume a background value, which,
if the field evolves in time at the background level, depends on the choice of time coordi-
nate.

After this warmup, let us apply the small coordinate transformation Eq. (6.8) to the gen-
eral perturbed metric with scalar perturbations only. Using the decomposition from the
previous section, we can write this as

g00 = −(1 + 2A),

g0i = −aB,i,
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gij = a2(δij [1 + 2D] − 2E,ij ). (6.11)

As derived in Box 2.2 [Eq. (2.49)], the metric changes under a coordinate transformation
x → x̂(x) as

ĝμν(x̂) = ∂xα

∂x̂μ

∂xβ

∂x̂ν
gαβ(x) , (6.12)

or equivalently2

ĝαβ(x̂)
∂x̂α

∂xμ

∂x̂β

∂xν
= gμν(x). (6.13)

We are now ready to work out the metric transformation explicitly. We will do so for one
component and leave the rest as an exercise. Consider the 00 component of Eq. (6.13):

ĝαβ(x̂)
∂x̂α

∂t

∂x̂β

∂t
= −[1 + 2A]. (6.14)

Note that, since A is a perturbation, we do not need to distinguish between x or x̂(x) in its
argument, since the difference between the coordinates is itself a first-order quantity. Now,
our claim is that the only term that contributes to the left-hand side is the one with α = β =
0. Consider for example α = 0 and β = i. The off-diagonal component ĝ0i of the metric is
proportional to B̂,i a first-order perturbation. But ∂x̂i/∂t is proportional to the first-order
variable ξ , so the product is second-order and can be neglected. A similar argument holds
for the α = i;β = j terms. Therefore, the left-hand side is simply

−[1 + 2Â]
(

∂t̂

∂t

)2

= −[1 + 2Â] (1 + ζ̇
)2

� −1 − 2Â − 2ζ̇ . (6.15)

Equating this with g00 leads to

−2Â − 2ζ̇ = −2A, (6.16)

so under the coordinate transformation specified by Eq. (6.8)

A → Â = A − 1

a
ζ ′. (6.17)

Similarly, the other components of the metric transform into

B̂ = B − a−1ζ + ξ ′,
D̂ = D − Hζ,

Ê = E + ξ. (6.18)

2
Any well-defined coordinate transformation has to have a nonzero determinant |∂x/∂x̂| so that this matrix is

invertible.
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You can prove these relations in Exercise 6.2. Eqs. (6.17)–(6.18) describe how a metric with
small scalar perturbations transforms under a small scalar coordinate transformation. As
expected from the decomposition theorem, this coordinate transformation did not gener-
ate any non-scalar metric perturbations, so that the result can still be written in terms of
the functions A, B, D, E.

To sum up, then, there are four functions that characterize scalar metric perturbations,
but these can be manipulated with two other functions that characterize scalar coordinate
transformations. For example, starting with a metric in which E �= 0, it is easy to make a
transformation to eliminate E: simply choose ξ = −E, and the resulting metric has Ê = 0.
Thus, there are really only 4 − 2 = 2 physical degrees of freedom describing scalar metric
perturbations. Indeed, this is the reason we were able to eliminate B and E in conformal-
Newtonian gauge. One can also take specific linear combinations of metric perturbations
that are invariant under Eqs. (6.17)–(6.18); again there are exactly two independent such
combinations. The most popular choice is that of Bardeen (1980):

�A ≡ A + 1

a

∂

∂η
[a(E′ − B)],

�H ≡ −D + aH(B − E′). (6.19)

In conformal-Newtonian gauge, in which E = B = 0, we have �A = � and �H = −�. These
invariants are very useful: if equations simplify in a particular gauge, then one can do cal-
culations in that gauge, form the gauge-invariant variables, and then turn these into the
perturbations in any other gauge. We will do precisely this in Sect. 7.4.3. In other words,
�A and �H are useful shortcuts for transforming from one gauge to another.

Again, none of the mathematical derivations we just did are specific to the metric;
Eq. (6.13) applies similarly to the energy-momentum tensor with two lower indices, Tμν .
For matter in conformal-Newtonian gauge, the two scalar degrees of freedom that we have
reduced perturbations in Tμν to are the density perturbation δs and the longitudinal veloc-
ity us , for each species s.

Finally, going beyond scalar perturbations, we can already guess what will happen: we
now have an additional degree of freedom in our coordinate transformation, a transverse
vector ξ i in the spatial coordinate transformation. This will allow us to set one of the two
vector metric perturbations Bi or Vi to zero, for example. We thus reduce the vectors from
four to two independent degrees of freedom. And we may also guess, correctly, that small
coordinate transformations of either the scalar or vector type leave the tensor perturbation
hTT

ij unchanged: it is gauge-invariant at linear order. Counting degrees of freedom, this
again makes sense. We started with 10 degrees of freedom in the perturbed metric, but the
coordinate transformation Eq. (6.8) allows us to remove four of them, so that we are left
with six: two each of scalar, vector, and tensor types.
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6.3 The Einstein equations for scalar perturbations
We are now ready to embark on our computation of the Einstein equations at linear order
in perturbations. To begin, we will focus on scalar perturbations and continue to work in
conformal-Newtonian gauge, so that our starting point is

g00(x, t) = −1 − 2�(x, t),

g0i (x, t) = 0,

gij (x, t) = a2(t)δij [1 + 2�(x, t)]. (6.20)

Evaluating the left-hand side of the Einstein equation (3.1) requires three steps:

• Compute the Christoffel symbol, μ
αβ , for the perturbed metric of Eq. (6.20); we have

already done this in Sect 3.3.1.
• From these, form the Ricci tensor, Rμν , using Eq. (3.3).
• Contract the Ricci tensor to form the Ricci scalar, R ≡ gμνRμν .

We will also immediately switch to Fourier space, exchanging spatial derivatives with pow-
ers of ik. We need two independent equations for the two variables �, �. Given that we are
dealing with scalar perturbations, we can already anticipate that the 00 component as well
as the scalar component of the ij Einstein equations will be useful.

6.3.1 Ricci tensor

The Ricci tensor is most easily expressed in terms of the Christoffel symbol we derived in
Sect. 3.3.1. First, consider the time-time component of Eq. (3.3):

R00 = α
00,α − α

0α,0 + α
βαβ

00 − α
β0

β
0α. (6.21)

All of these terms contribute at first order. One simplification comes from considering the
α = 0 part of all these terms. The first and second terms are equal and opposite to each
other as are the last two. So the sum over the index α contributes only when α is spatial. Let
us consider each of the terms one by one.

• The first is

i
00,i = − k2

a2
�, (6.22)

after translating the first line of Eq. (3.56) into Fourier space.
• The second term in Eq. (6.21) is

−i
0i,0 = −3

(
ä

a
− H 2 + �,00

)
(6.23)

using the second line of Eq. (3.56). The factor of 3 in front comes from the implicit sum
in δii .
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• The next term is i
iββ

00. Note that β
00 is first order no matter what β is, so we need

keep only the zeroth-order part of i
iβ . However, the last line of Eq. (3.56) shows that

i
iβ is first-order unless β = 0. So to first-order,

i
iββ

00 = i
i0

0
00

= 3H�,0. (6.24)

• Finally the last term is −i
β0

β
0i . In this case, if β = 0 both  are first-order, so their

product is second-order and can be neglected. Therefore, only spatial β need to be con-
sidered, leading to

−i
β0

β
0i = −i

j0
j

0i

= −3(H 2 + 2H�,0). (6.25)

Collecting these four sets of terms gives

R00 = −3
ä

a
− k2

a2
� − 3�,00 + 3H(�,0 − 2�,0). (6.26)

Note that the zeroth-order term agrees with Eq. (3.6). The space-space part of the Ricci
tensor is left as an exercise. It is

Rij = δij

[(
2a2H 2 + aä

)
(1 + 2� − 2�)

+ a2H(6�,0 − �,0) + a2�,00 + k2�
]
+ kikj (� + �). (6.27)

We can now contract the indices on the Ricci tensor and find the Ricci scalar:

R ≡ gμνRμν = g00R00 + gijRij

= [−1 + 2�]
[
−3

ä

a
− k2

a2
� − 3�,00 + 3H(�,0 − 2�,0)

]

+ 1 − 2�

a2

[
3

{(
2a2H 2 + aä

)
(1 + 2� − 2�)

+ a2H(6�,0 − �,0) + a2�,00 + k2�

}
+ k2(� + �)

]
. (6.28)

First let us check the zeroth-order part of R. Combining terms, we find that it is 6
(
H 2 + ä/a

)
,

in agreement with Eq. (3.9). To get the first-order part, δR, we go through the by-now-
familiar routine of multiplying terms, keeping only those first-order in � and �. This gives

δR = − 6�
ä

a
+ k2

a2
� + 3�,00 − 3H(�,0 − 2�,0)

− 6�

(
2H 2 + ä

a

)
+ 3H(6�,0 − �,0)
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+ 3�,00 + 4
k2�

a2
+ k2�

a2
, (6.29)

where the first line contains the terms from R00 (the second line in Eq. (6.28)) and the last
two lines come from Rij . Combining these leads to

δR = − 12�

(
H 2 + ä

a

)
+ 2k2

a2
� + 6�,00

− 6H(�,0 − 4�,0) + 4
k2�

a2
. (6.30)

6.3.2 Two components of the Einstein equations

We can now derive the evolution equations for � and �, our scalar perturbations to the
Friedmann–Lemaître–Robertson–Walker metric. We have several different options here,
because the Einstein equations

Gμ
ν = 8πGT μ

ν (6.31)

have 10 components and we need only two. All of the other eight components will either
be zero at first-order or redundant.3

The first component we will use is the time-time component. Thus we need to evaluate

G0
0 = g00

[
R00 − 1

2
g00R

]

= (−1 + 2�)R00 − R

2
. (6.32)

Here one of the indices has been raised by multiplying G00 by g00 (recall that the g0i

vanish). This turns out to simplify the energy-momentum tensor (see Sect. 3.4 and Ex-
ercise 3.12) which supplies the right-hand side. Also note that the second line follows from
the first since g00g00 = 1. We have computed the time-time component of the Ricci tensor
(Eq. (6.26)) and the perturbed Ricci scalar (Eq. (6.30)), so the first-order part of the time-
time component of the Einstein tensor is

δG0
0 = − 6�

ä

a
+ k2

a2
� + 3�,00 − 3H(�,0 − 2�,0)

+ 6�

(
H 2 + ä

a

)
− k2

a2
� − 3�,00

+ 3H(�,0 − 4�,0) − 2
k2�

a2
. (6.33)

3
This is true for scalar perturbations. When we come to consider tensor perturbations, some of the other

components will be useful.
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Combining terms leads to

δG0
0 = −6H�,0 + 6�H 2 − 2

k2�

a2
. (6.34)

Einstein’s equation equates G0
0 with 8πGT 0

0 where Tμν is the energy-momentum ten-
sor. To complete our derivation of the first evolution equation for � and �, therefore, we
need to compute the first-order part of the source term, T 0

0. Recall from Sect. 2.3 that −T 0
0

is the energy density of all the particles in the universe, and that the contribution from each
species is an integral over the distribution function. In Ch. 3, we showed that even when
including perturbations, the simple expression of Eq. (2.62) remains valid (i.e. Eq. (3.86)),

T 0
0(x, t) = −

∑
s

gs

∫
d3p

(2π)3
Es(p)fs(p,x, t), (6.35)

where the sum runs over species s, with degeneracy factor gs , distribution function fs , and
energy-momentum relation Es(p) = √

p2 + m2
s . To get the first-order part of the energy-

momentum tensor, we must naturally consider the first-order part of the distribution
functions, i.e. the perturbation variables we defined in Ch. 5 for the photons, neutrinos,
dark matter, and baryons.

This is easiest for the dark matter and baryons, which are non-relativistic so that
Es(p) � ms . Then their contribution to T 0

0 is simply proportional to −mn(t,x), where n

is the number density of baryons and dark matter. We thus have

T 0
0

∣∣∣
s=b,c

= −ρs(1 + δs). (6.36)

For photons, a little more care is required. Using Eq. (5.3), we have

T 0
0

∣∣∣
γ

= −2
∫

d3p

(2π)3
p

[
f (0) − p

∂f (0)

∂p
�

]
. (6.37)

The first term here is just the zeroth-order photon energy density, ργ . To reduce the second
term, we first do the angular integral, which picks out the monopole �0 from �. Then, we
do the integral over p by parts. This changes the sign and introduces a factor of 4 since
∂p4/∂p = 4p3, leading to

T 0
0

∣∣∣
γ

= −ργ [1 + 4�0]. (6.38)

The factor of 4 here is obvious in retrospect. The perturbation variable � is the fractional
temperature change, while the energy-momentum tensor is interested in the perturbed
energy density, δργ . We should have expected that, since ργ ∝ T 4, δργ /ργ = 4δT /T . Be
warned, however, that the literature is split between those who define � as δργ /ργ and
those who opt for the convention we use here, which then differ by a factor of 4. Finally, the
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first-order contribution from massless neutrinos is identical in form to the photon case,

T 0
0

∣∣∣
ν,mν=0

= −ρν[1 + 4N0]. (6.39)

For neutrinos with mass, the integral over momentum can no longer be solved in closed
form. So, for our analytic solutions in later chapters we will neglect neutrino masses, and
we will discuss the impact of neutrino masses based on the numerical solution. Finally, we
continue to neglect dark energy perturbations as discussed at the beginning of Ch. 5.

Returning to Einstein’s equation, we equate Eq. (6.34) with 8πG times the first-order
part of the time-time component of the energy-momentum tensor. Dividing both sides by
2 leads to

−3H�,0 + 3�H 2 − k2�

a2
= −4πG

[
ρcδc + ρbδb + 4ργ �0 + 4ρνN0

]
. (6.40)

It is again useful to write the equation in terms of conformal time. This introduces an extra
factor of 1/a every time a time derivative appears, so

k2� + 3
a′

a

(
�′ − �

a′

a

)
= 4πGa2[ρcδc + ρbδb + 4ργ �0 + 4ρνN0]. (6.41)

This is our first evolution equation for � and �. In the limit of no expansion (a = constant),
Eq. (6.41) reduces to the ordinary Poisson equation for gravity (in Fourier space): the left-
hand side is −∇2� while the right-hand side is 4πGa2δρ. The terms proportional to a′
account for expansion and are typically important for modes with physical wavelengths
(∼ a/k) comparable to, or larger than, the Hubble radius, H−1. We need this general-
relativistic expression when we consider the evolution of perturbations, because all modes
of interest today once had wavelengths larger than the Hubble radius. More on this in Ch. 7.

We now need a second evolution equation for � and �. Let us focus on the spatial part
of Gμ

ν ,

Gi
j = gik

[
Rkj − gkj

2
R

]
= δik(1 − 2�)

a2
Rkj − δi

j

2
R. (6.42)

From Eq. (6.27), we see that most of the terms in Rkj are proportional to δkj . When con-
tracted with δik this will lead to a host of terms proportional to δij , in addition to the last
term here, the one proportional to R. Therefore, Eq. (6.42) can be written as

Gi
j = F(�,�)δi

j + kikj (� + �)

a2
(6.43)

where F(�,�) has close to a dozen terms which we would rather not write down. Since
all of these terms are proportional to δi

j they all contribute to the trace of Gi
j . To avoid

dealing with these terms, consider the longitudinal, traceless part of Gi
j , which can be

extracted by contracting Gi
j with k̂i k̂

j − (1/3)δ
j
i . This procedure picks out the piece which
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is longitudinal and traceless, and only that part (Exercise 6.1). We are left with

(
k̂i k̂

j − 1

3
δ
j
i

)
Gi

j =
(

k̂i k̂
j − 1

3
δ
j
i

)(
kikj (� + �)

a2

)
= 2

3a2
k2(� + �). (6.44)

This is to be equated with the longitudinal, traceless part of the energy-momentum
tensor, extracted in the same fashion. From Sect. 3.4, we have

T i
j (x, t) =

∑
s

gs

∫
d3p

(2π)3

pipj

Es(p)
fs(x,p, t). (6.45)

Acting on this with the projection operator yields

(
k̂i k̂

j − 1

3
δ
j
i

)
T i

j =
∑

s

gs

∫
d3p

(2π)3

p2μ2 − (1/3)p2

Es(p)
fs(p), (6.46)

using the definition for μ via k̂ · p = μp. We can immediately recognize the combina-
tion μ2 − 1/3 as proportional to the second Legendre polynomial, more precisely equal to
(2/3)P2(μ). Therefore, the integral picks out the quadrupole part of the distribution. Since
the zeroth-order part of the distribution function has no quadrupole, the source term is
first order and nonzero only for photons and neutrinos, i.e. it is proportional to �2 and N2.
The integral in Eq. (6.46) for photons is

−2
∫

dpp2

2π2
p2 ∂f (0)

∂p

∫ 1

−1

dμ

2

2P2(μ)

3
�(μ) = 2

2�2

3

∫
dpp2

2π2
p2 ∂f (0)

∂p

= −8

3
ργ �2 (6.47)

where the first equality follows from the definition of the quadrupole and the second from
an integration by parts. This component of the energy-momentum tensor is called the
anisotropic stress. Nonrelativistic particles, such as baryons and dark matter, do not con-
tribute to the anisotropic stress, as the factor of p/Es(p) in Eq. (6.45) strongly suppresses
their contribution.

For the second Einstein equation, we therefore equate Eq. (6.44) with 8πG times the
photon and (massless) neutrino anisotropic stresses:

k2(� + �) = −32πGa2[ργ �2 + ρνN2]. (6.48)

This is an extremely important and useful result: it says that the two gravitational poten-
tials are equal and opposite unless the photons or neutrinos have appreciable quadrupole
moments. In practice, the photon quadrupole contributes little to this sum, because it is
very small during the time when the photons have appreciable energy density (due to tight
coupling; recall the argument after Eq. (5.22)). Only the collisionless neutrinos have an ap-
preciable quadrupole moment early on when radiation dominates the universe.
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Eq. (6.41) and Eq. (6.48) are the desired two Einstein equations for the metric perturba-
tions �, �. A note to aficionados of differential equations: both equations do not contain
any second time derivatives acting on �, �: they are constraint equations. That is, �, �

do not represent propagating degrees of freedom (neither does the familiar gravitational
potential in Newtonian theory). This is a key difference from the tensor modes we turn to
next.

6.4 Tensor perturbations
Until now, we have derived equations applying to the scalar perturbations of the homo-
geneous FLRW universe. This focus is reasonable: as we have seen, scalar perturbations to
the metric are sourced by density fluctuations and vice versa. For the most part, the den-
sity fluctuations that form the structure of the universe are our primary interest. Moreover,
thanks to the decomposition theorem it is perfectly fine to study scalar perturbations in
isolation.

Nonetheless, we have seen in Sect. 6.1 that there are other types of gravitational pertur-
bations, in particular tensor perturbations. In the next chapter we will see that the leading
theory for the origin of scalar perturbations—inflation—also predicts tensor perturba-
tions. Independently of cosmology, though, gravitational waves have emerged as a pow-
erful probe of diverse astrophysical phenomena in the aftermath of their first detection by
the LIGO collaboration. The wavelengths that LIGO is sensitive to are of order hundreds of
kilometers, while we will be considering wavelengths of thousands of Mpc. However, the
fundamental equation that governs their production and propagation is identical and we
are now all set to derive that equation.

The most promising way to search for cosmological gravitational waves is through the
distortions they induce in the CMB, especially on large scales. Sprinkled throughout the
book, therefore, are exercises relating to tensor perturbations. The third type, vector per-
turbations, are also covered in the exercises. They are less interesting, since they are not
sourced in appreciable amounts in most cosmological scenarios and, in any case, decay
rapidly after they are produced. The tools needed to study vector and tensor modes are
precisely those we crafted when studying scalar perturbations.

Tensor perturbations can be characterized by a metric perturbation (see Eq. (6.1)) with
h00 = −1, h0i = 0, and

δgij (t,x) = a2(t)hTT
ij (t,x) , hTT

ij =
⎛
⎝ h+ h× 0

h× −h+ 0
0 0 0

⎞
⎠ . (6.49)

That is, the perturbations to the metric are described by two functions, h+ and h×, assumed
small. For definiteness, we have chosen the perturbations to be in the x–y plane. This cor-
responds to an implicit choice of axes; in particular, it corresponds to choosing the z-axis to
be in the direction of the wavevector, k. More generally, h+ and h× are two components of
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a divergenceless, traceless, symmetric tensor. Divergenceless means that kihTT
ij = kjhTT

ij = 0.4

This is clearly satisfied by Eq. (6.49) since there are no components in the k̂ = êz direction.
Tracelessness is also satisfied since the sum of the perturbations along the diagonal van-
ishes. For most of the derivation, we will only rely on the transverse and traceless nature of
hTT

ij , and specialize to the case k̂ = êz only at the very end.
Beyond the math, we will see shortly that the tensor-mode contribution to the metric

Eq. (6.49) has distinctive geometric features. First though, with the metric written down,
we can blast away and derive the Einstein equations. Once again, the derivation proceeds
in two steps: (i) Christoffel symbol, and (ii) Ricci and Einstein tensors.

6.4.1 Christoffel symbol for tensor perturbations

First consider 0
αβ . The metric we are considering in Eq. (6.49) has constant g00 and van-

ishing g0i . Recall that the Christoffel symbol is a sum of derivatives of the metric. The only
terms that will be nonzero are those that involve derivatives of the spatial part of the met-
ric, gij,α. Therefore, we can immediately argue that

0
00 = 0

i0 = 0. (6.50)

The term with two lower spatial indices is

0
ij = −g00

2
gij,0 = 1

2
gij,0. (6.51)

Since gij = a2(δij + hTT
ij ), we have

gij,0 = 2Hgij + a2hTT
ij,0. (6.52)

The first nonzero Christoffel symbol is therefore

0
ij = Hgij + a2hTT

ij,0

2
. (6.53)

When both lower indices on  are 0, the Christoffel symbol vanishes. The two remaining
components are i

0j and i
jk . The former is

i
0j = gik

2
gjk,0. (6.54)

The time derivative of gjk acts on both the scale factor and on the perturbations h+,×, as in
Eq. (6.52), so

i
0j = gik

2

[
2Hgjk + a2hTT

jk,0

]
. (6.55)

4
The divergence parts of hij are contained in the scalar and vector perturbations D, E, Vi in Eq. (6.6).
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But gikgjk = δij , so the first term here is simply the background contribution, δijH . For
the second, we can set gjk = δjk/a

2 (i.e., neglect first-order terms) since it multiplies the
first-order hTT

jk . So,

i
0j = Hδij + 1

2
hTT

ij,0, (6.56)

where we have used the fact that hTT
ij is symmetric.

The last Christoffel symbol we need is i
jk . In Exercise 6.8 you will show that

i
jk = i

2

[
kkh

TT
ij + kjh

TT
ik − kih

TT
jk

]
. (6.57)

6.4.2 Ricci tensor for tensor perturbations

Following the same steps as in the scalar perturbation case, we now combine these
Christoffel symbols to form the Ricci tensor. First we compute the time-time component
R00 of the Ricci tensor. Actually, we do not have to compute it explicitly: since R00 has no
spatial index (it is a 3-scalar), we know that the indices of hTT

ij have to be contracted with

other indices inside R00. Our only options are δkl and ki ; the indices could also be con-
tracted with another factor of hTT

kl , but that would result in a second-order term. Now, since
hTT

ij is trace-free and divergenceless, all contractions with the Kronecker delta or ki vanish.
This means that R00 cannot contain a tensor-mode contribution at linear order; this is a
manifestation of the decomposition theorem. In fact, the same holds for the Ricci scalar R.

The spatial components of the Ricci tensor do depend on the tensor perturbation vari-
ables. We have

Rij = α
ij,α − α

iα,j + α
αββ

ij − α
βj

β
iα. (6.58)

Let us consider the first two terms together. Expanding out leads to

α
ij,α − α

iα,j = 0
ij,0 + k

ij,k − k
ik,j (6.59)

since α = 0 does not contribute in α
iα,j because of Eq. (6.50). The lengthiest term here

is the first, which involves multiple time derivatives. Let us postpone its calculation by
recalling that 0

ij = gij,0/2 so that the first term can be written in shorthand as gij,00/2.
The last term in Eq. (6.59) vanishes since k

ik = 0 for tensor perturbations. Combining the
other terms then leads to

α
ij,α − α

iα,j = gij,00

2
+ 1

2

[
−kikkh

TT
jk − kj kkh

TT
ik + k2hTT

ij

]
. (6.60)

The first two terms in brackets vanish due to the transverse nature of hTT
ij . Therefore,

α
ij.α − α

iα,j = gij,00

2
+ k2

2
hTT

ij . (6.61)
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The third term in Eq. (6.58), α
αββ

ij , is nonzero only when the index α is spatial, so

α
αββ

ij = k
k0

0
ij + k

kl
l
ij . (6.62)

But each of the Christoffel symbol in the second term here are of first order, so their prod-
uct vanishes. In the first term, the sum over k makes the first-order terms go away, so k

k0

is purely of zeroth order, 3H . Therefore,

α
αββ

ij = 3

2
Hgij,0. (6.63)

The final term in Eq. (6.58) will be left as an exercise; it is

α
βj

β
iα = 2H 2gij + 2a2HhTT

ij,0. (6.64)

We can now combine all four terms in Eq. (6.58) to get

Rij = gij,00

2
+ k2

2
hTT

ij + 3

2
Hgij,0 − 2H 2gij − 2a2HhTT

ij,0 . (6.65)

We now need to expand out the time derivatives of the metric. Using Eq. (6.52), one finds

gij,00 = 2gij

(
ä

a
+ H 2

)
+ 4a2HhTT

ij,0 + a2hTT
ij,00. (6.66)

Therefore the Ricci tensor is

Rij = gij

(
ä

a
+ 2H 2

)
+ 3

2
a2HhTT

ij,0 + a2
hTT

ij,00

2
+ k2

2
hTT

ij . (6.67)

Again we see that we have successfully recaptured the zeroth-order part of the Ricci tensor.
Above, we argued that the Ricci scalar,

R = g00R00 + gijRij (6.68)

does not receive any contribution from hTT
ij at linear order. Now, using Eq. (6.67), you can

easily convince yourself of this fact. We are ready then to move on to the Einstein equa-
tions. As expected from Sect. 6.1, we will see that the first-order parts of the Einstein tensor
we just computed do not couple to the scalar perturbations.

6.4.3 Einstein equations for tensor perturbations

Now let us read off the perturbations to the Einstein tensor induced by tensor modes. Since
the Ricci scalar is unperturbed by tensor perturbations, the first-order Einstein tensor is
simply

δGi
j = δRi

j . (6.69)
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To get Ri
j , we contract gikRkj , using the Ricci tensor we computed in Eq. (6.67). The first

term, proportional to the contraction of gikgkj = δi
j , has no first-order piece; the remaining

terms are explicitly of first order in hTT, so we can set gik = δik/a2, leading to

δGi
j = δik

[
3

2
HhTT

kj,0 + hTT
kj,00

2
+ k2

2a2
hTT

kj

]
. (6.70)

Finally, we specialize to the case of k̂ = êz to derive a set of evolution equations for the
tensor variables, h+ and h× (the final equation will be independent of this convenience
choice).

To derive an equation for h+, let us consider the difference between the 1
1 and 2

2 com-
ponents of the Einstein tensor. The Einstein tensor in Eq. (6.70) is proportional to hTT

ij and

its derivatives. Since hTT
11 = −hTT

22 = h+, δG1
1 is equal and opposite to δG2

2. Therefore,

δG1
1 − δG2

2 = 3Hh+,0 + h+,00 + k2h+
a2

. (6.71)

Now we change to conformal time so that h+,0 = h′+/a and h+,00 = h′′+/a2 − (a′/a3)h′+· Then,

a2[δG1
1 − δG2

2] = h′′+ + 2
a′

a
h′+ + k2h+. (6.72)

The right-hand side of this component of Einstein’s equations is zero in the absence of
anisotropic stress (Exercise 6.9). This means that gravitational waves are not produced by
the perturbations to matter that we derived in Ch. 5. Anisotropies in the radiation compo-
nents (photons and neutrinos) do have an anisotropic stress, given by their quadrupole.
As we argued in the previous section, for photons the quadrupole is suppressed during the
radiation-dominated era, so their source term can be ignored. The most relevant quantity
on the right-hand side of the tensor Einstein equations then is the neutrino anisotropic
stress. This does provide a source term for gravitational waves, which leads to a damping
of tensor modes on small scales. We neglect it here since we will focus on large-scale tensor
modes throughout the rest of the book.

Finally, h× obeys the same equation as h+ (Exercise 6.11), so the tensor modes are gov-
erned by

h′′
t + 2

a′

a
h′

t + k2ht = 0 (6.73)

where t = +,×. Eq. (6.73) is a wave equation, and the corresponding solutions are called
gravitational waves. For example, if we neglect the expansion of the universe so that the
damping term in Eq. (6.73) vanishes, we immediately see that the two solutions are ht ∝
e±ikη. In real space, then, the perturbation to the metric is of the form

ht (x, η) =
∫

d3k

(2π)3
eik·x [

A(k)eikη + B(k)e−ikη
]

(no expansion). (6.74)
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FIGURE 6.1 Illustration of the perturbed spacetime due to a propagating gravitational wave (tensor mode); the
k-vector is along the z axis as in Eq. (6.49), which comes out of the page. The upper panel shows the time evolution
of the wave amplitude (neglecting the damping due to the expansion within one wave period), while the lower
panel shows the stretching and compression of spacetime perpendicular to the wave’s direction of propagation at
the different points in time during a single wave cycle.

The two modes here correspond to waves traveling in the ±z direction at the speed of light.
The spacetime distortions induced by these modes are illustrated in the lower panel of
Fig. 6.1. Notice the elliptical pattern in the plane perpendicular to the wavevector (lower
panel). This asymmetry is a fundamental distinction between tensor modes and scalar
perturbations (see also Exercise 6.14); the spacetime distortion induced by scalar pertur-
bations is always azimuthally symmetric around the wavevector.

Eq. (6.73) is the generalization of the gravitational-wave equation to an expanding uni-
verse. Exercise 6.12 shows that if the universe is purely radiation or matter dominated,
exact analytic solutions can be obtained. These are oscillatory, like the simple ones in
Eq. (6.74), but also decay in amplitude. Fig. 6.2 shows the evolution of ht for four modes
of different wavelengths. Each mode remains constant at early times when its wavelength
is larger than the horizon kη < 1. We will see in the next chapter what the term “larger
than the horizon” means precisely; for now, simply notice that if we set k → 0 in Eq. (6.73),
ht = constant is a solution. Once the wavelength of the mode becomes comparable to
the horizon, its amplitude oscillates with a frequency k/2π and begins to decay. In par-
ticular, the decay is such (∝ 1/a) that the energy density in gravitational waves redshifts
as a−4, exactly like we expect for any form of radiation. Modes with a given k are said
to enter the horizon when kη = 1. Since the horizon entry of small-scale modes (e.g.,
k/H0 = 1000 shown in Fig. 6.2) happens earlier, they have decayed more than large-scale
tensor modes.



Chapter 6 • The inhomogeneous universe: gravity 153

FIGURE 6.2 Evolution of gravitational waves with different wavenumbers as a function of conformal time, normal-
ized to their initial super-horizon amplitude. Each mode begins to oscillate and decay as its wavelength becomes
smaller than the horizon, which corresponds to the epoch kη = 1. Smaller-scale (higher k) modes decay earlier.

6.4.4 Verifying the decomposition theorem

Now that we have computed the contributions to the Einstein tensor Gμν from scalars and
tensors, we can demonstrate the decomposition of these two types of perturbations. To do
this, remember that we obtained the scalar equations by considering the two components
of the Einstein tensor:

G0
0;

(
k̂i k̂j − 1

3
δij

)
Gi

j . (6.75)

Inserting these components into Einstein’s equations led to Eq. (6.41) and Eq. (6.48). If we
can show that tensor perturbations do not contribute to these two components, then we
will have convinced ourselves of at least part of the decomposition theorem, namely that
the equations governing scalar perturbations are not affected by tensors.

Tensor perturbations do not contribute to G0
0, for G0

0 depends on R00 and R, and
we have seen that both of these do not depend on h+ or h×. Now let us show that
(k̂i k̂j − δij /3)Gi

j also does not pick up a contribution from tensor perturbations. Multiply
Eq. (6.70) by the projection operator:(

k̂i k̂j − 1

3
δij

)
δGi

j =
(

k̂i k̂j − 1

3
δij

)

×
[

3

2
HhTT

ij,0 + hTT
ij,00

2
+ k2

2a2
hTT

ij

]
. (6.76)

All the terms on the right-hand side are zero: they either involve contractions such as k̂ihTT
ij

(and time derivatives thereof), which vanish thanks to transversality, or the trace of hTT
ij ,

which vanishes since hTT
ij is trace-free. The scalar equations we derived in the previous

section are therefore unchanged by the presence of tensor modes. This is a manifestation
of the decomposition theorem.
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6.5 Summary
The Einstein equations relate perturbations in the metric to perturbations in the mat-
ter and radiation. We can decompose perturbations according to their behavior under
spatial rotations: the scalar–vector–tensor–decomposition. Scalar, vector, and tensor per-
turbations are decoupled: each evolves independently of the others at linear order. Taking
two components of the Einstein equations, we found equations for the evolution of the
two functions that describe scalar metric perturbations, � and �. As for the Boltzmann
equations of the previous chapter, it is easiest to write these equations in Fourier space. Re-
calling our convention of dropping the tilde on Fourier-transformed variables (Eq. (5.29)),
we can write

k2� + 3
a′

a

(
�′ − �

a′

a

)
= 4πGa2[ρmδm + 4ρr�r,0] (6.77)

k2(� + �) = −32πGa2ρr�r,2. (6.78)

Here, the subscript m includes all matter, such as baryons and dark matter, and the sub-
script r all radiation, such as neutrinos and photons. More precisely,

ρmδm ≡ ρcδc + ρbδb; ρr�r,0 ≡ ργ �0 + ρνN0;
ρmum ≡ ρcuc + ρbub; ρr�r,1 ≡ ργ �1 + ρνN1. (6.79)

The other components of the Einstein equations are either zero or redundant; they add
no new information about the evolution of � and � (this is similar to the case of the ho-
mogeneous universe, where all Einstein equations led to the Friedmann equations). An
example of redundancy is the time-space component, which you can derive in Exercise 6.6.
At times, though, one form of the evolution equation will be more useful than another. For
example, one combination (Exercise 6.7) of these equations leads to an algebraic equation
for the potential,

k2� = 4πGa2
[
ρmδm + 4ρr�r,0 + 3aH

k
(iρmum + 4ρr�r,1)

]
. (6.80)

Other components of Einstein’s equation contain information not about the scalar per-
turbations � and �, but about vector and tensor perturbations. While vector modes decay
rapidly if they are not sourced, tensor modes are important as they describe gravitational
waves. We will see in Ch. 7 that inflation also produces tensor perturbations, so it is impor-
tant to know what the Einstein equations say about their evolution. We showed that there
are two functions that characterize tensor perturbations, h+ and h×; each of these evolves
independently and satisfies

h′′
t + 2

a′

a
h′

t + k2ht = 0 (6.81)

where t stands for +, ×. In an expanding universe, the amplitude of a gravitational wave
described by Eq. (6.81) falls off once the mode enters the horizon.

There is excellent literature that treats the issues of gauge choices and the decomposi-
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tion theorem in much more detail than we have here. Cosmological Inflation and Large
Scale Structure (Liddle and Lyth, 2000) has a very nice treatment which, among other
virtues, explains the physics of gauge choices. Two excellent, classic review articles on
these topics are Mukhanov et al. (1992) and Kodama and Sasaki (1984). Finally, the sem-
inal Bardeen (1980) article on gauge-invariant variables is remarkable for its clarity and
conciseness.

Exercises
6.1 Consider a 3 × 3 tensor with Fourier-space components Gij (k) = (k̂i k̂j − δij /3)GL(k).

Show that this form is traceless and satisfies εijkGkl,j l = 0 in real space, where εijk is
the Levi-Civita symbol, so it is the proper form for the longitudinal component.

6.2 Derive the transformations in the metric components given by Eq. (6.18). Show that
�A and �H do not change under a general coordinate transformation.

6.3 Derive Eq. (6.10) at linear order in perturbations. Use the fact that both δφ and the
shift vector ξμ are first order in perturbations.

6.4 Derive the Christoffel symbol, i
μν , given in Eq. (3.56). When doing this, you will

need gij ; show that gij = δij (1 − 2�)/a2.
6.5 Show that Rij is given by Eq. (6.27).
6.6 Compute the time-space component of the Einstein equations. Show that, in Fourier

space, the relevant component of the Einstein tensor is

G0
i = 2iki

(
�′

a
− H�

)
. (6.82)

Combine with the energy-momentum tensor given in Eq. (3.86) to show that

�′ − aH� = 4πGa2

ik
[ρcuc + ρbub − 4iργ �1 − 4iρνN1]. (6.83)

Notice that the integral over the distribution function in T 0
i is already of first order,

so you can neglect �, � in the prefactor in Eq. (3.86). The time-space component of
Einstein’s equations adds no new information once we already have the two equa-
tions derived in the text. Deciding which two to use is a matter of convenience.

6.7 Combine the time-time equation (6.41) with the time-space equation of Exercise 6.6
to obtain the algebraic (i.e., no time derivatives) equation for the potential given in
Eq. (6.80). Show that this reduces to Poisson’s equation, with the appropriate fac-
tors of a, when the wavelength of the perturbation is much smaller than the horizon
(k/aH 
 1), i.e. in the “Newtonian limit.”

6.8 Fill in the blanks in the derivation of the tensor equation.
(a) Show that i

jk is given by Eq. (6.57) in the presence of tensor perturbations.
(b) Show that the last term in Eq. (6.58) is given by Eq. (6.64).

6.9 We defined the perturbation to the photon distribution function via Eq. (5.2). Show
that, if � depends only on μ, the cosine of the angle between k̂ and p̂, then T 1

1 −
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T 2
2 vanishes if we choose k̂ to lie along the z-axis. This is indeed the dependence

we have been dealing with so far. This is yet another aspect of the decomposition
theorem: the terms that source the scalar perturbations (and are sourced by them)
do not affect tensor perturbations.

6.10 Show that scalar perturbations (� and �) do not contribute to either δG1
1 − δG2

2 or
to δG1

2 if k̂ is along the z-axis. This completes the demonstration of the decomposi-
tion theorem for scalars and tensors.

6.11 Use the 1
2 component of the Einstein equations to show that h× obeys the same

equation as does h+.
6.12 Solve the wave equation (6.73) if the universe is purely matter dominated. Do the

same for the radiation-dominated case.
6.13 Define the transfer function for gravitational-wave evolution as

T (k, η) ≡ ht (k, η)

ht (k, η = 0)

(
kη

3j1(kη)

)
. (6.84)

You might recognize the term in parentheses as the inverse of the matter-dominated
solution you derived in Exercise 6.12. Solve Eq. (6.73) numerically in the fiducial cos-
mology and compute the transfer function at η = η0.

6.14 Derive the equation for the photon distribution function in the presence of tensor
perturbations given by Eq. (6.49). Unlike scalar perturbations, tensor perturbations
induce an azimuthal dependence in �l , so we need to decompose the anisotropy
due to tensors into

�T(k,μ,φ) = �T+(k,μ)(1 − μ2) cos(2φ) + �T×(k,μ)(1 − μ2) sin(2φ). (6.85)

Show that both the + and the × component satisfy

d�T
t

dη
+ ikμ�T

t + 1

2
ht

′ = τ ′
[
�T

t − 1

10
�T

t,0 − 1

7
�T

t,2 − 3

70
�T

t,4

]
(6.86)

where t stands for either × or +, and the moments �T
t,l are defined in analogy to the

scalar moments in Eq. (5.66).
6.15 Consider vector perturbations to the metric. Specializing to k̂ = êz, these can be de-

scribed by two function hxz and hyz where again only the spatial part of the metric
is perturbed (recall from Sect. 6.2 that we can use the freedom of gauge choice to
eliminate one of the two transverse vectors in the metric, in this case Bi). So, hij is

hV
ij =

⎛
⎝ 0 0 hxz

0 0 hyz

hxz hyz 0

⎞
⎠ . (6.87)

Relate hxz, hyz to Vi , and show that Vi is transverse. Then, show that hxz and hyz do
not affect any of the equations we have derived so far for scalar or tensor evolution:
Eq. (6.41), Eq. (6.48), and Eq. (6.73)—yet another aspect of the decomposition theo-
rem.



7
Initial conditions

In previous chapters, with the goal of predicting the evolution of structure in the universe
in mind, we have derived the equations governing perturbations around a smooth back-
ground. Before we start solving these equations though, we need to know the initial condi-
tions. This quest for initial conditions leads to an entirely new realm of physics, the theory
of inflation. Inflation was introduced (Guth, 1981; Sato, 1981; Linde, 1982; Starobinsky,
1982; Albrecht and Steinhardt, 1982) partly to explain how regions that could not have
been in causal contact with each other (Fig. 7.1) have the same temperature—in other
words, why the universe we live in is so homogeneous on large scales. It was soon real-
ized that the very mechanism that explains the uniformity of the temperature can also
account for the origin of perturbations in the universe. Therefore, understanding inflation
will provide us with the initial conditions we need in order to solve the system of Einstein
and Boltzmann equations. It is very difficult to test a theory like inflation directly, since the
underlying physics might only show itself on energy scales well beyond the reach of accel-
erators. Nonetheless, it is by far the most plausible explanation for the seeds of structure,
and will be put to increasingly stringent tests by the upcoming generation of CMB and
large-scale structure surveys. One set of generic predictions of the inflation scenario has
been verified experimentally: that the initial conditions for structure are Gaussian, adia-
batic and nearly scale-invariant with a spectral index slightly less than one. We will learn
what this means precisely in this chapter.

7.1 The horizon problem and a solution
The Einstein–Boltzmann system of equations we have derived is no different from most
other problems in physics in that we need initial conditions in order to solve it—in our
case, the initial conditions for the entire universe. Once we have these initial conditions,
the future evolution is completely determined. Finally, then, it is time to confront a prob-
lem that we have politely ignored throughout this book so far. This problem, usually called
the horizon problem, is: why is the universe so smooth and so big?

We have seen in Ch. 1 that, at an age of 380,000 years, the observable universe was very
uniform, to roughly 1 part in 105 (the typical amplitude of the temperature fluctuations in
the CMB); moreover, the ingredients we can observe directly, photons and baryons, were
extremely close to thermal. This clearly made our life much easier, for we could work in
the limit of small perturbations around an FLRW universe. But why is this so? A generic
patch of spacetime the size of the observable universe, i.e. a patch where we randomly
choose the initial densities of matter and radiation at each point, would be highly inho-
mogeneous. The first possible explanation that comes to mind is thermalization: if we start
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FIGURE 7.1 The horizon problem illustrated in a diagram of η vs. x, with the two other spatial dimensions (y, z)

suppressed. We as observers (top center) detect light signals coming from our past light cone (diagonal solid lines).
The observed CMB is emitted when this cone intersects the last-scattering surface η = η∗ (horizontal dashed line),
and is found to be uniform. Only signals from within the shaded regions below each point on the last-scattering
surface could have influenced the CMB photons emitted from x∗,1 and x∗,2. Since these regions do not overlap, no
form of causal physics could have allowed them to adjust to the same temperature if they started from different
temperatures. This is because the comoving horizon η∗ at the time the CMB was emitted is much smaller than our
comoving horizon now, η0.

with a very inhomogeneous universe and let it be in thermal contact, then eventually the
entire universe will equilibrate at the same, shared temperature, just as if we brought many
containers with gas at various temperatures in contact with each other. In our universe,
this solution does not seem to work, because different parts of the universe observed in
the map of the CMB were so far apart at the time of recombination that they were not in
causal contact with one another (Fig. 7.1): that is, even light could not have traveled from
one region to another. Therefore, they were seemingly never able to thermalize.

We can quantify the extent of this problem by computing the comoving horizon η∗ at
recombination: the comoving distance light could have traveled from η = 0 to η∗ (recall
the discussion after Eq. (2.35)). We then compare that to the comoving distance separating
two different patches that we see on the CMB sky today. In the concordance cosmolog-
ical model, and assuming that the universe contained only matter and radiation all the
way back to t = 0, we find that the comoving horizon at recombination is η∗ = η(a∗) ≈
281h−1 Mpc. The comoving distance between patches on the CMB sky today separated by
an angle θ is (for small θ)

χ(θ) � χ∗θ = (η0 − η∗)θ. (7.1)

Now, η0 ≈ 14200h−1 Mpc, so that two patches in the CMB separated by

θ ≥ η∗
η0 − η∗

≈ 1.2◦ (7.2)
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cannot have been in thermal contact at recombination. The large factor between η0 and
η∗ exacerbates the problem, which is therefore quite a bit more severe than the cartoon
in Fig. 7.1 would suggest (where η0/η∗ is of order 3, rather than the factor 50 of the real
universe).

To gain insight into an assumption that underlies this problem, it is useful to rewrite
Eq. (2.35) as an integral over the scale factor. Changing integration variables from t ′ to lna′
leads to

η(a) =
∫ a

0
d lna′ 1

a′H(a′)
. (7.3)

Thus, the comoving horizon η is the logarithmic integral of the comoving Hubble radius,
1/aH . The comoving Hubble radius is the approximate distance over which light can travel
in the course of one expansion time, i.e., the time in which the scale factor increases by
a factor of e. It provides a yardstick to assess whether particles can, at the given epoch,
communicate within one e-fold of expansion. If the universe is dominated by either matter
or radiation as we assumed, then H scales as either a−3/2 or a−2 and the comoving Hubble
radius is always increasing. Therefore the largest contribution to η comes from the most
recent epochs.

This points the way to a solution: if there was an early epoch during which the co-
moving Hubble radius decreased, then η∗ may have received large contributions from very
early times when the Hubble radius was much larger. In such a case, the size of a region
that is able to thermalize early on could have been much larger than we naively com-
puted, and much larger than our current comoving horizon. Now, an epoch during which
(aH)−1 = ȧ−1 decreases corresponds to one of increasing ȧ, or ä > 0: the condition for an
accelerated expansion. So, an epoch of early acceleration would solve the horizon prob-
lem. This postulated epoch is called inflation.

Consider then Fig. 7.2, which shows the comoving Hubble radius as a function of scale
factor. The right half of this plot tells us that, going back in time, the comoving scales of
interest to us were much larger than 1/aH , and more so as you go back further in time. The
left-hand side of the plot shows that an inflationary epoch reduces the comoving Hubble
radius dramatically. At some early point during inflation, the comoving Hubble radius was
very large, larger than any scale of cosmological interest today: all scales of interest were
well within the horizon.

Fig. 7.3 gives a different view of how inflation affects the causality argument. Both pan-
els show the same physical scale. The left panel shows the comoving grid at some point
during inflation, with the circle indicating the size of the comoving Hubble radius at that
time. All particles (depicted by dots) within that region are in causal contact with one an-
other, and therefore that entire region could have thermalized. The right panel shows what
happens after another factor ∼ 8 of expansion (let us suppose this is at the end of inflation).
The comoving grid has expanded, and now the comoving Hubble radius covers a factor of
8 fewer cells (in each dimension) on the comoving grid. It appears that only a small region
on the grid is within 1/aH , i.e. within causal contact now, but in fact we know from the
left panel that a much larger region was in causal contact before, during earlier stages of
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FIGURE 7.2 The comoving Hubble radius as a function of scale factor. The main epochs are clearly visible: inflation
at early times (with H = Hinf constant), transitioning to radiation domination around a ∼ ae, and finally matter dom-
ination at a � 10−4. Dark energy domination is barely visible as a further flattening at a � 0.5. Scales of cosmological
interest (horizontal shaded band) were larger than the Hubble radius when a � 10−5. They later entered the Hubble
radius where we are able to observe them. Very early on during inflation, however, all scales of interest were smaller
than the Hubble radius and therefore within causal contact. The evolution of the Hubble radius around the end of
inflation (at ae) is uncertain, as indicated by the dark shaded band. However, since all modes of interest were far
outside the horizon at that time, they are largely oblivious to the details of that epoch.

inflation. That is, after inflation, the patch of the universe that has been in causal contact
is much larger than the comoving Hubble radius.

Yet another way to think about this is that inflation empties out the universe. As the uni-
verse expands exponentially, the particles in it get diluted accordingly. This is clear from
Fig. 7.3: there are much fewer particles in a given physical volume in the right panel com-
pared to the left. Let us assume that there is a substance that is keeping the Hubble rate
H = Hinf approximately constant during inflation, a fact that is supported by the data, as
we will see later. In that case, since d lna = Hdt , the scale factor evolves as

a(t) = aee
Hinf(t−te) (t < te) (7.4)

where te is the time at the end of inflation. As inflation proceeds, the universe becomes
dominated by the smooth substance that is driving the acceleration, turning a chaotic, in-
homogeneous patch of the universe into a much larger space that is completely smooth
and empty. Imagine such a patch of the universe near the beginning of inflation, as de-
picted in the bottom left of Fig. 7.4. Once inflation sets in, anything that was in this
patch—heavy particles, massless particles, magnetic monopoles, and so forth—soon be-
comes irrelevant, because it is rapidly diluted; the number density of massive particles
evolves as n(t) ∝ a−3 ∝ exp(−3Hinft), so it drops exponentially fast, while the energy den-
sity driving inflation remains approximately constant. This is illustrated in the upper panel
in Fig. 7.4. Along with the components of ordinary matter and radiation, perturbations to
the spacetime are also quickly smoothed out. This is not unlike what happens when inflat-
ing a balloon: initially wrinkly, its surface becomes increasingly smooth as it is inflated (see
also Exercise 7.1).
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FIGURE 7.3 Particles on the comoving grid during (left) and at the end of inflation (right). Both panels use the same
physical (not comoving) scale. The dots illustrate particle positions, while the circles show the size of the comoving
Hubble radius. At some time during inflation, the comoving Hubble radius was quite large, encompassing dozens of
cells on the grid. After inflation, the comoving Hubble radius has shrunk to just one cell. Notice the much smaller
number of particles within the comoving Hubble radius on the right. In this caricature, the scale factor has grown by
a factor of order 8; during inflation the scale factor increases by a factor of order e60. The shrinking of the comoving
Hubble radius means that particles which were initially in causal contact with one another (within the circle on the
left) can now no longer communicate within an e-fold of expansion. The physical Hubble radius H−1 on the other
hand remains roughly constant during inflation.

The universe at the end of inflation (right-most panel in Fig. 7.4) is smooth but com-
pletely empty. Fortunately, physical scenarios for inflation come with a built-in way to
produce the desired hot Big Bang universe: the substance that drives the exponential ex-
pansion dominates the energy everywhere, and it is virtually the same everywhere. This
energy is converted to ordinary particles, which quickly thermalize. Since the energy den-
sity was the same everywhere in the universe, the temperature is likewise uniform.

We used the qualifier “virtually” above because small perturbations are in fact gen-
erated during inflation. A key epoch in the evolution of a perturbation of comoving
wavenumber k is when its comoving wavelength becomes of order the comoving Hub-
ble radius (aH)−1. During radiation and matter domination (indeed, any time when 1/aH

is growing), the modes always evolve from k−1 
 (aH)−1 initially to k−1 < (aH)−1 at later
times (see the right half of Fig. 7.2, where the relevant wavelengths are depicted by the hor-
izontal band). We say that the mode enters the horizon as it goes from k � aH to k � aH ,
since it becomes an observable perturbation for an observer living in the universe. The
equations we developed in the previous chapters allow us to follow the perturbations from
outside the horizon until the time we observe them.

Inflation adds a mirror image of this behavior at early times (left side of Fig. 7.2): modes
initially have k 
 aH , but then leave the horizon since aH shrinks exponentially, so that
k � aH at the end of inflation for all modes that we can possibly observe directly. Fig. 7.2
shows that the largest observable scales today, those which entered the horizon very re-
cently, left the horizon earliest. Small scales which entered the horizon a long time ago
exited correspondingly later during inflation. To explain the structure in the universe to-
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FIGURE 7.4 The universe empties out and becomes homogeneous as inflation progresses. The upper left plot
schematically shows the evolution of the energy density of the different components (in arbitrary logarithmic units).
As inflation proceeds, any primordial radiation and massive particles are quickly diluted, and only the substance
driving inflation remains (the black line shows its energy density ρinf, which is constant during inflation). At the end
of inflation, the substance decays into radiation and massive particles again (not shown). The sketches at the bottom
and right illustrate the patch corresponding to the observable universe at different stages of inflation (in physical
units, but not to scale). The spacetime patch started out in a highly inhomogeneous and curved state, and became
more homogeneous and very close to Euclidean as the exponential expansion proceeded.

day, then, it is clearly important to understand the generation of perturbations during
inflation.

Before we turn to actual physical models of inflation, let us understand how much ac-
celerated expansion is required to solve the horizon problem. How long should inflation
last? Solving the horizon problem requires the comoving Hubble radius to have been larger
than the current comoving radius, H−1

0 , before inflation. The comoving Hubble radius
at the end of inflation, at time te, was 1/aeHe where He ≡ H(te). To get a rough order-of-
magnitude estimate, we will assume that the temperature after inflation was Te = 1014 GeV
and ignore the relatively brief epochs of matter and recent dark energy domination, so that
we can use the relations of radiation domination throughout (you can correct this in Ex-
ercise 7.3). Then, H scales as a−2, and the ratio of the comoving Hubble radius at the end
of inflation and today is a0H0/aeHe = ae/a0. Since T ∝ a−1, ae/a0 � T0/1014 GeV � 10−27. So
the comoving Hubble radius at the end of inflation was 27 orders of magnitude smaller
than it is today. We conclude that the scale factor had to increase by a factor of 1027 � e62

during inflation in order for the current comoving Hubble radius to be smaller than that at
the beginning of inflation. If the Hubble rate is constant, then the expansion is exponen-
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tial in time, and we say that the universe needed to expand exponentially for roughly 60
e-folds.

One final technical point: the total comoving horizon η as given in Eq. (7.3) ceases to be
an effective time parameter after inflation because it becomes very large very early on and
then changes relatively little as the universe expands during the matter- and radiation-
dominated eras. A common way to deal with this issue is to redefine η such that η = 0
corresponds to the end of inflation:

η(t) =
∫ t

te

dt ′

a(t ′)
, (7.5)

where t could be larger or smaller than te. Note that this means that during inflation, η is
negative, but always monotonically increasing. This definition is convenient, because we
never need to refer to the starting time of inflation (it could last for much more than 60
e-folds); the end time η = 0 is all that matters.

To sum up, inflation—an epoch in which the universe expands exponentially—solves
the horizon problem. At the end, the homogeneous substance driving inflation converts
into other particles, producing a homogeneous hot universe filled with matter and radia-
tion. In addition, inflation is guaranteed to produce some amount of fluctuations around
the homogeneous universe, the minimal amount of fluctuations guaranteed by Heisen-
berg’s uncertainty principle. One of the main goals of this chapter is to describe the gener-
ation and evolution of perturbations during inflation.

7.2 Inflation
We already know from our study of dark energy in Sect. 2.4.6 that in order to obtain an
accelerating expansion, the effective pressure must be negative. Inflation was apparently
driven by a similar form of energy, one with P < 0. To reiterate what we emphasized in
Ch. 2, negative pressure is not something with which we have any familiarity. Nonrelativis-
tic matter has small positive pressure, while a relativistic gas has P = ρ/3, again positive.
So whatever it is that drives inflation (or the recent acceleration of the universe) is not
ordinary matter or radiation. It cannot be a cosmological constant either: a cosmological
constant would lead to perpetual rapid inflation, while we need inflation to end and tran-
sition to the radiation- and then matter-dominated phases which we observe.

The simplest possibility to generate such a transitory epoch of accelerated expansion
is via the potential energy of a scalar field (incidentally, this is also precisely what under-
lies a class of models of dark energy dubbed quintessence). It is worth noting that there
is no known scalar field that can drive inflation. While we know of a scalar field in nature,
the Higgs boson (Box 1.1), using it to drive inflation turns out to be difficult. Its interactions
and properties are sufficiently constrained by now for us to know that it cannot serve as the
source for inflation. On the other hand, most proposed fundamental particle physics the-
ories, such as string theory implementations, contain additional scalar fields. Indeed, the
vast majority of current work on inflation is based on a scalar field (or sometimes several).
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Hence, we will do the same and drop any pretensions of connecting the generic scalar field
we employ to drive inflation to known physics.1 Keep in mind, however, that it may well
be true that the idea of inflation is correct but it is driven by something other than a scalar
field.

An even more radical alternative, named ekpyrosis, involves a slowly contracting phase
of the universe instead of the rapid acceleration posited by inflation. In order to transition
to the presently observed expanding universe, one has to go through a “bounce” where
the Hubble rate changes sign. This bounce turns out to be difficult to control. We will not
describe the ekpyrotic scenario here, but point out that the techniques used for calculating
the perturbations in ekpyrosis are quite similar to those used for inflationary calculations.

We want to know if a scalar field—which we will call φ(x, t), not to be confused with the
metric perturbation �(x, t)—can have negative ρ +3P . So our first task is to write down the
energy-momentum tensor for φ. This can be derived from the Lagrangian for a canonical
scalar field with a potential; see Exercise 7.4. It is

T α
β = gαν ∂φ

∂xν

∂φ

∂xβ
− δα

β

[
1

2
gμν ∂φ

∂xμ

∂φ

∂xν
+ V (φ)

]
. (7.6)

Here V (φ) is the potential for the field. For example, a free field with mass m has a potential
V (φ) = m2φ2/2. A warning about signs: if you delve into the literature you will invariably
find different signs than those in Eq. (7.6). These are dictated by the choice of metric. Al-
though our metric signature (−,+,+,+) is the most common convention in the context of
cosmology, it is not as common in particle physics where the “mostly negative” convention
is more popular. We will assume that the field is homogeneous to zeroth order, consisting
of a zeroth-order part and a first-order perturbation, δφ(x, t). In this section we will derive
information about the zeroth-order homogeneous part, φ(t), specifically its energy density
and pressure as well as its time evolution. Later we will consider the perturbations δφ, and
how they are generated.

For the homogeneous part of the field, only time derivatives of φ are relevant, so the
indices ν, β in the first term in Eq. (7.6) and μ, ν in the second must be equal to zero. The
energy-momentum tensor then reduces to

T α
β = −δα

0δ
0
βφ̇2 + δα

β

[
1

2
φ̇2 − V (φ)

]
. (7.7)

The time-time component of T 0
0 is equal to −ρ, so the energy density is

ρ = 1

2
φ̇2 + V (φ). (7.8)

The first term here is the kinetic energy density of the field, the second its potential energy
density. A homogeneous scalar field therefore has much the same dynamics as a single

1
Making this connection is left as a homework problem for a future Nobel laureate.
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particle moving in a potential: think of φ(t) as the position of the particle x(t), and φ̇ as
its velocity ẋ. In fact this analogy even enters the language used to describe inflation. The
pressure for the homogeneous field is P = T i

i (no sum over spatial index i; it is the same
for i = 1,2,3), so

P = 1

2
φ̇2 − V (φ). (7.9)

A field configuration with negative pressure is therefore one with more potential energy
than kinetic. This is equivalently phrased as an equation of state

w = P
ρ

= φ̇2 − V (φ)

φ̇2 + V (φ)
(7.10)

that is close to −1.
The most popular scenario of inflation assumes a scalar field slowly rolling toward its

true ground state(Linde, 1982; Albrecht and Steinhardt, 1982). The potential energy of such
a field is very close to constant (if the potential is not too steep) so it quickly comes to dom-
inate over the kinetic energy (and the energy of all other particles). An example is shown in
Fig. 7.5; inflation ends once the field has reached the minimum of the potential, where it
will oscillate and decay into lighter particles (and eventually those of the standard model).
Many different forms of potentials have been proposed in the literature; see Martin et al.
(2014) for an exhaustive list. Fortunately or not, many different models can be made to fit
the observations. For this reason, we will not discuss individual scenarios in detail here.

To determine the evolution of φ for any potential, consider the conservation of the
energy-momentum tensor:

∇μT μ
ν = ∂T μ

ν

∂xμ
+ μ

αμT α
ν − α

νμT μ
α = 0. (7.11)

The stress-energy tensor for the homogeneous background field φ(t) is of the same form
as Eq. (2.44), so that we can use our result from Ch. 2, Eq. (2.56):

∂ρ

∂t
+ 3H [ρ +P] = 0. (7.12)

Applying this to the density and pressure we obtained above yields

φ̇φ̈ + V,φ φ̇ + 3Hφ̇2 = 0, (7.13)

where here and throughout V,φ ≡ dV/dφ, and, upon dividing by φ̇,

φ̈ + 3Hφ̇ + V,φ(φ) = 0. (7.14)

Let us switch to conformal time η as time variable; then it is straightforward to show that
(Exercise 7.5)

φ′′ + 2aHφ′ + a2V,φ = 0. (7.15)
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FIGURE 7.5 A scalar field slowly rolling down a potential V (φ). Since it rolls slowly, it has little kinetic energy. The
potential energy is nonzero, however, so the pressure is negative. The inflationary epoch ends once the field has
reached the minimum of the potential.

It is worth emphasizing that quite literally all results so far directly apply to dark energy
(“quintessence”) models described by a canonical scalar field as well.

Most models of inflation are slow-roll models, in which the zeroth-order field, and
hence the Hubble rate, vary slowly. Therefore, a simple relation between the conformal
time η and the expansion rate holds. In particular, during inflation

η ≡
∫ a

ae

da

Ha2
� 1

H

∫ a

ae

da

a2
� − 1

aH
(7.16)

where the first approximate equality holds because H is nearly constant, and the second
because the scale factor at the end of inflation is much larger than in the middle (ae 
 a).
To quantify slow roll, cosmologists typically define two variables that vanish in the limit
that φ remains constant. Several different options and conventions exist. We will focus on
the one most directly linked to observables; you can derive the relation to other choices in
Exercise 7.7 and Exercise 7.8. First,

εsr ≡ d

dt

(
1

H

)
= − H ′

aH 2
, (7.17)

which yields the fractional change in the Hubble rate during one e-fold of expansion.
Since H is always decreasing, εsr is always positive. During inflation, it is typically small,
whereas it is equal to 2 during the radiation era. In fact, one definition of an inflation-
ary epoch is one in which εsr < 1; technically speaking, it quantifies the departure of the
spacetime from an exact de Sitter space, an empty universe with a positive cosmological
constant.
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The second variable which quantifies how slowly the field is rolling is

δsr ≡ 1

H

φ̈

φ̇
= − 1

aHφ′
[
aHφ′ − φ′′]

= − 1

aHφ′
[
3aHφ′ + a2V,φ

]
. (7.18)

The second line follows from Eq. (7.15). In the literature, the slow-roll parameters are usu-
ally denoted simply as ε, δ, but due to the paucity of Greek letters we opt to make them
unambiguous with the “sr” subscript. Again, in most inflationary models δsr is small. We
will see later why the landscape of slow-roll inflation models is described precisely by two
parameters; in particular, they quantify the key features of inflationary predictions, namely
deviations from the simplest possible spectrum of perturbations and the production of
gravitational waves.

The slow-roll phase cannot last indefinitely, since inflation must end at some point.
This point is reached when the potential steepens and the field reaches the potential
minimum depicted in Fig. 7.5. At that point, the field is no longer slowly rolling, but has
significant kinetic energy, so it oscillates around the minimum. Then, the equation of state
Eq. (7.10) is no longer close to −1, but close to zero, so that the universe has transitioned
to an epoch of decelerated expansion. Then, finally, φ decays into lighter particles. Eventu-
ally, perhaps after a long chain of decays, the result is an almost completely homogeneous,
radiation-dominated universe. The highly uncertain details of this transition from infla-
tion to decelerated expansion, known as reheating, do not affect the perturbations we are
interested in, since they are far outside the horizon at the end of inflation. They remain
frozen throughout this transition.

7.3 Gravitational wave production
Inflation does more than solve the horizon problem. The power of inflation is its ability to
correlate scales that would otherwise be disconnected. The zeroth-order scheme outlined
in the previous section ensures that the universe will be close to uniform on all scales of
interest today. There are perturbations about this zeroth-order scheme, though, and these
perturbations—produced early on when the scales are causally connected—persist long
after inflation has terminated.

We are most interested in scalar perturbations to the metric since these couple to the
density of matter and radiation and ultimately are responsible for the structure we observe
in the universe. In Sect. 7.4 we will study these in detail. In addition to scalar perturbations,
though, inflation also generates tensor fluctuations in the metric, that is, gravitational
waves. As we saw in Ch. 6, these are not coupled to the density and so are not respon-
sible for the large-scale structure of the universe, but they do induce anisotropies in the
CMB. In fact, these anisotropies turn out to be a unique signature of inflation and offer the
best window on the physics driving inflation, so they are clearly worthy of our study. We
choose to study the production of tensor perturbations first, because they are simpler than
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scalar perturbations: in Sect. 6.2 we saw that tensor perturbations are gauge invariant; that
is, they look the same regardless of which coordinates we choose. Moreover, we can neglect
the coupling of tensor modes to the other perturbations in the metric or matter. Scalar per-
turbations are afflicted by both of these complications: they look different depending on
which coordinate system is chosen, and the perturbations of the scalar field mix with the
perturbations in the metric. So in order not to obfuscate the main point of the generation
of perturbations out of vacuum fluctuations during inflation, we study tensor modes first.

During inflation, the universe consists primarily of a uniform scalar field and a uniform
background metric. Against this background, the fields fluctuate quantum-mechanically.
At any given time, the average fluctuation is zero, because there are regions in which the
field is slightly larger than its average value and regions in which it is smaller. The average
of the square of the fluctuations (the variance), however, is not zero. Our goal is to com-
pute this variance and see how it evolves as inflation progresses. Looking ahead, once we
know this variance, we can draw from a distribution with this variance to set the initial
conditions with which to start the calculation of the evolution of structure (Sect. 7.5).

In cosmology, we always work in terms of statistics, such as the correlation function
and power spectrum, because no known theory predicts the overdensity in a given spot
on the sky. In the inflationary scenario, this uncertainty is fundamental: inflation erases all
traces of what came before it, and replaces those with quantum-mechanical vacuum fluc-
tuations, which cannot be predicted in principle. What inflation predicts then is precisely
the statistical distributions from which the perturbations are drawn.

This chapter is the first, and only, chapter in which we will encounter quantum field
theory. Field theory has a reputation as a difficult subject which is not entirely undeserved,
but the part we will need for inflation is closely connected to ordinary quantum mechanics
and therefore relatively straightforward. As a warmup, we will consider the quantization of
the one-dimensional harmonic oscillator.

7.3.1 Quantizing the harmonic oscillator

In order to compute the quantum fluctuations in the metric, we need to quantize the field.
The way to do this, in the case of both tensor and scalar perturbations, is to rewrite the
problem so that it looks like a simple harmonic oscillator. Once that is done, we will appeal
to our knowledge of this simple system. Therefore, let us first record some basic facts about
the quantization of the harmonic oscillator.2

• A harmonic oscillator with frequency ω is governed by the equation

d2x

dt2
+ ω2x = 0. (7.19)

2
To those recalling their quantum mechanics classes: we will be working in the Heisenberg picture through-

out, where states are fixed but operators evolve.
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• Upon quantization, x becomes a quantum operator

x̂ = v(ω, t)â + v∗(ω, t)â† (7.20)

where â is the annihilation operator, and v is the positive-frequency solution to
Eq. (7.19), v ∝ e−iωt . A dagger on operators denotes their Hermitian conjugate.

• â annihilates the vacuum state |0〉 (hence its name), in which there are no particles. It
also satisfies the commutation relation

[â, â†] ≡ ââ† − â†â = 1. (7.21)

Other commutators vanish: [â, â] = [â†, â†] = 0. Since a† acting on the vacuum state
leads to a state containing a single particle, it is called the creation operator. It is
straightforward to show (Exercise 7.10) that these commutation relations are equivalent
to the following commutation relations between the position and momentum opera-
tors x̂ and p̂:

[x̂, p̂] = i, (7.22)

as long as v is normalized via

v(ω, t) = e−iωt

√
2ω

. (7.23)

These facts enable us to compute the quantum fluctuations of the operator x̂ in the ground
state |0〉: 〈∣∣x̂∣∣2

〉
≡ 〈0|x̂†x̂|0〉
= 〈0|(v∗â† + vâ)(vâ + v∗â†)|0〉. (7.24)

We will later identify x̂ with the field φ, which we have seen behaves like the position of a
particle in a potential well. Notice that here we use the notation 〈X̂〉 to denote the vacuum
expectation value of the operator X̂. In later chapters we will use the same notation to
denote ensemble averages of observables, that is, the value obtained for an observable if
it were to be measured over an infinite volume. These two are not the same. However, we
can equate them if our universe is only a small part of a larger patch of spacetime that
underwent inflation. This subtle identification underlies all of modern cosmology.

Since â|0〉 = 0, the first term in the second set of parentheses vanishes. Similarly, 〈0|â† =
(a|0〉)† = 0, so we are left with〈

|x̂|2
〉
= |v(ω, t)|2〈0|ââ†|0〉
= |v(ω, t)|2〈0|[â, â†] + â†â|0〉. (7.25)

The second term again vanishes since â annihilates the vacuum, while the first is unity, so
the variance in x̂ is 〈

|x̂|2
〉
= |v(ω, t)|2, (7.26)
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which evaluates to 1/(2ω). This is (almost) all we need to know about quantum fluctuations
in order to compute the fluctuations in the early universe generated by inflation.

Before delving into the calculation, let us briefly give an intuitive picture of the gen-
eration of perturbations during inflation. Instead of dealing with a single harmonic os-
cillator, we will now deal with an infinite collection of oscillators, one for every Fourier
mode k. Each mode carries its own individual creation and annihilation operators â

†
k, âk.

The time evolution of these operators is described by a combination of positive and neg-
ative frequencies, which in Minkowski space simply are v(k, t), v∗(k, t) ∝ exp(±iω(k)t). In
Minkowski space, then, the vacuum expectation value Eq. (7.26) is independent of time
and position, and can be subtracted: no real particles are produced.

This changes in a rapidly expanding spacetime. As we will see, the two independent
solutions out of which we assemble the mode functions v(k, η) have drastically different
time dependences. Physically, the vacuum state is evolving due to the expansion, so that
the vacuum state at the beginning of inflation is no longer devoid of particles later on. In
the case we will study first, the particles produced are the gravitons that form gravitational
waves. The variance of the fluctuations will be identified as the power spectrum of gravita-
tional waves.

7.3.2 Tensor perturbations

Recall that tensor perturbations to the metric are described by two functions h+ and h×,
each of which obeys Eq. (6.73),

h′′ + 2
a′

a
h′ + k2h = 0 (h = h+, h×). (7.27)

We consider a single tensor-mode polarization t = +,× in the following, but drop the sub-
script t for clarity.

We would like to massage this equation into the form of a harmonic oscillator, so that h

can be easily quantized. To do this, define

h ≡ ah√
16πG

. (7.28)

We will see that the factor of a leads to an equation for h akin to the harmonic oscillator.
Why the factor of 1/

√
16πG? In order to obtain this factor, one has to derive the action

for tensor perturbations in Minkowski space, which necessitates going to second order in
perturbations without equipping us with any essential physics we will later need. Hence
we take Eq. (7.28) as a given.

Derivatives of h with respect to conformal time can be rewritten as

h′
√

16πG
= h′

a
− a′

a2
h (7.29)
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and

h′′
√

16πG
= h′′

a
− 2

a′

a2
h′ − a′′

a2
h+ 2

(a′)2

a3
h. (7.30)

Inserting these into Eq. (7.27), and getting rid of the factor
√

16πG, yields

h′′

a
− 2

a′

a2
h′ − a′′

a2
h+ 2

(a′)2

a3
h+ 2

a′

a

(
h′

a
− a′

a2
h

)
+ k2 h

a

= 1

a

[
h′′ +

(
k2 − a′′

a

)
h

]
= 0. (7.31)

This is precisely the form we know how to use. It only involves h and h′′, analogous to
Eq. (7.19), so we can immediately write down an expression for the quantum operator

ĥ(k, η) = v(k, η)âk + v∗(k, η)â
†
k, (7.32)

where the coefficients of the creation and annihilation operators satisfy

v′′ +
(

k2 − a′′

a

)
v = 0. (7.33)

We will shortly solve Eq. (7.33), but first let us see how the eventual solution determines
the power spectrum of the fluctuations of the tensor perturbations. Using our harmonic
oscillator analogy, Eq. (7.26), we can write the variance of perturbations in the h field as

〈ĥ†(k, η)ĥ(k′, η)〉 = |v(k, η)|2(2π)3δ
(3)
D (k − k′). (7.34)

Again, this is a vacuum expectation value of a quantum operator, which we will later iden-
tify with the ensemble average of a classical field. As we mentioned above, a quantum field
is defined in all space, so it can be considered as an infinite collection of oscillators, each at
a different spatial position, or, in Fourier space, at different values of k. The quantum fluc-
tuations in each of these oscillators are independent (as long as the equations are linear)
so ĥ(k) is completely uncorrelated with ĥ(k′) if k �= k′. The Dirac delta function in Eq. (7.34)
enforces this independence; the (2π)3 accounts for the fact that we work in the continuum
limit. Recalling that h = ah/

√
16πG, we see that

〈ĥ†(k, η)ĥ(k′, η)〉 = 16πG

a2
|v(k, η)|2(2π)3δ

(3)
D (k − k′)

≡ Ph(k, η)(2π)3δ
(3)
D (k − k′) (7.35)

where the second line defines the power spectrum of the primordial tensor perturbations
(for a single polarization). A related useful quantity is the dimensionless power spectrum

�2
h(k, η) ≡ k3

2π2
Ph(k, η), (7.36)
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which gives the variance of tensor modes in a logarithmic wavenumber interval. With our
definition,

Ph(k, η) = 16πG
|v(k, η)|2

a2
. (7.37)

We have now reduced the problem of determining the spectrum of tensor perturba-
tions produced during inflation to one of solving a second-order differential equation for
v(k, η), Eq. (7.33). To solve this equation, we first need to evaluate a′′/a during inflation.
Recall that primes denote derivatives with respect to conformal time, so a′ = a2H � −a/η

by virtue of the last approximate equality in Eq. (7.16). Therefore, the second derivative of
a in Eq. (7.33) is

a′′

a
� −1

a

d

dη

(
a

η

)

� 2

η2
. (7.38)

So the equation for v is

v′′ +
(

k2 − 2

η2

)
v = 0. (7.39)

The initial conditions necessary to solve this equation come from considering v at very
early times; specifically, when k|η| 
 1, and the mode is “far inside the horizon.” At that
point, the k2 term dominates, and the equation reduces precisely to that of the simple har-
monic oscillator. In that case, we know (Eq. (7.23)) that the properly normalized solution
is e−ikη/

√
2k. This knowledge enables us to choose the proper solution to Eq. (7.39) (Exer-

cise 7.12),

v = e−ikη

√
2k

[
1 − i

kη

]
. (7.40)

This obviously goes into the correct solution when the mode is well within the horizon
(k|η| 
 1). Even if you do not work through Exercise 7.12, you should at least check that
Eq. (7.40) is indeed a solution to Eq. (7.39).

After inflation has worked for sufficiently many e-folds, k|η| becomes very small: the
mode has exited the horizon. Taking the small-argument limit of Eq. (7.40), we have

lim−kη→0
v(k, η) = e−ikη

√
2k

−i

kη
. (7.41)

Recall that this corresponds to the evolution of h ∝ ah. Hence, at early times h ∝ v/a falls
as 1/a as inflation reduces the amplitude of the modes. Once −kη becomes smaller than
unity, the mode leaves the horizon, after which h remains constant (since 1/η ∝ a), and be-
comes an observable gravitational wave once it re-enters the horizon. This production of
gravitational waves is a consequence of the fact that the two solutions of the wave equation
split into a constant and a decaying mode in an exponentially expanding spacetime.
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Since we have normalized v, we can now determine the variance of the super-horizon
gravitational-wave amplitude, which scales as |v|2/a2. It is constant in time after inflation
has stretched the mode to be larger than the horizon. This constant determines the initial
conditions for the gravitational waves, those with which to start off h+, h× at some time be-
fore the mode re-enters the horizon. Equations (7.37) and (7.41) show that this constant is

Ph(k) = 16πG

a2

1

2k3η2

= 8πGH 2

k3

∣∣∣
k|η|=1

. (7.42)

The second line here follows from Eq. (7.16). This is our final expression for the primordial
power spectrum of gravitational waves. We have assumed that H is constant in deriving
this result; in reality, H varies slowly during inflation, but the result remains accurate if H

is evaluated at the time when the mode of interest leaves the horizon, k|η| = 1. Further, as
noted at the beginning of this section, Eq. (7.42) is the power spectrum for h+ and h× indi-
vidually; these are uncorrelated, so the total tensor power spectrum is larger by a factor of
2 (we will come back to this in Sect. 7.6).

A detection of these waves and measurement of Ph(k) then would, quite remarkably,
measure the Hubble rate during inflation. Since potential energy usually dominates ki-
netic energy in inflationary models, a measure of H would be tantamount to measuring
the potential V , again quite remarkable in view of the possibility that inflation was gen-
erated by physics at energy scales above 1015 GeV, 11 orders of magnitude beyond the
capacity of present-day accelerators. There is no guarantee that gravitational waves pro-
duced during inflation will be detectable. Indeed, since H 2 ∝ ρ/m2

Pl, where m2
Pl = 1/G, the

power spectrum is proportional to ρ/m4
Pl, the energy density at the time of inflation in units

of the Planck mass. If inflation takes place at scales sufficiently smaller than the Planck
scale, then primordial gravitational waves will not be detectable. Later in the book, we will
develop the machinery necessary to answer the question, How small can the gravitational-
wave amplitude be and still be detected?

Although we have not shown this fact, the fluctuations in h are very close to Gaussian,
just as are the quantum-mechanical fluctuations of the simple harmonic oscillator, and
more generally, of any approximately free quantum field. Very near Gaussianity of per-
turbations is a robust prediction of inflation, which has been confirmed in the CMB and
large-scale structure, both of which have placed increasingly tight upper limits on pri-
mordial non-Gaussianity. That said, some level of non-Gaussianity in particular of scalar
perturbations is expected even in inflation. If detected, it would open another window into
inflationary physics.

7.4 Scalar perturbations
One of the main goals of this chapter is to find the spectrum of scalar perturbations emerg-
ing from inflation. In principle, we need to specify the initial density and velocity perturba-
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tions for each species. Fortunately, one of the primary predictions of single-field inflation
is that it generates adiabatic perturbations: different patches of the universe have different
overdensities, but the fractional density perturbations are the same for all species:

δρs

ρs

= δρ

ρ
, (7.43)

with analogous relations for their velocities. The fundamental reason for this is the fact that
inflation is driven by a single field, whose value determines when inflation ends. Thus, any
given patch during inflation is completely characterized by the value of the field φ(x, t).
The adiabatic nature of perturbations has been confirmed to great precision by the CMB,
which allows for different primordial density perturbations in the different species (re-
ferred to as isocurvature perturbations) at most as a percent-level fraction of the adiabatic
perturbations.

This prediction also simplifies our task, since it is sufficient to derive δρ. Equivalently,
using the Einstein equations, we can specify the initial conditions in terms of �, since
specifying a single initial field is sufficient (in Sect. 7.5 we will derive how the density per-
turbations for all species follow from �; also, � is simply equal and opposite to � in the
regime of interest). The computation of � turns out to be more complicated than the ten-
sor case considered earlier. The primary complication is the presence of perturbations in
the scalar field φ that couple to �. It will then all come down to determining how the per-
turbation to the scalar field, δφ, is converted to �.

Instead of dealing with the problem of mixing between � and the scalar field, we will
first ignore it: in Sect. 7.4.1, we compute the spectrum of perturbations in the scalar field
φ generated during inflation, neglecting �. This turns out to be relatively simple to do,
since it is virtually identical to the tensor calculation we went through above. Why are we
justified in neglecting � and how do the perturbations get transferred from φ to �? The
next two subsections take turns answering this question from two different points of view.
First, Sect. 7.4.2 argues that—in a sense to be defined there—until a mode moves outside
the horizon, � is indeed negligibly small. Once it is far outside the horizon, this no longer
holds, but we will find that a linear combination of � and δφ is conserved. This will al-
low us to convert the initial spectrum for δφ into a final spectrum for �. The second way
of justifying the initial neglect of � is to switch gauges and work in a gauge in which the
spatial part of the metric is unperturbed, a so-called spatially flat slicing. In such a gauge,
the calculation of Sect. 7.4.1 is exact; the only question remaining is how to convert back
to conformal-Newtonian gauge to move on with the rest of the book. In Sect. 7.4.3, we
solve this via one of the gauge-invariant variables we discussed in Sect. 6.2, which do not
change upon a gauge transformation. First, we identify one which is proportional to δφ in
a spatially flat slicing. It is then a simple matter to determine this variable in conformal
Newtonian gauge, thereby linking � in conformal-Newtonian gauge to δφ in spatially flat
slicing. Note that the two solutions to the coupling problem, as worked out in Sect. 7.4.2
and Sect. 7.4.3, are simply alternative approaches to the same problem. If you are comfort-
able with gauge transformations (working through Sect. 6.2 and the associated exercises
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should get you to that point), Sect. 7.4.3 is a more elegant and direct approach; the more
brute-force approach of Sect. 7.4.2 gives the same answer though and requires less formal-
ism and background.

7.4.1 Scalar field perturbations around an unperturbed background

Let us decompose the scalar field into a zeroth-order homogeneous part and a perturba-
tion,

φ(x, t) = φ̄(t) + δφ(x, t), (7.44)

where now we distinguish the background field with an overbar. We want to find an equa-
tion governing δφ in a smooth expanding universe, i.e., with metric g00 = −1;gij = δij a

2(η)

(in the language of inflation practitioners, we are “ignoring gravity”).
Consider again the conservation of the energy-momentum tensor, Eq. (7.11). The ν = 0

component of this equation gives the desired equation for δφ, although we now have to ex-
pand out to first order. Since we are assuming an unperturbed metric, the only first-order
pieces are perturbations in the energy-momentum tensor. All the  are either of zeroth
order (0

ij = δij a
2H and i

0j = i
j0 = δijH ) or zero (the rest of the components), as we

found in Eqs. (2.24)–(2.25). So, writing the perturbed part of the energy-momentum ten-
sor as δT μ

ν and considering the ν = 0 component of the perturbed conservation equation
leads to

0 = ∂

∂t
δT 0

0 + ikiδT
i
0 + 3HδT 0

0 − HδT i
i . (7.45)

Our next task is to determine the perturbations to the energy-momentum tensor in terms
of the perturbations to the scalar field.

First let us compute δT i
0. Since the time-space components of the metric are zero, the

second set of terms in Eq. (7.6), those with prefactor gαβ , vanish. Therefore,

T i
0 = giνφ,νφ,0 (7.46)

where we have returned to using ,ν to denote the derivative with respect to xν . Since giν =
a−2δiν , the index ν must be equal to i. Recall that the zeroth-order field φ̄ is homogeneous,
so φ̄,i = 0. The time-space component of the energy-momentum tensor therefore has no
zeroth-order piece. To extract the first-order piece, we can set φ,i to δφ,i → ikiδφ. Then,
setting all other factors to their zeroth-order values leads to

δT i
0 = iki

a3
φ̄′δφ. (7.47)

The additional factor of a enters the denominator here because φ̄,0 = φ̄′/a (recall that the
coordinate derivative is with respect to t).

The time-time component of the energy-momentum tensor is hardly any more diffi-
cult:

T 0
0 = g00(φ,0)

2 − 1

2
gαβφ,αφ, β − V. (7.48)
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Setting φ(x, t) = φ̄(t) + δφ(x, t) leads to

T 0
0 = −1

2

(
φ̄,0 + δφ,0

)2 − 1

2a2
δφ,iδφ,i − V (φ̄ + δφ). (7.49)

The spatial derivatives come in pairs, and pairs of first-order variables (δφ,i) lead to
second-order terms. These may therefore be neglected. The potential may be expanded
as a zeroth-order term, V (φ̄) plus a first-order correction, V,φδφ, where V,φ is always evalu-
ated at φ̄, so the first-order correction to the energy-momentum tensor is

δT 0
0 = −φ̄,0δφ,0 − V,φδφ

= − φ̄′δφ′

a2
− V,φδφ. (7.50)

Similarly, you can show that the space-space component is

δT i
j = δij

(
φ̄′δφ′

a2
− V,φδφ

)
. (7.51)

Therefore, the conservation equation (7.45) becomes

(
1

a

∂

∂η
+ 3H

)(−φ̄′δφ′

a2
− V,φδφ

)
− k2

a3
φ̄′δφ − 3H

(
φ̄′δφ′

a2
− V,φδφ

)
= 0. (7.52)

Carrying out the time derivatives (the only subtle one is ∂V,φ/∂η = V,φφφ̄′), multiplying by
a3, and collecting terms leads to

−φ̄′δφ′′ + δφ′ (−φ̄′′ − 4aHφ̄′ − a2V,φ

)
+ δφ

(
−a2V,φφφ̄′ − k2φ̄′) = 0. (7.53)

The V,φφ term here is typically small, proportional to the slow-roll variables εsr and δsr (Ex-
ercise 7.8), so it can be neglected. The coefficient of δφ′, the first set of parentheses, is equal
to −2aHφ̄′ using the zeroth-order equation (7.15), so after dividing by −φ̄′, we are left with

δφ′′ + 2aHδφ′ + k2δφ = 0. (7.54)

This equation for perturbations to δφ is identical to Eq. (7.27) for tensor perturbations to
the metric: by neglecting V,φφ , we have essentially set the mass of the inflaton to zero, so
δφ obeys the equation of a massless field in an expanding universe just like the massless
gravitons. Thus we can trivially copy our result from Sect. 7.3.2 and immediately write that
the power spectrum of fluctuations in δφ is equal to

Pδφ = H 2

2k3
. (7.55)

Compare this with Eq. (7.42). It is identical apart from a factor of 16πG. Recall that we
inserted this factor in the tensor case (with a bit of hand-waving; see Sect. 7.3.2) to turn
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the dimensionless h into a field with dimensions of mass. To get the result for δφ, which is
already a scalar field with the proper dimensions, we just remove this factor.

Before moving on, notice that the spatial part of the stress-energy tensor Eq. (7.51) is
diagonal, i.e. proportional to δi

j . We know from Ch. 6 that this means that there is no
anisotropic stress, and that the Einstein equations imply � = −�. This makes our life sim-
pler, since we can work with only one of the gravitational potentials. We will choose �.

7.4.2 Super-horizon perturbations

Until now, we have neglected the metric perturbations. When the wavelength of the per-
turbation is much smaller than the horizon, this approximation is valid, as we will shortly
see. In the process of seeing this, we will also find that, by the end of inflation, the met-
ric perturbation has become important. So, although the inflation-induced perturbations
start out all-“δφ,” they end up as a linear combination of � and δφ or more generally as
a linear combination of � and perturbations to the energy-momentum tensor. The trick
is to find the linear combination that is conserved outside the horizon. The value of this
conserved linear combination is determined by δφ at horizon crossing (see the discussion
after Eq. (7.42)); we can then evaluate it after inflation solely in terms of �. The resulting
equation will be of the form � ∝ δφ with the left-hand side being the post-inflation metric
perturbation and the right the scalar field perturbation at horizon crossing. We can then
finally relate our desired P� to the Pδφ of Eq. (7.55).

Let us begin by rewriting the equation for conservation of energy, this time in the pres-
ence of metric perturbations. It is straightforward to show that Eq. (7.45) gets generalized
to

∂

∂t
δT 0

0 + ikiδT
i
0 + 3HδT 0

0 − HδT i
i + 3(ρ +P)�̇ = 0 (7.56)

where P and ρ are the zeroth-order pressure and energy density, and we have replaced �̇

with −�̇. Were we correct to neglect � in the previous section?
We were, as long as the last term is significantly smaller than the others, which is true

during inflation. The Einstein equations yield � ∼ δT 0
0/ρ, as we will verify shortly. This

means that all terms in Eq. (7.56) except the last are of order ρ�. On the other hand, one of
the conditions of slow-roll inflation is that |ρ+P| � ρ. In terms of the slow-roll parameters,
(ρ +P)/ρ � 2εsr/3. Thus, the last term in Eq. (7.11) is suppressed.

The above argument holds only during inflation. We now need to follow the perturba-
tions as they exit the horizon, and then track their super-horizon evolution through the
end of inflation. It is inevitable that the inequality |ρ + P| � ρ will break down sometime
before the end of inflation. More physically speaking, at some point we need to convert
the perturbations in the inflaton field, which decays into Standard Model particles most
likely through some long complicated chain of reactions, into those in the gravitational
potential. We already expect that, for adiabatic perturbations, the latter is all that counts.

One way to deal with the coupling between the metric perturbations and those of the
energy density is to define the curvature perturbation R (we will understand where this
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FIGURE 7.6 Evolution of the curvature perturbation R during and after inflation (Hinf denotes the Hubble rate
during slow-roll inflation). During inflation, R oscillates before freezing out when kη � −1, at which point it leaves
the horizon (left panel). Also shown are its constituents (right-hand side of Eq. (7.57)). During inflation, only the first
term is relevant (dash-dotted line), leading to Eq. (7.58), while � is negligible (dashed curve). This changes when
inflation concludes (right panel) and reheating happens (grey shaded area; notice the different scales of the x axes
in both panels). The evolution of the dot-dashed and dashed curves during that epoch depends on the microphysical
model. However, R remains constant outside the horizon throughout this epoch, and we know how it is related to
� once radiation domination takes over. Thus, we do not need to know what happens in the shaded area.

name comes from shortly):

R(k, η) ≡ ikiδT
i
0(k, η)a2H(η)

k2[ρ +P](η)
− �(k, η). (7.57)

We know that during inflation � is negligible compared to the first term. Further, ρ +P =
(φ̄′/a)2 from Eq. (7.8) and Eq. (7.9); and Eq. (7.47) fixes the numerator of the first term in R.
We are left with

R = −aH

φ̄′ δφ (during inflation). (7.58)

After inflation ends, during radiation domination,3 ikiδT
i
0 = −4kρr�1/a, proportional to

the dipole of the radiation (which follows from Eq. (3.86); see also Sect. 7.5 below). Since
the pressure of radiation is equal to a third of the energy density,

R = − 3aH�1

k
− �

= −3

2
� (post inflation, radiation domination). (7.59)

We will derive the second equality in Sect. 7.5 below. A sketch of how R, �, and kiδT
i
0

evolve during and after inflation is shown in Fig. 7.6.

3
So to be precise, we here assume that we wait long enough after the end of inflation so that we are safely in

the radiation-dominated epoch.
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The variable R is so important because it is conserved when the perturbation moves
outside the horizon (from Hinfη � −104 onwards in Fig. 7.6). We will prove this conserva-
tion shortly, but first let us appreciate its importance. Since we know that, after inflation,
R = −3�/2, we can immediately relate � coming out of inflation to δφ at horizon crossing,

�

∣∣∣∣
post inflation

= 2

3
aH

δφ

φ̄′

∣∣∣∣
horizon crossing

. (7.60)

Equivalently, the post-inflation power spectrum of � is simply related to the horizon-
crossing spectrum of δφ:

P�(k)

∣∣∣∣
post inflation

= 4

9

(
aH

φ̄′

)2

Pδφ(k)

∣∣∣∣
aH=k

= 2

9k3

(
aH 2

φ̄′

)2
∣∣∣∣∣
aH=k

, (7.61)

the second line following from Eq. (7.55). Another way to express the power spectrum of
scalar perturbations is to eliminate φ̄′ in favor of the slow-roll parameter εsr. You will show
(Exercise 7.7) that (aH/φ̄′)2 = 4πG/εsr, so

P�(k) = P�(k) = 8πG

9k3

H 2

εsr

∣∣∣∣
aH=k

. (7.62)

The first equality here follows from our ubiquitous assumption that anisotropic stresses
are small, so that � = −�. Comparing to Eq. (7.42), we see that the ratio of scalar to tensor
modes is of order 1/εsr; that is, we expect scalar perturbations to dominate. Finally, another
way of writing the scalar power spectrum is to eliminate εsr in favor of the inflaton potential
and its derivative, using the result of Exercise 7.8,

P�(k) = P�(k) = 128π2G2

9k3

(
HV

V,φ

)2
∣∣∣∣∣
aH=k

. (7.63)

This equation allows for some important insights into the generation of scalar pertur-
bations during inflation. As we have seen in the previous section, the amplitude of the
perturbations to φ depends only on the Hubble rate during inflation, as is true for the ten-
sor modes. But in the end we care about the gravitational potentials, and have found that
their amplitude depends on the slope of the scalar field potential. In particular, by making
V,φ/V sufficiently small, we can counteract a smaller Hubble rate during inflation while
keeping P�(k) fixed; importantly, this then lowers the amplitude of tensor perturbations
relative to scalar ones. Where does this dependence come from?

A physical way to think about this is to recall that � quantifies the perturbation to the
scale factor, � = δa/a, where δa in a given region is positive if that region has expanded
more than the average region during inflation. This perturbation to the scale factor is re-
lated to a small change in cosmic time via δa = ȧδt = aHδt . But, we can also express the
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clock change δt in terms of a difference in the value of the scalar field through δφ = φ̇δt ;
in other words, the value of the field φ (which, unlike t , is a coordinate invariant) provides
the physical clock during inflation. Equating these two expressions for δt , one in terms of
� and the other in terms of δφ, we find

� ∼ H
δφ

φ̇
. (7.64)

Indeed, up to a factor of order 1, the conversion factor in the first line of Eq. (7.61) is pre-
cisely the square of this result. Therefore, the power spectrum of the gravitational potential
is inversely proportional to φ̇2. But, the equations of motion for a slowly rolling scalar field,
neglecting the first term in (7.15), dictate that the field travels more rapidly in a steeper
potential; that is, φ̇ ∝ V,φ . Therefore, the power spectrum of � is larger if the potential is
shallower.

It now remains to prove that R is conserved on super-horizon scales. To see this, let us
turn to the conservation equation (7.56). On large scales, kiδT

i
0 is proportional to k2 and

so can be ignored, leaving

∂

∂t
δT 0

0 + 3HδT 0
0 − HδT i

i = −3(ρ +P)�̇ (super-horizon). (7.65)

On large scales, you will show (Exercise 7.13) that the energy-momentum tensor satisfies

ikiδT
i
0a

2H

k2
= −δT 0

0

3
. (7.66)

Therefore, on large scales

R= −� − 1

3

δT 0
0

ρ +P . (7.67)

Eliminating � in favor of R in the conservation equation leads to

∂

∂t
δT 0

0 + 3HδT 0
0 − HδT i

i = 3(ρ +P)
∂R
∂t

+ (ρ +P)
∂

∂t

[
δT 0

0

ρ +P

]
. (7.68)

The partial derivative on the right acting on δT 0
0 cancels the first term on the left, leaving

δT 0
0

[
3H + 1

ρ +P

(
dρ

dt
+ dP

dt

)]
− HδT i

i = 3(ρ +P)
∂R
∂t

. (7.69)

Recall from Eq. (2.56) that dρ/dt = −3H(ρ +P), so we can rewrite the left-hand side as

3H

[
Ṗ
ρ̇

δρ − δP
]

= 3(ρ +P)
∂R
∂t

, (7.70)
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since −δT 0
0 is the perturbation to the energy density, while δT i

i/3 is the perturbation to
the pressure. Thus, ∂R/∂t = 0 precisely if

δP = Ṗ
ρ̇

δρ. (7.71)

At the background level, we can write Ṗ = (dP/dφ̄) ˙̄φ, and likewise for ρ̇, since φ̄ is our clock
and equivalent to the time coordinate. For a single scalar field, both P and ρ are unique
functions of the field φ (see Eq. (7.8) and Eq. (7.9)), so we can also write δP = (dP/dφ̄)δφ,
and correspondingly for δρ. Combining these facts proves that Eq. (7.71) holds in single-
field inflation. Thus, in this case R is indeed conserved on large scales. This changes in
more complicated inflationary models where several fields are active, and where R in gen-
eral evolves outside the horizon.

7.4.3 Spatially flat slicing

The treatment of the previous subsection is complete, but it is not the most elegant way to
understand scalar perturbations in inflation. A much simpler way is to move back and forth
between different gauges, making use along the way of the concept of a gauge-invariant
variable introduced in Sect. 6.2. Here we outline this method, leaving some of the more
detailed calculations as exercises.

We saw earlier that one of the major complications in conformal-Newtonian gauge was
that perturbations to the scalar field δφ are coupled to the potential �. It would be nice
to transform to a gauge in which these perturbations decoupled. Consider a gauge with
spatially flat slicing, such that the spatial part of the metric obeys gij = a2δij . In this gauge
the line element is

ds2 = −[1 + 2A(x, t)]dt2 − 2a(t)B,i(x, t)dxidt + a2(t)δij dxidxj , (7.72)

i.e., there are two functions A and B characterizing the scalar perturbations. In this case,
the equation for δφ is given exactly by Eq. (7.54): the perturbations in the scalar field do
not couple to A, B. Therefore, without having to neglect any couplings, we can identify the
power spectrum for δφ as given by Eq. (7.55).

The next step is to chose a gauge-invariant variable, one that remains the same when
transforming from one gauge to the next. Bardeen (1980) identified several such variables,
two characterizing scalar perturbations to the metric and two characterizing perturbations
to the matter. Any linear combination of these is still gauge invariant. We would like to
identify the combination that is proportional to δφ in the gauge with spatially flat slicing.

One of Bardeen’s variables, which we shall call V , is particularly useful. It is defined as

V(k, t) ≡ B(k, t) + iki

k2

aδT i
0(k, t)

ρ +P . (7.73)

In conformal-Newtonian gauge, for matter, V is directly related to the velocity through
um = ikV . For radiation in the same gauge, ikV = −3i�r,1, i.e. it is proportional to the
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dipole. In the spatially flat gauge, Eq. (7.73) is

V = B − φ̄′δφ
(ρ +P)a2

(spatially flat slicing) (7.74)

where we have evaluated δT i
0 with Eq. (7.47). Now, Bardeen’s �H (Eq. (6.19)) in the spatially

flat gauge is equal to aHB since D = E = 0 in this gauge. Since both �H and V are gauge
invariant, the combination

R≡ −�H + aHV (7.75)

is also gauge invariant. In spatially flat slicing, it is equal to

R = −aH

φ̄′ δφ (spatially flat slicing). (7.76)

We can thus immediately relate the power in R to the power in δφ,

PR(k) =
(

aH

φ̄′

)2

Pδφ(k). (7.77)

We know Pδφ from Eq. (7.55), and the prefactor is 4πG/εsr, so

PR(k) = 2πGH 2

εsrk3

∣∣∣∣
aH=k

. (7.78)

Eq. (7.78) is very useful, for it expresses the power spectrum of a gauge-invariant quantity.
For this reason, constraints on the power spectrum of primordial scalar perturbations are
usually phrased in terms of PR(k). Although we computed it in the spatially-flat coordi-
nates of Eq. (7.72), once we have this answer, we can compute R in any gauge and then
relate the power in the perturbation variables of that gauge to PR.

Throughout this book, we have been working in conformal-Newtonian gauge. In this
gauge, �H = −�, so R as defined in Eq. (7.75) is indeed given by Eq. (7.57), noting that
B = 0 in this gauge. We argued in Sect. 7.4.2 that in conformal-Newtonian gauge, after
inflation, R= 3�/2, so P� = 4PR/9, or using Eq. (7.78),

P�(k) = 8πGH 2

9k3εsr

∣∣∣∣
aH=k

, (7.79)

in exact agreement with our earlier calculation, Eq. (7.62).
For us, this is the end of the calculation of inflationary perturbations, but not quite

the end of the story. Bardeen and others have argued that �H has a nice geometrical
interpretation, one shared by R in certain gauges. In particular, the curvature of the three-
dimensional space at fixed time is equal to 4k2�H /a2 (Exercise 3.13). Therefore, pertur-
bations in �H represent curvature perturbations: even though the zeroth-order space is
Euclidean, perturbations induce a curvature that varies from place to place. In conformal-
Newtonian gauge or in a spatially-flat slicing this interpretation would seem irrelevant to
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perturbations in R, since R is a combination of both �H and the velocity. However, if one
moves to a comoving gauge, one in which the velocities vanish, then R is equal to �H .
In comoving gauges, then, it is clear that R corresponds to a curvature perturbation, and
indeed the scalar perturbations generated during inflation are often called curvature per-
turbations. The reason R is so ubiquitous is that it is simply the most convenient way to
describe the adiabatic perturbations from inflation.

7.5 The Einstein–Boltzmann equations at early times
What is remaining now is just one final step to connect the perturbation � to the nine
perturbation variables we need to track following the equations we derived in Ch. 5 and
Ch. 6. In principle, we need initial conditions for all of these variables; fortunately, we now
know that perturbations from inflation are adiabatic (Eq. (7.43)), and the initial conditions
become very simple in that case. Since the fractional perturbations in all species are the
same, they are all determined by �, and we only need to work out how this relation looks
at early times. In addition, in the previous sections we assumed some relations between �,
� and �1 which we shall now prove along the way.

Let us consider first the Boltzmann equations (5.67)–(5.73) at very early times after the
end of inflation (i.e. η > 0 but small). In particular, we want to consider times so early that,
for any k-mode of interest, kη � 1 or equivalently k/aH � 1. This inequality immediately
leads to several important simplifications. Consider Eq. (5.67):

�′ + ikμ� = −�′ − ikμ� − τ ′
[
�0 − � + μub − 1

2
P2(μ)�

]
. (7.80)

The first term is of order �/η, while the second is of order k�. Therefore, the first is larger
than the second by a factor of order 1/(kη), which, by assumption, is much greater than
1. In a similar way, we can argue that all terms in the Boltzmann equations multiplied by
k can be neglected at early times; this also applies to ub and �, as we will argue below.
Physically, this means that, at early times, all perturbations of interest have wavelengths
(∼ k−1) much larger than the distance over which causal physics operates. A hypothetical
observer then who sees only photons from within her causal horizon will see a uniform sky.
Thus higher multipoles (�1, �2, . . .) are much smaller than the monopole, �0. Therefore,
the perturbations to the photon and neutrino temperatures evolve according to

�′
0 + �′ = 0,

N ′
0 + �′ = 0. (7.81)

The same principles can be applied to the matter distributions. The overdensity equa-
tions reduce to

δc
′ = −3�′,

δb
′ = −3�′. (7.82)
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Outside the comoving horizon, gravity is the only relevant force. This is the reason that dark
matter and baryons follow the same equation: gravity does not care whether it is acting on
a dark matter particle or a proton. The velocities are smaller than the overdensities by a
factor of order kη and may be set to zero initially.

Now let us turn to the Einstein equations at early times. First consider Eq. (6.41). The
first term there contains a factor of k2 so may be neglected (notice that we are taking the
opposite limit to the Newtonian, no-expansion approximation, where one uses k 
 aH ).
Also, the two matter terms on the right are negligible at early times since radiation domi-
nates. Therefore, we have

3
a′

a

(
�′ − a′

a
�

)
= 16πGa2ρr�r,0, (7.83)

where the total radiation monopole is defined in Eq. (6.79). But since radiation dominates,
a ∝ η (recall Eq. (2.95) and the discussion immediately afterward) so a′/a = aH = 1/η.
Therefore,

�′

η
− �

η2
= 16πGρa2

3
�r,0

= 2

η2
�r,0 (7.84)

where the last equality follows by virtue of the zeroth-order Einstein (i.e., Friedmann)
equation. Then, multiplying Eq. (7.84) by η2 leads to

�′η − � = 2�r,0. (7.85)

Recall that Eq. (7.81) relates the time derivative of the monopoles to the derivative of the
potential. We can therefore eliminate both monopoles from Eq. (7.85) by differentiating
both right- and left-hand sides. Then,

�′′η + �′ − � ′ = −2�′ (7.86)

where the right-hand side follows since both �′
0 and N ′

0 are equal to −�′ for these large-
scale modes.

So far we have used only one Einstein equation. The second, Eq. (6.48), describes how
the higher moments of the photon and neutrino distributions source � + �. Let us here
neglect these higher-order moments, which lead to a slightly nonzero sum of the gravita-
tional potentials.4 Under this approximation, we can eliminate � everywhere by simply
setting it to −�. Then,

�′′η + 4�′ = 0. (7.87)

4
See Exercise 7.16 for a careful accounting of the effect of the neutrino quadrupole; the photon quadrupole is

kept minuscule by Compton scattering, so it really does not contribute to Eq. (6.48).
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Inserting the ansatz � = ηp leads to the algebraic equation

p(p − 1) + 4p = 0, (7.88)

which allows for two solutions: p = 0 and p = −3. The p = −3 mode is the decaying mode.
If it is excited very early on, it will quickly die out and have no impact on the universe. The
p = 0 mode, on the other hand, does not decay if excited. It is the mode we are interested
in.

Focusing therefore on only the p = 0 mode, we see that Eq. (7.85) relates the gravita-
tional potential to the total radiation overdensity:

� = 2�r,0. (7.89)

Thus, �r,0 as well as its constituents �0 and N0 remain constant in time. For adiabatic
perturbations, Eq. (7.43) implies

�0(k, ηi) =N0(k, ηi), (7.90)

which leads to

�(k, ηi) = 2�0(k, ηi) (7.91)

where we have explicitly written the k-dependence of all these variables and the fact that
we are setting up the initial conditions at some early time ηi .

The initial conditions for matter, both δc and δb, also become simple once we restrict to
adiabatic perturbations. Combining the first relation of Eq. (7.81) and (7.82) leads to

δc(k, η) = 3�0(k, η) + constant(k) (7.92)

for the dark matter overdensity, with an identical equation for the baryon overdensity.
Clearly, adiabatic perturbations require the same constant for CDM and baryons. We now
show that this constant is in fact zero. Adiabatic perturbations must have a uniform matter-
to-radiation ratio. This ratio is given by

nc

nγ

= n̄c

n̄γ

[
1 + δc

1 + 3�0

]
. (7.93)

The prefactor, the ratio of zeroth-order number densities, is a constant in both space and
time. For the ratio of matter-to-radiation number density to be uniform, therefore, the
combination inside the brackets, which linearizes to 1 + δc − 3�0, must be independent
of space. So the perturbations must sum to zero, and we have

δc = δb = 3�0. (7.94)

We also need the initial conditions for the velocities and dipole moments of matter and
radiation, respectively. You will show in Exercise 7.17 that the appropriate initial conditions
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are

�1(k, η) =N1(k, η) = iub(k, η)

3
= iuc(k, η)

3
= − k

6aH
�(k, η). (7.95)

With this, the equation for R on super-horizon scales during radiation domination,
Eq. (7.59), simply becomes

R = − 3

2
�. (7.96)

7.6 Summary
In order to understand how scales that should be uncorrelated today are observed to have
almost identical temperatures, we are virtually forced into the theory of inflation. In addi-
tion to explaining away other nagging fine-tuning problems of the concordance cosmology
such as the flatness problem (Exercise 7.1), inflation is also a mechanism for generating
primordial perturbations around the smooth universe.

Inflation predicts that quantum-mechanical perturbations in the very early universe
are first produced when the relevant scales are causally connected. Then these scales are
whisked outside the horizon by inflation, only to re-enter much later to serve as initial
conditions for the growth of structure in the universe. The perturbations are best described
in terms of their Fourier modes. The mean of a given Fourier mode, for example for the
gravitational potential, is zero:

〈�(k)〉 = 0. (7.97)

Further, any given Fourier mode is uncorrelated with a different one. However, a given
mode has nonzero variance, so

〈�(k)�∗(k′)〉 = P�(k)(2π)3δ
(3)
D (k − k′), (7.98)

the Dirac delta function enforcing the independence of the different modes. The property
of approximate Gaussianity is equivalent to the statement that any higher-order correla-
tion functions, for example involving three powers of �, are highly suppressed.

In the case of scalar perturbations, the ones of most importance for us, the power
spectrum is given by Eq. (7.62). Perturbations to the tensor part of the metric are also
produced and are also Gaussian with mean zero; the power spectrum of tensor modes is
given by Eq. (7.42). The scalar spectrum depends on the slow-roll parameter εsr, defined in
Eq. (7.17), which is proportional to the derivative of the Hubble rate. Since the Hubble rate
is close to constant during inflation—because of the dominance of potential energy—εsr is
typically small.

A spectrum in which k3P�(k) is constant (i.e., does not depend on k) is called a scale-
invariant or scale-free spectrum. Apart from small deviations encoded in the slow-roll pa-
rameters, both the scalar and the tensor perturbations are scale-free. Moreover, since the
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field rolls down a potential well during inflation, so that the Hubble rate slowly decreases,
a further generic prediction is that the potential is slightly red-tilted, with larger-scale per-
turbations, those which left the horizon earlier, having a slightly larger amplitude than
smaller-scale perturbations. A spectrum with a small red tilt has indeed been conclusively
detected in the CMB.

The scalar perturbations generated during inflation are nowadays most commonly
parametrized in terms of the power spectrum of the gauge-invariant curvature perturba-
tionR. This has the great advantage of being conserved on super-horizon scales, regardless
of whether matter or radiation dominates, and is thus a good unambiguous anchoring
point. From Eq. (7.78), we have

PR(k) = 2π

k3

H 2

m2
Plεsr

∣∣∣∣∣
aH=k

≡ 2π2Ask
−3

(
k

kp

)ns−1

, (7.99)

where As is the variance of curvature perturbations in a logarithmic wavenumber interval
centered around the pivot scale kp, and ns is the scalar spectral index. The pivot scale is a
matter of convention, and is often determined as the scale best constrained by a given set
of observations (say, CMB anisotropies; the Planck team adopts kp = 0.05 Mpc−1, and we
do so as well). In our fiducial cosmology,

As = k3
p

2π2
PR(kp) � 2.1 × 10−9. (7.100)

Thus, the typical amplitude of curvature perturbations on the scale kp is
√
As � 4.6 × 10−5,

which is of similar order of magnitude as (but a bit larger than) the temperature fluctua-
tions in the CMB. We will see in Ch. 9 that this is no coincidence.

For tensor modes, we derived the power spectrum of a single polarization Ph in
Eq. (7.42). Primordial tensor modes are conventionally parametrized via their total power
spectrum PT(k) (outside the horizon) defined via〈

hTT
ij (k)

(
hTT

ij

)∗
(k′)

〉∣∣∣
η=0

≡ (2π)3δ
(3)
D (k − k′)PT(k). (7.101)

Performing the index summation via Eq. (6.49), the left-hand side evaluates to 2〈h+h∗+〉 +
2〈h×h∗×〉, so we have

PT(k) = 4Ph(k) = 32π

k3

H 2

m2
Pl

∣∣∣∣∣
aH=k

≡ 2π2ATk−3
(

k

kp

)nT

, (7.102)

which serves to define the conventional tensor amplitude AT and spectral index nT. Note
that this convention—which has become common—says that a scale-free scalar spectrum
corresponds to ns = 1, while for the tensor modes the same statement is nT = 0. In practice,
AT is often replaced with the tensor-to-scalar ratio r,

r(k) ≡ PT(k)

PR(k)

k=kp= AT

As

. (7.103)
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Eq. (7.99) and Eq. (7.102) immediately yield

r(k) = 16 εsr

∣∣∣
aH=k

. (7.104)

While r in principle depends on k due to the different spectral index of scalar and tensor
modes, this dependence is negligibly small in practical applications.

We can relate the primordial spectral indices ns and nT to the slow-roll parameters εsr

and δsr. Consider first the tensor spectrum. By virtue of the definition in Eq. (7.99),

d lnPT(k)

d lnk
= nT − 3. (7.105)

The logarithmic derivative has two terms, where the trivial one d ln(k−3)/d lnk cancels the
−3 here, leaving nT = 2d lnH/d lnk. The logarithmic derivative of the Hubble rate at horizon
crossing is a bit subtle:

d lnH

d ln k

∣∣∣∣
aH=k

= k

H

dH

dη
× dη

dk

∣∣∣∣
aH=k

. (7.106)

By definition (Eq. (7.17)), H ′ = −aH 2εsr, and dη|aH=k/dk = −d(aH)−1|aH=k/dk = 1/k2, so

d lnH

d lnk

∣∣∣∣
aH=k

= − k

H

aH 2εsr

k2

∣∣∣∣
aH=k

= −εsr. (7.107)

Therefore, the primordial spectral index of tensor perturbations produced by inflation is

nT = −2εsr. (7.108)

The scalar spectral index follows from a similar argument. Taking the logarithmic
derivative of P� leads to

ns − 1 = d

d lnk
[ln(H 2) − ln(εsr)]. (7.109)

The derivative of H again gives −2εsr while the logarithmic derivative of εsr is – 2(εsr + δsr)

(Exercise 7.7). So,

ns = 1 − 4εsr − 2δsr. (7.110)

The fact that the tensor index nT is proportional to εsr leads to one of the robust pre-
dictions of inflation (Exercise 7.14). Many inflationary models have been proposed which
offer different predictions for εsr and δsr. Almost all of these, however, maintain the fea-
ture that the ratio of tensor-to-scalar modes (which we saw earlier was proportional to εsr)
is directly related to the tensor spectral index (here also seen to be directly proportional
to εsr). As you progress through the remainder of this book, moving from the evolution of
structure to its observational probes, try to bear in mind the crucial question of whether
this prediction can be put to the observational test.
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The slow-roll parameters are a convenient way to summarize the predictions of an in-
flationary model. However, ultimately we are interested in the physics, so we are interested
in how these parameters relate back to the fundamental entity, the potential V of the scalar
field responsible for inflation. You will show in Exercise 7.8 that these parameters can be
expressed in terms of the potential and its derivatives. Therefore, extracting the values of
εsr and δsr from the data is tantamount to probing the potential of the field driving infla-
tion. Given that the scale of this potential could be on the order of 1015 GeV (Exercise 7.18),
this is quite an impressive probe!

Inflation is a difficult subject to grasp fully, and it helps to go through the ideas several
times via different angles. While everything we need for the remainder of the book is con-
tained in the equations of this section, let us conclude this chapter with some suggested
further reading. The initial article by Guth (1981) is completely accessible and as clear a
statement possible of the problems that led to inflation and the initial attempt (old infla-
tion) to solve them. The textbook Physical Foundations of Cosmology (Mukhanov, 2005) by
one of the pioneers of the field provides a clear, modern overview of the physics of infla-
tion and generation of perturbations. Finally, for those interested in the foundations of the
generation of quantum fluctuations in the expanding universe, we recommend Birrell and
Davies (1984).

Exercises
7.1 Inflation also solves the flatness problem. This is the question of why the energy den-

sity today is so close to critical.
(a) Suppose that

�(t) ≡ 8πGρ(t)

3H 2(t)
(7.111)

is equal to 0.3 today, where ρ counts the energy density in matter and radiation
(ignore the cosmological constant). From Eq. (3.14), plot �(t)−1 as a function of
the scale factor. How close to 1 would �(t) have been back at the Planck epoch
(assuming no inflation took place so that the scale factor at the Planck epoch
was of order 10−32)? This fine-tuning of the initial conditions is the flatness prob-
lem. If not for the fine tuning, an open universe would be obviously open (i.e., �

would be almost exactly zero today); a closed universe would have recollapsed
at very early times.

(b) Now show that inflation solves the flatness problem. Extrapolate �(t) − 1 back
to the end of inflation, and then through 60 e-folds of inflation. What is �(t) −
1 right before these 60 e-folds of inflation? This shows how inflation “flattens”
space (see Fig. 7.4).

7.2 Another way of looking at the problems that inflation solves is to consider the en-
tropy within our Hubble volume. This is proportional to the total number of particles
in the volume, with a proportionality constant of order unity. How many photons are
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there within our Hubble volume today? Explain how inflation produces entropy this
large.

7.3 We showed that, if the universe was always dominated by ordinary matter or radi-
ation early on, then the comoving horizon when the scale factor was ae is given by
a0H0/aeHe times the comoving Hubble radius today. Compute this ratio assuming
that the temperature was equal to 1014 GeV at ae. Account for the radiation-to-matter
transition at a = aeq.

7.4 Derive the energy-momentum tensor for a canonical scalar field, whose Lagrangian
is given by

Lφ = −1

2
gμν ∂φ

∂xμ

∂φ

∂xν
− V (φ). (7.112)

Recall that the Lagrangian is given by the difference of kinetic energy and potential
energies, and that, since g00 < 0, we need a minus sign for the kinetic energy. The
energy-momentum tensor is obtained by varying the action with respect to the met-
ric:

Tμν = δLφ

δgμν
+ gμνLφ. (7.113)

Use this to derive Eq. (7.6).
7.5 Show that Eq. (7.15) follows from Eq. (7.14) by changing variables from t to η.
7.6 Consider a free, homogeneous scalar field with mass m. The potential for this field is

V = m2φ2/2. Show that, if m 
 H , the scalar field oscillates with frequency equal to
its mass. Also show that its energy density falls off as a−3, so it behaves exactly like
ordinary nonrelativistic matter. Use this to justify why we can ignore fields that are
much heavier than H during inflation.

7.7 Derive some useful identities involving the slow-roll parameters during inflation.
(a) Show that

d

dη

(
1

aH

)
= εsr − 1.

(b) Show that

4πG(φ̄′)2 = εsra
2H 2. (7.114)

(c) Using the definitions of εsr and δsr, show that

dεsr

dη
= 2aHεsr(εsr + δsr). (7.115)

Use this to show that

d ln εsr

d ln k

∣∣∣
aH=k

= 2(εsr + δsr). (7.116)
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7.8 Express the slow-roll parameters εsr and δsr in terms of the potential V and its deriva-
tives with respect to φ. Show that, to lowest order,

εsr = 1

16πG

(
V,φ

V

)2

and

δsr = εsr − 1

8πG

V,φφ

V
,

where the derivatives of the potential are evaluated at φ̄.
7.9 There are a number of ways of describing pressure in the universe and of relating

the pressure to the energy density. One was introduced back in Ch. 2, the equation
of state,

w ≡ P
ρ

. (7.117)

The second is the sound speed squared,

c2
s ≡ dP

dρ
. (7.118)

In the homogeneous universe, one computes c2
s by differentiating both P and ρ with

respect to time and taking the ratio: c2
s = Ṗ/ρ̇. Finally, there is the ratio of perturba-

tions in the pressure to those in the energy density,

δP
δρ

= − δT i
i

3δT 0
0

, (7.119)

where the minus sign accounts for the fact that the time-time component of the
energy-momentum tensor is minus the energy density, and the factor of 3 negates
the sum over the three spatial indices. For adiabatic perturbations, δP/δρ = c2

s . Show
that this holds for three separate cases: matter, radiation, and a single scalar field
during inflation at the time of horizon crossing. For the last case, it is enough to
show that the difference δP/δρ − c2

s is of order the slow-roll parameters εsr and δsr.
7.10 Calculate some well-known properties of the quantized harmonic oscillator.

(a) The momentum of the harmonic oscillator with unit mass is p = dx/dt . Calcu-
late

[x̂, p̂]
and show that it is equal to i. You can obtain the operator p̂ by differentiating x̂

(Eq. (7.20)) with respect to time.
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(b) Calculate the zero-point energy of the harmonic oscillator with unit mass. Do
this by quantizing the energy

E = p2

2
+ ω2x2

2

and then computing its expectation value in the ground state: 〈0|Ê|0〉.
7.11 Show that gravitational waves are not sourced by the scalar field during inflation. To

do this, recall that the right-hand side of Eq. (7.27) is, assuming h = h+,

δT 1
1 − δT 2

2

where δT is the perturbation to the energy-momentum tensor (assumed to be dom-
inated by φ) and, as in the derivation of Eq. (6.73), we have chosen k to be in the z

direction. Show that this right-hand side is indeed zero for the scalar field.
7.12 Show that Eq. (7.40) is the appropriate solution to Eq. (7.39).

(a) Define ṽ = v/η and rewrite Eq. (7.39) in terms of ṽ.
(b) The resulting equation is the spherical Bessel equation. Write down the general

solution to this as a linear combination of two functions of kη.
(c) Use the Minkowski-space solution for the harmonic oscillator for k|η| 
 1 as

initial condition to determine the coefficients of part (b). Show that this yields
Eq. (7.40).

7.13 Show that on large scales Eq. (7.66) holds. One way to do this is to combine Einstein’s
equations, the time-time (Eq. (6.41)) and time-space (Exercise 6.6) components, and
to take the large-scale limit.

7.14 Using the results of Sect. 7.6, derive the consistency relation—a robust prediction of
single-field inflation—between the two observables nT and r.

7.15 Compute the ratio of neutrino to radiation energy density, fν ≡ ρν/ργ , after electron–
positron annihilation (see Sect. 2.4.4) but before neutrino masses become relevant.

7.16 Account for the neutrino quadrupole moment when setting up initial conditions
during radiation domination, neglecting neutrino masses.
(a) Start with Eq. (5.73), and set Eν(p) = p. Then, p disappears from the equation

and we can set N = N (k, η,μ). Turn the equation into a hierarchy of equations
for the neutrino moments Nl (k, η), truncated at N2:

N ′
0 + kN1 = −�′

N ′
1 − k

3
(N0 − 2N2) = k

3
�

N ′
2 − 2

5
kN1 = 0. (7.120)

To do this, you need to recall the definition of these moments, which is equiv-
alent to that for photons, Eq. (5.66). A good way to reduce Eq. (5.73) into this
hierarchy is to multiply it first by P0 and then integrate over μ. This leads to the
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first equation above. Then multiply Eq. (5.73) by P1 to get the second and P2 to
get the third. More details are given in Sect. 9.3, where we go through the same
exercise for the photon moments. In the third equation you may neglect N3 be-
cause it is smaller than N2 by a factor of order kη (show this!).

(b) Eliminate N1 from these equations and show that

N ′′
2 = 2k2

15
(� +N0 − 2N2). (7.121)

Drop N2 on the right-hand side because it is much smaller than � +N0.
(c) Rewrite Einstein’s equation (6.48) as

N2 = −(kη)2 � + �

12fν
, (7.122)

where fν is defined in Exercise 7.15. This neglects the photon quadrupole, which
is a reasonable assumption since Compton scattering sets �2 �N2.

(d) Now differentiate this form of Einstein’s equation twice to get an expression for
N ′′

2 . Equate this to the expression for N ′′
2 derived in part (b). (You may drop all

time derivatives of � and � when doing this since the mode of interest is the
p = 0 constant mode.) Use this equation to express N0 in terms of � and �.

(e) Finally assume that �0 = N0 and use your expression for N0 to rewrite Eq. (7.85)
as a relation between the two gravitational potentials. Show that this relation is

� = −�

(
1 + 2fν

5

)
. (7.123)

7.17 Show that the initial conditions for the velocities and dipoles of matter and radiation
are as given in Eq. (7.95).

7.18 Determine the predictions of an inflationary model with a quadratic potential:

V (φ) = 1

2
m2φ2. (7.124)

(a) Compute the slow-roll parameters εsr and δsr in terms of φ. What can you already
say about the tensor-to-scalar ratio r and the spectral index ns?

(b) Determine φe, the value of the field at which inflation ends, by setting εsr = 1 at
the end of inflation.

(c) To determine the spectrum of perturbations, you will need to evaluate εsr and
δsr at −kη = 1, and hence φ at that epoch. Choose the wavenumber k = kp, and
determine φ by relating the value of aH when kp left (and later re-entered) the
horizon to aeHe, the value at the end of inflation. For this, assume N e-folds
from the epoch of horizon exit to the end of inflation. You can further assume
that H remains constant during inflation, and that the universe after inflation is
radiation-dominated throughout.
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(d) Match the values of ns and As that are predicted in this model to the values of our
fiducial cosmology, and use this to determine m/He and N . Finally, evaluate m,
and φ at the epoch when kp leaves the horizon, in units of the Planck mass. What
is the predicted amplitude of tensor modes in this case? Compare with Fig. 10.11.

This model illustrates the features of large-field inflationary models: the field value
is of order or even greater than mPl, but the energy scale V is much smaller than m4

Pl.



8
Growth of structure: linear theory

Having set up the system of equations to be solved and the initial conditions for the per-
turbations, we can now compute the inhomogeneities in the matter and anisotropies in
the photons. In this chapter, we focus on the perturbations to the dark matter: the density
perturbation δc and velocity uc. These are coupled to all other perturbations only via grav-
ity. For this reason, perturbations to the dark matter depend very little on the details of the
radiation perturbations: at late times, when the universe is dominated by matter, the po-
tentials �, � which mediate the effect of gravity are independent of the radiation. At early
times, the dominant radiation perturbations are relatively simple, so that all moments be-
yond the monopole and dipole can be neglected. Our rationale for starting with matter is
that the converse is not true, as we will see in the next chapter: to treat the anisotropies in
the radiation properly, we will need to know how the matter perturbations behave.

The ultimate goal of this chapter is to obtain a prediction for the linear matter power
spectrum. We will obtain this by solving for the evolution of each Fourier mode. Given
this solution, and the initial power spectrum generated by inflation, we can construct the
power spectrum of matter as a function of redshift. On large scales, this can be compared
with observations of galaxy clustering and lensing, as we will see in Ch. 11 and Ch. 13. Mat-
ter becomes nonlinear on small scales in the late universe however, so our results cannot
be directly compared with observations on those scales. However, they serve as starting
point for analytic and numerical calculations of nonlinear structure, which are the topic of
Ch. 12.

Several publicly available codes1 calculate the transfer function to subpercent precision
in a matter of seconds by numerically solving the equations we derived in previous chap-
ters. In Sect. 8.2 and Sect. 8.3 of this chapter, we develop approximate analytic solutions.
They yield additional physical insight into the physics of structure growth in the early uni-
verse, but going through these sections is not required in order to follow the rest of the
book. The main features of the calculation are summarized in Sect. 8.1.

8.1 Prelude
Gravitational instability is fundamentally responsible for the structure in our universe. As
time evolves, matter accumulates in initially slightly overdense regions. Despite the fact
that initial overdensities were of very small amplitude (of order 10−4), eventually enough
matter accumulated over the age of the universe to form the very significant structures we
see in the universe today.

1
The most popular ones are CAMB (Lewis et al., 2000) and CLASS (Blas et al., 2011).
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FIGURE 8.1 The linear evolution of the gravitational potential � for modes of different wavenumber in the fiducial
�CDM cosmology. In each case, we have normalized to the value of the potential at early times.

Apart from the attractive force of gravity, there are two counteracting effects: first, the
expansion of the background universe, which tends to drag particles of all species apart.
The faster the expansion, the slower the growth of structure. In non-expanding space,
a small overdensity will grow exponentially fast under gravity (if there are no pressure per-
turbations; see below); in the expanding universe, this exponential growth is slowed down
to a power-law or even logarithmic growth in time. In particular, we will see that structure
grows more slowly during radiation domination than later during matter domination and
finally slows down again once dark energy begins to dominate.

The second effect is specific to baryons and photons, which exert pressure: pressure
increases in proportion to density, and gas tends to move in the direction of lower pressure
(opposite to the pressure gradient). This means that an overdensity in the baryons does not
accumulate matter as quickly as one in the dark matter, since the larger pressure compared
to the environment tends to slow down or stop inflowing gas.

In this chapter we will treat super-horizon (kη � 1) versions of gravitational growth as
well as the more familiar sub-horizon version (kη � 1), both with and without perturba-
tions in the radiation component. While going through the math, it is useful to bear in
mind the dueling forces of gravity, expansion, and pressure perturbations.

8.1.1 Three stages of evolution

The evolution of cosmological perturbations breaks up naturally into three stages. To see
this, let us cheat and look at the solutions for several different modes. Fig. 8.1 shows
the gravitational potential as a function of scale factor for long-, medium-, and short-
wavelength modes. Early on, all of the modes are outside the horizon (kη � 1; recall that η

is positive after inflation) and the potential is constant. At intermediate times, two things
happen: the wavelengths enter the horizon and the universe evolves from radiation domi-
nation (a � aeq) to matter domination (a � aeq). Fig. 8.1 illustrates that the order of these
epochs (aeq and the epoch of horizon crossing) greatly affects the potential. The large-scale
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mode, which enters the horizon well after aeq, evolves much differently from small-scale
modes, which enter the horizon before equality. Finally, at late times, all the modes evolve
identically again, remaining constant during matter domination before decaying once
dark energy becomes important.

We are able to observe the distribution of matter predominantly at late epochs, in the
third stage of evolution, when all modes are evolving identically. If we wish to relate the
potential during these times to the primordial curvature perturbation R generated during
inflation, we can write schematically

�(k, a) = 3

5
R(k) ×

{
Transfer Function (k)

}
×

{
Growth factor (a)

}
. (8.1)

We will get to understand the 3/5 factor in a little while. The transfer function describes
the evolution of perturbations through the epochs of horizon crossing and radiation/mat-
ter transition, while the growth factor describes the wavelength-independent growth at
late times. This schematic equation is indeed how the growth factor and the transfer
function are defined, with two bows to convention. Notice from Fig. 8.1 that even the
largest-wavelength perturbations decline slightly as the universe passes through the epoch
of equality. This decline is conventionally removed so that the transfer function on large
scales is equal to 1. Therefore, the transfer function is defined as

T (k) ≡ �(k, alate)

�large-scale(k, alate)
(8.2)

where alate denotes an epoch deep in matter domination, and the large-scale solution is
the primordial � decreased by a small amount; strictly, it is the solution of the gravita-
tional potential for modes that entered the horizon well in the matter-dominated epoch.
We will derive in Sect. 8.2 that—neglecting anisotropic stress—this factor is equal to 9/10.
The second convention concerns the growth factor. The ratio of the potential to its value
right after the transfer function regime is defined to be

�(k, a)

�(k, alate)
≡ D+(a)

a
(a > alate), (8.3)

where D+ is called the growth factor. During matter domination, the potential is constant
so D+(a) = a. With these conventions, we have

�(k, a) = 3

5
R(k)T (k)

D+(a)

a
(a > alate). (8.4)

The evolution of the CDM overdensity of matter follows from the evolution of �, as
depicted in Fig. 8.2 for four different modes. Notice that at late times—when the poten-
tial is constant and all the modes are within the horizon—the overdensity grows in time:
δc(k, a) ∝ D+(a). This explains the seemingly odd nomenclature above (why is it called a
growth factor if the potential remains constant?): D+ describes the growth of the matter
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FIGURE 8.2 The evolution of dark matter density perturbations in the fiducial �CDM cosmology. We have normal-
ized to the potential at early times as in Fig. 8.1. The amplitude of each mode starts to grow upon horizon entry. Well
after aeq, all sub-horizon modes evolve identically, and scale as the growth factor D+(a). During matter domination,
before � becomes relevant, D+(a) = a. At the very latest times, we can see a slight suppression from this linear trend
due to the onset of accelerated expansion.

perturbations at late times. This growth is completely consistent with our intuition that,
as time evolves, overdense regions attract more and more matter, thereby becoming more
overdense.

In the late universe, baryons closely follow the dark matter, so we typically describe
them together in form of the total matter overdensity δm. So let us now express the power
spectrum of the matter distribution in terms of the primordial power spectrum generated
during inflation, the transfer function, and the growth factor. The simplest way to relate
the matter overdensity to the potential at late times is to use Poisson’s equation (6.80) in
the large-k, no-radiation limit,

k2�(k, a) = 4πGρm(a)a2δm(k, a) (a > alate, k � aH) . (8.5)

This equation is no longer correct if k is of order aH or less. For large-scale structure appli-
cations, this is not a big worry, as the most precise measurements are for modes that satisfy
k � aH .2

Now, the background density of matter (including baryons) is ρm = 	mρcr/a
3, and

4πGρcr = (3/2)H 2
0 , so

δm(k, a) = 2k2a

3	mH 2
0

�(k, a) (a > alate, k � aH). (8.6)

2
Moreover, Eq. (8.5) does hold on all scales if δm on the right-hand side is defined in synchronous-comoving

gauge (see Exercise 5.1). The density in this gauge is in many cases more directly related to observables and
simulations than δm in conformal-Newtonian gauge.
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FIGURE 8.3 The linear matter power spectrum in the fiducial �CDM cosmology at different redshifts. Scales to the
left of the vertical lines, which indicate kNL(z) for each of the redshifts shown, are still evolving approximately
linearly at each redshift.

This, together with Eq. (8.4), allows us to relate the overdensity in the late universe to the
primordial potential:

δm(k, a) = 2

5

k2

	mH 2
0

R(k)T (k)D+(a) (a > alate, k � aH). (8.7)

Eq. (8.7) holds regardless of how the initial perturbation R was generated, as long as it is
an adiabatic perturbation. In the context of inflation, we saw in the previous chapter that
R(k) is drawn from a Gaussian distribution with mean zero and power spectrum PR(k) =
(2π2/k3)As(k/kp)ns−1 (Eq. (7.99)). So the linear power spectrum of matter at late times is

PL(k, a) = 8π2

25

As

	2
m

D2+(a)T 2(k)
kns

H 4
0 k

ns−1
p

. (8.8)

Notice that (i) the power spectrum has dimensions of (length)3; and (ii) Eq. (8.8) implies
that PL(k) ∝ kns on large scales where T (k) = 1.

Fig. 8.3 shows the matter power spectrum for our fiducial �CDM cosmology, today as
well as at higher redshifts. While on large scales we see the expected behavior, on small
scales the power spectrum turns over. To understand this, look back at Fig. 8.1. The small-
scale mode there (k = 2h Mpc−1) enters the horizon well before matter/radiation equality.
During the radiation epoch the potential decays, so the transfer function is much smaller
than unity. The effect of this on matter perturbations can be seen in Fig. 8.2, where the
growth of δ is retarded starting at a � 10−5 after the mode has entered the horizon and
ending at a � 10−4 when the universe becomes matter dominated. Modes that enter the
horizon even earlier undergo more suppression. Thus, the power spectrum is a decreasing
function of k on small scales. This leads to the realization that there will be a turnover in
the power spectrum at a scale keq corresponding to the one which enters the horizon at
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matter/radiation equality. Measuring this scale thus allows us to constrain the amount of
matter in the universe.

Another important scale to keep in mind is the scale kNL above which nonlinearities
cannot be ignored. To estimate this, we use the variance of (linear) density perturbations

2

L(k) generated by modes within a logarithmic wavenumber bin d lnk centered around k.
We have


2
L(k, a) = 1

ε

∫
| ln k′−ln k|<ε

d3k′

(2π)3
PL(k′, a) =

∫
| ln k′−ln k|<ε

k′ 3 dk′

k′

∫
d	′

(2π)3
PL(k′, a)

= k3PL(k, a)

2π2
, (8.9)

since the integral over d	′ simply gives 4π . In the second line we have used the fact that
we are considering an infinitesimal wavenumber bin. A regime where 
2

L � 1 then corre-
sponds to small inhomogeneities, while 
2

L � 1 indicates nonlinear perturbations. When
plotted vs. ln k, 
2

L(k) immediately tells us on what scales we expect significant density fluc-
tuations (Fig. 12.1 shows an analogous plot of the variance of the density field). Solving the
condition 
2

L(kNL, a) � 1 for kNL yields kNL(a = 1) � 0.25hMpc−1 today. At earlier times,
structure was not as evolved, so the nonlinear scale was smaller, or equivalently kNL(a)

was larger in the past (see the dashed vertical lines in Fig. 8.3). The power spectrum shown
in Fig. 8.3 is the linear power spectrum. On scales approaching kNL, this is just a hypothet-
ical quantity, and one cannot directly compare PL(k, a) with the matter distribution. We
will return to this issue in Ch. 12.

8.1.2 Closing the Boltzmann hierarchy

What are the evolution equations for the dark matter overdensity? Since all constituents
are coupled by gravity, in principle these are the full set of Boltzmann equations derived
in Ch. 5 and the pair of Einstein equations from Ch. 6. To get a qualitative understand-
ing though, the full set of equations is not needed. To understand why, recall that early
on (before recombination at a = a∗), the photon distribution can be characterized by only
two moments, the monopole �0 and the dipole �1. All other moments are suppressed be-
cause the photons are tightly coupled to the electron/proton plasma. After decoupling this
ceases to be true, and to completely characterize the photon distribution we will need to
follow higher-order moments. However, for the purposes of the matter distribution, what
the photons are doing after a∗ is irrelevant. For, by that time, which is well into the matter
era, the potential is dominated by the dark matter itself. To sum up then, we can neglect all
photon moments except for the monopole and dipole when we are considering the evolu-
tion of the matter distribution.

In the following, we will also neglect the higher multipoles for neutrinos, since they
are more difficult to treat analytically. But, as neutrinos free-stream instead of being
tightly coupled, this is also inaccurate. Nevertheless, neglecting the higher neutrino mo-
ments is still more accurate than neglecting neutrinos entirely. Hence, we proceed with
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the monopole �r,0 and dipole �r,1 of the total radiation, defined in Eq. (6.79), not to be
confused with those of the photon distribution �0, �1. When neglecting the higher radi-
ation moments, the Boltzmann equations for neutrinos and photons become identical;
moreover, the photon and neutrino distributions start with the same adiabatic initial con-
ditions, so we can combine them. Supplementing these with the equations for the dark
matter, we obtain our desired set of equations, based on Sect. 5.7:

�′
r,0 + k�r,1 = −�′, (8.10)

�′
r,1 − k

3
�r,0 = −k

3
�, (8.11)

δc
′ + ikuc = −3�′, (8.12)

uc
′ + a′

a
uc = ik�. (8.13)

Even with the assumption that only the monopole and dipole are retained, getting from
Eq. (5.67) to Eqs. (8.10) and (8.11) requires some work. In particular, we have used the tight-
coupling approximation, which allows us to eliminate the baryon perturbations. This is a
fairly good approximation since the baryons are kept close to uniform at early times via
their tight coupling to photons (we will explore the effects of baryons in Sect. 8.6). In Exer-
cise 8.1, you can work out the steps in detail. Note that these simplifications are employed
merely because we are only interested in the CDM perturbations in this chapter; we will
explore the full photon evolution equation in the next chapter.

To close the set of equations for the dark matter density, we need an equation for
the gravitational potential �. You may have noticed that in Eq. (8.10) and following we
set � → −�, an approximation valid in the limit that there are no quadrupole moments
(Eq. (6.48)). Since some of the Einstein equations are redundant, we have several choices
for an equation relating � to the radiation and matter overdensities. We can use the time-
time component, Eq. (6.41),

k2� + 3
a′

a

(
�′ + a′

a
�

)
= 4πGa2[ρcδc + 4ρr�r,0]. (8.14)

Here, we have again set � to −�, neglected the baryons following the arguments above,
and merged the neutrino and photon contributions to the potential. The alternative is to
use the algebraic (no time derivatives) equation (6.80):

k2� = 4πGa2
[
ρcδc + 4ρr�r,0 + 3aH

k

(
iρcuc + 4ρr�r,1

)]
. (8.15)

Both of these equations will be useful to us at various times, although only one is necessary
to close the set of equations for the five variables δc, uc, �r,0, �r,1, and �.

At this stage, the most straightforward way to proceed is to solve the set of five coupled
equations numerically (Exercise 8.2). If Eq. (8.14) is used, there are no numerical difficul-
ties, and with very little work, you can have a code that computes the transfer function (in
the absence of baryons) in less than a second.
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FIGURE 8.4 Physics regimes of the transfer function. Shaded regions show different regimes where analytic expres-
sions exist that we will derive in Sects. 8.2–8.3. The gap in the center shows that no analytic solutions exist to capture
the full evolution of intermediate-scale modes. The curve monotonically increasing from bottom left to top right is
the comoving horizon η(a), with axis on the left; the right axis shows the corresponding wavenumber that crosses
the horizon, i.e. k = 1/η.

Analytical solutions for the dark matter density are harder to come by. There is no an-
alytic solution valid on all scales at all times. To make progress, we will have to take some
limits that reduce the full set of five equations to a more manageable two or three. The
cost is that these limits will be valid only for certain scales at certain times, so we have to
patch these analytic solutions together to obtain a reasonable transfer function for all k. As
we mentioned, extremely accurate codes that calculate the transfer function in a matter of
seconds are freely available and easy to use. Rather than obtaining precise numerical re-
sults, our goal for this chapter is thus to develop an understanding of the relevant physics
in different regimes, and to see how far this takes us in reproducing the numerical results.

As a guide to this analytic work which will occupy us in Sect. 8.2–8.3, consider Fig. 8.4.
The solid curve is the comoving horizon (i.e. the conformal time η), which increases with
time, equal to about 110h−1 Mpc at the epoch of equality in our fiducial cosmology. A given
comoving scale remains constant with time. There are several regimes where we can make
progress by employing physical approximations:

• The super-horizon regime, when kη � 1, allows for exact solutions for the entire time
evolution (Sect. 8.2.1).

• The horizon entry, when η has increased sufficiently so that kη > 1, can be described if
it happens at late times, i.e. for large-scale modes (in which case � remains constant,
Sect. 8.2.2), or at very early times during radiation domination, which applies to small-
scale modes (neglecting δ, Sect. 8.3.1).

• The sub-horizon evolution of large-scale modes is covered by the constant-� solution
of Sect. 8.2.2. For small-scale modes, we will find another approximation, neglecting
radiation perturbations, in Sect. 8.3.2.

None of these approximate solutions is able to describe modes that enter the horizon
around matter-radiation equality (the white spot in the center of Fig. 8.4). This is merely
due to a lack of simplifying limits we can employ; the physics describing the evolution of
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FIGURE 8.5 The regime studied in Sect. 8.2.1: super-horizon evolution of perturbations which remain outside the
horizon until matter domination.

these modes is the same as that of smaller- and larger-scale modes. Indeed, the final trans-
fer function we present in Sect. 8.4 is a smooth function of scale.

8.2 Large scales
On large scales, we can get analytic solutions for the potential first through the matter-
radiation transition and then through horizon crossing. We start with the super-horizon
solution valid through the matter-radiation transition. The result of Sect. 8.2.1 will be that
the potential drops by a factor of 9/10 as the universe goes from radiation to matter domi-
nation.

8.2.1 Super-horizon solution

For modes that are far outside the horizon, kη � 1, the regime highlighted in Fig. 8.5,
we can drop all terms in the evolution equations that depend on k. From Eq. (8.10) and
Eq. (8.12), we see that, in this limit, the velocities (uc and �r,1) decouple from the evolu-
tion equations. This immediately reduces the number of equations to solve from five to
three. For the third equation, we notice that Eq. (8.15) has terms inversely proportional to
k. These will be difficult to deal with, so let us choose Eq. (8.14) instead. We are left with

�′
r,0 = −�′, (8.16)

δc
′ = −3�′, (8.17)

3
a′

a

(
�′ + a′

a
�

)
= 4πGa2[ρcδc + 4ρr�r,0]. (8.18)

We can go a step further by realizing that the first two equations require δc − 3�r,0 to be
constant. Further, we know that this constant is zero (these are the adiabatic initial condi-
tions from Sect. 7.5). So let us use the dark matter equation (8.17) and the Einstein equation
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with �r,0 set to δc/3. The Einstein equation is then

3
a′

a

(
�′ + a′

a
�

)
= 4πGa2ρcδc

[
1 + 4

3y

]
, (8.19)

where we have introduced

y ≡ a

aeq
= ρm

ρr
, (8.20)

which we will use as an evolution variable instead of η or a. Since we are ignoring baryons,
we could also replace the numerator in Eq. (8.20) with ρc, a simple fix to slightly improve
the accuracy of our analytical solutions.

Eqs. (8.17) and (8.19) are two first-order equations for the two variables δc and �. The
strategy will be to turn these two first-order equations into one second-order equation and
then solve. First, though, let us rewrite the equations in terms of the new variable y. The
derivative with respect to y is related to that with respect to η via

d

dη
= dy

dη

d

dy

= aHy
d

dy
, (8.21)

where the second line follows from the definition of y and the fact that a′ = a2H . In terms
of y then, the Einstein equation becomes

y
d�

dy
+ � = y

2(y + 1)
δc

[
1 + 4

3y

]

= 3y + 4

6(y + 1)
δc (8.22)

where the right-hand side of the first line follows since 8πGρc/3 = (8πGρ/3)y/(y + 1) =
H 2y/(y + 1).

In general, to turn two first-order equations into one second-order equation, we differ-
entiate one of them. Here, to simplify the algebra, we first rewrite Eq. (8.22) as an expres-
sion for δc; then differentiate with respect to y; and finally set dδc/dy to −3d�/dy thanks to
the dark matter equation (8.17). This leads to

−3
d�

dy
= d

dy

{
6(y + 1)

3y + 4

[
y

d�

dy
+ �

]}
. (8.23)

Carrying out the derivative is tedious but straightforward. We are left with

d2�

dy2
+ 21y2 + 54y + 32

2y(y + 1)(3y + 4)

d�

dy
+ �

y(y + 1)(3y + 4)
= 0. (8.24)
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Remarkably, Kodama and Sasaki (1984) found an analytic solution to Eq. (8.24). They in-
troduced a new variable

u ≡ y3

√
1 + y

�. (8.25)

In terms of this variable, you will show (Exercise 8.4) that Eq. (8.24) becomes

d2u

dy2
+ du

dy

[
− 2

y
+ 3/2

1 + y
− 3

3y + 4

]
= 0. (8.26)

That is, there is no term proportional to u. Instead of a second-order equation for �, then,
we have a first-order equation for du/dy. Fortunately, this first-order equation is integrable.
Denoting u′ ≡ du/dy for the next few steps, we have

du′

u′ = dy

[
2

y
− 3/2

1 + y
+ 3

3y + 4

]
, (8.27)

which we can integrate to get

ln(u′) = 2 ln(y) − (3/2) ln(1 + y) + ln(3y + 4) + constant. (8.28)

Then, exponentiating gives

u′ = du

dy
= A

y2(3y + 4)

(1 + y)3/2
(8.29)

where A is a constant to be determined.
We are one integral away from an analytic expression for the gravitational potential.

Remembering the definition of u (Eq. (8.25)), we can integrate Eq. (8.29) to obtain

y3

√
1 + y

� = A

∫ y

0
dỹ

ỹ2(3ỹ + 4)

(1 + ỹ)3/2
. (8.30)

Note that there should be another constant, u(0), here. However, since y3� → 0 early on,
this constant vanishes. By similar logic, we can determine the constant A even before per-
forming the integral. For small y, the integrand becomes 4ỹ2, so for small y, Eq. (8.30)
becomes � = 4A/3. Therefore, A = 3�(0)/4. The integral can be done analytically (Exer-
cise 8.4 again) leaving

�(k, y) = 1

10y3

[
16

√
1 + y + 9y3 + 2y2 − 8y − 16

]
�(k,0). (8.31)

Eq. (8.31) is our final expression for the potential on super-horizon scales. Although it is
not obvious, at small y this expression sets � = �(0), a constant. This must be so, since
we chose the two constants of integration with precisely this condition. At large y, once
the universe has become matter-dominated, the y3 term in the brackets dominates, so
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FIGURE 8.6 Evolution of the potential in the fiducial �CDM cosmology, focusing on large-scale modes that are com-
parable to or larger than the horizon up until recombination. The thin solid line shows the analytic result of Eq. (8.31)
which is valid only for modes much larger than the horizon (and neglects the neutrino and photon moments with
l ≥ 2).

� → (9/10)�(0). So, the potential on even the largest scales drops by 9/10 as the universe
passes through the epoch of equality.

This result allows us to obtain some very useful relations between the super-horizon
gravitational potential � and the curvature perturbation R. In Sect. 7.5, we derived � �
−� = (2/3)R during radiation domination. Now we have seen that � drops by a factor
9/10 deep in matter domination. Since R is always conserved outside the horizon, we have
� = (9/10)(2/3)R in matter domination. So, to summarize

�(k, η)

∣∣∣
super-horizon

=
{

2
3R(k), radiation domination,
3
5R(k), matter domination.

(8.32)

During matter domination, � does not even evolve inside the horizon as we mentioned, so
that the relation � = (3/5)R remains valid inside the horizon. This explains the 3/5 factor
we have included in the transfer function definition, Eq. (8.4).

Let us now compare our analytic result, valid only when modes are super-horizon, with
the numerical results. Fig. 8.6 shows that the solution works reasonably well on the largest
scales, the deviations being mostly due to the neutrino quadrupole N2 which we have ne-
glected in our analytic calculation (N2 also leads to � being not exactly equal and opposite
to �). A feature of the analytic solution that may be surprising to you is that, although it is
true that the large-scale potentials are constant in both the matter and radiation epochs,
the transition between the pure matter and pure radiation eras is quite long. For example,
and this is important for the purposes of the CMB as we will see in the next chapter, the po-
tentials, even for the largest-scale modes, are still decaying as late as a � 10−2, significantly
after aeq.
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FIGURE 8.7 The regime studied in Sect. 8.2.2: evolution of modes through horizon entry during matter domination.

8.2.2 Through horizon crossing

One interesting feature of Fig. 8.6 is that the large-scale potential (the numerical solution)
becomes constant at very late times (a � 10−2). For k = 10−3 h Mpc−1, the mode enters the
horizon at η ∼ k−1 = 1000h−1 Mpc which corresponds to a ∼ 0.006 in our fiducial cosmol-
ogy. This is the regime highlighted in Fig. 8.7. The potential remains constant as the mode
crosses the horizon. This result is valid as long as the universe is matter dominated. We
now set out to prove this.

We are interested then in our set of five equations in the limit that radiation is not im-
portant. The potential depends only on the matter inhomogeneities, so we can neglect the
two radiation equations, (8.10) and (8.11). In addition to the two matter equations, we now
keep the second of Einstein’s equations (8.15). This is an algebraic equation, meaning that
we could in principle eliminate � in the two matter equations and be left with a system
of two first-order differential equations. These two first-order equations in general have
two solutions. Instead of solving them directly, though, we can cheat using our knowledge
of the initial conditions. Here is the idea: we just learned that, deep in the matter epoch,
super-horizon potentials are constant. Therefore, the initial conditions for our problem
are that the potential is constant (�′ = 0). If we can show that constant � is one of the two
general solutions to the set of matter-dominated equations, then we do not care what the
other solution is (we would have to care if this solution was growing, �′ > 0; however, it is
in fact decaying). The initial conditions then ensure that the constant � solution will be
the solution.

We want to see, then, if the set of equations

δc
′ + ikuc = 0, (8.33)

uc
′ + aHuc = ik�, (8.34)

k2� = 3

2
a2H 2

[
δc + 3aHiuc

k

]
, (8.35)

admits a solution with � being a constant in time. We can use the algebraic equation (8.35)
to eliminate δc from the other two equations. In the matter-dominated era, H ∝ a−3/2, so
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d(aH)/dη = −a2H 2/2. Replacing δc in Eq. (8.33) with � and uc therefore leads to

2k2�′

3a2H 2
+ 2k2�

3aH
− 3aHiuc

′

k
+ 3a2H 2iuc

2k
+ ikuc = 0. (8.36)

We now have two first-order equations for � and uc. The strategy is to turn these two equa-
tions into one second-order equation for �. First eliminate uc

′ from Eq. (8.36) by using the
velocity equation. This leaves

2k2�′

3a2H 2
+

[
iuc

k
+ 2�

3aH

](
9a2H 2

2
+ k2

)
= 0. (8.37)

If the second-order equation is of the form α�′′ + β�′ = 0, that is, if it has no terms
proportional to �, then � = constant is a solution to the equations. So we differentiate
Eq. (8.37) with respect to η but consider only the terms proportional to �, dropping all
terms proportional to derivatives of �. Using the fact that (d/dη)(aH)−1 = 1/2 during mat-
ter domination, we see that the remaining terms are[

iuc
′

k
+ �

3

](
9a2H 2

2
+ k2

)
+

[
iuc

k
+ 2�

3aH

]
d

dη

9a2H 2

2

= −
[
iaHuc

k
+ 2�

3

](
9a2H 2 + k2

)
(8.38)

where we have eliminated uc
′ by using the velocity equation again. But Eq. (8.37) tells

us that the term in square brackets on the right here is proportional to �′. So there are
no terms proportional to �. Constant potentials are therefore a solution in the matter-
dominated era. Since the initial conditions pick out this mode, � = const is the solution in
the matter-dominated era.

Potentials remain constant as long as the universe is matter dominated. This answers
a question that arises in the context of an expanding universe: do potential wells grow
deeper as more and more matter accretes into overdense regions? Or do they decay as
matter is pulled apart by the expansion of the universe? The verdict is that, in a matter-
dominated universe, the two effects delicately balance one another and potentials remain
constant. When dark energy comes to dominate (a � 0.1), this balance is destroyed and the
potentials will decay. This decay is accurately described by the growth factor (Sect. 8.5),
and does not affect the transfer function by construction. The main result of this section is
that the transfer function as defined in Eq. (8.2) is very close to unity on all scales that
enter the horizon after the universe becomes matter dominated. That is, it is unity for
all k � aeqH(aeq), the inverse comoving Hubble radius at equality. You will show in Ex-
ercise 8.5 that the relevant scale is

keq = 0.073 Mpc−1	mh2 = 0.010 Mpc−1 (fiducial cosmology). (8.39)

In the limit in which we are working, where baryons and anisotropic stresses are neglected,
the transfer function depends only on k/keq.
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FIGURE 8.8 The regime studied in Sect. 8.3.1: evolution of modes deep in radiation domination when CDM density
perturbations can be neglected.

8.3 Small scales
We were able to solve for the evolution of large-scale perturbations in the previous sec-
tion because the modes crossed the horizon well after the epoch of equality. Therefore,
the problem is neatly divided into (i) super-horizon modes passing through the epoch
of equality and then (ii) modes in the matter-dominated era that cross the horizon. The
converse is true for the small-scale modes considered in this section. They cross the hori-
zon when the universe is deep in the radiation era. So the problem divides neatly into (i)

modes in the radiation era crossing the horizon (Fig. 8.8) and then (ii) sub-horizon modes
passing through the epoch of equality (Fig. 8.12). Step (i) we treat in Sect. 8.3.1, step (ii)

in Sect. 8.3.2. Notice that we are unable to treat analytically modes that enter the hori-
zon around the epoch of equality. Nevertheless, nothing is physically different about those
modes, they are simply not amenable to the mathematical limits we are taking.

8.3.1 Horizon crossing

When the universe is radiation dominated, the potential is determined by perturbations to
the radiation. The dark matter perturbations—the ones we are focused on in this chapter—
are determined by the gravitational potential, but do not themselves influence the po-
tential. So the situation is as depicted in Fig. 8.9. Solving for matter perturbations in this
epoch, therefore, is a two-step problem. First, we must solve the coupled equations for
�r,0, �r,1, and �. Then we solve the equation for matter evolution using the potential as an
external driving force.

To solve for the potential in the radiation-dominated era, we choose Eq. (8.15). Drop-
ping the matter source terms, we have

� = 6a2H 2

k2

[
�r,0 + 3aH

k
�r,1

]
(8.40)

since H 2 = 8πGρr/3 in the radiation era. Also in the radiation era, aH = 1/η. Armed with
this fact, we can use Einstein’s equation (8.40) to eliminate �r,0 from the two radiation
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FIGURE 8.9 Coupling of perturbations during the radiation era. Radiation perturbations and the gravitational po-
tential affect each other. Matter perturbations do not affect the potential but are driven by it.

equations, (8.10) and (8.11). These become

− 3

kη
�′

r,1 + k�r,1

[
1 + 3

k2η2

]
= −�′

[
1 + k2η2

6

]
− �

k2η

3
, (8.41)

�′
r,1 + 1

η
�r,1 = −k

3
�

[
1 − k2η2

6

]
. (8.42)

We can turn these two first-order equations for � and �r,1 into one second-order equa-
tion for the potential. Use Eq. (8.42) to eliminate �′

r,1 from the first equation, which then
becomes

�′ + 1

η
� = − 6

kη2
�r,1. (8.43)

We now have an expression for �r,1 solely in terms of the potential and its first derivative.
To arrive at a second-order equation for �, we differentiate. When we do so, we will en-
counter terms proportional to �r,1 and its derivative. Each of these can be eliminated with
Eq. (8.42) and Eq. (8.43). The resulting second-order equation is

�′′ + 4

η
�′ + k2

3
� = 0. (8.44)

This is the wave equation written in Fourier space, with a damping term due to the expan-
sion. Thus, we anticipate oscillating solutions.

To determine the behavior of the potential in the radiation-dominated era, we must
solve Eq. (8.44) subject to the initial conditions that � is constant. It can be solved analyti-
cally by defining u ≡ �η. Then Eq. (8.44) becomes

u′′ + 2

η
u′ +

(
k2

3
− 2

η2

)
u = 0. (8.45)

This is the spherical Bessel equation of order 1 (see Eq. (C.13)) with solutions j1(kη/
√

3)

(the spherical Bessel function) and n1(kη/
√

3) (the spherical Neumann function). The latter
blows up as η approaches zero, so we discard it on the basis of the initial conditions. The
spherical Bessel function of order 1 can be expressed in terms of trigonometric functions
(Eq. (C.14)), so

�(k, η) = 2

(
sinx − x cosx

x3

)
x=kη/

√
3
R(k). (8.46)
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FIGURE 8.10 Evolution of the potential in the radiation-dominated era. For two small-scale modes which enter
the horizon well before equality, the numerical solution is shown along with the approximate analytic solution
of Eq. (8.46) (thin lines). We have set the number of neutrinos to zero in the numerical calculation; neutrinos lead to
additional damping of the oscillations.

The factor of 2 in front here arises because the η → 0 limit of the expression in parentheses
is 1/3, and the relation between super-horizon � and R during radiation domination is
�(η → 0) = 2R/3 as we derived in Sect. 7.5.

Eq. (8.46) tells us that, as soon as a mode enters the horizon during the radiation-
dominated era, its potential starts to oscillate and decay (Fig. 8.10), as do the density
perturbations in the photon-baryon fluid. This is in accord with the qualitative argument
at the beginning of this chapter that alluded to the ability of pressure to counteract gravity.
Physically, these oscillations are sound waves that are driven by the gravitational potential
perturbations as the latter enter the horizon. Recall that we are considering a single Fourier
mode here, whose dependence on x is eik·x , so that the potential induced by a single plane-
wave perturbation in Eq. (8.46) is, for kη � 1, roughly described by

�(x, η) � 6
R(k)

k2η2
cos

(
kη/

√
3
)

cos(k · x). (8.47)

This is the solution for a damped standing wave.
The pressure thus prevents overdensities from growing. If perturbations to the domi-

nant component (here radiation) do not grow, then the potential in an expanding universe
will begin to decay. This is evident in Eq. (8.40) which (neglecting the dipole well within the
horizon) says that � ∼ �0/η

2. Since �0 oscillates with fixed amplitude, the potential also
oscillates, but with an amplitude decreasing as η−2. Indeed, this is precisely the large kη

limit given in Eq. (8.47). The decay and oscillation of the potential is shown in Fig. 8.10 with
both the analytic expression of Eq. (8.46) and the numerical solution including matter per-
turbations. Our approximation, which neglects the effect of dark matter on the potential,
leads to deviations that are clearly visible for the large-scale mode: the numerical solution
is slightly offset to positive values compared to the analytic result. We will see in Sect. 9.1
that this shift is due to the gravitational effect of dark matter. For the numerical solution
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in Fig. 8.10 we have set the number of neutrinos to zero. In the real universe, the presence
of free-streaming neutrinos leads to additional damping of the oscillations after horizon
entry.

Armed with knowledge of the potential in the radiation-dominated era, we can now
determine the evolution of the matter perturbations, the right part of Fig. 8.9. To do this, we
turn the two matter evolution equations—Eq. (8.12) and Eq. (8.13)—into one second-order
equation with the potentials serving as an external source. Differentiate Eq. (8.12) and use
Eq. (8.13) to eliminate uc

′:

δc
′′ + ik

(
−a′

a
uc + ik�

)
= −3�′′. (8.48)

Now we can use Eq. (8.12) to eliminate uc, leading to

δc
′′ + 1

η
δc

′ = S(k, η) (8.49)

where the source term is

S(k, η) = −3�′′ + k2� − 3

η
�′. (8.50)

The two solutions to the homogeneous equation (S = 0) associated with Eq. (8.49) are
δc = constant and δc = ln(a) (or, equivalently in the radiation-dominated era, ln(η)). Thus,
we anticipate logarithmic growth of δc during the radiation era.

In general, the solution to a second-order equation is a linear combination of the two
homogeneous solutions and a particular solution. In the absence of a revelation about the
particular solution, one can construct it from the two homogeneous solutions (call them
s1 and s2) and the source terms. It is the integral of the source term weighted by the Green
function [s1(η)s2(η̃) − s1(η̃)s2(η)]/[s′

1(η̃)s2(η̃) − s1(η̃)s′
2(η̃)]. So here we have

δc(k, η) = C1 + C2 ln(kη) −
∫ η

0
dη̃S(k, η̃)η̃ (ln[kη̃] − ln[kη]) , (8.51)

where we have added factors of k in the arguments of the logarithms, which will be conve-
nient later. At very early times the integral is small, so our initial conditions (δc constant)
dictate that the coefficient of ln(kη), C2, vanishes and C1 = δc(k, η = 0) =R. Now let us con-
sider the integral in Eq. (8.51). The source function decays to zero along with the potential
as the mode enters the horizon. Thus, the dominant contribution to the integral comes
from the epochs during which kη is of order 1. The integral over S(η̃) ln(kη̃) therefore will
just asymptote to some constant, while the integral over S(η̃) ln(kη) will lead to a term pro-
portional to ln(kη) with the constant of proportionality being just that, a constant. Thus,
we expect that after the mode has entered into the horizon,

δc(k, η) = AR ln(Bkη), (8.52)

i.e., a constant (AR ln[B]) plus a logarithmic growing mode (AR ln[kη]).
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FIGURE 8.11 Growth of CDM perturbations in the radiation-dominated era. The two modes shown here both enter
the horizon in the radiation era and lock onto the logarithmically growing mode. Heavy curves are the numerical
solutions, while light solid curves show the logarithmic mode of Eq. (8.52). The perturbations have been normalized
by the value of � at early times; the absolute value of the larger-scale mode actually has a larger initial amplitude
by a factor of 103/2 for a scale-invariant initial spectrum (ns = 1).

We can determine the constants A and B in Eq. (8.52) by referring to the relevant parts
of Eq. (8.51). The constant term, AR ln(B), is equal to C1 plus the integral over ln(η̃), or

AR ln(B) =R−
∫ ∞

0
dη̃S(k, η̃)η̃ ln(kη̃), (8.53)

while the coefficient of the ln(kη) term is set by the remaining integral

AR=
∫ ∞

0
dη̃S(k, η̃)η̃. (8.54)

Note that in both integrals here, we have set the upper limit to infinity in accord with our
expectation that the integrals asymptote to some constant value at large η. Using the ex-
pression for the source term, Eq. (8.50), and our analytic approximations to the potential,
Eq. (8.46), we can evaluate the integrals here and determine A and B. We find A = 6.0 and
B = 0.62. Hu and Sugiyama (1996), who introduced this method for following the dark
matter evolution at early times, found that integrating more precise expressions for the
potentials (instead of the approximate ones of Eq. (8.46)) leads to slightly different values,
A = 6.4 and B = 0.44.

Fig. 8.11 shows the numerical solution for δc in the radiation era along with the approx-
imation of Eq. (8.52). Setting aside the details for a moment, we see that matter perturba-
tions do indeed grow even during the radiation era, in contrast to those in the radiation
(and baryon) components which decay and oscillate, as we have seen. The reason is that
CDM does not have any pressure to counteract the effect of gravity. The growth is not as
prominent as during the matter era (when the constant potentials derived in Sect. 8.2 im-
ply δc ∝ a) due to the more rapid expansion of the universe when radiation dominates, but
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FIGURE 8.12 The regime studied in Sect. 8.3.2: evolution of modes far inside the horizon, where the effect of radia-
tion perturbations can be neglected.

it still exists. For both modes shown in Fig. 8.11, the perturbations do indeed settle into
the logarithmic growing mode once they enter the horizon. As the universe gets closer to
matter domination, though, the expansion of the universe slows down, and the perturba-
tions begin to grow faster. Indeed, you might be worried that our approximation for the
k = 1h Mpc−1 mode is not very useful, since the universe enters matter domination soon
after it starts to grow. Fortunately, we will be using these solutions only to set the initial
conditions for growth in the sub-horizon epoch (next subsection), so the approximation
need be valid only over a limited range in time. As long as we choose the matching epoch
appropriately, the logarithmic approximation will be quite good.

8.3.2 Sub-horizon evolution

We saw in the last subsection that radiation pressure causes the gravitational potentials
to decay as modes enter the horizon during the radiation era. Although we did not focus
on the radiation perturbations themselves (we will do this in the next chapter), you might
expect that the pressure suppresses any growth in �r,0. This is correct, and it is in sharp
contrast to the matter perturbations which, as we just saw, grow logarithmically. Although
initially the potential is determined by the radiation (since the universe is radiation dom-
inated), eventually the growth in the matter perturbations more than offsets the higher
mean radiation density. That is, eventually ρcδc becomes larger than ρr�r,0 even if ρc is
smaller than ρr. Once this happens, the gravitational potential and the dark matter pertur-
bations evolve together and do not care what happens to the radiation (Fig. 8.12). In this
subsection, we want to solve the set of equations governing the matter perturbations and
the potential and then match on to the logarithmic solution (8.52) set up during the epoch
in which the potential decays.

Once again our starting point is the set of equations governing dark matter evolution,
Eq. (8.12) and Eq. (8.13), and the algebraic equation for the gravitational potential (8.15).
And, once again, we want to reduce this set of three equations (two of which are first-
order differential equations) to one second-order equation. We will want to follow the
sub-horizon dark matter perturbations through the epoch of equality, so it proves con-
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venient again to use y (Eq. (8.20))—the ratio of the scale factor to its value at equality—as
the evolution variable. In terms of y, the three equations become

dδc

dy
+ ikuc

aHy
= −3

d�

dy
, (8.55)

duc

dy
+ uc

y
= ik�

aHy
, (8.56)

k2� = 3y

2(y + 1)
a2H 2δc. (8.57)

Several comments are in order about this version of our fundamental equations. First, no-
tice that the time derivatives in the first two equations have been replaced by derivatives
with respect to y, and this transformation leads to the factors of y′ = aHy in the denomina-
tors of the other terms. Second, the gravitational potential is now expressed solely in terms
of δc: there is no dependence on radiation perturbations because of our arguments above
that these are subdominant, and there is no aHuc/k dependence because the perturba-
tions are well within the horizon and aH/k � 1. Finally, the coefficient of the δc source
term is 4πGρca

2 → (3/2)a2H 2y/(y + 1). Here we neglect both baryons and dark energy.
The latter is a good assumption since we are interested in times early enough that the ef-
fect of dark energy is negligible; the former will lead to some differences from the correct
numerical result.

We now go through the familiar routine of turning Eqs. (8.55) and (8.56) into a second-
order equation for δc: differentiate the first of these with respect to y to get

d2δc

dy2
− ik(2 + 3y)uc

2aHy2(1 + y)
= −3

d2�

dy2
+ k2�

a2H 2y2
(8.58)

where duc/dy has been eliminated using the velocity equation. Also we have used the fact
that d(1/aHy)/dy = −(1 + y)−1(2aHy)−1. The first term on the right is much smaller than
the second, which is multiplied by (k/aH)2, and can thus be dropped. Using Eq. (8.57), we
recognize this second term as 3δc/[2y(y + 1)]. We can rewrite the velocity on the left using
Eq. (8.55) but neglecting the potential which on sub-horizon scales is much smaller than
δc. Thus, the combination ikuc/(aHy) can be simply replaced by −dδc/dy leaving

d2δc

dy2
+ 2 + 3y

2y(y + 1)

dδc

dy
− 3

2y(y + 1)
δc = 0. (8.59)

This is the Meszaros equation (Meszaros, 1974), governing the evolution of sub-horizon
cold dark matter perturbations once radiation perturbations have become negligible.

To understand the growth of dark matter perturbations, we need to obtain the two inde-
pendent solutions to the Meszaros equations and then match on to the logarithmic mode
established in the previous subsection. To solve this differential equation, we can use our
knowledge of the solution deep in the matter era. We have seen that sub-horizon pertur-
bations in the matter era grow with the scale factor (and will prove this in Sect. 8.5), so



216 Modern Cosmology

one of the solutions to Eq. (8.59) is a polynomial in y of order 1. Therefore, for one mode
at least, d2δc/dy2 vanishes. The equation governing this first mode, the growing mode, is
δ′

c,+/δc,+ = 3/(2 + 3y), the solution to which is δc,+ ∝ y + 2/3, or

D+(a) = a + 2aeq

3
. (8.60)

Normalized in this way, the solution describes scale-independent growth, and approaches
D+ = a when a � aeq. Hence, we have identified it with the growth factor D+ introduced
in Sect. 8.1. Note though that in this section we are assuming that only matter is relevant,
and ignore curvature and dark energy. Therefore, our expression for the growth factor will
be valid only when a � 0.1. We turn to the generalization to later times in Sect. 8.5.

To find the second solution, notice that the Meszaros equation tells us that u ≡ δc/(y +
2/3) satisfies

(1 + 3y/2)
d2u

dy2
+ (21/4)y2 + 6y + 1

y(y + 1)

du

dy
= 0. (8.61)

Since there is no term proportional to u, Eq. (8.61) is actually a first-order equation for
du/dy. We can therefore integrate to obtain a solution for du/dy and then integrate again
to get the second Meszaros solution. The first integral gives

du

dy
∝ (y + 2/3)−2y−1(y + 1)−1/2. (8.62)

Integrating again leads to the second Meszaros solution

D−(y) = (y + 2/3) ln

[√
1 + y + 1√
1 + y − 1

]
− 2

√
1 + y. (8.63)

At early times (y � 1), D+ = const while D− is proportional to lny. At late times (y � 1), the
growing solution D+ scales as y while the decaying mode D− falls off as y−3/2.

The general solution to the Meszaros equation is therefore

δc(k, y) = C1D+(y) + C2D−(y) (y � yH ) (8.64)

where yH ≡ aH /aeq is the scale factor when the mode enters the horizon divided by the
scale factor at equality (Exercise 8.6). To determine the constants C1 and C2 we can match
on to the logarithmic solution of Eq. (8.52). That solution is valid within the horizon but
before equality: yH � y � 1. So we can hope to arrive at a reasonable approximation for
the evolution of dark matter perturbations only for those modes that enter the horizon
before equality. For those modes, we match the two solutions and their first derivatives,

AR ln(Bym/yH ) = C1D+(ym) + C2D−(ym),

AR
ym

= C1D
′+(ym) + C2D

′−(ym), (8.65)
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FIGURE 8.13 Evolution of small-scale, sub-horizon, dark matter perturbations. Thick curves are numerical solutions;
thin curves show the Meszaros solution with coefficients given by the matching condition, Eq. (8.65), applied at
ym = 3yH . The departure from the numerical solution at late times is due to the presence of baryons.

where the matching epoch ym must satisfy yH � ym � 1. Note that we have replaced the
argument kη of the log in Eq. (8.52) with y/yH , which is valid as long as the matching epoch
is deep in the radiation era. Fig. 8.13 shows the evolution of two modes along with the an-
alytic solutions to the Meszaros equation with coefficients set by the matching conditions
given in Eq. (8.65). The departure at a > aeq is due to the presence of baryons which we
have neglected here. After equality, the contribution of baryons to the gravitational poten-
tial is not negligible, but they cluster less than the dark matter due to their coupling to
photons up until recombination. Since in our calculation we assumed that all matter is in
CDM form, our analytic solution overestimates the growth of the CDM component.

8.4 The transfer function
In Sect. 8.2 and Sect. 8.3, we derived analytic solutions following the dark matter pertur-
bations deep into the matter era. Here, we assemble these results to obtain an idea of the
form of the transfer function.

First, we need to transform our expression (Eq. (8.64) along with Eq. (8.65)) for the
small-scale matter density into an expression for the transfer function. The transfer func-
tion is determined by the behavior of δc well after equality when the decaying mode has
long since vanished. We can extract an even simpler form for δc in this a � aeq limit. The
key constant in that case is C1, the coefficient of the growing mode. Multiplying the first
matching condition in Eq. (8.65) by D′− and the second by D− and then subtracting lead to

C1 = D′−(ym) ln(Bym/yH ) − D−(ym)/ym

D+(ym)D′−(ym) − D′+(ym)D−(ym)
AR. (8.66)

The denominator D+D′− − D′+D− = −(4/9)y−1
m (ym + 1)−1/2, which is approximately equal

to −4/9ym since ym � 1. Similarly for small ym, D− → (2/3) ln(4/y) − 2 and D′− → −2/3y.
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Therefore,

C1 → −9

4
AR

[−2

3
ln(Bym/yH ) − (2/3) ln(4/ym) + 2

]
, (8.67)

which fortuitously does not depend on ym. Therefore, at late times we have an approximate
solution for the small-scale dark matter perturbations

δc(k, a) = 3

2
AR(k) ln

[
4Be−3aeq

aH

]
D+(a) (a � aeq). (8.68)

On very small scales, the argument of the log simplifies because aeq/aH = √
2k/keq (Exer-

cise 8.6). We also need to remember that we have been ignoring baryons throughout, and
so within this approximation we set the total matter density perturbation to that of CDM:
δm = δc (we return to this in Sect. 8.6.1). Comparing Eq. (8.7) with Eq. (8.68) leads to an
analytic expression for the transfer function on small scales:

T (k) = 15

4

	mH 2
0

k2aeq
A ln

[
4Be−3

√
2k

keq

]
(k � keq). (8.69)

Recall that the wavenumber entering the horizon at equality is defined as

keq ≡ aeqH(aeq) = √
2	mH0a

−1/2
eq , (8.70)

so the prefactor is also a function of k/keq only. Then, plugging in numbers (A = 6.4, B =
0.44) leads to

T (k) = 12.0
k2

eq

k2
ln

[
0.12

k

keq

]
(k � keq). (8.71)

This analytic approximation for the transfer function is only accurate on very small scales,
k � 1hMpc−1. More sophisticated analytic solutions or fitting formulae have lost most of
their practical utility since the advent of fast and accurate codes to compute the transfer
function (these codes now agree to within 0.1%). Importantly though, our analytic work
has enabled us to understand the origin of the asymptotic, small-scale behavior of the
transfer function. Had there been no logarithmic growth in the radiation era, the modes
that entered very early on would have experienced no growth from horizon entry until
the epoch of equality. Their amplitude relative to large-scale modes would then have been
suppressed by a factor of order (keq/k)2. The logarithmic growing mode in the radiation
era ameliorates this suppression (the effect is seen in the larger amplitude of the higher-k
mode in Fig. 8.13).

Finally, we can look at the shape of the matter power spectrum via Eq. (8.8). Fig. 8.14
shows the power spectrum for our fiducial Euclidean �CDM cosmology, as well as the ef-
fect of changing 	m while retaining a Euclidean cosmology by requiring 	m + 	� = 1 and
keeping h fixed. Clearly, the shape of the power spectrum, and in particular the turnover
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FIGURE 8.14 The matter power spectrum at redshift z = 0 in the fiducial �CDM cosmology (thick black line). The
other lines show the result when varying 	m around the fiducial value, keeping h fixed and 	m + 	� = 1. Changing
	m changes the epoch of equality and hence the shape of the matter power spectrum.

scale keq depend on 	m: as we lower 	m, the matter-radiation equality shifts to later times,

so that keq is pushed to lower values; the opposite happens when increasing 	m. Recall that

the physical matter density is controlled by the parameter combination 	mh2. Hence, keq

and the shape of the matter power spectrum mainly depend on this combination, as you

will verify in Exercise 8.7. There is another subtlety, however, which is purely conventional:

in order to make distances independent of the Hubble constant, length scales are con-

ventionally multiplied by h, and wavenumbers correspondingly divided by h (see the axis

labels in Fig. 8.14 which indicate this). Since keq is proportional to 	mh2 in physical units

(i.e., Mpc−1, cf. Eq. (8.39)), the parameter combination controlling keq in units of hMpc−1

is 	mh. The combination 	mh is thus sometimes referred to as “shape parameter.” It is im-

portant to keep in mind, however, that in terms of physical scales, the relevant parameter

is 	mh2.

There are several physical effects in the real universe that we have neglected in our

analytic treatment. We have assumed no anisotropic stress (� = −�). Dropping this

assumption changes the factor of 9/10 by which the potential drops for large-scale

modes to approximately 0.86, resulting in a corresponding rise in the small-scale trans-

fer function. Including the effect of baryons leads to even more significant small-scale

changes. We will address these in Sect. 8.6. Third, all of our work in this section has

been on the transfer function, i.e., on the evolution of perturbations early on when the

only relevant constituents of the universe were matter and radiation. At late times, the

growth factor depends on other constituents, the most important of which is dark en-

ergy.
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8.5 The growth factor
Armed with knowledge of the transfer function, let us now turn to the second part of struc-
ture formation, the scale-independent growth factor. At late times, the horizon is much
larger than the modes that interest us. Were it not for dark energy (and neutrino masses),
we could simply continue to use the Meszaros equation of Sect. 8.3.2.

In order to begin our calculation, let us then recap what regime we will focus on. Apart
from the sub-horizon limit, we can also neglect the pressure in the baryons at late times, i.e.
after decoupling. This means that the baryons follow equations that look just like those for
the dark matter, Eqs. (8.12)–(8.13). Moreover, while they start with different initial condi-
tions, the baryons closely follow the dark matter at late times, so we can describe the matter
sector with the total matter perturbation, defined through (Eq. (6.79)) ρmδm = ρcδc + ρbδb,
and similarly for the velocity um = (ρcuc + ρbub)/ρm. In this section, we will also neglect
the mass of neutrinos, whose effect does complicate the late-time evolution of struc-
ture.

First, multiply Eq. (8.12) by a and take the derivative with respect to η. Neglecting the
right-hand side, which is negligible on sub-horizon scales, and combining with Eq. (8.13)
yields [

aδ′
m(k, η)

]′ = ak2�(k, η). (8.72)

We now need to complement this with one of the Einstein equations for �. Let us take
Eq. (8.14), neglect radiation perturbations as well as the terms on the left-hand side that
are small when k � aH . We obtain

k2�(k, η) = 4πGa2ρm(η)δm(k, η), (8.73)

which is nothing but Eq. (8.5). Using the fact that ρm ∝ a−3 and the definition of 	m, we
finally obtain the first version of our growth equation for δm:

[
aδ′

m
]′ = 3

2
	mH 2

0 δm. (8.74)

For solving this equation, it is more convenient to exchange the time variable from η to a,
which yields

d2δm

da2
+ d ln(a3H)

da

dδm

da
− 3	mH 2

0

2a5H 2
δm = 0. (8.75)

In general, Eq. (8.75) needs to be solved numerically. There are a few (important) special
cases where we can make a bit more progress. You will show in Exercise 8.8 that, if the only
relevant components apart from matter are a cosmological constant and curvature, we can
obtain the following integral solution:

D+(a) ∝ H(a)

∫ a da′

(a′H(a′))3 (�, curvature) . (8.76)
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FIGURE 8.15 The growth factor divided by the scale factor in three different Euclidean cosmologies. The solid line
shows the fiducial cosmology. Increasing the amount of dark energy, or increasing its equation of state above −1,
leads to a greater suppression of the growth at late times.

The proportionality constant is fixed by the definition of Eq. (8.3), which says that, early
on when matter still dominates (say at z � 10), D+ should be equal to a. At those times,
H = H0	

1/2
m a−3/2, so the growth factor is

D+(a) = 5	m

2

H(a)

H0

∫ a

0

da′

(a′H(a′)/H0)3 (�, curvature) . (8.77)

If dark energy is not a cosmological constant, then Eq. (8.77) is not a solution to the
second-order growth equation, which needs to be solved directly. However, for the growth
rate f , the logarithmic derivative of the growth factor, there exists an empirical fitting for-
mula that is remarkably precise even in the presence of dynamical dark energy:

f (a) ≡ d lnD+(a)

d lna
� [	m(a)]0.55 , (8.78)

where 	m(a) ≡ 8πGρm(a)/3H 2(a) is the time-dependent matter density parameter (which
reduces to our constant 	m if a = 1). We will use this time-dependent 	m(a) only here and
in Ch. 12.

Fig. 8.15 shows the growth factor for three different Euclidean cosmologies, divided by
a in order to better show the trends at late times. As mentioned above, if the universe is
Euclidean and matter dominated, the growth factor is simply equal to the scale factor. In
the presence of dark energy, growth is suppressed by varying amounts depending on the
amount and equation of state of dark energy. We will see some observable implications of
this in Ch. 11.
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FIGURE 8.16 Ratio of the transfer function at redshift zero to the case of no baryons (i.e. 	c = 	m) and massless
neutrinos. The black solid line shows the effect of baryons, which is very conspicuous. The other lines show the
additional effect of finite neutrino masses. Here, we have assumed equal masses for all three neutrino species.
While the effect of baryons is essentially independent of redshift, massive neutrinos lead to a redshift dependence
of the transfer function.

8.6 Beyond cold dark matter and radiation
Although CDM is the main matter component, so that the transfer function we derived
earlier is a reasonable approximation to reality, there is more to the real universe than just
cold dark matter. Here we focus on three additional components. First, we consider the
effect of the baryons, which constitute roughly 16% of the total matter, on the transfer
function. Then, we study the consequences of the fact that neutrinos have mass. Finally,
dark energy—one model for which is the cosmological constant—is considered.

8.6.1 Baryons

A careful examination of the black solid line in Fig. 8.16 reveals two signatures of the
presence of baryons. The first is that the transfer function is suppressed relative to the
no-baryon case on small scales. This is not surprising: at early times, before decoupling,
baryons are tightly coupled to photons. Since radiation perturbations do not grow inside
the horizon, the baryon overdensities are likewise suppressed compared to the dark mat-
ter. After decoupling, baryons are released from the relatively smooth radiation field and
fall into the gravitational potentials dominated by the dark matter. The depth of these wells
is smaller than we estimated in Sect. 8.3, though, because only a fraction 	c/	m of the to-
tal matter was involved in the collapse.

The second effect of baryons visible in Fig. 8.16 is equally important. Baryons lead to
small oscillations in the transfer function around k � 0.1hMpc−1. These are manifesta-
tions of the oscillations (sound waves) that the combined baryon-photon fluid experiences
before decoupling. We encountered these in Sect. 8.3.2 (Fig. 8.10) when we derived the po-
tential in the radiation-dominated era. The oscillations in the potential reflect those in the
density of the baryon-photon fluid, which are acoustic plasma waves. For this reason, the
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oscillations in the transfer function are known as baryon acoustic oscillations (BAOs). They
have been detected with impressive significance in the clustering of galaxies (Fig. 1.9).
Since this feature corresponds to a known scale, the sound horizon at decoupling (roughly,
η∗/

√
3, cf. Eq. (8.47)), it can be used as a standard ruler if measured in the large-scale struc-

ture of the late universe as shown in Fig. 1.9.
The main difficulty in measuring this feature is its small amplitude, which is simply due

to the fact that baryons are such a small fraction of the total matter. The oscillations are
much more prominent in the radiation, as we already saw in Fig. 1.10. How to describe
those accurately is the topic of the next chapter.

Now, above in Sect. 8.5 we argued that baryons eventually follow the dark matter after
decoupling. It is worth investigating in a little more detail how this happens. Let us go back
to Eqs. (8.12)–(8.13). After decoupling, the baryons are free of their coupling to photons
and have negligible pressure since their temperature is low. Hence, they obey the same
equations as the CDM component, and we arrive at the following set of equations:

δs
′ + ikus = −3�′,

us
′ + a′

a
us = ik� (s = {b, c}). (8.79)

What we did in Sect. 8.5 is to construct the weighted sums

δm = ρcδc + ρbδb

ρm
,

um = ρcuc + ρbub

ρm
, (8.80)

i.e. the total matter density perturbation and matter velocity. Combining this with the Pois-
son equation, which is sourced by δm, then yields Eq. (8.75).

Now let us construct a different set of variables, the relative density perturbation and
relative velocity between baryons and CDM:

δbc = δb − δc,

ubc = ub − uc. (8.81)

We obtain equations for these by subtracting the continuity and velocity equations for
baryons and CDM:

δbc
′ + ikubc = 0,

ubc
′ + a′

a
ubc = 0. (8.82)

Notice that the gravitational potential drops out of both equations. This is due to the fact
that gravity cares only about the total amount of matter, not how much of it is in baryons
or dark matter. The two solutions to Eq. (8.82) are easily identified: first, we have δbc = Cδ ,
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ubc = 0. This corresponds to a constant relative density perturbation between baryons and
CDM, keeping the total amount of matter fixed, and with both traveling with the same
velocity. Second, the equation for the relative velocity admits a solution ubc = Cu/a, with
δbc ∝ Cu

∫
dη/a. This solution corresponds to giving the baryons an initial push, so that

they acquire a relative velocity with respect to the dark matter. Both of these modes are
generated by the different evolution of baryons and dark matter leading up to decoupling.
The key feature though is that these modes are constant or decaying, and thus become
small at late times compared to the growing mode studied in Sect. 8.5. That is, even if at
decoupling δbc is comparable to δm, it is suppressed by a factor D(a∗)/D(a) � 0.01 in the
late universe; the suppression of ubc is even stronger.

8.6.2 Massive neutrinos

Neutrinos are known to exist, and the concordance model of cosmology makes a definite
prediction for how many there are in the universe (Eq. (2.82)); only their mass remains
uncertain. An accurate measurement of the matter power spectrum may enable us to infer
neutrino masses.

The masses of neutrinos affect structure growth in two ways. First, they affect the evo-
lution of the energy density in neutrinos, which initially decays as a−4 but later transitions
to a−3 (cf. Eq. (2.83)). This modifies the expansion rate through the Friedmann equation,
and changes the growth factor since H(a) enters the growth equation (8.75). Taking into
account this effect, which you can do in Exercise 8.10, still leaves the growth factor inde-
pendent of k.

The second effect is a bit more subtle. Since neutrinos move fast (they are not cold dark
matter) and stream out of high-density regions, they damp the growth of small-scale struc-
ture. Perturbations on scales smaller than the typical distance that neutrinos travel, the
free-streaming scale, are therefore suppressed. We can estimate the scale on which pertur-
bations are damped by computing the comoving distance a massive neutrino can travel in
one Hubble time. As you can show in Exercise 8.11, the inverse of this, the free-streaming
wavenumber, is given by

kfs(a) � 0.063h Mpc−1 mν

0.1 eV
a2H(a)

H0
. (8.83)

Fig. 8.16 shows the resulting suppression (note that it does not include the first neutrino-
mass effect, the modified expansion history, which is not included in T (k) by definition).
More massive neutrinos constitute more of the total density so they suppress small-scale
power more than do lighter neutrinos. However, there is a smaller effect, barely notice-
able for k � 0.004h Mpc−1 in Fig. 8.16, that works in the other direction. Less massive
neutrinos travel more rapidly and hence free-stream out of larger regions, as indicated by
Eq. (8.83). Therefore the transfer function for

∑
mν = 0.06 eV is slightly smaller than that

for
∑

mν = 0.2 eV on very large scales.
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Finally, notice that the growth factor becomes scale dependent in the presence of mas-
sive neutrinos, i.e. the neat decomposition into a time-independent transfer function and
scale-independent growth factor is upset.

8.6.3 Dark energy

As reviewed in Sect. 2.4.6, we now have overwhelming evidence that dark energy domi-
nates the energy budget of the universe today. How does it affect the matter perturbations?

The direct physical effect of dark energy is the impact on the growth factor we derived
in Sect. 8.5. Following Eq. (8.77), the growth of perturbations at late times depends directly
on the evolution of the Hubble rate, which in turn depends on the amount and evolution
of dark energy. Thus, different models of dark energy predict different growth factors. If we
parameterize the dark energy by its equation of state w (Eq. (2.60)), and assume that w is
constant, then the Hubble rate in a Euclidean universe evolves as

H(z)

H0
=

[
	m

a3
+ 	de

a3(1+w)

]1/2

(8.84)

at late times. Using this time dependence, it is straightforward to solve Eq. (8.75) numer-
ically (Exercise 8.9; notice that Eq. (8.77) is not valid if w �= −1; see Exercise 8.8). This
effect, in addition to the distance-redshift relation discussed in Sect. 2.2, forms the basis
for current constraints on the dark energy density and equation of state from large-scale
structure.

Two additional, indirect effects of dark energy enter through the fact that, in a Euclidean
universe, 	m = 1 − 	�. First, the shape of the matter power spectrum indirectly depends
on the amount of dark energy since the equality scale depends on 	m. Second, for a fixed
amplitude of potential perturbations, which is what the large-angle CMB anisotropies con-
strain, the fractional density perturbations are proportional to 	−1

m , which follows from the
Poisson equation (8.6).

8.7 Summary
After having set up the relevant linear Einstein–Boltzmann system and the initial condi-
tions from inflation in previous chapters, we were now able to derive solutions to these
equations, focusing on the growth of density perturbations δc in the dark matter. These
form the basis for the structure in the late universe, and are thus well worth studying.

The focus on dark matter allowed us to strongly simplify the treatment of baryons and
radiation, and we obtained analytic results in important special cases: large-scale modes
that entered the horizon during matter domination, and small-scale modes that entered
the horizon deep in radiation domination. During radiation domination, perturbations
in the radiation oscillate in the form of standing sound waves, while those in dark mat-
ter grow logarithmically. Later, during matter domination, dark matter perturbations grow
proportionally to the scale factor.
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Apart from these limits which can be solved analytically, the growth of structure in gen-
eral has to be integrated numerically. This can be done efficiently using publicly available
codes. The two most widely used codes for computing transfer functions, which also out-
put the matter power spectrum and angular power spectra of CMB anisotropies, are CAMB
(Lewis et al., 2000) and CLASS (Blas et al., 2011). The plots in this chapter were made using
CLASS via its python module.

Because structure growth becomes scale-free after decoupling, it is convenient to de-
compose the growth into a scale-dependent transfer function T (k) and a time-dependent
growth factor D+(a). This parametrization neatly decouples early-universe physics—
contained in T (k)—from late-time physics such as dark energy—captured by D+(a). Using
these definitions, the matter density at late times is related to the conserved curvature
perturbation generated by inflation via

δm(k, a) = 2

5

k2

	mH 2
0

R(k)T (k)D+(a) (a > alate, k � aH). (8.85)

The main result of this chapter was our prediction for the matter power spectrum, which
becomes

PL(k, a) = 8π2

25

As

	2
m

D2+(a)T 2(k)
kns

H 4
0 k

ns−1
p

. (8.86)

It is worth noting that massive neutrinos spoil the decomposition into transfer function
and growth factor on scales smaller than the free-streaming scale, i.e. for k � kfs: D+ be-
comes scale dependent, or equivalently T (k) becomes time dependent.

While computing an accurate transfer function requires substantial effort in terms of
equations and physics, the growth factor (at least on scales larger than the free-streaming
scale 1/kfs) can be computed fairly easily as soon as the expansion history is specified,
by solving the ordinary differential equation Eq. (8.75) with initial conditions given by
D+(a) = a during matter domination.

With these ingredients, we are all set to compare the matter power spectrum with ob-
servations of large-scale structure, which we will do in Ch. 11. Implicitly, we normalized the
power spectrum to large-scale CMB anisotropies in Eq. (8.86); we will understand how this
works in the next chapter. The fact that the matter power spectrum determined by theory
together with early-universe measurements agrees with the completely independent mea-
surements in the late universe is a highly nontrivial consistency test of our concordance
cosmological model.

Exercises
8.1 Derive Eqs. (8.10) and (8.11).

(a) Show that, in the limit of small baryon density, the scattering term in Eq. (5.67),
the one proportional to τ ′, can be neglected: first, drop �, since the quadrupole
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and polarization are very small. Then show that the scattering term is propor-
tional to the baryon-to-photon energy ratio R defined in Eq. (5.74). You will want
to use Eq. (5.72). Again, this series of approximations is valid only for the pur-
poses of this chapter, wherein we are interested in the matter distribution.

(b) Neglecting the scattering term in Eq. (5.67), show that this collisionless equation
reduces to the two equations for the monopole and dipole. To get the monopole
equation, multiply Eq. (5.73) by P0(μ) = 1 and integrate over dμ/2. To get the
dipole, multiply by P1(μ) and integrate.

8.2 Solve the set of five equations (Eq. (8.10)–Eq. (8.13) and Eq. (8.14)) numerically to
obtain the transfer function for dark matter. Use the initial conditions derived in
Ch. 7. The one numerical problem you may encounter using Eq. (8.14) occurs on
small scales when you try to evolve all the way to the present. The photon moments
then become difficult to track, and even a good differential equation solver will balk
at late times. However, there are several simple solutions to this: (i) by the late times
in question, the potential is constant so there is no need to evolve all the way to
the present or (ii) stop following the photon moments after a certain time; they do
not have any effect on the matter distribution at late times anyway. Plot the transfer
function for the fiducial �CDM model and compare with the output of CAMB or
CLASS.

8.3 The four subsections in Sect. 8.2 and Sect. 8.3 correspond to four different approxi-
mations to the full set of Einstein–Boltzmann equations. In the following table, fill in
the regime of validity for each approximation:

a � aeq a ∼ aeq a � aeq

kη � 1

kη ∼ 1

kη � 1

For example, the super-horizon solution of Sect. 8.2.1 is valid along the whole top
row, since it sets kη → 0. Note that time evolves from upper left to bottom right, so
the fact that none of the approximations work in the center square means that only
those scales that enter the horizon well before or well after equality will be amenable
to analytic techniques.

8.4 Fill in some of the algebraic detail left out of Sect. 8.2.1.
(a) Show that Eq. (8.23) leads to Eq. (8.24) by carrying out the differentiation.
(b) Show that Eq. (8.24) is equivalent to Eq. (8.26) when the definition of u from

Eq. (8.25) is used.
(c) Show that the integral in Eq. (8.30) can be done analytically with the result given

in Eq. (8.31). One way to do the integral is to change variables to x ≡ √
1 + y.

8.5 Find the wavenumber of the mode which equals the inverse comoving Hubble ra-
dius at equality. That is, define keq to be equal to aeqH(aeq). Show that this definition
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implies

keq =
√

2	mH 2
0

aeq
. (8.87)

Then use Eq. (2.86) to show that keq is given by Eq. (8.39). Show that if you define keq

by setting it to 1/ηeq, you get a number that is somewhat lower.
8.6 Define aH (k), the scale factor at which the wavenumber k equals the comoving Hub-

ble radius, via aH H(aH ) ≡ k. Express aH /aeq in terms of k and keq. Show that in the
limit k � keq, this expression reduces to

lim
k�keq

aH

aeq
= keq√

2k
. (8.88)

8.7 Show, using CAMB or CLASS, that the shape of the matter power spectrum is largely
independent of 	m when the physical density 	mh2 is held fixed by changing h

correspondingly, and when plotting in physical units (i.e. Mpc−1). Now go back to
conventional, h-scaled units and vary 	m holding the combination 	mh fixed. Ex-
plain your findings for the change in the matter power spectrum in this case.

8.8 Solve Eq. (8.75) under the assumption that only matter, curvature, and a cosmologi-
cal constant are relevant:

H 2(a) = H 2
0

[
	ma−3 + 	� + (1 − 	m − 	�)a−2

]
. (8.89)

(a) Show that δm ∝ H is a solution. What property of this solution makes it unsuited
to describing the growth of structure in the universe?

(b) To obtain the second solution, try a solution of the form u = δm/H . Compare
with Eq. (8.77).

(c) Now generalize Eq. (8.89) to non-constant dark energy, 	� → 	de(a), with equa-
tion of state w. Under what conditions on w does Eq. (8.77) solve Eq. (8.75)?

8.9 Compute the growth factors in a universe with 	de = 0.7, 	m = 0.3, and w = −0.5. For
this, solve Eq. (8.75) numerically. Plot the growth factor as a function of a. Compare
with the cosmological constant model (w = −1) with the same 	de, 	m.

8.10 Compute the change to the scale-independent growth factor due to the effect that
massive neutrinos have on the expansion rate H(a), via Eq. (8.75). For this, the results
of Exercise 2.13 are useful. Consider two cases: a single massive species with (i) mν =
0.06 eV and (ii) mν = 0.2 eV.

8.11 Compute the neutrino free-streaming scale kfs. First, determine the typical momen-
tum of neutrinos with temperature Tν,0/a = 1.946 K/a. Then, calculate the typical
distance xfs a neutrino with this momentum and mass mν travels within a time in-
terval 
t = 1/H . The free-streaming scale is then given by kfs = 1/xfs. Show that this
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can be written as

kfs(a) � 3.2
√

a−2 + m2
ν/T 2

ν,0 a2H(a)

� 0.063hMpc−1 mν

0.1 eV
a2H(a)

H0
,

where we have used mν/Tν,0 � a−1 in the last equality, which applies at the late times
of interest.

8.12 Find kNL defined in Sect. 8.1.1 for the fiducial �CDM model at z = 0, z = 1, and z = 2.
8.13 Another popular way to characterize the amplitude of matter fluctuations on a par-

ticular scale is to compute the expected RMS overdensity in a sphere of comoving
radius R (not to be confused with the ratio of baryon-to-photon energy density),

σ 2
R ≡ 〈δ2

m,R(x)〉. (8.90)

Here

δm,R(x) ≡
∫

d3x′δm(x′)WR(|x − x′|) (8.91)

where WR(x) is the tophat window function, equal to 3/(4πR3) for x < R and 0 oth-
erwise; the angular brackets denote the ensemble average.
(a) By Fourier transforming, express σR in terms of an integral over the power spec-

trum.
(b) Use the transfer function from CAMB or CLASS, or your code in the case you

solved Exercise 8.2, to compute σ8 ≡ σR(R = 8h−1 Mpc) for the fiducial �CDM
cosmology.

(c) In the same model, plot σR as a function of R. Since σR monotonically increases
toward small R, small scales tend to go nonlinear before large scales, the signa-
ture of a hierarchical model. Compare with Fig. 12.1.
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The cosmic microwave background

The primordial perturbations set up during inflation manifest themselves in the matter
distribution as well as in the radiation. By understanding the evolution of the photon per-
turbations, we can make predictions for the power spectrum of CMB anisotropies shown
in Fig. 1.10. This evolution is again completely determined by the Einstein–Boltzmann
system we derived in Chs. 5–6, and one way to go would be to code up all the relevant
equations in those chapters and solve them numerically. Historically, this is a pretty good
caricature of what happened. Long before we developed deep insight into the physics of
anisotropies, various groups had codes that determined the expected power spectra from
different models. Only much later did we come to understand why the anisotropies look
like they do. In this chapter, we will develop this understanding by deriving approximate
semi-analytic solutions.

Perturbations to the photons evolved completely differently before and after the epoch
of recombination at z∗ � 1100. Before recombination, the photons were tightly coupled
to the electrons and protons; all together they can be described as a single fluid (dubbed
the “baryon–photon” fluid). After recombination, photons free-streamed from the “surface
of last scattering” to us today. After an overview (Sect. 9.1) that qualitatively explains the
anisotropy spectrum, Sects. 9.2–9.4 work through the physics of the baryon–photon fluid
before recombination. Then, Sects. 9.5–9.6 treat the post-recombination era, culminating
in the predicted spectrum of anisotropies today. Finally, Sect. 9.7 discusses how, and to
what extent, the CMB power spectrum allows us to determine the cosmological parame-
ters.

9.1 Overview
Let us begin as we did in the last chapter, by cheating and looking at the answers first.
Fig. 9.1 shows the evolution of the perturbations to the photons. Four Fourier modes cor-
responding to perturbations on four different scales are shown up to the point of when
they decouple from baryons at η = η∗. The first important point is that the photon pertur-
bations do not grow after decoupling: since gravitational potentials in the universe are too
weak to trap photons, the photons travel freely through the universe as soon as they de-
couple from the baryons, and essentially preserve the perturbations at the level they had at
decoupling. This stands in stark contrast to the perturbations in baryons and CDM, which
grow by orders of magnitudes between decoupling and today.

Before going further and examining the evolution of the different modes in more detail,
a technical note: we have normalized (�0 + �)(k, η) to the initial gravitational potential
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FIGURE 9.1 Evolution of four different modes of photon perturbations before recombination at η∗, in the fiducial
�CDM cosmology and normalized to the gravitational potential at the end of inflation. In the order of appearance
in the legend (from top to bottom), the wavenumbers are k [h Mpc−1] = 0.005,0.020,0.031,0.039.

�(k,0), i.e. at the end of inflation (this is directly related to the curvature perturbation R
via Eq. (8.32)). The plot shows the sum of the gravitational potential � and the photon
monopole �0 because the photons we see today had to travel out of the potentials they
were in at the time of recombination. As they emerged from these potential wells, their
wavelengths were stretched (if the region was overdense and � < 0), thereby decreasing
their energy; this is the gravitational redshift we encountered in Sect. 3.3.2. Thus, the tem-
perature we see today is actually �0 plus � at recombination. Roughly speaking, then,
the observed CMB anisotropies are given by an integral over k of the quantity shown in
Fig. 9.1 squared, multiplied by the power spectrum of �(k,0), essentially PR(k). So for the
anisotropy power spectrum, what counts is the amplitude of the quantity shown in Fig. 9.1,
not its sign.

The large-scale mode in Fig. 9.1 evolves hardly at all. This is generally the case for
super-horizon perturbations: no causal physics can affect such perturbations with wave-
lengths larger than the horizon, so a super-horizon mode should exhibit little evolution.
This means that when we observe the CMB anisotropies on large scales—which are de-
termined by modes with wavelengths larger than the horizon at recombination—we are
observing perturbations in their most pristine form, as they were generated at very early
times, during inflation.

Fig. 9.1 shows that the smaller-scale modes evolve in a more complicated way than
the super-horizon modes. Consider the curve labeled “1st peak.” As the mode enters the
horizon, the perturbation begins to grow until it reaches an apparent maximum at the
time of recombination. If we observe anisotropies on scales corresponding to this mode,
we would expect to see large fluctuations. Hence the label: the anisotropy spectrum will
have a peak at the angular scales corresponding to the mode which has just reached its
peak at recombination.

The mode in Fig. 9.1 that enters the horizon slightly earlier turns over so that its am-
plitude at recombination close to is zero. Therefore, when we observe anisotropies today
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FIGURE 9.2 Perturbations to the observed photon temperature �0 + � squared, normalized to the potential at the
end of inflation �(k,η = 0). All curves are evaluated at η = η∗, where η∗ is the recombination time in the fiducial
cosmology. The black solid line shows the fiducial cosmology, while the other two curves show results with a model
with reduced baryons (leading to an increased oscillation frequency) and reduced CDM (leading to a suppressed
asymmetry of even and odd peaks). The larger damping length λD of the low-�b case is clearly evident in the
suppression of perturbations with k � 1000/η0.

corresponding to these scales, we expect very small fluctuations. There will be a trough in
the anisotropy spectrum on these angular scales.

And on it goes. The curve labeled “2nd peak” entered the horizon even earlier and has
gone through one full oscillation by recombination. As such, this mode has a large ampli-
tude, and hence leads to a second peak in the anisotropy spectrum. By now the pattern of
the acoustic oscillations becomes clear: you might expect that there will be a never-ending
series of peaks and troughs in the anisotropy spectrum corresponding to modes that en-
tered the horizon earlier and earlier. This is exactly what happens.

We can see this more clearly by looking at the spectrum of perturbations at one time,
the time of recombination. Fig. 9.2 shows this spectrum for the fiducial cosmology (black
solid). We do indeed see this pattern of peaks and troughs. Note that the heights of the
peaks alternate: the odd peaks are higher than the even peaks in the fiducial case. To
understand this feature, we can write down a cartoon version of the equation governing
perturbations:

�′′
0 + k2c2

s �0 = F (9.1)

where F is a driving force due to gravity and cs is the sound speed of the combined baryon–
photon fluid (we will derive it below, Eq. (9.21)). This is the equation of a forced harmonic
oscillator (see Box 9.1). Qualitatively, it predicts the oscillations we have seen above.

First, the oscillation frequency is determined by the ratio of the spring constant and
the mass; in case of the baryon–photon fluid this means that the oscillation frequency be-
comes larger if we decrease the mass loading of the fluid, i.e. �b. That is, the fewer baryons
there are, the faster is the speed of sound propagation. This can be seen in the low-�b

curve in Fig. 9.2.



234 Modern Cosmology

FIGURE 9.3 The forced harmonic oscillator solution discussed in Box 9.1.

Second, the external force (or more precisely, acceleration) F sets the asymmetry in
the odd and even peaks: the larger F , and the lower the frequency, the larger the asym-
metry becomes. Consider an initial overdensity, and the sign of F is such that it tends to
increase the overdensity. When the baryon–photon fluid begins to contract, its self-gravity
and the external force act in consort, leading to a stronger contraction than would have
been the case for F = 0. Conversely, as the pressure wins and pushes the plasma outward
to maximum expansion, it acts against the external force and thus leads to an underdensity
with smaller amplitude than it would achieve if F = 0. In the case of the baryon–photon
fluid before decoupling, the external acceleration is supplied by the gravitational poten-
tials sourced by dark matter. Hence, the asymmetry between even and odd peaks is a direct
probe of the amount of dark matter �c, which is visible as the reduced asymmetry in the
low-�c case in Fig. 9.2.

This reasoning has qualitative merit, but clearly misses some of the details. For exam-
ple, the asymmetry between even and odd peaks appears to be of opposite sign for the
low-baryon case. This feature is a combination of several physical effects, including in-
creased damping (which we will discuss next) and the time dependence of the actual force
term (which we have assumed to be constant for this discussion). This is fine—we will treat
all these effects precisely in Sect. 9.3.

9.1 The forced harmonic oscillator
Consider a simple harmonic oscillator with mass m and force constant K . In addition to the
restoring force, the oscillator is acted on by an external force F (really acceleration). Thus the
full force is mF − Kx where x is the oscillator’s position. The equation of motion is

ẍ + K

m
x = F. (9.2)

The term on the right-hand side—representing the external force—is driving the oscillator to
large values of x (assuming that F > 0). The restoring force on the other hand tries to keep the
oscillator as close to the origin as possible. The result is that oscillations occur around a different
zero point, at positive x.
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The solution to Eq. (9.2) is the sum of the general solution to the homogeneous equation
(with the right-hand side set to zero) and a particular solution. The general solution has two
modes, best expressed as a sine and cosine with arguments ωt , with an angular frequency given
by ω ≡ √

K/m. A particular solution to Eq. (9.2) is a constant x = F/ω2, so the full solution is the
sum of the sine and cosine modes plus this constant. Let us assume that the oscillator is initially
at rest. Then, since ẋ(0) is proportional to the coefficient of the sine mode, this coefficient must
vanish, leaving

x = A cos(ωt) + F

ω2
. (9.3)

This solution is shown in the upper panel of Fig. 9.3. The dotted line is the unforced solution: os-
cillations about the origin. The solid curve shows the forced solutions with the same frequency:
the oscillations are not around x = 0 as they would be if the system was unforced. Once an exter-
nal force is introduced, the zero point of the oscillations shifts in the direction of the force. The
dashed and dot-dashed curves illustrate the effect of varying the frequency while the force is
kept fixed. The zero-point shift is more dramatic for lower frequencies. The bottom panel shows
the square of the oscillator position as a function of time, which is analogous to Fig. 9.2. All three
cases show a series of peaks at t = nπ/ω corresponding to the minima/maxima of the cosine
mode. (Note that if only the sine mode was present, these peaks would be at t = (2n + 1)π/ω;
in general, if both cosine and sine modes are present, peaks can appear anywhere in time.)
The heights of all peaks are identical in the case of the unforced oscillator. In the forced case,
though, the height of the odd peaks at t = π/ω,3π/ω, . . . is greater than that of the even peaks at
t = 0,2π/ω, . . ..

To summarize, the behavior of the forced oscillator is determined by two parameters: the
reduced spring constant K/m which sets the oscillation frequency, and the external force F

which sets the zero point and the asymmetry between even and odd peaks.

Beyond the oscillations, the damping that is visible on small scales kη0 � 500 for the
low-�b case in Fig. 9.2 is a further important effect in the physics of radiation perturbations
(in the fiducial model, the damping sets in at higher values of k). To understand this, we
need to remember that the approximation of the photons and baryons moving together
as a single fluid is valid only if the scattering rate of photons off of electrons is infinite. In
reality this condition is not met: photons travel a finite distance in between scatters.

Consider the path of a single photon as it scatters off a sea of electrons (Fig. 9.4). It
travels a mean comoving distance λMFP in between each scatter. In our case this distance
is (neσTa)−1 = −1/τ ′, where τ is the optical depth defined in Eq. (5.33). If the density ne of
electrons is very large, then the mean free path is correspondingly small. Over the course
of a Hubble time, H−1, a photon scatters of order neσTH−1 times (simply the product of the
rate and the time), performing a random walk. We know that the total distance traveled in
the course of a random walk is the mean free path times the square root of the total number
of steps. Therefore, a cosmological photon moves a mean comoving distance

λD ∼ λMFP

√
neσTH−1

= 1√
neσTH

1

a
(9.4)
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FIGURE 9.4 Photon diffusion through the electron gas. The line illustrates the random walk of a photon. Scattering
events are denoted as points, while the large dots denote the initial and final locations of the photon. Each scattering
event is separated by a distance of order the mean free path λMFP, while the photon has overall moved a distance
of order the damping length λD between its initial and final positions. Perturbations with k � 1/λD , like the one
sketched here, will be washed out by the diffusion.

in a Hubble time. Any perturbation on scales smaller than λD can be expected to be washed
out, because the many photons diffusing over a region of order λD will have restored the
region to a single mean temperature (as you can glean from Fig. 9.4). In Fourier space this
effect corresponds to damping of all high-k modes. This crude estimate predicts an �b

dependence consistent with Fig. 9.2: reducing the baryon density leads to a larger λD (since
ne is proportional to �b when the universe is ionized), and hence stronger damping.

The final step is to relate the perturbations at recombination, as depicted in Fig. 9.2, to
the anisotropies we observe today. The math of this is a little complicated, but the physics
is perfectly straightforward. Consider one Fourier mode, i.e. a plane-wave perturbation.
Fig. 9.5 shows the temperature variations for one mode at recombination. Photons from
hot and cold spots separated by a typical comoving distance k−1 travel to us coming from
an angular separation θ � k−1/χ∗ where χ∗ = η0 − η∗ is the comoving distance between us
and the surface of last scattering.1 If we decompose the temperature field into multipole
moments, then an angular scale θ roughly corresponds to 1/l. So, using the fact that η∗ �
η0, we project inhomogeneities on scales k onto anisotropies on angular scales l � kη0.

There is one final caveat to this picture of free-streaming. We have been implicitly as-
suming that nothing happens to the photons on their journey from the last-scattering
surface to Earth. This is not completely true. While gravitational potentials are constant
deep in matter domination, they do evolve right after recombination (due to the presence
of radiation) and at late times (due to dark energy). Evolving potentials produce addi-
tional perturbations to the photons via the integrated Sachs–Wolfe (ISW) effect. Finally, the
universe is no longer completely neutral at redshifts z � 10, and the presence of free elec-

1
This is true only in a Euclidean universe. In an open universe, for example, the angular diameter distance

to the last-scattering surface is larger, so the same physical scale is projected onto a smaller angular scale (see
Fig. 9.14).
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FIGURE 9.5 Perturbations in the temperature due to a plane wave with wavenumber k. Hot and cold regions are
shaded light and dark. After recombination, photons from the hot and cold spots travel freely to us, denoted by the
blue dot at the center. This k-mode contributes anisotropy on a scale θ ∼ k−1/χ∗, where χ∗ = η0 − η∗ is the comoving
distance to the last-scattering surface.

trons leads to scattering of CMB photons which in turn slightly dampens the anisotropies.
This is, in a nutshell, how primordial perturbations are processed to form the present-day
anisotropy spectrum.2 Now let us work through each step again quantitatively.

9.2 Large-scale anisotropies
To find the large-scale solution for the photon perturbation, we make use of the super-
horizon equation (8.16). This immediately tells us that �0 = −� plus a constant. The initial
conditions, specifically Eq. (7.91), are such that �0(η = 0) = �(η = 0)/2, so the constant is
R, where R is the conserved curvature perturbation set during inflation. We have an exact
expression for the large-scale evolution of �, Eq. (8.31). Since recombination takes place
long after the epoch of equality, we can take the y 	 1 limit of this expression and Eq. (8.32)
holds: � = (3/5)R. Therefore, at recombination, large-scale photon perturbations satisfy

�0(k, η∗) = −�(k, η∗) +R(k)

= 2

5
R(k) = 2

3
�(k, η∗). (9.5)

The observed anisotropy is �0 + �, which to a good approximation is �0 − � since
� � −�. Therefore,

(�0 + �)(k, η∗) = −1

3
�(k, η∗) = −1

5
R(k). (9.6)

Eq. (9.6) will be useful to us when we compute the large-scale anisotropy spectrum.

2
We will learn about one more, nonlinear effect on the CMB photons in Sect. 13.3: their deflection by gravita-

tional potential wells.
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Another useful way of expressing the large-scale perturbations at recombination is in
terms of the dark-matter density field. The initial conditions derived in Ch. 7 were that
δc =R. Integrating the large-scale evolution equation, δc

′ = −3�′ (Eq. (8.17)), leads to

δc(k, η∗) =R(k) − 3

[
�(k, η∗) − 2

3
R(k)

]
, (9.7)

where the factor in brackets reduces to zero if we set η∗ → 0, enforcing the correct initial
conditions. Thus,

δc(k, η∗) = 6

5
R(k) = 2�(k, η∗). (9.8)

So the observed anisotropy expressed in terms of the dark matter overdensity is

(�0 + �)(k, η∗) = −1

6
δc(k, η∗). (9.9)

This relation contains an interesting piece of information. We see that the observed tem-
perature perturbation of an overdense region is, surprisingly, negative. Large-scale over-
dense regions do indeed contain hotter photons at recombination than do underdense
regions: i.e., �0 > 0 when � < 0. However, to get to us today, these photons must travel
out of their potential wells. In so doing they lose energy, and this energy loss more than
compensates for the fact that the photons were initially hotter than average: i.e., �0 + � is
negative when � < 0. To sum up, when we observe large-scale hot spots on the CMB sky
today, we are actually observing regions that were underdense at the time of recombina-
tion.

The other important feature of Eq. (9.9) is the coefficient 1/6. It enables us to relate
“δT /T ” (the left-hand side) to “δρ/ρ” (the right). Roughly, an anisotropy of order 10−5 cor-
responds to an overdensity of 6×10−5. As discussed at the end of the previous chapter, one
of the important questions that must be addressed by any viable cosmological model is
whether the observed CMB anisotropy is consistent with the matter-density perturbations
needed to form the observed structure by today. This factor of 6 is essential to accomplish
this.

9.3 Acoustic oscillations
Before electrons and nuclei began forming atoms, so before η∗, the mean free path for
a photon was much smaller than the horizon. Compton scattering caused the electron–
proton fluid to be tightly coupled with the photons. We now proceed to explore this regime
quantitatively using the Boltzmann equations.

9.3.1 Tightly-coupled limit of the Boltzmann equations

The tightly-coupled limit applies when the mean free path of the photons is much smaller
than the scales of interest. Essentially, this is equivalent to τ 	 1. We want to argue that
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in the τ 	 1 limit, the only nonnegligible moments, �l , are the monopole (l = 0) and the
dipole (l = 1). All others are suppressed. In this sense, photons behave just like a fluid,
which can be described with only two variables: the density ρ and the (longitudinal) veloc-
ity u. In order to show this, let us go back to the Boltzmann equation (5.67) for photons. We
want to turn this differential equation for �(k,η,μ) into an infinite set of coupled equa-
tions for �l(k, η). The strategy is to multiply by Pl (μ) and then integrate over μ. Using
Eq. (5.66), the Boltzmann equation for l > 2 becomes

�′
l + k

(−i)l+1

∫ 1

−1

dμ

2
μPl(μ)�(μ) = τ ′�l (l > 2). (9.10)

Note that all other terms in the Boltzmann equation (e.g., −�′) scale either as μ0, μ1, or
μ2, so they disappear after the integral over μ against Pl with l > 2. To do the integral in
the second term here, we make use of the recurrence relation for Legendre polynomials,
Eq. (C.3), to get

�′
l − kl

2l + 1
�l−1 + k(l + 1)

2l + 1
�l+1 = τ ′�l. (9.11)

Let us consider the order of magnitude of the terms in Eq. (9.11). The first term on the
left is of order �l/η which is much smaller than the term on the right which is enhanced
by the factor τ ′. Neglecting the �l+1 term for the moment, this tells us that in the tightly-
coupled regime

�l ∼ − k

τ ′
l

2l + 1
�l−1. (9.12)

Recalling that the mean free path is λMFP = −1/τ ′, the prefactor is kλMFP. Thus, for all
modes with wavelengths much larger than the mean free path, we have �l � �l−1. This
also furnishes our justification for throwing out the �l+1 term in making our estimate: a
similar relation holds between �l+1 and �l . It is easy to verify that if we neglect the mul-
tipole moments of polarization, �2 is likewise suppressed. We will see in the next chapter
that the suppression also applies to polarization. To summarize then, all moments with
l > 1 are very small compared to the monopole and dipole.

Before making use of this fact and deriving the tightly-coupled equations in the limit
in which only the monopole and dipole are nonzero (the fluid approximation), we want
to understand why higher moments are damped in a tightly-coupled environment. In-
deed this observation is extremely important not only in cosmology but in all settings in
which the fluid approximation is used. Consider a plane-wave perturbation as depicted in
Fig. 9.6. An observer sitting at the center of the perturbation sees photons arriving from
a distance of order the mean free path, −1/τ ′. Very little anisotropy is then induced by a
large-scale perturbation, one with k/|τ ′| � 1 as shown in Fig. 9.6, since the temperature
hardly varies within the region from which the observed photons originate. This does not
hold for perturbations with very small wavelengths (with k/|τ ′| ∼ 1). In fact, though, those
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FIGURE 9.6 Anisotropies in the tightly-coupled era, for a perturbation that is of much larger scale than the mean free
path of the photons 1/|τ ′|. The photons measured by an observer (denoted by the dot) come from within a distance
1/|τ ′| away that is much smaller than the wavelength of the mode. Hence, an observer sees photons arriving from all
angles with virtually identical temperatures; more precisely, she will measure a monopole and a small dipole, with
all higher moments being negligible.

modes are strongly damped by photon diffusion, since their wavelengths are much smaller
than the damping scale.

Armed with this knowledge, we can now turn to the equations for the first two mo-
ments, which—after disposing of �2—read

�′
0 + k�1 = −�′, (9.13)

�′
1 − k�0

3
= k�

3
+ τ ′

[
�1 − iub

3

]
. (9.14)

These follow by multiplying Eq. (5.67) by P0(μ) and P1(μ) and integrating over μ. They are
supplemented by the equations for the electron–baryon fluid, Eqs. (5.71) and (5.72). Let us
first rewrite the velocity equation, (5.72), as

ub = −3i�1 + R

τ ′

[
ub

′ + a′

a
ub + ik�

]
, (9.15)

where, recall, the baryon-to-photon energy ratio R = R(η) is defined as

R ≡ 3ρb

4ργ

. (9.16)

The second term on the right-hand side of Eq. (9.15) is much smaller than the first since
it is suppressed by a relative factor of order 1/τ ′η and k/τ ′, respectively. Thus, to lowest
order, ub = −3i�1. A systematic way to expand, then, is to use this lowest-order expression
everywhere in the second term, leading to

ub � −3i�1 + R

τ ′

[
−3i�′

1 − 3i
a′

a
�1 + ik�

]
. (9.17)
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Now let us insert this expression into Eq. (9.14), eliminating ub. After rearranging terms, we
find

�′
1 + a′

a

R

1 + R
�1 − 1

3

k

1 + R
�0 = k�

3
. (9.18)

We now have two first-order coupled equations for the first two photon moments,
Eqs. (9.13) and (9.18). We can turn these into one second-order equation by differentiating
Eq. (9.13) and using Eq. (9.18) to eliminate �′

1:

�′′
0 + k2

3
� − a′

a

R

1 + R
k�1 + 1

3

k2

1 + R
�0 = −�′′. (9.19)

Finally, we use Eq. (9.13) to eliminate �1 here. This leaves

�′′
0 + a′

a

R

1 + R
�′

0 + k2c2
s �0 = F(k,η),

F (k, η) ≡ −k2

3
� − a′

a

R

1 + R
�′ − �′′, (9.20)

where we have defined the force function on the right as F and the sound speed of the fluid
as

cs(η) ≡
√

1

3(1 + R[η]) . (9.21)

The sound speed depends on the baryon density in the universe. If the baryon density is
negligible compared to that of the radiation, cs has the standard value for a relativistic fluid,
cs = 1/

√
3. The presence of baryons makes the fluid heavier, thereby lowering the sound

speed; this is analogous to the inverse mass in the term (K/m)x in Eq. (9.2) of the forced
harmonic oscillator. We will see shortly that the fluid oscillates in both space and time,
with a period determined by the sound speed, and hence by the baryon density. Note that
Eq. (9.20) is the “grown-up” version of Eq. (9.1); it differs only through the �′

0 drag term (see
Exercise 9.2), and the correct, time-dependent force term. The presence of the drag term
does not change any of the qualitative conclusions we reached in Sect. 9.1. Finally, note
that � enters on the right in a very similar way as �0 does on the left. An alternate version
of Eq. (9.20) takes advantage of this:

{
d2

dη2
+ R′

1 + R

d

dη
+ k2c2

s

}
[�0 + �](k, η) = k2

3

[
1

1 + R
� − �

]
(k, η). (9.22)

Notice that the combination �0 + �, which is convenient in the context of tight coupling,
is not the combination �0 + � � �0 − � which yields the observed CMB temperature.
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9.3.2 Tightly-coupled solutions

The equation we have derived governing acoustic oscillations of the photon-baryon fluid,
(9.22), is a second-order ordinary differential equation. To solve it, we will again (as
in Sect. 8.3.1) use Green’s method to find the full solution. First we find the two solu-
tions to the homogeneous equation. Then we use these to construct the particular solu-
tion.

In principle, to obtain the homogeneous solutions, we must solve the damped, har-
monic oscillator equation (9.22) with the right-hand side equal to zero. In practice, the drag
term is of order R(�0 +�)/η2 while the pressure term is much larger, of order k2c2

s (�0 +�)

(more precisely, it is larger when modes are within the horizon or when R is small). Phys-
ically, the time scale of the pressure-induced oscillations is much smaller than the expan-
sion time over which the drag operates. To a first approximation, then, let us neglect the
drag term and simply obtain the oscillating solutions; you can rectify this by applying the
WKB approximation in Exercise 9.5. In this limit, the two homogeneous solutions are

S1(k, η) = sin[krs(η)]; S2(k, η) = cos[krs(η)] (9.23)

where we have defined the sound horizon as

rs(η) ≡
∫ η

0
dη̃cs(η̃). (9.24)

Since cs is the sound speed, the sound horizon is the comoving distance traveled by a
sound wave by time η.

The tightly-coupled solution for the photon temperature can be constructed from the
homogeneous solutions of Eq. (9.23):

�0(k, η) + �(k, η) = C1(k)S1(η) + C2(k)S2(η)

+ k2

3

∫ η

0
dη̃[�(k, η̃) − �(k, η̃)] S1(η̃)S2(η) − S1(η)S2(η̃)

S1(η̃)S′
2(η̃) − S′

1(η̃)S2(η)
. (9.25)

Here again, we have dropped all occurrences of R except in the arguments of the rapidly
varying sines and cosines. That is, the argument of S1, for example, is still taken to be krs

with its nonzero value of R. We fix the constants C1 and C2 in Eq. (9.25) by matching to the
initial conditions, when both �0 and � are constants. Since �′

0 and �′ vanish initially, the
coefficient of the sine term C1 must vanish. Then we have C2(k) = �0(k,0) + �(k,0). The
denominator in the integrand reduces to −kcs(η̃) → −k/

√
3 in the limit in which we are

working. Finally, the difference of the products in the numerator of the integrand is simply
− sin[k(rs − r ′

s)], so

�0(k, η) + �(k, η) = [�0(k,0) + �(k,0)] cos(krs)

+ k√
3

∫ η

0
dη̃[�(k, η̃) − �(k, η̃)] sin[k(rs(η) − rs(η̃))]. (9.26)
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FIGURE 9.7 The monopole �0 + � and dipole 3�1 at recombination in the fiducal concordance cosmology. The
dashed vertical lines indicate the rough analytic peak locations of Eq. (9.27). The dipole is completely out of phase
with the monopole, and vanishes for the longest-wavelength modes that have not entered the horizon by recombi-
nation.

Eq. (9.26) is an expression for the anisotropy in the tightly-coupled limit, first derived by
Hu and Sugiyama (1995). It shows the characteristic features of the initial conditions from
inflation, which only excite the cosine mode. This follows directly from the fact that per-
turbations were generated when they exited the horizon during inflation, and remained
constant outside the horizon. The pure-cosine initial conditions lead to the coherent oscil-
lations in � + �. Alternative scenarios, which generate the perturbations when the modes
enter the horizon, would typically predict that both sine and cosine modes are present. In
that case, there would not be a clear peak/trough structure in �0.

In fact, Eq. (9.26) accurately predicts the peak positions obtained from a full numerical
solution, i.e. the extrema of �0 + � at η = η∗ as a function of k as in Fig. 9.2. In order to
evaluate Eq. (9.26) precisely, we need to perform the numerical integral over (� − �)(k, η̃)

in the second term. You can do this in Exercise 9.6. Here, let us simplify further. In the
limit that the first term in Eq. (9.26) dominates, the peaks should appear at the extrema of
cos(krs), i.e., at

kpk = nπ/rs n = 1,2, . . . (9.27)

These rough peak positions are indicated in Fig. 9.7. The predicted kpk is within 10% of the
full numerical result.

In addition to the monopole, the photon distribution has a nonnegligible dipole at
recombination. Using Eq. (9.13), we can obtain an analytic solution for the dipole by dif-
ferentiating Eq. (9.26):

�1(k, η) = 1√
3
[�0(k,0) + �(k,0)] sin(krs)

− k

3

∫ η

0
dη̃[�(k, η̃) − �(k, η̃)] cos[k(rs(η) − rs(η̃))]. (9.28)
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The first term is completely out of phase with the monopole (sin(krs) versus cos(krs)).
Fig. 9.7 shows that this feature remains even after accounting for the integral term. This
mismatch of phase will have important implications for the final anisotropy spectrum.

9.4 Diffusion damping
The second ingredient we need in order to accurately describe CMB spectra is diffusion
damping. To analyze diffusion quantitatively, we must return to the equations for the
moments of the photon distribution, Eqs. (9.11), (9.13), and (9.14). Until now, we have ne-
glected �2 and all higher moments. Diffusion is characterized by a small but nonnegligible
quadrupole.

We must therefore supplement the set of equations we wrote down in the last section
with an equation for the quadrupole, �2. Our task is somewhat simplified by the fact that
we will be interested in phenomena occurring only on small scales. On these scales, the
gravitational potentials �, � are much smaller than the radiation perturbations, specifi-
cally they are smaller by a factor (aH/k)2 (see for example Eq. (6.80); we have used this
result already when treating small scales in Ch. 8). Our tightly-coupled hierarchy of mo-
ments, i.e. that each successive moment is suppressed by a higher power of 1/τ ′, continues
to hold. Thus we will need to keep only the l = 2 moment; all higher ones can be neglected.
With these approximations, we have

�′
0 + k�1 = 0, (9.29)

�′
1 + k

(
2

3
�2 − 1

3
�0

)
= τ ′

(
�1 − iub

3

)
, (9.30)

�′
2 − 2k

5
�1 = 9

10
τ ′�2. (9.31)

Here, we have again neglected polarization. These three equations need to be supple-
mented with an equation for ub. This is best expressed as a slight rewriting of Eq. (9.15):

3i�1 + ub = R

τ ′

[
ub

′ + a′

a
ub

]
, (9.32)

where again we have dropped the gravitational potential.
Let us write the time dependence of the velocity as

ub ∝ ei
∫

ωdη̃ (9.33)

and similarly for all other variables. We already know that ω � kcs in the tightly-coupled
limit. Now we are searching for damping, an imaginary part of ω. Since damping occurs on
small scales, we have k 	 1/η ∼ a′/a, which implies that also the real part of the frequency
satisfies ω 	 a′/a. Then,

|ub
′| = |iωub| 	 a′

a
|ub|. (9.34)
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So we can drop the second term on the right in Eq. (9.32) and the velocity equation be-
comes

ub = −3i�1

[
1 − iωR

τ ′

]−1

� −3i�1

[
1 + iωR

τ ′ −
(

ωR

τ ′

)2
]

(9.35)

where we have expanded out to τ ′ −2 because ub + 3i�1 is multiplied by τ ′ in Eq. (9.30).
The equation for the second moment of the photon field, (9.31), can be reduced simi-

larly. First we can drop the �′
2 term since it is much smaller than τ ′�2. This leaves simply

�2 = − 4k

9τ ′ �1, (9.36)

which shows that our approximation scheme is controlled: higher moments are sup-
pressed by additional powers of k/τ ′. The equation for the zeroth moment becomes

iω�0 = −k�1. (9.37)

Inserting all of these into Eq. (9.30) gives the dispersion relation

iω − 8k2

27τ ′ + k2

3iω
= τ ′

(
1 −

[
1 + iωR

τ ′ −
(

ωR

τ ′

)2
])

. (9.38)

Collecting terms we get

ω2(1 + R) − k2

3
+ iω

τ ′

[
ω2R2 + 8k2

27

]
= 0. (9.39)

The first two terms on the left, the leading ones in the expansion of 1/τ ′, recover the result
of the previous section, that the frequency is the wavenumber times the speed of sound
(there is no forcing term now, since we have neglected the potentials on small scales). We
can write the frequency as this zeroth-order piece plus a first-order correction, δω. Then,
inserting the zeroth-order part into the terms inversely proportional to τ ′ leads to

δω = − ik2

2(1 + R)τ ′

[
c2
s R

2 + 8

27

]
. (9.40)

Therefore, the time dependence of the perturbations is

�0,�1 ∼ exp

{
ik

∫
dη̃cs(η̃)

}
exp

{
− k2

k2
D

}
(9.41)
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FIGURE 9.8 Damping scale as a function of the scale factor. The solid line is obtained from numerically integrating
over the standard recombination history, while the dashed curve uses the approximation of Eq. (9.44) which assumes
electrons remain ionized. The right axis shows the equivalent kDη0; damping occurs on angular scales l > kDη0.

where the damping wavenumber is defined via

1

k2
D(η)

≡
∫ η

0

dη̃

6(1 + R)neσTa(η̃)

[
R2

1 + R
+ 8

9

]
. (9.42)

Putting aside factors of order unity, this equation says that λD ∼ 1/kD ∼ [η/neσTa]1/2, which
agrees with our heuristic estimate at the beginning of this chapter (since η � 1/aH ).

As a first estimate of the damping scale, we can work in the prerecombination regime,
in which all electrons (except those in helium) are free. In Ch. 4 we estimated the optical
depth in this limit, but ignored helium. The mass fraction of helium is denoted as YP and is
approximately 0.24. Since each helium nucleus contains four nucleons, the ratio of helium
to the total number of nuclei is YP /4. Each of these absorbs two electrons (one for each
proton), so when counting the number of free electrons before hydrogen recombination,
we must multiply our estimate of Eq. (4.43) by 1 − YP /2. Using the fact that H0 = 3.33 ×
10−4 h Mpc−1, we have, long before recombination,

neσTa = 2.3 × 10−5 Mpc−1(�bh2)a−2
(

1 − YP

2

)
. (9.43)

Using this, you can show (Exercise 9.8) that an approximation for the damping scale is

k−2
D = 3.1 × 106 Mpc2a5/2fD(a/aeq)

(
�bh2

)−1
(

1 − YP

2

)−1 (
�mh2

)−1/2
(9.44)

where fD , defined in Eq. (9.89), goes to 1 as a/aeq gets large.
Fig. 9.8 shows the evolution of the damping scale before recombination. Neglecting re-

combination is a good approximation at early times but, as expected, leads to quantitative
errors near η∗ when Eq. (9.43) is used, since the free electron density does not accurately
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account for the electrons swept up into neutral hydrogen. When ignoring recombination,
kD scales as �

1/2
b ; the details of recombination change this simple scaling.

9.5 Inhomogeneities to anisotropies
We now have a good handle on the perturbations to the photons at recombination. Specif-
ically, we have predictions for �0(k, η∗), �1(k, η∗) given the initial conditions �(k,0), or
equivalently R(k). It is time to transform this understanding into predictions for the
anisotropy spectrum today. First, we will solve for the moments �l at η0 in the next subsec-
tion. Then we will spend a bit of time relating these moments to the observables. The main
purpose of the following subsections is to derive Eq. (9.59), which relates the moments
today to the monopole and dipole at recombination, and Eq. (9.74), which expresses the
CMB power spectrum in terms of these moments today.

9.5.1 Free streaming

We want to derive a solution for the photon moments today �l(k, η0) in terms of the
monopole and dipole at recombination. A formal solution can be obtained by returning
to Eq. (5.67). Subtracting τ ′� from both sides leads to

�′ + (ikμ − τ ′)� = Ŝ (9.45)

where the source function is defined as

Ŝ ≡ −�′ − ikμ� − τ ′
[
�0 + μub − 1

2
P2(μ)�

]
. (9.46)

The left-hand side of Eq. (9.45) can be written as

�′ + (ikμ − τ ′)� = e−ikμη+τ d

dη

[
�eikμη−τ

]
. (9.47)

Using this, and multiplying both sides of Eq. (9.45) by eikμη−τ and then integrating over η

leads directly to

�(η0) = �(ηinit)e
ikμ(ηinit−η0)e−τ(ηinit) +

∫ η0

ηinit

dηŜ(η)eikμ(η−η0)−τ(η) (9.48)

where we have used the fact that τ(η0) = 0 since τ is defined as the scattering optical
depth integrated backward from today, η0. We also know that, if the initial time ηinit is early
enough, then the optical depth τ(ηinit) will be extremely large. Therefore, the first term on
the right side of Eq. (9.48) vanishes. This corresponds to the fact that any initial anisotropy
is completely erased by Compton scattering. By the same reasoning, we can set the lower
limit on the integral to zero: any contribution to the integrand from η < ηinit is completely
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negligible. Thus, the solution for the anisotropies is

�(k,μ,η0) =
∫ η0

0
dηŜ(k,μ,η)eikμ(η−η0)−τ(η). (9.49)

All the dependence on the photon direction is now in the argument μ on the right-hand
side. So all of the complication is hidden in the source function Ŝ. Let us forget for now
the dependence of Ŝ on the angle μ. We can immediately turn Eq. (9.49) into an equation
for each of the �l : multiply each side by the Legendre polynomial Pl(μ) and then integrate
over all μ. Via Eq. (5.66), the left-hand side gives (−i)l�l , while on the right we have the
integral

∫ 1

−1

dμ

2
Pl(μ)eikμ(η−η0) = 1

(−i)l
jl

[
k(η − η0)

]
(9.50)

where jl is the spherical Bessel function. This approach will in fact lead us to success, not
least because the μ-dependence of Ŝ is quite simple (in the end, this is due to tight coupling
before recombination). So let us proceed to obtain the expression for �l ,

�l(k, η0) = (−1)l
∫ η0

0
dηŜ(k, η)e−τ(η)jl[k(η − η0)] (no μ-dependence). (9.51)

Now we can account for the μ dependence in Ŝ by noting that Ŝ multiplies the exponential
eikμ(η−η0) in Eq. (9.49). Thus, everywhere we encounter a factor of μ in Ŝ we can replace it
with a time derivative:

μ → 1

ik

d

dη
. (9.52)

Then, through integration by parts, we turn each power of μ into a derivative operator
acting on the remainder of the integrand, which then allows us to perform the Legendre
decomposition. Let us demonstrate this explicitly with the −ikμ� term in Ŝ. The integral
is

−ik

∫ η0

0
dη μ�eikμ(η−η0)−τ(η) = −

∫ η0

0
dη�e−τ(η) d

dη
eikμ(η−η0)

=
∫ η0

0
dηeikμ(η−η0)

d

dη

[
�e−τ(η)

]
(9.53)

where the last line follows by integration by parts. Note that the surface terms can be
dropped: at η = 0 they are set to zero by the e−τ(0) factor. The terms at η = η0 are not
small, but they are irrelevant since they have no μ dependence. They alter the observed
monopole of the CMB, an alteration which we cannot detect. In other words, we can ab-
sorb them in the definition of the mean CMB temperature T0. Thus, accounting for the
integration by parts changes the substitution rule of Eq. (9.52) by a minus sign, with the
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understanding that the derivative does not act on the oscillating part of the exponential,
eikμ(η−η0). The solution in Eq. (9.51) therefore becomes

�l(k, η0) =
∫ η0

0
dηS(k, η)jl

[
k(η0 − η)

]
(9.54)

with the source function now defined as

S(k, η) ≡ e−τ

[
−�′ − τ ′

(
�0 + 1

4
�

)]

+ d

dη

[
e−τ

(
� − iubτ ′

k

)]
− 3

4k2

d2

dη2

[
e−τ τ ′�

]
. (9.55)

In Eq. (9.54), we have also used the even/odd property of spherical Bessel functions: jl(x) =
(−1)ljl(−x).

At this stage, it is useful to introduce the visibility function

g(η) ≡ −τ ′(η)e−τ(η). (9.56)

The integral
∫ η0

0 dηg(η) = 1, so we can think of it as a probability density: g(η) is the prob-
ability that a photon last scattered at η. Since τ is so large early on, this probability is
essentially zero for η earlier than the time of recombination. It also declines rapidly af-
ter recombination, because the prefactor −τ ′, which is the scattering rate, is quite small.
Fig. 9.9 shows the visibility function in the fiducial cosmology.

The source function in Eq. (9.55) can now be expressed in terms of the visibility func-
tion. If we drop the polarization tensor � in the source since it is very small, then the source
function becomes

S(k, η) � g(η)
[
�0(k, η) + �(k,η)

]
+ i

k

d

dη

[
ub(k, η)g(η)

]
+ e−τ

[
� ′(k, η) − �′(k, η)

]
. (9.57)

We can take our analytic solution one step further by performing the time integral in
Eq. (9.54). The source term proportional to ub is best treated by integrating by parts. Then,

�l(k, η0) =
∫ η0

0
dη g(η)

[
�0(k, η) + �(k,η)

]
jl

[
k(η0 − η)

]
− i

k

∫ η0

0
dη g(η)ub(k, η)

d

dη
jl

[
k(η0 − η)

]
+

∫ η0

0
dη e−τ

[
� ′(k, η) − �′(k, η)

]
jl

[
k(η0 − η)

]
. (9.58)

There are two types of terms in Eq. (9.58). The integrals in the first two lines are weighted
by the visibility function. These are the dominant terms. The integral in the last line, on the
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FIGURE 9.9 The visibility function g(η) (black solid) in comparison with the other two components of the integrand in
the first line of Eq. (9.58). The visibility function is sharply peaked, so it changes rapidly compared with the monopole
�0 + � (shown in arbitrary units) and the Bessel function jl (k[η − η0]). Results shown are for l = 220, k = 0.02 Mpc−1,
corresponding to the first peak in the CMB anisotropy spectrum.

other hand, is weighted by e−τ , so the integrand contributes as long as τ � 1, that is, at all
times after recombination. Note that, if the potentials are constant after recombination,
which is the case during matter domination, the terms in the last line vanish.

Since the visibility function is so sharply peaked, the integrals in the first two terms
become very simple. To see why, consider Fig. 9.9 which shows the three parts of the inte-
grand of the first term (the “monopole”) in Eq. (9.58). Since the visibility function changes
rapidly compared with the other two functions, we can evaluate those other functions at
the peak of the visibility function, i.e., at η = η∗, and remove them from the integral. But
then, the integral is simply

∫
dηg(η) = 1. Thus, we are left with

�l(k, η0) � [
�0(k, η∗) + �(k,η∗)

]
jl

[
k(η0 − η∗)

]
+ 3�1(k, η∗)

(
jl−1

[
k(η0 − η∗)

] − (l + 1)
jl

[
k(η0 − η∗)

]
k(η0 − η∗)

)

+
∫ η0

0
dη e−τ

[
� ′(k, η) − �′(k, η)

]
jl

[
k(η0 − η)

]
. (9.59)

Here we have used the spherical Bessel function identity of Eq. (C.19) to rewrite the Bessel
function derivative in the velocity term and also the fact that ub � −3i�1 at η∗. On scales
much smaller than the one shown in Fig. 9.9, �0 + � changes more rapidly because of
the rapid change in the damping scale around recombination (see Fig. 9.8). Incorporat-
ing damping by multiplying (�0 + �)(k, η∗) by e−k2/k2

D(η∗) does not capture this accurately.
A much better approximation of the rapid changes in the damping scale is to change the
multiplication factor

e−k2/k2
D(η∗) →

∫
dηg(η)e−k2/k2

D(η). (9.60)
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Eq. (9.59) is the basis for semi-analytic calculations (Seljak, 1994; Hu and Sugiyama,
1995) of anisotropy spectra that agree with the numerical solutions to within ∼ 10%. From
Eq. (9.59), we see that, to solve for the anisotropies today, we must know the monopole
(�0), dipole (�1), and potential (�) at the time of recombination. Further, there will be
corrections if the potentials are time dependent. These corrections, encoded in the last
line of Eq. (9.59), are called integrated Sachs–Wolfe terms.

The monopole term in Eq. (9.59) is precisely what we expected from the rough argu-
ments of Sect. 9.1. First, it involves the combination �0 + � of the temperature anisotropy
and gravitational redshift. Second, the spherical Bessel function, jl[k(η0 − η∗)], deter-
mines how much anisotropy on an angular scale l−1 is contributed by a plane wave with
wavenumber k. On very small angular scales.

jl(x)
x/l→0−→ 1

l

(x

l

)l−1/2
. (9.61)

That is, jl(x) is extremely small for large l when x < l. In our case, this means that �l(k, η0) is
very close to zero for l > kη0. This makes sense physically. Returning to Fig. 9.5, we see that
very small angular scales will see little anisotropy from a perturbation with a large wave-
length. The converse is also true: angular scales larger than 1/(kη0) get little contribution
from such a perturbation (see also Fig. 9.13). To sum up, a perturbation with wavenumber
k contributes predominantly on angular scales of order l ∼ kη0.

9.5.2 The angular power spectrum

How is the observed anisotropy pattern today related to the rather abstract �l(k, η0), which
refer to a plane-wave perturbation k? To answer this question, we must first describe the
way in which the temperature field is characterized today and then relate this characteri-
zation to �l .

Recall that in Eq. (5.2), we wrote the temperature of the CMB radiation field in the uni-
verse as

T (x, p̂, η) = T (η)
[
1 + �(x, p̂, η)

]
. (9.62)

Although this field is defined at every point in space and time, we can observe it only
here (at x0) and now (at η0).3 Our only handle on the anisotropies is their dependence on
the direction of the incoming photons, p̂. So all the richness we observe comes from the
changes in the temperature as the direction vector p̂ changes. Observers typically make
maps, wherein the temperature is reported at a number of incoming directions, or “loca-
tions on the sky.” These locations are usually labeled not by the p̂x , p̂y , p̂z components of
p̂, but rather by polar coordinates θ , φ. However, it is a simple matter to move back and

3
We do make small excursions from this point in spacetime. For example, satellites are not located on Earth

and anisotropy measurements have been made over the past 30 years. These excursions are completely insignif-
icant on scales over which the temperature is varying, however, which are of order tens of Mpc and the Hubble
time, respectively.
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forth between the unit vector p̂ and polar coordinates. We will continue to use the by-now
familiar p̂ in the derivation.

We now expand the temperature perturbation in terms of spherical harmonics. That is,
we write

�(x, p̂, η) =
∞∑
l=1

l∑
m=−l

alm(x, η)Ylm(p̂). (9.63)

The subscripts l, m are conjugate to the real-space unit vector p̂, just as the variable k is
conjugate to the three-dimensional position x. We are by now familiar with Fourier trans-
forms, so it is useful to think of the expansion in terms of spherical harmonics as a kind
of 2D Fourier transform. Whereas the complete set of eigenfunctions for the 3D Fourier
transform are eik·x , here the complete set of eigenfunctions for expansion on the surface
of a sphere are Ylm(p̂) (see Appendix C.2). All of the information contained in the tempera-
ture field T is also contained in the (x, η)-dependent amplitudes alm. As an example of this,
consider an experiment that maps the full sky with an angular resolution of 7◦. The full sky
has 4π radians2 � 41,000 degrees2, so there are 840 pixels with area of (7◦)2. Thus, such an
experiment would have 840 independent pieces of information. Were we to characterize
this information with alm instead of temperatures in pixels, there would be some lmax above
which there is no information. One way to determine this lmax is to set the total number of
recoverable alm as

∑lmax
l=0 (2l + 1) = (lmax + 1)2 = 840. So the information could be equally

well characterized by specifying all the alm up to lmax = 28. Incidentally, this is a fairly good
caricature of the COBE experiment (Smoot et al., 1992; Bennett et al., 1996), the discoverer
of CMB anisotropies. They presented temperature data over many more pixels, but these
pixels were overlapping. So, the independent information was contained in multipoles up
to l ∼ 30. The current generation of experiments is capable of measuring the moments all
the way up to l of several thousands, at which point the primary CMB anisotropies are
sufficiently damped by photon diffusion that the observed radiation is dominated by as-
trophysical foreground sources (as well as gravitational lensing, Sect. 13.3).

We want to relate the observables, the alm, to the moments of the temperature distribu-
tion we have been dealing with. To do this, we can use the orthogonality property of the
spherical harmonics. The Ylm are normalized via Eq. (C.11),∫

d�Ylm(p̂)Y ∗
l′m′(p̂) = δll′δmm′ . (9.64)

Therefore the expansion of � in terms of spherical harmonics, Eq. (9.63), can be inverted
by multiplying both sides by Y∗

lm(p̂) and integrating:

alm(x, η) =
∫

d3k

(2π)3
eik·x

∫
d�Y ∗

lm(p̂)�(k, p̂, η). (9.65)

Here we have written the right-hand side in terms of the Fourier transform (�(k) instead
of �(x)), since that is the quantity for which we obtained solutions.
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FIGURE 9.10 The distribution from which the alm are drawn. The Gaussian distribution has expectation value equal
to zero and an RMS width of [C(l)]1/2.

As with the density perturbations, we cannot make predictions about any particular alm,
just about the distribution from which they are drawn, a Gaussian distribution that traces
its origin to the quantum fluctuations laid down during inflation. Fig. 9.10 illustrates this
Gaussian distribution. The mean value of the alm is zero, but they have a nonzero variance.
The variance of the alm is called C(l). Thus,

〈alm〉 = 0; 〈alma∗
l′m′ 〉 = δll′δmm′C(l), (9.66)

where 〈·〉 now denotes an ensemble average, i.e. the result obtained in the limit of measur-
ing over an infinite volume. It is very important to note that, for a given l, each alm has the
same variance. For l = 100, say, all 201 a100,m are drawn from the same distribution. When
we measure these 201 coefficients, we are sampling the distribution. These 201 samples
give us a good handle on the underlying variance of the distribution (this will be made
more rigorous in Sect. 14.1). On the other hand, if we measure the five components of
the quadrupole (l = 2), we have much less statistical precision on the underlying variance,
C(2). Thus, there is a fundamental uncertainty in the knowledge we may get about the C(l).
This uncertainty, which is most pronounced at low l, is called cosmic variance. Quantita-
tively, the uncertainty scales as the inverse of the square root of the number of samples.
More precisely, it is the uncertainty on the estimate of C(l) after using the 2l + 1 samples to
infer it (again, more on this in Ch. 14):

(
�C(l)

C(l)

)
cosmic variance

=
√

2

2l + 1
. (9.67)

In practice, this limit is never quite achieved, because even if an instrument observes the
full sky (such as the satellite experiments COBE, WMAP, and Planck), the large foreground
emission in the Milky Way plane means that some parts of the sky need to be masked. For
a measurement based on a fraction fsky of the full sky, the error bar is increased by roughly
a factor 1/

√
fsky.



254 Modern Cosmology

We can now obtain an expression for C(l) in terms of �l(k). You might rightfully worry
about a notation collision here, but we will see that the index l in C(l) and �l is indeed
the same. First we square alm in Eq. (9.65) and take the expectation value of the distri-
bution. For this we need 〈�(k, p̂)�∗(k′, p̂′

)〉, where from now on we will keep the η = η0

dependence implicit. This expectation value is complicated because it depends on two
separate phenomena: (i) the initial amplitude and phase of the perturbation, randomly
chosen during inflation from a Gaussian distribution, and (ii) the evolution we have stud-
ied in this chapter that turns this initial perturbation into anisotropies. The former is a
random variable, the latter is deterministic: given an initial value for the amplitude and
phase of the perturbation, the equations uniquely determine its evolution. To simplify
then, it makes sense to separate these two phenomena and write the photon distribution
as R× (�/R) = R× T , where the primordial curvature perturbation R depends on k, but
not on the direction vector p̂. The ratio

T (k, p̂) ≡ �(k, p̂, η0)

R(k)
(9.68)

is precisely what we have solved for in this chapter: given the initial amplitude of a mode,
we have learned how to evolve forward in time. T (k, p̂) does not depend on the initial
amplitude of each mode and is not random, so it can be removed from the averaging over
the distribution. Therefore,

〈�(k, p̂)�(k′, p̂′
)〉 = 〈R(k)R∗(k′)〉T (k, p̂)T ∗(k′, p̂′

)

= (2π)3δ
(3)
D (k − k′)PR(k)T (k, p̂)T ∗(k, p̂′

), (9.69)

where the second equality uses the definition of the power spectrum of curvature pertur-
bations PR(k). Now we make use of one more simplification, which holds specifically for
the scalar perturbations we have focused on: the ratio (or transfer function) T only de-
pends on p̂ through its angle with k̂, μ = k̂ · p̂:

T (k, p̂) = T (k, k̂ · p̂). (9.70)

This will help us do the angular integrals in the following. After squaring Eq. (9.65), the
anisotropy spectrum becomes

C(l) =
∫

d3k

(2π)3
PR(k)

∫
d�Y ∗

lm(p̂)T (k, k̂ · p̂)

∫
d�′Ylm(p̂′

)T ∗(k, k̂ · p̂′
). (9.71)

Now we can expand T (k, k̂ · p̂) and T (k, k̂ · p̂′
) in Legendre polynomials using the inverse

of Eq. (5.66):

T (k, k̂ · p̂) =
∑

l

(−i)l(2l + 1)Pl(k̂ · p̂)Tl (k). (9.72)
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So, Tl (k) = �l(k, η0)/R(k). This leaves

C(l) =
∫

d3k

(2π)3
PR(k)

∑
l′l′′

(−i)l
′
(i)l

′′
(2l′ + 1)(2l′′ + 1)Tl′(k)T ∗

l′′ (k)

×
∫

d�Pl′(k̂ · p̂)Y ∗
lm(p̂)

∫
d�′Pl′′(k̂ · p̂′

)Ylm(p̂′
). (9.73)

The two angular integrals here (Exercise 9.9) are identical. They are nonzero only if l′ = l

and l′′ = l, in which case they are equal to 4πYlm(k̂)/(2l + 1) and its complex conjugate,
respectively. The angular part d� of the integral over k then becomes an integral over |Ylm|2,
which is just equal to 1, leaving

C(l) = 2

π

∫ ∞

0
dk k2 PR(k) |Tl (k)|2 . (9.74)

For a given l, then, the variance C(l) is an integral over all Fourier modes of the variance of
�l(k), which is given by |Tl (k)|2 times the variance of curvature perturbations. We can then
use Eq. (9.59) and Eq. (9.74) to compute the anisotropy spectrum today.

As an example, we can rewrite the tight-coupling solution of Eq. (9.26) as

�0(k, η) = (9.75)

R(k)

[
−2

3

�(k, η)

�(k,0)
+ cos(krs) + 4

3

k√
3

∫ η

0
dη̃

�(k, η̃)

�(k,0)
sin[k(rs(η) − rs(η̃))]

]
e−k2/k2

D(η).

The exponential factor at the end accounts for damping. This works similarly for the
dipole in Eq. (9.28). Then, we insert these expressions into Eq. (9.59), which evolves the
anisotropies forward using free-streaming, to obtain Tl (k) = �l(k, η0)/R(k).

9.6 The CMB power spectrum
9.6.1 Large angular scales

The large-angle CMB anisotropies are determined by extremely large-scale modes that
have entered our horizon only recently. As such, they offer a particularly direct way of
measuring the initial conditions. On these largest of scales, we can neglect the dipole in
Eq. (9.59). So the large-angle anisotropy is determined by �0 + � evaluated at recombina-
tion, in addition to the last term in Eq. (9.59) which we will turn to below. The large-scale
solution we found in Eq. (9.6) was that the combination �0 + � is equal to −R/5. This
gives us what we need: an expression for �0 + � at recombination that we can plug into
the monopole term in Eq. (9.59). To get the anisotropy spectrum today, we then integrate
as in Eq. (9.74), leaving

C(l)SW � 2

25π

∫ ∞

0
dk k2 PR(k)

∣∣jl

[
k(η0 − η∗)

]∣∣2 (9.76)
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where the superscript denotes Sachs–Wolfe, in honor of the authors of the first paper to
compute the large-angle anisotropy (Sachs and Wolfe, 1967). The power spectrum of cur-
vature perturbations is given by Eq. (7.99). Therefore,

C(l)SW � 4π

25
Ask

1−ns
p

∫ ∞

0
dk kns−2 j2

l

[
k(η0 − η∗)

]
. (9.77)

The integral here can be computed analytically. First, we will use the fact that η∗ � η0 and
define the integration variable x ≡ kη0. Then, Eq. (9.77) can be rewritten as

C(l)SW � 4π

25
As(η0kp)1−ns

∫ ∞

0
dx xns−2 j2

l (x). (9.78)

The integral over the spherical Bessel functions can be analytically expressed in terms of
gamma functions (Eq. (C.18)), leaving

C(l)SW � 2ns−2 π2

25
As(η0kp)1−ns

�
(
l + ns

2 − 1
2

)
�

(
l + 5

2 − ns

2

) � (3 − ns)

�2
(
2 − ns

2

) . (9.79)

If the spectrum is scale-invariant, ns = 1, then the first ratio of the gamma functions
�(l)/�(l + 2) is equal to [l(l + 1)]−1 using Eq. (C.27). The remaining ratio of gamma func-
tions �(2)/�2(3/2) = 4/π using Eq. (C.28), so

l(l + 1)C(l)SW = 8

25
As (9.80)

is a constant. Indeed, l(l + 1)C(l) is the variance of the temperature anisotropies per log-
arithmic interval in l, analogously to k3PR(k) for the three-dimensional power spectrum.
Since the latter is a constant if ns = 1, it is perhaps not surprising that l(l + 1)C(l) becomes
a constant in this case. It has become customary to plot l(l + 1)C(l) vs l on a logarithmic
scale, which then becomes approximately constant at low l.

Fig. 9.11 shows the Planck measurements of the large-angular-scale anisotropies along
with the Boltzmann solutions of the fiducial Euclidean �CDM model. The deviation from
a constant is due to the ISW effect and the contribution from the dipole (neglected in
Eq. (9.79)) becoming nonnegligible at higher l. Nevertheless, Eq. (9.80) provides a reason-
able approximation. Since the y-axis gives the variance contributed by a given scale l, we
can read off the amplitude of the large-angular-scale fluctuations: roughly, 〈(�T/T0)

2〉 ∼
10−10, so the RMS fluctuations are the square root of this, of order 10−5T0 = 27 µK.

Going beyond the scale-invariant case, following our analytic result, the power spec-
trum multiplied by l(l + 1) should scale as (l/ lp)ns−1, where lp is the angular wavenumber
roughly corresponding to the pivot scale kp. You can see this scaling from Eq. (9.79) or more
directly from the integral in Eq. (9.78). The integrand peaks at x ∼ l, so roughly every ap-
pearance of x there can be replaced by l. The generalization of the integrand from x−1 to
xns−2 therefore leads to a change in the spectrum that scales as lns−1. Given the smallness
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FIGURE 9.11 Large-scale CMB power spectrum as measured by Planck (Planck Collaboration, 2018b), and fiducial
�CDM prediction (solid). The dotted line shows the scale-invariant Sachs–Wolfe plateau predicted by Eq. (9.80).

of ns − 1, this scaling is, however, masked by the other contributions mentioned above. To
get constraints on the spectral index as well as the amplitude, the data have to span a larger
range in l. That is, we have to include anisotropies on smaller scales.

9.6.2 Acoustic peaks

On smaller scales, i.e. those that are inside the horizon at recombination, the anisotropy
spectrum depends on all terms in Eq. (9.59): the monopole �0, the dipole �1, and the in-
tegrated Sachs–Wolfe effect, ∝ ∫

dη(� − �)′. Fig. 9.12 shows all these contributions to the
angular power spectrum. Let us consider each in turn.

The monopole at recombination (�0 + �)(k, η∗) free-streams to us today, creating
anisotropies on angular scales l ∼ kη0. This is what we expected back in Fig. 9.5, showed
to be true in Eq. (9.59), and what we can now see directly in Fig. 9.12. There are two in-
teresting features of the quantitative aspect of the free-streaming process. First, note that
the “zeros” in the monopole spectrum, here at l ∼ 70, 400, 650, and 1000, are smoothed
out because many Fourier modes contribute to anisotropy on a given angular scale. If only
the k = 400/η0 modes contributed to the anisotropy at l = 400, then C(400) would really
be zero. But many nonzero modes, with wavenumbers different from 400/η0, contribute.
These change the zero to a trough in the C(l) spectrum.

The second feature of free-streaming worth noticing is that our initial estimate of
the peak positions is not exactly right. Inhomogeneity on scale k does not show up as
anisotropy precisely on angular scale l = kη0. Rather, there is a noticeable shift, suggest-
ing that a given k-mode contributes to slightly smaller l than we anticipated. This shift
partially arises from the spherical Bessel function in Eq. (9.59). As shown in Fig. 9.13, the
peak in the Bessel function comes not when l = kη0, but rather at slightly smaller values of
l. A better approximation for the first peak position is lpk � 0.75πη0/rs .

The dipole at recombination is smaller than the monopole and out of phase with it. The
dashed line in Fig. 9.12 shows that the effect of adding it is to raise the overall anisotropy
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FIGURE 9.12 Intermediate- to small-scale CMB power spectrum. The solid black line shows the result obtained if only
the monopole at recombination (�0 + �)(k = l/η0, η∗) were present, and contains most of the structure of the final
anisotropy spectrum. Including the dipole (red dashed) raises the anisotropy spectrum. Since the dipole is out of
phase with the monopole, the troughs become less pronounced. Adding the integrated Sachs–Wolfe effect (green
dash-dotted) enhances the anisotropy mostly on scales comparable to or larger than the horizon at recombination.
Thus the first peak gets most of the additional power.

level, but in particular in the region of the troughs, lowering the prominence of the peaks.
This is a direct manifestation of the dipole and monopole being out of phase with one an-
other. That is, at the places where the monopole contributes least to the anisotropies, at
its troughs, the dipole contributes the most. Another feature of the monopole and dipole
contributions is that they add incoherently. By incoherently, we mean that the cross-term
of �l from the monopole multiplied by �l from the dipole vanishes when integrating over
all k-modes to get the C(l). This can be seen mathematically from the properties of the
spherical Bessel function (Exercise 9.11). Incoherence implies that the dipole is not as im-
portant in the power spectrum as one might naively think. If the amplitude of the dipole is
30% of that of the monopole at recombination, the dipole’s contribution to the C(l) is only
10%.

The third contribution is from the integrated Sachs–Wolfe effect due to the time evolu-
tion of the potentials after recombination, which is mostly due to the fact that the energy
density in radiation is not entirely negligible at recombination. If the universe were purely
matter dominated, there would be no such effect. But, the transition to pure matter dom-
ination is not abrupt, and even for aeq ∼ 10−4, an ISW effect occurs right after recombina-
tion. To see which scales are affected by the ISW effect, consider the integral in Eq. (9.59).
Suppose the potential evolves at time ηc, with all sub-horizon scales (kηc > 1) being af-
fected. The Bessel function peaks at l ∼ k(η0 − ηc); so all angular scales l > (η0 − ηc)/ηc are
affected. The largest effect is typically on scales of the horizon at the time ηc.

This early ISW effect is particularly important because it adds coherently with the
monopole. To see this, integrate the last term in Eq. (9.59) by parts. Then, the dominant
contribution comes from η � η∗, so the Bessel function can be evaluated there, leaving the
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FIGURE 9.13 The spherical Bessel function squared at x = 50 and x = 100 as a function of l. Note that the peak occurs
when l is slightly smaller than x.

trivial integral which gives

�l(k, η0)
early ISW = [

�(k,η0) − �(k,η∗) − �(k,η0) + �(k,η∗)
]
jl

[
k(η0 − η∗)

]
. (9.81)

This adds exactly in phase with the monopole (which is proportional to the same Bessel
function) so even though the magnitude of the effect on �l is much smaller than is the
dipole, the effect on the anisotropy spectrum is comparable. A 30% dipole leads to a 10%
shift in the C(l), while a 5% ISW effect leads to the same 10% shift in the C(l). The dash-
dotted line in Fig. 9.12 shows that the anisotropies on large scales, those with l � η0/η∗, get
a big boost from this early ISW effect.

The late-time ISW effect occurs when potentials decay during the dark energy epoch at
z � 1 (Sect. 8.5). This late-time effect therefore is restricted to extremely large scales, l � 30,
and is just barely visible when plotting C(l) on a linear scale in l; it is much more obvious
as the upturn at the lowest l in Fig. 9.11. The most direct way to detect this effect is to cross-
correlate the large-angle CMB anisotropies with large-scale structure at low redshifts, such
as angular galaxy correlations (Sect. 11.2).

9.7 Cosmological parameters
The power spectrum of CMB anisotropies has rich structure, and its shape depends on cos-
mological parameters. By measuring it precisely, we can constrain the various parameters
that describe the ingredients that enter the calculation. The price of this multidimensional
parameter space is that there are partial degeneracies: the effect of varying one parame-
ter can be mimicked by varying, in general, several other parameters in specific ways. In
this section, we will try to get a feel for which parameters can be constrained directly, and
which important degeneracies exist and how they work.

One very important decision that must be made is which parameters will be allowed to
vary. We will consider the following seven �CDM parameters:
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• Curvature parameter, �K ≡ 1 − �m − ��, often set to zero in the concordance model
• Cosmological constant, parametrized by ��

• Normalization of the primordial spectrum, As

• Scalar spectral index, ns

• Reionization, parametrized by the optical depth τrei to a redshift after recombination is
completed

• Baryon density, �bh2

• CDM density, �ch
2.

There are two aspects of this list worth stressing. The first is that obviously it does not in-
clude all possible cosmological parameters. Some favorites missing are neutrino masses
(we will set the sum of neutrino masses to its minimum experimentally allowed value,∑

mν = 0.06 eV), the equation of state for dark energy w (fixed here at −1 corresponding to
a cosmological constant), and tensor modes (amplitude r fixed to zero). The main reason
for these omissions is that these parameters are not directly constrained by the CMB tem-
perature power spectrum. The effect of neutrino masses is simply too small at early times,
and the same holds for the details of dark energy (which mostly affects the CMB through
the distance to the last-scattering surface). Dark energy and neutrino masses are best con-
strained by combining the CMB with large-scale structure probes, which are the topic of
Ch. 11. On the other hand, tensor modes are now most constrained by CMB polarization,
so we defer their discussion to Ch. 10.

The second important point is that we have deliberately chosen specific combinations
of some of these parameters, e.g., �bh2, not �b and h separately. Notice that, by allowing
for �K and �� in addition to �mh2 = (�b + �c)h

2, we have effectively accounted for the
Hubble parameter, since �m is fixed by the constraint �m = 1 − �� − �K. There is a good
reason for considering this combination of parameters. �mh2, for example, parametrizes
the proper physical matter density in the universe today, written in some odd units involv-
ing 8πG and 100 km/s/Mpc. The physics determining the CMB anisotropies cares much
more about the physical matter density than the density parameter �m. The same holds
for the baryons. Finally, the physical energy density in photons, �γ h2, is extremely well
determined through the CMB temperature. Thus, the equality epoch aeq is essentially a
function of �mh2 only.

Let us now consider the effect of each parameter in turn.

9.7.1 Curvature and �

If the universe is not Euclidean, then the simple picture of Fig. 9.5 is no longer accurate,
since the photon geodesics which start out parallel to each other converge or diverge.
Consider the implication of this effect for anisotropies. Suppose the identical pattern of
inhomogeneities was in place at recombination in both a Euclidean and an open universe
(a very good approximation if �K is small). As shown in Fig. 9.14, a fixed physical scale such
as that of the first peak, say, gets projected onto a much smaller angular scale in an open
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FIGURE 9.14 In comoving coordinates (η,x), photon trajectories in a Euclidean universe are straight lines (solid),
while those in an open universe diverge (dashed). Perturbations at last scattering appear on smaller scales in an
open universe (θopen) than they do in a Euclidean universe (θEucl).

FIGURE 9.15 The anisotropy spectrum in Euclidean versus open and closed universes. The pattern of peaks and
troughs persists in curved universes but is shifted to smaller scales for a open universes (�K > 0), while the opposite
happens for closed universes (�K < 0). Only �K and �� are varied in this figure, while all other parameters are fixed
at their values for the fiducial cosmology.

universe. The peaks therefore shift to higher l. The opposite happens in a closed universe.
As shown in Fig. 9.15, this is precisely what happens in the numerical calculation.

The magnitude of this effect is determined by the angular diameter distance to the last-
scattering surface, given in a Euclidean universe simply by η0 − η∗, and in a universe with
curvature by Eq. (2.39). Because of the large distance to last scattering, the CMB peaks re-
spond very sensitively to curvature, resulting in a correspondingly tight constraint. Current
best constraints on �K, obtained by combining CMB and large-scale structure probes, are
at the level of |�K| < 0.002 (Planck Collaboration, 2018b). We have come a long way since
the time when the open CDM model with �K = 1 − �m � 0.7 was a viable scenario!
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Now, an exactly Euclidean universe is only one point in parameter space, the point at
which the sum of the energy densities exactly equals the critical density, and no data will
ever rule out all values except for this one point. In fact, we expect to observe very small but
nonzero curvature even in the inflationary paradigm. Inflation produces perturbations on
all scales, including those just at our current horizon. The isotropic part of such a horizon-

scale perturbation appears to us precisely as curvature, with �K ∼ (k/a0H0)
2R(k)

∣∣∣
k=H0

(this

provides yet another justification for the name “curvature perturbation;” see the discus-
sion at the end of Sect. 7.4.3). Given the approximate scale-invariant spectrum for R(k),
inflation thus predicts that �K should be a random number with RMS value of order√
As ∼ 10−4. Evidence for a value much larger than that would be problematic for the in-

flationary scenario, however.
Changing the cosmological constant has a similar effect to curvature, in that it shifts

the peak locations due to the change in the angular diameter distance to last scattering
(recall that we are also modifying H0 when varying �� while keeping �mh2 fixed). After all,
both are late-time phenomena that do not play a role at recombination. You will show in
Exercise 9.12 that the effect of changing � can be readily explained in this way. This also
explains why the CMB constraint on �K is partially degenerate with that on ��, if no large-
scale structure probes are included to break the degeneracy. In addition, changing � also
affects the late-time ISW contribution at l � 30, with an increase in � boosting the C(l) on
these scales (see Fig. 9.11), although the constraining power of this effect is unfortunately
limited due to the large cosmic variance errors.

9.7.2 Amplitude, spectral index, and optical depth

The effect of changing the amplitude As and spectral index ns of primordial perturbations
is quite simple to understand: changing As by a factor means multiplying all C(l) by the
same factor. Shifting ns → ns + α changes the small-scale C(l) by a factor (l/ lp)α , where lp

is the angular wavenumber corresponding to the pivot scale kp. This is not quite correct on
large scales due to the wide support of jl for low l.

However, we also need to consider the optical depth due to reionization. After recombi-
nation, the gas in the universe was neutral. On the other hand, most of the gas we observe
in the late universe is ionized; for example, we see no evidence for neutral gas in the ab-
sorption spectra of high-redshift quasars until we go back as far as z ∼ 6 (Bouwens et al.,
2015). So at some point the gas had to be reionized.4 We currently believe that this hap-
pened between redshifts 15 and 6. After reionization, the CMB photons could scatter off
the now-free electrons again. If enough scattering takes place, that is, if the optical depth
τrei ≡ τ(ηlate) back to some time ηlate after the end of the recombination epoch is high
enough, isotropy is restored; equivalently, primordial anisotropies are washed out.

To study this quantitatively, imagine a photon traveling in our direction with tempera-
ture T (1 + �), where T is the background temperature and � is the perturbation. If these

4
Unlike recombination, this name is actually accurate.
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FIGURE 9.16 Effect on the CMB power spectrum of varying the optical depth to reionization. On scales l � 150, the
effect is essentially an overall multiplicative factor, while the CMB is insensitive to τrei on very large scales.

photons hit a region with optical depth τrei, only a fraction e−τrei will escape and continue
on their way to us. In addition to these, we will observe a fraction 1 − e−τrei scattered into
the beam while traveling through the ionized region (since scattering conserves the to-
tal number of photons). These scattered-in photons come from all directions, so we can
assume them to have the mean temperature T . So the temperature we see today is

T (1 + �)e−τrei + T (1 − e−τrei) = T (1 + �e−τrei). (9.82)

Subtracting from this the mean temperature T tells us that the fractional anisotropy will be
the primordial one set up at z � 1100 multiplied by e−τrei . This scattering, however, affects
only those perturbations within the horizon at the time of reionization, so only multipoles
l larger than η0/ηrei will be suppressed by e−τrei ; small l will be unaffected. This is seen in
Fig. 9.16, which shows the effect of changing τrei. Clearly, increasing τrei suppresses the
anisotropies on small scales, but leaves them unchanged for l � 100.

This explains why we considered reionization together with the amplitude and spectral
index: a change in As , together with ns , can largely mimic the effect of τrei, especially con-
sidering the fact that the cosmic variance error on the C(l) is largest at low l. Conversely,
the uncertain value of τrei is by far the leading source of uncertainty on As .

9.7.3 Baryon and CDM densities

The final variations we will consider are changes in the baryon density �bh2 and the CDM
density �ch

2. In each case, we keep a Euclidean universe and compensate the change in
the density parameters through ��. As expected from our considerations at the beginning
of this chapter, these changes lead to richer variations in the anisotropy spectrum than a
mere shift and tilt; instead, they induce a small relative shift in the locations of the peaks
and troughs in the spectrum, as well as changing their amplitudes. To understand these
effects, it is important to recall that, since inhomogeneities on scales k show up at l = kη0

in a Euclidean universe, the peaks in a Euclidean universe will show up at lpk � kpkη0 �
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FIGURE 9.17 Changes in the anisotropy spectrum as the baryon density �bh2 is varied.

FIGURE 9.18 Changes in the anisotropy spectrum as the CDM density �ch
2 is varied. Also shown are binned Planck

measurements (Planck Collaboration, 2018b); the error bars are so small that they are only discernible for l around
and below the first peak. Clearly, �ch

2 and �bh2 can be determined very precisely.

nπη0/rs(η∗) (Eq. (9.27), but see the discussion in Sect. 9.6.2 that argues that the actual value
of lpk is ∼ 25% lower).

The effects of changing the baryon density (Fig. 9.17) are a shift in the peak locations,
due to the change in the sound horizon rs(η∗), as well as modifications in the heights of the
peaks. We have already touched on the ways in which the anisotropy spectrum depends on
the baryon density. The foremost, clearly visible in Fig. 9.17, is that the ratio of the heights
of the odd to even peaks is higher when the baryon density is large. The second change
due to �bh2 is that an increased baryon density reduces the diffusion length (increases kD).
Therefore, a larger baryon density means damping moves to smaller angular scales, so the
anisotropy spectrum on scales l > 1000 is larger in a high-�bh2 model. This characteristic
combination of effects allows for very tight constraints on �bh2; the parameter variations
around the fiducial values shown in Fig. 9.17 are ruled out by the data at high significance.
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Next, we consider the effect of changing the cold dark matter density �ch
2 (Fig. 9.18).

Part of the effect is changing the driving term for the acoustic oscillations (since the grav-
itational potential is dominated by CDM), which is similar to what a modification to the
baryon density does. In addition, CDM determines to a large extent the epoch of equal-
ity, affecting both the evolution of perturbations (more growth for increased �ch

2) and
the early ISW effect (less ISW for increased �ch

2, since the potentials decay less after re-
combination). The C(l) are similarly sensitive to a given fractional change in �ch

2 as one in
�bh2. We also show binned power spectrum measurements—measurements for a range of
l combined into a single data point for presentation purposes—of the Planck team. They
lie right on top of the fiducial Euclidean �CDM prediction. Given the barely visible error
bars, the data precisely constrain �ch

2, ruling out at high significance the alternative pa-
rameter values we have shown for illustration.

9.8 Summary
The observed CMB anisotropies are a combination of three contributions (Eq. (9.59)):

• �0 + �, which includes intrinsic photon temperature perturbation and gravitational
redshift, and which we loosely refer to as “monopole.” This contribution shows acous-
tic oscillations, whose behavior is to first order described by the semi-analytic tight-
coupling solution.

• The Doppler-shift contribution 3�1, which shows the same acoustic oscillations but is
out of phase (as generally the case for velocities and positions of oscillators).

• The ISW contribution due to the time evolution of gravitational potentials around re-
combination and at late times. Unlike the first two, this is an integrated contribution
along the line of sight, and has a smooth scale dependence.

The sum of these three contributions (and the associated cross-correlations) leads to the
characteristic angular power spectrum of the CMB. The C(l) contain rich information in
particular on �ch

2 and �bh2, but also on curvature and the amplitude of primordial per-
turbations As and the spectral index ns (although the constraint on As is limited by the
degeneracy with the optical depth τrei). The CMB becomes even more powerful in com-
bination with the large-scale structure probes discussed in Ch. 11. This combination has
already led to percent-level constraints on the curvature and cosmological-constant pa-
rameters �K, ��.

Our semi-analytic approach to the CMB anisotropies follows Hu and Sugiyama (1995),
whose extremely clear presentation is recommended as further reading. The benchmark
for measurements of CMB temperature anisotropies is now set by the Planck satellite, at
least for l � 2000, for which Planck’s error bars have reached the fundamental cosmic vari-
ance limit. The latest data release is described in Planck Collaboration (2018a), while the
parameter constraints, along with excellent concise descriptions of other data sets, are pre-
sented in Planck Collaboration (2018b).



266 Modern Cosmology

Exercises
9.1 Most of this book is devoted to understanding adiabatic perturbations with the

initial conditions derived in Ch. 7. Another class of perturbations are isocurvature
perturbations with initial conditions �0 = � = � = 0. Physically, they correspond
to relative perturbations between different particle species such that the total den-
sity perturbation is zero. Show that on large scales, these initial conditions imply
that

�0(k, η∗) + �(k, η∗) = 2�(k, η∗). (9.83)

9.2 The equation for a harmonic oscillator with a drag term is

mẍ + bẋ + kx = 0. (9.84)

Find the solutions to this equation if k/m > (b/2m)2. What is the frequency of oscil-
lations? How does this differ from the undamped (b = 0) solution? What is the other
effect of nonzero b besides the change in frequency?

9.3 Determine R(η∗) for the fiducial value of �bh2, and variations by ±20% around that
value. Plot the sound speed as a function of scale factor for these three values of
�bh2.

9.4 Show that the sound horizon can be expressed in terms of the conformal time
as

rs(η) = 2

3keq

√
6

R(ηeq)
ln

{√
1 + R + √

R + R(ηeq)

1 + √
R(ηeq)

}
, (9.85)

where keq is given in Eq. (8.39).
9.5 Obtain the WKB solution to Eq. (9.20). Write

�0 = AeiB (9.86)

with A and B real. Show that the homogeneous part of Eq. (9.20) breaks up into two
equations, coming from the real and imaginary parts:

Real: − (B ′)2 + A′′

A
+ R′

1 + R

A′

A
+ k2c2

s = 0, (9.87)

Imaginary: 2B ′ A′

A
+ B ′′ + R′

1 + R
B ′ = 0. (9.88)

Find B using the real part and the fact that B changes much more rapidly than A.
Then, use the imaginary equation to determine A. Show that the homogeneous so-
lutions obtained in this way differ from the simple oscillatory solutions of Eq. (9.23)
by a factor of (1 + R)1/4.
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9.6 Obtain a numerical solution for �0 + � and �1 at recombination by carrying out
the integrals in Eqs. (9.26) and (9.28). To do this you will need expressions for
the gravitational potentials. You can interpolate these from the output of CAMB
or CLASS. Alternatively, use the fitting formulas given in Hu and Sugiyama (1995).
Compare the result with the full numerical Boltzmann solution from CAMB or
CLASS.

9.7 Our treatment of diffusion damping neglected the effect of polarization. Go through
the same expansion in τ ′ −1 that we carried out in Sect. 9.4, this time accounting
for polarization. Show that this changes the factor of 8/9 in Eq. (9.42) to 16/15. This
beautiful result was obtained by Zaldarriaga and Harari (1995).

9.8 Assume that all electrons associated with hydrogen stay ionized and set R = 0. Eval-
uate the damping scale, kD , defined in Eq. (9.42). Show that in this limit, the damping
scale is given by Eq. (9.44), where

fD(y) = 5
√

1 + 1/y − 20

3
(1 + 1/y)3/2 + 8

3

[
(1 + 1/y)5/2 − 1/y5/2

]
. (9.89)

9.9 Show that ∫
d�Ylm(p̂)Pl′(p̂ · k̂) = 4π

2l + 1
Ylm(k̂)δll′ . (9.90)

9.10 There is a different way to go from the inhomogeneous temperature field at recom-
bination, �0(x, η∗) or �0(k, η∗), to the anisotropy pattern today, alm, than that given
in the text.
(a) Assume that the photons we see today from direction p̂ come from the surface

of last scattering: �(x0, p̂, η0) = (�0 + �)(x = χ∗p̂, η∗) where x0 is our position.
That is, neglect dipole and ISW terms. Fourier transform the right-hand side
and expand the left in terms of spherical harmonics to get

∑
lm

almYlm(p̂) =
∫

d3k

(2π)3
eik·p̂χ∗(� + �)(k, η∗). (9.91)

Now expand the exponential using Eq. (C.17). Equate the coefficients of Ylm(p̂)

to get an expression for alm.
(b) Square the alm you got in (a) and take the expectation value to get an expression

for C(l). You should recapture the expression in Eq. (9.74) when only including
the monopole term in Eq. (9.59).

9.11 Show that the cross-terms from the monopole and dipole are suppressed when sum-
ming over all modes. The monopole is proportional to jl(kη0) while the dipole is
proportional to j ′

l (kη0). Compute the three possible integrals

∫ ∞

0
dxjljl;

∫ ∞

0
dxjlj

′
l ;

∫ ∞

0
dxj ′

l j
′
l . (9.92)
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Show that the integrals of the squares (j2
l and (j ′

l )
2) are much larger than the integral

of the cross-term jlj
′
l . Do the integrals for l = 10 up to l = 200.

9.12 Determine the locations of the peaks and troughs in the CMB anisotropy spec-
trum if the universe is Euclidean with a cosmological constant. Keep the sound
horizon fixed in this calculation by fixing �mh2 to the value in the fiducial cos-
mology. The peak positions then depend only on the distance to the last-scattering
surface, η0 − η∗. Consider two Euclidean models: (i) �� = 0 (so that �m = 1) and
(ii) �� = 0.7 (so that �m = 0.3). What value of h is needed in the two cases to
keep �mh2 fixed? Determine η0 − η∗ in each case (in the cosmological constant
case, you will have to do the integral numerically). Compare your result with
Fig. 9.17.

9.13 Compute the distance to the last-scattering surface in a Euclidean model with dark
energy described by �de = 0.7 (today) and w = −0.5. Compare the expected peak
locations in the anisotropy spectrum with the cosmological constant model of the
previous exercise.

9.14 Derive the effects of reionization using the Boltzmann equation. Neglect the gravita-
tional potentials, the velocity, and �0 in the Boltzmann equation for photons. Start
with a spectrum �l(ηin) at an initial time ηin after recombination and evolve until
today. Show that the moments are indeed suppressed by e−τrei .

9.15 Assume that recombination took place instantaneously. Show that the solution for
the lth moment due to tensor perturbations (Eq. (6.86)) is

�T
l,t (k, η0) = −1

2

∫ η0

η∗
dη

(
hTT

t

) ′ jl[k(η0 − η)], (9.93)

for either tensor-mode polarization t = +,×.
9.16 Using the decomposition for tensor modes given in Eq. (6.85), find the contribution

to the C(l) from �T
l (k, η0). That is, show that the analogue of Eq. (9.74) for tensors

is

CT(l; t) = (l − 1)l(l + 1)(l + 2)

π

∫ ∞

0
dk k2

×
∣∣∣∣∣

�T
l−2,t

(2l − 1)(2l + 1)
+ 2

�T
l,t

(2l − 1)(2l + 3)
+ �T

l+2,t

(2l + 1)(2l + 3)

∣∣∣∣∣
2

, (9.94)

where t = +,× denotes the two tensor-mode polarizations.
9.17 Determine the spectrum of the temperature anisotropies due to gravitational waves

produced during inflation.
(a) Combine the results of the previous two exercises, your solution to Exercise 6.12,

and the primordial amplitude of gravitational waves in Eq. (7.102) to find
the large-angle angular power spectrum CT(l) due to primordial gravitational
waves.
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(b) Tensor anisotropies can be parametrized empirically by

r2 ≡ CT(l = 2)

C(l = 2)
, (9.95)

i.e. the ratio of the contributions to the temperature quadrupole from tensor and
scalar perturbations. We already derived an expression for the scalar C(l = 2)

in Eq. (9.80). Find CT(l = 2) and compute r2. You can set nT = 0 for this exer-
cise. Compare with the conventional definition of the tensor-to-scalar ratio r in
Sect. 7.6.



10
The polarized CMB

Our treatment of the CMB so far has been focused on the temperature anisotropies. How-
ever, Compton scattering before decoupling also induces polarization anisotropies. Polar-
ization opens up a new dimension in the study of the CMB. On the one hand, it in principle
doubles the amount of information in the CMB about the scalar perturbations we have fo-
cused on so far. As we will see in this chapter, however, the promise of polarization goes
well beyond this: gravitational waves—tensor perturbations—produce a particular pattern
of polarization that cannot be mimicked by scalar perturbations on large scales. Therefore,
polarization offers a unique way of searching for gravitational waves produced during in-
flation.

Most of the physics involved in CMB polarization is already familiar to us. However,
the treatment is somewhat more difficult technically for two reasons. One difficulty is in
describing a polarization pattern on the sky, which is no longer a simple function of the po-
sition on the sky as the temperature is. Instead, we are dealing with a “headless vector.” We
will simplify this obstacle by assuming the flat-sky approximation (Sect. 10.1). This means
that our results will only be valid on small angular scales, but this is a reasonable price to
pay for the much simpler derivation that this approximation offers; we will not miss any
of the essential physics. The other difficulty is keeping track of the geometry of Compton
scattering of polarized radiation. We will do this in two steps in Sect. 10.2 and Sect. 10.3.
This geometry is crucial in order to understand why polarization is such a powerful probe
of tensor modes.

The results of Sect. 10.1 will further become very useful when dealing with galaxy ellip-
ticities and gravitational lensing in Ch. 13. In fact, we will be able to take over all results
from this section essentially one-to-one.

10.1 Polarization
The polarization of a radiation field is measured most simply by inserting a polarizer in
front of the detector, which allows only waves oscillating in a particular direction (in the
plane perpendicular to propagation) to pass through (Fig. 10.1). By plotting the intensity
recorded by the detector as a function of the orientation of the polarizer, one can measure
the polarization. If we rotate the polarizer by 180◦, we obtain the same result: polarization
is a headless vector. Then, if we denote the unit direction vector of the polarizer with m̂

(where m̂ ·p̂ = 0, with p̂ being the wavevector of the radiation), the flux of radiation incident
on the detector cannot depend on the sign of m̂. Therefore, it must be a quadratic function
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FIGURE 10.1 Measuring polarized light. Photons coming in along the p̂-direction (here, p̂ = êz) are polarized in the
plane perpendicular to p̂. Polarization is measured by sending the light through a polarizer, which allows only light
with a certain linear polarization to pass through. By rotating the polarizer around the p̂-axis, the degree and
direction of the polarization of light can be measured. It is a headless vector, and can be described by its azimuthal
angle φ with respect to the x-axis in the x–y plane perpendicular to p̂.

of m̂. We write

Idet(m̂) = Iij m̂
im̂j

, (10.1)

where Iij describes the polarization of radiation (polarization tensor). Notice that this is a
2 × 2 matrix, since m̂ is constrained to lie in the plane perpendicular to p̂. Clearly, Iij can
be taken to be symmetric.1 Moreover, for unpolarized light, the detected intensity Idet(m̂)

is identical in the m̂x- and m̂y-directions, so Iij ∝ δij . Let us then write

Iij =
(

I + Q U

U I − Q

)
. (10.2)

The diagonal elements I are the intensity, which is what we studied in Ch. 9 (as tempera-
ture T , with a uniform part and a perturbation �). The two new variables Q and U describe
polarization, and they are illustrated in Fig. 10.2. Students of electricity and magnetism
might recognize I , Q, and U as three of the four Stokes parameters used to describe polar-
ization. The fourth, V , is absent since we ignore circular polarization. So, instead of dealing
with a single distribution function f (x, p̂, η), we now have two additional distribution
functions fQ and fU to consider. In fact, we will see that a slightly different parametrization
is more useful than Q and U .

Our goal in this chapter will be to derive the statistics of Q and U that we expect in
the CMB. For this, we will turn again to the solution of the Boltzmann equation derived
in Ch. 9. However, before doing that, we have to deal with some subtleties related to the
nature of polarization. The statistics of the temperature were straightforward to derive
because the temperature is a coordinate-invariant quantity. This is not the case for po-
larization: if we measure the polarization along the x-axis, say, corresponding to Ixx , and
then rotate our coordinate system, the value of Ixx changes. Q and U change accordingly
as well. Fortunately, we already have developed the tools to deal with this in Sect. 6.1; we
now simply have to apply them to two instead of three spatial dimensions.

1
In general, Iij is Hermitian; throughout we will neglect circular polarization since it is not generated by cos-

mological perturbations, in which case Iij can be taken to be real and symmetric.
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FIGURE 10.2 Definition of polarization components Q and U in the plane perpendicular to the incoming light.
Unpolarized light has Q = U = 0.

In this chapter, we will work in the flat-sky approximation. This significantly simplifies
the derivation, while keeping all of the physics untouched. Hence, we treat the position on
the sky θ as a 2D vector on the x–y plane. Correspondingly, instead of considering multi-
pole moments l, m, we define the 2D vector l as the Fourier counterpart of θ . For example,
the temperature, proportional to the intensity I , in Fourier space becomes

T (l) =
∫

d2θ T (θ)eil·θ . (10.3)

Now, we can write Eq. (10.2) as

Iij = I δij + I T
ij , (10.4)

where I T
ij is traceless and contains the information needed about the two polarization

states. Instead of Q and U , though, we want to characterize those two states by their behav-
ior under rotations. Just as we decomposed the elements of the spatial metric perturbation
hij in Sect. 6.1 into scalar, vector, and tensor perturbations, here we want to do the same
with I T

ij . It is actually a bit simpler in two dimensions: Iij has three independent compo-

nents, and so the traceless part I T
ij has only two. One of these is a scalar which we can

extract by taking the combination li lj I T
ij / l2. We will call this E(l). The other, which we will

denote as I TT
ij (l), is a transverse-traceless tensor (so liI TT

ij (l) = 0). You can check that the
following decomposition is consistent with what we described:

I T
ij (l) = 2

(
li lj

l2
− 1

2
δij

)
E(l) + I TT

ij (l). (10.5)

We will soon see that the scalar component E couples to both scalar and tensor metric
perturbations, while the transverse-traceless component couples only to tensor metric
perturbations. This is one more reason why this decomposition is powerful. First, though,
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let us connect these scalar and tensor pieces to the original Q/U decomposition. We ex-
tract the scalar component from I T

ij by contracting with li lj / l2:

E(l) = li lj

l2
I T
ij

= (cos2 φl − sin2 φl)Q(l) + 2 sinφl cosφl U(l), (10.6)

where in the second line we have written out in components by introducing the azimuthal
angle φl of the 2D wavevector: l = (lx, ly) = (cosφl, sinφl) l. Using the trigonometric addition
formulas, we can simplify this to

E(l) = cos 2φl Q(l) + sin 2φl U(l). (10.7)

Next, we can use Eq. (10.5) for I TT. First,

I TT
12 (l) = I T

12 − 2
l1l2

l2
E(l)

= U(l) − sin 2φl (cos 2φl Q(l) + sin 2φl U(l))

= (1 − sin2 2φl)U(l) − sin 2φl cos 2φl Q(l)

= cos 2φlB(l), (10.8)

where we have again used the trigonometric formulae and defined

B(l) = − sin 2φl Q(l) + cos 2φl U(l). (10.9)

You can easily show, via a very similar calculation, that the other remaining elements of
I TT
ij are also given in terms of B:

1

2
(I TT

11 − I TT
22 )(l) = − sin 2φl B(l). (10.10)

So we have decomposed the polarization tensor I T
ij , which has two independent compo-

nents Q and U , into the scalar part E(l), and B(l), which describes the tensor part. This
leads to our final decomposition of the polarization tensor:

I T
ij (l) =

(
cos 2φl sin 2φl

sin 2φl − cos 2φl

)
E(l) +

( − sin 2φl cos 2φl

cos 2φl sin 2φl

)
B(l). (10.11)

As an example, let us specialize to a single mode with a wavevector l = l0êx along the
x-axis (i.e. φl = 0). Then, the polarization pattern in real space becomes

I T
ij (θ) =

(
1 0
0 −1

)
eil0θx E0 +

(
0 1
1 0

)
eil0θx B0. (10.12)

The result is shown in Fig. 10.3. The E-mode varies in strength in the same direction as, or
perpendicular to, its orientation. This conjures images of an electric field. An electric field
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FIGURE 10.3 Polarization generated by a single plane-wave perturbation along the x-axis (i.e. k = kêx ), for an
E-mode (top) and a B-mode (bottom). The length of each headless arrow indicates the strength of polarization.
These patterns are distinguishable by looking at how the polarization angle aligns with the wavevector of the mode
(the direction in which the polarization changes). Notice that here and in Fig. 10.4 we show the polarization pattern
for photons propagating out of the page (along the z-axis).

from a point source, E = q r̂/r2, varies in strength as one moves away from the point source,
but always points in the same direction: radially away from the source. As one moves in
the direction of the field, the strength of the field decreases. The B-mode, on the other
hand, varies in strength in a different direction from that in which it is pointing (namely by
45◦), just like a magnetic field. Notice that one can generate the B-mode pattern from the
E-mode pattern by rotating each polarization direction by 45◦.

Motivated by this analogy, let us consider a superposition of plane waves in the x–y

plane that have equal wavelength and phase at the origin, as well as amplitude. That is,
they only differ by the azimuthal angle φl . The resulting polarization patterns (try to work
them out!) for E- and B-modes look like those shown in Fig. 10.4. These patterns are clearly
distinct, with the B-modes showing the characteristic “swirly” form. One can also glean
from this figure that E- and B-modes have different parity: E is parity even, i.e. it stays the
same if we imagine flipping the page, while B is parity-odd, i.e. it changes sign. It comes as
no surprise then that we can distinguish the E- and B-components in an observed polar-
ization map.

Beyond pretty illustrations, we have accomplished an important goal: E(l) is now a
scalar on the sky just like the temperature (while B(l) is a pseudoscalar; you can show
this, and the fact that the same does not hold for Q and U , in Exercise 10.1). This means
we can compute the power spectra straightforwardly. A further significance of Eq. (10.11)
is that we can use a convenient coordinate system to tell whether a given physical process
generates the E or B components. We see from Eq. (10.12) that a mode with a wavevector l

along the x-axis which only has a Q component, and no U , corresponds to a pure E-mode,
a conclusion which then holds for any orientation of the wavevector.

10.2 Generating polarization from Compton scattering
Light traveling in the z-direction corresponds to electric and magnetic fields oscillating
in the x–y plane, i.e., transverse to the direction of propagation. If the intensity along the
two transverse directions is equal, then the light is unpolarized. Until now, when we have
considered the CMB, we have been implicitly studying this case. Now we must account
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FIGURE 10.4 Similar to Fig. 10.3, but now polarization generated by a radial wave in the x–y plane is shown (left
panel), i.e. a superposition of plane waves with equal phase and amplitude but different azimuthal angles φl . This
configuration illustrates the difference between E- and B-mode patterns very clearly (middle and right panels,
respectively; again for light coming out of the page). In each case, we show a peak (red (light gray in print version),
inner set of lines) and a trough (blue (dark gray in print version), outer set of lines) of the radial wave.

FIGURE 10.5 Left panel: unpolarized plane-wave radiation moving toward the origin along the x-axis is scattered by
an electron into the +z-direction. Only the y component of the radiation remains after scattering. Since there was
no incoming x polarization, the outgoing radiation is polarized in the y-direction. Right panel: incoming isotropic
(monopole) radiation produces no polarization. Here, since the incoming amplitudes from the x- and y-directions
are equal, the outgoing intensities along both of these directions are equal, leading to unpolarized radiation (see
also Hu and White, 1997).

for the possibility that the intensities in the two transverse directions are unequal: that the
radiation is polarized.

Compton scattering is able to produce polarized radiation.2 To see this, consider the
left panel of Fig. 10.5 which shows a ray incident from the +x-direction. This (unpolarized)
ray has equal intensity in the y- and z-directions. It scatters off an electron at the origin
and gets deflected into the +z-direction (our line of sight). Since the outgoing direction
is along the z-axis, none of the (incoming) intensity along the z-axis gets transmitted. By

2
As in Ch. 5, we are only considering elastic scattering of photons off electrons here, which is a special case of

Compton scattering known as Thomson scattering.



Chapter 10 • The polarized CMB 277

FIGURE 10.6 Left panel: incoming radiation with a dipolar pattern produces no polarization. Heavy blue (thin red)
lines denote hotter (colder) radiation. In this case, the incoming radiation is hotter than average (average is shown
as medium black lines) from the +x-direction, and colder than average from the −x-direction (the incoming radi-
ation along the ±y-direction is of average temperature, as in the right panel of Fig. 10.5). The two rays from the
±x-directions therefore produce the average intensity for the outgoing ray along the y-direction. The outgoing in-
tensity along the x-direction is produced by the ray incident from the ±y-directions. Since these have the average
intensity, the outgoing intensity is also the average along the x-direction. The net result is outgoing unpolarized
light. Right panel: incoming radiation with a quadrupolar pattern produces outgoing polarized light. The outgoing
radiation has greater intensity along the y-axis than in the x-direction. This is a direct result of the hotter radiation
incident from the ±x-direction as compared to that from the ±y-direction.

contrast, all of the intensity along the y-axis (which is perpendicular to both the incoming
and the outgoing directions) is transmitted. The net result is polarized outgoing emission:
the difference between the outgoing intensities in the two directions perpendicular to êz

(y: fully transmitted; x: zero) is maximal.
Obviously, we cannot content ourselves with studying one incoming ray; we must gen-

eralize to radiation incident on an electron from all directions. When we do so, we begin
to realize that producing polarization will not be quite as easy as it appears from the left
panel of Fig. 10.5. Consider then the right panel, which shows a caricature of a much more
relevant case: isotropic radiation incident on the electron from all directions. We say “car-
icature” because we have shown incoming rays from only two directions, the +x- and
+y-directions; this will be sufficient for our argument. The Ixx component of the outgoing
ray’s intensity comes from the radiation incident from the y direction, while the outgoing
Iyy comes from the radiation incident from the x-axis. Since the incoming radiation from
both directions has equal intensity (isotropic radiation), though, the outgoing wave has
equal intensity along both axes, Ixx = Iyy : it is unpolarized.

Can anisotropic radiation produce polarization? The simplest example of anisotropy
is a dipole pattern, a caricature of which is shown in the left panel of Fig. 10.6. Now the
outgoing intensity along the x-axis comes from the ±y-incident radiation, which has the
average temperature (not drawn in the figure). The outgoing intensity along the y-axis is
also average, since it is due to a superposition of a cold spot (the −x-direction) and a hot
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spot (the +x-direction). The dipole pattern therefore only leads to unpolarized outgoing
radiation.

To produce polarized radiation, the incoming radiation must have a nonzero quadru-
pole. This is shown in the right panel of Fig. 10.6. The hotter (colder) radiation incident
from the x- (y-) direction produces higher (lower) intensity along the y- (x-) axis for the
outgoing wave. Therefore, the intensity of the outgoing wave is greater along the y-axis
than along the x-axis: the outgoing radiation is polarized. Fig. 10.6 depicts polarization in
the x–y plane, preferentially in the y-direction: from Fig. 10.2, we see that this pattern cor-
responds to Q < 0 and U = 0. Alternatively, had the incoming rays been rotated by 45◦ in
the x–y plane, the outgoing polarization would have been along the axis 45◦ from the x-
and y-axes, and correspondingly produced a U component.

The fact that Compton scattering produces polarization only when the incident field
has a quadrupole moment has important ramifications for cosmology. Because electrons
and photons are tightly coupled before recombination, the radiation field has a very small
quadrupole. Therefore, we expect CMB polarization to be smaller than the temperature
anisotropies.

10.3 Polarization from a single plane wave
The pictures of the previous subsection are important to gain a qualitative understand-
ing of how Compton scattering produces polarization in the CMB. In order to study the
phenomenon quantitatively, we must solve the Boltzmann equation, taking into account
the two photon polarization states and the polarization dependence of Compton scatter-
ing in the collision term. We begin by considering a single plane-wave perturbation to the
photon distribution.

We first need to define the polarization axes in the most general case when the in-
coming photon arrives from direction n̂′ (Fig. 10.7). When that direction was êx , as in the
previous section, it was clear that polarization was defined as the difference in the intensity
along the two perpendicular directions, y and z. Now, we denote the two axes perpendic-
ular to this direction, describing the plane in which incoming rays are polarized, with ε̂′

1
and ε̂′

2. We continue to focus on outgoing photons in the z-direction, so we can choose the
two outgoing polarization axes as ε̂1 = êx and ε̂2 = êy . In short, the incoming polarization
vectors are ε̂′

i , the outgoing are ε̂i .
The polarization dependence of Compton scattering that we discussed in the previous

section is neatly encapsulated by an additional factor in the amplitude squared for outgo-
ing photons polarized in the ε̂i-direction. Summing over the two (irrelevant) electron spins
as well as the incoming photon polarization, the amplitude squared in Eq. (5.18), now for
the outgoing polarizations i = 1,2 separately, receives an additional factor,

∑
3 spins

|M|2 ∝
2∑

j=1

|ε̂i (n̂) · ε̂′
j (n̂

′
)|2. (10.13)
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FIGURE 10.7 Incoming photon from direction n̂′ scatters off an electron at the origin producing an outgoing photon
in the direction n̂ = êz. The plane perpendicular to the incoming direction is spanned by the two polarization vectors,
ε̂′

1 = ê′
θ and ε̂′

2 = ê′
φ . The outgoing photon is in the êz-direction, so the polarization vectors are ε̂1 = êx and ε̂2 = êy .

Let us first calculate the Q polarization which, from Eq. (10.2), is sourced by the difference
between this cross-section for i = 1 and i = 2, i.e., the difference between the field strength
in the êx- and êy-directions:

2∑
j=1

|ε̂1(n̂) · ε̂′
j (n̂

′
)|2 −

2∑
j=1

|ε̂2(n̂) · ε̂′
j (n̂

′
)|2 =

2∑
j=1

(
|êx · ε̂′

j (n̂
′
)|2 − |êy · ε̂′

j (n̂
′
)|2

)
. (10.14)

Integrating over all incoming n̂′-directions leads to

Q(êz) = A

∫
d�′f (n̂′

)

2∑
j=1

(
|êx · ε̂′

j (n̂
′
)|2 − |êy · ε̂′

j (n̂
′
)|2

)
. (10.15)

Here A is a normalization constant which will concern us in the next section, and f (n̂′
)

is the intensity of the radiation incoming from the n̂′-direction, where we integrate over
all such directions. Note that f depends only on n̂′, but not on j : this corresponds to the
assumption that the incident radiation is unpolarized.

To take the dot products in Eq. (10.15), we need ε̂′
1 and ε̂′

2 in terms of their Cartesian
coordinates. These are defined to be orthogonal to n̂′, whose components are

n̂′ = (sin θ ′ cosφ′, sin θ ′ sinφ′, cos θ ′). (10.16)

We choose ε̂′
2 to lie in the x–y plane, which leads to

ε̂′
2(θ

′, φ′) = (− sinφ′, cosφ′,0). (10.17)

Then, ε̂′
1 is completely specified by taking the vector product of n̂′ and ε̂′

2:

ε̂′
1(θ

′, φ′) = (cos θ ′ cosφ′, cos θ ′ sinφ′,− sin θ ′). (10.18)
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Alternatively, we can notice that ε̂′
1 and ε̂′

2 are given by the spherical coordinate vectors ê′
θ

and ê′
φ , respectively. Now the dot products become straightforward, and we find

Q(êz) = A

∫
d�′f (n̂′

)
[
cos2 θ ′ cos2 φ′ + sin2 φ′ − cos2 θ ′ sin2 φ′ − cos2 φ′]

= −A

∫
d�′f (n̂′

) sin2 θ ′ cos 2φ′. (10.19)

The angular dependence is proportional to the sum of the spherical harmonics Y2,2 +Y2,−2

(Eq. (C.10)). Since the spherical harmonics are orthogonal, the integral will pick out the
l = 2, m = ±2 components of the distribution f . That is, nonzero Q will be produced if
and only if the incident radiation has a quadrupole moment. This verifies the argument-
by-pictures given in the previous section. It is straightforward to derive the corresponding
expression for the U-component of polarization (Exercise 10.3),

U(êz) = −A

∫
d�′f (n̂′

) sin2 θ ′ sin(2φ′). (10.20)

Now the angular dependence is proportional to Y2,2 − Y2,−2. Again, only an incident
quadrupole produces U polarization.

We can now relate the outgoing Q and U fields to the moments of the incident unpo-
larized distribution. We will do this in several steps, starting with the k-vector along the
x-axis, then generalizing this to the x–z plane, and finally obtaining the result for an ar-
bitrary direction of k. The first step, however, already yields the main features of our final
result.

The reason that we need to move step by step is that the direction of the quadrupole
in the photon distribution f (n̂′

) is determined by the direction of the wavevector. Recall
that, in Ch. 5 we wrote the photon distribution as the sum of a zeroth-order piece—the
uniform Planck distribution—and a perturbation, characterized by �(k,μ) where μ is the
dot product of the wave vector k̂ and the direction of the photon momentum. Thus, we
now need to keep track of three directions: the wavevector k̂; the incoming direction n̂′;
and the outgoing photon direction n̂. We already have used up some of our coordinate
freedom by choosing n̂ = êz. In our case, the variable μ becomes μ = k̂ · n̂′. Thus, f (n̂′

) in
Eq. (10.19) will be an expansion in Legendre polynomials with argument k̂ · n̂′, which is not
equal to the cosine of θ ′, since θ ′ is the angle between the z-axis and n̂′. Relating μ to θ ′ and
φ′ therefore is not trivial, and we will proceed slowly.

Let us first consider the wave vector k to lie in the x-direction. Then,

μ ≡ k̂ · n̂′ = (
n̂′)

x

= sin θ ′ cosφ′ (10.21)
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where the second equality follows from Eq. (10.16). Recall that we decomposed the pertur-
bation � into a sum over Legendre polynomials, so

�(k, k̂ · n̂′
) =

∑
l

(−i)l(2l + 1)�l(k)Pl

(
k̂ · n̂′)

→ −5�2(k)P2(sin θ ′ cosφ′), (10.22)

where the last line follows by considering only the relevant quadrupole part of the sum,
and substituting our expression for μ (Eq. (10.21)). Notice also that, as we did in Ch. 8 and
Ch. 9, we continue to focus on scalar perturbations in this section.

A plane wave with wavevector k pointing in the x-direction therefore produces

Q(êz,k‖êx) = 5A�2(k)

∫ π

0
dθ ′ sin θ ′

∫ 2π

0
dφ′P2(sin θ ′ cosφ′) sin2 θ ′ cos 2φ′. (10.23)

Recall that P2(μ) = (3μ2 − 1)/2. The −1/2 part of this gives no contribution to the integral
since the φ′ integral over cos(2φ′) vanishes. Therefore, we are left with

Q(êz,k‖êx) = 15A�2(k)

2

∫ π

0
dθ ′ sin5 θ ′

∫ 2π

0
dφ′ cos2 φ′ cos 2φ′. (10.24)

The φ′ integral is π/2, while the θ ′ integral is 16/15. So

Q(êz,k‖êx) = 4πA�2(k). (10.25)

We have now made part of the connection between polarization—represented by Q here—
and the formalism of anisotropies—described by �l in general and �2 specifically for the
quadrupole. This expression though applies only in the very simple case that the wavevec-
tor points along the x-axis, perpendicular to the line of sight êz.

Let us generalize this expression to wavevectors pointing in an arbitrary direction in the
x–z plane: k̂ = (sin θk,0, cos θk). In this case, P2(k̂ · n̂′

) involves

(k̂ · n̂′
)2 = sin2 θk sin2 θ ′ cos2 φ′ + 2 sin θk cos θk cos θ ′ sin θ ′ cosφ′ + cos2 θk cos2 θ ′. (10.26)

The first term is identical to the k̂‖êx case just derived, multiplied by sin2 θk. The second
and third terms both vanish after performing the φ′ integral against cos(2φ′). Therefore,

Q(êz,k ⊥ êy) = 4πA sin2 θk�2(k). (10.27)

In Exercise 10.3 you will show that there is no U-polarization if k is in the x–z plane: the
polarization is all Q.

Now we can make use of what we have learned about the E/B-decomposition of po-
larization in Eqs. (10.11)–(10.12): the sky plane is the x–y plane (since it is orthogonal to
the direction of observation, the z axis), so that a k vector in the x–z plane lies along the
x-axis on the sky. Since we find the polarization to be pure Q in this case, we thus conclude
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FIGURE 10.8 Polarization pattern generated by a scalar perturbation (top panel) aligned with the x-axis. This scalar
perturbation generates a spatially varying quadrupole in the temperature that is illustrated in the second panel
through the temperature pattern seen by the electrons (indicated as dots). In three dimensions (with the z-axis
coming out of the page) you should imagine this temperature pattern as azimuthally symmetric around k̂, i.e. the
x-axis, as indicated by the circular arrow on the left. Now, suppose we observe the light scattered by the electrons in
the z-direction coming out of the page. Following Sect. 10.2, the observed polarization pattern will appear as shown
in the bottom panel. Comparing with Fig. 10.3, we can unambiguously tell that this is an E-mode.

that all polarization from scalar perturbations is in the E component. In Exercise 10.2, you
can derive the result for a general direction of k, showing that it indeed obeys the expected
E-mode form of Eq. (10.11):

Q(êz,k) = 4πA sin2 θk cos(2φk)�2(k)

U(êz,k) = 4πA sin2 θk sin(2φk)�2(k). (10.28)

Finally, we can generalize our result to an outgoing photon direction (line of sight) that is
not necessarily along the z-axis, but given by a unit vector n̂. First, we use the fact that the
polarization is completely described by the scalar E-mode on the sky, which is invariant
under a rotation of n̂. We then only have to replace cos θk with n̂ · k̂, so that

E(n̂,k) = 4πA
(

1 − [n̂ · k̂]2
)

�2(k). (10.29)

At this point we should be mindful that our results throughout have been derived in the
flat-sky approximation; the expressions on the full sky become quite a bit more compli-
cated, without adding any new physics, however.

Fundamentally, the reason that scalar perturbations produce only E-modes is due to
symmetry (see Fig. 10.8): if we consider a setup with a single plane-wave scalar perturba-
tion along the x-axis, then we have azimuthal symmetry around this axis. The quadrupole
then corresponds to the radiation being hotter (say) in the ±êx-directions, and colder
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perpendicular to the x-axis (this is precisely described by the combination of Y2,±2 we en-
countered; see also Fig. C.1). As Fig. 10.8 shows, this azimuthal symmetry requires that the
polarization pattern generated by Compton scattering is aligned with the x-axis as seen in
Fig. 10.3, i.e. it is a pure E-mode. We will see below why this is so important. The overview
article by Hu and White (1997) has many more detailed explanations and illustrations on
the geometry of generating E- and B-mode polarization, going beyond the flat-sky approx-
imation made here.

10.4 Boltzmann solution
In Sect. 5.7, we briefly introduced the polarization strength �P (k,μ,η). Now we under-
stand how to define it precisely: it corresponds to the Q polarization for a wavevector k

along the x-direction. More generally, �P = �E gives the amplitude of the E-mode polar-
ization. Because of the azimuthal symmetry around the k̂-axis for scalar perturbations, the
polarization is completely determined by a single function �P (k,μ,η). To make predic-
tions for the observed E-mode, we need to derive and solve the Boltzmann equation that
determines the evolution of �P . Fortunately, we have already done the hard work.

The left-hand side of the equation is determined by free-streaming and thus is the same
as for �(k,μ,η). The right-hand side contains the source and loss terms. We found in the
previous section (Eq. (10.27)) that the outgoing polarization (for k̂ in the x–z plane) was
proportional to (1 −μ2)�2 where μ is the cosine of the angle between k̂ and n̂. The propor-
tionality constant has to contain the number of scattering events per η interval, so A ∝ −τ ′
(recall that the optical depth is measured going backward in time by convention, hence the
minus sign). Thus, we expect a source term for �P proportional to −τ ′(1 − μ2)�2. Another
important fact is that, if polarization is not sourced, the radiation becomes gradually un-
polarized through Compton scattering. Hence, we expect a loss term proportional to �P ,
i.e. τ ′�P . Putting all of this together yields

�′
P + ikμ�P = −τ ′ [b(1 − μ2)�2 − �P

]
, (10.30)

where b is a constant that we expect to be of order one. This equation gets almost ev-
erything right. One further effect to include is the polarization of the incoming radiation,
which we have assumed to be unpolarized in our derivation. The result is (Bond and Efs-
tathiou, 1987)

�′
P + ikμ�P = −τ ′

[
−�P + 3

4
(1 − μ2)


]
(10.31)

where


(k,η) ≡ �2 + �P 2 + �P 0. (10.32)
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Now let us solve the Boltzmann equation for the polarization. In analogy to Eq. (9.49),
the formal solution to Eq. (10.32) is

�P (k,μ) =
∫ η0

0
dηeikμ(η−η0)−τ(η)SP (k,μ,η), (10.33)

where the source term is

SP (k,μ,η) = −3

4
τ ′(1 − μ2)
. (10.34)

Using the definition in Eq. (9.56) of the visibility function, g(τ) = −τ ′e−τ , this can be written
as

�P (k,μ) = 3

4
(1 − μ2)

∫ η0

0
dη g(η)eikμ(η−η0)
(k, η). (10.35)

A reasonable approximation is to assume that we can evaluate the integrand, except for
the rapidly changing visibility function, at the time of decoupling. This leaves an integral
over g(η), which is unity. The result is

�P (k,μ) 	 3

4

(k,η∗)(1 − μ2)eikμ(η∗−η0). (10.36)

Neglecting η∗ compared with η0 and rewriting the factors of μ as derivatives leads to

�P (k,μ) 	 3

4

(k,η∗)

(
1 + ∂2

∂(kη0)2

)
e−ikη0μ. (10.37)

To get the moments �P,l , we must multiply Eq. (10.37) by Pl (μ) and integrate over all μ

as in Eq. (5.66). This gives (Eq. (C.15))

El(k) = �P,l(k) 	 3

4

(k,η∗)

(
1 + ∂2

∂(kη0)2

)
jl(kη0). (10.38)

We identify �P,l with El because scalar perturbations generate only the E-mode.
Eq. (10.38) contains (jl +j ′′

l )(kη0), which, using the spherical Bessel equation (Eq. (C.13)),
can be rewritten as

jl + j ′′
l = − 2

kη0
jl−1 + 2(l + 1)

(kη0)2
jl + l(l + 1)

(kη0)2
jl. (10.39)

Of the three terms on the right, the last one dominates on small scales. To see this, remem-
ber that the spherical Bessel function peaks roughly at kη0 ∼ l. For our order-of-magnitude
estimate, this means that we can take kη0 to be of order l in the three terms on the right-
hand side. The first and second then are of order l−1, while the last is of order l2/(kη0)

2 ∼ 1,
so it dominates. Therefore,

El(k) 	 3

4

(k,η∗)

l2

(kη0)2
jl(kη0). (10.40)
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In the tight-coupling limit, we can express 
 in terms of the quadrupole. As you can
show in Exercise 10.5, 
 = 5�2/2 for tight coupling. Therefore, the polarization moments
today are

El(k) 	 15

8
�2(k, η∗)

l2

(kη0)2
jl(kη0). (10.41)

We can go one step further by noting that—in the tightly-coupled limit—the quadrupole is
proportional to the dipole (Eq. (9.36)). Therefore,

El(k) 	 − 5k

6τ ′(η∗)
�1(k, η∗)

l2

(kη0)2
jl(kη0). (10.42)

Eq. (10.42) is the expression for the polarization moments today induced by a single
plane-wave scalar perturbation assuming the tightly-coupled limit. Three features are wor-
thy of note. First, and most important, the polarization spectrum is seen to be smaller than
the anisotropy spectrum by a factor of order k/τ ′ at the time of decoupling. This is a di-
rect result of the twin facts that polarization is generated by the quadrupole moment and
the quadrupole is suppressed in the early universe due to Compton scattering. Second,
we expect there to be oscillations in the polarization power spectrum because El ∝ �1,
which undergoes acoustic oscillations. More quantitatively, we expect the polarization os-
cillations, just like the dipole, to be out of phase with the monopole �0. The peaks and
troughs in the temperature anisotropy spectrum, arising primarily from oscillations in the
monopole, should then be out of phase with the peaks and troughs in the polarization
power spectrum. Finally, there is no analogue here to the integrated Sachs–Wolfe effect
which impacts the temperature anisotropy spectrum. Polarization is not induced or mod-
ified by photons moving through changing (weak) gravitational potentials. Therefore, the
polarization spectrum today is in some sense a more pristine view of the early universe,
uncontaminated by later developments.

10.5 Polarization power spectra
Eq. (10.42) is an expression for the polarization moments from a single plane wave. The
real universe contains not just one plane wave, but a superposition of many waves, all with
differing amplitudes �P (k, n̂). The angular power spectrum of El from a superposition of
plane waves follows from the identical calculation for the temperature anisotropies; so, in
analogy to Eq. (9.72), we define

T E
l (k) ≡ El(k)

R(k)
, (10.43)

so that the polarization power spectrum becomes

CEE(l) = 2

π

∫ ∞

0
dk k2|T E

l (k)|2PR(k). (10.44)
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FIGURE 10.9 Angular power spectra of temperature and E-mode polarization, as well as their cross-correlation, for
the fiducial concordance cosmology. The polarization power spectra are smaller than those of the temperature by
roughly a factor 1/50, but less damped toward smaller scales.

We also know that

CBB(l) = 0 (10.45)

for scalar perturbations. Fig. 10.9 shows the polarization power spectrum CEE(l) from the
full numerical calculation. Also shown is CT T (l) for comparison (dotted line; scaled down
by a factor of 50).

As we expected from the tight-coupling approximation, the acoustic oscillations are
both more pronounced in CEE(l), and out of phase with CT T (l); both facts are explained
by CEE(l) being determined by the dipole of the photon distribution (recall that the
quadrupole is related to the dipole in the tight-coupling approximation), while CT T (l) is a
combination of monopole and dipole, where the monopole makes up the dominant con-
tribution. Moreover, the dipole is less affected by photon diffusion, so that the polarization
power spectrum is less damped on small scales, which can also be gleaned from the figure.

Fig. 10.9 also shows the cross-correlation between temperature and polarization, which
is obtained by combining the temperature and E-mode polarization results:

CT E(l) = 2

π

∫ ∞

0
dk k2

∣∣∣T ∗
l (k)T E

l (k)

∣∣∣ PR(k). (10.46)

Note that Eq. (10.44) and Eq. (10.46) remain valid beyond the flat-sky approximation, al-
though the calculation for �E

l (k) becomes somewhat more involved.
The anticorrelation of T and E seen for l � 200 (i.e. CT E(l) < 0) is of significance: it is

a direct consequence of the fact that the initial conditions were setup outside the hori-
zon so that only the cosine mode of the acoustic oscillations was generated (Eq. (9.26)
and Eq. (9.28)). If both sine and cosine modes were generated, then there would not be a
series of coherent peaks and troughs in the either the temperature or polarization spec-
trum (Dodelson, 2003). The acoustic oscillations are of course well-observed in the tem-
perature spectrum. However, the first acoustic peak is at � ∼ 200, corresponding to physical
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FIGURE 10.10 Upper panel: Angular cross power spectrum of temperature and E-mode polarization as measured
by the Planck experiment (points; DT E

l ≡ l(l + 1)CT E(l)T 2
0 /2π in analogy to Fig. 1.10); note that the scales of both x

and y axes change at l = 30. The solid line shows the prediction for the fiducial concordance cosmology. Notice the
negative CT E(l) in the range 30 � l � 200. Lower panel: difference between theory and measurements. From Planck
Collaboration (2018b).

scales that were within the horizon at recombination. One might come up with a viable
model that generated perturbations around the time of recombination, taking care to en-
sure that the model generated only the cosine mode. The dip in the T E spectrum though
begins at � ∼ 30, corresponding to scales that were still outside the horizon at the time of
recombination. Therefore, any model that generates perturbations inside the horizon sim-
ply would not be able to explain the nonzero CT E(�) on those scales. Observation of this
feature constitutes strong evidence for a much earlier origin of the initial perturbations,
and inflation provides a natural explanation for this. Fig. 10.10 shows that this signature is
by now impressively well measured in the observed CMB.

Both CEE(l) and CT E(l) contain valuable information about cosmological parameters.
In particular, the As–τrei degeneracy described in Sect. 9.7.2 due to the late-time scatter-
ing of CMB photons after reionization is broken by polarization measurements. Recall our
discussion in Sect. 9.7.2: on scales smaller than the horizon at the time of reionization
(when electrons began to scatter again), which corresponds to l � 100, the temperature
anisotropies � are damped by a factor e−τrei , while they are unaffected on the very largest
scales. In polarization, this late epoch of scattering in fact generates anisotropies. Again,
this works by converting the temperature quadrupole seen by the free electrons after reion-
ization into polarized emission via Compton scattering. Eq. (10.41) still applies as long as
we replace η∗ with ηrei, and η0 with η0 −ηrei, where ηrei is the conformal time when reioniza-
tion happens. Because the photons free-stream between recombination and reionization,
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the quadrupole �2(k, ηrei) at reionization is suppressed if k is inside the horizon at that
time, i.e. if k  aH(ηrei). For this reason, the polarization signal from reionization is only
significant on very large angular scales; it is visible as the bump at l < 10 in Fig. 10.10, which
is even more prominent in CEE(l). The amplitude of the reionization bump in CEE(l)

is proportional to τ 2
rei, allowing for τrei to be constrained independently of the tempera-

ture C(l).

10.6 Detecting gravitational waves
There is a fundamental difference between the scalar perturbations we have considered
in the previous sections and tensor perturbations. A scalar plane-wave perturbation has
one direction associated with it: the direction of the wavevector k. Once this direction is
specified, all photon moments depend only on the angle between the photon momen-
tum and the wavevector. If this angle is specified, there is an azimuthal symmetry about
the k̂-direction. As we have seen in Fig. 10.8, this symmetry is the reason that only the
E-mode is produced by scalar perturbations. There are two directions in a polarization
field: (i) the orientation of the polarization and (ii) the direction in which the polarization
strength is changing. For scalar perturbations, we saw in Fig. 10.3 that these directions
must be aligned (or perpendicular to each other). Intuitively, each direction looks to the
only vector it knows—k—for guidance. This alignment is the salient characteristic of the
E-mode.

The photon distribution induced by tensor perturbations is not rotationally symmet-
ric about the k-direction, a consequence of the characteristic pattern of the tensor met-
ric perturbation shown in Fig. 6.1. Instead they induce an azimuthal dependence to the
photon distribution. Recall from Eq. (6.85) derived in Exercise 6.14 that the resultant dis-
tribution varies as sin(2φ) or cos(2φ), where φ is the azimuthal angle about the k-axis. This
dependence on φ means that there is an additional direction to choose from when the po-
larization field is generated. We might expect then that the orientation of the polarization
will not necessarily be aligned with the direction of changing polarization strength. That
is, we might expect that gravitational waves will produce B-mode polarization, in addition
to E-modes. This is exactly what we will show in this section.

Before working through the algebra, we should pause to understand the importance
of the B-mode generated by tensor perturbations. Let us start with the difficulty of de-
tecting tensors through either the temperature anisotropies or the E-mode. Both scalars
and tensors contribute to the temperature and E-mode, so the only way to disentangle
them is to take advantage of differences in their spectra as a function of l. We saw in the
case of temperature anisotropies that this is a tricky game, though, because there are a
number of free cosmological parameters that can be tweaked. So even if we had perfect
knowledge of CEE(l) (without any noise; though this is clearly impossible due to cosmic
variance), we would still not be able to tell unambiguously whether tensors were present.
The B-mode is different. There is no contamination from scalar perturbations, so if we
observe a B-mode in polarization, we know that it comes from gravitational waves. In
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principle, this realization has unlimited power: no matter how small the tensor signal from
inflation (no matter how small Hinf/mPl), we can ultimately detect this signal by search-
ing for a B-mode, since there is no other component whose fluctuations could limit us. In
practice, there are contaminants due to the polarization of foreground emission (due to
dust and synchrotron radiation from the Milky Way) as well as nonlinear effects, in par-
ticular gravitational lensing (Sect. 13.3). Both of these contribute B-mode polarization.
Nonetheless, CMB B-modes will be the most sensitive probe of primordial tensor modes
for the foreseeable future.

The problem of computing the polarization pattern from a single plane-wave tensor
perturbation is identical to that treated in Sect. 10.3. To find the outgoing polarization near
the z-axis, we need to integrate over the incoming photon distribution. Really, our goal is
to show that tensor modes produce B-mode polarization. This allows us to use a trick:
Eq. (10.12) shows that, for a wavevector whose sky projection is along the x-axis, only the
B-mode generates the U polarization component. So, it suffices to show that tensor modes
in this configuration produce U via Eq. (10.20).

So let us choose the k vector as

k̂ = cosα êz + sinα êx, (10.47)

where α is the angle of k̂ with the line of sight n̂. For Eq. (10.20) we need to find the angu-
lar dependence of �T(n̂′

). This is the topic of Exercise 6.14 (in the case you have not gone
through this exercise, we highly recommend that you do). There, you show that, for k ly-
ing along the z-axis, the angular dependence of the temperature anisotropy induced by a
tensor perturbation is sin2 θ ′ cos(2φ′) (for h+) or sin2 θ ′ sin(2φ′) (for h×). To be concrete, let
us focus on h×; you can perform the same derivation for h+ in Exercise 10.6. First, we can
reexpress this angular dependence in terms of the unit vector n̂′ describing the direction
of the incident photon:

�T(n̂′
) ∝ sin2 θ ′ sin(2φ′) = 2 sin2 θ ′ sinφ′ cosφ′

= 2n̂′
xn̂

′
y, (10.48)

where n̂′
x,y,z denote the components of the unit vector. Now we need to generalize this to a

wavevector given by Eq. (10.47). For this, we need to rotate the coordinate system around
the y-axis by −α. This leaves n̂′

y unchanged, while n̂′
x changes according to

n̂′
x → cosα n̂′

x − sinα n̂′
z. (10.49)

Now we are ready to plug the angular dependence into Eq. (10.20). The second term in
Eq. (10.49) vanishes under the angular integrals, so we write only the first term, which, in
terms of angles θ ′, φ′, is in fact the same as before the rotation: ∝ n̂′

xn̂
′
y = sin2 θ ′ sin(2φ′). This
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FIGURE 10.11 B-mode CMB polarization anisotropy spectrum generated by tensor modes (or gravitational waves,
GW), for two values of the tensor-to-scalar ratio r = 0.001, and r = 0.05, as labeled. For currently allowed values of
r, the B-mode spectrum is even much smaller than the E-mode polarization. On small scales, B-mode polarization
is generated by the gravitational lensing effect due to intervening structure acting on the primary CMB E-mode
polarization. The experimental measurements, shown as points with error bars, have clearly detected this expected
lensing signal. There also is an excess above this signal on large scales, which has been shown to be due to polarized
foreground dust emission from the Milky Way. From Abazajian et al. (2016).

yields

U(êz) ∝ h× cosα

∫ 1

−1
d cos θ ′ sin4 θ ′

∫ 2π

0
dφ′ sin2(2φ′)

= h× cosα

(
16

15

) (π

2

)
. (10.50)

There we have it: a tensor mode which, projected on the sky, lies along the x-axis, produces
U polarization, which means it sources B-modes. To understand this a bit more intuitively,
we go back to Fig. 10.8, whose middle panel shows the quadrupole of the temperature for
a scalar perturbation. A tensor mode generates a quadrupole pattern that is rotated by 45◦
around the z-axis coming out of the page (see the pattern shown for h× in Fig. 6.1, which
is of essentially the form given in Eq. (10.48)); notice that this pattern only appears if k̂ has
a nonzero z-component (α �= π/2), i.e. if it is not perfectly in the plane of the sky, which
explains the cosα factor in Eq. (10.50). This temperature quadrupole pattern means the
polarization pattern shown in the bottom panel of Fig. 10.8 is likewise rotated by 45◦. The
comparison with Fig. 10.3 makes it plain that this is a B-mode.

Fig. 10.11 shows the B-mode power spectrum generated by inflationary gravitational
waves, for two different values of the scalar-to-tensor ratio r (Eq. (7.103); in fact, at fixed As ,
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CBB(l) is linearly proportional to r). The signal that peaks around l = 100 comes from the
recombination epoch which we have studied so far. In addition, there is another contribu-
tion on very large scales, peaking at l < 10, which is induced by the scattering off electrons
after reionization. As we discussed, a similar feature, but due to scalar perturbations, ap-
pears in the E-mode power spectrum, allowing us to constrain τrei. Current upper limits,
roughly of order r < 0.05, already constrain CBB(l) to be significantly smaller even than
the E-mode polarization spectrum. Since there is no cosmic variance if there is no sig-
nal, the upper limits are controlled by the experimental sensitivity as well as removal of
the foregrounds, so that future, more ambitious experiments can push down this limit fur-
ther.

This is not quite the end of the story, however. As we will learn in Sect. 13.3, gravitational
lensing acts on the CMB as well, by shuffling the observed locations of CMB hot and cold
spots to slightly different positions. Shuffling the positions of a pure E-mode polarization
pattern also generates B-modes. These “lensing B-modes” provide a guaranteed B-mode
polarization power spectrum which has already been detected. Fortunately, as shown in
Fig. 10.11, the angular power spectrum of these B-modes not only is of small amplitude
compared to the linear scalar-induced CMB perturbations, but it also has a somewhat dif-
ferent shape from that of the primordial, tensor-mode-generated B-modes. We can then
still search for the latter at least on large angular scales.

10.7 Summary
First, it is time to congratulate ourselves: we have successfully conquered the most tech-
nical derivation of this book! Fortunately, CMB polarization can be tackled largely with
the same tools we have used throughout the book so far, namely the Boltzmann equation,
aided by the simplification afforded by working on small angular scales (flat-sky approxi-
mation).

The power of CMB polarization stems from the fact that, being described by a symmet-
ric, trace-free 2 × 2 matrix on the sky, it can be decomposed into two independent degrees
of freedom: an E- (or gradient-) mode and a B- (curl-) mode, named after the analogy
of their pattern with electrostatic and magnetic fields (see Fig. 10.4). Linear scalar pertur-
bations produce only E-modes. We have shown this to be the case for CMB polarization,
which is induced by Compton scattering of a local quadrupole temperature field. We will
find the same to be true for galaxy shape correlations in Ch. 13, which will make abundant
use of the results of Sect. 10.1.

The E-mode polarization of the CMB contains valuable cosmological information, and
has been measured very precisely by now (Fig. 10.10). The negative cross-correlation with
the temperature on large scales is another robust prediction of the inflationary scenario
that is now confirmed. Further, the E-mode polarization at the lowest l directly probes the
late-time scattering of CMB photons after reionization, and can thus break the degeneracy
between the amplitude of scalar perturbations and the optical depth τrei due to late-time
scattering that is present in the temperature alone.
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B-mode polarization on the other hand can be used to search for non-scalar perturba-
tions. As we have learned in Ch. 7, there is strong motivation to look for such perturbations,
since inflation produces a background of gravitational waves. We showed in Sect. 10.6 that
these tensor modes indeed produce B-mode polarization in the CMB. B-modes in fact
are the currently most promising probe of this smoking-gun signature of inflation, with a
corresponding level of experimental effort devoted to searching for them.

Exercises
10.1 Use Eq. (10.2) to derive how I , Q and U transform under a rotation of the coordinate

system by an angle α around the line of sight êz. Now do the same for E and B, as-
suming a single plane wave with wavevector l. Note that you will have to transform l

as well. Finally, consider the transformation of all quantities under parity. In the 2D
case, you can think of this as flipping only the x-axis.

10.2 As the wavevector k moves out of the x–z plane, show that the Q-polarization (for
outgoing radiation in the z-direction) changes as cos(2φk). To do this, first com-
pute k̂ · n̂′, and then integrate P2(k̂ · n̂′

) over solid angle, with the weighting factor
sin2 θ ′ cos(2φ′) derived in Eq. (10.19).

10.3 This exercise focuses on the U-component of polarization from scalar perturbations.
(a) We showed that the Q-component of polarization from unpolarized incident ra-

diation is given by Eq. (10.19), which stems from Eq. (10.15). The Q-component
thus depends on the difference between |ε̂i · êx |2 and |ε̂i · êy |2. For the U-
component, êx and êy here must be replaced by unit vectors rotated 45◦, i.e.,
(êx + êy)/

√
2 and (êx − êy)/

√
2. With this replacement, derive Eq. (10.20).

(b) Show that a plane-wave perturbation with wavevector k lying in the x–z plane
does not produce any U-polarization in the outgoing z-direction.

(c) For the most general orientation of the wavevector,

k̂ = (sin θ cosφ, sin θ sinφ, cos θ), (10.51)

show that U-polarization is given by Eq. (10.28).
10.4 Draw the polarization patterns arising from a plane-wave scalar perturbation with

(a) θk = π/8, φk = π/8; (b) θk = 3π/4, φk = π/4; (c) θk = 3π/4, φk = 0; and (d) θk =
3π/2, φk = 0. In each case, show that the direction of polarization is aligned with (or
perpendicular to) the direction in which the polarization strength is changing.

10.5 Find an expression for 
 ≡ �2 + �P 2 + �P 0 in the tight-coupling limit.
(a) When τ ′ is very large, the terms multiplying it on the right-hand side of

Eq. (10.32) must cancel. Write down this equality for �P (μ) in terms of the mo-
ments, �2, �P 2, and �P 0.

(b) Expand �P (μ) in terms of Legendre polynomials, keeping only the monopole
and the quadrupole. Then equate the coefficients of P0 and P2.
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(c) This leads to two equations for three unknowns. Show that solving for the two
polarization moments in terms of the temperature quadrupole gives �P 0 =
5�2/4 and �P 2 = �2/4.

(d) Use the results of (c) to determine 
 in terms of �2.
10.6 In the text we proved that tensor modes generate B-mode polarization by studying

the tensor-mode component h×. Repeat the derivation for the other component h+,
starting from Eq. (10.47). Can you make sense of your results? (hint: study the dis-
cussion after Eq. (10.50) and compare the two component patterns in Fig. 6.1.)



11
Probes of structure: tracers

In the previous two chapters, we saw that a wealth of information can be extracted from
the angular power spectrum C(l) of the CMB temperature, as well as those of the polariza-
tion. On the other hand, Ch. 8 supplied us with a similarly precise prediction for the linear
matter power spectrum PL(k, z), and showed that there is rich information in PL(k, z) as
well: in particular on the Hubble constant, dark energy, and the mass of neutrinos. Un-
like the case for the CMB, however, we do not have a direct way of measuring the matter
power spectrum; after all, the bulk of matter is in form of dark matter, and even much of
the baryonic matter is not readily observable (e.g., dilute hot gas). However, there are many
observables that indirectly probe the matter distribution. In this chapter, we will cover per-
haps the most important one, galaxy clustering, which uses galaxies (more generally, any
astrophysical objects) as tracers of the large-scale matter distribution. We will also cover
another tracer that uses the CMB as a backlight. In later chapters, we will learn about fur-
ther important probes, including galaxy clusters and gravitational lensing.

The most direct measurement of the galaxy density field is supplied by galaxy redshift
surveys, wherein the angular positions and the redshifts (which are a measure of radial
distance) of galaxies are recorded. We thus have a 3D position for each galaxy, which al-
lows us to measure their three-dimensional statistics such as the galaxy power spectrum
Pg,obs(k). There are, however, a number of problems with the interpretation of the galaxy
power spectrum as measured from redshift surveys. First, there is the problem of bias, the
fact that galaxy clustering is different from that of matter. Second, the galaxy redshifts con-
tain not only the cosmological redshift, which is simply a function of their distance, but
also a Doppler shift due to the peculiar velocities of galaxies. Recall that a galaxy’s redshift
is determined solely by the Hubble expansion (and hence redshift is a perfect indicator of
distance) only if the galaxy is stationary on the comoving grid. Most galaxies are not sta-
tionary so have nonnegligible peculiar velocities. These velocities contribute to a galaxy’s
observed redshift via the Doppler effect. Thus, even an accurate measurement of a galaxy’s
redshift does not translate into an unambiguous measurement of its radial distance away
from us. Moreover, galaxy velocities are not random, but correlate with the matter density
field itself. This leads to modifications of galaxy statistics known as redshift-space distor-
tions (RSDs).

However, at first order, neither bias nor RSD change the shape of the large-scale clus-
tering of galaxies, a fact that follows from simplifying assumptions on bias and galaxy
velocities. In this chapter, we will just assert these assumptions; we will understand why
they hold in Ch. 12. This fact allows us to use the shape of the galaxy power spectrum to
constrain the expansion history, by using the baryon acoustic oscillation (BAO) feature in
the matter power spectrum. This makes BAO one of the major probes of dark energy.
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The apparent nuisance of RSD also has a virtue: by measuring galaxy velocities through
their Doppler-induced statistical effect on the galaxy power spectrum, we can measure the
rate at which structure grows. This is another probe of dark energy, and in fact gravity.

While galaxy redshift surveys are rich in information, they are also expensive, due to the
simple fact that obtaining redshifts is time consuming: it is much easier to get the angular
positions of galaxies than it is to also measure redshifts. To obtain the redshift, one has to
take a spectrum of each galaxy, which requires a significantly larger number of photons
than are necessary for imaging the galaxy. Photometric surveys, which merely take images
of parts of the sky, compensate for the lack of radial information by observing many more
galaxies. Moreover, surveys focused on measuring gravitational lensing also yield the an-
gular positions of galaxies as a byproduct. Clearly, then, one skill we must acquire is the
ability to make predictions about the angular galaxy power spectrum Cg(l). In Sect. 11.2
we will see that Cg(l) is an integral over the 3D galaxy power spectrum.

A similar integral, but over the 3D power spectrum of pressure perturbations in the ion-
ized gas, is the expression we will derive for a different observable in Sect. 11.3. In the late
universe, the temperature of the ionized gas is far hotter than that of the CMB. Scattering of
the CMB off these hot electrons tends to shift the CMB photons to higher energies, leading
to a characteristic distortion of the CMB black-body spectrum. This so-called Sunyaev–
Zel’dovich (SZ) signal can be isolated from the primordial CMB, and hence be used for an
integral measurement of pressure in the ionized universe, as well as to search for massive
galaxy clusters.

11.1 Galaxy clustering
Fig. 11.1 shows the positions of galaxies in a slice through the volume mapped by the Sloan
Digital Sky Survey (SDSS). In a redshift survey such as this, which contains close to a mil-
lion galaxies in total, what statistic can we compute that can be compared with theory?
Similar to the case of the CMB, the simplest statistic is the now three-dimensional power
spectrum Pg,obs(k).

First let us introduce some notation. Fig. 11.2 shows the geometry: a given galaxy is at
a comoving distance χ(z) (Eq. (2.34)) from us. Therefore, the three-dimensional position
vector x has components

xobs(z, θ,φ) = χ(z) n̂(θ,φ); n̂ = xobs

|xobs| . (11.1)

The unit vector n̂ is in one-to-one correspondence with the galaxy’s position on the sky,
which in turn is specified by the two angles θ , φ. Moreover, in an unperturbed universe, the
distance χ of the galaxy is directly related to the observed redshift z by χ(z) (see Sect. 2.2).
In order to compute this function, we need to assume an expansion history for the uni-
verse, which is part of what we want to measure. In an actual survey analysis, one typically
assumes a fiducial cosmology with distance-redshift relation χfid(z), which in general dif-
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FIGURE 11.1 The distribution of galaxies measured in the SDSS survey (more precisely, those within a slice of ±3 deg
of the celestial equator). The colors denote different galaxy samples: magnitude-limited main sample (black, as
shown in Fig. 1.8) and luminous red galaxy sample (LRG, red (light gray in print version)). Notice that the LRG sample
covers a much greater volume, since it consists of luminous galaxies observable to larger distances. Image Credit:
Michael Blanton and the SDSS Collaboration.

fers from the one of the real universe:

χfid(z) = χ(z) + δχ(z). (11.2)

A second problem with Eq. (11.1) is that |xobs| no longer corresponds to the true distance
of the galaxy if the galaxy is not at rest with respect to the background universe. This is
simply due to the fact that the observed redshift of a galaxy is given by

1 + z = 1

aem

[
1 + u‖

]
, u‖ = ug · n̂, (11.3)

where aem is the scale factor at which the light from the galaxy was emitted. That is, the
factor 1/aem is the cosmological redshift. The second term is the Doppler shift due to the
peculiar velocity ug of the galaxy, at linear order in ug. Notice that 1/aem multiplies both
the cosmological and Doppler term: that is, the fractional effect of a given peculiar veloc-
ity on the redshift is independent of how far away the galaxy is. Here, we have assumed
that the velocities of galaxies are much smaller than the speed of light (see the discussion
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FIGURE 11.2 Sketch illustrating the complications in measuring the 3D galaxy density field. Galaxies are selected
within a narrow redshift slice (solid arcs) centered on z̄ (dotted arc). A galaxy is observed at a position n̂ in the sky,
with redshift z. We assign it the apparent position xobs, which differs from the true position x due to two reasons
(see Eq. (11.5)): the distance-redshift relation assumed is not the true one, and the redshift includes a Doppler
contribution due to the galaxy velocity along the line of sight, u‖.

in Sect. 12.1), allowing us to stop at linear order in ug. In the following, we set the galaxy
velocity to be equal to that of matter, ug = um. We will see in Sect. 12.6 that this is indeed
the case on large scales. Eq. (11.3) further neglects the Sachs–Wolfe and integrated-Sachs–
Wolfe contributions to the redshift which are much smaller, and become important only
on extremely large scales.

If um = 0, and the fiducial cosmology happens to be the true one, then our distance
estimate |x| = χ(z) is accurate. We can compute the error made in Eq. (11.1):

�xRSD = ∂xobs

∂u‖

∣∣∣∣
u‖=0

u‖ = 1

aH
u‖n̂ (11.4)

where the subscript RSD identifies this effect as due to redshift-space distortion. Because
each galaxy is shifted along its line of sight, �xobs is proportional to n̂. In other words, the
observed (angular) position on the sky is unchanged. The sign in Eq. (11.4) is also clear:
u‖ > 0 means that the galaxy is moving away from us, leading to an additional Doppler
redshift, and hence an increase in the distance. Combining the effect of the wrong assumed
cosmology, Eq. (11.2), with Eq. (11.4), and working to linear order in both δχ and u‖, we
obtain

xobs = x +
(

δχ(z) + 1

aH
u‖(x)

)
n̂, (11.5)

where x is the true three-dimensional position of the galaxy (i.e. the one we would observe
in the absence of velocities and given knowledge of the true expansion history). As we will
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see, this shift in the observed coordinate from the true position of the galaxy has important
implications for observations of galaxy clustering. While it will make our life in interpret-
ing galaxy statistics a little more difficult, there is rich cosmological information in both
sources of the coordinate shift. So it will be worth it.

11.1.1 Galaxy statistics

Suppose we measure the power spectrum in terms of the observed coordinates xobs

(Eq. (11.5)). How is this distorted power spectrum related to the underlying “true” spec-
trum of the galaxies? The first studies of this problem go back to the 1970s. Here, we will
follow the derivation of the most well-known paper on the topic (Kaiser, 1987), working
within the context of linear theory. While Kaiser considered only RSD, we will also include
the position shift due to the incorrect cosmology, since it allows for a unified derivation of
all effects entering the observed galaxy power spectrum.

The starting point is the realization that the number of galaxies in a particular region
is the same, whether we use the observed position xobs or the true coordinate x. Imagine
dividing the survey volume into many volume elements (voxels). We can count the galaxies
in each volume element and use that to construct the galaxy density field ng,obs(xobs); we
could do the same in terms of the true galaxy positions, if we had access to them, yielding
ng(x). Since the number of galaxies is the same in each case, we have

ng,obs(xobs)d
3xobs = ng(x)d3x (11.6)

where ng is the density of galaxies at x in real space, and ng,obs is the density in redshift
space. The infinitesimal volume element around a point in observed coordinates is

d3xobs = x2
obsdxobsd�, (11.7)

where xobs ≡ |xobs|, while the volume around a point in real space is

d3x = x2dxd�. (11.8)

The angular volume elements d� are identical, so

ng,obs(xobs) = ng(x)J (11.9)

where the Jacobian J is given by

J ≡
∣∣∣∣ d3x

d3xobs

∣∣∣∣ =
∣∣∣∣ dx

dxobs

∣∣∣∣ x2

x2
obs

. (11.10)

With this and Eq. (11.5), the Jacobian is calculated at linear order in both δχ and u‖ to be

J =
(

1 + δχ

x
+ u‖

aHx

)−2 ∣∣∣∣1 + d

dx
δχ + 1

aH

∂

∂x
u‖

∣∣∣∣
−1

. (11.11)
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Note the key difference between δχ and u‖: while the former depends only on redshift
(for which we can use x as a proxy), u‖ fluctuates as a function of the three-dimensional
position. To compute the derivative of δχ , we use

d

dx
δχ = dz

dx

dδχ

dz
= Hδ(H−1) = −H−1δH, (11.12)

where δH(z) = H(z) − Hfid(z) is the difference between the fiducial and true Hubble rates,
and we have used dz/dx = dz/dχ = H multiple times. Therefore, Eq. (11.11) becomes

J =
(

1 + δχ

x
+ u‖

aHx

)−2 ∣∣∣∣1 − H−1δH + 1

aH

∂

∂x
u‖

∣∣∣∣
−1

�
(

1 − 2
δχ

x
+ H−1δH − 2

u‖
aHx

)(
1 − 1

aH

∂

∂x
u‖

)
(11.13)

where the second line discards some second-order terms and moves the δH term into the
first parentheses. To see why, consider this term and the δχ before it. These depend only
on |x| via the redshift z. If we imagine looking at galaxies in a fairly narrow redshift slice
around z̄, as is usually done to avoid an evolving galaxy population, then we can set x to
χ̄ = χ(z̄), the distance to the mean z̄ of this redshift slice. Further, we can evaluate δχ , δH ,
and H at z̄. With this, these terms simply become a constant prefactor.

Next, consider the u‖/aHx term. As Kaiser realized, this contribution is small in most
practical cases. u‖/aH is the apparent displacement of galaxies due to their line-of-sight
velocity; using linear theory and plugging in numbers, one finds that this displacement is
typically � 10h−1 Mpc (Exercise 11.3). On the other hand, x ∼ χ̄ is at least many hundreds
of Mpc in state-of-the-art galaxy surveys. Thus, this term is small and can be neglected.
The same is not true of the term involving ∂u‖/∂x: since the velocity field fluctuates, this
term is actually quite large. How large precisely, we will see in a minute. We finally arrive at
our simplified Jacobian:

J � J̄

(
1 − 1

aH

∂

∂x
u‖

)
; J̄ = 1 − 2

δχ(z̄)

χ̄
+ H−1(z̄)δH(z̄). (11.14)

The number densities in true and observed coordinates are ng = n̄g(1 + δg) and ng,obs =
n̄g(1 + δg,obs), respectively, with n̄g the average number density. In practice, the mean n̄g is
determined by counting all galaxies in the redshift slice and dividing by its volume. This
ensures that δg,obs, averaged over the survey, has vanishing mean as desired. In light of
Eq. (11.9), and expanding to first order in perturbations, the observed galaxy overdensity
is

1 + δg,obs(xobs) = J̄

[
1 + δg(x[xobs]) − 1

aH

∂

∂x
u‖(x[xobs])

]
. (11.15)

Note that the galaxy density and velocity on the right-hand side are evaluated at the true
position. In the following two sections, we will deal separately with the effect of velocities,
i.e. RSD, and the effect of the incorrect cosmology.
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FIGURE 11.3 Redshift-space distortions, in the linear/large-scale (left) and nonlinear/small-scale variants (right), both
considering the case of a central overdensity denoted by the filled circle. The observer is assumed to be far away
below the figure, so that the line-of-sight direction n̂ is vertical. In each case, a contour of constant density (dashed
lines), which is circular in real space, is distorted in redshift space (solid lines) so that it looks asymmetric. Wide
arrows indicate the direction of the velocity flow, while arrows with dashed lines indicate the displacement due to
the line-of-sight velocity. In the nonlinear case, as the absolute scales are smaller, a point on the “far side” (top) of
the overdensity is mapped onto a point on the opposite side.

11.1.2 Redshift-space distortions

Before we begin computing the galaxy power spectrum, let us think about what we qualita-
tively expect the effect of peculiar velocities on galaxy clustering to be. Fig. 11.3 illustrates
the distortions that appear in redshift space. The left panel shows the large-scale case we
are mostly interested in here. A large-scale overdense region, towards which surround-
ing galaxies are falling, appears squashed in redshift space: the galaxies closest to us are
moving toward the center of the overdense region and hence away from us, so they ap-
pear farther from us (and closer to the center of the overdense region) than they actually
are. Similarly, galaxies on the “other side” of the perturbation are moving toward us, so
they appear closer to us than they actually are. The overall effect is to induce an apparent
anisotropy in an otherwise circular overdensity. Since moving galaxies towards each other
increases their number density (the effect captured by the Jacobian introduced in the pre-
vious section), we actually expect the clustering in redshift space to be stronger than in real
space.

As we move to smaller, nonlinear scales, the nature of the redshift-space distortion
changes. Velocities on small scales are typically a bit larger, but more importantly, the
displacement into redshift space, u‖/aH , becomes much larger compared to the distance
separating the two galaxies which we are correlating, since clustering on small scales by
definition means that we are considering pairs of galaxies that are closer together. The re-
sult is shown in the right panel of Fig. 11.3. The observed contour of constant density is
very elongated along the line of sight. Moreover, the true and observed positions of the
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galaxy have swapped places. This means that the quadrupole moment of the clustering
has the opposite sign than it does in the linear case.

Notice that our assumption that we are looking at a small distortion of the true galaxy
position cannot correctly describe the case shown in the right panel of Fig. 11.3. It is clear
then that accounting for redshift-space distortions will be a tricky business, requiring care-
ful treatment not only of linear overdensities, but also of the much more complicated
effects of nonlinearities on smaller scales. We will content ourselves with a quantitative
treatment of linear distortions in this chapter, since this applies on large scales and is the
starting point for all further work.

Now let us move on to compute the power spectrum of galaxies from Eq. (11.15). Ne-
glecting δχ and δH , we can set J̄ to unity. We also need relations of δg and um to the matter
density δ. Let us begin with um, which lies along the k̂-direction. At late times (z � 10),
baryons and CDM move together (ub = uc) and their overdensities are equal (δb = δc). We
can then use the continuity equation (8.12) for both, i.e. for the total matter density:

δm
′ + ik · um = −3	′ (11.16)

where primes denote derivatives with respect to η. Since we are working on sub-horizon
scales, we can set the right-hand side to zero, as it is suppressed by (aH/k)2 compared
to the terms on the left-hand side. Using the fact that the time dependence of the linear
density field is given by the growth factor D+(η), we can then solve for the velocity in terms
of the density:

um(k, η) = ik

k2

D+′

D+
δ(k, η) = aHf

ik

k2
δ(k, η) , (11.17)

where the linear growth rate f = d lnD+/d lna is defined in Eq. (8.78). The growth rate is
close to unity for a �CDM universe (and exactly 1 for a flat matter-dominated cosmology).
There are two important points about the relation between the density and the velocity
in Eq. (11.17) that should be emphasized. First, notice that the velocity in Fourier space is
proportional to the wavevector k; that is, it is a longitudinal vector. Physically, this corre-
sponds to the absence of a curl component of the velocity. Indeed, we will see in Ch. 12 that
the curl component decays rapidly (similar to the vector modes discussed in Ch. 6), so that
this is an accurate assumption. The second point about the relation Eq. (11.17) between
the velocity and the density is that it holds only in linear theory, and hence on very large
scales only; we will introduce methods to go beyond this assumption in Ch. 12.

Next, in order to relate δg to δm, we assume the linear bias relation

δg(x, η) = b1(η)δm(x, η). (11.18)

Because galaxies are complicated, highly nonlinear tracers of the large-scale structure,
their density perturbation is not the same as that of matter. Why should it be simply
linearly related though? The answer is that this is a guaranteed result at linear order in
perturbations and on large scales. We will justify this in more rigor in Sect. 12.6. The bias
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parameter b1 depends sensitively on the galaxy sample considered and is in general red-
shift dependent. Finally, because galaxies are discrete tracers, the galaxy density field has
noise. We will include this at the very end, since it is independent of RSD.

Making use of these results and Eq. (11.15) (with J̄ = 1), we see that the overdensity in
redshift space is actually a sum of the overdensity in real space and a correction due to
peculiar velocity,

δg,RSD(x) = b1δm(x) − ∂

∂x

[
um(x) · x̂

aH

]
, (11.19)

where we use the subscript RSD since RSD is only one of two effects we need to include to
get to δg,obs. Here and in the following, we suppress the time argument for clarity. We also
replaced xobs with x, since these positions differ by a term that is already a perturbation,
and expanding the argument of δg and um would lead to higher-order terms, so we can
neglect the distinction between x and xobs. For clarity, we then simply use x. Further, aH

is always evaluated at the mean redshift z̄ and thus is effectively a constant (this is very
accurate for a narrow redshift slice).

We now introduce the distant-observer approximation, which is essentially a flat-sky
approximation. The idea is that we can treat the direction vector n̂ = x/x as fixed, neglect-
ing variations from galaxy to galaxy. This is justified if the angular scales involved are small
(cf. Fig. 11.2). That is, as long as the galaxies are relatively close to each other in the (x1, x2)

plane, we can approximate x̂ ·um → êz ·um, where êz is a radial vector pointing to the center
of the sky area covered by the survey of interest (and we choose this to be the z-axis).

In the distant-observer approximation, we can directly compute the Fourier transform
of the redshift-space overdensity

δg,RSD(k) =
∫

d3x e−ik·x
[
b1δm(x) − ∂

∂x

[
um(x) · êz

aH

]]

= b1δm(k) − if

∫
d3x e−ik·x ∂

∂x

[∫
d3k′

(2π)3
eik′·xδm(k′) k′

k′2 · êz

]
, (11.20)

the first equality following from our Fourier convention and Eq. (11.19) and the second
from Eq. (11.17). The derivative with respect to x acts on the exponential, bringing down a
factor of ik′ · x̂, which we again set to ik′ · êz, so

δg,RSD(k) = b1δm(k) + f

∫
d3k′

(2π)3
δm(k′)

(
k̂

′ · êz

)2
∫

d3xei(k′−k)·x . (11.21)

The x integral yields (2π)3δ
(3)
D (k′ − k). Therefore, in the distant-observer approximation,

δg,RSD(k) =
[
b1 + f μ2

k

]
δm(k). (11.22)

Here μk is defined to be êz · k̂, the cosine of the angle between the line of sight and the
wavevector k̂. Eq. (11.22) quantifies what we have anticipated about (large-scale) redshift-
space distortions. First of all, since f μ2

k ≥ 0, the apparent overdensity in redshift space
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is larger than in real space, where it would be simply b1δm(k). This can be gleaned from
Fig. 11.3: if equal-density contours are squashed, then galaxies are moved closer together
and hence their density is increased around an overdensity. The opposite happens around
underdensities. Both effects act to increase the apparent galaxy density contrast. The sec-
ond feature of Eq. (11.22) worth noting is that the enhancement is for perturbations with
wavevector parallel to the line of sight. A perturbation with k perpendicular to the line
of sight—one in which the density along the line of sight is constant—experiences no
redshift-space distortion.

Correspondingly, the galaxy power spectrum in redshift space depends not only on the
magnitude of k but also on its direction, which we are parameterizing with μk. It follows
from Eq. (11.22) that

Pg,RSD(k,μk, z̄) = PL(k, z̄)
[
b1 + f μ2

k

]2 + PN, (11.23)

where PL(k, z) is the linear matter power spectrum studied in Ch. 8, and both b1 and f

are understood to be evaluated at the mean redshift z̄. We have finally allowed for a noise
term in the galaxy power spectrum, which we assume to be “white,” i.e. to be a scale-
independent constant PN . This holds, for example, if the galaxies are Poisson-sampled
from an underlying continuous field; then, we have (see also Exercise 14.8 in Ch. 14)

PN = 1

n̄g
. (11.24)

While simple Poisson sampling is not a realistic assumption for actual galaxies for a whole
host of reasons, a scale-independent noise PN is nevertheless expected at low k.

Now, if we measure Pg,RSD(k,μk), we can vary both k and μk, allowing us to disentangle
the contributions multiplied by b1 and f . Technically, this is often done by performing a
multipole decomposition of Pg,RSD(k,μk) with respect to μk, see Exercise 11.4. Fig. 11.4
shows the recent measurements of the galaxy power spectrum multipoles from the BOSS
survey (part of SDSS-III). The measurements show strikingly small error bars and good
agreement with the model, which consists of the linear prediction derived here as well
as nonlinear corrections which we discuss in Ch. 12. Notice that the error bars increase
toward low k (large scales). The reason is the same sample variance that leads to larger
errors for the low-l CMB multipoles: only a finite number of Fourier modes are probed in
a finite survey volume Vsurvey. The number is approximately Nk = 2πk2�kVsurvey/(2π)3. As
long as Vsurvey does not contain the entire observable universe, we can thus measure more
modes by performing larger and deeper galaxy surveys (i.e. by devoting more observing
time and larger telescopes to the task).

Do our results mean that we can measure both the galaxy bias and the growth rate?
Not quite: in general, we do not know the matter power spectrum PL(k, z̄). In particular,
its amplitude is not directly measurable. But all is not lost: if we denote the amplitude of
the matter power spectrum with σ8 as defined in Exercise 8.13, then the three-dimensional
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FIGURE 11.4 Three-dimensional galaxy power spectrum of the CMASS sample observed by the BOSS survey. Shown
are the monopole and quadrupole moments with respect to the cosine μk of the wavevector with the line of sight.
The bottom panel shows the ratio of the data to the best-fitting model, which includes Eq. (11.23) as well as nonlin-
ear corrections at higher k. From Gil-Marín et al. (2016).

galaxy power spectrum allows us to measure b1σ8 and f σ8. The former quantity is galaxy-
dependent and more or less a nuisance parameter for most cosmologists. f σ8 on the other
hand contains valuable information.

Constraints on f σ8 are summarized in Fig. 11.5. As we have seen in Sect. 8.5, the growth
factor and hence growth rate are a direct probe of dark energy. The faster the expansion
due to dark energy, the lower the growth rate. Conversely, should gravity be in fact not de-
scribed by general relativity, we expect a larger growth rate, since modifications to gravity
typically increase the strength of gravity. An especially important test thus is to compare
the measured growth rate with that expected for the measured expansion rate; general
relativity predicts a unique relation regardless of the type of dark energy (Eq. (8.78)), while
modified gravity changes this relation. Remarkably, the data do support the Euclidean con-
cordance cosmology with �� � 0.7 (solid line): the high-redshift points show the trend
expected for a matter-dominated universe, while there is evidence for a suppression rela-
tive to that trend, indeed a turnover, at redshifts z � 0.5.

11.1.3 BAO and Alcock–Paczyński

Let us now turn to the effect of a “wrong cosmology:” That is, we use a different distance-
redshift relation to assign the 3D galaxy positions via Eq. (11.1) than the one of the true
universe. Unless some higher power tells us the truth about our universe, this will certainly
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FIGURE 11.5 Constraints on the parameter f σ8 placed from redshift-space distortions measured in different surveys,
as well as direct measurements of velocities (the two lowest-z data points). Direct measurements use distance indi-
cators such as supernovae to estimate the peculiar velocity from the observed redshift and estimated distance, via
Eq. (11.4). From Planck Collaboration (2018b).

FIGURE 11.6 Illustration of the Alcock–Pacyński distortion due to a different cosmology used in the assignment of
3D galaxy positions. To lowest order, all galaxies are displaced along the line of sight (dashed arrows) from the
true positions (dashed circle) by the same amount δχ(z̄). However, since δχ in general evolves with redshift, the
displacement differs slightly between galaxies that are more nearby (zlow; bottom half) and those further away
(zhigh; top half). The result is the solid ellipse which indicates the apparent locus of the galaxies.

be the case! Fortunately, the observed galaxy power spectrum can help tell us what the true
distance-redshift relation is.

This is in fact somewhat easier to derive than redshift-space distortions; we have al-
ready done most of the work. The basic effect is illustrated in Fig. 11.6. The galaxies are
displaced from their true position by an amount δχ(z). At lowest order, this is the same
for all galaxies, but since the distance-redshift relation evolves differently in different cos-
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mologies, the displacement is different for galaxies at different cosmological redshifts,
leading to a distortion of the dashed circle in Fig. 11.6 into an ellipse.

As observers, we turn the observed galaxy position (θ,φ) and redshift z into an “ob-
served” 3D position xobs. We do this by using a fiducial distance-redshift relation χfid(z),
and by defining a convenient origin of the 3D coordinate system. Let us again make use of
the flat-sky approximation, so that the position on the sky becomes a 2D vector θ , and we
choose the origin such that

xobs = 0 ⇔ θ = 0, z = z̄, (11.25)

where θ = 0 corresponds to a point on the sky near the center of the survey footprint, and
z̄ is the central value of the redshift slice considered. Now, the transverse components x1

obs,
x2

obs we assign to the galaxy are

(x1
obs, x

2
obs) = χfid(z) × (θ1, θ2) , (11.26)

while the components we should assign in the true cosmology are

(x1, x2) = χ(z) × (θ1, θ2) =
[

1 − δχ(z)

χfid(z)

]
(x1

obs, x
2
obs) . (11.27)

The second equality is obtained by subtracting Eq. (11.26) and through Eq. (11.2).
Throughout we will work to linear order in δχ . Eq. (11.27) comes as no surprise: if δχ > 0,
then we assign galaxies a larger comoving distance than they actually have. Correspond-
ingly, the true galaxy position is closer to the origin in the transverse directions (|x1|, |x2|
are smaller) than the assigned position. The opposite holds if δχ < 0.

The line-of-sight component of the position x3
obs is determined by the redshift. Since

we have chosen z = z̄ to correspond to x3 = 0, the observed coordinate is

x3
obs(z) = χfid(z) − χfid(z̄) � 1

Hfid(z̄)
(z − z̄), (11.28)

where we have expanded to linear order in z− z̄, under the assumption that we are consid-
ering a narrow redshift slice so that this difference is always small, and used dχ/dz = 1/H .
The same relation holds for the line-of-sight component x3(z) that we should assign to the
galaxy:

x3(z) � 1

H(z̄)
(z − z̄) = Hfid(z̄)

H(z̄)
x3

obs. (11.29)

Using δH(z) = H(z) − Hfid(z), and working to linear order in δH , we can rewrite the second
equality as

x3(z) =
[

1 − δH(z̄)

Hfid(z̄)

]
x3

obs. (11.30)
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Since the zero-point of the 3-axis is defined by a fixed redshift z̄, the displacement be-
tween true and assigned positions is only induced by a difference in how χ(z) and χfid(z)

vary around z̄; that is, the relevant quantity is the slope dχ/dz of the distance-redshift
relation at z̄, which is the inverse of the Hubble parameter H(z̄). We see that the line-of-
sight displacement of the position (Eq. (11.30)) is different from the transverse displace-
ment (Eq. (11.27)), leading in general to an elliptical distortion of the galaxy density field
(Fig. 11.6).

To summarize, the relation between the true and observed galaxy positions due to a
wrong distance-redshift relation is

x(xobs) =
(
[1 − α⊥]x1

obs, [1 − α⊥]x2
obs, [1 − α‖]x3

obs

)
, where

α⊥ = δχ

χfid

∣∣∣
z̄
; α‖ = δH

Hfid

∣∣∣
z̄
. (11.31)

Again, since the galaxies are in a narrow redshift slice, evaluating α⊥, α‖ at the mean red-
shift z̄ is sufficient.

We will soon see that by measuring the observed power spectrum, we can obtain con-
straints on α⊥ and α‖. First, though, let us consider what we could learn from such a
measurement. Given a measurement of α⊥, the first part of the second line of Eq. (11.31)
can be used to express χ(z̄) in terms of known quantities:

χ(z̄) = χfid(z̄) [1 + α⊥] (11.32)

and similarly α‖ yields

H(z̄) = Hfid(z̄)
[
1 + α‖

]
. (11.33)

That is, a measurement of these two distortion parameters enables us to infer the distance
(χ(z̄)) and the Hubble rate (H(z̄)) at a given redshift z̄.

We now show how α⊥, α‖ can be extracted from the galaxy power spectrum. This follows
in analogy to Eq. (11.20). Having computed the contribution from redshift-space distor-
tions in the previous section, we now only have to include the effect of the coordinate
rescaling Eq. (11.31). In this case, we have to keep track of the effect on the argument of
δg, since the rescaling is spatially uniform, and hence corresponds to a zeroth-order effect
(unlike the case in RSD, where the displacement due to peculiar velocities was first order).
Finally, we should now include the factor J̄ of the Jacobian which we have dropped after
Eq. (11.15), since it will ensure the correct normalization. We obtain

δg,obs(kobs) = J̄

∫
d3xobs e−ikobs·xobsδg,RSD(x[xobs])

= J̄ (1 + α⊥)2(1 + α‖)
∫

d3x e−ik[kobs]·xδg,RSD(x)

= δg,RSD(k[kobs]), (11.34)



Chapter 11 • Probes of structure: tracers 309

where we have inverted Eq. (11.31) in the second line, and defined

k[kobs] =
(
[1 + α⊥]k1

obs, [1 + α⊥]k2
obs, [1 + α‖]k3

obs

)
. (11.35)

The prefactors in Eq. (11.34) simply reduce to unity via Eq. (11.14). This is not a miracle,
but follows from the fact that the number of galaxies in a given volume is independent of
the coordinates that we use to describe them, so Ng = ng�x3 = ng,obs�x3

obs. The integral
over d3x yields δg,RSD, i.e. Eq. (11.22), evaluated at k[kobs]. That is, the difference between
fiducial and true cosmologies manifests itself in the Fourier-space galaxy density through
a simple rescaling of the wavevector:

δg,obs(kobs) = [b1 + f μ2
k]δm(k)

∣∣∣
k=([1+α⊥]k1

obs, [1+α⊥]k2
obs, [1+α‖]k3

obs

). (11.36)

Finally, Eq. (11.23) can now be used to write the observed galaxy power spectrum as

Pg,obs(kobs, z̄) =
(

PL(k, z̄)
[
b1 + f μ2

k

]2
)∣∣∣∣

k=([1+α⊥]k1
obs, [1+α⊥]k2

obs, [1+α‖]k3
obs

) + PN. (11.37)

This equation includes two effects: the redshift-space distortions due to peculiar velocities
derived in the previous section; and the fact that the coordinates we assign to galaxies are
based on an assumed distance-redshift relation, not the true one. The constant noise term
PN is unaffected by both of these.

Note that, even if there were no galaxy velocities, an incorrect distance-redshift relation
would lead to an anisotropy in the galaxy power spectrum: imagine setting f = 0, which
is formally equivalent to setting all velocities to zero. The relation between kobs and k now
still depends on the angle of kobs with the line of sight, because α‖ is different from α⊥.
Thus, a wrong assumed cosmology induces an anisotropy in the galaxy power spectrum.
This fact was first pointed out by Alcock and Paczyński (1979), and is thus known as Alcock–
Paczyński (AP) effect. Unlike RSD, the amplitude of the AP effect depends on the shape of
the power spectrum, as you can see by expanding Eq. (11.37) to linear order in α‖, α⊥. For
this reason, AP and RSD can be disentangled.

Finally, Eq. (11.37) is also the basis of one of the prime science targets of current and up-
coming galaxy redshift surveys: using the baryon acoustic oscillation feature as a standard
ruler, usually simply abbreviated as “BAO” (Fig. 11.7). Recall that the matter power spec-
trum contains a small, oscillatory modulation (see Sect. 8.6.1), roughly of the form cos(krs),
where rs ≈ 105h−1 Mpc is the sound horizon at recombination. In the early universe, this
feature was imprinted only in the baryonic component of matter, but since baryons and
dark matter are coupled by gravity, this oscillatory pattern is transferred to the late-time
power spectrum of matter, albeit with smaller amplitude.

This means that we have a well-defined feature in the power spectrum at a true co-
moving scale k ∼ π/rs . Eq. (11.37) says that we will observe the same feature in the galaxy
power spectrum, but at an apparent scale kobs[k]. Since rs is extremely well determined
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FIGURE 11.7 The BAO feature in the angle-averaged (monopole) three-dimensional galaxy power spectrum of the
CMASS sample observed by the BOSS survey. Both data (points) and best-fit model (line) have been divided by a
smooth model power spectrum without the BAO feature, in order to enhance the visibility of the feature. The fit
parameters include α⊥ and α‖, which shift the model along the k-axis [see Eq. (11.37)]. Adapted from Beutler et al.
(2017).

by the CMB,1 measuring this feature in the galaxy power spectrum at redshift z̄ allows
us to measure α⊥ and α‖ precisely (see Fig. 11.7). Eq. (11.37) describes rigorously what
is much simpler to understand intuitively: the BAO oscillations are a feature of a known
size imprinted in the clustering pattern of galaxies. Measuring its apparent size observed
in galaxies at a redshift z̄ allows us to measure the distance to that redshift. In particular,
the BAO feature gives us a direct measurement of the distance2 χ(z̄) (via α⊥) and of the
Hubble rate H(z̄) (via α‖). Because of the well-understood theoretical underpinning and
characteristic shape of the BAO feature, this approach of measuring distances is extremely
robust.

To summarize this section, the large-scale three-dimensional galaxy power spectrum
as measured in galaxy redshift surveys contains two important sources of cosmological
information:

• RSD yield the growth rate f σ8(z̄) via the amplitude and anisotropy of the power spec-
trum.

• The BAO feature and AP distortions allow us to measure dA(z̄) and H(z̄), by using the
difference in the fiducial and true distance-redshift relations.

No wonder then that significant resources are being devoted to increasingly larger redshift
surveys: they contain a rich amount of information both on the background expansion
history and the growth of structure. Moreover, all of what we described applies to any tracer

1
In fact, since the sound horizon mainly depends on the baryon density �bh2, the constraint from BBN com-

bined with Deuterium abundance suffices as well.
2

More precisely the angular diameter distance dA(z̄), which is equivalent in our case since we have assumed
a Euclidean universe throughout.
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of large-scale structure, not just galaxies: for example, quasars, the Lyman-alpha forest,
and unresolved line emitters and absorbers (known as intensity mapping).

We should emphasize again though that this information relies on our assumptions
of a simple linear relation between the tracer density and matter density perturbations
(Eq. (11.18)), as well as unbiased tracer velocities. After all, if the latter were not the case,
we could not infer an unbiased estimate of the growth rate; if bias was more complicated,
we could not be sure that the BAO feature in the tracer power spectrum is at the same scale
as in the matter power spectrum. These assumptions thus need to be carefully justified. In
Ch. 12, we will do precisely that.

11.2 Angular correlations
In the previous section, we derived the three-dimensional galaxy power spectrum mea-
sured from a set of galaxy positions and precise redshifts. But what if we do not have those
redshifts? Large imaging surveys identify the sky positions of many millions of galaxies,
but without expensive followup observations, their distances remain uncertain. Can we
still extract information from such a data set? The answer is yes, and it is in fact not much
more difficult. In many cases, surveys observe in several bands, so that colors are available
for the galaxies. These colors can be turned into approximate redshift estimates, so-called
photometric redshifts, which can be used as proxies (with significant scatter) for the true
redshifts.

So when dealing with imaging surveys, we do not have individual distances of galaxies
but we have a handle on the distribution of distances, W(χ):

W(χ) = 1

Ng

dNg

dχ
, (11.38)

where Ng is the total number of galaxies, and W(χ) is normalized to unity over the interval
χ ∈ [0,∞). In practice, W(χ) drops to zero below and above some minimum and maximum
distances. Galaxies at large distances are too faint to be detected, and there are not that
many galaxies at low redshifts simply because the volume is small. Photometric redshifts
are notoriously difficult, so determining W(χ) is often a daunting task on its own. We will
assume here that this has been taken care of.

Instead of measuring the 3D galaxy density field, we now measure its projection on the
sky. Practically, we can imagine dividing the sky area covered by the survey into many small
pixels, and counting the galaxies in each pixel. Subtracting and dividing by the mean, we
obtain the projected overdensity �g(n̂). This is just a superposition of many slices of the
3D galaxy density field at different distances χ , weighted by the distance distribution, so
we have

�g(n̂) =
∫ ∞

0
dχW(χ)δg,obs

(
x = n̂χ,η = η0 − χ

)
. (11.39)
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We use �g to distinguish the projected galaxy density from the three-dimensional one,
δg,obs. Notice that the projection involves the galaxy density at different times η, since the
photons all travel at the speed of light, so that the more distant galaxies are seen at an
earlier time. Let us now insert the Fourier transform of δg,obs, and use the expansion of the
exponential in Eq. (C.17):

�g(n̂) =
∫ ∞

0
dχW(χ)

∫
d3k

(2π)3
eik·n̂χδg,obs(k, η(χ))

= 4π

∫
d3k

(2π)3

∑
lm

ilYlm(n̂)Y ∗
lm(k̂)

∫ ∞

0
dχW(χ)jl(kχ)δg,obs(k, η(χ)) (11.40)

where we have abbreviated η(χ) = η0 − χ , and
∑

lm ≡ ∑∞
l=0

∑l
m=−l . The right-hand side is

nothing but an expansion of �g(n̂) in spherical harmonics, which we can read off as the
coefficients of Ylm(n̂):

�g,lm = 4πil
∫

d3k

(2π)3
Y ∗

lm(k̂)

∫ ∞

0
dχW(χ)jl(kχ)δg,obs(k, η(χ)). (11.41)

In exact analogy with the CMB anisotropies (the alm), the angular power spectrum of galaxy
counts on the sky is then proportional to the expectation value of |�g,lm|2. Let us thus eval-
uate

〈
�g,lm�∗

g,l′m′
〉
= (4π)2il−l′

∫
d3k

(2π)3

∫
d3k′

(2π)3
Y ∗

lm(k̂)Yl′m′(k̂
′
)

∫ ∞

0
dχW(χ)jl(kχ)

×
∫ ∞

0
dχ ′W(χ ′)jl′(k

′χ ′)
〈
δg,obs(k, η(χ))δ∗

g,obs(k
′, η(χ ′))

〉
. (11.42)

The brackets 〈. . .〉 here denote an ensemble average over all realizations of the density field.
The ensemble average over the two fields immediately sets k′ = k (due to homogeneity),
and we can use the orthonormality of spherical harmonics (Eq. (C.11)) to obtain

〈
�g,lm�∗

g,l′m′
〉
= δll′δmm′Cg(l) (11.43)

where the angular power spectrum is defined as

Cg(l) = 2

π

∫
k2dk

∫ ∞

0
dχW(χ)jl(kχ)

∫ ∞

0
dχ ′W(χ ′)jl(kχ ′)

× Pg,obs(k, η(χ), η(χ ′)). (11.44)

Notice that the angular power spectrum Cg(l) of galaxies in general involves the unequal-
time power spectrum of galaxies, since we are projecting along the lightcone. This
unequal-time power spectrum is nonzero, because the density perturbations remain in
place as they grow. We will see very soon though that on small scales, i.e. large l, only equal
times and distances χ ′ = χ contribute appreciably.
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FIGURE 11.8 Two plane-wave perturbations and their contributions to the angular power spectrum. Right panel
shows a perturbation with longitudinal wavenumber μkk � χ−1 (the êz-direction is vertical). Left panel shows an
essentially transverse mode with μkk < χ−1. Angular correlations due to the mode in the right panel are negligible
since there are cancelations along the line of sight, while those do not occur for the transverse mode shown on the
left.

Eq. (11.44) is the exact result for the angular power spectrum of galaxies, given their
three-dimensional power spectrum Pg,obs(k, η, η′) (allowing for anisotropy) and the selec-
tion function W(χ). However, it is cumbersome to handle since it involves three nested
integrals, and these integrals are over the oscillating functions jl . Moreover, we need to
specify the full, unequal-time galaxy power spectrum.

In order to proceed, we make a simplifying assumption analogous to the distant-
observer approximation employed in the previous section. On small scales, l � 1, the
galaxy pairs contributing to Cg(l) subtend a small angle on the sky, roughly θ ∼ 1/l, so
we expect some simplifications. Let us then look more closely at Eq. (11.44) in this regime.
The integral over k is

2

π

∫
k2dk jl(kχ)jl(kχ ′)Pg,obs(k, η, η′). (11.45)

In Exercise 11.6, you show that, if Pg,obs(k) were independent of k, so that it can be pulled
out of the integral, this integral would reduce to

2

π

∫
k2dk jl(kχ)jl(kχ ′) = 1

χ2
δ
(1)
D (χ − χ ′). (11.46)

With this, Eq. (11.44) becomes much simpler; it reduces to a single integral over χ . But
in reality, Pg,obs is not independent of k of course. Let us then inspect the remainder of
the integrand in Eq. (11.45). As you can show in Exercise 11.7, for high l, the product of
spherical Bessel functions is very sharply peaked at kχ ≈ kχ ′ ≈ √

l(l + 1) ≈ l + 1/2. As long



314 Modern Cosmology

FIGURE 11.9 Angular correlation function of galaxies in the photometric Dark Energy Survey (the “3,3” indicates
autocorrelation of galaxies within a photometric redshift range centered at z � 0.55). The correlation function w(θ) =
wg(θ) has been multiplied by θ in order to reduce the dynamic range, as wg grows strongly toward small θ . The
gray shaded region involves comoving scales smaller than 8h−1 Mpc, which are significantly affected by nonlinear
evolution and bias. The line shows the best-fit model based on the linear bias prescription. From Elvin-Poole et al.
(2018).

as Pg,obs(k) varies slowly over the narrow range �k over which the Bessel functions are
nonzero, �k ∼ 1/(lχ), we can approximate it as constant. The approximation we have just
described, which is usually very accurate at l � 20, is known as the Limber approximation.
Its core prediction then is

Cg(l) =
∫

dχ

χ2
W 2(χ)Pg,obs

(
k = l + 1/2

χ
, μk = 0, η(χ)

)
, (11.47)

which is much faster to calculate than Eq. (11.44). The remaining arguments in Pg,obs de-
serve some explanation: we have seen that χ = χ ′ in the Limber approximation, which
implies η(χ ′) = η(χ), so that Eq. (11.47) only involves the equal-time power spectrum. It
also means that the k modes involved do not have a line-of-sight component, since that
would mean different distances of different points along the perturbation, i.e. χ ′ �= χ . So, k

has to be transverse to the line of sight: μk = 0.
Our derivation so far was quite rigorous, but mathematical. Fig. 11.8 illustrates the

physical reason behind the Limber approximation. Focusing on small scales corresponds
to looking at small angles, θ ∼ 1/l � 1. Now consider the figure. Modes with longitudinal
wavenumber μkk much greater than χ−1 do not give rise to angular correlations because
of cancelations along the line of sight. Only modes with μkk of order χ−1 or smaller lead to
angular correlations. Therefore, the relevant transverse wavenumbers l/χ are much larger
than the relevant longitudinal wavenumbers, and we can safely neglect the latter. This then
corresponds to setting χ ′ = χ .

Finally, we can also write down the angular correlation function wg(θ). The full-sky re-
lation between Cg(l) and wg(θ) is derived in Exercise 11.8. On small scales, however, in the
flat-sky approximation, we can treat Cg(l) as the 2D power spectrum on a plane, so

wg(θ) =
∫

d2l

(2π)2
eil·θCg(l). (11.48)
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Since Cg(l) depends only on the magnitude of l, the angular part of the integration over

l is
∫ 2π

0 dφ eilθ cos φ , which is proportional to J0(lθ), the Bessel function of order zero
(Eq. (C.24)). Therefore,

wg(θ) =
∫ ∞

0

dl

2π
lCg(l)J0(lθ). (11.49)

Fig. 11.9 shows the projected correlation function measured by the Dark Energy Survey
(DES). The measurement has very high signal-to-noise, thanks to the many galaxies that
are available. Unfortunately, due to the projection within a wide redshift slice, the BAO
feature is smoothed out and very difficult to detect. Nevertheless, the combination of this
projected correlation function with weak lensing allows for many cosmological tests. We
turn to this in Ch. 13.

11.3 The Sunyaev–Zel’dovich effect
The most obvious tracers of large-scale structure are objects at low redshifts such as galax-
ies. But large-scale structure also leads to characteristic imprints on the CMB, whose
photons travel through the entire observable universe to reach us. Using the CMB as a
backlight allows us to probe large-scale structure at fairly high redshifts, at which point a
direct observation of luminous tracers becomes increasingly difficult. We have already en-
countered one such imprint in Sect. 9.6: the integrated Sachs–Wolfe effect, which is only
relevant on very large scales. Another effect is CMB lensing, the deflection of CMB photon
trajectories by the gravitational potential of large-scale structure, which we will turn to in
Ch. 13. In this section, we study another important effect, the scattering of CMB photons
off of ionized gas in the late universe.

As we learned in Ch. 4 and Ch. 9, most of the gas in the universe at redshifts below z ∼ 6
is ionized. This means that CMB photons are no longer completely decoupled from the
gas, but they are able to scatter (Fig. 11.10; notice that unlike the other two effects men-
tioned above, here the CMB photons can dramatically change direction). This scattering is
fortunately much less efficient than it was prior to recombination, due to the much lower
density of the gas, leading to an optical depth much less than 1. In Ch. 9 we saw that the
scattering leads to a damping of anisotropies in the CMB, and in Ch. 10 that it sources
polarization on very large angular scales.

Apart from the much lower gas density, another significant difference in this scattering
process compared to that happening before recombination is that the gas is now much
hotter than the CMB photons: while the CMB temperature is 20 K and falling at z ≤ 6, the
gas temperature ranges from 104 K to temperatures in excess of 107 K in massive clusters.
This means that electrons are much more energetic than the CMB photons, so that they
tend to increase the energy of CMB photons in the scattering process (an effect known as
inverse-Compton scattering). Therefore, after some fraction of photons have been scat-
tered thereby gaining energy, the CMB spectrum is distorted and no longer is a perfect
black-body. By observing the CMB at different frequencies, this distortion of the spectrum
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FIGURE 11.10 Compton scattering of CMB photons (thin red arrows) within a cloud (circle) of hot ionized gas. A frac-
tion of the CMB photons are scattered off electrons in the cloud (black dot), and reach the observer typically with
a small energy gain (blue thick arrow). Notice that the typical momentum q ∼ √

meTe of electrons in the plasma is
much larger than that of the CMB photons p ∼ T .

can be distinguished from the CMB temperature perturbations that we have studied so far
in this book. This upscattering SZ effect was first pointed out by Zel’dovich and Sunyaev
(1969).

Our starting point is, not surprisingly, the Boltzmann equation for photons, with a col-
lision term due to Compton scattering. We thus start from

[
∂

∂t
− Hp

∂

∂p

]
f (p, t) = C[f (p)], (11.50)

with the collision term as derived in Eq. (5.13):

C[f (p)] = π

2mep

∫
d3q

(2π)32me

∫
d3p′

(2π)32p′ δ
(1)
D

[
p + q2

2me

− p′ − (q + p − p′)2

2me

]

×
∑

3 spins

|M|2{fe(q + p − p′)f (p′) − fe(q)f (p)}. (11.51)

Here, we continue to make several assumptions made in Ch. 5: the non-relativistic regime,
T , Te � me, where T is the CMB temperature at the redshift where the scattering takes
place, while Te is the electron temperature; isotropic scattering, taking |M|2 as well as the
distribution functions to be independent of p̂, q̂; and that quantum effects such as stimu-
lated emission are negligible. All of these are similarly or more accurate in this application
as before recombination, except Te � me: in very massive galaxy clusters, this assumption
ceases to be accurate, leading to minor modifications of the resulting photon energy spec-
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trum. We also neglect the gravitational potential term on the left-hand side of Eq. (11.50),
since it does not affect the spectral distortion we are interested in.

In Ch. 5, we proceeded to expand the Dirac delta to linear order in the energy shift of the
photons p − p′ (Eq. (5.15)). This resulted in the coupling of photons to the baryon velocity,
but no change in the photon spectrum; that is, we could still phrase the effect in terms of a
perturbation �(p̂) to the photon temperature. Now, let us examine the second-order piece
in this expansion:

δ
(1)
D

[
p + q2

2me

− p′ − (q + p − p′)2

2me

]
= (Eq. (5.15))

+ 1

2

[
(p − p′) · q

me

]2
∂2

∂p′ 2
δ
(1)
D (p − p′). (11.52)

Consider now the contribution of this second-order term (in the momentum transfer) to
the collision integral. This is analogous to the steps that led us to Eq. (5.19), and you will
perform this derivation in Exercise 11.9. Choosing the z-direction to lie along the direction
of the electron momentum, we arrive at the following contribution to the collision term

C[f (p)]
∣∣∣∣
SZ

= 2π2 σT

me

∫
d3q

(2π)3
fe(q)

q2

me

×
∫

d�′

(2π)3

∫
dp′δ(1)

D (p − p′) ∂2

∂p′ 2

[
p′(pz − p′

z)
2(f (p) − f (p′))

]
. (11.53)

We recognize the integral over the electron distribution function as the kinetic energy den-
sity (taking into account the degeneracy factor ge = 2 for electrons), which for a gas (more
precisely, plasma) of temperature Te is 3neTe/2. The remaining steps are now straightfor-
ward (Exercise 11.9). After averaging over μ = pz/p, i.e. integrating

∫ 1
−1 dμ/2, we finally

obtain

C[f (p)]
∣∣∣∣
SZ

= neTeσT

me

[
4p

∂f

∂p
+ p2 ∂2f

∂p2

]

= neTeσT

me

1

p2

∂

∂p

[
p4 ∂f

∂p

]
. (11.54)

In Exercise 11.10, you show that the integral over all p of this collision term vanishes. That
is, the number of photons is conserved. This comes as no surprise, since Compton scatter-
ing conserves the photon number.

Let us now replace the momentum p with x ≡ p/T . Since T (t) = T0/a, the left-hand side
of the Boltzmann equation (11.50) simply becomes ∂f (x, t)/∂t . Further, we can introduce
a new time variable through

dy = neTeσT

me

dt. (11.55)
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With this, the Boltzmann equation becomes particularly simple:

∂

∂y
f (x, y) = 1

x2

∂

∂x

[
x4 ∂

∂x
f (x, y)

]
. (11.56)

Now consider the setup in Fig. 11.10, which shows a cloud of ionized gas. Before en-
countering the gas, the CMB photons follow an equilibrium distribution with temperature
T = T0/a (we neglect the small primordial anisotropies here), so that our initial condition
for the Boltzmann equation is

f (x, y = 0) = f (0)(p = xT (t), t) = 1

ex − 1
. (11.57)

The photon distribution after passing through the cloud of gas can be calculated by solving
Eq. (11.56). Let us consider the most relevant case in practice, when y � 1, i.e. the regime
of small optical depth for Compton scattering within the cloud. The result is

f (x, y)
y�1=

{
1 + y

1

x2

∂

∂x

[
x4 ∂

∂x

]}
1

ex − 1
, (11.58)

where, using that adχ = dt for photons,

y = σT

me

∫
aneTedχ. (11.59)

That is, y is the integral over the kinetic energy density, or pressure, in the ionized gas
along the line of sight. The distortion induced by scattering captured by the second term
in Eq. (11.58) differs from the distortion due to a chemical potential. Indeed, this is the
first time we encounter a non-black-body photon distribution in this book, and it ap-
pears here because of the large difference between the gas temperature Te and the photon
temperature T . This “y-type spectral distortion” is illustrated in Fig. 11.11. After having
passed through the ionized cloud, the photon distribution has more photons in the high-
energy (Wien) tail than the equilibrium distribution, and fewer of them in the low-energy
(Rayleigh–Jeans) regime. We already expected this: the CMB photons are upscattered by
high-energy electrons, so they are moved from the low- to the high-energy side of the dis-
tribution.

What happens when y becomes very large? If we had taken a slightly more careful,
longer route to derive Eq. (11.54) (not making the approximation that the photon momen-
tum is negligible compared to that of electrons), we would have found that Eq. (11.54)
involves Te − T instead of Te. In the limit of many scatterings (large y), then, the photon
distribution approaches an equilibrium distribution with a temperature dictated by en-
ergy conservation: initially, the energy density was ργ (T0/a) + ρe(Te); this must be equal to
ργ (Tf ) + ρe(Tf ), thereby setting the final temperature Tf . Thus, our result Eq. (11.58) cor-
responds to the first step in the equilibration (also called “Comptonization”) to the new
temperature Tf .
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FIGURE 11.11 Observed spectrum of CMB radiation intensity Iν ∝ ν3f (ν) with and without (y = 0) spectral distortion
due to the SZ effect. When y > 0, the observed CMB has more photons in the high-energy tail and less in the
low-energy tail compared to the undistorted black-body spectrum.

Eqs. (11.58)–(11.59) show that, by observing the spectral distortion in the CMB photons
that pass through ionized gas, we can measure the integral of the pressure along the line
of sight. Now imagine making a map of the spectral distortion across the sky. This map of
y(n̂) corresponds to a map of the integrated pressure in ionized gas in the universe since
reionization. Let us write the gas pressure in the universe as a time-dependent background
with perturbations,

Pgas(x, η) = neTe(η)[1 + δP (x, η)]. (11.60)

Then, the observed y (Eq. (11.59)) is an integral over Pgas which is analogous to the pro-
jected galaxy density field in Eq. (11.39):

y(n̂) = σT

me

∫ χ∗

0
dχ neTe a

[
1 + δP

(
x = n̂χ,η = η0 − χ

)]
. (11.61)

We can then use the results of the previous section leading to the angular power spectrum
Eq. (11.47) to obtain the angular power spectrum of the SZ y-distortion of the CMB:

Cy(l) =
(

σT

me

)2 ∫
dχ

χ2

[
neTea

]2
PP

(
k = l + 1/2

χ
,η(χ)

)
. (11.62)

where PP is the power spectrum of fractional pressure perturbations in the ionized gas.
Measuring the anisotropies of the spectral distortions thus allows us to measure the am-
plitude of pressure fluctuations of the ionized gas in the universe, a quantity that allows for
valuable insights into the thermal state of baryons which is difficult to predict theoretically.
Another, more prominent, use of the SZ effect is to search for outliers of very large y. These
correspond to rare, massive galaxy clusters (which are the topic of Sect. 12.5). One major
advantage of the SZ effect over other ways to look for galaxy clusters is that the signal only
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decreases weakly with distance, thanks to the use of the ubiquitous CMB as a backlight.3

Large experimental efforts are under way that are devoted to measuring the SZ effect.
In this section, we discussed the upscattering of CMB photons due to the thermal ve-

locities of hot electrons (“thermal SZ”). A similar effect exists due to the bulk motion of
gas, which is closer to the effect of gas velocities on CMB photons discussed in Ch. 5. This
effect, known as “kinetic SZ,” probes the bulk momentum of gas along the line of sight
rather than the pressure. It is much more difficult to detect than the thermal SZ, both due
to its smaller amplitude and the fact that, since the velocity along the line of sight can have
either sign, it typically cancels out unless carefully extracted using independent estimates
of the gas velocity.

11.4 Summary
The clustering of galaxies is one of the main probes of the large-scale structure in the uni-
verse. While we spoke of galaxies throughout to be specific, a variety of tracers can be
used for this purpose, and our results apply generally to any tracer. Surveys that map the
distribution of tracers can be either photometric, yielding many objects with uncertain
distances, or spectroscopic, with fewer objects that are, however, precisely localized. Spec-
troscopic surveys allow us to measure the three-dimensional statistics, in particular the
power spectrum, of tracers. These are a rich source of information. However, care needs to
be taken when interpreting them:

Redshift-space distortions due to the peculiar velocities of galaxies lead to a character-
istic dependence of the power spectrum on the angle μ of the wavevector with the line of
sight. These distortions allow us to measure the amplitude of velocities, and with that, the
rate of structure formation f σ8, where f = d lnD+/d lna.

When analyzing galaxy surveys, we need to assume a distance-redshift relation in or-
der to turn observed positions on the sky and redshifts into three-dimensional locations.
An incorrect assumed distance-redshift relation leads to Alcock–Paczyński distortions,
which again are anisotropic but allow us to infer the distance to a given redshift, as well
as the Hubble rate at that redshift. This would be quite difficult if the power spectrum was
perfectly smooth. However, the BAO feature imprinted into matter after recombination
provides a standard ruler which allows for a very precise measurement of the distance-
redshift relation. Unlike standard candles such as supernovae, the BAO feature does not
have to be calibrated using a distance ladder measured in the nearby universe.

Photometric galaxy data sets still allow us to measure the projected clustering , the an-
gular correlation function wg(θ) and its Fourier counterpart, the multipoles Cg(l). While
the BAO feature and RSD are smoothed out, the shape and amplitude still contain cosmo-
logical information, especially when combined with weak lensing (Ch. 13).

The results in this section were based on a very important assumption about galaxy
clustering: we posited that the galaxy power spectrum (in the absence of the above-

3
Although, from Fig. 11.10, the term “backlight” is perhaps misleading: it is not only CMB photons emitted

from behind the cluster that get scattered toward us, but from all directions.
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mentioned distortions) is simply proportional to that of matter on large scales, with an
additive noise term. This allowed us to continue to work using linear perturbation theory,
resulting in the final expression for the observed galaxy power spectrum:

Pg,obs(kobs, z̄) = PL(k, z̄)
[
b1 + f μ2

k

]2
∣∣∣∣
k=([1+α⊥]k1

obs, [1+α⊥]k2
obs, [1+α‖]k3

obs

) + PN. (11.63)

We did not justify why b1 and PN are all we need in linear theory, which seems very sim-
plistic given the real-world complexities of galaxy formation; yet, we will see that it holds
in the next chapter, when we think about the effects of nonlinear structure formation.

Finally, we studied another important probe of structure, by going back to the Boltz-
mann equation for photons of Ch. 5: the spectral distortions of the CMB induced by
scattering off hot ionized gas, known as Sunyaev–Zel’dovich (SZ) effect . This effect can be
distinguished from primordial CMB anisotropies because it modifies the CMB spectrum
from its black-body form. We saw that the amplitude of observed distortions is directly
proportional to the integral over the pressure in the ionized gas, allowing us to create an
integrated pressure map and to identify distant massive galaxy clusters. The science we
can do with clusters is one of the topics of the next chapter.

Exercises
11.1 Suppose the correlation function is defined as

ξ(r) ≡ 〈δ(x)δ(x + r)〉. (11.64)

By Fourier expanding each of the δ and using Eq. (C.22), show that this definition
implies that the correlation function is the Fourier transform of the power spec-
trum.

11.2 Compute (numerically) the linear growth rate f today in a �CDM universe and
compare with the approximation f (z = 0) = �0.55

m . What is the fractional error be-
tween the approximation and the exact result? Do the same for a dark energy model
with w = −0.5.

11.3 Compute the RMS line-of-sight velocity

√〈
u2‖

〉
, in the same way as Exercise 8.13

computes the variance of the density field, i.e. using a real-space tophat filter. Use
Eq. (11.17). Plot the result as a function of the filter radius R at z = 0,0.5,1. Now
compute the corresponding RMS value of the displacement into redshift space,
which we showed to be u‖/aH . Using that result, at what wavenumber do you
roughly expect the transition between the two regimes shown in Fig. 11.3?

11.4 The redshift-space power spectrum is often expanded in multipole moments de-
fined through

P
(l)

g,obs(k) = 2l + 1

2

∫ 1

−1
dμkPl(μk)Pg,obs(k,μk) (11.65)
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where P
(l)

g,obs(k) is the lth multipole moment of the power spectrum. Using the or-
thogonality of the Legendre polynomials (Eq. (C.2)), show that this implies

Pg,obs(k,μk) =
∑

l

Pl(μk)P
(l)

g,obs(k). (11.66)

Show further how the monopole and quadrupole are related to the linear matter
power spectrum. In all cases, restrict to RSD and neglect the AP distortion parame-
ters α‖, α⊥.

11.5 In the text we showed how redshift-space distortions affect the power spectrum.
Show how the redshift-space distortions affect the correlation function in the flat-
sky approximation.

11.6 Prove Eq. (11.46). Begin by rewriting the three-dimensional Dirac delta in spherical
polar coordinates, and using the completeness of the spherical harmonics:

δ
(3)
D (x − x′) = 1

x2
δ
(1)
D (x − x′)δ(S2)

D (x̂ − x̂′
)

= 1

x2
δ
(1)
D (x − x′)

∑
lm

Ylm(x̂)Y ∗
lm(x̂′

). (11.67)

The second line follows from the fact that integrating any function defined on the

unit sphere against δ
(S2)
D (x̂ − x̂′

) should yield its value at x̂, which in turn can be ex-
pressed in terms of a sum over Ylm(x̂) with the corresponding multipole coefficient
of the function. Next, use the Fourier-space expression of the Dirac delta,

δ
(3)
D (x − x′) =

∫
d3k

(2π)3
eik·(x−x′), (11.68)

along with the spherical decomposition of the exponential, Eq. (C.17) (twice).
Finally, argue that the fact that Eq. (11.67) has to hold in general implies that
Eq. (11.46) holds individually for all l = 0,1, . . ..

11.7 (a) Plot the integrand of Eq. (11.45) as a function of k and χ assuming χ = χ ′ for dif-
ferent l. What is the approximate scaling with l of the peak position and width
for l � 1? What happens if χ �= χ ′?

(b) Evaluate the exact integral Eq. (11.44) and the Limber approximation Eq. (11.47)
for l = 2,5,10,30. Assume that W(χ) is a Gaussian centered around χ(z = 1)

with RMS corresponding to a redshift uncertainty of �z = 0.2. Determine em-
pirically the accuracy of the Limber approximation as a function of l.

11.8 Decompose the galaxy angular correlation function into a sum over multipole mo-
ments,

wg(θ) =
∞∑
l=1

2l + 1

4π
Cg(l)Pl (cos θ). (11.69)
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Express Cg(l) as an integral over the 3D galaxy power spectrum Pg,obs(k). Show that
on small scales, the Cg(l) defined in this way are equal to those derived in Sect. 11.2.

11.9 Derive the steps leading from Eq. (11.51) to Eq. (11.54).
11.10 (a) Show that the integral over all p of the collision term in Eq. (11.54) vanishes, so

that the photon number is conserved.
(b) Evaluate the right-hand side of Eq. (11.58) explicitly and show that it corre-

sponds to a spectral distortion, i.e. cannot be absorbed by a modified temper-
ature and chemical potential.

11.11 The SZ effect enhances the observed spectrum at high frequencies, and suppresses
it at low frequencies. Find the frequency at which the distortion vanishes (“SZ
null”). Show that setting the derivative in the second term of Eq. (11.58) equal to
zero leads to

(4 − x)ex = 4 + x. (11.70)

You can solve this numerically or note that the left-hand side reaches a maximum
at x = 3, where it is much larger than the right-hand side, and then drops to zero at
x = 4. So, the place where the two sides are equal is when x is a bit below 4. Expand
perturbatively around x = 4 to obtain an estimate of this solution. Compare with
the actual solution of x = 3.83. What frequency does that correspond to for the CMB
with T = 2.726 K?



12
Growth of structure: beyond linear
theory

So far in this book, we have focused on small perturbations to a homogeneous universe;
technically, we have worked to linear order in all perturbations, such as those in radiation
and matter, as well as spacetime perturbations. That was sufficient for an accurate descrip-
tion of the CMB, but clearly fails in describing the late universe, with its stars, galaxies,
galaxy clusters, and so on.

We thus want to extend our model of the universe beyond linear order. However, the
fundamental equations we introduced in Ch. 3—the Einstein and Boltzmann equations—
are extremely complex in full generality. Fortunately, not all is lost. Even in the late universe
with nonlinear structures, gravity is still weak in a certain sense: the metric remains close
to FLRW almost everywhere. This allows us to continue to work to linear order in metric
perturbations, thus greatly reducing the complexity of Einstein’s equations, while being
fully nonlinear in the matter density.

The clustering components of the universe are dominated by dark matter. Moreover,
pressure forces of the gas (baryons) become relevant only on very small scales, due to the
relative coldness of the gas, which cools rapidly after recombination. Thus, approximating
baryons as collisionless, we will focus on solving the evolution of cold, collisionless mat-
ter under gravity in this chapter. This is in fact a beautiful, conceptually simple problem.
We will introduce two main tools to solve it: perturbation theory and simulations. A qual-
itative prediction can, however, already be deduced from the shape of the linear matter
power spectrum (Fig. 8.3, and, in a more suitable representation, Fig. 12.1): density per-
turbations on large scales are small, while those on small scales are large. Hence, structure
becomes nonlinear (collapses) first on small scales. These small-scale collapsed structures
then progressively (“hierarchically”) assemble to larger structures as the universe evolves.
The nonlinear structure in the universe can be thought of as being made up of bound dark
matter structures referred to as halos, which form useful building blocks for an empirical
understanding of the complex nonlinear matter distribution.

Next, we turn to galaxies. Unlike collisionless matter, the formation of galaxies is not
“simply” described by the collisionless Boltzmann and Einstein equations. Instead, they
form through the radiative and collisional cooling of gas, which eventually collapses to
form stars. Despite these complexities, we will see that perturbative approaches can still
be used to describe galaxy clustering on large scales. This is crucial in order to be able
to use galaxy clustering as a cosmological probe using the techniques we studied in the
preceding chapter: in particular the BAO standard ruler, AP and redshift-space distortions.
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Finally, another way of gleaning information about the underlying mass density is by
studying clusters of galaxies. Clusters can now be probed with many different techniques,
as we will see in Sect. 12.5. Further, they are fairly faithful tracers of the most massive
dark matter halos, whose abundance is a sensitive probe of structure formation. There-
fore, counting clusters leads to interesting cosmological constraints as well.

This is a very substantial chapter, which, after an overview in Sect. 12.1, covers a range of
topics that at first sight might appear disparate. So a brief guide to this chapter is in order.
The two fundamental approaches—perturbation theory and numerical simulations—are
covered in Sect. 12.2 and Sect. 12.3, respectively. If you are interested in understanding the
assumptions made in Ch. 11 about the clustering of galaxies on large scales, you should
work through Sect. 12.2 and Sect. 12.6. These are independent of the section on simula-
tions. If you are mostly interested in galaxy clusters, you can focus on Sect. 12.4 which
covers dark matter halos, in addition to the cluster section 12.5. Finally, section 12.7 on the
semi-analytic halo model relies only on Sect. 12.4 and the clustering assumptions made in
Ch. 11.

The topics covered in this chapter are not prerequisites for the following chapters, al-
though we will see that a solid theoretical prediction for the nonlinear matter distribution
is a key requirement in order to infer cosmology from gravitational lensing (Ch. 13).

12.1 Prelude
The dominant clustering component in the late universe is matter, which consists of dark
matter (to about 80%) as well as baryons (in the form of neutral and ionized gas as well
as stars). In the bulk of this chapter, we will lump together dark matter and baryons, and
refer to them simply as “matter.” Of course, baryons behave differently from dark matter
as they feel electromagnetic forces. However, after having completely decoupled from the
photons, baryons cool rapidly (their temperature scales as kinetic energy, so ∝ a−2), so
that the pressure induced by electromagnetic interactions is actually only relevant on very
small scales. For this reason, a good and practical approximation is to consider all of matter
as a single component while neglecting all non-gravitational forces. This means that we
will start from the equations for dark matter, but now also include baryons.1

Let us go back to the equations for the linear evolution of dark matter derived in Sect. 5.4
and Sect. 6.3.2. These consist of the continuity, Euler, and Poisson equations:

δm
′ + ikum + 3�′ = 0,

um
′ + a′

a
um + ik� = 0,

k2� + 3
a′

a

(
�′ − �

a′

a

)
= 4πGa2ρmδm, (12.1)

1
We will neglect the different initial conditions for dark matter and baryons we studied in Sect. 8.6.1 in this

chapter. They can be similarly treated using the techniques we describe here, and only lead to percent-level cor-
rections at late times.
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where on the right-hand side of the Poisson equation we have only included matter. This
is justified since at redshifts z � 10, where structure begins to become nonlinear, the con-
tribution of radiation is negligible. This is not entirely true for neutrinos, which contribute
at the percent-level, because they have a finite mass and thus become non-relativistic.
Including neutrinos, however, would not change our main arguments in the following.
Further, we can set � = −�, since the late universe has negligible anisotropic stress.2

Before jumping into the calculation of nonlinear growth, let us pause to consider which
scales we will be dealing with. After having solved the linear evolution equations in Ch. 8,
we are able to calculate the typical amplitude of linear matter density fluctuations on a
given scale. Let us define the filtered density field δW (x),

δW (x) =
∫

d3y W(|x − y|)δm(y), (12.2)

where W(x) is the filtering kernel that we can take to be isotropic so that it only depends
on the magnitude of x − y. This filtering corresponds to a multiplication in Fourier space:

δW (k) = W(k)δm(k), (12.3)

where W(k) is the Fourier transform of the isotropic filtering kernel (in this chapter, we will
move back and forth between real and Fourier space. Any ambiguity is removed, however,
by the arguments of functions or the explicit appearance of factors of k). Notice that a filter
that is normalized in real space via

∫
d3xW(x) = 1 obeys W(k = 0) = 1 in Fourier space. It

could be, for example, a Gaussian with width �k, which corresponds to a Gaussian with
width R = 1/�k in real space. Then, the variance of this filtered density field is directly
related to the matter power spectrum (as you can derive in Exercise 8.13):

σ 2
W ≡

〈
(δW )2(x)

〉
=

∫
d3k

(2π)3

∫
d3k′

(2π)3

〈
δW (k)δ∗

W(k′)
〉
ei(k−k′)·x

=
∫

d3k

(2π)3
PL(k)|W(k)|2

= 1

2π2

∫
d lnk k3PL(k)|W(k)|2. (12.4)

The result is shown in Fig. 12.1: when smoothed on a large scale, density fluctuations are
small, while they become large when we filter on a smaller scale. For a sufficiently small
filter scale, σ 2

W becomes greater than 1. This means that, when we look at our universe
on a sufficiently small scale, i.e. with sufficiently high resolution, any given point is likely
to have a density that is very different from the cosmic mean. That means that our linear
treatment based on Eq. (12.1) predicts a wrong result for the density field in most places.

2
We choose to work with � in the following, as the perturbation to the time-time component of the metric is

what physically governs the motion of non-relativistic matter. When comparing to the literature, keep in mind
that different notation (e.g., � instead of �) and different sign conventions are common.
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FIGURE 12.1 Standard deviation σW =
√〈

δ2
W

〉
of the linear matter density field at z = 0 smoothed with real-space

tophat and sharp-k filters, as a function of the smoothing scale R. When filtered on a large scale, the fluctuations
of the density field are small, while fluctuations on small scales become large. Evaluating the black solid curve

at R = 8h−1 Mpc yields the commonly used amplitude parameter σ8. We also show the RMS value
√〈

�2
W

〉
of the

gravitational potential multiplied by 104. The potential fluctuations are very small on all scales.

Clearly, we have to do better. Notice also that the precise filter shape is not important for
this conclusion, as any reasonable filter leads to the same trend.

We can also compute the variance of metric perturbations � as a function of scale. This
is also shown in the figure. Interestingly, the typical potential fluctuations remain small,
� 10−4, on all scales.3 This is easy to understand: the integral in Eq. (12.4) is dominated by
high wavenumbers k, and peaks near the scale picked out by the filter W . On small scales,
then, the integral is dominated by contributions where k � aH ∼ 3 · 10−4 h Mpc−1, that
is, spatial scales that are much smaller than the Hubble radius. Then, the first term in the
Poisson equation (12.1) is by far the dominant one (note that �′ is at most of order (a′/a)�),
and it simply becomes

−k2� = 4πGa2ρmδm. (12.5)

This is the well-known Poisson equation of Newtonian gravity, with additional factors of a

because the wavenumber k is in comoving units. Thus, the magnitude of �(k) is propor-
tional to δm(k)/k2, and so is highly suppressed compared to the density on small scales.
This explains why the typical potential fluctuations in the universe remain small even
though density fluctuations become large. Another way to see the same result is to recall
the evolution of potential and density during matter domination: the potentials remain
constant, while the density perturbations grow as the linear growth factor D+(η) ∝ a(η).

We can use this result to our advantage. First, given the smallness of spacetime pertur-
bations, we can continue to work to linear order in the potential �. This means that the

3
Technically,

〈
�2

W

〉
diverges logarithmically when including modes with k → 0. Only potential perturbations

within our current horizon are observable, so we have used a cutoff kmin = 10−4 hMpc−1. The precise value of
this cutoff has a very small impact on the numerical result.



Chapter 12 • Growth of structure: beyond linear theory 329

linear-order Einstein equations we have derived in Ch. 6 are sufficient. Second, since non-
linear evolution is relevant only on small scales (compared to the Hubble radius), we can
employ the Newtonian limit of the relevant Einstein equation, i.e. Eq. (12.5). This greatly
simplifies the gravity side of the problem, and we can devote our attention to the dynamics
of matter. The latter approximation is better than it seems: Eq. (12.5) retains its validity on
all scales in matter domination if δm is the density perturbation in synchronous-comoving
gauge. The latter coordinates are defined by g00 = −1 (i.e. no time-time perturbation, so
that the time coordinate is the proper time: synchronous; see Exercise 5.1), and no ve-
locities um = 0 (comoving). As long as we keep this interpretation of δm in mind in the
following, the results of perturbation theory and simulations that we will obtain are valid
on all scales, including those comparable to the horizon.

We now want to extend Eq. (12.1) to nonlinear order. To do this, let us go back to the
starting point of these equations, which we obtained by taking moments of the Boltzmann
equation. So we need an expression for the Boltzmann equation that is not restricted to
small perturbations, but applies to non-relativistic matter on sub-horizon scales. We begin
with the general collisionless Boltzmann equation written in Cartesian form:

dfm

dt
= ∂fm

∂t
+ ∂fm

∂xi

dxi

dt
+ ∂fm

∂pi

dpi

dt
= 0, (12.6)

where fm is the distribution function for matter. Now, using the fact that matter is moving
slowly, we expand E(p) = m + p2/2m and keep only the leading terms in p/m. This yields
dxi/dt = pi/am from the geodesic equation. The term dpi/dt is also straightforward, start-
ing from Eq. (3.69):

dpi

dt
= − (

H + �̇
)
pi − E

a
�,i − 1

a

pi

E
pk�,k + p2

aE
�,i

→ −Hpi − m

a
�,i (non-relativistic, sub-horizon). (12.7)

All other terms are either suppressed on small scales (�̇) or negligible due to the small
velocities (terms of order p2/E). Inserting these results into the Boltzmann equation, we
obtain

dfm

dt
= ∂fm

∂t
+ ∂fm

∂xj

pj

ma
− ∂fm

∂pj

[
Hpj + m

a

∂�

∂xj

]
= 0. (12.8)

Let us recap the significance of this result: Eq. (12.8) does not assume that the distribution
function is close to its value in the homogeneous universe. It does assume small spacetime
perturbations, which we have found to be an excellent approximation on all scales. The
same reasoning that simplified the 00-component of the Einstein equation to Eq. (12.5)
allowed us to drop the �̇ term, which is at most of order aH�, and hence much smaller
than the ∂�/∂xj contribution, which is of order k�.

The coupled set of Eq. (12.8) and Eq. (12.5) forms the starting point for the nonlinear
evolution of matter. It is known as the Vlasov–Poisson system. A nonlinear system (through
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the coupling between � and fm) of integro-differential equations (because δm is an integral
over the distribution function fm) in 6 + 1 dimensions, it is notoriously difficult to solve.
The following sections will deal with perturbative as well as numerical techniques to solve
it.

The perturbative approach proceeds as we have done in previous chapters: by taking
moments of the Boltzmann equation. In the linear regime that we studied so far, the dis-
tribution function fm was completely described by its zeroth (density) and first moments
(velocity). Physically, this means that the second moment, the velocity dispersion, is van-
ishingly small. Then the distribution function can be written as

fm(x,p, t) = ρm(x, t)

m
(2π)3δ

(3)
D (p − mum(x, t)) (no velocity dispersion), (12.9)

where we have absorbed the irrelevant degeneracy factors of CDM and baryon species into
fm. You can think of this as arising from a thermal velocity distribution at each point cen-
tered around um(x, t) when taking the limit of zero temperature. It is important to realize,
however, that the form of the distribution function Eq. (12.9) does not remain valid once
structure becomes nonlinear. We will study in more detail how this happens in Sect. 12.3.
First though, let us see how far we get with the ansatz of vanishing velocity dispersion.

12.2 Perturbation theory
The starting point of perturbative approaches to the nonlinear growth of structure is to
take moments of the Vlasov equation; that is, we follow the same basic approach we took
in Ch. 5. For any function A(x,p, t) defined on 6 + 1 dimensional phase space, we can
define the momentum average

〈A〉fm (x, t) ≡
∫

d3p

(2π)3
A(x,p, t)fm(x,p, t), (12.10)

which now is only a function of position and time. Again, we absorb any degeneracy factors
into fm; there are no collision terms where they could become relevant. Choosing A = 1
then simply gives us the number density:

〈1〉fm (x, t) = n(x, t) = ρm(x, t)

m
. (12.11)

Equivalently, 〈m〉fm yields the mass density ρm(x, t), which is more useful in practice. Sim-
ilarly, we define the bulk or fluid velocity as the momentum average of pi , normalized by
the density:

ui
m(x, t) ≡

〈
pi

〉
fm

〈m〉fm

. (12.12)

Let us now take the momentum average
∫

d3p/(2π)3 of the Vlasov equation (12.8), multi-
plied by m, thus taking the zeroth moment of the Vlasov equation. We can always pull out
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derivatives with respect to t and x outside the momentum integral, to obtain

∂

∂t
ρm(x, t) + 1

a

∂

∂xj

[
ρm(x, t)u

j
m(x, t)

]
−

∫
d3p

(2π)3
m

[
Hpj + m

a

∂�

∂xj

]
∂

∂pj
fm(x,p, t) = 0,

(12.13)

where we have used that
〈
pj

〉
fm

= ρmu
j
m. The last term can be integrated by parts to move

the derivative with respect to pj from fm to the term in square brackets (the boundary
term vanishes, since any well-behaved distribution function does not have particles at in-
finite momentum). Evaluating this derivative, we obtain, first, −∂/∂pj (Hpj ) = −3H , while
∂/∂pj (∂�/∂xj ) = 0, since the potential � is only a function of t and x. Thus, Eq. (12.13)
becomes

∂

∂t
ρm(x, t) + 1

a

∂

∂xj

[
ρm(x, t)u

j
m(x, t)

]
+ 3Hρm(x, t) = 0. (12.14)

Modulo an overall factor m, this is the continuity equation whose linear version is
Eq. (5.41), but now valid at fully nonlinear order (and on sub-horizon scales).

As in the linear case, Eq. (12.14) is not sufficient, since we need an equation for the
velocity ui

m as well. Let us thus take the first moment of the Vlasov equation (12.8), by
multiplying with pi and integrating over p:

∂

∂t

[
ρmui

m(x, t)
]
+ 1

ma

∂

∂xj

〈
pipj

〉
fm

−
∫

d3p

(2π)3
pi

[
Hpj + m

a

∂�

∂xj

]
∂

∂pj
fm(x,p, t) = 0.

(12.15)

The last term can again be dealt with by integration by parts, and we obtain

∂

∂t

[
ρmui

m(x, t)
]
+ 1

ma

∂

∂xj

〈
pipj

〉
fm

+ 4Hρmui
m(x, t) + 1

a
ρm(x, t)

∂�(x, t)

∂xi
= 0. (12.16)

This is our desired equation for ui
m, but we now encounter another quantity, the second

moment of the distribution
〈
pipj

〉
fm

. Let us write this as follows, introducing the stress ten-

sor σ
ij
m(x, t):

1

m

〈
pipj

〉
fm

= ρmui
mu

j
m + σ

ij
m . (12.17)

As with ui
m and pi , we do not need to distinguish between upper and lower latin indices on

σ
ij
m. At this point, this is nothing but a definition for σ

ij
m, but we will learn the significance

of this decomposition in a moment. Inserting this into Eq. (12.16), we obtain

∂

∂t

[
ρmui

m(x, t)
]
+ 1

a

∂

∂xj

[
ρmui

mu
j
m + σ

ij
m

]
+ 4Hρmui

m(x, t) + 1

a
ρm(x, t)

∂�(x, t)

∂xi
= 0.

(12.18)
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This equation becomes much more familiar if we subtract the continuity equation (12.14),
multiplied by ui

m, from it:

ρm
∂

∂t
ui

m + 1

a
ρmu

j
m

∂

∂xj
ui

m + Hρmui
m + 1

a
ρm

∂�

∂xi
+ 1

a

∂

∂xj
σ

ij
m = 0. (12.19)

Finally, simply dividing by ρm leaves us with the Euler equation in the expanding universe:

∂

∂t
ui

m + 1

a
u

j
m

∂

∂xj
ui

m + Hui
m + 1

a

∂�

∂xi
+ 1

ρma

∂

∂xj
σ

ij
m = 0. (12.20)

Again, this generalizes our previous result Eq. (5.50) to nonlinear order, but restricting to
sub-horizon scales. The first two terms correspond to the convective or material derivative
∂/∂t +u

j
m∂/∂xj acting on the velocity ui

m; note that this includes a nonlinear term. The third
term is the Hubble drag which, in the absence of any perturbations, leads to a decay in the
velocity proportional to 1/a. The fourth term is the effect of gravity, which is the same as at
linear order and looks precisely like the result in Newtonian gravity, once converting from
comoving coordinates xi to physical distance intervals given by dri = adxi . All of these look
familiar, or are equivalent to what we obtained in Sect. 5.4 when restricting to linear order.

Finally, we have the contribution from the stress tensor. Assume for a moment that
it is diagonal, so that we can write σ

ij
m(x, t) = Pm(x, t)δij . Then, the last term becomes

∂Pm/∂xi/(ρma), which is precisely the contribution of pressure to the Euler equation.
Thus, σ

ij
m encodes generalized pressure forces. But shouldn’t cold matter have zero pres-

sure? Indeed, it is easy to verify (Exercise 12.1) that if we insert a “cold” distribution
function of the form Eq. (12.9) into Eq. (12.17), we obtain σ

ij
m = 0. Thus, it is a standard

assumption to drop the stress tensor from the Euler equation. Then, we are left with three
equations—continuity, Euler, and Poisson—for three unknowns: ρm, ui

m, �, which form a
closed system. Let us thus proceed in solving this set of equations, and return to the ques-
tion of whether we can truly neglect σ

ij
m at the end.

Our first step is to remove the homogeneous part of the continuity equation, since the
spatially constant background density does not have a dynamical effect (it does not source
the gravitational potential �). For this, we use the definition of δm through ρm(x, t) =
ρm(t)[1 + δm(x, t)]. The continuity equation in the background is ∂ρm/∂t + 3Hρm = 0, so
we subtract this, multiplied by a factor 1 + δm,

[1 + δm(x, t)]
[

∂

∂t
ρm(t) + 3Hρm(t)

]
= 0, (12.21)

from Eq. (12.14), to obtain

ρm
∂

∂t
[1 + δm(x, t)] + ρm

a

∂

∂xj

[
(1 + δm)u

j
m(x, t)

]
= 0. (12.22)

We can now divide by ρm to obtain the continuity equation relating δm and ui
m. Finally, let

us use conformal time. Multiplying the equation by a, we obtain the following set of our
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three equations to solve:

δm
′ + ∂

∂xj

[
(1 + δm)u

j
m

]
= 0,

ui
m

′ + u
j
m

∂

∂xj
ui

m + aHui
m + ∂�

∂xi
= 0,

∇2� = 3

2
�m(η)(aH)2δm. (12.23)

In the last line, we have used the definition of the time-dependent density parameter �m(η)

to replace 4πGρm with (3/2)�m(η)H 2(η). �m(η) is to be distinguished from our convention
�m = �m(η0) up to now. We will use �m(η) only in this section, since it is very convenient,
and revert back to the �m = �m(η0) convention after; bear in mind, however, that the use
of a time-dependent �m is quite common in the literature.

We have thus reduced the 6 + 1-dimensional Vlasov–Poisson system of integro-diffe-
rential equations into the Euler–Poisson system of coupled partial differential equations
in 3 + 1 dimensions—a significant simplification! Next, let us introduce the velocity diver-
gence θm ≡ ∂iu

i
m, and take the divergence of the Euler equation. Further, let us move those

terms that are nonlinear in the variables we wish to solve for to the right-hand side:

δm
′ + θm = −δmθm − u

j
m

∂

∂xj
δm,

θm
′ + aHθm + ∇2� = −u

j
m

∂

∂xj
θm − (∂iu

j
m)(∂ju

i
m). (12.24)

Unfortunately, this is still a coupled system of nonlinear partial differential equations
which in general cannot be solved in any closed form. However, we will see that the sim-
plicity of the matter-dominated universe allows us to make progress in an approximate
way.

If we set the right-hand sides of the continuity and Euler equations to zero, we recover
the linear set of equations we solved to obtain the growth factor in Sect. 8.5. That is, the
solution for the density was simply proportional to the initial density field, with a time-
dependent proportionality constant which we called the growth factor D+(η):

δm(x, η) = δ(1)(x, η) ≡ D+(η)δ0(x), (12.25)

where δ0(x) = δm(x, ηref)/D+(ηref) is the scaled density field at some arbitrary, but fixed
reference epoch ηref. The linear continuity equation yields

θ(1)(x, η) = −δ(1)′(x, η) = −aHf (η)δ(1)(x, η), (12.26)

where f = d lnD+/d lna is the growth rate we introduced in Sect. 8.5. You might have no-
ticed a subtle assumption we have made in going from Eq. (12.23) to Eq. (12.24): by taking
the divergence of the Euler equation, we have neglected the curl part of the velocity, or
vorticity, ωm = ∇ × um. As we have seen in Ch. 8, the growing-mode solution Eq. (12.25)
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corresponds to a longitudinal, i.e. curl-free velocity field. In fact, you can show in Exer-
cise 12.2 that the vorticity is not sourced in the system Eq. (12.23) even at nonlinear order.
This means that it keeps decaying (ωi

m ∝ 1/a) and can be neglected here.
Eq. (12.24) now suggests an iterative approach to the solution: our linear solution was

obtained neglecting the nonlinear terms on the right-hand side. Our next approximation
is to insert the linear solution into the nonlinear terms:

δ(2)′ + θ(2) = −δ(1)θ (1) − (u(1))j
∂

∂xj
δ(1),

θ (2)′ + aHθ(2) + 3

2
�m(η)(aH)2δ(2) = −(u(1))j

∂

∂xj
θ(1) − [∂i(u

(1))j ][∂j (u
(1))i], (12.27)

where we have used the Poisson equation for �(2),

∇2�(2) = 3

2
�m(η)(aH)2δ(2). (12.28)

This is now an inhomogeneous but still linear system of partial differential equations for
δ(2), θ(2). In fact, it can be turned into a system of ordinary differential equations and then
solved. We will see how this miracle happens in a moment. Eq. (12.27) shows that δ(2) and
θ(2) are sourced by terms that involve the square of the linear fields. Then, on large scales
where these linear fields are small (see Fig. 12.1), the source terms will be even smaller so
that δ(2) is a small correction to δ(1). The end result we are aiming for, then, is to expand the
nonlinear field δm as

δm(x, η) = δ(1)(x, η) + δ(2)(x, η) + · · · + δ(n)(x, η),

θm(x, η) = θ(1)(x, η) + θ(2)(x, η) + · · · + θ(n)(x, η), (12.29)

where the source terms for δ(n), θ(n) involve n powers of the linear fields, and so each
term in the series Eq. (12.29) is smaller than the previous one. As long as this holds, our
perturbation-theory prediction for δm and θm should become more and more accurate as
we increase n, i.e. include more higher-order terms. Computing the terms in the expansion
Eq. (12.29), and determining the scales on which this expansion is valid, are the main goals
of the perturbative approach to nonlinear large-scale structure. Notice that, starting from
Eq. (12.25), we have dropped the subscripts “m” on δ(n), θ(n) for notational clarity, since we
deal exclusively with the matter fields in the following.

To begin, let us transform Eq. (12.27) to Fourier space, x → k. The left-hand sides are
easy to transform, since they are linear. The real-space products on the right-hand side
turn into convolutions in Fourier space, where the linear density, velocity, and potential
are simply related in Fourier space:

(u(1))i(k, η) = iki

k2
aHf δ(1)(k, η),

�(k, η) = −3

2
�m(η)

(aH)2

k2
δm(k, η). (12.30)
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Very importantly, the last relation holds not only for �(1), but at any order, because the
Poisson equation is linear (as we are in the weak-gravity regime); we already used this fact
for �(2). We thus obtain, using Eq. (12.25),

δ(2)′(k, η) + θ(2)(k, η) =
∫

d3k1

(2π)3

∫
d3k2

(2π)3
(2π)3δ

(3)
D (k − k1 − k2)

× aHf D2+(η)

[
1 + k1 · k2

k2
1

]
δ0(k1)δ0(k2),

θ ′ (2)(k, η) + aHθ(2)(k, η) + 3

2
�m(η)(aH)2δ(2)(k, η)

= −
∫

d3k1

(2π)3

∫
d3k2

(2π)3
(2π)3δ

(3)
D (k − k1 − k2)

× (aHf )2D2+(η)

[
k1 · k2

k2
1

+ (k1 · k2)
2

k2
1k2

2

]
δ0(k1)δ0(k2). (12.31)

In Exercise 12.3, you will fill in the intermediate steps we have skipped here, a very useful
exercise for gaining proficiency in the real space–Fourier space correspondence. Notice
that the complicated convolution integrals on the right-hand side do not depend on time;
we can pull out the time-dependent factors involving aHf and D+.

In fact, we can make the equations even easier to solve by using the logarithm of the
growth factor lnD+ as new time variable. Then

δm
′ = d lna

dη

d lnD+
d lna

∂

∂ lnD+
δm = aHf

∂

∂ lnD+
δm.

While ∂δ(1)/∂ lnD+ = δ(1) is simple enough, our goal is to derive the time evolution of δ(2).
Eq. (8.75) for the growth factor can be used to show that (Exercise 12.4)

d(aHf )

dη
= (aH)2

(
3

2
�m(η) − f (η) − f 2(η)

)
. (12.32)

Finally, we define the scaled velocity divergence θ̂ ≡ θm/(aHf ). With this, we obtain a sim-
pler set of equations (again, Exercise 12.4):

d

d lnD+
δ(2)(k,D+) + θ̂ (2)(k,D+) = D2+Sδ(k)

d

d lnD+
θ̂ (2)(k,D+) +

(
3

2

�m(D+)

f 2(D+)
− 1

)
θ̂ (2)(k,D+) + 3

2

�m(D+)

f 2(D+)
δ(2)(k,D+) = D2+Sθ (k).

(12.33)
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Here, the time-independent source terms are given by

Sδ(k) =
∫

d3k1

(2π)3

∫
d3k2

(2π)3
(2π)3δ

(3)
D (k − k1 − k2)

×
[

1 + k1 · k2

k2
1

]
δ0(k1)δ0(k2),

Sθ (k) = −
∫

d3k1

(2π)3

∫
d3k2

(2π)3
(2π)3δ

(3)
D (k − k1 − k2)

×
[

k1 · k2

k2
1

+ (k1 · k2)
2

k2
1k2

2

]
δ0(k1)δ0(k2). (12.34)

In the �CDM cosmology and dark energy cosmologies with similar expansion histories, it
turns out that the quantity �m(η)/f 2(η) is very close to 1. Recall from Eq. (8.78) that the
growth rate can be well approximated by f (η) � [

�m(η)
]0.55. Thus, it is a good approxima-

tion (in practice, better than 1% in δ(2), θ (2)), to set this ratio to unity. Then, the only terms
in Eq. (12.33) that depend explicitly on time (via D+) are the source terms. Let us then make
the following power-law ansatz:

δ(2)(k,D+) = Aδ(k)Dn+; θ̂ (2)(k,D+) = Aθ(k)Dn+. (12.35)

Inserting this into Eq. (12.33) yields

nAδD
n+ + AθD

n+ = D2+Sδ,

nAθD
n+ + 1

2
AθD

n+ + 3

2
AδD

n+ = D2+Sθ . (12.36)

Clearly, for this to hold at all times D+, we need n = 2. With this, solving for Aδ and Aθ yields

Aδ(k) = 5

7
Sδ(k) − 2

7
Sθ (k),

Aθ (k) = −3

7
Sδ(k) + 4

7
Sθ (k). (12.37)

Note that this is only one, the fastest-growing solution, but this is the one we are interested
in anyway. Going back to conformal time η, we can thus write

δ(2)(k, η) = D2+(η)

∫
d3k1

(2π)3

∫
d3k2

(2π)3
(2π)3δ

(3)
D (k − k1 − k2)

× F2(k1,k2)δ0(k1)δ0(k2),

θ(2)(k, η) = aHf θ̂(2) = −aHf D2+(η)

∫
d3k1

(2π)3

∫
d3k2

(2π)3
(2π)3δ

(3)
D (k − k1 − k2)

× G2(k1,k2)δ0(k1)δ0(k2), (12.38)
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where

F2(k1,k2) = 5

7
+ 2

7

(k1 · k2)
2

k2
1k2

2

+ 1

2
k1 · k2

(
k1

k2
+ k2

k1

)
,

G2(k1,k2) = 3

7
+ 4

7

(k1 · k2)
2

k2
1k2

2

+ 1

2
k1 · k2

(
k1

k2
+ k2

k1

)
. (12.39)

We have symmetrized these kernels in k1, k2 for convenience, since they are integrated
against a symmetric integrand in Eq. (12.38).

We have thus obtained a closed-form solution for the second-order density and veloc-
ity fields, given the linear density field at a reference epoch δ0(k). This procedure can be
straightforwardly continued to higher order. For example, the equation for δ(3), θ̂ (3) looks
exactly like Eq. (12.33) on the left-hand side; the source terms on the right-hand side now
involve products of δ(1) and δ(2), θ̂ (2), and scale as D3+(η). Approximating �m/f 2 = 1 again,
the equations can be integrated analytically leading to δ(3), θ̂ (3) ∝ D3+. This continues to
any higher order, and the nth order solution can be written as

δ(n)(k, η) = Dn+(η)

[
n∏

i=1

∫
d3ki

(2π)3

]
(2π)3δ

(3)
D

(
k −

n∑
i=1

ki

)

× Fn(k1, · · · ,kn)δ0(k1) · · · δ0(kn),

θ(n)(k, η) = aHf θ̂(n) = −aHf Dn+(η)

[
n∏

i=1

∫
d3ki

(2π)3

]
(2π)3δ

(3)
D

(
k −

n∑
i=1

ki

)

× Gn(k1, · · · ,kn)δ0(k1) · · · δ0(kn). (12.40)

This trivially holds for n = 1 (linear order) as well if we define F1 = G1 = 1. Notice that
the nth order density and velocity fields involve precisely n powers of the linear matter
density δ0, as anticipated in the discussion below Eq. (12.29). The kernels Fn, Gn are fully
symmetric polynomials in their arguments, and can be computed iteratively order by order
(for convenient recurrence relations, see Bernardeau et al., 2002).

This very neat result allows us to explicitly calculate how structure in the universe
evolves nonlinearly. There is in fact an intuitive representation of the perturbative expan-
sion in terms of diagrams, as shown in Fig. 12.2, which is closely analogous to the Feynman
diagrams of quantum field theory. The second-order density field δ(2) is constructed by
joining two instances of the initial (linear) density field with an F2 kernel. Similarly, the
nth order field is made by joining n initial density fields with the nth order kernel Fn. The
analogous rules hold for the expansion of the velocity divergence.

Most importantly, the perturbation-theory prediction Eq. (12.40) allows us to compute
the statistics of the nonlinear, evolved density in terms of the statistics of the linear field
δ0(k). The power spectrum of δm(k) can be written as

〈
δm(k, η)δm(k′, η)

〉 = n+l even∑
n,l=1,2,.···

〈
δ(n)(k, η)δ(l)(k′, η)

〉
. (12.41)



338 Modern Cosmology

FIGURE 12.2 Diagrammatic representation of the second-order density field δ(2) (left) and the nth order density field
(right). In each case, the final density field is connected to n initial density fields by the interaction kernel Fn (with
n = 2 in the case of δ(2)). Analogous diagrams describe the velocity divergence θ(n) in terms of kernels Gn. Here we
suppress the time arguments for clarity.

Now, this result is not very practical, since we have to sum over infinitely many terms. In
fact, perturbation theory makes sense only if we can truncate the sum after a finite number
of terms, and the discarded terms are smaller than the ones we include. So let us look at
the first three terms in the sum:

〈
δm(k, η)δm(k′, η)

〉 = D2+(η)
〈
δ0(k)δ0(k

′)
〉

+
〈
δ(2)(k, η)δ(2)(k′, η)

〉
+ 2

〈
δ(1)(k, η)δ(3)(k′, η)

〉
+ · · · . (12.42)

The first line contains the linear power spectrum at time η. The terms in the second line
make up the leading nonlinear correction to the matter power spectrum, i.e. the next-to-
leading order (NLO) matter power spectrum. They can be expanded using the fact that δ0

is a Gaussian field (see Box 12.1); in fact we have already dropped terms that involve three
fields δ0 in Eqs. (12.41)–(12.42), since they vanish.

12.1 Gaussian random fields
In cosmology, we usually compress the information in fields such as the matter density field
into summary statistics, like the by-now familiar matter power spectrum. We have learned that
the linear matter density δ0 is a Gaussian random field, a property inherited from the quan-
tum fluctuations during inflation. Let us now define this more precisely. We begin in real space.
A general Gaussian random field δ0(x) with vanishing mean is completely specified by its two-
point correlation function,

〈δ0(x1)δ0(x2)〉 = ξ(x1 − x2), (12.43)

which could be isotropic, ξ(r) = ξ(|r|), but it does not have to be (while ξ(−r) = ξ(r) has to
hold by symmetry). The expectation value of three fields, and in fact any odd number of fields,
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vanishes:

〈δ0(x1)δ0(x2)δ0(x3)〉 = 0. (12.44)

The expectation value with four fields is nonzero, but completely determined by ξ(r):

〈δ0(x1)δ0(x2)δ0(x3)δ0(x4)〉 = ξ(x1 − x2)ξ(x4 − x3) + ξ(x1 − x3)ξ(x4 − x2)

+ ξ(x1 − x4)ξ(x3 − x2), (12.45)

where the three terms arise from the three distinct possibilities of combining the four fields
into two pairs, which each yield a correlation function via Eq. (12.43). This expansion by pairing
fields similarly works for any higher, even number of fields, and it is known as Wick’s theorem.
The Fourier-space counterparts to Eqs. (12.43)–(12.45) can be derived straightforwardly by tak-
ing the Fourier transform (we in fact highly recommend readers to go through these steps). We
obtain 〈

δ0(k)δ0(k′)
〉 = (2π)3δ

(3)
D (k + k′)P (k), (12.46)

where P(k) is the Fourier transform of ξ(r), and

〈δ0(k1)δ0(k2)δ0(k3)〉 = 0

〈δ0(k1)δ0(k2)δ0(k3)δ0(k4)〉 = (2π)6δ
(3)
D (k1 + k2)δ

(3)
D (k3 + k4)P (k1)P (k3)

+ (2π)6δ
(3)
D (k1 + k3)δ

(3)
D (k2 + k4)P (k1)P (k2)

+ (2π)6δ
(3)
D (k1 + k4)δ

(3)
D (k2 + k3)P (k1)P (k2). (12.47)

The NLO contributions can be evaluated directly by inserting the solution Eq. (12.40),
and using Wick’s theorem Eq. (12.47). Again, the diagrammatic representation illustrates
this formalism intuitively (Fig. 12.3): the power spectrum correlates two evolved density
fields. Our goal is to connect them using their relation to the linear density fields shown in
Fig. 12.2. So, we contract the instances of the linear density field in pairs, where each pair
results in a linear power spectrum PL. The simplest way to connect is to just directly pair
the final density fields. This is the leading, “tree-level” contribution, which is the linear
power spectrum PL(k). There are two ways to connect the evolved field using four linear
fields, yielding two linear power spectra, which are the two contributions making up the
next-to-leading order in Eq. (12.42). Analogous to the Feynman diagrams of field theory,
there are precise rules underlying the diagrams (deriving these rules is left as an exercise to
the field-theory-inclined reader), which offer an efficient shortcut to the underlying equa-
tions. Alternatively, one can go ahead and compute directly using Wick’s theorem, which
at this order is not much slower.

As you will derive in Exercise 12.5, the result is

P(k,η) = PL(k, η) + P NLO(k, η) + · · · , (12.48)

P NLO(k, η) = P (22)(k, η) + 2P (13)(k, η),
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FIGURE 12.3 Diagrammatic representation of the next-to-leading order contributions to the matter power spectrum:〈
δ(2)(k)δ(2)(k′)

〉
(left) and

〈
δ(1)(k)δ(3)(k′)

〉
(right); we again suppress the time arguments for clarity. The upper diagrams

show how these contributions can be calculated by connecting the linear density fields δ(1)(k1), · · · δ(1)(k4) appearing
in the expansion of each nonlinear density field via the dashed lines (the kernels are the same as in Fig. 12.2 and
are not labeled). By Wick’s theorem, each connection yields a linear matter power spectrum and a Dirac delta. The
lower diagrams introduce a more standard, and economical representation: now the connection of two linear fields
is represented with an open circle, with each circle corresponding to a linear power spectrum. This representation
makes it clear why these contributions are also called “1-loop” contributions. Each loop in a diagram corresponds to
one integral over wavenumber (in the lower diagrams, p denotes the loop wavenumber).

where

P (22)(k, η) = 2
∫

d3p

(2π)3

[
F2(p,k − p)

]2
PL(p,η)PL(|k − p|, η),

P (13)(k, η) = 3PL(k, η)

∫
d3p

(2π)3
F3(p,−p,k)PL(p,η). (12.49)

Here, we have relabeled the wavenumbers ki that are integrated over as p. Notice that we
have to go to third order to consistently derive the NLO correction to the matter power
spectrum. The result is shown in Fig. 12.4. We see that on large scales (small k), P NLO(k) is
much smaller than the linear power spectrum. That is, nonlinear evolution is only a small
correction to linear evolution. This is the regime where perturbation theory is useful, since
we expect that higher-order terms in the expansion Eq. (12.48) are even smaller.

In fact, we can make this argument more precise. Notice that, as depicted in the bottom
panel of Fig. 12.3, the NLO contributions in Eq. (12.49) both involve what in field theory
is called a loop, an integral over wavenumber (or “momentum”). Since the linear matter
power spectrum does not have a simple shape, this integral has to be performed numer-
ically. In order to identify the relevant parameter controlling the relative size of the NLO
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FIGURE 12.4 Linear and next-to-leading order matter power spectrum [Eq. (12.48)] (top panel), at z = 0 (thick lines)
and z = 1 (thin lines). The bottom panel shows the ratio of the NLO to linear power spectra. Perturbation theory is
expected to break down when the NLO correction becomes of similar magnitude to the linear power spectrum itself,
which in the fiducial cosmology happens for k ≈ 0.3hMpc−1 (z = 0) and k ≈ 0.6hMpc−1 (z = 1), respectively, close to
kNL in each case.

contribution compared to the linear matter power spectrum, we can use the fact that the
perturbation-theory kernels are typically of order one. Then we can guess that this param-
eter is

∼
∫ k d3p

(2π)3
PL(p) = 1

2π2

∫ k

0
p2dpPL(p), (12.50)

which corresponds to the variance of the linear density field filtered on a spatial scale
R ∼ 1/k [cf. Eq. (12.4)]. Perhaps you ask why we cut off the integral over p at the scale k. The
mathematical reason is that the perturbation-theory kernels in Eq. (12.48) are suppressed
when p � k. The physical reason is that very small-scale perturbations to the matter den-
sity field do not influence the large-scale perturbations: the gravitational effect of a clump
of matter, far away from the clump, only depends on its total mass, and is independent of
how the mass is distributed within it. So, very roughly the fractional next-to-leading-order
correction to the linear power spectrum is given by σ 2

R=k−1 . This becomes of order unity
when k � kNL, where recall we have defined the nonlinear wavenumber kNL as the scale
where the dimensionless linear matter power spectrum is equal to 1 (Sect. 8.1.1). Fig. 12.4
confirms this estimate. Notice that the regime where perturbation theory is valid extends
to significantly smaller scales at redshift z = 1 compared to z = 0.

Another important effect of nonlinear evolution is that statistics involving an odd num-
ber of matter density fields no longer vanish. The leading example is the Fourier-space
three-point correlation function, or bispectrum, which is given by

〈δm(k1, η)δm(k2, η)δm(k3, η)〉 = (2π)3δ
(3)
D (k1 + k2 + k3)

× [
2F2(k1,k2)PL(k1, η)PL(k2, η) + 2 perm.

]
. (12.51)
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This again follows from inserting Eq. (12.40), and using Wick’s theorem Eq. (12.47) (Exer-
cise 12.6). Note that the bispectrum is a function of three wavenumbers, and is nonzero
only if these vectorially add up to zero, i.e. they form a closed triangle in Fourier space. The
amplitude of the bispectrum in Eq. (12.51) displays a specific dependence on the shape of
the triangle, which is characteristic of nonlinear gravitational evolution. Eq. (12.51) is only
the leading-order result valid on large scales, and perturbation theory allows us to similarly
calculate the next-to-leading order correction.

We now have all the tools we need to compute the statistics of the evolved matter den-
sity field in perturbation theory. However, before we move on, we should recall that, so far,
we have actually done perturbation theory of the wrong equation: we have treated matter
as an ideal fluid, whereas the real physical system is a collection of collisionless particles
governed by the Vlasov equation. In particular, we have neglected the stress tensor σ

ij
m in

Eq. (12.20). Fortunately, all is not lost: the solution is to treat matter as an effective fluid
(Baumann et al., 2012). In practice, this works by expanding σ

ij
m in terms of the matter den-

sity field itself. Since we cannot predict σ
ij
m from within perturbation theory, we have to

allow for free coefficients that must be determined by other means. The equation for um

involves only the gradient of σ
ij
m, so the homogeneous part of the stress tensor is irrelevant.

Hence, the leading relevant term is proportional to δm and is given by

σ
ij

m,eff(x, η) = δij ρm(η) c2
s,eff(η)δm(x, η), (12.52)

where c2
s,eff is the effective sound speed squared. This notation makes sense: the diagonal

part of the stress tensor corresponds to the pressure, and the sound speed c2
s = ∂p/∂ρ re-

lates pressure perturbations to density perturbations. Note that this is not pressure in the
usual sense as in a gas of collisional atoms. Instead, it corresponds to the effective gravi-
tational action induced by small-scale perturbations. It is straightforward to integrate the
Euler–Poisson system with this pressure term included. At linear order, this yields

δ(1)(k, η) =
[
1 − C2

s (η)k2
]
D+(η)δ0(k), (12.53)

where C2
s (η) is a double time integral (weighted by the growth factor) over c2

s,eff. Notice how
the effective pressure contribution is suppressed at small k, just as the NLO contribution
we computed above. In fact, it is typically of similar order as the latter: on dimensional
grounds, we expect that C2

s ∼ 1/k2
NL, and simulation measurements confirm this. Thus, we

can take into account the non-ideal nature of the effective fluid, i.e. the error we are making
by approximating matter as a fluid, by performing an expansion of the stress tensor, with a
single term being sufficient at the level of the power spectrum at NLO. The coefficient C2

s (η)

cannot be predicted in perturbation theory. In order to determine it, we need to match to
a solution of the actual underlying Vlasov–Poisson system. N-body simulations provide a
means to achieve just that.
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FIGURE 12.5 Illustration of collapse at early times, where the velocity distribution is single-valued (left), and late
times, in the multistreaming regime where fm(x,v, t) has several peaks (right). The dynamics in the stage illustrated
on the left can be described by an effective fluid, the ones on the right cannot. Upper panels: sketch of the config-
uration in real space. Middle panels: velocity distributions at the location of the dashed circles in the corresponding
upper panel. Lower panels: phase-space distribution of matter. The distribution remains localized in a thin sheet.
The vertical lines in each case indicate the location for which the velocity distribution is shown in the middle panels.

12.3 Simulations
In the previous section, we described how taking moments of the Vlasov equation leads
to fluid equations for collisionless matter, which we were then able to solve perturbatively.
However, the fluid equations do not correctly describe the evolution of nonlinear structure
on small scales. We already mentioned this above, but let us study the issue in a bit more
detail. Consider an overdense region that collapses under its own gravity (Fig. 12.5). Ini-
tially, the velocity of matter at the outer edge is single-valued (left middle panel). Eventually
however, this shell encounters a shell that started at a smaller initial radius and already had
time to pass through the origin; since dark matter is collisionless, a shell passes through
the origin unimpeded. Thus, at the instant and location highlighted in the right panels,
commonly called shell crossing, the velocity distribution now has two peaks (right middle
panel), one corresponding to an infalling velocity from the outer shell, and another with
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close to zero velocity from the inner shell. That is, for the location and time shown in the
right panels, the outer shell is still on its first infall, while the inner shell has just reached
vx = 0 and is about to recollapse.

In the fluid treatment, on the other hand, two clouds of mass cannot pass through each
other; instead, the pressure forces ultimately become important and the fluid would pro-
duce a shock. Mathematically, a fluid always has a single well-defined velocity u(x, t) at any
given point in space and time, so cannot describe the multivalued velocity (i.e. distribution
function with several peaks) during shell crossing. This difference is explained by the fact
that, in the fluid description, we have neglected the contribution from the stress tensor σ

ij
m

as well as higher moments of the distribution function fm. On small scales, where shell
crossing happens,4 all moments of the distribution function become important.

What other means do we have to follow the evolution of collisionless matter? Let us go
back to the Vlasov–Poisson system of Eq. (12.8):

∂fm

∂t
+ ∂fm

∂xj

pj

ma
− ∂fm

∂pj

[
Hpj + m

a

∂�

∂xj

]
= 0,

∇2� = 4πGa2
[∫

d3p

(2π)3
fm(x,p, t) − ρm(t)

]
. (12.54)

Our goal is to solve for fm, starting from cold initial conditions as given in Eq. (12.9):

fm(x,p, t)
t→0−→ ρm

m
[1 + δm(x, t)] (2π)3δ

(3)
D (p − mum(x, t)) . (12.55)

This initial condition states that matter occupies a thin sheet in phase space, with a unique
single-valued velocity um(x, t) at each point in space. As fm evolves under gravity, the
velocity will no longer remain single-valued, as explained above, but matter will remain
confined to a thin sheet in phase space, a consequence of the preservation of phase-space
volume discussed in Sect. 3.2.1 (see the lower panels in Fig. 12.5). Whenever two clouds of
matter pass through each other in physical space, this corresponds to a wrapping of the
phase-space sheet.

N-body simulations proceed by discretizing this phase-space sheet and following its
evolution numerically. A small element of the sheet has a well-defined position x and mo-
mentum p. Since the motion of dark matter particles in this small region of phase space
is described by the geodesic equation, so is that of the element of the phase-space sheet
itself:

dxi

dt
= pi

ma
,

dpi

dt
= −Hpi − m

a

∂�

∂xi
. (12.56)

4
The typical distance that a massive particle travels during the age of the universe is of order 10h−1 Mpc (see

also Exercise 11.3), so we are safe from shell crossing on scales larger than this.
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Mathematically, the non-relativistic geodesics are the characteristics of the collisionless
Boltzmann equation. When integrating these equations numerically, it is convenient to
use the “superconformal” momentum pc ≡ ap. With this, the geodesic equation becomes

dxi

dt
= pi

c

ma2
,

dpi
c

dt
= −m

∂�

∂xi
. (12.57)

The advantage of pc is that it is conserved in the absence of perturbations, i.e. when the
gradient of � vanishes. Note that the coordinates x are comoving and thus include the
Hubble expansion. Practitioners usually refer to the elements of the discretized phase-
space sheet as “particles” for simplicity, and we will do so in the following as well. However,
it is important to keep in mind that these do not stand for actual dark matter particles.
Rather, they represent small elements of the dark matter distribution in phase space, which
forms a thin sheet due to the cold nature of dark matter. For this reason, the mass m of the
particles (which we assume here is the same for all particles) is only a numerical param-
eter: it is determined by the total amount of matter in the simulation volume divided by
the number of particles, so a higher-resolution simulation has more particles with corre-
spondingly smaller m.

The basic sequence of an N-body simulation then proceeds as follows. Here, we de-
scribe the so-called leapfrog scheme where density and velocity are given at staggered
times. So, we start with particle positions and velocities

x(i)(t) and p(i)
c (t − �t/2), (12.58)

where �t is the timestep and the superscript denotes the index of the particle. Typical
simulations can have a billion particles or more, a number that is steadily growing with
Moore’s Law. We then

1. Compute the gravitational potential generated by the collection of particles, and take
its gradient to obtain ∇�(x, t) (see text below).

2. Change each particle’s momentum (“kick”) by

p(i)
c (t + �t/2) = p(i)

c (t − �t/2) − m∇�(x(i), t)�t. (12.59)

3. Move each particle position (“drift”) by

x(i)(t + �t) = x(i)(t) + p
(i)
c (t + �t/2)

ma2(t + �t/2)
�t. (12.60)

4. Repeat.

Notice that particle positions and momenta are offset by half a time step. This scheme
ensures that the energy of each particle is conserved to high accuracy (the numerical error
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in the energy is only of order (�t)3). The size of the time step �t used for each particle is
often adjusted to the local acceleration |∇�| to guarantee accuracy in high-density regions.
N-body simulations are typically performed in a cubic volume with periodic boundary
conditions, so that particles exiting the volume on one side re-enter on the other side.
This is appropriate if one aims to simulate a representative volume of a universe which is
statistically homogeneous.

A crucial step in N-body simulations is the calculation of the potential gradient, i.e. the
gravitational forces. Two main classes of algorithms exist: grid-based approaches, and the
tree algorithm. In grid-based approaches, the mass of each particle is deposited on a 3D
grid in order to obtain a smooth density field. The grid can either be of fixed resolution, or
adaptively refined in regions with high particle density. Then, the Poisson equation (sec-
ond line of Eq. (12.54)) is solved for � through a Fast Fourier Transform (FFT) or, in the
case of adaptively refined grids, other fast numerical methods. Finally, the potential gradi-
ent is interpolated to each particle’s position. In the tree algorithm one instead expands the
force in multipoles, and keeps only the effect of the lowest multipoles from distant regions.
Both classes of algorithms employ smoothing (“softening”) of the force on small scales, in
order to avoid direct particle-particle interactions; those would be unphysical since the
“particles” do not in fact stand for physical particles.

The computational cost of both tree and adaptive grid codes scales roughly as N logN

with the particle number N . This is to be contrasted with the cost of a direct summation of
the force exerted on each particle by all other particles, which scales as N2 and would be
prohibitively expensive for simulations containing billions of particles.

Finally, we need to know how to set up the initial conditions of such a simulation. First,
imagine distributing particles uniformly and at rest (in comoving coordinates), for exam-
ple on a grid. A uniform density means that no potential gradient is produced, and the
particles remain at rest. Now we slightly perturb the position of each particle. This leads
to a density field with small perturbations. If we choose the velocities accordingly, we can
generate a linear density field that evolves according to the growing mode of linear pertur-
bation theory (see Exercise 12.7). In practice, the initial displacement field is generated in
Fourier space, by drawing a random number for each Fourier mode from a Gaussian dis-
tribution with mean zero and variance given by the linear displacement power spectrum.
Then, the displacement field is transformed back into real space.

To summarize: in order to perform an N-body simulation, we need (1) the matter den-
sity, determined by �m; (2) the expansion history a(t) or equivalently H(a); and (3) the
linear matter power spectrum from which to generate the initial conditions.

The final result of an N-body simulation is the collection of particle positions and ve-
locities at different points in time (“snapshots”). By assigning particles to a grid, the density
field can be computed, allowing for measurements of statistics such as the matter power
spectrum (more advanced techniques actually use the fact that the particles represent a
phase-space sheet). Moreover, one can search for gravitationally bound clusters of parti-
cles, dark matter halos, which indicate the typical locations of galaxies—although to ac-
tually see galaxies appear, one has to include gas and non-gravitational physics including
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star formation. Finally, one can trace simulated light rays through the simulation volume,
in order to make predictions for gravitational lensing.

Fig. 12.6 shows representations of the density field measured in a high-resolution N-
body simulation. On large scales, we see that structure approaches homogeneity and
isotropy. However, the density field is highly inhomogeneous on smaller scales, forming
halos, filaments, and walls that surround large underdense regions (voids). Even inside
bound halos, a hierarchy of substructure exists (lower panel). This hierarchical structure
is a natural outcome of the amplitude of initial (linear) matter fluctuations as a function
of scale in the concordance cosmology (Fig. 12.1), coupled with evolution under gravity.
The small-scale fluctuations have the largest amplitude and hence collapse first to form
bound structures. They subsequently become part of more massive halos, whereby their
inner cores survive as substructures. Apart from hosting galaxies, halos can be interpreted
as building blocks of the nonlinear structure. Hence, we will focus on them in the next
section.

While the work of running and analyzing the output of N-body simulations is necessar-
ily of numerical nature, the underlying problem and algorithms are simple and beautiful:
solve the evolution of collisionless matter under gravity, starting from Gaussian initial
conditions. Despite the simplicity of the problem, the outcome is remarkably rich and
complex, as Fig. 12.6 shows.

Finally, we should mention the main caveat of the N-body simulations we have de-
scribed here: they include only gravity, and consequently ignore baryonic pressure forces
and the formation of stars and black holes. The latter two are particularly problematic:
massive stars undergo supernova explosions, while black holes launch relativistic jets.
These energetic phenomena can modify the matter distribution on small scales (both
baryons and dark matter, which are coupled by gravity), an effect known as feedback. Since
no cosmological simulation can resolve the formation of individual stars and black holes,
these processes need to be treated with approximate “subgrid modeling.” So, despite the
power of modern simulations, there remains a theoretical uncertainty in how well we can
predict the small-scale clustering of matter. This uncertainty currently is at the level of sev-
eral percent at k � 1hMpc−1, and grows toward smaller scales. In Ch. 13, we will see that
we can in fact measure the small-scale matter power spectrum using lensing, so that the
limits in our understanding of baryonic feedback effects in the power spectrum need to be
taken into account in cosmological constraints from gravitational lensing.

12.4 Dark matter halos
Bound structures are fairly straightforward to identify in N-body simulations: one searches
for the very densest points in the matter distribution, and then evaluates which particles
nearby are gravitationally bound. The latter condition can be evaluated in simulations,
since we can compute the gravitational potential �h of the halo at a given particle’s posi-
tion and compare that with the particle’s kinetic energy (a particle with velocity v is bound
if v2/2 < |�h|). On the other hand, particles are defined as “nearby” either if they are within



348 Modern Cosmology

FIGURE 12.6 Slices of width 15h−1 Mpc through the density field at redshift zero in the Millennium N-body simula-
tion which follows 1010 particles (i.e., phase-space elements). From top to bottom, the different panels zoom in to
show the hierarchical nature of the matter distribution in a �CDM cosmology. The spatial scale is labeled in each
panel. The color scale denotes density in logarithmic units. The simulations shown here are described in Springel et
al. (2005).

a spherical region whose interior density is above some threshold (“spherical overdensity”
algorithm), or if their nearest-neighbor distance to other halo particles is below a threshold
value (“friends-of-friends” algorithm). Crucially, by definition any particle can be part of
only a single halo. For both algorithms, the result is a catalog of halos with various masses,
and various other properties, such as center-of-mass position and velocity.

https://wwwmpa.mpa-garching.mpg.de/galform/virgo/millennium/
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But what is the significance of these structures and why are they called “halos”? The ev-
idence for dark matter from the dynamics of stars and gas within galaxies, and of galaxies
in clusters, goes back to the 1930s. Over the ensuing decades, it became clear that the dark
component that is responsible for the additional gravitational potential has to be far more
extended than the stars and the gas. Thus, the picture of a galaxy embedded in a much
larger surrounding dark structure—the halo—was established. Even though N-body sim-
ulations, which only take into account gravity, do not form galaxies, the bound structures
found in these simulations were soon identified with the halos hosting galaxies. Much ev-
idence has since accumulated for this paradigm. Indeed, it rests on a fairly solid physical
foundation. At high redshifts (around the epoch of reionization), the gas out of which stars
eventually form cools most efficiently in dense regions, and this cooling allows it to col-
lapse to sufficient density to trigger star formation. Hence, all galaxies are hosted by a dark
matter halo of some mass, while the converse does not necessarily hold: there may well be
low-mass halos which do not host a galaxy. Nevertheless, above a certain minimum halo
mass, we believe that the majority of dark matter halos host at least one galaxy. Thus, if
we know (or assume) how galaxies are distributed within halos as a function of halo mass,
we can predict the abundance and clustering of galaxies based on a gravity-only N-body
simulation—an enormous simplification over attempting to simulate the actual formation
of galaxies.

Another application of halos is based on the fact that any particle can be part of only
a single halo. If we further assume that all matter is enclosed in halos of some mass, we
can build the entire matter density field out of the halo density field along with a model for
their inner structure. This approach is referred to as the halo model, and we will return to
it in Sect. 12.7.

12.4.1 Halo masses and profiles

Both of the applications mentioned above are aided by a fortunate fact about halos: while
the detailed structure of individual halos is highly complex, their average properties are
remarkably simple. To zeroth order, the properties of a halo at a given time are determined
by a single number: its mass at that time. Before making use of this fact, we need to think
about how to define a halo’s mass. In simulations, one could strictly define it as the mass
contained in all particles that are gravitationally bound. However, this definition is not
particularly useful for connecting to observations, where we typically measure all visible
or total matter within a given region centered on a halo. A more practical definition of the
halo mass is to include all matter enclosed within a sphere around the halo center that
encloses a fixed density, usually phrased in terms of a number � times the mean matter
density. That is, one finds a radius R� such that

M(< R�)

4πR3
�/3

= � × ρm(t0), (12.61)

where R� is the comoving radius of the sphere (since simulations use comoving coordi-
nates to follow the particles, it is convenient to use the same coordinates when analyzing
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simulations as well). One then defines M� ≡ M(< R�). If � is large, then almost all of the
mass contained within this sphere is also bound to the halo. A typical choice is � = 200,
a number that emerges from an approximate semi-analytic calculation we describe in
Sect. 12.4.2. In the literature you will thus frequently find numbers quoted for R200 and
the associated M200. Note that � is sometimes also defined with respect to the critical den-
sity ρcr, which corresponds in our convention to a � that is larger by a factor 1/�m (we go
back to our convention of �m = �m(t0) from now on).

Dark matter halos exhibit approximately universal spherically-averaged density pro-
files, as first demonstrated by Navarro et al. (1997). They proposed a simple fitting formula
for average halo density profiles (NFW profile):

ρh(r) = ρs

(r/rs)(1 + r/rs)2
, (12.62)

where rs is the scale radius. Notice that this profile is described by two parameters: ρs

and rs . The scale radius is often parametrized by defining the concentration c� ≡ R�/rs .
Then, one can exchange the parameters ρs and rs with the more practical parameters M�

and c�; you will derive this in Exercise 12.8. The concentration c� is useful because it has
been found to depend only weakly on halo mass. Using the density profile Eq. (12.62), it
is then also possible to convert from one halo mass definition (M�,R�) to a different one,
(M�′ ,R�′). However, if you look at Eq. (12.62) carefully, you will realize that this profile can-
not really describe bound halos at large radii: there, ρh ∝ r−3, which means that the halo
mass is logarithmically divergent. Instead, real halo profiles become steeper than the NFW
form at large radii. This steepening typically happens for r � R200.

12.4.2 The halo mass function

The most important statistical property of halos is their abundance. This is typically
phrased as the number density of halos dn/d lnM within an infinitesimal logarithmic mass
bin d lnM , known as the halo mass function, and can be directly measured in simulations.
Moreover, we can indirectly estimate it observationally by using tracers of the underlying
halos. For example, a large galaxy cluster can be identified with a massive halo, and an es-
timate for its mass obtained because the halo mass and the number of member galaxies
are observed to be correlated with one another. We will discuss galaxy clusters, the obser-
vational counterparts to massive halos, in Sect. 12.5.

All rigorous results on dark matter halos need to be derived from full N-body simula-
tions, and this also applies to the halo mass function. However, analytic approaches offer
some neat insights, especially for the most massive and rarest halos which are the ones
that host galaxy clusters. Because they are so rare, their formation can essentially be mod-
eled as being in isolation (in contrast to lower-mass halos, which merge and are influenced
by more massive neighbors).

The simplest halo formation scenario is the collapse of a uniform spherical region. The
setup is illustrated in Fig. 12.7. Imagine a homogeneous universe at an early time tin with
matter density ρm(tin), out of which we cut a sphere of mass M (left panel). What radius in
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FIGURE 12.7 Illustration of spherical collapse. Imagine cutting out a sphere of matter from the otherwise homoge-
neous universe, and compressing it slightly. This region will now begin to collapse, maintaining the enclosed mass
M and the spherical geometry (left, showing a plane projection; the upper right plot shows the density profile as
a function of radius). The physical (rather than comoving) radius r(t) then evolves as the scale factor of an FLRW
universe with a larger density and positive curvature. The evolution of r(t) is shown in the lower right plot. At t = tta,
r(t) reaches turnaround and the region begins to collapse. Collapse r = 0 is reached at t � 2tta.

the unperturbed universe encloses a mass M? The mean density enclosed within a spher-
ical region of comoving radius R is

ρm(t0) = �mρcr = M

4πR3/3
. (12.63)

This relation defines the Lagrangian radius RL associated with the mass M :

RL(M) = 1.40h−1 Mpc
(

M

1012 h−1 M�

)1/3

, (12.64)

where we used the value �m = 0.31 of the fiducial cosmology. The Hubble constant drops
out of this expression thanks to the units of h−1 Mpc and h−1 M�. RL is equivalent to R�

with � = 1. So if we imagine assembling a halo of mass M ∼ 1012 h−1 M�, which is roughly
the Milky Way’s halo mass, from the uniform matter density, we have to collect matter from
within a comoving radius of about 1h−1 Mpc. Correspondingly, to form a massive halo
hosting a galaxy cluster with M ∼ 1015 h−1 M� we have to take matter from a region with ra-
dius 10h−1 Mpc. The name “Lagrangian radius” reflects what we just said: if we follow the
constituent particles of the halo back to the initial conditions, then RL(M) is roughly the
comoving size of the region that contains these particles, simply because the entire matter
density field was close to the mean density initially. The comparison with Eq. (12.61) shows
that RL(M�) = �1/3R� for halos identified with an interior density of � × ρm(t0).

Now let us go back to the evolution of an initially slightly overdense homogeneous
spherical region, with comoving radius RL. The first crucial observation is that the mass
M is conserved, since none of the matter in the interior can escape to the outside, nor can
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other material fall in; both of these are consequences of the spherically symmetric setup.
From the point of view of an observer inside the overdense region making local measure-
ments, this homogeneous region is indistinguishable from an FLRW universe with a higher

background density ρ̃m (marked by “ ˜FLRW” in Fig. 12.7). Let us then apply the second
Friedmann equation (3.90) to this region:

¨̃a
ã

= −4πG

3

[
ρ̃m + 3P

]
, (12.65)

where the dots refer to ordinary time derivatives as before and now ρ̃m and P are the ho-
mogeneous density and pressure within the region. The only source of pressure P is the
cosmological constant �, and this is the same as in the background universe. The physical
(not comoving) radius r(t) is proportional to the local scale factor within the overdensity,
so we obtain

r̈

r
= −4πG

3

[
M

4πr3(t)/3
− 2ρ�

]
. (12.66)

which becomes

r̈(t) = − GM

r2(t)
+ 8πG

3
ρ�r(t). (12.67)

This is just the Newtonian equation of motion for a spherical mass of radius r(t), aug-
mented with the repulsive force due to the accelerated expansion caused by the cosmo-
logical constant or dark energy (note the opposite sign of this force, and that it increases
with radius). Our initial condition for r(t) at the early time tin, where the overdensity of the
region is negligibly small, then is r(tin) = a(tin)RL, the factor of a resulting from the con-
version from comoving to physical radius. Similarly, ṙ(tin) = ȧ(tin)RL = H(tin)r(tin), i.e. the
region participates in the background Hubble flow.

Nothing stops us now from solving Eq. (12.67) numerically. However, if we drop the ρ�

term, then the equation is solvable analytically (see Exercise 12.9). The solution is para-
metric, that is, radius and time are given as functions of a parameter θ :

r(t) = rta

2
(1 − cos θ),

t = tta

π
(θ − sin θ). (12.68)

This solution is shown in the lower right panel of Fig. 12.7 and is straightforward to in-
terpret. Initially, r(t) is small and increasing since the region participates in the Hubble
expansion; recall that r is the physical radius. When t approaches the turnaround time tta,
ṙ goes through zero and becomes negative: the region begins to collapse. Collapse (r = 0)
occurs precisely at t = 2tta.

The parameters rta and tta depend on the size and initial overdensity of the region. Since
we are able to calculate the statistics of the density field at early times, when linear pertur-
bation theory applies, we would like to determine what initial overdensity is needed so that
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collapse occurs at a given time t . One finds (see Exercise 12.9) that if the initial overdensity
evolved forward using the linear growth factor, δ

(1)
RL

(t), exceeds a value of

δ
(1)
RL

(t) > δcr = 3

5

(
3π

2

)2/3

� 1.686, (12.69)

then the region has collapsed by time t , i.e. it has reached r = 0. This is known as the spher-
ical collapse threshold, and serves as a guide as to which regions in a given initial (linear)
density field might collapse to form halos. Remarkably, the collapse threshold does not de-
pend on the size and hence mass of the collapsing region. This is a consequence of the
scale-free nature of a Euclidean matter-dominated universe. One can also estimate (Ex-
ercise 12.9) what the typical overdensity within r(t) is when the spherical halo virializes,
using the fact that virialization requires that the kinetic energy is −1/2 of the potential en-
ergy. Again, the result is independent of the size and mass of the region, and one finds
�vir = 18π2 � 180. This provides the motivation for choosing � = 200 as the threshold den-
sity for defining halo mass and radius (given the rough nature of this approximation, it has
become standard to choose the nearest round number for �).

Finally, when including �, no closed-form solution for the spherical collapse exists. The
equation is straightforward to integrate numerically though, and one finds that the effect
of � on δcr and �vir is minor. The physical reason is that � is subdominant during the
early stages of collapse that happen in matter domination, while at late times, when �

becomes important, the collapsing region is already much denser than the background
and has largely decoupled from the Hubble flow.

So, we have argued that the spherical collapse approximation is reasonable for very
massive halos. How, then, to predict the abundance of galaxy clusters? This comes down
to predicting the abundance of regions that collapse to form a halo following the condition
Eq. (12.69). The basic insight comes from papers by Press and Schechter (1974) and Bond et
al. (1991), and the resulting framework is called extended Press–Schechter or excursion-set
theory. To understand the argument of these papers, consider the one-dimensional den-
sity field (blue wiggly line) in Fig. 12.8. There are regions with relatively large excursions in
both the positive and negative directions. We are interested in the large excursions in the
positive direction: it is these rare regions of large overdensity that collapse to form massive
halos.

What is the fraction of space (in the initial conditions) that is contained in collapsed
halos above mass M at redshift z? Press and Schechter argued that, since the linear density
field smoothed on a comoving scale RL(M) follows a Gaussian with zero mean and vari-
ance σ(RL, z), the volume fraction should simply be the integral over this Gaussian from
the collapse threshold to infinity:

Fcoll,PS(M,z) = 2 × 1√
2πσ(RL[M], z)

∫ ∞

δcr

dδe−δ2/2σ 2(RL[M],z)

= 2 × 1√
2π

∫ ∞

δcr/σ (RL[M],z)
dνe−ν2/2. (12.70)
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FIGURE 12.8 Inhomogeneities as a function of 1D position. Shown is the initial, linear density field including a
long-wavelength perturbation (red (mid gray in print version)) and the spherical collapse threshold δcr [Eq. (12.69)].
From Desjacques et al. (2018).

Notice that the integral only depends on the ratio δcr/σ(RL[M], z). The factor of 2 was in-
troduced by Press and Schechter (1974) as an ad hoc factor in order to recover the correct
normalization. In particular, the expectation is that, as R → 0, the variance diverges and
hence all of matter should be contained in a collapsed structure (even though spherical
collapse will not describe the formation of these low-mass objects correctly); that is, we
expect that

lim
M→0

Fcoll,PS(M,z) = 1. (12.71)

Without the prefactor 2 in Eq. (12.70), we would instead obtain 1/2. The “fudge factor” was
subsequently explained rigorously by Bond et al. (1991), who introduced the excursion-set
formalism.

We now need to transform the collapsed fraction into the halo mass function. The halo
mass function is simply the mean number density of matter multiplied by the fraction of
matter that has collapsed into a halo of mass M . Therefore,

dn(M,z)

d lnM
= ρm(t0)

M

∣∣∣∣dFcoll,PS

d lnM

∣∣∣∣ . (12.72)

The factor 1/M in front comes about from converting the mass density in halos of mass
M (which is the equivalent of a volume fraction in Lagrangian space) to a number density.
Using Eq. (12.70), the result is

dn(M,z)

d lnM
= ρm(t0)

M
fPS

(
δcr

σ(M,z)

)∣∣∣∣d lnσ(M,z)

d lnM

∣∣∣∣ , fPS(ν) =
√

2

π
νe−ν2/2, (12.73)

where we have abbreviated σ(M,z) ≡ σ(RL[M], z), as is standard in the literature.5 Massive
halos have σ(M,z) � δcr, since the variance is small for large smoothing scales (Fig. 12.1).

5
Note that, in the literature, our fPS(ν) is also frequently defined with a factor ν outside, i.e. fPS(ν) → νfPS(ν).
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FIGURE 12.9 Halo mass function (number density of halos per logarithmic mass interval), multiplied by mass, as
measured in a large suite of N-body simulations (points). The line shows a parametrization of the form of Eq. (12.73)
with fPS(ν) replaced with a fitting function which includes an exponential suppression at high ν. The three sets
of points show results for different halo mass definitions M�, with � = 200,800, and 3200 (from top to bottom).
From Tinker et al. (2008).

This corresponds to ν � 1, and we see that the abundance of such halos is exponentially
suppressed. This result is confirmed when counting halos in N-body simulations, as shown
in Fig. 12.9. Within this toy model, it is easy to understand this fact: massive halos arise
from rare upward fluctuations of the initial density field, which are suppressed by a e−ν2/2

factor since the initial density field is Gaussian.
While Eq. (12.73) is only a very rough approximation to the mass function found in

simulations, fitting formulas have been proposed that replace fPS(ν) with a more gen-
eral function f (ν). With such a function, Eq. (12.73) remains fairly accurate for a range
of masses, redshifts, and even different cosmologies (see the lines in Fig. 12.9, which cov-
ers five orders of magnitude in halo mass). Notice that with a general fitting function, the
collapse threshold δcr is no longer directly connected with spherical collapse. Nevertheless,
spherical collapse and the excursion-set argument provide a reasonable physical picture
of how the observed halo mass function comes about.

12.5 Galaxy clusters
Counting galaxy cluster continues to be an area of great fascination and promise for cos-
mology. First, we think we understand the theory fairly well: large clusters of galaxies are
the most massive virialized structures in the universe, and extremely rare objects. It is
thus physically well motivated to associate them with equally rare high-mass halos. We
can therefore predict the abundance of halos as a function of mass, both analytically, and
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more accurately, numerically, as we have discussed above. Second, the potential payoff is
significant: since the high-mass end of the halo mass function depends exponentially on
the parameter δcr/σ(M), we expect that measuring the abundance of massive clusters will
lead to very tight constraints on σ(M), the amplitude of the matter power spectrum.

So let us turn to the practical aspects of cluster cosmology. There are two main chal-
lenges in this field. One class of difficulties is associated with finding clusters. The second
difficulty then is to measure the mass of individual clusters. Sophisticated algorithms have
been developed to find dense accumulations of galaxies in galaxy surveys, which is referred
to as “optical identification.” However, they can also be identified as luminous thermal
X-ray sources, and through their specific imprints on the CMB “backlight” via the Sunyaev–
Zel’dovich effect (Sect. 11.3).

Let us start with the first challenge and go through these techniques in a bit more detail.
As we have learned, galaxy clusters form through the hierarchical merging of smaller viri-
alized structures. Each of these smaller structures might host one or several galaxies. The
end result is observed as a collection of galaxies mostly held together by the gravitational
potential generated by the dark matter. It is thus physically reasonable to expect that the
number of galaxies in an optically identified cluster, usually referred to as richness, is pos-
itively correlated with its mass: the more galaxies, the more matter and hence the higher
the mass.

By far not all of the baryonic matter in clusters is contained in the galaxies however.
Most of the baryons which joined the cluster during the gravitational collapse along with
the dark matter are in the form of diffuse gas. During the process of virialization, this gas is
heated to enormous temperatures (strictly, it is a plasma, since all light atoms are stripped
of their electrons); so high, in fact, that its thermal radiation peaks in the X-ray band,
making galaxy clusters some of the hottest objects in the universe. This fact unexpect-
edly turned the ROSAT X-ray satellite into a cluster finder. The recently launched eROSITA
instrument will continue this effort through an all-sky survey with much increased sensi-
tivity. The main observables are the temperature, inferred from the X-ray spectrum, and
total X-ray luminosity of each cluster.

The free energetic electrons in galaxy clusters also produce the Sunyaev–Zel’dovich
(SZ) effect (Sect. 11.3): they up-scatter CMB photons to higher energies via the inverse-
Compton process. This leads to the characteristic y-type distortion of the observed CMB
frequency spectrum in the direction of clusters. This distortion can be measured by ob-
serving the CMB at different frequencies, allowing for a separation from the primary CMB
fluctuations (which are perfectly black-body). As we have seen in Sect. 11.3, the y param-
eter is proportional to neT , which, by the ideal gas law, is the pressure of the gas. Clusters,
with their high temperatures and large amount of free electrons, produce large SZ signals.

One of the unique properties of the thermal SZ effect is that it is very weakly dependent
on the distance to the cluster. In contrast, both optical identification and X-rays rely on
the direct detection of light from the cluster, which becomes increasingly difficult at large
distances. On the other hand, the latter techniques have an advantage at low redshifts. This
is apparent from Fig. 12.10, which shows a scatter plot in the mass-redshift plane of clusters
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FIGURE 12.10 Scatter plot of clusters detected using X-rays (ROSAT All sky X-ray survey) and the SZ effect (from 3 CMB
experiments: South Pole Telescope (SPT-SZ, SPTpol), Planck, and Atacama Cosmology Telescope (ACT)) as a function
of estimated mass (M� with � = 500/�m, y-axis) and redshift (x-axis). The different distribution in the mass-redshift
plane of the different cluster samples is evident: X-rays surveys are most sensitive to low-redshift clusters, while the
SZ effect extends to much larger redshifts, but has less sensitivity to low masses. This plot is an updated version of
that shown in Bleem et al. (2015).

detected using different techniques. At low redshifts, the X-ray identification typically has a
lower mass threshold than SZ. The opposite holds at higher redshifts. Note that the overall
number of clusters detected also depends on the size of the survey (for example, Planck
and ROSAT observed the entire sky, while ACT and SPT cover only a small fraction).

So, X-ray and thermal SZ measurements allow us to get a handle on the temperature of
the diffuse gas (or plasma) in clusters. How is this temperature related to its mass? Suppose
a cluster has virialized so that its kinetic energy is equal to minus one half its potential
energy. Suppose also that the cluster is spherical and of uniform density with radius Rvir.
The gravitational potential energy is then equal to −3GM2/5Rvir. Then,

1

2
M

〈
v2

〉
= 3

10

GM2

Rvir
, (12.74)

where
〈
v2

〉
is the velocity dispersion of the matter (dark matter and gas, assumed to be the

same in this simple toy model). Assuming that the gas is dominated by hydrogen, ideal gas
thermodynamics tells us that

〈
v2

〉
/2 = (3/2)(kT /mp), where mp is the proton mass. Further,

we already know the overdensity that the cluster should roughly have, namely � = �vir ≈
200. This allows us eliminate the radius. The temperature can now be expressed in terms
of the total mass of the system,

T = mp

5

[
GMH0

√
�vir�m

2

]2/3

. (12.75)
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We invert this to get

M = 1.38 × 1014 h−1 M�
(

T

keV

)3/2 (
�vir

200

)−1/2

. (12.76)

Notice that, yet again, the Hubble constant drops out if we phrase the mass in terms of
h−1 M�. Thus, the temperature of the ionized gas in clusters tells us about their mass. It is
important to keep some major caveats in mind, however. First, clusters do not have uni-
form densities; knowledge of the true density profile is important to relate the temperature
to the mass. Second, we have assumed perfect thermalization of the gas, and have com-
pletely ignored any turbulent or bulk flows. Clusters are dynamically young objects and
can thus be expected to have incompletely virialized. Third, we have neglected the effect
of cooling due to the emitted thermal radiation, and of heating due to feedback from the
galaxies residing in the clusters.

So, let us take stock. We have found several methods that allow us to identify massive
collapsed objects in the universe, based on some observable which is related to the cluster
mass. Now, each of these experimental techniques selects clusters on properties that are
specific to each observable. That is, a cluster optically identified in a galaxy survey might
not be detected as X-ray source, or vice versa. What we can predict however, is the abun-
dance of massive virialized structures at fixed mass.

This leads us to the second set of difficulties, which revolves around determining the
mass of a given cluster. We do not have a good theoretical handle on how the richness
(number of galaxies) is related to the cluster mass. For X-rays and the Sunyaev–Zel’dovich
distortion, we have some handle on the scaling with mass, but these are affected by numer-
ous uncertainties as mentioned above. Fortunately, there is one technique which measures
the mass fairly directly and model-independently: gravitational lensing (Ch. 13). The mas-
sive gravitational potential well of the cluster distorts light rays from more distant back-
ground galaxies. This effect can be detected statistically by measuring the shapes of a large
number of background galaxies. In fact, the clusters also distort the CMB through lensing,
an effect which has recently been measured for the first time. Weak lensing is now our best
tool for calibrating cluster masses.

In most cases however, due to the limited signal-to-noise of the lensing signal, we do
not have direct mass measurements for each individual cluster. The goal is then to calibrate
the relation of the mass indicator, so for example richness, X-ray luminosity or SZ signal, to
the mass itself. This statistical relation is referred to as mass–observable relation. Both the
mean relation and the scatter about the mean relation are important quantities, since we
need to quantify how likely a cluster of a given mass is to be included in the observed sam-
ple. This selection efficiency is a crucial ingredient in connecting the theoretical prediction
to the observations. Of particular importance is a phenomenon known as Malmquist bias:
since massive clusters are exponentially rare, it is much more likely that a cluster of lower
mass is wrongly included in the sample due to an upward fluctuation in the mass indicator
at fixed mass, than a higher-mass cluster is to be excluded due to a negative fluctuation.
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The scatter in the mass–observable relation can thus significantly change the observed
abundance of clusters, and needs to be modeled carefully.

12.6 Galaxy clustering and bias
In Ch. 11, we learned that a wealth of information can be extracted from the clustering of
galaxies on large scales. We just had to make two simple but very important assumptions:
1) the galaxy overdensity δg is linearly proportional to the matter overdensity, related by a
bias factor b1, and has a scale-independent noise contribution; 2) velocities of galaxies are
the same on large scales as those of matter. We left open the question of why we can make
these simple assumptions for objects as complicated as galaxies. They cannot possibly be
entirely accurate, so what is the error we are making?

One approach to answer these questions would be to try to fully simulate the forma-
tion of galaxies, and measure the power spectrum of simulated galaxies. Unfortunately,
simulating a realistic galaxy density field is much more difficult than obtaining an accu-
rate matter density field. For matter, we argued that baryonic effects are relatively small
and restricted to small scales. This does not hold for galaxies, since they are composed of
baryons. As an example, small changes in the subgrid modeling can strongly affect both
the abundance and clustering of simulated galaxies selected, for example, on simulated
luminosity (and galaxies in actual surveys are often selected based on more complicated
properties that are even harder to simulate than total luminosity). So, we need to somehow
parametrize our ignorance of the galaxy formation process.

In the bulk of this section, we will pursue a perturbation-theory approach, which is
what the results of Ch. 11 are based on, in which case the bias b1 and the noise amplitude
capture our ignorance on large scales. Making use of both perturbation theory (Sect. 12.2)
and the toy model of halo formation we developed in Sect. 12.4.2, we will derive how this
fact comes about and what the error is that we are making. At the end of the section, we
will briefly discuss other approximate approaches based directly on simulations.

Let us begin with the bias of halos, based on what we learned about halo formation
in the previous section. To compute the bias we need to predict δh,� in the presence of
a large-scale overdensity in the matter, denoted as δ�. In Sect. 12.4.2, we argued that the
number density of these halos is proportional to the fraction of regions in the initial den-
sity field that are above a critical threshold δcr. We can tweak this ansatz to account for a
long-wavelength density perturbation δ� (see the red (light gray in print version) line in
Fig. 12.8). From the point of view of the collapsing regions, whose radius is much smaller
than the wavelength of this perturbation, this just corresponds to adding or subtracting
(depending on the sign of δ�) a uniform matter component on top of the small-scale fluc-
tuations. This means that, in terms of the initial, linear density field, all the regions move
closer to or further away from the collapse threshold by an amount δ�. That is, the collapse
criterion Eq. (12.69) is modified to

δ
(1)
R (x, t) > δcr − δ

(1)
� (x, t), (12.77)
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where we assume linear evolution of the long-wavelength perturbation. Now we can
compute what the expected number density of halos is by substituting Eq. (12.77) into
Eq. (12.73):

dn

d lnM

∣∣∣∣
δ�

= ρm(t0)

M
fPS

(
δcr − δ

(1)
�

σ (M,z)

)∣∣∣∣d lnσ(M,z)

d lnM

∣∣∣∣
≈ dn

d lnM

∣∣∣∣
0

[
1 − d lnfPS

dν

1

σ(M,z)
δ
(1)
�

]
ν=δcr/σ(M,z)

, (12.78)

where in the second line we have expanded to first order in δ
(1)
� , and the prefactor is the

mean halo mass function. We then obtain for the fractional perturbation in the halo num-
ber density

δ
(1)

h,�
(x, t) = dn/d lnM|δ�

dn/d lnM|0 − 1 ≡ b1(M,z)δ
(1)
� (x, t), (12.79)

where the bias is defined as the coefficient relating the halo overdensity to the matter over-
density, so that

b1(M,z) = − 1

σ(M,z)

d lnfPS(ν)

dν

∣∣∣∣
ν=δcr/σ(M,z)

. (12.80)

Plugging in the Press–Schechter form of the mass function, we obtain

bPS
1 (M,z) = ν2 − 1

δcr

∣∣∣∣
ν=δcr/σ(M,z)

. (12.81)

This derivation of the bias is known as peak-background split argument. It was first made
by Kaiser (1984), and can be justified rigorously using the same “separate universe” argu-
ment we made for the spherical collapse (Sect. 3 in Desjacques et al., 2018). Moreover, we
do not have to assume the Press–Schechter expression fPS(ν) to compute the bias, but can
insert more accurate parametrizations such as the one shown in Fig. 12.9.

We see that the bias coefficient becomes large if ν � 1, i.e. for rare high-mass halos.
This means that these halos cluster much more strongly than matter. The reason for this
behavior becomes clear when looking at Fig. 12.8 carefully: there are many more peaks in
the density field that are above the threshold δcr when δ� > 0 (e.g., 3 in this case) than when
δ� < 0 (zero), despite the fact that δ� is not that large. The abundance of rare peaks thus
reacts much more sensitively to a perturbation in the matter density than matter itself,
which is in one-to-one correspondence with the fact that b1 is much larger than 1.

We have thus found that the halo density perturbation is proportional to the matter
density perturbation, with a proportionality constant b1. Our derivation is valid since it fo-
cused on the effect of a very large-scale density perturbation, and we know from Sect. 12.2
that sufficiently large-scale perturbations can be treated as linear. How do we generalize
this to smaller-scale perturbations, and what is the error we are making by restricting to a
linear bias relation?
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One approach is to follow the toy model that led us to Eq. (12.70) and Eq. (12.73): we as-
sume that halos correspond to regions in the initial conditions that are above the collapse
threshold δcr when smoothed on the Lagrangian radius of the halo. Now, the correlation
function of regions above the threshold δcr at the separation r is defined as the excess
probability of finding a region above threshold at a distance r from another region above
threshold:

ξthr(r) =
p
(
δ
(1)
R (x + r) > δcr, δ

(1)
R (x) > δcr

)
[p(δ

(1)
R (x) > δcr)]2

− 1. (12.82)

Here and in the following, we again suppress the time arguments for clarity. Since the linear
density field follows a multivariate Gaussian distribution, all of these probabilities can be
written down analytically. In Exercise 12.10 you will perform this calculation, and show
that the result can be written as a series expansion

ξthr(r) = (bthr
1 )2ξ

(1)
R (r) + 1

2
(bthr

2 )2[ξ (1)
R (r)]2 + · · · , (12.83)

where ξ
(1)
R is the correlation function of the linear matter density field smoothed on the

scale R, and the dots stand for higher-order terms that involve three and more powers
of the correlation function. bthr

1 is analogous to the linear bias coefficient we have derived
above: the correlation function of regions above threshold is proportional to that of matter.
The second term in the expansion involves a new bias parameter, the second-order bias
bthr

2 (it corresponds to the coefficient we would obtain if we expanded to second order in δ�

in Eq. (12.78); see Exercise 12.11). The precise values of these coefficients are less important
than the form of the terms we see in Eq. (12.83): if we work on sufficiently large scales r so
that ξ

(1)
R (r) � 1, then the higher-order bias terms are small corrections to linear bias. This

justifies our linear bias treatment in Ch. 11.
The simple thresholding picture will not describe the actual galaxies whose power spec-

trum we measure observationally, but it gives us useful hints. Using the techniques we
learned in Sect. 12.2, it is straightforward to obtain the Fourier-space version of Eq. (12.83):

Pg,thr(k) = (bthr
1 )2PL(k)W 2

R(k)

+ 1

2
(bthr

2 )2
∫

d3p

(2π)3
PL(p)W 2

R(p)PL(|k − p|)W 2
R(|k − p|)

+ · · · , (12.84)

where WR(k) is the filtering kernel in Fourier space (see Eq. (12.4)). We can set this kernel
to 1 on large scales, i.e. when k � 1/R. Comparing Eq. (12.84) to Eq. (12.49), we see that the
second-order bias contribution is of similar form, and hence of the same order (if bthr

2 is of
order unity), as the next-to-leading order contribution P (22)(k) to the matter power spec-
trum in perturbation theory. This suggests that we can incorporate the bias expansion for
galaxies into perturbation theory, by expanding the galaxy density perturbation in analogy
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to Eq. (12.29):

δg(x, η) = δ
(1)
g (x, η) + δ

(2)
g (x, η) + · · · + δ

(n)
g (x, η), (12.85)

where, as we now know, δ
(1)
g = b1δ

(1). A crucial difference from the case of the matter den-

sity field is that we have to identify which bias terms need to be included in δ
(n)
g , i.e. at a

given order in perturbation theory, in order to describe a general galaxy density field. As
described in detail in Sect. 2 of Desjacques et al. (2018), there is a rigorous theory behind
this, which we will not go into here. At second order, in δ

(2)
g , there are two bias terms: the

b2 term we encountered above, and another term involving the tidal field squared, pro-
portional to bK2(∂i∂j�)(∂i∂j�) (see Exercise 12.12). The tidal field did not appear in the
thresholding toy model, since we assumed that the halo density only depends on the local
value of the matter density. In reality, halo and galaxy formation are influenced by large-
scale tidal fields, so we have to include them in the bias relation.

Just as we did for the matter density field based on Eq. (12.29), we can use Eq. (12.85) to
expand the galaxy density field in Fourier space by defining kernels Fg,n in analogy to the
Fn for matter, Eq. (12.40):

δ
(n)
g (k, η) = Dn+(η)

[
n∏

i=1

∫
d3ki

(2π)3

]
(2π)3δ

(3)
D

(
k −

n∑
i=1

ki

)

× Fg,n(k1, · · · ,kn;η)δ0(k1) · · · δ0(kn). (12.86)

For example, you can show in Exercise 12.12 that the second-order kernel is given by

Fg,2(k1,k2;η) = b1(η)F2(k1,k2) + 1

2
b2(η) + bK2(η)

[
(k1 · k2)

2

k2
1k2

2

− 1

3

]
. (12.87)

Since the bias parameter b1 multiplies the matter density field, which itself has nonlinear
contributions, we obtain a term b1F2 in Fg,2. Further, b2 appears as expected, in addition
to the tidal bias parameter bK2 . For halos of a given mass, b1 and b2 can be obtained from
the peak-background split described above. For observed galaxies, these coefficients need
to be determined from the data, by measuring their statistics such as the galaxy power
spectrum.

Based on Eqs. (12.85)–(12.86), all calculational techniques, including diagrams, that we
developed for matter in Sect. 12.2 carry over to galaxies. The bispectrum of galaxies, for
example, can be derived in analogy to Eq. (12.51):〈

δg(k1, η)δg(k2, η)δg(k3, η)
〉 = (2π)3δ

(3)
D (k1 + k2 + k3) (12.88)

× [
2Fg,2(k1,k2;η)PL(k1, η)PL(k2, η) + BN(k1, η) + 2 perm.

]
,

where

BN(k, η) = 1

3
BN0(η) + b1(η)PN,δ(η)PL(k, η) (12.89)
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is the noise contribution to the galaxy bispectrum, analogous to PN in Eq. (11.23). In the
galaxy bispectrum, there are two constant noise amplitudes, BN0 and PN,δ . Notice the ap-
pearance of the power spectrum with the latter; in fact, PN,δ can be interpreted as a noise
term in the linear bias b1.

So far, we discussed galaxy statistics without any observational effects. In particular,
we ignored redshift-space distortions (RSD; Sect. 11.1.2). In order to incorporate RSD, we
need to justify one more assumption made in our derivation of the observed galaxy cluster-
ing in Ch. 11: the fact that large-scale galaxy velocities are unbiased. For matter, we found
the velocity by solving the geodesic equation, which describes the motion of massive par-
ticles freely falling in a gravitational field ∇�. Now, the equivalence principle of general
relativity ensures that any free-falling massive particle follows the same geodesic and thus
attains the same velocity. This is the fundamental reason why galaxy velocities are unbi-
ased. At some point we do expect galaxy velocities to depart from those of dark matter
particles: first, there are non-gravitational interactions at play leading to pressure forces
on the gas that makes up galaxies. Second, even the center-of-mass velocities of halos are
not the same as those of dark matter particles, since they are given by an average over a
large number of particles. Both of these effects, however, are restricted to small scales: we
already saw in Eq. (12.53) that the effect of pressure on matter scales as k2δm(k), and the
effect on velocities similarly scales as k2um(k); the same applies to the effect of averaging.
Then, RSD can be incorporated beyond linear order by expanding the relation between
the intrinsic and redshift-space galaxy density, Eq. (11.6), in perturbations (see Sect. 9 of
Desjacques et al., 2018).

This concludes our discussion of how galaxy clustering can be treated within pertur-
bation theory. The perturbative approach has the advantage of allowing for an inclusion
of all possible effects that enter in the galaxy–matter relation at a given order in perturba-
tion theory, and is thus very robust. On the other hand, we can use this approach only on
those scales where perturbation theory is valid (k < kNL(z)). There are alternative, empiri-
cal simulation-based approaches that do not rely on perturbation theory:

• The halo occupation distribution (HOD) approach assumes a probability distribution
P(Ng|Mh) for finding Ng galaxies in a halo of mass Mh (along with a distribution of
positions and velocities of these galaxies within halos). This is then applied to halo cat-
alogs identified in N-body simulations, to obtain a corresponding galaxy catalog. There
are typically several free parameters in the distribution P(Ng|Mh), which can be de-
termined by measuring the statistics of galaxies such as the power spectrum on this
catalog and requiring them to match observations.

• The abundance matching technique instead is based on high-resolution (but gravity-
only) N-body simulations which also resolve the substructure within halos. One then
assumes that the most luminous or massive galaxies reside in the most massive bound
substructures of halos. For example, massive elliptical galaxies are usually assigned to
the main, central substructure of halos. Apart from the ambiguity of mass definition
(see Sect. 12.4.1), which is even more acute for substructure, this approach has fewer
free parameters but still appears to describe galaxy clustering well empirically.
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The downside of empirical approaches such as HOD and abundance matching is that they
are built on strongly simplified assumptions about the connection between galaxies and
halos. It is difficult to rigorously assess the accuracy of these underlying assumptions, since
their deficiencies could be partially absorbed by the free parameters involved, or, even
worse, by a shift in cosmological parameters. On the other hand, we have a more rigorous
control on systematic errors in perturbation theory, since we can estimate how large the
next higher-order contribution is (again, this only works on sufficiently large scales where
perturbation theory is applicable). Clearly then, it is important to try to infer cosmology
using all of these approaches in order to have independent cross-checks.

12.7 The halo model
The halo model uses dark matter halos as building blocks of structure to construct a useful
empirical model for the nonlinear matter density (see Cooray and Sheth, 2002 for a re-
view). The basic assumption is that each dark matter particle belongs to one and only one
halo. Using this assumption, we can combine three ingredients—the density profile, mass
function, and clustering of halos—to model the statistics of the nonlinear matter density.
We will describe this approach briefly here, and relegate more detailed derivations to exer-
cises.

The fundamental assumption of the halo model is that the matter density field consists
of a superposition of halos at locations xi with masses Mi , so that it can be written as

ρHM
m (x) =

∑
halos i

ρh(|x − xi |,Mi), (12.90)

where ρh(x,M) is the halo density profile introduced in Sect. 12.4.1 which is assumed to
be spherically symmetric for simplicity, and depends only on the mass M . Throughout, we
will drop the time arguments, since they do not play a role in the derivation. Let us first turn
the sum over halos in Eq. (12.90) into an integral over the number density of halos, which
in turn is an integral over the local mass function: nh(x) = ∫

d lnMdn(x)/d lnM . Eq. (12.90)
becomes

ρHM
m (x) =

∫
d3x′

∫
d lnM

dn(x′)
d lnM

ρh(|x − x′|,M), (12.91)

where x′ is the center-of-mass position of the halo that contributes to ρHM
m (x). Eq. (12.91)

is a spatial convolution, reminiscent of the smoothing operation in Eq. (12.2); indeed, we
are spreading the mass M contained in the halo over a region defined by its density profile.
So let us define the normalized profile y(x,M) ≡ ρh(x,M)/M , which by definition of the
profile and total halo mass M obeys

∫
d3x y(x,M) = 1, (12.92)
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as usually required for a smoothing filter. This yields

ρHM
m (x) =

∫
d3x′

∫
d lnM

dn(x′)
d lnM

M y(|x − x′|,M). (12.93)

Now we separate both ρm and dn/d lnM into their respective homogeneous parts and per-
turbations, writing

ρHM
m (x) = [1 + δHM

m (x)]ρm,

dn(x)

d lnM
= [1 + δh(x,M)] dn

d lnM
. (12.94)

We obtain

1 + δHM
m (x) =

∫
d lnM

M

ρm

dn

d lnM

∫
d3x′[1 + δh(x′,M)]y(|x − x′|,M). (12.95)

We can now use the normalization of the halo mass function. Recall that by the basic as-
sumption of the halo model, all matter particles are contained in halos. This means that
the integral over the halo mass function, weighted by mass, must yield the mean matter
density: ∫

d lnM M
dn

d lnM
= ρm. (12.96)

This corresponds to the condition Eq. (12.71) for the collapsed fraction (and places an
additional constraint on the function f (ν) in Eq. (12.73)). Using this result, Eq. (12.95) be-
comes

δHM
m (x) =

∫
d lnM

M

ρm

dn

d lnM

∫
d3x′δh(x′,M)y(|x − x′|,M). (12.97)

This equation shows that we can compute the nonlinear matter power spectrum in the
halo model based on the mass function of halos (dn/d lnM), the halo profile (y(x,M)), and
the clustering of halos (via the power spectrum of δh). You can work out the details in Ex-
ercise 12.13.

It turns out that the matter power spectrum in the halo model naturally breaks down
into two components, P HM(k) = P2h(k) + P1h(k): the first, “two-halo term,” is due to the
large-scale clustering of halos themselves, i.e. involves two mass elements in different
halos (see Fig. 12.11). The second, “one-halo term” P1h is essentially the halo shot noise
convolved with their profile. This term would even be present if halos were not clustered
at all; it involves only mass elements within a single halo. We can guess from Fig. 12.11 that
it will be the dominant term on small scales.

A numerical calculation of the resulting power spectrum is shown in Fig. 12.12. On large
scales, it agrees with the linear power spectrum, as required. On those scales, the 2-halo
term dominates. On small scales, the 1-halo term dominates. In this regime, we are prob-
ing the interior of halos, so that the power spectrum is given by a combination of halo
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FIGURE 12.11 Illustration of the contributions to the halo-model power spectrum. All matter is in halos of various
mass (shaded circles). On large scales, the power spectrum is dominated by contributions involving two halos (P2h(k)).
On small scales, the power spectrum is dominated by contributions from within a single halo (P1h(k)).

profile shapes and the mass function. The bottom panel of Fig. 12.12 shows the compari-
son of this simple calculation with the nonlinear matter power spectrum measured in full
N-body simulations. Given its simplicity, the halo model does remarkably well, predicting
the power spectrum to within 25% over a wide range of scales, with the most significant
departure being an underprediction of the power spectrum on small scales (which can
be improved by tuning the assumed concentration–mass relation of halos). For precision
applications, this is not sufficient, but the wide range of scales that are described approxi-
mately does illustrate that the halo model can be a useful phenomenological framework.

Using the same assumptions we have made for the matter power spectrum, other statis-
tics, such as the cross-correlation between matter and halos, or the bispectrum of matter
can likewise be computed.

12.8 Summary
For the first time in this book, we went beyond small, linear perturbations in cosmology
in this chapter, studying the evolution of nonlinear structure. Essentially all observables
of large-scale structure, including galaxy clustering, cluster abundance, and weak lens-
ing (the topic of Ch. 13) are significantly impacted by nonlinear evolution. Understand-
ing nonlinear structure formation has thus become an integral part of modern cosmol-
ogy. Fortunately, this problem remains tractable: first, the metric is still well described by
FLRW with small perturbations; only the matter density and velocity have to be treated
nonlinearly. Second, the complexities of baryonic physics (pressure, cooling, star forma-
tion, and so on) only significantly impact the matter distribution on very small scales
(k � 1hMpc−1); so, as long as we content ourselves with larger, yet still nonlinear scales,
we can treat baryons and dark matter as a single component of cold collisionless matter.
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FIGURE 12.12 Upper panel: The nonlinear matter power spectrum in the halo model at z = 0 (black solid). Here, the
prescription for f (ν) shown in Fig. 12.9 was used along with the corresponding bias derived through Eq. (12.80), and
a truncated NFW profile (see Exercise 12.13 for details). We also show the 1-halo (P1h) and 2-halo (P2h) contributions,
as well as the linear power spectrum. Notice the small constant contribution to which P1h(k) asymptotes on large
scales, which is unphysical but numerically unimportant. Lower panel: ratio of the halo-model power spectrum to
that measured in N-body simulations, interpolated to the fiducial cosmology using the CosmicEmu code (Heitmann
et al., 2014). The halo model predicts the matter power spectrum to within 25% out to very small scales, while it
does much better on large scales.

The fundamental set of equations governing the nonlinear growth of matter is the col-
lisionless, non-relativistic Boltzmann (Vlasov) equation coupled to gravity via the Poisson
equation:

∂fm

∂t
+ ∂fm

∂xj

pj

ma
− ∂fm

∂pj

[
Hpj + m

a

∂�

∂xj

]
= 0,

∇2� = 4πGa2
[∫

d3p

(2π)3
fm(x,p, t) − ρm(t)

]
. (12.98)

This conceptually simple, but mathematically complex set of equations leads to a rich set
of predictions. We only scratched the surface in this chapter, and refer those who want
to delve deeper to the excellent comprehensive review of Bernardeau et al. (2002), which
covers both numerical and perturbation-theory approaches.

One powerful approach to the Vlasov–Poisson system is to solve it numerically via
N-body simulations, which discretize the phase-space volume occupied by matter (this
volume takes the form of a thin sheet due to the cold nature of dark matter). Thus, the par-
ticles in these simulations are not actually dark matter particles, but stand for chunks of
phase space. The output of N-body simulations allows us to identify massive bound struc-
tures, dark matter halos, which host galaxies and clusters of galaxies. The mass M� of halos
is defined as that within a comoving radius R� enclosing a mean interior density that is �

times the mean matter density:

M� = M(< R�) = 4π

3
R3

�ρm(t0)�. (12.99)
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Another important scale is the Lagrangian radius RL which encloses the mass of the halo
at the mean matter density:

RL(M) = 1.40h−1 Mpc
(

M

1012 h−1 M�

)1/3 (
�m

0.31

)−1/3

. (12.100)

The Lagrangian radius gives the comoving size of the region from which matter assembled
to form the halo, and plays a major role in semi-analytic approaches to describing halos.
For example, the number density of halos per logarithmic mass interval, the halo mass
function, is usually parametrized as

dn(M,z)

d lnM
= ρm(t0)

M
f

(
δcr

σ(M,z)

)∣∣∣∣d lnσ(M,z)

d lnM

∣∣∣∣ , (12.101)

where σ(M,z) ≡ σ(RL[M], z) is the variance of the linear density field filtered with a real-
space tophat filter on the scale of the Lagrangian radius RL(M), and f (ν) is a fitting func-
tion. By tuning a single function f (ν), Eq. (12.101) can be made to describe the halo mass
function for a range of redshifts and cosmologies to ∼ 5% accuracy (Fig. 12.9).

The relation between halos and observable objects is particularly clear for clusters,
which are the most massive and rare bound structures in the universe. A measurement
of the halo abundance, together with a relation between cluster observables such as X-ray
temperature or the SZ distortion parameter y, and halo mass then allows for cosmology
constraints from clusters. Such a relation can in particular be obtained from gravitational
lensing, the topic of the next chapter.

Halos and their approximately universal density profiles also allow us to build an em-
pirical picture for the nonlinear matter density field, known as the halo model, by positing
that each dark matter particle belongs to one (and only one) halo. We only briefly intro-
duced the idea, and we refer the interested reader to the review by Cooray and Sheth (2002),
as well as Exercise 12.13. Toy models such as this, as well as the spherical collapse picture
of halo formation, are not very accurate, but give physical intuition and allow us to explore
how nonlinear structure reacts to new physics (such as massive neutrinos or modifications
to general relativity).

While gravity-only N-body simulations are a routine affair by now, they do not produce
galaxies, or any sources of light for that matter, since they do not simulate electromagnetic
and other interactions of baryons. Simulating baryons realistically necessarily requires
recipes for modeling unresolved scales, and how to do this accurately is still the topic of
much ongoing research. Readers interested in a more in-depth treatment of these and
many other aspects of nonlinear structure and galaxy formation should consult the book
by Mo et al. (2010).

A key takeaway message then is that, since we do need to understand the behavior of
galaxies in order to interpret measurements of galaxy clustering, we cannot rely exclusively
on simulations. An alternative approach is to stay close to the analytic route we have pur-
sued in most of the book so far, by performing a perturbation-theory expansion of the
nonlinear matter density field:
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δm(x, η) = δ(1)(x, η) + δ(2)(x, η) + · · · + δ(n)(x, η),

θm(x, η) = θ(1)(x, η) + θ(2)(x, η) + · · · + θ(n)(x, η). (12.102)

The equations for δ
(n)
m and θ

(n)
m are obtained by taking moments of the Vlasov equation,

and by truncating the hierarchy at the second moment. The result is a set of equations
describing an effective, pressureless fluid:

δm
′ + θm = −δmθm − u

j
m

∂

∂xj
δm,

θm
′ + aHθm + ∇2� = −u

j
m

∂

∂xj
θm − (∂iu

j
m)(∂ju

i
m),

∇2� = 3

2
�m(η)(aH)2δm. (12.103)

By substituting lower-order solutions into the nonlinear source terms on the right-hand
side, we can calculate the matter evolution order by order. We used this to compute the
nonlinear correction to the matter power spectrum in Eq. (12.48),

P(k,η) = PL(k, η) + P NLO(k, η). (12.104)

The major downside of the perturbative approach is that its range of validity is restricted
to large scales, i.e. scales where the second term in Eq. (12.104) is smaller than the first
(wavenumbers k � 0.2hMpc−1 at z = 0, but extending to increasingly larger wavenumbers
at higher redshifts). The major advantage of perturbation theory is that we can robustly
calculate the clustering of matter and galaxies with minimal assumptions about small-
scale baryonic effects, which are then captured by bias coefficients. As we discussed, this
robustness is especially important for galaxies, for which we need to rely on a bias relation
in order to be able to infer cosmology. In Sect. 12.6 we used this to justify the assumptions
made about galaxy clustering in the previous chapter, and to extend them to higher orders
in perturbation theory.

Exercises
12.1 Show that the stress tensor σ

ij
m [Eq. (12.17)] vanishes for a “cold” distribution func-

tion of the form Eq. (12.9).
12.2 Use Eq. (12.23) to derive an equation for the vorticity ω = ∇ × um of the matter

velocity. Show that no vorticity is generated if it is absent in the initial conditions.
How does an initial vorticity evolve in time at linear order?

12.3 Fill in the missing steps of the transformation of the Euler–Poisson system into
Fourier space, Eq. (12.31).

12.4 Use the equation for the linear growth factor Eq. (8.75) to prove Eq. (12.32). Note
that this relation holds for any smooth dark energy model. Next, use this to trans-
form Eq. (12.31) into Eqs. (12.33)–(12.34).
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12.5 Use the solution in Eq. (12.40) to show that the NLO contribution in Eq. (12.42) is
given by Eq. (12.48). Derive and use the relations

F2(k,−k) = 0,

Fn(k1, · · · ,kn) = Fn(−k1, · · · ,−kn). (12.105)

Evaluate the terms numerically. For P (13), the expression of the kernel given in
Makino et al. (1992) is useful. For P (22), care needs to be taken when k −p becomes
close to zero. Bertschinger and Jain (1994) provide a neat decomposition of the in-
tegral which is numerically robust.

12.6 Derive the leading contribution to the matter bispectrum, Eq. (12.51). How does
this look in the diagram form of Fig. 12.3?

12.7 In Sect. 12.2, we developed perturbation theory based on the density field. An alter-
native, Lagrangian approach is based on the equations of motion for N-body “par-
ticles,” Eq. (12.57). In this exercise, you will derive the lowest-order result, known
as Zel’dovich approximation. The solution to Eq. (12.57) is a particle trajectory x(η).
We write this as

x(η) = q + s(q, η), (12.106)

where q is the initial position at η = 0, when all perturbations were negligible. Hence
s(q,0) = 0. Rewrite Eq. (12.57) as an equation for s. Now expand to linear order in s.
Solve the equation by using the solution of the Poisson equation for � at linear or-
der. Your result should relate s(1)(k, η) to δ(1)(k, η). This result can be used to obtain
the initial small displacements of particles to start an N-body simulation. We also
need their initial momenta pi

c. Derive these in terms of the displacement as well.
12.8 Derive an expression for the enclosed mass M(< r) for the NFW profile Eq. (12.62).

Replace rs with the concentration c�. Use this to derive R� for a given mass M� and
concentration, and solve for ρs . You now have a reasonably accurate expression for
the density profile of a halo of mass M� and concentration c�. Plot the profile for a
halo of mass M200 = 1012M� (� = 200), and for concentrations c200 ∈ {4,8,16}. That
is, make the plot for Sect. 12.4.1 that we were too lazy to create!

12.9 Derive the spherical collapse threshold δcr and the virial overdensity �vir by solving
Eq. (12.67) without considering �. Follow these steps:
(a) Show that Eq. (12.67) can be rewritten as

r̈

r
= −4πG

3
ρ̄i[1 + δi]

( ri

r

)3
(12.107)

where ri , ρ̄i are, respectively, the radius of the spherical region and the back-
ground matter density at the initial time, and δi is the initial overdensity.

(b) Show that, when the initial expansion rate is given by ṙi = Hiri(1 − δi/3), the
maximum radius rta (the turn-around radius) that the spherical region reaches
is given by
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rta = rta = 3

5

(
1 + δi

δi

)
ri . (12.108)

(c) Show that the parametric solution (cycloid) of Eq. (12.68) is a solution of
Eq. (12.107). What is tta in terms of the initial conditions, ri , δi , ρ̄i?

(d) Find the expression for the nonlinear overdensity δ(θ). What is the nonlinear
density contrast at the time of turn around? Plot δ(t) as a function of δ(1)(t), the
initial overdensity evolved forward using the linear growth factor. Derive the
expansion of δ(δ(1)) to third order in δ(1).

(e) Assume that, by some magic (which we call violent relaxation), the object viri-
alizes. Find the virial radius in terms of the turn around radius. Using that, give
the density contrast �vir ≡ 1 + δ(tvir) expected after virialization. Assuming that
collapse is completed at θ = 2π [that is, tvir = t (θ = 2π)], what is the value of
δ(1)(t) at collapse? This is the collapse threshold δcr.

12.10 Derive the correlation function of thresholded regions Eq. (12.82) in the linear den-
sity field.
(a) Define the scaled density field ν(x) ≡ δ

(1)
R (x)/σ (R) (note that this is a field, and

not to be confused with the parameter ν = δcr/σ(R), which we shall indicate
with νcr in this exercise). Show that ν(x) at an arbitrary fixed location follows
the normal distribution

p(ν) = 1√
2π

e−ν2/2, (12.109)

and that the joint distribution of ν1, ν2, where νi ≡ ν(xi ), is a bivariate Gaussian

p(ν(x1), ν(x2)) = 1

2π

√
1 − ξ2

12/σ
4(R)

exp

[
−1

2
(ν1, ν2)

�C−1(ν1, ν2)

]
(12.110)

where C =
(

1 ξ12/σ
2(R)

ξ12/σ
2(R) 1

)
(12.111)

and ξ12 = ξ
(1)
R (|x1 − x2|) =

〈
δ
(1)
R (x1)δ

(1)
R (x2)

〉
is the correlation function of the lin-

ear, smoothed density field.
(b) Using this result, show that the one-point probability (or volume fraction) be-

comes

p(δ
(1)
R > δcr) = 1

2
erfc

(
νcr√

2

)
. (12.112)

Here, νcr ≡ δcr/σ(R) and the complementary error function is defined in
Eq. (C.31). Obtain the corresponding expression for the joint probability

p
(
δ
(1)
R (x1) > δcr, δ

(1)
R (x2) > δcr

)
, (12.113)

and for ξthr(r) from Eq. (12.82). Notice that one of the two integrals can be done
analytically.
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(c) Using the fact that the matter correlation function goes to zero at large r, ex-
pand your result in the small quantity ξ(r). Show that the first two terms can be
written as Eq. (12.83), and derive the expression for b1 and b2, as well as their
limiting form for very rare halos, νcr � 1.

12.11 Continue the expansion in Eq. (12.80) to second order in δ�. The second-order bias
is defined by

δh,� = b1δ� + 1

2
b2δ

2
� + · · · . (12.114)

What is the expression for b2 in terms of σ(M,z) and f (ν)? Derive b2(ν) for the Press–
Schechter mass function Eq. (12.73).

12.12 Derive the second-order perturbation theory kernel for the galaxy density δ
(2)
g .

(a) Define the scaled tidal field through

Kij (x, η) = 1

4πGa2(η)

[
∂i∂j − 1

3
δij∇2

]
�(x, η). (12.115)

Use this definition to relate Kij is to the matter density in real and Fourier space.
(b) Begin with the real-space expression of the second-order galaxy density,

δ
(2)
g (x, η) = b1δ

(2) + 1

2
b2(δ

(1))2 + bK2K
(1)
ij K(1)ij , (12.116)

where on the right-hand side all fields are evaluated at (x, η), and the bias pa-
rameters b1, b2, bK2 are defined at η. Why does the tidal field only appear at
second order and in this particular combination? Now pull out the time depen-
dence contained in the growth factors, and Fourier transform Eq. (12.116) to
arrive at Eq. (12.87).

12.13 Compute the matter power spectrum in the halo model based on Eq. (12.97).
(a) Take the Fourier transform of Eq. (12.97), and express the power spectrum of

δHM
m (k) in terms of the power spectrum of the halo overdensity δh(k,M), the

halo mass function, and the Fourier-transform of the halo profile y(k,M).
(b) Assume a linear bias relation and constant noise for halos:〈

δh(k,M)δh(k′,M ′)
〉 = (2π)3δ

(3)
D (k + k′)

[
b1(M)b1(M

′)PL(k) + PN(M,M ′)
]

(12.117)

where PN(M,M ′) = 1

dn/d lnM
δ
(1)
D (lnM − lnM ′).

Here we have assumed that the noise for different halo masses is independent.
Use this to simplify the expression for the halo-model matter power spectrum.

(c) Derive the Fourier-transform of the profile y(k,M) by assuming an NFW profile
Eq. (12.62) with concentration c(M) that is truncated at R200.

(d) Evaluate P HM(k) numerically, and plot the result together with the linear power
spectrum.



13
Probes of structure: lensing

The methods of probing large-scale structure we encountered so far—galaxy clustering, SZ
effect, and cluster number counts—are powerful probes of cosmology but share a common
deficiency. They are measures of the distribution of galaxies, or more generally baryonic
matter, not the distribution of mass. It is much easier to make accurate predictions about
the latter. As we have seen in Ch. 11 and Ch. 12, the connection between galaxies and
matter (bias) can be rigorously trusted only on large scales and at the price of introduc-
ing additional free coefficients; the mass-observable relation for galaxy clusters is likewise
very difficult to predict theoretically.

A very exciting experimental approach that probes the entire mass distribution is in-
troduced in this chapter. We will see that the inhomogeneities induce distortions in the
observed shapes of distant galaxies due to gravitational lensing. They also induce small
distortions in the CMB which can be detected as they modify the anisotropies from their
primordial form. Further, the statistics of these lensing distortions are directly related to
the matter power spectrum; specifically, the power spectrum of nonlinear matter we have
discussed in detail in Ch. 12, since lensing probes structures down to small scales.

We begin with an overview and introduction to lensing in Sects. 13.1–13.2, before turn-
ing to CMB lensing in Sect. 13.3. Gravitational lensing measured through galaxy shapes
(shear), which we describe next, is based on the same formalism as polarization. For this
reason, you should go through Sect. 10.1 before reading Sect. 13.4 and following. The rea-
son is that both effects can be quantified with a two-by-two symmetric matrix on the sky:
in Ch. 10, we dealt with the polarization tensor with its Q and U components. In lensing,
the analogue is the second-moment tensor of galaxy images. Section 13.5 then combines
the results of Ch. 10 and Ch. 11 to derive the weak lensing power spectra and correlation
functions.

13.1 Overview
The gravitational effect of inhomogeneities in the universe distorts the paths traveled by
light from distant sources to us. We already encountered this effect, known as gravitational
lensing (or lensing for short), when studying photon geodesics in Sect. 3.3.2. Lensing is so
promising because light paths respond to mass; more precisely, lensing probes all cluster-
ing stress-energy components in the universe via the spacetime perturbations �, �. If we
can measure these distortions, then, we infer something about the distribution of mass in
the universe. This makes lensing highly complementary to the other probes of structure
discussed in Ch. 11.

Modern Cosmology. https://doi.org/10.1016/B978-0-12-815948-4.00019-X
Copyright © 2021 Elsevier Inc. All rights reserved.
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The idea that gravitational fields might lens distant images is at least as old as general
relativity. Indeed, even before Einstein finalized general relativity, he understood the im-
portance of measuring this distortion. Early notebooks of his contain calculations of the
magnification of images and of the possibility of a double image of a single source (Renn
et al., 1997). And it was detection of gravitational lensing that led to the acceptance of gen-
eral relativity. In 1919, Eddington led a voyage to the Southern Hemisphere to observe the
deflection of starlight during a solar eclipse. The magnitude of this effect (Dyson et al.,
1920) was in good agreement with Einstein’s new theory.

In 1979, Walsh, Carswell, and Weymann observed a multiply imaged QSO, thereby con-
firming Einstein’s early speculations. Light rays leaving the QSO in different directions are
focused on the same point (us) by an intervening galaxy. The number of lensed QSO can
be shown to be a probe of the cosmological volume as a function of redshift, and hence the
expansion history (Kochanek, 1996).

There are other examples of gravitational lensing that have an impact on cosmology,
such as time delays: two light rays emitted from the same source at the same time which
we detect from different directions due to lensing typically arrive at different times. We
can measure this time delay by studying sources with variable emission. The delay turns
out to depend on the Hubble constant, so astronomers have used this technique to mea-
sure H0 (e.g., Wong et al., 2019). Another example is microlensing, wherein a lens moves
into the line connecting a source to us. When it does, the image is magnified, so that we
observe a characteristic variability in the distant source. Microlensing has been used to
constrain the contribution of massive compact halo objects (MACHOs) to the dark matter
(e.g., Tisserand et al., 2007). Lensing has also been employed to search for the substruc-
ture that we expect, from Sect. 12.3, to form in cold dark matter halos (Vegetti et al., 2012;
Hezaveh et al., 2016).

Another spectacular manifestation of gravitational lensing is shown in Fig. 13.1. The
large galaxy cluster in the center, whose member galaxies appear yellow (light gray in print
version), distorts the images of distant galaxies in the background. Why do the background
galaxies appear stretched out as arcs in Fig. 13.1? Consider a galaxy whose light passes
close to a massive lens on the way to the observer (left panel in Fig. 13.2). The apparent
position of the galaxy is displaced away from the lens, since the rays are bent toward it. The
right panel of the figure shows the effect that this has on the lensed image of the source
galaxy, assuming for simplicity that the lens has cylindrical symmetry around the line of
sight. Each pixel in the source is displaced radially outward, distorting the regular, elliptical
unlensed image into an arc. Another distorting effect is due to the fact that rays passing
closer to the lens are distorted more, so that the arc is narrower in the radial direction than
the unlensed image.

In the next section, we will show that lensing conserves the surface brightness of an
image. Since the lensed image has a bigger area than the unlensed one, the net effect is
an increase in the total flux of the source galaxy image; this is known as magnification.
Using lensing, it is possible to find and study galaxies behind massive lenses that would
otherwise be much too faint to detect.
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FIGURE 13.1 The massive galaxy cluster Abell 1689, as imaged by the Hubble space telescope. Lensed galaxies behind
the cluster are visible as strongly distorted arcs. These high-redshift galaxies often appear blue, because a break in
the spectrum leads to them dropping out of the red imaging bands. Credit: Author NASA, ESA, the Hubble Heritage
Team (STScI/AURA), J. Blakeslee (NRC Herzberg Astrophysics Program, Dominion Astrophysical Observatory), and
H. Ford (JHU). CC-SA 4.0.

Another magnificent example of gravitational lensing is shown in Fig. 13.3. The large
double cluster in the foreground, the so-called bullet cluster, distorts the shapes of the
background galaxies. This leads to a distinctive pattern of elliptical arcs surrounding the
two separate dark matter cores of the cluster. The bullet cluster is an ongoing merger
between two massive galaxy clusters, and provides striking evidence for the presence of
collisionless dark matter. Most of the baryons in the two clusters are in the form of hot
diffuse gas that is detected in X-rays (Sect. 12.5; shown in pink (light gray in print version)
shading in Fig. 13.3). These are clearly in a different location than the bulk of matter, de-
tected via gravitational lensing (blue (gray in print version) shading in the figure). This
displacement is expected physically: the diffuse gas is collisional, so it formed a strong
shock when the two clusters collided. On the other hand, dark matter is collisionless, so
the two dark matter halos freely passed through each other, similar to the illustration in
Fig. 12.5. The same actually applies to the galaxies contained in each cluster: these also
suffered few interactions compared to the diffuse baryons, and so are located where the
bulk of the matter is. While we have encountered plenty of extremely robust pieces of ev-

http://www.spacetelescope.org/images/heic1317a/


376 Modern Cosmology

FIGURE 13.2 Left panel: top view of a lensing system. Light emitted from the source (top) reaches the observer at
the bottom following a trajectory that is being deflected by the gravitational field of the lens. From the observer’s
point of view, the apparent position of the source is in the direction of the dashed arrow, further away from the
lens than the true source. Right panel: Appearance of the system on the sky, assuming that the lens is cylindrically
symmetric around the line of sight. Each point of the source is displaced outward radially. This distorts the source
image that would be observed in the absence of lensing into a tangential arc.

idence for cold dark matter in this book, the bullet cluster is another compelling piece
simply because it offers such a clear visualization.

For cosmology, the most important aspect of gravitational lensing is weak lensing,
wherein the shapes of distant galaxies are slightly distorted by intervening foreground mat-
ter overdensities; that is, it is the same effect as shown in Fig. 13.2, but with much smaller
amplitude. One application of this is to use background galaxies to infer the mass of indi-
vidual galaxy clusters (dating back to at least Tyson et al., 1990). As argued in Sect. 12.5, we
can use the abundance of galaxy clusters as a sensitive probe of cosmology, but only if we
have a precise calibration of their mass. Weak lensing is able to provide just that. We will
briefly describe how this works in Sect. 13.5.3.

In this chapter, we will mostly be interested in weak lensing by the large-scale matter
distribution structure in the universe, rather than by a single identifiable lens such as a
cluster. Inferring the distribution of the dark matter, i.e. making a mass map is only one
part of the goal. We are most interested in statistics such as the correlation function or its
Fourier transform, the power spectrum. Indeed, we will derive how the power spectrum of
the lensing map measures the underlying (nonlinear) matter power spectrum, and how its
cross-correlation with galaxy number counts provides valuable constraints on bias.

13.2 Photon geodesics
Yet again, the effect of gravitational lensing on the observed photons is an application
of the Boltzmann equation. Since we can neglect scattering and absorption in the late
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FIGURE 13.3 The bullet cluster 1E 0657-56. The image in the background was taken in the visible band (Magellan and
Hubble Space Telescopes). The mass distribution reconstructed from the distortions of background galaxies is shown
as blue (gray in print version) shading, and is displaced from the X-ray emission of the hot gas shown by the pink
(light gray in print version) overlay (recorded by the Chandra space telescope). Credit: NASA/CXC/M. Weiss—Chandra
X-Ray Observatory: 1E 0657-56.

universe, there is no collision term. Then, the Boltzmann equation simply states that the
photon distribution function is conserved: df (x,p, t)/dt = 0 (we will not consider polar-
ization in this chapter). Any measurement astronomers and CMB experimentalists make
using their detectors can be described as an integral over the specific intensity Iν , which
is defined as the energy incident on a detector per solid angle, per unit area and time, and
per unit frequency:

dE = Iν d�dA⊥ dt dν, (13.1)

where dA⊥ is the detector area orthogonal to the photon flux. All of the information on the
radiation field is contained in f (x,p, t), so we should be able to relate this to Iν . Indeed, we
saw a glimpse of this already in our first encounter with Iν , Eq. (1.9). The precise relation,
which you can derive in Exercise 13.1, is

Iν(x, p̂, t) = 4πν3f (x,p = 2πν, p̂, t), (13.2)

where p̂ is the unit momentum vector of the photons that are being detected. The key
point is that the specific intensity is directly related to the distribution function of pho-
tons, which is conserved. And it is the specific intensity that is measured, although we often
characterize this measurement using derived quantities (e.g., we extract the temperature
of the CMB or the flux of a galaxy image).

http://chandra.harvard.edu/photo/2006/1e0657/more.html
http://chandra.harvard.edu/photo/2006/1e0657/more.html
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FIGURE 13.4 Similar lensing setup as shown in the left panel of Fig. 13.2, with our coordinate definitions in the
source plane indicated. The origin is given by the intersection of the unit vector êz with the plane of the source. The
true source position is at χθS , while the apparent source position is pointed to by the dashed arrow and defined as
χθ . The lensing deflection in the source plane is χ�θ . Here, we have greatly exaggerated the deflection angle.

The conservation of f means that, between emission of the photons and observations,
Iν changes only through the change in frequency ν, due to the cosmological as well as
gravitational redshifts and the Doppler effect. The shift in the frequency only affects the
estimated distance to the source, and does not change galaxy shapes. So we will ignore
it here. Then, the observed Iν at position θ is the same as would be observed from the
direction of the true source θS in the absence of lensing, i.e. in the homogeneous universe
(cf. Fig. 13.4):

Iobs(θ) = Itrue(θS). (13.3)

The observed intensity at position θ in the sky then is actually due to a source at position
θS , but the intensity is unchanged otherwise. Eq. (13.3) is the starting point from which we
will derive all our lensing results.

So, we want to solve for the path of a light ray as it leaves a distant source and travels
through the inhomogeneous universe. So far in this book, photon paths have always been
straight lines in comoving coordinates. Now we allow for a small bending of their trajecto-
ries as in Fig. 13.2. Fig. 13.4 shows the geometry and notation. The position of the photon
in comoving coordinates at any time is given by x, and governed by the geodesic equation
we derived in Sect. 3.3.2. Throughout, we will assume a small deflection angle, and work
to linear order in this deflection. This is a very good approximation for all applications we
will study in this chapter. Then, the x3 (z-)component of the position remains equal to the
radial distance χ and the transverse components are equal to χθS . In other words, the true
source location is

xtrue = (θS,1)χ, (13.4)
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while the apparent location at the same distance is defined through θ ,

xobs = (θ ,1)χ. (13.5)

We have already performed the bulk of the work necessary to obtain θS in terms of
θ in Sect. 3.3.2. We first express the transverse components of the position vector xi⊥ as
an integral over χ of dxi⊥/dχ = −dxi⊥/dη, since dη = −dχ for light rays (going outward in
distance is going backward in time). We have

dxi⊥
dχ

= −dxi⊥
dη

= −a
dxi⊥
dt

= −p̂i⊥, (13.6)

where p̂⊥ is the transverse part of the unit photon momentum vector and the last equality
follows from Eq. (3.34) (and p/E = 1 for photons). This yields our desired integral for θi

S :

θi
S = xi⊥

χ
= − 1

χ

∫ χ

0
p̂i⊥(χ ′′)dχ ′′. (13.7)

Note that we use χ ′′ (and soon χ ′) as integration variables, not to be confused with confor-
mal time derivatives. Now we can use the component of the geodesic equation derived in
Eq. (3.72):

dp̂i

dt
= 1

a

[
δik − p̂i p̂k

]
(� − �),k . (13.8)

The factor [δik − p̂i p̂k] is precisely the projection on directions transverse to p, which in
our small-angle approximation is transverse to the z-axis. Thus,

dp̂i⊥
dχ

= −a
dp̂i⊥
dt

= −a

[
1

a
(� − �),i

]
= −2�,i. (13.9)

The last equality holds since in the late universe there is no anisotropic stress and hence
� = −�. Integrating Eq. (13.9) yields

p̂i⊥(χ ′′) = −2
∫ χ ′′

0
dχ ′�,i(x(θ , χ ′), η0 − χ ′) + Ci, (13.10)

where

x(θ , χ ′) =
(
χ ′θ1, χ ′θ2, χ ′) (13.11)

is the unperturbed photon path at which the potential is evaluated. That is, we evaluate
the perturbation along the zeroth-order path, as the difference would be a second-order
term in the deflection. We will fix the constant Ci momentarily. Plugging in Eq. (13.10) into
Eq. (13.7), we get

θi
S = 2

χ

∫ χ

0
dχ ′′

∫ χ ′′

0
dχ ′�,i(x(θ , χ ′), η0 − χ ′) − Ci. (13.12)
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FIGURE 13.5 Range of integration in the double integral of Eq. (13.13). The shaded region can be expressed as
0 < χ ′ < χ ′′, 0 < χ ′′ < χ (performing the integral along the vertical lines) or as χ ′ < χ ′′ < χ , 0 < χ ′ < χ (performing the
integral along the horizontal lines). The latter is more convenient here, since the χ ′′ integral is then trivial.

To determine Ci , we consider the limit of no deflections, �,i → 0. Then, θi
S = −Ci , which

has to reduce to θi , i.e. the true source position is equal to the observed position. Hence,
−Ci = θi and we have

θi
S = θi + 2

χ

∫ χ

0
dχ ′′

∫ χ ′′

0
dχ ′�,i(x(θ , χ ′), η0 − χ ′). (13.13)

The sign here is correct: An overdensity centered at x⊥ = 0 has � > 0 there, and therefore
the derivative of � with respect to x (�,i with i = 1) is negative for x > 0. As such, the bend-
ing angle of a light ray passing the overdensity on the positive x-axis is negative, i.e., inward
toward the overdensity, as we expect.

Now, the double integral in the χ ′, χ ′′ plane is restricted to the shaded region in Fig. 13.5,
so we can change orders of integration with the χ ′′ integral ranging from χ ′ to χ . The χ ′′
integral is then trivial (since �,i depends only on χ ′) and yields χ − χ ′, so

θi
S = θi + �θi

�θi(θ) = 2
∫ χ

0
dχ ′�,i(x(θ , χ ′))

(
1 − χ ′

χ

)
. (13.14)

Using the fact that ∂/∂xi = χ ′ −1∂/∂θi under the integral via Eq. (13.11), we can write the
deflection angle as the derivative of a lensing potential φL on the sky,

�θi(θ) = ∂

∂θi
φL(θ) (13.15)

φL(θ) ≡ 2
∫ χ

0

dχ ′

χ ′ �(x(θ , χ ′))
(

1 − χ ′

χ

)
. (13.16)

The lensing potential is a weighted integral over 2� along the photon path which, at the
order we work in here, can be taken to be the unperturbed path Eq. (13.11). Notice that the
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contribution to lensing by over- and underdensities close to the source are suppressed,
since 1 − χ ′/χ goes to zero as χ ′ approaches χ .

For galaxy shapes, we will also need the first derivative of the deflection angle, or equiv-
alently the second-derivative matrix (distortion tensor) of the lensing potential:

ψij ≡ ∂�θi

∂θj
= ∂2

∂θi∂θj
φL(θ) = 2

∫ χ

0
dχ ′�,ij (x(θ , χ ′))χ ′

(
1 − χ ′

χ

)
, (13.17)

where we again converted a derivative with respect to θ into a derivative with respect to x

under the integral. The last equality will prove useful to relate lensing to the matter distri-
bution.

13.3 CMB lensing
Gravitational lensing was first conceived as being applicable to light from discrete objects
such as galaxies, and we will turn to this effect in the next section. Much later, cosmolo-
gists realized that a diffuse field such as the CMB will also be lensed. In fact, CMB lensing
requires less formalism to describe, so we break with historical chronology here to walk
through the impact of lensing on the CMB first.

For the CMB, the directional dependence of the intensity in Eq. (13.3) is contained in
the temperature. Therefore, the equality translates into an equality between the observed
temperature at position θ and the unlensed temperature at θS = θ + �θ . Taylor expanding
leads to

Tobs(θ) = Ttrue(θ + �θ [θ ])

� Ttrue(θ) + �θi ∂

∂θi
Ttrue(θ) + 1

2
�θi�θj ∂2

∂θi∂θj
Ttrue(θ), (13.18)

where we have expanded up to second order in small deflections (we will soon see why),
and the source distance is χ = χ∗, the distance to the last-scattering surface. We can now
derive the statistics of Tobs from those of Ttrue and of φL following a similar approach as for
the nonlinear matter density in Sect. 12.2.

First, notice that the mean temperature of the CMB is unchanged by lensing. This is
clear, since lensing only shuffles the arrival directions around without changing the sur-
face brightness. So we can divide both sides of Eq. (13.18) by the mean temperature and
subtract 1, and work with �obs and �true ≡ � (in the following, we will drop the subscript
“true” on the unlensed � for clarity; indeed, this is the � whose evolution we calculated
in Ch. 9). Let us then switch to multipole space, in the flat-sky approximation throughout,
and use

�θ(l) = ilφL(l), (13.19)
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the Fourier-space version of Eq. (13.15). Eq. (13.18) becomes

�obs(l) = �(l) −
∫

d2l1

(2π)2

∫
d2l2

(2π)2
(2π)2δ

(2)
D (l1 + l2 − l) l1 · l2φL(l1)�(l2)

+ 1

2

∫
d2l1

(2π)2

∫
d2l2

(2π)2

∫
d2l3

(2π)2
(2π)2δ

(2)
D (l1 + l2 + l3 − l)

× (l1 · l3)φL(l1) (l2 · l3)φL(l2)�(l3). (13.20)

We can now compute the angular power spectrum of �obs(l) in analogy to the deriva-
tion leading from the second- and third-order contributions to the matter density field
in perturbation theory (Eq. (12.40)) to the next-to-leading order matter power spectrum
Eq. (12.48). The result consists of coupling two quadratic terms and of coupling a linear
term �(l) with a cubic-order one. The two differences to the case of the nonlinear matter
density are that, first, we work in two rather than three dimensions; second, φL and � are
uncorrelated. This is because the contribution to φL coming from near the source (where
� originates) is suppressed, as we have seen. This fact actually simplifies the derivation.

In Exercise 13.2, you can then show that the power spectrum of �obs becomes

Cobs(l) = C(l) + C(22)(l) + 2C(13)(l) (13.21)

C(22)(l) =
∫

d2l1

(2π)2

[
l1 · (l − l1)

]2
CφLφL(l1)C(|l − l1|).

C(13)(l) = −1

4

[∫
d2l1

(2π)2
l2
1CφLφL(l1)

]
l2C(l)

Here, the power spectrum of the lensing potential is defined through〈
φL(l)φ∗

L(l′)
〉 = (2π)2δ

(2)
D (l − l′)CφLφL(l). (13.22)

We defer its derivation to Sect. 13.5 below, but it is shown in Fig. 13.7 (with a prefactor of
l4/4).

The (13) term in Eq. (13.21) corresponds to a damping of power: we can write C(l) +
2C(13)(l) = (1 − l2/l2

lens)C(l). The factor l−2
lens is proportional to the RMS displacement

squared, so we can interpret this as smoothing of the observed temperature distribution on
the sky due to random lensing deflections. The (22) term on the other hand convolves the
unlensed power spectrum with the power spectrum of lensing deflections. This effectively
leads to a damping of the peaks in the C(l). It also adds power to the CMB anisotropies on
very small scales: we have seen in Ch. 9 that when l � lD , the angular damping scale, the
primary CMB anisotropies are exponentially suppressed. The integral in the (22) term in
Eq. (13.21), however, transfers power from large to small scales, so that the lensed temper-
ature anisotropies are actually larger than the primordial ones in the damped regime.

Both effects are visible in Fig. 13.6, which shows both lensed and primordial tempera-
ture power spectra (CMB lensing is incorporated in Boltzmann codes such as CAMB and
CLASS). But they are really evident only when looking at the fractional difference (bottom
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FIGURE 13.6 Effect of lensing on the CMB temperature power spectrum. The top panel shows the power spectrum
before (C(l), dashed) and after lensing (Cobs(l), Eq. (13.21), solid). The bottom panel shows the fractional difference
between these very similar spectra. Lensing smoothes out the peaks in the power spectrum, and adds power on very
small scales.

panel). The smoothing of the peaks leads to an oscillatory pattern with opposite sign than
that in the C(l) itself. The increase of small-scale power in Cobs(l) is also visible. Despite its
small size, the lensing effect is larger than the error bars in current measurements of the
C(l) and needs to be accounted for.

The effect on the power spectrum depicted in Fig. 13.6 is important but it is actually
not the most exciting aspect of CMB lensing. In particular, it does not allow us to easily
extract the desired power spectrum of the lensing potential φL. There is, however, a much
more powerful way of invoking Eq. (13.18) to accomplish this goal. In Eq. (13.21) we only
considered the case

〈
�obs(l)�

∗
obs(l

′)
〉

with l′ = l. In case of the unlensed CMB, we argued
in Ch. 9 that these are the only correlations that are nonzero. This is no longer true for the
lensed CMB: Eq. (13.18) leads to nonzero correlations between the off-diagonal modes, i.e.
those with l′ 	= l. So let us now consider the correlation of two �obs with l′ 	= l. Using the
first line of Eq. (13.20), this yields

〈
�obs(l)�

∗
obs(l

′)
〉 ∣∣∣

φL

l′ 	=l= −
∫

d2l1

(2π)2

[
φ∗

L(l1)l1 · (l′ − l1)
〈
�(l)�∗(l′ − l1)

〉
+ φL(l1)l1 · (l − l1)

〈
�(l − l1)�

∗(l′)
〉 ]

= φL(l − l′) (l − l′) · [lC(l) − l′C(l′)
]
, (13.23)

where the subscript φL on the expectation value on the left-hand side signifies that we are
taking the expectation value over the primary CMB fluctuations while keeping the lensing
field φL(l) fixed. In the second line we have used the fact that the correlations of the pri-
mary anisotropies �(l) are nonzero only when the l vectors in the argument are equal, as
well as the reality condition of the lensing potential: φ∗

L(l1) = φL(−l1).



384 Modern Cosmology

Eq. (13.23) shows that, by combining different modes �obs(l), �∗
obs(l

′) at fixed L = l − l′,
we can reconstruct the lensing potential φL(L). The idea is to take the weighting of modes
that maximizes the signal-to-noise (Hu, 2001; Hu and Okamoto, 2002). Because the mea-
surement of φL involves two powers of �obs, this technique is called optimal quadratic
estimator. The result is a map of the projected matter density on the sky that can be corre-
lated with other maps and whose statistics we can measure.

To gain some intuition for this estimator, consider the case when |L| = |l − l′| 
 l, l′, so
that the left-hand side of Eq. (13.23) is very close to a standard power spectrum configura-
tion. Then, Eq. (13.23) describes the modulation of the observed small-scale CMB power
spectrum by a long-wavelength lensing potential with wavenumber L. This small-scale
power spectrum is anisotropic due to the lensing effect (notice the factors of L · l on the
right-hand side, which shows that the observed power spectrum depends on the angle of
the small-scale mode with the L-mode). The quadratic estimator uses this characteristic
anisotropy to reconstruct the modulating lensing mode φL(L).

Finally, we considered only the lensing of CMB temperature perturbations here. CMB
lensing becomes even more powerful when combined with polarization. If the primary
CMB has only E-mode polarization, then the reshuffling of positions due to lensing will
generate B-modes (if you look at Fig. 10.3 carefully, you can tell that a reshuffling of po-
sitions will turn a pure E-mode into a mixture of E- and B-modes). Then, the small-scale
lensing-generated B-modes can be used as an almost cosmic-variance-free channel for
reconstructing φL(L).

13.4 Galaxy shapes
Let us now switch from the CMB to galaxies. Eq. (13.3) shows that entire galaxy images
are displaced from their true position to the observed one, similar to how the CMB tem-
perature is remapped. Unfortunately, we do not know the true galaxy positions a priori.
One possible approach then is to use the isotropy of the unlensed projected galaxy den-
sity field, which is closely analogous to the CMB lensing approach of Sect. 13.3. However,
this approach is usually not nearly as powerful as the one we will describe here. Instead
of looking at the overall displacement of the galaxy position, we use the relative displace-
ment of different parts of the galaxy image, that is, the distortion in the observed shapes of
the galaxies (as shown in extreme form for the arc-like images in Fig. 13.2). This happens
because the lensing deflection angle varies on the sky, so it also varies across the image of
a galaxy. In the simplest case, lensing turns the image of a circular galaxy into an elliptical
one.

To describe this effect, then, we need to come up with quantitative measures of galaxy
shapes, and see how these are affected by gravitational lensing. The simplest measure of a
galaxy shape is the set of second moments (or quadrupole moments) of its image. Imagine
centering an image at the origin (θx, θy) = (0,0). Then the second moments are defined as

qij ≡ 〈
θiθj

〉
Iobs

≡ 1

F

∫
d2θ Iobs(θ)θiθj (13.24)



Chapter 13 • Probes of structure: lensing 385

where angular brackets denote intensity-weighted averages over the image, and the sec-
ond moments are normalized by

F =
∫

d2θ Iobs(θ), (13.25)

the total flux of the image. In particular, here we have chosen the origin such that 〈θx〉Iobs =
〈θy〉Iobs = 0. qij is a symmetric 2 × 2 matrix which we can write as

qij = 1

2
q

(
1 + ε1 ε2

ε2 1 − ε1

)
. (13.26)

The three independent components now are the trace q = Tr[qij ] and ε1, ε2. A circular im-
age has ε1 = ε2 = 0, while

√
q provides a measure of the angular size of the image. Eq. (13.26)

is very similar to the polarization tensor in Eq. (10.2): q/2 is equivalent to the intensity I ,
while εi are equivalent to the scaled Q and U polarizations:

ε1 ↔ Q

I
; ε2 ↔ U

I
. (13.27)

So we can interpret the polarization pattern shown in Fig. 10.2 equivalently as showing
galaxy images described by different values of ε1 and ε2. It further means that we can im-
mediately adopt the results of Sect. 10.1, and define the E- and B-modes of the galaxy
ellipticity field. We will begin by assuming that galaxy shapes are intrinsically random, so
that all observed shape correlations are due to lensing. This is not entirely correct, as we
will see below.

So let us derive how lensing affects the galaxy shape tensor qij . A distortion due to lens-
ing happens because the deflection angle �θ varies across the galaxy image. Hence, we
need the derivative of the observed position θ with respect to the observed angle. It is con-
ventional to define the 2 × 2 transformation matrix,

Aij ≡ ∂θi
S

∂θj
=

(
1 − κ − γ1 −γ2

−γ2 1 − κ + γ1

)
. (13.28)

In the second equality we have assumed that Aij is symmetric, which allows us to write
it in a form analogous to Eq. (13.26). This follows from the fact that the deflection angle
can be written as the gradient of a scalar lensing potential (Eq. (13.16)). The antisymmetric
part of Aij , which thus vanishes at leading order, corresponds to an image rotation (see
Exercise 13.5).

The quantity κ, the analogue of image size q or intensity I , is called the convergence; it
describes how the flux and size of an image are modified. The components we are most
interested in are the two components of the shear,

γ1 = −A11 − A22

2
,

γ2 = −A12. (13.29)
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Again, the γi are analogous to the εi and to the polarization Q and U .
We can directly express Aij in terms of the distortion tensor defined in Eq. (13.17):

Aij = δij + ψij , and ψij =
( −κ − γ1 −γ2

−γ2 −κ + γ1

)
. (13.30)

In other words, κ, γ1 and γ2 are well-defined functions of the integrated gravitational po-
tential. We can now derive how they influence the shapes of galaxy images.

In the presence of lensing, the observed second moments of a given galaxy are, through
Eq. (13.3) and Eq. (13.24), given by

qij =
∫

d2θ Itrue(θS)θiθj∫
d2θ Itrue(θS)

. (13.31)

The integrals here are over the observed angles θ , while the intensity depends on the angle
from which the photon started at the source, θS . We now want to make use of the fact that
the deflection angle �θ only varies slightly across the galaxy image. We expand

θi
S(θ) = θi + �θi + ∂�θi

∂θj
θj + · · · = Aij θj + �θi + · · · , (13.32)

where �θi and its derivative are to be evaluated at the galaxy centroid position. Keep in
mind that Aij and �θi are always evaluated at a fixed position, so we can pull them out
of the integrals over the galaxy image. This approximation is sufficiently accurate for weak
lensing, as higher-order corrections in θ become significant only on very small scales.

Let us drop the constant shift �θi for the time being; this is just the shift in the galaxy’s
apparent position, so we do not expect it to affect the shape. Below we will show that this
is indeed the case. Then, we can replace θi with (A−1)ij θS,j everywhere in Eq. (13.31). To
do the integrals, first change the integration variable to θS . This leads to

qij = 1

F

∫
d2θS

∣∣∣∣ ∂θk

∂θS,l

∣∣∣∣ Itrue(θS)(A−1θS)i(A
−1θS)j ,

F =
∫

d2θS

∣∣∣∣ ∂θk

∂θS,l

∣∣∣∣ Itrue(θS). (13.33)

Let us begin with the second line, the total flux of the lensed image. The Jacobian factor is
equal to |A−1| = |A|−1, and can be pulled out of the integral to obtain

F = |A|−1Ftrue, (13.34)

where Ftrue is the flux that would be observed if the galaxy was not lensed, and the inverse
determinant is given by (Exercise 13.3)

μ ≡ |A|−1 = 1

(1 − κ)2 − γ 2
1 − γ 2

2

. (13.35)
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This quantity, which describes the increase or decrease in total galaxy flux, is called magni-
fication. Since lensing conserves Iν , i.e. surface brightness, the increase in flux of an image
is equal to the increase in area. The magnification has many important ramifications in
all areas of lensing, and can be measured through its effect on galaxy number counts (see
Exercise 13.11) as well as galaxy size correlations. Eq. (13.35) is in fact valid beyond the
weak-lensing regime.

For the shape tensor in the first line of Eq. (13.33), the Jacobian factors cancel and it
becomes

qij = (A−1) k
i (A−1) l

j qtrue
kl , (13.36)

where qtrue
kl is the second-moment tensor that would be observed in the absence of lensing.

This is the transformation law for the second moments under lensing.
Now, if we include the constant �θ that we have dropped after Eq. (13.32), we ob-

tain linear and quadratic terms in �θ . The latter is higher order in our treatment, so we
can immediately drop it. The linear-order terms on the other hand are proportional to∫

d2θSItrue(θS)θ i
S , which vanishes since we have chosen the coordinates such that the ori-

gin is the centroid of the image, and so the dipole of the intensity vanishes. Thus, we were
justified in dropping �θi .

We now proceed by linearizing Eq. (13.36) in κ and γi , and using Eq. (13.30). This yields

qij
linear= qtrue

ij − ψi
kqtrue

kj − ψj
lqtrue

il . (13.37)

Using Eq. (13.26) for both qij and qtrue
ij , it is now straightforward to derive the transforma-

tion of the trace q and the ellipticity components εi under lensing. We will only give the
result here, leaving the intermediate steps as Exercise 13.3. First, the trace of qij is

q = Trqij = qtrue
[
1 + 2κ + 2(εtrue

1 γ1 + εtrue
2 γ2)

]
. (13.38)

Since q is a measure for the area of the galaxy image, which is proportional to the flux
when surface brightness is kept fixed, we expect it to increase as μ � 1 + 2κ. Neglecting
the higher-order ellipticity corrections, this is precisely what Eq. (13.38) dictates. For the
ellipticities, we have

ε1 = q11 − q22

q
= (

1 − 2[εtrue
1 γ1 + εtrue

2 γ2]
)
εtrue

1 + 2γ1,

ε2 = 2q12

q
= (

1 − 2[εtrue
1 γ1 + εtrue

2 γ2]
)
εtrue

2 + 2γ2. (13.39)

Notice that here we have assumed that κ, γ1, γ2 are small, but not that εi or εtrue
i are small,

since in reality galaxies are not close to circular in general. Nevertheless, if we also assume
that the εtrue

i are small, then the result becomes very simple:

εi = εtrue
i + 2γi (εtrue

i 
 1). (13.40)
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By measuring ellipticities of distant galaxies, therefore, we can get an estimate of the
shear field, which depends directly on the gravitational potential via Eq. (13.17). In fact,
we do not know the true ellipticity components of individual galaxies. We do know their
distribution, however,1 which is fairly narrow with an RMS width of typically 〈(εtrue

1 )2 +
(εtrue

2 )2〉1/2/
√

2 � 0.3. By summing the ellipticities of many galaxies in a small area (pixel) of
sky, the noise due to the random intrinsic ellipticities averages out and the lensing signal
remains. The shear fields γ whose statistics we derive next should be understood as being
measured in this way.

13.5 Weak-lensing statistics
On average, each of the components of the distortion tensor is zero: 〈ψij 〉 = 0, since
〈φL〉 = 0. To make our money, therefore, we need to do just what we did for the CMB and
galaxy distributions: compute either the angular correlation function or its Fourier trans-
form, the power spectrum. We will do this in the flat-sky approximation again, well justified
since most of the lensing signal is on small scales (angular wavenumbers l � 100). Then,
the derivation essentially amounts to combining the results of Sect. 11.2 (projected angu-
lar correlations) and Sect. 10.1 (since shear is analogous to polarization). Consequently,
we begin with the power spectrum in Fourier space, before deriving the real-space corre-
lation functions. We will then turn to other important lensing statistics, in particular the
cross-correlation with galaxy counts.

13.5.1 Shear power spectrum

In order to derive the shear power spectrum, we take the two-dimensional Fourier trans-
form of Eq. (13.17):

−ψij (l) = li lj φL(l). (13.41)

This relation allows us to directly compute the power spectra of shear and convergence,
by making use of Eq. (13.30). Given this expression for the distortion tensor, which we can
treat just like Iij in Sect. 10.1, the E-mode is given via Eq. (10.6) (notice that we have to
subtract the trace from −ψij )

E(l) =
(

li lj

l2
− 1

2
δij

)
[−ψij (l)] = 1

2
l2φL(l) = κ(l). (13.42)

The last equality follows from Eq. (13.30) as well, since taking the trace of −ψij yields
2κ = −(∂2/∂θ2

1 + ∂2/∂θ2
2 )φL. The B-mode vanishes. This can be derived through Eq. (10.5).

Alternatively, one can show that the B-mode of the distortion tensor can, at linear order,
only be sourced by a curl-type deflection angle, whereas Eq. (13.14) clearly is of gradient
type (Exercise 13.5).

1
Since lensing is a small effect, to first order we can use the distribution of observed shapes of all galaxies as a

proxy for the distribution of intrinsic shapes.
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Deriving the power spectrum of the E-mode and therefore of κ now follows:

〈
E(l)E∗(l′)

〉 = (2π)2δ
(2)
D (l − l′)CEE(l), (13.43)

where the power spectra are related by

CEE(l) = Cκκ(l) = 1

4
l4CφLφL(l). (13.44)

Conveniently, φL is a scalar on the sky, so its power spectrum can be computed exactly
as we did for the angular galaxy correlations in Sect. 11.2. So let us write, in analogy with
Eq. (11.39),2

φL(θ) = 2
∫ ∞

0

dχ

χ
gL(χ)�(x(χ), η0 − χ) . (13.45)

The only difference to Eq. (11.39) is the different kernel gL(χ), which we will specify mo-
mentarily, and that we have to replace δg with 2�. The derivation then proceeds just as in
Sect. 11.2, and we obtain from Eq. (11.47)

CφLφL(l) = 4
∫ ∞

0

dχ

χ2

g2
L(χ)

χ2
P�

(
k = l + 1/2

χ
,η(χ)

)
. (13.46)

Now let us derive the projection kernel gL for φL, for which we need to include one more
observational complication. Eq. (13.17) gives the distortion tensor for a galaxy at fixed dis-
tance χ . Because it is a small effect and requires large statistics, weak lensing is usually
measured in photometric surveys which do not yield a distance for each galaxy. So in-
stead, we are measuring the statistics of the distortion tensor for a distribution of galaxy
redshifts. Let us call this distribution W(χ), just as we did when studying angular corre-
lations in Sect. 11.2. Again, let us normalize W so that

∫ ∞
0 dχW(χ) = 1. Then, the lensing

potential φL (Eq. (13.16)) is

φL(θ) = 2
∫ ∞

0
dχW(χ)

∫ χ

0

dχ ′

χ ′ �(x(θ , χ ′))
(

1 − χ ′

χ

)
. (13.47)

We can again simplify this double integral by changing orders of integration (almost ex-
actly as depicted in Fig. 13.5). Then

φL(θ) = 2
∫ ∞

0

dχ ′

χ ′ gL(χ ′)�(x(θ , χ ′)) (13.48)

where

gL(χ ′) ≡
∫ ∞

χ ′
dχ

(
1 − χ ′

χ

)
W(χ). (13.49)

2
We have replaced n̂ with θ here, since we are working in the flat-sky approximation from the outset.
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FIGURE 13.7 The E-mode shear power spectrum for the CMB (red, dashed, zS = 1089), and for source galaxies with
a Gaussian redshift distribution centered at zS = 2 with an RMS width of �z = 0.2 (black, solid). Note that CEE(l) =
Cκκ (l) = (l4/4)CφLφL (l) in our flat-sky treatment. Both curves are computed using a prescription for the nonlinear
matter power spectrum as a function of redshift calibrated on simulations (see Sect. 12.7). The power spectrum is
larger for CMB lensing than for galaxies, because of the longer distance lever arm.

We are essentially done, but let us massage the power spectra into slightly simpler
forms. First, assume that l is sufficiently large so we can neglect the +1/2 in the argument
of P�. Second, we can use the Poisson equation (8.6) to relate � to the nonlinear matter
density perturbation δm (which, as we argued in Ch. 12, remains valid for nonlinear struc-
ture):

k2� = − 3

2
�mH 2

0 a−1δm, so that P�

(
k = l

χ

)
=

(
3�mH 2

0

2a

)2
χ4

l4
P

(
l

χ

)
. (13.50)

Then, the factor of χ4 cancels the denominators in Eq. (13.46) and the factor of l4 cancels
in Eq. (13.44), so we are left with

CEE(l) = Cκκ(l) =
(

3

2
�mH 2

0

)2 ∫ ∞

0
dχ a−2(χ)g2

L(χ)P

(
k = l

χ
, η(χ)

)
. (13.51)

That is, the angular power spectrum of galaxy ellipticity correlations induced by lensing
is directly proportional to an integral over the nonlinear matter power spectrum P(k),
weighted by the lensing kernel Eq. (13.49). Notice that �m enters, since the amplitude of
gravitational lensing is controlled by the potential perturbations, which depend on the to-
tal amount of matter sourcing gravity and hence the mean matter density. The result in
our fiducial �CDM cosmology is shown in Fig. 13.7. Clearly, most of the shear signal is on
small angular scales.

Our results now allow us to understand the power of weak lensing. First, it probes the
nonlinear matter power spectrum P(k) directly, without the annoying bias factors in be-
tween that we have for galaxies. It can then be used to constrain the amplitude σ8 of
fluctuations as well as �m. It is important to note that Eq. (13.51) remains quite accurate
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even on small scales, where P(k) is probed in the nonlinear regime. That is, the nonlin-
earities in the shear, which we have neglected throughout, are much smaller than those in
the three-dimensional density field. Our theory predictions for weak lensing then are lim-
ited only by our ability to predict the nonlinear matter power spectrum, which becomes
sensitive to the effects of baryons on very small scales (Sect. 12.3). Second, weak lensing
also tells us about the expansion history, since the amplitude of CEE(l) depends on the
comoving distance χ to the source galaxies, i.e. it depends on the distance-redshift rela-
tion. Further, we know that there are two components to galaxy ellipticities, but only one
of them, the E-mode is nonzero. Thus, the observed B-mode can be used as a rigorous test
for systematics in the measurement.

We should also mention some of the challenges of lensing. First, the signal is small
(see the vertical axis in Fig. 13.7 and Exercise 13.8), because photons travel at the speed
of light and are hard to deflect. This means we need a large number of galaxies to mea-
sure it precisely, which in turn means that most of these galaxies will be faint. This poses
challenges for robust measurements of shapes. Second, in practice we do not know the
redshift distributions of the source galaxies accurately, so they must be calibrated using
external measurements or the lensing statistics themselves (at the price of losing some of
the cosmological constraining power).

Finally, galaxy shapes are not entirely uncorrelated intrinsically, and a model for their
intrinsic correlations, known as intrinsic alignments, has to be included in the interpreta-
tion of the measurement. On large scales, the leading effect that intrinsically correlates
galaxy shapes is the tidal field. So, writing a linear relation between the shape and the
second-derivative tensor of the gravitational potential, we have

qIA
ij (x, η) = c1(η)

∂2

∂θi∂θj
�(x, η) = −c1(η)χ2�,ij (x, η), (13.52)

where c1 only depends on time. This is the analogue for shapes of the linear bias relation
for the galaxy density. Since the shape is described by a 2 × 2 symmetric matrix on the
sky, we have to write the tidal field in a form consistent with qij . In Exercise 13.9 you can
work out how this effect contributes to shear statistics. Observationally, tidal alignment has
been detected to high significance, but the coefficient c1 is generally less than one. That is,
galaxies are less aligned than they are clustered. Nevertheless, given the high precision of
current weak-lensing measurements, this effect needs to be incorporated. Note that we do
not expect Eq. (13.52) to be sufficient on mildly or fully nonlinear scales; rather, nonlinear
alignment terms will become important in analogy to the nonlinear bias contributions
derived in Sect. 12.6.

13.5.2 Shear correlation function

We now turn to the Fourier transform of the shear power spectrum, the correlation
function. In the large-scale structure realm, unlike the CMB, correlation functions are
frequently employed because they are simpler to measure than power spectra. The
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E/B-decomposition we have used so far naturally works in Fourier space. So there is no
simple notion of an “E-mode correlation function.” Nevertheless, the absence of B-modes
also manifests itself in the shear correlation functions.

To begin, we again use the polarization analogy to derive, from Eq. (10.11),(
γ1(l)

γ2(l)

)
=

(
cos 2φl

sin 2φl

)
E(l), (13.53)

where we have dropped any B-modes from the outset (see Exercise 13.10). Let us compute
then the auto-correlation of γ1:

〈γ1(0)γ1(θ)〉 =
∫

d2l

(2π)2

∫
d2l′

(2π)2
cos 2φl cos 2φl′

〈
E(l)E(l′)

〉
eil·θ

=
∫

d2l

(2π)2
eilθ cos φl cos2 2φl CEE(l), (13.54)

where we have aligned the lx-axis with θ . We will return to this below. The correlation func-
tion of γ2 follows the same expression with cos2 2φl replaced by sin2 2φl . So let us take the
sum of the two, since that will be simple to compute:

〈γ1(0)γ1(θ)〉 + 〈γ2(0)γ2(θ)〉 =
∫

ldl

2π
J0(lθ)CEE(l), (13.55)

where we have used Eq. (C.24). On the other hand, the difference between the two is also
straightforward to compute

〈γ1(0)γ1(θ)〉 − 〈γ2(0)γ2(θ)〉 =
∫

d2l

(2π)2
eilθ cos φl cos2 4φl CEE(l)

=
∫

ldl

2π
J4(lθ)CEE(l), (13.56)

again via Eq. (C.24).
Now, the components γ1,2 depend on the definition of the coordinate system. We have

aligned θ with the x-axis, so the separation between the two galaxies whose shape we
are correlating is horizontal in the illustration of Fig. 10.2. Therefore, nonzero γ1 corre-
sponds to galaxies either aligned with θ or orthogonal to it (just like Q-polarization). Simi-
larly, nonzero γ2 corresponds to galaxies oriented at 45◦ from the separation vector θ (like
U-polarization). We can generalize this decomposition so that the results are independent
of the coordinate definition. Functionally, doing that requires not a measurement of γ1 or
γ2, but rather γt and γ×: the tangential shear γt is the component of the shear that is parallel
or perpendicular to the line connecting two given galaxies (it is negative for a shear parallel
to this line). The cross-component of the shear is oriented at 45◦ or 135◦ with respect to the
separation vector. The above results then apply to these coordinate-invariant definitions:

〈γt (0)γt (θ)〉 ± 〈γ×(0)γ×(θ)〉 = ξ+,−(θ) (13.57)
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FIGURE 13.8 Measurement of the shear correlation functions from the first year of data from the Dark Energy Survey.
This includes the complete source galaxy sample, not split up by photometric redshift. The solid line shows the
prediction for the best-fitting �CDM model (including intrinsic alignments and other effects). From Troxel et al.
(2018).

where

ξ+,−(θ) =
∫

ldl

2π
J0,4(lθ)CEE(l) (13.58)

are the “plus-” and “minus-” type shear correlation functions, which are both uniquely
determined by CEE(l) = Cκκ(l). You can also show that the cross-correlation function be-
tween the two shear components vanishes: 〈γt (0)γ×(θ)〉 = 0 (this is quite simple when
aligning θ with the x-axis again). All of these relations really follow from the fact that the
ellipticity field is composed purely of E-modes; if present, B-modes also contribute to ξ+
and ξ−, but with a minus sign in the latter, as you can show in Exercise 13.10.

Fig. 13.8 shows a measurement from the Dark Energy Survey. Clearly, lensing is detected
at very high signal-to-noise, especially on small scales (toward the left in the figure). The
measurement is entirely compatible with the �CDM prediction. The actual cosmology
constraints were obtained from a larger data vector: the source galaxy sample was split
into four subsamples based on their photometric redshift estimates. Then, all shape auto-
and cross-correlations between these different samples were used, yielding more informa-
tion on the expansion history and dark energy equation of state.

13.5.3 Shear cross-correlations

A very important application of lensing shear is its cross-correlation with other cosmolog-
ical fields, in particular the galaxy density. So let us consider the projected galaxy density
following Eq. (11.39),

�g(θ) =
∫ ∞

0
dχWg(χ)δg (x = θχ,η = η0 − χ) , (13.59)



394 Modern Cosmology

where we have introduced another weighting function Wg(χ), since this galaxy sample
does not have to be the same as the source galaxies used for measuring shear. The flat-sky
and Limber approximations that led to Eq. (11.47) are not restricted to auto-correlations.
The result for the cross-correlation simply replaces one of the projection kernels with the
appropriate one for the field that is being correlated with. So analogously to Eq. (13.46), we
obtain

CgE(l) = l2
∫ ∞

0

dχ

χ2
Wg(χ)

gL(χ)

χ
Pg,�

(
k = l + 1/2

χ
,η(χ)

)
, (13.60)

where Pg,� is the cross-power spectrum between the 3D galaxy density and the potential.
Using the Poisson equation again yields

CgE(l) = 3

2
�mH 2

0

∫ ∞

0

dχ

χ
Wg(χ)a−1(χ)gL(χ)Pgm

(
k = l

χ
, η(χ)

)
, (13.61)

which involves the 3D galaxy-matter cross power spectrum. So what does this result mean?
Consider the integrand at fixed χ , which is the distance to the galaxies whose positions we
are correlating with (“g”). The kernel gL(χ) is only significant if χ is significantly smaller
than the typical comoving distance of the source galaxies, those used for the shear mea-
surement. That is, there only is a nonzero cross-correlation if the source galaxies are at
higher redshifts than the galaxies whose positions we are correlating with. This is because
CgE(l) measures the lensing effect of the mass associated with these galaxies at lower red-
shifts. So the galaxies included in �g are usually referred to as “lens galaxies,” as opposed
to the “source galaxies” used to measure the shear.

One of the important ramifications of Eq. (13.61) is that Pgm is proportional to b1, i.e. lin-
early proportional to the bias of the lens galaxies, while the angular galaxy auto-correlation
Cg(l) is proportional to b2

1. So, by measuring both CgE(l) and Cg(l) we have a means of
breaking the bias-amplitude degeneracy. In fact, current lensing analyses of large imag-
ing surveys typically obtain their tightest constraints when combining all three two-point
correlations: CEE(l), CgE(l), Cg(l) (or their real-space counterparts). Importantly however,
the simple description of Pgm and Pg in terms of a linear bias b1 is not expected to hold on
small, nonlinear scales.

Next, let us derive the shear-galaxy cross-correlation function in real space. Again, we
will align the x-axis with θ . So, γ1 becomes the tangential shear γt . We obtain

ξg,t (θ) ≡ 〈
�g(0)γt (θ)

〉 = ∫
d2l

(2π)2
eilθ cos φl cos 2φlCgE(l)

= −
∫

ldl

2π
J2(lθ)CgE(l). (13.62)

It is easy to show that the corresponding cross-correlation with γ× (i.e. γ2 in the chosen
coordinates) vanishes in the absence of B-modes. So ξg,×(θ) can be used as another obser-
vational systematics check. There is an intuitive explanation for this fact. As we have seen,
the galaxy-shear cross-correlation probes the lensing induced by the mass associated with
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the lens galaxies. Now, there is no preferred direction on the sky, so the average mass distri-
bution around the lens galaxies is azimuthally symmetric. So, if we place the lens galaxies
at the origin, we are in a similar setup as illustrated in Fig. 10.4. This shows that E-modes
only generate tangential shear γt , not the cross-component γ×. More precisely, Fig. 10.4
shows a radial oscillating wave, while in the case of lensing by an overdensity, the E-mode
is always positive so that galaxy shapes will always be aligned tangentially.

Fig. 13.9 shows the measurements of ξg,t (θ) from DES. The lens galaxies are selected
based on their photometric properties to be luminous red galaxies whose photometric
redshifts are fairly accurate. Each panel corresponds to a different redshift range of lens
galaxies (we show the auto-correlation of one of these samples in Fig. 11.9). In each panel,
different sets of points show different source galaxy samples. The signal increases with
increasing source galaxy redshift, and becomes small if the source galaxies are not suf-
ficiently far behind the lenses. All of this is expected based on the shape of the lensing
kernel, Eq. (13.49). While the signal-to-noise is again highest on small scales (toward the
left in the figure), nonlinear bias, intrinsic alignments, and other nonlinear effects become
important on those scales. For this reason, the data in the shaded regions in Fig. 13.9 are

FIGURE 13.9 Measurement of galaxy-galaxy lensing (γt (θ) ≡ ξg,t (θ)), the shear-galaxy density cross-correlation func-
tion, in the DES Year 1 data. Each panel corresponds to a different sample of lens galaxies, while the different sets of
points show different source galaxy samples. The upper right panel shows results for the same lens galaxies whose
density auto-correlation is shown in Fig. 11.9. Only ξg,t (θ) is shown, since ξg,×(θ) was found to be consistent with
zero, as expected. The lines show fits based on a �CDM cosmology, which are used to measure the bias of the lens
galaxy samples. From Prat et al. (2018).
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not used for cosmological constraints. Better models of these nonlinear scales will hope-
fully allow for more information to be extracted from the data in the future.

Our result Eq. (13.61) for CgE(l) = Cgκ(l) also allows us to understand another applica-
tion of lensing, cluster mass calibration. ξg,t (θ) is essentially the mean mass profile around
lens galaxies projected on the sky (and weighted with the lensing kernel). We can apply
this measurement technique to a set of galaxy clusters selected by a mass proxy such as
richness, X-ray temperature, or SZ signal. Then, lensing allows us to measure the projected
mass profile of the clusters at fixed mass proxy, and hence the mean mass-observable re-
lation.

13.6 Summary
Gravitational lensing is a powerful tool in that it directly probes all clustering components
—dark or luminous—in the universe through their gravitational effect. We only briefly
touched on the many facets of this very broad topic in Sect. 13.1, and refer the reader in-
terested in more depth to the comprehensive review of Bartelmann and Schneider (2001).
In cosmology, the most prominent application of lensing is weak lensing, the statistical
detection of lensing through its small but ubiquitous effect on the CMB and the shapes
of background galaxies. Starting from the fundamental property of weak lensing, that it
conserves surface brightness or intensity (Eq. (13.3))

Iobs(θ) = Itrue(θS), (13.63)

where θS(θ) is the sky position in the absence of lensing, weak lensing can be completely
described by a remapping of positions on the sky through

θi
S(θ) = θi + �θi,

�θi(θ) = ∂

∂θi
φL(θ); φL = 2

∫ χ

0

dχ ′

χ ′ �,i(x(θ , χ ′))
(

1 − χ ′

χ

)
, (13.64)

where χ is the comoving distance to the source. The deflection angle �θi on the sky is the
basic lensing observable. For galaxies, we most easily observe its derivatives, the conver-
gence (κ) and shear (γ ) fields, which affect the observed shapes of galaxies (Eq. (13.40)).

The approach to compare theory with data is then very similar to the other probes we
have studied: one looks at statistics such as two-point correlation functions and power
spectra. The effect of lensing on the CMB can be predicted (Eq. (13.21)) and probes struc-
ture at z � 2 − 5. Galaxy shape correlations can be described using the same formalism we
developed for polarization in Ch. 10, via a decomposition into E- and B-modes. Lensing
also affects the number and size correlations of galaxies, which can be used to measure the
magnification (μ) instead of the shear. All of these statistics are at leading order determined
by the power spectrum

CEE(l) = Cκκ(l) =
(

3

2
�mH 2

0

)2 ∫ ∞

0
dχ a−2(χ)g2

L(χ)P

(
k = l

χ
, η(χ)

)
(13.65)
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of the shear E-mode, which is equal to that of the convergence κ = μ/2. The lensing kernel
gL(χ) is defined in Eq. (13.49). The expected null result for B-modes on the other hand can
be used as a powerful systematics check in observational measurements.

The shear power spectrum is sensitive not only to the nonlinear matter power spectrum
P(k,η) integrated along the line of sight, but also to the background cosmology through
the distance-redshift relation χ(z). So, if the redshift distribution of the source galaxies is
known, lensing allows for constraints on the histories of both expansion and growth. Apart
from having to determine the redshift distribution of the source galaxies, intrinsic galaxy
shape correlations and small-scale baryonic effects on the matter distribution itself also
need to be modeled.

As powerful as the shear power spectrum itself are cross-correlations of shear with
foreground galaxy number counts (galaxy-galaxy lensing) or clusters, which we derived
in Eq. (13.61):

CgE(l) = 3

2
�mH 2

0

∫ ∞

0

dχ

χ
Wg(χ)a−1(χ)gL(χ)Pgm

(
k = l

χ
, η(χ)

)
. (13.66)

This cross-power spectrum allows for a calibration of the bias of the lens galaxies (since
Pgm(k) = b1PL(k) on large scales), and leads to a significant increase in constraining power
when combined with galaxy and shear auto-correlations. For clusters, weak-lensing shear
allows for the important calibration of the mass-observable relation.

Exercises
13.1 Derive the relation Eq. (13.2) between the specific intensity Iν(x, p̂, t) and the pho-

ton distribution function. Use the definition in Eq. (13.1) and |p| = 2πν (recall
that we set � ≡ h/2π = 1). Verify that this recovers Eq. (1.9) for a black-body spec-
trum.

13.2 Derive Eq. (13.21). This is analogous to (but a bit easier than) the derivation leading
from the perturbation-theory expansion of the nonlinear density field Eq. (12.40)
to the next-to-leading correction to the matter power spectrum Eq. (12.48). Hence,
you probably want to go through Exercise 12.5 first. Take into account the fact that〈
�(l)φL(l′)

〉 = 0.
13.3 Fill in some of the details leading to Eq. (13.39).

(a) Derive Eqs. (13.34)–(13.35), as well as the limiting expression for the magnifica-
tion μ = |A|−1 when all of κ, γ1, γ2 are small.

(b) Derive Eqs. (13.38)–(13.39) from Eq. (13.37).
13.4 Consider a lens at a fixed comoving distance χL and redshift zL (i.e., a single galaxy

or a cluster as opposed to large-scale structure in general; cf. Fig. 13.4). Assume
further that the extent in the line-of-sight direction is small compared to χL. Show
that the lensing potential φL in Eq. (13.16) can be written as

φL(θ;χL) = 4G

(1 + zL)2
(χ − χL)

χL

χ

∫
d2θ ′ �(θ ′) ln

∣∣θ ′ − θ
∣∣ . (13.67)
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Here, χ is the comoving distance out to the source and �(θ) is the projected surface
density of the lens in the plane perpendicular to the line of sight:

�(θ) =
∫ ∞

0
dχ ′ ρ(x(θ , χ ′)). (13.68)

Hint: use cylindrical coordinates and the integral solution of the Poisson equa-
tion.

13.5 Throughout this chapter, we considered scalar perturbations, which allowed us to
write the linear-order lensing deflection as the gradient of a scalar lensing potential,
Eq. (13.16). Now consider a curl contribution to �θ :

�θi = ∂θ,iφL + ε3ij ∂θ,jω, (13.69)

where εijk is the Levi-Civita symbol and we continue to assume that the line of sight
is along the z-direction (k = 3). ω could be induced by vector and tensor metric per-
turbations, or by higher-order lensing contributions. Compute the contribution to
ψij due to ω. Show that it contributes to the shear as well as inducing a rotation
(which we have dropped from ψij in the main text). Then, decompose the shear
induced by ω into E- and B-modes. We thus have four components of ψij : κ, γ1, γ2

and the rotation. Summarize the relations between the four quantities and with φL

and ω.
13.6 Compute Cκκ(l) numerically for the fiducial �CDM cosmology, using the linear

matter power spectrum. Assume all background galaxies are at redshift z = 1.5.
Now repeat the same calculation with a prescription for the nonlinear matter power
spectrum, or compare with Fig. 13.7. At what l do you begin to see a discrepancy?
How would you estimate this scale l based on what you have learned about matter
nonlinearities in Ch. 12 and lensing in this chapter?

13.7 Repeat Exercise 13.6 but now for a source redshift z∗ = 1089, i.e. the CMB. This
time, plot the angular power spectrum of the lensing potential φL, as well as that
of its gradient �θi = ∂φL/∂θi . What do you conclude about the typical size of CMB
lensing deflections, and their typical correlation scale?

13.8 Derive the RMS amplitude of κ and shear E-modes given an angular Fourier-
space filter W(l). Using the result from Exercise 13.6, evaluate it numerically for
a “sharp-l” filter

W(l) =
{

1, l ≤ π/θmin,

0, otherwise,
(13.70)

as a function of θmin. This gives a sense of the typical values of the convergence and
shear. What do you conclude about the size of weak lensing?

13.9 Compute the effect of linear tidal alignments (Eq. (13.52)) on shear statistics, by
following closely the derivation in Sect. 13.5.1.
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(a) The simplest approach to incorporate alignments is by adding them to the lens-
ing potential:

φL(θ) → φL(θ) + φIA(θ). (13.71)

Derive φIA and its associated projection kernel WIA.
(b) Derive the contributions to CEE(l) in the Limber approximation. You should

obtain two new types of contributions. Provide physical interpretations for
them.

(c) Now follow the derivation in Sect. 13.5.3 to derive the alignment contribu-
tion to CgE(l). Again provide physical interpretations for the terms you ob-
tain.

(d) Can you think of approaches that could be used to disentangle lensing and
intrinsic alignments?

13.10 Derive the contribution of shear B-modes to the correlation functions Eqs. (13.57)–
(13.58). Begin by using Eq. (10.11) to write the contribution to the components
γ1(l), γ2(l).

13.11 In Ch. 11, we computed the angular auto-correlations of galaxies, while in this
chapter we derived the cross-correlation with shear. There is an additional lens-
ing effect that we neglected in these derivations. Typically, galaxies are selected,
at least to some level, by their observed flux. This means that some galaxies that
should not be included in the survey because they are intrinsically fainter than
the magnitude limit are magnified and so appear brighter, thereby making the
cut; this is referred to as magnification bias (Moessner and Jain, 1998). If the
magnification is μ, then the number of background galaxies in an angular patch
is

ng = n̄gμ
2.5s−1. (13.72)

Here n̄g is the average number of galaxies, and s is defined as d logN(m)/dm where
N(m) is the number of galaxies at the magnitude limit m. For the present exercise,
do not worry about where this relation comes from (see Broadhurst et al., 1995, for
an explanation).
(a) Derive the contribution to the observed three-dimensional galaxy density δg

induced by this effect at linear order in κ.
(b) Now derive the contribution to the projected galaxy density �g(θ), using

Eq. (13.49).
(c) Compute the contribution to the galaxy-shear cross-power spectrum, and

cross-correlation function.
(d) Do the same for the cross-correlation of number counts of different galaxy

samples. When do you expect the magnification bias contribution to be sig-
nificant?



14
Analysis and inference

Increasingly, cosmologists are turning their attention to the fundamental question of how
best to analyze a set of data. The main reason for this focus is that the quality and quantity
of data have improved dramatically over the past decades. There is every reason to believe
that this trend will continue. Anisotropies in the temperature of the CMB have been mea-
sured by dozens of experiments and the next stage of experiments is already ramping up.
The large-scale clustering of matter is probed in a variety of ways; activity here, too, shows
no sign of letting up. After the completion of the Sloan Digital Sky Survey (SDSS) and the
Two Degree Field (2dF) galaxy redshift survey, surveyors carried out large galaxy lensing
surveys such as the Kilo-Degree Survey, the Dark Energy Survey, and Hyper Suprime-Cam
survey, as well as spectroscopic follow-ups to SDSS. In the 2020s, the Dark Energy Survey
Instrument (DESI), the Euclid satellite, and the Legacy Survey of Space and Time (LSST) at
the Vera Rubin Observatory will dominate the landscape. The huge data sets delivered by
these surveys create new challenges in the analysis.

As the data sets get larger, simple algorithms that have been traditionally used to ana-
lyze data no longer suffice. For one, the size of data sets is growing exponentially on time
scales similar to computational power. Imagine that you are working on an experiment
and use an algorithm that scales as m2 where m is the number of data points. In two years,
say, your data size has doubled, so the analysis requires four times as many computing op-
erations. Even if you now have access to a computer that is twice as fast, your analysis will
still take twice as long as before. This part of the problem is exacerbated by the fact that
most analyses need to be run multiple times on a given data set or simulation that mimics
it. On a more profound level, as the size of data sets increases, so does their statistical pre-
cision: statistical errors on quantities typically scale as m−1/2, as we will see. As statistical
errors go down, all kinds of issues that were previously buried under large error bars and
were therefore never considered need to be accounted for. These are so-called systematic
errors, which do not fall off as m−1/2. Importantly, that applies to both instrumental arti-
facts as well as physical effects that were not modeled properly in the theory prediction.
We will not go into specific systematic issues in this chapter, since they are highly specific
to individual instruments and techniques.

The analysis techniques we focus on in this chapter are tools developed in order to
deal with the complexity of current cosmological data, but also are broadly applicable to
many other research areas that involve large data sets. We begin with an introduction to the
concepts of likelihood, prior, and posterior in the context of a simple example in Sect. 14.1,
which any reader not already familiar with these terms should read first. Sect. 14.2 provides
an overview of one of the most common ways these concepts are applied to cosmology: to
constrain cosmological parameters via a measured power spectrum of some form. The rest
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of the chapter fleshes out the steps in this prototypical example, depicted in Fig. 14.1. In
particular, in Sect. 14.3 and Sect. 14.4, we discuss how to construct estimators of power
spectra as well as their likelihood.

Neglecting all further experimental issues and systematics, this is in principle all we
need to infer cosmological parameters from the power spectra. However, real-world is-
sues including the above-mentioned size of the data sets add additional stumbling blocks.
Thus, we will introduce some crucial techniques to get around these obstacles: the Fisher
matrix (Sect. 14.5) is a shortcut to obtain approximate estimates of expected error bars on
parameters, while Markov Chain Monte Carlo (MCMC) sampling (Sect. 14.6) allows for an
efficient determination of best-fit parameters and error bars even for very complex likeli-
hoods. Both of these techniques are applicable much more broadly than just in cosmology
or astrophysics.

14.1 The likelihood function
The basic building block of contemporary analyses is the likelihood function. This is de-
fined as the probability that an experiment yields the observed data given a theory. This
seemingly simple definition is exceedingly powerful. Once we have the likelihood func-
tion, we can determine the parameters of the theory along with errors. Let us study this
with a simple example.

Suppose you want to weigh somebody. Since you are a scientist, you know that, in addi-
tion to the measurement, you should also report an uncertainty. So you set up 100 different
scales and record the person’s weight on each of these different scales. Given these 100
numbers, what value should you report for the weight and the uncertainty in the weight?
Let us then introduce the formalism of the likelihood function L in this simple context.

The likelihood function gives the probability of getting the hundred numbers given a
theory. Our theory will be that each measurement is the sum of a constant signal w (the
person’s weight) and noise, with the noise drawn from a Gaussian distribution with mean
zero and variance σ 2

w. Thus our “theory” has two free parameters w and σw. If only one data
point d was taken, the likelihood L, i.e. the probability of getting d given the theory would
be

L(d|w,σw) ≡ P(d|w,σw) = 1√
2πσ 2

w

exp

{
− (d − w)2

2σ 2
w

}
. (14.1)

Here and throughout, P(x|y) denotes the probability of x given y. Eq. (14.1) restates the
assumptions that d − w is only sourced by noise and that the noise is drawn from a Gaus-
sian distribution with standard deviation σw. In the limit that σw becomes very small, this
function becomes sharply peaked at d = w. Since we are making m = 100 independent
measurements, the likelihood function is the product of all the individual likelihood func-
tions. That is,

L
(
{di}mi=1

∣∣∣w,σw

)
= 1

(2πσ 2
w)m/2

exp

{
−
∑m

i=1(di − w)2

2σ 2
w

}
. (14.2)



Chapter 14 • Analysis and inference 403

Notice that, although the data are drawn from a Gaussian, the likelihood function is not
Gaussian in all the theoretical parameters (it is in w but is not in σw).

We are interested in the value of the theoretical parameters w and σw. Thus, in-
stead of P({di}|w,σw), which is the likelihood function we have written down, we want
P(w,σw|{di}). To obtain the latter from the former we can use a relation from probability
theory,

P(B,A) = P(B|A)P (A)

= P(A|B)P (B). (14.3)

In this context, A = {di} is the set of measurements, and B = {w,σw} is the set of “model
parameters,” so the equality between the two lines of Eq. (14.3) means that

P(w,σw|{di}) = P({di}|w,σw) P (w,σw)

P ({di}) . (14.4)

This is known as Bayes’ theorem. The denominator is independent of the parameters w, σw,
and so can be determined by realizing that when we integrate the probability P(w,σw|{di})
over all values of the parameters w, σw (keeping the data fixed), we must get 1. So the de-
nominator is equal to the integral of the numerator over w, σw. A constant normalization
factor does not affect the place in parameter space where the likelihood function peaks or
the width of the likelihood function. For the most part, then, we are free to ignore it.

To get the probability of the “theory” given the data P(w,σw|{di}), which is what we
want, we need the likelihood function—the first term in the numerator—and the prior
probability P(w,σw). If we possess prior information about these theory parameters, we
should use this information here. Then,

P(w,σw|{di}) ∝ L
(
{di}mi=1

∣∣∣w,σw

)
Pprior(w,σw), (14.5)

the proportionality constant being independent of the parameters and therefore of little
interest. The resulting probability distribution is called the posterior for w, σw given the
data. As cosmologists, we are most interested in the posteriors for cosmological parame-
ters such as the dark energy equation of state or the tensor-to-scalar ratio.

The idea of using prior information might seem unsatisfying, since it appears to intro-
duce an ambiguity into the posterior. If we want to be conservative, and assume nothing,
we put in a uniform prior for the parameters, but even this choice is not as innocent as it
sounds. If we had taken the parameter to be σ 2

w instead of σw and we had assumed a prior
uniform in σ 2

w, i.e., that equal intervals of σ 2
w are equally likely, we would get a different

answer for the final posterior (try it!). The primary purpose of the prior is to allow us to in-
clude additional information. For example, if the manufacturer of the scale in our example
told you that σw was lower than some value, then the prior would permit you to incorpo-
rate that information in a consistent way. There are a wide variety of (in)famous examples
wherein accounting for the prior is of tremendous importance (see Exercise 14.1).
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We will now adopt a uniform prior for the parameters w and σw and can then find best-
fit values for them. Simply find the place in parameter space where P(w,σw|{di}) is largest.
In this simple example, we can proceed analytically by differentiating L with respect to
each of the parameters. First consider the derivative with respect to w

∂L
∂w

=
∑m

j=1(dj − w)

σ 2
w(2πσ 2

w)m/2
exp

{
−
∑m

i=1(di − w)2

2σ 2
w

}
. (14.6)

For this derivative to be zero, we have

∂L
∂w

= 0 ⇔
m∑

j=1

(dj − w) = 0 (14.7)

or equivalently, the likelihood is at a maximum when

w = ŵ = 1

m

m∑
i=1

di. (14.8)

This is how we would estimate the weight from the data, and appropriately, ŵ is called an
estimator for the weight; in this case, it is simply the sample mean. In Exercise 14.2, you will
derive the maximum-likelihood value if each data point has a different error σw,i , resulting
in inverse-variance weighting.

The variance σ 2
w is also a parameter in the model. So, we can find what the most proba-

ble value of σ 2
w is given the data by computing

∂L
∂σ 2

w

= L×
[
− m

2σ 2
w

+
∑m

i=1(di − w)2

2σ 4
w

]
(14.9)

and setting it equal to zero. Solving for the variance σ 2
w, we find a most probable value of

σ̂ 2
w = 1

m

m∑
i=1

(di − w)2. (14.10)

This serves as an estimator for the variance from the data, for a known mean w.1

We have found estimators for our theoretical parameters. What is the error on these
estimated values? The error essentially corresponds to the width of the likelihood function.
More rigorously, the posterior P(w|{di}), i.e. the likelihood multiplied by the prior, allows
us to construct confidence intervals. For example, the values of w on either side of the
maximum—call them w− and w+—that (i) have the same probability and (ii) satisfy∫ w+

w−
dwP(w|{di}) = 0.68 (14.11)

1
Accounting for the fact that w is estimated from the same data changes the normalization from 1/m to 1/(m−

1), yielding the standard sample variance.
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define the 1-σ (or 68% confidence-level) error bar; that is, the lower 1-σ error is the differ-
ence between the value at which the probability peaks and w−. The value 0.68 stems from
the Gaussian probability to find a value within 1-σ of the mean. In the case of Eq. (14.2),
this rigorous definition translates into the condition that, at the boundaries of the 1-σ con-
fidence interval, the log-likelihood is reduced from the maximum value by � lnL = −1/2.

In our example, where the likelihood is Gaussian in w, the errors are symmetric and we
can easily compute them. Expanding the log of the likelihood about the maximum for w,
we have

lnL(w) = lnL(ŵ) + ∂ lnL
∂w

∣∣∣∣
w=ŵ

(w − ŵ) + 1

2

∂2 lnL
∂w2

∣∣∣∣
w=ŵ

(w − ŵ)2

= lnL(ŵ) − m

2σ 2
w

(w − ŵ)2, (14.12)

since ∂ lnL/∂w vanishes at ŵ. Equating this to lnL(ŵ) − 1/2, the condition for 1-σ confi-
dence intervals, we have

Var
[
ŵ
]= σ 2

w

m
. (14.13)

The square root of this variance, σw/m1/2, is the 1σ error in our estimate of w. This too is
familiar: as more measurements are taken, the noise gets beaten down by a factor of the
square root of the number of independent measurements. More generally, this derivation
leads to the rule that the variance of a one-dimensional Gaussian distribution is propor-
tional to the inverse of the coefficient of the quadratic term in the log-likelihood.

Above, we computed the uncertainty on our estimate of w by considering the width of
the likelihood function. There is another way to obtain this uncertainty, one that general-
izes to more complex problems, so let us use this approach here to determine the variance
of the estimator for σ 2

w. It is defined as

Var(σ 2
w) ≡

〈(
σ̂ 2

w − σ 2
w

)2
〉
. (14.14)

Here, the angular brackets denote the expected value if one were to perform the experi-
ment an infinite number of times. We can calculate this variance by integrating it over all
possible values of the data weighted by the likelihood. So, in general, for any estimator Ô,
i.e. any function of the m measurements {di},

〈
Ô
〉
=
∫

d(d1)

∫
d(d2) . . .

∫
d(dm) Ô({di})L({di}). (14.15)

To be clear, the expression for the variance contains σ̂ 2
w({di}) and σ 2

w; the latter is a number,
the true value that quantifies the precision of the scales. The former is an estimator whose
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expectation value is equal to the number:
〈
σ̂ 2

w

〉
= σ 2

w. This simplifies the calculation:

Var(σ̂ 2
w) =

〈
(σ̂ 2

w)2
〉
− 2

〈
σ̂ 2

w

〉
σ 2

w + σ 4
w

=
〈
(σ̂ 2

w)2
〉
− σ 4

w. (14.16)

The calculation then hinges on
〈
(σ̂ 2

w)2
〉
. For simplicity, let us assume that the mean is known

so we can shift all the integration variables in Eq. (14.15) by di → xi ≡ di − w. Then, we can
do the calculation as if the mean were zero:〈

(σ̂ 2
w)2

〉
= 1

m2

∑
ij

〈
x2
i x2

j

〉
. (14.17)

Picking a term with i �= j from the sum, we have

〈
x2
i x2

j

〉
=
⎡⎣ ∏

k �=i,j

∫
dxk

e−x2
k /2σ 2

w√
2πσ 2

w

⎤⎦[∫ dxi x
2
i

e−x2
i /2σ 2

w√
2πσ 2

w

][∫
dxj x2

j

e
−x2

j /2σ 2
w√

2πσ 2
w

]

=
[∫

dxi x
2
i

e−x2
i /2σ 2

w√
2πσ 2

w

][∫
dxj x2

j

e
−x2

j /2σ 2
w√

2πσ 2
w

]
(14.18)

since all the integrals over xk are equal to 1. In the second line, each integral is equal to σ 2
w;

the sum over j �= i in Eq. (14.17) yields a factor of m − 1, and then the sum over i another
factor of m, so

Var(σ̂ 2
w) = m − 1

m
σ 4

w + 1

m2

∑
i

〈
x4
i

〉
− σ 4

w. (14.19)

By using Eq. (14.15) and integrating by parts (or using Wick’s theorem), we see that
〈
x4
i

〉=
3〈x2

i 〉2 = 3σ 4
w, so

Var(σ̂ 2
w) = 2

m
σ 4

w. (14.20)

Equivalently, the uncertainty on the variance is√
Var

[
σ̂ 2

w

]
=
√

2

m
σ 2

w. (14.21)

This error on σw may seem a rather arcane fact, but it turns out that most of what we
are interested in measuring in the realm of cosmology is akin to σ 2

w. The fluctuations
around the mean galaxy density and CMB temperature are of much more interest than
the mean quantities themselves. These fluctuations are drawn from distributions—often
approximately Gaussian—the parameters of which we are keenly interested in, because
they depend on the cosmological model. Therefore, we want to know how accurately we
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can measure parameters like σ 2
w, and it turns out that Eq. (14.21) is generic. When estimat-

ing the variance of a distribution, there is a fundamental uncertainty proportional to that
variance divided by the square root of the number of measurements; it is called sample
variance or cosmic variance.

In real applications, we typically have not only a single unknown parameter like σw,
but several of them. If we are not interested in some parameters, call them “nuisance” pa-
rameters, that describe observational or astrophysical effects for example, then we should
marginalize over them, i.e. work with the likelihood after integrating over these uninter-
esting parameters. In the context of the weight example, we can imagine the case where
we are interested in measuring w, but do not have knowledge of σw. Then, given the full
posterior P(w,σw|{di}), the desired marginalized posterior is

P(w|{di}) =
∫ ∞

0
dσw P (w,σw|{di}). (14.22)

The left-hand side can then be used to give confidence intervals for w that properly take
into account our lack of knowledge of σw. We will see a more concrete example of this in
Sect. 14.5.

14.2 Overview: from raw data to parameter constraints
Moving away from the weight metaphor, we can apply what we have learned about the
likelihood and posterior to the CMB and other cosmic probes such as the galaxy distribu-
tion and weak lensing.

Fig. 14.1 provides an overview of these steps in the case of two-point functions, starting
from the upper left and ending in a contour plot that describes parameter constraints, as
sketched at the right. Each of the boxes and arrows in Fig. 14.1 represents an enormous
amount of work for even one experiment, and the following sections attempt to give a fla-
vor of the work required to carry these out. The first data product is a map: for the CMB, this
could be a map of the temperature anisotropy on the sky; for a galaxy survey, a map of the
three-dimensional galaxy density field; for a gravitational lensing survey, a map of galaxy
ellipticities, etc. The simplest statistic we measure from this map is the two-point function
(correlation function or power spectrum). The likelihood combines this observable with
theoretical predictions for a given set of parameters, and the covariance, to output a sin-
gle number. The likelihood is also the step where we combine multiple probes. In order
to find the peak of the posterior and confidence contours for the parameters, a sampler is
employed (bottom right), which computes the posterior for many, often millions of sets of
parameters, or samples. Alternatively, the Fisher forecast provides an analytic shortcut to
a rough approximation of the expected error bars.

In this chapter, we will restrict our treatment to two-point functions and a Gaussian
likelihood, so that, using the angular power spectrum C(l) e.g. of CMB anisotropies as an
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FIGURE 14.1 Overview of how to get from raw data (upper left) to parameter constraints (right). The raw data
is compressed into a map, from which two-point functions are estimated. These “Observed Two-Point Functions”
are combined with a covariance matrix and the model (theory) predictions for the two-point functions, given a
set of cosmological parameters, to form a likelihood for any given parameter set. A sampler calls this likelihood,
multiplied in general by priors on the parameters, for many different values of parameters in order to find the
preferred region in parameter space, illustrated here by the contour plot on the right. The Fisher forecast instead
uses just the theoretical two-point functions and covariance to compute approximate expected likelihood contours.

example, the form of the likelihood is2

lnL(λα) = −1

2

∑
ll′

(
Ĉ(l) − Ctheory(l, λα)

)(
Cov−1

)
ll′

(
Ĉ(l′) − Ctheory(l′, λα)

)
. (14.23)

The likelihood is computed in this case by contracting the difference between the observed
(or estimated, Ĉ(l)) and theoretical two-point functions (Ctheory(l, λα), which are a func-
tion of cosmological parameters λα), with the inverse of the covariance matrix to obtain a
single number for each set of parameters λα .

At this point, we should note that there are other observables in cosmology than two-
point functions, for example cluster counts, and a Gaussian likelihood is usually only an
approximation that needs to be justified. Still, much of the action in cosmology takes place
within these confines, and the tools we will develop are readily applicable to other observ-
ables and likelihood forms.

Notice that the likelihood in Eq. (14.23) is Gaussian in the observable, Ĉ(l); it is not
Gaussian in the parameters λα, because Ctheory(l, λα) is in general a very complicated func-
tion of λα (see for example Fig. 9.17 in the case of the CMB). Parameter degeneracies, some
of which we have discussed in Sect. 9.7.2 for the CMB, add to this complexity, so that the re-
sulting posterior contours are not nearly as simple to obtain as one might have imagined

2
Here, we have dropped the logarithm of the determinant of the covariance, under the assumption that it is

independent of the cosmological parameters λα .
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given the simple form of Eq. (14.23). Moreover, the theoretical prediction often involves
free nuisance parameters that are not cosmological. One prominent example is the bias
parameter b1 which enters the galaxy power spectrum. We then need to map out the pos-
terior for the cosmological parameters after integrating (marginalizing) over the nuisance
parameters.

The rest of this chapter walks through the steps that are depicted in Fig. 14.1. We be-
gin with mapmaking in Sect. 14.3. Sections 14.4.1–14.4.2 describe how to estimate Ĉ(l)

and its counterpart for the galaxy power spectrum. Along the way, we will also derive ex-
pressions for the corresponding covariance matrices, which involve both cosmic variance
and instrumental or astrophysical noise. Fortunately, we have already spent many pages
in this book on the derivation of the theory predictions to insert into Eq. (14.23), so after
Sect. 14.4 we will be all set to evaluate the likelihood. We describe sampling approaches
that efficiently map out the likelihood (more precisely, posterior) in Sect. 14.6. Before that
though, we detour slightly to introduce the Fisher matrix in Sect. 14.5, a handy tool, also for
theorists, with which to project errors on parameters even before an experiment is done.

14.3 Mapmaking
The first step in the analysis of cosmological data usually consists of turning the raw data
into a map of some form: for example, the CMB temperature on the sky, or the three-
dimensional galaxy density field for redshift surveys. Very generically in astronomy, the
raw data obtained is the sum of signal and noise. Our goal then is to combine the raw
data, which we call dt , into a map of the signal si in such a way as to minimize the noise in
the final map. Notice that the map has different dimensions from the data: the data might
sample the signal in a given pixel i many times. If the signal is not varying with time (which
is the case for most cosmological data sets), then the true signal in a given pixel is a single
number si . The data, however, could be tens to thousands of observations dt of that single
pixel, each with their respective noise ηt . All of this can be incorporated into one equation:

dt =
∑

i

Ptisi + ηt . (14.24)

Although Eq. (14.24) is extremely general, it is helpful to think of a specific example where
a single instrument is recording the CMB flux at many times. In that case, t simply labels
the time of the observation. The noise in each measurement is denoted ηt ; this is what we
would like to remove. The index i labels pixels on the sky, or in the general case, the differ-
ent signals we want to estimate from the data. The matrix Pti , in some applications called
pointing matrix, relates the signal to the data. It is an mt × mp matrix where mt is the num-
ber of measurements and mp is the number of pixels (more generally signals). In perhaps
the simplest of all cases, the detector at time t would be taking data from one and only
one pixel, so each row of Pti would have only a single nonzero value in it, in the column
that corresponds to the pixel under observation at that time. Determining the value of that
single nonzero element is called calibration: translating the measurement in the detector
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to a flux in a pixel. Eq. (14.24) can account for any instrumental and atmospheric effects,
as long as they linearly relate the signal to the data. It is even easy to visualize moving
off of this simple example: if a given observation captured photons from multiple pixels,
then there would be several nonzero values in a row. If there were multiple detectors, then
t would not just label time but rather both detector and time. You can probably think of
even more complex situations, many of which are captured by this simple formula.

The noise ηt in the data is often assumed to be Gaussian with mean zero and a covari-
ance matrix Ntt ′ ; we will do so here as well. There are techniques to determine Ntt ′ directly
from the data, but to simplify the discussion, we will assume that Ntt ′ is known.

In order to derive the best way to extract the signal from the data, we consider the like-
lihood, more precisely its logarithm:

χ2 ≡ −2 lnL({dt }|{sk}) =
∑
t t ′kl

(dt − Ptksk)
(
N−1

)
t t ′

(dt ′ − Pt ′lsl). (14.25)

Maximizing the likelihood then is equivalent to minimizing χ2 with respect to the signal s.
Taking the derivative of χ2 with respect to si leads to

∂χ2

∂si
= −2

∑
t t ′j

Pti

(
N−1

)
t t ′

(dt ′ − Pt ′j sj ). (14.26)

Now we set the derivative to zero, which yields∑
t t ′j

Pti

(
N−1

)
t t ′

Pt ′j sj =
∑
t t ′j

Pti

(
N−1

)
t t ′

dt ′ . (14.27)

The terms multiplying sj on the left are the elements of an mp × mp matrix,

(C−1
N )ij ≡

∑
t t ′

Pti

(
N−1

)
t t ′

Pt ′j . (14.28)

Multiply both sides by the inverse of this (CN itself) to find that the χ2 is minimized when
s is equal to

ŝi =
∑
t t ′j

(CN)ij Ptj

(
N−1

)
t t ′

dt ′ . (14.29)

In matrix notation, this is

ŝ = CNP �N−1d (14.30)

where � denotes transpose. The covariance matrix of this estimator of the signal is equal
to

CN = (P �N−1P)−1, (14.31)

a fact that you can verify by taking
〈
ŝi ŝj

〉− 〈
ŝi
〉 〈
ŝj
〉

(Exercise 14.3).
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A simple limit of Eq. (14.30) emerges when the noise matrix Ntt ′ is diagonal and uniform;
that is, all elements on the diagonal are identical and given by N . In that case, the elements
of CN become

CN,ij →N
(∑

t

PtiPtj

)−1

(14.32)

Assume that we only observe a single pixel at a given time, so that, for a given t , Pti is
nonzero for only one pixel i. So the product PtiPtj vanishes unless i = j and the detector at
time t was pointing at pixel i. Thus the sum over t counts the number of times the detector
sampled pixel i; call this number mi . In this simple case of uniform, uncorrelated noise,
therefore, the noise covariance matrix CN for the signal estimator is diagonal with elements
N /mi . This makes sense: as a given pixel is sampled more times, the standard deviation
goes down as m

−1/2
i . The estimator for the signal now becomes

ŝi = 1

mi

∑
t

Ptidt . (14.33)

That is, one simply averages all the data points corresponding to the given pixel (exactly as
in Eq. (14.8)).

Fig. 14.2 shows the result of an actual implementation of Eq. (14.30), from the Atacama
Cosmology Telescope collaboration operating in Chile (Louis et al., 2017). In this case, the
set of {ŝi} is a map of the CMB temperature in many pixels on the sky. The map covers
a region of 45 square degrees culled from seven months of data taking. Some additional
filtering was needed to construct this map, but the basis of it is indeed Eq. (14.30).

We have tried to keep this discussion more general than just CMB mapmaking, how-
ever, because the estimator in Eq. (14.30) is broadly applicable. The only assumption we
made was that there is a linear relation, with additive approximately Gaussian noise, be-
tween the data {dt } and the signal {si} mediated by a matrix Pti . As long as such a linear
relation and the assumption of Gaussian noise hold, Eq. (14.30) is the proper estimator to
use to infer the signal, in this case the map. Hence, what we have discussed so far imme-
diately carries over to the analysis of projected galaxy clustering, i.e. to construct a map of
the projected galaxy density �g(n̂) on the sky, or to construct a map of the lensing poten-
tial (the projected gravitational potential) from galaxy shapes (Sect. 13.4). Eq. (14.30) can
be directly applied to those cases.

For galaxy redshift surveys, we first need to generalize the concept of pixels to 3D. Usu-
ally, one constructs a regular cubic grid in comoving coordinates that covers the entire
survey, so that the pixels now correspond to the cells of the 3D grid. The optimal weight-
ing encoded in Eq. (14.30) is incorporated at the level of the image and spectral analysis.
Then, every galaxy is assigned to a pixel, so each pixel i contains mg,i galaxies. The galaxy
overdensity field is then defined as

δg,i = mg,i − m̄g,i

m̄g,i

(14.34)
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FIGURE 14.2 A map of the CMB temperature from observations by the Atacama Cosmology Telescope. This 45 square
degree region represents only a small part of their total coverage. Notice that the map has lower noise in the upper
left as this is a region that was observed more frequently. Several foreground point sources are circled. From Louis
et al. (2017).

where m̄g,i is the number of galaxies expected in pixel i if the galaxy distribution was in-
trinsically completely uniform. Herein lies the complexity, as this number depends on the
redshift-dependent mean galaxy density. Moreover, Eq. (14.34) does not work if m̄g,i = 0,
as is the case for pixels in the grid that lie outside the actual surveyed area, or that are
“masked,” for example due to a bright foreground star. We will discuss how such pixels are
handled in Sect. 14.4.2.

The estimators Eq. (14.30) and Eq. (14.34) yield maps of the CMB temperature and
galaxy distribution which we can then process to obtain power spectra to compare with
the theory predictions, as we will describe next.

14.4 Two-point functions
Given a map of the CMB (or projected galaxy density field), we now need to find a way to
determine the Ĉ(l) to plug into the likelihood Eq. (14.23). We have learned all the essentials
we need to construct an estimator Ĉ(l) for the angular power spectrum in Sect. 14.1, and we
will put them to use shortly. The main new issue we face is that our measurement process
is not quite as simple as reading off someone’s weight from a scale, and we will have to
incorporate some observational effects such as the finite resolution of the instrument. This
leads to a perennial question perhaps all scientists face when dealt a hand of data: does
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one process the data so that it can be cleanly compared to simple theoretical predictions,
or does one take the data as is and instead forward-model the theoretical prediction to
account for all the observational complexities?

The second approach is in principle the right approach to take, as it cleanly separates
data from interpretation (such as a fiducial cosmological model assumed in the analysis).
The results of the first analysis option on the other hand can be compared not only against
“simple” theory but also among different experiments. We will pursue the first option here,
as it allows us to directly use the theoretical predictions we have developed in previous
chapters. That is, the Ctheory(l, λα) in Eq. (14.23) indeed are the C(l) we computed in Ch. 9
in case of the CMB temperature. The theory box in Fig. 14.1 then becomes straightforward,
so we focus our attention in this section on estimators for the two-point functions from
the maps, the box labeled “Observed Two-Point Functions” in the figure. To keep things
simple, we will focus on just a single experimental complication in the case of estimates of
the C(l) in the CMB: the finite resolution—beam or point-spread function—of the instru-
ment. In the galaxy clustering case, we will consider the 3D power spectrum, where the
main complication is the window function of the survey.

14.4.1 CMB power spectrum

Let us assume we are given a map of the observed temperature anisotropies on the sky
�(n̂), inferred for instance as signal {si} in pixels using the estimator derived in Sect. 14.3.
We imagine that we choose the pixels small enough so that the effective smoothing in-
duced by pixelization can be ignored, and we can treat the temperature as a continuous
field. We then decompose the observed map into spherical harmonics:

aobs
lm =

∫
d�Y ∗

lm(n̂)�(n̂). (14.35)

The superscript “obs” on alm indicates that this is the observed quantity, smeared by the
beam of the experiment and processed in other ways. For simplicity, let us focus just on
the effect of the beam. In radio astronomy terminology, the beam describes the smearing
due to the finite angular resolution of the instrument; in optical telescopes, the term point-
spread function is used. Both are essentially equivalent. Including the beam smearing, the
reported fractional temperature fluctuation � = (T − T0)/T0 in a pixel at sky location n̂ is

�(n̂) =
∫

d�′�(n̂′
)B(n̂, n̂′

) + η(n̂) (14.36)

where B(n̂, n̂′
) is the beam pattern at the position n̂ and � is the true underlying temper-

ature perturbation, while η(n̂) is the noise in the map at that position. As an example, the
beam pattern of the Planck instrument at 30 GHz is shown in Fig. 14.3, that is, the figure
shows the beam pattern around a fixed location n̂ (marked by a star) as a function of n̂′.

Inserting Eq. (14.36) into Eq. (14.35), we obtain

aobs
lm =

∑
l′m′

Blm,l′m′al′m′ + ηlm, (14.37)
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FIGURE 14.3 The beam pattern for the Planck instrument at 30 GHz. The contours delineate the regions where the
beam function drops from its maximum to 50%, 10%,1%, and 0.1%, respectively. The 50% drop occurs at roughly
30′. Source: Planck wiki (see also Aghanim et al., 2014).

where al′m′ are the true CMB multipole moments (those that would be observed in the
absence of beam smearing and noise), and ηlm are the multipole moments of the noise.
Blm,l′m′ denotes the multipole expansion of the beam pattern in its two arguments n̂, n̂′.
The second term is immediately obvious from the fact that η(n̂) simply adds to �(n̂). You
can derive the effect of the beam in Exercise 14.4.

Eq. (14.37) is very general and holds for anisotropic and spatially varying beams. In
many cases, a reasonable first-order approximation is to assume the beam is constant on
the sky and isotropic. You can show (Exercise 14.4) that this greatly simplifies the effect of
the beam on aobs

lm and we obtain

aobs
lm = almBl + ηlm, (14.38)

where there is no summation over l here. The beam effect is a convolution in real space,
which in multipole- (or lm-) space turns into a simple multiplication if the beam is con-
stant and isotropic. For a Gaussian beam pattern, we have Bl = exp(−l2θ2

beam/2) where
θbeam is related to the full-width half-maximum of the beam. In general, the Fourier trans-
form Bl of the beam is close to 1 on large scales (when lθbeam  1), while it decays to zero
on small scales. This corresponds to the fact that the beam washes out anisotropies on
scales smaller than θbeam. The noise is simply additive both in the map and in lm-space.

In order to turn the data, aobs
lm , into an estimate Ĉ(l) of the underlying angular power

spectrum to compare to theory, we first ask, what is the probability of getting the data (the
aobs
lm ) given the theory (the true alm)? This is analogous to Eq. (14.2). If we assume the noise

https://wiki.cosmos.esa.int/planckpla/index.php/Effective_Beams
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has mean zero and a power spectrum given by〈
ηlmη∗

l′m′
〉= N(l)δll′δmm′, (14.39)

then this probability is, for a given multipole moment lm (see Exercise 14.5)

P(aobs
lm |alm) = 1√

2πN(l)
exp

[
− 1

2N(l)
|aobs

lm − Blalm|2
]

. (14.40)

That is, for fixed true alm, the observed aobs
lm follow a multivariate Gaussian distribution

with mean Blalm (since the noise averages to zero), and variance given by the noise vari-
ance N(l). The quantity that we are trying to determine, given a measurement of all 2l + 1
of the aobs

lm , is C(l), i.e. the underlying true power spectrum of the CMB anisotropies. To
derive this, we treat the alm as random variables, which we have to integrate over. Their
distribution P(alm|C(l)) is what we derived in Sect. 9.5.2. So, we write

P
(
{aobs

lm }|C(l)
)

=
l∏

m=−l

∫
dalm P (aobs

lm |alm)P (alm|C(l)). (14.41)

You can think of the integrand on the right-hand side as P(aobs
lm , alm|C(l)), the probability

of obtaining the true alm and observed aobs
lm given the underlying C(l). Then, since we have

no way of knowing the true alm, we have to marginalize over them.
Since P(alm|C(l)) is a Gaussian with mean zero and variance C(l), we can carry out the

integrals, which leads to

L ≡ P
(
{aobs

lm }|C(l)
)

=
(

2π
[
C(l)B2

l + N(l)
])−(2l+1)/2

exp

⎧⎪⎨⎪⎩−1

2

l∑
m=−l

∣∣∣aobs
lm

∣∣∣2
C(l)B2

l + N(l)

⎫⎪⎬⎪⎭ .

(14.42)

Armed with this likelihood, we can obtain an estimator for the two-point function, the
C(l), and the error on this estimator. The first simply requires us to maximize the likeli-
hood, or more easily, its logarithm, with respect to C(l). The first derivative of the log of the
likelihood is

d lnL
dC(l)

= − (2l + 1)B2
l /2

C(l)B2
l + N(l)

+ 1

2

l∑
m=−l

∣∣∣aobs
lm

∣∣∣2 B2
l

[C(l)B2
l + N(l)]2

. (14.43)

Setting this equal to zero leads to an estimator for C(l):

Ĉ(l) = B−2
l

(
1

2l + 1

l∑
m=−l

∣∣∣aobs
lm

∣∣∣2 − N(l)

)
. (14.44)



416 Modern Cosmology

We can estimate the error on this estimator the same way we calculated the variance of our
estimate of σ 2

w in Eq. (14.21). The variance of Ĉ(l) is

Var
[
Ĉ(l)

]
=
〈
Ĉ(l)2

〉
− C(l)2. (14.45)

Let us expand the first term on the right and use the fact that, from Eqs. (14.38)–(14.39),
〈|aobs

lm |2〉 = C(l)B2
l + N(l), so that〈

B−4
l

(
1

2l + 1

l∑
m=−l

∣∣∣aobs
lm

∣∣∣2 − N(l)

)2〉
− C(l)2 =

〈
B−4

l

(
1

2l + 1

l∑
m=−l

∣∣∣aobs
lm

∣∣∣2)2〉

− 2B−4
l N(l)

(
C(l)B2

l + N(l)
)

+ B−4
l N(l)2 − C(l)2.

The last line is equal to −(C(l) + N(l)B−2
l )2. Given the distribution in Eq. (14.42), the first

term on the right is〈
B−4

l

(
1

2l + 1

l∑
m=−l

∣∣∣aobs
lm

∣∣∣2)2〉
= 2l + 3

2l + 1

[
C(l) + N(l)B−2

l

]2
(14.46)

so that the error on the estimator for C(l), Eq. (14.44), is√
Var

[
Ĉ(l)

]
=
√

2

2l + 1

[
C(l) + N(l)B−2

l

]
. (14.47)

More precisely, the covariance of the angular power spectrum we should insert in Eq. (14.23)

is diagonal, as you can verify by calculating
〈
Ĉ(l)Ĉ(l′)

〉
with l �= l′ and using Eq. (14.39). So

we have

Covll′ = 2

2l + 1

[
C(l) + N(l)B−2

l

]2
δll′ . (14.48)

The second term in square brackets is the variance due to the noise in the map, amplified
by the inverse beam, so that it blows up at large l where the Fourier transform of the beam
decays to zero. Even without any noise, the variance does not vanish, since the first term
remains. This corresponds to the fundamental uncertainty due to the finite number of alm

on the sky that we can use to obtain an estimate of the variance C(l). Indeed, both terms
are downweighted by the number of modes used, 2l + 1. If an experiment does not observe
the full 4π of the sky, but only a fraction fsky of it, then the variance Covll′ is approximately
increased by a factor 1/fsky.

These features are quite general for two-point function estimates: the uncertainty is
reduced as more modes are measured; there is a noise term, which can be reduced by
building more sensitive experiments, but also a cosmic variance term due to the finite
number of samples. Typically, as in this case, the noise term dominates on small scales
(where B−2

l � 1), while cosmic variance dominates on large scales.
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14.4.2 Galaxy power spectrum

Much of the previous section carries over to the case of three-dimensional galaxy clus-
tering, but there are some significant differences that are worth calling out. Instead of
measuring the angular power spectrum C(l), by (essentially) squaring and averaging the
aobs
lm , we want to measure the 3D galaxy power spectrum by squaring and averaging the

Fourier amplitudes δg,obs(k). So let us first think about how we measure δg,obs(k). In the
following derivation, since we will not encounter any “true” galaxy overdensity, we will let
δg,obs → δg for clarity.

First, we will assume that the survey consists of a cubic volume with comoving length L

on a side. No such surveys exist of course, but this assumption makes the measurement
of δg(k) straightforward. Moreover, this case directly applies to simulated density fields
(Sect. 12.3). Imagine covering the three-dimensional survey volume with a cubic grid with
K3

grid grid points (the number of grid points determines the maximum value of |k| which
we can measure, but the precise number will not be relevant in the following). Then, we
construct the density field on the grid δg(xi ) = δg,i following Eq. (14.34).

The discrete Fourier transform of the galaxy density field is

δg(k) = L3/2

K3
grid∑
i

δg(xi )e
−ik·xi , where k ∈ (nx, ny, nz) kF , (14.49)

and

kF ≡ 2π

L
(14.50)

is the wavenumber of the fundamental mode, which precisely covers the box with a single
full period. (nx, ny, nz) is a set of whole numbers running from −Kgrid/2 to Kgrid/2. The
prefactor of L3/2 is chosen for later convenience. The inverse Fourier transform then is

δg(x) = 1

K3
gridL3/2

kNy∑
k

δg(ki )e
iki ·x, (14.51)

where the sum over k runs up to the Nyquist frequency of the grid, kNy ≡ KgridkF /2. The
discreteness of the Fourier modes in Eqs. (14.49)–(14.51) is important, because it encodes
cosmic variance: the fact that we only have a finite number of Fourier modes available.
In the CMB, this discreteness was present from the beginning in the multipole decompo-
sition, since the area of the sky is finite; here, it is due to the finite volume V = L3 of the
survey.

Let us then bin the Fourier modes into equally spaced bins α in the magnitude of k, so
that bin α contains all modes with kα − �k/2 ≤ |k| < kα + �k/2. We denote the number of
modes in this bin with mk,α . Hence, the power spectrum P̂g(kα) is estimated by averaging
over mk,α modes, and this number will play an important role in the error on P̂g. So let us
count the number of modes. The volume in Fourier space of a spherical shell around kα
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is 4πk2
α�k, and the number of modes that this volume contains is obtained by dividing by

the volume of the fundamental cell in Fourier space, which is given by k3
F :

mk,α = 1

2

4πk2
α�k

k3
F

. (14.52)

The factor of 1/2 in front is due to the fact that the density field is real, so that only one
half of the Fourier modes are actually independent, with the other half being fixed by the
reality condition δg(−k) = δ∗

g(k). Therefore,

mk,α = 1

4π2
V k2

α�k. (14.53)

The estimator for the galaxy power spectrum then is directly analogous to Eq. (14.44).
Moreover, we do not have to include a beam or point-spread function in the case of galaxy
redshift surveys, since the angular resolution of telescopes is extremely high. While the
grid itself has finite resolution, this is just a numerical tool and we can always increase this
resolution if necessary. So, translating Eq. (14.44) to the 3D case and setting Bl → 1, we
have

P̂g(kα) = 1

mk,α

||k|−kα |<�k/2∑
k

|δg(k)|2 − PN, (14.54)

where PN is the noise. For Poisson noise, usually assumed for forecasts, PN = n̄−1
g ; in gen-

eral, the noise needs to be determined from the data. The error on P̂g likewise follows
analogously to the CMB case, Eq. (14.47). Its derivation is instructive though, so let us
briefly go through it here. The covariance is defined as

Covαβ ≡
〈
P̂g(kα)P̂g(kβ)

〉
−
〈
P̂g(kα)

〉 〈
P̂g(kβ)

〉
= 1

mk,α

||k|−kα |<�k/2∑
k

1

mk,β

||k′|−kβ |<�k/2∑
k′

[〈
|δg(k)|2|δg(k

′)|2
〉
−
〈
|δg(k)|2

〉 〈
|δg(k

′)|2
〉]

, (14.55)

where in the second line we have inserted Eq. (14.54) and dropped PN ; since PN is just a
constant, it can be pulled out of the expectation values and disappears from Eq. (14.55)
(as you should check and convince yourself of). Let us look at the first expectation value
in Eq. (14.55), which involves four instances of δg. We can expand it using Wick’s theorem
(see Box 12.1): 〈

|δg(k)|2|δg(k
′)|2
〉
= 〈

δg(k)δg(−k)δg(k
′)δg(−k′)

〉
= 〈

δg(k)δg(−k)
〉 〈

δg(k
′)δg(−k′)

〉
+ 〈

δg(k)δg(k
′)
〉 〈

δg(−k)δg(−k′)
〉

+ 〈
δg(k)δg(−k′)

〉 〈
δg(−k)δg(k

′)
〉

+ 〈
δg(k)δg(−k)δg(k

′)δg(−k′)
〉
conn . (14.56)
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The four terms here correspond to the three terms obtained from Wick’s theorem, aug-
mented with the last term labeled with a subscript conn: this “connected” term is only
present if the field δg is not Gaussian. Let us ignore it for the time being; we will discuss
its significance below.

The first term in Eq. (14.56) simply cancels the second term in the covariance in
Eq. (14.55), so we only need to consider the second and third term in Eq. (14.56). For our
definition of the discrete Fourier-space field (Eq. (14.49)), the power spectrum is given by〈

δg(k)δg(k
′)
〉= δk,−k′

[
Pg(k) + PN

]
, (14.57)

where the Kronecker symbol δk,−k′ is unity if k and −k′ are equal, and zero otherwise; recall
that the components of k and k′ are integer multiples of kF . Notice that the simple forms
of Eq. (14.54) and Eq. (14.57), obtained simply from the continuous version Eq. (C.22) by
replacing

(2π)3δ
(3)
D (k + k′) → δk,−k′ , (14.58)

hold thanks to the L3/2 factor we included in the definition of δg(k). Comparing with
Eq. (14.55), we see that the second and third term in Eq. (14.56) can only contribute if the
wavenumber bins α and β overlap; so, considering the standard case of non-overlapping
bins, this means that the covariance is only nonzero if α = β. Moreover, considering a sin-
gle term in the sum over k in Eq. (14.55) in the α = β case, there are only two values, k′ = k

and k′ = −k, that contribute to the sum over k′ (recall that the sum is over all wavenum-
ber directions, with the magnitude of k, k′ constrained to be within the chosen bin). So, if
α = β, the sums in Eq. (14.55) yield 2/mk,α multiplied by the power spectrum (plus noise)
squared. The covariance of the galaxy power spectrum thus is given by

Covαβ = 2

mk,α

[
Pg(kα) + PN

]2
δαβ. (14.59)

This is very analogous to our CMB result, Eq. (14.48), the only difference being the number
of modes (mk,α vs. 2l +1), and the absence of the beam. An easy follow-up result is the error
on Pg(kα), given by the square root of the diagonal covariance element:√

Var
[
P̂g(kα)

]
=
√

2

mk,α

[
Pg(kα) + PN

]
. (14.60)

Even for an infinitely dense galaxy sample, so that PN → 0, a minimum error remains,
which is the sample variance due to the finite number of modes available in the survey
volume V (Eq. (14.53)). For simplicity we have here considered a wavevector bin that av-
erages over all directions of k. This means that we are actually estimating the monopole
part of the galaxy power spectrum. One can also measure the higher multipoles l > 0 of
the anisotropic galaxy power spectrum Eq. (11.23) by choosing a weighting based on Pl (μ)

in Eq. (14.54), where μ = k̂ · n̂. Alternatively, one can divide each wavenumber bin α into
multiple bins of μ.
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Eq. (14.60) together with Eq. (14.53) shows that the measurement precision of the galaxy
power spectrum improves rapidly with increasing kα (in the case of equally spaced lin-
ear bins �k,

√
2/mk,α ∝ 1/kα), so long as Pg(kα) is not much smaller than the noise PN .

There are two challenges involved in exploiting this great amount of information appar-
ently available on small scales. First, as we learned in Ch. 12, coming up with a theoretical
prediction for the galaxy power spectrum becomes increasingly difficult on small scales,
due to the importance of the nonlinearities in matter and galaxy bias. Second, once the
galaxy density field becomes moderately nonlinear, the Gaussian assumption that our
derivation was built on becomes inaccurate. That is, Eqs. (14.59)–(14.60) receive an ad-
ditional contribution from the last, connected term in Eq. (14.56) which is induced by
nonlinear evolution (it can be calculated, for example, using perturbation theory along
the lines of Sect. 12.2 and Sect. 12.6). Unlike the Gaussian contribution, the connected co-
variance term couples different k bins. Due to these challenges, the analysis of the galaxy
power spectrum is usually restricted to scales kα ≤ kmax, where kmax is typically chosen to
be on scales where perturbation theory is valid (kmax � 0.2hMpc−1, depending on red-
shift).

So far, we assumed a cubic survey volume (and one with periodic boundary conditions,
which are built into the discrete Fourier transform of Eq. (14.49)). In order to move to realis-
tic survey geometries, we go back to the discussion around Eq. (14.34), where we described
how the actual region of space covered by a given survey is embedded in a larger cubic vol-
ume. The cubic volume considered here thus corresponds to the grid in which the actual
survey is embedded. Eq. (14.34) then only applies to those cells of the grid that are actually
in the observed volume. So, we can write

δobs
g (xi ) =W(xi )δg(xi ), (14.61)

where δg is the galaxy density that would be measured if all pixels were actually part of the
survey, and W(xi ) is the window function. In the simplest case, the window function only
attains two values: 1, if xi is in the surveyed volume, and 0 otherwise. Very roughly, the re-
gion where W is unity has the form of a truncated cone, limited in the transverse directions
by the survey footprint on the sky, and in the line-of-sight direction by the minimum and
maximum redshift of the survey. In reality, the mask usually has some small holes as well,
due to bright foreground stars which need to be masked, as well as other observational
effects.

In Fourier space, Eq. (14.61) becomes

δobs
g (ki ) =

∑
kj

W(kj )δg(ki − kj ). (14.62)

The likelihood for this observed, windowed density field is still Gaussian (or as close
to Gaussian as that of δg itself), but the covariance no longer takes the simple form of
Eq. (14.59): the window function couples different Fourier modes, so that the covariance
attains a complicated, non-diagonal form. Apart from this complication, however, the
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same principle to construct a maximum-likelihood estimator for the galaxy power spec-
trum applies as before.

14.5 The Fisher matrix
As we have seen in the previous sections, obtaining cosmological constraints from data is a
multi-step process that depends in great detail on the properties of the data set considered.
However, there is a much simpler question that can be answered even before obtaining the
data: how well do we expect a given experiment to determine cosmological parameters?
This exercise is known as forecasting. All we need for this purpose is the curvature matrix of
the likelihood, the Fisher matrix, which quantifies the amount of information that a given
experiment can provide about a set of parameters. Moreover, we can readily compute it
using the results of the previous sections, without having to work with actual data sets.
The Fisher matrix has thus become a useful tool for theorists as well, allowing them to
determine whether a new signal they predict could in fact be detected experimentally.

Let us consider a CMB experiment as an example. Start with the following:

• The set of cosmological parameters {λα} for which we want to forecast errors, and their
fiducial values {λ̄α} which are assumed to describe the true universe.

• A theory prediction, Ctheory(l|λα), as a function of cosmological parameters {λα}.

• The expected uncertainty, Var
[
Ĉ(l)

]
, on the C(l) expected from a given experiment.

The observed Ĉ(l) in this experiment will be close to, within errors, the true Ctheory(l); in-
deed, if we form

χ2({λα}) =
∑

l

[Ĉ(l) − Ctheory(l, {λα})]2

Var
[
Ĉ(l)

] , (14.63)

where we have assumed a diagonal covariance for simplicity, then we expect χ2 to reach
a minimum at the point in parameter space where {λα} = {λ̄α}, the values of the parame-
ters that we assume to describe the true universe. Of course, we do not know what those
values are for the real universe, but even without that information, we can ask how quickly
χ2 ({λα}) changes as a given parameter λ1 moves away from λ̄1. If it increases rapidly, then
the error on the parameter will be very small; if χ2 changes little, then there will be a large
error on λ1.

To quantify this, we can expand χ2 about its minimum at λ̄α. Let us first do this in the
case of one parameter; the generalization to many parameters will be straightforward. In
the one-parameter case,

χ2(λ) = χ2(λ̄) +F(λ − λ̄)2. (14.64)

The linear term in Eq. (14.64) vanishes since χ2 is at a minimum at λ̄. The coefficient of the
quadratic term is

F ≡ 1

2

∂2χ2

∂λ2
. (14.65)
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The curvature here, F , measures how rapidly χ2 changes away from its minimum. If the
curvature is small, then the likelihood changes slowly and the data are not very constrain-
ing: the resulting uncertainties on the parameter will be large. Conversely, large curvature
translates into small uncertainties. Since we are assuming that the likelihood for Ĉ(l) is
Gaussian, so that lnL = −χ2/2, F is the generalization of our error estimate for w̄ in
Eq. (14.12). Therefore, the 1-σ error on λ is indeed simply 1/

√
F .

The second derivative of χ2 contains two terms:

F =
∑

l

1

Var
[
Ĉ(l)

]
⎡⎣(∂Ctheory(l, λ)

∂λ

)2

+ (Ctheory(l, λ) − Ĉ(l))
∂2Ctheory(l, λ)

∂λ2

⎤⎦ , (14.66)

where, as throughout this chapter, we have assumed that the covariance of Ĉ(l) is inde-
pendent of λ. We are interested in computing the expected uncertainty on λ, i.e. what a
given experiment would yield if repeated many times. So, we should take the expectation
value of F , which actually leads to further simplifications: under that expectation value,
Ĉ(l) − Ctheory(l, λ̄), which is nonzero in any given realization due to noise and cosmic
variance, vanishes by definition at the true parameter value λ̄ (note that the only random
variable here is Ĉ(l)). Thus, only the first term remains under the expectation value:

F ≡ 〈F〉 =
∑

l

1

Var
[
Ĉ(l)

] [∂Ctheory(l, λ̄)

∂λ̄

]2

(14.67)

Notice that this now contains only “theory” quantities: the data vector does not appear.
This ensemble average of the curvature of the likelihood at the maximum (i.e. at the true
or fiducial parameter values) is called the Fisher information F . The generalization of this
quantity to many parameters is called the Fisher information matrix, or Fisher matrix for
short:

Fαβ =
∑

l

1

Var
[
Ĉ(l)

] ∂Ctheory(l, {λ̄γ })
∂λ̄α

∂Ctheory(l, {λ̄γ })
∂λ̄β

. (14.68)

In order to predict how accurately parameters will be known, then, we simply need to
know the experiment’s specifications (to determine Var[Ĉ(l)]) and the derivatives of the
Ctheory(l, {λ̄α}) around their assumed true values (which are typically evaluated numer-
ically using a finite-difference estimate). Eq. (14.68) assumes a Gaussian likelihood and a
diagonal, {λα}-independent covariance. The generalization to any likelihood shape is given
by

Fαβ ≡ −
〈

∂2 lnL
∂λα∂λβ

〉 ∣∣∣∣{λγ }={λ̄γ }
. (14.69)

For a Gaussian distribution and a single parameter λ, the forecasted 1-σ uncertainty on
λ is 1/

√
F . How about if more than one parameter is allowed to vary? Fig. 14.4 illustrates
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FIGURE 14.4 Error ellipse in a 2D parameter space. The maximum of the likelihood (λ̄1, λ̄2) is indicated by a star. Two
possible errors on the parameter λ1 are shown: if λ2 is perfectly known (infinitely narrow prior), then the error on
λ1 corresponds to the width of the ellipse at λ2 = λ̄2, equal to 1/

√
F11. If no prior information is available about λ2,

then the proper error to quote is the width of the distribution after marginalizing over λ2, which yields the larger
error bar given by

√
(F−1)11.

the situation in a two-dimensional setting. If the parameter λ2 is assumed known, then the
error on λ1 is 1/

√
F11. However, if λ2 is allowed to vary, the proper error on λ1 is obtained

after integrating over all possible values of λ2, which yields
√

(F−1)11. It is instructive to
prove this explicitly. First, using the fact that the Fisher matrix describes the curvature of
the likelihood (in terms of the λα) around the maximum, we can write the joint posterior
for the two parameters as

P(λ1, λ2) ∝ exp

{
−1

2
λαFαβλβ

}
(14.70)

where we have assumed that the true values are (λ1, λ2) = (0,0) for simplicity. Allowing
λ2 to vary is equivalent to integrating (marginalizing) this probability distribution over all
possible values of λ2, as in Eq. (14.22). Then

P(λ1) =
∫

dλ2 P(λ1, λ2)

∝ exp

{
−λ2

1

2

(
F11F22 − F12F21

F22

)}
(14.71)

where the second line comes from carrying out the λ2 integration explicitly. The term
in parentheses is [F11F22 − F12F21]/F22 = 1/(F−1)11. So the 1σ error is indeed given by√

(F−1)11.
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14.6 Sampling the likelihood function
We have gone through all the ingredients needed for the likelihood in this Chapter: the
theory predictions, estimates of the two-point functions from the data, and their covari-
ance. Now we want to constrain cosmological parameters using this likelihood. Finding
the maximum of the likelihood analytically, like we did for the estimators of the map and
two-point functions, is not generally possible for several reasons. First, as discussed below
Eq. (14.23), the likelihood is in general not close to Gaussian in the cosmological parame-
ters. In addition, we usually have to integrate over several nuisance parameters which can
rarely be done analytically. Instead, we need to proceed numerically.

In principle, then, we can go ahead in a brute-force approach and compute this likeli-
hood function at many points in parameter space, find its maximum (this constitutes the
set of best-fit parameters), and the contour delineating the region in which, say, 95% of
the volume lies around this maximum. This contour would then be the 95% confidence re-
gion of the parameters. This brute-force approach, however, is entirely impractical for the
multi-dimensional parameter sets needed for modern experiments. The typical number
of parameters required to describe cosmological data is of order ten to one hundred. Say
that mapping the likelihood in a one-dimensional parameter space requires 20 likelihood
evaluations; in 2D, this will become 202; for three parameters, 203, etc. When there are 20
free parameters, the number of likelihood evaluations required would be 2020. Even if the
evaluation of the likelihood were to only take a few seconds (in reality, the likelihood func-
tion is often very costly to evaluate), it is easy to compute that this brute-force approach is
practically unfeasible.

Thus, we need new techniques for evaluating the likelihood function and finding its
maximum and its width. One of the boons of the tools we will discuss here is that they
are applicable to non-Gaussian likelihoods as well, which is usually the case in real-world
applications.

Fundamentally, the issue we are facing in complex likelihood analyses is that we have
to find probable regions in a generally high-dimensional parameter space {λα}. Moreover,
after having found the maximum, we have to perform integrals over the likelihood to ob-
tain the proper marginalized error bars on individual parameters (Sect. 14.5). As argued
above, we need to be smart when attempting to do this in practice.

Suppose we had an algorithm that, given any posterior—the product of the likelihood
function and priors—returns us points (“samples”) in parameter space {λi

α}msample
i=1 that are

statistically independent from each other and whose distribution follows the posterior.
Fig. 14.5 shows a one-dimensional example. Then our problem would be solved: the de-
sired best-fit parameter λα is given by the mean of the samples,

λ̄α = 1

msample

msample∑
i=1

λi
α, (14.72)
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FIGURE 14.5 The posterior distribution of a parameter λ (solid curve). The dots are points sampled from that distri-
bution, so that values of λ where the posterior is large are chosen more often. With a sufficient number of samples,
the mean and the variance of the sampled points then are close to the true values of the distribution. In this case,
the true mean and standard deviation of the posterior are 0.5 and 0.22, while the mean of the 20 points sampled
from the distribution is equal to 0.46, with a standard deviation of 0.18. If more points were sampled, the mean and
standard deviation would continue to approach the true values.

where the sum runs over all msample samples, while the marginalized error can be estimated
as the sample variance of λi

α,

Var [λα] = 1

msample − 1

msample∑
i=1

(
λi

α − λ̄α

)2
. (14.73)

In the limit that the number of samples is very large, λ̄α and Var [λα] converge to central
values that are independent of the number of samples. In fact, one could do much more:
given a sufficiently large msample, a normalized histogram of λi

α yields the marginalized
probability distribution of λα. Since this is a one-dimensional function, it is then easy to
find its global maximum and derive proper confidence intervals. Similarly, we could ob-
tain the joint probability distribution of two parameters (λα,λβ) to see whether they are
degenerate, for example. Clearly then, if numerically efficient, this approach would be a
solution to our problems.

Fortunately, such algorithms exist; the most popular is known as Markov Chain Monte
Carlo (MCMC). The “Monte Carlo” refers to the fact that we will be throwing dice (i.e. us-
ing a random number generator) in the process. “Markov Chain” means that, to generate
sample i + 1, the algorithm only uses the previous sample point λi as input (in addition
to random numbers). This is a significant restriction: it means that the algorithm has no
memory, i.e. it does not care which previous samples λ1, λ2, . . ., also known as chain, took
us to λi . Here and in the following, we will let λ stand for the parameter vector {λα}. Let us
begin by deriving what the condition is for this algorithm to work, i.e. to actually yield sam-
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ples that follow the desired posterior P(λ).3 Our main goal then is to identify a candidate
algorithm that inputs the current value of the parameter set, λ, and outputs a subsequent
set, call it λ′.

Given its Markov nature, the algorithm is completely described by the conditional prob-
ability K(λ′|λ) that takes us from a sample λ to the next one, λ′. The fundamental require-
ment on K, in order for the MCMC sampler to sample from the right posterior, is detailed
balance:

P(λ)K(λ′|λ) = P(λ′)K(λ|λ′). (14.74)

If we start with a distribution of λ that follows P(λ), then an algorithm that obeys Eq. (14.74)
preserves that distribution. This is analogous to detailed balance in the case of the collision
terms in the Boltzmann equation, which preserve the equilibrium distribution: writing
Eq. (14.74) in the form P(λ)K(λ′|λ) − P(λ′)K(λ|λ′) = 0 shows that it corresponds to the
statement that the rates for forward (λ → λ′) and reverse reactions (λ′ → λ) are the same
(see for example the discussion in Sect. 5.1). Hence, if we want to sample from a posterior
P(λ), we need to identify a scattering process whose equilibrium distribution is P(λ), and
then simulate that scattering.

Before thinking about how we can identify such an algorithm, let us first understand
why the detailed balance requirement Eq. (14.74) is in fact what we need. It is clear that
if we start from a distribution of initial samples that follow the desired posterior, then
Eq. (14.74) ensures that we continue to sample from the correct distribution. In practice
we will start from some initial guess for λ which is likely to be very far from the maximum
of the posterior. The reason that Eq. (14.74) still ensures the right result also follows from
the Boltzmann analogy: if we start with a photon distribution that is very far from the Bose–
Einstein distribution and bring it into contact with electrons at some temperature, it will be
driven to the equilibrium distribution with the same temperature after many scatterings.
Similarly, even when started with initial samples that are very far from the true posterior
distribution, a sampling algorithm that satisfies detailed balance ensures that their dis-
tribution will approach P(λ) after sufficiently many “scatterings,” i.e. random samples. So,
the approach to the true distribution does not happen immediately, but during a “burn-in”
period.

One choice for K(λ′|λ) is the Metropolis-Hastings algorithm invented in the 1950s by
Metropolis and later generalized by Hastings. Focusing on a single parameter for simplic-
ity, we select a possible next sample λ′ by drawing from a distribution centered around
λ and symmetric in its two arguments: g(λ′, λ). The simplest example is a Gaussian,
g(λ′, λ) ∝ exp[−(λ − λ′)2/2σ 2]. Then, this new sample is “accepted” with a probability

pacc(λ
′, λ) = min

{
P(λ′)
P (λ)

, 1

}
. (14.75)

3
Really, this is P(λ|{di }), but since the data are fixed and do not appear explicitly in this section, we drop them

from the argument for clarity.
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That is, we evaluate the posterior for λ′ and compute the ratio α ≡ P(λ′)/P (λ). If α is larger
than one, then λ′ is our next step in the chain; if it is less than one, we uniformly draw a
random number between zero and one and accept λ′ into the chain only if that random
number is less than α. So, if the proposed λ′ is much less likely than the previous value λ,
it is unlikely (but not impossible) for it to be accepted. On the other hand, if the random
number is greater than α, then λ′ is discarded and we instead insert the previous value λ

into the chain. We then repeat the cycle, drawing a new proposal based on the last element
of the chain.

Let us show that this recipe satisfies detailed balance. This requires that

P(λ′)
P (λ)

= K(λ′|λ)

K(λ|λ′)

= pacc(λ
′, λ)

pacc(λ,λ′)
, (14.76)

where the second line follows since g(λ′, λ) is symmetric. If P(λ′) < P (λ), then the de-
nominator is equal to one, and the numerator is indeed equal to P(λ′)/P (λ). Similarly,
if P(λ′) > P (λ), the numerator is equal to one, and the denominator ensures equality, so
detailed balanced holds for this algorithm. The algorithm is also simply generalized to
multiple parameters, by performing successive steps in λ1, λ2, . . ., either with the same
function g(λ′

i , λi) for each parameter, or with different functions gi .
Related to this is one advantage of the Metropolis-Hastings algorithm: the function g

can be tuned. For example, for the Gaussian choice above, σ is a free parameter. If it is cho-
sen to be very small, the sampler will take a long time to map out the likelihood function,
or might even get stuck near a local maximum. If σ is too large, the acceptance rate will be
low, because most draws of λ′ will end up in low probability regions of parameter space.
Hence, during the burn-in phase, the step-size parameter is often adjusted dynamically. A
downside of this algorithm is that, due to the rejection sampling, several evaluations of the
posterior might be required to generate a new sample. Moreover, successive samples are
not truly statistically independent, so care needs to be taken when evaluating the sample
mean and variance in Eqs. (14.72)–(14.73).

Metropolis-Hastings was one of the first MCMC algorithms, but since then many others
have been developed and are in wide use in cosmology (and of course in the much broader
field of data science). Some of the basic issues mentioned above apply to all samplers:

• Step-size optimization to map the likelihood with the fewest number of evaluations
• Estimating the burn-in period
• Measuring when the chain has converged
• Understanding the correlation between adjacent samples.

14.7 Summary
This is the second edition of a book that was first published in 2003. Given all the ad-
vances in cosmology, it did not need to surprise us that this chapter was one of the ones
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that needed the most revision. The field of data analysis has changed rapidly over the past
decades, and indeed it is with a bit of trepidation that we present the steps in this chapter,
as there are already a number of tools lurking on the horizon—for example, likelihood-free
inference, or forward-modeling of the entire map as an alternative to the power spectrum,
perhaps coupled with machine learning—that may replace the likelihood analysis outlined
here.

Nonetheless, the Gaussian statistics we focused on in this chapter still form the bedrock
on which all statistical inference approaches are built. Moreover, even future, more ad-
vanced techniques are very likely to rely on one or several of the steps shown in Fig. 14.1.
These include two compression steps: one that takes the raw data and produces a map and
a second that estimates the two-point functions from the map. The theory part, computing
the two-point functions in a given model, encompasses essentially all the previous chap-
ters of this book, and will remain relevant to future analyses. There is an additional theory
step, obtaining a covariance matrix for the two-point function, that we have described here
in the simplest of cases. The diagonal covariance matrices for the C(l) and the galaxy power
spectrum we described here are often used for forecasts, but have been inadequate for the
analysis of real data for some time now. Covariances are in fact one of the major challenges
in the analysis chain of current cosmological data sets. Finally, armed with those three
pieces, evaluating the likelihood and therefore obtaining parameter constraints turns into
a numerical statistics problem, one for which the most widely-used solution currently is
the Markov Chain Monte Carlo.

Before concluding this chapter and this book, we should mention another major chal-
lenge: systematic effects. Common examples in the area of galaxy clustering are contam-
ination of the sample by stars in the Milky Way, mis-estimated redshifts, and imperfect
theoretical models, for example in the bias relation between the galaxy density and the
matter density. In the case of the CMB, galactic foregrounds and instrumental effects such
as the beam are prominent examples. One of the most promising ways to include many of
these systematics is by forward-modeling. For example, template maps for various sources
of galactic foreground emission can be constructed by measuring the sky brightness at
different frequencies. Then, one allows for the CMB map to be contaminated by these tem-
plates, parametrized by free amplitude coefficients, which are then constrained by the data
simultaneously with the cosmological parameters, similar to how we deal with galaxy bias.
This, however, only works with known systematics. An array of null tests, estimators con-
structed to yield null results in the absence of systematics, can be used to search for any
other, unknown source of systematics. All of these techniques are somewhat specific to the
observable considered (CMB, galaxy clustering, lensing, and so on), and indeed worthy of
their own textbook, so we have refrained from going into further detail here.

Exercises
14.1 Alice has a cough that persists for a week. A primary symptom of lung cancer is

a cough; quantify that by writing P(C|LC) = 1. Roughly, 1 in 2000 people in the
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United States are diagnosed with lung cancer every year. Use Bayes’ theorem to
estimate the chances that Alice has developed lung cancer, P(LC|C). Assume that,
in a given year, 1 in five people get coughs that last for a week. This is a dramatic
illustration of the importance of priors for everyday life.

14.2 Generalize the likelihood Eq. (14.2) to different errors on each measurement, σw →
σw,i . Derive the value of w that maximizes this likelihood, and show that it corre-
sponds to inverse-variance weighting.

14.3 Show that the covariance matrix of a map,〈
(ŝi − si)(ŝj − sj )

〉
, (14.77)

where ŝi is given by the estimator in Eq. (14.30), is CN , as given in Eq. (14.31).
14.4 Derive the effect of a general, position-dependent and anisotropic beam on the

aobs
lm on the full sky. Begin by writing the observed temperature as in Eq. (14.36).

Neglect the noise which is irrelevant for this calculation. Now decompose all quan-
tities into multipole moments, such that B(n̂, n̂′

) is replaced by Blm,l′m′ . Show that
the observed temperature monopoles are given by

aobs
lm =

∑
l′m′

Blm,l′m′al′m′ . (14.78)

Now specialize to a constant and isotropic beam B(n̂, n̂′
) = B(n̂ · n̂′

) as considered
in Sect. 14.4.1. Show that in this case Eq. (14.38) holds.

14.5 Use the fact that the noise ηlm is a Gaussian random variable with mean zero
and covariance given by Eq. (14.39) to derive Eq. (14.40). Carry out the integral in
Eq. (14.41) to obtain the likelihood in Eq. (14.42).

14.6 Consider an all-sky CMB experiment with spatial pixels of area ��. Assume that
the experiment measures the temperature in each pixel with Gaussian noise ση. The
noise amplitude is often given in units of µK/arcmin2, so that the noise ση on the
temperature perturbation � is obtained by multiplying this number by the pixel
area �� and dividing by T0 = 2.726 K. The noise is thus assumed to be uniform
(the same everywhere on the sky) and uncorrelated (from one pixel to the next).
Determine the noise covariance matrix for aobs

lm . If the pixel area is cut in half (for
the same experiment), each pixel will get less observing time by a factor of 2. The
noise will then go up for each pixel by a factor of

√
2. Show that these two changes

(smaller pixels; more noise per pixel) leave the noise covariance unchanged.
14.7 Derive the noise contribution to the lensing angular power spectrum CEE(l)

(Sect. 13.5). This is analogous to the CMB noise derived in Exercise 14.6, except
that the noise is due to the intrinsic ellipticities of galaxies. Start from Eq. (13.40),
and treat εtrue

i (i = 1,2) as Gaussian noise with
〈
εtrue
i

〉 = 0 and
〈
(εtrue

i )2
〉 = σ 2

ε . Then,
assume that a pixel with area �� contains n̄g�� galaxies, where n̄g is the angular
number density of source galaxies (number of galaxies per solid angle).
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14.8 In Sect. 14.4.2, we assumed that the noise contribution to the galaxy covariance is
diagonal with amplitude PN . Show that this is the case, and what value PN attains,
assuming that noise in galaxy counts is a Poisson process:
(a) Divide the survey region into small sub-volumes. Assume that the number of

galaxies in a given sub-volume is drawn from a Poisson distribution with mean
m̄g (assume m̄g is the same in all sub-volumes for simplicity),

P(m) = (m̄g)
me−m̄g

m! . (14.79)

Determine the expectation values 〈m〉 and 〈m2〉 for this distribution in terms of
the mean density n̄g and the volume v of a sub-volume.

(b) Calculate the correlation function of galaxies assuming the Poisson model of
Eq. (14.79). That is, compute

ξg(|xα − xβ |) =
〈
m(xα)m(xβ)

〉
〈m〉2

, (14.80)

where xα denotes the position of sub-volume α. Assume that there is no intrin-
sic clustering, so that 〈m〉 is the same in each sub-volume.

(c) Compute the galaxy power spectrum. You can either Fourier-transform the re-
sult of the previous step, or compute it directly as follows. Rewrite Eq. (14.49)
as

�(ki ) = L3/2
∑
α

eiki ·xα

[
n(xα) − n̄g

n̄g

]
(14.81)

where the sum runs over the sub-volumes of size v. Using the results of (a), and
again assuming that there is no intrinsic clustering, determine

〈
�(ki )�(kj )

〉
. Us-

ing either approach, show that you obtain the noise contribution to Eq. (14.57)
with PN = 1/n̄g.

14.9 Estimate the expected error on the B-mode polarization power spectrum
Var[ĈBB(l)] from the BICEP2/Keck Array experiment (Ade et al., 2018). The observa-
tions cover 400 square degrees on the sky; assume that the noise in an arcminute-
squared pixel is 3 µK. Use the Fisher matrix to calculate the expected upper limit on
the tensor-to-scalar ratio r that this experiment is expected to achieve (under ideal
circumstances) under the assumption that the true r = 0.

14.10 In the derivation of the Fisher matrix, we assumed that, if averaged over many noise
realizations, the measured Ĉ(l) are equal to the theory prediction Ctheory(l, λ̄) at
true parameter values λ̄. The Fisher formalism also allows us to infer the bias on
parameters λ that is caused by a mismatch between theory and data, either due to
systematics in the data or an inadequate theory prediction.
(a) Assume that the maximum of the likelihood is attained when

Ĉ(l) = Ctheory(l, λ̄) + Csys(l), (14.82)
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where Csys(l) is the observational systematic or theory error, while the statis-
tical error Var[Ĉ(l)] is unchanged. Assume a single parameter λ for simplicity,
and derive an expression for the value λsys where the likelihood peaks at linear
order in Csys(l) (ignore terms that involve two powers of Csys(l)). Hint: perform
a Taylor expansion of the likelihood around λ̄.

(b) Take the expectation value of all quantities in this expression, recalling that
〈Ĉ(l)〉 = Ctheory(l, λ̄) + Csys(l), and use the Fisher matrix.

(c) Now generalize this result to multiple parameters.
14.11 Derive the Fisher matrix for the galaxy power spectrum. Use this together with

Eq. (14.60) and Eq. (11.23) to estimate the expected error on the growth rate f as
measured from the galaxy power spectrum for the Euclid survey, assuming the fol-
lowing very approximate specifications:

V = 63h−3 Gpc3; z = 1.4; n̄g = 5.2 × 10−4h3 Mpc−3; b1 = 1.5. (14.83)

You can assume a cubic volume and that n̄g is a fixed parameter, but you should
marginalize over b1. Use the results of Sect. 12.2 to propose a sensible value for kmax

up to which you would trust this forecast based on linear theory (see next exercise).
14.12 Adapt the Fisher parameter bias formalism derived in Exercise 14.10 from the case

of C(l) to the case of the three-dimensional galaxy power spectrum. Use this to
estimate the bias on the growth rate f incurred if one were to neglect the 1-loop
correction to the matter power spectrum (Eq. (12.48)), as a function of kmax. At
what value of kmax does the systematic shift become equal to the 1-σ statistical error
on f ?



A
Solutions to selected exercises

The exercises at the end of each chapter have a broad range of difficulty. Some are simply
repeating calculations in the text in a slightly different context; others are fairly elemen-
tary applications of basic formulae; while some are quite challenging. We generally refer
to those exercises that are most important for following the main thread of the book in the
text of each chapter. This appendix contains solutions to selected exercises.

Chapter 1
Exercise 1.1
The ratio

ρ�

3H 2/(8πG)
= ρ�

ρcr

(
H0

H

)2

(A.1)

evaluates to 0.7 today. By assumption, the universe is forever radiation dominated (clearly
not true today, but a good approximation early on), so we take H/H0 = a−2. The tempera-
ture also scales as a−1, so H/H0 = (T /T0)

2 with T0 = 2.7 K = 2.3 × 10−4 eV. So,

ρ�

3H 2/(8πG)
= 0.7

(
T0

T

)4

. (A.2)

At the Planck scale, T0/T = 2.3 × 10−4/1.22 × 1028, so

ρ�

3H 2/(8πG)
= 9 × 10−128. (A.3)

This is the so-called fine-tuning problem: for the cosmological constant to be just impor-
tant today, it had to have been fine-tuned to an absurdly small value at early times; if it had
been much larger, our universe would look very different, exponentially expanding and
essentially empty by now. It is a deep problem.

Exercise 1.2
We need to do the integral

t0 = 1

H0

∫ 1

0

da

a

[
�� + 1 − ��

a3

]−1/2

(A.4)

433



434 Modern Cosmology

for �� = 0.7 and 0. The latter case can be done straightforwardly:∫ 1

0

da

a
a3/2 = 2

3
. (A.5)

So t0 = 2/(3H0) = 0.67 × 1010h−1 yr. When �� is not zero, the integral can be done using the
substitution hinted at in the exercise, or simply numerically. Either way, the result is∫ 1

0

da

a

[
0.7 + 0.3

a3

]−1/2

� 0.96. (A.6)

So for fixed Hubble constant, a universe with � is older than a matter-dominated one by a
factor of 0.96/0.67 = 1.43. This is because the universe with � is accelerating now, so in the
past it was expanding more slowly than the matter-dominated one. For h = 0.7, a cosmo-
logical constant universe has an age of 13.8 billion years, in accord with independent age
indicators such as stars and globular clusters.

Exercise 1.4
Let us rewrite Eq. (1.9) as

Iν = 2(2π�ν)ν2/c2

exp[2π�ν/kBT ] − 1
. (A.7)

The units of the y-axis in Fig. 1.7 are million Jansky per steradian, where a Jansky is defined
as 1 Jy = 10−26 J s−1 m−2 Hz−1; so the units are energy per unit time, area, frequency and
solid angle (steradian). On the other hand, Iν has units of energy (2π�ν) per area (ν2/c2 =
m−2). In fact, since Hz = s−1, these are the same units. So,

Intensity [MJy/sr] = 1020 Iν [SI units]. (A.8)

Defining x = 2π�ν/kBT , setting the derivative to zero, and solving numerically, we find that
Eq. (A.7) attains its maximum when x � 2.82. For T = 2.728 K, this yields νmax = 160 GHz.
Since ν = c/λ, this is also the maximum position in inverse wavelength, and we obtain
(λ−1)max = 5.35 cm−1. Plugging in the remaining constants, we find that the peak intensity
is

Iν(νmax) = 385 MJy sr−1. (A.9)

Both of these values match Fig. 1.7.

Chapter 2
Exercise 2.1
(a) To get from Kelvin to eV, use kB = eV/(11605 K). So

2.726 K → kB2.726 K = (2.726/11605) eV. (A.10)

Or 2.349 × 10−4 eV.
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(b) Since T0 = 2.349 × 10−4 eV,

ργ = π2T 4
0

15
= 2.004 × 10−15 eV4. (A.11)

To get this in g cm−3, first divide by (�c)3 = (1.973×10−5 eV cm)3 to get 0.2609 eV cm−3.
Then to change from eV to grams, remember that the mass of the proton is either
1.673 × 10−24 g or 0.9383 × 109 eV, so 1 eV = 1.783 × 10−33 g. Therefore, ργ = 4.651 ×
10−34 g cm−3.

(c) We have parametrized H0 = 100h km s−1 Mpc−1, or using the fact that one Mpc is equal
to 3.1×1019 km, H0 = 3.23h×10−18 s−1. To get this into inverse cm, divide by the speed
of light, c = 3 × 1010 cm s−1; then H0 = 1.1h × 10−28 cm. Or H−1

0 = 9.3h−1 × 1027 cm.
(d) To get the Planck mass (1.2 × 1028 eV) into Kelvin, multiply by k−1

B = 11605 K/eV; then
mPl = 1.4 × 1032 K. To get it into inverse cm, divide by �c = 1.97 × 10−5 eV cm to get
mPl = 6.1 × 1032 cm−1. To get this is units of time, multiply by the speed of light to get
mPl = 6.1 × 1032 × 3 × 1010 cm s−1, or mPl = 1.8 × 1043 s−1.

Exercise 2.4
Accumulating the various Christoffel components leads to

d2xi

dλ2
= −2

ȧ

a

dt

dλ

dxi

dλ
. (A.12)

Change to differentiation with respect to η using the facts that dt/dλ = E and dη/dλ = E/a.
Then the geodesic equation becomes

E

a

d

dη

(
E

a

dxi

dη

)
= −2

ȧ

a

E2

a

dxi

dη
. (A.13)

Since E/a ∝ a−2 for massless particles, when the derivative on the left acts on E/a, the
resulting term (proportional to dxi/dη) exactly cancels the term on the right, leaving the
result of Eq. (2.94).

Exercise 2.5
The age integral is

t (a) =
∫ a

0

da′

a′H(a′)
. (A.14)

Since we are assuming only matter and radiation, we can take

H(a) = H0
√

ρ/ρcr = H0

√
�m

a3
+ �r

a4
. (A.15)

This expression is valid at early times when the contribution from the cosmological con-
stant can be neglected. But the ratio �r/�m = aeq = 4.15×10−5/(�mh2). Therefore, the age
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integral is

t = 1

�
1/2
m H0

∫ a

0

da′a′√
a′ + aeq

. (A.16)

Integrate by parts to get

�
1/2
m H0t = 2a

√
a + aeq − 2

∫ a

0
da′

√
a′ + aeq. (A.17)

Carrying out the last integral leads to

�
1/2
m H0t = 2a

√
a + aeq − 4

3

{
[a + aeq]3/2 − a

3/2
eq

}
. (A.18)

At very early times, such as when the temperature was 0.1 MeV, a is much smaller than aeq,
so

t = a2

2H0
√

�maeq

(
a � aeq

)
. (A.19)

This limit is easiest to see directly in the integral of Eq. (A.16), but you can also get it by
Taylor expanding Eq. (A.18). When the temperature is 0.1 MeV, the scale factor is the tem-
perature today divided by 0.1 MeV, so 2.35 × 10−4 eV/0.1 MeV = 2.35 × 10−9. Plugging in
numbers leads to

t (0.1 MeV) = 4.28 × 10−16 × 9.78 × 109h−1 yr = 132 s. (A.20)

Note that this result does not depend on the value of �m since radiation dominates at
early times. At T = 1/4 eV, a = 9.4 × 10−4. Plugging in concordance cosmology parameters,
Eq. (A.18) leads to

t (1/4 eV) = 389,000 yr. (A.21)

Exercise 2.7
The angle subtended is the physical size divided by the angular diameter distance

θ(z) = 5 kpc
1 + z

χ(z)
. (A.22)

In a Euclidean matter-dominated universe, χ is given by

χEuclidean,MD(a) =
∫ 1

a

da′

H
1/2
0 a′ 1/2

= 2

H0

[
1 − a1/2

]

= 2

H0

[
1 − 1√

1 + z

]
. (A.23)
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When z = 0.1 (1), the term in brackets in Eq. (A.23) is equal to 0.0465 (0.293). The comoving
distance out to z is, therefore,

χ =
{

279h−1 Mpc z = 0.1
1756h−1 Mpc z = 1

. (A.24)

Carrying out the division and converting radians to arcsec (1 radian equals 2.06 × 105 arc-
sec) leads to

θ =
{

4.07′′ h z = 0.1
1.17′′ h z = 1

. (A.25)

In a universe with �� > 0, χ must be computed numerically. At z = 1, one finds χ to be
larger than in the Euclidean matter-dominated case by 30% in the fiducial cosmology, so
the angular size will be smaller by this factor: θ = 0.90′′ h. At z = 0.1 the difference in co-
moving distances is only a few percent, so the angular size goes down to θ = 3.88′′ h in the
fiducial cosmology.

Exercise 2.8
Rewriting Eq. (1.9) in terms of momentum p = 2π�ν/c and recognizing the denominator
there as 1/fBE leads to

Iν = fBE(p)
4πp3

(2π)3
(A.26)

with � = c = 1 (in Ch. 13 we will develop the physical content of this relation). The energy
density is the integral of this over all frequencies, with a factor of 4π to count photons from
all directions (since Iν counts the energy flux per steradian):

ργ = 4π

∫ ∞

0
dνIν. (A.27)

This can be converted into an integral over momentum, with dν = dp/(2π):

ργ = 2
∫ ∞

0
dpIν. (A.28)

Exercise 2.11
The energy density of a massless boson is gπ2T 4/30, while that of a fermion is 7/8 times
this. So,

s = 2π2

45

⎡
⎣ ∑

i=bosons

giT
3
i + 7

8

∑
i=fermions

giT
3
i

⎤
⎦ (A.29)

accounting for the possibility that different species have different temperatures. For a mas-
sive particle with μ = 0, at temperature far below the mass, eE/T → em/T × ep2/2mT . So, for
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both fermions and bosons, the distribution function and hence both the pressure and the
energy density scale as e−m/T .

Chapter 3
Exercise 3.2
(a) Start with

�0
μν = g0α

2

[
∂gαμ

∂xν
+ ∂gαν

∂xμ
− ∂gμν

∂xα

]
(A.30)

where μ, ν range from 0 to 2, 0 being the time index, 1 corresponding to θ , and 2 to φ.
Since the metric is diagonal, g0α is nonzero only when α = 0 in which case it is −1. So

�0
μν = −1

2

[
∂g0μ

∂xν
+ ∂g0ν

∂xμ
− ∂gμν

∂t

]
. (A.31)

All of these terms vanish: the first two since g00 is a constant, and the last because
none of the metric elements depend on x0 = t . So �0

μν = 0 for all μ, ν.
Next consider

�θ
μν = g θα

2

[
∂gαμ

∂xν
+ ∂gαν

∂xμ
− ∂gμν

∂xα

]
. (A.32)

Again since the metric is diagonal, and gθθ = 1/r2, this reduces to

�θ
μν = 1

2r2

[
∂gθμ

∂xν
+ ∂gθν

∂xμ
− ∂gμν

∂θ

]
. (A.33)

Only the gφφ component depends on one of our variables, so only it is nonzero when
differentiated. Therefore, the first two terms vanish and the last is nonzero only when
μ = ν = φ, in which case it is

�θ
φφ = 1

2r2

[
−r2 ∂ sin2 θ

∂θ

]
= − sin θ cos θ. (A.34)

Finally, when the upper index is φ, we have

�φ
μν = 1

2r2 sinθ

[
∂gφμ

∂xν
+ ∂gφν

∂xμ
− ∂gμν

∂φ

]
. (A.35)

The last term vanishes since none of the metric elements depend on φ; the first two
are nonzero only if one of the indices μ, ν is equal to φ and the other is θ , so

�φ
φθ = �φ

θφ = cos θ

sin θ
. (A.36)
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(b) The geodesic equation is

d2xμ

dλ2
= −�μ

αβP αP β (A.37)

with

P μ ≡ dxμ

dλ
. (A.38)

Let us apply this to the μ = θ component. The left-hand side is

d2θ

dλ2
= d

dλ

dt

dλ
θ̇ = E2θ̈ (A.39)

since E = dt/dλ is constant. The Christoffel symbol on the right-hand side �θ
αβ is

nonzero only when α = β = φ in which case it is − sin θ cos θ . So,

θ̈ − sin θ cos θ(φ̇)2 = 0. (A.40)

For the second equation, consider the φ component of the geodesic equation,

d2φ

dλ2
= −�φ

αβP αP β. (A.41)

Again the left-hand side is simply E2φ̈. The right-hand side gets nonzero contributions
when α = θ , β = φ or an identical term when α = φ, β = θ . Therefore,

φ̈ + 2
cos θ

sin θ
θ̇ φ̇ = 0. (A.42)

Incidentally, this is equivalent to

d

dt

(
φ̇ sin2 θ

)
= 0 (A.43)

and the conserved quantity in parentheses is the angular momentum.
(c) The time-time component of the Ricci tensor R00 vanishes since all � with time com-

ponents are zero. We need to compute the spatial components. First, consider

Rθθ = ∂�α
θθ

∂xα
− ∂�α

θα

∂θ
+ �α

βα�β
θθ − �α

βθ�
β

θα. (A.44)

The first and third terms vanish since the Christoffel symbol with two lower θ vanishes.
For the same reason, the index α in the second term must be equal to φ, and both β

and α in the last term must equal φ:

Rθθ = −∂(cos θ/ sin θ)

∂θ
−
(

cos θ

sin θ

)2

. (A.45)
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Carrying out the derivative then gives

Rθθ =
[

1 + cos2 θ

sin2 θ

]
−
(

cos θ

sin θ

)2

= 1. (A.46)

The other spatial component is

Rφφ = ∂�α
φφ

∂xα
− ∂�α

φα

∂φ
+ �α

βα�β
φφ − �α

βφ�β
φα. (A.47)

The Christoffel symbol in the first term is nonzero only if α = θ , while the one in the
second term is always zero. In the third term β must be equal to θ to make the second
Christoffel symbol be nonzero, and then α = φ. In the last term β can be θ and α = φ

or vice versa, so

Rφφ = ∂�θ
φφ

∂θ
+ �φ

θφ�θ
φφ − �φ

θφ�θ
φφ − �θ

φφ�β
φθ . (A.48)

The middle two terms cancel leaving

Rφφ = −∂(sin θ cos θ)

∂θ
+ sin θ cos θ

cos θ

sin θ
. (A.49)

Carrying out the derivative gives

Rφφ = − cos2 θ + sin2 θ + cos2 θ = sin2 θ. (A.50)

Finally, the Ricci scalar is

R = gμνRμν = −R00 + 1

r2
Rθθ + 1

r2 sin2 θ
Rφφ. (A.51)

Assembling the terms, we get

R = 1

2r2
. (A.52)

The Ricci scalar is therefore a measure of the curvature of the space.

Exercise 3.6
Combining Eq. (2.60) and Eq. (3.90) yields

ä

a
= −4πG

3

∑
s

(1 + 3ws)ρs, (A.53)

where the sum runs over all constituents. For a single constituent, the condition for accel-
eration becomes, simply enough,

ä

a
> 0 ⇔ w < −1

3
, (A.54)
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since ρs > 0 always. No ordinary form of matter (relativistic or non-relativistic) has such an
equation of state. Neither does curvature.

If there are multiple constituents, we obtain the condition∑
s wsρs∑

s ρs

< −1

3
. (A.55)

That is, the density-weighted mean equation of state has to be less than −1/3.

Exercise 3.7
(a) Using the homogeneous FRW metric, we have

P0 = g00P
0 = −P 0 = −E; Pi = a2P i = api. (A.56)

Since pi ∝ 1/a, we see that Pi is constant in the homogeneous universe (it is in fact the
“superconformal momentum” used in N-body simulations, Sect. 12.3).

(b) Again for the homogeneous universe, we have
√−det[gαβ ] = a3, and

T 0
0(x, t) = g

a3

∫
dP1dP2dP3

(2π)3
P0f (p, t)

= −g

∫
d3p

(2π)3
E(p)f (p, t) = −ρ, (A.57)

where ρ is the energy density obtained from the distribution function, Eq. (2.62).
(c) One third of the sum of the diagonal spatial components of the stress-energy tensor is

given by

1

3
T k

k(x, t) = 1

3

g

a3

∫
dP1dP2dP3

(2π)3

P kPk

P 0
f (p, t)

= 1

3
g

∫
d3p

(2π)3

p2

E(p)
f (p, t) =P, (A.58)

since P kPk = pkpk = p2. So we recover Eq. (2.64) as expected.

Exercise 3.8
First integrate Eq. (3.23) over all momentum. This gives

∂n

∂t
+ ∂(nu)

∂x
= 0, (A.59)

the ∂f/∂p term vanishing after integrating by parts and noticing that f = 0 at p = ±∞
(there are no particles with infinite momentum). This is the continuity equation. To get the
Euler equation, first multiply by p/m and then integrate over all momentum. This gives

∂(nu)

∂t
+ ∂

∂x

∫ ∞

−∞
dp

2π

p2

m2
f (x,p, t) + kx

m
n = 0 (A.60)
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where the last term follows from an integration by parts. The integral in the second term
yields two contributions,∫ ∞

−∞
dp

2π

p2

m2
f (x,p, t) = nu2(x, t) + σ(x, t), (A.61)

the first a bulk velocity term, and the second the velocity dispersion or second moment σ .
Using the continuity equation reduces Eq. (A.60) to

u̇ + u
∂u

∂x
+ 1

n

∂σ

∂x
+ kx

m
= 0. (A.62)

The second moment acts like a pressure term. In order to close the set of equations, we
need to either set σ = 0 or relate it to the other variables, n and u.

Exercise 3.12
Eq. (3.60) together with Eq. (3.49) yield

Pμ =
[
−E(1 + �), pia(1 + �)

]
, (A.63)

while, using 1/
√−det[gαβ ] = a−3(1 − � − 3�), Eq. (3.20) becomes

T μ
ν = g(1 − �)

∫
d3p

(2π)3

P μPν

P 0
f (x,p, t). (A.64)

Now, plugging in Eq. (3.60), Eq. (A.63), and expanding to first order in �, � yields Eq. (3.86).

Chapter 4
Exercise 4.1
The number density of a species with degeneracy g = 2 is

n = 2
∫

d3p

(2π)3
f (p). (A.65)

For the distributions we will consider, the phase space density f depends only on the mag-
nitude of the momentum, so the angular part of the integral can be performed leading to
a factor of 4π ; therefore,

n = 1

π2

∫ ∞

0
dp p2f (p). (A.66)

First let us consider the low-temperature limit, m/T � 1. In this case, the limit of the Boltz-
mann distribution is exp[−(m+p2/2m)/T ]. We claim, though, that this is precisely the limit
of both the Fermi–Dirac and Bose–Einstein distributions:

1

eE/T ± 1
→ e−E/T (A.67)
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since E � m � T so that the exponential in the denominator dwarfs the 1. Therefore the
low-temperature limit of all three distributions is

nlow T = e−m/T

π2

∫ ∞

0
dp p2e−p2/2mT . (A.68)

To do the integral, define a dimensionless parameter x ≡ p/
√

2mT . Then, dpp2 =
[2mT ]3/2dxx2, so

nlow T = e−m/T

π2
[2mT ]3/2

∫ ∞

0
dx x2e−x2

. (A.69)

But the integral is equal to
√

π/4, so we have

nlow T = 2e−m/T

(
mT

2π

)3/2

. (A.70)

The high-temperature limit of the Boltzmann distribution is

nHi T, Boltz = 1

π2

∫ ∞

0
dp p2e−p/T . (A.71)

Defining the integration variable x ≡ p/T leads to

nHi T, Boltz = 1

π2
T 3

∫ ∞

0
dx x2e−x. (A.72)

The x integral is equal to 2. So,

nHi T, Boltz = 2T 3

π2
. (A.73)

The Bose–Einstein and Fermi–Dirac integrals similarly are

nHi T, BE/FD = T 3

π2

∫ ∞

0

dx x2

ex ∓ 1
. (A.74)

The integrals can be written in terms of the Riemann zeta function, via Eq. (C.29). So the
integral in Eq. (A.74) with the minus sign—the Bose–Einstein distribution—is ζ(3)�(3) =
2ζ(3). The integral with the plus sign—the Fermi–Dirac distribution—is 3ζ(3)�(3)/4 =
3ζ(3)/2, so

nHi T = ζ(3)T 3

π2

{
2 Bose–Einstein,
3/2 Fermi–Dirac.

So there are more bosons than fermions for the same temperature, and, since ζ(3) � 1.202,
these bracket the Boltzmann amount. All of course are proportional to T 3.
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Exercise 4.6
The photon number density is 411 cm−3, while the baryon number density is nb = ρb/mp =
ρcr�b/mp. Plugging in numbers gives

nb = �b
1.879h2 × 10−29 g cm−3

1.673 × 10−24 g
= 1.12 × 10−5�bh2 cm−3. (A.75)

So ηb, the ratio of the baryon to the photon number density, is indeed given by Eq. (4.10).

Exercise 4.9
To find this ratio, we compute the entropy density (P + ρ)/T at the two times. In both
cases, only relativistic particles contribute to the entropy density significantly so that
Eq. (A.29) holds. At high temperatures, the following particles contribute to the energy
density: quarks (gq = 5 × 3 × 2 for the five least massive types—up, down, strange, charm,
bottom—each with three colors and two spin states); anti-quarks (gq̄ = 30 again); leptons
(gl = 3 × 2 for the three massive types—e,μ, τ—each with two spin states, and 3 for the
corresponding neutrinos with only one helicity state, see Sect. 2.4.4); anti-leptons (gl̄ = 9
again); photons (2); and gluons (gg = 8 × 2 for eight possible colors each with two spin
states). This totals up to

g∗ = 2 + 16 + 7

8
(30 + 30 + 9 + 9) = 86.25. (A.76)

The sixth quark, the top quark, does not contribute because it is too heavy to be around at
these temperatures: mt � 175 GeV. The same holds for the W , Z, and Higgs bosons.

Today entropy comes only from photons and neutrinos. The former contribute 2 to g∗;
the latter contribute (7/8) × 3 × 2 × (4/11)4/3 = 1.36, so today g∗ = 3.36. Since the product
sa3 remains constant, we have[

g∗(aT )3
]
T =10 GeV

=
[
g∗(aT )3

]
T0

. (A.77)

Therefore,

(aT )3|T =10 GeV

(a0T0)3
= 3.36

86.25
= 1

26
. (A.78)

If we repeat the calculation at temperatures beyond ∼ 200 GeV, where all Standard Model
particles contribute, we obtain g∗ = 103.75 and the ratio Eq. (A.78) evaluates to 1/31, a fairly
minor difference.

Chapter 5
Exercise 5.3
From Eq. (4.2), the electron distribution function peaks at zero momentum, with a max-
imum value of e(μe−me)/T . To relate the chemical potential to the density, recall that n =
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eμe/T n(0), so in the low-temperature limit (Eq. (4.5)):

eμe/T = ne

2

(
2π

meT

)3/2

eme/T . (A.79)

So the maximum value of fe is (ne/2)(2π/meT )3/2. The number density of electrons is
the same as that of the protons, so from the solution of Exercise 4.6 we have ne = 1.12 ×
10−5(�bh2) cm−3 today including both ionized and captured electrons. Taking the electron
temperature to be equal to the photon temperature today gives 2π/meT = 2.04×10−11 cm2.
Putting back in the factors of a leads to

f MAX
e = 10−21�bh2a−3/2. (A.80)

This expression holds only for T ≤ me, corresponding to a � 4.6 × 10−10. So, as long as the
temperature is well below the electron mass, fe is very small.

Exercise 5.4
The difference between the amplitude squared we used in the derivation in Sect. 5.2 and
the more accurate one given in the exercise is 24πσTm2

e[(p̂ · p̂′
)2 − 1/3]. The combination

in square brackets is 2/3 times the second Legendre polynomial. Rewrite this using the
addition formula of spherical harmonics; then the difference becomes

�|M|2 = 16πσTm2
e

4π

5

2∑
m=−2

Y2m(p̂)Y∗
2m(p̂′

). (A.81)

This is the quantity we need to insert into the multiple integral in Eq. (5.16) in place of
M2. When we do this, only the m = 0 term will contribute since all other Y2m(p̂′

) have an
azimuthal dependence which integrates to zero. Therefore, the new collision term due to
anisotropic Compton scattering is

�C[f (p)] = π2neσT

p
P2(μ)

∫
d3p′

(2π)3p′P2(p̂
′ · k̂)

×
{

δ
(1)
D (p − p′) + (p − p′) · ub

∂δ
(1)
D (p − p′)

∂p′

}
{f (p′) − f (p)}, (A.82)

where we used the fact that Y20 = −√
5P2/

√
4π . We now perform the angular integral over

d�′. The only term which survives this integral (at linear order) is the one proportional to
δ
(1)
D (p − p′)f (p′), leaving

�C[f (p)] = − neσT

2p
P2(μ)

∫ ∞

0
p′dp′δ(1)

D (p − p′)p′ ∂f (0)

∂p′

×
∫ 1

−1

dμ

2
P2(μ)�(μ). (A.83)
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The angular integral gives −�2. Then integrating over the Dirac δ
(1)
D -function yields

�C[f (p)] = p
∂f (0)

∂p
neσT

1

2
P2(μ)�2. (A.84)

This adds a factor of −P2�2/2 inside the square brackets of Eq. (5.22) and explains the
corresponding term in Eq. (5.67).

Chapter 6
Exercise 6.1
In Fourier space, GL

,jl → −kj klG
L, so

εijkGkl,j l → −k2εijk(k̂kk̂j − k̂j k̂k/3)GL

= −2

3
k2εijkk̂j k̂kG

L = 0 (A.85)

since εijk is antisymmetric under interchange of j and k while k̂j k̂k is symmetric. Gij is also
traceless since δij (k̂i k̂j − δij /3) = 0.

Exercise 6.3
From the transformation law of a scalar field, and the definition of δφ through Eq. (6.7), we
have

φ̂(x̂) = φ(x[x̂]) = φ̄(t̂ − ζ ) + δφ(t̂ − ζ, x̂ − ∇ξ). (A.86)

We can immediately drop ζ and ξ in the arguments of δφ, since δφ is already of first order.
Expanding φ̄ then yields

φ̂(x̂) = φ̄(t̂) − ζ
dφ̄(t̂)

dt̂
+ δφ(t̂, x̂). (A.87)

On the other hand, in the x̂ coordinate system, Eq. (6.7) is

φ̂(x̂) = φ̄(t̂ ) + δφ(t̂, x̂). (A.88)

Equating the two relations yields

ˆδφ(t̂, x̂) = δφ(t̂, x̂) − dφ̄(t̂)

dt̂
ζ(t̂ , x̂). (A.89)

Exercise 6.8
(a) By definition,

�i
jk = gil

2
[glj,k + glk,j − gjk,l]. (A.90)
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All derivatives here are spatial, and the only spatially varying part of the metric is the
first-order piece hTT. Therefore, we can again use the zeroth-order gil = δil/a

2, leaving
Eq. (6.57).

(b) The product �α
βj�

β
iα vanishes when both indices α and β are zero (because �0

0i = 0)
and when both indices are spatial (because then each Christoffel symbol is of first
order). Therefore, this product is

�α
βj�

β
iα = �0

kj�
k
i0 + �k

0j�
0
ik

= �0
kj�

k
i0 + (i ↔ j). (A.91)

But

�0
kj�

k
i0 = 1

2

(
2Hgjk + a2hTT

jk,0

)(
Hδik + 1

2
hTT

ik,0

)
= H 2gij + aȧhTT

ij,0. (A.92)

We must remember to add back in the same set of terms with i and j interchanged.
This just introduces a factor of 2, so

�α
βj�

β
iα = 2H 2gij + 2aȧhTT

ij,0. (A.93)

Chapter 7
Exercise 7.2
There are 411 photons per cm−3 today; the Hubble volume is (4π/3)[3000h−1 Mpc]3 = 3.3×
1084 h−3 cm3. So the total number of photons is 1.4×1087 h−3. This number remains roughly
constant throughout the matter and radiation eras since the number density scales as T 3,
the physical volume as a3, and the temperature as a−1. A similar amount of entropy is
added by neutrinos. So another problem of the classical cosmology is: Why is the entropy
of the universe so large?

The production of entropy actually takes place at the end of inflation during the reheat-
ing process: even though the temperature at the end of inflation is extremely small (since
any radiation has been extremely diluted by expansion, see Fig. 7.4), the energy density
(which is completely in the scalar field) is enormous. When the energy in the scalar field
transforms into radiation, the temperature of the radiation shoots up from its value of es-
sentially zero to T ∼ ρ1/4, which as we have seen can be as high as 1014 GeV. Thus, the
reheating process is responsible for the large entropy we see today. Another way to say this
is to point out that inflation is a very ordered state: the universe supercools while the field
is away from its true vacuum state, i.e. the minimum of the potential. The transition to the
true vacuum is a transition to the very disordered state of equilibrium.
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Exercise 7.12
(a) With this substitution, the equation becomes

d2ṽ

dη2
+ 2

η

dṽ

dη
+
(

k2 − 2

η2

)
ṽ. (A.94)

Defining x ≡ kη, we see that ṽ satisfies the spherical Bessel equation of order 1
(Eq. (C.13)).

(b) The two solutions to Eq. (C.13) are j1(x) and y1(x). The general solution is therefore
Aj1 + By1. Writing these out explicitly leads to

v = ηṽ = η

(
A

sinx − x cosx

x2
− B

cosx + x sinx

x2

)

= 1

2k2η

(
eikη[−iA − Akη − B + iBkη]

+e−ikη[iA − Akη − B − iBkη]
)

. (A.95)

When kη is very large and negative, we want v → e−ikη/
√

2k, so the coefficient of e+ikη

in this limit, proportional to −A + iB, must vanish. Thus, A = iB. The coefficient of
e−ikη is

1

2k2η

[−2Akη
]= −A

k
. (A.96)

This must equal (2k)−1/2, so A = −(k/2)1/2. Therefore the correct solution is

v = e−ikη

√
2k

[
1 − i

kη

]
, (A.97)

in agreement with Eq. (7.40).

Exercise 7.13
The two components of Einstein’s equations are

k2� + 3aH
(
� ′ + aH�

)= 4πGa2δT 0
0

iki(�
′ + aH�) = −4πGaδT 0

i . (A.98)

Here we have simply copied the results from Ch. 6, replacing � with −�. Since δT 0
i is

first order, we can raise and lower indices with the background metric to obtain δT i
0 =

−δT 0
i/a

2. Then, multiply the second of these equations by 3iaHki/k2, and add the two
equations to get

k2� = 4πGa2
[
δT 0

0 + 3a2HikiδT
i
0

k2

]
. (A.99)

On large scales, the left-hand side is negligible, so the terms in brackets on the right must
sum to zero, giving Eq. (7.66).
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Chapter 8
Exercise 8.4
(a)–(b) are straightforward.

(c) To do the integral, introduce a new integration variable x ≡ √
1 + y. Then Eq.

(8.30) becomes

� = 3�(0)

2

√
1 + y

y3

∫ √
1+y

1
dx

(x2 − 1)2(3x2 + 1)

x2
. (A.100)

Now integrate by parts using the fact that the integral of 1/x2 is equal to −1/x. The
surface term is proportional to the numerator and so vanishes at the lower limit,
when x = 1. Therefore,

� = 3�(0)

2

√
1 + y

y3

[
−y2(4 + 3y)√

1 + y
+
∫ √

1+y

1
dx(18x4 − 20x2 + 2)

]

= 3�(0)

2

√
1 + y

y3

[
−y2(4 + 3y)√

1 + y
+
(

18

5
x5 − 20

3
x3 + 2x

)∣∣∣∣
√

1+y

1

]
. (A.101)

Evaluating the terms in parentheses at the upper and lower limits leads to Eq.
(8.31).

Exercise 8.8
(a) Let us make the ansatz δm = const × H . Since Eq. (8.75) is homogeneous, we can sim-

ply take δm = H . We transform the equation to an equation in terms of H 2 and lna,
using that

d2(H 2)

da2
= 2H

(
d lnH

da

dH

da
+ d2H

da2

)
. (A.102)

This yields

d2(H 2)

d(lna)2
+ 2

d(H 2)

d lna
= 3�mH 2

0

a3
. (A.103)

Now suppose there are several ingredients in the universe, so

H 2(a) = H 2
0

∑
s

�sa
ps where ps = −3(1 + ws). (A.104)

Inserting into the equation for H 2 yields∑
s

(p2
s + 2ps)�sa

ps = 3�ma−3. (A.105)

It is easy to see that the matter component (pm = −3) fulfills this equation. So for the
solution to be valid, any other component has to yield a vanishing contribution to the
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left-hand side, so

not matter: p2
s + 2ps = 0 ⇔ ps(ps + 2) = 0. (A.106)

So, H is a solution to the growth equation in the presence of matter, a cosmological
constant (p� = 0, first solution of the above equation), and curvature (pK = −2, second
solution), but not other possible components.
In all cases, H is a decreasing function of time, so this decaying solution of the growth
equation is not what we are after. It does allow us to find the growing solution we
are interested in by trying the ansatz u = δm/H . However, the same conditions on the
validity we found above also hold for this second solution.

(b) We use as ansatz u = δm/H . The evolution equation for u then becomes

d2u

da2
+ 3

[
d ln(H)

da
+ 1

a

]
du

da
= 0. (A.107)

This first-order equation for du/dy can be integrated to obtain

du

da
∝ (aH)−3. (A.108)

Integrating again and remembering that the growth factor is uH leads to an expression
for the growth factor

D+(a) ∝ H(a)

∫ a da′

(a′H(a′))3
, (A.109)

which is the result Eq. (8.77).
(c) We found under (a) that the solutions we obtained only apply to the case of matter,

cosmological constant, and curvature; they do not hold if the dark energy equation
of state w �= −1. Fig. A.1 shows the result of the approximate integral Eq. (A.109) in
addition to the solution of the differential equation. There is clear disagreement for
w �= −1.

Exercise 8.13
(a) We have

σ 2
R =

〈[∫
d3x δ(x)WR(|x|)

]2
〉

=
〈[

d3k

(2π)3
δ(k)W ∗

R(k)

]2〉
(A.110)

where we have used the fact that, since WR(x) is real, WR(−k) = W ∗
R(k). Also, we

have evaluated δR at the origin. The angular brackets denote the ensemble average



Appendix A • Solutions to selected exercises 451

FIGURE A.1 Same as Fig. 8.15, but also showing the result of the integral solution Eq. (A.109) (dotted). There is clear
disagreement if w �= −1.

over all realizations of δ(k). Using Eq. (C.22),

〈
δ(k)δ(k′)

〉= (2π)3δ
(3)
D (k + k′)PL(k) (A.111)

leads to

σ 2
R =

∫
d3k

(2π)3
PL(k) |WR(k)|2 . (A.112)

It remains only to compute the Fourier transform of the tophat window function,

WR(k) =
∫

d3xWR(x)e−ik·x

= 2π

VR

∫ R

0
dxx2

∫ 1

−1
dμeikxμ. (A.113)

Note that we have normalized the window function so that the integral over it is
unity; hence the factor of VR = 4πR3/3. Carrying out the remaining angular and
radial integrals leads to

WR(k) = 3

kR3

∫ R

0
dxx sin(kx)

= 3

k3R3
[−kR cos(kR) + sin(kR)]. (A.114)

(b)–(c) Evaluating Eq. (A.112) for R = 8h−1 Mpc, we obtain σ8 = 0.81 at z = 0 in the fiducial
cosmology. σR is shown as a function of R in Fig. 12.1.
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Chapter 9
Exercise 9.2
Assume a solution of the form x = eiωt . The damping equation then becomes a quadratic
equation for ω:

ω2 − ib

m
ω − k

m
= 0. (A.115)

Solving with k/m > γ 2 ≡ (b/2m)2 leads to

ω = iγ ± ω1. (A.116)

The frequency is now ω1 ≡ [k/m − γ 2]1/2, smaller than in the undamped case. The ampli-
tude is also exponentially damped by a factor e−γ t .

Exercise 9.9
Use the addition theorem of spherical harmonics Eq. (C.12) to write

Pl′(p̂ · k̂) = 4π

2l + 1

∑
m′

Y ∗
l′m′(p̂)Yl′m′(k̂). (A.117)

Then the angular integral becomes an integral over the product of two spherical harmon-
ics, which—because of orthogonality—is equal to 1 if l′ = l and m′ = m and zero otherwise.
This leads directly to the desired result.

Exercise 9.16
The generalization of Eq. (9.73) to tensors gives

CT(l) =
∑
l′l′′

(−i)l
′+l′′(2l′ + 1)(2l′′ + 1)

∫
d3k

(2π)3
�T

l′(k)�T∗
l′′ (k)Ilml′(k)I ∗

lml′′(k) (A.118)

where

Ilml′(k) ≡
√

8π

15

∫
d�Pl′(k̂ · p̂)Ylm(p̂)[Y22(p̂) + Y2−2(p̂)]. (A.119)

The factor of (8π/15)1/2[Y22 + Y2−2] is the combination sin2 θ cos(2φ) which appears in
Eq. (6.85), so this expression is valid only for the + mode. However, the × mode gives ex-
actly the same result.

The integral Ilml′ is not trivial. By rewriting the Legendre polynomial as [4π/(2l′ +
1)]1/2Yl′0/il

′
, we can turn Ilml′ into an integral over the product of three spherical harmon-

ics. Such integrals are intensively studied in quantum mechanics and can be expressed in
terms of the Wigner 3 − j symbols (see Landau et al., 1965). The integral is then

Ilml′ =
√

32π2

15(2l′ + 1)

1

il
′ 〈lm|Y22 + Y2−2|l′0〉 (A.120)
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which vanishes unless m = 2 or m = −2. When m takes on one of these two values, the
matrix element is

〈l2|Y22 + Y2−2|l′0〉 = il
′−l

(
l 2 l′
0 0 0

)[
5(2l′ + 1)(2l + 1)

4π

]1/2 (
l 2 l′

−2 2 0

)
. (A.121)

The first 3 − j symbol here, the one with the bottom row all zero, vanishes unless the sum
of the elements in the top row l + l′ + 2 is even. And of course l′ cannot differ from l by
more than 2 since the combination of Y22Yl′0 leads to angular momenta ranging from l′ − 2
to l′ + 2. So the only time the matrix element is nonzero is when l′ = l − 2, l, l + 2. Using
Table 9 in Section 106 of Landau et al. (1965) leads to the final result:

Ilml′ =
√

8π

3
(2l + 1) i−l (δm,2 + δm,−2)[c−2δl′,l−2 + c0δl′,l + c2δl′,l+2] (A.122)

where here δm,2 is the Kronecker delta, equal to 1 if m = 2 and zero otherwise, and analo-
gously for all other δ. The coefficients are

c−2 =
√

6

4

[(l − 1)l(l + 1)(l + 2)]1/2

(2l − 3)(2l − 1)(2l + 1)

c0 = −2
√

6

4

[(l − 1)l(l + 1)(l + 2)]1/2

(2l − 1)(2l + 1)(2l + 3)

c2 =
√

6

4

[(l − 1)l(l + 1)(l + 2)]1/2

(2l + 1)(2l + 3)(2l + 5)
. (A.123)

The result in Eq. (9.94) then follows.

Exercise 9.17
(a) On large scales, we can take the matter-dominated solution for ht , so

�T
l,t (k, η0) = −1

2

∫ η0

η∗
dη jl[k(η0 − η)] d

dη

[
3j1(kη)

kη

]
ht (k,0). (A.124)

Plug this into Eq. (9.94), and use the definition of Ph(k) = PT(k)/4 as the power spec-
trum of superhorizon tensor modes (i.e. for η = 0) to get

CT(l) = 1

2

9(l − 1)l(l + 1)(l + 2)

4π

∫ ∞

0
dk k2PT(k)

∣∣∣∣
∫ η0

0
d(kη)

j2(kη)

kη

×
[

jl−2(k[η0 − η])
(2l − 1)(2l + 1)

+ 2
jl(k[η0 − η])

(2l − 1)(2l + 3)
+ jl+2(k[η0 − η])

(2l + 1)(2l + 3)

] ∣∣∣∣
2

, (A.125)

where we have set the lower limit on the time integral to zero since η∗ � η0. Also,
we have used the identity (j1/x)′ = −j2/x. The factor of 1/2 out in front comes from
the sum over the + and × components combined with the conversion to PT. Using
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Eq. (7.102) for PT (with nT = 0) and defining new integration variables y ≡ kη0 and
x ≡ kη leads to

CT(l) = 9π

2
(l − 1)l(l + 1)(l + 2)AT

∫ ∞

0

dy

y∣∣∣∣
∫ y

0
dx

j2(x)

x

[
jl−2(y − x)

(2l − 1)(2l + 1)
+ 2

jl(y − x)

(2l − 1)(2l + 3)
+ jl+2(y − x)

(2l + 1)(2l + 3)

] ∣∣∣∣
2

. (A.126)

(b) For the l = 2 mode, the double integral in Eq. (A.126) is equal to 2.14 × 10−4, so CT(l =
2) = 0.036AT. The scalar C(l = 2) = 4As/75 in the Sachs–Wolfe limit. This leads to

r2 ≡ CT(l = 2)

C(l = 2)
= 0.68

AT

As

= 0.68r. (A.127)

Chapter 10
Exercise 10.1
Under a rotation around the line of sight (the direction of photon propagation), the tensor
Iij transforms as

Ĩij = Ri
kRj

lIkl, (A.128)

or, in matrix notation, Ĩ = RIR�, where R is the rotation matrix:

R(α) =
(

cosα − sinα

sinα cosα

)
. (A.129)

We obtain

Ĩ =
(

I + Q cos 2α − U sin 2α U cos 2α + Q sin 2α

U cos 2α + Q sin 2α I − Q cos 2α + U sin 2α

)
, (A.130)

from which we can read off the transformation of I , Q, U :

Ĩ = I,

Q̃ = cos 2α Q − sin 2α U,

Ũ = cos 2α U + sin 2α Q. (A.131)

That is, Q and U depend on the coordinates chosen. Now, if we write l = l(cosφl, sinφl),
then we have

l̃ = R l = l
(

cos(φl + α), sin(φl + α)
)
, (A.132)

so φ̃l = φl + α, which comes as no surprise. Plugging Q̃, Ũ as well as φ̃l into Eq. (10.6) and
Eq. (10.9), and using the trigonometric relations, we find

Ẽ = E and B̃ = B, (A.133)

so E and B are invariant under the coordinate change.
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In three dimensions, a parity transformation sends a vector r to −r . So, the direction
of the line of sight flips; if it came out of the page in Fig. 10.2, it now goes into the page.
Rotating it back to the direction out of the page, we see that we have essentially flipped the
direction of the x-axis (or equivalently only the y-axis). Fig. 10.2 shows that we then have

parity: Q → Q; U → −U. (A.134)

Further, you can convince yourself that φl → π − φl , which implies cos 2φl → cos 2φl while
sin 2φl → − sin 2φl . Eq. (10.6) and Eq. (10.9) then yield

parity: E → E; B → −B. (A.135)

Combining all the results of this exercise, we find that E is scalar, while B is pseudo-scalar.

Exercise 10.6
The angular dependence of the temperature anisotropy induced by a tensor perturbation
h+ is

sin2 θ ′ cos(2φ′) = n̂′
xn̂

′
x − n̂′

yn̂
′
y (A.136)

if k is lying along the z-axis. Performing the rotation in Eq. (10.49) in order to rotate k to
Eq. (10.47), the angular dependence changes to

(cosα n̂′
x − sinα n̂′

z)
2 − n̂′

yn̂
′
y. (A.137)

The φ′ dependences appearing here are 1, cosφ′, cos2 φ′, sin2 φ′. All of these angular depen-
dences lead to zero when integrating over φ′ weighted by sin 2φ′ as in Eq. (10.20). Thus, for
this particular configuration, h+ does not produce U and hence no B-mode polarization.
This is a consequence of the fact that the spacetime distortion induced by h+ is aligned
with the coordinate axes perpendicular to k (Fig. 6.1). In order to see B-mode polarization
from h+, we would need to consider a k that is not in the x − z-plane.

Chapter 11
Exercise 11.1
Performing two inverse Fourier transforms on Eq. (11.64), we have

〈δ(x)δ(x + r)〉 =
∫

d3k

(2π)3

∫
d3k′

(2π)3
ei(x·k+(x+r)·k′)〈δ(k)δ(k′)〉

=
∫

d3k

(2π)3
e−ir·kPL(k), (A.138)

where the second line follows from Eq. (C.22). This is the (inverse) Fourier transform of the
power spectrum. Notice that so far this relation also holds for an anisotropic power spec-
trum, e.g. in the case of δg,obs. In the isotropic case, we can perform the angular integrals
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to obtain

ξ(r) = 1

2π2

∫ ∞

0
k2dk

sinkr

kr
PL(k). (A.139)

Exercise 11.4
Eq. (11.66) follows straightforwardly from the orthogonality relation of the Legendre poly-
nomials. Performing the μ integrals over Eq. (11.23), we obtain

P
(0)

g,obs(k) =
[

1 + 2

3
β + 1

5
β2
]

b2
1PL(k) (A.140)

P
(2)

g,obs(k) =
[

4

3
β + 4

7
β2
]

b2
1PL(k), (A.141)

where β = f/b1.

Exercise 11.8
To express the angular power spectrum, let us call it Ĉg(l), in terms of wg, multiply both
sides of Eq. (11.69) by Pl′(cos θ) and integrate over cos θ . This gives

Ĉg(l) = 2π

∫ 1

−1
d cos θ Pl (cos θ)wg(θ). (A.142)

Express wg as an integral over the 2D power spectrum as in the first line of Eq. (11.49).
Then,

Ĉg(l) =
∫ ∞

0
dl′ l′Cg(l

′)
∫ 1

−1
d cos θ Pl (cos θ)J0(l

′θ). (A.143)

In the limit that l′ is large, the Bessel function becomes

J0(l
′θ)

l′�1−→ Pl′(cos θ). (A.144)

Therefore, the integral over θ vanishes unless l = l′, in which case it is equal to 2/(2l + 1).
The integral over l′ is identical to a sum over l′ at large l′. The factor of 2/(2l + 1) in the
denominator cancels the factor of l′ in the numerator, leaving the desired equality between
Ĉg(l) and Cg(l).

Chapter 12
Exercise 12.4
Transform Eq. (8.75) to x ≡ lna as time coordinate. Using that dD+/dx = f D, the equation
becomes

D+
a2

[
df

dx
+ f 2 +

(
d lnaH

dx
+ 1

)
f − 3

2

�m(η0)H
2
0

a3H 2

]
= 0. (A.145)
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Now, by definition of �m(η),

�m(η) = ρm(η)

ρcr(η)
= �m(η0)ρcr(η0)a

−3

ρcr(η)
= �m(η0)H

2
0

a3H 2
, (A.146)

so that the last term in Eq. (A.145) simply becomes −3�m(η)/2. Finally, we can collect terms
and use d/dx = (aH)−1d/dη to obtain Eq. (12.32).

Transforming the equation for δ(2) from Eq. (12.31) into Eq. (12.33) is trivial. For the θm

equation, we use

θm
′ =

(
aHf θ̂

) ′ = (aH)2
[

3

2
�m(η) − f − f 2

]
θ̂ + (aHf )2 dθ̂

d lnD+
. (A.147)

Notice that this transformation holds at any order in perturbations, which is why we have
dropped the superscript (2). The term −f (aH)2θ̂ precisely cancels the second term on the
left-hand side of the θm equation. Finally, dividing both sides by (aHf )2, we obtain the
desired source term ∝ D2+ on the right-hand side, while the left-hand side is

dθ̂

d lnD+
+
[

3

2

�m(η)

f 2
− 1

]
θ̂ + 3

2

�m(η)

f 2
δ, (A.148)

which is the left-hand side of the second line in Eq. (12.33).

Exercise 12.10
(a) The variance of the smoothed density field is given by

〈
[δ(1)

R (x)]2
〉
= σ(R). Thus, ν(x) is

a Gaussian random field with mean zero and unit variance, so its probability distribu-
tion is given by

p(ν) = 1√
2π

e−ν2/2. (A.149)

The correlation of the smoothed density field at two different locations is given by the
smoothed correlation function, so

〈
δ
(1)
R (x1)δ

(1)
R (x2)

〉
= ξR(|x2 − x1|), so that 〈ν1ν2〉 = ξ̂ (r) ≡ ξR(r)

σ 2(R)
, (A.150)

where r = |x1 − x2|. Hence, the joint distribution of ν1, ν2 is a bivariate Gaussian with
covariance

C =
(

1 ξ̂ (r)

ξ̂ (r) 1

)
, (A.151)

as given in Eq. (12.111).
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(b) A simple change of variables u = ν/
√

2 yields

p(δ
(1)
R > δcr) = 1√

2π

∫ ∞

νcr

dνe−ν2/2

= 1

2
erfc

(
νcr√

2

)
, (A.152)

where we have used the definition of the complementary error function in Eq. (C.31).
The joint probability is correspondingly given by two integrals over Eq. (12.111):

p(δ
(1)
R (x1) > δcr, δ

(1)
R (x2) > δcr)

= 1

2π

√
1 − ξ̂2

∫ ∞

νcr

dν1

∫ ∞

νcr

dν2 exp

[
−1

2
(ν1, ν2)

�C−1(ν1, ν2)

]
. (A.153)

Writing out the argument of the exponent, we have

−1

2
(ν1, ν2)

�C−1(ν1, ν2) = −ν2
1 + ν2

2 − 2ξ̂ ν1ν2

2(1 − ξ̂2)

= −1

2

[
w2 + ν2

1

]
(A.154)

where w ≡ (ν2 − ξ̂ ν1)/

√
1 − ξ̂2. Switching integration variables from ν2 to w yields

p(δ
(1)
R (x1) > δcr, δ

(1)
R (x2) > δcr) = 1

2π

∫ ∞

νcr

dν1e
−ν2

1/2
∫ ∞

(νcr−ξ̂ ν1)/

√
1−ξ̂2

dwe−w2/2

= 1√
2π

∫ ∞

νcr

dν1e
−ν2

1/2 1

2
erfc

⎡
⎢⎣ νcr − ξ̂ ν1√

2(1 − ξ̂2)

⎤
⎥⎦ . (A.155)

Now, from Eq. (12.82), we simply have to divide by the one-point probability squared,
yielding

1 + ξthr(r) =
√

2

π

[
erfc(νcr/

√
2)
]−2

∫ ∞

νcr

dν1e
−ν2

1/2 1

2
erfc

⎡
⎢⎣ νcr − ξ̂ ν1√

2(1 − ξ̂2)

⎤
⎥⎦ . (A.156)

This is the exact result for the correlation function of regions above threshold in a
Gaussian density field.

(c) Eq. (A.156) still involves an integral that has to be done numerically. When looking at
clustering at large separations r, we can do an expansion in ξ̂ (r) whose magnitude is



Appendix A • Solutions to selected exercises 459

much less than one. This yields derivatives of the error function erfc:

erfc

⎡
⎢⎣ νcr − ξ̂ ν1√

2(1 − ξ̂2)

⎤
⎥⎦= erfc

[
νcr√

2

]
+ ξ̂

∂

∂ξ̂
erfc

⎡
⎢⎣ νcr − ξ̂ ν1√

2(1 − ξ̂2)

⎤
⎥⎦

0

+ · · ·

= erfc

[
νcr√

2

]
+
√

2

π
ν1e

ν2
cr/2ξ̂ + · · · . (A.157)

Each higher derivative generates one more power of ν1 (more precisely, Hermite poly-
nomials of ν1). Now we can perform the ν1 integral analytically. The zeroth-order term
just cancels the 1 on the left-hand-side of Eq. (A.156). The first-order and second-
order terms yield

ξthr(r) = (bthr
1 )2ξR(r) + 1

2
(bthr

2 )2[ξR(r)]2 where

bthr
1 =

√
2

π

e−ν2
cr/2

erfc[νcr/
√

2]σ(R)

νcr�1≈ νcr

σ(R)

bthr
2 =

√
2

π

e−ν2
cr/2

erfc[νcr/
√

2]σ 2(R)
νcr

νcr�1≈ ν2
cr

σ 2(R)
. (A.158)

The factors of σ(R) in the denominators here arise because we define the bias param-
eters as coefficients of ξR(r) rather than ξ̂ (r). The approximate expressions for rare
high-density regions are also given. We see that rare excursions are highly biased, with
the higher-order bias parameters growing more rapidly.

Exercise 12.13
(a) The convolution in real space becomes a multiplication in Fourier space. Define the

power spectrum of halos of different masses as

〈
δh(k,M)δh(k′,M ′)

〉= (2π)3δ
(3)
D (k + k′)Ph(k,M,M ′). (A.159)

Now we can perform the integrals over mass to obtain

P HM(k) = 1

ρ2
m

∫
d lnM

dn

d lnM
M

∫
d lnM ′ dn

d lnM ′ M
′ y(k,M)y(k,M ′)Ph(k,M,M ′).

(A.160)

(b) The halo power spectrum Eq. (12.117) has two terms:

〈
δh(k,M)δh(k′,M ′)

〉= (2π)3δ
(3)
D (k + k′)

×
[
b1(M)b1(M

′)PL(k) + 1

dn/d lnM
δ
(1)
D (lnM − lnM ′)

]
. (A.161)
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We can use this to break Eq. (A.160) into two terms:

P HM(k) = P2h(k) + P1h(k), (A.162)

where

P2h(k) = [B1(k)]2PL(k),

B1(k) = 1

ρm

∫
d lnM

dn

d lnM
Mb1(M)y(k,M),

P1h(k) = 1

ρ2
m

∫
d lnM

dn

d lnM
M2[y(k,M)]2. (A.163)

The prefactors of 1/ρm, 1/ρ2
m (all evaluated at t0) are due to the fact that P(k) is the

power spectrum of the fractional matter density perturbation δm. Notice that a neces-
sary condition is that limk→0 B(k) = 1, which, using the profile normalization, requires∫

d lnM
dn

d lnM
Mb1(M) = 1. (A.164)

It is thus important that this bias consistency relation is satisfied, which indeed is the
case if the mass function is normalized such that all mass is in halos, and if b1 is
derived through the peak-background split, Eq. (12.80). The integral in Eq. (A.164) typ-
ically converges very slowly toward low masses. As argued in Appendix A of Schmidt
(2016), however, the contribution from low-mass halos is trivial on the scales of inter-
est. So one can simply cut off the mass integral and shift B1(k) by an additive constant
to enforce limk→0 B(k) = 1. Similarly, the mass integral in P1h(k) can also be cut off.

(c) The Fourier transform of the halo profile is given by (see also Exercise 11.1)

y(k,M) = 4π

M

∫ R200

0
r2dr

sin kr

kr
ρh(r,M). (A.165)

Notice that we truncate the profile at R200 so that the total mass M = M200 is finite. The
result of the integral is

y

(
k = x

rs
,M

)
= 1

N

[
cosx [Ci([c + 1]x) − Ci(x)] + sinx [Si([c + 1]x) − Si(x)]

− sin cx

(c + 1)x

]
where

N = 1

c + 1
+ log(c + 1) − 1, (A.166)

and the scale radius rs is given in terms of the concentration c by rs = R200/c. Ci and Si
are the cosine and sine integrals, respectively, defined in Eqs. (C.32)–(C.33).

(d) The result is shown in Fig. 12.12.
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One final comment: Eq. (A.163) shows that the 1-halo term asymptotes to a constant at
large scales,

lim
k→0

P1h(k) = 1

ρ2
m

∫
d lnM

dn

d lnM
M2. (A.167)

This contribution is unphysical, since there cannot be any constant noise contribution to
the matter power spectrum. The underlying physical error is the assumption of uncorre-
lated Poisson noise made in Eq. (12.117), which is inconsistent with the basic hypothesis
of the halo model. Consider a box of cosmological volume. We know that large-scale den-
sity fluctuations are small, so the mean density within the box is close to the cosmic mean.
Now we distribute this mass among halos. If, due to noise fluctuations, there are many
massive halos, there have to be correspondingly fewer lower-mass halos, since there is a
fixed amount of total matter. This constraint is violated if we assume independent noise in
halos of all masses, as in Eq. (12.117). Fortunately, on the scales on which the halo model
is applied, this is a numerically small contribution (Fig. 12.12), at least in the concordance
cosmology.

Chapter 13
Exercise 13.1
If the measurement of radiation happens at point x and time t and at a frequency ν, then
we need to count the number of photons dN with energy E = p ∈ 2π [ν, ν + dν] arriving
within a time interval dt from a solid-angle element d� around a direction n̂ = −p̂. This is

dN = 2f (x,p, t) dA⊥dt
d3p

(2π)3
= 2f (x,p = 2πν, p̂, t) dA⊥ dt ν2dν d�, (A.168)

where the factor of 2 counts the two photon polarization states. We have used the fact that,
since photons travel at speed c = 1, the detector collects photons from a volume element
d3x = dA⊥dt within a time interval dt . Further, since p = 2πν, the momentum-space vol-
ume element is d3p = p2dpd�p = (2π)3ν2dνd�. Weighting each photon by energy adds
another factor of E = 2πν, so we obtain

Iν(x,p, t) = 4πν3f (x,p = 2πν, p̂, t). (A.169)

An equilibrium photon distribution has f (p) = (exp[p/kBT ] − 1)−1, so the equilibrium in-
tensity, more famously known as a black-body or Planck spectrum, is

Iν = 4π�ν3

c2

[
exp

(
2π�ν

kBT

)
− 1

]−1

, (A.170)

where we have restored the factors of � and c. This is Eq. (1.9).



462 Modern Cosmology

Exercise 13.4
The solution to the Poisson equation (12.5) for an isolated mass is

�(x) = −Ga2
∫

d3x̃

|x − x̃|ρ(x̃). (A.171)

Inserting this into Eq. (13.16) yields another integral, over χ ′. We will do both integrals in
cylindrical coordinates, so that x̃ = (R̃, χ̃) where R̃ describes the transverse coordinates.
Thus,

φL(θ;χL) = − 2G

(1 + zL)2

χ − χL

χχL

∫
d2R̃

∫
dχ̃ ρ(R̃, χ̃)

∫ χ

0

dχ ′√
(R̃ − χLθ)2 + (χ ′ − χ̃ )2

(A.172)

where we have set χ = χL in the slowly varying factors in Eq. (13.16), and similarly evalu-
ated a2 at the lens redshift. This is accurate as long as the extent of the lens along the line
of sight is small compared to the distance χ to the source galaxies, which certainly holds
for individual galaxy clusters.

The integral over dχ ′ can be done analytically: it is equal to

2 ln

∣∣∣∣x +
√

(R̃ − χLθ)2 + x2

∣∣∣∣
∣∣∣∣
∞

x=0

where we have set the upper limit to infinity because there is no contribution to the rele-
vant part of the projected potential from large x. In fact, the only part which depends on
θ (and hence is relevant when derivatives of the lensing potential are taken) comes from
the lower limit: −2 ln |R̃ −χLθ |. We can pull out a factor χL from the logarithm for the same
reason, since the additive term lnχL has no dependence on θ . The integral over ρdχ̃ then
becomes the surface density �(θ ′), where θ ′ = R̃/χL. Using that d2R̃ = χ2

Ld2θ ′, this leaves
Eq. (13.67).

Chapter 14
Exercise 14.4
First, double-decompose the general beam into spherical harmonics:

B(n̂, n̂′
) =

∑
lm,l′m′

Blm,l′m′Ylm(n̂)Y ∗
l′m′(n̂′

), (A.173)

where the use of the complex-conjugate spherical harmonic for l′m′ is by convention and
for later convenience. Inserting this, and the decomposition of � into alm, into Eq. (14.36)
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yields

�(n̂) =
∫

d�′ ∑
l′′m′′

Yl′′m′′al′′m′′
∑

lm,l′m′
Blm,l′m′Ylm(n̂)Y ∗

l′m′(n̂′
)

=
∑
lm

Ylm(n̂)
∑
l′m′

Blm,l′m′al′m′ . (A.174)

We can now read off the coefficient of Ylm(n̂) as aobs
lm . This, with noise added, is Eq. (14.37).

If B(n̂, n̂′
) = B(n̂ · n̂′

), that is, the beam is only a function of the angle between the two
directions, then we can do a Legendre decomposition instead, and use Eq. (C.12):

B(n̂ · n̂′
) =

∑
l

(2l + 1)B̃lPl(n̂ · n̂′
)

= 4π
∑
lm

B̃lYlm(n̂)Y ∗
lm(n̂′

), (A.175)

so we have

Blm,l′m′ = Blδll′δmm′ (A.176)

where Bl ≡ 4πB̃l . Inserting this into Eq. (14.37) immediately yields Eq. (14.38).

Exercise 14.10
(a) Let us expand the maximum-likelihood condition around λ̄, the parameter value

where it would peak if systematics were absent:

d lnL
dλ

= d lnL
dλ̄

+ d2 lnL
dλ̄2

(λ − λ̄) = 0

⇒ λ = λ̄ +F−1 d lnL
dλ̄

, (A.177)

since d2 lnL/dλ̄2 = −F . Further, we have

d lnL
dλ̄

=
∑

l

∂Ctheory(l, λ̄)

∂λ̄

Ĉ(l) − Ctheory(l, λ̄)

Var
[
Ĉ(l)

] . (A.178)

(b) Now we can take the expectation value. F turns into F , while by assumption 〈Ĉ(l) −
Ctheory(l, λ̄)〉 = Csys(l): after averaging over many noise realizations, the mismatch be-
tween the observed Ĉ(l) and the theory Ctheory(l, λ̄) evaluated for the true universe is
nonzero and given by Csys(l). We obtain

λ = λ̄ + F−1
∑

l

∂Ctheory(l, λ̄)

∂λ̄

Csys(l)

Var
[
Ĉ(l)

] . (A.179)
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Notice that the sum over l can be interpreted as a scalar product between ∂Ctheory/∂λ̄

and Csys(l), weighted by the inverse variance. If there is little overlap between the sys-
tematic Csys(l) and how the model Ctheory(l) depends on λ̄, then there will not be a
significant shift in λ̄ (we say that Csys(l) is “almost orthogonal” to λ̄). Consider for ex-
ample a systematic that is essentially constant in l, and a parameter (e.g., �bh2) that
leads to an oscillatory change in Ctheory(l). Then, we expect this systematic to lead to
a negligible parameter shift. Eq. (A.179) captures this effect rigorously.

(c) The generalization to multiple parameters is straightforward. Eq. (A.177) becomes a
vectorial relation. If we define

Bα =
∑

l

∂Ctheory(l, {λ̄γ })
∂λ̄α

Csys(l)

Var
[
Ĉ(l)

] , (A.180)

we obtain

λα = λ̄α +
(
F−1

)
αβ

Bβ. (A.181)

The interpretation is the same as in the one-parameter case, except that now a shift
in the parameter λα can occur even if Bα is small. This happens if Bβ is significant for
other parameters λβ that are partially degenerate with λα , so that (F−1)αβ �= 0. We see
that the parameter degeneracies encoded by the Fisher matrix are also very important
in this case.



B
Numbers

Numbers in parentheses denote one standard deviation uncertainties in last digits (e.g.,

for Rydberg’s constant, ε0 = (13.60569172 ± 5.3 × 10−7) eV). The majority of the numbers

quoted here come from the Particle Data Group (Tanabashi et al., 2018), while the fiducial

cosmology is taken from Planck collaboration (2018b).

B.1 Physical constants
Speed of light c = 2.99792458 × 1010 cm s−1

Reduced Planck’s constant � = 6.58211889(26) × 10−16 eV s
= 1.973269602(77) × 10−5 eV cm/c

Newton’s constant G = 6.673(10) × 10−8 cm3 g−1 s−2

= �c/m2
Pl

Planck mass mPl = √
�c/G

= 1.221 × 1019 GeV/c2

= 1.094 × 10−38M�
Boltzmann constant kB = 8.617342(15) × 10−5 eV K−1

Fine structure constant α = 1/137.03599976(50)
Electron mass me = 0.510998902(21) MeV/c2

Ground-state energy of hydrogen ε0 = mec
2α2/2

(Rydberg’s constant) = 13.60569172(53) eV
Thomson cross-section σT = 8πα2

�
2/3m2

ec
2

= 0.665245854(15) × 10−24 cm2

Neutron mass mn = 939.565330(38) MeV/c2

Proton mass mp = 1.67262158(13) × 10−24 g
= 938.271998(38) MeV/c2

Neutron–proton mass difference Q = 1.2933 MeV/c2

Neutron lifetime τn = 885.7(8) s
Fermi constant GF = 1.16639(1) × 10−5 GeV−2(�c)3

B.2 Astrophysical constants
Cosmic microwave background ργ = π2k4

BT 4/15(�c)3

energy density = 2.474 × 10−5h−2(T /T0)
4ρcr

Critical density ρcr = 1.879 h2 × 10−29 g cm−3

= 2.775 h2 × 1011M� Mpc−3

= 8.098 h2 × 10−11 eV4/(�c)3
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Neutrino density parameter today 	νh
2 = ∑

mν/94 eV
Scale factor at equality aeq = 4.15 × 10−5 (	mh2)−1

Inverse comoving horizon (η−1) at equality keq = 0.073	mh2 Mpc−1

Hubble constant H0 = 100h km s−1 Mpc−1

= 2.133h × 10−42 GeV/�

= 1.023h × 10−10 yr−1

Solar mass M� = 1.989 × 1033 g
= 1.116 × 1057 GeV/c2

Parsec pc = 3.0856 × 1018 cm
Cosmic microwave background T0 = 2.726(1) K

temperature today = 2.349 × 10−4 eV/kB

B.3 Fiducial cosmology

Table B.1 Fiducial cosmology used throughout this book. It is the
base_plikHM_TTTEEE_lowl_lowE_lensing_post_BAO best-fit Euclidean �CDM
cosmology from Planck Collaboration (2018b) (see parameters document
and wiki). The six parameters in the upper part are the primary pa-
rameters of the concordance cosmology, while those below are derived
parameters. The last column lists the 95% confidence-level parameter
limits.
Parameter Symbol Best fit 95% C.L. limits

Baryon density parameter 	bh2 0.022447 ±0.00027

CDM density parameter 	ch2 0.11928 ±0.0018

Optical depth due to reionization τrei 0.0568 ±0.014

Hubble parameter h 0.6770 ±0.0081

Scalar spectral index ns 0.9682 +0.0076/ − 0.0073

Scalar power spectrum amplitude ln(1010As ) 3.0480 ±0.028

Cosmological constant parameter 	� 0.6894 ±0.011

Matter density parameter 	m 0.3106 ±0.011

Matter power spectrum
normalization at t0 (Fig. 12.1)

σ8 0.8110 ±0.012

Age of the universe [Gyr] t0 13.784 +0.040/ − 0.037

https://wiki.cosmos.esa.int/planck-legacy-archive/images/4/43/Baseline_params_table_2018_68pc.pdf
https://wiki.cosmos.esa.int/planck-legacy-archive/index.php/Cosmological_Parameters


C
Special functions

This appendix provides a very brief summary of special functions that are relevant in the
cosmological context. For a more complete treatment, see, e.g., the Handbook of Mathe-
matical Functions (Abramowitz and Stegun).

C.1 Legendre polynomials
The Legendre polynomial Pl (μ) is an lth order polynomial in μ. For −1 ≤ μ ≤ 1, Pl has l

zeroes in this interval. The first few polynomials are

P0(μ) = 1,

P1(μ) = μ,

P2(μ) = 3μ2 − 1

2
. (C.1)

The property observed for these lowest l, that Pl is an even function of μ for l even and
an odd function for l odd, holds for all l. The Legendre polynomials are orthogonal on the
interval [−1,1], so that

∫ 1

−1
dμPl(μ)Pl′(μ) = δll′

2

2l + 1
. (C.2)

In fact, they form a complete basis on this interval. To generate the higher-order Legendre
polynomials, one can use the recurrence relation

(l + 1)Pl+1(μ) = (2l + 1)μPl(μ) − lPl−1(μ). (C.3)

This relation is useful for expanding the Boltzmann equations in terms of moments.

C.2 Spherical harmonics
Spherical harmonics are eigenfunctions of the angular part of the Laplacian,

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂φ2

]
Ylm(θ,φ) = −l(l + 1)Ylm(θ,φ). (C.4)

The CMB temperature is defined on the sphere, i.e., is a function of θ , φ, so it is naturally
expanded in Ylm (Eq. (9.63)). This decomposition is the analogue of a two-dimensional
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FIGURE C.1 3D contour plots of the absolute value of spherical harmonics for l = 1 (top row) and l = 2 (bottom row).
The z-axis points upwards. Top row, from left: |Y10|, |Y11|. Bottom row, from left: |Y20|, |Y21|, |Y22|.

Fourier decomposition in flat space. The lowest spherical harmonics are

Y00(θ,φ) = 1√
4π

, (C.5)

Y10(θ,φ) = i

√
3

4π
cos(θ), (C.6)

Y1,±1(θ,φ〉 = ∓i

√
3

8π
sin(θ)e±iφ, (C.7)

Y20(θ,φ) =
√

5

16π
(1 − 3 cos2 θ), (C.8)

Y2,±1(θ,φ) = ±i

√
15

8π
cos θ sin θe±iφ, (C.9)

Y2,±2(θ,φ) = −
√

15

32π
sin2 θe±2iφ. (C.10)

Contour plots of the absolute values of some of these spherical harmonics are shown in
Fig. C.1.

The spherical harmonics form a complete basis on the sphere and are orthogonal, with
normalization

∫
d�Y ∗

lm(n̂)Yl′m′(n̂) = δll′δmm′ . (C.11)
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Another useful expression is the Legendre polynomial in terms of a sum of products of the
spherical harmonics:

Pl(n̂ · n̂′
) = 4π

2l + 1

l∑
m=−l

Ylm(n̂)Y ∗
lm(n̂′

). (C.12)

C.3 Spherical Bessel functions
Spherical Bessel functions are crucial in the study of the CMB and large-scale structure in
particular because they appear when projecting inhomogeneities onto the sky. They satisfy
the differential equation

d2jl

dx2
+ 2

x

djl

dx
+

[
1 − l(l + 1)

x2

]
jl = 0. (C.13)

The lowest several are

j0(x) = sin(x)

x
; j1(x) = sinx − x cosx

x2
. (C.14)

The key integral relating Legendre polynomials to spherical Bessel functions is

1

2

∫ 1

−1
dμPl(μ)eizμ = jl(z)

(−i)l
. (C.15)

Using the completeness of the Legendre polynomials, we can invert this relation to obtain
a useful expansion of a plane-wave perturbation:

eik·x =
∞∑
l=0

il(2l + 1)jl(kx)Pl (k̂ · x̂). (C.16)

Combining with Eq. (C.12) yields

eik·x = 4π

∞∑
l=0

iljl(kx)

l∑
m=−l

Ylm(k̂)Y ∗
lm(x̂). (C.17)

An important integral, useful for computing the Sachs–Wolfe effect, is

∫ ∞

0
dx xn−2[jl(x)]2 = 2n−4π

�(l + n
2 − 1

2 )�(3 − n)

�(l + 5
2 − n

2 )�2(2 − n
2 )

, (C.18)

where the � function is defined in App. C.5.
Another important relation to eliminate derivatives of Bessel functions is

djl

dx
= jl−1 − l + 1

x
jl. (C.19)
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Finally, the following recurrence relation is useful also in numerical implementations:

jl+1(x) = 2l + 1

x
jl(x) − jl−1(x). (C.20)

C.4 Fourier transforms
Our Fourier convention is

f (x) =
∫

d3k

(2π)3
eik·x f̃ (k),

f̃ (k) =
∫

d3x e−ik·xf (x). (C.21)

The power spectrum is then the Fourier transform of the correlation function, with

〈δ̃(k)δ̃(k′)〉 = (2π)3δ
(3)
D (k + k′)P (k). (C.22)

Since δ̃ is the Fourier transform of a real field, we have δ̃(−k) = δ̃∗(k), so

〈δ̃(k)δ̃∗(k′)〉 = (2π)3δ
(3)
D (k − k′)P (k). (C.23)

Notice that we mostly drop the tilde over Fourier-space variables in the text, since no con-
fusion can arise.

C.5 Miscellaneous
We just need a couple of relations involving ordinary Bessel functions,

Jn(x) = i−n

π

∫ π

0
dθ eix cos θ cos(nθ) (C.24)

and
d

dx
[xJ1(x)] = xJ0(x). (C.25)

The � function is related to factorials, in that it satisfies, for integer arguments,

�(n + 1) = n! . (C.26)

More generally, for any real or complex number x,

�(x + 1) = x�(x). (C.27)

The Sachs–Wolfe integral (Eq. (C.18)) for a scale-invariant spectrum (ns = 1) involves

�(3/2) =
√

π

2
. (C.28)
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The Riemann zeta function is useful for evaluating integrals in statistical mechanics. In
particular,

ζ(s) = 1

�(s)

∫ ∞

0
dx

xs−1

ex − 1
= 1

(1 − 21−s)�(s)

∫ ∞

0
dx

xs−1

ex + 1
. (C.29)

The cases we encounter in this book are

ζ(2) = π2

6
; ζ(3) = 1.202; ζ(4) = π4

90
. (C.30)

When dealing with Gaussian random fields, one often encounters the error function erf,
the incomplete integral over the Gaussian distribution, and its complement, erfc:

erfc(x) = 1 − erf(x) = 2√
π

∫ ∞

x

due−u2
. (C.31)

The cosine and sine integrals appear when computing the Fourier transform of the
NFW halo profile:

Ci(x) = −
∫ ∞

x

cos z

z
dz, (C.32)

Si(x) =
∫ x

0

sin z

z
dz. (C.33)



D
Symbols

D.1 Mathematical and geometrical definitions

Symbol Explanation

ḟ (x, t) ≡ ∂f (x, t)/∂t Partial derivative with respect to time
f ′(x, η) ≡ ∂f (x, η)/∂η Derivative with respect to conformal time
φ,α ≡ ∂φ(x)/∂xα Partial derivative with respect to coordinate xα

δν
α , δij Kronecker symbol

δ
(n)
D (k − k) Dirac-delta distribution in n dimensions

êx,y,z Unit vector in direction of three spatial Cartesian axes
n̂ 3D unit vector (full-sky position)
θ 2D Euclidean vector (flat-sky position)
d� Solid angle integration measure

Throughout, spatial indices ijk . . . are raised and lowered with δij .

D.2 Frequently used relations
Frequently used time integration measures are

dη = dt

a(t)
= da

a2H(a)
= d lna

aH(a)
. (D.1)

For light rays, we further have

dχ = −dη = dz

H(z)
. (D.2)

Our convention for the perturbed FLRW metric is (Eq. (3.49))

g00(x, t) = −1 − 2
(x, t),

g0i (x, t) = 0,

gij (x, t) = a2(t)δij [1 + 2�(x, t)] . (D.3)
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D.3 Symbol definitions
Symbol Explanation Defining equation
a(t) Scale factor Eq. (2.12)
z Redshift Eq. (1.1)
t0 Age of the universe / today’s epoch
T0 CMB temperature today
H(t), H0 Hubble rate, Hubble’s constant Eq. (1.2), H0 ≡ H(t0)

ρ(t) Total background energy density Eq. (2.44)
ρcr Critical density today Eq. (1.4)
Iν Specific intensity of radiation Eq. (1.9)
ng Mean galaxy number density Above Eq. (1.10)
δg Fractional galaxy density perturbation Above Eq. (1.10)

gμν Spacetime metric Eq. (2.4)
ημν Minkowski metric Eq. (2.11)
μ

αβ Christoffel symbol Eq. (2.21)
P α Comoving four-momentum Eq. (2.26)
pi Physical three-momentum Eqs. (2.32), (3.28)
p̂ Unit momentum vector Eq. (3.32)
η, η0 Conformal time, value today Eq. (2.35), η0 ≡ η(t0)

χ(z) Comoving distance out to redshift z Eq. (2.34)
dA(z) Angular diameter distance Eqs. (2.37), (2.39)
dL(z) Luminosity distance dL = dA/a2

T μ
ν Energy-momentum tensor Eq. (2.44)

P Homogeneous pressure Eq. (2.44)
w Equation of state Eq. (2.60)
ρm(t), ρr(t) Total matter and radiation

(photon+neutrino) densities
Sect. 2.3

Es(p) Energy–momentum relation for species s Es = √
p2 + m2

s

gs Degeneracy factor for species s Below Eq. (2.62)
fBE(E) Bose–Einstein distribution Eq. (2.65)
fFD(E) Fermi–Dirac distribution Eq. (2.66)
s Entropy density (only in Ch. 2 & Ch. 4) Eq. (2.70)
μ Chs. 2–4: Chemical potential

Chs. 5–12: Cosine of angle between
wavevector and photon momentum

Eq. (5.31)

Ch. 13: magnification Eq. (13.35)
�s Density parameter for constituent s at t0 Eq. (2.71)
aeq Scale factor at matter–radiation equality Eq. (2.86)
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Symbol Explanation Defining equation
Gμν Einstein tensor Eq. (3.2)
Rμν Ricci tensor Eq. (3.3)
R Ch. 3 & Ch. 6: Ricci scalar R ≡ gμνRμν

R(η) Ch. 5, Chs. 8–9: Baryon/photon energy ratio Eq. (5.74)


 Perturbation to g00 Eq. (3.49)
� Perturbation to gij Eq. (3.49)
df (x,p, t)/dt Total time derivative (phase space) Eq. (3.17)
C[f ] Collision term Eqs. (3.19), (3.48)
M Scattering amplitude Eq. (3.46)

n
(0)
s Equilibrium number density of species s Eq. (4.5)

〈σv〉 Thermally averaged cross section Eq. (4.7)
ηb Ratio of baryon to photon number density Eq. (4.10)
YP Primordial 4He mass fraction Eq. (4.30)

�(x, p̂, t) Temperature perturbation to photon
distribution function

Eq. (5.2)

�0(x, t) Monopole temperature perturbation Eq. (5.20)
�l(k, η) Multipole moment of Fourier-space

temperature perturbation
Eq. (5.66)

uc, ub Bulk velocity of CDM, baryons Eqs. (5.39), (5.54)
δc, δb Fractional density pert. of CDM, baryons Eqs. (5.44), (5.53)
N (x,p, t) Perturbation to neutrino distribution function Eq. (5.62)
Nl (k, η) Multipole moment of N for massless

neutrinos
Eq. (5.66)

hTT
ij Tensor metric perturbation

(transverse-traceless)
Eqs. (6.6), (6.49)

�A, �H Bardeen’s gauge-invariant perturbations Eq. (6.19)
δm, um Total matter density perturbation and velocity Eq. (6.79)
�r,0, �r,1 Total radiation monopole and dipole Eq. (6.79)

η∗ Conformal time (comoving horizon) at
last scattering

Hinf Hubble parameter during inflation Eq. (7.4)
εsr First slow-roll parameter Eq. (7.17)
δsr Second slow-roll parameter Eq. (7.18)
R Curvature perturbation in comoving gauge Eq. (7.57)
As , ns Primordial power spectrum

normalization and index
Eq. (7.99)

kp Pivot scale kp = 0.05 Mpc−1

r, nT Tensor-to-scalar ratio and tensor index Eqs. (7.103), (7.102)
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Symbol Explanation Defining equation
T (k) Matter transfer function Eq. (8.2)
D+(a) Linear growth factor Eq. (8.3)
PL(k, a) Linear matter power spectrum Eq. (8.8)
�2

L(k, a) Dimensionless linear power spectrum Eq. (8.9)
kNL(a) Nonlinear scale �2

L(kNL, a) = 1
�m(a) Time-dependent density parameter

(only used in Sect. 8.5 and Ch. 12)
Below Eq. (8.78)

y Ch. 8: Scale factor in units of aeq Eq. (8.20)
Ch. 11: SZ distortion parameter Eq. (11.59)

alm Multipole moments of CMB temperature Eq. (9.63)
C(l) Angular CMB power spectrum Eq. (9.66)
Dl Scaled CMB power spectrum ≡ l(l + 1)C(l)T 2

0 /2π

τ(η) Compton-scattering optical depth Eq. (5.33)
τrei Optical depth due to reionization Sect. 9.7.2
g(η) Visibility function Eq. (9.56)

I , Q, U Stokes parameters Eq. (10.2)
E(l), B(l) E-mode and B-mode for angular

wavenumber l

Eqs. (10.6), (10.9)

CEE(l), CBB(l) Ch. 10: CMB polarization power spectra Sect. 10.5
Ch. 13: Lensing shear power spectra Sect. 13.5.1

CT E(l) Temperature-polarization cross power
spectrum

Eq. (10.46)

Pg,obs(k, z) Observed three-dimensional galaxy
power spectrum

Eq. (11.37)

Cg(l) Angular galaxy power spectrum Eq. (11.43)

P(k) Nonlinear matter power spectrum Eq. (C.22) for δm

θm Matter velocity divergence θm = ∂iu
i
m

R�, M� Spherical-overdensity halo radius, mass Eq. (12.61)
RL(M) Halo Lagrangian radius Eq. (12.64)
dn/d lnM Halo mass function Eq. (12.73)

φL Lensing potential Eq. (13.16)
κ, γ1, γ2 Lensing convergence and shear Eq. (13.28)
γt , γ× Tangential and cross components of shear Above Eq. (13.57)
CgE(l) Galaxy-shear cross power spectrum Eq. (13.61)

L({di}mi=1|w,σw) Likelihood function of data {di} given
parameters w, σw

E.g., Eq. (14.2)

P(w,σw|{di}mi=1) Posterior for parameters w, σw given
data {di}

Eq. (14.5)

Fαβ Fisher information matrix Eq. (14.69)
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theorem, 137
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Decoupling epoch, 95, 98
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Density perturbations, 174
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E
Effect
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fractional, 297
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Einstein equations, 57, 79, 143
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for scalar perturbations, 141
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evolution, 34
integral, 70
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of inflation, 16
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recombination, 231, 262, 291

Equation of state, 37
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Equilibrium
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distribution, 65, 77, 129, 318, 426
kinetic, 115
nuclear statistical, 87

Estimator, 404
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concordance cosmology, 49, 50
concordance universe, 54
cosmology, 71, 218, 221
FLRW metric, 28, 81
FLRW universe, 81
models, 268
space, 27
universe, 2, 4, 15, 26, 49, 51, 59, 79, 81, 136,
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dark matter, 122, 213, 214
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for perturbations, 111
linear, 340, 360
nonlinear, 329, 340, 341, 366
perturbations, 31, 52, 145, 197, 265
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history, 57, 224, 295, 296, 346, 391, 393
rate, 4, 76, 108, 370

Expectation value, 422

Exponential factor, 94, 255

F
Fast Fourier Transform (FFT), 346
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concordance cosmology, 31, 54
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Euclidean concordance cosmology, 54
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Fisher matrix, 421, 422
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Euclidean, 28, 81
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temperature perturbation, 112
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field, 295, 299, 311
perturbation, 361

distribution, 12, 388, 407, 412
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ellipticity power spectrum, 390
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peculiar velocities, 295, 320
positions, 299, 302, 305, 307, 311, 384
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quantity, 37
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cosmic, 43, 105
degeneracy factor, 44
density, 45
distribution function, 83
energy density, 44, 45, 224
generation, 53
masses, 14, 45, 52, 83, 130, 145, 224, 260
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moments, 113, 115, 128, 193, 200, 227, 241,

247, 288, 379
monopole, 232
number, 39, 40
number density, 55
outgoing, 117, 278
path, 378–380
perturbation variable, 131
perturbations, 118, 131, 231, 237
polarization states, 278
propagation, 121
quadrupole, 146, 193
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dependence, 117
field, 131, 132, 288
from Compton scattering, 275
outgoing, 278, 283, 289
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Potential perturbations, 225
gravitational, 211

Power spectra
polarization, 285
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density perturbations, 174
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tensor perturbations, 171
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recombination, 97
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slice, 300, 307, 315
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Reionization, 99, 260, 262, 263, 268, 287, 288,

319
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S
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Slow-roll models, 166
Small scales, 209
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excursion-set, 353
extended Press–Schechter, 353

Thermal
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cosmic, 253, 262, 265, 288, 291, 407, 409,

417, 422
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W
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