
�

� �

�

Network Traffic Engineering

�

� �

�

Network Traffic Engineering

Stochastic Models and Applications

Andrea Baiocchi
University of Roma “La Sapienza”
Via Eudossiana 18
Rome, Italy

�

� �

�

This edition first published 2020
© 2020 John Wiley & Sons, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as
permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://
www.wiley.com/go/permissions.

The right of Andrea Baiocchi to be identified as the author of this work has been asserted in accordance
with law.

Registered Offices
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA
John Wiley & Sons Ltd., The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

Editorial Office
111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products visit
us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content that
appears in standard print versions of this book may not be available in other formats.

Limit of Liability/Disclaimer of Warranty
MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not
warrant the accuracy of the text or exercises in this book. This work’s use or discussion of MATLAB® software
or related products does not constitute endorsement or sponsorship by The MathWorks of a particular
pedagogical approach or particular use of the MATLAB® software. While the publisher and authors have used
their best efforts in preparing this work, they make no representations or warranties with respect to the
accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty
may be created or extended by sales representatives, written sales materials or promotional statements for this
work. The fact that an organization, website, or product is referred to in this work as a citation and/or
potential source of further information does not mean that the publisher and authors endorse the information
or services the organization, website, or product may provide or recommendations it may make. This work is
sold with the understanding that the publisher is not engaged in rendering professional services. The advice
and strategies contained herein may not be suitable for your situation. You should consult with a specialist
where appropriate. Further, readers should be aware that websites listed in this work may have changed or
disappeared between when this work was written and when it is read. Neither the publisher nor authors shall
be liable for any loss of profit or any other commercial damages, including but not limited to special,
incidental, consequential, or other damages.

Library of Congress Cataloging-in-Publication Data

Names: Baiocchi, Andrea, 1962- author.
Title: Network traffic engineering : stochastic models and applications /

Andrea Baiocchi, University of Roma, Rome, IT.
Description: First edition. | Hoboken, NJ : John Wiley & Sons, Inc., 2020.

| Includes bibliographical references and index.
Identifiers: LCCN 2020008307 (print) | LCCN 2020008308 (ebook) | ISBN

9781119632436 (cloth) | ISBN 9781119632504 (adobe pdf) | ISBN
9781119632511 (epub)

Subjects: LCSH: Computer networks–Mathematical models. | Queuing theory.
Classification: LCC TK5105.5 .B326 2020 (print) | LCC TK5105.5 (ebook) |

DDC 004.601/51982–dc23
LC record available at https://lccn.loc.gov/2020008307
LC ebook record available at https://lccn.loc.gov/2020008308

Cover Design: Wiley
Cover Image: © ktsdesign/Shutterstock

Set in 9.5/12.5pt STIXTwoText by SPi Global, Chennai, India

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

�

� �

�

To Laura, Alessandro,
Claudia, and Cloppa

�

� �

�

vii

Contents

Preface xvii
Acronyms xix

Part I Models for Service Systems 1

1 Introduction 3
1.1 Network Traffic Engineering: What, Why, How 3
1.2 The Art of Modeling 8
1.3 An Example: Delay Equalization 13
1.3.1 Model Setting 14
1.3.2 Analysis by Equations 15
1.3.3 Analysis by Simulation 19
1.3.4 Takeaways 21
1.4 Outline of the Book 21
1.4.1 Plan 21
1.4.2 Use 25
1.4.3 Notation 27
1.5 Further Readings 29

Problems 30

2 Service Systems and Queues 33
2.1 Service System Structure 33
2.2 Arrival and Service Processes 35
2.3 The Queue as a Service System Model 38
2.4 Queues in Equilibrium 40
2.4.1 Queues and Stationary Processes 40
2.4.2 Little’s Law 45
2.5 Palm’s Distributions for a Queue 49

�

� �

�

viii Contents

2.6 The Traffic Process 53
2.7 Performance Metrics 56
2.7.1 Throughput 56
2.7.2 Utilization 59
2.7.3 Loss 59
2.7.4 Delay 61
2.7.5 Age of Information 62

Summary and Takeaways 63
Problems 65

3 Stochastic Models for Network Traffic 71
3.1 Introduction 71
3.2 The Poisson Process 72
3.2.1 Light versus Heavy Tails 78
3.2.2 Inhomogeneous Poisson Process 79
3.2.3 Poisson Process in Multidimensional Spaces 84
3.2.3.1 Displacement 89
3.2.3.2 Mapping 89
3.2.3.3 Thinning 90
3.2.3.4 Distances 91
3.2.3.5 Sums and Products on Point Processes 92
3.2.3.6 Hard Core Processes 94
3.2.4 Testing for Poisson 96
3.3 The Markovian Arrival Process 100
3.4 Renewal Processes 103
3.4.1 Residual Inter-Event Time and Renewal Paradox 108
3.4.2 Superposition of Renewal Processes 110
3.4.3 Alternating Renewal Processes 111
3.4.4 Renewal Reward Processes 113
3.5 Birth-Death Processes 115
3.6 Branching Processes 121

Summary and Takeaways 125
Problems 126

Part II Queues 131

4 Single-Server Queues 133
4.1 Introduction and Notation 133
4.2 The Embedded Markov Chain Analysis of the M∕G∕1 Queue 134
4.2.1 Queue Length 136

�

� �

�

Contents ix

4.2.2 Waiting Time 141
4.2.3 Busy Period and Idle Time 145
4.2.4 Remaining Service Time 148
4.2.5 Output Process 149
4.2.6 Evaluation of the Probabilities {ak}k∈ℤ 151
4.3 The M∕G∕1∕K Queue 152
4.3.1 Exact Solution 153
4.3.2 Asymptotic Approximation for Large K 157
4.4 Numerical Evaluation of the Queue Length PDF 166
4.5 A Special Case: the M∕M∕1 Queue 168
4.6 Optimization of a Single-Server Queue 170
4.6.1 Maximization of Net Profit 171
4.6.2 Minimization of Age of Information 174
4.6.2.1 General Expression of the Average Age of Information 175
4.6.2.2 Minimization of the Age of Information for an M∕M∕1 Model 177
4.7 The G∕M∕1 Queue 178
4.8 Matrix-Geometric Queues 185
4.8.1 Quasi Birth-Death (QBD) Processes 186
4.8.2 M∕G∕1 and G∕M∕1 Structured Processes 188
4.9 A General Result on Single-Server Queues 192

Summary and Takeaways 194
Problems 195

5 Multi-Server Queues 199
5.1 Introduction 199
5.2 The Erlang Loss System 201
5.2.1 Insensitivity Property of the Erlang Loss System 211
5.2.2 A Finite Population Model 213
5.2.3 Non-Poisson Input Traffic 214
5.2.3.1 Wilkinson’s Method 217
5.2.3.2 Fredericks’ Method 218
5.2.4 Multi-Class Erlang Loss System 221
5.3 Application of the Erlang Loss Model to Cellular Radio Access

Network 224
5.3.1 Cell Dimensioning under Quality of Service Constraints 225
5.3.2 Number of Handoffs in a Connection Lifetime 230
5.3.3 Blocking in a Cell with User Mobility 232
5.3.4 Trade-off between Location Updating and Paging 234
5.3.5 Dimensioning of a Cell with Two Service Classes 236
5.4 The M∕M∕m Queue 238
5.4.1 Finite Queue Size Model 243

�

� �

�

x Contents

5.4.2 Resource Sharing versus Isolation 244
5.5 Infinite Server Queues 247
5.5.1 Analysis of Message Propagation in a Linear Network 252

Summary and Takeaways 257
Problems 258

6 Priorities and Scheduling 265
6.1 Introduction 265
6.2 Conservation Law 268
6.3 M∕G∕1 Priority Queueing 272
6.3.1 Non-FCFS Queueing Disciplines 273
6.3.2 Head-of-Line (HOL) Priorities 276
6.3.3 Preempt-Resume Priorities 283
6.3.4 Shortest Job First 284
6.3.5 Shortest Remaining Processing Time 286
6.3.6 The 𝜇C Rule 288
6.4 Processor Sharing 289
6.4.1 The M∕G∕1 Processor Sharing Model 290
6.4.2 Generalized Processor Sharing 293
6.4.3 Weighted Fair Queueing 298
6.4.4 Credit-Based Scheduling 302
6.4.5 Deficit Round Robin Scheduling 306
6.4.6 Least Attained Service Scheduling 308
6.5 Miscellaneous Scheduling 312
6.5.1 Scheduling on a Radio Link 312
6.5.1.1 Proportional Fairness 312
6.5.1.2 Multi-rate Orthogonal Multiplexing 313
6.5.2 Job Dispatching 318
6.6 Optimal Scheduling 324
6.6.1 Anticipative Systems 325
6.6.2 Server-Sharing, Nonanticipative Systems 325
6.6.3 Non-Server-Sharing, Nonanticipative Systems 326

Summary and Takeaways 327
Problems 327

7 Queueing Networks 331
7.1 Structure of a Queueing Network and Notation 331
7.2 Open Queueing Networks 332
7.2.1 Optimization of Network Capacities 345
7.2.2 Optimal Routing 347
7.2.3 Braess Paradox 350

�

� �

�

Contents xi

7.3 Closed Queueing Networks 355
7.3.1 Arrivals See Time Averages (ASTA) 358
7.3.2 Buzen’s Algorithm for the Computation of the Normalization

Constant 359
7.3.3 Mean Value Analysis 360
7.4 Loss Networks 369
7.4.1 Erlang Fixed-Point Approximation 373
7.4.2 Alternate Routing 378
7.5 Stability of Queueing Networks 381
7.5.1 Definition of Stability 385
7.5.2 Turning a Stochastic Discrete Queueing Network into a Deterministic

Fluid Network 387
7.6 Further Readings 390

Appendix 391
Summary and Takeaways 394
Problems 394

8 Bounds and Approximations 399
8.1 Introduction 399
8.2 Bounds for the G∕G∕1 Queue 401
8.2.1 Mean Value Analysis 404
8.2.2 Output Process 406
8.2.3 Upper and Lower Bounds of the Mean Waiting Time 407
8.2.4 Upper Bound of the Waiting Time Probability Distribution 409
8.3 Bounds for the G∕G∕m Queue 412
8.4 Approximate Analysis of Isolated G∕G Queues 416
8.4.1 Approximations from Bounds 416
8.4.2 Approximation of the Arrival or Service Process 417
8.4.3 Reflected Brownian Motion Approximation 418
8.4.4 Heavy-traffic Approximation 423
8.5 Approximate Analysis of a Network of G∕G∕1 Queues 426
8.5.1 Superposition of Flows 427
8.5.2 Flow Through a Queue 428
8.5.3 Bernoulli Splitting of a Flow 428
8.5.4 Putting Pieces Together: The Decomposition Method 429
8.5.5 Bottleneck Approximation for Closed Queueing Networks 442
8.6 Fluid Models 443
8.6.1 Deterministic Fluid Model 444
8.6.2 From Fluid to Diffusion Model 452
8.6.3 Stochastic Fluid Model 456
8.6.4 Steady-State Analysis 459

�

� �

�

xii Contents

8.6.4.1 Infinite Buffer Size (K = ∞) 462
8.6.4.2 Loss Probability 463
8.6.5 First Passage Times 466
8.6.6 Application of the Stochastic Fluid Model to a Multiplexer with

ON-OFF Traffic Sources 468
Summary and Takeaways 471
Problems 472

Part III Networked Systems and Protocols 477

9 Multiple Access 479
9.1 Introduction 479
9.2 Slotted ALOHA 482
9.2.1 Analysis of the Naïve Slotted ALOHA 483
9.2.2 Finite Population Slotted ALOHA 487
9.2.3 Stabilized Slotted ALOHA 494
9.3 Pure ALOHA with Variable Packet Times 499
9.4 Carrier Sense Multiple Access (CSMA) 504
9.4.1 Features of the CSMA Protocol 505
9.4.1.1 Clear Channel Assessment 505
9.4.1.2 Persistence Policy 506
9.4.1.3 Retransmission Policy 507
9.4.2 Finite Population Model of CSMA 509
9.4.3 Multi-Packet Reception CSMA 513
9.4.3.1 Multi-Packet Reception 1-Persistent CSMA with Poisson Traffic 515
9.4.3.2 Multi-Packet Reception Nonpersistent CSMA with Poisson

Traffic 519
9.4.4 Stability of CSMA 523
9.4.5 Delay Analysis of Stabilized CSMA 531
9.5 Analysis of the WiFi MAC Protocol 534
9.5.1 Outline of the IEEE 802.11 DCF Protocol 534
9.5.2 Model of CSMA/CA 538
9.5.2.1 The Back-off Process 540
9.5.2.2 Virtual Slot Time 543
9.5.2.3 Saturation Throughput 545
9.5.2.4 Service Times of IEEE 802.11 DCF 549
9.5.2.5 Correlation between Service Times 554
9.5.3 Optimization of Back-off Parameters 556
9.5.3.1 Maximization of Throughput 556
9.5.3.2 Minimization of Service Time Jitter 561

�

� �

�

Contents xiii

9.5.4 Fairness of CSMA/CA 565
9.6 Further Readings 570

Appendix 572
Summary and Takeaways 573
Problems 575

10 Congestion Control 579
10.1 Introduction 579
10.2 Congestion Control Architecture in the Internet 583
10.3 Evolution of Congestion Control in the Internet 587
10.3.1 TCP Reno 588
10.3.1.1 TCP Congestion Control Operations 589
10.3.1.2 NewReno 593
10.3.1.3 TCP Congestion Control with SACK 594
10.3.1.4 Congestion Window Validation 595
10.3.2 TCP CUBIC 596
10.3.3 TCP Vegas 598
10.3.4 Data Center TCP (DCTCP) 601
10.3.4.1 Marking at the Switch 602
10.3.4.2 ECN-Echo at the Receiver 603
10.3.4.3 Controller at the Sender 603
10.3.5 Bottleneck Bandwidth and RTT (BBR) 604
10.3.5.1 Delivery Rate Estimate 607
10.3.5.2 StartUp and Drain 608
10.3.5.3 ProbeBW 609
10.3.5.4 ProbeRTT 610
10.3.5.5 Pseudo-code of BBR Algorithm 610
10.4 Traffic Engineering with TCP 611
10.5 Fluid Model of a Single TCP Connection Congestion Control 614
10.5.1 Classic TCP with Fixed Capacity Bottleneck Link 615
10.5.2 Classic TCP with Variable Capacity Bottleneck Link 617
10.5.2.1 Discretization of the Evolution Equations 625
10.5.2.2 Accuracy of the Fluid Approximation of TCP 627
10.5.3 Application to Wireless Links 630
10.5.3.1 Random Capacity 630
10.5.3.2 TCP over Cellular Link 632
10.6 Fluid Model of Multiple TCP Connections Congestion Control 635
10.6.1 Negligible Buffering at the Bottleneck 635
10.6.2 Classic TCP with Drop Tail Buffer at the Bottleneck 637
10.6.3 Classic TCP with AQM at the Bottleneck 638
10.6.4 Data Center TCP with FIFO Buffer at the Bottleneck 639

�

� �

�

xiv Contents

10.7 Fairness and Congestion Control 642
10.8 Network Utility Maximization (NUM) 645
10.9 Challenges to TCP 652
10.9.1 Fat-Long Pipes 653
10.9.2 Wireless Channels 655
10.9.3 Bufferbloat 656
10.9.4 Interaction with Applications 658

Appendix 659
Summary and Takeaways 664
Problems 665

11 Quality-of-Service Guarantees 669
11.1 Introduction 669
11.2 Deterministic Service Guarantees 670
11.2.1 Arrival Curves 673
11.2.2 Service Curves 677
11.2.3 Performance Bounds 681
11.2.4 Regulators 683
11.2.5 Network Calculus 688
11.2.5.1 Single Node Analysis 689
11.2.5.2 End-to-End Analysis 692
11.3 Stochastic Service Guarantees 703
11.3.1 Multiplexing with Marginal Buffer Size 703
11.3.2 Multiplexing with Non-Negligible Buffer Size 711
11.3.3 Effective Bandwidth 714
11.3.3.1 Definition of the Effective Bandwidth 714
11.3.3.2 Properties of the Effective Bandwidth 715
11.3.3.3 Effective Bandwidth of a Markov Source 716
11.3.4 Network Analysis and Dimensioning 721
11.4 Further Readings 727

Appendix 728
Summary and Takeaways 732
Problems 733

A Refresher of Probability, Random Variables, and Stochastic
Processes 735

A.1 Probability 735
A.2 Random Variables 737
A.3 Transforms of Probability Distribution Functions 739
A.4 Inequalities and Limit Theorems 744
A.4.1 Markov Inequality 744

�

� �

�

Contents xv

A.4.2 Chebychev Inequality 745
A.4.3 Jensen Inequality 746
A.4.4 Chernov Bound 746
A.4.5 Union Bound 747
A.4.6 Central Limit Theorem (CLT) 747
A.5 Stochastic Processes 748
A.6 Markov Chains 749
A.6.1 Classification of States 750
A.6.2 Recurrence 751
A.6.3 Visits to a State 754
A.6.4 Asymptotic Behavior and Steady State 756
A.6.5 Absorbing Markov Chains 762
A.6.6 Continuous-Time Markov Processes 763
A.6.7 Sojourn Times in Process States 765
A.6.8 Reversibility 766
A.6.9 Uniformization 768
A.7 Wiener Process (Brownian Motion) 769
A.7.1 Wiener Process with an Absorbing Barrier 771
A.7.2 Wiener Process with a Reflecting Barrier 772

References 775
Index 789

�

� �

�

xvii

Preface

This book is an outgrowth of lecture notes, conceived originally as a support for a
course of Network Traffic Engineering for graduate students at University of Roma
“La Sapienza.” The scope has broadened as the text took shape.

Communication networks, pervasive systems for smart environments, cloud
computing, big data management and analysis, Intelligent Transportation
Systems, smart energy grid, industrial automation, logistics, and inventory
management are but few examples that highlight the fast-paced evolution of net-
worked systems. The complexity of those systems and of their inter-relationships,
and the need to avoid wasting limited resources, call for adequate mathematical
modeling and quantitative assessment.

In this fast-moving and rich context, I think that a gap is developing between the
highly skilled technological knowledge of many students, researchers, and practi-
tioners and their ability to abstract from the details of a specific system and capture
its essential features, defining a manageable quantitative model and assessing its
performance trade-offs. Sophisticated models are often presented without a deep
awareness of their relevance to the real-life problem that should motivate them
in the first place. Conversely, lack of careful quantitative modeling and evaluation
often drives toward design choices that turn out to be suboptimal, sometimes even
unsatisfactory, when implemented.

Many years of research work with colleagues, master’s and doctorate students,
and of lecturing both at undergraduate and graduate levels, have convinced me
that successful performance evaluation has two main sides: (i) mastering a wide
array of well-established modeling tools; and (ii) understanding the relevance of
a given model in capturing real system characteristics and in gaining insight into
its trade-offs. Step (i) is necessary, but not sufficient. Step (ii) is the target, but
it is unfeasible if step (i) is not accomplished accurately. Confining our work to
mathematical aspects—a must (and possibly a pleasure) for researchers advanc-
ing the state-of-the-art of queueing and probability theory—is not an appealing
target for those in need of gaining a sound understanding of models and how they

�

� �

�

xviii Preface

apply to real-life problems, in nontrivial, often innovative ways. On the other hand,
complex applications and the need to extend the range of applicability to more
sophisticated systems, make often not fully satisfactory the material provided by
manuals and books focusing on technology, rather than methodology. The desire
to find a good balance of these two requirements is one key motivation of this book.

Crafting models is more an art than a science. Besides systematic learning of
mathematical tools, examples and successful models applied to significant fields
of networked systems can provide a guide to build this ability. The book aims at
covering the first step in that direction, offering the reader a substantial knowledge
of fairly advanced queueing and traffic theory, and showing how to apply them to
networked systems evaluation and design.

The topics covered in the book are selected to give a consistent and reasonably
self-contained coverage of modeling tools and applications of network traffic engi-
neering. Specific topics are chosen for their relevance, so as to provide a broad
view of most useful models. Examples are drawn from real technical problems
or engineering applications of interest to current and foreseeable future systems
(e.g., LTE, Wi-Fi, ad-hoc networks, automated vehicles, reliability). Examples are
not merely numerical application of models. They show how insight on real prob-
lems can be gained by means of quantitative modeling. As application examples in
Part III of the book I have selected three major topics: multiple access, congestion
control, and quality of service. These topics have been selected for their relevance
in networked service systems, for their applicability range and also for the beauty
of the results of relevant theories. I feel that some simple issues also deserve to be
dealt with along with more theoretical topics to provide a book that is not only for
highly specialized scientists.

I hope this book can attract interest on the exciting and relevant field of perfor-
mance evaluation and system modeling. Quantitative reasoning is a characteristic
trait of science and engineering. Moreover, in a limited resource universe, it is
becoming of increasing importance to guarantee a widespread consciousness of
the need of careful trade-off evaluation and of the ability to size the amount of
resource in an optimal way.

A book is the result of interactions with a lot of people: colleagues, students and
friends. I am grateful to those with whom I have shared scientific work and fruitful
discussions, and from whom I have learned interesting ideas—too many over my
career to cite them all. A warm thank you goes to the Wiley editorial staff, who
has been generously supportive in the journey from manuscript to the final book
product. Finally, my family has provided continuous and precious help throughout
my work. Their love and patience were a great encouragement when my mind so
often strayed into a maze while pondering the ideas developed in this book.

June, 2020
Roma, Italy

Andrea Baiocchi

�

� �

�

xix

Acronyms

ACK Acknowledgment
ADSL Asymmetric Digital Subscriber Line
AIMD Additive Increase, Multiplicative Decrease
AP Access Point
AQM Active Queue Management
ARP Access Reservation Procedure
ARQ Automatic Repeat reQuest
ASTA Arrivals See Time Averages
ATM Asynchronous Transfer Mode
AWGN Additive White Gaussian Noise
BA Basic Access
BBR Bottleneck Bandwidth and RTT
BDP Bandwidth Delay Product
BEB Binary Exponential Back-off
BM Brownian Motion
BMAP Batch Markovian Arrival Process
BS Base Station
CBF Contention-Based Forwarding
CBFQ Credit-Based Fair Queueing
CBR Constant Bit Rate
CCDF Complementary Cumulative Distribution Function
CDF Cumulative Distribution Function
CDMA Code-Division Multiple Access
CDT Carrier Detect Threshold
CLT Central Limit Theorem
COV Coefficient Of Variation
CSMA Carrier-Sense Multiple Access
CSMA/CA Carrier-Sense Multiple Access/Collision Avoidance
CTMC Continuous-Time Markov Chain

�

� �

�

xx Acronyms

CTS Clear To Send
CWV Congestion Window Validation
DBMAP Discrete Batch Markovian Arrival Process
DCA Dynamic Channel Allocation
DCF Distributed Coordination Function
DCTCP Data Center TCP
DIFS DCF Inter-Frame Space
DMAP Discrete Markovian Arrival Process
DRR Deficit Round Robin
DSRC Dedicated Short Range Communications
DT Defer Threshold
DTMC Discrete Time Markov Chain
DWDM Dense Wavelength Division Multiplexing
ECN Explicit Congestion Notification
EIFS Extended Inter-Frame Space
EMC Embedded Markov Chain
eNB evolved Node B
ETSI European Telecommunications Standards Institute
FB Foreground-Background
FBM Fractional Brownian Motion
FCA Fixed Channel Allocation
FCLT Functional Central Limit Theorem
FCFS First-Come, First Served
FIFO First-In, First-Out
GbE Gigabit Ethernet
GPS Generalized Processor Sharing
HOL Head-Of-Line
HTTP HyperText Transfer Protocol
ICT Information and Communications Technology
i.i.d. independent and identically distributed
IETF Internet Engineering Task Force
IFS Inter-Frame Space
IoT Internet of Things
IP Internet Protocol
ISP Internet Service Provider
JBT Join Below Threshold
JIQ Join Idle Queue
JSQ Join Shortest Queue
LA Location Area
LAN Local Area Network
LAS Least Attained Service

�

� �

�

Acronyms xxi

LCFS Last-Come, First-Served
LIFO Last-In, First-Out
LMGF Log Moment-Generating Function
LTE Long-Term Evolution
LOS Line-Of-Sight
MAC Medium-Access Control
MAP Markovian Arrival Process
MCS Modulation and Coding Set
MMPP Markov Modulated Poisson Process
MGF Moment-Generating Function
MPDU MAC Protocol Data Unit
MPEG Moving Picture Experts Group
MPLS Multi-Protocol Label Switching
MPR Multi-Packet Reception
MRTG Multi Router Traffic Grapher
MSS Maximum Segment Size
MTU Maximum Transfer Unit
MVA Mean Value Analysis
NAV Network Allocation Vector
NLOS Non-Line-Of-Sight
NUM Network Utility Maximization
OBU On-Board Unit
ODE Ordinary Differential Equation
OFDM Orthogonal Frequency-Division Multiplexing
PASTA Poisson Arrivals See Time Averages
PDF Probability Density Function
PDU Protocol Data Unit
PER Packet Error Ratio
PHY Physical (layer)
PLCP Physical Layer Convergence Protocol
PPDU Physical Protocol Data Unit
PS Processor Sharing
QAM Quadrature Amplitude Modulation
QBD Quasi Birth-Death
QNA Queueing Network Analyzer
QoS Quality of Service
QPSK Quadrature Phase Shift Keying
RAN Radio Access Network
RB Resource Block
RBM Reflected Brownian Motion
RED Random Early Detection

�

� �

�

xxii Acronyms

RO Random Order
RTO Retransmission Time-Out
RTS Request To Send
RTT Round-Trip Time
SCOV Squared Coefficient Of Variation
SDH Synchronous Digital Hierarchy
SDN Software-Defined Network
SIFS Short Inter-Frame Space
SIM Subscriber Identity Module
SJF Shortest Job First
SMP Semi-Markov Process
SNIR Signal-to-Noise plus Interference Ratio
SNR Signal-to-Noise Ratio
SRPT Shortest Remaining Processing Time
SSL Secure Sockets Layer
TCP Transmission Control Protocol
ToS Type of Service
UDP User Datagram Protocol
UE User Equipment
VBR Variable Bit Rate
VoIP Voice over Internet Protocol
VM Virtual Machine
WFQ Weighted Fair Queueing
WiFi Wireless Fidelity

�

� �

�

1

Part I

Models for Service Systems

�

� �

�

3

1

Introduction

Quelli che s’innamoran di pratica sanza scienza son come il nocchiere, ch’entra
in navilio sanza timone o bussola, che mai ha certezza dove si vada.1

Leonardo da Vinci

1.1 Network Traffic Engineering: What, Why, How

Engineering is the application of scientific principles and results to the design and
optimization of machine, processes, systems. The typical approach of engineers
consists of understanding objectives and requirements, abstracting a model of the
system to be designed, defining a solution approach and testing for its suitability,
i.e., checking if relevant performance metrics meet the prescribed requirements.

A key point is the ability of deriving a simplified model from a description of
the system or function to be designed. The model should be simple enough to
lend itself to analysis and provide understanding of performance trade-offs, yet it
should not miss any feature having significant impact on the relevant performance
indicators.

Optimization of the model is a second key step. This can be often stated as
a constrained optimization problem, where constraints come from performance
requirements, costs, physical limits of the system.

The entire modeling and design process can be conceived as a double loop (see
Figure 1.1). First, comparison with simulations or experimental measurements
leads to the refinement of the model, so that it can reliably match the relevant
dynamics of the system to be modeled. Once the model is assessed, it is used to

1 “Those who are fond of practice without science are like the helmsman of a ship without
rudder or compass, so that he’s never sure of where he’s heading.”

Network Traffic Engineering: Stochastic Models and Applications, First Edition. Andrea Baiocchi.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

�

� �

�

4 1 Introduction

Observation Model Analysis

Model

refinement

System (re-)Design,

Optimization

Results

checking

Figure 1.1 Scheme of system modeling and design process: from system observation
and description, to model definition and refinement, based on comparison with
simulations or experimental measurements (lower loop), then model usage for system
dimensioning and optimization, according to an iterative refinement process based on
performance results checking (upper loop).

refine the system design and to pursue its optimization, according to the results of
the analysis, leading to new (hopefully better) performance results.

The very concise sketch of the engineering approach to problem solving is a
general one. Traffic engineering refers to the design and optimization of a class of
systems and processes: networked service systems.

Let us examine the keywords one by one.
Service system is an abstraction of any physical or logical function under Quality

of Service (QoS) constraints. This is where the essence of service is.
Networked refers to the fact that multiple interconnected systems carry out the

assigned task(s). For that purpose, “traffic” moves from one service system to
another one, according to the topology of the interconnection and subject to the
capacity of the network. We use terms in an informal way in this introductory
section. So, by network capacity we mean the capability of the network to transfer
resources (e.g., information, goods, vehicles) depending on the kind of service,
hence network, we are considering (e.g., communication network, logistic
network, transportation network) to provide service to users’ demand.

Traffic can be defined informally as the stochastic process describing the users’
service demand, as regards both time of demand submission to the system (arrival)
and duration of service. Users of the service system (e.g., applications, persons,
machines) require the service system to carry out its tasks to meet their service
demand. Times when service demand is submitted to the system as well as the
amount of work required to meet the specific demand can be characterized as ran-
dom variables. Hence, traffic engineering is intimately connected with probability
and stochastic processes theory and its applications, a prominent position being
reserved to queueing theory. That is the preferential “language” of traffic engineer-
ing, even if also other mathematical tools are often used (e.g., fluid approximation
theory, optimization theory, game theory, to mention a few).

�

� �

�

1.1 Network Traffic Engineering: What, Why, How 5

Performance evaluation is at the heart of traffic engineering. A service system
encompasses three major aspects: (i) users’ traffic demand; (ii) serving capability
and resources provided by the system; and (iii) QoS constraints. The aim of traffic
engineering is the design of the service system to meet the expected users’ demand
under the prescribed quality constraints. Minimization of cost, both capital expen-
diture to set up the system and operational costs, is of paramount importance to
the system provider. This is usually in conflict with meeting an assigned level of
QoS, which is instead of primary relevance to the system users. Trading off costs
for QoS, given the users’ demand, is the core “business’ of traffic engineering. Con-
versely, estimating the admissible demand for the desired level of QoS, given the
available resources and the way the system is designed, is another key task of traf-
fic engineering, leading to the definition of algorithms and procedures to rule the
access of users to the system resources and to manage those resources (priority,
scheduling, flow control, congestion control, multiple access).

The reason why such a discipline has been developed and has grown as a recog-
nized field is that no ‘free” resource is given in any service system. Hence, rational
design of what resources to use, how much of them, and how to use them, still
providing a “useful” service (i.e., meeting a specified QoS level) is key to making
design of service systems viable from a technical-economic point of view. This is
why the design of service systems calls for suitable quantitative methods, able to
provide predictions of key performance indicators.

Since traffic engineering is based on system modeling and abstractions, it has
long been recognized that many different technical fields give rise to networked
service systems that lend themselves to common models, independent of details of
the specific technology or application field. Mathematical tools have been devel-
oped that can be used across many different application areas to a very large spec-
trum of systems. To mention some of them, communication networks, computing
systems, transportation networks, logistic networks, power grid networks, produc-
tion processes, all can be cast into the service system abstraction and therefore be
designed by resorting to network traffic engineering tools. Each example appli-
cation domain is itself a highly structured and complex system, encompassing a
huge variety of physical resources and processing logic (we could refer to them as
“hardware” and “software,” borrowing a classic terminology of information tech-
nologies).

Networked service systems can be modeled and analyzed by using different
approaches. More in-depth, analysis, dimensioning, and optimization of service
systems can be faced along three main lines:

1. Analytical models
2. Simulations
3. Experiments

�

� �

�

6 1 Introduction

Analytical models provide a mathematical description of the system that yields
to tractable analysis (closed formulas) or, more often, to numerical investigation.
This is the most powerful approach for a quick and nontrivial understanding of
the performance trade-offs, to gauge stability margins of the system, to assess the
impact of key system parameters on performance, to provide a setting for stat-
ing optimization problems. While producing an effective analytical model requires
hard study and a bit of talent to strike the best balance between simplified assump-
tions and a representative model, the time and computational effort required to
use an analytical model make it the least costly among the three approaches listed
above. The real difficulty of an analytical model is not really in solving the model
once stated (books are there just to provide a guide for that purpose). It is rather
the ability “to make things simpler, but not easier,” to say it with Albert Einstein’s
words. The art of modeling consists in making all sort of assumptions leading to
the simplest model that still captures the aspects that are decisive to give a sensi-
ble answer to questions on the system. A fluid model that disregards completely
the discrete nature of packet traffic in a communication network, such as the Inter-
net, can be perfectly acceptable when we set out to study algorithms for congestion
control, whereas it is definitely inadequate if we are interested in characterizing
the delay jitter of a packet voice multiplexer or the collision probability of a random
access protocol.

Among analytical models, a major role is played by stochastic process theory
and queueing theory. The most useful class of stochastic process for service sys-
tem analysis relates to Markov chains. The success of stochastic process theory
and queueing theory as tools for network traffic engineering motivates the space
devoted to them in this book.

Analytical models provide answers to basic questions in a quick and lightweight
way. We can gain valuable insight on the system performance cheaply. When it
comes to assessing second-order effects or we need to relax assumptions on the
system model in a way that does not yield to analytical tractability any more, com-
puter simulation is often a valid approach.

Computer simulation for network traffic engineering purposes amounts to
defining a detailed operational model of the system and reproducing all processes
involved in this detailed model by means of a computer program. This is obviously
not a real-life system; it is, rather, a virtual image of how a simplified version
of the real-life system would work. The limits of this approach reside only in
the limits of the coding language and of the available computational resources.
Extremely complex models can be simulated. As a matter of example, simulating
a vehicular traffic management applications implies modeling these features:

◾ The road map. This includes meta-data describing road lanes, directions, sig-
nals, and surrounding environment (buildings, trees, tunnels).

�

� �

�

1.1 Network Traffic Engineering: What, Why, How 7

◾ Vehicle mobility of different types of vehicles (cars, trucks, buses, motorcycles,
bicycles, etc.), possibly also pedestrians. This includes modeling every useful
detail of the mobility mechanics (end-to-end flow vehicles, routes, motion laws,
overtaking, reaction times).

◾ Communication equipment on board vehicles, e.g., cellular transponders or
other equipment for local communications (WiFi, vehicle-to-vehicle commu-
nication devices). This means modeling all communication architecture layers,
from the physical layer to the application layer, with all relevant details of
protocols of evert layer, modeling radio propagation among devices, modeling
telecommunications traffic generation processes.

◾ Incidents that change the mobility environment.
◾ The logic of the application for vehicular traffic management, including the rel-

evant message exchange among vehicles and the fixed network infrastructure.
◾ Feedback on vehicle mobility due to the information acquired through the traffic

management application, according to the logic of the application.

Clearly, the software implementing all of these aspects must be highly compli-
cated. A possible simulation framework able to support this kind of modeling is
provided by VEINS (https://veins.car2x.org), a software package that
integrates a module for the simulation of urban mobility (SUMO), a module
to simulate communication network protocol stack (OMNET++), and all the
logic required to develop simulation software of customized application logic, to
import roadmaps and any other meta-data required to parametrize the simulation
experiments.

Even this brief example suggests how powerful simulation can be. On the
down side, setting up a simulation software requires a relatively high software
coding skill level and possibly extensive training on specialized software pack-
ages (dedicated simulation software packages have been developed in many
application fields of science and engineering, e.g, communication networks,
transportation systems, power distribution). Mastering one of those specialized
softwares typically requires several weeks up to months. Another drawback of
the simulation-based approach is the limited flexibility of the model (making
modifications can be very costly in terms of person-time effort). The compu-
tational burden of simulation could also be a problem, often making difficult
to obtain a quick answer to what-if questions. The availability of extremely
large processing resources in the public cloud and the ever-decreasing cost of
computing power relax the boundary of feasibility continuously, but the bottom
line is that developing a simulation model and running simulation experiments
is worth it when one already has a quite firm vision of how the system could be
designed and needs more stringent answers to a number of detailed issues before
delving into the actual realization of the system.

�

� �

�

8 1 Introduction

The last word on system performance is real-life experiments on a possibly
scaled-down prototype. Here we need not make any assumptions or simplifi-
cations on reality. However, development time and required skill level, as well
as material cost, can grow to a significantly higher level than with simulations.
At the same time, an experimental setting is even less flexible and easy to use
than simulations. This is by far the less desirable alternative when it comes to
characterizing the performance of a system, providing input for its design, and
optimizing algorithms. It is however, the only way to give evidence that: (i) the
proposed service system, or at least key parts of it, can be actually realized in a
viable way; and (ii) key assumptions made in the development of the analytical
or simulation model are backed up by experimental data. Both points are an
unavoidable step in the (long) process leading from an idea to a successful
product, whether it be a physical system or a process. Many technology success
stories start with a theoretical idea, first proved by means of analytical models
that point to possibly large gains of exciting breakthroughs, provided that some
assumptions hold. Simulations and ultimately experiments give evidence of
whether the theory is well grounded and promising, given the feasible technology
context and the application opportunities.

1.2 The Art of Modeling

Analysis and design of service systems go through an abstraction process that leads
from real-life systems or processes to a simplified formal description that yields to
mathematical description. This abstraction process is more of an art than a sci-
ence, since there is no single way of doing it, nor is the resulting model unique.
The decision on what part of the original system is good to simplify, i.e., the list
of assumptions, and the choice of the mathematical tool to be used are to a large
extent a subjective decision-making process, highly dependent on the background,
competence, and experience of the person(s) doing the job. A second crucial point
is the application context and the very purpose we set out to develop a model, i.e.,
the questions for which we are seeking an answer. In a sense, a good model is one
that leads as straightforwardly as possible (i.e., with the least effort) to a satisfac-
tory answer (i.e., within the degree of accuracy we need) to the specific questions
that matter for the problem at hand. There are obviously general techniques (e.g.,
Markov chain theory, queueing theory), established results, best practices. Yet, it is
not infrequent that a useful model needs “customization,” depending on the appli-
cation context, the purpose of the modeling, the amount of time, computational
resources, and skill available to those that have to provide results.

Modeling is the approach taken to answer questions arising in some application
context and involving ultimately the investment of workforce effort and the use of

�

� �

�

1.2 The Art of Modeling 9

physical or logical valuable resources. The practical problems that trigger traffic
engineering modeling are the essential motivation for it and push continuously
the development of new tools and theories. As for many other applied science
branches, sometimes traffic engineering theories are studied for themselves, i.e.,
extensions and generalization are investigated even beyond the specific questions
that promoted initially the development of the model. Nevertheless, traffic engi-
neering cannot be merely a theoretical investigation of mathematical tools. The art
of developing a useful model from a description of a system, to answer questions
on its performance and design, is a fundamental ingredient of traffic engineering.
Besides a solid understanding of models, it is therefore highly recommended to be
confronted with several application examples. The art of modeling is probably best
grasped through a learn-by-experience approach. Let us then give two simplified
yet meaningful examples of the kind of issues arising in this process.

Consider a store selling some specific kind of goods, e.g., vegetables and fruit.
It can be thought of as a service system, where “users” are people coming to buy
products sold at the store and the service provided by the system is the possibility
of finding a selection of products with some specified quality (variety of products,
freshness, packaging standards, bio-compatible production chain, special charac-
teristics, like gluten-free). A number of questions could be posed on the system,
such as in which part of the town should the shop be located, which kind of instal-
lation should be employed, how many people should be hired to run it, with which
kind of skill and tasks, what is the best shop opening schedule, where and at what
prices products sold at the store are best procured, and what selling prices should
be applied. The kind of model to be developed depends in a crucial way on what
the questions we seek an answer for are.

As a matter of example, let us ask how many employees we should hire for the
store. That depends primarily on the volume of demand (how many people come
to the store during a regular working day, how much vegetables and fruit they buy).
It also depends on the store installation, whether it is a big store, with a reserved
parking lot, a large building for goods exhibition, and large warehouses; a street
shop, with a relatively small warehouse and limited space for exposing goods; or
even a market stall. The economic viability of the proposed solution is the tar-
get of the modeling, under constraints on customer satisfaction, e.g., the average
amount of time that a customer has to wait before being served during peak hours.
The amount of people coming to the shop could vary during the day, on weekends
with respect to working days, or on a seasonal basis. It depends on the local den-
sity of residential population and on how many competitors are located nearby.
It is clear that many of the variables describing customers and their habits can
be characterized only as random variables, with parameters that can only be pre-
dicted or measured within some level of accuracy. The complexity of the model
should therefore be tuned to the accuracy of the knowledge of customer demand

�

� �

�

10 1 Introduction

(there is no benefit in adopting a sophisticated customer arrival model requiring
several parameters to be tuned, if we have only partial or inaccurate data to fit the
model: better to use a very simple parsimonious model, with as few parameters as
possible). The specific question we pose (how many employees to hire) could be
answered by defining a queueing model of the store and applying known results to
size the number of “servers” to meet the waiting time requirement. We could also
try to state an optimization problem, e.g., what is the optimal number of employ-
ees, given a model of customer impatience (if we hire a lot of people, customer
satisfaction will be excellent, we will attract a lot of customers, but the serving
basin is anyway limited, so expenses for personnel would eventually exceed the
growth of income; conversely, limiting the number of employees makes us lose
customers and potential revenue, and that could possibly bring the store to shrink
its customer basis to a level too small to survive).

As a second example, let us consider a road crossing. “Service” here consists
of vehicles switching from one road to another one through the crossing. “Cus-
tomers” are vehicles. The “server” is the crossing area, with all its features (e.g.,
traffic lights, number of lanes, roundabout or cross-shaped intersection). Depend-
ing on the way the crossing is used, it could be modeled as a single server or a
set of multiple servers (e.g., in case multiple vehicles could engage the crossing
simultaneously). The quality of service can be measured by the time a vehicle has
to wait before being able to access the crossing and by the probability that a col-
lision (accident) occurs at the crossing. A trade-off exists between the two. That
is, if we introduce traffic lights at the crossing, we expect to reduce the probabil-
ity of accidents, but also to increase the time that a vehicle has to wait before it
can engage the intersection. Assume we have to optimize the green times of the
crossing traffic lights to minimize the average vehicle waiting time. We could con-
sider a first-order approximation of the system as a single server system with an
infinite waiting line. This model applies to a single lane on a single road arriv-
ing at the crossing. It disregards interaction of vehicles engaging the crossing, i.e.,
inter-dependencies among the serving capacities of the servers representing the
roads converging to the crossing. The simple model does not account either for
vehicle mechanics (acceleration, speed, vehicle size and length) and for human
reaction times, traffic light overhead times (dead times when switching from red
to green and vice versa). A refined model could be made up of a network of queues,
one for each road (or maybe, each lane) arriving at the crossing. A refined model,
accounting for those details and including sophisticated statistical modeling of
vehicle arrivals could be set up and analyzed by means of simulations. This is still
a model, simulations being virtual processes that mimic real-life situation, still
with a number of simplifications. The last word would be to construct a possibly
scaled-down, real system, where experiments with real vehicles are run. This last
approach is extremely costly and time-consuming. Moreover, it does not lend itself

�

� �

�

1.2 The Art of Modeling 11

to stress the system at high traffic levels, since high traffic entails involving a large
number of vehicles, making experiments unfeasible. This is why analytical model-
ing or simulation are extremely useful tools to understand performance trade-offs,
design algorithms and optimize real-life service systems.

In the following we discuss in some detail an example. Starting from the descrip-
tion of a real-life issue, we derive a model and develop mathematical analysis and
simulations. The assumptions required to derive the model are discussed as well
as the lesson learned from performance results.

Before delving into the detailed development of a model, it is worth noting the
relationship between modeling and machine learning. Machine learning encom-
passes a broad field of theories, algorithms, and applications that has been growing
over the last several decades, leveraging on the progress of information and com-
munication technologies. The last decade has witnessed an impressive growth of
the application range of machine learning, boosted by the ever-increasing avail-
ability of computational power, of big data, and by breakthroughs in algorithm
implementation (e.g., deep learning networks2 [28,67]). Since this book is entirely
devoted to modeling tools and examples of their applications to networked service
systems, it is useful to take a quick look at an approach that might be alternative
to modeling (as intended here).

A basic view of supervised machine learning may be stated as a problem of func-
tion identification (see Figure 1.2). As a matter of example, let us consider a set
of “objects.” An object is associated with a label y and is described through a set
of features x. We can think of the features x as a vector of ℝn (generalizations to
qualitative features, belonging to non metric spaces, are possible). We assume that
a functional relationship exists between x and y, i.e., it is y = f (x) for a suitable
(unknown) function f (⋅).

We aim at identifying the function f (⋅) (at least a good approximation of it)
with a data-driven approach. We assume therefore that we are assigned a set of

Figure 1.2 Illustration of
a basic concept of
supervised machine
learning.

Parametric model

Training data

Performance /

Generalization

Training

algorithm

Trained model

Test data / New data

2 Recent works point out at apparently fundamental limits of current algorithms, e.g., see [75].

�

� �

�

12 1 Introduction

couples (xk, yk), k ∈ (the so-called “ground truth”). We choose a parametric set
of models for these data, say f (x, 𝜃), 𝜃 ∈ . We split the available data into two
sets: the training set train, used to select one model within the chosen family, and
a test set test, used to evaluate the performance of the selected model.

Using the training data (xk, yk), k ∈ train, and a suitable learning algorithm
(training algorithm), we synthesize the “best” possible model, say f (x, 𝜃∗)
(typically, one that minimizes the error with respect to the ground truth in the
training set).

Using the test data (xk, yk), k ∈ test, we assess the performance of the synthe-
sized function f (x, 𝜃∗).

A key point is the generalization capability of the model f (x, 𝜃∗), i.e., the ability
of the selected model to yield the right value y when fed with a previously unseen
input x (i.e., the ability to reconstruct a new couple, not belonging to the train-
ing set).

Even this very brief description of the machine learning approach highlights its
key aspects: data-driven modeling, generalization capability. In a sense, this is a
black-box approach. We do not start from a functional description of the system
producing the objects, from which we try to find a model able to predict the out-
put y for any given input x. Rather, we collect a (possibly large) set of examples
by “running” the system (input-output couples), then approximate the functional
relationship that we assume to exist between the input and the output data. We
are therefore not required to understand the laws governing the internal working
of the system that produces the objects. We are giving up to insight into the sys-
tem. On the other hand, we are able to define a “working” model, that provides us
(hopefully) useful answers, even for unmanageably complex systems, for which it
is too hard to derive useful models in the “traditional” sense3 .

Both approaches, modeling and machine learning, have their strong and weak
points, both have their use cases. If we are able to state a model of the relationship
between system input and output, say y = f̂ (x), and to define an efficient algorithm
to evaluate f̂ (x) for any interesting x, there is no need to resort to machine learning.
If we cannot collect enough data, in the form of couples (xk, yk), machine learning
is not applicable, either. So what are use cases for machine learning?

◾ When we are not able to state a model.
◾ When we manage to state a model, but it is unfeasible to “solve” it, that is, to use

it for deriving predictions on the studied system.
◾ When we have a model and feasible algorithms, but we can achieve a significant

computational complexity reduction resorting to machine learning algorithms.
◾ When we can collect data in the form of couples (xk, yk) at a reasonable cost.

3 Note however that the machine learning approach cannot forget about a good grasp on the
system to be modeled, even if modeling is data-driven. In fact, assuming that there exists a
functional relationship between the input x and the output y is already calling for some
field-expert knowledge on the specific system.

�

� �

�

1.3 An Example: Delay Equalization 13

The first three items point at cases where machine learning offers a viable or
preferable alternative, whereas “traditional” modeling could be at a deadlock or
too hard. The last point is a precondition for machine learning to be a practical
alternative.

We do not advocate either approach. Both have merits and should be considered
when confronted with a real problem. “Integrated” solutions are also possible, that
use both approaches to build a composite model4 .

In the rest of this book we present tools and examples oriented to developing
modeling skills. It is important to bear in mind that other approaches, besides “tra-
ditional” modeling, exist for designing and optimizing service systems. Which way
to go depends on available skills and time, on design objectives, on technological
opportunities.

1.3 An Example: Delay Equalization

Let us consider a streaming application in the Internet. Streaming is used for
audio/video retrieval and play-out. The content is usually available in servers
located in data centers (the “cloud”), possibly replicated in temporary cache
memories, close to potential users (content delivery networks). The user has a
play-out application (often embedded into a web browser), essentially consisting
of a decoder and a graphical user interface. The encoded audio/video data is
downloaded from the server to feed the decoder. Smooth play-out requires
feeding the decoder with audio/video data according to exactly the same timing
as produced by the encoder. This implies in turn that data delivery delay through
the network should be constant and no piece of information should be lost.

In the real Internet occasional packet loss is possible (typically a few percent
of packets are lost in moderately congested links). In the application example
at hand, packet loss can be concealed by redundant coding, since human per-
ception can be deceived up to a certain amount of missing information in the
reconstruction of the audio/video streaming. More importantly however, packets
sent through the Internet suffer variable delays: packet belonging to the same
end-to-end flow, even if they follow the same network path, encounter different
levels of node congestion. The inevitable result is that delays of successive packets
are different and there is no way to avoid this impairment (unless changing the
fundamental principles of data transfer through the Internet).

The contrast between application requirement (constant delay) and network
operation, resulting in variable delays, can be reconciled by introducing a delay
equalization buffer in front of the decoder. Delay equalization is performed by

4 To make a simple example, one might say that channel estimation and adaptive equalization
in telecommunication receivers is a form of machine learning, embedded into a system that is
designed and optimized based on mathematical models of the signal, the channel impairments,
and the algorithms applied at the receiver.

�

� �

�

14 1 Introduction

Sender
Equalization

buffer

x

Play-out

device

time

Packet

network

0
1
2
3
4
5
6

0
1
2
3
4
5
6
7
8
9

Figure 1.3 Illustration of the delay equalization of a streaming flow sent through a
packet network. The ‘x’ denotes packet loss. The slope of the dashed arrows through the
network corresponds to the delay suffered by packets. The initial play-out delay Δ is
shown: once play-out starts, frames are read from the buffer at the same rate as they are
produced by the sender.

imposing an additional delay to each arriving packet, so that the sum of the delay
suffered by the packet in the network plus the equalization delay equals a fixed
delay, same for all packets (hence the name of the algorithm: equalization has the
same root as “equal”).

Figure 1.3 illustrates the system components for this example: the server sending
audio/video data, the intermediate network, the delay equalization buffer, and the
decoder. The detailed explanation of the delay equalization algorithm is developed
in Section 1.3.1.

In the following we pose performance questions, unveiling issues with the
equalization algorithm (starvation, buffer overflow). We derive models that
provide a quantitative tool to gain insight into the delay equalization algorithm
and to dimension its parameters.

1.3.1 Model Setting

We assume that the encoder produces fixed length data frames at a fixed rate. Let
L be the length of a frame and T the time interval between the emission of two
consecutive frames. We assume that a frame fits into a single packet, i.e., there
is a one-to-one correspondence between application-level data units (frames) and
network-level data units (packets). In general, multiple packets are required to
carry a single frame. Capturing this feature requires however a significantly more
complex model (see Problem 1.1).

The data flow throughput sustained through the network is Λ = L∕T. We
assume that a transport capacity at least equal to Λ is available through the
network.

�

� �

�

1.3 An Example: Delay Equalization 15

Let tk = t0 + kT, k ≥ 0 be the time when the k-th frame is released by the
encoder and sent into the network. The network introduces a variable delay,
say Dk for frame k. Occasionally, a frame can get lost and be never delivered at
the destination. Out-of-order delivery is a possible outcome as well. In normal
operating conditions, frame loss and out-of-order delivery are actually sporadic
events: they could typically affect less than a few percent of the frames. For the
time being we neglect frame loss and out-of-order delivery. Those issues are
reconsidered in Section 1.3.3.

We also assume that the Dk’s are independent, identically distributed (i.i.d.) ran-
dom variables, admitting a probability density function (PDF) fD(x), defined for
x > 0. Let also GD(x) = (D > x) be the complementary cumulative distribution
function (CCDF) of the random variable D. Assuming that the Dk’s have a same
probability distribution amounts to require that the stochastic processes that cause
delays inside the network are stationary during the data transfer. This can well be
the case if the time dynamics of the network traffic (i.e., the time scale over which
the average network link loads have a significant variation) is much bigger than the
duration of the audio/video data transfer. As for statistical independence among
the Dk’s, this is a reasonable assumption, if the time dynamics of buffers within
routers along the end-to-end path of the frames is smaller than the inter-frame
time T. If that is true, the queue states sampled by two consecutive frames are
weakly correlated. For a buffer of size Br and a link of capacity Cr, the time scale
of the buffer queue is roughly of the order of Br∕Cr . As a matter of example, with
Br = 10 Mbyte and Cr = 10 Gbit/s, we have Br∕Cr = 8 ⋅ 107 bit∕1010 bit/s = 8 ms.
If T > 8 ms, it is plausible that the delays encountered by two consecutive frames
be negligibly correlated, hence the independence assumption is reasonable.

Play out at the receiver is started after a delay Δ from the reception of the 0-th
frame (see Figure 1.3). After that, frames are consumed, one frame every T sec-
onds, to feed the decoder at the receiver. Variable delays can be compensated by
storing the incoming frames in an equalization buffer temporarily. Two issues
must be faced then: (i) starvation, i.e., not finding the expected frame in the buffer
at the time it must be used by the decoder; and (ii) buffer overflow, i.e., an arriv-
ing frame must be stored until play-out, but there is no more space left in the
equalization buffer. We consider these two issues in the rest of this section, by
dimensioning properly the initial delay Δ of the play-out and the equalization
buffer size B.

1.3.2 Analysis by Equations

To keep the analysis manageable, we resort to approximations, a customary
approach in system modeling. We assume the equalization buffer is infinite, i.e.,
we neglect the overflow issue when dimensioning the initial delay Δ.

�

� �

�

16 1 Introduction

If we apply an initial delay Δ, the k-th frame is expected at the decoder for
play-out at time tout,k = t0 + D0 + Δ + kT, k ≥ 0. Starvation of the decoder is trig-
gered by either of two possible events: (i) the k-th frame was late; or (ii) the k-th
frame arrived in time, but it found a full buffer and was dropped. According to our
approximation (infinite buffer size), the second event is ruled out. Hence, starva-
tion is equivalent to the first event, i.e., it occurs if and only if tk + Dk > tout,k, that
is D0 + Δ < Dk. Denoting the probability of starvation with S, we get:

S = (Dk > Δ + D0) = ∫
∞

0
fD(x)GD(x + Δ)dx (1.1)

For example, if fD(x) = 𝜇 exp(−𝜇x) for x > 0, i.e., the delay through the network
has negative exponential probability distribution with mean E[D] = 1∕𝜇, we get

S = 1
2

e−𝜇Δ = 1
2

e−Δ∕E[D] (1.2)

If we require that S < 𝜖S, then it must be Δ > E[D]| log(2𝜖S)|.
Let us now relax the assumption of an infinite buffer and consider a buffer of

size B. We can upper bound the probability of overflow of the buffer of size B with
the probability that the occupancy level of the infinite buffer exceeds B.

Let Ñ(t) and N(t) be the number of frames stored in the finite buffer and in
the infinite buffer at time t, respectively. Let P̃ denote the overflow probability of
a buffer of size B, i.e., the joint probability of the events {Ñ(t) = B} and (t) =
{a frame arrives at time t}. Since it is5 Ñ(t) ≤ N(t) for all t, the event {Ñ(t) =
B}&(t) implies the event N(t) > B. Hence P̃ = (buffer overflow) ≤ (N(t) >
B), i.e., the probability that the buffer content of the infinite buffer exceeds the
threshold B is an upper bound of the overflow probability of the finite buffer.

Let Nk be the number of frames stored in the buffer at the time immediately
preceding play-out of the k-th frame, i.e., Nk ≡ N(tout,k−). Let N = B∕L (we assume
B is an integer multiple of the fixed frame size). We have P̃ ≤ (Nk > N) ≡ P.

In the following we evaluate the probability distribution of Nk and use its tail
to dimension the equalization buffer size. This is an example of how bounds and
approximations help deriving performance results.

It is Nk > n if and only if the arrival time of the (k + n)-th frame is less then
the time tout,k, that is tk+n + Dk+n < tout,k = t0 + D0 + Δ + kT. Therefore, by letting
Q(n) = (Nk > n), we have

Q(n) = (t0 + (k + n)T + Dk+n < t0 + D0 + Δ + kT) = (Dk+n < D0 + Δ − nT)
(1.3)

5 This is also true if we account for packet loss event in the network.

�

� �

�

1.3 An Example: Delay Equalization 17

Then

Q(n) = ∫
∞

0
fD(x)(Dk+n < x + Δ − nT)dx

= ∫
∞

max{0,nT−Δ}
fD(x)[1 − GD(x + Δ − nT)]dx

= GD(max{0,nT − Δ}) − ∫
∞

max{0,nT−Δ}
fD(x)GD(x + Δ − nT)dx (1.4)

For example, with negative exponential network delays, we obtain

Q(n) =

{
1
2

e−𝜇(nT−Δ) nT ≥ Δ,
1 − 1

2
e𝜇(nT−Δ) nT ≤ Δ.

(1.5)

The upper bound P of the overflow probability we are looking for is then P =
Q(N)|N=B∕L. The requirement P̃ ≤ 𝜖B on the overflow probability of the equaliza-
tion buffer is guaranteed by imposing that P ≤ 𝜖B.

Let us assume that NT ≥ Δ. From eq. (1.5) we have Q(N) = e−𝜇(NT−Δ)∕2, with
𝜇 = 1∕E[D]. Imposing Q(N)|N=B∕L ≤ 𝜖B, we find

B ≥ L
Δ + E[D]| log(2𝜖B)|

T
(1.6)

Substituting the expression found for the initial delay Δ and recalling that the
end-to-end throughput of the audio/video packet flow is Λ = L∕T, we get

B ≥ ΛE[D](| log(2𝜖S) + log(2𝜖B)|) ⇒
B

ΛE[D]
≥ | log(4𝜖B𝜖S)| (1.7)

which gives the minimum required buffer size B as a function of the quantity Λ ⋅
E[D], the so called bandwidth-delay product (BDP). The BDP is a key parameter
in many networking problems. The dimensioning criterion of the buffer size B in
eq. (1.7) exemplifies in a clear way the role of the quality of service constraints (the
parameters 𝜖B and 𝜖S) and of key system parameters (the BDP in this case).

For 𝜖B = 𝜖S = 10−3, we have B ≈ 12.43 ⋅ (Λ ⋅ E[D]). With a buffer of 256 kbytes
we can face a mean network delay of about 41.2 ms for a throughput of 4 Mbit/s.

The expression in eqs. (1.2) and (1.7) hold for a negative exponential distribu-
tion of network delays. The analytical model developed above can in fact be used
with a general distribution of network delays, to dimension the initial delay Δ and
the buffer size B. The analytical formulas found for a general network delay dis-
tribution (eqs. (1.1) and (1.4)) can be used, at least numerically, to evaluate the
starvation probability S and the upper bound P of the overflow probability for given
values of the model parameters.

In the following we show the numerical results obtained by estimating the prob-
ability distribution of the network delay from a sample of measured round trip
times (RTTs). The RTT trace has been collected between a host in a WiFi access

�

� �

�

18 1 Introduction

0 2000 4000 6000 8000 10000

Sequence number, k

(a) (b)

0

100

200

300

400

500

600

N
e

tw
o

rk
 d

e
la

y
 s

a
m

p
le

s
,

D
k

0 20 40 60 80 100

Delay x (ms)

10–4

10–3

10–2

10–1

100

C
C

D
F

 o
f
n

e
tw

o
rk

 d
e

la
y
,
P

(D
 >

 x
)

E[D] =15.09 ms

Figure 1.4 Left plot: Sequence of RTT values measured between a host in a WiFi access
network and a server on public Internet. The sequence has been collected using ping
with an interval of 0.1 s between consecutive message sending times. Right plot:
empirical CCDF of the network delay D based on the RTT sequence shown in the left plot.

network and a server on the public internet, both located in Italy. The sequence
of collected samples is shown in Figure 1.4(a). Figure 1.4(a) suggests that the net-
work crossed by the packets exhibits a relatively large “random” variability of the
delays, on top of which there are occasional delay spikes, according to an appar-
ently random pattern. This hints to occasional heavy congestion phenomena, or to
some recurring high-priority task, carried out by the target server used to collect
RTT values, that causes a large delay of the echo_reply message.

Figure 1.4(b) illustrates the empirical CCDF of network delay. The estimated
mean delay is 15.1 ms, while the estimated standard deviation is 43.2 ms. The bulk
of probability is around the mean, yet there is a rather long tail that can hardly
be estimated, given the available number of samples. The variability of network
delay is evident also from the high value of the ratio of the standard deviation to
the mean6 .

The resulting numerical values of the starvation probability and of the overflow
probability are shown in Figure 1.5(a) as a function of Δ and in Figure 1.5(b) as
a function of B, respectively. We have assumed L = 1400 bytes and T = 33 ms (30
video frames per second).

The values of the initial delay and of the buffer size that meet the performance
requirements 𝜀S = 𝜀B = 10−2 are Δreq = 220.7 ms and B = 19.6 kbytes, respec-
tively. The effect of the slow decay of the CCDF of network delays appears in the
slow decay part of the curve of the starvation probability S as a function of Δ.

6 We have selected an extreme case, exhibiting a rarely seen large variability, to make numerical
results more interesting in the chosen model setting. For the same reason, we have directly used
the sequence of measured RTTs as representative of end-to-end network delays, without
halving them.

�

� �

�

1.3 An Example: Delay Equalization 19

0 100 200 300 400 500

Initial equalization delay, Δ

P
ro

b
a
b
ili

ty
 o

f
s
ta

rv
a
ti
o
n
,
S

10 15 20 25 30

Equalization buffer size, B (kbytes)

P
ro

b
a
b
ili

ty
 o

f
b
u
ff
e
r

o
v
e
rf

lo
w

,
P

10–3

10–2

10–1

100

10–3

10–2

10–1

100

T = 33 ms

L = 1400 bytes

Δreq = 220.7 ms Breq = 19.6 kbytes

T = 33 ms

L = 1400 bytes

(a) (b)

Figure 1.5 Left plot: starvation probability as a function of the initial delay Δ, assuming
an infinite size equalization buffer. The minimum initial delay that meets the starvation
probability requirement (dashed line) is Δreq = 220.7 ms. Right plot: buffer overflow
probability as a function of the equalization buffer size B. The minimum buffer size that
meets the packet loss probability requirement (dashed line) is Breq = 19.6 kbytes.

Even if numerical results are obtained by estimating the probability density
function of the network delays from real data, still there are a number of
assumptions underlying the model. Packet delays are assumed to be i.i.d. random
variables, the equalization buffer is assumed to be infinite, out-of-order packet
delivery has been neglected. To the cost of setting up a detailed simulation code,
we can remove all of these assumptions and check results, which we do in the
next section.

1.3.3 Analysis by Simulation

We can investigate the performance metrics of the delay equalization buffer by
means of simulations. At the cost of developing the simulation model, coding it,
and bearing the computational cost of running simulations (typically much more
expensive than evaluating the analytical model), we gain the possibility to relax the
assumptions we have made in the derivation of the analytical results of the previ-
ous section. Specifically, we can evaluate the frame loss probability (FLP) with the
given buffer size B and initial equalization delay Δ, without the need of assuming
an infinite buffer or resorting to upper bounds. As a consequence, starvation at
time tout,k occurs at the output of the buffer for two possible causes: (i) late arrival,
i.e., frame k has not arrived yet; (ii) loss, i.e., frame k had already arrived at the
input of the buffer, but it was dropped because of a full buffer at the time it arrived.
The FLP is defined as the probability of starvation, whichever the cause.

Given the values of T and L, the simulation of the equalization buffer depends
only on the parameters Δ and B, i.e., the initial delay and the buffer size.

�

� �

�

20 1 Introduction
F

ra
m

e
 l
o

s
s
 p

ro
b

a
b

ili
ty

 (
F

L
P

)

B (kbytes) Δ (ms)

0
0

0.2

0.4

0.6

020
200

400
40 600 0 100 200 300 400 500

Initial delay, Δ (ms)

F
ra

m
e

 l
o

s
s
 p

ro
b

a
b

ili
ty

B = 7 kbytes

B = 12.6 kbytes

B = 18.2 kbytes

B = 23.8 kbytes

10–4

10–3

10–2

10–1

100

(a) (b)

Figure 1.6 Simulations of the equalization buffer. Left plot: frame loss probability as a
function of the initial delay Δ and the buffer size B. Right plot: frame loss probability as a
function of the initial delay Δ for four different values of the buffer size B.

We account for the effect of the network still using the RTT experimental trace.
The buffer size is converted into the maximum number of packets it can contain,
Nmax = ⌊B∕L⌋.

Figure 1.6(a) shows the 3-D plot of the FLP, as a function ofΔ and B. As expected,
the FLP decreases, eventually going to 0 as the buffer size is increased7 . It might
appear counterintuitive that the FLP increases sharply with Δ for a given value of
B. This is especially evident for the smaller sizes of the buffer.

The reason for this behavior is that FLP is the sum of two components. Some
frames get lost because they arrive at the buffer after due time for play-out; other
frames are lost because they are dropped due to buffer overflow. The first compo-
nent is dominant at low Δ values (up to the order of a few standard deviations of
the network delay) then fades away quickly as Δ grows. The second component of
FLP is dominant when the buffer is small compared to the amount of frames that
can arrive during the initial delay Δ. Since frames arrive at an average rate of 1∕T,
on the average Δ ⋅ L∕T bytes arrive, before play out can start. If B is less than this
quantity, frame loss is massive.

A clearer picture of the phenomenon can be appreciated by plotting FLP as a
function of Δ for some values of B, as done in Figure 1.6(b). All curves have an ini-
tial common behavior, independent of B, that corresponds to the operation region
dominated by late arrivals. This is the behavior correctly predicted by the analyt-
ical model. Then, as Δ grows up further, the subsequent behavior breaks up into

7 The FLP can actually hit 0, since this is a data-driven simulation, where packet delays are
taken from a file of 10000 measured delays, hence there is a maximum delay and
correspondingly a maximum initial delay beyond which no frame loss occurs, for a large enough
buffer size. There are exactly 0 lost frames as soon as Δ > Δmax = max

k
{Dk} − D1 ≈ 533 ms and

for B > ΔmaxL∕T ≈ 22.6 kbytes.

�

� �

�

1.4 Outline of the Book 21

different branches as a function of B. The FLP grows sharply with Δ, when the
frame loss due to buffer overflows becomes dominant. The bigger B, the wider is
the favorable dimensioning interval, where we achieve a low FLP value.

The comparison between Figure1.5(b) and Figure 1.6(b) gives a striking visual
evidence of the gap between analytical model predictions and simulation results.
Due to assumptions required to make the model tractable, the analytical curve of
Figure 1.5(b) captures correctly the lower branch of the FLP curve resulting from
simulations, but it misses completely the sudden increase of FLP when Δ grows
beyond a threshold depending on B.

1.3.4 Takeaways

Consider a typical network traffic engineering problem, delay equalization. The
highlights are as follows:

1. Defining an analytical model entails major simplifications and assumptions,
the stronger the simpler the obtained results and potentially more insightful.

2. Analytical models may lose relevant effects or hold only for limited range of
system parameters. Care must be taken when drawing conclusions on the basis
of analytical models. They provide invaluable help in guiding the setup of more
detailed evaluation tools (e.g., simulations or measurements), but they could
miss some phenomena.

3. Simulations can be powerful, since they allow detailed modeling and enable
us to relax a lot of assumptions. Still, it must be considered that simulation is
based on models, Moreover, understanding the system dynamics by brute force
simulation can turn into searching for a needle in a haystack.

4. The design and dimensioning tasks become much more effective when one has
a good intuition and solid expectations on the system behavior.

5. Making illustrative graphs of the performance results, as well as visualizing the
data, can help a lot. Hence, it is worth spending a significant fraction of the time
allowance for performance evaluation on this task.

1.4 Outline of the Book

In this section we first give a concise account of the content of the next chapters.
Then we discuss possible uses of this book for courses and self-learning. Finally,
we introduce definitions and notation of general use throughout the book.

1.4.1 Plan

The book comprises ten chapters besides this one, plus an Appendix.

�

� �

�

22 1 Introduction

Chapter 2 is devoted to service system definition, the role of queueing models,
and general properties of queues in equilibrium. A service system is an abstrac-
tion of a physical or a logical element providing a function (the service) to users
according to a given level of quality, as measured by relevant performance metrics.
The service system is deemed to be out of service if the quality of service con-
straints are violated. In network traffic engineering, examples of service systems
can be a router, a web server, a virtual machine, a protocol, a (sub-)network, or a
data center. The structural elements of a service system are defined in Section 2.1,
and service demand is characterized in Section 2.2. Section 2.6 is devoted to the
formal definition of the traffic process. General properties of service systems in
statistical equilibrium are addressed. First, the notion of stationarity of a random
process is discussed. Then, Little’s law is stated and proved. The probability distri-
butions of the state seen at different event epochs of a service system are charac-
terized (Palm’s probability distributions). Finally, the most common performance
key indicators or metrics are introduced in Section 2.7.

The material in Chapter 3 is functional to applications to the modeling of net-
worked service systems. The Poisson process is first introduced and characterized.
Generalizations of the Poisson process are considered, namely nonhomogeneous
and spatial Poisson processes as well as the Markov modulated Poisson process.
Then, renewal processes are treated. Some operations on renewal process are ana-
lyzed in detail, namely excess variables and superposition. Finally, two special
classes of processes with many applications in network and service system analysis
are introduced: birth-death and branching processes.

Chapter 4 aims at a comprehensive account of the analysis of single server
queues. The M∕G∕1 queueing system is analyzed in depth, with specific attention
devoted to numerical evaluation of the probability distribution and to finite
waiting line systems. An asymptotic approximation of the loss probability of the
M∕G∕1∕K queue is presented as the queue size K grows. An account is given
also of the G∕M∕1 model and of extensions to matrix-geometric models of single
server queues, specifically the queues described by a quasi-birth-death (QBD)
process. The general result known as Reich’s formula, holding for any single
server queue, closes the chapter. More results for the general G∕G∕1 queue can
be obtained only via approximations and are dealt with in Chapter 8.

Chapter 5 focuses on queueing models with multiple parallel servers. The gen-
eral G∕G∕m model does not yield to closed-form analysis. Then, we address spe-
cial, yet relevant, cases, mostly based on Poisson arrivals. We consider both loss-
and wait-oriented systems. The first category is represented by the Erlang model,
i.e., the M∕G∕m∕0 queue, where there is no wait. This is of primary importance
in many practical applications, e.g., in modeling cellular networks. We give sev-
eral examples thereof. Then, we consider the M∕M∕m queue, that is completely
tractable and allows a good insight into the working of multi-server queues. We use

�

� �

�

1.4 Outline of the Book 23

this model to discuss a classic problem of service system, namely the comparison
between separate versus shared queues. Finally, we analyze infinite server mod-
els. In spite of their seemingly only theoretical relevance, they have highly useful
applications. We discuss the application of an infinite server model to the analysis
of message propagation in a line network.

Differentiated treatment of traffic flows and sharing of a communication or
processing resource are key issues in telecommunication networks as well as
in many other networked service systems (transportation, computing, energy
distribution, to mention few of them). We leverage on results of single server
queueing, specifically on the M∕G∕1 queue, to derive models of priority queueing
systems in Chapter 6. We address head-of-line, shortest job first, shortest remain-
ing processing time, and preemptive policies. We use those results to understand
the basic trade-offs of service policy differentiation. Ultimately, from a traffic
engineering perspective, we aim at characterizing the impact of introducing
prioritized service classes on performance perceived by different customers. The
second part of the chapter is devoted to scheduling. Major examples of scheduling
are introduced and analyzed, namely processor sharing, weighted fair queueing,
credit-based fair queueing, least attained service. A specific attention is payed to
weighted fair queueing, that has laid the conceptual ground on which one of the
major attempts of providing quality of service in the Internet has been founded.
Finally, we review optimal queueing disciplines for different classes of queueing
system, where the classification is based on what information can be exploited by
the service policy.

Chapter 7 is intended to provide a solid introduction to the vast topic of queue-
ing networks. There is a large body of literature on queueing networks, given
both the fundamental theoretical interest of the model by itself and its numer-
ous applications to communications networking, cloud computing, transportation
systems, manufacturing, inventory and storage management. We address first the
Jackson-type model of a queueing network, considering both open and closed
queueing networks. The general theory is discussed in detail. Optimization prob-
lems are defined, as well as extensive examples of use of those models applied
mostly to communication and transportation networks. The famous Braess para-
dox is discussed as a highly instructive warning on how even apparently simple
queueing network models can turn out to be deceptive to intuition. In addition, we
introduce loss networks, since they are a completely different model with respect
to most other queueing networks, so that they deserve an ad hoc treatment. Here
too we devote significant space to application examples of the model. Finally, we
discuss the stability of queueing networks, a topic of growing interest.

In Chapter 8 we review basic results and approaches for obtaining approximate
results with more general models than those for which exact solutions are
available. First, we consider G∕G queues, both single server and multi-server.

�

� �

�

24 1 Introduction

We derive bounds and approximations for the mean system time. We also intro-
duce an asymptotic bound for the waiting time probability distribution and the
Gaussian approximation based on the Brownian motion process. Approximate
analysis of the mean system time is extended to network of G∕G queues. We then
cover the fluid approximation, both as an asymptotic description of a properly
scaled process and as a continuous state approximation of discrete systems.
Within this framework, we address also stochastic fluid models. As an application
example, we apply the fluid model to the performance evaluation of a packet
multiplexer loaded with intermittent (On-Off) traffic sources.

The last three chapters form the third part of the book, devoted to application of
modeling and performance evaluation tools to three broad fields of networked ser-
vice systems: multiple access, congestion control and quality of service guarantees.

Models for Slotted ALOHA and carrier-sense multiple access (CSMA) are intro-
duced in Chapter 9 as an application of the tools defined in the previous parts.
Selected topics are discussed out of the huge existing literature. The main target
is twofold: (i) grasp how the general analysis tools of the previous chapters can
be applied to a specific technical context; (ii) give concrete examples of how the
working of a system can be understood and performance trade-offs characterized
by means of a model. Under this respect, multiple access systems are one of the
major examples of the potential of Markov chains. We first look at Slotted ALOHA,
devoting special attention to the stabilization of the protocol. Pure ALOHA is con-
sidered as well, specifically in the general case of variable length packets, which
leads to a new, nonclassic analysis. CSMA is then examined in detail. We consider
models able to describe a general multi-packet reception setting. Stabilization is
investigated as well. The remaining part of the chapter is devoted to the famous
WiFi MAC protocol, the CSMA/CA. We derive the saturation throughput, access
delay performance and give a thorough discussion of the drawbacks of the binary
exponential back-off mechanism, advocating an alternative back-off adaptation
algorithm, the so-called idle sense. Finally, the fairness issue of WiFi is discussed
and evaluated.

Congestion control is among the most important topics in network traffic engi-
neering. In Chapter 10, we address specifically congestion control in the Internet,
even if the considered models can be applied to other contexts, abstracting from
technology details. We address closed-loop congestion control as realized by the
Transmission Control Protocol (TCP). First, general ideas and definitions are laid
out. Then, several variants of the TCP congestion control algorithms are reviewed
(classic TCP, CUBIC, Vegas, DCTCP, BBR). As for the models, the fluid approx-
imation is used to gain insight into the dynamics of a TCP connection. First, a
simple constant capacity single bottleneck scenario is considered. Then, a variable
capacity model is introduced, thus showing the usefulness of the fluid approach
and at the same time, identifying a resonance phenomenon of TCP congestion

�

� �

�

1.4 Outline of the Book 25

control with the time scale of the bottleneck time-varying capacity. We consider
then fluid models of multiple TCP connections sharing a same fixed capacity bot-
tleneck link. We review models for classic TCP (with a drop-tail buffer and with a
buffer running an Active Queue Management algorithm) and models for DCTCP.
The fairness concept is explored and a general framework is introduced, based on
Network Utility Maximization (NUM). Besides giving a general approach to the
definition of fairness, NUM allows revisiting TCP congestion control, interpreting
the classic TCP operations as a distributed, iterative algorithm for the solution
of a global network optimization problem, namely the maximization of a social
utility function under link capacity constraints. Finally, we review the main traffic
engineering issues that TCP faces in current networking practice, highlighting
state-of-the-art approaches to solve them and open problems.

Chapter 11 is devoted to models of traffic sources, sharing a common network
resource, under strict quality of service (QoS) requirements. This framework is
apt for so called inelastic or inflexible traffic sources, that require their throughput
and delay to lie in suitable ranges to provide an effective service. We consider
first the deterministic traffic theory. It is based on nontrivial deterministic bounds
that describe the traffic source behavior and the service provided by network
elements. The main result it provides is a kind of “system theory” that allows
us to give worst-case end-to-end performance bounds for networked service
systems and to dimension network elements that guarantee a prescribed level
of quality of service. The down side is that performance bounds can sometimes
be quite loose. Moreover, the stochastic nature of traffic is not canceled alto-
gether, since we need to analyze and dimension devices (the “traffic shapers”)
that enforce deterministic bounds on the stochastic traffic flows offered to the
network. We move then to stochastic models of the multiplexing of inelastic
traffic sources. Here we introduce the concept of effective bandwidth and
give some major results on the relevant theory. We show how effective band-
wdith can be used to analyze and dimension a network of service elements,
exploiting the stochastic variability of the offered traffic to reap the so-called
multiplexing gain.

Finally, a primer on probability, random variables, and stochastic processes is
presented in the Appendix. It gives essential definitions and properties to ease the
reader of this book that needs a quick reference to refresh its background of prob-
ability and Markov chains.

1.4.2 Use

This book is meant as an advanced textbook, suitable for senior undergraduate,
graduate, and PhD students. It can be consulted also by those who need a solid
introduction to performance evaluation in an applied context. It aims to provide a

�

� �

�

26 1 Introduction

self-contained source text to cover traffic theory, queueing theory, and their appli-
cation to networked service systems.

The objective of the book is to provide a comprehensive guide to these topics:

◾ What traffic is, and how it is characterized and applied to networked systems.
◾ The performance evaluation tools from queueing theory, used to model, analyze,

and dimension service systems to which traffic is offered.
◾ Applications of performance evaluation tools to major aspects of networked sys-

tems, selected for their interest both from theoretical and application points of
view: multiple access, congestion control, quality of service.

The book can be a primary reference for classes in engineering, computer sci-
ence, data science, and statistics, for students desiring to gain understanding of
fundamentals of performance evaluation as well as aiming at consolidating a basic
knowledge with more advanced material. The book assumes a basic knowledge
of probability (a concise refresher is provided in the Appendix, tailored to topics
required in the book) and programming (any language will do; what matters is
having firmly understood the logic of programming). To appreciate fully several
examples of the book, it is useful to know the basics of TCP/IP networking and of
communication systems (especially cellular and wireless ones). Most undergradu-
ate students of computer, electrical, telecommunications, and industrial engineer-
ing and of computer science take classes on communication and networking at an
introductory level, which is more than enough to understand application examples
of this textbook. Occasional readers of this textbook could be found among grad-
uate students of data science, transportation engineering, physics, mathematics,
statistics as far as they need to manage, design and optimize service systems within
their work. As a matter of example, transportation is a prolific field for application
of queueing and traffic theory. It is not by chance that some examples presented
in this textbook are drawn from transportation systems. Moreover, many scientists
make extensive use of networking and computing facilities, which they often need
to tailor to their special needs.

A set of exercises is proposed at the end of each chapter. They provide a self-test
to assess the comprehension level of the subject of each chapter.

The book can be used modularly, given the dependencies among chapters, as
depicted in Figure 1.7.

A directed arc between two chapters represents a major dependence. An arc
labeled by section number means that the section of the source chapter is relevant
to the target chapter. A label with two section numbers, connected by an arrow,
means that the source chapter section is relevant for the target chapter section in
the label. If the lecturer wishes to focus on the mathematical tools (with possibly
some application examples), Parts I and II can be used. This way, a solid intro-
duction to traffic and queueing theory is provided, moving from first principles

�

� �

�

1.4 Outline of the Book 27

Figure 1.7 Dependencies among chapters.

2 5

4

(5.2 7.4)
3

6

8

7

(8.6)
10

(4.2) 9

11

1

(7.4 11.3)

and basic definition to rather advanced topics. If a short course is to be set up,
besides the whole of Part I, Chapters 4 and 5 provide an introductory cornerstone
to queueing theory (possibly skipping some more advanced topic, e.g., Sections 4.3,
4.7, 4.8, 5.5). According to available time, class interest and skills, the queueing
theory core could be extended by considering advanced topics in Chapters 4 and
5, covering also priority and scheduling in Chapter 6 or generalizing stand-alone
queueing systems to network of queues, dealt with in Chapter 7 or choosing topics
from Chapter 8, to introduce bounds and approximations that go beyond queueing
models yielding to mathematical analysis in closed form.

To offer a course leaning toward applications, Part I plus selected chapters from
Part II can be sampled and then Part III can be covered. The minimum set of
material to be covered in Part II in this case comprises Section 4.2 (the concept
of embedded Markov chain and its application to a single server queue) and
Section 8.6 (the fluid approximation). A richer selection of Part II chapters can be
organized according to the guidelines mentioned above.

1.4.3 Notation

Scalar variables are denoted usually with plain letters (e.g., x), while vectors are
denoted with small-capital boldface letters (e.g., x) and matrices with capital bold-
face letters (e.g., X). The identity matrix is denoted with I, while e stands for a
column vector of 1’s.

Time is usually denoted with t. Hence, Q(t) denotes a function of time. Space
variables are usually denoted with x, y, and z.

The usual mathematical notation is used for the sets of integer and real numbers,
ℤ and ℝ respectively. The notation ℝ+ (ℤ+) indicates the set of non-negative real
(resp., integer) numbers.

We use sometimes the o(⋅) and O(⋅) notation. Writing g(x) ∼ o(f (x)) for x → x0
means that lim

x→x0
g(x)∕f (x) = 0. Instead g(x) ∼ O(f (x)) for x → x0 means that the

ratio |g(x)∕f (x)| remains bounded as x → x0.
A − (+) subscript on a variable x corresponds to approaching x from

the left (right). As an example, f (x−) stands for lim
𝜖→0

f (x − |𝜖|). Analogously
f (x+) = lim

𝜖→0
f (x + |𝜖|). For a continuous function, it is f (x+) = f (x−), whereas a

�

� �

�

28 1 Introduction

function for which the two limits are finite, but f (x+) ≠ f (x−), is said to have a
jump at x.

The probability of event E is denoted with (E). I(E) denotes the indicator func-
tion of the event E: it is equal to 1 if and only if event E occurs.

Capital letters denote random variables, while sample values are usually
denoted with a small capital letter, e.g., the random variable V that takes a specific
value x is written as V = x.

The cumulative distribution function (CDF) of a random variable V is denoted
with FV (x) ≡ (V ≤ x), the complementary CDF (CCDF), sometimes also referred
to as survivor function, with GV (x) = (V > x) = 1 − FV (x). When existing, also the
PDF is used and it is given by fV (x) = F′(x) = −G′(x).

The expectation operator associated with the random variable X is denoted
with EX [⋅]. The subscript X is dropped unless it is necessary to avoid ambiguity.
Given a function g ∶ D → ℝ, where D is the domain of the random variable X ,
it is E[g(X)] = ∫Dg(x)dFX (x). Specifically, the mean value of X is denoted with
E[X]. The variance is denoted with 𝜎

2
X = E[X2] − (E[X])2. Sometimes the notation

Var(X) is used for the variance of the random variable X . The coefficient of
variation (COV) of the random variable X is defined as CX = 𝜎X∕E[X]. Also the
squared COV (SCOV) C2

X is used.
The Laplace transform of the PDF of a non-negative random variable

V is denoted with 𝜑V (s), and it can be calculated from 𝜑V (s) = E[e−sV] =
∫ ∞

0−
fV (x)e−sx dx.

For random variables defined over the entire real axis, we define the moment
generating function (MGF) 𝜙V (𝜃) = E[e𝜃V] = ∫ ∞

−∞ fV (x)ex𝜃 dx.
As for discrete random variables, the CDF, CCDF, and probability distribution of

a discrete random variable N are denoted with FN (k) = (N ≤ k), GN (k) = (N >

k) and pN (k) = (N = k) for k ∈ ℤ. Note that in the discrete case the equality sign
in the definition of the CDF is important.

The MGF of a non-negative discrete random variable N is denoted with 𝜙N (z).
It can be calculated from 𝜙N (z) = E[zN] =

∑∞
k=0 pN (k)zk.

The notation A ∼ B means that the random variables A and B have the same
probability distribution. The notation Z ∼ (a, b) means that Z is a Gaussian
random variable with mean a and variance b, while Z ∼ (a, b) denotes a ran-
dom variable Z uniformly distributed in the interval [a, b]. A random variable Z
with negative exponential probability distribution and mean a is denoted with
Z ∼ Exp(a).

Measure units follow the scientific International System, i.e., meters, seconds
and multiples thereof. The symbols and values of multiples and sub-multiples of
measure units used in this text are listed in Table 1.1 for reader’s ease.

A list of acronyms can be found at the beginning of the book.

�

� �

�

1.5 Further Readings 29

Table 1.1 Symbols of multipliers and sub-multipliers of measure units.

Symbol Name Value Symbol Name Value

k kilo 103 m milli 10−3

M Mega 106
𝜇 micro 10−6

G Giga 109 n nano 10−9

T Tera 1012 p pico 10−12

P Peta 1015 f femto 10−15

1.5 Further Readings

Many books can be consulted to integrate the material of this book or to provide
in-depth follow-ups.

A first group of references addresses applied probability and queueing theory
[54, 86, 94, 121, 130, 131, 196]. This list contains textbooks biased toward or
definitely devoted to queueing theory. While being excellent sources for learning
on queues, they are not concerned with any specific application. [94, 130, 131] are
classic introductory textbooks on queueing theory. [86] is a more recent textbook
on queueing theory and stochastic networks, with some emphasis on fluid
approximations. [54, 121] are mainly monographs on stochastic and queueing
networks. The comprehensive textbook [196] provides an excellent and thorough
introduction that covers everything from probability, to Markov chains, queues,
and simulation.

Another group of books, [30, 58, 98, 122, 137, 139, 193], leans more toward
applications to networked service systems, often in the realm of information
and communications technologies. [30] is a classic textbook on communication
network performance evaluation. It represents one of the first examples of a
perfect mix of technological aspects coupled with rigorous modeling, analysis and
dimensioning approaches, based on queueing theory and Markov chains. A much
more recent attempt to introduce modeling and performance analysis approaches
starting from real-life problems in offered by [58], with specific reference to social
networks and communication networks. It uses a wide range of mathematical
tools, mostly at an introductory level, and does not give any account of queueing
theory, except of elementary notions. The ponderous book of Kumar et al. [137]
overviews models and performance results for all aspects of communication
networks (multiplexing, switching, routing). It assumes that the reader is already
familiar with the required basic theory. It focuses only on performance models.
[98] gives a full introductory account of queueing theory, constantly coupling

�

� �

�

30 1 Introduction

theory and application to computer networks. The book is mostly at an introduc-
tory level. [122] is a very nice and concise book on rather advanced modeling,
mostly applied to communication and networking problems. This deep book is
a neat example of a smart balance between presenting methodological tools and
applying them to technical systems, even if examples are rather at high level and
do not touch many technical details of real systems. [139] is mainly an introductory
level queueing theory book, the last chapter overviewing applications to commu-
nication networks. The recent book [193] applies optimization, game and control
theories to modeling, analysis and dimensioning of communication networks.

Finally, to expand fundamental theories on probability and Markov chains, the
reader might refer to the following classic textbooks, being advised that many other
excellent books can be found: for probability theory [76, 90]; for Markov chains
and stochastic processes [172, 117, 60, 40]. A concise and rigorous introduction
to statistics can be found in Part II of [87], while statistics applied to performance
evaluation is presented in [145].

Since networks and networked system have been mentioned several times, it is
worth spending a word on a terminology clarification. Here “network” is meant
to be a technological network, i.e., the interconnection of service systems (either
physical or logical), set up to support a class of applications, e.g., telecommuni-
cations, computing, transportation, energy distribution, logistics and inventory,
industrial production. The word network is also meant sometimes to address
graph-based models of interconnected entities. This is more precisely referred to
as network science. Two reference textbooks on the subject are those by Albert Lás-
zló Barabási [24] and by Mark E. J. Newman [169]. While graphs are a widely used
model for any network, the focus of network science is on understanding the prop-
erties of graphs and what they mean to the specific “environment” being modeled.

The focus of this book is to apply rigorous mathematical methodology to the
performance evaluation, design, and optimization of technological networks. This
is essentially the difference between science and engineering (or, more broadly,
between fundamental and applied science). The former is concerned with model-
ing reality to understand it; the second aims at understanding in order to act on
reality.

Problems

1.1 Let an audiovisual (AV) frame have a constant length F bigger than the
maximum packet payload L, so that each AV frame requires m = ⌈F∕L⌉
packet to be conveyed to the destination. Play-out of an AV frame requires
all packets carrying the frame information to have been received in due
time. Generalize the analysis of the delay equalization buffer of this chapter
to the multi-packet per frame case.

�

� �

�

Problems 31

1.2 Generalize further the model of Problem 1.1 by letting the number M of
packets (each having a fixed length L) per AV frame be a random variable
with probability distribution qm ≡ (M = m), m ≥ 1. Give an expression of
the starvation probability for an assigned PDF of the network delay fD(x),
under the same assumptions as in Section 1.3.1.

�

� �

�

33

2

Service Systems and Queues

Things may come to those who wait, but only the things left by those who hustle.
Abraham Lincoln

2.1 Service System Structure

A service system is defined by three elements:

1. Structure. What parts the service system is composed of. Specifically, structure
relates to the resources the system can use to serve the demands posed by the
users.

2. Policies. These address the rules according to which the service system operates
on the demands of the users, exploiting its resources.

3. Capacity. This is maximum (upper bound) amount of work that the service
system can provide per unit time, given its structure and policies, to meet the
user demand as it grows unboundedly.

For example, let us consider the output line of a router. According to packet
switching principle (store and forward), packets destined to that output link are
handled by the network level entity of the output port. If the output line is idle
(no packet transmission is under way), the packet is immediately sent out onto
the link. Otherwise, packets arriving at a busy link are stored in the buffer of the
output port, waiting for their opportunity to be sent out.

The service system structure is the network entity of the link, equipped with
buffer space B and capacity C provided by the lower-layer entity (data link layer
entity). The former is measured in terms of the maximum number of bytes or pack-
ets that can be stored in the buffer. The second one is measured by the maximum
number of bits that the lower layer entity accepts (to be delivered onto the link)

Network Traffic Engineering: Stochastic Models and Applications, First Edition. Andrea Baiocchi.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

�

� �

�

34 2 Service Systems and Queues

per unit time. These two elements are the key components of the structure of the
service system at hand.

The policies specify the rules according to which a new packet is selected out of
the buffer for service (delivery onto the output link) as soon as the link is available.
An example of queueing discipline is FIFO (first-in, first-out), the well-known pol-
icy that prescribes that packets be served in the same order as they have arrived.
This discipline is quite simple to realize, since it can be implemented by using two
circular pointers (addresses) and a sequential memory. One address points at the
first byte of the oldest packet in the buffer (the first to go, as soon as the link is avail-
able), the other address points at the tail of the queue, that is at the first empty byte
of the buffer space.

Other disciplines are: (i) LIFO (last-in, first-out), the one used by a CPU serving
procedure calls; (ii) HOL (head-of-line) priority queueing, where each incoming
packet carries a label that assigns a priority to the packet. With HOL priority, pack-
ets with higher priority are served first. A packet with priority j is served only if
there is no packet with priority i < j waiting for service. Packets with a same prior-
ity are served in FIFO order. Priorities can also be dependent on the time it takes to
serve a packet or they can be time-varying, e.g., a packet priority can grow up with
its queueing time proportionally to a constant bi for packets belonging to class i.

Yet another example of discipline is the fair queueing (FQ) or its limiting case
PS (processor sharing), where the server gives slices of service to each active
“task” according to a round robin schedule (possibly weighted), until its service is
completed. More complicated policies than round robin are sometimes referred to
under the hat of FQ, where competing active “tasks” are served according to some
credit they accumulate. Each time a service slice is granted, some credit is spent.
Then, the service system picks the task with the highest credit for the next slice.

Examples of other queueing disciplines can depend on the amount of work
demanded by a task, e.g., shortest job first (SJF) or least attained service (LAS).
With the former one, the task requiring the least amount of work is chosen as the
next one to serve. In the latter one, the task that requires the least amount of time
to complete its demand is selected for the assignment of the service slice.

Finally, the capacity of the service system in our example (the output link of a
router) is the link capacity C, offered by the lower layer to carry packets.

When referring to a generic service system, we name the service requests
as customers. The facilities of the service system that are assigned to a service
request are called servers. In each given context, specific terms are used to
replace the generic terminology customer and server (e.g., packet and link in the
previous example).

Besides structure, policy and capacity, a service system description encompasses
the characterization of the service demand, which we address in the next section.

�

� �

�

2.2 Arrival and Service Processes 35

2.2 Arrival and Service Processes

Service demand is made up of two elements:

1. Service request submission to the system, or customer arrivals
2. Amount of service needed by each service request, or service time of a customer

The first element is given by the arrival process, a (generally statistical) descrip-
tion of the pattern of the service requests on the time axis. Let Tk denote the
time elapsing between the (k − 1)-th and the k-th request arrivals. That quantity
is called the k-th inter-arrival time. It is positive and can be characterized as a ran-
dom variable with the cumulative distribution function (CDF) FTk

(t) = (Tk ≤ t)
or the complementary cumulative distribution function (CCDF) GTk

(t) = (Tk >

t) = 1 − FTk
(t), t ≥ 0, sometimes also referred to as the survivor function. We define

also the cumulative arrival time, from the initial time until the k-th arrival, Sk =
T1 + T2 + · · · + Tk, for k ≥ 1.

For a stationary arrival process, the probability distribution of Tk does not
depend on k. Hence we simplify notation and denote the random variable
sharing the common probability distribution of all inter-arrival times with T. The
corresponding survivor function and the probability density function (PDF)1 are,
respectively, GT(t) and fT(t) = −G′

T(t). The mean arrival rate 𝜆 is by definition the
reciprocal of the mean inter-arrival time E[T], i.e., 𝜆 = 1∕E[T], with

E[T] = ∫
∞

0
tfT(t) dt = ∫

∞

0
GT(t) dt (2.1)

It is possible that, at each arrival, more than a single service request is posed to
the service system (batch arrivals). Then, we have to add another discrete, positive
random variable, Gk, that gives the size of the k-th batch. It is characterized by
the probability distribution pGk

(n) = (Gk = n) for n ≥ 1. For a stationary batch
process, the probability distribution of Gk does not depend on k. In a batch arrival
process, inter-arrival times refer to batch arrivals.

An alternative way to describe a customer arrival process is by means of a
counting process. Let A(0, t) be a non-negative integer representing the number

1 In principle, the PDF, when it exists, is equivalent to the CDF as a description of the statistical
properties of a random variable. In practice, there are a number of reasons why it is often
preferable to use the CDF (or the CCDF), especially in numerical computations: (i) CDF and
CCDF are probabilities; as such they are always comprised between 0 and 1, whereas a PDF can
take any non-negative value; (ii) CDF and CCDF have monotonicity properties, the PDF has
none in general; (iii) CDF and CCDF are nondimensional, whereas a PDF has dimension of the
reciprocal of the dimension of the random variable; e.g., the PDF of an inter-arrival time is
measured as a frequency, the PDF of a distance is measured as the inverse of a length; and (iv) in
case of probability masses concentrated at given points, the CDF and the CCDF have jumps,
whereas the PDF requires using the Dirac delta function.

�

� �

�

36 2 Service Systems and Queues

x x x x
Time

x x x x x x xx x

T6

S6

13
12
11
10
9
8
7
6
5
4
3
2
1
0

t

A(0, t) = 7

Figure 2.1 Example of
counting process: the
inter-arrival time T6,
between arrival events 5 and
6, is highlighted along with
the cumulative time S6, from
time 0 up to arrival 6.

of arrivals in the interval (0, t]. This quantity can be characterized as a random
process, whose realizations are step functions, that are almost always constant
and jump by one (or by a random integer amount, in case of batch arrivals) at
the times immediately after a customer arrival. An example of arrival counting
process is depicted in Figure 2.1.

A fundamental relationship can be written between the cumulative arrival time
and the counting process of the arrivals. It is easy to verify that the event Sk > t is
equivalent to the event A(0, t) < k. Therefore,

(A(0, t) < k) = (Sk > t) (2.2)

or (A(0, t) < k) = 1 − FSk
(t); then

(A(0, t) = k) = FSk
(t) − FSk+1

(t), k ≥ 0 (2.3)

with the convention that FS0
(t) ≡ 1 for t ≥ 0. As a special case, we find (A(0, t) =

0) = 1 − FT1
(t) = (T1 > t). If the mean of A(0, t) exists, eq. (2.3) yields

E[A(0, t)] =
∞∑

k=1
FSk

(t) (2.4)

As for the service times, each customer arrival brings with it an amount of
service demand, that can be measured by how many (and also what type of)
resources it needs to accomplish its service and how long it will keep those
resources engaged. For example, a packet arriving at the output link of a router
requires being sent out. It engages the output link for a time equal to its transmis-
sion time. For a constant capacity output link, the service time of the k-th packet
is simply Lk∕C, where Lk is the length of the k-th packet. In general, we denote
with Xk the service time of the k-th customer. It can be characterized as a random
variable with survivor function GXk

(x) = (Xk > x), x ≥ 0.
Note that the amount of the demand that customers pose to a service system

depends both on arrival and service processes. If we just say that there is one packet

�

� �

�

2.2 Arrival and Service Processes 37

arriving per ms on the average, we are not giving a complete picture of the load on
the output link. The amount of time that the link is busy transmitting (=serving)
packets is in fact proportional to the packet lengths, so it makes a big difference
whether incoming packets are 1500 bytes long or only 52 bytes long. If one observes
the link out of a local router (i.e., a router at the access of the network), when
downloading a file from a remote site, it will probably be the case that the input
bit rate (also referred to as downlink bit rate in the ADSL context) is something
like 30–40 times the output bit rate (uplink bit rate). The reason is that incoming
packets carry TCP data segments (e.g., for http page download or file transfer),
while outgoing packets just carry TCP ACKs, with no payload. Their service times
being proportional to packet lengths, it is apparent that the load on the uplink is
much lighter than the load on the downlink.

Any description of the demand on a service system must encompass both
arrivals and service times. By putting them together, we can define the unfinished
work or workload U(t) of a service system. It is the amount of work that servers
have to carry out to empty the system at time t, provided no more customers
arrive at the system. This is also known as the virtual waiting time, since U(t)
would be the amount of time an hypothetical (hence virtual) customer arriving
at time t should wait for service, if FIFO discipline is adopted. In general U(t) is
a stochastic process2, since it is driven by random customer arrivals and service
demands. A sketch of a sample path of U(t) for a work-conserving3, single-server
system is shown in Figure 2.2.

The time elapsing between an arrival that finds the system idle and the subse-
quent departure that leaves the system idle is called busyperiod. The time interval
during which the system is continuously idle is called idle time (see Figure 2.2).

The slope of the decay of U(t) between two consecutive arrivals is −1, i.e., 1 sec
of work for sec of elapsed time, until it hits the x-axis; then it stays at 0, until a new
arrival occurs. At each new arrival, the function U(t) jumps up by the amount of
the service time brought into the system by the arriving customer, provided it can
enter the system.

x x x x
t

X6

x x x x x x xx x

Busy period
U(t)

Idle time

Figure 2.2 Example of workload process of a work-conserving, single-server system: a
sample service time, X6, is highlighted along with samples of a busy period and an idle
time.

2 See the Appendix at the end of the book for a concise review of main probability theory
definitions and some results useful for the topics dealt with in this book.
3 See Section 2.3 for a formal definition.

�

� �

�

38 2 Service Systems and Queues

Given the sequence of inter-arrival times {Tk}k≥1 and service times {Xk}k≥1, it is
easy to write a recursion giving the value of the unfinished work seen by arriving
customers. Let Uk ≡ U(tk−) be the amount of unfinished work seen by the cus-
tomer arriving at time tk. We have

Uk+1 = max{0,Uk + Xk − Tk+1} , k ≥ 1, (2.5)

with the initial condition U1 = 0. The recursion holds for a work-conserving,
single-server system that accepts all arriving customer (no rejection).

If the mean duration of the busy period is finite, we can write a simple rela-
tionship between the mean busy period, the mean idle time, and the utilization
coefficient of the server, i.e., the mean fraction of time that the server is busy. It is

𝜌 = E[Y]
E[Y] + E[I]

(2.6)

where Y and I denote the random variables associated with the busy period and
the idle time.

Example 2.1 A simple variant of (2.5) is obtained if we assume that arriving
customers do not join the queue if the system time exceeds a threshold. Let us
assume that the k-th arriving customer has a time deadline Dk, and that it can
evaluate the amount of work to be done before it can get its own service done
(response time). With a FIFO discipline the response time of the k-th customer
is Uk + Xk (including customer’s service time). Then, the k-th customer joins the
queue if Uk + Xk ≤ Dk, it leaves immediately if the opposite is true. The recursion
becomes:

Uk+1 =

{
max{0,Uk + Xk − Tk+1} Uk + Xk ≤ Dk,

max{0,Uk − Tk+1} Uk + Xk > Dk.
(2.7)

Example 2.2 Yet another variant is obtained if we define a utility the customer
gains for each second of received service, say u, and a penalty it suffers for each
second of waiting time before service, say c. The customer joins the system if its net
utility is positive, i.e., only if uXk − cUk > 0. The parameters u and c could possibly
be customer specific, i.e., they could depend on k.

2.3 The Queue as a Service System Model

A queue is a mathematical model of a service system. It is defined by

1. the arrival process;
2. the service process;
3. the structural elements.

�

� �

�

2.3 The Queue as a Service System Model 39

The last ones are the waiting line size, the queue discipline (service policy), and
the number of servers. It is assumed that servers are interchangeable and fully
accessible, unless otherwise specified. Moreover, we consistently assume that con-
sidered service systems are work-conserving, single arrival, single service.

Work-conserving means that no work is created or destroyed in the system, i.e.,
a customer entering the system will eventually complete its service with probabil-
ity 1 and, conversely, any server that becomes idle will immediately pick another
customer from the waiting line, if there is at least one.

Single arrival and single service means that the event that two or more customers
arrive at the same time or terminate their respective services at the same time is
ruled out. As opposed to this assumption, bulk arrival (bulk service) means that
groups of customers arriving at the same time are possible (groups of customer
served in a bundle all together are possible). Bulk arrivals (services) are sometimes
referred to as batch arrivals (services).

The queue evolution is described by stochastic processes that represent the
amount of unfinished work in the queue at a given time, U(t), or the number of
customers in the system, Q(t), the waiting time of an arriving customer accepted
into the system at time t, W(t), the number of servers engaged into service, M(t),
and similar others.

A notation to denote the main characteristics of a queueing system has been
defined by David G. Kendall. It consists of a five-tuple A∕B∕m∕K∕N.

The letters A and B stand for acronyms, denoting the arrival and service process
respectively. Used acronyms are: (i) M for Poisson process, i.e., negative exponen-
tial inter-arrival or service times, identically distributed and independent of one
another (see Section 3.2); (ii) D stands for deterministic; and (iii) G (sometimes
noted GI) is a general renewal process (see Section 3.4); iv) MMPP is the Markov
Modulated Poisson Process, i.e., a Poisson process whose mean arrival rate is a
function of the state of a finite, discrete-state Markov process (see Section 3.3),
and so on and so forth.

As for the last three fields of the notation, m is an integer number ≥ 1 that
denotes the number of servers, while K is the size of the waiting line, i.e., the max-
imum number of customers that can be accommodated in the system waiting for
service. Finally, N denotes the size of the population of customers that offer ser-
vice requests to the queue. Either of these three integer numbers can be infinite. If
they are infinite, the parameters K and N are omitted in the notation. For example,
M∕M∕1 denotes a single server, infinite size queueing system whose arrivals follow
a Poisson process and service times are exponentially i.i.d. random variables. Such
a model can only delay customer service requests, since no request gets rejected
for lack of room in the queue.

In the following we will use consistently the notation T and X to refer to cus-
tomer inter-arrival and service times, respectively. We will also use the notation 𝜆

�

� �

�

40 2 Service Systems and Queues

and 𝜇 to denote the mean customer arrival rate and server service completion rate,
i.e., 𝜆 = 1∕E[T] and 𝜇 = 1∕E[X].

2.4 Queues in Equilibrium

2.4.1 Queues and Stationary Processes

A queueing model of a service system is described by random processes that give,
e.g., the number of customers in the queue, Q(t), the unfinished work, U(t), the
waiting time of the n-th customer, Wn. As pointed out by even these few examples,
processes of interest include integer and real valued quantities, indexed either by
discrete or by continuous time.

A stochastic process usually describes the behavior of a dynamical system. Start-
ing from an initial state, the evolution of a dynamical system goes through a tran-
sient phase, after which it eventually settles on a steady-state equilibrium. For
stochastic systems, the steady-state equilibrium corresponds to fluctuations of the
system variables that are governed by probability laws invariant with respect to a
time shift. System variables are not constant at steady-state. Rather, their proba-
bility distribution does not depend on time. While transient is unavoidable when
starting off a given initial state, steady-state can possibly be never attained., e.g.,
unstable system never settle on a steady-state statistical equilibrium. The con-
cepts of transient and stationary phases applies to stochastic processes as well. The
reason why we are interested in stationary processes is that performance metrics
evaluated on a stationary stochastic system do not depend on the time when we
observe the system, so that they are informative of a general property of the system
itself. That description of the system holds as long as we can assume or guarantee
that stationarity of the queue processes holds.

For example, let us consider a 10 Gbit/s link connecting the campus network of
University of Rome La Sapienza to the GARR backbone, that is to say the back-
bone network of academic and research institutions in Italy (this backbone is, in
turn, interconnected to the Internet)4. The so-called Multi Router Traffic Grapher
(MRTG) diagrams of the link are plotted in Figure 2.3. Each graph shows the input
and output profile of the traffic in Gbit/s versus time. The time scale changes across
the four diagrams shown in Figure 2.3.

The top plot runs over the day time scale. It shows the plots of the input/output
traffic for two consecutive days, Friday and Saturday. The day cycle of traffic,
with a fast rise in the morning, fluctuations over the working day (with a notch
around lunch time) and a fall going toward the evening is typical of links where

4 The data displayed in Figure 2.3 is available at https://gins.garr.it, under the heading
“Statistics.”

�

� �

�

2.4 Queues in Equilibrium 41

Figure 2.3 MRTG diagrams of a 10 Gbit/s link connecting the campus network of
University of Rome La Sapienza to the Italian academic backbone and to the Internet. The
diagrams refer to different time scales. From top to bottom, the time scale goes
respectively over two consecutive days, weeks, months, years. Shaded profile curve: input
traffic. White profile curve: output traffic.

human-related traffic is dominant and we are in a working context. Traffic profile
for residential connections may have a traffic peak in the evening and relatively
low traffic intensity during the late morning/early afternoon.

The second plot corresponds to a week time scale. Apparently working
days present a similar traffic profile (the traffic process can be described as
cyclo-stationary), except of weekend days, where traffic is remarkably lower.
Again, this is typical of working environments, where a major component of the
traffic is generated by human activity.

The third graph is over the month time scale. Here we can appreciate a seasonal
effect. Since the measurements have been run in mid-September, the month time
scale encompasses weeks from the months of August and September. Mid-August
is clearly a slack time for this link, as expected, since most human activities are
paused during the central part of August in Italy, where the link is.

�

� �

�

42 2 Service Systems and Queues

The fourth diagram has a year time scale going from mid-September to
mid-September over two years. Apart from notches around mid-August and a
hole at the end of the second instance of December (problably due to maintenance
of the system), the traffic profile appears to be quite regular.

In general, stationarity is a property of a mathematical model that can apply
with more or less accuracy to a given practical system. Only a deep understanding
of the main driving forces that generate demand and of the mechanisms of the
service system being modeled can assist the designer to judge whether stationary
models can be assumed and for which time scale. Conversely, equilibrium per-
formance predictions obtained from the model can provide a faithful picture of
system performance only for time spans in the order of the stationarity time scale.

A queue is a mathematical model of a service system (see Section 2.3). Such
a system can be described by a state, whose evolution is driven by external pro-
cesses. The input-state-output representation of systems apply to queues, e.g., if
we consider the number of customers in the queue, Q(t), we can write

Q(t + u) = Q(t) + A(t, t + u) − D(t, t + u) (2.8)

where A(a, b) and D(a, b) are the number of customer arrivals and departures in
the time interval (a, b], respectively. The arrival counting process A(a, b) is the
external “force” driving the system, while the departure process is a consequence
of the interaction of the arrivals with the system structure and working rules (serv-
ing policy).

As usual with dynamical system description, we can identify a transient regime
and a (possibly nonexistent) stationary regime. When started in an arbitrary state,
the system evolves and eventually it settles on a stationary regime, if attainable. For
a stochastic system, a stationary regime is characterized by invariance with respect
to time shifts of the statistical description of the system processes. Obviously, Q(t)
is always variable with time, and fluctuations of Q(t) can well be expected. What
becomes invariant with time is the (limiting) probability distribution of the ran-
dom variable Q(t) and hence its moments. In other words, the random variables
sampled by the process realizations at different times share the same probabil-
ity distribution. By following this approach, we are led to define the steady-state
probability distribution of a queue as the limit of the probability distribution of the
processes that describe the queue, and specifically of the number of customers in
the queue, if the limit exists.

Formally, let pk(t) = (Q(t) = k) for k ∈ {0,… ,m + K}, m and K being the num-
ber of servers and the waiting line size, respectively. Given an initial probability
distribution pk(0) = (Q(0) = k) = qk, we say Q(t) admits a steady-state, if the limit

lim
t→∞

pk(t) = pk, 0 ≤ k ≤ m + K (2.9)

�

� �

�

2.4 Queues in Equilibrium 43

exists, and the limiting constants form a probability distribution, i.e., pk ∈ [0, 1]
and

∑m+K
k=0 pk = 1. The limiting probability distribution characterizes what we call

the statistical equilibrium of the random process Q(t). The equilibrium probability
distribution (when it exists) describes the long-term behavior of the system.

We define also the stationary probability distribution of a system: The prob-
ability distribution {sk}0≤k≤m+K is said to be stationary, if letting pk(0) = sk, k =
0,… ,m + K implies that pk(t) = sk, k = 0,… ,m + K for any t > 0. The stationary
probability distribution does not necessarily exist, nor must it be unique or coin-
cide necessarily with the limiting probability distribution. In most applications,
stochastic modeling of the service system leads to a Markov process model (see
the Appendix at the end of the book for a concise review). Often enough, for some
values of the involved parameters, such models yield a unique stationary probabil-
ity distribution, a unique limiting one and the two coincide. A thorough discussion
of these issues for Markov chains is given in [196, Ch. 9].

In general, the limiting probability distribution, if it exists, depends on the cho-
sen initial distribution qk. For example, consider a service system with servers
that double their serving capacity when the queue content exceeds a threshold
𝜃 and back it off to normal capacity as soon as the queue length falls below 𝜃.
Assume that the customer population arrival rate increases, if the quality of ser-
vice of the system is good while it decreases, if a poor quality of service is provided.
If the system is started at time 0 from a state k > 𝜃, customer demand reacts to the
good quality (doubled service capacity) by a fast increase and the system tends to
settle on high throughput levels, with possibly a large average occupancy. If on
the contrary the initial state is k < 𝜃, the poor perceived quality of service will
drive customers away, so that the system can settle on a low level equilibrium,
consistently below the threshold level 𝜃. If an observer samples the system at equi-
librium (steady-state), it could find either a high or low average queue size level
and the observation outcome depends on the initial state of the system. As another
example, the distance traveled by a message forwarded in a vehicular network
by means of multi-hopping will depend essentially on the initial vehicle spatial
distribution, e.g., if it is clustered with large gaps in between, hence possible dis-
connections, or uniform along the road lanes.

We are very interested in service systems that admit a statistical equilibrium as
t → ∞ and such that the limiting state distribution does not depend on the initial
conditions. Those systems have typical equilibria, that is to say, when they settle
on their statistical equilibrium, their dynamics is the same no matter the way they
were started off and what the transient path to equilibrium has been.

We say that a queue is ergodic if the limit in eq. (2.9) exists and it is independent
of the initial probability distribution qk. The “physical” intuition of an ergodic sys-
tem is one that touches all possible states with some given probability, when it is in

�

� �

�

44 2 Service Systems and Queues

50 100

Time

P
ro

c
e

s
s
 s

a
m

p
le

150 200
0

1

2

3

4

5

6

7 Figure 2.4 Illustration of time
average and ensemble average for a
stochastic process.

equilibrium, given that evolution rolls out for a time interval long enough (math-
ematically: as the time horizon tends to infinity). Then, time averages on a single
(sufficiently long) realization yield the same result as ensemble averages, concep-
tually done on all realizations at a fixed time of the equilibrium, as if they were
running in infinitely many parallel universes.

An illustrative example of this concept is given in Figure 2.4. Here six realiza-
tions of a correlated Gaussian process X(t) are shown. The average value of the
process can be found by averaging a single realization over time (any one of the
horizontal curves), or by selecting a generic time point and averaging the values
of the six process realizations at that time (e.g., the time 100 in the figure, where
the values assumed by the realizations are marked with a cross sign). The two
procedures lead to the same result for an ergodic process.

When we write E[X(t0)], we refer to the second approach, i.e., we refer to the
limit (with probability 1) of 1

N

∑N
j=1 xj(t0) as N → ∞. Here xj(t) is the j-th realization

of the stochastic process X(t). If the stochastic process X(t) is ergodic, then E[X(t0)]
can be obtained as well by the limit of 1

T
∫ t0+T∕2

t0−T∕2 x(t) dt as T → ∞. Here x(t) denotes
a generic realization of the stochastic process X(t). Note that in both definitions
we assume that the resulting value does not depend on t0 (stationary or statistical
equilibrium).

Ergodicity is a key property to reconcile the performance predictions based on
modeling with estimates worked out from system realizations (either by means
of computer simulations or measurements). In the latter case, we deal with a sin-
gle realization of the stochastic process observed for some time interval. There-
fore, performance metrics are obtained as time averages. On the other hand, ana-
lytic modeling yields expectations, i.e., ensemble averages, obtained by averaging
over different realizations of the stochastic process. Only if the quantities obtained
according to these two approaches lead to same values can we rely on analytical
performance predictions, validate a model with measurements, or interpret simu-
lation results as estimates of the performance metrics of the system.

�

� �

�

2.4 Queues in Equilibrium 45

2.4.2 Little’s Law

Let us consider a service system that is offered a flow of customers arriving accord-
ing to a stationary stochastic process. The system provides each customer with
a service that lasts an amount of time drawn from a stationary probability dis-
tribution. Customers entering the system receive service with probability 1, and
they get out of the system within a finite time with probability 1. We assume a
single-arrival, single-service system, i.e., bulk arrivals or service are ruled out.

Let us fix an arbitrary time origin and consider the time interval (0,T]. Let A(t)
be the number of arrivals in (0, t] for the chosen time origin and any positive t. We
assume that the arrival process is nondegenerate, i.e., that for any positive k we
have (A(t) ≥ k) → 1 as t → ∞. Note that lim

T→∞
A(T)

T
> 0 for a nondegenrate arrival

process. Let 0 < ta,1 < ta,2 < · · · < ta,A(T) be the arrival times in the interval (0,T],
if A(T) > 0. The arrival process being stationary and nondegenerate, a first arrival
must appear in a finite time with probability 1. Since we are interested in the limit
for T → ∞, we can safely assume that A(T) > 0 hereinafter.

Let D(t) be the number of departures from the system in the interval (0, t] for
any positive t. Let also 0 < td,1 < td,2 < · · · < td,D(T) be the departure times in the
interval (0,T], if D(T) > 0. Again, since service times are assumed to be finite with
probability 1, D(T) becomes positive with probability 1 as time T grows. Note that
the indexing of the departure times follows the temporal ordering. Let td,jk

be the
departing time of the customer arrived at time ta,k, k = 1,… ,A(T).

We consider the function

N(t) = N(0) + A(t) − D(t) (2.10)

It represents the number of customers in the system at time t, by the very def-
inition of A(t) and D(t). The functions A(t) and D(t) are step-wise, monotonously
nondecreasing functions, with unit steps at arrival and departures times, respec-
tively. Also, it must be A(t) ≥ D(t), ∀t. The area between the two functions is simply
the area of rectangles with unit height and length equal to td,k − ta,k for the k-th
one. Figure 2.5 shows a sample path of the arrival counting process and of the
departure counting process of a queue.

Figure 2.5 Example of arrival and
departure processes of a queue. The
number of customers at time t, N(t), can
be found as the difference between the
upper step-wise curve and the lower
step-wise curve at t. Crosses mark
arrival epochs. Departures occur at
jumps of the lower step-wise curve.

x x x x
Time

Busy period

x x x x x x xx x

12
11
10
9
9
8
7
6
5
4
3
2
1
0

t

N(t) = 2

�

� �

�

46 2 Service Systems and Queues

The time average of N(t) is

⟨N(t)⟩T ≡ 1
T ∫

T

0
N(t)dt = 1

T

A(T)∑
k=−N(0)+1

(min{T, td,k} − max{0, ta,k})

= 1
T

0∑
k=−N(0)+1

min{T, td,k} +
1
T

A(T)∑
k=1

(min{T, td,k} − ta,k)

= 1
T

0∑
k=−N(0)+1

min{T, td,k} +
1
T

D(T)∑
k=1

(td,k − ta,k) +
1
T

A(T)∑
k=D(T)+1

(T − ta,k)

= 1
T

0∑
k=−N(0)+1

min{T, td,k} +
1
T

A(T)∑
k=1

(td,k − ta,k) −
1
T

A(T)∑
k=D(T)+1

(T − td,k)

(2.11)

where arrivals with nonpositive index (from −N(0) + 1 to 0) refer to the
arrival times of those users that at time 0 are found inside the system. In
eq. (2.11) a sum is intended as equal to 0 if the lower index is greater than the
upper index.

The first sum appearing in eq. (2.11), apart from the factor 1∕T, is upper
bounded by the amount of unfinished work found into the system at the initial
time 0, i.e., the amount of work required to clear all the backlog in the system at
time 0. The last sum is nothing but the unfinished work of the queue at time T,
i.e., the amount of service time required to complete service of all customers in
the queue at time T. Let us denote the unfinished work at time t as U(t): then
the first term in eq. (2.11) is bounded by U(0)∕T and the last term is U(T)∕T.
Therefore

⟨N(t)⟩T = 1
T

0∑
k=−N(0)+1

min{T, td,k} +
1
T

A(T)∑
k=1

(td,k − ta,k) −
U(T)

T
(2.12)

Since the system is at equilibrium, U(0) must be finite with probability 1. More-
over, assuming that the queue is stable as T → ∞ means that the unfinished work
U(T) is bounded above with probability 1, so that lim

T→∞
U(0)∕T = lim

T→∞
U(T)∕T = 0

with probability 1.
The key point is that any service order corresponds to a permutation of the inte-

ger set {1, 2,… ,A(T)}. Let the customers be labeled with integers 1, 2,… ,A(T),
according to their arrival order. Let jk denote the index of the customer departing
at time td,k. Let Θk = td,jk

− ta,k be the system time of the k-th customer. Then, we

�

� �

�

2.4 Queues in Equilibrium 47

have w.p. 1

E[N] = lim
T→∞

⟨N(t)⟩T [ergodicity]

= lim
T→∞

1
T

A(T)∑
k=1

(td,k − ta,k) [neglect the 1st and 3rd terms in eq.2.11]

= lim
T→∞

1
T

A(T)∑
k=1

(td,k − ta,jk
) [sum commutativity]

= lim
T→∞

1
T

A(T)∑
k=1

Θjk
= lim

T→∞

1
T

A(T)∑
k=1

Θk [by definition of Θ’s]

= lim
T→∞

A(T)
T

1
A(T)

A(T)∑
k=1

Θk = 𝜆 ⋅ E[Θ]

In deriving the above result we exploit the assumption that A(T) goes to infinity
so that the ratio A(T)∕T tends to a finite, positive limit 𝜆 as T → ∞. This is in
essence the notion of “stationarity” we need, i.e., the arrival process cannot die
out after a finite time or even slow down arrivals so that they become too sporadic.
We also use the fact that permuting the order of summands does not change the
sum value. We summarize the result as follows, where we adopt the notation most
usually found in the Little’s theorem statement [148].

Theorem 2.1 In a work-conserving service system at statistical equilibrium the
limiting time-average number of customers in the system is equal to a constant L
with probability 1; the sample path-average system time per customer is also equal
to a constant W with probability 1, and the two are tied by L = 𝜆W , where 𝜆 is the
time-average arrival rate of customers admitted into the system, i.e., the reciprocal
of their average inter-arrival time.

The obtained result is called Little’s law. It states that, in a service system (queue)
at statistical equilibrium, the mean number of customers inside the system at any
given time (since we are at equilibrium, the mean is independent of time!) equals
the product of the mean rate of customers entering the system by the mean sojourn
time of a customer. Since we are at equilibrium, the mean rate in the system is
equal to the mean departure rate of customers leaving the system, after completing
their service. Little’s law is a very general result and that is why it is so useful.
Specifically, Little’s law holds independently of

● The probability distribution of the inter-arrival times;
● The probability distribution of the sojourn times into the system;
● The number of serving units (servers) into the system;

�

� �

�

48 2 Service Systems and Queues

● The service discipline, i.e., the order according to which customers are selected
for service once inside the system.

Let us see some examples.

Example 2.3 TCP connection Let us consider a TCP sender and a TCP receiver
engaged in a long-lived TCP connection, so that we can consider the transmission
window process W(t) to be stationary and ergodic (e.g., influence of initial slow
start phase has died out). This requires that the connection duration is much big-
ger than the time scale of window variations, namely the round trip time (RTT) of
the connection. For this to be a reasonable assumption, the intermediate network
between the two TCP connection endpoints must be under a stationary traffic load,
i.e., the time scale of significant variations of the link and node loads must be large
as compared to the duration of the TCP connection (e.g., the connection lasts sec-
onds, while load variation are relevant over minutes).

Under these conditions, we can consider the service system consisting of the
entire network in between sender and receiver. Customers are TCP segments emit-
ted by the sender. They can be injected into the “system” only when allowed by
the window. We assume the sender is a saturated (greedy) source, i.e., it always
has new packets to send. Then, the mean number of segments in the “system” is
equal to the mean value of the window, E[W]. The mean sojourn time of a seg-
ment into the system is the mean of the time elapsing since when the segment
is injected into the connection until when the corresponding ACK is received at
the sender, thus informing the sender that it is done with that segment (“service”
completed). So, the sojourn time is just the average RTT. By applying Little’s law we
find that the mean throughput of the connection isΛ = E[W]∕E[RTT] in segments
per second.

Example 2.4 Vehicular traffic Let us consider a span of road of length L. Vehi-
cles enter the road with a flow rate𝜙 (vehicles/h) and the average speed of vehicles
traveling on the road span is V (km/h). Here the service system is the road span,
customers are vehicles and service consists of traveling the considered road for a
length L, from the initial marking point of the span until the end. The average
sojourn time of a vehicle in the system is the travel time L∕V . By applying Little’s
law, we find that the average number of vehicles in the road span at equilibrium is
E[N] = 𝜙L∕V . This can be rearranged as 𝜙 = V𝛿, where 𝛿 = E[N]∕L is the average
density of vehicles in the road span. This is the well-known flow equation of trans-
portation systems, namely for a road segment at equilibrium the mean vehicle flow
equals the mean vehicle density multiplied by the mean vehicle speed.

�

� �

�

2.5 Palm’s Distributions for a Queue 49

2.5 Palm’s Distributions for a Queue

Let us consider a queueing system and let N(t) denote the number of customers
queued up at time t, including those that are receiving service. We assume that
the arrival process is nondegenerate and that the queue is ergodic and stable, i.e.,
it admits a proper limiting state probability distribution as t → ∞, independent of
the initial state.

Let pn = (N(t) = n) the steady state probability that there are n customers in
the queue at a randomly sampled time during the statistical equilibrium regime,
n ≥ 0. This is the limiting probability distribution attained by the system, pro-
vided it is ergodic, i.e., it admits a limiting state probability distribution that is
independent of the initial state (and coincides with the stationary probability dis-
tribution). A picture of the interactions of customers with the queueing system is
shown Figure 2.6.

Customers that arrive at the system can be rejected or enter the system. In the
latter case, they possibly have to stand in the waiting line before receiving service.
After completing service, they leave the system.

Let[t, t + Δt] denote the event of a single arrival occurring in the interval [t, t +
Δt]. We assume that

([t, t + Δt]|N(t) = k) = 𝜆kΔt + o(Δt) (2.13)

for k ≥ 0 and Δt → 0. The non-negative quantity 𝜆k is the mean arrival rate of the
customers when the system state is k. We let Λ ≡ ∑∞

k=0 𝜆kpk be the mean arrival
rate of the customers to the system.

Finally, let be the set of blocking states of the queue, i.e., those states where
new arrivals are turned away and lost to the queue. Let also Ω = ℤ+∖ be the set
of states where an arriving customer can actually join the queue5.

Figure 2.6 Interaction of
customers with a queueing
system.

Waiting line

Servers

Rejected customer

Arriving customers

Departing
customer

5 ℤ+ denotes the set of non-negative integers.

�

� �

�

50 2 Service Systems and Queues

We can define the limiting state probability distributions seen by an arrival at
the queue, {qa,n}n∈ℤ+ , as follows:

qa,n ≡ lim
Δt→0

(N(t) = n|[t, t + Δt]) (2.14)

By using eq. (2.13) and applying Bayes’ rule, we get:

qa,n = lim
Δt→0

([t, t + Δt]|N(t) = n)(N(t) = n)
∞∑

n=0
([t, t + Δt]|N(t) = n)(N(t) = n)

=
𝜆npn

Λ
(2.15)

for n ∈ ℤ+ = Ω
⋃ and Λ =

∑
n∈Ω

⋃𝜆npn.
We define the probability distribution {qs,n}n∈Ω of the customers in the system

seen by an arrival that joins the system. With a reasoning that parallels the one
above, it can be derived that

qs,n =
𝜆npn

Λs
, n ∈ Ω (2.16)

where Λs ≡ ∑
n∈Ω𝜆npn. This is the mean arrival rate of customers that actually

join the system. The subscript s stands for “served”, since each customer joining
the queue will eventually receive the requested service6.

In the special case when the arrival rates do not depend on the system state,
namely 𝜆n = 𝜆,∀n, we have qa,n = pn,n ∈ ℤ+ and qs,n = pn∕(1 − P),n ∈ Ω, with
P =

∑
n∈pn being the blocking probability of the system. This is true if arrivals

occur according to a Poisson process of mean rate 𝜆 (see Chapter 3 for the defini-
tion and main properties of the Poisson process). The fact that Poisson arrivals see
the same queue probability distribution of the generic steady state time is known
as PASTA property (PASTA = Poisson Arrivals See Time Averages) .

We consider the probability distribution of the number of customers left behind
by a departing customer, {𝜋n}n∈Ω. Note that a departing customer must leave the
system in a nonblocking state, since there is at least the place just left by the
departing customer. It can be shown that 𝜋n = qs,n,n ∈ Ω provided arrivals and
departures occur singly (not in batches).

Let An(t) denote the number of arrivals in (0, t) that find the queue in state n. Let
also Dn(t) denote the number of departures in (0, t) that leave the queue in state n.
Since arrivals and departures are single, the number of jumps upward from state
n (arrivals) may differ at most by one from the number of jumps downward to the
same state (departures), i.e., |An(t) − Dn(t)| ≤ 1. The number in the queue at time t
is clearly N(t) = N(0) + A(t) − D(t), where A(t) and D(t) denote the overall number

6 We do not consider special systems with “impatient” customers, that may leave the queue
before receiving their service.

�

� �

�

2.5 Palm’s Distributions for a Queue 51

of arrivals and departures in (0, t), respectively. If the queue admits a steady state
independent of the initial state (ergodicity), then we have7

An(t)
A(t)

→p qs,n,
Dn(t)
D(t)

→p
𝜋n (t → ∞) (2.17)

where convergence is in probability. From the simple identity

An(t)
A(t)

=
Dn(t) + An(t) − Dn(t)

D(t) + A(t) − D(t)
=

Dn(t)
D(t)

1 + [An(t) − Dn(t)]∕Dn(t)
1 + [N(t) − N(0)]∕D(t)

(2.18)

it is easily derived that

lim
t→∞

An(t)
A(t)

p
= lim

t→∞

Dn(t)
D(t)

(2.19)

since both An(t) − Dn(t) and N(t) − N(0) stay bounded with probability 1, while
Dn(t) and D(t) grow without bound with probability 1 thanks to the fact that the
arrival process is nondegenerate and the queue is stable. This shows that qs,n =
𝜋n,n ∈ Ω, by virtue of eq. (2.17).

To sum up, for a queue at equilibrium, the probability distribution of the number
of customers in the queue at a generic time is pn = (Q(t) = n), for n ∈ Ω

⋃; Ω
denotes the set of nonblocking states of the queue, the set of blocking states.
We have defined the probability distributions of the number of customers seen by
special points of view: they are the so-called Palm’s distributions. Specifically, we
have proved the following result.

Theorem 2.2 Let pn,n ∈ Ω
⋃ be the limiting probability distribution of the

number of customers of a service system at equilibrium, where is the set of block-
ing states. Let 𝜆n be the mean customer arrival rate when there are n customers in
the system. Then, the probability distribution of the number of customers

1. seen by an arrival is qa,n = 𝜆npn∕Λ, for n ∈ Ω
⋃, with Λ =

∑
n∈Ω

⋃𝜆npn;
2. found in the system by an arriving customer that joins the queue is

qs,n = 𝜆npn∕Λs, for n ∈ Ω, with Λs =
∑

n∈Ω𝜆npn

Moreover, the probability distribution of the number of customers left behind by
a departing customer, 𝜋n, for n ∈ Ω, is the same as qs,n, if the system admits only
single customer arrivals and departures.

For single arrival, single service systems, we have qs,n = 𝜋n for n ∈ Ω. For
non-blocking systems, we have also qa,n = qs,n for n ∈ ℤ+. In case of Poisson

7 Convergence in probability of a sequence of random variables {Yn}n≥0 to a random variable Y ,
denoted in the following with Yn →p Y , means that ∀𝜖 > 0 we have (|Yn − Y | > 𝜖) → 0 as
n → ∞.

�

� �

�

52 2 Service Systems and Queues

arrivals, we have qa,n = pn, for n ∈ ℤ+ (PASTA property). All of those probability
distributions coincide in the case of nonblocking systems with Poisson arrivals.

Let us consider further the special case where the state space of the queue is
{0, 1,… ,K}, for some positive integer K. We assume thatΩ = {0, 1,… ,K − 1} and
 = {K}, so that P = pK . We assume also that there is a single server, with mean
service time 1∕𝜇, and that arrivals follow a Poisson process with mean rate 𝜆. Since
in the considered case it is Λs = 𝜆(1 − pK), according to eq. (2.16), we have

qs,n =
pn

1 − pK
, n ∈ Ω (2.20)

By equating the mean flow in and out of the queueing system, we have

𝜆(1 − pK) = 𝜇(1 − p0) ⇒ 1 − pK =
1 − p0

A
(2.21)

with A = 𝜆∕𝜇. Putting together these equations, we find

𝜋n = qs,n = A
pn

1 − p0
, n = 0, 1,… ,K − 1 (2.22)

By using this identity for n = 0, we get 𝜋0 = Ap0∕(1 − p0), whence p0 = 𝜋0∕(𝜋0 +
A). Plugging this expression of p0 into eq. (2.21), we have 1 − pK = 1∕(𝜋0 + A).
From this equality and eq. (2.20) we derive finally:

pn =
⎧⎪⎨⎪⎩

𝜋n
𝜋0+A

n = 0, 1,… ,K − 1,

1 −
K−1∑
n=0

pn = 1 − 1
𝜋0+A

n = K.

(2.23)

These relationships tie together the state probability distribution at a generic
time with the one seen by a customer leaving the system. They hold for a single
server system with Poisson offered traffic.

Summing up, we have proved the following.

Theorem 2.3 Let us consider a single server system with mean serving rate 𝜇,
with Poisson customer arrivals of mean rate 𝜆, a single blocking state, = {K}.
Assume the system has reached statistical equilibrium. Then, we have qs,n = 𝜋n,
n ∈ Ω, qa,n = pn, n ∈ Ω

⋃
{K} (PASTA property), and

pn =
𝜋n

𝜋0 + A
, n ∈ Ω (2.24)

pK = 1 − 1
𝜋0 + A

(2.25)

where A ≡ 𝜆∕𝜇.

Theorem 2.3 tells us that for a single server system with Poisson arrivals, at equi-
librium, all Palm’s probability distributions can be derived from the knowledge of

�

� �

�

2.6 The Traffic Process 53

the probability distribution of the number of customers left behind by a departing
customer. We will exploit this result in the analysis of the M/G/1 queue.

As a last issue, we compare the probability distributions of the number of cus-
tomers in two systems with same arrival and service processes, same structure, in
terms of number of servers and service discipline, except that the first system has
no blocking state (= ∅) while the second one has blocking states. It is easy to see
that the process N∞(t) stochastically dominates N(t), where the former is the queue
state in case of no blocking (hence no customer loss). Therefore (N∞(t) > k) ≥
(N(t) > k) for any k ∈ ℤ+. If the blocking state is K, so that Ω = {0, 1,… ,K − 1}
and = {K}, then P = (N(t) = K) ≤ (N∞(t) ≥ K). Then, the tail probability
of the system size in the infinite size queue yields an upper bound of the blocking
probability of the finite size corresponding system.

2.6 The Traffic Process

The demand offered to a service system by a flow of user requests defines a traffic
process. Let us consider an infinite server, work-conserving system. Since there are
infinite servers, the system does not reject any request. Let M(t) denote the number
of servers busy at time t. That number depends both on the statistics of the arrivals
of service requests and on the amount of service time requested by each arrival.
M(t) is a continuous-time, discrete-state random process. It is called the offered
traffic process generated by the given demand in the given service system.

We assume that the offered traffic process is stationary. Its mean value is denoted
as Ao ≡ E[M(t)] and named mean offered traffic. It is easy to check that the mean
offered traffic is equal to the mean arrival rate of service requests Λo multiplied by
the mean service time, i.e., Ao = ΛoE[X]. This is a simple consequence of Little’s
law applied to the infinite server system. The mean offered load is nondimensional,
yet it is usually expressed in so called Erlang units (usually denoted with Erl), in
honor of the Danish teletraffic engineer Agner Krarup Erlang (January 1, 1878
to February 3, 1929), who pioneered the use of probability theory in the analysis
and dimensioning of traffic engineering problems. His 1917 paper [73] addresses
the analysis of a group of circuits that carry telephone traffic offered by a popula-
tion of users. We can also define the variance of the offered traffic process, namely
Var(M(t)) = E[M2(t)] − E[M(t)]2. We denote it with Vo.

An infinite server model is an abstraction. Practical service systems have a finite
service capability. Let us consider a finite server system, and let m be the number
of servers. Let us assume that the system rejects any service request arriving when
the system servers are all busy. We can still consider the process M(t), whose state
space is now restricted to {0, 1,… ,m}. Now the evolution of the process M(t) is
driven only by the service requests that make it into the system. It is possible that

�

� �

�

54 2 Service Systems and Queues

some requests get rejected when offered to the system, because of congestion and
of the policy adopted by the system. We refer to the process M(t) in this new sit-
uation as carried traffic. Its mean value is denoted as Ac; it represents the mean
number of busy servers in the system at equilibrium, provided the system ever
achieves equilibrium (hence, the offered traffic process must be stationary). As
for the offered traffic, we have Ac = ΛcE[X], where Λc is the mean rate of service
requests accepted by the system. Since M(t) ≤ m, it is clearly Ac ≡ E[M(t)] ≤ m.
The ratio 𝜌 = Ac∕m is named average utilization factor and it gives the average
amount of carried traffic delivered by each server. If servers are indistinguishable
and fully accessible, the utilization factor of any server is equal to a same value
that is just the average fraction of carried load per server.

Any traffic measurement carried out in an operational or experimental real sys-
tem can only estimate the carried traffic statistics.

As an example, let us consider a server that can accept at most m = 5 connec-
tions, e.g., because it assigns a rate share of 1∕m-th of the overall available link rate
(or of its overall processing power) to each incoming connection. If we measure
that an average number of 4 connections are up and running at any given time,
then Ac = 4 and hence 𝜌 = Ac∕m = 4∕5 = 0.8, i.e., servers are busy 80% of the time
on average. With measurements on system activity we can only observe the carried
traffic. The connections requests that are rejected cannot start, so that they cannot
display their duration. Even if we knew the average rate of rejected connections
(Λl), we could not infer the offered traffic, since we would not know what the ser-
vice times of the rejected connections were. We can only assume (without proof!)
that lost connections would have lasted an amount of time drawn from the same
probability distribution of the connection holding times that we actually observe
on the successful connections. Under this assumption, the knowledge of Λl allows
us to estimate the mean offered traffic. If, for example, connection requests arrive
at an average rate of 9 per minute and each connection lasts for 30 s on average,
the offered traffic is Ao = 9∕60 req/s ⋅ 30 s = 4.5 Erl. Since Ac = 4 Erl (measured),
it turns out that Al = 0.5 Erl, and therefore Λl = 0.5 Erl∕30 s = 1 req/min.

Example 2.5 If one measures that the number of packets out of a router
connected to a gigabit ethernet (GbE) link is 108 in an hour and their average
length is 1000 bytes, it can be estimated that Λc = 108∕3600 ≈ 2.78 ⋅ 104 pkt/s.
Since E[X] = 8 ⋅ 1000 bit∕109 bit/s = 8 μs/pkt, we have Ac ≈ 0.222. Since the
output link is a single server system, we have 𝜌 = Ac, hence we can conclude that
the average utilization of the output link is about 22%. We can say nothing on
the offered traffic, i.e., on the packet flow offered at the ingress of the link under
measurement. In fact, that traffic flow is made up of: (i) the packets carried on the
link; (ii) the packets that get lost, when offered to the buffer at the link ingress,
because they find it full; and (iii) the packets that are stored into the buffer,

�

� �

�

2.6 The Traffic Process 55

waiting to be sent on the link. By observing the packets carried on the link, we
cannot know anything about packets still stored in the buffer and packets dropped
because of buffer overflows. We can only make modeling extrapolations on what it
could have been.

An exception to this general rule arises when a service system is operated in a
nonblocking regime, i.e., it is so oversized with respect to the current demand that
it records no service demand rejection (or, in practice, rejection is marginal, i.e.,
the fraction of dropped traffic can be neglected). Then, obviously, the mean carried
and offered traffic intensities coincide.

Example 2.6 As another example, consider a cellular network base station
receiving connection requests from terminals that are roaming in the area covered
by the base station. The base station has a number of channels m it can allocate
to requesting terminals, for the connection time. If all channels are busy, typically
new requests are not put on hold, rather they are rejected.

By measuring the mean number of busy channels at equilibrium (e.g., during
the peak hour), we can estimate the mean carried traffic intensity. We could even
estimate the mean connection holding time, again from measurements taken from
the accepted connections.

We can say nothing however on the duration of the connections that have been
rejected. Therefore, strictly speaking, we cannot know the offered traffic. We could
only make an assumption, e.g., that the average duration of the rejected connection
would have been the same as those that have been measured. This is consistent
with the assumption that arrival of new connection requests are independent of
service times (duration of the connection in this example).

The difference between offered and carried traffic for the same input process
(demand) is called lost traffic Al = ΛlE[X], where Λl = Λo − Λc is the mean rate
of rejected service requests. We denote the probability that a service request gets
rejected with PL, namely the loss probability. By definition, it isΛl = ΛoPL and then
Λc = Λo(1 − PL). A similar equality holds for the mean traffic intensities Al and Ac.
The average utilization factor of the service system is 𝜌 = Ac∕m = Ao(1 − PL)∕m.

For a single server system it is m = 1 and this equality turns into 𝜌 = Ao(1 − PL).
Along with p0 = 1 − 𝜌, we finally find PL = 1 − (1 − p0)∕Ao, where p0 denotes the
equilibrium probability that an arriving customer finds the system empty.

At least for single-server systems, this result points out that a system working
without rest (never empty) is pathological, i.e., if it attains a stationary state, its
loss probability equals 1. For a service system to work properly, it must occasionally
remain idle. This is a consequence of the randomness of arrivals and service times.
A corner case arises when purely deterministic arrival and service processes are
considered. Under that special settings (no randomness, hence no uncertainty on

�

� �

�

56 2 Service Systems and Queues

the timing and amount of demand posed onto the service system) it is possible to
have both high utilization (probability of the system being empty close to 0) and
good quality of service as perceived by the customers.

2.7 Performance Metrics

A quantitative model of a service system relates together the system resources, the
service demand and the performance metrics that express the grade or quality of
service offered by the system. Metrics of a service system ultimately qualify the
customer experience and the usage of system resources.

The first category focuses on the performance degradation introduced by the sys-
tem as the load increases, i.e., the system is driven into congestion. This category
is of primary interest to the users. Since the objective of the arriving customer is to
get service as soon as possible, degradation can occur in the form of: (i) a rejection
of the service request; (ii) delaying of the service request, before actually access-
ing the server; and (iii) a degraded service, e.g., only part of the requested service
time is obtained, or a lower quality service is given. Key performance indicators
pertaining this category are: loss, delay, and age of information.

The second category relates to measuring the effectiveness of system resources.
This category is especially important to service providers, designers, and planners.
Key metrics regard the usage of servers and of system resources in general, the
average carried load, and the average rate of served requests. Throughput and uti-
lization fall into this category.

Three key characteristics are part of any useful definition of a performance indi-
cator. A good performance indicator should be:

1. Meaningful to users (applications, persons) and to designers;
2. Accurately and, possibly, easily measurable;
3. Actionable, i.e., susceptible of modification, by acting on the system structure

or parameter configuration.

Balancing these often-contrasting criteria makes defining useful performance
indicators by no means a trivial task.

2.7.1 Throughput

Throughput is a measure of the average amount of work that a service system
does per unit time in serving customer demand. It is therefore synonymous with
the mean carried traffic, even if throughput is typically not normalized and hence
expressed in dimensional units, e.g., number of data units delivered per unit time.

�

� �

�

2.7 Performance Metrics 57

The upper limit of the throughput achievable by a service system is the capacity
of the system. Formally, C = lim

Λo→∞
Λc, whereΛc denotes the throughput andΛo the

mean offered traffic rate.
For example, the mean amount of bytes delivered over a wireless link between

a WiFi access point and a client node of the wireless LAN is the throughput at
MAC level achieved by the access point while serving the traffic flow destined to
the client node. As another example, the mean number of searches completed by
Google per unit time for a given population of users measures the throughput of
Google search service (realized by means of its data centers and the hundreds of
thousands of servers hosted in those data centers). The mean number of packets
transferred through an unreliable link by an ARQ protocol, the mean number of
packets processed by a firewall per unit time, and the mean number of vehicles
flowing through a road section per unit time provide more examples of throughput
measures.

The throughput Λc achieved by a service system cannot be more than its capac-
ity C. There are two sources of limitations of the throughput measured on a real
system:

1. The customer demand level;
2. The service system efficiency.

To know which of the two situations we are in, we should compare the obtained
throughput with the intrinsic capacity of the system. This can be obtained by
assuming that the offered traffic has “infinite” intensity (saturated traffic) and
observing what the carried traffic (throughput) is in that case. The achieved
throughput in steady-state (if steady-state is ever reached) represents the capacity
of the system.

For example, let us assume we measure the mean traffic carried over a WiFi
network. The measurements record a throughput of 20 Mbit/s. It is interesting to
understand why, in the specific scenario where the measurement has been carried
out, the resulting throughput has that value. The interest comes from the fact that
a service provider would like to know whether it could be worth enhancing the
system (investing money) so that it can carry more traffic. This option makes sense
only if the limitation of the throughput comes from insufficient resource in the
service system.

If we know that the WiFi is using a IEEE 802.11g standard, hence the maximum
physical bit rate is 54 Mbit/s, and we analyze carefully all the overhead implied by
all protocol layers, then we can find out that the maximum expected throughput
we can achieve at application level is around 24 Mbit/s. Therefore, we conclude
that the observed throughput is quite “high” (20 Mbit/s out of 24), and little mar-
gin is left to more traffic, unless we change the system (e.g., the MAC protocol).

�

� �

�

58 2 Service Systems and Queues

Improving the system capacity makes sense, if we deem that substantially more
traffic would be carried, i.e., there is a latent demand.

As another example, let us consider a wired local area network. Measurements
of the throughput realized on a GbE link could yield a disappointingly small
fraction of the link capacity, when averaged over time periods long enough
with respect to individual user activities. This is by no means a symptom of a
bad design of the GbE system; it is instead related to the typically very limited
long-term average demand that users pose on such kind of links. Data transfers on
a GbE are quite sporadic, yet when a user starts downloading a 1 Gbyte archive,
it expects that the operation will be completed as soon as possible, whence the
push toward high bit rate on this kind of links. The opportunity of attaining
high bit rates is offered by the technological developments that have made fully
affordable for local area networks to build electronics and cables cheap enough to
be appealing for a mass market, yet capable of bit rates in the multi-Gbit/s range8.

As a last example, ARQ protocols introduce redundancy check and sequence
number fields in each data unit sent over an unreliable channel. Moreover, they
introduce acknowledgements, time-outs and retransmissions to provide a reliable
transfer of the data of the upper layer entities. All of those provisions consume
channel capacity, hence the throughput offered to the upper layer is strictly less
than the unreliable channel throughput. The point is that the unreliable channel
throughput has a smaller “value” (i.e., it contains errors) with respect of the added
value throughput offered by the ARQ protocol, which is essentially error-free (i.e.,
undetected errors have usually negligible probability).

An important observation emerging from the examples above, is that the same
“system,” measured from different protocol layers, turns out to sustain different
throughput levels. The fundamental reason why is that each protocol layer adds
functionality at the cost of some overhead, which translates into reduction of the
achieved throughput. These considerations carry over to realms other than ICT.

Whenever evaluating a service system, either by means of analytical models,
simulations, or measurements, it is important to be able to distinguish between
the two root causes of throughput limitation. The first cause has to do with traffic
demand forecasting and sizing of the service system consistently with expected
demand. The second cause can be acted on by refining or changing the inter-
nal working mechanisms of the service system (e.g., by designing a better ARQ
or MAC protocol, with reference to the two examples above), or, ultimately, by
increasing the amount of resource available in the service system.

Assessing the throughput of a complex service system is by no means a trivial
task. Defining what we should mean by throughput in a given situation is a

8 The 10 Gbit/s ethernet has been standardized by the early 2000s. The 100 Gbit/s ethernet on
copper cables has been standardized around the middle of the 2010s.

�

� �

�

2.7 Performance Metrics 59

deceptively simple task, given the complex architectural layout and layering of
most networked systems nowadays. For example, during spring 2007 the author
took part in an official technical panel to define quality of service parameters for
the ADSL access by the Italian Authority for Telecommunications. Several meet-
ings and intense discussions with people from research institutes and operator
companies were spent to agree on a manageable, meaningful, and practical def-
inition of what the throughput of an ADSL access system should mean, including
a fully detailed operational procedure for the measurement of such a throughput9.

2.7.2 Utilization

The utilization of a service system offering a service capacity C is measured by
the ratio Λc∕C, that is, the ratio of the throughput to the system capacity. By the
definition of throughput, this is a non-negative number, not greater than 1.

From the service provider point of view, it is relevant to know how much servers
are actually being used. Let us consider an observation time interval [ta, tb] and let
Z(ta, tb) be the overall amount of time that a tagged server has been working during
the observed interval.

The ratio Z(ta, tb)∕(tb − ta) gives an estimate of the average fraction of time that
the tagged server is busy. As the time horizon tends to infinity, for a stationary
system this ratio converges to the mean fraction of time that the server is busy, 𝜌.
This is referred to as the (mean) server utilization. In an ergodic system, 𝜌 is also
the probability of finding the tagged server busy when sampling the system state
at random during statistical equilibrium.

If servers are indistinguishable (they can serve any service request indifferently)
and fully accessible (any admitted service request can ask for any of the servers),
the mean server utilization is the same for all servers.

In a single server, work-conserving system we can establish a fundamental rela-
tionship between 𝜌 and the probability that a customer arriving at the systems
finds it empty, p0. Thanks to the system being work-conserving, the server can
be idle if and only if no customer is in the system, i.e., it is empty. So it must be
p0 = 1 − 𝜌.

2.7.3 Loss

A customer arriving at a service system can be rejected, according to the policies of
the system and to the state of engagement of the resources. As a matter of example,
if a packet arrives at a router output link, whose buffer is full, the packet gets
dropped. If one more connection request arrives at a busy server, where already

9 The full blown public project outcome can be seen at https://www.misurainternet.it

�

� �

�

60 2 Service Systems and Queues

established connections saturate the allowed maximum number of parallel flows
that can be maintained, the new connection request is rejected.

A typical performance indicator related to service request rejection is the prob-
ability of rejection or loss, PL, estimated as the average fraction of service request
rejected by the system in a given time interval [ta, tb] divided by the number of all
requests offered to the system in the same time interval.

The conditions under which a service request is rejected are specific of each ser-
vice system. In general, there is a subset of the state space of the system where
system congestion is such that new requests cannot be accepted. States belonging
to are blocking, i.e., the system is “blocked” in those states, and it cannot accept
new incoming service requests.

For example, under suitable assumptions, the buffered output line of a router
can be described by the state variable that gives the number of packets enqueued
at the buffer at a given time, Q(t). Then, the entire state space is the set of integers
between 0 and Qmax, namely = {0, 1,… ,Qmax}, where Qmax is the maximum
number of packets that can be stored in the buffer. In case of FIFO discipline, the
only blocking state is Q(t) = Qmax, so = {Qmax}.

In some cases, the service system has multiple servers, but they are not equiva-
lent, or not fully accessible to any service request. Then, different blocking metrics
can be defined.

Example 2.7 Let us consider a base station of a cellular network, equipped with
m (logical) channels, and working according to a connection oriented, static allo-
cation policy. A new service request is granted a single channel, provided at least
one channel is available, until it explicitly releases it. Requests can be classified in
two types: (i) new radio sessions, opened by users roaming in the coverage area of
the base station; (ii) ongoing radio sessions coming from nearby cells and handed
off to the considered base station (briefly: handoffs). It makes sense to define two
loss probabilities, one for each class, namely a loss probability for new radio session
(loss probability, PL) and a loss probability for incoming handoffs (usually referred
to as drop probability, PD). The reason for having two metrics is that different tar-
gets are usually set for these two probabilities, e.g., PL ≤ 10−2 and PD ≤ 10−3. These
targets are achieved, e.g., by setting aside a number mho of reserved channels, so
that the blocking state set for new radio sessions is L = {m − mho + 1,… ,m}
while for handoffs it is D = {m}.

Example 2.8 Consider a network where end-to-end traffic flows are routed on
a single shortest path connecting the origin and the destination nodes. Let and
 denote the set of active flows and the set of links of the network. Let xk, k ∈
be the mean rate of flow k and ch, h ∈ be the capacity of link h. We assume that
mean flow rate can take a discrete spectrum of values, b1,… , bm.

�

� �

�

2.7 Performance Metrics 61

We impose that no link is overloaded, i.e., the sum of the mean rates of flows
routed through that link shall not exceed the capacity of the link. Let ahk be a
routing coefficient that equals 1 if and only if flow k routing path goes through
link h and it is 0 otherwise. The constraint on the number of admissible flows is
expressed as:∑

k∈
ahkxk =

m∑
j=1

bjnjh ≤ ch (2.26)

where njh is the number of flows of type j routed through link h. All states such
that

∑m
j=1 bjnjh > ch are blocking for link h.

The specification of the “reaction” of the service request is part of the loss
model. A rejected service request can disappear and bring no effect on future
service requests. This is sometimes called the cleared lost requests scenario. It
is the simplest model, since, after rejection, there is no memory of that event
and subsequent requests are offered according to the same demand statistics
as any other request. A different model is repeated requests. With this model a
request that encounters a rejection will be submitted again to the system after a
given retrial time. Retrials can go on unconditionally until the request is finally
accepted or the request can be eventually canceled and forgot, if it undergoes a
maximum number of rejections. The retrial customer model can be generalized
to envisage not only that rejected service requests be retried, but that in general a
customer that cannot receive service upon arrival can decide to leave the system
and wait some time before trying again. During this time the customer is in
“orbit.” Retried arrivals merge with fresh arrivals to form the complete service
request arrival process. The interested reader can find an introduction to retrial
queueing models in [94, Ch. 3].

2.7.4 Delay

A customer accepted into a service system can start immediate service, if a server
is available, or it can wait until its turn of service comes, if all eligible servers are
busy upon arrival and the newly arriving customer does not have a right to overrun
on-going server assignments, according to the service policies of the system. We
refer to work-conserving systems, where customers entering the system will even-
tually fulfill their full service demand (no customer impatience, i.e., customers
leaving the system before receiving complete service) and no server remains idle
as long as there is work to be done.

The whole time S spent by the user in the system is usually referred to as system
time or response time. In general, by looking at the system from an input-output
point of view, we can mark the events of customer arrival and admission to the

�

� �

�

62 2 Service Systems and Queues

service system (time ta) and of the subsequent customer departure (time td).
Then, it is S = td − ta. If the service time is independent of the system state, then
we can write W = S − X , since the service requirement X of the user is given
at its arrival. This general approach includes cases where service is granted in
chunks (e.g., processor sharing disciplines), rather than serving continuously the
customer since it starts its service until completion.

The waiting time can be characterized as a non-negative random variable,
described by means of its survivor function GW (t) = (W > t). Widely used
metrics are the mean wait, E[W], and the standard deviation of the waiting time,
𝜎W =

√
E[(W − E[W])2]. Also waiting time quantiles are often used, e.g., the 90

or 99 quantile. In general, the quantile r is defined as the minimum value wr such
that (W > wr) ≤ 1 − r∕100. So, w99 is the waiting time level that is exceeded for
no more than 1% of the customers.

A last metric on delays is the probability that a service request admitted to the
system be served with a positive delay, PW , i.e., it finds all servers busy and it is
forced to wait for service. This metric applies to systems where service is provided
in a single shot. It is simply PW = (W > 0) = 1 − (W = 0). In general, this value
is non-null for a service system where waiting is allowed. As a consequence, the
CDF of the waiting time FW (t) has a jump at 0, that is to say, FW (0−) = 0 and
FW (0+) = PW > 0.

2.7.5 Age of Information

Many applications consist of collecting data, e.g., from sensors, about the status
of some device or about an environmental variable and transferring it to a remote
processing facility (e.g., a cloud-based application or a control server). Such appli-
cations fit the Internet of Things (IoT) paradigm and are spreading rapidly as the
IoT becomes pervasive. Major specific examples are telecommunication network
equipment monitoring, vehicular traffic monitoring, urban sensing, power grid
metering, industrial processes control, and sensor networks. In these cases, typ-
ically only the latest piece of information from a given source is relevant. A key
requirement of such applications is timeliness of the information provided to the
central processing server (along with reliability of the information delivery). Get-
ting the most up-to-date piece of information is the target. The user of the collected
information maintains the most up-to-date piece of information it can obtain at
any given time. This implies that an out-of-order message (i.e., one arriving later
than a subsequent message) will be simply discarded, since the piece of informa-
tion it carries has been made obsolete by more recent messages that have already
arrived.

We can model the general paradigm with an information source, emitting
pieces of data within messages repeatedly over time (e.g., in a periodic fashion),

�

� �

�

Summary and Takeaways 63

Figure 2.7 Example of age of
information plot. A source sends
message 1 at time s1 and that same
message arrives at the central processing
unit at time a1.

AoI

Timea1

g1

s1

x

a communication network that connects the source to the the remote processing
facility and the processing facility itself. Let g(t) be the timestamp10 of the latest
message arrived at the processing facility from the tagged source and stored there
at time t. Then, the age of the information coming from that source is defined
as a(t) = t − g(t) ≥ 0. As a new message is received, the age drops to a local
minimum. Then, it start growing linearly (1 second per second) as the time goes
by, until the next piece of information gets to the processing facility. An example
of the age of information (AoI) sample path is shown in Figure 2.7.

The times when message 1 is sent by the source (s1) and when the same message
is received by the central processing unit (a1) are highlighted. The central process-
ing unit learns s1 by looking at the timestamp carried in the received message.
Therefore, it can calculate the age of message 1, namely a1 − s1.

The interesting point is that minimizing the age of information is not the same
as minimizing the message transfer delay through the network or maximizing the
network throughput. Intuitively, an optimal balance must be struck between a
high rate of information refresh from the source, hence a potentially high level of
congestion on the network resources, and a low level of congestion of the network,
hence low delay.

Summary and Takeaways

Network traffic engineering is all about service systems. This is an abstraction for
a software function, a subsystem, a piece of hardware or any system that is set up
and configured to provide a service (i.e., to carry out a function) for a population
of customers (persons, machines, applications).

Identifying a service system means focusing on a specific function (e.g., error
recovery in a data link protocol, buffer management at the output link of a router,
access to disk information, data processing, etc.) and defining how much work
per unit time the service system can provide (capacity), according to which rules
(policy), and using which resources (structure).

10 A message processing device can associate a time mark to a message, e.g., the time that it
receives the message or the time when it generates the message. The time mark appended to the
message is called timestamp. Here we assume that the source of the message adds its timestamp
to the emitted message.

�

� �

�

64 2 Service Systems and Queues

The demand is characterized by two elements: timing of the demand arrival pat-
tern and amount of service required by each demand. Both of them are required to
define the traffic process. This is but a stochastic process that describes the amount
of system resources engaged in serving accepted demand at any given time. As any
stochastic process, it is characterized by moments and probability distributions.
The mean traffic intensity is nondimensional, yet it is customarily measured in so
called Erlang, in honor to the inventor of the teletraffic theory, A. K. Erlang.

The key usage of the service system abstraction is the analysis and dimensioning
of resources in the face of a given demand to meet prescribed quality of service
objectives. It is therefore fundamental to characterize the performance of a service
system. This is done by using metrics such as: throughput, utilization, loss, delay,
age of information.

Key features of a good performance metric are: (i) it should be easy to understand
and meaningful to customers; (ii) it should be practically measurable; and (iii) it
should be influenceable in some way by the service provider, e.g., by a suitable
dimensioning of the service system.

The mathematical tool used to describe service systems for the purpose of analyt-
ical modeling is queueing theory. A queueing model is denoted with A∕B∕m∕K∕N,
where A indicates the kind of stochastic process describing arrivals, B does the
same for the service process, m is the number of serving units available in the
queue (servers), K specifies the maximum number of customers that can be stand-
ing in the queue while waiting for a server, and N gives the number of potential
customers.

Stationarity of a stochastic process means invariance of the statistics of the pro-
cess to time axis translations. Stationarity is akin to statistical equilibrium, i.e.,
a condition where the process is not constant, yet its variation is around a con-
stant mean. Under additional conditions, a system described by a stochastic pro-
cess evolves toward a statistical equilibrium that is independent of the initial state
(ergodicity). Ergodic processes are especially interesting since we can analyze their
equilibrium state and be reassured that the results of the analysis apply to the sys-
tem described by the stochastic process, except for a limited time after the system
is triggered into its initial state (initial transient).

A key result for stationary systems is Little’s law [148, 197]. It is a classical statis-
tical equilibrium result, stating that the mean number of customers into a service
system equals the mean input flow rate of customers accepted into the system
times the mean sojourn time of a customer into the system. The power of this
result is its general applicability and its black-box approach.

In general, the probability distribution of the number of customers into a
service system depends on the point of view. We restrict to stationary systems that
have reached statistical equilibrium. The probability distribution of the number
of customers into the system can be sampled at times when customers arrive,

�

� �

�

Problems 65

are admitted into the systems, leave the system. For all cases the observer is the
customer itself, i.e., the sampling of the system is biased by the arrival and/or
service processes that govern the evolution of the system itself. The resulting
probability distributions are called Palm’s distributions. Their importance lies
in the fact that relevant events of a service system occur at arrival or service
completion epochs (e.g., loss events take place at customer arrivals).

Problems

2.1 The packets arriving at a radio link have the following length (L) probability
distribution:

p1 = (L = 160 bytes) = 0.45
p2 = (L = 1024 bytes) = 0.1
p3 = (L = 1500 bytes) = 0.44
p4 = (L = 2240 bytes) = 0.005
p5 = (L = 9000 bytes) = 0.005

(2.27)

The radio link protocol data unit (PDU) has fixed payload size equal to
L0 = 100 bytes and header length of H = 34 bytes. Packets are adapted to
the radio link PDU format by means of fragmentation and padding. How
could you describe the arrival process of the radio link PDUs? If packets
arrive at an average rate 𝜆 = 2000 pkts/s, what is the average arrival rate of
PDUs at the radio link layer? What are the corresponding average bit rates?

2.2 The inter-arrival time T of a stationary arrival process is given by
T = min{V1,V2}, where V1 and V2 are two independent random variables
with negative exponential PDF, with parameters 𝜆1 and 𝜆2, respectively.
Find the CCDF of T, GT(t) = (T > t).

2.3 In a multi-rate multiplexing system, incoming connections can be granted
one out of M possible bit rates Rj, j = 1,… ,M. Assume all rates are integer
multiples of a basic bit rate R0, i.e., Rj = njR0, j = 1,… ,M. The overall ser-
vice capacity is organized in m channels, each of capacity R0. A request of
class j is either assigned nj channels, if available, or it is rejected immedi-
ately. No wait is allowed.
Assume that the state of the system can be described by the array variable
Q(t) = [Q1(t)…QM(t)], where Qj(t) is the number of class j connections
active at time t. Find the state space and classify blocking and nonblocking
states.

�

� �

�

66 2 Service Systems and Queues

2.4 At a post office there are two clerks on duty. The director of the office
notices that they are almost always busy during peak periods. It estimates
that the average idle time of each clerk is 1% of the overall time. The direc-
tor knows that ideally the percent idle time should be 20% to ensure that
the clerks stay in good shape and work accurately.
1. If the director hires one more clerk during peak periods, how much idle

time would each server have then?
2. When the new clerk adds to the two original ones, the pressure on the

clerks relieves, hence they work more carefully and they start devoting
a bit more time to each task. As a consequence, service rate reduces by
10%. What now is the percent time each would be idle?

2.5 IP packets arrive at a link with Maximum Transfer Unit (MTU) =
1500 bytes according to a deterministic process. 80% of the packets are
1500 bytes long or less. The remaining 20% can have lengths between 1501
and 2200 bytes with probability 0.9 and length 9000 bytes with probability
0.1. Describe a suitable arrival process model of the stream of packets
arriving at the link, by accounting for the effect of the MTU and of the
induced IP fragmentation function.

2.6 You are planning to sell your home. After gathering some information, you
realize that about 12 houses are on sale at any given time in your neighbor-
hood. New houses go on the market at a rate of 3 new houses per month.
How long do you estimate it could take to sell your home? What assump-
tions your estimate is based on?

2.7 You enter your favorite pizza shop and find a line of 9 persons in front
of you. There is unfortunately only one server on duty. Service time has a
gamma PDF with mean 3 min and standard deviation 1 min. What is your
estimate of the probability that you have to wait more than half an hour?
[Note: (i) the sum of N identically distributed, independent gamma random
variables, with mean E[X] and variance 𝜎

2
X , is still a gamma random vari-

able, with mean NE[X] and variance N𝜎
2
X ; (ii) the gamma PDF is given by

f (x) = 𝛼
(𝛼x)𝛽−1

Γ(𝛽)
e−𝛼x for x ≥ 0; Γ(x) is the Euler gamma function; and (iii) let

Γinc(x, 𝛽) =
1

Γ(𝛽) ∫
∞

x
u𝛽−1e−u du (2.28)

Then, it is Γinc(10, 9) ≈ 0.3328.]

2.8 In the university system of Nowhereland a young researcher gets a tenure
assistant professor position on the average at 28. On average, a fraction p1

�

� �

�

Problems 67

of the assistant professors gains a promotion to associate professors after
9 years. A fraction p2 of the associate professors move further to occupy a
position as full professors after another 15 years on the average. All tenure
positions can be held until retirement age, say 72 years old on average.
Those who fail to move to the next step in the career remain in their position
until retirement age.
1. Find the ratios of the mean numbers of assistant, associate, and full pro-

fessors in the system by assuming it is in equilibrium (p1 = 0.8, p2 =
0.75).

2. Find the value of the input rate to the system that guarantees an average
faculty staff of 100 persons.

3. Find the promotion rates that guarantee an equal average number of
assistant, associate and full professors.

2.9 Table 2.1 lists the number of freshmen students and the overall enrollment
of the Schools of Engineering, Computer Science and Statistics of Univer-
sity of Roma “La Sapienza” over eight academic years. Note that the overall
numbers in Table 2.1 comprises both undergraduate and graduate level stu-
dents.
A student that fulfills the undergraduate degree will move to graduate level
courses with probability q = 0.7. Reports say that students completing
both degrees (bachelor’s and master’s) take 7.5 years on the average.

Table 2.1 Record of first-year students and overall enrollments for the
Schools of Engineering, Computer Science and Statistics of University of
Roma “La Sapienza.”

A.Y. First-year students Total enrollment

2018/2019 5309 18052
2017/2018 5112 17382
2016/2017 4895 16793
2015/2016 4523 15913
2014/2015 4300 16500
2013/2014 4079 17011
2012/2013 4209 17788
2011/2012 4298 18643
2010/2011 4537 19652
2009/2010 5037 20316
2008/2009 4817 19850

�

� �

�

68 2 Service Systems and Queues

Table 2.2 Record of start and end times of SSL
connections gathered at a WiFi hot spot (times are
measured in seconds).

#conn Start time (s) End time (s)

1 305.90 660.12
2 306.08 310.65
3 306.25 392.22
4 311.15 312.17
5 311.46 1297.01
6 312.83 314.87
7 314.35 344.47
8 316.32 318.62
9 318.69 320.79
10 320.97 344.54
11 335.31 805.20
12 335.42 465.11
13 335.57 466.13
14 335.68 466.14
15 338.63 3726.45
16 353.70 378.89
17 356.86 681.80
18 415.24 440.41
19 537.04 562.21
20 659.53 660.24

Could you give an estimate of the average time that students take to
achieve a bachelor’s degree and the average time it takes to obtain a
master’s degree?

2.10 Table 2.2 reports the start and end times of SSL connections generated by
smartphone applications, from a traffic trace collected at a WiFi hot spot.
All times are measured in seconds.
By assuming that no other connection arrives, after the first 20 ones, do a
manual simulation of the traffic through the WiFi hot spot. Calculate the
mean number of connections active at the same time and the duration of
the idle time of the WiFi hot spot during the first five minutes of the traffic
measurement time (i.e., five minutes starting from time 305.90 sec).

�

� �

�

Problems 69

2.11 By collecting large measurements of the queue lengths observed by arriv-
ing customers and the queue length left behind by leaving customers at
a single-server service facility, you realize that the empirical distribution
derived by the two sets of measurements are definitely different. If statisti-
cal tests on measurements of the arrival times suggest that arrivals follow a
Poisson process, and you know that no batch service is allowed, what can
you say about the service facility waiting room? Can you estimate the mean
offered traffic of the system, if you know that 25% of customers leave the
system empty upon their departures?

2.12 A firewall has a processing capability of 𝜇 pkts/s. The time required to ana-
lyze a packet can be assumed to be a constant as a first approximation.
Packets arrive according to a stationary process from a link with bit rate
R. The mean packet length is L. The average utilization of the link is 𝜌. The
firewall has a buffer that can store up to K packets.
Define a model of the firewall processing unit. Write an expression of the
mean packet arrival rate at the firewall.

2.13 From a ping probe it is found that the average RTT between the source
node A and the destination node B is 149 ms for ICMP_Echo_Request
messages that are 64 bytes long. When the message length is raised to 1024
bytes, the mean RTT grows up to 173 ms. Is it possible to estimate the capac-
ity of the bottleneck between A and B based on this two probes? Under what
assumptions?

2.14 A flow of packets is fed into a path with a mean rate of 1000 packets/s. It
is reported that 7% of the packets get lost, while 23% of the packets expe-
rience the minimum registered end-to-end delay, i.e., a delay equal to the
fixed transmission and propagation times. The average length of the pack-
ets is 1000 bytes. How can the bottleneck capacity be estimated, under the
hypothesis that the network is in equilibrium and that there is a single bot-
tleneck along the path under test?

2.15 At the university canteen the desk where lunch food can be collected has a
maximum throughput of 𝜇 students/min. After collecting their meal, stu-
dents go to the canteen room where 60 tables are available, each provided
with four seats. Mean lunch time is 30 min. Shall 𝜇 be limited to avoid hav-
ing many students standings with their trays, waiting for a seat?

2.16 An M∕G∕1∕K queueing system has a loss probability PL = 0.05 and an aver-
age queue length E[Q] = 4. Knowing that 𝜆 = 𝜇 = 3 customer/sec, find the

�

� �

�

70 2 Service Systems and Queues

value of the mean system time E[S], the mean waiting time E[W], the mean
carried customer rate Λc, the probability that the system be empty p0 and
the utilization coefficient 𝜌.

�

� �

�

71

3

Stochastic Models for Network Traffic

That which is static and repetitive is boring. That which is dynamic and ran-
dom is confusing. In between lies art.

John Locke

3.1 Introduction

The purpose of this chapter is to introduce several models largely used to describe
traffic processes. The first half of this chapter is concerned with point processes. We
introduce the most used stochastic process model, the Poisson process, so called in
honor of the nineteen-century French mathematician and physicist Siméon-Denis
Poisson. Then, we generalize to renewal processes. The second half of the chapter
introduces birth-death processes and branching processes.

A point process is a stochastic process that defines the distribution of points in
a metric space. With reference to the unidimensional real line, often interpreted
as the time axis, a point process specifies a sequence of instantaneous events that
occur on the time axis. In the following we address mainly unidimensional point
processes, since those are mostly used in network traffic engineering applications.
We devote however a section to spatial (multidimensional) point processes for
their increasing interest.

Relevant information for a point process is the counting of the events occur-
ring in a given interval and the probability distribution of the inter-event times.
Therefore, we define the following quantities.

A(t0, t0 + t) counting function: number of events (often referred to as “arrivals”)
falling in the interval (t0, t0 + t], for t > 0. Note that, by convention, the counting
function is referred to the interval (t0, t0 + t], i.e., excluding the left extreme and
including the right one.

Network Traffic Engineering: Stochastic Models and Applications, First Edition. Andrea Baiocchi.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

�

� �

�

72 3 Stochastic Models for Network Traffic

Sk event epochs: the time of occurrence of the k-th event, k ≥ 1. By convention, we
assume that Sk > 0 and we let S0 = 0. Here k is an integer.

Tk inter-arrival times: the time elapsing since the (k − 1)-th event and the k-th
event, i.e., Tk = Sk − Sk−1, for k ≥ 1. T1 represents the time interval between the
time origin and the first event after the time origin.

In the rest of the chapter we review four classes of stochastic processes largely
used in network traffic engineering applications: the Poisson process and vari-
ants thereof (spatial Poisson processes, modulated Poisson processes); renewal
processes; birth-death processes; and branching processes.

3.2 The Poisson Process

Let us introduce the short notation A(t) ≡ A(0, t) to indicate the number of arrivals
until time t, from the given time origin. The number of arrival in an interval (t1, t2]
is given by A(t2) − A(t1), by definition of A(t).

Given a positive constant 𝜆, a Poisson process is defined by the following three
properties:

1. (A(t + Δt) − A(t) = 1) = 𝜆Δt + o(Δt), as Δt → 0.
2. (A(t + Δt) − A(t) > 1) = o(Δt), as Δt → 0.
3. The number of arrivals in nonoverlapping intervals are independent random

variables, i.e., the random variables A(t2) − A(t1) and A(t4) − A(t3) are indepen-
dent of each other for any t1 ≤ t2 ≤ t3 ≤ t4.

According to properties (1)-(3), we can write

(A(t + Δt) = n) =
n∑

k=0
(A(t) = k)(A(t + Δt) − A(t) = n − k)|A(t) = k)

=
n∑

k=0
(A(t) = k)(A(t + Δt) − A(t) = n − k) (Prop. 3)

= (A(t) = n)(1 − 𝜆Δt) + (A(t) = n − 1)𝜆Δt + o(Δt) (3.1)

For a compact notation, let pn(t) = (A(t) = n), n ≥ 0, t ≥ 0. Then, from eq. (3.1)
we derive

pn(t + Δt) − pn(t)
Δt

= −𝜆pn(t) + 𝜆pn−1(t) + o(1), n ≥ 1 (3.2)

and taking the limit as Δt → 0, we get the ordinary differential equation (ODE)
system:{

p′
n(t) = −𝜆pn(t) + 𝜆pn−1(t) n ≥ 1

p′
0(t) = −𝜆p0(t) n = 0

(3.3)

�

� �

�

3.2 The Poisson Process 73

with initial conditions p0(0) = 1 and pn(0) = 0, n ≥ 1.
The solution of this system of linear-difference differential equations can be

found by resorting to the generating function method. A brief review of generating
functions of discrete random variables is provided in the Appendix at the end of
the book. Multiplying both sides of the first equation in (3.3) by zn and summing
over n, it is readily found that

∞∑
n=1

p′
n(t)zn = −𝜆

∞∑
n=1

pn(t)zn + 𝜆

∞∑
n=1

pn−1(t)zn = −𝜆[P(z, t) − p0(t)] + 𝜆zP(z, t)

(3.4)
where P(z, t) ≡ ∑∞

n=0 znpn(t). By using the second equation in (3.3) and interchang-
ing summation and derivation, we find

𝜕P(z, t)
𝜕t

= 𝜆(z − 1)P(z, t) (3.5)

with initial condition P(z, 0) = 1. It is easy to check that the unique solution is

P(z, t) = e𝜆t(z−1) =
∞∑

n=0
e−𝜆t (𝜆t)n

n!
zn (3.6)

whence we derive that the probability distribution of the Poisson process is:

pn(t) = (A(t) = n) = e−𝜆t (𝜆t)n

n!
, n ≥ 0, t ≥ 0. (3.7)

We have just shown the following theorem.

Theorem 3.1 The probability distribution of the counting process A(t) of the
stochastic process defined by the properties 1, 2, and 3 above is the Poisson dis-
tribution, given in eq. (3.7).

Incidentally, we highlight for future use the result of eq. (3.6), which gives the
generating function of the Poisson counting process for a given time t, namely
𝜙A(z) = E[zA(t)] = e𝜆t(z−1).

The parameter 𝜆 can be given a meaning by evaluating the average of A(t), since
E[A(t)] =

∑∞
n=0 npn(t) = 𝜆t. Therefore 𝜆 = E[A(t)]∕t, i.e., it is the average arrival

rate. It can be easily checked that the variance of the number of arrivals in the
interval (0, t] is Var(A(t)) = 𝜆t.

We can find the explicit form of the probability density function (PDF) of the
inter-arrival times of the Poisson process as well.

Theorem 3.2 The inter-arrival times {Tk}k≥1 of the Poisson process are indepen-
dent, identically distributed (i.i.d.) random variables with a negative exponential
PDF with parameter 𝜆, namely, Tk ∼ T ∀k, with (T > t) = e−𝜆t.

�

� �

�

74 3 Stochastic Models for Network Traffic

Proof: From the definitions given in Section 3.1, the event S1 > t is equivalent to
the event A(t) = 0, i.e., no arrival until time t. Hence,

GT(t) = (T1 > t) = (S1 > t) = (A(t) = 0) = e−𝜆t (3.8)

where the last equality is a consequence of eq. (3.7) for n = 0.
The independence of different inter-arrival times can be shown by considering

the cumulative distribution function (CDF) of the sum of the first n arrival times:

FSn
(t) = (T1 + · · · + Tn ≤ t) = (A(t) ≥ n) = 1 −

n−1∑
k=0

(𝜆t)k

k!
e−𝜆t (3.9)

By deriving both sides, we get the corresponding PDF:

fSn
(t) = 𝜆

n−1∑
k=0

(𝜆t)k

k!
e−𝜆t − 𝜆

n−1∑
k=1

(𝜆t)k−1

(k − 1)!
e−𝜆t = 𝜆

(𝜆t)n−1

(n − 1)!
e−𝜆t (3.10)

The rightmost hand side is just the gamma PDF with parameters 𝜆 and n, which
is known to be the convolution of n negative exponential PDFs, all with the same
parameter 𝜆. Hence we have shown that the inter-arrival times of the Poisson pro-
cess form a sequence of i.i.d. random variables with negative exponential PDF
given by 𝜆e−𝜆t.

It follows that E[T] = 1∕𝜆, which is a pleasingly intuitive result, in view of the
meaning of 𝜆 as the average arrival rate.

The converse of Theorem 3.2 is true as well, since we can show the following.

Theorem 3.3 A random process with i.i.d. inter-arrival times, having a negative
exponential PDF with mean E[T], is a Poisson process with rate 𝜆 = 1∕E[T].

Proof: We have

(A(t) ≥ n) =
∞∑

k=n
pk(t) = (Sn ≤ t) (3.11)

Taking differences over n, we find:

pn(t) = (Sn ≤ t) − (Sn+1 ≤ t), n ≥ 0, (3.12)

where we let S0 ≡ 0 for ease of notation. The random variable Sn = T1 + · · · + Tn
is by hypothesis the sum of n i.i.d. negative exponential random variables with
mean E[T]. The Laplace transform of the PDF of Sn is therefore 𝜑Sn

(s) = [𝜑T(s)]n,
where 𝜑T(s) is the Laplace transform of the inter-arrival time T and Tk ∼ T ∀k.
Transforming both sides of eq. (3.12), we get:

𝜑pn
(s) =

𝜑Sn
(s)

s
−

𝜑Sn+1
(s)

s
= [𝜑T(s)]n 1 − 𝜑T(s)

s
(3.13)

�

� �

�

3.2 The Poisson Process 75

Since 𝜑T(s) = 1∕(1 + sE[T]) by hypothesis, we have:

𝜑pn
(s) = 1

s

(
1

1 + sE[T]

)n [
1 − 1

1 + sE[T]

]
= E[T]

(1 + sE[T])n+1 (3.14)

By taking the inverse Laplace transform and accounting for the couple(a
a + s

)n
↔

a(at)n−1

(n − 1)!
e−at (3.15)

we find

pn(t) = E[T]
(t∕E[T])n

E[T]n!
e−t∕E[T] = (𝜆t)n

n!
e−𝜆t

, n ≥ 0, (3.16)

where we have let 𝜆 ≡ 1∕E[T].

The Poisson process can be characterized by the “memoryless” property. A point
process is said to be memoryless if

(T > t + 𝜏|T > 𝜏) = (T > t), t, 𝜏 > 0 (3.17)

that is to say the probability to wait t more seconds for the next arrival, provided
already 𝜏 seconds have gone by, is just the same as the probability that the
inter-arrival time exceeds t. In other words, the arrival process does not retain any
“memory” of the amount of time already elapsed waiting for an arrival.

We show that the Poisson process is the only point process that is memoryless,
i.e., this is a unique feature of the Poisson process.

Theorem 3.4 An arrival process with i.i.d. inter-arrival times, distributed
according the random variable T, satisfies (T > t + 𝜏|T > 𝜏) = (T > t) for all
t, 𝜏 > 0 if and only if it is a Poisson process, i.e., T has a negative exponential
probability distribution.

Proof: It is easy to verify that the negative exponential PDF satisfies eq. (3.17).
The interesting point is that the converse can be shown as well, namely, if an
arrival process is memoryless (with time continuous inter-arrival PDF) then its
inter-arrival time PDF must be negative exponential. This implies that the only
memoryless arrival process is the Poisson one. In fact, the validity of eq. (3.17)
entails that

GT(t) = (T > t) = (T > t + 𝜏|T > 𝜏) = (T > t + 𝜏)
(T > 𝜏)

=
GT(t + 𝜏)

GT(𝜏)
(3.18)

where GT(t) is the CCDF of the inter-arrival time. Then, the identity GT(t + 𝜏) =
GT(t)GT(𝜏) holds for t, 𝜏 ≥ 0. Deriving with respect to 𝜏 and letting 𝜏 = 0 we get
G′(t) = G′(0)G(t), with initial condition G(0) = 1. Since G(t) is a monotonously

�

� �

�

76 3 Stochastic Models for Network Traffic

decreasing function of t for a continuous random variable, we can let a = −G′(0) >
0. Then, solving the differential equation we obtain G(t) = e−at, so that a can be
identified as the reciprocal of the mean inter-arrival time.

The properties of a Poisson process are preserved through the application of
various operations on the arrival process. For example, let us assume that arriv-
ing customers are sampled independently of one another with probability p. Let
us consider the interval (0, t] and assume that there are A(t) = n arrivals in that
interval. The conditional probability that the sampled process registers A(s)(t) = k
events is:

(A(s)(t) = k|A(t) = n) =
(n

k

)
pk(1 − p)n−k

, k = 0, 1,… ,n. (3.19)

Removing the condition, we find:

(A(s)(t) = k) =
∞∑

n=k

(𝜆t)n

n!
e−𝜆t

(n
k

)
pk(1 − p)n−k

=
(p𝜆t)k

k!
e−𝜆t

∞∑
n=k

[(1 − p)𝜆t]n−k

(n − k)!

=
(p𝜆t)k

k!
e−𝜆te(1−p)𝜆t =

(p𝜆t)k

k!
e−p𝜆t

, k ≥ 0. (3.20)

This shows the following result.

Theorem 3.5 The arrival process obtained by sampling independently of one
another with probability p the arrivals of a Poisson process with mean rate 𝜆 is
another Poisson process, with mean rate p𝜆.

Let us now consider the superposition of N independent Poisson processes, with
mean rate 𝜆i, i = 1,… ,N. The resulting counting function is A(t) = A1(t) + · · · +
AN (t), i.e., it is the sum of N independent random variables. The corresponding
generating function is obtained as

E[zA(t)] = E[zA1(t)+···+AN (t)] =
N∏

i=1
E[zAi(t)] =

N∏
i=1

e𝜆i t(z−1) = e𝜆t(z−1) (3.21)

where 𝜆 =
∑N

i=1 𝜆i. This shows that the superposition of N independent Poisson
processes is still a Poisson process, with mean rate equal to the sum of the N mean
rates of the component processes.

Finally, we recall a well-known property of Poisson arrivals, which is particu-
larly useful, e.g., when generating Poisson events in simulations.

Theorem 3.6 Given that n arrivals of a Poisson process occur in the interval
(0, t), the PDF of their ordered epochs t1 < t2 < · · · < tn is f (t1,… , tn) = n!∕tn.

�

� �

�

3.2 The Poisson Process 77

Remark: Note that the joint density of the arrival times given in the theorem is
nothing but the order statistics1 of n independent uniform random variables over
the interval (0, t).

Proof: The density f (t1,… , tn) can be calculated according to the expression

f (t1,… , tn) =
(E0,E1,E1,E2,E2,… ,En,En)

(A(t) = n)
(3.22)

where we have used the events Ek = {A(tk − dt, tk) = 1}, k = 1,… ,n and
Ek = {A(tk, tk+1 − dt) = 0}, k = 1… ,n − 1, E0 = {A(0, t1 − dt) = 0}, En =
{A(tn, t) = 0}. Since all events refer to nonoverlapping intervals, they are
independent and the probability in the numerator factors out into 2n + 1 terms:

f (t1,… , tn) =
e−𝜆(t1−dt) ⋅ 𝜆e−𝜆dt ⋅ e−𝜆(t2−dt−t1) ⋅ · · · ⋅ 𝜆e−𝜆dt ⋅ e−𝜆(t−tn)

(𝜆t)n

n!
e−𝜆t

= n!𝜆ne−𝜆t

𝜆ntne−𝜆t = n!
tn , 0 < t1 < t2 < · · · < tn < t. (3.23)

We close this section by stating an efficient algorithm for generating Poisson
random variables on a computer. Let N be a random variable on non-negative
integers with PDF given by (N = n) = an

n!
e−a

, n ≥ 0. Assume a function rand()
is available that generates (pseudo-)random samples uniformly distributed over
(0, 1). The event N = n is equivalent to T1 + · · · + Tn ≤ a and T1 + · · · + Tn+1 > a,
where Tk are i.i.d. random samples of a negative exponential random variable with
mean 1, Tk ∼ T ∼ Exp(1). It is easy to see that − log R ∼ Exp(1) if R ∼ (0, 1). This
follows from (− log R > x) = (R < e−x) = e−x, holding for any x ≥ 0.

Checking the events on the times Tk amounts to verifying that
∑n

j=1(− log Rj) ≤ a
and

∑n+1
j=1 (− log Rj) > a, that is to say

∏n
j=1 Rj ≥ e−a and

∏n+1
j=1 Rj < e−a. The value of

n satisfying both inequalities is the sample of the random variable N. An example
code for implementing this algorithm is as follows.

function [N] = Poissonrand(a)
% a is the mean of the Poisson r.v.
k = 0;
S = -log(rand);
while S <= a

k = k+1;
S = S-log(rand);

end
N = k;

1 Given n random variables X1,X2,… ,Xn, their order statistics is the joint density of the
random vector Y obtained by sorting out in ascending order the outcomes of the variables Xk’s.

�

� �

�

78 3 Stochastic Models for Network Traffic

3.2.1 Light versus Heavy Tails

Before overviewing a number of generalizations and extensions of the basic
Poisson process, we spend a word on the qualitative behavior of the point process
and its relationship with the tail of the PDF of its inter-event times.

We have shown that Poisson events are intimately connected with the negative
exponential PDF. The Poisson process inter-event times follow that kind of PDF,
with mean equal to the reciprocal of the mean event rate and the CCDF of the
inter-event times is GPoi(t) = e−𝜆t.

Figure 3.1 illustrates 1000 samples of Poisson events with unit mean inter-event
time. The top plot shows the events over time as vertical bars. The bottom left plot
is the sequence of inter-event times. The bottom right plot reports the estimated
CCDF of the inter-event times in a semi-log scale. As expected, the last plot exhibits
a negative exponential behavior. The marking feature of Poisson events is their
“smooth” distribution over time. Inter-event times vary within a relatively narrow
range around the mean (the ratio of the standard deviation to the mean of the
negative exponential PDF is 1).

It can be expected that Poisson events make a suitable model for events that
depart definitely from deterministic, yet do not display any extreme outcome, i.e.,
no wild variability of the samples is generated by a Poisson process.

Many natural phenomena and artificial processes do not fit into this frame.
Instead, a significant number of samples departing even orders of magnitude
from the mean are observed, although most values stay below the mean. The
marking character of random variables describing this situation is the decaying
of the CCDF tail: while Poisson events correspond to an exponential tail, with
this highly variable phenomena the tail of the CCDF of the inter-event times
decays according to a power law. That is the reason why those probability
distributions and the associated phenomena are also known as heavy tails. Note
that a heavy-tailed random variable has only a limited number of finite moments.
If G(t) ∼ 1∕t𝛼 , then only moments E[Xk] with k < 𝛼 do exist. Let us make an
example with a simple Pareto random variable T, i.e., GPar(t) = (𝜃∕t)𝛼 for t ≥ 𝜃

0
0 100 200 300 400 500 600 700 800 900 1000

100

10–1

10–2

10–3

0 2 4 6

2

4

6

8

10

Figure 3.1 Sample of Poisson events (top plot); sequence of inter-event times (bottom,
left plot); estimated CCDF of the inter-event times (semi-log scale; bottom, right plot).

�

� �

�

3.2 The Poisson Process 79

0
0 100 200 300 400 500 600 700 800 900 1000

100

10–1

10110–1 100
10–2

10

20

30

40

50

60

Figure 3.2 Sample of Pareto events (top plot); sequence of inter-event times (bottom,
left plot); estimated CCDF of the inter-event times (log-log scale; bottom, right plot).

and GPar(t) = 1 for 0 ≤ t ≤ 𝜃. The parameter 𝜃 can be chosen to match a given
mean, namely 𝜃 = (1 − 1∕𝛼)E[T] for 𝛼 > 1.

Figure 3.2 illustrates 1000 samples of Pareto events with 𝛼 = 1.5 and E[T] = 1.
The top plot shows the events over time. The bottom left plot is the sequence
of inter-event times. The bottom right plot reports the estimated CCDF of the
inter-event times in a log-log scale. As expected, the last one exhibits a power-law
behavior, which gives a straight line in the log-log axes. The marking feature
of Pareto events is their “widely variable” distribution over time, with time
intervals that are crowded and time spans that are void of events. Inter-event
times vary on a very wide range, occasionally reaching very high values (up to
50 times the mean in our sample). Note that the chosen Pareto PDF has infinite
variance.

Among countless other examples, heavy tails have been found also in network
traffic, e.g., lengths of exchanged files, duration of many application sessions,
duration of cellular calls, inter-arrivals of packets in LANs. Still the Poisson
process (or some generalization thereof, e.g., inhomogeneous Poisson process,
spatial Poisson process, Markov modulated Poisson process) is perhaps the most
widely used model in network traffic engineering. The main reason is that it
yields to analytical treatment. Besides that, Poisson arrivals provide a statistical
description that is reasonably accurate for all those phenomena where multiplex-
ing plays a key role, i.e., where a large population of sources contribute to the
observed event process, each source contributing a “negligible” amount to the
overall process.

3.2.2 Inhomogeneous Poisson Process

The Poisson process is stationary, i.e., the statistical characteristics of the random
variable A(t0, t0 + t) depend only on t, the length of the observed interval, not
on the initial time t0. Equivalently, the PDF of the random variables Tk does not
depend on k. In some applications it is useful to generalize this definitions and
consider a Poisson process with mean arrival rate 𝜆, which is a function of time.

�

� �

�

80 3 Stochastic Models for Network Traffic

The properties defining the inhomogeneous Poisson process with mean arrival
rate 𝜆(t) are

1. (A(t + Δt) − A(t) = 1) = 𝜆(t)Δt + o(Δt), as Δt → 0;
2. (A(t + Δt) − A(t) > 1) = o(Δt), as Δt → 0;
3. The number of arrivals in nonoverlapping intervals are independent random

variables, i.e., the random variables A(t2) − A(t1) and A(t4) − A(t3) are mutually
independent for any t1 ≤ t2 ≤ t3 ≤ t4.

Following entirely analogous steps as done in Section 3.2, it can be found that the
probability distribution of the counting function of the inhomogeneous Poisson
process is

(A(t1, t2) = n) =
Λ(t1, t2)n

n!
e−Λ(t1 ,t2) , t1 ≤ t2,n ≥ 0, (3.24)

where Λ(t1, t2) ≡ ∫ t2
t1

𝜆(t) dt. The nonstationary character of the process is evident,
since the PDF of the counting function does depend on both the initial and final
time epochs of the observed time interval. Nevertheless, the analytical expression
of the distribution is still relatively simple.

Example 3.1 In this example, we show how an inhomogeneous Poisson process
arises, when modeling a network communication process. The example refers to
a wireless multi-hop relay network, where nodes are spread along a line according
to a stochastically spatial process. By assuming a unidimensional spatial model
along the x-axis, we have to describe the random distance between adjacent nodes.
Equivalently, we can give the counting random variable A(x, y), that represents
the number of nodes found in the line interval (x, y]. We assume that nodes are
distributed according to a homogeneous Poisson process with mean density 𝜆

(measured in nodes per unit length).
We consider a message dissemination protocol, i.e., a set of rules to deliver a

message originating at one node to every other node. A message is launched by an
originating node along the positive direction of the x axis. Messages are carried by
broadcast packets. At each hop, a node forwarding the message encapsulates the
message into a packet and sets the destination address of that packet as “broad-
cast.” A trivial way to distribute the message would be having all nodes forwarding
the message as they receive it. In dense scenarios, i.e., in cases where the number
of nodes within the coverage radius of the transmitter is much larger than 1, the
number of replicas of the message grows fast, eventually unleashing the so-called
“broadcast storm.” It is clear that some algorithm to realize selective forwarding is
desirable. We examine a variant of the contention based forwarding (CBF) message
dissemination protocol, defined in the GeoNetworking ETSI standard [74].

�

� �

�

3.2 The Poisson Process 81

According to CBF, message dissemination follows two rules:

● Forwarding rule : When a node B first receives a message from a source node A,
it checks if the source node is within a distance Rmax; if that is the case, the node
starts a timer of value Tmax(1 − dAB∕Rmax), where dAB is the distance between A
and B; at timer expiry, the message is forwarded, unless inhibition occurs; the
node B does not relay the message, if the distance from the source node A is
larger than Rmax.

● Inhibition rule : When a node with a running timer receives further copies of
the message scheduled for relaying, it cancels both the copies and the pending
message, and it gives up to the forwarding operation.

In either case, the node B will not relay any more copies of a given message, once
B has decided whether to forward it or not.

The rationale is to guarantee the dissemination of the message, as long as nodes
are within a given range Rmax, yet avoiding to produce a large number of duplicated
receptions of the message. The timer ensures that only a single node will actually
relay the message (the one that selects the shortest timer, i.e., the most distant node
from the source node within a range Rmax). At least, this is true so long as all nodes
within the distance Rmax receive the message successfully with probability 1.

The ensuing example of nonhomogenous Poisson process deals with the dimen-
sioning of the parameter Rmax in the face of a stochastic reception model, i.e., a
model that accounts for the event the message reception may fail, depending on
the level of the signal-to-noise ratio (SNR) at the receiver. The inhomogeneous
Poisson process arises since we need to describe the set of nodes that receive the
message successfully. This event depends on nodes’ position, hence the inhomo-
geneity of the spatial process that describes the node density.

Reception is considered to be successful if the SNR at the receiver exceeds a
threshold that depends on the link rate. Under a deterministic path loss model,
the requirement of a minimum SNR level translates into a sharp maximum trans-
mission range Rth. Thus, in this case, the probability P(x) of successful reception
for a node at distance x from the transmitter is P(x) = 1, x ∈ [0,Rth] and P(x) =
0, x > Rth. In general, P(x) varies in a more gradual manner so that it is reduced
from 1 to 0 as x increases.

To understand the rationale of the Rmax parameter in the context of timer-based
dissemination protocols, where the inhibition rule is used to suppress most
message duplicates, consider the following: Let x = 0 denote the position of the
source node A. When A sends out a message, the nodes in the interval [0,Rmax]
can be divided into two subsets: the set of nodes that have successfully received
the message from A, A, and the set of nodes that have failed to receive the
message, A (most probably, those that are located farther away from A.) The
nodes in A start their forwarding timers; eventually the node with the smallest

�

� �

�

82 3 Stochastic Models for Network Traffic

timer, say B, sends out a new copy of the message, thus inhibiting all nodes in
A ∩ B. On the contrary, nodes in (A ∩ B)

⋃
(A ∩ B) do have a copy of the

message ready to send and are not inhibited, since they have received only a
single copy of the message, either from A or from B. The result is that message
duplication suppression enforced by the inhibition rule is not fully effective. The
ineffectiveness of duplicate suppression can be made negligible as long as Rmax is
such that P(x) ∼ 1 for x ∈ [0,Rmax].

To assess the effect of Rmax we assume a specific form for P(x), i.e., a Rician
fading path loss model, so that the normalized SNR �̂� = 𝛾∕𝛾(x) at distance x from
the transmitting node is modeled as a random variable with PDF expressed as

f
�̂�
(v) = (1 + K)e−K e−(1+K)vI0(2

√
K(1 + K)v) , v ≥ 0 (3.25)

where 𝛾(x) is the average SNR value at distance x, K is the ratio between the mean
power of the dominating radio propagation path and the mean power of the other
paths, and I0(⋅) is the modified Bessel function of the first kind of order zero. The
average SNR is 𝛾(x) = G(x)Ptx∕PN , where PN is the background noise power and
Ptx is the transmission power. G(x) depends on the assumed path loss propagation
model (e.g., single or dual slope). Here we have assumed a dual slope path loss
propagation model with break-point distance db = 120 m and path loss exponent
𝛼1 = 2 for distances up to db and 𝛼2 = 4 for distances bigger than db. Formally, it is

G(x) =
⎧⎪⎨⎪⎩

𝜅

x𝛼1
x ≤ db

𝜅d𝛼2−𝛼1
b

x𝛼2
d > db.

(3.26)

where 𝜅 = 1.637 ⋅ 10−5 and distances are measured in meters.
Let 𝛾th denote the threshold SNR required to sustain the communication link at

the desired rate and quality (bit error ratio) level. Then,

P(x) = ∫
∞

𝛾th∕𝛾(x)
f
�̂�
(v) dv , x > 0 (3.27)

Figure 3.3(a) shows the behavior of P(x) for three different values of K and for
Ptx = 200 mW = 23 dBm, PN = −104 dBm and 𝛾th = 10 dB. K = 0 corresponds to
Rayleigh fading model. A Rician model with low K is more appropriate when the
direct, line-of-sight path is absent or has a relatively low strength with respect to
reflected and diffracted rays. In the opposite case, a larger value of K must be used.
The bigger K, the more dominant the direct radio propagation path.

As results from Figure 3.3(a), by setting Rmax = 182 m, 264 m, 409 m we guar-
antee that P(x) ≥ 0.99 for x ∈ [0,Rmax] for K = 0, 3, 10 respectively.

Let us consider a tagged node A at x = 0. A is the source of a message to be
disseminated to nodes located on the semi-axis x > 0. Let B be the most distant

�

� �

�

3.2 The Poisson Process 83

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

P
ro

b
a
b
ili

ty
 o

f
s
u
c
c
e
s
s
fu

l
rx

K = 0

K = 3

K = 10

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

C
o
n
d
it
io

n
a
l
p
ro

b
a
b
ili

ty
 o

f
d
u
p
lic

a
te

s

λ = 5 (veh/km)

λ = 10 (veh/km)

λ = 15 (veh/km)

λ = 20 (veh/km)

P
tx
 = 200 mW

K = 10

γ
th

 = 10 dB

P
tx
 = 200 mW

γ
th
 = 10 dB

Distance between tx and rx node (m)

(a) (b)

0

Maximum hop range, R
max

 (m)

Figure 3.3 Example 3.1: duplicated message delivery under a Rician channel model.
Left plot: probability P(x) of correct message detection versus the distance x between
transmitter and receiver, for three values of the wireless channel model parameter K.
Right plot: probability of duplicated messages Pdup versus Rmax. Transmission power level:
Ptx = 200 mW; SNR threshold: 𝛾th = 10 dB.

node that successfully receives the message sent by A, among all nodes within dis-
tance Rmax of A. Let Y be the random variable defined as the distance between
A and B. Let N(0,Rmax) denote a random variable that represents the number of
nodes located in the interval (0,Rmax) that successfully receive the message sent
by A. Those nodes form an inhomogeneous Poisson process with mean density
𝜆P(x), x > 0. The CDF of Y , conditional on there being at least one successful
reception in (0,Rmax], is

FY (y) = (Y ≤ y|N(0,Rmax) > 0) =
(N(y,Rmax) = 0 & N(0, y) > 0)

(N(0,Rmax) > 0)
=

=

[
1 − e− ∫ y

0 𝜆P(u) du
]

e− ∫ Rmax
y 𝜆P(u) du

1 − e− ∫ Rmax
0 𝜆P(u) du

= e∫ y
0 𝜆P(u) du − 1

e∫ Rmax
0 𝜆P(u) du − 1

(3.28)

for 0 ≤ y ≤ Rmax.
According to the timer-based dissemination protocol, the most distant node B is

the designated message forwarder. Nodes in the interval (0,Rmax) will not forward
the message, thanks to the inhibition rule, provided they receive the message both
from A and from B . Nodes receiving one and only one copy of the message, will not
be inhibited, thus causing a duplicated message forwarding. We now characterize
the probability of such an event.

Let 1(y) = (A
⋂B)

⋃
(A

⋂B) denote the set of nodes belonging
to (0,Rmax) that receive the message exactly once, after both A’s and B’s
transmissions, conditional on the distance between A and B being Y = y.
Those nodes form an inhomogeneous Poisson process with mean density
𝜆1(x|y) = 𝜆[P(x)(1 − P(y − x)) + (1 − P(x))P(y − x)] for x ∈ (0, y) and y ∈ (0,Rmax).

�

� �

�

84 3 Stochastic Models for Network Traffic

The conditional average number of such nodes is

M(y) ≡ E[1(y)|Y = y] = 2∫
y

0
𝜆P(x) dx − 2∫

y

0
𝜆P(x)P(y − x) dx (3.29)

Then, the probability that at least one node escapes the inhibition mechanism,
i.e., the probability that inhibition is not fully effective and duplicated message
forwarding actions take place, is

Pdup ≡ 1 − ∫
Rmax

0
e−M(y) dFY (y) (3.30)

The probability Pdup is plotted in Figure 3.3(b) for Ptx = 200 mW = 23 dBm,
PN = −104 dBm, K = 10, 𝛾th = 10 dB and for the same path loss model as in
Figure 3.3(a).

In the case K = 10 (a value consistent with a scenario where propagation occurs
in essentially open spaces, i.e., fading due to multiple paths has a marginal effect),
Figure 3.3(b) highlights that the probability of duplicated messages is negligible if
Rmax ∼ 410 m. For bigger values of Rmax the message duplication probability grows
steeply, up to quite high values, the higher the bigger the mean vehicle density 𝜆.

The conclusion is that the maximum hop range Rmax should be limited to
achieve good performance of the timer-based dissemination protocol. Once
a suitable upper bound is selected for Rmax, so that reception of message is
reliable within that range, the random nature of the radio channel impacts the
dissemination process in a marginal way.

3.2.3 Poisson Process in Multidimensional Spaces

It is possible to extend the notion of Poisson process to multidimensional spaces.
Instead of thinking of customer arrivals scattered along the time axis, one can refer
to dots dispersed in a spatial region. Indeed, spatial Poisson process can be used
to model the positions of users or of infrastructure equipment over a service area
(e.g., cellular base stations, access points).

We extend the notation used in previous sections consistently, by letting A(B)
denote the number of points found in a region B of the space. This is nothing but
the extension of the counting function from unidimensional lines to multidimen-
sional spaces. We will consider only compact, measurable regions. The measure
(area, volume) of the region B is denoted with |B|.

We define first a homogeneous or uniform Poisson point process (PPP) in the d
dimensional space ℝd.

Definition 3.1 Given a real, positive constant 𝜆, a uniform PPP with intensity 𝜆

is a point process such that:

● for every compact set B ⊂ ℝd, A(B) is a Poisson random variable with mean 𝜆|B|;
● for any positive integer m and any collection B1,… ,Bm of disjoint bounded sets,

A(B1),… ,A(Bm) are independent random variables.

�

� �

�

3.2 The Poisson Process 85

Theorem 3.6 carries over to multidimensional spaces in a quite natural way.

Theorem 3.7 Given a homogeneous PPP with intensity 𝜆 in ℝd and any region
W ⊂ ℝd, with positive and finite measure, then the conditional probability distri-
bution of A(B) for B ⊂ W , given that A(W) = n is binomial with parameters n and
p = |B|∕|W |, i.e.,

(A(B) = k|A(W) = n) =
(n

k

)
pk(1 − p)n−k

, k = 0, 1,… ,n. (3.31)

For the proof as well as for many other results and generalizations, we direct the
reader to, e.g., [97].

Theorem 3.7 gives a path to the computer simulation of PPPs. Given a compact
region B and a rectangle R covering B, i.e., B ⊂ R, first draw a Poisson distributed
integer with mean 𝜆|R|, say it be n. Then, distribute uniformly at random the n
points over R. Ignore points that fall outside B. Those points that fall within B
represent a realization of the PPP of intensity 𝜆 in B. Note that the only distinction
between a binomial process (uniformly random distribution of a given number n
of points) and a PPP in a given compact set W is that different realizations of the
PPP consist of different number of points.

An example of a PPP is illustrated in Figure 3.4(a) for d = 2. The considered
region is a square of side length 10 (arbitrary units). The intensity of the uniform
PPP is 𝜆 = 10 (dots per square length unit).

The definition of PPP can be generalized to the case where the intensity is a
measure of ℝd, i.e., a function Λ(B) that associates a non-negative real number to
each measurable set B ⊂ ℝd. Often, it is possible to define a density 𝜆(x), x ∈ ℝd,
such that

Λ(B) = ∫B
𝜆(x) dx (3.32)

The generalized definition is as follows.

(a) (b) (c)

Figure 3.4 Sample realizations of spatial point processes. Left plot: uniform PPP. Middle
plot: Gaussian PPP with intensity density as in eq. 3.33 and 𝜎 equal to 1/5 of the box side
length. Right plot: lattice with edge length equal to 1, perturbed with a random
displacement uniformly distributed in [0, 0.9].

�

� �

�

86 3 Stochastic Models for Network Traffic

Definition 3.2 Given an intensity measure Λ, a general PPP is a point process
such that:

● for every compact set B ⊂ ℝd, A(B) is a Poisson random variable with meanΛ(B);
● for any positive integer m and any collection B1,… ,Bm of disjoint bounded sets,

A(B1),… ,A(Bm) are independent random variables.

For example, Figure 3.4(b) shows the point pattern of a general PPP in ℝ2, with
intensity density

𝜆(x) = 1
2𝜋𝜎2 exp

(
−
∥x − x0∥2

2𝜎2

)
, x ∈ ℝ2

. (3.33)

This is known as a Gaussian Poisson process. In Figure 3.4(b) the central point x0
is chosen as the center of the square region, i.e., the point (5,5).

Point patterns can follow different statistics, other than Poisson. A simple
example of point pattern is the lattice, i.e., a grid of evenly spaced out points. By
properly choosing the unit of measurement, we can define the d-dimensional
lattice as ℤd. A perturbed lattice can be defined by introducing a family of i.i.d.
random variables Xu,u ∈ ℤd, having a PDF f (x). Then, the perturbed lattice can be
defined as Φ = {u ∈ ℤd ∶ u + Xu}. A simple case is obtained when Xu ∼ (0, a)
with 0 < a < 1. Figure 3.4(c) depicts a perturbed lattice with a = 0.9.

It is useful to make a brief digression to introduce two definitions that are strictly
related with point patterns. Given a set of random points Φ = {xi} in ℝd and a
distance, it is possible to define the Voronoi cell associated with xi as the set of
points x ∈ ℝd that are closest to xi rather than to any other xj, j ≠ i. Namely, we
let

V(xi) = {y ∈ ℝd ∶ ||y − xi|| ≤ ||y − xj||,∀j ≠ i} (3.34)

It is then possible to define a Voronoi tessellation of the space, as the decom-
position of ℝd defined by the set of Voronoi cells associated to the points in Φ.
Every point in ℝd belongs to a unique Voronoi cell, except boundary points, those
that are equidistant from at least two different pattern points of Φ. The Voronoi
decomposition of the space induces also a graph relationship among the points
of Φ. We connect two points of Φ with an arc if and only if the two Voronoi cells
of the considered points share a common boundary. The obtained graph is called
a Delaunay triangulation. Notice that both Voronoi decomposition and Delaunay
triangulation are completely defined once given the set of points Φ and the dis-
tance measure (e.g., the norm induced distance over ℝd).

Figure 3.5 gives examples of a Voronoi tessellation and of the corresponding
Delaunay triangulation for a set of 100 points uniformly distributed over a bidi-
mensional square region of size 10 × 10.

�

� �

�

3.2 The Poisson Process 87

(a) (b)

Figure 3.5 Sample realization of a Voronoi tessellation with 100 points uniformly
distributed at random over a square region (left plot) and the corresponding Delaunay
triangulation (right plot).

Example 3.2 As an application we consider the publicly available Cologne
dataset (http://sumo.dlr.de/wiki/Data/Scenarios/TAPASCologne). Specifically,
we extract the cellular network base station (BS) locations. There are 246 BS
locations listed in the dataset, corresponding to the central part of the city of
Cologne in Germany.

We assume a simple power-law model for signal path loss, i.e., the power level
received at distance d from a transmitting BS is given by Prx(d) = Ptxmin{1, 𝜅∕d𝛼},
where Ptx is the transmission power level and 𝜅 is a constant depending on car-
rier frequency, antenna gains and other physical parameters. For this numerical
example, we let 𝛼 = 3 and 𝜅 = −35, 89 dB with the distance d measured in meters.

If user terminals associate to serving BSs according to a maximum received
power criterion, than the set of points forming the serving area of a BS (the so
called cell of that BS) coincides with the Voronoi cell of that BS.

Figure 3.6(a) illustrates the Voronoi diagram of the Cologne BSs. Areas on the
outer border region are unrealistically large due to the spatial truncation of the BS
locations available in the dataset.

Real cell shapes are not so sharp due to the complicated electromagnetic field
propagation (i.e., path loss does not decay as a simple deterministic power law: that
is only a first-approximation model). Moreover, real cells overlap significantly to
allow smooth handoff.

The received power level in each point of the whole area is shown in Fig. 3.6(b)
as a heat map. The darker the point of the map, the lower the received power level.
The transmission power level of BSs, Ptx, ranges from 33 dBm to 13 dBm, and it is
set so that an SNR level of at least 6 dB is guaranteed to all points falling within the
Voronoi cell of the serving BS. Brighter points correspond to higher received power

�

� �

�

88 3 Stochastic Models for Network Traffic

(a) (b)

Figure 3.6 Example 3.2: Voronoi tessellation of the Cologne cellular base stations (left
plot) and heat map of the received power level (right plot).

levels. The brightest points are just BS locations. Increasing the transmitted power
of BSs would raise the received power level, at the expense of a larger interference
among different cells.

Using a PPP model to generate locations of BSs of a cellular network neglects
the fact that BS locations are planned so as to offer a good coverage of potential
users with the minimum possible number of BS installations. Therefore, BSs are
never too close to each other, whereas a PPP model does not enforce any positive
minimum distance between any two points. A hard-core spatial process is more
suitable for that task.

Let us now introduce some definitions. Our purpose is to characterize a number
of general operations on point processes.

Definition 3.3 Joint probability distribution. The finite dimensional prob-
ability distributions of a point process are the joint probability distributions of
the random variables A(B1),… ,A(Bm) for all integers m > 0 and compact sets
B1,… ,Bm.

Definition 3.4 Translation of a point process. Given a point process
Φ = {x1, x2,… }, a translation of the process by x ∈ ℝd is Φ = {x1 + x, x2 + x,… }.

Definition 3.5 Stationarity. A point process is said to be stationary if its finite
dimensional distributions are invariant with respect to translations.

Definition 3.6 Isotropy. A point process is said to be isotropic or rotationally
invariant if its finite dimensional distributions are invariant with respect to rota-
tions around the origin of the coordinate system in ℝd.

�

� �

�

3.2 The Poisson Process 89

Definition 3.7 Motion-invariance. A point process is said to be motion invari-
ant if it is stationary and isotropic.

The class of motion invariant point processes play a role similar to stationary
processes over time. An example of more general process (nonstationary) that
is analytically tractable is the general PPP. The lattice grid defined above, when
perturbed by uniformly distributed random shift, gives rise to an example of sta-
tionary, yet anisotropic point process.

Next we define a number of operations on a point process and we give properties
of a PPP under these operations.

3.2.3.1 Displacement
Given a point process Φ, its displacement is the point process Φ′ defined by

Φ′ = {x + Vx, x ∈ Φ} (3.35)

where Vx are independent random variables whose PDF may depend on the loca-
tion x. Let such a PDF be denoted with f (x, ⋅). Displacement consists of random
shifts to the points of the process. The displacements are independent from one
point to another. In general we expect the statistics of the modified process to be
different from the original one. When this operation is applied to a general PPP Φ
with density function 𝜆(x) it yields another PPP Φ′ with density function

𝜆
′(x) = ∫ℝd

𝜆(y)f (y, x − y) dy , x ∈ ℝd (3.36)

Note that, if the original process is a uniform PPP, with 𝜆(x) = 𝜆 ∀x, then so is the
process resulting from random displacement, i.e., a uniform PPP is stochastically
invariant under random, independent, and stationary displacements. This is true
in any dimension d, thus including the basic case of standard Poisson process on
a line.

3.2.3.2 Mapping
A point process can be transformed by mapping each point of the process into
another point, possibly in a space with different dimensions. Let us restrict our
attention to mappings defined by measurable functions f ∶ ℝd → ℝc, such that f
does not shrink a nonsingleton compact set to a singleton. Then, it is possible to
show the following.

Theorem 3.8 Let Φ be a PPP with intensity measure Λ and density 𝜆. Let f be a
mapping of the class defined above with the property that Λ(f −1(y)) = 0,∀y ∈ ℝc.
Then Φ′ = f (Φ) =

⋃
x∈Φ{f (x)} is a PPP with intensity measure Λ′(B′) = Λ(f −1(B′))

for all compact B′
⊂ ℝc.

�

� �

�

90 3 Stochastic Models for Network Traffic

For example, let us consider a uniform PPP in ℝd with density 𝜆. As a mapping
we choose f (x) = ||x||, hence f ∶ ℝd → ℝ+. Given an interval [0, r], the inverse
image under f is the ball of center the origin and radius r: let it be denoted with
B(0, r). Then

Λ′([0, r]) = Λ(B(0, r)) = 𝜆|B(0, r)| = 𝜆𝛽drd (3.37)

where the coefficient 𝛽d is the volume of the d dimensional ball of radius 1. It is

𝛽d = 𝜋
d∕2

Γ(d∕2 + 1)
(3.38)

with Γ(x) ≡ ∫ ∞
0 ux−1e−u du (Euler gamma function). In the planar case, d = 2 and

Λ′([0, r]) = 𝜆𝜋r2. The density is 𝜆′ = 2𝜆𝜋r, hence it is clear that the transformed
PPP is not uniform.

As another example, let us consider f (x) = ||x||d. Then [0, r] corresponds to the
ball B(0, r1∕d), and hence we get

Λ′([0, r]) = Λ(B(0, r1∕d)) = 𝜆𝛽dr (3.39)

and the corresponding density is 𝜆′ = 𝜆𝛽d, i.e., it is constant. Therefore, under this
second transformation, a uniform PPP in ℝd is turned into another (unidimen-
sional) uniform PPP.

3.2.3.3 Thinning
Thinning consists of removing some points from a point process. Usually removing
is governed by probabilistic rules. In general we define a function p ∶ ℝd → [0, 1]
that gives the probability p(x) that a point survives, while a point x is removed with
probability 1 − p(x). If the decision of removing a point is taken independently
for each point of the original point process, we say that we apply independent
thinning.

It can be shown that, if we start with a homogeneous PPP with intensity 𝜆 and
apply independent thinning with probability 1 − p(x), then we end up with an
inhomogeneous PPP, having density function 𝜆p(x). This is clearly a generaliza-
tion of the sampling result presented in Section 3.2.

Formally, the following theorem can be stated.

Theorem 3.9 Let Φ be a stationary PPP with mean density 𝜆. Removal of points
of Φ according to independent thinning with removal probability 1 − p(x) leads to
an inhomogeneous PPP Ψ with mean density 𝜆p(x).

Proof: Let B denote a closed set. By the law of total probability, we can write

(Ψ(B) = k) =
∞∑

j=k
(Ψ(B) = k|Φ(B) = j)(Φ(B) = j) (3.40)

�

� �

�

3.2 The Poisson Process 91

Given that there are j point of Φ in B, their location is uniformly and indepen-
dently distributed over B for each point. Then, the probability of retaining one
such point is q ≡ ∫Bp(x) dx∕|B|, where |B| denotes the measure of B. Therefore,
since thinning is done independently on each point, we get:

(Ψ(B) = k|Φ(B) = j) =
(

j
k

)
qk(1 − q)j−k

, j ≥ k, k ≥ 0. (3.41)

Substituting into (3.40), we have

(Ψ(B) = k) =
∞∑

j=k

(
j
k

)
qk(1 − q)j−k (𝜆|B|)j

j!
e−𝜆|B|

=
(𝜆q|B|)k

k!
e−𝜆|B| ∞∑

j=k

(𝜆(1 − q)|B|)j−k

(j − k)!

=
(𝜆q|B|)k

k!
e−𝜆|B|e−𝜆(1−q)|B| =

(∫B𝜆p(x)dx
)k

k!
e−∫B𝜆p(x)dx

that is to say, Ψ is an inhomogeneous PPP, with mean density 𝜆p(x).

3.2.3.4 Distances
We consider a uniform PPP Φ with constant density 𝜆. Given a point x of Φ, we
can find easily the distance of the point of Φ closest to x, other than x itself. We
define the random variable D = inf{||y − x||, y ∈ Φ∖{x}}. Given the stationarity
and isotropy of Φ, the probability distribution of D does not depend on x. We have

(D > r) = ((Φ∖{x}) ∩ B(x, r) = ∅) = exp
(
−∫B(x,r)

𝜆 dy
)

= e−𝜆𝛽drd (3.42)

hence the PDF of D is fD(r) = d𝜆𝛽drd−1e−𝜆𝛽drd
, r ≥ 0. In the special case d = 2, we

have (D > r) = e−𝜆𝜋r2 and fD(r) = 2𝜆𝜋re−𝜆𝜋r2
, r ≥ 0.

We can even find the distance of n-th closest point, Dn (so D ≡ D1):

(Dn > r) = (|(Φ∖{x}) ∩ B(x, r)| < n) =
n−1∑
k=0

(𝜆𝛽drd)k

k!
e−𝜆𝛽drd (3.43)

For example, a wireless station can associate with an access point (AP) if the
level of received power from the AP exceeds a threshold Pth. If the path gain at a
distance d can be expressed as G(d) = min{1, 𝜅∕d𝛼}, the received power level is
Prx(d) = PAPG(d), where PAP is the transmission power level of the AP. The condi-
tion for the association corresponds to Ptx(d) ≥ Pth, i.e., d ≤ dth = (𝜅PAP∕Pth)1∕𝛼 . If
stations are scattered around the AP according to a uniform PPP with mean spatial
density 𝜆 in three dimensions (e.g., as in office building), then the probability that
no more than n stations can associate with the AP is given by (Dn+1 > dth), with
Dn distributed as in eq. (3.43) with d = 3.

�

� �

�

92 3 Stochastic Models for Network Traffic

3.2.3.5 Sums and Products on Point Processes
Given a point process Φ and a function f (x) ∶ ℝd → ℝ, we can define the sum of
f over Φ; formally

∑
x∈Φf (x). Campbell’s theorem is a general result on this kind

of sums.

Theorem 3.10 Let Φ be a point process on ℝd with density function 𝜆(x) and
f (x) ∶ ℝd → ℝ a measurable function. Then

Y =
∑
x∈Φ

f (x) (3.44)

is a random variable with mean

E[Y] = ∫ℝd
f (x)𝜆(x) dx (3.45)

provided the integral is finite.

For example, let us consider a set of transmitting nodes scattered over the plane
according to a uniform PPP with density 𝜆. The interference contributed by these
transmitters on a probe node located at the origin is

I0 =
∑
x∈Φ

PtxG(||x||) (3.46)

where G(d) is the path gain of the radio channel at distance d and Ptx is the trans-
mission power level. Campbell’s theorem allows us to calculate the mean interfer-
ence at the origin, i.e.,

E[I0] = 𝜆Ptx2𝜋 ∫
∞

0
G(r) dr (3.47)

We can also consider products over the point process. Let v ∶ ℝd → [0, 1] be a
measurable function such that 1 − v(x) has bounded support. The probability gen-
erating functional of point process Φ is defined as

GΦ(v) = E

[∏
x∈Φ

v(x)

]
= E

[
exp

(∑
x∈Φ

log v(x)

)]
(3.48)

The Laplace functional is defined as

LΦ(u) = GΦ(e−u) = E

[
exp

(
−
∑
x∈Φ

u(x)

)]
(3.49)

For a PPP with density 𝜆(x) it can be seen that

GΦ(v) = exp
(
−∫ℝd

[1 − v(x)]𝜆(x) dx
)

(3.50)

�

� �

�

3.2 The Poisson Process 93

and

LΦ(u) = exp
(
−∫ℝd

[1 − e−u(x)]𝜆(x) dx
)

(3.51)

As an application, we can calculate the outage probability of a link under the
interference of a Poisson network, i.e., a set of transmitting nodes scattered on
the plane according to a PPP of density 𝜆(x). Let us assume that the receiver of the
tagged link is located at the origin ofℝ2. The signal-to-interference-and-noise-ratio
(SINR) of the receiver can be written as

SINR0 =
PtxG(r)
I + PN

(3.52)

where PN is the background thermal noise power, I is the interference and G(r)
is the path gain from the tagged transmitter to the tagged receiver, at distance
r. In general, the path gain is modeled as the product of a deterministic compo-
nent Gdet(r) (depending mostly on the physical characteristics of the e.m. field
and on the geometry of the propagation environment) and a random component,
that aims at capturing the effect of obstructions (shadowing) and of the multi-path
(fading). The former component is often modeled as a power law with distance,
i.e., Gdet(r) = 𝜅∕r𝛼, r ≥ r0; the latter component is a random variable Grnd with
unit mean. In case of Rayleigh fading, Grnd is a negative exponential variable, i.e.,
(Grnd > h) = e−h.

By definition, we say that the tagged link is in outage if its SINR falls below a
threshold 𝜃. With Rayleigh fading, we get

Pout = (SINR ≤ 𝜃) = 1 − (SINR > 𝜃) = 1 −
(

Grnd > 𝜃
I + PN

PtxGdet(r)

)
(3.53)

Then

1 − Pout = E
[

exp
(
−𝜃

I + PN

PtxGdet(r)

)]
= exp

(
− 𝜃

SNR0(r)

)
E[e−𝜃Î] (3.54)

where SNR0(r) ≡ PtxGdet(r)∕PN is the baseline signal-to-noise ratio of the tagged
link and Î is the interference normalized to the average received power PtxGdet(r).
Under the PPP assumption, the interference can be written as

Î = 1
PtxGdet(r)

∑
x∈Φ

PtxGdet(||x||)Grnd,x =
∑
x∈Φ

Grnd,x
r𝛼||x||𝛼 (3.55)

Let us denote the random variable of the Rayleigh fading with H for simplicity,
i.e., Grnd,x ∼ H,∀x ∈ Φ. then

E[e−𝜃Î] = E

[∏
x∈Φ

e−𝜃Hf (x)

]
= EΦ

[∏
x∈Φ

EH[e−𝜃Hf (x)]

]
(3.56)

�

� �

�

94 3 Stochastic Models for Network Traffic

where f (x) ≡ (r∕||x||)𝛼 and we have assumed that fading is independent among
different interfering nodes. Now, using the definition of the probability generating
functional and the result in eq. (3.50), we obtain for 𝛼 > 2:

E[e−𝜃Î] = exp
(
−∫ℝ2

(1 − EH[e−𝜃Hf (x)])𝜆 dx
)

= exp
(
−EH

[
∫

∞

0
(1 − e−𝜃H(r∕y)𝛼)2𝜋𝜆y dy

])
= exp

(
−EH

[
𝜆𝜋r2(𝜃H)2∕𝛼 ∫

∞

0
(1 − e−z) 2

𝛼
z−2∕𝛼−1 dz

])
= exp

(
−EH

[
𝜆𝜋r2(𝜃H)2∕𝛼 ∫

∞

0
z−2∕𝛼e−z dz

])
= exp(−𝜆𝜋r2

𝜃
2∕𝛼E[H2∕𝛼]Γ(1 − 2∕𝛼))

= exp(−𝜆𝜋r2
𝜃

2∕𝛼Γ(1 + 2∕𝛼)Γ(1 − 2∕𝛼))

= exp
(
−𝜆𝜋r2

𝜃
2∕𝛼 2𝜋∕𝛼

sin(2𝜋∕𝛼)

)
(3.57)

where the third line is obtained by the variable change z = 𝜃H(r∕y)𝛼 , the fourth
line is obtained by integrating by parts, the fifth line uses the definition of the Euler
gamma function, the sixth line exploits the negative exponential distribution with
mean 1 of the Rayleigh fading variable H.

Equations (3.54) and (3.57) provide an explicit expression of the outage probabil-
ity of a link over distance r, under the interference of a Poisson network (uniform
PPP), for power law attenuation and Rayleigh fading.

3.2.3.6 Hard Core Processes
A point process where points cannot be closer than a given distance r is said to
be a hard core process. It is a useful model for systems where feasibility or oppor-
tunity leads to distributing points not too close to each other, e.g., when defining
locations of cellular base stations. In that case, planning of cellular coverage leads
to designing a geographical distribution of the base stations of an operator where
two stations are as separated as possible, i.e., the objective is to minimize the num-
ber of base stations required to cover a given service area with an assigned quality
of service. Placement of base stations results however in an irregular pattern due
to technical and regulatory constraints. Note that a PPP does not guarantee any
minimum distance between two nodes.

A classic example of hard core process is the Matern one. It comes in two
different brands.

Definition 3.8 Matern process of type I. It starts with a uniform PPP of den-
sity𝜆P. Each point is marked, if it has a neighbor at a distance less than or equal to r.

�

� �

�

3.2 The Poisson Process 95

Then, all marked points are removed. The resulting point pattern is a realization
of the Matern process of type I.

This definition gives a practical way of constructing a Matern process of type I.
It leads typically to sparse point patterns, since two points falling at a distance less
than r in the original PPP are both marked and hence removed. In ℝd, the prob-
ability that a node has no neighbor at a distance ≤ r is exp(−𝜆P𝛽drd). Hence, the
density of the surviving points, after removal of marked ones, is 𝜆M1 = 𝜆Pe−𝜆P𝛽drd .
For example, in two dimensions, 𝜆M1 = 𝜆Pe−𝜆P𝜋r2 .

A more dense process, still fulfilling the requirement on the minimum distance
between points, is the Matern process of type II.

Definition 3.9 Matern process of type II. It starts with a uniform PPP of den-
sity 𝜆P. Each point is assigned a random weight in [0, 1], say wx for point x, inde-
pendently of all other points. Then, a point is marked, if it has a neighbor within
distance r with a weight less than its own, i.e., node y has mark my = 1 if and only if
∃ x ∈ Φ ∶ wx < wy, ||x − y|| ≤ r. All marked nodes are removed and the resulting
point pattern is a realization of the Matern process of type II.

To find the density of the Matern type II process, starting from a uniform PPP
with density 𝜆P, we consider a tagged node and condition on its weight value w. Let
us restrict our attention to the points of the original PPP having weight less than
or equal to w. Since weights are assigned independently to the points of the PPP,
the restricted point process is still a PPP, with density (W ≤ w)𝜆P = w𝜆P. This
is a consequence of the uniform distribution over [0, 1] of the weights. The event
that the tagged point is retained, conditional on its weight being w, is realized if
and only if the tagged point has no neighbor within distance r and belonging to
the restricted point process. The probability qw of such an event is qw = e−w𝜆P𝛽drd .
Removing the conditioning, the unconditional probability q of being retained is

q = ∫
1

0
qw dw = ∫

1

0
e−w𝜆P𝛽drd dw = 1 − e−𝜆P𝛽drd

𝜆P𝛽drd
(3.58)

then, the density of the Matern II process is

𝜆M2 = 𝜆Pq = 1 − e−𝜆P𝛽drd

𝛽drd
(3.59)

If d = 2, we get:

𝜆M2 = 1 − e−𝜆P𝜋r2

𝜋r2 (3.60)

As 𝜆P → ∞, eq. (3.60) shows that 𝜆M2 → 1∕(𝜋r2), which is obviously the highest
density compatible with the constraint on the minimum spacing among points.

�

� �

�

96 3 Stochastic Models for Network Traffic

(a) (b)

Figure 3.7 Matern point processes originating from a uniform PPP with 𝜆P = 10 over a
square grid 10 × 10. Left plot: realization of Matern I process with 368 points. Right plot:
realization of Matern II process with 608 points.

On the contrary, for 𝜆P → 0, it is 𝜆M2 ∼ 𝜆P. This result corresponds to the intuition
that the minimum distance constraint has no effect on the point process when it
is highly sparse.

Sample outcomes of Matern process are shown in Figure 3.7, starting from a
uniform PPP with density 10 points per square unit. Over a region of size 10 × 10
(hence, the expected number of points of the PPP is 1000), we have obtained 368
points for the example of Matern type I process and 608 points for the type II.

The average density of the PPP and the minimum distance r are set so that 𝜆P =
1∕(𝜋r2). This guarantees with high probability that the resulting Matern II process
is tightly “packed.”

3.2.4 Testing for Poisson

In this section we briefly overview some elementary statistical method to assess
whether a collection of time points in a unidimensional space (e.g., the time
axis) can be described adequately by the Poisson process. We say that the random
mechanism that produces the points is “explained” by the Poisson process or that
the Poisson process fits the data. The starting point is a simulation experiment
or a measurement yielding a collection of time points, to which we would like to
fit a stochastic model. The simplest model to explain a time series is the Poisson
process, so we naturally desire to have methods to readily rule out this hypothesis
or, on the contrary, to provide evidence that the Poisson model is consistent with
the data.

There exist specific tests for the Poisson process, e.g., the Brown-Zhao test
[46]. We present here general tests, that could be adapted to other probability

�

� �

�

3.2 The Poisson Process 97

distributions, except of the test on the memoryless property, that depends on a
special property that characterizes the Poisson process.

Let = {ti}0≤i≤n be a set of n + 1 points on the time axis, sorted in ascending
order. The corresponding inter-arrival times can be calculated as 𝜏i = ti − ti−1 for
i = 1,… ,n. The mean inter-arrival time is estimated as ⟨T⟩ = ∑n

i=1 𝜏i∕n. Then, the
estimated average arrival rate is ⟨𝜆⟩ = 1∕⟨T⟩.

If the time series follows a Poisson process, then the CCDF of the inter-arrival
times must be negative exponential. This can be readily visualized in a
semi-logarithmic plot. If the abscissa is linear and the ordinate is logarith-
mic, the graph of G(t) = e−𝜆t is a straight line, starting out at (0, 1) and having
negative slope proportional to 𝜆. Hence, we estimate G(t) as follows:

G̃(t) = 1
n

n∑
i=1

I(𝜏i > t) =
n
>t

n
, t ≥ 0, (3.61)

where I(E) is the indicator function of the event E, i.e., I(E) = 1 if and only if E is
true, and n

>t is the count of the inter-arrival times that fall beyond level t.
We also know that the negative exponential probability distribution is the only

one that satisfies the memoryless property in eq. (3.17). We can estimate separately
both sides of the identity and compare them. Again, this is neatly visualized in a
semi-logarithmic plot. As for the estimates, they are easily computed as follows:

(T > t + x|T > x) ≈
n
>t+x

n
>x

(3.62)

while (T > t) is estimated as in eq. (3.61).
Yet another characteristic of the inter-arrival time probability distribution is the

QQ-plot. It plots the theoretical quantile values against the estimated ones. If the
chosen probability distribution (the negative exponential one with parameter ⟨𝜆⟩
in our case) fits the data, the QQ-plot appears as a straight line with slope 1. The
q-level quantile of the continuous random variable X with CCDF GX (x) is the value
Xq such that G(Xq) = 1 − q. The levels q in the subscript are generally denoted with
a percentage, e.g., X99 is the quantile at level 0.99, i.e., the value that is exceeded by
the random variable X with probability 1 − 0.99 = 0.01. The quantile of the neg-
ative exponential random variable with parameter 𝜆 are Xq = − log(1 − q)∕𝜆 for
q ∈ (0, 1). As for the estimate, we let ⟨Xq⟩ = sup{x ∶ n

>x∕n ≥ 1 − q}.
Some numerical examples are provided in the rest of this section. We consider

traces of aggregated packet traffic (IP packets), captured on operational links, from
which we extract the sequence of inter-arrival times. Specifically, the trace labeled
ADSL has been captured on the output link of a domestic ADSL with maximum
downlink capacity of 7 Mbit/s. The trace labeled WAN has been obtained from
CAIDA (http://www.caida.org): it refers to a high precision measure on a 10 Gbit/s
wide area network link from a node in Chicago (IL, USA) to a node in San Jose

�

� �

�

98 3 Stochastic Models for Network Traffic

100 200 300

Normalized time, t/E[T]

(a) (b)

(c) (d)

0

20

40

60

80

100

N
u
m

b
e
r

o
f
a
rr

iv
a
ls

0 20 40 60

Normalized time, t/E[T]

10–4

10–3

10–2

10–1

100

10–4

10–3

10–2

10–1

100
E

m
p
ir
ic

a
l
C

C
D

F

0 2 4 6 8 10

Quantiles of NE pdf

0

2

4

6

8

10

E
s
ti
m

a
te

d
 q

u
a
n
ti
le

s

0 2 4 6 8 10

Normalized time, t/E[T]

P
ro

b
a
b
ili

ti
e
s

Prob(T > t)

Prob(T > t + τ | T > τ)

Figure 3.8 Poisson tests for IP packet inter-arrival times on an ADSL link. Sample of the
counting function (top left plot). Empirical CCDF (top right plot). QQ-plot (bottom left
plot). Assessment of the memoryless property (bottom right plot). The mean inter-arrival
time is E[T] = 53.685 ms.

(CA, USA). Several tens of thousands of arrival times have been extracted from
those traces, to carry out the statistical tests outlined in this section. In all cases,
the sequence of inter-arrival times has been normalized so as to make the mean
equal to 1. The actual average inter-arrival time, estimated from the sample data,
is reported in the captions.

Figure 3.8 shows the counting function, the empirical CCDF, the QQ-plot, and
the test on the memoryless property for the sequence of arrival time of packets in
the ADSL trace. The results for the packet arrival process of the WAN measure-
ment are plotted in Figure 3.9.

The test displayed in those figures suggests that the Poisson model fits reason-
ably with the data from the WAN trace, while it is inadequate to represent the
aggregated packet arrival process experienced on the ADSL link. This is some-
what expected and consistent with many observations that lead to the general
conclusion that the Poisson model is a good choice to represent a sequence of

�

� �

�

3.2 The Poisson Process 99

0 20 40 60 80 100

Normalized time, t/E[T]

0

20

40

60

80

100

N
u
m

b
e
r

o
f
a
rr

iv
a
ls

0 2 4 6 8

Normalized time, t/E[T]

E
m

p
ir
ic

a
l
C

C
D

F

0 2 4 6 8 10

Quantiles of NE pdf

0

2

4

6

8

10

E
s
ti
m

a
te

d
 q

u
a
n
ti
le

s

0 2 4 6 8 10

Normalized time, t/E[T]

P
ro

b
a
b
ili

ti
e
s

Prob(T > t)
Prob(T > t + τ | T > τ)

10–4

10–3

10–2

10–1

100

10–4

10–3

10–2

10–1

100

(a) (b)

(c) (d)

Figure 3.9 Poisson tests for IP packet inter-arrival times on a WAN link. Sample of the
counting function (top left plot). Empirical CCDF (top right plot). QQ-plot (bottom left
plot). Assessment of the memoryless property (bottom right plot). The mean inter-arrival
time is E[T] = 1.6483μs.

events produced by the superposition of a large number of concurrent flows, each
of which gives a marginal contribution to the whole. In networking terms, when
there is a high degree of multiplexing of packet flows, there we expect the Poisson
model to provide a good fit. Since the ADSL is fed by the traffic of a little number
of sources, as typical of a domestic environment, in that case the correlation
among inter-arrivals prevails and the Poisson model departs significantly from
the actual data.

Finally, we hint at a general test to check the model of the CDF of a set of
points, the famous Kolmogorov-Smirnov test. It is particularly interesting since
it is backed by a strong theory and it does not require knowledge or estimates of
any parameter, except of the points themselves. Given the set of points {xi}1≤i≤n,
the estimate of the CDF is given by

F̃n(x) =
1
n

n∑
i=1

I(xi ≤ x) (3.63)

�

� �

�

100 3 Stochastic Models for Network Traffic

The Kolmogorov-Smirnov statistic for a given CDF model F(x) to be tested is

Dn = sup
x

|F̃n(x) − F(x)| (3.64)

Under null hypothesis that the sample comes from the hypothesized distribu-
tion F(x), Kolmogorov has shown that, if F(x) is continuous, then the statistics√

nDn converges in distribution to the Kolmogorov random variable K, which has
a CDF that does not depend on F(x). Specifically, it can be shown that

√
nDn ∼ K as

n → ∞ with

(K ≤ x) = 1 − 2
∞∑

k=1
(−1)k−1e−2k2x2

, x > 0. (3.65)

The goodness-of-fit test or the Kolmogorov-Smirnov (KS) test is constructed
by using the critical values of the Kolmogorov distribution (3.65). The null
hypothesis is rejected at level 𝛼, if

√
nDn > K

𝛼
, where K

𝛼
is calculated from

(K ≤ K
𝛼
) = 1 − 𝛼.

The KS test can be used to check whether the sequence of inter-arrival times
collected by the experiment is consistent with the null hypothesis F(x) = 1 − e−x,
once normalized to the estimated mean value.

3.3 The Markovian Arrival Process

Poisson arrivals lead to relatively simple models that are often amenable to analy-
sis. However, whenever arrivals exhibit non-negligible correlations, the Poisson
process is inadequate. A generalization of the Poisson process can be obtained
by considering a modulating Markov process. Let J(t) be the state of a continu-
ous time, finite Markov process, over the state space {1,… ,m}. Let D denote the
infinitesimal generator of the Markov process.

The Markovian arrival process (MAP) is defined by two matrices, D0 and D1,
such that D1 is a non-negative matrix and D = D0 + D1 is an irreducible infinites-
imal generator of the finite Markov process J(t), usually referred to as the phase
of the MAP. Let dr(i, j) denote the entry (i, j) of the matrix Dr, r = 0, 1. Then, it
is d1(i, j) ≥ 0,∀i, j = 1,… ,m, d0(i, j) ≥ 0,∀i ≠ j and d0(i, i) ≤ 0, i = 1,… ,m, with∑m

j=1(d0(i, j) + d1(i, j)) = 0, i = 1,… ,m.
The properties defining the MAP are as follows, for i ≠ j and Δt → 0:

1. (A(t + Δt) − A(t) = 0, J(t + Δt) = j|J(t) = i) = d0(i, j)Δt + o(Δt)
2. (A(t + Δt) − A(t) = 1, J(t + Δt) = j|J(t) = i) = d1(i, j)Δt + o(Δt)
3. (A(t + Δt) − A(t) > 1, J(t + Δt) = j|J(t) = i) = o(Δt)

Let us define the joint probabilities or arrivals and phase:

Pij(n, t) = (A(t) = n, J(t) = j|A(0) = 0, J(0) = i) , i, j = 1,… ,m, (3.66)

�

� �

�

3.3 The Markovian Arrival Process 101

for n ≥ 0 and t ≥ 0. Let P(n, t) be the matrix with entries Pij(n, t) for i, j = 1,… ,m.
For t = 0, we have P(n, 0) = 𝟎 for n > 0 and P(0, 0) = I, where I is the identity
matrix. Let us define the generating function of the time-dependent probabilities::

P̃ij(z, t) ≡
∞∑

n=0
znPij(n, t) , t ≥ 0; i, j = 1,… ,m, (3.67)

and the corresponding matrix P̃(z, t).
Consider the following proof.

Theorem 3.11 For a MAP the generating function of the matrix sequence of
arrivals obeys the differential equation P̃′(z, t) = P̃(z, t)D(z), with initial condition
P̃(z, 0) = I, where D(z) = D0 + zD1. The solution is

P̃(z, t) = exp(D(z)t) (3.68)

Proof: For t = 0, we find P̃(z, 0) = I. For n > 0, we write the probability of transi-
tion from state i to state j of the modulating process over a time interval of duration
t + Δt, by breaking it up into first a transition from state i to an intermediate state k
in time t and then a further transition from k to j in time Δt. For this last transition,
we use the properties of the MAP stated above, in the limit as Δt → 0:

Pij(n, t + Δt) =
∑
k≠j

Pik(n, t)d0(k, j)Δt +
∑

k
Pik(n − 1, t)d1(k, j)Δt+

+ Pij(n, t)

(
1 −

∑
k≠j

[d0(j, k) + d1(j, k)]Δt

)
+ o(Δt) (3.69)

By exploiting the identity d0(j, j) = −
∑

k≠j[d0(j, k) + d1(j, k)], we can rewrite the
evolution of the elements Pij(n, t + Δt) in matrix form as follows:

P(n, t + Δt) = P(n, t) + P(n, t)D0Δt + P(n − 1, t)D1Δt + o(Δt) , n > 0.
(3.70)

This can be rearranged as

P(n, t + Δt) − P(n, t)
Δt

= P(n, t)D0 + P(n − 1, t)D1 + o(1) , n > 0.

(3.71)
and taking the limit for Δt → ∞, we obtain finally:

P′(n, t) = P(n, t)D0 + P(n − 1, t)D1 , n > 0. (3.72)

Repeating the same steps for n = 0, it is easy to derive that

P′(0, t) = P(0, t)D0 (3.73)

�

� �

�

102 3 Stochastic Models for Network Traffic

By multiplying both sides of eq. (3.72) by zn, summing over n ≥ 1 and summing
further also eq. (3.73), we get

∞∑
n=0

P′(n, t)zn =
∞∑

n=0
P(n, t)znD0 + z

∞∑
n=1

P(n − 1, t)zn−1D1 (3.74)

whence

P̃′(z, t) = P̃(z, t)(D0 + zD1) = P̃(z, t)D(z) , t > 0. (3.75)

The solution with initial condition P̃(z, 0) = I is easily found to be exp(D(z)t).

If we let 𝛼i = (J(0) = i) and 𝛼 = [𝛼1,… , 𝛼m], the generating function of the
number of arrivals of the MAP is:

Ã(z, t) =
∞∑

k=0
zk(A(t) = k|A(0) = 0) = 𝛼 exp(D(z)t)e (3.76)

where e is a column vector of 1’s of size m.
The mean number of arrivals over a time interval (0, t] is obtained by taking the

derivative of Ã(z, t) with respect to z and by setting z = 1 in the resulting expres-
sion. We find

E[A(t)] = d
dz

Ã(z, t)
||||z=1

= t𝛼D1 exp(D(1)t)e = t𝛼D1e (3.77)

since the matrix D(1) = D is an infinitesimal generator, hence De = 𝟎. From
eq. (3.77) we find the mean arrival rate of the MAP:

𝜆MAP = 𝛼D1e (3.78)

The MAP is a highly versatile model for arrival processes, albeit it could be diffi-
cult to gather enough experimental data to fit the large number of parameters that
define a general MAP, namely two m × m matrices D0 and D1. This requires assign-
ing values to 2m2 − m values, where we account for the constraint that D0 + D1 be
an infinitesimal generator.

A special case of MAP is the markov modulated poisson process (MMPP), that
corresponds to the case D1 = L and D0 = R − L, where L is a diagonal matrix
with positive diagonal entries 𝜆i, i = 1,… ,m and R is an infinitesimal genera-
tor. The resulting process corresponds to a Poisson process with a time-varying
mean arrival rate according to the state of the modulating Markov process J(t),
i.e., 𝜆(t) = 𝜆J(t).

The MAP can be generalized to the batch MAP (BMAP), where bulk arrivals
are possible. This is obtained by defining a sequence of matrices Dn for n ≥ 0. The
entry dn(i, j) represents the frequency of transition from state i to state j with n
arrivals. The generating function P̃(z, t) of the joint random variable (A(t), J(t)) has

�

� �

�

3.4 Renewal Processes 103

the same expression as given in eq. (3.68), provided that we let D(z) =
∑∞

n=0 znDn.
The corresponding mean arrival rate is 𝜆BMAP = 𝛼

∑∞
n=1 nDne.

The MAP and BMAP models can be also stated in discrete time, by referring to
a Markov chain as the modulating process. The corresponding models are defined
by a sequence of non-negative matrices Dn such that D =

∑∞
n=0 Dn is the one-step

transition probability matrix of a finite, irreducible Markov chain; hence the ele-
ments of the matrices Dn are probabilities, dn(i, j) being the probability of having
n arrivals and a phase transition from i to j in a time slot. This kind of process
is known as discrete MAP (DMAP) or discrete BMAP (DBMAP), according to
whether only single arrivals or bulk arrivals are permitted.

3.4 Renewal Processes

Renewal processes have been extensively used in the reliability theory, to charac-
terize life and replacement (renewal) of system components, e.g., electronic com-
ponents of a circuit. This historical application has marked the terminology used
in the context of renewal processes.

A renewal process is clearly a model suitable for arrival processes of queues. In
the following we identify “events” as customer arrivals at a serving system and use
a consequential language.

There is a huge literature and an extensive body of knowledge on point processes
and specifically on renewal theory [59, 85, 184, 209]. We will confine ourselves to
introducing definitions and properties of renewal point processes, that are useful
for queueing systems and traffic engineering applications.

Let us consider a renewal process, i.e., a point process with inter-arrival times
that are independent random variables denoted as Tk, k ∈ ℤ. The random variable
Tk denotes the time elapsing between the (k − 1)-th and the k-th event. If Tk ∼
T, ∀k, i.e., all inter-event times are identically distributed and can be described by
means of a unique random variable T, the renewal process is said to be stationary.
In that case, we let GT(x) = (T > x) = 1 − FT(x) be the CCDF of the inter-arrival
time random variable. When it exists, we let also fT(x) be the corresponding PDF,
given by fT(x) = −G′

T(t).
In general, a point process can be described by the random variables introduced

at the beginning of this chapter, namely the counting function, the inter-arrival
times and the arrival times. By convention, A(0, t) (sometimes abridged as A(t),
when there is no ambiguity) is the number of arrivals in the semi-open inter-
val (0, t]. The arrival time of the n-th event is Sn = T1 + · · · + Tn, n ≥ 1, and by
extension and ease of notation, we also let S0 = 0. The CDF and PDF of Sn are
denoted with FSn

(t) and fSn
(t) for t ≥ 0, respectively. For uniform notation, we also

let FS0
(t) = 1, t ≥ 0.

�

� �

�

104 3 Stochastic Models for Network Traffic

It is easy to see that the event Sk ≤ t is equivalent to the event A(0, t) ≥ n for any
non-negative n and t, so

(A(0, t) ≥ k) = (Sk ≤ t) = FSk
(t), k ≥ 1, (3.79)

By taking differences, we obtain:

(A(0, t) = k) = FSk
(t) − FSk+1

(t), k ≥ 0. (3.80)

The time origin can be related to the renewal process in different ways. In the
following we define the first event time after the time origin as T1 = S1. We distin-
guish three cases for the probability distribution of T1.

● General renewal process: The time T1 has a probability distribution GT1
(t), pos-

sibly different from that of all other Tk, k ≥ 2, namely GT(t);
● Ordinary renewal process: All Tk share the same probability distribution GT(t),

i.e., GT1
(t) = GT(t);

● Equilibrium renewal process: The time origin is chosen at random with respect
to the renewal process events; in this case it can be shown that it is fT1

(t) =
GT(t)∕E[T].

As for the third case, the time elapsing from a randomly chosen point until the
next arrival is called the residual inter-arrival time, while the time elapsed from
the last arrival until the randomly chosen time point is called the inter-arrival age.

In the general renewal arrival process, thanks to the independence of the
inter-arrival times, the Laplace transform of the PDF of Sk is 𝜑Sk

(s) ≡ E[e−sSk] =
𝜑T1

(s)[𝜑T(s)]k−1 for k ≥ 1, where 𝜑T(s) = E[e−sT] and 𝜑T1
(s) = E[e−sT1]. Then

∫
∞

0
e−st(A(0, t) = k) dt = 1

s
[1 − 𝜑T(s)]𝜑T1

(s)[𝜑T(s)]k−1
, k ≥ 1 (3.81)

and

∫
∞

0
e−st(A(0, t) = 0) dt = 1

s
[1 − 𝜑T1

(s)] (3.82)

The generating function of the probabilities appearing in the left-hand sides of
the two previous equations can be found as:

PA(z, s) ≡
∞∑

k=0
zk ∫

∞

0
e−st(A(0, t) = k) dt =

1 − 𝜑T1
(s)

s
+ 𝜑T1

(s)
z[1 − 𝜑T(s)]
s[1 − z𝜑T(s)]

(3.83)
We can specialize this result to two special cases of renewal process enumerated

above, i.e., ordinary and equilibrium renewal processes. In case of an ordinary
process, 𝜑T1

(s) = 𝜑T(s), so we find

P(o)
A (z, s) =

1 − 𝜑T(s)
s[1 − z𝜑T(s)]

(3.84)

�

� �

�

3.4 Renewal Processes 105

where the superscript o stands for ordinary. In case of an equilibrium renewal pro-
cess it is 𝜑T1

(s) = [1 − 𝜑T(s)]∕(sE[T]) (as shown in Section 3.4.1), hence we find:

P(e)
A (z, s) = 1

s
+

(z − 1)[1 − 𝜑T(s)]
s2E[T][1 − z𝜑T(s)]

(3.85)

Let us consider a general renewal process. We define the mean number of events
over the interval (0, t] as M(t), i.e., M(t) = E[A(0, t)]. Then, by deriving PA(z, s) in
eq. (3.83) with respect to z and setting z = 1, we find

𝜑M(s) = ∫
∞

0
M(t)e−st dt =

𝜑T1
(s)

s[1 − 𝜑T(s)]
(3.86)

where 𝜑M(s) is the Laplace transform of the average number of customers arrived
in the interval (0, t]. Then

M(t) = FT1
(t) + ∫

t

0
M(𝜏)fT(t − 𝜏) d𝜏 (3.87)

The derivative of M(t) is denoted with m(t) and it is called the renewal function
of the process. It provides the arrival density as a function of time and it is defined
as the positive solution of:

m(t) = fT1
(t) + ∫

t

0
m(𝜏)fT(t − 𝜏) d𝜏 (3.88)

These are the fundamental renewal equations. Since the full knowledge of the
statistics of an ordinary renewal process consists in knowing the probability distri-
bution of the inter-arrival times, eqs. (3.87) and (3.88) show that equivalently we
can reconstruct the entire renewal process statistics from either M(t) or m(t).

Equation (3.86) can be exploited to provide us with an estimate of M(t) for large
t for the ordinary renewal process. Let 𝜇 = E[T] and 𝜎

2 = E[T2] − E[T]2 be short
notation for the first two moments of the inter-arrival times. Then, it is

𝜑T(s) = 1 − 𝜇s + 1
2
(𝜇2 + 𝜎

2)s2 + O(s3) , s → 0. (3.89)

Let us consider an ordinary process with T1 ∼ T. Specializing the general expres-
sion of 𝜑M(s) in (3.86) to this case, we get, in the limit for s → 0,

𝜑
(o)
M (s) =

𝜑T(s)
s[1 − 𝜑T(s)]

=
1 − 𝜇s + 1

2
(𝜇2 + 𝜎

2)s2 + O(s3)

s[𝜇s − 1
2
(𝜇2 + 𝜎2)s2 + O(s3)]

=
1 − 𝜇s + 1

2
(𝜇2 + 𝜎

2)s2 + O(s3)

𝜇s2
[
1 − 𝜇2+𝜎2

2𝜇
s + O(s2)

]
= 1

𝜇s2

(
1 − 𝜇s + 𝜇

2 + 𝜎
2

2
s2 + O(s3)

)(
1 + 𝜇

2 + 𝜎
2

2𝜇
s + O(s2)

)
= 1

𝜇s2

(
1 − 𝜇s + 𝜇

2 + 𝜎
2

2𝜇
s + O(s2)

)
= 1

𝜇s2 + 𝜎
2 − 𝜇

2

2𝜇2s
+ O(1) (3.90)

�

� �

�

106 3 Stochastic Models for Network Traffic

hence, we find:

M(o)(t) = t
𝜇
+ 𝜎

2 − 𝜇
2

2𝜇2 + o(1) , t → ∞ (3.91)

which gives an asymptotic expansion of the mean number of arrivals over the time
window (0, t] for an ordinary renewal process. The mean number of arrivals in
a time window of duration t equals the mean number of arrivals (t∕𝜇), with a
constant offset given by (C2 − 1)∕2, where C = 𝜎∕𝜇 is the coefficient of variation
(COV) of the inter-arrival times.

In case of an equilibrium renewal process, 𝜑T1
(s) has the special form 𝜑T1

(s) =
[1 − 𝜑T(s)]∕(𝜇s), and hence we find M(e)(s) = 1∕(𝜇s2). This transform can be easily
inverted to yield M(e)(t) = t∕𝜇; correspondingly, it is m(e)(t) = 1∕𝜇. This result says
that the mean number of arrivals in (0, t] is proportional to t with a constant equal
to the reciprocal of the mean inter-arrival time. We call this quantity the mean
arrival rate of the renewal process, 𝜆 ≡ 1∕E[T].

It is also possible to state a form of the central limit theorem (CLT) for renewal
processes. Let us consider an ordinary renewal process. The occurrence time of
the n-th event, Sn = T1 + · · · + Tn, is the sum of n i.i.d. random variables, that we
assume have finite mean and variance. Then, by the CLT, it is

lim
n→∞

(

Sn − n𝜇

𝜎

√
n

> u

)
= Q(u) (3.92)

where Q(u) = ∫ ∞
u e−z2∕2∕

√
2𝜋 dz is the tail of the standard Gaussian PDF. Let t =

n𝜇 − u𝜎
√

n. It is easy to check that this can be inverted to yield

n = t
𝜇
+ u

𝜎

√
t

𝜇3∕2

⎛⎜⎜⎜⎝
c√

t
+

√√√√√1 +

(
c√

t

)2⎞⎟⎟⎟⎠ (3.93)

where c = u𝜎∕(2
√
𝜇). Since the event Sn > n𝜇 − u𝜎

√
n = t is equivalent to the

event A(0, t) < n = t
𝜇
+ 𝜎

√
t

𝜇3∕2 u + O(1) (see (3.93)), we can rewrite eq. (3.92) as

lim
t→∞

(

A(0, t) − t∕𝜇

𝜇−3∕2𝜎
√

t
< u

)
= lim

t→∞

(
Sn − n𝜇

𝜎

√
n

> −u

)
= 1 − Q(u) (3.94)

Therefore, we have (
A(0,t)−t∕𝜇
𝜇−3∕2𝜎

√
t
> u

)
∼ Q(u) for t → ∞, which implies that

A(0, t) ∼ (t∕𝜇, 𝜎2t∕𝜇3), i.e., A(0, t) is (asymptotically) a Gaussian random
variable with mean t∕𝜇 and standard deviation 𝜎

√
t∕𝜇3∕2.

From this asymptotic relationship, we deduce E[A(0, t)] ≈ t∕𝜇 and Var[A(0, t)] ≈
𝜎

2t∕𝜇3 as t → ∞. Then, asymptotically for large t we have
Var[A(0, t)]
E[A(0, t)]

→
𝜎

2t∕𝜇3

t∕𝜇
= 𝜎

2

𝜇2 , t → ∞ (3.95)

�

� �

�

3.4 Renewal Processes 107

This is a generalization for a renewal process of the property of the Poisson process
for which Var[A(0, t)]∕[E][A(0, t)] = 1 for all t.

Summing up, the counting function A(0, t) of a renewal point process is asymp-
totically distributed as a Gaussian random variable as t → ∞. The asymptotic
mean and variance of the counting functions are

E[A(0, t)] ∼ t
𝜇

Var[A(0, t)] ∼ 𝜎
2t
𝜇3 (3.96)

respectively. This is consistent with expressions for the mean and variance of the
counting function for any t given, e.g., in [60, Ch. 9].

Sometimes, the hazard function h(t) is defined as a description of the renewal
process. It is the rate of occurrence of an event just after t, given that no event has
occurred until t, i.e.,

h(t) = lim
Δt→0

(t < T ≤ t + Δt|T > t)
Δt

=
fT(t)
GT(t)

(3.97)

Since fT(t) = −G′
T(t) and GT(0) = 1, we can use this definition to write the differ-

ential equation G′
T(t) = −h(t)GT(t)with initial condition GT(0) = 1. The solution is

GT(t) = exp(− ∫ t
0 h(u) du). This last equality shows that the entire renewal process

description is given once h(t) is known.
The hazard function gives an approximation of the probability that an arrival

occurs within a short interval Δt, after time t, provided that no arrival has been
seen until t: namely (t < T ≤ t + Δt|T > t) ≈ h(t)Δt. In general h(t) varies with
t, i.e., the arrival process has some form of memory. In the special case of a mem-
oryless process we have

(t < T ≤ t + Δt|T > t) = 1 − (T > t + Δt|T > t) = 1 − (T > Δt) (3.98)

where the last equality follows from the definition of the memoryless property.
Hence

h(t) = lim
Δt→0

1 − GT(Δt)
Δt

= fT(0) (3.99)

In words, the hazard function of a memoryless process is a positive constant. This
result could have been found also by reminding that the only memoryless point
process is the Poisson one, hence the inter-arrival times have a negative exponen-
tial probability distribution: fT(t) = 𝜆e−𝜆t. In this case, h(t) = 𝜆.

Some general results can be shown for a renewal process (e.g., see [196, § 9.12]).

1. It is not possible for an infinite number of renewals to occur in a finite period
of time, i.e., (lim

n→∞
Sn ≤ t < ∞) = 0 for a given finite t.

2. lim
t→∞

A(t) = ∞.
3. lim

t→∞
A(t)∕t = 1∕E[T] with probability 1.

4. lim
t→∞

M(t)∕t = lim
t→∞

m(t) = 1∕E[T].

�

� �

�

108 3 Stochastic Models for Network Traffic

The third property gives a sound foundation to common measurement proce-
dures to estimate the mean arrival rate of an arrival process.

In the following we give a general result on the residual inter-arrival time of
the renewal process, i.e., the amount of time elapsing from a random look at the
renewal process until the next event. Since the process is time-reversible, i.e., its
statistics remain exactly the same if we reverse the direction of the time axis, the
residual inter-arrival time is the same as the inter-arrival age, i.e., the time since
when the last event occurred from the point of view of a random observer of the
renewal process.

3.4.1 Residual Inter-Event Time and Renewal Paradox

We want to characterize the residual inter-arrival time random variable, i.e., the
random variable defined as the time elapsing from a randomly chosen point on
the time axis to the subsequent event of the renewal process. The crucial part of
the ensuing reasoning is devoted to giving an accurate notion of the statement
“randomly chosen point on the time axis.”

Let T̃ be the random variable associated to the residual inter-arrival time. We
consider a sequence of n inter-arrival times, starting at the initial time 0 and lasting
until time Sn =

∑n
k=1 Tk. Let us fix a time level x. The time interval [0, Sn] can be

split into two sets of points: those where the residual time until the next arrival is
less than or equal to x and those such that the time until the next arrival is greater
than x. To help visualize those two time point sets, we can consider the graphical
construction in Figure 3.10. A sample of arrival times are highlighted by crosses.
For each inter-arrival time Tk we consider a triangle with base Tk, height Tk and
slope −1. We draw an horizontal line at level x (dashed line in the figure). Each
interval delimited by a time point where the horizontal line intercepts an inclined
line and the subsequent arrival contains points where the residual inter-arrival
time is less than or equal to x. An example is shown in the figure with a dark
shaded triangle.

Let us pick a time point at random, i.e., with uniform probability distribution, in
the interval [0, Sn]. The probability that the residual inter-arrival time be less than
or equal to x is the probability of the event that the randomly chosen point falls

Time

Residual inter-arrival time

Inter-arrival time Figure 3.10 Sample of an event
sequence. Each triangle has slope −1, so
that its height corresponds to the base,
which is the inter-event time. The level of
the dashed line across the triangles
marks the residual times.

�

� �

�

3.4 Renewal Processes 109

in one of the intervals [max{tk − x, tk − Tk}, tk] for k = 1,… ,n. Therefore, we can
write:

(T̃(n) ≤ x) =

n∑
k=1

min{x,Tk}

n∑
k=1

Tk

=

1
n

n∑
k=1

min{x,Tk}

1
n

n∑
k=1

Tk

(3.100)

where we have denoted the residual inter-arrival time random variable over n con-
secutive arrival times with T̃(n). For a stationary renewal process, when n → ∞,
the right hand side has a proper limit with probability 1 and the random variable
T̃(n) tends to a limit r.v. T̃, with CDF given by:

FT̃(x) ≡ (T̃ ≤ x) = E[min{x,T}]
E[T]

(3.101)

It is

E[min{x,T}] = ∫
x

0
tfT(t) dt + ∫

∞

x
xfT(t) dt = ∫

x

0
tfT(t)dt + xGT(x) (3.102)

and, by deriving both sides with respect to x, we get

fT̃(x) =
d

dx
FT̃(x) =

1
E[T]

[xfT(x) + GT(x) − xfT(x)] =
GT(x)
E[T]

(3.103)

This is the PDF of the residual inter-arrival time. The mean residual inter-arrival
time can be easily derived as:

E[T̃] = E[T2]
2E[T]

= E[T]
1 + C2

T

2
(3.104)

where CT = 𝜎T∕E[T] is the coefficient of variation of the random variable T and
𝜎T denotes the standard deviation of T.

For example, in case of negative exponential probability distribution, it is CT = 1,
so the mean residual inter-arrival time is equal to the inter-arrival time. For more
variable probability distributions (CT > 1), e.g., hyper-exponential ones, the mean
residual inter-arrival time is bigger than the regular inter-arrival time. It is less
in case of smoother probability distributions (CT < 1), a limiting case being the
deterministic distribution (CT = 0), where the mean residual inter-arrival time is
half the regular inter-arrival time.

As another example, let T be a gamma distributed random variable, with

fT(t) =
𝛼
𝛽 t𝛽−1

Γ(𝛽)
e−𝛼t

, t ≥ 0, 𝛼, 𝛽 > 0, (3.105)

where Γ(⋅) is the Euler gamma function. It is E[T] = 𝛽∕𝛼 and 𝜎
2
T = 𝛽∕𝛼2, hence

CT = 1∕
√
𝛽. It turns out that E[T̃] = E[T](1 + 1∕

√
𝛽)∕2. Depending on the value

of 𝛽, the mean residual inter-arrival time can be either greater than the mean
arrival time (𝛽 < 1) or smaller than the mean arrival time (𝛽 > 1).

�

� �

�

110 3 Stochastic Models for Network Traffic

The results of eqs. (3.103) and (3.104) are known as renewal paradox. The reason
is apparent from the examples presented above. The mean residual arrival time
can be bigger than the mean arrival time. How can something that is seemingly
a “part of” be greater than the “whole”? The catch is in the subtlety of the “ran-
dom look” at the arrival process. Consider a span of the time axis where a number
of events occur. Some of them are widely spaced apart (those that correspond to
large arrival times), while others are more tightly packed (those corresponding
to small inter-arrival times). By looking at random with uniform probability over
the considered time interval we are biased toward picking long inter-arrival times
rather than short ones. The residual inter-arrival time is the remaining part of this
selected interval, i.e. of longer inter-arrival times. This effect is more pronounced
the bigger the variability of the inter-arrival times, i.e., the bigger the ratio of the
standard deviation to the mean of the inter-arrival times.

It is easy to check that in case of negative exponential distribution of the
inter-arrival time T, i.e., GT(t) = e−𝜆t, it is fT̃(t) = 𝜆e−𝜆t = fT(t), that is to say,
the PDF of the residual inter-arrival time is the same as the PDF of the entire
inter-arrival time. It can be shown that the converse is true as well. Let us assume
that fT(t) = fT̃(t) = GT(t)∕E[T]. Since fT(t) = −G′

T(t), we find G′
T(t) = −GT(t)∕E[T],

with initial condition GT(0) = 1. From this differential equation, it is easily derived
that GT(t) = exp(−t∕E[T]), i.e., the PDF of T must be negative exponential. We
have thus shown the following.

Theorem 3.12 The negative exponential random variable is the unique positive
random variable that has the same PDF as its associated residual random variable.

In view of the fact the the negative exponential random variable is the only one
exhibiting the memoryless property, Theorem 3.12 should come as no surprise.

3.4.2 Superposition of Renewal Processes

Let us consider n renewal processes with the same inter-arrival probability dis-
tribution and assume they are independent of one another. The superposition of
those processes is a new point process composed of all events from each com-
ponent process. Note that the superposition process is stationary, but it is not a
renewal process in general.

Let Ts(n) be the inter-arrival time of the superposition of n independent arrival
processes and let T(j) denote the random variable representing the inter-arrival
time of the j-th component process, j = 1,… ,n. Since the component processes
are independent of one another and have same PDF of the inter-arrival times,
we can focus on an arrival coming from any of them equivalently. Let us consider
an arrival from process 1. The next arrival will occur after a time equal to the

�

� �

�

3.4 Renewal Processes 111

minimum among the full inter-arrival time T(1) and the residual inter-arrival
times T̃(j). Then Ts(n) = min{T(1)

, T̃(2)
,… , T̃(n)} and

GTs(n)(t) = (Ts(n) > t) = (T(1)
> t)

n∏
i=2

(T̃(i)
> t) = GT(t)[GT̃(t)]n−1

(3.106)

for n ≥ 1. The mean arrival rate of the superposition process is n𝜆, if 𝜆 denotes
the mean arrival rate of each component process. Since we are interested in
understanding what happens when n increases, and in that case the mean rate
of the superposition process would grow unboundedly, we scale the component
processes, by setting their respective mean arrival rates at 𝜆∕n. This corresponds
to scaling the time axis by a factor 1∕n, i.e., we substitute t with t∕n. In fact, the
counting function becomes A(t∕n) and hence

𝜆scaled = lim
t→∞

A(t∕n)
t

= lim
t→∞

A(t∕n)
n(t∕n)

= 𝜆

n
(3.107)

The CCDF of the inter-arrival times of the scaled process becomes GT(t∕n).
Rewriting eq. (3.106) by using the scaled component processes, we get

GTs(n)(t) = GT(t∕n)
[

1 − 𝜆∫
t∕n

0
GT(x) dx

]n−1

(3.108)

Thanks to the monotonicity of GT(t), it is easy to check that

1 − 𝜆t
n

≤ 1 − 𝜆∫
t∕n

0
GT(x) dx ≤ 1 − GT(t∕n)𝜆t

n
(3.109)

If the function GT(t) has no jump at 0, i.e., lim
t→0+

GT(t) = GT(0) = 1, then2

lim
n→∞

GTs(n)(t) = lim
n→∞

(
1 − 𝜆t

n

)n−1
= e−𝜆t

Thus, the result of the superposition of a large number of tiny arrival processes
is a point process that looks like a Poisson process locally, i.e., such that the
inter-arrival PDF is negative exponential. Be aware, however, that the limit super-
position process in not a Poisson process in general, since it can be correlated, i.e.,
inter-arrival times are not necessarily independent of one another.

3.4.3 Alternating Renewal Processes

Let us consider a point process, where the inter-arrival time PDF depends on
the transitions of a finite Markov chain. Let Jk denote the state of the Markov

2 This means that there is probability 0 that the inter-arrival time can be 0, i.e., we consider
processes with no bulk arrivals.

�

� �

�

112 3 Stochastic Models for Network Traffic

chain soon after the k-th transition and 𝓁 the number of states of the Markov
chain. Let also qij = (Jk+1 = j|Jk = i). The inter-arrival time associated with the
transition from i to j is denoted with Tij . Its PDF is denoted with fij(t) and 𝜑ij(s)
is the corresponding Laplace transform. We assume that the random variables Tij
are independent of one another.

Arrivals occur at transition epochs of the Markov chain. Given that the state of
the Markov chain after the k-th transition is Jk = i and that it moves to Jk+1 = j after
the next transition, the inter-arrival time is a realization of the random variable Tij.
The probability distribution of Tij depends on both the starting and the landing
states in general; this is why we use a double subscript index.

Let us consider n successive arrivals. Let us denote with j0 the initial state
of the modulating Markov chain and let Jk = jk for the subsequent n transi-
tions, k = 1,… ,n. The Laplace transform of the PDF of the n-th event epoch
Sn = T1 + · · · + Tn is

𝜑Sn
(s) = E[e−s(T1+···+Tn)] =

𝓁∑
j0=1

𝛼j0

𝓁∑
j1

qj0j1
𝜑j0j1

(s)…
𝓁∑

jn=1
qjn−1jn

𝜑jn−1jn
(s) (3.110)

where 𝛼 = [𝛼1 … 𝛼𝓁] is a row vector of the probabilities of the initial state.
This result can be put in a compact form by defining the 𝓁 × 𝓁 matrix F(s), with

entry (i, j) given by qij𝜑ij(s), and a column vector e of 1’s of size 𝓁. We can write

𝜑Sn
(s) = 𝛼F(s)ne, n ≥ 0 (3.111)

The probability distribution of the state (often called “phase”) Jn at the end of n
transitions is simply given by p(n) = 𝛼Qn, where Q is an 𝓁 × 𝓁 matrix with entry
(i, j) equal to qij, i.e., it is Q = F(0). It can be verified that the Laplace transform
of the generating function of the probability distribution (A(0, t) = k), k ≥ 0, is
given by

PA(z, s) = 𝛼
I − F(s)

s
[I − zF(s)]−1e (3.112)

with I denoting the identity matrix of order 𝓁. This result can be derived as follows.
From the very definition of the events A(0, t) = k and Sk ≤ t, we have

(A(0, t) = k) = (Sk ≤ t) − (Sk+1 ≤ t) , k ≥ 0, t ≥ 0. (3.113)

Taking the Laplace transform of both sides, we have

∫
∞

0
e−st(A(0, t) = k)dt =

𝜑Sk
(s)

s
−

𝜑Sk+1
(s)

s
(3.114)

Multiplying both sides by zk and summing over k ≥ 0, we have finally:

PA(z, s) ≡
∞∑

k=0
zk ∫

∞

0
e−st(A(0, t) = k)dt = 1

s
𝛼

n∑
k=0

zk[F(s)k − F(s)k+1]e (3.115)

which yields the desired result as we close the summation.

�

� �

�

3.4 Renewal Processes 113

Such a point process is called a renewal alternating process or also semi-Markov
process. It is not a renewal process, since it is correlated by virtue of the Markov
underlying chain that modulates the PDFs of the independent inter-arrival times.
Special cases are obtained when the PDFs of the inter-arrival times depend only
on the starting or the ending state of the transition.

3.4.4 Renewal Reward Processes

Let us consider a renewal process with counting function {N(t), t ≥ 0}, where Xn
denotes the n-th renewal time. Assume that when an event occurs, a reward is
gained (or a cost is paid). Let Rn denote the amount of reward associated with
the n-th event. Consistent with the renewal character of the process, we assume
that the Rn’s are independent of one another and identically distributed. On the
other hand, the reward Rn can depend on the renewal time Xn. We can define the
cumulated reward at time t as

R(t) =
N(t)∑
n=1

Rn (3.116)

In the special case that Rn = 1,∀n, then R(t) = N(t), i.e., the number of events in
the interval (0, t). As for the general renewal reward process, it can be shown that

lim
t→∞

R(t)
t

= E[R]
E[X]

(3.117)

As a matter of fact, the reward rate can be written as

R(t)
t

=

N(t)∑
n=1

Rn

t
=

N(t)∑
n=1

Rn

N(t)
N(t)

t
(3.118)

As t → ∞, we know that N(t) → ∞ and N(t)∕t → 1∕E[X] (with probability 1).
With probability 1, we have also

∑N(t)
n=1 Rn

N(t)
→ E[R]. These two limits prove eq. (3.117).

Example 3.3 Application to maintenance optimization Let us consider an
application of the renewal reward theory to reliability of service systems. Any
equipment (e.g., a router, a switch, a BS transceiver, a server, a machine com-
ponent) has an operational lifetime, after which it is replaced, e.g., because of
technological evolution or because of aging of components. Replacement can be
scheduled in advance and hence made as part of ordinary management, and in
that case the cost is C1. Otherwise, the replacement is done when the equipment
breaks down, i.e., it stops working at the desired level of performance/quality. In
this second case, the replacement is unforeseen, and it must be carried out under
exceptional procedures (e.g., to minimize the out-of-service time). We can there-
fore assume that the cost is bigger in this second case, i.e., it is C1 + C2.

�

� �

�

114 3 Stochastic Models for Network Traffic

Let Yn be the lifetime of the piece of equipment installed after n − 1 replace-
ments, n ≥ 1. After a time Yn the piece of equipment breaks down, if it has not
been replaced before. We assume that breakdown times Yn form a renewal process.

The variable that is under the control of the management process is the sched-
uled operational lifetime : let it be denoted with T (note that, in the assumed model-
ing context, there is no reason to have a scheduled replacement time depending on
the index n: why?). Then, the renewal time is Xn = max{Yn,T}, i.e., if a breakdown
intervenes before the scheduled replacement time, the equipment is substituted
according to the emergency procedure; otherwise it undergoes an ordinary substi-
tution. We can define a cost process where

Rn =

{
C1 Yn ≥ T

C1 + C2 Yn < T
(3.119)

The theory above suggests that the average long-term cost per unit time 𝜙 is
asymptotically equal to the ratio of the mean reward to the mean renewal time.
We have

E[X] = E[min{T,Y}] = ∫
T

0
xfY (x) dx + T ∫

∞

T
fY (x) dx

= ∫
T

0
xfY (x) dx + T[1 − FY (T)] (3.120)

and

E[R] = C1 + C2(Y < T) = C1 + C2FY (T) (3.121)

Then

𝜙 = lim
t→∞

R(t)
t

=
C1 + C2FY (T)

∫ T
0 xfY (x) dx + T[1 − FY (T)]

(3.122)

As T gets large, 𝜙 approaches the limiting value (C1 + C2)∕E[Y]. By contrast,
for very small values of T, 𝜙 grows without bound. Intuitively, if we take a large
scheduled time, we incur frequent if not constant equipment breakdowns and the
associated supplementary replacement costs. On the other hand, if we replace the
equipment frantically, we will never see breakdowns, but we will have to bear an
exceedingly high replacement cost. It is intuitive that there could be an optimal
value of T. From a mathematical point of view, it all depends on the shape of the
CDF of the lifetime Y . If it is such that 𝜙 is monotonously decreasing as a function
of T, then there is no optimum.

Let us assume that the lifetime be distributed uniformly over the interval [0,U].
This is not an especially realistic model. We adopt it because it lends itself to
analytical investigation. By applying eq. (3.122) with FY (x) = min{1, x∕U} for

�

� �

�

3.5 Birth-Death Processes 115

x ≥ 0, we get

𝜙 =
⎧⎪⎨⎪⎩

C1+C2T∕U
T−T2∕(2U)

T ≤ U

C1+C2
U∕2

T > U
(3.123)

With some calculations, it can be verified that 𝜙 has a minimum indeed and that
the minimum is achieved for

T∗ = U
⎛⎜⎜⎝
√(

C1

C2

)2

+ 2
C1

C2
−

C1

C2

⎞⎟⎟⎠ (3.124)

For example, if C1 = C2, we have T∗ = U(
√

3 − 1) ≈ 0.73 ⋅ U.
Let us now consider a different situation, where the lifetime has a negative

exponential distribution. Then, it is easy to find that

𝜙 = 1
E[Y]

[
C1

1 − e−T∕E[Y] + C2

]
(3.125)

which is monotonously decreasing with T. In this case, the conclusion is that the
bigger T, the smaller the average cost rate of the system. The intuition behind this
result lies with the fact that the negative exponential distribution is memoryless.
Given that an equipment has worked properly up to time t, the probability that
it breaks down in the next interval of duration Δt is independent of t. In other
words, aging has no effect on breakdowns. Given this behavior, there is no reason
to anticipate the replacement of the equipment before it breaks. In other words,
the most convenient policy with memoryless breakdown times is to set T = ∞
and let Xn = Yn.

3.5 Birth-Death Processes

The so-called birth-death process is a commonly used stochastic model in queue-
ing theory and network traffic engineering applications. We consider the contin-
uous time version of this kind of process.

Let X(t) be a continuous time process over the non-negative integers3. Let also
𝜆k (k ≥ 0) and 𝜇k (k ≥ 1) be positive constants such that:

(X(t + Δt) = k + 1|X(t) = k) = 𝜆kΔt + o(Δt) , k ≥ 0 (3.126)

(X(t + Δt) = k − 1|X(t) = k) = 𝜇kΔt + o(Δt) , k ≥ 1 (3.127)

(|X(t + Δt) − k| > 1|X(t) = k) = o(Δt) , k ≥ 0 (3.128)

3 The key point is that the state space be discrete.

�

� �

�

116 3 Stochastic Models for Network Traffic

for Δt → 0. Such a process is called a birth-death process, where 𝜆k represents the
rate of birth in the state k and 𝜇k is the rate of death in the state k. Deaths are not
allowed in state 0, whereas births are, i.e., it is 𝜆0 > 0 and 𝜇0 = 0. The meaning of
the expressions in (3.126) is that only transitions to neighboring states are likely
in the short term.

The infinitesimal generator of a birth-death process is a tri-diagonal matrix:

Q =

⎡⎢⎢⎢⎢⎢⎣

−𝜆0 𝜆0 0 0 …
𝜇1 −(𝜆1 + 𝜇1) 𝜆1 0 …
0 𝜇2 −(𝜆2 + 𝜇2) 𝜆2 …
… … … … …

⎤⎥⎥⎥⎥⎥⎦
(3.129)

In words, the super-diagonal contains the 𝜆k, k ≥ 0, the subdiagonal contains the
𝜇k, k ≥ 1, and the diagonal is set so that the sum of the elements in each row equals
0. The infinitesimal generator Q is irreducible if and only if 𝜆k > 0, 𝜇k > 0, ∀k.

Let pn(t) denote the probability that the process is in state n at time t:

pn(t) = (X(t) = n) , n ≥ 0, t ≥ 0 (3.130)

We derive the differential equation ruling the evolution of the pn(t)’s, the forward
Chapman-Kolmogorov equations. For a generic state n > 0 we have

pn(t + Δt) =
∞∑

k=0
(X(t + Δt) = n|X(t) = k)pk(t)

= 𝜆n−1Δtpn−1(t) + 𝜇n+1Δtpn+1(t) + (1 − 𝜆nΔt − 𝜇nΔt)pn(t) + o(Δt)

where the only three terms of the sum in the first line that are explicitly reported
in the second line are those for k = n − 1,n,n + 1, whereas all other terms are
drowned in the o(Δt) term, thanks to the properties (3.126). Therefore, we have

pn(t + Δt) − pn(t)
Δt

= 𝜆n−1pn−1(t) + 𝜇n+1pn+1(t) − (𝜆n + 𝜇n)pn(t) + o(1)

(3.131)
as Δt → 0. This shows that the following differential equations hold for n ≥ 1 and
t ≥ 0:

dpn(t)
dt

= 𝜆n−1pn−1(t) + 𝜇n+1pn+1(t) − (𝜆n + 𝜇n)pn(t) (3.132)

In a similar way, it is easy to derive the boundary differential equation:
dp0(t)

dt
= 𝜇1p1(t) − 𝜆0p0(t) (3.133)

The linear system (3.132) and (3.133) can be solved given an initial condition,
e.g., p0(0) = 1 and pn(0) = 0 for n > 0. If the process converges toward statistical
equilibrium as t → ∞ and the limit 𝜋n = lim

t→∞
pn(t) ≥ 0 is a proper probability

�

� �

�

3.5 Birth-Death Processes 117

distribution, i.e.,
∑∞

n=0 𝜋n = 1, then the birth-death process is said to be ergodic. If
the limiting probability distribution exists, it can be found by solving (3.132) and
(3.133) having set the derivatives to 0. This is nothing but the system πQ = 𝟎 that
can be written explicitly as

𝜆n−1𝜋n−1 + 𝜇n+1𝜋n+1 − (𝜆n + 𝜇n)𝜋n = 0 , n ≥ 1 (3.134)

𝜇1𝜋1 − 𝜆0𝜋0 = 0 (3.135)

Equation (3.134) can be rearranged as

𝜇n+1𝜋n+1 − 𝜆n𝜋n = 𝜇n𝜋n − 𝜆n−1𝜋n−1 , n ≥ 1 (3.136)

This shows that the difference 𝜇n+1𝜋n+1 − 𝜆n𝜋n is a constant, independent of n.
By using the boundary equation (3.135), we find 𝜇n+1𝜋n+1 − 𝜆n𝜋n = 𝜇1𝜋1 − 𝜆0𝜋0 =
0. Hence, we have proved that 𝜋n+1 = 𝜋n𝜆n∕𝜇n+1. By repeated application of this
equality, we can derive that

𝜋n+1 =
𝜆n

𝜇n+1
𝜋n =

𝜆n𝜆n−1

𝜇n+1𝜇n
𝜋n−1 = · · · = 𝜋0

n∏
k=0

𝜆k

𝜇k+1
, n ≥ 0 (3.137)

The unknown 𝜋0 can be found from the congruence equation, i.e.,
∑∞

n=0 𝜋n = 1:

𝜋0 +
∞∑

n=0
𝜋0

n∏
k=0

𝜆k

𝜇k+1
= 1 ⇒ 𝜋0 =

[
1 +

∞∑
n=1

n−1∏
k=0

𝜆k

𝜇k+1

]−1

(3.138)

The result holds provided that the series
∑∞

n=1
∏n−1

k=0
𝜆k
𝜇k+1

converges. More in

depth, let us define 𝜉n ≡ ∏n−1
k=0

𝜆k
𝜇k+1

for n > 0 and 𝜉0 = 1. Further, let us define the
two series

S1 =
∞∑

n=0
𝜉n S2 =

∞∑
n=0

1
𝜆n𝜉n

(3.139)

It can be shown that the states of the birth-death process are

● transient if and only if S2 < ∞;
● null recurrent if and only if S1 = S2 = ∞;
● positive recurrent if and only if S1 < ∞.

For example, the series S1 is convergent if the ratios 𝜆n∕𝜇n+1 are uniformly
bounded by a constant less than 1 for every n bigger than some threshold value
N, i.e., if there exists N such that 𝜆n∕𝜇n+1 ≤ A < 1,∀n ≥ N.

Example 3.4 Application to CDMA cellular systems Let us consider a radio
cell with n users exploiting a code division multiple access (CDMA) uplink. Let
gj denote the path gain experienced by the j-th user toward the BS and let Pj be
the transmission power level of the j-th user. Let B denote the bandwidth devoted

�

� �

�

118 3 Stochastic Models for Network Traffic

to a single user communication and W the spread spectrum bandwidth, so that
G = W∕B is the processing gain. If N0 denotes the thermal noise power density, the
signal-to-interference-and-noise-ratio (SINR) of the j-th user uplink can be written
as

Sj(n) =
gjPj

B
W

∑
i≠j

giPi + N0B
, j = 1,… ,n. (3.140)

Let us now assume that a perfect power control is in place, so that the received
power level for each user is equalized, i.e., it is gjPj = P for all j = 1,… ,n. Then,
eq. (3.140) can be rewritten as

Sj(n) = S(n) =
W
B

P
(n − 1)P + N0W

, j = 1,… ,n. (3.141)

Under the usual assumption of Gaussian interference, the upper bound of the
achievable information rate over the uplink CDMA channel for each user when n
users are active, C(n), is determined according to the Hartley-Shannon law for an
additive white Gaussian noise (AWGN) channel:

C(n) = B log2

(
1 +

W
B

P
(n − 1)P + N0W

)
= B log2

(
1 + 𝛾

B
W
(n − 1)𝛾 + 1

)
(3.142)

where 𝛾 ≡ P∕(N0B) is the user SNR; this parameter gives the intrinsic quality of
the communication channel of the tagged user, apart from interference. Note that,
according to this ideal model, the uplink spectral efficiency, C(n)∕W depends only
on the two parameters 𝛾 and W∕B, besides the number n of users.

Let us assume that users generate globally new service requests according to
a Poisson process of mean rate 𝜆 in the considered radio cell. A service request
consists of the transfer of a file of length Y bit, where Y is a random variable with
negative exponential probability distribution and mean value L. The mean service
completion rate when n users are sharing the uplink is given by 𝜇n = nC(n)∕L, i.e.,

𝜇n = n B
L

log2

(
1 + 𝛾

B
W
(n − 1)𝛾 + 1

)
, n > 0. (3.143)

Under the hypotheses laid out for this example, the number of users concur-
rently active in the CDMA radio cell, U(t), can be modeled by a birth-death process
with birth rates 𝜆n = 𝜆 and death rates 𝜇n.

The function 𝜇n is monotonously increasing with n from 𝜇1 = (B∕L)log2(1 + 𝛾)
up to 𝜇∞ ≡ lim

n→∞
𝜇n = W∕(L log 2). Therefore, since 𝜆n = 𝜆,∀n, we can write

𝜆n∕𝜇n+1 ≤ 𝜆∕𝜇1 = 𝜆L∕(B log2(1 + 𝛾)), and the birth-death process governing
the dynamics of the number of users active in the radio cell is ergodic if

�

� �

�

3.5 Birth-Death Processes 119

𝜆L < B log2(1 + 𝛾). This is a sufficient condition. A more stringent condition can
be found by examining the series in the denominator of 𝜋0, i.e.,

∑∞
n=1

∏n−1
k=0

𝜆k
𝜇k+1

.
By applying the ratio convergence criterion, we find that the series is convergent
provided that there exists N such that 𝜆∕𝜇n+1 < 1 for all n > N. If it is 𝜆 < 𝜇∞,
then we can always find a positive 𝜀 such that 0 < 𝜀 < 1 − 𝜆∕𝜇∞. Then, from
𝜇n ↑ 𝜇∞, we derive that there exists 𝜈 such that 0 < 𝜇∞ − 𝜇n+1 ≤ 𝜀𝜇∞,∀n > 𝜈.
Hence,

𝜆

𝜇n+1
≤ 𝜆

𝜇∞(1 − 𝜀)
< 1 , ∀n > 𝜈 (3.144)

This proves that a sufficient (and in fact also necessary) condition for the series
to be convergent is that 𝜆 < 𝜇∞ = W∕(L log 2). In terms of the SNR and processing
gain parametrization, this condition can be rewritten as 𝜆 log(1 + 𝛾) < G𝜇1, where
G = W∕B. We rewrite the expression of the service completion rate in state n as:

𝜇n = n𝜇1

log
(

1 + 𝛾

(n−1)𝛾∕G+1

)
log(1 + 𝛾)

, n ≥ 1 (3.145)

where we have used the processing gain G ≡ W∕B. The ratio 𝜆∕𝜇n can be written
as a function of three nondimensional parameters:

an ≡ 𝜆

𝜇n
= G𝜌

n log
(

1 + 𝛾

(n−1)𝛾∕G+1

) , n ≥ 1 (3.146)

where 𝜌 ≡ 𝜆 log(1 + 𝛾)∕(G𝜇1) < 1 is the channel utilization coefficient, referred to
as load factor in the following. The model is parametrized by the processing gain
G, the user SNR 𝛾 and the utilization factor 𝜌.

The steady-state probabilities can be computed numerically, with the recursion
𝜋k = 𝜋k−1ak for k ≥ 1. The probability 𝜋0 can be computed as 𝜋0 ≈ 1∕S where S is
found with the recursion S ← 1 + Sak, per k = N − 1,N − 2,… , 1, initialized with
S ← 1 + aN∕(1 − 𝜌). Here N is an integer big enough so that 0 < aN − 𝜌 < 𝜀𝜌 for a
given precision level 𝜀 (e.g., 𝜀 = 10−5).

A minor modification of the birth-death Markov process model yields the case
where only up to a finite number K of users are admitted into the system. The
resulting model is obtained by truncating the infinite Markov process state space
to the first K + 1 states, i.e., those between 0 and K. It this case, the birth-death
process is a finite, irreducible Markov process, hence it is ergodic. The steady state
probabilities can be calculated just as in the infinite case, starting with 𝜋0 = 1 and
using 𝜋k = 𝜋k−1ak for k = 1,… ,K. The array of numbers thus obtained is normal-
ized so that it sums to 1 and that yields the steady state probabilities.

In the following we write expressions of performance metrics with reference to
the case of a finite K. The corresponding expressions for the unrestricted system,

�

� �

�

120 3 Stochastic Models for Network Traffic

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

Load factor, ρ
(a) (b)

M
e

a
n

 n
u

m
b

e
r

o
f

u
s
e

rs

K = ∞
K = 50

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

Load factor, ρ

M
e

a
n

 t
h

ro
u

g
h

p
u

t
p

e
r

u
s
e

r
(M

b
p

s
)

K = ∞
K = 50

B = 1 MHz

W = 40 MHz

γ = 20 dB

L = 100 kB

B = 1 MHz

W = 40 MHz

γ = 20 dB

L = 100 kB

Figure 3.11 Performance metrics of the CDMA model. Mean number of backlogged
users E[U] as a function of the load factor 𝜌 (left plot). Average throughput per user Λ1 as
a function of the load factor 𝜌 (right plot).

where there is no limit to the number of admitted users, are easily obtained by
letting K → ∞.

Several performance metrics can be defined. The average number of active users
is simply E[U] ≡ ∑K

n=1 n𝜋n. The average throughput of the system is

Λ ≡
K∑

n=1
𝜇n𝜋n =

K∑
n=1

𝜆𝜋n−1 = 𝜆(1 − 𝜋K) (3.147)

that simplifies to 𝜆 if K = ∞. The average throughput per user (provided there is
at least one user) can be calculated as

Λ1 =
K∑

n=1

𝜇n

n
𝜋n

1 − 𝜋0
= 𝜆

1 − 𝜋0

K−1∑
n=0

𝜋n

n + 1
(3.148)

As a numerical example, let us consider plausible values, e.g., W = 40 MHz,
B = 1 MHz (hence G = W∕B = 40), 𝛾 = 20 dB, and L = 100 kbytes. We make 𝜆

vary and use as the abscissa the normalized quantity 𝜌 defined above. Figure 3.11
plots two performance metrics: Fig. 3.11(a) shows E[U] as a function of 𝜌, while
Fig. 3.11(b) plots the average throughput per user Λ1 as a function of 𝜌.

It is apparent that, when K = 50, there is a saturation phenomenon, i.e., the
mean number of active users grows with 𝜌 except that it cannot exceed K. Cor-
respondingly, the average throughput per user decreases steadily as the number
of active users grows, until the number of active users hits its cap 50. From that
point on, the throughput stabilizes. The infinite size system has no upper limit. It
faces a steep degradation of performance as the stability limit is approached, i.e.,
for 𝜌 → 1. The stability of the finite size system is paid at the price of loss. The
loss probability is 𝜋K . With the numerical values of the example, it turns out that

�

� �

�

3.6 Branching Processes 121

the loss probability does not exceed 10−2 for 𝜌 ≤ 0.65, while it increases to 0.23 for
𝜌 = 0.95.

3.6 Branching Processes

A branching process is a model of population growth. If defined in discrete time,
successive generations are indexed by a non-negative integer. Let Xn denote the
size of the population at the n-th generation, n ≥ 0. Then X0 is the initial popu-
lation. At each step, each individual gives birth to a number of offsprings. Let 𝜉k
be the number of offsprings of the k-th individual. It is assumed that the 𝜉k’s in
each generation are realizations of independent and identically distributed ran-
dom variables, i.e., 𝜉k ∼ 𝜉, where 𝜉 is a non-negative, discrete random variable.
The variables 𝜉k are also independent of Xn. In the following we use the notation:

ak = (𝜉 = k) , k ≥ 0. (3.149)

The key relationship of the branching process is thus

Xn+1 =
Xn∑

k=1
𝜉k , n ≥ 0. (3.150)

The process Xn is a special case of a discrete-time Markov process. As a matter
of fact, given the structure expressed by eq. (3.150), the probability distribution of
Xn+1 given Xn does not depend on any earlier Xt with t < n.

Example 3.5 Application to message dissemination in a sensor network Let
us consider a special kind of sensor network, namely a vehicular network where
each vehicle is equipped with an on-board unit. Through their sensors, vehicle col-
lect a large amount of data that can be (at least in part) shared with other vehicles
or even gathered in backhaul servers and cloud repositories.

Vehicles form collectively a Vehicular Ad-hoc Network (VANET), e.g., based on
an amendment of IEEE 802.11 standard known as IEEE 802.11p. We consider dis-
semination of messages originating at a tagged vehicle node. The dissemination
process is based on multi-hop communications, where one vehicle relays the mes-
sage to other vehicles. The message is relayed hop by hop by multiple nodes, until
it reaches all vehicles within the target region of interest, e.g., within a given radius
relative to the position where the message originated from.

We can model with a branching process Xn the number of copies of the message
that are relayed at the n dissemination step. The rule adopted by a vehicle is that
it relays the message with probability p, or it cancels the message with probability
1 − p.

�

� �

�

122 3 Stochastic Models for Network Traffic

If the VANET connectivity can be described with a random uniform graph (ran-
dom configuration model), each vehicles sees the same distribution of the number
of neighboring vehicles (two vehicles are neighbors if and only if they can commu-
nicate successfully between them over the wireless channel). Let qk = (V = k)
be the probability that a node has k neighbors, k ≥ 0, where V is the random vari-
able representing the number of neighbors. Under this example, the offsprings
can be identified with the neighboring nodes that receive the message. When a
vehicle A sends the message to a neighboring vehicle B, the number of residual
neighbors of B (i.e., B’s neighbors different from A) has the probability distribu-
tion rk = (k + 1)qk+1∕E[V], k ≥ 0. The residual neighbors of B are the target of the
possible relaying of the message on behalf of B. Hence, we have

a0 = (𝜉 = 0) = 1 − p + pr0
ak = (𝜉 = k) = prk k ≥ 1

(3.151)

Given the probability distribution function of the random variable 𝜉, let us
denote its moment generating function as 𝜙(z) = E[z𝜉] =

∑∞
k=0 akzk. Let also

𝜙n(z) = E[zXn] be the moment generating function of Xn. Then, from eq. (3.150)
we derive

𝜙n+1(z) =
∞∑

h=0
E[zXn+1 |Xn = h](Xn = h)

= (Xn = 0) +
∞∑

h=1
E

[Xn∏
k=1

z𝜉k |Xn = h

]
(Xn = h)

= (Xn = 0) +
∞∑

h=1
(Xn = h)

h∏
k=1

E[z𝜉k]

= (Xn = 0) +
∞∑

h=1
(Xn = h)[𝜙(z)]h = 𝜙n(𝜙(z)) (3.152)

for n ≥ 0. By applying repeatedly eq. (3.152), we have 𝜙n+1(z) = 𝜙n(𝜙(z)) =
𝜙n−1(𝜙(𝜙(z))) = 𝜙n−1(𝜙2(z)). The last equality holds if X0 = 1. It is then easy
to prove by induction the equality 𝜙n(z) = 𝜙n−k(𝜙k(z)), for 1 ≤ k ≤ n − 1. As a
special case, it is 𝜙n+1(z) = 𝜙(𝜙n(z)).

From the relationship 𝜙n(z) = 𝜙n−1(𝜙(z)), it is possible to derive the moments of
Xn. For example, the mean value is

E[Xn] = 𝜙
′
n(1) = 𝜙

′(1)𝜙′
n−1(𝜙(1)) = E[𝜉]E[Xn−1] , n ≥ 1. (3.153)

where we have used the fact that 𝜙(1) = 1. By applying the iteration in eq. (3.153),
we finally obtain E[Xn] = (E[𝜉])nE[X0].

In the following, we confine ourselves to the case X0 = 1, since results are
cleaner, yet there is little loss of generality.

�

� �

�

3.6 Branching Processes 123

One important characteristic of branching processes is the extinction probabil-
ity 𝜂. As generations evolve, there is the possibility that the population size goes
to 0, if a0 = (𝜉 = 0) > 0. It is apparent that, if Xn = 0, then the population size
Xt remains at level 0 for all t > n. The time to extinction T satisfies the equality
(T ≤ n) = (Xn = 0) ≡ 𝜂n, n ≥ 0. We can wonder what happens as the number
n of generations grows. To make this question nontrivial, we assume in the follow-
ing that 0 < a0 < 1. With X0 = 1, we have 𝜙n+1(z) = 𝜙(𝜙n(z)), hence

𝜂n+1 ≡ (Xn+1 = 0) = 𝜙n+1(0) = 𝜙(𝜙n(0)) = 𝜙(𝜂n) , n ≥ 0 (3.154)

with 𝜂0 = 0. Note that the generating function𝜙(z) is less than 1 for every z ∈ [0, 1).
Moreover, the function 𝜙(z) is strictly increasing with z, since it is a0 < 1. Then, it
is 𝜂n = 𝜙(𝜂n−1) < 1 for every n > 0 and 𝜂0 = 0 < 1. Moreover,

𝜂1 = 𝜙(𝜂0) = 𝜙(0) = a0 > 0 = 𝜂0 (3.155)

In general, given the induction hypothesis 𝜂n > 𝜂n−1, we have

𝜂n+1 = 𝜙(𝜂n) > 𝜙(𝜂n−1) = 𝜂n (3.156)

Since we have already seen that the inequality holds for n = 0, we have proved by
induction that the 𝜂n’s form a monotonously increasing sequence bounded above
by 1. Therefore, the limit 𝜂 ≡ lim

n→∞
𝜂n exists and it is a probability, i.e., a real number

in [0, 1].
Two cases can arise: (i) 𝜂 = 1, then extinction occurs eventually and T is a proper

random variable, i.e., (T < ∞) = 1; (ii) 𝜂 < 1: then, extinction is not certain and
we have (T = ∞) = 1 − 𝜂 (i.e., T is a defective random variable).

By letting n → ∞ in eq. (3.154), we get 𝜂 = 𝜙(𝜂). We see that the extinction prob-
ability 𝜂 must be a solution of the equation z = 𝜙(z) in the interval [0, 1]. Actually,
we can show that 𝜂 is the smallest positive root of that equation.

Theorem 3.13 Let 𝜙(z) be the probability generating function of the offsprings
with 𝜙(0) = a0 > 0. The extinction probability 𝜂 is the smallest positive root of the
equation z = 𝜙(z) in the interval [0, 1].

Proof: We know that z = 𝜙(z) has at least one root in [0, 1], since it is 𝜙(1) = 1. Let
𝜁 denote the least root of z = 𝜙(z) in [0, 1]. It must be 𝜁 > 0 since 𝜙(0) = a0 > 0.
Moreover, we have 𝜂1 = 𝜙(𝜂0) = 𝜙(0) < 𝜙(𝜁) = 𝜁 , since 𝜁 is positive and it is a fixed
point. Then, by the induction hypothesis 𝜂n < 𝜁 (shown true for n = 1), we get
𝜂n+1 = 𝜙(𝜂n) < 𝜙(𝜁) = 𝜁 . It is therefore, 𝜂n < 𝜁,∀n and 𝜂 = lim

n→∞
𝜂n ≤ 𝜁 . Since it is

also 𝜂 = 𝜙(𝜂) and 𝜁 is the smallest positive root of z = 𝜙(z), we must have 𝜂 = 𝜁 .

To investigate further the extinction property, let us first rule out a trivial case.
Assume a0 + a1 = 1. Then, at each generation, either a new individual replaces the

�

� �

�

124 3 Stochastic Models for Network Traffic

previous generation one or no birth occurs and the population goes to 0. In other
words, this is a pure death process. When started at level 1, it goes to 0 after a geo-
metrically distributed number of steps. Let us now move to a general case where
a0 + a1 < 1, besides being 0 < a0 < 1. Then, the function 𝜙(z) is strictly convex,
with 0 < 𝜙(0) < 1 and 𝜙(1) = 1. Only two cases are possible: either it is 𝜁 = 1 or
𝜁 < 1. Since𝜙(z) is strictly convex, it must lie all above any of its tangents. By taking
the tangent at z = 1, we can write

𝜙(z) − z > 1 + 𝜙
′(1)(z − 1) − z = (1 − 𝜙

′(1))(1 − z) (3.157)

The right-hand side is non-negative for all 0 ≤ z < 1 if 𝜙′(1) ≤ 1. In that case we
have thus proved that 𝜙(z) > z for 0 ≤ z < 1. Hence, it must be 𝜁 = 1. If instead
it is 𝜙′(1) > 1, since 𝜙

′(0) = a1 < 1 and the derivative of 𝜙(z) is continuous, there
must exist a point x ∈ (0, 1) such that 𝜙′(x) = 1. We can prove that it is 𝜙(x) < x.
According to the average theorem, there exists a point y ∈ (x, 1) such that 𝜙(1) −
𝜙(x) = 𝜙

′(y)(1 − x). Since it is 𝜙
′(y) > 1 and 𝜙(1) = 1, we have 𝜙(1) − 𝜙(x) = 1 −

𝜙(x) > 1 − x, i.e., 𝜙(x) < x. We have thus shown that the function 𝜙(z) − z changes
sign in the interval [0, x], since 𝜙(0) − 0 = a0 > 0 and 𝜙(x) − x < 0. There must be
at least one zero in (0, x) with x < 1, and it is therefore 𝜁 < 1. Let us summarize
what we have just proved.

Theorem 3.14 Let 𝜙(z) be the generating function of a probability distribution
{ak}k≥0 with a0 > 0 and a0 + a1 < 1. Then, the smallest positive root of the
equation z = 𝜙(z) is strictly less than 1 if 𝜙′(1) > 1; it is equal to 1 if 𝜙′(1) ≤ 1.

Turning from the mathematics to the branching process meaning, the result is
consistent with intuition. The derivative of 𝜙(z) at 1 is the mean number of off-
springs. The result presented above says that extinction is certain, if the mean
number of newborn individuals in each generation is no more than 1; otherwise,
if strictly more than a single individual are born with each new generation, there
is some non-null probability of the population extinction, but that outcome is not
certain.

Example 3.6 (Continued from Example 3.5) Let us go back to our example
of vehicular network. Let us assume that the number of neighbors of a node
has a Poisson distribution, i.e., qk = 𝜈

k

k!
e−𝜈 for k ≥ 0. Then, the probability

distribution of the number of neighbors of a neighbor of a given node is
rk = (k + 1)qk+1∕E[V] = 𝜈

k

k!
e−𝜈 , since the mean number of neighbors is E[V] = 𝜈.

Then, it is a0 = 1 − p + pe−𝜈 and ak = prk, k ≥ 1. For a working dissemination
protocol it must be p > 0, hence it is a0 < 1. It is also obviously a0 > 0. It is easy
to find that 𝜙(z) = 1 − p + pe𝜈(z−1) and 𝜙

′(1) = p𝜈. If p𝜈 ≥ 1, the message will
disseminate over the whole connected component of the vehicular network with
probability 1, whereas when p𝜈 < 1 there is a positive probability that message

�

� �

�

Summary and Takeaways 125

Figure 3.12 Expected number of
dissemination hops as a function of the
relaying probability p for a branching
process model of message
dissemination in a vehicular network,
for various values of the mean number
of neighbors 𝜈.

0.2 0.4 0.6 0.8 1

Relaying probability, p

1

2

3

4

5

M
e

a
n

 n
u

m
b

e
r

o
f

h
o

p
s

ν = 1

ν = 2

ν = 4

ν = 6

ν = 8

dissemination will die out after some hops. Let T be the number of hops of the
message, i.e., the number of times that the message is forwarded during the
dissemination process. It is FT(n) ≡ (T ≤ n) = 𝜂n; then

FT(n) = 𝜂n = 𝜙(𝜂n−1) = 𝜙(FT(n − 1)) = 1 − p + pe𝜈(FT (n−1)−1) (3.158)

The CCDF GT(n) = 1 − FT(n) is therefore the solution of the iteration

GT(n) = p − pe−𝜈GT (n−1)
, n ≥ 1, (3.159)

with GT(0) = 1. The mean value of T can be found as E[T] =
∑∞

n=0 GT(n).
Figure 3.12 shows E[T] as a function of p for various values of 𝜈. As p approaches
1∕𝜈, E[T] tends to infinity.

Branching processes can be defined in continuous time as well. Also, other
variants of branching models can be analyzed, even of non-Markovian type. For
a wider introduction to this topic, the interested reader can consult, e.g., [117,
Ch. 11].

Summary and Takeaways

In this chapter a number of topics have been discussed, with the common denom-
inator of providing models that are widely used in network traffic engineering and
performance evaluation, to describe series or patterns of events.

The Poisson process is the most celebrated model of a point process. The key
properties of the Poisson process have been presented, i.e., the negative exponen-
tial distribution of the inter-arrival times, the Poisson distribution of the counting
function, the memoryless property. The extension to inhomogeneous Poisson
process, i.e., one where the arrival rate is a function of time, has been introduced.
A treatment of spatial point processes is given as well, with a focus on the spatial
Poisson point process (PPP). A number of definitions and properties carry over

�

� �

�

126 3 Stochastic Models for Network Traffic

from unidimensional to multi-dimensional point processes. Operations on point
processes (displacement, mapping, thinning) have been defined. A generalization
of the Poisson process is obtained by coupling the arrivals with a modulating
Markov process. This gives rise to the seminal idea of matrix-geometric methods,
introduced by M.F. Neuts [167].

Another important class of processes are renewal ones. They are the sim-
plest possible general random process. They have no correlation structure, i.e.,
inter-event times form a sequence of i.i.d. random variables. Hence, the CDF of the
inter-event time is sufficient to get a full knowledge of the process. The renewal
paradox and the key concept of residual inter-event time, the superposition of
renewal processes and renewal reward processes are discussed.

Birth-death processes are another very useful class of processes, used to capture
the dynamics of systems that can be described by discrete variables that change
one step at a time. The ergodicity conditions and the limiting probability distri-
bution are derived. Birth-death processes are the basic modeling tool that allows
the description of all elementary queueing models, i.e., all queues that fit into the
M/M class (Poisson arrivals, negative exponential service times).

Finally, the class of branching processes is presented. This is less often used in
networking application, yet it makes a useful and simple model that lends itself
to a wide variety of generalization, often retaining amenability to mathematical
analysis.

Problems

3.1 Consider a Poisson arrival stream with mean rate 𝜆. In Section 3.2 you have
seen that, if arriving customers are sampled with probability p, indepen-
dent of one another, then the sampled sub-stream is still a Poisson pro-
cess with mean rate p𝜆. Assume now that sampling is performed by taking
exactly one arrival out of r consecutive ones. Is the resulting sampled pro-
cess still a Poisson process? If not, can you characterize it? [Hint: Think in
terms of inter-arrival times.]

3.2 Find the probability distribution of the minimum of M independent nega-
tive exponential random variables with mean rates 𝜆i, i = 1,… ,M.

3.3 Repeat the task of the Problem 3.2, this time for M independent geometri-
cally distributed non-negative random variables. Assume those M variables
represent the countdown parameters of M stations competing for the access
to a common channel. The winning station is the one whose countdown
expires first. What is the probability that there will be a unique station win-
ning?

�

� �

�

Problems 127

3.4 Let {Xj} be a sequence of identically distributed mutually independent ran-
dom variables. Assume that Xj is a binary random variable with(Xj = 0) =
1 − p and (Xj = 1) = p. Let N be a Poisson random variable with mean a.
Find the probability distribution of the random variable Y ≡ X1 + · · · + XN ,
i.e., the sum of a random number (with Poisson probability distribution) of
Bernoulli random variables.

3.5 At a bus stop we observe that with probability 0.67 the time elapsing
between two successive buses is 1 minute. If more than 1 minute goes by
after the last bus arrival, we know that it will take another 19 minutes
until we see the next bus coming. How long will we wait on average if we
drop at the bus stop at a random time (random with respect to the bus
schedule)?

3.6 You used to arrive at the bus stop near your home at a random time during
the morning. After some months you find out that your average wait is
12 minutes. You learn from the time table that buses arrive one every 10
minutes on average, during the morning. Can you be definitely sure that
the bus company is cheating on the time table? If you believe to the time
table, what complaint would you submit to the bus company?

3.7 A multiplexing channel serves N packet flows. Each packet flow is gener-
ated by a user that stores new packets in a buffer as they arrive. Time on the
channel is divided into frames. A frame is composed of two parts: (i) signal-
ing slots; (ii) data slots. Signaling slots occupy a fixed interval of duration
S where reservations are collected from all users. As soon as a signaling
opportunity is given, the user reserves capacity for all packets waiting in its
buffer at the time when the frame starts. The rest of the frame accommo-
dates all packets that have been reserved, namely all packets waiting at the
buffers of the users. If no packets are waiting, a new frame is started imme-
diately after the signaling opportunity. The multiplexing channel capacity
is C, packet lengths have a general probability distribution with mean L.
Packets arrive according to a Poisson process with mean rate 𝜆i at user i
buffer (i = 1,… ,N). Find the condition for the stability of the multiplexing
channel. Find the average frame duration under the stability condition.

3.8 In a VANET along a highway, a vehicle A transmits a message to those
around it. The radio transmission range is R, i.e., all vehicles within a dis-
tance R of A can decode the message correctly, while more distant vehicles
cannot. The highway can be modeled as a line and vehicles are distributed
along the highway according to a Poisson process with mean density of 𝜆
vehicle/km. Find the PDF of the distance between vehicle A and the most

�

� �

�

128 3 Stochastic Models for Network Traffic

Figure 3.13 Example of vehicles along the highway, forming a VANET. Vehicle A sends a
message that can be received up to a maximum distance R. B is the furthest vehicle
reached by A.

distant vehicle that is reached by the message (vehicle B in Figure 3.13),
under the condition that there is at least one vehicle within distance R of A.

3.9 A smartphone user can start a single connection at a time. While con-
nected it cannot start another connection. Let us consider the point process
defined by the start times of the user connections. Why is the Poisson pro-
cess inadequate to describe such an arrival process? Now consider the pop-
ulation of users camping in the cell covered by a base station. The average
number of users roaming in the cell is assumed to be much greater than the
number of active connections through the base station at any given time.
Could the Poisson process be adequate in this case? Why?

3.10 You are observing the arrivals of TCP connections at a web server. You find
that such arrivals can be modeled as a Poisson process of mean rate 𝜆. What
is the probability of observing two arrivals in a time interval of duration
1∕𝜆?

3.11 An inadvertent professor gives the same meeting time to two students. The
first one arrives in time, the other one is late by 10 minutes. The meet-
ing time has a negative exponential PDF with mean 30 min. Calculate the
following.
a. The probability that the second student has to wait.
b. The mean value of the time spent by the second student at the professor’s

office.

3.12 The packets entering a node are switched to either one of two output inter-
faces, according to their lengths. If the incoming packet length is less than
or equal to L0 it is sent to the interface SP, with capacity CSP, otherwise the
packet is routed to the interface LP, with capacity CLP. Packet length have

�

� �

�

Problems 129

uniform probability distribution between Lmin and Lmax. Packet lengths are
independent of the packet inter-arrival times.
If the original packet arrivals form a Poisson process with mean rate 𝜆,
prove that the two flows directed to the two output interfaces are still Pois-
son processes and find their respective mean rates 𝜆SP and 𝜆LP.
Then, find the output link capacities CSP and CLP required to obtain a link
utilization coefficient equal to 𝜌0 on each of the two interfaces.
In your calculations, assume L0 = 256 bytes, Lmin = 40 bytes, Lmax =
1500 bytes, 𝜆 = 1000 pkts/s, 𝜌0 = 0.7.

3.13 Customers arrive at a service facility according to a Poisson process with
mean rate 𝜆. A single server is available, with service times distributed
according to a random variable X , independent of the inter-arrival times.
Consider the busy period started by a given customer C1. Find the proba-
bility P that the second arriving customer C2 does not have to wait at all
(i.e., it starts a new busy period). Calculate also the average waiting time of
C2 if X is deterministic and if it is a negative exponential random variable.
Assume that the mean value of X be 1∕𝜇 in both cases.

3.14 A computing cluster is equipped with M servers, completely interchange-
able. Each of them can fail independently of the others. The time to failure
of a running server is a negative exponential random variable with mean
1∕𝜈 = 30 days. There is only one technician repairing failed servers. Repair
times have negative exponential PDF with mean 1∕𝜇 = 1 day.
a. Define a birth-death model of the failure-restore process of the servers.
b. Calculate the probability that no server is operating (all are down) for

M = 5.
c. Calculate the mean number of operational servers for M = 5.
d. Find the minimum value of M that guarantees that the unavailability

of the system is 10−9 [unavailability = probability that all servers are
down].

3.15 Connection requests arrive at a fully shared channel with capacity C
according to a Poisson process of mean rate 𝜆. Each connection has a
negative exponential amount of bytes to carry, with mean Q. Capacity is
shared equally among all ongoing connections.
a. Identify a birth-death model of the system evolution: give expressions

for the birth and death rates.
b. Calculate the mean bit rate obtained by a connection.

�

� �

�

130 3 Stochastic Models for Network Traffic

3.16 Points are scattered on the plane so that for any compact (=closed and
bounded) set the probability that k point lie in is ake−a∕k!, for k ≥ 0,
with a = 𝜆|| (|| denotes the area of). Let us focus on one point P. Find
the probability that the point Q closest to P is at a distance at least r > 0.
Try to generalize the result to find the probability density function of the
distance of the n-th nearest neighbor of P for n > 1.

�

� �

�

131

Part II

Queues

�

� �

�

133

4

Single-Server Queues

If you are not too long, I will wait here for you all my life.
Oscar Wilde

4.1 Introduction and Notation

In this chapter we focus on single-server queues. The corresponding general model
is noted as the G∕G∕1 queue in Kendall’s notation. Unless stated otherwise, we
assume the scheduling policy of the queue is first-come, first-serve (FCFS) and
the server is work-conserving, i.e., it cannot stay idle if there are customers to
be served, and no customer leaves the queue until it has completely received the
amount of service it demands. As for the waiting line, we denote its size with K:
up to K + 1 customers can be hosted in the queuing system, one under service,
the others waiting for service. K = ∞ is a special case (infinite room queue). For a
finite K there is the possibility that a customer arrives to find the queue full. In that
case, it is lost to the queue, i.e., its service request is turned down and disappears.

Arrivals follow a stationary renewal process with inter-arrival times distributed
according to a continuous positive random variable T. The mean arrival rate is
denoted with λ. Service times are i.i.d. random variables with the probability
distribution of the continuous positive random variable X . The mean service rate
is denoted with 𝜇. Service times are independent of inter-arrival times and of
the scheduling policy. Arrivals follow a Poisson process with mean rate λ for the
M∕G∕1∕K queues. The random variable X has a negative exponential probability
distribution with mean 1∕𝜇 in case of G∕M∕1∕K queues.

We consistently use the following notation for queue-related quantities.

Q(t) number of customers in the queue at time t.
T inter-arrival time.

Network Traffic Engineering: Stochastic Models and Applications, First Edition. Andrea Baiocchi.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

�

� �

�

134 4 Single-Server Queues

X service time.
S system or response time, i.e., amount of time spent by a customer in the queue

from arrival until departure.
W waiting time, i.e., the amount of time spent by a customer in the queue besides

its own service time.
A number of arrivals in a service time.
B number of service completions in an inter-arrival time.
Y duration of the busy period, i.e., the time when the server is uninterruptedly

busy.
M number of customers served in the busy period.
I duration of the idle time, i.e., the time when the queue is empty, between two

consecutive busy periods.

The discussion of Palm’s distributions in Section 2.5 points out that, for
single-server, single-arrival systems, as those considered in this chapter, it is
always the case that the probability distribution of the number of customers seen
by an arrival that joins the system is the same as the probability distribution
of the number of users left behind by a customer departing from the queue. In
case of M∕G∕1 systems, the PASTA property also guarantees that the probability
distribution of the number of customers seen by an arrival is the same as the
random time distribution (at equilibrium). Moreover, Theorem 2.3 tells us that
any of the Palm’s distribution mentioned above is the same for the M∕G∕1 queue.
The same theorem gives also the relationship between the probability distribution
at any time or seen by an arrival and the one seen by a customer entering the
queue or departing from it in case of M∕G∕1∕K. In that case, departing customers
do not see the same system as a random look does. For example, they can never
leave a full up system, i.e., they never leave behind K + 1 customers, whereas it is
possible for an arrival or an observer at a random time to find the system full. Only
Theorem 2.2 applies to the G∕M∕1 queue, so we shall use care in deriving the
probability distribution of the number of customers in the system, by specifying
the point of view.

4.2 The Embedded Markov Chain Analysis of the
M∕G∕1 Queue

The number Q(t) of customers residing in the queue at time t does not exhaust the
description of the state of the M∕G∕1 queue at time t. If we are going to be able to
predict the future evolution of the system for times t′ > t, we need to know also
how long the user under service at time t (if any) has been served before of t. In
other words, we need to know the amount of service it has already received, or,

�

� �

�

4.2 The Embedded Markov Chain Analysis of the M∕G∕1 Queue 135

that is the same, the amount of service still to be delivered. The first one is the
age of the service time, the latter is the residual service time. From the renewal
theory, we know that the only variable that enjoys the memoryless property is the
negative exponential one. Therefore, unless service times are i.i.d. negative expo-
nential random variables, we must explicitly know the age of the service time to
reconstruct the state of the M∕G∕1 queue. For the same reason, we do not need to
know the age of the inter-arrival time: Poisson arrivals entail negative exponential
inter-arrival times, hence we can predict the future of the arrival process after time
t without any prior knowledge of the past before time t.

It turns out then that the couple (Q(t),Xa(t)) is indeed a full state description of
the system at time t, where Xa(t) is the age of the service time of the user under
service at time t1. More precisely, (Q(t),Xa(t)) is a Markov process. It is possible to
carry out the analysis of the M∕G∕1 queue by considering the process (Q(t),Xa(t)),
but this leads to technical difficulties and to a rather cumbersome development,
given that the Markov process is bi-dimensional and it has one continuous com-
ponent and one discrete component.

A different approach consists of giving up considering any time point and
focusing on special time points. If suitably chosen, the sequence of random
variables extracted from Q(t) at those time points form an embedded process with
the Markov property. The embedded Markov chain (EMC) approach is the one
followed in, e.g., [130, 196]. We will follow that approach here.

Let us first introduce the notion of a regeneration point as done in [196]. Given
a stochastic process Y (t), the time point u is a regeneration point if

(Y (t) ∈ |Y (u) = y(u)) = (Y (t) ∈ |Y (𝜏) = y(𝜏), 𝜏 ≤ u) (4.1)

where is a set of values of Y (t) (an event), and y(𝜏) are given values. Equation (4.1)
says that the information on Y (u) summarizes anything that is worth knowing
about the past of Y (t) up to time u: there is no need of giving the full detail of the
whole past history up to time u to be able to assess the probabilistic evolution in
the future, after u. A similar notion of regeneration can be defined for discrete time
processes, namely k is a regeneration time if for any positive 𝓁 we have

(Yk+𝓁 ∈ |Yk = yk) = (Yk+𝓁 ∈ |Yh = yh, h ≤ k) (4.2)

This is but the Markov property for the discrete time random process Yk. Now we
can show the following.

Theorem 4.1 The sequence of times {td,k}k∈ℤ of customer departures in the
M∕G∕1 queue are regeneration times.

1 The value of Xa(t) is immaterial if the queue is empty; we convene it is 0 in that case.

�

� �

�

136 4 Single-Server Queues

Proof: Let Qk ≡ Q(t+d,k) the number of customers in the M∕G∕1 queue immedi-
ately after the departure of the k-th departing customer, i.e., the number of cus-
tomers left behind by the k departing customer. Assume we know that Qk = n. The
question is: can we write the probability distribution of future states Qk+𝓁 , 𝓁 ≥ 1
based only on this information? Given Qk, the value attained by Qk+𝓁 depends on
the number of service completions, which are exactly 𝓁 by the very definition of
the sequence Qn, and on the number of arrivals. These last ones are the arrivals
occurred between the k-th service completion, at time td,k and (k + 𝓁)-th one, at
time tk+𝓁 . Since arrivals follow a Poisson process, they are independent of the state
of the system. Moreover, the arrivals in (tk, tk+𝓁] are independent of arrival prior to
time tk. Therefore, we need not specify anything else besides Qk. Since both k and
𝓁 are generic, this proves that all customer departing times {td,k}k∈ℤ, i.e., service
completion times, are indeed regeneration points of the M∕G∕1 queue. ◾

Note that by td,k we denote the time of departure of the k-th departing cus-
tomer, irrespective of the order of service, that might well be different from FCFS.
Theorem 4.1 tells us that {Qn}n∈ℤ is a Markov chain (an EMC indeed). We now
set out to determine the limiting probability distribution of this chain, namely the
probabilities

xk = lim
n→∞

(Q(t+d,n) = k) = lim
n→∞

(Qn = k) , k ≥ 0. (4.3)

Let {ta,n}n∈ℤ denote the arrival times of customers at the queue and let for k ≥ 0:

qa,k = lim
n→∞

(Q(t−a,n) = k) (4.4)

pk = lim
t→∞

(Q(t) = k) (4.5)

be the limiting probabilities seen by an arrival and seen at a generic time point of
the statistical equilibrium. From Theorem 2.3 we know that, if those probability
distributions exist, then pk = qa,k = xk, k ≥ 0.

4.2.1 Queue Length

The argument above proves that in the M∕G∕1 queue it suffices to find the proba-
bilities xk to obtain any desired performance measure. The evolution of the EMC
{Qn}n≥0 is easily recognized to be described by

Qn+1 = max{0,Qn − 1} + An+1 (4.6)

where An is the number of arrivals at the queue in the time between the (n − 1)-th
and the n-th departures. Actually, if the n-th departure leaves a nonempty queue,
i.e., Qn > 0, then the next departing customer will leave behind the Qn customers
that were already there, except of itself, plus those arrived during its service time,

�

� �

�

4.2 The Embedded Markov Chain Analysis of the M∕G∕1 Queue 137

namely An+1. Hence it will be Qn+1 = Qn − 1 + An+1 for Qn > 0. On the contrary,
if the n-th departing customer leaves the queue empty, i.e., Qn = 0, the queue will
stay empty until a new customer arrives. For a work-conserving server, this newly
arrived customer will enter immediately into service and will eventually leave the
queue, leaving behind exactly those customers that have arrived during its service
time, i.e., Qn+1 = An+1 for Qn = 0.

It can be verified that the random variable An+1 is independent of Qn. In fact,
An+1 is the number of arrivals during the service time of the (n + 1)-th departing
customer, while Qn is the number of customers arrived in previous service times,
up to the n-th one, and still waiting to be served. Since the arrival process is a sta-
tionary Poisson one and An+1 and Qn refer to arrivals in non overlapping intervals,
they are independent of each other.

We can say even more. Since service times are i.i.d. and arrivals follow a Pois-
son process, the random variable An does not depend on the epoch n. Then, the
transition mechanism described by eq. (4.6) is that of a time-homogeneous Markov
chain, i.e., the one-step transition probabilities do not depend on the index n. Let
us define

ak = (A = k) , k ≥ 0, (4.7)

that is to say the probability distribution of having k arrivals in a service time. From
the Poisson input hypothesis and the definition of the random variable A, we have

(A = k|X = t) = (λt)k

k!
e−λt

, k ≥ 0, (4.8)

since the random variable A conditional on the service time X = t is simply the
number of arrivals of a Poisson process with mean arrival rate λ in a time interval
of duration t. Therefore

ak = (A = k) = ∫
∞

0

(λt)k

k!
e−λtfX (t) dt , k ≥ 0. (4.9)

Note that the ak’s are all strictly positive.
The generating function of A is 𝜙A(z) = 𝜑X (λ − λz), which is analytic at least for|z| ≤ 1. In fact, we note first that

E[zA|X = t] =
∞∑

k=0
(A = k|X = t)zk =

∞∑
k=0

(λt)k

k!
e−λtzk = eλt(z−1) (4.10)

Then, we have

𝜙A(z) = E[zA] = ∫
∞

0
fX (t)E[zA|X = t] dt = ∫

∞

0
fX (t)eλt(z−1) dt = 𝜑X (λ − λz)

(4.11)

�

� �

�

138 4 Single-Server Queues

This could have been derived directly from the definition of the generating func-
tion as a power series 𝜙A(z) =

∑∞
k=0 akzk, by exploiting the expression of the ak’s

in eq. (4.9).
The one-step transition probabilities of the EMC Qn are given by

(Qn+1 = j|Qn = i) = (A = j − i + 1) = aj−i+1 , j = i − 1, i,… . (4.12)

for i > 0. Starting from state i, we can end up with one less customer, if no arrival
occurs within the customer departure, or with the same number of customers, if
exactly one arrival compensates for the departure, etc. In the special case i = 0, we
have

(Qn+1 = j|Qn = 0) = (A = j) = aj , j = 0, 1,… . (4.13)

We can display the one-step transition probabilities in matrix form as

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0 a1 a2 a3 …
a0 a1 a2 a3 …
0 a0 a1 a2 …
0 0 a0 a1 …
0 0 0 a0 …
… … … … …

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.14)

The matrix P is a band matrix, i.e., elements along each sub- and super-diagonal
on either side of the main diagonal are the same, except possibly of the elements
belonging to the fist row. Those elements represent a special boundary case. More-
over, all elements below the sub-diagonal are null, which is reminiscent of the
structure of the queue: since it is a single server and we sample the state of the
queue at departure times, the state can at most decrease by one at each transi-
tion, whereas it can increase of whatever amount because of the Poisson arrivals.
A matrix with zeros below the sub-diagonal is called a lower Hessenberg matrix.
It is a generalization of a lower triangular matrix, which is obtained when also the
sub-diagonal is all filled with zeros.

Since the ak’s are all positive, the Markov chain is irreducible. It is aperiodic,
since a1 > 0. Then, the states of the M∕G∕1 EMC are either all transient, null recur-
rent, or positive recurrent. In this last case, the limiting probabilities do exist and
they are independent of the initial state, i.e., the EMC is ergodic. This is the con-
dition we are most interested in. It can be shown that positive recurrence occurs
if and only if

E[A] = 𝜙
′
A(1) =

d
dz

𝜑X (λ − λz)
||||z=1

= −λ𝜑′
X (0) = λE[X] ≡ 𝜌 < 1 (4.15)

where 𝜌 represents the utilization coefficient of the server. The condition 𝜌 < 1 is
equivalent to λ < 𝜇 or E[X] < E[T], i.e., the mean rate that the customers arrive

�

� �

�

4.2 The Embedded Markov Chain Analysis of the M∕G∕1 Queue 139

at the queue must be less than the maximum serving rate, the rate at which the
server is able to clear the backlog. Quite a sensible result!

Theorem 4.2 Assume the probability distribution of the number of arrivals A
in a service time is such that a0 > 0 and a0 + a1 < 1. Assume also that the second
moment of A is finite, i.e., E[A2] < ∞. The EMC of the M∕G∕1 queue is positive
recurrent if and only if E[A] < 1.

Proof: We prove only the “if” part. To that end we use the Foster-Lyapunov
theorem A.6, stated in the Appendix at the end of the book.

Let the Lyapunov function be V(x) = x2. The conditional drift dk for k ≥ 1 is

dk = E[V(Qn+1) − V(Qn)|Qn = k] = E[(k − 1 + An+1)2 − k2] (4.16)

With some manipulation, it is possible to find that

dk = E[(A − 1)2] + 2k(E[A] − 1) (4.17)

Given 𝜀 > 0, the conditional drift is bounded by −𝜀 if

E[(A − 1)2] + 𝜀 ≤ 2k(1 − E[A]) (4.18)

If it is E[A] < 1, we see that the condition dk ≤ −𝜖 is fulfilled for all k ≥ kth where

kth =
⌈

E[(A − 1)2] + 𝜀

2(1 − E[A])

⌉
(4.19)

The conditions required by Theorem A.6 hold, taking the finite set as the set of
states {0, 1,… , kth − 1}.

Let us go back to the EMC Qn and let us assume it is ergodic (𝜌 < 1): ◾

Qn+1 =
{

Qn − 1 + An+1 Qn > 0
An+1 Qn = 0

(4.20)

We recall that An+1 is independent of Qn, since: (i) service times are indepen-
dent of the inter-arrival times; (ii) arrivals follow a Poisson process and the arrivals
counted in An+1 belong to an interval nonoverlapping with the intervals that the
arrivals affecting Qn belong to. It is also independent of n + 1, so that we can simply
replace An+1 with A. Then, we can write:

𝜙Qn+1
(z) = E[zQn+1] =

∞∑
h=0

(Qn = h)E[zQn+1 |Qn = h]

= (Qn = 0)E[zA|Qn = 0] +
∞∑

h=1
(Qn = h)E[zQn−1+A|Qn = h]

�

� �

�

140 4 Single-Server Queues

= (Qn = 0)E[zA] + z−1E[zA]
∞∑

h=1
(Qn = h)zh

= (Qn = 0)(1 − z−1)𝜙A(z) + z−1
𝜙A(z)𝜙Qn

(z)

Taking the limit for n → ∞, we get

𝜙Q(z) = x0(1 − z−1)𝜙A(z) + z−1
𝜙A(z)𝜙Q(z) (4.21)

hence

𝜙Q(z) =
x0(z − 1)𝜙A(z)

z − 𝜙A(z)
(4.22)

The unknown x0 can be found by requiring that
∑∞

h=0 xh = 1, that is to say
𝜙Q(1) = 1. By applying de L’Hôpital’s rule, we find

1 = 𝜙Q(1) =
x0

1 − 𝜙
′
A(1)

=
x0

1 − 𝜌
(4.23)

by eq. (4.15). Summing up, the generating function of the probability distribution
of the number of customers Q in the M∕G∕1 queue is given by

𝜙Q(z) =
(1 − 𝜌)(z − 1)𝜙A(z)

z − 𝜙A(z)
(4.24)

The mean queue length at equilibrium can be found by E[Q] = 𝜙
′
Q(1), that is

E[Q] = 𝜌 + λ2E[X2]
2(1 − 𝜌)

(4.25)

A fundamental remark is in order. The probability distribution of the number
of customers in the queue given in eq. (4.24) holds for the M∕G∕1 queue at statis-
tical equilibrium for any queueing discipline, i.e., irrespective of the service order of
the customers. The only required conditions are that statistical equilibrium can be
achieved, that is, 𝜌 < 1, and that the server is work-conserving.

Before closing this section, we mention a different approach that leads to the
same result (and to something more) for the analysis of the M∕G∕1. Instead of
considering the EMC at departure times, we could enlarge the state space of the
system, including the residual service time of the customer under service (if any),
along with the number of customers.

Let us consider the sequence of arrival times {𝜏n}n≥1. Since the arrivals follow
a Poisson process, thanks to the PASTA property, we know that the probability
distribution seen by arrivals is the same as the probability distribution sampled at
a general time in statistical equilibrium.

We define the joint random variable (Qn,Hn), where Qn = Q(𝜏n,−) and Hn is the
time needed to complete the current service, if any. It is Qn ∈ ℤ+ and Hn ∈ ℝ+.
We let Hn = 0 in case it is Qn = 0.

�

� �

�

4.2 The Embedded Markov Chain Analysis of the M∕G∕1 Queue 141

The couple (Qn,Hn)n≥1 form a Markov sequence on the state spaceℤ+ ×ℝ+. The
sequence converges to statistical equilibrium if and only if 𝜌 < 1. In that case, it
admits a stationary joint probability distribution:

Fj(x) = (Q = j,H ≤ x) , j = 1, 2,…; x ≥ 0. (4.26)

with F0(x) = (Q = 0), ∀x ≥ 0. We define the double transform of the joint prob-
ability distribution:

Φ(z, s) =
∞∑

j=0
zj ∫

∞

0
e−sx dFj(x) (4.27)

In [198] it is shown that

Φ(z, s) = 1 − 𝜌 + (1 − 𝜌)zλ(1 − z)
z − 𝜑X (λ − λz)

𝜑X (s) − 𝜑X (λ − λz)
s − λ(1 − z)

(4.28)

Equation (4.24) is obtained by letting s = 0 in (4.28). The joint probability distri-
bution of the joint random variable (Q,H) and its double transform do not depend
on the service order adopted by the queue. On the contrary, the waiting time does
depend on the queueing discipline. In the rest of this chapter we consider only
FCFS. Other queueing disciplines are studied along with priorities in Chapter 6.

4.2.2 Waiting Time

According to Little’s law, the mean system time E[S] = E[W] + E[X] can be
expressed as E[S] = E[Q]∕λ, so the mean waiting time is given by E[W] =
E[Q]∕λ − E[X], that is:

E[W] = λE[X2]
2(1 − 𝜌)

= E[X]
𝜌(1 + 𝜎

2
X∕E[X]2)

2(1 − 𝜌)
(4.29)

This is the celebrated Pollaczek-Khinchine formula for the mean waiting time
of the M∕G∕1 queue. As expected, E[W] grows unboundedly when 𝜌 approaches
1, i.e., the server gets saturated. Interestingly, the mean waiting time grows with
the variability of service times, namely proportionally to the coefficient of variation
(COV) of the service time CX ≡ 𝜎X∕E[X]. The best that we can do to limit the mean
waiting time is to design for deterministic service times, if possible.

More deeply, waiting time in a queue is intimately related to stochastic variability
of service and arrival times of customers. If both those time series are determinis-
tic, i.e., inter-arrival and service times are constant with values T0 and X0, respec-
tively, the condition that equilibrium be achievable implies that it must be X0 < T0,
i.e., 𝜌 = X0∕T0 < 1. Since arrivals and service times are strictly deterministic, there
is no queueing and waiting time is exactly 0 for every customer. This holds in spite
of the fact that 𝜌 can take any value, however close to 1. On the contrary, no matter
how small 𝜌 is, eq. (4.29) tells us that Poisson arrivals at a single-server queue will

�

� �

�

142 4 Single-Server Queues

suffer some delay, the bigger the closer 𝜌 to 1, and, for a given 𝜌, the bigger the
more variable service times are.

The expression of the mean waiting time in eq. (4.29) is independent of the queue
discipline. The order of service does not affect in any way the value of the mean
waiting time, provided that the service times do not depend on the queue discipline
and that the server is work-conserving.

For example, Figure 4.1 plots the mean waiting time, normalized with respect
to the mean service time, as a function of 𝜌 for three cases of service times: Deter-
ministic (CX = 0, dash-dot line), negative exponential (CX = 1, dashed line), and
a PDF estimated from measured data (CX = 1.247, solid line).

The third value of CX is taken from traffic measurement on an ethernet LAN.
In that case, the service time is given by X = L∕C, where L is the frame length.
Frame lengths range from 64 up to 1518 bytes. The PDF of the frame length has
few peaks and most values have negligible probabilities. Table 4.1 reports the 10
frame length values that have a probability greater than 0.01.

Contrary to the mean, the PDF of the waiting time W of the M∕G∕1 queue does
depend on the service policy. In the following we refer to FCFS discipline; then
the Laplace transform of the probability distribution of W can be found with the

CX = 0

CX = 1

CX = 1.247

0 0.2 0.4 0.6 0.8 1

Utilization coefficient, ρ

0

2

4

6

8

10

E
[W

]/
E

[X
]

Figure 4.1 Normalized mean waiting
time E[W]∕E[X] as a function of 𝜌 for
three PDFs of the service times:
Deterministic (dash-dot line); Negative
exponential (dashed line); PDF
estimated from LAN measurements
(solid line).

Table 4.1 Most probable frame lengths from data captured on an ethernet LAN.

𝓵 [bytes] (L = 𝓵) 𝓵 [bytes] (L = 𝓵)

162 0.2031 66 0.0455
174 0.1839 142 0.0293
1090 0.1738 150 0.0152
64 0.1051 90 0.0148
1518 0.0727 570 0.0125

�

� �

�

4.2 The Embedded Markov Chain Analysis of the M∕G∕1 Queue 143

following argument. The number of customers left behind by a departing cus-
tomer is equal to the number of customers arriving during the system time S of
the departing customer. This is a consequence of the order of service: customers
left behind by a departing customer are all those and only those that have arrived
after it. Therefore, 𝜙Q(z) = 𝜑S(λ − λz). Moreover, S = W + X , the waiting time W
and the service time X being independent random variables. Hence

𝜑S(λ − λz) = E[e−S(λ−λz)] = E[e−(W+X)(λ−λz)] = 𝜑W (λ − λz)𝜑X (λ − λz) (4.30)

By reminding that𝜙A(z) = 𝜑X (λ − λz), putting this together with eq. (4.24), we find

𝜑W (λ − λz)𝜑X (λ − λz) = 𝜙Q(z) =
(1 − 𝜌)(z − 1)𝜑X (λ − λz)

z − 𝜑X (λ − λz)
(4.31)

or

𝜑W (s) =
(1 − 𝜌)(−s∕λ)

1 − s∕λ − 𝜑X (s)
= (1 − 𝜌)s

s − λ + λ𝜑X (s)
(4.32)

This is also known as the Pollaczek-Khinchine formula for the Laplace
transform of the waiting time PDF. The mean waiting time E[W] can be found
from 𝜑W (s) by deriving with respect to s: E[W] = −𝜑′

W (0). The same is true for
all other moments. For example, we use the Laplace transform of the PDF of
waiting time to derive the second moment of W . Instead of deriving (4.32) twice
with respect to s (which may turn out to be quite cumbersome), we expand in
a series of s and pick the coefficient of the s2 term. In general, we know that
the expansion of the Laplace transform 𝜑X (s) of the PDF of the random variable
X is 𝜑X (s) = 1 − sE[X] + 1

2
s2E[X2] − 1

6
s3E[X3] + O(s4) as s → 0. Applying this

expansion to eq. (4.32), we get

𝜑W (s) = (1 − 𝜌)s
s − λ + λ − s𝜌 + λE[X2]

2
s2 − λE[X3]

6
s3 + O(s4)

= 1
1 + λE[X2]

2(1−𝜌)
s − λE[X3]

6(1−𝜌)
s2 + O(s3)

=
∞∑

k=0

(
−sE[W] + s2

2
λE[X3]
3(1 − 𝜌)

+ O(s3)
)k

= 1 − sE[W] + s2

2

(
λE[X3]
3(1 − 𝜌)

+ 2(E[W])2
)
+ O(s3)

Hence

E[W2] = λE[X3]
3(1 − 𝜌)

+ 2(E[W])2 = λE[X3]
3(1 − 𝜌)

+ (λE[X2])2

2(1 − 𝜌)2 (4.33)

Note that the second moment diverges faster than the mean waiting time as 𝜌 → 1.
The squared coefficient of variation (SCOV) of the waiting time is:

C2
W = E[W2]

(E[W])2 − 1 = 1 + 4 E[X̂3]
3 (E[X̂2])2

1 − 𝜌

𝜌
(4.34)

�

� �

�

144 4 Single-Server Queues

where X̂ ≡ X∕E[X] is the service time normalized so that it has mean equal to 1.
As the utilization factor grows, the SCOV of the waiting time tends to 1, while

for low utilization levels it can be significantly bigger than 1. The second moment
of the system time S can be derived from its variance. The variance of the system
time is 𝜎2

S = 𝜎
2
W + 𝜎

2
X .

The probability distribution of the waiting time W has a non-null mass con-
centrated at 0. Since an arriving customer finds the queue empty with probability
1 − 𝜌, that is the probability that it waits exactly 0 before receiving service. The
probability mass at 0 can be checked analytically as follows. We exploit the ini-
tial value theorem. Given an integrable function f (t) with Laplace transform 𝜑(s),
the theorem states that limt→0+ f (t) = lims→∞s𝜑(s), provided the limits exist. The
Laplace transform of the CDF of the waiting time W is ΦW (s) = 𝜑W (s)∕s. Applying
the initial value theorem to ΦW (s) we find

FW (0+) = lim
t→0+

FW (t) = lim
s→∞

sΦW (s) = lim
s→∞

𝜑W (s) = 1 − 𝜌 (4.35)

where we have used the expression of 𝜑W (s) in eq. (4.32) in the last passage.
To conclude this section, we mention a result on the unfinished work of the

M∕G∕1 queue, known as the Takács integro-differential equation (e.g., see [130,
Ch. 5]).

First, we recall that the unfinished work U(t) is the amount of time required
to the server to clear the entire backlog of the queue at time t, provided no more
customers arrive. Thanks to the PASTA property, this is also the system time spent
by a customer arriving at the queue at time t, if FCFS discipline is used.

Let

F(x, t) = (U(t) ≤ x|U(0) = x0) (4.36)

It can be shown that F(x, t) satisfies the following integro-differential equation:

𝜕F(x, t)
𝜕t

= 𝜕F(x, t)
𝜕x

− λF(x, t) + λ∫
∞

0
FX (x − y)

𝜕F(y, t)
𝜕y

dy (4.37)

where FX (t) is the CDF of the service times.
The solution of this equation can be written formally in terms of transforms. Let

us define the double transform of F(x, t) as follows:

𝜙(r, s) = ∫
∞

0
e−st dt ∫

∞

0−
e−rxdxF(x, t) (4.38)

The following expression of 𝜙(r, s) can be derived

𝜙(r, s) =
(r∕𝜂)e−𝜂x0 − e−rx0

λ𝜑X (r) − λ − s + r
(4.39)

where 𝜂 = 𝜂(s) is the unique root of λ𝜑X (r) − λ − s + r = 0, for a given s, in the
region Re[s] > 0, Re[r] > 0 [27].

�

� �

�

4.2 The Embedded Markov Chain Analysis of the M∕G∕1 Queue 145

4.2.3 Busy Period and Idle Time

We study the busy period duration. A busy period Y starts with the arrival of a
customer that finds the queue empty and stops with the first ensuing departure
of a customer that leaves the queue empty. Let X1 be the service time of the first
customer of a busy period and let A1 be the number of arrivals during that service
time. Then

𝜑Y (s) = E[e−sY] =
∞∑

n=0 ∫
∞

0
fX1

(t)E[e−sY |A1 = n,X1 = t](A1 = n|X1 = t) dt

(4.40)

The busy period, conditional on A1 = n, can be expressed as Y = X1 + Y1 + · · · +
Yn, where the sub-busy periods Yj are i.i.d. with the same probability distribution
of Y . This is obtained by considering that the duration of a busy period does not
depend on the order that customers in the queue are served, i.e., it is independent
of the server policy, as long as it is work-conserving. Then, we can rearrange the
customers C1,… ,Cn that arrive during the service time of the customer that starts
the busy period: let C1 be served first, along with all customers arriving during
the service time of C1 and so on, until the sub-busy period associated with C1 is
exhausted. Soon after that, C2 is taken care of, along with all customers arriving
during the sub-busy period started by C2. We proceed this way until the turn of Cn
comes and all customers arrive during the relevant sub-busy period. So

E[e−sY |A1 = n,X1 = t] = E[e−s(t+Y1+···+Yn)] = e−st[𝜑Y (s)]n (4.41)

Putting together the last two equalities, we find

𝜑Y (s) =
∞∑

n=0 ∫
∞

0
fX1

(t)e−st[𝜑Y (s)]n (λt)n

n!
e−λt dt

= ∫
∞

0
fX1

(t)e−t(s+λ−λ𝜑Y (s)) dt

= 𝜑X (s + λ − λ𝜑Y (s)) (4.42)

The value of 𝜑Y (s) is found as the unique solution of eq. (4.42) having modulus
less than or equal to 1. In general, no closed-form expression of the PDF of the
busy period can be found from eq. (4.42). In the special case of G = M, i.e., negative
exponential service times, we have 𝜑X (s) = 𝜇∕(s + 𝜇) and hence

𝜑Y (s) =
𝜇

s + λ − λ𝜑Y (s) + 𝜇
(4.43)

This leads to a second-order algebraic equation in the unknown 𝜑Y (s). Selecting
the proper root (the one with modulus ≤ 1), we find:

𝜑Y (s) =
λ + 𝜇 + s −

√
(λ + 𝜇 + s)2 − 4λ𝜇
2λ

(4.44)

�

� �

�

146 4 Single-Server Queues

The inverse transform of (4.44) is known and gives finally the PDF of the busy
period for the M∕M∕1 queue:

fY (y) =
1

y
√
𝜌

e−(λ+𝜇)yI1(2y
√
λ𝜇) , y ≥ 0, (4.45)

where I1(⋅) is the modified Bessel function of the first kind of order 1.
The mean duration of the busy period is easily obtained by derivation:

E[Y] = −𝜑′
Y (0) = −𝜑′

X (λ − λ𝜑Y (0))(1 − λ𝜑′
Y (0)) = E[X](1 + λE[Y]) (4.46)

and it follows (remember that 𝜑Y (0) = 1):

E[Y] = E[X]
1 − 𝜌

(4.47)

The mean busy period of the M∕G∕1 queue can be found directly from first princi-
ples, by exploiting eq. (2.6). Poisson arrivals are memoryless, so the mean idle time
is simply the mean residual arrival time, i.e., E[I] = 1∕λ. Substituting into eq. (2.6),
we find easily the result in eq. (4.47).

Note that the probability distribution of the busy period does not depend on the
queue discipline. It holds in general, provided the server is work-conserving and
𝜌 < 1. Similarly, it can be found that:

E[Y 2] = E[X2]
(1 − 𝜌)3 (4.48)

𝜎
2
Y =

𝜎
2
X + 𝜌E[X]2

(1 − 𝜌)3 (4.49)

Following a reasoning similar to the one for the busy period duration, we can
find the generating function of the probability distribution of the number of
customers served during a busy period, M. A busy period starts with a customer
arriving at an empty queue. During the service time of this first customer, A1 = n
customers arrive. Each of them gives rise to a sub-busy period with the same
probability distribution of the full one; hence the number of customers served
during the i-th sub-busy period, Mi, has the same probability distribution as M,
for i = 1,… ,n. Then, we have M = 1 + M1 + · · · + Mn and

𝜙M(z) = E[z−M] =
∞∑

n=0
E[z−M|A1 = n](A1 = n)

=
∞∑

n=0
E[z−(1+M1+···+Mn)|A1 = n]an

=
∞∑

n=0
z

n∏
i=1

E[z−Mi]∫
∞

0

(λt)n

n!
e−λtfX (t) dt

�

� �

�

4.2 The Embedded Markov Chain Analysis of the M∕G∕1 Queue 147

= z ∫
∞

0
e−λtfX (t)

∞∑
n=0

E[z−M]n (λt)n

n!
dt

= z ∫
∞

0
e−λt[1−𝜙M (z)]fX (t) dt = z𝜑X (λ − λ𝜙M(z)) (4.50)

Again, this is a functional equation and we ought to seek the solution with mod-
ulus no bigger than 1. Also in this case the special case of the M∕M∕1 queue offers
an explicit solution. In that case

𝜙M(z) = z𝜇
λ − λ𝜙M(z) + 𝜇

(4.51)

hence

𝜙M(z) = 1 + 𝜌

2𝜌

[
1 −

√
1 − 4𝜌z

(1 + 𝜌)2

]
(4.52)

whose inverse transform is known and given by (see [130, Ch. 5, p. 218]):

(M = n) = 1
n

(2n − 2
n − 1

)
𝜌

n−1

(1 + 𝜌)2n−1 , n ≥ 1. (4.53)

It is possible to get an explicit expression also for another specific case, the
M∕D∕1 queue, where service times are constant. In that case 𝜑X (s) = e−s∕𝜇 and
𝜙M(z) = ze𝜌(𝜙M (z)−1). Amazingly, an explicit solution can be obtained for this
functional equation, even if it is in series form:

𝜙M(z) =
∞∑

n=1

(n𝜌)n−1

n!
e−n𝜌zn (4.54)

This is just what we need! Remembering the very definition of moment gener-
ating function as a power series with coefficients equal to the probability distribu-
tion, we obtain readily

(M = n) = (n𝜌)n−1

n!
e−n𝜌

, n ≥ 1. (4.55)

Since service times are constant, we have Y = M∕𝜇. Then, we can also easily
deduce the CDF of the busy period duration for the M∕D∕1 queue:

FY (y) = (Y ≤ y) = (M ≤ 𝜇y) =
⌊𝜇y⌋∑
n=1

(n𝜌)n−1

n!
e−n𝜌 (4.56)

where ⌊x⌋ denotes the greatest integer not exceeding x (floor function).
Since arrivals of the M/G/1 queue follow a Poisson process, the idle time I has a

negative exponential PDF with parameter λ, i.e., GI(t) = (I > t) = e−λt.

�

� �

�

148 4 Single-Server Queues

4.2.4 Remaining Service Time

In a work-conserving single server queue, the server may stay idle only if the queue
is empty. Otherwise, a random observer (or an arrival, which for the M∕G∕1 model
is the same), looking at the queue, will find the server busy. A question that turns
out to be useful in many cases is the characterization of the random process defined
as the remaining service time, R(t), i.e., the amount of service that the server must
deliver to get done with the customer under service at time t, if any. Clearly, if the
queue is empty at time t, it is R(t) = 0. If the queue is not empty, let X denote the
service time of the customer under service. Then, it must be R(t) ≤ X . At the very
moment that the customer enters service, say time t0, it is R(t0) = X . After t0, R(t)
decreases at a rate of 1 s∕s, until it hits zero at time t0 + X . Then, the customer
under service leaves the queue and a new customer is taken into service, if there
are waiting customers.

An example of the time behavior of R(t) is illustrated in Figure 4.2. It has a saw-
tooth behavior during busy periods, while it stays at zero during idle times.

Notice that service completion epochs are regeneration points for R(t), given that
service times are i.i.d. random variables.

We can obtain the mean value of R(t) from first principles. Let us consider a time
interval [0, t]during statistical equilibrium, where Q(0) = 0, and let N(t)denote the
number of customers served until time t. Let also Xi, i = 1,… ,N(t), be the service
times of these N(t) customers. Then, it is

N(t)∑
i=1

1
2

X2
i ≤ ∫

t

0
R(u) du ≤

N(t)+1∑
i=1

1
2

X2
i (4.57)

Recalling that limt→∞N(t) = ∞ and limt→∞N(t)∕t = λ, we have

lim
t→∞

1
t

N(t)∑
i=1

1
2

X2
i = 1

2
lim
t→∞

N(t)
t

1
N(t)

N(t)∑
i=1

X2
i = λE[X2]

2
(4.58)

Analogously, it can be shown that

lim
t→∞

1
t

N(t)+1∑
i=1

1
2

X2
i = λE[X2]

2
(4.59)

Busy period Busy period
Time

Service time

Idle time Idle time

Figure 4.2 Example of
realization of the remaining
service time process of a
single server queue.

�

� �

�

4.2 The Embedded Markov Chain Analysis of the M∕G∕1 Queue 149

Then, the time average of R(t) is sandwiched into two sequences, having the same
limit and therefore

lim
t→∞

1
t ∫

t

0
R(u) du = λE[X2]

2
= 𝜌

E[X2]
2E[X]

(4.60)

The rightmost side of this equation reveals an intuitive interpretation of the
mean remaining service time: with probability 1 − 𝜌 we find the server idle and
hence R = 0. With probability 𝜌 we find it busy and in that case, since we behave
like a random observer, the remaining service time is nothing else than the residual
service time of the customer under service. In other words, the remaining service
time, conditional on a customer being under service, is the residual service time.

We can exploit this view of the random process R(t) to derive its probability dis-
tribution. Let X̃ be the residual service time random variable; then

FR(x) = (R(t) ≤ x) = (1 − 𝜌)(R(t) ≤ x | idle) + 𝜌(R(t) ≤ x | busy)

= 1 − 𝜌 + 𝜌(X̃ ≤ x) = 1 − 𝜌 + 𝜌∫
x

0
𝜇GX (v) dv , x ≥ 0. (4.61)

This CDF has a jump of size 1 − 𝜌 at x = 0. The corresponding PDF can be writ-
ten by using a Dirac delta function:

fR(x) = (1 − 𝜌)𝛿(x) + λGX (x) (4.62)

Conditional on the server being busy, we obtain the random variable Rb that
is just the residual service time. Hence fRb

(t) = 𝜇GX (t). The k-th moment can be
easily obtained integrating by parts the definition formula:

E[Rk
b] = ∫

∞

0
tkfRb

(t) dt = 𝜇 ∫
∞

0
tkGX (t) dt

= 𝜇

([
tk+1

k + 1
GX (t)

]∞
0
+ 1

k + 1 ∫
∞

0
tk+1fX (t) dt

)
= E[Xk+1]

(k + 1)E[X]
(4.63)

The renewal paradox of Section 3.4.1 corresponds to the case k = 1.

4.2.5 Output Process

The time interval between two successive departures is either a service time, if the
departing customer leaves behind a nonempty queue, or it is the sum of a residual
inter-arrival time and of a service time, if the departing customer leaves an empty
queue. The probability of the first event is 1 − x0 = 𝜌. In the second case, the time
elapsing between the departure of the customer that leaves an empty queue and
the subsequent departure is the sum of two independent random variables: (i) an
idle time; (ii) a service time.

�

� �

�

150 4 Single-Server Queues

Then, by denoting with D the random variable defined as the inter-departure
time, its CDF is

FD(t) = 𝜌FX (t) + (1 − 𝜌)∫
t

0
λe−λuFX (t − u) du (4.64)

In terms of Laplace transform, we have

𝜑D(s) = 𝜑X (s)
(
𝜌 + (1 − 𝜌) λ

λ + s

)
= 𝜑X (s)

λ + 𝜌s
λ + s

(4.65)

Plugging into this equation the expression 𝜌 = λ∕𝜇, we get

𝜑D(s) = 𝜑X (s)
𝜇 + s
𝜇

λ
λ + s

(4.66)

Inter-departure times of the M∕G∕1 queue do not form a sequence of i.i.d.
random variables in general, i.e., the output process is not a renewal process apart
from the special cases of M∕M∕1 and M∕D∕1∕0 queues.

An interesting result is found in case of negative exponential PDF of the service
time (M∕M∕1 queue). In that case eq. (4.66) reduces to 𝜑D(s) = λ∕(λ + s), that is
to say, 𝜑D(s) coincides with the Laplace transform of inter-arrival time PDF. The
M∕M∕1 queueing system is “transparent,” meaning that it does not change any-
thing of the input random process. At the output we see a Poisson process with
the same characteristics as the one that the queue receives as input. This means
that there is no way to infer anything about the queueing system (e.g., the service
rate 𝜇) by observing only the departure times at the output of the queue. This prop-
erty has been formally established in Burke’s theorem [48].

Theorem 4.3 For an M∕M∕m queuing system in equilibrium, if λ denotes the
mean arrival rate of the input Poisson process, then:

(a) the departure process is Poisson with mean rate λ;
(b) the number of customers in the system at time t is independent of the sequence

of departures prior to time t.

Specifically property (b) asserts that we can learn nothing of the current state of
an M∕M queueing system, by observing its output. Notice that the theorem has been
proved for any number m of servers, including the case m = ∞. The key point is
the memoryless property of both arrival and service processes.

As a matter of fact, it can be shown [94] that the maximum likelihood estima-
tor of the service rate, given an observation interval [0, t), is �̂� = ns(t)∕Ts(t), where
ns(t) is the number of customers served in [0, t) and Ts(t) is the amount of time
the server is busy in [0, t). The former can be observed by just counting the depart-
ing customers. The latter cannot be measured based on the departing times only.
Either something is known about the “structure” of the service times, or the activ-
ity of the server should be monitored somehow.

�

� �

�

4.2 The Embedded Markov Chain Analysis of the M∕G∕1 Queue 151

Example 4.1 The M/G/1 model is applied to the output buffer of a packet switch.
Departing customers are simply the packets sent on the output line. Service is the
transmission of the packets on the link. So, X = L∕C, where L is the packet length
and C is the link capacity. If C is constant, service time variability is only due
to packet length variability. In this case, a packet capture with timestamping on
the link, as possible, e.g., with Wireshark, yields both departure times and service
times, since the packet length can be read in the packet header and the link capac-
ity is assumed to be known. Then, everything in eq. (4.66) can be reconstructed,
given that λ can be estimated as the average output packet rate and the service time
PDF can be estimated by a collection of packet lengths that allows an estimate of
the packet length PDF.

4.2.6 Evaluation of the Probabilities {ak}k∈ℤ

We rewrite here eq. (4.9):

ak = ∫
∞

0

(λt)k

k!
e−λt dFX (t) , k ≥ 0. (4.67)

In case of deterministic service times, FX (x) = I(x ≥ 1∕𝜇), where 𝜇 = 1∕E[X]
and I(E) is the indicator function of the event E. Then,

ak =
Ak

o

k!
e−Ao , k ≥ 0, (4.68)

and 𝜙A(z) = eAo(z−1), where we define Ao ≡ λ∕𝜇 to be the average offered traffic.
The probabilities {ak}k∈ℤ can be computed iteratively according to{

a0 = e−Ao

ak = ak−1
Ao
k
, k ≥ 1 (4.69)

Another case where computation is simple and we need not resort to numerical
integration of eq. (4.67) is when service times follow a gamma PDF, namely:

fX (x) =
(𝛼x)𝛽−1

Γ(𝛽)
𝛼e−𝛼x

, x > 0, (4.70)

where 𝛼 and 𝛽 are two positive real numbers and Γ(⋅) is the Euler gamma function
defined by

Γ(z) = ∫
∞

0
uz−1e−u du (4.71)

for z > 0. Note that 𝛽 is a nondimensional number, while 𝛼 has dimension that is
the reciprocal of the service time X . The Laplace transform of the gamma PDF is
just

𝜑X (s) =
(

𝛼

𝛼 + s

)𝛽

(4.72)

�

� �

�

152 4 Single-Server Queues

from which it is easily derived that E[X] = −𝜑′

X (0) = 𝛽∕𝛼 and E[X2] = 𝜑
′′

X (0) =
𝛽(𝛽 + 1)∕𝛼2. The coefficient of variation is CX = 𝜎X∕E[X] = 1∕

√
𝛽. Given the

desired value of the mean service time 1∕𝜇 = 𝛽∕𝛼 and the value of CX , the PDF
parameters can be identified as 𝛽 = 1∕C2

X and 𝛼 = 𝜇𝛽.
Thanks to the property Γ(𝛽 + 1) = 𝛽Γ(𝛽), holding2 for any real positive 𝛽, it can

be checked that

ak =
∏k−1

j=0 (𝛽 + j)
k!

(
𝛼

𝛼 + λ

)𝛽(λ
𝛼 + λ

)k
, k ≥ 0, (4.73)

where it is intended that
∏u

j=𝓁 ≡ 1 for 𝓁 > u. Also in this case, it is possible to
derive a simple iteration for the numerical evaluation of the {ak}k≥0:

⎧⎪⎪⎨⎪⎪⎩
a0 =

(
𝛽

𝛽 + Ao

)𝛽

ak = ak−1
𝛽 + k − 1

k

(Ao

𝛽 + Ao

)
, k ≥ 1

(4.74)

where Ao = λ∕𝜇. The expression of the generating function of A is simply

𝜙A(z) =
(

𝛼

𝛼 + λ − λz

)𝛽

=
(

1 +
Ao

𝛽
−

Ao

𝛽
z
)−𝛽

(4.75)

4.3 The M∕G∕1∕K Queue

For the finite size3 M∕G∕1 queue we can resort to the EMC approach as well.
Again, the departure times ar regeneration points of the process Q(t). We use the
same notation as in the infinite queue length case, except that now K denotes the
maximum number of customers that can be standing waiting in the queue. To pre-
vent ambiguity, we use the argument or superscript K to denote quantities relevant
to the M∕G∕1∕K queue and ∞ for the M∕G∕1 queue.

Let {ta,n}n∈ℤ and {td,n}n∈ℤ denote arrival and departure times of customers at
the queue, respectively, and let

qa,k = lim
n→∞

(Q(ta,n−) = k) , k = 0, 1,… ,K + 1

qs,k = lim
n→∞

(Q(ta,n−) = k|Q(ta,n−) < K + 1) , k = 0, 1,… ,K

2 It can be easily established from the definition of Γ(𝛽), by integrating by parts.
3 Recall that the convention on the notation is that K indicates the size of the waiting line,
sometimes also referred to as the buffer. Therefore, up to K + m customers can be
accommodated in the queue, if there are m servers. It is K ≥ 0.

�

� �

�

4.3 The M∕G∕1∕K Queue 153

xk = lim
n→∞

(Q(td,n+) = k) , k = 0, 1,… ,K

pk = lim
t→∞

(Q(t) = k) , k = 0, 1,… ,K + 1

be the limiting probabilities seen by an arrival, by an arrival that joins the queue
(i.e., it does not find the queue full) and at a generic time point of the statistical
equilibrium. From Theorem 2.3 we know that, if those probability distributions
exist, then

pk = qa,k , k = 0, 1,… ,K + 1

xk = qs,k , k = 0, 1,… ,K

pk =
xk

x0 + Ao
, k = 0, 1,… ,K; pK+1 = 1 − 1

x0 + Ao
(4.76)

where we define the mean offered traffic intensity of the M∕G∕1∕K queue as
Ao = λ∕𝜇. We reserve the notation 𝜌 to the utilization coefficient of the server.
Since customer loss is possible in the M∕G∕1∕K queue, Ao > 𝜌, whereas in the
M∕G∕1 queue they coincide.

4.3.1 Exact Solution

The evolution of the sequence Qn of the number of customers left behind by the
n-th departing one is written in this case as:

Qn+1 = min{K,max{0,Qn − 1} + An+1} (4.77)

We recall that the random variable An+1, the number of arrivals in the (n + 1)-th
service time, does not depend on n, since service times are i.i.d. random variables.
Therefore, eq. (4.77) defines a homogeneous Markov chain. The one-step transi-
tion matrix of the Markov chain Qn is almost the same as in the infinite queue
case, except that the set of states is finite. It is {0, 1,… ,K}, hence the matrix has
K + 1 rows and columns:

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0 a1 a2 … aK−1 ãK

a0 a1 a2 … aK−1 ãK

0 a0 a1 … aK−2 ãK−1

0 0 a0 … aK−3 ãK−2

… … … … … …
0 0 0 … a0 ã1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.78)

where ak = (A = k) and ãk = (A ≥ k) =
∑∞

j=k aj, for k ≥ 0.

�

� �

�

154 4 Single-Server Queues

The EMC of the M∕G∕1∕K queue is irreducible and aperiodic, since the ak’s are
positive4. Since the EMC is finite, irreducibility and aperiodicity guarantee that
it is also ergodic and the limiting probabilities {xk}k=0,1,…,K exist. We recall that
the M∕G∕1 queue EMC is ergodic under the condition λ < 𝜇, i.e., that the mean
service time be less than the mean inter-arrival time. For a single-server queueing
system this is a natural requisite to maintain stability hence to be able to reach a
statistical equilibrium. For finite values of K the condition λ < 𝜇 is no more neces-
sary. The finite room of the waiting line “protects” the queue from overload, since
excess arrivals result in rejected customers. Therefore, statistical equilibrium can
be reached anyway, even if E[X] ≥ E[T]. Even though statistical equilibrium is not
at stake, it is in any case pathological to let E[X] ≥ E[T], since clearly the server
cannot keep up with customer demand and the probability of customer rejection
achieves unbearably high values. To avoid compromising the quality of service
either the system must be redesigned by improving its service capacity or the cus-
tomer demand must be limited, by means of some congestion control mechanism.

The matrix P can be obtained directly from the evolution eq. (4.77), by the fol-
lowing derivation:

xk(n + 1) = (Qn+1 = k) =
K∑

h=0
xh(n)(Qn+1 = k|Qn = h)

= x0(n)(min{K,An+1} = k) +
K∑

h=1
xh(n)(min{K, h − 1 + An+1} = k)

=

{
x0(n)ak +

∑K
h=1 xh(n)ak−h+1 k < K

x0(n)ãK +
∑K

h=1 xh(n)ãK−h+1 k = K

where ak = (A = k) and ãk = (A ≥ k) for k ≥ 0. As n → ∞, the probability xk(n)
tends to the limiting probability xk that satisfies the equations:

xk =

{
x0ak +

∑K
h=1 xhak−h+1 k < K

x0ãK +
∑K

h=1 xhãK−h+1 k = K
(4.79)

whence the matrix P can be recovered5 .
The probabilities xk can be evaluated numerically by solving the linear system

xP = x and using the congruence equation xe = 1, where x = [x0,… , xK], and e
is a column vector of 1’s. More on numerical evaluation of the vector x will be

4 For a Markov chain having one-step transition probability matrix given by P in eq. (4.78) to be
irreducible is suffices that 0 < a0 < 1.
5 It would be very easy to account for a different PDF of the first “service time” X ′ of each busy
period, by just replacing the first row of this matrix with a different probability distribution
{bk}k∈ℤ, where bk is the probability of k arrivals in the special first service time X ′.

�

� �

�

4.3 The M∕G∕1∕K Queue 155

exposed in Section 4.4. In general, this problem is cast into the more general issue
of finding the limiting probabilities of a finite state Markov chain. An excellent
introductory treatment of this subject is given in [196, Ch. 10]

The limiting probability distribution of the number of customers found into the
system at any time, pk, can be calculated according to eq. (4.76).

As for the performance metrics, the loss probability coincides with the probabil-
ity of finding the system blocked, i.e., no more room left. That is

PL = pK+1 = 1 − 1
x0 + λ∕𝜇

(4.80)

The mean arrival rate of customers isΛo = λ. The mean arrival rate of customers
that enter the system and then get their service is Λs = Λo(1 − PL) = λ(1 − pK+1) =
λ∕(x0 + Ao). The corresponding traffic intensities are Ao = λ∕𝜇 and As = Ao(1 −
PL) = Ao∕(x0 + Ao). The latter is just the utilization coefficient of the server: in fact
As is the mean number of busy servers in a queue at equilibrium. Since we have a
single server in this case, then

𝜌 = As =
Ao

x0 + Ao
(4.81)

It is conversely

x0 = Ao

(
1
𝜌
− 1

)
= 1 − 𝜌

1 − PL
(4.82)

We can give expressions of the mean system time, waiting time, and of their
respective PDFs (or better, the Laplace transforms of the PDFs). The mean queue
length and the mean waiting line length are:

E[Q] =
K+1∑
k=0

kpk = 1
x0 + Ao

K∑
k=1

k xk + (K + 1)pK+1 = K + 1 −
K + 1 −

∑K
k=1 k xk

x0 + Ao

(4.83)

E[L] = E[Q] − 𝜌 = E[Q] −
Ao

x0 + Ao
(4.84)

It is apparent that the queue length cannot exceed the upper limit K + 1. As the
offered load Ao grows, the mean queue length gets closer and closer to this upper
bound. Similarly, limAo→∞E[L] = K.

By applying Little’s law, we obtain the mean system and waiting times as

E[S] = E[Q]
Λs

=
x0 + Ao

λ
E[Q] (4.85)

E[W] = E[S] − E[X] (4.86)

�

� �

�

156 4 Single-Server Queues

As Ao tends to infinity, x0 tends to 0; hence we have the ratio E[S]∕E[Q] tend-
ing to 1∕𝜇, i.e., as expected, the mean system time tends to K + 1 times the mean
service time. Similarly, limAo→∞E[W] = K∕𝜇.

Although the key performance indicator expressions for the M∕G∕1∕K are less
elegant than in case of the infinite queue length M∕G∕1 model and the results
are less exciting, the finite queue length model can be even more useful in prac-
tice, especially if numerical evaluation of the model is required, besides qualitative
understanding. First, since the state space is finite, the probability distribution can
be computed by solving a linear system. Highly efficient and stable methods are
known, as recalled above. Further, in many practical cases the room of the ser-
vice system to accommodate customers is actually finite. The infinite queue length
model is a handy approximation that can provide reasonable results as long as the
loss probability is negligible in the considered context. However, in all those cases
where the loss probability is a primary metric, the finite queue length model is
a must.

Example 4.2 Let us consider a packet voice multiplexer, where voice packets
are produced by a layered coding algorithm. Each voice packet is made up of m
blocks, the j-th block containing the bits of the j-th layer. The multiplexer buffer
has m thresholds K1 < K2 < · · · < Km. We let also K0 = 0 and Km ≡ K, where K
is the multiplexer buffer size. It works as follows. Whenever the buffer content
Q ranges in (Kj,Kj+1], the least significant j layers are discarded before sending
the packet, hence speeding up the multiplexer work. If layer j is granted 𝓁j bits
in the packet format, then the packet transmission time for Q ∈ (Kj,Kj+1] is Xj =
(H +

∑m
i=j+1 𝓁i)∕C, where C is the multiplexer output link capacity and H is the

packet header length, j = 0, 1,… ,m − 1. Given this coding format, the service time
is a constant for each buffer operating interval.

If packets arrive at the multiplexer according to a Poisson process of rate λ,
we can use an M∕G∕1∕K-like model, where the EMC transition probabilities are
a(j)

k =
Ak

j

k!
e−Aj , with Aj = λXj, for the rows of the matrix P with indices r such that

Kj < r ≤ Kj+1, j = 0, 1,… ,m − 1. The 0-th row is identical to the row of index 1.
This is not a proper M∕G∕1∕K model, but the EMC being finite, there is no real

difficulty obtaining the queue length PDF numerically, at least for limited values
of K. The thresholds can be optimized with respect to a measure of the trade-off
between quality of voice and delay through the multiplexer.

In the rest of this section we outline a result that allows the evaluation of the
loss probability for large values of K, which are just those for which it might be
more critical or anyway computationally expensive to find the entire probability
distribution xk.

�

� �

�

4.3 The M∕G∕1∕K Queue 157

4.3.2 Asymptotic Approximation for Large K

We start by establishing a relationship between the finite and infinite M∕G∕1
queue EMC probability distributions. Then, by exploiting this result, we develop
an asymptotic property of the loss probability PL as K → ∞. To note the depen-
dence of PL on K we write PL(K) for the loss probability of the M∕G∕1∕K queue.
In general, we use an argument K (∞) for all quantities referring specifically to
the M∕G∕1∕K queue (M∕G∕1 queue).

An interesting connection can be established between the infinite queue length
model M∕G∕1 probability distribution and the one of the M∕G∕1∕K queue. A com-
parison of the first K columns of the one-step transition probability matrices of the
EMCs of the two queues shows that they are exactly the same. Then, the first K
values of the vector x(∞) of the EMC of the M∕G∕1 queue also form a solution of
the first K equations of the system x(K)P(K) = x(K). The vector x(K) is the unique
vector that satisfies those first K equations and the congruence equality x(K)e = 1,
where e is a column vector of 1. Therefore, x(∞)|k=0,…,K is proportional to x(K).
By renomalization, we conclude6

xk(K) =
xk(∞)∑K
j=0 xj(∞)

=
pk(∞)∑K
j=0 pj(∞)

, j = 0, 1,… ,K. (4.87)

The last equality is motivated by the fact that the queue length probability distri-
bution at a general time coincides with that of the EMC in the M∕G∕1 queue. For
the sake of notation, we let 𝜎K =

∑∞
j=K pj(∞) in the following. Given eq. (4.76) and

since

x0(K) =
p0(∞)

1 − 𝜎K+1
=

1 − Ao

1 − 𝜎K+1
(4.88)

we get

pk(K) =
xk(K)

x0(K) + Ao
=

pk(∞)∕(1 − 𝜎K+1)
Ao + (1 − Ao)∕(1 − 𝜎K+1)

=
pk(∞)

1 − Ao𝜎K+1
, (4.89)

for k = 0, 1,… ,K, and

pK+1(K) = 1 − 1
x0(K) + Ao

=
(1 − Ao)𝜎K+1

1 − Ao𝜎K+1
(4.90)

These expressions prove that we can compute the EMC probability distribution
and the queue length probability distribution at a general time for the M∕G∕1
queue as soon as we know the corresponding quantities for the M∕G∕1∕K queue
and vice versa. The relationship between the EMC probabilities xk(K) and xk(∞)
shows that

ck ≡ xk(K)
x0(K)

=
xk(∞)
x0(∞)

, x = 0, 1,… ,K, (4.91)

6 Note that it must be Ao < 1 for {pk(∞)}k≥0 to exist.

�

� �

�

158 4 Single-Server Queues

for all K ≥ 0. The ratios ck do not depend on K and are defined for any value of Ao.
From their definition, it follows that the vector c = [c0, c1,…] is the left eigen-
vector of P(∞) having the first component equal to 1, i.e., c0 = 1. The generating
function of the sequence ck is therefore the same as that of xk(∞), apart from the
factor x0(∞) = 1 − Ao. Then, from eq. (4.24) we derive

C(z) ≡
∞∑

k=0
ckzk =

(z − 1)𝜙A(z)
z − 𝜙A(z)

(4.92)

From eq. (4.91) we can sum over k and obtain

dK ≡
K∑

k=0
ck = 1

x0(K)
, K ≥ 0. (4.93)

Then

D(z) ≡
∞∑

K=0
dK zK = C(z)

1 − z
=

𝜙A(z)
𝜙A(z) − z

(4.94)

The numerator of D(z) is proportional to 𝜙A(z) = 𝜑X (λ − λz), which is analytic
for every z such that |z| < 1 + 𝛽∕λ, where 𝛽 is the abscissa of convergence of the
Laplace transform7

𝜑X (s). In the following we assume that 𝛽 > 0, i.e., that all
moments of the random variable X are finite. This is true, for example, when X
has finite support, which is a reasonable model for most practical applications.

The singularities of D(z) are necessarily only the zeros of the denominator. The
function 𝜙A(z) − z is 0 for z = 1. Let 𝜂 denote the least positive zero of 𝜙A(z) − z
besides 1. Since 𝜙A(z) is monotonously increasing with z, strictly convex, 𝜙A(0) =
a0 > 0, we can appeal to Theorem 3.14 to state that 𝜂 < 1 if 𝜙′

A(1) > 1, 𝜂 = 1 if
𝜙
′
A(1) = 1 and 𝜂 > 1 if 𝜙′

A(1) < 1. Remember that it is 𝜙′
A(1) = λ∕𝜇 = Ao.

In general, the loss probability tends to 0 when K → ∞ if Ao ≤ 1; it tends instead
to (Ao − 1)∕Ao if Ao > 1. This is obtained simply by observing that a single server
queue can at most serve a traffic load of 1. All of the excess offered traffic cannot
but be lost. Hence, we define

PL(∞) =
{

0 Ao ≤ 1
1 − 1∕Ao Ao > 1

(4.95)

From the equation above and the identity

PL(K) = pK+1(K) = 1 − 1
x0(K) + Ao

(4.96)

it is easy to derive that

x0(K) − max{0, 1 − Ao} =
PL(K) − PL(∞)

[1 − PL(K)][1 − PL(∞)]
(4.97)

7 For a Laplace transform 𝜑(s) = ∫ ∞
0 e−stf (t) dt the abscissa of convergence is the supremum of

the set of 𝛽 such that for Re[s] > −𝛽 the integral that defines 𝜑(s) has a finite value.

�

� �

�

4.3 The M∕G∕1∕K Queue 159

Hence

lim
K→∞

PL(K) − PL(∞)
x0(K) − max{0, 1 − Ao}

= [1 − PL(∞)]2 (4.98)

for all values of Ao. Let us now consider separately the cases Ao < 1, Ao > 1 and
Ao = 1. For Ao < 1, by using the identity x0(K) = 1∕dK , we obtain from eqs. (4.95)
and (4.98)

lim
K→∞

PL(K)
x0(K) − (1 − Ao)

= lim
K→∞

PL(K)

x0(K)(1 − Ao)
[

1
1−Ao

− dK

] = 1 (4.99)

whence

lim
K→∞

PL(K)
1

1−Ao
− dK

= (1 − Ao)2 (4.100)

This equation establishes that the asymptotic behavior of PL(K) as K → ∞ is the
same as that of the sequence 1

1−Ao
− dK . We are left with the task of characterizing

the asymptotic properties of that sequence. For that purpose we invoke a modified
form of the final value theorem for generating functions. Given a sequence fk and
the transform F(z) ≡ ∑∞

k=0 fkzk, the final value theorem asserts that

lim
k→∞

fk = lim
z→1

(1 − z)F(z) (4.101)

provided the limits exist and F(z) is analytic for |z| < 1. If we scale the sequence by
a factor 𝛾k, i.e., we define the new sequence gk = fk𝛾

k, we have G(z) =
∑∞

k=0 gkzk =∑∞
k=0 fk𝛾

kzk = F(𝛾z); then

lim
k→∞

fk𝛾
k = lim

k→∞
gk = lim

z→1
(1 − z)G(z) = lim

z→1
(1 − z)F(𝛾z) = lim

z→𝛾

(1 − z∕𝛾)F(z)

(4.102)

provided F(z) is analytic for |z| < 𝛾 , i.e., 𝛾 is the smallest modulus singularity of
the generating function F(z) of the sequence fk.

We apply the modified form of the final value theorem to the sequence
fK = 1∕(1 − Ao) − dK for K ≥ 0, so that

F(z) = 1
(1 − Ao)(1 − z)

− D(z) =
z − (Ao + (1 − Ao)z)𝜙A(z)
(1 − Ao)(1 − z)[z − 𝜙A(z)]

(4.103)

and we choose 𝛾 = 𝜂. We can do that, since the smallest modulus zeri of the
denominator of F(z) are 1 and 𝜂 > 1. By applying twice de L’Hôpital’s theorem,
after tedious calculations, it can be verified that 1 is not a singularity, i.e., F(1) is
finite. Hence, F(z) is analytic for |z| < 𝜂 and we are in a position to exploit the

�

� �

�

160 4 Single-Server Queues

modified form of the final value theorem to write

lim
K→∞

(
1

1 − Ao
− dK

)
𝜂

K = lim
z→𝜂

(1 − z∕𝜂)F(z) = lim
z→𝜂

(1 − z∕𝜂)
𝜙A(z)

z − 𝜙A(z)

= 𝜙A(𝜂) limz→𝜂

(1 − z∕𝜂)
z − 𝜙A(z)

= 𝜂
(−1∕𝜂)

1 − 𝜙
′
A(𝜂)

= 1
𝜙′(𝜂) − 1

(4.104)

where we have used𝜙A(𝜂) = 𝜂 and the fact that𝜙′(𝜂) > 1. Going back to eq. (4.100)
and using the last result obtained, we can write

lim
K→∞

PL(K)𝜂K[
1

1−Ao
− dK

]
𝜂K

= lim
K→∞

PL(K)𝜂K

1∕[𝜙′
A(𝜂) − 1]

= (1 − Ao)2 (4.105)

and hence the final result for Ao < 1:

lim
K→∞

PL(K)𝜂K =
(1 − Ao)2

𝜙
′
A(𝜂) − 1

(4.106)

Moving to the case Ao > 1, we rewrite the limit of the loss probability as

lim
K→∞

PL(K) − PL(∞)
x0(K)

= lim
K→∞

[PL(K) − PL(∞)]dK = 1
A2

o
(4.107)

We can repeat everything as above, except that in this case 𝜂 < 1, 𝜙′
A(𝜂) < 1, the

function D(z) is analytic for |z| < 𝜂 and the modified final value theorem yields

lim
K→∞

dK𝜂
K = lim

z→𝜂

(1 − z∕𝜂)D(z) = lim
z→𝜂

(1 − z∕𝜂)
𝜙A(z)

𝜙A(z) − z
= 1

1 − 𝜙
′
A(𝜂)

(4.108)

and putting together eqs. (4.107) and (4.108):

lim
K→∞

[PL(K) − PL(∞)]𝜂−K =
1 − 𝜙

′
A(𝜂)

A2
o

(4.109)

To deal with the boundary case Ao = 1, we apply the final value theorem to
∫ z

0 F(𝜁) d𝜁 , that corresponds to fk∕(k + 1). Then

lim
k→∞

fk

k + 1
= lim

z→1
(1 − z)∫

z

0
F(𝜁) d𝜁 = lim

z→1
(1 − z)2F(z) (4.110)

where the rightmost side has been obtained by applying de L’Hôpital’s theorem.
Therefore, for the case Ao = 1, we obtain

lim
K→∞

dK

K + 1
= lim

z→1
(1 − z)2 𝜙A(z)

𝜙A(z) − z
= 2

𝜙
′′

A(1)
(4.111)

and

lim
K→∞

PL(K)dK = lim
K→∞

PL(K)(K + 1)
dK

K + 1
= 1 (4.112)

�

� �

�

4.3 The M∕G∕1∕K Queue 161

and finally

lim
K→∞

PL(K)(K + 1) =
𝜙

′′

A(1)
2

(4.113)

We can summarize the result in the following asymptotic theorem for the loss
probability of the M∕G∕1∕K queue.

Theorem 4.4 The loss probability PL(K) of the M∕G∕1∕K queue has the follow-
ing asymptotic behavior as K → ∞:

PL(K) − PL(∞) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(1 − Ao)2

𝜙
′
A(𝜂) − 1

𝜂
−K + o(𝜂−K) Ao < 1

1 − 𝜙
′
A(𝜂)

A2
o

𝜂
K + o(𝜂K) Ao > 1

𝜙
′′

A(1)
2

1
K + 1

+ o
(1

K

)
Ao = 1

(4.114)

where Ao = λ∕𝜇, PL(∞) = max{0, 1 − 1∕Ao} and 𝜂 is the smallest modulus root of
the equation z = 𝜙A(z) = 𝜑X (λ − λz) besides z = 1.

More details are provided in [15], along with extension of the result to the
G∕M∕1∕K queue. Generalization to a much broader class of queues, namely the
MAP∕G∕1∕K model, an instance of M∕G∕1 structured queueing systems intro-
duced by M.F. Neuts [168], is discussed in detail in [17]. In that case the equation
z = 𝜙A(z) turns into det(zI − A(z)) = 0, where A(z) = ∫ ∞

0 exp(tD(z)) dFX (t) (see
Section 3.3 for details and definitions of the MAP). The role of 𝜂 is played by
the least modulus root besides z = 1 of the equation z = 𝜒(z), where 𝜒(z) is the
Perron-Frobenius eigenvalue of the non-negative matrix A(z).

A side result of Theorem 4.4 is provided by using eq. (4.98).

Theorem 4.5 Given an M∕G∕1∕K queue, the probability x0(K), that no cus-
tomer is left behind by a departure, has the following asymptotic behavior as
K → ∞:

x0(K) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 − Ao +
(1 − Ao)2

𝜙
′
A(𝜂) − 1

𝜂
−K + o(𝜂−K) Ao < 1

(1 − 𝜙
′
A(𝜂))𝜂

K + o(𝜂K) Ao > 1
𝜙
′′
A (1)
2

1
K + 1

+ o
(1

K

)
Ao = 1

(4.115)

where Ao = λ∕𝜇 and 𝜂 is the smallest modulus root of the equation z = 𝜙A(z) =
𝜑X (λ − λz) besides z = 1.

�

� �

�

162 4 Single-Server Queues

This approximation can be useful in the numerical solution of the linear sys-
tem x(K)P(K) = x(K). Let K > 0. By leaving out the last equation and rearranging
terms, we end up writing the system as

[x1(K)… xK(K)]

⎡⎢⎢⎢⎢⎢⎣

1 − a0 −a1 −a2 … −aK−1
0 1 − a0 −a1 … −aK−2
0 0 1 − a0 … −aK−3
… … … … …
0 0 0 … 1 − a0

⎤⎥⎥⎥⎥⎥⎦
= x0(K)[a0 − 1 a1 … aK−1]

If x0(K) is known, e.g., it is replaced with its asymptotic approximation as pro-
vided by Theorem 4.5, then the linear system (4.3.2) can be solved easily, since the
coefficient matrix is triangular.

Another result can be derived by the asymptotic theorems. From eq. (4.88) we
find for Ao < 1:

𝜎K+1 =
∞∑

j=K+1
pj(∞) = 1 −

1 − Ao

x0(K)
= (1 − Ao)

[
1

1 − Ao
− dK

]
(4.116)

and therefore

lim
K→∞

𝜎K+1𝜂
K = (1 − Ao) limK→∞

[
1

1 − Ao
− dK

]
𝜂

K =
1 − Ao

𝜙
′
A(𝜂) − 1

(4.117)

This yields an asymptotic approximation of the tail of the probability distribu-
tion of the number of customers in the M∕G∕1 queue (K = ∞), namely

∞∑
j=K+1

pj(∞) =
∞∑

j=K+1
xj(∞) =

1 − Ao

𝜙
′
A(𝜂) − 1

𝜂
−K + o(𝜂−K) (4.118)

as K → ∞, 𝜂 being the least modulus root of z = 𝜙A(z) greater than 1.

Example 4.3 For the M∕D∕1∕K queue we have 𝜙A(z) = eAo(z−1), which is ana-
lytic for all finite z. Studying the plot of the function eAo(z−1) it can be verified that
the equation z = eAo(z−1) has only two roots, 1 and 𝜂, with 𝜂 > 1, if Ao < 1; 𝜂 < 1,
if Ao > 1 and 𝜂 = 1, if Ao = 1 (i.e., in this last case, there is a double root at 1).
Figure 4.3 plots the root 𝜂 as a function of Ao.

In case of deterministic service times, the root 𝜂 can be computed numerically by
solving the equation f (z) ≡ 𝜙A(z) − z = eAo(z−1) − z. The function f (z) is continuous
and monotonously increasing with z for z ∈ [1 − log(Ao)∕Ao,∞). It has opposite
signs at the extremes of this interval, since f (1 − log(Ao)∕Ao) = (1 + log(Ao) −
Ao)∕Ao < 0, while limx→∞f (x) = +∞. Therefore, there is a unique root 𝜂 of f (z) = 0
besides z = 1. It can be approximated with the Newton-Raphson algorithm:

zm+1 = zm −
f (zm)
f ′(zm)

=
zmAo − 1

Ao − e−Ao(zm−1) , m ≥ 0, (4.119)

�

� �

�

4.3 The M∕G∕1∕K Queue 163

Figure 4.3 Smallest modulus root 𝜂 of
z = eAo(z−1), besides the root z = 1, as a
function of Ao.

0.5 1 1.5 2

Mean offered load, Ao

η

0

1

2

3

4

M/D/1/K queue

starting with a value z0 > 𝜂. Such an initial value can be found by solving the
quadratics 1 + Ao(z − 1) + A2

o(z − 1)2∕2 − z = 0 and taking the largest root, since it
is eu

> 1 + u + u2∕2. The point z0 is easily found to be z0 = 1 + 2(1 − Ao)∕A2
o. This

is the right initial point for Ao < 1. When Ao > 1, the initial point can be z0 = 0.
Convergence is very fast. Note that 𝜙

′
A(𝜂) = AoeAo(𝜂−1) = Ao𝜂. An example of

Matlab code used for the computation of 𝜂 in the M∕D∕1∕K queue is given below.

tole = 1e-5;
erro = 1;
if Ao > 1

ze = 0;
else

if Ao < 1
ze = 1+2*(1-Ao)/(Ao ̂ 2);

% obtained by approximating exp(x) to the 2nd order
else

ze = 1;
erro = 0; %if Ao=1 the cycle is skipped

end
end
while erro > tole

newz = (ze*Ao-1)/(Ao-exp(-Ao*(ze-1)));
erro = abs(ze-newz)/newz;
ze = newz;

end
eta = ze;

The exact value of the loss probability, computed from the solution of the
linear equation system of the EMC of the M∕D∕1∕K queue, and the asymptotic

�

� �

�

164 4 Single-Server Queues

0 5 10 15 20

Waiting line size, K

L
o
s
s
 p

ro
b
a
b
ili

ty

A
o
= 1.2

0.8

0.9

1

1.1

M/D/1/K queue

2 4 6 8

100

10–1

10–2

100

10–1

10–2

10–3

10–4

Waiting line size, K

(a) (b)

L
o
s
s
 p

ro
b
a
b
ili

ty A
o
= 1.2

0.8

0.9

1

1.1

M/D/1/K queue

Figure 4.4 Comparison between the loss probability of the M∕D∕1∕K queue as a
function of K for different values of Ao. Left plot: comparison between exact values (solid
line) and the asymptotic expansion (markers). Right plot: comparison between exact
values (solid line) and the approximation based on the asymptotic expansion (markers).

approximation provided by Theorem 4.4 in case of deterministic service times are
compared in Figure 4.4(a) as a function of K and for five different values of Ao.

Albeit guaranteed only to be asymptotically sharp as K tends to infinity, the
asymptotic approximation turns out to be accurate even for quite small values of K.
Numerical experience with other service time probability distributions generally
yields a similar result.

Example 4.4 As another example of computation of the root 𝜂, we discuss
briefly the case of service times having a gamma distribution (see eq. (4.70)
for the definition of such a distribution and the meaning of its parameters
𝛼 = 𝜇𝛽 and 𝛽). In this case 𝜂 must be found as the smallest real root of the
equation z = 1∕(1 + Ao∕𝛽 − zAo∕𝛽)𝛽 . The function f (z) = (1 + Ao∕𝛽 − zAo∕𝛽)−𝛽
is monotonously increasing and convex for z ∈ [0, 1 + 𝛽∕Ao) and it grows from
f (0), with 0 < f (0) < 1, to +∞. It crosses the line y = z at z = 1, with slope Ao.
So, if Ao < 1, there must be one more (and only one) real root lying in the
interval (1, 1 + 𝛽∕Ao). This can be efficiently approximated by, e.g., the bisection
method.

Highly accurate formulas for the loss probability of the M∕G∕1∕K queue (and
hence for x0(K), and ultimately for the entire probability distribution of the
number of customers in the queue) can be obtained by following the approach in
[16]. The basic idea is to approximate the sequence dK = 1∕x0(K) by representing
its generating function D(z) = 𝜙A(z)∕[𝜙A(z) − z] as a partial fraction expansion
around its two poles 1 an 𝜂. Once an approximation of dK is obtained, the loss

�

� �

�

4.3 The M∕G∕1∕K Queue 165

probability is calculated according to

PL(K) = 1 − 1
x0(K) + Ao

= 1 − 1
1∕dK + Ao

=
1 − dK(1 − Ao)

1 + dK Ao
(4.120)

As long as Ao ≠ 1 the two smallest modulus singularities of D(z) are simple and
we have

D(z) ≈
R1

1 − z
−

R2

1 − z∕𝜂
(4.121)

where the residues are found from the following limits

R1 = lim
z→1

(1 − z)D(z) = lim
z→1

(1 − z)
𝜙A(z)

𝜙A(z) − z
= 1

1 − Ao

R2 = lim
z→𝜂

(
1 − z

𝜂

)
D(z) = lim

z→𝜂

(1 − z∕𝜂)𝜙A(z)
𝜙A(z) − z

= 1
𝜙
′
A(𝜂) − 1

The approximation of dK is found by inverting the approximation of D(z), i.e.,
dK ≈ R1 − R2𝜂

−K . Plugging this into eq. (4.120), with some lengthy algebra we get
for Ao < 1

PL(K) ≈
C1𝜂

−K

1 − Ao
1−Ao

C1𝜂
−K

, K ≥ 0, (4.122)

where C1 = (1 − Ao)2∕[𝜙′
A(𝜂) − 1]. For Ao > 1 we get

PL(K) ≈ 1 − 1
Ao

+
C2𝜂

K

1 − Ao
Ao−1

C2𝜂
K
, K ≥ 0, (4.123)

where C2 = [1 − 𝜙
′
A(𝜂)]∕A2

o. Finally, for Ao = 1 there is a double pole at 1. The
approximate expansion of D(z) becomes

D(z) ≈
S1

1 − z
+

S2

(1 − z)2 =
2𝜙′′′

A (1)
3[𝜙′′

A(1)]2
1

1 − z
+ 2

𝜙
′′

A(1)
1

(1 − z)2 (4.124)

hence

dK ≈
2𝜙′′′

A (1)
3[𝜙′′

A(1)]2
+ 2

𝜙
′′

A(1)
(K + 1) , K ≥ 0. (4.125)

and finally

PL(K) ≈
𝜙
′′
A (1)
2

K + 1 + 𝜙
′′
A (1)
2

+ 𝜙
′′′
A (1)

3𝜙′′
A (1)

(4.126)

A sample of numerical results for the M∕D∕1∕K queue is given in Figure 4.4(b).
Note that the approximation is in excellent agreement with the exact value,

�

� �

�

166 4 Single-Server Queues

except for the case K = 0, that is trivial to evaluate exactly: namely PL(0) = Ao
∕(1 + Ao).

4.4 Numerical Evaluation of the Queue Length PDF

The queue length probability distribution function is the left eigenvector of P with
respect to the maximum modulus eigenvalue 1, normalized to sum up to 1. The
first K equations of the steady-state balance equations xP = x yield:

x0ai +
i+1∑
j=1

xjai+1−j = xi, i = 0, 1,… ,K − 1 (4.127)

The direct numerical solution of these equations, obtained by isolating the term
proportional to xi+1 in the left hand side and carrying everything else on the other
side, suffers from numerical instability due to the subtraction of two often very
close terms. Just think of the fact that the larger i becomes, the smaller the value of
xi, at least asymptotically. If one tries to evaluate such small probabilities as the dif-
ference of two close quantities, already affected by accumulated errors, numerical
instability arises easily.

In [168, Ch. 1], a stable numerical procedure is given to evaluate the compo-
nents of the vector x. The procedure is given for the infinite buffer M∕G∕1, but it
readily extends to the finite buffer, as it is detailed in the following. We derive the
numerical stable iteration for a slightly more general set of equations, where we
allow the first row of the one-step transition probability matrix to be different from
the second row:

x0bi +
i+1∑
j=1

xjai+1−j = xi, i = 0, 1,… ,K − 1 (4.128)

where the sequence bi, i ≥ 0 forms a probability distribution.
We define the CCDF of the random variable A, namely Ak =

∑∞
j=k+1 aj =

1 −
∑k

j=0 aj, for k ≥ 0; similarly for the bi’s, we let Bk =
∑∞

j=k+1 bj = 1 −
∑k

j=0 bj,
for k ≥ 0. Then, ak = Ak−1 − Ak, k ≥ 1, a0 = 1 − A0 and bk = Bk−1 − Bk, k ≥ 1,
b0 = 1 − B0.

By substituting the expression of the CCDF of A and B into eq. (4.128), it can be
found that

xi = x0(Bi−1 − Bi) +
i∑

j=1
xj(Ai−j − Ai+1−j) + xi+1(1 − A0) (4.129)

whence

yi ≡ xi − x0Bi−1 −
i−1∑
j=1

xjAi−j − xiA0 = xi+1(1 − A0) − x0Bi −
i∑

j=1
xjAi+1−j (4.130)

�

� �

�

4.4 Numerical Evaluation of the Queue Length PDF 167

holding for i = 1,… ,K − 1. We recognize that this identity means that the terms
of the succession yi do not depend on i, so that they are all equal to the term y1.
Setting i = 1 on the left-hand side of eq. (4.130), we recover the first equation of
the linear system in (4.128), hence we can see that y1 = 0. Therefore, we have
yi = 0,∀i ≥ 1. Remembering that 1 − A0 = a0 > 0, we can finally write the follow-
ing iteration

xi =
1
a0

(
x0Bi−1 +

i−1∑
j=1

xjAi−j

)
, i = 1,… ,K (4.131)

where a0 = 𝜑X (λ) must be positive and less than 1, along with 𝜌 < 1 in case of
infinite buffer, for the M∕G∕1 system to be ergodic. The obtained iteration is highly
stable, since it only involves sums and products of positive quantities. It needs to
be initialized with the value of x0. If K = ∞, the theory tells us that it must be
x0 = 1 − 𝜌, so it is easy to recover as many queue length probabilities as desired,
by stretching the iteration in eq. (4.131) to the suitable value of K. For finite buffer
M∕G∕1∕K queues, we simply set x0 = 1 to carry out the iteration and find out the
entire left eigenvector of P to within a multiplying factor. Once x is found, it is
normalized to sum up to 1 and the resulting vector x∕

∑K
k=0 xk is the queue length

probability distribution.
A sample Matlab code for the calculation of the probability distribution of the

EMC of the M∕G∕1 queue is reported below. The first part of the code computes the
probabilities ak = (A = k), required to fill in the matrix P. In the example below
those probabilities are computed for deterministic service times. That part of the
code must be adjusted according to the specific probability distribution assumed
for the service times.

Ao = input('Mean offered load = ');
K = input('Queue size (<=100) = ');
Kmax = 100; % truncation index of the matrix P

% computation of P(A = k), k = 0,..,Kmax
av = zeros(1,Kmax+1);
av(1) = exp(-Ao);
for jj = 1:Kmax

av(jj+1) = av(jj)*Ao/jj;
end
atildev = [1 1-cumsum(av)];

% computation of the probabilities x_k, k = 0,..,Kmax
xv = zeros(1,Kmax+1); % vector of EMC probabilities
xv(1) = 1; % x_0 is initialized at an arbitrary value
xv(2) = xv(1)*atildev(2)/av(1);
for ii = 1:Kmax-1

�

� �

�

168 4 Single-Server Queues

xv(ii+2) = (xv(1)*atildev(ii+2)+...
sum(xv(2:ii+1).*atildev(ii+2:-1:3)))/av(1);

end
xinfv = xv*(1-Ao); % M/G/1 case
xKv = xv(1:K+1)/sum(xv(1:K+1)); % M/G/1/K case

4.5 A Special Case: the M∕M∕1 Queue

In the special case of negative exponential distribution of the service times, many
results can be obtained in closed form. Let GX (t) = e−𝜇t be the CCDF of the service
time, 𝜇 = 1∕E[X] being the service rate of the single server. The Laplace transform
of the service time PDF is 𝜑X (s) = 𝜇∕(s + 𝜇). By substituting it into eq. (4.32), it is
found:

𝜑W (s) = 1 − 𝜌 + 𝜌
𝜇 − λ

s + 𝜇 − λ
(4.132)

where 𝜌 = λ∕𝜇. It is easy to invert this transform, thus obtaining:

GW (t) = 𝜌e−(𝜇−λ)t (4.133)

i.e., a scaled negative exponential distribution with mean 𝜌∕(𝜇 − λ) and a proba-
bility mass of 1 − 𝜌 concentrated in 0. The mean system time is

E[S] = E[X] + E[W] = 1
𝜇
+ 𝜌

𝜇 − λ
= 1

𝜇 − λ
(4.134)

The entire probability distribution of the system state, i.e., the number of cus-
tomers in the system, can be found explicitly: it is pk = (1 − 𝜌)𝜌k, k ≥ 0. This can
be derived in several ways. One possibility is to recognize that Q(t) for the M∕M∕1
queue is a birth-death Markov process, then applying the results of Section 3.5.
Alternatively, it is possible to specialize the expression of 𝜙Q(z) holding for the
M∕G∕1 queue:

𝜙Q(z) =
(1 − 𝜌)(z − 1)𝜙A(z)

z − 𝜙A(z)
= (1 − 𝜌)(z − 1)𝜇

z(𝜇 + λ − λz) − 𝜇
= 𝜇 − λ

𝜇 − λz
(4.135)

where we have used 𝜙A(z) = 𝜑X (λ − λz) = 𝜇∕(𝜇 + λ − λz).
The previous results hold under the condition λ < 𝜇, that guarantees that the

queueing system can attain statistical equilibrium (i.e., it is stable).
In the special case at hand it is also possible to find explicit solution for the

finite waiting line queueing system, namely the queue M∕M∕1∕K. As usual, K ≥ 0
denotes the maximum number of customers that can be hosted into the wait-
ing line. Hence, the state Q = K + 1 is blocking. In this case, it is no more true
that 𝜋a,k = 𝜋s,k, i.e., arrivals that arrive and enter the system do not see the same
state (in a statistical sense) as customers the arrive at the system. Instead, we have

�

� �

�

4.5 A Special Case: the M∕M∕1 Queue 169

pk = 𝜋s,k∕(𝜋s,0 + A) and conversely 𝜋s,k = pk∕(1 − pK+1), k = 0, 1,… ,K, where A =
λ∕𝜇 is the mean offered load8. The probability distribution of the system state can
be found explicitly:

pk = Ak∑K+1
n=0 An

= 𝜋a,k , k = 0, 1,… ,K + 1, (4.136)

and

𝜋s,k = Ak∑K
n=0 An

= 𝜋d,k , k = 0, 1,… ,K. (4.137)

These results hold for any value of A, since the finite queue is always stable.
As for the performance metrics, the mean arrival rate of accepted customers (i.e.,

the throughput of the system in terms of customers per second that are served) is

Λs = λ(1 − pK+1) = λ
∑K

n=0 An∑K+1
n=0 An

(4.138)

Note that Λs → λ for K → ∞, since blocking vanishes when the room inside the
queuing system expands to infinity. Also, Λs → 𝜇 when λ → ∞ for a given K. In
this last case, as the offered arrival rate increases for given queue size K and serv-
ing capacity 𝜇, the queueing system tends to saturate its resources. In the limit
the server has no more any idle time, so that it outputs served customers at its
maximum allowed rate 𝜇. This is clearly an undesirable working regime, since
performance (hence QoS) offered to customers are terrible: the loss probability
tends to 1 and the mean waiting time attains it maximum level K∕𝜇.

The mean carried traffic is

As =
Λs

𝜇
= λ

𝜇
(1 − pK+1) = A(1 − pK+1) (4.139)

and the utilization coefficient is 𝜌 = As.
The mean queue length, and waiting time are

E[Q] =
∑K+1

n=0 nAn∑K+1
n=0 An

(4.140)

and

E[W] =
K∑

n=0

n
𝜇
𝜋s,n =

∑K
n=0

n
𝜇

An∑K
n=0 An

= E[Q] − 𝜌

λ(1 − pK+1)
= E[Q]

λ(1 − pK+1)
− E[X]

(4.141)

where the last equality is nothing else than Little’s law.

8 The subscript o has been dropped to keep notation simple.

�

� �

�

170 4 Single-Server Queues

L
o
s
s
 p

ro
b
a
b
ili

ty

M/M/1/K

K = 1

K = 5

K = 10

K = 20

Mean offered traffic, A

0

5

10

15

20

E
[W

]/
E

[X
]

M/M/1/K

K = 5

K = 10

K = 20

0 0.5 1 1.5 2

0 0.5 1 1.5 2

Mean offered traffic, A

0

5

10

15

20

E
[Q

]

M/M/1/K

K = 5

K = 10

K = 20

Mean offered traffic, A
0 0.5 1 1.5 2

0 0.5 1 1.5 2

Mean offered traffic, A

0

0.2

0.4

0.6

0.8

1
M

e
a
n
 s

e
rv

e
d
 t
ra

ff
ic

,
A

s

M/M/1/K

K = 1

K = 5

K = 10

K = 20

10–1

100

10–2

10–3

10–4

(a) (b)

(c) (d)

Figure 4.5 Performance metrics of the M∕M∕1∕K queue as a function of the mean
offered traffic A = λ∕𝜇. (a) mean waiting time normalized with respect to the mean
service time, 𝜇E[W]; (b) probability of loss, pK ; (c) mean queue length, E[Q];
(d) mean served traffic, As.

The performance metrics of the M∕M∕1∕K queue are plotted in Figure 4.5 as a
function of A for various values of K. The asymptotic behavior of the mean waiting
time and the mean queue length corresponds to the saturation of the queue space,
whereas the loss probability and the mean served traffic tend to 1. Figure 4.5(d)
shows the ideal behavior of a single server system, that is a straight line having
slope 1 up to A = 1, then saturating. The actual behavior of the M∕M∕1∕K approx-
imates the ideal one, the more the bigger K.

4.6 Optimization of a Single-Server Queue

Queueing models can be used also to state and solve optimization problems of
service systems. This is often referred to as queue optimal design. In this section
we give some examples, mostly aimed at showing how queueing results on single

�

� �

�

4.6 Optimization of a Single-Server Queue 171

server queues derived in the previous sections can be exploited to address service
system optimization for a given metric of interest.

4.6.1 Maximization of Net Profit

We consider a service system, modeled as a single server queueing facility, with
possibly limited room for the waiting line. Let r denote the revenue per customer
and c the cost per unit time of waiting time per customer. Then, the net balance
rate, i.e., the rate of net profit, for a queue with mean arrival rate λ is

U = rλs − cλsE[W] (4.142)

where λs denotes the mean rate of customers admitted into the queue.
Let us apply this setting to an M∕G∕1 queue. Then λs = λ and E[W] is given by

the P-K formula:

U = rλ − cλ
2E[X2]

2(1 − 𝜌)
= c E[X2]

2E[X]2 𝜌

(
a − 𝜌

1 − 𝜌

)
(4.143)

with a = 2E[X]r∕(cE[X2]) = r∕(cE[X̃]) and X̃ denotes the residual service time. By
scaling the net profit rate by a constant factor, we can pose the problem of finding
the value of 𝜌 that maximizes the function:

Û(𝜌) = 𝜌

(
a − 𝜌

1 − 𝜌

)
, 𝜌 ∈ (0, 1) (4.144)

It can be checked that this function is concave and it has a unique maximum
in the interval (0, 1) located at 𝜌∗ = 1 − 1∕

√
1 + a. The value of the function at the

maximum is Û∗ = (
√

1 + a − 1)2.
The parameter a, appearing in the optimal level of the system utilization 𝜌

∗, is
the ratio of the revenue per customer and the cost to complete a residual service
time. This is the minimum mean time that a customer has to wait when it arrives
at the queue and finds the server busy. Intuitively, the term cE[X̃] is a sort of “chip”
cost incurred when the server is utilized. If the revenue is large compared to this
minimum mean cost, then it is convenient to push the utilization factor to high
levels: mathematically, when a is large, the optimal level of 𝜌 gets close to 1. On the
contrary, if the minimum mean cost cE[X̃] dominates the revenue per costumer r,
then it is more profitable to keep the load on the server light, i.e., for small values
of a it is 𝜌∗ ≈ a∕2 ≪ 1.

Let us reconsider the optimization problem for the simpler M∕M∕1 queue: the
average net utility is:

U = rλ − c λ
𝜇 − λ

(4.145)

where we have modified slightly the cost term. Now it is proportional to the system
time of the queue rather than to the waiting time. This is consistent with assuming

�

� �

�

172 4 Single-Server Queues

a cost per unit of time spent inside the service system, including both wait and
service.

Given a value of the service rate, it is intuitive that there exists an optimal value
of λ in the interval (0, 𝜇). When λ = 0 the net utility is 0. When λ approaches 𝜇

the delay cost tends to infinity and exceeds definitely the maximum achievable
income r𝜇. It is easy to find that the optimal arrival rate is

λ∗ = 𝜇 −
√

c𝜇
r

(4.146)

provided that r ≥ c𝜇, i.e., the revenue for serving one customer must at least exceed
the cost incurred for serving that customer.

We consider now a fixed offered rate of service requests λ and wonder if there
exists a value of 𝜇 that maximizes the net utility. We find easily that U turns out to
be a monotonously increasing function of 𝜇. This is expected, since increasing the
service capacity of the system decreases the delay cost, while we are not accounting
in any way for the cost of providing a given service capacity 𝜇.

A less trivial result is obtained if we let 𝜇 grow, under the constraint of a fixed
value of the utilization coefficient 𝜌. Note that increasing 𝜇 for a fixed level of 𝜌
implies that λ grows proportionally with 𝜇. Then, we can write

U = r𝜇𝜌 − c 𝜌

1 − 𝜌
(4.147)

It is clear that U grows without bound as 𝜇 increases. In other words, there is
the advantage of scale of the service system: for a given level of the utilization
coefficient of the serving resource, the system yields a higher gain if both 𝜇 and λ
grow (bigger scale system). Even if it is extremely simple (and possibly not realistic
under several aspects), this model captures the essential principles laying at the
foundation of the Data Center business, as the enabling factor of cloud computing.

The utility function is no more monotonous, if we include the cost of providing
the serving facility. In other words, there are two sources of cost:

1. The cost of delay incurred by customers for receiving the requested service. The
source of this cost is ultimately multiplexing, i.e., the sharing of the single server
facility among a population of customers.

2. The cost of providing and maintaining the single service facility with average
capacity 𝜇 (and an assigned level of the quality of service provided: this is a key
point of the meaning of the statement “providing service facility”).

Assuming that the single server facility can be still modeled as an M∕M∕1 queue,
under this new cost model the utility becomes

U = rλ − cD
λ

𝜇 − λ
− cS𝜇 (4.148)

�

� �

�

4.6 Optimization of a Single-Server Queue 173

where cD denotes the cost of delay (in monetary units per unit of time) and cS the
cost per unit of capacity of the server. It can be easily found that there exists a finite
optimal value of 𝜇 in the range (λ,∞). Setting to zero the derivative with respect
to 𝜇, it is found that 𝜇∗ = λ +

√
cDλ∕cS.

We can pose a more complex optimization problem with reference to a loss sys-
tem. In this kind of systems, customer demand can be rejected, i.e., there is limited
room for waiting in the system. We take the simplest model that captures this fea-
tures, namely the M∕M∕1∕K queueing system.

Assume there is a fixed revenue r per served customer and that cost is associ-
ated only to waiting time, according to a fixed rate c of cost per unit time of wait.
The service discipline is FCFS. Then, a customer that arrives to find n customers
already into the system brings an average net profit of r − cn∕𝜇. The customer joins
the queue only if the net profit is non-negative, i.e., if it finds n ≤ r𝜇∕c customers
into the waiting line. This is the same as saying that the queueing system under
consideration is a loss system with size K = ⌊r𝜇∕c⌋.

The mean net profit rate of such a system is:

U = rλs − cλsE[W] = λ(1 − pK+1)

(
r − c

𝜇

∑K
n=0 nAn∑K
n=0 An

)

= cA
∑K

n=0 An∑K+1
n=0 An

(
r𝜇
c

−
∑K

n=0 nAn∑K
n=0 An

)
with A = λ∕𝜇. Let us assume the serving capacity available to the system is given,
i.e., 𝜇 is fixed and hence K is given as well. The only variable left is therefore λ. The
intuition is as follows: as A grows, the revenue saturates, since the loss probability
gets closer and closer to 1; in other words, there is a cap to the average net income
rate, given by r𝜇. On the other hand, the cost of delay increases as well, even if
the mean waiting time is bounded above by K∕𝜇. Reminding that K = ⌊r𝜇∕c⌋, as
λ → ∞ we have λs → 𝜇 and hence

U → r𝜇 − c𝜇K
𝜇

= r𝜇 − c
⌊ r𝜇

c

⌋
≈ 0 (4.149)

This suggests that it may be penalizing to let A grow too big. On the other
hand, as A gets smaller, the revenue diminishes proportionally; so, even if the
cost incurred because of wait is negligible, so is the realized income. Good values
of A are therefore expected to be in a mid range.

Figure 4.6(a) plots U as a function of A for 𝜇 = 1 s−1, r = 10 MU/customer,
c = 1 MU/s, where MU stands for monetary unit. With these values it is found
that the maximum attainable net profit rate is U∗ ≈ 5.55 MU/s for λ∗ = 0.76 s−1.

If we instead fix λ and let A vary through the variation of 𝜇, we know that the
utility is trivially monotonously decreasing with A, since the bigger 𝜇 the less the
wait and the cost incurred. To make the problem interesting, we have to account

�

� �

�

174 4 Single-Server Queues

0 0.5 1 1.5 2

Mean offered traffic, A

0

1

2

3

4

5

6

N
e
t
p
ro

fi
t
ra

te
,
U

 (
M

U
/s

)

0 0.5 1 1.5 2

Mean offered traffic, A

0

0.1

0.2

0.3

0.4

0.5

0.6

N
o
rm

a
liz

e
d
 n

e
t
p
ro

fi
t
ra

te
,
U

/(
rλ

)

M/M/1/K
r = 10 MU/customer

c = 1 MU/s

M/M/1/K
r = 10 MU/customer

cD = 1 MU/s

cS = 2 MU/s

Figure 4.6 M∕M∕1∕K queue optimization. Left plot: net profit rate as a function of
A = λ∕𝜇 for varying λ and fixed 𝜇 = 1 s−1. Right plot: normalized net profit rate as a
function of A = λ∕𝜇 for varying 𝜇 and fixed λ = 1 s−1.

for the cost of the service facility9. Then, let us define the modified utilization as

Û ≡ U − cS𝜇

rλ
=
∑K

n=0 An∑K+1
n=0 An

(
1 −

cD

r𝜇

∑K
n=0 nAn∑K
n=0 An

)
−

cS

rA
(4.150)

where A = λ∕𝜇., K = ⌊r𝜇∕cD⌋, and we have added subscripts to the two different
costs. The utility Û has been normalized by the fixed amount of the maximum
possible revenue if all the potential demand were served, rλ.

Numerical results for λ = 1 s−1, cD = 1 MU∕s, cS = 2 MU ⋅ s and r = 10 MU/
customer are shown in Figure 4.6(b).

The discontinuities visible in the curve of Figure 4.6(b), for small values of 𝜇,
are due to the quantization effect of the floor function in the computation of K.
Note that with varying 𝜇 we have also a variable K. We still have an optimum
working point: for the given demand arrival rate λ = 1 s−1, the optimal serving rate
is 𝜇∗ = 1.65 s−1 and the corresponding normalized utility is Û = 0.577. In words,
by having a service rate 65% faster then the arrival rate we get almost 58% of the
overall potential revenue.

4.6.2 Minimization of Age of Information

Consider a number of agents, distributed in a given area, recording some infor-
mation and reporting relevant messages to a central archival or processing facility,
via a communication network. This is a scenario recurring in a number of circum-
stances, e.g., sensor networks, vehicular traffic monitoring, autonomous vehicle

9 This cost is immaterial in the optimization of U with a fixed 𝜇, since then the serving facility
cost is fixed.

�

� �

�

4.6 Optimization of a Single-Server Queue 175

supervision, software update checking, status updates of user applications, just to
mention few of them.

Let us try to abstract the key common features of those disparate systems, from
the point of view of a specific performance metric: the age of information (see
Section 2.7.5), i.e., a measure of how old is the information collected at the cen-
tral facility from each particular source. This is a most relevant metric whenever
the collected data (possibly after processing) is the input to a decision-making or
actuator system, whose effectiveness relies most often on the timeliness of the data.

We tackle our objective in two phases. First, we give a general expression of
the mean age of information. Then, we carry out its minimization under spe-
cial hypotheses that make the obtained model tractable analytically. Before that,
we specify a simplified, yet general model. The material of this section is largely
inspired to [119].

4.6.2.1 General Expression of the Average Age of Information
Let us consider a source that sends messages at a mean rate of λ. The messages are
directed to a central facility. To reach the facility, messages go through a network,
that is modeled as a service system with a single server. Service times have the same
probability distribution for all messages. The central facility records only the last
piece of information received from the source. As soon as a new message arrives
from the source, its record is updated.

The age of information of the source record at time t is therefore D(t) = t − Ta(t),
where Ta(t) is the last arrival time up to t of a message at the central facility. The
metric of interest is the time average of the age of information, namely:

⟨D⟩ = lim
T→∞

1
T ∫

T

0
D(t) dt (4.151)

In the following, we assume that:

● The message generation process at the source is a stationary renewal process.
● The service system representing the network is work-conserving, has no loss

and adopts the FCFS discipline.
● Service times are i.i.d. random variables, independent of inter-arrival times of

the messages.

Let us follow the sample path of the age of information of the source record at the
central facility. Figure 4.7 plots a sample path of D(t), where it is assumed that the
source record is initialized with some information at t = 0. Times {tk}k=1,…,n when
the source issues update messages are marked with crosses. Times {𝜃k}k=1,…,n
when those messages are delivered to the central processing facility are marked
with circles. The thick contour line is the sample path of the age of information.
Each time a new message arrives, there is a downward jump, i.e., D(𝜃k+) = 𝜃k − tk.

�

� �

�

176 4 Single-Server Queues

θnθk−1

θk

θ1

D(t) x message sending time
o message delivery timeAk

tk tn

t

tk–1t1
x x x x x x x xo o o o o o o o

Figure 4.7 Sample path of the age of information (solid line). The source record is
initialized with information collected at t = 0. Update messages are sent at times tk ,
marked with x. Message delivery times 𝜃k at the central facility are marked with ‘o’. The
area of the shaded polygon Ak is one of the summands that composes the integral of the
sample path of D(t).

Then, D(t) grows linearly with slope 1, until the next message delivery, i.e.,
D(t) = D(𝜃k+) + t − 𝜃k = t − tk for t ∈ (𝜃k, 𝜃k+1].

Let Tk denote the time elapsing between the sending times of message k − 1 and
message k, i.e., Tk = tk − tk−1. Let Sk denote the system time of message k through
the communication network, i.e., Sk = 𝜃k − tk.

We need to calculate the time average of the sample path of the age of informa-
tion D(t). To that end, let us consider a time interval [0, 𝜃n], during which n update
messages are delivered to the central facility. Let t1 be the first message sending
time. The area under the curve is the sum of n polygons, associated to the n deliv-
ery times 𝜃1,… , 𝜃n. The first n − 1 polygons are trapezoids, like the one shaded in
Figure 4.7, the last one is a triangle. Let Ak denote the area of the k-th polygon,
k = 1,… ,n.

The area of the trapezoid k can be determined as the difference of the areas of
two isosceles triangles, one with base 𝜃k − tk−1 = 𝜃k − tk + tk − tk−1 = Sk + Tk, the
second one with base 𝜃k − tk = Sk. Then, it is for k = 1,… ,n − 1

Ak = 1
2
(Sk + Tk)2 − 1

2
S2

k = SkTk +
1
2

T2
k (4.152)

The last area is An = (Sn + Tn)2∕2.
According to this decomposition of the area under D(t) over the interval [0, 𝜃n],

we can write

∫
𝜃n

0
D(t) dt =

n∑
k=1

Ak =
n∑

k=1

(
SkTk +

1
2

T2
k

)
+ 1

2
S2

n (4.153)

Let N(t) denote the number of update messages generated by the source in the
time interval [0, t]. We have N(𝜃n) = N(tn) + N(𝜃n) − N(tn) = n + N(Sn). Since the
queueing model representing the communication network is assumed to be stable,
N(Sn) is finite with probability 1 as n → ∞. Therefore N(𝜃n) ∼ n as n → ∞.

�

� �

�

4.6 Optimization of a Single-Server Queue 177

Using eq. (4.153), we have

⟨D⟩ = lim
n→∞

1
𝜃n ∫

𝜃n

0
D(t) dt = lim

n→∞

N(𝜃n)
𝜃n

n∑
k=1

(
SkTk +

1
2

T2
k

)
+ 1

2
S2

n

N(𝜃n)

= lim
t→∞

N(t)
t

lim
n→∞

1
n

n∑
k=1

(
SkTk +

1
2

T2
k

)
= λ

(
E[ST] + 1

2
E[T2]

)
with probability 1. We have exploited the limiting properties of the stationary
renewal arrival process N(t) and the finiteness of the system time (at equilib-
rium), which implies that limn→∞

S2
n∕2
n

= 0 with probability 1. Then, under the
assumption of ergodicity of the system, we can write:

E[D] = λ
(

E[TS] + 1
2

E[T2]
)

(4.154)

This is the general result we were seeking. It holds for a broad class of service
systems in which the update messages are delivered in sequence. However, the
evaluation of the average age of information is not simple: the variables T and S
are dependent. A large inter-arrival time T allows the queue to empty, yielding a
small system time S, i.e., T and S tend to be negatively correlated. For illustrative
purposes, we address next a sufficiently simple model to yield to analysis.

4.6.2.2 Minimization of the Age of Information for an M∕M∕1 Model
Let us assume that arrivals follow a Poisson process with mean rate λ; service
times, i.e., the time that the communication system spends to deliver one message
to the central processing facility, have a negative exponential probability distri-
bution, with mean 𝜇. We assume λ < 𝜇 and let 𝜌 = λ∕𝜇. Joining these with the
hypotheses of the previous section, it appears that the communication system that
delivers messages can be identified as an M∕M∕1 queue.

The system time of customer i is Si = Wi + Xi, where Wi is the waiting time of
customer i. We have to calculate E[SiTi]. Wi is the amount of unfinished work
found in the queue at the i-th arrival. With FCFS this is the sum of the work found
by arrival i − 1 plus the work brought in by that arrival, Xi−1, minus the time that
has elapsed between arrival i − 1 and i, Ti:

Wi = max{0,Wi−1 + Xi−1 − Ti} = max{0, Si−1 − Ti} (4.155)

This is known as the Lindley’s recursion for the G∕G∕1 queue. The max{0, ⋅}
operator has been introduced to account for the fact that, if Si−1 < Ti, the i-th
arrival finds the queue empty and its waiting time Wi is 0. Then

E[SiTi] = E[(Wi + Xi)Ti] = E[WiTi] + E[XiTi]

= E[max{0, Si−1 − Ti}Ti] + E[Xi]E[Ti] (4.156)

�

� �

�

178 4 Single-Server Queues

due to the independence of the inter-arrival and the service times of a customer.
From Section 4.5, we know that Si is a negative exponential random variable with
mean 1∕(𝜇 − λ). The inter-arrival time PDF is λe−λt, since arrivals are Poisson.
Then

E[max{0, Si−1 − Ti}Ti] = ∫
∞

0
λe−λt dt ∫

∞

t
(y − t)(𝜇 − λ)e−(𝜇−λ)y dy

= λ
𝜇2(𝜇 − λ)

(4.157)

Putting all pieces together and noting that E[T2] = 2∕λ2, we find finally the
expression of the mean age of information for an M∕M∕1 model:

E[D] = λ
(

E[max{0, S − T}T] + E[X]E[T] + 1
2

E[T2]
)

= λ
[

λ
𝜇2(𝜇 − λ)

+ 1
𝜇λ

+ 1
λ2

]
= 1

𝜇

[
1 + 1

𝜌
+ 𝜌

2

1 − 𝜌

]
(4.158)

for 𝜌 ∈ (0, 1). As expected, E[D] grows both when 𝜌 becomes small, since then
the rate of message update is small and information become obsolete before being
refreshed, and when 𝜌 gets close to 1, since in that case the communication sys-
tem becomes a bottleneck for the messages, again resulting in a slack refresh of
information. In the special case of M∕M∕1 we are able to obtain a closed form
expression for E[D], thus enabling a direct computation of the optimal 𝜌. Yet, the
trend of E[D] with the load of the system has a general validity.

Since the right-hand side of eq. (4.158) is convex and goes to ∞ at both extremes
of the range of 𝜌, there exists a unique minimum inside the interval (0, 1). The
optimal value 𝜌∗ is the solution of 𝜌4 − 2𝜌3 + 𝜌

2 − 2𝜌 + 1 = 0 belonging to (0, 1). It

can be verified that 𝜌∗ = 1
2

(
1 +

√
2 −

√
2
√

2 − 1
)

≈ 0.531.

4.7 The G∕M∕1 Queue

The memoryless property of the negative exponential probability distribution
allows a relatively simple analysis of another single server queue, the G∕M∕1 (and
the corresponding finite queue size model, the G∕M∕1∕K queue). The number of
customers in the queue, Q(t), is not a Markov chain, since the inter-arrival times
are not memoryless in general. A viable approach to analysis goes through the
EMC, in this case selecting the arrival times as the sampling epochs.

Let the inter-arrival times be i.i.d. random variables with the probability
distribution FT(t) of the random variable T. The mean arrival rate is denoted
with λ = 1∕E[T], as usual. Service times are exponentially distributed, hence
FX (t) = 1 − e−𝜇t for t ≥ 0, with 𝜇 = 1∕E[X] denoting the mean service rate.

�

� �

�

4.7 The G∕M∕1 Queue 179

Similarly to what done for the M∕G∕1 queue, it can be shown that the arrival
times of customers admitted into the queue {ts,n}n∈ℤ form a sequence of regener-
ation points of the process Q(t). Therefore, Qn = Q(ts,n−) is a Markov chain. The
arrival n + 1 finds into the system the same number of customers found by the
previous arrival, plus the previous arrival, minus the overall number of service
completion occurred between the two arrivals. Let Bn+1 denote the last quantity:
it is the number of service completions occurring during the inter-arrival time
between arrival n and arrival n + 1. Then, we have

Qn+1 = max{0,Qn + 1 − Bn+1} (4.159)

This holds for any value of Qn ≥ 0.
Since inter-arrival times are i.i.d. random variables, it follows that Bn+1 ∼ B,∀n.

The probability distribution of B can be found in a way entirely similar to the cor-
responding random variable A introduced in the analysis of the M∕G∕1 EMC:

(B = k) = ∫
∞

0
(B = k | T = t)fT(t) dt = ∫

∞

0

(𝜇t)k

k!
e−𝜇tfT(t) dt , k ≥ 0.

(4.160)

The corresponding generating function is 𝜙B(z) = E[zB] = 𝜑T(𝜇 − 𝜇z), where
𝜑T(s) is the Laplace transform of the PDF of inter-arrival times. For a short
notation, let bk ≡ (B = k), k ≥ 0. From eq. (4.159) it is easily seen that

pij = (Qn+1 = j | Qn = i) = (B = i + 1 − j) = bi+1−j (4.161)

for j = 1,… , i + 1 and i ≥ 0, and

pi0 = (Qn+1 = 0 | Qn = i) = (B ≥ i + 1) =
∞∑

h=i+1
bh (4.162)

for i ≥ 0, independent of n, thanks to the stationarity of B. In matrix form, the
one-step probability transition matrix of the EMC Qn is

P =

⎡⎢⎢⎢⎢⎢⎢⎣

b̃0 b0 0 0 0 …
b̃1 b1 b0 0 0 …
b̃2 b2 b1 b0 0 …
b̃3 b3 b2 b1 b0 …
… … … … … …

⎤⎥⎥⎥⎥⎥⎥⎦
(4.163)

where b̃i =
∑∞

h=i+1 bh = 1 −
∑i

h=0 bh for i ≥ 0. The EMC is irreducible and ape-
riodic since b0 > 0 and b0 + b1 < 1. The limiting probability distribution is the
unique left eigenvector x of P corresponding to the eigenvalue 1, normalized so
that its components sum to 1. Given the special structure of P, the probability dis-
tribution x can be represented in a quite simple form. The analysis of sample paths

�

� �

�

180 4 Single-Server Queues

of the EMC of the G∕M∕1 in [130] proves that the structure of this EMC results in
constant ratio between the probabilities of adjacent states, i.e., xi+1∕xi = 𝜉. Let us
then consider the following structure for the limiting probability distribution:

xi = C𝜉i
, i ≥ 0, (4.164)

where C is a normalization constant. By requiring that
∑

i≥0xi = 1, we find
C = 1 − 𝜉. There remains to identify the ratio 𝜉 ∈ (0, 1). By plugging into the i-th
equation of the linear system xP = x:

xi =
∞∑

k=0
xi−1+kbk , i ≥ 1, (4.165)

the expression of the probabilities x in eq. (4.164), we find

C𝜉i = C
∞∑

k=0
𝜉

i−1+kbk ⇒ 𝜉 =
∞∑

k=0
bk𝜉

k = 𝜙B(𝜉) = 𝜑T(𝜇 − 𝜇𝜉) (4.166)

The parameter 𝜉 is a solution of the fixed point equation z = 𝜙B(z). Since𝜙′
B(1) =

𝜇E[T] = 1∕𝜌 > 1, we can invoke Theorem 3.14, and therefore we end up proving
that 𝜉 is the unique root of z = 𝜙B(z) in (0, 1).

It can be verified that the PDF xi = (1 − 𝜉)𝜉i
, i ≥ 0, satisfies also the first

equation of the system xP = x, namely:
∞∑

i=0
xib̃i =

∞∑
i=0

xi

(
1 −

i∑
h=0

bh

)
= 1 −

∞∑
h=0

bh

∞∑
i=h

(1 − 𝜉)𝜉i

= 1 −
∞∑

h=0
bh𝜉

h = 1 − 𝜙B(𝜉) = 1 − 𝜉 = x0

The amazing result for the EMC of the G∕M∕1 queue is that the probability dis-
tribution seen by an arrival that joins the queue is simply a geometric one. Since the
queue is single arrival, single service, the probability distribution of the number of
customers left behind by a departure is the same as xk. In this case, however, we
cannot invoke the PASTA property, hence, the probability distribution pk of Q(t)
at a generic time of the equilibrium is not the same as xk. The following result can
be shown for the distribution pk of the number of customers in the queue at any
time at equilibrium.

Theorem 4.6 The probability distribution pk = (Q(t) = k) of the G∕M∕1 queue
is pk = 𝜌(1 − 𝜉)𝜉k−1

, k ≥ 1 and p0 = 1 − 𝜌, where 𝜌 = λ∕𝜇.

Proof: Le us consider a generic time t0 and let ta be the last arrival time before
t0. Ta = t0 − ta is the age of the inter-arrival time, whose probability distribution is
the same as that of the residual inter-arrival time, i.e., fTa

(t) = λGT(t). For k ≥ 1 the

�

� �

�

4.7 The G∕M∕1 Queue 181

event Q(t) = k can occur if and only if there were k − 1 + r customers in the queue
at t−a , an arrivals occurs at time ta and r service completions are carried out during
time Ta, for all possible r = 0, 1,…. Conditioning upon Ta = x and reminding that
the number of service completions in a time interval x, C(x), follows a Poisson law
with parameter 𝜇, we can write

(Q(t) = k | C(Ta) = r, Ta = x) = (Q(ta−) = k − 1 + r) = xk−1+r , (4.167)

for k ≥ 1. Removing the conditioning and using the PDF of Ta given by fTa
(x) =

λGT(x) and the fact that

(C(Ta) = r|Ta = x) = (𝜇x)r

r!
e−𝜇x

, r ≥ 0, (4.168)

we can write

pk = (Q(t) = k)

= ∫
∞

0

∞∑
r=0

(Q(t) = k | C(Ta) = r, Ta = x)(C(Ta) = r|Ta = x)fTa
(t) dt

(4.169)

Developing this expression, we find

pk = (Q(t) = k) = ∫
∞

0

∞∑
r=0

xk−1+r
(𝜇x)r

r!
e−𝜇xλGT(x) dx

= λ∫
∞

0

∞∑
r=0

(1 − 𝜉)𝜉k−1+r (𝜇x)r

r!
e−𝜇xGT(x) dx

= λ(1 − 𝜉)𝜉k−1 ∫
∞

0

∞∑
r=0

(𝜉𝜇x)r

r!
e−𝜇xGT(x) dx

= λ(1 − 𝜉)𝜉k−1 ∫
∞

0
e𝜉𝜇x−𝜇xGT(x) dx

= λ(1 − 𝜉)𝜉k−1
([

e𝜉𝜇x−𝜇x

𝜉𝜇 − 𝜇
GT(x)

]∞
0
+ ∫

∞

0

e𝜉𝜇x−𝜇x

𝜉𝜇 − 𝜇
fT(x) dx

)
= λ(1 − 𝜉)𝜉k−1

(
1

𝜇 − 𝜉𝜇
+ 1

𝜉𝜇 − 𝜇
𝜑T(𝜇 − 𝜇𝜉)

)
= λ(1 − 𝜉)𝜉k−1

(
1

𝜇 − 𝜉𝜇
− 𝜉

𝜇 − 𝜉𝜇

)
= λ

𝜇
(1 − 𝜉)𝜉k−1 (4.170)

The probability p0 can be found from the congruence constraint, i.e., p0 = 1 −∑∞
k=1 pk = 1 − 𝜌. ◾

Again, an amazing result: it is simply pk = 𝜌xk−1 for k ≥ 1.
Let us now derive some performance metrics.

�

� �

�

182 4 Single-Server Queues

The coefficient of utilization of the server is (Q(t) > 0) =
∑∞

k=1 pk = 𝜌. This is
different from the probability that an arrival finds the server busy. The latter is
Pb = (Qn > 0) = 1 − x0 = 𝜉 ≠ 𝜌, unless the arrivals are Poisson. In this last case,
the fixed point equation for 𝜉 becomes

𝜉 = λ
𝜇 − 𝜇𝜉 + λ

= 𝜌

1 − 𝜉 + 𝜌
(4.171)

It is apparent that 𝜉 = 𝜌 is the unique solution in (0, 1).
The mean number of customers in the queue is

E[Q(t)] =
∞∑

k=0
kpk = 𝜌

1 − 𝜉
(4.172)

As for the delay, the probability distribution we need is just the one seen by
arrivals, xk. Let us assume the FCFS discipline. A customer arriving and finding
k customers, has to wait the sum of k i.i.d. negative exponential random variables
with mean 1∕𝜇10. Then:

𝜑W (s) = E[e−sW] =
∞∑

k=0
xkE[e−sW | Q = k]

= 1 − 𝜉 + (1 − 𝜉)
∞∑

k=1
𝜉

kE[e−s(X1+···+Xk)]

= 1 − 𝜉 + (1 − 𝜉)
∞∑

k=1
𝜉

k[𝜑X (s)]k

= 1 − 𝜉 + (1 − 𝜉)
𝜉𝜑X (s)

1 − 𝜉𝜑X (s)
= 1 − 𝜉 + 𝜉

𝜇(1 − 𝜉)
s + 𝜇(1 − 𝜉)

(4.173)

In the second line, it is W = 0 for Q = 0, hence E[e−sW | Q = 0] = 1. In the last
line 𝜑X (s) =

𝜇

s+𝜇
has been used. The inversion of the obtained Laplace transform

is elementary, yielding

fW (t) = (1 − 𝜉)𝛿(t) + 𝜉𝜇(1 − 𝜉)e−𝜇(1−𝜉)t (4.174)

where 𝛿(t) is a Dirac delta function. The CDF of the waiting time is:

FW (t) = 1 − 𝜉e−𝜇(1−𝜉)t , t ≥ 0. (4.175)

The CDF has a discontinuity at t = 0. The size of the jump is 1 − 𝜉, that is, the
probability of finding the system empty upon arrival, and hence suffering no wait.
The Laplace transform of the system time probability distribution is

𝜑S(s) = 𝜑W (s)𝜑X (s) =
(1 − 𝜉)𝜑X (s)
1 − 𝜉𝜑X (s)

= 𝜇(1 − 𝜉)
s + 𝜇(1 − 𝜉)

(4.176)

10 The residual service time of the customer under service has the same probability distribution
as all other service times, thanks to the memoryless property of the negative exponential random
variable.

�

� �

�

4.7 The G∕M∕1 Queue 183

whence the inverse transform is

fS(t) = 𝜇(1 − 𝜉)e−𝜇(1−𝜉)t , t ≥ 0. (4.177)

Those are yet other amazing results of the G∕M∕1 model: the system and the
waiting times have a simple negative exponential probability distribution (the lat-
ter with a jump at t = 0). The form of these results is exactly the same of the
corresponding ones for the M∕M∕1 queue, except that 𝜉 replaces 𝜌.

Finally, we consider briefly the G∕M∕1∕K queue. The same EMC at customer
arrival time points can be considered as with the G∕M∕1 queue. Derivations repeat
as above, except that there is a maximum number K of customers that can be
accommodated in the waiting line. An arrival that finds K + 1 customers already
into the queue is rejected. Then, the one-step probability transition matrix of the
EMC is of size (K + 2) × (K + 2):

P(K) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

b̃0 b0 0 0 … 0
b̃1 b1 b0 0 … 0
b̃2 b2 b1 b0 … 0
… … … … … …
b̃K bK bK−1 bK−2 … b0

b̃K bK bK−1 bK−2 … b0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.178)

where b̃k =
∑∞

j=k+1 bj, k ≥ 0.
We add an argument K to avoid confusions with the infinite G∕M∕1 queue EMC.

The limiting probability distribution {xk(K)}k=0,1,…,K+1 exists for whatever value of
Ao = λ∕𝜇, provided the EMC is irreducible and aperiodic, which is the case since
all bk’s are strictly positive. The limiting probabilities x(K) = [x0(K),… , xK+1(K)]
can be found by solving numerically the linear equation system x(K)P(K) = x(K),
with the normalization condition x(K)e = 1, where e is a column vector of 1’s of
size K + 2.

Apart from delay, in the finite queue size model the loss probability is a relevant
metric. It is PL = xK+1(K) for the G∕M∕1∕K queue. As for the mean waiting time,
we have

E[W] = 1
𝜇

K∑
j=0

j
xj(K)

1 − xK+1(K)
(4.179)

Asymptotic expansions and approximations can be determined for the
G∕M∕1∕K in pretty much the same way as done with the M∕G∕1∕K queue.
Alternatively, a duality relationship can be noted between the two models. Given
an M∕G∕1∕K queue with mean arrival rate λ and mean service rate 𝜇, we can
define a dual system by inter-changing the roles of arrivals and service pro-
cesses. Namely, inter-arrival times of the dual system have the same probability

�

� �

�

184 4 Single-Server Queues

distribution as service time of the original queue; similarly, service times of the
dual system have the same probability distribution as the inter-arrival times
of the original queue. Also, state i of the EMC at customer departure times of
the original queue corresponds to state K − i of the EMC at arrival times of the
dual queue, i = 0, 1,… ,K. Then, it can be recognized that the dual queue is a
G∕M∕1∕K − 1 queue with mean arrival rate 𝜇 and mean service rate λ. With this
duality definition it is possible to carry over results obtained for the M∕G∕1∕K
queue to the corresponding dual G∕M∕1∕K − 1 queue.

Example 4.5 Inter-arrival times form a renewal process described by the follow-
ing random variable:

T =
⎧⎪⎨⎪⎩

T0 w.p. p

T0 +
1∕λ − T0

1 − p
Y w.p. 1 − p

(4.180)

where Y is a negative exponential random variable with unit mean. This is a traffic
model of an intermittent source. Service requests are issued in a row, at a regular
pace of 1 request every T0 seconds. The length of the service request burst is geo-
metrically distributed, with mean nb = 1∕(1 − p). Subsequent bursts are separated
by a random “silence” time of the source. The silence time is exponentially dis-
tributed. The overall mean arrival rate of request is λ. The Laplace transform of
the PDF of T is

𝜑T(s) = pe−sT0 + (1 − p)e−sT0
𝛼

s + 𝛼
(4.181)

where 𝛼 = λ(1 − p)∕(1 − λT0).
The parameter 𝜉 is found by solving numerically 𝜉 = 𝜑T(𝜇 − 𝜇𝜉), that is

𝜉 = pe−T̂0(1−𝜉) + (1 − p)e−T̂0(1−𝜉) �̂�

1 − 𝜉 + �̂�
= e−T̂0(1−𝜉)

p(1 − 𝜉) + �̂�

1 − 𝜉 + �̂�
(4.182)

where �̂� = Ao(1 − p)∕(1 − λT0) and T̂0 = λT0∕Ao. The coefficients bk forming the
one-step transition probability matrix of the EMC for this example can be com-
puted by using the following formula:

bk = p
T̂k

0

k!
e−T̂0 + (1 − p)e−T̂0

�̂�

�̂� + 1

(1
�̂� + 1

)k k∑
h=0

[(�̂� + 1)T̂0]h

h!
(4.183)

for k ≥ 0. It is apparent that everything depends only on three nondimensional
parameters: λT0, Ao, and p. In this example we assume Ao = λ∕𝜇 = 0.7, λT0 =
1∕25. We consider three different values of the mean number of requests in a burst,
nb = 5, 10, 20; the probability p is calculated as p = 1 − 1∕nb.

The mean waiting time for the infinite queue size case is simply E[W(∞)] = 1∕𝜇
1−𝜉

.
For the finite case with queue size K, first the state probability distributions are

�

� �

�

4.8 Matrix-Geometric Queues 185

0 50 100 150 200

Mean queue size, K

M
e

a
n

 w
a

it
in

g
 t

im
e

,
E

[W
]/

E
[X

]

0 50 100 150 200

Mean queue size, K

(a) (b)

100

10–1

10–1

100

101

102

10–2

10–3

10–4

L
o

s
s
 p

ro
b

a
b

ili
ty

nb = 5

nb =10

n
b
 = 20

nb = 5

nb =10

n
b
 = 20

On-Off/M/1/K queue

Ao = 0.7
K = ∞

Ao = 0.7

On-Off/M/1/K queue

Figure 4.8 Performance metrics of the On-Off∕M∕1∕K queue as a function of the queue
size K. Left plot: loss probability PL(K). Right plot: mean waiting time normalized with
respect to mean service time.

found, then eq. (4.179) is applied. The loss probability is found directly from the
state probabilities: PL(K) = xK+1(K).

Figure 4.8 shows the plots of PL(K) and E[W(K)]∕E[X] versus K. In the right
plot, the dashed lines show the asymptotic values of the mean waiting time, when
the queue size grows to infinity.

To gain insight into the numerical values displayed, note that the range of queue
sizes in the plot of Figure 4.8 goes up to 20 times the maximum considered burst
size. In spite of that, it is apparent that the loss probability is quite high (in the
order of 0.01 for nb = 20 even for K = 200.) The mean waiting time grows quickly
close its upper limit. The critical performance shown by these results are directly
related to the burstiness of the traffic demand. Arrivals of service requests tend
to cluster as nb gets bigger. This leads to a degradation of the performance, both
in terms of loss probability and mean waiting time. Above all, it entails a quite
unfavorable trade-off on K. If we keep K small to limit the mean delay, we end up
with an excessively high loss probability. If, on the contrary, we boost K to pull
down the loss probability, we cannot avoid having a mean waiting time as large as
we would experience with an infinite queue size system.

4.8 Matrix-Geometric Queues

This section is devoted to hint at a quite general model stemming from the M∕G∕1
and the G∕M∕1 queues. The main contributor in this area has been M.F. Neuts
[167, 168]. The reader wishing to learn more and take a systematic introduction to
the matrix-geometric methods in queueing theory can consult his books. Here we
aim at grasping the potential offered by this large class of models.

�

� �

�

186 4 Single-Server Queues

The key idea is to describe the state of the queueing system with a joint discrete
variable (Q(t), J(t)), where Q(t) is the number of customers in the queue and J(t)
is the phase of the process, at time t. The variable J(t) can take a finite number r of
values, say the integers in the set {1,… , r}. The models considered in this section
are those for which the sampled process (Qn, Jn) ≡ (Q(tn), J(tn)) in discrete time
is a Markov chain11 . The one-step transition probability matrix P of the Markov
chain can be organized so as to highlight its structure. While the limiting prob-
ability state vector can be found by using general numerical methods, there are
cases of practical interest where the special structure of the matrix P allows a deep
analytical development, with very efficient numerical methods even for large size
systems.

In the rest of this section we introduce of the most common structures and the
relevant basic results.

4.8.1 Quasi Birth-Death (QBD) Processes

This is the case where Qn can make transitions only between adjacent levels. In
other words, if the number of customers at time tn is equal to k, at the next time
tn+1 it can only move to k, k + 1 or k − 1. During the same transition, the phase Jn
can change from whatever initial state i to any other final state j. For concreteness,
we assume that the time points tn refer to customer departures. As a result, the
matrix P has the following structure:

P =

⎡⎢⎢⎢⎢⎢⎢⎣

B00 B01 𝟎 𝟎 𝟎 𝟎
B10 A1 A2 𝟎 𝟎 𝟎
𝟎 A0 A1 A2 𝟎 𝟎
𝟎 𝟎 A0 A1 A2 𝟎
… … … … … …

⎤⎥⎥⎥⎥⎥⎥⎦
(4.184)

where As are square matrices of size r × r for s = 0, 1, 2. B00, B01, and B10 are
boundary matrices of size 𝓁 × 𝓁, 𝓁 × r, and r × 𝓁, respectively, where 𝓁 can be dif-
ferent from r in general. For P to be stochastic, each component block of P must
be non-negative, A = A0 + A1 + A2 must be a stochastic matrix and similar con-
ditions for the first 𝓁 + r boundary rows of the matrix must hold.

The boundary matrices are useful to allow the possibility of a special queue
behavior in the boundary level Q = 0. The meaning of the entries of the various
matrices is intuitive. For example, the (i, j) entry of As is

as(i, j) = (A = s, Jn+1 = j | Jn = i) , s = 0, 1, 2 (4.185)

11 In the following we refer to discrete time, e.g., the time point series defined by an EMC.
Everything can be quite easily mapped to Markov processes, if continuous time is considered. In
that case probabilities are replaced by transition rates in the matrix entries.

�

� �

�

4.8 Matrix-Geometric Queues 187

where A denotes the number of arrivals during a service time. Thus, a0(i, j) is the
probability that no arrival takes place in a service time and the phase moves from
i to j. Since there is a departure, but no arrival, the state Q goes from its current
level n to n − 1. This is why the matrix A0 appears in the subdiagonal of P.

A process with a one-step transition probability matrix like P in eq. (4.184) is
named a quasi birth-death (QBD) process. The reason of the name is evident from
the fact that P shares the same tri-diagonal structure of the transition rate matrix
of a birth-death process. We have encountered a similar matrix structure when
dealing with the M∕M∕1 queue. In that case the phase is a constant (r = 1) and
the limiting state probability distribution is simply geometric. Therefore, we are
motivated to search for an analogous distribution, though with a matrix structure.
We start by considering a block vector structure for the limiting probabilities:

x = [x0 x1 x2 …] (4.186)

where each block xk is a row vector of size r, except of x0, that has length 𝓁. Then,
we seek a solution having the following property:

xk = xk−1R , k ≥ 2, (4.187)

where R is a suitable matrix yet to be determined. Equation (4.187) implies that

xk = x1Rk−1
, k ≥ 1. (4.188)

The linear system xP = x can be written explicitly as follows:

x0B00 + x1B10 = x0 (4.189)

x0B01 + x1A1 + x2A0 = x1 (4.190)

xk−1A0 + xkA1 + xk+1A2 = xk , k ≥ 2 (4.191)

Plugging into these equations the hypothesized solution form, we find that all
equations for k ≥ 2 are simultaneously satisfied if R solves the following quadratic
matrix equation:

A0 + RA1 + R2A2 = R (4.192)

It can be shown that under stability conditions that will be discussed soon, the
sought-for matrix R is the minimal non-negative solution of eq. (4.192). Minimal
means that for any other matrix S solving eq. (4.192), we have 𝟎 ≤ R ≤ S. More-
over, R is sub-stochastic. Hence there exists the inverse of the matrix I − R, where
I is the r × r identity matrix.

As for the boundary equations (4.189) and (4.190), by using eq. (4.187), they can
be written as

[x0 x1]
[

B00 − I B01
B10 A1 + RA0 − I

]
= [𝟎 𝟎] (4.193)

�

� �

�

188 4 Single-Server Queues

We have to find a nontrivial solution of this homogeneous linear system, under
the normalization condition obtained by requiring that the sum of all probabilities
be 1, i.e.,

∞∑
k=0

xke = x0e + x1

∞∑
k=1

Rk−1e = x0e + x1(I − R)−1e = 1 (4.194)

where e is a column vector of 1’s and we have used the identity
∞∑

i=0
Ri = (I − R)−1 (4.195)

that holds because the spectral radius12 of R is less than 1, R being a sub-stochastic
matrix. The linear system (4.193), together with the normalization condition
(4.194) and the knowledge of the matrix R, yields the entire state probability
distribution.

Finally, we need to determine when the limiting probability distribution does
exist, i.e., the stability conditions of the system. First, we assume that the matrix
P is irreducible and aperiodic. This is true if the matrix A = A0 + A1 + A2 is the
one-step transition probability matrix of an irreducible and aperiodic Markov
chain. Since this last Markov chain has a finite number of states, then its limiting
state probability distribution exists. We denote it with 𝜃. Then, it can be proved
that the condition for stability is (see [167, Th. 3.1.1, p. 82])

𝜃A2e < 𝜃A0e (4.196)

The stability condition has an intuitive interpretation. By observing the structure
of P, the inequality (4.196) can be read as the requirement that the drift of the
Markov chain be negative, i.e., the probability of making a transition up (one more
customer into the queue) be strictly less than the probability of making a transition
down (one less customer into the queue).

To obtain the probability distribution vector x numerically, we need to compute
R. This can be done simply by using the following iteration

Rm+1 = −A0(I − A1)−1 − R2
mA2(I − A1)−1

, m ≥ 0, (4.197)

initialized with R0 = 𝟎. This iteration is not particularly efficient. A much more
efficient algorithm has been defined by Latouche and Ramaswami [140].

4.8.2 M∕G∕1 and G∕M∕1 Structured Processes

An immediate generalization of a QBD process is to have a block Hessenberg
structure for P. We define a G∕M∕1 structured Markov chain as one having the

12 The spectral radius of a matrix C, denoted with sp(C), is the maximum of the moduli of its
eigenvalues.

�

� �

�

4.8 Matrix-Geometric Queues 189

following form of the one-step transition probability matrix:

P =

⎡⎢⎢⎢⎢⎢⎢⎣

B0 A0 𝟎 𝟎 𝟎 𝟎 …
B1 A1 A0 𝟎 𝟎 𝟎 …
B2 A2 A1 A0 𝟎 𝟎 …
B3 A3 A2 A1 A0 𝟎 …
… … … … … … …

⎤⎥⎥⎥⎥⎥⎥⎦
(4.198)

where As are square matrices of size r × r for s ≥ 0, and the Bi are boundary matri-
ces of appropriate sizes. For P to be stochastic, we have that all component block
matrices are non-negative and

Bke +
k∑

i=0
Aie = e , k ≥ 0, (4.199)

where e is a column vector of 1’s. As a consequence of eq. (4.199), the matrix
A =

∑∞
k=0 Ak is sub-stochastic. In most applications, it turns out to be irreducible.

The block lower Hessenberg structure is clearly reminiscent of that of the EMC
of the G∕M∕1 queue. Therefore, we expect that a geometric structure still applies to
the probability distribution, when we consider its block structure as in eq. (4.186).
We assume a solution structure given by

xk = x0Rk
, k ≥ 0, (4.200)

We can find out the fundamental equation that the matrix R must satisfy by sub-
stituting the expression in eq. (4.200) for x in the linear system xP = x. It is

∞∑
i=0

RiAi = R (4.201)

In [167, Ch. 1] there is a detailed discussion of the solution of the equation
(4.201). The entries of the matrix R have a probabilistic interpretation: the ele-
ment Rij is the probability that the state moves from (𝓁, i) to (𝓁 + 1, j), without
ever returning to level 𝓁, for i, j = 1,… , r. Such probabilities do not depend on the
starting level 𝓁, given the special structure of P. It is proved that, if the Markov
chain P is positive recurrent, then R is the minimal non-negative solution of the
equation

∑∞
i=0 XiAi = X, and it has a spectral radius sp(R) ≤ sp(A) ≡ 𝜉 < 1. As for

the stability of the Markov chain, following is proved:

Theorem 4.7 If A is irreducible, the Markov chain P is positive recurrent if and
only if: (i) 𝜃

∑∞
k=0 kAke > 1, where 𝜃 is the left eigenvector of A corresponding to

its maximum modulus eigenvalue 𝜉, normalized so that 𝜃e = 1; (ii) the stochastic
matrix

∑∞
k=0 RkBk has a strictly positive left invariant vector for the eigenvalue 1.

�

� �

�

190 4 Single-Server Queues

Under the hypotheses of Theorem 4.7, the boundary block probabilities x0 can
be found as the suitably normalized left invariant vector of a matrix depending on
the boundary matrices Bk’s. In formulas

x0 = x0

∞∑
k=0

RkBk x0(I − R)−1e = 1 (4.202)

Then, the entire probability distribution is known, as given in eq. (4.200), where
R is the minimal non-negative solution of the eq. (4.201). Even in this appar-
ently much more general case, a simple matrix-geometric solution is found. This
is somewhat less surprising than it might be, in view of the result obtained for the
ordinary G∕M∕1 queue. There it is shown that the probability distribution of the
number of customers seen by an arrival has a simple geometric form. The result
given above for the G∕M∕1 structured queues is a natural generalization of the one
holding for the simple G∕M∕1 queue.

Note that the ergodicity condition 𝜃
∑∞

k=0 kAke > 1 reduces to the negativity of
the drift for QBD. This can be checked by remembering that Ak = 𝟎 for k > 2 and
A1e = (A − A0 − A2)e = e − A0e − A2e for a QBD process13 .

The other class of structured processes corresponds to an upper Hessenberg
structure of the one-step transition probability matrix, that is an M∕G∕1 structured
process:

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

B0 B1 B2 B3 …
C0 A1 A2 A3 …
𝟎 A0 A1 A2 …
𝟎 𝟎 A0 A1 …
𝟎 𝟎 𝟎 A0 …
… … … … …

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.203)

where As are square matrices of size r × r for s ≥ 0, and the Bi and C0 are boundary
matrices of appropriate sizes. For P to be stochastic, we have that all component
block matrices are non-negative and that both B =

∑∞
k=0 Bk and A =

∑∞
k=0 Ak are

stochastic matrices.
This time, if A is irreducible, the Markov chain is positive and recurrent if

𝜃
∑∞

k=0 kAke < 1, where 𝜃 is the limiting state probability vector associated to the
irreducible and finite (hence ergodic) Markov chain A.

The key role is played by the matrix G that is shown to be the minimal
non-negative solution of the matrix equation

G =
∞∑

k=0
AkGk (4.204)

13 Note the different numbering convention adopted here with respect to the numbering used
in the definition of the QBD one-step probability transition matrix.

�

� �

�

4.8 Matrix-Geometric Queues 191

The entry (i, j) of G has a probabilistic interpretation. Gij is the probability
that the process enters level n − 1 for the first time by touching phase j, given
that the process started from level n in phase i, for i, j = 1,… , r and for any level
n ≥ 2.

As usual, we decompose the probability vector of the Markov chain P in blocks,
as shown in eq. (4.186). Analogously to the M∕G∕1 queue, for which no simple
closed form is known for the limiting state probabilities, also in the case of M∕G∕1
structured processes we cannot give an elegant matrix-geometric solution. Never-
theless, it is possible to lay out a numerically feasible procedure to evaluate the
probabilities x even in the case of an M∕G∕1 structured process. The derivation is
quite lengthy and we skip the details. The interested reader can find an extensive
discussion in [168] and a synthetic account in [196, Ch. 10]. We can summarize
the steps required to compute the xk’s as follows:

1. Compute the matrix G, by solving eq. (4.204).
2. Compute the boundary probability vector x0 as the solution of the linear system

x0(I − B0 − B∗
1[A

∗
1]

−1C0) = 𝟎 (4.205)

subject to the normalization condition

x0e + x0

(∞∑
i=0

B∗
i

)(∞∑
i=0

A∗
i

)
e = 1 (4.206)

3. Compute x1 from x1 = x0B∗
1[A

∗
1]

−1.
4. Compute xi, i ≥ 2, from

xi =

(
x0B∗

i −
i−1∑
j=1

xjA∗
i−j+1

)
[A∗

1]
−1 (4.207)

In the algorithm above we used the following definitions:

B∗
i =

∞∑
k=i

BkGk−i
, i ≥ 1;

A∗
i = −

∞∑
k=i

AkGk−i
, i ≥ 2;

A∗
1 = I −

∞∑
k=1

AkGk−1

The major numerical issues with the algorithms in this section stem from the
computation of the key matrices R or G, given that the summations appearing
in the respective equations to be solved are infinite in general. This requires
truncation and an accurate control of error propagation in the iterative solution

�

� �

�

192 4 Single-Server Queues

procedure. Another numerical issue lies with the size of the matrices, namely r,
which might give rise to both a storage and computational complexity problem.
In many applications those matrices are relatively sparse, so that efficient storage
and computation algorithm for specific cases can be devised.

4.9 A General Result on Single-Server Queues

Let us consider a single-server queue with a work-conserving server character-
ized by an average serving rate C. The queue has infinite storage, so that new
service requests are always admitted into the queue. Arrivals are described in a
general way, by means of the arrival process counting function. Each arrival brings
an amount of workload, say L, such that its service time is L∕C. Let L(t) denote
the amount of workload arrived at the queue in [0, t], where the origin of the
time axis is set so that L(0−) = 014. L(t) is a nondecreasing, monotonic function
of time. With discrete arrivals, L(t) is a step-wise function, with jumps at arrival
times. If Li is the workload of the i-th arriving customer and A(t) is the count-
ing function of the arrival process, we have L(t) =

∑A(t)
i=1 Li, with the understand-

ing that A(0−) = 0 and that
∑b

i=a ≡ 0 if a > b. We assume L(t) as well as A(t) to
be right-continuous. Jump sizes are equal to the amount of workload brought
in by the arriving customer. Under a fluid approximation, where the individual
customers are neglected, the workload function L(t) is a continuous function of
time.

The so-called Reich’s formula (sometimes referred to as Reich’s theorem) gives
a general expression for the amount of workload into the queue at a generic time
t > 0, denoted with Q(t). It is

Q(t) = sup
0−≤s≤t

[L(t) − L(s) − C(t − s)] (4.208)

Note that L(t) − L(s) is the amount of work entering the queue in the time inter-
val (s, t], while C(t − s) is the maximum workload that can be served during the
same time interval.

Proof: The equality (4.208) can be proved as follows. Let D(t) be the output work-
load, i.e., the amount of work actually done by the server up to time t. For any s it
is D(t) − D(s) ≤ C(t − s). By the very definitions of the involved quantities, we have

L(t) − L(s) = Q(t) + D(t) − D(s) ≤ Q(t) + C(t − s) (4.209)

14 Since L(t) has jumps, we are accounting for the fact that the first arrival could occur just at
time t = 0, so that L(0+) > 0.

�

� �

�

4.9 A General Result on Single-Server Queues 193

for any s ∈ [0−, t]. Hence Q(t) ≥ L(t) − L(s) − C(t − s) for any s ∈ [0−, t], which
leads to

Q(t) ≥ sup
0−≤s≤t

[L(t) − L(s) − C(t − s)] (4.210)

On the other hand, let us consider the set {𝜏 ∶ 0− ≤ 𝜏 < t, Q(𝜏) = 0}. This is
non empty, since at least it is Q(0−) = 0. Therefore we can define the last time
that the queue was empty, namely v = sup{𝜏∶ 0− ≤ 𝜏 < t, Q(𝜏) = 0}. The queue
is continuously not empty, hence the server is continuously busy, in the interval
(v, t). Then, D(t) − D(v) = C(t − v) and all of the workload arrived in [v, t] is either
in the queue at time t or has been already served, i.e., L(t) − L(v) = D(t) − D(v) +
Q(t) = Q(t) + C(t − v). We can write

Q(t) = L(t) − L(v) − C(t − v) ≤ sup
0−≤s≤t

[L(t) − L(s) − C(t − s)] (4.211)

which completes the proof. ◾

Reich’s formula is a very general result. It has mainly a theoretical impact, yet
it is sometimes useful, since it can be applied broadly, with minimal assumptions
on the arrival and service processes and even on the stability of the queue.

An example sketch of the quantities involved in Reich’s formula is illustrated
in Figure 4.9. The step-wise function represents an instance of workload arrival
function L(t). The solid line represents the work done by the server. It has slope
C (the server capacity) as long as there is work to serve in the queue. It is flat
when the queue is empty (idle time). At a generic time t, L(t) is simply the sum
of Q(t) and D(t). This is simply a balance of the input workload up to time t with
the amount of work done up to time t plus the backlogged work at time t. In fact,
Q(t) is just the gap between the step-wise function representing the incoming
workload and the solid line representing the amount of served workload. Note
that it must be D(t) ≤ L(t), for all t > 0, given that the system starts empty at time
t = 0.

Reich’s formula can be generalized even further, to account for servers with time
varying service capacity. Let C(t) be the maximum amount of work that can be

Figure 4.9 Illustration of
Reich’s formula. The queue
length at a generic time t is
shown to be the difference
between L(t) and D(t). The
thick black segment
represents the difference
L(t) − [L(s) + (t − s)C] for a
given value of s.

Q(t)
L(t)

L(s)+ (t−
s)C

D(t)

s t Time

L

D

�

� �

�

194 4 Single-Server Queues

done by the server up to time t. Then, it is

Q(t) = sup
0−≤s≤t

[L(t) − L(s) − (C(t) − C(s))] (4.212)

i.e., the amount of workload to be found in the queue at time t depends on the
history of the amount of workload received by the queue and the potential work
that the server could have performed over the same time interval.

Summary and Takeaways

Single-server queueing systems are the focus of this chapter. In general, this is
noted as a G∕G∕1 queue. We have relaxed this extreme generality by first consid-
ering renewal arrival and service processes. Moreover, we have simplified further
the model by assuming that the input process be a particular point process, the
Poisson process, that is amenable to extensive analysis. This has brought us to the
M∕G∕1 model. The analysis of this model has been instrumental to introducing
one of the most seminal approaches for the performance modeling and analysis of
service systems: the EMC. It is important to grasp the essential idea of sampling
variables describing the state of a system at suitably chosen time points, so as to
obtain a Markov chain, i.e., a process whose future in stochastically independent
of the past, given its present state. It is also important to carefully use the results
of the EMC analysis, remembering that it gives the probability distribution of the
state at the chosen sampling time points.

The M∕G∕1∕K queue is then considered. Asymptotically sharp, simple approx-
imations of the probability of empty system, and of the loss probability are dis-
cussed in detail. Along with an algorithm for the stable computation of the prob-
ability distribution of the number of customers in the system, these tools provide
very efficient and stable means to use the M∕G∕1∕K models.

A section is devoted to the optimization of the parameters of the queue. This
lays a bridge between the mathematical queueing model and its applications in
practical problems.

To complete the picture, a review of the G∕M∕1 queue is provided and a detailed
analysis of the special case of M∕M∕1 queue is given as well. The latter is a use-
ful model in that it provides explicit closed formulas for any desired performance
metric, including those of the finite queue size M∕M∕1∕K model.

Finally, the Markov structured queueing system is outlined. While keeping
tractability, at least from a numerical point of view, those models allow a vast
generalization of single server queueing models, with respect to all those consid-
ered in the rest of the chapter. In fact, while for the whole chapter we constantly
addressed renewal arrival and service processes, with structured M∕G∕1 and
G∕M∕1 queues we allow correlated sequences of inter-arrival times or service

�

� �

�

Problems 195

times. The correlation structure is the one offered by the associated Markov phase
process.

Problems

4.1 Consider the following variation of the standard M∕G∕1 queueing system.
As soon as the queue becomes empty, the server goes on vacation for a
time V , where V is a positive random variable with PDF fV (x). At the end
of the vacation, the server samples the queue to see if any customer has
arrived. If it finds the queue still empty, it immediately goes for another
vacation. On the contrary, if anyone shows up, the server starts a regular
service cycle and does not stop until the queue becomes empty again.

Give the EMC model of this M∕G∕1 queue. Calculate the mean waiting
time. Calculate also the mean waiting time of the first customer that
arrives at an empty queue.

4.2 A firewall has a processing capability of 𝜇 pkts/s. The time required to ana-
lyze a packet can be assumed to be a constant. Packets arrive according to
a Poisson process from a link with bit rate R. The mean packet length is L.
The utilization of the link is 𝜌. The firewall has a buffer that can store up
to K packets.
a) Define a model of the firewall processing unit.
b) Compute the loss probability of the firewall buffer.
c) Give a graph of the packet loss probability of the firewall as a function

of R for R ranging between 2 Mbit/s up to 1 Gbit/s.
(Assume the following numerical values: L = 1250 bytes, 𝜌 = 0.7,
𝜇 = 10000 pkts/sec, K = 100.)

4.3 Consider the variant of the M∕G∕1 queueing system in which the server
can fail, but only when busy. The time to failure, when the server is busy,
has an exponential distribution with mean 1∕𝜈. When a failure occurs, the
customer in service is dropped, and the server enters a repair period R with
probability distribution FR(x). After repair, the server is immediately oper-
ational and takes a new customer from the waiting line, if one is present.
Show that this variant is equivalent to an ordinary M∕G∕1 queue with a
modified service time probability distribution. Determine the equilibrium
condition and the mean waiting time of a customer.

4.4 Consider the variant of M∕G∕1 described in Problem 4.3, where a service,
interrupted by a failure, is resumed whenever the service comes back
into operation. Successive repair times are independent and identically

�

� �

�

196 4 Single-Server Queues

distributed and completion of a repair restores the server in the original
condition. Discuss the service model under this failure-resume variant.

4.5 The M∕G∕1 queue with N-policy
In this variant of the M∕G∕1 queue an idle server does not start serving cus-
tomers unless there are at least N ≥ 1 waiting for service. Once the server
starts a busy period, it behaves as usual, until the queue becomes empty
again and the server enters a new idle time. The case for N = 1 is the ordi-
nary M∕G∕1 queue. This policy trades off longer busy periods against pos-
sibly longer waiting times.

Write the one step evolution equation of the EMC of the queue at depar-
ture times for this variant. Derive the mean number of customers in the
queue and the mean system time.

4.6 The M∕G∕1 queue with batch arrivals
Consider an M∕G∕1 queue where arrivals are in batch of fixed size g.
Batches arrive according to a Poisson process of mean rate λ. Find the
equilibrium condition of the queue. Write and solve the one-step evolution
equations of the EMC at departure times. Derive the mean number of
customers in the system and the mean waiting time.

4.7 The aggregated traffic offered to a packet multiplexer can be modeled as a
Poisson process, with mean rate 1000 pkts/sec. The mean packet length is
500 bytes and the standard deviation is 300 bytes. Calculate the minimum
multiplexer output capacity such that the mean time through the multi-
plexer be no more than 1 ms.

4.8 A statistical multiplexer receives the traffic of 40 users, each sending a Pois-
son flow of packets at a mean rate of 300 pkts/s. Packet lengths have nega-
tive exponential PDF with mean 500 bytes. Calculate the minimum multi-
plexer output capacity such that the probability that the time through the
multiplexer be more than 10 ms be less than 1%.

4.9 In a finite queue length system you know that the mean queue length is 12
customers, the probability that a customer, that joins the queue, finds an
empty queue is 0.361, the mean service time is 90 s. If the average rate of
arriving customer is 0.5 min−1, calculate the average rate of customers out
of the queuing system and the mean waiting time.

4.10 A Stop&Wait ARQ protocol is operated on an unreliable channel of capac-
ity C. The PDUs have fixed payload length L bytes. PDU header and ACK

�

� �

�

Problems 197

PDUs are H byte long. The unreliable channel propagation delay is fixed
and equal to 𝜏. There is a probability p that a data PDU is found with errors
at the receiver and hence discarded. The probability that an ACK is errored
can be neglected. Assume also that the timeout is set equal to the fixed RTT
value and that the number of attempts for a same packet is unlimited. The
ARQ protocol entity serves a network layer entity that offers packets at a
mean rate λ.
1. Define a queueing model to represent the delivery of packets from the

sending network entity to the receiving network entity. Identify arrival
and service processes.

2. What is the upper bound of λ that guarantees equilibrium is achieved?
3. Calculate the mean time required for a network layer packet to be deliv-

ered through the channel at equilibrium (time elapsing since the packet
arrives until when it is successfully delivered to the destination).

4.11 A tagged packet flow of mean rate λ can cross an ISP network through two
alternative paths. The bottleneck capacities on the two paths are C1 and C2,
respectively. The mean rate of packets offered to the two paths (background
traffic) are λ1 and λ2 respectively. Assume all packet flows can be modeled
as Poisson processes. Packet lengths are independent of packet inter-arrival
times and have a general cumulative probability function FL(x) for x ≥ 0.
1. Define a queueing model of the ISP network from the point of view of

the tagged flow.
2. Find the optimal routing, i.e., the mean fraction 𝛼 of packets of the

tagged flow that are routed to path 1, so as to minimize the average delay
of the tagged flow packets through the ISP network.

4.12 Discuss the scaling of E[W] and E[Q] of an M∕M∕1 queue as λ and 𝜇 are
both multiplied by a common factor b.

4.13 In a wireless network time is divided into intervals of duration T. The
capacity of the wireless channel allows the transmission of N packets per
interval. Packets destined to a tagged user terminal arrive at the access
point (AP). The AP stores any packet arrived during the interval k in a
buffer. The buffer can store up to N packets. At the beginning of interval
k + 1 the user terminal sends a message to the AP to inquire whether there
are packets pending for it. If no packet has arrived during interval k, the
user terminal can go to sleep for the interval k + 1. If instead some packets
have arrived, the user terminal must stay awaken for the whole duration of
the interval k + 1 and receive any packet addressed to it. Packets destined

�

� �

�

198 4 Single-Server Queues

to the user terminal arrive at the AP according to a Poisson process of
mean rate λ. Assume N = 4, T = 1 s.

a) Calculate the probability of packet loss for λ = 2 pkts/s and for
λ = 8 pkts/s. For which values of λ is the system stable?

b) The user terminal drains a power level P whenever it is active. Calculate
the mean consumed power under the sleep mode operation described
above (P = 100 mW, λ = 2 pkts/s).

4.14 Balking in a queuing system refers to an upcoming customer deciding not to
join the queue. Reasons can be external or internal to the queueing system.
In the latter case, they result in a state dependent process of arrivals that
actually join the queue.

Consider an M∕M∕1 queue with service rate 𝜇 and Poisson arrivals with
mean rate λ. Newly arriving customers join the queue with a probability
that is inversely proportional to the number of customers already in the
queue plus the customer itself. So, for example, a customer finding 3 other
customers in the queue joins the queue with probability 1/4.

Find the mean waiting time of such a queuing system and compare it with
that of the regular M∕M∕1 queue with the same mean arrival and service
rates. Find also the probability that a customer joins the queue.

4.15 Reneging in a queuing system refers to customer inside the system that
decide to leave it before receiving service.

Consider an M∕M∕1 queue with service rate 𝜇 and Poisson arrivals with
mean rate λ. Customers that have joined the queue and are waiting for
service can decide to leave. A waiting customer leaves the queue after a
negative exponential time, with mean 1∕𝛽.

Give a birth-death process model of the queue with reneging. Find the
mean waiting time of a customer that is actually served in such a queuing
system and compare it with that of the regular M∕M∕1 queue with the same
mean arrival and service rates.

4.16 Consider a service system that fits into an M∕M∕1 model, i.e., you can
safely assume that arrivals be Poisson, service time have negative expo-
nential PDF, and arrival and service times be independent of one another.
You can only observe customers leaving the queue. Hence, record their
inter-departure times. Is it possible to define an estimator of the mean ser-
vice rate of the queue server using that information? Explain your answer.

�

� �

�

199

5

Multi-Server Queues

The queue besides you is always faster.
Arthur Bloch

5.1 Introduction

There is no simple general solution for a G∕G∕m∕K queueing system. Many special
cases can be analyzed, though. Among them, the M∕M∕m∕K (both with finite and
infinite K), the M∕G∕m∕0, the G∕M∕m, and many cases of infinite server queues.

In the following we address the elementary M∕M∕m∕K queueing system, the
pure loss system with Poisson arrivals, and the infinite server case. A complete
treatment of the G∕M∕m model can be found in [130]. Rather than being exhaus-
tive we aim at understanding the impact of having multiple servers on traffic
models.

First, some system remarks are in order. Single-server queues model those
systems where the serving capacity is granted as a whole to a customer, as long
as it needs it to complete its service demand. We have already encountered
first-come, first-served (FCFS) discipline; we will see further queueing disciplines
in Chapter 6, i.e., policies according to which the capacity is assigned to the
customers waiting for service. In many cases, the serving capacity cannot be split.
At any time the server is either idle (only if there is no customer waiting for
work-conserving servers) or it is assigned fully to some customer. For example,
the capacity of the output link of an interface card of an IP router is given as a
whole to the head-of-the-line packet waiting in the interface buffer. While the
packet is engaging the output line, being sent at link speed, no other packet can
use the same link (in the same direction). This is definitely different from the

Network Traffic Engineering: Stochastic Models and Applications, First Edition. Andrea Baiocchi.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

�

� �

�

200 5 Multi-Server Queues

situation of a number of user terminals sharing the capacity of a cellular base
station. In this last case, simultaneous data transfer can take place, e.g., in the
downlink direction, between the base stations and the user terminals. Then, more
than one packet at the same time can be sent over the air in the radio channel.
The base station radio channel capacity cannot be modeled as a single server.
Actually, it can serve up to a given number of packets in parallel.

The examples above point out that those systems where it is structurally possible
to serve multiple customers at the same time are to be modeled as multi-server
queues. A number of structural features should now be specified.

● Interchangeability. Servers might be equivalent, i.e., each of them provides the
same kind of service, or they can have different capabilities.

● Accessibility. Customers may access only some of the servers, depending on their
class or their specific service demand.

● Distinguishability. A customer may choose one of the available servers with
equal probability or join a specific server according to some criterion. This
implies that servers are labeled in some unique way.

Examples of the above categories are as follows.
Consider a connection that is routed through an ISP network, from an edge

node A to another edge node B. In general, there exist multiple alternative paths
between A and B. Assume the ISP offers a protection service for paths through its
own network. Two protection levels are possible: (i) unprotected, for interruptible
traffic; (ii) 1 + 1 protection, for high dependability traffic. A model of the connec-
tivity service offered by the ISP can be defined as a pool of servers, each server
representing the network resource that support an end-to-end connection between
A and B. In this model, multiple “servers” are available, but they are not fully equiv-
alent. A given connection request will be served by an unprotected or a protected
path, according to the requirements of the carried traffic.

As another example, a base station (BS) has in general a number m of channels
to accomodate requests of connection of customers roaming in the area covered by
the base station. Requests from customers can be divided into two types: (i) new
connection requests; and (ii) incoming handoff requests, i.e., connections already
ongoing for customers that are moving from a nearby BS toward the tagged BS. For
a customer it is in general much more annoying to have its ongoing connection
interrupted, because of a failed handoff, rather than being rejected when submit-
ting a request for opening a new connection. This induces a need to deal with cus-
tomers requesting a channel in different ways, according to their kind of request
(new or handoff): nHO channels can be reserved for incoming handoffs. Therefore,
an incoming handoff sees the tagged BS as a serving system with m servers (chan-
nels), while a newborn connection experiences a system with m − nHO servers.
This means that, as long as there are at least m − nHO channels already busy serv-
ing ongoing connections, no new connection requests in the service area of the

�

� �

�

5.2 The Erlang Loss System 201

tagged BS will be accepted. However, incoming handoffs will be accepted as long
as there is at least one channel available.

Frequency channels that suffer different attenuation levels are yet another
example of noninterchangeable servers.

Finally, suppose tasks are offered to a data center where a certain number m of
virtual machines (VMs) are available to execute the tasks. We can order the VMs,
by labeling them with numbers from 1 up to m. Then, we can stipulate that a new
arriving task is assigned to the first available VM, according to the label order. As
a consequence, the VMs with lower rank labels will be most heavily loaded (i.e.,
they will be busy for a fraction of time bigger than others). This unbalance of the
workload splitting among the alternative servers (the VMs) could be desirable,
e.g., since it facilitates energy saving policies obtained by switching off physical
machines hosting idle VMs.

In the following, unless otherwise stated, we assume that the m servers are
indistinguishable, fully accessible and interchangeable. This leads to the simplest
possible multi-server queueing system description, since the only quantity that
matters is the number of servers.

5.2 The Erlang Loss System

The multi-server queueing system with no wait goes under the name of Erlang loss
system, in honor of Agner Krarup Erlang, the founder of the theory of telecom-
munications traffic. It corresponds to the M∕G∕m∕0 queue, with m servers and
no waiting line. Thus, an arriving customer either finds an idle server and hence
starts being served right away or is rejected by the system.

Arrivals follow a Poisson process with mean rate 𝜆. The mean service time is
denoted with 1∕𝜇.

We begin with the simpler system M∕M∕m∕0. The number of customers Q(t)
in the system at time t comprises the set {0, 1,… ,m}. With negative exponential
inter-arrival and service times, Q(t) is the state of a Markov process. Given Q(t),
no other information on the system state needs be specified to be able to predict
the future evolution of the system. This is due to the memoryless property of the
negative exponential PDF.

Since arrival and service completions take place one at a time (no bulk arrival
or service), only a transition to nearby states is possible within vanishingly small
time intervals. Formally, it is easy to see that for 0 < h < m

(Q(t + Δt) = k | Q(t) = h) =
⎧⎪⎨⎪⎩
𝜆Δt + o(Δt) k = h + 1
h𝜇Δt + o(Δt) k = h − 1
o(Δt) |k − h| > 1

(5.1)

with obvious adaptations for h = 0 and h = m.

�

� �

�

202 5 Multi-Server Queues

The transition rate matrix of the Markov process Q(t) is then given by

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−𝜆 𝜆 0 0 … 0 0 0
𝜇 −𝜇 − 𝜆 𝜆 0 … 0 0 0
0 2𝜇 −2𝜇 − 𝜆 𝜆 … 0 0 0
… … … … … … … …
0 0 0 0 … −(m − 2)𝜇 − 𝜆 𝜆 0
0 0 0 0 … (m − 1)𝜇 −(m − 1)𝜇 − 𝜆 𝜆

0 0 0 0 … 0 m𝜇 −m𝜇

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.2)

This is a tri-diagonal matrix. It is then recognized that Q(t) is a finite, irreducible
Markov process of birth-death type. Since it is irreducible and finite, Q(t) is ergodic
for every positive value of 𝜆 and 𝜇. The limiting state probabilities of the number
of customers seen by an arrival or at a general time during equilibrium (which is
the same due to the Poisson arrival and PASTA property) can be found by applying
the general formulas given in Section 3.5 for birth-death processes:

pk = p0
Ak

k!
=

Ak∕k!∑m
j=0 Aj∕j!

, k = 0, 1,… ,m, (5.3)

where A ≡ 𝜆∕𝜇 is the mean offered traffic intensity1. p0 is the probability to find
an empty system. It can be found from the normalization condition

∑m
k=0 pk = 1.

The probability distribution in eq. (5.3) is known as the Erlang distribution.
As for the performance metrics, there is no wait in this queue. So only server uti-

lization and the probability of being rejected are interesting quantities. The mean
number of busy servers is simply

As =
m∑

k=1
kpk = A

∑m
k=1 Ak−1∕(k − 1)!∑m

j=0 Aj∕j!
= A

[
1 −

Am∕m!∑m
j=0 Aj∕j!

]
(5.4)

As for the rejection, we distinguish between the blocking probability PB and the
loss probability PL. The first one is the probability that the service system is in a
blocking state, i.e., a state where all its resources are saturated. With the Erlang
loss system, the only blocking state is Q = m. When the system is blocked, there is
rejection of a service request, if one is submitted to the system. Otherwise, no rejec-
tion takes place. The loss probability is the probability that the system is blocked,
given that a service request arrives at the system. Formally

PL = lim
Δt→0

(Q(t) = m | A(t, t + Δt) > 0) =
𝜆pm

𝜆
= PB (5.5)

1 In other parts of the book the mean offered traffic intensity is denoted with Ao. For the sake of
a simple notation, here we drop the subscript o.

�

� �

�

5.2 The Erlang Loss System 203

It turns out that PB = PL. This identity holds for Poisson arrivals, since the limit-
ing probability of finding the system in a given state at a general time (from which
PB is calculated) is the same as the probability that an arriving customer finds
the system in that state (from which the loss probability is obtained). In general,
they are not the same. For example, let us consider a D∕D∕1∕0 queue, where the
inter-arrival time is fixed and equal to T0 and the service time is fixed as well and
equal to X0 < T0. The blocking probability is PB = X0∕T0, while the loss probability
is PL = 0. A more complex example is one where the population of customers that
offer service demands is finite, say N customers. Then, if m of them are inside the
service system (and hence make the system blocked), there remain only N − m
customers that can still pose service demands to the system and eventually get
rejected. If N ≫ m we fall back toward the Poisson case, whereas if N is compara-
ble with m there is definitely a difference between PB and PL.

In the Erlang loss system, the blocking and loss probabilities coincide and they
are equal to pm, namely the celebrated Erlang B-formula.

PL = PB = pm =
Am∕m!∑m
k=0 Ak∕k!

≡ B(m,A) (5.6)

The Erlang B-formula, or briefly, B(m,A) depends only on the positive inte-
ger parameter m and on the non-negative real A. It can be extended to real
non-negative values of m by using the Fortet’s formula.

[B(m,A)]−1 = m!
Am

m∑
k=0

Am−k

(m − k)!
=

m∑
k=0

(m
k

) k!
Ak

= (5.7)

=
m∑

k=0

(m
k

) 1
Ak ∫

∞

0
uke−u du = ∫

∞

0

(
1 + u

A

)m
e−u du (5.8)

where the last but one equality is based on the definition the Euler gamma function
Γ(x) = ∫ ∞

0 ux−1e−u du and on the property Γ(k + 1) = k! for integer k. The expres-
sion (5.7) is meaningful also for noninteger m, so we define:

[B(x,A)]−1 = ∫
∞

0

(
1 + u

A

)x
e−u du , x,A ≥ 0. (5.9)

For numerical evaluation, it is best to write

B(x,A) = Axe−A

Γ(A, x + 1)
(5.10)

where Γ(y, z) = ∫ ∞
y uz−1e−u du is the upper incomplete Euler gamma function.

The integral expression of B(x,A) lends itself also to derive asymptotics. For
example, assume x = 𝛽A, where 𝛽 is a coefficient. Since lim

A→∞
(1 + u∕A)𝛽A = e𝛽u,

it is easy to derive that

lim
A→∞

B(𝛽A,A) =

{
0 𝛽 ≥ 1
1 − 𝛽 𝛽 < 1

(5.11)

�

� �

�

204 5 Multi-Server Queues

This result is one face of the trunking efficiency phenomenon, typical of the
Erlang loss system, due to the nonlinear character of the Erlang B-formula.

Let 𝜙(u) = e−u2∕2∕
√

2𝜋 be the PDF of the standard Gaussian random variable
and Φ(u) = ∫ u

−∞ 𝜙(y) dy the corresponding CDF. A more sophisticated result can
be stated as follows (see [209]):

Theorem 5.1 In an M∕G∕m∕0 system

lim
A→∞

√
A B([A + 𝛽

√
A],A) = 𝜙(𝛽)∕Φ(𝛽) (5.12)

where [x] is the greatest integer less than or equal to x and 𝛽 is a positive parameter.

This result again shows that the loss probability tends asymptotically to 0 for very
large systems, i.e., scaling improves loss performance. The utilization coefficient
with the scaling of Theorem 5.1 tends to 1 as A → ∞:

𝜌 = A
A + 𝛽

√
A
[1 − B(A + 𝛽

√
A,A)] ∼ A

A + 𝛽

√
A

[
1 − 𝜙(𝛽)

Φ(𝛽)
√

A

]
→ 1

(5.13)

This shows further that scaling to large systems it is possible to achieve high uti-
lization and low loss probability simultaneously.

A different scaling can be found if we fix the ratio r = A∕m. Let m = N and
A = rN, with 0 < r < 1. The denominator of the Erlang-B function can be written
as

N∑
k=0

(rN)k

k!
= erN ∫

∞

rN

uN−1

(N − 1)!
e−u du (5.14)

The function fN (u) =
uN−1

(N−1)!
e−u is the PDF of a gamma random variable Y ,

which can be expressed as the sum of N i.i.d. negative exponential random vari-
ables Xi with mean 1, i.e., Y = X1 + · · · + XN , with Xi ∼ Exp(1), i = 1,… ,N. Then,
E[Y] = N and Var(Y) = N. By virtue of the CLT, we have (Y−N√

N
> x
)
→ 1 − Φ(x)

as N → ∞, where Φ(x) is the CDF of the standard Gaussian random variable.
Then

N∑
k=0

(rN)k

k!
= erN(Y > rN) = erN

(
Y − N√

N
> −
√

N(1 − r)

)
∼ erN Φ(

√
N(1 − r))

Using Stirling’s formula, the numerator of the Erlang-B function can be manipu-
lated as follows:

(rN)N

N!
∼ rN NN

(N∕e)N
√

2𝜋N
= rN eN√

2𝜋N
(5.15)

�

� �

�

5.2 The Erlang Loss System 205

Using the asymptotic expressions of the numerator and denominator, we find

B(N, rN) ∼ rN eN e−rN√
2𝜋N Φ(

√
N(1 − r))

= (re1−r)N√
2𝜋N Φ(

√
N(1 − r))

(5.16)

If 0 < r < 1, this expansion tends to 0 as N → ∞, exponentially fast. The decay
rate is re1−r . Note that for r = 1 we get B(N,N) ∼

√
2∕(𝜋N), which agrees with the

statement of Theorem 5.1 if 𝛽 = 0 and A = N.
The Erlang B-formula can be calculated iteratively by using the recursion

ym = 1 + m
A

ym−1 , m ≥ 1 (5.17)

initialized with y0 = 1. Then B(m,A) = 1∕ym. A different recursion is

B(m,A) = AB(m − 1,A)
m + AB(m − 1,A)

, m ≥ 1, (5.18)

initialized with B(0,A) = 1. The advantage of the latter recursion is that it deals
only with quantities between 0 and 1.

Inverse problems can be posed, e.g., find the maximum A such that B(m,A) ≤
Bth, for a given m. Bth represents a performance requirement, i.e., the maximum
tolerable loss probability. Since B(m,A) is continuous and monotonously increas-
ing from 0 to 1 when A goes from 0 to ∞, the required maximum level of A, Amax,
exists, it is unique and is such that B(m,Amax) = Bth. Another inverse problem con-
sists in finding the minimum integer m such that B(m,A) ≤ Bth for a given A. Since
B(m,A) is monotonously decreasing with m and it tends to 0 as m → ∞, for any
given A, the searched mmin exists and it is unique. In general, it is B(mmin,A) ≤ Bth.

A simple code to calculate the Erlang B-formula and solve the two inverse prob-
lems is shown below.

% Computation of B(m,A)
m = input('Number of servers m = ');
A = input('Mean intensity of offered traffic A = ');
p = 1;
for n = 1:m

p = A*p/(n+A*p);
end
ErlangB = p;

% inverse ErlangB w.r.t. number of servers for given A
Bth = input('Loss probability constraint = ');
A = input('Mean intensity of offered traffic A = ');
n = 1;
p = A/(1+A);
while p > Bth

�

� �

�

206 5 Multi-Server Queues

n = n+1;
p = A*p/(n+A*p);

end
m_min = n;

% inverse ErlangB w.r.t. traffic for given m
Bth = input('Loss probability constraint p = ');
m = input('Number of servers m = ');
tole = 1e-5;
Ainf = 0;
Asup = m/(1-Bth);
Amed = 0.5*(Ainf+Asup);
erro = (Asup-Ainf)/Amed;
while erro > tole

if B(m,Amed) > Bth
Asup = Amed;

else
Ainf = Amed;

end
Amed = 0.5*(Ainf+Asup);
erro = (Asup-Ainf)/Amed;

end
Amax = Amed;

The behavior of B(m,A) as a function of A for various values of m is plotted in
Figure 5.1(a). For a given m, B(m,A) grows quickly, in a concave way, tending to

Mean offered traffic, A

0

0.2

0.4

0.6

0.8

1

L
o
s
s
 p

ro
b
a
b
ili

ty
,
B

(m
,A

)

m = 1

m = 4

m = 7

m =1 0

m = 13

m = 16

(a)

0 10 20 30 40 0 10 20 30 40

Number of servers, m

0

0.2

0.4

0.6

0.8

1

M
a
x
im

u
m

 u
ti
liz

a
ti
o
n
 c

o
e
ff
ic

ie
n
t

B
th

= 0.01

B
th

= 0.02

B
th

= 0.05

B
th

= 0.1

B
th

= 0.2

(b)

Figure 5.1 Loss probability of the Erlang queue. Left plot: B(m,A) as a function of A for
various values of m. Right plot: maximum value of the utilization coefficient
𝜌 = A[1 − B(m,A)]∕m under the constraint that B(m,A) ≤ Bth as a function of m.

�

� �

�

5.2 The Erlang Loss System 207

1 as A tends to ∞. The bigger m, the more the curve is shifted to the right, i.e., a
smaller loss is experienced for low up to moderate traffic intensity levels.

Figure 5.1(b) shows the maximum utilization coefficient that can be sustained
under a given loss probability requirement, as a function of m. The utilization coef-
ficient of any server is

𝜌 = A
m
[1 − B(m,A)] (5.19)

It turns out that 𝜌 is increasing with m for any given loss probability requirement.
In other words, the system resources are used more efficiently as the system scale
grows. This is another landmark of the trunking efficiency phenomenon or of the
economies of scale. Moving to a larger system is convenient, i.e., less resources are
required to provide a given level of quality of service (loss probability in the system
at hand). In other words, a bigger utilization per server can be realized for a fixed
level of quality of service.

Equation (5.16) shows that the dream of a traffic engineer is not impossible
(at least asymptotically). Letting r = A∕m < 1, we have 𝜌 = r[1 − B(m,mr)] ∼ r as
m → ∞. This hold for any r < 1, however close to 1. We can have both server uti-
lization as close to 1 as we want and a negligible loss probability.

Example 5.1 Let us consider an LTE cell served by a BS, the evolved Node B
(eNB) in the LTE jargon. The radio resource is organized in resource blocks (RBs).
An RB corresponds to a number of OFDM sub-carriers for a time slot. Therefore,
it provides a given bit rate to a given user, depending on the characteristics of the
radio channel between the user and the eNB. Let r denote the average bit rate
obtained by a user for one RB. Let g be the number of RBs allocated to a single user
connection. Connection requests arrive according to a Poisson process of mean
rate 𝜆. A connection aims at carrying an average amount Q of bits. The eNB has K
RBs overall, out of which it takes the RBs to allocate for each served connection. If
a connection request arrives at the eNB when there are less than g RBs available,
the connection is rejected.

We model the eNB as an Erlang loss system with ⌊K∕g⌋ servers. The mean
offered traffic is the product of the mean arrival rate of the connection requests
𝜆 and the mean duration of a connection, X . Since Q bits must be transferred in
a connection and the available bit rate is gr on average, then X = Q∕(gr). Hence,
A = 𝜆Q∕(gr) and the loss probability is

PL = B
(⌊

K
g

⌋
,
𝜆Q
gr

)
(5.20)

We can find the maximum value of 𝜆Q (mean offered bit rate) that meets the
requirement PL ≤ Bth. Another problem consists in determining the maximum
value of g that is compatible with the requirement PL ≤ Bth, for a given level of

�

� �

�

208 5 Multi-Server Queues

0 50 100 150

RB group size, g

100

L
o
s
s
 p

ro
b
a
b
ili

ty

K = 300

N = 20

N = 50

N = 100

10–1

10–2

10–3

10–4

Figure 5.2 Probability of loss of
connection requests in an LTE cell with
RB grouping. The mean offered load
per user is 8 Mbit∕s, the mean rate
supported by an RB is r = 500 kbit∕s.
The overall number of RBs in the cell is
K = 300.

the offered bit rate. Note that, as g increases, the mean duration of a connection
decreases, i.e., service is faster and thus the load is relieved, but, on the other
side, the number of servers decreases. This worsens the loss performance even-
tually, given the trunking efficiency effect (increasing g means moving toward a
smaller-scale system).

Numerical evaluation of the loss probability is plotted in Figure 5.2. We assume
N users are sharing the cell capacity, each offering a mean rate of connec-
tion requests of 𝜆1. The numerical values of the parameters are K = 300 RBs,
𝜆1 = 0.1 s−1, Q = 1 Mbyte, r = 500 kbit/s. The curves of PL as a function of g for
three values of N have been obtained by using the generalization of the Erlang
formula for a non integer number of servers (Fortet’s formula). This gives an
upper bound of the true loss performance. The approximation is only relevant for
very large values of g.

The loss probability grows with g, as well as the average allocated bit rate (which
is gr). The most convenient dimensioning of the system consists of finding the
maximum level of g that is compatible with a requirement on the loss probability.
The line at level 10−2 is shown in the Figure 5.2. The corresponding maximum
value of g compatible with a requirement that the loss probability be no more than
10−2 is gmax = 125, 61, 20 for N = 20, 50, 100, respectively.

The behavior of gmax as a function of N for the same parameter values as in
Figure 5.2 is shown in Figure 5.3(a), under the requirement that the loss probabil-
ity be no more than Bth = 0.01. gmax is monotonously decreasing with N, which is
consistent with intuition: the more users are contending for the system resources,
the bigger the parallelism of the service system should be to maintain the same
level of rejection of arriving connection requests.

Figure 5.3(b) plots the throughput delay trade-off of the LTE-cell. The ordinate
represents the mean overall throughput of the cell, i.e., TH = Nmax𝜆1Q, where
Nmax is the maximum number of users compatible with the constraint Bth ≤ 0.01.

�

� �

�

5.2 The Erlang Loss System 209

Number of users, N

0

50

100

150

M
a
x
 R

B
 g

ro
u
p
 s

iz
e
,
g

K = 300

B
th

= 0.01

(a)

0 50 100 150 0 5 10 15

Mean data transfer delay (s)

0

50

100

150

T
h
ro

u
g
h
p
u
t
(M

b
it
/s

)

K = 300

B
th

= 0.01

(b)

Figure 5.3 Left plot: maximum value of the RB group size g as a function of N, under the
constraint that the loss probability be no more than 10−2. Right plot: throughput-delay
trade-off for data transfer in the LTE cell, under the requirement that the loss probability
be no more than 10−2. The mean offered load per user is 8 Mbit/s, the mean rate
supported by an RB is r = 500 kbit/s. The overall number of RBs in the cell is K = 300.

The abscissa reports the mean time required for a user to complete its data transfer,
i.e., D = Q∕(gr). The trade-off is generated by letting the RB group size g vary from
1 to K. The trade-off is monotonously increasing. The larger the tolerable delay,
the bigger the throughput that can be sustained.

Example 5.2 Random server hunting Assume servers are searched at random
as a new request arrives at an Erlang loss system. That is to say, a permutation of
the integers in the range [1,m] is generated uniformly at random among all possi-
ble permutations, say it is (s1,… , sm). Starting with j = 1, the server sj is checked:
if it is idle, it is assigned to the pending service request, otherwise the server sj+1 is
explored, and so on, until either an available server is found or all servers are found
busy. In this last case the pending service request is rejected and lost to the system.
We ask what is the probability P(i) that the first i explored servers are found busy.

The problem can be solved by writing:

P(i) =
m∑

k=i
pk(i | Q = k) (5.21)

where i is the event that the first i servers explored are found busy. Since server
hunting is done completely at random, all possible configurations of server
engagement are equiprobable. The number of configurations of k busy servers out
of m is

(
m
k

)
. After i servers have been explored and found busy, the number of

�

� �

�

210 5 Multi-Server Queues

0 5 10 15 20

Id of servers, i

0

0.2

0.4

0.6

0.8

1

P
(i
)

m = 20

A = 15

A = 20

A = 25

(a)

0 2000 4000 6000 8000 10000

Number of servers, m

10–2

L
o
s
s
 p

ro
b
a
b
ili

ty

(b)

10–1

100

β = 0.95

α = 0.01

α = 0.05
α = 0.1

Figure 5.4 Left plot: probability of finding the first i explored servers busy, P(i), in an
Erlang loss system with m = 20 servers and random server exploration, for three values
of the mean offered load. Right plot: probability of finding the first d explored servers
busy as a function of the size of the system (number of servers).

possible configurations of the remaining k − i busy servers out of the remaining
m − i servers is

(
m−i
k−i

)
. Therefore

P(i) =
m∑

k=i
p0

Ak

k!

(
m−i
k−i

)
(

m
k

) = B(m,A)
B(m − i,A)

, i = 1,… ,m. (5.22)

Figure 5.4(a) plots P(i) for an Erlang loss system with m = 20 servers and for
three values of the mean offered load, A = 15, 20, and 25 Erl. The probability P(i)
is monotonously decreasing with the index i of the server. When the system bears a
heavy load (A = 25 Erl), it exhibits a concave behavior; on the contrary for a lighter
load (A = 15 Erl) it decreases in a convex way, quite sharply, e.g., the probability
that more than 5 servers need be explored to find one idle is 0.2. The special case
A = 20 Erl = m lies in between.

We can use the result (5.22) to evaluate how the loss probability scales with the
system size. For this purpose, we let m = N and A = 𝛽N with 𝛽 = 0.95. In a large
system (e.g., N in the order of thousands) it could be too costly to explore all servers.
It makes sense to limit the server exploration to a small fraction of the overall set
of available servers. Let d = 𝛼m = 𝛼N, with 𝛼 ≪ 1. Since we stop the exploration
when up to d servers have been probed, the probability of blocking is

P(N) = B(N, 𝛽N)
B(N − 𝛼N, 𝛽N)

(5.23)

Figure 5.4(b) plots P(N) as a function of N for three values of 𝛼 and 𝛽 = 0.95. It is
evident that P(N) decreases exponentially with N (the plot is on semi-logarithmic
scale). The slope is greater for bigger values of 𝛼, as expected. It is interesting to

�

� �

�

5.2 The Erlang Loss System 211

note that performance improve rapidly as 𝛼 grows, so that a large part of the per-
formance gain is reaped with relatively small levels of 𝛼. For example, exploring
only 5% of servers makes the blocking probability fall below to 0.01 if a system
is composed of 3000 servers or more. This number is not so unrealistic. It can be
found in real large-scale systems such as data centers of the public cloud.

Example 5.3 Sequential server hunting We consider now an Erlang loss
system where the availability of servers is checked sequentially. Let the
servers be labeled with integers from 1 to m. Assume servers are explored
sequentially as a new request arrives and the first idle server, if any, is
assigned to the request. If no idle server is found, the request is rejected
and lost.

Under this setting, the first i servers form an M∕G∕i∕0 queueing system with
mean offered traffic equal to A, the mean offered traffic offered to the entire orig-
inal system. The probability 𝜌(i) that server i is busy coincides with the mean
carried traffic Ac(i) of that server. The mean carried traffic can be found as the dif-
ference between the mean traffic offered to server i and the mean traffic rejected by
server i, Ar(i). The former is the mean traffic rejected by server i − 1. Hence 𝜌(i) =
Ac(i) = Ar(i − 1) − Ar(i). The mean intensity of the rejected traffic of an Erlang sys-
tem with i servers and mean offered traffic intensity equal to A is Ar(i) = AB(i,A),
for i = 1,… ,m. We let Ar(0) = A for ease of notation.

The final result is 𝜌(i) = A[B(i − 1,A) − B(i,A)], for i = 1,… ,m. This is also the
probability that server i is found busy. It can be seen that it is a monotonously
decreasing function of i.

Sequential hunting allocates work in an unequal way among servers, the lower
index ones being much more loaded than the last ones. Each new server added to
the system can be conceived as a “second-choice” alternative, to which only traffic
overflown from first-choice servers is offered.

To appreciate the differentiated load of the servers, if m = 100 and A = 80 it can
be computed that 𝜌(1) = 0.9877 and 𝜌(100) = 0.0814.

5.2.1 Insensitivity Property of the Erlang Loss System

The Erlang loss system as described above corresponds to the M∕M∕m∕0 queue.
The same limiting probability distribution applies to a more general system,
namely the M∕G∕m∕0 queue. It is possible to prove the following.

Theorem 5.2 The limiting probability distribution of the M∕G∕m∕0 exists (pro-
vided the mean of the service times is finite) and is given by the Erlang probability
distribution (5.3).

�

� �

�

212 5 Multi-Server Queues

Proof: We outline a sketch of the proof2 . Let fk(x1,… , xk) denote the joint
probability density of the number of customers in the queue and of the age of
service of the k customers in the queue at a generic time of the equilibrium.
Formally, if Yi(t) denotes the age of the service of customer i in the queue at
time t, we let

Fk(x1,… , xk) = (Q(t) = k,Y1(t) ≤ x1,… ,Yk(t) ≤ xk) , k = 1,… ,m,

(5.24)

Then

fk(x1,… , xk) =
𝜕

kFk(x1,… , xk)
𝜕x1 … 𝜕xk

(5.25)

and f0 = (Q(t) = 0) = p0. Since the service times are i.i.d. random variables, inde-
pendent of the number of customers in the queue, and the PDF of the age of
the service time is fY (x) = 𝜇GX (x), where GX (x) is the CCDF of the service time,
we have

Fk(x1,… , xk) = (Y1(t) ≤ x1,… ,Yk(t) ≤ xk | Q(t) = k)(Q(t) = k) = pk

k∏
i=1

FYi
(xi)

(5.26)

hence

fk(x1,… , xk) = pk

k∏
i=1

fYi
(xi) = pk𝜇

k
k∏

i=1
GX (xi) (5.27)

Moreover, upon an arrival that finds k customers already in the queue (k < m),
the service ages change from x1,… , xk to x1,… , xk, 0, i.e., the newly arrived cus-
tomer has an age of 0. For symmetry reasons, there are k + 1 configurations of
the arguments of the function fk+1(x1,… , xk, 0) that are fully equivalent. In other
words, the arrival causes the transition from the state (k, x1,… , xk) to anyone of
the k + 1 micro-states (k + 1, x1,… , xj−1, 0, xj+1,… , xk+1). We collapse all of those
micro-states into the unique state (k + 1, x1,… , xk, 0). Then, we have

𝜆fk(x1,… , xk) = (k + 1)fk+1(x1,… , xk, 0) , k = 1,… ,m − 1. (5.28)

Considering the arrival of a new customer at an empty queue, we can add the
boundary equation 𝜆p0 = f1(x1). Putting all these equations together, we see that

fk(0,… , 0) = 𝜆

k
fk−1(0,… , 0) = · · · = 𝜆

k

k!
p0 (5.29)

2 See Takács [199]. He also mentions that the first correct proof of the insensitivity property was
given by B. A. Sevastyanov in 1957.

�

� �

�

5.2 The Erlang Loss System 213

Applying eq. (5.27) for x1 = x2 = · · · = xk = 0 and using eq. (5.29), we obtain

pk𝜇
k

k∏
i=1

GX (0) =
𝜆

k

k!
p0 ⇒ pk = p0

Ak

k!
, k = 1,… ,m, (5.30)

where A = 𝜆∕𝜇. Then, p0 is found from the congruence relationship∑m
k=0 pk = 1. ◾

The result stated in Theorem 5.2 is a manifestation of the so called insensitivity
property of the Erlang loss system. Amazingly, the only thing that matters of the
service time is its mean value!

5.2.2 A Finite Population Model

In the Erlang model the mean rate of arrival of service requests is constant, no
matter what the state of the system is. That is, the “pressure” of the demand posed
by customers outside the system is the same independently of the number of cus-
tomers residing into the system. Such a model entails that the population of cus-
tomers from which the service demand comes is infinite (or, from a practical point
of view, of much larger size than the number of servers).

When that is not the case, different models must be used. A simple variant of
the Erlang model consists of a population of N customers. When outside the ser-
vice system, a customer takes an exponentially distributed time with mean 1∕𝛾 to
make a service request to the system. If accepted, the service time has a general
PDF with mean 1∕𝜇. If rejected, the request is canceled and a new timer starts
with the same negative exponential PDF until the next service request. The ser-
vice system has m identical, fully accessible servers and no room for a waiting
line (pure loss system). This model is called the Engset system, after T. O. Engset,
a Norwegian mathematician and engineer who did pioneering work in the field
of telephone traffic. We assume obviously N > m, otherwise the system has no
blocking (it would become equivalent to an infinite server system).

If the service system has negative exponential PDF, it is easy to see that the
number Q(t) of customers in the system at time t is a birth-death Markov pro-
cess. The birth rate in state k is (N − k)𝛾 for k = 0,… ,m − 1. The death rate is k𝜇
for k = 1,… ,m. The Markov process is finite and irreducible for positive 𝛾 and 𝜇,
then the limiting state probabilities exist. They are

pk = p0

(N
k

)(
𝛾

𝜇

)k

=

(
N
k

)(
𝛾

𝜇

)k

∑m
j=0

(
N
j

)(
𝛾

𝜇

)j , k = 0,… ,m. (5.31)

�

� �

�

214 5 Multi-Server Queues

Let a = 𝛾∕𝜇, a measure of mean offered load of a single customer. The mean rate
of service request offered to the system is by its very definition

Λo =
m∑

k=0
𝜆kpk =

m∑
k=0

(N − k)𝛾pk = 𝛾(N − E[Q]) (5.32)

The mean offered traffic is Ao = Λo∕𝜇 = a(N − E[Q]). Simple algebra yields:

E[Q] = Na

∑m−1
j=0

(
N−1

j

)
aj

∑m
j=0

(
N
j

)
aj

(5.33)

The mean rate of accepted service requests is obtained by observing that the only
blocking state is m:

Λs =
m−1∑
k=0

(N − k)𝛾pk (5.34)

The differenceΛo − Λs is the mean rate of lost requests of service. The probability
of loss of a service request is:

PL =
Λo − Λs

Λo
=

(N − m)𝛾pm

Λo
=

(N − m)pm

N − E[Q]
=

(
N−1

m

)
am

∑m
j=0

(
N−1

j

)
aj

(5.35)

Note that this is different from the blocking probability, i.e., the probability the
system is the blocking state, namely PB = pm. This is not so surprising: after all
arrivals at this system are not Poisson3 . The blocking probability is named Engset
function and here denoted with E(m,N, a):

PB = pm ≡ E(m,N, a) =

(
N
m

)
am

∑m
j=0

(
N
j

)
aj

(5.36)

5.2.3 Non-Poisson Input Traffic

We have defined the offered traffic process as the number N(t) of servers engaged
by the service request flow in a test system made of infinite servers.

For a stationary Poisson traffic it is (N(t) = k) = Ak

k!
e−A

, k ≥ 0, where
A = E[N(t)] is the mean traffic intensity.

The variance of the traffic process is V = E[N(t)2] − (E[N(t)])2. In case of Poisson
traffic it is V = A.

3 The concise statement that “traffic is Poisson” means that arrivals of service requests follow a
Poisson process. The time required to serve each service request must be independent of the
arrival process, but it can have a general PDF.

�

� �

�

5.2 The Erlang Loss System 215

We define also the peakedness factor z = V∕A. It equals 1 for a Poisson traffic. A
traffic process for which z < 1 is said to be a smoothed traffic. If it is z > 1, we call
it a peaked traffic. Smoothed traffic appears to be more regular, since fluctuations
around the mean value are limited, whereas peaked traffic is expected to present
more burstiness, given the large variance with respect to the mean.

We have seen that a pure loss queueing system is amenable to analysis as soon as
we assume that the input traffic is of Poisson type. This is a reasonable hypothesis
for an isolated system that receives its traffic directly from a population of sources
made of a large number of entities, each contributing a small fraction of the overall
traffic.

Things are different if we look at a network. Pure loss systems are apt to
describe circuit-switched networks. Let us consider a network modeled as a graph
of n nodes and 𝓁 links. Assume that communications through the network is
based on end-to-end connections, each requiring a same amount of capacity.
Link i can multiplex up to mi connections. We say that link i has mi circuits,
using a terminology that is reminiscent of telephone networks (hence the name
of circuit-switched networks). The concepts developed here apply to a broad set
of technological networks, e.g., transport networks based on SDH or on DWDM
optical technologies, cellular access network based on radio channel reservation
and individual channel assignment to traffic sources. We will see in Chapter 11
that the techniques developed for circuit-switched network analysis carry over
also to packet network analysis at flow level, if we manage network resources
based on the effective bandwidth concept or taking a deterministic traffic model
approach.

In a circuit-switched network, before communication can take place over a
connection, an end-to-end path must be found between the originating node
and the destination node. This task is accomplished by the routing function,
exploring the network graph and reserving one circuit on each link that composes
the end-to-end path. In general, more than a single path exists in the network
topology for a given origin-destination pair. If none of those paths provides the
required circuits end-to-end, connection set-up fails and the set-up request is
rejected, i.e., there is usually no waiting option. This makes pure loss models
suitable for describing such a traffic handling approach.

Set-up requests move forward node after node as the routing progresses inside
the network, eventually completing the end-to-end path successfully, if one cir-
cuit per crossed link is available. Otherwise, if the connection setup is blocked
due to a congested link, alternate routes are explored, e.g., according to a prede-
fined sequential search plan, established for each origin-destination pair. Once
alternatives are exhausted, the connection set-up request is rejected and lost. As a
consequence of this operation mode, traffic is “filtered” by network nodes. Even if
it is modeled as a Poisson process natively at network edge, once it goes through

�

� �

�

216 5 Multi-Server Queues

nodes that forward connection requests or block them, according to the congestion
state of links, the traffic process changes.

To understand quantitatively what happens, let us consider an isolated Erlang
system, i.e., an M∕M∕m∕0 queue. The carried traffic is by definition the number
of busy servers Q(t). In the Erlang queueing system Q(t) has the Erlang probability
distribution. Mean and variance of Q(t), denoted with Ac and Vc, respectively, are
easily found to be:

Ac = A (1 − PL)
Vc = Ac − A PL (m − Ac)

(5.37)

where PL = B(m,A) is the loss probability.
The lost traffic, i.e., the service demands that are rejected by the Erlang system,

form a modulated Poisson process, whose mean rate is 0 as long as Q(t) < m, and
it is equal to the offered rate 𝜆, when Q(t) = m. It can be verified that the first two
moments of the lost traffic, denoted with Al and Vl, respectively, are:

Al = A PL

Vl = Al

(
1 − Al +

A
m + 1 + Al − A

)
= Al

m + 1 − Al(m − Ac)
m + 1 − Ac

(5.38)

It is easy to verify that zc = Vc∕Ac < 1 and zl = Vl∕Al > 1.
The carried traffic is therefore smoother than the offered Poisson traffic, for

which it is z = 1. This matches the intuition that the more extreme peaks of the
offered traffic are clipped by the loss-biased service system. The lost traffic instead
turns out to be peaked. Again, this is consistent with intuition. The traffic rejected
by the Erlang system is made up of those peaks that do not fit into the service
capacity of the system, hence we expect that the lost traffic is more stochastically
variable than the offered traffic.

We have established that the traffic at the output of the Erlang system (the
carried traffic) and the traffic overflown from the Erlang system (the lost traffic)
are both non-Poisson traffic processes. Analysis of loss systems that receive as
input one of those processes cannot be carried out using the classic Erlang model.
This is exactly what happens when considering a network of loss systems, rather
than an isolated loss system. A communication network operated according
to the circuit-switching paradigm is modeled as a network of loss system each
loss system corresponding to one link of the circuit-switched network. When
analyzing circuit switched networks, we are faced with the issue of determining
the probability that a connection set-up fails because of congestion of some link.
The traffic offered to a link can be the composition of traffic flows that are carried
by or overflow from upstream links. These traffic processes are not Poisson, as we
have seen. We cannot apply the Erlang model exactly any more.

As an example, Figure 5.5 illustrates a four node network. Poisson traffic
flows are offered at nodes A and B, both directed to node C. The routing of the
origin-destination (OD) pair AC is so defined. As a first choice the direct link AC is

�

� �

�

5.2 The Erlang Loss System 217

Figure 5.5 Example of circuit-switched network.
Connection requests are routed from origin to
destination according to alternative paths, e.g.,
traffic from A to C is carried on link 1 as a first
choice; if that is blocked, on the path made by
links 3 and 5 as a second choice.

A

B

D C

1

3

4

2

5

preferred. If no available capacity can be found in that link, the alternative routing
AD-DC s explored. If either of the two last links is saturated, the connection
request is rejected and lost. Similarly, for the BC traffic flow, direct path routing is
preferred over the two-link alternative routing through node D.

Links AD and BD receive non-Poisson traffic flows, made up by those connection
requests that were rejected by link AC and link BC, respectively. The link DC input
is composed of the superposition of two independent non Poisson traffic flows,
that are the traffic carried by the links AD and BD. We can associate multi-server
pure loss models to each of the network links. However, it is clear that we need to
generalize the Erlang model so as to be able to deal with traffic flows of any kind.

Approximate methods have been defined to tackle analysis and dimensioning
of circuit-switched networks. Most of them limit the description of the considered
processes to the first two moments and reduce in some way the evaluation of the
loss probability to the calculation of the Erlang-B formula, applied to a suitable
equivalent system. We will see two of these methods in the following.

The approximations presented in this section have been motivated initially by
the need of analyzing the telephone network, but they hold in general for any
setting where resources are pre-allocated to connections during set-up phase and
multiplexing is done according to resource partitioning on network links.

5.2.3.1 Wilkinson’s Method
The approximation proposed by Wilkinson [208] applies only to peaked traffic,
i.e., we assume z > 1. Let A and V be the mean and variance of the tagged peaked
traffic, which is offered to a loss system with m servers. We assume that the tagged
traffic results from the overflow of an equivalent Erlang loss system with mean
offered traffic AE having mE servers (see Figure 5.6).

Figure 5.6 Scheme of Wilkinson’s
approximation. The non-Poisson traffic is
deemed to be the overflow traffic of an
equivalent Erlang loss system of mE servers to
which a Poisson traffic of intensity AE is
offered. The traffic lost by the original loss
system of m servers can be obtained as the
traffic lost by the extended system made of
mE + m servers with Poisson offered traffic AE .

Equivalent

offered traffic

Overflown traffic

(matched to

offered traffic)

Lost traffic

mE
servers

m
server

AE

A

�

� �

�

218 5 Multi-Server Queues

The parameters AE and mE are determined so as to match the known mean and
variance of the considered traffic, considered as the lost traffic of the equivalent
Erlang system. Using eq. (5.38) we have

A = AEB(mE,AE)

V = A
mE + 1 − A(mE + A − AE)

mE + 1 + A − AE

(5.39)

This nonlinear system in the unknowns AE and mE can always be solved, pro-
vided we relax mE to be a real number. This is possible thanks to Fortet’s formula.
Once the parameters of the auxiliary Erlang system have been found, the blocking
probability of the original system, made up by m servers to which the peaked traf-
fic of mean intensity A and peakedness z is offered, can be calculated as the loss
probability of an equivalent system made up of m + mE servers, to which a Poisson
traffic of mean intensity AE is offered. Then

PL = B(m + mE,AE) (5.40)

Analogously, the first two moments of the lost traffic of the original system can
be calculated using formulas (5.38), applied to the equivalent system with m + mE
servers and Poisson input traffic of mean intensity AE.

The first two moments of the carried traffic can be calculated as follows. Let
Ac,E and Vc,E be the mean and the variance of the carried traffic of the equiv-
alent loss system comprising m + mE servers. Let further Ac1,E and Vc1,E be the
first two moments of the traffic carried by the loss system consisting of the addi-
tional mE servers, to which a Poisson traffic of intensity AE is offered. The first two
moments of the traffic carried by the original system of m servers, to which the
original non-Poisson traffic is offered, can be estimated as Ac = Ac,E − Ac1,E and
Vc = Vc,E − Vc1,E.

5.2.3.2 Fredericks’ Method
An alternative method has been developed by Fredericks [83] and applies to any
kind of traffic, either smoothed or peaked. The idea is to replace the original
non-Poisson traffic with a Poisson batch arrival process of service requests having
the same mean and variance of the original traffic process. Let the batch have
fixed size equal to J. The moment-generating function (MGF) of the offered traffic
is then 𝜙N (z) = eA(zJ−1). The first two moments are E[N] = A J and 𝜎

2
N = A J2.

Their ratio is Var(N)∕E[N] = J. We can therefore identify J with the peakedness
factor z (we assume for the time being that z is an integer).

The key idea of the approximation, suggested by the reasoning above, is to
replace the original loss system composed of m servers, to which a non-Poisson
traffic of moments A and V = zA is offered, with an equivalent system made of
m∕z servers, to which a Poisson traffic of mean intensity A∕z is offered. It is as if

�

� �

�

5.2 The Erlang Loss System 219

the customers of this new system were identified with the batches of the batch
Poisson arrival process.

With this approximation, we can apply the analysis technique holding for the
Erlang loss system to the equivalent system with m∕z servers and mean offered
traffic A∕z. We calculate the loss probability using Erlang-B formula, and the
moments of the carried and lost traffic processes using formulas (5.37) and (5.38).
To recover the first two moments of the carried and lost traffic processes of the
original loss system, we account for the fact that we have divided the offered
traffic by z. Hence, we multiply the mean values of the carried and lost traffic
by z and the variances by z2. The resulting expressions are usually referred to as
Fredericks-Lindberger equations.

The blocking probability is approximated by using the Erlang B-formula applied
to the equivalent system:

PL = B
(

m
z
,

A
z

)
(5.41)

where the extension of Erlang B-formula to noninteger values of the number of
servers must be used in general.

The first two moments of the carried traffic are given by the following expres-
sions:

Ac = A(1 − PL)
Vc = zAc − APL(m − Ac)

(5.42)

while the following equations hold for the lost traffic:

Al = APL

Vl = zAl

(
1 −

Al

z
+ A

m + z + Al − A

) (5.43)

where the loss probability is computed according to eq. (5.41).
This approximation can be used both for peaked (z > 1) and for smooth traffic

(z < 1). Equations (5.42) and (5.43) are exact in case of Poisson input traffic (z = 1).
As a last tile to complete the puzzle of two moments traffic analysis, when

merging traffic flows, the mean values and the variances sum up, i.e., traffic flow
components are assumed to be independent of one another. The loss probability
experienced by the service request of the i-th component flow at a link where the
overall loss probability is PL is given by

PL,i =
zi

z
PL (5.44)

where zi is the peakedness coefficient of the i-th traffic flow.

Example 5.4 We apply the method of Fredericks-Lindberger to the network in
Figure 5.5. We consider the Poisson traffic flows AC and BC with mean intensi-
ties AAC and ABC ranging from 80 Erl to 100 Erl. The alternative routing is defined

�

� �

�

220 5 Multi-Server Queues

by the direct path as a first choice, the path through D as a second choice. In this
example, all quantities referred to a link are labeled with a subscript number cor-
responding to the link, as shown in Figure 5.5. The number of circuits available
for the network links are m1 = 64, m2 = 96, m3 = m4 = m5 = 32.

Since the offered traffic is assumed to be Poisson for the two considered traffic
flows, we have

PL,1 = B(m1,AAC)
A3 = Al,1 = AACPL,1

V3 = Vl,1 = z1Al,1

(
1 −

Al,1

z1
+

AAC

m1 + z1 + Al,1 − AAC

)
z3 = V3∕A3

PL,3 = B
(m3

z3
,

A3

z3

)
Ac,3 = A3(1 − PL,3)
Vc,3 = z3Ac,3 − A3PL,3(m3 − Ac,3)

for the traffic flow AC, and
PL,2 = B(m2,ABC)
A4 = Al,2 = ABCPL,2

V4 = Vl,2 = z2Al,2

(
1 −

Al,2

z2
+

ABC

m2 + z2 + Al,2 − ABC

)
z4 = V4∕A4

PL,4 = B
(

m4

z4
,

A4

z4

)
Ac,4 = A4(1 − PL,4)
Vc,4 = z4Ac,4 − A4PL,4(m4 − Ac,4)

for the traffic flow BC. The traffic offered to link 5 is
A5 = Ac,3 + Ac,4

V5 = Vc,3 + Vc,4

PL,5 = B
(m5

z5
,

A5

z5

)
The end-to-end loss probabilities for the two considered traffic flows are:

z5,AC = Vc,3∕Ac,3

z5,BC = Vc,4∕Ac,4

PL(A,C) = PL,1

[
PL,3 + (1 − PL,3)

z5,AC

z5
PL,5

]
PL(B,C) = PL,2

[
PL,4 + (1 − PL,4)

z5,BC

z5
PL,5

]

�

� �

�

5.2 The Erlang Loss System 221

80

90

100

80

90

100
0

0.05

0.1

0.15

ABC

(a)

80

90

100

80

90

100
0

0.05

0.1

0.15

P
L
(A

,C
)

AAC

(b)

P
L
(B

,C
)

ABC AAC

Figure 5.7 End-to-end loss probability of the traffic flows AC (left) and BC (right) as a
function of their respective mean traffic intensities. Alternative routing on two paths is
assumed (direct path and alternate path through D).

The loss probabilities PL(A,C) and PL,(B,C) are shown in Figure 5.7 as a function
of AAC and ABC. As expected, the probability PL(A,C) is bigger than PL(B,C) since
the link 1 has 64 circuits against the 96 circuits of link 2.

5.2.4 Multi-Class Erlang Loss System

A last generalization addressed here is a multi-class scenario where the loss system
has m servers and the offered traffic is made of the superposition of demands from
c classes of customers. A class i customer needs bi ∈ [1,m] servers to accommodate
its request. Hence, it gets blocked if m − bi + 1 or more servers are already busy.
In general, the state of the system is described by a c-tuple of nonnegative integers
(Q1,… ,Qc), where Qi is the number of class i customers in the queue at a general
time of the equilibrium. Feasible vectors (n1,… ,nc) are all and only those such
that
∑c

i=1 bini ≤ m. If arrivals follow a Poisson law, with mean rate 𝜆i for class i, a
very efficient algorithm has been devised to find the blocking probability of each
class, without the need to calculate the limiting probabilities of the joint random
variable (Q1,… ,Qc) [118, 183].

In those papers it is shown that the probability distribution of the number of
servers that are busy in equilibrium can be obtained by means of the following
simple recursion:

pk = 1
k

c∑
i=1

Aibipk−bi
, k = 1,… ,m, (5.45)

where Ai = 𝜆i∕𝜇i and 1∕𝜇i is the mean service time of class i. The recursion is used
along with the congruence condition

∑m
k=0 pk = 1 and the boundary conditions

px = 0 for x < 0.

�

� �

�

222 5 Multi-Server Queues

This model holds for general service times (insensitivity property) and the com-
plete sharing policy, i.e., any server can be allocated to any service demand, only
provided there are enough to completely match the demand. The loss probability
of class i, PL(i), is found as

PL(i) =
bi−1∑
j=0

pm−j , i = 1,… , c. (5.46)

The state probability p(n) ≡ (Qi = ni, i = 1,… , c) for n ≡ (n1,… ,nc) ∈ Ω,
Ω = {n ∶

∑c
i=1 nibi ≤ m}, can be calculated as follows:

p(n) = G(Ω)−1
c∏

i=1

Ani
i

ni!
, n ∈ Ω, (5.47)

where the normalization constant is

G(Ω) =
∑
n∈Ω

c∏
i=1

Ani
i

ni!
(5.48)

It is easy to recognize that G(Ω) = 1∕p0, where p0 is obtained from the recursion
(5.45).

Example 5.5 Let us consider an LTE base station giving access to two classes of
customers. The average amount of data that is transferred over a class 1 connection
is B1 = 1 Mbyte, it is B2 = 10 Mbyte for a class 2 connection. The BS has m = 100
Resource Blocks (RB) to assign to customers for carrying traffic. A radio channel
consisting of one RB per frame can sustain a bit rate of r = 500 kbit/s. Class 1 cus-
tomers are assigned a single RB per frame (b1 = 1), while class 2 customers are
allocated 10 RBs per frame (b2 = 10).

We assume that class 1 customers account for a fraction 𝜉 = 0.8 of the overall
connection requests. If 𝜆 denotes the mean rate of offered connection requests,
the mean offered traffic intensity is:

Ao = 𝜆(𝜉b1E[X1] + (1 − 𝜉)b2E[X2]) (5.49)

where E[Xi] = 8Bi∕(bir).
The utilization coefficient of the multi-class system is

𝜌 = 𝜆

m
[𝜉b1E[X1](1 − PL,1) + (1 − 𝜉)b2E[X2](1 − PL,2)] (5.50)

where PL,i is the loss probability of class i customers.
This system can be modeled with the multi-class Erlang model, provided that

the connection request arrivals can be modeled as a Poisson process. Figure 5.8(a)
plots the loss probability of the two classes as a function of the utilization coef-
ficient. As expected, class 2 customers suffer a larger loss probability. Whenever
less than 10 RBs are idle, a class 2 customer is rejected, whereas a class 1 customer

�

� �

�

5.2 The Erlang Loss System 223

0.2 0.4 0.6 0.8

Utilization coefficient, ρ

10–1

100

L
o
s
s
 p

ro
b
a
b
ili

ty

m = 100

Class 1 (b1 = 1)

(a)

0 20 40 60 80 100

Number of busy servers

0

0.005

0.01

0.015

0.02

0.025

0.03

P
D

F

b1 = 1

(b)

10–2

10–3

10–4

Class 2 (b2 = 10)

ρ = 0.58

ρ = 0.65
ρ = 0.71

ρ = 0.76

b2 = 10

Figure 5.8 Multi-class Erlang system modeling an LTE radio access. Left plot: loss
probability of the two classes as a function of the utilization coefficient. Right plot:
probability distribution of the number of busy RBs.

can still find room to accommodate its connection, as long as there is at least one
idle RB.

Four probability distributions of the number of busy RBs are plotted in
Figure 5.8(b) for four values of the utilization coefficient, respectively. The pecu-
liar feature of this distribution is the oscillating behavior, induced by the interplay
of the different amounts of resource required by customers belonging to the two
classes. This kind of behavior is characteristic of the probability distribution of
busy servers in any multi-class Erlang loss system.

Example 5.6 As another example, we consider a large system, comprising
m = 10000 servers. A set of 10000 servers that are assigned to jobs having different
requirements in terms of how many servers they should be allocated is easily
found in the cloud.

Incidentally, this example proves also the extreme numerical efficiency of the
iteration used to compute the probability distribution of the number of busy
servers and the loss probabilities of the different traffic classes.

We consider four classes of customers, requesting 1, 20, 50, and 100 servers
respectively. Figure 5.9(a) shows the loss probability of the four classes versus the
utilization coefficient 𝜌. The probability distribution of the number of busy servers
for 𝜌 ≈ 0.9 is shown in Figure 5.9(b).

The oscillating behavior of the probability distribution has disappeared, due to
the very large size of the considered system. The crucial point is the high ratio
between the number of available servers (m = 10000) and the amount of servers
allocated to service requests (at most b4 = 100).

As for the loss probability, customers belonging to high demand classes (e.g.,
class 4, having b4 = 100) suffer a strong degradation of their loss performance at

�

� �

�

224 5 Multi-Server Queues

0.7 0.8 0.9 1

Utilization coefficient, ρ

10–4

L
o
s
s
 p

ro
b
a
b
ili

ty

m = 10000b = 1

b = 10

b = 50

b =100

(a)

0 2000 4000 6000 8000 10000

Number of busy servers

0

0.2

0.4

0.6

0.8

1

P
D

F

ρ = 0.901

(b)

10–3

10–2

10–1

100
×10–3

Figure 5.9 Multi-class Erlang system modeling a large server cluster. Left plot: loss
probability of the four classes as a function of the utilization coefficient. Right plot:
probability distribution of the number of busy servers.

high utilization, while less demanding customers still enjoy a relatively low loss
probability, even for utilization levels as high as 0.9. In general, we can push uti-
lization to quite high levels before impairing loss performance significantly. This
is yet another evidence that large scale system offer a good trade-off between uti-
lization and performance.

5.3 Application of the Erlang Loss Model to Cellular
Radio Access Network

Let us consider the radio access network (RAN) of a cellular network. A cell is an
area served by a radio station equipment referred to as a base station. The specific
technical name of the BS depends on the technology. It is BTS in GSM, NodeB in
UMTS, evolved NodeB (eNB) in LTE, next generation NodeB (gNB) in 5G. In the
following sub-sections, we will address performance evaluation and dimensioning
problems related to a cellular RAN. For this purpose, we make a simplified model
of the RAN. We assume that the coverage area of base stations (BSs) has a hexago-
nal shape with radius R. The coverage area of the cellular network is therefore tiled
with a hexagonal grid. We use the following notation in the rest of this section.

N number of BSs in the coverage area.
K cluster size, i.e, the number of BSs (cells) making up a reuse cluster.
M overall number of channels available to the cellular operator.
m number of channels assigned to a BS: m = ⌊M∕K⌋.
D reuse distance, i.e., the minimum distance between two BSs using the same

channels.

�

� �

�

5.3 Application of the Erlang Loss Model to Cellular Radio Access Network 225

R cell radius.
Ptx BS transmission power level in a single channel.
U mean number of users in a cell.
𝛿 user density; it is 𝛿 = U∕Sc, where Sc is the area of the cell.
a mean offered traffic intensity of a user.
Y connection holding time.
𝜇 connection completion rate; it is E[Y] = 1∕𝜇.
V sojourn time of a user in a cell.

New connections are generated by a user according to a Poisson process of mean
rate 𝜆 = 𝜇a. The connection holding time Y is distributed according to a negative
exponential random variable with mean 1∕𝜇, unless stated otherwise.

5.3.1 Cell Dimensioning under Quality of Service Constraints

A BS is assigned a number of channels to serve users roaming in the relevant
cell. Channels are reused spatially, i.e., the same channel can be used by differ-
ent BSs provided that their distance makes the reciprocal interference tolerable.
The largest compact set of contiguous cells that are assigned different channels
(no reuse) is referred to as reuse cluster.

We refer to a simple geometrical model of the BS layout, namely, BS are assumed
to be spread uniformly over the plane, according to a hexagonal grid. Figure 5.10
illustrates two examples of hexagonal cell grids and cell clusters of sizes K = 7 and
K = 4. The reuse distance D is defined as the distance between the two closest BSs
that reuse the same radio channel. With the hexagonal geometry of cells, it can be
proved that D = R

√
3K.

Densifying the BSs’ layout, the capacity of the RAN grows. The cost of the RAN
infrastructure grows as well. As a matter of fact, for each BS the operator must
provide power supply and interconnection to the backhaul network, equipment
installation, configuration, management, and maintenance (updates, repairing),

K = 7 K = 4

7
6

5
4

3

2 D

D

R
6

7

4

4

4

4

4

4

4

4
3

3

3

33

3

3

3

2

2

2

2

2

2

2

2

51

1

1

1

1

1

1

1

1

Figure 5.10 Examples of cluster and reuse distance in a cellular network coverage.

�

� �

�

226 5 Multi-Server Queues

cell site planning, permissions, right-of-way, rent. The tipping point where there
is no more incentive to push densification further depends on the density of the
offered traffic.

For example, consider a scenario where a region of area S = 20 km2 is to be
covered with a RAN. Density of users is 𝛿 = 3000 users/km2 and each user offers
an amount of traffic a = 0.1 Erl. The overall offered traffic intensity is A = a𝛿S =
6000 Erl. Assume N BSs are used to cover the tagged region, with a cluster size of
K = 9. Let r = 1 be the revenue per Erlang of carried traffic and c = 5 be the cost
per installed BS. The net profit of the RAN can be expressed as:

P = r N A
N

[
1−B
(

M
min{N,K}

,
A
N

)]
− c N = r A

[
1−B
(

M
min{N,K}

,
A
N

)]
− c N

(5.51)

for N ≥ 1. It is easy to find that the net profit is maximized at N∗ = 569. This cor-
responds to a coverage radius per BS in the order of 100 m.

Going back to our radio access model, we aim at connecting the dimensioning
of the RAN to requirement of radio channel quality at physical layer and require-
ments of user perceived quality at application level. The former is measured by
means of the signal to noise and interference ratio (SNIR) of the radio channel.
The latter is quantified by means of blocking of new connection attempts.

Let us start with modeling the impact of a requirement on SNIR, e.g., SNIR ≥ 𝛾 .
We assume a very simple propagation model, with a power law attenuation with

decay exponent 𝛼. Then, the received power level at distance d from the emitting
source is

Prx = PtxG(d) =
𝜅Ptx

d𝛼
(5.52)

where G(d) is the path gain at distance d.
Let us focus on the downlink (transmission of data from the BS toward the user

terminals). A user is served by the BS from which it receives the strongest signal
level. According to the assumed path loss model, the serving BS is the one closest
to the user terminal.

We consider a worst-case scenario, where the tagged user is at the biggest possi-
ble distance from the serving BS, i.e., at distance R. Therefore, the power level of
the signal received from the serving BS is PtxG(R). On top of this useful signal com-
ponent, the user terminal receives interference from other BSs and background
noise. Interfering BSs are only those that reuse the same radio channel as the
tagged terminal. Interfering BSs form concentric tiers around the serving BS, at
distance of multiples of the reuse distance D. There are 6j interfering BSs on tier j
at distance jD, for j ≥ 1. Taking all of these into account, the SNIR can be written as

SNIR =
𝜅Ptx∕R𝛼

PN +
∑∞

j=1 6j 𝜅Ptx∕(j D)𝛼
≈ D𝛼

6R𝛼
≥ 𝛾

�

� �

�

5.3 Application of the Erlang Loss Model to Cellular Radio Access Network 227

where PN is the background noise power. In the rightmost side we have simpli-
fied the expression of SNIR neglecting the background noise power level PN with
respect to interference and the interfering BSs further than the first tier ones.

From the SINR requirement we find D
R
≥ (6𝛾)1∕𝛼 . On the other hand, it can be

shown that D
R
=
√

3K. Hence, it must be

K ≥ 1
3
(6𝛾)2∕𝛼 (5.53)

This constraint ties together the cell layout parameter K, the physical layer
requirement 𝛾 and the only parameter of the physical channel, 𝛼.

We can model the offered traffic process as follows:

● Each user generates channel requests at a mean rate 𝜆.
● Once a users gets a channel, it holds the channel for the whole duration of its

connection; let 1∕𝜇 be the average holding time.
● When all m channels of a cell are used and a new user request arrives at that

cell, the new request is rejected with no wait.

If we assume that user requests arrive as a Poisson process then we can model
the cell from the point of view of channel usage as an M∕G∕m∕0 queue, i.e., Pois-
son input, general service times, m inter-changeable and equivalent servers, m
customers at most can be admitted into the queue (no wait). This is but the Erlang
queueing model.

Note that we are not accounting for handoffs, hence we are neglecting user
mobility (i.e., we are assuming V = ∞with probability 1). We will relax this restric-
tion in next subsections.

Given the Erlang model, the blocking probability experienced by a user is PB =
B(m,A), where A is the mean intensity of the traffic offered to a BS and m is the
number of radio channels assigned to the BS. We set a requirement p on the block-
ing probability, i.e., we require that PB ≤ p.

Given the overall number of radio channels available to the operator for cell
planning, M, and the reuse cluster size, we have m = ⌊M∕K⌋. The offered traffic
can be expressed as a function of the mean number of users in the cell, U, and the
mean intensity of traffic offered by a user, a: A = aU. In turn, U = 𝛿𝜋R2, where 𝛿

is the user spatial density and the cell shape has been approximated as a circle.
Summing up, the dimensioning evolves through the following steps:

1. Evaluate the minimum cluster size to maintain the requirement on the quality
of physical radio channels, i.e., SNIR ≥ 𝛾 ;

2. Evaluate the maximum traffic intensity that can be sustained by the BS under
the requirement of quality of service provided to users, i.e., PB ≤ p.

3. Given user density and traffic model, derive the maximum feasible cell radius R.

�

� �

�

228 5 Multi-Server Queues

Table 5.1 Example of cell coverage dimensioning in a cellular RAN: reference case.

Symbol Value Dimensioning

𝛾 9 dB (7.94) K ≥ 1
3
(6𝛾)2∕𝛼 = 2.29→K = 3

M 90 A ≤ B−1(M∕K, p) = B−1(90∕3, 0.02)

p 0.02 Amax = 21.93 Erl

𝜆 0.6 req/h U𝜆∕𝜇 = A ≤ Amax→Umax =
Amax

𝜆∕𝜇
1∕𝜇 1.76 min Umax = 1246 users/cell

𝛿 1600 users/km2
𝜋R2

𝛿 = U ≤ Umax→R ≤
√

Umax

𝜋𝛿
≈ 498 m

Table 5.2 Example of cell coverage dimensioning in a cellular RAN: low user density.

Symbol Value Dimensioning

𝛾 9 dB (7.94) K ≥ 1
3
(6𝛾)2∕𝛼 = 2.29→K = 3

M 90 A ≤ B−1(M∕K, p) = B−1(90∕3, 0.02)

p 0.02 Amax = 21.9 Erl

𝜆 0.6 req/h U𝜆∕𝜇 = A ≤ Amax→Umax =
Amax

𝜆∕𝜇
1∕𝜇 1.76 min Umax = 1246 users/cell

𝛿 160 users/km2
𝜋R2

𝛿 = U ≤ Umax→R ≤
√

Umax

𝜋𝛿
≈ 1574 m

The maximum cell radius is related to the density of BS deployment required to
sustain the offered traffic under the given quality constraints, hence it is an indirect
measure of the cost of the RAN infrastructure.

Let us give some numerical examples in Tables 5.1, 5.2, and 5.3. The path gain
exponent is 𝛼 = 4 in all cases.

The first table sets a reference case, with a relatively high user density. As a
result, the cell radius compatible with all constraints turns out to be around 500 m
(still not a really small cell). If we consider lower values of the user density, the
required cell radius increases. With the same density, a more stringent require-
ment on the quality of the radio link in terms of SNIR brings the radius to an
intermediate value (about 1300 m). The reason is that less users can be accommo-
dated because of the increase of the cluster size required to meet the radio link
quality constraint.

�

� �

�

5.3 Application of the Erlang Loss Model to Cellular Radio Access Network 229

Table 5.3 Example of cell coverage dimensioning in a cellular RAN: high channel
quality requirement.

Symbol Value Dimensioning

𝛾 12 dB (15.8) K ≥ 1
3
(6𝛾)2∕𝛼 = 3.25→K = 4

M 90 A ≤ B−1(M∕K, p) = B−1(90∕4, 0.02)

p 0.02 Amax = 14.9 Erl

𝜆 0.6 req/h U𝜆∕𝜇 = A ≤ Amax→Umax =
Amax

𝜆∕𝜇
1∕𝜇 1.76 min Umax = 847 users/cell

𝛿 1600 users/km2
𝜋R2

𝛿 = U ≤ Umax→R ≤
√

Umax

𝜋𝛿
≈ 1298 m

The antennas of the BS can be designed to split the cell area into sectors. As
an example, with 120o antennas three sectors are defined. Sectorization can bring
advantages, since interfering BSs reduce to only those whose signals are received in
the tagged cell sector. However, channels must be partitioned over sectors, hence
smaller-scale systems are designed (less users in a sector with respect to a cell,
less channels assigned to a sector with respect to a cell). The final balance that the
system strikes is to be checked.

Let n denote the number of antenna sectors per BS. We compare three designs,
with n = 1 (no sectorization), n = 3 and n = 6. Numerical results are provided
in Table 5.4 for the following numerical values of the parameters: 𝛾=12 dB,
𝛼 = 4, M = 120, p = 0.02, 𝜆 = 0, 6 req/h, 1∕𝜇 = 1.76 min, 𝛿 = 1600 users/km2. In

Table 5.4 Example of cell coverage dimensioning in a cellular RAN with antenna
sectorization. Parameter values set as in Table 5.1.

n = 1 (no sect.) n = 3 (120o) n = 6 (60o)

K ≥ 1
3

(6
n
𝛾

)2∕𝛼
K ≥ 3.2→K = 4 K ≥ 1.8→K = 3 K ≥ 1.3→K = 3

m =
⌊ M

nK

⌋
m = 30 m = 13 m = 6

Amax = B−1
(M

nK
, p
)

Amax = 21.9 Erl Amax = 7.4 Erl Amax = 2.27 Erl

Umax =
Amax

𝜆∕𝜇
Umax = 1246 Umax = 420 Umax = 129

R =
√

nUmax

𝜋𝛿
R = 498 m R = 500 m R = 393 m

�

� �

�

230 5 Multi-Server Queues

Table 5.5 Example of cell coverage dimensioning in a cellular RAN with antenna
sectorization. Parameter values set as in Table 5.2.

n = 1 (no sect.) n = 3 (120o) n = 6 (60o)

K ≥ 1
3

(6
n
𝛾

)2∕𝛼
K ≥ 3.2→K = 4 K ≥ 1.8→K = 3 K ≥ 1.3→K = 3

m =
⌊ M

nK

⌋
m = 30 m = 13 m = 6

Amax = B−1
(M

nK
, p
)

Amax = 21.9 Erl Amax = 7.4 Erl Amax = 2.27 Erl

Umax =
Amax

𝜆∕𝜇
Umax = 1246 Umax = 420 Umax = 129

R =
√

nUmax

𝜋𝛿
R = 2226 m R = 2240 m R = 1757 m

Table 5.6 Example of cell coverage dimensioning in a cellular RAN with antenna
sectorization. Parameter values set as in Table 5.3.

n = 1 (no sect.) n = 3 (120o) n = 6 (60o)

K ≥ 1
3

(6
n
𝛾

)2∕𝛼
K ≥ 6.48→K = 7 K ≥ 3.7→K = 4 K ≥ 2.6→K = 3

m =
⌊ M

nK

⌋
m = 21 m = 12 m = 8

Amax = B−1
(M

nK
, p
)

Amax = 14.0 Erl Amax = 6.6 Erl Amax = 3.6 Erl

Umax =
Amax

𝜆∕𝜇
Umax = 797 Umax = 375 Umax = 206

R =
√

nUmax

𝜋𝛿
R = 1781 m R = 2118 m R = 2218 m

Table 5.5 the user density has been varied to 𝛿 = 80 users/km2, while all other
numerical parameters are the same as in Table 5.4. Finally, in Table 5.6 the SNIR
requirement is changed to 𝛾 = 18 dB, all other parameter values being the same
as in Table 5.4.

It can be observed that the best design is obtained with n = 3 sectors in the first
two cases, while n = 6 is better in the third one.

5.3.2 Number of Handoffs in a Connection Lifetime

In the following we model the user sojourn time within a cell as a random variable
V with continuous CDF FV (t). The Laplace transform of the corresponding PDF is
denoted with 𝜑V (s). We assume users move according to a constant-speed linear
trajectory, with speed v. The direction of motion is taken at random. To keep the

�

� �

�

5.3 Application of the Erlang Loss Model to Cellular Radio Access Network 231

analysis simple, we approximate the cell shape with a circle of radius R. Then, the
mean sojourn time in a cell with the assumed mobility model is E[V] = 4R∕𝜋v.

Alternatively, we could model the user movement by using a planar random
walk. Then the sojourn time can be identified with the time to absorption of the
random walk process, given the initial position where the user enters the cell, the
absorbing barrier being the cell border. For example, we could model user mobility
by means of a two-dimensional Brownian motion. If the drift is 0 and the variance
coefficient is 𝜎2, assuming a square cell shape of side 2R, the time to absorption V
starting from the center of the cell has the following CCDF (see [60, Ch. 5, p. 222]):

GV (t) =
4
𝜋

∞∑
k=1

(−1)k−1

2k − 1
exp
(
−(2k − 1)2

𝜋
2
𝜎

2

8R2 t
)

(5.54)

The m channels available to a BS are assigned on demand to support user con-
nections, as long as a user is visiting the cell or the connection is up. The channel
holding time is therefore X = min{Y ,V}, where Y is the connection holding time
and V is the user sojourn time in a cell, under the service of the BS covering
that cell. We assume that cell sojourn times are independent of the connection
holding times. Therefore, the CCDF of X is GX (t) = (X > t) = (Y > t,V > t) =
GY (t)GV (t). If Y has a negative exponential PDF with parameter 𝜇, we have

E[X] = ∫
∞

0
GX (t) dt = ∫

∞

0
e−𝜇tGV (t) dt =

1 − 𝜑V (𝜇)
𝜇

(5.55)

Connection set-up requests arriving at a congested BS (i.e., having no idle chan-
nel) are rejected immediately, with no wait. Then, the congestion at connection
level can be modeled by an Erlang loss system with m servers, service time X
and arrival process defined by the connection set-up request arrivals. We assume
this process is Poisson with rate 𝜆. The mean traffic intensity offered to the BS is
A = 𝜆E[X].

We evaluate the probability distribution of making k handoffs during a con-
nection lifetime. Let H be the random variable denoting the number of handoffs
during a connection lifetime, H ≥ 0. We have

(H ≥ k) = (V1 + · · · + Vk ≤ Y) = ∫
∞

0
fY (t)(V1 + · · · + Vk ≤ t) dt

(5.56)

If Y has negative exponential PDF with parameter 𝜇, the rightmost side of
eq. (5.57) is recognized as the Laplace transform of the CDF of the random
variable V1 + · · · + Vk. If sojourn times in different cells are independent of one
another, we can write:

(H ≥ k) = 𝜇 ∫
∞

0
e−𝜇t(V1 + · · · + Vk ≤ t) dt = 𝜇

𝜑
k
V (s)
s

|||||s=𝜇 = 𝜑
k
V (𝜇)

(5.57)

�

� �

�

232 5 Multi-Server Queues

Hence, H has a geometric probability distribution with ratio 𝜑V (𝜇) < 1:

(H = k) = [1 − 𝜑V (𝜇)]𝜑k
V (𝜇), k ≥ 0 (5.58)

It is E[H] = 𝜑V (𝜇)∕[1 − 𝜑V (𝜇)] with 𝜇 = 1∕E[Y]. If V has negative exponential
PDF as well, it is easy to find E[H] = E[Y]∕E[V], which is a rather intuitive result.
The probability that a radio channel is released because the connection has been
torn down is (Y < V) = EY [GV (Y)]. This is just 1 − 𝜑V (𝜇).

5.3.3 Blocking in a Cell with User Mobility

Let us now turn to the evaluation of the traffic load of a cell where both new
connection requests and handoff requests from neighboring cells are offered. Con-
nection holding time is distributed according to a negative exponential random
variable Y with mean E[Y] = 1∕𝜇. We assume the same mobility model as in pre-
vious section. Hence, the mean channel holding time E[X] is given in eq. (5.55)
and the probability that a connection is handed off, before it terminates, is 𝜑V (𝜇).

Let 𝜆lo be the average rate of the Poisson process describing new connection
requests and 𝜆ho the average incoming handoff rate. If the cellular network cov-
erage area is modeled with a uniform hexagonal grid, the average rate of radio
channels being released in a given cell is 𝜆s = 𝜆(1 − p), where 𝜆 is the overall chan-
nel requests rate and p is the loss probability. Of these requests, a fraction 𝜑V (𝜇)
leaves the current cell while the connection is still up, hence gives rise to a handoff
toward one of the six neighboring cells. It motion is at random, 1/6 of the outgo-
ing handoffs will be directed to a specific neighboring cell. Hence, the average
rate of incoming handoffs in a cell is 𝜆ho = 6 ⋅ 1∕6 ⋅ 𝜑V (𝜇)𝜆s = 𝜑V (𝜇)𝜆(1 − p). Fur-
ther, we have p = B(m,A) = B(m, 𝜆E[X]) = B(m, 𝜆[1 − 𝜑V (𝜇)]∕𝜇), where B(⋅, ⋅) is
the Erlang B function. Reminding that 𝜆 = 𝜆lo + 𝜆ho, we end up with the following
equation system with unknowns 𝜆ho and p:

⎧⎪⎨⎪⎩
𝜆ho = 𝜑V (𝜇)(𝜆lo + 𝜆ho)(1 − p)

p = B
(

m, (𝜆lo + 𝜆ho)
1 − 𝜑V (𝜇)

𝜇

) (5.59)

If we let q ≡ 𝜑V (𝜇) and normalize average arrival rates with 𝜇, so as to turn to
traffic intensities, the system can be rewritten as:

⎧⎪⎨⎪⎩
Aho =

q(1 − p)
1 − q(1 − p)

Alo

p = B(m, (Alo + Aho)(1 − q)) = B
(

m,Alo
1 − q

1 − q + qp

) (5.60)

The latter equation can be solved numerically for p, once the fresh traffic inten-
sity Alo, the number of radio channels m and the probability q are given. Then the

�

� �

�

5.3 Application of the Erlang Loss Model to Cellular Radio Access Network 233

0 20 40 60 80

Number of radio channels per cell, m

0

50

100

150

M
e
a
n
 i
n
te

n
s
it
y
 o

f
c
a
rr

ie
d
 t
ra

ff
ic

E[Y] = 120 s

v = 6 km/h

R = 250 m

Alo

Aho

Alo + Aho

(a)

0 20 40 60 80

Number of radio channels per cell, m

0

50

100

150

M
e
a
n
 i
n
te

n
s
it
y
 o

f
c
a
rr

ie
d
 t
ra

ff
ic

E[Y] = 120 s

v = 6 km/h

R = 500 m

Alo

Aho

Alo + Aho

(b)

0 20 40 60 80

Number of radio channels per cell, m

0

50

100

150

M
e
a
n
 i
n
te

n
s
it
y
 o

f
c
a
rr

ie
d
 t
ra

ff
ic

E[Y] =120 s

v=30 km/h

R=500 m

Alo

Aho

Alo + Aho

(c)

Figure 5.11 Mean intensity of carried traffic as a function of the number of radio
channels per cell, with three different parameter settings for the cell radius R and the
user speed v (the mean connection duration is E[Y] = 120 s).

incoming handoff rate is found as 𝜆ho = Aho𝜇. The average rate of handoffs per
unit covered area is therefore Λhoua = 𝜆ho∕(𝜋R2). Note that it is also Alo = a𝛿𝜋R2,
where a is the user mean offered traffic intensity (typically 25 mErl) and 𝛿 is the
user average spatial density.

Note that the above calculations assume that the incoming handoff flow can be
dealt with as a Poisson process. This is an approximation, since the handoff flow
is the carried traffic of an Erlang loss system; it is therefore a smoothed traffic.
Poisson handoff traffic is a good approximation as far as sojourn times have neg-
ative exponential PDFs and loss is small (e.g., less than 0.01), as it should be in a
well-designed cellular network.

Numerical results are plotted in Figure 5.11. The mean connection holding time
is kept fixed at E[Y] = 1∕𝜇 = 120 s, while cell radius R and user speed v are varied,
so as to experiment different sojourn times. We assume that sojourn times have a
negative exponential PDF with mean E[V] = 4R∕(𝜋v). The probability q is given
by q = 𝜑V (𝜇) = 1∕(1 + 𝜇E[V]).

The relative weight of the handoff traffic intensity and of the local traffic inten-
sity changes according to the mobility of users. In case of “speedy” users, the
handoff induced traffic is overwhelming, whereas local traffic prevails for slower
users. The critical parameter is the ratio of the mean connection holding time with
the mean cell sojourn time.

The cell model yields another performance measure of interest: the handoff
rate. Handoffs imply an intense exchange of signaling messages over the inter-
faces of the RAN and a significant amount of processing in all systems ranging
from user terminals up to core network access nodes. Therefore, it is key to assess
how frequently the handoff procedure is invoked in the face of user mobility and
connection holding times.

Figure 5.12 plots the handoff rate as a function of the number m of channels
assigned to each cell (left plot) and as a function of the cell radius R (right plot).
The requirement on connection blocking probability is p = 0.01.

�

� �

�

234 5 Multi-Server Queues

0 20 40 60 80

Number of radio channels per cell, m

0

10

20

30

40

50

60

H
a

n
d

o
ff
 r

a
te

 (
h

o
/c

e
ll/

m
in

)

E[Y] = 120 s

v = 6 (km/h); R = 250 (m)

v = 6 (km/h); R = 500 (m)

v = 30 (km/h); R = 500 (m)

(a)

0 500 1000 1500 2000 2500

Cell radius, R (m)

10–2

H
a

n
d

o
ff
 r

a
te

 (
h

o
/m

in
/k

m
2
) E[Y] = 120 s

v = 10 km/h

m = 8

m = 16

m = 32

m = 64

m = 80

(b)

100

102

104

Figure 5.12 Incoming handoff rate as a function of the number of radio channels per
cell (left plot) and as a function of the cell radius (right plot). The requirement on
connection blocking probability is p = 0.01.

As for Figure 5.12(a), the slower the user mobility, the larger the sojourn times,
and the more probable that few handoffs, if any, are performed during the connec-
tion lifetime. As users move faster, cell border crossing is more frequent and the
handoff rate grows. Whatever the mobility setting, the handoff rate is obviously an
increasing function of the number of radio channel assigned to a cell. This behav-
ior is a consequence of the requirement on connection blocking probability. The
amount of traffic that can be handled by a cell within the given loss requirement
grows with the number of channels that the cell is assigned, hence the handoff
rate grows as well.

Handoff rate per unit coverage area is plotted in Figure 5.12(b). It is apparent
that reducing cell sizes boosts the number of handoffs per unit time and unit area
toward large values, with a steep growth (note that the ordinate scale is logarith-
mic). Along with the reduced effect of multiplexing, this is one critical issue of BS
densification.

5.3.4 Trade-off between Location Updating and Paging

The model developed under user mobility can be used to evaluate another typi-
cal trade-off of cellular networks. While a user equipment (or better, a subscriber
identity module, SIM) roams in the cellular network coverage area, if it is not
engaged in a connection, it updates the central network database whenever it
crosses the border of a Localization Area (LA). An LA is a cluster of contiguous
cells that defines the granularity of the spatial localization of a SIM. When there
is an incoming call to a SIM and the LA where the SIM is currently roaming is
known, a notification message (paging) is sent downlink in each cell making up
the LA where the SIM is deemed to be.

�

� �

�

5.3 Application of the Erlang Loss Model to Cellular Radio Access Network 235

The cost of updating the localization of the SIM grows as LAs are made smaller.
On the other hand, the cost of paging grows as the LA size grows.

In our simple geometrical model of the cellular network coverage, where cells
are all equal and shaped like a hexagon of radius R, the size of an LA can be mea-
sured by the number of cells making up the LA. To tile the entire plane, LAs must
be configured as cell clusters. Hence, the LA size must be chosen among the clus-
ter sizes K given by the formula K = i2 + j2 + ij, where i and j take non-negative
integer values. These are the so called rhomboidal numbers.

Let us consider a coverage area comprising N cells. Let K denote the number of
cells of an LA. We approximate the perimeter of the LA as P(K) = 2𝜋D, where D
is the re-use distance, given by D = R

√
3K in the hexagonal grid. The mean rate

at which a user crosses the cell border is 1∕E[V], where V is the user sojourn time
in a cell. The mean rate of cell border crossing is 𝜆cross = U∕E[V], where U is the
mean number of users per cell. The mean number of crossings per unit of length
of the cell border is 𝜆cross∕(2𝜋R). Then, the mean rate of border crossing for an LA
is 2𝜋D𝜆cross∕(2𝜋R) = 𝜆cross

√
3K = U

√
3K∕E[V].

Denoting the mean offered traffic intensity of connection requests originating
in a cell with Alo, we have U = Alo∕a = 𝜆lo∕(𝜇a). The overall mean rate of location
updating in the entire coverage area is therefore

𝜆LU = N
K

⋅
U
√

3K
E[V]

=
N𝜆lo

√
3

𝜇aE[V]
1√
K

(5.61)

As for paging, new connection requests arrive with a mean rate of 𝜆lo per cell.
Each incoming call must be paged over all cells making up the LA where the
addressed user is roaming. Hence, the mean rate of paging procedures triggered in
a cell is 𝜆loK. The overall number of paging procedures per unit time in the entire
coverage area is 𝜆PG = N𝜆loK.

Let cLU and cPG denote the cost in terms of complexity and resource consumption
of the location updating and the paging procedures. The overall cost per unit time
and per cell for the given coverage area composed of N cells is

c = 1
N
(cLU𝜆LU + cPG𝜆PG) =

1
N

(
cLU

N𝜆lo

√
3

𝜇aE[V]
1√
K

+ cPGN𝜆loK

)
=

wLU√
K

+ wPGK

(5.62)

where wLU and wPG are suitable constants, depending on the parameters of the
cellular network. There is clearly an optimal size of the LA. It is

K∗ =
(wLU

2wPG

)2∕3

=

(
cLU

√
3

2cPGa𝜇E[V]

)2∕3

(5.63)

�

� �

�

236 5 Multi-Server Queues

[t]

0 500 1000 1500 2000 2500

Cell radius, R (m)

0

5

10

15

20

25

O
p
ti
m

a
l
n
u
m

b
e
r

o
f
c
e
lls

 p
e
r

L
A

E[Y] = 120 s

v = 10 km/h

Figure 5.13 Optimal number of cells
making up a location area (LA) versus
the cell radius. The cost of the location
updating procedure is set to twice the
cost of the paging procedure.

Figure 5.13 plots the optimal number of cells for an LA, to minimize the cost
of the mobility management procedures, as a function of the cell radius. The
cost of location updating has been assumed as double of the cost of paging, i.e.,
cLU∕cPG = 2, while the mean offered traffic per user is a = 0.05 Erl and the mean
connection holding time is E[Y] = 1∕𝜇 = 120 s. We assume that E[V] = 4R∕(𝜋v),
where v is the user speed. We let v = 10 km/h. Using the numerical values set

for the parameters, we have, K∗ ≈ 0.7734 ⋅
(

cLUv
cPGa𝜇R

)2∕3
≈
(

9069
R

)2∕3
, where R is

measured in meters.
As R grows, the mean sojourn time in a cell grows as well, and the optimal

number of cells that make up an LA cluster gets smaller. Then, the cost of paging
prevails, given that larger cells imply a lower border crossing rate, hence a lower
rate of location updating.

5.3.5 Dimensioning of a Cell with Two Service Classes

Let us consider a BS provided with two kinds of radio channel: full rate (FR) and
half rate (HR) channels. FR channels offer adequate communication QoS if the
SNR at reception is no less than 𝛾F. HR channels require a higher SNR 𝛾H to provide
adequate QoS, since they use stronger source coding to shrink the source bit rate
to a half of that used in the FR channel, hence the bit error ratio tolerable for the
HR channels is lower than that for FR channels.

We assume a power law with exponent 𝛼 for the geometric attenuation, so that
the SNR 𝛾 is inversely proportional to d𝛼 . To emphasize the dependence of the SNR
on the distance from the BS, we write 𝛾(d). Let R be the coverage radius of the BS,
i.e., the maximum value of d such that 𝛾(d) ≥ 𝛾F. Then, the maximum distance
from BS where HR channels are allowed is the maximum value of d such that
𝛾(d) ≥ 𝛾H. Let this value be r. It must be 𝛾H = 𝛾(r) = 𝛾(R)(R∕r)𝛼 = 𝛾F(R∕r)𝛼 , from
which r can be found as a function of the SNR requirements, i.e., r = R(𝛾F∕𝛾H)1∕𝛼 .

Assume users are uniformly spread over the coverage area, so that the average
number of connection attempts per unit time is proportional to the considered
area. We can consider the average offered traffic from the inner circle around the

�

� �

�

5.3 Application of the Erlang Loss Model to Cellular Radio Access Network 237

BS, with radius r, let it be Ai. Let also Ae denote the average offered traffic in the
outermost ring ranging from distance r up to distance R from the BS. The over-
all offered traffic is A = Ai + Ae, where Ai = A𝜋r2∕(𝜋R2) = A(𝛾F∕𝛾H)2∕𝛼 = A𝜉 and
Ae = A(1 − 𝜉), with 𝜉 = (𝛾F∕𝛾H)2∕𝛼 .

The spectral resource assigned to the BS is equivalent to m FR channels. It can
be configured by using part of it as FR channels and the remaining as HR chan-
nels. Let mF and mH denote the number of FR and HR channels, respectively. The
resource constraint is therefore mF + 2mH = m for a given value of m.

We can state the following optimization problem: maximize the mean offered
traffic intensity A subject to the following constraints.

1. Traffic QoS requirement. The connection blocking probability is no more than
p.

2. Radio channel QoS requirement. The SNR of FR (HR) radio channel is no less
than 𝛾F (𝛾H).

3. Resource allowance. The number of FR and HR channel must satisfy
mF + 2mH ≤ m.

We assume that user mobility is negligible during a connection lifetime. This
leads to reliable results if there is little chance that users move from the outer to
the inner cell area or vice versa during a connection lifetime.

The optimization strategy is based on the remark that connection requests
offered in the inner circle can be served by either kind of channel, whereas
outermost connection requests must use a FR channel. Let q be the probability
that a connection request originating from the inner circle takes an HR channel.
The part of the overall average offered traffic loading HR channels is therefore
AH = q𝜉A, while AF = (1 − q)𝜉A + (1 − 𝜉)A = (1 − q𝜉)A is the average offered
traffic loading the FR channels, that is to say the sum of traffic coming from the
outermost part of the cell plus a fraction 1 − q of the traffic of the inner circle.
By assuming Poisson connection request arrivals and a pure loss system, the
blocking probability can be expressed as

P =
AFB(mF,AF) + AHB(mH,AH)

A
= (1 − q𝜉)B(mF, (1 − q𝜉)A) + q𝜉B(mH, q𝜉A)

(5.64)

Thanks to the monotonicity of the Erlang loss function, the constraint on the
loss probability must be saturated, i.e., we set P = p. For each fixed mF from 1 up
to m, we search for the value of q that maximizes A, under the constraint:

(1 − q𝜉)B(mF, (1 − q𝜉)A) + q𝜉B(2(m − mF), q𝜉A) = p (5.65)

where m and p come from constraints and 𝜉 is a known quantity. Let A∗ denote
the maximum value of the mean offered traffic and q∗ the optimal value of the
channel selection probability that achieves that maximum.

�

� �

�

238 5 Multi-Server Queues

0 10 20 30 40

Number of FR channels

0

10

20

30

40

50

M
a
x
 o

ff
e
re

d
 t
ra

ff
ic

m = 40

p = 0.02

(a)

0 10 20 30 40

Number of FR channels

0

0.2

0.4

0.6

0.8

1

H
R

 a
llo

c
a
ti
o
n
 p

ro
b
a
b
ili

ty

(b)

α = 4

γ
F
 = 9 dB

γ
H
 = 12 dB

m = 40

p = 0.02

α = 4

γ
F
 = 9 dB

γ
H
 = 12 dB

Figure 5.14 Maximum value of the cell offered traffic (left plot) and optimum value of
the probability of choosing a half-rate channel for inner circle connections (right plot) as
a function of the number of full-rate channels for given constraints on the connection
blocking probability, on the quality of radio channels, and on the overall number m of FR
channels.

Figure 5.14(a) shows the plot of A∗ as a function of mF for m = 40, p = 0.02 and
𝜉 = 1∕

√
2. The optimum value q∗ is plotted against mF in Figure 5.14(b). As long

as the number of FR channels is below a threshold, it is not convenient to select FR
channels in the inner circle around the BS, that is, q∗ = 1. When there are plenty
of FR channels, q∗ becomes less than 1, i.e., it is best to select a FR channel, rather
than an HR one, in the inner circle with probability 1 − q∗. The optimal channel
configuration corresponds to the breakpoint of the curve of q∗ in Figure 5.14(b).

5.4 The M∕M∕m Queue

In the M∕M∕m queue customers arrive according to a Poisson process with mean
rate 𝜆. Service times are i.i.d. random variables having a negative exponential PDF
with mean 1∕𝜇, independently of the server that takes care of the service. Service and
inter-arrival times are independent of one another.

The number Q(t) of customers in the queue at time t is a Markov process under
the assumptions holding for the M∕M∕m queue. No information is required on
the age of the service under way or the inter-arrival time age at time t to be able
to predict the future evolution of the system after time t, once the number Q(t) of
customers residing in the system is assigned.

The Markov process Q(t) is a birth-death one. Since no bulk arrival or bulk ser-
vice are allowed, when a transition out of the state Q = k occurs, it can only lead
to either k + 1 or k − 1. We could derive results for the M∕M∕m queue directly as
special instance of birth-death process. We prefer instead to give a full account, by
deriving the transition rates from first principles, for illustrative purposes.

�

� �

�

5.4 The M∕M∕m Queue 239

Let A(t1, t2) and D(t1, t2) denote the number of arrivals and departures in (t1, t2],
respectively. The birth rate can be found from

(Q(t + Δt) = k + 1 | Q(t) = k) =

=
∞∑

j=1
(A(t, t + Δt) = j,D(t, t + Δt) = j − 1 | Q(t) = k)

=
∞∑

j=1
(A(t, t + Δt) = j)(D(t, t + Δt) = j − 1 | Q(t) = k)

=
∞∑

j=1

(𝜆Δt)j

j!
e−𝜆Δt(D(t, t + Δt) = j − 1 | Q(t) = k)

= 𝜆Δte−𝜆Δte−min{k,m}𝜇Δt + o(Δt) = 𝜆Δt + o(Δt)

forΔt → 0 and all k ≥ 0. The second equality is a consequence of the independence
of service and inter-arrival times.

The probability of seeing a departure from the queue is a function of the state of
the queue: if k customers are in the queue, there are min{k,m} servers working
simultaneously. Let X̃j(t) be the residual service time of the j-th server at time t, for
j = 1,… ,min{k,m}. Then

(D(t, t + Δt) = 0 | Q(t) = k) = (X̃j(t) > Δt, j = 1,… ,min{k,m})

=
min{k,m}∏

j=1
(X̃j(t) > Δt)

=
min{k,m}∏

j=1
e−𝜇Δt = e−min{k,m}𝜇Δt

Hence, we conclude for all k ≥ 0:

lim
Δt→0

(Q(t + Δt) = k + 1 | Q(t) = k)
Δt

= 𝜆 (5.66)

Similarly, it is easy to derive that for all k ≥ 0 and h ≥ 2:

lim
Δt→0

(Q(t + Δt) = k + h | Q(t) = k)
Δt

= 0 (5.67)

As for the death rates, we have

(Q(t + Δt) = k − 1 | Q(t) = k) =

=
∞∑

j=1
(A(t, t + Δt) = j − 1,D(t, t + Δt) = j | Q(t) = k)

=
∞∑

j=1
(A(t, t + Δt) = j − 1)(D(t, t + Δt) = j | Q(t) = k)

= e−𝜆ΔtP1 + 𝜆Δte−𝜆ΔtP2 + o(Δt)

�

� �

�

240 5 Multi-Server Queues

where

P1 = (D(t, t + Δt) = 1 | Q(t) = k)

= (∃j1 ∶ X̃j1
(t) ≤ Δt, X̃j(t) > Δt, j ≠ j1, j ∈ [1,min{k,m}])

=
(

min{k,m}
1

)
(1 − e−𝜇Δt)e−(min{k,m}−1)𝜇Δt = min{k,m}𝜇Δt + o(Δt)

and

P2 = (D(t, t + Δt) = 2 | Q(t) = k)

≤ 1 − (D(t, t + Δt) = 1 | Q(t) = k) − (D(t, t + Δt) = 0 | Q(t) = k)

= 1 − e−min{k,m}𝜇Δt − min{k,m}𝜇Δt + o(Δt) = o(Δt)

Summing it up, we get for all k ≥ 1

(Q(t + Δt) = k − 1 | Q(t) = k) = min{k,m}𝜇Δt + o(Δt) (5.68)

Hence

lim
Δt→0

(Q(t + Δt) = k − 1 | Q(t) = k)
Δt

= min{k,m}𝜇 , k ≥ 1. (5.69)

It can easily be shown also that

lim
Δt→0

(Q(t + Δt) = k − h | Q(t) = k)
Δt

= 0 , (5.70)

for all k ≥ h and all h ≥ 2. We have now all the information required to fill up the
transition rate matrix Q of the continuous time Markov process Q(t):

Qkj =

⎧⎪⎪⎨⎪⎪⎩

𝜆 j = k + 1, k ≥ 0
min{m, k}𝜇 j = k − 1, k ≥ 1
−𝜆 − min{m, k}𝜇 j = k, k ≥ 0
0 |j − k| > 1

(5.71)

Since 𝜆, 𝜇 > 0, the Markov chain is irreducible. The limiting state probabilities
xi ≡ (Q(t) = i), when they exist, are the unique nontrivial solution of the linear
system xQ = 𝟎, with the normalization condition xe = 1. Here x = [x0 x1 x2 …]
and e is a column vector of 1’s. The linear system can be written in a compact form
by introducing the notation 𝜇(k) ≡ min{k,m}𝜇. We get:

𝜆x0 = 𝜇(1)x1 , k = 0 (5.72)

𝜆xk−1 + 𝜇(k + 1)xk+1 = [𝜆 + 𝜇(k)]xk , k > 0 (5.73)

Let Ao ≡ 𝜆∕𝜇 be the mean intensity of the offered traffic. Since there is no loss,
this is also the mean carried traffic. Therefore the utilization factor is 𝜌 = Ac∕m =
Ao∕m = 𝜆∕(m𝜇). In the sequel, to simplify notation, we drop the subscript o of the
mean offered traffic intensity.

�

� �

�

5.4 The M∕M∕m Queue 241

We could apply the general formulas holding for the birth-death processes to
eqs. (5.72) and (5.73). It is however more instructive to solve them directly. By
rearranging terms, we get:

𝜇(1)x1 − 𝜆x0 = 0 , k = 0 (5.74)

𝜇(k)xk − 𝜆xk−1 = 𝜇(k + 1)xk+1 − 𝜆xk , k > 0 (5.75)

It is apparent that the differences 𝜇(k)xk − 𝜆xk−1, k ≥ 1, are independent of k and
all equal to 0. Therefore, we have xk = 𝜆

𝜇(k)
xk−1, for k ≥ 1. In the end

xk = x0

k∏
j=1

𝜆

𝜇(j)
=
⎧⎪⎨⎪⎩

x0
Ak

k!
1 ≤ k ≤ m − 1

x0
Ak

m!mk−m
m ≤ k

(5.76)

where A = 𝜆∕𝜇. The probability x0 is found by the normalization condition:

1 =
∞∑

k=0
xk = x0

[m−1∑
k=0

Ak

k!
+ Am

m!

∞∑
k=m

Ak−m

mk−m

]
= x0

[m−1∑
k=0

Ak

k!
+ Am

m!
1

1 − A∕m

]
(5.77)

hence

x0 = 1∑m−1
k=0

Ak

k!
+ Am

m!
1

1−A∕m

(5.78)

and finally

xk =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ak

k!∑m−1
k=0

Ak

k!
+ Am

m!
1

1−A∕m

0 ≤ k ≤ m − 1

Ak

m!mk−m∑m−1
k=0

Ak

k!
+ Am

m!
1

1−A∕m

k ≥ m

(5.79)

This result holds provided that the series in eq. (5.77) converges. This is true if
and only if A∕m < 1, i.e., 𝜌 < 1. This is not a surprising condition for an infinite size
queueing system. It says that the mean arrival rate shall be less than the maximum
service rate of the system for stability.

We assume this condition holds and proceed with the derivation of performance
metrics.

The mean number of customers in the queue is E[Q] =
∑∞

k=1 kxk. From this we
derive the mean system time by applying Little’s law.

The main performance metrics of the M∕M∕m queue concern delays. A cus-
tomer arriving at a queue where there are less than m customers will experience

�

� �

�

242 5 Multi-Server Queues

no wait, since there is at least one available server. Therefore, the probability of
delay, i.e., Pd ≡ (W > 0) is

Pd =
∞∑

k=m
xk =

Am

m!
1

1−A∕m∑m−1
k=0

Ak

k!
+ Am

m!
1

1−A∕m

≡ C(m,A) (5.80)

This is a function of A ≥ 0 and m ≥ 1. It is called the Erlang-C formula and often
denoted with C(m,A). We have

C(m,A) = B(m,A)
1 − A

m
+ A

m
B(m,A)

(5.81)

which yields to numerical iterative calculation based on the recursions for the
Erlang B-formula. Then, the probability of delay is Pd = C(m,A).

The waiting time for FCFS service is 0 if the arriving customer finds the system
in any of the states between 0 and m − 1. Otherwise, the customer has to wait
the residual service time of the customer that ends its service first, then the time
required for assigning servers to the k − m customers waiting in front of it. Thanks
to the memoryless property of the negative exponential PDF, all of these times
share the same negative exponential PDF with mean 1∕(m𝜇). Therefore,

𝜑W (s) =
m−1∑
k=0

xk +
∞∑

k=m
xk

(
m𝜇

s + m𝜇

)k−m+1

(5.82)

= 1 − Pd + Pd

∞∑
k=m

(
m𝜇

s + m𝜇

)k−m+1 (
1 − A

m

) Ak−m

mk−m
(5.83)

= 1 − Pd + Pd

(
m𝜇

s + m𝜇

)(
1 − A

m

) ∞∑
h=0

(
A𝜇

s + m𝜇

)h

(5.84)

= 1 − Pd + Pd

(
1 − A

m

) (m𝜇

s+m𝜇

)
1 − 𝜆

s+m𝜇

(5.85)

= 1 − Pd + Pd
m𝜇 − 𝜆

s + m𝜇 − 𝜆
(5.86)

This can be easily inverted, and the following CDF is found:

FW (t) = 1 − Pde−(m𝜇−𝜆)t
, t ≥ 0. (5.87)

The obtained expression is extremely simple: it resembles the expression of the
CDF of the M∕M∕1 (to which it reduces for m = 1), the only difference being that
the serving rate is replaced by the collective serving rate of all m servers and the
probability of delay has a more complex expression (C(m,A) instead of simply 𝜌).

The mean waiting time is

E[W] =
Pd

m𝜇 − 𝜆
(5.88)

�

� �

�

5.4 The M∕M∕m Queue 243

The system time can be obtained by noting that S = W + X and W and X are
independent random variables. Then, 𝜑S(s) = 𝜑W (s) 𝜇

s+𝜇
. The mean system time is

E[S] = E[W] + E[X] =
Pd

m𝜇 − 𝜆
+ 1

𝜇
(5.89)

It is interesting to study the delay performance of the multi-server queue for
large systems. Let the number of servers be m = N + 𝛽

√
N and the offered traffic

A = N. With this scaling, the utilization coefficient is 𝜌 = A∕m = 1
1+𝛽∕

√
N

. Using
the result of Theorem 5.1, it can be verified that:

C(N + 𝛽

√
N,N) =

B(N + 𝛽

√
N,N)

1 − 𝜌 + 𝜌B(N + 𝛽

√
N,N)

∼

(
1 + 𝛽√

N

)
𝜙(𝛽)

𝛽Φ(𝛽) + 𝜙(𝛽)
(5.90)

as N → ∞. Rewriting eq. (5.88) with the scaling expression of m and A, we have

E[W] = E[X]
C(N + 𝛽

√
N)

N + 𝛽

√
N − N

∼ E[X] 𝜙(𝛽)
𝛽[𝛽Φ(𝛽) + 𝜙(𝛽)]

1√
N

(5.91)

We see that large systems bring about a significant delay performance advan-
tage: the utilization coefficient of the servers tends to 1, while the mean waiting
time tends to 0. The performance benefit of large-scale systems motivates the suc-
cess of the cloud paradigm, based on data centers that concentrate from several
tens of thousands to hundreds of thousands of servers, to which a large flow of
jobs is submitted.

5.4.1 Finite Queue Size Model

The M∕M∕m model can be easily extended to account for finite room in the wait-
ing line. The M∕M∕m∕K model can accommodate at most m + K customers, m of
which under service, the others waiting for their turn. Customers arriving when
the queue is blocked, i.e., Q(t) = m + K, are rejected and lost to the system.

This queue is described by a birth-death process on the state space {0,… ,m +
K}. The transition rates are exactly the same as for the M∕M∕m queue, except that
in the present case the birth-death process is truncated to m + K + 1 states.

Going through all steps we have done with the M∕M∕m model, it is easy to rec-
ognize that the Markov process limiting state probabilities are given by:

xk =
⎧⎪⎨⎪⎩

x0
Ak

k!
0 ≤ k ≤ m

x0
Ak

m!mk−m
m + 1 ≤ k ≤ m + K

(5.92)

The probability x0 is found using the congruence equation
∑m+K

k=0 xk = 1.

�

� �

�

244 5 Multi-Server Queues

The probability distribution {xk}0≤k≤m+K refers to a general time during sta-
tistical equilibrium. Since this is a loss system, the probability distribution seen
by arrivals and departures may be different. Specifically, thanks to the Poisson
arrivals, the probability distribution seen by arrivals is the same as {xk}0≤k≤m+K .

The probability distribution seen by an arrival that joins the queue (or,
which is the same, by a departing customer) is given by 𝜋k = 𝜆xk∕Λs,
where Λs =

∑m+K−1
k=0 𝜆xk = 𝜆(1 − xm+K). Hence, it is 𝜋k = xk∕(1 − xm+K) for

k = 0,… ,m + K − 1.
As for metrics, we have:

Pd =
∑m+K−1

k=m 𝜋k

PL = xm+K

E[Q] =
∑m+K

k=0 kxk

E[W] = 1
m𝜇

∑m+K−1
k=m (k − m + 1)𝜋k

E[S] = E[W] + 1
𝜇

(5.93)

Probability distribution can also be found in an elementary way, though leading
to cumbersome expressions. For example, the Laplace transform of the waiting
time PDF in the case of FCFS service is given by:

𝜑W (s) = 1 − Pd +
m+K−1∑

k=m
𝜋k

(
m𝜇

s + m𝜇

)k−m+1

(5.94)

Finally, note that the spacial case K = 0 corresponds to the Erlang loss system
with negative exponential service times.

5.4.2 Resource Sharing versus Isolation

We compare different ways of allocating serving capacity to a flow of service
requests. We consider m flows of service requests arriving according to a Poisson
process, each one at a mean rate 𝜆. An overall serving capacity with mean serving
rate m𝜇 is available.

We compare three different arrangements of the service system (a sketch of the
three system configurations is shown in Figure 5.15):

1. m different queues are provided, one for each service request flow; each queue
is equipped with an equal share of the serving capacity, i.e., serving rate 𝜇 (sep-
arate queueing).

2. A single queue with m different servers, each having serving rate 𝜇 (serving
capacity slicing and parallel service).

3. A single queue with the whole serving capacity, with mean rate m𝜇 (fully shared
system).

�

� �

�

5.4 The M∕M∕m Queue 245

Figure 5.15 Diagram of three
alternative service system
configurations: (1) m separate queues;
(2) a multi-server queue (aggregation of
arrivals); (3) a single queue (aggregation
of arrivals and of service capacity).

...
...

1 2 3

λ

λ

λ

μ

μ

μ

mλ

μ
μ

μ

mλ
mμ

The last approach corresponds to assigning the whole serving capacity in the
system to one service demand at a time. In the first approach both the arrival flow
of service demands and the service capacity are split in advance, so as to manage
m parallel queueing systems. The second solution is an intermediate one: the flow
of service demand is dealt with as a whole, but the serving capacity is sliced into m
portions that are assigned to pending service requests, so that possibly more than
one request can be served in parallel.

In the first case, the system model consists of m M∕M∕1 queues, each of which
has a Poisson arrival process of mean rate 𝜆 and a single server with mean serving
rate 𝜇. Then, the mean system time is

E[S1] =
1

𝜇 − 𝜆
(5.95)

The second system configuration is modeled as an M∕M∕m queue with a single
Poisson arrival process with mean rate m𝜆 and m servers, each one having a mean
serving rate of 𝜇. The mean system time is then

E[S2] =
Pd

m𝜇 − m𝜆
+ 1

𝜇
=

C(m,m𝜆∕𝜇)
m(𝜇 − 𝜆)

+ 1
𝜇

(5.96)

where C(⋅, ⋅) is the Erlang-C formula.
Finally, in the third system configuration, we have a unique M∕M∕1 with Pois-

son input with a mean rate m𝜆 and a single server with serving capacity m𝜇. Then,
the mean system time is

E[S3] =
1

m𝜇 − m𝜆
(5.97)

The normalized mean system times of the three arrangements are compared
in Figure 5.16(a) as a function of the load coefficient a, defined as a = 𝜆∕𝜇. The
normalization is done with respect with 1∕𝜇. Then, all three expressions depend
only on the two parameters a and m. We assume m = 10 and let a vary between 0
and 1 (the upper limit of the load factor to guarantee the stability of the considered
queueing systems).

It is apparent that the aggregated system of the third approach offers the
best performance, the array of m single-server queues performs worst, and
the multi-server system lies in between. In other words, complete sharing of

�

� �

�

246 5 Multi-Server Queues

0 0.2 0.4 0.6 0.8 1
10−1

Load coefficient, a

M
e

a
n

 n
o

rm
a

liz
e

d
 s

y
s
te

m
 t

im
e

,
E

[S
]/

E
[X

]

m = 10
m M/M/1
M/M/1
M/M/m

(a)

0 0.2 0.4 0.6 0.8 1

Load coefficient, a

M
e

a
n

 n
o

rm
a

liz
e

d
 s

y
s
te

m
 t

im
e

,
E

[S
]/

E
[X

]

m = 10

X̂0 = 0.2
m M/M/1
M/M/1
M/M/m

(b)

100

101

102

10−1

100

101

102

Figure 5.16 Comparison of the mean system time with different arrangements of the
serving capacity; the load factor is a = 𝜆∕𝜇. Left plot: fully scaling service times. Right
plot: service time including a nonscaling overhead component.

resources and aggregation of demand appear to improve delay performance
of service systems. As the scale of systems grows up (that is to say, the service
demand rate and the serving rate grow proportionally), we can expect that the
performance improve, for the same level of utilization of the resources.

The obtained result depends on the crucial hypothesis that the time to serve a
request in inversely proportional to m, i.e., moving from a system made up of m
separate servers of mean rate 𝜇 to a single server with serving rate m𝜇, the mean
service time gets divided by m. Let us now examine a variation of the setting above,
where the serving time has a component that does not scale with m. Let X be a
negative exponential random variable that represents the service time. Then the
mean value of X depends on which system configuration is considered:

1. With the array of m M∕M∕1 queues, we let E[X] = X0 + 1∕𝜇 for each queue.
2. With the multi-server queue M∕M∕m, we let E[X] = X0 + 1∕𝜇 for each server.
3. With the single M∕M∕1 queue, we let E[X] = X0 + 1∕(m𝜇).

Note that the mean service time has a constant contribution, that does not scale
with m, along with a second component, that behaves as before.

It is not difficult to find the mean system times in this new scenario. It is

E[S1] =
1 + 𝜇X0

𝜇 − 𝜆(1 + 𝜇X0)
(5.98)

E[S2] =
(1 + 𝜇X0)C(m,m𝜆(1 + 𝜇X0)∕𝜇)

m[𝜇 − 𝜆(1 + 𝜇X0)]
+ 1

𝜇
+ X0 (5.99)

E[S3] =
1 + m𝜇X0

m[𝜇 − 𝜆(1 + m𝜇X0)]
(5.100)

�

� �

�

5.5 Infinite Server Queues 247

where C(⋅, ⋅) is the Erlang-C formula. It is apparent that the mean system times
normalized with respect to 1∕𝜇 depend on the three nondimensional parameters
m, a = 𝜆∕𝜇, X̂0 = 𝜇X0. The upper limit of the load coefficient for the first two
approaches is 1∕(1 + X̂0), whereas it is smaller and equal to 1∕(1 + mX̂0) for the
single queue.

For the numerical evaluation we set X̂0 = 0.2. Figure 5.16(b) shows that the
aggregated serving system outperforms the others as long as the load coefficient
is small enough. For bigger loads, the multi-server system configuration becomes
definitely the best solution, as far as the mean delay is concerned.

The lesson learned from this example is that aggregation of the demand and of
the service capacity is beneficial (i.e., it offers better delay performance) as long
as the service time of customers scales in inverse proportion with the aggregation
parameter (m in our case). If instead there is some nonscaling part of the service
time, it is not necessarily convenient to collapse the serving system in a unique
super-powerful serving entity. In that case it might be more effective to aggregate
the demand (sharing of the waiting line), but to keep serving capacity split into a
number of separate servers that can run in parallel. Slower servers are less penal-
ized by the “overhead” imposed by the nonscaling service component.

WiFi is a real system where the technology evolution is demonstrating tangibly
the finding of this example. The air bit rate offered by the PHY layer has been mul-
tiplied by a factor of about 3500 over 15 years (from 2 Mbps of the original IEEE
802.11 in 1999 up to the almost 7 Gbps of the IEEE 802.11ac version in 2014). How-
ever, the effective realized throughput has not kept that pace, due to inter-frame
spaces, back-off slots, MAC level ACK time and other MAC and physical related
overhead, that do not scale as the air bit rate grows.

5.5 Infinite Server Queues

Infinite server queues aim to model service systems where customers do not “inter-
fere” with one another, i.e., there is no competition for the allocation of the serving
capacity, given that there is an unlimited amount of it. The time that a customer
spends in the system amounts to just its own service time, independently of how
many other customers are visiting the system. This kind of models is especially
useful to represent systems that impose a delay on the customers in transit, yet
we can neglect any form of serving resource limitation. As an example, let us con-
sider a network composed on N links. Every now and then links go out-of-service
(e.g., for maintenance or upgrade purposes, for a failure). Assume up-times are
i.i.d. random variables. Then, each running link is “waiting” for an out-of-service
to terminate its own up-time. This kind of system lends itself quite naturally to an
infinite server queueing model where customers are links and the service time of

�

� �

�

248 5 Multi-Server Queues

the queue is the up-time. As another example, the number of users camping the
area covered by a base station of a cellular network can be identified as the num-
ber of customers in an infinite server queue. Here the arrival process represents
user arrivals within the coverage area and the service time models the amount
of time that a user spends roaming within the base station coverage area, which
depends on the user mobility. To a good extent, we can safely assume that users
do not interact among themselves (e.g., in a macro-cell). The unlimited “serving
capability” of the first example is the appearance of out-of-service events, while
in the second example it is the space where users move. This last case points out
that the resource need not be strictly “unlimited” (the amount of space covered
by a given base station is not). What matters is that there is “enough” resource for
making contentions among customers negligible (in our example, it is unrealis-
tic that a new arriving user does not get into the area covered by the base station
because it sees too many people already there, unless we are referring to very small
cells, e.g., femto-cells).

We focus on infinite server queues with Poisson input and general i.i.d. ser-
vice times, denoted with M∕G∕∞. This simplifying hypothesis makes them nicely
tractable. Let Pk(t) = (Q(t) = k)denote the probability that there are Q(t) = k cus-
tomers in the M∕G∕∞ queue at time t, given that at time t = 0 the queue was
empty. If there are n arrivals in (0, t], then the event of finding k customers in the
queue at t is equivalent to the event that exactly k out of the n customers are still
in service at t. Since customers are independent of one another, given the proba-
bility s(t) that a customer arriving during the interval (0, t] is still in service at t,
we have

(Q(t) = k|Q(0) = 0,A(0, t) = n) =
(n

k

)
[s(t)]k[1 − s(t)]n−k

, n ≥ k ≥ 0

(5.101)

Thanks to a well-known property of Poisson arrivals (see Theorem 3.6), given
that there are n arrivals in (0, t], they are uniformly distributed in the considered
interval. Let U = u ∈ (0, t) be the arrival time of a customer with service time X .
The probability that it is still in service at t, given the arrival time u, is

s(t|u) = (X > t − u) = 1 − FX (t − u) (5.102)

By removing the conditioning on the random variable U, that is uniformly dis-
tributed over (0, t], we get

s(t) = 1
t ∫

t

0
s(t|u) du = 1

t ∫
t

0
[1 − FX (u)] du (5.103)

�

� �

�

5.5 Infinite Server Queues 249

By introducing the expression of s(t) into eq. (5.101) and removing the condi-
tioning on the number of arrivals we get finally for k ≥ 0

Pk(t) =
∞∑

n=k

(𝜆t)n

n!
e−𝜆t
(n

k

)[1
t ∫

t

0
FX (u) du

]n−k[
1
t ∫

t

0
(1 − FX (u)) du

]k

=

(
𝜆 ∫ t

0 (1 − FX (u)) du
)k

k!
e−𝜆t

∞∑
n=k

1
(n − k)!

[
𝜆∫

t

0
FX (u) du

]n−k

=

(
𝜆 ∫ t

0 (1 − FX (u)) du
)k

k!
exp
(
−𝜆∫

t

0
(1 − FX (u)) du

)
(5.104)

This is nothing but a Poisson probability distribution with mean
𝜆 ∫ t

0 (1 − FX (u)) du. For the M∕G∕∞ queue we can therefore obtain a sim-
ple, explicit form even of the transient probability distribution of the number of
customers in the queue.

As t → ∞, the integral ∫ t
0 (1 − FX (u)) du tends to E[X]. Hence we get

pk ≡ lim
t→∞

Pk(t) =
(𝜆E[X])k

k!
exp(−𝜆E[X]) (5.105)

The main result is that the limiting probability distribution of the number of
customers in an M∕G∕∞ queue is simply a Poisson one, with mean 𝜆E[X]. It is
insensitive to the form of the PDF of service times. It depends only on the mean
of the service time. The number of busy servers is by definition the offered traffic.
Hence, its mean value is the mean intensity of the offered traffic, Ao = 𝜆E[X].

It is possible to find an expression also for the Laplace transform of the PDF of
the busy period even for a more general system than M∕G∕∞. Let C = Y + I be
the busy cycle, i.e., the sum of the busy period Y and the ensuing idle time I. For
a G∕G∕∞ queue. The sequence of the busy cycles forms a renewal process. Then,
we can show the following.

Theorem 5.3 In the G∕G∕∞ queue, assuming the system is empty initially, the
Laplace transform of the probability of empty system P0(t) = (Q(t) = 0 |Q(0) =
0) is

P∗
0(s) = ∫

∞

0
P0(t)e−st dt = 1

s
−

𝜑T(s)
s

1 − 𝜑Y (s)
1 − 𝜑C(s)

(5.106)

Proof: Given that the system starts empty at time 0, the probability that it is empty
at time t can be expressed as the sum of the probabilities of two disjoint events: (i)
the first arrival occurs after time t; (ii) the first arrival occurs at x ∈ (0, t), but its
busy period and any other ensuing busy periods in the interval (0, t) are over by

�

� �

�

250 5 Multi-Server Queues

time t. In this second case, we use the probability Q0(t) that the a system is found
empty at time t, given that a busy period starts at 0. Then:

P0(t) = (T > t) + ∫
t

0
Q0(t − x)fT(x) dx (5.107)

The probability Q0(t) can be found with a regenerative argument as well. Two
cases are possible, given that at time 0 a busy period starts: (i) t falls immediately
after the end of the busy period and before the next busy period starts, i.e.,
Y ≤ t < C; and (ii) the first busy cycle lasts a time x; then, we can invoke the
probability Q0(t − x), since C = x means that at time x a new busy period starts.
Summing up, we have

Q0(t) = (Y ≤ t < C) + ∫
t

0
Q0(t − x)fC(x) dx

= GC(t) − GY (t) + ∫
t

0
Q0(t − x)fC(x) dx

where GV (t) ≡ (V > t) denotes the CCDF of the random variable V . Taking the
Laplace transform, we get

Q∗
0(s) = ∫

∞

0
Q0(t)e−st dt =

1 − 𝜑C(s)
s

−
1 − 𝜑Y (s)

s
+ Q∗

0(s)𝜑C(s) (5.108)

hence

Q∗
0(s) =

𝜑Y (s) − 𝜑C(s)
s[1 − 𝜑C(s)]

(5.109)

Going back to eq. (5.107), we have

P∗
0(s) =

1 − 𝜑T(s)
s

+ Q∗
0(s)𝜑T(s) =

1
s
−

𝜑T(s)
s

1 − 𝜑Y (s)
1 − 𝜑C(s)

(5.110)

◾

In the special case of M∕G∕∞, we have 𝜑C(s) = 𝜑I(s)𝜑Y (s) = 𝜑Y (s)𝜆∕(s + 𝜆) and
𝜑T(s) = 𝜆∕(s + 𝜆). Then, the result of Theorem 5.3 can be used to yield

𝜑Y (s) = 1 + s
𝜆
− 1

𝜆P∗
0(s)

(5.111)

where P∗
0(s) = ∫ ∞

0 e−stP0(t) dt and P0(t) = exp
(
−𝜆 ∫ t

0 [1 − FX (u)] du
)

.
We can calculate the mean busy period E[Y] from these expressions. Applying

the final value theorem and using the expression of P0(t), we find

lim
s→0

sP∗
0(s) = lim

t→∞
P0(t) = lim

t→∞
e−𝜆 ∫ t

0 [1−FX (u)]du = e−𝜆E[X] (5.112)

From eq. (5.111) we derive P∗
0(s) = [s + 𝜆 − 𝜆𝜑Y (s)]−1 and hence, applying de

l’Hôpital rule,

lim
s→0

sP∗
0(s) = lim

s→0

s
s + 𝜆 − 𝜆𝜑Y (s)

= lim
s→0

1
1 − 𝜆𝜑

′
Y (s)

= 1
1 + 𝜆E[Y]

(5.113)

�

� �

�

5.5 Infinite Server Queues 251

Equating the two expression we find finally:

E[Y] = e𝜆E[X] − 1
𝜆

(5.114)

In the special case of deterministic service times, a closed form expression can
be given for P∗

0(s) and for the Laplace transform of the PDF of the busy period:

P∗
0(s)|M∕D∕∞ = s + 𝜆e−(s+𝜆)D

s(s + 𝜆)
(5.115)

𝜑Y (s)|M∕D∕∞ = (s + 𝜆)e−(s+𝜆)D

s + 𝜆e−(s+𝜆)D
(5.116)

Another special case leads to a manageable result, namely the G∕D∕∞ queue.
It is instructive to develop an ad hoc analysis, rather than specializing the result
above. The busy period can be described as follows:

Y =

{
D T > D
T + Y ′ T ≤ D

(5.117)

where Y ′ ∼ Y , thanks to the renewal property of the arrivals and the infinite server
structure of the queue. Then

𝜑Y (s) = E[e−sY] = e−sDGT(D) + ∫
D

0
E[e−s(t+Y)]fT(t) dt

= e−sDGT(D) + 𝜑Y (s)∫
D

0
e−stfT(t) dt

Then

𝜑Y (s) =
e−sDGT(D)

1 − ∫ D
0 e−stfT(t) dt

(5.118)

Also the probability distribution of the number M of customers served in a busy
period can be determined in a closed form. Adapting the approach used above for
the busy period duration, we can write

M =

{
1 T > D
1 + M′ T ≤ D

(5.119)

where M′ ∼ M. Hence 𝜙M(z) = E[zM] = z(1 − p) + zE[zM′]p = z(1 − p) + zp𝜙M(z),
where p = (T ≤ D) = FT(D). Then 𝜙M(z) = z 1−p

1−pz
, that can be easily inverted to

yield (M = k) = (1 − p)pk−1, k ≥ 1.
As for the output process, in the special case of M∕G∕∞ (Poisson input process),

the queueing system is essentially a displacer, i.e., the effect on the arrival point
process of going through the M∕G∕∞ is to displace every point by an amount equal
to a service time, independently of any other point. Thank to the property of a
stationary Poisson process with respect to i.i.d. displacements (see Sec. 3.2.3.1),

�

� �

�

252 5 Multi-Server Queues

we conclude that the output process of the M∕G∕∞ queue is a Poisson process
with the same statistical characteristics of the input process.

Extensions and further results can be found, e.g., in [149].

5.5.1 Analysis of Message Propagation in a Linear Network

The material in this example is inspired and largely based on the work by Miorandi
and Altman [161].

An interesting analogy can be established between the G∕G∕∞ queue and the
problem of connectivity in a one dimensional vehicular network where message
passing is based on multi-hop networking. Let us consider a road and vehicles
scattered along the road. Assume that vehicles are equipped with on-board units
(OBUs) capable of sending and receiving messages in dedicated radio channels.
An example is provided by the dedicated short range communication (DSRC) tech-
nology [165]. Messages are propagated among vehicles by means of dissemination
protocols, i.e., they are broadcasted and forwarded from vehicle to vehicle accord-
ing to some policy that aims at maximizing the distance covered by the message
while keeping the number of forwarding operations (hence the number of copies
of the same message received by each OBU) at a minimum.

Multi-hop message dissemination is necessary to extend the message coverage
as far as possible, given the limited range of the OBU radio signals. Let R denote the
distance within which reliable communication is possible, i.e., such that SNR(R) =
G(R)Ptx∕PN > 𝛾th, where Ptx is the transmission power level, PN is the background
noise power at the receiver, G(x) is the path gain at distance x and 𝛾th is the thresh-
old of the SNR required to make the reception of a message successful with some
(high) probability for the chosen modulation and coding set. In the following we
assume that reception is reliable within distance R. In general, R is a random vari-
able, since the path gain is made up of a deterministic component plus shadowing
and fading. Those last two components are modeled by means of probability dis-
tributions of the relevant path gain component, e.g., typically a log normal PDF for
the shadowing and a Rayleigh PDF for the fading component. Since typically the
average covered distance with DSRC equipment is in the order of several hun-
dred meters, much bigger than typical road widths, we neglect the road width
and assimilate the road to a straight line. Hence, vehicle positions are identified
by means of a single coordinate. Let xk denote the position of the k-th vehicle
moving along the positive x semi-axis (hence xk < xk+1). We assume that vehi-
cle spatial distribution is stationary, i.e., xk+1 − xk are i.i.d. random variables. Let
fY (x) and FY (x) denote their common PDF and CDF, respectively; that is to say
xk+1 − xk ∼ Y ,∀k ≥ 0. In spite of vehicle mobility, we assume their positions as
frozen, since the time taken for message forwarding through radio communica-
tions is about three orders of magnitude less than the time required for vehicle to

�

� �

�

5.5 Infinite Server Queues 253

Figure 5.17 Example of the
evolution of the G∕G∕∞
queue: Y is a busy period, C is
a busy cycle (busy period plus
the ensuing idle time) and X
is a service time.

C

Y

t1
x x x x x x x x x xt2 t3 t4

X4

move significantly (e.g, tens of ms for message delay vs. typical speed values in the
order of 10 m/s).

Assume that at least one vehicle among those that receive the message from
the originating node forwards it further. As an example, the ‘Furthest Forwarder’
rule can be used, i.e., if nodes N1,N2,… ,Nk receive the message from a node N0,
the one that will forward the message is the node furthest away from N0 among
N1,N2,… ,Nk. It is easy to see that the message keeps propagating along the posi-
tive direction of the x-axis, as long as the coverage regions of the forwarding nodes
keep overlapping (see Figure 5.17).

We can interpret the vehicular network model in terms of an infinite server
queue. Arrivals correspond to vehicles’ positions (and hence the “time” axis is in
fact the x-axis in this case: one-dimensional space takes the place of time). Ser-
vice time corresponds to the distance covered by the OBU radio equipment, i.e.,
R. Since there is no limit to the number of vehicles whose communication ranges
may overlap4 , the queueing model in this analogy has infinite servers.

Let Y denote the spacing between subsequent vehicles along the road line (it
corresponds to the inter-arrival time of the queueing model) and let 𝜆 = 1∕E[Y]
be the mean spatial density of vehicles. Vehicles in the same lane interact with
one another. If the road has more than one lane, the dependency among spacings
of nearby vehicles weakens. We neglect it, so that we assume that “inter-arrival
times” are i.i.d. random variables.

Let R denote the range of the radio communication of a vehicle: it plays the
role of the service time of the queueing model. In general R can be characterized
by a random variable, depending on the statistical characteristics of multi-path
propagation and obstacles. We neglect path loss due to vehicles acting as obstacles
and the correlation of shadowing of nearby vehicles, so that we assume that

4 We are clearly neglecting the finite size of vehicles: infinite servers may be seen as a limiting
approximation to a model with a large, but finite number of servers, that accounts for the length
of vehicles. Given that a vehicle occupation of the road is in the order of 10 m and that there can
be more than one lane in the road, the number of vehicles within E[R] ≈ several hundreds
meters can scale up to hundreds.

�

� �

�

254 5 Multi-Server Queues

“service times” are i.i.d. random variables and they are independent of the
“inter-arrival times.”

We identify the following metrics of interest:

● Coverage distance, Dc: the distance between the originator of the message and
the last vehicle receiving the message5 .

● Probability of connectivity at distance x, Pc(x): the probability that a given vehi-
cle can send a message up to a distance x from itself, i.e., it can cover up to
a distance x (obviously by means of multi-hop message passing); it is Pc(x) =(Dc > x).

● The number of vehicles that receive the message, Nc: it is the number of vehicles
covered by the propagation of the message.

It is easy to recognize that Dc corresponds to the busy period of the queueing
model. Nc is the number of customers served in a busy period. The coverage prob-
ability at distance x is the probability that the busy period exceeds x.

Let us begin with a simple scenario where only deterministic path loss is
accounted for. We can then assume that the path gain G(x) is a monotonously
decreasing function of the distance x between the transmitter and the receiver.
The requirement for successful message decoding is that the SNR at the receiver
be greater than a threshold 𝛾th, hence reception is successful at distance d if
G(d)Ptx∕PN ≥ 𝛾th. The maximum allowed range is therefore R = G−1(𝛾thPN∕Ptx).
Since the transmission range is a constant, the queueing model of the vehicular
network casts into a G∕D∕∞ queue.

The Laplace transform of the busy period PDF, hence of the coverage distance
PDF, is

𝜑Dc
(s) =

e−sR(1 − FY (R))

1 − ∫ R
0 e−stfY (t) dt

(5.120)

where the random variable Y represents the distance between subsequent vehi-
cles. The mean covered distance is found by deriving 𝜑Dc

(s):

E[Dc] = −𝜑′
Dc
(0) = R +

∫ R
0 tfY (t) dt
1 − FY (R)

(5.121)

To be concrete, we assume that vehicle spacing follows a gamma law, hence
fY (t) = a (at)b−1

Γ(b)
e−at, with 1∕𝜆 = E[Y] = b∕a and 𝜎Y =

√
b∕a. Plugging this function

into eq. (5.120) we find

𝜑Dc
(s) = e−sR[1 − Γ(aR, b)]

1 −
(

a
s+a

)b
Γ((a + s)R, b)

(5.122)

5 In the calculations below the coverage distance is extended by the transmission range, to
simplify formulas in the queueing analogy.

�

� �

�

5.5 Infinite Server Queues 255

0 2 4 6 8

Mean number of vehicles in R

M
e
a
n
 c

o
v
e
re

d
 d

is
ta

n
c
e
 E

[D
c
]/
R

b = 100

b = 4

b = 1

b = 0.25

b = 0.01

(a)

0 2 4 6 8 10 12

Covered distance, d/R

P
ro

b
a
b
ili

ty
 o

f
c
o
n
n
e
c
ti
v
it
y
,
P

(D
c
>

d
)

λ = 5 veh/km

R = 400 m

b = 100

b = 4

b = 1

b = 0.25

b = 0.01

(b)

101

100

102
100

10–1

10–2

10–3

Figure 5.18 Queue model for a linear vehicular network. Left plot: mean covered
distance (normalized to the transmission range R) as a function of the mean number of
vehicles in a transmission range. Right plot: probability of connectivity at distance d as a
function of the normalized covered distance d∕R.

where Γ(x, b) = 1
Γ(b)

∫ x
0 ub−1e−u du is the incomplete gamma function. As for the

mean value, noting that a = b𝜆, we have

E[Dc] = R + b
a
Γ(aR, b + 1)
1 − Γ(aR, b)

= R
[

1 + 1
𝜆R

Γ(𝜆Rb, b + 1)
1 − Γ(𝜆Rb, b)

]
(5.123)

The probability of connectivity at a distance d is simply Pc(d) = (Dc > d). The
number Nc of vehicles covered by the message dissemination has a geometric prob-
ability distribution, i.e., (Nc = k) = (1 − p)pk−1 for k ≥ 1, where p = (Y ≤ R) =
FY (R). In our specific case, we have p = Γ(𝜆Rb, b).

All of the metrics depend on two nondimensional parameters, 𝜆R and b, in the
specific considered case. The first one is the mean number of vehicles found in a
transmission range. The second one is the reciprocal of the squared coefficient of
variation6 of the PDF of the inter-vehicle spacing.

The mean covered distance (normalized with respect to R) and the probability
of connectivity are plotted as a function of 𝜆R and of the distance d (normalized
with respect to R) in Figure 5.18, for five values of b. Those values correspond to a
coefficient of variation of Y equal to 1∕

√
b.

It is apparent that as the product 𝜆R grows, the mean covered distance improves,
the steeper the bigger b (i.e., the smaller the variance of the inter-vehicle spacing).
The meaning of the result can be easily unveiled: laying out vehicles along the
linear road with a standard deviation of the inter-vehicle spacing high with respect
to the mean vehicle spacing increases the probability that the chain of multi-hop

6 The coefficient of variation of a random variable X is defined as the ratio of the standard
deviation to the mean of X .

�

� �

�

256 5 Multi-Server Queues

message passing gets interrupted because of a gap bigger than the transmission
range. This probability becomes smaller as the mean vehicle density in increased.

The same insight can be gained from the plot of the probability of connectivity at
a given distance. That plot is done for 𝜆 = 5 veh/km and R = 400 m, hence 𝜆R = 2.
With increasing variability of OBUs’ radio range, the probability of connectivity
over a distance d plunges to very small values as soon as the distance d moves away
from R. On the contrary, for a low variability radio range of OBUs, the probability
of connectivity is high even for distance levels much bigger than R.

By exploiting the analogy with the infinite server queue, we can analyze the lin-
ear vehicular network for a variable transmission range, e.g., as due to a random
path loss. A common stochastic model of path loss with obstructions consists of
multiplying the deterministic power law component by a log-normal random vari-
able with standard deviation 𝜎. In this case, the CDF of the transmission range is

FR(a) = (R ≤ a) =
(

Se−𝜎2∕2Gd(a)Ptx

PN
≤ 𝛾th

)
=

=
(

S ≤ 𝛾the𝜎2∕2PN

Gd(a)Ptx

)

= Φ

(
log(𝛾the𝜎2∕2∕SNRd(a))

𝜎

)
(5.124)

where S is the log-normal gain component, Φ(x) is the CDF of the standard
Gaussian random variable, and SNRd(x) ≡ Gd(x)Ptx∕PN is the average SNR at
the receiver when it is at a distance x from the transmitter. The factor e−𝜎2∕2 is
introduced to make the mean path gain equal to the deterministic component of
the path gain, Gd(x). In the following we assume a simple power law for this gains,
namely, Gd(x) = 𝜅∕x𝛼 . The exponent 𝛼 takes values typically bigger than 2 and up
to 4. With this path gain model, with some calculations it can be found that

E[R] =
(

𝜅Ptx

𝛾thPN

)1∕𝛼

e−
𝜎

2

2𝛼

(
1− 1

𝛼

)
(5.125)

We can use the queue analogy and identify the linear vehicular network with
an M∕G∕∞ model, if we can assume that vehicles are scattered along the road
according to a 1-D Poisson process with mean density 𝜆. Then, we can exploit the
results above and write

𝜑Dc
(s) = 1 + s

𝜆
− 1

𝜆P∗
0(s)

(5.126)

where P∗
0(s) is the Laplace transform of P0(t) defined as P0(t) = e−𝜆 ∫ t

0 [1−FR(a)] da.
Then

E[Dc] =
e𝜆E[R] − 1

𝜆
(5.127)

�

� �

�

Summary and Takeaways 257

It is apparent that the normalized mean covered distance E[Dc]∕E[R] depends
only on the parameter 𝜆E[R]. Under the modeling assumption for the path loss,
this parameter is equal to the power 1∕𝛼 of the SNR at a distance 1∕𝜆 (mean
inter-vehicle spacing) discounted by the exponential factor that accounts for the
log-normal shadowing:

𝜆E[R] =
[
𝜅𝜆

𝛼Ptx

𝛾thPN
e−

𝜎
2

2

(
1− 1

𝛼

)]1∕𝛼

=
[

SNRd(1∕𝜆)e
− 𝜎

2

2

(
1− 1

𝛼

)]1∕𝛼

(5.128)

Eventually, a shorter distance is covered by the multi-hop message passing, as a
consequence of the randomness of the path gain, expressed through the parameter
𝜎. We recover the deterministic case (with Poisson vehicle spacing) in the limit for
𝜎 → 0.

Summary and Takeaways

Queueing models with multiple servers have been investigated in this chapter. Out
of the general G∕G∕m∕K class of queues, we have focused our attention on pure
loss systems with Poisson input, also known as Erlang system; pure wait systems
with Poisson input and negative exponential service times; and so called “ample”
systems, i.e., those with an unlimited number of serving seats.

In many networking and computing systems the whole available communica-
tion and/or processing resource is partitioned in shares and each of them can
be allocated to a service request. In all those cases, multi-server systems arise
naturally.

The first kind of model is very useful in circuit-switching networks and in
channel assignment based cellular networks. In those cases contention for
resources among competing users are generally solved by rejecting the excess
traffic. The key metric here is the loss probability. A major result is the insen-
sitivity of the Erlang model to the probability distribution of the service times,
so that results hold for the whole class of M∕G∕m∕0 queues. Generalizations of
the Erlang loss model are addressed as well, namely the multi-class Erlang loss
model, for which a smart numerical solution exists, and approximations to deal
with non-Poisson input traffic to loss systems.

The second kind of models arises when there is room for keeping service
requests while they wait to be served. In this case, key metrics concern the delay
performance of the system. An important result is about scaling of performance
with the number of servers. We have compared service systems with the same
overall input rate and the same overall serving rate, but with different structures:
(i) separate queues; (ii) shared waiting line, but separate servers (here is where
the multi-server queueing model appears); (iii) shared waiting line and serving

�

� �

�

258 5 Multi-Server Queues

capacity. In general, delay performance improve with the scale of the system, i.e.,
shared systems perform best. This might turn out not to hold if there are service
time components that do not scale with the serving capacity.

Finally, the third kind of model (infinite server queues) can have disparate appli-
cations. We have focused on a specific application case, i.e., modeling multi-hop
message passing in a one-dimensional network.

Problems

5.1 Consider a private telephone exchange serving 100 users, each offering an
average traffic equal to 0.05 Erl during the peak hour. Blocked calls are lost
and the target loss probability must satisfy the constraint P ≤ 0.01. Assume
calls are offered according to a Poisson process.
(a) Find the required number of lines connecting the private branch

exchange to the outside network (one line can be used to carry a single
call at a time).

(b) What is the average utilization factor of the lines?
(c) Find the blocking probability and the average utilization factor if 10%

of the lines are out of service.
(d) Identify the blocking probability in case the mean offered traffic is

increased by 10%.

5.2 You have to plan the upgrade of the connections of a network access node
of the telephone mobile network over a time period of 3 years. You can
assume that: (1) the offered traffic is of Poisson type, with an average offered
call rate that grows by a constant factor each year. In the first year it is
𝜆 = 2000 calls/h and in the last year it is 𝜆 = 10000 calls/h; (2) the average
duration of a call is 1.5 min; (3) the target loss probability is 0.01; (4) the
upgrade cards support up to 32 connections each.
Calculate the minimum number of cards that need be procured each year,
to maintain the target QoS requirements of the loss probability.

5.3 Consider a multi-service facility with m = 5 servers, all having a negative
exponential service time probability distribution with mean value 1∕𝜇 =
10 min. Assume they are all busy at time t0 = 0 and no more customers
enter the system. Calculate the following:
(a) The mean time required for the first customer completing its service

and leaving the system.
(b) The mean time required for the last customer completing its service

and leaving the system.

�

� �

�

Problems 259

(c) The probability distribution function of the times considered in point
(a) and (b) above; check that the corresponding mean values are con-
sistent with those found in points (a) and (b).

(d) The probability that no customer has left the system after 10 min.
(e) The probability that all customers have left the system within 20 min.

5.4 The University of Utopia plans to establish a call center to provide stu-
dents with information relating their careers and administrative issues. The
University comprises 10 schools, half of which are big ones, with 15,000 stu-
dents each; the others are medium-size schools with 8000 students each.
During the enrollment time (one month) each student has a chance of 50%
to make one phone call to the information help desk. Calls are uniformly
spread over the entire month (20 working days) and the office time of the
help desk (7 hours per working day). The mean duration of a call is 4 min.
(a) Calculate the number of call-center operators required to guarantee

that the blocking probability be no more than 5%, if the service is orga-
nized independently for each school.

(b) Redo the calculation of point (a) if a centralized service is set up for the
whole University.

5.5 The front-end desk of a company is served by a single operator, collecting all
incoming calls to deliver them to the appropriate internal extension. Calls
arrive according to a Poisson process with average rate 1 call/min and the
operator takes 40 s to serve a call.
(a) Calculate the blocking probability of the front desk in case of lost

blocked calls.
(b) If a second operater can take the call when the first one is busy, how

much is the blocking probability reduced? What is the average busy
time of the second operator?

5.6 You must design the interconnection system of three private telephone
exchanges of a company among themselves and to the outside network.
Let A, B, and C denote the three sites, to be inter-connected. The mean
offered traffic in Erlang between the three sites and toward the outside
network is given in Table 5.7.
The target loss probability (probability that a connection setup is rejected)
must be no more than 0.01. The costs of the connection line lease and of
the traffic is as follows:
Cs cost per month of a subscriber line to the external network
Cl cost per month of a leased line to interconnect the company sites

�

� �

�

260 5 Multi-Server Queues

Table 5.7 Mean offered traffic among the company sites
and with the outside network (ext).

in/out A B C ext

A – 5 3 30
B 10 – 2 12
C 10 2 – 12
ext 30 12 12 –

Compare the following solutions by assuming Cs = 50 Euro/month and
Cl = 750 Euro/month.
(a) All inter-site traffic is carried on leased lines.
(b) All inter-site traffic is carried through leased lines with the additional

constraint that sites B and C are not directly connected; calls between
B and C are switched through A.

(c) All traffic is carried on the public network with no leased lines.
(d) Find the break-even point ratio of Cs∕Cl that makes the costs of solution

(a) and (c) equal.

5.7 Let us consider the dimensioning of the voice interconnection network of
a company having four different sites. The average offered traffic matrix
among the four sites is given by (the entry Aij of the matrix represents the
average offered traffic intensity from site i to site j, i, j = 1, 2, 3, 4).

A =

⎡⎢⎢⎢⎢⎣
− 4 4 3
5 − 2 1
5 2 − 2
4 1 2 −

⎤⎥⎥⎥⎥⎦
(5.129)

You can assume that offered traffic follows a Poisson statistics and that
blocked calls are lost.
(a) Calculate the number of voice connections required to meet a blocking

probability requirement of 0.01, if the inter-connection topology is a
full mesh.

(b) Repeat the calculation of point (a) for a star topology centered on site 1.
(c) Suppose that voice connections are provided by means of VoIP, with an

average bit rate of 25 kbit/s, and that the link dedicated to VoIP must
be loaded at most up to 70%. Link capacity can be leased in multiples
of 64 kbit/s. Find the minimum capacity that must be rented to sustain
a full mesh topology.

�

� �

�

Problems 261

5.8 Customer arrivals to a store follow a Poisson law with an average arrival
rate of 40 customer/hour. On the average, each customer spends 30 min in
the store. 90% of the customer come to the store by car. A parking lot is
reserved at the store, where there is space for up to 25 cars. People arriving
by car at the store and unable to find room for their car in the parking lot,
leave immediately.
(a) Find the probability that a customer has to give up going to the store

because it cannot park.
(b) How many places would you suggest the parking lot be sized for to

guarantee that customers arriving by car find parking place with prob-
ability at least 99%?

5.9 An m server facility receives two streams of service requests that can
be modeled as independent Poisson processes of mean rate 𝜆1 and 𝜆2,
respectively. A customer of stream 1 requires a single server and has mean
service time equal to 1∕𝜇1. Customer of type 1 that cannot find an available
server upon arrival are rejected and lost to the system. A customer of
type 2 requires b servers, 1 < b ≤ m, and has mean service time 1∕𝜇2.
Customers of type 2 that cannot find b available servers upon their arrivals
are rejected and lost. Find the average fraction of customer of either type
that are rejected with the following numerical values: m = 100, b = 8,
𝜆1∕𝜇1 = 40 and 𝜆2∕𝜇2 = 5.

5.10 The owner of a big store hires clerks for the registers at a cost (wages
plus overhead) of 25 MU/hour (MU stands for monetary unit). Customers
come to the store according to a Poisson process with mean rate of
100 customer/hour. The service time at the register is exponentially
distributed with mean 4 min. Customers lining up at the registers form a
unique waiting line. They pick the earliest available register. The amount
of net profit per customer is a random variable with uniform probability
distribution between 0 and 10 MU.
(a) Compute the mean waiting time and the probability of a positive wait-

ing time in case the minimum number of clerks to guarantee finite
delays is hired.

(b) The owner, in an effort to improve his customer care and win the
preference of the customers, offers a discount of 1 MU/min of wait
time for a customer. What is then the most profitable number of clerks
to hire?

5.11 The access quality offered by a network is constantly monitored by agents
that collect data each day. The agents upload their data to a central

�

� �

�

262 5 Multi-Server Queues

database server, by establishing a connection. Each connection has a fixed
throughput of R bit/s. The amount of data to be uploaded has a mean
size of M = 8 Mbytes. Connection requests to the server are so scheduled
that they can be deemed to arrive according to a Poisson process of rate
𝜆 = 24 connections/hour. The server is linked to the monitored network
with an access capacity C = 1 Mbit/s, entirely devoted to uploading con-
nections. When an agent tries to connect to the server and the connection
cannot be established because of lack of capacity (i.e., the capacity is
already taken up completely by ongoing connections), the agent gives up
uploading its daily report and throws away the data. Find the probability
that data is lost as a function of the ratio R∕C. Why it is not advisable to
make R too small?

5.12 A video distribution service company sets up a server with an access band-
width capable to maintain up to m = 100 simultaneous video streaming
flows. Customers of this service pay E = 0.01 MU/min of connection to the
video server. Their request arrive at the server according to a Poisson pro-
cess with mean rate 𝜆 = 80 req/h. If the maximum number of streaming
flows is on, further requests are turned down and lost. The average dura-
tion of a video session is 1∕𝜇 = 120 min. The requests are spread uniformly
over 4 hour per day, 30 days per month and are negligible for the rest of
the time. The cost of renting more access capacity for the video server is
C = 100 MU per each additional streaming flow per month.
(a) Find the average amount of MUs lost per month with the initial setting

of the video distribution service.
(b) Is there any convenience for the service provider to add more access

capacity? If there is, how many additional capacity slices pay off on
average (1 capacity slice = one additional streaming flow admitted)?

(c) Does the answer to point (b) change if the price structure is no more
time dependent, i.e., a video session cost is fixed to 1.2 MU?

(d) Suppose now that 𝜆 = N𝜆0, N being the number of the video service
subscribers. Assume that a customer pays P MU per month for 𝜆0 =
5 req/month, and customers are guaranteed a blocking probability not
exceeding 0.01. Determine the relationship among P, N and the access
capacity renting cost mC. What is the minimum value of N for given
C and P that makes the service profitable? Given mmax = 500 for the
server (bigger values of m imply a substantial upgrade of the server
capabilities), find the minimum subscription fee that makes the service
profitable as a function of N.

�

� �

�

Problems 263

5.13 The ticketing office of an airline company is connected to the telephone
network with 8 lines, served each by a clerk. During working days, there
is a peak time of four hours when the mean arrival rate of service requests
is 100 calls/h, calls lasting 5 min on average. Customers finding all lines
busy are lost. 75% of them will purchase a ticket from another company,
spending 150 MU on average. Lost calls are negligible during off-peak hour.
A clerk costs the company 4000 MU/month (including overhead costs), the
cost of additional lines is comparatively negligible. Would you advice the
company to hire more clerks? In that case, how many?

5.14 Consider a queueing system with m servers and a infinite waiting line. Cus-
tomer arrive according to a Poisson process with mean rate 𝜆 and service
times have negative exponential probability distribution with mean 1∕𝜇1
so long as there are no more than m customers in the system. The mean
service time becomes 1∕𝜇2 when the number of customers in the system
exceeds m. Find the probability that an arriving customer has to wait for
service as a function of the ratio 𝜇1∕𝜇2.

5.15 A server is connected to the network with a link of capacity C. Users down-
load files with mean size Q and share fairly the overall capacity of the server,
i.e., if n users are downloading simultaneously, each one gets a capacity
C∕n. An arriving customer joins the server and starts downloading a file
with probability 1∕(n + 1) if there are already n users downloading (this
is an approximate representation of the fact that an arriving user starts
downloading, then it immediately gives up if its connection is too slow).
Find the steady-state probability pn of finding n users in the system. Eval-
uate the mean number of users that are downloading simultaneously for
𝜆 = 3 req/s, Q = 4 Mbyte, C = 100 Mbit/s.

5.16 A base station has m = 20 transmitter/receiver. When powered up, the base
stations demand a fixed power P0 plus an amount that is proportional to the
number of active transmitter/receivers N(t). So, the power required at time t
is P(t) = P0 + P1N(t). During the peak hour, new connections arrive accord-
ing to a Poisson process with mean rate 𝜆, the connection holding time is
a negative exponential random variable with mean value 1∕𝜇. Calculate
the average amount of energy consumed during the peak hour [P0 = 50 W,
P1 = 1 W, 𝜆∕𝜇 = 18 Erl].

5.17 A content delivery provider has set up an essentially nonblocking service by
using a conveniently large number of servers with adequate access capacity.
Download requests come from the target user population according to a

�

� �

�

264 5 Multi-Server Queues

Poisson process of mean rate 𝜆. Given the bandwidth allocation policy, the
average amount of time required to download a content is 1∕𝜇.
(a) Define a model of the interaction between the content delivery network

and the user population.
(b) What is the probability that there are more then 100 connections active

at any given time if 𝜆 = 2400∕h and 1∕𝜇 = 2 min?

5.18 A call center has 20 responders. Call attempts arrive according to Poisson
process with mean rate 10 calls/min. Call holding time is distributed
according to a negative exponential random variable with mean 3 min.
At most K customers can be put on wait, if all responders are busy. Further
call attempts will receive a courtesy message, inviting the customer to
try later.
Find the minimum value of K that makes the probability of rejection of the
call attempt less than 0.01.

�

� �

�

265

6

Priorities and Scheduling

Tout vient à point à celui qui sait attendre.
Said by Kutuzov in “War and peace,” by Lev Nikolajevič Tolstoj

6.1 Introduction

Service systems often discriminate among customers, offering different levels of
quality of service to different customers. In general, getting served entails some
kind of benefit for the customer that asks for service. The benefit has a cost or
might be associated with a penalty, e.g., in terms of waiting time suffered before
being served, service time (depending on the server being slow or fast), possibility
of being rejected and having to try later on, and the like.

Let us consider a single server system where a number of customers are
waiting to be served. As soon as the server is done with the customer cur-
rently being served, the question becomes: who’s next? The policy according
to which the server decides which customer is taken care of next defines the
queueing discipline. A queueing discipline can be based on arrival times, service
demand, feature associated with customers (e.g., priorities), or quality of service
requirements.

We will use also the terms priority and scheduling. The former arises specifically
when a label is assigned to each customer, specifying a level of preference for
service. In general, priority queueing is often extended to several queueing
disciplines where preference for service is based on aspects other than static labels
assigned to customers as they join the queue. Scheduling is usually referred to
policies to serve concurrent flows of customers. We could as well encompass all
priority and scheduling algorithms under the umbrella of queueing disciplines.
To keep consistent with terminology used extensively in most theoretical and

Network Traffic Engineering: Stochastic Models and Applications, First Edition. Andrea Baiocchi.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

�

� �

�

266 6 Priorities and Scheduling

application-oriented contexts, we will use either priority or scheduling, as
appropriate, when referring to specific algorithms.

The following aspects qualify different queueing disciplines:

● Whether customers are served one at a time, without interruptions between the
beginning and the end of service (head-of-line service), or interruptions are pos-
sible.

● Whether parallel service is possible, or only a single customer at a time can be
under service (possibly interrupted and resumed later).

We can distinguish three categories of queueing disciplines, according to the
following modes of operation:

1. Customers are served one at a time, without interruptions.
2. Customers are served one at a time, but interruptions are possible.
3. More than a single customer can be simultaneously under service.

At most a single customer can be partially served with the first category,
whereas more than a single customer could be partially served with the
other two categories. The third category is usually referred to as the family of
processor-sharing policies. It is important to observe that most practical imple-
mentation of processor-sharing policies actually work according to serial service.
In other words, work is done by the server in small chunks moving from one
customer to the other one. An example of this mechanisms is round robin, e.g.,
as implemented by polling system. Time can be slotted. In each time slot one
customer receives a chunk of service. Different customers are polled from time
slot to time slot. The true parallel processor-sharing policy is obtained as the limit
of the round robin as the time slot duration shrinks to zero.

The simplest case of priority corresponds to customers being labeled1. Let labels
be 1, 2,… ,P, the smallest index corresponding to the highest priority level. An
example priority rule could state that the server selects the customer with the
smallest label among the waiting customers. Ties are broken according to time
of arrival (first come, first served, FCFS). This simple rule identifies the next cus-
tomer to be served with no ambiguity, as long as there are no bulk arrivals. As
another example, each customer could carry a counter that grows linearly at a rate
specific of the class the customer belongs to. Then, after having waited for a time
T, the customer has accumulated a count c0 + c1T, where c0 is the initial count at
customer arrival at the service system and c1 is the count growth rate. Both param-
eters can be specific of the class the customer belongs to. When ready to serve, the
server picks the customer with the highest count.

1 Either customers carry a label already assigned when they arrive or the label is assigned as
soon as they are admitted to the system, according to some predefined characteristic of the
customer.

�

� �

�

6.1 Introduction 267

The example assumes a centralized control of the queue, with a queue manager
that knows the priority level and the time of arrival of each customer. The
knowledge can be stored in several ways, e.g., tags appended to customers, or
some physical arrangement of the service system. As an example, the output
of a packet multiplexer can be equipped with P buffers, each one associated to
one level of priority. Packets with priority level j are stored sequentially in the
j-th buffer, according to their arrival time. The server scans the buffers sequen-
tially, starting from 1, and stops at the first nonempty buffer, where it picks the
head-of-line packet. The priority rule is implemented thanks to the structure of the
system.

More complex disciplines can be defined. A key generalization is that service
need not be supplied fully in a single interaction. The server could do some work
for one customer, without necessarily completing the demand of the customer.
Then it takes care of other customers, eventually getting back to the first customer
to carry on its service. After being admitted to the system, a customer experiences
waiting times alternating with service times, until its service demand has been
matched completely and the customer can leave the system. As it completes a slice
of service, the server must answer the usual question: who’s next? Except that now
the next customer to be served will not be served completely, but it will receive a
slice of service covering part of its demand. The policy according to which the
server capacity is shared among the customers goes under the name of schedul-
ing. A scheduling policy requires defining the priority among customers, and how
much service is supplied in each instance. The priority may also depend on the
amount of service already attained (or still missing to complete the demand of the
customer).

A second key issue is whether the scheduler is centralized (a queue manager
that knows everything that is needed to implement the scheduling policy) or dis-
tributed (customers interact in some way, following an algorithm that takes as
input events detectable by the customers and rules/parameters programmed in
advance).

Before delving into the mathematical modeling and performance evaluation of
some priority and scheduling policies, let us ask one more question: why priorities?
In networked service systems, different flows of customers interact and contend
for the service resource. Different customers may have different quality of ser-
vice requirements. As an example, packets sharing a link capacity can belong to a
Voice over Internet Protocol (VoIP) application, to a video streaming, to an HTTP
session, to a file download, to an email. The first two applications have stringent
requirements on delay and delay variation, less on information integrity. The last
three applications have strict requirements on the integrity of the transferred data,
but looser requirements as for delays. We could even differentiate among the last
three applications: to be effective, HTTP needs smaller delays than email.

�

� �

�

268 6 Priorities and Scheduling

As long as the service system has plenty of resources for any request, no issue
arises. If resources are not so abundant and contention occurs, even if temporarily,
decisions must be taken as to who shall be penalized and how much. More critical
or demanding or valuable traffic flows get better treatment with respect to others,
i.e., they must be protected from overload caused by other flows.

Priority and scheduling serve two purposes: (i) creating differentiated service;
and (ii) protecting customers against excessive demands of other customers that
could hog the service capacity thus degrading unacceptably the quality of service
experienced by less overwhelming customers.

In the following, we give an overview of priority queueing systems with Poisson
input traffic. Then, we turn to server capacity sharing, by analyzing the processor
sharing policy, its generalization and possible practical algorithms that implement
that policy. Finally, we touch the least attained service (LAS) discipline and then
review known results for the optimality of serving policies in single server queues.
There are certainly several other topics that deserve attention. The interested
reader can find extensive and excellent treatment in [131, Ch. 3], or, in the more
recent in [86, Ch. 5] and reference therein. A very insightful introduction to
scheduling, both in single server and multi-server queuing systems, is available
in [98]. Polling systems are especially tackled in the evergreen text by Hideaki
Takagi [200]. An extensive amount of research work has been carried out to apply
scheduling policies to the sharing of wireless link capacity, e.g., see [13] or for
computer systems, e.g., see [207].

6.2 Conservation Law

The mean waiting times of the priority classes are the result of a trade-off. We
expect that any improvement of the mean waiting time of a class should come at
the detriment of the performance achieved by some other classes. Nothing comes
for free. The conservation law for M∕G∕1 priority systems states formally this
intuition.

We assume the following hypotheses:

1. The service system is work-conserving.
2. The scheduling is non preemptive2.
3. The service times do not depend on the scheduling discipline, i.e., each cus-

tomer arrives at the system with a given service demand that is not going to
change according to the way that the service is provided to the customer.

We further assume that the system is in equilibrium and evaluate the mean
unfinished work at a general time t in the equilibrium regime. The unfinished

2 Preemptive resume scheduling is allowed, if the service times are i.i.d. negative exponential
variables for all customers.

�

� �

�

6.2 Conservation Law 269

work at time t is the sum of the service times of all customers waiting for ser-
vice plus the residual service time of the customer under service, denoted with
X0. From section 4.2.4, we know that the mean remaining service time seen by
a Poisson arrival is 𝜆E[X2]∕2. This expression must be generalized to account for
the different service times of the P classes. At equilibrium, a Poisson arrival sees a
customer of class j in service with probability3

𝜌j. The mean residual service time
of a customer of class j is E[X2

j]∕(2E[Xj]). Putting pieces together:

W0 ≡ E[X0] =
P∑

j=1
𝜌j

E[X2
j]

2E[Xj]
=

P∑
j=1

𝜆jE[X2
j]

2
= 𝜆

2

P∑
j=1

𝜆j

𝜆
E[X2

j] =
𝜆E[X2]

2

(6.1)

where we have used the definition E[X2] =
∑P

j=1 𝜆jE[X2
j]∕𝜆, with 𝜆 = 𝜆1 + · · · +

𝜆P.
The unfinished work can be written as

U(t) = X0 +
P∑

j=1

Nj(t)∑
k=1

Xj(k) (6.2)

where Xj(k) is the service time of the k-th customer of class j. The mean, at equi-
librium, is independent of t:

E[U] = W0 +
P∑

j=1
E[Nj]E[Xj] = W0 +

P∑
j=1

𝜆jE[Wj]E[Xj] = W0 +
P∑

j=1
𝜌jE[Wj]

(6.3)
where Little’s law was applied, thanks to the equilibrium hypothesis. The mean
unfinished work is independent of the service discipline, so long as the assump-
tions at the beginning of this section hold. Under these assumptions, we can eval-
uate E[U] by using any serving policy within our hypotheses, including the special
case of FCFS. The resulting mean unfinished work coincides with the mean wait-
ing time, expressed by the P-K formula:

E[U] =
W0

1 − 𝜌
(6.4)

Finally, merging eqs. (6.3) and (6.4), we get for 𝜌 < 1:
P∑

j=1
𝜌jE[Wj] =

𝜌W0

1 − 𝜌
(6.5)

Equation (6.5) is the quantitative statement of the intuitive fact that any gain on
the mean waiting time of a given class of customers comes at the expense of a wait
penalty of some other classes.

3 Note that 1 −
∑P

j=1 𝜌j = 1 − 𝜌 is the probability that an arriving customer finds an empty
system and therefore does not suffer any wait.

�

� �

�

270 6 Priorities and Scheduling

Example 6.1 In a two-class system the mean waiting time of the high-priority
class is required to be a fraction 𝛽 of the low-priority class mean waiting time, i.e.,
E[W1] = 𝛽E[W2]. The conservation law tells us that

𝜌1E[W1] + 𝜌2E[W2] =
(𝜌1 + 𝜌2)W0

1 − 𝜌1 − 𝜌2
(6.6)

Then, substituting E[W1] = 𝛽E[W2], we obtain

E[W1] = 𝛽E[W2] =
𝛽(𝜌1 + 𝜌2)(𝜌1E[X̃1] + 𝜌2E[X̃2])

(𝜌1𝛽 + 𝜌2)(1 − 𝜌1 − 𝜌2)
(6.7)

where E[X̃j] = E[X2
j]∕(2E[Xj]), j = 1, 2.

The plots of Figure 6.1 refer to the requirement that the mean waiting time of
the high-priority class be a given fraction 𝛽 of the mean wait of the low-priority
class. In those figures we have assumed 𝛽 = 0.1. In these two graphs E[W1]∕E[X1]
is plotted as a function of 𝜌2∕𝜌 (left plot) and of CX2

≡ 𝜎2∕E[X2] (right plot). The
first case illustrates the impact of the load of the low-priority class. Since the system
is designed according to a differentiated service principle, both mean waiting times
diverge as the overall load tends to saturate the system resource, i.e., 𝜌1 + 𝜌2 → 1.
E[W1] grows as the low-priority traffic load is increased, still maintaining that it
be only 10% of E[W2]. Ultimately, this undesired effect comes from sharing a same
server between traffic classes with very different service times and using a differ-
entiated service approach (i.e., there is no absolute requirement on the mean wait
of the high-priority class, only that high-priority customers should be better off
with respect to low-priority ones in a relative way).

0 0.2 0.4 0.6 0.8 1

10

20

30

40

ρ2/ρ

E
[W

1
]/
E

[X
1
]

E
[W

1
]/
E

[X
1
]

(a)

0 2 4 6 8 10

10

20

30

40

5050

σ2/E[X2]

(b)

E[X1] = E[X2] = 1

σ1 = 0

ρ1 = 0.1

ρ2 = 0.8

β = 0.1

E[X1] = E[X2] = 1

σ1 = 0

σ2 = 10

ρ1 = 0.1

β = 0.1

Figure 6.1 Two-class priority system with a fixed ratio 𝛽 of the mean waiting times of
high- and low-priority classes: normalized mean waiting time of the higher-priority class
as a function of the load of the lower-priority class (left plot) and as a function of the
coefficient of variation (COV) of the service time of the lower-priority class (right plot).

�

� �

�

6.2 Conservation Law 271

The right graph points out that the mean wait of the high-priority class grows
also with the variability of the service times of the low-priority class, for a fixed
load level 𝜌2 of that class. This is a specific trait of nonpreemptive priority. A
high-priority customer arriving at the queue must wait for the current service
to be completed before it can access the server (if there is no other high-priority
customer waiting). Thus, the mean remaining service time includes also a term
that accounts for the second moment of low-priority class service times.

Example 6.2 In the same setting as the previous example, namely a two-priority
class system of M∕G∕1 type, if the mean waiting time of the high-priority class is
assigned a required value W1, the mean wait of the low-priority class turns out to
be

E[W2] =
1
𝜌2

[(𝜌1 + 𝜌2)(𝜌1E[X̃1] + 𝜌2E[X̃2])
1 − 𝜌1 − 𝜌2

− 𝜌1W 1

]
(6.8)

Figure 6.2 shows E[W2]∕E[W1] as a function of E[W1]∕E[X1], for the same
mean service time of the two classes, null standard deviation of the high-priority
class, standard deviation 10 times the mean service time in case of low-priority
class, and 𝜌1 = 0.1, 𝜌2 = 0.8. As for class 1, we set the constraint E[W1] = W1.
The parameter choice corresponds to a light load high-priority traffic flow, with
low variability service times, mixed together with a heavily loaded low-priority
flow with high variability service times. Since a fixed level of mean wait is desired
for the high-priority class, quite a big penalty is imposed on the low-priority
class, even when the requirement W1 is relaxed. For example, if we maintain that
W1 = 4E[X1], then it must be E[W2] = 100E[W1].

Example 6.3 Let us consider an M∕G∕1 system with mean arrival rate 𝜆,
where customers are assigned a random label L, distributed on [0, 1] with CDF

Figure 6.2 Two-class priority
system with a fixed requirement for
the higher-priority class mean
waiting time: ratio of the mean
waiting times of the lower- to
higher-priority class versus the
normalized mean waiting time of
the higher-priority class.

0 2 4 6 8 10

104

103

102

101

100

E
[W

2
]/

E
[W

1
]

E[W1]/E[X1]

E[W]/E[X1] = 404.5

E[X1] = E[X2] = 1

ρ1 = 0.1

σ1 = 0 σ2 = 10

ρ2 = 0.8

�

� �

�

272 6 Priorities and Scheduling

F(x) ≡ (L ≤ x). The smaller the label, the higher the service priority. Ser-
vice times are i.i.d. random variables with the same PDF across all “priority”
classes. Let us start with a discrete probability distribution qi = (L = i∕n), with
i = 1,… ,n. The CDF is Fi =

∑i
j=1 qj. We can map this system into an n priority

classes system. The i-th class mean arrival rate is 𝜆i = qi𝜆. The conservation law
application yields:

n∑
j=1

𝜌jE[Wj] = 𝜌

n∑
j=1

qjE[Wj] =
𝜌W0

1 − 𝜌
(6.9)

In the limit for n → ∞, we move toward a continuous probability distribution,
with PDF f (x). Letting W(x) denote the mean waiting time of those customers that
are assigned label x, we can restate the conservation law in this case as follows:

∫
1

0
f (x)W(x) dx =

W0

1 − 𝜌
(6.10)

We will resume this example when we analyze the head-of-line (HOL) priority
case.

6.3 M∕G∕1 Priority Queueing

The M∕G∕1 priority queueing model consists of a single server system fed by
customers bearing a priority. The queueing system has infinite room for waiting
customers, so no loss occurs. We assume that there exist P priority classes. For the
time being, we do not specify a particular priority rule. All we subscribe is that:
(i) any conceivable priority rule shall be a function of the labels 1,… ,P; (ii) HOL
service is adopted, i.e., a single customer at a time is served; and (iii) service time
is independent of the priority rule. More subtly, the key point lies with how we
decide to assign a given label to a given traffic flow (e.g., based on its offered load
or service requirement characteristics).

Class j customers arrive at the system according to a Poisson process with mean
rate𝜆j. The CDF of their service demand Xj is denoted with FXj

(x), the mean service
time with E[Xj] = 1∕𝜇j. Let also Nj(t) be the number of class j customers residing
in the system at time t. The overall number Q(t) is the sum of the Nj(t)’s: Q(t) =
N1(t) + · · · + NP(t). Finally, let Wj denote the waiting time of the class j customers.

The priority scheme based on labels needs two further specifications:

● What to do with ties, i.e., customer having the same label;
● Whether service can be interrupted.

As for the first issue, we assume an FCFS rule, unless otherwise stated. As for
the second point, two kinds of priorities are defined.

�

� �

�

6.3 M∕G∕1 Priority Queueing 273

● Nonpreemptive priority: Once a customer is allocated the server, the server stays
with that customer until its demand has been fully met, no matter of the priority
level of customers arriving after the beginning of the current service; in other
words, service is not interruptible.

● Preemptive priority: If a customer of class j is under service and a customer with
priority level i < j enters into the system, the service is interrupted immediately
and the new, higher-priority customer is taken into service, releasing the cus-
tomer that was being served; two kinds of resume mechanisms can be defined.
– Preemptive-resume: When the server is available again and the interrupted

customer has the right to get it, according to the priority rules, service starts
off just from where it had been stopped on the last interruption.

– Preemptive-repeat: Whenever resuming service after an interruption, a cus-
tomer starts all over from scratch; thus the work done in previous partial
service times is lost

A key observation is that the probability distribution of the number Q(t) of cus-
tomers in the system at equilibrium does not depend on the service priority as long
as the server is work-conserving, i.e., all the workload admitted into the queue is
carried out, sooner or later, and no time is wasted by the server, i.e., the server is
always serving one customer as long as there is at least one in the system (no server
vacations allowed).

This is evident by reviewing the derivation of the z-transform 𝜙Q(z) in
Section 4.2.1 or even by reading the one-step evolution equation of the M∕G∕1
EMC Qn. The subscript n refers to the n-th departing customer, whatever the order
of service be. Note that also the duration of the busy period and its probability
distribution are independent of the order of service for a work-conserving server.
On the other hand, the probability distribution of the waiting time does depend on
the order of service.

As a result of the independence of the queue length PDF of the order of
service, it follows that statistical equilibrium of the system is achieved under the
same conditions as in the plain M∕G∕1 queue, namely it must be 𝜌 < 1, where
𝜌 = 𝜌1 + · · · + 𝜌P =

∑P
i=1 𝜆i∕𝜇i is the overall server utilization coefficient.

6.3.1 Non-FCFS Queueing Disciplines

Before moving to specific priority schemes and scheduling algorithms, we devote
this section to analyzing two classic queueing disciplines alternative to FCFS,
namely last-come, first-served (LCFS) and random order (RO). Both of them are
addressed in [198].

With LCFS, the server picks the last-arrived customer to serve whenever it has to
start a new service. No interruption is allowed. This kind of discipline is typically

�

� �

�

274 6 Priorities and Scheduling

implemented in a stack data structure, as the one used to manage subroutine calls
in a computer program.

Let us consider an M∕G∕1 queue, with mean arrival rate 𝜆. We assume that 𝜌 < 1
so steady-state exists and we refer to a general time during statistical equilibrium.

A customer that joins the queue can find it empty, with probability 1 − 𝜌. In this
case it will be served immediately, i.e., the waiting time is 0.

If the arriving customers finds the server busy, they must wait until the current
service ends, i.e., for a residual service time X̃ . Let N be the number of customers
arriving after the tagged customer, during the same residual service time. They
will be served before the tagged customer, according to the LCFS discipline, along
with any other customer arriving during the sub-busy periods starting with their
service. Let us denote with Yk the sub-busy period generated by the k-th arriving
customer, k = 1,… ,N.

Translating in equations the above reasoning, we can write the following expres-
sion of the Laplace transform of the PDF of the waiting time, conditional on X̃ = x
and N = n:

E[e−sW |X̃ = x,N = n] = 1 − 𝜌 + 𝜌 E[e−s(x+
∑n

k=1 Yk)] = 1 − 𝜌 + 𝜌 e−sx[𝜑Y (s)]n

(6.11)

where 𝜑Y (s) is the Laplace transform of the busy period of the M∕G∕1 queue as
given in eq. (4.42). Removing the conditioning, we have

𝜑W (s) = ∫
∞

0

∞∑
n=0

(𝜆x)n

n!
e−𝜆xE[e−sW |X̃ = x,N = n]fX̃ (x) dx

= 1 − 𝜌 + 𝜌∫
∞

0

∞∑
n=0

(𝜆x)n

n!
e−𝜆xe−sx[𝜑Y (s)]nfX̃ (x) dx

= 1 − 𝜌 + 𝜌∫
∞

0
e−x[s+𝜆−𝜆𝜑Y (s)]fX̃ (x) dx

= 1 − 𝜌 + 𝜌 𝜑X̃ (s + 𝜆 − 𝜆𝜑Y (s))

= 1 − 𝜌 + 𝜆
1 − 𝜑X (s + 𝜆 − 𝜆𝜑Y (s))

s + 𝜆 − 𝜆𝜑Y (s)

= 1 − 𝜌 + 𝜆
1 − 𝜑Y (s)

s + 𝜆 − 𝜆𝜑Y (s)
where we have used the expression of the Laplace transform of the random vari-
able X̃ , i.e., 𝜑X̃ (s) =

1−𝜑X (s)
sE[X]

, in the fourth line, and eq. (4.42) in the sixth line.
It can be verified that the mean waiting time of the LCFS M∕G∕1 queue is

the same as the FCFS. In fact, the mean waiting time in independent of the
queueing discipline, as long as it serves one customer at a time and the server
is work-conserving. The probability distribution and higher-order moments are
instead different from the FCFS case.

�

� �

�

6.3 M∕G∕1 Priority Queueing 275

As for random order (RO) service, whenever a new service is started, the server
picks one of the customers waiting for service, if any, uniformly at random. A cus-
tomer is selected with probability 1∕n if Q = n.

In [198] it is shown that it is

𝜑W (s) = (1 − 𝜌)
[

1 + 𝜆

s ∫
1

𝜑Y (s)
A(u)e−B(u) du

]
(6.12)

where

A(u) = 1 + u − 1
u − 𝜑X (𝜆 − 𝜆u)

B(u) = ∫
1

u

1
w − 𝜑X (s + 𝜆 − 𝜆w)

dw

(6.13)

By deriving the Laplace transforms of the waiting time it is possible to calculate
the moments of the waiting time. As we know, the mean waiting time is indepen-
dent of the queueing discipline and given by the Pollaczek-Khinchine formula:

E[W] = 𝜆E[X2]
2(1 − 𝜌)

(6.14)

As for the second moment, we have

E[W2
FCFS] =

𝜆E[X3]
3(1 − 𝜌)

+ 𝜆
2(E[X2])2

2(1 − 𝜌)2 (6.15)

for FCFS service,

E[W2
LCFS] =

𝜆E[X3]
3(1 − 𝜌)2 + 𝜆

2(E[X2])2

2(1 − 𝜌)3 = 1
1 − 𝜌

E[W2
FCFS] (6.16)

for LCFS service, and

E[W2
RO] =

2𝜆E[X3]
3(1 − 𝜌)(2 − 𝜌)

+ 𝜆
2(E[X2])2

(1 − 𝜌)2(2 − 𝜌)
= 2

2 − 𝜌
E[W2

FCFS] (6.17)

for RO service.
Figure 6.3 compares the COV of the waiting time CW for the three queueing

disciplines as a function of 𝜌 for Pareto distributed service time (left plot) and deter-
ministic service time (right plot). We assume E[X] = 1, i.e., the mean service time
is taken as the unit of time. We recall that CW = 𝜎W∕E[W]. The Pareto CCDF is
given by GX (t) = (𝜃∕t)𝛼 , where the parameter 𝜃 is set so that E[X] = 𝛼𝜃∕(𝛼 − 1) is
equal to a prescribed value. We set 𝛼 = 3.2. Note that it must be 𝛼 > 3 for the first
three moments of the service time to exist.

The plots are similar, except that the values of the COV are much higher in
case of Pareto service times for the same value of 𝜌. The COV appears to diverge
both for low and for high load levels. This means that a large jitter, with respect
to the average of the waiting time, is to be expected in those two cases. Since the
mean waiting time tends to 0 as 𝜌 → 0, the diverging COV means simply that the

�

� �

�

276 6 Priorities and Scheduling

0 0.2 0.4 0.6 0.8 1

Utilization coefficient, ρ

0

1

2

3

4

5

6

FCFS

LCFS

RO

0 0.2 0.4 0.6 0.8 1

Utilization coefficient, ρ

0

1

2

3

4

5

6

FCFS

LCFS

RO

σ W
/E

[W
]

σ W
/E

[W
]

Pareto - α = 3.2 Deterministic

Figure 6.3 Coefficient of variation of waiting time as a function of the utilization
coefficient for an M∕G∕1 queue: comparison among FCFS, LCFS, and RO queueing
disciplines. Left plot: Pareto distributed service time. Right plot: deterministic service
time.

standard deviation of the waiting time tends to 0 slower than the mean. Yet, for
low load values, delay is not an issue. As 𝜌 approaches 1, the plots highlight that
the jitter of the waiting time is growing even faster than the mean waiting time.
Worse delay jitter performance is to be expected with LCFS, while RO results in
values intermediate between LCFS and FCFS.

6.3.2 Head-of-Line (HOL) Priorities

We specialize the general label priority model by requiring that class j customers
have priority over class i customers for any i > j. HOL priority consists of this sim-
ple rule: the server, whenever ready to serve a customer waiting in the system,
chooses the one having the least label. Among those with the least label, it chooses
the one that has waited longest. Preemption is not allowed.

The waiting time of a class j customer can be written as

Wj = X0 +
j∑

i=1

Ni∑
k=1

Xi(k) +
j−1∑
i=1

Mi∑
k=1

Yi(k) (6.18)

where Ni is the number of customers of class i found in the system by the tagged
arrival, Xi(k) is the service time of the k-th of such customers, Mi is the number of
customers arriving at the system after the arrival of the tagged customer, Yi(k) is
the service time of the k-th of those last customers.

Equation (6.18) is self-explanatory: the wait of the class j tagged customer is
made up of three components:

1. The time required for the server to clear its current residual service time (no
preemption is allowed).

2. The service times of customers having higher or the same priority as the tagged
customer, already in the system upon the arrival of the tagged customer.

�

� �

�

6.3 M∕G∕1 Priority Queueing 277

3. The service times of customers of higher priority than the tagged customer,
arriving after its arrival, since those higher-priority arrivals jump ahead of the
tagged customer according to HOL scheme.

At equilibrium we can apply Little’s law and thus obtain the following expres-
sion of the mean wait of class j customers:

E[Wj] = W0 +
j∑

i=1
E[Ni]E[Xi] +

j−1∑
i=1

E[Mi]E[Xi]

= W0 +
j∑

i=1
𝜆iE[Wi]E[Xi] +

j−1∑
i=1

𝜆iE[Wj]E[Xi]

= W0 +
j∑

i=1
𝜌iE[Wi] + E[Wj]

j−1∑
i=1

𝜌i (6.19)

for j = 2,… ,P. For j = 1 it is easy to find that

E[W1] = W0 + E[N1]E[X1] = W0 + 𝜌1E[W1] (6.20)

In this derivation we have used the fact that, at equilibrium, the mean number
of class i customers residing in the waiting line (i.e., in the system, but not under
service) is E[Ni] = 𝜆iE[Wi] by Little’s law. The mean number of customers of class
i arriving at the queue during the tagged class j customer wait are E[Mi] = 𝜆iE[Wj].

Equations (6.19) and (6.20) can be rearranged as follows:

E[W1] =
W0

1 − 𝜌1
(6.21)

E[Wj]

(
1 −

j∑
i=1

𝜌i

)
= W0 +

j−1∑
i=1

𝜌iE[Wi] (6.22)

Let Sj =
∑j

i=1 𝜌i, j = 1,… ,P, and S0 = 0, to simplify notation. Subtracting the
(j − 1)-th equation from the j-th one, we get E[Wj]

(
1 − Sj

)
= E[Wj−1]

(
1 − Sj−2

)
.

Multiplying by 1 − Sj−1 we obtain finally

E[Wj](1 − Sj)(1 − Sj−1) = E[Wj−1](1 − Sj−1)(1 − Sj−2) (6.23)

for j = 2,… ,P. Therefore, Zj = E[Wj](1 − Sj)(1 − Sj−1) is a constant, independent
of j, whose value is found by letting j = 1 and noting that

Z1 = E[W1](1 − S1) = E[W1](1 − 𝜌1) = W0 (6.24)

The final result is

E[Wj] =
W0

(1 − Sj)(1 − Sj−1)
, j = 1,… ,P, (6.25)

with S0 ≡ 0 and Sj =
∑j

i=1 𝜌i for j = 1,… ,P. The overall mean waiting time is
E[W] =

∑P
i=1

𝜆i
𝜆

E[Wi], where 𝜆 = 𝜆1 + · · · + 𝜆P.

�

� �

�

278 6 Priorities and Scheduling

The form of the result is consistent with intuition of the HOL scheme working.
The mean waiting time of class j depends on the residual time (hence on the vari-
ability of the service times of all classes: no preemption!) and on the mean load of
all classes from 1 (highest priority) down to j itself. It does not depend on the mean
load of classes with priority lower than j. This is the kind of protection offered by
the HOL scheme to higher-priority classes against possible overloads caused by
lower priority classes. In turn, this gives an indication of when HOL could possibly
be used.

Example 6.4 Consider the output link of a router or a cellular network base
station, where VoIP, interactive transaction (e.g., chatting), video streaming, web
browsing, email, cloud storage, and file-sharing applications traffic flows are mul-
tiplexed. The first three kinds of traffic have stringent delay requirements. The
first two are expected to offer a little fraction of the overall traffic (tens of kbps
for each VoIP connection and few kbps for chatting), while video streaming is
more demanding as for throughput, ranging from few hundreds kbps up to few
Mbps. Web browsing is somewhat more elastic than real-time traffic. The last three
categories have definitely loose requirements on delay. The last two can produce
massive data transfer, typically much more intense than email or web browsing
(up to Gbytes as opposed to typically few Mbytes or less data to move).

If a HOL scheme is applied at the output link, it is natural to assign top priority
to small, inelastic flows such as VoIP and transactional traffic. Immediately below
this category there comes video streaming, since it needs low mean delay and delay
jitter and it has a capped throughput requirement. Low priority should be given
to email, cloud storage and file sharing, especially the last one. File sharing is
usually executed by greedy applications that try to take as much bandwidth as
possible (even if parameters are provided to configure how aggressive they should
be). It is therefore likely that such applications can cause overloads. Assigning
them the lowest priority guarantees that they will not disturb more critical and
delay demanding applications. On the other hand, high-priority applications are
expected to leave enough room for the low priority ones to survive well off, since
they do not demand a big throughput.

Example 6.5 To give a numerical example, let us assume P = 4. The mean ser-
vice times, coefficients of variation (ratio of the standard deviation to the mean)
of the service times and the fraction of the overall load 𝜌 of each class are listed in
Table 6.1.

Figure 6.4 illustrates E[Wj] as a function of 𝜌 for a four classes priority queue-
ing system. It compares HOL priority (left plot) with preemptive-resume priority
(right plot; see section 6.3.3 for the analysis of the latter queueing discipline). For

�

� �

�

6.3 M∕G∕1 Priority Queueing 279

Table 6.1 Numerical values for Example 6.5.

class 1 2 3 4

E[Xj] 1 1 2 10
CXj

0 0.5 1 2

𝜌j∕𝜌 0.1 0.1 0.3 0.5

0 1 2 3 4
0

10

20

30

40

50

ρ

E
[W

j]

E
[R

j]

class 1
class 2
class 3
class 4
FCFS

0 2 4

(a) (b)

6 8
0

10

20

30

40

50

ρ

class 1
class 2
class 3
class 4
FCFS

Preemptive

Non−preemptive

Figure 6.4 Example of HOL priority: mean waiting time as a function of load for
nonpreemptive priority (left) and mean response time as a function of load for preemptive
resume priority (right). The values of the mean service times, coefficient of variation of
the service time and fraction of the overall load of each class are listed in Table 6.1.

comparison purposes, the mean waiting time of a plain FCFS queueing system
with the same load is shown as a dashed line.

The different limits of stability of the priority classes are apparent, the lowest
priority class having the same limit as the equivalent FCFS queueing system. The
mean waiting times highlight that the system offers quite a good gain for a rela-
tively small penalty of the lowest priority class. This is consistent with the assign-
ment of priorities, i.e., the highest priority goes to the light traffic flows, with
smoothest service times, while the least priority is given to the bulk of traffic, with
highly variable service times.

Comparing HOL and preemptive-resume priorities, it can be seen that the
latter improves the mean waiting time experienced by higher-priority classes at
low to moderate loads, with respect to the former policy. The price to be paid is
worsening of low priority mean waiting time even at very low loads. As suggested
by intuition, at very low loads, HOL priority implies little difference with respect
to a plain FCFS system, i.e., all classes undergo the same mean waiting time,

�

� �

�

280 6 Priorities and Scheduling

dominated by the mean residual unfinished work W0. In the preemptive-resume
policy, differentiation is already evident even at very low loads. The added value
of this policy is that high-priority classes do not suffer in case of high variance of
service times of low-priority class.

Example 6.6 (Continued from Example 6.3) The random labeling priority
service system can be assimilated to a HOL scheme, where class j customers are
selected with probability qj from the whole stream of arriving customers. Then

E[Wj] =
W0

(1 − 𝜌Fj)(1 − 𝜌Fj−1)
(6.26)

where W0 = 𝜆E[X2]∕2. In the limit for a continuous probability distribution, we
have

W(x) =
W0

[1 − 𝜌F(x)]2 , x ∈ [0, 1], (6.27)

where F(x) is the CDF of the random label. Using eq. (6.27) it can be checked that
the conservation law holds. The minimum possible waiting time is W(0) = W0,
while the upper bound is W(1) = W0∕(1 − 𝜌)2.

We can compare W(x) with the mean waiting time E[W] = W0∕(1 − 𝜌) and ask
what is the probability that an arriving customer will experience a wait lower
than the mean. The inequality W(x) ≤ E[W] yields F(x) ≤ (1 −

√
1 − 𝜌)∕𝜌, i.e., the

probability that a lucky customer waits less than the mean waiting time is just
p = (1 −

√
1 − 𝜌)∕𝜌 ∈ (1∕2, 1) as 𝜌 ranges in (0, 1). For 𝜌 = 0.8, we obtain p ≈ 0.69.

Note that, as 𝜌 gets closer to 1, the mean waiting time raises fast. Experiencing
a mean waiting time less than the overall mean wait does not necessarily imply
that the customer waits for a short time, as compared to its mean service time. In
formulas, W(x) < E[W] does not imply necessarily that W(x) ∼ E[X].

We calculate the probability p that W(x) < D for a given fixed value D. It
is apparent that it must be D > W0. The mean wait W(x) = W0∕[1 − 𝜌F(x)]2

is less than the prescribed threshold D for x ≤ xD = F−1((1 −
√

W0∕D)∕𝜌).
Then p = (W(x) ≤ D) = (L ≤ xD) = F(xD) = (1 −

√
W0∕D)∕𝜌. For 𝜌 = 0.9 and

D = 2W0, we have p ≈ 0.325. About one third of customers experiences a mean
wait of no more than twice the minimum mean wait W0, while the overall mean
wait, averaged over all customers, is 10W0 for 𝜌 = 0.9.

Note that the probability p does not depend on the form of F(x), even if the value
of W(x) does depend on the specific behavior of F(x).

As a last remark, the random labeling model could account also for customer
rejection. It can be stipulated that with some probability q arriving customers are
dropped. Then, random labeling applies only to surviving customers. The flow of
admitted customers is still a Poisson process, if the original arrival process is, since
dropping is made at random, independently of arrival times (it may well depend

�

� �

�

6.3 M∕G∕1 Priority Queueing 281

though on service times: in that case the PDF of the service times of the admitted
customers should be adjusted accordingly).

The result on HOL mean waiting times has been derived by assuming 𝜌 < 1 to
make statistical equilibrium of the whole system achievable. It can be seen, how-
ever, that the mean waiting time of customers up to class j does exist finite as long
as Sj < 1, even if Si ≥ 1 for i > j. In this last case, customers of classes i > j will
experience a disaster, the service system appearing overloaded and ineffective at
accommodating their service demand.

This is a first sample of a deep and key issue in resource sharing, dubbed under
the name of fairness. It has to do with the criteria that rule resource sharing among
contending customers, when the amount of available resource falls short of the
overall demand4. Fairness is usually associated to some form of guarantee that
every demand presented at the system will be taken care of in some way, maybe
with delay or allowing only part of the required service capacity. There is no gen-
eral rule as to what is the “ideal” fairness, since this is actually a “political” issue,
in the sense that it depends on the management policies of the service system. For
an interesting discussion of the fairness concept see, e.g., [45]. We will tackle this
fundamental topic in Section 10.7, in conjunction with congestion control.

Example 6.7 Priorities and human activity. An unusual instance of prior-
ity queueing emerges from the analysis and modeling of human activities [23].
Several measurements give evidence for non-Poisson activity patterns in individ-
ual human behavior. In Barabási’s paper the email sending times of an individ-
ual user are taken as an example. It appears that the best fit for the PDF of the
inter-departure times of sent emails is heavy-tailed rather than exponential-tailed.
It is also reported that similar patterns have been found in other measurements:
examples of heavy-tail distribution are revealed in the distribution of the time dif-
ferences between consecutive instant messages sent by individuals during online
discussions. The timing of job submissions on a supercomputer, directory listing
and file transfers (FTP request) initiated by individual users, or the timing of print-
ing jobs submitted by users are mentioned in [23] to have been reported to display
non-Poisson features.

The explanation model proposed by Barabási is extremely simple and inspired
by the everyday management of tasks involving human individual activity. A list of
size L of prioritized tasks is given. Each task in the list is assigned a priority level,

4 As long as the overall demand can be fully served, i.e., there is service capacity for all, no
fairness issue arises; any work-conserving system just goes ahead to serve everyone. This does
not imply that everyone gets the same share of the service capacity, since service requests may
well differ among themselves. This is not an issue in a plentiful world (or under a modest
demand).

�

� �

�

282 6 Priorities and Scheduling

100 102 104
10–4

10–3

10–2

10–1

100

Time, t

P
ro

b
(W

>
t)

p = 0.01
p = 0.05
p = 0.1
p = 0.5
p = 1

L = 20

Figure 6.5 CCDF of the task
waiting time in the human activity
model of Barabási [23]. The task
list length is L = 20.

xi for task i. The time axis is discretized. In each time slot a new task is selected
and worked out. In the same slot a new task replaces the selected one. The priority
level of the new task is chosen from a given PDF, independently of all other tasks.

The selection of a task from the list is biased according to priorities. With proba-
bility p (another parameter of the model) the task is chosen at random, otherwise
the highest-priority task among the L in the list is selected. This simple model tries
to capture a schedule based on priorities, yet allowing occasional violations. For
p → 1 the model converges to a pure random order serving system (though with
limited room for arriving tasks and saturated load). In that case, it is easy to see
that the number of slots W that a task inserted in the list has to wait before being
taken care of has a simple geometric PDF:

(W = k) =
(

1 − 1
L

)k−1 1
L
, k ≥ 1. (6.28)

On the contrary, as p → 0 the model moves toward a strict priority scheduling.
The PDF for assigning priority levels to new tasks is assumed to be uniform in the
interval [0, 1]. Simulations have been run to estimate the CCDF of the task waiting
time W for various levels of p. The estimated CCDF are plotted in Figure 6.5 along
with the CCDF of the pure random selection of eq. (6.28) (dashed line).

In the log-log scale of the graph, the straight initial part of the CCDF denotes
the emergence of a heavy-tail behavior. Eventually the extreme tail is exponential,
as it is the case for p > 0. A heavy tail behavior is seen for about three orders of
magnitude of the abscissa if p = 0.01. The high variability of the waiting times
of this apparently simple model lies in the priority schedule: high-priority tasks
joining the list are cleared quickly. Low–priority ones are continuously overrun by
the higher-priority tasks and fall heavily behind schedule, accumulating a large
delay. A question arises at this point: Why do HOL priorities and other priority
queueing systems exhibit exponential tails of the waiting times, rather than heavy

�

� �

�

6.3 M∕G∕1 Priority Queueing 283

tails? The key to answer this question is noting two specific feature of the human
activity model:

● The priority list is finite; usually queueing priority models envisage an infinite
buffer.

● The list is always full, i.e., the system is saturated ; priority queueing models with
infinite room for customers are assumed to be stable, i.e., the mean arrival rate
of tasks is strictly less than the mean rate of task clearing. This guarantees that
the system converges to a statistical equilibrium, under stationary task arrivals.
Then, all tasks are eventually served, busy period are finite with probability one.
As a consequence, the tail of the waiting time CCDF is exponential as long as
service times have finite moments.

6.3.3 Preempt-Resume Priorities

The preempt-resume policy models systems where service is interruptible with-
out harm. Only when no higher-priority customer is in the queue can the inter-
rupted customer resume service from where it left off. An example that could fit
this scheme is sharing of processing capabilities (either physical servers or virtual
machines) in a data center among competing tasks.

We will evaluate the mean of the system time (also known as response time),
i.e., Rj = Xj + Wj for class j customers. This is the relevant quantity with
preempt-resume, since service can be interrupted.

Mimicking the approach of Section 6.3.2, we consider a tagged customer of class
j arriving at the system, that is supposed to be at equilibrium. The response time of
the tagged customer is the sum of the time required to clear the backlog it finds in
the system upon its arrival plus the time it takes to complete the tagged customer’s
service, including possible interruptions:

Rj = Uj +
j−1∑
i=1

Mi∑
k=1

Xi(k) + Xj (6.29)

where Uj is the unfinished work of customers with priority level up to j found by
the tagged class j customer in the system, Mi is the number of priority i customers
arriving during the tagged customer response time Rj. By using Little’s law, we
have E[Mi] = 𝜆iE[Rj]. Then

E[Rj] = E[Uj] +
j−1∑
i=1

𝜆iE[Rj]E[Xi] + E[Xj] = E[Uj] + E[Rj]
j−1∑
i=1

𝜌i + E[Xj]

(6.30)
The mean unfinished work E[Uj] can be determined thanks to the following

remark: a class j customer does not see lower-priority customers in any way.

�

� �

�

284 6 Priorities and Scheduling

It jumps ahead of those found waiting, and it can interrupt the service of any
lower-class customer under service. From the point of view of a class j customer,
lower-priority customers do not exist. What does a class j customer see then? The
mean amount of work it finds in the queue upon arrival is nothing else than an
instance of a plain M∕G∕1 mean unfinished work, thanks to the work-conserving
property of the server. The specific M∕G∕1 queue backlog seen by the class j
customer corresponds to a system where only customers of classes from 1 to j
exist. Therefore, invoking the classic P-K formula for the mean waiting time of
the M∕G∕1 queue fed by customers of classes i = 1,… , j, we have

E[Uj] =
W0,j

1 −
j∑

i=1
𝜌i

(6.31)

where W0,j is the mean residual service time of customers of class up to j:

W0,j =
j∑

i=1

𝜆iE[X2
i]

2
(6.32)

Summing it all up, we get finally

E[Rj] =
E[Uj] + E[Xj]

1 − Sj−1
= 1

1 − Sj−1

[
E[Xj] +

W0,j

1 − Sj

]
(6.33)

where Sj =
∑j

i=1 𝜌i, j = 1,… ,P.
Figure 6.4(b) illustrates E[Rj] as a function of 𝜌. The different limits of stability

of the priority classes are apparent, the lowest-priority class having the same limit
as the equivalent FCFS queueing system. Numerical values of the parameters are
as listed in Table 6.1.

It is apparent that preemptive-resume HOL is even more effective than
plain HOL in favoring higher-priority classes (note the different x-axis scale of
the two graphs in Figs. 6.4(b) and 6.4(a)). As expected, the penalty paid by the
lowest-priority class is heavier than in the HOL case. To gauge correctly the
results displayed in these graphs it is noted that the mean response time shown in
Figure 6.4(b) includes the service time. Service times in this numerical example
vary significantly among classes. This explains the big gap for small levels of 𝜌.

6.3.4 Shortest Job First

The HOL model can be exploited to derive the mean waiting time of the shortest
job first (SJF) policy. With this policy a customer has a higher priority the smaller
its service demand. Let us start by a discrete model, obtained by binning the range
of the service time. Class j is defined as all service times lying between xj−1 and

�

� �

�

6.3 M∕G∕1 Priority Queueing 285

xj, where x0 = 0 < x1 < · · · < xP. The mean arrival rate of class j customers is 𝜆j =
𝜆 ∫ xj

xj−1
fX (t) dt, j = 1,… ,P, where fX (x) is the PDF of the service times. Therefore

Sj =
j∑

i=1
𝜌i =

j∑
i=1

𝜆∫
xi

xi−1

fX (t) dt ∫
xi

xi−1

t
fX (t)

∫ xi
xi−1

fX (t) dt
dt = 𝜆∫

xj

0
tfX (t) dt

(6.34)

Letting the set of discrete points splitting the range of the service time become
dense, we may pass to a continuous spectrum of classes. The mean waiting time
of class x ∈ (0,∞) is then

W(x) =
W0(

1 − 𝜆 ∫ x
0 tfX (t) dt

)2 (6.35)

where W0 = 𝜆E[X2]∕2. The mean waiting time ranges from W0 when
x → 0 to W0∕(1 − 𝜌)2 for x → ∞. The overall mean waiting time is E[W] =
∫ ∞

0 fX (x)W(x) dx. It can be shown that the conservation law holds for the SJF
discipline [196, Ch. 14, p. 541].

Example 6.8 Let the service time PDF be Pareto, with PDF fX (x) = 𝛼𝜃
𝛼∕x𝛼+1

,

x ∈ [𝜃,∞). If 𝛼 > 2 at least the first two moments exist and the M∕G∕1 SJF model
can be applied. We have

𝜌 = 𝛼

𝛼 − 1
𝜆𝜃 (6.36)

W0 = 1
2
𝜆

𝛼

𝛼 − 2
𝜃

2 (6.37)

and

W(x) =
W0[

1 − 𝜌 + 𝜌

(
𝜃

x

)𝛼−1
]2 , x ≥ 𝜃. (6.38)

With a fair amount of calculations, it can be found that W(x) ≤ W0∕(1 − 𝜌) for

x ≤ xsup = 𝜃

(
1 + 1√

1−𝜌

)1∕(𝛼−1)
, which occurs with probability

p = ∫
xsup

0
fX (x) dx = 1 −

(
𝜃

xsup

)𝛼

= 1 −

(√
1 − 𝜌

1 +
√

1 − 𝜌

) 𝛼

𝛼−1

(6.39)

For 𝜌 = 0.9 and 𝛼 = 3, we have p ≈ 0.88. It is a typical effect of power laws that sam-
ples stay below the mean with high probability. Here we see another manifestation
of the power law effect. There is a remarkably high probability that a customer
arriving at a SJF service system will undergo a mean waiting time less than the
FCFS mean waiting time. The conservation law reminds us that the counterpart of

�

� �

�

286 6 Priorities and Scheduling

this nice behavior is that the remaining customers (with probability ≈ 0.12 in our
numerical example) will suffer rather large delays. However, note that the overall
mean waiting time will improve over FCFS.

6.3.5 Shortest Remaining Processing Time

The SJF discipline discriminates in favor of short jobs, yet maintaining that
at most a single job can be partially served at any time. In other words, the
server capacity cannot be shared concurrently among different jobs. If we relax
this constraint and let more jobs be partially served, along the same lines of
SJF, another queueing discipline arises quite naturally, namely the so called
shortest remaining processing time (SRPT). We still assume that the server is
work-conserving. Hence, it can go idle only if no customer is waiting for service
in the queueing system. According to SRPT, when the server becomes idle, if
any customer is waiting to be served, the server selects the one whose residual
service time is minimum. In other words, the server gives preference to that
job that requires the minimum amount of time to be completely served among
those that are waiting for service. When a new customer joins the queue, if its
service demand is less than the residual service time of the customer under
service, the newly arrived customer will preempt the server. A resume kind of
preemption is here assumed. In other words, no work is lost when the server
leaves a customer not fully served, to start serving a higher-priority customer, i.e.,
one whose remaining service time is the least among all customers residing in the
queue. As with other queueing disciplines, SRPT can be implemented by defining
a quantum of service. After having completed each service quantum, the server
checks among all customers in the queue at that time and selects the one with
the least remaining service time for the next quantum of service.

In the following we analyze the performance of SRPT as the quantum size tends
to 0. We consider a single, work-conserving server. Customers arrive according to
a Poisson process of mean rate 𝜆 and service times are i.i.d. random variables with
CDF FX (x). We offer an informal argument. For a more formal proof, the interested
reader can consult, e.g., [86].

The mean response time conditional on the tagged customer requesting a
service time of x is denoted with R(x). It can be decomposed into the sum of
two terms:

1. The mean time V(x) since arrival until the tagged customer is served for the
first time.

2. The mean time S(x) elapsing since when service of the tagged customer starts
until when it leaves the queueing system having completed its service, includ-
ing all interruptions due to arriving customers with shorter remaining service
time.

�

� �

�

6.3 M∕G∕1 Priority Queueing 287

As for V(x), we recognize that SRPT effectively corresponds to a priority queue-
ing system, where customers with service demand < x have higher priority than
the tagged customer. Upon arrival, the tagged customer with service demand x has
to wait for the server to complete the current service, provided that service is given
to a customer whose residual service demand is less than x. Then, the mean time
for the server to complete the current service is

W0(x) =
1
2
𝜆

[
∫

x

0
t2 dFX (t) + x2(1 − FX (x))

]
(6.40)

The mean time the tagged customer has to wait before getting to the server
for the first time can be calculated as the mean waiting time of an M∕G∕1 pri-
ority system, whose effective arrival rate is 𝜆(x) = 𝜆FX (x), i.e., it accounts only
for customers having service times smaller than x, and service time PDF equal
to fX (t)∕FX (x) for t ∈ [0, x). Since the mean time for the server to become empty
upon arrival of the tagged customer is W0(x), we obtain

V(x) =
W0(x)(

1 − 𝜆(x) ∫ x
0 t dFX (t)∕FX (x)

)2 =
𝜆 ∫ x

0 t2 dFX (t) + 𝜆x2[1 − FX (x)]

2
(
1 − 𝜆 ∫ x

0 t dFX (t)
)2

(6.41)
As for S(x), let us consider the interval [t, t + dt] during the service (possibly

interrupted) of the tagged customer, with t ≤ x, i.e., let us consider the evolution
of the residual service time of the tagged customer when decreasing from t + dt to
t. The tagged customer can be preempted if a customer with service demand less
than t arrives in the considered time interval. In that case the interruption lasts for
the whole mini-busy period generated by the new arriving customer and all those
possibly arriving and having service time less than t. Those form a Poisson process
with mean rate 𝜆(t) = 𝜆FX (t). Their service time is a random variable Xt, whose
PDF is fX (u)∕FX (t), for u ∈ [0, t). The mean duration of such mini-busy periods is
unaffected by the queueing discipline (since the server is work-conserving), hence
we can calculate it by using the known expression holding for the FCFS queue. Let
B denote the random variable representing the duration of one such mini-busy
period. Then

E[B] =
E[Xt]

1 − 𝜆(t)E[Xt]
=

∫ t
0 u dFX (u)∕FX (t)

1 − 𝜆 ∫ t
0 u dFX (u)

(6.42)

The mean number of such mini-busy periods in the reference time interval [t, t +
dt] is 𝜆(t)dt. Therefore, the tagged customer spends time dt plus the preemption
time it suffers, i.e., 𝜆(t)dt ⋅ E[B] = 𝜆FX (t)dt ∫

t
0 u dFX (u)∕FX (t)
1−𝜆 ∫ t

0 u dFX (u)
. Summing it up, we have

�

� �

�

288 6 Priorities and Scheduling

dt + dt𝜆 ∫ t
0 u dFX (u)

1−𝜆 ∫ t
0 u dFX (u)

= dt
1−𝜆 ∫ t

0 u dFX (u)
. Integrating over t, we get finally

S(x) = ∫
x

0

dt
1 − 𝜆 ∫ t

0 u dFX (u)
(6.43)

The mean conditional response time of the M∕G∕1 queue run according to the
SRPT queueing discipline is R(x) = V(x) + S(x), i.e.,

R(x) =
𝜆 ∫ x

0 u2 dFX (u) + 𝜆x2[1 − FX (x)]

2
(
1 − 𝜆 ∫ x

0 u dFX (u)
)2 + ∫

x

0

dt
1 − 𝜆 ∫ t

0 u dFX (u)
(6.44)

The unconditional mean response time is obtained simply as R = ∫ ∞
0 R(x)

dFX (x).

6.3.6 The 𝝁C Rule

Let us pose the following optimization problem, following closely [131, Ch. 3,
p. 125]. Consider a service system accessed by P customer classes, each one char-
acterized by its own service time probability distribution and mean arrival rate.
Assume that the system can be modeled as an M∕G∕1 priority queue. Let Cj be
the cost per unit time that a customer of class j spends in the system. The overall
mean cost rate for running the system is then

C =
P∑

j=1
CjE[Nj] =

P∑
j=1

Cj𝜆j(E[Xj] + E[Wj]) =
P∑

j=1
Cj𝜌j +

P∑
j=1

Cj𝜇j𝜌jE[Wj]

(6.45)
The first term on the right-hand side sum is a constant, once the arrival

and service processes parameters are given. We should then minimize the
sum

∑P
j=1 Cj𝜇j𝜌jE[Wj] by choosing among all possible work-conserving priority

disciplines. If we restrict ourselves to those priority schemes for which the
conservation law holds, the optimization problem becomes:

max
𝜋∈

P∑
j=1

𝜇jCj𝜌jE[Wj] (6.46)

subject to:
P∑

j=1
𝜌jE[Wj] =

𝜌W0

1 − 𝜌
(6.47)

where 𝜋 is a policy and is the set of all work-conserving disciplines for which
the conservation law holds.

Since the sum of the variables 𝜌jE[Wj] must be a constant by the constraint
(6.47), the optimum is achieved by ordering the “weights” 𝜇jCj, j = 1,… ,P, in

�

� �

�

6.4 Processor Sharing 289

descending order. We choose the policy that makes E[W1] attain the least possi-
ble value, since it is weighted by the biggest value 𝜇1C1, E[W2] attain the second
smallest value and so on so forth. This is but the HOL priority scheme. We have
therefore a rule for assigning labels to the classes, so as to set up the HOL prior-
ity. The rule is: once the indices are given so that 𝜇1C1 ≥ 𝜇2C2 ≥ · · · ≥ 𝜇PCP, the
highest priority is given to class 1, the lowest to class P. The result is therefore that
HOL priority is the solution of our optimization problem.

A little thought reveals that the so called “𝜇C” rule is sensible. If mean service
times were the same for all customers, priority would be simply proportional to
the cost per unit time of staying in the system. The more a customer sojourn in the
system costs, the fastest it should be served and sent away. Different values of the
mean service times come to change somewhat this picture. To be concrete, suppose
one class of customers has a cost of C1 = 10 and a mean service time 1∕𝜇1 = 10,
while another class has C2 = 2 and 1∕𝜇2 = 1. Type 1 customers have a high cost;
however, they tend to hog the server, since their mean service time is 10 times the
other class mean service time. Suppose there are only two customers to serve, one
for each class. If class 1 customer is preferred, the average cost for waiting time is
1∕𝜇1 × C2 = 20. If on the contrary type 2 customer is selected for service first, the
mean cost for the waiting time is 1∕𝜇2 × C1 = 10. It is more convenient to serve
first the customer whose cost per unit time in the system is lower in this case. It
can be verified that the 𝜇C-rule gives the correct answer: 𝜇1C1 = 1 < 𝜇2C2 = 2.

Even this very simple example points out that a compromise must be found
between cost and mean service time. The outcome is strikingly simple: just assign
priorities in descending order of the products 𝜇jCj, j = 1,… ,P.

6.4 Processor Sharing

We touch here the key topic of modeling systems where the service facility pro-
vided by a single server is shared dynamically among customers visiting the sys-
tem. The ability to serve simultaneously all pending customers by assigning a
portion of the service capability to each one motivates the term sharing. The word
processor refers to the service capability itself. This terminology has become com-
monplace since the first application of this model, which addressed the analysis
of computing facilities.

After introducing the classic M∕G∕1 processor sharing model, we outline the
generalized processor sharing model. Then we turn to ways to realize in practice
those theoretical models in a packet multiplexer, e.g., at the output line of a router
in the Internet.

�

� �

�

290 6 Priorities and Scheduling

6.4.1 The M∕G∕1 Processor Sharing Model

The processor sharing model is an ordinary M∕G∕1 queue except that the service
discipline is special: the server offers its capacity to all awaiting customers, in equal
parts. Let 𝜇 denote the service rate of the queue, i.e., the reciprocal of the mean
service time. When the number of customers in the queue is Q(t) = n, the service
rate allocated to each customer is 𝜇∕n, i.e., the service potential of the server is
equally shared by the n customers. Processor sharing can be considered as the limit
for 𝛿 → 0 of a round robin scheduler that cycles through customers and gives no
more than an amount 𝛿 of service per round (service quantum) to each customer
in the queue.

Note that with the processor sharing model there is no clear-cut separation
between the waiting time and the service time. A customer starts being served
as soon as it enters the queue. The customer leaves the queue when its service
demand has been completely served. Therefore, an M∕G∕1 processor-sharing
server is work-conserving, but there is in general more than a single customer
that has been partially served.

Let 𝜆 denote the mean customer arrival rate and let 𝜌 = 𝜆∕𝜇 be the utilization
coefficient of the server. The system is stable, hence it admits a steady state, if and
only if 𝜌 < 1. A rigorous derivation of the steady-state probability distribution of
the M∕G∕1 processor sharing model can be found in many textbooks, e.g., in [86,
Ch. 4, p. 221]. Here we offer an informal derivation.

Let Q(t) denote the number of customers in the system at time t, and let Ri(t)
be the remaining service time of the i-th customer at time t, i = 1,… ,n. It can be
seen that (Q(t),R1(t),… ,RQ(t)(t)) is a Markov process that gives a full description
of the M∕G∕1 processor sharing model. For any positive n, let Fn(y1,… , yn) be a
joint CDF defined as

Fn(y1,… , yn) = (Q = n,R1 ≤ y1,… ,Rn ≤ yn) (6.48)

where the random variables Q, R1,… ,Rn are referred to a generic time in the
steady state. The corresponding joint probability density function is

fn(y1,… , yn) =
𝜕

n Fn(y1,… , yn)
𝜕y1 𝜕y2 … 𝜕yn

(6.49)

It can be shown that

fn(y1,… , yn) = (1 − 𝜌)𝜆n
n∏

i=1
[1 − FX (yi)] (6.50)

where FX (⋅) is the CDF of the service times. The steady state probability distribu-
tion of Q can be found by integrating fn(y1,… , yn) with respect to yi, i = 1,… ,n
over (0,∞). Since ∫ ∞

0 [1 − FX (yi)]dyi = 1∕𝜇, it follows

(Q = n) = (1 − 𝜌)𝜆n 1
𝜇n = (1 − 𝜌)𝜌n

, n ≥ 0. (6.51)

�

� �

�

6.4 Processor Sharing 291

The striking result is that the probability distribution of the number of customers
residing in the M∕G∕1 processor sharing system in steady state is the same as the
one of the M∕M∕1 queue, irrespective of the probability distribution of the service
times!

In the sequel, we derive this result and other special ones by resorting to a non-
rigorous yet insightful reasoning. We start by finding the average response time
R(x) ≡ E[S|X = x], conditional on the service requirement being x. This is the aver-
age of the time that an arriving customer requesting a service time x remains in
the system before completing its service requirement.

Let ta denote the arrival time of a tagged customer and S be its sojourn time into
the system. Then, according to the processor sharing model of operation, we have:

∫
ta+S

ta

1
1 + Q(𝜏)

d𝜏 = x (6.52)

Note that Q(ta) is the number of customers found in the system by the tagged cus-
tomer and Q(ta + S) the number of customers left behind by the tagged customer
upon departure. Taking derivatives with respect to x, we get

dS
dx

1
1 + Q(ta + S)

= 1 (6.53)

The random variable Q(ta + S) is nothing but the random variable Qd =
number of customers left behind by a departing one, that in turn has the same
PDF of Qa=number of customers found by the tagged customer in the queue,
and the latter is obviously independent of the service time x. Then, we have
Q(ta + S) ∼ Q(ta) ∼ Q, where Q denotes a random variable that has the probabil-
ity distribution of the number of customers found in the system at a general time
of the steady state. The last statement is a consequence of Poisson arrivals and of
the PASTA property. Then, 1 + Q(ta + S) ∼ 1 + Q, and it is independent of x and
of S. Therefore, integrating eq. (6.53), we have

S = x(1 + Q) ⇒ R(x) = E[S|X = x] = x(1 + E[Q]) (6.54)

By removing the conditioning on the service time, we get

E[S] = E[X](1 + E[Q]) = E[Q]
𝜆

(6.55)

where the last equality is just Little’s law. Then

E[Q] = 𝜌

1 − 𝜌
(6.56)

where 𝜌 = 𝜆∕𝜇 < 1 to guarantee the existence of statistical equilibrium. Getting
back to the conditional sojourn time, we find finally

R(x) = x
1 − 𝜌

(6.57)

�

� �

�

292 6 Priorities and Scheduling

This result illustrates the nice property that the response time of the M∕G∕1
processor sharing system is insensitive to the specific form of the service time
PDF, it only depends on the service demand. Moreover, the response time is
simply proportional to the service demand of the tagged customer. This is an
easy-to-understand form of fairness among customers having different service
requirements.

A different derivation of the main result of the processor sharing M∕G∕1 queue
is as follows. Let us assume that service is scheduled in quanta of time Δt, that is
each of the Q(t) customers in the queue at time t are given an amount of service
(up to) Δt per round. Let us consider a tagged customer arriving at time t0 at the
processor sharing queue with a service demand of x seconds, that finds Q(t0) cus-
tomers already in the queue. We assume x is an integer multiple of Δt, which is not
restrictive in view of the fact that the processor sharing discipline is obtained by let-
ting Δt shrink to 0. Then, the random variable S(x), defined as the system response
time of the tagged customer, conditional on the service request being x, is

S(x) =
x∕Δt−1∑

k=0

[
Δt + Δt Q(tk)

]
= x + Δt

x∕Δt−1∑
k=0

Q(tk) (6.58)

By taking expectations of both sides and assuming statistical equilibrium exists,
so that Q(t) is a stationary process whose mean is independent of time, we obtain

E[S|X = x] = x + x E[Q|X = x] (6.59)

The random variable Q is independent of the service time of the tagged cus-
tomer, hence E[Q|X = x] = E[Q]. By Little’s law, we get E[Q] = 𝜆E[S]. So, taking
expectation with respect to service time on both sides of eq. (6.59), we have

E[S] = E[Q]
𝜆

= E[X](1 + E[Q]) ⇒ E[Q] = 𝜌

1 − 𝜌
(6.60)

Getting back to eq. (6.59) we have E[Q|X = x] = E[Q], hence

R(x) = E[S|X = x] = x
1 − 𝜌

(6.61)

Processor sharing is a limiting case of round-robin service, where customers in
the queueing system get equal chunks of service in turn, until their service demand
is met. It is an example of server policy that offers customers isolation. Assume
customers represent jobs or packet flows. The time to complete service of a
customer depends only on the service demand of that customer, i.e., the amount
of work that the server should spend on the customer to fulfill its service demand,
and on the average server load, 𝜌. It does not depend in any way on the specific
values of demands of other competing customers, nor is it affected by the distri-
bution characteristics of other customers’ demand. As an example, if a big job is
sharing the server facility with a tiny, small job, they get equal server shares so

�

� �

�

6.4 Processor Sharing 293

long as they carry on, irrespective of their “mass.” Thus, the small job does not
get choked by the overwhelming one, suffering a long delay.

6.4.2 Generalized Processor Sharing

The ability of the server to give attention to all pending jobs, without being
swamped by long ones, can be biased, by defining the generalized processor
sharing (GPS) policy for a single-server queue.

Let the arriving customers be divided into N classes. No a priori priority level is
tied to the class concept here. Classes are introduced only to define weights and to
be able to associate them to arriving customers. Let 𝜙j be a positive, real number,
representing the weight of class j, j = 1,… ,N. Informally, the service rate provided
to class j customers is proportional to their weight. If all weights are integer valued,
we could roughly say that the server spends up to𝜙j units of service for customer of
class j, moving in turn from class j to class (j mod N) + 1. In other words, a weighted
round robin policy is realized. GPS represents the limit of that policy when the
duration of the unit of service shrinks to zero.

Let 𝜇 denote the service rate of the server. We assume the server is
work-conserving.

Let 𝜇j[𝜏, t] be the average service rate obtained by class j customers in the time
interval (𝜏, t]. Traffic class j is said to be backlogged at time t, if there is at least one
customer belonging to class j that has unfinished work in the queue at time t. We
say that the server operates according to the GPS policy, if

𝜇j[𝜏, t]
𝜙j

≥ 𝜇i[𝜏, t]
𝜙i

, ∀i (6.62)

for any class j that is continuously backlogged in (𝜏, t]. Note that the definition
implies that equality sign holds for classes that are continuously backlogged in
(𝜏, t]. Then, we see that those classes receive an amount of work that is propor-
tional to the respective weights.

We define the following discrete valued stochastic processes:

Zj(t) It is equal to 1 if there is at least one customer of class j in the queue; otherwise
it is 0.

Z(t) It is equal to 1 if there at least one customer, of whatever class, into the queue;
otherwise it is 0.

At least conceptually, we can think of the queueing system as being organized
into N (virtual) queues, the j-th of which hosts customers of class j, while the server
spends its service effort for the head-of-line customers of all virtual queues simul-
taneously, according to the weights 𝜙j.

�

� �

�

294 6 Priorities and Scheduling

Formally, the serving rate of a customer belonging to class j at time u can be
expressed as follows:

𝜇j(u) =
𝜙jZj(u)

N∑
i=1

𝜙iZi(u)
𝜇 (6.63)

Here and in the following we interpret as 0 any expression resulting in the
ratio 0∕0. For example, if only two classes are populated at time u, e.g., 1 and 2,
then we have 𝜇1(u) =

𝜙1
𝜙1+𝜙2

𝜇, 𝜇2(u) =
𝜙2

𝜙1+𝜙2
𝜇 and 𝜇j(u) = 0, for j = 3,… ,N.

The cumulative service provided to class j over the interval [0, t] is given by

∫
t

0
𝜇j(u) du = ∫

t

0

𝜙jZj(u)
N∑

i=1
𝜙iZi(u)

𝜇 du (6.64)

The average service rate experienced by customers of class j in the time interval
[0, t], 𝜇j[0, t], is the ratio of the amount of service received by those customers over
[0, t] and the overall time that class j has been backlogged in [0, t]. Therefore

𝜇j[0, t] =

∫ t
0

𝜙jZj(u)
N∑

i=1
𝜙iZi(u)

𝜇 du

∫ t
0 Zj(u) du

(6.65)

Let us consider a time interval [0, t], where class j is backlogged, i.e., such that
Zj(u) = 1 for u ∈ [0, t]. Since Zi(u) ≤ 1 for all u, we can write

𝜇j[0, t] ≥
∫ t

0
𝜙jZj(u)

N∑
i=1

𝜙i

𝜇 du

∫ t
0 Zj(u) du

=
𝜙j

N∑
i=1

𝜙i

𝜇 , ∀t > 0 (6.66)

This inequality states the most important property of GPS. So long as class j is
backlogged, it is guaranteed to receive a minimum rate of service, depending on
the ratio of its own weight to the sum of all weights. GPS realizes sort of partition
of the server capacity among the contending customer classes. It provides also iso-
lation of each class, in that each class is guaranteed to benefit of at least a given
share of the server capacity. Obviously, when some class is not backlogged, more
capacity can be assigned to the others. In other words, we are assuming that the
server is work-conserving. Its entire service capacity is spent to serve customers in
the queue, no matter what class they belong to. The policy that dictates how the
capacity is shared however yields the minimum guaranteed average rate per class,
as given by eq. (6.66).

�

� �

�

6.4 Processor Sharing 295

Example 6.9 Let us consider a traffic flow described by means of the counting
function A(t), defined as the amount of workload offered by the arrival stream
over the interval [0, t]. We assume that the workload offered by the traffic flow is
controlled at the source, so that for any 0 ≤ v < u it holds that A(u) − A(v) ≤ b + c ⋅
(u − v). The amount of workload emitted over the time interval [v,u] is bounded
above by a linear function. Here c represents the long-term average emission rate
of the traffic flow, while b accounts for the allowed maximum burstiness. This lin-
ear constraint on the workload arrival function of a traffic flow is a classic way of
defining a traffic description for a variable bit rate traffic source (see Section 11.2).

Assume the tagged traffic flow goes through a buffered link of capacity C that
can be modeled as a GPS system. The packets of the tagged traffic source form a
customer class of the system, say class 1. The weight of class 1 is chosen so that

𝜙1∑N
i=1 𝜙i

C = c, where c is the long-term average rate parameter of the traffic flow
constraint. By using Reich’s formula (see Section 4.9), since a class 1 customer (a
packet of the tagged traffic flow) is guaranteed to receive a serving rate of at least
c as long as it is backlogged, we can write the following bound for the amount of
workload belonging to the tagged traffic flow and residing into the GPS system at
time t:

Q(t) = sup
0≤s≤t

{A(t) − A(s) − c(t − s)} (6.67)

Thanks to the constraint on the offered traffic flow A(t), we can set an upper
bound on the queue length. It is Q(t) ≤ sup0≤s≤t{b + c(t − s) − c(t − s)} = b.

Let D(t) be the amount of workload that leaves the GPS system over the time
interval [0, t]. The amount of workload of the tagged flow leaving the system in
the interval [v,u], D(u) − D(v), can be upper bounded by the sum of the amount of
workload arrived over that interval, A(u) − A(v), and the amount of workload Q(v)
residing in the system at the start time v of the interval. Then, by using eq. (6.67),
we obtain

D(u) − D(v) ≤ Q(v) + A(u) − A(v)

≤ sup
0≤s≤v

{A(v) − A(s) − c(v − s)} + A(u) − A(v)

= sup
0≤s≤v

{A(u) − A(s) − c(v − s)}

≤ sup
0≤s≤v

{b + c(u − s) − c(v − s)} = b + c(u − v)

where the last inequality holds by virtue of the constraint on the arrival function.
We thus get a nice result, which is a cornerstone of deterministic traffic analysis

(see Chapter 11): a traffic flow, shaped so as to match a linear constraint, main-
tains this property when going through a buffered multiplexer run according to a
GPS policy. This property, extensively discussed by Parekh and Gallager [173], has

�

� �

�

296 6 Priorities and Scheduling

underpinned the Integrated Services (IntServ) and Differentiated Services (Diff-
Serv) traffic engineering approach since the late 1990s.

A useful function tied to the GPS model is virtual time. With the same agreement
that 0∕0 must be interpreted as 0, we let the virtual time V(t) be defined as follows:

V(t) = ∫
t

0

𝜇Z(u)∑N
i=1 𝜙iZi(u)

du (6.68)

This is a non-negative, monotonously nondecreasing function of the
“wall-clock” time t. It is V(0) = 0 by definition. It is piecewise linear func-
tion of time, with a slope 𝜇∕

∑
i𝜙i, where the sum is taken over backlogged classes.

The slope of V(t) is 0 when the system is empty.
An interesting property of virtual time V(t) is that it identifies the order of service

completion of customers of a given class. Let us first consider an ordinary FCFS
single server queue and let us introduce some notation.

ak Time of the k-th arrival.
dk Departure time of the k-th arriving customer.
Lk Amount of work associated with the k-th arriving customer (e.g., number of bits

of a packet, if customers correspond to packets in a communication network and
the FCFS server models a link capacity equipped with a FIFO buffer).

𝜇 Serving rate of the FCFS server; it is measured in units of work per unit time. So,
the service time of the k-th arriving customer is Lk∕𝜇.

In this simple case, it is easy to establish a connection among arrival and depar-
ture times, assuming as usual that the server is work-conserving. Specifically, we
have

dk+1 = max{dk, ak+1} +
Lk+1

𝜇
, k ≥ 0 (6.69)

The sequence is initialized with d0 = 0.
The recurrence in eq. (6.69) is easily explained. During a busy period, i.e., when

the k-th departing customer leaves behind a nonempty system, the departing
time of the next customer occurs just after its service time, which is Lk+1∕𝜇. If
instead the k-th departing customer leaves behind an empty system, after an idle
time there will be a new arrival at time ak+1. Then, the departing time will occur
after the service time of such newly arrived customer.

Given the sequence of arrival times, {ak}k≥1, and that of workload, {Lk}k≥1, the
sequence of departing times can be easily calculated. Actually, the calculation of
the departing time of a customer can be done upon its arrival, just keeping in mem-
ory the last calculated departing time.

�

� �

�

6.4 Processor Sharing 297

The recurrence in eq. (6.69) does not hold any more for a GPS system. Let us
introduce some new notation, generalizing the previous one to account for differ-
ent classes.

a(j)
k Time of the k-th arrival belonging to the j-th class.

s(j)k Time when the service of the k−th arriving customer of class j starts.
d(j)

k Departure time of the k-th arriving customer of class j.
L(j)

k Amount of work associated with the k-th arriving customer of class j.
𝜇 Serving rate of the GPS server; it is measured in units of work per unit time. So,

the service time of the k-th arriving customer of class j is L(j)
k ∕𝜇.

We assume that service order within a class is according to FCFS. Then

V
(

d(j)
k+1

)
= ∫

s(j)k+1

0

𝜇Z(u)
N∑

i=1
𝜙iZi(u)

du + ∫
d(j)

k+1

s(j)k+1

𝜇Z(u)
N∑

i=1
𝜙iZi(u)

du

= ∫
s(j)k+1

0

𝜇Z(u)
N∑

i=1
𝜙iZi(u)

du + 1
𝜙j ∫

d(j)
k+1

s(j)k+1

𝜙j𝜇

N∑
i=1

𝜙iZi(u)
du

= V(s(j)k+1) +
L(j)

k+1

𝜙j

The last equality derives from the very definition of the workload L(j)
k+1 and observ-

ing that Zj(u) = 1 (hence also Z(u) = 1) for u ∈ [s(j)k+1, d(j)
k+1]. Since 𝜙j∑N

i=1 𝜙iZi(u)
𝜇 is just

the serving rate experienced by the class j customer k + 1, the integral of such serv-
ing rate over the entire time interval when that customer gets served amounts to
its workload.

Moreover, it is s(j)k+1 = max{d(j)
k , a(j)

k+1}, since the GPS server is work-conserving,
the serving policy within a given class is FCFS, and under GPS an arriving cus-
tomers starts being served immediately as it arrives, provided no other customer
of the same class is in the queue. Remembering that V(t) is monotonously nonde-
creasing, we have

V
(

s(j)k+1

)
= V

(
max{d(j)

k , a(j)
k+1}
)
= max

{
V
(

d(j)
k

)
,V
(

a(j)
k+1

)}
(6.70)

Putting results together, we find finally

V
(

d(j)
k+1

)
= max

{
V
(

d(j)
k

)
,V
(

a(j)
k+1

)}
+

L(j)
k+1

𝜙j
; k ≥ 0 (6.71)

�

� �

�

298 6 Priorities and Scheduling

Here d(j)
k denotes the departing times of k-th arriving customer of class j, so it is

different from the departing time that could be calculated according to the FCFS
policy, even for the same arrival pattern.

Equation (6.71) exhibits exactly the same pattern as eq. (6.69), except that the
virtual time replaces plain time. Therefore, we can use virtual time as a “clock” to
sort customers according to their order of departure.

The virtual time function provides us with a tool to associate a sequence of
increasing values to customers, according to their order of service completion.
According to the recurrence in eq. (6.71), the quantity V

(
d(j)

k+1

)
can be calculated

upon the arrival of the (k + 1)-th customer of class j, just maintaining in memory
the values of the virtual times associated to the most recent arrivals for each class,
i.e.,
{

V
(

d(i)
ki

)}
i=1,…,N

. The importance of eq. (6.71) lies in the fact that it could be
used as a timestamp to append on each arriving customer. Then, we can state that
the ideal GPS would serve customers so that they would leave the queue according
the increasing order of their respective timestamps.

6.4.3 Weighted Fair Queueing

Weighted fair queueing (WFQ) is a practical implementation of GPS, first proposed
by Demers, Keshav, and Shenker [66] and further discussed and analyzed, under
the name of Packet-by-packet GPS (PGPS), by Parekh and Gallager [173]. PGPS
can be considered as the closest approximation to GPS. Its implementation proves
somewhat complex. A simpler algorithm, which is less precise, but much easier to
realize, was proposed independently by Golestani, under the name of self-clocked
fair queueing (SCFQ) [91], and by Roberts, under the name virtual spacing [182].
A preliminary version of this simplified algorithm was first proposed by Davin and
Heybey in an early work on fair queueing performed at MIT [64].

Note that WFQ has been conceived in the context of packet multiplexing. How-
ever, the scheduling concept can be adapted to any other setting.

We have seen at the end of the previous section that the virtual time function
V(t), computed according to the iteration (6.71), provides us with a sequence
of numbers, associated to the customers served by the GPS server, which is
monotonously increasing and corresponds to the order of service offered by the
GPS discipline. For ease of notation, let dk be the time at which the k-th departing
customer will depart (finish service) under GPS. A good approximation of GPS
would be a work-conserving server that serves customers in increasing order of
dk. Now, suppose that the server completes the ongoing service at time t, thus
being available to serve the next customer, if any. The point is that the next
customer to depart under GPS may not have arrived at time t. The server has no
knowledge of when this customer could arrive, so there is no way for the server to
be both work-conserving and serve the customers in increasing order of dk. The

�

� �

�

6.4 Processor Sharing 299

server is therefore left with the option of picking the first customer that would
complete service in the GPS simulation among those currently in the queue.

Summing up, WFQ works as follows:

1. The server keeps track of the virtual time V(t) for t ≥ 0 (see details of the com-
putation of virtual time later in this section).

2. Upon arrival at time t of customer k belonging to flow i, a finish tag Fi,k is
appended to the customer. The finish tag is computed as follows (compare with
eq. (6.71)):

Fi,k = max{Fi,k−1,V(t)} +
Li,k

𝜙i
, k ≥ 1, (6.72)

where Li,k is the amount of work brought in by the k-th customer and Fi,0 = 0.
3. When the server is ready to select a new customer (i.e., it has completed serving

the previous customer), it chooses the one with the smallest finish tag among
all customers currently in the queue.

Let Lmax denote the maximum amount of work brought into the system by a
single customer (maximum packet length in case of packet multiplexing). That
WFQ is a good approximation of the ideal GPS is proved by the two following
theorems. Theorem 6.1 proves that there exists a constant offset between the delay
suffered by a customer under the ideal, fluid GPS and its practical implementation
WFQ. Theorem 6.2 shows that the amount of service received by class j customers
in the time t with WFQ is offset only by a constant quantity with respect to the
ideal value achieved under GPS.

Theorem 6.1 Let d̂k be the departure time of the k-th departing customer out of
the WFQ system and let dk be the departing time of the same customer in the ideal
GPS system. It is

d̂k ≤ dk +
Lmax

𝜇
(6.73)

Proof: We number customers according to the order of departure from the WFQ
queue, which is the same as the order of service start for this system (HOL prop-
erty). Note that this property does not necessarily hold for GPS

Since the server is work-conserving, busy periods coincide in the GPS and WFQ
systems. Let us focus on one busy period and let t = 0 be the initial time of the
busy period.

Let us consider customer k. If dj < dk for j = 1,… , k − 1, all customers num-
bered from 1 to k have been completely served in the GPS system by time dk. Then

dk ≥
k∑

j=1

Lj

𝜇
= d̂k (6.74)

�

� �

�

300 6 Priorities and Scheduling

where the last equality is due to the definition of k-th customer and to the
work-conserving property of the server.

If for some j it is dj > dk, let m denote the largest index in the set {1,… , k − 1}
such that dm > dk. Then, it is dj < dk for j = m + 1,… , k − 1, by definition of m.
Let also ŝm be the time by which customer m starts service in WFQ. We claim
that all customers indexed from m + 1 to k are served in the interval [ŝm, dk]. This
conclusion stems from the two following facts:

1. Customers m + 1,… , k must have arrived no earlier than ŝm, otherwise the
WFQ system would not have started serving customer m at time ŝm, since the
finish tags of customer m is bigger than any of the finish tags of customers
m + 1,… , k.

2. Customers m + 1,… , k depart no later than dk by the definition of m.

Then, we have

dk ≥ ŝm +
k∑

j=m+1

Lj

𝜇
≥

m−1∑
j=1

Lj

𝜇
+

k∑
j=m+1

Lj

𝜇
= d̂k −

Lm

𝜇
(6.75)

Equations (6.74) and (6.75), along with the inequality Lm ≤ Lmax, complete the
proof of the theorem. ◾

Theorem 6.2 Let Sj(𝜏, t) and Ŝj(𝜏, t) denote the amount of work received by cus-
tomers of class j in the time interval [𝜏, t] in the GPS and WFQ systems, respec-
tively. It is

Sj[0, t] − Ŝj[0, t] ≤ Lmax (6.76)

where t = 0 marks the beginning of a busy period.

Proof: Let us prove this statement by contradiction. Assume that for some t it is

Ŝj[0, t] < Sj[0, t] − Lmax (6.77)

This implies that at least one customer has been completely served in GPS, that
is not in the WFQ system. Let k be the index of that customer and let L̃k be the
remaining work to be done at time t for that customer in the WFQ system. That
work has been carried out in the GPS system, along with an additional amount
ΔL = Lmax − L̃k of work, due to the assumption (6.77). The additional work ΔL
must have been done after customer k departure in the GPS system, since service
order within a flow is FCFS. Then it must be

dk < t −
Lmax − L̃k

𝜇
(6.78)

�

� �

�

6.4 Processor Sharing 301

On the other hand, departure of customer k in the WFQ system requires at least
completing the residual work. Then

d̂k ≥ t +
L̃k

𝜇
(6.79)

The two inequalities imply

d̂k − dk > t +
L̃k

𝜇
−
(

t −
Lmax − L̃k

𝜇

)
=

Lmax

𝜇
(6.80)

which contradicts Theorem 6.1. ◾

The implementation of WFQ is based on the virtual time function, V(t). By
observing arrival times of customers and knowing the amount of work they bring
into the system, it is possible to calculate V(d(j)

k), where d(j)
k is the departing time

of the k-th arriving customer of class j. To this end, we exploit eq. (6.71) and we
observe that it is enough to evaluate V(t) for each busy period. Let the starting
time of a generic busy period be t1 = 0. Let also tj, for j ≥ 2, denote the time epoch
of the j-th event occurring at the queue, either a customer arrival or a customer
departure. The tj’s are ordered in increasing order5. Then, we set V(0) = 0. The
expression of V(t) for t > 0 is

V(tj−1 + 𝜏) = V(tj−1) +
𝜏∑

i∈j
𝜙i

, tj−1 ≤ 𝜏 < tj, j ≥ 2, (6.81)

where j denotes the set of backlogged traffic classes in the time interval [tj−1, tj).
Given V(t), WFQ works according to steps (1)-(3) listed above.

WFQ requires the (nontrivial) task of computing the virtual time function. It
also requires the amount of work of a newly arrived customer to be known. Once
those are given, deciding who’s next has the complexity of choosing the minimum
in a finite set.

The main source of complexity of the WFQ scheduling comes from the necessity
to track the virtual time function. This is a piecewise linear function, whose break-
points correspond to arrivals and departures. As the frequency of these events
grows, the computational complexity of V(t) can become incompatible with the
requirement of performing the computation in real time.

Golestani [91] and Roberts [182] proposed an approximation to the virtual
time function, to obtain a strong simplification, without giving up to much
performance. The practical implementation proposed by Golestani is the SCFQ,
while Roberts dubbed his algorithm virtual spacing. Apart from notation, the
algorithm defined in Section 3.3 of [182] coincides with SCFQ.

5 It is immaterial how ties, if any, are broken.

�

� �

�

302 6 Priorities and Scheduling

With reference to a generic busy period of the server, SCFQ is defined by the
following algorithm:

1. The k-th arriving customer of class j is tagged with the service tag F(j)
k , before it

is placed in the queue. The customers in the queue are picked up for service in
increasing order of the associated service tags.

2. Let F(t) be the service tag of the customer receiving service at time t. It is ini-
tialized at 0 at the start of any new busy period.

3. The service tag of customer k of class j, arriving at time t, is

F(j)
k = max{F(j)

k−1,F(t)} +
L(j)

k

𝜙j
, k ≥ 1, (6.82)

initialized with F(j)
0 = 0 at the beginning of each busy period. Here L(j)

k denotes
the amount of work brought into the system by the k-th arriving customer of
class j.

The key point is the second step. Instead of simulating the virtual time function
of the theoretical GPS system, the virtual time function is immediately derived by
the real system. As a new customer arrives at time t, the service tag of the cus-
tomer being served is sampled and the sampled value is assigned to F(t). In his
work Golestani discusses the performance of SCFQ, showing that the disparity of
the amounts of service received by a class under SCFQ and the theoretical GPS is
bounded.

6.4.4 Credit-Based Scheduling

Credit-based fair queueing (CBFQ) is a practical implementation of GPS proposed
for packet switched network multiplexers [29].

We consider a single server of capacity 𝜇 and N classes of customers. Each
class is characterized by a weight, 𝜙j for class j, that is related to the share of the
server capacity that the class is entitled to. Within each class, the order of service
is according to FCFS discipline. Only a single customer partially served can exist
at any given time in the system, i.e., preemption is not allowed. Let also Lj denote
the amount of work requested by the head-of-line customer of class j (if any). The
corresponding service time is Xj = Lj∕𝜇. Finally, we define a counter Kj for class
j, j = 1,… ,N. This counter is used to store the number of serving credits earned
by the corresponding class.

Based on the values of the counters, and the sizes of the head-of-line work-
loads, the algorithm decides which customer is to be served next. In other words,
instead of waiting until a class earns enough credits to have its head-of-line cus-
tomer served, which would result in a waste of server capacity, the class that needs
the shortest time to earn enough credits to have a customer served will be served
first. Each time a customer is served, the corresponding counter is reset to zero
and other classes counters are updated.

�

� �

�

6.4 Processor Sharing 303

Formally, the CBFQ algorithm is stated as follows:

1. Let t = 0, h = 1, and Kj = 0 for j = 1,… ,N.
2. Let (t) be the set of classes backlogged at time t, i.e., those that have at least

one customer waiting.
3. Let yj ≡ Lj−Kj

𝜙j
, j ∈ (t) and let j∗ denote the index of the minimum among the

yj, j ∈ (t).
4. Serve the HOL customer of class j∗, set Xh = Lj∗∕𝜇 and update counters as

follows:

Kj ← Kj + 𝜙j
Lj∗ − Kj∗

𝜙j∗
, j ∈ (t)\{j∗} (6.83)

and

Kj∗ ← 0 (6.84)

5. Set t ← t + Xh, h ← h + 1, and go back to step 2

We can define a fairness bound as follows. Let Sj(u, v) be the amount of work
of class j served in the time interval [u, v]. Given a non-negative constant B, we
say that the service system is fair if, for any two classes i and j that are constantly
backlogged in the time interval [t1, t2], we have|||||

Si(t1, t2)
𝜙i

−
Sj(t1, t2)

𝜙j

||||| ≤ B (6.85)

The meaning is that classes i and j could possibly receive different (weighted)
amounts of service, yet their offset can never exceed a finite, constant bound.

Assume that a single customer service demand is bounded above by a constant
Lmax, which represents the maximum amount of demand that can be serviced on a
single scheduling decision. Then, it can be shown that CBFQ can guarantee a fair-
ness bound [29]. Let us go through the proof, which gives insight into the meaning
of the credits Kj. To that purpose we establish a Lemma first.

Lemma 6.1 Flow credit counters are limited within the range 0 ≤ Kj ≤ Lj ≤
Lmax for j = 1,… ,N.

Proof: We prove the result by induction.
Let Kj(t) be the credit count of class j at step t and Lj(nj(t)) the amount of

demand of the customer with sequence number nj(t), which denotes the number
of sequence of the HOL customer of class j at time t.

At t = 0, we have Kj(0) = 0 and nj(0) = 1 for all j. Let

Zj(t) =
Lj(nj(t)) − Kj(t)

𝜙j
(6.86)

�

� �

�

304 6 Priorities and Scheduling

and

Z∗(t) = min{Z1(t),… ,ZN (t)} (6.87)

We prove by induction that 0 ≤ Zj(t) ≤ Lj(nj(t))∕𝜙j, which is readily seen to yield
the property stated in the Lemma.

The inequalities are true at initialization, since than Zj(0) = Lj(1)∕𝜙j, j =
1,… ,N.

The updating equations can be written as follows:

Zj(t + 1) =

{
Lj(nj(t) + 1)∕𝜙j if class j is scheduled,
Zj(t) − Z∗(t) otherwise.

(6.88)

It is evident that 0 ≤ Zj(t + 1) ≤ Zj(t) for all nonscheduled classes. By the induc-
tion hypothesis we have then 0 ≤ Zj(t + 1) ≤ Lj(nj(t))∕𝜙j for nonscheduled flows.
The same inequalities hold evidently also for the scheduled flow, which completes
the proof. ◾

Lemma 6.2 Let Zj(t) = (Lj(nj(t)) − Kj(t))∕𝜙j. After a scheduling step is com-
pleted, for any two backlogged classes i and j it is Zi(t + 1) − Zj(t + 1) = Zi(t) − Zj(t)
if neither i nor j are scheduled, it is Zi(t + 1) − Zj(t + 1) = Zi(t) − Zj(t) + Li(ni(t +
1))∕𝜙i if class i is scheduled.

Proof: If both considered classes are non-scheduled, both Zi(t) and Zj(t) are
decreased by the same amount. Then, their difference remains constant.

If instead class i is scheduled it is Z∗(t) = Zi(t) and hence we have Zi(t + 1) =
Li(ni(t + 1))∕𝜙i, while Zj(t + 1) = Zj(t) − Z∗(t) = Zj(t) − Zi(t). These relationships
yield immediately the result stated in the Lemma. ◾

We are now ready to prove the main theorem on the fairness of CBFQ.

Theorem 6.3 Let (u, v) be the set of classes that are continuously backlogged
from scheduling step u to step v. Then, ∀t1, t2, ∀i, j ∈ (t1, t2), we have|||||

Si(t1, t2)
𝜙i

−
Sj(t1, t2)

𝜙j

||||| ≤
Lmax

𝜙i
+

Lmax

𝜙j
(6.89)

where Sk(t1, t2) is the overall amount of demand of class k that has been served in
the interval [t1, t2].

Proof: Let

Bj(t) =

{
Lj(nj(t)) if class j is scheduled at step t,
0 otherwise.

(6.90)

�

� �

�

6.4 Processor Sharing 305

The total amount of service received by class j in the interval [t1, t2] is therefore

Sj(t1, t2) =
t2∑

t=t1

Bj(t) (6.91)

According to the CBFQ algorithm, we have for a flow backlogged at step t:

Kj(t + 1) =

{
Kj(t) + 𝜙jZ∗(t) if a flow other than j is scheduled,
0 if flow j is scheduled,

=

{
Kj(t) + 𝜙jZ∗(t) if a flow other than j is scheduled,
Kj(t) + 𝜙jZ∗(t) − Lj(nj(t)) if flow j is scheduled,

= Kj(t) + 𝜙jZ∗(t) − Bj(t)

Summing over t, we get

Kj(t2) = Kj(t1) + 𝜙j

t2∑
t=t1

Z∗(t) − S(t1, t2) (6.92)

Note that the equality sign holds only if class j is continuously backlogged in [t1, t2].
Therefore|||||

Si(t1, t2)
𝜙i

−
Sj(t1, t2)

𝜙j

||||| =
|||||
Ki(t1) − Ki(t2)

𝜙i
−

Kj(t1) − Kj(t2)
𝜙j

|||||
≤ ||||Ki(t1) − Ki(t2)

𝜙i

|||| +
|||||
Kj(t1) − Kj(t2)

𝜙j

|||||
Thanks to Lemma 6.1, we have ||Ki(t1) − Ki(t2)|| ≤ Lmax, which completes the
proof. ◾

We can give also a bound for Jain’s fairness index [113]. Let x1,… , xN be the
amount of resource allocated to users in a shared resource system with N users.
Jain’s fairness index is defined as follows:

F =

(∑N
i=1 xi

)2

N
∑N

i=1 x2
i

(6.93)

It is easy to verify that 0 < F ≤ 1, with F = 1 if and only if x1 = · · · = xN . We
apply the index to the ratios xi = Si(t1, t2)∕𝜙i, i = 1,… ,N. We have

0 ≤
N∑

i=1

N∑
j=1

(xi − xj)2 = 2N
N∑

i=1
x2

i − 2
N∑

i=1

N∑
j=1

xixj = 2N
N∑

i=1
x2

i − 2

(N∑
i=1

xi

)2

(6.94)

�

� �

�

306 6 Priorities and Scheduling

From Theorem 6.3 we have:

(xi − xj)2 =

(
Si(t1, t2)

𝜙i
−

Sj(t1, t2)
𝜙j

)2

≤ L2
max

(
1
𝜙i

+ 1
𝜙j

)2

≤ 4
L2

max

𝜙
2
min

(6.95)

where 𝜙min is the minimum among the weights 𝜙i, i = 1,… ,N. From the last two
relationships we obtain:

0 ≤ 2N
N∑

i=1
x2

i − 2

(N∑
i=1

xi

)2

≤ 4N2 L2
max

𝜙
2
min

(6.96)

whence, letting Y =
∑N

i=1 xi,

F ≥ Y 2

Y 2 + 2N2L2
max

𝜙
2
min

(6.97)

The bound is an increasing function of Y , so that we can strengthen it by finding
a lower bound of Y . We have

Y =
N∑

i=1
xi =

N∑
i=1

Si(t1, t2)
𝜙i

≥ 1
𝜙max

N∑
i=1

Si(t1, t2) =
(t2 − t1)𝜇
𝜙max

(6.98)

The last equality is a consequence of the fact that customer classes are contin-
uously backlogged during the interval [t1, t2] and the server is work-conserving.
Finally, we have

F ≥ (t2 − t1)2
𝜇

2

(t2 − t1)2𝜇2 + 2N2L2
max

(
𝜙max
𝜙min

)2 (6.99)

We see that Jain’s fairness index converges to 1 as time goes by (i.e., as t2 −
t1 → ∞). This proves that CBFQ is long-term fair among continuously backlogged
traffic flows, in the sense of Jain’s index. Note that fairness refers to the ratios
Si(t1, t2)∕𝜙i, that is to say, it is weighted.

6.4.5 Deficit Round Robin Scheduling

Deficit round robin (DRR) [190] is yet another form of weighted round robin
scheduling algorithm. It has been introduced to share capacity among backlogged
traffic flows, accounting for the actual amount of bytes each flow sends out of
its queue at each link usage opportunity. A pseudo-code of the DRR algorithm is
given in the following algorithm.

The algorithm assumes N flows share a link for sending packets. A service
quantum Qi is defined for flow i, representing the maximum amount of bytes the
i-th flow can send at each opportunity. A list of backlogged flows is maintained,
ActiveList. It contains the indexes of backlogged flows only. A nonbacklogged flow

�

� �

�

6.4 Processor Sharing 307

Algorithm Pseudo-code of DRR: dequeue algorithm.

1: ActiveList ← List of backlogged flows
2: DCi = 0, i = 1,… ,N
3: while ActiveList ≠ ∅ do
4: i ← extract_head(ActiveList)
5: DCi ← DCi + Qi
6: done ← FALSE
7: while (DCi > 0)and (done == FALSE) do
8: pkt = dequeue(queuei)
9: L ← pkt.size

10: if L ≤ DCi then
11: DCi ← DCi − L
12: send(pkt)
13: if is_empty(queuei) == TRUE then
14: done ← TRUE
15: end if
16: else
17: done ← TRUE
18: end if
19: end while
20: if is_empty(queuei) == TRUE then
21: DCi ← 0
22: else
23: ActiveList ← ActiveList

⋃
{i}

24: end if
25: end while

is appended at the end of the list when new packets arrive at its buffer and hence
it becomes backlogged again. If, after having being served, a flow buffer becomes
empty, the flow is taken out of the ActiveList. If instead, the flow buffer has still
packets waiting after having exhausted the service quantum, the corresponding
flow is moved to the end of the ActiveList.

The deficit count variable DC is initialized to 0. It is incremented by Qi at each
opportunity of the i-the flow and decremented by the length of packets of the i-th
flow that get transmitted at that opportunity. If any leftover arises, it is summed to
the byte quantum at the next opportunity. The deficit count is reset if the queue
has been emptied.

The algorithm can be adapted to realize a fair sharing of usage time of the link,
rather than byte counts. It suffices to substitute the byte quantum with a time
quantum and the packet length with the packet time.

�

� �

�

308 6 Priorities and Scheduling

6.4.6 Least Attained Service Scheduling

Round-robin and generalized processor sharing policies aim also at protecting
short jobs from long ones, that could hog the server capacity for a long time and
thus penalize the delay performance of possibly several other jobs. We might
ask ourselves what is the most discriminatory service policy to protect and give
advantage to short jobs. The answer is simple: a policy that shares the full capacity
of the server among those customers that have so far received the least amount
of service. Such a policy is called least attained service (LAS), also known as
foreground-background (FB) .

The policy can be described by defining a quantum of service q. There are N
queues, each one run according to FCFS discipline. The server gives its attention to
customers in queue k only if queues from 1 up to k − 1 are empty. The service given
to the HOL customer of the served queue consists of one quantum. A new arriving
customer joins queue 1, where it eventually receives one quantum of service. If
the customer is done, it leaves the system. Otherwise, the customer joins queue
2. In general, after having received one quantum of service through the queue k,
the customer leaves the system if its work demand has been met, i.e., if the work
demand is no more than kq. Otherwise, the customer joins the subsequent queue
k + 1. When at the last queue, the N-th one, the customer rejoins the same queue,
if its service has not been completed yet.

The simpler version of this scheduling is obtained with N = 2. In that case, jobs
in queue 1 are considered to be in foreground. They are served with priority over
the jobs enqueued in queue 2, which is deemed to be the background queue. Hence
the FB name used for this scheduling policy.

In the following we consider a processor sharing model of LAS. This can be
thought of as the limit for N → ∞ and q → 0 of the N queue system with quan-
tized service described above. To gain insight into the way (processor sharing)
LAS works, let us give a small example. Consider a customer arriving at time t1 at
a server with capacity 𝜇, requiring a service of X1. After an interval of time Δ1 cus-
tomer 2 arrives, requiring a service amount X2. In the meantime, customer 1 has
already received Δ1 seconds of service time . The customer having so far received
the least attention by the server is then customer 2, who has zero achieved service
time. Then, customer 2 is assigned the full capacity of the service and customer
1 is set in stand-by for a time Δ1. If no other customer arrives by then, customers
1 and 2 have equalized the amount of service they have received. Then, they
can carry on by sharing equally the server capacity, until either they complete
service or new customers arrive. The basic behavior of this policy envisages that
a customer in “foreground”, i.e., being served (customer 1 in the time interval
[t1, t1 + Δ1) in our example) can be temporarily moved in “background,” i.e., not
being served (customer 1 in the time interval [t1 + Δ1, t1 + 2Δ1) in our example).

�

� �

�

6.4 Processor Sharing 309

Let us now study the processor sharing LAS model. We will derive the mean
system response time conditional on the service time demand of a tagged arriving
customer. The derivation holds for an M∕G∕1 type of queue, i.e., arrivals follow
a Poisson process with mean rate 𝜆 and service times are distributed according
to a renewal process with CDF FX (x). When a tagged customer requiring x sec-
onds of work joins the queue, it has received 0 service time, hence the server will
devote its attention to that customer immediately. To all purposes, any customer
that has already received up to x seconds of service, while the tagged customer is
sojourning in the queue, is nonexistent from the point of view of the tagged cus-
tomer. In other words, service demand exceeding x “disappears” effectively for the
tagged customer. We can therefore define a modified service time CDF, denoted
with FX (u; x), as follows:

FX (u; x) =

{
FX (u) u < x
1 u ≥ x

(6.100)

Service times less than x have the same probability distribution as the original
one. Those exceeding x are replaced instead by simply x and given a mass proba-
bility equal to 1 − FX (x) = (X > x). For ease of notation, we let m1(x), m2(x) and
𝜎(x) denote the mean, second moment and standard deviation of the random vari-
able Xx ≡ min{x,X}, representing the modified service time with CDF FX (⋅; x). We
have

mh(x) = ∫
x

0
th dFX (t) + xh[1 − FX (x)] , h = 1, 2. (6.101)

We assume the queueing system is in equilibrium, which is the case if
𝜌 = 𝜆E[X] < 1, where 𝜆 is the mean arrival rate of customers at the queue. The
tagged customer finds an average amount of “effective” workload in the queue
equal to

E[W(x)] =
𝜆m2(x)

2[1 − 𝜌(x)]
(6.102)

where 𝜌(x) = 𝜆m1(x). This is the workload of a regular M∕G∕1 queueing system
with the modified service time probability distribution. Note that the mean
amount of workload in a single server queueing system in equilibrium, with a
work-conserving server, is independent of the service discipline. It depends only
on arrivals and service demand, not on the service order. All of the workload
expressed by eq. (6.102) must be completed before the tagged customer can leave
the queueing system. Then, the mean conditional response time R(x) of the
tagged customer, i.e., the mean value of the time that the tagged customer with
service demand x spends into the system before leaving, is the sum of E[W(x)]
and the service time x itself. We need to add still one more contribution, namely
the amount of service carried out for customers joining the queue after the

�

� �

�

310 6 Priorities and Scheduling

tagged customer. The mean number of such customers is 𝜆R(x). Each of them
brings an “effective” work drawn from the modified CDF FX (u; x). Therefore,
the mean amount of work due to customers arrived after the tagged one is
𝜆R(x)m1(x) = R(x)𝜌(x). Summing up, we get

R(x) = E[W(x)] + x + R(x)𝜌(x) ⇒ R(x) = E[W(x)] + x
1 − 𝜌(x)

(6.103)

More explicitly, we can write

R(x) =
𝜆m2(x)

2[1 − 𝜆m1(x)]2 + x
1 − 𝜆m1(x)

(6.104)

The unconditional mean response time is obtained simply as R = ∫ ∞
0 R(x)

dFX (x).
It is possible to derive the Laplace transform of the PDF of the conditional

response time as well. Let W(x) = w. The amount of workload to be worked
out before the tagged customer leaves the queue is then w + x plus the amount
of work due to customers arriving after the tagged one. Those customers are
N(w + x), where N(t) denotes the number of arrivals according to the Poisson
process of mean rate 𝜆. Each arriving customer gives rise to a busy period of
customers characterized by the ‘effective’ service time PDF. Let 𝜑Y (s; x) denote
the Laplace transform of the PDF of the busy period Y (x) conditional on the
service time x of the tagged customer. Let also 𝜑X (s; x) be the analogous Laplace
transform for the PDF of the effective service times, i.e.,

𝜑X (s; x) = ∫
x

0
e−sudFX (u) + e−sx[1 − FX (x)] (6.105)

These two transforms are related as established for the ordinary M∕G∕1 queue:

𝜑Y (s; x) = 𝜑X (s + 𝜆 − 𝜆𝜑Y (s; x) ; x) (6.106)

Then

E
[
e−sR(x)|W(x) = w

]
= e−s(w+x) E

⎡⎢⎢⎣e
−s

N(w+x)∑
j=1

Yj(x)⎤⎥⎥⎦
= e−s(w+x)

∞∑
n=0

[𝜆(w + x)]n

n!
e−𝜆(w+x)

n∏
j=1

E[e−sYj(x)]

= e−s(w+x)e−𝜆(w+x)
∞∑

n=0

[𝜆(w + x)𝜑Y (s; x)]n

n!

= e−(w+x)[s+𝜆−𝜆𝜑Y (s;x)]

�

� �

�

6.4 Processor Sharing 311

By removing the condition on W(x), we get finally

𝜑R(s; x) = 𝜑W (s + 𝜆 − 𝜆𝜑Y (s; x); x) e−x[s+𝜆−𝜆𝜑Y (s;x)] (6.107)

The Laplace transform of the PDF of W(x) is the same as for the ordinary M∕G∕1
queue, given that the workload is not affected by the queueing discipline, for a
work-conserving server. Then

𝜑W (s; x) = s[1 − 𝜌(x)]
s − 𝜆 + 𝜆𝜑X (s; x)

(6.108)

Wrapping up, we get:

𝜑R(s; x) =
[1 − 𝜌(x)][s + 𝜆 − 𝜆𝜑Y (s; x)] e−x(s+𝜆−𝜆𝜑Y (s;x))

s + 𝜆 − 𝜆𝜑Y (s; x) − 𝜆 + 𝜆𝜑X (s + 𝜆 − 𝜆𝜑Y (s; x); x)

= 1 − 𝜌(x)
s

[s + 𝜆 − 𝜆𝜑Y (s; x)] e−x(s+𝜆−𝜆𝜑Y (s;x))

where we have used the identity 𝜑Y (s; x) = 𝜑X (s + 𝜆 − 𝜆𝜑Y (s; x); x).

Example 6.10 Let us assume a Pareto PDF for the service time: FX (x) =
1 − (𝜃∕x)𝛼 , for x ≥ 𝜃 > 0. The first two moments are finite provided 𝛼 > 2. In this
example we set 𝛼 = 2.5 and E[X] = 1, so that 𝜃 = E[X](1 − 1∕𝛼) = 0.6.

Simple algebra yields

mh(x) =
𝜃

h

𝛼 − h

[
𝛼 − h

(
𝜃

x

)𝛼−h]
, h = 1, 2. (6.109)

By using eq. (6.104) and the expressions above, we can evaluate numerically
the conditional response time as a function of x. Figure 6.6 plots R(x) for three
values of 𝜆 = 𝜌∕E[X]. The conditional response time turns out to be increasing in
a concave way. The rate of increase gets bigger as the utilization coefficient grows.

Figure 6.6 Mean conditional
response time of the M∕G∕1 queue
with LAS scheduling as a function
of the service demand of the tagged
customer for three values of the
utilization factor of the queue.

0 5 10 15 20

Normalized service demand, x/E[X]

0

20

40

60

80

100

120

C
o

n
d

it
io

n
a

l
re

s
p

o
n

s
e

 t
im

e
,

R
(x

)/
E

[X
]

α = 2.5

ρ = 0.2

ρ = 0.5

ρ = 0.8

�

� �

�

312 6 Priorities and Scheduling

As the server becomes more and more busy, the discriminatory power of the LAS
discipline is stronger.

6.5 Miscellaneous Scheduling

In this section we review two popular applications of scheduling algorithms, that
have received a large attention in the technical literature. First we discuss schedul-
ing of radio resources in the downlink of a cellular access network. Then we turn
to job dispatching in a cluster of computing servers.

6.5.1 Scheduling on a Radio Link

We give an example of scheduling algorithm applied to wireless cellular networks.
There is a vast literature and several different approaches. We consider the down-
link of a single cell where radio resources are assigned to a number of contending
flows according to an orthogonal multiplexing principle, with the aim to maximize
throughput (sum-rate), under fairness and power budget constraints.

6.5.1.1 Proportional Fairness
Given a set of N contending flows that share a link (the wireless downlink of a
cellular base station (BS) in our case), a rate allocation Ri, i = 1,… ,N is said to be
proportionally fair if for any other allocation R̃i, i = 1,… ,N we have

N∑
i=1

R̃i − Ri

Ri
≤ 0 (6.110)

i.e., the sum of the relative increments of flow rates is non positive. It can be shown
that proportional fair (PF) allocation maximizes

∑
i log(Ri) under the constraint

imposed by the overall capacity of the shared link. With reference to the downlink
of a BS, finding proportionally fair rates for the N contending flows, under a power
budget P, can be stated as the following optimization problem:

max
N∑

k=1
log Rk

[R1,… ,RN] ∈ (P)
Rk ≥ 0, k = 1,… ,N,

where Rk = E[rk(t)], k = 1,… ,N, are the long-term average rates, (r1(t),… , rN (t))
∈ (t,P) are the instantaneous rates at time t, (t,P) is the capacity region at time
t (determined by the power constraints and the current channel state), (P) is the
ergodic capacity region.

�

� �

�

6.5 Miscellaneous Scheduling 313

It can be shown [141] that a scheduler is proportionally fair if the instantaneous
rates {r1(t),… , rN (t)} maximize the following weighted sum:

N∑
k=1

rk(t)
Rk

(6.112)

Hence, our goal is to maximize the weighted sum rate
∑

kwkrk, where the
weight wk assigned to flow k is an estimate of 1∕E[rk(t)]. This is an example of a
max-weight scheduler.

In the following we estimate Rk in frame t + 1 by means of a simple exponentially
weighted smoothing to deal with a time varying channel, i.e.,

R̂k(t + 1) = 𝛽R̂k(t) + (1 − 𝛽)rk(t) (6.113)

where rk(t) is the rate assigned in frame t to the k-th flow and R̂k(⋅) denotes the
estimate of the long term average rate of the k-th flow.

So, the optimization problem solved in each allocation interval is of the general
form:

max
p

N∑
k=1

rk

R̂k
(6.114a)

[r1,… , rN] ∈ (t,p) (6.114b)

N∑
k=1

pk ≤ P (6.114c)

rk ≥ 0, k = 1,… ,N, (6.114d)

where p = [p1.… , pN] are the transmission powers. Equation (6.114b) is the com-
munication channel capacity constraint, while (6.114c) states the constraint on
the power budget of the BS.

6.5.1.2 Multi-rate Orthogonal Multiplexing
We focus on orthogonal multiplexing. We assume that time is slotted and the fre-
quency band is divided into sub-bands (e.g., this is the multiple access scheme
of LTE). The resource unit made up of a single sub-band for a single time slot is
called a resource block (RB). An RB can be assigned to at most a single flow at a
time (orthogonal multiplexing). We assume an ideal link adaptation mechanism
where the capacity of an RB is a function of the link signal-to-noise ratio (SNR)
according to the Hartley-Shannon law. Let K be the number of RBs available per
time slot. RB allocation decisions are taken frame by frame, where a frame is made
up of a fixed number of time slots.

�

� �

�

314 6 Priorities and Scheduling

The rate assignment to contending flows in time slot t is the solution of the fol-
lowing optimization problem:

max
x,p

N∑
k=1

wkrk

rk =
K∑

j=1
xk(j)log2

(
1 + pk(j)𝛼k(j)

)
k = 1,… ,N

N∑
k=1

xk(j) ≤ 1 j = 1,… ,K

N∑
k=1

K∑
j=1

xk(j)pk(j) ≤ P

xk(j) ∈ {0, 1} k = 1,… ,N j = 1,… ,K (6.115)

The binary variable xk(j) determines the allocation of the j-th RB to flow k. The
coefficient 𝛼k(j) is proportional to the path gain of flow k in RB j. Given a flow
allocation vector x, the Lagrangian associated to problem (6.115) is:

Lx(p, 𝜇) =
K∑

j=1

N∑
k=1

xk(j)wklog2(1 + 𝛼k(j)pk(j)) − 𝜇

K∑
j=1

N∑
k=1

xk(j)pk(j) (6.116)

For a given RB allocation x, the Lagrangian is a function of p, with a feasible
domain for p that is closed, bounded and convex. Moreover, the Hessian matrix
of the Lagrangian in strictly negative definite. Then, there is a unique maximizer
p∗ of the Lagrangian, that can be determined by setting the gradient of the
Lagrangian to 0.

The resulting optimal vector p∗ is calculated according to the water-filling
formula:

p∗
k(j) = max

{
0,

wk

𝜇
− 1

𝛼k(j)

}
, j = 1,… ,K. (6.117)

Then, we have

Lx(p∗
, 𝜇) =

K∑
j=1

N∑
k=1

xk(j)
[
wklog2(1 + 𝛼k(j)p∗

k(j)) − 𝜇p∗
k(j)
]

=
K∑

j=1

N∑
k=1

xj(k)wkf
(wk𝛼k(j)

𝜇

)
≤

K∑
j=1

max
k

wkf
(wk𝛼k(j)

𝜇

)
(6.118)

where f (z) is defined as follows:

f (z) =

{
0 0 ≤ z ≤ 1,
log2 z − 1 + 1∕z z ≥ 1.

(6.119)

�

� �

�

6.5 Miscellaneous Scheduling 315

Let k∗
j denote the flow index that maximizes the j-th term appearing inside the

sum of eq. (6.118). Formally, for j = 1,… ,K, we have

k∗
j =
⎧⎪⎨⎪⎩

argmax
k

wkf
(wk𝛼k(j)

𝜇

)
∃k ∈ (1,… ,N) ∶

wk𝛼k(j)
𝜇

> 1,

0 otherwise.
(6.120)

The multiplier 𝜇 is computed from∑
j∶k∗

j >0
max

{
0,

wk∗
j

𝜇
− 1

𝛼k∗
j
(j)

}
= P (6.121)

Equations (6.120) and (6.121) yield the maximum of the Lagrangian under the
power constraint, hence the optimal solution to problem (6.115). The j-th RB is
assigned to flow k∗

j , if k∗
j > 0, or it is left unused otherwise. That is to say, in case

k∗
j > 0, the optimal assignment is such that xj(k∗

j) = 1 and xj(k) = 0, k ≠ k∗
j , for

j = 1, · · · ,K. The value of 𝜇 solving both eqs. (6.120) and (6.121) lies in the range
(0,M), where M = maxjmaxkwk𝛼k(j) and it can be found, e.g., by means of a sim-
ple bisection algorithm, based on the fact that the left hand side of (6.121) is a
monotonously decreasing function of 𝜇 for 𝜇 > 0.

As a special case, the flat fading channel, where a single radio resource is to be
assigned as a whole (K = 1), yields a very simple result. By dropping the sub-band
index j, the problem statement can be given as

k∗(t) = argmax
k

wk(t)log2
(
1 + 𝛼k(t)P

)
(6.122)

rk(t) =

{
log2

(
1 + 𝛼k(t)P

)
k = k∗(t),

0 k ≠ k∗(t).
(6.123)

wk(t + 1) =
wk(t)

𝛽 + (1 − 𝛽)wk(t)rk(t)
, k = 1,… ,N (6.124)

where we explicitly introduce the time index t referring to the t-th allocation inter-
val. In the flat fading case, orthogonal access implies flows are given capacity in
turn. The time dependent weights are updated according to the obtained rate.

The resource allocation driven by the PF allocation criterion can be compared
with a Maximum Throughput (MT) algorithm, based on the same snapshot opti-
mized resource allocation frame by frame except weights are all equal (set to 1). In
the general case of frequency selective channel (K > 1), the sub-band allocation
and power level setting as a solution of the sum rate optimization with sum power
constraint can be easily obtained. The sub-band j goes to the user kj with the biggest
channel coefficient in that sub-band, i.e., 𝛼kj

(j) ≥ 𝛼k(j),∀k. Once all sub-bands are
assigned, power levels are determined according to the water-filling principle with
power constraint P and channel coefficients 𝛼kj

(j), j = 1,… ,K. Formally, the MT

�

� �

�

316 6 Priorities and Scheduling

resource assignment for a generic allocation frame is

k∗
j = argmax

k
𝛼k(j)

p(j;𝜇) = max

{
0, 1

𝜇
− 1

𝛼k∗
j
(j)

}
, j = 1,… ,K

K∑
j=1

p(j;𝜇) = P

Example 6.11 Let us consider a BS serving N user terminals. In this numerical
example, we set the frame duration Tf equal to 20 time slots and the slot time to
0.5 ms, hence it is Tf = 10 ms. Resource allocation decisions are taken once every
frame.

We assume a flat fading channel (K = 1), with time varying gain frame by frame.
The radio channel to a single user is modulated by a two state Markov chain Z(t).
State 1 corresponds to a bad channel (high attenuation), while state 2 represents a
good channel (low attenuation). The SNR of the i-th flow in frame t is given by

SNRi(t) = Gf (t)Gs(Z(t))
𝜅

d𝛼

Ptx

PN
= Gf (t)Gs(Z(t))SNR0 (6.125)

where SNR0 = 24.78 dB, Gf (t) ∼ Exp(1) is the fast fading gain component, inde-
pendently drawn frame by frame as a negative exponential random variable of
mean 1, and Gs(x) is the shadowing gain in state x of the Markov chain Z(t). We set
Gs(1) = −15 dB and Gs(2) = 0 dB. The mean time spent in state 1 is 20 frames, the
mean time in state 2 is 30 frames. The base SNR0 corresponds to a user terminal at
100 m from the BS, background thermal noise over 1 MHz bandwidth with noise
figure 10 dB, and 10 W transmitted power of the BS.

The capacity realized by a user terminal in a frame is expressed by the
Hartley-Shannon law:

Ci(t) = C0 log2

(
1 +

SNRi(t)
Γ

)
(6.126)

where Γ = 9.78 is the gap factor and C0 = 1.08 Mbit∕s. The role of the term 𝛼k(t)P
for flow k in eq. (6.123) is played here by the ratio SNRk(t)∕Γ.

The weights are initialized to 1 and the algorithm described by eqs. (6.122),
(6.123), (6.124) is used. For comparison purposes, we consider two other allocation
mechanisms: (i) max throughput, which is obtained from proportional fair alloca-
tion by simply setting all weights equal to 1; (ii) round robin, which is obtained by
assigning the radio resource to each user terminal cyclically, independently of the
radio channel quality.

Figure 6.7(a) shows the achieved average throughput as a function of the num-
ber N of contending flows. The throughput is obtained as the sum of the long-term

�

� �

�

6.5 Miscellaneous Scheduling 317

Number of flows, N

0

0.5

1

1.5

2

2.5

S
y
s
te

m
 t
h

ro
u

g
h

p
u

t

Proportional fairness

Max throughput

Round robin

(a)

0 10 20 30 0 0.5 1 1.5 2

Time (s)

0

0.2

0.4

0.6

0.8

1

J
a

in
's

 i
n

d
e

x

Proportional fairness

Max throughput

Round robin

(b)

Figure 6.7 Proportional fair radio resource allocation in a cellular downlink. Left plot:
average throughput as a function of the number of contending flows. Right plot:
evolution over time of Jain’s index of fairness.

average throughputs of all flows, normalized to the overall throughput realized in
case of a single user terminal. Note that the average throughput achieved by each
flow is 1∕N-th of the overall throughput.

Round robin performance do not vary with N, hence the throughput per flow
is inversely proportional to N. This is not surprising, since round robin does not
exploit any diversity gain. On the contrary, max throughput takes the maximum
advantage of the diversity gain. Proportional fair allocation obtains an interme-
diate performance. Since it imposes a fair allocation in the long term, it loses
some of the diversity gain. Yet its overall throughput grows, at least for lower
values of N.

The other end of the story is shown in Figure 6.7(b), where Jain’s fairness index
of the transmitted data is plotted versus time. Let xi(t) be the amount of bits trans-
mitted by flow i up to frame t. We define the Jain index as

J(t) =

(N∑
i=1

xi(t)
)2

N
N∑

i=1
x2

i (t)
(6.127)

This index ranges between 0 and 1, the closer to 1, the better from fairness point
of view. It is apparent from Figure 6.7(b) that max throughput achieves a high
overall throughput at the expense of fairness, especially in the short-term. On the
contrary, round robin and proportional fair allocation schemes are both fair, except
a short initial transient. Proportional fair is even fairer than round robin in this
plot, even though it achieves a much better overall throughput.

�

� �

�

318 6 Priorities and Scheduling

Time (s)

0

100

200

300

400

500

F
lo

w
 t
x
 d

a
ta

 (
k
b
y
te

s
)

(a)

0

100

200

300

400

500

F
lo

w
 t
x
 d

a
ta

 (
k
b
y
te

s
)

0 0.5 1 1.5 2

Time (s)

(b)

0 0.5 1 1.5 2

Proportional fairness Max throughput

Time (s)

(c)

0 0.5 1 1.5 2
0

100

200

300

400

500

F
lo

w
 t
x
 d

a
ta

 (
k
b
y
te

s
) Round robin

Figure 6.8 Cumulative number of bits transmitted by each flow in a cellular downlink
with N = 4 flows. (a): Proportional fairness. (b): Max throughput. (c): Round robin.

The behavior of the cumulative amount of data transmitted by each flow over
time is plotted in Figure 6.8 for N = 4 flows, comparing the three considered
scheduling algorithms. The spreading of the curves in case of max throughput
illustrates how this algorithm achieves better throughput, i.e., essentially favoring
the user terminal that experiences the best radio channel quality, but penalizing
those experiencing a bad channel.

6.5.2 Job Dispatching

Computing systems are made up of a large number of servers. Jobs offered to a
computing cluster must be dispatched to servers for execution. The typical archi-
tecture envisages a number of load balancers connected to the server cluster. Load
balancers are the front end versus user requests. They collect job request and dis-
tribute them over servers.

�

� �

�

6.5 Miscellaneous Scheduling 319

Figure 6.9 Scheme of a load balancer
feeding a cluster of servers.

Server

Server

Server

Server

Server

Server

μ1

μ2

μN

Nλ

A scheme of a prototypical system of this kind is shown in Figure 6.9, where a
single load balancer acts as a job dispatcher toward N servers.

The aim of the job dispatcher is to minimize the overall response time to jobs.
The response time is the sum of the time required for the job dispatcher to take
its decision, the waiting time of the job at the selected server queue, and the time
required for the selected server to execute the job. Servers can have different serv-
ing capacities.

We denote the mean job arrival rate at the dispatcher with N𝜆. The mean serving
rate of the j-th server is denoted with 𝜇j for j = 1,… ,N. For the stability of the
system, it must be N𝜆 <

∑N
j=1 𝜇j, i.e., the mean arrival rate must be less than the

overall serving capacity available to the server cluster. We introduce the utilization
coefficient defined as 𝜌 = 𝜆∕𝜇, where 𝜇 = 1

N

∑N
j=1 𝜇j.

We know from Section 5.4.2 that the most efficient approach is to collapse the
whole serving capacity in a unique super-server. However, this ideal serving sys-
tem could be technologically unfeasible. Cloud computing data centers comprise
tens or even hundreds thousands servers. Multiple servers are therefore a must or
at least the most convenient solution in most settings.

We identify two categories of load balancing algorithms:

● Pull schemes, where the servers themselves signal to the dispatcher their status
(e.g., that they are ready for a new job; servers “pull the job”).

● Push: the dispatcher polls servers to inquire about their status and take the
scheduling decision (the dispatcher “pushes the job”).

The aim of the load balancer is to get jobs to be served in the shortest possi-
ble time, i.e., delay minimization is the target. Delay is the sum of the dispatching
delay and the response time of the selected server. A second relevant aspect is over-
head, i.e., the amount of data that is exchanged between the server cluster and the
dispatcher, as well as the data structures that are stored in the dispatcher itself.

We say that a job dispatcher is delay-optimal if it achieves the same perfor-
mance as the ideal single queue having a service capacity equal to the sum of the
capacities of the N servers (complete resource-pooling system). More in depth,

�

� �

�

320 6 Priorities and Scheduling

let us assume that the system admits a statistical equilibrium regime. Let Qj
denote the queue length at server j and let Qe denote the queue length of an
equivalent single-server system having serving rate N𝜇e =

∑N
j=1 𝜇j and the same

job arrival process as the dispatcher. Let also 𝜖 =
∑N

j=1 𝜇j − N𝜆 = N(𝜇e − 𝜆) > 0,
the last inequality holding to guarantee stability and hence the existence of
statistical equilibrium. We say that a scheduling algorithm is heavy-traffic delay
optimal if

lim
𝜖→0

𝜖

N∑
j=1

E[Qj] = lim
𝜖→0

𝜖E[Qe] (6.128)

Foschini and Salz [80] proved that the join shortest queue (JSQ) policy is asymp-
totically delay-optimal in heavy-traffic. JSQ consists in polling the N queues upon
each job arrival at the dispatcher and then selecting the queue with the shortest
line. Ties are broken at random. The crux of JSQ is that it requires exchanging 2N
messages between the dispatcher and the server cluster for each arrival, that is,
the overhead message rate is 2N2

𝜆, if we let N𝜆 to be the arrival rate of jobs at the
system.

A simplified version of JSQ is obtained by limiting the number of servers that
are polled to d ≥ 2. This kind of policy goes under the name of power-of-d (Pod).
With d = N we recover JSQ. The interesting point is that good performance can be
obtained with d ≪ N. Even d = 2 reaps a big part of the performance offered by
JSQ. It has been shown that Pod is heavy-traffic delay-optimal [55,157]. Moreover,
the probability distribution of the queue length of servers decays very fast (in a
double-exponential form) for large N [203, 162].

JSQ and Pod are examples of push policies. The drawback of this class of poli-
cies lies in the fact that they imply nonzero dispatching delay and potentially high
message overhead.

Kelly and Laws [120] have proposed a simplified scheduling policy, known as
join below threshold (JBT). An integer r is added to the policy name, to specify the
threshold value. The idea of the policy is that the dispatcher allocates an arriving
job to a server having less than r jobs already assigned.

More precisely, the dispatcher maintains an N bit data structure. Initially, all
servers are idle (no job enqueued) and all bits of the data structure are set to 1.
When a new job arrives, the dispatcher does the following:

1. If not all bits are 0, it picks one server at random among those marked with a
bit equal to 1 and sends the job request to that server; the corresponding bit is
reset to 0.

2. If all bits of the data structure are 0, the dispatcher selects a server at random
and sends the job to that server.

�

� �

�

6.5 Miscellaneous Scheduling 321

On their part, servers signal their status to the dispatcher, according to the fol-
lowing rules. A server reports its identity to the dispatcher, whenever it completes
serving a job, if

1. The queue length drops below the threshold r after the served job departure.
2. At least one new job has been assigned to the server since the last time it

reported its identity to the dispatcher.

The second rule avoids the server reporting its identity multiple times, if its cor-
responding bit in the dispatcher data structure is already set to 1.

This algorithm reduces drastically the number of messages exchanged between
the dispatcher and the server cluster, with respect to JSQ. It is an example of a
pull policy. The main advantage of this class of policies is to have zero dispatching
delay and to entail a relatively low message overhead. In [214] it has been shown
that JBT(r) is heavy-traffic delay-optimal. More in depth, it is shown that JBT(r) is
heavy-traffic delay-optimal in steady state provided that r ≥ K log(1∕𝜖), for some
constant K, and r = o(1∕𝜖) as 𝜖 → 0. If instead r = 1∕𝜖1+𝛼 for any positive 𝛼, JBT(r)
is asymptotically the same as a pure random scheduler in heavy-traffic. Intuitively,
this means that r should grow as the system moves toward heavy-traffic (i.e., as
𝜖 → 0). It should grow fast enough, at least as log(1∕𝜖), but not too fast, i.e., it
must be slower than 1∕𝜖. Moreover, extensive simulations point out that JBT(r)
offers delay performance comparable with JSQ in various system settings.

A special case of JBT(r) is obtained for r = 1: it is called join idle queue (JIQ).
Though it has zero dispatching delay, JIQ suffers from a strong degradation of
delay performance in heavy-traffic.

To conclude this section, we compare a memoryless random dispatcher with an
ideal dispatcher that knows the exact workload at each queue. The former rep-
resents a baseline algorithm that does not require any information on the status
of the queues, nor does it imply any knowledge of the job service times. The lat-
ter entails a full knowledge of the status of the queue. Moreover, it is anticipative,
since it requires knowledge of the service time of each arriving job.

Let Un(t) be the workload of queue n at time t. Upon a job arrival at time t = a,
with service time X , the dispatcher evaluates the minimum workload, i.e., U∗ =
min0≤n≤N Un(a). Then, it selects uniformly at random a server whose workload
equals U∗ and sends the job request to that server. Say n∗ is the index of the selected
queue. Then, we have Un(a+) = Un(a−) for n ≠ n∗, and Un∗ (a+) = Un∗ (a−) + X .

As for the memoryless dispatching, let 𝛽n be the probability that a job is sent to
queue n. Assume job arrivals follow a Poisson process with mean rate N𝜆. Sam-
pling this arrival flow randomly and independently of service times preserves its
Poisson character. Hence, each server can be modeled as an M∕G∕1 queue. Let L
denote the workload brought by an arriving job. Let Cn be the capacity of the n-th

�

� �

�

322 6 Priorities and Scheduling

server. Then, the service time of a job executed at server n is Xn = L∕Cn. The mean
response time can be written as

E[R] =
N∑

n=1
𝛽n

(
𝛽nN𝜆E[L2]∕C2

n

2(1 − 𝛽nN𝜆E[L]∕Cn)
+ E[L]

Cn

)
(6.129)

We will find the probability distribution 𝛽n, n = 1,… ,N, that minimizes the
response time. The minimization problem can be restated in the following way:

min
x

N∑
n=1

(c2x2
n

1 − xn
+ xn

)
(6.130)

subject to:
N∑

n=1
anxn = 1 (6.131a)

xn ≡ 𝛽n
N𝜆E[L]

Cn
≥ 0, n = 1,… ,N, (6.131b)

where

c2 = E[L2]
2(E[L])2 =

C2
L + 1
2

an =
Cn

N𝜆E[L]
, n = 1,… ,N.

where C2
L is the SCOV of the workload associated with a job request. The target

function is separable, i.e., it is the sum of N functions f (xn), each depending only on
a single variable. The function f (⋅) is non-negative, strictly increasing and convex.
Hence the Hessian of the target function if strictly positive definite. The minimizer
x∗ can be found by setting to 0 the gradient of the Lagrangian:

L(x, 𝜓) =
N∑

n=1

(c2x2
n

1 − xn
+ xn

)
− 𝜓

N∑
n=1

anxn (6.132)

The resulting optimal routing probabilities 𝛽∗n are

𝛽
∗
n = max

⎧⎪⎨⎪⎩0,min
⎧⎪⎨⎪⎩1, an

⎛⎜⎜⎜⎝1 − 1√
1 − 1

c2 + 𝜓
an
c2

⎞⎟⎟⎟⎠
⎫⎪⎬⎪⎭
⎫⎪⎬⎪⎭ (6.133)

where we have accounted for the limited range allowed to the probabilities 𝛽
∗
n .

The multiplier 𝜓 is found as the unique solution of the normalization equation∑N
n=1 𝛽

∗
n = 1.

As a numerical example, let us consider the case where the workload has a
Pareto probability distribution with mean 1, i.e., it is (L > y) = min{1, (𝜃∕y)𝛼},

�

� �

�

6.5 Miscellaneous Scheduling 323

with E[L] = 𝛼𝜃∕(𝛼 − 1) = 1. The parameter 𝜃 is determined from this condition.
We let 𝛼 = 2.1.

As for the server capacities, we let

Cn = Cmin + (Cmax − Cmin)
n − 1
N − 1

, n = 1,… ,N. (6.134)

with Cmin = 1 and Cmax = 10. The utilization coefficient of the servers is defined
as

𝜌 = N𝜆E[L]
N∑

n=1
Cn

(6.135)

Figure 6.10 plots the mean response time for N = 4 servers (left plot) and for N =
100 servers (right plot) as a function of 𝜌. Ideal minimum backlog dispatching and
random memoryless dispatching, optimized as described above, are compared. It
is evident that, in spite of the optimization of the routing probabilities 𝛽n, random
job dispatching is definitely inferior to the ideal policy. This is the more remark-
able as the number of server grows. Moving from N = 4 to N = 100 response time
with random dispatching exhibits little change, while ideal dispatching results in
negligible response time for loads as high as 𝜌 = 0.95.

The takeaway of this simple comparison is that there is a huge performance gain
with exploiting information on the status of queues at servers. This motivates the
research of policies that offer a good trade-off between status report overhead, dis-
patching delay and response time.

Utilization coefficient, ρ

0

2

4

6

8

M
e

a
n

 s
y
s
te

m
 t

im
e

,
E

[S
]/

E
[X

]

Pareto

N = 4

Min workload
Memoryless

(a)

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Utilization coefficient, ρ

0

2

4

6

8

M
e

a
n

 s
y
s
te

m
 t

im
e

,
E

[S
]/

E
[X

]

Pareto

N = 100

Min workload
Memoryless

(b)

Figure 6.10 Mean response time of job dispatching to a cluster of N unequal servers
(N = 4 in the left plot, N = 100 in the right plot) as a function of the utilization coefficient
of the servers. Comparison between ideal dispatching to the minimum workload queue
and optimized random memoryless job dispatching.

�

� �

�

324 6 Priorities and Scheduling

6.6 Optimal Scheduling

Before closing this introduction of scheduling policies in queues, we hint at
optimal scheduling. The general setting consists of a service system, with possibly
multiple flows of customers, with different statistical characteristics both as
for arrival patterns and service demand. Some target function of the queueing
system performance is defined, e.g., the mean number of customers residing
in the system, or the weighted sum of the mean delays of different classes of
customers, or a quantile of the customer sojourn time. Then, a serving policy is
searched for within a set of admissible policies, such that it optimizes the target
function.

In the following, we confine ourselves to single-class systems, i.e., a serving
system visited by customers belonging to a same class. Many more details and
pointers to specialized references can be found, e.g., in [131, Ch. 4][86]. Hence,
the service demand of all customers is characterized by a single statistical descrip-
tion. We assume service times of arriving customers form a renewal process with
CDF FX (x). We also assume consistently a single, work-conserving server.

We can identify two main classification criteria that affect the admissible set of
scheduling policies:

1. Whether at most a single customer with partially completed service is allowed
or not;

2. Whether the service demand of an arriving customer is known when it joins
the queueing system or not.

We will refer to a queueing system allowing more than a single partially served
customer as server-sharing system. On the contrary, a queueing system where
at any time at most a single customer can be partially served is defined to be
non-server-sharing. As for the second classification feature, we call anticipative a
queueing system where the service demand of an arriving customer is declared
explicitly and hence known to the server upon arrival. Nonanticipative means
that only the probability distribution is possibly known, not the specific sample
of the service time of an arriving customer.

For example, FCFS is a non-server-sharing, nonanticipative queueing discipline.
Processor sharing and the generalized version thereof are examples of server shar-
ing, non-anticipative disciplines. Finally a representative of the server-sharing,
anticipative category is SRPT.

Let us discuss what the optimal scheduling is for single-class, single
work-conserving server queueing systems, by considering separately three
cases, according to the two criteria stated above. We assume consistently that the
target function to be optimized is the overall mean number of customers residing
in the queueing system. In equilibrium, Little’s law guarantees that this target is

�

� �

�

6.6 Optimal Scheduling 325

equivalent to the mean sojourn time of a customer inside the system, that is to
say, the response time.

6.6.1 Anticipative Systems

In this case, SRPT can be shown to be the optimal scheduling policy. We can sketch
the proof briefly as follows. Let QS(t) and QA(t) be the number of customers in
the system at time t under the SRPT policy and under any other policy different
from SRPT. Let q(t) = min{QS(t),QA(t)} and consider the sum of the q(t) largest
remaining processing times in the queue, say WS(t) and WA(t) for the SRPT and
the “any-other” queueing policies. Since SRPT favors customers with the least
remaining processing times, it must be WS(t) ≥ WA(t). On the other hand, for a
work-conserving server in equilibrium the overall amount of unfinished work at
any time is invariant with respect to the serving policy, hence it must be the same
for SRPT and the “any-other” policies. This is only possible if QS(t) ≤ QA(t). Mov-
ing from this sample-path argument to time-averages, it follows that the mean
number of customers residing in the system attains its minimum level under SRPT
policy.

The argument outlined above applies to general arrival processes, not necessar-
ily the Poisson process. Note that if preemption is not allowed, it can be shown
that SJF is optimal instead of SRPT.

6.6.2 Server-Sharing, Nonanticipative Systems

In this case only the CDF of the service times, FX (x), is assumed as known. The
serving policy minimizing the mean number of customers in the system or equiva-
lently the response time of the system is the Gittins index. To introduce that policy,
we need some definitions.

Let a denote the attained service of a customer. We let

𝜅(a, x) =
∫ a+x

a dFX (u)

∫ a+x
a [1 − FX (u)]du

, x > 0, a ≥ 0. (6.136)

For x → 0 the Gittins index 𝜅(a, x) tends to the hazard function of the prob-
ability distribution of the service times, calculated at a, i.e., limx→0𝜅(a, x) =
h(a) ≡ fX (a)∕[1 − FX (a)]. As x → ∞ we have 𝜅(a, x) → GX (a)∕ ∫ ∞

a GX (x)dx < ∞.
Hence 𝜅(a, x) is continuous and limited in any interval of the positive semi-axis
as a function of x. Then, we can find a finite supremum, i.e., we can define
𝜅(a) = supx≥0𝜅(a, x) for any positive a. Let also x∗ = arg maxx≥0𝜅(a, x), including
the possibility that it is x∗ = ∞.

The Gittins index policy can be stated as follows. At any time, serve that
customer that has the largest level of 𝜅(a) among all those within the queueing

�

� �

�

326 6 Priorities and Scheduling

system. Continue serving that customer until one of the following conditions is
met, whichever comes first:

1. The service demand of the customer is fully served.
2. The customer has received up to x∗ time units of service.
3. A new customer arrives with a higher Gittins index.

The idea underlying this policy is to select a customer with a high probability of
completing service within time x and at the same time having the least expected
remaining service time. The Gittins index aims at capturing this selection crite-
rion, thus it does its best to behave like SRPT does.

Example 6.12 In case of negative exponential service times, we have FX (x) =
1 − e−𝜇x. It is easy to find that 𝜅(a, x) = 𝜇 for any x and a. Then, it is also 𝜅(a) = 𝜇.
In this special case, all customers are at the same level. It is an optimal policy
to select whichever customer out of those that are in the queue when the server
is available to start service. Nor is there any reason to interrupt service. We can
therefore deem FCFS to be optimal in this special case. This is not completely
surprising, given the memoryless property of the negative exponential probability
distribution.

Example 6.13 Let the service times have a Pareto probability distribution given
by FX (x) = 1 − (𝜃∕x)𝛼 for x ≥ 𝜃. It can be found that

𝜅(a, x) = 𝛼 − 1
a

1 −
(

a
a+x

)𝛼
1 −
(

a
a+x

)𝛼−1 (6.137)

for a + x ≥ 𝜃 and 𝛼 > 1. This is a monotonously increasing function of x, whose
supremum is (𝛼 − 1)∕a, attained as x → ∞. Hence it is x∗ = ∞. According to the
Gittins index policy, we should select the customer with the minimum level of a,
given that 𝜅(a) is inversely proportional to a. Since a is the attained service, it turns
out that Gittins index coincides with LAS in case of Pareto service times.

6.6.3 Non-Server-Sharing, Nonanticipative Systems

In the special framework where service times of arriving customers are not
known to the server and at most one customer with partial service accomplished
is allowed, the conservation law for work-conserving queueing discipline applies
with the same PDF of service times for all classes. Then, we know that all such
serving policies achieve the same mean response time, hence the same mean
number of customers residing in the system, by Little’s law. Any such discipline is
therefore optimal. It is customary to adopt FCFS in most cases, since this is well
understood and usually accepted by competing customers.

�

� �

�

Problems 327

Summary and Takeaways

Differentiated treatment of customers and sharing of the server capacity are the
topics of this chapter. A vast amount of literature, techniques, algorithms has been
developed and applied to a wide variety of systems, ranging from telecommu-
nication networks, to transportation systems, computing systems, data centers,
workflow management.

We have seen a basic model derived from the M∕G∕1 queue. It is useful to under-
stand the fundamental trade-offs, particularly the conservation law, a mathemati-
cal statement of the fact that nothing comes for free. Discrete levels and continuous
classes of customers are studied, thus deriving the well known shortest job first
and shortest remaining processing time disciplines. Preemption of the server is
discussed as well. This introduces the idea of sharing the server capacity among
many customers simultaneously, i.e., at any time there can exist more than one
customer that has been served only partially. The most famous processor sharing
model, the M∕G∕1 processor sharing is studied. A generalization of the proces-
sor sharing system is presented, paving the way to practical algorithms that allow
weighted sharing of the server capacity. Two specific examples from the commu-
nication networks realm are presented: Weighted fair queueing and credit-based
scheduling. As hinted at by the name, the key issue these algorithm address is to
share the server capacity efficiently while protecting customers demanding little
amount of work from heavy load customers, that could otherwise hog the server.
In fact, the scheduling problem is intimately connected with the fairness issue.

Finally, we review queueing disciplines for single-server queues under the per-
spective of optimality, specifically, disciplines that minimize the mean number
of customers in the queue. To that purpose, we categorize queueing disciplines
according to server-sharing and service time anticipation properties.

Problems

6.1 In a priority queueing system of M∕G∕1 type, there are two priority classes.
We are given the fact that class two mean waiting time is

E[W2] =
W0

1 − 𝛼𝜌1 − 𝛽𝜌2
(6.138)

where 𝜌j = 𝜆jE[Xj], for j = 1, 2; 𝛼, 𝛽 lie in the interval (0, 1), and W0 is the
residual service time found by an arriving customer.
Find the mean waiting time of class one, E[W1].

�

� �

�

328 6 Priorities and Scheduling

6.2 A statistical multiplexer with an output capacity C = 10 Mbit/s receives a
Poisson flow of packets of mean rate 𝜆 = 1000 pkts/s. The packet length dis-
tribution is a discrete one, with three values, as detailed below:

p1 = (L = 100 bytes) = 0.4
p2 = (L = 1000 bytes) = 0.2
p3 = (L = 1500 bytes) = 0.4

(6.139)

Assume the multiplexer adopts a queueing discipline that assigns priority
according to packet lengths. Specifically, shortest packets have highest pri-
ority, longest packets lowest priority. Calculate the mean waiting time of the
three packet types.

6.3 The packet flow out of a domestic network is sent to a link of capacity C =
1 Mbit∕s. The packet flow is composed of packets belonging to two classes:
VoIP packets with fixed length of 80 bytes, and data packets, with negative
exponential lengths with mean value 1500 bytes. It is known that 20% of
the overall link load is due to VoIP packets. The overall average link load
(=utilization factor of the link) is equal to 0.9.
(a) Is it possible to devise a non preemptive, nonanticipative priority rule so

that the mean waiting time of both classes falls below 80 ms?
(b) Calculate the mean waiting time of the data packets, if we impose that

it must be twice the mean waiting time of the VoIP packets.

6.4 Consider a work-conserving priority-based statistical packet multiplexer.
There are traffic flows arriving at the multiplexer: (i) voice packets, with
constant length L1 = 100 bytes; (ii) background traffic packets, having a
negative exponential probability distribution of packet lengths with mean
value E[L2] = 800 bytes. The capacity of the multiplexer is C = 1 Mbit/s.
The utilization coefficient of the multiplexer output link is 0.8; 10% of that
load is due to voice packets, the remaining 90% of the load is made by
background traffic packets.
(a) Calculate the mean waiting times of packets of either flow, under a HOL

priority scheme, where the top priority class is given to voice packets.
(b) Does there exists any work-conserving priority scheme that can guaran-

tee a reduction by 5% for both classes of the mean waiting times obtained
in the previous point?

(c) Suppose that voice packets are guaranteed a mean delay of no more than
1 ms by using some work-conserving priority scheme. What is the mini-
mum value of the mean waiting time for the background traffic packets?

�

� �

�

Problems 329

6.5 A file server receives requests of file download according to a Poisson pro-
cess of mean rate 𝜆 = 0.2 requests/s. Requested files are of two types: the
short ones have constant length equal to L1 = 100 kbyte, the long ones have
variable length with mean value E[L2] = 1 Mbyte and standard deviation
𝜎L2

= 2 Mbyte. 50% of the requests are for short files. The server has a link
with capacity C = 1 Mbit/s.
(a) Calculate the mean system time if there is no priority.
(b) Calculate the mean system time if HOL priorities are used, giving higher

priority to the short file download.
(c) Calculate the mean system time of a job of the class “short file” and of a

job of the class “long file” under the processor sharing policy. Compare
the results with those of points (a) and (b) above and discuss the reason
why of the different values.

�

� �

�

331

7

Queueing Networks

Overheard while waiting in a long ticket line, from a disgruntled customer who
was heading toward the back of the queue: “The only thing worse than waiting
in line is waiting in the wrong line!”

7.1 Structure of a Queueing Network and Notation

A queueing network is a system of J queues interconnected so that customers
leaving one queue can possibly visit other queues. Queueing networks provide
a wide class of models that encompass isolated queues as a special case. The key
feature of the queueing network is its topological structure, i.e., the relationship
among the queues established by the flows of customers moving from one queue to
another one. The topology is defined by a weighted directed graph1 , where nodes
are queues. Let the queues be numbered with positive integers, from 1 to J. An
edge is directed from queue i to queue j and it is labeled with rij ∈ [0, 1] if a cus-
tomer leaving queue i joins queue j with probability rij. These probabilities form a
matrix R, whose row sums are less than or equal to 1.

For ease of notation we introduce one more “queue” of the network, represent-
ing the outside world. Let it be labeled with 0. Define ri0 = 1 −

∑J
j=1 rij. A queueing

network is said to be open if ri0 > 0 for at least one index i. In the opposite case, it
is referred to as closed, and the corresponding matrix R is stochastic.

If ri0 > 0 for at least one index i the matrix R is sub-stochastic and exit out of the
queueing network is allowed. In that case there must be an external arrival process
as well. Let 𝛾i be the average rate of customers arriving at queue i. We can think

1 Basic definitions of graph theory and how to determine whether a graph is connected are
reviewed in the Appendix at the end of this chapter.

Network Traffic Engineering: Stochastic Models and Applications, First Edition. Andrea Baiocchi.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

�

� �

�

332 7 Queueing Networks

of these arrivals as belonging to a single external flow with rate 𝛾 =
∑J

j=1 𝛾j. New
arrivals join the i-th queue with probability r0i, hence 𝛾i = 𝛾r0i for i = 1,… , J.

7.2 Open Queueing Networks

We focus on open queueing networks. Queues are assumed to have infinite size,
so that no customer is rejected. External arrivals are assumed to follow a Poisson
process. The serving facility at a queue has a state-dependent average service rate.
The service rate of the j-th queue is 𝜇j(xj), if the queue length is xj. It must be
𝜇j(x) > 0 for x > 0 and 𝜇j(0) = 0. In the ensuing analysis, we assume that service
times have negative exponential PDF with mean 1∕𝜇j(xj) at queue j, when its state
is xj. For example, if mj equivalent servers are available at queue j, each with mean
service time 1∕𝜇j, we have 𝜇j(xj) = min{xj,mj}𝜇j for xj ≥ 0.

The average flow through the queue i, 𝜆i, can be found by summing up all con-
tributions at the input of queue i and taking into account that the average flow 𝜆i
into queue i coincides with the average flow out of queue i. This is true at statistical
equilibrium, if the network can achieve this regime. Then, we have

𝜆i = 𝛾i +
J∑

j=1
𝜆jrji , i = 1,… , J. (7.1)

This is a nonhomogeneous, linear equation system, with a unique positive solu-
tion, provided the matrix R is irreducible. Since R is also sub-stochastic for open
networks, it follows that I − R is invertible2 , I being the identity matrix. In matrix
form we can write 𝜆 = 𝛾(I − R)−1, with 𝜆 = [𝜆1,… , 𝜆J] and 𝛾 = [𝛾1,… , 𝛾J].

We can give a meaning to the matrix (I − R)−1, by considering the discrete-time,
discrete state Markov process Y (𝜏) defined by customer movements through the
network. Let Y (𝜏) = i if at step 𝜏 queue i is visited. Then, with probability rij, queue
j will be visited at step 𝜏 + 1. If the process is started at queue i with probability
q0(i), we have q

𝜏
= q0R𝜏 , where q

𝜏
is a row vector. The entry q

𝜏
(i) is the probabil-

ity that the state at time 𝜏 is i, i.e., q
𝜏
(i) = (Y (𝜏) = i). Let Zi(𝜏) be a binary random

variable equal to 1, if Y (𝜏) = i, 0 otherwise. The number of visits to queue i up to
time T is Vi(T) =

∑T
𝜏=0 Zi(𝜏). The mean number of visits is therefore E[Vi(T)] =∑T

𝜏=0 (Y (𝜏) = i). In vector form, E[V(T)] = q0
∑T

𝜏=0 R𝜏 . As T → ∞ we get E[V] =
q0(I − R)−1. If we choose q0(k) = 1 and q0(i) = 0,∀i ≠ k for a given k, we find that
the entry (k, j) of the matrix (I − R)−1 represents the mean number of visits at
queue j, given that we start from queue k.

The same result could be found more directly by considering that the mean num-
ber of visits E[Vj] to queue j can be written as the probability of starting from queue

2 It is actually an M-matrix, so that its inverse has positive entries.

�

� �

�

7.2 Open Queueing Networks 333

j itself plus the mean number of visits to any queue i that is a neighbor of queue j
multiplied by the probability of making a transition from i to j. Formally E[Vj] =
q0(j) +

∑J
i=1 E[Vi]rij, for j = 1,… , J. This linear equation system yields immedi-

ately E[V] = q0(I − R)−1.
Another interesting interpretation of the matrix (I − R)−1 is related to the num-

ber of hops that a customer makes through the network. Let us consider the vector
r = (I − R)e. The i-th entry of the vector r is ri0, the probability of leaving the
queueing network from queue i. Let D be a diagonal matrix having the elements
of r on the diagonal. We can consider a transient Markov chain with one-step tran-
sition probability matrix given by

Pe =
[

R D
𝟎 I

]
. (7.2)

The first J states correspond to the queues of the queueing network. The last J
states are absorbing. The i-th absorbing state corresponds to exit out of the queue-
ing network through queue i. Let T be the number of hops to absorption from one
queue to another queue and let Y (T) denote the queue from which we leave the
queueing network. It can be verified that

(T = n,Y (T) = j|Y (0) = i) = [Rn−1D]ij , n ≥ 1, (7.3)

where [A]ij denotes the entry (i, j) of the matrix A. Let hij be the mean number of
hops given that we enter the queueing network at queue i and we leave it from
queue j. Let H be the matrix with entries hij. It is hij =

∑∞
n=1 n [Rn−1D]ij and H =

(I − R)−2D. A customer enters the network at queue i with probability 𝛾i∕Γ, where
Γ = 𝛾1 + · · · + 𝛾J . Removing the conditioning on the initial state and saturating
the event Y (T) = j, we obtain the mean number of hops through the network
h = 𝛄(I − R)−1e∕Γ = Λ∕Γ, where Λ = 𝜆1 + · · · + 𝜆J . The interesting result is that
Λ = hΓ. The sum of the link loads equals the sum of the exogenous input rates
multiplied by the mean number of hops. A customer making h hops “consumes”
capacity on h links. This remark makes the formula intuitively appealing.

The assumptions leading to Jackson’s model of queueing network are summa-
rized below:

(a) External arrivals follow a Poisson process.
(b) The service time at every queue is a negative exponential random variable with

a possibly state-dependent mean value, and it is independent of the external
arrival process.

(c) All customers arriving at a queue can join the queue, i.e., queue sizes are infi-
nite.

�

� �

�

334 7 Queueing Networks

(d) Routing is memoryless: each customer chooses the next queue, when leaving
the currently visited queue, independently of all other customers.

(e) The J × J routing matrix R, with entries rij, i, j = 1,… , J, is irreducible3 .

Let Qj(t) be the number of customers in queue j at time t. The state of the network
at time t is described by the vector Q(t) = [Q1(t)…QJ(t)]. Under the hypotheses
(a)-(e) the network state Q(t)defines a Markov process over the state spaceΩ. Since
Qj ∈ ℤ+, i.e., it takes integer non-negative values, the state space Ω is made up of
all non-negative integer valued vectors of dimension J, i.e.,Ω = {x = [x1,… , xJ] ∶
xj ∈ ℤ+}. If the Markov process is ergodic, we denote the steady-state random vari-
able Q(∞) simply with Q. Similarly, Qj = Qj(∞) denotes the steady-state random
variables describing the number of customers in queue j.

Let 𝜋(x) be the limiting state probabilities of the Markov process, assumed to
be ergodic. We will see later the conditions under which ergodicity holds. The
vector 𝜋(x) can be computed from the homogeneous linear equation system
𝜋M = 𝟎 and the equation 𝜋e = 1, where e denotes a column vector of 1’s and M
is the infinitesimal generator of the Markov process Q(t). The equations of this
system can be written down by balancing the probability flow in and out of each
state x, yielding

𝜋(x)
J∑

j=1
[𝜇j(xj)(1 − rjj) + 𝛾j] =

J∑
j=1

𝜋(x − ej)𝛾j +
J∑

j=1
𝜋(x + ej)𝜇j(xj + 1)rj0

+
J∑

j=1

J∑
i≠j,i=1

𝜋(x − ej + ei)𝜇i(xi + 1)rij (7.4)

where ei indicates a vector with all elements equal to 0 except the i-th one, which
is 1. This balance equation holds for x > 0 and it is modified in an obvious way for
states with some null entries (e.g., no departure can take place out of a queue, if
its state is 0)4 .

Let us define the non-negative, discrete random variable Yi with PDF given by

(Yi = k) = (Yi = 0)
𝜆

k
i

Mi(k)
, k ≥ 0 (7.5)

with

Mi(k) =
⎧⎪⎨⎪⎩

k∏
h=1

𝜇i(h), k ≥ 1,

1 k = 0.
(7.6)

3 This is equivalent to stating that the graph associated to the queueing network is strongly
connected (see the Appendix of this chapter).
4 It suffices to let 𝜋(x) = 0 if any component of x is negative.

�

� �

�

7.2 Open Queueing Networks 335

where 𝜇i(h) is the serving rate of queue i when there are Qi = h customers in that
queue, i = 1,… , J. Note that 𝜇i(0) = 0, while it must be 𝜇i(h) > 0 for any h > 0.

The Yi’s are properly defined random variables, provided that the infinite
sums

∑∞
k=0

𝜆
k
i

Mi(k)
, for i = 1,… , J, converge to positive, finite values. In that case

the probabilities in eq. (7.5) can be normalized to sum up to 1 by letting:

(Yi = 0) =

(
1 +

∞∑
k=1

𝜆
k
i

Mi(k)

)−1

, i = 1,… , J, (7.7)

The conditions for the stability of the queueing network are therefore:
∞∑

k=0

𝜆
k
i

Mi(k)
< ∞, i = 1,… , J, (7.8)

The conditions in eq. (7.8) are indeed necessary and sufficient for the ergodicity
of the Markov process Q(t).

The result due to Jackson is stated as follows.

Theorem 7.1 (Jackson, [111]) If an open queueing network satisfies the
hypotheses (a)-(e) above and the J conditions in eq. (7.8) are satisfied, the limiting
PDF of the Markov process Q(t) exists and it is given by a product form as

𝜋(x) =
J∏

j=1
(Yj = xj) (7.9)

where the marginal PDFs are given in eq. (7.5).

Proof: We will check that the probabilities in eq. (7.9) satisfy the rate-balance
equations (7.4). According to the expression of the limiting state probabilities given
in the theorem statement, we have:

𝜋(x − ej) = 𝜋(x)
𝜇j(xj)
𝜆j

, xj > 0

𝜋(x + ej) = 𝜋(x)
𝜆j

𝜇j(xj + 1)
,

𝜋(x − ej + ei) = 𝜋(x)
𝜇j(xj)𝜆i

𝜆j𝜇i(xi + 1)
, xj > 0

Then, by substituting into eq. (7.4) and canceling out 𝜋(x), we get
J∑

j=1
[𝜇j(xj)(1 − rjj) + 𝛾j] =

=
J∑

j=1

𝜇j(xj)
𝜆j

𝛾j + +
J∑

j=1

𝜆j

𝜇j(xj + 1)
𝜇j(xj + 1)rj0 +

J∑
j=1

J∑
i≠j,i=1

𝜇j(xj)𝜆i

𝜆j𝜇i(xi + 1)
𝜇i(xi + 1)rij

�

� �

�

336 7 Queueing Networks

=
J∑

j=1

𝜇j(xj)
𝜆j

(
𝛾j +

J∑
i≠j,i=1

𝜆irij

)
+

J∑
j=1

𝜆jrj0 =
J∑

j=1
𝜇j(xj)(1 − rjj) +

J∑
j=1

𝜆jrj0 (7.10)

The last equality is a consequence of the flow-balance equations (7.1).
Equation (7.10) reduces to

J∑
j=1

𝛾j =
J∑

j=1
𝜆jrj0 (7.11)

It is easily checked that eq. (7.11) is true by summing up both sides of eq. (7.1)
over i and taking into account that

∑J
i=1 rji = 1 − rj0. Note that (7.11) amounts to

the statement that the overall mean input rate to the network equals the overall
mean output rate of the network, which is obviously true at equilibrium. ◾

Jackson’s result points out that the queue states are independent random vari-
ables. Their respective marginal probability distributions are just those that could
be computed for each queue as if it were in isolation, according to an M/M/1 model
with state-dependent serving rates. To compute the marginal PDF at each queue
we have to use the value of 𝜆 as obtained by the balance equations (7.1). This holds
even though the superposition at the input of each queue of the external input
and of the customer flows coming from other queues is not necessarily a Poisson
process.

In the special case of state independent, negative exponential service times (i.e.,
single server), namely 𝜇j(k) = 𝜇j ∀k > 0, we find easily that

(Yj = k) = (1 − 𝜌j)𝜌k
j , k ≥ 0 (7.12)

where 𝜌j = 𝜆j∕𝜇j. The ergodicity condition is that 𝜌j < 1 for j = 1,… , J.
Moments of the queue length can be easily found. The average delay through

the whole network can be evaluated easily as well. By Little’s law, we have E[D] =
E[Q]∕𝛾 , where Q =

∑J
j=1 Qj is the overall number of customers inside the network

(waiting or receiving service at any queue), 𝛾 =
∑J

j=1 𝛾j and D is the network delay,
i.e., the delay suffered by a generic customer going through the network. We have
E[Q] =

∑J
j=1 E[Qj]. In the special case of single server queues, a simple explicit

form of E[Qj] is obtained, namely E[Qj] =
𝜌j

1−𝜌j
. Therefore

E[D] = 1
𝛾

J∑
j=1

𝜆j

𝜇j − 𝜆j
(7.13)

This expression depends on the overall offered traffic rate, on the mean serving
rate of the single server at each queue and on routing through the flow rates 𝜆j, j =
1,… , J.

�

� �

�

7.2 Open Queueing Networks 337

Example 7.1 Kleinrock’s model of a packet network A classic application of
the open queueing network model is Kleinrock’s model of a packet network [131,
Ch.5]. Let us consider a packet network. The traffic offered to the network can be
described by the traffic matrix. The entry (i, j) of this matrix gives the mean rate of
the end-to-end (e2e) traffic flow entering the network at node i and leaving the net-
work from node j. The nodes of the packet network are routers , since their main
function is to route packets through the network path from entrance point i to exit
point j. Routers are interconnected through subnets, that we can think of as direct
links (e.g., fiber-optic links, as typical of core networks). We can abstract a view of
the network at packet level as a graph, where nodes correspond to routers and an
arc is placed between two nodes if a packet can be sent directly between the corre-
sponding routers, without the help of any other router. Let V denote the adjacency
matrix of the graph. Then, vij = 1 if and only if there is a link between router i and
router j. In a typical packet network links are bidirectional, hence the graph model
is undirected. A discussion of the properties of the adjacency matrix V that guar-
antee the network graph is connected is given in the Appendix to this Chapter.
We assume the graph is connected (actually, it is multi-connected for reliability
reasons).

We assume further that a single route is defined for any e2e flow through the
network (e.g., shortest path routing according to some link metric, without load
sharing or multi-path). To apply the open queueing network model, we focus on
network links. A link connecting router R1 to router R2 is equipped with a buffer
on the sender side. Packets dispatched by router R1 to router R2 via the link are
sent immediately, if possible. Otherwise, they are stored in the buffer at R1 output
port, waiting for the first opportunity for being sent out to the link. The typical
serving discipline at router output buffers is FCFS.

Let denote the set of e2e flows and the set of network links. Let xs be the
offered packet rate of e2e flow s ∈ . Let ask be a binary coefficient, equal to 1
if flow s is routed through link k, 0 otherwise5 . Let bsk be 1, if flow s is injected
into the network through link k. Only a single bsk is equal to 1 for any given s. We
denote the matrices collecting those coefficients as A and B respectively. Let Ck be
the bit rate of link k ∈ . If the mean packet length is L, then the serving rate of
link k is 𝜇k = Ck∕L.

The link load rates 𝜆k are most often found as follows in a packet network:

𝜆k =
∑
s∈

xsask , k ∈ . (7.14)

5 If the coefficients ask are generalized to real values in [0, 1], multi-path routing can be
modeled.

�

� �

�

338 7 Queueing Networks

Similarly, the mean external offered packet rate at link k can be calculated as

𝛾k =
∑
s∈

xsbsk , k ∈ . (7.15)

Note that the sum of all input flows equals the sum of all flows xs, i.e., 𝛾 =∑
k∈𝛾k =

∑
s∈xs, since

∑
k∈bsk = 1,∀s.

If we can assume memoryless routing6 , the probability rhk of moving from link
h to link k can be expressed as follows, provided there is a non-null flow on link h:

rhk =

∑
s∈

xsashvhkask∑
s∈

xsash
, h, k ∈ . (7.16)

The expression of rhk consists of the ratio between the mean rate of those flows
whose routing contains both links h and k, divided by the mean rate of flows com-
ing from link h. In other words, rhk is the mean fraction of flow shifted from link h
to link k. The factor vhk is there to make the ratio equal to 0 for nonadjacent links
(h and k could belong simultaneously to the route of a same flow, even if they are
not adjacent). It can be verified that the flow rates 𝜆k, the external flow arrival
rates 𝛾k, and the routing probabilities rhk defined above satisfy the flow balance
equations of the queueing network, i.e., 𝜆k = 𝛾k +

∑
h∈𝜆hrhk.

The mean delay through the network is therefore

E[D] =
∑
k∈

𝜆k

𝛾

(
1

Ck∕L − 𝜆k

+ 𝜏k

)
= 1

𝛾

∑
k∈

(
𝜆kL

Ck − 𝜆kL
+ 𝜆k𝜏k

)
(7.17)

where we have introduced the propagation delay 𝜏k associated with link k. More
generally, 𝜏k could be deemed as the mean delay through the subnet corresponding
to link k. This result holds under the stability conditions 𝜆kL < Ck,∀k, that is∑

k∈
xsask ≤ Ck∕L (7.18)

The end-to-end delay experienced by a flow, say flow s, can be calculated as fol-
lows:

E[Ds] =
∑
k∈

ask

(
1

Ck∕L − 𝜆k

+ 𝜏k

)
(7.19)

6 This is definitely an approximation for a packet network: routers do not switch packets
randomly, rather they use the destination address field carried inside each packet, consult their
forwarding tables and dispatch the packet to the appropriate output accordingly. Moreover, loops
are not possible, whereas there may be a non-null probability of loop routing with a general open
network and memoryless routing. Yet, the approximation can be expected to provide reasonable
results if the degree of multiplexing in the router is high enough, i.e., if packets of many different
flows get mixed and interleaved as they are processed and eventually forwarded by the router.

�

� �

�

7.2 Open Queueing Networks 339

The validity of those results requires also that the hypotheses underlying Jack-
son’s networks hold.

If we are modeling a portion of the backbone Internet, external packet
flows come from other parts of the Internet, hence they are the result of mul-
tiplexing of the individual packet flows of many traffic sources. Therefore,
assuming those flows behave as a Poisson process (hypothesis (a)) is reasonable.
The assumption is more questionable if we are modeling the network of an
access ISP.

The hypothesis (b) on service times is hard to justify. Packet length probability
distribution in real networks is very different from a negative exponential PDF.
Packets have a minimum nonzero length and a maximum length. Besides, only
few special sizes have significant probability, most of the admissible lengths
being relatively improbable. Moreover, since packets arrive at routers through
serial communication links and the transmission time is proportional to the
packet length, there is a clear dependency between the packet length and packet
inter-arrival times. If only a small fraction of packets coming from a same input
link is routed to a given output link, the dependency is weak and could be
neglected without impairing the model effectiveness.

As for hypothesis (c), routers have finite buffer sizes. In normal operational con-
ditions, buffer overflow is a relatively rare event (less than a few percent of the
packets get dropped). Therefore, infinite queue size is an acceptable approxima-
tion, especially if we aim at estimating the network delays.

Memoryless routing (hypothesis (d)) is not true in a packet network. Packets are
routed according to their destination address (and possibly other parameters read
from packet header), so routing is not random at all. Packets belonging to the same
end-to-end flow are routed according to the same rules and hence follow the same
network path (so long as the forwarding tables are not updated). If we consider
a backbone router, where input traffic has a high degree of multiplexing, packets
belonging to a large number of end-to-end flows are mixed up. Therefore, it is a
reasonable approximation to assume that the link where each packet is routed can
be described as the realization of a random variable. In fact, the probability that
consecutive packets belong to the same end-to-end flow is very low.

Finally, hypothesis (e) corresponds to assuming that the topology of the con-
sidered packet network is connected, which is certainly true for an operational
communication network.

Therefore, the result (7.17) for the mean delay through a packet network is only
an approximation. The approximation is expected to be reliable, when there is a
high degree of multiplexing of many flows in each link and many flows get mixed
and interleaved within routers. This is most probable in core network routers,
rather than in (small) routers at the edge of the network, especially those that
connect small office and home networks.

�

� �

�

340 7 Queueing Networks

Figure 7.1 Picture of the Geant topology. It comprises 22 nodes and 72 links (image
from http://sndlib.zib.de).

We close the example of application of the open network model with a numer-
ical application to a specific network, namely Geant, the backbone of European
national research networks. A large amount of experimental data on Geant traffic
has been collected in the framework of the project Survivable fixed telecommuni-
cation Network Design7. The topology of Geant is illustrated in Figure 7.1. It com-
prises 22 nodes, and 72 (unidirectional8) links. Traffic demand matrices have been
collected over a period of 4 months during 2005. The 22 ⋅ 21 = 462 off-diagonal
elements of those matrices, arranged in a stacked vector, form the e2e flow vector
denoted with x ≡ [xs, s ∈].

By using shortest path routing, it is possible to derive the 462 × 72 matrix A
for Geant. Propagation delays have been computed by assuming a unit delay of
5 μs/km, typical of fiber-optic links. Link capacities have been set to the minimum
among {2.5, 10, 20} Gbit/s that guarantees link stability in the face of offered link
traffic. A sequence of traffic matrices has been considered, corresponding to about
700 hours (one matrix every 15 min). The resulting time series of the overall mean
network delay is shown in Figure 7.2(a).

An in-depth analysis of the numerical results points out that most of the delay
is accounted for by the propagation delay, except for few links that get occasion-
ally highly loaded and give rise to delay spikes. This can be seen in Figure 7.3,
where we have plotted a sample of the the queueing delays, obtained by strip-
ping off propagation delays, of the paths originating from 9 of the 22 nodes of the
Geant network. For each originating node the plot shows the 21 time plots of the
end-to-end queueing delay from the tagged origin node and every other node of
the Geant network.

7 For more information and download resources refer to http://sndlib.zib.de.
8 Links between routers provide transfer capacity in both directions, independently, i.e., they
are full-duplex. To account for that, each link between two routers is replaced with two
directional arcs between the two corresponding nodes in the network graph.

�

� �

�

7.2 Open Queueing Networks 341

0 200 400 600

Time (h)

0

2

4

6

8

10

12

M
e

a
n

 d
e

la
y
,
E

[D
]
(m

s
)

0 200 400 600

Time (h)

(b)(a)

0

0.2

0.4

0.6

0.8

1

B
u

d
g

e
t

Geant traffic data setGeant traffic data set

Figure 7.2 Left plot: mean delay through the Geant network for a time series of 2900
traffic demand matrices, one every 15 min. Right plot: budget as a function of time for the
link capacity-optimized Geant network, under the constraint that the mean e2e delay be
no greater than 12 ms.

Note that the measure unit on the y-axis is microseconds here. The overall mean
network delay in Figure 7.2(a) is surprisingly stable, in spite of the wide time win-
dow observed. This is also a consequence of the averaging over the entire network
traffic. It is also consistent with the fact the end-to-end delays are dominated by
the propagation delays.

Example 7.2 Vehicular traffic flows on a highway We consider a unidirec-
tional highway span. There are r ramps providing entrance/exit points to/from
the highway. The considered highway span is divided up into r highway links ,
labeled with integers ranging from 1 to r. We use an integer index to refer to the
k-th entrance point and the k-th exit point as well. The former is always assumed
to be located upstream with respect to the latter. Link k starts at the k-th entrance
point and ends at the k-th exit point and has length Lk (k = 1,… , r). The Figure 7.4
illustrates an example of a linear highway with four entrance and exit points. In
fact, the model applied in this example captures any connected topology of high-
way links.

The example could be easily generalized to a highway system comprising a set
 of links, where each highway link has an entrance/exit ramp. Vehicular traf-
fic offered to the highway system is made up by end-to-end vehicle flows (akin to
packet flows in a communication network). We denote the intensity of the vehic-
ular flow accessing ramp k by 𝛾k.

As for vehicle mobility, we denote the mean velocity of vehicle on link k as vk.
The maximum allowed velocity is denoted with vmax. According to the fundamen-
tal transportation equation applied to a highway link (assumed to be in equilib-
rium), the mean vehicular traffic flow 𝜙, density 𝛿 and velocity v are related as

�

� �

�

342 7 Queueing Networks

0 200 400 600

Time (h)

0

5

10

15

20

25

30

M
e
a
n
 q

u
e
u
e
in

g
 d

e
la

y
 (

μs
)

M
e
a
n
 q

u
e
u
e
in

g
 d

e
la

y
 (

μs
)

M
e
a
n
 q

u
e
u
e
in

g
 d

e
la

y
 (

μs
)

M
e
a
n
 q

u
e
u
e
in

g
 d

e
la

y
 (

μs
)

M
e
a
n
 q

u
e
u
e
in

g
 d

e
la

y
 (

μs
)

M
e
a
n
 q

u
e
u
e
in

g
 d

e
la

y
 (

μs
)

M
e
a
n
 q

u
e
u
e
in

g
 d

e
la

y
 (

μs
)

M
e
a
n
 q

u
e
u
e
in

g
 d

e
la

y
 (

μs
)

M
e
a
n
 q

u
e
u
e
in

g
 d

e
la

y
 (

μs
)

Geant traffic data set

Only queueing delays

be1.be

0 200 400 600

Time (h)

0

5

10

15

20

25

30

Geant traffic data set

Only queueing delays

es1.es

0 200 400 600

Time (h)

0

5

10

15

20

25

30

Geant traffic data set

Only queueing delays

fr1.fr

0 200 400 600

Time (h)

0

5

10

15

20

25

30

Geant traffic data set

Only queueing delays

gr1.gr

0 200 400 600

Time (h)

0

5

10

15

20

25

30

Geant traffic data set

Only queueing delays

hr1.hr

0 200 400 600

Time (h)

0

5

10

15

20

25

30

Geant traffic data set

Only queueing delays

it1.it

0 200 400 600

Time (h)

0

5

10

15

20

25

30

Geant traffic data set

Only queueing delays

lu1.lu

0 200 400 600

Time (h)

0

5

10

15

20

25

30

Geant traffic data set

Only queueing delays

ny1.ny

0 200 400 600

Time (h)

0

5

10

15

20

25

30

Geant traffic data set

Only queueing delays

pt1.pt

Figure 7.3 Mean end-to-end queueing delay (no propagation delay) for the paths
originated from nine nodes of the Geant network; the label of the originating node is
reported in the upper-left corner of each plot.

E
x
it
 1

L2

Entrance 1 Exit 4

E
x
it
 2

E
x
it
 3

E
n
tr

a
n
c
e
 2

E
n
tr

a
n
c
e
 3

E
n
tr

a
n
c
e
 4

Figure 7.4 Example of linear highway topology with four entrance points and exits.

follows: 𝜙 = 𝛿 ⋅ v. The mean density is actually a function of the velocity. Accord-
ing to Greenberg flow model, we can write 𝛿 = 𝛿maxe−v∕vc , where vc is the critical
velocity, at which the mean vehicular flow attains its maximum. Therefore, the
mean sustainable flow rate on a highway link under equilibrium conditions can
be written as 𝜙(v) = 𝛿maxve−v∕vc .

Finally, we let phk be the probability that a vehicle leaving the highway link h
will enter the highway link k. The mean flow rate on highway link k is denoted

�

� �

�

7.2 Open Queueing Networks 343

with 𝜆k. The link flow rates can be found by solving the balance equations:

𝜆k = 𝛾k +
∑
h∈

𝜆hphk , k ∈ . (7.20)

We model the highway as an open network of queues. Single-server queues
are used to model ramps. Arrivals of vehicle at those ramps (external flows) are
assumed to follow a Poisson process. Serving at the access ramp consists of merg-
ing into the flow of vehicles traveling on the highway. We assume the time it takes
for the head-of-line vehicle to merge into the highway flow can be represented by
a negative exponential random variable.

Let 𝜇k denote the serving rate of the highway link k, i.e., the mean number of
vehicles per unit time that can travel on that link at the assigned mean velocity in
equilibrium. In the highway framework, the serving rate of link k is just the mean
number of vehicles that can be sustained at equilibrium at the assigned mean
velocity level, that is 𝜇k = 𝜙(vk). Vehicles arriving at a mean rate 𝛾k at the ramp k
see a reduced serving rate 𝜇

(r)
k on the relevant highway link. Given that on average

𝜆k − 𝛾k vehicles per unit time carry on to link k, arriving from upstream links, the
mean available serving rate for vehicle at ramp k to merge is 𝜇(r)

k = 𝜇k − (𝜆k − 𝛾k).
Then, the mean delay through the ramp k is

E[Dramp,k] =
1

𝜇
(r)
k − 𝛾k

= 1
𝜇k − 𝜆k

(7.21)

The mean number of vehicles on the k-th ramp can be found by using Little’s law
as

E[Qramp,k] = 𝛾kE[Dramp,k] (7.22)

As for the link k, we have:

E[Dlink,k] =
Lk

vk
E[Qlink,k] = 𝜆kE[Dlink,k] (7.23)

Each highway link can be modeled as an infinite server queue with general ser-
vice time. Here service time is just the time it takes the vehicle to travel the entire
link, i.e., Lk∕vk, where Lk denotes the length of link k.

The mean delay through the highway system is obtained by applying Little’s
law to the open queueing network and calculating the mean number of vehicle
residing in the system at equilibrium (ramps plus highway links).

The stability conditions are written as 𝜆k < 𝜙(vk),∀k.
Summing up, the steps for the delay analysis are as follows.

1. Given the external flow rates offered to the ramps 𝛾k, k ∈ , and the matrix P
whose entries are the probabilities phk, h, k ∈ , calculate the link flow rates by
solving the linear equation system:

𝜆k = 𝛾k +
∑
h∈

𝜆hphk , k ∈ . (7.24)

�

� �

�

344 7 Queueing Networks

Velocity (km/h)

0

10

20

30

40

50

60

70

M
e
a
n
 d

e
la

y
 (

m
in

)

r = 8

Queueing time on ramp

Travel time on link

(a)

0 50 100 150 0 50 100 150

Velocity (km/h)

0

0.2

0.4

0.6

0.8

1

L
in

k
 u

ti
liz

a
ti
o
n

From link 1 to link 8

(b)

Figure 7.5 Performance of a linear highway span with random vehicle add-drop model.
Left plot: mean delay through ramps (solid line) and on highway links (dashed line). Right
plot: mean vehicle flow rate normalized with respect to the maximum capacity on each
link.

Note that in the linear highway case, we have phk = 0 except for h = k − 1. Then,
it is 𝜆k = 𝛾k + 𝜆k−1pk−1,k, for k ≥ 2 and 𝜆1 = 𝛾1.

2. Given the highway link velocity vk, calculate the mean serving rate of highway
link k:

𝜇k = 𝜙(vk) = 𝛿maxvke−vk∕vc , k ∈ . (7.25)

3. Given the highway link lengths Lk, k ∈ , calculate the mean delay through the
highway system by using eqs. (7.22) and (7.23) and Little’s law. The result is:

E[D] =

∑
k∈

(E[Qramp,k] + E[Qlink,k])∑
k∈

𝛾k
= 1∑

k∈
𝛾k

∑
k∈

(
𝛾k

𝜙(vk) − 𝜆k
+ 𝜆k

Lk

vk

)
(7.26)

To give numerical examples, we consider a probabilistic vehicle routing, where
a fraction p of vehicles leaves at each exit ramp. Then, pk−1,k = 1 − p for all k, and
all other entries of the matrix P are 0.

In Figure 7.5 numerical results for the highway example are given. We set a
same velocity for all links. As for the numerical values of the parameters, we have
assumed vc = 38.7 km/h, vmax = 144 km/h, 1∕𝛿max = 8 m, r = 8, Lk = 5000 m,∀k,
p = 0.25.

Figure 7.5(a) shows the mean delay through ramps (solid line curve) and the
mean delay through highway links (dashed line curve) as a function of the velocity.
It is apparent that the transit delay through highway links is dominant, unless at
very high velocity levels.

�

� �

�

7.2 Open Queueing Networks 345

Figure 7.5(b) illustrates the link rate 𝜆k, normalized with respect to the link serv-
ing rate 𝜇k(v), as a function of the velocity v, i.e., the link utilization 𝜌k = 𝜆k∕𝜇k(v).
There is an optimal velocity level, i.e., one that maximizes the achieved link utiliza-
tion. This is consistent with the fundamental transportation equation that gives
a maximum flow rate at the critical velocity, while the flow rate decays to small
values when the velocity is very low or very high.

7.2.1 Optimization of Network Capacities

As an example of optimization of a queueing network, we present here the clas-
sic link capacity optimization problem. Let us consider an open Jackson network
of single server queues. We have discussed in Example 7.1 how this model can
be used to study a packet network. For a given traffic demand offered to the net-
work, we are interested in assigning the link capacities to minimize the mean delay
through the network. By link capacity of the j-th link, Cj, here we refer to the serv-
ing rate of the single server of queue j, 𝜇j. The change of notation is related to
the motivating context of the optimization problem. For example, minimizing the
mean delay is a sensible performance target in the dimensioning of a communica-
tion or a transportation network. In these cases, serving rates are identified as the
capacity of network links (communication links, roads).

Since the mean delay through the network E[D] is monotonously decreasing
with the link capacities Cj, j = 1,… , J, the optimization is nontrivial only under
suitable constraints. A natural constraint is to set a cap to the infrastructure cost,
i.e., to the cost of installing link capacities. Let us assume that the cost of having a
capacity Cj on link j is linear with Cj. Let the cost of link j capacity be bjCj and let
B denote the overall allowed cost budget.

The optimization problem can be stated as follows:

Minimize∶ E[D] = 1
𝛾

J∑
j=1

𝜆j

Cj − 𝜆j
(7.27)

Subject to∶ Cj > 𝜆j , j = 1,… , J, (7.28)

J∑
j=1

bjCj ≤ B (7.29)

We assume that the external demand is given in terms of end-to-end flow rates
xs, s ∈ , and that also routing is assigned. Then, the link rates are determined as
𝜆j =

∑
s∈xsasj, where asj is equal to 1 if and only if link j belongs to the route of

flow s. Moreover, the overall offered rate 𝛾 is given by 𝛾 =
∑

s∈xs.
The objective function is convex in the variables Cj, while the constraints define

a bounded convex feasible set. Provided the feasible set is nonempty, the solution

�

� �

�

346 7 Queueing Networks

to the optimization problem is unique and it can be found by using Lagrange mul-
tipliers. The Lagrangian is

L(C1,… ,CJ , 𝜓) =
J∑

j=1

𝜆j

Cj − 𝜆j
+ 𝜓

J∑
j=1

bjCj (7.30)

where we have dropped the positive factor 1∕𝛾 . Setting the derivatives to 0, we find

𝜕L
𝜕Cj

= −
𝜆j

(Cj − 𝜆j)2 + 𝜓bj = 0 ⇒ Cj = 𝜆j +

√
𝜆j

𝜓bj
(7.31)

Using these values for the Cj’s into the constraint9 we have

J∑
j=1

bj𝜆j +
1√
𝜓

J∑
j=1

bj

√
𝜆j

bj
= B (7.32)

from which we derive an expression of 𝜓 . The final expression of the link capacity
at the optimum, denoted with a superscript asterisk, is

C∗
j = 𝜆j +

√
bj𝜆j

J∑
k=1

√
bk𝜆k

1
bj

(
B −

J∑
k=1

bk𝜆k

)
, j = 1,… , J. (7.33)

Plugging the optimal capacities back into the expression of the mean delay, we
obtain

E[D∗] = 1
𝛾

(
J∑

j=1

√
bj𝜆j

)2

B −
J∑

j=1
bj𝜆j

(7.34)

The final result has a nice interpretation. The optimal capacity of link j is the
sum of two terms. The first term, 𝜆j, is the bare minimum capacity required to
keep up with the traffic load of link j (completely determined by the assigned exter-
nal demand and the routing). The second one is proportional to the excess budget
B −

∑J
k=1 bk𝜆k, left over once the minimum requirement to guarantee stability has

been met. That excess budget is distributed over the links according to weights
proportional to the square root of the link load and of the unit link cost.

As clear from (7.33), the optimization problem is feasible (i.e., the search region
for the capacities Cj is not empty) only if B >

∑J
k=1 bk𝜆k.

9 Since the objective function is monotonously decreasing with the Cj’s, the constraint is
attained with equality sign at the optimum. From a mathematical point of view, the
complementary slackness conditions imply that the constraint is satisfied with equality sign,
since the Lagrange multiplier 𝜓 cannot be 0.

�

� �

�

7.2 Open Queueing Networks 347

Example 7.3 Optimization of a backbone communication network We
apply the capacity optimization to the Geant network, introduced in Example
7.1. We assume the cost of a link is proportional to the link capacity Cj and to
the distance between the two end-points of the link. The weight bj is therefore
identified with the geographical distance between the two cities where the link is
terminated. To fix a budget, we require that the mean end-to-end delay through
the network be no more than a required level Dreq. Using the expression (7.34) of
the mean end-to-end queueing delay and accounting for the propagation delays,
we find

B = Breq =
J∑

j=1
bj𝜆j +

(
J∑

j=1

√
bj𝜆j

)2

𝛾Dreq −
J∑

j=1
𝜆j𝜏j

(7.35)

Since we consider a sequence of 2900 traffic matrices (one every 15 minutes),
we can evaluate a time sequence of required budget values. The series of bud-
gets obtained for the Geant network is plotted in Figure 7.2(b). Budget values are
normalized with respect to the maximum required budget among all considered
traffic matrices. The average budget value over the inspected time horizon is about
0.52. This makes a strong case for being able to adapt capacities to the offered traf-
fic flow. Going for the worst-case dimensioning appears to be highly wasteful of
communication resources.

Note that, having link capacities optimized at each time for the given budget
implies from a system point of view that link capacities can be reconfigured on
a time scale of 15 minutes (the time period of traffic demand matrix sampling).
This is possible with a number of technologies, i.e., if links are obtained by using
multi-protocol label switching (MPLS) over a transport network, so that a link is
an MPLS path, whose capacity can be reconfigured by means of the traffic engi-
neering tools of MPLS. Another example of rearrangeable link capacities is offered
by optical networks based on dense wavelength division multiplexing (DWDM),
where links correspond to light paths, that can be configured via a centralized soft-
ware control of the network, e.g., according to the software defined network (SDN)
paradigm.

7.2.2 Optimal Routing

We discuss here a fundamental network optimization problem: given a set of nodes
and links, forming a connected network topology, given a traffic matrix expressing
the amount of traffic demand from node i to node j, for all couples (i, j), find traffic
flow routes that minimize the overall mean end-to-end delay of packets through
the network. In this problem, link capacities are assumed as given.

�

� �

�

348 7 Queueing Networks

We introduce notation to give a formal statement. Let denote the set of traffic
origin-destination pairs of the network, denote the set of routes of the network,
and the set of links of the network. We denote the flow on route j with xj. Let x
be the column vector collecting all xj’s.

We define also the matrices A, with entry akj = 1 if route j uses link k, 0 other-
wise, and B, with entry bsj = 1 if route j is used by the origin-destination pair s, 0
otherwise.

The vector f = Bx gives the end-to-end traffic flows of the origin-destination
pairs. The traffic rates loading network links are given by y = Ax.

We assume that Kleinrock’s model applies to the packet network. Let Ck and 𝜏k
be the capacity and the propagation delay of link k. Let 𝛾 =

∑
s∈ fs be the overall

traffic flow rate offered to the network. We can express the mean end-to-end delay
through the network as

D = 1
𝛾

∑
k∈

yk

Ck − yk
+ 𝜏kyk (7.36)

provided that yk < Ck, ∀k ∈ . We define the link “cost” Dk as a function propor-
tional to the contribution of link k to the overall mean delay:

Dk(y) =
y

Ck − y
+ 𝜏ky (7.37)

Routing the traffic demand fs, s ∈ , means determining how much of that traf-
fic demand is to be sent on route r ∈ . Optimal routing is obtained as the solution
of the following optimization problem:

Minimize∶
∑
k∈

Dk

(∑
j∈

akjxj

)
(7.38)

Subject to∶
∑
j∈

bsjxj = fs, s ∈ (7.39)

∑
j∈

akjxj ≤ Ck, k ∈ (7.40)

xj ≥ 0, j ∈ . (7.41)

The target function is separable. Each component under the summation sign is
a strictly increasing, convex function. The domain of the variables is bounded and
convex. Therefore, if the feasible domain is not empty, i.e., if there exists at least
one flow vector x satisfying all constraints, there is a unique minimizer x∗. Any
algorithm that leads to finding one minimizer, will find the global minimum.

Let us characterize the optimal flows. First we observe that

𝜕D
𝜕xj

=
∑
k∈

D′
k(yk)

𝜕yk

𝜕xj
=
∑
k∈

akjD′
k(yk) (7.42)

�

� �

�

7.2 Open Queueing Networks 349

We see that the derivative of the target function D with respect to the route flow
xj is the sum of the derivatives of the link cost functions over all links making up the
route j. We will refer to this sum as the route length or route cost. Thus, the shortest
path for the origin-destination pair s is any route j, belonging to the set of routes
usable by pair s, i.e., such that bsj = 1, having the least value of the derivative (7.42).

Let us consider the optimal flow x∗j on route j, used by origin-destination pair s. If
we shift a small amount 𝛿x of flow form route j to another route i, also used by the
same origin-destination pair s, we cannot improve the target function, otherwise
the flow x∗j would not be optimal.

The variation of the target function, to first order, is given by

𝛿D = 𝛿x 𝜕D
𝜕xi

− 𝛿x 𝜕D
𝜕xj

≥ 0 (7.43)

where the derivatives are calculated at x∗. We conclude that

x∗j > 0 ⇒
𝜕D
𝜕xj

≤ 𝜕D
𝜕xi

, ∀i ∈ such that bsi = bsj = 1. (7.44)

In words, the end-to-end flow s is routed on the least cost routes, i.e., those that
have the smallest possible length among all routes available to flow s. Optimal
routing consists of sending the traffic flow offered to the origin-destination pair
s via the shortest routes available to that pair. Note however that route lengths
depend on the flow distribution over routes. Therefore, it is not known a priori
which routes will be the shortest ones.

The optimization can be pursued by a gradient descent method. Let x be a fea-
sible flow allocation to routes, i.e., a flow allocation that satisfies all constraints.
A feasible variation of the flow assignment is a vector Δx such that x + Δx still
satisfies all constraint. Note that this implies that Δxj ≥ 0 if it is xj = 0. Moreover,
since it must be

∑
j∈bsjxj = fs, we have

∑
j∈bsjΔxj = 0 for a feasible route flow

update.
The direction of the route flow update should be such that the inner product of

the increment and of the gradient of the target function is negative, i.e.,

∇D ⋅ Δx =
∑
j∈

∑
k∈

akj
𝜕Dk

𝜕xj
Δxj ≤ 0 (7.45)

The inner product can be obtained as the derivative of the function G(𝛼) = D(x +
𝛼Δx) with respect to the scalar parameter 𝛼.

The remarks above have lead to the definition of the famous flow deviation algo-
rithm [81]. This is a special case of a multi-commodity flow problem [82], specif-
ically of the Frank-Wolfe approach to the minimization of convex function over a
convex feasible domain.

Let us assume we are given a feasible route flow assignment x. We can then
compute the route lengths (7.42). For each origin-destination pair s we can thus

�

� �

�

350 7 Queueing Networks

determine the shortest path, say it is js. Let xj denote the route flows obtained by
assigning the whole flow of the origin-destination pair s to its shortest path js as
determined by the route length calculated for the current flow assignment x, for
s ∈ . Formally, xjs

= fs and xj = 0 for all j ≠ js and such that bsj = 1.
The route flows are updated as follows:

x′ = x + 𝛼
∗(x − x) (7.46)

where 𝛼
∗ is the value of 𝛼 ∈ [0, 1] that minimizes G(𝛼) = D(x + 𝛼(x − x)). The

rationale of (7.46) is clarified by observing that, for those j such that xj = 0
(non-shortest paths) it is x′j = xj(1 − 𝛼

∗), i.e., some flow is shifted to those paths.
For the shortest path js, the new assigned flow is less than xjs

= fs.
It appears that the updated point x′ is obtained from the shortest path flow

allocation by deviating some flow amount to nonshortest paths, in search of
an improvement of the overall network cost (descent direction along the line
x + 𝛼(x − x)).

The flow deviation algorithm is carried out until the decrease of the target func-
tion drops below a prescribed threshold.

To run the flow deviation algorithm we need:

● An efficient way to find the shortest paths on a weighted network graphs (the
weight of link k is given by D′

k(yk)). This is accomplished, e.g, by using Dijkstra’s
algorithm.

● An efficient way to find 𝛼
∗. This requires the solution of a unidimensional

optimization problem. The optimal 𝛼 can be located efficiently by the bisection
method or the Fibonacci search algorithm.

● An efficient way to determine an initial feasible route flow allocation, if one
exists. This is not straightforward. An efficient algorithm is described in [81,82].

7.2.3 Braess Paradox

Queues are nonlinear systems and much of the interest and nontrivial results are
rooted in this character of the queueing models. Networks of queues add a topolog-
ical structure, represented by a graph, to the nonlinearity of the queues. It should
be expected that queueing networks may sometimes defeat intuition and give rise
to (apparently) paradoxical results. One of the most famous is the Braess paradox,
originally introduced in [42] with reference to transportation engineering.

Let us consider a four-node, four-link topology, described by a directed graph
(see Figure 7.6). Nodes are labeled with capital letters. A single flow of customers
arrives at the network at node A and it is addressed to node D. We assume that
arrivals follow a Poisson process with mean rate 2𝜆. As for the network, we assume
that links AB and CD are equipped with a single-server queue, with serving rate 𝜇

�

� �

�

7.2 Open Queueing Networks 351

(a)

Poisson
arrivals

Poisson
arrivals

A A

C C

D D

B B

(b)

Figure 7.6 Example network of Braess paradox. Left plot: original network. Right plot:
network after the addition of a new link.

and negative exponential service times. The links BD and AC impose a fixed delay.
We can think of them as M∕D∕∞ queueing systems.

A queueing network model of this system is therefore made of four queues,
as sketched in Figure 7.6(a). It is a special case of queueing network, since cus-
tomers can never loop back into an already-visited queue. Such networks are called
feed-forward. They lend themselves to a nice analysis, especially in the present
case. In fact, the input process of queues AB and AC is a Poisson process, if split-
ting occurs randomly at A, independently of the inter-arrival times and the queue
states. We assume this is the case. Moreover, the output process of an M∕G∕∞
queue is still a Poisson process. This is a consequence of the general result proved
in § 3.2.3.1, stating that independent, random displacement of a Poisson point pro-
cess yields yet another Poisson point process with the same mean rate. Then, also
the input processes of queues BD and CD are Poisson. Summing up, the two queues
AB and CD are M∕M∕1, while AC and BD are M∕D∕∞ queues.

Let the constant service time of the infinite server queues be 2 (in some given
time unit). Let also 𝜇 > 𝜆 + 1.

The topology of the Braess network offers two alternative paths for customers to
move from A to D, namely ABD and ACD. The key point is the criterion to select
one of the two paths. We assume that customers act randomly, independently on
one another. They prefer the path with the least expected mean travel time T. At
equilibrium the mean travel times of the two paths must be the same, i.e., TABD =
TACD. In fact, if there were any mismatch between the travel times of the two paths,
more customers would choose the “shorter” path, i.e., the one with the smaller
travel time, until the congestion level is such that the travel time of one path equals
the travel time of the other path.

�

� �

�

352 7 Queueing Networks

Let 𝜆ABD and 𝜆ACD be the mean rate of customers selecting either path. At equi-
librium we have

TABD = TACD ⇒ 2 + 1
𝜇 − 𝜆ABD

= 2 + 1
𝜇 − 𝜆ACD

which implies 𝜆ABD = 𝜆ACD. Since 𝜆ABD + 𝜆ACD = 2𝜆, we find 𝜆ABD = 𝜆ACD = 𝜆, as
expected because of the symmetry of the network.

Let us now add one more link, from B to C, to the topology, that is, more capacity
for customers to move from A to D (see Figure 7.6(b)). The new link BC is equipped
with an infinite server queue with constant service times equal to 1. If customer
splitting at B among the alternative paths ABD and ABCD takes place randomly,
the queue corresponding to link BC is modeled as an M∕D∕∞ queue.

To understand how the customer preferences adjust with the new link, consider
the situation at the time the new link has just been opened. A new customer arriv-
ing at A can choose one of the old paths, being guaranteed an average travel time
of 2 + 1∕(𝜇 − 𝜆). If the customer ventures into the new path, it will experience a
travel time of TABCD = 1 + 2∕(𝜇 − 𝜆). It can be verified that TABCD < TABD = TACD
since 𝜇 > 𝜆 + 1. Therefore, the tagged customer will certainly choose the newly
opened path. This “migration bias” of customers from old paths to the new path
will go on until a new equilibrium is achieved. Given the selfish nature of inde-
pendent customer choices, the statistical equilibrium is achieved only when the
travel times of all three paths are the same. Let 𝜆1 = 𝜆ABD = 𝜆ACD, by symmetry,
and 𝜆2 = 𝜆ABCD. The rates 𝜆1 and 𝜆2 satisfy the equations:

2 + 1
𝜇 − 𝜆1 − 𝜆2

= 1 + 2
𝜇 − 𝜆1 − 𝜆2

2𝜆1 + 𝜆2 = 2𝜆
(7.47)

which yields 𝜆1 = 2𝜆 + 1 − 𝜇 and 𝜆2 = 2𝜇 − 2 − 2𝜆, assuming 𝜇 ≤ 1 + 2𝜆. Since
1∕(𝜇 − 𝜆1 − 𝜆2) = 1, it turns out that TABD = TACD = TABCD = 3. This is larger than
in the case without link BC, since 3 > 2 + 1∕(𝜇 − 𝜆), due to the assumption 𝜇 >

𝜆 + 1.
The appalling conclusion is that, having added more capacity to the network,

the average end-to-end travel time of the customer flow has increased with respect
to the original situation.

The basic motivation of this paradoxical conclusion is the selfish path selection
criterion of customers. After all, Braess paradox is yet another manifestation of
the nonoptimality of the equilibrium outcomes of games among selfish players.
In other words, it may well be the case that the social utility is not maximized by
letting selfish independent entities make their individual choices. The explanation
of the paradox and an approach to add capacity to a network without incurring into
the effects of Braess paradox are discussed in [133].

�

� �

�

7.2 Open Queueing Networks 353

An optimization framework insight of Braess paradox is given in [122]. Given a
network of directed links, forming a set , we define a routing optimization prob-
lem as follows. We consider the source-destination pair set and let fs denote the
mean rate of the flow associated with the source-destination pair s, s ∈ . Let also
 denote the set of routes or paths connecting source-destination pairs and xr the
mean rate of the flow routed on r ∈ . Finally, let yj be the link rate of link j ∈ .
We define two incidence matrices:

● The matrix H is such that hsr = 1 if and only if route r ∈ connects the
source-destination pair s.

● The matrix A is such that ajr = 1 if and only if link j ∈ belongs to route r.

The vectors f and x of flow rates and the vector y of link rates are related by
f = Hx and y = Ax.

We assume the topology and routing information condensed into H and A is
assigned, as well as the source-destination flows f . Our degree of freedom is the
vector x, i.e., the way the end-to-end flow fs is split among the possible alternative
routes serving it. To guide the splitting, we define the delay of link j as a function
of the link load, i.e., Dj(yj), j ∈ . This is a monotonously increasing function of yj,
typically convex and strictly increasing. It might have also a vertical asymptote at
some critical link load level.

We can state the following optimization problem:

Minimize∶
∑
j∈ ∫

yj

0
Dj(u) du (7.48)

Subject to∶ f = Hx, y = Ax (7.49)
x ≥ 𝟎, y (7.50)

The Lagrangian is

L(x, y, 𝜉, 𝜓) =
∑
j∈ ∫

yj

0
Dj(u) du + 𝜉(f − Hx) − 𝜓(y − Ax) (7.51)

We write down the Karush-Kuhn-Tucker (KKT) conditions, namely
𝜕L
𝜕xi

= −𝜉s(i) +
∑
j∈

𝜓jaji i ∈ ,
𝜕L
𝜕yj

= Dj(yj) − 𝜓j , j ∈ , (7.52)

where s(i) is the index of the origin-destination pair served by route i. Setting the
derivatives to 010 , it follows that it must be 𝜓j = Dj(yj) and⎧⎪⎨⎪⎩

𝜉s(i) =
∑
j∈

𝜓jaji =
∑
j∈

Dj(yj)aji xi > 0

𝜉s(i) ≤ ∑
j∈

𝜓jaji =
∑
j∈

Dj(yj)aji xi = 0
(7.53)

10 More precisely, the derivative with respect to xi must be 0 if xi > 0; if xi = 0, the condition is
that the derivative must be non-negative.

�

� �

�

354 7 Queueing Networks

The sum
∑

j∈Dj(yj)aji is therefore minimal where xi > 0 for the source-destination
pair s(i). It turns out that the optimal routes are those yielding the minimum delay,
i.e., those that minimize

∑
j∈Dj(yj)ajr for r varying over . Thus, the optimiza-

tion problem stated above is the one solved by a customer selecting its path so that
everyone gets an end-to-end delay that it cannot improve with unilateral selection
changes, given the selections of other customers. This selfish behavior translates
into the optimization problem stated above, which makes end-to-end flows go
through routes offering a delay smaller than any alternative route. Then, there
is no incentive to change for anyone. Why is this a bad strategy? It is apparent that
what is getting optimized has little to do with a measure of the mean “social delay”
suffered by customers traveling through the network.

The optimization problem that makes sense to minimize the “social” mean delay
through the network could be stated instead as follows:

Minimize∶
∑
j∈

yjDj(yj) (7.54)

Subject to∶ f = Hx, y = Ax (7.55)

x ≥ 𝟎, y (7.56)

Here the target function is the mean number of customers found in the network
at equilibrium. By Little’s law, this is proportional to the mean delay through the
network.

When writing the KKT conditions for this last optimization problem, one finds
out that the selected routes are those having minimum path cost, where now the
link cost is not the sheer delay Dj(yj); rather, it is Dj(yj) + yjD′

j (yj). The second term
can be considered a “toll” cost introduced to obtain an incentive to achieve the
overall network target of minimum average transit delay.

If we write the mean delay for Braess network (actually we write the mean num-
ber of customers found in the network at equilibrium) we have

𝜆1TABD + 𝜆1TACD + 𝜆2TABCD = 2𝜆1

(
2 + 1

𝜇 − 𝜆1 − 𝜆2

)
+ 𝜆2

(
1 + 2

𝜇 − 𝜆1 − 𝜆2

)
= 4𝜆1 + 𝜆2 +

2(𝜆1 + 𝜆2)
𝜇 − 𝜆1 − 𝜆2

(7.57)

under the constraint 2𝜆1 + 𝜆2 = 2𝜆. Substituting 𝜆1 from the constraint, we get

4𝜆 − 𝜆2 +
2𝜆 + 𝜆2

𝜇 − 𝜆 − 𝜆2∕2
, 0 ≤ 𝜆2 ≤ 2𝜆. (7.58)

It can be verified that this function is monotonously increasing with 𝜆2 under
the condition 𝜇 > 𝜆 + 1. The minimum is attained for 𝜆2 = 0, which means that
the new added link of Braess network shall not be used (hence we would have
better not to add it at all).

�

� �

�

7.3 Closed Queueing Networks 355

7.3 Closed Queueing Networks

A closed queueing network is similar to an open one, except that no external
arrival is allowed and, correspondingly, no exit out of the network can take place.
The number of customers in the network is fixed, denoted by N in the following.
The N customers move around the J queues (service stations) all the time. The
assumptions closely match those made for open queueing networks:

(a) Negative exponential service time, possibly state-dependent.
(b) Independence of inter-arrival and service times.
(c) Infinite queue lengths, i.e., all customers arriving at a queue can join the

queue.
(d) Memoryless routing: a customer leaving one queue chooses the next one inde-

pendently of all other customers.
(e) The J × J routing matrix R whose entries are the rij’s is irreducible.

We still consider the solution of the linear equation system:

vj =
J∑

i=1
virij, j = 1,… , J (7.59)

This is a homogeneous system, still it admits a nontrivial solution. In fact, the
routing matrix R is a J × J irreducible, stochastic matrix, hence it corresponds to
an ergodic finite Markov chain with a positive stationary vector, that is the left
eigenvector of R corresponding to the eigenvalue 1. The vector v = [v1,… , vJ] is
proportional to such a stationary vector. For our purposes, in the closed queueing
network, the vector v can be defined up to a multiplicative constant. The constant
can be fixed, e.g., by setting the sum of the components of v equal to 1 or letting
one of its components be equal to 1.

Let us define the state of the queueing network as the vector Q(t) =
[Q1(t),… ,QJ(t)], where Qj(t) is the number of customers residing into queue j at
time t.

Under the hypotheses (a)-(e) listed above, the state Q(t) is a Markov chain on
the non-negative integer vectors x = [x1,… , xJ] satisfying the constraint |x| ≡ x1 +
· · · + xJ = N. This is a finite state space and the continuous time Markov chain
Q(t) is irreducible since the routing matrix R is irreducible itself. So, a limiting
stationary probability vector exists, let it be 𝜋(x) = (Q = x). Let us define

(Yi = k) = (Yi = 0)
vk

i

Mi(k)
, 0 ≤ k ≤ N (7.60)

with

Mi(k) =
⎧⎪⎨⎪⎩

1 k = 0
k∏

h=1
𝜇i(h) k ≥ 1

(7.61)

�

� �

�

356 7 Queueing Networks

where 𝜇j(h) is the serving rate of queue j when there are Qj = h customers in that
queue, j = 1,… , J. Note that 𝜇j(0) = 0, while it must be 𝜇j(h) > 0 for any h > 0.

The key result for Jackson-type closed queueing networks is stated as follows:

Theorem 7.2 (Gordon-Newell [92]) If a closed queueing network satisfies the
hypotheses (a)-(e) listed above, the limiting PDF of the Markov process Q(t) exists
and it is given by a product form as

𝜋(x) =

J∏
j=1

(Yj = xj)

(|Y| = N)
= 1

G

J∏
j=1

vxj

j

Mj(xj)
(7.62)

for all x such that x ≥ 0 and |x| = N, where G is a normalization constant.

Remark: The queue lengths of the closed networks are not independent random
variables as in the open network, and this is apparent from the expression of 𝜋(x)
in eq. (7.62).

Proof: The expression of the balance equations for the closed queueing network
is given by:

𝜋(x)
J∑

j=1
𝜇j(xj)(1 − rjj) =

J∑
j=1

J∑
i≠j,i=1

𝜋(x − ej + ei)𝜇i(xi + 1)rij (7.63)

According to the expression in eq. (7.60), it is

𝜋(x − ej + ei) = 𝜋(x)
𝜇j(xj)vi

vj𝜇i(xi + 1)
, xj > 0 (7.64)

Then, by substituting into eq. (7.4) and canceling out 𝜋(x), we get
J∑

j=1
𝜇j(xj)(1 − rjj) =

J∑
j=1

J∑
i≠j,i=1

𝜇j(xj)vi

vj𝜇i(xi + 1)
𝜇i(xi + 1)rij =

=
J∑

j=1

𝜇j(xj)
vj

J∑
i≠j,i=1

virij =
J∑

j=1
𝜇j(xj)(1 − rjj) (7.65)

The last equality is a consequence of eq. (7.59). This proves the theorem. ◾

The normalizing constant G ≡ G(J,N) can be expressed as:

G =
∑

x≥0 ∶ |x|=N

J∏
j=1

vxj

j

Mj(xj)
(7.66)

�

� �

�

7.3 Closed Queueing Networks 357

Note that any scaling factor multiplying the vector v cancels out in eq. (7.62)
since it appears with the same power N both in the vj’s in the numerator and in
the expression of the constant G.

The computation of the constant G requires summing
(

N+J−1
N

)
terms11, so that

efficient algorithms are required unless the closed network is very small, i.e., N
and J reduce to a few units. We will address this issue later on. Now we illustrate
how the constant G appears in some useful performance metrics.

The marginal probability distribution of Qj is found to be

(Qj = k) = (Yj = k)
∑

x−j≥0 ∶ |x−j|=N−k

J∏
i≠j,i=1

(Yi = xi)

(|Y| = N)

= (Yj = k)
(|Y−j| = N − k)

(|Y| = N)
where Y−j is a row vector of the random variables Yi’s, except the j-th one, Yj, i.e.,
Y−j = [Y1,… ,Yj−1,Yj+1,… ,YJ]. An analogous definition holds for x−j.

The throughput of queue j is by definition

E[𝜇j(Qj)] =
N∑

k=1
𝜇j(k)(Qj = k) (7.67)

so we have

E[𝜇j(Qj)] =
N∑

k=1
𝜇j(k)(Yj = k)

(|Y−j| = N − k)
(|Y| = N)

=
N−1∑
k=0

𝜇j(k + 1)(Yj = k + 1)
(|Y−j| = N − 1 − k)

(|Y| = N)

=
N−1∑
k=0

vj(Yj = k)
(|Y−j| = N − 1 − k)

(|Y| = N)

= vj
(|Y| = N − 1)
(|Y| = N)

N−1∑
k=0

(Yj = k)
(|Y−j| = N − 1 − k)

(|Y| = N − 1)

= vj
(|Y| = N − 1)
(|Y| = N)

(7.68)

11 Counting the states can be done as follows. To distribute N customers over J queues, imagine
aligning all customers over a straight line and set J − 1 barriers, separating them into J groups.
A group is made by all customers lying within two barriers, including the boundary groups at
the two ends of the line. To realize this layout, we can provide a line with N + J − 1 places and
mark each place with a C for a customer, with a B for a barrier. The number of choices of the
J − 1 positions of the barriers over the available N + J − 1 positions, i.e.,

(
N+J−1

J−1

)
, is just the

number of ways of forming J groups of customers.

�

� �

�

358 7 Queueing Networks

since the summation on the right-hand side in the last but one passage is just the
sum of the marginal PDF of the random variable Qj in a closed queueing network
identical to the given one except that there are N − 1 customers. The expression of
the throughput reveals that the only part that depends on the specific queue is the
parameter vj. This leads to the definition of a global network parameter that goes
under the name of network throughput:

TH(N) = (|Y| = N − 1)
(|Y| = N)

(7.69)

Since the vector v is defined up to a multiplicative constant, we can set |v| = 1
and thus we see that the network throughput is the sum of the throughputs of
queues making up the network.

7.3.1 Arrivals See Time Averages (ASTA)

We have already discussed the PASTA property in queues with Poisson arrivals. An
arriving customer belonging to a Poisson flow finds the queue in state x with its
steady-state probability distribution 𝜋(x) (provided the visited queue is at equilib-
rium). Arrivals in a closed queueing network do not consist of Poisson processes.
Still, an analogous property holds for the class of queueing networks we are con-
sidering, often called Jackson networks (e.g., see [86, Ch. 6]).

Let 𝜋(N)(x) be the probability that a closed Jackson network with J queues and
N customers is in state x. We highlight the number of customers circulating in the
network in the superscript of the steady-state probabilities. Note that the elements
of x sum up to N. Let also z be a vector of non-negative integers summing to N − 1
and pj(z) be the probability that a customer arriving at queue j sees zk customers
in queue k for k = 1,… , J. This probability can be obtained by considering the
transition of the customer from its originating queue, say i, to queue j, in a time
interval h shrinking to 0:

pj(z) = lim
h→0

J∑
i=1

𝜋
(N)(z + ei)rij[𝜇i(zi + 1)h + o(h)]

∑
y

J∑
i=1

𝜋(N)(y + ei)rij[𝜇i(yi + 1)h + o(h)]
(7.70)

where the sum over y is extended to all J-dimensional vectors of non-negative inte-
gers that sum up to N − 1 (all the customers circulating in the considered network,
except of the tagged one, arriving at queue j).

�

� �

�

7.3 Closed Queueing Networks 359

For ease of notation, let 𝛽k(x) = vx
k∕Mk(x) for k = 1,… , J and 0 ≤ x ≤ N. Taking

the limit for h → 0 in eq. (7.70), we find

pj(z) =

J∑
i=1

𝜋
(N)(z + ei)rij𝜇i(zi + 1)

∑
y

J∑
i=1

𝜋(N)(y + ei)rij𝜇i(yi + 1)

=

J∑
i=1

[G(N)]−1

[∏
k≠i

𝛽k(zk)

]
𝛽i(zi + 1)𝜇i(zi + 1)rij

∑
y

J∑
i=1

[G(N)]−1

[∏
k≠i

𝛽k(yk)

]
𝛽i(yi + 1)𝜇i(yi + 1)rij

=

J∑
i=1

[∏
k≠i

𝛽k(zk)

]
𝛽i(zi)virij

∑
y

J∑
i=1

[∏
k≠i

𝛽k(yk)

]
𝛽i(yi)virij

=

[J∏
k=1

𝛽k(zk)
] J∑

i=1
virij

∑
y

[J∏
k=1

𝛽k(yk)
] J∑

i=1
virij

=

[J∏
k=1

𝛽k(zk)
]

vj

∑
y

[J∏
k=1

𝛽k(yk)
]

vj

= 𝜋
(N−1)(z)

where we have used the balance equations of the closed queueing network and
eq. (7.59). The meaning of the result is as follows: a tagged customer, moving to a
given queue j, sees a probability distribution of the remaining N − 1 customers
over the J queues, which is just the same that one could observe on the same
queueing network at equilibrium, if N − 1 customers were circulating in it. This
is the “meaning” of the ASTA property.

7.3.2 Buzen’s Algorithm for the Computation of the Normalization
Constant

In general, the computation of the normalization constant G, hence of the entire
PDF of the queueing network state, can be reduced to a number of convolution

�

� �

�

360 7 Queueing Networks

sums. Let G(J,N) denote the constant for a queueing network with J queues and
N customers. Let also

gj(k) =
vk

j

Mj(k)
, k ≥ 0, j = 1,… , J. (7.71)

Then

G(j + 1,n) =
∑

|x|+xj+1=n

vxj+1

j+1

Mj+1(xj+1)

j∏
i=1

vxi
i

Mi(xi)

=
n∑

k=0

vk
j+1

Mj+1(k)
∑

|x|=n−k

j∏
i=1

vxi
i

Mi(xi)
=

n∑
k=0

gj+1(k)G(j,n − k)

for j = 1,… , J − 1 and n ≥ 0, with the boundary conditions G(j, 0) = 1, j = 1,… , J
and G(1,n) = g1(n), 0 ≤ n ≤ N. The sums in eq. (7.72) are discrete convolutions
and can be computed efficiently, e.g., by resorting to the discrete Fourier trans-
forms. This is known as Buzen’s algorithm.

A nicer version of this algorithm can be defined if service rates do not depend
on queue states, that is with single server queues. In that case gj(k) = ak

j with aj =
vj∕𝜇j. Then, from eq. (7.72) we get

G(j + 1,n) =
n∑

k=0
ak

j+1G(j,n − k) = G(j,n) +
n∑

k=1
ak

j+1G(j,n − k)

= G(j,n) + aj+1

n−1∑
k=0

ak
j+1G(j,n − 1 − k)

= G(j,n) + aj+1G(j + 1,n − 1) (7.72)

for n = 1,… ,N and j = 1,… , J − 1. The boundary conditions are G(1,n) =
an

1 , n ≥ 0 and G(j, 0) = 1, j = 1,… , J. Once the sequence G(j,n) is computed
for j = 1,… , J and n = 0,… ,N, the network throughput can be computed as
TH(N) = G(J,N − 1)∕G(J,N).

7.3.3 Mean Value Analysis

If the service rates are all independent of the queue state, we have 𝜇j(k) = 𝜇j, so

𝜋(x) = 1
G

J∏
j=1

axj

j (7.73)

with aj = vj∕𝜇j and G computed with the iteration (7.72).
In this case, we can find a simple expression of the average queue lengths. Let

us denote with Q(N)
j the random variable representing the j-th queue length for the

�

� �

�

7.3 Closed Queueing Networks 361

queueing network with N customers. Then

Lj(N) ≡ E[Q(N)
j] =

N∑
k=0

k(Q(N)
j = k)

=
N∑

k=1
k(Yj = k)

(|Y−j| = N − k)
(|Y| = N)

=
N−1∑
k=0

(k + 1)(Yj = k + 1)
(|Y−j| = N − k − 1)

(|Y| = N)

=
vj

𝜇j

N−1∑
k=0

(k + 1)(Yj = k)
(|Y−j| = N − k − 1)

(|Y| = N)

=
vj

𝜇j

[N−1∑
k=0

k(Q(N−1)
j = k) +

N−1∑
k=0

(Q(N−1)
j = k)

] (|Y| = N − 1)
(|Y| = N)

=
vj

𝜇j
[Lj(N − 1) + 1]TH(N)

for N ≥ 1, with Lj(0) = 0. The throughput of the j-th queue is given in eq. (7.68).
Applying Little’s law to the j-th queue, we obtain

Lj(N) = vjTH(N)Wj(N) (7.74)

where Wj(N) is the mean waiting time at queue j. Since we are dealing with a
closed queueing network, we have

∑J
j=1 Lj(N) = N, so

N = TH(N)
J∑

j=1
vjWj(N) (7.75)

whence

Lj(N) = N
vjWj(N)

J∑
i=1

viWi(N)

(7.76)

An explicit expression the mean delay of queue j can be derived from the itera-
tion on Lj(N) and eq. (7.74), as:

Wj(N) = 1
𝜇j
[1 + Lj(N − 1)] (7.77)

�

� �

�

362 7 Queueing Networks

Summing up, we can write a set of iterative equations for j = 1,… , J and N ≥ 1
as follows:⎧⎪⎪⎨⎪⎪⎩

Wj(N) = 1
𝜇j
[1 + Lj(N − 1)]

Lj(N) = N
vjWj(N)

J∑
i=1

viWi(N)

(7.78)

initialized with Lj(0) = 0 for j = 1,… , J. The network throughput can be computed
as TH(N) = N∕

∑J
j=1 vjWj(N). Iteration (7.78) yields performance metrics of the

closed queueing network directly. This is known as mean value analysis (MVA).
An example Matlab script code that implements MVA is provided below. The

code exploits the vector operations available in Matlab.

% The script assumes that the following quantities are given
% number of queues J
% number of customers N
% the routing matrix Rmat
% the vector of serving rates muv
ev=ones(J,1);
Remat=eye(J,J)-Rmat;
Remat=[Remat(1:J,1:J-1) ev];
bv=[zeros(1,J-1) 1];
vv=bv/Remat;
Lv=zeros(1,J);
for k=1:N

Wv=(1+Lv)./muv;
TH=k/sum(vv.*Wv);
Lv=TH*vv.*Wv;

end

Example 7.4 Let us consider a window flow-controlled connection, crossing M
links, with constant window size equal to K. The capacity of links is managed
according to dynamic multiplexing, as in a packet network. Output contention is
solved by means of delay, storing packets in link buffers, assumed to be sufficiently
large so that overflow probability is negligible. The j-th link has capacity Cj avail-
able to the considered connection. Packet length is exponentially distributed, with
mean L. Then, service times have a negative exponential PDF with service rate
𝜇j = Cj∕L at link j. We assume service times are independent of one another. As
soon as a packet is delivered to the destination, an ACK message is issued and it
goes back to the source. We assume congestion is negligible in the reverse path.

The flow-controlled connection can be cast into a closed queueing network
model [164]. The model applies also to a network where the connection path is
loaded with exogenous traffic at each link. A general model for such a network

�

� �

�

7.3 Closed Queueing Networks 363

consists of a mixed multi-class queueing network where a class of customer mod-
els the flow-controlled connection packets, while several open customer classes
model cross traffic. The statistics of the closed class modeling the flow-controlled
packets can be obtained directly from the analysis of a network construct which
is identical to the general multi-class network except that: (i) all open classes are
deleted; and (ii) the nodal service rates are redefined to be the reduced service
rates [179]. Assuming a balanced model (i.e., the reduced capacity is the same on
all connection path links), we let 𝜇1 = · · · = 𝜇M = 𝜇. This construct is called the
reduced closed network.

A second important fact of product-form networks is that even though the prop-
agation delays are distributed over the links of the connection path, the calculation
of many quantities of interest may be done as if there were only one propagation
delay with mean equal to the cumulative propagation delay of the connection path
(the so called base round trip time). Let T0 be the overall propagation delay over
the whole connection path.

The network state is given by the number of packets of the tagged connection
stored in each link buffer (Qk for the k-th link) plus the Q0 packets in flight into
the pipe with propagation delay T0. The model is composed of M + 1 queues, M
single-server queues, modeling the link buffers, and an infinite server queue with
deterministic service times, modeling the propagation delay of the pipe. The rout-
ing matrix entries are rj,j+1 = 1 for j = 0,… ,M − 1, and rM,0 = 1, all other ri,j’s
being equal to 0. It is easy then to find that the quantities vj are all equal to 1.
Then

𝜋(n) ≡ (Q = n) = 1
G′

1
n0!(1∕T0)n0

1
𝜇n1+···+nM

= 1
G

1
n0!

1
an1+···+nM

(7.79)

where a = T0𝜇 is the bandwidth-delay product of the connection. The normalizing
constant is found as

G ≡ G(K,M) =
∑
|n|=K

1
n0!

1
an1+···+nM

=
K∑

k=0

(
M − 1 + k

M − 1

)
1
ak

1
(K − k)!

= 1
K!(M − 1)! ∫

∞

0
e−uuM−1

(
1 + u

a

)K
du

where we have exploited the identity

n! = ∫
∞

0
xne−x dx , n ≥ 0. (7.80)

A deep asymptotic analysis for a → ∞ (large bandwidth-delay product net-
works, also referred to sometimes as “fat pipes”) is presented in [164]. That
paper gives a deep insight into the effect of scaling the window size K with

�

� �

�

364 7 Queueing Networks

the bandwidth-delay product a. It provides very useful results to dimension
window-based flow control algorithms. First, following Kleinrock, we define
the power as the ratio of the achieved throughput TH to the mean delay D. At
equilibrium, Little’s law suggests that in our case it is D = K∕TH, since there are
constantly K packets in flight for a greedy window flow-controlled connection.
Then, in the case at hand, the power is P(K) = TH(K)∕D(K) = TH(K)2∕K, where
we have emphasized the dependence on the number of in-flight packets K. Mitra
[164] defines the scaling K ∼ Γa − 𝛼

√
a, as a → ∞, and three asymptotic regimes

as a function of the values of the constant Γ: (i) Γ > 1: high usage; (ii) Γ < 1:
light usage; (iii) Γ = 1: moderate usage. It turns out that the connection power is
maximized for K∗ ∼ a − 𝛼

∗
√

a.
Due to symmetry of the network, the statistics of the number of customers (pack-

ets) in each queue is the same as all other queues. Under the optimal asymptotic
regime, Mitra finds that the mean and the standard deviation of the number of
customers in a queue are E[Q1] ∼ 𝛽

∗
√

a and 𝜎Q1
∼ 𝛾

∗
√

a.
The constants 𝛼∗, 𝛽∗, and 𝛾

∗ can be expressed (approximately) as a function of
the number of queues M:

𝛼
∗ ≈ − 1

2
√

M
𝛽
∗ ≈ 1√

M
𝛾
∗ ≈ 1√

M + 1
(7.81)

This is a beautiful result in itself and a very useful one in networking applica-
tions. It tells us that for large bandwidth-delay product networks, we can expect
to reap high throughput levels with marginal queueing (the number of packets in
flight grows as a, whereas the queue length grows as

√
a).

This promise is what is currently hardly sought for in new congestion control
designs promoted within the IETF and at major companies, to overcome what is
known as bufferbloat (see Section 10.9.3), i.e., the huge increase of queueing delays
showing up especially in access routers, due to excessively large FIFO buffers cou-
pled with loss-based congestion control mechanisms that fill up queues greedily
until packet overflow occurs (see Chapter 10).

To conclude the analysis of this example, let us consider a simplified case, where
M = 1, i.e., there is a single bottleneck queue. Then, the normalization constant is

G =
K∑

k=0

1
(K − k)!ak

= 1
K!B(K, a)

(7.82)

where B(⋅, ⋅) is the Erlang-B formula (see Section 5.2). The state reduces to the
two variables (Q0,Q1), where Q0 denotes the packets in flight in the network pipe,
while Q1 refers to the packets stored in the bottleneck buffer. The state probabilities
are

𝜋(K − k, k) = (Q0 = K − k,Q1 = k) = K!B(K, a)
(K − k)!ak

, k = 0,… ,K.

�

� �

�

7.3 Closed Queueing Networks 365

Figure 7.7 Analysis of the bottleneck
buffer of a window-based flow control
algorithm. Buffer overflow probability
as a function of the normalized
threshold H∕K for three values of the
bandwidth-delay product a.

0 0.2 0.4 0.6 0.8 1

Normalized buffer threshold, H/K

10–4

10–3

10–2

10–1

100

B
u

ff
e

r
o

v
e

rf
lo

w
 p

ro
b

a
b

ili
ty a = 10

a = 100

a = 1000

(7.83)

The probability that more than H < K packets be stored in the buffer is

P =
K∑

k=H+1
𝜋(K − k, k) = K(K − 1) · · · (K − H)

aH+1
B(K, a)

B(K − H − 1, a)
(7.84)

The buffer overflow probability P is plotted against the normalized threshold,
H∕K, for three values of the bandwidth-delay product a in Figure 7.7.

For a given a, the window size K is chosen as K = ⌈a +
√

a∕2⌉, which is the
optimal value suggested by the asymptotic study for M = 1. It is apparent that most
packets within the window K are actually in flight in the pipe rather than stored in
the buffer as the bandwidth-delay product a grows. Under that regime, with over-
whelming probability most of the packets travel through the network, and only a
relatively small fraction is in the bottleneck buffer with non-negligible probability.
For example, choosing H =

√
K(1 + 3∕

√
2), the probability that this threshold H

is exceeded is less than 10−3. For a = 1000 that threshold is about 10% of the win-
dow size K. The threshold has been fixed as the expected mean queue length plus
three times the standard deviation, as provided by the optimal asymptotic design
for M = 1.

The lesson learned from this simple example is that one can expect to maintain a
high throughput (full bottleneck utilization) with a quite small buffer as compared
to the bandwidth-delay product, as the product grows, i.e., for “fat” networks. In
other words, there is no reason to insist on the rule of thumb for providing buffer
sizes in the order of the bandwidth-delay product to reap the maximum through-
put.

Example 7.5 In this example, we consider a factory running M machines, that
need be all operational for the factory to carry on its production. Machines go off
service independently of one another, according to a memoryless process with fail-
ure rate 𝜆 for each machine. Once a machine is down, it is taken care of by local

�

� �

�

366 7 Queueing Networks

1 − α
α

1 − β

β

Remote
repair station

Local repair
station

Queue 3

Queue 2

Queue 1

Waiting for
failures

1

Figure 7.8 Sketch of the closed queueing
network of Example 7.5.

repairmen groups. There are mA groups. The time required to fix a machine is
assumed to be a negative exponential random variable, independent of the fail-
ure process and of other repair times, with mean value 1∕𝜇A. With probability
𝛽 the machine gets properly repaired and goes back into operation. With prob-
ability 1 − 𝛽 it needs further assistance and it is sent to a remote maintenance
center, where mB groups of repairmen work and take on average a time 1∕𝜇B to
fix the machine. The remote center repairs the machine with probability 1. We
also assume that the machine can be sent directly to the remote center in the first
place with probability 1 − 𝛼 and it is handed to local repairmen only with prob-
ability 𝛼. Overall there are M + S machines, where M are those required to be in
service and S are spare ones that replace failed machines until they are restored
back into service.

With the hypotheses laid down above, the machine maintenance process can
be modeled as a closed queueing network, with J = 3 nodes and N = M + S “cus-
tomers” that represent the machines. A first node represents the working status of
machines, where each one of them can fail with individual rate 𝜆. So this queue
is an infinite server one, with service time having negative exponential PDF with
mean value 1∕𝜆. When leaving this queue, a machine can move to the second
queue with probability 𝛼 or to the third one with probability 1 − 𝛼. The second
queue models the repairmen groups of the local maintenance center. So this queue
has mA servers and negative exponential service times with mean 1∕𝜇A. The third
queue models the repairmen of the remote maintenance center. Hence it con-
sists of mB servers with negative exponential service times having a mean value
of 1∕𝜇B. The layout of the resulting closed queueing network model is depicted in
Figure 7.8.

The linear equation system to calculate the v’s is given by v = vR, where the
routing matrix R is

R =
⎡⎢⎢⎣

0 𝛼 1 − 𝛼

𝛽 0 1 − 𝛽

1 0 0

⎤⎥⎥⎦ (7.85)

�

� �

�

7.3 Closed Queueing Networks 367

The linear system for the v’s is therefore:

v1 = 𝛽v2 + v3, v2 = 𝛼v1, v3 = (1 − 𝛼)v1 + (1 − 𝛽)v2 (7.86)

Up to a factor, the solution is v3 = v1(1 − 𝛼𝛽) and v2 = 𝛼v1. Letting v1 = 1, we
obtain v2 = 𝛼, v3 = 1 − 𝛼𝛽.

Queue 1 has infinite servers, while queues 2 and 3 have mA and mB servers,
respectively. To simplify the resulting expression, assume mA = mB = 1. Then

𝜋(M + S − k − h, k, h) = 1
G

⋅
(1∕𝜆)M+S−k−h)

(M + S − k − h)!

(
𝛼

𝜇A

)k(1 − 𝛼𝛽

𝜇B

)h

(7.87)

for k = 0,… ,M + S and h = 0,… ,M + S − k. Scaling the constant by the factor
𝜆

M+S, we can rewrite the probabilities conveniently as

𝜋(x1, x2, x3) =
1
G

⋅
1

x1!

(
𝜆𝛼

𝜇A

)x2
(
𝜆(1 − 𝛼𝛽)

𝜇B

)x3

(7.88)

The normalization constant is

G =
∑

x1+x2+x3=M+S

1
x1!

ax2
A ax3

B =
M+S∑
j=0

1
j!

M+S−j∑
i=0

ai
AaM+S−j−i

B

=
M+S∑
j=0

1
j!

aM+S+1−j
B − aM+S+1−j

A

aB − aA
(7.89)

where aA ≡ 𝜆𝛼∕𝜇A, aB ≡ 𝜆(1 − 𝛼𝛽)∕𝜇B.
The probability P that at least M machines are operating is the probability that

Q1 ≥ M, i.e.,

P =
M+S∑
j=M

(Q1 = j) =
M+S∑
j=M

M+S−j∑
k=0

𝜋(j, k,M + S − j − k) (7.90)

This can be found most simply by first writing down the marginal probability dis-
tribution of Q1:

(Q1 = j) = 1
G

1
j!

M+S−j∑
k=0

ak
AaM+S−j−k

B = 1
G

1
j!

aM+S+1−j
B − aM+S+1−j

A

aB − aA
(7.91)

for j = 0,… ,M + S.
Let b = 1∕max{aA, aB} and c = min{aA, aB}∕max{aA, aB} < 1. For numerical

evaluation purposes, the marginal probability distribution of Q1 can be conve-
niently rewritten as

(Q1 = j) =
bj

j!
1−cM+S+1−j

1−c

M+S∑
i=0

bi

i!
1−cM+S+1−i

1−c

, j = 0,… ,M + S. (7.92)

�

� �

�

368 7 Queueing Networks

We are interested in finding the minimum S that can guarantee that at least M
machines are operational at any given time with some prescribed level of prob-
ability 1 − 𝜀, that is the minimum S such that the unavailability U is not larger
than 𝜀:

U(S) = 1 − P =
M−1∑
j=0

(Q1 = j) ≤ 𝜀 (7.93)

We add the argument S to stress the dependence of the unavailability U on the
number of spare machines S.

As a numerical example, let us assume 1∕𝜆 = 90 days, 1∕𝜇A = 1 day, 1∕𝜇B =
7 days, 𝛼 = 0.8, 𝛽 = 0.95, 𝜀 = 0.1. We find aA = 0.0089 and aB = 0.0187. For M up
to 13, it suffices to provide S = 1 spare machine to guarantee that the probability of
at least M operational machines exceeds 0.9. For M ranging between 14 and 21, we
need S = 2, that must be raised to S = 3 for 22 ≤ M ≤ 27, to S = 4 for 28 ≤ M ≤ 31.
Going on with bigger and bigger M, we end up with S = 17 for M = 44, but after
that, for M ≥ 45, no value for S can be found such that U(S) ≤ 0.1.

To understand why this target seems to be unattainable, let S → ∞ and find the
least achievable level of U(S) for any finite S:

U(S) > U(∞) =
M−1∑
j=0

bj

j!
e−b = ∫

∞

b

uM−1

(M − 1)!
e−u du (7.94)

The last equality reveals that U(∞) is the tail of the PDF of a random variable
X that is identified as the sum of M i.i.d. negative exponential random variables
with mean 1. Hence, E[X] = M and 𝜎X =

√
M. For large M we can invoke the

central limit theorem and we approximate the tail of the PDF of X with the tail
of a Gaussian random variable, i.e.,

U(∞) ∼ 1 − Φ

(
b − M√

M

)
(7.95)

where Φ(x) = ∫ x
−∞

1√
2𝜋

e−u2∕2du is the CDF of the standard Gaussian random vari-
able. To meet the requirement U(S) ≤ 𝜀, it must be at least U(∞) = 𝜀, i.e., Φ((b −
M)∕

√
M) = 1 − 𝜀. Inverting the Gaussian CDF, we find b ≈ M + 𝛾

√
M, where

𝛾 = Φ−1(1 − 𝜀). For 𝜀 = 0.1 it is 𝛾 ≈ 1.282. With the numerical values of the param-
eters of this example, we have b = 53.57. For M = 45 is it M + 𝛾

√
M ≈ 53.597,

thus exceeding the value of b. In words, the target U(S) ≤ 0.1 is not achievable
for M ≥ 45 with the numerical values of the parameters chosen for this example,
since it is U(S) > U(∞) ≈ 0.105 for any finite S.

The asymptotic analysis presented above hints at a way to size b so that the
requirement on the number of operational machines can be met. For example,
we can select machines with an average lifetime 1∕𝜆 ≈ max{ 𝛼

𝜇A
,

1−𝛼𝛽
𝜇B

}(M + 𝛾

√
M),

�

� �

�

7.4 Loss Networks 369

with 𝛾 = 1.282. Alternatively, the repair-chain organization can be rearranged so
as to increase 𝜇A and 𝜇B.

7.4 Loss Networks

In previous models of network of queues we have consistently assumed infinite
room so that no arriving customer is ever rejected at any queue12 .

Here we introduce a structurally different model, where a queue has no wait-
ing line, hence an arriving customer is served immediately, if there is at least one
available server, otherwise it is rejected right away.

We will give a concise account of this subject. An elegant and in-depth treatment
can be found in [122, Ch. 3].

The network can be thought of as a graph, made up of a set of nodes, inter-
connected by directed links, forming a set . Let 𝓁 = || denote the number of
links in the network. We assume the network graph is strongly connected.

Since this kind of model arises naturally in circuit-switched networks (more
generally, in connection-oriented communication systems), where we can iden-
tify customers as connection requests, or calls, we will use this last term instead of
customer.

An arriving call is characterized by the originating node, the destination node,
and one or more alternative routes or paths through the network that connect the
origin with the destination. Since the network graph is strongly connected, there
is at least one route for each origin-destination pair. In general, there could exist
a multiplicity of routes connecting an origin-destination pair. Let be the set of
routes used in the network and let n = || be the number of routes. A route is
made of a sequence of links and nodes, starting from the origin node up to the
destination node, such that any two consecutive nodes are connected by a link.

To be established successfully a call needs one resource (i.e., one circuit, to be
consistent with the circuit-switched terminology) on each link of its path. Each
link of the network is labeled with a positive integer, representing the number
of circuits of that link, hence the maximum number of simultaneous calls that
can be established through that link. This is called the capacity of the link. Let Ck
denote the capacity of link k. Let also c = [C1 …C𝓁] be the row vector of the link
capacities.

If an arriving call cannot be accommodated in any of its associated routes
because of lack of circuits along those routes, the call is rejected (no wait is
allowed). Unless explicitly stated, in the following we assume that a single route

12 For closed queueing networks, a finite room, at least equal to the number of customers in the
network, is enough to avoid customer rejection.

�

� �

�

370 7 Queueing Networks

per origin-destination pair is selected. Calls for a given origin-destination pair i-j
are associated with the predetermined route from i to j. Therefore, in the sequel
we refer to calls as arriving to route s ∈ .

We assume calls arrive at route s according to a Poisson process with mean
rate 𝜆s. We assume that call holding times are exponentially distributed and inde-
pendent among one another and of the inter-arrival times. Let 1∕𝜇s be the mean
holding time of calls arriving at route s. We denote the mean offered traffic inten-
sity to route s as as ≡ 𝜆s∕𝜇s.

The state of the network is defined by the number of calls set up for each route
in . Let x = [x1 … xn] be a row vector of non-negative integers, with xs being the
number of calls active on route s ∈ . Let also rsk be binary 0–1 coefficients such
that rsk = 1 if and only if link k belongs to route s. We denote the n × 𝓁 matrix
collecting all coefficients rsk, s ∈ , k ∈ as R.

The capacity constraint that defines the loss network can be summarized by
the matrix inequality xR ≤ c. The state space of the loss network is defined by
 = {x ∈ ℤ+n|xR ≤ c}.

The random process X(t), defined as the state x of the loss network at time t, is
a Markov process on the state space . In fact, arrivals from outside the network
occur according to Poisson processes. Holding times have a negative exponential
probability distribution. Inter-arrival times and holding times are independent of
each other and form renewal sequences. Therefore, once the state description X(t)
is given for some t, it is possible to predict the behavior of the process for any 𝜏 > t
entirely, no matter what its past states have been.

The Markov process X(t) is stable for whatever value of the mean arrival rates
and mean call holding times. This is due to the lossy character of the network,
which “protects” the network from overload.

The exact limiting probability distribution 𝜋(x) = (X(t) = x), x ∈ can
be found explicitly by using a property of time-reversible Markov processes.
A Markov process X with state space and transition rates qij, i, j ∈ is said to
be time-reversible if the detailed balance equations hold, i.e.,

𝜋jqji = 𝜋iqij , ∀i, j ∈ . (7.96)

The Markov process Y is said to be obtained by truncating X to the subspace
 ⊂ if

● The transition rates of Y are equal to qij, i, j ∈ , while it is qik = 0 for all pairs
(i, k) such that i ∈ and k ∈ ∖ .

● The resulting process Y is irreducible.

It is recognized easily that the truncated process Y is still time-reversible, if the
original process X is. Hence, the limiting probability distribution of Y satisfies the
detailed balance equations as prescribed in eq. (7.96). Then, it is also possible to

�

� �

�

7.4 Loss Networks 371

verify that the limiting probability distribution of Y , {𝜋Y
i }i∈, can be expressed as

a function of that of X , {𝜋X
i }i∈, as follows:

𝜋
Y
i =

𝜋
X
i∑

j∈
𝜋

X
j

(7.97)

In other words, the probability distribution of Y is obtained from that of X simply
by re-normalization.

Let us apply this result to loss networks. Given a loss network, let us replace it
with the same network (same route matrix, same network topology, same arrival
and service processes), except that now capacities are unbounded. There is no
capacity constraint and the state space is now the entire set of non-negative inte-
ger n-dimensional vectors. The model turns out to be a Jackson open queueing
network, made of n queues, representing the service offered by routes. Each route
is modeled as an infinite-server queue, since the unbounded capacity assumption
poses no limit on the number of admissible calls per route. Arrivals at queue s
follow a Poisson process with mean rate 𝜆s and have mean service time 1∕𝜇s. By
applying the open queueing network formulas to this special case, we end up with
the following simple expression:

𝜋
(∞)(x1,… , xn) =

n∏
s=1

e−as
axs

s

xs!
, xs ≥ 0, s = 1,… ,n, (7.98)

where as = 𝜆s∕𝜇s and the superscript ∞ reminds us that the probability distribu-
tion corresponds to the modified model with unbounded link capacities.

The original loss network can be recovered by reintroducing finite capacity
values for the links and hence truncating the state space ℤ+n to (c) = {x ∈
ℤ+n | xR ≤ c}, where we have highlighted the dependency of the loss network
state space on the capacity vector c.

The resulting probability distribution for the loss network is

𝜋(x1,… , xn) = G(c)
n∏

s=1

axs
s

xs!
, x ∈ (c), (7.99)

where G(c) is the normalization constant given by

G(c) =

(∑
x∈(c)

n∏
s=1

axs
s

xs!

)−1

(7.100)

Once the limiting probability distribution of X(t) is found, we can evaluate per-
formance metrics. The key metric of the loss network is of course the loss probabil-
ity, i.e., the probability that an arriving call is rejected because there is no available
room in its route. Since arrivals follow a Poisson process, invoking the PASTA prop-
erty, we know that this is the same as the blocking probability. Let Ls denote the

�

� �

�

372 7 Queueing Networks

loss probability of route s, briefly referred to as route loss. This is the probability
that route s is blocked, i.e., the capacity of at least one link belonging to route s
is saturated. Let es denote an n-dimensional row vector with entries defined as
es(s) = 1 and es(r) = 0,∀r ≠ s. It corresponds to a state where there is just one call
through route s and nothing else. So long as the state of the loss network is within
the set s ≡ (c − esR), there is room for at least one call on route s, i.e., route s is
not blocked. Then, we can write

Ls = 1 −
∑
x∈s

𝜋(x) = 1 − G(c)
G(c − esR)

, s = 1,… ,n. (7.101)

It should come as no surprise, then, that the numerical evaluation of the prob-
ability distribution of the loss network and its key performance metrics depend
crucially on computing the normalization constant efficiently. This is hard to do
for large state spaces (large capacities and/or number of routes). This makes the
obtained results of little help, except for relatively small networks. However, pow-
erful approximations can be obtained, as explained in depth in [122, Ch. 3]. In the
next section we introduce the famous Erlang fixed-point approximation.

Example 7.6 Consider a cellular network with a spatial uniform layout. We
model the cell coverage by using a hexagonal grid, where each hexagon corre-
sponds to a cell served by a base station (BS)13 . Multiple access of user terminals
is obtained by dividing the available spectral radio resource into orthogonal
channels. Say C channels are available to the system. Channels are spatially
reused, i.e., a same channel can be in use in multiple cells at the same time.
Co-channel interference constraints limit the number of channels that can be
used in neighboring cells. To this end, the reuse cluster is defined as the least
compact set of neighboring cells where all channels are assigned once, i.e., no
channel reuse is possible. Figure 7.9 shows two coverage examples with reuse
cluster sizes 4 and 7 cells, respectively. Two sample clusters, one for each size, are
colored to highlight them. The reuse distance D is the distance between the two
nearest BSs that can use the same radio channel. It can be shown that D = R

√
3K,

where R is the cell radius and K is the cluster size. This result holds for the
hexagonal coverage model.

A connection request from a user terminal needs one channel to be set up. If no
channel is available, user requests are typically rejected (no wait). We can use a loss
network model for this system, if connection requests arrive at each BS according
to a Poisson process. The capacity constraints can be written as

∑
j∈k

xj ≤ C, where
xj is the number of connections in cell j and k represents the cell cluster k. The

13 The technical name given to this equipment varies with the technology standard, e.g., it is
eNB for LTE.

�

� �

�

7.4 Loss Networks 373

K = 7

6
7

1

4

2

35

6
7

1

4

4

4

4
3

3

1
2

1
2

1
2

1
2

1
2

3
4

3
4

3

1
2

1
2

3
4

3
4

RD

D

2

35

K = 4

Figure 7.9 Example of spatial reuse clusters in a cellular network model. The shape of
the cluster is highlighted. K denotes the cluster size, D is the reuse distance.

constraints must be applied to all possible clusters. For each given cell, we must
consider all clusters of the given size K that it belongs to.

For example, for clusters of size K = 7, we can define one cluster per cell as
the cluster centered on that cell. Each cell belongs to 7 clusters, namely, the one
centered on itself and the clusters centered on each of its 6 neighboring cells.

In this example there is no routing of connections in the classical sense. We can
associate a sort of “virtual route” to each BS by considering the BS itself and the
BSs that belong to all clusters that the tagged BS belongs to. It is as if a new arriving
connection requires a “link usage” out of its own BS and of all its neighboring BSs.

7.4.1 Erlang Fixed-Point Approximation

The basic idea of this approximation is simple. Let Bj denote the blocking prob-
ability at link j, i.e., the probability that all Cj resources of link j are being used.
Then, a new arriving request for any route s that uses link j will be lost.

If the link j could be studied in isolation with respect to the rest of the network,
and if arrivals at that link formed a Poisson process with mean intensity Aj, we
could apply the Erlang loss model to link j and conclude that Bj = B(Cj,Aj), where
B(m,A) is the Erlang B-formula for m servers and a mean offered traffic A (see
Section 5.2).

The approximation lies in assuming that the two conditions mentioned above
hold, in spite of the fact that they do not in general.

What remains is to find the mean intensity of the traffic offered to link j. This
is the traffic originated by call requests that survive the rejection of other links
belonging to the same route as j. For each given route s ∈ , the mean rate of
offered calls is 𝜆s. Those calls are offered to link j
● If rsj = 1, i.e., if link j belongs to route s;
● With probability 1 − Bi for all other links i on the same route s.

�

� �

�

374 7 Queueing Networks

The mean reduced rate of calls belonging to route s that are offered to link j in this
approximation is given by 𝜆srsj

∏
i ∶ rsi=1;i≠j(1 − Bi). Summing up over all routes, we

find finally

Aj =
∑
s∈

𝜆s

𝜇s
rsj

∏
i≠j

(1 − Bi)rsi (7.102)

The derivation of (7.102) entails that blocking at each link is assumed to be inde-
pendent of all other links, which is not true in general.

Writing the link-blocking probability by modeling each link as an Elrang loss
system in isolation, we end up with the following nonlinear system of 𝓁 equations
in the 𝓁 unknowns Ej:

Ej = B

(
Cj,

1
1 − Ej

∑
s∈

asrsj

𝓁∏
i=1

(1 − Ei)rsi

)
, j = 1,… ,𝓁. (7.103)

The arguments of the Erlang B formula B(⋅, ⋅) in eq. (7.103) are the number of
circuits of link j and the mean intensity of the traffic offered to link j. The lat-
ter is found as the ratio of the mean intensity of the traffic carried by link j and
(1 − loss probability of link j). In turn, the mean intensity of the traffic carried by
link j is found as the sum of all traffic offered to routes that use link j, thinned by
the loss incurred on other links.

The nonlinear equation system (7.103) defines a continuous mapping of
[0, 1]𝓁 onto itself. Since the unit hypercube is compact and convex, we can apply
Brouwer’s theorem and conclude that there must exist a fixed point. In [122] and
[137, Ch. 6] it is shown that a unique solution to the nonlinear equation system
(7.103) exists in [0, 1]𝓁 .

The Erlang fixed-point approximation is intimately related with the link block-
ing probabilities in the asymptotic regime for large networks [122]. In other words,
it can be expected that the Erlang fixed-point method yields accurate predictions
for those networks that can be considered as “large”, i.e., such that there is a small
probability that two connections share more than a single link.

Let us consider a sequence of networks indexed by an integer N. We will take
the limit as N grows according to the following asymptotic regime: the call arrival
rates 𝜆s(N), s ∈ , and the link capacities Cj(N), j ∈ , diverge as N → ∞, in such
a way that

lim
N→∞

1
N
𝜆s(N) = 𝜆s > 0, lim

N→∞

1
N

Cj(N) = Cj > 0. (7.104)

We define also as(N) = 𝜆s(N)∕𝜇s. According to the scaling assumed in this analy-
sis, we have limN→∞

1
N

as(N) = as. Let 𝜉s = xs∕N, where xs is the number of circuits

�

� �

�

7.4 Loss Networks 375

engaged on route s. We rewrite the expression of the steady-state probability dis-
tribution of the loss network:

log𝜋(x1,… , xn) = log G(c) +
∑
s∈

(xs log as − log xs!) (7.105)

Let us focus on the summand inside the summation sign and use Stirling for-
mula log n! ∼ n log n − n + O(log n). We get

xs log as − log xs! = N𝜉s log(Nas) − N𝜉s log(N𝜉s) + N𝜉s + O(log N)

= N𝜉s log(as) − N𝜉s log(𝜉s) + N𝜉s + O(log N)

= Ng(𝜉s, as) + O(log N)

where g(y, a) = y log a − y log y + y. Let us drop the O(⋅) contribution in the limit
for N → ∞, and let us consider two states x(1) = N𝜉

(1) and x(2) = N𝜉
(2). Assume it

is
∑

sg(𝜉
(1)
s , as) >

∑
sg(𝜉

(2)
s , as). Then

𝜋(x(2))
𝜋(x(1))

∼ exp

(
N
∑
s∈

g(𝜉(2)s , as) − N
∑
s∈

g(𝜉(1)s , as)

)
= e−NΔ (7.106)

where Δ is a positive constant. It turns out the steady-state probabilities become
negligible when compared to the probability of a special state, the one that maxi-
mizes

∑
sg(𝜉s, as). We can identify the “most” probable state of the limiting regime

of the sequence of loss networks parametrized by N as the solution of the following
optimization problem:

Maximize∶
∑
s∈

(ys log as − ys log ys + ys) (7.107)

Subject to∶ yR ≤ c (7.108)

y ≥ 0 (7.109)

where c = [C1,… ,C𝓁].
The target function is separable, each summand being a strictly concave func-

tion. The feasible set is closed, bounded, and convex. Hence, there exists a unique
maximizer y∗ of this problem.

The steady-state probability distribution 𝜋(Ny) tends to concentrate on a single
value as N → ∞, namely, we have limN→∞𝜋(Ny)∕𝜋(Ny∗) = 0 for any y ≠ y∗. This
is a typical example of state space collapse under an asymptotic regime. When scal-
ing a system to large sizes of its parameters, a typical outcome is that the variability
due to statistical fluctuations tends to disappear, that is, it has a relatively negli-
gible value with respect to the mean. Under such regime, the stochastic process
that described the dynamics of the system tends to a deterministic system. This is
closely related to the fluid approximation (see Section 8.6).

�

� �

�

376 7 Queueing Networks

Let us make the limit of the asymptotic regime for large network precise. Let
Bj(N) be the blocking probability of link j for the N-th network. It can be shown
(e.g., see [122]) that Bj(N) → Bj as N → ∞, where the quantities Bj, j ∈ are any
solution to:⎧⎪⎨⎪⎩

∑
s∈asrsj

∏
i∈(1 − Bi)rsi = Cj if Bj > 0∑

s∈asrsj
∏

i∈(1 − Bi)rsi < Cj if Bj = 0
(7.110)

It can be shown that there always exists a solution to (7.110). The solution is
unique, if the matrix R has rank 𝓁, i.e., if it is full rank. It is also possible to prove
that

lim
N→∞

1
N

E[Xs(N)] = xs , s ∈ , (7.111)

where Xs(N) is the random variable defined as the state of route s of the N-th loss
network of the considered sequence, and

xs = lim
N→∞

1
N

as(N)
∏
j∈

[1 − Bj(N)]rsj = as

∏
j∈

[1 − Bj]rsj (7.112)

where the Bj’s are a solution to (7.110).
The limiting probability distributions of Us(N) ≡ [Xs(N) − xs]∕

√
N can be char-

acterized as well. It turns out that the probability distribution of U(N) converges
to that of a random vector U, such that Us ∼ (0, xs) and URB = 𝟎, where RB is
the matrix obtained from R by deleting all columns j for which Bj = 0.

The loss probability in the limiting regime is obtained as the solution of (7.110).
That system has an intuitive interpretation: for those links where the sum of aver-
age traffic intensities loading the link is less than the link capacity, the link block-
ing probability is 0 (underloaded links). The loss probability has a positive value
for overloaded links, where the mean offered traffic is bigger than the capacity.
This is reminiscent of a fluid approximation and it is a consequence of the large
traffic, large link capacity asymptotic regime.

The link of the Erlang fixed-point method with the asymptotic regime of large
loss networks is established by the fact, proved in [122, § 3.6], that Ej(N) → Bj,

j ∈ , where Ej(N) is the solution to the Erlang fixed-point equation system (7.103)
for the N-th network and Bj is a solution to (7.110), i.e., the limit of the blocking
probability Bj(N) of the N-th network.

In essence, the limit theorem shows that for large networks the probability dis-
tribution of the state space of the loss networks is concentrated around the mean.
In turn, the mean can be determined by solving for the blocking probabilities Bj
from (7.110). But for large systems, those Bj values are close to what the Erlang
fixed-point method yields.

�

� �

�

7.4 Loss Networks 377

The limit theorem provides thus a theoretical underpinning to the Erlang
fixed-point algorithm. Actually, it turns out that the Erlang fixed-point algorithm
is quite accurate for most cases.

Once the link blocking probabilities have been found, the route loss can be cal-
culated again resorting to the independence assumption:

Ls = 1 −
𝓁∏

j=1
(1 − Bj)rsj (7.113)

The Erlang fixed-point algorithm yields generally good results when the inde-
pendence assumption it is based on leads to a reasonable approximation. In turn,
this is expected when there is a negligible probability that two routes share more
than one link. This is essentially what happens for large networks.

Example 7.7 Fixed vs. dynamic channel assignment in a cellular network
Let us consider a cellular network model with hexagonal cells. Let K denote the
size of the reuse cluster, i.e., the number of closest cells that must be assigned
different radio channels to keep co-channel interference within acceptable limits.
Assume the cellular network operator has M radio channels overall. Connection
requests to a base station (BS) arrive according to a Poisson process with mean rate
𝜆. Let 1∕𝜇 be the mean channel holding time. The mean offered traffic offered to a
cell is A = 𝜆∕𝜇. Channels are allocated to BSs according to two different strategies:

● Fixed channel allocation (FCA): Each BS is assigned its own radio channels, for
exclusive use of users connected to that BS. We assume that each BS gets the
same number of channels, M∕K.

● Dynamic channel allocation (DCA): The M channels are shared dynamically by
BSs. A BS takes a channel when it is required to set up a new connection. To
keep interference within acceptable limits, a BS must check that the number of
channels in use in each reuse cluster it belongs to is no more than M.

In case of FCA, to account for the fact that M∕K may not be integer, we assign⌈M∕K⌉ − 1 channels to N BSs and ⌈M∕K⌉ channels to the remaining K − N BSs.
N is chosen so that

N
(⌈M

K

⌉
− 1

)
+ (K − N)

⌈M
K

⌉
= M (7.114)

whence N = K⌈M∕K⌉ − M. The blocking probability with FCA is

PFCA =
(⌈M

K

⌉
− M

K

)
B
(⌈M

K

⌉
− 1,A

)
+
(

1 + M
K

−
⌈M

K

⌉)
B
(⌈M

K

⌉
,A

)
(7.115)

where B(⋅, ⋅) is the Erlang B formula.

�

� �

�

378 7 Queueing Networks

20 40 60 80 100 120

Number of channels, M

0

0.2

0.4

0.6

0.8

1

M
a
x
im

u
m

 c
h
a
n
n
e
l
u
ti
liz

a
ti
o
n

K = 7

P
0

= 0.02

FCA

DCA

Figure 7.10 Comparison between
the maximum channel utilization
obtained with fixed and dynamic
channel allocations (FCA and DCA,
respectively) under the
requirement that the blocking
probability of a new connection
request P0 be no more than 0.02.

As for DCA, a BS belongs to K clusters, i.e., it can take the role of cell 1, 2,… ,K
of the cluster. By applying the Erlang fixed-point method, thanks to the symmetry
of the system (all BSs are equivalent), we obtain the blocking probability of DCA
as PDCA = 1 − (1 − 𝛽)K , where 𝛽 is the unique solution to

𝛽 = B(M,KA(1 − 𝛽)K−1) (7.116)

Figure 7.10 compares the maximum channel utilization achievable under a
requirement on the blocking probability P, namely that it be P ≤ P0 = 0.02. The
analysis is carried out for K = 7.

The gain offered by DCA over FCA is apparent. Even greater advantage of DCA
over FCA can be observed by increasing the cluster size K. The price to pay for
the increased efficiency of DCA is the implementation of coordination function
among the BSs to share the channels dynamically.

7.4.2 Alternate Routing

Up until here we have assumed single path routing. It is often the case that multiple
routes can be selected and used alternatively. This has been current practice in
circuit switched networks (like the telephone network) for decades and is used as
well in cellular networks, where diversity routing is possible whenever more than
a single BS covers a user terminal, or in optical networks, where calls correspond
to lightpath setup requests.

In general, graphs describing communication networks are multi-connected.
Not only are they connected, to guarantee reachability of any node, but they usu-
ally provide diverse routing with disjoint end-to-end paths, to be robust in the face
of link or node failures. Given that multiple paths exist to connect two given nodes
i and j, it is natural to conceive alternate routing strategies, where a first choice path
is explored. If that is found to be unavailable, a second choice path is explored,

�

� �

�

7.4 Loss Networks 379

Figure 7.11 Example of alternate routing:
the first choice is the direct path; the second
and last choice is a two-link route through a
relay node.

i

k
j

1st choice

2nd choice

and so on, until all alternatives have been checked. If all alternatives for the traffic
relation i-j fail, the call is rejected.

When alternate routing is used there might arise difficulties leading to multiple
regimes of the loss network. To illustrate this point, let us consider a very simple
example (see [122]). Given N nodes, we consider a network providing direct links
between any pair of nodes. Thus the number of links is 𝓁 = N(N − 1)∕2. Each link
is equipped with a capacity C, i.e., it can sustain up to C simultaneous calls.

Routing exploits the direct path as a first choice. If the direct link is saturated,
an alternate path made up of two links through a randomly selected relay node is
explored. If that fails as well, the offered call is lost.

The “route” of the loss network model for calls between nodes i and j is made
up of two elements: the direct path i-j and a randomly selected path i-k-j, where
k ≠ i, j is an intermediate relay node. Figure 7.11 gives an example scheme of the
two alternate paths: the direct path (first choice) and the two-link path through a
randomly selected relay node (second and last choice).

By symmetry, the blocking probability of all links is the same. Let the link block-
ing probability be denoted with 𝛽, while L denotes the route blocking probabil-
ity. Applying the independence assumption of the Erlang fixed-point method, the
probability that a route is not blocked is given by 1 − L = (1 − 𝛽) + 𝛽(1 − 𝛽)2. The
first term is the probability that the direct path is available (1 − 𝛽). The second
term is the probability that the first choice route is blocked (𝛽) multiplied by the
probability that the randomly selected two-link route is not blocked, i.e., (1 − 𝛽)2,
since this is the joint event that both i-k and k-j are not blocked.

To write down the Erlang fixed-point equation 𝛽 = B(C,Ao), we have to find the
mean offered traffic Ao of a generic link. This is related to the mean carried traffic
Ac by Ao = Ac∕(1 − 𝛽). In turn, the mean carried traffic equals the mean number
of busy circuits on the link. If 𝜆 is the mean arrival rate of calls at any “route,” 1∕𝜇
is the mean call holding time, and a ≡ 𝜆∕𝜇, we have Ac = a(1 − 𝛽) + 2a𝛽(1 − 𝛽)2.
This is obtained by considering that one circuit is used with probability 1 − 𝛽, if
the first choice path is available, while two circuits are required if the first choice
path is found busy and the alternate two-link path is available. Therefore Ao =
a + 2a𝛽(1 − 𝛽) and the fixed-point equation can be written as

𝛽 = B(C, a(1 + 2𝛽 − 2𝛽2)) (7.117)

�

� �

�

380 7 Queueing Networks

0.5 0.75 1 1.25 1.5

Normalized load, a/C

–0.1

0

0.1

0.2

0.3

0.4

0.5

B
lo

c
k
in

g
 p

ro
b
a
b
ili

ty

C = 10

C = 100

C = ∞

Figure 7.12 Blocking probability of
the symmetric alternate routing
network as a function of the
normalized traffic load a∕C, for various
values of the link capacity C.

The loss probability of a route (made up by the direct link and the alternate
two-link routing) is:

L = 1 − [1 − 𝛽 + 𝛽(1 − 𝛽)2] = 𝛽
2(2 − 𝛽) (7.118)

We expect that the expressions in eqs. (7.117) and (7.118) provide accurate
results for N → ∞, since it is in that regime that the independence assumption
underlying the fixed-point Erlang approximation holds.

The curves in Figure 7.12 show the behavior of the blocking probability 𝛽 as a
function of the normalized traffic load a∕C for three values of the link capacity C.

The limit for large capacity values is obtained by scaling both C and a by a same
factor s and letting s → ∞. We know from eq. (5.11) that

lim
s→∞

B(sĈ, sâ) = max
{

0, 1 − Ĉ
â

}
(7.119)

In the limiting case, 𝛽 is the solution of

𝛽 = max
{

0, 1 − Ĉ
â(1 + 2𝛽 − 2𝛽2)

}
(7.120)

As shown by the dashed line curve in Figure 7.12, this equation has multiple
solutions for14 â

Ĉ
≥ 5

√
10−13
3

≈ 0.9371.
The behavior of the curves shown in Figure 7.12 can be interpreted as follows.

For moderate levels of Ĉ, as the normalized load grows, the blocking probability
gets larger and larger, in a slow way at first, then with a steep growth slope in a
transition region that goes across â∕Ĉ = 1. The transition region is narrower as Ĉ
increases. In the limit for very large values of Ĉ a bi-stable behavior arises. As the

14 This value can be found by considering the function y = [(1 − 𝛽)(1 + 2𝛽 − 2𝛽2)]−1, for
𝛽 ∈ (0, 1). Searching for the minimum of y(𝛽) in [0, 1), it is easy to check that there is a unique
minimum at 𝛽 = 4−

√
10

6
≈ 0.1396. The lower limit of the ratio â∕Ĉ is found as the value of y(𝛽) at

its minimum.

�

� �

�

7.5 Stability of Queueing Networks 381

normalized load increases the blocking probability can shift abruptly from a rel-
atively small level to a high level (high blocking regime). This corresponds to an
increasing number of calls finding their direct path blocked, hence being routed
on a two-link alternative. The rerouting doubles the amount of circuits used by a
single call. If a series of rerouting is performed, the network is likely driven into
a high congestion level, where blocking (both of direct path and alternate path) is
more probable. As the load is relieved, circuits come back to idle state and the net-
work moves back from the high congestion level to a low congestion level where
blocking is relatively rare.

What is affected is the dynamic behavior of the network, while the Markov pro-
cess describing the state of the network might still admit a steady state probability
distribution, that exhibits two separate peaks (bimodal PDF). The state tends to
oscillate stochastically between the two congestion regimes corresponding to high
and low blocking levels, even if it admits a unique steady-state probability distri-
bution. This phenomenon is reminiscent of what happens with the nonstabilized
version of ALOHA in random access protocols (see Section 9.2).

A way to protect the network from such oscillations, and yet allow alternate
routing, is to introduce dumping. For example, sticky routing [89] is defined by the
following two provisions:

1. An incoming call is assigned a circuit on a target link, if a circuit is available on
the direct link.

2. For any couple of nodes, a random relay node is selected ahead of call arrival
time, and stored in node tables. Let k(i, j) denote the relay selected for the couple
i-j. k(i, j) is maintained as long as call requests arising at node i are successfully
routed, either directly to j or through the intermediate relay k(i, j). Whenever
call routing fails for lack of circuits also on the alternate route, the call is lost
and the relay node is randomly reselected.

It is shown that sticky routing is successful in avoiding bi-stability and hence it
improves the loss performance.

7.5 Stability of Queueing Networks

Up to this point, we have not given too much emphasis to the issue of stability of
a queueing network. We hinted at the fact that the solutions we explored refer to
steady-state analysis, which can exist only if the queueing network is stable. We
devote this section to giving a concise introduction to the vast topic of defining
and assessing stability of a network of queues. This aspect has received a special
attention, since it turns out that surprising results can arise. More on stability can

�

� �

�

382 7 Queueing Networks

be found in [86, Ch. 8] or in specialized textbooks, e.g., [63, 44, 160, 54]. We con-
fine ourselves to some basic definitions and an illustrative example. It is, however,
enough to grasp where the catch can be when dealing with stability of a network
of queues and not just an isolated queue.

To illustrate the stability issue, we refer to a generalized queueing network
model, formed by nodes (also called sometimes stations), connected by links,
forming a connected graph. Each node is provided with a single server facility and
it can host one or more queues (also called buffers). The service time of a customer
depends in general on the buffer it joins. Buffers are sometimes associated with
specific classes of customers, so that a customer of class x entering a node will join
the buffer reserved for class x, where service time has a probability distribution
specific of that class. This can model successive phases of a workflow, where
a “customer” (piece of product or a job) undergoes different working phases,
each one requiring service times that can be modeled as drawn from a random
variabile specific of that working phase. Nodes are equipped with a single server,
whose serving capacity is shared among the queues hosted in the node. Thus, the
description of this model entails assigning

● The statistical characteristics of the external arrivals at the nodes (external
stands for outside of the network);

● The statistical description of service times of customers at each buffer;
● The routing rules, i.e., which buffer is joined by a customer leaving its current

buffer; if none is chosen, the customer leaves the network;
● The single server sharing policy at each node.

The stochastic model defined by such a structure is by its nature a discrete one,
i.e., its state includes the description of the number of customers sojourning in
each buffer.

We give first an example to illustrate the nontriviality of the stability issue in this
kind of networks. Then, we will introduce the formal definitions of stability for
a stochastic discrete network and its fluid approximation. The reason to involve
the fluid approximation is that it can be used to show whether a stochastic dis-
crete queueing network is stable, i.e., stability can be investigated by reducing the
stochastic discrete network to a fluid queueing network, that is generally simpler
to study. To complete the topic, we detail how to identify the fluid approximation
of a stochastic discrete queueing network of the type dealt with in this section.

Example 7.8 We provide a classic example for the discussion of stability of
stochastic queueing networks. The example has been introduced concurrently
in two papers and brings the name of the researchers that have designed the
example, namely Rybko and Stolyar [185], Kumar and Seidman [136].

The network comprises two nodes, denoted with A and B (see Figure 7.13).

�

� �

�

7.5 Stability of Queueing Networks 383

Figure 7.13 Stochastic queueing network
example for the discussion of stability (also
known as Rybko-Stolyar-Kumar-Seidman
network).

λ1

Node A Node B

μ1

μ3
μ4

μ2

λ3

Two external flows of customers are offered to the network. Class 1 customers
arrive at node A with a mean rate 𝜆1. They require a mean service time 1∕𝜇1 and
are stored in buffer 1. When they are done they leave node A to join node B as class
2 customers. At node B class 2 customers are served at a mean rate 𝜇2. After service
completion, class 2 customers leave the network.

A symmetric customer flow is defined, in the reverse direction. Namely, class 3
customers arrive at node B at a mean rate 𝜆3, are served at a mean rate 𝜇3, then
join node A as class 4 customers, receiving service at a mean rate 𝜇4. After service
completion, class 4 customers leave the network.

Node A and B are equipped with a single server each. The service capacity of the
single server is shared among the buffers hosted in each node, according to the
pre-emptive-resume priority discipline. Specifically, class 2 customers have prior-
ity over class 3 ones in node B, while class 4 customers have priority over class 1
customers at node A.

Obvious necessary conditions for the stability of the queueing network is that
the mean utilization of the single servers at node A and B must be less than 1, i.e.,
it must be

𝜆1

𝜇1
+

𝜆3

𝜇4
< 1

𝜆1

𝜇2
+

𝜆3

𝜇3
< 1 (7.121)

Remarkably, it turns out that these necessary conditions are not sufficient .
We can experimentally check this by simulating the network, starting from an

empty state, with the following numerical values of the network parameters (nor-
malized to some arbitrary unit): 𝜆1 = 𝜆3 = 1, 𝜇1 = 5, 𝜇2 = 10∕7, 𝜇3 = 4, 𝜇4 = 4∕3.
The necessary conditions for stability are verified with these numerical values,
since

𝜆1

𝜇1
+

𝜆3

𝜇4
= 0.95 < 1

𝜆1

𝜇2
+ 𝜆

𝜇3
= 0.95 < 1 (7.122)

The results of a simulation experiment are plotted in Figure 7.14. On the left
the content of each individual buffer is plotted as a function of time. On the
right, the sum of the number of customers in all buffers of the network is plotted
against time.

It is apparent that there is a growth trend of the number of customers in the
buffers, which is a clear sign of instability of the network.

�

� �

�

384 7 Queueing Networks

0 500 1000 1500 2000 2500 3000
0

200

400 Buffer 1

0 500 1000 1500 2000 2500 3000
0

200

400 Buffer 2

0 500 1000 1500 2000 2500 3000
0

200

400 Buffer 3

0 500 1000 1500 2000 2500 3000
0

200

400 Buffer 4

(a)

0 500 1000 1500 2000 2500 3000
0

100

200

300

400

500

Normalized time

S
u
m

 o
f
a
ll

b
u
ff
e
rs

(b)

Figure 7.14 Number of customers in each buffer (left plots) and sum of all buffers (right
plot) from a simulation experiment with the stochastic discrete queueing network of
Figure 7.13.

The explanation of the instability resides in the operational structure of the sys-
tem. Let Xi(t) denote the number of customers in buffer i at time t, i = 1, 2, 3, 4. We
can prove that X2(t)X4(t) = 0 at any time t ≥ 0 if the system starts empty at time
t = 0.

Assume that immediately before some time t1 it is X2(t1) > 0 and X4(t1) = 0.
Then, no arrival at buffer 4 can occur at t1, since the only way that an arrival can
show up at buffer 4 is after a service completion at buffer 3. However, no service
can be completed at buffer 3 so long as buffer 2 is nonempty due to the preemptive
priority policy of the single server of node B. Therefore, we have shown that X4(t)
is forced to stay at 0 as long as X2(t) is positive.

A completely symmetric argument shows that also X2(t) must remain at 0, if
initially at 0, until buffer 4 is nonempty. This is again due to the priority policy
at node A and the fact that arrivals at buffer 2 correspond to customers having
completed their service at buffer 1.

Since buffers 2 and 4 start out empty, by assumption, and we have shown that
if one of them is nonempty, the other one is forced to stay empty, it turns out that
the event that both buffers are nonempty at some time is not possible15 .

As a consequence, the system as a whole must have capacity enough to devote
a fraction 𝜆1∕𝜇2 to the service of customers of class 2 plus another fraction 𝜆3∕𝜇4
for customers of class 4. There cannot be any overlap between these two service
time sequences, hence it must be

𝜆1

𝜇2
+

𝜆3

𝜇4
< 1 (7.123)

15 Note that simultaneous events occur with probability 0, as usual in single arrival, single
head-of-line service, continuous-time service systems.

�

� �

�

7.5 Stability of Queueing Networks 385

This is yet another condition for stability to be added to the necessary conditions
in eq. (7.121). It is as if there exists a virtual node made up of buffers 2 and 4,
equipped with a virtual single server.

In this numerical example we have 𝜆1∕𝜇2 + 𝜆3∕𝜇4 = 1.45, hence the additional
condition for stability is not met.

Other examples can be provided, e.g., with systems where the serving policy at
nodes does not use any priority, just FCFS. In that case reentrant flows are present,
i.e., customers flows that enter a buffer of a node after having completed their
service in another buffer of the same node.

7.5.1 Definition of Stability

Let us now give a precise notion of what is meant by stability for a stochastic queue-
ing network. The pathway that can be followed to assess the stability of a given
stochastic network is to transform it into a deterministic equivalent fluid network
and then to show that the latter is stable. This motivates us to give stability defini-
tions for both stochastic discrete and deterministic fluid queueing networks.

Let b be the number of buffers in the network. Let Xi(t) denote the number of
customers in buffer i at time t. We can state two definitions of stability.

Definition 7.1 (Stability) A stochastic discrete queueing network is said to be
stable if

∑
iXi(t) < ∞ for all t with probability 1, including in the limit for t → ∞.

This is typically shown by proving that the stochastic process associated with the
queueing network state is positive recurrent.

For the next definition, let 𝛄 denote a row vector whose i-th element 𝛾i denotes
the mean external arrival rate at buffer i. Let rij be the probability of moving from
buffer i to buffer j, when leaving buffer i. Let R denote the square matrix collecting
the routing probabilities. Note that the row sums of R are less than or equal to 1,
with at least one of them being strictly less than 1, since customers must eventually
leave the network. The effective arrival rate at buffer i is given by ai, where the
vector a = [a1, a2,… , ab] is given by a = 𝛄(I − R)−1, I being the identity matrix.

Definition 7.2 (Rate stability) A stochastic discrete queueing network is said
to be rate stable if the steady-state departure rate equals the steady-state effective
arrival rate (the arrival rate of the customer flow coming from the outside of the
network and those arriving from other buffers of the network) for all buffers in
the network. If Di(t) denotes the cumulative number of departures from buffer i
in [0, t], rate stability means that Di(t)∕t → ai,∀i, as t → ∞, almost surely.

�

� �

�

386 7 Queueing Networks

The first definition is stronger, while the second one requires only a balance
between the input and output customer flows at each buffer, but it does not imply
that buffers should ever be empty. On the contrary, with the first definition, buffers
empty infinitely often.

The stability can be assessed via a fluid model of the stochastic discrete queueing
network. The fluid approximation will be presented in Section 8.6. Here it suffices
to say that, given a counting process A(t), having discrete unit jumps at time when
events occur, the fluid approximation of that process is obtained as the limit for
n → ∞ of A(nt)∕n. The meaning of the scaling and of the limit is considering the
original stochastic discrete process on a wider and wider time horizon, so that
discrete jumps become negligible with respect to the overall trend of the process.
Since we know that for a stationary process with mean rate 𝜆 it is A(t)∕t → 𝜆 as
t → ∞, it is easy to check that the scaled fluid approximation tends to behave like
𝜆t if A(t) is a stationary process.

The reason why we are interested here in the fluid approximation of the stochas-
tic discrete queueing network is that the stability of the latter can be studied by
observing suitable stability definition applied to the fluid model, which usually
turns out to be much simpler than the original problem.

Specifically, let xi(t) = limn→∞Xi(nt)∕n be the fluid limit of the content of buffer
i for any t ≥ 0. We give two definitions for the stability of the fluid equivalent of
a stochastic discrete queueing network, leaving the detailed description of how to
identify the fluid equivalent network to the next section.

Definition 7.3 (Stability of a fluid network) A deterministic fluid queueing
network is said to be stable if there exists a finite T > 0 such that

∑b
i=1 xi(t) = 0 for

all t ≥ T, for any initial finite fluid level xi(0),∀i. That means that all fluid queues
will eventually drain out whatever the initial fluid level be.

Definition 7.4 (Weak stability of a fluid network) A deterministic fluid
queueing network is called weakly stable if

∑b
i=1 xi(t) = 0 for all t > 0, given that

initially the network is empty, i.e.,
∑

ixi(0) = 0.

The second definition is weaker. It implies that the fluid queueing network
remains empty if it starts out empty. Saying that a fluid buffer is empty does not
mean that no fluid is going through the buffer. It means that the rate of the flow
at the input of the buffer is less than or equal to the drain rate out of the buffer.
Then, all the fluid arriving at the buffer immediately leaves the buffer and no
accumulation occurs, i.e., the buffer remains empty.

The second definition of stability states that full drainage is maintained over
time. So, if all buffers in the network start out empty, they will remain empty

�

� �

�

7.5 Stability of Queueing Networks 387

throughout. The first definition says something more. Provided the queueing net-
work buffers start with any finite backlog, it can be drained out completely (along
with the new fluid arriving at the nework) over a finite time horizon. That is, the
serving rate at the buffers is strictly greater than the arrival rate, so that there is a
positive excess serving capacity that is used over a finite transient to get rid of the
initial backlog.

The key result that can be shown and that motivates the whole introduction
of the deterministic fluid model corresponding to a stochastic discrete network is
the following: a stochastic discrete queueing network is stable (rate stable) if the
equivalent deterministic fluid network is stable (resp., weakly stable).

Note the strength of the result. All that is required to construct the equivalent
fluid model, as detailed in the next section, is the mean arrival and service rate
at each buffer, besides the structure of the network, the routing and the serving
policy at each node. Stability results do not depend on the statistical distributions
of the arrival and service processes, apart from their respective mean rates.

Next, we complete the argument by giving details on the construction of the
equivalent fluid model of a stochastic discrete network. For further details and
proofs, the interested reader can refer to, e.g., [54,63].

7.5.2 Turning a Stochastic Discrete Queueing Network into a
Deterministic Fluid Network

Let us summarize the full definition of the kind of stochastic discrete queueing
network we are considering here, introducing some notation as well. The elements
constituting a stochastic discrete queueing network are the following:

1. N nodes, that provide service to customers.
2. Each node has a single server shared by customers of possibly different classes

served by that node.
3. The network contains b buffers, at least one in each node. Customers residing in

buffer i are identified as composing class i, i = 1,… , b. We define an incidence
matrix for the association buffer-node: let bij = 1 if buffer i belongs to node j;
let B be the matrix collecting the 1-0 coefficients bij.

4. 1∕𝜇i denotes the mean service time of a customer at buffer i, if the customer
is served in isolation. In other words, the service rate for a customer served at
buffer i is 𝜇i, if that is the only customer the server of the node containing buffer
i is processing.

5. Each node has a policy for sharing its single server capability among the
buffers belonging to the node. Policy requirements are only: (a) it must be
work-conserving; (b) head-of-the-line service at every buffer, i.e., there can
be at most one partially completed service in a buffer at any time. Note the

�

� �

�

388 7 Queueing Networks

condition (b) does not preclude having processor sharing policies across
buffers.

6. There is infinite waiting room at each buffer.
7. External arrivals at buffer i occur at an average rate of 𝛾i. Arrivals are indepen-

dent of each other and of the network state and service times.
8. When a customer completes service at buffer i, it either goes to buffer j ≠ i (then

we set rij = 1), or leaves the network (in that case
∑b

j=1 rij = 0). Routing is deter-
ministic, defined by the 1–0 matrix R, made up with the entries rij, i, j = 1,… , b.
We assume that I − R is invertible.

The elements above give a full description of the stochastic discrete queueing
network, as far as stability matters are of interest. If we intended to simulate the
network, we should also specify the statistical characteristics of the external arrival
processes at buffers and of the service times of each customer class, besides assign-
ing numerical values to all parameters.

Confining ourselves to the study of stability, the deterministic fluid equivalent
network is obtained by replacing the discrete flows of customers with fluids and
describing buffers as liquid containers, where fluid is poured into and drained out,
according to the given mean arrival and serving rates. To be more precise, the only
quantities that matter are the average arrival rate and the average serving rate at
each buffer. Those are converted into the input fluid rate and the drain rate out of
the buffer in the fluid network.

Example 7.9 Let us identify the deterministic fluid network associated with the
Rybko-Stolyar-Kumar-Seidman network of Example 7.8. There are N = 2 nodes
and b = 4 buffers. Following the same labels used in Example 7.8, we obtain the
4 × 2 incidence matrix B as

B =

⎡⎢⎢⎢⎢⎣
1 0
0 1
0 1
1 0

⎤⎥⎥⎥⎥⎦
(7.124)

The routing matrix is easily derived from the description of the network:

R =

⎡⎢⎢⎢⎢⎣
0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤⎥⎥⎥⎥⎦
(7.125)

The input arrival rates at the four buffers are [𝜆1 0 𝜆3 0]. and the drain rates of
fluid out of the buffers are [𝜇1 𝜇2 𝜇3 𝜇4].

Finally, as for the serving policy at node 1, the single server is assigned to drain
buffer 4 whenever there is fluid in that buffer. If buffer 4 is empty, that does not

�

� �

�

7.5 Stability of Queueing Networks 389

mean that no fluid of class 4 is being processed by node 1, just that the rate of
that fluid is less than the full serving capacity of the node. Then, whatever is left
unused by class 4 fluid of the single server capacity of node 1, is exploited by fluid of
class 1. As a consequence, the single server capacity at node 1 can be underutilized
(as a special case, idle) only if the demand of fluid summing up class 1 and class 4
is less than the server capacity. An entirely similar argument applies to node 3,
hosting buffers 2 and 3, where 2 has preemptive priority over 3.

Given a stochastic discrete network with all its parameters, we convert it into a
deterministic fluid network by preserving its structure (nodes, buffers), the deter-
ministic routing rules and specifying only the input and drain rates of each buffer.

When the only fluid at a tagged node is in one of its buffers, say buffer i, the drain
rate of that buffer coincides with the mean service rate of the node. To account for
sharing of the node single server among buffers within the node, let zi(t) denote
the amount of time allocated by the node hosting buffer i to that buffer in the time
interval [0, t]. We define the right-continuous derivative of zi(t), as 𝜁i(t) =

d
dt

zi(t).
The function 𝜁i(t) gives the fraction of the server that is devoted to buffer i at
time t. Therefore, the sum of all such fractions over the buffers of a node cannot
exceed 1, i.e.,

b∑
j=1

bij𝜁j(t) ≤ 1 , i = 1… , b (7.126)

The sum is equal to 1, if at least one buffer of the node is nonempty, given that the
node service policy is work-conserving. The fraction 𝜁j(t) depends on: (i) the input
rate at buffer j; (ii) the state of buffer j (empty or nonempty); (iii) the policy of the
server. For example, if the state of buffer j is Xj(t) = 0, then it must be 𝜇j𝜁j(t) ≤ aj(t),
i.e., the service rate granted to buffer j cannot be larger than its input rate.

Taking the instantaneous balance of input and output flow rates at buffer j, the
input fluid rate aj at buffer j is obtained as

aj(t) = 𝛾j +
b∑

i=1
𝜇i𝜁i(t)rij j = 1,… , b. (7.127)

The drain rate at buffer j in general can be identified as 𝜇j𝜁j(t), j = 1… , b.
This completes the identification of the deterministic fluid network equivalent

to a given stochastic discrete queueing network.
A last remark concerns how to assess whether a given deterministic fluid net-

work is stable or weakly stable. Essentially, it is a case-by-case study. There is no
general approach. Several examples are provided, e.g., in [86, Ch. 8]. A practical
approach consists of simulating the fluid version of the queueing network and
checking that queues get drained out of whatever initial backlog is assigned.

�

� �

�

390 7 Queueing Networks

7.6 Further Readings

The kind of open network considered in this chapter is often referred to as Jackson
network; sometimes it is referred to as migration process, e.g., see [122, Ch. 2]. The
relatively simple product form yielding the steady-state probability distribution of
the number of customers in each queue of the network holds if the queueing net-
work nodes offer: (i) state-dependent service (e.g., multi-server queues with a finite
number of servers) with negative exponential service times; and (ii) infinite server
queues and general renewal service times [86, Ch. 6]. Several generalizations are
possible, while still retaining the strong property of a product-form solution for the
joint state probability distribution. Some of the main generalizations still retaining
the product form solution are:

● Deterministic routing. Unlike the memoryless routing model, we define a set
of routes through the network. Arriving customers are associated with one route
of . The route specifies the sequence of queues that the associated customer
visits orderly before leaving the queueing network.

● Multi-class networks. K different classes of customers are defined, each one char-
acterized by its own arrival rate and routing probabilities at each queue. When
leaving queue i a customer of class k can either leave the network with probabil-
ity ri0(k), or it can join queue j as a customer of class h with probability rij(k, h).
Admissible serving policies at the queues are FCFS, processor sharing or LCFS
with preemptive resume policy.

● BCMP networks. This concept was originally introduced in the paper by Bas-
kett, Chandy, Muntz, and Palacios [25]. A summary can also be found in [196,
Ch. 15].

Combinations of features from various generalization paradigms are possible as
well, e.g., Kelly networks [121].

Moving from exact solutions to approximation, a wealth of models has been ana-
lyzed, including G∕G queueing networks, i.e., networks where component queues
exhibit general i.i.d. service times and external arrivals form general renewal pro-
cesses. Fluid approximations are also available for even more general distribu-
tional assumptions. Another generalization that can be dealt with by means of
approximation is priority queueing networks, both global (priorities are assigned
to customers when they arrive at the network and they do not change as customers
move inside the network) or local priorities (a customer can change its priority
level at any visited queue). For more details, the interested reader can refer to
[86] for an excellent introductory, yet extensive treatment, with many numerical
examples. Specialized references for approximate solution of queueing network
are [37, 206, 54].

�

� �

�

Appendix 391

The product-form solution is intimately related to a property of the underly-
ing Markov process described by the queueing network state Q(t). Specifically, the
key property is the reversibility, which amounts to saying that, if Q(t) is a Markov
process and it is reversible, then Q(−t) is a Markov process as well.

A deep theoretical foundation of queueing networks along with many general
results is available in Chen and Yao [54]. Besides [54], recent results are reviewed
also in Serfozo [188] and Chao, Miyazawa, and Pinedo [53]. Gautam [86] gives a
quite extensive account of the queueing network topic, at a more accessible level.
The deep connection between reversibility of Markov chains and queueing net-
work is explored in depth in Kelly [121].

Appendix

Let us consider a graph . Let V denote the set of vertices or nodes of the graph and
E the set of edges (also referred to as links or arcs) of the graph. E is a subset of the
Cartesian product V × V . A graph is called undirected if (i, j) ∈ E ⇒ (j, i) ∈ E. It is
called directed in the opposite case, i.e., if there exists even a single pair (i, j) ∈ E
for which (j, i) ∉ E. It is customary to draw the graph by representing nodes with
circles and edges with lines connecting the circles. In the case of directed graphs
the lines are actually arrows, to represent the direction of the edge (from i to j).
With undirected graphs there is no need to draw arrows. Let n = |V | be the number
of nodes and 𝓁 = |E| be the number of edges.

A graph is a very useful model for representing interactions. In the framework
of communication networks, it is useful to describe connectivity as seen at a given
architectural level. The interpretation of nodes and edges depends on the consid-
ered architectural level, e.g., nodes can be routers and edges subnets connecting
them at IP level or switches connected with physical links at layer 2 (e.g., in an
ethernet network).

If a function w ∶ E → ℝ is defined, we say the graph is weighted. The weight of
arc (i, j) is denoted with wij.

A path from i to j is an ordered sequence of nodes k1, k2,… , km such that the
edges (i, k1), (k1, k2),… , (km, j) all belong to E. A path from node i to node j is
denoted with P(i, j). A path with i = j is called a loop. In networking applications
usually one is interested in paths between nodes i and j, with i ≠ j that do not
include loops, i.e., such that there are not two indices a and b so that ka = kb. For
ease of notation, we let a, b = 0, 1,… ,m + 1, extending the definition of kj with
k0 = i and km+1 = j.

A graph is strongly connected if there exists a path P(i, j) for all i, j ∈ V with
i ≠ j. To assess the connectivity of an undirected graph, it suffices to check that
there exists a node i such that the paths P(i, j),∀j ∈ V ∖ {i} can be found. Given any

�

� �

�

392 7 Queueing Networks

two other nodes, h and k, a path connecting them can be obtained as the union
of the two paths P(k, i) and P(i, h). These last two paths exist necessarily, since
P(k, i) = P(i, k), the graph being undirected. In words, if a node x communicates
with any other node of the graph, any two nodes communicate through x. The
node x plays the role of a “hub” node. Note that it is key that edges are not directed
for this property to hold.

In an undirected graph the degree of node i is the number of edges (i, j) ∈ E for
all j ∈ V , i.e., the number of edges outgoing from node i. This coincides with the
number of edges pointing at i from any other node of the graph. We denote the
degree of i with di. It is a non-negative integer number. If di = 0, node i is isolated.
In a directed graph we distinguish between in-degree of node i, i.e., the number of
edges pointing at node i, and out-degree, i.e., the number of edges coming out of
node i.

Let A denote a 1-0 matrix, called the adjacency matrix, defined as follows: aij = 1
if and only if (i, j) ∈ E. For an undirected graph aij = 1 ⇒ aji = 1, i.e., the matrix A
is symmetric.

The Laplacian of a graph is an n × n matrix L defined as follows:

● Lii = di, where di is the degree of node i;
● Lij = −1 if and only if (i, j) ∈ E.

We can write:

L = D − A (7.128)

where D is a diagonal matrix whose i-th diagonal element is di and L is the Lapla-
cian matrix. L is a symmetric matrix, if the graph is undirected. The sum of each
row and each column of L is 0. Therefore, 0 is always an eigenvalue of L.

The incidence matrix of a graph is an 𝓁 × n matrix M defined as follows:

● Mki = 1, if link k is outgoing from link i;
● Mki = −1, if link k is incoming into node i;
● Mki = 0, otherwise.

It can be verified that:

L = 1
2

MTM

Hence L is a positive semi-definite matrix, i.e., xTLx ≥ 0 for any vector x. Being a
positive semi-definite and symmetric matrix (for an undirected graph), the eigen-
values of L are real and non-negative. We already know that L has an eigenvalue
equal to 0. Let the algebraic multiplicity of the eigenvalue 0 be 𝜈. It can be shown
that the graph breaks up into 𝜈 connected components. Therefore, the graph is
connected if 𝜈 = 1. This, in turn, implies that the second smallest eigenvalue of the

�

� �

�

Appendix 393

Algorithm Pseudo-code of the breadth-first-search algorithm.

1: for each node n ∈ V do
2: n.distance = ∞;
3: n.parent = NIL;
4: end for
5: create empty queue Q;
6: root.distance = 0;
7: Q.enqueue(root);
8: while Q ≠ ∅ do
9: c = Q.dequeue();

10: for each node n ∶ acn = 1 do
11: if n.distance = ∞ then
12: n.distance = c.distance + 1;
13: n.parent = c;
14: Q.enqueue(n);
15: end if
16: end for
17: end while

Laplacian must be positive. This property can be exploited to set up a test for graph
connectivity.

Alternatively, it can be shown that the graph is connected if the adjacency matrix
is irreducible. This means that there does not exist a relabeling of nodes such that
the adjacency matrix can be put into the following structure:

A =
[

A11 𝟎
A21 A22

]
It can be verified that the n × n matrix A is irreducible if and only if

I + A + A2 + · · · + An−1
> 𝟎

where the inequality is understood as entry-wise. Finally, checking the con-
nectivity of an undirected graph can be carried out also by resorting to the
breadth-first-search algorithm. A pseudo-code of the breadth-first-search algo-
rithm is shown above. It assumes that a graph (V ,E) and a node “root” are
assigned. Starting from the root node, the algorithm visits neighboring nodes,
then neighbors of neighbors and so on, until no new node can be visited. To know
if the graph is connected it suffices to check whether the number of visited nodes,
other than the root node, is equal to n − 1.

�

� �

�

394 7 Queueing Networks

Numerical experience with growing n shows that the breadth-first-search algo-
rithm is by far the most computationally efficient algorithm among those pre-
sented in this Appendix.

Summary and Takeaways

This chapter provides an introduction to a powerful class of models, namely net-
works of queues. The topic has received wide attention over several decades, and
many results and generalizations are available. Here we focus on Jackson-type
networks, both open and closed, and on loss networks. Even though those are
rather simple models, they provide useful tools for modeling service systems net-
works and protocols. We have addressed optimization over a queueing network
(link capacity dimensioning to minimize the mean end-to-end delay, optimal rout-
ing) and numerical issues, related to the evaluation of the normalization constant
of a closed queueing network. Queueing networks are a rich enough model to
easily give rise to counterintuitive results. We have presented the Braess para-
dox, which warns about improving performance of a network by adding capacity.
Another interesting issue is stability of a queueing network. In Jackson-type net-
works we have seen that stability (hence the existence of a statistical equilibrium,
steady-state regime) depends only on the utilization coefficient of each queue of
the network being less than 1. This is not necessarily the case in general queue-
ing networks, where priorities and/or reentrant customer flows can be defined.
Interested readers can further investigate the references discussed in the Further
Readings section of this chapter.

Problems

7.1 In an archival system, files undergo two kinds of processing. Task 1 is per-
formed by server 1, to which files are offered according to a Poisson process
of mean rate 𝜆 = 0.3 s−1. After completing task 1, files are submitted to
server 2 that is in charge of running task 2. Service times at the two servers
have negative exponential PDFs with mean E[X1] = 1 s and E[X2] = 2 s,
respectively.
(a) Evaluate the mean response time of the whole system.
(b) The system is rearranged by having a unique server do both tasks. The

mean service time of the new server is the sum of the mean service
times of the two servers. Compare the mean system response time of
this new solution with the previous one. Give an intuitive explanation
of the result.

�

� �

�

Problems 395

7.2 An ISP Point of Presence (PoP) is made up of N routers. Time to off-line
maintenance of a router has a negative exponential probability distribution
with mean value 300 days. There is only one technician in service at the PoP,
at any time (multiple workers alternate on daily shifts). The maintenance
time of a router has a negative exponential probability distribution with
mean 4 hours. Find the minimum value of N that guarantees that there are
at least six routers operational at any given time with probability no less
than 0.999.

7.3 An urban area is connected by a ring network comprising N = 7 nodes.
Node 1 is a gateway to the Internet, while the other six nodes are the access
nodes of six different local networks. All the traffic from local networks
(upstream traffic) is addressed to the Internet: the corresponding mean bit
rate for each local network is Rout = 100 Mbit/s. The traffic coming from
the Internet and directed to the local networks (downstream traffic) is uni-
formly distributed among them. The overall mean bit rate of that traffic is
Rin = 1 Gbit/s. Both traffic flows can be modeled as Poisson processes at
the packet level. Packet lengths are random variables, with negative expo-
nential distribution, and the mean packet length is L = 500 bytes. The links
connecting neighboring nodes are bidirectional, with a capacity C in each
direction.
(a) Identify a queueing model of the ring network at packet level.
(b) Find the minimum value of C that guarantees that the utilization coef-

ficient in each link is not greater than 0.8.
(c) Find the mean delay from node 1 to each other node with the dimen-

sioning of point (b).

7.4 Consider an ISP network with J links connecting routers. The offered traffic
matrix and the routing in the network are such that it is possible to maintain
link utilization equal to a constant value 𝜌0 = 0.7 for all links. The volume
of the overall input traffic is increased by 10% (i.e., the mean rate of each
flow of packets offered to the network is increased by 10%). Calculate the
percentage increase of the mean delay of a packet through the network.

7.5 A packet network is made up of 𝓁 links. The mean offered packet rate to the
whole network Γ and the internal network routing are so engineered that
the mean load on each link has a same value 𝜌0. The propagation delay of
the i-th link is 𝜏i, for i = 1,… ,𝓁.
(a) Define an open queueing network model of the network and give the

expression of the mean delay through the i-th link, by accounting for the

�

� �

�

396 7 Queueing Networks

propagation delay. [Hint: the mean delay through a link is the sum of
the queueing and the propagation delays.]

(b) Write the expression of the mean delay through the network E[D], by
using the result obtained in point (a).

(c) Find the admissible value of 𝜌0 under the requirement that
E[D] ≤ 4𝓁∕Γ, if the average bandwidth delay product of the network
links is three times the mean packet length.

7.6 A factory is made up of M machines. Times to failure and times to repair
can be modeled as random variables with negative exponential probability
distribution, independent of one another for all machines. Their respective
mean values are 𝜆 = 1 failure/year and 1∕𝜇 = 1 week. A single repairman
is available.
(a) Define a closed queueing network model of the system for a generic M

and calculate the state probabilities at equilibrium.
(b) Calculate the probability P(𝛽) that at least a fraction 𝛽 ∈ (0, 1) of the

M machines are working. Find the numerical value for 𝛽 = 0.9 and
M = 100.

7.7 Let us consider an asymmetric bidirectional communication system
between two endpoints A and B (e.g., A is a server and B is a host). A TCP
connection is set up between A and B. A sends data segments of length
L1 to B. B sends ACK segments of length L2 back to A, one ACK per data
segment. The link from A to B has a capacity C1, the other link has a
capacity C2. At any given time there are W data segments in flight, i.e.,
A has sent them and is still waiting for their ACKs.
(a) Define a closed queueing network model of the communication system

and find the state probabilities at equilibrium.
(b) Calculate the utilization coefficients of link 1 (from A to B) and link 2

(from B to A) as a function of the variables L1, L2, C1, C2, and W .
(c) Find the value of C2 such that the two utilization coefficients are equal

by assuming L1 = 1500 bytes, L2 = 50 bytes and C1 = 30 Mbit/s. Then,
calculate the utilization coefficient as a function of W and for W = 7.

7.8 Two communication paths connect the same two end points. They have the
same capacity C and they are used in load balancing mode. Each of them
can fail independently of the other: the time to failure of a working path
has a negative exponential PDF with parameter 𝜈. A failed path goes into
a repair process that restores the path in a time R, where R is a negative
exponential random variable with mean 1∕𝜇. A single repair team operates

�

� �

�

Problems 397

at any time, when required. Assume 1∕𝜈 = 4 days, 1∕𝜇 = 4 hours and C = 1
Gbit/s.
(a) At time t0 one link fails, while the other one is still operational. What is

the probability that the failed link is restored before the other one fails
as well?

(b) Define a queueing model to describe the failure-restore evolution of the
two paths system [Hint: you can use a closed queueing network; alter-
natively, you could use a simple birth-death Markov process].

(c) Given the model defined in point (b), calculate the unavailability PU
of the two paths system [unavailability=probability that the two end
points are disconnected].

(d) Calculate the average available capacity to connect the two end points.

�

� �

�

399

8

Bounds and Approximations

It is the mark of an educated mind to rest satisfied with the degree of precision
which the nature of the subject admits and not to seek exactness where only an
approximation is possible.

Aristotle

8.1 Introduction

In spite of an impressive amount of exact and elegant results for stochastic mod-
els and, specifically, for queues, it is infrequently the case that a service system
can be analyzed with a model yielding to exact analysis. Even if the aim of an
analytic model is to grasp the key properties of a system and to gain insight in
the fundamental trade-offs, achieving this target may require accounting for more
details or stochastic characteristics than those that could feasibly be captured by
a model solvable in closed form. Hence, approximations are commonplace in the
application of network traffic engineering.

The first part of the chapter is concerned with approximations for general queue-
ing models, namely G∕G∕1 and G∕G∕m. We restrict our discussion to the case of
renewal arrival and service processes. Both bounds and approximations are dis-
cussed, mainly for the mean waiting time (or system time). We also provide an
upper bound of the probability distribution of the system time of a G∕G∕1 queue.
We discuss a continuous-state approximation of the G∕G∕1 queue, based on the
reflected Brownian motion process. This approach stems as an example of a gen-
eral approach where a strong simplification of the analysis can be obtained by
forgetting about the discrete nature of the queueing system.

Network Traffic Engineering: Stochastic Models and Applications, First Edition. Andrea Baiocchi.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

�

� �

�

400 8 Bounds and Approximations

The second part of the chapter is devoted to fluid models. The common feature
of this kind of modeling is to use continuous-state processes to describe service sys-
tems, neglecting the discrete character of the customers. More generally, there are
systems that are naturally modeled as having a continuous state varying over con-
tinuous time (e.g., dams or water basins). In other contexts (e.g., computer, com-
munications, and transportation systems) discrete models are usually the most
natural approach to describe the operation of the service system. Continuous-state
processes arise as approximations. Their main merit is to defeat the state-space
explosion that affects many discrete-state models for practical parameter ranges.

For example, let us consider a Markov modulated arrival process, where the
modulating phase process has J states. The arrival process can be a Poisson
process, whose mean rate is a function of an irreducible, positive recurrent
continuous-time Markov chain with J states. If the arrival stream (e.g., pack-
ets) is offered to a buffer of size K, the entire system could be described by a
two-dimensional discrete process (j, k). The first component j ∈ {0, 1,… , J}
represents the state of the modulating phase process. The second component
k ∈ {0, 1,… ,K} represents the number of packets in the buffer (including the
one possibly under service). The state space has size (J + 1) × (K + 1). If both J
and K are in the order of 100, the state space size is in the order of 104 states,
which makes it hard to deal with it as a Markov chain. If modeling is done via
Markov chain of dimensionality higher than two, the explosion of the state space
can easily forbid the practical implementation of the model analysis.

A fluid model can circumvent this issue by modeling the content of the buffer
as a continuous level x ranging from 0 up to K. The resulting description falls into
the category of a stochastic fluid flow model. The state space size reduces to J + 1,
the size of the modulating process. The complexity of the two-dimensional big
state space is shifted to the mathematical relationship that involves the probabil-
ity distribution of the joint variables (j, x). As we will see, such joint probability
distribution is the solution of a system of first-order differential equations, with
suitable boundary conditions. The key points here are:

● In various interesting cases an analytical solution can be derived for the system
of differential equations.

● If a closed-form solution cannot be found, the implicit description of the joint
probability distribution by means of the system of differential equations can
provide useful qualitative information on the behavior of the solution or for
developing approximations.

● There exist many well-established and reliable numerical solvers for systems of
differential equations of the first-order, so that the probability distribution can
be obtained at least numerically with relative ease and often at a very reasonable
computational cost.

�

� �

�

8.2 Bounds for the G∕G∕1 Queue 401

We present the fluid approximation both as a limit of a suitably scaled version
of the original queueing process and as a direct approximation of the original
discrete-state process describing the service system.

With reference to the latter use of the fluid model, we introduce a stochastic fluid
flow model, where the rate of input fluid is modulated by a finite-state Markov
process. This is a simple example of how fluid modeling leads to tractable models
under quite sophisticated queueing settings. Even more general frameworks yield
to analysis via fluid modeling, e.g., queues where the input or service processes are
time-varying, or driven by semi-Markov processes, or (possibly nonlinear) func-
tions of system state. Fluid modeling is also useful for transient analysis.

There is a vast literature on bounds and approximations, encompassing intro-
ductory material and specialized monographs and papers. Good introductory
material can be found in [131, Ch. 2] and [94, Ch. 7]. The former gives an
excellent account of the diffusion approximation. An extensive treatment of the
fluid approximation and of stochastic fluid models can be found in [86, Chs. 8,
9, 10]. The same book offers also a good introduction to approximate analysis of
queueing networks. Pointers to specific in-depth sources are given in Section 8.5.

One aspect of solving models to obtain performance measures is numerical eval-
uation of the model. This is a crucial and essential part of network traffic engi-
neering. It is often the case that issues can be dealt with by resorting to standard
numerical analysis tools (e.g., numerical integration, differential equation solvers,
linear algebra numerical tools). Two specialized topics emerging in network traffic
engineering model evaluation are: (i) numerical inversion of Laplace transforms
of PDFs; and (ii) numerical solution of a Markov chain, i.e., computation of the
limiting state probabilities. As for the first topic, an excellent survey of best meth-
ods is provided by Abate and Whitt [1–3]. Numerical evaluation of Markov chain
is covered in a neat and extensive way in [196, Ch. 10].

8.2 Bounds for the G∕G∕1 Queue

We consider a single server queue with independent, general renewal processes
for arrivals and service times. The G∕G∕1 queue can be considered the simplest
model which is beyond easy mathematical analysis. Anyway, it is rather straight-
forward to generate a sequence of waiting or system times for this queue, once
sequences of inter-arrival times and service times are given, either estimated from
measurements or drawn from assigned probability distributions.

The main notation used in this chapter, specifically for the analysis of G∕G∕1
queues, are listed in Table 8.1.

Let {Tn}n≥1 and {Xn}n≥1 denote the sequence of inter-arrival times and service
times, respectively. Let also An and Dn denote the arrival and departure time of the

�

� �

�

402 8 Bounds and Approximations

Table 8.1 Main notation for the G∕G∕1 queue.

Symbol Definition

An arrival time of the n-th customer
Dn departing time of the n-th customer
Tn inter-arrival time between customer n − 1 and n, i.e., Tn = An − An−1.
Xn service time of the n-th customer.
Un inter-departure time of the n-customer, i.e., Un = Dn − Dn−1.
Wn waiting time of the n-th customer.
Sn system time of the n-th customer, i.e., Sn = Wn + Xn.
λ mean arrival rate, assuming the arrival process is (wide-sense) stationary:

λ = 1∕E[Tn].
𝜎T standard deviation of arrival times, assuming the arrival process is (wide-sense)

stationary.
C2

T squared coefficient of variation (SCOV) of arrival times: C2
T = λ2

𝜎
2
T .

𝜇 mean service rate, assuming the service process is (wide-sense) stationary:
𝜇 = 1∕E[Xn].

𝜎X standard deviation of service times, assuming the service process is
(wide-sense) stationary.

C2
X squared coefficient of variation (SCOV) of service times: C2

X = 𝜇
2
𝜎

2
X .

n-th customer. We assume that no customer is rejected. We assume also first-come,
first-served (FCFS) service order. Setting initially A0 = D0 = 0, we derive easily the
following iterations for n ≥ 0:

An+1 = An + Tn+1 (8.1)

Dn+1 = max{Dn,An+1} + Xn+1 (8.2)

Wn+1 = max{0,Dn − An+1} (8.3)

Sn+1 = Dn+1 − An+1 = Wn+1 + Xn+1 (8.4)

where Wn and Sn are the waiting and system times of the n-th customer,
respectively. For those iterations to hold, we require that the single server is
work-conserving and offers head-of-line (HOL) service. Work-conserving means
that the server cannot stay idle if there is at least one customer in the queueing
system. HOL service means that there cannot be more than one customer under
service at any given time.

From eqs. (8.1)–(8.4) the well known Lindley’s recursion for a single-server
queue can be deduced:

Wn+1 = max{0,Wn + Xn − Tn+1} , n ≥ 1, (8.5)

�

� �

�

8.2 Bounds for the G∕G∕1 Queue 403

initialized with W1 = 0. Wn is the amount of workload found in the queue by the
n-th customer upon arrival.

Note that eqs. (8.2)–(8.4) hold for any work-conserving, HOT serving discipline,
provided that the subscript n denotes the n-th departing customer. For eq. (8.1) to
hold as well, service must be offered according to FCFS queueing policy. In that
case, the n-th departing customer is also the n-th arriving customer. In the rest of
the chapter, we assume FCFS service, unless stated otherwise. We also assume that
service times are positive with probability 1 and that the arrival process is nonde-
generate and both stochastic sequences are wide-sense stationary, with finite mean
and variance.

Equation (8.5) generates the sequence of waiting times, even for nonstationary
or unstable G∕G∕1 queues, for any finite time horizon. Obviously, the sequence
{Wn}n≥1 provides an estimate of E[W] (or of any other steady-state statistics of
the random variable W) only if the steady state exists, i.e., the arrival and service
process are stationary and the queue is stable. The condition for the G∕G∕1 queue
to be stable is E[X] < E[T]. If we introduce the arrival and service rates, namely
λ = 1∕E[T] and 𝜇 = 1∕E[X], this is stated as λ < 𝜇 or 𝜌 < 1, where 𝜌 ≡ λ∕𝜇 is the
utilization coefficient of the server.

Example 8.1 As a numerical example, we assume inter-arrival times uniformly
distributed in the interval [Tmin,Tmax] and service times with a Pareto probability
distribution with complementary cumulative distribution function (CCDF)
GX (x) = min{1, (𝜃∕x)𝛽}.

The first two moments of the inter-arrival times are

E[T] = 1
λ
=

Tmin + Tmax

2
𝜎

2
T =

(Tmax − Tmin)2

6
(8.6)

As for the service times, we have (𝛽 > 2)

E[X] = 𝛽𝜃

𝛽 − 1
E[X2] = 𝛽𝜃

2

𝛽 − 2
(8.7)

We set Tmin = 0, Tmax = 2, so that E[T] = 1 is assumed to be the time unit. More-
over, we let 𝛽 = 2.25, while 𝜃 is found by assigning a value of 𝜌 = 𝛽

𝛽−1
λ𝜃. For this

numerical example, we let 𝜌 = 0.8, hence 𝜃 = 0.444.
The mean and squared coefficient of variation (SCOV) of the inter-arrival and

service times are E[T] = 1, C2
T = 0.667, E[X] = 0.8, C2

X = 1.778.
The first 1000 samples of the sequence of waiting times Wn are plotted against

time in Figure 8.1.
The high variability of waiting times, due to the high SCOV of the service times,

is apparent from the sequences of relatively low levels of waiting times interleaved
by sudden peaks.

�

� �

�

404 8 Bounds and Approximations

0 200 400 600 800 1000

Time

0

5

10

15

W
a
it
in

g
 t
im

e

Figure 8.1 Sample path of the
waiting time of a G∕G∕1 queue.
The utilization coefficient is
𝜌 = 0.8. Inter-arrival times are
uniformly distributed over [0, 2];
service times follow a Pareto
distribution with CCDF
min{1, (0.444∕x)2.25}.

8.2.1 Mean Value Analysis

Let us consider a stochastic sequence Xn converging to a proper random variable
X as n → ∞. A mean value analysis (MVA) consists of a set of formulas that can
be used to derive the mean value of X , i.e., limn→∞E[Xn].

We apply the MVA to waiting time of a G∕G∕1 queue, thus deriving an exact
result. The exact result is however of little use in practice, except that it can be the
starting point for deriving approximations and bounds of the mean waiting time.

We assume that the limits of the first two moments of Wn as n → ∞ exist and
are positive and finite. Notation is as defined in Table 8.1.

The time spent by customer n + 1 in the queue is the sum of the waiting time
Wn and of the service time Sn:

Sn+1 = Xn+1 + Wn+1 = Xn+1 + max{0,Dn − An+1} (8.8)

The last equality follows from the fact that customer n + 1 has to wait only if
its arrival time An+1 occurs before the departure time of the previous customer n.
Note that, by definition, it is Sn = Dn − An; then

Dn − An+1 = Dn − An + An − An+1 = Sn + An − An+1 = Sn − Tn+1 (8.9)

Moreover

max{0,An+1 − Dn} ≡ In+1 (8.10)

represents the idle time occurring between the departure of customer n and the
arrival of the following customer n + 1. The idle time In+1 is 0, if customer n + 1 is
already in the queue when customer n departs.

Exploiting those definitions, we can modify (8.8), thus obtaining

Sn+1 = Xn+1 + Dn − An+1 + max{0,An+1 − Dn} = Xn+1 + Sn − Tn+1 + In+1 (8.11)

�

� �

�

8.2 Bounds for the G∕G∕1 Queue 405

Taking expectations of (8.11) and then the limit for n → ∞, we get

E[Sn+1] = E[Xn+1] + E[Sn] − E[Tn+1] + E[In+1] , ∀n ≥ 1, (8.12)

and

lim
n→∞

E[In+1] = E[I] = E[T] − E[X] = 1
λ
− 1

𝜇
(8.13)

Under the hypotheses required for this limit to exist (queue stability), it is λ <

𝜇, hence E[I] > 0. This is but one more manifestation of a general trait of stable,
ergodic system, namely they must visit all possible states with positive probability,
including the idle state, where the queue is empty. Then, the mean fraction of time
spent in the idle state in the statistical equilibrium regime must be positive.

To obtain the mean of Sn we first square eq. (8.11), take the expectation and then
the limit for n → ∞. Before proceeding, we rearrange (8.11) as follows:

Sn+1 − Xn+1 − In+1 = Sn − Tn+1 (8.14)

In doing this we account for four facts:

1. Sn+1 − Xn+1 = Wn+1 is independent of Xn+1.
2. (Sn+1 − Xn+1)In+1 = Wn+1In+1 = 0, since, if customer n + 1 suffers a nonzero

wait, the idle time preceding its service must be 0; on the contrary, if the idle
time preceding the service time of customer n + 1 is positive, it means that the
server went idle after completing service of customer n, hence customer n + 1
finds the server idle upon its arrival and suffers no delay.

3. Sn and Tn+1 are independent of each other, since in the G∕G∕1 queue arrivals
and service times form independent renewal processes.

4. Sn depends only on inter-arrival and service times up to those of the n-th cus-
tomer.

Then, we have

E[(Sn+1 − Xn+1)2] + E[I2
n+1] = E[S2

n] + E[T2
n+1] − 2E[Sn]E[Tn+1] (8.15)

whence

E[W2
n+1] + E[I2

n+1] = E[W2
n] + E[X2

n] + 2E[Wn]E[Xn] + E[T2
n+1] − 2E[Sn]E[Tn+1]

(8.16)

where we have used Sn = Wn + Xn. By taking the limit for n → ∞, we find

E[I2] = E[X2] + E[T2] + 2E[W](E[X] − E[T]) − 2E[X]E[T] (8.17)

�

� �

�

406 8 Bounds and Approximations

Rearranging terms, we derive an expression for the mean waiting time

E[W] = E[X2] + E[T2] − 2E[X]E[T] − E[I2]

2
(

1
λ
− 1

𝜇

)
= λ

1+C2
X

𝜇2 + 1+C2
T

λ2 − 2
𝜇λ

− E[I2]

2(1 − 𝜌)

=
𝜌

2C2
X + C2

T + (1 − 𝜌)2 − λ2E[I2]
2λ(1 − 𝜌)

(8.18)

Since we have shown that E[I] = 1
λ
− 1

𝜇
= (1 − 𝜌)∕λ and 𝜎

2
I = E[I2] − E[I]2 ≥ 0,

we have E[I2] ≥ E[I]2 = (1 − 𝜌)2∕λ2. Therefore, we have (1 − 𝜌)2 − λ2E[I2] ≤ 0 and
an upper bound is easily derived from (8.18):

E[W] =
𝜌

2C2
X + C2

T + (1 − 𝜌)2 − λ2E[I2]
2λ(1 − 𝜌)

≤ 𝜌
2C2

X + C2
T

2λ(1 − 𝜌)
=

λ(𝜎2
X + 𝜎

2
T)

2(1 − 𝜌)
(8.19)

The upper bound on the rightmost side of eq. (8.19) is also known as Kingman’s
bound of the mean waiting time of the G∕G∕1 queue. We will derive it in a differ-
ent way in Section 8.2.3. It is remarkable that we can express a meaningful upper
bound of the G∕G∕1 queue with renewal arrival and service times by means only
of the first two moments of the arrival and service processes.

8.2.2 Output Process

In a subsequent section we will present an approximate analysis of a network of
G∕G∕1 queues. A piece of that analysis relies on the expression of the first two
moments of the output process of a G∕G∕1 queue, given the first two moments of
the input process and of the service times.

Let Un+1 = Dn+1 − Dn denote the inter-departure time of the (n + 1)-customer.
We know that Dn+1 = max{An+1,Dn} + Xn+1. Then

Un+1 = max{An+1,Dn} + Xn+1 − Dn = max{An+1 − Dn, 0} + Xn+1 = In+1 + Xn+1

It is easy to derive the mean of the inter-departure time

E[U] = lim
n→∞

E[Un] = E[I] + E[X] = 1
λ

(8.20)

This is an expected result for a lossless, stable queueing system.
As for the second moment of U, we exploit the independence of Xn+1 and In+1

to find:

E[U2] = lim
n→∞

E[U2
n] = E[I2] + E[X2] + 2E[I]E[X] =

= E[I2] +
1 + C2

X

𝜇2 + 2 1 − 𝜌

λ
1
𝜇

= E[I2] −
(

1
λ
− 1

𝜇

)2

+ 1
λ2 +

C2
X

𝜇2

�

� �

�

8.2 Bounds for the G∕G∕1 Queue 407

Reminding eq. (8.18) we obtain

C2
U =

𝜎
2
U

E[U]2 = λ2E[U2] − 1 = 𝜌
2C2

X + λ2E[I2] − (1 − 𝜌)2

= C2
T + 2𝜌2C2

X − 2λ(1 − 𝜌)E[W] (8.21)

The exact knowledge of the second moment of the output process is hence equiv-
alent to knowing the exact expression of the mean waiting time.

Summing up, the first two moments of the output process of the G∕G∕1 queue
are given by:{

E[U] = 1
λ

C2
U = C2

T + 2𝜌2C2
X − 2λ(1 − 𝜌)E[W]

(8.22)

8.2.3 Upper and Lower Bounds of the Mean Waiting Time

We can derive an upper bound for the mean waiting time of the G∕G∕1 queue
in a different way, with respect to the bound found at the end of Section 8.2.1.
Beside its own interest, the new approach leads us to derive also a lower bound for
the mean waiting time of the G∕G∕1 queue. We maintain the same notation and
assumption as in the previous subsections. The subscript n denotes the n-th depart-
ing customer. We also introduce the sequence of random variables Zn defined as
Zn = Xn − Tn+1. Since inter-arrival and service times form renewal processes, we
have Zn ∼ Z, ∀n, where Z is a random variable with first two moments E[Z] =
E[X] − E[T] = 1∕𝜇 − 1∕λ < 0 and 𝜎

2
Z = 𝜎

2
X + 𝜎

2
T .

We know that the sequence of waiting times Wn follows Lindley’s recursion in
eq. (8.5), that we rewrite here as

Wn+1 = max{0,Wn + Zn}, n ≥ 1 (8.23)

where Zn = Xn − Tn+1, n ≥ 1. We define also

W−
n+1 = −min{0,Wn + Zn} (8.24)

It is easy to check that Wn+1W−
n+1 = 0 and

Wn+1 − W−
n+1 = Wn + Zn, n ≥ 1 (8.25)

Note that Wn is independent of Zn. Taking squares of both sides and expectations
we get

E[W2
n+1] + E[(W−

n+1)
2] = E[W2

n] + E[Z2
n] + 2E[Wn]E[Zn] (8.26)

Taking expectations of eq. (8.25) yields

E[Wn+1] − E[W−
n+1] = E[Wn] + E[Zn] (8.27)

�

� �

�

408 8 Bounds and Approximations

Assume the steady state exists, for which it is necessary and sufficient that
𝜌 = λ∕𝜇 < 1. From eqs. (8.27) and (8.26), we derive as n → ∞:

E[W−] = −E[Z] (8.28)

and

E[(W−)2] = E[Z2] + 2E[W]E[Z] (8.29)

Putting these two equations together, we find

E[W] = −E[Z2]
2E[Z]

+ E[(W−)2]
2E[Z]

=
𝜎

2
Z − 𝜎

2
W−

−2E[Z]
=

𝜎
2
X + 𝜎

2
T − 𝜎

2
W−

2(1∕λ − 1∕𝜇)
(8.30)

Since variances are non-negative, an upper bound of E[W] is easily obtained as:

E[W] ≤ λ(𝜎2
X + 𝜎

2
T)

2(1 − 𝜌)
(8.31)

Equation (8.31) yields again Kingman’s bound of eq. (8.19).
The approach used to derive the upper bound can be used to obtain a lower

bound as well. First, note that W− = max{0,−W − Z} = max{0,T − (W + X)} ≤
T. Hence, it follows that E[(W−)2] ≤ E[T2]. Plugging this inequality into eq. (8.30),
we get

E[W] = −E[Z2]
2E[Z]

+ E[(W−)2]
2E[Z]

= E[Z2] − E[(W−)2]

2
(

1
λ
− 1

𝜇

) ≥

≥ λ
𝜎

2
Z + E[Z]2 − E[T2]

2(1 − 𝜌)
= λ

𝜎
2
X + 𝜎

2
T + 1

λ2 +
1
𝜇2 −

2
λ𝜇

− 𝜎
2
T − 1

λ2

2(1 − 𝜌)
=

=
λ2
𝜎

2
X + 𝜌(𝜌 − 2)
2λ(1 − 𝜌)

The lower bound can become negative and in that case it is of no use.
Summing up, we have the following bounds for the mean waiting time of the

G∕G∕1 queue:

max

{
0,

λ2
𝜎

2
X + 𝜌(𝜌 − 2)
2λ(1 − 𝜌)

}
≤ E[W] ≤ λ(𝜎2

X + 𝜎
2
T)

2(1 − 𝜌)
(8.32)

Example 8.2 With the same probability distributions and numerical values as in
Example 8.1 we estimate the mean waiting time from a simulation of the G∕G∕1
queue (106 samples have been generated). The mean waiting time estimated from
the simulation is compared with upper and lower bounds as provided by eq. (8.32).
This has been done for several values of 𝜌 and the results are plotted in Figure 8.2
as a function of 𝜌.

�

� �

�

8.2 Bounds for the G∕G∕1 Queue 409

Figure 8.2 Comparison among
the mean waiting time and its
upper and lower bounds for a
G∕G∕1 queue as a function of
the utilization coefficient 𝜌. The
inter-arrival times are uniformly
distributed over [0, 2]; service
times follow a Pareto
distribution with CCDF
min{1, [(𝜌∕1.8)∕x]2.25}.

0 0.2 0.4 0.6 0.8 1

Coefficient of utilization, ρ

0

5

10

15

20

M
e

a
n

 w
a

it
in

g
 t

im
e

 E
[W

]

Simulation

Upper bound

Lower bound

The bounds are not especially tight, still they provide useful information. While
the lower bound is very loose, the upper bound gives a reasonable overestimate of
the mean waiting time and becomes asymptotically tight as 𝜌 → 1.

It is to be noted that estimating the mean waiting time of this particular queue is
tricky. Since the variance of the waiting time depends on the third moment of the
service time, but in this case that moment is not finite (𝛽 should be greater than 3 to
yield a finite third moment), it follows that the waiting time has infinite variance.
It is therefore an extremely “unstable” random variable. Running different simu-
lations can provide estimates that depart significantly, possibly even breaking the
belt traced by the upper and lower bounds. In that case, the problem lies with esti-
mating the exact mean waiting time, not with the bounds. Conversely, having firm
bounds removes the need to run such computationally expensive simulations. On
the other hand, the difficulties experienced with simulations, ultimately due to the
infinite variance of the waiting time, point out that the steady state mean could be
a poor performance metric from the point of view of a customer, concealing the
high variability of waiting times.

8.2.4 Upper Bound of the Waiting Time Probability Distribution

A simple exponential bound can be derived for the G∕G∕1 queue by adding the
assumption that the Laplace-Stiltjes transforms of the inter-arrival and service
time CDFs be analytic for Re[s] > −𝛽, where 𝛽 is a positive number. This implies
that all moments of the inter-arrival and service times are finite.

Let FT(⋅), FX (⋅) and FZ(⋅) denote the CDFs of the random variables T, X and Z =
X − T. While T and X are non-negative random variables, Z takes all real values,
hence its transform is bilateral, i.e., 𝜑Z(s) = E[e−sZ] = ∫ ∞

−∞ e−sudFZ(u). Since we
assume that inter-arrival and service times are independent random variables, we
have 𝜑Z(s) = E[e−s(X−T)] = E[e−sX]E[esT] = 𝜑X (s)𝜑T(−s). If there exists a positive

�

� �

�

410 8 Bounds and Approximations

𝛽T (𝛽X) such that 𝜑T(s) (resp., 𝜑X (s)) is analytic for Re[s] > −𝛽T (resp., Re[s] >
−𝛽X), then the function 𝜑Z(s) is analytic for −𝛽X < Re[s] < 𝛽T .

Let us restrict our attention to real values of s. The function 𝜑Z(s) is defined
for s ∈ (−𝛽X , 𝛽T), it is continuous, strictly positive, and convex in that interval
and unbounded at the extremes. It is also 𝜑Z(0) = 1 and 𝜑

′
Z(0) = −E[Z] = E[T] −

E[X] > 0. The last inequality is a consequence of the queue stability assumption.
These properties imply that 𝜑Z(s) is strictly less than 1 for s < 0 and close to the
origin. The following definition is therefore well grounded:

s0 = sup{s > 0 ∶ 𝜑Z(−s) ≤ 1} (8.33)

and it must be s0 < 𝛽X . A sketch graph is displayed in Figure 8.3 to illustrate the
behavior of 𝜑Z(s) and the definition of s0.

We recall Lindley’s recursion (8.5), i.e., Wn+1 = max{0,Wn + Zn}, n ≥ 1. Let us
assume that the initial value of the waiting time, W1, is chosen so that(W1 ≥ y) ≤
e−s0y. In fact, it is W1 = 0, then (W1 ≥ y) = 0 for any y > 0 and (W1 ≥ 0) = 1.
Then, it is actually (W1 ≥ y) ≤ e−s0y for any s0 ≥ 0 and y ≥ 0.

Given that (W1 ≥ y) ≤ e−s0y, we prove by induction that (Wn ≥ y) ≤ e−s0y

holds for any positive n.
Suppose the inequality holds up to the index n and let us prove that the

inequality carries over to n + 1. We have for any positive y:

(Wn+1 ≥ y) = (Wn + Zn ≥ y) = ∫
∞

−∞
(Wn ≥ y − u) dFZ(u) (8.34)

since Zn is independent of Wn. Then,

(Wn+1 ≥ y) = ∫
y

−∞
(Wn ≥ y − u) dFZ(u) + ∫

∞

y
(Wn ≥ y − u) dFZ(u)

≤ ∫
y

−∞
e−s0(y−u) dFZ(u) + 1 − FZ(y)

≤ ∫
y

−∞
e−s0(y−u) dFZ(u) + ∫

∞

y
e−s0(y−u) dFZ(u)

= ∫
∞

−∞
e−s0(y−u) dFZ(u) = e−s0y

𝜑Z(−s0) ≤ e−s0y

−s0

1

φZ(s)

−βX
βT

Re[s]

Figure 8.3 Example of 𝜑Z (s) plot and
definition of s0.

�

� �

�

8.2 Bounds for the G∕G∕1 Queue 411

since(Wn ≥ t) ≤ e−s0t for non-negative t, by induction hypothesis,(Wn ≥ t) = 1
for any non positive t, e−s0(y−u) ≥ 1 for u ≥ y, since s0 > 0, and 𝜑Z(−s0) ≤ 1 by
construction of s0.

In the limit for n → ∞, this proves the exponential bound of the tail of waiting
time probability distribution:

(W ≥ y) ≤ e−s0y
, y ≥ 0, (8.35)

The exponential cutoff exhibited by the waiting time CDF is characteristic of
those G∕G∕1 queues where inter-arrival and service times probability distributions
have a light tail, i.e., they have finite moments of all orders. The exponential cutoff
property breaks down if heavy-tailed probability distributions are used. In that
case it is no more true that 𝜑Z(s) is analytic for negative values of Re[s].

Example 8.3 Let us consider a G∕G∕1 queue with inter-arrival times uniformly
distributed in [Tmin,Tmax] and service times with a Rayleigh probability distribu-
tion, i.e., the CCDF of the service times is GX (t) = e−(𝛼x)2 .

Given the mean inter-arrival time E[T] = T0, we have Tmax = 2T0 − Tmin and

C2
T = 2

3

(
1 − Tmin

T0

)2
. The Laplace transform of the PDF of T is:

𝜑T(s) = e−sTmin
1 − e−2sT0

2sT0
(8.36)

As for the service times, it is 𝛼 = 1
E[X]

√
𝜋

4
and C2

X = 4∕𝜋 − 1, with E[X] = 𝜌T0.
The Laplace transform of the service times PDF can be written as follows:

𝜑X (s) = 1 − sE[X] f (sE[X]∕
√
𝜋) (8.37)

where f (x) ≡ ex2 2√
𝜋
∫ ∞

x e−t2 dt is the scaled complementary error function.
To carry over the numerical example, let us assume Tmin = 0, E[T] = T0 = 1 (i.e.,

the mean interarrival time is taken as the unit of time). It is then CT ≈ 0.8165,
E[X] = 𝜌, CX ≈ 0.5227. Moreover, it is

𝜑Z(s) =
e2s − 1

2s
⋅ [1 − s𝜌f (s𝜌∕

√
𝜋)] (8.38)

with 𝛽T = 𝛽X = ∞ in this case.
Figure 8.4 plots the actual (simulated) CCDF of the waiting times (solid line) and

the exponential upper bound (dashed line) for two values of the utilization coef-
ficient, 𝜌 = 0.6 and 𝜌 = 0.8. The corresponding values of the exponent coefficient
of the bound are s0 ≈ 1.9475 for 𝜌 = 0.6, and s0 ≈ 0.7785 for 𝜌 = 0.8.

It can be appreciated that the upper bound offers a quite tight approximation,
only offset by a constant factor with respect to the actual values. The good estimate
provided by the bound can be ascribed to the “good” behavior of the inter-arrival
and service time PDFs, both of which have coefficient of variation less than 1. They

�

� �

�

412 8 Bounds and Approximations

0 1 2 3 4 5

Waiting time W

C
C

D
F

 o
f
W

simulation

analytic bound

100

10–1

10–2

10–3

ρ = 0.8

ρ = 0.6

Figure 8.4 Comparison between the
simulated CCDF of the waiting times of
the G∕G∕1 queue of Example 8.3 (solid
line) and the exponential upper bound
(dashed line).

are even more concentrated around the mean than the negative exponential PDF,
hence large deviations with respect to the mean value occur with small probabil-
ity. The exponential decay of the CCDF of the waiting time is the mark of such a
regular behavior of the inter-arrival and service times.

8.3 Bounds for the G∕G∕m Queue

We consider a G∕G∕m queue, where inter-arrival and service times are indepen-
dent, stationary renewal processes. Multiple identical and fully accessible servers
are provided, as well as infinite room for arriving customer (pure delay system, no
loss).

Exact results are known for few special cases. Bounds and approximations are
therefore especially useful for this general model.

Following [94], we obtain bounds for the G∕G∕m queue by considering two
other queueing systems, obtained by transforming the original G∕G∕m queue.

As for the upper bound, assume that arriving customers are orderly assigned
to a server upon their arrival, by scanning servers cyclically in a round robin
fashion. This corresponds to having m separate G∕G∕1 queues. The mean waiting
time experienced by a customer joining this modified system, W1, is stochasti-
cally greater than the waiting time of the original queueing system. In fact, a
customer could be waiting in front of the server that it has been assigned to in
spite of other servers being idle, which cannot occur in the original multi-server
queueing system. Therefore, we can state that E[W] ≤ E[W1]. The latter can be
found exactly, if the equivalent G∕G∕1 can be solved. Otherwise, we can use an
upper bound holding for the G∕G∕1 queue. The service times of the modified
single-server system have the same probability distribution as the original one,
whereas the arrival times are obtained as sums of m consecutive arrival times of
the original process. Hence, their PDF is the m-fold convolution of the PDF of the

�

� �

�

8.3 Bounds for the G∕G∕m Queue 413

original inter-arrival times. To apply the bounds we are actually interested only
in the first two moments. The argument above implies that E[X] and 𝜎

2
X remain

the same, while the mean arrival rate and the variance of the inter-arrival times
become, respectively, λ∕m and m𝜎

2
T for the G∕G∕1 system.

By applying the upper bound from eq. (8.32), we have

E[W] ≤ E[W1] ≤ (λ∕m)(m𝜎
2
T + 𝜎

2
X)

2(1 − (λ∕m)∕𝜇)
=

λ(𝜎2
T + 𝜎

2
X∕m)

2(1 − 𝜌)
(8.39)

where 𝜌 = λ∕(m𝜇) in this case.
A tighter upper bound can be found as follows. Let us rewrite the upper bound

of the mean waiting time as found for the G∕G∕1 queue in terms of the SCOV of
arrivals and service times:

E[W] ≤ C2
T + 𝜌

2C2
X

2λ(1 − 𝜌)
(8.40)

We could guess that this be also a bound for the mean waiting time of the
G∕G∕m, where now 𝜌 should be read as λ∕(m𝜇). If that were true, we would have
the bound

E[W] ≤ λ(𝜎2
T + 𝜎

2
X∕m2)

2(1 − 𝜌)
(8.41)

which is tighter than (8.39). It can be proved that the bound in eq. (8.41) holds
[69].

As for the lower bound, we consider a single server queueing system where the
server has a mean serving rate m times bigger than each server of the original
multi-server queueing system, i.e., for the same arrival process, we replace the m
servers with serving rate 𝜇 with a single server with serving rate m𝜇.

This is the same as saying that each arriving customer brings into the system the
same amount of work as before (1∕𝜇 on the average), but the single server available
to the system is m times faster than each server of the original system. There-
fore, the service time of this single server, X2 is distributed as X∕m. The first two
moments of the modified service time random variable are E[X]∕m and 𝜎

2
X∕m2.

In [47] it is shown that the mean unfinished work in steady state of the G∕G∕m
queue is lower bounded by the mean unfinished work of the modified single server
queue. As a consequence, it is possible to derive a lower bound for the mean wait-
ing time E[W] of the G∕G∕m queue as a function of the mean waiting time of the
G∕G∕1 queue whose server has a speed-up factor of m.

To that end, we exploit a general relationship between the mean unfinished
work E[U] and the mean waiting time E[W] of a queue. Let E[Q] denote the mean
queue length. The unfinished work of the G∕G∕m queue is:

E[U] = E[Q]E[X] + m𝜌
E[X2]
2E[X]

= λE[W]E[X] + λE[X2]
2

(8.42)

�

� �

�

414 8 Bounds and Approximations

where the first term is the mean amount of work due to customers in the waiting
line and the second term is the product of the mean number of busy servers by the
mean residual service time. In the first term, we use Little’s law to express the mean
number of customers in the waiting line as a function of the mean waiting time.

Applying this expression to the G∕G∕1 queue whose server has a speed-up factor
of m, we find

E[U2] = λE[W2]E[X2] +
λE[X2

2]
2

= λE[W2]
E[X]

m
+ λE[X2]

2m2 (8.43)

To compare the mean unfinished work of the original G∕G∕m queue and that
of the fast server G∕G∕1 queue, we have to account for the speed-up factor m. In
other words, we can compare the mean unfinished works normalized with respect
to the respective mean service times of the two queues. We can write

E[U]
E[X]

≥ E[U2]
E[X2]

⇒ λE[W] + λE[X2]
2E[X]

≥ λE[W2] +
λE[X2]
2mE[X]

(8.44)

Rearranging terms, we end up with the following expression:

E[W] ≥ E[W2] −
m − 1

m
C2

X + 1
2𝜇

(8.45)

If the exact result for E[W2] were known, it could be substituted. Otherwise,
we can resort to the general lower bound we have found for a G∕G∕1 queue, thus
writing

E[W2] ≥ λ2
𝜎

2
X∕m2 + 𝜌(𝜌 − 2)

2λ(1 − 𝜌)
=

𝜌
2C2

X + 𝜌(𝜌 − 2)
2λ(1 − 𝜌)

(8.46)

thus obtaining finally the following Brumelle-Marchal’s lower bound

E[W] ≥ 𝜌
2C2

X + 𝜌(𝜌 − 2)
2λ(1 − 𝜌)

− m − 1
m

C2
X + 1
2𝜇

(8.47)

where 𝜌 = λ∕(m𝜇).
Summing up we have for the G∕G∕m queue:

max

{
0,

𝜌
2C2

X + 𝜌(𝜌 − 2)
2λ(1 − 𝜌)

− m − 1
m

C2
X + 1
2𝜇

}
≤ E[W] ≤ λ(𝜎2

T + 𝜎
2
X∕m2)

2(1 − 𝜌)
(8.48)

Example 8.4 Let us consider a multi-server queue with m servers, arrivals and
services following renewal processes with inter-event probability distributions of
Gamma and Weibull type, respectively. The PDF of the inter-arrival times is fT(t) =
𝛼
𝛽T
T t𝛽T−1

Γ(𝛽T)
e−𝛼T t

, t ≥ 0, where Γ(z) = ∫ ∞
0 uz−1e−udu is the Euler Gamma function. The

positive parameters 𝛼T and 𝛽T can be determined once the first two moments of

�

� �

�

8.3 Bounds for the G∕G∕m Queue 415

the PDF are given, namely 𝛽T = 1∕C2
T and 𝛼T = 𝛽T∕E[T]. As for the service times,

the CCDF of the Weibull distribution can be written as GX (t) = e−(𝛼X t)𝛽X
, t ≥ 0. The

parameters 𝛼X and 𝛽X can be determined from the first two moments. It is

C2
X =

Γ(2∕𝛽X + 1)
Γ(1∕𝛽X + 1)2

which can be inverted since the right-hand side is a monotonously strictly
decreasing function of 𝛽X . Then, we use 𝛼X = Γ(1∕𝛽X + 1)∕E[X]. Moreover, the
mean service time is obtained once the mean inter-arrival time and the utilization
coefficient 𝜌 are given, i.e., E[X] = E[T]m𝜌.

In this numerical example we let E[T] = 1, i.e., time is measured in units
of mean inter-arrival time, and CT = 1.5, i.e., the standard deviation of the
inter-arrival time is 1.5 times the mean inter-arrival time. The default queue
configuration corresponds to 𝜌 = 0.8, m = 3, and CX = 3. We let each of those
parameters vary over a range, keeping the other two fixed, to explore the behavior
of the mean waiting time E[W] as a function of 𝜌, m, and C2

X .
Figure 8.5(a) plots the mean waiting time as a function of the utilization coeffi-

cient. Besides the upper and lower bounds given in eq. (8.48), Figure 8.5 plots also
the approximation that will be introduced in the next section (see eq. (8.51)). It is
apparent that the bounds are rather crude, yet they capture the qualitative behav-
ior of the mean waiting time and give the correct order of magnitude. As expected,
both bounds are more interesting at high loads, while for low levels of 𝜌 they give
highly incorrect or not significant results.

Similar comment apply to Figs 8.5(b) and 8.5(c), where E[W] is plotted against
the number of servers and the SCOV of service times, respectively.

It can be observed also that E[W] is decreasing with the number of servers, for
a fixed utilization coefficient, i.e., there is a scaling phenomenon. For the same
mean load, larger systems perform better. The mean waiting time increases as the

0 0.2 0.4 0.6 0.8

Coefficient of utilization, ρ

0

5

10

15

20

M
e
a
n
 w

a
it
in

g
 t
im

e
 E

[W
]

m = 3

Simulation

Upper bound

Lower bound

Approximation

(a)

0 5 10 15 20

Number of servers, m

0

5

10

15

M
e
a
n
 w

a
it
in

g
 t
im

e
 E

[W
]

C
X
 = 3

Simulation
Approximation

(b)

0 5 10 15

SCOV of service times, C
2

X

0

10

20

30

M
e
a
n
 w

a
it
in

g
 t
im

e
 E

[W
]

m = 3

Simulation

Upper bound

Lower bound

Approximation

(c)

ρ = 0.8

C
X
 = 3

ρ = 0.8

Figure 8.5 Mean waiting time of the G∕G∕m queue as a function of: (a) utilization
coefficient 𝜌; (b) number of servers m; (c) SCOV of service times C2

X . Inter-arrival times
have a Gamma PDF, service times are distributed according to a Weibull distribution.
Time is normalized with respect to the mean inter-arrival time.

�

� �

�

416 8 Bounds and Approximations

service time variability grows, as shown in Figure 8.5(c). E[W] scales linearly with
C2

X . This behavior is captured correctly by the upper bound.
Finally, the plots compare the estimates of the mean waiting time obtained

through simulation with the approximation of eq. (8.51). It turns out that the
approximation is extremely accurate for this class of multi-server queues (i.e.,
Gamma inter-arrival times and Weibull service times).

8.4 Approximate Analysis of Isolated G∕G Queues

A number of different approaches can be used to provide approximate expressions
of performance measures of G∕G∕m queues. Some approaches are best suited for
special ranges of parameters, specifically of the utilization coefficient of the server,
e.g., the heavy-traffic approximation, which gives accurate predictions in the limit
𝜌 → 1, or the diffusion approximation, which holds on time scales much bigger
than the average inter-arrival and service times.

The presentation is organized in sub-sections according to the approach used to
derive the approximation.

8.4.1 Approximations from Bounds

The bounds can be used to yield approximations. We discuss specifically the scal-
ing proposed by Marchal of Kingman’s upper bound for the G∕G∕1 queue, namely
E[W] ≤ λ(𝜎2

T+𝜎
2
X

2(1−𝜌)
. By scaling that bound by the factor 𝜌

2
𝜎

2
T+𝜎

2
X

𝜎
2
T+𝜎

2
X

, the following results
is obtained

E[W G∕G∕1] ≈ W 1 =
λ(𝜌2

𝜎
2
T + 𝜎

2
X)

2(1 − 𝜌)
= E[X] 𝜌

1 − 𝜌

C2
X + C2

T

2
(8.49)

This is quite an elegant result. It decomposes the mean waiting time into the
product of three factors: (i) the mean service time; (ii) a factor depending only
on the server utilization coefficient and shaping the asymptotic behavior of the
mean waiting time in heavy traffic (as 𝜌 → 1); and (iii) a factor depending on the
variability of the arrival and service processes.

The approximation is exact for the M∕G∕1 queue. It is also sharp in heavy traffic.
It is noted that W1 can be thought as the mean waiting time of the M∕M∕1 queue

multiplied by the factor (C2
T + C2

X)∕2 that accounts for the non-Poisson charac-
ter of the arrival and service processes. Inspired by this remark, we can define an
approximation for the multi-server queue as

E[W G∕G∕m] ≈ W m =
C2

X + C2
T

2
E[W M∕M∕m] (8.50)

�

� �

�

8.4 Approximate Analysis of Isolated G∕G Queues 417

It is E[W M∕M∕m] = E[X]C(m,m𝜌)∕[m(1 − 𝜌)], where C(m,m𝜌) is the Erlang-C
function and gives the probability that all servers are busy1 . Then, we obtain the
following approximation for the mean waiting time of the G∕G∕m queue

E[W G∕G∕m] ≈ W m = E[X] C(m,m𝜌)
1 − 𝜌

C2
X + C2

T

2m
(8.51)

This expression reduces to the approximation for the G∕G∕1 queue in the special
case m = 1. The approximation can be further simplified by using the approxima-
tion

C(m,m𝜌) ≈
⎧⎪⎨⎪⎩

1
2
(𝜌 + 𝜌

m) 𝜌 > 0.7

𝜌

m+1
2 𝜌 < 0.7

(8.52)

8.4.2 Approximation of the Arrival or Service Process

Another approach to derive approximations of the G∕G∕1 queue performance
measures is to substitute the general renewal process with a tractable process
whose probability distribution function approximates the original one.

A class of processes that yields to analysis via Laplace transforms is the class
of renewal processes whose renewal time PDF has a rational Laplace transform,
often referred to as the class of Coxian PDFs, after the name of Donald C. Cox, a
most prominent contributor to the theory of point processes.

Another class that yields to effective numerical implementation and has a
vast potential for approximating any renewal process is the class of phase-type
probability distribution (PH distributions). An extensive account of the PH-type
probability distributions can be found, e.g., in [167, Ch. 2]. Here we give just the
definition of a PH-type distribution.

Given a continuous-time Markov chain on n + 1 states, n of which are transient
and one is absorbing, the absorption time (first-passage time to the absorbing state
n + 1), given that the chain is initialized according to the probability vector q,
defines a random variable whose probability distribution is said to be phase-type.
The number of phases is n.

Formally, let us define the random variable T as T = min{t ≥ 0 ∶ X(t) =
n + 1}, where X(t) denotes the state of the Markov chain over the state space
{1,… ,n,n + 1}, initialized according to the probability vector q at t = 0. The
CCDF of T is given by GT(t) = q exp(Qt)e, where e is a column vector of ones and

1 We recall that C(m,A) can be computed efficiently using the identity
C(m,A) = B(m,A)

1−A∕m+B(m,A)A∕m
, where B(m,A) is the Erlang-B formula. The latter can be efficiently

computed by using the recursion B(m,A) = AB(m−1,A)
m+AB(m−1,A)

, for m ≥ 1, initialized with B(0,A) = 1.

�

� �

�

418 8 Bounds and Approximations

the infinitesimal generator of the Markov chain is

P =
[

Q −Qe
𝟎 0

]
(8.53)

with Q an n × n matrix. Note that Q is such that Qe ≤ 𝟎, with strict inequality
for at least one row. This guarantees that all eigenvalues of Q have negative real
part, so that GT(t) decays exponentially fast to 0 as t → ∞ (light-tailed probability
distribution). More in depth, GT(t) ∼ 𝜅e−𝜂t as t → ∞, where 𝜂 is the maximal real
part eigenvalue of Q, v, and u are its associated left and right eigenvectors, and
𝜅 = quve.

According to this last approach, the original G∕G∕m queue is approximated with
a PHn∕PHk∕m queue, where n (resp., k) is the number of “phases” of the PH-type
distribution approximating the arrival (resp., service) process. For the use of a∑

iPH(i)∕PH∕m queue to fit a general G∕G∕m model the interested reader can
consult also [86, § 4.4].

A versatile class of probability distributions of positive random variables was
introduced by Luchak [153]. These are mixtures of Erlang K probability distribu-
tions of the form

∞∑
j=1

pjfKj
(x; λ) (8.54)

where pj ≥ 0, ∀j and
∑∞

j=1 pj = 1.
The PDF of the Erlang K random variable is

fK(x; λ) =
(Kλ)K xK−1

(K − 1)!
e−Kλx

, x ≥ 0, K ≥ 1. (8.55)

This is the convolution of K negative exponential PDFs with mean 1∕(Kλ). The
Erlang K random variable Y is therefore generated as Y = (X1 + · · · + XK)∕(Kλ),
with Xj ∼ Exp(1) for j = 1,… ,K.

As a special case, we consider the mixture obtained with Kj = j. It can be proved
that this mixture is dense in the set of the PDFs on [0,∞), i.e., it is possible to fit
any given PDF of a non-negative random variable by means of a suitable mixture
of Erlang K PDFs. If the probability distribution pj has a finite support, the prob-
ability distribution obtained with the mixture of eq. (8.54) is of phase type. It can
be proved that also the class of PH probability distributions is dense in the set of
PDFs on [0,∞).

8.4.3 Reflected Brownian Motion Approximation

In this section we introduce the reflected Brownian motion (RBM) representation
of the for G∕G∕1 queues. Under heavy traffic conditions, i.e., as the utilization
coefficient of the server tends to 1, and at steady state (large time values after the

�

� �

�

8.4 Approximate Analysis of Isolated G∕G Queues 419

queueing system has started its operation) it provides a useful approximation of
the G∕G∕1 queue, also known as heavy-traffic limit or diffusion approximation.

Let us consider a G∕G∕1 queue and let us introduce the following notation:

A(t) counting function of the arrival process, i.e., the number of customers arrived
in [0, t].

S(t) counting function of the service process, i.e., number of service completions
in [0, t] if the server is continuously busy in [0, t].

Q(t) number of customers in the queue at time t.
I(t) cumulative amount of idle time in [0, t].
B(t) cumulative amount of busy time in [0, t],

By definition, it is B(t) + I(t) = t,∀t ≥ 0. The number of customers in the system
at time t can be written as

Q(t) = Q(0) + A(t) − S(B(t)) (8.56)

which is nothing more than a balance between arrivals and departures, taking into
account that the server is actually busy only for an overall amount of time B(t) in
[0, t].

Let us assume that there exists u ∈ [0, t] such that Q(u) = 0. Let then
t0 be defined as the largest time that the queue was empty in [0, t], i.e.,
t0 = max{0 ≤ u ≤ t ∶ Q(u) = 0}. By definition it is I(t) = I(t0) ≥ I(u),∀u ∈ [0, t].
Let us consider the function Y (u) = 𝜇I(u) − Q(u). Since it is Q(t) ≥ 0, we have
Y (u) ≤ 𝜇I(t0) = 𝜇I(t),∀u ∈ [0, t]. In words, Y (t) is the sum of two components:
(a) 𝜇I(t), which is monotonically nondecreasing with t; and (b) −Q(t), which is
always nonpositive; it is 0 (i.e., it attains its maximum) only when I(t) is strictly
increasing. Then, we have sup0≤u≤tY (u) = 𝜇I(t0) = 𝜇I(t).

If the queue is never empty in [0, t], it is I(t) = 0 and hence Y (u) = −Q(u) <
0,∀u ∈ [0, t].

Putting together the two cases, we can say that sup0≤u≤tmax{0,Y (u)} = 𝜇I(t).
Using this result, we can represent Q(t) as follows:

Q(t) = U(t) + V(t) (8.57)

where

U(t) ≡ Q(t) − 𝜇I(t) = Q(0) + (λ − 𝜇)t + A(t) − λt − [S(B(t)) − 𝜇B(t)] (8.58)

V(t) ≡ 𝜇I(t) = sup
0≤𝜏≤t

max{0, 𝜇I(𝜏) − Q(𝜏)} = sup
0≤𝜏≤t

max{0,−U(𝜏)} (8.59)

We arrive thus at our final result, the decomposition of the number of customers
in the G∕G∕1 queue as follows:

Q(t) = U(t) + sup
0≤𝜏≤t

max{0,−U(𝜏)} (8.60)

with U(t) given in eq. (8.58).

�

� �

�

420 8 Bounds and Approximations

In [86], it is shown that, given U(t), there exists a unique pair of functions
X(t) and V(t) such that X(t) = U(t) + V(t) and the following three conditions are
satisfied:

1. X(t) ≥ 0.
2. V(t) is nondecreasing for t ≥ 0 with V(0) = 0.
3. X(t) dV

dt
= 0, i.e., V(t) is strictly increasing whenever X(t) is equal to 0, while it

is flat whenever X(t) > 0.

What is this decomposition good for? It is the basic relationship that paves the
way to heavy-traffic approximation of the state of a G∕G∕1 queue through the
reflected Brownian motion (RBM) process.

Intuitively, for 𝜌 less than 1, yet close to 1, i.e., in the limit 𝜌 → 1, I(t) is negligible
since the queue is (almost) never empty. Then, we can write Q(t) ≈ U(t).

For large t, we know that the counting process associated with a renewal pro-
cess is approximatively normally distributed with mean t∕T and variance 𝜎

2t∕T
3
,

where T and 𝜎
2 are the mean and variance of the inter-event times.

Applying this result to the arrival counting function A(t) we get A(t) ∼
 (λt, λC2

Tt) for large t (formally, as t → ∞)2 .
As for the service counting process, since we deal with S(B(t)) and B(t) is itself

a random process, the argument is a bit trickier. The mean can be evaluated
exactly as E[E[S(B(t))|B(t)]] = E[𝜇B(t)] = 𝜇𝜌t = λt (not surprisingly, since the
mean amount of service in [0, t] equals the mean amount of work arrived at
the queue in the same time interval). As for the variance, we replace B(t) by its
mean (which is asymptotically correct for t tending to infinity) and then evaluate
Var(S(𝜌t)) = 𝜇C2

X𝜌t = λC2
X t. Also for the service counting process, we can say

that S(B(t)) is asymptotically normally distributed, i.e., S(B(t)) ∼ (λt, λC2
X t) for

large t.
The argument developed so far shows that, for large t, i.e., in the limit for t → ∞,

we can state that U(t) in eq. (8.58) is itself normally distributed with mean and
variance given by

E[U(t)] = Q(0) + (λ − 𝜇)t 𝜎
2
U(t) = λ(C2

T + C2
X)t (8.61)

Let us assume (with no limitation) that Q(0) = 0. We see that, if A(t) and S(t)
are stationary renewal processes, it turns out that U(t) tends asymptotically to a
Brownian motion process with drift 𝛼 = λ − 𝜇 (which is< 0 if 𝜌 < 1, i.e., the queue
is stable) and variance coefficient 𝛽2 = λ(C2

T + C2
X). The definition and some useful

properties of the Brownian motion process (also known as Wiener process) are
given in the Appendix.

2 We recall that the notation Y ∼ (𝜇, 𝜎2) means that Y is a Gaussian random variable with
mean 𝜇 and variance 𝜎

2.

�

� �

�

8.4 Approximate Analysis of Isolated G∕G Queues 421

We can conclude saying that, in heavy-traffic, i.e., when 𝜌 → 1, we can approxi-
mate the state of the G∕G∕1 queue Q(t) by means of a real-valued, continuous time
random process U(t), i.e., the queue content level of a stationary G∕G∕1 queue in
heavy traffic behaves approximately as a Brownian motion process with drift λ − 𝜇

and variance parameter λ(C2
T + C2

X).
If we consider also the term V(t) in the decomposition of Q(t), we obtain the

reflected Brownian motion approximation for Q(t), namely Q(t) ≈ QRBM(t) =
U(t) + V(t) = U(t) + sup0≤𝜏≤tmax{0,−U(𝜏)}, where U(t) is a Brownian motion
process with mean (λ − 𝜇)t and variance λ(C2

T + C2
X)t. The preceding argument

points out that the RBM approximation is asymptotically sharp as 𝜌 → 1.
The role of V(t) is to avoid that Q(t) attains negative values (which is instead

possible for U(t)). We can think of the RBM process as a Brownian motion process
constrained by a reflecting barrier at 0. If the drift is negative, the RBM process
impacts the time axis infinitely often. In terms of queueing, this means that the
queue becomes empty infinitely often, which is the mark of a stable system (the
state 0 must have positive probability in steady-state).

Given Q(t) we can identify the workload of the G∕G∕1 queue at t as W(t) =
Q(t)∕𝜇. This is also a reflected Brownian motion process with drift (λ − 𝜇)∕𝜇 =
𝜌 − 1 and variance parameter λ(C2

T + C2
X)∕𝜇

2.
The probability distribution of a RBM process can be found by solving a differ-

ential equation under proper boundary conditions. Let F(t, x;w0) be the CDF of
W(t) conditional on its initial state, i.e.,

F(x, t;w0) = (W(t) ≤ x|W(0) = w0) (8.62)

It is possible to derive a partial differential equation that involves F(x, t;w0) (e.g.,
see [131, Ch. 2]). The equation is3

𝜕F
𝜕t

= −𝛼 𝜕F
𝜕x

+ 1
2
𝛽

2 𝜕
2F
𝜕x2 (8.63)

where 𝛼 is the drift and 𝛽
2 is the variance parameter of the RBM process. In our

case, it is 𝛼 = 𝜌 − 1 and 𝛽
2 = λ(C2

T + C2
X)∕𝜇

2.
The boundary conditions for the RBM process are F(x, t;w0) = 0, x < 0,

F(∞, t;w0) = 1, for t > 0, F(x, 0;w0) = 0 for x < w0, and F(x, 0;w0) = 1, for x ≥ w0.
For 𝜌 < 1 there exists a steady state, i.e., the limit of F(x, t;w0) for t → ∞ is

a proper, nondegenerate CDF F(x), independent of the initial state. The corre-
sponding PDF f (x) = F′(x) satisfies the following differential equation (obtained

3 This is but the Fokker-Planck equation for the diffusion process with homogeneous and
uniform drift coefficient 𝛼 and diffusion parameter 𝛽2. The general equation for time and size
dependent drift coefficient 𝛼(x, t) and diffusion parameter D(x, t) is written as
𝜕

𝜕t
F(x, t) = − 𝜕

𝜕x
[𝛼(x, t)F(x, t)] + 1

2
𝜕

2

𝜕x2 [D(x, t)F(x, t)].

�

� �

�

422 8 Bounds and Approximations

from (8.63) by setting to 0 the derivative of F(x) with respect to time and taking
into account that f (x) is the derivative of F(x) with respect to x):

df
dx

= 2𝛼
𝛽2 f (x) (8.64)

The solution is a negative exponential PDF f (x) = 1
W

e−x∕W , where

W = − 𝛽
2

2𝛼
=

λ(C2
T + C2

X)∕𝜇
2

2(1 − 𝜌)
= E[X]

𝜌(C2
T + C2

X)
2(1 − 𝜌)

(8.65)

It turns out that the approximation W in (8.65) leads to the exact result of
M∕G∕1 queue, when C2

T = 1. In the heavy-traffic limit 𝜌 → 1, the right-hand
side of eq. (8.65) coincides with the upper bound of the mean waiting time of
the G∕G∕1 queue found in eq. (8.39). It coincides with Marchal’s approximation
(8.49) as well.

To sum up, Q(t) ∼ QRBM(t) = U(t) + sup0≤𝜏≤tmax{0,−U(𝜏)} for large t, i.e., on
time scales much bigger than the mean inter-arrival and service times. An even
simpler approximation holds under heavy-traffic, namely Q(t) ∼ QBM(t) = U(t).
This does not lead to an especially accurate approximation, yet it can be useful
to gain insight into the qualitative behavior of the queueing process.

Example 8.5 Figure 8.6 plots a sample path of RBM process for 𝜌 = 0.8, CT =
1.5, and CX = 3. The time axis is normalized with respect to the mean service time.
The BM process is generated through i.i.d. Gaussian increments, i.e.,

U(kΔt) =
k∑

j=1

[
Δt(𝜌 − 1) + Zj

√
Δt𝜌(C2

T + C2
X)
]
, k ≥ 1, (8.66)

with Zj ∼ (0, 1),∀j.

0 200 400 600 800 1000

Normalized time, t/E[X]

0

20

40

60

80

100

N
u

m
b

e
r

o
f

c
u

s
to

m
e

rs
,

Q
(t

)

Figure 8.6 Sample path of the
number of customers in the
queue according to the RBM
approximation. Time is
normalized with respect to the
mean service time. 𝜌 = 0.8,
CT = 1.5, CX = 3.

�

� �

�

8.4 Approximate Analysis of Isolated G∕G Queues 423

Table 8.2 Comparison between simulations (95% confidence intervals) and
RBM approximation for a G∕G∕1 queue with Gamma distributed inter-arrival
times and Weibull distributed service times. Time is normalized with respect to
the mean service time. The utilization coefficient is 𝜌 = 0.9.

CT CX Simulations (95% conf. int.) RBM approximation

0.5 0.5 [2.060,2.064] 2.250

1.0 0.5 [5.591,5.601] 5.625

2.0 0.5 [19.940,19.975] 19.125

0.5 1.0 [5.346,5.357] 5.625

1.0 1.0 [9.009,9.026] 9.000

2.0 1.0 [23.383,23.426] 22.500

0.5 2.0 [18.766,18.806] 19.125

1.0 2.0 [22.271,22.316] 22.500

2.0 2.0 [37.833,37.909] 36.000

Example 8.6 We consider a G∕G∕1 queue with Gamma distributed inter-arrival
times and Weibull distributed service times. The mean service time is set to 1 (i.e.,
it is chosen as the unit of time), the mean inter-arrival time is E[T] = E[X]∕𝜌.
In this example, we set 𝜌 = 0.9. The coefficients of variation of inter-arrival and
service times range between 0.5 and 2. Table 8.2 compares the mean waiting
time obtained with simulations versus the RBM approximation of eq. (8.65).
Simulations are displayed by giving the 95% confidence level interval. It appears
that the RBM approximation is quite accurate. Note also that it does not
behave consistently, i.e., sometimes it provides an overestimate sometimes an
underestimate.

8.4.4 Heavy-traffic Approximation

To shed more light into the heavy-traffic regime of the G∕G∕1 queue, we start from
Lindley’s recursion, which we rewrite here

Wn+1 = max{0,Wn + Xn − Tn+1} = max{0,Wn + Zn}, n ≥ 1, (8.67)

where Zn ≡ Xn − Tn+1 and Wn is the workload found by the n-th arriving customer
in the queue, n ≥ 1. In the renewal G∕G∕1 queue the random sequence Zn is sta-
tionary. In a stable queue, it is E[Z] = −(1 − 𝜌)∕λ < 0, while 𝜎

2
Z = 𝜎

2
X + 𝜎

2
T .

�

� �

�

424 8 Bounds and Approximations

Applying the recursion (8.67) with the initial condition W1 = 0, we obtain

Wn+1 = max{0,Wn + Zn} = max{0,Zn,Wn−1 + Zn−1 + Zn} =

= max{0,Zn,Zn−1 + Zn,… ,Z1 + Z2 + · · · + Zn} = max
0≤k≤n

Uk (8.68)

where U0 = 0 and Uk =
∑k

j=1 Zn+1−j, k = 1,… ,n. The sequence Uk is a
discrete-time random walk with i.i.d. steps Zj ∼ Z = X − T, starting from 0.
For a stable queue, the sequence of random variables {Wn}n≥1 converges in
distribution to W , the waiting time of customers joining the queue at steady state.
From eq. (8.68), we obtain W = supk≥0Uk, i.e., the waiting time is the supremum
attained by the random walk. This is finite, given that E[Z] = −(1 − 𝜌)∕λ < 0, and
𝜎

2
Z < ∞, i.e., the random walk {Uk}k≥0 has a negative drift and finite variance steps.
Normalizing eq. (8.68) by the mean waiting time W given in eq. (8.49), we

have Ŵ = W∕W = supk≥0Ûk, with Ûk = Uk∕W . The step of the normalized
random walk is distributed according to the random variable Ẑ = (X − T)∕W .
The first two moments of Ẑ are E[Ẑ] = −B(1 − 𝜌)2 and 𝜎

2
Ẑ
= 2B(1 − 𝜌)2, where

B = 2∕[λ2(𝜎2
X + 𝜎

2
T)]. Let us consider the limit as 𝜌 → 1 (heavy-traffic regime).

The normalized random walk increments have negative drift, vanishing as
(1 − 𝜌)2, and standard deviation vanishing as (1 − 𝜌). Thus, all conditions recur
for the random walk Uk to converge to a standard Brownian motion (BM) process
with drift 𝛼 = −B(1 − 𝜌)2 and variance coefficient 𝛽2 = 2B(1 − 𝜌)2. The probability
that the supremum of that random walk exceeds a threshold x equals the proba-
bility of absorption of the BM process starting from 0 with an absorbing barrier
at x. The absorption probability for the BM process is known to be exp(𝛽2x∕(2𝛼))
if 𝛼 < 0. Applying the result to our case, we find 𝛽

2

2𝛼
= − 2B(1−𝜌)2

2⋅B(1−𝜌)2
= −1 and hence

the probability that Ŵ = supk≥0Uk exceeds x tends to e−x in the limit for 𝜌 → 1.
Denormalizing, we have that the heavy-traffic limit of the waiting time of the
G∕G∕1 queue is a negative exponential random variable with mean W .

An alternative reasoning is based on the application of Wald’s identity (see [60,
Chapter 2]). Let Xi denote i.i.d. random variables with Xi ∼ X , where X is a contin-
uous random variable and f (x) its PDF. Given an absorbing barrier at a > 0 and a
random walk {Yn,n ≥ 1}, with Y0 = 0 and Yn = X1 + X2 + · · · + Xn, n ≥ 1, let N =
min{n ∶ n ≥ 1,Yn ≥ a}. This is the absorption time. Wald’s identity states that
E[e−𝜃YN (𝜙(𝜃))−N] = 1, where 𝜙(𝜃) is the generating function of the random walk
step random variable, i.e., 𝜙(𝜃) = ∫ ∞

−∞ e−𝜃xf (x) dx. Making the absorption proba-
bility pa appear explicitly, we can restate Wald’s identity as follows:

paE[e−𝜃YN (𝜙(𝜃))−N |YN ≥ a] = 1 (8.69)

Now we exploit a property of generating functions. Since the step random vari-
able X is continuous, there exists a unique nonzero root to the equation 𝜙(𝜃) = 1.
Let it be 𝜃0. It has the same sign as E[X].

�

� �

�

8.4 Approximate Analysis of Isolated G∕G Queues 425

We apply Wald’s identity for 𝜃 = 𝜃0, so that 𝜙(𝜃0) = 1. Moreover, we make an
approximation, assuming the the step size be negligible with respect to the absorp-
tion level a, hence YN ≈ a. Then, eq. (8.69) leads to

paE[e−𝜃0YN |YN ≥ a] = 1 ⇒ pae−𝜃0a ≈ 1 (8.70)

Hence, pa ≈ e𝜃0a. This results holds only if E[X] < 0 and hence it is 𝜃0 < 0.
We apply Wald’s identity to our random walk {Ûn,n ≥ 0}, hence X ∼ Ẑ. Let

x > 0 be the absorption threshold. Let 𝜙Ẑ(𝜃) = ∫ ∞
−∞ e−𝜃xfẐ(x) dx be the generat-

ing function associated with the PDF of the random walk step Ẑ. Since the mean
and variance of the step random variable Ẑ become both negligible as 𝜌 → 1, the
approximation used in Wald’s identity is asymptotically sharp as 𝜌 → 1. It gives
px ∼ e𝜃0x for the absorption probability. We can expand the generating function of
Ẑ in powers of 𝜃 as

𝜙Ẑ(𝜃) = 1 − E[Ẑ]𝜃 + 1
2

E[Ẑ2]𝜃2 +… (8.71)

= 1 + B(1 − 𝜌)2
𝜃 + B(1 − 𝜌)2

𝜃
2 + o((1 − 𝜌)2) (8.72)

Neglecting the higher powers of 1 − 𝜌, thus limiting the expansion of 𝜙Ẑ(𝜃) to
the first two powers of 𝜃, it is easy to find the root 𝜃0 of 𝜙Ẑ(𝜃) = 1 different from
0. It is 𝜃0 = −1. Then, the absorption probability is px ∼ e−x. Note that the event
maxn≥0Ûn > x is equivalent to the absorption event of the random walk Un on the
barrier x. Then, (Ŵ > x) = (maxn≥0Ûn > x) = e−x, the equality holding asymp-
totically as 𝜌 → 1. This shows that W tends to a negative exponential random
variable with mean W as 𝜌 → 1.

The argument can be made rigorous, proving the following [14,127].

Theorem 8.1 Consider a sequence of G∕G∕1 queues indexed by j. For queue j,
let Tj and Xj denote inter-arrival and service times random variables. Let 𝜌j < 1
denote the utilization coefficient and let Wj be the random variable representing
the waiting time of the j-th queue. Suppose that Tj → T, Xj → X in distribution as
𝜌j → 1. Let W j = (𝜎2

X + 𝜎
2
T)∕[2(E[Tj] − E[Xj])]. Then Wj∕W j → Ŵ , where Ŵ is a

negative exponential random variable with mean 1, provided that: (i) 𝜎2
T + 𝜎

2
X > 0;

(ii) E[X2+𝛿
j] and E[T2+𝛿

j] are uniformly bounded for all j for some 𝛿 > 0.

Both technical assumptions listed in the theorem statement are required. Two
counter-examples illustrate this fact.

Example 8.7 Let us consider a D∕D∕1 queue with E[Tj] = 1 and E[Xj] = 1 − 𝜖j.
It is 𝜌j = 1 − 𝜖j and Wj = 0, given that the previous customer has already left the
queue, when the new one arrives. We can make 𝜌j as close to 1 as we want, still

�

� �

�

426 8 Bounds and Approximations

maintaining Wj = 0. Hence, it appears that the limit theorem does not hold. In this
case, condition (i) of the theorem statement fails to be true.

Example 8.8 Let us assume Tj = T + Aj and Xj = X + Aj. Lindley’s recur-
sion can be written as Wj(n) = max{0,Wj(n − 1) + Xj(n) − Tj(n)} = max{0,Wj
(n − 1) + X(n) − T(n)}. As n → ∞, the sequence Wj(n) converges to a random
variable W that is independent of j. Thus, we have Wj ∼ W for all j, where
W can exhibit a probability distribution different from negative exponential,
depending on the probability distributions of X and T. On the other hand,
𝜌j = (E[X] + Aj)∕(E[T] + Aj) tends to 1 as Aj → ∞. Again, the theorem does not
hold, in this case since condition (ii) fails to hold.

The theorem proves that at high loads the mean waiting time is well approx-
imated by the quantity W = 𝜎

2
X+𝜎

2
T

2(E[T]−E[X])
, which is but the upper bound found in

Section 8.2.3.

8.5 Approximate Analysis of a Network of G∕G∕1
Queues

The approximate analysis of G∕G∕1 queues, specifically, of the mean system time,
can be extended to the case of a network of such queues.

Let us consider a queueing network of infinite buffer queues (no customer loss),
independent arrival and service times, memoryless routing, described by means
of the probability rij of joining queue j when leaving queue i. We generalize the
Jackson model considered in Chapter 7 by letting inter-arrival times and service
times be described by general renewal processes. The approximation consists of
neglecting two facts: (i) the output process of a G∕G∕1 queue is not necessarily
a renewal process; (ii) the superposition of independent renewal processes does
not necessarily result in a renewal process. Even though external inputs to the
queueing networks are renewal processes, going through network queues destroys
the renewal property of the input inter-arrival processes. However, it can be the
case that correlations have small effects on the mean waiting time performance.
Moreover, reducing the general arrival process to renewal ones yields to a relatively
simple analysis, thus letting us gain insight into the system performance.

The approximation consists of analyzing each queue of the network as if it were
in isolation, except that its input process is deemed to be the superposition of the
customer flow coming directly from outside of the network plus flows of customers
leaving other queues and joining the tagged queue. The analysis of each queue
aims at providing the first two moments of the inter-departure times of customers
leaving the queue. Those are then used to evaluate the first two moments of the

�

� �

�

8.5 Approximate Analysis of a Network of G∕G∕1 Queues 427

arrival processes at other queues. Along with the first two moments of the service
process, that information is enough to evaluate the approximation of the mean
waiting time (or the mean system time). Using Little’s law enables the evaluation
of the mean number of customers in each queue and finally the mean sojourn time
of a customer in the network, provided the network is at statistical equilibrium.

The analysis approach overviewed above is known as the “decomposition”
approximation. The key ideas are: (i) to approximate every flow process in the
system as a renewal process; (ii) to determine formulas to compute the first
two moments of the considered processes when they undergo transformations
induced by the queueing network. More precisely, the decomposition method
consists of three process transformations: superposition of flows, splitting of flows
and analysis of flows through a queue. We will tackle each of them in the following
sections.

8.5.1 Superposition of Flows

Let us consider a queue fed by the superposition of n renewal arrival processes. The
i-th process has mean arrival rate 𝜈i and squared coefficient of variation (SCOV)
C2

i . Its counting function in the interval (0, t) is denoted with Ai(0, t). The count-
ing process associated with the superposition is denoted with A(0, t): it counts the
number of customers arrived at the queue in the time interval [0, t]. By the very
meaning of superposition, we have

A(0, t) = A1(0, t) + · · · + An(0, t) (8.73)

Taking expectation and variances we find

E[A(0, t)] =
n∑

i=1
E[Ai(0, t)] = t ⋅

n∑
i=1

𝜈i (8.74)

Var[A(0, t)] =
n∑

i=1
Var[Ai(0, t)] = t ⋅

n∑
i=1

𝜈iC2
i (8.75)

Working back from these relationships, we can express the mean rate and the
SCOV of the superposed process as follows:

𝜈 = 𝜈1 + · · · + 𝜈n (8.76)

C2 =
n∑

i=1

𝜈i

𝜈
C2

i (8.77)

While those expressions are exact, the superposed process is not a renewal
one in general, i.e., inter-event times are not necessarily independent random
variables.

�

� �

�

428 8 Bounds and Approximations

8.5.2 Flow Through a Queue

Given the first two moments of the inter-arrival time T and of the service time X ,
we aim at determining the first two moments of the output process of a queue.
We derived these results in Section 8.2.2. Denoting the random variable of the
inter-departure times as Y , we rewrite eq. (8.22) here:

E[Y] = E[T] = 1∕λ (8.78)

C2
Y = C2

T + 2𝜌2C2
X − 2λE[W](1 − 𝜌) ≈ (1 − 𝜌

2)C2
T + 𝜌

2C2
X (8.79)

The last approximation of the SCOV of the inter-departure time has been derived
using the RBM approximation of the mean waiting time:

E[W] ≈
𝜌

2(C2
T + C2

X)
2λ(1 − 𝜌)

(8.80)

Hence, we have

C2
Y ≈ (1 − 𝜌

2)C2
T + 𝜌

2C2
X (8.81)

8.5.3 Bernoulli Splitting of a Flow

Let us consider an arrival process with inter-arrival time Y . We are interested
in characterizing the first two moments of the inter-arrival times of the process
obtained by sampling the original process according to a Bernoulli pattern.
Bernoulli sampling means that each arrival is maintained (sampled) with proba-
bility p, independently of all others. In other words, sampling is independent of
the original arrival process and it is memoryless.

Let Z denote the inter-arrival time of the sampled process. It is the sum of a ran-
dom number N or inter-arrival times of the original process, where N has a geomet-
ric probability distribution with ratio p. That is to say,(N = n) = (1 − p)n−1p, n ≥
1 and Z =

∑N
k=1 Yk. Given that the Yk are i.i.d. (renewal process) and are indepen-

dent of N, it is easy to verify that E[Z] = E[N]E[Y] and

E[Z2] = E[N(N − 1)](E[Y])2 + E[N]E[Y 2] (8.82)

From this equality we derive

𝜎
2
Z = 𝜎

2
N (E[Y])2 + E[N]𝜎2

Y (8.83)

whence C2
Z = C2

N + C2
Y∕E[N]. Since it is E[N] = 1∕p and 𝜎

2
N = (1 − p)∕p2, we

obtain

E[Z] = E[Y]∕p (8.84)

C2
Z = 1 − p + pC2

Y (8.85)

�

� �

�

8.5 Approximate Analysis of a Network of G∕G∕1 Queues 429

Those are the first two moments of the Bernoulli sampled arrival process as a
function of the sampling probability p and of the first two moments of the original
arrival process.

Memoryless routing in a queueing network induces Bernoulli sampling of the
customer flow leaving a queue. The sub-flows feeding other queues or definitely
leaving the network are obtained by sampling the output flow of the tagged queue.

8.5.4 Putting Pieces Together: The Decomposition Method

By now we have reviewed all tools required by the decomposition method for the
analysis of a network of G∕G∕1 queues.

We consider J queues, arranged in an open queueing network. The same
hypotheses holding for Jackson type open networks are assumed here, except
that two of them are relaxed: namely, external arrivals and service processes are
allowed to be general renewal processes, rather than only Poisson processes.
Other assumptions common to G∕G∕1 queue networks and Jackson-type open
networks are: infinite buffer size, memoryless routing, independence of external
arrivals and service times. Moreover, in this section, we restrict our attention to
single-server queues.

The obtained results are approximate, since we use the expression of the mean
waiting time provided by the RBM approximation. Also, we assume that the
superposition of independent renewal processes and that the output process of a
G∕G∕1 queue are renewal processes, which is not true in general. Yet, accepting
those approximations makes it possible to set up a relatively simple computational
machinery for the evaluation of metrics of general G∕G∕1 queueing networks,
which is a valuable result, at least to provide a first-hand understanding of the
system performance.

Let λi and C2
T,i be the mean arrival rate and the SCOV of the external arrival

process at the i-th queue, i = 1,… , J. Let ai denote the mean arrival rate at the
input of the i-th queue, i = 1,… , J. Let E[Xi] and C2

X ,i denote the mean and the
SCOV of the service times of the server of the i-th queue, i = 1,… , J. Let pij be the
probability of joining queue j after having departed from queue i.

The mean arrival rate at queue j is obtained by a flow balance, assuming statis-
tical equilibrium:

aj = λj +
J∑

i=1
aipij (8.86)

The matrix P is irreducible, since the interconnection graph of the queueing
network is connected. A positive solution of this linear equation system always
exists, since the matrix P = [pij, i, j = 1,… , J] is sub-stochastic.

The queuing network is stable if aiE[Xi] = 𝜌i < 1, ∀i. The analysis in this section
holds under stability, hence we assume 𝜌i < 1, ∀i.

�

� �

�

430 8 Bounds and Approximations

Let C2
i denote the SCOV of the input process of queue i. This input process is

the superposition of J + 1 flows, one coming from outside of the network and all
others coming from other queues of the network (possibly including the queue i
itself.) The first two moments of the flow out of queue k are ak and C2

Y ,k, as given
by eqs. (8.78) and (8.79). Only a randomly sampled fraction pki of that flow moves
from queue k to queue i. Then, the first two moments of the sampled subflow
are akpki and 1 − pki + pkiC2

Y ,k, consistent with eqs. (8.84) and (8.85). Finally, the
overall arrival flow at the input of queue i is the superposition of the sampled
subflows coming from all queues plus the external input. Applying eqs. (8.76)
and (8.77), we have:

C2
i =

λi

ai
C2

T,i +
J∑

k=1

akpki

ai
(1 − pki + pkiC2

Y ,k) (8.87)

To complete the argument, we need only recall that, according to our approxi-
mation of the mean waiting time of a G∕G∕1 queue, we have C2

Y ,k = (1 − 𝜌
2
k)C

2
k +

𝜌
2
kC2

X ,k. Then we find

C2
i =

λi

ai
C2

T,i +
J∑

k=1

akpki

ai
(1 − pki + pki(1 − 𝜌

2
k)C

2
k + pki𝜌

2
kC2

X ,k) (8.88)

holding for i = 1,… , J. Equation (8.88) defines a linear equation system.
The solution yields the SCOVs of the input processes of the network queues,
C2

i , i = 1,… , J. Along with the mean input rates ai, we thus obtain the full
two-moment characterization of the input process of each queue.

The mean queue length of the i-th queue can be found by using Little’s law and
resorting to the RBM approximation of the mean waiting time:

E[Qi] = aiE[Wi] + aiE[Xi] ≈ ai

𝜌
2
i (C

2
i + C2

X ,i)
2ai(1 − 𝜌i)

+ 𝜌i =
𝜌

2
i (C

2
i + C2

X ,i)
2(1 − 𝜌i)

+ 𝜌i

(8.89)

The mean time through the network E[D] can be found again using Little’s law:

E[D] = 1∑J
i=1 λi

J∑
i=1

E[Qi] =
1∑J

i=1 λi

J∑
i=1

(
𝜌

2
i (C

2
i + C2

X ,i)
2(1 − 𝜌i)

+ 𝜌i

)
(8.90)

with 𝜌i = aiE[Xi].
Summarizing the whole procedure, we identify the following steps.
Given the mean rates and SCOVs of the external arrival processes, the mean rates

and SCOVs of the service processes and the routing probability matrix:

1. Calculate the internal mean arrival rates aj by solving the linear equation sys-
tem:

aj = λj +
J∑

i=1
aipij (8.91)

�

� �

�

8.5 Approximate Analysis of a Network of G∕G∕1 Queues 431

The utilization coefficients of queue servers are then 𝜌j = ajE[Xj]. Check that
𝜌j < 1, j = 1,… , J.

2. Calculate the SCOVs of the internal arrival processes by solving the following
linear equation system:

C2
j =

λj

aj
C2

T,j +
J∑

k=1

akpkj

aj
(1 − pkj + pkj(1 − 𝜌

2
k)C

2
k + pkj𝜌

2
kC2

X ,k) (8.92)

3. Calculate performance metrics for the j-th queue using approximations for iso-
lated G∕G∕1 queues whose input is modeled as a renewal process having mean
rate aj and SCOV C2

j , for j = 1,… , J.

This algorithm can be generalized to networks of G∕G∕m queues by simply
revisiting step 3. Specifically, the mean waiting time is evaluated using, e.g., the
approximation (8.50). Let queue i be a multi-server queue with mi servers. The
mean waiting time can be found as

E[Wi] = E[Xi]
C(mi, aiE[Xi])

1 − 𝜌i

C2
i + C2

Xi

2mi
(8.93)

where 𝜌i = aiE[Xi]∕mi and C(m,A) is the Erlang-C function for an M∕M∕m queue
with m servers and mean offered traffic A. The only other modification required to
adapt the decomposition method to the case of multi-server queues concerns the
expression of the SCOV of the departing process as a function of the SCOVs of the
inter-arrival and service times. It is [204]:

C2
Yi
= 1 +

𝜌
2
i (C

2
Xi
− 1)√

mi
+ (1 − 𝜌

2
i)(C

2
i − 1) (8.94)

with 𝜌i = aiE[Xi]∕mi. This expression reduces to the formula already found for
the single server case when mi = 1. It is exact for M∕M∕m and M∕G∕∞ queues.
In those cases, it is Ci = 1 and CXi

= 1 or mi = ∞, respectively. In either case, we
get CYi

= 1, which is exact, given that those two queueing models have a Poisson
output process.

The queueing network analyzer (QNA) [204] provides an algorithm to obtain
approximations of the performance measures of a multi-class and multi-server
queueing network.

Further generalization involve introducing priorities of different customer
classes. Priorities can be global, i.e., a customer maitains its priority level
throughout its journey in the queueing network. Alternatively, priority can be
local, i.e., a customer is given a priority level independently at each visited queue.
Approximation for priority queueing network are discussed, e.g., in Chen and
Yao [54].

�

� �

�

432 8 Bounds and Approximations

Example 8.9 LTE Access Reservation Procedure for Internet of Things We
consider an LTE cell where a large number of objects access periodically the cel-
lular network to upload a small chunk of data. Typical paradigms casting into this
framework are smart meters, vehicles, sensors in industrial environments, envi-
ronmental sensing, notification from smartphones. These application instances
are often referred to collectively as the Internet of Things (IoT) paradigm. Massive
data collection from a large number of objects is among the targets of 5G cellu-
lar networks (massive machine-type communications). This kind of applications
is not well supported in LTE, mainly because of the burden of signaling in the
access reservation procedure (ARP). Figure 8.7 illustrates the main phases of ARP
(additional signaling after message 4, e.g, for security handshake, is neglected).

In this example, we give a simplified model of ARP. For an alternative, more
sophisticated model, the reader can refer to [154].

A brief description of the ARP of LTE is in order, before proceeding to state the
model. To understand the ARP it suffices to give few details on the multiple access
scheme of LTE. Uplink and downlink resource are organized according to a mixed
time-frequency divisioni multiple access. Let us consider a frequency channel
of 1.4 MHz bandwidth. Transmission is based on orthogonal frequency-division
multiplexing (OFDM). The time axis is organized in frames, divided into slots. A
frame lasts Tf = 10 ms and has 10 time slots. Each slot is split into two sub-slots.
The radio resource made up of 12 OFDM subcarriers (with an overall bandwidth
of 180 kHz) for one sub-slot is referred to as a resource block (RB). With a channel
bandwidth of 1.4 MHz it is possible to pack 6 RB per sub-slot. Therefore, one
frame contains 6 ⋅ 20 = 120 RBs. The RB is the minimum quantum of assignable
radio resource.

We consider the format with six useful OFDM symbols per RB. Since one RB
comprises 12 OFDM sub-carriers, overall 12 ⋅ 6 = 72 resource elements are avail-
able in one RB. This format maps into a number of data bits carried by one RB that
depends on the modulation and coding set. In the following, we assume that the
radio channel experienced by users can be either a “bad” one or a “good” one. In

1 MSG1–Preamble

2MSG2–Random Access Response

3 MSG3–RRCConnection Request

4MSG4–RCC Connection Setup

Data

U
S

E
R

 E
Q

U
IP

M
E

N
T

PRACH

PDSCH

PDSCH

PUSCH

PUSCH

e
N

O
D

E
-B

Figure 8.7 Message flow and radio
channels of the Access Reservation
Procedure in LTE (PRACH = Physical
Random Access CHannel; PDSCH:
Physical Downlink Shared CHannel;
PUSCH: Physical Uplink Shared
CHannel).

�

� �

�

8.5 Approximate Analysis of a Network of G∕G∕1 Queues 433

case of bad channel, QPSK with coding rate 1/2 is used, resulting in 72 ⋅ 2 ⋅ 1∕2 =
72 bits per RB, hence a supported bit rate of rb = 72 bit∕0.5 ms = 144 kbit∕s. In
case of good channel, we assume that 64-QAM with coding rate 2/3 can be used,
so that 72 ⋅ 6 ⋅ 2∕3 = 288 bits per RB can be transmitted, resulting in a bit rate
rg = 288 bit∕0.5 ms = 576 kbit∕s. The probability that a user experiences a bad
channel in one RB is assumed to be q = 0.5.

The RBs are assigned to support logical channels, either devoted to control or
reserved for user data. Besides channels devoted to synchronization and other
physical layer functions, we consider in this example the following channels:

● PRACH (Physical Random Access Channel): A variable number of slots (pairs
of sub-slots) are assigned to it. It is used to start the ARP.

● PUSCH (Physical Uplink Shared Channel): It is the radio channel used to
send signaling and data messages from users to the network. Its resources
are assigned to different users, according to a dynamic schedule, ruled by the
general principle of demand-assignment (no random access).

● PDSCH (Physical Downlink Shared Channel): It is analogous to the PUSCH,
except that it goes from the eNodeB, the radio base station of LTE, toward the
users. Data and signaling messages destined to users are multiplexed in the
PDSCH. An associated control channel signals the RBs where users can find
their messages.

A user equipment (UE) starting a new radio session must preliminarly get radio
resources to send its traffic. This is the purpose of ARP (see Figure 8.7). At the
beginning the UE has no dedicated radio resource. The first step of the ARP con-
sists of selecting at random one of m preambles, defined by the LTE standard, and
transmitting it in the PRACH (message 1). The eNodeB detects which of the m
preambles have been activated. Then, it sends as many response messages (mes-
sage 2) in the PDSCH as the number of detected preambles. The response message
assigns radio resources for the requesting UE to be able to send an explicit message
(message 3), where it can give details on its identity, credentials, what it is request-
ing and the reason why. If more than one UE has chosen the same preamble, they
get the same resources for their messages. Hence, those messages are mixed at
the receiver of the eNodeB and cannot be correctly decoded. This event is referred
to as a collision. The involved UEs detect the collision event when their timers
expire and no reply to their messages 3 has been received. In that case, the UE has
to start the whole ARP anew. If instead there was no collision, the reception of
message 3 at the eNodeB triggers the sending of the final reply message, conclud-
ing the ARP, where the eNodeB specifies the RBs of the PUSCH assigned to the
requesting UE (message 4). After receiving this last message from the eNodeB, a
UE starts transmitting its data, according to the adopted scheduling policy. Note
that PUSCH RBs assigned to UEs are shared dynamically among multiple UEs
sending their data.

�

� �

�

434 8 Bounds and Approximations

Queue 1

(msg2)

Tout

a1
PRACH

p
coll

Queue 4-PS

(data)
a0

λ
a2

Queue 2

(msg3)
a3

Queue 3

(msg4)
a4

Figure 8.8 Sketch of the queueing network model of LTE access reservation procedure
(ARP).

We assume the preambles are always detected, if activated. The collision proba-
bility is denoted with pcoll. A collision event is detected by an involved UE because
it starts a timer on sending message 2. Let Tout be the duration of the time-out.

Let us assume that the user terminals generate a Poisson flow of requests of
mean rate λ. The overall length of signaling messages, including all overheads, is
assumed to be Lmsg,2 = Lmsg,3 = 36 bytes, and Lmsg,4 = 180 bytes.

The queueing network model of ARP is depicted in Figure 8.8.
Three single-server queues model the transmission of messages 2, 3 and 4 (the

queues labeled as 1, 2 and 3, respectively, in Figure 8.8). The block labeled with
Tout represent the timer mechanism that triggers the restart of ARP upon collision.
It corresponds to a fixed delay (a G∕D∕∞ queue). The last queue represents the
multiplexing of user data on the PUSCH for those UEs that have completed ARP
successfully (the queue labeled as 4 in Figure 8.8). We assume this last queue uses
processor-sharing discipline.

Additionally, we introduce a block representing the PRACH operation. We refer
to this block as queue 0. The modeling of this block is explained later.

Let ai denote the mean rate of arrivals at the input of queue i, i = 0, 1,… , 4. At
equilibrium, the mean input and output rate at each queue are the same. We can
write the following equilibrium equations for the mean rates ai:

a0 = λ + a2pcoll

a2 = a1 = a0

a3 = a2(1 − pcoll)

a4 = a3

where we account for the fact that the mean arrival rate a0 at the input of queue 0
is the sum of fresh arrivals, with mean rate λ, and of arrivals triggered by collisions.
Solving the linear system, we find

a0 = a1 = a2 = λ
1 − pcoll

(8.95)

a3 = a4 = λ

�

� �

�

8.5 Approximate Analysis of a Network of G∕G∕1 Queues 435

The model of the PRACH deserves some attention. This flow of requests at the
input of the PRACH is randomly split into m sub-flows, one for each preamble
(this is the same as saying that a UE picks one preamble out of m at random). Each
preamble works like a slotted ALOHA system (see Section 9.2). Denote with G the
overall arrival rate at the slotted ALOHA system. The probability that the “slot”
of such slotted ALOHA is busy (i.e., the corresponding preamble is activated) is
1 − e−G. This expression holds if requests arrive according to a Poisson process,
which in our case is only an approximation, since arrivals at PRACH are the super-
position of Poisson fresh arrivals and subsequent attempts after collisions. Since
m slotted ALOHA systems operate in parallel, for each PRACH opportunity in a
frame, we have

a0 = m
Tf

(1 − e−G) (8.96)

where Tf is the duration of an LTE frame.
Moreover, the probability of collision, conditional on having transmitted, is the

ratio of the probabilities that more than a single UE has activated the same pream-
ble to the probability that at least one UE has activated that preamble. Under the
Poisson approximation, we have:

pcoll =
1 − e−G − Ge−G

1 − e−G = 1 − Ge−G

1 − e−G (8.97)

Exploiting the two expressions (8.95) and (8.96) of a0, we obtain an equation for
G:

m
Tf

(1 − e−G) = λ
1 − pcoll

⇒
λTf

m
= Ge−G (8.98)

This result has a simple interpretation. The left-hand side is the mean number
or attempts of activating one preamble. The right-hand side is the probability of
transmitting on one preamble with no collision. Given all model parameters, G
can be found numerically4 .

Equation (8.98) sets an upper bound to the feasible value of λ:

λ ≤ m
Tf e

(8.99)

To apply the decomposition approximation for G∕G∕1 queueing networks, we
simplify the model of Figure 8.8 by removing all elements that are analyzed sepa-
rately (the PRACH block, the time-out block and the data queue). We obtain the
reduced queueing network of G∕G∕1 queue depicted in Figure 8.9, where only
queues representing transmssion of messages 2, 3 and 4 are accounted for.

4 A very efficient numerical algorithm can be set up by using Newton-Raphson method: the
iteration is xk+1 = bexk −x2

k
1−xk

, for k ≥ 0, with x0 = 0 and b = λTf ∕m. This algorithm works fine as
long as b ∈ (0, 1∕e).

�

� �

�

436 8 Bounds and Approximations

Queue 1

(msg2)
a1

p
coll

Queue 2

(msg3)

Queue 3

(msg4)

λ
a2 a3

Figure 8.9 Sketch of the
reduced queueing network
model of LTE ARP. Only the
queues modeling the
service of message 2, 3, 4,
flows are considered.

The first two moments of the service times of the queues in the model of
Figure 8.9 are given by:

E[Xi] = q𝜃b,i + (1 − q)𝜃g,i (8.100)

C2
Xi
=

q(1 − q)(𝜃b,i − 𝜃g,i)2

(q𝜃b,i + (1 − q)𝜃g,i)2 (8.101)

where 𝜃b,i =
Lmsg,i

nirb
and 𝜃g,i =

Lmsg,i

nirg
, for i = 1, 2, 3. Here ni denotes the number of RBs

reserved to carry message i + 1, for i = 1, 2, 3. We recall that rb and rg are the bit
rates supported by one RB with bad or good radio channel, respectively; q is the
probability that the radio channel is bad.

For the stability of these queues, it must be aiE[Xi] < 1 for i = 1, 2, 3.
The SCOVs of the arrival processes at the three queues modeling message 2, 3,

and 4 service (that is, queue 1, 2, and 3, respectively) are found by using the theory
developed in this section. To write down the linear equation system (8.88) we need
to specify routing probabilities. By inspection of the model sketch in Figure 8.9, we
find easily:

P =
⎡⎢⎢⎣

0 1 0
pcoll 0 1 − pcoll

0 0 0

⎤⎥⎥⎦ (8.102)

We assume that the 120 RBs managed by the eNodeB are so used:

● nPRACH = 12 ⋅ nopp RBs are reserved to the PRACH, where nopp is the number of
PRACH opportunities in a frame. We consider only two values: nopp = 1, 2. One
PRACH opportunity is assigned two sub-slots. The number of preambles is 54
for each PRACH opportunity: hence, m = 54nopp.

● In the uplink, 2 RBs are reserved to physical layer functions in each slot where
the PUSCH is allocated. Since the number of sub-slots in a frame is 20, the overall
number of RBs consumed by physical layer functions is nPHY = 2(20 − 2nopp).

● The remaining nPUSCH = 120 − nPRACH − nPHY RBs of the uplink are assigned to
the PUSCH and split into two parts: one reserved to signaling traffic (n2 for mes-
sage 3 signaling traffic) and the other one reserved for user data traffic (ndata).

● As for the downlink, 12 RBs are assigned to physical layer functions. The remain-
ing nPDSCH = 120 − 12 = 108 RBs are split into n1 and n3 RBs, reserved for mes-
sage 2 flow and message 4 flow, respectively.

�

� �

�

8.5 Approximate Analysis of a Network of G∕G∕1 Queues 437

Table 8.3 Assignment of RBs in the uplink.

PHY layer PRACH PUSCH (n2) PUSCH (ndata) Total

nopp = 1 36 12 4 68 120
nopp = 2 32 24 8 56 120

The limits on λ, imposed by the requirement of stability of the queues and of the
PRACH, are the following:

λ <
m

Tf e
and λ <

1
E[Xi]

=
ni

ci
, i = 1, 2, 3, (8.103)

where ci are known constants.
We dimension the numbers ni, i = 1, 2, 3, of RBs used to transmit the messages

of the ARP so that none of the queues in the network is a bottleneck with respect
to PRACH. We set therefore:

ni =

⌈
cim
Tf e

⌉
, i = 1, 2, 3. (8.104)

According to modularization constraints in LTE, we impose that n2 and ndata be
multiples of 2. With the numerical values assumed for the model parameters, we
obtain n1 = 5, n2 = 4, n3 = 11 for nopp = 1 and n1 = 9, n2 = 8, n3 = 21 for nopp = 2.
Using the RB allocation described above, we find the number of RBs devoted to
UE data in the uplink, i.e., ndata = 68 for nopp = 1 and ndata = 56 for nopp = 2. The
overall assignment of RBs in the uplink for the two considered values of nopp is
shown in Table 8.3.

Let E[Wi] and E[Si] be the mean waiting and system time at queue i. We have
E[Si] = E[Wi] + E[Xi] and

E[Wi] = E[Xi]
𝜌i(C2

i + C2
Xi
)

2(1 − 𝜌i)
(8.105)

with 𝜌i = aiE[Xi], i = 1, 2, 3.
We set Tout = 2Tf . Since the delay introduced by the timer in the feedback

branch of the model is constant, it does not affect the first two moments of the
arrival processes. We can therefore preserve the formulas derived for the analysis
of the reduced queueing network.

As for UE data, we assume that the RBs reserved for data are shared among
all requesting UEs according to a processor sharing policy. Then, the mean delay
suffered by a UE to send B bytes of data is

E[Sdata] =
E[Xdata]
1 − 𝜌data

(8.106)

�

� �

�

438 8 Bounds and Approximations

where E[Xdata] = qB∕(ndatarb) + (1 − q)B∕(ndatarg) and 𝜌data = λE[Xdata]. This
holds provided 𝜌data < 1. To provide numerical results, we assume B = 1000 bytes.
This is consistent with an Internet of Things context, where UEs are smart meters
that send periodically small chunks of data to a central server via the cellular
network.

We are now ready to derive the overall delay incurred by an UE to complete the
ARP and to send its data. The overall mean number of customers in the queueing
network, including the constant delay that accounts for the timer, is:

E[QARP] =
3∑

i=1
aiE[Si] + a2pcollTout =

λ(E[S1] + E[S2] + pcollTout)
1 − pcoll

+ λE[S3]

By Little’s law, the overall mean time required to complete the ARP is:

E[SARP] =
E[QARP]

λ
(8.107)

The overall mean delay of the ARP E[SARP] (solid line), the mean delay for send-
ing the data E[Sdata] (dashed line) and the mean delay of the three queues repre-
senting the transmission of ARP messages 2, 3, and 4 (marked lines) are plotted
against λ in Figure 8.10. The left plot shows results for nopp = 1, the right plot refers
to the case nopp = 2. The upper bound of λ as determined by the stability of the
ARP is given by m∕(eTf). This gives 1.99 req∕ms for nopp = 1 and 3.97 req∕ms for
nopp = 2. If we account also for the data queue, then we have the further limit
λ < 1∕E[Xdata]. With our numerical values, we find that this requirement trans-
lates into λ < 1.90 req∕ms for nopp = 1 and λ < 1.56 req∕ms for nopp = 2. These
limits are apparent by looking at the vertical asymptotes of the curves of E[SARP]
and E[Sdata] plotted in Figure 8.10.

0 0.5 1 1.5 2

Mean arrival rate, λ (ms–1)

103

M
e
a
n
 d

e
la

y
 (

m
s
)

ARP

Data

msg2

msg3

msg4

(a)

0 1 2 3 4

M
e

a
n

 d
e

la
y
 (

m
s
)

ARP

Data

msg2

msg3

msg4

(b)

102

101

100

10–1

103

102

101

100

10–1

Mean arrival rate, λ (ms–1)

Figure 8.10 Mean queueing delays and overall ARP and data delays of the LTE access
model. The left plot refers to nopp = 1, the right plot to the case nopp = 2.

�

� �

�

8.5 Approximate Analysis of a Network of G∕G∕1 Queues 439

Some comments emerge from the analysis of the curves in Figure 8.10.

● ARP delay is quite affected by the timeout, as apparent by comparing E[SARP]
with the queueing delays E[Si] for i = 1, 2, 3. On the other hand, the timeout
must be set so that it allows enough time for the eNodeB to detect preambles
and answer with message 2.

● ARP delay ranges between one and few tens of ms, but it grows rapidly as λ
approaches its upper limit. This calls for the deployment of a congestion control
algorithm that keeps λ away from its upper bound.

● The most interesting remark comes from a comparison of ARP delay and data
delay. For the smaller system with nopp = 1, it turns out that E[Sdata] is way
smaller than E[SARP], that is to say, the overhead required for a UE to be able
to send a small chunk of data is overwhelming.

● Since data use the uplink RBs left over by physical layer functions and signaling
(ARP), it turns out that, as λ grows, the data queue becomes overloaded even-
tually. This is apparent by the divergence of the mean data delay for growing λ.
In this numerical example the data queue sets the most stringent requirement
on λ.

The last comment highlights that the access to LTE can break down because
of the overhead implied by ARP. In fact, ARP consumes so many RBs that too
few of them are left for data. Most of the potential throughput gain due to the
larger PRACH channel is lost because of overload of the data queue. This outcome
occurs with a data message size of only 1000 bytes. Obviously, this problem could
be circumvented by expanding the bandwidth of the LTE cell, so that more RBs
become available.

Several works (e.g., see [201, 166, 114]) highlight that LTE is inadequate to sus-
tain the special kind of traffic offered by a large population of devices sending small
chunks of data periodically.

Example 8.10 Let us consider a Voice over IP (VoIP) packet flow. The VoIP
source sends one packet of length L0 = 160 bytes (including all overheads)
every T0 = 20 ms. The VoIP flow goes through a network path of M links. The
path is modeled as a chain of queues, representing the output links of the M
crossed routers. Cross traffic sharing each link wuth the VoIP flow is modeled
as interfering flows. The k-th interfering flow enters the path at the ingress of
queue k and leaves it at the output of the same queue. While this model of cross
traffic simplifies the analysis, it can be regarded as reasonable in a large core
network, where the probability of flows sharing more than one consecutive link
is negligible. Figure 8.11 illustrates an example with M = 3.

�

� �

�

440 8 Bounds and Approximations

Interfering flow

VoIP

flow

Figure 8.11 Chain of buffers crossed by a VoIP flow. An interfering flow at each buffer
models cross traffic.

We assume all links have the same capacity rate, equal to C = 1 Mbit∕s. Let
λk and C2

A,k be the mean arrival rate and the SCOV of the k-th interfering traffic
flow. The mean rate of the VoIP flow is λ0 = 1∕T0, while the SCOV is 0, since the
VoIP source is natively a constant bit rate traffic source. Service times are trans-
mission times, given by the ratio of packet length and link capacity rate. As for
VoIP, the service time is constant and equal to Y0 = L0∕C. As for the interfering
traffic, we choose the first two moments of packet length according to experimen-
tal data provided by CAIDA from backbone traffic traces. It is E[L] = 483.6 bytes,
𝜎L = 625.7 bytes, hence service times for the interfering flow packets are charac-
terized by the first two moments E[Y] = E[L]∕C and E[Y 2] = (𝜎2

L + E[L]2)∕C2.
The purpose of the analysis is to understand how the cross-traffic affects the

VoIP flow, introducing timing jitter on voice packets.
We can directly write an iteration for k = 1,… ,M, yielding the desired perfor-

mance measures thanks to the simple feedforward structure of the queueing net-
work in Figure 8.11.

ak = 1∕T0 + λk

E[Xk] =
1
C

(
1

1 + λkT0
Y0 +

λkT0

1 + λkT0
E[Y]

)
𝜌k = akE[Xk] =

1
C

(Y0

T0
+ λkE[Y]

)
E[X2

k] =
1

C2

(
1

1 + λkT0
Y 2

0 +
λkT0

1 + λkT0
E[Y 2]

)
C2

X ,k =
E[X2

k]
E[Xk]2 − 1

C2
k = 1

1 + λkT0
C2

VoIP,k−1 +
λkT0

1 + λkT0
C2

A,k

C2
D,k = 𝜌

2
kC2

X ,k + (1 − 𝜌
2
k)C

2
k

C2
VoIP,k = 1 − 1

1 + λkT0
+ 1

1 + λkT0
C2

D,k

(8.108)

to be initialized with C2
VoIP,0 = 0.

We exploit this model in two ways. First, we consider randomized interfering
flows, whose mean arrival rate is drawn uniformly at random in the interval

�

� �

�

8.5 Approximate Analysis of a Network of G∕G∕1 Queues 441

0 2 4 6 8 10 12

Link #

0

10

20

30

40

50

W
a
it
in

g
 t
im

e
 (

m
s
)

Average

90-quantile

(a)

1 2 3 4 5 6 7 8 9 10 11 12

Link #

0

0.5

1

1.5

2

S
C

O
V

 o
f
V

o
IP

 f
lo

w

(b)

Figure 8.12 Performance measures of the VoIP flow through M = 12 buffers with
randomized cross traffic load: mean and 90-quantile of the waiting time for each buffer
(left plot); box plot of the SCOV of VoIP at the output of each buffer (right plot).

(0, λmax), where λmax = (C𝜌max − Y0∕T0)∕E[Y]. The SCOV of the interfering flows
is drawn uniformly at random from the interval [C2

A,min,C2
A,max].

In this numerical example, we set 𝜌max = 0.95, CA,min = 0.5, CA,max = 2.
Figure 8.12 plots the mean and 90-quantile of the waiting time (left plot) and a box
plot of the SCOVs of the VoIP flow out of each buffer (right plot) for M = 12 buffers.

The quantile of the waiting time is obtained by exploiting the upper bound of
the waiting time probability density function obtained in Section 8.2.3.

The box plot is obtained by generating 1000 samples of interfering flows and
collecting the corresponding values of the VoIP flow SCOVs. Each box is delimited
by the 25 and the 75 quantiles of the SCOV. The median is marked by a line inside
the box, while outliers are shown as plus marks below and above the box.

It is apparent that waiting time performance are essentially the same in each
buffer, which is consistent with the fact that the utilization coefficient of the VoIP
flow is about 0.06, hence the load of each buffer is dominated by cross interfering
traffic. Given the randomized interfering traffic generation, the mean load in each
buffer is about 0.5. This explains the relatively low mean waiting time.

As for the SCOV, there is evidently a saturation effect. The SCOV of the VoIP
flow, initially equal to 0, grows quickly at the first buffers, then more slowly, tend-
ing to about 1.3. The effect of the cross traffic on the VoIP flow is a function of both
the mean load and of the variability of the interfering flows.

A second analysis corresponds to assigning a prescribed mean load 𝜌, hence
fixing the mean arrival rate of the cross traffic to λ = (C𝜌 − Y0∕T0)∕E[Y] for all
queues. The SCOV of the interfering flows is fixed at 1 for all of them. Figure 8.13
plots the mean of the waiting time (left plot) and the SCOVs of the VoIP flow out
of each buffer (right plot) for M = 12 buffers and four values of the mean load of
each buffer, ranging from 0.1 up to 0.9.

�

� �

�

442 8 Bounds and Approximations

Link #

M
e

a
n

 w
a

it
in

g
 t

im
e

 (
m

s
)

(a)

2 4 6 8 10 12 2 4 6 8 10 12

Link #

0

0.2

0.4

0.6

0.8

1

1.2

S
C

O
V

 o
f

V
o

IP
 f

lo
w

(b)

102

101

100

10–1

ρ = 0.1

ρ = 0.3

ρ = 0.6

ρ = 0.9

ρ = 0.1

ρ = 0.3

ρ = 0.6

ρ = 0.9

Figure 8.13 Performance measures of the VoIP flow through M = 12 buffers for four
values of the mean load 𝜌 in each buffer: mean VoIP waiting time for each buffer (left
plot); SCOV of VoIP at the output of each buffer (right plot).

The mean waiting time is almost the same at each buffer, apart from a noticeable
growth for the first ones. This is due to the growing SCOV of the VoIP flow, which
worsens the delay performance exhibited by the queues down the chain.

As for the SCOV of VoIP, it grows as VoIP packets progress through their path, as
expected. Each buffer adds a timing jitter on the VoIP packet flow, hence a growing
SCOV of the flow. The growth of VoIP SCOV is slower at lower load levels, i.e.,
more buffers must be crossed for the SCOV of VoIP packets to get close to the
SCOV of the cross traffic (1 in this example). At high loads (𝜌 = 0.9), one buffer
is enough to make the SCOV of the VoIP flow already as high as the SCOV of the
interfering traffic.

This kind of analysis helps dimensioning VoIP delay equalization at the final
destination decoder.

8.5.5 Bottleneck Approximation for Closed Queueing Networks

Approximate analysis of closed queueing networks with general service probabil-
ity distribution cannot be straightforwardly deduced from the G∕G∕1 open net-
work approximation developed so far.

One way to lead the analysis of the closed queueing network back to the approx-
imation for open queueing network is the so called bottleneck approximation [37].
It consists of identifying the most loaded queue and dealing with all others as
if they belonged to an open network. This algorithm turns out to provide useful
results for large values of the number N of customers circulating in the queueing
network.

We use the same notation as in the previous section. The starting point of the
analysis is to determine the visit ratios vj as the nontrivial solution of the following

�

� �

�

8.6 Fluid Models 443

homogeneous linear equation system:

vj =
J∑

i=1
vipij (8.109)

The solution is scaled so that v1 + ⋅ + vJ = 1. We then identify the bottleneck
node, as the one that maximizes the quantity vj∕𝜇j, where 𝜇j = 1∕E[Xj]. Let us
label the queues so that v1∕𝜇1 > vj∕𝜇j for j = 2,… , J. The queue labeled as 1 is
thus the bottleneck one.

We define

𝜌j =
vj∕𝜇j

v1∕𝜇1
aj = 𝜌j𝜇j = vj

𝜇1

v1
(8.110)

for j = 2,… , J. This first result covers step 1 of the solution procedure at the end
of the previous section. As for step 2, the calculation of the SCOVs of the internal
arrival processes, we use the same set of equations as in the open network, except
that here there is no external arrival process. Deleting the term relevant to external
arrivals, we recover a linear equation system whose solution yields the SCOVs C2

i :

C2
j =

J∑
k=1

akpkj

aj
(1 − pkj + pkj(1 − 𝜌

2
k)C

2
k + pkj𝜌

2
kC2

X ,k) (8.111)

The mean number of customers at queue j can then be found by using the
approximation:

E[Qj] = 𝜌j +
𝜌

2
j (C

2
j + C2

X ,j)

2(1 − 𝜌j)
(8.112)

This expression can be used for all queues, except for queue 1, for which it would
blow up to infinity, since 𝜌1 = 1. At this point, we exploit the fact that the network
is closed, hence the overall number of customers is fixed and equal to N. Then, it
must be:

E[Q1] = N −
J∑

j=2
E[Qj] (8.113)

Once the mean number of customers in each queue is found, we can use Little’s
law to find the mean system time E[Sj] = E[Qj]∕aj and then the mean waiting time
E[Wj] = E[Sj] − 1∕𝜇j.

An alternative approximate algorithm for closed queueing networks consists of
adapting the mean value analysis to the case of general arrival and service times
[86].

8.6 Fluid Models

The fluid approximation, leading to fluid models of traffic systems, consists essen-
tially of replacing stochastic phenomena that describe arrivals and service demand

�

� �

�

444 8 Bounds and Approximations

by means of their respective averages. To grasp the essence of the fluid model, we
first consider the deterministic fluid limit of a stochastic process. Then we extend
the fluid modeling to stochastically driven systems. A brief digression is devoted to
highlighting that the fluid model is a first-order approximation in a more general
framework, where the second-order approximation corresponds to the diffusion
model for queues (see Section 8.4.3).

8.6.1 Deterministic Fluid Model

Let us consider a renewal arrival process, described by means of the counting func-
tion. We start counting arrivals from t = 0. We assume that the first two moments
of the inter-arrival time are finite, and that the arrival process is stationary. Then,
the counting function depends only on the amount of time t elapsed since the
time origin, i.e., we let A(t) denote the number of arrivals in [0, t). We know that
for large t the probability distribution of A(t) tends to be Gaussian with mean λt
and variance λtC2

T , where λ = 1∕E[T] is the mean arrival rate, E[T] is the mean
inter-arrival time, C2

T is the SCOV of the inter-arrival time.
We now introduce a scaling factor n and define the scaled arrival process

A(t) = lim
n→∞

A(nt)
n

t > 0. (8.114)

For a fixed t, A(nt)∕n ∼ (λt, λtC2
T∕n). Using Chebychev’s inequality, for any

given 𝜖 > 0 we can write

(|A(t) − λt| > 𝜖λt) ≤ C2
T

λtn𝜖2 (8.115)

We can bound the right-hand side with an arbitrarily chosen positive number 𝜂,
by setting n ≥ n(𝜖, 𝜂) = C2

T∕(λt𝜂𝜖2). For example, if we let 𝜖 = 𝜂 = 0.1 (i.e., A(t) can
differ from λt by at most 10% in 90% of cases), we find n(𝜖, 𝜂) = 103C2

T∕λt. This is
an estimate of the time scale over which a fluid approximation leads to interesting
results.

In general, for large values of n, A(t) tends to a deterministic process, coincid-
ing with the mean of the original stochastic arrival process, namely λt. Figure 8.14
gives a graphical representation of the effect of scale. Samples of the scaled count-
ing function of a Weibull renewal process with E[T] = 1 and CT = 2 are repre-
sented as a function of t for the four scales n = 1, 10,100, 1000. The dashed red line
plots the mean number of arrivals, λt.

It is clear that the larger the scale the closer the scaled arrival process to the
deterministic function λt (λ = 1 in this numerical example). If we aim to charac-
terize the system behavior on such time scales, we can disregard the details of the
discrete steps (the “granularity” of the individual arrivals) and focus on the general
“trend” of the counting function.

�

� �

�

8.6 Fluid Models 445

0 2 4 6 8 10

Normalized time, t/E[T]

0

2

4

6

8

10

S
c
a

le
d

 n
u

m
b

e
r

o
f

a
rr

iv
a

ls

0 2 4 6 8 10

Normalized time, t/E[T]

0

2

4

6

8

10

S
c
a
le

d
 n

u
m

b
e
r

o
f
a
rr

iv
a
ls

0 2 4 6 8 10

Normalized time, t/E[T]

0

2

4

6

8

10

S
c
a

le
d

 n
u

m
b

e
r

o
f

a
rr

iv
a

ls

(c) n = 100

0 2 4 6 8 10

Normalized time, t/E[T]

0

2

4

6

8

10
S

c
a

le
d

 n
u

m
b

e
r

o
f

a
rr

iv
a

ls

(d) n = 1000

(a) n = 1 (b) n = 10

Figure 8.14 Scaled counting function of a Weibull renewal process with E[T] = 1 and
SCOV = 4. Time is normalized with respect to the mean inter-arrival time.

In the case of a stationary arrival process, this leads to a quite uninteresting
result, i.e., the linear function of time λt. The reasoning can be carried over to
nonstationary processes. Then, at proper time scales, we can restrict our consider-
ation to the time-varying mean of the process, neglecting all the complexity of the
full stochastic description.

It is expected that predictions based on such an approximation lead to interesting
results when the considered performance metrics depend strongly on the ‘trend’
(large scale behavior) of the involved processes and only marginally on the ‘noise’
of the stochastic variability around their respective means.

Let us first apply the fluid model to a trivial case, a stationary G∕G∕1 queue. We
re-write eq. (8.56)

Q(t) = Q(0) + A(t) − S(B(t)) , t ≥ 0. (8.116)

and scale time by a factor n, thus obtaining:

Q(nt)
n

= Q(0)
n

+ A(nt)
n

−
S(n ⋅ B(nt)∕n)

n
(8.117)

�

� �

�

446 8 Bounds and Approximations

For fixed t, A(nt)∕n and B(nt)∕n tend to λt and min{1, 𝜌}t, respectively, for n →

∞. Moreover, we have also S(nt)∕n → 𝜇t. Putting all together, we can write

Q(t) = lim
n→∞

Q(nt)
n

= λt − 𝜇 min{1, 𝜌}t =

{
0 𝜌 < 1
(λ − 𝜇)t 𝜌 > 1

(8.118)

This rather disappointing result comes at no surprise if we give it a little thought.
At large time scales, the average trend of the queue level of a stationary G∕G∕1
queue is either flat at 0, if the queue is stable, or it grows with time proportionally
to the mismatch between the arrival rate and the server capacity rate. If the queue
is stable, the mean queue length stays finite on average. Hence, the scaled version
(divided by n) of the queue length tends to 0 for a stable queue. In other words,
the average queue length of a stable queue amounts to a negligible fraction of the
overall number of arrivals over a large time scale. On the contrary, if the queue
is unstable, it has a growth drift on the average. Then, the average queue length
represents a nonvanishing fraction of the arrivals over a large time scale.

Even if the fluid model of the stationary G∕G∕1 queue is not very useful, it
shows that a fluid model can be obtained also for an unstable queue. The stochastic
description of the transient behavior of a queue does not yield to analytical results
except of few cases. Steady-state results only exist if the queue is stable. Hence, the
analysis of the transient behavior of a queue is almost unaccessible to a stochastic
approach. This is a first hint at the usefulness of the fluid model, i.e., it opens the
way to a quantitative understanding of systems where the stochastic analysis is
unfeasible.

An enlightening image of the fluid model of a queueing systems is offered by
a hydraulic analogy, illustrated in Figure 8.15. Let us consider a tank, where a
fluid pours in through an input faucet and drains through an output faucet. The
two faucets allow variable flows in and out of the tank. As a consequence, the

Figure 8.15 Pictorial illustration of the
fluid model of a queueing system.

�

� �

�

8.6 Fluid Models 447

level of the fluid in the tank varies, eventually emptying completely the tank if
the drainage out of the tank exceeds the inflow for a sufficiently long time, or, on
the opposite, overflowing the limited tank capacity and spilling out, if the inflow
exceeds the output capacity long enough.

Let us now consider a nonstationary queueing system. Q(t) denotes the number
of customers in the system at time t. We will introduce a fluid approximation Q(t)
of Q(t), as a result of a scaling technique known as uniform acceleration.

Let us assume that the number of arrivals in (0, t), denoted with A(0, t),
be a nonstationary Poisson process with mean arrival rate fA(t,Q(t)) that is
state dependent. The mean number of arrivals in a time interval (u, v) is
E[A(u, v)] = ∫ v

u E[fA(𝜏,Q(𝜏))] d𝜏. The expectation inside the integral is with
respect to the time-dependent probability distribution of Q(𝜏). Similarly, the
number of departures out of the queue in the interval (0, t) is assumed to be a
nonstationary, state-dependent Poisson process, denoted with D(0, t). The mean
rate of the departure process is denoted with fD(t,Q(t)).

For any t ≥ 0 we have

Q(t) = Q(0) + A(0, t) − D(0, t) (8.119)

We now introduce a scaled stochastic process, depending on an integer index
n. The scaled process Qn(t) is obtained from Q(t) by multiplying the mean arrival
and service rates by n and scaling the obtained queue by n. This is called uniform
acceleration, since it is equivalent to making arrivals and service completions faster
by a factor n. We have

Qn(t) =
nQn(0) + An(0, t) − Dn(0, t)

n
, n ≥ 1. (8.120)

where nQn(0) = Q(0), An(0, t) and Dn(0, t) are the arrival and departure nonsta-
tionary, state-dependent Poisson processes with rates nfA(t,Qn(t)) and nfD(t,Qn(t)),
respectively.

It can be shown that the sequence Qn(t) converges almost surely to a determin-
istic process Q(t) [138]. Since Q(t) is deterministic, we have also limn→∞E[Qn(t)] =
Q(t). For the validity of this asymptotic result we require some technical condi-
tions to hold on the functions fA(t, x) and fD(t, x). Specifically, there must exist
a finite T such that for any t ≤ T: (i) it is |fA(t, x)| ≤ C(1 + x) for some constant
C; (ii) the function fA(t, ⋅) satisfies the Lipschitz property, i.e., |fA(t, x) − fA(t, y)| ≤
M|x − y|, ∀x, y, for some positive constant M. Similar conditions are required of
the function fD(t, x).

Under these conditions it can be proved that the limit function Q(t) is the solu-
tion of the following equation (for a sketch of the proof, see, e.g., [86]):

Q(t) = Q(0) + ∫
t

0
fA(𝜏,Q(𝜏)) d𝜏 − ∫

t

0
fD(𝜏,Q(𝜏)) d𝜏 (8.121)

�

� �

�

448 8 Bounds and Approximations

We can convert the integral equation into a differential equation:

dQ(t)
dt

= fA(t,Q(t)) − fD(t,Q(t)) (8.122)

with Q(0) equal to an assigned value. To clarify the meaning of the uniform
acceleration scaling and of the resulting fluid approximation, we present a simple
example.

Example 8.11 Let us consider an Mt∕M∕mt queueing system, i.e., a multi-server
queue with a nonstationary Poisson input process and a time-varying number of
servers m(t). Let λ(t) be the time-dependent arrival rate of the input nonstationary
Poisson process and let 𝜇 be the serving rate of a server. Then, the departure rate
of the queue is fD(t,Q(t)) = 𝜇 ⋅ min{m(t),Q(t)}. Let N(a(0, t)) denote the number
of arrivals in the interval (0, t) of the nonstationary Poisson process with mean
number of arrivals in (0, t) equal to a(0, t). The number of customers in the queue
at time t can be written as the balance between the input and the output flow:

Q(t) = Q(0) + N
(
∫

t

0
λ(u) du

)
− N

(
∫

t

0
𝜇 min{m(u),Q(u)} du

)
(8.123)

To obtain the scaled process, we pick a value of the scaling factor n and define the
scaled arrival rate λ(t) = λ(t)

n
and the scaled number of servers m(t) = m(t)

n
. Then,

we can rewrite eq. (8.123) for the scaled process Qn(t) ≡ Q(t)∕n:

Qn(t) =
nQn(0) + N

(∫ t
0 nλ(u) du

)
− N

(∫ t
0 𝜇n min{m(u),Qn(u)} du

)
n

(8.124)

As n → ∞, Qn(t) converges almost surely to Q(t), which is given by:

Q(t) = Q(0) + ∫
t

0
λ(u) du − ∫

t

0
𝜇min{m(u),Q(u)} du (8.125)

Note that the general theoretical result stated above refers to rates fA and fD for
the arrival and departure processes, which are here replaced by the scaled rates
λ(t)∕n and 𝜇min{m(t),Q(t)}∕n. Therefore, we expect that the approximation be
accurate when λ(t)∕𝜇 ≫ 1 and m(t) ≫ 1.

We can use the asymptotic result as follows:

● Given λ(t), m(t) and Q(0), pick an arbitrary n and define λ(t) = λ(t)∕n, m(t) =
m(t)∕n and Q(0) = Q(0)∕n.

● Calculate Q(t) by integrating numerically eq. (8.125) with the initial condition
Q(0).

● Recover the approximation of the original queue state as Q(t) ≈ n ⋅ Q(t).

�

� �

�

8.6 Fluid Models 449

Table 8.4 Values of the mean arrival rate λ, number of servers m and utilization
coefficient 𝜌 as a function of time for the Mt∕M∕mt queue of Example 8.11.

t 1 2 3 4 5 6 7 8 9 10 11 12

λ(t) 400 570 720 850 950 990 990 950 850 720 570 400
m(t) 80 100 110 120 120 120 110 100 80 80 80 80
𝜌(t) 0.5 0.57 0.655 0.708 0.792 0.825 0.9 0.95 1.06 0.9 0.713 0.5

0 2 4 6 8 10 12

Time

0

50

100

150

200

N
u

m
b

e
r

o
f

c
u

s
to

m
e

rs
,

Q
(t

)

Stochastic model
Fluid approximation

(a)

0 2 4 6 8 10 12

Time

0

50

100

150

200

E
[Q

(t
)]

Stochastic model
Fluid approximation

(b)

Figure 8.16 Fluid approximation of the Mt∕M∕mt queue with nonstationary input and
time-varying number of servers. Comparison of the fluid approximation Q(t)∕n (dashed
line) with a sample path of Q(t) (left plot) and with E[Q(t)] (right plot).

As a numerical example, we fix a time unit (e.g., one hour) and define the
time-varying arrival rate according to a half-wave sine shape. The number of
servers grows linearly up to a maximum level, then it decreases linearly. The
numbers used for λ(t) and m(t) are shown in Table 8.4. The mean service time of
a server is 1∕𝜇 = 1∕10 of the time unit. The resulting server utilization coefficient
𝜌(t) = λ(t)

m(t)𝜇
as a function of time is shown in the last line of Table 8.4. Note that

utilization coefficient values greater than 1 are possible, since we are carrying out
a transient analysis.

Figure 8.16(a) compares a sample path of Q(t) (solid line) with the fluid approx-
imation Q(t)∕n (dashed line), as obtained by integrating eq. (8.125) with n = 40.
This value of n is used to define the scaled arrival rate and the scaled number of
servers. The accuracy of the fluid approximation is remarkable. It turns out that
the trend of Q(t) is tracked quite effectively.

The plot in Figure 8.16(b) shows an excellent agreement between the fluid
approximation Q(t)∕n and the mean value of the stochastic process Q(t), estimated
by means of 50 sample paths of Q(t). Note that E[Q(t)] is a function of time due to
the nonstationarity of the Mt∕M∕mt queue.

�

� �

�

450 8 Bounds and Approximations

Note that the fluid approximation allows an easy computation of the transient
behavior of the Mt∕M∕mt queue. During this transient evolution it can well hap-
pen that the local coefficient of utilization be greater than 1 (the queue is temporar-
ily unstable). For example, this occurs in the ninth interval, as shown in Table 8.4.

Let us apply the fluid approximation for nonstationary queues to a single server
queue. We assume a time-varying, state-independent arrival rate λ(t) and serving
rate 𝜇(t). Then, it is fA(t,Q(t)) = λ(t) and

fD(t,Q(t)) =

{
𝜇(t) Q(t) > 0
min{λ(t), 𝜇(t)} Q(t) = 0

(8.126)

The fluid approximation is expressed in differential form as:

dQ
dt

= fA(t,Q(t)) − fD(t,Q(t)) =

{
λ(t) − 𝜇(t) Q(t) > 0
max{0, λ(t) − 𝜇(t)} Q(t) = 0

(8.127)

This is the differential equation that governs the evolution of the deterministic
fluid model of the original nonstationary queue.

Since fD(t,Q(t)) ≤ 𝜇(t), given a finite time horizon T, we can write:

Q(T) − Q(0) ≥ T
(

1
T ∫

T

0
λ(t) dt − 1

T ∫
T

0
𝜇(t) dt

)
(8.128)

Let the long-term averages of the arrival rate and of the serving rate, i.e., the limits
of the two terms in brackets, be finite, denoted with λ and 𝜇, respectively. Then,
the factor within brackets tends to λ − 𝜇 as T → ∞. If this difference is positive,
i.e., the long-term mean arrival rate exceeds the long-term average serving rate, it
turns out that Q(T) − Q(0) diverges as T grows. In other words, λ > 𝜇, implies the
instability of the queue. This simple argument proves that λ ≤ 𝜇, is a necessary
condition for stability of the fluid queue.

We can informally state that the fluid approximation of the queue length Q(t)
consists of replacing the actual arrival and service stochastic processes of the
arrivals and departures by their respective averages. The analysis of the system
model shifts from equations involving the probability distributions to a dynamical
system equation, whose solution gives the fluid queue length Q(t). The differential
equation that drives the fluid dynamical system can be written down straight-
forwardly, given its physical meaning. It states that the rate of change of the
queue content equals the instantaneous difference between the input rate and the
drainage rate. Depending on the structure and on the policy of the system, input
and output rates could be functions of the system state or of other environmental
parameters. We will see that the fluid approximation provides useful models to
describe packet networks under closed-loop flow control (e.g., TCP traffic flows),
or multiple access systems. When applying a fluid model one must be aware that

�

� �

�

8.6 Fluid Models 451

effects of stochastic variability around the mean values of the involved processes
are neglected, yet the “trend” of system variables is correctly captured. Hence, the
deterministic fluid model is extremely useful to gain insight into the dynamics of
nonstationary systems, or to model network control mechanisms, or to assess the
stability of complex systems, e.g., networks of queues (see Section 7.5).

Example 8.12 Let us consider a queueing system with constant serving rate 𝜇 =
1 (in suitable measure units). The arrival rate λ(t) has a trapezoidal shape, as illus-
trated in Figure 8.17. The function λ(t) is defined as

λ(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 0 ≤ t ≤ 1
12(t − 1) 1 ≤ t ≤ 1.25
3 1.25 ≤ t ≤ 2.5
3 − 6(t − 2.5) 2.5 ≤ t ≤ 3
0 3 ≤ t ≤ 5

(8.129)

The fluid queue length Q(t) of the system can be obtained by numerical integra-
tion of the differential equation in (8.127). In this simple case, it suffices to use the
iteration

Qk =

{
Qk−1 + 𝛿[λ(k𝛿) − 𝜇] Qk−1 > 0
Qk−1 + 𝛿max{0, λ(k𝛿) − 𝜇} Qk−1 = 0

(8.130)

for k ≥ 1, initialized with Q0 = 0. Here 𝛿 is a time step chosen for numerical inte-
gration, small as compared to the time scale of the arrival and servic processes. In
this numerical example we set 𝛿 = 10−3.

The arrival rate exceeds the serving rate in the interval [1.08, 2.83]. This is the
overload interval. The queue length Q(t) is monotonously increasing during the

Figure 8.17 Time evolution of
arrival rate λ(t), serving rate 𝜇(t)
and fluid queue length Q(t) of the
system in Example 8.12.

0 1 2 3 4 5

Time, t

0

0.5

1

1.5

2

2.5

3

Q(t)

μ(t)

λ(t)

�

� �

�

452 8 Bounds and Approximations

overload interval, since more fluid is offered to the system than the amount that
it can dispose of. Therefore, the maximum of the queue length is attained just as
the overload interval ends and an underload time starts. During underload, the
pressure on the queue is relieved and the excess unfinished work can be drained
out, until the queue gets eventually empty, if the underload lasts long enough.

The maximum queue length achieved during the observed time interval
depends on how long the overload lasts and how deep it is, i.e., how much the
arrival rate exceeds the serving rate.

It is true in general that the worst congestion is to be found as soon as the
overload ends, which might seem a bit counterintuitive at first, yet it is clearly
highlighted by the fluid model analysis of this example.

8.6.2 From Fluid to Diffusion Model

The deterministic fluid approximation consists essentially of observing the evo-
lution of a stochastic system on a sufficiently gross-grained time scale, so that
statistical fluctuations due to the stochastic nature of the involved quantities can
be neglected with respect to their average trend.

Part of the stochastic variability can be preserved by using a different
scaling. Specifically, let us first consider a sum of i.i.d. random variables,
Sn = Z1 + · · · + Zn,n ≥ 1. Let m and 𝜎

2 denote the mean and variance of Z ∼ Zj.
It is known by the central limit theorem (CLT) that the random variable Sn−nm

𝜎

√
n

converges in distribution to a standard Gaussian random variable as n → ∞. We
can generalize and construct the random process Yn(t) =

S⌊nt⌋−⌊nt⌋m

𝜎

√
n

, t > 0,n ≥ 1,
where ⌊x⌋ denotes the largest integer not greater than x. By convention, we set
S0 = 0. It can be shown that the entire process Yn(t) converges in distribution
to a standard Brownian Motion process5 B(t) as n → ∞. This is known as the
functional central limit theorem (FCLT).

The FCLT can be applied to a counting process X(t) with mean E[X(t)] = t∕m
and variance 𝜎

2
X(t) = t𝜎2∕m3, where m and 𝜎

2 are the mean and the variance of
inter-event times. It can be shown that the sequence of random processes Yn(t)
defined as follows:

Yn(t) =
X(nt) − nt∕m

(𝜎∕m3∕2)
√

n
(8.131)

converges to a standard Brownian motion process as n → ∞.
The plot of Yn(t) for the counting process of the departures out of a G∕G∕1

queue with Pareto inter-arrival and service times, is shown in Figure 8.18. It is

5 Also known as Wiener process; see the Appendix at the end of the book for its definition and
basic properties.

�

� �

�

8.6 Fluid Models 453

0 2 4 6 8 10

Normalized time, t/E[T]

0

1

2

3

4

5

S
c
a

le
d

 #
 o

f
d

e
p

a
rt

u
re

s

0 2 4 6 8 10

Normalized time, t/E[T]

0

1

2

3

4

5

S
c
a

le
d

 #
 o

f
d

e
p

a
rt

u
re

s

0 2 4 6 8 10

Normalized time, t/E[T]

0

1

2

3

4

5

S
c
a

le
d

 #
 o

f
d

e
p

a
rt

u
re

s

0 2 4 6 8 10

Normalized time, t/E[T]

0

1

2

3

4

5
S

c
a

le
d

 #
 o

f
d

e
p

a
rt

u
re

s

(a) n = 1 (b) n = 10

(c) n = 100 (d) n = 1000

Figure 8.18 Diffusion scaling of the counting function of the output process of a G∕G∕1
queue with Pareto inter-arrival and service times, with 𝜌 = 0.9, E[T] = 1, E[X] = E[T]𝜌,
CT = CX = 2. Time is normalized with respect to the mean inter-arrival time.

evident that the sample paths of the scaled process resemble a continuous-time,
continuous-state process as n grows. In other words, at large enough time scales,
the discrete nature of events can be replaced with a random process having con-
tinuous sample paths.

In general, the diffusion approximation of queues consists of finding a scaling of
the original process X(t) that converges to some diffusion process as a parameter
tends to infinity, e.g., time scale or number of servers. More in depth, let Z(t) be a
general stochastic process and let us consider the scaling:

Zn(t) =
Z(nt) − Z(nt)√

n
(8.132)

for any integer n ≥ 1. Here Z(nt) is the deterministic fluid approximation of Z(nt),
i.e., a deterministic process that approximates Z(t) on suitably large time scales. A
typical choice could be Z(t) = E[Z(t)].

�

� �

�

454 8 Bounds and Approximations

Given the fluid approximation Z, the main task is to study the convergence of
the scaled stochastic process {Zn(t), t ≥ 0} as n → ∞.

A diffusion approximation is obtained when Zn(t) converges to a diffusion pro-
cess. A diffusion process is a time-continuous process with almost surely con-
tinuous sample paths, that satisfies the Markov property. Brownian motion is an
example of diffusion process.

If a diffusion approximation ZD(t) can be found, i.e., limn→∞Zn(t) = ZD(t),∀t ≥
0, then for suitably large n we can write Z(nt) ≈ Z(nt) + ZD(t)

√
n. If a steady state

exists for the involved processes, the probability distribution of the steady-state
process Z(∞) can be approximated with that of Z(∞) + ZD(∞)

√
n, where Z(∞) is

a constant and ZD(∞) is a random variable representing a steady-state sample of
the diffusion process.

Let us give more details on diffusion process. Let us consider a continuous-time,
continuous-state stochastic process X(t). We define the transition probability dis-
tribution

F(y, t; x,u) = (X(t) ≤ y|X(u) = x), u ≤ t, (8.133)

that is to say, the CDF of X(t), conditional on the process being in state x at some
prior time u ≤ t. We assume that the associated PDF f (y, t; x,u) = 𝜕F

𝜕y
is properly

defined, as long as its derivatives with respect to the state variables x and y and
with respect to time t.

The process X(t) is Markovian if its evolution from time v is independent of the
states visited prior to v, conditional on an assigned state at time v:

f (y, t; x,u) = ∫
∞

−∞
f (w, v; x,u)f (y, t;w, v) dw, u < v < t. (8.134)

The process is time-homogeneous if f (y, t; x,u) depends only on t − u, rather
than on t and u separately. In other words, the evolution of the process depends
only on the amount of time elapsed and not on which is the initial time instant of
the evolution.

The process is space homogeneous, if f (y, t; x,u) depends only on y − x, rather
than on x and y separately. This means that the evolution of the process depends
only on the distance between the initial and final state and not on which they are.

Finally, we define the moment rates as follows:

Rn(x, t) = lim
Δt→0

1
Δt ∫

∞

−∞
(y − x)nf (y, t + Δt; x, t) dy (8.135)

For example, let us focus on n = 1. The conditional mean of the process X(t) is
defined as

M(t; x,u) = E[X(t)|X(u) = x] = ∫
∞

−∞
yf (y, t; x,u) dy (8.136)

�

� �

�

8.6 Fluid Models 455

Since the process is assumed to have continuous sample paths, i.e., it does not
make jumps, limΔt→0M(t + Δt; x, t) = M(t, x, t) = x. Then, it is easy to check that

R1(x, t) = lim
Δt→0

M(t + Δt; x, t) − M(t; x, t)
Δt

= 𝜕M(𝜏; x, t)
𝜕𝜏

(8.137)

hence the name of moment rate given to R1(x, t).
Exploiting the definitions above and the Markovian property of X(t), the follow-

ing forward Chapman-Kolmogorov equation can be derived for f (y, t; x,u) [131]:

𝜕f
𝜕t

=
∞∑

n=1

(−1)n

n!
𝜕

n[Rn(y, t)f (y, t; x,u)]
𝜕yn (8.138)

The differential equation must be solved under boundary conditions depend-
ing on specific cases. In general, the solution must be a PDF, i.e., it must
be non-negative and such that ∫ ∞

−∞ f (y, t; x,u)dy = 1. Moreover, it must be
f (y,u; x,u) = 𝛿(y − x),∀u, where 𝛿(⋅) is the delta of Dirac.

If only the first-order term is considered in the series on the right-hand side of
eq. (8.138), we write the differential equation satisfied by the fluid approximation
of X(t):

𝜕f
𝜕t

= −
𝜕[R1(y, t)f]

𝜕y
(8.139)

Example 8.13 Let us assume that the first moment rate, also known as drift, is
a function of time only, i.e., R1(y, t) = m(t). Then

𝜕f
𝜕t

= −m(t)
𝜕f
𝜕y

(8.140)

A general solution is f (y, t; x,u) = 𝜓

(
y − x − ∫ t

u m(𝜏)d𝜏
)

and 𝜓(⋅) is a PDF.
Applying the initial condition, we have f (y,u; x,u) = 𝜓(y − x) = 𝛿(y − x), whence
we identify 𝜓(⋅) as Dirac’s delta function. Summing up, the solution of eq. (8.140)
is f (y, t; x,u) = 𝛿

(
y − x − ∫ t

u m(𝜏)d𝜏
)

.
It turns out that the process whose PDF is the solution of eq. (8.140) is a deter-

ministic one, given by X(t) = X(u) + ∫ t
u m(𝜏)d𝜏, t ≥ u. This is the fluid approx-

imation of a stochastic process with time-varying drift and no constraints (e.g.,
reflecting or absorbing barriers).

The diffusion approximation of X(t) is the stochastic process whose transition
PDF solves the differential equation obtained by truncating the sum in the
right-hand side of eq. (8.138) to the first two terms:

𝜕f
𝜕t

= −
𝜕[R1(y, t)f]

𝜕y
+ 1

2
𝜕

2[R2(y, t)f]
𝜕y2 (8.141)

�

� �

�

456 8 Bounds and Approximations

For a time and space homogeneous process, we can let u = 0 and x = 0, i.e., the
initial condition of the process is X(0) = 0. Hence, the PDF depends only on y and
t and the moments rates are constants. We use the notation R1 = 𝛼 for the drift
and R2 = 𝛽

2 for the diffusion coefficient. Then, we get the following simplified
differential equation for f (y, t):

𝜕f
𝜕t

= −𝛼
𝜕f
𝜕y

+ 1
2
𝛽

2 𝜕
2f

𝜕y2 (8.142)

The stochastic process whose PDF is the solution of eq. (8.142) is known as
Wiener process or Brownian motion. Not surprisingly, this is the same as eq. (8.63),
that is satisfied by the diffusion approximation of the G∕G∕1 queue with stationary
arrival and service processes.

8.6.3 Stochastic Fluid Model

A fluid model of a service system substitutes the stochastic processes representing
system quantities with their respective average trends. While the small details
of the stochastic varibility of the system is lost, the general time evolution is
captured, including transient analysis. The system description is based on differ-
ential equations governing the time evolution of the deterministic fluid model
Q(t), rather than equations yielding the probability distributions of the stochastic
processes Q(t).

The fluid model approach can be extended to the case where the fluid flow level
is a function of random processes modulating some parameter of the service sys-
tem, e.g., the arrival and service rates. In this setting, the discrete description of the
process state is relaxed to a real-valued state variable. The latter is still a random
process, due to randomness of the (fluid) arrival and service processes.

Let Q(t) be the number of customers in the system at time t and let JA(t), JS(t) be
two discrete-state random processes, modulating the arrival and service processes.
The mean arrival rate of customers at the system is λj when JA(t) = j. Similarly, the
serving capacity of the system is cj when JS(t) = j.

The full stochastic description of the system admits a state space made up of the
lattice (k, i, j), where k = 0, 1,… ,K, i = 0,… ,nA, j = 0,… ,nS. Here K denotes the
maximum number of customers that can be admitted into the system (including
those under service). The number of states grows with the product KnAnS and
can easily explode to unfeasible sizes. The stochastic fluid model offers a viable
approach, retaining a very good insight, in those cases where the time scale
of the stochastic variability of Q(t) is small compared to the time scale of the
arrival/service modulating process.

In the stochastic fluid model, we replace Q(t)with its fluid approximation, main-
taining the stochastic modulating processes JA(t) and JS(t). With a small abuse of

�

� �

�

8.6 Fluid Models 457

notation, we keep using Q(t) to denote the content level of the system. In the fluid
setting, however, Q(t) is a real-valued function of time, taking values in the interval
[0,K]. The time evolution of Q(t) is described by the following equation:

dQ
dt

=
⎧⎪⎨⎪⎩

max{0, λJA(t) − cJS(t)} Q(t) = 0
λJA(t) − cJS(t) 0 < Q(t) < K
min{0, λJA(t) − cJS(t)} Q(t) = K

(8.143)

The interpretation of this equation is quite intuitive: the rate of change of the
system content level is given by the difference between the instantaneous rate of
the input flow minus the instantaneous rate at which the server drains the sys-
tem, except at the two boundary states 0 and K. When the system is empty, it
remains empty until the input flow rate exceeds the server capacity rate. Symmet-
rically, when the system is full, it stays full until the input rate gets smaller than the
serving rate.

We are interested in characterizing the statistics of Q(t) as t → ∞. A steady state
exists if K is finite and the modulating processes admit steady state themselves
(e.g., they are irreducible continuous-time Markov chains). Let JA(∞) and JS(∞)
denote the limiting steady-state modulating processes.

If K = ∞, we require the following stability condition:

E[λJA(∞)] < E[cJS(∞)]. (8.144)

In the following we assume that JS(t) has a constant value, so that we can drop
it6 . We simplify notation by dropping the subscript A as well. Hence, only arrival
rate is modulated, by the discrete-state process J(t). The constant serving capacity
is denoted with c.

Analytical solutions are available for the following cases of modulating process.

1. J(t) is a continuous-time Markov chain (CTMC). In this case we assume that J(t)
is irreducible and positive recurrent. Let also wj = (J(∞) = j) be the limiting
state probability and M be the infinitesimal generator of the modulating CTMC
J(t). The mean arrival rate is λ =

∑n
j=0 λjwj.

2. J(t) is an alternating renewal process (see Section 3.4.3). The two states can be
characterized as the ON state, where fluid arrives at a rate λON, and an OFF

6 Let cj, j = 1,… ,nS be the service rate values corresponding to the states of the CTMC
modulating the server. Let c = maxj{cj}. We can redefine the system model as one where there
are two traffic sources. One is the original one, modulated by the CTMC JA(t). The other one is
dubbed the compensating source and it is defined as one whose fluid arrival rate is c − cJS(t)

.
Then, we can rewrite the system content level dynamic equation as dQ

dt
= λJA(t)

+ c − cJS(t)
− c = ΛJ(t) − c, where J(t) = (JA(t), JS(t)) is a CTMC and ΛJ(t) = λJA(t)

+ c − cJS(t)
. Therefore, we

can always restate the model as one where only the input process is modulated by a CTMC,
while the server capacity rate is a constant.

�

� �

�

458 8 Bounds and Approximations

state, where fluid arrival rate is λOFF. To complete the description of the modu-
lating process, we need to assign the PDFs of the ON and OFF times. The mean
arrival rate is λ = 𝜏ONλON+𝜏OFFλOFF

𝜏ON+𝜏OFF
, where 𝜏ON and 𝜏OFF are the mean sojourn times

of J(t) in the ON and OFF state, respectively.
3. J(t) is a semi-Markov process (SMP) over the state space {0, 1,… ,n}. Let

Th denote the time of the h-th jump of the process J(t). The sequence
Zh = J(T+

h), h ≥ 1, defined by the state attained by J(t) immediately after a
jump, is a discrete-time Markov chain (DTMC) over the state space {0, 1,… ,n}.
Let 𝜏j = E[T1|J(0) = j] and wj = limh→∞(Zh = j) be the mean sojourn time
of J(t) in state j and the limiting state probability of state j of the DTMC Zh,
respectively. Then, the mean arrival rate is λ =

∑n
j=0 λj𝜏jwj∕

∑n
j=0 𝜏jwj.

We are interested in the joint probability distribution

Fj(x, t) = (Q(t) ≤ x, J(t) = j), 0 ≤ x ≤ K; j = 0, 1,… ,n. (8.145)

or in the corresponding PDF fj(x, t) = 𝜕Fj(x,t)
𝜕x

.
In the following, we assume that the modulating process J(t) is an irreducible

CTMC on the finite state space {0, 1,… ,n} (case 1 above). Let qij be the transition
rate from state i to state j. Hence, the limiting state probability distribution is well
defined, i.e., there exists the limit

lim
t→∞

(J(t) = j) = (J(∞) = j) = wj (8.146)

with wj finite and positive for all j and
∑n

j=0 wj = 1.
Fluid is offered to the system at a mean rate of λj when the modulating process

is in state j. Fluid is drained out of the system at a constant rate c, whenever there
is any fluid in the system. We can define the drift of the system in state j as the
difference dj = λj − c, j = 0,… ,n. The system content Q(t) builds up when dj > 0,
whereas the system level decreases when dj < 0. We refer to states with positive
drift as overload states, while underload states designate those states where dj is
negative. The marginal case dj = 0 leads to a temporary equilibrium of the system
content level (the fluid amount entering the system balances exactly the amount
drained out of the system). We will see soon that those marginal states can be
removed in the steady-state analysis.

It is intuitive that this queueing system has an interesting dynamics only if both
positive and negative drifts are possible. For only positive drifts, the system is per-
manently overloaded, so that the buffer will be eventually filled up and it will stick
to its upper bound K forever. For only negative drifts, the system is always under-
loaded, so that it drains out eventually and stays empty forever. Therefore, in the
following we focus our attention on cases where the drifts dj are partly positive
and partly negative.

�

� �

�

8.6 Fluid Models 459

Let us now derive the differential equation system whose solution yields the
joint CDF Fj(x, t). The key observation is that, to the first order, the variation of the
buffer content in a “small” time interval Δt is Δx = (λj − c)Δt = djΔt. Considering
a vanishingly small time interval Δt, we have

Fj(x, t + Δt) =
∑
i≠j

qijΔtFi(x − diΔt, t) + (1 + qjjΔt)Fj(x − djΔt, t) + o(Δt) (8.147)

then

Fj(x, t + Δt) − Fj(x, t) + Fj(x, t) − Fj(x − djΔt, t) =
n∑

i=0
qijΔtFi(x − diΔt, t) + o(Δt)

(8.148)

and

Fj(x, t + Δt) − Fj(x, t)
Δt

+ dj
Fj(x, t) − Fj(x − djΔt, t)

djΔt
=

n∑
i=0

qijFi(x − diΔt, t) + o(1)

(8.149)

In the limit for Δt → 0, we obtain
𝜕Fj

𝜕t
+ dj

𝜕Fj

𝜕x
=

n∑
i=0

qijFi(x, t) , j = 0,… ,n. (8.150)

This equations can be written compactly, defining the drift matrix D =
diag[d0,… , dn], the transition rate matrix M of the modulating process, and the
row vector F(x, t) = [F0(x, t) ∶ … ,Fn(x, t)]:

𝜕F
𝜕t

+ 𝜕F
𝜕x

D = FM (8.151)

Boundary conditions must be assigned for t = 0, 0 < x < K, and for x = 0 and
x = K for all t > 0. We will not pursue this further. Rather, we focus on steady-state
analysis.

8.6.4 Steady-State Analysis

If the steady state exists, its CDF F(x) = limt→∞F(x, t) can be obtained solving the
ordinary differential equation:

dF
dx

D = FM (8.152)

Let w = [w0,… ,wn] be the stationary vector of the infinitesimal generator M.
We define7 the set of underload states as = {j ∶ dj < 0} and the set of overload

7 We assume there is no j with dj = 0. If that were the case, the differential equation system
could be rearranged to remove the null drift, since the corresponding equation is just an

�

� �

�

460 8 Bounds and Approximations

states as = {j ∶ dj > 0}. The boundary conditions are

Fj(0+) = 0, j ∈ Fj(K−) = wj, j ∈ (8.153)

These are exactly n + 1 conditions, that suffice to find a unique solution.
The solution of the ordinary differential equation system (8.152) can be written

as a linear combination of exponential modes. We define the generalized eigen-
value z and left eigenvector 𝜑 of the couple of matrices (D,M) as a non-null num-
ber and non-null vector satisfying the following equality:

z𝜑D = 𝜑M (8.154)

The solution in terms of the CDF of the buffer content can be written as

F(x) =
n∑

k=0
ak𝜑kezkx

, 0 ≤ x ≤ K (8.155)

where the coefficients ak are found from these boundary conditions:
n∑

k=0
ak𝜑k(j) = 0, j ∈ ,

n∑
k=0

ak𝜑k(j)ezkK = wj, j ∈ (8.156)

This is a linear equation system of n + 1 non-homogeneous equations in the n + 1
unknowns ak, k = 0,… ,n.

Let us discuss in detail a specific, yet quite interesting example. Let us assume
that the input is driven by the superposition of n two-state Markovian ON-OFF
traffic sources (see Figure 8.19).

An ON-OFF traffic source is defined as emitting data at rate r when in the ON
state, while it is silent in the OFF state. Sojourns in the ON and OFF states are
defined by a two-state Markov process. Let 𝛼 and 𝛽 be the transition rates out of
the OFF and ON states, respectively. The mean duration of the OFF and ON times
are 1∕𝛼 and 1∕𝛽.

The multiplexer input rate to the system in state j, i.e., when j sources are in the
ON state and the other n − j sources are in the OFF state, is λj = jr, j = 0, 1,… ,n.
The j-th element of the diagonal of the drift matrix D is dj = λj − c = jr − c. The

OFF ON
β

α Figure 8.19 Two-state Markov process
modeling an ON-OFF traffic source.

algebraic one. More in detail, let r0 be an index such that dr0
= 0. The r0-th equation of the

system in eq. (8.152) can be rewritten as −qr0r0
Fr0

(x) =
∑

i≠r0
Fi(x)qir0

. Feeding this identity back
into the other equations, the generic k-th equation can be rewritten as dFk

dx
=
∑

i≠r0
Fi(x)q̃ik,

where q̃ik = qik − qir0
qr0k∕qr0r0

, i = 0,… ,n, i ≠ r0. It is easy to verify that the q̃ij’s still form an
infinitesimal generator.

�

� �

�

8.6 Fluid Models 461

multiplexer analysis is trivial (from a fluid point of view) if nr ≤ c, i.e., no overload
is possible. Hence we assume that n > c∕r. The underload states form the set =
{0,… , ⌊c∕r⌋}, while the overload states are = {⌊c∕r⌋ + 1,… ,n}. The limiting
probabilities of the modulating CTMC are

wj =
(

n
j

)
pj(1 − p)n+1−j

, j = 0,… ,n (8.157)

where p = 𝛼∕(𝛼 + 𝛽) is the probability that a source is ON. Finally, the elements of
the matrix M are given by:

⎧⎪⎪⎨⎪⎪⎩

qj,j+1 = (n − j)𝛼 j = 0,… ,n − 1
qj,j−1 = j𝛽 j = 1,… ,n
qj,j = −j𝛽 − (n − j)𝛼 j = 0,… ,n
qi,j = 0 otherwise

(8.158)

The matrix M has a tri-diagonal structure. This is the key to derive closed-form
results. Thanks to the special structure of the matrices M and D, it can be shown
that all eigenvalues are real and there are exactly n+ negative eigenvalues and
n− positive eigenvalues. Here n+ and n− are the number of positive and negative
drift coefficients, respectively [12], hence n+ = || = n − ⌊c∕r⌋ and n− = | | =⌊c∕r⌋ + 1.

It is shown in [12] that the eigenvalues are the solutions of the following n + 1
quadratic equations:

Akz2 + 2Bkz + Ck = 0 , k = 0,… ,n, (8.159)

where the coefficients are given by:

Ak = Uk − V 2

Bk = (1 − 𝛼∕𝛽)Uk − (1 + 𝛼∕𝛽)V

Ck = (1 + 𝛼∕𝛽)2(Uk − 1)

with Uk = (1 − 2k∕n)2 and V = 1 − 2c∕(nr). We assume, along with [12], that the
eigenvalues are indexed so that:

zn−⌊c∕r⌋−1 < · · · < z1 < z0 < zn = 0 < zn−1 < · · · < zn−⌊r∕c⌋ (8.160)

and that the eigenvectors𝜑k are normalized so that𝜑k(n) = 1 for k = 0,… ,n. With
this normalization, it can be shown that

Φk(x) ≡
n∑

j=0
𝜑k(j)xj = (x − 𝜁1)k(x − 𝜁2)n−k

, k = 0,… ,n, (8.161)

�

� �

�

462 8 Bounds and Approximations

where

𝜁1 = 𝛽

2𝛼
[−(zk + 1 − 𝛼∕𝛽) +

√
(zk + 1 − 𝛼∕𝛽)2 + 4𝛼∕𝛽]

𝜁2 = 𝛽

2𝛼
[−(zk + 1 − 𝛼∕𝛽) −

√
(zk + 1 − 𝛼∕𝛽)2 + 4𝛼∕𝛽]

The expressions of the eigenvectors turn out to be quite cumbersome and unsta-
ble for large size systems. Efficient numerical algorithms can be conveniently used
to evaluate the eigenvectors and eigenvalues, given the special tri-diagonal struc-
ture of the matrix M.

The left eigenvector associated with the eigenvalue zn = 0 is w, since wM = 𝟎.
Then, we can rewrite eq. (8.162) as follows:

F(x) = an𝜑n +
n−1∑
k=0

ak𝜑kezkx = anw +
n−1∑
k=0

ak𝜑kezkx (8.162)

The marginal CDF of the buffer content level is obtained by saturating over the
state component J, i.e.:

GQ(x) = (Q > x) = 1 − F(x)e = 1 − an𝜑ne −
n−1∑
k=0

ak𝜑ke ezkx (8.163)

It is clear that the probability distribution of the buffer content is given by a
linear combination of exponential terms.

8.6.4.1 Infinite Buffer Size (K = ∞)
In the special case K = ∞, we must have 𝜌 = nrp∕c < 1, to guarantee the existence
of the steady state. The expansion in exponential terms of the CDF F(x) reduces
to the n − ⌊c∕r⌋ nonpositive eigenvalues, since the CDF must be finite in the limit
for x → ∞. It is

Fj(∞) = (Q ≤ ∞, J = j) = wj, j = 0,… ,n. (8.164)

The expression of the CDF of the buffer content for an infinite buffer can be
written as:

F(x) = F(∞) +
n−⌊c∕r⌋−1∑

k=0
ak𝜑kezkx

, x ≥ 0, (8.165)

where the n − ⌊c∕r⌋ eigenvalues zk are all negative. The boundary conditions
are:

Fj(0) = wj +
n−⌊c∕r⌋−1∑

k=0
ak𝜑k(j) = 0, j ∈ . (8.166)

�

� �

�

8.6 Fluid Models 463

The solution can be written explicitly as a function of the eigenvalues:

ak = −pn
n−⌊c∕r⌋−1∏

i=0,i≠k

zi

zi − zk
, k = 0,… ,n − ⌊c∕r⌋ − 1, (8.167)

where p = 𝛼∕(𝛼 + 𝛽) is the probability that a source is in the ON state.
The CCDF of the buffer content level in the special case K = ∞ is

GQ(x) = 1 − F(x)e = −
n−⌊c∕r⌋−1∑

k=0
ak𝜑ke ezkx (8.168)

Asymptotically, for large x, GQ(x) is dominated by the largest negative eigenvalue
z0 (according to the labeling of eq. (8.160)). It can be shown that

z0 = − 1 − 𝜌

(1 − p)
(

1 − c
nr

) (8.169)

Finally, it can be verified that 𝜑𝟎e = (nr∕c)n.
Putting all pieces together, we finally get

GQ(x) ∼ 𝜌
n

n−⌊c∕r⌋−1∏
i=1

zi

zi + |z0| e−|z0|x (x → ∞) (8.170)

8.6.4.2 Loss Probability
Turning back to the finite buffer model with size K, the loss probability of the
stochastic fluid model can be calculated according to the following expression:

PL(K) =
∑

j∈dj[wj − Fj(K−)]∑
jwjλj

(8.171)

Note that wj − Fj(K−) is the probability that the buffer content equals K and the
phase of the modulating process is j. This probability is 0 when j belongs to the
underload states, while it is positive if j is an overload state.

In the simple case K = 0, the loss probability is known explicitly: it is the ratio
between the average amount of fluid that overflows the server capacity rate c and
the average offered fluid rate, i.e.,

PL(0) =
∑

j∈wj(λj − c)∑n
j=0 wjλj

(8.172)

The numerical evaluation of the loss probability, as well as of the CDF of the
buffer content, goes through the determination of the coefficients ah, h = 0,… ,n.
We stress the dependence of those coefficients on the buffer size K by using the
notation ah(K). We let denote the set of indices corresponding to real negative

�

� �

�

464 8 Bounds and Approximations

eigenvalues. We know that | | = n− = | |, i.e., the number of negative eigenval-
ues equals the cardinality of the set of underload states [12]. For ease of notation,
we introduce also the diagonal matrix W = diag[w0 …wn].

In general, the coefficients must by found by solving the linear equation system
(8.156) of size (n + 1) × (n + 1). There are, however, two special cases where the
coefficients can be found exploiting only the knowledge of eigenvalues and eigen-
vectors. One such case is K = ∞, as we have seen in the previous sub-section8 .
The other special case is K = 0. Let 𝜓h denote the right eigenvector of the matrix
MD−1 associated to the eigenvalue zh, i.e., such that

zh𝜓h = MD−1
𝜓h (8.173)

If the modulating CTMC is time-reversible (see the Appendix), it is wiqij = wjqji
for all i and j. In matrix notation, it is WM = MTW.

Multiplying both sides of (8.174) by the diagonal matrix D−1W, we get

zhD−1W𝜓h = D−1WMD−1
𝜓h = D−1MTWD−1

𝜓h (8.174)

Taking the transpose of both sides and multiplying by D on the right, we obtain
finally

zh(D−1W𝜓h)TD = (D−1W𝜓h)TM (8.175)

We see that (D−1W𝜓h)T is proportional to the left eigenvector 𝜑h. Choosing the
constant of proportionality so that the scalar product of the left and right eigen-
vectors be 1, i.e., 𝜑h𝜓h = 1, we find

𝜓h = 1
bh

W−1D𝜑
T
h (8.176)

where the normalization coefficient bh is defined as

bh = 𝜑hW−1D𝜑
T
h =

n∑
k=0

dk

wk
𝜑

2
h(k) , h = 0,… ,n (8.177)

For K = 0, the linear equation system of the boundary conditions can be written
as a(0)𝚽 = [wu 𝟎], where a(0) = [a1(0),… , an(0)],𝚽 is the left eigenvector matrix,

8 The coefficients ah(∞) can be found with a reduced linear equation system also in more
general cases than for the superposition of N homogeneous ON-OFF traffic sources. It can be
shown that [17]:

ah(∞) +
∑
j∈

aj(∞)ujh = ah(0) , h ∈ .

where

uij =
1
bj

∑
k∈

𝜑i(k)𝜑j(k)
|dk|
wk

, i, j ∈ .

�

� �

�

8.6 Fluid Models 465

the h-th row of which is𝜑h, and wu is a row vector containing the components of w
that correspond to indices of the underload set . It is easy to verify that 𝚽−1 = 𝚿,
where the h-th column of 𝚿 is 𝜓h. Then, a(0) = [wu 𝟎]𝚽−1 = [wu 𝟎]𝚿. In scalar
form, we have

ah(0) =
1
bh

∑
k∈

dk𝜑h(k) , h = 0,… ,n. (8.178)

In [17] it is proved that
1
A

∑
h∈

a2
h(∞)bhezhK ≤ PL(K) ≤ 1

A
∑

h∈
ah(0)ah(∞)bhezhK (8.179)

where A =
∑n

k=0 λkwk is the mean offered traffic rate.
Those expressions provide tight bounds of the loss probability of the stochas-

tic fluid flow model, whenever the modulating CTMC is time-reversible. This is
the case for example, when the input traffic is generated by the superposition of
ON-OFF traffic sources, even in the general case where they belong to different
classes, each class characterized by its own values of the traffic source parameters
𝛼, 𝛽 and r.

An even simpler (though looser) upper bound can be proved [17]: it is

PL(K) ≤ 1
A

∑
h∈

a2
h(0)bhezhK (8.180)

The strength of the result stated in eq. (8.179) and (8.180) lies both in the numer-
ical efficiency of the evaluation of the bounds, that depend only on eigenvector
and eigenvalues of the matrix MD−1, and in the insight provided by the relatively
simple expressions of the bounds. Specifically, to the leading term, it is apparent
that the loss probability decays exponentially fast for growing K: PL(K) ∼ 𝜅 ⋅ ez0K ,
where z0 denotes the largest negative eigenvalue and 𝜅 is a constant.

Example 8.14 Let us consider as an example a two-state source, that emits λ1
units of fluid in state 1 and λ2 units in state 2, the mean sojourn times in the two
states being 1∕𝛼1 and 1∕𝛼2, respectively. The source offers its traffic flow to a trans-
mission link of capacity rate c, equipped with a storage space (buffer) of size K.

We assume that λ1 < c (underload state) and λ2 > c (overload state). Moreover,
λ ≡ λ1w1 + λ2w2 < c, where w = [w1 w2] = [𝛼2 𝛼1]∕(𝛼1 + 𝛼2) are the limiting state
probabilities of the Markov process that modulates the source fluid emission rate.

With simple algebraic manipulations it is easy to find the two eigenvalues z1 =
0 and z0 = − 𝛼1

λ1−c
− 𝛼2

λ2−c
= − 𝛼1+𝛼2

(c−λ1)(λ2−c)
(c − λ). The corresponding left eigenvectors

are𝜑1 = [w1 w2] and𝜑2 = [λ2 − c c − λ1]. The joint CDF of the buffer content and
source state is

F1(x) = a1w1 + a2(λ2 − c)ez0x

F2(x) = a1w2 + a2(c − λ1)ez0x (8.181)

for 0 < x < K.

�

� �

�

466 8 Bounds and Approximations

The boundary conditions yield{
a1w1 + a2(λ2 − c)ez0K = w1 underload state,
a1w2 + a2(c − λ1) = 0 overload state.

(8.182)

from which we find

a1 =
w1(c − λ1)

w1(c − λ1) + w2(c − λ2)ez0K

a2 =
w2w1

w1(c − λ1) + w2(c − λ2)ez0K

Then, finally we have

F1(x) = w1
w1(c − λ1) + w2(c − λ2)ez0x

w1(c − λ1) + w2(c − λ2)ez0K

F2(x) =
w1w2(c − λ1)(1 − ez0x)

w1(c − λ1) + w2(c − λ2)ez0K

Note that for K = ∞ we recover expected results, i.e., Fi(∞) = wi for i = 1, 2.
The loss probability PL is:

PL(K) = c − λ
λ

w2(λ2 − c)ez0K

w1(c − λ1) + w2(c − λ2)ez0K (8.183)

As it is intuitive, the loss probability is larger the more the overload is pro-
nounced (λ2 larger than c). It decays exponentially with K and reduces to
w2(λ2 − c)∕λ for K = 0.

In the following, we address the analysis of first passage times for the stochastic
fluid model. Then, we discuss the insight provided by the stochastic fluid model
in the analysis of a packet multiplexer loaded by ON-OFF traffic sources.

8.6.5 First Passage Times

With reference to the stochastic fluid model, we define two thresholds, a and b,
with 0 ≤ a ≤ b ≤ K. The system content level Q(t), starting from the initial condi-
tion Q(0) = x, evolves and eventually hits any of the two thresholds. The time that
the process Q(t) takes to attain either level a or b is called first passage time. Three
cases can be identified:

● a < x < b: either a of b can be hit by the process; first passage refers to the first
of the two thresholds that is reached by the process.

● a = b < x: there is only one lower threshold; the process bounces back when
hitting the reflecting barrier at K (upper limit of the system storage), and is even-
tually absorbed by the lower threshold.

�

� �

�

8.6 Fluid Models 467

● x > a = b: there is only one upper threshold; the process bounces back when hit-
ting the reflecting barrier at 0 and is eventually absorbed by the upper threshold.

The three cases affect the boundary conditions of the differential equation yield-
ing the probability distribution of the first passage time. In the following we focus
on the first case, the other two being derived with simple modifications. Let us
define the first passage time T as

T = inf{t > 0 ∶ Q(t) = a or Q(t) = b|Q(0) = x} (8.184)

The joint probability distribution of T and J(t) is defined as follows:

Hij(x, t) = (T ≤ t, J(T) = j|Q(0) = x, J(0) = i) (8.185)

The probabilities Hij(x, t) form a (n + 1) × (n + 1) matrix H(x, t).
Assuming that the modulating process J(t) is an irreducible CTMC with

infinitesimal generator M, and considering a vanishingly small time increment
Δt, we can write:

Hij(x, t + Δt) = (1 + qiiΔt)Hij(x + diΔt, t) +
∑
k≠i

qikΔtHkj(x + diΔt, t) + o(Δt)

(8.186)

This identity results from the decomposition of the trajectory of Q(t) into:

1. a first step over the time interval [0,Δt), where the buffer content level moves
from x to x + diΔt and the phase switches from i to k;

2. a second step over the time interval [Δt, t + Δt), where the phase changes from
k to j.

Rearranging terms, we obtain
Hij(x, t + Δt) − Hij(x, t)

Δt

=
Hij(x + diΔt, t) − Hij(x, t)

diΔt
di +

∑
k

qikHkj(x + diΔt, t) + o(1) (8.187)

Taking the limit as Δt → 0 and using the matrix notation, we find finally
𝜕H
𝜕t

− D𝜕H
𝜕x

= MH (8.188)

The boundary conditions state that, if the process is initialized at either absorb-
ing barrier, than the only state transition that is possible is from the initial state
J(0) = i to itself:

Hij(b, t) =

{
1 i = j, di > 0
0 i ≠ j, di > 0

Hij(a, t) =

{
1 i = j, di < 0
0 i ≠ j, di < 0

(8.189)

holding for all t ≥ 0.

�

� �

�

468 8 Bounds and Approximations

The CDF of T can be obtained by saturating the events J(0) = i and J(T) = j:

FT(t|x) = (T ≤ t|Q(0) = x) = p0H(x, t)e (8.190)

where p0 is a row vector assigning the probability distribution of the initial state
J(0), and e is a column vector of 1’s.

8.6.6 Application of the Stochastic Fluid Model to a Multiplexer
with ON-OFF Traffic Sources

Let us consider multiplexing n ON-OFF sources. Each source is modeled with a
two-state continuous time Markov process (see Figure 8.19).

The superposition of the n sources can be described by an n + 1 state birth–death
Markov process J(t), with state space {0, 1,… ,n}. When J(t) = k the aggregate rate
is λk = kr. Birth rate in state k is (n − k)𝛼, while death rate is k𝛽, k = 0,… ,n. This
arrival process is offered to a packet multiplexer, served by an output link with
capacity c bit∕s, equipped with a buffer of size K packets (see Figure 8.20).

Figure 8.21 illustrates a sample path of the buffer content Q(t), in units of
packet size, as a function of time, in units of packet transmission times. Packets
are assumed to have fixed length. The buffer size of the multiplexer is 50 packets.
The data sending rate of a source when in the ON state is 1/15 of the multiplexer
output line capacity, the probability of being in the ON state is 0.1 and the mean
size of the burst during the ON time is 100 packets. The number of multiplexed
sources is n = 135. Since the mean rate of an ON-OFF source is 1/150 of the
multiplexer output line capacity, the mean offered traffic is Ao = 135∕150 = 0.9.
That is to say, the output capacity of the line serving the multiplexer is busy
transmitting packet (1 − PL) ⋅ 90% of the time on the average.

The sample path of Q(t) is plotted in Figure 8.21 (dark curve). For comparison
purposes, we plot the sample path of an M∕D∕1∕K queue with the same mean
offered traffic 0.9 and K = 50 (light curve). It is apparent that the two queues
behave in two qualitatively different ways. The Poisson driven queue exhibits a
“smooth” sample path, with limited excursion, never reaching the buffer limit of
K = 50 packet over the observed time interval. On the contrary, the multiplexer
queue driven by ON-OFF sources is dominated by a bi-stable behavior, where low

MUX

Output

link

Source # 1

Source # 2

Source # n

Figure 8.20 Packet multiplexer
loaded by ON-OFF traffic sources.

�

� �

�

8.6 Fluid Models 469

Figure 8.21 Sample path of the buffer
content of a packet multiplexer loaded
by ON-OFF sources. Time is normalized
with respect to the packet transmission
time; buffer content is in packet size
units.

0 1 2 3 4

Time, t/E[X] ×104

0

10

20

30

40

50

60

Q
u

e
u

e
 l
e

n
g

th

Ao = 0.9

ON-OFF

M/D/1/K

content intervals alternate with essentially full buffer intervals. The former occurs
when the input process is in the underload region, i.e., when the number of active
sources (in ON state) is such that their aggregate rate does not exceed the output
line rate. During overload times, when the aggregate rate of active sources exceeds
the output line capacity rate, the buffer content builds up very quickly, hitting its
upper limit and essentially sticking there. The transition between the two regimes
is very fast, thus making intermediate states of the process Q(t) take very small
probability levels.

Looking at the sample path of Q(t), it can be easily realized that neglecting the
random fluctuations on short-time scales, due to discrete packets, leads to negligi-
ble errors when describing the behavior of the multiplexer. What really matters
is to capture the effect of the stochastic process that modulates the number of
active sources and hence the aggregate packet rate offered to the multiplexer at
any time. Short-term random fluctuations of the buffer content become important
only when the buffer size K is very small, so small that even a Poisson input process
could saturate the buffer and cause packet loss with non-negligible probability. As
a result, we expect that in evaluating the packet loss probability of the multiplexer,
PL, as a function of K, we will find two regimes:

1. Small buffer size. K is so small that short-time scale buffer fluctuations due to
concurrent packet arrivals cause buffer overflows and packet loss.

2. Large buffer regime. Overload dominates buffer overflow and hence packet loss,
while the short-time scale pattern of packet arrivals is irrelevant.

The intuition is confirmed by the results plotted in Figure 8.22(a). The packet
loss probability of the multiplexer loaded by ON-OFF sources is plotted against
the buffer size. The buffer size K is measured in packets, assumed to have fixed
length. The number of multiplexed sources is n = 70. Time is normalized with
respect to the packet transmission time of a source and data is measured in packets.
The peak rate of a source is r = 1 (1 packet per time unit). The source mean OFF
and ON times are 1∕𝛼 = 900 and 1∕𝛽 = 100, so that p = 0.1. The capacity of the

�

� �

�

470 8 Bounds and Approximations

multiplexer is c = 12.5 times the peak bit rate of the source. The mean offered load
is Ao = npr∕c = 70 ⋅ 0.1 ⋅ 1∕12.5 = 0.56.

We compare the loss probability evaluated by means of simulations (shown with
95% confidence intervals) and two models: the fluid model (dashed line) and the
M∕D∕1∕K model (dotted line). It is evident that the M∕D∕1∕K model gives accu-
rate predictions for small buffer levels, where the short-time scale effects are dom-
inating, whereas it fails completely when the effect of the overload is dominant.
On the contrary, the fluid model captures the effect of the overload, but it cannot
account for the effect of discrete packet arrivals that is most relevant at small buffer
levels.

As a last numerical example, Figure 8.22(b) shows the loss probability evaluated
via the stochastic fluid model for a case where two classes of ON-OFF sources are
multiplexed.

The modulating CTMC in this case has (n1 + 1) × (n2 + 1) states, where ni is the
number of ON-OFF sources of class i, i = 1, 2.

The three parameters of class S1 sources are: data rate when in the ON state
r1 = 2∕15 packets per packet transmission time; probability of being in the ON
state p1 = 0.2; mean duration of the ON state 1∕𝛽1 = 1000 packet transmission
times.

The three parameters of class S2 sources are: data rate when in the ON state r2 =
1∕15 packets per packet transmission time; probability of being in the ON state
p2 = 0.1; mean duration of the ON state 1∕𝛽2 = 100 packet transmission times.

The mean offered traffic rate is Ao = (n1r1p1 + n2r2p2)∕c = 0.6. The three traffic
mixes plotted in the figure correspond to the following numbers of sources (n1,n2):
(0,90), (11,41), (22,0).

0 10 20 30

Buffer size, K

L
o
s
s
 p

ro
b
a
b
ili

ty

1. M/D/1/K model

2. Fluid model

Simulations

Sum of 1 and 2

(a)

0 50 100 150 200

Buffer size, K

L
o
s
s
 p

ro
b
a
b
ili

ty

0

1

2

Traffic mix for curve k (k=0,1,2):

S1=k 50%; S2 = (2-k) 50%

Fluid model

Simulations

(b)

100

10–1

10–2

10–3

10–4

10–1

10–2

10–3

10–4
Ao = 0.6Ao = 0.56

Figure 8.22 Loss probability as a function of the buffer size in packets for a multiplexer
loaded by ON-OFF sources. Left plot: n = 70 homogeneous ON-OFF sources with mean
burst size of 100 packets, activity coefficient 0.1, and peak rate equal to 2/25 of the
multiplexer capacity. Right plot: mixes of heterogeneous ON-OFF sources.

�

� �

�

Summary and Takeaways 471

Solid lines are obtained with the stochastic fluid model. Simulations at 95% con-
fidence level are shown as well. In the simulation, the discrete packet arrivals and
service completions are accounted for.

For the considered buffer sizes, the packet loss is largely dominated by the over-
loading effect induced by the input traffic rate modulation. Hence, small-scale
random fluctuations of the arrival process have a negligible effect and the fluid
model yields accurate results. Note that the state space of the considered traffic
mixes scales up to 504 states. If a discrete model were considered, with a buffer size
K = 200 packets, the overall state space would attain a size of 101304. Forgetting
about packets and resorting to a fluid model makes the packet loss computation
much easier, reducing the computation burden by at least two orders of magni-
tude, without any appreciable loss of accuracy.

Even simpler calculations are possible losing only a little bit of accuracy, if the
approximation (8.179) for the packet loss probability is used.

Summary and Takeaways

This chapter offers an overview of several topics related to bounds and approxi-
mations in queueing theory and network traffic engineering applications. Bounds
and approximations are most useful and practically used, given that exact solu-
tions are rarely available. Often, we cannot simplify the model of a system to the
point where exact analysis is possible, lest it loses practical significance.

In this chapter we have first derived classic bounds and approximations for the
G∕G∕1 and G∕G∕m queues in isolation. We also cover the diffusion approxima-
tion of the G∕G∕1 queue leading to the reflected Brownian motion model and to
heavy-traffic analysis.

We then extend the analysis to networks of G∕G∕1 queues, both open and closed.
The approach to approximation is based on the decomposition method. We hint
also to extension to networks of G∕G∕m queues. Pointers to the technical literature
on approximate analysis of more general models of queueing networks are given
as well.

Finally, we address the fluid model of service systems. This is a general
paradigm, originating from a scaling limit of discrete-event system. We look at
discrete-event systems over time scales that are large with respect to the typical
times of discrete steps. Then, we can disregard the discrete nature of the sample
paths and focus on the “average trend” of the processes. We present the fluid
model of a queue, which reduces to a deterministic dynamic system described
by means of a differential equation. We discuss at length the significance and
expected accuracy of the deterministic fluid model. The key finding is that it is
generally quite useless for the steady-state analysis of stable systems. It offers a

�

� �

�

472 8 Bounds and Approximations

valuable performance evaluation tool, when considering transient analysis, or
nonstationary systems.

We have addressed the stochastic fluid model where arrivals and service are
modulated by stochastic processes. The queueing system level is still described by
a real-valued variable, i.e., the discrete nature of customers is neglected. The rate
at which fluid flow enters the system and is drained out of it is however a func-
tion of the state of a stochastic process. This class of models is quite versatile and
lends itself to modeling a wide variety of traffic systems. As a relevant example,
we discuss at length a packet multiplexer loaded with intermittent ON-OFF traf-
fic sources. It turns out that a remarkable performance prediction accuracy can be
attained, at least for some performance metric (the packet loss probability in our
example) and in some regime (the large buffer size regime).

Being able to provide performance bounds and approximations to key perfor-
mance indicators is an extremely useful capability to gain insight into the working
of a given system, often at a cost (in terms of resources required to achieve the
insight) much lower than simulations or experiments. Crafting a suitable model
and an approximate analysis thereof is often more an art than a science. Mathemat-
ical techniques come at help once the model has been stated. Under that respect,
the array of available mathematical tools and theories is probably wider than one
realizes, and getting wider with time and research findings. This is the reason why
we strived to give a wide overview of several different techniques, even within the
constraint of an introductory chapter.

The really difficult point however is getting to understand the working of the
system under study, so as to be able to conceive a simple and parsimonious model,
yet a model rich enough to capture the key elements that affect the performance
metrics of interest.

Problems

8.1 Observing a single server system, it has been found out that, during equilib-
rium, the average inter-arrival time is 90 s with standard deviation 30 s. The
mean service time is 60 s with standard deviation 45 s. The company that has
performed the survey of the service system claims that they have measured a
mean number of customers in the system equal to 3.5. Do you believe them?
Motivate your answer.

8.2 An on-off traffic source sends a burst of B = 500 kbyte every 10 seconds
at a peak rate P = 1 Mbit∕s. The output channel has a capacity C. Excess
data is temporarily stored in a buffer waiting to be sent according to a FIFO

�

� �

�

Problems 473

discipline. Analyze the output channel congestion and the buffer behavior
by using a fluid approximation.

a) Find the fluid approximation of the buffer content Q(t). Discuss the behav-
ior of Q(t) as a function of C.

b) Find the maximum and the average time through the buffer when C takes
the minimum feasible value for stability, in a fluid approximation.

8.3 Analyze a rate controller interacting with a bottleneck of capacity C by
means of a fluid approximation. The rate controller changes the emitted
packet rate λ(t), aiming at a target rate 𝜃(t). Let Q(t) denote the content of
the bottleneck buffer at time t. Let 𝜏 be the feedback delay.
The evolution equation of λ(t) is

dλ
dt

= 𝜃(t) − λ(t)
2

− 𝛽λ(t)p(t − 𝜏)λ(t − 𝜏) (8.191)

The target rate 𝜃(t) is set to the current rate whenever the current rate is
decreased because of negative feedback, and it increases at a constant rate:

d𝜃
dt

= 𝛼 − [𝜃(t) − λ(t)]p(t − 𝜏)λ(t − 𝜏) (8.192)

with 𝜃(0) = λ(0) = r Then p(t) = I(Q(t) > K) for an assigned threshold
K > 0.
(a) Write the evolution equation of Q(t).
(b) Study the stability of the controller as a function of 𝛼 assuming C = 1, r =

4, 𝛽 = 0.5, and K = 20. For this purpose, assume that the feedback delay
is equal to the quantization time step when discretizing the differential
equations for numerical integration.

8.4 In a CDMA to a base station uplink, the link quality requirement can be
expressed as:

W
R

SNR0

1 + SNR0(N − 1)
≥ 𝛾 (8.193)

where N is the number of simultaneous transmitters, W = 100 Mchip∕s is
the chip rate, R is the bit rate that each user can transmit, SNR0 = 30 dB
is the signal-to-noise ratio if there is no interference, and 𝛾 = 10 dB is the
SNIR requirement of the link. Users arrive at the system at a mean rate Λ
users/sec. On average, a user has to send Q = 1 Mbyte of data. Use a fluid
approximation.
(a) Write a differential equation governing the number of users N(t) in the

system.

�

� �

�

474 8 Bounds and Approximations

(b) Discuss the existence of a stable equilibrium, provided that Λ < Λsup.
Identify Λsup. For λ = 0.8 ⋅ Λsup, calculate the value N0 that N(t) tends to
as t → ∞.

8.5 Study the scaling of the upper bound of the mean number of customers in the
queue, derived from eq. (8.41), as m → ∞, if it is λ = m𝛽 for a fixed positive 𝛽
and assuming that the SCOVs of the inter-arrival and service times are fixed.

8.6 A traffic source emits bursts of data at a peak rate R, lasting time B. The chan-
nel serving the source has a base capacity Cmin. When a new burst is detected,
the capacity is eventually increased to its maximum value Cmax after a time D
since the beginning of the burst, if it is still going on. Once the output capac-
ity is increased to Cmax, it remains at that value until the buffer is completely
drained. Use a fluid approximation in all your calculations.
(a) Assume Cmax = R and B > D. Calculate the amount of time required to

clear the backlog.
(b) Do again the calculation of point (a), this time assuming that R > Cmax

and B > D.
(c) Repeat point (a), assuming that Cmax = R and B be a negative exponential

random variable with mean 1∕𝛽. In this case, calculate the mean time
required to clear the backlog.

8.7 Consider a flow of packets originated at a host H and transported first
through an access wireless interface (e.g., cellular network), then through
a wired network, to a remote server S. We identify two segments: the
wireless link between H and the base station BS and the wired network
between BS and the server S. The wireless link has a variable capacity rate:
we model it with a bimodal random variable, assuming the two values
Cw1 = 250 kbit∕s and Cw2 = 2 Mbit∕s with equal probability. The capacity
experienced by packets varies independently from packet to packet. The
wired network has a fixed capacity rate C = 2 Mbit∕s and introduces a fixed
delay RTT0 = 100 ms. Packets have fixed length L = 1000 bytes. They are
sent out by the source H at a rate λ, according to a Poisson process.
There is a probability 𝜖w that packets get lost over the wireless interface.
Lost packets are recovered by a data link protocol over the wireless interface.
Assume the number of retransmissions is unlimited.
Packets can also be dropped through the wired network, with probability 𝜖d.
Dropped packets are detected and recovered by means of end-to-end retrans-
missions by the transport protocol.
(a) Identify an open queueing network model of the system.

�

� �

�

Problems 475

(b) Evaluate the throughput, mean delay, and mean buffer levels at the host
H and at the BS (uplink) as a function of λ for 𝜖w = 𝜖d = 0.1.

(c) Study the behavior of the performance indicators as the packet loss and
drop probabilities vary.

8.8 Consider a closed-loop packet flow controlled by means of a window-based
mechanisms. Let W be the window size. The network path of the packet
flow goes through M links, with capacity rates Ci, i = 1,… ,M. The packets
have a fixed length L = 1500 bytes. The base round trip time of the path is
RTT0 = 100 ms.
(a) Identify a closed queueing network model of the system.
(b) Evaluate the mean content levels at the M link buffers, assuming that

W = 𝛽C, C1 = 𝛼C < C2 = · · · = CM = C, with 𝛼 < 1. Discuss the results
as 𝛼, 𝛽, and C are varied. Can you identify a bottleneck link?

(c) Evaluate the effect of service time variability (e.g., because of underly-
ing subnet protocols that introduce jitter, e.g., random access protocols,
ARQ) under the same setting as in the previous point. Assume that the
service time of a packet through the wireless access link has a SCOV
C2

X ,1 > 1. How does the bottleneck effect change?

�

� �

�

477

Part III

Networked Systems and Protocols

�

� �

�

479

9

Multiple Access

For a successful technology, reality must take precedence over public relations,
for Nature cannot be fooled.

Richard Philips Feynman

9.1 Introduction

Multiple access encompasses both centralized and distributed multiplexing of traf-
fic flows onto a shared communication channel. In the distributed case, a medium
access control (MAC) protocol is defined to rule the access to the channel. MAC
protocols follow two alternative approaches: (i) deterministic ordered access; (ii)
random access. In the first case, the stations sharing the communication chan-
nel exchange signaling messages to achieve full coordination and thus give rise to
an ordered access schedule. Ordered protocols encompass centralized solutions,
where a special node is in charge of coordinating the network access through sig-
naling, and distributed approaches, where peer nodes interact through explicit
signaling to achieve coordination in sharing the channel. With random access
protocols, stations act autonomously, i.e., a station bases its transmission deci-
sion only on prior knowledge (protocol state machine) and on events detected
by the MAC protocol entity at its interface with the channel. While ordered pro-
tocols offer superior performance under heavy traffic load, they usually do not
scale nicely as the size of the traffic source population grows, due to the complex-
ity of signaling. Moreover, the overhead implied by signaling can become over-
whelming in circumstances where a significant part of the offered traffic is made
of isolated, short messages (e.g, sensor networks, app notifications, periodic state
updates). Furthermore, random access protocols achieve lower delays under light

Network Traffic Engineering: Stochastic Models and Applications, First Edition. Andrea Baiocchi.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

�

� �

�

480 9 Multiple Access

traffic load. It is a fact that the most popular MAC technologies have been designed
following the random access approach, e.g., WiFi and Ethernet1 .

In this chapter we focus on random access MAC protocol modeling, analysis and
optimization.

The central issue comes out of the multi-access or broadcast communication
channels. They are realized by means of a communication medium where a
multiplicity of terminals can transmit and receive signals. The broadcast property
of such channels implies that every terminal receives the signals transmitted
onto the channel. Proper information delivery is achieved by means of labels
(addresses) added to the transmitted data. As an example, a portion of the radio
spectrum corresponding to frequencies ranging from f1 up to f2 can be used as a
multi-access channel, if each terminal is equipped with a suitable transceiver, able
to radiate and sense an electromagnetic field whose frequency content is within
the assigned range. Moreover, the electromagnetic field must be the physical
support of a signal, whose characteristics (amplitude, phase, frequency) are varied
according to the stream of data symbols that must be transmitted. The hardware
and software required to transform a sequence of bits into a physical signal that
can be impressed over an electromagnetic field and to recover back those bits from
the electromagnetic field impinging on the antenna of the receiver is referred
to as a transceiver. Transmitter is properly the part that creates and transmits
a signal, receiver the part that recovers the bits from the signal. In essence, a
communication channel amounts to at least a transmitter, a communication
medium, and a receiver. The data source is connected to the transmitter, while
the destination is connected to the receiver.

If only a single transmitter can send signals over the given channel, there is no
arbitration issue and the data link protocol can focus on data unit delineation,
integrity, segmentation and reassembly. If, on the contrary, more than one trans-
mitter can possibly send data over the channel at any time, there arises the problem
of ruling the access to the channel.

The MAC protocol consists of the specification of data unit format, their mean-
ing and of the state machine executed by each node to perform the access to the
shared channel. The piece of hardware/software that realizes the MAC protocol
is termed MAC entity. It is interfaced to the upper layer entity and to the physical

1 Since the introduction of switches and star topology cabling of ethernet networks, and as their
speed has scaled up to the multi-Gbit/s range, the originally CSMA MAC protocol of ethernet
network interface cards (NICs) has been substantially made obsolete. In practice, there is no
more need of the MAC protocol whenever the physical arrangement of ethernet NICs is such
that each transmitter has its own physical medium, like in point-to-point communication
systems. Yet, it is at least a historical fact that the technology that won the lead for cabled access
networks was originally conceived based on a random access MAC protocol. Random access
MAC protocols have also been defined and implemented for other cabled access technologies,
eg., cable-modem networks, powerline communication networks, and passive optical networks.

�

� �

�

9.1 Introduction 481

PHY

MAC

Upper layer

MAC frame

Packet

PHY

MAC

Upper layer

Figure 9.1 Protocol architecture of the wireless access network.

layer entity below (see Figure 9.1). The upper layer entity prompts the MAC entity
when it has data to send. Then, the MAC entity commits to transferring the data
handed by the upper layer entity. In turn, the MAC layer entity calls for the physi-
cal layer entity whenever it has data to transmit and it listens to the physical layer
entity to get incoming data. Eventually, the MAC layer entity at the receiving side
delivers the received data to the upper layer entity on the receiving side. The arrows
in Figure 9.1 recall the direct communication between peer entities. Dark shaded
parts of the data unit correspond to overhead used to manage the layer
protocol.

With any random access MAC protocol, each node acts on the basis of two
inputs:

● local events detected at the interface between the MAC entity and its adjacent
entities, the upper layer and the physical layer;

● instructions coded in the MAC protocol algorithm.

A MAC protocol can be defined as a finite-state machine. The state variables
depend on the observable events and on the MAC algorithm parameters. The
state space is made up of all admissible values of the state variables. An arc is put
between states A and B if a transition is possible from A to B. The arc is labeled
with two pieces of information: (i) event triggering the transition; and (ii) action
taken upon the transition (e.g., send ACK, reset timer, update counters).

In all models considered in this chapter the physical layer is idealized, so that
it only introduces a fixed delay and a limited capacity. We assume that the com-
munication link parameters are dimensioned so that any node can communicate
with any other node with success, i.e., if a node is the only one transmitting in the
multi-access channel, any other node can detect the bits sent by the tagged node
successfully. Henceforth, a failed reception can only occur if more than a single
node is transmitting at a same time2 .

In the following, nodes are referred to as stations, as commonly done in the con-
text of wireless networks. This is motivated by the fact that often such nodes are
stationary, as opposed to mobile terminals in a cellular network. To be concrete, we

2 We are therefore neglecting what is often referred to as capture effect in the technical
literature, i.e., the possibility that a message is correctly decoded in spite of interference caused
by other overlapping transmissions.

�

� �

�

482 9 Multiple Access

identify the protocol layer above the MAC as the network layer. Then, data units
offered to the MAC layer entity from above are named packets. Packets are vested
with the overhead of the MAC layer to form the MAC protocol data unit (MPDU),
also called frame (see Figure 9.1). A station having at least one frame waiting to be
sent is said to be backlogged. We neglect prioritization and hence multiple queues
and sophisticated packet scheduling policies.

The rest of this Chapter covers the following topics, with an emphasis on
modeling, performance evaluation and optimization: ALOHA (mainly the Slotted
ALOHA), CSMA, WiFi random access.

9.2 Slotted ALOHA

In this section we consider the Slotted ALOHA protocol3 . Each station taking part
in the network runs the following algorithm.

1. As long as no packet is standing in the station queue, the station is said to be
idle and it takes no action.

2. If a packet arrives at some slot, the station becomes backlogged and moves to
the next step.

3. The station will attempt transmitting the packet for the first time in the slot
immediately following the one where the packet has arrived.

4. If the transmission attempt fails (the station can detect this event at the end of
the slot where the attempt has been carried out), the station moves to step 6.

5. After a successful transmission attempt in the current slot, the station checks
whether there are more packets waiting for transmission. If that is the case, it
goes to step 6; otherwise, if no more packets are waiting for transmission, it
moves back to step 1.

6. The station attempts the transmission of the head-of-line packet in the current
slot with probability p; with probability 1 − p it backs off for the current slot
and repeats step 6 in the subsequent slot.

This protocol statement assumes that the outcome of a transmission attempt
is learned by the transmitting station within the end of the same slot where
the attempt has been performed. For example, there can be an ACK mechanism
in place, so that after completing the transmission attempt, there is room for a
short ACK message from the receiver (if it has checked that the received frame
is error-free). If the transmitter does not detect the ACK message, i.e., its ACK
timer expires and no ACK has been detected, the transmitter deems its attempt
to have failed. In the following, we use both the generic term “packet” and the
MAC-specific term “frame”, since in most implementations there is a one-to-one
correspondence.

3 ALOHA was originally conceived by Norman Abramson [4] at the University of Hawaii.

�

� �

�

9.2 Slotted ALOHA 483

9.2.1 Analysis of the Naïve Slotted ALOHA

Let the time axis be divided into fixed length slots, with duration T. A fixed-air bit
rate is used in the physical channel, so that L bit long data units can be accom-
modated into a slot. Let N(t) be the number of stations that are backlogged at the
beginning of time slot t.

To simplify the description of the state of the network, we assume that a station
can hold at most one frame waiting for transmission. Hence, we can identify the
number of stations that are backlogged N(t)with the number of frames contending
for the access to the channel.

Let A(t) denote the number of new frames that arrive during slot t − 1 and are
henceforth scheduled for the first transmission attempt in slot t. Besides those new
frames, there will be retransmissions of old frames, according to the back-off pol-
icy. A station holding an old frame will attempt a transmission with probability p.
Then, the number Y (t) of transmissions occurring in the multi-access channel at
time slot t is Y (t) = A(t) + B(t), where B(t) is a binomial random variable:

(B(t) = k | N(t) = n) =
(n

k

)
pk(1 − p)n−k

, k = 0, 1,… ,n. (9.1)

Our reception model (no capture effect, no channel error) allows only three pos-
sible outcomes of the channel usage:

1. Y (t) = 0: the slot goes idle, no station attempts transmission.
2. Y (t) = 1: a single station attempts transmission, hence the corresponding frame

is received with success.
3. Y (t) > 1: more than one station attempts transmissions, hence no successful

detection is possible.

The last event is usually referred to as a collision4 . Let I() be the indicator
function of the event , which is equal to 1 if and only if the event is true, otherwise
it is 0. The number of frames that are successfully delivered in slot t is therefore
equal to I(Y (t) = 1). The number of backlogged stations found in the system at the
beginning of slot t evolves according to the following equation

N(t + 1) = N(t) + A(t) − I(Y (t) = 1) , t ≥ 0, (9.2)

4 Note that frames can be unicast or broadcast. In the former case, a frame is addressed to a
specific station, hence the frame is lost only if that station fails to decode the frame correctly. For
a broadcast frame, all stations are addressed. Moreover, if station A sends a frame to station B
and station B starts a new transmission whatsoever during A’s transmission, B will not be able to
receive the frame from A. This is again a sort of collision, i.e., the intended recipient of the frame
cannot receive it because it is busy transmitting in turn. The failure of the reception in this case
depends on the fact that typically radios are half-duplex, i.e., they cannot receive while
transmitting, since self-interference kills the weak signal arriving at the antenna. During this
decade more and more experimental evidence has been given that in-band full-duplex is
feasible. This opens the way to new interesting possibilities for the design of MAC protocol
algorithms and their traffic engineering.

�

� �

�

484 9 Multiple Access

for a given initial state N(0). If the sequence {A(t)}t≥0 is made of i.i.d. random
variables with the common PDF of the random variable A, then N(t) is a
time-homogeneous Markov chain.

To understand how the Markov chain evolves over time and whether it even-
tually attains a statistical equilibrium regime, we can examine its drift, i.e., the
average state change at the next transition, given the current state. The drift dn of
the Markov chain in the state N(t) = n is

dn = E[N(t + 1) − N(t) | N(t) = n] = a − E[I(Y (t) = 1) | N(t) = n] =

= a − (Y (t) = 1 | N(t) = n) = a − a0np(1 − p)n−1 − a1(1 − p)n

where ak = (A = k), k ≥ 0 and a = E[A] =
∑∞

k=0 kak.
Intuitively, the Markov chain attains the statistical equilibrium regime if and

only if the drift becomes negative as n grows. From the system point of view, this
means that the multi-access channel equipped with the Slotted ALOHA MAC pro-
tocol can carry the offered traffic without getting overloaded. If the drift is negative,
the mean rate at which the backlog is cleared is bigger than the average arrival rate
of new frames. We say that the protocol is stable.

If A is a Poisson random variable with mean a, the drift for each given n depends
only on the two parameters p and a; so the condition dn < 0 (at least definitely for
all n bigger than a threshold) leads to

a < e−anp(1 − p)n−1 + ae−a(1 − p)n (9.3)

For any fixed p, as n grows, the right hand side tends to 0. We can therefore
expect that Slotted ALOHA as defined here cannot be stable for any positive mean
load! This is not an approximate finding. It can actually be shown that, if a > 0
and p ∈ (0, 1), almost surely there exists a finite time T after which it will always
be Y > 1 [122, Ch. 5, Prop. 5.3]. In other words, ALOHA delivers only finitely many
packets successfully, then it jams forever. In terms of Markov chain theory, the result
shows that the Markov chain N(t) is not positive recurrent for any a > 0. A proof
of this result can be obtained also by using the Foster-Lyapunov theorem (see the
Appendix at the end of this chapter).

Let us try to understand the “meaning” of this result. First, it can be observed
that the explosion of the backlog depends on the fact that the potential popula-
tion of stations has been assumed to have no limit. Saying that new packets arrive
according to a Poisson process and that each new packet corresponds to a new,
different station implies that the number of stations is not finite. This could be
corrected quite easily, by modifying the model. Let M be the maximum number
of stations. Assume that an idle station can become backlogged in a slot with
probability q. Once it is backlogged, it does not accept any more packets from the
network entity, until the standing packet has been successfully delivered. At that
point, the station moves back to the idle state and a new packet can be accepted.

�

� �

�

9.2 Slotted ALOHA 485

Figure 9.2 Sample path of N(t):
with Poisson arrivals (dashed
line), and Bernoulli arrivals
(solid line).

0 200 400 600 800 1000

Time (slot)

0

5

10

15

20

#
 b

a
c
k
lo

g
g
e
d
 s

ta
ti
o
n
s

a = 0.3

Bernoulli

Poisson

Then, the number of new arrivals A(t) when the system state (number of back-
logged stations) is N(t) = n has the following PDF

(A(t) = k | N(t) = n) =
(M − n

k

)
qk(1 − q)M−n−k

, k = 0,… ,M − n,

(9.4)

for n = 0,… ,M.
Sample paths of N(t) of the two models of ALOHA are plotted in Figure 9.2. With

Poisson arrivals A(t) is a Poisson random variable. The curve labeled “Bernoulli”
has been obtained by generating the number of arrivals according to the prob-
ability distribution of eq. (9.4) with M = 10. The mean number of new arrivals,
a = E[A(t)] is the same for the Poisson and for the Bernoulli arrival processes,
equal to 0.3.

It is apparent that the ALOHA protocol with Poisson arrivals exhibits wider fluc-
tuations than with Bernoulli arrivals. The latter has an intrinsic limit since the
number of stations is finite (10 in the numerical simulation of Figure 9.2). In both
cases, it is noted that the number of backlogged stations never gets back to 0 in the
case of Poisson arrivals, and only very rarely does with Bernoulli arrivals. This is
the mark of a potentially “overloaded” system.

It can be verified that, if M is increased, the process N(t) tends to fluctuate close
to its upper bound. It appears that the tendency of ALOHA to boost the number
of backlogged stations has deeper reasons than simply an artifact of the Poisson
arrival model. A key reason for this behavior is that stations that fail to deliver their
frame are persistent in their retrials. In other words, the number of retries is unlim-
ited and the probability p that decides whether a station takes a new shot or not is
fixed. The key lesson learned by the bad performance of the Slotted ALOHA proto-
col, as we have defined it, is that it is fundamental to limit the number of retries5.

5 Any sane protocol has to guarantee that its execution terminates for any possible situation:
hence, a limit must be imposed to the number of attempts for a given frame.

�

� �

�

486 9 Multiple Access

Yet, this limitation alone is not sufficient in general, e.g., if the competing stations
are heavily backlogged and keep pushing new frames into the channel. A more
structural arrangement is required to stabilize ALOHA, i.e., the probability p of
retrying should be modulated according to the amount of backlog.

To grasp the issue, we can state a fluid approximation of the ALOHA protocol.
The fluid approximation replaces the stochastic process N(t) with its mean. We
denote the approximation with N(t), which can assume real values in the interval
[0,M], according to the Bernoulli model. The variation with time of N(t) is driven
by the instantaneous drift, i.e., the difference between the arrival rate [M − N(t)]𝜆
and the service rate Ps(N(t))∕T, where Ps(n) = np(1 − p)n−1 is the probability of a
successful packet transmission in a slot and T is the slot duration. Since a station
gets ready to transmit a new packet with probability q in each slot, the mean arrival
rate of an idle station is 𝜆 = q∕T. If we normalize time with respect to the slot
duration T, the differential equation that characterizes N(t) can be written as:

dN(t)
dt

= [M − N(t)]q − N(t)p(1 − p)N(t)−1 = A(N(t)) − D(N(t)) (9.5)

with the initial condition N(0) = 0. The two functions A(x) and D(x) appearing in
the right hand side of eq. (9.5) are plotted in Figure 9.3 as a function of x ∈ [0,M]
for q = 1 − a ≈ 0.013, p = 0.3. The function A(x) corresponds to the dashed line,
while D(x) is the solid curve.

With the chosen numerical values of parameters, there are three points where
the two functions coincide and hence the derivative of N(t) is zero. The intersec-
tions correspond to stationary points of N(t), i.e., if N(t) is initialized at one of
those points, it will stay there forever. This does not mean they are stable. Looking
at the sign of the right hand side of eq. (9.5), it is easy to recognize that the points
marked with a circle in Figure 9.3 are locally stable, i.e., a small perturbation off
those points does not kick N(t) definitely away. On the contrary, eventually N(t)

+ – + –

Bernoulli

a = 0.987

p = 0.3A

D

0 5 10 15 20

Number of backlogged stations

0

0.1

0.2

0.3

0.4

0.5

M
e
a
n
 a

rr
.
a
n
d
 d

e
p
.

Figure 9.3 Fluid approximation
of N(t). The solid curve is the
mean number of departures,
the dashed curve is the mean
number of arrivals; their
difference is the derivative of
the fluid approximation of N(t)
with respect to time. The shaded
regions are those where the
derivative is negative. The
parameters used for this
Bernoulli model of the ALOHA
protocol are: a = 0.987, p = 0.3.

�

� �

�

9.2 Slotted ALOHA 487

gets back to x0 if it starts anywhere around x0, where x0 is one of the points marked
with a circle. More precisely, the regions shaded in Figure 9.3 denote intervals of
the x-axis where the derivative of N(t) is negative, hence N(t) is pushed to the
left (it decreases). On the contrary, white regions are characterized by a positive
derivative of N(t). Whenever there, N(t) tends to move to the right. It is therefore
clear that the middle stationary point is unstable, whereas the other two stationary
points are locally stable.

Going back from the mathematical model to the system (the ALOHA protocol),
the two stable stationary points are expected to be working points of the protocol
for long spans of time. Random fluctuations of arrivals and departures can even-
tually move the state of the system from one locally stable point to the other, yet
most of the time we expect to find the state of the system hovering around one of
those two stable points. Here comes the pitfall of this naïve version of ALOHA:
while the locally stable point on the left is a (relatively) good one, the locally sta-
ble point on the right is a terrible one, since the throughput there is close to 0! The
system alternates between two working regimes, one with a small backlog and a
high throughput, the other one with a heavy backlog and a low throughput.

Before delving into the design of as stabilized version of ALOHA, we develop an
extensive analysis of the finite population model of Slotted ALOHA channel. This
allows us to gain a deep understanding of the system dynamics.

9.2.2 Finite Population Slotted ALOHA

All times are normalized to the slot duration T. We consider M stations. A station
alternates between an idle state, where it has no pending packets to send, and a
backlogged state, where it has exactly one outstanding packet. After having sent
its packet through the channel successfully, the station goes back into the idle state
for a geometrically distributed “think time,” with mean value 1∕q.

Once backlogged, a station tries sending a packet with probability p, while it
postpones its attempt with probability 1 − p. Hence p is the transmission proba-
bility and 1∕p represents the mean back-off time before a transmission attempt is
carried out. This model is slightly different from the one considered before. In the
Slotted ALOHA version of this Section, a new packet arriving at an idle station is
immediately considered to be backlogged, hence it is transmitted in the next slot
with probability p. In the Slotted ALOHA version of the previous section the trans-
mission of a newly arrived packet is attempted in the next slot with probability 1.
Only if a collision occurs will the packet become backlogged and new transmis-
sions be attempted in subsequent slots with probability p. Given that n stations are
backlogged at the beginning of a slot, the probability of a successful transmission
in that slot is np(1 − p)n−1 in the first variant, while it is (1 − q)M−nnp(1 − p)n−1 +
(M − n)q(1 − q)M−n−1(1 − p)n in the second variant. The latter approach leads to

�

� �

�

488 9 Multiple Access

lower delays at light load levels. However, there is little difference between packet
delays of the two approaches for the stabilized ALOHA presented in next section.
In the following we stick to the first variant, hence assume that all newly arriving
packets become immediately backlogged and their transmissions are attempted
always with probability p in the next available slot.

According to this model setting, the number N(t) of stations backlogged at the
beginning of slot t is a discrete time Markov chain (DTMC) over the state space
[0,… ,M]. It is quite easy to write down the expressions of the one-step transi-
tion probabilities Pij = (N(t + 1) = j | N(t) = i) for i, j = 0,… ,M. Given N(t) = i,
the number of backlogged stations at the beginning of slot t + 1 can assume the
following values:

1. N(t + 1) = i − 1, if and only if no idle station activates and there is a successful
transmission in slot t.

2. N(t + 1) ≥ i, if there is a successful transmission in slot i and j − i + 1 idle sta-
tions activate or no successful transmission takes place in slot t and j − i idle
stations activate.

3. N(t + 1) < i − 1 is not possible.

Obvious adjustments are required to account for the boundary states 0 and M.
Following the definition of the events listed above, it is easy to find the expres-

sions of the transition probabilities Pij = (N(t + 1) = j | N(t) = i):

Pij =

⎧⎪⎪⎨⎪⎪⎩
Ps(i)Q(M − i, 0) j = i − 1, i ≥ 1

Ps(i)Q(M − i, j − i + 1) + [1 − Ps(i)]Q(M − i, j − i) j = i,… ,M, i ≥ 0

0 otherwise.

(9.6)

where

Ps(i) = ip(1 − p)i−1
, i = 0, 1,… ,M, (9.7)

and

Q(m, k) =
(m

k

)
qk(1 − q)m−k

, k = 0,… ,m, m = 0,… ,M. (9.8)

The one-step transition matrix P has an Hessenberg structure, just as the matrix
of the embedded Markov chain of the M∕G∕1 queue. In fact, this is the common
structure of all single-server systems.

The steady-state probability distribution of the number of backlogged stations
𝜋n = limt→(N(t) = n), 0 ≤ n ≤ M can be computed by solving the linear system
𝛑P = 𝛑 subject to he congruence condition

∑M
n=0 𝜋n = 1. The limiting probabil-

ity distribution exists for any value of the model parameters M, q and p, with

�

� �

�

9.2 Slotted ALOHA 489

0 < p, q < 1. In fact, the DTMC N(t) is ergodic since it is irreducible, aperiodic,
and lives on a finite state space.

The throughput achieved by the Slotted ALOHA channel is:

S =
M∑

n=1
𝜋nPs(n) (9.9)

The mean delay suffered by a station to send a packet can be evaluated by using
Little’s law, namely:

E[D] = E[N]
S

=
∑M

n=1 n𝜋n∑M
n=1 Ps(n)𝜋n

(9.10)

The finite population model of the Slotted ALOHA channel is parametrized by
only three variables:

1. the population size M;
2. the transmission probability p, or equivalently, the mean back-off time 1∕p;
3. the station activation probability q, i.e., the probability that an idle station

becomes backlogged during a slot, or, equivalently, the mean think time of a
station 1∕q.

Figure 9.4 displays the throughput-delay trade-off as q is varied for M = 50 (left
plot) and the trade-off as M is varied, for q = 0.01 (right plot).

For small enough values of the back-off probability p, as q is increased the
throughput grows steadily as well as the mean delay. The trade-off is not too
penalizing, given that the mean delay increases slowly with the throughput.
However, the maximum achieved throughput is relatively low, while the mean
delay is high, due to the large mean back-off time. If p is increased, bigger levels
of throughput can be achieved, still with a relatively low delay. The best trade-off

Throughput

0

50

100

150

200

250

300

M
e

a
n

 d
e

la
y

M = 50p = 0.08

0.05

0.02
0.01

0.005

(a)

0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4

Throughput

100

101

102

103

104

M
e

a
n

 d
e

la
y

q = 0.01

p = 1/4
1/8
1/16
1/32
1/64
1/128

(b)

Figure 9.4 Throughput-delay trade-off for several values of p. Left plot: q is varied for
M = 50 stations. Right plot: M is varied for q = 0.01.

�

� �

�

490 9 Multiple Access

0 20 40 60 80 100

Backlogged stations

0

0.1

0.2

0.3

0.4

O
ff
e

re
d

 l
o

a
d

M = 100

p = 0.05

Figure 9.5 Load-lines of
Slotted ALOHA for M = 50,
p = 0.05. From right to left, the
values of q associated with the
load-lines are q = 0.01, 0.005,
0.004, 0.0038, 0.003, 0.001.
Square markers correspond to
steady-state working points.

is obtained for p = 0.02 in the figure. After that point, as p grows further, the
trade-off exhibits multiple working points. For a same value of the throughput
there can be a small and a large mean delay level. This is yet another mark of the
bi-stable behavior of Slotted ALOHA.

Similar remarks apply to the trade-off obtained by varying the number of sta-
tions M for a fixed level of q (right plot). This last plot highlights that the maximum
achievable throughput grows with decreasing levels of p (i.e., as stations become
more cautious), though at the cost of increased delay. Moving from high levels of
p down, the maximum achievable throughput grows fast at the beginning, then
more and more slowly. Correspondingly, the mean delay suffers a little increase at
the beginning, then it starts growing more rapidly.

The stability of Slotted ALOHA can be best understood by resorting to a plot like
in Figure 9.5. The normalized throughput for a given number of backlogged sta-
tions, namely, the success probability Ps(n), is plotted against n (solid line curve).
Load-lines defining the mean arrival rate of new packets, (M − n)q, are plotted
for M = 50, p = 0.05, and q = 0.01, 0.005, 0.004, 0.0038, 0.003, 0.001 (dashed lines
from right to left). Square markers show the steady-state working points, i.e., the
points with coordinates (E[N], S) for each considered value of q.

Depending on the value of q (for the chosen value of M and p), the load-line
intersects the throughput curve in a single point lying on the left of the maximum
of the throughput curve, or in three points, or again in a single point, but lying on
the right of the maximum of the throughput curve.

In the first case (smallest values of q), the steady-state working point is just the
intersection point, as shown by the square markers for the two smallest values of
q, q = 0.001, 0.003. In the second case, two of the three intersections correspond
to locally stable points, while the central one is unstable. Since the actual model
is stochastic, there is actually a unique steady state. The system state oscillates
between the two locally stable fixed points, so that the steady-state point lies in

�

� �

�

9.2 Slotted ALOHA 491

0

0.05

0.1

0.15

P
(N

 =
 n

)

M = 100
p = 0.05

q = 0.003

Backlogged stations

(a)

0

0.05

0.1

0.15

P
(N

 =
 n

)

M = 100
p = 0.05

q = 0.004

Backlogged stations

(b)

0

0.05

0.1

0.15

P
(N

 =
 n

)

M = 100
p = 0.05

q = 0.005

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

Backlogged stations

(c)

Figure 9.6 Probability distribution of the number of backlogged stations for M = 100,
p = 0.05 and three values of q: q = 0.003 (left plot, stable); q = 0.004 (middle plot,
bi-stable); q = 0.005 (right plot, saturated).

between them (see the markers for the two middle load-lines, corresponding to
q = 0.0038 and q = 0.004). Finally, when there is only one intersection to the right
of the maximum of the throughput curve (largest values of q), the system moves
toward saturation, i.e., all stations are active. The steady-state working point lies
close to the right tail of the throughput curve.

The different operation regimes highlighted above can be detected also by
inspecting the probability distribution of the number of backlogged stations.
Figure 9.6 shows 𝜋n = (N = n) for M = 100, p = 0.05 and three values of q:

1. q = 0.003 (left plot), corresponding to a single intersection, hence a stable sys-
tem; consistently, the mass of the probability distribution is concentrated at low
value of n.

2. q = 0.004 (middle plot), corresponding to three intersections, hence a, bi-stable
system; this behavior is apparent from the two lobes of the probability distribu-
tion, centered on small and large values of n.

3. q = 0.005 (right plot), corresponding to one intersection on the right of the max-
imum of the throughput curve, hence a saturated system; saturation is evident
from the concentration of the mass of the probability distribution at large values
of the number of backlogged stations.

The analysis of the working regions of slotted ALOHA can be further expanded.
Relaxing the system state N to a continuous variable x, the intersections of the
load-line with the throughput curve are solutions of the following equations:

(M − x)q = xp(1 − p)x−1
, x ∈ [0,M]. (9.11)

We can re-write this equation as

f (x) ≡ x + c x e−𝛽x = M (9.12)

with c = p
q(1−p)

and 𝛽 = − log(1 − p).
Since f (0) = 0 and f (M) > M, there is at least one point where f (x) = M for x

ranging between 0 and M. The derivative of f (x) is f ′(x) = 1 − c(𝛽x − 1)e−𝛽x. This
equation has two real solutions if and only if c ≥ e2, i.e., for p ≥ q

q+e−2 . Let us denote

�

� �

�

492 9 Multiple Access

the two roots as x1 and x2 with x1 < x2. The function f (x) has a relative maximum
at x1 and a relative minimum at x2. The points x1 and x2 are the zeros of f ′(x), i.e.,
they must be such that e𝛽xj = c(𝛽xj − 1), for j = 1, 2. Plugging this identity into the
expression of f (x), we find

f (xj) = xj + cxje−𝛽xj =
𝛽x2

j

𝛽xj − 1
= M , j = 1, 2. (9.13)

We have

xj =
M
2

(
1 ±

√
1 − 4

M𝛽

)
, j = 1, 2. (9.14)

For these roots to be real, it must be M𝛽 ≥ 4, which implies p ≥ 1 − e−4∕M . If this
inequality holds, it turns out that the two roots belong to the interval [0,M]. Let
Mmin = f (x2) and Mmax = f (x1).

Summarizing this analysis, the existence of the two thresholds Mmin and Mmax

is guaranteed provided that p ≥ max
{

q
q+e−2 , 1 − e−4∕M

}
. Under that condition,

for given q and p, the Slotted ALOHA channel operates in the stable regime for
M < Mmin. It operates in the bi-stable region, where two locally stable equilibrium
points exist, when Mmin < M < Mmax. Finally, the Slotted ALOHA channel
is driven to saturation for M > Mmax. An example plot of f (x) is depicted in
Figure 9.7 for p = 0.08 and q = 0.005.

The left plot in Figure 9.8 illustrates the operating regions of the Slotted ALOHA
channel for q = 0.01, as a function of the mean back-off time B = 1∕p. The bi-stable
region disappears for B > 1 + e−2∕q ≈ 14.53 (in slot time units).

For very aggressive system settings, i.e., when the mean back-off time is close
to 1 slot, the bi-stable region is substantial and covers most of the range of values
of M. In other words, if set to be very aggressive, the Slotted ALOHA channel is
easily operated in the bi-stable regime, unless a quite small number of stations are
admitted to the channel. As the mean back-off time grows, the number of stations

q = 0.005

p = 0.08

Stable

Bi-stable

Saturated

x

0

20

40

60

80

100

f(
x
)

0 20 40 60 80 100

Figure 9.7 Example plot of the
function f (x) in eq. (9.12). The
three operating regions of
Slotted ALOHA are highlighted:
M ≤ Mmin (stable),
Mmin < M < Mmax (bi-stable), and
M ≥ Mmax (saturated).

�

� �

�

9.2 Slotted ALOHA 493

Stable

Bi-stable

Saturated

q = 0.01

Mean back-off time

0

20

40

60

80

100

N
u
m

b
e
r

o
f
s
ta

ti
o
n
s
,
M

(a)

2 4 6 8 10 12 0 0.1 0.2 0.3 0.4

Throughput

100

101

102

103

104

M
e
a
n
 d

e
la

y

q = 0.01

(b)

Figure 9.8 Left plot: operating regions of Slotted ALOHA for q = 0.01. On the right plot,
throughput-delay trade off on the contour separating the stable region from the bi-stable
region (solid line curve) and on the contour separating the bi-stable region from the
saturation region (dashed-line curve).

that can be accommodated safely in the channel, i.e., under a stable regime, grows
as the stable region expands.

The right plot of Figure 9.8 shows the throughput-delay trade-off on the con-
tour separating the stable region from the bi-stable region (solid line curve) and
the trade-off on the contour line separating the bi-stable region from the satura-
tion region (dashed line curve). The trade-off is obtained for q = 0.01. We move
along the trade-off by varying p, i.e, the mean back-off time. It is apparent that,
if operated in the saturated region, the Slotted ALOHA offers quite poor perfor-
mance (high mean delay and low throughput). Better performance is achieved if
the Slotted ALOHA channel is operated in the stable region. In that case, the mean
delay is always quite low. The throughput is small, if few stations are on the chan-
nel. It grows as the number of competing stations increases, still remaining in the
stable region.

Finally, we explore the effect of the back-off probability on the steady-state
metrics of the Slotted ALOHA channel, i.e., the throughput and the mean delay.
Figure 9.9 plots the throughput (left) and the mean delay (right) as a function of
the mean back-off time 1∕p, for M = 100 and various values of q.

For small mean back-off times the throughput is small and grows with the
back-off time, while the mean delay is initally extremely large and drops abruptly
as the mean back-off time grows. This part of the curves corresponds to driving
the system out of severe congestion, by increasing the mean back-off time.

When the mean back-off time is large, the throughput starts falling, while the
mean delay grows fast. This region corresponds to a low load regime, where the
channel capacity is wasted due to excessive back-off.

For intermediate values of the mean back-off time the optimal working point is
found, where the throughput is maximized and the mean delay is minimized.

�

� �

�

494 9 Multiple Access

101 102 103 101 102 103

Mean back-off time, 1/p

0

0.1

0.2

0.3

0.4

0.5

T
h

ro
u

g
h

p
u

t

M = 100 q = 0.001

q = 0.003

q = 0.004

q = 0.005

q = 0.01

(a)

Mean back-off time, 1/p

0

200

400

600

800

1000

M
e

a
n

 d
e

la
y

M = 100

q = 0.001

q = 0.003

q = 0.004

q = 0.005

q = 0.01

(b)

Figure 9.9 Throughput (left plot) and mean delay (right plot) as a function of the mean
back-off time 1∕p, for various values of q and M = 100.

In the next section we address the core issue of Slotted ALOHA protocol, i.e.,
adaptation of the retry probability p with the instantaneous load of the system.

9.2.3 Stabilized Slotted ALOHA

The issue with the Slotted ALOHA protocol is that, when the backlog becomes
large, the probability of a successful transmission gets small. Since the realized
throughput is small, more stations become backlogged while those already back-
logged fail to deliver their frames. With Poisson arrivals, the backlog “spiral” leads
the system to diverge. With more realistic finite population models or even limit-
ing the maximum number of re-transmissions, things would not be much better
under heavy loads, i.e., users would anyway experience low throughput and high
delay.

If each station were aware of the number n of backlogged stations (which is not
the case in practice, though), it could set the retry probability p to some optimum
level. The success probability with n competing stations is f (p) = np(1 − p)n−1. It is
easy to check that f (p) has a unique maximum for p ∈ [0, 1], attained for p∗ = 1∕n.
Not surprisingly, the optimum retry probability is inversely proportional to the
number of backlogged stations.

Stabilization of the Slotted ALOHA protocol can be achieved by using obser-
vations of the channel to adjust p adaptively, trying to approximate the optimum
(unknown) value p(t) = 1∕N(t). Define S(t) to be an estimate of the backlog of the
system at time t. We aim at making S(t) a proxy of N(t). To that end, it is sensible
to increase S(t) whenever a collision event is detected, and to diminish S(t), if slot
t turns out to be idle or contains a successfully transmitted frame.

Note that S(t) should be tracked individually by each active station. Hence a
station must listen to the shared communication channel. For each slot t, it must

�

� �

�

9.2 Slotted ALOHA 495

log the outcome of that slot. Here success means that the station has decoded the
frame correctly. Therefore, the notion of “success” depends on the point of view of
the station. In many practical cases stations communicate to a central base station
(BS), e.g., in the cellular network. In those cases, the BS can observe the channel,
estimate S(t), and feed it back to the stations. This avoids any inconsistency that
might arise in a fully distributed approach.

We let

S(t + 1) =
⎧⎪⎨⎪⎩

max{1, S(t) − 𝛼} Y (t) = 0,
max{1, S(t) − 𝛽} Y (t) = 1,
S(t) + 𝛾 Y (t) > 1

(9.15)

i.e., S(t) is decreased by 𝛼 > 0, if an idle slot is observed, it is decremented by 𝛽 > 0
if a successful transmission is carried out, it is increased by 𝛾 > 0 for a collision
event.6

A station that has an estimate S(t), sets its retry probability at p(t) = 1∕S(t). It
is then clear why imposing that S(t) be no less than 1, whenever it is decreased
in eq. (9.15). When N(t) grows, more collisions occur and S(t) is increased, thus
relieving the congestion. On the other hand, when N(t) is low, many idle and suc-
cessful slots appear, S(t) is decreased, hence the stations become more aggressive
and the utilization of the channel improves.

A stability analysis can be outlined, by referring to the mean drift of the two
processes N(t) and S(t). Given that N(t) = n and S(t) = s, we define

dS(n, s) = E[S(t + 1) − S(t) | N(t) = n, S(t) = s]

dN (n, s) = E[N(t + 1) − N(t) | N(t) = n, S(t) = s]

We refer to the Poisson model of new arrivals. The mean number of stations that
become backlogged in a slot is denoted with a. For n, s ≥ 1 we have⎧⎪⎨⎪⎩

dS(n, s) = 𝛾 − (𝛼 + 𝛾)
(

1 − 1
s

)n
− (𝛽 + 𝛾) n

s

(
1 − 1

s

)n−1

dN (n, s) = a − n
s

(
1 − 1

s

)n−1 (9.16)

6 An alternative stabilization law for S(t) is provided by the so called pseudo-Bayesian approach
[30, Ch. 4]. Indicating the mean offered load with a = 𝜆T, the updating rule is:

S(t + 1) =

{
max{1, S(t) + a − 1} in case of idle or successful slot,
S(t) + a + (e − 2)−1 in case of collision.

The idea is that, if an idle or a successful slot, the estimate of the backlog is increased of the new
arrivals (a on the average) and reduced by 1. If instead there is a collision, the estimate of the
number of backlogged stations is increased by the average number of new arrivals plus an
additional term. The choice of the additive corrections, −1 and (e − 2)−1 is conceived so as to
keep S(t) close to the true backlog when the protocol operates around the optimal working point.

�

� �

�

496 9 Multiple Access

0 20 40 60 80
0

20

40

60

80

Control parameter, S

#
 b

a
c
k
lo

g
g
e
d
 s

ta
ti
o
n
s
 N

Figure 9.10 Velocity field of the
differential equation system
(9.17) and (9.16).

In the fluid approximation, the dynamics of the system is described by the dif-
ferential equation system⎧⎪⎨⎪⎩

ds
dt

= dS(n, s)

dn
dt

= dN (n, s)
(9.17)

The velocity field of this differential system is plotted in Figure 9.10 for 𝛾 = 1, 𝛼 =
𝛽 = e∕2 − 1 and a mean offered load of a = 0.33.

Let x ≡ n∕s and consider the regime for large n. This is the interesting part of
the dynamics as far as stability is concerned, since we should choose the control
parameters so as to avoid that N(t) diverges. As n, s → ∞ for a fixed value of x,
we have

dS(x) = 𝛾 − (𝛼 + 𝛾)e−x − (𝛽 + 𝛾)xe−x

dN (x) = a − xe−x

For the system to be stable, the mean drift dN (x) cannot be always positive. Since
the function f (x) = x e−x peaks at x = 1 taking the maximum value f (1) = 1∕e, we
conclude that it must be a < 1∕e to guarantee that the drift dN (x) be negative, when
x is around 1. By expanding dS(x) around 1, we obtain

dS(x) = dS(1) +
𝛼 + 𝛾

e
(x − 1) − 𝛼 + 𝛽 + 2𝛾

2e
(x − 1)2 + O((x − 1)3) (9.18)

where

dS(1) =
𝛾(e − 2) − 𝛼 − 𝛽

e
(9.19)

If we choose the control parameters so that dS(1) = 0, then x = 1 becomes an
equilibrium point for s (i.e., at x = 1 the drift of s becomes 0). Moreover, the drift
around x = 1 is given by a positive constant multiplying x − 1. Then, if x gets bigger

�

� �

�

9.2 Slotted ALOHA 497

than 1, i.e., it is n > s, s tends to increase, thus making x decrease. If instead it is
x < 1, i.e., n < s, the drift of s is negative, hence s decreases and correspondingly x
grows. Therefore, x = 1 is a locally stable stationary point of s (for a given value of
n). In other words, the dynamics of s maintains x at 1. When x stays close to 1, the
dynamics of n can be approximated as

dN (x) = a − 1
e
+ 1

2e
(x − 1)2 + O((x − 1)3) (9.20)

which is negative for x close to 1. Summing it up, by setting dS(1) = 0, the control
law of s tends to keep x at 1. Given that, the dynamics of n is negative, as long as x
hovers around 1, provided that a < 1∕e. Overall, the system is stable.

A possible choice of the control parameters to make dS(1) = 0 is

𝛾 = 1, 𝛼 = 𝛽 = e
2
− 1 (9.21)

With this choice of the parameter values, the adaption of the back-off probability
is expressed by p(t) = 1∕S(t) with S(0) = 1 and

S(t + 1) =

{
max{1, S(t) + 1 − e∕2} if idle or success,
S(t) + 1 if collision.

(9.22)

for t ≥ 1.
A sample path of N(t) (left plot) and of p(t) (right plot) for a = 0.36 is shown

in Figure 9.11. The surge of traffic visible in the central part of the N(t) plot is
tamed by proper adjustment of p(t) (see the deep valleys in the right plot, match-
ing the peaks in the left plot). When the backlog is light, the back-off probability
hovers around 1. Thus, the system experiences a small backlog most of the time,
even if the mean load on the system is close to saturation (0.36 is about 98% of the
maximum load bearable by the stabilized ALOHA).

Time slot, t

0

10

20

30

40

50

#
 o

f
b

a
c
k
lo

g
g

e
d

 s
ta

ti
o

n
s a = 0.36

(a)

0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000

Time slot, t

0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
ili

ty
 o

f
tr

a
n

s
m

is
s
io

n
,

p

a = 0.36

(b)

Figure 9.11 Sample paths of N(t) (left plot) and of p(t) (right plot) for the stabilized
slotted ALOHA with 𝛾 = 1, 𝛼 = 𝛽 = e∕2 − 1 (a = 0.36).

�

� �

�

498 9 Multiple Access

We can derive a simple delay analysis for the stabilized Slotted ALOHA. The
key remark is that the estimate S(t) of the number of backlogged stations N(t) is
close to exact most of the time. We therefore assume that S(t) = N(t) in the delay
model. Then, the probability of a successful transmission is Ps =

n
s

(
1 − 1

s

)n−1
=(

1 − 1
n

)n−1
. For n = 1 it is Ps = 1. For n > 1, we approximate the success probabil-

ity with the value for large n, i.e., Ps = 1∕e. Further, we consider the Poisson traffic
model, i.e., new arrivals occur according to a Poisson process with mean rate a per
slot. The Poisson arrival model is consistent with the approximation of the success
probability for large n.

Then, we can write

N(t + 1) = N(t) + A(t + 1) − U(t + 1) (9.23)

where A(t) is a Poisson random variable with mean a and U(t) is the number of
successfully transmitted packets per slot, so it takes only values 0 or 1. It is

(U(t + 1) = 1|N(t) = n) =
⎧⎪⎨⎪⎩

0 n = 0
1 n = 1
1∕e n ≥ 2

(9.24)

We derive E[N] by using a mean delay analysis. Thanks to stabilization,
steady-state exists even with the infinite population Poisson arrivals. Let
𝜋n = (N(∞) = n). Taking averages on both sides of eq. (9.23) and the limit for
t → ∞, we find E[A] = E[U], i.e.,

a =
∞∑

n=0
𝜋nE[U|N = n] =

∞∑
n=0

𝜋n(U = 1|N = n) = 𝜋1 +
1
e
(1 − 𝜋0 − 𝜋1)

(9.25)

Squaring both sides of eq. (9.23), taking averages and then the limit for t → ∞,
we find:

0 = E[A2] + E[U2] − 2E[NU] + 2E[NA] − 2E[A]E[U]
= a2 + a + E[U] − 2E[NU] + 2aE[N] − 2a2

= 2a − a2 − 2E[NU] + 2aE[N] (9.26)

The joint moment of N and U can be calculated as follows:

E[NU] =
∞∑

n=0
𝜋nE[NU|N = n] =

∞∑
n=1

n𝜋n(U = 1|N = n)

= 𝜋1 +
1
e

∞∑
n=2

n𝜋n = 𝜋1

(
1 − 1

e

)
+ 1

e
E[N]

�

� �

�

9.3 Pure ALOHA with Variable Packet Times 499

Figure 9.12 Mean delay of
stabilized Slotted ALOHA.

0 0.1 0.2 0.3

Mean offered traffic, a

0

5

10

15

20

M
e

a
n

 d
e

la
y
,

E
[D

]

Analytical model

Simulations

Inserting this result into eq. (9.26), we get

2
(1

e
− a

)
E[N] = a(2 − a) − 2𝜋1

(
1 − 1

e

)
(9.27)

To determine 𝜋1, we need to calculate 𝜋0. We have

𝜋0 = (N + A − U = 0) = (A = 0)(N = U) = e−a(𝜋0 + 𝜋1) (9.28)

Along with (9.25), we can solve the 2 × 2 linear equation system for 𝜋1 and 𝜋0
to find

𝜋1 = (ea − 1)(1 − ae)
1 − (e − 1)(ea − 1)

(9.29)

Inserting this value back into eq. (9.27), we get finally

E[N] =
ea(1 − a∕2)

1 − ae
− (e − 1)(ea − 1)

1 − (e − 1)(ea − 1)
(9.30)

Using Little’s law, we find the mean delay (expressed in units of slot time):

E[D] = E[N]
a

=
e(1 − a∕2)

1 − ae
− (e − 1)(ea − 1)

a[1 − (e − 1)(ea − 1)]
(9.31)

As expected, the results holds for a < 1∕e.
Figure 9.12 plots the mean delay E[D] obtained by using the analytical model

(solid line), compared with simulations of the stabilization algorithm of eq. (9.22)
(dashed line). Confidence intervals at 95% level are displayed as well.

Despite its simplicity, the analytical model agrees beautifully with simulations.

9.3 Pure ALOHA with Variable Packet Times

Pure ALOHA is the original proposal of Norman Abramson to set up the dis-
tributed access via a radio satellite network [4]. It is not much used, due to its

�

� �

�

500 9 Multiple Access

limited throughput. It might however be the solution when a very limited traf-
fic is envisaged and slot synchronization is unfeasible or costly. LoRaWAN is an
example technology where pure ALOHA is revisited and applied to a sensor net-
work to cover very large distances (in the order of several km) [152].

The typical model of pure ALOHA assumes fixed packet time. In this section we
address ALOHA performance with variable size packets. This is interesting both
because the analysis is subtle and because it reveals an unfairness issue with pure
ALOHA, when packets have different sizes.

An early contribution on the analysis of ALOHA under generally variable packet
transmission time appears in [26]. A generalization to multi-packet reception is
presented in [19].

We consider a population of transmitting stations sharing an ALOHA wireless
channel. New transmissions are offered to the network according to a Poisson
process with mean rate 𝜈. Transmission attempts (including retransmissions) are
modeled as a Poisson process of mean rate 𝜆 ≥ 𝜈. This is a classic approximation
for a large population of sporadically transmitting stations. In addition to 𝜈 and 𝜆,
the following notation is used:

X the random variable representing the packet time of new packets. The mean,
minimum and maximum packet times are denoted respectively with E[X], Xmin
and Xmax.

Y the random variable representing the packet time of packets transmitted on
the wireless channel, including retransmissions. The mean of Y is denoted with
E[Y]. Maximum and minimum values of Y are the same as for X .

N(t) the number of parallel ongoing transmissions at time t (traffic process).
A(t, t + 𝜏) the number of packet transmission attempts in the interval [t, t + 𝜏]

(arrival process).

If acknowledgments (ACK) are sent over the same channel as DATA packets,
the channel holding time Y = TDATA + Ta + TACK equals the sum of three com-
ponents, namely the DATA packet transmission time TDATA, the turn-around
time Ta and the ACK transmission time TACK. This model applies to cases where
the same channel is used for DATA and ACK packets. If ACKs are sent on a
separate collision-free channel, then Y = TDATA. We encompass all cases in one
model, by allowing channel holding time to be variable. Moreover, TDATA can vary
as well.

Note that the probability density function fY (x) of packet time for packets
transmitted on the channel is different from the native probability distribution of
packet time, fX (x). In fact, longer packets incur collision with higher probability,
hence they are re-transmitted more frequently than shorter packets. Hence,
channel operation introduces a bias in the sizes of packets appearing on the
channel.

�

� �

�

9.3 Pure ALOHA with Variable Packet Times 501

Consider a packet arriving at time t and let x be the corresponding channel hold-
ing time. A necessary and sufficient condition for this packet to be successful is that
no other transmission is going on at time t, and no new transmission starts during
the time interval (t, t + x).

Given the Poisson traffic model, at equilibrium the number of ongoing trans-
missions N(t) has a Poisson probability distribution with mean G = 𝜆E[Y]. The
number of arrivals in the interval (t, t + x) is a Poisson random variable with mean
𝜆x and it is independent of N(t). Therefore the success probability ps(x) for a packet
of size x can be expressed as

ps(x) = (N(t) = 0,A(t, t + x) = 0) = e−𝜆E[Y]−𝜆x (9.32)

The success probability ps(x) is a decreasing function of the packet time x. Hence,
there is an unfairness issue among packets of different sizes: larger packets have
smaller success probability than smaller ones.

The unconditional success probability ps can be found as:

ps = ∫
Xmax

Xmin

ps(x)fY (x)dx = ∫
Xmax

Xmin

e−𝜆x−𝜆E[Y]fY (x)dx (9.33)

and then we derive the normalized throughput

S = 𝜆psE[X] = 𝜆E[X]e−𝜆E[Y] ∫
Xmax

Xmin

e−𝜆xfY (x)dx (9.34)

For variable packet time, the equation linking the statistical characteristics of
newly offered packets to those that are transmitted over the channel (including
retransmissions) is obtained by equating the mean successful delivery rate to the
mean arrival rate of packets of duration x. This balance must hold at equilibrium.
Formally:

𝜈fX (x) = 𝜆fY (x)ps(x) = 𝜆fY (x)e−𝜆E[Y]−𝜆x
. (9.35)

From (9.35) it is easy to derive the expression of the PDF of Y :

fY (x) =
fX (x)e𝜆x

∫ Xmax
Xmin

fX (x)e𝜆xdx
(9.36)

The mean packet time E[Y] is then calculated as:

E[Y] = ∫
Xmax

Xmin

xfY (x) dx =
∫ Xmax

Xmin
xfX (x)e𝜆x dx

∫ Xmax
Xmin

fX (x)e𝜆xdx
(9.37)

Inserting the expression of the PDF of Y into the throughput equation (9.34),
we find

S = 𝜆E[X]e−𝜆E[Y]

∫ Xmax
Xmin

fX (x)e𝜆xdx
(9.38)

�

� �

�

502 9 Multiple Access

where E[Y] must be computed from eq. (9.37). If the packet time of new
packets is fixed, it follows E[Y] = E[X] and we recover the well-known result
S = 𝜆E[X]e−2𝜆E[X].

Example 9.1 Let us assume the packet time X be distributed as a gamma ran-
dom variable, with mean E[X] and squared coefficient of variation (SCOV) C2

X .
It is

fX (x) =
𝛼
𝛽x𝛽−1

Γ(𝛽)
e−𝛼x

, x ≥ 0, (9.39)

where 𝛼 = 𝛽∕E[X] and 𝛽 = 1∕C2
X . The extremes of X are Xmin = 0 and Xmax = ∞.

The PDF of Y can be expressed in closed form and it turns out to be still of
gamma type:

fY (x) =
(𝛼 − 𝜆)𝛽x𝛽−1

Γ(𝛽)
e−(𝛼−𝜆)x , x ≥ 0, (9.40)

holding for 𝜆 < 𝛼. The mean packet time of packet on the channel is

E[Y] = 𝛽

𝛼 − 𝜆
= E[X]

1 − 𝜆E[X]∕𝛽
(9.41)

The mean E[Y] is a function of 𝜆, i.e., of the load on the channel. It diverges to
infinity as 𝜆 approaches its upper limit 𝛼. Finally, we can express the throughput
in closed form as well:

S =
(

1 − a
𝛽

)𝛽

a exp
(
− a

1 − a∕𝛽

)
(9.42)

where a ≡ 𝜆E[X]. The throughput depends only on the two quantities a, namely
the mean offered load, and 𝛽, that is directly related to the variability of the native
packet time. Letting 𝛽 → ∞, which means making the SCOV of the packet size
PDF negligible, we recover the well known expression of the throughput of pure
ALOHA, namely S|

𝛽→∞ = ae−2a.
It is possible to find explicitly the optimum load a∗ and the maximum through-

put S∗, taking the derivative of S with respect to a:

a∗ = 𝛽

(
1 −

√
𝛽

1 + 𝛽

)
(9.43)

S∗ = 𝛽

(
1 −

√
𝛽

1 + 𝛽

)(
𝛽

1 + 𝛽

)𝛽∕2

e𝛽−
√
𝛽(1+𝛽) (9.44)

The left plot of Figure 9.13 shows the throughput S as a function of a for var-
ious values of the SCOV of packet time C2

X , assuming E[X] = 1 (i.e., the mean
packet time is the time unit). The qualitative behavior of the throughput curves

�

� �

�

9.3 Pure ALOHA with Variable Packet Times 503

0 0.2 0.4 0.6 0.8 1

Mean offered load, a

0

0.05

0.1

0.15

T
h

ro
u

g
h

p
u

t

C
X

2
 = 1

C
X

2
 = 1.625

C
X

2
 = 2.25

C
X

2
 = 2.875

C
X

2
 = 3.5

(a)

1 2 3 4

SCOV of packet size, C
X
2

0

0.05

0.1

0.15

M
a

x
im

u
m

 t
h

ro
u

g
h

p
u

t

(b)

Figure 9.13 Pure ALOHA with gamma distributed offered packet size. Left plot:
throughput as a function of the mean offered load for various values of the SCOV C2

X of
packet size. Right plot: maximum throughput as a function of the SCOV C2

X of packet size.

Figure 9.14 Success
probability of packets having
size greater than Y0 as a
function of Y0.

0 2 4 6 8 10

Normalized packet size, Y
0
/E[X]

0

0.1

0.2

0.3

0.4

0.5

0.6

S
u
c
c
e
s
s
 p

ro
b
a
b
ili

ty

C
X
2 = 1

C
X
2 = 2.25

C
X
2 = 3.5

is the same as for Slotted ALOHA, except that the achieved throughput values are
smaller and the feasible range of the offered load is limited to 𝛽 = 1∕C2

X . As the
SCOV of the packet time grows, the peak of the throughput curve narrows and
the fall beyond the maximum becomes steeper. This is a sign that engineering the
system to work around the optimal throughput level is more and more difficult.

The right plot shows the optimal throughput (9.43) as a function of C2
X . The

maximum achievable throughput of pure ALOHA is a decreasing function of the
variability of service times.

To explore the unfairness issue, Figure 9.14 plots the probability of success of
packets with size greater than a threshold Y0 as a function of the normalized
threshold Y0∕E[X], for various values of the SCOV of offered packet time.

�

� �

�

504 9 Multiple Access

The success probability for packets longer than Y0 is found as:

ps(Y0) = ∫
∞

Y0

ps(x)
fY (x)

∫ ∞
Y0

fY (u) du
dx = ps

Γ(𝛽Y0∕E[X], 𝛽)
Γ((𝛽 − a)Y0∕E[X], 𝛽)

(9.45)

where ps = S∕a, and Γ(y, 𝛽) = ∫ ∞
y

u𝛽−1

Γ(𝛽)
e−u du. The numerical values displayed in

Figure 9.14 are obtained by setting a = a∗(𝛽) = 𝛽(1 −
√
𝛽∕(1 + 𝛽)).

It can be seen that the success probability decreases as Y0 grows, i.e., bigger pack-
ets are penalized. The effect of the SCOV is marginal. More variable packet sizes
entail a slightly better success probability for longer packets.

9.4 Carrier Sense Multiple Access (CSMA)

ALOHA is best suited for a population of terminals that cannot hear each other
and communicate to a BS, from which they receive the synchronization signal for
Slotted ALOHA.

In many cases, it is possible for a terminal to receive signals coming from other
terminals. Then each terminal can assess whether the channel is busy and, if that
is the case, abstain from jumping on the channel with its own transmission. This
opportunity gives rise to the so called family of Carrier Sense Multiple Access
(CSMA) protocols.

We devote this section to analysis and engineering of several variants of CSMA
protocols, under different model assumptions. The general framework is based on
a population of M stations (possibly infinitely many), sharing a communication
channel. A station is said to be idle if it has no packets to send. As with ALOHA,
an idle station listens anyway to the channel to receive packets addressed to it7 .
When the upper layer entity passes a new packet to the MAC entity of a station, that
station is said to be backlogged. A backlogged station goes through the following
steps to deliver the packet to the destination over the channel.

1. Sense the channel to assess whether it is idle or busy.
2. If the channel is found to be idle, transmit the packet, if it is a new one; if it is

a rescheduled packet, adopt a persistence policy.
3. If a feedback is envisaged by the MAC protocol (e.g., an ACK of the successful

reception of the transmitted packet), the station waits for the feedback; if the
packet turns out to have been successfully delivered, the station is done and
can go back to its idle state; otherwise, it reschedules the packet for a later time,
selected at random.

7 Energy saving algorithms make idle stations doze and only wake up periodically, to check
whether packets for them are announced by the access point.

�

� �

�

9.4 Carrier Sense Multiple Access (CSMA) 505

4. If the channel is sensed busy, a persistence policy is adopted, and the packet is
re-scheduled for a new attempt, according to a prescribed policy.

Typically, the number of transmission attempts is limited to some maximum
number of retries, after which the packet is discarded. According to the high level
description of CSMA given above, the time axis is divided into idle times, where
no transmission takes place, and activity times, when the channel is busy for on
going transmissions. The activity time encompasses the actual transmission time,
plus all associated overhead, e.g., inter-frame spaces, time to transmit acknowl-
edgements (ACKs), turn-around times. Moreover, a station alternates between an
idle state, when it has no pending packets, and a backlogged state, when there is at
least one packet waiting to be sent over the channel. Once the head-of-line (HOL)
packet is transmitted successfully, the station picks another packet from its MAC
buffer, if any is waiting; otherwise, it goes back to idle state.

9.4.1 Features of the CSMA Protocol

Key parts of the CSMA protocol are:

● The Clear Channel Assessment (CCA) test, i.e., the procedure to assess whether
the channel is idle or busy, typically implemented at the physical layer.

● The persistence policy, to decide when to postpone the packet transmission after
having sensed a busy channel.

● The retransmission policy, to schedule a new transmission attempt, after a failed
transmission attempt.

9.4.1.1 Clear Channel Assessment
Time is fine-grained slotted in mini-slots or back-off slots or simply slots, if there
is no ambiguity. The mini-slot is the time interval required by the station hard-
ware to assess reliably the status of the channel. It is therefore at least equal to
the propagation time (e.g., see [128]), but it is often much larger, especially for
half-duplex transceivers, to accommodate the time needed to switch the commu-
nication hardware from transmitting mode to receiving mode. Typical values in
CSMA technology range in the order of microseconds up to tens of microseconds,
e.g., the back-off slot lasts 9 𝜇s in most WiFi implementations. Physical chan-
nel sensing consists of measuring the energy received at the station during the
mini-slot and comparing it with a threshold, set to the background noise level in
the given communication channel plus a suitable margin. A typical threshold level
in WiFi technology over 20 MHz channels is −90 dBm, i.e., 1 pW.

Besides the physical channel assessment, a logical channel assessment is
possible, in case a preliminary handshake precedes the actual data transmission.
The handshake consists of a request-to-send (RTS) control frame and a response

�

� �

�

506 9 Multiple Access

clear-to-send (CTS) frame. The initiating station puts the duration 𝜃 of the
scheduled data transmission (including any additional overhead) into its RTS;
𝜃 is the the time that the station is planning to hold the channel to complete its
data transmission. The destination station echoes back the channel holding time
in its CTS reply. Any other station receiving either RTS or CTS is informed on
the forthcoming data transmission and can set a timer to the announced channel
holding time. So long as the timer is still running, the channel is deemed to be
busy, no matter what physical channel sensing says. This provision is useful
whenever physical channel sensing is imperfect (hidden node).

For example, let us consider two stations, A and B, laying on opposite sides of
an access point (AP), within the range of the AP, but out of range of each other. A
and B cannot hear each other. If A is transmitting a data frame to the AP and at the
same time B senses the channel, physical channel sensing at B will assess an idle
channel. Hence B will start its own transmission and run over A’s ongoing trans-
mission, thus destroying reception of both frames at the AP (collision event). With
the RTS/CTS mechanism in place, A would send an RTS, the AP would reply with
a CTS, and the latter would be received by B, blocking B for the whole duration
of A’s data transmission. There remains obviously the possibility that RTS frames
collide themselves (nothing is perfect!). This is anyway much more unlikely than
with data frames, being an RTS usually much shorter than a data frame.

9.4.1.2 Persistence Policy
Transmission attempts of a station are of two types. The first attempt is dealt with
according to the persistence policy. Subsequent retransmissions, if required and
allowed, are dealt with according to the retransmission policy. Let us focus here
on transmission attempts of the first kind.

After having sensed an idle back-off slot, a backlogged station starts trans-
mitting its packet with probability p. With probability 1 − p it defers to the
subsequent back-off slot, where the same persistence procedure is repeated. If
the station senses a busy channel, it waits for the first idle mini-slot and then
applies the persistence policy. Let 𝛿 denotes the back-off slot time. If there is a
single backlogged station on the channel, the delay induced by the persistence
procedure is K𝛿, where K is a geometrically distributed random variable, with
(K = k) = (1 − p)k−1p, k ≥ 1. The persistence policy here defined is referred
to as slotted nonpersistent (SNP) policy. The parameter p is called back-off
probability.

Back-off times can be generated according to a probability distribution other
than the geometric one. For example, the most common paradigm is to extract
an uniformly distributed integer K in a range [1,W], then to count down K idle
back-off slots before starting the transmission. The count-down is frozen whenever
the channel is busy. It is decremented only as an idle back-off slot goes by.

�

� �

�

9.4 Carrier Sense Multiple Access (CSMA) 507

In the classic CSMA literature, persistence is defined in a different way. The idea
is that the packet is transmitted immediately after its arrival, if the station senses
an idle mini-slot. If instead the station senses a busy channel upon packet arrival,
it defers according to one of the following three persistence policies:

● 0-persistent8 : a station sensing a busy channel waits for the channel to become
idle again; then it draws a random time Z (e.g., uniformly distributed between a
minimum and a maximum level) and postpones a new sensing attempt by Z.

● 1-persistent: a station sensing a busy channel, waits for the channel to become
idle again; as soon as an idle mini-slot is sensed, the station starts its transmis-
sion.

● P-persistent: a station sensing a busy channel, waits for the channel to become
idle; then, it starts transmitting with probability P, while it schedules a new sens-
ing after a random time Z with probability 1 − P.

The 0-persistent and 1-persistent policies are corner cases of the P-persistence,
obtained for P = 0 and P = 1, respectively.

In the following we consider the SNP policy, unless otherwise stated.

9.4.1.3 Retransmission Policy
Once a station (or possibly, more than one, in case of collision) starts transmitting
a packet, a so called activity time starts.

If the transmission attempt fails, the packet is rescheduled for a later transmis-
sion attempt, provided that the maximum number of attempts (max-retry limit),
has not been exceeded. The re-scheduled packet is transmitted, after having sensed
an idle back-off slot, with probability p′. With probability 1 − p′, the transmission
is deferred and the entire procedure is repeated at the next idle back-off slot. In
general, the probability p′ is different from the probability p used in the persis-
tence procedure (e.g., a more aggressive policy can be used for persistence, whereas
retransmissions after a failure must be cautious to avoid more collisions). The
probability p′ can even change after each failed transmission attempt. A common
update law for the retransmission back-off probability is to halve it after each failed
transmission. This policy is often called binary exponential back-off (BEB). We will
see BEB at work in WiFi CSMA/CA.

The pseudo-code of an example CSMA algorithm is given below. The function
channel_state(𝛿) consists of measuring the channel for a back-off slot of duration
𝛿, at the end of which the station compares the received energy to a threshold to
check whether the channel is idle or busy. The execution of this function lasts
therefore a time 𝛿.

Many small details play an important role in the actual performance of CSMA
networks. We will however consider the essential features common to all CSMA

8 Sometimes referred to as nonpersistent, a terminology that we reserve to SNP policy.

�

� �

�

508 9 Multiple Access

Algorithm Pseudo-code of CSMA (sender).

1: Wait for a new packet from upper layer
2: k ← 0
3: done ← FALSE
4: while (k ≤ max_retry) and (not done) do
5: CCA ← channel_state(𝛿)
6: if CCA == IDLE then
7: if rand ≤ pk then
8: k ← k + 1
9: send(packet)

10: set(ACK_timer)
11: check(ACK)
12: if ACK then
13: done ← TRUE
14: end if
15: end if
16: end if
17: end while
18: GO TO step 1

Table 9.1 Notation used in the analysis of CSMA.

Symbol Definition

𝜈 mean arrival rate of new packets
𝜆 mean arrival rate of packets, including rescheduling and retransmissions
𝛿 back-off slot time
T mean duration of the activity time
𝛽 ratio of the back-off slot to the mean packet time, 𝛽 = 𝛿∕T
p transmission probability in a mini-slot
M number of stations on the channel
q probability that an idle station becomes backlogged during a back-off slot
S channel throughput, S = 𝜈T
G channel offered load, G = 𝜆T

protocols for a first understanding of the basic trade-offs. This allows us to state
simpler models and gain insight, before delving into a specific application of
CSMA, namely WiFi networks.

We now turn to modeling CSMA protocols and evaluate their performance. The
main notation used in this section is listed in Table 9.1.

Assumptions underpinning the CSMA models stated in this section are as
follows.

�

� �

�

9.4 Carrier Sense Multiple Access (CSMA) 509

1. Carrier sense is ideal, i.e., all stations can detect the state of the channel (idle
or busy) without errors.

2. Persistence follows the SNP policy defined above, with back-off probability p.
3. Retransmissions use always the same back-off probability p, equal to the prob-

ability adopted by the persistence policy.
4. An infinite number of retries is allowed. Thus, no frame is lost, it only gets

delayed, until is it eventually delivered with success.
5. The transmission time of frames (including all overhead, ACK, inter-frame

spacings) is a constant, T. We will refer to this also as the activity time of a
station on the channel.

6. A station detects the outcome of its transmission attempt immediately after hav-
ing completed the transmission, i.e., by the end of the activity time.

7. If more than a single station transmit on the channel, no receiver can detect the
transmitted packets correctly. This is the collision event.

8. The only cause of reception failure is a collision event, i.e., transmissions of two
or more packets overlapping in time, even partially. Physical channel errors are
neglected.

9. There is no queueing at stations. Each station deals with one packet at a time.
When it is done with that packet (i.e., the packet has been delivered with suc-
cess), the station goes back to the idle state.

Those assumptions are common to all models of CSMA considered in this
section. We will relax some of them occasionally. Specifically, we will develop
models of CSMA that account for variable activity times and allow successful
reception of simultaneous transmissions up to some degree, thus relaxing
assumptions 5 and 7. When turning to the special CSMA of WiFi, we will relax
hypotheses 3, 4 and 5.

9.4.2 Finite Population Model of CSMA

In a finite population model we consider a finite number M of stations, alternating
between an idle state, where no packet is waiting to be transmitted, and a back-
logged state, where the station has one packet to send.

The strength of such a model is the intrinsic stability (the number of traffic
sources is finite), which makes steady-state analysis meaningful. Both throughput
and mean delay can be evaluated. The down side is that only numerical solutions
can be derived, thus limiting the insight to be gained from the model. In the next
section, we will consider infinite population models, an abstraction that leads to
simpler results.

We consider the sequence of time points corresponding to the end of idle
back-off slots, when the back-off counter of stations is decremented (see
Figure 9.15).

�

� �

�

510 9 Multiple Access

Activity time

Data frame ACK

DIFSSIFS

Back-off

decrements times

Payload tx time Overhead time

Figure 9.15 Illustration
of the activity times and
of the embedded time
points of the CSMA
Markov chain (decrement
times).

We assume that the activity time is an integer multiple of the back-off slot dura-
tion. This is a minor approximation, since it is usually the case that T ≫ 𝛿, other-
wise the efficiency of the CSMA network is low. Let J = T∕𝛿. We denote with N(t)
the number of stations backlogged at time point t. Let Qn,m be the probability that
the number of backlogged stations is m at the end of a back-off slot, given that n
stations were backlogged at the beginning of the back-off slots. It is

Qn,m =
⎧⎪⎨⎪⎩
(M − n

m − n

)
qm−n(1 − q)M−m m = n,… ,M,n = 0,… ,M,

0 otherwise.
(9.46)

The matrix whose entry (n,m) is Qn,m is denoted with Q.
Under the hypotheses listed at the end of the previous section, N(t) is a DTMC

over the state space {0, 1,… ,M}. The one-step transition probabilities are (for n =
0, 1,… ,M):

Pn,m =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Pe(n)Qn,m + Ps(n)Q
(J+1)
n,m+1 + Pc(n)Q

(J+1)
n,m m = n,… ,M − 1

Ps(n)Q
(J+1)
n,n m = n − 1

Pe(n)Qn,M + Pc(n)Q
(J+1)
n,M m = M

0 otherwise.

(9.47)

where Q(J+1)
n,m is the entry (n,m) of the matrix QJ+1 and for n ≥ 0 we define:

⎧⎪⎨⎪⎩
Pe(n) = (1 − p)n

Ps(n) = np(1 − p)n−1

Pc(n) = 1 − Pe(n) − Ps(n)
(9.48)

The DTMC N(t) is aperiodic and irreducible, hence it is ergodic. Let 𝜋n denote
the limiting probability of the event N(t) = n. It is the solution of the linear
equation system 𝛑P = 𝛑 with the condition 𝛑e = 1, where e is a column vector of
ones of size M + 1.

The probability distribution 𝜋n refers to the embedded process N(t). Since the
time intervals between embedded epochs are not constant, the probability distri-
bution of the number of backlogged stations at any time is obtained by weighting

�

� �

�

9.4 Carrier Sense Multiple Access (CSMA) 511

for the duration of the time intervals between successive embedded epochs. Let Tn
be the duration of the time starting at the embedded time t conditional on N(t) = n.
It is

Tn =

{
𝛿 w.p. (1 − p)n

,

𝛿 + T otherwise.
(9.49)

The mean duration of Tn is Tn = 𝛿 + T − T(1 − p)n.
Let xn denote the probability that N = n at any time (not only embedded points).

It is

xn =
Tn𝜋n∑M
j=0 Tj𝜋j

n = 0, 1,… ,M. (9.50)

The throughput of CSMA is

S = T ⋅

∑M
n=0 Ps(n)𝜋n∑M

n=0 Tn𝜋n

=
∑M

n=0 np(1 − p)n−1
𝜋n∑M

n=0[𝛽 + 1 − (1 − p)n]𝜋n

(9.51)

where 𝛽 = 𝛿∕T. The mean delay (normalized with respect to T) is found by means
of Little’s law:

E[D] = E[N]
S

= 1
S

M∑
n=0

nxn =
∑M

n=1 n[𝛽 + 1 − (1 − p)n]𝜋n∑M
n=1 np(1 − p)n−1𝜋n

(9.52)

We use the model to explore the performance of CSMA. All times are normalized
with respect to the duration of the back-off slot. The mean delay is expressed in
units of transmission times T.

Figure 9.16 shows the throughput (left plot) and the mean delay, normalized to
T, as a function of M, for p = 0.01 and q = 0.01.

The throughput curve is qualitatively similar to the Slotted ALOHA throughput
curve, except that it peaks to much higher values. The maximum throughput can

Number of stations, M

0

0.2

0.4

0.6

0.8

1

T
h

ro
u

g
h

p
u

t

q = 0.01

p = 0.01

T = 2

T = 5

T = 10

T = 20

T = 100

(a)

0 50 100 150 0 50 100 150

Number of stations, M

0

100

200

300

400

500

M
e

a
n

 d
e

la
y

q = 0.01

p = 0.01

T = 2

T = 5

T = 10

T = 20

T = 100

(b)

Figure 9.16 Throughput (left plot) and mean delay (right plot) as a function of M for the
finite-population slotted-time model of CSMA with SNP policy.

�

� �

�

512 9 Multiple Access

10–4 10–3 10–2 10–1 10–4 10–3 10–2 10–1

Back-off probability, p

0

0.2

0.4

0.6

0.8

1

T
h

ro
u

g
h

p
u

t

M = 100

q = 0.005

T = 5

T = 10

T = 20

T = 100

T = 500

(a)

Back-off probability, p

0

200

400

600

800

1000

M
e

a
n

 d
e

la
y

M = 100

q = 0.005

T = 5

T = 10

T = 20

T = 100

T = 500

(b)

Figure 9.17 Throughput (left plot) and mean delay (right plot) as a function of p for the
finite-population slotted-time model of CSMA with SNP policy.

attain values close to 1 when the duration of the transmission time amortizes the
back-off slot overhead. On the contrary, for small values of T, the throughput is
strongly penalized, even if the achievable throughput performance are much more
stable with respect to variations of the number of stations.

The mean delay grows steadily as M increases, which is expected, since q is a
constant. The normalized mean delay is weakly dependent on the value of T.

Throughput and mean delay as a function of p are shown in Figure 9.17, on
the left and right plots, respectively. The number of stations and the activation
probability are fixed at M = 100 and q = 0.005. Several values of T are considered,
ranging between 5 and 500.

It appears that an optimal level of p exists, where throughput is maximized
and mean delay is minimized. While the achievable minimum of the mean delay
is scarsely sensitive to the value of T, the maximum achievable throughput is
strongly affected by the impact of the back-off slot overhead.

The rise and fall of the throughput and the steep increase of the mean delay
as p is varied are due to two opposite phenomena, whose balance determines the
optimal working point:

● At low p levels, channel capacity is wasted because of too many idle back-off
slots.

● At high p levels, stations are too aggressive and a large fraction of time is wasted
in collisions.

The throughput delay trade-off as M is varied for q = 0.05, T = 20 and several
values of p is shown in Figure 9.18.

The trade-off has the same appearance as for Slotted ALOHA. The most impor-
tant finding that is highlighted by the throughput-delay trade-off is that a same
level of throughput can be obtained with a low and a high mean delay, i.e., the

�

� �

�

9.4 Carrier Sense Multiple Access (CSMA) 513

Figure 9.18 Throughput-delay
trade-off as M is varied for
q = 0.05 and for T = 20 times
the back-off slot.

0 0.2 0.4 0.6 0.8

Throughput

100

101

102

103

M
e

a
n

 d
e

la
y

q = 0.05

T = 20

p = 1/8
1/16

1/32
1/64

1/128

system could settle on a heavily congested or lightly loaded regime. We will see
more on this point in the section devoted to the stability of CSMA. Here it suffices
to say that, similarly to Slotted ALOHA, the finite population guarantees a finite
mean delay. However, depending on the parameter values, the number of active
stations can hover close to M or it can be small. The latter situation is obviously
preferable. It corresponds to the lower branch of the throughput-delay trade-off.

9.4.3 Multi-Packet Reception CSMA

A key, simplifying approximation in the analysis of random access protocols,
including CSMA, consists of assuming the traffic made up by backlogged stations
behaves as a Poisson flow of arriving packets with a mean rate 𝜆.

Poisson assumption. Transmission attempts, including new packets and already
transmitted packets, form a Poisson process with mean rate 𝜆.

The throughput of the channel is S = 𝜈T, where 𝜈 is the mean arrival rate of new
packets. Due to retransmission of packets that have failed previous attempts the
actual mean rate 𝜆 of all packets offered to the channel is greater than 𝜈. We denote
the normalized load of the channel as G = 𝜆T. Under the Poisson model, the chan-
nel throughput can be expressed as a function of only two quantities, namely 𝛽

and G.
The Poisson traffic assumption is only an approximation. More importantly,

we will see that the CSMA protocol with Poisson input traffic has zero stable
throughput, i.e., the number N(t) of backlogged stations diverges with probability 1
as t → ∞, for any positive value of 𝜈, given that N(0) = 0. This apparently odd
result calls for some remarks. Some questions arise: why should we care for
Poisson traffic models of CSMA? What do those models tell us? Do they provide
useful approximations?

�

� �

�

514 9 Multiple Access

On an algorithmic ground, instability can be tamed by introducing adaptation
of the back-off probability, i.e., by changing the parameter p according to the out-
comes observed on the channel (idle mini-slot, successful transmission, collision).

From a theoretical modeling point of view, the throughput predicted by Pois-
son models of CSMA turns out to provide an upper bound of the throughput level
achievable by means of stabilized CSMA. More in depth, let S(G) be the throughput
of the Poisson model when the mean number of packet arrivals in a back-off slot
is 𝛼 = 𝛽G. Then, CSMA can be stabilized for any throughput S < S(G) by adjust-
ing the back-off probability according to p(t) = 𝛼∕N(t). This fact has a nice cor-
respondence with the fact that the equation S = S(G) admits solutions whenever
stabilization of CSMA is possible. The statement above is strictly true for nonper-
sistent CSMA, when newly arrived packets are immediately backlogged. Minor
modifications should be made in other cases, but the essence of the statement still
holds.

Under a performance evaluation perspective, the mean number of packet
arrivals in a back-off slot with a finite population model is (M − E[N])q∕𝛽 +
E[N]p∕𝛽. If p ≈ q ≪ 1 and M ≫ 1, it can be expected that the Poisson approxi-
mation yields accurate results. In other words, a very large population of stations,
each transmitting sporadically can realize a Poisson stream of packet arrivals on
the channel, if the activation probability is close to the back-off probability (i.e.,
the behavior of backlogged and idle stations is almost the same).

Let us now turn to the development of the throughput model of CSMA under
the Poisson offered traffic assumption. To that end, we relax two of the hypotheses
listed for CSMA modeling. Specifically, we assume here that:

● The packet size X has a general probability distribution, with CDF FX (x);
for a discrete valued random variable, the packet size takes values in the set
{X1,… ,X𝓁} with probabilities qX (j) = (X = Xj), j = 1,… ,𝓁.

● Multi-packet reception is possible: k ≥ 1 simultaneous transmissions can be cor-
rectly decoded with probability gk; in the following we assume the all-or-nothing
model, in which gk = 1 for 1 ≤ k ≤ K and gk = 0 for k > K.

The multi-reception model deserves some attention. In an infra-structured
wireless LAN, frames from stations are directed to the AP, while the AP distributes
frames to all stations. If k stations transmit simultaneously, including the AP,
no frame can be detected by the AP, since a wireless transceiver is normally
half-duplex, i.e., transmission and reception are mutually exclusive. As another
example, if the AP transmits a frame addressed to station A, while station A
transmits in turn, even if two simultaneous transmission are assumed to be
decodable, yet the AP and station A miss their respective reception, because of
the half-duplex working of their hardware. The simple multi-reception model
here defined corresponds to a case where: (i) wireless transceivers are full-duplex,

�

� �

�

9.4 Carrier Sense Multiple Access (CSMA) 515

i.e., a station can simultaneously transmit and receive; (ii) up to K superposed
transmissions can be successfully decoded. Full-duplex is obtained by cancelling
the transmitted signal, a quite complex operation that implies both analog and
digital cancellation (e.g., see [31]). We are then assuming that multi-packet
reception is possible even if the receiving station is simultaneously transmitting,
i.e., we assume ideal cancellation.

We assume packet sizes are i.i.d. random variables and independent of the
inter-arrival times. The minimum and maximum packet size values are denoted
by Xmin and Xmax, respectively. As already done with ALOHA, the packet size
includes the time required to transmit a data frame plus the time taken by the
acknowledgment, inter-frame spacing and any other overhead.

The time axis is split into back-off slots of duration 𝛿 and activity times, where
transmissions take place. We introduce the notion of “batch” to refer to a group
of transmissions with aligned starting times. A batch ends when all concurrent
transmissions end and an idle back-off slot is detected (the idle back-off slot is just
the way that stations can detect the end of the batch).

We shall indicate by T(j) = 𝛿 + B(j) and L(j), respectively, the j-th batch duration
and the j-th batch cardinality, i.e., the number of packets transmitted during
batch j. We will occasionally use the term batch size as synonymous for batch
cardinality.

We develop two models, one for 1-persistence, the other one for nonpersistence.

9.4.3.1 Multi-Packet Reception 1-Persistent CSMA with Poisson Traffic
The considered CSMA protocol version corresponds essentially to the 1-persistent
CSMA as introduced in the seminal paper [128]. Therein, only the special case
of single-packet reception (K = 1) was considered. We extend the analysis to the
more general case of multi-packet reception (K > 1).

The variable part B(j) of the j-th batch, with size L(j), can be expressed as:

B(j) =

{
maxi=1,…,L(j)Xi L(j) > 0
0 L(j) = 0

(9.53)

where Xi is the activity time associated with the i-th packet.
The probability distribution of (the variable part of) the batch duration and batch

size can be derived from the following relationship:

⎧⎪⎨⎪⎩
(L(j) = n | B(j − 1) = x) = (𝜆x + 𝜆𝛿)n

n!
e−𝜆(x+𝛿)

(B(j) ≤ x | L(j) = n) = Fn
X (x)

(9.54)

The first relation holds because L(j) conditional on B(j − 1) has a Poisson distri-
bution. The second relation descends from the independence of activity times of

�

� �

�

516 9 Multiple Access

different packets. The pair of relations (9.54) means that the two processes L(j) and
B(j) are intertwined.

Let FB(x) ≡ (B(j) ≤ x), for x ≥ 0, and𝜙L(n) ≡ (L(j) = n) for n ≥ 0. We use also
the following notation:

Γ(K, y) = e−y
K−1∑
k=0

yk

k!
= ∫

∞

y

uK−1

(K − 1)!
e−u du , K ≥ 1, y ≥ 0. (9.55)

where K is an integer. From the conditional probabilities (9.54) we derive the fol-
lowing unconditional probabilities:

FB(x) =
∑

n
(B(j) ≤ x | L(j) = n) ⋅ (L(j) = n) =

∑
n≥0

Fn
X (x) ⋅ 𝜙L(n) (9.56)

and

𝜙L(n) = ∫x
(L(j) = n | B(j − 1) = x) d(B(j − 1) ≤ x)

= ∫
∞

0

(𝜆x + 𝜆𝛿)n

n!
e−𝜆(x+𝛿) dFB(x) (9.57)

The pair of functional integral equations (9.56) and (9.57) can be solved for FB(x)
and 𝜙L(n), given FX (x) and 𝜆. Substituting (9.57) into (9.56) we obtain

FB(x) =
∞∑

n=0
Fn

X (x) ⋅ 𝜙L(n)

= ∫
∞

0

∞∑
n=0

Fn
X (x)

[𝜆(t + 𝛿)]n

n!
e−𝜆(t+𝛿) dFB(t)

= ∫
Xmax

Xmin

e−𝜆(t+𝛿)[1−FX (x)] dFB(t) (9.58)

where we have accounted for the bounded range of the packet size X . The
CDF FB(x) can be evaluated numerically, discretizing the integral. This reduces
eq. (9.58) to a linear equation system, yielding an approximation of FB(x).

A batch is successful if the number of transmitted packets is comprised between
1 and K. The success probability Ps, conditional on a station transmitting in that
batch, is given by

Ps = (0 ≤ L(j) ≤ K − 1) = ∫
Xmax

Xmin

Γ(K, 𝜆y + 𝜆𝛿) dFB(y) (9.59)

The conditional success probability is independent of the size of the arriving
packet. Therefore, the size distribution of transmitted packets (including retrans-
missions) is the same as that of new packets. This is different from pure ALOHA.
The key point is that transmissions start simultaneously in a CSMA batch.

�

� �

�

9.4 Carrier Sense Multiple Access (CSMA) 517

The throughput can be expressed as the ratio between the mean number of suc-
cessful packets delivered in one batch and the mean duration of the batch:

𝜈 =
∑K

k=1 k (L = k)
𝛿 + E[B]

= 𝜆 ∫
Xmax

Xmin

𝛿 + x
𝛿 + E[B]

Γ(K, 𝜆𝛿 + 𝜆x) dFB(x) (9.60)

We define the normalized throughput as S = 𝜈E[X]. Given K and FX (x), for each
value of 𝜆 we can calculate 𝜈 and FB(x) using (9.60) and (9.58), respectively.

We can rewrite the final result for a discrete packet size probability distribu-
tion. Let the packet size take 𝓁 values, denoted with Xj, j = 1,… ,𝓁, and sorted
in ascending order. The random variable B takes values in the same set as X . For
notation convenience we define also X0 = 0. Let further 𝜙X (j) ≡ (X = Xj) and
𝜙B(j) ≡ (B = Xj). From

(B ≤ Xk | L = n) = [FX (Xk)]n =

(k∑
j=1

𝜙X (j)

)n

(9.61)

we derive

FB(Xk) = (B ≤ Xk) =
∞∑

n=0

(k∑
j=1

𝜙X (j)

)n

𝜙L(n)

=
∞∑

n=0

(k∑
j=1

𝜙X (j)

)n

∫
∞

0

[𝜆(t + 𝛿)]n

n!
e−𝜆(t+𝛿) dFB(t)

= ∫
∞

0
e−𝜆(t+𝛿)

(
1−

∑k
j=1 𝜙X (j)

)
dFB(t)

Rearranging the sums and accounting for the discrete nature of the probability
distribution of X and B, we obtain finally

FB(Xk) =
k∑

j=0
𝜙B(j) =

𝓁∑
h=0

e−𝜆(Xh+𝛿)
∑𝓁

j=k+1 𝜙X (j)𝜙B(h) (9.62)

for k = 0, 1,… ,𝓁 − 1. Taking differences, we find finally⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜙B(0) =
𝓁∑

h=0
𝜙B(h)b(h, 1)

𝜙B(k) =
𝓁∑

h=0
𝜙B(h)[b(h, k + 1) − b(h, k)] , 1 ≤ k ≤ 𝓁 − 1

𝜙B(𝓁) =
𝓁∑

h=0
𝜙B(h)[1 − b(h,𝓁)]

(9.63)

�

� �

�

518 9 Multiple Access

where for h = 0, 1,… ,𝓁, k = 1,… ,𝓁 we have defined

b(h, k) ≡ exp

(
−𝜆(Xh + 𝛿)

𝓁∑
j=k

𝜙X (j)

)
. (9.64)

The probability vector qB = [𝜙B(0) … 𝜙B(𝓁)] is the nontrivial solution of qB =
qBPB, normalized so that qBe = 1, where e is a column vector of 1’s and PB is an
(𝓁 + 1) × (𝓁 + 1) matrix, whose entries are for j = 0,… ,𝓁:⎧⎪⎨⎪⎩

pj0 = b(j, 1) = e−(𝜆𝛿+𝜆Xj)

pji = b(j, i + 1) − b(j, i) i = 1,… ,𝓁 − 1;
pj𝓁 = 1 − b(j,𝓁) = 1 − e−(𝜆𝛿+𝜆Xj)𝜙X (𝓁) .

(9.65)

The normalized throughput in case of discrete-valued probability distribution of
X can be written as

S = 𝜆E[X]
𝓁∑

k=0

𝛿 + Xk

E[B] + 𝛿
Γ(K, 𝜆Xk + 𝜆𝛿)𝜙B(k) (9.66)

Special case: limit for 𝛿 → 0. In the limit for 𝛿 → 0, the linear equation system
(9.63) must be modified. For 𝛿 > 0 we find

𝜙B(0) =
e−𝜆𝛿

1 − e−𝜆𝛿

𝓁∑
h=1

e−𝜆Xh𝜙B(h) (9.67)

Plugging this expression into the remaining 𝓁 equations and letting 𝛿 → 0, we
find the new linear equation system

�̃�B(k) =
𝓁∑

h=1
(e−𝜆Xh𝜎k+1 − e−𝜆Xh𝜎k + 𝜙X (k)e−𝜆Xh)�̃�B(h) , k = 1,… ,𝓁,

where 𝜎k =
∑𝓁

j=k 𝜙X (j) for k = 1,… ,𝓁 and 𝜎𝓁+1 = 0. The role of the matrix PB is
here taken by the 𝓁 × 𝓁 matrix P̃B whose entries are

p̃hk = e−𝜆Xh𝜎k+1 − e−𝜆Xh𝜎k + 𝜙X (k)e−𝜆Xh , h, k = 1,… ,𝓁. (9.68)

In the limiting case for 𝛿 → 0, the normalized throughput simplifies to

S|
𝛿→0 = 𝜆E[X]

∑𝓁
k=1 �̃�B(k)[e−𝜆Xk + 𝜆XkΓ(K, 𝜆Xk)]∑𝓁

k=1 �̃�B(k)(e−𝜆Xk + 𝜆Xk)
(9.69)

Special case: Fixed packet size. In the special case of fixed packet size, equal
to T, we have 𝓁 = 1, X1 = T and 𝜙X (1) = 1.

The probability distribution of B reduces to two values, 𝜙B(0) = (B = 0) and
𝜙B(1) = (B = T). The linear equation system holding for discrete-valued proba-
bility distributions reduces to a 2 × 2 system, that yields an explicit solution:

𝜙B(0) =
e−𝜆(𝛿+T)

1 − e−𝜆𝛿 + e−𝜆(𝛿+T) (9.70)

�

� �

�

9.4 Carrier Sense Multiple Access (CSMA) 519

𝜙B(1) = 1 − 𝜙B(0) =
1 − e−𝜆𝛿

1 − e−𝜆𝛿 + e−𝜆(𝛿+T) (9.71)

Moreover, we have E[B] = 𝜙B(1)T and

𝜙L(n) = 𝜙B(0)
(𝜆𝛿)n

n!
e−𝜆𝛿 + 𝜙B(1)

(𝜆𝛿 + 𝜆T)n

n!
e−𝜆(𝛿+T)

, n ≥ 0. (9.72)

The normalized throughput specializes to

S = T
∑K

k=1 k (L = k)
𝛿 + E[B]

= T
∑K

k=1 k𝜙L(k)
𝛿 + 𝜙B(1)T

=
𝜙B(0) 𝜆𝛿 Γ(K, 𝜆𝛿) + 𝜙B(1) (𝜆𝛿 + 𝜆T) Γ(K, 𝜆𝛿 + 𝜆T)

𝛿∕T + 𝜙B(1)
(9.73)

To compare with the result presented in [128] for fixed packet size and K = 1,
we set K = 1 in the throughput expression, to find out

S|K=1 =
𝜆T e−(𝜆𝛿+𝜆T)(1 + 𝛿∕T − e−𝜆𝛿)

(1 + 𝛿∕T)(1 − e−𝜆𝛿) + e−(𝜆𝛿+𝜆T)𝛿∕T

= Ge−(1+𝛽)G(1 + 𝛽 − e−𝛽G)
𝛽e−(1+𝛽)G + (1 + 𝛽)(1 − e−𝛽G)

where we have used the notation G = 𝜆T and 𝛽 = 𝛿∕T. This is just the result given
in eq. (19) of [128].

9.4.3.2 Multi-Packet Reception Nonpersistent CSMA with Poisson Traffic
The probability of n simultaneous transmission attempts is (𝜆𝛿)n∕n!e−𝜆𝛿 , since
only arrivals in an idle back-off slot of duration 𝛿 can possibly transmit, according
to the nonpersistence policy. Therefore, the CDF of B can be found explicitly:

FB(x) =
∞∑

n=0

(𝜆𝛿)n

n!
e−𝜆𝛿Fn

X (x) = e−𝜆𝛿(1−FX (x)) (9.74)

The conditional probability of success is therefore Γ(K, 𝜆𝛿), independently of
the frame length. The throughput can be found as the ratio of the mean number of
successfully received packets to the mean time it takes to perform the transmission

𝜈 =
∑K

k=1 k (𝜆𝛿)k

k!
e−𝜆𝛿

𝛿 + E[B]
= 𝜆𝛿 Γ(K, 𝜆𝛿)

𝛿 + E[B]
(9.75)

The normalized throughput is S = 𝜈E[X].
For fixed packet size, we have 𝓁 = 1 and X1 = T. It is B = T with probability

1 − e−𝜆𝛿 and B = 0 with probability e−𝜆𝛿 . The mean batch time is therefore E[B] =
T(1 − e−𝜆𝛿). Letting G = 𝜆T and 𝛽 = 𝛿∕T, the normalized throughput is given by

S = 𝛽G Γ(K, 𝛽G)
𝛽 + 1 − e−𝛽G = 𝛽G e−𝛽G

𝛽 + 1 − e−𝛽G

K−1∑
k=0

(𝛽G)k

k!
(9.76)

�

� �

�

520 9 Multiple Access

which is a nice generalization of the known expression for K = 1 (see eq. (8) of
[128]). Looking at S as a function of the variable z = 𝛽G, it can be verifed that it is
maximized for z solving the following identity

1 − ze−z

1 + 𝛽 − e−z = zB(K − 1, z) (9.77)

where B(⋅, ⋅) is the Erlang B-formula.

Impact of back-off slot overhead for a fixed packet size and K = 1. We
rewrite here below the formulas for the throughput of nonpersistent and
1-persistent CSMA with Poisson traffic, fixed packet size and K = 1:

S = 𝛽Ge−𝛽G

𝛽 + 1 − e−𝛽G nonpersistent (9.78)

S = Ge−(1+𝛽)G(1 + 𝛽 − e−𝛽G)
𝛽e−(1+𝛽)G + (1 + 𝛽)(1 − e−𝛽G)

1-persistent (9.79)

Both nonpersistent and 1-persistent CSMA protocols experience a fast worsen-
ing of performance as 𝛽 grows, definitely vanishing at an exponential rate with 𝛽

for a fixed level of the mean offered load G.
The impact of the back-off slot duration and in general of contention degrades

significantly the efficiency of CSMA, as the activity time shrinks due to increasing
transmission speed. The evolution of WiFi is a striking example of how an increas-
ing fraction of capacity is wasted as the transmission rate is boosted by exceptional
technology improvements at physical layer, while the MAC protocol lags behind
tied to increasingly inadequate concepts. In spite of some new feature, like data
unit aggregation and flexible transmission opportunity time, the fraction of wasted
capacity in IEEE 802.11n and IEEE 802.11ac is impressive. The deep reconsider-
ation of the MAC design taken over by IEEE 802.11ax has its roots in the aim of
regaining a high efficiency, rather than pushing even further the physical layer
bit rate.

For small back-off slots as compared to activity times, namely when 𝛽 → 0,
we obtain very simple expressions for the throughput of nonpersistent and
1-persistent CSMA protocols:

S|
𝛽→0 = G

G + 1
nonpersistent (9.80)

S|
𝛽→0 = Ge−G(G + 1)

G + e−G 1-persistent (9.81)

It is apparent that nonpersistent CSMA promises to achieve a better through-
put, obviously at the price of longer delays, due to the back-offs. On the contrary,
1-persistent CSMA is by far more aggressive, thus achieving smaller delays in the
case of light loads, but incurring possibly in heavier congestion and eventually in
a throughput collapse outcome.

�

� �

�

9.4 Carrier Sense Multiple Access (CSMA) 521

Figure 9.19 Throughput of
nonpersistent and
1-persistent CSMA as a
function of the mean offered
traffic G.

0 2 4 6 8 10

Mean offered traffic, G

0

0.2

0.4

0.6

0.8

1

T
h

ro
u

g
h

p
u

t

Non-persistent

1-persistent

β = 0.01

β = 0.05

β = 0.1

β = 0.5

β = 0

Figure 9.19 shows the throughput of nonpersistent (dashed lines) and
1-persistent (solid lines) CSMA as a function of the mean offered traffic G.

For small levels of offered traffic the more aggressive 1-persistent yields a
higher throughput than nonpersistent CSMA. As the offered load grows how-
ever, 1-persistent falls down, while the nonpersistent CSMA has much higher
throughput, the more the smaller the parameter 𝛽.

The engineering of CSMA networks is therefore based on an estimate of typical
usage of those networks. If the network is expected to be loaded by few active nodes
at any time, being more aggressive pays off. On the other hand, if large networks
are to be set up, where a large number of nodes contend for the medium, even
if each single node may transmit infrequently, keeping a brake on nodes aggres-
siveness is shown to be a good idea by the results depicted in Figure 9.19. The
picture is even sharper if the cost of collision can be relieved, e.g., because a reli-
able collision detection mechanism can be put in place. This is just the case of
cabled ethernet CSMA used in local area networks. Low offered traffic intensity
and collision detection are both features of that technology, which explains why a
1-persistent CSMA has been chosen.

Figure 9.20 compares the throughput predicted by the finite population model
of CSMA (solid lines) with that of the Poisson traffic model (star markers), as a
function of M, for T = 1∕𝛽 = 5, 20,100 (in units of back-off time).

Since it is p = q = 0.01, the accuracy of the Poisson model is high, except at low
M values and for high value of 𝛽 (small T).

Example 9.2 Let us consider the nonpersistent, multi-packet reception CSMA
model. Assume the packet time X has a uniform probability distribution between
Xmin = 0.25 and Xmax = 1.75 (all times are normalized with respect to the average
transmission time E[X] = T, that is taken as the time unit).

�

� �

�

522 9 Multiple Access

0 20 40 60 80 100

Number of stations, M

0

0.2

0.4

0.6

0.8

1

T
h
ro

u
g
h
p
u
t

p = 0.01

q = 0.01
T = 5

20

100

Finite population

Poisson model

Figure 9.20 Comparison of
CSMA throughput with finite
population and with Poisson
model, in case of single
reception, K = 1. The throughput
is plotted as a function of M for
three values of T = 1∕𝛽 and for
p = q = 0.01.

0 1 2 3 4 5 0 1 2 3 4 5

Mean offered traffic, 𝛽 G

0

1

2

3

4

T
h

ro
u

g
h

p
u

t

𝛽 = 0.01
K = 1

K = 2

K = 3

K = 4

(a)

Mean offered traffic, 𝛽 G

0

1

2

3

4

T
h

ro
u

g
h

p
u

t

𝛽 = 0.01
K = 1

K = 2

K = 3

K = 4

(b)

Figure 9.21 Throughput for nonpersistent, multi-packet reception CSMA with Poisson
traffic for uniform (left plot) and bimodal (right plot) probability distribution of packet
time.

The average batch time is found from the CDF in eq. (9.74):

E[B] = ∫
Xmax

Xmin

[1 − FB(x)] dx = ∫
Xmax

Xmin

[1 − e−𝜆𝛿(1−FX (x))] dx =

= (Xmax − Xmin)∫
1

0
[1 − e−𝜆𝛿(1−u)] du = (Xmax − Xmin)

(
1 − 1 − e−𝜆𝛿

𝜆𝛿

)
(9.82)

The throughput as a function of 𝛽G = 𝜆𝛿 for 𝛽 = 0.01 and several values of K is
plotted in Figure 9.21(a). The maximum throughput grows with K, as expected.

There are two reasons the maximum throughput with K = 4 is about 2: (i) colli-
sions reduce the achievable throughput; (ii) successful outcomes do not necessar-
ily comprise always 4 packets, rather they can be made up of 1, 2, 3, or 4 packets.

Even better results can be achieved if the packet times have a bimodal probabil-
ity distribution with two values X1 and X2. To maximize the variance of the packet

�

� �

�

9.4 Carrier Sense Multiple Access (CSMA) 523

time distribution, we assume the two values are equiprobable, i.e., w ≡ (X =
X1) = 1∕2. Given the desired mean values E[X] = 1 and denoting the SCOV of X
as c2, we find X1 = 1∕2 − c and X2 = 1∕2 + c. Setting c2 = 0.1, we have X1 = 0.1838
and X2 = 0.8167. The mean value of the batch size is:

E[B] = (e−𝜆𝛿(1−w) − e−𝜆𝛿)X1 + (1 − e−𝜆𝛿(1−w))X2 (9.83)

Figure 9.21(b) shows the throughput of the multi-packet reception nonpersis-
tent CSMA with Poisson traffic, as a function of the mean offered traffic G for
several values of K and 𝛽 = 0.01.

It is apparent that quite higher maximum throughput levels can be achieved
with respect to the case of uniformly distributed packet time.

This is a consequence of the higher regularity of the chosen bimodal probability
distribution. Specifically, the SCOV of the bimodal distribution is 0.1, while it is
0.1875 for the uniform distribution of the first part of the example.

Apart from this quantitative difference, the qualitative behavior of the through-
put curves are similar for the two cases. This is no surprise in view of the fact
that the expression of the throughput of the multi-packet reception nonpersistent
CSMA highlights that it depends on the packet time probability distribution only
through the mean value E[B].

9.4.4 Stability of CSMA

Let us consider CSMA with SNP policy where new packet arrivals occur according
to a Poisson process of mean rate 𝜈 and p is the back-off probability. We refer to the
usual embedded times corresponding to the end of an idle back-off slot. Note that
there is an idle back-off slot after each transmission. There could be more than
one, if backlogged stations back off and no new packet arrives.

Let N(t) = n be the number of stations backlogged at the t-th embedded time.
We highlight that a same value of p is used in all cases, both for the persistence
policy and for retransmissions. The mean number of arrivals during a virtual slot
(i.e., the time between two consecutive embedded epochs) is

An = 𝜈[𝛿(1 − p)n + (𝛿 + T)(1 − (1 − p)n)] = S[𝛽 + 1 − (1 − p)n] (9.84)

The mean number of packets that are successfully transmitted in the same slot
is Un = np(1 − p)n−1. The resulting drift in state N(t) = n is

dn = An − Un = S[𝛽 + 1 − (1 − p)n] − np(1 − p)n−1 (9.85)

The key remark is that, for fixed p, dn becomes definitely positive, for any offered
traffic rate 𝜈 > 0. In other words, CSMA with Poisson offered traffic achieves zero
stable throughput. This is the same phenomenon that we have encountered with
Slotted ALOHA. In the Appendix at the end of the chapter it is proved that a

�

� �

�

524 9 Multiple Access

0 10 20 30

Mean offered traffic, G

0

0.2

0.4

0.6

0.8

1

T
h

ro
u

g
h

p
u

t

Stable point

Unstable point

Figure 9.22 Example of load-line
with Poisson input traffic: CSMA
throughput (solid line), load-line at a
level of 75% of the maximum
throughput (dashed line). The locally
stable and unstable equilibrium
points are marked with a dark-
shaded and light-shaded dot
respectively.

Markov chain of the type here considered cannot be positive recurrent, if the drift
dn tends to a positive limit as n → ∞.

We can visualize the situation by plotting the throughput function of eq. (9.78) as
a function of G, along with a load-line corresponding to a given level of throughput
S. For example, Figure 9.22 shows the horizontal load-line corresponding to an
offered traffic intensity equal to 75% of the maximum throughput achievable by
non-persistent CSMA with 𝛽 = 0.05.

It is apparent that, provided S = 𝜈T < maxG≥0S(G), the load-line intersects the
throughput curve in exactly two points. The left one corresponds to a locally stable
equilibrium, while the right one is unstable. The two intersections of the horizon-
tal load-line with the throughput curve are marked as a dark-shaded dot (on the
left), corresponding to a locally stable equilibrium, and with a light-shaded dot
(on the right), marking the unstable equilibrium point.

Given the statistical fluctuations of the number of backlogged stations, sooner or
later N(t) will slide to the right of the unstable point and will then shoot to infinity,
for any initial value N(0).

With a finite population of size M (a more realistic model), the system backlog
cannot escape to infinity. Even if that dramatic outcome is forbidden and existence
of a steady-state is mathematically guaranteed, still from an engineering perspec-
tive we can identify the three operation regions already highlighted for Slotted
ALOHA:

● Stable region. The load-line has a single intersection with the throughput curve,
a single stable equilibrium exists and it corresponds to a backlog substantially
less than M.

● Bi-stable region. The load-line has three intersections with the throughput curve,
two of which are locally stable.

● Saturated region. The load-line has again a single intersection with the through-
put curve, corresponding to a level of backlog close to M.

�

� �

�

9.4 Carrier Sense Multiple Access (CSMA) 525

0 20 40 60 80 100

Backlogged stations, n

0

0.2

0.4

0.6

0.8

N
o
rm

a
liz

e
d
 a

rr
.
a
n
d
 d

e
p
.
ra

te
s

N
o
rm

a
liz

e
d
 a

rr
.
a
n
d
 d

e
p
.
ra

te
s

M=100

p=0.05

T=20

q=1.0e–04

q=2.0e–04

q=3.0e–04

q=4.0e–04

(a)

Backlogged stations, n

(b)

0 10 20 30 40
0

0.5

1

1.5
M=40

p=0.05

T=20

q = 5.0e–04

q=1.0e–03

q=1.5e–03

q=2.0e–03

Figure 9.23 Load-lines of CSMA networks. The straight marked lines represent
the mean arrival rate of packets, �̂�n. The solid line represents the success rate
(or departure rate) of packets, �̂�n. They are plotted as a function of the system
backlog N = n.

A graphical representation of this situation is shown in Figure 9.23. The plots
are obtained by comparing the arrival rate for a given backlog n, namely 𝜆n =
(M − n)q∕𝛿 and the mean serving rate, i.e., 𝜇n = np(1 − p)n−1∕(𝛿 + T − T(1 − p)n).
Normalizing with respect to T, we obtain

�̂�n = 𝜆nT =
(M − n)q

𝛽
�̂�n = 𝜇nT =

np(1 − p)n−1

𝛽 + 1 − (1 − p)n (9.86)

In the limit for M → ∞ and q → 0, with Mq → 𝜈𝛽 we find the mean arrival rate
and the mean departure rate of the CSMA model with Poisson offered traffic.

The line �̂�n and the curve �̂�n are plotted against n in Figure 9.23 for p = 0.05,
T = 20, M = 100 (left plot) and M = 40 (right plot)

Depending on the shape of the success rate curve �̂�n, the load-lines �̂�n intersect
the curve in one or three points (left plot) or only in one point (right plot). There-
fore, there may or may not exist a bi-modal region. A close look at Figure 9.23
and inspection of eq. (9.86) reveals that the intersection between the load-line �̂�n
and the success rate curve �̂�n shifts toward high backlog levels as M and or q are
increased. In other words, the equilibrium of the system moves toward satura-
tion (i.e., most stations are active, contending for the channel, at any given time)
as stations become more loaded (higher q) and their overall number grows. As
the equilibrium backlog shifts toward M, the CSMA networks tends to settle on a
working regime where the high pressure of contending stations induces more and
more collisions, thus reducing the efficiency of channel usage.

The transition from lightly loaded systems, where the equilibrium corresponds
to few active stations, to heavily loaded system (saturation) may go through an
intermediate regime, where bi-stability arises (three intercepts of the load-line

�

� �

�

526 9 Multiple Access

0

0.1

0.2

0.3

0.4

P
(N

=
n

)

M=100

p=0.05

q=0.000225

T=20

0 20 40 60 80 100

Backlogged stations

0

0.1

0.2

0.3

0.4

P
(N

=
n

)

0 20 40 60 80 100

Backlogged stations

0

0.1

0.2

0.3

0.4

P
(N

=
n
)

0 20 40 60 80 100

Backlogged stations

(a)

M=100

p=0.05

q=0.00025

T=20

(b)

(c)

M=100

p=0.05

q=0.000275

T=20

Figure 9.24 Probability distribution of the system backlog N for three different regimes
with M = 100 stations: lightly loaded system (top left plot); bi-stable regime (top right
plot); highly loaded system (bottom plot).

with the success rate curve, two of which are locally stable equilibrium points).
In that special regime the network backlog oscillates between light and heavy load.
The CSMA network state N hovers around each of the two locally stable equilib-
rium points for a very long time (much greater than the time required to send
a single packet; see [129]). The characteristic mark of this behavior is a bimodal
probability distribution of N.

For example, Figure 9.24 and 9.25 show the probability distribution of the back-
log N for M = 100 and M = 40 stations, respectively. Three regimes are presented
in each figure.

In Figure 9.24 we can see the probability distribution of a lightly loaded network
on the top left plot (the mass of the distribution is concentrated on small n values),
a clear bi-modal behavior of the distribution in the top right plot and the probabil-
ity distribution of a highly loaded network in the bottom plot. These probability
distributions correspond to three of the load-lines of in Figure 9.23(a).

�

� �

�

9.4 Carrier Sense Multiple Access (CSMA) 527

0

0.1

0.2

0.3

0.4

P
(N

=
n

)

M=40

p=0.05

q=0.001

T=20

0 10 20 30 40

Backlogged stations

(a) (b)

(c)

0 10 20 30 40

Backlogged stations

0 10 20 30 40

Backlogged stations

0

0.1

0.2

0.3

0.4

P
(N

=
n
)

M=40

p=0.05

q=0.0015

T=20

0

0.1

0.2

0.3

0.4

P
(N

=
n
)

M=40

p=0.05

q=0.002

T=20

Figure 9.25 Probability distribution of the system backlog N for three different regimes
with M = 40 stations: lightly loaded system (top left plot); intermediate load regime (top
right plot); highly loaded system (bottom plot). No bi-modal behavior appears (compare
with the load-line plot in Figure 9.23).

A different behavior emerges in Figure 9.25, where the probability distributions
of a CSMA network with M = 40 are plotted for three different regimes. In this
case there is no bi-modal behavior. As the load generated by the stations grows,
the mass of the probability distribution shifts from low to intermediate then to
high backlog levels. This corresponds to the load-lines shown in Figure 9.23(b),
where only a single intersection of the load-line �̂�n and the success rate curve �̂�n
is possible.

The Poisson traffic model represents the asymptotic case where the population
of stations is very large, each contributing negligibly to the overall generated traf-
fic, i.e., the limit for M → ∞ and q → 0, such that Mq → 𝜈𝛽.

As clear from the load-line analysis, under Poisson offered traffic, the system
backlog explodes and there does not exist any steady-state regime. The CSMA net-
work, once started with zero backlog, sooner or later (possibly after a very long

�

� �

�

528 9 Multiple Access

time: see the analysis in [129]) will escape to a definitely jammed state, where
essentially no useful throughput is possible any more.

The cure for instability consists of making p adaptive to the number of back-
logged stations. Assume the stations know exactly what is the current value of
N(t) at each embedded point t. We set then the back-off probability to p(n) = 𝛼∕n
when the number of backlogged stations is N(t) = n ≥ 1, for a given 𝛼 ∈ (0, 1), to
be determined.

With this ideal adaptation of the back-off probability, the drift becomes:

dn = S
[
𝛽 + 1 −

(
1 − 𝛼

n

)n]
− 𝛼

(
1 − 𝛼

n

)n−1
(9.87)

For large n, we have

d∞ = lim
n→∞

dn = S(𝛽 + 1 − e−𝛼) − 𝛼e−𝛼 (9.88)

The limiting drift d∞ can be made negative, to guarantee stability (see the
Appendix at the end of the chapter), provided that we choose the offered traffic
rate S that satisfies the following inequality:

S <
𝛼e−𝛼

𝛽 + 1 − e−𝛼
= Smax (9.89)

The right-hand side of eq. (9.89) is just the throughput found for the nonper-
sistent CSMA under the Poisson model (see eq. (9.78)), once we identify 𝛼 with
𝛽G. In fact, according to our modeling assumptions (packets become backlogged
immediately upon their arrival), the mean packet arrival rate in a back-off slot
is np. In the Poisson approximation of CSMA, the same quantity is expressed as
𝛽G. We can therefore identify 𝛽G with np = 𝛼, the last equality following from the
assumed control law of the back-off probability as a function of the backlog.

We have found out that the analysis of CSMA based on the Poisson approxima-
tion provides a throughput expression that predicts exactly the upper bound of the
achievable stable CSMA throughput.

An immediate application of this finding is a guideline to set 𝛼, hence to define
the (ideal) adaptive control of the back-off probability. We choose the parameter 𝛼
equal to the unique positive value 𝛼

∗ maximizing Smax. There remains to turn the
ideal adaptation algorithm into a practical one.

We define a Bayesian stabilization algorithm for p. We consider the embedded
time points when the back-off counter is decremented. This occurs at the end of a
“virtual slot.” A virtual slot has three possible outcomes, i.e., it can consist of: (i) an
idle back-off slot, when no station transmits; (ii) a successful activity time followed
by an idle back-off slot, when a single station transmits; and (iii) a collision activity
time, followed by an idle back-off slot, when many stations transmit. For virtual
slot t, we let:

p(t) ≡ 𝛼 min
{

1, 1
n̂(t)

}
(9.90)

�

� �

�

9.4 Carrier Sense Multiple Access (CSMA) 529

where9

n̂(t + 1) =

⎧⎪⎪⎨⎪⎪⎩

n̂(t)(1 − p(t)) + 𝜈𝛿 if slot t is idle,
n̂(t)(1 − p(t)) + 𝜈(𝛿 + T) if slot t is successful,

n̂(t) +
[n̂(t)p(t)]2

en̂(t)p(t) − 1 − n̂(t)p(t)
+ 𝜈(𝛿 + T) otherwise.

(9.91)

The updating equations for the estimate of the number of backlogged stations
in slot t + 1, n̂(t + 1), are obtained as the expectation of the a posteriori probabil-
ity distribution of the number of backlogged stations, after having observed the
outcome of slot t, given that the a priori distribution is a Poisson one with mean
n̂(t).

Let us denote with e, s, and c the three possible outcomes of a virtual slot that
can be observed: idle, successful transmission, collision. If the random variable
N̂(t) has a Poisson PDF with mean E[N̂(t)] = n̂(t), we have

(N̂ = n|e) = (e|N̂ = n)(N̂ = n)
∞∑

k=0
(e|N̂ = k)(N̂ = k)

=

=
(1 − p)n n̂n

n!
e−n̂

∞∑
k=0

(1 − p)k n̂k

k!
e−n̂

=
[n̂(1 − p)]n

n!
e−n̂(1−p)

, n ≥ 0. (9.92)

The expectation yields E[N̂|e] = n̂(1 − p). Hence the first of (9.91).
Analogously, it can be verified that:

(N̂ = n|s) = [n̂(1 − p)]n−1

(n − 1)!
e−n̂(1−p)

, n ≥ 1, (9.93)

whence E[N̂|s] = 1 + n̂(1 − p).
The expression in the third line of eq. (9.91) can be dervied following the same

approach (see Problem 9.4).
The updating equations are obtained by summing to the expectation of the a pos-

teriori prediction the mean number of new arrivals and subtracting the departure
(if any). This leads to a good estimate so long as the a priori probability distribu-
tion of the number of backlogged stations is close to the Poisson one. Besides its
amenability to calculations, the Poisson distribution is a reasonable choice also
in view of the fact that it is the limiting probability distribution of an M∕G∕∞

9 In [30] a pseudo-Bayesian estimate is proposed, where the estimate in case of collision is
simplified to n̂(t + 1) = n̂(t) + 2 + 𝜈(𝛿 + T). It can be obtained from (9.91) by using the expansion
ex ≈ 1 + x + x2∕2.

�

� �

�

530 9 Multiple Access

queue. We will evaluate the mean delay realized by the stabilized CSMA in the
next section.

The basic model we are considering assumes new packets become immediately
backlogged upon their arrival. Variants can be considered, where new arrivals can
be transmitted with probability 1 in their first attempt, if an idle slot is sensed
upon their arrival; otherwise, if the channel is busy when the packet arrives, the
packet becomes backlogged. The drift dn, given that the backlog level is n, can be
calculated as the difference between the mean number of new arrivals in a virtual
slot, minus the mean number of successful transmissions in a virtual slot:

dn = 𝜈[𝛿 + T − T(1 − p)ne−𝜈𝛿] − [np(1 − p)n−1e−𝜈𝛿 + (1 − p)n
𝜈𝛿e−𝜈𝛿] (9.94)

Let us assume that the back-off probability is adjusted as a function of the back-
log level according to p = 𝛼∕n. For large n, we get:

d∞ = S(𝛽 + 1 − e−𝛼−S𝛽) − (𝛼 + S𝛽)e−𝛼−S𝛽 (9.95)

with S = 𝜈T, 𝛽 = 𝛿∕T. The drift is definitely negative if

S <
(𝛼 + S𝛽)e−(𝛼+S𝛽)

𝛽 + 1 − e−(𝛼+S𝛽) (9.96)

which defines the stability region for the offered load S.
Also in this case we recognize that the right-hand side of (9.96) is the through-

put predicted by the CSMA analysis based on the Poisson approximation. In fact,
the mean number of offered packets per back-off slot with the considered CSMA
variant is 𝜆𝛿 = np + 𝜈𝛿 if n stations are backlogged. Making the back-off probabil-
ity inversely proportional to the number of backlogged stations, i.e., p = 𝛼∕n, we
have 𝛽G = 𝛼 + S𝛽, with G = 𝜆T.

The maximum achievable stable throughput, under the constraint (9.96), is
shown in Figure 9.26 as a function of 𝛼 for 𝛽 = 0.01, 0.05, 0.1. It can be shown that
the maximum achievable throughput is the same as with the constraint (9.89)
(see Problem 9.4).

0 0.2 0.4

𝛼
0.6 0.8 1

0.5

0.6

0.7

0.8

0.9

1

M
a
x
im

u
m

 t
h
ro

u
g
h
p
u
t

𝛽 = 0.01

𝛽 = 0.05

𝛽 = 0.1

Figure 9.26 Maximum throughput
for a stabilized variant of
nonpersistent CSMA, where new
packets sensing an idle channel upon
their arrival are transmitted
immediately, while packets finding a
busy channel on arrival become
backlogged.

�

� �

�

9.4 Carrier Sense Multiple Access (CSMA) 531

There is an optimal choice of 𝛼. With 𝛽 = 0.01 we find that 𝛼∗ ≈ 0.13 attains
the best maximum throughput S∗ ≈ 0.87. For 𝛽 = 0.05 and 𝛽 = 0.1 it is respec-
tively 𝛼

∗ ≈ 0.24, 𝛼∗ ≈ 0.31 and S∗ ≈ 0.72, S∗ ≈ 0.62. The larger the overhead due
to the back-off slot, i.e., the value of 𝛽, the smaller the optimal achievable stable
throughput.

A second variant consists of considering the 1-persistent policy. In that case, we
have to be careful with the definition of the stabilized back-off policy. Let n denote
the number of backlogged stations. We set p = 𝛼∕n after an idle slot, so that the
mean number of offered packets is 𝛼 + S𝛽 = G𝛽. After a busy slot instead we let
p = 𝛼

′∕n. Then, the mean number of offered packets is 𝛼′ + S(1 + 𝛽) = G(1 + 𝛽).
The two expressions are consistent if we set 𝛼′ = 𝛼(1 + 1∕𝛽). With this choice, the
stability limit is obtained from eq. (9.79), by substituting G with S + 𝛼∕𝛽.

9.4.5 Delay Analysis of Stabilized CSMA

The Poisson traffic assumption is useful to derive throughput results in a simple
way. It is however deceptive, since the infinite population model is intrinsically
unstable, that is to say, it does not admit a steady state. We have seen how to sta-
bilize CSMA, by adjusting the back-off probability in inverse proportion to the
number of (estimated) backlogged stations.

We can define a simple model to evaluate the mean delay of a stabilized CSMA
protocol with Poisson input traffic. We define an embedded Markov chain at the
time points delimiting virtual slot. A virtual slot is an idle slot, if no station trans-
mits. It is an activity time followed by an idle back-off slot, if at least one station
transmits. Let U(t) denote the number of packets transmitted successfully in slot
t, A(t) the number of new packets arriving during slot t (and immediately back-
logged upon their arrival), and N(t) the number of backlogged stations at the end
of slot t. Then:

N(t + 1) = N(t) + A(t + 1) − U(t + 1) (9.97)

Since the protocol is stabilized, a limiting steady-state exists and it is reached
whatever the initial state, provided that the normalized input rate S be less than
the maximum throughput Smax = 𝛼e−𝛼∕(𝛽 + 1 − e−𝛼). If 𝛼 is optimally chosen, it
can be verified that Smax = 1 − 𝛼

∗. We denote the limiting state probabilities as
𝜋n = (N(∞) = n).

We make a simple model of the stabilized protocol, by assuming that the (t +
1)-th virtual slot normalized duration V(t + 1) be a random variable with the fol-
lowing probability distribution, conditional on N(t) = n

V(t + 1)|N(t)=n =
⎧⎪⎨⎪⎩
𝛽 w.p. 1, if n = 0,
𝛽 w.p. e−𝛼, if n ≥ 1,
𝛽 + 1 w.p. 1 − e−𝛼, if n ≥ 1.

(9.98)

�

� �

�

532 9 Multiple Access

Hence, it is E[V] = 𝛽 + (1 − e−𝛼)(1 − 𝜋0). The number of arrivals in a virtual slot
has the following conditional probability distribution:

(A(t + 1) = k|N(t) = n) =

{
Pk(S𝛽) n = 0,
e−𝛼Pk(S𝛽) + (1 − e−𝛼)Pk(S + S𝛽) n ≥ 1

(9.99)

where Pk(a) =
ak

k!
e−a

, k ≥ 0, is the Poisson probability distribution.
Moreover, we define the binary random variable U(t + 1), conditional on

N(t) = n, as follows:

(U(t + 1) = 1|N(t) = n) =

{
𝛼e−𝛼, n ≥ 1
0 n = 0.

(9.100)

Taking expectations and limit for t → ∞ on both sides of eq. (9.97), we get
E[U] = E[A], i.e.,

E[U] =
∞∑

n=0
𝜋n(U = 1|N = n) = (1 − 𝜋0)𝛼e−𝛼 = E[A] =

= SE[V] = S𝛽 + S(1 − e−𝛼)(1 − 𝜋0) (9.101)

from which we derive

𝜋0 = 1 − 𝛽S
𝛼e−𝛼 − S(1 − e−𝛼)

E[V] = 𝛽𝛼e−𝛼

𝛼e−𝛼 − S(1 − e−𝛼)
(9.102)

Squaring both sides, then taking expectations and limit for t → ∞ on both sides
of eq. (9.97), we get

0 = E[A2] + E[U2] − 2E[AU] + 2E[AN] − 2E[NU] =

= E[A(A − 1)] + 2E[A] − 2E[AU] + 2E[AN] − 2E[NU] (9.103)

After some algebra, it can be found that

E[A(A − 1)] = S2
𝛽

2 + S2(1 + 2𝛽)(E[V] − 𝛽)
E[AU] = E[V]S2(1 + 𝛽)
E[AN] = S(𝛽 + 1 − e−𝛼)E[N]
E[NU] = 𝛼e−𝛼E[N]

(9.104)

Plugging these expression into (9.103), we get

E[N] = 2SE[V] − S2E[V] − S2
𝛽(𝛽 + 1)

2[𝛼e−𝛼 − S(𝛽 + 1 − e−𝛼)]
(9.105)

The time-averaged mean number of backlogged stations is:

N =

∞∑
n=0

n𝜋nE[V |N = n]

E[V]
= 𝛽 + 1 − e−𝛼

E[V]
E[N] (9.106)

�

� �

�

9.4 Carrier Sense Multiple Access (CSMA) 533

Figure 9.27 Mean delay of stabilized
non-persistent CSMA as a function of
the offered traffic S: analytical model
(solid line, labeled as “model” in the
legend); refined analytical model
(dash-dot line, labeled with “model+”
in the legend); approximation of
eq. (9.108) (dashed line, labeled with
‘appx’ in the legend); simulations
(squared markers).

0 0.2 0.4 0.6 0.8 1

Mean offered traffic, S

0

2

4

6

8

10

M
e
a
n
 d

e
la

y
,
E

[D
]

𝛽 =0.010.10.25model

model+
appx

sim

Finally, applying Little’s law, we get the desired result:

E[D] = N
S

=
1 − S∕2 − S𝛽(𝛽 + 1)∕(2E[V])

Smax − S
(9.107)

where Smax = 𝛼e−𝛼

𝛽+1−e−𝛼
. It can be verified that

E[D] ≈
1 − S∕2
Smax − S

− 𝛽(𝛽 + 1)
2

S
Smax

≡ E[Dappx] (9.108)

Figure 9.27 plots the mean delay of the stabilized CSMA as a function of the
offered load S. We compare the mean delay obtained with simulations (square
markers), the analytical model delay in eq. (9.107) (solid lines), the mean delay
approximation in eq. (9.108) (dashed lines) and the mean delay provided by the
refined model introduced at the end of this section (dash-dotted lines).

The model predicts the mean delay very accurately for small values of 𝛽, while
it overestimates the mean delay, especially at low load levels, for bigger values of
𝛽. The approximation E[Dappx] in eq. (9.108) is close to the analytical model in all
considered cases, especially for 𝛽 ≪ 1. This is actually the most interesting case in
applications, given that CSMA systems are designed so as to minimize the back-off
time overhead.

A refined version of the analytical model can be obtained, by redefining the ran-
dom variable U and A as follows:

(U = 1|N = n) =
⎧⎪⎨⎪⎩

0 n = 0;
𝛼 n = 1,
𝛼e−𝛼 n > 1

(9.109)

(A = k|N = n) =
⎧⎪⎨⎪⎩

Pk(S𝛽) n = 0,
(1 − 𝛼)Pk(S𝛽) + 𝛼Pk(S + S𝛽) n = 1,
e−𝛼Pk(S𝛽) + (1 − e−𝛼)Pk(S + S𝛽) n > 1

(9.110)

�

� �

�

534 9 Multiple Access

The accuracy improvement brought about by this refined model is paid at the
price of much more cumbersome analytical expressions for the mean backlog level
and the mean delay. In spite of its inaccuracy, the model of eq. (9.107) is still useful
given that it yields good results for the most interesting (and critical) load levels,
and given its extreme analytical simplicity.

9.5 Analysis of the WiFi MAC Protocol

Local wireless communications have become a dominating paradigm, since the
end of the 1990s. Except for office and industrial environments, where cabled
system are still largely used, most often Internet users access the network via
a wireless interface, either cellular or wireless local area network (WLAN).
In the latter case, the dominating technology is the IEEE 802.11 standard,
also known as WiFi10 [107,108]. Many variants, technically referred to as
amendments, have been defined over the standard lifetime (the first version
of the IEEE 802.11 was issued in 1997). Amendments are identified by means
of small capital letters appended to the main acronym. The latest versions of
the PHY and MAC level protocols as of now are the IEEE 802.11ac [108] and
IEEE 802.11ax [7,68].

The IEEE 802.11 standard specifies the physical layer and the MAC protocol.
We will focus on the latter in the following. Specifically, we outline models of the
standard MAC protocol and some of its variants.

The physical layer has undergone an impressive evolution, from the initial 2
Mbit/s version in the 2.4 GHz bandwidth, up to the multi-Gbit/s IEEE 802.11ac
version in the 5 GHz bandwidth. The high speed WiFi exploits wider channel
bandwidth (up to 160 MHz against the 20 MHz of the initial version), greater
spectral efficiency (up to 256-QAM modulation), Multiple Input Multiple Output
(MIMO) communications. On the other hand, the Basic Access (BA) model of
the MAC protocol has witnessed little modification since its original design. It is
essentially a variant of a nonpersistent CSMA. Before delving into the models, a
concise summary of the MAC protocol algorithm is presented, by introducing the
so called CSMA/CA (CSMA with Collision Avoidance).

9.5.1 Outline of the IEEE 802.11 DCF Protocol

We outline the so called distributed coordination function (DCF) of the IEEE
802.11 MAC level. The system time evolution from the MAC point of view is

10 Wireless Fidelity is the name of the consortium established in 1999, to guarantee the
inter-operability of IEEE 802.11 equipment in a multi-vendor environment.

�

� �

�

9.5 Analysis of the WiFi MAC Protocol 535

Activity time

Data frame ACK

DIFSSIFS

SIFS SIFS SIFS DIFS

Data frame ACkRTS CTS

Basic access

mode

RTS/CTS mode

Back-off

decrements times

Payload tx time

Overhead time

Figure 9.28 Example of activity time and back-off slots with basic access and RTS/CTS
mode; back-off decrement times are highlighted as well.

depicted in Figure 9.28. The figure shows both basic access and RTS/CTS mode,
to be explained in the rest of this section.

The MAC entity of a station is said to be idle if it has no data unit to send (MAC
protocol data unit - MPDU). If instead at least one MPDU is waiting to be sent, the
station is backlogged.

As soon as the upper layer asks for sending a data block, a new MPDU is created,
nesting the data block into the MPDU payload, and the access procedure starts.

Let us consider the arrival of a new MPDU at a previously idle MAC entity. First,
the channel is sensed, invoking the clear channel assessment (CCA) function of
the physical layer. If the channel is sensed to be idle, and if it remains idle for a
DCF inter-frame spacing (DIFS) time, then the new frame is transmitted immedi-
ately. If instead the channel is sensed to be busy, the station waits for the channel
to be clear again. When the channel is back idle, the station checks if the channel
remains idle for a DIFS time. It the channel becomes busy again before a DIFS time
is elapsed, the procedure starts all over again. Otherwise, once the DIFS time has
expired, a number between 0 and W0 − 1 is drawn uniformly at random (W0 > 1).
A countdown counter is initialized with the sampled value. W0 is the width of the
basic contention window, i.e., the contention window size used in the first trans-
mission attempt. The station checks whether the channel stays idle for a back-off
slot time 𝛿. At the end of the idle back-off slot, the counter is checked and, if pos-
itive, it is decremented by 1. If the channel becomes busy during the back-off slot
time, the counter is frozen. When the counter is checked at 0, the station starts its
transmission.

After the MPDU transmission is over, the sending station waits for an acknowl-
edgment (ACK) from the destination11 . If the MPDU reception was successful, the
destination station waits for a short inter-frame spacing (SIFS) time, then starts
transmitting the ACK MPDU. Note that no other station can interfere with the

11 We refer here to unicast MPDUs. For a broadcast MPDU, no ACK is issued.

�

� �

�

536 9 Multiple Access

ACK transmission. Any other station is forced to wait for an idle channel time of
duration DIFS>SIFS, so the only station allowed to use the channel after a SIFS
time is the destination one.

A fixed, predefined time-out can be set for the ACK on behalf of the station
that transmitted the data MPDU. The time-out is simply the sum of the SIFS plus
the constant duration of ACK transmission. If no ACK is received after the timer
has expired, the transmitting stations deems a collision has occurred. Therefore,
it increments a counter of the number of transmission attempts (initially set at
0), and re-schedules the MPDU. Re-scheduling consists simply in repeating the
whole access procedure, i.e., waiting for the channel to stay idle for a DIFS time,
then drawing a random integer k, and counting down k idle back-off slots. In gen-
eral, if the station is starting the i-th transmission attempt, the integer k is drawn
uniformly at random between 0 and Wi − 1, where Wi is the i-th stage contention
window size.

Consistently with the aim of avoiding repeated collision events, it is Wi+1≥Wi>1
for i ≥ 0. For example, the IEEE 802.11 standard defines the so called binary expo-
nential back-off (BEB) algorithm, setting Wi = 2 ⋅ Wi−1, i ≥ 1.

Transmission attempts are carried out up to a maximum number of retransmis-
sions, corresponding to the value of the max_retry parameter. If a successful
transmission is performed (i.e., the transmitting station detects the ACK), the sta-
tion moves on to the next MPDU to be sent, if any. If no new MPDU is ready,
the MAC entity goes back to the idle state, after having drawn a random integer
between 0 and W0 − 1 and having completed its countdown (post-back-off).

If instead all max_retry retransmissions fail, the MPDU is silently discarded
and the station moves on to the next MPDU, if any.

When transmitting, the station selects the modulation and coding set (MCS)
according to the physical channel quality that it expects (based on previous
measurements and receptions). A data MPDU can be divided into two parts:
the MPDU payload, hosting data from upper layer, and the MAC header (see
Figure 9.29). The entire data MPDU is transmitted at the bit rate of the selected
MCS (referred to as the air bit rate). In turn, a data MPDU is contained into a
physical PDU (PPDU). The PPDU adds a so called physical layer convergence
protocol (PLCP) header, plus a physical preamble (see Figure 9.29). The PLCP
header and the preamble are transmitted at a predefined basic bit rate, corre-
sponding to the lowest bit rate allowed by the available MCSs. Control frames,

MAC payload
MAC

header

PLCP

header

PHY

preamble

MAC PDU (MPDU)

Physical PDU (PPDU)

Figure 9.29 Structure of the
physical and MAC PDUs.

�

� �

�

9.5 Analysis of the WiFi MAC Protocol 537

such as ACK, RTS, CTS, are transmitted at the basic bit rate as well. This choice
guarantees that the coverage range of such critical frames is maximum.

A station not involved in a transmission listens to the channel, to collect MPDUs
that are addressed to it and to run the access algorithm, if it is backlogged. If it can-
not decode successfully an MPDU, after the channel is back idle, it sets a special
timer, whose duration is the extended inter-frame spacing (EIFS). The EIFS is
typically set as the sum of SIFS plus an ACK time-out plus a DIFS. It is intended to
ease the reception of the ACK at the transmitting station, without any interference
from other stations not involved.

Current commercial WiFi network interface cards do not support simultaneous
transmission and reception. They are said to be half-duplex. Because of nonideal
separation between the in and out channels of the transceiver chains, a fraction of
the transmitted signal power leaks into the receiving chain and easily overwhelms
the feeble received signal. This phenomenon is called self-interference. During
the last decade a remarkable progress has been achieved in self-interference sup-
pression, making full-duplex cards a reality, although currently confined mostly
to experimental or precommercial setups. 12

A consequence of the half-duplex mode of communication of WiFi cards is that
collision detection is not possible. Collision can only be inferred by means of the
ACK time-out at MAC level.

The RTS/CTS mode is alternative to basic access (see Figure 9.28). Request-
to-send (RTS) control frames can be sent before the data frame, to seize the chan-
nel and possibly enable channel measurements and parameter negotiation with
the addressed station. If a collision occurs, since no collision detection is possi-
ble with half-duplex equipment, the whole frame transmission time is wasted. To
moderate the waste of channel time, a much shorter frame, the RTS, is sent first.
A timer is set, upon sending the RTS. If a clear-to-send (CTS) response frame is
received from the addressed station within the time-out, then the station starts
transmitting the data MPDU, a SIFS time after having received the CTS frame. If
instead the CTS time-out expires, the station behaves just as if a collision occurred,
rescheduling the RTS. A special maximum retry parameter is defined for the RTS.
The default value of such maximum number of retries is 4.

The RTS/CTS mechanism is also useful to enhance carrier sensing. Let us con-
sider two stations, A and B, associated to a same AP C. Let PXY denote the power
level received at Y for a signal emitted by X . Since A and B are associated with C it
must be the case that PCA and PCB (hence also PAC and PBC) are beyond a thresh-
old, the carrier detect threshold (CDT). It can happen however that A and B are far

12 As a matter of fact, the study group of IEEE 802.11ax has postponed introduction and
exploitation of full-duplex communication in WiFi to the next standard version. Besides refining
the signal processing required to suppress self-interference, the way that full-duplex capability
can be exploited at MAC level is an open research topic.

�

� �

�

538 9 Multiple Access

C(AP)
A

B

Figure 9.30 Example of hidden nodes. Both A and B
are associated with the AP C, yet they cannot hear
each other.

away enough that they do not hear each other. Station A assesses a busy channel
according to physical carrier sensing whenever the signal power level it measures
exceeds a threshold, the defer threshold (DT). If PBA < DT, then A senses an idle
channel even if B is transmitting a frame to C. Then A could start its own trans-
mission, thus causing a collision at C. This situation is described by saying that A
and B are hidden to each other; it is illustrated in Figure 9.30.

To alleviate the hidden node problem, both RTS and CTS frames carry a field
announcing the channel holding time of the forthcoming transmission. The ini-
tiating station (the one that sends the RTS) knows how much data it has to send
and the selected MCS. Hence it can calculate the overall time it needs to use the
channel, including any overhead (CTS, preambles, ACK). The announced chan-
nel holding time, diminished by the RTS duration, is echoed back by the addressed
station, when it issues the CTS. Thus, neighbors of both origin and destination sta-
tions hear about the upcoming transmission. They enter this channel holding time
into a data structure called network allocation vector (NAV).

When a backlogged station has to assess the channel status, it does usually both
physical channel sensing (the CCA described above) and virtual carrier sensing,
i.e., it checks the NAV to verify whether it reports a busy or idle channel.

Another control MAC frame that is worth mentioning is the Beacon frame, peri-
odically issued by any AP, to announce itself and to broadcast a number of param-
eters related to the WiFi network created by the AP and useful for MAC operations
in that network.

Notation and default values of the MAC parameters for the IEEE 802.11g version
of the standard are reported in Table 9.2.

9.5.2 Model of CSMA/CA

We focus on an isolated WiFi network made up of n stations. In the model we first
focus on the back-off processes of the n stations.

The model of 802.11 DCF is derived under the following assumptions:

● Symmetry: Stations are statistically indistinguishable, i.e., traffic parameters (air
bit rate, payload length probability distribution) and multiple access parameters
are the same.

● Proximity: Every station is within reach of all others, i.e., there are no hidden
nodes.

● Saturation: Stations are continuously backlogged.

�

� �

�

9.5 Analysis of the WiFi MAC Protocol 539

Table 9.2 Notation and parameter values of IEEE 802.11g standard.

Symbol Description Value

𝛿 Back-off slot time 9 μs
C Air bit rate 6 ≤ C ≤ 54 (Mbit/s)
Cb Basic bit rate 6 Mbit/s
L MPDU payload length variable (≤ 2304 bytes)
U MPDU payload time L/C
LACK ACK frame length 14 bytes
LRTS RTS frame length 20 bytes
LCTS CTS frame length 14 bytes
TACKTO ACK Time-Out SIFS + LACK∕Cb

SIFS Short inter-frame spacing 16 μs
DIFS DCF inter-frame spacing SIFS + 2𝛿
EIFS Extended inter-frame spacing SIFS + LACK∕Cb + DIFS
m Maximum number of re-transmissions (max_retry) 7
CWmin Minimum contention window 16
CWmax Maximum contention window 1024
Wi Contention window at stagei fori = 0, 1,… ,m min{CWmax,CWmin2i}

Along with these we introduce a simplifying hypothesis:

● Independence: The back-off processes of the stations are independent of one
another.

The independence hypothesis is essential to describe the system dynamics by
using a low dimensionality Markov chain. Its validity has been discussed from
a theoretical viewpoint in [189, 38] and confirmed by extensive simulations in a
large number of papers. It turns out that numerical results of models based on the
independence hypothesis are extremely accurate not only for evaluating average
metrics (throughput, mean delay) but even probabilities and the entire back-off
counter probability distribution. A deep insight into the effectiveness and limits of
the independence assumption can be gained from [39].

The model is developed from the point of view of a tagged station (any one
will do, given the Symmetry assumption). We consider embedded times when the
tagged station decrements its back-off counter. Let tk denote the k-th such time
point. If B(t) denotes the back-off at time t, by B(tk) we mean the back-off immedi-
ately before the decrement at time tk. According to the rules of IEEE 802.11 DCF,
the back-off counter is decremented after an idle back-off has expired, while the
counter is frozen when the channel is sensed to be busy.

�

� �

�

540 9 Multiple Access

A virtual slot is the time spanning between two consecutive back-off counter
decrements for a tagged station. Slot duration can be described as a random vari-
able X , whose distribution is derived in § 9.5.2.2.

9.5.2.1 The Back-off Process
The slot counting process is completely independent of the duration of the trans-
mission attempt (either successful or not) thanks to the freezing of the back-off
counters and to the renewal of back-off counters each time they are reset. There-
fore, the description of the counting process is oblivious of details of the transmis-
sion mode, of data unit formats, and of the air bit rate. On the contrary, evaluation
of the throughput and of the service time probability distribution does depend on
the actual transmission attempt duration, hence on the transmission mode, data
unit length, bit rate.

Let I(t) denote the retransmission stage and J(t) the back-off count of the
tagged station at time t. It is I(t) ∈ {0, 1,… ,m} and J(t) ∈ {0, 1,… ,WI(t) − 1}.
The well-known model of IEEE 802.11 DCF by Bianchi [32,33] consists of
a bi-dimensional Markov chain with state (I(tk), J(tk)), i.e., it is the embed-
ded Markov chain (EMC) sampled at the back-off decrement times tk of the
continuous time process (I(t), J(t)).

Let P(i, j|i′, j′) denote the one-step transition probability from state (i′, j′) to state
(i, j) of the EMC of the back-off process. Let p denote the conditional collision prob-
ability, i.e., the probability that the tagged station incurs a collision event upon its
transmission. Note that we are assuming that p be the same for all stations and
it does not depend on the state of the tagged station. In other words, the inde-
pendence hypothesis lets us decouple the tagged station with respect to all other
stations, that collectively make a background stationary process, resulting in the
tagged station experiencing a collision upon its transmission with a fixed proba-
bility p.

Given the maximum number of retransmissions m and the contention window
sizes Wi, i = 0,… ,m, it is easy to verify that:

P(i, j|i′, j′) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 i = i′, j = j′ − 1, i′ = 0,… ,m, j′ = 1,… ,Wi − 1
p∕Wi i = i′ + 1, j = 0,… ,Wi − 1, i′ = 0,… ,m − 1, j′ = 0
(1 − p)∕W0 i = 0, j = 0,… ,W0 − 1, i′ = 0,… ,m − 1, j′ = 0
1∕W0 i = 0, j = 0,… ,W0 − 1, i′ = m, j′ = 0
0 otherwise.

(9.111)

Let 𝜋i,j denote the limiting probability distribution of the EMC. It exists since
the EMC is irreducible, finite, and aperiodic, hence ergodic. It is not difficult to

�

� �

�

9.5 Analysis of the WiFi MAC Protocol 541

find that

𝜋i,j = 𝜋0,0pi Wi − j
Wi

=
pi(Wi − j)∕Wi∑m
i=0 pi(Wi + 1)∕2

, j = 0,… ,Wi − 1, i = 0,… ,m.

(9.112)

The states (i, 0) correspond to end of countdown, hence to a transmission
attempt. Let 𝜏 denote the probability of transmission of a station, i.e., the prob-
ability of the event: “The tagged station starts transmission at the end of the
current time slot.” Then, we have

𝜏 =
m∑

i=0
𝜋i,0 =

∑m
k=0 pk∑m

k=0 pk(Wk + 1)∕2
(9.113)

Note that (Wk + 1)∕2 is just the mean number of back-off slots counted down when
in stage k. It is also remarkable that the limiting state probabilities of the back-off
process of the tagged station depend only on the contention window size, hence
on the mean of the back-off time, not on its probability distribution.

The result of eq. (9.113) can be found without resorting to the EMC, by means
of an elegant regenerative argument (see [135] for details). Here we summarize
the key steps, just to appreciate the elegance and simplicity that leads to (9.113).
Let Bi(k) denote the number of back-off slots counted down by the tagged sta-
tion at the i-th re-transmission attempt of packet k; i = 0 corresponds to the ini-
tial transmission attempt. Let M(k) denote the number of transmission attempts
required to deal with the k-th packet. The overall number of back-off slots counted
down for packet k is Z(k) =

∑M(k)
i=0 Bi(k). By the model assumptions, the sequence

Z(k) is a renewal process. We can regard the number of transmission attempts
M(k) as the reward associated to the k-th renewal time. By the renewal reward
theorem, the mean reward rate R is R = E[M]∕E[Z]. The probability that h or
more attempts are required to deal with a packet is(M ≥ h) = ph

, h = 0, 1,… ,m,
thanks to the independence hypothesis. Then, we have E[M] =

∑m
h=0 (M ≥ h) =

1 + p + · · · + pm and

E[Z] =
m∑

h=0
(M = h)

h∑
i=0

E[Bi] =
m∑

i=0
E[Bi](M ≥ i) = b0 + b1p + · · · + bmpm

(9.114)

where bi ≡ E[Bi] = (Wi + 1)∕2, i = 0,… ,m.
The mean reward rate in our case is the mean fraction of back-off slots at the

end of which the tagged station attempts a transmission, i.e., it is the transmission
probability over the embedded times, 𝜏 = R. Using 𝜏 = E[M]∕E[Z], we find finally
the result already stated in eq. (9.113):

𝜏 =
1 + p + · · · + pm

b0 + b1p + · · · + bmpm ≡ F(p) (9.115)

�

� �

�

542 9 Multiple Access

The collision probability can be expressed in terms of the transmission proba-
bility by observing that it is the probability that at least one of the n − 1 stations
other than the tagged one transmits along with the tagged station. It is therefore:

p = 1 − (1 − 𝜏)n−1 ≡ G(𝜏) (9.116)

thanks to the independence hypothesis. This second equation is the “coupling”
between the tagged station and all other stations. It summarizes (in a clever way)
the effect that all other stations have on the back-off process of the tagged station.

Equations (9.115) and (9.116) make a nonlinear equation system. We can write
formally 𝜏 = F(G(𝜏)), which is a fixed-point equation. Since both G(⋅) and F(⋅)
are continuous functions, the map x ∈ [0, 1] → F(G(x)) ∈ [0, 1] is continuous. By
Brouwer’s theorem we can then say that there exists a fixed point in [0, 1]. Unique-
ness is more tricky. It can be shown that a sufficient condition to guarantee that
a unique fixed point exists in the symmetric scenario here considered is that the
sequence Wi, i = 0, 1,… ,m be nondecreasing (see Theorem 5.1 in [177]).

Before closing this section, we outline a different back-off process model, which
offers an alternative model of the CSMA/CA countdown.

Let us consider the embedded times corresponding to the end of a transmission
attempt, when the countdown is resumed or the back-off counter is reinitialized.
The latter case applies when the station is involved in the transmission.

The back-off at the k-th embedded time is denoted with Bk. It can take any inte-
ger value between 1 and W ≡ CWmax. We let bi(k) = (Bk = i), i = 1,… ,W . When
Bk is reset, it is assigned a new value according to the probability distribution
qj, j = 1,… ,W . In the CSMA/CA of WiFi, the back-off at the h-th retransmis-
sion attempt is drawn uniformly at random between 1 and Wh = 2hCWmin. The
probability of making h retransmissions is P(h) = (1 − p)ph

, h = 0,… ,m − 1 and
P(m) = pm for h = m. Then, we have

qj =
m∑

h=hj

P(h)
Wh

, hj =
⌈

log2

(
j

CWmin

)⌉
, j = 1,… ,W . (9.117)

where ⌈x⌉ is the least integer not less than x.
The sequence Bk is a Markov chain. Let Gi(k) = (Bk ≥ i) for i = 1,… ,W . For

notational convenience, we define also GW+1(k) = 0. It is easy to recognize that the
following one-step equations hold

bj(k + 1) =

⎧⎪⎪⎨⎪⎪⎩

qj
∑W

i=1 bi(k)[Gi(k)]n−1+

+
∑W

i=j+1 bi(k)([Gi−j(k)]n−1 − [Gi+1−j(k)]n−1) j = 1,… ,W − 1,

qW
∑W

i=1 bi(k)[Gi(k)]n−1 j = W

(9.118)

�

� �

�

9.5 Analysis of the WiFi MAC Protocol 543

Figure 9.31 Probability
distribution of the back-off for the
WiFi CSMA/CA and three values of
the number n of stations.

1 4 16 64 256 1024

Back-off count

10−4

10−3

10−2

10−1

P
D

F

n = 10

n = 50

n =100

The Markov chain Bk is irreducible, aperiodic, and finite, hence it is ergodic and
there exists a well defined limit of bi(k) as k → ∞. The limiting probability distribu-
tion {bi}1≤i≤W can be computed by solving numerically the fixed point equations:

bj =
⎧⎪⎨⎪⎩

qj
∑W

i=1 biGn−1
i +

∑W
i=j+1 bi(Gn−1

i−j − Gn−1
i+1−j) j = 1,… ,W − 1,

qW
∑W

i=1 biGn−1
i j = W

(9.119)

where Gi =
∑W

r=i br and qj is given in eq. (9.117). The probability that a station
transmits is 𝜏 =

∑W
i=1 biGn−1

i . The probability that station is successful transmitting
its frame is ps1 =

∑W
i=1 biGn−1

i+1 . Then, the conditional collision probability is p =
(𝜏 − ps1)∕𝜏.

Figure 9.31 plots the probability distribution bi for n = 10, 50,100. The retrans-
mission stages are visible through “bumps” in the curve profile, especially for the
lowest value of n. The bulk of the probability distribution shifts toward higher val-
ues of the back-off count as n grows. This is consistent with the higher collision
probability with bigger values of n, hence with the higher probability that larger
contention windows are used because of multiple retransmissions.

9.5.2.2 Virtual Slot Time
A virtual slot is the time elapsing between two consecutive decrements of the
countdown of a tagged station. It is made up of: (i) an idle back-off slot, if no sta-
tion transmits; (ii) the transmission of a single station, in case of success; or (iii)
several simultaneous transmissions in case of collision.

Let U denote the duration of the payload of the MPDU, Toh,s, Toh,c the overall
duration of overhead in case of successful transmission and collision, respectively.

The overhead time depends on the access mode, on the station role and on the
outcome of the transmission attempt. Let us consider first the BA. For any sta-
tion that decodes the transmitted frame correctly, in case of success, the overhead

�

� �

�

544 9 Multiple Access

time is made of preamble and PLCP header transmission time (PPHY), MAC header
transmission time (TMAChdr), acknowledgement time (TACK) and inter-frame spac-
ings (DIFS, SIFS). In case of collision, for the transmitting station there is the
acknowledgement time-out (TACKTO). For any other station that does not decode
the data frame correctly, a special inter-frame spacing is adopted (EIFS).

Summing up, the overhead times for BA are:

⎧⎪⎪⎨⎪⎪⎩

T(BA)
oh,s = TPHY + TMAChdr + SIFS + TACK + DIFS (all stations)

T(BA)
oh,c = TPHY + TMAChdr + TACKTO + DIFS (transmitting station)

T(BA)
oh,c = TPHY + TMAChdr + EIFS (any other station)

(9.120)

In the following, we assume EIFS = TACKTO + DIFS = SIFS + TACK + DIFS.
Therefore, we have Toh ≡ T(BA)

oh,s = T(BA)
oh,c .

For RTS/CTS, the components of the overhead time are the same plus the times
required to transmit the RTS and CTS frames:⎧⎪⎪⎨⎪⎪⎩

T(RC)
oh,s = TRTS + SIFS + TCTS + SIFS + TD (all stations)

T(RC)
oh,c = TRTS + TRTSTO (transmitting station)

T(RC)
oh,c = TRTS + EIFS (any other station)

(9.121)

where TD = TPHY + TMAChdr + SIFS + TACK + DIFS. The overhead time in case of
collision has the same value for all stations, if we set EIFS = TRTSTO. Overhead
times in case of success and collision are different with RTS/CTS mode. In the
following, we drop the superscript (RC) for the sake of a simple notation. We
denote the overhead times for success or collision with RTS/CTS as Toh,s and Toh,c
respectively.

The duration X of the virtual slot with BA mode, when there are n contending
stations, is given by:

X =
⎧⎪⎨⎪⎩
𝛿 w.p. (1 − 𝜏)n

,

𝛿 + Toh + max{U1,… ,Uk} w.p. .
(n

k

)
𝜏

k(1 − 𝜏)n−k
, k = 1,… ,n

(9.122)

For RTS/CTS mode the virtual slot duration is:

X =

⎧⎪⎪⎨⎪⎪⎩
𝛿 w.p. (1 − 𝜏)n

,

𝛿 + Toh,s + U1 w.p. .n𝜏(1 − 𝜏)n−1
,

𝛿 + Toh,c w.p. .1 − (1 − 𝜏)n − n𝜏(1 − 𝜏)n−1

(9.123)

�

� �

�

9.5 Analysis of the WiFi MAC Protocol 545

By the symmetry assumption, the payload transmission time U is the same ran-
dom variable for all stations. If L denotes the length of the payload and C the air
bit rate, it is U = L∕C. U is variable both as a consequence of the variability of the
length of the payload and of the selection of the air bit rate among a set of several
possible values. In the following we assume a general discrete distribution for U.
This is a useful model, since only a finite number of rates are available in each
standard specification of IEEE 802.11 physical layer and packet length probabil-
ity distributions usually have most of their masses on a few values, all the other
lengths having a negligible probability.

We denote the probability distribution of U as qj = (U = aj), j = 1,… ,𝓁,
where aj is the j-th payload time. In the following, we assume a1 < a2 < · · · < a𝓁 .
The corresponding CDF is Qj =

∑j
i=1 qi, j = 1,… ,𝓁. For ease of notation we

define also Q0 = 0.
By the Independence assumption, we have (max{U1,… ,Ur} ≤ aj) = Qr

j and
(max{U1,… ,Ur} = aj) = Qr

j − Qr
j−1, for j = 1,… ,𝓁 and r = 1,… ,n.

In the case of BA mode, according to eq. (9.122), X is a discrete random variable
taking 𝓁 + 1 values:

⎧⎪⎪⎨⎪⎪⎩

(X = 𝛿) = (1 − 𝜏)n

(X = 𝛿 + Toh + aj) =
n∑

r=1
(max{U1,… ,Ur} = aj)

(n
r

)
𝜏

r(1 − 𝜏)n−r

= (1 − 𝜏 + 𝜏Qj)n − (1 − 𝜏 + 𝜏Qj−1)n
, 1 ≤ j ≤ 𝓁.

(9.124)

In the case of RTS/CTS mode, the probability distribution of X , as given by
eq. (9.123), is:⎧⎪⎨⎪⎩

(X = 𝛿) = (1 − 𝜏)n

(X = 𝛿 + Toh,s + aj) = n𝜏(1 − 𝜏)n−1qj 1 ≤ j ≤ 𝓁

(X = 𝛿 + Toh,c) = 1 − (1 − 𝜏)n − n𝜏(1 − 𝜏)n−1

(9.125)

To keep notation compact, in the following we use also

Pj(n) ≡ (1 − 𝜏 + 𝜏Qj)n (9.126)

for j = 0, 1,… ,𝓁 and n ≥ 0 and⎧⎪⎨⎪⎩
pe(n) = (1 − 𝜏)n

,

ps(n) = n𝜏(1 − 𝜏)n−1
,

pc(n) = 1 − pe(n) − ps(n)
(9.127)

9.5.2.3 Saturation Throughput
The normalized, long-term saturation throughput 𝜌 can be found as the ratio of
the mean time spent to make a successful transmission and the mean virtual slot

�

� �

�

546 9 Multiple Access

duration, i.e., 𝜌 = ps(n)E[U]∕E[X]. We focus on the BA mode. For n saturated
(always backlogged) stations it is:

𝜌 = n𝜏(1 − 𝜏)n−1E[U]
𝛿 + Toh[1 − (1 − 𝜏)n] +

∑𝓁
i=1 ai[Pi(n) − Pi−1(n)]

(9.128)

In the special case of fixed payload times, U = a1 with probability 1. Equation
(9.128) simplifies to:

𝜌 =
n𝜏(1 − 𝜏)n−1 a1

𝛿 + (Toh + a1)[1 − (1 − 𝜏)n]
(9.129)

The throughput for the RTS/CTS mode is:

𝜌 = n𝜏(1 − 𝜏)n−1E[U]
𝛿 + (Toh,s + E[U])ps(n) + Toh,cpc(n)

(9.130)

For centralized scheduling, neither contention nor back-off are required. Each
transmission is successful, hence

𝜌ideal =
E[U]

Toh + E[U]
(9.131)

We can highlight the close affinity between WiFi CSMA/CA and nonpersistent
CSMA as we have seen in previous sections.

As the number n of stations tends to infinity, while the transmission probability
tends to 0, so that n𝜏 → 𝛼 > 0, we obtain:

𝜌 → 𝜌ideal
𝛼e−𝛼

𝛽 + 1 − e−𝛼
(9.132)

where 𝛽 = 𝛿∕(Toh + a1). Not surprisingly, this is just the expression of the through-
put in case of nonpersistent CSMA with Poisson offered traffic.

To assess the effect of contention on throughput performance we should com-
pare 𝜌 with 𝜌ideal, not with the theoretical upper bound 1. The ideal throughput
𝜌ideal accounts for all overhead involved with the MPDU transmission on the chan-
nel. The overhead can be substantial with typical WiFi parameter values.

Performance of IEEE 802.11g and IEEE 802.11ac DCF in BA mode are shown
in Figure 9.32. Fixed payload lengths are considered, as shown in the plot
legend. Figure 9.32(a) and Figure 9.32(b) plot the saturation throughput of IEEE
802.11g and for IEEE 802.11ac, respectively, as a function of the number n of
stations. Figure 9.32(c) shows the collision probability, which depends only on
the number n of contending stations, the number of retries m, and the con-
tention window sizes. Numerical values of the IEEE 802.11g and IEEE 802.11ac
parameters are listed in Table 9.3. The contention window size, according to
BEB, is Wk = min{CWmax,CWmin ⋅ 2k} for k = 0,… ,m, with CWmin = 16 and
CWmax = 1024.

�

� �

�

9.5 Analysis of the WiFi MAC Protocol 547

0 5 10 15 20

Number of stations, n

0

0.2

0.4

0.6

0.8

1

N
o
rm

a
liz

e
d
 t
h
ro

u
g
h
p
u
t 802.11g-BA L = 100 bytes

L = 500 bytes
L =1500 bytes
L =2304 bytes

(a)

0 5 10 15 20

Number of stations, n

(b)

0 5 10 15 20

Number of stations, n

(c)

0

0.2

0.4

0.6

0.8

1

1.2

N
o
rm

a
liz

e
d
 t
h
ro

u
g
h
p
u
t 802.11ac-BA L = 100 bytes

L = 500 bytes
L = 1500 bytes
L =11454 bytes

0

0.2

0.4

0.6

0.8

1

C
o
lli

s
io

n
 p

ro
b
a
b
ili

ty
,
p

Figure 9.32 Throughput and collision probability as a function of the number n
of stations for fixed payload size. Top-left plot: saturation throughput in case of
IEEE 802.11g standard BA mode. Top-right plot: saturation throughput in case
of IEEE 802.11ac standard BA mode. Bottom plot: collision probability.

Table 9.3 Numerical values of IEEE 802.11g and IEEE 802.11ac DCF parameters.

Parameter Value Parameter Value

Back-off slot, 𝛿 9 μs max retry, m 7
SIFS 16 μs DIFS SIFS+2𝛿
CWmin 16 CWmax 1024
MAC header (g) 34 bytes MAC header (ac) 40 bytes
ACK length (g) 14 bytes ACK length (ac) 32 bytes
bandwidth (g) 20 MHz bandwidth (ac) 40 MHz
overhead time, Toh (g) 136.8 μs overhead time, Toh (ac) 153.9 μs
max payload length (g) 2304 bytes max payload length (ac) 11454 bytes
basic bit rate (g) 6 Mbps basic bit rate (ac) 15 Mbps
air bit rate (g) 54 Mbps air bit rate (ac) 200 Mbps

�

� �

�

548 9 Multiple Access

The normalized throughput is slightly decreasing with the number of stations,
especially for longer payloads, where the weight of collision impacts more the
achievable performance. On the other hand, for small payload lengths, throughput
performance are killed by overhead, even when few stations contend. Improved
throughput performance are obtained in case of IEEE 802.11ac, with the consid-
ered numerical values of the parameters. This is also a consequence of the big-
ger maximum payload length allowed by IEEE 802.11ac and of the possibility to
aggregate several MPDUs in a single access opportunity (we assume 4 aggregated
MPDUs here).

The collision probability is the same for the two considered standard versions.
It has quite high values (beyond 0.2 already for n = 5 stations), thus showing that
collision events are anything but rare in even small WiFi networks.

Throughput and collision probability are shown for a bimodal payload probabil-
ity distribution in Figure 9.33, in case of IEEE 802.11g BA. Figure 9.33(a) plots the
saturation throughput as a function of the number of contending stations, while
the collision probability is shown in Figure 9.33(b).

Payload lengths are a1 = 52 bytes and a2 = 1500 bytes, with q1 = 1∕3 and q2 =
2∕3. This is a model of a case where TCP segments and TCP ACKs are exchanged
over the wireless interface. With the delayed ACK mechanism enabled, one TCP
ACK is issued any other data TCP segment. Therefore, the probability of long pay-
loads is two times the probability of short payloads.

Solid line curves in Figure 9.33 refer to the standard DCF. Dashed lines corre-
spond to optimized DCF, where BEB is disabled and the contention window is
W∗(n) = 2∕𝜏∗(n) − 1, where 𝜏

∗(n) is the transmission probability that maximizes
the throughput for each n (see Sec. 9.5.3.1). The dotted line for throughput is the
ideal throughput achievable when there is no back-off overhead and no collision.

0 20 40 60 80 100

Number of stations, n

0

0.2

0.4

0.6

0.8

1

N
o

rm
a

liz
e

d
 t

h
ro

u
g

h
p

u
t 802.11g - BA

bimodal

DCF
optimized
Ideal

(a)

0

0.2

0.4

0.6

0.8

1

C
o

lli
s
io

n
 p

ro
b

a
b

ili
ty

,
p

802.11g DCF
optimized

0 20 40 60 80 100

Number of stations, n

(b)

Figure 9.33 Saturation throughput (left plot) and collision probability (right plot) as a
function of the number n of stations for bimodal payload size, in case of IEEE 802.11g BA
mode (solid line: DCF; dashed line: optimized DCF; dotted line: ideal scheduling with no
contention).

�

� �

�

9.5 Analysis of the WiFi MAC Protocol 549

It represents the upper bound of throughput, obtained with an ideal scheduler, yet
accounting for transmission overhead.

It can be seen that there is a constant performance offset between the optimized
DCF and the ideal level, which is due to back-off overhead and collisions. The stan-
dard DCF departs more and more from optimized and ideal performance, as the
number of stations grows. This is apparent both from the throughput and collision
probability performance. This is the effect of the growing number of collisions suf-
fered by the standard DCF, where contention window sizes are fixed. The rough
adaptation provided by BEB is inadequate for large WiFi networks. On the other
hand, otpimization requires in principle the knowledge of the number of contend-
ing stations. We will see in Sec. 9.5.3.1 that a practical smart solution can be set
up, by observing the channel and estimating a proxy of the number of contending
stations.

9.5.2.4 Service Times of IEEE 802.11 DCF
Let tj denote the j-th back-off decrement time of the tagged station. Let t(s)j be the
service completion epochs (either with success or failure) as seen by a tagged sta-
tion. The sequence {t(s)j } is obtained by sampling the full sequence {tj}. The j-th
service time for the tagged station is denoted as Θj. Under the Saturation assump-
tion we have Θj = t(s)j − t(s)j−1. At steady state we have Θj ∼ Θ, ∀j.

An example of the service time structure, as a sequence of transmission cycles,
is depicted in Figure 9.34. The top line refers to a successful service time, where
the frame is eventually delivered to the destination after k transmission attempts
(k − 1 failed ones and a successful last one). The bottom line shows a sequence of
m + 1 failed transmission attempts, after which the frame is discarded. Between
two consecutive transmission attempts of the tagged station, countdown takes
place. Either idle back-off slots or other stations’ transmission attempts go by
during the countdown of the tagged station.

A service time Θ is the sum of K + 1 attempts, where K is the number
of re-transmissions (0 ≤ K ≤ m). Given the assumptions of our analysis, we

Tx success

Tx failure

Service time ending with packet discard

Service time ending with success

A transmission attempt

0 1 2

0 1 2

k

m

Figure 9.34 Tagged station service time structure: successful service time in k ≤ m
attempts (top line); unsuccessful service time (bottom line).

�

� �

�

550 9 Multiple Access

have (K = k) = (1 − p)pk for k = 0,… ,m − 1 and (K = m) = pm, where
p = 1 − (1 − 𝜏)n−1 is the collision probability. Each attempt is made up of

● the tagged station countdown time C, during which the tagged station stays idle
and some other station possibly attempts transmission;

● a transmission time Z(U) involving the tagged station, where U is the payload
time of the tagged station frame.

Let Bj denote the number of back-off slots counted on attempt j. According to
the BEB algorithm, it is (Bj = r) = 1∕Wj for r = 0,… ,Wj − 1, j = 0,… ,m. Let X̃
denote the virtual slot time, conditional on the tagged station being on back-off
countdown. X̃ has the same probability distribution as X in Sec. 9.5.2.2, except
that n − 1 stations must be considered. The time required to count down during
the j-th attempt is Cj =

∑Bj

i=1 X̃ij, where X̃ij ∼ X̃ .
Let further Toh,j and Zj(U) denote the overhead time and payload time of the j-th

transmission attempt, respectively. The expression of Zj(U) depends on the out-
come of the transmission. If it is successful, it is simply Zj(U) = U. In case of col-
lision, it is Zj(U) = max{U,U1,… ,UYj

}, where Yj denotes the number of stations
colliding with the tagged one in the j-th transmission attempt (1 ≤ Yj ≤ n − 1).
By construction, Z0(U),… ,ZK−1(U) are payload times of collision events, while
ZK(U) = U is the payload time of the last, successful attempt, if K ≤ m − 1. For
K = m, the last attempt can be either a success or yet another collision. Since that
is the last possible retry, if it fails, the frame is definitely discarded.

With those definitions, we can write

Θ =
K∑

j=0
(Cj + Toh,j + Zj(U)) =

K∑
j=0

⎛⎜⎜⎝
Bj∑

i=1
X̃ij + Toh,j + Zj(U)

⎞⎟⎟⎠ (9.133)

where 0 ≤ K ≤ m,
Let us first address the simpler case where the payload time is fixed, U = a1, and

let us restrict our attention to the BA mode. A transmission time lasts T ≡ Toh + a1,
independently of the number of transmitting stations. Therefore, Zj(U) = a1 and
Toh,j = Toh for all j, irrespective of the outcome of the transmission (success or
collision). From the general expression of Θ, we derive for this special case:

Θ =
K∑

j=0
Cj + (K + 1)Toh + (K + 1)a1 =

K∑
j=0

Cj + (K + 1)T (9.134)

where we let T = Toh + a1 for ease of notation.
The Laplace transform of the PDF of Cj =

∑Bj

i=1 X̃ij is

𝜑Cj
(s) = 1

Wj

Wj−1∑
h=0

[𝜑X̃ (s)]h
, j = 0,… ,m. (9.135)

�

� �

�

9.5 Analysis of the WiFi MAC Protocol 551

where, using the notation pe(n) introduced in eq. (9.127), we have

𝜑X̃ (s) = pe(n − 1)e−s𝛿 + (1 − pe(n − 1))e−s(𝛿+T) (9.136)

Putting all together, the Laplace transform of the PDF of Θ is

𝜑Θ(s) =
m∑

k=0
(1 − p)pke−sT(k+1)

k∏
j=0

𝜑Cj
(s) + pm+1e−sT(m+1)

m∏
j=0

𝜑Cj
(s) (9.137)

More complex expressions hold in case of variable payload size. We introduce
the random variable

Ak =

⎧⎪⎪⎨⎪⎪⎩
U k = 0,∑k−1

j=0 Zj(U) + U k = 1,… ,m∑m
j=0 Zj(U) k = m + 1.

(9.138)

where Zj(U) corresponds always to collision events. We can now write the expres-
sion of Θ more compactly:

Θ =
K∑

j=0
Cj +

K∑
j=0

Toh,j + AK+𝜖K
(9.139)

where 𝜖K = 1 if and only if K = m and the last retransmission fails, otherwise it is
𝜖K = 0. The expression of eq. (9.137) generalizes to:

𝜑Θ(s) =
m∑

k=0
(1 − p)pkΦk(s)

k∏
j=0

𝜑Cj
(s) + pm+1Φm+1(s)

m∏
j=0

𝜑Cj
(s) (9.140)

where

Φk(s) =

{
e−sToh(k+1)

𝜑Ak
(s) BA mode ,

e−skToh,c e−sToh,s𝜑A1
(s) RTS/CTS mode .

(9.141)

for k = 0,… ,m, and

Φm+1(s) =

{
e−sToh(m+1)

𝜑Am+1
(s) BA mode ,

e−sToh,c(m+1) RTS/CTS mode .

(9.142)

The Laplace transform of the PDF of the random variable Ak is

𝜑Ak
(s) =

⎧⎪⎨⎪⎩
∑𝓁

i=1 qie−ais[gi(s)]k k = 0,… ,m,∑𝓁
i=1 qi[gi(s)]m+1 k = m + 1.

(9.143)

with

gi(s) =
𝓁∑

j=1
e−smax{ai ,aj}

Pj(n − 1) − Pj−1(n − 1)
p

(9.144)

�

� �

�

552 9 Multiple Access

0 10 20 30

Normalized time

10−3

10−2

10−1

100

C
C

D
F

 o
f

s
e

rv
ic

e
 t

im
e

802.11ac–BA

n = 2

n = 5

n =10

Figure 9.35 CCDF of service time.
Time is normalized with respect to
the mean service time E[Θ] (for the
three curves it is E[Θ] = 0.55 ms,
1.43 ms, 3.05 ms for n = 2, 5, 10,
respectively).

where Pj(n − 1) = (1 − 𝜏 + 𝜏Qj)n−1, for j = 0,… ,𝓁. Obviously, the Laplace trans-
form of the PDF of X̃ must be modified as well, i.e., it is:

𝜑X̃ (s) = pe(n − 1)e−s𝛿 +
𝓁∑

i=1
e−sai [Pi(n − 1) − Pi−1(n − 1)] (9.145)

Inversion of the Laplace transform can be accomplished numerically (see the
Appendix at the end of the book). The CCDF of the service time is plotted in
Figure 9.35 for n = 2, 5, 10 stations, in the case of IEEE 802.11ac for fixed payload
size of 1500 bytes. Time is normalized with respect to the mean service time E[Θ].
It is E[Θ] = 0.55 ms, 1.43 ms, 3.05 ms for n = 2, 5, 10, respectively.

As the number of contending stations grows, the tail of the CCDF becomes heav-
ier. For n = 10, the service time exceeds about 10 times the mean service time
with probability 0.01. In other words, the 99-quantile of the service time is about
10 ⋅ E[Θ] ≈ 30 ms. Such a large delay may affect adversely real-time services, e.g.,
VoIP and streaming. From this picture of the CCDF of the service time we expect
high variability of service time (jitter).

Moments can be found by derivation of the Laplace transform of the PDF of Θ.
For a random variable V with Laplace transform of the PDF given by 𝜑V (s), the
mean is given by −𝜑′

V (0), while the variance equals 𝜑′′
V (0) − [𝜑′

V (0)]
2

The mean service time is

E[Θ] =
m∑

k=0
(1 − p)pkΘ(k) + pm+1Θ(m + 1) (9.146)

where:

Θ(k) =
⎧⎪⎨⎪⎩
(k + 1)Toh + E[Ak] + E[X̃]

∑k
j=0

Wj − 1
2

k = 0,… ,m

(m + 1)Toh + E[Am+1] + E[X̃]
∑m

j=0

Wj − 1
2

k = m + 1
(9.147)

�

� �

�

9.5 Analysis of the WiFi MAC Protocol 553

The mean service time is tied to the saturation throughput of the tagged sta-
tion. Let 𝜆1 be the successfully delivered frame rate of the tagged station. We have
𝜆1 = (1 − pm+1)∕E[Θ], since pm+1 is the probability that the frame is ultimately
dropped, after m + 1 unsuccessful transmission attempts. On the other hand, the
mean throughput rate of the tagged station can also be written as 𝜆1 = (𝜌∕E[U])∕n.
Therefore, we have

E[Θ] =
(1 − pm+1)E[U]n

𝜌
(9.148)

The variance of service times can be calculated as soon as we know the second
moment, since 𝜎2

Θ = E[Θ2] − E[Θ]2. As for the second moment of the service time,
we have:

E[Θ2] =
m∑

k=0
(1 − p)pk(Θ(k)2 + 𝜎

2
Ak
) + pm+1(Θ(m + 1)2 + 𝜎

2
Am+1

)+

+ 𝜎
2
X̃

m∑
k=0

pk Wk − 1
2

+ E[X̃]2
m∑

k=0
pk

W2
k − 1
12

(9.149)

Mean and variance of the random variable Ak can be calculated from its Laplace
transform, for k = 0,… ,m.

In the special case of fixed payload size, E[Ak] = (k + 1)a1 and 𝜎Ak
= 0,∀k. More-

over, it is:{
E[X̃] = 𝛿 + (Toh + a1)[1 − pe(n − 1)]

𝜎
2
X̃
= (Toh + a1)2pe(n − 1)[1 − pe(n − 1)]

(9.150)

It is seen that the source of jitter in the service times lies in repeated transmission
attempts, in case of collision, and in the randomized countdown, hence on the
contention window sizes. While the former component cannot be removed, the
latter one can be greatly reduced by optimizing the contention window sizes. We
will see instead that BEB entails a large jitter.

The coefficient of variation (COV) CΘ ≡ 𝜎Θ∕E[Θ] of the service time is plotted
against the number of stations in Figure 9.36 in case of IEEE 802.11ac (see
Table 9.3 for the numerical values of the parameters). Payloads lengths are
uniformly distributed over the set {80, 1500, 9000, 11454} bytes. Aggregation of
4 MPDUs is assumed at each transmission opportunity. Payload lengths of the
aggregated MPDUs are selected independently of one another.

We select just one example, since it turns out that the COV curves are largely
insensitive to assumptions on payload lengths and DCF parameter values, except
of the contention window sizes. The dominant term in the service time variance is
by far the contribution due to contention windows (the last sum in the right-hand
side of eq. (9.149)).

�

� �

�

554 9 Multiple Access

0 20 40 60 80 100

Number of stations, n

0

0.5

1

1.5

2

2.5

3

C
O

V
 o

f
s
e

rv
ic

e
 t

im
e

s

802.11ac–BA

uniform

DCF

optimized

Figure 9.36 COV of service times as
a function of the number n of
stations for uniformly distributed
payload size, in case of IEEE
802.11ac basic access (solid line:
DCF; dashed line: optimized DCF).

As seen in Figure 9.36, CΘ is well beyond 1, denoting a significant jitter of service
time induced by BEB. The COV peaks around few tens of contending stations. This
is explained as follows. When few stations contend, the collision probability is low
and service times consist of one or few attempts. Thus only the smaller contention
windows are used. On the contrary, when a large population of stations shares the
channel, the variability of the service times is capped by the limited number of
retries allowed by DCF.

The dashed line in Figure 9.36 corresponds to optimized DCF, i.e., the trans-
mission probability is chosen so as to maximize the saturation throughput, for
each given number of stations. When DCF is optimized, BEB is disabled and the
contention window is set to W∗(n) = 2∕𝜏∗(n) − 1, where 𝜏

∗ = 𝜏
∗(n) is the optimal

transmission probability, which is a function of n. It is apparent that removing BEB
reduces the jitter of service time drastically. This brilliant result is achieved pro-
vided that the optimal transmission probability is set for each given value of n. In
a practical implementation, estimating the number of contending stations is diffi-
cult. However, we will see that it is possible to estimate a proxy of the number of
stations and that is enough to achieve (almost) optimal performance. A practical
approach in this sense is offered by Idle Sense (see Sec. 9.5.3.1).

9.5.2.5 Correlation between Service Times
We have assumed service times of a tagged station form a renewal process.
In this section we explore the correlation among service times, showing that
it is generally weak enough that it can be neglected with little harm. To this
end, we resort to simulations. We consider the IEEE 802.11ac standard DCF
with BA mode (see Table 9.3 for parameter values). The payload size is uni-
formly distributed across the values obtained by considering different packet
lengths and nine code and modulation set values. Assuming a radio channel
of 40 MHz and short-prefix OFDM symbols, ten air bit rates are possible:
15, 30, 45, 60, 90,120, 135,150, 180,200 Mbit/s. Frame payload lengths take one

�

� �

�

9.5 Analysis of the WiFi MAC Protocol 555

of the following values: 80, 1500, 9000, 11454 bytes. MAC frame aggregation is
used: a station winning the channel sends 4 MAC PDUs. Combining payload
lengths with air bit rates, overall we find 𝓁 = 35 different values of the payload
times ai. We assume a uniform probability distribution for these values, i.e.,
qi = 1∕𝓁, i = 1,… ,𝓁.

We estimate Pearson’s correlation coefficient between service times via simula-
tions. The coefficient at lag k is denoted with r(k). For a sample of n service times
𝜃j, j = 1,… ,n, the correlation coefficient is:

r(k) = 1
n − k − 1

n−k∑
h=1

𝜃h − 𝜃

s
𝜃

𝜃h+k − 𝜃

s
𝜃

(9.151)

where 𝜃 and s
𝜃

are estimates of the mean and of the standard deviation of the
service times. At k = 0 we have r(0) = 1. For all other lags k, it is |r(k)| ≤ 1, the
smaller being |r(k)| the weaker the correlation among the samples.

Figure 9.37(a) plots the values of Pearson’s coefficient r(k) for k ranging between
0 and 20, for a number of sources ranging from n = 1 up to n = 20.

Simulation results indicate that service times are essentially uncorrelated. The
absolute value of the coefficient r(k) is smaller than 0.0547 for all k ≥ 2 and for all
values of n between 1 and 20. As for lag 1, we have −0.0243 ≤ r(1) ≤ 0.0202 for n
ranging from 1 to 20. We see that we make a minor approximation considering the
sequence of the service times of a tagged station as a renewal process.

A sample path of the service counting function is shown in Figure 9.37(b). The
high variability of service times is evident from this sample path: sequences of
relatively small service times (steep climb of the curve) alternate with very long
service times (plateaus of the counting function).

0 5 10 15 20

lag, k

0

0.2

0.4

0.6

0.8

1

P
e
a
rs

o
n
’s

 c
o
e
ff
ic

ie
n
t,
 r

(k
) 802.11ac–BA

(a)

0 1 2 3 4 5

Time (s)

0

20

40

60

80

100

S
e
rv

ic
e
 c

o
u
n
t

802.11ac–BA

(b)

Figure 9.37 Simulation of WiFi DCF for IEEE 802.11ac BA mode with uniformly
distributed payload times. Left plot: Pearson’s correlation coefficient between service
times. Right plot: counting function of service times of a tagged station.

�

� �

�

556 9 Multiple Access

9.5.3 Optimization of Back-off Parameters

We consider two optimization problems:

● Maximization of throughput
● Minimization of service time variance (jitter)

In both cases we adjust the back-off parameter 𝜏 (or, equivalently, the contention
window size W) to attain the optimization target. In the rest of this section we use
a superscript DCF to denote parameter values set according to the standard.

9.5.3.1 Maximization of Throughput
We can write the saturation throughput of a set of n stations, under the hypotheses
laid down in previous sections, as:

𝜌 = 𝜌ideal
ps(Toh + E[U])

𝛿 + ps(Toh + E[U]) + pcTc
(9.152)

where Tc is the (average) duration of the collision event, ps = n𝜏(1 − 𝜏)n−1 is the
success probability, pe = (1 − 𝜏)n is the probability of an idle back-off slot, and
pc = 1 − pe − ps is the collision probability.

Since it is difficult to give an accurate value to the collision duration, which
depends on many parameters of the physical and MAC layers, we lower bound
the throughput, by substituting Tc with an upper bound Tc,max of the collision
duration, e.g., the maximum value of the transmission opportunity, which is a
well-defined parameter for each specific 802.11 version. We will maximize the
lower bound �̃� of the throughput. To that end, we can minimize the following cost
function:

𝜌ideal

�̃�
= 1

ps

𝛿

Toh + E[U]
+ 1 +

pc

ps

Tc,max

Toh + E[U]
(9.153)

as a function of 𝜏. Removing additive terms that do not depend on 𝜏 and scaling
the function by a positive constant, we can verify that the function to be minimized
depends only on 𝜏, n and on the nondimensional parameter 𝜂 = 1∕(1 + 𝛿∕Tc,max).
Representative values for 𝜂 are 𝜂 ≈ 0.9697 for IEEE 802.11g and 𝜂 ≈ 0.9955 for
IEEE 802.11ac.

Setting to zero the first derivative of (9.153) with respect to 𝜏, we find that the
optimal value of 𝜏 must satisfy:

𝜂(1 − 𝜏)n = 1 − n𝜏 (9.154)

A simple study of the functions of 𝜏 appearing on the two sides of (9.154) shows
that there exists a unique solution 𝜏

∗ ∈ (0, 1). The quantity 𝜏
∗ is a function of

the number of stations n. Once 𝜏
∗ is known, the corresponding optimal size of

the contention window is W∗ = 2∕𝜏∗ − 1. This identity follows from the fixed

�

� �

�

9.5 Analysis of the WiFi MAC Protocol 557

0 0.2 0.4 0.6 0.8 1

Probability of tx, τ

0

0.1

0.2

0.3

0.4

0.5

0.6

N
o

rm
a

liz
e

d
 t

h
ro

u
g

h
p

u
t,

 ρ

802.11g–BA L =1500 bytes

n = 4

(a)

100 101 102

Number of stations, n

10−3

10−2

10−1

100

P
ro

b
a

b
ili

ty
 o

f
tx

,
τ

802.11g–BA

L =1500 bytes

Optimal
DCF

(b)

Figure 9.38 Left plot: throughput as a function of 𝜏 for n = 4 stations and fixed payload
size; the dot mark corresponds to the throughput of IEEE 802.11g standard. Right plot:
probability of transmission 𝜏 as a function of the number of stations n: comparison
between optimized (solid line) and standard (dashed line) values.

point equations (9.115), if we use the same window size at any (re)transmission
stage, i.e., b0 = · · · = bm = (W∗ + 1)∕2. Note that optimizing the contention
window sizes for maximum throughput automatically implies that BEB should
be removed. In fact, BEB is but a rough attempt to adapt the contention window
size to the contetion level in the network. Note also that the optimization requires
the knowledge of the number n of contending stations.

To grasp the relationship between the standard DCF mode of operation (BEB)
and the optimized contention window size, Figure 9.38(a) shows the through-
put for n = 4 as a function of 𝜏. The dot marks the throughput level of IEEE
802.11g.

The value of 𝜌 as a function of 𝜏 has the bell shape typical of CSMA-like proto-
cols. There is clearly an optimal value of 𝜏. The standard DCF (circle marker) gets
quite close to the optimum in this case (n = 4 stations, IEEE 802.11g parameters,
fixed payload length equal to 1500 bytes).

However, the standard DCF may depart signficantly from the optimal working
point as hinted by Figure 9.38(b), where the optimal value 𝜏

∗ is compared to 𝜏
DCF

resulting from DCF, as a function of n for IEEE 802.11g and a fixed payload length
of 1500 bytes.

It can be seen from Figure 9.38(b) that 𝜏DCF is far from 𝜏
∗, except around a spe-

cific value of n (n = 3 in this case). This is no exception. It can be verified that, as
we vary the payload length from few tens of bytes up to few thousands of bytes,
the number of stations for which 𝜏

DCF ≈ 𝜏
∗ lies between n = 2 and n = 4. The gap

between 𝜏
∗ and 𝜏

DCF widens as n grows.
Remarkably, 𝜏∗ is inversely proportional to n (Figure 9.38(b) has a log-log scale),

i.e., we have 𝜏∗ ≈ 𝛼(n)∕n, where 𝛼(n) solves the equation 𝜂(1 − 𝛼∕n)n = 1 − 𝛼. The

�

� �

�

558 9 Multiple Access

Table 9.4 Optimal parameter values in the limit for n → ∞.

Symbol IEEE 802.11g IEEE 802.11ac

𝜂 0.9697 0.9955
𝛼
∗ 0.2278 0.0918

𝜏
∗ 0.2278∕n 0.0918∕n

W∗ 7.75 ⋅ n 21.8 ⋅ n
N

∗
e,∞ 3.91 10.40

inverse proportion dependence of 𝜏∗ on n suggests that 𝛼(n) depends weakly on n.
In the limit for n → ∞, we obtain 𝜂e−𝛼 = 1 − 𝛼. Hence, we have 𝜏

∗ ≈ 𝛼
∗∕n, where

𝛼
∗ is the unique root of 1 − 𝛼 = 𝜂e−𝛼 in the interval (0, 1). Solving for the example

value of 𝜂 of IEEE 802.11g, we obtain 𝛼
∗ ≈ 0.2278. In case of IEEE 802.11ac, we

get 𝛼∗ ≈ 0.0918. The corresponding optimal window sizes are W∗ = 2n∕𝛼∗ − 1 ≈
7.75 ⋅ n for IEEE 802.11g and W∗ ≈ 21.8 ⋅ n for IEEE 802.11ac.

A small implementation detail is that the optimal contention window size is
noninteger in general. This can be dealt with by assuming that each time a new
value of the back-off counter is drawn, which must be uniformly distributed
over [0,W − 1] with ⌈W⌉ ≠ ⌊W⌋, first the contention window size is rounded
randomly, i.e., it is set to ⌊W⌋ with probability ⌈W⌉ − W , otherwise it is set
to ⌈W⌉.

All stations need to do is to adjust their contention window sizes in an optimal
way. We could achieve this result, if the number of contending stations on the IEEE
802.11 channel were known. This is by no means a trivial task. However, we do
not need really to estimate n, rather we can use a proxy of n. As a matter of fact, to
make this theory applicable to a practical network, we need an observable quantity
that is directly related to the optimal 𝜏. We now elaborate such a quantity.

An idle back-off slot appears with probability pe, hence the mean number of
consecutive idle back-off slots is Ne = pe∕(1 − pe) = (1 − 𝜏)n∕[1 − (1 − 𝜏)n]. At the
optimum point, it is N

∗
e = (1 − 𝜏

∗)n∕[1 − (1 − 𝜏
∗)n], which is a function of n. It

turns out that, for a given value of 𝜂, N
∗
e is weakly dependent on n and converges

quickly to the asymptotic value for n → ∞. Since 𝜏
∗ ∼ 𝛼

∗∕n, it is N
∗
e ≈ N

∗
e,∞ =

1
e𝛼∗−1

. With the numerical example numbers we are using, it is N
∗
e,∞ ≈ 3.9 for IEEE

802.11g and N
∗
e,∞ ≈ 10.4 for IEEE 802.11ac. The optimal parameter values in the

limit for n → ∞ are summarized in Tab. 9.4.
The key point is that if the throughput is optimized, the average number of

idle back-off slots separating two successive transmission attempts must equal Ne.

�

� �

�

9.5 Analysis of the WiFi MAC Protocol 559

Algorithm Pseudo-code of Idle Sense [95, 102].

1: maxtx ← 5; sum ← 0; ntx ← 0;
2: After each transmission on the channel do:
3: Ne ← number of idle slot preceding tx
4: sumtx ← sumtx+Ne;
5: ntx ← ntx+1;
6: if ntx >= maxtx then
7: N̂e ← sum/ntx;
8: sum ← 0
9: ntx ← 0

10: end if
11: if N̂e < Ne,tgt then
12: CW ← CW + 𝜆;
13: else
14: CW ← 𝜇 ⋅ CW ;
15: end if
16: if |N̂e − Ne,tgt| < Δ then
17: maxtx ← CW∕𝛾 ;
18: else
19: maxtx ← 5;
20: end if

In turn, Ne depends only weakly on n, hence we can compare the value of Ne
estimated from wireless channel observations with the target value N

∗
e,∞ for any n.

This is the theoretical ground that the Idle Sense algorithm is based on [95, 102].
The idea of the Idle Sense algorithm is to adjust the contention window size as

follows:

● If Ne > N
∗
e,∞ is observed, then too many idle back-off slots are left over by

the contending stations, hence they should become more aggressive, which is
obtained by reducing the contention window size.

● If Ne < N
∗
e,∞ is observed, stations are being too aggressive, since too few idle

back-off slots separate two consecutive transmissions. Therefore, the contention
window size should be increased.

This basic idea is implemented according to an additive increase, multiplicative
decrease (AIMD) approach. The contention window size is increased by adding a
constant increment, while it is decreased multiplying by a factor less than 1. The
algorithm is completed by adaptive adjustment of the number of samples used to
estimate Ne.

The algorithm listed above reproduces the algorithm proposed in [95], based on
the theory developed in [102] and recalled above. In [102] the authors suggest the
following parameter value set for IEEE 802.11g: Ne,tgt = 3.91, 𝜆 = 6, 𝜇 = 1∕1.0666,
Δ = 0.75, 𝛾 = 4.

�

� �

�

560 9 Multiple Access

0 200 400 600 800 1000

Number of stations, n

10−2

10−1

100

C
o

lli
s
io

n
 p

ro
b

a
b

ili
ty

802.11ac–BA DCF

IdleSense

(a)

20 22 24 26 28 30

Time (s)

0

50

100

150

200

C
o

n
te

n
ti
o

n
 w

in
d

o
w

 s
iz

e

n = 10

802.11ac–BA

(b)

Figure 9.39 Left plot: probability of collision as a function of the number of stations,
comparison between Idle Sense and DCF. Right plot: time evolution of the contention
window of a tagged station running the Idle Sense algorithm (n = 10 stations).

The collision probability resulting from Idle Sense algorithm is compared with
DCF in Figure 9.39 against the number of stations (left plot). The time evolution
of the contention window size of a tagged station is plotted as well (right plot).

Not only does Idle Sense achieve a collision probability level one order of mag-
nitude smaller than the standard DCF; it also manages to maintain the collision
probability essentially insensitive to the growing number of contending stations.
The fluctuations of the contention window size of a tagged station are seen to be
relatively limited. The optimal contention window size hovers around 200, much
bigger than the default base contention window, which is 16, yet much smaller
than the maximum contention window according to the standard DCF (1024). It
is apparent that the rough contention window size adjustment attempted by BEB
falls short of bringing the system to work at an optimal regime. Note however that
the adaptive optimization introduced by the Idle Sense algorithm requires setting
a number of parameters. A critical one is the threshold on the average number
of idle back-off slots between two consecutive transmissions. The threshold that
corresponds to the maximum throughput for the given network depends on all
variables influencing the throughput, namely the probability distribution of pay-
loads and the details of the frame format and control frames of the specific brand
of IEEE 802.11.

The throughput achieved by Idle Sense is compared with DCF throughput and
ideal throughput as a function of n in Figure 9.40 for the IEEE 802.11ac and in
Figure 9.41 for the IEEE 802.11g. Idle Sense guarantees highly stable performance
levels in spite of large excursion of the number of contending stations (three
orders of magnitude, from 1 to 1000). On the contrary, DCF performance decay
as n grows. There is still a gap between the constant level of throughput achieved
by Idle Sense and the ideal throughput. The gap is entirely due to collisions. To

�

� �

�

9.5 Analysis of the WiFi MAC Protocol 561

0 5 10 15 20

Number of stations, n

0

0.2

0.4

0.6

0.8

1

N
o

rm
a

liz
e

d
 t

h
ro

u
g

h
p

u
t

802.11ac–BA

DCF
IdleSense
Ideal

(a)

0 200 400 600 800 1000

Number of stations, n

0

0.2

0.4

0.6

0.8

1

N
o

rm
a

liz
e

d
 t

h
ro

u
g

h
p

u
t

802.11ac–BA

DCF
IdleSense
Ideal

(b)

Figure 9.40 Throughput as a function of the number of stations for IEEE 802.11ac:
comparison between DCF, Idle Sense and the ideal value.

0 5 10 15 20

Number of stations, n

0

0.2

0.4

0.6

0.8

1

N
o

rm
a

liz
e

d
 t

h
ro

u
g

h
p

u
t

802.11g–BA

DCF
IdleSense
Ideal

(a)

0 200 400 600 800 1000

Number of stations, n

0

0.2

0.4

0.6

0.8

1

N
o

rm
a

liz
e

d
 t

h
ro

u
g

h
p

u
t

802.11g–BA

DCF
IdleSense
Ideal

(b)

Figure 9.41 Throughput as a function of the number of stations for IEEE 802.11g:
comparison between DCF, Idle Sense, and the ideal value.

improve further the multiple access performance calls for a structural change of
the contention mechanism (e.g., see [20, 21]).

Besides Idle Sense, several algorithms have been devised to estimate n and hence
adapt the random access parameters of CSMA/CA (e.g. see [34, 202, 116]), show-
ing that accurate and fast estimation of n, i.e., of the number of stations actually
contending for the channel, is possible in infra-structured WLANs.

9.5.3.2 Minimization of Service Time Jitter
We can search for the contention window sizes that minimize the COV of the ser-
vice time for a given saturation throughput.

There is an optimal value 𝜏
∗ that yields the maximum throughput 𝜌∗ ≡ 𝜌(𝜏∗).

The function 𝜌(𝜏) is strictly increasing for 𝜏 ∈ [0, 𝜏∗] from 0 up to 𝜌
∗ and strictly

�

� �

�

562 9 Multiple Access

decreasing for 𝜏 ∈ [𝜏∗, 1] from 𝜌
∗ down to 0. In the following we consider the two

intervals separately, so that we can deal with 𝜌(𝜏) as an invertible function under
the restriction 𝜏 ∈ [0, 𝜏∗] or 𝜏 ∈ [𝜏∗, 1]. With this convention, requiring that 𝜌 takes
a given value yields a unique value of 𝜏, hence also of p and E[Θ], for fixed val-
ues of n and E[U]. Therefore, minimizing the jitter of the service time for a given
throughput, i.e., min{CΘ} for 𝜌 = 𝜌0, is equivalent to minimizing E[Θ2] for 𝜌 = 𝜌0.

Since 𝜏 and p are given, eq. (9.113) implies that the contention window sizes
must satisfy

m∑
k=0

pkWk =
(2
𝜏
− 1

) m∑
k=0

pk (9.155)

We compare the following two approaches.

● Stick to the standard DCF and maintain BEB, i.e., contention window sizes grow
geometrically with the retransmission stage.

● Give up to BEB and pursue the minimization of E[Θ2] given 𝜌, with the only
constraint that the contention window sizes form a nondecreasing sequence.

In the first case, we develop the DCF-compliant trade-off of the jitter of service
time against the throughput. The degrees of freedom to realize the trade-off are
the contention window sizes W0,… ,Wm, under the constraint (9.155) for a given
𝜌, hence a given 𝜏. Let {WDCF

k }0≤k≤m denote the default contention window sizes
of the DCF standard. Maintaining BEB implies that we can change window sizes
only by scaling them by a common factor, i.e., Wk = 𝜁WDCF

k for k = 0,… ,m. The
constraint (9.155) implies that the scale factor 𝜁 must satisfy

𝜁 =
(2∕𝜏 − 1)

∑m
k=0 pk∑m

k=0 pkWDCF
k

=
2∕𝜏 − 1

2∕𝜏DCF − 1
(9.156)

where 𝜏
DCF is the transmission probability with the standard parameter values of

DCF. The trade-off jitter-throughput is obtained with the following steps

1. For a given throughput 𝜌0 ∈ (0, 𝜌∗)find the unique value of 𝜏 ∈ [0, 𝜏∗] such that
𝜌(𝜏) = 𝜌0.

2. Find the contention windows scaling factor 𝜁 by using (9.156) for the given 𝜏.
3. Evaluate E[Θ2] for the given 𝜏, with the contention window sizes Wk = 𝜁WDCF

k
for k = 0,… ,m.

This procedure yields one branch of the throughput-jitter trade-off curve. The
entire procedure can be repeated only modifying the first step, by restricting 𝜏 ∈
[𝜏∗, 1]. This way, we get the other branch of the trade-off curve.

The second approach aims at minimizing the service time jitter for a given
throughput. Since the mean service time is constrained, minimizing the jit-
ter amounts to minimize E[Θ2]. Recalling (9.149), we reckon that E[Θ2] is a

�

� �

�

9.5 Analysis of the WiFi MAC Protocol 563

quadratic form in the variables Wk, k = 0,… ,m. By accounting for the constraint
(9.155), minimizing E[Θ2] is equivalent to minimizing the function

f (W) ≡ c +
m∑

k=0
(1 − p)pkΘ(k)2 + pm+1Θ(m + 1)2 + E[X̃]2

m∑
k=0

pk
W2

k − 1
12

(9.157)

where W ≡ [W0,W1,… ,Wm], the Θ(k) are given in eq. (9.147), and c does not
depend on the contention window sizes.

It is apparent that W0 ≤ W1 ≤ · · · ≤ Wm implies that to minimize f (W) it is nec-
essary and sufficient that Wk = W0, k = 1,… ,m, i.e., all contention window sizes
must have the same value. The common size of the contention windows follows
from the constraint (9.155): it equals W0 = 2∕𝜏 − 1.

The argument above shows that the service time jitter is minimized by setting all
contention windows to a same size, under the joint constraint that the saturation
throughput be assigned a given value and that the contention window sizes form
a nondecreasing sequence. This result sheds some light on the BEB mechanism,
pointing out that it hinders smooth service of MAC frames, while gaining nothing
from the throughput side.

As a numerical example, let us consider an IEEE 802.11ac network, whose
parameters are listed in Table 9.3. The payload length has the same distribution
and parameter values as in the example of Figure 9.36.

Figure 9.42 shows the trade-off between the COV of service time CΘ ≡ 𝜎Θ∕E[Θ]
and the throughput, for n = 2, 5, 10,100 stations, from top-left to right-bottom.
Solid lines refer to the DCF-compliant trade-off, with contention window sizes
scaled by the factor 𝜁 . Dashed lines correspond to the selection of contention
window sizes that minimizes service time jitter for any given throughput level.
To minimize the service time jitter, we set the contention windows all equal to a
same value, 2∕𝜏 − 1, where 𝜏 is set according to the desired throughput. The lower
branch of the curves is obtained for 𝜏 ∈ [0, 𝜏∗]. The upper branch is obtained for
𝜏 ∈ [𝜏∗, 1]. The two branches join where the throughput is maximum. The black
dot marks the trade-off of the standard DCF (nominal values of the contention
window sizes).

The best regime lies in the right-bottom corner of the diagram: low jitter, high
throughput. The standard DCF achieves the optimal working point only for n = 2.
If window sizes are not dimensioned properly for the given n, it can depart signifi-
cantly from the optimal regime, both because of high service time variability, even
for as few as five stations, or because of low throughput, e.g., for very crowded net-
works (n = 100). Only for n = 2 does DCF attain the best possible working point.

Giving up BEB, and setting the contention window sizes all to the same value
yields a much better trade-off, especially from the point of view of service time vari-
ability. The resulting COV never exceeds 1. It turns out that the trade-off curve has

�

� �

�

564 9 Multiple Access

0 0.2 0.4 0.6 0.8

Normalized throughput, ρ

0

0.5

1

1.5

2

C
O

V
 o

f
s
e
rv

ic
e
 t
im

e
,
C
𝝝 802.11ac–BA

n = 2

(a)

0 0.2 0.4 0.6 0.8

Normalized throughput, ρ

0

0.5

1

1.5

2

2.5

3

C
O

V
 o

f
s
e
rv

ic
e
 t
im

e
,
C
𝝝 802.11ac–BA

n = 5

(b)

(c) (d)

0 0.2 0.4 0.6 0.8

Normalized throughput, ρ

0 0.2 0.4 0.6 0.8

Normalized throughput, ρ

0

0.5

1

1.5

2

2.5

3

C
O

V
 o

f
s
e
rv

ic
e
 t
im

e
,
C
𝝝 802.11ac–BA

n = 10

0

1

2

3

4
C

O
V

 o
f
s
e
rv

ic
e
 t
im

e
,
C
𝝝 802.11ac–BA

n = 100

Figure 9.42 Trade-off between COV of service time and throughput for IEEE 802.11ac.
Payload lengths are uniformly distributed over values ranging from 80 up to 11454 bytes
per MPDU. The black dot marks the working point of standard DCF.

a narrow cusp around the maximum throughput point. As the contention window
size moves off the optimal value, the achieved throughput departs sharply from its
maximum. This points out that the optimal transmission probability (or, equiva-
lently, the optimal contention window size) must be matched quite accurately to
maximize the saturation throughput. The optimal values of the contention win-
dow size are W∗ = 25, 80,170, 1817, for n = 2, 5, 10,100, respectively. As we move
away from W∗ the achieved throughput level falls off rapidly, while the service
time jitter does not vary sensitively.

Interestingly, we can conclude that BEB entails a less favorable trade-off than
setting a unique (suitably chosen for each given number n of stations) contention
window size. The jitter of the service time can be minimized without loss of
throughput, by choosing the contention window size W∗ for all retransmission
stages. In other words, setting the contention window to W∗ achieves the maxi-
mum possible throughput and, for that throughput level, minimizes the service

�

� �

�

9.5 Analysis of the WiFi MAC Protocol 565

time jitter. That W∗ is exactly the optimal contention window size that the Idle
Sense algorithm tends to.

9.5.4 Fairness of CSMA/CA

We devote this last section on WiFi to fairness. This concept addresses the way
stations share the capacity of the channel among them.

A first nontrivial point is to state what we mean precisely with fairness. Given a
fixed capacity link, sharing it fairly brings naturally to our minds that each station
should get a same share of the overall available capacity. Things become imme-
diately less crisp as soon as we consider individual limitations on the competing
stations. For example, with wireless channels, stations may experience different
channel quality. Or they could use different standard versions, with different capa-
bilities. Or they could offer traffic flows with different parameters (e.g., a file trans-
fer with large packets, 1500 byte long, versus a VoIP flow with short packets, 80
byte long).

All those examples entail that it is not necessarily possible or wise to impose that
each contending station get a same share of the overall capacity. There could even
not exist such a concept as “the link capacity,” i.e., not a unique value for all sta-
tions. Therefore, besides equal shares fairness (the so called output fairness), other
types of fairness have been defined (e.g., max-min fairness, proportional fairness;
see Chapter 10).

Three issues need be considered.

● Long-term fairness: Do stations get an equal share of the channel capacity over a
time horizon much longer than the frame transmission time (ideally, extending
to infinity)?

● Short-term fairness: Do stations manage to access the channel regularly on time
scales comparable with the frame transmission time?

● Priority handling, scheduling: How is it possible to assign different shares of
capacity to stations?

In the context of WiFi, we will first show that a CSMA/CA network is long-term
fair in the sense of transmission opportunities, under the proximity, symmetry and
saturation assumptions. A transmission opportunity occurs when a station wins
the channel for transmitting its own data frames. According to the IEEE 802.11
MAC, a station can send up to some amount of bytes or maintain the use of the
channel up to some maximum time. Those limits define the extent of the transmis-
sion opportunity. A station heavily loaded with traffic will exploit all of its allowed
time and bytes on each opportunity, whereas a lightly loaded station could possibly
only send short messages, when it gets the use of the channel.

�

� �

�

566 9 Multiple Access

We can show that WiFi is fair in the sense that it guarantees that a same fraction
of the transmission opportunities is granted to each contending station asymp-
totically, as the observed time horizon tends to infinity. This holds provided that
stations are continuously backlogged (saturation), that they can hear each other
(proximity) and that they use the same values of the access parameters (symme-
try). This result does not imply at all that stations get a same throughput (unless
their frames have statistically identical lengths, air bit rates are the same, radio
channels have the same characteristics).

Let us start by showing the following.

Theorem 9.1 An isolated WiFi network is long-term fair in terms of transmis-
sion opportunities under the proximity, saturation and symmetry assumptions.

Proof: Let us consider a tagged station. Let J denote the number of other sta-
tions being served between two successful service events of the tagged station. We
restrict here our attention only to successful service events.

Other stations can perform successful transmission during the tagged station
countdown. The number G of successful transmissions of other stations when
the tagged station counts down a back-off B extracted from the interval [0,W − 1]
uniformly at random has a probability distribution (G = j) = gj, j = 0,… ,W − 1.
Conditional on B = h, gj is a Bernoulli probability distribution. The generating
function of G is given by

𝜙G(z) =
1

W

W−1∑
h=0

[1 − ps(n − 1) + ps(n − 1)z]h (9.158)

where ps(n − 1) = (n − 1)𝜏(1 − 𝜏)n−2 (n ≥ 2) is the success probability of the other
n − 1 stations, when the tagged one is forced idle by the countdown.

Let Gk denote the random variable G when the contention window size is
W = Wk, k = 0,… ,m. Let K denote the number of retransmissions of the
tagged station, until a successful frame delivery is achieved. Note that there
could be frames discarded because the maximum number of retries is exhausted
in between two consecutive successful frame deliveries. Thanks to the inde-
pendence hypothesis, the random variable K is geometrically distributed:
(K = k) = (1 − p)pk

, k ≥ 0.
Taking into account BEB, the generating function of J =

∑K
k=0 Gk is given by

𝜙J(z) =
∞∑

k=0
(1 − p)pk

k∏
j=0

𝜙Gj mod(m+1)
(z) =

∑m
k=0(1 − p)pk ∏k

j=0 𝜙Gj
(z)

1 − pm+1 ∏m
j=0 𝜙Gj

(z)
(9.159)

The mean of J can be calculated either directly from the definition of J or taking
the derivative of 𝜙J(z) and setting z = 1. We find:

E[J] = 𝜙
′
J(1) =

∑m
k=0(1 − p)pk ∑k

j=0 𝜙
′
Gj
(1) + pm+1 ∑m

j=0 𝜙
′
Gj
(1)

1 − pm+1 (9.160)

�

� �

�

9.5 Analysis of the WiFi MAC Protocol 567

Since 𝜙
′
Gj
(1) = ps(n − 1)Wj−1

2
, rearranging terms in (9.160), we get

E[J] = ps(n − 1)
∑m

k=0 pk Wk−1
2

1 − pm+1 = ps(n − 1) 1 − 𝜏

𝜏(1 − p)
= n − 1 (9.161)

The last result derives from eq. (9.113), the expressions of ps(n − 1) and p as
functions of 𝜏 and n.

The mean number of service instances to stations other than the tagged one
between two consecutive successful transmissions of the tagged station is n − 1.
This means that on average, the tagged station gets one successful transmission
opportunity every n . With n stations contending for access, this is just the fair share
of transmission opportunities that the tagged station has a right to. ◾

Some caveats are in order in the face of this result. While in the long-term the
fraction of transmission opportunities obtained by each station among the n con-
tending ones is 1∕n, in the short-term access to the channel can be quite unfair.
We define service gap the number J of frames of stations other than the tagged one
transmitted in between two consecutive successful transmissions of the tagged sta-
tion. We will see that the “service gap” has a large variability, the more the larger
the number of contending stations. The main responsible for that is BEB and the
freezing of back-off counters. The former tends to put at a disadvantage stations
that suffer a collision with respect to other contending stations. The latter intro-
duces a memory that discriminates further stations suffering a collision.

In case of optimization of CSMA/CA for maximum throughput and minimum
service time jitter, we know that Wk = W∗ = 2∕𝜏∗ − 1, k = 0,… ,m, where 𝜏

∗

is the transmission probability that maximizes throughput. The CCDF of J
simplifies to

𝜙J(z) =
(1 − p)𝜙G∗ (z)
1 − p𝜙G∗ (z)

(9.162)

where

𝜙G∗ (z) = 1
W∗

W∗−1∑
h=0

[1 − p∗
s (n − 1) + p∗

s (n − 1)z]h (9.163)

with p∗
s (n − 1) = (n − 1)𝜏∗(1 − 𝜏

∗)n−2.
We illustrate the CCDF of J for various values of n and both standard DCF (solid

lines) and optimized CSMA/CA (dashed lines) in Figure 9.43.
The most striking feature of these distributions is the slow decay of the CCDF

in case of standard DCF, already for n = 5. For example, for n = 5 we have (J ≥
36) = 0.01, i.e., in 1% of cases there are at least 36 other frames sent in between
two consecutive frames of a tagged station.

The short-term unfairness is completely mitigated for optimized CSMA/CA. In
that case, the decay of the CCDF of J is much faster than with the standard DCF.

�

� �

�

568 9 Multiple Access

0 20 40 60 80 100

Service gap

10−4

10−3

10−2

10−1

100

C
C

D
F

 o
f

s
e

rv
ic

e
 g

a
p

n = 2

n = 5

n =10

Figure 9.43 CCDF of the number of
frames transmitted by stations other
than a tagged one between two
consecutive transmissions of the
tagged station. Solid lines: standard
DCF. Dashed lines: optimized
CSMA/CA.

Service from the point of view of each station resembles more closely a determin-
istic round robin, than for standard DCF. With DCF, service from the point of view
of a station appears to be highly randomized, with large excursions of the service
gap between one service opportunity and the next one.

Finally, we address the analysis of what may happen when stations are not fully
equivalent. Specifically, we will disclose the performance anomaly, an issue first
identified in [101]. We maintain that back-off parameters are the same for all sta-
tions, but payload distribution may differ.

Let us consider two groups of stations. Group i consists of ni stations and sends
frames of length Li at an air bit rate Ci, i = 1, 2. Let ai = Li∕Ci and assume a1 < a2.
Since the back-off parameters are the same for all stations, the transmission prob-
ability is the same for all stations. The saturation throughput rate of any station of
group i (i = 1, 2) is

𝜇i =
Li𝜏(1 − 𝜏)n1+n2−1

𝛿(1 − 𝜏)n1+n2 + (n1T1 + n2T2)𝜏(1 − 𝜏)n1+n2−1 + pc1T1 + pc2T2
(9.164)

where Ti = 𝛿 + Toh + ai and

⎧⎪⎨⎪⎩
pc1 = [1 − (1 − 𝜏)n1 − n1𝜏(1 − 𝜏)n1−1](1 − 𝜏)n2 ,

pc2 = 1 − (1 − 𝜏)n1+n2 − (n1 + n2)𝜏(1 − 𝜏)n1+n2−1 − pc1

= 1 − (1 − 𝜏)n2 − n2𝜏(1 − 𝜏)n1+n2−1

(9.165)

Note that collision time lasts T1 < T2 if only stations from group 1 are involved
in the collision event. Otherwise, it lasts T2.

For example, assume that all frames have the same length (L1 = L2) and that
group 1 stations use a high data rate, while group 2 stations are downgraded to a
slower air bit rate, i.e., C1 > C2. The paradoxical result emerging from eq. (9.164)
is that 𝜇1 = 𝜇2, i.e., stations of either group experience the same throughput rate,
even if they are using possibly very different air bit rates.

�

� �

�

9.5 Analysis of the WiFi MAC Protocol 569

To give a numerical example, let us consider IEEE 802.11g, assume
C1 = 54 Mbit/s, C2 = 6 Mbit/s (the two extreme bit rates defined by this
amendment). Let L1 = L2 = 1500 bytes.

For n1 = n2 = 5 stations, we get a throughput rate of 757 kbit/s for any station,
irrespective of the group it belongs to. A station that can push its air bit rate up
to the maximum rate granted by IEEE 802.11g turns out to achieve the same
long-term throughput rate of a station that must transmit as slow as the basic bit
rate of the standard. Although it might be conceived as a fair situation in a sense,
this is clearly disturbing. To gain more insight, let us make a simple example,
with n1 = n2 = 1 and L1 = L2 = L. Throughput rates simplify to

𝜇i = 𝜇 = L𝜏(1 − 𝜏)
𝛿(1 − 𝜏)2 + (T1 + T2)𝜏(1 − 𝜏) + T2𝜏

2 , i = 1, 2. (9.166)

If C1 = C2 = 54 Mbit/s, we have 𝜇 ≈ 13.99 Mbit/s. If instead C1 = 54 Mbit/s and
C2 = 6 Mbit/s, we have 𝜇 ≈ 4.22 Mbit/s. We see that one station that downgrades
its own air bit rate (e.g., because of a bad radio channel to the AP), actually impairs
the performance of other stations as well. In our example, station 1 uses the same
air bit rate (54 Mbit/s) in both cases, yet is suffers a penalty in the order of 70% of its
throughput rate just because another station has to downgrade its own air bit rate.
The performance loss is so remarkable that it seems justified to call it “anomaly.”

The source of the performance anomaly lies in the long-term fairness concept
built in the first version of the CSMA/CA as implemented in WiFi, namely trans-
mission opportunity fairness. To break this uncomfortable constraint, we should
shift the fairness concept to something suitable for wireless networks. Proportional
fairness is known to strike a good balance between throughput performance effi-
ciency and guaranteeing some throughput to all stations. Given n traffic sources,
say the r-th source gets an average throughput rate xr , r = 1,… ,n. A rate assign-
ment xr is said to be proportional fair if

∑n
r=1(yr − xr)∕xr ≤ 0 for any other rate

assignment yr . The rationale of the definition is that changing rate assignment
from the proportional fair one may improve the rate obtained by some source rel-
atively, yet summing up all relative changes, losses outweigh gains.

The implementation of the proportional fairness principle into CSMA/CA
brings to the so called airtime fairness, i.e., providing each station with an equal
long-term fraction of transmission time on the channel [35]. Airtime fairness can
be realized by using the deficit round robin (DRR) scheduler [190], a weighted
form of round robin (see Sec. 6.4.5).

A recent work [104] addresses both the performance anomaly and excessive
delays at station buffers, due to large buffer backlogs (bufferbloat).

Additional features of recent MAC amendments (IEEE 802.11n and IEEE
802.11ac) to manage airtime are: (i) the transmission opportunity parameter
(TxOP), that defines the time a station can hold the channel; (ii) MPDU aggrega-
tion, i.e., the possibility of sending more than a single MPDU once a station grabs
the channel.

�

� �

�

570 9 Multiple Access

A revolution of MAC is going to be laid down with the forthcoming new version
of WiFi, the IEEE 802.11ax. Referring to infra-structured basic service sets, the AP
plays a major role in managing radio resources. The random access component
will most probably be confined to sporadic, small messages and intermittent traf-
fic, whereas most traffic flows will be granted resources in a demand-assignment
fashion. The WLAN access mode will resemble the one currently used in cellu-
lar networks much more closely than it does with legacy WLANs, where random
access is essentially the only access mode used in practice.

The paradigm shift will bring new opportunities to introduce scheduling algo-
rithms, inspired to the models presented in Chapter 6.

9.6 Further Readings

Random multiple access has been a fruitful research area for more than 40 years.
There is still intense activity, especially in connection with wireless communica-
tions (which offer naturally a broadcast medium, requiring some form of multiple
access coordination) and with new paradigms, such as Internet of Things (IoT),
which envisages a high number of appliances, generating more or less heavy traffic
both for control and information gathering.

Pointers to the literature are given for the following topics: (i) ALOHA; (ii)
CSMA); (iii) WiFi MAC protocol; (iv) random access in LTE.

As for ALOHA, recent work introduced and studied coded random access [171]
and specifically coded slotted ALOHA [109, 143, 194]. Paolini et al. [171] address
the paradigm of coded random access applied to ALOHA. They discuss several
examples of coded random access protocols, pointing at the efficiency gains that
can be achieved by coding and doing successive interference cancellation. Ivanov
et al. [109] analyze an all-to-all broadcast coded slotted ALOHA (B-CSA) over
a packet erasure channel for a finite frame length. They apply their analysis to
vehicular communication networks, highlighting the performance improvements
of beaconing capacity offered by B-CSA over CSMA, under the same level of reli-
ability. Stefanovic et al. [194] prove a bound on the achievable capacity of coded
slotted ALOHA with K-MPR for any given level of a normalized load measure13 .
Lazaro et al. [143] investigate frameless ALOHA under a K-MPR receiver model
and show how to optimize throughput as a function of K.

As for CSMA, apart from the classical papers of Kleinrock and Tobagi [128,129],
recent lines of research are on utility maximization and CSMA networks. Network
utility maximization (NUM) approaches consists of considering a social utility

13 MPR stands for multi-packet reception. It is the capability of the receiver to decode
successfully up to K packets in a single reception event.

�

� �

�

9.6 Further Readings 571

function of the achievable throughput in a constrained capacity system and in
devising strategies to achieve the optimal throughput assignment among the com-
peting traffic sources, possibly in a distributed and even autonomous way (i.e.,
without even message passing among the traffic sources). Application of the NUM
principle to CSMA is dealt with in [150, 115],

CSMA schemes implemented in current technologies, such as the 802.11 DCF,
expose a limited form of flexibility by enabling the dynamic configuration of
contention windows and retry limits, as well as the possibility to activate or not
four-way handshake mechanisms. Several research works have been focused
on the optimization of these parameters as a function of the network load and
topology. For example, in [146], inspired by the throughput-optimal CSMA theory
(e.g., see [115][150]), the Authors present the optimal DCF, that implements in
off-the-shelf 802.11 devices the principles of adaptation of contention windows
and channel holding times as a function of the difference between the bandwidth
demand and supply of the node.

As for CSMA networks, a number of works in the last decade have studied var-
ious aspects of networks made up of CSMA nodes. A key characteristic of these
models is relaxation of the proximity assumption, i.e., nodes do not necessarily
hear one another. Rather, a graph model is used to represent proximity, where an
arc is laid between two nodes if one can hear the other. A fundamental analysis
of the capacity region of such networks is given in [142]. Liew et al. [147] elab-
orate on the key factors that affect the probability distribution of the node states
in CSMA networks. A full understanding of CSMA network dynamics and a fully
satisfactory modeling are still open issues.

As for WiFi and its evolution, [124] surveys the development of the currently
ongoing efforts to finalize the IEEE 802.11ax standard. IEEE 802.11ax will be a
major break with the traditional WLAN approach, based on random multiple
access. Resource reservation according to a signaling-based demand-assignment
scheme will be a key ingredient of the new WiFi recipe. Overall, the system
will look more like cellular networks, which is not entirely surprising, given
that cellular networks are more and more devoted to a broad array of data com-
munication applications and that WLAN are been deployed in an increasingly
dense pattern, so that some coordination capability among access points is
necessary.

Although not included in current standards, another promising pathway
to boost wireless network capacity is full-duplex radio, which has become a
viable technical solution [125, 191, 105]. For example, in [31] a cancellation
capability of up to 110 dB is demonstrated over up to 80 MHz bandwidth with
a prototype using a single antenna. How to exploit at best the full-duplex capa-
bility of new radio and how to redesign MAC protocol are still open research
issues.

�

� �

�

572 9 Multiple Access

Another direction for improving the MAC efficiency is the reduction of con-
trol messages’ overheads. In [156], control messages like RTS, CTS, and ACK are
encoded by using correlatable symbol sequences (CSS). The properties of the CSS
allow a substantial reduction of the vulnerability intervals and of the air time
wasted to contend for the medium (RTS/CTS) and to send ACKs.

Interaction of CSMA, specifically, the CSMA/CA of WiFi, and TCP has been
considered as well. Experimental work points out performance shortcomings that
might arise in dense WiFi networks with mixture of long-lived and short-lived TCP
connections [155].

Finally, random access is also a component of cellular networks. Since their
inception cellular radio access networks make use of a random access channel to
allow terminals requesting new radio resource assignment, when they have none.
The Random Access CHannel (RACH) is usually managed with some variant of
slotted ALOHA. In LTE it consists of a slotted channel where stations can transmit
special signal patterns, called preambles. The LTE standard defines 54 orthogonal
preambles. This kind of access is modeled in Example 8.9.

Recently, many works have explored whether the LTE RACH can support an IoT
paradigm, i.e., massive numbers of terminals, each sending periodically or spo-
radically, relatively short files [8]. A detailed analytical model of the LTE RACH
is presented in [154]. It is applied to an IoT scenario in power grid networks. It is
shown how several hundreds of metering terminals lead to a severe congestion of
the LTE RACH, with a collapse of the achievable throughput performance. Simi-
lar issues and some directions for throughput optimization are discussed in [175,
210, 166], with reference to smart cities and vehicular networking applications.
Optimization of the class barring parameter is investigated in [201] as means of
controlling the LTE RACH congestions level.

Appendix

Let us consider a Markov chain representing a single server system in discrete
time:

N(t + 1) = N(t) + A(t + 1) − U(t + 1) (9.167)

The number of departure U is either 0 or 1. If N(t) = A(t + 1) = 0, we assume it
is U(t + 1) = 0, hence N(t + 1) = 0. It is obviously N(t + 1) ≥ 0. Therefore, we have
always N(t) + A(t + 1) − U(t + 1) ≥ 0.

Let us define the conditional drift

dn = E[A|N = n] − E[U|N = n] , n ≥ 0. (9.168)

�

� �

�

Summary and Takeaways 573

We assume that sup
n≥0

dn = dsup < ∞ and lim
n→∞

dn < 0. Applying Foster-Lyapunov

theorem (see the Appendix at the end of the book), we will show that the Markov
chain N(t) is positive recurrent.

Let V(x) = |x|. This is a legitimate Lyapunov function on the state space = ℤ+.
Since the drift dn tends to a negative limit, we can find 𝜖 > 0 and n

𝜖
such that

dn ≤ −𝜖 for n > n
𝜖
. We can write

Δn = E[V(N(t + 1)) − V(N(t))|N(t) = n]

= E[|n + A(t + 1) − U(t + 1)| − n|N(t) = n]

= E[A(t + 1) − U(t + 1)|N(t) = n] = dn

Let = {n ∶ 0 ≤ n ≤ n
𝜖
}. This is a finite set. It is obviously Δn ≤ dsup for

n ∈ . Based on the definition of n
𝜖
, we have also Δn ≤ −𝜖 for n ∈ \. All

hypotheses of Foster-Lyapunov theorem are satisfied, then N(t) is positive
recurrent.

We can also prove that the Markov chain N(t) is either transient or null recurrent
as the drift sequence dn tends to a positive limit for n → ∞. To that end, we use
Theorem A.7, mentioned in the Appendix at the end of the book.

We again pick V(x) = |x| as the Lyapunov function. Since lim
n→∞

dn > 0, we can
find n0 such that dn ≥ 0 for all n > n0. Then, we define the finite set = {n ∶ 0 ≤
n ≤ n0}. We have Δn = dn ≥ 0 for n > n0 (condition 1 of Theorem A.7). We have
obviously V(n0 + 1) = n0 + 1 ≥ y = V(y), for all y ≤ n0 (condition 2 of Theorem
A.7). Finally, we have

E[|V(N(t + 1)) − V(N(t))| |N(t) = n]

= E[|n + A(t + 1) − U(t + 1)| − n |N(t) = n]

= E[|A(t + 1) − U(t + 1)| |N(t) = n] ≤ E[A|N = n] + 1

which is finite for any n, if the expected number of arrival is finite.
All hypotheses of Theorem A.7 are satisfied, hence N(t) cannot be positive

recurrent.
Summing up, we can say that the Markov chain N(t) is positive recurrent, if the

drift dn tends to a negative limit, it is transient or null recurrent, if the drift tends
to a positive limit.

Summary and Takeaways

This chapter is devoted to a special category of multiple access, namely random
multiple access. We recall here concisely the most significant highlights emerging
from this chapter.

�

� �

�

574 9 Multiple Access

ALOHA is the simplest random multiple access protocol. It is distributed
and autonomous, requiring at most synchronization at slot level, in case of
Slotted ALOHA. Slotted ALOHA is intrinsically unstable. To work properly, it
requires adaptation of the back-off probability. We have discussed how this can
be done in detail, pointing at the achievable performance in terms of throughput
and delay.

If synchronization is too demanding, pure ALOHA can be used at the price
of a reduced throughput. We have shown that pure ALOHA is unfair if stations
transmit frames of different sizes. This sheds some light on why ALOHA is always
considered with fixed size packets.

The next random multiple access protocol we have studied is CSMA. CSMA
entails the capability of performing carrier sensing (certainly physical carrier sens-
ing; possibly also virtual carrier sensing).

We have studied the performance of several variants of CSMA as the fundamen-
tal parameters are varied. Major findings are:

● the possibility to optimize the performance by selecting back-off parameters
properly;

● the need to stabilize the protocol and the feasibility of a distributed adjust-
ment of the back-off probability that achieves both stability and throughput
optimization.

From a modeling point of view, we have gained an understanding of what the
Poisson approximation means for packet arrivals in a CSMA protocol. We have
seen that the throughput predicted by Poisson based models is the target long-term
throughput value that the (optimally) stabilized CSMA converges to.

Finally, we have explored in detail one of most successful application of CSMA
to real life, the CSMA/CA protocol defined in WiFi WLAN standard. We have stud-
ied a number of useful models that predict performance of WiFi networks at MAC
layer, both in terms of throughput and service time. We have discussed at length
the suitability of the binary exponential back-off of CSMA/CA. We have raised
more than one point against the use of BEB. Rather, it is feasible to select the
contention window size as a function of the (estimated) number of contending
stations, so as to maximize the saturation throughput, while minimizing the jitter
of service times. Long-term and short-term fairness of WiFi have been discussed
as well.

A number of generalizations, research lines, and new developments are
hinted at in the closing section, where references to emerging issues and
technologies are given. Performance models that provide insight and assess quan-
titative trade-offs will be the key to understanding where these new ideas can
bring us.

�

� �

�

Problems 575

Problems

9.1 0-persistent CSMA with Poisson offered traffic. Consider the
0-persistence policy and assume that offered traffic can be modeled as
a Poisson process with mean rate 𝜆. The channel time axis can be split into
virtual slots, defined as the time elapsing between the beginning of an idle
back-off slot and the immediately following idle back-off slot.
(a) Show that the mean duration of the virtual slot is

E[V] = 𝛿e−𝜆𝛿 + (𝛿 + T)(1 − e−𝜆𝛿) = 𝛿 + T − Te−𝜆𝛿

(b) Find the probability of success Ps.
(c) Show that the throughput S can be written as:

S =
TPs

E[V]
= T𝜆𝛿e−𝜆𝛿

𝛿 + T − Te−𝜆𝛿
= 𝛽Ge−𝛽G

1 + 𝛽 − e−𝛽G

9.2 1-persistent CSMA with Poisson offered traffic. Consider a cycle time
C, defined as the time between the ends of two subsequent activity times. A
cycle time is made of a sequence of idle back-off slots followed by an activity
time, if no arrival occurs in the previous activity time. Otherwise, the cycle
time reduces to the activity time.
(a) Find the mean duration of the cycle time, by showing that:

E[C] = e−𝜆(𝛿+T)
(

𝛿

1 − e−𝜆𝛿
+ T + 𝛿

)
+ (1 − e−𝜆(𝛿+T))(T + 𝛿)

where we have accounted for an idle back-off slot necessarily follow-
ing the activity time (it is the time it takes for stations to assess that the
channel has gone idle).

(b) The probability of success Ps is the probability that: (i) only a single
arrival takes place in the last back-off slot of the sequence, given that
an arrival has taken place (this is the condition that makes the tagged
back-off slot the last one of the sequence) and no arrival takes place in the
previous activity time; (ii) only one arrival occurs in the previous activity
time (and hence there is no sequence of idle back-off slots). Show that:

Ps =
𝜆𝛿e−𝜆𝛿

1 − e−𝜆𝛿
e−𝜆(𝛿+T) + 𝜆(T + 𝛿)e−𝜆(𝛿+T)

(c) Show that the throughput of the 1-persistent CSMA with Poisson
traffic is:

S =
TPs

E[C]
= 𝜆e−𝜆(𝛿+T)(T + 𝛿 − Te−𝜆𝛿)

𝛿e−𝜆(𝛿+T) + (T + 𝛿)(1 − e−𝜆𝛿)
= Ge−(1+𝛽)G(1 + 𝛽 − e−𝛽G)

𝛽e−(1+𝛽)G + (1 + 𝛽)(1 − e−𝛽G)

�

� �

�

576 9 Multiple Access

9.3 P-persistent CSMA with Poisson offered traffic. According to
P-persistence, packets that arrive during a transmission will be trans-
mitted with probability P as soon as the channel becomes idle again, while
they will be postponed by a random time Z much bigger than T with prob-
ability 1 − P. Then, the number of packets arriving during a transmission
and scheduled to be transmitted immediately after that transmission is a
Poisson random variable with mean (P + 𝛽)G.
(a) Show that the throughput is therefore

S = Ge−(P+𝛽)G(P + 𝛽 − P e−𝛽G)
𝛽e−(P+𝛽)G + (1 + 𝛽)(1 − e−𝛽G)

(b) Check that this throughput reduces to the one for 1-persistent CSMA
with P = 1 and to the case of 0-persistent CSMA for P = 0.

9.4 Consider the stabilization algorithm of Sec. 9.4.3. Specifically, we focus on
updating the estimated number of backlogged stations n̂ in case a collision
is observed.
(a) Show that the updating derived according to the Bayes rule, assuming a

prior Poisson probability distribution of the number of backlogged sta-
tion, is:

n̂(t + 1) = n̂(t) +
[n̂(t)p(t)]2

en̂(t)p(t) − 1 − n̂(t)p(t)
+ 𝜈(𝛿 + T)

(b) If up to K packets can be received simultaneously, show that the update
upon collision of the stabilization Bayesian algorithm becomes:

n̂(t + 1) = n̂(t) +
𝜋(K, n̂(t)p(t))∑∞

j=K+1 𝜋(j, n̂(t)p(t))
+ 𝜈(𝛿 + T)

where 𝜋(k, a) = ak

k!
e−a.

9.5 The aim of this exercise is to establish the relationship between the maxi-
mum throughput achievable with nonpersistent stabilized CSMA where: (i)
packets are deemed to be backlogged immediately upon their arrival (basic
version); or (ii) packets arriving when the channel is sensed idle are trans-
mitted immediately, otherwise, they become backlogged (alternate version).
It can be seen that the maximum throughput of the basic version is S1(𝛼) =
𝛼e−𝛼∕(𝛽 + 1 − e−𝛼) ≡ f (𝛼). We have seen also that the maximum throughput
of the alternate version satisfies the following equation: S2(𝛼) = f (𝛽S2(𝛼) +
𝛼). Let 𝛼∗

i denote the value of 𝛼 that maximizes Si(𝛼), i = 1, 2.
(a) Show that the derivative of S2(𝛼) satisfies

S′
2(𝛼) = [1 + 𝛽S′

2(𝛼)]f
′(𝛽S2(𝛼) + 𝛼)

�

� �

�

Problems 577

(b) Show that 𝛽S2(𝛼∗
2) + 𝛼

∗
2 = 𝛼

∗
1 and S2(𝛼∗

2) = S1(𝛼∗
1), i.e., the maximum

achievable throughput of the alternate version is the same as the basic
version, while the optimal 𝛼 for the alternate version is smaller than for
the basic version.

(c) Give intuition and insight backing up the analytical result found in
point (b).

9.6 Saturation throughput of WiFi with unequal transmission probabil-
ities. Let us consider a WiFi network, where transmission probabilities are
assigned to stations and held constant (no BEB is used). Let 𝜏i be the trans-
mission probability of station i, i = 1,… ,n. Let us assume that packet size is
fixed.
(a) Show that the saturation throughput of the i-th station is

𝜌i = 𝜌ideal
Pe𝜏i∕(1 − 𝜏i)(Toh + a1)
𝛿 + (Toh + a1)(1 − Pe)

and find the expression of Pe.
(b) Say the 𝜏i’s are fixed so as to guarantee that the throughput of station i

is a fraction 𝜓i of throughput of station 1, i.e., such that 𝜌i∕𝜌1 = 𝜓i, i =
2,… ,n. Show that the overall throughput 𝜌1 + 𝜌2 + · · · + 𝜌n can be max-
imized and that there exists a unique value of 𝜏1 that attains such a
maximum, for a given sequence of ratios 𝜓1 = 1, 𝜓2,…𝜓n ∈ (0, 1).

(c) Set up an algorithm to evaluate numerically the optimal 𝜏1 and try it for
several values of the system parameters.

9.7 In a WiFi network, assume a packet can be received in error due to inter-
ference and noise. Let 𝜖 be the probability that a bit is received in error and
assume binary errors are independent of one another. Assume also that only
the MAC protocol data unit (MPDU) can be affected by errors, while the
data frame preamble and ACK are always received correctly. Write down the
expression of the saturation throughput for n homogeneous stations, that
have different channel qualities, hence error probabilities.

9.8 The aim of this problem is showing how the parameters DT (defer threshold)
and CDT (carrier detect threshold) of the IEEE 802.11 can be set to avoid
hidden nodes.
Let us consider an infra-structured WiFi network. For a station to associate
with the AP, it must be that the power level received by the station is beyond
CDT. To transmit, a station must assess whether the channel is idle. A station
deems the channel to be idle, if it measures a power level below DT at its
receiver.

�

� �

�

578 9 Multiple Access

Let us assume that the path gain is deterministic, depends only on the dis-
tance between transmitter and receiver and it is G(d) = 𝜅∕d𝛼 at distance d,
with 𝛼 = 4.
The background noise level is −91 dBm.
Find CDT and DT so that there are no hidden nodes, requiring that the chan-
nel is deemed busy, if the measured power level is twice the background
noise level.

�

� �

�

579

10

Congestion Control

Optimum is hard to achieve; near optimum is usually good enough.
Folk saying

Non faciunt meliorem equum aurei freni.1
Latin proverb

Aliud aliis videtur optimum.2
Marcus Tullius Cicero

10.1 Introduction

Congestion refers to demand exceeding service capability. Given a service system,
let its serving capability be measured by a parameter 𝜇 in terms of unit of work
per unit of time that the service system can carry out. The parameter 𝜇 can be
time-varying and dependent on the system state variables. Let 𝜆 denote the aggre-
gate service demand on the system. Also 𝜆 can be time dependent and a function
of system state variables and customer population characteristics. In general, we
say the service system is congested when 𝜆 > 𝜇.

Congestion is characterized by its duration and extent.
The amount by which the demand 𝜆 exceeds the serving capability 𝜇 determines

the extent of congestion. Light congestion can be born for some time without com-
promising the system functionality, whereas heavy congestion requires immediate
action to avoid a system collapse.

The uninterrupted time interval during which it is 𝜆 > 𝜇 defines the duration
of congestion. Usually, a short congestion event can be absorbed by the serving

1 Golden harnesses do not make a horse better.
2 Different things appear as optimal to different people (i.e., optimality is subjective).

Network Traffic Engineering: Stochastic Models and Applications, First Edition. Andrea Baiocchi.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

�

� �

�

580 10 Congestion Control

system with no harm, while persisting congestion requires active modification of
the system and/or of the traffic demand, lest the service quality be degraded.

Also, the rate at which congestion events occur matters. If congestion is a
rare event, occurring over time scales that are much longer than typical times
of customer-system interaction, congestion can be seen as part of the system
impairments and could be compatible with an acceptable quality of experience of
customers. If congestion arises on a time scale comparable with customer-system
interaction times, then it is too frequent not to impose active management on
behalf of the system and possibly a back-pressure on customers’ demand.

We anticipate that the ultimate defense against congestion consists of turning
down the excess demand that cannot be accommodated by the service system with
the desired level of quality of service. Given that, if a nonmarginal fraction of the
demand is systematically rejected because of congestion, that is a mark that the
system is undersized with respect to the potential demand. For example, let us
consider a cellular network base station (BS) that rejects 20% of offered connection
attempts over the busy part of the day. If this rejection rate holds for most days and
for several hours per day, this is a sign that the radio resources managed by the
BS should be incremented. This is both convenient for cellular users, that would
perceive a better access quality, and for the cellular network operator, that could
carry more traffic and obtain a revenue increase.3

Resource dimensioning goes under the name of network planning. It is the
result of network design through optimization procedures, given the available
technology, the forecast of the traffic demand, the service and application require-
ments, the law and normative constraints, the economical opportunities, and
feasibility. This is obviously a long-term process, needing investment, design, and
deployment.

In the following, we do not consider network planning as means to overcome
(systematic) congestion. We refer to situations where the service system resources
are given and are not going to be modified on the time scale of the congestion
phenomena.

The concept of fairness is strictly tied to congestion. We have already encoun-
tered this term in previous chapters. In general, let N be the number of customers
that contend for the resources of the service system and let 𝜆i be the demand of
the i-th customer. We have 𝜆 = 𝜆1 + · · · + 𝜆N . As long as 𝜆 < 𝜇, there is room to
accommodate all requests, so it is expected that every customer gets exactly what
it is asking for. There is no real competition among customers and no congestion
on the system resources. There is no issue, if one customer gets more resource and
service (even much more) than another customer. Everyone is getting just what it
asks for and is therefore happy with that.

3 We are assuming that rejected connections are independent of one another. If a significant
repeated-lost attempts phenomenon is in place, many rejection events could be generated by few
users making repeated attempts to establish a connection.

�

� �

�

10.1 Introduction 581

Problems arise when 𝜆 > 𝜇. Unless we can provide more resources (which
amounts to increasing 𝜇), the excess demand is not going to be satisfied imme-
diately. It will be either delayed or rejected. The decision of which customer’s
demand is not accommodated fully concerns the fairness aspect of congestion
control. We could select randomly which customer demand is not serviced
immediately, or we could resort to priorities or we could try to maximize some
collective utility measure. Whatever criteria we follow to decide which part of the
offered demand cannot be accommodated immediately, we are implementing a
fairness approach. Usually, a trade-off is required between fairness and efficiency
of system resource management. In general, pushing an efficient use of system
resources means that customers that use system resources less effectively should
not be serviced. However, the desire to guarantee some minimum level of service
to every customers typically impairs the achievement of top efficiency levels. A
broad concept used in this context is utility, a quantitative measure of the benefit
gained by a customer upon receiving service at a given level of quality. We will
see how utility can be used to give a general statement of fairness.

There are several levers than can be geared to face congestion. Pricing is a major
tool to control traffic demand. Pricing strikes the balance between the benefit
achieved thanks to the service obtained by a customer and the cost incurred for
that service. It is not surprising that congestion control invokes concepts imported
from economics. Game theory, auction theory, and distributed optimization have
been used to study congestion control.

Two major approaches can be identified to deal with congestion:

● Proactive: Congestion control aims at avoiding congestion before it intervenes.
● Reactive: Action is taken when congestion is detected, aiming at containing its

effects and eventually removing it.

Proactive congestion control is based on a preventive approach encompassing
admission control and policing functions. Admission control consists of evaluating
service demand against the current system resource availability, to verify whether
it can be accommodated with the requested quality of service, while maintaining
the quality of service stipulated with customers currently under service. Admis-
sion control assumes three facts:

1. Service demand is organized with a connection-oriented mode: before service
can start, a negotiation phase takes place, when resources are reserved. This is
when admission control takes in.

2. It is possible to describe the traffic demand in a way that is understandable
to customers and to service providers and is not too complex to assess (traffic
contract or service-level agreement).

3. Quality of service targets can be defined in an unambiguous way and can be
guaranteed based on the established traffic contract and the available system
resources.

�

� �

�

582 10 Congestion Control

The admission control function should be run at connection setup. At that point,
the characteristics of the traffic offered by the customers must be described into
the traffic contract (the traffic specifications).

Policing is the second pillar of proactive congestion control. Once a traffic con-
tract has been established between a customer and the service provider, it must be
verified that the customer abides by its declared traffic specifications. Quality of
service should be guaranteed as long as the customer sticks to its traffic specifica-
tions.

Policing consists of controlling the traffic submitted by the customer to the
system to verify that it complies with the stipulated traffic contract. Since traffic
demand is described usually as a stochastic process, policing is realized as a
statistical test of hypothesis, where the null hypothesis is that the traffic entering
the system is compliant.

Real-life experience has shown that implementing a proactive congestion con-
trol scheme is extremely difficult. It is not obvious that traffic specifications and
quality of service targets can be expressed in a simple and easily measurable way.
Moreover, the implementation of admission control and policing relies on a num-
ber of statistical assumptions that might be violated in practice. A major example
of proactive congestion control in telecommunication networks has been the tele-
phone network and is currently the cellular network, at least for some type of
services (e.g., phone calls). Trying to implement proactive congestion control in
packet networks has turned out to be too challenging. Asynchronous Transfer
Mode (ATM) in the nineties has been one of the most significant attempts.

The reactive congestion control approach is the one chosen for the Internet and
for several other service systems. With reactive congestion control there is no need
to adhere to a connection oriented mode, to describe traffic specifications, to make
advance checks for admissibility and to set up continuous monitoring of input
traffic to verify if it complies with the stipulated specifications. On the other hand,
reactive congestion control requires two factors:

● Congestion can be detected.
● Functions to remove congestion are provided.

The first point entails measuring the level of usage of system resources and
the quality of the provided service (e.g., waiting time, buffer content level,
amount of lost traffic, link capacity utilization). There must be real-time tests to
determine congestion. Once congestion is detected, reaction consists in exerting
a back-pressure on the traffic sources until they eventually reduce their offered
traffic rate. The traffic control paradigm is akin to a closed-loop feedback control.
One nontrivial issue in realizing the reactive congestion control, apart from the
stability of the closed-loop control, is that reaction must be directed to individual
traffic sources, while resources that can experience congestion see aggregate

�

� �

�

10.2 Congestion Control Architecture in the Internet 583

traffic flows. The point is to realize a congestion control function that scales
with the number of traffic sources, i.e., congested network elements should not
be required to take actions separately on each individual traffic flow that goes
through them.

When service systems are interconnected in a network, or a network itself is the
service system, congestion and fairness issues are quite complex. In general, we
distinguish between link and node congestion. The former means that the serv-
ing capacity of a link connecting two nodes has been exceeded by the demand of
traffic addressed to that link. The latter implies that internal node resources, e.g.,
processing capability and storage memory, are being overwhelmed.

For example, telecommunication networks link congestion arises when more
connections than is possible should be routed through a link; or the arrival rate
of packets at the link exceeds the packet serving rate of the link. Node congestion
arises when the packet processing capability of the node is insufficient to keep up
with the rate at which packets arrive or when buffers overflow because there are
too many packets to store. As another example, in a transportation road network,
link congestion amounts to a significant slow down of vehicles traveling on a road
segment. Node congestion manifests with long lines at intersection traffic lights.

Congestion control in a network is often realized by means of distributed
functionality introduced in the network nodes. A typical case is what is done in
telecommunication networks, specifically in the Internet. Internet congestion
control is but one instance of how the problem of resource contention has been
addressed at a network level, yet it is most relevant both from a theoretical point
of view and because of the importance of the Internet itself.

The next section introduces the architecture of congestion control in the Inter-
net, which is implemented in the Transmission Control Protocol (TCP). Then,
several versions of the TCP congestion control are outlined. A fluid model of TCP
congestion control is then described and generalization to network-level modeling
are addressed.

10.2 Congestion Control Architecture in the Internet

In the Internet protocol architecture the functions aimed at detecting congestion
and removing it are implemented in the transport layer.4 Those functions pertain
to the TCP. TCP relies on the IP layer and offers its service to the application layer.
An excellent source on TCP, although somewhat dated, is [195].

4 This was historically a system design decision consistent with the inter-networking strategy of
TCP/IP. It makes full sense to implement congestion and flow controls in other architectural
layers, from application layer, down to the data link layer.

�

� �

�

584 10 Congestion Control

IP IP

TCP sender TCP receiver
TCP connection

Internet

Figure 10.1 TCP connection
end-points, sender and receiver, and
their relationships with IP entites.

TCP offers a connection-oriented service between two parties (see Figure 10.1).
Data can be exchanged in both directions, in full-duplex mode. Focusing on a sin-
gle direction, we distinguish a TCP sender, injecting data packets into the network,
and a TCP receiver, who is in charge of acknowledging the received packets, if they
are error-free and in sequence. Each TCP endpoint plays both sender and receiver
roles, according to the direction of data. The TCP entities (sender and receiver)
abstract of the network details. TCP calls for IP in the end system, and hands
packet over to the IP entity. Packets make their route through the network, eventu-
ally arriving at the receiving end system, where IP delivers the received packets to
the TCP receiving entity. Acknowledgment control packets (briefly named ACKs)
make the reverse path. The TCP entities do not have any direct communication
with routers along the network path of the connection, nor do they know which
route their packets are going through. As a consequence, the TCP sending entity
does not know what the available capacity on the path is. Moreover, the capacity
available to a TCP connection is time-varying, due to other competing TCP con-
nections and other traffic flows sharing the links of the given TCP connection path.

TCP distinguishes two types of congestion: (i) in-network congestion, i.e., con-
gestion at intermediate nodes (routers); and (ii) end-point congestion, i.e, conges-
tion at the destination host. The first type of congestion is targeted by the function
called congestion control, the second one by the flow control function. If we visual-
ize the path of a TCP connection through the network as a pipe and the final host
as a bucket, then congestion control provides adaptation to the pipe throughput,
while flow control avoids bucket overflow.

The average data rate sustained by a TCP connection is limited according to three
different causes:

1. Source-limited: The data source (sender application entity) produces data at a
maximum rate, intrinsically limited by the application (e.g., streaming).

2. Destination-limited: The destination side (receiver application entity) throttles
the rate of the connection, to adapt to the capability of the local resources (e.g.,
a server allocating limited buffer space and processing power to each thread).

3. Network-limited: The achievable data throughput is limited by the capacity of
data transfer through the network in between the source and the destination.

If the TCP connection throughput is source limited, there is no congestion at the
receiver, nor in the network path of the connection. The second case is dealt with

�

� �

�

10.2 Congestion Control Architecture in the Internet 585

by flow control, while congestion control addresses the third case. We will focus
on this last case in the following.

The philosophy of TCP is to probe the network so as to discover what the available
capacity is at any time during the connection lifetime. Two key elements allow TCP
to perform probing and data rate adjustment: windows and ACKs.

The TCP connection provides a byte stream service to the application. Bytes
sent through the TCP pipe are numbered sequentially. Bytes that have been sent
through the network, but have not been acknowledged yet, are said to be in-flight.
The amount of bytes in-flight is the flightsize.

The TCP sender paces the emission of new data bytes by means of the transmis-
sion window. A window is an interval of sequence numbers [𝓁,𝓁 + W − 1], where
W is the window size and 𝓁 is the sequence number of the oldest byte in-flight.
Let Wtx(t) denote the size of the transmission window at time t. The TCP sender
can have up to Wtx(t) bytes in-flight at any given time t. The dependence on t is
motivated by the fact that the window size can be adjusted adaptively to estimated
congestion during the connection lifetime. This is actually what congestion and
flow control do.

The transmission window is the minimum between the congestion window
and the receiver (or advertised) window, i.e., Wtx = min{cwnd, rwnd}, where
cwnd (rwnd) denotes the congestion window size (receiver window size).

The congestion window cwnd is updated according to an algorithm which is
internal to the TCP sender. This enables the possibility to change the congestion
control algorithm at the sender side, still keeping full inter-operability with any
other TCP receiver. On the contrary, the receiver window rwnd is updated based
on TCP segments exchange between the TCP sender and TCP receiver, exploiting
the receiver window field of the TCP segment header. This implies that the receiver
window updating algorithm is frozen into the TCP standard and any modification
entails modifying both the TCP sender and receiver, thus impacting heavily the
interoperability issue.

Let us focus on the congestion window cwnd. The updating principle of the con-
gestion window is the additive increase multiplicative decrease (AIMD) paradigm.
Increments of the congestion window are additive, whereas, when time comes
to decrease the congestion window, this is done by multiplying it by a factor less
than 1. The purpose is to grow the window cautiously, to avoid incurring into deep
congestion, and to shrink the window quickly, to wipe congestion out as soon as
possible.

When are increments and decrements applied? Here comes into the picture the
second key element, ACKs. They represent the feedback that the TCP sender entity
gets from the TCP receiver through the network. Whenever a TCP segment is sent
out by the TCP sender, a timer is started. When the corresponding ACK is received,
the timer is stopped and the TCP sender can gauge the round-trip time (RTT)

�

� �

�

586 10 Congestion Control

associated to the segment. Then, the TCP sender collects a sequence of RTTs as
packets are delivered through the connection. Seeing a growing trend in the RTT
sequence is an indication of congestion onset along the network path of the TCP
connection (if the TCP receiver were congested, it would signal so, by means of the
ACK receiver window field). On the contrary, diminishing RTTs highlight conges-
tion relief. A more dramatic sign of congestion is detecting packet loss. In fact,
TCP segments may get lost for a number of reasons, the most prominent of which,
at least in wired networks, is router buffer overflow. Then, when the TCP sender
detects a packet loss, besides triggering the retransmit function, it shall reduce its
congestion window size. Summing up, the congestion window size shall be decre-
mented whenever the TCP sender has evidence (increase of RTTs, packet loss) that
congestion might have set on along the network path. This evidence is gained by
analyzing ACKs (or the lack thereof).

As for increments, whenever an ACK is received, a new packet can be sent. At
that point, the TCP sender can decide to probe the network for more capacity,
by incrementing the congestion window. Since congestion window increments
are triggered by ACK reception, the TCP algorithm is said to be self-clocking. An
important consequence of the self-clocking is that a TCP flow can be heavily
affected by time-varying capacity of the forward and reverse path of the TCP con-
nection, since the sending rate is based on a delayed version of the time-varying
bottleneck capacity.

Figure 10.2 illustrates the self-clocking concept. The sender starts injecting data
segments at the highest rate allowed by its access link. Along the network path,
the data segments go through a bottleneck, thus they get spaced out. Once they are
spaced out by the time T required to transmit a data segment on the slowest link
along the path, they maintain that average spacing (packets can be delayed, but
they cannot be anticipated). As a consequence, ACKs are spaced out as well, by
the same amount. New data segments are released by the TCP sender when ACKs
come in. Therefore, new segments are sent out at the pace dictated by the arrival
of ACKs, ultimately determined by the path bottleneck.

Let Wk denote the congestion window size immediately after the k-th update
time tk, k ≥ 0. The initial value W0 is named initial window (IW). The congestion
control algorithm defines

Data segments

ACKs

Bottleneck
TCP receiverTCP sender

Figure 10.2
Self-clocking mechanism
of the TCP connection.

�

� �

�

10.3 Evolution of Congestion Control in the Internet 587

1. what are the updating times tk;
2. how Wk+1 is calculated, given Wk and the event occurring at time tk+1 (and

possibly other state variables).

Although TCP windows are measured in bytes, in most congestion control
algorithms and in some implementations the congestion window is measured
in units of maximum segment size (MSS), i.e., the maximum length of a TCP
segment payload. We will follow this convention. Thus the congestion window
size W denotes the maximum number of MSSs that can be in flight. The MSS
parameter is negotiated at connection setup, a typical value being 1460 bytes.
The MSS value is limited by the Maximum Transfer Unit (MTU), the maximum
length of an IP packet allowed by an IP sub-network. The limiting value is the
minimum of MTUs of the sub-networks crossed by the TCP connection path.

The precise algorithm according to which the congestion window is updated
is the heart of what goes under the name of TCP congestion control. The semi-
nal work that laid down the foundations of TCP congestion control is due to Van
Jacobson [112]. Since then, several flavors of TCP congestion control have been
proposed over the years. In the following we will review some of them.

10.3 Evolution of Congestion Control in the Internet

Since the 1980s, the congestion control has been recognized as a key function
for the proper working of the Internet, after major performance degradation was
experienced during that decade because of too aggressive packet retransmission
policies (congestion collapse).

Since the first releases of TCP congestion control at the end of the 1980s, a con-
tinuing evolution has taken place, driven both by technological advances, calling
for new functionality or revised algorithms, and by a deeper understanding of con-
gestion control theory in packet networks. This evolution process is still ongoing
and it is not expected that a “period” will eventually be marked.

In the following subsections we review briefly the congestion control algorithms
defined by some major versions of TCP, covering about three decades of the evo-
lution (from 1988 up to 2017). We consider a selection of TCP congestion control
algorithms: the “classic” TCP Reno and the more recent TCP CUBIC, as represen-
tatives of the loss-based class; TCP Vegas, as representative of the delay-based class;
DCTCP, as representative of network-assisted congestion control (ECN based);
BBR, as representative of a new class, neither loss- nor delay-based.

A basic knowledge of TCP main features is assumed, specifically, error recovery
and timeout management. The reader can consult [195] as an excellent reference
for a review of TCP, specifically Chapter 14 for TCP timeout and retransmission
mechanisms.

�

� �

�

588 10 Congestion Control

10.3.1 TCP Reno

There is no such thing as the standard TCP congestion control algorithm. The algo-
rithm closest to a standard is the “classic” TCP congestion control, dubbed Reno5.
TCP Reno probes the network to discover the best size for the congestion window.
We will see that the optimal value of the congestion window size is the bandwidth
delay product (BDP), i.e., the product of the connection bottleneck capacity by the
base RTT of the connection6.

At connection start, the TCP sender knows neither the bottleneck capacity nor
the base RTT. The sender has to accommodate two conflicting requirements: (i)
bring the congestion window size quickly at the optimal level; (ii) avoid causing
deep congestion, by sending a number of packets largely exceeding the capacity
of the network. The empirical solution of TCP Reno consists of defining two algo-
rithms: slow start and congestion avoidance7.

The slow start algorithm is a fast probing mode, the purpose of which is to
take the congestion window size rapidly close to a value that allows full use of
the end-to-end capacity available to the TCP connection. To that end, slow start
increments of the congestion window size are gross-grained.

The congestion avoidance algorithm increases the congestion window size
much slower than slow start, with fine-grained increments, thus guaranteeing
that only one or few packets get lost normally, when congestion arises.

Two other algorithms are invoked to improve the TCP congestion control: fast
retransmit and fast recovery. The fast retransmit algorithm consists of detecting
packet loss by means of duplicate ACKs, hence reacting more quickly than if
retransmission were based only on timer expiry. The fast recovery algorithm con-
sists of maintaining the segments in-flight by sending one new segment for each
duplicate ACK received by the TCP sender, until a “good” ACK is received, i.e., a
nonduplicate ACK. The rationale is that a packet has been actually delivered to
the TCP receiver for each duplicate ACK, even if the gap in the segment sequence
has not been recovered yet. Then, to maintain the number of packets in-flight it
is necessary to inject a new packet into the connection pipe.

5 In the rest of this chapter we refer to classic TCP as the “standard” TCP.
6 The base RTT is the time elapsing since a TCP segment is issued until the corresponding ACK
is received, assuming no loss and no queueing delay in the network buffers.
7 At first glance, these seem to be kind of misnomers. The increase of the congestion window
size is exponentially fast in the slow start phase. Actually, “slow” refers to the fact that the
congestion window size starts from a very low value. The steady increase of the congestion
window size in the congestion avoidance phase is bound to provoke congestion eventually.
However, “avoidance” here refers to the fact that the increment of the congestion window size is
minimal. It aims at probing the network path capacity, avoiding the loss of more data than
strictly necessary.

�

� �

�

10.3 Evolution of Congestion Control in the Internet 589

10.3.1.1 TCP Congestion Control Operations
Let us follow the sequence of operations for the classic TCP congestion control
step-by-step.

The congestion control state machine is initialized to slow start at connection
setup. The congestion window cwnd is initially set to IW . The updating rule in
slow start is

cwnd ← cwnd + 1 on ACK reception (10.1)

Since the TCP receiver issues by default an ACK for each TCP segment received
correctly, the ACK rate is the same as the packet rate. The default behavior of
the TCP receiver can be modified, to reduce the overhead due to ACKs, by adopt-
ing the delayed ACK option. According to delayed ACK, the TCP receiver issues a
cumulative ACK for any other segment8. The TCP receiver also manages a timer.
Whenever a correct segment is received, the TCP receiver starts the timer. Either
a second correct segment in sequence is received, and then the ACK is issued, or
the timer expires. In the latter case, the ACK for the first segment is issued anyway.
The motivation of the timer is to avoid delaying the ACK too much at the risk of
triggering a timeout event at the TCP sender. The typical value of the delayed ACK
timer is 200 ms. The ACK is issued immediately in case it is duplicated, i.e., a data
segment is received out of sequence.

Let us see the effect of the slow start updating rule under a generalized delayed
ACK option (one ACK every r segments), assuming that the TCP sender always
has packets to send. Initially IW segments are sent and IW∕r ACKs are received
after one RTT (we assume no packet gets lost). Then, cwnd is incremented to IW +
IW∕r and so many segments are sent, causing the reception of (IW + IW∕r)∕r
ACKs after one more RTT. If Wk denotes the cwnd at the end of the k-th RTT,
the slow start update rule results in9 Wk+1 = Wk + Wk∕r for k ≥ 0, with W0 = IW .
The solution of the difference equation is Wk = IW(1 + 1∕r)k

, k ≥ 0. The diagram
on the left in Figure 10.3 illustrates an example of slow start evolution with IW = 1
and r = 1.

8 Delayed ACK can be generalized to issuing one cumulative ACK for r consecutive data
segments.
9 This is only an approximation, since we are neglecting the fact that the ratio Wk∕r is not an
integer in general. The exact recursion is:

⎧⎪⎪⎨⎪⎪⎩
Wk+1 = Wk +

⌊Wk + 𝜂k

r

⌋
𝜂k+1 = Wk + 𝜂k − r

⌊Wk + 𝜂k

r

⌋
for k ≥ 0, initialized with W0 = IW and 𝜂0 = 0. ⌊x⌋ denotes the largest integer not greater than x.

�

� �

�

590 10 Congestion Control

Slow start
Congestion

avoidance

Figure 10.3 Examples of TCP
congestion control. Left plot: Slow
start with initial window size of 1
and no delayed ACK. Right plot:
Congestion avoidance starting with
cwnd = 4.

The marking trait of slow start is the exponential growth of the congestion win-
dow with the RTTs. Such a rapid growth promises to reach the right level of the
congestion window fast, but, on the other side, can cause a major overshoot, bring-
ing to massive packet loss. To mitigate that risk, slow start is stopped once the
congestion window hits the slow start threshold ssthresh. The quantity ssthresh is
itself a time-varying, adaptive parameter of TCP congestion control. It is initalized
at connection setup, to some large value. A typical choice for the initial value of
ssthresh is 64 MSSs.

Once the congestion window size exceeds ssthresh, the TCP congestion control
switches to congestion avoidance. In this state the cwnd update rule is:

cwnd ← cwnd + 1∕cwnd on ACK reception (10.2)

In words, cwnd increments by 1 for each window-worth of data that is acknowl-
edged.10 Assuming that a window-worth of data is delivered in one RTT, conges-
tion avoidance produces a linear growth of the congestion window size, namely
cwnd grows by 1 every RTT.

The TCP sender is still probing the network to check whether more data can be
pushed in. Congestion avoidance does it more gently than slow start, but it still
does it steadily. If no packet loss is detected, the congestion window size of TCP
Reno keeps growing, until eventually the connection is finished or the maximum
transmission window size is hit.

10 The updating rule in (10.2) does not account for the constraint that cwnd be an integer. A
more precise statement is based on an auxiliary variable xcwnd, initialized to cwnd on
congestion avoidance start. Then, the update rule is as follows: xcwnd ← xcwnd + 1∕cwnd, on
ACK reception, and cwnd ← ⌊xcwnd⌋. The result is that cwnd increments by 1 after exactly cwnd
ACKs have been received.

�

� �

�

10.3 Evolution of Congestion Control in the Internet 591

The probing phase (be either slow start or congestion avoidance) stops when
congestion is experienced. In the TCP Reno algorithm, congestion is recognized
only upon packet loss detection. A packet loss event is detected by the TCP sender
upon a retransmission time out (RTO) expiry. If the fast retransmit algorithm is
active, packet loss is declared also upon reception of DupThresh duplicate ACKs
(DUPACKs). The default value of DupThresh is 3. Whatever the loss detection algo-
rithm, when a retransmission takes place, ssthresh is set to

ssthresh ← max{2,flightsize∕2} (10.3)

where the flightsize is the amount of data in-flight into the TCP pipe. Note that
flightsize ≤ Wtx = min{cwnd, rwnd}, i.e., the flightsize is always no more than the
congestion window size.

If an RTO occurs, the state of congestion control is brought back to slow start,
cwnd is reset to IW , ssthresh is updated according to eq. (10.3) and the congestion
control process starts all over again. The rationale is that timeout is a dramatic
event in the life of the TCP connection, announcing a major discontinuity in the
connection experience. Then it is worth restarting the probing anew.

If instead DupThresh DUPACKs are received before an RTO occurs, a packet loss
is declared, but the received DUPACKs give evidence of the fact that the connec-
tion path is still operational and carrying packets. Hence, we only need to adjust
the cwnd. This is done by invoking the fast recovery function. After having recov-
ered the lost data, fast recovery sets cwnd to the value assigned to ssthresh by fast
retransmit (see eq. (10.3)). Fast recovery entails a multiplicative decrease of cwnd:

cwnd ← cwnd − 𝛽 ⋅ cwnd (10.4)

The default value of 𝛽 for TCP Reno is 1∕2. In fact, the implementation of
(10.4) consists of setting cwnd ← ssthresh, where ssthresh is updated according to
eq. (10.3).

When the packet loss is detected, TCP enters a recovery phase that differs accord-
ing to different TCP versions (NewReno TCP [11] and SACK [36]). In particular,
NewReno TCP recovery phase is based only on the cumulative ACK informa-
tion whereas SACK TCP receiver exploits the TCP selective acknowledge option
[159] to advertise the sender about out-of-order received data. This information is
employed by the sender to recover from multiple losses more efficiently than with
NewReno TCP. Once the fast recovery phase is completed, congestion avoidance
is resumed, with the reduced congestion window size given in (10.4).

The rules for updating the congestion window size and the slow start threshold
are summarized as follows. Upon receiving a good ACK, the congestion window
size is updated according to:

cwnd ←

{
cwnd + 1 cwnd < ssthresh,
cwnd + 1∕cwnd cwnd ≥ ssthresh

(10.5)

�

� �

�

592 10 Congestion Control

If an RTO is detected, ssthresh and cwnd are updated as follows:

ssthresh ← max{2,flightsize∕2} (10.6)

cwnd ← IW (10.7)

If instead fast retransmit is invoked because of reception of DupThresh duplicate
ACK, the following actions are performed:

1. The ssthresh is set as

ssthresh ← max{2,flightsize∕2} (10.8)

2. The congestion window size is set as

cwnd ← ssthresh + 3 (10.9)

3. cwnd is increased by 1 for each duplicate ACK received.
4. When a good ACK is received, the cwnd is reset to ssthresh and congestion

avoidance is resumed.

Let us explain the motivation behind these glib rules. Detection of packet loss via
timeout entails a long delay, since the RTO is easily much longer than the average
RTT. The fast retransmit algorithm has been introduced to overcome this issue.
According to fast retransmit, after three duplicate ACKs a packet is deemed to be
lost. Hence it is retransmitted and the congestion window is halved. A key point
is the following general rule, that the TCP sender entity always complies with,
throughout the lifetime of the TCP connection: a new packet can be sent only if the
flighsize is less than the cwnd11. Let W denote the cwnd when the three DUPACKs
have been received and let F denote the flightsize. If the TCP sender is greedy, it is
F = W . By setting the new cwnd value to W∕2, the TCP sender could not send any
new packet until it receives the ACK of the lost packet, after its retransmission.
In the meantime, the TCP sender receives DUPACKs corresponding to all other
flying packets (we assume a single packet is lost). Therefore, the pipe of the TCP
connection empties completely. Once the packet loss is recovered, i.e., as soon as
the TCP source receives the ACK for the retransmitted packet, the flightsize drops
to 0 and hence the TCP sender can send W∕2 packets.

The fast recovery procedure is conceived to accelerate the recovery of the flight-
size to the level W∕2. According to this procedure, the cwnd is set to W∕2 + 3 (since
three DUPACKs have already been received); then it is inflated by one each time
a new DUPACK arrives. Overall, W − 1 DUPACKs arrive, if only a single packet
of the window has been lost. Three of them are used to detect the loss, therefore
W − 4 more DUPACKs arrive before the retransmitted packet is acknowledged.

11 Here we assume that both flightsize and cwnd are measured in MSSs.

�

� �

�

10.3 Evolution of Congestion Control in the Internet 593

Figure 10.4 Example of fast
recovery evolution from when the
packet loss is detected (three
DUPACKs have been received) until
when it is recovered (reception of
ACK of the retransmitted packet).
Crosses mark reception events of
DUPACKs, the circle marks the
reception of the good ACK that
closes the recovery phase.

x x x x
Time

x x

DUPACKs

15

14

13

12

11

10

9

8

Good ACK

Fast recovery Congestion

avoidance

Then, the cwnd is inflated up to W∕2 + 3 + W − 4 = W∕2 + W − 1. Since it is F =
W , it follows that the TCP sender is enabled to send up to W∕2 + W − 1 − F =
W∕2 − 1 new packets. One more new packet can be sent upon reception of the
ACK of the retransmitted packet. Overall, the TCP sender has already sent up to
W∕2 new packets, at the time when the congestion avoidance is resumed. Recov-
ery is attained immediately this way, which is why this procedure is called fast
recovery.

An example of the evolution of the cwnd is shown in Figure 10.4. In the figure,
we assume that W = 10. The plot of the cwnd (the thick step-wise line) starts from
the time that the packet loss event has been detected by means of the fast retrans-
mit function. At that time the cwnd is set at W∕2 + 3 = 10∕2 + 3 = 8. It increments
by one upon each received DUPACK. After six DUPACKs, the ACK of the retrans-
mitted packet finally arrives.

The flightsize equals 10 when loss is detected. As new packets are sent (upward
arrows in the figure), the flightsize increments by one for each transmitted packet,
attaining 14 immediately before the good ACK is received. As the ACK of the
retransmitted packets arrives at the TCP sender, one more new packet is sent
(hence the flightsize is incremented to 15), and 10 old packets are cumulatively
ACKed (hence the flightsize is decremented to 5). A neat explanation of fast
recovery implementation alternatives is given in [195].

A number of nuances have been added to the classic algorithm over the years.
We review some of them, given their relevance (the devil is in the details, a proverb
that suits TCP perfectly).

10.3.1.2 NewReno
When a packet loss is detected by means of the fast retransmit algorithm (duplicate
ACKs), the lost packet is retransmitted and the congestion window is temporarily
inflated by incrementing it for any duplicate ACK received, until a good ACK is
received. When a good ACK comes in, the congestion window is reset to ssthresh,
wiping out the inflation.

�

� �

�

594 10 Congestion Control

For multiple packet losses this can affect adversely the connection throughput.
After the first loss is recovered and normal operation is resumed, there might be
too few packets in-flight to trigger again the fast retransmit for other lost packets.
Then, the only way the TCP sender can realize that more packets are lost is by
waiting for the RTO to expire. The RTO is typically set to a much higher value
than the average RTT12. Waiting for the RTO to expire freezes the connection data
flow for a relatively long time. Moreover, it causes the cwnd to roll back to IW , and
the congestion control state of the connection to be set back to slow start.

To avoid problems with multiple losses, fast recovery has been modified. The
modification is active provided the SACK option is off (see next subsection for
details on the SACK option). The classic Reno congestion control with the modi-
fied fast recovery is dubbed NewReno.

The modification consists in defining a new variable, the recovery point. The
recovery point is the highest sequence number from the last transmitted window of
data. The congestion control keeps track of the recovery point. As the fast retrans-
mit is invoked, the congestion window is managed according to fast recovery, with
temporary inflation, until an ACK with a sequence number at least as high as the
recovery point is received. Only at that point is the inflation removed and normal
operation in congestion avoidance is resumed.

This simple modification allows TCP to recover from multiple packet losses
without exiting prematurely from the fast recovery procedure.

10.3.1.3 TCP Congestion Control with SACK
Selective ACK defines an option of the TCP header, implementing a selective ACK
mechanism. It specifies not only the sequence number of the first expected byte,
but also holes in the received byte sequence as seen by the TCP receiver.

With SACK, a TCP sender is informed of multiple missing chunks of data, so
that it can recover all of them without unneeded retransmissions. Upon reception
of a SACK, the TCP sender could theoretically send all missing segments, given
that they fall inside the permitted window. However, for large window sizes and
multiple losses, this could cause the injection of too many packets at high speed
in the TCP connection path, thus causing more congestion.

To avoid this effect, SACK calls for separation of the retransmission and the
congestion control logic. While SACK helps identifying which segments must be
retransmitted, congestion control dictates when they shall be retransmitted.

A new variable is defined, called pipe. The variable pipe accounts for the bytes
in-flight, that are not deemed to be lost. The TCP sender is permitted to send a
segment provided that cwnd ∗ MSS − pipe ≥ MSS, i.e., provided the congestion

12 Typical implementation set the RTO to the currently estimated average RTT, the smoothed
RTT, plus 4 times the estimated deviation of the RTT from the average value.

�

� �

�

10.3 Evolution of Congestion Control in the Internet 595

window has room to accommodate an MSS in addition to the effective number of
bytes still in flight.

TCP with SACK can perform better than NewReno when multiple packets get
lost in a window of data.

10.3.1.4 Congestion Window Validation
The congestion window size is an estimate of the amount of data that a TCP sender
should be able to send into the network without causing significant congestion.
This estimate is continuously updated on the basis of the feedback collected from
the network. The feedback is essentially provided by the ACK flow arriving at the
TCP sender. In turn, ACKs are triggered by data segments pushed into the con-
nection pipe by the TCP sender. If the TCP connection is idle for some time or it
is otherwise stuck for any reason, no data segment is sent and no ACK is received.
That way, the information condensed into the current value of cwnd becomes stale.
When operation is resumed, it might be that the value of cwnd is no more appro-
priate. For example, if cwnd grew up to a relatively high value, when operation is
resumed, a large burst of segments could be launched into the network at high
speed, possibly causing congestion and multiple packet losses.

The algorithm called congestion window validation (CWV) has been intro-
duced to handle those situations. First we have to distinguish between two
circumstances. A TCP connection can be idle if the TCP sender has no new
segment to send, and all sent segments have been successfully acknowledged.
The connection is therefore truly quiescent; it will become active again as soon as
a new segment is ready to be sent at the TCP sender. Alternatively, a connection
is blocked if the TCP sender has received ACKs for all previously sent segments, it
has data ready to be sent, but it is unable to send segments for some reason. For
example, the sending host could be busy in other tasks, so that it cannot assign
CPU time and resources to the TCP sender thread. Or, the network interface is
blocked by some lower-layer protocol issue. Also, in this case, the pipe is empty.
As soon as the TCP sender resumes sending segments, the connection exits this
blocked state.

In both cases the TCP sender condition is referred to as application-limited.
The CWV algorithm works as follows. Let ts denote the last time that a segment

has been sent out. Let a new segment, ready to be sent out, arrive at an idle TCP
sender at time ta. The sender checks whether ta − ts > RTO. If that is the case, the
following steps are performed.

1. ssthresh ← max{ssthresh, (3∕4) ⋅ cwnd}, i.e., ssthresh is assigned a value that
maintains a “memory” of the current value of the congestion window size.

2. cwnd ← max{1, cwnd ⋅ 2−(ta−ts)∕RTT}, i.e., the congestion window size is halved
for each RTT elapsed during the idle time.

�

� �

�

596 10 Congestion Control

For a blocked TCP sender, the following steps are carried out:

1. The amount of window actually used is saved into the variable w used.
2. ssthresh ← max{ssthresh, (3∕4) ⋅ cwnd}.
3. cwnd ← (cwnd + w used)∕2.

In both cases, the cwnd decays with respect to the last registered value, while
ssthresh keeps a memory of the last attained cwnd value. In the first case, the cwnd
can be affected substantially. Moreover, reducing cwnd and keeping ssthresh close
to the former value of the congestion window size results easily in the congestion
control state move to slow start. This is consistent with the fact that, after a long
pause, the TCP sender has to start its probing almost from scratch.

CWV is enabled by default in Linux TCP implementations.

10.3.2 TCP CUBIC

The CUBIC algorithm [181, 96] is an evolution of the binary increase congestion
control algorithm. Initialization, slow start and handling of congestion window
reductions are done as in standard TCP, including variants, e.g., SACK. The only
difference lies in the amount that the congestion window is reduced upon packet
loss. The reduction of cwnd is a fraction 𝛽 of the current value of the congestion
window, i.e., cwnd ← cwnd − 𝛽 ⋅ cwnd. The default value of 𝛽 is 0.3.

The key original idea of the CUBIC algorithm affects the congestion avoidance
phase. If cwnd ≥ ssthresh, congestion control is in congestion avoidance. Then,
cwnd growth is governed by a cubic equation:

W(t) = Wmax + C(t − t0 − K)3 (10.10)

where t0 is the last time before the current time t that the congestion window has
been reduced and Wmax = W(t−0) stores the value of the congestion window imme-
diately before time t0, i.e., before the reduction. Note that CUBIC uses the true time
variable t. It is therefore not simply self-clocking as classic TCP.

The constant K can be found, by imposing that W(t+0) = Wmax(1 − 𝛽). It is

K =
(
𝛽Wmax

C

)1∕3

(10.11)

The default value chosen by the Authors for C is 0.4. The CUBIC rule to increase
the congestion window is made of a first part that is concave, from time t0 until
time t0 + K. The congestion window grows fast at the beginning, to regain the level
it attained before the reduction. As the congestion window gets close to the pre-
vious level, the curve flattens and the increase becomes slower and slower. If no
packet is lost and the growth can continue, the convex part of the curve is involved.
Then the congestion window grows faster and faster, eventually causing a packet

�

� �

�

10.3 Evolution of Congestion Control in the Internet 597

loss. The fast growth is useful to reap high values of throughput, when there is a
large bandwidth that has become available.

CUBIC implements a TCP-friendly mechanism. To be fair with respect to the
standard TCP (Reno). As long as cwnd is less than the congestion window size
that a standard TCP congestion control would set, cwnd is updated following the
rule of the standard TCP, instead of the CUBIC law in eq. (10.10). To find the time
evolution of the standard TCP cwnd, we consider that in congestion avoidance,
the standard TCP grows linearly with the RTT. Accounting for the different reduc-
tion factor (𝛽 = 0.3 for CUBIC, instead of the factor 1/2 of the standard TCP), the
congestion window size of the standard TCP can be put in the form

WTCP(t) = (1 − 𝛽)Wmax +
3𝛽

2 − 𝛽

t − t0

RTT
, t > t0. (10.12)

During congestion avoidance, upon the arrival of an ACK at the TCP sender at
time ta, if it is cwnd < WTCP(ta), then CUBIC sets cwnd ← WTCP(ta). Otherwise, if
cwnd ≥ WTCP(ta), CUBIC sets cwnd to W(ta), as given by eq. (10.10).

Apart from congestion avoidance, TCP CUBIC behaves as the standard TCP on
packet loss, except that the congestion window is reduced by a factor 𝛽, rather
than being halved. On timeout, TCP CUBIC resets all its variables and rolls back
the congestion window size to the initial window level.

The detailed pseudo-code of TCP CUBIC algorithm is listed below. Note that the
clause “On congestion detection” refers to congestion events detected by means of:
(i) packet loss detected with three DUPACKs; (ii) ECN-Echo flag set in the header
of ACKs received in the last RTT

The core function runs on each ACK; it is listed in a separate pseudo-code. In
this second algorithm, t tcp indicates the TCP timestamp (current time at the TCP
sender). The variable SRTT denotes the average (smoothed) round-trip time, mea-
sured on ACK reception13.

The boolean fast_convergence enables the mechanism that facilitates new TCP
connections to gain their own share of the bottleneck capacity (fairness to other
CUBIC connections). According to fast convergence, if packet loss is detected so
early that the cwnd is still below the switching point between concave growth and
convex growth, i.e., if it is cwnd < Wmax, the value of Wmax for the next conges-
tion avoidance phase is set to a level lower than the last attained value of cwnd.
With the suggested value of 𝛽 = 0.3, the reduction factor is 1 − 𝛽∕2 = 0.85. The
rationale of this mechanism is to make room for new connections, whose onset is

13 On each good ACK reception (except of an ACK of a retransmitted segment) the variable
SRTT is updated according to SRTT = (1 − 𝛾)SRTT + 𝛾Tk, where Tk is the sample of RTT
measured on the k-th good ACK reception. This recursion is initialized at connection set-up
time with SRTT = T0, where T0 is the sample of RTT collected during the three-way handshake.
A typical default value of 𝛾 is 𝛾 = 0.125.

�

� �

�

598 10 Congestion Control

Algorithm Pseudo-code of TCP CUBIC congestion control algorithms.

Initialization:
1: fast_convergence = true
2: C = 0.4
3: 𝛽 = 0.3
4: IW = 3
5: s0 = 64
6: reset_tcp_cubic_cc()

On each ACK:
1: cwnd_update_on_ACK()

On congestion detection:
1: wcnt = 0
2: t0 = 0
3: if cwnd < Wmaxand fast_convergence then
4: Wmax = cwnd ⋅ (2 − 𝛽)∕2
5: else
6: Wmax = cwnd
7: end if
8: ssthresh = max{2, ⌊cwnd ⋅ (1 − 𝛽)⌋}
9: cwnd = ssthresh

On timeout:
1: reset_tcp_cubic_cc()

reset_tcp_cubic_cc()
1: wcnt = 0
2: t0 = 0
3: Wmax = 0
4: cwnd = IW
5: ssthresh = s0

likely the cause of early packet loss. The unit of measure used for all windows and
window-related quantities is the MSS.

CUBIC is set as the default TCP congestion control in Linux kernels since ver-
sion 2.6.18. The full TCP CUBIC implementation has more details. We do not
pursue those detail further here. The interested reader can find them in [96] and
ultimately in the code of the Linux implementation.

10.3.3 TCP Vegas

TCP Vegas [43] is based on the usual five fundamental mechanisms: slow start,
congestion avoidance, retransmission timeout, fast retransmit, and fast recovery.

Vegas is the first example of delay-based (rather than packet loss–based)
congestion control. The key idea of Vegas congestion control is comparing the
amount of data it expects to be able to transfer in one RTT and the actual amount

�

� �

�

10.3 Evolution of Congestion Control in the Internet 599

Algorithm Pseudo-code of function cwnd_update_on_ACK().

1: if cwnd < ssthresh then
2: cwnd = cwnd + 1
3: else
4: if t0 ≤ 0 then
5: t0 = t_tcp
6: if cwnd < Wmax then

7: K =
(

Wmax−cwnd
C

)1∕3

8: W0 = Wmax
9: else

10: K = 0
11: W0 = cwnd
12: end if
13: Wtcp = cwnd
14: end if
15: t = t_tcp + SRTT − t0
16: target = W0 + C(t − K)3

17: if target > cwnd then
18: w = cwnd

target−cwnd
19: else
20: w = 100 ⋅ cwnd
21: end if
22: Wtcp = Wtcp +

3𝛽
2−𝛽

1
cwnd

23: if Wtcp > cwnd then
24: w′ = cwnd

Wtcp−cwnd
25: w = min{w,w′}
26: end if
27: if wcnt > w then
28: cwnd = cwnd + 1
29: wcnt = 0
30: else
31: wcnt = wcnt + 1
32: end if
33: end if

of transferred data. If the expected throughput level is not attained, there is
likely some slowdown due to queue build-up in some intermediate router. If this
symptom of congestion persists, Vegas slows down, by reducing the congestion
window. This is in contrast to the standard TCP approach, which forces a packet
drop in order to determine the point at which the network is congested. On the
contrary, if data transfer proceeds smoothly with no sign of queue build-up, Vegas
probes for further increase of cwnd. Differently from standard TCP, Vegas can also
maintain the cwnd unchanged, if it cannot infer any definite drift from the RTT
analysis.

More in depth, TCP Vegas differs from TCP Reno by the way that slow start,
congestion avoidance, and fast retransmit are implemented.

�

� �

�

600 10 Congestion Control

The TCP Vegas congestion control is based on two parameters representing,
respectively, the expected and the actual rate, calculated on ACK receipt as follows:

Expected = cwnd
BaseRTT

Actual =
flightsize

RTT
(10.13)

where BaseRTT is the minimum round-trip time experienced by the connection,
and flightsize is the number of segments already sent and not acknowledged yet.

Every RTT, TCP Vegas computes the normalized difference Δ between Expected
and Actual:

Δ = (Expected − Actual) ⋅ BaseRTT (10.14)

During congestion avoidance, TCP Vegas compares Δ with two thresholds 𝛼

and 𝛽. Suggested values are 𝛼 = 1 and 𝛽 = 3. If Δ is less than 𝛼, the congestion
window grows linearly in the next RTT; if Δ is larger than 𝛽, TCP Vegas decreases
linearly cwnd in the next RTT; otherwise, if Δ is between 𝛼 and 𝛽, cwnd is not
changed:

cwnd =
⎧⎪⎨⎪⎩

cwnd + 1 Δ ≤ 𝛼

cwnd − 1 Δ > 𝛽

cwnd otherwise
(10.15)

The slow start mechanism is based on the same concepts of the congestion avoid-
ance phase: TCP Vegas computesΔ and compares it with a unique threshold 𝛾 . The
suggested value is 𝛾 = 1. As long as Δ is less than 𝛾 and cwnd is less than ssthresh,
the TCP Vegas congestion window is doubled every other round trip time. This
can be obtained by freezing the cwnd in one RTT and allowing cwnd to grow by 1
per received ACK in the next RTT. Alternatively, it can be obtained approximately
by incrementing the cwnd by 1 any other received ACK. Switching between slow
start and congestion avoidance is decided by comparing cwnd with the ssthresh
as usual. If three duplicate ACKs are received, the Vegas sender performs fast
retransmit and fast recovery as in TCP Reno. Actually, Vegas develops a more
refined fast retransmit mechanism based on a fine-grained clock, whose details
are described in [43]. After fast recovery, TCP Vegas sets the congestion window
to 3∕4 of the previous maximum attained congestion window and performs the
congestion avoidance algorithm.

The parameters 𝛼 and 𝛽 can be thought of in terms of buffer utilization at the
bottleneck link [43]. The reasoning behind these values is as follows. At least one
packet should be buffered in the network path, at the queue of the bottleneck link
router along the TCP connection path, to maintain full utilization of the avail-
able network capacity. If extra bandwidth becomes available, buffering additional
packets (up to 3, according to the set value of 𝛽) obviates the need to wait an extra
RTT in order to inject more packets, which would be required if Vegas tried to

�

� �

�

10.3 Evolution of Congestion Control in the Internet 601

stick to just a single extra packet buffered in the network path. The reason to have
𝛽 > 𝛼 is to introduce dumping in the congestion window closed-loop, so as to avoid
oscillations triggered by minor changes in the available network capacity.

Vegas is supported by Linux, but not enabled by default. Though it has been
shown that Vegas offers good throughout and fairness performance, when oper-
ated in a homogeneous Vegas environment, it has been found that Vegas is starved
when confronted with loss-based TCP congestion control algorithms. Those algo-
rithms are much more aggressive than Vegas, since they keep pumping new pack-
ets into the network, until a loss is detected by the sender. This increases the bot-
tleneck queue, and Vegas sources sense the increased delay, thus shrinking their
windows. In a world of aggressiveness, there is no room for the gentle Vegas.

Furthermore, under certain circumstances, Vegas can be “fooled” into believ-
ing that the forward-direction delay is higher than it really is. This happens when
there is significant congestion in the reverse direction (recall that the paths in the
two directions of a TCP connection may be different and have different congestion
levels). In such cases, ACKs returning to the TCP sender are delayed, even though
the sender is not really contributing to the congestion of the forward path. This
causes Vegas to reduce the congestion window even though such an adjustment
is not really necessary. This is a potential pitfall for most techniques based on RTT
measurement as a basis for congestion control decisions.

Vegas is fair relative to other Vegas connections sharing the same bottleneck
link. However, Vegas and standard TCP flows do not share the network capacity
equally. A standard TCP sender tends to fill queues in the network, whereas Vegas
tends to keep them nearly empty. Consequently, as the standard sender injects
more packets, the Vegas sender sees increased delay and slows down. Ultimately,
this leads to an unfair bias in favor of the standard TCP, which can result in Vegas
connection starvation.

10.3.4 Data Center TCP (DCTCP)

The data center TCP (DCTCP) [9] has been proposed as an improvement over
traditional TCP congestion control for the specific environment of data center
networks. Data centers are the heart of cloud computing. They comprise from
several thousands to hundreds of thousands servers, interconnected by a high
performance network, so as to enable parallel computing paradigms that require
intensive communications among servers. The most prominent special features
of a data center network are: (i) the typically small base end-to-end delay in the
absence of queueing, in the order of few tens of microseconds up to several hun-
dreds of microseconds; (ii) the very large link capacity (often 10 Gbit/s, or even
more, if optical technology is used); (iii) the burstiness and volatility of the traffic,
that can cause significant queue build-up in switches; and (iv) TCP incast. The

�

� �

�

602 10 Congestion Control

IP IP

TCP snd TCP rcv
ECE = 1

0100

ACK
Figure 10.5 Illustration of the
ECN logic. A router sets the ECN
flag on a packet sent on a
congested link and the TCP
receiver echoes back the flag
into the ACK fed back to the TCP
sender.

last issue is triggered by distributed computing applications (see Section 10.9.4). A
large number of TCP connections are opened to different servers simultaneously
when a computation task is spread among them. Completion of the distributed
computation tasks and return of results may synchronize, so that there is a major
surge of traffic at the switch attached to the server that launched the distributed
computation.

To improve the performance offered by standard TCP in these environments, the
DCTCP has been conceived. It leverages upon a standard cooperation mechanism
between network nodes and traffic sources, the Explicit Congestion Notification
(ECN) [178]. According to ECN, each router defines a link congestion criterion
(e.g., exceeding a level threshold of the output link buffer). When congestion is
detected on the link, the outgoing packet is marked. Marking amounts to setting a
bit (CE flag) in the IP packet header.14 The CE flag is echoed by the TCP receiver,
using the ECN-Echo (ECE) flag in the TCP ACK header. A scheme of the ECN
principle is illustrated in Figure 10.5.

The DCTCP algorithm exploits ECN. Although not activated consistently in the
Internet, ECN is supported by most off-the-shelf routers and switches. It is sensible
to define a TCP congestion control algorithm that relies upon the cooperation of
network switches in the special environment of data center networks, since this is a
controlled einvornment, where the data center operator can guarantee consistency
of configuration of all switches.

DCTCP has three main components: (i) marking at the switch; (ii) ECN-Echo at
the receiver; and (iii) controller at the sender.

10.3.4.1 Marking at the Switch
A simple active queue management scheme is used at the switches to support
DCTCP. A single parameter is assigned, the marking threshold, K. A packet arriv-
ing at the output buffer of a switch port is marked if it finds a buffer queue length
greater than K. Otherwise, it is not marked. Looking at the output of the buffer, the
sequence of CE flags forms a 1-0 signal that is high (code 1) as long as the buffer
occupancy overshoots the threshold, low (code 0) otherwise.

14 Two bits of the ToS field of IPv4 header are devoted to ECN: one is for signaling the ECN
capability, the other is the congestion experienced (CE) flag.

�

� �

�

10.3 Evolution of Congestion Control in the Internet 603

10.3.4.2 ECN-Echo at the Receiver
The packets traveling the forward connection path collect the congestion notifi-
cation flags. It is a task of the receiver to feed this notification back to the TCP
sender via the TCP ACKs. ECN as specified in the standard RFC 3168 states that a
receiver sets the ECN-Echo flag in a series of ACK packets, until it receives confir-
mation from the sender that the congestion notification has been received. Given
the way that CE flags are set through the switches according to DCTCP, the pro-
cedure stated by RFC 3168 introduces a distorsion of the congestion signal. The
simplest way for the DCTCP receiver to convey an accurate feedback signal is to
ACK every packet, setting the ECN-Echo flag if and only if the acknowledged data
packet has a CE flag set to 1.

There remains to deal with the delayed ACK mechanism. When this option is
selected, the TCP receiver can send a single ACK for up to r TCP data segments.
The DCTCP receiver behavior is represented by a two state machine. State S0 is
maintained as long as the incoming TCP data segments carry a CE flag of 0. While
in state S0, the TCP receiver sends a single ACK with ECN-Echo flag set to 0 every
r data segments with CE=0. The arrival of a data segment with a CE flag of 1
triggers the transition to state S1. On the transition, the TCP receiver issues imme-
diately an ACK with ECE=1. While in state S1, the TCP receiver sends a single
ACK with ECN-Echo flag set to 1 every r data segments with CE=1. The arrival
of a data segment with a CE flag of 0 triggers the transition to state S0. On the
transition, the TCP receiver issues immediately an ACK with ECE=0. The state
machine at the TCP receiver to handle CE and ECE flags with delayed ACKs is
shown in Figure 10.6. Looking at the sequence numbers of the received ACKs, the
TCP sender is able to recover the correct congestion notification signal.

10.3.4.3 Controller at the Sender
The sender maintains an estimate of the average fraction 𝛼 of packets that are
marked. 𝛼 is updated once for every window of data (about once every RTT),
according to:

𝛼 ← (1 − g)𝛼 + gF (10.16)

S0

Segment with CE = 1 | Send

immediate ACK with ECE = 1

Segment with CE = 0 | Send

immediate ACK with ECE = 0

Segment with CE = 0 |

Send 1 ACK with

ECE = 0 for r data

segments

Segment with CE = 1 |

Send 1 ACK with

ECE = 1 for r data

segments

S1

Figure 10.6 State-machine for handling CE and ECE flags at the TCP receiver when the
delayed ACK mechanism is used.

�

� �

�

604 10 Congestion Control

where F is the fraction of packets marked in the last window and g ∈ (0, 1) is the
weight given to new samples against the value of 𝛼 accumulated in the past. At
steady state, 𝛼 converges to E[F]. This is the probability that the bottleneck buffer
on the forward path of the TCP connection is beyond the threshold K. The heavier
the congestion, the larger 𝛼.

The parameter 𝛼 is used to reduce the congestion window. Here lies the main
difference between the DCTCP sender and the standard TCP sender. The DCTCP
sender reduces cwnd when it receives at least one marked ACK in the last window
of segments. The DCTCP sender reacts by reducing the window by a factor that
depends on the average fraction of marked packets: the larger 𝛼, the smaller the
decrease factor. Formally:

cwnd ← cwnd
(

1 − 𝛼

2

)
(10.17)

When 𝛼 is near 0 (low congestion), the window is only slightly reduced. When
congestion is high (𝛼 ∼ 1), DCTCP cuts cwnd by a factor of 1/2, just like the stan-
dard TCP.

Other features of DCTCP are the same as the standard TCP. In slow start the
cwnd grows by 1 for each received ACK. In congestion avoidance, the applied rule
is cwnd ← cwnd + 1 after cwnd received ACKs. Fast retransmit and fast recovery
are also left unchanged, except that the congestion signal is not conveyed by packet
loss detection, rather it consists of marked ACKs.

10.3.5 Bottleneck Bandwidth and RTT (BBR)

The bottleneck bandwidth and RTT (BBR) variant of TCP congestion control was
first published at the end of 2016 [49,50]. The Authors claim that development
and experimenting with BBR started at Google around 2014. It is a major variant
of TCP congestion control. Besides the weight of Google on the Internet, the qual-
ification “major” is due also to innovations that break longstanding “tradition” in
TCP congestion control, even if the Authors interestingly root their main ideas in
fundamental statements of Kleinrock’s papers dating back to the mid-1970s.

BBR is not a loss-based nor a delay-based congestion control. It is still based
on the closed-loop reactive paradigm of TCP. The sender takes decisions on the
amount of data it can send and when it can send, based on information derived
from ACKs.

In a nutshell, analysis of ACK sequence numbers and arrival times enables the
sender to estimate the minimum path RTT and the bottleneck bandwidth, hence
the BDP. The sender maintains a sending rate consistent with the estimated bottle-
neck bandwidth, capping the amount of data in-flight so as to make sure that the
pipe is full, yet there is no (or little) queueing at the bottleneck. This is obtained by
limiting the flightsize according to the estimated BDP value. Sent packets are paced

�

� �

�

10.3 Evolution of Congestion Control in the Internet 605

according to the sending rate. Periodic probing is carried out to assess whether
more bandwidth is available.

Even from these few lines, it emerges that BBR gives up to TCP self-clocking
(it uses packet pacing instead), it does not use the congestion window, it is not
responsive to packet loss (segments detected to be lost are obviously retransmitted,
but no congestion window update occurs; the sending rate is adjusted according
to the estimated bottleneck bandwidth). Therefore, BBR entails a full decoupling
of congestion control and error control.

A starting motivation of the designers of BBR comes from the remark that
loss-based TCP congestion control tends to make the TCP connection work on
the brink of a full buffer at the bottleneck link. In fact, loss-based congestion
controllers react only on packet loss, hence when buffer overflow occurs at the
bottleneck. On the contrary, BBR tries to maintain the TCP connection to work at
maximum throughput, yet with an essentially empty buffer.

Figure 10.7 illustrates the concept of BBR versus loss-based TCP. The top plot
shows a stylized behavior of the RTT as a function of the amount W of data in
flight for a single greedy connection with a single bottleneck. Let T be the base
RTT, C the bottleneck link capacity and Q the queue length at the bottleneck. As
long as W ≤ C ⋅ T ≡ BDP, we have Q = 0 and the RTT sticks to its minimum T.
As the amount of data in-flight exceeds the BDP, the queue at the bottleneck starts
building up, until when buffer overflow occurs eventually, as W > BDP + B, where
B is the buffer size.

Figure 10.7 Concept of BBR
versus loss-based TCP.

D
e

liv
e

ry
 r

a
te

Amount of data in-flight

Loss-based TCP

C

R
o

u
n

d
 t

ri
p

 t
im

e
 (

R
T

T
)

Amount of data in-flight

T

Slope = 1/C

T + B/C

BBR

BDP = C T BDP + B

�

� �

�

606 10 Congestion Control

Correspondingly, the delivery rate grows linearly from 0 up to C. Once the
bottleneck capacity is saturated, no further growth is possible. A loss-based TCP
keeps inflating the amount of data in-flight, until a loss is detected. Hence, it
drives TCP to work around the points marked with circles labeled “Loss-based
TCP” in the figure. That is not a convenient working point, especially if the buffer
size is large.

The best working points would be the ones marked by circles labeled “BBR”,
where BBR tries to drive TCP. That corresponds to having no delay at the bottle-
neck buffer, yet achieving the maximum possible delivery rate.

However, it is difficult to strike that ideal working point. The TCP sender cannot
measure the minimum RTT, until it knows positively that the bottleneck buffer is
empty. On the other hand, it cannot assess what the bottleneck capacity is until
it has started filling the bottleneck buffer. In other words, observations made dur-
ing time intervals when the system is operating on the initial part of the curve
(empty buffer, minimum RTT) do not bring information on the bottleneck capac-
ity, whereas observations collected when the system runs on the intermediate part
of the curve do not reveal the minimum RTT.

To operate near the point with maximum throughput and minimum delay
[84,132], the system needs to maintain two conditions:

● Rate balance: The bottleneck packet arrival rate equals the bottleneck bandwidth
available to the TCP flow.

● Full pipe: The total data in-flight along the path is equal to the BDP.

To achieve these goals, BBR is based on a model of the network path consisting
of two key parameters:

● CBBR (denoted with BBR.BtlBw in [51]): The estimated bottleneck bandwidth
available to the TCP connection.

● TBBR (denoted with BBR.RTprop in [51]): The estimated base RTT of the TCP
connection path.

Both estimates result from sliding window filters. Specifically, CBBR is the max-
imum of a sliding window of delivery rate samples, while TBBR is the minimum
of a sliding window of RTT samples. BBR defines which samples are included in
the filter windows, how they are calculated and how the windows are delimited.
Given the two quantities CBBR and TBBR, the principles mentioned above are met by
ensuring that the sending rate matches CBBR, which is done by adjusting the pac-
ing rate parameter (rate balance), and by maintaining the amount of data in-flight
at CBBR ⋅ TBBR (full pipe).

The BBR state machine is shown in Figure 10.8. After a StartUp state, that plays
a role similar to slow start, and has the task to drive the estimate of the bottleneck
link bandwidth close to its target, there is the Drain state, shortly visited after

�

� �

�

10.3 Evolution of Congestion Control in the Internet 607

Figure 10.8 BBR state
diagram.

ProbeRTTProbeBWDrainStartUp

completing StartUp, to drain the bottleneck buffer of excess packets due to the
StartUp overshoot. At this point BBR enters the ProbeBW state, which is intended
to be the state where a BBR connection spends most of its time. In that state the
pacing gain of the BBR algorithm cycles through values that allow probing for
checking whether more bandwidth has become available. The ProbeRTT state
is visited when the estimate of the RTT is deemed to need a refresh. For that
purpose, the pipe is drained until the bottleneck buffer is deemed to be empty.
Then the base RTT can be reliably estimated.

The BBR state machine runs periodic, sequential experiments, sending faster to
check for CBBR increases or sending slower to check for TBBR decreases. The fre-
quency, magnitude, duration, and structure of these experiments differ depending
on what is already known (startup or steady-state) and sending application behav-
ior (intermittent or continuous).

10.3.5.1 Delivery Rate Estimate
A key operation of BBR is estimation of the delivery rate, i.e., the current rate at
which data is being effectively delivered to the final destination. The delivery rate
sample taken upon receipt of the ACK of packet P is the ratio of the amount of data
that was in-flight when P was sent to the maximum between the time interval it
took to send all of that data and the time interval over which ACKs of that data
arrived at the sender. The algorithm used by BBR is detailed in [57]. We give a
concise account in the following.

Formally, we define the following connection state variables of the TCP connec-
tion at time t.

CD(t) the total amount of data delivered up to time t.
CT(t) the wall clock time when CD(t) was last updated.
CS(t) the send time of the packet that was most recently marked as delivered.

When a packet is sent, at time s, the following quantities are stored in a
per-packet data structure: [s,CD(s),CT(s),CS(s)].

Let sk and ak be the times when the k-th packet delivered over the connection
has been sent and ACKed, respectively. Then, the sample Rk of the delivery rate
calculated upon reception of the ACK at time ak is

Rk =
Δdk

Δtk
=

CD(ak) − CD(sk)
max{CT(ak) − CT(sk), sk − CS(sk)}

(10.18)

Note that CT(ak) − CT(sk) is the time required to collect ACKs of the packets that
were in-flight when packet k was sent, while sk − CS(sk) is the duration of the time

�

� �

�

608 10 Congestion Control

interval in which packets that were in-flight when packet k was sent have been
transmitted. The connection state variables are updated as follows upon reception
of the ACK of packet k at time ak: CD(a+

k) = CD(a−
k) + Lk, CT(ak) = ak, CS(ak) = sk,

where Lk is the length of packet k. A boolean variable marks each delivery rate
sample, to highlight whether it is the result of limitations induced by the applica-
tion rather than by the network bottleneck capacity.

10.3.5.2 StartUp and Drain
In StartUp, the RTT estimator TBBR and the bottleneck bandwidth estimator CBBR
are initialized to the first available value of the Smoothed RTT (SRTT), after con-
nection set-up, and IW∕TBBR, where IW is the initial congestion window size.
During StartUp packets are sent at a pacing rate that is a multiple of the cur-
rently estimated delivery rate. Therefore, the sending rate is steadily increased by a
multiplicative factor (as well as the congestion window size), aiming at a fast prob-
ing of the available bandwidth. The pacing gain during this phase is chosen to be
𝛼 = 2∕ log(2). We can realize where such a number comes from, by writing the
expression of the estimated delivery rate R(t) for a packet whose ACK is received
at time t during StartUp:

R(t) = NL
L

C(t1)
+ L

C(t2)
+ · · · + L

C(tN)

(10.19)

where T denotes the RTT, N is the number of packets delivered in the time interval
between t − 2T and t − T, L is the packet size, tk is the sending time of the k-th
packet, k = 1,… ,N, with t − 2T ≤ t1 < · · · < tN ≤ t − T, and C(t) is the sending
rate at time t. In writing eq. (10.19) we assume that all round-trip times have a fixed
duration T (the base RTT) during StartUp. This is true until when the probing rate
is less than or equal to the bottleneck link capacity.

The sending rate is set to C(t) = 𝛼R(t), where 𝛼 is the pacing gain. We can write:

C(t) = 𝛼

[
1
N

(
1

C(t1)
+ 1

C(t2)
+ · · · + 1

C(tN)

)]−1

(10.20)

Let us now make a fluid approximation, that can be expected to yield a reason-
able result when N ≫ 1. Reminding that N is the number of packets sent in an
RTT and that RTTs are assumed to have a constant duration T, we get:

C(t) = 𝛼

[
1
T ∫

t−T

t−2T

1
C(u)

du
]−1

(10.21)

Taking reciprocals of both sides and deriving with respect to t, we find:

C′(t)
C(t)2 = 1

𝛼

1∕C(t − 2T) − 1∕C(t − T)
T

(10.22)

�

� �

�

10.3 Evolution of Congestion Control in the Internet 609

Since C(t) grows multiplicatively, we assume an exponential form, i.e.,
C(t) = C0bt∕T . Using this expression in eq. (10.22), we derive an equation
for the nondimensional growth rate b:

log b = b(b − 1)
𝛼

⇒ 𝛼 = b(b − 1)
log b

(10.23)

If we require that the sending rate doubles each RTT, hence b = 2, it turns out
that we should set 𝛼 = 2∕ log(2).

During the StartUp phase, the pacing rate and the congestion window are
inflated by using the pacing gain 𝛼. This goes on until the sender estimates that
the pipe is full. This event is detected when the estimated delivery rate is found
to be almost constant (to within a given percentage of the previous level; 25%
in the default implementation) for a preset number of times (3 in the default
implementation).

At that point the Drain state is visited, where the pacing gain is set to 1∕𝛼 for one
RTT. The purpose is to drain the bottleneck queue, which might have built up due
to the overshoot of the StartUp phase. The state moves from Drain to Probe BW
when the number of packets in-flight matches the estimated BDP. BBR checks the
this condition upon every ACK.

10.3.5.3 ProbeBW
ProbeBW is actually the typical state where the BBR state machine should be found
most of the time (the Authors claim 98% of the time in normal usage conditions).
ProbeBW consists of scanning periodically a sequence of pacing gain values. In the
default implementation, ProbeBW uses an eight-phase cycle with the following
pacing gain values: 5/4, 3/4, 1, 1, 1, 1, 1, 1. The initial phase is chosen at random
(except that it cannot be pacing gain = 3/4). The purpose of this modulation of
the pacing gain is to probe for more available bandwidth at the bottleneck (pacing
gain > 1), and to drain the possibly accumulated queue immediately afterward
(pacing gain< 1). Each of the eight phases lasts a time equal to the current estimate
of the RTT. Checking for phase advancement is performed on each ACK reception.
The whole round is cycled through in about eight RTTs.

At any time, the pacing rate C is set at the estimated bottleneck capacity CBBR
multiplied by the pacing gain. The pacing rate is used to determine the next packet
send time. After having sent a packet at time t0, the next packet of length L can be
sent no earlier than time t0 + L∕C(t0), where C(t0) is the pacing rate at time t0. BBR
ensures also that at any time there cannot be more than cwnd packets in-flight. In
ProbeBW, the cwnd is maintained at twice the estimated BDP.

In turn, the bottleneck capacity is the result of a max-filter of the samples of
delivery rate collected over the last K RTTs. In the default implementation, it is
K = 10. The max-filter is simply a sliding window of delivery rate values, the max-
imum of which is picked at any time as the estimated bottleneck capacity. The idea

�

� �

�

610 10 Congestion Control

behind choosing the maximum is that BBR should hover on the working point
shown in the lower graph of Figure 10.7. Then, the bottleneck bandwidth could
be easily underestimated. The underestimation error is reduced by taking the max
of K samples of delivery rate. The reason of using a sliding window is to track a
time-varying environment.

10.3.5.4 ProbeRTT
In any state other than ProbeRTT itself, if the estimate of TBBR has not been
updated (i.e., by getting a lower RTT measurement) for more than ProbeRT-
TInterval = 10 seconds, then BBR enters ProbeRTT and reduces the cwnd to a
minimal value, BBRMinPipeCwnd (four packets). After maintaining BBRMin-
PipeCwnd or fewer packets in-flight for at least ProbeRTTDuration (200 ms)
or one RTT, whichever is larger, BBR leaves ProbeRTT and moves to either
ProbeBW or StartUp, depending on whether it estimates the pipe was already
filled.

ProbeRTT lasts long enough (at least ProbeRTTDuration = 200 ms) to allow
flows with different RTTs to have overlapping ProbeRTT states, while still being
short enough to bound the throughput penalty of ProbeRTT, due to the reduction
of cwnd, to roughly 2% (200 ms/10 seconds).

Samples of the RTT, collected upon every ACK, are inserted in the RTT
Min-Filter data structure, a sliding window that must contain a number of
samples corresponding to the last 10 seconds of TCP connection lifetime.

An RTpropFilterLen of 10 seconds is short enough to allow quick conver-
gence, if traffic levels or routes change, but long enough so that we exploit interac-
tive applications low-rate periods or pauses that drain the bottleneck queue. Then
the BBR.RTprop filter opportunistically picks up these RTT measurements, and
TBBR refreshes without requiring a visit to the ProbeRTT state. Summing up, BBR
connections typically need only pay 2% throughput penalty, if there are multiple
bulk flows busy sending over the entire ProbeRTTInterval window.

10.3.5.5 Pseudo-code of BBR Algorithm
A simplified pseudo-code that summarizes the key BBR operations is as follows.
Upon ACK reception at the sender the following code is executed.

rtt = now - packet.sendtime
update_min_filter(RTpropFilter, rtt)
delivered += packet.size
delivered_time = now
data = delivered - packet.delivered
time = delivered_time - packet.delivered_time
deliveryRate = data / time

�

� �

�

10.4 Traffic Engineering with TCP 611

if ((deliveryRate > BtlBwFilter.currentMax) ||
(! packet.app_limited))
update_max_filter(BtlBwFilter, deliveryRate)

if (app_limited_until > 0)
app_limited_until = app_limited_until - packet.size

Note that the Max-filter for bottleneck bandwidth estimation is updated in case
the sample is not marked as application-limited, or if it is greater than the current
bottleneck bandwidth capacity. In the latter case, the filter is updated, irrespective
of whether the estimated delivery rate sample is marked as application-limited.

On packet send time, the following function is executed.

bdp = BtlBwFilter.currentMax * RTpropFilter.currentMin
if (inflight >= cwnd_gain * bdp){

// wait for ack or retransmission timeout
return}

if (now >= nextSendTime){
packet = nextPacketToSend()
if (! packet){

app_limited_until = inflight
return}

packet.app_limited = (app_limited_until > 0)
packet.sendtime = now
packet.delivered = delivered
packet.delivered_time = delivered_time
ship(packet)
rate = pacing_gain * BtlBwFilter.currentMax
nextSendTime = now + packet.size / rate}

Widespread use of BBR is controversial. It has been found experimentally that
BBR can cause severe throughput fluctuations [163]. Fairness to other congestion
control algorithms is an issue as well. It has been verified that the BBR algorithm
becomes too aggressive, hence unfair, to loss-based TCP algorithms when bottle-
neck buffers are shallow [103]. Performance of BBR in cellular network environ-
ments have raised further issues [213] and stirred the study of a new version of the
protocol, still under way as of the time of writing.

10.4 Traffic Engineering with TCP

In this section we establish simple relationships between the steady-state through-
put, congestion window size and packet loss of a long-lived, greedy TCP connec-
tion. By long-lived we mean a TCP connection whose duration is theoretically

�

� �

�

612 10 Congestion Control

1

2

N

TCP senders TCP receivers

…

2

N

…

1

bottleneck

B
C

Figure 10.9 Dumb-bell topology
model of N TCP connections sharing
a bottleneck link.

unlimited. Practically, it means that the TCP connection lifetime is much bigger
than the average RTT. By greedy we mean that the TCP source always has new
packets to send whenever possible.

We refer to the classic dumbbell topology model, where N TCP flows share a
bottleneck link (see Figure 10.9). Let T be the common value of the base RTT of
the N TCP connections. Let B denote the buffer size at the bottleneck. Let C denote
the bottleneck capacity.

In the simple analysis of this section we assume that the RTT is constant, equal to
T. Hence the sending rate of the TCP source is x(t) = W(t)∕T, where W(t) denotes
the cwnd at time t. We assume that a single packet loss per connection occurs as
cwnd attains its maximum value, given by (CṪ + B)∕N, where CT is the BDP of
the TCP connections path. Hence the cwnd grows from its initial value W0 up to
Wf = (CT + B)∕N. Then, upon packet loss detection, cwnd is reduced to Wf (1 − 𝛽)
and a new congestion avoidance phase starts. Therefore, W(t) behaves as a peri-
odic function of time, increasing steadily from W0 = Wf (1 − 𝛽) up to Wf . Let us
consider one period, between 0 and tf , where W(0) = (1 − 𝛽)Wf and W(tf) = Wf .

The mean sending rate of the TCP connection is

x = 1
tf ∫

tf

0

W(t)
T

dt (10.24)

Since a single packet is dropped over the entire time window of duration tf , the
packet loss fraction can be written as:

p = 1
∫ tf

0
W(t)

T
dt

(10.25)

The throughput of the TCP connection is

Λ = x(1 − p) =
1 − p

tf p
≈ 1

tf p
(10.26)

where the last expression holds if p ≪ 1.
We consider two congestion control paradigms: a general AIMD model and

CUBIC.
The general AIMD model is characterized by two parameters, 𝛼 and 𝛽 [79, 181].

During congestion avoidance, the cwnd is incremented by 𝛼∕cwnd upon each

�

� �

�

10.4 Traffic Engineering with TCP 613

received good ACK. When a packet loss is detected via duplicated ACKs, cwnd is
reduced by 𝛽 ⋅ cwnd. Then, we have

WAIMD(t) = (1 − 𝛽)Wf + 𝛼
t
T

, 0 ≤ t ≤ tf . (10.27)

Imposing WAIMD(tf) = Wf , we find tf = T𝛽Wf∕𝛼. Introducing the expression of

WAIMD(t) into eq. (10.25), we get p = 2𝛼
𝛽(2−𝛽)W2

f
, whence Wf =

√
2𝛼

p𝛽(2−𝛽)
. Using this

result and eq. (10.27) into eq. (10.24), we get

xAIMD =
(

1 − 𝛽

2

) Wf

T
= 1

T
√

p

√
𝛼(2 − 𝛽)

2𝛽
(10.28)

With the parameter setting of classic TCP, 𝛼 = 1 and 𝛽 = 1∕2, we have

xclassic =
√

1.5
T
√

p
(10.29)

For CUBIC, we have15 W(t) = Wf + Γ(t − K)3, with K = (𝛽Wf∕Γ)1∕3, for
0 ≤ t ≤ tf = K. Following the same steps as with AIMD, we get p = T∕K

(1−𝛽∕4)Wf
,

whence Wf =
(

Γ
𝛽

)1∕4 (T
p(1−𝛽∕4)

)3∕4
. Substituting the expression of the cwnd for

CUBIC into eq. (10.24), we get

xCUBIC =
(

1 − 𝛽

4

) Wf

T
= 1

T1∕4p3∕4

[
Γ(4 − 𝛽)

4𝛽

]1∕4

(10.30)

Using the default values of CUBIC, 𝛽 = 0.3 and Γ = 0.4, we find

xCUBIC = 1.054
T1∕4p3∕4 (10.31)

where T is in seconds.
It is interesting to exploit this simple relationships to assess the level of packet

integrity required to make the congestion window reach the average value cor-
responding to full capacity utilization. To attain the maximum throughput with
no buffer delay, at equilibrium the average cwnd size must be equal to the BDP,
i.e., W = C ⋅ T, where C is measured in packets per second. For example, choos-
ing a packet size of 1500 bytes and RTT equal to T = 100 ms, the average cwnd at
equilibrium for a 1 Gbit/s link is W = 8333.3 pkts.

For the general AIMD it is W = (1 − 𝛽∕2)Wf . Using eqs. (10.25) and (10.27), we
find p = 𝛼(2−𝛽)

2𝛽W
2 , with W = C ⋅ T. For a throughput of 1 Gbit/s to be achieved by a

standard TCP AIMD mechanism with 𝛼 = 1 and 𝛽 = 1∕2 in a pipe with 100 ms
base RTT, it must be p ≈ 2.2 ⋅ 10−8. The requirement on the packet loss probability

15 We replace the conventional CUBIC parameter notation C with Γ, to avoid confusing with
the bottleneck link capacity.

�

� �

�

614 10 Congestion Control

becomes two orders of magnitude smaller for each order of magnitude of increase
of the bottleneck capacity. Even such a simple model points out that exploiting
fully the capacity of fat, long pipes is critical for standard TCP.

As for CUBIC, the average congestion window size for full link exploitation
is W = (1 − 𝛽∕4)Wf . Then, the packet loss probability can be expressed as p =

T
[
Γ(4−𝛽)

4𝛽

]1∕3 1

W
4∕3 , with W = C ⋅ T. Using the default values for the CUBIC parame-

ters, with T = 100 ms and a bottleneck link capacity of 1 Gbit/s we find a require-
ment of p ≈ 6.35 ⋅ 10−7. In general, the packet loss requirement is improved by an
order of magnitude by CUBIC with respect to the standard TCP congestion control,
as highlighted in Table 3 of [181].

Note that a more realistic packet loss level of 10−4 (10−5) over a connection path
with a base RTT of 100 ms, with MSS size of 1500 bytes, would make the achiev-
able throughput about 14.7 Mbit/s (46.5 Mbit/s) with the standard TCP congestion
control and about 22.5 Mbit/s (126.5 Mbit/s) for CUBIC, no matter how much the
bottleneck link capacity is bigger than that level. For lower values of the packet
loss, the behavior of TCP CUBIC falls back to the standard TCP, thanks to the TCP
friendliness function.

10.5 Fluid Model of a Single TCP Connection
Congestion Control

We present here a classic analysis of a TCP connection with a single bottleneck
link, using a fluid approximation.

Figure 10.10 depicts the TCP connection model abstraction for a single bottle-
neck scenario. Let C(t), T, and B denote the capacity of the bottleneck link, the
base RTT of the TCP connection and the size of the bottleneck buffer. The model
abstraction assumes that the bottleneck lies in the forward path of the TCP con-
nection, while the reverse path suffers no congestion, i.e., the delay of ACKs from
the receiver to the sender is constant.

We denote with W(t) and Q(t) the congestion window and the occupancy level
of the bottleneck buffer at time t, respectively. Let also 𝜆(t) and 𝜇(t) denote the
instantaneous rate in and out of the bottleneck buffer. We assume all quantities
are measured in consistent units. Thanks to our assumptions, we can measure W
and B in units of MSS (or packets) and C in MSS∕s (or packets∕s).

TCP

sender

TCP

receiver

Tf

C(t)
B

Tb

Figure 10.10 Model of a
TCP connection with a single
bottleneck.

�

� �

�

10.5 Fluid Model of a Single TCP Connection Congestion Control 615

In the model statement and analysis we assume that:

1. After being established, the considered TCP connection lasts forever (long-lived
TCP connection).

2. The TCP sender is greedy, i.e., it has always new packets ready to send.
3. The internal TCP sender buffer is large enough not to be a bottleneck.
4. The receiver window is always bigger than cwnd (virtually it is infinite), i.e.,

the TCP sender is only constrained by the congestion window (network-limited
TCP connection).

5. There is no loss of packets except because of buffer overflow at the bottleneck
buffer.

6. Packet loss is always detected thanks to fast retransmit (i.e., reception of
DupThresh duplicate ACKs).

7. The duration of fast retransmit and fast recovery reduces to one RTT.
8. Upon packet loss detection, the congestion window is scaled down by a factor

1 − 𝛽.
9. Fixed length data segments are sent on the connection, with length equal to the

negotiated MSS.16

One consequence of assumptions 5 and 6 is that slow start is never performed,
except at connection opening. Given that the connection is long-lived, slow start
has a negligible impact on the steady-state connection throughput, hence we dis-
regard it. As for assumption 7, it is a minor approximation, if some mechanism is
employed to recover multiple packet losses within one or few RTTs, e.g., NewReno
or SACK.

We start with the simpler case of fixed capacity bottleneck link, then we gener-
alize to the case where the bottleneck link capacity is time-varying.

10.5.1 Classic TCP with Fixed Capacity Bottleneck Link

Let us consider a link of capacity C equipped with a buffer of size B, which is the
bottleneck link of a TCP connection. To the assumptions listed above, we add the
following:

The bottleneck link capacity is constant, i.e.,C(t) = C, ∀t.

In the following we develop a fluid model of the TCP connection evolution.
Hence, all quantities are represented by real numbers, and data flow in and out
of the bottleneck buffer is regarded as continuous. The state of the model is com-
pletely described by assigning the instantaneous values of the congestion window
W(t) and of the bottleneck buffer occupancy level Q(t).

16 Packets in the network include also overhead. We assume that the buffer size is set so as to
accommodate also that overhead.

�

� �

�

616 10 Congestion Control

Under our assumptions, the evolution of the congestion window of the TCP con-
nection is deterministic and periodic, with a steady increase from an initial value
W0 at time t0, up to a maximum value, when finally packet loss is detected at the
TCP sender, at time tf and the congestion window has ramped up to the value Wf .
At that point the congestion window is cut by the factor 1 − 𝛽 and a new window
growth cycle starts.

Depending on values of C and B, hence of W0, the interval [t0, tf] can be divided
up into two subintervals. The first one, possibly void, is [t0, tb], during which the
bottleneck buffer is empty and the output rate 𝜇(t) is equal to the input rate 𝜆(t).
In the remaining interval [tb, tf], 𝜇(t) = C and the buffer content builds up.

A simple analysis of the TCP connection goes as follows. As long as the bottle-
neck buffer is empty, the cwnd grows linearly by 1 MSS every RTT and RTTs have
a constant duration T. Hence

W(t) = W0 +
1
T
(t − t0), t0 ≤ t ≤ tb (10.32)

This behavior stops as soon as the pipe is full, i.e., W(tb) = CT. This condition
yields:

tb = t0 + T(CT − W0) (10.33)

After time tb, ACKs arrive at a rate C at the TCP sender. Then, the congestion
windows grows according to the law:

dW
dt

= C
W(t)

, tb ≤ t ≤ tf . (10.34)

This is but the Reno cwnd update rule, according to which cwnd is increased
by 1∕cwnd upon each good ACK reception in congestion avoidance. The initial
condition is W(tb) = CT, whence

W(t) =
√

W(tb)2 + 2C(t − tb) , tb ≤ t ≤ tf . (10.35)

The buffer overflow time tf is found by imposing that W(tf) = B + CT + 1 ≡ Wf .
We have

tf = tb +
W2

f − W(tb)2

2C
= t0 + T(CT − W0) +

W2
f − (CT)2

2C
=

= t0 +
W2

f + (CT)2 − 2CTW0

2C
(10.36)

The average throughput Λ is found as the ratio of the amount of data delivered
in one cycle and the duration of the cycle:

Λ =
∫ tf

t0
𝜇(𝜏)d𝜏

tf − t0
(10.37)

�

� �

�

10.5 Fluid Model of a Single TCP Connection Congestion Control 617

Since it is 𝜇(t) = W(t)∕T for t ∈ [t0, tb], and 𝜇(t) = C for t ∈ [tb, tf], and recalling
that W(tb) = CT, we can write

𝜌 = Λ
C

=
∫ tb

t0

W(𝜏)
T

d𝜏 + C(tf − tb)

C(tf − t0)
=

(CT)2−W2
0

2
+

W2
f −(CT)2

2
W2

f +(CT)2−2CTW0

2

=

=
W2

f [1 − (1 − 𝛽)2]

W2
f + (CT)2 − 2CTWf (1 − 𝛽)

(10.38)

where 𝜌 = Λ∕C is the normalized throughput and we have accounted for the con-
tinuity condition W0 = (1 − 𝛽)Wf . This last condition comes from the congestion
window reduction at the end of the fast recovery. The new congestion avoidance
cycle is started with an initial window W0, which is a fraction of the congestion
window attained in the previous cycle, Wf .

Substituting Wf = B + CT + 1 ≈ B + CT and using the simplifying notation a =
CT, we get

𝜌 = (B + a)2[1 − (1 − 𝛽)2]
B2 + 2𝛽aB + 2𝛽a2 (10.39)

As expected, the ratio b = B∕a plays a key role in the throughput formula. This
is the ratio of the buffer size to the BDP of the TCP connection. In terms of b,
reminding that the throughput Λ can never exceed the bottleneck link capacity C,
we have:

𝜌 = min
{

1, (b + 1)2[1 − (1 − 𝛽)2]
b2 + 2𝛽b + 2𝛽

}
(10.40)

In the standard TCP it is 𝛽 = 1∕2, hence we find 𝜌 = min{1, 3
4

(b+1)2

b2+b+1
}. The

maximum is achieved for b ≥ 1. Hence, it is seen that the minimum amount of
buffer space at the bottleneck node for the considered connection to attain the
full throughput allowed by the bottleneck link capacity is B = CT, i.e., a buffer
size equal to the BDP. This is the famous “rule of thumb” of standard TCP buffer
sizing.

10.5.2 Classic TCP with Variable Capacity Bottleneck Link

In this section we generalize the model of the previous section to the case of a bot-
tleneck link with time-varying capacity C(t). Assumptions listed at the beginning
of Section 10.5 hold also for this case, except of the bottleneck link capacity. We
assume here that the bottleneck link capacity is described by a function of time
C(t) such that 0 ≤ C(t) ≤ C.

We denote with W(t) the congestion window at time t. The bottleneck buffer
content at time t is denoted by Q(t). The base RTT T is split into the forward base

�

� �

�

618 10 Congestion Control

RTT, Tf , from the TCP sender to the bottleneck buffer input, and the backward
base RTT, Tb, from the output of the bottleneck buffer to the TCP receiver and
then back to the TCP sender17.

Let S(t) be the sending rate of the TCP sender at time t. The input rate at the
bottleneck buffer is 𝜆(t) = S(t − Tf). It must always be 0 ≤ Q(t) ≤ B, where B is the
buffer size. For 0 < Q(t) < B the buffer content satisfies the differential equation
dQ
dt

= 𝜆(t) − C(t). The buffer content fluctuates between two reflecting barriers,
namely 0 and B. Once the buffer gets empty at time t, which can only occur if
𝜆(t) < C(t), it will stay empty for all 𝜏 ≥ t such that 𝜆(𝜏) ≤ C(𝜏) and in the mean-
while, the output rate is 𝜆(𝜏). As long as the buffer is nonempty, the output rate
is C(t). When the buffer gets full at time t, which implies that 𝜆(t) > C(t), it will
stick to the upper limit B for all 𝜏 ≥ t such that 𝜆(𝜏) ≥ C(𝜏). For all those times, the
output rate will be C(𝜏). Summing up, we have:

dQ
dt

=
⎧⎪⎨⎪⎩
𝜆(t) − C(t) 0 < Q(t) < B,
max{0, 𝜆(t) − C(t)} Q(t) = 0,
min{0, 𝜆(t) − C(t)} Q(t) = B.

(10.41)

The output rate of the buffer is denoted by 𝜇(t). It is

𝜇(t) =

{
min{𝜆(t),C(t)} Q(t) = 0,
C(t) 0 < Q(t) ≤ B

(10.42)

The TCP sender receives ACKs at rate A(t) = 𝜇(t − Tb). The congestion window
is updated as a function of A(t). For TCP Reno, the congestion window is increased
by 1∕W(t) for each received good ACK. The differential equation is dW

dt
= 𝜇(t−Tb)

W(t)
.

This equation holds in the congestion avoidance phase, i.e., when W(t) ≥ ssthresh.
If W(t) < ssthresh, W(t) is incremented by 1 per received ACK, hence the rate of
increase of W(t) is equal to the ACK rate A(t). Then, the evolution equation is
dW
dt

= 𝜇(t − Tb). Putting all together, we can write:

dW
dt

=

{
𝜇(t−Tb)

W(t)
W(t) ≥ ssthresh,

𝜇(t − Tb) W(t) < ssthresh.
(10.43)

The connection between the sending rate S(t) and the congestion window size
can be derived by expressing the number of packets in-flight at time t and matching
this number with W(t) (greedy TCP sender). The amount of data in-flight at time
t corresponds to all packets sent since a piece of data is emitted by the TCP sender,
say at time t0, until the relevant ACK is received back at the sender at time t. The

17 We are assuming no bottleneck is in the way of the TCP ACKs; this is not the case with
half-duplex links, e.g. IEEE 802.11 WLAN.

�

� �

�

10.5 Fluid Model of a Single TCP Connection Congestion Control 619

difference t − t0 is the RTT measured by the TCP sender when it receives the ACK
at time t. The starting time t0 is a function of the RTT end time t. We denote this
function with 𝜃(t). It is implicitly defined by the following equation:

𝜃(t) + Tf + D(𝜃(t) + Tf) + Tb = t (10.44)

where D(t) denotes the waiting time of a piece of data arriving at the bottleneck
buffer at time t. The RTT R(t) of a piece of data whose ACK arrives at the sender
at time t can be in turn written as follows: R(t) = t − 𝜃(t) = Tf + D(t − R(t) + Tf) +
Tb, which yields another implicit equation.

In case of FIFO queueing at the bottleneck buffer, D(t) can be found as the min-
imum non-negative solution to

Q(t) = ∫
t+D(t)

t
C(𝜏)d𝜏 (10.45)

This comes from the assumption of a work-conserving server (buffer output
link) and the FIFO discipline. Taking derivatives of both sides of eq. (10.45), we
find

dQ
dt

= C(t + D(t))
[

1 + dD
dt

]
− C(t) ⇒

dD
dt

=
dQ
dt

+ C(t)
C(t + D(t))

− 1 (10.46)

For later use, we calculate the derivative of D(t) at time 𝜃(t) + Tf . Since dQ
dt

=
𝜆(t) − C(t) for 0 < Q(t) < B and 𝜆(t) = S(t − Tf), we have

dD
dt
||||𝜃(t)+Tf

=
𝜆(𝜃(t) + Tf)

C(𝜃(t) + Tf + D(𝜃(t) + Tf))
− 1 = S(𝜃(t))

C(t − Tb)
− 1 (10.47)

The derivative of D(t) is used to obtain the relation between the congestion win-
dow and the sending rate. Since the TCP source is greedy, the congestion window
size W(t) equals the flightsize:

W(t) = ∫
t

𝜃(t)
S(𝜏)d𝜏

From this we get

dW
dt

= S(t) − S(𝜃(t))d𝜃
dt

(10.48)

By taking derivatives of both sides of eq. (10.44), we get

d𝜃
dt

=
⎧⎪⎨⎪⎩

1 Q(t − Tb) = 0,
1

1 + dD
dt
|
𝜃(t)+Tf

=
C(t − Tb)

S(𝜃(t))
0 < Q(t − Tb) < B. (10.49)

where we used eq. (10.47).

�

� �

�

620 10 Congestion Control

If Q(t − Tb) = 0, we have simply 𝜃(t) = t − T. Then, from eqs. (10.48) and (10.49)
we get

dW
dt

=

{
S(t) − S(t − T) Q(t − Tb) = 0,
S(t) − C(t − Tb) 0 < Q(t − Tb) < B.

(10.50)

Looking at eq. (10.42), we can rewrite (10.50) as follows:
dW
dt

= S(t) − 𝜇(t − Tb) (10.51)

This last identity gives an expression for the rate S(t) as a function of buffer out-
put rate and the congestion window:

S(t) = dW
dt

+ 𝜇(t − Tb) (10.52)

Equation (10.52) has an intuitive interpretation. The sending rate of the greedy
TCP source equals the ACK rate (one new segment is injected into the TCP pipe
for each received good ACK) plus the increment of the congestion window, which
accounts for the additional amount of traffic that the TCP source sends into the
pipe to probe it.

Since we assume a greedy TCP source, there is constantly a balance between the
congestion window size and the amount of data in-flight in the pipe, as long as
there is no loss. From (10.41) and (10.52) we have for any t such that Q(t) < B:

dQ
dt

= 𝜆(t) − 𝜇(t) = S(t − Tf) − 𝜇(t) =
dW(t − Tf)

dt
+ 𝜇(t − T) − 𝜇(t)

(10.53)

Integrating both sides over the interval [t0, t], where we assume no loss takes place,
we get

Q(t) − W(t − Tf) = Q(t0) − W(t0 − Tf) + ∫
t

t0

[𝜇(𝜏 − T) − 𝜇(𝜏)]d𝜏

= Q(t0) + ∫
t0

t0−T
𝜇(𝜏)d𝜏 − W(t0 − Tf) − ∫

t

t−T
𝜇(𝜏)d𝜏 (10.54)

Rearranging terms, it follows:

Q(t) + ∫
t

t−T
𝜇(𝜏)d𝜏 − W(t − Tf) = constant (10.55)

The constant must be 0 to be consistent with initialization at TCP connection
startup or with re-initialization of the congestion window after a fast retrans-
mit/fast recovery or after a timeout. For a greedy source, in all these cases the
congestion window size equals the flightsize. Therefore, we have

W(t − Tf) = Q(t) + ∫
t

t−T
𝜇(𝜏)d𝜏 , t ∈ [a, b] (10.56)

�

� �

�

10.5 Fluid Model of a Single TCP Connection Congestion Control 621

where [a.b] is any interval during which there is no packet loss detection.
Summing up, the evolution of Q(t) and W(t) starting from an initial time t0 is

given by eqs. (10.41) and (10.43), respectively. These equations hold for t ≥ t0, until
a buffer overflow occurs, t0 being the initial time of a congestion avoidance phase.
The time-varying bottleneck link capacity C(t) appears indirectly through the out-
put rate of the buffer, 𝜇(t). To start the equations, we need an initial value W(t0)
along with the specification of 𝜇(𝜏) for 𝜏 ∈ (t0 − T, t0].

As for performance, the average TCP throughput Λ can be obtained as

Λ = lim
Δt→∞

1
Δt ∫

t0+Δt

t0

𝜇(𝜏)d𝜏

The flightsize Y (t), i.e., the amount of fluid in the pipe at time t, can be evalu-
ated as

Y (t) = ∫
t

t−Tf

S(𝜏)d𝜏 + Q(t) + ∫
t

t−Tb

𝜇(𝜏)d𝜏 (10.57)

Using eq. (10.52), we find Y (t) = W(t) − W(t − Tf) + Q(t) + ∫ t
t−T 𝜇(𝜏)d𝜏. This

reduces to Y (t) = W(t) as long as there is no loss in the bottleneck buffer; instead,
it is Y (t) < W(t) after loss has occurred, until full recovery is completed. From
the time average Y of Y (t) we can compute the average packet delay of the TCP
connection as Y∕Λ, according to Little’s law.

To start the evolution of the fluid model equations at t = 0 we assign the follow-
ing initial conditions: the congestion window is set to IW packets (e.g., IW = 1,
according to the old default value of TCP Reno), S(0) is set to a Dirac pulse of area
IW packets, the buffer is empty and the pipe is empty too, which means 𝜇(𝜏) = 0
for 𝜏 ∈ (−T, 0].

There remains to define what happens as soon as a packet loss occurs. Assume
a congestion avoidance phase starts at time t0. Let tB be the first time after t0 such
that Q(t) = B. Formally, tB = inf t≥t0

{t ∶ Q(t) = B}. The TCP sender becomes aware
of the packet loss after the whole content of the buffer has been drained and up to
DupThresh duplicate ACKs requesting the lost packet have been received, i.e., at
time t1 ≡ tB + De + Tb, where De is given by

B + DupThresh = ∫
tB+De

tB

C(𝜏) d𝜏 (10.58)

The additional term DupThresh in the left hand side accounts for the fast retrans-
mit mechanism.

Let Wf ≡ W(t1). At time t1 the sender is aware of the packet loss event. First,
the sender retransmits the packet it has detected as lost at time t1. Immediately
after the retransmission, the sending rate is set to zero, until an amount 𝛽Wf of
in-flight data is delivered, say at time t2. This event is detected at the sender by

�

� �

�

622 10 Congestion Control

means of duplicate ACKs. From time t2 the sending rate is set to the ACK rate,
i.e., so much data is pushed into the pipe as it leaves the pipe. This recovery phase
goes on from time t2, until time t3, when the ACK of the lost packet is received.
This event occurs when an additional amount (1 − 𝛽)Wf of data has left the pipe
and has been replaced by as much data, according to the Fast Recovery procedure.
At time t3 congestion avoidance operation is resumed, starting from a congestion
window of size (1 − 𝛽)Wf . Also the ssthresh is updated and set equal to the same
value as the cwnd, namely (1 − 𝛽)Wf .

The details of the fluid model of the recovery phase are as follows. Packet loss
is detected at time t1 at the TCP sender. Then S(t) = 0 for t ∈ [t1, t2), where t2 is
such that

𝛽Wf = ∫
t2

t1

𝜇(𝜏 − Tb) d𝜏 (10.59)

After that, we set S(t) = 𝜇(t − Tb) for t ∈ [t2, t3), where t3 is such that

(1 − 𝛽)Wf = ∫
t3

t2

𝜇(𝜏 − Tb) d𝜏 (10.60)

At t3, congestion avoidance operation is resumed with a congestion window (1 −
𝛽)Wf .

The recovery model works provided there is enough “fluid” in the pipe as the
packet loss is detected at the sender at time t1. In fact, the sender waits for an
amount of fluid 𝛽Wf to be delivered, while no new fluid is sent into the pipe. If so
many packets have been lost that the overall fluid in the pipe at t1 is less than 𝛽Wf ,
the recovery procedure will be stalled waiting for the never occurring event that
up to an amount 𝛽Wf of data will be delivered. Real TCP is not trapped this way
thanks to the retransmission time-out (RTO) mechanism.

The model described above applies to fast retransmit/fast recovery. There is,
however, the possibility that timeout is triggered if fast retransmit or fast recovery
fail. For the fast recovery procedure to work in our model, two conditions must be
satisfied:

1. Lost data is less than (1 − 𝛽)Wf .
2. The bottleneck link capacity is such that recovery be completed before the time-

out is triggered.

The first condition ensures that there exists a finite time t2 such that the pipe is
drained by an amount of data 𝛽Wf , while the sending rate is 0. The second con-
dition could be violated, e.g., if the bottleneck link is shut off long enough for the
TCP RTO to expire.

To keep things simple, we do not model the adaptive RTO estimate. Rather, we
assume that RTO is set to a fixed value equal to 5T, i.e., five times the base RTT.
This approximation replaces the true RTO, equal to the current estimate of the

�

� �

�

10.5 Fluid Model of a Single TCP Connection Congestion Control 623

smoother RTT plus four times the RTT deviation. In this replacement, we assume
that the smoothed RTT and the RTT deviation both are equal to T.

When loss is detected at time t1, the lost packet has been sent at time 𝜃(t1). If
it turns out that t3 > 𝜃(t1) + 5T, then it is assumed that a time-out is triggered.
Therefore, the pipe is drained completely, the congestion window is reinitialized
to IW , and the ssthresh to (1−𝛽)W f .

Example 10.1 Analysis for periodic capacity The equations governing the
congestion window during congestion avoidance can be given a rather simple
analytical form, useful to gain insight, if we assume the buffer stays not empty
and the capacity function has an analytically convenient form. For that purpose,
we consider a sinusoidal behavior for the bottleneck link capacity in this example.
We let

C(t) = C0 + C1 + C1 cos(2𝜋Ft + 𝜙0) , (10.61)

with C0,C1 > 0. This is useful to gain insight into the effect of the time scale of vari-
ation of the capacity on TCP throughput performance. With a sinusoidal function,
the time scale over which C(t) has significant variations is of the order of half the
period 1∕F.

Let us assume the bottleneck buffer is non empty in the interval [t0 − T, tB].
Then, the congestion window is determined by the following dynamical equation:

dW
dt

= C(t)
W(t)

(10.62)

Given the initial condition W(t0) = W0, the solution for t ∈ [t0, tB] is easily found
to be

W(t) =
√

W2
0 + 2

t − t0

T
f (t) (10.63)

with

f (t) = (C0 + C1)T + C1T
sin[𝜋F(t − t0)]
𝜋F(t − t0)

cos[𝜋F(t + t0) + 𝜙0] (10.64)

If there is no loss in the interval [t0, tB], the flightsize equals the congestion
window size. Since the buffer is never empty, the flightsize is the integral of the
capacity function over a base RTT, i.e.

W(t) = Q(t) + ∫
t

t−T
C(𝜏) d𝜏 = Q(t) + g(t) (10.65)

where

g(t) = (C0 + C1)T + C1T sin(𝜋FT)
𝜋FT

cos(𝜋F(2t − T) + 𝜙0) (10.66)

Note that g(t) is the time-varying BDP.

�

� �

�

624 10 Congestion Control

0 20 40 60 80

Time (sec)

0

500

1000

1500

2000

D
a

ta
 (

M
S

S
)

B = 1375 MSSs

F = 0.02 Hz

T = 0.05 sec

cwnd

buffer level

BDP

Figure 10.11 Time evolution of
the congestion window, the
queue length at the bottleneck
and the time-varying BDP for the
TCP fluid model with sinusoidal
bottleneck link capacity.

Under the double assumption that the buffer never empties and that it does
not overflow, we can find the buffer content evolution from eq. (10.65): Q(t) =
W(t) − g(t). The evolution of W(t) and Q(t) according to the time functions given
above stops when the buffer overflows, i.e., at time tB such that Q(tB) = B. After loss
recovery, a new congestion avoidance phase starts, with initial congestion window
size equal to (1 − 𝛽)W(tB).

The behavior of W(t), Q(t) and g(t) is plotted in Figure 10.11 for B = 1375 MSSs,
T = 50 ms, C0 = 10 Mbit/s, C1 = 100 Mbit/s, F = 0.02 Hz, t0 = 0,𝜙0 = 𝜋. The MSS
is 1500 bytes. The initial congestion window at t = 0 is set to 800 MSSs.

In the situation depicted in Figure 10.11 the buffer size can cope with the BDP
fluctuations, for the given set of parameter values.

In general, as F → ∞, we have f (t) → (C0 + C1)T, hence the congestion window
and the buffer content evolve as if the capacity were constant and equal to the
average value of the actually available link capacity. In other words, for very fast
time variation of the link capacity (FT ≫ 1) the TCP congestion control averages
out the variation.

In the limit F → 0, we have f (t) → (C0 + C1)T + C1T cos𝜙0, i.e., TCP sees a con-
stant capacity, equal to the initial value of the link capacity. This too matches with
intuition, since for FT ≪ 1, it is almost as if the link capacity were constant from
the point of view of the TCP sender.

The intermediate range of F is where the most interesting interaction between
the TCP control loop and the time-varying bottleneck link capacity takes place.
The analysis is not straightforward. We resort to fluid simulations, based on the
discretization of the differential equation model developed in this section.

�

� �

�

10.5 Fluid Model of a Single TCP Connection Congestion Control 625

10.5.2.1 Discretization of the Evolution Equations
To solve numerically the differential equations governing the congestion window
and the buffer content, we sample time with a step 𝛿, i.e., at times tk = t0 + k𝛿,
k ≥ 0.

In the discretization, we distinguish between quantities denoting amount of data
(window size, buffer content) and data rates (rate of arrivals, departures, lost data).
As for the first ones, the discrete sample of the continuous time function H(t) is
denoted with H(k) ≡ H(tk). As for rates, we let H(k) ≡ ∫ tk+1

tk
H(𝜏)d𝜏. Note that rates

are converted into amount of data, i.e., the amount of data sent over a time interval
of duration 𝛿 starting at tk.

Let us define the normalized fixed delays K ≡ T∕𝛿, Kf ≡ Tf∕𝛿 and Kb ≡ Tb∕𝛿.
We assume these numbers are integer valued.

Let X(k), U(k) and L(k) denote the arrivals at the bottleneck buffer, the depar-
tures from the bottleneck buffer, and the lost data, respectively. Then

Q(k + 1) = Q(k) + X(k) − U(k) − L(k)

U(k) = min{C(k),Q(k) + X(k)}

L(k) = max{0,Q(k) + X(k) − C(k) − B}

For TCP Reno the congestion window discrete evolution equation, during the
congestion avoidance phase, is

W(k + 1) = W(k) +
U(k − Kb)

W(k)
(10.67)

The sending rate is

S(k) = U(k − Kb) +
U(k − Kb)

W(k)
(10.68)

Since the input rate at the bottleneck buffer is a delayed copy of the sending rate,
we have X(k) = S(k − Kf) and therefore X(k) = U(k − K) + U(k − K)∕W(k − Kf).

Equations (10.67) and (10.68) change to W(k + 1) = W(k) + U(k − Kb) and
S(k) = 2U(k − Kb), respectively, when the TCP connection congestion control is
in the slow start state.

To simplify the notation, in the following we align the time axis to the ingress of
the bottleneck buffer, i.e., we shift the time origin by Tf . To implement the change
of the time origin, it suffices to rewrite all equations, letting Kf = 0 and Kb = K.

We can summarized the discretized equations as follows.
Initialization. At the initial step k = 0 we let W(0) = IW , Q(0) = 0, and

U(−K) = ⋅ = U(−1) = 0.

�

� �

�

626 10 Congestion Control

The first RTT. For k = 1,… ,K, we let18

X(k) = IW∕K

U(k) = min{C(k),Q(k) + X(k)}

L(k) = max{0,Q(k) + X(k) − C(k) − B}

W(k + 1) = IW

Q(k + 1) = Q(k) + X(k) − U(k) − L(k)

The first round trip time is a special case, since the connection is operated
open-loop during that time. As soon as the first feedback arrives at the sender, we
move to the next phase.

Normal operations. For k ≥ K + 1 the evolution of the TCP connection is
described by the following equations in slow start:

X(k) = 2U(k − K)

U(k) = min{C(k),Q(k) + X(k)}

L(k) = max{0,Q(k) + X(k) − C(k) − B}

W(k + 1) = W(k) + U(k − K)

Q(k + 1) = Q(k) + X(k) − U(k) − L(k)

and the following equations in congestion avoidance:

X(k) = U(k − K) + U(k − K)
W(k)

U(k) = min{C(k),Q(k) + X(k)}

L(k) = max{0,Q(k) + X(k) − C(k) − B}

W(k + 1) = W(k) + U(k − K)
W(k)

Q(k + 1) = Q(k) + X(k) − U(k) − L(k)

The state of the congestion control is switched from slow start to congestion
avoidance as soon as it is W(k) ≥ ssthresh. The evolution equations listed above are
used until the connection is finished or loss is detected. A loss event is detected at
step kL, if L(kL) > 0 occurs for the first time, after the previous loss event or since
the connection start. At that time the modeling of the recovery phase starts.

The discrete version of the loss recovery phase is quite straightforward. It
is worth mentioning that the buffer delay can be computed by discretizing

18 The sending rate is paced so that IW segments are sent out during the whole initial RTT.
Alternatively, we could set X(1) = IW and X(2) = · · · = X(K) = 0.

�

� �

�

10.5 Fluid Model of a Single TCP Connection Congestion Control 627

the differential equation governing D(t) for a nonempty buffer, i.e., dD
dt

=
𝜆(t)∕C(t + D(t)) − 1. Therefore, we have

D(k + 1) =
⎧⎪⎨⎪⎩

0 Q(k + 1) = 0,

D(k) + 𝛿

[
X(k)

C(k + D(k))
− 1
]

Q(k + 1) > 0.

Given this recurrence, we are able to compute the discretization of De and of the
loss recovery times t1, t2, t3.

10.5.2.2 Accuracy of the Fluid Approximation of TCP
We assess the accuracy of the fluid model of TCP connection as compared to ns-2
based simulations, where all details of TCP and packetized flows are considered.
Simulated bottleneck link capacity variation is obtained by means of higher pri-
ority interfering traffic flows, not by an instantaneously varying function C(t).
This is a realistic scenario where TCP would see a bottleneck link capacity vary-
ing independently of its closed-loop control. By modulating the arrival rate of the
high-priority traffic flow, we can obtain any desired shape of the residual link
capacity for TCP connection packets.

Figure 10.12 depicts the ns-2 simulation model: it is composed of a greedy TCP
sender (SND) and a TCP receiver (RCV), connected to SND through two tandem
routers, R1 and R2.

The bottleneck is the link between R1 and R2 and it is provided with a capac-
ity Cmax, whereas the links between SND and R1, between R2 and RCV, as well as
the reverse path from RCV to SND are provided with a capacity much greater than
Cmax. Capacity variations are simulated by a Constant Bit Rate (CBR) source with a
time-varying sending rate RCBR(kΔ) that is kept constant during a sampling period
of duration Δ and depends on the discretized version of the target time-varying
capacity function C(t). During the k-th sampling interval, the CBR transmission
rate is RCBR(kΔ) = Cmax − C(kΔ) bps. If LCBR is the CBR packet size in bits (in all
simulations LCBR is 400 bits), the CBR inter-arrival time is LCBR∕RCBR. The sam-
pling time Δ has been chosen much smaller than the time scale of the capacity
function C(t). The scheduler at the bottleneck link always serves CBR data packets
with priority. As regards the TCP settings, we used the NewReno TCP variant, but
the same results can be obtained with the SACK version of TCP. The TCP receiver

TCP

sender

TCP

receiver

High priority traffic

B

RCBR
CMAX

R1
R2

Figure 10.12 ns-2 simulation model for the variable capacity bottleneck link.

�

� �

�

628 10 Congestion Control

does not pose any limitations to the TCP sender, i.e., the TCP receiver window is
always supposed to be larger than cwnd. TCP packet size is constant and equal to
1500 bytes. All simulations last 1000 s.

In the following, we compare the performance predicted by the fluid model with
those obtained from ns-2 simulations for a periodic capacity profile at the bottle-
neck. We therefore use a sinusoidal function, i.e.,

C(t) =
Cmax + Cmin

2
+

Cmax − Cmin

2
sin(2𝜋Ft) (10.69)

In the numerical example, Cmin = 10 Mbps and Cmax = 100 Mbps. The mean bot-
tleneck link capacity is (Cmax + Cmin)∕2 = 55 Mbps.

Figure 10.13 depicts the mean normalized utilization of the bottleneck link
capacity, obtained by means of the fluid model (left plot) and of ns-2 simulations
(right plot), when Tf is 10 ms and Tb is 90 ms (hence it is T = 100 ms). Figure 10.14
reports the scenario where Tf = 30 ms and Tb = 270 ms (hence T = 300 ms).

All figures show the link utilization as a function of the frequency of the sinusoid
F, for different values of the bottleneck buffer size B. The buffer size B is set to a
fraction of the maximum BDP (e.g. B = 0.1 ⋅ Cmax ⋅ T).

Focusing our attention on fluid model results obtained with T = 100 ms in
Figure 10.13, we note that the link utilization achieved by the TCP connection
strongly depends on the frequency of the bottleneck capacity variation. When
the rate of variation is very low, the link utilization is high and TCP congestion
window is able to follow the capacity variation. Obtained results reflect the ones
achievable for constant capacity. Similar results are obtained when the rate of
variation is very high. In this case, TCP behaves as if it saw the average capacity.

For intermediate values of F (between 0.1 Hz and 10 Hz), the TCP performance
are highly degraded. The smaller is the buffer size the stronger is the degradation.

Frequency (Hz)

0.2

0.4

0.6

0.8

1

L
in

k
 u

ti
liz

a
ti
o
n

B = 0.1 BDP

B = 0.3 BDP

B = 0.5 BDP

B = 1.0 BDP

(a)

Frequency (Hz)

0.2

0.4

0.6

0.8

1

L
in

k
 u

ti
liz

a
ti
o
n

B = 0.1 BDP

B = 0.3 BDP

B = 0.5 BDP

B = 1.0 BDP

(b)

10–3 10–2 10–1 100 101 102 10310–3 10–2 10–1 100 101 102 103

Figure 10.13 Comparison between fluid model (left plot) and ns-2 simulations (right
plot): sinusoidal capacity, T = 100 ms.

�

� �

�

10.5 Fluid Model of a Single TCP Connection Congestion Control 629

0.2

0.3

0.4

0.5

0.6

0.7

0.8

L
in

k
 u

ti
liz

a
ti
o
n

B = 0.1 BDP

B = 0.3 BDP

B = 0.5 BDP

B = 1.0 BDP
0.2

0.3

0.4

0.5

0.6

0.7

0.8

L
in

k
 u

ti
liz

a
ti
o
n

Frequency (Hz)

(a)

Frequency (Hz)

(b)

10–3 10–2 10–1 100 101 102 10310–3 10–2 10–1 100 101 102 103

B = 0.1 BDP

B = 0.3 BDP

B = 0.5 BDP

B = 1.0 BDP

Figure 10.14 Comparison between fluid model (left plot) and ns-2 simulations (right
plot): sinusoidal capacity, T = 300 ms.

For example, when B = 0.1 ⋅ CmaxT = 84 packets, the utilization falls below 30% of
the available average capacity, whereas when the buffer is big, the effect is marginal
since the buffer absorbs the capacity variation.

Comparing simulation results with fluid model results, we notice that results
obtained for low and high values of F are the same as the ones obtained with
the fluid model, whereas for intermediate values of F the degradation region is
enclosed in a smaller range of frequencies.

Figure 10.14 depicts results obtained with T equal to 300 ms. Also in this sce-
nario, the general behavior is similar, however, the degradation zone is shifted
on the left side of the frequency scale since the ratio between the period of the
sinusoid, 1∕F, and T is lower.

Overall, the fluid model turns out to be quite accurate.

1000 2000 3000 4000 5000

Time (base RTT)

0

200

400

600

800

S
iz

e
 (

p
k
ts

)

F = 0.01 Hz W(t)

Q(t)

T C(t)

(a)

100 200 300 400 500

Time (base RTT)

0

200

400

600

800

S
iz

e
 (

p
k
ts

)

F = 0.1 Hz W(t)

Q(t)

T C(t)

(b)

Figure 10.15 Evolution of W(t), Q(t), and C(t) ⋅ T for T = 100 ms and B = 0.1 ⋅ CmaxT .
Sinusoidal capacity with F = 0.01 Hz (left plot) and F = 0.1 Hz (right plot).

�

� �

�

630 10 Congestion Control

Further insight into the fluid simulation can be gained looking at Figure 10.15,
where the congestion window W(t), the instantaneous BDP C(t) ⋅ T and the buffer
content Q(t) are plotted over time in the case of the sinusoidal capacity function in
eq. (10.69), with F = 0.01 Hz (left plot) and F = 0.1 Hz (right plot). Other relevant
parameters are T = 100 ms and B = 0.1 ⋅ CmaxT = 84 packets.

When the period of the capacity function is small with respect to the base RTT
(Figure 10.15(a)), the TCP congestion control is able to follow the slow capacity
variation and to grow the congestion window toward high values, leading to a high
value of the link utilization (about 0.73 in this case).

When F is higher (Figure 10.15(b)), TCP congestion window synchronizes with
capacity period and packet losses occur at small values of the congestion window.
Observing the figure, it is possible to note that the congestion window oscillates
approximately between (CminT + B)∕2 and CminT + B, proving that TCP is not able
to exploit the average capacity but just the minimum one. The result is an average
throughput of about 0.29.

In both cases, the cwnd fails to follows the rising front of the bottleneck link
capacity curve. The growth rate of the cwnd is too small, especially for the larger
value of the RTT. This is the major source of inefficiency of TCP with this kind of
time-varying link.

10.5.3 Application to Wireless Links

The fluid model can be applied to the analysis of TCP performance on radio links.
This is a typical case where the link capacity varies for reasons that are not depen-
dent on the TCP congestion control, e.g., interference, quality of the radio link.
Another reason for having a variable capacity link, is occasional link blockage due
to intervening obstacles or to handoff. Moreover, it is typically the case that the
bottleneck of the TCP connection path is on the radio link, when such a link is
involved. In this section we consider different capacity variation patterns: random
stationary process and LTE case study.

10.5.3.1 Random Capacity
We assume that C(t) is the realization of a stationary stochastic process. This is a
simple model of the behavior of wireless channels.

We aim at highlighting the effect of the capacity variation time scale with a given
fixed capacity marginal distribution. This way, the average capacity left over for
TCP and its probability distribution are the same while the time scale over which
a given variation is seen can be adjusted with respect to the base RTT T of the
TCP connection. To keep things simple, we choose the stationary random process
as a first-order autoregressive model with innovation uniformly distributed in the
interval [Cmin,Cmax].

�

� �

�

10.5 Fluid Model of a Single TCP Connection Congestion Control 631

10–2 10–1 100 101

T/Tc

0.4

0.6

0.8

1

L
in

k
 u

ti
liz

a
ti
o

n

B = 0.1 BDP

B = 0.3 BDP

B = 0.5 BDP

B = 1.0 BDP

(a)

0.4

0.6

0.8

1

L
in

k
 u

ti
liz

a
ti
o

n

B = 0.1 BDP

B = 0.3 BDP

B = 0.5 BDP

B = 1.0 BDP

10–2 10–1 100 101

T/Tc

(b)

Figure 10.16 Comparison between fluid model (left plot) and ns-2 simulations (right
plot): random capacity, T = 100 ms.

The discrete time model of the capacity is stated as follows:

C(k + 1) = 𝛼C(k) + (1 − 𝛼)I(k)

where I(k) is a sequence of identically distributed, independent random variables
with uniform distribution between Cmin and Cmax. The weighting coefficient 𝛼 is
chosen such that the autocorrelation coefficient of the sequence C(k) at a time lag
of Tc equals a conveniently low value. We require 𝛼

Tc∕𝛿 = 0.1. The meaning of Tc
is a coherence time of the time-varying capacity function, i.e., a time span over
which the capacity function de-correlates. In the numerical results, we use the
ratio x = T∕Tc as an independent variable. Given the RTT T, for each value of x,
the corresponding 𝛼 is obtained as 𝛼 = 0.1

x𝛿
T . The initial value of the capacity is set

to the average capacity, i.e. C(0) = (Cmax + Cmin)∕2. In the numerical examples we
set Cmax = 100 Mbps and Cmin = 10 Mbps.

In Figures 10.16 the bottleneck link utilization obtained with the fluid model
(left) and with ns-2 simulations (right) is plotted against the ratio x = T∕Tc for
T = 100 ms and for four values of the buffer size (normalized as before with respect
to CmaxT).

Two main facts are apparent as compared to the results for deterministic periodic
capacity function. First, the qualitative effect of the capacity function time scale is
analogous to the case of deterministic sinusoidal capacity function: values of Tc
much larger and much smaller than T yield better performance as compared to
intermediate values (T

Tc
in the range 0.1 ÷ 10 in both figures.) Second, the quantita-

tive effect is quite reduced with respect to the deterministic case, since the range of
values of each utilization curve for a given buffer size value never entails a through-
put penalty larger than 33% with respect to the largest achieved throughput. Also,
the curve behavior is much smoother than in the case of sinusoidal capacity, due
to the randomization of the variable capacity.

�

� �

�

632 10 Congestion Control

d

v

𝓁 Figure 10.17 Road layout for the
TCP connection over LTE case study.

10.5.3.2 TCP over Cellular Link
We consider a wireless link with adaptive modulation and coding, and a link
adaptation mechanism that adjust the transmission configuration to follow the
time-varying radio channel.

We consider a user on board a vehicle, moving along a road where radio cover-
age is offered through evenly spaced base stations (BSs). We let 𝓁 = 2 km be the
distance between two consecutive BSs. The user moves along an ideal line. BSs are
aligned at a distance d = 20 m off the trajectory of the vehicle. Figure 10.17 illus-
trates the layout of the road where the vehicle moves. The triangles stand for BSs
along the road side.

The LTE radio access standard is assumed. Time is divided in slots of duration
Ts = 0.5 ms. Time slots are organized in frames. The downlink LTE frame is made
up of 20 slots, so its duration is Tf = 20 ⋅ Ts = 10 ms. The whole channel is split
into frequency sub-channels of bandwidth WRB = 180 kHz. One sub-band for one
time slot is a resource block (RB) and is the unit of assignable radio resource.

The user terminal is assigned a number nRB of RBs in the downlink channel
out of the overall set of nRB,max RBs available in the downlink for one slot time.
Capacity is assigned to the user terminal in one time slot per frame.

We now introduce the user mobility and radio link models. The time evolution
of the considered models is discretized, with time steps equal to the frame time Tf .
Let tk = kTf + t0, k ∈ ℤ+, for some initial time t0.

The user mobility is described by a linear accelerated motion, where the accel-
eration is sampled once per LTE frame, according to a(tk) = g a(tk−1) + (1 − g)uk,
with uk ∼ (0, 𝜎2) and g = 0.99. The standard deviation 𝜎 is set to 3 m∕s2. The
speed of the user is given by v(tk) = min{vmax,max{0, v(tk−1) + Tf a(tk)}}, where
vmax = 40 m∕s. In turn, the position is x(tk) = x(tk−1) + Tf v(tk). This is initialized
with x(t0) = x0.

The radio link is modeled as an AWGN channel with time-varying path gain.
The capacity sustained by a single RB is given by:

CRB = min
{

CRB,max,WRBlog2

(
1 + SNIR

Γ

)}
, (10.70)

where we let CRB,max = 720 kbit/s. The SNIR is calculated as

SNIR =
GiPRB

PN +
∑

j≠iGjPRB
, (10.71)

�

� �

�

10.5 Fluid Model of a Single TCP Connection Congestion Control 633

where PRB = Ptx∕nRB,max is the transmission power on one RB, Ptx = 10 W is the
overall power budget of each BS, PN is the background noise power level, and Γ
is the gap factor. This last quantity is calculated as Γ = (2∕3) log(2∕Pe), where Pe
is the target BER of the physical link. We let Pe = 10−6. In the SNIR expression,
we denote with i the serving station, while the signal received by all other BSs is
accounted for as interference.

The path gain between the user terminal and BS k is a function of their distance
d(tk). We let G(tk) = Gdet(d(tk))S(tk). The distance dependent deterministic path
gain Gdet(⋅) is defined according to the two-ray interference model presented in
[192]. The shadowing component S(⋅) is assumed to be log-normal and spatially
correlated. The sequence of shadowing gains is generated as an auto-regressive
process of order 1, i.e., S(tk) = 𝛾k S(tk−1) + (1 − 𝛾k)Uk, where U ∼ (0, 𝜎2

S), with
𝜎S = 10 dB. The coefficient 𝛾k is given by 𝛾k = 0.1Δxk∕DS . The quantity Δxk is the
distance traveled by the user terminal between two sampling times, i.e., Δxk =
x(tk) − x(tk−1). The parameter DS is the spatial coherence distance of the shadow-
ing gain, set to DS = 50 m.

The wireless bottleneck link capacity of a user connected to BS i is given by

C(t) = nRBmin

{
CRB,max,WRBlog2

(
1 + 1

Γ
Gi(t)Ptx

nRB,maxPN +
∑

j≠iGj(t)Ptx

)}
(10.72)

where we have emphasized the dependence of the path gains on time, due to user
mobility. The capacity varies frame by frame, so in the fluid model we hold it con-
stant over time intervals of duration Tf .

In the ensuing numerical example we set nRB = 40 (hence the maximum bottle-
neck link bit rate is 230.4 Mbit/s) and we set the buffer size B to a fraction 𝜉 of the
maximum BDP of the connection, i.e., B = 𝜉 T nRB CRB,max∕(8 ⋅ L0), where L0 =
1500 bytes is the packet size and T is the base RTT. We consider a connection life-
time of 300 s. Therefore, the user travels an average distance between 900 m and
9 km as the average speed varies between 3 m∕s and 30 m/s. Since BSs are spaced
out by 2000 m, the user experiences a very different channel as the speed changes.
The numerical data are obtained by averaging over 10 different fluid simulations
obtained by generating random path gains, random user acceleration values and
setting the initial position of the vehicle at random with respect to the BS pattern.

Figure 10.18 depicts the link utilization, i.e., the mean throughput of the TCP
connection divided by the mean of C(t) during the connection lifetime, as a func-
tion of the mobile user speed for three values of the bottleneck link buffer size
(100%, 50%, and 25% of the maximum BDP). The plot on the left refers to T =
100 ms, the one on the right to the case T = 300 ms. Correspondingly, the maxi-
mum BDP is 240 packets in the first case, 720 packets in the second case.

�

� �

�

634 10 Congestion Control

0 10 20 30

Average speed (m/s)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N
o

rm
la

iz
e

d
 t

h
ro

u
g

h
p

u
t

T = 100 ms

B = 240 pkts

B = 120 pkts

B = 60 pkts

(a)

Average speed (m/s)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N
o

rm
la

iz
e

d
 t

h
ro

u
g

h
p

u
t

T = 300 ms

B = 720 pkts

B = 360 pkts

B = 180 pkts

(b)

0 10 20 30

Figure 10.18 Normalized throughput of a mobile user in an LTE network as a function
of the average user speed. The base RTT is 100 ms (left plot) and 300 ms (right plot). The
corresponding maximum BDPs are 240 and 720 packets. The bottleneck link buffer size is
set to a fraction of the maximum BDP (100%, 50% and 25%).

The results shown in Figure 10.18 point out that the throughput performance
degrades as the user moves faster, i.e., as the time scale over which the link capacity
has a sensitive variation becomes smaller. The degradation is much worse for the
larger RTT value. This is yet another point in favor of placing contents that mobile
users wish to download close to the edge of the mobile network, so as to reduce as
much as possible the RTT.

The buffer has a beneficial effect: the bigger it is, the more it absorbs the bottle-
neck link capacity variation. However, bigger buffers entail higher delays. This is
highlighted by Figure 10.19, that plots the throughput-delay trade-off for the same

0.8 0.85 0.9 0.95 1

Normalized throughput

0

1

2

3

4

N
o

rm
a

liz
e

d
 q

u
e

u
e

in
g

 d
e

la
y

T = 100 ms

B = 240 pkts

B = 120 pkts

B = 60 pkts

(a)

0.4 0.6 0.8 1

Normalized throughput

0

0.5

1

1.5

2

2.5

N
o

rm
a

liz
e

d
 q

u
e

u
e

in
g

 d
e

la
y

T = 300 ms

B = 720 pkts

B = 360 pkts

B = 180 pkts

(b)

Figure 10.19 Throughput-delay trade-off of a mobile user in an LTE network as the
average user speed varies: The base RTT is 100 ms (left plot) and 300 ms (right plot).
The delay is the queueing delay in the bottleneck buffer, normalized with respect to the
base RTT.

�

� �

�

10.6 Fluid Model of Multiple TCP Connections Congestion Control 635

cases and numerical values as in Figure 10.18. The throughput is measured as in
Figure 10.18. The delay is the queueing delay at the bottleneck buffer, normalized
with respect to the base RTT. The trade-off is obtained by varying the average user
speed (lower values correspond to points exhibiting larger throughput values).

It appears that large buffer sizes can achieve a high throughput at the cost of
large delays (up to almost four times the base RTT if T = 100 ms and more than
twice the base RTT for T = 300 ms). The best trade-off is offered by the inter-
mediate buffer size (50% of the maximum BDP), which brings the connection to
work around the “knee” of the trade-off curve, i.e., high throughput and low mean
queueing delay.

10.6 Fluid Model of Multiple TCP Connections
Congestion Control

We refer to the dumbbell topology in Figure 10.9 and to the notation introduced
in Section 10.5. With respect to the assumptions made in Section 10.5, we add the
following ones.

1. N TCP connections share the fixed capacity bottleneck link.
2. The cwnd is incremented by 𝛼∕cwnd per received ACK during congestion avoid-

ance.
3. All N TCP connections have the same base RTT T and start at the same time.

This last assumption can be relaxed, considering asynchronous TCP connec-
tions with different base RTT values, at the cost of added complexity to the fluid
model.

10.6.1 Negligible Buffering at the Bottleneck

The strongest assumption we make in this section is that the base RTT is dominant
with respect to queueing delay at the bottleneck buffer, so that we can neglect the
latter. We can therefore approximate the RTT as a constant T.

The instantaneous variation of the cwnd of any of the N TCP sources is the sum
of two contributions: (i) a positive term accounting for increments of the conges-
tion window size on ACK reception; (ii) a negative term, accounting for congestion
window reduction upon detection of packet loss. Formally, the increment of the
congestion window W(t) at time t per received ACK is 𝛼∕W(t), the decrement upon
loss detection is 𝛽W(t).

Let p(t) denote the probability that the bottleneck buffer is full at time t. In the
fluid simulation, it is replaced by the indicator function of the event Q(t) = B. The
net rate of ACKs arriving at time t at a TCP source is then [1 − p(t − T)]x(t − T),

�

� �

�

636 10 Congestion Control

where x(t) is the TCP source sending rate at time t. We can state the following
differential equation for the evolution of the congestion window of each TCP con-
nection:

dW
dt

=
𝛼[1 − p(t − T)] x(t − T)

W(t)
− 𝛽W(t)p(t − T) x(t − T) (10.73)

The amount of data sent by a source in an RTT equals the congestion window
size. Then, we can write x(t) = W(t)∕T. Substituting into (10.73), we get:

dx
dt

=
𝛼[1 − p(t − T)]x(t − T)

T2x(t)
− 𝛽x(t)p(t − T)x(t − T) (10.74)

If a steady-state is achieved by this dynamical system as t → ∞, let x denote
the steady-state mean sending rate of the TCP connection and p the steady-state
packet dropping probability at the bottleneck buffer (compare with the analysis in
Section 10.4). The following relationship holds:

0 =
𝛼 [1 − p] x

T2 x
− 𝛽 p x2

⇒ x = 1
T

√
𝛼(1 − p)

𝛽p
(10.75)

The achieved throughput is Λ = x(1 − p). The prediction of this simple model
is that the average throughput of a long-lived TCP connection is inversely propor-
tional to the RTT and to the square root of the loss probability at the bottleneck
buffer. This result has been actually confirmed by more sophisticated models, that
account for the discrete nature of packets, and by accurate, packet-level simula-
tions. Recall that the model has been derived by assuming that the bottleneck
buffer is small as compared to the BDP, so that the queueing delay can be neglected
with respect to the base RTT.

We can use this simple model by expressing the packet-dropping probability at
the bottleneck buffer. With N TCP traffic sources, the load on the bottleneck link is
y(t) =

∑N
j=1 xj(t). If we can approximate the aggregated packet flow arriving at the

bottleneck as a Poisson arrival process (which we know is a good approximation
with a high degree of multiplexing, i.e., if N ≫ 1 and no connection has a sending
rate much bigger than all others), then the packet dropping probability can be
expressed by using the approximation derived in Section 4.3.2 for the M∕G∕1∕B
queue, where B is the bottleneck buffer size.

The buffer size is a fraction of the BDP, i.e., B = 𝛾C ⋅ T∕L0, where L0 denotes the
packet length.

To keep things simple, let us assume a negative exponential probability distri-
bution for the packet length. So, the packet dropping probability at steady-state is:

p =
1 − y∕C

1 − (y∕C)B+1

(
y
C

)B

(10.76)

with y = Nx.

�

� �

�

10.6 Fluid Model of Multiple TCP Connections Congestion Control 637

Let us define the normalized load u = y∕C. Putting all pieces together, we find:

u = Nx
C

= N
a

√
𝛼

𝛽

(
1
p
− 1
)

= b

√
1 − uB

uB(1 − u)
(10.77)

where a = CT is the BDP, and b = N
a

√
𝛼

𝛽
. Finally, we derive the following fixed

point equation

u =
⎛⎜⎜⎝b
√

1 − uB

1 − u

⎞⎟⎟⎠
2

B+2

⇒ uB+2 = b2
B−1∑
j=0

uj (10.78)

Once the fixed point u is found, the steady-state average throughput of one TCP
connection can be calculated as Λ = x(1 − p) = u

N
1−uB

1−uB+1 .
The simple model outlined here holds approximately only for N ≫ 1 and 𝛾 ≪ 1,

i.e., a small buffer size at the bottleneck.

10.6.2 Classic TCP with Drop Tail Buffer at the Bottleneck

To explore the dynamics of the congestion window and buffer size, let us assume
that the buffer size B cannot be neglected with respect to the BDP.

We assume a drop-tail buffer policy, i.e., packets are dropped at the bottleneck
only if the buffer is full. If all sources experience the same base RTT, each one
gets a same fraction of the bottleneck capacity. The ACK rate at any TCP sender
equals C∕N, whenever the buffer is not empty, W(t)∕T when it is empty. The
buffer is empty if and only if NW(t) ≤ CT. Therefore, we can write the ACK rate
as A(t) = min

{
W(t)

T
,

C
N

}
. When the buffer is not empty, the pipe balance implies

that NW(t) = Q(t) + CT, where Q(t) is the queue length at the bottleneck at time
t. Then, it is easy to verify that the ACK rate can be expressed as A(t) = W(t)∕R(t),
where R(t) = T + Q(t)∕C is the RTT at time t (including the queueing delay at the
bottleneck).

As for the packet loss rate, applying the fluid approximation, the mean rate of
lost fluid can be expressed as L(t) = max{0,W(t)∕R(t) − C∕N}I(Q(t) = B), where
I(E) is the indicator function of the event E.

Since the congestion window grows by 𝛼∕W(t) on each received ACK and is
reduced by 𝛽W(t) on each detected packet loss, the rate of change of the congestion
window can be written as:

dW
dt

= 𝛼

W(t)
A(t) − 𝛽W(t)L(t − T∗) =

= 𝛼

R(t)
− 𝛽W(t)max

{
0, W(t − T∗)

R(t − T∗)
− C

N

}
I(Q(t − T∗) = B) (10.79)

�

� �

�

638 10 Congestion Control

with R(t) = T + Q(t)∕C. T∗ is the reaction time, i.e., the time between the packet
loss event at the buffer and the time when packet loss is detected at the TCP sender.
It is therefore T∗ = T + B∕C, since packet loss occurs only when the buffer is full.

The evolution equation of the buffer size is:

dQ
dt

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

max
{

0, NW(t)
R(t)

− C
}

Q(t) = 0,

NW(t)
R(t)

− C 0 < Q(t) < B,

min
{

0, NW(t)
R(t)

− C
}

Q(t) = B.

(10.80)

The initial conditions for numerical integration can be set as Q(t) = 0 for t ≤
0, W(0) = min{ssthresh, a∕N}, where a is the BDP and ssthresh is the Slow Start
threshold. The initial ssthresh value is typically set at 64 MSSs.

Under the assumptions of this model, timeout is never triggered, so the slow
start is only executed once, at the beginning of the TCP connection. This is con-
sistent with the assumption that the bottleneck capacity is constant. Note that the
model studied in section 10.5.1 refers to the analysis of the steady-state average
throughput, while the analysis presented here aims at characterizing the dynam-
ical behavior of N TCP connections sharing a bottleneck link.

10.6.3 Classic TCP with AQM at the Bottleneck

Let us assume that the bottleneck buffer is managed according to an active queue
management (AQM) policy, specifically the random early detection (RED) algo-
rithm (see Section 10.9.3 for a brief note on AQM). According to RED, a packet
arriving at the bottleneck buffer at time t is dropped with a probability depending
on the queue occupancy at time t. In RED, the packet dropping probability is cal-
culated based on a smoothed version of the buffer occupancy level. If tk denotes
the time of the k-th packet arrival at the bottleneck buffer, the smoothed buffer
size is updated as follows: S(tk) = (1 − g)S(tk−1) + gQ(tk), where Q(t) denotes the
buffer occupancy level at time t. The probability that the packet arriving at time tk
is dropped is calculated as p(tk) = pmax[S(tk) − Bth]∕(B − Bth)when Bth < S(tk) < B.
All incoming packets are dropped as long as Q(t) = B. The quantities pmax and Bth
are parameters of the AQM algorithm. They define, respectively, the maximum
rate of packet dropping as the buffer is not full and the buffer threshold below
which no packet is dropped.

When the bottleneck buffer is congested, we can assume that sampling is
done at a rate equal to the bottleneck packet rate, i.e., tk − tk−1 = 1∕𝜆(tk−1), with
𝜆(t) = NW(t)

R(t)
. Then, the smoothed buffer updating equation can be converted into

a continuous time fluid approximation by replacing S(tk) − S(tk−1) with 1
𝜆(t)

dS
dt

.

�

� �

�

10.6 Fluid Model of Multiple TCP Connections Congestion Control 639

The differential equation that drives the evolution of the congestion windows
becomes:

dW
dt

= 𝛼

R(t)
− 𝛽W(t)W(t − 𝜏(t))

R(t − 𝜏(t))
p(t − 𝜏(t)) (10.81)

dS
dt

= g NW(t)
R(t)

[Q(t) − S(t)] (10.82)

with p(t) given by:

p(t) =

⎧⎪⎪⎨⎪⎪⎩

0 0 ≤ S(t) ≤ Bth,

pmax
S(t) − Bth

B − Bth
Bth < S(t) < B,

1 S(t) = B.

(10.83)

The evolution differential equation of the buffer occupancy level Q(t) is the same
as in eq. (10.80).

The reaction delay 𝜏(t) can be found as follows. The delay from when the packet
is dropped until when the effect of the congestion window reduction is visible at
the bottleneck buffer is 𝜏(t) = Q(t−𝜏(t))

C
+ T. By deriving both sides and rearranging,

we obtain:
d𝜏
dt

= Q′(t − 𝜏(t))
Q′(t − 𝜏(t)) + C

(10.84)

where Q′(u) denotes the derivative of Q(t) calculated at time u. This equation can
be solved with the initial condition 𝜏(0) = T.

A simpler approximation can be obtained by replacing 𝜏(t) with the constant
value T∗ = T + B∕C, where B is the average buffer level sampled by packets that
are dropped. It can be verified that B = (2B + Bth)∕3.

10.6.4 Data Center TCP with FIFO Buffer at the Bottleneck

In this section we abandon the classic TCP to consider the DCTCP, described in
Section 10.3.4. The statement of the fluid model is derived from [10]. It is:

dW
dt

= 1
R(t)

− W(t)𝛼(t)
2R(t)

p(t − T∗) (10.85)

d𝛼
dt

=
g

R(t)
[p(t − T∗) − 𝛼(t)] (10.86)

where p(t) = I(Q(t) > K), R(t) = T + Q(t)∕C, T∗ = T + K∕C and g ∈ (0, 1) is a
smoothing coefficient. The evolution differential equation of the buffer occupancy
level Q(t) is the same as in eq. (10.80).

Starting from the initial state, the DCTCP dynamical system tends to settle
on a limit cycle for t → ∞. If we average out the state of the model over one

�

� �

�

640 10 Congestion Control

orbit through the limit cycle, we obtain the following relationship among the
steady-state averages of the system quantities, denoted with a bar: p = 𝛼 and

1 = W 𝛼 p∕2. Hence, it is 𝛼 =
√

2∕W .
A refined approximation can be found by the following argument. The buffer

level Q(t) follows a periodic pattern in time: it grows steadily, until it hits the
level K. In the subsequent RTT all packets going through the bottleneck buffer
are marked. Getting back to the source they cause the congestion window to be
reduced. Then, the buffer content falls back to its minimum level and a new growth
cycle starts. Let W∗ = (CT + K)∕N denote the critical value of the congestion win-
dow where the buffer level hits the threhsold K for the first time. Since one more
RTT is required for the marking feedback to be effective, the congestion window
grows up to W∗ + 1 before being reduced by a factor 1 − 𝛼∕2. Let A(u, v) be the
number of packets sent when the congestion window grows from u up to v. It
is A(u, v) =

∑v
k=u k ≈ ∫ v

u z dz = (v2 − u2)∕2. The marking rate can be expressed as
the ratio of the packets that get marked in one period and the overall number of
packets sent in the period, i.e.,

𝛼 = A(W∗
,W∗ + 1)

A((1 − 𝛼∕2)(W∗ + 1),W∗ + 1)
= 2W∗ + 1

𝛼(1 − 𝛼∕4)(W∗ + 1)2 (10.87)

where we have used the result A(u, v) = (v2 − u2)∕2. It turns out that 𝛼 is the solu-
tion of the cubic equation

𝛼
2
(

1 − 𝛼

4

)
= 2W∗ + 1

(W∗ + 1)2 (10.88)

in the interval (0, 1). For large BDP networks, it is W∗
≫ 1, hence it is 𝛼 ≪ 1.

Therefore, eq. (10.88) simplifies to 𝛼
2 ≈ 2∕W∗ and we recover the result found by

averaging over one limit cycle.
The period of the buffer level evolution (which is also the period of the

steady-state limit cycle) is

Tc = T
[

W∗ + 1 − (W∗ + 1)
(

1 − 𝛼

2

)]
≈ TW∗

𝛼

2
= T

2

√
2W∗ = T

√
CT + K

2N
(10.89)

The maximum and minimum buffer levels are:

Qmax = N(W∗ + 1) − CT = N + K

Qmin = N(W∗ + 1)(1 − 𝛼∕2) − CT ≈ N + K − N
√

W∗

2

= N + K −
√

N(K + CT)
2

�

� �

�

10.6 Fluid Model of Multiple TCP Connections Congestion Control 641

To avoid packet loss, it must be N + K ≤ B. To avoid buffer depletion, hence
under-utilization of the bottleneck capacity, it suffices that Qmin > 0. The expres-
sion of Qmin as a function of N has a minimum for N = (K + CT)∕8. Imposing
that Qmin be positive even for this value of N, we find that it must be K > CT∕7.
This is a much more favorable condition than the one holding for classic TCP. The
classic TCP requires that it be B = CT to achieve full utilization of the bottleneck
link, whereas with DCTCP a buffer size in the order of CT∕7 is enough. This is
especially interesting for large BDP pipes.

The gain g must be chosen small enough to ensure the exponential moving
average covers at least one congestion event. In our model, there is exactly one
congestion event every period Tc. Hence we can require that (1 − g)Tc∕T ≥ 𝜂, with
Tc∕T =

√
(K + CT)∕(2N). The worst case (longest) period occurs for N = 1. Then

we can set g ≤ 1 − 𝜂

√
2∕(K+CT) for a suitably large 𝜂, e.g., 𝜂 = 1∕2.

To give numerical examples, we assume a packet length of 1250 bytes and a
bottleneck link capacity of 100 Mbit/s. Hence it is C = 104 pks/s. We set the base
RTT at T = 100 ms. The resulting BDP is 1000 pkts. The buffer size is set at 50%
of the BDP, i.e., B = 500 pkts. The number of flows is chosen as N = 10. Specific
parameters for RED are chosen as pmax = 0.25, Bth = 0.1 ⋅ B. As for DCTCP, we let
K = 0.1 ⋅ B and g = 0.0227.

Figure 10.20(a) compares the congestion window sizes as a function of time for
classic TCP with a drop-tail buffer at the bottleneck (top plot), classic TCP with
RED at the bottleneck (middle plot) and DCTCP (bottom plot).

The large excursion of the cwnd of classic TCP is clearly visible as well as the
slow climbing up of cwnd to fill the pipe and the buffer. When RED is used, random

0

100

Classic TCP

0

50

100

c
w

n
d
 (

p
k
ts

)

TCP + RED

0 100 200 300

Time (RTT)

0

50

100

DCTCP

(a)

0 20 40 60 80

Buffer level (pkts)

95

100

105

110

c
w

n
d
 (

p
k
ts

)

DCTCP

N = 10 flows

BDP = 1000 pkts

(b)

Figure 10.20 Left plot: comparison of the time evolution of the congestion window for
classic TCP with drop-tail buffer (top), classic TCP with RED at the bottleneck (middle),
DCTCP (bottom). Right plot: limit cycle of the DCTCP orbit in the buffer level-cwnd plane.
Time is measured in RTTs, cwnd and queue length in packets.

�

� �

�

642 10 Congestion Control

early discard makes the sawtooth of the cwnd span a smaller range and react faster.
A beneficial effect of RED that cannot be appreciated directly through the fluid
model is the de-synchronization of packet losses of different TCP flows. On the
contrary, drop-tail buffers tend to correlate packet losses as seen by different TCP
flows, hence TCP sources tend to synchronize cwnd updates (as long as the base
RTT of all TCP flows is the same).

Figure 10.20(b) depicts the limit cycle of DCTCP orbit in the buffer level-cwnd
plane. DCTCP offers the best behavior in terms of oscillations of the cwnd size.
This behavior reflects in a higher and more stable throughput, with smaller delays
at the bottleneck. These good results are achieved at the price of introducing
ECN, i.e., making modifications both at the TCP recevier and at the intermediate
nodes. On the contrary, RED does not require anything of the TCP receiver, but
is network-assisted, i.e., RED algorithm must be deployed in the intermediate
nodes.

10.7 Fairness and Congestion Control

Let us consider a generic resource and let C denote the amount of available
resource. It can be memory space, processing capability, link bandwidth, trans-
portation capacity, energy, money. Consider N sources requesting the resource
and let Rj be the amount of demand for the resource submitted by source j. The
demand can be time-dependent.

As long as R1 + · · · + RN ≤ C no congestion arises, all demands can be accom-
modated without conflicts. There is no fairness issue.

Problems start whenever R1 + · · · + RN > C, so that part of the demand will not
be satisfied, at least for some time, if not definitely (that depends on the overflow
handling, either delay or loss based). Here we have a fairness problem, i.e., we
must give some fair criterion according to which we determine what part of the
demand will not be met.

Clearly, fairness is tightly coupled with congestion control. With proactive con-
gestion control, a typical approach is to deal with demands as they arrive and reject
the excess demand. This basic paradigm can be altered as a function of priorities,
possibly time-dependent. Yet, the typical setting envisages that it is fair to preserve
already ongoing services, rejecting new demand as long as the available resource
has no room to accommodate it.

Reactive congestion control requires a more sophisticated approach. Assume
sources are greedy, i.e., they could possibly use up to the whole available resource,
if granted. When a new demand arrives at the system, it is necessary to rearrange
the resource sharing to make room for the new demand. This is especially fit
if the sources cope with an elastic quality of service, i.e., they can live with a

�

� �

�

10.7 Fairness and Congestion Control 643

variable quantity of resource. For example, when a new TCP connection is set up,
its bottelneck link capacity could be entirely used by already ongoing TCP connec-
tions. Some mechanism is required to induce the ongoing connections to yield to
the new one and achieve a new sharing equilibrium that is fair in some sense.

There is no general consensus on what might be deemed as “fair,” even in the
restricted realm of network traffic engineering. If there is no other constraint and
all sources can use up to the entire resource, it seems reasonable to state that it is
fair to assign an equal share of the available resource to each source, i.e., C∕N for N
sources. This is what Processor Sharing achieves. More generally, a weighted shar-
ing can be defined, leading to Generalized processor sharing (GPS) and to its prac-
tical implementation (e.g., weighted fair queueing (WFQ); see Section 6.4.3). How-
ever, things could become much more complicated, specifically when we move to
a networked resource.

Let us introduce quantitative approaches to fair sharing of a resource with ref-
erence to communication link capacity shared among traffic sources.

Assume N traffic sources share a link of capacity C. Let 𝜆j be the mean offered
flow rate of source j. As long as

∑N
j=1 𝜆j ≤ C, no issue arises. Each sources gets

exactly the average rate it requests. There is no congestion as well as no fairness
problem in sharing the capacity, even if the realized throughputs 𝜆j might be quite
different one from another.

Problems start whenever
∑N

j=1 𝜆j > C. The traffic demand offered by the traffic
sources cannot be accommodated in that case. Congestion control will enforce
some lower level of throughput for the involved traffic sources. It is clear how
much the excess offered traffic is. What is not evident at all is which sources should
be penalized, and assigned a throughput rate lower than their demand. This is the
key question to which a fairness principle should answer19.

A simple answer seems to be: assign a same share of the resource to all request-
ing sources. This appears immediately to be too simplistic. What if the equal share
is more than a source request? Again, the intuition suggests: limit the assignment
to at most what is requested and share the exceeding portion among the sources
that request more. We could make the picture a bit more complicated by assum-
ing that each source has an individual constraint on the achievable amount of
resource.

To be concrete, let us refer to the example of link capacity sharing. Assume it
must be 𝜆j ≤ Rj, j = 1,… ,N, with

∑N
j=1 Rj > C (otherwise there is no congestion).

We define a fairness principle informally as follows: let each source get a same
share, unless it is limited by its individual constraint.

Assume sources are labeled so that the constraint rates are ordered in increas-
ing progression: R1 ≤ R2 ≤ · · · ≤ RN . Let j∗ be defined as the smallest integer j ∈

19 It has been even questioned that fairness should apply to flow rates at all [45].

�

� �

�

644 10 Congestion Control

{1,… ,N} such that the inequality
∑j−1

i=1 Ri + (N + 1 − j)Rj > C holds (note that it
holds by hypothesis for j = N; moreover, we let

∑0
i=1 ≡ 0 by definition). The “fair”

rate assignment is as follows:

R∗
j =

⎧⎪⎪⎨⎪⎪⎩

C
N

j∗ = 1

min

{
Rj,Rj∗−1 +

C −
∑j∗−1

i=1 Ri

N − j∗ + 1

}
otherwise.

(10.90)

for j = 1,… ,N.
Note that, if we try to shift any amount of rate, the only feasible outcome is

that we subtract some rate from a source and assign it to sources that already are
assigned a bigger rate than the penalized source. Said informally, we steal from the
poor to favor the rich.

The resource assignment described above is the max-min fairness principle. We
can state this fairness principle formally as follows. Let xj, j ∈ be the max-min
fair rate assignment for a set of traffic sources , and let yr be any other feasible
rate assignment. Feasible means that the rate assignment fulfills all constraints.
Then the following property holds: min

j∈ xj ≥ min
j∈ yj. This means that the “poorest”

source is still better off with the fair assignment than with any other feasible rate
assignment. We are not claiming that all sources get the same flow rate. In fact,
it may well be the case that the obtained flow rates are quite different from one
another, depending on the constraints. This is typically the case when we apply
the max-min rate assignment in a network and the constraints on the flow rates
apply on each link of the routing path assigned to each flow.

We discuss one more example of “fair” rate assignment, namely proportional
fairness (PF). This shows that a completely different rate assignment principle can
still be considered sensibly a “fair” one.

Let xk, k ∈ denote a rate allocation. We define xk to be proportional fair if,
for any other feasible rate allocation yk it is

∑
k(yk − xk)∕xk ≤ 0. In other words,

proportional fairness implies that any modification to the rate allocation causes a
loss in relative terms: sources that improve their rates are outbalanced by sources
that lose a fraction of their rates. Note that proportional fairness guarantees that
no source can ever get a zero average rate.

We can show that the property defining proportional fairness is equivalent to
maximizing the sum of logarithms of the rates, under the same constraints that
define the feasible rate allocations.

Theorem 10.1 A rate allocation xk is proportional fair if and only if it maximizes∑
k log xk in the set of feasible rate allocations.

�

� �

�

10.8 Network Utility Maximization (NUM) 645

Proof: The result is a direct application of the property stated in point 10.5 of
Theorem 10.5 in the Appendix of this chapter. That property states that, for a con-
cave differentiable function f (x) defined for x ∈ , where is a compact set, a
point x∗ ∈ is a maximum if and only if ∇f (x∗) ⋅ (x − x∗) ≤ 0 for any x ∈ .

We consider the function f (x) ≡ ∑k log xk for x belonging to the feasible set. This
is a strictly concave function in the feasible set defined by the constraints on the
rate allocation xk. Since the k-th component of the gradient of f (x) is∇f (x)k = 1∕xk,
a rate allocation xk maximizes the function

∑
k log xk if and only if ∇f (x) ⋅ (y − x) =∑

k
1
xk
(yk − xk) ≤ 0 for any feasible rate allocation yk. This proves the result. ◾

Example 10.2 Let us consider a cascade of n links and n + 1 flows, one of which
is routed through all n links, say it is x0, while flow i is routed only on link i for i =
1,… ,n. The proportional fairness assignment is found as the one maximizing the
sum log x0 + log x1 + · · · + log xn under the constraint x0 + xi ≤ ci for i = 1,… ,n.

Let us consider the balanced case, where ci = c for all i. It is clear that the opti-
mum rate assignment will satisfy all constraints with the equality sign (if we left
some unused capacity on a link, it would be possible to improve the sum of log x
by increasing the rate assigned to the flow that uses only that link). Therefore, we
have xi = c − x0. Substituting into the target function, the optimization reduces to
the unidimensional problem

max
0<x0<c

log x0 + n log(c − x0) (10.91)

It is easy to find that the optimum is x∗0 = c∕(n + 1) and x∗i = nc∕(n + 1). The
proportional fairness assignment has an intuitive interpretation in this case: since
flow 0 engages n links in its routes, it “consumes” n times more resource than each
of the other flows. Therefore, it is sensible to ask that the ratio between x0 and any
ot the xi must be 1 to n.

A framework for fairness, encompassing the max-min and proportional fair-
ness concepts is sometimes deinfed as the so called 𝛼-fairness. Rather than lin-
gering on this specific definition, we introduce a much more general framework
in the next section, which can be considered as the current state-of-the-art of fair
resource sharing in a network where end-to-end flows share the capacity of the
network links. It is a model applicable to different domains, e.g., telecommunica-
tions, transportation systems, energy grid network, water distribution.

10.8 Network Utility Maximization (NUM)

Let us consider a network modeled as an undirected graph. Links correspond
to arcs in the graph, traffic sources, and sinks correspond to graph nodes. Let

�

� �

�

646 10 Congestion Control

denote the set of links of the network graph. We associate a positive quantity ci to
link i ∈ , ci being the capacity of link i. End-to-end flows are established between
nodes. Let denote the set of end-to-end flows. Let xj denote the average bit rate
of flow j ∈ .

Defining routing of flows inside the network is equivalent to assigning a routing
matrix A, whose entry (i, j) ∈ × is defined as follows:

aij =

{
1 flow j is routed through link i,
0 otherwise.

(10.92)

This definition is consistent with single-path routing, e.g., obtained by choos-
ing the least cost path (shortest path). It can happen that multiple minimum cost
paths exist in a network for given source and sink nodes. Multi-path routing is also
possible more generally, by considering the k least cost paths among all possible
paths between a given source and sink. The definition of the routing matrix can be
easily adapted to encompass also the general multi-path scenario. It suffices to let
nonzero entries of the matrix assume fractional values, i.e., aij is either 0, if flow j
does not use link i, otherwise it equals the fraction of flow rate xj that is allocated
on link i.

Given the routing matrix A and the link capacities c = [c1,… , c𝓁], where 𝓁 =||, the flow rates xj must satisfy the following set of linear constraints:∑
j∈

aijxj ≤ ci , i ∈ . (10.93)

The set of constraints can be stated compactly as Ax ≤ c, where x = [x1,… , xn],
with n = | |, and the inequality is entry-wise. In addition, the obvious set of
inequalities x ≥ 𝟎 must hold for the flow rates.

Any assignment of non-negative values to the vector x that complies with the
inequalities (10.93) is a feasible assignment. The set of feasible assignments is not
empty, since inequalities (10.93) can always be satisfied, provided we take small
enough positive values of the flow rates (link capacities are positive).

A fairness criterion consists of a way of identifying one assignment of the flow
rate vector in the set of feasible assignments. To that end, we define for each flow a
utility function Uj(z). It represents the degree of “usefulness” for the j-th source of
being granted flow rate z = xj. It is quite plain that a sensible utility function should
be monotonous non-decreasing. It is often the case that it is also concave. Getting
an increment Δx of its rate can be highly useful for flow j that has an assigned rate
of Δx, but is less useful for a flow that has an already assigned rate of 10 ⋅ Δx. In
other words, marginal increments are less and less useful as the already available
rate grows, which is a typical mark of concavity. In the following we assume Uj(z)
is a differentiable, monotonously increasing and strictly concave function.

�

� �

�

10.8 Network Utility Maximization (NUM) 647

A fair target is to let the utility functions of all flows grow as much as possi-
ble, without preferring any of them. It is therefore natural to pursue the target of
maximizing the sum of all utility functions (social utility). We define a flow rate
assignment xj, j ∈ , as fair if it solves the following optimization problem (see the
Appendix of this chapter for an essential introduction to definitions and properties
of convex optimization):

max
x

f (x) ≡∑
j∈

Uj(xj) (10.94)

subject to∑
j∈

aijxj ≤ ci , i ∈ (10.95)

xj ≥ 0, j ∈ (10.96)

Let D denote the bounded and closed (hence compact) subset of ℝn defined by the
constraints.

Since the target function is strictly concave, the constraints are linear and the
feasible set is nonempty, compact and convex, this is a convex optimization prob-
lem. It has therefore a unique solution, the maximizer rate allocation x∗. Hence,
the fairness definition is well grounded.

As an example, by setting Uj(z) = log z, we recover the proportional fairness cri-
terion.

In general, to find the fair rate allocation x∗, we can introduce the Lagrange
multipliers pi and define the new function

g(x,p) =
∑
j∈

Uj(xj) −
∑
i∈

pi

(∑
j∈

aijxj − ci

)
(10.97)

to be maximized for x ≥ 𝟎 and p ≥ 𝟎. This is the primal problem of flow rate opti-
mization.

We can define a dual function as follows:

d(p) = max
x∈D

g(x.p) (10.98)

It can be shown that d(p) is convex.
Since Slater’s conditions hold for the optimization problem stated above, it is

min
p≥𝟎 d(p) = max

x∈D
f (x) (10.99)

Moreover, the unique maximizer of the problem, x∗, lies in the interior of the
feasible domain D and it satisfies the Karush-Kuhn-Tucker (KKT) conditions:

𝜕g
𝜕xk

= 0 ⇒ U ′
k(xk) −

∑
i∈

piaik = 0 , k ∈ (10.100)

�

� �

�

648 10 Congestion Control

pi

(∑
j∈

aijxj − ci

)
= 0 i ∈ . (10.101)

The first set of equations establishes a relationship between a function of the
flow rate of each flow, namely U′

k(xk) for the k-th flow, and the quantity qk =∑
i∈piaik for the k-th flow. The quantity qk is the sum of multipliers pi associ-

ated to the links belonging to the route of flow k. We can interpret the multiplier
pi as the cost of link i capacity and qk as the price to be paid for the route of flow k.
The KKT condition (10.100) states that the optimum rate allocation corresponds
to equating the source k marginal utility for an increase of its flow rate xk and the
price it has to pay for network resources.

The second set of conditions in eq. (10.101) says that, either a link capacity is
saturated, or the relevant multiplier must be 0. Only bottlenecks (i.e., links where
the whole available capacity is assigned) have a non-null cost and hence contribute
to the sum of the path price for each flow.

To gain more insight into the application of the optimization framework to the
fairness concept, we modify slightly the primal problem. We pursue the maximiza-
tion of the following target function for x ≥ 𝟎:

F(x) =
∑
j∈

Uj(xj) −
∑
i∈ ∫

yi

0
hi(u)du (10.102)

where hi(u) is a positive, continuous, and increasing function of u for u ≥ 0 and
yi =
∑

j∈aijxj is the load on link i. The quantity Hi(y) = ∫ y
0 hi(u)du represent the

“cost” of link i when its load is y. Given the properties assumed for hi(u), the
cost is convex and differentiable, hence the function F(x) is differentiable and
strictly concave. Then F(x) has a unique maximum in the set x ≥ 𝟎, provided that
lim

∥x∥→∞
F(x) = −∞ (intuitively: for very high rate values, the cost overwhelms the

utility).
A suitable cost function could be the amount of lost flow, as a consequence of

bottleneck link buffer overflows. As yi gets close to ci, the amount of lost flow
grows sharply and it diverges linearly with yi (hence, faster than a strictly concave
function).

By letting the gradient of F to be zero, we find the conditions that must be satis-
fied by the maximizer x∗ of F(x):

U ′
k(xk) −

∑
i

hi(yi)aik = 0 , k ∈ . (10.103)

Inspired by the iterative ascent gradient method for the numerical computation
of the maximizer, we consider the following dynamical system to control the flow
rate at the source of flow k:

dxk

dt
= 𝜁k(xk)[U ′

k(xk) − qk] , k ∈ , (10.104)

�

� �

�

10.8 Network Utility Maximization (NUM) 649

where 𝜁k(⋅) is a positive function and qk is the path price of flow k, defined as the
sum of prices of links belonging to the route of flow k:

qk =
∑
i∈

hi(yi)aik , k ∈ . (10.105)

The qk’s depend on the flow rates through yi =
∑

j∈aijxj.
The interesting points on (10.104) are as follows:

● The right-hand side, i.e., the update of the flow rate, can be computed at the
source of the flow as soon as the path price is known to the source.

● Only the path price matters to the source of flow k; the price of any other link
not belonging to the routing of flow k does not affect directly the updating rule
of the rate of flow k.

● The path cost can be collected by packets of flow k, sent through the path from
source to destination, and then fed back to the source, if the data transfer envis-
ages acknowledgement packets flowing back from the destination to the source;
this is just the case, if we identify flows with TCP connections.

● The set of controllers (10.104) defines an asymptotically globally stable dynam-
ical system, converging to the maximizer x∗ for any initial value x0 belonging to
the feasible set.

The last statement requires some justification (for essential definitions on stabil-
ity of dynamical systems, the reader might consult the Appendix at the end of this
chapter). A Lyapunov function for the system of controllers defined by (10.104)
is V(x) = F(x∗) − F(x), where x∗ is the flow assignment that maximizes F(x). It is
V ≥ 0 with equality if and only if x = x∗ (the maximizer is unique, since F(x) is
strictly concave). Moreover, it is

dV
dt

= −∇F ⋅
dx
dt

= −
∑
j∈

𝜁j(xj)

[
𝜕F
𝜕xj

]2

≤ 0 (10.106)

with equality holding if and only if the gradient of F is null, i.e., x = x∗, since F(x)
is strictly concave. Finally, thanks to the limiting property of F(x) as ∥ x ∥→ ∞, the
function V(x) is unbounded as the norm of x diverges. Since all conditions stated
in case 3 of Theorem 10.9 in the Appendix to this chapter apply, we conclude that
the dynamical system (10.104) is asymptotically globally stable, i.e., for any initial
state x0 ∈ D, it is x(t) → x∗ for t → ∞.

We have found that the optimal flow rate allocation can be achieved by having
the traffic sources control their respective sending rate according to the dynamical
system (10.104). The interesting feature of these equations is that the k-th source
can compute the adjustment of its rate by using local information (the variation of
the utility function around the current rate level) and the “cost” of its own network
path, qk. To implement such a control, we need a protocol where data packets

�

� �

�

650 10 Congestion Control

probe the path, “collect” information on the path cost (which is seen from (10.105)
to be a sum of terms, each one related to a link of the network path). We need also
a feedback to convey the collected path cost back to the source of the flow. This
can be implemented by having acknowledgment packets sent by the receiver back
to the data sender. Acknowledgments can carry the information on the path cost.
The scheme here described fits perfectly into the TCP paradigm, except that we
have to define: (i) what we mean for path cost; and (ii) what is the utility function
that sums into the social utility maximized by the dynamic controllers defined in
eq. (10.104).

The dynamical system (10.104) that converges asymptotically to the maximizer
of the target function in eq. (10.102) can be read through TCP lenses as follows.
For small bottleneck buffer size, the classic TCP congestion window evolution
equation in congestion avoidance can be written as (see eq. (10.73)):

dW
dt

=
𝛼x(t − T)[1 − p(t − T)]

W(t)
− 𝛽W(t)x(t − T)p(t − T) (10.107)

where T is the base RTT, p(t) is the loss probability at the bottleneck and x(t) is the
sending rate. Since it is x(t) = W(t)∕T, we have

dx
dt

=
𝛼x(t − T)[1 − p(t − T)]

T2x(t)
− 𝛽x(t)x(t − T)p(t − T) ≈ 𝛼

T2 − 𝛽x2(t)p(t)

(10.108)

where we have assumed p(t) ≪ 1 and we have neglected the delay in the
right-hand side of the differential equation, i.e., we assume a slowly varying flow
rate: x(t) ≈ x(t − T). The dynamical system (10.108) can be rewritten as:

dx
dt

= 𝛽x2
[

𝛼

𝛽T2x2 − p
]

(10.109)

The similarity with eq. (10.104) is evident, once we interpret the loss probability
p as the path price, the multiplicative term 𝛽x2 as the coefficient 𝜁(x) and the term
𝛼∕(𝛽T2x2) as the derivative of the utility function. Then, it is U(x) = −𝛼∕(𝛽T2x).
Maximizing the sum of such utility functions is equivalent to minimizing the sum∑

j∈1∕xj. Since 1∕x is proportional to the time required to transfer a given amount
of bytes at an average rate x, we recognize that the optimization target is min-
imization of a potential delay. Under the stated assumptions classic TCP aims at
allocating average connection throughput so as to minimize the potential data trans-
fer delay.

In our revisiting of classic TCP, we have assumed that all flows have a same
RTT T. If RTTs are different, the utility functions are Uj(x) = −𝛼∕(𝛽T2

j x). The func-
tion that is minimized is

∑
j∈ 1

T2
j xj

. It is clear that source with larger RTTs get
smaller flow rates.

�

� �

�

10.8 Network Utility Maximization (NUM) 651

Going back to the original constrained optimization problem (10.94), we can
solve it by resorting to the dual problem, i.e., minimization of the dual function
d(p) defined in (10.98), under the constraint p ≥ 𝟎. For given p, let x̂ be the value
of the source rates that maximizes the Lagrangian g(x,p). The components of x̂
satisfy U ′

k(x̂k) = qk =
∑

i∈piaik, k ∈ . We can write d(p) = g(x̂,p), where g(⋅, ⋅)
is given in eq. (10.97). Since d(p) is convex, the minimizer is found by equating the
gradient to 0. We have

𝜕d
𝜕ph

=
∑
j∈

U ′
j (xj)

𝜕xj

𝜕ph
− (yh − ch) −

∑
i∈

pi

∑
j∈

aij
𝜕xj

𝜕ph

=
∑
j∈

qj
𝜕xj

𝜕ph
− (yh − ch) −

∑
j∈

𝜕xj

𝜕ph

∑
i∈

piaij

= ch − yh , h ∈ ,
where we have used the definitions of the path price qj of source j and the notation
yh for the load of link h.

The expression of the gradient of d(p) suggests the following dynamical system,
inspired by the gradient descent method (we search a minimizer for d(p)):

dph

dt
=

{
𝜂h(ph)(yh − ch) ph > 0,
𝜂h(ph)max{0, yh − ch} ph = 0,

(10.110)

where 𝜂h(⋅) is a positive function and we have taken into account the fact that the
multipliers ph must be non-negative. In the dynamical system (10.110) we set

yh =
∑
j∈

ahjxj , h ∈ , (10.111)

U ′
j (xj) =

∑
i∈

piaij , j ∈ . (10.112)

Given the pi’s, we compute the xj’s using eq. (10.112). Then we can compute
the link loads yi’s, using eq. (10.111). Finally, we update the pi’s, according to the
dynamical equations (10.110).

We can interpret ph as the queue size at the buffer of link h, if we set 𝜂h ≡ 1.
Hence, ph is proportional to the queueing delay at the h-th link, provided the link
capacity is constant, as we have assumed here. The dynamical system (10.110) can
be translated into a distributed algorithm, where sources adapt their flow rates
according to eq. (10.112), by collecting the path cost as the overall queueing delay
through the path.

The global asymptotic stability of the dynamical system (10.110) can be estab-
lished by considering the Lyapunov function V(p) = d(p) − d∗, where d∗ is the
global minimum of d(p) for p ≥ 𝟎. Note that

dV
dt

=
∑
h∈

𝜕d
𝜕ph

dph

dt
= −
∑
h∈

𝜂h(ph)(yh − ch)2 ≤ 0 (10.113)

�

� �

�

652 10 Congestion Control

All other conditions for V(p) to be a Lyapunov function of the dynamical system
(10.110) hold as well (see the conditions enumerated in Theorem 10.9 at the end
of the Appendix to this chapter). Then, we have p(t) → p∗ as t → ∞, where p∗ is
the minimizer of the dual function d(p) in the region p ≥ 𝟎.

The algorithms derived from the utility optimization problems do not account
for path delays, i.e., they assume that costs (whatever their meaning) are imme-
diately available at the source. This is not the case in a real network, e.g., with
TCP congestion control algorithms. The round trip delay between source actions
to control the sending rate and the reaction of the network as perceived by the
source is non null. As a consequence, stability problems arise for the dynamical
systems defining the distributed adaptation algorithm of the source flow rate. A
linear analysis shows that stabilization entails essentially picking suitably small
values of the loop gains 𝜁 or 𝜂.

10.9 Challenges to TCP

TCP has been conceived during the 1980s. At the time the Internet was still in its
infancy. It spanned a limited extension and penetration, mostly limited to public
institutions and to the academic environment. The dominant applications were
remote shell, e-mail, file transfer. The link capacity ranged between kbit/s up to
several Mbit/s.

If compared to the Internet today, it must be recognized that the design of TCP
mechanisms, and above all, of the flow and congestion controls, has been amaz-
ingly successful and robust. The classic TCP still works decently in most network-
ing situations, even if a number of key improvements have amended the original
version of TCP over the decades. A comprehensive survey of TCP evolution is
offered in [6]. A more recent survey, focused on TCP issues in modern networks
is given in [176].

Notwithstanding this excellent future-proof longevity of TCP, it is increasingly
evident that a deep revision of end-to-end congestion control would be beneficial
to reap the potential capacity and performance gain offered by modern networking
technologies. It is not by chance that proposals for new congestion control design
have been put forward since the second half of the 1990s.

The end-to-end approach of TCP abstracts from details of the network and
links, nor is it envisaged that TCP entities interact explicitly with network entities
(e.g., routers). The view of a TCP connection consists of a communication pipe
whose capacity is determined by a bottleneck link, characterized by a given RTT.
The details of the links making the path of the TCP connections, the buffer sizes,
the link layer protocol features, the volatility of the link layer capacity do affect
however the performance of TCP. This has motivated extensive investigation of

�

� �

�

10.9 Challenges to TCP 653

alternative congestion controls and even spurred criticism on the overall TCP
approach and suitability as a one-size-fits-all solution. Conceptually, congestion
control is not limited to the end-to-end (transport) layer. It could be implemented
in the network layer. It has actually been implemented in the application layer,
e.g., quick UDP Internet connections (QUIC) [110] and congestion control for
real-time traffic [65, 215].

Evolution of networking technologies and opportunities to develop new appli-
cations are the main drive forces that call for new designs of end-to-end congestion
control algorithms. The pace of that evolution suggests that the interest of the
research community will hardly fade away in the future. Two directions that con-
gestion control (in general, design of transport protocols) appear to aim at are ways
to overcome the ossification of the Internet and multi-path. The former addresses
the proliferation of middle-boxes that filter Internet traffic and de facto impair
the introduction of new transport layer protocols (besides TCP and UDP) or major
modifications to the logic of TCP. Multi-path stems from the increasingly available
ability of user terminals to support multiple network interfaces (e.g., smartphones
can manage simulataneous connections to the cellular network and to WiFi). Run-
ning TCP on top of multiple paths provides robustness against link failure, diver-
sity, the opportunity to overcome head-of-line blocking (see Section 10.9.4). In
spite of various proposals, design of a reliable and efficient multi-path TCP, specif-
ically for the wireless environment, is still an open problem.

In the following, we review a number of issues affecting classic TCP perfor-
mance and calling for new design.

10.9.1 Fat-Long Pipes

To fill the TCP connection pipe and fully utilize the bottleneck link capacity, the
sender transmission window should scale up to the order of the BDP of the con-
nection path. A path having BDP ≫ 1 (e.g., hundreds of MSSs or more) is said to
be a fat-long pipe. The name stems from the fact that a connection path with RTT
in the order of hundreds of ms is typically a geographic link (long pipe) and to
make a large BDP the bottleneck capacity should be in the order of hundreds of
Mbit/s or more (fat pipe).

The issue of large BDP came up as the progress of communication technologies
started providing geographical links with capacity in the order of Gbit/s, as well
as wireless cellular links with capacities in the range of tens of Mbit/s. Coupled
with RTTs typical of those environments, the effect was evidence that NewReno
TCP could not harvest the promise of large sustained throughput on such fat-long
pipes.

Given that TCP congestion control is loss-based, at least for most of currently
deployed TCP versions, and hence packet loss is inherent to TCP operations, at

�

� �

�

654 10 Congestion Control

least in long-lived connections, it follows that the congestion window is often
reduced during the lifetime of a connection. With NewReno TCP, the cwnd is cut
by half, then increased by one for each RTT as long as all packets are success-
fully delivered. We have seen that, in spite of this sawtooth behavior of the cwnd,
100% efficiency of the TCP connection throughput is possible, provided that the
buffer space available at the bottleneck is equal to the BDP. Here comes the pitfall;
with connection path exhibiting BDPs in the order of thousands of packets, typical
router buffer sizes fall short of the BDP, thus reducing the achievable through-
put of long-lived TCP connections. Let us make a simple numerical example. Let
RTT = 100 ms and C = 1 Gbit/s. With MSS = 1460 bytes it is BDP ≈ 8560 MSSs.
Let the bottleneck buffer size be B = 10 Mbytes ≈ 6850 MSSs. The maximum value
reached by the cwnd before packet loss occurs is B + BDP ≈ 15410 MSSs. Accord-
ing to classic TCP, the cwnd is cut to half upon packet loss detection, therefore
dropping to about 7705 MSSs. Since this value is less than the BDP, the pipe is
drained partially. To fill it again, the cwnd must be incremented by 8560 − 7705 =
855 MSSs. Since the cwnd is incremented by 1 MSS per RTT, it takes about 85.5 s
to fill the pipe. As the bottleneck capacity grows, the time to fill the pipe grows pro-
portionally. The fill-up time grows also in case of smaller buffer sizes. For example,
for a buffer size of 1 Mbyte, the fill-up time jumps to about 394 s, more than 6
minutes and a half.

The example is extreme and one could correctly object that a single long-lived
connection using a full 1 Gbit/s link in a wide area network is quite unrealistic.
While not typical, still the scenario outlined above is not unrealistic. Probably the
first community that became aware of the poor performance of classic TCP over
fat-long pipes was composed of experimental physics scientists, who often need
to move huge amounts of data, produced by experiment sensors, between sites
located in different continents. Researchers from this community started claiming
data transfer limitations due to TCP in the early 2000s. With fast expansion of the
network access capacity, Gbit/s-level connections are going to be commonplace.

Even if not so extreme, an increasing number of networking settings exhibit a
high BDP with respect to the bottleneck buffer size. Hence the classic AIMD mech-
anism has become inadequate. Many new proposals have been advanced, most of
them still in the mainstream of loss-based kind of control. CUBIC is one of them.
Common features to most proposals are: (i) more aggressive cwnd increases with
respect to classic TCP, when in congestion avoidance; and (ii) attempt to estimate
the bottleneck bandwidth, so as to adjust the multiplicative cwnd reduction on
packet loss detection to avoid pipe depletion.

The challenge to tame fat-long pipes is still open, as network link capacity
scales to higher levels. New trends that strongly influence the quest for a suitable
TCP congestion control are the pervasiveness of wireless links and the edge
computing/information centric/content delivery paradigm. The latter pushes

�

� �

�

10.9 Challenges to TCP 655

contents close to the user access network, so as to cut delays. A side effect is
reducing RTT for TCP connections, hence helping reduce the BDP. As for the
impact of wireless links on TCP, it deserves an ad-hoc discussion, provided in the
next section.

10.9.2 Wireless Channels

Wireless links differ from wired ones in several respects: packet loss is more proba-
ble; capacity can fluctuate significantly, especially in mobile networks; links might
experience interruptions and volatility. Therefore, the end-to-end model abstrac-
tion that classic TCP bases its congestion control upon can be inadequate. For
example, packet loss due to link issues cause undue reductions of the congestion
window. This is a consequence of classic TCP mingling error recovery with con-
gestion control. Volatility and wide fluctuations of link capacity are other issues
that classic TCP hardly copes with.

Comprehensive reviews of existing works on improving TCP performance
over wireless and mobile networks are provided in [22, 180, 187]. Approaches
to solve those issues follow different lines: (i) improving channel quality and
stability of wireless links; (ii) re-designing TCP mechanisms, including proxy
TCP approaches; and (iii) setting-up cross-layer algorithms, by exploiting lower
layer knowledge of the link status.

The first approach consists of providing retransmissions, diversity, and other
protection mechanisms over the wireless link. The side effect is increasing the
mean delay and the delay variability.

A common redesign approach of TCP mechanisms is based on the introduc-
tion of a proxy within the TCP connection path. Recognizing that wired links
should be dealt with differently than the wireless ones, those solutions envisage
breaking down the path into two segments: the wireless one and the rest of the
path. The congestion control loop and error recovery can be managed in differ-
ent ways over the two segments, by introducing a TCP-aware gateway in between.
Proxy solutions implement protocol optimizations in an intermediate network
device to maintain compatibility with the TCP sender, the TCP receiver, or both.
These solutions can be further divided into two sub-types: non-split TCP proxy,
and split-TCP proxy. In non-split TCP proxies, the proxy will generate (or forward)
an ACK packet to the TCP sender only when the ACK is received from the TCP
receiver, thereby preserving the end-to-end semantic of TCP. In split-TCP proxies,
the proxy effectively terminates the TCP connection from the Internet sender and
implements different TCP algorithms for the wireless/mobile leg. This approach
breaks the end-to-end semantic of TCP, as an ACK from the proxy no longer guar-
antees that the acknowledged packet has been delivered to the intended receiver.
For work on split TCP solutions over cellular network links, see, e.g., [126].

�

� �

�

656 10 Congestion Control

It is also possible to design a cross-layer congestion control mechanism over the
wireless link, assuming that information can be passed to the intermediate TCP
entity by the link layer management. An interesting redesign proposal of TCP
along these lines is presented in [151].

Also TCP performance over WiFi has been studied extensively. A work,
highlighting throughput instability and unfairness with TCP in WiFi networks, is
reported in [155].

A new twist in the study of TCP over wireless links comes from the adoption
of mmWave communication channels in 5G cellular networks. The propagation
characteristics of radio waves with frequency beyond 6 GHz are quite different
from traditional cellular networking radio links. Blockage of the radio link due to
transitions from line-of-sight (LOS) to non-LOS conditions of the radio path cause
extreme capacity fluctuations, e.g., from Gbit/s to almost zero. The volatility of the
mmWave links coupled with the very high BDP makes these links highly challeng-
ing for TCP. Moreover, it has been shown that classic TCP makes a suboptimal use
of the very high mmWave data rates, since it takes a long time to reach full capacity
after a loss or at the beginning of a connection. A discussion on this topic is offered
in [212].

10.9.3 Bufferbloat

The currently dominant paradigm of TCP congestion control is loss-based. Hence,
packet loss is inherent to TCP working. On the other hand, packet loss exposes
traffic to the need of recovering lost data by means of coding or retransmissions,
therefore introducing additional and possibly variable delays, or even unrecovered
data. The desire to remove packet loss as far as possible has pushed manifacturers
to equip routers with very large buffers. A large buffer at a bottleneck link may
translate into large delays, especially in the access network, where congestion is
more likely to arise. For example, a 10 Mbit buffer in front of a link with capac-
ity 100 Mbit/s can introduce up to 100 ms delay. Much larger buffer sizes can be
found in the nowadays Internet, bloating delays in the range of seconds in worst
cases. Since classic TCP detects congestion only upon packet loss, buffers must be
saturated to make TCP sources back off and relieve congestion.

The bufferbloat issue [88] came up around the end of the first decade of the
2000s as a consequence of the interaction of loss-based TCP congestion control
and increasingly large buffers deployed in routers.

Bufferbloat degrades the QoS of applications, in particular when real-time or
web browsing flows share the same bottleneck with file transfer TCP connections.
Bufferbloat has worsened over the years, mainly due to loss-preventing design
strategies that place large buffers in front of low capacity access links. Moreover,
large delay fluctuations make the estimate of the RTT less stable and impair the
possibility of using variations of end-to-end delays as a congestion signal.

�

� �

�

10.9 Challenges to TCP 657

The most adopted fix consists of AQM, run locally at routers. AQM is a buffer
management policy where packets are dropped or marked as a function of the
congestion level observed in the buffer. The basic principle is relatively simple:
since traffic sources probe the network for capacity, increasing their sending rate
until packet loss is detected, AQM provides packet loss evidence to sources, before
the buffer gets completely filled up.

AQM algorithms define a dropping probability p as a function of the status of
the queue in the bottleneck buffer (e.g., the queue occupancy level, the trend of the
queue, or quantities obtained by filtering those variables). Upon arrival, a packet
is dropped with probability p. Since p is typically an increasing function of the
buffer occupancy level, the more the buffer is congested the more likely a packet is
dropped, hence causing a TCP source to back-off its sending rate. Randomly select-
ing the packet to be dropped is motivated by fairness considerations. Since the
sending rate of a TCP connection is an increasing function of its congestion win-
dow size, TCP connection having larger cwnd sizes are more likely to be hit by the
random packet drop. For example, if two TCP connections send at rates of 10 and
100 packets per second respectively, the probability that a randomly selected arriv-
ing packet belongs to the more demanding connection is 100∕(10 + 100) ≈ 0.9.
Consistently, those connections are more responsible for congestion than those
having smaller cwnd sizes. If TCP sources are designed to react also on marking
signals carried back to the source on ACKs (e.g., ECN marking), then the AQM
can be designed to mark rather than drop packets with probability p.

Simple as it sounds, crafting a good AQM algorithm has turned out to be a very
hard task. Experience with AQM has shown that performance results are sensitive
to parameter values. Since many different variants of TCP congestion control are
coexistent in the Internet ecosystem, the effect of dropping packets is not easily
predictable, which makes design of AQM algorithm difficult and proposed solu-
tions often quite complex. On the other hand, the decoupling between end-to-end
congestion management algorithms and network layer buffering and scheduling
of packets inside the routers is a cornerstone of the Internet architecture. Introduc-
ing explicit cross-layer cooperation between end-to-end transport (or application)
entities and network layer entities inside routers would induce undesirable depen-
dencies and strongly affect the flexibility and capability to evolve of the Internet.

AQM is not a recent idea: numerous techniques were proposed in the 1990s,
such as RED. Pointers to the literature are provided in [93] and in the extensive sur-
vey presented in [5]. Despite these many proposals, they have encountered limited
adoption, partly due to the issues we mention above with parameter tuning and
partly because of the computational cost of the algorithms. More recently, new
and easier to tune and deploy AQM schemes, such as controlled delay manage-
ment (CoDel) [170], have been adopted in several commercial products. CoDel is
an AQM algorithm that limits the buffering latency by monitoring the queueing
delay.

�

� �

�

658 10 Congestion Control

Nonetheless, the bufferbloat issue remains relevant in the wireless domain,
where typically base stations are equipped with large per-flow buffers.

10.9.4 Interaction with Applications

We outline two examples where new application paradigms pose challenges
to TCP.

Data centers are the technological platform for implementing cloud comput-
ing. They provide computational power and storage to support the execution of
applications, including big data. A data center is composed of a large number of
servers (from thousands to hundreds of thousands), interconnected with ethernet
switches. The whole system is connected to the Internet via border routers and
load balancers. Current data centers are based on TCP/IP networking protocols.
Most traffic generated by servers is confined to the data centers and essentially
all of it is carried on TCP. A survey of transport protocol issues in the data center
environment can be found in [211].

Typical application paradigms used for heavy computational tasks in data cen-
ters are distributed, i.e., the task execution is split on a large number of servers
that work in parallel and partial results are reassembled at other servers (parti-
tion/aggregation design pattern, e.g., as done with PageRank). Such a paradigm
(e.g., map/reduce) entails intense communications among servers.

A typical traffic pattern consists of a cluster-head server A launching subtasks on
n other servers B1,… ,Bn. Let S denote the switch that A is connected to through-
port p (see Figure 10.21). A opens TCP connections to each of the n servers. Packets
back from servers B1,B2,… ,Bn to A arrive almost simultaneously, causing a major
surge of traffic in the buffer of port p of switch S. Ethernet switch buffers are rather
small, so the parallelism degree n can be large enough to cause buffer overflow. If
this occurs at the start of the TCP connection, it is highly likely that lost packets
are recovered by means of timeout, thus causing large delays.

This issue is referred to as incast. It arises because of the interaction among
many-to-one traffic patterns induced by the application level, small buffers at the
switch port and TCP loss recovery mechanisms.

A

B1

Bn

…

S

p

Figure 10.21 Networking layout of TCP
incast. The end-system A initiates n TCP
connections with servers B1,… ,Bn. The n
servers reply sending data to A almost
simultaneously, through the output port p
of switch S.

�

� �

�

Appendix 659

Many attempts have been made to analyze and solve this problem. Proposed
solutions may be classified into four categories [56]: (i) system parameters adjust-
ment, like disabling slow start to avoid retransmission timeout; (ii) enhanced
in-network and client-side algorithm design, to minimize the number of packet
losses, and to improve the quick recovery of lost packets; (iii) replacement of
loss-based TCP algorithm with delay-based ones; and (iv) design of completely
new algorithms for this particular environment, like DCTCP [9], a variant of TCP
congestion control that uses packet marking to adjust the congestion window,
or IATCP [106], a rate-based congestion control that counts the total number of
packets injected to constantly meet the path BDP.

A second example of an issue arising from the interaction of TCP with appli-
cation is the so called head-of-line (HOL) blocking of web traffic. A web page is
composed of several distinct objects. When a client requests a page to the server,
all these objects are downloaded with a single HTTP GET request. HTTP/1.1 did
not allow multiplexing, so the client was forced to open one TCP connection for
every object. To reduce the overhead implied by many TCP connections, version
HTTP/2 was shipped in 2015. In this new version, a single TCP connection may
be used to download all objects of the web page.

The potential performance advantage of HTTP/2, expected to reduce download
times with respect to the previous version, turned out to be significantly impaired
by packet losses, e.g., in cellular networks. When a packet is lost, out-of-order pack-
ets are accepted and SACKed by the TCP receiver (assuming selective acknowledg-
ments are used), but their payloads cannot be delivered to the application. Data
delivery takes place only when the complete sequence of packets is recovered at
the receiver, by means of retransmissions. As a result, objects whose data have
been completely received cannot be passed to the application level and displayed,
until the lost packets are recovered, because of the in-sequence delivery constraint
of TCP.

The solution of the HOL blocking issues can be obtained by using multi-path
transport protocols. A multi-path transport protocol uses different parallel paths.
The in-sequence delivery constraint is restricted to each single path.

An alternative approach consists of delegating error recovery and congestion
control to the application layer (as done with QUIC over UDP).

Appendix

We review here basic definitions and results. For a systematic introduction to con-
vex optimization the reader may consult, e.g., [41].

�

� �

�

660 10 Congestion Control

Definition 10.1 (Convex set) A set ⊂ ℝn is convex if, for any x, y ∈ and any
𝛼 ∈ [0, 1], it is 𝛼x + (1 − 𝛼)y ∈ .

In a convex set, the entire line segment with extremes x and y lies within the set.
For example, a circular ring in not convex, a circle is. A C-shaped set is not convex
either.

Definition 10.2 (Convex function) Given a set ⊂ ℝn and a function f ∶ →

ℝ, f is said to be convex if is convex and if, for any x, y ∈ and 𝛼 ∈ [0, 1] it is

f (𝛼x + (1 − 𝛼)y) ≤ 𝛼f (x) + (1 − 𝛼)f (y) (10.114)

f is strictly convex, if the inequality holds strictly for any x ≠ y and 𝛼 ∈ (0, 1).

Definition 10.3 (Concave function) Given a set ⊂ ℝn and a function
f ∶ → ℝ, f is said to be concave (strictly concave) if −f is convex (strictly
convex).

Checking whether a function is convex or concave, according to the definition,
can be hard. We give properties that are useful to check convexity.

Theorem 10.2 (First-Order condition for uni-dimensional x domain) If a
function f (x) of a uni-dimensional variable x is differentiable in an interval and
its derivative is non-decreasing (increasing) in , then f (x) is convex (strictly con-
vex) in .

Theorem 10.3 (First-Order condition for multi-dimensional x domain) A
function f (x) ∶ ⊂ ℝn → ℝ, differentiable in the convex set , is convex if f (y) ≥
f (x) + ∇f (x)(y − x), ∀x, y ∈ , where ∇f (x) is the gradient of f calculated at x. The
function f is strictly convex if the inequality is strict for any x ≠ y.

Theorem 10.4 (Second-Order condition) A function f (x) ∶ ⊂ ℝn → ℝ,
twice differentiable in the convex set , is convex (strictly convex) if the associated
Hessian matrix H(x) is positive semi-definite (positive definite) for x ∈ . The
entry (i, j) of the Hessian matrix is given by Hi,j(x) =

𝜕
2f

𝜕xi𝜕xj
(x) for i, j = 1,… ,n.

We also introduce affine functions, i.e., functions that are composed of a linear
term plus a constant.

Definition 10.4 (Affine function) A function f ∶ ℝn → ℝm is said to be affine
if f (x) = Ax + b, where A is an m × n matrix and b is a column vector of size m.

�

� �

�

Appendix 661

Let us now consider an unconstrained optimization problem for a function
defined over a set , namely

max
x∈ f (x) (10.115)

We define x∗ as a local maximizer of f in if there exists 𝜀 > 0 such that f (x +
𝛿x) ≤ f (x∗) for any 𝛿x with ∥ 𝛿x ∥≤ 𝜀 and x + 𝛿x ∈ , where ∥ ⋅ ∥ is any norm over
ℝn. The point x∗ is said to be a global maximizer if f (x) ≤ f (x∗) for any x ∈ .
Properties that help calculate the maximizer x∗ are summarized in the following
theorem.

Theorem 10.5 Given a function f ∶ ⊂ ℝn → ℝ, the following results hold.

1. If f is continuous in and is compact (closed and bounded), there exists a
global maximizer x∗ ∈ of f .

2. If f is differentiable in , any local maximizer x∗ in the interior of must satisfy
the condition ∇f (x∗) = 0. If f is concave in , that condition is sufficient for x∗
to be a local maximizer of f .

3. If f is concave, a local maximizer is also a global maximizer. If f is strictly con-
cave, there is a unique global maximizer in .

4. All properties stated above hold for a convex function f if the optimization prob-
lem becomes min

x∈ f (x), “concave” is replaced with “convex” and “maximizer” is
replaced with “minimizer.”

5. If f is concave and differentiable in , x∗ is a maximizer of f in if and only if
∇f (x∗)𝛿x ≤ 0 for any 𝛿x such that x∗ + 𝛿x ∈ .

Let us now consider the constrained optimization problem defined by:

max
x∈ f (x) (10.116)

under the constraints:

hi(x) ≤ 0 i = 1,… , I, (10.117)

gj(x) = 0 j = 1,… , J, (10.118)

A point x is said to be feasible if it belongs to and it satisfies all constraints.
Let us denote the feasible set with . We assume it is nonempty. The Lagrangian
associated to this optimization problem is defined as:

L(x, 𝜆, 𝜇) = f (x) −
I∑

i=1
𝜆ihi(x) +

J∑
i=1

𝜇jgj(x) (10.119)

�

� �

�

662 10 Congestion Control

where 𝜆i ≥ 0 and 𝜇j are called Lagrange multipliers. We define the Lagrange dual
function as follows:

D(𝜆, 𝜇) = sup
x∈

L(x, 𝜆, 𝜇) (10.120)

Let x∗ denote a feasible maximizer of the optimization problem (10.116) and let
f ∗ ≡ f (x∗). We can prove the following.

Theorem 10.6 The function D(𝜆, 𝜇) is convex and it is D(𝜆, 𝜇) ≥ f ∗ for any 𝜆 ≥ 0
and any 𝜇.

Proof: The function D(𝜆, 𝜇) is convex as a consequence of the fact that it is the
point-wise supremum of affine functions, parametrized by x.

As for the second part of the theorem statement, since 𝜆 ≥ 0, hi(x) ≤ 0, and
gj(x) = 0 for all x ∈ , we have L(x, 𝜆, 𝜇) ≥ f (x) for any x ∈ . Hence

D(𝜆, 𝜇) = sup
x∈

L(x, 𝜆, 𝜇) ≥ sup
x∈

L(x, 𝜆, 𝜇) ≥ max
x∈ f (x) = f ∗ (10.121)

◾

The best bound on f ∗ provided by the dual function is obtained by solving the
following dual optimization problem:

D∗ = inf
𝜆≥0, 𝜇D(𝜆, 𝜇) (10.122)

For contrast, the optimization problem on f (x) is called the primal optimization
problem.

According to the theorem above, it is D∗ ≥ f ∗. The difference between D∗ and
f ∗ is called the duality gap. If the duality gap is 0 we say that strong duality holds.
Strong duality is interesting since it allows solving either the primal or the dual
problem equivalently. Sometimes, the dual problem turns out to be easier than
the primal one.

Slater’s condition provides a sufficient condition for strong duality to hold.
Before stating it, we define the relative interior of a convex set . A point x belongs
to the relative interior of if, for any y ∈ , there exist z ∈ and 𝜉 ∈ (0, 1) such
that x = 𝜉y + (1 − 𝜉)z.

Theorem 10.7 (Slater’s condition) Strong duality for the constrained opti-
mization problem (10.116)–(10.118) holds if the following conditions are
true.

1. f (x) is a concave function.
2. hi(x) are convex functions.
3. gj(x) are affine functions.

�

� �

�

Appendix 663

4. there exists x belonging to the relative interior of such that hi(x) < 0 for all i
and gj(x) = 0 for all j.

Next, we give the famous Karush-Kuhn-Tucker (KKT) conditions for the solu-
tion of convex optimization problems.

Theorem 10.8 (Karush-Kuhn-Tucker conditions) Consider the constrained
optimization problem (10.116)–(10.118). Assume f , hi, i = 1,… , I, and gj,

j = 1,… , J are differentiable functions in and that Slater’s condition holds.
A feasible point x∗ is a global maximizer for the constrained optimization problem
if and only if there exist 𝜆∗ ≥ 0 and 𝜇

∗ such that

𝜕f
𝜕xk

(x∗) −
I∑

i=1
𝜆
∗
i
𝜕hi

𝜕xk
(x∗) +

J∑
i=1

𝜇
∗
j

𝜕gj

𝜕xk
(x∗) = 0 k = 1,… ,n, (10.123)

𝜆
∗
i hi(x∗) = 0 i = 1,… , I. (10.124)

If f is strictly concave, x∗ is the unique global maximizer of the constrained opti-
mization problem. Moreover, eqs. (10.123) and (10.124) are also necessary and
sufficient conditions for (𝜆∗, 𝜇∗) to be a global minimizer of the dual problem.

We close this short summary of mathematical facts by giving some definitions
of stability of dynamical systems and the concept of Lyapunov function.

Let us consider a continuous mapping f ∶ ℝn → ℝn and trajectories x(t)
obtained by solving the differential equation system

ẋ = f (x) (10.125)

for a given initial point x(0) = x0. The dot stands for derivation with respect to
time t. We assume that f satisfies suitable conditions so as to guarantee that the
solution x(t), t ≥ 0, for the differential equation (10.125) exists and is unique for a
given initial condition.

We say that a point xe is an equilibrium point of the dyanmical system if f (xe) = 0.
If the system is placed into the position xe, no “force” acts on it, so that it stays in
xe forever.

We give the following notions of stability for an equilibrium point.

Definition 10.5 (Local stability) The point xe is said to be locally stable if, for
any given 𝜖 > 0 there exists 𝛿 > 0 such that ∥ x(t) − xe ∥≤ 𝜖, ∀t ≥ 0, provided that
∥ x0 − xe ∥≤ 𝛿.

Definition 10.6 (Asymptotic local stability) The point xe is said to be asymp-
totically locally stable if there exists 𝛿 > 0 such that lim

t→∞
∥ x(t) − xe ∥= 0, provided

that ∥ x0 − xe ∥≤ 𝛿.

�

� �

�

664 10 Congestion Control

Definition 10.7 (Asymptotic global stability) The point xe is said to be asymp-
totically globally stable if lim

t→∞
∥ x(t) − xe ∥= 0, for any x0.

We assume in the following that the dynamical system (10.125) has a unique
equilibrium point at xe = 0. We give sufficient conditions to assess the stability of
the equilibrium point xe = 0.

Theorem 10.9 (Lyapunov stability) Consider a continuous and differentiable
function V ∶ ℝn → ℝ such that

V(x) > 0, ∀x ≠ 0, V(0) = 0. (10.126)

The following conditions are sufficient for the different types of stability of the
point x = 0.

1. If V̇(x) ≤ 0, ∀x, then the point 0 is locally stable.
2. If additionally V̇(x) < 0 for all x ≠ 0, then 0 is asymptotically locally stable.
3. If the conditions in the two points above hold and additionally the function

V(x) is radially unbounded, i.e., V(x) → ∞ as ∥ x ∥→ ∞, then the point 0 is
asymptotically globally stable.

The crucial point with the Lyapunov approach to stability analysis is to be able
to define a suitable Lyapunov function, given the dynamical system.

Summary and Takeaways

This chapter addresses congestion control, i.e., protection of network resources
from overload. After a general taxonomy of congestion control approaches, the
chapter focuses on how congestion control is realized in the Internet, highlighting
the basic principles and their implications in protocol deployment. The role played
by the Transmission Control Protocol (TCP) is discussed in detail. We present the
main congestion control algorithms of TCP, the classic one and several variants.

Fluid models of TCP long-lived connections are introduced. We consider first a
single long-lived TCP connection, running the classic TCP Reno congestion con-
trol, with a fixed bottleneck link capacity. Those models allows us to highlight
the saw-tooth behavior of TCP under constant bottleneck link capacity. We also
discover the relationship between the average throughput, the bandwidth-delay
product and the bottleneck buffer size. We derive the well known result on the
dimensioning of the bottleneck buffer size to achieve the maximum bottleneck
link utilization. We then generalize the fluid model to the case of variable bot-
tleneck link capacity. This brings major added complexity. The resulting model
can be used to investigate the performance of TCP on wireless links, which can

�

� �

�

Problems 665

be naturally described by time-varying capacity functions. We highlight a “reso-
nance” phenomenon, i.e., worst-case throughput performance of TCP when the
time scale of bottleneck link capacity variations is comparable to the TCP connec-
tion RTT.

Next we consider models for a multiplicity of TCP connections sharing a same
bottleneck link. We state these models in terms of differential equations that
describe the congestion state evolution (the cwnd, the buffer occupancy level
and other state variables, depending on the specific TCP congestion control
algorithm). We provide easy-to-use fluid models for the classic TCP congestion
control (Reno) with a drop-tail bottleneck buffer, for an AQM (RED) buffer, for
DCTCP.

We introduce and discuss the concept of fairness and its tight connection with
congestion control. After defining some popular fairness paradigms, we give a gen-
eral framework for fairness, the network utility maximization. This theory casts a
new light on TCP congestion control as a distributed algorithm for the achieve-
ment of an optimized flow rate allocation to TCP connections. It provides also a
general framework for a quantitative definition of fairness.

Finally, we review hot topics on TCP evolution. Technology evolution, new ser-
vices and networking paradigms are challenging TCP congestion control and in
general call for rethinking the entire approach to congestion control. It can there-
fore be expected that research interest will still focus on congestion control as a
key component of future networks and, in general, shared resource systems (not
only in the context of telecommunication networks).

Problems

10.1 A TCP connection is routed through a big fat pipe, i.e., a path with a large
BDP. The MSS is 1500 bytes long. The slow start threshold equals 64 MSS.
The RTT is essentially constant, i.e., the queuing delay of the path can be
neglected with respect to the base RTT. Also packet loss is negligible. The
path capacity and base RTT are 1 Gbit/s and 20 ms respectively. The initial
window is equal to 1. The connection is set up to transfer a file of size F =
25 Mbyte.
(a) Calculate the number of RTTs that it takes to complete the file transfer

through the connection (assume all TCP procedures are successful).
Compare the result to the time strictly required to transfer the file at
full link speed and comment on the result.

(b) Repeat the calculation of the time required to transfer the file by using
a fluid approximation of the evolution of the window W(t) and of the
corresponding instantaneous throughput x(t) = W(t)∕T.

�

� �

�

666 10 Congestion Control

10.2 A TCP is set up between a client and a very restrictive host that imposes
a receiver window of 4 MSSs. The MSS length is 1500 bytes. The client is
downloading a file of 600 kbytes.
(a) Assuming that the queuing delay and the packet loss of the path can be

neglected, find how many RTTs it takes for the client to complete the
download (consider two RTTs overall for SYN and FIN handshakes).

(b) Now assume there is a packet loss probability p, with loss events inde-
pendent of one another. What is the probability that no timeout occurs
in one RTT?

10.3 Let us consider the same setting as in Problem 10.2, but generalizing the
size of the receiver window and the amount of data to transfer. Let Wrx
be the size of the receiver window in packets (we assume all packets have
the same size) and let M denote the overall number of packets to be trans-
ferred through the connection. Assume no packet loss takes place at the
bottleneck and that buffering delay is negligible.

Plot the number of RTTs required to complete the data transfer (includ-
ing one RTT for opening the TCP connection) as a function of M for several
values of Wrx. Plot also the mean utilization of the bottleneck link capacity
C as a function of M and comment on the significance of this performance
indicator as M varies. Assume C = Wrx∕T, where T is the RTT.

10.4 Consider the fluid model of a long-lived TCP Reno connection with a single
bottleneck of capacity C. Let B denote the buffer size at the bottleneck, T the
base RTT. Calculate the mean and the maximum delay through the buffer
during backlogged time, i.e., the time when the buffer is nonempty.

10.5 Consider the fluid model of a TCP connection with a single bottleneck
of capacity C. Let B denote the buffer size at the bottleneck, T the base
RTT. Assume that M packets must be transferred, that the initial hand-
shake takes one RTT and that the receiver window is large enough not to
impose any restriction. Assume also that the buffer size is equal to the con-
nection BDP.

Plot the number of RTTs required to complete the data transfer as a func-
tion of M for IW = 1, ssthresh = 64, for several values of the BDP (consider
values larger than the ssthresh).

10.6 Consider a TCP connection set up to transfer M packets. Assume all pack-
ets have equal length L (except of the SYN and SYN-ACK initial signaling
messages). Let IW be the initial value of the congestion window and let

�

� �

�

Problems 667

ssthresh = 64 MSS. Assume no congestion arises at the bottleneck link and
no packet loss occurs.
Plot the number of RTTs required to complete the data transfer as a
function of M for IW = 1, 3, and 10. Comment on the impact of IW as
M grows.

10.7 Write a code script to generate the cwnd time evolution of a TCP CUBIC
connection according to the algorithms in Section 10.3.2. Assume no packet
loss occurs. Plot cwnd as a function of time:
(a) since the start of the connection (assume IW = 3);
(b) immediately after the recovery of a packet loss, occurred when the

cwnd had attained the value Wf = 100 pkts.

�

� �

�

669

11

Quality-of-Service Guarantees

Delay is preferable to error.
Thomas Jefferson

11.1 Introduction

Network traffic engineering is all about modeling service system to provide per-
formance evaluation metrics and hence assess the quality of the service. Service
systems can be set up in different ways, following different approaches. In the last
two chapters we have seen networked service systems defined to share a common
channel in a multiple access scenario (Chapter 9) or to achieve a fair sharing of
network resources among end-to-end traffic flows that are flow-controlled via a
closed-loop algorithm (Chapter 10).

In this chapter we consider service systems that give a priori guarantees on the
performance target that the system offers to customers. A priori means that some
level of performance (e.g., throughput, delay bound, bound on loss) is stipulated
at the time the traffic flow starts, through a negotiation between the traffic source
and the network. This approach couples naturally with connection-oriented com-
munication mode, where data transfer is preceded by a negotiation phase to set-up
an end-to-end relationship (the connection).

We present both deterministic and stochastic approaches for supporting qual-
ity of service (QoS) guarantees. The first one is based on the deterministic traffic
theory. It provides a worst-case bound to achievable performance, given a deter-
ministic bound on the offered traffic and on the service capability of the network
elements. The stochastic approach provides probabilistic guarantees, thus relax-
ing the worst-case approach of deterministic traffic theory. Along these lines, we
will address the approach based on the effective bandwidth concept.

Network Traffic Engineering: Stochastic Models and Applications, First Edition. Andrea Baiocchi.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

�

� �

�

670 11 Quality-of-Service Guarantees

11.2 Deterministic Service Guarantees

Let us consider a service system, observed starting at an arbitrary time origin,
labeled with 0. The cumulated amount of data arrived at the system input up to
time t is denoted with A(t). The function A(t) is either continuous or it has jumps.
In the latter case, we assume in the following that A(t) is right-continuous, i.e.,
A(t) = lim

s↓t
A(s),∀t ≥ 0. Moreover, we let A(t) = 0 for t < 0.

Example 11.1 Let us observe a flow of packets. Let Lk be the length of the k-th
packet, arriving at time tk, k ≥ 1, with t1 ≥ 0. Then, the arrival function is defined
by

A(t) =
⎧⎪⎨⎪⎩

0 0 ≤ t < t1,
n∑

j=1
Lj tn ≤ t < tn+1, n ≥ 1.

(11.1)

The service system has a capacity C(t) for t ≥ 0, where C(t) is the cumulated
amount of data that the service system can process up to time t, provided it is
continuously backlogged in [0, t]. We let C(t) = 0 for t < 0. We assume that the
system does not reject any arriving customer (lossless system).

Note that both A(t) and C(t) are monotonously nondecreasing functions of time.
The generalized Reich’s formula (see Section 4.9) states that the content Q(t) of

the system buffer at time t is given by

Q(t) = sup
0−≤s≤t+

{A(t) − A(s) − (C(t) − C(s))} , t ≥ 0, (11.2)

given that Q(0−) = 0 (the buffer is initially empty). The limits of the interval where
the sup is taken account for possible jumps of the arrival and service functions at
the interval boundaries.

Proof: For any s ∈ [0−, t+], the amount of data arrived in [s, t] at the system equals
A(t) − A(s). The maximum amount of data that can be processed in the same inter-
val is C(t) − C(s). Therefore

Q(t) ≥ A(t) − A(s) − (C(t) − C(s)) (11.3)

since it might be the case that the system is idle for some time in the interval [s, t]
and hence it cannot exploit all its potential processing capability. As the inequality
(11.3) holds for any s ≤ t, it follows that

Q(t) ≥ sup
0−≤s≤t+

{A(t) − A(s) − (C(t) − C(s))} (11.4)

�

� �

�

11.2 Deterministic Service Guarantees 671

To prove the reverse inequality, let us define:

u = sup{s ∶ 0− ≤ s ≤ t+,Q(s) = 0} (11.5)

In other words, u is the last time in the interval [0−, t+] that the buffer is empty.
The definition is well posed, since by hypothesis it is Q(0−) = 0. Therefore, it is
u ∈ [0, t].

Given the definition of u, the buffer is always nonempty in the interval [u, t].
Then, the full potential processing capacity of the service system is used in that
interval and we can write:

Q(t) = Q(u−) + A(t) − A(u−) − [C(t) − C(u−)]

= A(t) − A(u−) − [C(t) − C(u−)] (11.6)

since Q(u−) = 0 by the definition of u.
The point u belongs to the interval [0−, t+], hence we can write

Q(t) = A(t) − A(u−) − [C(t) − C(u−)] ≤ sup
0−≤s≤t+

A(t) − A(s) − (C(t) − C(s))

(11.7)

Putting together eqs. (11.4) and (11.7), we obtain finally the result in
eq. (11.2). ◾

For constant capacity rate C, it is C(t) = C ⋅ max{0, t}.
Let D(t) denote the cumulative amount of data output by the service system up

to time t. We can prove the following formula:

D(t) = inf
0−≤s≤t+

{A(s) + C(t) − C(s)} , t ≥ 0. (11.8)

Proof: Since the amount of data out of the system from time s up to time t cannot
exceed C(t) − C(s) and the amount of data out of the system up to time s cannot
exceed the amount of data arrived up to that time, we have

D(t) = D(s) + D(t) − D(s) ≤ A(s) + C(t) − C(s) ,∀s ∈ [0−, t+]. (11.9)

Since the inequality holds for any s in the interval [0−, t+], we have proved that:

D(t) ≤ inf
0−≤s≤t+

{A(s) + C(t) − C(s)} (11.10)

Let us now consider the time u defined in eq. (11.5). Since Q(u−) = 0, all arrivals
up to u− have been served. Moreover, the system is never idle in the interval [u, t],
hence it uses all its potential serving capability C(t) − C(u−). Then, we have

D(t) = A(u−) + C(t) − C(u−) ≥ inf
0−≤s≤t+

{A(s) + C(t) − C(s)} (11.11)

Putting together eqs. (11.10) and (11.11), we obtain the equality in eq. (11.8). ◾

�

� �

�

672 11 Quality-of-Service Guarantees

Time

A(t)

Q(t)
D(t)

Figure 11.1 Example of
arrival function A(t), output
function D(t) and queue level
Q(t).

Note the consistency of the two results we have proved. Collecting them
together, we find Q(t) = A(t) − D(t), which is the obvious input-output balance of
the system, given that Q(0) = 0. It is also obviously D(t) ≤ A(t) (only data that has
arrived at the system can leave the system).

Note that the expressions of Q(t) and D(t) are independent of the scheduling
algorithm implemented by the service system, provided that it behaves as a
work-conserving server.

Thanks to the definition of the arrival and service functions (null for negative
times, monotonously nondecreasing), we can rewrite eq. (11.2) as follows:

Q(t) = sup
s∈ℝ

{A(t) − A(s) − (C(t) − C(s))+} (11.12)

where (y)+ ≡ max{0, y}. For the constant capacity rate case we have:

Q(t) = sup
s∈ℝ

{A(t) − A(s) − C ⋅ (t − s)+} (11.13)

Moreover, we have

D(t) = inf
s∈ℝ

{A(s) + C ⋅ (t − s)+} (11.14)

An example of the behavior of A(t) and D(t) is plotted in Figure 11.1. The queue
content Q(t) is shown as well. It can be found as the instantaneous difference
between the input function A(t) and the output function D(t).

Equation (11.14) reminds us of the min-plus convolution (see the Appendix to
this chapter). To define the convolution, we first define the set of function we will
work with. We say a function f (t) is causal if f (t) = 0 for t < 0. We denote with
the set of non-negative, nondecreasing, right-continuous, causal functions f (t) ∶
 → {ℝ+} ∪ {∞}, where can be either ℝ or ℤ.

A function is sub-additive if f (t + s) ≤ f (t) + f (s) for all t, s.

Definition 11.1 Given two functions A,B ∈ , we define the convolution
between them as

(A ⊗ B)(t) = inf
s∈ℝ

{A(s) + B(t − s)} (11.15)

�

� �

�

11.2 Deterministic Service Guarantees 673

For example, let

A(t) =

{
𝜌t + 𝜎 if t ≥ 0,
0 otherwise.

(11.16)

and B(t) = C ⋅ max{0, t}, with C > 𝜌. It is easy to check that A ⊗ B = min{A,B},
i.e.,

(A ⊗ B)(t) =
⎧⎪⎨⎪⎩

Ct if 0 ≤ t ≤ 𝜎∕(C − 𝜌),
𝜌t + 𝜎 if t ≥ 𝜎∕(C − 𝜌)
0 otherwise.

(11.17)

Let us define the delayed impulse function for T ≥ 0:

𝛿T(t) =

{
∞ if t ≥ T,
0 otherwise.

(11.18)

Applying the definition of convolution, it is easy to see that A ⊗ 𝛿0 = A, i.e., the
impulse function 𝛿0 is the neutral element of the convolution operation. Since B ≤
𝛿0 for any B ∈ , we see that A ⊗ B ≤ A ⊗ 𝛿0 = A. Similarly, we see that A ⊗ B ≤
B. Then, it is A ⊗ B ≤ min{A,B}. As a special case, A ⊗ A ≤ A. If A is sub-additive,
we derive A ≤ A ⊗ A from the definition of sub-additivity. If A is sub-additive and
causal, putting together the inequalities, we find A = A ⊗ A. More definitions and
properties related to convolution are listed in the Appendix to this chapter.

Let us consider a service system with arrival function A(t) and departure func-
tion D(t). Those functions represent the input-output description of the system.

We can define performance metrics based only on the input-output descrip-
tion of the system. The backlog at time t is given by Q(t) = A(t) − D(t). We can
define the delay introduced by a service system in this framework. In a lossless
and work-conserving system, all data arrived up to time t, that is to say, A(t), will
be served by the time t + 𝜏 such that D(t + 𝜏) ≥ A(t). Hence, we define the vir-
tual delay at time t as d(t) = inf{𝜏 ≥ 0 ∶ D(t + 𝜏) ≥ A(t)}. The maximum delay is
defined as d∗ = supt≥0d(t). We call it virtual, since this would be the delay experi-
enced by a customer arriving at time t for FCFS service.

To set bounds on these performance metrics, we need two elements:

1. setting a bound on the arrival function;
2. guaranteeing some minimum amount of service.

We tackle these two points in the next two sub-sections.

11.2.1 Arrival Curves

Any function in can be an arrival function, i.e., the amount A(t) of data offered
by an arrival flow up to time t.

�

� �

�

674 11 Quality-of-Service Guarantees

All definitions and properties we state in this section hold if applied to continu-
ous functions in (for which it is necessarily f (0) = 0). They hold also for general
right-continuous functions, provided that we take inf and sup on intervals of the
kind [a−, b+].

Given a function E(t) ∈ , we say that an arrival function A(t) is constrained by
E(t) if for all s ≤ t we have

A(t) − A(s) ≤ E(t − s) (11.19)

Note that the inequality can be applied to overlapping time intervals.
The term envelope curve or simply envelope is also used to designate a function

E(t) satisfying eq. (11.19) for a given arrival function A(t).
We define two special arrival curves we will use in the following:

● Rate-latency curve: given two positive parameters r and T, we let

𝛽r,T(t) = r ⋅ max{0, t − T} (11.20)

This functions sets a limit r on the rate of the arrival stream, with an initial delay
T, during which no data can be sent.

● Affine arrival curve. Let us consider a traffic source that emits at a maximum rate
of r data units per unit time. We could say that the amount of data emitted in any
interval (𝜏, t] is upper bounded by r ⋅ (t − 𝜏). However, this envisages a smooth
arrival profile. If instead the source can send bursts of data, we can account for
that by allowing an initial offset b. This leads to the definition of the affine arrival
curve defined as

𝛾r,b(t) =

{
rt + b if t ≥ 0,
0 otherwise.

(11.21)

with r and b positive constants.

More complex functions can be obtained by combining elementary arrival
curves with the min operator. For example, given n affine arrival curves 𝛾ri ,bi

(t), i =
1,… ,n, we define a new arrival function as 𝛾(t) = min{𝛾r1 ,b1

(t),… , 𝛾rn ,bn
(t)}.

Playing with the parameters ri, bi, i = 1,… ,n we can obtain any piecewise linear
function belonging to the set . Another example of composite arrival curve is
𝛽(t) = inf

x≥0
{𝛽r,xT(t) + xa} = min{a, rT} t

T
, t ≥ 0, where a is a constant.

The arrival curve associated with a data flow, i.e., such that the inequality (11.19)
is satisfied, is not unique. One could wonder what the “best” arrival curve could
be. By “best” we mean here the tightest possible envelope for the given flow A(t).

To make this concept quantitative, we recall the definition of sub-additive
closure of a function A ∈ .1 . Given a function A ∈ , we have A ≤ 𝛿0, hence

1 The definitions and properties from min-plus algebra required for the rest of this section are
summarized in the Appendix to this chapter.

�

� �

�

11.2 Deterministic Service Guarantees 675

A ⊗ A ≤ A ⊗ 𝛿0 = A. Let A(n) denote the convolution of A with itself n − 1 times.
The sequence {A(n)(t),n ≥ 1} is non-negative and monotonously nonincreasing
for each t. Hence it admits a proper non-negative limit. We are therefore justified
in letting the sub-additive closure of A be defined by A = inf

n≥1
{A(n)}.

Definition 11.2 We say that a function E ∈ is a “good” arrival function if one
of the following equivalent statements holds:

(a) E is sub-additive.
(b) E = E ⊗ E.
(c) E = E, where E is the sub-additive closure of E.

The main result on arrival curves is that any arrival curve can be replaced with
its sub-additive closure, which is a “good” arrival curve. To obtain this result, we
need some preliminary lemmas.

Lemma 11.1 A flow A(t) is constrained by an arrival curve E(t) if and only if
A ≤ A ⊗ E.

Proof: The inequality A ≤ A ⊗ E is equivalent to A(t) ≤ A(s) + E(t − s), 0 ≤ s ≤ t,
by the very definition of the convolution operation. Then, the inequality in the
Lemma statement is equivalent to (11.19). ◾

Lemma 11.2 If X and Y are arrival curves for a flow A(t), then so is X ⊗ Y .

Proof: By the closure property of the ⊗ operation, X ,Y ∈ implies that X ⊗ Y ∈
 . By the associativity property of ⊗ and Lemma 11.1, we have A ≤ A ⊗ Y ≤ (A ⊗

X)⊗ Y = A ⊗ (X ⊗ Y), which proves the Lemma. ◾

Theorem 11.1 If E(t) is an arrival curve for a flow A(t) then so is E(t).

Proof: By Lemma 11.2, since E is an arrival curve for A, so is E ⊗ E. Iterating this
reasoning, we find that E(n) is also an arrival curve for A for any n ≥ 1. We can
conclude that E is an arrival curve for A. Conversely, since E ≤ E, if E is an arrival
curve for A, so is E. ◾

The following property is useful in the calculation of “good” arrival functions.

Lemma 11.3 If A and B are two “good” arrival functions, then the sub-additive
closure of min{A,B} = A

⨁
B is given by A ⊗ B. Formally, if A = A and B = B, it

is A
⨁

B = A ⊗ B,

�

� �

�

676 11 Quality-of-Service Guarantees

Proof: We know that A = A ⊗ A and B = B ⊗ B, since A and B are good functions.
We have

(A ⊕ B)⊗ (A ⊗ B) = [(A ⊕ B)⊗ A]⊗ B = [(A ⊗ A)⊕ (B ⊗ A)]⊗ B

= [A ⊕ (A ⊗ B)]⊗ B = (A ⊗ B)⊕ (A ⊗ B ⊗ B)

= (A ⊗ B)⊕ (A ⊗ B) = A ⊗ B (11.22)

Moreover, we have

(A ⊕ B)⊗ (A ⊕ B) = (A ⊗ A)⊕ (A ⊗ B)⊕ (B ⊗ A)⊕ (B ⊗ B)

= A ⊕ (A ⊗ B)⊕ (A ⊗ B)⊕ B = A ⊗ B (11.23)

For ease of notation, let X = A ⊕ B and Y = A ⊗ B. We have shown that X ⊗ Y =
Y and X ⊗ X = Y . It is then easy to show by induction that X (n) = Y for all n ≥ 2.
Since it is further X ≥ Y , it follows that X = Y , which concludes the proof. ◾

The following theorem reveals the structure of the minimal arrival curve for a
given flow.

Theorem 11.2 (Minimal Arrival Curve) Given a flow A(t) we have

(a) the function AøA is an arrival curve for A.
(b) for any arrival curve E that constrains the flow A it is AøA ≤ E.
(c) AøA is a “good” arrival curve.

The function EA = AøA is called the minimal arrival curve that constrains the
given flow A.

Proof: We recall that the deconvolution is defined as

C(t) = (AøB)(t) = sup
u≥0

A(t + u) − B(u) (11.24)

If A and B belong to the set , also their deconvolution does.
For any s ≤ t we have A(t) − A(s) ≤ A(t − s + s) − A(s) ≤ supu≥0{A(t − s + u) −

A(u)} = EA(t − s), which shows the first statement of the theorem.
If E is an arrival curve for the flow A, by Lemma 11.1 we have A ≤ A ⊗ E, that

is to say A(t) ≤ A(s) + E(t − s), 0 ≤ s ≤ t. Letting v = t − s ≥ 0, we have A(v + s) −
A(s) ≤ E(v), ∀v, s ≥ 0. Then, sups≥0A(v + s) − A(s) ≤ E(v). This proves the second
statement of the theorem.

For the third statement it suffices to prove that the function g(t) = (AøA)(t) is
sub-additive. We have for any u ≥ 0 and for any s, t:

A(t + s + u) − A(u) = A(t + s + u) − A(s + u) + A(s + u) − A(u)

≤ sup
s+u≥0

{A(t + s + u) − A(s + u)}+sup
u≥0

{A(s + u) − A(u)}

= g(t) + g(s) (11.25)

�

� �

�

11.2 Deterministic Service Guarantees 677

Figure 11.2 Comparison of the
arrival function, minimum arrival
curve and affine arrival curve for
the sequence produced by an
MPEG coding of the Star Wars
movie.

0 100 200 300

Time (sec)

0

500

1000

1500

2000

2500

3000

D
a

ta
 (

M
b

it
)

r = 9.37 (Mbit/s)

b = 10 (Mbit)

Arrivals

Minimal arrival curve

Affine arrival curve

Hence g(t + s) = supu≥0{A(t + s + u) − A(u)} ≤ g(t) + g(s), which proves that g(⋅)
is sub-additive and then a “good” function by virtue of Definition 11.2. ◾

In practice, the usefulness of this theorem is limited by the amount of param-
eters required to describe the minimal arrival curve for a general flow. While the
minimal arrival curve can always be computed numerically for a given flow, it
does not yield necessarily a parsimonious model. It is however useful to check the
tightness of bounds provided by other arrival curves.

Example 11.2 We apply the minimal arrival curve theory to the data stream pro-
duced by the MPEG audio/video encoding of the Star Wars movie. The MPEG
coded sequence of the Star Wars movie lasts about 114 minutes: it consists of
171,000 video frames, of duration Tf = 40 ms. When packetized with a payload
length L0 = 1000 bytes and header length H0 = 40 bytes, its mean bit rate is R =
5.95 Mbit/s and its peak bit rate is Rmax = 16.7 Mbit/s.

The arrival function A(t) gives the number of bits at the output of the coder at
the end of each frame. Figure 11.2 plots the arrival function A(t) and the associated
minimal arrival curve for the first 300 s of the sequence.

For comparison purposes, we plot also an affine arrival curve for the given data
stream. The parameters are found by setting the burstiness b to 10 Mbit and finding
r as the minimum rate that guarantess that A(t) − A(s) ≤ r(t − s) + b for all s ≤ t.

The price for the simplicity of the affine arrival curve is that it gives a signif-
icantly looser description of the actual traffic A(t), with respect to the minimal
arrival curve.

11.2.2 Service Curves

In this section we aim at setting bounds on the minimum and maximum amount
of service provided by a system to its input arrival flow.

�

� �

�

678 11 Quality-of-Service Guarantees

Let us consider a generalized processor sharing (GPS) server. We have seen in
Section 6.4.2 that GPS guarantees a minimum rate to any multiplexed flow. Say
A(t) is the arrival function of a flow that is continuously backlogged between t0
and t. If r denotes the guaranteed minimum rate of the flow, then D(t) − D(t0) ≥
r(t − t0). Let s be the largest time in [0, t] such that the flow is not backlogged (this
is true at least for t = 0−. It is D(s) = A(s). Then, we can write D(t) − A(s) ≥ r(t − s);
hence D(t) ≥ infs∈ℝ{A(s) + r ⋅ max{0, t − s}} = (A ⊗ 𝛽r,0)(t).

As another example, let us consider a lossless input-output system that imposes
a maximum delay T to the served customers. Then, it must be D(t + T) ≥ A(t),
∀t ≥ 0 or D(s) ≥ A(s − T) = (A ⊗ 𝛿T)(s).

In both cases, we find that the output of the system D is lower bounded by an
expression of type A ⊗ S, where S(t) is a function characteristic of the considered
service system. This brings us to the following definition.

Definition 11.3 Service curve Let us consider a service system with input and
output given by the functions A(t) and D(t), belonging to the set . Let S, S, S ∈ .
We say that S(t) is a lower service curve for the system, if D ≥ A ⊗ S, S(t) is an upper
service curve for the system, if D ≤ A ⊗ S, S(t) is a service curve for the system if
both inequalities hold simultaneously for S, i.e., D = A ⊗ S.

Service curves give bounds on the amount of data that can be processed by the
service system and transferred to the output. They give a description of the “trans-
formation” imposed on the arrival function by the service system, adopting an
input/output, black-box point of view. We will see that this is a key building block
of a system theory of service systems.

Example 11.3 Two-class priority system Let us consider a service system deal-
ing with two classes of customers. The system has a serving capacity C, i.e., it can
work out up to C units of work per unit of time (e.g., if it is a communication link,
it can transmit C bits/s). Service is offered according to a head-of-line (HOL) pri-
ority discipline (see Section 6.3.2). The arrival, output and backlog functions are
denoted with A(t), D(t), and Q(t), respectively. We use a subscript H (L) for the
high (low) priority class. To guarantee some minimum service to the low priority
class, we assume that the high-priority class admits the arrival curve EH(t).

Let t0 > 0 be the time when a backlog period of the high-priority class starts.
This implies that QH(t0) = 0 and hence DH(t0) = AH(t0). For any time t belong-
ing to the same backlog period it must be DH(t) − DH(t0) ≥ C(t − t0) − Lmax, where
Lmax is the maximum length of a packet of the low-priority class. The inequality
follows from the fact that the service capacity of the system is fully devoted to the
high-priority packet flow, as soon as the high-priority class becomes backlogged,

�

� �

�

11.2 Deterministic Service Guarantees 679

except possibly of the amount of capacity required to clear a low-priority packet
under transmission when the high-priority backlog period starts. Hence

DH(t) ≥ AH(t0) + C(t − t0) − Lmax, t ≥ t0 (11.26)

Since it is DH(t) − AH(t0) = DH(t) − DH(t0) ≥ 0, we have

DH(t) ≥ AH(t0) + max{0,C(t − t0) − Lmax}, t ≥ t0 (11.27)

Following the same steps that lead to eq. (11.8), we can prove that DH ≥ AH ⊗

SH , where SH(t) = max{0,Ct − Lmax}. So, SH(t) is a lower service curve offered by
the system to the high priority class.

As for the low-priority class, let tb denote the latest time before t0, when a busy
period of the server starts. It is QL(tb) = QH(tb) = 0, and hence DL(tb) = AL(tb) and
analogously for the high-priority class. For any time t ≥ tb during the busy period
we have

DL(t) − DL(tb) + DH(t) − DH(tb) =

= DL(t) − AL(tb) + DH(t) − AH(tb) ≥ C ⋅ (t − tb), (11.28)

since the server is work-conserving. Moreover, thanks to the constraint posed by
the envelope EH(t) on the high-priority class, we can write

DH(t) − AH(tb) ≤ AH(t) − AH(tb) ≤ EH(t − tb) (11.29)

Substituting back into eq. (11.28), we get:

DL(t) ≥ AL(tb) + C ⋅ (t − tb) − EH(t − tb) (11.30)

Thanks to DL(t) − AL(tb) = DL(t) − DL(tb) ≥ 0 and following the same steps as in
the proof of eq. (11.8), we find finally that DL ≥ AL ⊗ SL, with SL(t) = max{0,Ct −
EH(t)}. SL(t) is a lower service curve offered by the system to the low-priority class.

Example 11.4 Packetized stream of data Let us consider a stream of data pro-
duced by a coder, e.g., an audio/video coder. To be transferred over a network,
the data at the output of the coder are packetized. Let Lmax denote the maximum
length of a packet and R the minimum bit rate at which data is produced by the
coder. Then, the maximum delay suffered by coded data when packetized is 𝜏max =
Lmax∕R. We can think of the data produced by the coder as an arrival flow A(t)
offered to a packetizer. Let Dp(t) be the output function of the packetizer. Since the
maximum delay imposed by the packetizer is 𝜏max, we have D(t) ≥ A(t − 𝜏max) =
(A ⊗ 𝛿

𝜏max
)(t). This shows that 𝛿

𝜏max
(t) is a lower service curve for the packetizer.

Example 11.5 Constant rate link Let us consider a communication link trans-
mitting packets with maximum length Lmax at rate C. Assume the data at the
output of the link cannot be used other than by integral packets, i.e., a chunk of

�

� �

�

680 11 Quality-of-Service Guarantees

data emerging out of the link can be processed by downstream service systems
only if it consists of an integral number of packets (at least one). This is the case
for example with router processors receiving packets on their input lines and ana-
lyzing them to perform forwarding actions. Then, a lower service curve for the link
is max{0,C ⋅ t − Lmax} = C ⋅ max{0, t − Lmax∕C}. This is the so called rate-latency
service curve.

Example 11.6 Let us now consider the cascade of two systems. Let a coder feed
a packetizer and then packets be sent over a fluid link of capacity C. By fluid link
we mean one where there are no packets. In terms of service curves, a fluid link is
characterized by S(t) = S(t) = Sl(t) = C ⋅ max{0, t}

The input Al(t) to the fluid link is the output Dp(t) of the packetizer, that is Al(t) =
Dp(t) ≥ A ⊗ 𝛿 Lmax

R
. Hence

Dl = Al ⊗ Sl ≥
(

A ⊗ 𝛿 Lmax
R

)
⊗ Sl = A ⊗

(
𝛿 Lmax

R
⊗ Sl

)
(11.31)

where we have used the associativity of the min-plus convolution. We see that
the cascade of the two systems is characterized by a lower service curve that is the
convolution of the lower service curves of the two systems, namely:

S(t) =
(
𝛿 Lmax

R
⊗ Sl

)
(t) = C ⋅ max

{
0, t −

Lmax

R

}
(11.32)

The last example suggests a powerful property of service curves. Let us consider
n service systems in tandem and an arrival flow A(t) that goes through all of them.
The output function of the k-th service system Dk(t) is the input function to the
(k + 1)-th system. From the definition of lower service curves and the properties
of min-plus convolution, it follows that:

D = Dn ≥ Dn−1 ⊗ Sn ≥ Dn−2 ⊗ Sn−1 ⊗ Sn = · · · = A ⊗ (S1 ⊗ · · ·⊗ Sn)
(11.33)

This proves that the lower service curve of the tandem of n service systems is
the min-plus convolution of the lower service curves of the systems. This can be
obviously proved also for upper service curves.

This property matches perfectly what holds for the impulse response of a
cascade of linear, time-invariant systems. The ordinary convolution operation
between real-valued integrable functions is replaced by min-plus convolution of
functions belonging to the set .

Example 11.7 Let us consider n systems, each one characterized by a
rate-latency curve of its own. Let Sk(t) = rkmax{0, t − dk} be the service curve

�

� �

�

11.2 Deterministic Service Guarantees 681

of the k-th system. Note that Sk = Frk
⊗ 𝛿dk

, where FC(t) = C ⋅ max{0, t} is the
service curve of a fluid link of capacity C.

Then, we have

S(t) = ⊗
n
k=1Sk = (⊗n

k=1Frk
)⊗ (⊗n

k=1𝛿dk
) = Fr ⊗ 𝛿d (11.34)

where r = min{r1,… , rn} and d =
∑n

k=1 dk. That is to say, the service curve of the
tandem composition of n latency-rate servers is still a latency rate server, with rate
equal to the minimum among the rates of the component systems and delay equal
to the sum of the individual delays.

11.2.3 Performance Bounds

We have learned how we can set deterministic bounds on the arrival process (the
arrival curve) and on the minimal amount of service guaranteed by a service sys-
tem (the service curve).

Let us consider a service system offering a lower service curve S(t) and having an
input flow that is constrained by the envelope E(t). We assume that E(t) is causal,
i.e., it is 0 for t < 0. Let Q(t) denote the backlog of the service system at time t and
D(t) denote the cumulative output flow of the system at time t. We assume that
Q(0−) = 0.

We can prove the following performance bounds.

Theorem 11.3 (Backlog bound) The maximum level achieved by Q(t) is Q∗ =
supu≥0{E(u) − S(u)}.

Proof: Since D ≥ A ⊗ S(t), it is

Q(t) = A(t) − D(t) ≤ A(t) − A(𝜏) − S(t − 𝜏) ≤ E(t − 𝜏) − S(t − 𝜏) (11.35)

holding for some 𝜏 such that 0 ≤ 𝜏 ≤ t. Then, we have Q(t) ≤ sup0≤𝜏≤t{E(t − 𝜏) −
S(t − 𝜏)} = sup0≤u≤t{E(u) − S(u)}. Taking the supremum over all t ≥ 0, we com-
plete the proof of the result. ◾

We can give a deterministic bound also for the output D(t) in terms of the arrival
and service curves.

Theorem 11.4 The output flow D(t) is constrained by the envelope ED(t) =
(EøS)(t) = sup

u≥0
{E(t + u) − S(u)}.

�

� �

�

682 11 Quality-of-Service Guarantees

Proof: Since D ≥ A ⊗ S(t), we have D(s) ≥ A(u) + S(s − u) for some u such that
0 ≤ u ≤ s. Then, for s ≤ t, we have:

D(t) − D(s) ≤ D(t) − A(u) − S(s − u)

≤ A(t) − A(u) − S(s − u)

≤ E(t − s + s − u) − S(s − u) , ∀u ∶ 0 ≤ u ≤ s

Then, replacing s − u with 𝜏, we have

D(t) − D(s) ≤ sup
0≤𝜏≤s

{E((t − s + 𝜏) − S(𝜏)} ≤ (EøS)(t − s) (11.36)

which proves the result by the definition of the ø operation, since the inequality
holds for all s ≤ t. ◾

Finally, we define as delay of a customer arriving at time t the time it takes to
empty the buffer of the content Q(t). This is the quantity d(t) defined as

d(t) = inf
𝜏≥0

{𝜏 ∶ D(t + 𝜏) ≥ A(t)} (11.37)

and referred to as virtual delay. The maximum delay is the supremum over all
times: d∗ = supt≥0d(t).

Theorem 11.5 The maximum delay is bounded by the horizontal distance
between the service and arrival curves, i.e.,

d∗ ≤ h(E, S) ≡ sup
t≥0

inf
𝜏≥0

{𝜏 ∶ E(t) ≤ S(t + 𝜏)} (11.38)

Proof: By the definition of lower service curve, we have D(t + 𝜏) ≥ S(t + 𝜏) for all
t, 𝜏 ≥ 0. By the definition of envelope, we have also E(t) ≥ A(t) for all t ≥ 0. Then,
the inequality S(t + 𝜏) ≥ E(t) implies D(t + 𝜏) ≥ A(t). This means that the set {𝜏 ∶
S(t + 𝜏) ≥ E(t)} is a subset of {𝜏 ∶ D(t + 𝜏) ≥ A(t)}. The infimum of the first set is
therefore not less than the infimum of the second set, which is but the virtual delay
at time t. Since this reasoning holds for all t ≥ 0, we see that we have shown that
h(E, S) ≥ d∗. ◾

The main advantage of those bounds is that they apply deterministically (i.e.,
they bound the worst-case performance). On the down side, they may be loose,
depending on the tightness of the bounds set by the arrival curve on the input flow
and by the service curve on the minimum amount of guaranteed service offered
by the service system.

�

� �

�

11.2 Deterministic Service Guarantees 683

Figure 11.3 Scheme of a leaky bucket with
parameters 𝜌 (token rate) and 𝜎 (token bucket
size).

Token

bucket
Source

buffer

A(t) D(t)

Leaky bucket

regulator

ρ

σ

11.2.4 Regulators

How can we enforce a given arrival function or check the conformance of an arrival
process to a given arrival function? Let A(t) be an arrival flow, E(t) the envelope
we desire to cast over the arrivals, and D(t) the output of the system we build to
achieve this purpose.

We say that the system is a regulator with envelope E if for any arrival flow A,
the output D of the system admits E as an envelope.

From the properties of envelopes, we know that, if E is an envelope for D, then
D ≤ D ⊗ E or D(t) − D(s) ≤ E(t − s),∀s ≤ t. The question is now: can we define a
system that behaves like a regulator for a given envelope?

The answer to this question is relatively simple if we choose as envelope the
affine arrival curve. The system that we define is known as the leaky bucket. Let
then

ELB(t) =

{
𝜎 + 𝜌t t ≥ 0,
0 t < 0.

(11.39)

The leaky bucket regulator (also known as the leaky bucket shaper) is also
referred to as (𝜎, 𝜌)-regulator. A scheme of a leaky bucket regulator is depicted in
Figure 11.3. The flow buffer, where the arrival flow data is stored, is assumed to
be infinite, i.e., no loss of arriving data is considered. On the contrary, at most 𝜎
tokens can be stored in the token bucket.

The leaky bucket generates “tokens” at rate 𝜌. The tokens accumulate in a buffer
of size 𝜎. If the token bucket is full, excess tokens are dropped. The leaky bucket
is defined as a service system that receives a data flow at its input and allows the
amount of flow that matches the available tokens. A unit of data can move to the
output of the leaky bucket, if it finds at least one token in the bucket. In that case,
the token is consumed.

The result of this algorithm is that the output rate can exhibit a burst of maxi-
mum size 𝜎. Besides that, data leaves the leaky bucket at a sustained rate of at most
𝜌 data units per unit time.

�

� �

�

684 11 Quality-of-Service Guarantees

t

D(t)

Rt

Rσ
R – ρ

σ
R – ρ

ρt + σ

Figure 11.4 Output flow D(t) of
a leaky bucket shaper with
parameters (𝜎, 𝜌), regulating an
input flow constrained by the
arrival curve Rmax{0, t}, with
R > 𝜌.

For example, let us consider a flow A(t) = R ⋅ max{0, t}, with R > 𝜌, passing
through a leaky bucket shaper with parameters (𝜎, 𝜌) (see Figure 11.4). This arrival
curve is an upper bound for a flow arriving from a link with bit rate R.

At time 0, when the flow starts, the bucket is full. So, initially data can flow out
of the shaper at the peak rate R. This goes on until the token bucket is depleted
and all newly arrived tokens have been matched by arriving data, i.e., up to time
t0 = R𝜎∕(R − 𝜌). After that time, the arriving data is let out of the shaper with a
rate 𝜌 and the token bucket remains empty. The obtained output flow is upper
bounded by the arrival curve min{Rt, 𝜌t + 𝜎} for t ≥ 0.

Let Qs (t) be the amount of data of the input traffic flow that is stored in the flow
buffer of the leaky-bucket at time t, and Qb (t) be the amount of tokens stored in
the token bucket at time t. We prove three key properties of the leaky bucket in the
following.

Theorem 11.6 The output flow of the leaky bucket is constrained by the enve-
lope ELB(t).

Proof: In any given time interval [𝜏, t] the output of a leaky bucket cannot be
more than the amount of tokens found in the leaky bucket at time 𝜏 plus the
new tokens arrived during the interval. Formally, D(t) − D(𝜏) ≤ Qb(𝜏) + 𝜌(t − 𝜏) ≤
𝜎 + 𝜌(t − 𝜏) = ELB(t − 𝜏). The second inequality is a consequence of the limited
token bucket size. ◾

This following property means that ELB is the service curve of the leaky bucket
regulator as a service system.

Theorem 11.7 If A is an arrival flow into a leaky bucket shaper with envelope
ELB(t), the output flow D(t) satisfies D = A ⊗ ELB.

Proof: For any t ≥ 0 and s ≤ t, we have:

D(t) = D(t) − D(s) + D(s) ≤ ELB(t − s) + A(s), ∀s ∶ 0− ≤ s ≤ t+ (11.40)

This implies D ≤ A ⊗ ELB.

�

� �

�

11.2 Deterministic Service Guarantees 685

Conversely, let us consider again a time t ≥ 0. If the flow buffer is empty at time
t, then it is

D(t) = A(t) ≥ inf
0−≤s≤t+

{A(s) + ELB(t − s)} (11.41)

where the inequality holds since ELB(t − t+) = ELB(0−) = 0 and A(t+) = A(t).
Assume the flow buffer is not empty at time t, i.e., it is Qs(t) > 0. There exists
a time u such that 0− ≤ u ≤ t+ and the token bucket is full at time u. Formally,
u = sup

𝜏≤t
{Qb(𝜏−) = 𝜎}. Since the bucket starts out full, i.e., Qb(0−) = 𝜎, it must be

u ≥ 0. The flow buffer must be empty at time u− as a consequence of the bucket
being full at time u. On the other hand, Qs(t) > 0 implies that the token bucket
must be empty at time t (otherwise there would not be data waiting at the flow
buffer). In general, we can write the state of the token bucket at a given time as
the sum of the state at a previous time, plus the new arrived tokens, minus the
tokens that have been used, i.e.,

Qb(v) = Qb(s) + 𝜌(v − s) − [D(v) − D(s)] (11.42)

We write this identity for v = t and s = u−, when it holds that Qb(t) = 0 and
Qb(u−) = 𝜎. Then, it is

0 = Qb(t) = Qb(u−) + 𝜌(t − u) − [D(t) − D(u−)]

= 𝜎 + 𝜌(t − u) + A(u−) − D(t) (11.43)

since the flow buffer is empty at time u−, and hence D(u−) = A(u−). Rearranging
the terms of eq. (11.43), we find

D(t) = 𝜎 + 𝜌(t − u) + A(u−) ≥ inf
0−≤s≤t+

{A(s) + 𝜎 + 𝜌(t − s)}

= inf
s∈ℝ

{A(s) + ELB(t − s)} (11.44)

hence D ≥ A ⊗ ELB. Together with the other inequality we have already estab-
lished, we find finally D = A ⊗ ELB. ◾

Theorem 11.8 If the input A(t) of the leaky bucket is constrained by the enve-
lope ELB(t), then it is D(t) = A(t), i.e., the input flow goes through the leaky bucket
unchanged.

Proof: For any system it is A ≥ D. For the leaky bucket, we can write A ≥ D = A ⊗

ELB ≥ A, where the last inequality is due to the property of envelopes. Therefore,
it is A = D. ◾

The leaky bucket shaper is a key element of the deterministic traffic control
architecture. Let us derive an equivalent fluid queueing model of the shaper fed by

�

� �

�

686 11 Quality-of-Service Guarantees

a given packet arrival flow. Let Lk be the length of the k-th packet and tk its arrival
time for k ≥ 1. We assume that tk > 0 for all k ≥ 1. Let Tk = tk − tk−1, k ≥ 1 be the
k-th inter-arrival time, with t0 = 0 for ease of notation.

We denote the buffer content level of the token bucket and of the flow buffer at
time t as Qb(t) and Qs(t), respectively. Let Qb,k = Qb(tk−) and Qs,k = Qs(tk−) be the
buffer content levels just before the k-th packet arrival.

If Qs,k > 0, it must necessarily be Qb,k = 0. Then, we have:

Qs,k+1 =

{
max{0,Qs,k + Lk − 𝜌Tk+1} if Qs,k > 0 ⇒ Qb,k = 0,
max{0,Lk − 𝜌Tk+1 − Qb,k} if Qs,k = 0.

(11.45)

The two expressions can be unified in the following equation, holding for what-
ever value of Qs,k:

Qs,k+1 = max{0,Qs,k + Lk − 𝜌Tk+1 − Qb,k} (11.46)

As for the token bucket buffer, we have

Qb,k+1=

{
min{𝜎,max{0,Qb,k + 𝜌Tk+1 − Lk}} if Qb,k > 0 ⇒ Qs,k = 0,
min{𝜎,max{0, 𝜌Tk+1 − Lk − Qs,k}} if Qb,k = 0.

where we account for the upper limit 𝜎 of the token bucket level. Here too we can
write a single equation holding for any value of Qb,k is:

Qb,k+1 = min{𝜎,max{0,Qb,k + 𝜌Tk+1 − Lk − Qs,k}} (11.47)

We can prove that the flow buffer content Qs(t) can be studied by means of an
equivalent single server queue.

Theorem 11.9 The process Q(t) = Qs(t) + 𝜎 − Qb(t) is the queue length of a sin-
gle server system having the same input process as the leaky bucket flow buffer
and a constant rate server at rate 𝜌.

Proof: Let Bk ≡ Qs,k + Lk − 𝜌Tk+1 − Qb,k. We have established that Qs,k+1 =
max{0,Bk} and Qb,k+1 = min{𝜎,max{0,−Bk}}. Let

Qk ≡ Qs,k + 𝜎 − Qb,k (11.48)

Using the recursions that we have established, we find

Qk+1 = Qs,k+1 + 𝜎 − Qb,k+1 = max{0,Bk} + 𝜎 − min{𝜎,max{0,−Bk}}

= max{0, 𝜎 + Bk} = max{0, 𝜎 + Qs,k + Lk − 𝜌Tk+1 − Qb,k}

= max{0,Qk + Lk − 𝜌Tk+1} (11.49)

The recursion obtained for Qk is nothing but a form of Lindley’s recursion for
a G∕G∕1 queue, with a constant rate server of capacity 𝜌. In other words, we

�

� �

�

11.2 Deterministic Service Guarantees 687

can study the leaky bucket flow buffer by looking at an equivalent queue fed
by the same arrivals as the flow buffer and served by a constant rate server of
capacity 𝜌. ◾

Since 0 ≤ Qb,k ≤ 𝜎, we have Qs,k ≤ Qk ≤ Qs,k + 𝜎. Therefore, the event Qs,k > x
implies Qk > x and we can use the probability (Qk > x) to upper bound the prob-
ability (Qs,k > x).

The delay introduced by a leaky bucket shaping an arrival stream of data can
be calculated by observing that a packet of length L bit, arriving at time t, will be
released by the leaky bucket after a time d such that

Qb(t) + 𝜌 ⋅ d ≥ Qs(t) + L ⇒ d(t) = max
{

0,
Qs(t) + L − Qb(t)

𝜌

}
(11.50)

In terms of the equivalent queueing length Q(t) introduced in Theorem 11.9, we
have

d(t) = max
{

0, Q(t) + L − 𝜎

𝜌

}
(11.51)

Imposing d(t) ≤ dmax reduces to Q(t) ≤ 𝜌dmax + 𝜎 − L.

Example 11.8 Let us apply the leaky bucket theory to the Star Wars sequence.
The main characteristics of this measured traffic trace are described in Example
11.2. We assume that the Star Wars data flow is packetized using a maximum pay-
load size of 1000 bytes and a header length of 40 bytes.

Since the sequence has finite length (we are given a specific realization of traf-
fic over a finite time horizon), it makes sense to evaluate the maximum delay,
i.e., max

0≤t≤T
d(t), where T is the duration of the sequence and d(t) is calculated as

in eq. (11.50).
Figure 11.5 plots the minimum required leaky bucket rate of the packetized Star

Wars movie coded sequence as a function of the delay requirement, for three values
of the token bucket size 𝜎.

For each given delay requirement d we find the minimum leaky bucket rate 𝜌

required to meet the requirement. Since the sequence is finite, when the delay
requirement falls below a threshold (that depends on 𝜎), the required rate is so
high that the achieved delay drops to 0. Therefore, the required rate 𝜌 is kept
constant to the maximum value found for nonzero delay.

As expected, the rate is a decreasing function of the delay requirement. The rate
appears to be weakly dependent on the delay requirement. The larger the bucket
size, the less rate we need. It can be noted also that, the larger the bucket size, the
less sensitive 𝜌 is to dmax.

�

� �

�

688 11 Quality-of-Service Guarantees

10–2

Delay requirement (s)

6

8

10

12

14

L
B

 r
a

te
 ρ

 (M
b

it
/s

)

10–1 100 101

σ = 0.25 (Mbytes)

σ = 1 (Mbytes)

σ = 2 (Mbytes)

Figure 11.5 Star Wars
sequence: minimum leaky bucket
rate as a function of the delay
requirement for three values of
the token bucket size 𝜎.

Finally, to appreciate the range of values allowed for the delay requirement,
we should keep in mind that the delay through the shaper contributes to the
end-to-end delay of the streaming flow. Setting a large value of the delay require-
ment implies that we need a large delay equalization buffer at the receiver, as
highlighted in Chapter 1.

11.2.5 Network Calculus

Network calculus is a theory developed to study network performance under deter-
ministic worst-case bounds. The aim is to characterize performance bounds, given
constraints on the network input flows and on the guaranteed service offered by
network elements (routers, switches, processing middle-boxes).

The essence of the network calculus approach is to replace the description of
the arrival flow as a stochastic process with a deterministic upper bound (in the
sense of the envelope). We will see soon that the stochastic nature of the arrival
flow does not disappear. The network calculus approach confines the effect of the
random nature of traffic to network edges, where the input arrival flow is shaped
and imposed a given envelope. The constraints on arrival flows and guarantees on
the minimum amount of service devoted to each flow in the network elements,
i.e., envelopes and service curves, allow a simple network dimensioning to meet
local and global delay constraints.

We will see first how to apply the theory developed so far to define arrival and
service curves, for the purpose of giving bounds on the delay through a single ser-
vice system and to dimension its capacity as a function of the delay requirement.
Then, we will extend the analysis to establish a bound on the end-to-end delay
through a network .

�

� �

�

11.2 Deterministic Service Guarantees 689

11.2.5.1 Single Node Analysis
We start with the analysis and dimensioning of a single network element, charac-
terized by a service curve S(t). Let A(t) be the arrival flow at the input of the system
and assume that the arrival flow is constrained by an envelope E(t). Let S(t) =
C max{0, t − d} be the service curve of the service system (rate-latency server, with
capacity C > 0 and delay d ≥ 0).

The delay d(t) through the system is defined in eq. (11.37). Let dmax = supt≥0d(t)
be the maximum delay through the service system. Theorem 11.5 gives an upper
bound on dmax in eq. (11.38). As a consequence of the delay bound, we have

E(t − dmax) ≤ C max{0, t − d} ⇒ E(t) ≤ C(t + dmax − d) , ∀t ≥ 0.
(11.52)

for the considered rate-latency server.
We can derive a more explicit expression of dmax as

dmax = d + sup
t≥0

{
E(t) − Ct

C

}
(11.53)

For dmax to be finite, it must be E(t)∕t ≤ C definitely as t grows.
If we impose that dmax ≤ d0 for a given requirement on the delay d0, we can

find the minimum capacity C that meets that requirement. From dmax ≤ d0 and
eq. (11.53), we find

E(t) − Ct
C

≤ d0 − d ⇒ C ≥ E(t)
t + d0 − d

, ∀t ≥ 0. (11.54)

Therefore, we get

Cmin = sup
t≥0

{
E(t)

t + d0 − d

}
(11.55)

Let us apply the capacity dimensioning result to the important case where the
envelope is obtained with a leaky bucket with parameters (𝜎, 𝜌) applied to an
arrival flow with peak rate R and maximum packet size L. Figure 11.6 illustrates
the block scheme of the network calculus model. The leaky bucket shaper is the
first block on the left of the chain. The offered traffic flow A(t) enters the shaper.
At the output of the shaper, the traffic flow is bounded by the envelope ELB(t).

The service system is modeled with a rate-latency service curve, i.e., it guar-
antees a minimum rate C and introduces a delay d (second and third blocks in
Figure 11.6). We assume also 𝜌 ≤ C ≤ R. The inequality C ≥ 𝜌 is required to guar-
antee that the service system is stable under the regulated input flow. We require
the inequality C ≤ R, otherwise the problem becomes trivial (there is no conges-
tion in the service system and no need of a shaper, if the service system guarantees
to the source flow a bandwidth larger than the flow peak rate).

�

� �

�

690 11 Quality-of-Service Guarantees

A(t) DLB(t)

LB

shaper

C t delay packet

dsh

de2e

fluid

ρ

σ

Figure 11.6 Block scheme of the network calculus model of a leaky bucket-shaped
traffic flow offered to a rate-latency link.

The first three blocks in Figure 11.6 are based on a fluid model of the traffic flow.
The last block introduces the packetization delay, to account for the fact that the
link models a router output port and routers use the store-and-forward principle,
i.e., a packet can be forwarded only after it has been completely received.

The arrival flow generated by the source has an envelope A(t) = Rt + L for t ≥ 0.
This follows from the fact that the source emits at a peak rate R and that it can
release a packet of length up to L. We shape the source traffic through a leaky
bucket with parameters 𝜎 ≥ L and 𝜌 ≤ R. Passing through the leaky bucket we
obtain a flow bounded by DLB = A ⊗ ELB = min{A,ELB}, since both A and E are
sub-additive functions belonging to . The input of the service system is therefore
described by the arrival curve DLB(t) = min{Rt + L, 𝜌t + 𝜎}, t ≥ 0.

Using the result in eq. (11.53) to the service system with service curve S(t) =
C max{0.t − d}, with an input flow constrained by the curve DLB, we get

dmax = d + R − C
R − 𝜌

𝜎 − L
C

+ L
C

(11.56)

This function ranges from d + L∕R to d + 𝜎∕𝜌 as the capacity C is decreased from
R to 𝜌. Note that it must be 𝜌 ≤ R (otherwise the shaper flow buffer is not stable).
Moreover, we impose that 𝜎 ≥ L. Then, it is L∕R ≤ 𝜎∕𝜌. We can impose a delay
requirement d0 only if d0 ∈ [d + L∕R, d + 𝜎∕𝜌]. Requiring dmax ≤ d0 and inverting
eq. (11.56) we get

Cmin = R𝜎 − 𝜌L
𝜎 − L + (R − 𝜌)(d0 − d)

(11.57)

This is a monotonously increasing function of 𝜎 and monotonously decreasing
function of 𝜌. Setting the service system capacity C to its minimum, i.e., 𝜌, we find
that it must be 𝜌(d0 − d) = 𝜎. Since it is 𝜎 ≥ L, we have 𝜌 ≥ L∕(d0 − d).

Example 11.9 Assume that the rate-latency server represents a network crossed
by a VoIP traffic flow, shaped at the ingress of the network by a leaky bucket.
The delay d represents the base end-to-end delay (often referred to as propaga-
tion delay). For a Voice over IP (VoIP) flow we have L = 80 bytes. If VoIP packets

�

� �

�

11.2 Deterministic Service Guarantees 691

are sent every 10 ms, the peak bit rate is R = 64 kbit/s. The minimum delay (apart
from the network delay d) is L∕R = 10 ms.

If we assign 𝜌 = 16 kbit/s and 𝜎 = rL, the maximum delay (apart from the net-
work delay d) is 𝜎∕𝜌 = r ⋅ 40 ms. Assuming d = 100 ms, the delay bound ranges
between 110 ms and 100 + r ⋅ 40 ms. Let r = 2.5, hence 𝜎 = 200 bytes, so that the
maximum delay becomes 200 ms.

We set a limit of d0 = 150 ms to the end-to-end delay, including the base
delay d and the network delay. Applying eq. (11.57), we find that it must be
C ≥ 27.43 kbit/s.

As expected, this is an intermediate value between the minimum rate
𝜌 = 16 kbit/s and the peak rate R = 64 kbit/s. We are guaranteeing determinis-
tically that the end-to-end delay will never exceed d0; nonetheless we provide
a multiplexing gain with respect to peak rate assignment. We shall remember
however that we have not accounted for the shaping delay in our calculations.

There remains to assess the delay suffered by input traffic in the shaper flow
buffer. This is no more characterized by deterministic bounds, since the input of
the leaky bucket is ultimately the traffic process of the source, which is described
as a stochastic process. We will address this point in the next section.

Before moving to the application of network calculus to a full network, we estab-
lish a useful property of a stable server loaded by traffic sources controlled by leaky
bucket shapers.

Let C be the constant service rate of the link, N the number of traffic sources
loading the link, and let (𝜎i, 𝜌i) be the leaky bucket parameters for the flow of traffic
source i, i = 1,… ,N.

Theorem 11.10 Given a constant rate server of capacity C loaded by N leaky
bucket controlled sources, assume the server is stable, i.e., it is

∑N
i=1 𝜌i < C. Then,

the busy period of the server is upper bounded by
∑N

i=1 𝜎∕
(

C −
∑N

i=1 𝜌i

)
.

Proof: Let u and v be the start and the end times of a busy period. We have Q(u) =
Q(v) = 0. If D(t) denotes the output flow up to time t, we must have A(v) − A(u) =
D(v) − D(u) = C ⋅ (v − u), the last equality being a consequence of the fact that we
assume a work-conserving server. The duration of the busy period is y = v − u.
Thank to the envelope bound on the input, we have

C ⋅ (v − u) = A(v) − A(u) ≤ 𝜌(v − u) + 𝜎 ⇒ y = v − u ≤ 𝜎

C − 𝜌
(11.58)

where 𝜌 =
∑N

i=1 𝜌i and 𝜎 =
∑N

i=1 𝜎i. ◾

�

� �

�

692 11 Quality-of-Service Guarantees

LB

RL

server

WFQ

RL

server

WFQ

RL

server

WFQ

RL

server

WFQA(t)

C1 C2 C3 C4

RL

server

WFQ

C5

source
destination

Figure 11.7 Example of end-to-end path with the corresponding model based on
deterministic network calculus.

11.2.5.2 End-to-End Analysis
Let us now apply the network calculus approach to the traffic management in a
packet network. The key point is to set deterministic bounds on packet arrivals at
network edge nodes and service offered by the nodes of the network. The scheme
in Figure 11.7 illustrates an example of an end-to-end path between a source and
a destination through five routers.

The corresponding model based on deterministic traffic theory is shown in the
lower part of the figure. The source generates an arrival flow A(t) that goes through
a leaky bucket shaper. The ouput of the shaper is offered to the path through the
network routers. Each router is modeled by a rate-latency server, thanks to the
weighted fair queueing (WFQ) scheduling algorithm used in the output line of the
router. In the following we explain the scheme and the relevant models in detail.

Packets offered to the network are generated by traffic sources. A traffic source
can be a user equipment, where applications run, or it can be the peer link with
another network, from which external traffic enters the tagged network. In both
cases, the traffic entering the tagged network is subject to rules as a consequence of
agreements between the network provider and the external source. The approach
taken here to constrain the input source traffic into a deterministic bound envelope
is to assume that it passes through a leaky bucket shaper before entering the tagged
network. Then, the description of the traffic can be reduced to its original peak
rate R, the maximum length of the flow packets L, and to the two parameters of
the leaky bucket filter, the burstiness 𝜎 and the token rate 𝜌.

The nodes of the network are routers. They provide switching to packets. Pack-
ets arriving at a router from any input port of the router are processed and sent to
the output port designated by the router forwarding table. The capacity available
at an output link of a router is shared by all flows that are concurrently ongoing on
that link. To set deterministic bounds on the minimum amount of service provided
by the output port of the router to each flow we must guarantee a minimum rate
to each flow, independent of the backlog of any other flow on the same link. This

�

� �

�

11.2 Deterministic Service Guarantees 693

requires a multiplexing algorithm that guarantees non-null minimum rate to each
flow and isolation among flows. We have encountered a scheduling algorithm that
is suitable for this purpose in Section 6.4.3, namely WFQ. This scheduling algo-
rithm yields to feasible implementation and realizes a good approximation of the
ideal traffic handling of processor sharing in a packet network.

Let us consider a tagged flow. The flow path through the network is made up
of N links and crosses N − 1 routers (the two end-points are the traffic source and
the destination).

Let us consider link h along the path. Let Ch denote the capacity of link h. The
capacity of the link is shared by a multiplicity of flows, including the tagged one.
Let h denote the set of active flows through link h.

We assume that capacity sharing is handled with WFQ, with weight 𝜙(h)
i for flow

i on link h. The minimum rate guaranteed to flow i is r(h)i = Ch
𝜙
(h)
i∑

j∈h
𝜙
(h)
j

. Since pack-

ets are dealt with as a whole and cannot be transmitted partially, there can be a
delay in getting the capacity of the link, if a packet is being transmitted. Let Lmax,h
denote the maximum length of packets sent through link h (the maximum transfer
unit (MTU) of the link). The delay is bounded by Lmax,h∕Ch.

Finally, we account for the fact that the next router can process a packet only
when it receives it completely (store-and-forward paradigm). There is therefore an
additional delay equal to the time it takes to transmit (and receive) a packet of the
flow, i.e., Li∕r(h)i . We conclude that the tagged link behaves as a rate-latency service
system for the tagged flow, with service curve given by r(h)i max{0, t − (Lmax,h∕Ch +
Li∕r(h)i)}.

For the sake of a simpler notation, we drop the index i of the flow. We refer to a
specific flow and evaluate a bound for its delay end-to-end through the network.

The tagged flow is characterized by a peak rate R and maximum packet length L.
It is shaped by a (𝜎, 𝜌)-regulator at the ingress to the network. The flow is routed
through N links, each link corresponding to the output port of an intermediate
router. Link h is modeled as a rate-latency service system with service curve
r(h)max{0, t − (Lmax,h∕Ch + L∕r(h))}. There is no point in assigning different
values of the rates r(h) of the tagged flow on links of its path. The end-to-end
throughput achieved by the flow is constrained by the bottleneck link, i.e., it
equals r = min1≤h≤N r(h). In the following we assume that r(h) = r, ∀h.

The power and elegance of the network calculus stems from the observation
that a chain of N rate-latency service systems is equivalent to a single rate-latency
service system having a rate equal to the minimum of the rates and a delay equal
to the sum of the delays. Then, the entire network, i.e., the path of N links that
the flow travels through the network, as chosen by the routing function, can be
represented by a single rate-latency server with service curve r max{0, t − dlink},
where dlink = NL∕r +

∑N
h=1 Lmax,h∕Ch.

�

� �

�

694 11 Quality-of-Service Guarantees

We are now in a position to apply the result found in eq. (11.56) with C replaced
by r. To account also for propagation delay on links, we add a component 𝜏h for
link h and let 𝜏link =

∑N
h=1 𝜏h. We obtain the following bound on the end-to-end

delay of the tagged flow through the network:

de2e =
N∑

h=1

(
𝜏h +

Lmax,h

Ch

)
+ NL

r
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Link base delay

+ R − r
R − 𝜌

𝜎 − L
r

+ L
r

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Buffering delay

(11.59)

Setting a requirement on the end-to-end delay, we can find the minimum capac-
ity to be granted on each link to the tagged flow so that the delay requirement
is met.

The application of this approach requires the knowledge of:

● the routing of the tagged flow;
● the capacity and the MTU of each crossed link in the network;
● the base delay (sum of propagation delays) of the network path;
● the leaky bucket parameters.

Two approaches can be considered. In a centralized approach, the traffic source
contacts a central network manager, that knows the network topology, the load
level of the network and can find a suitable routing where the required capac-
ity is available. If there is at least one such routing, the central manager sets the
new state of each involved router and grants the requested resources to the traffic
source.

In a distributed approach, a control protocol must be defined. The traffic source
requests the set up of a new flow, giving its traffic description (e.g., (R, 𝜎, 𝜌) in this
case) to its local router (an edge router of the network). Routers talk among them
via the control protocol to find a path through the network toward the designated
destination, such that the delay requirement is met. For a given path, it is possible
to collect all the information needed to compute the required capacity r for a given
requirement d0 on the end-to-end delay. The collection of this data can be realized
by launching a control message that hops from one router to the next one. The data
relevant to each crossed link is appended to the message payload, so that the final
node receives all the information and can check whether the delay requirement is
met or not.

Note that the minimum required capacity rmin on the path links can be cal-
culated as in eq. (11.57), given the traffic flow description (R, 𝜎, 𝜌) and the path
characteristics. In general the set up of a path that maintains the required delay
prescription is not necessarily feasible, i.e., there could be less than the required
minimum capacity rmin available on the explored path, or there could even not be
any feasible path between the source and the destination at the time the flow set
up request is issued.

�

� �

�

11.2 Deterministic Service Guarantees 695

Figure 11.8 Model of the
fluid leaky bucket followed
by a packetizer.

Token

bucketσ

Flow

buffer

A(t) D(t)

Leaky bucket

regulator

Packetizer

ρ

Lmax

The network function that takes care of checking whether a new flow can be set
up is referred to as admission control.

There remains one open point. Inspecting Figure 11.7, we see that the flow suf-
fers a delay in each crossed router and in the flow buffer of the initial leaky bucket.
Up to now we have not considered this delay, since it escapes the deterministic
framework that we have pursued in this section. As a matter of fact, the input to
the flow buffer of the leaky bucket is a random process, the traffic flow generated
by the traffic source.

Let us consider a leaky bucket shaper fed by a packet flow. Figure 11.8 shows
a fluid model of the leaky bucket. To complete the model, we add a packetizer in
tandem with the fluid leaky bucket.

Let Lmax be the maximum length of the packets out of the packetizer. Based on
the analysis in Section 11.2.4, and specifically on the result of eq. (11.51), the delay
through the flow buffer of the leaky bucket satisfies d ≤ d0 provided that Q ≤ 𝜌d0 +
𝜎 − Lmax, where Q is the queue length of a fluid queue with constant serving rate
equal to 𝜌 and input process equal to the data flow offered to the leaky bucket
input. Therefore, the dimensioning of the leaky bucket under a flow buffer delay
requirement d0 reduces to imposing that:

(Q > 𝜌d0 + 𝜎 − Lmax) ≤ 𝜖 (11.60)

A metric that seems more appropriate than the delay bound is the time-average
fraction of the input data that arrives at the flow buffer and finds a backlog larger
than the threshold Qth = 𝜌d0 + 𝜎 − Lmax:

lim
T→∞

1
T
∫ T

0 I(Q(t) > Qth)a(u) du
1
T
∫ T

0 a(u) du
≤ lim

T→∞

1
T
∫ T

0 I(Q(t) > Qth)R du
1
T
∫ T

0 a(u) du

= R
𝜆
(Q > Qth) (11.61)

where I(E) is the indicator function of the event E, a(t) is the arrival rate (deriva-
tive of the arrival function A(t)) and 𝜆 is the time average rate of the arrival

�

� �

�

696 11 Quality-of-Service Guarantees

flow. This relationship establishes a connection between the tail of the buffer
content probability distribution and the metric defined based on time averages.
This explains why we focus on evaluating the tail (Qs > x) (or the upper bound
(Q > x), as discussed with reference to eq. (11.60)). This leads however to a
stochastic approach, that is addressed in the second part of this chapter.

Example 11.10 Let us apply the end-to-end resource dimensioning to the Star
Wars traffic sequence. The main characteristics of the Star Wars traffic sequence
are described in Example 11.2. We fix an end-to-end delay requirement and apply
the network calculus approach to dimension network resources to meet the
requirement.

We evaluate the maximum delay through the leaky bucket flow buffer for the
entire sequence, for given (𝜎, 𝜌) parameters, using eq. (11.51). Let it be dsh,max,
where

dsh,max = max
k≥0

{
0,

Qk − (𝜎 − L)
𝜌

}
(11.62)

where Qk+1 = max{0,Qk + Lk − 𝜌Tk+1} for k ≥ 0, with Q0 = 0. Lk and Tk+1 are the
length of the k-th packet of the arrival flow and the inter-arrival time between
packet k and k + 1. These two sequences describe the traffic flow offered to the
shaper.

In this example, we fix 𝜌 = 9 Mbit/s and we let 𝜎 vary from 0.1 Mbytes up to
10 Mbytes. As for the network parameters, we assign four different values to the
guaranteed bandwidth r. Note that it must be r ≥ 𝜌, to guarantee a finite delay
bound. Moreover, it must obviously be R ≤ r ≤ Rmax, where R is the average bit
rate of the Star Wars traffic flow and Rmax is the peak rate. The other parame-
ters appearing in eq. (11.59) are: number of network links N = 10; propagation
delay 𝜏h = 500 μs (corresponding to an optical fiber span of 100 km), link capacity
Ch = 10 Gbit/s, and maximum packet length Lmax,h = 1500 bytes.

Figure 11.9(a) plots the end-to-end delay bound for the Star Wars sequence as
a function of 𝜎 for four values of r. The end-to-end delay bound is computed as
D = dsh,max + de2e, where de2e is given by eq. (11.59).

There is an optimal value of 𝜎, that minimizes the delay bound. While the com-
ponent de2e is monotonously increasing with 𝜎, the bound on the shaper delay is,
on the contrary, monotonously decreasing with 𝜎.

As an example of stochastic dimensioning of the leaky bucket parameter, let us
consider and ON-OFF traffic source, with Rmax = 100 Mbit/s, R = 5 Mbit/s. Dur-
ing the ON time the source emits packets of length L = 1500 bytes at the peak bit
rate. The packet burst has a geometric size with mean 200 packets. The idle time
has a negative exponential probability distribution. The mean idle time is given
by E[TOFF] = T0b(1 − a)∕a, where T0 = L∕Rmax is the packet transmission time,

�

� �

�

11.2 Deterministic Service Guarantees 697

0 2 4 6 8 10

E
2
e
 d

e
la

y
 b

o
u
n
d
 (

s
e
c
)

r = 10 (Mbit/s)

r = 12 (Mbit/s)

r = 14 (Mbit/s)

r = 16 (Mbit/s)

(a)

0 2 4 6 8

E
2
e
 d

e
la

y
 b

o
u
n
d
 (

s
e
c
)

r = 20 (Mbit/s)

r = 40 (Mbit/s)

r = 60 (Mbit/s)

r = 80 (Mbit/s)

(b)

σ (Mbytes)

ρ = 9 (Mbit/s)

10–1

100

101

10–1

100

10–2

101

ρ = 7 (Mbit/s)

σ (Mbytes)

Figure 11.9 Examples of application of the end-to-end delay bound.

a = R∕Rmax is the activity coefficient of the source and b = 200 packets is the mean
burst size.

The delay through the shaper is now a random variable. Through simulation, we
can estimate the 90% quantile of this random variable, Dsh,90. Then, the stochastic
delay bound can be computed as D90 = Dsh,90 + de2e. We guarantee that at least
90% of the packets will suffer a delay not larger than D90.

Figure 11.9(b) plots D90 for the ON-OFF traffic source as a function of 𝜎, for 𝜌 =
7 Mbit/s and four values of r. Here too an optimum value of 𝜎 can be found. As in
the case of Star Wars sequence, the curve is cuspid-shaped around the minimum,
so that even small deviations from the optimal value of 𝜎 quickly degrade the delay
bound.

A comment is in order on the description of a traffic flow, as the input of the
shaper. In application cases, it is possible that the traffic flow is already fully
generated and ready to be transferred at connection set-up time. For example,
audio/video streaming service consists of downloading in real-time a predefined
coded sequence of data stored in a server. The coded sequence has been prepared
in advance and is entirely stored in a server. In that case, it is conceivable that
we prepare a deterministic arrival curve associated with a traffic flow. The arrival
curve is used at connection set-up time, to evaluate the end-to-end delay bound,
specifically, the component due to the shaping delay.

Alternatively, the traffic flow could be generated in real time, during the evolu-
tion of the connection (this is, for example, the case of a telephone call or a live
show streaming). In this second case, we can only provide a stochastic description
of the traffic flow, i.e., we can identify a class of stochastic processes that specific
instances of the considered traffic flows belong to. This is the case where the delay
bound in the flow buffer can only be probabilistic.

�

� �

�

698 11 Quality-of-Service Guarantees

We conclude this section with a traffic engineering consideration on the dimen-
sioning of bandwidth assignment in the network nodes.

The traffic control architecture we have so far described rests on two key assump-
tions:

1. Each traffic source is constrained by a leaky bucket shaper at the entrance point
into the network.

2. Each network link is shared according to a GPS policy (implemented by means
of a WFQ algorithm) among the flows that are routed through that link2

We say that the flow i is locally stable at link h if 𝜌i ≤ r(h)i , where r(h)i =
Ch𝜙

(h)
i ∕

∑
j∈h

𝜙
(h)
j and h is the set of flows going through link h. In words, flow i

is assigned a minimum guaranteed bandwidth that is no less than the bound on
its long-term average rate.

Let us assume that flow i is constrained by an arrival curve E(h)
i (t) = 𝜌it + 𝜎

(h)
i at

the input of link h. Since the ideal GPS is equivalent to a rate-latency server with
rate r(h)i and zero delay, the service curve of GPS is given by S(h)

i = r(h)i max{0, t} for
flow i. Then, flow i at the output of link h is bounded by a curve D(h)

i such that
D(h)

i ≤ E(h)
i ⊗ S(h)

i = E(h)
i , if 𝜌i ≤ r(h)i . This conditions means that flow i is locally

stable at link h. We can summarize this result saying that, for a locally stable flow,
the input constraint of the leaky bucket envelope carries over to the output of the
link. Therefore, we see that a flow that is locally stable at each link of its route,
can be bounded uniformly with its initial envelope, the one imposed by the leaky
bucket shaper at the input of the network.

The numerical examples discussed above show however that, to achieve small
delay bounds, we might need to assign a bandwidth which is significantly larger
than the leaky bucket average rate 𝜌.

We can do that for all flows routed on the link, if we have enough bandwidth
on that link. Otherwise, we can assign larger bandwidth to delay-sensitive flows,
especially if they have limited burstiness. We will then guarantee that these
delay-sensitive flows are locally stable. Flows that are not delay-sensitive (elastic
flows) can receive less bandwidth, even such that they are not locally stable at
some node, provided that at each node we guarantee that the global stability is
met, i.e.,

∑
j∈h

𝜌j < Ch and that all traffic source are shaped according to a leaky
bucket envelope at their respective entrance points into the network.

This is particularly interesting from a network traffic engineering point of
view, since it gives us the flexibility of assigning a large bandwidth provision to
delay-sensitive flows, so that, once they are backlogged, their data can be cleared

2 In the analysis of the end-to-end delay bound we have assumed that routers implement WFQ
on each link. WFQ is the practical implementation in a packet network of the theoretical fluid
GPS policy. There is a constant (small) offset between the guarantees provided by GPS and those
realized by WFQ (see Section 6.4.3).

�

� �

�

11.2 Deterministic Service Guarantees 699

out of the buffer with small delay. The price to pay is an increase of the delay of
elastic flows, but still guaranteeing that their delay is bounded deterministically
(except of the delay incurred by each flow in its leaky bucket flow buffer, which
is characterized in general by a random variable). The deterministic guarantee
on the delays comes from the leaky bucket envelope that we impose to all flows.
By playing with the weights 𝜙(h)

i at nodes, we can shift more bandwidth to those
flows that need tight delay bounding, even to the point that some other flow
becomes locally unstable. Note that local instability does not mean that there
is not enough bandwidth at the link for all flows going through that link. Since
global stability is always met, there is in fact enough bandwidth for all. The large
bandwidth guaranteed to a delay-sensitive flow is not used continuously, but only
when the flow is backlogged. In the long run, only a fraction of that guaranteed
bandwidth will be actully used, i.e., the fraction 𝜌i∕r(h)i at link h. The unused part
will be “recycled” by flows that are locally unstable at the link, and hence need
using more than their reserved minimum bandwidth. The balance on the link is
kept by the guarantee that the overall sum of leaky buckets average rates of all
flows through the link is less than the capacity of the link.

We make this point more precise in the following theorem. Before stating the
theorem, we establish two lemmas required for the main result.

Lemma 11.4 Consider a flow constrained by a leaky bucket shaper passing
through a constant rate server. If the backlog of the server is bounded, the flow at
the output of the server is still constrained by a leaky bucket envelope.

Proof: Let us consider a flow constrained by the envelope 𝜌t + 𝜎, going through a
stable server, i.e., a server where the sum of the average rates of the input flow is
less than the capacity of the server. Since the server is stable, we can place a bound
Q∗ on the backlog of the buffer of this link. Then, we can write for the output of
the tagged flow:

D(t) − D(s) ≤ A(t) − A(s) + A(s) − D(s)

≤ 𝜌(t − s) + 𝜎 + Q(s) ≤ 𝜌(t − s) + 𝜎 + Q∗ (11.63)

That is to say the output of the flow is constrained by a leaky bucket envelope, with
burstiness parameter 𝜎′ = 𝜎 + Q∗. ◾

Note that we have derived this result, without assuming anything on the ser-
vice offered to the tagged flow (except that the link must be globally stable, oth-
erwise no bound on the backlog could be set). Therefore, if we can set a deter-
ministic bound on the backlog of the buffer link, we show that a leaky bucket
constrained input flow remains leaky bucket constrained also at the output, irre-
spective of whether the flow be locally stable.

�

� �

�

700 11 Quality-of-Service Guarantees

Lemma 11.5 The backlog of a constant rate stable server of capacity C loaded
by leaky bucket constrained flows is bounded.

Proof: Let us consider a link with capacity C, loaded by N flows, the i-th of which
is constrained by an envelope 𝜌it + 𝜎i. The overall arrival flow is therefore con-
strained by A(t) − A(𝜏) ≤ ∑N

i=1 𝜌i ⋅ (t − 𝜏) +
∑N

i=1 𝜎i, ∀𝜏 ≤ t. The buffer content at
time t is expressed by:

Q(t) = sup
0≤𝜏≤t

{A(t) − A(𝜏) − C(t − 𝜏)}

≤
N∑

i=1
𝜎i + sup

0≤𝜏≤t

{
(t − 𝜏) ⋅

(N∑
i=1

𝜌i − C

)}
=

N∑
i=1

𝜎i ≡ Q∗

since we assume that the link is stable, i.e.,
N∑

i=1
𝜌i < C (11.64)

We see that the backlog of the buffer of a stable link, loaded by sources
constrained by leaky-bucket envelopes, is bounded by the sum of the burstiness
parameters of the envelopes. ◾

Let us introduce some notation.
We consider a network composed of 𝓁 links loaded by n traffic sources. Let

denote the set of flows of the network. Assume the flow of each source is routed
through the network along a single path (e.g., shortest path routing). The routing
is defined by the coefficients ahi, where ahi = 1, if link h belongs to the route of
flow i, and ahi = 0 otherwise.

We are now ready to state the main result, which first appeared in [174].

Theorem 11.11 Let us consider a network loaded by n traffic sources con-
strained by leaky bucket envelopes at network edge. Flow i is constrained by the
arrival curve Ei(t) = 𝜌it + 𝜎i at the input to the network. The capacity of the links
is shared among the flows loading them by means of GPS, with weight 𝜙(h)

i for
flow i on link h. We assume that all network links are stable, i.e., Ch >

∑n
i=1 ahi𝜌i.

We assume further that there exists a unique flow ordering such that if i < j then

𝜙
(h)
i

𝜌i
≥ 𝜙

(h)
j

𝜌j
, ∀h ∶ ahiahj = 1 (11.65)

Under these assumptions, the backlog and delay at each link (and hence through
the network) are bounded for all flows, no matter whether they are locally stable
or not.

�

� �

�

11.2 Deterministic Service Guarantees 701

Proof: We say that flow j affects flow i on link h if 𝜙
(h)
i
𝜌i

<
𝜙
(h)
j

𝜌j
. Note that this inequal-

ity can be rewritten as r(h)i
𝜌i

<
r(h)j

𝜌j
, i.e., the ratio of the guaranteed bandwidth to the

leaky bucket average rate of flow j is bigger than the same quantity of flow i.
Let 1 be the set of all flows such that

i ∈ 1 ⇒
𝜙
(h)
i

𝜌i
≥ 𝜙

(h)
j

𝜌j
, ∀j ∈ , ∀h ∶ ahi = 1. (11.66)

In general, let us define

i ∈ k ⇒
𝜙
(h)
i

𝜌i
≥ 𝜙

(h)
j

𝜌j
, ∀j ∈ \

k−1⋃
r=1

r , ∀h ∶ ahi = 1, (11.67)

for k = 2,… ,K with K ≤ n. We see that 1 is the set of all flows that are not
affected by any other flow in any link of their routes. The set k is the set of all
flows that are affected only by flows belonging to1,… ,k−1 at some link of their
routes, but are not affected by any flow belonging to r with r > k.

We first show that flows belonging to 1 are locally stable at all links of their
routes. Let us consider a flow i ∈ 1 and let h be the first link on its route. Since
the link is stable, it is

∑n
i=1 ahi𝜌i < Ch. There must exist at least one flow, say s, such

that

𝜌s ≤ 𝜙
(h)
s∑n

i=1 ahi𝜙
(h)
i

Ch = r(h)s (11.68)

Since no flow can affect i, it must be

r(h)i

𝜌i
≥ r(h)s

𝜌s
≥ 1 (11.69)

which implies that flow i is locally stable at link h. Since flow i is constrained by
the leaky bucket envelope at the input of link h, the local stability at h implies that
flow i is still constrained by a suitable leaky bucket envelope at the output of link h,
i.e., at the input of the next link on the route of flow i. We can repeat the reasoning
we have just done, to conclude that flow i is locally stable at each link on its route.
This conclusion holds for all flows belonging to class 1.

It is easy to verify that the buffer content Qh(t) of link h is upper bounded by the
buffer content of the reduced capacity link, i.e., a link loaded with only sources

�

� �

�

702 11 Quality-of-Service Guarantees

that do not belong to 1 and with capacity Ch −
∑

i∈1
ahi𝜌i. It is

Qh(t) = sup
0≤𝜏≤t

{ n∑
i=1

ahi[Ai(t) − Ai(𝜏)] − Ch(t − 𝜏)

}

= sup
0≤𝜏≤t

{∑
i∉1

ahi[Ai(t) − Ai(𝜏)] − Ch(t − 𝜏) +
∑
i∈1

ahi[Ai(t) − Ai(𝜏)]

}

≤ sup
0≤𝜏≤t

{∑
i∉1

ahi[Ai(t) − Ai(𝜏)]−Ch(t−𝜏)+
∑
i∈1

ahi[𝜌i(t − 𝜏) + 𝜎
(h)
i]

}

= sup
0≤𝜏≤t

{∑
i∉1

ahi[Ai(t) − Ai(𝜏)] −

(
Ch −

∑
i∈1

ahi𝜌i

)
(t − 𝜏)

}
+

∑
i∈1

ahi𝜎
(h)
i

= Q(1)
h (t) +

∑
i∈1

ahi𝜎
(h)
i

We see that the buffer content Qh(t) is upper bounded by Q(1)
h (t), apart from a

constant offset. Q(1)
h (t) is the buffer content of link h once we remove all flows

belonging to 1 and reduce the capacity by the average leaky bucket rates of those
flows.

Let us remove then all flows belonging to the sets r , r = 1,… , k − 1, and let
us consider a flow i ∈ k, for k ≥ 2. Since there is no flow in the reduced network
that can affect flow i, we can retrace all steps of the reasoning above for a flow
belonging to 1 and conclude that:

𝜌i ≤ 𝜙
(h)
i∑

j∈k∪···∪K

ahj𝜙
(h)
j

(
Ch −

∑
j∈1∪···∪k−1

ahj𝜌j

)
(11.70)

This inequality states that flow i ∈ k is locally stable at the reduced link h. We
can then show that it is locally stable on each link along its route. We conclude that
all flows belonging to k are locally stable, hence have a bounded delay. In turn,
the bounded delay guarantees that a flow at the output of the link is still bounded
by a leaky bucket envelope.

Note, however, that the local stability is with respect to only flows belonging to
k ∪ · · · ∪K and with respect to the reduced link capacity.

Repeating the bounding of link h buffer content for each class, we can prove
finally that

Qh(t) ≤
∑
i∈1

ahi𝜎
(h)
i + · · · +

∑
i∈K

ahi𝜎
(h)
i (11.71)

that is, link h buffer level is bounded. ◾

�

� �

�

11.3 Stochastic Service Guarantees 703

The dimensioning criterion of GPS weights established with this theorem is
defined in [174] and called there consistent relative session treatment (in this
chapter we use the word “flow” instead of “session”). Its meaning is to treat flows
consistently at each link where they contend for the link capacity, i.e., the ratio of
the guaranteed rate to the leaky bucket mean rate of a flow is always not less (or
not greater) than the same ratio for another flow on all links common to the two
flows. Mixed situations are not allowed.

11.3 Stochastic Service Guarantees

The force of the deterministic traffic theory resides in its capability of providing
worst-case bounds on delay performance to delay-sensitive traffic flows. The
approach allows end-to-end network analysis and dimensioning, given that we
introduce leaky-bucket shapers at the edge of the network and use WFQ policy
on each network link to share the link capacity among the flows.

The price to pay is that bounds might be loose in general, hence the achieved
dimensioning can be quite conservative. This motivates the introduction of
probabilistic traffic control, where we exploit the statistical variability of traffic to
achieve statistical multiplexing gain. We try, however, to maintain the simplicity
of the circuit-switching approach, where we are able to associate a bandwidth
to each flow that is offered to the network. Flow admission control in that case
amounts to checking that there is at least that bandwidth available along the
chosen network path. To reproduce this approach also in the realm of stochastic
traffic control, we will define the notion of effective bandwidth.

Following [137], we consider a discrete time model. The embedded time points
of the discrete system are tk = kΔ, k ∈ ℤ, for a given constant time slot duration
Δ > 0. We study multiplexing of traffic sources in a link of capacity C. The multi-
plexer is equipped with a buffer of size K.

Let n be the number of traffic sources. The number of bits produced by the source
in the time interval (tk−1, tk] is denoted with Bj,k for source j. These bits are assumed
to arrive at the multiplexer input at time tk.

All quantities are measured in consistent units, e.g., buffer size and arrivals in
bits, rates in bits/s, time in seconds.

We consider first the special case K = 0 (marginal buffer). It is representative
of multiplexers with buffer size much smaller than the average burst size of the
sources.

11.3.1 Multiplexing with Marginal Buffer Size

With K = 0 there is no wait. The only relevant performance metric is therefore bit
loss due to overload of the multiplexer output link capacity. Let us consider a finite

�

� �

�

704 11 Quality-of-Service Guarantees

time horizon, up to time slot t. The average fraction of time slots where loss occurs
is given by

ZL(T) =
1
T

T∑
k=1

I

(n∑
j=1

Bj,k > C

)
(11.72)

where I(E) is the indicator function of the event E. If the arrival process is station-
ary, we can take the limit for T → ∞ of ZL(T) and define the long-term average
fraction ZL of time slots where loss occurs.

The loss probability can be found as

PL(T) =

∑T
k=1 max

{
0,
∑n

j=1 Bj,k − C
}

∑T
k=1

∑n
j=1 Bj,k

(11.73)

In the limit for T → ∞ we obtain the steady-state loss probability PL. Note that
the loss probability is defined as in fluid models, without taking packets into
account (a packet is either transmitted or lost as a whole).

We can establish a relationship between ZL and PL, if the amount of bits offered
by source j in a time slot is limited by a peak value Rj, i.e., Bjk ≤ Rj, ∀k, for j =
1,… ,n. To simplify notation, let Sk =

∑n
j=1 Bj,k. Then

PL = lim
T→∞

1
T

∑T
k=1 max{0, Sk − C}

1
T

∑T
k=1 Sk

= lim
T→∞

1
T

∑T
k=1 I(Sk > C)max{0, Sk − C}

1
T

∑T
k=1 Sk

≤ max{0,R − C}
E[S]

lim
T→∞

1
T

T∑
k=1

I(Sk > C) = max{0,R − C}
E[S]

ZL

where R =
∑n

j=1 Rj. Note that R ≤ C implies that there is no loss. The multiplexer
problem is therefore interesting only if R > C.

The inequality between PL and ZL shows that we can focus on the metric
ZL. Setting a requirement of the type ZL ≤ 𝜖 implies in turn that PL ≤ 𝜖

′, for a
suitable 𝜖

′.
If the steady-state limit exists, we can write:

ZL = E

[
I

(n∑
j=1

Bj > C

)]
=

(n∑
j=1

Bj > C

)
(11.74)

The key point of the analysis and dimensioning of the multiplexer with marginal
buffering consists then of studying the tail of the probability distribution of the
random variable S =

∑n
j=1 Bj, the sum of n random variables. In the following we

assume that the Bj’s are i.i.d. random variables.

�

� �

�

11.3 Stochastic Service Guarantees 705

We use the Chernov bound3 to give the following upper bound of the tail of the
probability distribution of a random variable X :

(X > x) ≤ e−𝜃x
𝜙X (𝜃) , ∀𝜃 ≥ 0, (11.75)

where

𝜙X (𝜃) = E[e𝜃X] = ∫
∞

−∞
e𝜃ufX (u) du (11.76)

is the moment-generating function (MGF) of the random variable X . The MGF is
defined for any 𝜃 ≤ 0, since fX (u) is a PDF and hence it is integrable. It may exist
also for 0 < 𝜃 < 𝜃0 for some positive (possibly infinite) 𝜃0. If there is a positive 𝜃0
such that e𝜃xfX (x) is integrable for all 𝜃 ∈ (0, 𝜃0), then the PDF fX (x) must decay to
0 exponentially fast as x → ∞ and all moments of X are finite. If the tail of fX (x)
tends to 0 slower than an exponential (e.g., it follows a power-law, as is the case of
the Pareto PDF), then there is no positive 𝜃0 and hence the Chernov bound is not
applicable.

We introduce the capacity per source c, namely we write C = nc. Let fB(x) be
the PDF of the amount of bits B offered by a traffic source in a time slot, and let
𝜙B(𝜃) be the corresponding MGF. We assume that fB(x) is light-tailed, i.e., it decays
exponentially fast as x → ∞. The PDF of the sum S =

∑n
j= Bj of bits emitted by all

sources, fS(x), is the n-fold convolution of fB(x). The corresponding MGF is𝜙S(𝜃) =
𝜙

n
B(𝜃). Therefore, we have

ZL =
(n∑

j=1
Bj > nc

)
≤ inf

𝜃≥0
{e−𝜃nc

𝜙B(𝜃)n} = e
−n sup

𝜃≥0
{c𝜃−log𝜙B(𝜃)} (11.77)

This bound says that ZL decays at least exponentially fast with n, since the supre-
mum in the exponent is positive, as we will see.

The bound on ZL, our performance metric, depends on the function:

J(y) = sup
𝜃≥0

{y𝜃 − log𝜙B(𝜃)} = sup
𝜃≥0

{y𝜃 − log E[e𝜃B]} (11.78)

This is called the rate function.
Some properties of J(y) can be readily proved. For ease of notation, let us define

h(y, 𝜃) = y𝜃 − log𝜙B(𝜃):

1. J(y) ≥ 0. Since h(y, 0) = 0 for any y, it follows that the supremum defining J(y)
is non-negative.

2. J(y) is increasing. Given y1 ≤ y2, we have h(y1, 𝜃) ≤ h(y2, 𝜃) ≤ J(y2), holding for
any 𝜃 ≥ 0. Then, it is also J(y1) ≤ J(y2).

3 See the Appendix at the end of the book.

�

� �

�

706 11 Quality-of-Service Guarantees

3. J(y) is convex. The proof is similar to the previous point, this time given y1 < y2
and any 𝛼 ∈ [0, 1]. We have h(𝛼y1 + (1 − 𝛼)y2, 𝜃) = 𝛼h(y1, 𝜃) + (1 − 𝛼)h(y2, 𝜃) ≤
𝛼J(y1) + (1 − 𝛼)J(y2).

4. If y > E[B], J(y) does not change if we extend the supremum to 𝜃 ∈ ℝ. Since the
exponential function is convex, Jensen’s inequality yields E[e𝜃B] ≥ e𝜃E[B]. Then,
h(y, 𝜃) = y𝜃 − log𝜙B(𝜃) ≤ 𝜃(y − E[B]). If y > E[B], the supremum of h(y, 𝜃) for
𝜃 ≤ 0 is attained at 𝜃 = 0.

5. If y > E[B], the supremum is achieved at a point 𝜃
∗
> 0 such that 𝜙

′
B(𝜃

∗) =
y 𝜙B(𝜃∗). The derivative with respect to 𝜃 of h(y, 𝜃) is h′

𝜃
(y, 𝜃) = y − 𝜙

′
B(𝜃)∕𝜙B(𝜃).

It is h′
𝜃
(y, 0) = y − E[B] > 0. Using Schwartz’s inequality, it can be readily ver-

ified that h′
𝜃
(y, 𝜃) is a monotonously decreasing function of 𝜃4 . From the def-

inition of MGF, it can be shown also that, for any given y > 0, it is definitely
𝜙
′
B(𝜃)∕𝜙B(𝜃) > y for large 𝜃. Hence, h′

𝜃
(y, 𝜃) < 0. Then, there is a unique positive

𝜃
∗ where h′

𝜃
(y, 𝜃∗) = 0. This is where the supremum is attained.

Example 11.11 Let us consider n ON-OFF traffic sources. An ON-OFF traffic
source offers data to the multiplexer at peak rate R or it is silent. The probability
that the source emits data is p (i.e., p is the average fraction of time the source is
active). For this source the random variable B has only two values, R and 0, with
probabilities p and 1 − p, respectively. We have therefore:

𝜙B(𝜃) = 1 − p + pe𝜃R (11.79)

The rate function can be found after some calculations:

J(y) =
y
R

log
(

y∕R
p

)
+
(

1 −
y
R
−
)

log
(

1 − y∕R
1 − p

)
(11.80)

for 0 < y < R. The probability of the event B1 + · · · + Bn > ny is 1 for y ≤ 0, while
it is 0 for y > R, since sources have a peak rate of R. The bounding provided by J(y)
is meaningful only for 0 < y < R, which is in fact the range of values of y where the
supremum is finite. The function J(y) is monotonously increasing for y ∈ [pR,R],
rising from 0 to log(1∕p).

Since E[B] = pR, we consider values of c belonging to (pR,R). This corresponds
to assigning each source with a capacity level intermediate between its mean and
peak rates. For example, let p = 0.1 (highly intermittent source) and assign c =
0.5 ⋅ R. It is J(0.5 ⋅ R) ≈ 0.511. For n = 10 sources, the probability of overflow is
bounded by ZL ≤ e−10⋅0.511 = 6 ⋅ 10−3. A bound for the loss probability is obtained
by multiplying the bound of the overflow probability ZL by (nR − nc)∕(nE[B]) =

4 It suffices to show that the derivative of 𝜙′
B(𝜃)∕𝜙B(𝜃) is positive. The derivative is

(𝜙′′
B (𝜃)𝜙B(𝜃) − [𝜙′

B(𝜃)]
2)∕[𝜙B(𝜃)]2. This is positive if [𝜙′

B(𝜃)]
2
< 𝜙

′′
B (𝜃)𝜙B(𝜃). Letting

f (x) = x
√

e𝜃xfB(x) and g(x) =
√

e𝜃xfB(x), we apply
(∫ f (x)g(x)dx

)2 ≤ ∫ f 2(x)dx ∫ g2(x)dx and we
are done.

�

� �

�

11.3 Stochastic Service Guarantees 707

(1 − c∕R)∕p = 5. Then, we have PL ≤ 5 ⋅ ZL ≤ 0.03. The bounds for n = 20 become
ZL ≤ 3.66 ⋅ 10−5 and PL ≤ 1.83 ⋅ 10−4, respectively.

This is yet another manifestation of the fact that large-scale systems offer good
performance. In this case, reserving an overall capacity equal to nR guarantees no
loss deterministically. We can save half of that capacity, if we are willing to accept a
loss probability that is no more than 0.000183, for n = 20 sources. Larger number
of sources allow even larger efficiency gains for the same requirement on the loss
probability.

We can rewrite the key result of this section, eq. (11.77), as follows:

1
n

log
(n∑

j=1
Bj > nc

)
≤ −J(c) (11.81)

The question is how tight the bound is. To explore this point, we refer to Cramer’s
theorem.

Theorem 11.12 (Cramer’s theorem) Let c be a positive constant and B1,… ,Bn
be independent and identically distributed random variables with E[B] < c and
(B > c) > 0. Assume that the MGF𝜙B(𝜃) = E[e𝜃B] is finite for 𝜃 < 𝜃0, with 𝜃0 > 0.
Then

lim
n→

1
n

log
(n∑

j=1
Bj > nc

)
= inf

𝜃≥0
{log𝜙B(𝜃) − c𝜃} = −J(c) (11.82)

Proof: We have already seen that −J(c) is an upper bound of the left-hand side in
eq. (11.82). We now prove that it is a lower bound, asymptotically as n → ∞.

Let 𝜃
∗ be the point where the supremum of J(c) is attained, so that

𝜙
′
B(𝜃

∗)∕𝜙B(𝜃∗) = c. We define the exponentially tilted random variable V
whose PDF is given by:

fV (x) =
e𝜃∗xfB(x)
𝜙B(𝜃∗)

(11.83)

This is a non-negative function, and it sums to 1 when integrated over x, because of
the definition of the MGF. We also have E[V] = c, since E[V] = E[Be𝜃∗B]∕𝜙B(𝜃∗) =
𝜙
′
B(𝜃

∗)∕𝜙B(𝜃∗) = c.
By the central limit theorem, given any 𝜖 > 0, we have:

(

0 <
1
n

n∑
j=1

(Vj − c) < 𝜖

)
→

1
2

as n → ∞ (11.84)

�

� �

�

708 11 Quality-of-Service Guarantees

We are now ready to show that −J(c) is a lower bound for the left-hand side limit
in eq. (11.82). We have

(B1 + · · · + Bn > nc) > (nc < B1 + · · · + Bn < n(c + 𝜖))

= ∫D
𝜖

fB1
(x1)… fBn

(xn) dx1 … dxn

= 𝜙B(𝜃∗)n∫D
𝜖

e−𝜃∗(x1+···+xn)fV1
(x1)… fVn

(xn) dx1 … dxn

> en log𝜙B(𝜃∗)e−𝜃∗n(c+𝜖)∫D
𝜖

fV1
(x1)… fVn

(xn) dx1 … dxn

= e−n(c𝜃∗−log𝜙B(𝜃∗))e−𝜃∗n𝜖⋅

(

0 <

n∑
j=1

Vj − n c < n 𝜖

)

= e−n J(c)e−n𝜃∗𝜖
(1

2
+ o(1)

)
where D

𝜖
= {(x1,… , xn) ∈ ℝn ∶ nc < x1 + · · · + xn < n(c + 𝜖)}.

Taking the logarithm of both sides, dividing by n and letting n → ∞ and 𝜖 → 0
we complete the proof. ◾

Let us apply this result to the dimensioning of the multiplexer for a prescribed
requirement 𝜖 on the loss probability. The problem statement can be as follows:
given the output capacity of the multiplexer, C, and the requirement PL ≤ 𝜖, find
the value of c that maximizes the utilization of the capacity C.

For n homogeneous traffic sources, we have PL ≤ nR−C
nE[B]

ZL, where R and E[B] are
the peak and mean number of bits per slot emitted by a source. The requirement
on ZL shall be ZL ≤ 𝜖

′ = nE[B]
nR−C

𝜖. Using the theory we have developed in this section
for marginal buffering, a sufficient condition for this requirement to hold is

ZL ≤ e−nJ(C∕n) ≤ 𝜖
′ = nE[B]

nR − C
𝜖 (11.85)

Introducing the link capacity per source c = C∕n and the source activity factor
p = E[B]∕R, we obtain:

g(c) ≡ C
c

J(c) + log
(

pR
R − c

)
≥ − log 𝜖 (11.86)

The range of c is pR < c < R. The lower limit comes from the requirement that c
be more than the mean bandwidth of the source, as discussed in the development
of the rate function theory. The upper limit is obvious, since there is no point in set-
ting a requirement on the loss probability once we assign a bandwidth per source
equal or greater than its peak rate.

The function g(c) defined in eq. (11.86) is monotonously increasing. The optimal
value of c is the smallest c > E[B] such that the inequality is satisfied. Let it be

�

� �

�

11.3 Stochastic Service Guarantees 709

Figure 11.10 Normalized
effective bandwidth c∗∕R as a
function of the multiplexer
capacity C∕R for ON-OFF sources
with activity factor p.

5 10 15 20

Normalized mux capacity, C/R

0.2

0.4

0.6

0.8

1

p = 0.1

p = 0.2

p = 0.4

c
*
/R

𝜖 = 1e-05

denoted with c∗. This is the portion of multiplexer link bandwidth that must be
reserved for one traffic source, under the loss probability constraint. We can admit
new traffic flows, as long as their number n is such that nc∗ ≤ C. Since a bandwidth
c∗ is set aside for each on-going flow, as long as n = n∗ = ⌊C∕c∗⌋ we must reject
new flow set-up requests, not to impair the quality of service guarantee for the
on-going flows.

We see that c∗ is the effective bandwidth of the traffic source. We can reduce the
admission rule to a very simple check: verify that the number of admitted flows
does never exceed the threshold n∗.

Example 11.12 Let us consider again the ON-OFF source that alternates
between a peak rate R and 0. We recall that p is the probability that the source is
emitting, hence pR is the mean rate.

Figure 11.10 plots c∗∕R as a function of C∕R for three values of p. The require-
ment on the loss probability PL is set to 𝜖 = 10−5.

As the multiplexer capacity increases, a bigger statistical gain is reaped. This is
evident from the decreasing behavior of the effective bandwidth. The statistical
gain, i.e., the number of sources that can be multiplexed with respect to peak rate
assignment, is bigger for lower p. The more the source is intermittent, the more it
makes sense to exploit statistics.

We can generalize this result to a heterogeneous environment, where there are
r classes of sources. Let B(i)

j be the amount of bits emitted in a time slot by source
j of class i. Let ni be the number of sources of class i. For a compact notation, let
S(i)(ni) =

∑ni
j=1 B(i)

j for i = 1,… , r and S = S(1)(n1) + · · · + S(r)(nr). Using the Cher-
nov bound, since the random variables S(i)(ni) are independent of one another, we

�

� �

�

710 11 Quality-of-Service Guarantees

have:

ZL = (S > C) ≤ e−𝜃C
𝜙S(𝜃) = e−𝜃C

r∏
i=1

𝜙S(i) (𝜃) (11.87)

Hence

log ZL ≤
r∑

i=1
log𝜙S(i) (𝜃) − 𝜃C =

r∑
i=1

ni log𝜙B(i) (𝜃) − 𝜃C (11.88)

where B(i) is the random variable defined as the amount of bits emitted by a source
of class i in a time slot.

We see that ZL ≤ e−𝛾 if

C𝜃 −
r∑

i=1
ni log𝜙B(i) (𝜃) ≥ 𝛾 (11.89)

For a given value of 𝜃, let us define the admission region (𝜃) as follows:

(𝜃) =

{
(n1,… ,nr) ∈ (ℤ+)r ∶ 𝜃C −

r∑
i=1

ni log𝜙B(i) (𝜃) ≥ 𝛾

}
(11.90)

We have shown that

(n1,… ,nr) ∈ ⇒ ZL ≤ e−𝛾 (11.91)

Invoking Cramer’s theorem, we can also show that:

lim
N→∞

1
N

log
(r∑

i=1

niN∑
j=1

B(i)
j > NC

)
= sup

𝜃≥0

{
C𝜃 −

r∑
i=1

ni log𝜙Bi
(𝜃)

}
(11.92)

which points out that the bound we are using is asymptotically tight as the number
of multiplexed sources grows.

The whole admission region can be obtained as the union of all the regions (𝜃)
as 𝜃 varies over ℝ+.

In practice, to set up an admission control algorithm, we should fix a value of 𝜃
and define

ei(𝜃) =
log𝜙B(i) (𝜃)

𝜃
(11.93)

to be the effective bandwidth of a source of type i. The admission rule would then
resemble perfectly the one that we use in a circuit-switched network, namely, we
maintain that

r∑
i=1

niei(𝜃) < C − 𝛾

𝜃
= C +

log 𝜖
𝜃

(11.94)

We will resume the generalization of the effective bandwidth with multiple
source classes in the next section, devoted to the analysis of multiplexing with
non-negligible buffer size.

�

� �

�

11.3 Stochastic Service Guarantees 711

Figure 11.11 Admissible region
of the multiplexer with marginal
buffer loaded by two classes of
ON-OFF sources, under the
constraint that the overflow
probability be no more than 10−4.

0
0

50

100

150

200

250

5 10

Admissible sources of class 1

Not admissible

Admissible

A
d
m

is
s
ib

le
 s

o
u
rc

e
s
 o

f
c
la

s
s
 2

15 20 25

Example 11.13 Let us consider a multiplexer loaded by two classes of ON-OFF
sources. The capacity of the multiplexer output link is C = 1. The parameters of the
ON-OFF sources are p1 = 0.1, R1 = C∕10 for the first class and p2 = 0.2 R2 = C∕80
for the second class.

Figure 11.11 shows the admissible region, i.e., the region of the plane that cov-
ers couples (n1,n2) that satisfy n1e1(𝜃) + n2e2(𝜃) < C − 𝛾∕𝜃, for some 𝜃. n1 and n2
denote the number of sources of class 1 and class 2, respectively. The performance
target is 𝜖 = e−𝛾 = 10−4. The solid curve in Figure 11.11 represents the boundary
of the admissible region. It can be found as the envelope curve of the set of lines
n1e1(𝜃) + n2e2(𝜃) = C − 𝛾∕𝜃 as 𝜃 is varied. The infimum of allowed 𝜃 values is such
that C − 𝛾∕𝜃 > 0, that is 𝜃inf = 𝛾∕C ≈ 9.22. Two of those lines are shown in the
figure.

It can be seen that the admissible region is delimited by a concave boundary
curve. The line obtained for a fixed value of 𝜃 is tangent to the boundary curve,
therefore it lies entirely below the boundary curve. Managing admission control
for a fixed value of 𝜃 causes some inefficiency, since part of the admissible region
remains out of the full region delimited by the line.

11.3.2 Multiplexing with Non-Negligible Buffer Size

We have seen that statistical gain is possible even if no buffer is provided at the
multiplexer. This should come at no surprise, thinking for example to the analysis
of ON-OFF sources multiplexing discussed at the end of Chapter 8.

In this section we consider multiplexing of traffic sources modeled with stochas-
tic processes, where the multiplexer has a non-negligible buffer size. The term of
comparison to assess the size of the buffer is the burst size of the source, e.g., the
ON time for an ON-OFF traffic source. We set a requirement on the probability of
buffer overflow and establish a rule for admission control of traffic sources under

�

� �

�

712 11 Quality-of-Service Guarantees

that requirement. We will see that we can reduce admission control in a packet
network to a simple check, akin to what is done in circuit-switched networks, or
with peak rate assignment. The role of the peak rate is played by a suitably defined
effective bandwidth.

We stick to the discrete-time model. Let B(j)
k denote the amount of bits emitted

by traffic source j during slot time k (assumed to arrive at the end of the interval).
Time is normalized with respect to the duration of the fixed time slot. Therefore,
in the following we refer to the Bk’s and any other data related quantities as “rates”,
since they can be thought of as divided by the fixed unit time. In the following, we
drop the traffic source index j, as long as we deal with a single source.

We assume that the traffic generation process is modulated by an ergodic,
discrete-time, discrete-state process Zk. The state space of Zk is the set Z = {0, 1,
… ,m}. Let 𝜋i = (Z∞ = i), i ∈ Z be the steady-state probability distribution of
the process Zk. It is Bk = V(Zk), where V is a random variable whose PDF depends
on the state of Zk. Let fi(x) denote the PDF of Bk and 𝜙i(𝜃) = E[e𝜃V |Zk = i] be
the MGF of Bk, conditional on Zk = i, for i ∈ Z . To keep notation simple, we
denote the random variable V conditional on being Zk = i as Vi. The mean rate
of the traffic source is r =

∑m
i=0 𝜋iE[Vi]. If the Vi’s all have finite support, say

[0, rmax], then we can define also the peak rate as rmax. A special case is obtained
by assuming V(Zk) = r(Zk), where r ∶ Z → ℝ+ is a deterministic rate function.
In that case, we denote the state-dependent rates as ri, i ∈ Z . The mean rate is
r =

∑m
i=0 𝜋iri and the peak rate is rmax = maxi∈Z

{ri}.
As usual, C denotes the amount of bits that the multiplexer output can send out

during one time slot. Qk represents the amount of bits found in the multiplexer
buffer at the end of the k-th time slot. Then

Qk = max{0,Qk−1 + Bk − C} , k ≥ 1, (11.95)

with the initial condition Q0 = 0.
Following the same line of reasoning used to derive Reich’s formula in continu-

ous time, we find

Qn = max
0≤k≤n

{An − Ak − (n − k)C} (11.96)

where An =
∑n

k=1 Bk is the cumulative arrival process. We let A0 = 0.
We assume that the sequence Bk is stationary. Hence the cumulative arrival pro-

cess An has stationary increments.
Reich’s formula gives the evolution of the buffer starting from a given time. We

have to modify it, to be able to study the steady state. We consider still a range on
n + 1 time slots, but starting from time −n instead of 0. Then

Q0 = max
−n≤k≤0

{A0 − Ak − C(−k)} = max
0≤k≤n

{A0 − A−k − Ck} (11.97)

�

� �

�

11.3 Stochastic Service Guarantees 713

The sequence appearing in the rightmost-hand side of eq. (11.97) is
nondecreasing, since the set {A0 − A−k − Ck}0≤k≤n is included in the set
{A0 − A−k − Ck}0≤k≤n+1 for a given sample path {Ak}k∈ℤ. Hence, the limit for
n → ∞ exists (path-wise). If it is finite, then we can define the limiting random
variable Q as

Q = sup
k≥0

{A0 − A−k − Ck} (11.98)

We say that the multiplexer is stable if the sequence of probability distributions
of the random variables

Q(n) ≡ max
0≤k≤n

{A0 − A−k − Ck} (11.99)

converges to a finite probability distribution with probability 1. If5 lim
k→∞

Ak+h−Ah

k
=

Λ < C, the sequence A0 − A−k − Ck behaves asymptotically as k(Λ − C) and hence
it tends to −∞. This ensures that the supremum in eq. (11.98) is finite.

The target performance requirement is the buffer overflow probability, i.e.,
P(K) = (Q > K). To find a useful expression of this metric, we consider the
sequence of overflow probabilities defined as:

Pn(x) = (Q(n) > x) = (max
0≤k≤n

{A0 − A−k − Ck} > x)

=
(n⋃

k=0
{A0 − A−k − Ck > x}

)

≤
n∑

k=0
(A0 − A−k − Ck > x) (11.100)

where the last inequality derives from the union bound. Using the Chernov bound,
we find:

Pn(x) ≤
n∑

k=0
(A0 − A−k − Ck > x) ≤ e−𝜃x

n∑
k=0

E[e𝜃(A0−A−k−Ck)]

= e−𝜃x
n∑

k=0
e−k𝜃CE[e𝜃(A0−A−k)] (11.101)

We would like to find an upper bound on Pn in steady state, i.e., taking the limit
for n → ∞ of the eq. (11.101). To that end, we introduce the log-moment gener-
ating function (LMGF) of the source and we will end up defining the effective
bandwidth of the traffic source. This is the topic of next section.

5 Notice that the probability distribution of the increment Ak+h − Ah = Bh+1 + · · · + Bh+k does
not depend on h, because of the stationarity of the sequence Bk.

�

� �

�

714 11 Quality-of-Service Guarantees

11.3.3 Effective Bandwidth

11.3.3.1 Definition of the Effective Bandwidth
We define the LMGF, assuming it exists finite in a neighborhood of the origin:

Γ(𝜃) = lim
n→∞

1
n

log E[e𝜃(An−A0)] (11.102)

Thanks to the stationarity of the increments of An, we get E[e𝜃(A0−A−k)] ∼ ekΓ(𝜃).
The k-th term of the sum appearing in the right-hand side of eq. (11.101) behaves
asymptotically as e−kC𝜃E[e𝜃(A0−A−k)] ∼ e−kC𝜃ekΓ(𝜃) for k → ∞. If Γ(𝜃) − C𝜃 < 0, the
k-th term of the sum tends exponentially to 0 as k → ∞. Therefore, the sum con-
verges to a finite constant 𝜅. Under the assumption Γ(𝜃) < C𝜃, it follows that

P(x) = lim
n→∞

Pn(x) ≤ 𝜅(𝜃)e−𝜃x (11.103)

that is to say, the buffer overflow probability is bounded by an exponentially
decreasing function of the threshold x.

Let us state some properties of the LMGF Γ(𝜃), holding for a cumulative arrival
process with stationary increments with a light-tailed PDF.

1. Γ(𝜃) is monotonously increasing and convex for 𝜃 ≥ 0.
2. For small 𝜃 we have

log E[e𝜃(An−A0)] = log E[1 + 𝜃(An − A0) + o(𝜃)]

= log(1 + 𝜃nE[B] + o(𝜃)) = nE[B]𝜃 + o(𝜃)

Dividing by n and taking the limit for n → ∞, we find Γ(𝜃) = 𝜃E[B] + o(𝜃) for
𝜃 → 0. Specifically, we have Γ(0) = 0 and Γ′(0) = E[B].

3. Using Jensen’s inequality, it can be seen that Γ(𝜃) ≥ 𝜃E[B].
4. If Bk ≤ R,∀k (i.e., R is the peak rate), then Γ(𝜃) ≤ 𝜃R.
5. If the arrival process is the superposition of 𝓁 independent processes, i.e., A =

A(1) + · · · + A(𝓁), it is Γ(𝜃) = Γ1(𝜃) + · · · + Γ𝓁(𝜃), where Γi(𝜃) is the LMGF of the
process A(i).

The multiplexer analysis is interesting only if E[B] < C < R. In that case, the
properties of the LMGF imply that the curve of Γ(𝜃) is initially below the line 𝜃C
for 𝜃 > 0. As 𝜃 grows, Γ(𝜃) crosses the line C𝜃, if Γ(𝜃) is strictly convex. Say the
crossing occurs at 𝜂. Then, we have Γ(𝜃) < C𝜃 for 0 < 𝜃 < 𝜂.

The condition for the bound in eq. (11.103) to hold is that there exist values of 𝜃
such that Γ(𝜃) < C𝜃. In that case we can give an exponentially decaying bound of
the buffer overflow probability. The decay rate can be maximized by choosing the
supremum of the set of values of 𝜃 for which Γ(𝜃) < C𝜃. The bound holds for any
𝜃 < 𝜂, where

𝜂 = sup{𝜃 ≥ 0 ∶ Γ(𝜃) < C𝜃} (11.104)

�

� �

�

11.3 Stochastic Service Guarantees 715

We have thus proved that (Q > K) ∼ e−𝜃K , with 𝜃 < 𝜂. In fact, a stronger result
holds. It can be shown that, at least for Markovian traffic sources, the tail of the
buffer content decays exponentially with a decay rate 𝜂 that is the unique positive
solution of Γ(𝜂) = C𝜂. Asymptotically we have (Q > x) ∼ e−𝜂x (see references in
Section 11.4 and [86, Ch. 10]).

The last property listed above means that, for a superposition of 𝓁 indepen-
dent traffic sources at the input of the multiplexer, the overflow probability can be
bounded by an exponentially decaying function of the buffer size, provided that

Γ1(𝜃)
𝜃

+ · · · +
Γ𝓁(𝜃)
𝜃

< C (11.105)

We find out that the ratio Γ(𝜃)∕𝜃, for a suitable value of 𝜃, behaves as the “band-
width” of each multiplexed traffic source. We define the effective bandwidth of a
stationary traffic source with associated LMGF Γ(𝜃) as

e(𝜃) = Γ(𝜃)
𝜃

(11.106)

11.3.3.2 Properties of the Effective Bandwidth
Let us consider a traffic flow Bk with mean r = E[B] and peak rate R. Since An ≤
nR, it is easy to see that Γ(𝜃) ≤ R𝜃, hence e(𝜃) ≤ R. Using Jensen’s inequality we
have E[e𝜃An] ≥ e𝜃E[An] = en𝜃E[B], hence Γ(𝜃) ≥ r𝜃, and e(𝜃) ≥ r.

The effective bandwidth is monotonously increasing with 𝜃, since Γ(𝜃) is a con-
vex function. It is lim

𝜃→0
e(𝜃) = r. To prove this, we write for small 𝜃:

e(𝜃) = lim
n→∞

1
n𝜃

log E[eAn𝜃]

= lim
n→∞

1
n𝜃

log(1 + E[An]𝜃 + o(𝜃))

= lim
n→∞

1
n𝜃

(nE[B]𝜃 + o(𝜃)) = r

It is also lim
𝜃→∞

e(𝜃) = R. If An = nR,∀n, the result is obvious. Otherwise, let n1 be
the smallest value of n such that An1

< n1R. Then, for n > n1 and a sufficiently
large 𝜃, we have

log E[e𝜃An] = log(enR𝜃E[e𝜃(An−nR)]) = nR𝜃 + log E[e𝜃(An−nR)] ∼ nR𝜃 (11.107)

since An < nR with positive probability. Dividing by n and 𝜃 and taking the limit
for n → ∞, it follows that lim

𝜃→∞
e(𝜃) = R.

If the traffic flow is described by a sequence of i.i.d. random variables Bk ∼ B,
we have E[e𝜃(An−A0)] = E[e𝜃

∑n
k=1 Bk] = (E[e𝜃B])n = (𝜙B(𝜃))n. Therefore, it is Γ(𝜃) =

log𝜙B(𝜃). We see that the definition (11.106) of the effective bandwidth reduces
to e(𝜃) = log𝜙B(𝜃)∕𝜃 in case the traffic flow is described by a sequence of i.i.d.
random variables.

�

� �

�

716 11 Quality-of-Service Guarantees

Note that, in the special case where the traffic flow is made up of i.i.d. ran-
dom variables Bk ∼ B, we can connect the effective bandwidth theory to the upper
bound of the waiting time CCDF given in Section 8.2.4. We proved there that
(W > x) ≤ e−s0x, where W is the random variable to which the sequence Wk+1 =
max{0,Wk + Xk − Tk+1} tends with probability 1 as k → ∞. The coefficient s0 is the
unique root of the equation 𝜑Z(−s) = 1 different from s = 0. The random variable
Z is defined by Z = X − T, where X ∼ Xk and T ∼ Tk. It is assumed that service
times Xk and inter-arrival times Tk are i.i.d. sequences (renewal processes).

The backlog of the buffer we consider in this section obeys the recursion Qk+1 =
max{0,Qk + Bk − C}. We can identify the inter-arrival time variable with the con-
stant C and the service time variable with B; hence Z = B − C (rememeber that
time is slotted, the slot time being the unit time). Passing to the MGF rather than
the Laplace transform, we have 𝜙Z(𝜃) = 𝜙B(𝜃)e−𝜃C. The parameter s0 becomes the
unique positive root of the equation 𝜙Z(𝜃) = 1; that is to say, log𝜙B(𝜃) = 𝜃C. In
terms of effective bandwidth, this equation becomes e(𝜃) = C. We see then that
we can identify s0 with the decay rate 𝜂 defined in eq. (11.104) for the special case
of i.i.d. traffic flow sequence Bk. We have therefore (Q > x) ≤ e−𝜂x.

The QoS requirement set on the buffer overflow probability can be met, provided
the sum of the effective bandwidths of the multiplexed traffic sources does not
exceed the multiplexer capacity C.

The admission rule is especially simple, in this framework. It is enough to check
that we do not exceed the multiplexer capacity C, if we add the effective bandwidth
of the requesting new traffic source to the sum of the effective bandwidths of the
traffic sources that are already set up through the multiplexer.

11.3.3.3 Effective Bandwidth of a Markov Source
We assume that the traffic source modulating process Zk is an irreducible, ape-
riodic, finite-state Markov chain. Let pij be the one-step transition probability of
making a transition from state i to state j. Let P denote the one-step transition
matrix, collecting the probabilities pij. The steady-state probability of state i of the
Markov chain is denoted with 𝜋i and the corresponding row vector is 𝜋.

To find the LMGF we need to evaluate the expectation of e𝜃(An−A0), where An −
A0 =

∑n
k=1 Bk. Conditioning on the first step of the modulating Markov chain, we

have for n ≥ 1:

hi(n) ≡ E[e𝜃
∑n

k=1 Bk |Z0 = i] =
m∑

j=0
E[e𝜃

∑n
k=1 Bk |Z0 = i,Z1 = j](Zi = j|Z0 = i)

=
m∑

j=0
pijE[e𝜃Vi]E[e𝜃

∑n
k=2 Bk |Z1 = j] =

m∑
j=0

𝜙i(𝜃)pijhj(n − 1) , n ≥ 1,

�

� �

�

11.3 Stochastic Service Guarantees 717

with hi(0) = 1, i = 0,… ,m. Using a compact matrix notation, we can write:

h(n) = D(𝜃)P h(n − 1) , n ≥ 1, (11.108)

where h(n) is a column vector with i-th entry equal to hi(n), and D(𝜃) is a diagonal
matrix with i-th diagonal entry equal to 𝜙i(𝜃).

The difference equation (11.108) is solved with the initial condition h(0) = e,
where e denotes a column vector of 1’s. The solution is h(n) = (D(𝜃)P)ne. We
remove the conditioning on the event Z0 = i pre-multiplying h(n) by 𝛑:

E[e𝜃(An−A0)] =
m∑

i=0
𝜋ihi(n) = 𝛑(D(𝜃)P)ne (11.109)

The matrix M(𝜃) = D(𝜃)P is positive and element-wise increasing with 𝜃. The
Perron-Frobenius theorem states that the maximum modulus eigenvalue of M(𝜃)
is real, simple and has positive left and right eigenvectors, denoted with u(𝜃) and
v(𝜃), respectively. Let 𝜂(𝜃) denote the maximum modulus eigenvalue of M(𝜃).
Since M(0) = P is a stochastic matrix, we have 𝜂(0) = 1. The function 𝜂(𝜃) is
monotonously increasing with 𝜃. Therefore, we have 𝜂(𝜃) > 1 for 𝜃 > 0.

Since 𝜂(𝜃) is the maximum modulus eigenvalue of M(𝜃), we have [M(𝜃)]n ∼
u(𝜃)v(𝜃)[𝜂(𝜃)]n as n → ∞. We can now find the LMGF of the Markov source:

Γ(𝜃) = lim
n→∞

1
n

log E[e𝜃(An−A0)] = lim
n→∞

1
n

log𝛑(D(𝜃)P)ne

∼ lim
n→∞

1
n

log𝛑u(𝜃)v(𝜃)e[𝜂(𝜃)]n = lim
n→∞

1
n
[log(b) + n log 𝜂(𝜃)]=log 𝜂(𝜃)

where b = 𝛑u(𝜃)v(𝜃)e is a positive scalar.

Example 11.14 Effective bandwdith of a two-state Markov traffic source
Consider a two-state Markov chain (m = 2). The matrix M(𝜃) can be written
explicitly as

M = D(𝜃)P =
[

𝜙1(𝜃)p11 𝜙1(𝜃)(1 − p11)
𝜙2(𝜃)(1 − p22) 𝜙2(𝜃)p22

]
(11.110)

The eigenvalues are the solutions of the quadratic

z2 − z[𝜙1(𝜃)p11 + 𝜙2(𝜃)p22] + 𝜙1(𝜃)𝜙2(𝜃)(p11 + p22 − 1) (11.111)

The maximum modulus eigenvalue is easily found to be

𝜂(𝜃) =
A1 + A2 +

√
(A1 − A2)2 + 4B1B2

2
(11.112)

where

Ai = 𝜙i(𝜃)pii , i = 1, 2,

Bi = 𝜙i(𝜃)(1 − pii) , i = 1, 2.

�

� �

�

718 11 Quality-of-Service Guarantees

0 0.2 0.4

(a)

0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

E[TON] = 2

10

100

Source peak rate

Source mean rate

Link capacity rate

0 0.05 0.1 0.20.15
0.7

0.8

0.9

1

1.1

1.2

1.3

E[T2] = 21020

Source mean rate

Link capacity rate

(b)

E
ff

e
c
ti
v
e

 b
a

n
d

w
id

th
,

e
(𝜃

)/
R

E
ff

e
c
ti
v
e

 b
a

n
d

w
id

th
,

e
(𝜃

)/
R

𝜃 𝜃

Figure 11.12 LMGF of a two-state Markov source. Left plot: ON-OFF source. Right plot:
source with Gamma-distributed rate in either state.

The effective bandwidth is e(𝜃) = log 𝜂(𝜃)∕𝜃. Given the multiplexer capacity C,
we know that the tail of the buffer content PDF can be bounded as follows:

(Q > K) ≤ 𝜅(𝜃)e−𝜃K (11.113)

With the Markov modulated traffic source, this upper bound holds for any positive
𝜃 such that 𝜃 < 𝜂, where 𝜂 is the unique positive solution of e(𝜂) = C. Moreover,
we have also a closed-form expression of the coefficient 𝜅(𝜃):

𝜅(𝜃) = 𝜋(I − e−𝜃CD(𝜃)P)−1e (11.114)

where I denotes the identity matrix.
As a special case, the ON-OFF source is modeled by letting𝜙1(𝜃) = 1 (OFF state:

B = 0 with probability 1) and 𝜙2(𝜃) = e𝜃R (ON state: B = R with probability 1).
Figure 11.12(a) plots the effective bandwidth e(𝜃) as a function of 𝜃, for this source
for three values of the mean sojourn time in the ON state E[TON] (2, 10 and 100
time slots) and for 𝜋1 = p = 0.2. The multiplexer output link capacity is C = 0.6
(rates are normalized with respect to the source peak rate).

The effective bandwidth grows monotonously from r = pR = 0.2 to the peak rate
R = 1 when 𝜃 goes from 0 to ∞.

The intercept of the effective bandwidth with the horizontal line at level C marks
the critical value 𝜂 of 𝜃 that gives the upper bound of the decay rate of the CCDF
of the multiplexer buffer content. Table 11.1 lists the values of 𝜂.

As a second example we consider a traffic source with bit rate modulated by a
two-state Markov chain. In either state the bit rate is a gamma random variable.
The parameters of the gamma PDF depend on the modulating Markov chain state.

Let 𝜌 denote the coefficient of utilization of the capacity, i.e., 𝜌 = E[B]∕C =
(𝜋1E[B1] + 𝜋2E[B2])∕C, where C is the the capacity of the multiplexer. B1 and B2
denote the bit rates random variables associated with states 1 and 2, respectively.

�

� �

�

11.3 Stochastic Service Guarantees 719

Table 11.1 Critical decay rate 𝜂 of the CCDF of the multiplexer buffer queue length with
ON-OFF source.

ON-OFF source Gamma source

E[TON] 2 10 100 2 10 100

𝜂 1.5510 0.2220 0.0200 0.1078 0.0431 0.0249

𝜋1 = 1 − p and 𝜋2 = p are the state probabilities of the two-state modulating
Markov chain, where p is the activity factor of the source.

The activity factor of the source is p = 0.1. The standard deviation for state 1
is 𝜎B|Z=1 = 0.5. The mean rate r1 in state 1 is set so that the overall mean rate r
of the source equals a fraction 𝜌 = 0.85 of the output capacity C. This is obtained
by setting r1 so that 𝜋1r1 + 𝜋2r2 = (1 − p)r1 + pr2 = 𝜌C. The mean rate and stan-
dard deviation of the bit rate in state 2 are r2 = E[B|Z = 2] = 2 ⋅ C and 𝜎B|Z=2 = 3,
respectively. The multiplexer link capacity is set to C = 1.

Figure 11.12(b) shows the effective bandwidth of this two-state source as a func-
tion of 𝜃 for three values of the mean sojourn time in state 2. The properties of the
effective bandwidth can be still verified, except that in this case there is no peak
rate. Therefore, e(𝜃) is unbounded as 𝜃 grows.

Example 11.15 In this example we elaborate on the admissible region for a sin-
gle multiplexer loaded by two classes of ON-OFF sources.

We refer to discrete time model and let the time slot be the unit of time. The
multiplexer output link capacity C is the unit of capacity. The parameters of the
first class of ON-OFF sources are as follows: peak rate R1 = 0.25 ⋅ C, activity factor
p1 = 0.2, mean ON time TON,1 = 20. As for the second class, we let: peak rate R2 =
0.05 ⋅ C, activity factor p2 = 0.4, mean ON time TON,2 = 150. The mean rates of the
two classes are r1 = 0.05 and r2 = 0.02.

The delay requirement is dmax = 100. This is interpreted as the 99.9% delay quan-
tile, i.e., the probability that the delay through the multiplexer exceeds dmax is no
more than 𝜖D = 10−3: (W > dmax) ≤ e−𝜃dmaxC ≤ 𝜖D. We have converted the bound
on the tail of the queue length Q to the bound on the delay. The connection is
established by the relationship W = Q∕C. Therefore, 𝜃 = − log 𝜖D∕(dmaxC). In our
case we find 𝜃 = 69.0776.

The effective bandwidth of the sources of the two considered classes can be cal-
culated with the same approach as in Example 11.14. Numerical values in our
example are e1 = 0.0546 and e2 = 0.0215.

Figure 11.13(a) shows the admissible region corresponding to the requirement
that n1e1 + n2e2 ≤ C, where ni is the number of sources of class i, i = 1, 2 (shaded

�

� �

�

720 11 Quality-of-Service Guarantees

0 50 100 150 200 250

E2e delay requirement

0

0.2

0.4

0.6

0.8

1

L
in

k
 u

ti
liz

a
ti
o

n

(b)(a)

Mean rate

EBW – εD = 10−3

Zero buffer – εL = 10−4

Admissible

Admissible sources of class 1

A
d

m
is

s
ib

le
 s

o
u

rc
e

s
 o

f
c
la

s
s
 2

0

50

40

30

20

10

0
5 10 15

Not admissible

Figure 11.13 Left plot: admissible region for a multiplexer loaded by two classes of
ON-OFF sources; the shaded area refers to a non-negligible buffer and effective
bandwidth under a delay constraint; the dotted line is the boundary of the admissible
region with effective bandwidth under a loss requirement with marginal buffer size;
the dashed line is the boundary of the theoretical admissible region based on mean
rate assignment. Right plot: multiplexer link utilization as a function of the delay
requirement.

region bounded by the solid curve). For comparison purposes we show also the
boundary line corresponding to mean rate assignment, i.e., the line such that
n1r1 + n2r2 = C (dashed line). Finally, the dotted line corresponds to the accep-
tance region boundary if marginal buffer and loss requirement equal to 𝜖L = 10−4.
For this requirement, we search for the optimum value of 𝜃, i.e., the one that
maximizes the multiplexer link utilization. It turns out that 𝜃∗ = 9.2564. Then,
the effective bandwidths for the loss requirement under marginal buffer size are
e(L)1 = 0.1121 and e(L)2 = 0.0228.

This plot shows clearly the penalty for guaranteeing (with probability 𝜖D) a delay
bound with respect to pure mean rate assignment. The admissible region restricts,
with the boundary line dropping by about 20% off the mean rate region boundary
line. A much greater penalty is paid if the marginal buffer size is provided and
hence a loss requirement is set on the multiplexer. If the mix of traffic sources
is composed essentially only of sources of type 2 (those with smaller peak rate),
multiplexing under marginal buffer size is even more efficient than providing sub-
stantial buffer space. Otherwise, it appears that a significant drop of the efficiency
is incurred with marginal buffer size.

Going back to a non-negligible buffer size and to the delay requirement,
Figure 11.13(b) plots the multiplexer link utilization 𝜌 = (n1r1 + n2r2)∕C as a
function of the delay requirement dmax. For each value of dmax, we find the mean
link utilization level achieved when the maximum number of allowable traffic
sources are admitted.

�

� �

�

11.3 Stochastic Service Guarantees 721

As expected, the link utilization is monotonously increasing with dmax. At first,
it grows fast, then it saturates and tends to settle on a level slightly higher than
0.91.

11.3.4 Network Analysis and Dimensioning

The theory of effective bandwidth has been developed for a single link (one
multiplexer). Moving to a network-wide scope, we consider an end-to-end path,
composed of a number of cascaded links. A possible approach is to split the
end-to-end delay requirement in delay requirements on each link of the path. The
delay requirement on a link can be translated into a requirement for the buffer
overflow probability. Let d be the delay target on a tagged link. We interpret d as
a requirement on a quantile of the delay, i.e., we require that (W > d) ≤ 𝜖. The
delay W is tied to the backlog by W = Q∕C, where C is the capacity of the link
and we assume that the buffer is managed according to a FIFO discipline. Then,
we translate the requirement in terms of backlog and use the effective bandwidth
approach bound, i.e., we have (Q > d ⋅ C) ≈ e−𝜃dC ≤ 𝜖. We derive the value of
𝜃 that guarantees the prescribed delay quantile requirement. The exponential
approximation of the tail of the backlog probability distribution holds under the
constraint on the sum of effective bandwidths of the traffic flows loading the
tagged link does not exceed the link capacity, i.e.,

∑
iei(𝜃) < C.

A critical point in carrying over the theory of effective bandwidth from a single
node to multiple nodes is that the source traffic is modified by the passage through
a multiplexing stage (where it interacts with other concurrent traffic flows). As a
consequence, the effective bandwidth changes from node to node.

We observe that the output process of the n-th multiplexer Dn is upper bounded
by the arrival process at the input of the multiplexer, Dn ≤ An,∀n. Then, it is easy
to derive that the LMGF of Dn is upper bounded by the LMGF of An, that isΓD(𝜃) ≤
ΓA(𝜃). Consequently, the effective bandwidth of the traffic flow Dn is bounded by
the effective bandwidth of the same flow, at the input of the multiplexer, namely
An. Therefore, eD(𝜃) ≤ eA(𝜃).

A stronger result is found in [86, Ch. 10] in a continuous-time setting, assuming
that a capacity c is reserved for a traffic flow A(t). In that case, it is

ΓD(𝜃) =

{
ΓA(𝜃) 𝜃 < 𝜃

∗
,

ΓA(𝜃∗) − c𝜃∗ + c𝜃 𝜃 ≥ 𝜃
∗
.

(11.115)

where 𝜃
∗ is the unique positive solution of the equation Γ′

A(𝜃) = c.
Even in the general case where there is no reserved bandwidth (e.g., FIFO mul-

tiplexing), the effective bandwidth of a traffic flow does not increase when passing

�

� �

�

722 11 Quality-of-Service Guarantees

Core layer

Aggregation layer

Edge layer

Servers

...

...

...
...

... ...
...

...

... ...

...

Figure 11.14 Fat-tree
topology.

through a multiplexer. Therefore, we can use the same quantity e(𝜃) for a flow on
all links of its network path.

Summing up, we can set a delay requirement on link i, say di. Given the capacity
ci of link i, the exponential bound on the link queue backlog provides us with a
bound for the tail of the time Wi through the buffer of link i, namely, (Wi > di) =
e−𝜃icidi . The requirement (Wi > di) ≤ 𝜖D is met if we set

𝜃i =
− log 𝜖D

dici
(11.116)

We assign the effective bandwidth ek(𝜃i) to the k-th traffic flow on link i. The
admission control rule reduces to verifying that at any given time the following
inequalities are satisfied:∑

k∈
rikek(𝜃i) ≤ ci , i ∈ , (11.117)

where is the set of active flows, is the set of network links, rik equals 1 if and
only if the route of flow k uses link i, it is 0 otherwise.

The end-to-end delay of flow k is given by

de2e,k =
∑
i∈

dirik ≤ dmax (11.118)

where dmax is the end-to-end delay requirement.

Example 11.16 In this example we dimension the amount of traffic that can be
sustained by a data center with a fat-tree topology under an all-to-all traffic matrix.

The fat-tree topology for data center network depicted in Figure 11.14 is among
the most widespread interconnection solutions.

The lower layer consists of servers, where processing is carried out. The data
center network purpose is to enable servers to cooperate. The interconnection net-
work is based on switches, represented by the rectangular boxes in Figure 11.14.
Let n denote the number of ports of a switch and let us assume that all switches
are equipped with the same number of ports. The switches are organized in three
layers. The edge layer comprises switches placed on top of racks where servers are

�

� �

�

11.3 Stochastic Service Guarantees 723

located. Half of the ports of an edge switch are connected to n∕2 servers. The other
n∕2 ports are connected to n∕2 switches of the upper layer. The second layer is
referred to as aggregation layer. Half of the ports of an aggregation layer switch are
connected to as many edge switches, while the other half of the ports are connected
to the top layer switches. A set of n∕2 aggregation switches, n∕2 edge switches and
the relevant n∕2 ⋅ n∕2 servers are referred to as pod. The top layer of the topology
is called core layer. Core switches guarantee the connectivity among pods. The full
topology is made up of n pods. Hence there are n2∕4 core switches overall. Across
all pods, there are n3∕4 servers and hence n3∕4 links interconnecting servers to
edge switches, n3∕4 links to connect edge switches to aggregation switches, n3∕4
links to connect aggregation switches to core switches.

The traffic is described at flow level and packet level. Flow level refers to arrivals
of end-to-end (server-to-server) connection requests, while packet-level descrip-
tion applies to the statistics of packets sent within a connection.

We assume that offered traffic at flow level is Poisson. The mean offered traffic
intensity of server s is denoted with Ao,s, s ∈ , where is the set of traffic sources
(servers).

In this example, we assume the traffic pattern defined as all-to-all, i.e., each
server addresses its flows uniformly to all other servers. We have therefore Ao,s =
Ao ≡ a(n2h + n4h + n6h), where a is a scale parameter, and

● n2h = n∕2 − 1 are servers that belong to the same rack as the tagged one and are
therefore reached with a two-hop route;

● n4h = n2∕4 − n∕2 are the servers that belong to the same pod as the tagged one,
but not the same rack; they are reached by means of four-hop routes;

● n6h = n3∕4 − n2∕4 are the remaining servers, that can be reached using six-hop
routes.

We define the traffic matrix of the network. The entry (i, j) of the traffic matrix
represents the amount of traffic directed from node i to node j. With our flow level
model, the traffic matrix entries are all equal to Ao, except of diagonal entries, that
are equal to 0.

Packet level traffic is modeled as an ON-OFF process with peak rate R, activity
factor p, mean rate r = pR. The mean duration of the ON time is denoted with TON.

Let de2e denote the delay requirement. Since the longest route used to connect
any two servers is made of six hops, we have We2e = W𝓁1

+ · · · + W𝓁6
, where Wi is

the delay through link i. We can guarantee that the end-to-end delay requirement
de2e is exceeded with probability not larger than 𝜖D, provided that each summand
W𝓁j

does not exceed de2e∕6 with probability larger than 𝜖D. According to the effec-
tive bandwidth bound, we have (W > dmax) ≤ e−𝜃dmaxC, where C is the value of
the link capacity (same for all links), and dmax is the requirement on the quan-
tile of the delay through a single buffer. We impose therefore that e−𝜃Cde2e∕6 ≤ 𝜖D,

�

� �

�

724 11 Quality-of-Service Guarantees

Table 11.2 Parameter definition and values for Example 11.16.

Symbol Meaning Value

C Link capacity 10 Gbit/s
R Flow peak rate 1 Gbit/s
p Flow activity factor 0.1
TON Flow mean burst duration 200 μs
𝜖D Probability of exceeding delay requirement 10−2

𝜖L Requirement on flow set-up rejection probability 10−2

n Number of ports of a switch 64
n2h Number of servers reachable in 2 hops from a tagged server 31
n4h Number of servers reachable in 4 hops from a tagged server 992
n6h Number of servers reachable in 6 hops from a tagged server 64512

from which we obtain the value of 𝜃 = −6 log 𝜖D∕(de2eC). The effective bandwidth
e(𝜃) is calculated as in Example 11.14. The number of admissible flows per link is
therefore m = ⌊C∕e(𝜃)⌋.

Table 11.2 lists the numerical values of the parameters used in the ensuing
numerical evaluation.

The effective bandwidth as a function of the end-to-end delay requirement de2e is
plotted in Figure 11.15(a). As the delay requirement is relaxed from a strict 100 𝜇s
to a looser 5 ms, the effective bandwidth decreases monotonously from around the
peak rate to close to the mean rate. It is expected that the statistical multiplexing
gain provided by the effective bandwidth approach grows accordingly.

The flow level of the network can be modeled by means of a loss network (see
Section 7.4). Nodes of the loss network correspond to links of the fat-tree topology.
Due to the symmetry of the topology and of the traffic matrix, there are only three
types of links: links between servers and edge switches (type 1), between edge and
aggregation switches (type 2), between aggregation and core switches (type 3).

Type 1 links carry flows that use routes 2, 4, and 6 hops long. These are the links
connecting servers to edge switches.

Type 2 links carry only flows that travel routes of 4 and 6 hops. These are the
links between the edge and the aggregation layer.

Type 3 routes carry only flows that go through the longest routes, comprising 6
hops. These are links connecting the aggregation switches to the core switches.

We denote the loss probability of link of type i with Ei, for i = 1, 2, 3.
The probability of rejection of flow set-up has different values for the three types

of links. Let Lxh denote the rejection probability for routes comprising x hops, x =

�

� �

�

11.3 Stochastic Service Guarantees 725

0 1 2 3 4 5

E2e delay requirement (ms)

101

102

103

E
ff
e
c
ti
v
e
 b

a
n
d
w

id
th

Peak rate

Mean rate

(a)

0 1 2 3 4 5

E2e delay requirement (ms)

(b)

0

0.2

0.4

0.6

0.8

1

L
in

k
 u

ti
liz

a
ti
o
n

Figure 11.15 Fat-tree topology dimensioning with end-to-end delay requirement de2e.
Left plot: effective bandwidth of ON-OFF sources as a function of de2e. Right plot: average
network link utilization as a function of de2e.

2, 4, 6 We have

L2h = 1 − (1 − E1)2

L4h = 1 − (1 − E1)2(1 − E2)2

L6h = 1 − (1 − E1)2(1 − E2)2(1 − E3)2

The number of routes of the three types, originating from any server, is denoted
with nxh, for x = 2, 4, 6, as noted above. The average rejection probability is

L =
n2hL2h + n4hL4h + n6hL6h

n2h + n4h + n6h
(11.119)

since the traffic matrix is uniform (all-to-all traffic pattern).
The Erlang fixed point equation whose solution provides the (approximate) val-

ues of the Ei’s are:

E1 = B(m, a [n2h(1 − E1) + n4h(1 − E1)(1 − E2)2

+ n6h(1 − E1)(1 − E2)2(1 − E3)2])

E2 = B(m, a [n4h(1 − E1)2(1 − E2) + n6h(1 − E1)2(1 − E2)(1 − E3)2])

E3 = B(m, a n6h(1 − E1)2(1 − E2)2(1 − E3))

where B(m,A) is the Erlang-B formula for a system with m servers and mean
offered traffic A. We recall that m = ⌊C∕e(𝜃)⌋ is the number of ON-OFF sources
that can be multiplexed on a link of capacity C under the requirement on the delay
quantile.

�

� �

�

726 11 Quality-of-Service Guarantees

0 20 40 60 80 100

Offered traffic

10−4

10−3

10−2

10−1

100

R
e
je

c
ti
o
n
 p

ro
b
a
b
ili

ty

(a)

0 20 40 60 80 100

Offered traffic

0

0.2

0.4

0.6

0.8

1

U
ti
liz

a
ti
o
n

(b)

Figure 11.16 Fat-tree topology dimensioning with end-to-end delay requirement de2e.
Left plot: probability of rejection of a connection set-up as a function of the mean offered
traffic per server (the delay requirement grows moving from curves on the left to curves
on the right). Right plot: average link utilization as a function of the mean offered traffic
per server (the delay requirement grows moving from lower to upper curves).

The utilization factors of the three types of links are

𝜌1 = r a
C

[n2h(1 − L2h) + n4h(1 − L4h) + n6h(1 − L6h)]

𝜌2 = r a
C

[n4h(1 − L4h) + n6h(1 − L6h)]

𝜌3 = r a
C

n6h(1 − L6h)

The overall mean link utilization of the network is

𝜌 =
𝓁1𝜌1 + 𝓁2𝜌2 + 𝓁3𝜌3

𝓁1 + 𝓁2 + 𝓁3
= 1

3
(𝜌1 + 𝜌2 + 𝜌3) (11.120)

since the number of links of type 1, 2 and 3 are the same: 𝓁1 = 𝓁2 = 𝓁3 = n3∕4.
The average link utilization of the fat-tree topology under all-to-all traffic is

shown in Figure 11.15(b) as a function of the delay requirement. We see that for
very strict delay requirements a very low utilization can be achieved. Much higher
values of utilization can be attained as the delay requirement is relaxed. Still, we
are off full utilization by more than about 30%. Part of this capacity waste is due to
the loose bounds we are using to assess the delay requirement end-to-end.

The flow rejection probability and the average link utilization as a function
of the mean offered traffic Ao are shown in Figure 11.16(a) and Figure 11.16(b),
respectively. Each curve refers to one value of the delay requirement de2e. In
Figure 11.16(a) we go from low to high delay requirement levels moving from left
to right. In Figure 11.16(b) we explore delay requirements from the lowest to the
highest one moving from the curve at the bottom upward.

�

� �

�

11.4 Further Readings 727

It is apparent that the rejection probability grows steeply as Ao is increased, while
the average utilization grows much slower. The level of the loss requirement 𝜖L =
10−2 is highlighted in Figure 11.16(a), by means of a dashed horizontal line.

If results seem disappointing, we should consider instead that we are able to
guarantee a 99% quantile of delays of, e.g., no more than 5 ms, still achieving
around 70% average link utilization. This traffic management approach applies to
delay-sensitive (inelastic) traffic. The residual capacity can be exploited by elastic
traffic, e.g., managed by mean of the reactive congestion control of TCP, thus
achieving very high link utilization, yet preserving delay performance of inelastic
applications.

11.4 Further Readings

Among the early papers that deal with deterministic traffic theory, applied to
packet networks, we mention [61, 62, 173, 174]. An early systematic treatment
can be found in [52]. The application of the min-plus algebra to network traffic
modeling and analysis is discussed extensively in [144]. A more recent monograph
on application of max-plus algebra to the modeling of networked service system
is [100].

The key points of network calculus are arrival and service curves and the
min-plus convolution, which provides the relationship between the input flow,
described by an arrival curve, and the output flow of a service system, described
by means of its service curve. As in system theory, the strength of the min-plus
convolution is the ability to concatenate tandem systems along a network path.
As a consequence, we are able to characterize the whole network path by a single
transfer function.

The deterministic network calculus has been extended to relax the determinis-
tic guarantees to stochastic guarantees, trading-off simplicity of the approach with
potential efficiency of the resulting dimensioning. The aim of the stochastic net-
work calculus is to account for statistical multiplexing and scheduling of traffic
sources in a framework for end-to-end analysis of multi-node networks, as we have
discussed for the deterministic traffic theory.

A systematic review of deterministic and stochastic network calculus is provided
in [78]. It discusses the concept of service curves, its use in the network calculus,
and the relation to systems theory under the min-plus algebra. The modeling of
service curves and its derivation from measurements are discussed as well. The
paper also reviews stochastic service curve theory, which allows importing the
statistical multiplexing gain in a network calculus framework

In the later work [77] the Authors aim to obtain fundamental results of stochas-
tic network calculus, by using a method based on moment generating functions,

�

� �

�

728 11 Quality-of-Service Guarantees

known from the theory of effective bandwidths, to characterize traffic arrivals
and network service. Affine envelope functions with an exponentially decaying
overflow profile are derived to compute statistical end-to-end backlog and delay
bounds for networks.

The effective bandwidth theory has been treated in a large number of papers and
books. The theory of effective bandwidth for Markovian traffic sources is devel-
oped in the works of Elwalid et al. [70–72]. Other relevant sources are [123,134].

An extensive account on effective bandwidth with several examples is given
in [86].

Appendix

The deterministic traffic theory is based on a special mathematical structure
known as the min-plus algebra. Let ℝmin denote the set or the real numbers
extended with ∞, i.e., ℝmin = ℝ ∪ {∞}. We define two operations on this set,
denoted with ⊕ and ⊙. The operations are defined as follows:

a ⊕ b ≡ min{a, b} , ∀a, b ∈ ℝmin (11.121)

a ⊙ b ≡ a + b , ∀a, b ∈ ℝmin (11.122)

As an example, 3 ⊕ (−1) = −1 and 3 ⊙ −1 = 2. Note also that a ⊕∞ = a and
a ⊙ 0 = a for any a ∈ ℝmin. The two elements ∞ and 0 play therefore the role of
neutral element for the ⊕ and ⊙ operations, respectively. We denote them with
𝜖 = ∞ and e = 0.

The tuple = {ℝmin, ⊕,⊙, 𝜖, e} is called a min-plus algebra. The operations of
the min-plus algebra have a number of properties, listed below.

● Associativity: ∀x, y, z ∈ ℝmin it is

x ⊕ (y ⊕ z) = (x ⊕ y)⊕ z, x ⊙ (y ⊙ z) = (x ⊙ y)⊙ z (11.123)

● Commutativity: ∀x, y ∈ ℝmin it is

x ⊕ y = y ⊕ x, x ⊙ y = y ⊙ x (11.124)

● Distributivity of ⊙ over ⊕: ∀x, y, z ∈ ℝmin it is

x ⊙ (y ⊕ z) = (x ⊙ y)⊕ (x ⊙ z) (11.125)

● Existence of a zero element: ∀x ∈ ℝmin it is

x ⊕ 𝜖 = 𝜖 ⊕ x = x (11.126)

● Existence of a unit element: ∀x ∈ ℝmin it is

x ⊙ e = e ⊙ x = x (11.127)

�

� �

�

Appendix 729

● The zero is absorbing for ⊙: ∀x ∈ ℝmin it is

x ⊙ 𝜖 = 𝜖 ⊙ x = 𝜖 (11.128)

● Idempotency of ⊕: ∀x ∈ ℝmin it is

x ⊕ x = x (11.129)

The min-plus algebra belongs of a class of algebraic structures known as
semi-rings. It is actually an example of commutative and idempotent semi-ring.
Another example is the max-plus algebra, obtained by re-defining the operation
⊕ with the max operator rather than min and replacing 𝜖 = ∞ with 𝜖 = −∞.
The monograph [100] is devoted to the presentation of the max-plus algebra, its
properties and an application to transportation services scheduling.

Note that applying the ⊙ operation n − 1 times to the same operand x used
n times we get x(n) ≡ x ⊙ · · ·⊙ x = x + · · · + x = n ⋅ x. We can use this identity
to generalize the notation x(n) to non integer exponents, i.e., x(w) = w ⋅ x for any
real w.

When taking the minimum operator over infinite sets, we will replace it with
the infimum operator, which is always well defined.

In the following, we consider wide-sense increasing function of a real vari-
able, i.e., functions f ∶ ℝ → ℝ, such that f (x) ≤ f (y) for all x ≤ y. We assume
right-continuous functions. Moreover, we let f (t) = 0 for t < 0. Let denote the
set of such functions.

Definition 11.4 Min-plus convolution Let f , g be two functions belonging to
the set . We define the min-plus convolution of f and g as h = f ⊗ g, where h(t)
is given by:

h(t) = (f ⊗ g)(t) = inf
0≤s≤t

{f (s) + g(t − s)} (11.130)

A number of properties can be shown for the min-plus convolution of functions
in the set (e.g., see [144, Ch. 3]).

1. Closure: f ⊗ g ∈ if f , g ∈ .
2. Associativity: ∀f , g, h ∈ it is f ⊗ (g ⊗ h) = (f ⊗ g)⊗ h.
3. Commutativity: ∀f , g ∈ it is f ⊗ g = g ⊗ f .
4. Unit element: If we define 𝛿0(t) = 𝜖 = ∞ for t ≥ 0 and 𝛿0(t) = 0 for t < 0, we

have6 f ⊗ 𝛿0 = f , i.e., the function 𝛿0(t) plays the same role for min-plus convo-
lution as the Dirac delta function does for ordinary convolution.

6 We remind that the inf operator in the definition of the min-plus convolution between
functions belonging to must be considered on the interval 0− ≤ s ≤ t+.

�

� �

�

730 11 Quality-of-Service Guarantees

5. Distributivity: ∀f , g, h ∈ it is (f ⊕ g)⊗ h = (f ⊗ h)⊕ (g ⊗ h). We recall that
m = f ⊕ g is a function defined by m(t) = min{f (t), g(t)},∀t. It is clear that m ∈
 if f , g ∈ .

6. Addition of a constant: Let K be a real non-negative constant. Then (f + K)⊗
g = f ⊗ g + K.

7. Bound: It is f ⊗ g ≤ f ⊕ g = min{f , g}.
8. Convexity: If f , g are convex functions belonging to , then f ⊗ g is convex as

well.
9. Isotonicity: If f1 ≤ f2 and g1 ≤ g2, it is f1 ⊗ g1 ≤ f2 ⊗ g2.

For a proof of these properties the reader is referred to, e.g., [144, Ch. 3]. Some
caution is in order since in that text a function in is assumed to be left-continuous
rather than right-continuous as here.

Definition 11.5 A function f is said to be sub-additive if f (s + t) ≤ f (s) + f (t) for
all s and t.

Examples of sub-additive functions are given by concave or piece-wise linear
functions. Here is a list of some properties of sub-additivity:

1. The sum of two sub-additive functions is itself sub-additive, i.e., if f and g are
sub-additive, so is f + g.

2. If f and g are sub-additive functions, so is their min-plus convolution f ⊗ g.
3. Given a function f ∈ , it is f ≥ f ⊗ f ≥ 0, by the very definition of the min-plus

convolution.
4. Given a function f ∈ that is sub-additive, it is f = f ⊗ f . The preceding prop-

erty says that f ≥ f ⊗ f . Sub-additivity implies that it is also f ≤ f ⊗ f .

By repeating the convolution operation, we generate a sequence f (n) given
by f (n+1) = f (n) ⊗ f ≤ f (n) ⊕ f ≤ f (n) (thanks to property 6), with f (1) = f . Since
the sequence f (n) is point-wise monotonously nonincreasing, it converges to
some non-negative limit as n → ∞. The limit function is the largest sub-additive
function smaller than f . It is called the sub-additive closure of f .

Definition 11.6 Sub-additive closure Let f ∈ and f (n) be the function
obtained by convolution of f with itself n − 1 times. We let also f (0) = 𝛿0. The
sub-additive closure of f , denoted with f , is defined by f (t) = inf{f (n)(t),n ≥ 0},∀t.

The following theorem establishes a key result on the sub-additive closure of f ,
namely that it is the upper bound of all sub-additive functions that are not bigger
than f .

�

� �

�

Appendix 731

Theorem 11.13 Let f ∈ and let f be its sub-additive closure. Then, f ∈ and
f ≤ f . Moreover, for any sub-additive function g ∈ such that g ≤ f , it is g ≤ f .

As a consequence of this theorem, the following three statements are equivalent
for f ∈ .

1. f is sub-additive.
2. f = f ⊗ f .
3. f = f .

The following properties of the sub-additive closure hold as well.

● Isotonocity: f ≤ g implies that f ≤ g.
● Sub-additive closure of a minimum: min{f , g} = f ⊗ g.
● Sub-additive closure of a convolution: f ⊗ g ≥ f ⊗ g. If f (0) = g(0) = 0, then

f ⊗ g = f ⊗ g.

The following operation we define, the de-convolution, is strictly tied to the
min-plus convolution.

Definition 11.7 Min-plus de-convolution Let f , g be two functions belonging
to the set . We define the min-plus de-convolution of f and g, as h = f øg, where
h(t) is given by:

h(t) = (f øg)(t) = sup
u≥0

{f (t + u) − g(u)} (11.131)

If both f (t) and g(t) are infinite for some t, the definition of the de-convolution
fails. Contrary to min-plus convolution, the function f øg does not necessarily
belong to , since it can take non-null values for t < 0.

We report the following properties of the de-convolution operation.

1. Isotonicity: if f ≤ g, then f øh ≤ gøh and høf ≥ høg.
2. Composition of ø: (f øg)øh = f ø(g ⊗ h).
3. Duality between ø and ⊗: f øg ≤ h if and only if f ≤ g ⊗ h.
4. Self-de-convolution: let h = f øf . It is h ∈ .

Finally, we give a definition of two quantities that are related to performance
metrics (backlog and delay).

Definition 11.8 Vertical and horizontal deviations For f , g ∈ the vertical
deviation v(f , g) and horizontal deviation h(f , g) are defined as:

v(f , g) = sup
t≥0

{f (t) − g(t)} (11.132)

�

� �

�

732 11 Quality-of-Service Guarantees

h(f , g) = sup
t≥0

{inf{d ≥ 0 ∶ f (t) ≤ g(t + d)}} (11.133)

Using the de-convolution operation, the vertical and horizontal deviations can
be re-stated as follows:

v(f , g) = (f øg)(0) (11.134)

h(f , g) = inf{d ≥ 0 ∶ (f øg)(−d) ≤ 0} (11.135)

Summary and Takeaways

This chapter introduces models for network traffic control functions that provide
performance guarantees. It explores two approaches.

Deterministic traffic theory is based on a deterministic description of the traffic
flows offered to a network. The deterministic function that bounds the profile of
the offered traffic flow is derived by the intrinsic properties of the traffic source. It
can also be modified (shaped) by a network element located at the network edge,
the traffic regulator or shaper. The leaky bucket is a major example of this kind of
element. In either case, we have an arrival curve called an envelope that bounds
the offered traffic flow.

A second cornerstone of the deterministic traffic theory consists of a bound
on the minimum amount of service provided by a network element, the lower
service curve. The key property of the lower service curve is concatenation:
the lower service curve of a cascade of N service elements is the min-plus
convolution of the lower service curve of the N elements. This is reminis-
cent of system theory input-output function composition through the usual
convolution.

Thanks to the deterministic bounds on the arrival flow and on the minimum
amount of service of the network elements (routers) it is possible to find determin-
istic bounds of the end-to-end delay of each flow. It is therefore possible to define
simple admission control rules that guarantee the end-to-end delay requirement,
in case of successful flow set-up.

The practical implementation of this approach requires leaky buckets at net-
work entrance and WFQ buffers on network links.

The second approach investigated in this chapter is based on a stochastic
description of the traffic flows offered to the network. Focusing on a single link,
if the buffer size is negligible, it is possible to set a bound on the loss probability
of the link. Through the bound we arrive at defining a simple rule to meet a loss
requirement, namely that the sum of effective bandwidths of the traffic sources
be less than the link capacity. The effective bandwidth is defined in terms of

�

� �

�

Problems 733

the MGF of the probability distribution function of the offered traffic flow. The
interest of this approach lies in the fact that it allows dealing with packet traffic
flows as in circuit-switching networks. Admission control translates into a simple
sum of effective bandwidths.

This approach can be carried over to the case where the link is equipped with
a non-negligible buffer size. Using Chernov bound, it is possible to bound the tail
of a multiplexer buffer backlog probability distribution. Again, the performance
requirement on the delay through a buffer is met, provided the sum of effective
bandwidths is less than the link capacity. In this case, the definition of the effec-
tive bandwidth is more involved, but it depends still on the probabilistic descrip-
tion of the offered traffic flow.

The approach can be extended to a network, setting bounds on end-to-end per-
formance.

Both approaches can incur in a low utilization of the link capacity, due to
possibly loose upper bounds involved in the development of the theories. Those
approaches make sense when dealing with traffic flows having strict delay and/or
loss requirements. Both approaches trade-off manageability of the traffic control
functions (policing, admission control), with efficiency. Elastic traffic can raise
the utilization of the link, by exploiting the capacity not reserved for inelastic
flows. Elastic flow use the leftover network capacity according to a reactive
congestion control paradigm, that adapts to the available capacity on each link
(see Chapter 10).

Problems

11.1 Calculate the min-plus convolution of the arrival curves 𝛾r,b(t) =
rt + b, t ≥ 0 and 𝛽R,T(t) = Rmax{0, t − T}. Discuss all cases with respect
to the values of r and R. Remember that arrival curves are assumed to be
0 for t < 0.

11.2 Consider an arrival flow A(t) constrained by a leaky bucket shaper with
parameters (𝜎, 𝜌). The arrival flow pass through a service system having a
rate-latency service curve S(t) = C ⋅ max{0, t − d}, with C ≥ 𝜌. Prove that
the output flow D(t) is constrained by the arrival curve 𝜌max{0, t − d} +
𝜎. Apart from the delay d, the output is therefore constrained by a leaky
bucket with the same parameters as the input flow.

11.3 Use the equivalent model Q of the flow buffer queue of the leaky bucket
shaper introduced in Theorem 11.9 to derive the CCDF of the system time
through the buffer for a two-state Markovian ON-OFF traffic source. The

�

� �

�

734 11 Quality-of-Service Guarantees

two-state Markovian source is described by a two-state Markov process
with transition rates 𝛼 from state 0 to state 1, and 𝛽 from state 1 to state 0.
The rate in state 0 is 0, in state 1 it is R (the peak rate).
[Hint: Make a fluid model of the flow buffer of the shaper, inspired to
Example 8.14 of Chapter 8.]

11.4 Consider a Markovian traffic source in continuous time. The flow rate is
given by X(t) = r(Z(t)), where Z(t) is a Markov process over the state space
{1,… ,m}, where Q is the infinitesimal generator of Z(t) and r(1) < · · · <
r(m) are m real, positive rate values. Let R denote the diagonal matrix with
diagonal elements equal to the rates r(j), j = 1,… ,m.
Show that the effective bandwidth of this traffic source is e(𝜃) = 𝜂(𝜃)∕𝜃,
where 𝜂(𝜃) is the largest real part eigenvalue of the matrix Q + 𝜃R.

11.5 Consider the marginal buffer effective bandwidth of an ON-OFF source
with peak rate R and activity factor p.
We multiplex homogeneous sources of that kind on a link of capacity C
with a loss constraint of 𝜖L.
Find the optimal value of 𝜃, i.e., the one that maximizes the number of
traffic sources that can be multiplexed on the link under the loss con-
straint. Plot the number of sources that can be multiplexed as a function
of 𝜃 to highlight that there is actually a maximum. For numerical values
use C = 1, R = C∕10, p = 0.1, 𝜖L = 10−3.

11.6 Consider a multiplexer with capacity C. Using the marginal buffer effec-
tive bandwidth definition, write a dimensioning algorithm that guaran-
tees that ON-OFF flows with given peak rate R and mean rate r do not
lose more than a fraction 𝜖L of their data and that the set-up rejection
probability of a flow be less than a prescribed level 𝜖. Assume connection
requests arrive according to a Poisson process.

�

� �

�

735

A

Refresher of Probability, Random Variables, and Stochastic
Processes

The true logic of this world is the calculus of probabilities.
James Clerk Maxwell

This Appendix offers a concise refresher of the concepts of probability space, ran-
dom variable and stochastic process. It is merely a collection of definitions and
key properties that are used in this book. For more extended introductory treat-
ments, specifically thought for non specialists, the textbook of Stewart [196] gives
an excellent account of all basic concepts, from probability to Markov chains. Clas-
sic specialized textbooks on stochastic processes are [85, 184].

A.1 Probability

We refer to an experiment where some system runs and an outcome is observed.
If it is not possible to anticipate the outcome, the experiment can profitably be
modeled as a stochastic one by introducing the concept of probability. The mathe-
matical model of probability is given by a triplet (Ω, ,P), where:

● Ω is a set of elements (e.g., numbers, strings) called samples; they are outcomes
of the stochastic experiment;

● is a set of events, where an event is a set of samples; hence is nothing but a
subset of the power set of Ω;

● P is a probability measure, i.e., a map that assigns uniquely real numbers to
events.

Network Traffic Engineering: Stochastic Models and Applications, First Edition. Andrea Baiocchi.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

�

� �

�

736 A Refresher of Probability, Random Variables, and Stochastic Processes

In the axiomatic theory of probability, any probability measure is acceptable as
long as it satisfies three axioms, namely:

1. For any event , it is 0 ≤ P() ≤ 1, i.e., probabilities are real number lying in
the interval [0, 1].

2. P(Ω) = 1, i.e., the universal or certain event is assigned probability 1.
3. For any countable collection of events {i}i≥1 that are mutually exclusive (i.e.,

j
⋂k = ∅, ∀j ≠ k), it must be P(

⋃
i≥1i) =

∑
i≥1P(i).

As long as the sample space is finite or denumerable, no special difficulty arises,
and it is always possible to define a probability value for any event, i.e., can coin-
cide with the power set of Ω. This is no longer true in general when Ω is infinite
and nondenumerable (e.g., the points belonging to a segment of the real line). In
that case we must restrict to those events for which we can assign probabili-
ties satisfying all three axioms, i.e., events must be sets to which it is possible to
assign a “measure.” Indeed, the mathematical theory of probability is intimately
connected to the theory of measure. We also insist that the set of events be closed
under the operations of countable union and intersection. A collection of subsets
of a given set Ω that has those properties is referred to as a 𝜎-field or also 𝜎-algebra.

Summing up, a probability space is a triplet (Ω, ,P), where Ω is a set, is a
𝜎-field of Ω that includes Ω itself, and P is a probability measure on that satisfies
the three axions given above.

The conditional probability of the event given the event is the probability
measure that the first event occurs, once we are informed that the second event
has taken place. In other words, in evaluating the probability measure of the
conditional event, we account for those outcomes that are favorable to both
and out of those that are favorable to , since this last event has occurred. In
mathematical terms, it is

P(|) = P(∩)
P() (A.1)

The joint probability of two events and is the probability measure that both
of them occur, i.e., it is the probability measure of the set of outcomes that belong
simultaneously to and .

Two events are said to be independent of each other if their joint probability
factors in the product of their individual probability measures:

P(∩) = P()P() (A.2)

In general, we have P(∩) = P(|)P().
Given a set of events {i}1≤i≤n, that makes up a partition of the sample space Ω,

the law of total probability can be stated as:

P() =
n∑

i=1
P(∩ i) =

n∑
i=1

P(|i)P(i) (A.3)

�

� �

�

A.2 Random Variables 737

The Bayes’ rule can be also derived from the definitions above. Given any event
 and any set of events {i}i≥1, we have

P(i|) =
P(|i)P(i)∑

j≥1
P(|j)P(j)

(A.4)

A.2 Random Variables

A random variable is actually a function. It maps elements belonging to the sam-
ple space Ω to a subset of the real numbers (we confine ourselves to real random
variables), i.e., X ∶ Ω → V ⊆ ℝ.

A random variable induces an event space. Given x ∈ V , we can define the event
x ≡ {𝜔 ∈ Ω|X(𝜔) = x}. The collection of the events x as x spans V is the event
space associated to the random variable X . If V is a finite or denumerable set, then
X is said to be a discrete random variable. Otherwise (e.g., if V = ℝ) we say that X
is a continuous random variable.

Now we can define naturally probability measures on the random variable. For
a discrete random variable we define the mass probability function as:

pX (x) = P(x) =
∑
𝜔∈x

P(𝜔) , x ∈ V (A.5)

It is ∑
x∈V

pX (x) = P(∪x∈Vx) = P(Ω) = 1 (A.6)

In applications, one forgets about the event space and deals with the probability
mass function as a function that assign probability values to each of the possible
elements of V .

As for continuous random variable, we can define the cumulative distribution
function, CDF, as

FX (x) = P(X ≤ x) = P({𝜔|X(𝜔) ≤ x}) , x ∈ ℝ (A.7)

Since {𝜔|X(𝜔) ≤ x1} ⊆ {𝜔|X(𝜔) ≤ x2} for x1 ≤ x2, it is easy to verify that FX (x)
is a monotonously nondecreasing function of x, with FX (∞) = 1 (since the set
{𝜔|X(𝜔) ≤ ∞} ≡ Ω) and FX (−∞) = 0 (since the set {𝜔|X(𝜔) ≤ −∞} is empty
and P(∅) = 0). It can also be shown that FX (x) is right-continuous. For any a < b,
it is also

P(a < X ≤ b) = P(X ≤ b) − P(X ≤ a) = FX (b) − FX (a) (A.8)

If a → b, then we get P(X = b) = FX (b) − FX (b−). Hence, the probability of a given
point is always 0 except if the CDF has a jump at that point.

�

� �

�

738 A Refresher of Probability, Random Variables, and Stochastic Processes

If the CDF has a derivative, we define the probability density function (PDF) of
X as fX (x) = F′

X (x). Since

fX (x) = lim
Δx→0

FX (x + Δx) − FX (x)
Δx

= lim
Δx→0

P(x < X ≤ x + Δx)
Δx

(A.9)

it follows that

fX (x)Δx ≈ P(x < X ≤ x + Δx) (A.10)

The CDF can be recovered from the PDF by integration:

FX (x) = ∫
x

−∞
fX (t) dt (A.11)

Any integrable, nonnegative function that sums to 1, i.e., such that ∫ ∞
−∞ fX (t)

dt = 1, can be a PDF. In applications, e.g., measurements and computer simula-
tions, it is preferable to use the CDF (or its complement, the survivor function
GX (x) = 1 − FX (x)), rather than the PDF. This is because: (i) the PDF is dimen-
sional, hence its values need be expressed in given measure units; on the contrary,
the CDF is non dimensional; (ii) the PDF is not bounded in general, whereas the
CDF is limited to the range [0, 1]; this simplifies numerical computations.

Functions of a random variable can be defined. In the special case where
Y = g(X) and g(⋅) is monotonous (increasing or decreasing) function, then

fY (y) = fX (g−1(y))
|||||dg−1(y)

dy

||||| (A.12)

This can be shown by exploiting the following equality (we assume that g(⋅) is
increasing):

FY (y) = P(Y ≤ y) = P(g(X) ≤ g(x)) = P(X ≤ x)|x=g−1(y) = FX (g−1(y)) (A.13)

Conditioned random variables can be defined. Let be an event. The CDF of
the random variable X conditional on the event is given by

FX|(x) = P(X ≤ x,)
P() (A.14)

Joint random variables can be defined. The joint CDF of the two random vari-
ables X and Y is

FX ,Y (x, y) = P(X ≤ x,Y ≤ y) (A.15)

The joint density is found by partial derivation with respect to x and y: fX ,Y (x, y) =
𝜕

2FX ,Y (x,y)
𝜕x𝜕y

. The CDF of a single random variable is called the marginal CDF. For
example, the marginal CDF of X is found as FX (x) = FX ,Y (x,∞). If the random
variables X and Y are independent, the joint CDF factors in the product of the
marginal CDFs: FX ,Y (x, y) = P(X ≤ x)P(Y ≤ y) = FX (x)FY (y).

�

� �

�

A.3 Transforms of Probability Distribution Functions 739

Finally, let us consider a random variable Z = X + Y . The CDF of Z can be
expressed as a function of the joint PDF of X and Y :

FZ(z) = P(X + Y ≤ z) = ∫
∞

−∞ ∫
z−x

−∞
fX ,Y (x, y) dydx (A.16)

By deriving with respect to z, we find

fZ(z) =
d
dz ∫

∞

−∞ ∫
z−x

−∞
fX ,Y (x, y) dydx = ∫

∞

−∞
fX ,Y (x, z − x)dx (A.17)

If the random variables X and Y are independent of each other, eq. (A.18) yields

fZ(z) = ∫
∞

−∞
fX (x)fY (z − x)dx (A.18)

i.e., the PDF of Z is obtained as the convolution of the PDFs of the summands X
and Y . For a non-negative random variable, i.e., a random variable with FX (x) = 0
for x < 0, the convolution integral is fZ(z) = ∫ z

0 fX (x)fY (z − x)dx.
Expectations of a random variable are defined as

E[g(X)] = ∫
∞

−∞
g(t)fX (t) dt (A.19)

for a continuous random variable and

E[g(X)] =
∑
x∈V

g(x)fX (x) (A.20)

for a discrete random variable. If g(x) = xn the resulting expectation is called
moment of order n.

The minimum and the maximum of n independent random variables
X1,X2,… ,Xn deserve a special mention. Let us assume that the n random variables
have the same probability distribution. Then, letting Y = min{X1,X2,… ,Xn},
we get

P(Y > y) = P(X1 > y,X2 > y,… ,Xn > y) =
n∏

i=1
P(Xi > y) = P(X1 > y)n

(A.21)

Analogously, in case of the maximum, i.e., Z = max{X1,X2,… ,Xn}:

P(Z ≤ z) = P(X1 ≤ z,X2 ≤ z,… ,Xn ≤ z) =
n∏

i=1
P(Xi ≤ z) = P(X1 ≤ z)n

(A.22)

A.3 Transforms of Probability Distribution Functions

It is common to resort to transforms when dealing with probability distribution
functions. Let X be a continuous, non-negative random variable, with PDF fX (x).

�

� �

�

740 A Refresher of Probability, Random Variables, and Stochastic Processes

Its Laplace transform is defined as

𝜑X (s) = ∫
∞

0
fX (x)e−sx dx (A.23)

for s such that ℜ[s] ≥ −𝛽, 𝛽 being a non-negative constant, that depends on the
convergence properties of fX (x) as x → ∞. If fX (x) decays exponentially with rate
𝜂, the abscissa of convergence −𝛽 equals −𝜂 and 𝜑X (s) has a singularity (simple
pole) at s = −𝜂. This can be seen by using the final value theorem. The theorem
states that limt→∞fX (t) = lims→0s 𝜑X (s). Moreover, the Laplace transform of e𝜂tfX (t)
is 𝜑X (s − 𝜂). Then, if fX (t) decays exponentially with rate 𝜂, we have

lim
s→−𝜂

(s + 𝜂)𝜑X (s) = lim
s→0

s 𝜑X (s − 𝜂) = lim
t→∞

e𝜂tfX (t) = c (A.24)

where c is a positive constant.
Note that 𝜑X (0) = 1 since fX (x) is a PDF. This transform can be often calculated

more easily than the density fX (x). Then, the density can be recovered by numerical
inversion. If only moments are required, they can be obtained by deriving 𝜑X (s):

E[Xn] = ∫
∞

0
xnfX (x) dx = (−1)n

𝜑
(n)
X (0), n ≥ 1, (A.25)

where 𝜑
(n)
X (s) denotes the n-th derivative of 𝜑X (s).

A very useful way of writing the Laplace transform of a PDF is formally 𝜑X (s) =
E[e−sX]. As a matter of example, this way it is trivial to derive that the Laplace
transform of the PDF of the sum of independent random variables is the product
of the respective Laplace transforms, i.e., if Y = X1 + · · · + Xk, then

𝜑Y (s) = E[e−sY] = E[e−s(X1+···+Xk)] =
k∏

j=1
E[e−sXj] =

k∏
j=1

𝜑Xj
(s) (A.26)

In case of real random variables that take also negative values, it is customary to
define the moment generating function (MGF) as

𝜙X (𝜃) = E[e𝜃X] = ∫
∞

−∞
fX (x)e𝜃x dx (A.27)

The integral converges for any negative 𝜃. If the PDF of X decays exponentially
with rate 𝜂, the integral converges also for 𝜃 < 𝜂.

Analogously, the MGF of a discrete probability distribution pk = (X = k), k ≥ 0
is defined as

𝜙X (z) = E[zX] =
∞∑

k=0
pkzk (A.28)

for |z| ≤ 1. Also for discrete random variables it can be verified that the MGF of
the sum of independent random variables is obtained as the product of the MGFs
of the random variables.

Derivatives of𝜙X (z) yield factorial moments, namely:𝜙(n)
X (1) = E[X(X − 1) ⋅ · · · ⋅

(X − n + 1)]. As a matter of example, the first two central moments of X are found
as E[X] = 𝜙

′
X (1) and 𝜎

2
X = 𝜙

′′
X (1) + 𝜙

′
X (1) − [𝜙′

X (1)]
2.

�

� �

�

A.3 Transforms of Probability Distribution Functions 741

Handy as it might be to derive moments, the Laplace transform of a probability
distribution would be of limited use, if it were not possible to get back to the prob-
ability distribution, by means of numerical inversion. The topic has been exten-
sively studied, given the extensive applications of transforms in various scientific
and engineering fields. We confine ourselves to the works of Abate and Whitt, and
specifically to two inversion methods: (i) the Fourier transform inversion; and (ii)
the Euler method. Here we outline the essential points to grasp the numerical
recipes and to be able to implement them. The theory backing numerical meth-
ods, estimate of approximation errors, a discussion on numerical stability, hints as
to a proper choice of the algorithm parameter values, numerical examples can be
found in [1–3].

As for the first method, we recall that the Fourier transform of a function f (t)
integrable over the real axis is defined by:

𝜙(u) = ∫
∞

−∞
eiutf (t) dt (A.29)

Under mild conditions (e.g., it is sufficient that f (t) be continuous, besides being
integrable over the real axis) the inversion formula is:

f (t) = 1
2𝜋 ∫

∞

−∞
e−iut

𝜙(u) du (A.30)

We are interested in the case where f (t) is the PDF of a random variable X , hence
a real function. Moreover, it is 𝜙(u) = E[eiuX]. Focusing our attention on random
variables recurring in network traffic engineering, we further restrict ourselves to
the consideration of a non-negative X . Hence the PDF and the CDF are non-null
only for non-negative argument values. Then, the connection between the Laplace
transform of the PDF of X and 𝜙(u) is easily established:

𝜙(u) = ∫
∞

0
eiutf (t) dt = ∫

∞

0
e−stf (t) dt|s=−iu = 𝜑(s)|s=−iu = 𝜑(−iu) (A.31)

It is shown, e.g., in [1, eq. (3.6)], that the CDF F(t) = (X ≤ t) can be obtained
as follows:

F(t) = 2
𝜋 ∫

∞

0
Re[𝜙(u)] sin(ut)

u
du (A.32)

By discretizing the integral with step h, we get

F(t) ≈ ht
𝜋

+ 2
𝜋

N∑
k=1

Re[𝜙(kh)] sin(kht)
k

(A.33)

There are two sources of error: (i) discretization (depends on the step size h); (ii)
truncation (depends on the upper limit N of the summation).

If the function F(t) has to be computed in a number of different points in the
range [0,T], it can be convenient to make some changes in (A.33), by letting t =
jT∕n and h = 𝜋∕(mT) for some integers n and m. Then

F(jT∕n) ≈
j

m n
+ 2

𝜋

2m n−1∑
k=1

𝛼k sin
(
𝜋j k
m n

)
, j = 0,… ,n. (A.34)

�

� �

�

742 A Refresher of Probability, Random Variables, and Stochastic Processes

where

𝛼k =
N∕(2mn)∑

l=0

Re[𝜙((2mnl + k)h)]
2mnl + k

, k = 1,… , 2mn − 1. (A.35)

An implementation in Matlab code of this algorithm is shown next1 . In
that code we consider a gamma random variable X . Hence the PDF of X is
f (t) = a (at)b−1

Γ(b)
e−bt

, t ≥ 0, and f (t) = 0, t < 0, with E[X] = b∕a, 𝜎
2
X = b∕a2; Γ(b)

is the Euler gamma function defined by Γ(b) = ∫ ∞
0 ub−1e−u du. The Laplace

transform of this PDF is simply 𝜑(s) =
(

a
s+a

)b
.

% first two moments of the rv X
EX = 1;
sigmaX = 3;
% parameters of gamma PDF of X
aa = EX/sigmaX/sigmaX;
bb = (EX/sigmaX) ̂ 2;
tmax = 20*EX;
deltat = EX/10;
np = ceil(tmax/deltat);
tv = tmax*[0:np]/np;
% points for LT inversion
lmax = 7; % N = lmax*2*np*mp
mp = 11;
hh = pi/mp/tmax;
sv = i*[1:2*mp*np*lmax+2*mp*np-1]*hh;
nums = length(sv);
phiXsv = (aa./(aa+sv)). ̂ bb; % LT of the gamma PDF
for kk=1:2*mp*np-1

indvet = [kk:2*mp*np:nums];
alfav(kk) = sum(real(phiXsv(indvet))./indvet);

end
for jj=0:np

sinv = sin([1:2*mp*np-1]*jj*pi/mp/np);
CDFXv(jj+1) = (jj/mp/np)+(2/pi)*sum(alfav.*sinv);

end
CCDFXv = 1-CDFXv;
Gv = 1-gammainc(aa*tv,bb); % CCDF of X

1 This one and all other pieces of Matlab code provided in this text are only examples and they
are not intended to be production-level software.

�

� �

�

A.3 Transforms of Probability Distribution Functions 743

The Euler algorithm is an implementation of the Fourier-series method, using
Euler summation to accelerate convergence of the infinite series; e.g., see Abate
and Whitt [3]. The approximation of the PDF at a point t is computed according
to the expression:

f (t) ≈ 10M∕3

t

2M∑
k=0

𝜂kRe
[
𝜑

(
𝛽k

t

)]
(A.36)

where M is an integer, that should be set as ⌈1.7n⌈, n being the number of signifi-
cant digits desired, and the following definitions are used:

𝛽k =
M log(10)

3
+ i𝜋k 𝜂k = (−1)k

𝜉k (A.37)

𝜉k =

⎧⎪⎪⎨⎪⎪⎩

1
2

k = 0

1 k = 1,… ,M
1

2M

∑2M−k
j=0

(
M
j

)
k = M + 1,… , 2M

(A.38)

A Matlab code to implement the Euler algorithm for the CCDF of X is reported
below.

% the first lines of code are the same as in the code
% for the Fourier series method
EX = 1;
sigmaX = 3;
% parameters of gamma PDF of X
aa = EX/sigmaX/sigmaX;
bb = (EX/sigmaX) ̂ 2;
tmax = 20*EX;
deltat = EX/10;
np = ceil(tmax/deltat);
tv = tmax*[0:np]/np;
Fv = gammainc(aa*tv,bb); % CDF of X
MM = 20;
Mbino(1) = 1;
for kk=1:MM

Mbino(kk+1) = Mbino(kk)*(MM-kk+1)/kk;
end
csiv = ones(1,2*MM);
sumcsiv = cumsum(Mbino);
csiv(MM:2*MM) = sumcsiv(MM+1:-1:1)/(2 ̂ MM);
csiv = [.5 csiv];

�

� �

�

744 A Refresher of Probability, Random Variables, and Stochastic Processes

etav = cos(pi*[0:2*MM]).*csiv;
betav = MM*log(10)/3+i*pi*[0:2*MM];
CCDFXv(1) = 1;
for nn=1:np

tt = tv(nn);
phiXsv = (aa./(aa+betav/tt)). ̂ bb;
c = exp(MM*log(10)/3);
CCDFXv(nn+1) = c*sum(etav.*real((1-phiXsv)./betav));

end

A.4 Inequalities and Limit Theorems

Exact results are rarely applicable, mainly since they are derived under too restric-
tive hypotheses. Often, approximations are required. Sometimes bounding lim-
its may also be useful. This section is devoted to the presentation of some basic
inequalities, namely, Markov inequality, Chebychev inequality, Jensen inequality,
Chernov bound, and the union bound. A hint is given to the central limit theorem
as well.

A.4.1 Markov Inequality

Let X be a random variable with PDF fX (x). Let h(x) be a non-decreasing
non-negative function of x that has finite expectation

E[h(X)] = ∫
∞

−∞
h(u)fX (u) du (A.39)

For any t we can write

E[h(X)] = ∫
t

−∞
h(u)fX (u) du + ∫

∞

t
h(u)fX (u) du

≥ h(t)∫
∞

t
fX (u) du = h(t)(X > t)

Hence, if h(t) > 0, we get

(X > t) ≤ E[h(X)]
h(t)

(A.40)

As a matter of example, in case of a non-negative random variable X and
h(x) = x, we obtain the following upper bound of the tail of the PDF of X :

(X > t) ≤ E[X]
t

, t > 0. (A.41)

�

� �

�

A.4 Inequalities and Limit Theorems 745

As simple as it is, the Markov inequality turns out often to provide a quite loose
bound. This limits its practical usefulness. For instance, if X is a negative exponen-
tial random variable with mean 1, it is (X > t) = e−t and the Markov inequality
states that e−t ≤ 1∕t.

A.4.2 Chebychev Inequality

Let us assume that X has finite variance 𝜎2
X . We can form the new random variable

Y = (X − E[X])2. By applying the Markov inequality to Y with h(x) = x, we find

(Y > t2) ≤ E[Y]
t2 = E[(X − E[X])2]

t2 =
𝜎

2
X

t2 (A.42)

that is to say, for t > 0,

(|X − E[X]| > t) ≤ 𝜎
2
X

t2 (A.43)

This can be rewritten by setting t = a𝜎X , with a a positive constant:

(|X − E[X]|

𝜎X
> a
)

≤ 1
a2 (A.44)

The Chebychev bound yields tighter results with respect to Markov inequality,
yet it is still often too loose to give practical results in many applications. Never-
theless, these inequalities are sometimes useful in proving properties of random
variables.

As an application of the Chebychev bound, let us consider the sum of n i.i.d.
random variables, having the same PDF as X , namely, Sn = X1 + · · · + Xn. We have
E[Sn] = nE[X] and 𝜎

2
Sn

= n𝜎2
X . By applying the inequality to S we get

(|Sn − nE[X]| > t) ≤ n𝜎2
X

t2 (A.45)

By setting t = n𝜖, we obtain

(||||Sn

n
− E[X]

|||| > 𝜖

)
≤ 𝜎

2
X

n𝜖2 (A.46)

holding for all positive integer n. Taking the limit for n → ∞, we have

lim
n→∞

(||||Sn

n
− E[X]

|||| > 𝜖

)
= 0 (A.47)

This is the weak law of large numbers. What it means is that the statistical average
obtained from repeated experiments (Sn∕n) converges in probability to the mean
of the random variable as the number of experiments grows. It provides a solid
ground to the study of random phenomenon through repeated experiments, e.g.,
as done in stochastic simulations of service systems.

�

� �

�

746 A Refresher of Probability, Random Variables, and Stochastic Processes

A.4.3 Jensen Inequality

A function is said to be convex in an interval [a, b] if, for any two points x, y ∈ [a.b]
and any 𝜆 ∈ [0, 1] it is

g(𝜆x + (1 − 𝜆)y) ≤ 𝜆g(x) + (1 − 𝜆)g(y) (A.48)

that is to say, the plot of the function g(⋅) is under any secant of the curve.
Jensen’s inequality states that for a random variable X with state space contained

in the convexity domain of g(x) it is

E[g(X)] ≥ g(E[X]) (A.49)

For a simple proof, assume g(x) is differentiable. The curve g(x) is above any
tangent to the curve, i.e., g(x) ≥ g(x0) + g′(x0)(x − x0). Let us consider the tangent
at the point x0 = E[X]. Then, it is g(x) ≥ g(E[X]) + g′(E[X])(x − E[X]). Multiplying
both sides of the inequality by the PDF of X and integrating over the domain D of
X , we find

∫D
fX (x)g(x) dx ≥ ∫D

fX (x)g(E[X]) dx + g′(E[X])∫D
fX (x)(x − E[X]) dx

= ∫D
fX (x)g(E[X]) dx = g(E[X])

If X is a discrete random variable over a finite set of values, Jensen inequal-
ity is a direct consequence of the definition of convexity. Let pi = P(X = xi), for
i = 1,… ,m. Since

∑m
i=1 pi = 1, we have

E[g(X)] =
m∑

i=1
pig(xi) ≥ g

(m∑
i=1

pixi

)
= g(E[X]) (A.50)

A.4.4 Chernov Bound

It can be obtained as another application of the Markov inequality, by choosing
h(x) = e𝜃x for a positive parameter 𝜃. Then

(X > t) ≤ E[e𝜃X]
e𝜃t = e−𝜃t

𝜙X (𝜃) , 𝜃 > 0. (A.51)

where𝜙X (𝜃) = E[e𝜃X] is the MGF of the random variable X . Since the upper bound
holds for all positive 𝜃 for which 𝜙X (𝜃) is finite, we have

(X > t) ≤ inf
𝜃≥0

{e−𝜃t
𝜙X (𝜃)} (A.52)

As a matter of example, let us consider a Gaussian random variable with mean
𝜇 and variance 𝜎

2. It is 𝜙X (𝜃) = e𝜇𝜃+𝜎2
𝜃

2∕2; then

(X > t) ≤ inf
𝜃≥0

{e−𝜃te𝜇𝜃+𝜎2
𝜃

2∕2} = e
inf
𝜃≥0

{(𝜇−t)𝜃+𝜎2
𝜃

2∕2}
(A.53)

�

� �

�

A.4 Inequalities and Limit Theorems 747

For t > 𝜇 the quadratic is minimized for 𝜃∗ = (t − 𝜇)∕𝜎2. Therefore

(X > t) ≤ e−
(t−𝜇)2

2𝜎2 (A.54)

The Chernov bound is clearly useful whenever it is difficult to calculate the
CCDF of a random variable, but the Laplace transform of its PDF can be obtained.
A typical case is when X = V1 + · · · + Vn, i.e., X is the sum of n independent ran-
dom variables. If the V ’s are also identically distributed, then 𝜙X (𝜃) = [𝜙V (𝜃)]n.

A.4.5 Union Bound

This is a simple, but often useful bound. It refers to the probability of an event
that is the union of several events i, for i = 1,… ,n, where n can also be infinite.

If an outcome x belongs to any of the i for some i, then it belongs also to . The
events i need not be mutually disjoint. Therefore, the sum of their measures is no
less than the measure of their union, i.e., the event . This brings to the following
inequality:

P

(n⋃
i=1

i

)
≤

n∑
i=1

P(i) (A.55)

A.4.6 Central Limit Theorem (CLT)

Given n i.i.d. random variables Xi, with mean 𝜇 and variance 𝜎
2, the celebrated

CLT states that

lim
n→∞

P

(n∑
i=1

Xi − 𝜇

𝜎

√
n

> x

)
= 1√

2𝜋 ∫
∞

x
e−u2∕2 du (A.56)

In words, we can say that Yn = 1√
n

∑n
i=1(Xi − 𝜇) tends to a zero-mean Gaussian

random variable with variance 𝜎
2.

We give an informal proof. Let 𝜑X (s) be the Laplace transform of the PDF of
X ∼ Xi − 𝜇, which is a zero-mean random variable. We have

E[e−sYn] = E

[
exp

(
− s√

n

n∑
i=1

(Xi − 𝜇)

)]
=

n∏
i=1

E

[
exp

(
−s

Xi − 𝜇√
n

)]

=

[
𝜑X

(
s√
n

)]n

=

(
1 + s

E[Xi − 𝜇]√
n

+ 1
2

s2 E[(Xi − 𝜇)2]
n

+ o
(1

n

))n

=
(

1 + 𝜎
2s2

2n
+ o
(1

n

))n

→ e𝜎2s2∕2 (n → ∞)

This proves that 𝜑Yn
(s) → 𝜑Y (s) = e𝜎2s2∕2 as n → ∞. Inverting the Laplace trans-

form of the limiting random variable Y , it is verified that Y is a zero-mean Gaussian
random ariable with variance 𝜎

2.

�

� �

�

748 A Refresher of Probability, Random Variables, and Stochastic Processes

A.5 Stochastic Processes

Let us assign a probability space (Ω, ,P). Let us also define a set of “times” .
A stochastic process can be defined as follows. For each sample 𝜔 ∈ Ω, we assign
a time function X(t, 𝜔), t ∈ . In other words, a stochastic process is a collection
of random variables {X(t, 𝜔)} indexed by t ∈ . For ease of notation, a stochastic
process is usually denoted with X(t). The statistical description of the stochastic
process can be done by defining the CDF as a function of the parameter t:

FX (x; t) = P(X(t) ≤ x) (A.57)

This is also known as a first-order description of the process. It can be general-
ized to any integer order n as

FX1X2…Xn
(x1, x2,… , xn; t1, t2,… , tn) = P(X(t1) ≤ x1,X(t2) ≤ x2,… ,X(tn) ≤ xn)

(A.58)

A stochastic process X(t) is said to be stationary if a time shift does not affect its
probability distributions. Formally

P(X(t1) ≤ x1,… ,X(tk) ≤ xk) = P(X(t1 + h) ≤ x1,… ,X(tk + h) ≤ xk) (A.59)

for any integer k ≥ 1, any h, and any set of k times t1,… , tk and any set of k values
x1,… , xk. As a consequence of stationarity, all moments of the first-order proba-
bility distribution are independent of time. Specifically we define

mX ≡ E[X(t)]

𝜎
2
X ≡ E[(X(t) − mX)2] = E[X(t)2] − E[X(t)]2

𝛾X (h) ≡ E[X(t)X(t + h)] − m2
X

where 𝛾X (h) is the auto-covariance of the process X(t). If only the equalities above
hold, we define the process X(t) to be wide-sense stationary.

We are also interested in the ergodicity of stochastic processes. Let us confine
ourselves to discrete state processes. Intuitively, ergodicity is often stated by say-
ing that each realization of the process is “typical.” To be more explicit, the idea
of ergodicity is that a realization of the process x(t), during its evolution over time,
“touches” all states. As a matter of example, let us assume that we collect a trace of
a wireless link path loss over time. If the collected trace has a duration compara-
ble or even less than the typical time over which fluctuations of the path loss take
place, e.g., because of user mobility or environmental changes that modify the pat-
tern of radio wave propagation, then the values that we have registered do not tell
us “the whole story,” i.e., they are affected by the specific conditions under which
we have observed the wireless link (e.g., we might be lucky and register a good
channel or, conversely, we could run into a deep fading because of a temporary

�

� �

�

A.6 Markov Chains 749

obstruction). On the opposite, if our collected trace lasts for much longer than the
time constants that affect the radio link path loss fluctuations, we can deem our
measurements to be “representative” of anything a real user could experience. This
same example points out that ergodicity is a useful property, if we are interested
in metrics collected over a sufficiently long observation time.

To give a more precise statement, suffice it to say here that, given the state space
 , the limit limt→∞(X(t) = s) = 𝜋s must exist for each state s ∈ , independent
of the initial state probability distribution (X(0) = s). The set of numbers
{𝜋s}s∈ must be a proper probability distribution, i.e., 𝜋s ≥ 0 for each s ∈ and∑

s∈𝜋s = 1.

A.6 Markov Chains

Extensive accounts on Markov chains and Markov processes can be found in any
stochastic process textbook. Just to mention a few good references, the interested
reader could find excellent material in [60, 117, 186]. Here we confine ourselves
to basic definitions and key properties.

Let denote a countable set representing a state space. In the following we think
of as the set of non-negative integers ℕ, unless stated otherwise.

Definition A.1 A stochastic process X = {Xn, n ≥ 0} over the state space is a
Markov chain if [158]

(Xn = in|X0 = i0,X1 = i1,… ,Xn−1 = in−1) = (Xn = in|Xn−1 = in−1)
(A.60)

for all n and all i0, i1,… , in ∈ . The Markov chain is homogeneous if for all n, k ∈
ℕ and all i, j ∈ we have

(Xn+k = j|Xk = i) = (Xn = j|X0 = i) (A.61)

By definition, a Markov chain is a discrete-time, discrete-state stochastic process
where all the past history up to any time n can be summarized by the current state
of the process. Once that is known, all previous states are irrelevant for the future
evolution of the process after n. A time-homogeneous Markov chain is insensi-
tive to time shifts, i.e., the stochastic mechanism that makes the chain evolve is
time-invariant. In the following we refer to time-homogeneous Markov chains
only, unless stated otherwise.

A key role is played by the so called one-step transition probability matrix P,
whose entry (i, j) is defined as:

Pi,j = (Xn+1 = j|Xn = i) , i, j ∈ (A.62)

�

� �

�

750 A Refresher of Probability, Random Variables, and Stochastic Processes

Since the Markov chain is time-homogeneous, P does not depend on the time
index n. The elements of P are non-negative and such that

∑
j∈Pi,j = 1 for all

i ∈ . The last equality states simply that the process moves for sure to some state
when leaving i. A matrix having non-negative entries and row sums equal to 1 is
called stochastic. It can be shown that a necessary and sufficient condition for a
discrete process X to be a Markov chain is that

(Xn = in,… ,X0 = i0) = 𝛼i0
Pi0 ,i1

Pi1 ,i2
· · ·Pin−1 ,in

(A.63)

for all n ≤ 0 and all i0,… , in ∈ , where 𝛼 is a vector of the initial state probabilities
𝛼i = (X0 = i), i ∈ . Hence, the matrix P is a complete description of the process
from a probabilistic point of view.

It can be shown from eq. (A.63) that (Xn = i) is the i-th entry of the row vector
𝛼Pn and (Xn = j|X0 = i) is the entry (i, j) of the matrix Pn. It is easy to show also
that for all n ≥ 0 the matrix Pn is stochastic.

A.6.1 Classification of States

A state i is accessible from j if there exists n ≥ 0 such that Pn
i,j > 0, that is, it is pos-

sible to move from i to j in a finite number of steps with positive probability. If
i is accessible from j and j is accessible from i, we say that i and j communicate.
Communication is an equivalence relationship. It is easy to show that it is reflex-
ive and symmetric, and it admits transitivity. Then, we can partition the states of
 in classes of equivalence. States belonging to a same class k communicate to
one another. It is also possible that some states in a class are accessible by states
in another class, though states belonging to the two classes cannot communicate,
otherwise the two classes could be merged into a single one. An example matrix P
of a Markov chain with two classes is as follows:

P =

[
P1,1 𝟎
P2,1 P2,2

]
(A.64)

where the block matrix P2,1 could have all entries equal to 0, while the diagonal
block P1,1 cannot be completely equal to 0 (rows must sum to 1).

A Markov chain that has only a single class, i.e., where all states communicate,
is said to be irreducible. Formally:

Definition A.2 (Irreducibility) A Markov chain is irreducible if for any
couple of states i and j there exist a finite n ≥ 1 such that (Xn = j|X0 = i) > 0.
A Markov process is irreducible if for any couple of states i and j there exist a
finite t > 0 such that (X(t) = j|X(0) = i) > 0.

From an algebraic point of view, there does not exist any permutation of the
states such that the one-step transition probability matrix can be put in the form
of eq. (A.64).

�

� �

�

A.6 Markov Chains 751

The notion of period of a state i, denoted with d(i), can be defined as the greatest
common divisor (gcd) of all integers n ≥ 1 such that Pn

i,i > 0 (if Pn
i,i = 0 for all n, we

set d(i) = 0). A state with period d(i) can be visited only at times that are multiples
of d(i), given that the chain is initialized in i at time 0. If Pi,i > 0, state i has period 1.
In general, if d(i) = 1, we say that i is aperiodic. As an example, the m states of the
Markov chain defined by the m × m matrix

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 … 0

0 0 1 0 … 0

0 0 0 1 … 0

… … … … … …

1 0 0 0 … 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(A.65)

have all period m (this is a circular chain, where the state moves from i to
1 + i mod m.)

It can be shown that if two states communicate, they must have the same period.
Markov chains are often represented as graphs. The correspondence between a

Markov chain and a directed labeled graph can be established as follows. States are
mapped to nodes of the graphs. An arc is defined between nodes i and j if Pi,j > 0.
The label of the arc is Pi,j. The notions of accessibility and communication can be
translated into reachability and connectivity. Node j is accessible from i if there
exists a path in the graph from i to j. An irreducible Markov chain corresponds to
a strongly connected graph and vice versa.

The most interesting aspect of a Markov chain is its dynamics, i.e., the evolu-
tion over time of the state probability distribution, given the initial probability
distribution at time 0 (i.e., the initialization of the Markov chain). To understand
the asymptotic behavior of a Markov chain we have to introduce the notion of
recurrence.

A.6.2 Recurrence

Give a state i ∈ , we define the first return probability for any non-negative n

f (n)i,i = (Xn = i,Xk ≠ i, k = 1,… ,n − 1 | X0 = i) , n ≥ 2. (A.66)

For n = 0 we let f (0)i,i = 0 and for n = 1 we have obviously f (1)i,i = Pi,i. f (n)i,i is the
probability that state i is reached again for the first time only at the n-th step, given
that the chain leaves from i at time 0. This is an example of first-passage probabil-
ity. For a time-homogeneous Markov chain, this probability depends only on the
number of steps since departure from state i, not on the absolute time when the
journey starts. We can also define

f (n)i,j = (Xn = j,Xk ≠ j, k = 1,… ,n − 1 | X0 = i) , n ≥ 2, (A.67)

�

� �

�

752 A Refresher of Probability, Random Variables, and Stochastic Processes

i.e., the first-passage probability to state j, given that the chain starts out from state
i. Note that f (0)i,j = 0. Moreover, f (1)i,j = Pi,j. It can be shown that

P(n)
i,j =

n∑
k=1

f (k)i,j P(n−k)
j,j , n ≥ 1, ∀i, j ∈ , (A.68)

where P(n)
i,j = (Xn = j|X0 = i). Note that P(0)

i,j = 𝛿i,j, with 𝛿i,j denoting the delta of
Kronecker, equal to 1 if i = j, to 0 otherwise.

Equation (A.68) states simply that the probability of moving from i to j in n steps
is the sum of the probabilities of the disjoint and exhaustive events that state j is
first touched at the k-th step, for k = 1,… ,n. First-passage arguments can be used
also to find a recursion for the computation of the probabilities f (n)i,j . The probabil-
ity of touching state j for the first time after n steps, starting from state i, can be
decomposed based on the state 𝓁 ≠ j visited at the first step. It can be shown that

f (n)i,j =
⎧⎪⎨⎪⎩

Pi,j n = 1∑
𝓁∈∖{j}

Pi,𝓁f (n−1)
𝓁,j n ≥ 2

(A.69)

We define also

fi,j =
∞∑

n=1
f (n)i,j (A.70)

that is to say the probability of ever getting to state j when leaving from state i.
Note that j being accessible from i is a necessary condition for fi,j = 1, but it is not
sufficient. It could happen that the state “escapes” from i to a set of states that do
not communicate with j and remains locked there forever. Summing eq. (A.69)
over n, we find:

fi,j = Pi,j +
∑

𝓁∈∖{j}
Pi,𝓁f𝓁,j (A.71)

Definition A.3 A state i is said to be recurrent if fi,i = 1, transient 2 if fi,i < 1.
A Markov chain is said to be recurrent or transient if all of its states are recurrent
or transient, respectively. A state is said to be absorbing if Pi,i = 1.

If i is absorbing, it must be f (n)i,i = 0 for n ≥ 2, since, once the Markov chain visits
i, it cannot leave i anymore. It is also f (1)i,i = 1 and hence fi,i = 1, i.e., an absorbing
state is recurrent.

2 A state is called ephemeral if it can be visited at most once. A transient state can be visited
more times in general.

�

� �

�

A.6 Markov Chains 753

We can define the generating function of f (n)i,j as Fi,j(z) =
∑∞

n=1 znf (n)i,j . Analo-
gously, we let Pi,j(z) =

∑∞
n=1 znP(n)

i,j . Both functions are defined for |z| < 1. By using
eq. (A.68), we obtain

Pi,j(z) = Fi,j(z)[Pj,j(z) + 1] (A.72)

In case i = j, we obtain Pi,i(z) = Fi,i(z)[Pi,i(z) + 1], hence Pi,i(z) = Fi,i(z)∕[1 −
Fi,i(z)]. Then from eq. (A.72) we find for all i, j ∈

Pi,j(z) =
Fi,j(z)

1 − Fj,j(z)
(A.73)

Inverting this relationship for i = j, we have

Fi,i(z) =
Pi,i(z)

1 + Pi,i(z)
(A.74)

As z → 1, the series of non-negative terms Pi,i(z) can either converge or diverge.
In the first case, Pi,i(1) is finite and hence fi,i = limz→1Fi,i(z) < 1. In words, the state
i is transient. If the series is divergent, then it is apparent that fi,i = limz→1Fi,i(z) = 1
and the state i is recurrent. From eq. (A.73) it can be seen that the reverse is also
true, i.e., if the state i is transient (resp., recurrent) then the series Pi,i(z) must be
convergent (resp., divergent) as z → 1.

We have thus proved the following.

Theorem A.1 A state i is recurrent if and only if
∑

n≥1P(n)
i,i is divergent; it is tran-

sient if and only if the series is convergent.

It can be shown that, if states i and j communicate, they must be both either
recurrent or transient. In other words, the recurrence property of a state i spreads
over all states that communicate with i. The same holds for the period: if state i
and j communicate, then d(i) = d(j). More technically, transience, recurrence, and
periodicity are properties shared by all states of a same communication equiva-
lence class. Therefore, if the Markov chain is irreducible (there is a single commu-
nication class), all of its states are either transient or recurrent. A Markov chain is
called aperiodic if the period of all states is 1. This is by far the most used kind of
Markov chain model.

If a state i is transient, the series
∑

n≥1P(n)
i,i must converge. From eq. (A.72) we

deduce that

lim
z→1

Pi,j(z) = Fi,j(1)

[
1 +
∑
n≥1

P(n)
i,i

]
< ∞ (A.75)

i.e.,
∑

n≥1P(n)
i,j converges as well. It is then necessary that lim

n→∞
P(n)

i,j = 0, ∀i, j ∈ .
If the Markov chain is finite, i.e., there is a finite number of states, those limits

�

� �

�

754 A Refresher of Probability, Random Variables, and Stochastic Processes

are inconsistent with the fact that Pn is a stochastic matrix for all n. So, we can
exclude that a finite Markov chain is transient (i.e., all states are transient). If the
finite Markov chain is irreducible, it must therefore be recurrent.

In general, the following decomposition theorem can be proved.

Theorem A.2 The states of a Markov chain can be divided into two sets (one of
which can be empty), one comprising all transient states, the other all recurrent
states. This last set can be decomposed in a unique way in subsets, each one rep-
resenting an equivalence recurrence class. States in the same class communicate,
hence they are of same type and period. No communication is possible among
states of two different classes.

As a consequence, the one-step transition matrix can be decomposed according
to the following structure:

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P1 𝟎 𝟎 … 𝟎 𝟎
𝟎 P2 𝟎 … 𝟎 𝟎
𝟎 𝟎 P3 … 𝟎 𝟎
… … … … … …

𝟎 𝟎 𝟎 … Pm−1 𝟎
T1 T2 T3 … Tm−1 Tm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A.76)

where each of the matrices Pj is stochastic.

A.6.3 Visits to a State

Given a state i, we define Ni to be the number of visits that the Markov chain makes
to state i excluding the initial state:

Ni =
∞∑

n=1
I(Xn = i) (A.77)

where I(E) is the indicator function of the event E. The state i is ever visited only if
its first passage time is finite, i.e., Ni > 0 ⇔ 𝜏(i) < ∞, where 𝜏(i) denotes the num-
ber of steps for touching i for the first time after leaving from i, i.e., the first passage
time of i.

It can be shown that (Nj > k | X0 = i) = fi,j(fj,j)k for all k ≥ 0. There are only
three possibilities:

1. If fi,j = 0, it is (Nj > k | X0 = i) = 0, ∀k ≥ 0, i.e., no visit at j can take place
starting from i.

�

� �

�

A.6 Markov Chains 755

2. If fi,j > 0 and fj,j = 1 (j is recurrent), then (Nj > k | X0 = i) = fi,j > 0 for all k
and hence E[Nj | X0 = i] = ∞; that is, provided j is reachable from i, the Markov
chain will visit state j infinitely often (whence the name “recurrent”).

3. If fi,j > 0 and fj,j < 1 (j is transient), then E[Nj | X0 = i] = fi,j∕(1 − fj,j) < ∞; that
is, provided j is reachable from i, the Markov chain will visit state j only a finite
number of times with probability 1 (whence the name “transient”).

For a recurrent state, we have (Ni > k|X0 = i) = fi,i = 1, hence (Ni = ∞|X0 =
i) = 1. If instead i is transient, it is (Ni < ∞|X0 = i) = 1.

For a Markov chain starting from some state at time 0, we can define the visit
time of state i as

𝜏(i) = inf{n ≥ 1 ∶ Xn = i} (A.78)

that is the first-passage time by state i. We adopt the convention that inf{∅} = ∞.
We can consider successive visits at state i by defining the sequence of times

𝜏h(i) = inf{n > 𝜏h−1(i) ∶ Xn = i} , h ≥ 1, (A.79)

with 𝜏0(i) = 0. The time elapsing between two successive visits defines a sequence
of discrete, positive random variables Sh(i) ≡ 𝜏h(i) − 𝜏h−1(i) for h ≥ 1, provided
𝜏h−1(i) < ∞3. It can be shown that Sh(i) is independent of the past evolution of the
Markov chain up to time 𝜏h−1(i), provided it is 𝜏h−1(i) < ∞. We have

(Sh(i) = n|𝜏h−1(i) < ∞) = (𝜏(i) = n|X0 = i) = f (n)i,i (A.80)

If the Markov chain is irreducible, the random variables {Sh(i)}h≥1 are i.i.d. Let
mi = E[S1(i)]. In general, we can define the mean recurrence time, for a recurrent
state i:

mi = E[S1(i)] = E[𝜏(i)|X0 = i] =
∞∑

n=1
nf (n)i,i (A.81)

Let

𝛾j(i) = E

[
𝜏(i)∑
n=1

I(Xn = j|X0 = i)

]
(A.82)

be the mean number of visits at state j during the first passage time of state i. It is
𝛾i(i) = 1. It can be shown that

𝛾j(i) =
∑
𝓁∈

𝛾𝓁(i)P𝓁,j (A.83)

i.e., in matrix terms 𝛾(i) = 𝛾(i)P. It can be shown that mi =
∑

j∈𝛾j(i).

3 If 𝜏h−1(i) = ∞ we just set Sh = 0.

�

� �

�

756 A Refresher of Probability, Random Variables, and Stochastic Processes

A.6.4 Asymptotic Behavior and Steady State

Let

𝜋j|i(n) = (Xn = j | X0 = i) (A.84)

be the state probability of the Markov chain at time n, given that is has started from
state i. If we denote the initial probability 𝛼i = (X0 = i), we have:

𝜋j(n) =
∑
i∈

𝛼i𝜋j|i(n) = (Xn = j) (A.85)

A key question on Markov chains is to understand the behavior of the state
probabilities 𝜋j(n) as n grows. Many problems modeled by Markov chains address
issues that live theoretically on the whole time axis, i.e., those are steady-state
issues. Hence the importance of understanding if and how the transient dies out
and to what limit the probability distribution tends eventually, if any.

The fundamental limit theorem of Markov chain states the following.

Theorem A.3 Consider an irreducible, aperiodic Markov chain. Then

lim
n→∞

P(n)
j,i = lim

n→∞
P(n)

i,i = 1
mi

≡ 𝜋i (A.86)

where mi =
∑

n≥1nf (n)i,i is the mean recurrence time of state i. If mi is finite, the
quantities {𝜋i}i∈ form a probability distribution and they are the unique solution
of the equations

𝜋j =
∑
i∈

𝜋iPi,j ,
∑
i∈

𝜋i = 1 , 𝜋i ≥ 0. (A.87)

We can define two kinds of recurrent states:

1. A state i is positive recurrent if mi < ∞.
2. A state i is null recurrent is mi = ∞.

It can be shown that positive or null recurrence property is shared by all states
of a communication equivalence class. Recurrence of state i guarantees that the
process gets back to i for sure, i.e., with probability fi,i = 1. Positive recurrence of
state i guarantees that the return to that state will be accomplished in a finte time
on the average, i.e., a finite time with probability 1.

A consequence of Theorem A.3 for irreducible, aperiodic, positive recurrent
Markov chains is that

lim
n→∞

(Xn = i) = lim
n→∞

∑
j∈

(X0 = j)P(n)
j,i

=
∑
j∈

(X0 = j) lim
n→∞

P(n)
j,i =

∑
j∈

(X0 = j)𝜋i = 𝜋i

�

� �

�

A.6 Markov Chains 757

In words, the state probability approaches a limiting distribution as time grows.
Thus, the Markov chain evolves toward a statistical equilibrium, where the prob-
ability distribution of the states of the random process becomes independent of
time. Under these conditions, we can identify a clear path in the dynamics of the
Markov chain, once it is triggered from some initial state. First there is a transient
phase, during which the probability that the process is found in a given state i
does depend on the observation time n. As n grows (mathematically: as it tends
to infinity), the transient behavior dies out and the process settles in an equi-
librium. This does not mean that the state does not change anymore at all. The
Markov chain is anyway a stochastic process. Statistical equilibrium means that
the probability distribution of the process does not change with time, i.e., the
probability to find the process in state i is expressed by a number 𝜋i that does not
depend on the time of observation. Whence the great interest in assessing whether
this sort of “steady state” can set on. Some systems are intrinsically transient.
These include the characterization of breakdowns, the process of retransmission
to deliver a given amount of data through an unreliable channel, the number of
collisions of a given population of stations working according to a random MAC
protocol, and the initial evolution of the congestion control of a TCP connection.
However, most performance evaluation models address equilibrium situations.
This is a strong simplification of the analysis (PDFs become independent of time).

For a finite Markov chain we already know that states cannot be all transient.
Now we see that they cannot be either all null recurrent. In fact,

∑
j∈P(n)

i,j = 1 for
all n. If || < ∞, we can invert limits with the finite sum and obtain

1 = lim
n→∞

∑
j∈

P(n)
i,j =

∑
j∈

lim
n→∞

P(n)
i,j =

∑
j∈

𝜋j (A.88)

Then, it cannot be that all 𝜋j’s are null. We conclude that a finite irreducible,
aperiodic Markov chain is necessarily positive recurrent. In case of infinite state
space, an irreducible aperiodic Markov chain can be positive, null recurrent, or
transient. An asymptotic statistical equilibrium does exist only in the first case.

A key aspect of the result of Theorem A.3 is that the limits are independent of
the initial state of the Markov chain. Markov chains, whose limiting probability
distribution exists and is independent of the probability distribution of the initial
state, are referred to as ergodic. Ergodicity refers to the coincidence of time aver-
ages with probabilistic measures. The ergodic theorem for Markov chains states
the following.

Theorem A.4 For an irreducible, aperiodic, positive recurrent Markov chain
it is

lim
n→∞

1
n

n−1∑
k=0

I(Xk = i) = 𝜋i w.p. 1 (A.89)

�

� �

�

758 A Refresher of Probability, Random Variables, and Stochastic Processes

Given a function f ∶ → ℝ, it is also

lim
n→∞

1
n

n−1∑
k=0

f (Xk) =
∑
i∈

f (i)𝜋i w.p. 1 (A.90)

In general, we define invariant vector of a Markov chain any nontrivial vector
v such that v = vP. The elements of v can be positive, null, or negative and their
sum over the states of Markov chain need not be finite.

A steady-state probability distribution of the Markov chain is a non-negative vec-
tor p such that p = pP and pe = 1, where e is a column vector of 1’s. In words,
p is a probability distribution. When initialized according to the PDF p, the Markov
chain maintains that same PDF forever. p is a stationary probability distribution
for the states of the Markov chain. If a stationary PDF p exists, then it is obviously
also an invariant vector of the Markov chain; in general, however, the opposite
does not hold.

The limiting state probability distribution is a probability distribution 𝜋i such that

lim
n→∞

(Xn = i) = 𝜋i , ∀i ∈ (A.91)

Theorem A.3 tells us that, when a limiting PDF exists, it is also a stationary PDF,
i.e., it satisfies 𝜋 = 𝜋P. The reverse is not necessarily true.

The stationary probability vector of a Markov chain can be found by solving
the linear equation system 𝜋 = 𝜋P, one equation of which must be substituted
with 𝜋e = 1. The equations of this systems can be interpreted as probability flow
balance equations by looking at the transition diagram of the Markov chain. Let
𝜋ipij be the probability flow from state i to state j. The overall flow out of state i
is
∑

j𝜋ipij = 𝜋i(1 − pii). The overall probability flow directed to state i is
∑

j𝜋jpji. It
is readily seen that equating these two flows yields the i-th equation of the linear
system 𝜋 = 𝜋P. This is the reason why those equations are sometimes referred to
as full balance equations.

Based on the decomposition theorem for Markov chains, we see that a reducible
Markov chain may have many stationary probability distributions. If at least one
class is positive recurrent, there also exists a limiting probability distribution, but
it depends on the initialization of the Markov chain.

As an example, let us consider a finite Markov chain made up of two aperiodic,
recurrence classes and a transient class. The one-step transition probability matrix
can be written as follows:

P =
⎡⎢⎢⎣

A 𝟎 𝟎
𝟎 B 𝟎

C1 C2 C3

⎤⎥⎥⎦ (A.92)

�

� �

�

A.6 Markov Chains 759

Let 𝛼 and 𝛽 be the left eigenvectors corresponding to the eigenvalue 1 of the
stochastic matrices A and B, respectively. We assume the two vectors are normal-
ized so that the sum of their elements be 1. By Theorem A.3, we know that such
vectors do exist. Then, [𝛼 𝟎 𝟎] and [𝟎 𝛽 𝟎] are two stationary vectors for the
Markov chain. The limiting probability distribution depends on the initial state.
If the Markov chain is initialized in a state of recurrence class A or B, it will never
get out of that class, so that the limiting probabilities of all other states are neces-
sarily zero.

We mention one further algebraic property of one-step transition matrices of
finite Markov chains. The following can be shown:

● For each recurrence class comprising m states, the matrix P has exactly one sim-
ple eigenvalue equal to 1, and all other m − 1 eigenvalues have modulus less
than 1.

● For each periodic class of period d the matrix P has d eigenvalues with modulus
1 (those are the order d roots of unity, ei2𝜋k∕d for k = 0,… , d − 1) and all other
eigenvalues pertaining to that class have modulus less than 1.

● All other eigenvalues, corresponding to transient states, have modulus less
than 1.

Reminding the spectral theorem of matrices, it is now possible to cast a new light
on the limiting behavior of the probabilities P(n)

i,j when n tends to infinity, since

Pn =
||∑
k=1

𝜆
n
kukvk (A.93)

where 𝜆k is the k-th eigenvalue, uk is the k-th right eigenvector and vk is the k-th
left eigenvector corresponding to 𝜆k. If the Markov chain is aperiodic, irreducible
and positive recurrent, the maximum modulus eigenvalue is simple and equals 1.
All other eigenvalues have modulus strictly less than 1. Letting 𝜆1 = 1, we have
u1 = e and v1 = 𝜋, where 𝜋 is the stationary vector of the Markov chain. Hence

Pn = e𝜋 +
∑

k ∶ |𝜆k|<1
𝜆

n
kukvk (A.94)

If the Markov chain is irreducible and periodic with period d, the eigenvalues
are the d-th root of unity.

We summarize the characteristics of states of a Markov chain in Table A.1.
We conclude this section with two useful theorems to assess the existence of

the stationary probability vector of a discrete-time Markov chain (DTMC) and its
recurrence.

Theorem A.5 Let P be the one-step transition probability matrix of a
time-homogeneous DTMC. Assume the DTMC is irreducible and aperiodic.

�

� �

�

760 A Refresher of Probability, Random Variables, and Stochastic Processes

Table A.1 Classification of states of a Markov chain.

Types of state Description

Periodic Return to state possible only at times kd, k ∈ ℤ, d > 1.
Aperiodic Not periodic
Ephemeral Visited at most once
Transient Eventual return to state is uncertain (probability< 1)
Recurrent Eventual return to state is certain (probability= 1)
Positive recurrent Recurrent, with finite mean recurrence time
Null recurrent Recurrent, with infinite mean recurrence time
Absorbing State i with Pi,i = 1 (once in i, forever in i)
Ergodic Aperiodic, positive recurrent.

If there exist a positive vector 𝜋 such that 𝜋ipij = 𝜋jpji, ∀i, j, and
∑

i𝜋i = 1, that
vector must be the stationary probability vector of the DTMC.

Proof: Summing the identities 𝜋ipij = 𝜋jpji over i, we find
∑

i𝜋ipij = 𝜋j, since P is a
stochastic matrix. We see that 𝜋P = 𝜋, which proves that 𝜋 is the stationary prob-
ability vector of the DTMC with one-step transition probability matrix P. ◾

Theorem A.6 (Foster-Lyapunov) Let Xk be an irreducible Markov chain on
the state space . Assume there exists a function V ∶ → ℝ+ and a finite set
 ⊆ such that the following conditions hold:{

E[V(Xk+1) − V(Xk)|Xk = x] ≤ −𝜖 if x ∈ ∖,

E[V(Xk+1) − V(Xk)|Xk = x] ≤ b otherwise.
(A.95)

for a given 𝜖 > 0 and a finite constant b. Then the Markov chain Xk is positive
recurrent.

Proof: The ensuing proof applies to aperiodic Markov chains, though the theorem
does not require this condition.

Let = ∖. The conditions in the statement of the theorem can be summa-
rized in the following equation

E[V(Xk+1) − V(Xk)|Xk = x] ≤ −𝜖I(x ∈) + bI(x ∈) (A.96)

where I(E) is the indicator function of the event E. Multiplying both sides by
(Xk = x) and summing over x, we get

E[V(Xk+1)] − E[V(Xk)] ≤ −(𝜖 + b)(Xk ∈) + b (A.97)

�

� �

�

A.6 Markov Chains 761

holding for all k ≥ 0. Summing up for k = 0,… ,N for some finite N, we have

E[V(XN+1)] − E[V(X0)] ≤ −(𝜖 + b)
N∑

k=0
(Xk ∈) + (N + 1)b (A.98)

and, rearranging terms

𝜖 + b
N + 1

N∑
k=0

(Xk ∈) ≤ b +
E[V(X0)] − E[V(XN+1)]

N + 1
≤ b +

E[V(X0)]
N + 1

(A.99)

We have also

1
N + 1

N∑
k=0

(Xk ∈) = 1 − 1
N + 1

N∑
k=0

(Xk ∈) (A.100)

Hence, the inequality above yields

1
N + 1

N∑
k=0

(Xk ∈) ≥ 1 − b
𝜖 + b

−
E[V(X0)]

(N + 1)(𝜖 + b)
(A.101)

From the inequality above it follows that4

liminf
N→∞

1
N + 1

N∑
k=0

(Xk ∈) ≥ 𝜖

𝜖 + b
> 0 (A.102)

Assume now that there exists a nonrecurrent state. Since the Markov chain is
irreducible, all states are then nonrecurrent and hence it should be

lim
k→∞

(Xk ∈) = 0 (A.103)

but this limit contradicts eq. (A.102). This completes the proof. ◾

The following theorem is also useful.

Theorem A.7 Let Xk be an irreducible Markov chain on the state space .
Assume there exists a function V ∶ → ℝ+ and a finite set ⊆ such that the
following conditions hold:

1. E[V(Xk+1) − V(Xk|Xk = x] ≥ 0, ∀x ∈ .
2. There exists some x ∈ such that V(x) > V(y), ∀y ∈ .
3. E[|V(Xk+1) − V(Xk| |Xk = x] ≤ b for some b < ∞ and ∀x ∈ .

where = ∖. Then the Markov chain Xk is either transient or null recur-
rent.

4 The liminf is defined as follows. Given a sequence xn, n ≥ 0, it is liminfn→∞xn ≡ limn→∞
infk≥nxk. The liminf of a sequence always exists. It is also liminfn→∞xn ≤ limn→∞xn.

�

� �

�

762 A Refresher of Probability, Random Variables, and Stochastic Processes

A.6.5 Absorbing Markov Chains

We focus on Markov chain comprising only transient and recurrent absorbing
states. The set comprising the m absorbing states is called A, the remaining states
(transient states) are collected in set B. The one-step transition probability matrix is

P =
[

I 𝟎
PBA PBB

]
(A.104)

where I is the m × m identity matrix. Since the set B is made up of transient states,
all eigenvalues of PBB have modulus less than 1. Since the spectral radius of PBB is
less than 1, then I − PBB is invertible and

∞∑
n=0

Pn
BB = (I − PBB)−1 (A.105)

Moreover

Pn =
[

I 𝟎∑n−1
k=0 Pk

BBPBA Pn
BB

]
(A.106)

Let 𝛼 = [𝛼A 𝛼B] be the initial state PDF and p(n) = [pA(n) pB(n)] the Markov
chain state PDF at time n. It is p(n) = 𝛼Pn. Specifically, pB(n) = 𝛼BPn

BB
Let also T denote the time to absorption, i.e., T = inf{n ≥ 0 ∶ Xn ∈ A}. It is

evident that (T > n) = (Xn ∈ B) = pB(n)e, where e is a column vector of 1’s.
Then

(T > n) = 𝛼BPn
BBe , n ≥ 0. (A.107)

It is also (T = 0) = 𝛼Ae, i.e., immediate absorption occurs, if the chain is initial-
ized directly into an absorbing state. The PDF of the absorption time is

(T = n) =

{
1 − 𝛼Be n = 0
𝛼BPn−1

BB (I − PBB)e n ≥ 1.
(A.108)

and the mean is E[T] = 𝛼B(I − PBB)−1e.
It is also possible to find the joint probability distribution of the time to absorp-

tion and of the absorbing state. For j ∈ A we have

(T = n,XT = j) = (Xn−1 ∈ B,Xn = j)

=
∑
h∈B

(Xn−1 = h)(Xn = j|Xn−1 = h)

=
∑
h∈B

(𝛼BPn−1
BB)hPh,j = 𝛼BPn−1

BB cj , n ≥ 1,

where cj is the j-th column of PBA for j = 1,… ,m. For n = 0 it is (T = 0,XT =
j) = 𝛼j. The probability of absorption in state j can be found as

(XT = j) =
∞∑

n=0
(T = n,XT = j) = 𝛼j + 𝛼B(I − PBB)−1cj (A.109)

�

� �

�

A.6 Markov Chains 763

The mean time to absorption in state j ∈ A is

E[TI(XT = j)] =
∞∑

n=0
n(T = n,XT = j) = 𝛼B(I − PBB)−2cj (A.110)

Finally, in a general case where there are r recurrent classes A1,… ,Ar , besides
the transient states, we define 𝜋i(Aq) to be the probability of absorption into class
q, given that the process is initialized in state i ∈ B. We have

𝜋i(Aq) =
∑
j∈Aq

Pi,j +
∑
j∈B

Pi,j𝜋j(Aq) , i ∈ B, (A.111)

for q = 1,… , r. In matrix form, we can write 𝜋(Aq)T(I − PT
BB) = (PBAq

e)T , whence
𝜋(Aq) = (I − PBB)−1PBAq

e, where e is a column vector of 1’s.

A.6.6 Continuous-Time Markov Processes

We devote a brief section to continuous-time Markov processes, since most defi-
nitions are similar to the discrete time case. This kind of process is often referred
to as continuous-time Markov chain (CTMC). The major new fact is that transi-
tions are not “clocked” by a slotted time. Thus periodicity disappears, while new
issues come to surface. Specifically, the sojourn time into a state must have a spe-
cial PDF for the Markov property to hold, namely it must be negative exponential
(see Section A.6.7).

A continuous-time process X(t) with a countable state space is a Markov pro-
cess if

(X(tn) = in|X(t0) = i0,… ,X(tn−1) = in−1) = (X(tn) = in|X(tn−1) = in−1)
(A.112)

for all n, all i0,… , in, and all t0 < · · · < tn. We consider time-homogeneous Markov
processes, whose probability distribution depend only on the differences between
the involved times. Let Hi,j(t) = (X(u + t) = j|X(u) = i), for t ≥ 0. The matrix
H(t), with entry (i, j) equal to Hi,j(t), is stochastic for any given t. If t > u > v,
thanks to the Markov property we have

Hi,j(t − v) = (X(t) = j|X(v) = i) =
∑
k∈

(X(t) = j,X(u) = k|X(v) = i)

=
∑
k∈

(X(u) = k|X(v) = i)(X(t) = j|X(u) = k)

=
∑
k∈

Hi,k(u − v)Hk,j(t − u)

More compactly, in matrix form we can write H(t − v) = H(u − v)H(t − u) for
all v ≤ u ≤ t. It is obviously H(0) = I. We can choose the three times v, v + t, and

�

� �

�

764 A Refresher of Probability, Random Variables, and Stochastic Processes

v + t + Δt to obtain

H(t + Δt) = H(t)H(Δt) ⇒
H(t + Δt) − H(t)

Δt
= H(t)H(Δt) − I

Δt
(A.113)

Let us assume that the limit

lim
Δt→0

H(Δt) − I
Δt

= Q (A.114)

exists. Since H(Δt) is stochastic, we have Qe = 𝟎. The matrix Q is called rate tran-
sition matrix or infinitesimal generator of the process. It is formed by non-negative
elements of the diagonal, while the entries in the diagonal are such that the sum
of each row is 0. From eq. (A.113) we get the following differential equation

H′(t) = H(t)Q (A.115)

with the initial condition H(0) = I. The unique solution is H(t) = exp(Qt). With a
similar reasoning, it can be verified that

p(t) = p(0)H(t) = p(0) exp(Qt) , t ≥ 0, (A.116)

where p(t) is a row vector whose i-th entry is (X(t) = i). For an irreducible, pos-
itive recurrent Markov process there exists a unique positive vector 𝜋 such that
𝜋 = limt→∞p(t). The vector 𝜋 is the unique positive solution of 𝜋Q = 𝟎 that can
be normalized so that 𝜋e = 1. 𝜋 is the left eigenvector of Q corresponding to the
eigenvalue 0. Since the sum of each row of Q is zero, 0 is always an eigenvalue of
Q. For an irreducible, positive recurrent Markov process all other eigenvalues of
Q have strictly negative real part.

The limiting probability distribution of the Markov process is 𝜋 = limt→∞p(t),
if the limit exists.

A stationary probability distribution is a non-negative vector s such that se = 1
and such that (X(t0) = i) = si ⇒ (X(t) = i) = si for all t > t0 and all i ∈ .

The Markov process is ergodic, if 1
T
∫ T

0 I(X(t) = i) dt → 𝜋i as T → ∞ for all
i ∈ . For an ergodic Markov process, the limiting probability 𝜋i can be inter-
preted as the average fraction of time spent by the process in state i. This is a key
feature to enable computer simulations and measurements of Markov processes
metrics, based on time averages.

A continuous Markov process can be simulated by constructing the associated
jump process, i.e., the sequence of visited states. Let 𝜇i = −qi,i =

∑
j≠iqi,j, where

qi,j is the entry (i, j) of the matrix Q. We will see in Section A.6.7 that the time
spent in a visit to state i (sojourn time) has a negative exponential PDF with mean
1∕𝜇i. When leaving state i, the process moves to state j with probability qi,j∕𝜇i.
Given that the process enters state ik, a sample of the sojourn time is drawn as

�

� �

�

A.6 Markov Chains 765

Tik
= − log(rand)∕𝜇ik

, where rand is a random number generator uniformly dis-
tributed in [0, 1]. When time Tik

expires, the process moves to state ik+1 with prob-
ability qik ,ik+1

∕𝜇ik
for all possible ik+1 ∈ ∖ {ik}. Once the initial state i0 is give, the

whole sequence of the jump process {ik}k≥1 can be generated.

A.6.7 Sojourn Times in Process States

It can be shown that also the sojourn time in a state of a Markov process has a
negative exponential PDF. More generally, let us consider an irreducible Markov
process X(t) with infinitesimal generator Q. Let us split the process state space in
two regions, denoted as 1 and 2, and let

Q =
[

Q11 Q12
Q21 Q22

]
(A.117)

Let Θ1 be the sojourn time of the process in the region 1. The probability distri-
bution function of Θ1 can be found by considering an associated Markov process
X̃(t) with Q21 = 𝟎, which is composed of a transient class of states (1) and a posi-
tive recurrent, absorbing class of states (2). The state probability vector at time t,
starting from an initial vector q = [q𝟏 𝟎], satisfies

dp
dt

= [p1(t) p2(t)]
[

Q11 Q12
𝟎 𝟎

]
(A.118)

with initial condition p(0) = [q1 𝟎]. This yields p1(t) = q1 exp(Q11t) and p2(t) =
q1 exp(Q11t)Q12. The latter is the probability of ultimate abosrption into a state of
region 2 at time t. The probability of absorption at some time is

p2a = ∫
∞

0
p2(u) du = q1(−Q−1

11)Q12 (A.119)

Note that −Q11 is an M-matrix5 , hence it is invertible and the inverse is positive.
The integral of the matrix exponential can be carried out by integrating over a
finite interval [0,T] the series expansion term by term, thus obtaining

∫
T

0
exp(Q11t) dt = [exp(Q11T) − I]Q−1

11 (A.120)

where I is the identity matrix. Letting T → ∞, the matrix exp(Q11T) tends to 𝟎,
since all eigenvalues of Q11 have negative real part.

The vector p2a is also the initial probability vector of another Markov process,
where now region 1 is recurrent and region 2 is transient. Repeating the reason-
ing above, with the initial probability vector [𝟎 q2], we find the probability of

5 A matrix with positive diagonal elements, non positive off-diagonal elements, such that the
row sums are non negative and at least one row sum is strictly positive is called an M-matrix.

�

� �

�

766 A Refresher of Probability, Random Variables, and Stochastic Processes

absorption in states of the region 1, namely: p1a = q2(−Q−1
22)Q21 with q2 = p2a.

This leads to

q1 = p1a = q2(−Q−1
22)Q21 = q1(−Q−1

11)Q12(−Q−1
22)Q21 (A.121)

with the additional condition that q1e = 1, where e is a column vector of 1’s. It is
easy to verify that the vector q1 = p1Q11∕p1Q11e satisfies these equations, where
p = [p1 p2] is the stationary vector of the Markov process, i.e., the solution of

[p1 p2]
[

Q11 Q12
Q21 Q22

]
= [𝟎 𝟎] (A.122)

with pe = 1. So, the initial vector of any visit to the region1 is q1 = p1Q11∕p1Q11e.
By referring to the modified Markov process where states of region 1 are

transient and states of region 2 are recurrent and absorbing, it is easy to see
that (Θ1 > t) = p1(t)e = q1 exp(Q11t)e. Then, it can be found that E[Θ1] =
q1(−Q−1

11)e = −p1e∕p1Q11e.
This result can be interpreted as follows. The mean sojourn time in a region of

a Markov process can be obtained as the ratio of the limiting probability of the
states making up that region divided by the probability flow out of that region.
Remember that the probability flow from state i to state j is defined as piqij.

Application of this general result to the special case where the region 1 is made
up of the state j brings to GΘj

(t) = (Θj > t) = eqjjt, i.e., the sojourn time into a
state of a Markov process has negative exponential PDF with a mean value of
E[Θj] = −1∕qjj = 1∕

∑
i≠jqji. This is a revealing result, since it is intimately tied to

the Markov property of the process. Giving the state at time t is sufficient to sum-
marize the entire past history of the process prior to time t just because the time
the process has already spent into the given state has a memoryless PDF, so that
we need not know how long it has been, since the visit to the state has started, to
predict the future process evolution.

An analogous argument can be developed for Markov chains and geometric
probability distributions. Specifically, it can be found that the time spent in a
region of a Markov chain has CDF given by fΘ1

(n) ≡ (Θ1 = n) = q1Pn−1
11 P12e for

n ≥ 1, with q1 = 𝜋1(I − P11)∕𝜋1(I − P11)e, 𝜋 = [𝜋1 𝜋2] being the stationary vector
of the original recurrent Markov chain.

A.6.8 Reversibility

Reversibility is an important concept that has many useful applications in the
study of CTMCs. Consider a stationary CTMC X(t). Stationarity implies that there
exists a probability vector 𝜋 such that, if for k ∈ it is pk(0) = 𝜋k, than pk(t) =
P(X(t) = k) = 𝜋k, ∀t > 0, where is the state space of the CTMC

�

� �

�

A.6 Markov Chains 767

We define the reversed process associated with X(t) as

Y (t) = X(−t). (A.123)

Note that Y (t) is stationary because X(t) is, and it has the same stationary prob-
ability distribution.

We can prove that Y (t) is a CTMC. We shall prove that

PY ≡ (Y (tn+1) = in+1|Y (t1) = i1,… ,Y (tn) = in) = (Y (tn+1) = in+1|Y (tn) = in)
(A.124)

for any n ≥ 1 and any set of times t1 < · · · < tn < tn+1 and any set of states
i1,… , in+1.

We have

PY = (X(−tn+1) = in+1|X(−t1) = i1,… ,X(−tn) = in)

=
(X(−tn+1) = in+1,X(−tn) = in,… ,X(−t1) = i1)

(X(−tn) = in,… ,X(−t1) = i1)

=
(X(−tn+1) = in+1)

∏n
k=1 (X(−tk) = ik|X(−tk+1) = ik+1)

(X(−tn) = in)
∏n−1

k=1 (X(−tk) = ik|X(−tk+1) = ik+1)

=
(X(−tn+1) = in+1)(X(−tn) = in|X(−tn+1) = in+1)

(X(−tn) = in)

= (X(−tn+1) = in+1|X(−tn) = in) = (Y (tn+1) = in+1|Y (tn) = in)

which proves the thesis.
We can also express the rate transition matrix of Y as a function of the

rate-transition matrix of X . Let Q(X) and Q(Y) denote the rate transition matrices
of the CTMCs X and Y , respectively. We have

q(Y)
ij = lim

h→0

(Y (t + h) = j|Y (t) = i)
h

= lim
h→0

(X(−t − h) = j|X(−t) = i)
h

= lim
h→0

(X(−t) = i|X(−t − h) = j)(X(−t − h) = j)
h (X(−t) = i)

= q(X)
ji

𝜋j

𝜋i

where the last passage is due to the stationarity of the process X(t).
We have thus found the simple relationship between the rate transition matrix

of a CTMC and its reversed process. As a corollary of this property we deduce
that, given a CMTC X with rate transition matrix Q, if we can construct a rate
transition matrix Q′ and a probability vector 𝜋 such that 𝜋jqji = 𝜋iq′

ij, ∀i, j, then 𝜋

is the stationary probability distribution of the CTMC X .
We define also a reversible CTMC.

�

� �

�

768 A Refresher of Probability, Random Variables, and Stochastic Processes

Definition A.4 (Reversibility) A stationary CTMC X(t) is time reversible if it
is statistically indistinguishable from its reversed chain X(−t), i.e., if the rate tran-
sition matrix Q of X and that of its reversed chain, i.e., Q′, are the same.

It is easy to show that a stationary CTMC X(t) with rate transition matrix entries
qij is time reversible if and only if

𝜋iqij = 𝜋jqji (A.125)

Equations (A.125) are called partial balance (or, local balance) equations, in con-
trast with the usual equations

∑
i𝜋iqij = 0, which are called full balance equations.

A.6.9 Uniformization

Let us consider a continuous-time Markov process with infinitesimal generator Q.
Let 𝜆i = −

∑
j∈qi,j the mean rate out of state i. Let also 𝜆 be a positive constant

such that 𝜆 ≥ {𝜆i, i ∈ }. We let

U = I + 1
𝜆

Q (A.126)

It is easy to verify that U is stochastic, i.e., all its entries are non-negative and
each row sums to 1.

We consider then a Poisson process N(t) with mean rate 𝜆 and a discrete Markov
process with one-step transition probability matrix U, denoted with Zn. We ini-
tialize Zn with the same PDF as the original Markov process, i.e., (Z0 = i) =
(X0 = i). The two processes Zn and N(t) are constructed independently of each
other.

The random process {ZN(t), t ≥ 0} is called the uniformed process of X with
respect to the uniformization rate 𝜆. We have

H(t) = exp(Qt) = exp(−𝜆t(I − U)) = e−𝜆t exp(𝜆tU) =
∞∑

k=0
e−𝜆t (𝜆t)k

k!
Uk

(A.127)

Then, it is possible to show that for every k ≥ 1, times 0 < t1 < · · · < tk and states
j1,… , jk ∈ , we have

(X(t1) = j1,… ,X(tk) = jk) = (ZN(t1) = j1,… ,ZN(tk) = jk) (A.128)

That is to say, the uniformed process is stochastically equivalent to the original
Markov process.

Uniformization of continuous-time Markov processes is a very powerful
technique, both for theoretical arguments (e.g., see the elegant proofs of limiting
properties of Markov processes in [186, Ch. 3]) and for applications (e.g., see
the algorithms for the computation of transient behavior of a Markov process in
[196, Ch. 10]).

�

� �

�

A.7 Wiener Process (Brownian Motion) 769

A.7 Wiener Process (Brownian Motion)

The Brownian motion or Wiener process is a continuous-time, continuous
state-space Markov process.

Let X(t) be a random process and let

F(y, t; x,u) = (X(t) ≤ y|X(u) = x) (A.129)

be the kernel of the process, i.e., the conditional CDF that rules the evolution of
X(t). We assume that the corresponding PDF exists. It is f (y, t; x,u) = 𝜕F(y,t;x,u)

𝜕y
.

The process X(t) is said to be Markovian if

f (y, t; x,u) = ∫
∞

−∞
f (z, v; x,u)f (y, t; z, v) dz , u < v < t. (A.130)

Definition A.5 A standard Wiener process (or Brownian motion) is a stochastic
process W(t), t ≥ 0, with W(0) = 0, and such that:

1. with probability 1, the function t → W(t) is continuous;
2. the process W(t) has stationary, independent increments;
3. the increment W(u + t) − W(u) is distributed as a normal random variable with

zero mean and variance t, i.e., W(u + t) − W(u) ∼ (0, t).

The definition refers to a normalized Wiener process. We can introduce a drift
𝜇 and a variance coefficient 𝜎2 by slightly changing the probability distribution of
the increments, i.e., by letting it be a Gaussian random variable with mean 𝜇t and
variance 𝜎

2t: W(u + t) − W(u) ∼ (𝜇t, 𝜎2t)
The sample paths of a Wiener process are continuous functions of time, by def-

inition, yet they exhibit infinite “spikes” in each given interval, given that any
increment, however small, is a Gaussian random variable. Then, sample paths are
nondifferentiable.

We can conceive Wiener process as a limit of a simple random walk. Let us con-
sider a random walk X(t) starting from the origin and making jumps at times
tn = n𝜏, where 𝜏 is a given time quantum. Jumps are independent and identi-
cally distributed according to the binary random variable Z with (Z = Δ) = p
and (Z = −Δ) = 1 − p ≡ q. We have Xn+1 = X(tn+1) = X(tn) + Zn+1,n ≥ 0, with
X(0) = 0. It follows that Xn =

∑n
k=1 Zk. Let t = tn = n𝜏. The Laplace transform of

the PDF of X(t) = X(tn) = Xn is

E[e−sX(t)] = (pe−sΔ + qesΔ)t∕𝜏 (A.131)

The mean and the variance of X(t) are:

E[X(t)] = (p − q)Δ
𝜏

t 𝜎
2
X(t) = 4pqΔ

2

𝜏
t (A.132)

�

� �

�

770 A Refresher of Probability, Random Variables, and Stochastic Processes

We now wish to shrink the time quantum 𝜏 and the step size in a time quantum,
Δ, both to 0, so as to obtain a meaningful limit, for a fixed t, i.e., so that

(p − q)Δ
𝜏

→ 𝜇 4pqΔ
2

𝜏
→ 𝜎

2 (Δ, 𝜏 → 0) (A.133)

To that purpose, we note that it must be Δ ∼
√
𝜏 (see the limit for the variance

per unit time). If that is the case, then it must be also p − q ∼
√
𝜏. Since it must be

p + q = 1, we can let Δ = a
√
𝜏, p = 1∕2 + b

√
𝜏, and q = 1∕2 − b

√
𝜏, where a and

b are suitable constants.
Inserting those expressions into the formulas of the mean and variance

per unit time and carrying out the limit, we find a = 𝜎 and 2ab = 𝜇, hence
b = 𝜇∕(2𝜎). Using the new expressions of Δ = 𝜎

√
𝜏, p = (1 + 𝜇

√
𝜏∕𝜎)∕2, and

q = (1 − 𝜇

√
𝜏∕𝜎)∕2 into the Laplace transform of the PDF of X(t) we get

E[e−sX(t)] =

[(
1
2
+

𝜇

√
𝜏

2𝜎

)
e−s𝜎

√
𝜏 +

(
1
2
−

𝜇

√
𝜏

2𝜎

)
es𝜎
√
𝜏

]t∕𝜏

(A.134)

Taking the limit for 𝜏 → 0 with fixed t, we find

E[e−sX(t)] → exp
(
−𝜇ts + 1

2
𝜎

2ts2
)

(A.135)

This is the transform of a Gaussian PDF with mean 𝜇t and variance 𝜎
2t. We see

that in the limit, the increment X(t) − X(0) is normally distributed with a drift 𝜇
per unit time and a variance coefficient 𝜎2 per unit time. This limiting process is
just the Wiener process.

Formally, we can write a differential stochastic equation for Wiener process with
drift 𝜇 and variance coefficient 𝜎2. Considering a finite and “small” time interval
Δt, we can write:

X(t + Δt) = X(t) + 𝜇Δt + 𝜎Z
√
Δt (A.136)

where Z is a standard Gaussian random variable, Z ∼ (0, 1).
This relationship offers a simple way to generate a sequence of points belonging

to a Brownian Motion. Let 𝛿 be the desired time resolution. Then Xk+1 = X(k𝛿 +
𝛿) = Xk + 𝜇𝛿 + 𝜎Zk+1

√
𝛿, for k ≥ 0, with X0 = 0.

The definition of Wiener process allows a direct derivation of its kernel PDF.
Given X(u) = x, we have X(t) = X(t) − X(u) + X(u) = x + X(t) − X(u). The incre-
ment X(t) − X(u) is independent of X(u), normally distributed with mean 𝜇(t − u)
and variance 𝜎

2(t − u). Hence

f (y, t; x,u) = 1√
2𝜋𝜎2(t − u)

e−
[y−x−𝜇(t−u)]2

2𝜎2 (t−u) (A.137)

for t > u.

�

� �

�

A.7 Wiener Process (Brownian Motion) 771

It is easy to verify that f (y, t; x,u) satisfies the following differential equation:

𝜕f
𝜕t

= −𝜇
𝜕f
𝜕y

+ 1
2
𝜎

2 𝜕
2f

𝜕y2 (A.138)

with the boundary condition f (y,u; x,u) = 𝛿(y − x), 𝛿(⋅) being the Dirac delta func-
tion. Moreover, in solving (A.138), we impose that f (y, t; x,u) be summable over y
and its integral over the domain of y be 1.

Equation (A.138) is the diffusion equation of Wiener process. It is also called
forward equation. A similar diffusion equation, referred to as backward equation,
can be derived, by considering spatial derivation with respect to the initial position
x of the process:

𝜕f
𝜕t

= 𝜇
𝜕f
𝜕x

+ 1
2
𝜎

2 𝜕
2f

𝜕x2 (A.139)

In the following, we let u = x = 0 to simplify notation, i.e., we fix the time origin
at the initial time u and the origin of the x-axis at x. Consistently, we simplify the
notation of the kernel PDF as f (y, t). To recover general expression it suffices to
replace y with y − x and t with t − u.

A.7.1 Wiener Process with an Absorbing Barrier

Let as consider a Wiener process X(t) with an absorption barrier at a > 0. The
process starts from x = 0 at time 0. As soon as hitting the barrier a for the first
time, the process is stuck there forever.

We can find the probability distribution of X(t) at time t by solving the diffusion
equation (A.138) of Wiener process with suitable boundary conditions. Besides the
initial condition f (y, t) = 𝛿(y), the absorbing barrier implies that

f (a, t) = 0 t > 0. (A.140)

The explicit form of the solution is as follows (see, e.g., [60, Ch. 5]):

f (y, t) = 1
𝜎

√
2𝜋t

[
exp
(
−
(y − 𝜇t)2

2𝜎2t

)
− exp

(
2𝜇a
𝜎2 −

(y − 2a − 𝜇t)2

2𝜎2t

)]
(A.141)

Note that the event X(t) < a, given that X(0) = 0, implies that the time to absorp-
tion T be greater than t, i.e., if the process is still located to the left of the absorbing
barrier, absorption cannot have occurred yet. Formally

GT(t) = (T > t) = ∫
a

−∞
f (y, t) dy (A.142)

�

� �

�

772 A Refresher of Probability, Random Variables, and Stochastic Processes

Integrating the expression of f (y, t) in eq. (A.141), we have:

FT(t) = 1 − GT(t) = 1 − Φ

(
a − 𝜇t

𝜎

√
t

)
+ exp

(
2𝜇a
𝜎2

)
Φ

(
−a − 𝜇t

𝜎

√
t

)
(A.143)

where Φ(z) = 1√
2𝜋

∫ z
−∞ e−u2∕2 du is the CDF of the standard Gaussian random vari-

able. A closed form expression can be deduced for the PDF of T, as well as for its
Laplace transform, in case 𝜇 ≥ 0. Namely, it is

fT(t) =
a

𝜎

√
2𝜋t3

exp
(
−(a − 𝜇t)2

2𝜎2t

)
, t > 0, (A.144)

and

𝜑T(s) = exp
(a
𝜎2 [𝜇 −

√
𝜇2 + 2s𝜎2]

)
(A.145)

More interestingly, we can observe that, for 𝜇 ≥ 0, the limit of FT(t) = (T ≤ t)
for t → ∞ is 1, i.e., absorption is certain. In that case the random variable has a
proper PDF, summing up to 1, even though it can be verified that the mean absorp-
tion time is finite only if 𝜇 > 0. In that case, it is E[T] = a∕𝜇 and 𝜎

2
T = a𝜎2∕(2𝜇3).

If instead it is 𝜇 < 0, the process can drift away from the barrier and never touch
it. Taking the limit for t → ∞, we find (T < ∞) = exp(−2|𝜇|a∕𝜎2). This is the
absorption probability of Wiener process, starting from X(0) = 0. For a general
starting point x0, to the left of the absorbing barrier a, the absorption probability
is exp(−2|𝜇|(a − x0)∕𝜎2) .

The time to absorption can also be interpreted as the first passage time of X(t)
by the point located at a.

Moreover, the event max
0≤𝜏≤t

X(𝜏) < a is equivalent to the event T > t. As a mat-
ter of fact, if the process position up to time t has always been to the left of a, it
cannot have touched a, i.e., the first passage time by a must be greater than t. Let
us define the random variable Y (t) = max

0≤𝜏≤t
X(𝜏) for a given t. The argument above

shows that FY (t)(a) = (Y (t) ≤ a) = (T > t) = 1 − FT(t), where FT(t) is given in
eq. (A.143). In case of negative drift, letting t → ∞, we find the CDF of the random
variable Y = max

𝜏≥0
X(𝜏), i.e., FY (a) = 1 − exp(−2|𝜇|a∕𝜎2). We can summarize this

result by stating that the supremum of a Wiener process with negative drift, start-
ing at X(0) = 0, is a negative exponential random variable with mean 𝜎

2∕(2|𝜇|).
A.7.2 Wiener Process with a Reflecting Barrier

Let us again consider a Wiener process starting at X(0) = x0 and having a reflecting
barrier at a < x0. A reflecting barrier is defined as follows. Whenever the process
exceeds a in the negative direction, the state is held at a, until it jumps again in the
region x > a.

�

� �

�

A.7 Wiener Process (Brownian Motion) 773

It can be shown that the boundary condition for a reflecting barrier at a is[
1
2
𝜎

2 𝜕f
𝜕y

− 𝜇f (y, t)
]

y=a
= 0 (A.146)

Consider a Wiener diffusion process starting at x0, evolving over the x-axis, with
a reflecting barrier at x = a < x0. Due to the barrier, the process is confined to the
interval (a,∞). hence, it must be:

∫
∞

a
f (x, t) dx = 1, ∀t ≥ 0. (A.147)

Deriving with respect to time, we find

𝜕

𝜕t ∫
∞

a
f (x, t) dx = ∫

∞

a

𝜕f
𝜕t

dx = 0, ∀t ≥ 0. (A.148)

Using the forward diffusion equation, we have

0 = ∫
∞

a

𝜕f
𝜕t

dx = ∫
∞

a

(
1
2
𝜎

2 𝜕
2f

𝜕x2 − 𝜇
𝜕f
𝜕x

)
dx

= ∫
∞

a

𝜕

𝜕x

(
1
2
𝜎

2 𝜕f
𝜕x

− 𝜇f (x, t)
)

dx = −
[

1
2
𝜎

2 𝜕f
𝜕x

− 𝜇f (x, t)
]

x=a

Solving the diffusion equation for a reflecting barrier at a = 0 with this boundary
condition, along with the initial condition f (y, 0) = 𝛿(y − x0), x0 > 0, it is possible
to see that [60, Ch. 5]:

f (y, t) = 1
𝜎

√
2𝜋t

[
exp
(
−
(y − x0 − 𝜇t)2

2𝜎2t

)
+ exp

(
−

4x0𝜇t + (y + x0 − 𝜇t)2

2𝜎2t

)]

− 2𝜇
𝜎2 exp

(
2𝜇y
𝜎2

)[
1 − Φ

(
y + x0 + 𝜇t

𝜎

√
t

)]
(A.149)

It is intuitive that the process X(t) drifts away without reaching an equilibrium,
if the drift is positive or null. If instead the drift is negative, the process tends to
move toward the origin, where it bounces back, due to reflecting barrier.

By exploiting the mathematical expression of f (y, t) in (A.149), we can find that
there exists a limit for t → ∞ in case 𝜇 < 0:

f (y,∞) = 2|𝜇|
𝜎2 exp

(
−

2|𝜇|y
𝜎2

)
y ≥ 0. (A.150)

This is a negative exponential PDF with mean 𝜎
2

2|𝜇| . This is the stationary prob-
ability distribution of the so called reflected Brownian motion, a Wiener process
living on the positive real line, with a reflecting barrier at 0, negative drfit 𝜇 and
variance coefficient 𝜎2.

For an in-depth analysis of the Brownian motion the reader can refer to the
monograph by Harrison [99].

�

� �

�

775

References

1 Abate, J. and Whitt, W. (1992). The Fourier-series method for inverting
transforms of probability distributions. Queueing Systems 10 (1): 5–87.

2 Abate, J. and Whitt, W. (1995). Numerical inversion of Laplace transforms of
probability distributions. ORSA Journal on Computing 7 (1): 36–43.

3 Abate, J. and Whitt, W. (2006). A unified framework for numerically invert-
ing Laplace transforms. INFORMS Journal on Computing 18 (4): 408–421.

4 Abramson, N. (1970). The ALOHA system: another alternative for com-
puter communications. In: Proceedings of the fall joint computer conference
(AFIPS ’70 - Fall) (17–19 November 1970), 281–285. New York, NY: ACM.

5 Adams, R. (2013). Active queue management: a survey. IEEE Communica-
tions Surveys & Tutorials 15 (3): 1425–1476.

6 Afanasyev, A., Tilley, N., Reiher, P., and Kleinrock, L. (2010). Host-to-host
congestion control for TCP. IEEE Communications Surveys & Tutorials 12 (3):
304–342.

7 Afaqui, M.S., Garcia-Villegas, E., and Lopez-Aguilera, E. (2017). IEEE
802.11ax: challenges and requirements for future high efficiency WiFi. IEEE
Wireless Communications 24 (3): 130–137.

8 Ali, M.S., Hossain, E., and Kim, D.I. (2017). LTE/LTE-A Random Access for
Massive Machine-Type Communications in Smart Cities. IEEE Communica-
tions Magazine 55 (1): 76–83.

9 Alizadeh, M., Greenberg, A., Maltz, D.A. et al. (2010). Data center TCP
(DCTCP). SIGCOMM Computer Communication Review 40 (4): 63–74.

10 Alizadeh, M., Javanmard, A., and Prabhakar, B. (2011). Analysis of DCTCP:
stability, convergence, and fairness. In: Proceedings of the ACM SIGMETRICS
Joint International Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS ’11) (7–11 June 2011), 73–84. San Jose, CA: ACM.

11 Allman, M., Paxson, V., and Stevens, W. (April 1999). TCP congestion con-
trol, IETF RFC 2581.

Network Traffic Engineering: Stochastic Models and Applications, First Edition. Andrea Baiocchi.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

�

� �

�

776 References

12 Anick, D., Mitra, D., and Sondhi, M.M. (1982). Stochastic theory of
a data-handling system with multiple sources. The Bell System Technical
Journal 61 (8): 1871–1894.

13 Asadi, A. and Mancuso, V. (2013). A survey on opportunistic scheduling in
wireless communications. IEEE Communications Surveys & Tutorials 15 (4):
1671–1688.

14 Asmussen, S. (2003). Applied Probability and Queues, 2e. New York, NY:
Springer.

15 Baiocchi, A. (1992). Asymptotic behaviour of the loss probability of the
M/G/1/K and G/M/1/K queues. Queueing Systems 10 (3): 235–248.

16 Baiocchi, A. (1993). Accurate formulae for the loss probability of a large class
of queueing systems. Performance Evaluation 18 (2): 125–132.

17 Baiocchi, A. and Blefari-Melazzi, N. (1993). An error-controlled approximate
analysis of a stochastic fluid flow model applied to an ATM multiplexer with
heterogeneous on-off sources. IEEE/ACM Transactions on Networking 1 (6):
628–637.

18 Baiocchi, A. (1994). Analysis of the loss probability of the MAP/G/1/K
queue. Part I: asymptotic theory. Stochastic Models (Marcel Dekker Ed.)
10 (4): 867–893.

19 Baiocchi, A. and Ricciato, F. (2018). Analysis of pure and slotted ALOHA
with multi-packet reception and variable packet size. IEEE Communications
Letters 22 (7): 1482–1485.

20 Baiocchi, A., Tinnirello, I., Garlisi, D., and Lo Valvo, A. (2017). Random
access with repeated contentions for emerging wireless technologies. In:
IEEE INFOCOM 2017 - IEEE Conference on Computer Communications, (1–4
May), 1–9. Atlanta, GA: IEEE.

21 Baiocchi, A., Garlisi, D., Lo Valvo, A. et al. (2020). ‘Good to repeat’: Making
random access near-optimal with repeated contentions. IEEE Transactions on
Wireless Communications 19 (1): 712–726.

22 Balakrishnan, H., Padmanabhan, V.N., Seshan, S., and Katz, R.H. (1997).
A comparison of mechanisms for improving TCP performance over wireless
links. IEEE/ACM Transactions on Networking 5 (6): 756–769.

23 Barabási, A.L. (2005). The origin of bursts and heavy tails in human dynam-
ics. Nature 435: 207–211.

24 Barabási, A.L. (2016). Network Science. Cambridge, UK: Cambridge
University Press.

25 Baskett, F., Chandy, K.M., Muntz, R.R., and Palacios, F. (1975). Open, closed
and mixed network of queues with different classes of customers. Journal of
the ACM 22: 248–260.

26 Bellini, S. and Borgonovo, F. (1980). On the throughput of an ALOHA Chan-
nel with variable length packets. IEEE Transactions on Communications
28 (11): 1932–1935.

�

� �

�

References 777

27 Beneš, V.E. (1956). On queues with Poisson arrivals. Annals of Mathematical
Statistics 28: 670–677.

28 Bengio, Y. (2009). Learning deep architectures for AI. Foundations and
Trends in Machine Learning 2 (1): 1–127.

29 Bensaou, B., Tsang, D.H.K., and Chan, K.T. (2001). Credit-based fair queue-
ing (CBFQ): a simple service-scheduling algorithm for packet-switched
networks. IEEE/ACM Transactions on Networking 9 (5): 591–604.

30 Bertsekas, D. and Gallager, R. (1992). Data Network, 2e. Englewood Cliffs,
NJ: Prentice Hall.

31 Bharadia, D., McMilin, E., and Katti, S. (2013). Full duplex radios. In:
Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM
(SIGCOMM’13), 375–386. New York, NY: ACM.

32 Bianchi, G. (1998). IEEE 802.11 Saturation throughput analysis. IEEE
Communications Letters 2 (12): 318–320.

33 Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed
function. IEEE Journal of Selected Areas in Communications 18 (3): 535–547.

34 Bianchi, G. and Tinnirello, I. (2003). Kalman filter estimation of the number
of competing terminals in an IEEE 802.11 network. In: IEEE INFOCOM’03
(30 March– 3 April 2003), 844–852. San Francisco, CA: IEEE.

35 Jiang, L.B. and Liew, S.C. (2005). Proportional fairness in wireless LANs
and ad hoc networks. In: IEEE Wireless Communications and Networking
Conference, 2005, vol. 3, 1551–1556. New Orleans, LA: IEEE.

36 Blanton, E., Allman, M., Fall, K., and Wang, L. (April 2003). A conservative
selective acknowledgment (SACK)-based loss recovery algorithm for TCP,
RFC 3517.

37 Bolch, G., Greiner, S., de Meer, H., and Trivedi, K.S. (2006). Queueing
Networks and Markov Chains—Modeling and Performance Evaluation with
Computer Science Applications, 2e. Wiley.

38 Bordenave, C., McDonald, D., and Proutiere, A. (2007). Random multi-access
algorithms in networks with partial interaction: a mean field analysis. In:
Managing Traffic Performance in Converged Networks. ITC 2007, Lecture
Notes in Computer Science, vol. 4516 (eds. L. Mason, T. Drwiega and J. Yan),
779–790. Berlin, Heidelberg: Springer.

39 Bordenave, C., McDonald, D., and Proutiere, A. (2009). A particle system
in interaction with a rapidly varying environment: Mean field limits and
applications. arXiv:math/0701363v3 [math.PR], last revised 16 February 2009.

40 Borovkov, A.A. (1976). Stochastic Processes in Queueing Theory. New York,
NY: Springer-Verlag.

41 Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge
University Press.

�

� �

�

778 References

42 Braess, D. (1968). Uber ein paradoxen der verkehrsplanung.
Unternehmensforschung 12: 258–268.

43 Brakmo, L.S. and Peterson, L.L. (1995). TCP Vegas: end to end congestion
avoidance on a global Internet. IEEE Journal on Selected Areas in Communi-
cations 13 (8): 1465–1480.

44 Bramson, M. (2008). Stability of queueing networks. Probability Surveys 5:
169–345.

45 Briscoe, B. (2007). Flow rate fairness: dismantling a religion. SIGCOMM
Computer Communication Review 37 (2): 63–74.

46 Brown, L.D. and Zhao, L.H. (2002). A test for the Poisson distribution.
The Indian Journal of Statistics, Series A 64 (3, Part 1): 611–625.

47 Brumelle, S.L. (1971). Some inequalities for parallel-server queues.
Operations Research 19: 402–413.

48 Burke, P.J. (1956). The output of a queueing system. Operations Research
4 (6): 699–704.

49 Cardwell, N., Cheng, Y., Stephen Gunn, C. et al. (2016). BBR: congestion-
based congestion control. Queue 14 (5): 50–83.

50 Cardwell, N., Cheng, Y., Stephen Gunn, C. et al. (2017). BBR: congestion-
based congestion control. Communications of the ACM 60 (2): 58–66.

51 Cardwell, N., Cheng, Y., Hassas Yeganeh, S., and Jacobson, V. (July 2017).
BBR Congestion Control. draftcardwell- iccrg-bbr-congestion-control-00,
Internet Congestion Control Research Group, Internet-Draft.

52 Chang, C.-S. (2000). Performance Guarantees in Communications Networks.
Springer.

53 Chao, X., Miyazawa, M., and Pinedo, M. (1999). Queueing Networks:
Customers, Signals and Product Form Solutions. New York, NY: Wiley.

54 Chen, H. and Yao, D.D. (2001). Fundamentals of Queueing Networks.
New York, NY: Springer-Verlag.

55 Chen, H. and Ye, H.-Q. (2012). Asymptotic optimality of balanced routing.
Operations Research 60 (1): 163–179.

56 Chen, W., Ren, F., Xie, J. et al. (2015). Comprehensive understanding of
TCP incast problem. In: IEEE Conference on Computer Communications
(INFOCOM), Hong Kong, China (26 April–1 May 2015), 1688–1696.

57 Cheng, Y., Cardwell, N., Hassas Yeganeh, S., and Jacobson, V. (2017).
Delivery Rate Estimation. draft-cheng-iccrg-delivery-rate-estimation-00,
Internet Congestion Control Research Group, Internet-Draft.

58 Chiang, M. (2012). Networked Life: 20 Questions and Answers. Cambridge,
UK: Cambridge University Press.

59 Cox, D.R. (1962). Renewal Theory. London: Methuen.
60 Cox, D.R. and Miller, H.D. (1965). Stochastic Processes. London: Chapman

and Hall.

�

� �

�

References 779

61 Cruz, R.L. (1991). A calculus for network delay. Part I: network elements in
isolation. IEEE Transactions on Information Theory 37 (1): 114–131.

62 Cruz, R.L. (1991). A calculus for network delay. Part II: network analysis.
IEEE Transactions on Information Theory 37 (1): 132–141.

63 Dai, J.G. (1999). Stability of Fluid and Stochastic Processing Networks,
Miscellanea Publication, vol. 9. Denmark: Center for Mathematical Physics
and Stochastics (http:/www.maphysto.dk/).

64 Davin, J.R. and Heybey, A.T. (1990). A simulation study of fair queueing
and policy enforcement. ACM SIGCOMM Computer Communication Review
20 (5): 23–29.

65 De Cicco, L., Carlucci, G., and Mascolo, S. (2013). Experimental investigation
of the google congestion control for real-time flows. In: Proceedings of the
2013 ACM SIGCOMM Workshop on Future Human-Centric Multimedia Net-
working (FhMN ’13) (12–16 August 2013), 21–26. Hong Kong, China: ACM.

66 Demers, A., Keshav, S., and Shenker, S. (1989). Analysis and simula-
tion of fair queueing algorithm. In: Proceedings of ACM SIGCOMM ’89
(19–22 September 1989), 21–26. Austin, TX: ACM.

67 Deng, L. and Yu, D. (2013). Deep learning: methods and applications.
Foundations and Trends in Machine Learning 7 (3–4): 197–387.

68 Deng, D., Lin, Y.P., Yang, X. et al. (2017). IEEE 802.11ax: highly efficient
WLANs for intelligent information infrastructure. IEEE Communications
Magazine (December) 55 (12): 52–59.

69 De Smit, J.H.A. (1973). Some general results for many server queues.
Advances in Applied Probability 5: 153–169.

70 Elwalid, A.I. and Mitra, D. (1993). Effective bandwidth of general Markovian
traffic sources and admission control of high speed networks. In: Proceedings
of IEEE INFOCOM’93, vol. 1, 256–265. San Francisco, CA: IEEE.

71 Elwalid, A., Heyman, D., Lakshman, T.V. et al. (1995). Fundamental bounds
and approximations for ATM multiplexers with applications to video tele-
conferencing. IEEE Journal on Selected Areas in Communications 13 (6):
1004–1016.

72 Elwalid, A. and Mitra, D. (1995). Analysis, approximations and admission
control of a multi-service multiplexing system with priorities. In: Proceedings
of IEEE INFOCOM’95, vol. 2, 463–472. Boston, MA: IEEE.

73 Erlang, A.K. (1917). Solution of some problems in the theory of probabilities
of significance in automatic telephone exchanges. Elektrotkeknikeren 13.

74 ETSI. 2014. ETSI standard EN 302 637-2 V1. 3.1-Intelligent Transport Sys-
tems (ITS); Vehicular Communications; Basic Set of Applications; Part 2:
Specification of Cooperative Awareness Basic Service. ETSI, May.

75 Fawzi, A., Fawzi, O., and Frossard, P. (2018). Analysis of classifiers’ robust-
ness to adversarial perturbations. Machine Learning 107 (3): 481–508.

�

� �

�

780 References

76 Feller, W. (1968). An Introduction to Probability Theory and Its Applications,
vol. 1. New York, NY: Wiley.

77 Fidler, M. and Rizk, A. (2015). A guide to the stochastic network calculus.
IEEE Communications Surveys & Tutorials 17 (1): 92–105.

78 Fidler, M. (2010). Survey of deterministic and stochastic service curve models
in the network calculus. IEEE Communications Surveys & Tutorials 12, 1:
59–86.

79 Floyd, S., Handley, M., and Padhye, J. (May 2000). A comparison of
equation-based and AIMD congestion control. http://www.aciri.org/tfrc/.

80 Foschini, G. and Salz, J. (1978). A basic dynamic routing problem and diffu-
sion. IEEE Transactions on Communications 26 (3): 320–327.

81 Fratta, L., Gerla, M., and Kleinrock, L. (1973). The flow deviation method:
An approach to store-and-forward communication network design. Networks
3 (2): 97–133.

82 Fratta, L., Gerla, M., and Kleinrock, L. (2014). Flow deviation: 40 years of
incremental flows for packets, waves, cars, and tunnels. Computer Networks
66: 18–31.

83 Fredericks, A.A. (1980). Congestion in blocking systems. A simple approxi-
mation technique. Bell System Technical Journal 59: 805–827.

84 Gail, R. and Kleinrock, L. (1981). An invariant property of computer network
power. In: Proceedings of the International Conference on Communications
(ICC), 63.1.1–63.1.5.

85 Gallager, R.G. (2014). Stochastic Processes: Theory for Applications.
Cambridge University Press.

86 Gautam, N. (2012). Analysis of Queues—Methods and Applications.
Boca Raton, FL: CRC Press.

87 Georgii, H.-O. (2008). Stochastics: Introduction to Probability and Statistics.
Berlin, Germany: Walter de Gruyter.

88 Gettys, J. and Nichols, K. (2011). Bufferbloat: dark buffers in the internet.
Queue 9 (11): 40–54.

89 Gibbens, R.J., Kelly, F.P., and Key, P.B. (1995). Dynamic alternative rout-
ing. In: Routing in Communications Networks (ed. M. Steenstrup), 13–47.
Englewood Cliffs, NJ: Prentice Hall.

90 Gnedenko, B.V. (1997). Theory of Probability, 6e. Amsterdam: Gordon and
Breach.

91 Golestani, S.J. (1994). A self-clocked fair queueing scheme for broadband
applications. In: Proceedings of the IEEE INFOCOM ’94. Networking for
Global Communications (12–16 June), vol. 2, 636–646. Toronto, Ontario:
IEEE.

92 Gordon, W.J. and Newell, G.F. (1967). Closed queueing systems with
exponential servers. Operations Research 15: 145–155.

�

� �

�

References 781

93 Grazia, C.A., Patriciello, N., Klapez, M., and Casoni, M. (2017). A
cross-comparison between TCP and AQM algorithms: which is the best
couple for congestion control? In: 14th International Conference on Telecom-
munications (ConTEL) (June 2017), 75–82. Zagreb, Croatia: IEEE.

94 Gross, D., Shortle, J.F., Thompson, J.M., and Harris, C.M. (2008). Fundamen-
tals of Queueing Theory, 4e. Hoboken, NJ: Wiley.

95 Grunenberger, Y., Heusse, M., Rousseau, F., and Duda, A. (2007). Experience
with an implementation of the Idle Sense wireless access method. In: Pro-
ceedings of the 2007 ACM CoNEXT Conference (CoNEXT ’07), 12. New York,
NY, Article 24: ACM.

96 Ha, S., Rhee, I., and Xu, L. (2008). CUBIC: a new TCP-friendly high-speed
TCP variant. ACM SIGOPS Operating Systems Review 42 (5): 64–74.

97 Haenggi, M. (2013). Stochastic Geometry for Wireless Networks. Cambridge,
UK: Cambridge University Press.

98 Harchol-Balter, M. (2013). Performance Modeling and Design of Computer
Systems—Queuing Theory in Action. Cambridge, UK: Cambridge University
Press.

99 Harrison, J.M. (1985). Brownian Motion and Stochastic Flow Systems.
New York, NY: Wiley.

100 Heidergott, B., Olsder, G.J., and van der Woude, J. (2006). Max Plus at
Work—Modeling and Analysis of Synchronized Systems: A Course on Max-
Plus Algebra and Its Applications. Princeton, NJ: Princeton University Press.

101 Heusse, M., Rousseau, F., Berger-Sabbatel, G., and Duda, A. (2003). Perfor-
mance anomaly of 802.11b. In: IEEE INFOCOM 2003. Twenty-second Annual
Joint Conference of the IEEE Computer and Communications Societies (IEEE
Cat. No.03CH37428), vol. 2, 836–843. San Francisco, CA: IEEE.

102 Heusse, M., Rousseau, F., Guillier, R., and Duda, A. (2005). Idle Sense: an
optimal access method for high throughput and fairness in rate diverse
wireless LANs. SIGCOMM Computer Communication Review 35 (4): 121–132.

103 Hock, M., Bless, R., and Zitterbart, M. (2017). Experimental evaluation of
BBR congestion control. In: IEEE 25th International Conference on Network
Protocols (ICNP), 1–10. Toronto, ON: IEEE.

104 Høiland-Jørgensen, T., Kazior, M., Täht, D. et al. (2017). Ending the
anomaly: achieving low latency and airtime fairness in WiFi. In: Proceedings
of 2017 – USENIX Annual Technical Conference (12–14 July 2017), 139–151.
Santa Clara, CA: USENIX ATC 17.

105 Hu, J., Di, B., Liao, Y. et al. (2018). Hybrid MAC protocol design and opti-
mization for full duplex Wi-Fi networks. IEEE Transactions on Wireless
Communications 17 (6): 3615–3630.

106 Hwang, J., Yoo, J., and Choi, N. (2012). IA-TCP: a rate-based
incast-avoidance algorithm for TCP in data center networks. In: 2012 IEEE
International Conference on Communications, 1292–1296. Ottawa, ON: ICC.

�

� �

�

782 References

107 IEEE Computer Society LAN/MAN Standards Committee. 2007. IEEE Stan-
dard for Information technology – Telecommunications and information
exchange between systems. Local and metropolitan area networks. Specific
requirements Part 11: Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications. IEEE Std 802.11.

108 IEEE Computer Society LAN/MAN Standards Committee. 2013. IEEE Stan-
dard for Information technology—Telecommunications and information
exchange between systems Local and metropolitan area networks. Part 11:
Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications. Amendment 4: Enhancements for Very High Throughput for
Operation in Bands below 6 GHz. IEEE Std. 802.11ac-2013.

109 Ivanov, M., Brännström, F., Graell i Amat, A., and Popovski, P. (2017).
Broadcast coded slotted ALOHA: A finite frame length analysis. IEEE Trans-
actions on Communications 65 (2): 651–662.

110 Iyengar, J. and Thomson, M. (April 2019). QUIC: A UDP-Based Multiplexed
and Secure Transport. IETF Internet-Draft, draft-ietf-quic-transport-20.

111 Jackson, J.R. (1957). Networks of waiting lines. Operations Research 5:
518–521.

112 Jacobson, V. (1988). Congestion avoidance and control. ACM SIGCOMM
Computer Communications Review 18 (4): 314–329.

113 Jain, R., Chiu, D., and Hawe, W. (September 1998). A quantitative measure
of fairness and discrimination for resource allocation in shared computer
systems. arXiv:cs/9809099 [cs.NI], https://arxiv.org/abs/cs/9809099.

114 Jayawickrama, B.A., He, Y., Dutkiewicz, E., and Mueck, M.D. (2018).
Scalable spectrum access system for massive machine type communication.
IEEE Network 32 (3): 154–160.

115 Jiang, L. and Walrand, J. (2010). A distributed CSMA algorithm for through-
put and utility maximization in wireless networks. IEEE/ACM Transactions
on Networking 18 (3): 960–972.

116 Kadota, I., Baiocchi, A., and Anzaloni, A. (2014). Kalman filtering: estimate
of the numbers of active queues in an 802.11e EDCA WLAN. Computer
Communications 39: 54–64.

117 Karlin, S. (1966). A First Course in Stochastic Processes. New York,
NY/London: Academic Press.

118 Kaufman, J.S. (1981). Blocking in a Shared Resource Environment. IEEE
Transactions on Communications 29 (10): 1474–1481.

119 Kaul, S., Yates, R., and Gruteser, M. (2012). Real-time status: how often
should one update? In: Proceedings of IEEE INFOCOM (25–30 March),
2731–2735. Orlando, FL: IEEE.

120 Kelly, F.P. and Laws, C.N. (1993). Dynamic routing in open queueing net-
works: Brownian models, cut constraints and resource pooling. Queueing
Systems 13 (1–3): 47–86.

�

� �

�

References 783

121 Kelly, F.P. (2011). Reversibility and Stochastic Networks. Cambridge, UK:
Cambridge University Press.

122 Kelly, F. and Yudovina, E. (2014). Stochastic Networks. Cambridge, UK:
Cambridge University Press.

123 Kesidis, G., Walrand, J., and Chang, C. (1993). Effective bandwidths for mul-
ticlass Markov fluids and other ATM sources. IEEE/ACM Transactions on
Networking 1 (4): 424–428.

124 Khorov, E., Kiryanov, A., Lyakhov, A., and Bianchi, G. (2019). A tutorial
on IEEE 802.11ax high efficiency WLANs. IEEE Communications Surveys &
Tutorials 21 (1): 197–216.

125 Kim, D., Lee, H., and Hong, D. (2015). A survey of in-band full-duplex
transmission: from the perspective of PHY and MAC layers. IEEE Communi-
cations Surveys & Tutorials 17 (4): 2017–2046.

126 Kim, B.H. and Calin, D. (2017). On the split-TCP performance over real
4G LTE and 3G wireless networks. IEEE Communications Magazine 55 (4):
124–131.

127 Kingman, J.F.C. (1962). On queues in heavy traffic. Journal of the Royal
Statistical Society. Series B (Methodological) 24 (2): 383–392.

128 Kleinrock, L. and Tobagi, F. (1975). Packet switching in radio channels:
Part I – Carrier sense multiple-access modes and their throughput-delay
characteristics. IEEE Transactions on Communications 23 (12): 1400–1416.

129 Kleinrock, L. and Tobagi, F. (1977). Packet switching in radio channels:
Part IV – Stability considerations and dynamic control in carrier sense multi-
ple access. IEEE Transactions on Communications 25 (10): 1103–1119.

130 Kleinrock, L. (1975). Queueing Systems, Theory, vol. 1. New York, NY: Wiley.
131 Kleinrock, L. (1976). Queueing Systems, Computer Applications, vol. 2. New

York, NY: Wiley.
132 Kleinrock, L. (1979). Power and deterministic rules of thumb for probabilistic

problems in computer communications. In: Proceedings of the International
Conference on Communications (ICC) (10–14 June 1979), 43.1.1–43.1.10.
Boston, MA: ICC.

133 Korilis, Y.A., Lazar, A.A., and Orda, A. (1999). Avoiding the Braess paradox
in non-cooperative networks. Journal of Applied Probability 36 (1): 211–222.

134 Kulkarni, V.G. (1996). Effective bandwidth for Markov regenerative sources.
Queueing Systems 24: 137–153.

135 Kumar, A., Altman, E., Miorandi, D., and Goyal, M. (2007). New insights
from a fixed-point analysis of single cell IEEE 802.11 WLANs. IEEE/ACM
Transactions on Networking 15 (3): 588–601.

136 Kumar, P.R. and Seidman, T.I. (1990). Dynamic instabilities and stabilization
methods in distributed real-time scheduling of manufacturing systems. IEEE
Transactions on Automatic Control 35 (3): 289–298.

�

� �

�

784 References

137 Kumar, A., Manjunath, D., and Kuri, J. (2004). Communication Networking:
An Analytical Approach. Morgan Kaufmann Publishers (Elsevier).

138 Kurtz, T.G. (1978). Strong approximation theorems for density dependent
Markov chains. Stochastic Processes and Their Applications 6 (3): 223–240.

139 Lakatos, L., Szeidl, L., and Telek, M. (2013). Introduction to Queueing Systems
with Telecommunication Applications. Springer.

140 Latouche, G. and Ramaswami, Y. (1994). A logarithmic reduction algo-
rithm for Quasi Birth and Death processes. Journal of Applied Probability 30:
650–674.

141 Lau, V.K.N. (2005). Proportional fair space-time scheduling for wireless com-
munications. IEEE Transactions on Communications 53 (8): 1353–1360.

142 Laufer, R. and Kleinrock, L. (2016). The capacity of wireless CSMA/CA
networks. IEEE/ACM Transactions on Networking 24 (3): 1518–1532.

143 Lázaro, F. and Stefanovic, C. (2017). Finite-length analysis of frameless
ALOHA with multi-user detection. IEEE Communications Letters 21 (4):
769–772.

144 Le Boudec, J.-Y. and Thiran, P. (2001). Network Calculus: A Theory of Deter-
ministic Queuing Systems for the Internet. Springer, LNCS.

145 Le Boudec, J.-Y. (2010). Performance Evaluation of Computer Communication
Systems. Lausanne, Switzerland: EPFL Press.

146 Lee, J., Lee, H., Yi, Y. et al. (2016). Making 802.11 DCF near- optimal:
design, implementation, and evaluation. IEEE/ACM Transactions on Net-
working 24 (3): 1745–1758.

147 Liew, S.C., Kai, C.H., Leung, H.C., and Wong, P. (2010). Back-of-the-envelope
computation of throughput distributions in CSMA wireless networks. IEEE
Transactions on Mobile Computing 9 (9): 1319–1331.

148 Little, J.D.C. (1961). A proof of the queueing formula L = 𝜆W . Operations
Research 9: 383–387.

149 Liu, L. and Shi, D.-H. (1996). Busy period in GIX /G/1. Journal of Applied
Probability 33 (3): 815–829.

150 Liu, J., Yi, Y., Proutiere, A. et al. (2010). Towards utility–optimal random
access without message passing. Wireless Communications and Mobile
Computing 10 (1): 115–128.

151 Liu, K. and Lee, J.Y. (2016). On improving TCP performance over mobile
data networks. IEEE Transactions on Mobile Computing 15 (10): 2522–2536.

152 LoRa Alliance. (2016). LoRaWANTMSpecification. Version: V1.0.2.
153 Luchak, G. (1958). The continuous-time solution of the equations of the

single-channel queue with a general class of service-time distribution by the
method of generating functions. Journal of the Royal Statistical Society. Series
B (Methodological) 20 (1): 176–181.

�

� �

�

References 785

154 Madueño, G.C., Nielsen, J.J., Kim, D.M. et al. (2016). Assessment of LTE
wireless access for monitoring of energy distribution in the smart grid. IEEE
Journal on Selected Areas in Communications 34 (3): 675–688.

155 Maity, M., Raman, B., and Vutukuru, M. (2017). TCP download performance
in dense WiFi scenarios: analysis and solution. IEEE Transactions on Mobile
Computing 16 (1): 213–227.

156 Magistretti, E., Gurewitz, O., and Knightly, E.W. (2014). 802.11ec: Collision
avoidance without control messages. IEEE/ACM Transactions on Networking
22 (6): 1845–1858.

157 Maguluri, S.T., Srikant, R., and Ying, L. (2014). Heavy traffic optimal
resource allocation algorithms for cloud computing clusters. Performance
Evaluation 81: 20–39.

158 Markov, A.A. (1907). Extension of the limit theorems of probability theory to
a sum of variables connected in a chain. The notes of the Imperial Academy
of Sciences of St. Petersburg. VIII Series, Physio-Mathematical College 22 (9).

159 Mathis, M., Mahdavi, J., Floyd, S., and Romanow, A. (October 1996). TCP
selective acknowledgment options, RFC 2018.

160 Meyn, S.P. (2009). Control Techniques for Complex Networks. New York, NY:
Cambridge University Press.

161 Miorandi, D. and Altman, E. (2006). Connectivity in one-dimensional ad
hoc networks: a queueing theoretical approach. Wireless Networks (Springer)
12 (5): 573–587.

162 Mitzenmacher, M. (2001). The power of two choices in randomized load
balancing. IEEE Transactions on Parallel and Distributed Systems 12 (10):
1094–1104.

163 Miyazawa, K., Sasaki, K., Oda, N., and Yamaguchi, S. (2018). Cyclic perfor-
mance fluctuation of TCP BBR. In: IEEE 42nd Annual Computer Software
and Applications Conference (COMPSAC), vol. 1, 811–812. IEEE.

164 Mitra, D. (1992). Asymptotically optimal design of congestion control for
high speed data networks. IEEE Transactions on Communications 40 (2):
301–311.

165 Morgan, Y.L. (2010). Notes on DSRC & WAVE standards suite: its architec-
ture, design, and characteristics. IEEE Communications Surveys & Tutorials
12 (4): 504–518.

166 Morsalin, S., Mahmud, K., and Town, G.E. (2018). Scalability of vehicu-
lar M2M communications in a 4G cellular network. IEEE Transactions on
Intelligent Transportation Systems 19 (10): 3113–3120.

167 Neuts, M.F. (1981). Matrix-Geometric Solutions in Stochastic Models: An
Algorithmic Approach. Baltimore, MD/London: The John Hopkins University
Press.

�

� �

�

786 References

168 Neuts, M.F. (1989). Structured Stochastic Matrices of M/G/1 Type and Their
Applications. Boca Raton, FL: CRC Press.

169 Newman, M. (2010). Networks: An Introduction. New York, NY: Oxford
University Press.

170 Nichols, K. and Jacobson, V. (2012). Controlling queue delay. Queue 10 (5):
20–34.

171 Paolini, E., Stefanovic, C., Liva, G., and Popovski, P. (2015). Coded random
access: applying codes on graphs to design random access protocols. IEEE
Communications Magazine (June) 53 (6): 144–150.

172 Papoulis, A. and Unnikrishna, S. (2002). Probability, Random Variables and
Stochastic Processes, 4e. New York: McGraw-Hill.

173 Parekh, A.K. and Gallager, R.G. (1993). A generalized processor sharing
approach to flow control in integrated services networks: the single-node
case. IEEE/ACM Transactions on Networking 1 (3): 344–357.

174 Parekh, A.K. and Gallager, R.G. (1994). A generalized processor sharing
approach to flow control: the multiple node case. IEEE/ACM Transactions on
Networking 2 (2): 137–150.

175 Polese, M., Centenaro, M., Zanella, A., and Zorzi, M. (2016). M2M massive
access in LTE: RACH performance evaluation in a Smart City scenario. In:
Proceedings of the 2016 IEEE International Conference on Communications
(ICC), 1–6. Kuala Lumpur: IEEE.

176 Polese, M., Chiariotti, F., Bonetto, E., Rigotto, F., Zanella, A., and Zorzi, M.
(2019). A Survey on Recent Advances in Transport Layer Protocols. IEEE
Communications Surveys & Tutorials 21 (4): 3584–3608.

177 Ramaiyan, V., Kumar, A., and Altman, E. (2008). Fixed point analysis of
single cell IEEE 802.11e WLANs: uniqueness and multistability. IEEE Trans-
actions on Networking 16 (5): 1080–1093.

178 Ramakrishnan, K., Floyd, S., and Black, D. (September 2001). The addition
of Explicit Congestion Notification (ECN) to IP. IETF, RFC 3168.

179 Reiser, M. and Kobayashi, H. (1975). Queueing networks with multiple
closed chains: theory and computational algorithms. IBM Journal of Research
and Development 19 (3): 283–294.

180 Ren, F. and Lin, C. (2011). Modeling and improving TCP performance
over cellular link with variable bandwidth. IEEE Transactions on Mobile
Computing 10 (8): 1057–1070.

181 Rhee, I., Xu, L., Ha, S., et al. (February 2018). CUBIC for fast long-distance
networks, RFC 8312.

182 Roberts, J.W. (1994). Virtual spacing for flexible traffic control. International
Journal of Communication Systems 7: 307–318.

183 Roberts, J. W. (1981). A service system with heterogeneous user require-
ments – Application to multi-services telecommunications systems.
Performance of Data Communications Systems and Their Application,
G. Pujolle, Ed., The Netherlands: North-Holland, 1981, pp. 423–431.

�

� �

�

References 787

184 Ross, S.M. (1996). Stochastic Processes, 2e. New York, NY: Wiley.
185 Rybko, A.N. and Stolyar, A.L. (1992). Ergodicity of stochastic processes

describing the operation of open queueing networks. Problems of Information
Transmission (Problemy Peredachi Informatsii) 28 (3): 199–220.

186 Rubino, G. and Sericola, B. (2014). Markov Chains and Dependability Theory.
UK: Cambridge University Press.

187 Sardar, B. and Saha, D. (2006). A survey of TCP enhancements for last-hop
wireless networks. IEEE Communications Surveys & Tutorials 8 (3): 20–34.

188 Serfozo, R. (1999). Introduction to Stochastic Networks. New York, NY:
Springer-Verlag.

189 Sharma, G., Ganesh, A.J., and Key, P.B. (2006). Performance analysis of
contention based medium access control protocols. In: Proceedings of IEEE
INFOCOM 2006 (23–28 April 2006). Barcelona (Spain): IEEE.

190 Shreedhar, M. and Varghese, G. (1996). Efficient fair queuing using deficit
round-robin. IEEE/ACM Transactions on Networking 4 (3): 375–385.

191 Sim, M.S., Chung, M., Kim, D. et al. (2017). Nonlinear self-interference can-
cellation for full-duplex radios: from link-level and system-level performance
perspectives. IEEE Communications Magazine 55 (9): 158–167.

192 Sommer, C. and Dressler, F. (2011). Using the right two-ray model? A
measurement-based evaluation of PHY models in VANETs. 17th ACM Inter-
national Conference on Mobile Computing and Networking (MobiCom).
Poster Session, Las Vegas, NV (September 2011).

193 Srikant, R. and Ying, L. (2014). Communication Networks: An Optimization,
Control, and Stochastic Networks Perspective. Cambridge University Press.

194 Stefanovic, C., Paolini, E., and Liva, G. (2018). Asymptotic performance of
coded slotted ALOHA with multipacket reception. IEEE Communications
Letters 22 (1): 105–108.

195 Stevens, W.R. and Fall, K.R. (2012). TCP-IP Illustrated—Volume 1: The proto-
cols, 2e. Addison-Wesley.

196 Stewart, W.J. (2009). Probability, Markov Chains, Queues, and Simulation:
The Mathematical Basis of Performance Modeling. Princeton, NJ: Princeton
University Press.

197 Stidham, S. Jr., (1974). A last word on L = 𝜆W . Operations Research 22.
198 Takács, L. (1963). Delay distributions for one line with Poisson input,

general holding times, and various orders of service. The Bell System
Technical Journal 42 (2): 487–503.

199 Takács, L. (1969). On Erlang’s formula. Annals of Mathematical Statistics 40
(1): 71–78.

200 Takagi, H. (1986). Analysis of Polling Systems. Cambridge, MA: MIT Press.
201 Tello-Oquendo, L., Leyva-Mayorga, I., Pla, V. et al. (2018). Performance

analysis and optimal access class barring parameter configuration in LTE-A
networks with massive M2M traffic. IEEE Transactions on Vehicular Technol-
ogy 67 (4): 3505–3520.

�

� �

�

788 References

202 Toledo, A.L., Vercauteren, T., and Wang, X. (2006). Adaptive optimization of
IEEE 802.11 DCF based on Bayesian estimation of the number of competing
terminals. IEEE Transactions on Mobile Computing 5 (9): 1283–1296.

203 Vvedenskaya, N.D., Dobrushin, R.L.’v., and Karpelevich, F.I. (1996). Queue-
ing system with selection of the shortest of two queues: an asymptotic
approach. Problemy Peredachi Informatsii 32 (1): 20–34.

204 Whitt, W. (1983). The queueing network analyzer. The Bell System Technical
Journal 62 (9): 2779–2815.

205 Whitt, W. (1984). Heavy traffic approximations for service systems with
blocking. AT&T Bell Laboratories Technical Journal 63 (5): 708–723.

206 Whitt, W. (2002). Stochastic Process Limits. New York, NY: Springer-Verlag.
207 Wierman, A. (2007). Scheduling for today’s computer systems: bridging the-

ory and practice. PhD Dissertation. School of Computer Science, Carnegie
Mellon University, Pittsburgh, PA.

208 Wilkinson, R.I. (1956). Theories for toll traffic engineering in the U.S.A. Bell
System Technical Journal 35: 421–514.

209 Wolff, R.W. (1989). Stochastic Modeling and the Theory of Queues. Englewood
Cliffs, NJ: Prentice Hall.

210 Zhan, W. and Dai, L. (2018). Massive random access of machine-to-machine
communications in LTE networks: modeling and throughput optimization.
IEEE Transactions on Wireless Communications 17 (4): 2771–2785.

211 Zhang, J., Ren, F., and Lin, C. (2013). Survey on transport control in data
center networks. IEEE Network 27 (4): 22–26.

212 Zhang, M., Polese, M., Mezzavilla, M. et al. (2019). Will TCP work in
mmWave 5G cellular networks? IEEE Communications Magazine 57 (1):
65–71.

213 Zhong, Z., Hamchaoui, I., Khatoun, R., and Serhrouchni, A. (2018).
Performance evaluation of CQIC and TCP BBR in mobile network. In 21st
Conference on Innovation in Clouds, Internet and Networks and Workshops
(ICIN) (February 2018).

214 Zhou, X., Wu, F., Tan, J. et al. (2017). Designing low-complexity heavy-
traffic delay-optimal load balancing schemes: theory to algorithms. Proceed-
ings of the ACM on Measurement and Analysis of Computing Systems 1 (2),
Article 39.

215 Zhu, X., Pan, R., Ramalho, M. et al. (2019). NADA: A Unified Conges-
tion Control Scheme for Real-Time Media. IETF Internet Draft, draft-ietf-
rmcatnada-10.

�

� �

�

789

Index

G∕G∕1 queue
Brumelle-Marchal’s bound 414
Heavy-traffic approximation 423
Kingman’s bound 406
Marchal’s approximation 416
Mean Value Analysis 404
Reflected Brownian Motion

approximation 418
M∕G∕1 queue

Burke’s theorem 150
Embedded Markov Chain 135
PK mean waiting time formula 141
PK waiting time CDF formula

143
Remaining service time 148
Takács equation 144

a
Additive Increase Multiplicative

Decrease paradigm 559, 585,
612

Admission control 581, 695
Age of Information

definition 62
evaluation 175

Arrival curve
Definition 673
Minimal 676

Arrival curves

Affine curve 674
Rate-latency 674

Arrivals See Time Averages 358

b
Birth-death process

Chapman-Kolmogorov equations
116

Recurrence conditions 117
Bounds

Chernov 746
Braess paradox 350
Brownian Motion 420, 453, 769

Chapman-Kolmogorov equation
455

busy period 37
Buzen’s algorithm 360

c
Capacity 56
Carrier Sense Multiple Access (CSMA)

504
Chebychev inequality 745
Chernov bound 704, 746
Closed queueing networks

ASTA property 358
Buzen’s algorithm 360
Mean Value Analysis 360

Network Traffic Engineering: Stochastic Models and Applications, First Edition. Andrea Baiocchi.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.

�

� �

�

790 Index

Closed queueing networks (contd.)
Network throughput 358
Normalization constant 356

Credit-Based Fair Queueing 302
CSMA

Delay analysis 531
Stability 523

d
Data Centers

Fat-tree topology 722
Deficit Round Robin 306
Delaunay triangulation 86
delay

definition 61
equalization 13

Diffusion approximation 453
Diffusion process 453

e
Effective bandwidth 703
Engset function 214
Engset model 213
ergodicity 43
Erlang

Erlang-B formula 203
Erlang-C formula 242
Insensitivity property 211
model 201
probability distribution 202
Random server hunting 209
Sequential server hunting 211
unit of measure 53
Wilkinson approximation 217

Erlang fixed-point approximation
373

f
Fairness 312, 565, 569, 580,

642, 644
Flow Deviation algorithm 349

Fokker-Planck equation 421
Foreground-Background 308
Fortet’s formula 203
Foster-Lyapunov theorem 760
Fredericks-Lindberger equations 219
Functional Central Limit Theorem 452

g
Generalized Processor Sharing 293
Gittins index 325

h
Head-Of-Line priority 276
Heavy-tailed random variables 78
Heavy-traffic approximation 423

i
Idle Sense 559
idle time 37
Inequalities

Chebychev 745
Jensen 746
Markov 744

j
Jackson’s queueing networks 333
Jain’s fairness index 305
Jensen inequality 746

k
Kleinrock’s model of a packet network

337
Kolmogorov-Smirnov test 100

l
Last Come First Serve 273
Leaky bucket 683
Least Attained Service 308
Lindley’s recursion 402
loss

definition 59

�

� �

�

Index 791

m
Machine learning 11
Markov Chain

Embedded 135
Time-homogeneous 137

Markov inequality 744
Mean Value Analysis 362, 404

n
network planning 580
Non-preemptive priority 272

p
Palm’s distributions 51
PASTA property 50
Point process

Displacement 89
Inhomogeneous Poisson process

79
Mapping 89
Markovian Arrival Process 100
Poisson process 72
Renewal process 103
Spatial Poisson process 84
Thinning 90

Poisson process
Definition 72
Inhomogeneous Poisson process 79
Inter-arrival times 73
Memoryless property 75
Sampling 76
Spatial Poisson process 84
Statistical tests 96
Superposition 76

Policing 581
Pollaczek-Khinchine

CDF of the waiting time 143
Mean waiting time 141

Preemptive priority 272
Preemptive-repeat priority 273
Preemptive-resume priority 273, 283
Priority 265

Conservation law 268
HOL 276
preemption 272
Preemptive-resume 283
SJF 284
SRPT 286

process
arrival 35
counting 35
traffic 53

Processor Sharing 266, 289
Proportional Fairness 312, 569, 644

q
QQ-plot 97
Queue

Kendall’s notation 39
Work-conserving 39

Queueing discipline 265
Queueing disciplines

Anticipative policies 324
CBFQ 302
DRR 306
HOL priority 276
LCFS 273
Preemptive-resume 283
Random Order 273
Sharing policies 324
SJF 284
SRPT 286

r
Random Order service 273
Random server hunting 209
Rate function 705

�

� �

�

792 Index

Reflected Brownian Motion 419, 773
regeneration point 135
Reich’s formula 192
Renewal process

Alternating renewal process 111
Definition 103
Renewal paradox 108
Reward renewal process 113
Superposition 110

Residual inter-arrival time 104

s
scheduling

Credit-Based Fair Queueing 302
Foreground-Background 308
Generalized Processor Sharing 293
Least Attained Service 308
Processor Sharing 289
Weighted Fair Queueing 298

Sequential server hunting 211
Service curve

Definition 678
Rate-latency 680

service time
residual 135

service times 36
Shortest Job First policy 284
Shortest Remaining Processing Time

policy 286
Slotted ALOHA 482
Stability

ALOHA 490, 494
CSMA 523
Dynamic systems 663
Queueing networks 385

Sticky routing 381

t
TCP 583

BBR 604
congestion window 585
CUBIC 596
DCTCP 601
NewReno 593
receiver window 585
Reno 588
SACK 594
Vegas 598

Throughput 56
Time reversibility 370
trunking efficiency 204

u
utilization

definition 59

v
Voronoi cells 86

w
Weighted Fair Queueing

298
Wiener process 420, 769
WiFi

Back-off model 540
Fairness 565
Jitter minimization 561
MAC protocol 534
Saturation throughput 545
Service times 549
Throughput optimization 556
Virtual slot time 543

Wilkinson approximation 217

