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Dedicated to my beloved wife, Marci.

Writing this book has had its challenges.
Being the spouse of the author, while writing

this book, has also had its challenges.





The enchanting charms of this sublime science
reveal themselves only to those who have the

courage to go deeply into it.

Carl Friedrich Gauss, 1807
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Preface

This is a modern introduction to number theory, aimed at several different audi-
ences: students who have little experience of university level mathematics, students
who are completing an undergraduate degree in mathematics, as well as students
who are completing a mathematics teaching qualification. Like most introductions
to number theory, our contents are largely inspired by Gauss’s Disquisitiones Arith-
meticae (1801), though we also include many modern developments. We have gone
back to Gauss to borrow several excellent examples to highlight the theory.

There are many different topics that might be included in an introductory
course in number theory, and others, like the law of quadratic reciprocity, that surely
must appear in any such course. The first dozen chapters of the book therefore
present a “standard” course. In the masterclass version of this book we flesh out
these topics, in copious appendices, as well as adding five additional chapters on
more advanced themes. In the introductory version we select an appendix for each
chapter that might be most useful as supplementary material.1 A “minimal” course
might focus on the first eight chapters and at least one of chapters 9 and 10.2

Much of modern mathematics germinated from number-theoretic seed and one
of our goals is to help the student appreciate the connection between the relatively
simply defined concepts in number theory and their more abstract generalizations
in other courses. For example, our appendices allow us to highlight how mod-
ern algebra stems from investigations into number theory and therefore serve as
an introduction to algebra (including rings, modules, ideals, Galois theory, p-adic
numbers,. . . ). These appendices can be given as additional reading, perhaps as
student projects, and we point the reader to further references.

Following Gauss, we often develop examples before giving a formal definition
and a theorem, firstly to see how the concept arises naturally, secondly to conjecture
a theorem that describes an evident pattern, and thirdly to see how a proof of the
theorem emerges from understanding some non-trivial examples.

1In the main text we occasionally refer to appendices that only appear in the masterclass version.
2Several sections might be discarded; their headings are in bold italics.

xiii



xiv Preface

Why study number theory? Questions arise when studying any subject, some-
times fascinating questions that may be difficult to answer precisely. Number theory
is the study of the most basic properties of the integers, literally taking integers
apart to see how they are built, and there we find an internal beauty and coherence
that encourages many of us to seek to understand more. Facts are often revealed by
calculations, and then researchers seek proofs. Sometimes the proofs themselves,
even more than the theorems they prove, have an elegance that is beguiling and
reveal that there is so much more to understand. With good reason, Gauss called
number theory the “Queen of Mathematics”, ever mysterious, but nonetheless gra-
ciously sharing with those that find themselves interested. In this first course there
is much that is accessible, while at the same time natural, easily framed, questions
arise which remain open, stumping the brightest minds.

Once celebrated as one of the more abstract subjects in mathematics, today
there are scores of applications of number theory in the real world, particularly to
the theory and practice of computer algorithms. Best known is the use of number
theory in designing cryptographic protocols (as discussed in chapter 10), hiding
our secrets behind the seeming difficulty of factoring large numbers which only
have large prime factors.

For some students, studying number theory is a life-changing experience: They
find themselves excited to go on to penetrate more deeply, or perhaps to pursue
some of the fascinating applications of the subject.

Why give proofs? We give proofs to convince ourselves and others that our
reasoning is correct. Starting from agreed upon truths, we try to derive a further
truth, being explicit and precise about each step of our reasoning. A proof must
be readable by people besides the author. It is a way of communicating ideas and
needs to be persuasive, not just to the writer but also to a mathematically literate
person who cannot obtain further clarification from the writer on any point that is
unclear. It is not enough that the writer believes it; it must be clear to others. The
burden of proof lies with the author.

The word “proof” can mean different things in different disciplines. In some
disciplines a “proof” can be several different examples that justify a stated hypoth-
esis, but this is inadequate in mathematics: One can have a thousand examples that
work as predicted by the hypothesis, but the thousand and first might contradict
it. Therefore to “prove” a theorem, one must build an incontrovertible argument
up from first principles, so that the statement must be true in every case, assuming
that those first principles are true.

Occasionally we give more than one proof of an important theorem, to highlight
how inevitably the subject develops, as well as to give the instructor different
options for how to present the material. (Few students will benefit from seeing
all of the proofs on their first time encountering this material.)

Motivation. Challenging mathematics courses, such as point-set topology, al-
gebraic topology, measure theory, differential geometry, and so on, tend to be dom-
inated at first by formal language and requirements. Little is given by way of
motivation. Sometimes these courses are presented as a prerequisite for topics that
will come later. There is little or no attempt to explain what all this theory is good
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for or why it was developed in the first place. Students are expected to subject
themselves to the course, motivated primarily by trust.

How boring! Mathematics surely should not be developed only for those few
who already know that they wish to specialize and have a high tolerance for bore-
dom. We should help our students to appreciate and cherish the beauty of math-
ematics. Surely courses should be motivated by a series of interesting questions.
The right questions will highlight the benefits of an abstract framework, so that
the student will wish to explore even the most rarified paths herself, as the bene-
fits become obvious. Number theory does not require much in the way of formal
prerequisites, and there are easy ways to justify most of its abstraction.

In this book, we hope to capture the attention and enthusiasm of the reader
with the right questions, guiding her as she embarks for the first time on this
fascinating journey.

Student expectations. For some students, number theory is their first course
that formulates abstract statements of theorems, which can take them outside of
their “comfort zone”. This can be quite a challenge, especially as high school
pedagogy moves increasingly to training students to learn and use sophisticated
techniques, rather than appreciate how those techniques arose. We believe that
one can best use (and adapt) methods if one fully appreciates their genesis, so
we make no apologies for this feature of the elementary number theory course.
However this means that some students will be forced to adjust their personal
expectations. Future teachers sometimes ask why they need to learn material,
and take a perspective, so far beyond what they will be expected to teach in high
school. There are many answers to this question; one is that, in the long term, the
material in high school will be more fulfilling if one can see its long-term purpose. A
second response is that every teacher will be confronted by students who are bored
with their high school course and desperately seeking harder intellectual challenges
(whether they realize it themselves or not); the first few chapters of this book should
provide the kind of intellectual stimulation those students need.

Exercises. Throughout the book, there are a lot of problems to be solved. Easy
questions, moderate questions, hard questions, exceptionally difficult questions. No
one should do them all. The idea of having so many problems is to give the teacher
options that are suitable for the students’ backgrounds:

An unusual feature of the book is that exercises appear embedded in the text.3

This is done to enable the student to complete the proofs of theorems as one goes
along.4 This does not require the students to come up with new ideas but rather to
follow the arguments given so as to fill in the gaps. For less experienced students it
helps to write out the solutions to these exercises; more experienced students might
just satisfy themselves that they can provide an appropriate proof.

3Though they can be downloaded, as a separate list, from www.ams.org/granville-number-theory.
4Often students have little experience with proofs and struggle with the level of sophistication

required, at least without adequate guidance.

www.ams.org/granville-number-theory
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Other questions work through examples. There are more challenging exercises
throughout, indicated by the symbol † next to the question numbers, in which the
student will need to independently bring together several of the ideas that have been
discussed. Then there are some really tough questions, indicated by the symbol ‡,
in which the student will need to be creative, perhaps even providing ideas not
given, or hinted at, in the text.

A few questions in this book are open-ended, some even phrased a little mis-
leadingly. The student who tries to develop those themes her- or himself, might
embark upon a rewarding voyage of discovery. Once, after I had set the exercises
in section 9.2 for homework, some students complained how unfair they felt these
questions were but were silenced by another student who announced that it was so
much fun for him to work out the answers that he now knew what he wanted to do
with his life!

At the end of the book we give hints for many of the exercises, especially those
that form part of a proof.

Special features of our syllabus. Number theory sometimes serves as an intro-
duction to “proof techniques”. We give many exercises to practice those techniques,
but to make it less boring, we do so while developing certain themes as the book
progresses, for examples, the theory of recurrence sequences, and properties of bi-
nomial coefficients. We dedicate a preliminary chapter to induction and use it to
develop the theory of sums of powers. Here is a list of the main supplementary
themes which appear in the book:

Special numbers: Bernoulli numbers; binomial coefficients and Pascal’s triangle;
Fermat and Mersenne numbers; and the Fibonacci sequence and general second-
order linear recurrences.

Subjects in their own right: Algebraic numbers, integers, and units; compu-
tation and running times: Continued fractions; dynamics; groups, especially of
matrices; factoring methods and primality testing; ideals; irrationals and transcen-
dentals; and rings and fields.

Formulas for cyclotomic polynomials, Dirichlet L-functions, the Riemann zeta-
function, and sums of powers of integers.

Interesting issues: Lifting solutions; polynomial properties; resultants and dis-
criminants; roots of polynomials, constructibility and pre-Galois theory; square
roots (mod n); and tests for divisibility.

Fun and famous problems like the abc-conjecture, Catalan’s conjecture, Egyp-
tian fractions, Fermat’s Last Theorem, the Frobenius postage stamp problem, magic
squares, primes in arithmetic progressions, tiling with rectangles and with circles.

Our most unconventional choice is to give a version of Rousseau’s proof of the
law of quadratic reciprocity, which is directly motivated by Gauss’s proof of Wil-
son’s Theorem. This proof avoids Gauss’s Lemma so is a lot easier for a beginning
student than Eisenstein’s elegant proof (which we give in section 8.10 of appendix
8A). Gauss’s original proof of quadratic reciprocity is more motivated by the in-
troductory material, although a bit more complicated than these other two proofs.
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We include Gauss’s original proof in section 8.14 of appendix 8C, and we also un-
derstand (2/n) in his way, in the basic course, to interest the reader. We present
several other proofs, including a particularly elegant proof using Gauss sums in
section 14.7.

Further exploration of number theory. There is a tremendous leap in the level
of mathematical knowledge required to take graduate courses in number theory,
because curricula expect the student to have taken (and appreciated) several other
relevant courses. This is a shame since there is so much beautiful advanced material
that is easily accessible after finishing an introductory course. Moreover, it can be
easier to study other courses, if one already understands their importance, rather
than taking it on trust. Thus this book, Number Theory Revealed, is designed
to lead to two subsequent books, which develop the two main thrusts of number
theory research:

In The distribution of primes: Analytic number theory revealed, we will discuss
how number theorists have sought to develop the themes of chapter 5 (as well as
chapters 4 and 13). In particular we prove the prime number theorem, based
on the extraordinary ideas of Riemann. This proof rests heavily on certain ideas
from complex analysis, which we will outline in a way that is relevant for a good
understanding of the proofs.

In Rational points on curves: Arithmetic geometry revealed, we look at solu-
tions to Diophantine equations, especially those of degree two and three, extending
the ideas of chapter 12 (as well as chapters 14 and 17). In particular we will prove
Mordell’s Theorem (developed here in special cases in chapter 17) and gain a basic
understanding of modular forms, outlining some of the main steps in Wiles’s proof
of Fermat’s Last Theorem. We avoid a deep understanding of algebraic geometry,
instead proceeding by more elementary techniques and a little complex analysis
(which we explain).

References. There is a list of great number theory books at the end of our
book and references that are recommended for further reading at the end of many
chapters and appendices. Unlike most textbooks, I have chosen to not include a
reference to every result stated, nor necessarily to most relevant articles, but rather
focus on a smaller number that might be accessible to the reader. Moreover, many
readers are used to searching online for keywords; this works well for many themes
in mathematics.5 However the student researching online should be warned that
Wikipedia articles are often out of date, sometimes misleading, and too often poorly
written. It is best to try to find relevant articles published in expository research
journals, such as the American Mathematical Monthly,6 or posted at arxiv.org which
is “open access”, to supplement the course material.

The cover (designed by Marci Babineau and the author).

In 1675, Isaac Newton explained his extraordinary breakthroughs in physics and
mathematics by claiming, “If I have seen further it is by standing on the shoulders

5Though getting just the phrasing to find the right level of article can be challenging.
6Although this is behind a paywall, it can be accessed, like many journals, by logging on from most

universities, which have paid subscriptions for their students and faculty.
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of Giants.” Science has always developed this way, no more so than in the theory
of numbers. Our cover represents five giants of number theory, in a fan of cards,
each of whose work built upon the previous luminaries.

Modern number theory was born from Pierre de Fermat’s readings of the
ancient Greek texts (as discussed in section 6.1) in the mid-17th century, and his
enunciation of various results including his tantalizingly difficult to prove “Last
Theorem.” His “Little Theorem” (chapter 7) and his understanding of sums of two
squares (chapter 9) are part of the basis of the subject.

The first modern number theory book, Gauss’s Disquisitiones Arithmeticae, on
which this book is based, was written by Carl Friedrich Gauss at the beginning
of the 19th century. As a teenager, Gauss rethought many of the key ideas in number
theory, especially the law of quadratic reciprocity (chapter 8) and the theory of
binary quadratic forms (chapter 12), as well as inspiring our understanding of the
distribution of primes (chapter 5).

Gauss’s contemporary Sophie Germain made perhaps the first great effort to
attack Fermat’s Last Theorem (her effort is discussed in appendix 7F). Developing
her work inspired my own first research efforts.

Srinivasa Ramanujan, born in poverty in India at the end of the 19th cen-
tury, was the most talented untrained mathematician in history, producing some
extraordinary results before dying at the age of 32. He was unable to satisfactorily
explain many of his extraordinary insights which penetrated difficult subjects far
beyond the more conventional approaches. (See appendix 12F and chapters 13, 15,
and 17.) Some of his identities are still inspiring major developments today in both
mathematics and physics.

Andrew Wiles sits atop our deck. His 1994 proof of Fermat’s Last Theorem
built on the ideas of the previous four mentioned mathematicians and very many
other “giants” besides. His great achievement is a testament to the success of
science building on solid grounds.

Thanks. I would like to thank the many inspiring mathematicians who have
helped me shape my view of elementary number theory, most particularly Bela
Bollobas, Paul Erdős, D. H. Lehmer, James Maynard, Ken Ono, Paulo Riben-
boim, Carl Pomerance, John Selfridge, Dan Shanks, and Hugh C. Williams as well
as those people who have participated in developing the relatively new subject of
“additive combinatorics” (see sections 15.3, 15.4, 15.5, and 15.6). Several peo-
ple have shared insights or new works that have made their way into this book:
Stephanie Chan, Leo Goldmakher, Richard Hill, Alex Kontorovich, Jennifer Park,
and Richard Pinch. The six anonymous reviewers added some missing perspec-
tives and Olga Balkanova, Stephanie Chan, Patrick Da Silva, Tristan Freiberg,
Ben Green, Mariah Hamel, Jorge Jimenez, Nikoleta Kalaydzhieva, Dimitris Kouk-
oulopoulos, Youness Lamzouri, Jennifer Park, Sam Porritt, Ethan Smith, Anitha
Srinivasan, Paul Voutier, and Max Wenqiang Xu kindly read subsections of the
near-final draft, making valuable comments.



Gauss’s Disquisitiones
Arithmeticae

In July 1801, Carl Friedrich Gauss published Disquisitiones Arithmeticae, a book
on number theory, written in Latin. It had taken five years to write but was im-
mediately recognized as a great work, both for the new ideas and its accessible
presentation. Gauss was then widely considered to be the world’s leading mathe-
matician, and today we rate him as one of the three greatest in history, alongside
Archimedes and Sir Isaac Newton.

The first four chapters of Disquisitiones Arithmeticae consist of essentially the
same topics as our course today (with suitable modifications for advances made in
the last two hundred years). His presentation of ideas is largely the model upon
which modern mathematical writing is based. There follow several chapters on qua-
dratic forms and then on the rudiments of what we would call Galois theory today,
most importantly the constructibility of regular polygons. Finally, the publisher
felt that the book was long enough, and several further chapters did not appear in
the book (though Dedekind published Gauss’s disorganized notes, in German, after
Gauss’s death).

One cannot overestimate the importance of Disquisitiones to the development
of 19th-century mathematics. It led, besides many other things, to Dirichlet’s
formulation of ideals (see sections 3.19, 3.20 of appendix 3D, 12.8 of appendix 12A,
and 12.10 of appendix 12B), and the exploration of the geometry of the upper
half-plane (see Theorem 1.2 and the subsequent discussion).

As a young man, Dirichlet took his copy of Disquisitiones with him wherever
he went. He even slept with it under his pillow. As an old man, it was his most
prized possession even though it was in tatters. It was translated into French in
1807, German in 1889, Russian in 1959, English only in 1965, Spanish and Japanese
in 1995, and Catalan in 1996!

xix



xx Gauss’s Disquisitiones Arithmeticae

Disquisitiones is no longer read by many people. The notation is difficult. The
assumptions about what the reader knows do not fit today’s reader (for example,
neither linear algebra nor group theory had been formulated by the time Gauss
wrote his book, although Disquisitiones would provide some of the motivation for
developing those subjects). Yet, many of Gauss’s proofs are inspiring, and some
have been lost to today’s literature. Moreover, although the more advanced two-
thirds of Disquisitiones focus on binary quadratic forms and have led to many of
today’s developments, there are several themes there that are not central to today’s
research. In the fourth book in our trilogy (!), Gauss’s Disquisitiones Arithmeticae
revealed, we present a reworking of Gauss’s classic, rewriting it in modern notation,
in a style more accessible to the modern reader. We also give the first English
version of the missing chapters, which include several surprises.
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N – The natural numbers, 1, 2, 3, . . ..

Z – The integers, . . . ,−3,−2,−1, 0, 1, 2, 3, . . ..

Throughout, all variables are taken to be integers, unless otherwise specified.

Usually p, and sometimes q, will denote prime numbers.

Q – The rational numbers, that is, the fractions a/b with a ∈ Z and b ∈ N.

R – The real numbers.

C – The complex numbers.

∑
Some variables:

Certain conditions hold

summand and
∏

Some variables:
Certain conditions hold

summand

mean that we sum, or product, the summand over the integer values of some vari-
able, satisfying certain conditions.

Brackets and parentheses: There are all sorts of brackets and parentheses in math-
ematics. It is helpful to have protocols with them that take on meaning, so we do
not have to repeat ourselves too often, as we will see in the notation below. But we
also use them in equations; usually we surround an expression with “(” and “)” to
be clear where the expression begins and ends. If too many of these are used in one
line, then we might use different sizes or even “{” and “}” instead. If the brackets
have a particular meaning, then the reader will be expected to discern that from
the context.

A[x] — The set of polynomials with coefficients from the set A, that is, f(x) =∑d
i=0 aix

i where each ai ∈ A. Mostly we work with A = Z.

A(x) —The set of rational functions with coefficients from the set A, in other words,
functions f(x)/g(x) where f(x), g(x) ∈ A[x] and g(x) �= 0.

[t] — The integer part of t, that is, the largest integer ≤ t.

xxi
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{t} — The fractional part of (real number) t, that is, {t} = t − [t]. Notice that
0 ≤ {t} < 1.

(a, b) — The greatest common divisor of a and b.

[a, b] — The least common multiple of a and b.

b|a — Means b divides a.

pk‖a — Means pk divides a, but not pk+1 (where p is prime). In other words, k is
the “exact power” of p dividing a.

I(a, b) — The set {am + bn : m,n ∈ Z}, which is called the ideal generated by a
and b over Z.

log — The logarithm in base e, the natural logarithm, which is often denoted by
“ln” in earlier courses.

Parity – The parity of an integer is either even (if it is divisible by 2) or odd (if it
is not divisible by 2).

The language of mathematics

“By a conjecture we mean a proposition that has not yet been proven but which is
favored by some serious evidence. It may be a significant amount of computational
evidence, or a body of theory and technique that has arisen in the attempt to settle
the conjecture.

An open question is a problem where the evidence is not very convincing one
way or the other.

A theorem, of course, is something that has been proved. There are important
theorems, and there are unimportant (but perhaps curious) theorems.

The distinction between open question and conjecture is, it is true, somewhat
subjective, and different mathematicians may form different judgements concerning
a particular problem. We trust that there will be no similar ambiguity concerning
the theorems.”

—— Dan Shanks [Sha85, p. 2]

Today we might add to this a heuristic argument, in which we explore an open
question with techniques that help give us a good idea of what to conjecture, even
if those techniques are unlikely to lead to a formal proof.



Prerequisites

The reader should be familiar with the commonly used sets of numbers N, Z, and Q,
as well as polynomials with integer coefficients, denoted by Z[x]. Proofs will often
use the principle of induction; that is, if S(n) is a given mathematical assertion,
dependent on the integer n, then to prove that it is true for all n ∈ N, we need only
prove the following:

• S(1) is true.

• S(k) is true implies that S(k + 1) is true, for all integers k ≥ 1.

The example that is usually given to highlight the principle of induction is the

statement “1 + 2 + 3 + · · ·+ n = n(n+1)
2 ” which we denote by S(n).1 For n = 1 we

check that 1 = 1·2
2 and so S(1) is true. For any k ≥ 1, we assume that S(k) is true

and then deduce that

1 + 2 + 3 + · · ·+ (k + 1) = (1 + 2 + 3 + · · ·+ k︸ ︷︷ ︸) + (k + 1)

=
k(k + 1)

2
+ (k + 1) as S(k) is true

=
(k + 1)(k + 2)

2
;

that is, S(k+1) is true. Hence, by the principle of induction, we deduce that S(n)
is true for all integers n ≥ 1.

To highlight the technique of induction with more examples, we develop the
theory of sums of powers of integers (for example, we prove a statement which
gives a formula for 12 + 22 + · · · + n2 for each integer n ≥ 1) in section 0.1 and
give formulas for the values of the terms of recurrence sequences (like the Fibonacci
numbers) in section 0.2.

1There are other, easier, proofs of this assertion, but induction will be the only viable technique
to prove some of the more difficult theorems in the course, which is why we highlight the technique here.
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xxiv Prerequisites

Induction and the least counterexample: Induction can be slightly disguised. For
example, sometimes one proves that a statement T (n) is true for all n ≥ 1, by
supposing that it is false for some n and looking for a contradiction. If T (n) is
false for some n, then there must be a least integer m for which T (m) is false. The
trick is to use the assumption that T (m) is false to prove that there exists some
smaller integer k, 1 ≤ k < m, for which T (k) is also false. This contradicts the
minimality of m, and therefore T (n) must be true for all n ≥ 1. Such proofs are
easily reformulated into an induction proof:

Let S(n) be the statement that T (1), T (2), . . . , T (n) all hold. The induction
proof then works for if S(m− 1) is true, but S(m) is false, then T (m) is false and
so, by the previous paragraph, T (k) is false for some integer k, 1 ≤ k ≤ m − 1,
which contradicts the assumption that S(m− 1) is true.

A beautiful example is given by the statement, “Every integer > 1 has a prime
divisor.” (A prime number is an integer > 1, such that the only positive integers
that divide it are 1 and itself.) Let T (n) be the statement that n has a prime
divisor, and let S(n) be the statement that T (2), T (3), . . . , T (n) all hold. Evidently
S(2) = T (2) is true since 2 is prime. We suppose that S(k) is true (so that
T (2), T (3), . . . , T (k) all hold). Now:

Either k+1 is itself a prime number, in which case T (k+1) holds and therefore
S(k + 1) holds.

Or k+1 is not prime, in which case it has a divisor d which is not equal to either
1 or k + 1, and so 2 ≤ d ≤ k. But then S(d) holds by the induction hypothesis,
and so there is some prime p, which divides d, and therefore divides k + 1. Hence
T (k + 1) holds and therefore S(k + 1) holds.

(The astute reader might ask whether certain “facts” that we have used here deserve
a proof. For example, if a prime p divides d, and d divides k + 1, then p divides
k+1. We have also assumed the reader understands that when we write “d divides
k+ 1” we mean that when we divide k+ 1 by d, the remainder is zero. One of our
goals at the beginning of the course is to make sure that everyone interprets these
simple facts in the same way, by giving as clear definitions as possible and outlining
useful, simple deductions from these definitions.)



Chapter 0

Preliminary Chapter
on Induction

Induction is an important proof technique in number theory. This preliminary
chapter gives the reader the opportunity to practice its use, while learning about
some intriguing number-theoretic concepts.

0.1. Fibonacci numbers and other recurrence sequences

The Fibonacci numbers, perhaps the most famous sequence of integers, begin with

F0 = 0, F1 = 1, F2 = 1, F3 = 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, . . . .

The Fibonacci numbers appear in many places in mathematics and its applica-
tions.1 They obey a rule giving each term of the Fibonacci sequence in terms of
the recent history of the sequence:

Fn = Fn−1 + Fn−2 for all integers n ≥ 2.

We call this a recurrence relation. It is not difficult to find a formula for Fn:

(0.1.1) Fn =
1√
5

((
1 +

√
5

2

)n

−
(
1−

√
5

2

)n)
for all integers n ≥ 0,

where 1+
√
5

2 and 1−
√
5

2 each satisfy the equation x+1 = x2. Having such an explicit
formula for the Fibonacci numbers makes them easy to work with, but there is a
problem. It is not obvious from this formula that every Fibonacci number is an
integer; however that does follow easily from the original recurrence relation.2

1Typically when considering a biological process whose current state depends on its past, such as
evolution, and brain development.

2It requires quite sophisticated ideas to decide whether a given complicated formula like (0.1.1) is
an integer or not. Learn more about this in appendix 0F on symmetric polynomials.

1



2 Preliminary Chapter on Induction

Exercise 0.1.1. (a) Use the recurrence relation for the Fibonacci numbers, and induction to
prove that every Fibonacci number is an integer.

(b) Prove that (0.1.1) is correct by verifying that it holds for n = 0, 1 and then, for all larger
integers n, by induction.

Exercise 0.1.2. Use induction on n ≥ 1 to prove that
(a) F1 + F3 + · · ·+ F2n−1 = F2n and
(b) 1 + F2 + F4 + · · ·+ F2n = F2n+1.

The number φ = 1+
√
5

2 is called the golden ratio; one can show that Fn is the

nearest integer to φn/
√
5.

Exercise 0.1.3. (a) Prove that φ satisfies φ2 = φ+ 1.
(b) Prove that φn = Fnφ+ Fn−1 for all integers n ≥ 1, by induction.

Any sequence x0, x1, x2, . . ., for which the terms xn, with n ≥ 2, are defined
by the equation

(0.1.2) xn = axn−1 + bxn−2 for all n ≥ 2,

where a, b, x0, x1 are given, is called a second-order linear recurrence sequence.
Although this is a vast generalization of the Fibonacci numbers one can still prove
a formula for the general term, xn, analogous to (0.1.1): We begin by factoring the
polynomial

x2 − ax− b = (x− α)(x− β)

for the appropriate α, β ∈ C (we had x2 − x − 1 = (x − 1+
√
5

2 )(x − 1−
√
5

2 ) for the
Fibonacci numbers). If α �= β, then there exist coefficients cα, cβ for which

(0.1.3) xn = cαα
n + cββ

n for all n ≥ 0.

(In the case of the Fibonacci numbers, we have cα = 1/
√
5 and cβ = −1/

√
5.)

Moreover one can determine the values of cα and cβ by solving the simultaneous
equations obtained by evaluating the formula (0.1.3) at n = 0 and n = 1, that is,

cα + cβ = x0 and cαα+ cββ = x1.

Exercise 0.1.4. (a) Prove (0.1.3) is correct by verifying that it holds for n = 0, 1 (with x0 and
x1 as in the last displayed equation) and then by induction for n ≥ 2.

(b) Show that cα and cβ are uniquely determined by x0 and x1, provided α �= β.

(c) Show that if α �= β with x0 = 0 and x1 = 1, then xn = αn−βn

α−β
for all integers n ≥ 0.

(d) Show that if α �= β with y0 = 2, y1 = a with yn = ayn−1 + byn−2 for all n ≥ 2, then
yn = αn + βn for all integers n ≥ 0.

The {xn}n≥0 in (c) is a Lucas sequence, and the {yn}n≥0 in (d) its companion sequence

Exercise 0.1.5.3 (a) Prove that α = β if and only if a2 + 4b = 0.
(b)† Show that if a2 + 4b = 0, then α = a/2 and xn = (cn + d)αn for all integers n ≥ 0, for

some constants c and d.
(c) Deduce that if α = β with x0 = 0 and x1 = 1, then xn = nαn−1 for all n ≥ 0.

Exercise 0.1.6. Prove that if x0 = 0 and x1 = 1, if (0.1.2) holds, and if α is a root of x2−ax−b,
then αn = αxn + bxn−1 for all n ≥ 1.

3In this question, and from here on, induction should be used at the reader’s discretion.
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0.2. Formulas for sums of powers of integers

When Gauss was ten years old, his mathematics teacher aimed to keep his class
quiet by asking them to add together the integers from 1 to 100. Gauss did this in
a few moments, by noting if one adds that list of numbers to itself, but with the
second list in reverse order, then one has

1 + 100 = 2 + 99 = 3 + 98 = · · · = 99 + 2 = 100 + 1 = 101.

That is, twice the asked-for sum equals 100 times 101, and so

1 + 2 + · · ·+ 100 =
1

2
× 100× 101.

This argument generalizes to adding up the natural numbers less than any given
N , yielding the formula4

(0.2.1)

N−1∑
n=1

n =
(N − 1)N

2
.

The sum on the left-hand side of this equation varies in length with N , whereas
the right-hand side does not. The right-hand side is a formula whose value varies
but has a relatively simple structure, so we call it a closed form expression. (In the
prerequisite section, we gave a less interesting proof of this formula, by induction.)

Exercise 0.2.1. (a) Prove that 1 + 3 + 5 + · · ·+ (2N − 1) = N2 for all N ≥ 1 by induction.
(b) Prove the formula in part (a) by the young Gauss’s method.
(c) Start with a single dot, thought of as a 1-by-1 array of dots, and extend it to a 2-by-2 array

of dots by adding an appropriate row and column. You have added 3 dots to the original
dot and so 1 + 3 = 22.

◦

◦

◦

◦

◦

◦

◦

◦

◦

1 + 3 + 5 + · · ·

In general, draw an N-by-N array of dots, and add an additional row and column of dots
to obtain an (N + 1)-by-(N + 1) array of dots. By determining how many dots were added
to the number of dots that were already in the array, deduce the formula in (a).

Let S =
∑N−1

n=1 n2. Using exercise 0.2.1 we can write each square, n2, as the
sum of the odd positive integers ≤ 2n. Therefore 2m− 1 appears N −m times in
the sum for S, and so

S =
N−1∑
m=1

(2m− 1)(N −m) = −N
N−1∑
m=1

1 + (2N + 1)
N−1∑
m=1

m− 2S.

4This same idea appears in the work of Archimedes, from the third century B.C. in ancient Greece.
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Using our closed formula for
∑

mm, we deduce, after some rearrangement, that

N−1∑
n=1

n2 =
(N − 1)N(2N − 1)

6
,

a closed formula for the sum of the squares up to a given point. There is also a
closed formula for the sum of the cubes:

(0.2.2)

N−1∑
n=1

n3 =

(
(N − 1)N

2

)2

.

This is the square of the closed formula (0.2.1) that we obtained for
∑N−1

n=0 n. Is
this a coincidence or the first hint of some surprising connection?

Exercise 0.2.2. Prove these last two formulas by induction.

These three examples suggest that there are closed formulas for the sums of the
kth powers of the integers, for every k ≥ 1, but it is difficult to guess exactly what
those formulas might look like. Moreover, to hope to prove a formula by induction,
we need to have the formula at hand.

We will next find a closed formula in a simpler but related question and use this
to find a closed formula for the sums of the kth powers of the integers in appendix
0A. We will go on to investigate, in section 7.34 of appendix 7I, whether there are
other amazing identities for sums of different powers, like

N−1∑
n=1

n3 =

(
N−1∑
n=1

n

)2

.

0.3. The binomial theorem, Pascal’s triangle, and the binomial
coefficients

The binomial coefficient
(
n
m

)
is defined to be the number of different ways of choos-

ing m objects from n. (Therefore
(
n
m

)
= 0 whenever m < 0 or m > n.) From this

definition we see that the binomial coefficients are all integers. To determine
(
5
2

)
we

note that there are 5 choices for the first object and 4 for the second, but then we
have counted each pair of objects twice (since we can select them in either order),
and so

(
5
2

)
= 5×4

2 . It is arguably nicer to write 5 × 4 as 5×4×3×2×1
3×2×1 = 5!

3! so that(
5
2

)
= 5!

3!2! . One can develop this proof to show that, for any integers 0 ≤ m ≤ n,

one has the very neat formula5

(0.3.1)

(
n

m

)
=

n!

m!(n−m)!
, where r! = r · (r − 1) · · · 2 · 1.

From this formula alone it is not obvious that the binomial coefficients are integers.

Exercise 0.3.1. (a) Prove that
(n+1

m

)
=
(n
m

)
+
( n
m−1

)
for all integers m, and all integers n ≥ 0.

(b) Deduce from (a) that each
(n
m

)
is an integer.

5We prefer to work with the closed formula 27!/(15!12!) rather than to evaluate it as 17383860, since
the three factorials are easier to appreciate and to manipulate in subsequent calculations, particularly
when looking for patterns.
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Pascal’s triangle is a triangular array in which the (n + 1)st row contains the
binomial coefficients

(
n
m

)
, with m increasing from 0 to n, as one goes from left to

right:
1

1 1
1 2 1

1 3 3 1
1 4 6 4 1

1 5 10 10 5 1
1 6 15 20 15 6 1

. . . etc.

The addition formula in exercise 0.3.1(a) yields a rule for obtaining a row from the
previous one, by adding any two neighboring entries to give the entry immediately
below. For example the third entry in the bottom row is immediately below 5 and
10 (to either side) and so equals 5 + 10 = 15. The next entry is 10 + 10 = 20, etc.

The binomial theorem states that if n is an integer ≥ 1, then

(x+ y)n =
n∑

m=0

(
n

m

)
xn−mym.

Exercise 0.3.2.† Using exercise 0.3.1(a) and induction on n ≥ 1, prove the binomial theorem.

Notice that one can read off the coefficients of (x+ y)n from the (n+ 1)st row
of Pascal’s triangle; for example, reading off the bottom row above (which is the
7th row down of Pascal’s triangle), we obtain

(x+ y)6 = x6 + 6x5y + 15x4y2 + 20x3y3 + 15x2y4 + 6xy5 + y6.

In the previous section we raised the question of finding a closed formula for
the sum of nk, over all positive integers n < N . We can make headway in a related
question in which we replace nk with a different polynomial in n of degree k, namely
the binomial coefficient

(
n

k

)
=

n(n− 1) · · · (n− k + 1)

k!
.

This is a polynomial of degree k in n. For example, we have
(
n
3

)
= n3

6 − n2

2 + n
3 , a

polynomial in n of degree 3. We can identify a closed formula for the sum of these
binomial coefficients, over all positive integers n < N , namely:

(0.3.2)
N−1∑
n=0

(
n

k

)
=

(
N

k + 1

)
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for all N and k ≥ 0. For k = 2, N = 6, this can be seen in the following diagram:
1

1 1
1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

so that 1 + 3 + 6 + 10 equals 20.

Exercise 0.3.3. Prove (0.3.2) for each fixed k ≥ 1, for each N ≥ k + 1, using induction and
exercise 0.3.1. You might also try to prove it by induction using the idea behind the illustration
in the last diagram.

If we instead display Pascal’s triangle by lining up the initial 1’s and then
summing the diagonals,

1
1 1
1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 . . .

1 6 15 . . .

the sums are 1, 1, 1 + 1, 1 + 2, 1 + 3 + 1, 1 + 4 + 3, 1 + 5 + 6 + 1, . . . which equal
1, 1, 2, 3, 5, 8, 13, . . ., the Fibonacci numbers. It therefore seems likely that

(0.3.3) Fn =
n−1∑
k=0

(
n− 1− k

k

)
for all n ≥ 1.

Exercise 0.3.4. Prove (0.3.3) for each integer n ≥ 1, by induction using exercise 0.3.1(a).

Articles with further thoughts on factorials and binomial coefficients

[1] Manjul Bhargava, The factorial function and generalizations, Amer. Math. Monthly 107 (2000),
783–799 (preprint).

[2] John J. Watkins, chapter 5 of Number theory. A historical approach, Princeton University Press,
2014.

Additional exercises

Exercise 0.4.1. (a) Prove that for all n ≥ 1 we have(
1 1
1 0

)n

=

(
Fn+1 Fn

Fn Fn−1

)
.

(b) Deduce that Fn+1Fn−1 − F 2
n = (−1)n for all n ≥ 1.

(c) Deduce that F 2
n+1 − Fn+1Fn − F 2

n = (−1)n for all n ≥ 0.
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Exercise 0.4.2.† Deduce from (0.1.1) that the Fibonacci number Fn is the nearest integer to

φn/
√
5, for each integer n ≥ 0, where the constant φ := 1+

√
5

2
. This golden ratio appears in art

and architecture when attempting to describe “perfect proportions”.

Exercise 0.4.3. Prove that F 2
n + F 2

n+3 = 2(F 2
n+1 + F 2

n+2) for all n ≥ 0.

Exercise 0.4.4. Prove that for all n ≥ 1 we have

F2n−1 = F 2
n−1 + F 2

n and F2n = F 2
n+1 − F 2

n−1.

Exercise 0.4.5. Use (0.1.1) to prove the following:
(a) For every r we have F 2

n − Fn+rFn−r = (−1)n−rF 2
r for all n ≥ r.

(b) For all m ≥ n ≥ 0 we have FmFn+1 − Fm+1Fn = (−1)nFm−n.

Exercise 0.4.6. Let u0 = b and un+1 = aun for all n ≥ 0. Give a formula for all un with n ≥ 0.

The expression 011010 is a string of 0’s and 1’s. There are 2n strings of 0’s and
1’s of length n as there are two possibilities for each entry. Let An be the set of
strings of 0’s and 1’s of length n which contain no two consecutive 1’s. Our example
011010 does not belong to A6 as the second and third characters are consecutive
1’s, whereas 01001010 is in A8. Calculations reveal that |A1| = 2, |A2| = 3, and
|A3| = 5, data which suggests that perhaps |An| = Fn+2, the Fibonacci number.

Exercise 0.4.7.† (a) If 0w is a string of 0’s and 1’s of length n, prove that 0w ∈ An if and
only if w ∈ An−1.

(b) If 10w is a string of 0’s and 1’s of length n, prove that 10w ∈ An if and only if w ∈ An−2.
(c) Prove that |An| = Fn+2 for all n ≥ 1, by induction on n.

Exercise 0.4.8.† Prove that every positive integer other than the powers of 2 can be written as
the sum of two or more consecutive integers.

Exercise 0.4.9. Prove that
(n
m

)(n−m
a−m

)
=
( a
m

)(n
a

)
for any integers n ≥ a ≥ m ≥ 0.

Exercise 0.4.10.† Suppose that a and b are integers and {xn : n ≥ 0} is the second-order linear
recurrence sequence given by (0.1.2) with x0 = 0 and x1 = 1.
(a) Prove that for all non-negative integers m we have

xm+k = xm+1xk + bxmxk−1 for all integers k ≥ 1.

(b) Deduce that

x2n+1 = x2
n+1 + bx2

n and x2n = xn+1xn + bxnxn−1 for all natural numbers n.

Exercise 0.4.11. Suppose that the sequences {xn : n ≥ 0} and {yn : n ≥ 0} both satisfy (0.1.2)
and that x0 = 0 and x1 = 1, whereas y0 and y1 might be anything. Prove that

yn = y1xn + by0xn−1 for all n ≥ 1.

Exercise 0.4.12. Suppose that x0 = 0, x1 = 1, and xn+2 = axn+1 + bxn. Prove that for all
n ≥ 1 we have
(a) (a+ b− 1)

∑n
j=1 xj = xn+1 + bxn − 1;

(b) a(bnx2
0 + bn−1x2

1 + · · ·+ bx2
n−1 + x2

n) = xnxn+1;

(c) x2
n − xn−1xn+1 = (−b)n−1.

Exercise 0.4.13. Suppose that xn+2 = axn+1 + bxn for all n ≥ 0.
(a) Show that (

xn+2 xn+1

xn+1 xn

)
=

(
a b
1 0

)n (
x2 x1

x1 x0

)
for all n ≥ 0.

(b) Deduce that xn+2xn − x2
n+1 = c(−b)n for all n ≥ 0 where c := x2x0 − x2

1.

(c) Deduce that x2
n+1 − axn+1xn − bx2

n = −c(−b)n.
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Other number-theoretic sequences can be obtained from linear recurrences or
other types of recurrences. Besides the Fibonacci numbers, there is another se-
quence of integers that is traditionally denoted by (Fn)n≥0: These are the Fermat

numbers, Fn = 22
n

+ 1 for all n ≥ 0 (see sections 3.11 of appendix 3A, 5.1, 5.25 of
appendix 5H, etc.).

Exercise 0.4.14. Show that if F0 = 3 and Fn+1 = F 2
n − 2Fn + 2, then Fn = 22

n
+ 1 for all

n ≥ 0.

Exercise 0.4.15. (a) Show that if M0 = 0, M1 = 1, and Mn+2 = 3Mn+1−2Mn for all integers
n ≥ 0, then Mn = 2n−1 for all integers n ≥ 0. The integer Mn is the nth Mersenne number
(see exercise 2.5.16 and sections 4.2, 5.1, etc.).

(b) Show that if M0 = 0 with Mn+1 = 2Mn + 1 for all n ≥ 0, then Mn = 2n − 1.

Exercise 0.4.16.‡ We can reinterpret exercise 0.4.3 as giving a recurrence relation for the se-
quence {F 2

n}n≥0, where Fn is the nth Fibonacci number; that is,

F 2
n+3 = 2F 2

n+2 + 2F 2
n+1 − F 2

n for all n ≥ 0.

Here F 2
n+3 is described in terms of the last three terms of the sequence; this is called a linear

recurrence of order 3. Prove that for any integer k ≥ 1, the sequence {Fk
n}n≥0 satisfies a linear

recurrence of order k + 1.

How to proceed through this book. It can be challenging to decide what
proof technique to try on a given question. There is no simple guide—practice is
what best helps decide how to proceed. Some students find Zeitz’s book [Zei17]
helpful as it exhibits all of the important techniques in context. I like Conway and
Guy’s [CG96] since it has lots of great questions, beautifully discussed with great
illustrations, and introduces quite a few of the topics from this book.

A paper that questions one’s assumptions is

[1] Richard K. Guy The strong law of small numbers, Amer. Math. Monthly, 95 (1988), 697–712.

Appendices. The short version of this book will offer an appendix at the end
of most chapters. Sometimes this will add a little more insight or will present a
proof that is a little more difficult than what is normal for this course. The long
version of the book will include many appendices after each chapter, highlighting
directions one might use to develop the material for that chapter. For example, the
extended version of chapter 0 contains the following appendices:

Appendix 0A. A closed formula for sums of powers develops the ideas of section
0.2 to obtain a closed formula for the sum of nk for all positive integers n < N .

Appendix 0B. Generating functions, which gives a more elegant proof of the
closed formula for sums of kth powers using Bernoulli numbers and then discusses
the generating function for Fibonacci numbers and other recurrence sequences.

Appendix 0C. Finding roots of polynomials shows how to determine the roots
of cubic and quartic polynomials and discusses surds.

Appendix 0D. What is a group? introduces the notion of a group and looks in
detail at the commutativity of 2-by-2 matrices.

Appendix 0E. Rings and fields explains the point of developing these notions
in number-theoretic settings and goes on to define and study algebraic numbers.
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Appendix 0F. Symmetric polynomials explains and sketches the proof of New-
ton’s fundamental theorem of symmetric polynomials, which is the elementary way
mathematicians used to obtain information about properties of fixed fields before
Galois invented Galois theory! It allows one to further develop algebraic numbers
and number fields.

Appendix 0G. Constructibility introduces the ancient Greek questions of draw-
ing a square that has area equal to that of a given circle, constructing a cube that
has twice the volume of a given cube, and constructing an angle which is one third
the size of a given angle, explaining what these questions have to do with construct-
ing number fields.





Chapter 1

The Euclidean algorithm

1.1. Finding the gcd

Most readers will know the Euclidean algorithm, used to find the greatest common
divisor (gcd) of two given integers. For example, to determine the greatest common
divisor of 85 and 48, we begin by subtracting the smaller from the larger, 48 from
85, to obtain 85 − 48 = 37. Now gcd(85, 48) = gcd(48, 37), because the common
divisors of 48 and 37 are precisely the same as those of 85 and 48, and so we apply
the algorithm again to the pair 48 and 37. So we subtract the smaller from the
larger to obtain 48 − 37 = 11, so that gcd(48, 37) = gcd(37, 11). Next we should
subtract 11 from 37, but then we would only do so again, and a third time, so let’s
do all that in one go and take 37 − 3 × 11 = 4, to obtain gcd(37, 11) = gcd(11, 4).
Similarly we take 11− 2× 4 = 3, and then 4− 3 = 1, so that the gcd of 85 and 48
is 1. This is the Euclidean algorithm that you might already have seen,1 but did
you ever prove that it really works?

To do so, we will first carefully define terms that we have implicitly used in the
above paragraph, perhaps mathematical terms that you have used for years (such
as “divides”, “quotient”, and “remainder”) without a formal definition. This may
seem pedantic but the goal is to make sure that the rules of basic arithmetic are
really established on a sound footing.

Let a and b be given integers. We say that a is divisible by b, or that b divides a,2

if there exists an integer q such that a = qb. For convenience we write “b | a”.3,4
We now set an exercise for the reader to check that the definition allows one to
manipulate the notion of division in several familiar ways.

Exercise 1.1.1. In this question, and throughout, we assume that a, b, and c are integers.
(a) Prove that if b divides a, then either a = 0 or |a| ≥ |b|.

1There will be a formal discussion of the Euclidean algorithm in appendix 1A.
2One can also say a is a multiple of b or b is a divisor of a or b is a factor of a.
3And if b does not divide a, we write “b � a”.
4One reason for giving a precise mathematical definition for division is that it allows us to better

decide how to interpret questions like, “What is 1 divided by 0?” or “What is 0 divided by 0?”

11
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(b) Deduce that if a|b and b|a, then b = a or b = −a (which, in future, we will write as
“b = ±a”).

(c) Prove that if a divides b and c, then a divides bx+ cy for all integers x, y.
(d) Prove that a divides b if and only if a divides −b if and only if −a divides b.
(e) Prove that if a divides b, and b divides c, then a divides c.
(f) Prove that if a �= 0 and ac divides ab, then c divides b.

Next we formalize the notion of “dividing with remainder”.

Lemma 1.1.1. If a and b are integers, with b ≥ 1, then there exist unique integers
q and r, with 0 ≤ r ≤ b− 1, such that a = qb+ r. We call q the “quotient”, and r
the “remainder”.

Proof by induction. We begin by proving the existence of q and r. For each
b ≥ 1, we proceed by induction on a ≥ 0. If 0 ≤ a ≤ b − 1, then the result follows
with q = 0 and r = a. Otherwise assume that the result holds for 0, 1, 2, . . . , a− 1,
where a ≥ b. Then a − 1 ≥ a − b ≥ 0 so, by the induction hypothesis, there exist
integers Q and r, with 0 ≤ r ≤ b−1, for which a− b = Qb+r. Therefore a = qb+r
with q = Q+ 1.

If a < 0, then −a > 0 so we have −a = Qb + R, for some integers Q and R,
with 0 ≤ R ≤ b − 1, by the previous paragraph. If R = 0, then a = qb where
q = −Q (and r = 0). Otherwise 1 ≤ R ≤ b− 1 and so a = qb+ r with q = −Q− 1
and 1 ≤ r = b−R ≤ b− 1, as required.

Now we show that q and r are unique. If a = qb+ r = Qb + R, then b divides
(q −Q)b = R − r. However 0 ≤ r, R ≤ b− 1 so that |R − r| ≤ b− 1, and b | R − r.
Therefore R − r = 0 by exercise 1.1.1(a), and so Q− q = 0. In other words q = Q
and r = R; that is, the pair q, r is unique. �

An easier, but less intuitive, proof. We can add a multiple of b to a to get a
positive integer. That is, there exists an integer n such that a+nb ≥ 0; any integer
n ≥ −a/b will do. We now subtract multiples of b from this number, as long as it
remains positive, until subtracting b once more would make it negative. In other
words we now have an integer a−qb ≥ 0, which we denote by r, such that r−b < 0;
in other words 0 ≤ r ≤ b− 1. �

Exercise 1.1.2. Suppose that a ≥ 1 and b ≥ 2 are integers. Show that we can write a in base b;
that is, show that there exist integers a0, a1, . . . ∈ [0, b−1] for which a = adb

d+ad−1b
d−1+a1b+a0.

We say that d is a common divisor of integers a and b if d divides both a and
b. We are mostly interested in the greatest common divisor of a and b, which we
denote by gcd(a, b), or more simply as (a, b).5,6

We say that a is coprime with b, or that a and b are coprime integers, or that
a and b are relatively prime, if (a, b) = 1.

5In the UK this is known as the highest common factor of a and b and is written hcf(a, b).
6When a = b = 0, every integer is a divisor of 0, so there is no greatest divisor, and therefore

gcd(0, 0) is undefined. There are often one or two cases in which a generally useful mathematical
definition does not give a unique value. Another example is 0 divided by 0, which we explore in exercise
1.7.1. For aesthetic reasons, some authors choose to assign a value which is consistent with the theory
in one situation but perhaps not in another. This can lead to artificial inconsistencies which is why we
choose to leave such function-values undefined.
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Corollary 1.1.1. If a = qb+ r where a, b, q, and r are integers, then

gcd(a, b) = gcd(b, r).

Proof. Let g = gcd(a, b) and h = gcd(r, b). Now g divides both a and b, so g
divides a− qb = r (by exercise 1.1.1(c)). Therefore g is a common divisor of both r
and b, and therefore g ≤ h. Similarly h divides both b and r, so h divides qb+r = a
and hence h is a common divisor of both a and b, and therefore h ≤ g. We have
shown that g ≤ h and h ≤ g, which together imply that g = h. �

Corollary 1.1.1 justifies the method used to determine the gcd of 85 and 48 in
the first paragraph of section 1.1 and indeed in general:

Exercise 1.1.3. Use Corollary 1.1.1 to prove that the Euclidean algorithm indeed yields the
greatest common divisor of two given integers. (You might prove this by induction on the smallest
of the two integers.)

Exercise 1.1.4. Prove that (Fn, Fn+1) = 1 by induction on n ≥ 0.

1.2. Linear combinations

The Euclidean algorithm can also be used to determine a linear combination7 of
a and b, over the integers, which equals gcd(a, b); that is, one can always use the
Euclidean algorithm to find integers u and v such that

(1.2.1) au+ bv = gcd(a, b).

Let us see how to do this in an example, by finding integers u and v such that
85u + 48v = 1; remember that we found the gcd of 85 and 48 at the beginning of
section 1.1. We retrace the steps of the Euclidean algorithm, but in reverse: The
final step was that 1 = 1 · 4− 1 · 3, a linear combination of 4 and 3. The second to
last step used that 3 = 11−2 ·4, and so substituting 11−2 ·4 for 3 in 1 = 1 ·4−1 ·3,
we obtain

1 = 1 · 4− 1 · 3 = 1 · 4− 1 · (11− 2 · 4) = 3 · 4− 1 · 11,
a linear combination of 11 and 4. This then implies, since we had 4 = 37 − 3 · 11,
that

1 = 3 · (37− 3 · 11)− 1 · 11 = 3 · 37− 10 · 11,
a linear combination of 37 and 11. Continuing in this way, we successively deduce,
using that 11 = 48− 37 and then that 37 = 85− 48,

1 = 3 · 37− 10 · (48− 37) = 13 · 37− 10 · 48
= 13 · (85− 48)− 10 · 48 = 13 · 85− 23 · 48;

that is, we have the desired linear combination of 85 and 48.

To prove that this method always works, we will use Lemma 1.1.1 again: Sup-
pose that a = qb + r so that gcd(a, b) = gcd(b, r) by Corollary 1.1.1, and that we
have bu− rv = gcd(b, r) for some integers u and v. Then

(1.2.2) gcd(a, b) = gcd(b, r) = bu− rv = bu− (a− qb)v = b(u+ qv)− av,

7A linear combination of two given integers a and b, over the integers, is a number of the form ax+by
where x and y are integers. This can be generalized to yield a linear combination a1x1 + · · · + anxn

of any finite set of integers, a1, . . . , an. Linear combinations are a key concept in linear algebra and
appear (without necessarily being called that) in many courses.
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the desired linear combination of a and b. This argument forms the basis of our
proof of (1.2.1), but to give a complete proof we proceed by induction on the smaller
of a and b:

Theorem 1.1. If a and b are positive integers, then there exist integers u and v
such that

au+ bv = gcd(a, b).

Proof. Interchanging a and b if necessary we may assume that a ≥ b ≥ 1. We shall
prove the result by induction on b. If b = 1, then b only has the divisor 1, so that

gcd(a, 1) = 1 = 0 · a+ 1 · 1.
We now prove the result for b > 1: If b divides a, then

gcd(b, a) = b = 0 · a+ 1 · b.
Otherwise b does not divide a and so Lemma 1.1.1 implies that there exist integers
q and r such that a = qb + r and 1 ≤ r ≤ b − 1. Since 1 ≤ r < b we know, by the
induction hypothesis, that there exist integers u and v for which bu−rv = gcd(b, r).
The result then follows by (1.2.2). �

We now establish various useful properties of the gcd:

Exercise 1.2.1. (a) Prove that if d divides both a and b, then d divides gcd(a, b).
(b) Deduce that d divides both a and b if and only if d divides gcd(a, b).
(c) Prove that 1 ≤ gcd(a, b) ≤ |a| and |b|.
(d) Prove that gcd(a, b) = |a| if and only if a divides b.

Exercise 1.2.2. Suppose that a divides m, and b divides n.
(a) Deduce that gcd(a, b) divides gcd(m,n).
(b) Deduce that if gcd(m,n) = 1, then gcd(a, b) = 1.

Exercise 1.2.3. Show that Theorem 1.1 holds for any integers a and b that are not both 0. (It
is currently stated and proved only for positive integers a and b.)

Corollary 1.2.1. If a and b are integers for which gcd(a, b) = 1, then there exist
integers u and v such that

au+ bv = 1.

This is one of the most useful results in mathematics and has applications in
many areas, including in safeguarding today’s global communications. For example,
we will see in section 10.3 that to implement RSA, a key cryptographic protocol
that helps keep important messages safe in our electronic world, one uses Corollary
1.2.1 in an essential way. More on that later, after developing more basic number
theory.

Exercise 1.2.4. (a) Use exercise 1.1.1(c) to show that if au+ bv = 1, then (a, b) = (u, v) = 1.
(b) Prove that gcd(u, v) = 1 in Theorem 1.1.

Corollary 1.2.2. If gcd(a,m) = gcd(b,m) = 1, then gcd(ab,m) = 1.

Proof. By Theorem 1.1 there exist integers r, s, u, v such that

au+mv = br +ms = 1.
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Therefore

ab(ur) +m(bvr + aus+msv) = (au+mv)(br +ms) = 1,

and the result follows from exercise 1.2.4(a). �

Corollary 1.2.3. We have gcd(ma,mb) = m · gcd(a, b) for all integers m ≥ 1.

Proof. By Theorem 1.1 there exist integers u, v such that au+bv = gcd(a, b). Now
gcd(ma,mb) divides ma and mb so it divides mau+mbv = m · gcd(a, b). Similarly
gcd(a, b) divides a and b, so that m · gcd(a, b) divides ma and mb, and therefore
gcd(ma,mb) by exercise 1.2.1(a). The result follows from exercise 1.1.1(b), since
the gcd is always positive. �
Exercise 1.2.5. (a) Show that if A and B are given integers, not both 0, with g = gcd(A,B),

then gcd(A/g,B/g) = 1.
(b) Prove that any rational number u/v where u, v ∈ Z with v �= 0 may be written as r/s where

r and s are coprime integers with s > 0. This is called a reduced fraction.

1.3. The set of linear combinations of two integers

Theorem 1.1 states that the greatest common divisor of two integers is a linear
combination of those two integers. This suggests that it might be useful to study
the set of linear combinations

I(a, b) := {am+ bn : m,n ∈ Z}
of two given integers a and b.8 We see that I(a, b) contains 0, a, b, a + b, a +
2b, 2b + a, a − b, b − a, . . . and any sum of integer multiples of a and b, so that
I(a, b) is closed under addition. Let I(a) := I(a, 0) = {am : m ∈ Z}, the set of
integer multiples of a. We now prove that I(a, b) can be described as the set of
integer multiples of gcd(a, b), a set which is easier to understand:

Corollary 1.3.1. For any given non-zero integers a and b, we have

{am+ bn : m,n ∈ Z} = {gk : k ∈ Z}
where g := gcd(a, b); that is, I(a, b) = I(g). In other words, there exist integers m
and n with am+ bn = c if and only if gcd(a, b) divides c.

Proof. By Theorem 1.1 we know that there exist u, v ∈ Z for which au + bv = g.
Therefore a(uk)+b(vk) = gk so that gk ∈ I(a, b) for all k ∈ Z; that is, I(g) ⊂ I(a, b).
On the other hand, as g divides both a and b, there exist integers A,B such that
a = gA, b = gB, and so any am+bn = g(Am+Bn) ∈ I(g). That is, I(a, b) ⊂ I(g).
The result now follows from the two inclusions. �

It is instructive to see how this result follows directly from the Euclidean algo-
rithm: In our example, we are interested in gcd(85, 48), so we will study I(85, 48),
that is, the set of integers of the form

85m+ 48n.

8This is usually called the ideal generated by a and b in Z and denoted by 〈a, b〉Z. The notion of
an ideal is one of the basic tools of modern algebra, as we will discuss in appendix 3D.



16 1. The Euclidean algorithm

The first step in the Euclidean algorithm was to write 85 = 1 ·48+37. Substituting
this in above yields

85m+ 48n = (1 · 48 + 37)m+ 48n = 48(m+ n) + 37m,

and so I(85, 48) ⊂ I(48, 37). In the other direction, any integer in I(48, 37) can be
written as

48a+ 37b = 48a+ (85− 48)b = 85b+ 48(a− b),

and so belongs to I(85, 48). Combining these last two statements yields that

I(85, 48) = I(48, 37).

Each step of the Euclidean algorithm leads to a similar equality, and so we get

I(85, 48) = I(48, 37) = I(37, 11) = I(11, 4) = I(4, 3) = I(3, 1) = I(1, 0) = I(1).

To truly justify this we need to establish an analogous result to Corollary 1.1.1:

Lemma 1.3.1. If a = qb+r where a, b, q, and r are integers, then I(a, b) = I(b, r).

Proof. We begin by noting that

am+ bn = (qb+ r)m+ bn = b(qm+ n) + rm

so that I(a, b) ⊂ I(b, r). In the other direction

bu+ rv = bu+ (a− qb)v = av + b(u− qv)

so that I(b, r) ⊂ I(a, b). The result follows by combining the two inclusions. �

We have used the Euclidean algorithm to find the gcd of any two given integers
a and b, as well as to determine integers u and v for which au + bv = gcd(a, b).
The price for obtaining the actual values of u and v, rather than merely proving
the existence of u and v (which is all that was claimed in Theorem 1.1), was our
somewhat complicated analysis of the Euclidean algorithm. However, if we only
wish to prove that such integers u and v exist, then we can do so with a somewhat
easier proof: 9

Non-constructive proof of Theorem 1.1. Let h be the smallest positive inte-
ger that belongs to I(a, b), say h = au + bv. Then g := gcd(a, b) divides h, as g
divides both a and b.

Now a = a · 1 + b · 0 so that a ∈ I(a, b), and 1 ≤ h ≤ a by the definition of h.
Therefore Lemma 1.1.1 implies that there exist integers q and r, with 0 ≤ r ≤ h−1,
for which a = qh+ r. Therefore

r = a− qh = a− q(au+ bv) = a(1− qu) + b(−qv) ∈ I(a, b),

which contradicts the minimality of h, unless r = 0; that is, h divides a. An
analogous argument reveals that h divides b, and so h divides g by exercise 1.2.1(a).

9We will now prove the existence of u and v by showing that their non-existence would lead to a
contradiction. We will develop other instances, as we proceed, of both constructive and non-constructive
proofs of important theorems.

Which type of proof is preferable? This is somewhat a matter of taste. The non-constructive proof
is often shorter and more elegant. The constructive proof, on the other hand, is practical—that is, it
gives solutions. It is also “richer” in that it develops more than is (immediately) needed, though some
might say that these extras are irrelevant.

Which type of proof has the greatest clarity? That depends on the algorithm devised for the con-
structive proof. A compact algorithm will often cast light on the subject. But a cumbersome one may
obscure it. In this case, the Euclidean algorithm is remarkably simple and efficient ([Sha85, p. 11]).
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Hence g divides h, and h divides g, and g and h are both positive, so that g = h
as desired. �

We say that the integers a, b, and c are relatively prime if gcd(a, b, c) = 1. We
say that they are pairwise coprime if gcd(a, b) = gcd(a, c) = gcd(b, c) = 1. For
example, 6, 10, 15 are relatively prime, but they are not pairwise coprime (since
each pair of integers has a common factor > 1).

Exercise 1.3.1. Suppose that a, b, and c are non-zero integers for which a+ b = c.
(a) Show that a, b, c are relatively prime if and only if they are pairwise coprime.
(b) Show that (a, b) = (a, c) = (b, c).
(c) Show that the analogy to (a) is false for integer solutions a, b, c, d to a+ b = c+ d (perhaps

by constructing a counterexample).

1.4. The least common multiple

The least common multiple10 of two given integers a and b is defined to be the
smallest positive integer that is a multiple of both a and b. We denote this by
lcm[a, b] (or simply [a, b]). We now prove the counterpart to exercise 1.2.1(a):

Lemma 1.4.1. lcm[a, b] divides integer m if and only if a and b both divide m.

Proof. Since a and b divide lcm[a, b], if lcm[a, b] divides m, then a and b both
divide m, by exercise 1.1.1(e).

On the other hand suppose a and b both divide m, and write m = q lcm[a, b]+r
where 0 ≤ r < lcm[a, b]. Now a and b both divide m and lcm[a, b] so they both
divide m − q lcm[a, b] = r. However lcm[a, b] is defined to be the smallest positive
integer that is divisible by both a and b, which implies that r must be 0. Therefore
lcm[a, b] divides m. �

The analogies to exercise 1.2.1(d) and Corollary 1.2.3 for lcms are given by the
following two exercises:

Exercise 1.4.1. Prove that lcm[m,n] = n if and only if m divides n.

Exercise 1.4.2. Prove that lcm[ma,mb] = m · lcm[a, b] for any positive integer m.

1.5. Continued fractions

Another way to write Lemma 1.1.1 is that for any given integers a ≥ b ≥ 1 with
b � a, there exist integers q and r, with b > r ≥ 1, for which

a

b
= q +

r

b
= q +

1
b
r

.

This is admittedly a strange way to write things, but repeating this process with
the pair of integers b and r, and then again, will eventually lead us to an interesting
representation of the original fraction a/b. Working with our original example, in
which we found the gcd of 85 and 48, we can represent 85 = 48 + 37 as

85

48
= 1 +

1
48
37

,

10Sometimes called the lowest common multiple.
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and the next step, 48 = 37 + 11, as

48

37
= 1 +

1
37
11

, so that
85

48
= 1 +

1
48
37

= 1 +
1

1 + 1
37
11

.

The remaining steps of the Euclidean algorithm may be rewritten as

37

11
= 3 +

1
11
4

,
11

4
= 2 +

1
4
3

, and
4

3
= 1 +

1

3
,

so that
85

48
= 1 +

1

1 + 1
3+ 1

2+ 1

1+ 1
3

.

This is the continued fraction for 85
48 and is conveniently written as [1, 1, 3, 2, 1, 3].

Notice that this is the sequence of quotients ai from the various divisions; that is,

a

b
= [a0, a1, a2, . . . , ak] := a0 +

1

a1 +
1

a2+
1

a3+···+ 1
ak

.

The ai’s are called the partial quotients of the continued fraction.

Exercise 1.5.1. (a) Show that if ak > 1, then [a0, a1, . . . , ak] = [a0, a1, . . . , ak − 1, 1].
(b) Prove that the set of positive rational numbers are in 1-1 correspondence with the finite

length continued fractions that do not end in 1.

We now list the rationals that correspond to the first few entries in our contin-
ued fraction [1, 1, 3, 2, 1, 3]. We have [1] = 1, [1, 1] = 2, and

1 +
1

1 + 1
3

=
7

4
, 1 +

1

1 + 1
3+ 1

2

=
16

9
, 1 +

1

1 + 1
3+ 1

2+ 1
1

=
23

13
.

These yield increasingly good approximations to 85/48 = 1.770833 . . . , that is, in
decimal notation,

1, 2, 1.75, 1.777 . . . , 1.7692 . . . .

We call these pj/qj , j ≥ 1, the convergents for the continued fraction, defined by

pj
qj

= [a0, a1, a2, . . . , aj ],

since they converge to a/b = pk/qk for some k. Do you notice anything surprising
about the convergents for 85/48? In particular the previous one, namely 23/13?
When we worked through the Euclidean algorithm we found that 13 ·85−23 ·48 = 1
— could it be a coincidence that these same numbers show up again in this new
context? In section 1.8 of appendix 1A we show that this is no coincidence; indeed
we always have

pjqj−1 − pj−1qj = (−1)j−1,

so, in general, if u = (−1)k−1qk−1 and v = (−1)kpk−1, then

au+ bv = 1.

When one studies this in detail, one finds that the continued fraction is really
just a convenient reworking of the Euclidean algorithm (as we explained it above)
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for finding u and v. Bachet de Meziriac11 introduced this method to Renaissance
mathematicians in the second edition of his brilliantly named book Pleasant and
delectable problems which are made from numbers (1624). Such methods had been
known from ancient times, certainly to the Indian scholar Aryabhata in 499 A.D.,
probably to Archimedes in Syracuse (Greece) in 250 B.C., and possibly to the
Babylonians as far back as 1700 B.C.12

1.6. Tiling a rectangle with squares13

Given a 48-by-85 rectangle we will tile it, greedily, with squares. The largest square
that we can place inside a 48-by-85 rectangle is a 48-by-48 square. This 48-by-48
square goes from top to bottom of the rectangle, and if we place it at the far right,
then we are left with a 37-by-48 rectangle to tile, on the left.

85

4837

48

37

11

11 11 114

4

4

3

3

1

1

Figure 1.1. Partitioning a rectangle into squares, using the Euclidean algorithm.

If we place a 37-by-37 square at the top of this rectangle, then we are left with an
11-by-37 rectangle in the bottom left-hand corner. We can now place three 11-by-11
squares inside this, leaving a 4-by-11 rectangle. We finish this off with two 4-by-4
squares, one 3-by-3 square, and finally three 1-by-1 squares.

11The celebrated editor and commentator on Diophantus, whom we will meet again in chapter 6.
12There are Cuneiform clay tablets from this era that contain related calculations. It is known

that after conquering Babylon in 331 B.C., Alexander the Great ordered his archivist Callisthenes and
his tutor Aristotle to supervise the translation of the Babylonian astronomical records into Greek. It is
therefore feasible that Archimedes was introduced to these ideas from this source. Indeed, Pythagoras’s
Theorem may be misnamed as the Babylonians knew of integer-sided right-angled triangles like 3, 4, 5
and 5, 12, 13 more than one thousand years before Pythagoras (570–495 B.C.) was born.

13Thanks to Dusa MacDuff and Dylan Thurston for bringing my attention to this beautiful
application.
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The area of the rectangle can be computed in terms of the areas of each of the
squares; that is,

85 · 48 = 1 · 482 + 1 · 372 + 3 · 112 + 2 · 42 + 1 · 32 + 3 · 12.
What has this to do with the Euclidean algorithm? Hopefully the reader has
recognized the same sequence of numbers and quotients that appeared above, when
we computed the gcd(85, 48). This is no coincidence. At a given step we have an
a-by-b rectangle, with a ≥ b ≥ 1, and then we can remove q b-by-b squares, where
a = qb + r with 0 ≤ r ≤ a − 1 leaving an r-by-b rectangle, and so proceed by
induction.

Exercise 1.6.1. Given an a-by-b rectangle show how to write a · b as a sum of squares, as above,
in terms of the partial quotients and convergents of the continued fraction for a/b.

Exercise 1.6.2. (a) Use this to show that Fn+1Fn = F 2
n + F 2

n−1 + · · · + F 2
0 , where Fn is

the nth Fibonacci number (see section 0.1 for the definition and a discussion of Fibonacci
numbers and exercise 0.4.12(b) for a generalization of this exercise).

(b)† Find the correct generalization to more general second-order linear recurrence sequences.

Additional exercises

Exercise 1.7.1. (a) Does 0 divide 0? (Use the definition of “divides”.)
(b) Show that there is no unique meaning to 0/0.
(c) Prove that if b divides a and b �= 0, then there is a unique meaning to a/b.

Exercise 1.7.2. Prove that if a and b are not both 0, then gcd(a, b) is a positive integer.

Exercise 1.7.3.† Prove that if m and n are coprime positive integers, then
(m+n−1)!

m!n!
is an

integer.

Exercise 1.7.4. Suppose that a = qb+ r with 0 ≤ r ≤ b− 1.
(a) Let [t] be the integer part of t, that is, the largest integer ≤ t. Prove that q = [a/b].
(b) Let {t} to be the fractional part of t, that is, {t} = t− [t]. Prove that r = b{r/b} = b{a/b}.

(Beware of these functions applied to negative numbers: e.g., [−3.14] = −4 not −3, and {−3.14} =
.86 not .14.)

Exercise 1.7.5.† (a) Show that if n is an integer, then {n + α} = {α} and [n + α] = n + [α]
for all α ∈ R.

(b) Prove that [α+ β]− [α]− [β] = 0 or 1 for all α, β ∈ R, and explain when each case occurs.
(c) Deduce that {α} + {β} − {α + β} = 0 or 1 for all α, β ∈ R, and explain when each case

occurs.

(d) Show that {α}+ {−α} = 1 unless α is an integer in which case it equals 0.
(e) Show that if a ∈ Z and r ∈ R \ Z, then [r] + [a− r] = a− 1.

Exercise 1.7.6. Suppose that d is a positive integer and that N, x > 0.
(a) Show that there are exactly [x] positive integers ≤ x.
(b) Show that kd is the largest multiple of d that is ≤ N , where k = [N/d].
(c) Deduce that there are exactly [N/d] positive integers n ≤ N which are divisible by d.

Exercise 1.7.7. Prove that
∑n−1

k=0 [a+ k
n
] = [na] for any real number a and integer n ≥ 1.

Exercise 1.7.8. Suppose that a + b = c and let g = gcd(a, b). Prove that we can write a = gA,
b = gB, and c = gC where A+B = C, where A, B, and C are pairwise coprime integers.

Exercise 1.7.9. Prove that if (a, b) = 1, then (a+ b, a− b) = 1 or 2.

Exercise 1.7.10.† Prove that for any given integers b > a ≥ 1 there exists an integer solution
u,w to au− bw = gcd(a, b) with 0 ≤ u ≤ b− 1 and 0 ≤ w ≤ a− 1.
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Exercise 1.7.11.† Show that if gcd(a, b) = 1, then gcd(ak, b�) = 1 for all integers k, � ≥ 1.

Exercise 1.7.12. Let m and n be positive integers. What fractions do the two lists 1
m
, . . . , m−1

m

and 1
n
, . . . , n−1

n
have in common (when the fractions are reduced)?

Exercise 1.7.13. Suppose m and n are coprime positive integers. When the fractions 1
m
, 2
m
, . . . ,

m−1
m

, 1
n
, . . . , n−1

n
are put in increasing order, what is the shortest distance between two consecutive

fractions?

Given a 7-liter jug and a 5-liter jug one can measure 1 liter of water as follows:
Fill the 5-liter jug, and pour the contents into the 7-liter jug. Fill the 5-liter jug
again, use this to fill the 7-liter jug, so we are left with 3 liters in the 5-liter jug
and the 7-liter jug is full. Empty the 7-liter jug, pour the contents of the 5-liter jug
into the 7-liter jug, and refill the 5-liter jug. We now have 3 liters in the 7-liter jug.
Fill the 7-liter jug using the 5-liter jug; we have poured 4 liters from the 5-liter jug
into the 7-liter jug, so that there is just 1 liter left in the 5-liter jug! Notice that
we filled the 5-liter jug 3 times and emptied the 7-liter jug twice, and so we used
here that 3× 5− 2× 7 = 1. We have wasted 2× 7 liters of water in this process.

Exercise 1.7.14. (a) Since 3× 7− 4× 5 = 1 describe how we can proceed by filling the 7-liter
jug each time rather than filling the 5-liter jug.

(b) Can you measure 1 liter of water using a 25-liter jug and a 17-liter jug?
(c)† Prove that if m and n are positive coprime integers then you can measure one liter of water

using an m liter jug and an n liter jug?
(d) Prove that one can do this wasting less than mn liters of water.

Exercise 1.7.15. Can you weigh 1 lb of tea using scales with 25-lb and 17-lb weights?

The definition of a set of linear combinations can be extended to an arbitrary
set of integers (in place of the set {a, b}); that is,

I(a1, . . . , ak) := {a1m1 + a2m2 + · · ·+ akmk : m1,m2, . . . ,mk ∈ Z}.

Exercise 1.7.16. Show that I(a1, . . . , ak) = I(g) for any non-zero integers a1, . . . , ak, where we
have g = gcd(a1, . . . , ak).

Exercise 1.7.17.† Deduce that if we are given integers a1, a2, . . . , ak, not all zero, then there
exist integers m1,m2, . . . ,mk such that

m1a1 +m2a2 + · · ·+mkak = gcd(a1, a2, . . . , ak).

We say that the integers a1, a2, . . . , ak are relatively prime if gcd(a1, a2, . . . , ak) = 1. We say that
they are pairwise coprime if gcd(ai, aj) = 1 whenever i �= j. Note that 6, 10, 15 are relatively
prime, but not pairwise coprime (since each pair of integers has a common factor > 1).

Exercise 1.7.18. Prove that if g = gcd(a1, a2, . . . , ak), then gcd(a1/g, a2/g, . . . , ak/g) = 1.

Exercise 1.7.19.† (a) Prove that abc = [a, b, c] · gcd (ab, bc, ca).
(b)‡ Prove that if r + s = n, then

a1 · · · an = lcm

⎡
⎣∏
i∈I

ai : I ⊂ {1, . . . , n}, |I| = r

⎤
⎦ · gcd

⎛
⎝∏

j∈J

aj : J ⊂ {1, . . . , n}, |J | = s

⎞
⎠ .
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Throughout this book we will present more challenging exercises in the final
part of each chapter. If some of the questions are part of a consistent subject, then
they will be presented as a separate subsection:

Divisors in recurrence sequences

We begin by noting that for any integer d ≥ 1 we have the polynomial identity

(1.7.1) xd − yd = (x− y)(xd−1 + xd−2y + · · ·+ xyd−2 + yd−1).

Hence if r and s are integers, then r − s divides rd − sd. (This also follows from
Corollary 2.3.1 in the next chapter.)

Exercise 1.7.20. (a) Prove that if m|n, then 2m − 1 divides 2n − 1.
(b)† Prove that if n = qm+ r with 0 ≤ r ≤ m− 1, then there exists an integer Q such that

2n − 1 = Q(2m − 1) + (2r − 1) (and note that 0 ≤ 2r − 1 < 2m − 1).

(c)† Use the Euclidean algorithm to show that gcd(2n − 1, 2m − 1) = 2gcd(n,m) − 1.
(d) What is the value of gcd(Na − 1, Nb − 1) for arbitrary integer N �= −1, 0, or 1?

In exercise 0.4.15(a) we saw that the Mersenne numbers Mn = 2n − 1 (of the
previous exercise) are an example of a second-order linear recurrence sequence. We
will show that an analogous result holds for any second-order linear recurrence
sequence that begins 0, 1, . . .. For the rest of this section we assume that a and b
are coprime integers with x0 = 0, x1 = 1 and that xn = axn−1 + bxn−2 for all
n ≥ 2.

Exercise 1.7.21. Use exercise 0.4.10(a) to show that gcd(xm, xn) = gcd(xm, xm+1xn−m) when-
ever n ≥ m.

Exercise 1.7.22.† Prove that if m|n, then xm|xn; that is, {xn : n ≥ 0} is a division sequence.

Exercise 1.7.23.† Assume that (a, b) = 1.
(a) Prove that gcd(xn, b) = 1 for all n ≥ 1.
(b) Prove that gcd(xn, xn−1) = 1 for all n ≥ 1.
(c) Prove that if n > m, then (xn, xm) = (xn−m, xm).
(d) Deduce that (xn, xm) = x(n,m).

Exercise 1.7.24.† For any given integer d ≥ 2, let m = md be the smallest positive integer for
which d divides xm. Prove that d divides xn if and only if md divides n.

It is sometimes possible to reverse the direction in the defining recurrence re-
lation for a recurrence sequence; that is, if b = 1, then (0.1.2) can be rewritten as
xn−2 = −axn−1 + xn. So if x0 = 0 and x1 = 1, then x−1 = 1, x−2 = −a, . . . . We
now try to understand the terms x−n.

Exercise 1.7.25. Let us suppose that xn = axn−1 + xn−2 for all integers n, both positive and
negative, with x0 = 0 and x1 = 1. Prove, by induction on n ≥ 1, that x−n = (−1)n−1xn for all
n ≥ 2.



Appendix 1A. Reformulating
the Euclidean algorithm

In section 1.5 we saw that the Euclidean algorithm may be usefully reformulated
in terms of continued fractions. In this appendix we reformulate the Euclidean
algorithm in two further ways: firstly, in terms of matrix multiplication, which
makes many of the calculations easier; and secondly, in terms of a dynamical system,
which will be useful later when we develop similar ideas in a more general context.

1.8. Euclid matrices and Euclid’s algorithm

In discussing the Euclidean algorithm we showed that gcd(85, 48) = gcd(48, 37)
from noting that 85 − 1 · 48 = 37. In this we changed our attention from the
pair 85, 48 to the pair 48, 37. Writing this down using matrices, we performed this
change via the map (

85
48

)
→
(
48
37

)
=

(
0 1
1 −1

)(
85
48

)
.

Next we went from the pair 48, 37 to the pair 37, 11 via the map(
48
37

)
→
(
37
11

)
=

(
0 1
1 −1

)(
48
37

)
and then from the pair 37, 11 to the pair 11, 4 via the map(

37
11

)
→
(
11
4

)
=

(
0 1
1 −3

)(
37
11

)
.

We can compose these maps so that(
85
48

)
→
(
48
37

)
→
(
37
11

)
=

(
0 1
1 −1

)(
48
37

)
=

(
0 1
1 −1

)
·
(
0 1
1 −1

)(
85
48

)

23
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and then(
85
48

)
→
(
11
4

)
=

(
0 1
1 −3

)(
37
11

)
=

(
0 1
1 −3

)
·
(
0 1
1 −1

)(
0 1
1 −1

)(
85
48

)
.

Continuing on to the end of the Euclidean algorithm, via 11 = 2 ·4+3, 4 = 1 ·3+1,
and 3 = 3 · 1 + 0, we have(

1
0

)
=

(
0 1
1 −3

)(
0 1
1 −1

)(
0 1
1 −2

)(
0 1
1 −3

)(
0 1
1 −1

)(
0 1
1 −1

)(
85
48

)
.

Since

(
0 1
1 −x

)(
x 1
1 0

)
= I for any x, we can invert to obtain

(
85
48

)
= M

(
1
0

)
where

M =

(
1 1
1 0

)(
1 1
1 0

)(
3 1
1 0

)(
2 1
1 0

)(
1 1
1 0

)(
3 1
1 0

)
.

Here we used that the inverse of a product of matrices is the product of the inverses
of those matrices, in reverse order. If we write

M :=

(
α β
γ δ

)
where α, β, γ, δ are integers (since the set of integer matrices are closed under mul-
tiplication), then

αδ − βγ = detM = (−1)6 = 1,

sinceM is the product of six matrices, each of determinant −1, and the determinant
of the product of matrices equals the product of the determinants. Now(

85
48

)
= M

(
1
0

)
=

(
α β
γ δ

)(
1
0

)
=

(
α
γ

)
so that α = 85 and γ = 48. This implies that

85 δ − 48β = 1;

that is, the matrix method gives us the solution to (1.2.1) without extra effort.

If we multiply the matrices definingM together in order, we obtain the sequence(
1 1
1 0

)
,

(
1 1
1 0

)(
1 1
1 0

)
=

(
2 1
1 1

)
,

(
2 1
1 1

)(
3 1
1 0

)
=

(
7 2
4 1

)
and then (

16 7
9 4

)
,

(
23 16
13 9

)
,

(
85 23
48 13

)
.

We notice that the columns give us the numerators and denominators of the con-
vergents of the continued fraction for 85/48, as discussed in section 1.5.
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We can generalize this discussion to formally explain the Euclidean algorithm:

Let u0 := a ≥ u1 := b ≥ 1. Given uj ≥ uj+1 ≥ 1:

• Let aj = [uj/uj+1], an integer ≥ 1.

• Let uj+2 = uj − ajuj+1 so that 0 ≤ uj+2 ≤ uj+1 − 1.

• If uj+2 = 0, then g := gcd(a, b) = uj+1, and terminate the algorithm.

• Otherwise, repeat these steps with the new pair uj+1, uj+2.

The first two steps work by Lemma 1.1.1, the third by exercise 1.1.3. We end up
with the continued fraction

a/b = [a0, a1, . . . , ak]

for some k ≥ 0. The convergents pj/qj = [a0, a1, . . . , aj ] are most easily calculated
by matrix arithmetic as

(1.8.1)

(
pj pj−1

qj qj−1

)
=

(
a0 1
1 0

)(
a1 1
1 0

)
. . .

(
aj 1
1 0

)
so that a/g = pk and b/g = qk, where g =gcd(a, b).

Exercise 1.8.1. Prove that this description of the Euclidean algorithm really works.

Exercise 1.8.2. (a) Show that pjqj−1 − pj−1qj = (−1)j+1 for all j ≥ 0.
(b) Explain how to use the Euclidean algorithm, along with (1.8.1), to determine, for given

positive integers a and b, an integer solution u, v to the equation au+ bv = gcd(a, b).

Exercise 1.8.3. With the notation as above, show that [ak, . . . , a0] = a/c for some integer c for
which 0 < c < a and bc ≡ (−1)k (mod a).

Exercise 1.8.4. Prove that for every n ≥ 1 we have(
Fn+1 Fn

Fn Fn−1

)
=

(
1 1
1 0

)n

,

where Fn is the nth Fibonacci number.

My favorite open question in this area is Zaremba’s conjecture: He conjectured
that there is an integer B ≥ 1 such that for every integer n ≥ 2 there exists a
fraction m/n, where m is an integer, 1 ≤ m ≤ n − 1, coprime with n, for which
the continued fraction m/n = [a0, a1, . . . , ak] has each partial quotient ak ≤ B.
Calculations suggest one can take B = 5.

1.9. Euclid matrices and ideal transformations

In section 1.3 we used Euclid’s algorithm to transform the basis of the ideal I(85, 48)
to I(48, 37), and so on, until we showed that it equals I(1, 0) = I(1). The transfor-
mation rested on the identity

85m+ 48n = 48m′ + 37n′, where m′ = m+ n and n′ = n;

a transformation we can write as(
m,n

)
→
(
m′, n′) = (m,n

)(1 1
1 0

)
.
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The transformation of linear forms can then be seen by

48m′ +37n′ =
(
m′, n′)(48

37

)
=
(
m,n

)(1 1
1 0

)(
48
37

)
=
(
m,n

)(85
48

)
= 85m+48n.

The inverse map can be found simply by inverting the matrix:(
m′

n′

)
→
(
m
n

)
=

(
0 1
1 −1

)(
m′

n′

)
.

These linear transformations can be composed by multiplying the relevant matrices,
which are the same matrices that arise in the previous section, section 1.8. For
example, after three steps, the change is(

m,n
)
→
(
m3, n3

)
=
(
m,n

)(7 2
4 1

)
,

so that 11m3 + 4n3 = 85m+ 48n.

Exercise 1.9.1. (a) With the notation of section 1.8, establish that xuj + yuj+1 = ma + nb
where the variables x and y are obtained from the variables m and n by a linear transfor-
mation.

(b) Deduce that I(uj , uj+1) = I(a, b) for j = 0, . . . , k.

1.10. The dynamics of the Euclidean algorithm

We now explain a dynamical perspective on the Euclidean algorithm, by focusing on
each individual transformation of the pair of numbers with which we work. In our
example, we began with the pair of numbers (85, 48), subtracted the smaller from
the larger to get (37, 48), and then swapped the order to obtain (48, 37). Now we
begin with the fraction x := 85/48; the first step transforms x → y := x−1 = 37/48,
and the second transforms y → 1/y = 48/37. The Euclidean algorithm can easily
be broken down into a series of steps of this form:

85

48
→ 37

48
→ 48

37
→ 11

37
→ 37

11
→ 26

11
→ 15

11
→ 4

11

→ 11

4
→ 7

4
→ 3

4
→ 4

3
→ 1

3
→ 3

1
→ 2

1
→ 1

1
→ 0

1
.

It is possible that the map x → x − 1 is repeated several times consecutively (for
example, as we went from 37/11 to 4/11), the number of times corresponding to the
quotient, [x]. On the other hand, the map y → 1/y is not immediately repeated,
since repeating this map sends y back to y, which corresponds to swapping the
order of a pair of numbers twice, sending the pair back to their original order.

These two linear maps correspond to our matrix transformations:

x → x− 1 corresponds to

(
1 −1
1 0

)
, so that

(
37
48

)
=

(
1 −1
1 0

)(
85
48

)
;

and y → 1/y corresponds to

(
0 1
1 0

)
, so that

(
48
37

)
=

(
0 1
1 0

) (
37
48

)
.

The Euclidean algorithm is therefore a series of transformations of the form x →
x − 1 and y → 1/y and defines a finite sequence of these transformations that
begins with any given positive rational number and ends with 0. One can invert
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that sequence of transformations, to transformations of the form x → x + 1 and
y → 1/y, to begin with 0 and to end at any given rational number.

Determinant 1 transformations. Foreshadowing later results, it is more useful
to develop a variant on the Euclidean algorithm in which the matrices of all of the
transformations have determinant 1. To begin with, we break each transformation
down into the two steps:

• Beginning with the pair 85, 48 the first step is to subtract 1 times 48 from 85,
and in general we subtract q times b from a. This transformation is therefore
given by(

a
b

)
→
(
1 −q
0 1

)(
a
b

)
, and notice that

(
1 −q
0 1

)
=

(
1 1
0 1

)−q

.

• The second step swaps the roles of 37(= 85 − 48) and 48, corresponding to
a matrix of determinant −1. Here we do something unintuitive which is to
change 48 to −48, so that the matrix has determinant 1:(
37
48

)
→
(
0 −1
1 0

)(
37
48

)
, and more generally

(
a
b

)
→
(
0 −1
1 0

)(
a
b

)
.

One then sees that if g = gcd(a, b) and a/b = [a0, . . . , ak], then(
0
g

)
=

(
1 1
0 1

)−ak
(
0 −1
1 0

)(
1 1
0 1

)−ak−1

· · ·
(
0 −1
1 0

)(
1 1
0 1

)−a0
(
a
b

)
.

We write S :=

(
1 1
0 1

)
and T :=

(
0 1
−1 0

)
. Taking inverses here we get

(
a
b

)
= Sa0TSa1T · · ·Sak−1TSak

(
0
g

)
.

If a and b are coprime, then this implies that

(1.10.1) Sa0TSa1T · · ·Sak−1TSak =

(
c a
d b

)
for some integers c and d. The left-hand side is the product of determinant one
matrices, and so the right-hand side also has determinant one; that is, cb− ad = 1.
This is therefore an element of SL(2,Z), the subgroup (under multiplication) of
2-by-2 integer matrices of determinant one; more specifically

SL(2,Z) :=

{(
α β
γ δ

)
: α, β, γ, δ ∈ Z, αδ − βγ = 1

}
.

Theorem 1.2. Each matrix in SL(2,Z) can be represented as Se1T f1 · · ·SerT fr

for integers e1, f1, . . . , er, fr.

Proof. Suppose that we are given

(
x a
y b

)
∈ SL(2,Z). Taking determinants we

see that bx−ay = 1. Therefore gcd(a, b) = 1, and so above we saw how to construct
an element of SL(2,Z) with the same last column. In Theorem 3.5 we will show
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that every other integer solution to bx− ay = 1 is given by x = c−ma, y = d−mb
for some integer m. Therefore(

x a
y b

)
=

(
c a
d b

)(
1 0

−m 1

)
.

One can easily verify that

T−1 =

(
0 −1
1 0

)
, so that T−1ST =

(
1 0
−1 1

)
,

and therefore (
1 0

−m 1

)
= (T−1ST )m = T−1SmT.

Combining these last two statements together with (1.10.1) completes the proof of
the theorem. �

Appendices. The extended version of chapter 1 has the following additional
appendices:

Appendix 1B. Computational aspects of the Euclidean algorithm, which dis-
cusses how to speed up the Euclidean algorithm, how to determine how long it
takes, and asks what a “fast” algoirthm is.

Appendix 1C. Magic squares is a basic introduction to constructing different
types of magic and Latin squares of arbitrary dimension.

Appendix 1D. The Frobenius postage stamp problem introduces the question
of what amounts of postage can be made up of stamps of given costs.

Appendix 1E. Egyptian fractions discusses what rational numbers are a sum
of distinct fractions of the form 1/n.



Chapter 2

Congruences

The key step in understanding the Euclidean algorithm, Lemma 1.1.1, shows that
gcd(a, b) equals gcd(r, b), because b divides a − r. Inspired by how useful this
observation is, Gauss developed the theory of when two given integers, like a and
r, differ by a multiple of b:

2.1. Basic congruences

If m, b, and c are integers for which m divides b− c, then we write

b ≡ c (mod m)

and say that b and c are congruent modulo m, where m is the modulus.1 The
numbers involved should be integers, not fractions, and the modulus can be taken
in absolute value; that is, b ≡ c (mod m) if and only if b ≡ c (mod |m|), by
definition.

For example, −10 ≡ 15 (mod 5), and −7 ≡ 15 (mod 11), but −7 �≡ 15
(mod 3). Note that b ≡ b (mod m) for all integers m and b.

The integers ≡ a (mod m) are precisely those of the form a+km where k is an
integer, that is, a, a+m, a+ 2m, . . . as well as a−m, a− 2m, a− 3m, . . .. We call
this set of integers a congruence class or residue class mod m, and any particular
element of the congruence class is a residue.2

For any given integers a and m > 0, there exists a unique pair of integers q
and r with 0 ≤ r ≤ m− 1, for which a = qm+ r, by Lemma 1.1.1. Therefore there
exists a unique integer r ∈ {0, 1, 2, . . . ,m−1} for which a ≡ r (mod m). Moreover,
if two integers are congruent mod m, then they leave the same remainder, r, when

1Gauss proposed the symbol ≡ because of the analogies between equality and congruence, which
we will soon encounter. To avoid ambiguity he made a minor distinction by adding the extra bar.

2The sequence of numbers a, a + m, a + 2m, . . ., in which we add m to the last number in the
sequence to obtain the next one, is an arithmetic progression.

29
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divided by m. We now prove a generalization of these last remarks:

Theorem 2.1. Suppose that m is a positive integer. Exactly one of any m consec-
utive integers is ≡ a (mod m).

Two proofs.3 Suppose we have the m consecutive integers x, x+1, . . . , x+m− 1.

Analytic proof: An integer n in the range x ≤ n < x +m is of the form a + km,
for some integer k, if and only if there exists an integer k for which

x ≤ a+ km < x+m.

Subtracting a from each term here and dividing through by m, we find that this
holds if and only if

x− a

m
≤ k <

x− a

m
+ 1.

Hence k must be an integer from an interval of length one which has just one
endpoint included in the interval. Such an integer k exists and is unique; it is the
smallest integer that is ≥ x−a

m .

Exercise 2.1.1. Prove that for any real number t there is a unique integer in the interval [t, t+1).

Number-theoretic proof: By Lemma 1.1.1 there exist integers q and r with 0 ≤ r ≤
m− 1, for which a− x = qm+ r, with 0 ≤ r ≤ m− 1. Then x ≤ x+ r ≤ x+m− 1
and x+ r = a− qm ≡ a (mod m), and so x+ r is the integer that we are looking
for. We still need to prove that it is unique:

If x + i ≡ a (mod m) and x + j ≡ a (mod m), where 0 ≤ i < j ≤ m − 1,
then i ≡ a − x ≡ j (mod m), so that m divides j − i, which is impossible as
1 ≤ j − i ≤ m− 1. �
Exercise 2.1.2. Prove that m divides (n − 1)(n − 2) · · · (n − m) for every integer n and every
integer m ≥ 1.

Theorem 2.1 implies that any m consecutive integers yield a complete set of
residues (mod m); that is, every congruence class (modm) is represented by exactly
one element of the given set of m integers. For example, every integer has a unique
residue amongst

the least non-negative residues (mod m) : 0, 1, 2, . . . , (m− 1),

as well as amongst

the least positive residues (mod m) : 1, 2, . . . ,m,

and also amongst

the least negative residues (mod m) : −(m− 1), −(m− 2), . . . , −2, −1, 0.

For example, 2 is the least positive residue of −13 (mod 5), whereas −3 is the least
negative residue; and 5 is its own least positive residue mod 7, whereas −2 is the
least negative residue. Notice that if the residue is not ≡ 0 (mod m), then these
residues occur in pairs, one positive and the other negative, and at least one of each

3Why give two proofs? Throughout this book we will frequently take the opportunity to give more
than one proof of a key result. The idea is to highlight different aspects of the theory that are, or will
become, of interest. Here we find both an analytic proof (meaning that we focus on the size or quantity
of the objects involved) as well as a number-theoretic proof (in which we use their algebraic properties).
Sometimes the interplay between these two perspectives can take us much further than either one alone.
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pair is ≤ m/2 in absolute value. We call this the absolutely least residue (mod m)
(and we select m/2, rather than −m/2, when m is even).4 For example if m = 5,
we can pair up the least positive residues and the least negative residues as

1 ≡ −4 (mod 5), 2 ≡ −3 (mod 5), 3 ≡ −2 (mod 5), 4 ≡ −1 (mod 5),

as well as the exceptional 5 ≡ 0 (mod 5). Hence the absolutely least residues
(mod 5) are −2,−1, 0, 1, 2. Similarly the the absolutely least residues (mod 6) are
−2,−1, 0, 1, 2, 3. More generally if m = 2k + 1 is odd, then the absolutely least
residues (mod 2k + 1) are −k, . . . ,−1, 0, 1 . . . , k; and if m = 2k is even, then the
absolutely least residues (mod 2k) are −(k − 1), . . . ,−1, 0, 1 . . . , k.

We defined a complete set of residues to be any set of representatives for the
residue classes mod m, one for each residue class. A reduced set of residues has
representatives only for the residue classes that are coprime with m. For example
{0, 1, 2, 3, 4, 5} is a complete set of residues (mod 6), whereas {1, 5} is a reduced set
of residues, as 0, 2, and 4 are divisible by 2, and 0 and 3 are divisible by 3 and so
are excluded.

Exercise 2.1.3. Suppose that a1, . . . , am is a complete set of residues mod m. Prove that m
divides (n− a1) · · · (n− am) for every integer n.

Exercise 2.1.4. (a) Explain how “a number of the form 3n− 1” means the same thing as “a
number of the form 3n+ 2”, using the language of congruences.

(b) Prove that the set of integers in the congruence class a (mod d) can be partitioned into the
set of integers in the congruence classes a (mod kd), a+ d (mod kd), . . . and a+ (k − 1)d
(mod kd).

Exercise 2.1.5. Show that if a ≡ b (mod m), then (a,m) = (b,m).

Exercise 2.1.6. Prove that if a ≡ b (mod m), then a ≡ b (mod d) for any divisor d of m.

Exercise 2.1.7. Satisfy yourself that addition and multiplication mod m are commutative.5

Exercise 2.1.8. Prove that the property of congruence modulo m is an equivalence relation on
the integers. To prove this, one must establish

(i) a ≡ a (mod m);
(ii) a ≡ b (mod m) implies b ≡ a (mod m);
(iii) a ≡ b (mod m) and b ≡ c (mod m) imply a ≡ c (mod m).

The equivalence classes are therefore the congruence classes mod m.

One consequence of this is that integers that are congruent modulo m have the
same least residues modulo m, whereas integers that are not congruent modulo m
have different least residues.

The main use of congruences is that it simplifies arithmetic when we are looking
into questions about remainders. This is because the usual rules for addition,
subtraction, and multiplication work for congruences. However, division is a little
more complicated, as we will see in the next section.

4This is often called the least residue in absolute value.
5A mathematical operation is commutative if you get the same result no matter what order you take

the input variables in. Thus, in C, we have x + y = y + x and xy = yx. There are common operations
that are not commutative; for example a − b 	= b − a in C, unless a = b. Moreover multiplication
in different settings might not be commutative, for example when we multiply 2-by-2 matrices, as we
discovered, in detail, in section 0.12 of appendix 0D.
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Lemma 2.1.1. If a ≡ b (mod m) and c ≡ d (mod m), then

a+ c ≡ b+ d (mod m),

a− c ≡ b− d (mod m),

and ac ≡ bd (mod m).

Proof. By hypothesis there exist integers u and v for which a − b = um and
c− d = vm. Therefore

(a+ c)− (b+ d) = (a− b) + (c− d) = um+ vm = (u+ v)m

so that a+ c ≡ b+ d (mod m);

(a− c)− (b− d) = (a− b)− (c− d) = um− vm = (u− v)m

so that a− c ≡ b− d (mod m); and

ac− bd = a(c− d) + d(a− b) = a · vm+ d · um = (av + du)m

so that ac ≡ bd (mod m). �

These are the rules of modular arithmetic.

Exercise 2.1.9. Under the hypothesis of Lemma 2.1.1, show that ka+ lc ≡ kb+ ld (mod m) for
any integers k and l.

Exercise 2.1.10. If p|m and m/p ≡ a (mod q), then prove that m ≡ ap (mod q).

2.2. The trouble with division

Although the rules for addition, subtraction, and multiplication work for congru-
ences as they do for the integers, reals, and most other mathematical objects we
have encountered, the rule for division is more subtle. In the complex numbers, if
we are given numbers a and b �= 0, then there exists a unique value of c for which
a = bc (so that c = a/b), and therefore there is no ambiguity in the definition of
division. We now look at the multiplication tables mod 5 and mod 6 to see whether
this same property holds for modular arithmetic:

× 0 1 2 3 4

0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

The multiplication table (mod 5).

Other than in the top row, we see that every congruence class mod 5 appears
exactly once in each row of the table. For example, in the row corresponding to the
multiples of 2, mod 5 we have 0, 2, 4, 1, 3, which implies that for each a (mod 5)
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there exists a unique value of c (mod 5) for which a ≡ 2c (mod 5); that is, c ≡ a/2
(mod 5). We read off

0/2 ≡ 0 (mod 5), 1/2 ≡ 3 (mod 5), 2/2 ≡ 1 (mod 5),

3/2 ≡ 4 (mod 5), and 4/2 ≡ 2 (mod 5),

each division leading to a unique value. This is true in each row, so for every non-
zero value of b (mod 5) and every a (mod 5), there exists a unique multiple of b,
which equals a mod 5. Therefore division is well- (and uniquely) defined modulo 5.

However, the multiplication table mod 6 looks rather different.

× 0 1 2 3 4 5

0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

The multiplication table (mod 6).

The row corresponding to the multiples of 5, mod 6, is 0, 5, 4, 3, 2, 1, so that
each b/5 (mod 6) is well-defined.

However, the row corresponding to the multiples of 2, mod 6, reads 0, 2, 4, 0, 2, 4.
There is no solution to 1/2 (mod 6). On the other hand, for something as simple
as 4/2 (mod 6), there are two different solutions: 5 (mod 6) as well as 2 (mod 6).
Evidently it is more complicated to understand division mod 6 than mod 5.

We can obtain a hint of what is going on by applying exercise 2.1.4, which
implies that the union of the sets of integers in the two arithmetic progressions 5
(mod 6) and 2 (mod 6) gives exactly the integers ≡ 2 (mod 3). So we now have a
unique solution to 4/2 (mod 6), albeit a congurence class belonging to a different
modulus.

Exercise 2.2.1. Determine one congruence class which gives all solutions to 3 divided by 3
(mod 6). (In other words, find a congruence class a (mod m) such that 3x ≡ 3 (mod 6) if and
only if x ≡ a (mod m).)

These issues with division arise when we try to solve equations by division: If we
divide each side of 8 ≡ 2 (mod 6) by 2, we obtain the incorrect “4 ≡ 1 (mod 6)”.
We can correct this by dividing the modulus through by 2 also, so as to obtain
4 ≡ 1 (mod 3). Even this is not the whole story, for if we wish to divide both
sides of 21 ≡ 6 (mod 5) through by 3, we cannot also divide the modulus, since 3
does not divide 5. However, in this case one does not need to divide the modulus
through by 3, since 7 ≡ 2 (mod 5). So what is the general rule? We shall resolve
all of these issues in Lemma 3.5.1, after we have developed a little more theory.
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2.3. Congruences for polynomials

Let Z[x] denote the set of polynomials with integer coefficients. Using the above
rules for congruences, one gets a very useful result for congruences involving poly-
nomials:

Corollary 2.3.1. If f(x) ∈ Z[x] and a ≡ b (mod m), then f(a) ≡ f(b) (mod m).

Proof. Since a ≡ b (mod m) we have a2 ≡ b2 (mod m) by Lemma 2.1.1, and then

Exercise 2.3.1. Prove that ak ≡ bk (mod m) for all integers k ≥ 1, by induction.

Now, writing f(x) =
∑d

i=0 fix
i where each fi is an integer, we have

f(a) =

d∑
i=0

fia
i ≡

d∑
i=0

fib
i = f(b) (mod m),

by Lemma 2.1.1. �

This result can be extended to polynomials in many variables.

Exercise 2.3.2. Deduce, from Corollary 2.3.1, that if f(t) ∈ Z[t] and r, s ∈ Z, then r− s divides
f(r)− f(s).

Therefore, for any polynomial f(x) ∈ Z[x], the sequence f(0), f(1), f(2), . . .
modulo m is periodic of period m; that is, the values repeat every mth term in the
sequence, repeating indefinitely. More precisely f(n +m) ≡ f(n) (mod m) for all
integers n.

Example. If f(x) = x3 − 8x+ 6 and m = 5, then we get the sequence

f(0), f(1), . . . = 1, 4, 3, 4, 3, 1, 4, 3, 4, 3, 1 . . .

and the first five terms 1, 4, 3, 4, 3 repeat infinitely often. Moreover we get the same
pattern if we run though the consecutive negative integer values for x.

Note that in this example f(x) is never 0 or 2 (mod 5). Thus none of the
equations

x3 − 8x+ 6 = 0, y3 − 8y + 1 = 0, and z3 − 8z + 4 = 0

can have solutions in integers x, y, or z.

Exercise 2.3.3. Let f(x) ∈ Z[x]. Suppose that f(r) �≡ 0 (mod m) for all integers r in the range
0 ≤ r ≤ m− 1. Deduce that there does not exist an integer n for which f(n) = 0.

2.4. Tests for divisibility

There are easy tests for divisibility based on ideas from this chapter. For example,
writing an integer in decimal as6

a+ 10b+ 100c+ · · · ,

6More precisely,
∑d

i=0 ai10
i where each ai is an integer in {0, 1, 2, . . . , 9} and ad 	= 0. Why did

we write the decimal expansion so informally in the text, when surely good mathematics is all about
precision? While good mathematics is anchored by precision, mathematical writing also requires good
communication—after all why shouldn’t the reader understand with as little effort as possible?—and so
we attempt to explain accurately with as little notation as possible.
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we employ Corollary 2.3.1 with f(x) = a+ bx+ cx2 + · · · and m = 9, so that

a+ 10b+ 100c+ · · · = f(10) ≡ f(1) = a+ b+ c+ · · · (mod 9).

Therefore we can test whether the integer a+ 10b+ 100c+ · · · is divisible by 9 by
testing whether the much smaller integer a+ b+ c+ · · · is divisible by 9. In other
words, if an integer is written in decimal notation, then it is divisible by 9 if and
only if the sum of its digits is divisible by 9. This same test works for divisibility by
3 (by exercise 2.1.6) since 3 divides 9. For example, to decide whether 7361842509
is divisible by 9, we need only decide whether 7+3+6+1+8+4+2+5+0+9 = 45
is divisible by 9, and this holds if and only if 4 + 5 = 9 is divisible by 9, which it
obviously is.

One can test for divisibility by 11 in a similar way: Since 10 ≡ −1 (mod 11),
we deduce that f(10) ≡ f(−1) (mod 11) from Corollary 2.3.1, and so

a+ 10b+ 100c+ · · · ≡ a− b+ c · · · (mod 11).

Therefore 7361842509 is divisible by 11 if and only if 7−3+6−1+8−4+2−5+0−9 =
1 is divisible by 11, which it is not.

One may determine similar (but slightly more complicated) rules to test for
divisibility by any integer, though we will need to develop our theory of congruences.
We return to this theme in section 7.7.

Exercise 2.4.1. (a) Invent tests for divisibility by 2 and 5 (easy).
(b) Invent tests for divisibility by 7 and 13 (similar to the above).
(c)† Create one test that tests for divisibility by 7, 11, and 13 simultaneously (assuming that

one knows about the divisibility by 7, 11, and 13 of every non-negative integer up to 1000).

Additional exercises

Exercise 2.5.1. Prove that if a, b, and c are integers and d = b2 − 4ac, then d ≡ 0 or 1 (mod 4).

Exercise 2.5.2. Prove that if N = a2 − b2, then either N is odd or N is divisible by 4.

Exercise 2.5.3. (a) Prove that 2 divides n(3n+ 101) for every integer n.
(b) Prove that 3 divides n(2n+ 1)(n+ 10) for every integer n.
(c) Prove that 5 divides n(n+ 1)(2n+ 1)(3n+ 1)(4n+ 1) for every integer n.

Exercise 2.5.4. (a) Prove that, for any given integer k ≥ 1, exactly k of any km consecutive
integers is ≡ a (mod m).

(b)† Let I be an interval of length N . Prove that the number of integers in I that are ≡ a
(mod m) is between N/m− 1 and N/m+ 1.

(c) By considering the number of even integers in (0, 2) and then in [0, 2], show that (b) cannot
be improved, in general.

Exercise 2.5.5. The Universal Product Code (that is, the bar code used to identify items in the

supermarket) has 12 digits, each between 0 and 9, which we denote by d1, . . . , d12. The first 11
digits identify the product. The 12th is chosen to be the least residue of

3d1 − d2 + 3d3 − d4 − · · · − d10 + 3d11 (mod 10).
(a) Deduce that d1 + 3d2 + d3 + · · ·+ d11 + 3d12 is divisible by 10.
(b) Deduce that if the scanner does not read all the digits correctly, then either the sum in (a)

will not be divisible by 10 or the scanner has misread at least two digits.

Exercise 2.5.6. (a) Take f(x) = x2 in Corollary 2.3.1 to determine the squares modulo m,
for m = 3, 4, 5, 6, 7, 8, 9, and 10. (“The squares modulo m” are those congruence classes
(mod m) that are equivalent to the square of at least one congruence class (mod m).)
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(b) Show that there are no solutions in integers x, y, z to x2 + y2 = z2 with x and y odd.
(c) Show that if x2 + y2 = z2, then 3 divides xy.
(d) Show that there are no solutions in integers x, y, z to x2 + y2 = 3z2 with (x, y) = 1.
(e) Show that there are no solutions in integers x, y, z to x2 + y2 = 666z2 with (x, y) = 1.
(f) Prove that no integer ≡ 7 (mod 8) can be written as the sum of three squares of integers.

Exercise 2.5.7.† Show that if x3 + y3 = z3, then 7 divides xyz.

Binomial coefficients modulo p

We will assume that p is prime for all of the next two sections.

Exercise 2.5.8. Use the formula for
(p
j

)
given in (0.3.1) to prove that p divides

(p
j

)
for all integers

j in the range 1 ≤ j ≤ p− 1. This implies that 1
p

(p
j

)
is an integer.

For 1 ≤ j ≤ p− 1 we can write
(
p−1
j

)
as p−1

1
p−2
2 · · · p−j

j . There is considerable

cancelation when we reduce this latter expression mod p.

Exercise 2.5.9. (a) Prove that
(p−1

j

)
≡ (−1)j (mod p) for all j, 0 ≤ j ≤ p− 1.

(b) Prove that 1
p

(p
j

)
≡ (−1)j−1/j (mod p) for all j, 1 ≤ j ≤ p− 1.

Exercise 2.5.10.† (a) Prove that
(ap
bp

)
≡
(a
b

)
(mod p) whenever a, b ≥ 0.

(b) Prove that
(ap+c
bp+d

)
≡
(a
b

)
·
(c
d

)
(mod p) whenever 0 ≤ c, d ≤ p− 1. (Remember that

(c
d

)
= 0

if c < d.)
(c) If m = m0 + m1p + m2p2 + · · · + mkp

k and n = n0 + n1p + · · · + nkp
k are non-negative

integers written in base p, deduce Lucas’s Theorem (by induction on k ≥ 0), that(n
m

)
≡
(n0

m0

)(n1

m1

)(n2

m2

)
· · ·
(nk

mk

)
(mod p).

One can extend the notion of congruences to polynomials with integer coef-
ficients: For f(x), g(x) ∈ Z[x] we have f(x) ≡ g(x) (mod m) if and only if there
exists a polynomial h(x) ∈ Z[x] for which f(x) − g(x) = mh(x). This notion can
be extended even further to polynomials in several variables.

The binomial theorem for n = 3 gives

(x+ y)3 = x3 + 3x2y + 3xy2 + y3.

Notice that the two middle coefficients here are both 3, and so

(x+ y)3 ≡ x3 + y3 (mod 3).

Similarly

(x+ y)5 = x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5 ≡ x5 + y5 (mod 5),

since all four of the middle coefficients are divisible by 5. This does not generalize
to all exponents n, for example for n = 4 we have (x + y)4 ≡ x4 + 2x2y2 + y4

(mod 4) which is not congruent to x4 + y4 (mod 4), but the above does generalize
to all prime exponents, as we will see in the next exercise.

Exercise 2.5.11. Deduce from exercise 2.5.8 that (x+ y)p ≡ xp + yp (mod p) for all primes p.7

Exercise 2.5.12. Prove that (x+ y)p−1 ≡ xp−1 − yxp−2 + · · · − xyp−2 + yp−1 (mod p).

7This is sometimes called the freshman’s dream or the child’s binomial theorem, sarcastically referring
to the unfortunately common mistaken belief that this works over C, rather than the more complicated
binomial theorem, as in section 0.3.
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Exercise 2.5.13. Prove that (x+ y)p
k ≡ xpk + yp

k
(mod p) for all primes p and integers k ≥ 1.

Exercise 2.5.14. (a) Writing a positive integer n = n0 + n1p + n2p2 + · · · in base p, use
exercise 2.5.13 to prove that

(x+ y)n ≡ (x+ y)n0(xp + yp)n1 (xp2 + yp
2
)n2 · · · (mod p).

(b)† Reprove Lucas’s Theorem (as in exercise 2.5.10(c)) by studying the coefficient of xmyn−m

in (a).

Exercise 2.5.15. (a) Prove that (x+ y + z)p ≡ xp + yp + zp (mod p).
(b) Deduce that (x1 + x2 + · · ·+ xn)p ≡ xp

1 + xp
2 + · · ·+ xp

n (mod p) for all n ≥ 2.

The Fibonacci numbers modulo d

The Fibonacci numbers mod 2 are

0, 1, 1, 0, 1, 1, 0, 1, 1, . . . .

We see that the Fibonacci numbers modulo 2 are periodic of period 3. The Fi-
bonacci numbers mod 3 are

0, 1, 1, 2, 0, 2, 2, 1, 0, 1, 1, 2, 0, 2, 2, 1, . . .

and so seem to be periodic of period 8. In exercise 1.7.24 we defined m = md to
be the smallest positive integer for which d divides Fm and showed that d divides
Fn if and only if md divides n. In our two cases we therefore have m2 = 3 which is
the period and m3 = 4 which is half the period.

In the next exercise we show that Fibonacci numbers (and other such sequences)
are periodic mod d, for every integer d > 1, by using the pigeonhole principle. This
states that if one puts N + 1 letters into N pigeonholes, then, no matter how one
does this, some pigeonhole will contain at least two letters.8

Exercise 2.5.16. (a) Prove that the pigeonhole principle is true.
We will now show that the Mersenne numbers Mn := 2n − 1 are periodic mod d.

(b) Show that there exist two integers in the range 0 ≤ r < s ≤ d for which Mr ≡ Ms (mod d).
(c) In exercise 0.4.15(b) we saw that the Mersenne numbers satisfy the recurrence Mn+1 =

2Mn + 1. Use this to show that Mr+j ≡ Ms+j (mod d) for all j ≥ 0.
(d) Deduce that there exists a positive integer p = pd, which is ≤ d, such that Mn+p ≡ Mn

(mod d) for all n ≥ d. That is, Mn is eventually periodic mod d with period pd ≤ d.

An analogous proof works for general second-order linear recurrence sequences,
including Fibonacci numbers. For the rest of this section, we suppose a and b are
integers and {xn : n ≥ 0} is the second-order linear recurrence sequence given by

xn = axn−1 + bxn−2 for all n ≥ 2 with x0 = 0 and x1 = 1.

Exercise 2.5.17. (a) By using the pigeonhole principle creatively, prove that there exist two
integers in the range 0 ≤ r < s ≤ d2 for which xr ≡ xs (mod d) and xr+1 ≡ xs+1 (mod d).

(b) Use the recurrence for the xn to show that xr+j ≡ xs+j (mod d) for all j ≥ 0.

(c) Deduce that the xn are eventually periodic mod d with period ≤ d2.
(d) Prove that md divides the period mod d.

8In French, this is the “principle of the drawers”. What invocative metaphors are used to describe
this principle in other languages?
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We saw above that the Fibonacci numbers mod 3 have period 32−1, and further
calculations reveal that the period mod d never seems to be larger than d2 − 1, a
small improvement over the bound that we obtained in exercise 2.5.17(c). In the
next exercise we see how to obtain this bound, in general.

Exercise 2.5.18. (a) Show that if there exists a positive integer r for which xr ≡ xr+1 ≡ 0
(mod d), then xn ≡ 0 (mod d) for all n ≥ r so that the xn are eventually periodic mod d
with period 1.

(b) Now assume that there does not exist a positive integer r for which xr ≡ xr+1 ≡ 0 (mod d).
Modify the proof of exercise 2.5.17 to prove that the xn are eventually periodic mod d with
period ≤ d2 − 1.

It is possible to get a more precise understanding of the Fibonacci numbers and
other second-order recurrences, mod d:

Exercise 2.5.19. In order to understand xn (mod d), we take m = md in the results of this
exercise.
(a) Prove, by induction, that xm+k ≡ xm+1xk (mod xm) for all k ≥ 0.
(b) Deduce the same result from exercise 0.4.10.
(c) Deduce that if n = qm+ r with 0 ≤ r ≤ m− 1, then xn ≡ (xm+1)qxr (mod xm).

We will return to this result in chapter 7 where we study the powers mod n.

In exercise 0.1.5 we saw the importance of the discriminant9 Δ := a2 + 4b of
the quadratic polynomial x2 − ax− b. The rule for the xn mod Δ is a little easier:

Exercise 2.5.20. Prove by induction that
(a) x2k ≡ ka(−b)k−1 (mod Δ) and x2k+1 ≡ (2k + 1)(−b)k (mod Δ) for all k ≥ 0 and

(b) x2k ≡ kabk−1 (mod a2) and x2k+1 ≡ bk (mod a2) for all k ≥ 0.

Exercise 2.5.21. Suppose that the sequence (un)n≥1 satisfies a dth-order linear recurrence (as
defined in appendix 0B). Prove that for any integer m > 1, the un are eventually periodic mod
m with period ≤ md − 1. (We prove that this bound is best possible when m is prime in exercise
7.25.5.)

9The colon “:” plays many roles in the grammar of mathematics. Here it means that “Henceforth
we define Δ to be . . . .”



Appendix 2A. Congruences
in the language of groups

2.6. Further discussion of the basic notion of congruence

Congruences can be rephrased in the language of groups. The integers, Z, form a
group,10 in which addition is the group operation. In exercise 0.11.1 of appendix
0D we proved that the non-trivial, proper subgroups of Z all take the form mZ :=
{mn : n ∈ Z} for some integer m > 1, that is, the set of integers divisible by m.
The congruence classes (mod m) are simply the cosets of mZ inside Z:

0 +mZ, 1 +mZ, 2 +mZ, . . . , (m− 1) +mZ,

where

j +mZ := {j +mn : n ∈ Z},
which is the set of integers belonging to the congruence class j (mod m). Notice
that the m cosets of mZ are disjoint and their union gives all of Z.

The group operation on Z, namely addition, is inherited by the cosets of mZ.
For example, as 7 + 11 = 18 in Z, the same is true when we add together the
relevant cosets of mZ in Z; in other words,11

(7 +mZ) + (11 +mZ) = (18 +mZ).

This new additive group is the quotient group

Z/mZ.

This is the beginning of the theory of quotient groups, which we develop in the
next section.

10See appendix 0D for a discussion of the basic properties of groups.
11Throughout, we define the sum of two given sets A and B to be A+B := {a+b : a ∈ A, b ∈ B},

that is, the set of elements that can be represented as a+b with a ∈ A and b ∈ B. Note that an element
may be represented more than once.

39
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The reader should be aware that multiplication mod m (and, in particular,
how its properties are inherited from Z) does not fit into this discussion of additive
quotient groups.

2.7. Cosets of an additive group

Suppose that H is a subgroup of an additive (and so abelian12) group G. A coset
of H in G is given by the set

a+H := {a+ h : h ∈ H}.
In Proposition 2.7.1 we will show, as in the example mZ of the previous section,
that the cosets of H are all disjoint and their union gives G.

The quotient group G/H has as its elements the distinct cosets a + H and
inherits its group law from G, in this case addition, so that

(a+H) + (b+H) = (a+ b) +H.

Proposition 2.7.1. Let H be a subgroup of an additive group G. The cosets
of H in G are disjoint, so that the elements of G/H are well-defined; and the
addition law on G/H is also well-defined. If G is finite, then |H| divides |G| and
|G/H| = |G|/|H|.

Proof. If a+H and b+H have a common element c, then there exists h1, h2 ∈ H
such that a + h1 = c = b + h2. Therefore b = a + h1 − h2 = a + h0 where
h0 = h1 − h2 ∈ H since H is a group (and therefore closed under addition). Now if
h ∈ H, then b+h = a+(h0+h) ∈ a+H, as h0+h ∈ H, so that b+H ⊂ a+H, and
by the analogous argument a+H ⊂ b+H. We deduce that a+H = b+H. Hence
the cosets of H are either identical or disjoint, which means that they partition G;
therefore if G is finite, then |H| divides |G|.

This also implies that if c ∈ a+H, then c+H = a+H. We wish to show that
addition in G/H is well-defined. If a+H, b+H are cosets of H, then we defined
(a+H)+(b+H) = (a+ b)+H, so we need to verify that the sum of the two cosets
does not depend on the choice of representatives of the cosets. So, if c ∈ a+H and
d ∈ b+H, then there exists h1, h2 ∈ H for which c = a+ h1 and d = b+ h2. Then
c+H = a+H and d+H = b+H. Moreover c+ d = a+ b+(h1+h2) ∈ a+ b+H,
as H is closed under addition, and so c + d + H = a + b + H, as desired. Hence
G/H is well-defined, and |G/H| = |G|/|H| when G is finite. �

Example. Z is a subgroup of the additive group R, and the cosets a+Z are given
by all real numbers r that differ from a by an integer. Every coset a+Z has exactly
one representative in any given interval of length 1, in particular the interval [0, 1)
where the coset representative is {a}, the fractional part of a. These cosets are
well-defined under addition and yield the quotient group R/Z.

The exponential map e : R → U := {z ∈ C : |z| = 1}, from the real numbers to
the unit circle, is defined by e(t) = e2iπt. Since e(1) = 1, therefore e(n) = e(1)n = 1
for every integer n. Therefore if b ∈ a + Z so that b = a + n for some integer n,
then e(b) = e(a + n) = e(a)e(n) = e(a), so the value of e(t) depends only what

12A group G is called abelian or commutative if ab = ba for all elements a, b ∈ G.
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coset t belongs to in R/Z. Therefore we can think of the exponential map as the
concatenation of two maps: firstly the natural quotient map from R → R/Z (that
is, a → a + Z) and then the map e : R/Z → U . Picking the representatives [0, 1)
for R/Z, we see that the restricted map e : [0, 1) → U is 1-to-1.

By a slight abuse of terminology, we let a ≡ b (mod 1), for real numbers a and
b, if and only if a and b belong to the same coset of R/Z.

Exercise 2.7.1. Prove that a ≡ b (mod m) if and only if a/m and b/m belong to the same coset
of R/Z.

Exercise 2.7.2. (a) Prove that t ≡ {t} (mod 1) for all real numbers t.
(b) Prove that the usual rules of addition, subtraction, and multiplication hold mod 1.
(c) Show that division is not always well-defined mod 1, by finding a counterexample.

2.8. A new family of rings and fields

We have seen, in Lemma 2.1.1, that the congruence classes mod m support both
an additive and multiplicative structure.

Exercise 2.8.1. Prove that Z/mZ is a ring for all integers m ≥ 2.

To be a field, all the non-zero congruence classes of Z/mZ would need to have a
multiplicative inverse, but this is not the case for all m. For example we claim that
3 does not have a multiplicative inverse mod 15. If it did, say 3m ≡ 1 (mod 15),
then multiplying through by 5 we obtain 5 ≡ 5 · 1 ≡ 5 · 3m ≡ 0 (mod 15), which is
evidently untrue.

We call 3 and 5 zero divisors since they non-trivially divide 0 in Z/15Z.

Exercise 2.8.2. (a) Prove that if m is a composite integer > 1, then Z/mZ has zero divisors.
(b) Prove that Z/mZ is not a field whenever m is a composite integer > 1.
(c) Prove that if R is any ring with zero divisors, then R cannot be a field.

An integral domain is a ring with no zero divisors. Note that Z is an integral
domain (hence the name) but is not a field.

If R is a commutative ring and m ∈ R, then mR is an additive subgroup of
R, and the cosets of mR support a multiplicative structure. To see this, note that
if x ∈ a + mR and y ∈ b + mR, then x = a + mr1 and y = b + mr2 for some
r1, r2 ∈ R, and so xy = ab + mr where r = ar2 + br1 + mr1r2 which belongs to
R, as R is closed under both addition and multiplication. That is, xy ∈ ab+mR.
Hence R/mR inherits the multiplicative and distributive properties of R, as well
as the identity element 1 +mR; and so R/mR is itself a commutative ring.

2.9. The order of an element

If g is an element of a given group G, we define the order of g to be the smallest
integer n ≥ 1 for which gn = 1, where 1 is the identity element of G. If n does not
exist, then we say that g has infinite order (for example, 1 in the additive group Z).
We shall explore the multiplicative order of a reduced residue mod m, in detail, in
chapter 7.

There is a beautiful observation of Lagrange which restricts the possible order
of an element in any finite abelian group.
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Theorem 2.2 (Lagrange). If G is a finite abelian group, then the order of any
element g of G divides |G|, the number of elements in G. Moreover, g|G| = 1.

Proof. Suppose that g has order n and let H := {1, g, g2, . . . , gn−1}, a subgroup of
G of order n. By Proposition 2.7.1 we deduce that n = |H| divides |G|. Moreover
if |G| = mn, then g|G| = gmn = (gn)m = 1m = 1. �

Lagrange’s Theorem actually holds for any finite group, non-abelian as well as
abelian, as we will see in Corollary 7.23.1 of appendix 7D.

Appendices. The extended version of chapter 2 has the following additional
appendix:

Appendix 2B. The Euclidean algorithm for polynomials, which shows that there is
an analogous theory for polynomials.



Chapter 3

The basic algebra
of number theory

A prime number is an integer n > 1 whose only positive divisors are 1 and n. Hence
2, 3, 5, 7, 11, . . . are primes. An integer n > 1 is composite if it is not prime.1

Exercise 3.0.1. Suppose that p is a prime number. Prove that gcd(p, a) = 1 if and only if p does
not divide a.

3.1. The Fundamental Theorem of Arithmetic

Positive integers factor into primes, the basic building blocks out of which integers
are made. Often, in school, one discovers this by factoring a given composite integer
into two parts and then factoring each of those parts that are composite into two
further parts, etc. For example 120 = 8 × 15, and then 8 = 2 × 4 and 15 = 3 × 5.
Now 2, 3, and 5 are all primes, but 4 = 2 × 2 is not. Putting this altogether gives
120 = 2 × 2 × 2 × 3 × 5. This can be factored no further since 2, 3, and 5 are all
primes. It is not difficult to prove that this always works:

Exercise 3.1.1. Prove that any integer n > 1 can be factored into a product of primes.

We can factor 120 in other ways. For example 120 = 4 × 30, and then 4 = 2 × 2
and 30 = 5 × 6. Finally noting that 6 = 2 × 3, we eventually obtain the same
factorization, 120 = 2 × 2 × 2 × 3 × 5, of 120 into primes, even though we arrived
at it in a different way. No matter how you go about splitting a positive integer up
into its factors, you will always end up with the same factorization into primes.2 If
it is true that any two such factorizations are indeed the same and if we are given
one factorization of n as q1 · · · qk, then every prime factor p of n, found in any other
way, must equal some qi. This suggests that we will need to prove Theorem 3.1.

1Notice that 1 is neither prime nor composite, and the same is true of 0 and all negative integers.
2Recognizing that this claim needs a proof and then supplying a proof, is one of the great achieve-

ments of Greek mathematics. They developed an approach to mathematics which assures that theorems
are established on a solid basis.
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Theorem 3.1. If prime p divides ab, then p must divide at least one of a and b.

We will prove this in the next subsection. The necessity of such a result was
appreciated by ancient Greek mathematicians, who went on to show that Theorem
3.1 is sufficient to establish that every integer has a unique factorization, as we will
see. It is best to begin by making a simple deduction from Theorem 3.1:

Exercise 3.1.2. (a) Prove that if prime p divides a1a2 · · · ak, then p divides aj for some j, 1 ≤
j ≤ k.

(b) Deduce that if prime p divides q1 · · · qk where each qi is prime, then p = qj for some
j, 1 ≤ j ≤ k.

With this preparation we are ready to prove the first great theorem of number
theory, which appears in Euclid’s “Elements”:3

Theorem 3.2 (The Fundamental Theorem of Arithmetic). Every integer n > 1
can be written as a product of primes in a unique way (up to reordering).

Proof. We first show that there is a factorization of n into primes and afterwards
we will prove that it is unique. We prove this by induction on n: If n is prime, then
we are done; since 2 and 3 are primes, this also starts our induction hypothesis. If
n is composite, then it must have a divisor a for which 1 < a < n, and so b = n/a
is also an integer for which 1 < b < n. Then, by the induction hypothesis, both
a and b can be factored into primes, and so n = ab equals the product of these
two factorizations. (For example, to prove the result for 1050, we note that 1050 =
15×70. We have already obtained the factorizations of 15 and 70, namely 15 = 3×5
and 70 = 2×5×7, so that 1050 = 15×70 = (3×5)× (2×5×7) = 2×3×5×5×7.)

Now we prove that there is just one factorization for each n ≥ 2. If this is not
true, then let n be the smallest integer ≥ 2 that has two distinct factorizations,

p1p2 · · · pr = q1q2 · · · qs,
where the pi and qj are (not necessarily distinct) primes. Now prime pr divides
q1q2 · · · qs, and so pr = qj for some j, by exercise 3.1.2(b). Reordering the qj if
necessary we may assume that j = s, and if we divide through both factorizations
by pr = qs, then we have two distinct factorizations of

n/pr = p1p2 · · · pr−1 = q1q2 · · · qs−1.

This contradicts the minimality of n unless n/pr = 1. But then n = pr is prime,
and by the definition (of primes) it can have no other factorization. �

The Fundamental Theorem of Arithmetic states that there is a unique way to
break down an integer into its fundamental (i.e., irreducible) parts, and so every
integer can be viewed simply in terms of these parts (i.e., its prime factors). On
the other hand any finite product of primes equals an integer, so there is a 1-to-1
correspondence between positive integers and finite products of primes, allowing one
to translate questions about integers into questions about primes and vice versa.

3When we write that a product of primes is “unique up to reordering” we mean that although one
can write 12 as 2 × 2 × 3 or 2 × 3 × 2 or 3 × 2 × 2, we think of all of these as the same product, since
they involve the same primes, each the same number of times, differing only in the way that we order
the prime factors.
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It is useful to write the factorizations of natural numbers n in a standard form,
like

n = 2n23n35n57n7 . . . ,

where np denotes the exact number of times the prime p divides n. Since n is an
integer, each np ≥ 0, and only finitely many of the np are non-zero. Usually we
write down only those prime powers where np ≥ 1, for example 12 = 22 · 3 and
50 = 2 · 52. We will write pe‖n if pe is the highest power of p that divides n; thus
52‖50 and 111‖1001.

Our proof of the Fundamental Theorem of Arithmetic is constructive but it does
not provide an efficient way to find the prime factors of a given integer n. Indeed
finding efficient techniques for factoring an integer is a difficult and important
problem, which we discuss in chapter 10.4

In particular, the known difficulty of factoring large integers underlies the se-
curity of the RSA cryptosystem, which is discussed in section 10.3.

Exercise 3.1.3. (a) Prove that every natural number has a unique representation as 2km with
k ≥ 0 and m an odd natural number.

(b) Show that each integer n ≥ 3 is either divisible by 4 or has at least one odd prime factor.
(c) An integer is squarefree if every prime in its factorization appears to the power 1. Prove that

every non-zero integer can be written, uniquely, in the form mn2 where m is a squarefree

integer and n is a non-zero positive integer.
(d)† Deduce that every non-zero rational number can be written, uniquely, in the form mr2

where m is a squarefree integer and r is a positive rational number.

Exercise 3.1.4. (a) Show that if all of the prime factors of an integer n are ≡ 1 (mod m),
then n ≡ 1 (mod m). Deduce that if n �≡ 1 (mod m) then n has a prime factor that is �≡ 1
(mod m).

(b)† Show that if all of the prime factors of an integer n are ≡ 1 or 3 (mod 8), then n ≡ 1 or 3
(mod 8). Prove this with 3 replaced by 5 or 7.

(c)† Generalize this as much as you can to other moduli and other sets of congruence classes.

3.2. Abstractions

The ancient Greek mathematicians recognized that abstract lemmas allowed them
to prove sophisticated theorems. For example, in the previous section we stated
Theorem 3.1, a result whose formulation is not obviously relevant and yet was used
to good effect. The archetypal lemma is known today as “Euclid’s Lemma”, an
important result that first appeared in Euclid’s “Elements” (Book VII, No. 32),
and we will see that it is even more useful than Theorem 3.1:

Theorem 3.3 (Euclid’s Lemma). If c divides ab and gcd(c, a) = 1, then c must
divide b.

4It is easy enough to multiply together two given integers. If the integers each have 50 digits,
then one can obtain the product in about 3,000 steps (digit-by-digit multiplications) and this can be
accomplished within a second on a computer. On the other hand, given the 100-digit product, how do
we factor it to find the original two 50-digit integers? Trial division is too slow . . . if every atom in
the universe were a computer as powerful as any supercomputer, then most such products would not be
factored before the end of the universe! This is why we need more sophisticated factoring methods, and
although the best ones known today, implemented on the best computers, can factor a 100-digit number
in reasonable time, they are currently incapable of factoring typical 200-digit numbers. (See sections
10.4 and 10.6 for further discussion on this theme.)
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Proof of Euclid’s Lemma. Since gcd(c, a) = 1 there exist integers m and n such
that cm+ an = 1 by Theorem 1.1. Now c divides both c and ab, so that

c divides c · bm+ ab · n = b(cm+ an) = b,

by exercise 1.1.1(c). �

This proof surprisingly uses, inexplicitly, the complicated construction from Euclid’s
algorithm. Now that we have proved Euclid’s Lemma we proceed to

Deduction of Theorem 3.1. Suppose that prime p does not divide a (or else we
are done), and so gcd(p, a) = 1 (as seen in exercise 3.0.1). Taking c = p in Euclid’s
Lemma, we deduce that p divides b. �

The hypothesis “gcd(c, a) = 1” in Euclid’s Lemma is necessary, as may be seen
from the example in which 4 divides 2 · 6, but 4 does not divide either 2 or 6.

Now that we have completed the proof of the Fundamental Theorem of Arith-
metic, we are ready to develop the basic number-theoretic properties of integers.5

We begin by noting one further important consequence of Euclid’s Lemma:

Corollary 3.2.1. If am = bn, then a/ gcd(a, b) divides n.

Proof. Let a/ gcd(a, b) = A and b/ gcd(a, b) = B so that (A,B) = 1 by exercise
1.2.5(a) and Am = Bn. Therefore A|Bn with (A,B) = 1, and so A|n by Euclid’s
Lemma, as desired. We also observe that if we write n = Ak for some integer k,
then m = Bn/A = Bk. �

One consequence is a simple way to determine the least common multiple of
two integers from knowing their greatest common divisor.

Corollary 3.2.2. For any positive integers a and b we have ab = gcd(a, b)·lcm(a, b).

Proof. By definition, there exist integers m and n for which am = bn = lcm[a, b].
By Corollary 3.2.1 we know that a/ gcd(a, b) divides n and so L := b · a/ gcd(a, b)
divides bn = lcm[a, b]. Therefore L ≤ lcm[a, b]. On the other hand L is a multiple
of b, by definition, and of a, since L = a · b/ gcd(a, b). Therefore L is a common
multiple of a and b, and so L ≥ lcm[a, b] by the definition of lcm. These two
inequalities imply that L = lcm[a, b], and the result follows by multiplying through
by the denominator. �

We will see an easier proof of this elegant result in exercise 3.3.2.

Exercise 3.2.1. Suppose that (a, b) = 1. Prove that if a and b both divide m, then ab divides m.

5However if we wish to develop the analogy of this theory for more complicated sets of numbers,

for example the numbers of the form {a + b
√
d : a, b ∈ Z} for some fixed large integer d, then Euclid’s

Lemma generalizes in a straightforward way, but the Fundamental Theorem of Arithmetic does not. We
discuss this further in appendix 3F.



3.3. Divisors using factorizations 47

3.3. Divisors using factorizations

Suppose that6

n =
∏

p prime

pnp , a =
∏
p

pap , and b =
∏
p

pbp .

If n = ab, then

2n23n35n5 · · · = 2a23a35a5 · · · 2b23b35b5 · · · = 2a2+b23a3+b35a5+b5 · · · .
As there is only one factorization into primes of a given positive integer, by the
Fundamental Theorem of Arithmetic, we can equate the exact power of prime p
dividing each side of the last equation, to deduce that

np = ap + bp for each prime p.

As ap, bp ≥ 0 for each prime p, therefore

0 ≤ ap, bp ≤ np for each prime p.

On the other hand if a = 2a23a35a5 · · · with each 0 ≤ ap ≤ np, then a divides n
since we can construct the integer

b = 2n2−a23n3−a35n5−a5 · · ·
for which n = ab. We have therefore classified all of the possible (positive integer)
divisors a of n.

This classification allows us to easily count the number of divisors a of n, since
this is equal to the number of possibilities for the exponents ap; and we have that
each ap is any integer in the range 0 ≤ ap ≤ np. There are, therefore, np + 1
possibilities for the exponent ap, for each prime p, making

(n2 + 1)(n3 + 1)(n5 + 1) · · ·
possible divisors in total. Hence if we write τ (n) for the number of divisors of n,
then

τ (n) =
∏

p prime
pnp‖n

τ (pnp);

and τ (pk) = k + 1 for all integers k ≥ 0. A function whose value at n equals
the product of the values of the function at the exact prime powers that divide
n is called a multiplicative function (which will be explored in detail in the next
chapter).

As an example, we see that the divisors of 175 = 5271 are given by

5070 = 1, 5170 = 5, 5270 = 25, 5071 = 7, 5171 = 35, 5272 = 175;

in other words, they can all be factored as

50, 51, or 52 times 70 or 71.

Therefore the number of divisors is (2 + 1)× (1 + 1) = 3× 2 = 6.

Use the Fundamental Theorem of Arithmetic in all of the remaining exercises
in this section.

6We suppress writing “prime” in the subscript of
∏

, for convenience, at least when it should be
obvious, from the context, that the parameter is only taking prime values.
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Exercise 3.3.1. Use the description of the divisors of a given integer to prove the following: If
m =

∏
p p

mp and n =
∏

p pnp are positive integers, then (a) gcd(m,n) =
∏

p pmin{mp,np} and

(b) lcm[m,n] =
∏

p pmax{mp,np}.

The method in exercise 3.3.1(a) for finding the gcd of two integers appears to
be much simpler than the Euclidean algorithm. However, in order to make this
method work, one needs to be able to factor the integers involved. We have not yet
discussed techniques for factoring integers (though we will in chapter 10). Factoring
is typically difficult for large integers. This difficulty limits when we can, in practice,
use exercise 3.3.1 to determine gcds and lcms. On the other hand, the Euclidean
algorithm is very efficient for finding the gcd of two given integers (as discussed in
appendix 1B) without needing to know anything about those numbers.

Exercise 3.3.2. Deduce that mn = gcd(m,n) · lcm[m,n] for all pairs of natural numbers m and
n using exercise 3.3.1. (The proof in Corollary 3.2.2 is more difficult.)

In combination with the Euclidean algorithm, the result in exercise 3.3.2 al-
lows us to quickly and easily calculate the lcm of any two given integers. For
example, to determine lcm[12, 30], we first use the Euclidean algorithm to show
that gcd(12, 30) = 6, and then lcm[12, 30] = 12 · 30/ gcd(12, 30) = 360/6 = 60.

Although we have already proved the results in the next exercise (exercise
1.2.1(a), Lemma 1.4.1, exercise 1.2.5(a), and Corollary 1.2.2), we can now reprove
them more easily by using our description of the divisors of a given integer.

Exercise 3.3.3. (a) Prove that d divides gcd(a, b) if and only if d divides both a and b.
(b) Prove that lcm[a, b] divides m if and only if a and b both divide m.
(c) Prove that if (a, b) = g, then (a/g, b/g) = 1.
(d) Prove that if (a,m) = (b,m) = 1, then (ab,m) = 1.
(e) Prove that if (a, b) = 1, then (ab,m) = (a,m)(b,m).
(f)† Show that the hypothesis (a, b) = 1 is necessary in part (e), by constructing a counterex-

ample to the conclusion when (a, b) > 1.

One can obtain the gcd and lcm for any number of integers by means similar
to exercise 3.3.1:

Example. If A = 504 = 23 · 32 · 7, B = 2880 = 26 · 32 · 5, and C = 864 = 25 · 33,
then the greatest common divisor is 23 · 32 = 72 and the least common multiple is
26 · 33 · 5 · 7 = 60480. That is, if the powers of prime p that divide A, B, and C are
ap, bp, and cp, respectively, then the powers of p that divide the gcd and lcm are
min{ap, bp, cp} and max{ap, bp, cp}, respectively.
Exercise 3.3.4. Prove that gcd(a, b, c) = gcd(a, gcd(b, c)) and lcm[a, b, c] = lcm[a, lcm[b, c]].

Exercise 3.3.5. Prove that if each of a, b, c, . . . is coprime with m, then so is abc . . . .

The representation of an integer in terms of its prime power factors can be
useful when considering powers of integers:

Exercise 3.3.6. Prove that if prime p divides an, then pn divides an.

Exercise 3.3.7. (a) Prove that a positive integer A is the square of an integer if and only if
the exponent of each prime factor of A is even.

(b) Prove that if a, b, c, . . . are pairwise coprime, positive integers and their product is a square,
then they are each a square.
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(c) Prove that if ab is a square, then either a = gA2 and b = gB2, or a = −gA2 and b = −gB2,
where g = gcd(a, b), for some coprime integers A and B.

Exercise 3.3.8. (a) Prove that a positive integer A is the nth power of an integer if and only
if n divides the exponent of all of the prime power factors of A.

(b) Prove that if a, b, c, . . . are pairwise coprime, positive integers and their product is an nth
power, then they are each an nth power.

3.4. Irrationality

One of the most beautiful applications of the Fundamental Theorem of Arithmetic
is its use in showing that there are real irrational numbers,7 the easiest example
being

√
2:

Proposition 3.4.1. The real number
√
2 is irrational. That is, there is no ratio-

nal number a/b for which
√
2 = a/b.

Proof. We will assume that
√
2 is rational and find a contradiction. If

√
2 is

rational, then we can write
√
2 = a/b where a and b ≥ 1 are coprime integers by

exercise 1.2.5(b). We have a = b
√
2 > 0.

Now a = b
√
2 and so a2 = 2b2. If we factor

a =
∏
p

pap and b =
∏
p

pbp , then
∏
p

p2ap = a2 = 2b2 = 2
∏
p

p2bp ,

where the ap’s and bp’s are all integers. The exponent of the prime 2 in the fac-
torization of a2 = 2b2 is 2a2 = 1 + 2b2 which is impossible (mod 2), giving a

contradiction. Hence
√
2 cannot be rational. �

More generally we have, by a different proof,

Proposition 3.4.2. If d is an integer for which
√
d is rational, then

√
d is an

integer. Therefore if integer d is not the square of an integer, then
√
d is irrational.

Proof. We may write
√
d = a/b where a and b are coprime positive integers, so

that a2 = db2. Now (a2, b2) = 1 and a2 divides db2, which implies that a2 divides
d, by Euclid’s Lemma. But then d ≤ db2 = a2 ≤ d, implying that d = a2; that is,
d is the square of an integer as claimed. �
Exercise 3.4.1. Give a proof of Proposition 3.4.2, which is analogous to the proof of Proposition
3.4.1 above.

Exercise 3.4.2.† Prove that 171/3 is irrational (using the ideas of the proof of Proposition 3.4.1).

The proof of Proposition 3.4.2 generalizes to give a nice application of Euclid’s
Lemma to rational roots of arbitrary polynomials with integer coefficients:

Theorem 3.4 (The rational root criterion). Suppose f(x) is a polynomial with
integer coefficients, with leading coefficient ad and last coefficient a0. If f(m/n) = 0
where m and n are coprime integers, then m divides a0 and n divides ad.

7That is, real numbers that are not rational.
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Proof. Writing f(x) =
∑d

j=0 ajx
j where each aj ∈ Z we have

adm
d + ad−1m

d−1n+ · · ·+ a1mnd−1 + a0n
d = ndf(m/n) = 0.

Reducing this equation mod n gives adm
d ≡ 0 (mod n) as every other term on the

left-hand side is divisible by n. This can be restated as n divides adm
d. By the

hypothesis, we have (n,m) = 1 and so (n,md) = 1 by exercise 1.7.11. Therefore n
divides adm

d and (n,md) = 1, which implies that n divides ad by Euclid’s Lemma.
We complete the proof by establishing

Exercise 3.4.3. Prove that m divides a0 by reducing the above equation mod m. �

Corollary 3.4.1. If a monic polynomial f(x) ∈ Z[x] has a rational root, then that
root must be an integer.

Proof. We have ad = 1 as f is monic. Therefore n = ±1 in the rational root
criterion, which implies that m/n = ±m, an integer. �

We can apply Corollary 3.4.1 to the rational roots of the polynomial xn − d,
and so we deduce that if d1/n is rational, then d1/n is an integer (and therefore if
d1/n is not an integer, then it is irrational), generalizing Proposition 3.4.2.

We have now proved that there exist infinitely many irrational numbers, the
numbers

√
d when d is not the square of an integer. This caused important philo-

sophical conundrums for the early Greek mathematicians.8

Exercise 3.4.4. Prove that the polynomial x3 − 3x− 1 is irreducible over Q.

3.5. Dividing in congruences

We are now ready to return to the topic of dividing both sides of a congruence
through by a given divisor, resolving the conundrums raised in section 2.2.

Lemma 3.5.1. If d divides both a and b and a ≡ b (mod m), then

a/d ≡ b/d (mod m/g) where g = gcd(d,m).

8Ancient Greek mathematicians did not think of numbers as an abstract concept, but rather as
units of measurement. That is, one starts with fixed length measures and determines what lengths can
be measured by a combination of those original lengths: A stick of length a can be used to measure any
length that is a positive integer multiple of a (by measuring out k copies of length a, one after another).
Theorem 1.1 can be interpreted as stating that if one has measuring sticks of length a and b, then one
can measure length gcd(a, b) by measuring out u copies of length a and then v copies of length b, to get
total length au + bv = gcd(a, b). One can then measure out any multiple of gcd(a, b) by copying the
above construction that many times.

Pythagoras (≈ 570–495 B.C.) traveled to Egypt and perhaps India in his youth on his quest for
understanding. In 530 B.C. he founded a mystical sect in Croton, a Greek colony in southern Italy,
which developed influential philosophical theories. Pythagoreans believed that numbers must be con-
structible in a finite number of steps from a finite given set of lengths and so erroneously concluded that
no irrational number could be constructed in this way. However an isosceles right-angled triangle with

two sides of length 1 has a hypotenuse of length
√
2, and so the Pythagoreans believed that

√
2 must be

a rational number. When one of them proved Proposition 3.4.1 it contradicted their whole philosophy
and so was suppressed, “for the unspeakable should always be kept secret”!

We looked at what types of lengths are “constructible” using only a compass and a straight edge
in section 0.18 of appendix 0G. In fact, although the constructible lengths are quite restricted, they are,
nonetheless, a far richer set of numbers than just the rational numbers.

The Pythagoreans similarly associated the four regular polygons that were then known (the Pla-
tonic solids after Plato) with the four “elements”—the tetrahedron with fire, the cube with earth, the
octahedron with air, and the icosahedron with water—and so believed that there could be no others.
They also suppressed their discovery of a fifth regular polygon, the dodecahedron.
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Proof. As d divides both a and b, we may write a = dA and b = dB for some
integers A and B, so that dA ≡ dB (mod m). Hence m divides d(A − B) and
therefore m

g divides d
g (A− B). Now gcd(mg ,

d
g ) = 1 by exercise 1.2.5(a), and so m

g

divides A−B by Euclid’s Lemma. This is the result that was claimed. �

For example, 14 ≡ 91 (mod 77). Now 14 = 7 × 2 and 91 = 7 × 13, and so
we divide 7 out from 77 to obtain 2 ≡ 13 (mod 11). More interestingly 12 ≡ 42
(mod 15), and 6 divides both 12 and 42. However 6 does not divide 15, so we cannot
divide this out from 15, but rather we divide out by gcd(15, 6) = 3 to obtain 2 ≡ 7
(mod 5).

Corollary 3.5.1. Suppose that (a,m) = 1.

(i) u ≡ v (mod m) if and only if au ≡ av (mod m).

(ii) The residues

(3.5.1) a.0, a.1, . . . , a.(m− 1)

form a complete set of residues (mod m).

Proof. (i) The third congruence of Lemma 2.1.1 implies that if u ≡ v (mod m),
then au ≡ av (mod m). In the other direction, we take a, b, d in Lemma 3.5.1 to
equal au, av, a, respectively. Then g = (a,m) = 1, and so au ≡ av (mod m)
implies that u ≡ v (mod m) by Lemma 3.5.1.

(ii) By part (i) we know that the residues in (3.5.1) are distinct mod m. Since
there are m of them, they must form a complete set of residues (mod m). �

Corollary 3.5.1(ii) states that the residues in (3.5.1) form a complete set of
residues (mod m). In particular one of them is congruent to 1 (mod m); and so we
deduce the following:

Corollary 3.5.2. If (a,m) = 1, then there exists an integer r such that ar ≡ 1
(mod m). We call r the inverse of a (mod m). We denote this by 1/a (mod m),
or a−1 (mod m); some authors write a (mod m).

Third proof of Theorem 1.1. [For any positive integers a, b, there exist integers
u and v such that au+ bv = gcd(a, b).] Let g = gcd(a, b) and write a = gA, b = gB
so that (A,B) = 1. By Corollary 3.5.2, there exists an integer r such that Ar ≡ 1
(mod B), and so there exists an integer s such that Ar−1 = Bs; that is, Ar−Bs =
1. Therefore ar − bs = g(Ar −Bs) = g · 1 = g = gcd(a, b), as desired. �

This also goes in the other direction:

Second proof of Corollary 3.5.2. By Theorem 1.1 there exist integers u and v
such that au+mv = 1, and so

au ≡ au+mv = 1 (mod m).

Therefore u is the inverse of a (mod m). �
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Exercise 3.5.1. Assume that (a,m) = 1.
(a) Prove that if b is an integer, then a.0+ b, a.1+ b, . . . , a(m− 1) + b form a complete set of

residues (mod m).
(b) Deduce that for all given integers b and c, there is a unique value of x (mod m) for which

ax+ b ≡ c (mod m).

If (a,m) = 1, then we can (unambiguously) express the root of ax ≡ c (mod m)
as ca−1 (mod m), or c/a (mod m); we take this to mean the residue class mod m
which contains the unique value from exercise 3.5.1(b). For example 19/17 ≡ 11
(mod 12). Such quotients share all the properties described in Lemma 2.1.1.

Exercise 3.5.2. Prove that if {r1, . . . , rk} is a reduced set of residues mod m and (a,m) = 1,
then {ar1, . . . , ark} is also a reduced set of residues mod m

Exercise 3.5.3. (a) Show that there exists r (mod b) for which ar ≡ c (mod b) if and only if
gcd(a, b) divides c.

(b)† Prove that the solutions r are precisely the elements of a residue class mod b/ gcd(a, b).

Exercise 3.5.4. Prove that if (a,m) > 1, then there does not exist an integer r such that ar ≡ 1
(mod m). (And so Corollary 3.5.2 could have been phrased as an “if and only if” condition.)

Exercise 3.5.5. Explain how the Euclidean algorithm may be used to efficiently determine the
inverse of a (mod m) whenever (a,m) = 1. (Calculating the inverse of a (mod m) is an essential
part of the RSA algorithm discussed in section 10.3.)

3.6. Linear equations in two unknowns

Given integers a, b, c, can we determine all of the integer solutions m,n to

am+ bn = c ?

Example. To find all integer solutions to 4m + 6n = 10, we begin by noting that
we can divide through by 2 to get 2m + 3n = 5. There is clearly a solution,
2 · 1 + 3 · 1 = 5. Therefore

2m+ 3n = 5 = 2 · 1 + 3 · 1,
so that 2(m− 1) = 3(1− n). We therefore need to find all integer solutions u, v to

2u = 3v

and then the general solution to our original equation is given by m = 1 + u, n =
1 − v, as we run over the possible pairs u, v. Now 2|3v and (2, 3) = 1 so that
2|v. Hence we may write v = 2� for some integer � and then deduce that u = 3�.
Therefore all integer solutions to 4m+ 6n = 10 take the form

m = 1 + 3�, n = 1− 2�, for some integer �.

We can imitate this procedure to establish a general result:

Theorem 3.5. Let a, b, c be given integers. There are solutions in integers m,n
to am+bn = c if and only if (a, b) divides c. Given a first solution, say r, s (which
can be found using the Euclidean algorithm), all integer solutions to am+ bn = c
are then given by the formula

m = r +
b

(a, b)
�, n = s− a

(a, b)
� for some integer �.
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The full set of real solutions to ax+ by = c is given by

x = r + kb, y = s− ka, where k is an arbitrary real number.

By Theorem 3.5 these are integer solutions exactly when k = �/(a, b) for some
� ∈ Z.

In the discussion above we saw that it is best to “reduce” this to the case when
(a, b) = 1.

Corollary 3.6.1. Let a, b, c be given integers with (a, b) = 1. Given a first solution
in integers r, s to ar + bs = c, all integer solutions to am + bn = c are then given
by the formula

m = r + b�, n = s− a� for some integer �.

Deduction of Theorem 3.5 from Corollary 3.6.1. If there is a solution in in-
tegers m,n to am+ bn = c, then g := (a, b) divides a, b and am+ bn = c, so we can
write a = Ag, b = Bg, c = Cg for some integers A,B,C with (A,B) = 1. We now
determine the integer solutions to Am + Bn = C, where (A,B) = 1 by Corollary
3.6.1. �

Proof #1 of Corollary 3.6.1. If

am+ bn = c = ar + bs,

then

a(m− r) = b(s− n).

We therefore need to find all integer solutions u, v to

au = bv.

In any given solution a divides v by Euclid’s Lemma as (a, b) = 1, and so we may
write v = a� for some integer � and deduce that u = b�. We then deduce the
claimed parametrization of integer solutions to am+ bn = c. �
Exercise 3.6.1. Show that if there exists a solution in integersm,n to am+bn = c with (a, b) = 1,
then there exists a solution with 0 ≤ m < b.

Proof #2 of Corollary 3.6.1. There is an inverse to a (mod b), as (a, b) = 1;
call it r. Let m be any integer ≡ rc (mod b), so that am ≡ arc ≡ c (mod b), and
therefore there exists an integer n for which am+ bn = c. The result follows. �
Exercise 3.6.2. (a) Find all solutions in integers m,n to 7m+ 5n = 1.
(b) Find all solutions in integers u, v to 7v − 5u = 3.
(c) Find all solutions in integers j, k to 3j − 9k = 1.
(d) Find all solutions in integers r, s to 5r − 10s = 15.

Exercise 3.6.3. Show that a linear equation am + bn = c where a, b, and c are given integers,
cannot have exactly one solution in integers m,n.

An equation involving a congruence is said to be solved when integer values
can be found for the variables so that the congruence is satisfied. For example
6x+ 5 ≡ 13 (mod 11) has the unique solution x ≡ 5 (mod 11), that is, all integers
of the form 11k + 5.
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There is another way to interpret Theorem 3.5, which will prove to be the best
reformulation to understand what happens with quadratic equations:

Exercise 3.6.4 (The local-global principle for linear equations). Let a, b, c be given non-zero
integers. There are solutions in integers m,n to am + bn = c if and only if there exist residue
classes u, v (mod b) such that au+ bv ≡ c (mod b).

“Global” refers to looking over the infinite number of possibilities for integer solutions, “local”
to looking through the finite number of possibilities mod b. This exercise will be revisited in
exercise 3.9.13.

3.7. Congruences to several moduli

What are the integers that satisfy given congruences to two different moduli?

Lemma 3.7.1. Suppose that a,A, b, B are integers. There exists an integer x such
that both x ≡ a (mod A) and x ≡ b (mod B) if and only if b ≡ a (mod gcd(A,B)).
If there is such an integer x, then the two congruences hold simultaneously for all
integers x belonging to a unique residue class (mod lcm[A,B]).

Proof. The integers x for which x ≡ a (mod A) may be written in the form
x = Ay+a for some integer y. We are therefore seeking solutions to Ay+a = x ≡ b
(mod B), which is the same as Ay ≡ b− a (mod B). By exercise 3.5.3(a), this has
solutions if and only gcd(A,B) divides b − a. Moreover exercise 3.5.3(b) implies
that y is a solution if and only if it is of the form u+ n ·B/(A,B) for some initial
solution u and any integer n. Therefore x must be of the form

x = Ay + a = A(u+ n ·B/(A,B)) + a = v + n · lcm[A,B],

where v = Au+ a and since A ·B/(A,B) = [A,B] by Corollary 3.2.2. �

The generalization of this last result is most elegant when we restrict to moduli
that are pairwise coprime. We prepare with the following exercises:

Exercise 3.7.1. Determine all integers n for which n ≡ 101 (mod 711) and n ≡ 101 (mod 1317),

in terms of one congruence.

Exercise 3.7.2. Suppose that a, b, c, . . . are pairwise coprime integers.
(a) Prove that if a, b, c, . . . each divide m, then abc . . . divides m.
(b) Deduce that if m ≡ n (mod a) and m ≡ n (mod b) and m ≡ n (mod c), . . . , then m ≡ n

(mod abc . . . ).

Theorem 3.6 (The Chinese Remainder Theorem). Suppose that m1, . . . ,mk

are a set of pairwise coprime positive integers. For any set of residue classes

a1 (mod m1), a2 (mod m2), . . . , ak (mod mk),

there exists a unique residue class x (mod m) where m = m1m2 . . .mk, for which

x ≡ aj (mod mj) for each j.

Proof. We can map x (mod m) to the vector (x (mod m1), x (mod m2), . . . , x
(mod mk)). There are m1m2 . . .mk different such vectors and each different x mod
mmaps to a different one, for if x ≡ y (mod mj) for each j, then x ≡ y (mod m) by
exercise 3.7.2(b). Hence there is a suitable 1-to-1 correspondence between residue
classes mod m and vectors, which implies the result. �
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This is known as the Chinese Remainder Theorem because of the ancient Chinese practice

(as discussed in Sun Tzu’s 4th-century Classic Calculations) of counting the number of

soldiers in a platoon by having them line up in three columns and seeing how many are

left over, then in five columns and seeing how many are left over, and finally in seven

columns and seeing how many are left over, etc. For instance, if there are a hundred

soldiers, then there should be 1, 0, and 2 soldiers left over, respectively;9 and the next

smallest number of soldiers one would need for this to be true is 205 (since 205 is the

next smallest positive integer ≡ 100 (mod 105)). Presumably an experienced commander

can eyeball the difference between 100 soldiers and 205! Primary school children in China

learn a song that celebrates this contribution.

We can make the Chinese Remainder Theorem a practical tool by giving a
formula to determine x, given a1, a2, . . . , ak: Since (m/mj ,mj) = 1 there exists an
integer bj such that bj · m

mj
≡ 1 (mod mj) for each j, by Corollary 3.5.2. Then

(3.7.1) x ≡ a1b1 ·
m

m1
+ a2b2 ·

m

m2
+ · · ·+ akbk · m

mk
(mod m).

This works because mj divides m/mi for each i �= j and so

x ≡ 0 + · · ·+ 0 + aj · bj
m

mj
+ 0 + · · ·+ 0 ≡ aj · 1 ≡ aj (mod mj)

for each j. The bj can all be determined using the Euclidean algorithm, so x can
be determined rapidly in practice.

Exercise 3.7.3.† Use this method to give a general formula for x (mod 1001) when x ≡ a
(mod 7), x ≡ b (mod 11), and x ≡ c (mod 13).

Exercise 3.7.4.† Find the smallest positive integer n which can be written as n = 2a2 = 3b3 =
5c5 for some integers a, b, c.

There is more discussion of the Chinese Remainder Theorem in section 3.14 of
appendix 3B, in particular in the more difficult case in which the mi’s have common
factors:

Exercise 3.7.5.† Given residue classes a1 (mod m1), . . . , ak (mod mk) letm = lcm[m1, . . . ,mk].
Prove that there exists a residue class b (mod m) for which b ≡ aj (mod mj) for each j if and
only if ai ≡ aj (mod (mi,mj)) for all i �= j.

Moreover in appendix 3C we explain how the Chinese Remainder Theorem can
be extended to, and understood in, the more general and natural context of group
theory.

Exercise 3.7.6. (a) Prove that each of a, b, c, . . . divides m if and only if lcm[a, b, c, . . . ] divides
m.

(b) Deduce that ifm ≡ n (mod a) andm ≡ n (mod b) and . . . , thenm ≡ n (mod lcm[a, b, . . . ]).
(c) Prove that if b (mod m) in exercise 3.7.5 exists, then it is unique.

Exercise 3.7.7.† Let M,N, g be positive integers with (M,N, g) = 1. Prove that the set of

residues {aN + bM (mod g) : 0 ≤ a, b ≤ g− 1} is precisely g copies of the complete set of residues
mod g.

9Since 100 ≡ 1 (mod 3),≡ 0 (mod 5), and ≡ 2 (mod 7).



56 3. The basic algebra of number theory

Exercise 3.7.8. (a) Prove that for any odd integer m there are infinitely many integers n for
which (n,m) = (n+ 1,m) = 1.

(b) Why is this false if m is even?
(c) Prove that for any integer m there are infinitely many integers n for which (n,m) =

(n+ 2,m) = 1.
(d)‡ Let a1 < a2 < · · · < ak be given integers. Give an “if and only if” criterion in terms of the

ai (mod p), for each prime p dividing m, to determine whether there are infinitely many
integers n for which (n+ a1,m) = (n+ a2,m) = · · · = (n+ ak,m) = 1.

Exercise 3.7.9. Prove that there exist one million consecutive integers, each of which is divisible
by the cube of an integer > 1.

3.8. Square roots of 1 (mod n)

We begin by noting

Lemma 3.8.1. If p is an odd prime, then there are exactly two square roots of 1
(mod p), namely 1 and −1.

Proof. If x2 ≡ 1 (mod p), then p|(x2 − 1) = (x− 1)(x+1) and so p divides either
x− 1 or x+ 1 by Theorem 3.1. Hence x ≡ 1, or −1 (mod p). �

There can be more than two square roots of 1 if the modulus is composite.
For example, 1, 3, 5, and 7 are all roots of x2 ≡ 1 (mod 8), while 1, 4,−4, and −1
are all roots of x2 ≡ 1 (mod 15), and ±1,±29,±34,±41 are all square roots of 1
(mod 105). How can we find all of these solutions?

By the Chinese Remainder Theorem, x is a root of x2 ≡ 1 (mod 15) if and
only if x2 ≡ 1 (mod 3) and x2 ≡ 1 (mod 5). But, by Lemma 3.8.1, this happens if
and only if x ≡ 1 or − 1 (mod 3) and x ≡ 1 or − 1 (mod 5). There are therefore
four possibilities for x (mod 15), given by making the choices

x ≡ 1 (mod 3) and x ≡ 1 (mod 5), which imply x ≡ 1 (mod 15);

x ≡ −1 (mod 3) and x ≡ −1 (mod 5), which imply x ≡ −1 (mod 15);

x ≡ 1 (mod 3) and x ≡ −1 (mod 5), which imply x ≡ 4 (mod 15);

x ≡ −1 (mod 3) and x ≡ 1 (mod 5), which imply x ≡ −4 (mod 15),

the last two giving the less obvious solutions. This proof generalizes in a straight-
forward way:

Proposition 3.8.1. If m is an odd integer with k distinct prime factors, then there
are exactly 2k solutions x (mod m) to the congruence x2 ≡ 1 (mod m).

Proof. Lemma 3.8.1 proves the result for m prime. What if m = pe is a power
of an odd prime p? If x2 ≡ 1 (mod pe), then p|(x2 − 1) = (x − 1)(x + 1) and so
p divides either x − 1 or x + 1 by Theorem 3.1. However p cannot divide both,
or else p divides their difference, which is 2. Now suppose that p does not divide
x + 1. Since pe|(x2 − 1) = (x − 1)(x + 1) we deduce that pe|(x − 1) by Euclid’s
Lemma. Similarly, if p does not divide x− 1, then pe|(x+ 1). Therefore x ≡ −1 or
1 (mod pe).

Now, suppose that a is an integer for which

a2 ≡ 1 (mod m),
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where m = pe11 . . . pekk where the pj are distinct odd primes and the ej ≥ 1. By the
Chinese Remainder Theorem, this is equivalent to a satisfying

a2 ≡ 1 (mod p
ej
j ) for j = 1, 2, . . . , k.

By the first paragraph, this is, in turn, equivalent to

a ≡ 1 or − 1 (mod p
ej
j ) for j = 1, 2, . . . , k.

By the Chinese Remainder Theorem, each choice of a (mod pe11 ), . . . , a (mod pekk )
gives rise to a different value of a (mod m) that will satisfy the congruence a2 ≡ 1
(mod m). Therefore there are exactly 2k distinct solutions. �

Proposition 3.8.1 is, in effect, an algorithm for finding all of the square roots
of 1 (mod m), provided one knows the factorization of m. Conversely, in section
10.1, we will see that if we are able to find square roots mod m, then we are able
to factor m.

Exercise 3.8.1. Prove that if (x, 6) = 1, then x2 ≡ 1 (mod 24) without working mod 24. You
are allowed to work mod 8 and mod 3.

Exercise 3.8.2. (a)† What are the roots of x2 ≡ 1 (mod 2e) for each integer e ≥ 1? (This
must be different from the odd prime case since x2 ≡ 1 (mod 8) has four solutions, 1, 3, 5, 7
(mod 8).)

(b)† Prove that if m has k distinct prime factors, there are exactly 2k+δ solutions x (mod m)

to the congruence x2 ≡ 1 (mod m), where, if 2e‖m, then δ = 0 if e = 0 or 2, δ = −1 if
e = 1, and δ = 1 if e ≥ 3.

(c) Deduce that the product of the square roots of 1 (mod 2e) equals 1 (mod 2e) if e ≥ 3.

Exercise 3.8.3.† Prove that the product of the square roots of 1 (mod m) equals 1 (mod m),
unless m = 4 or m = pe or m = 2pe for some power pe of an odd prime p, in which case it equals
−1 (mod m).

In Gauss’s 1801 book he gives an explicit practical example of the Chinese Remainder
Theorem. Before pocket watches and cheap printing, people were more aware of solar
cycles and the moon’s phases than what year it actually was. Moreover, from Roman times
to Gauss’s childhood, taxes were hard to collect since travel was difficult and expensive
and so were not paid annually but rather on a multiyear cycle. Gauss explained how to
use the Chinese Remainder Theorem to deduce the year in the Julian calendar from these
three pieces of information:

• The indiction was used from 312 to 1806 to specify the position of the year in a
15-year taxation cycle. The indiction is ≡ year + 3 (mod 15).

• The moon’s phases and the days of the year repeat themselves every 19 years.10

The golden number, which is ≡ year + 1 (mod 19), indicates where one is in that cycle of
19 years (and is still used to calculate the correct date for Easter).

• The days of the week and the dates of the year repeat in cycles of 28 years in the
Julian calender.11 The solar cycle, which is ≡ year + 9 (mod 28), indicates where one is
in this cycle of 28 years.

10Meton of Athens, in the 5th century BC, observed that 19 (solar) years is less than two hours
out from being a whole number of lunar months.

11Since there are seven days in a week and leap years occur every four years.
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Taking m1 = 15, m2 = 19, m3 = 28, we observe that

b1 ≡ 1

19 · 28 ≡ 1

4 · (−2)
≡ −2 (mod 15) and b1 ·

m

m1
= −2 · 19 · 28 = −1064,

b2 ≡ 1

15 · 28 ≡ 1

(−4) · 9 ≡ 1

2
≡ 10 (mod 19) and b2 ·

m

m2
= 10 · 15 · 28 = 4200,

b3 ≡ 1

15 · 19 =
1

(14 + 1) · 19 ≡ 1

14 + 19
≡ 1

5
≡ −11 (mod 28) and b3 ·

m

m3
= −3135.

Therefore if the indiction is a, the golden number is b, and the solar cycle is c, then the
year is

≡ −1064a+ 4200b− 3135c (mod 7980).

Additional exercises

Exercise 3.9.1. Prove that if 2n − 1 is prime, then n must be prime.

Exercise 3.9.2. Suppose that 0 ≤ x0 ≤ x1 ≤ · · · is a division sequence (that is, xm|xn whenever
m|n; see exercise 1.7.22), with xn+1 > xn whenever n ≥ n0 (≥ 1). Prove that if xn is prime for
some integer n > n2

0, then n is prime.

We can apply exercise 3.9.2 to the Mersenne numbers Mn = 2n−1, with n0 = 1,
so that if Mn is prime, then n is prime; and to the Fibonacci numbers with n0 = 2,
so that if Fn is prime, then n is prime or n = 4.

Exercise 3.9.3. We introduced the companion sequence (yn)n≥0 of the Lucas sequence (xn)n≥0

in exercise 0.1.4. Note that y1 = a does not necessarily divide y2 = a2 + 2b.
(a)‡ Prove that ym divides yn whenever m divides n and n/m is odd.
(b) Assume that a > 1 and b > 0. Deduce that if yn is prime, then n must be a power of 2.
(c) Deduce that if 2n + 1 is prime, then it must be a Fermat number.

Exercise 3.9.4.‡ Prove that the Fundamental Theorem of Arithmetic implies that for any finite
set of primes P, the numbers log p, p ∈ P, are linearly independent12 over Q.

Exercise 3.9.5.† Prove that gcd(a, b, c) · lcm[a, b, c] = abc if and only if a, b, and c are pairwise
coprime.

Exercise 3.9.6.† Prove that if a and b are positive integers whose product is a square and whose
difference is a prime p, then a+ b = (p2 + 1)/2.

Exercise 3.9.7. Let p be an odd prime and x, y, and z pairwise coprime, positive integers.

(a)† Prove that zp−yp

z−y
≡ pyp−1 (mod z − y).

(b) Deduce that gcd( z
p−yp

z−y
, z − y) = 1 or p.

(This problem is continued in exercise 7.10.6.)

Exercise 3.9.8. Suppose that f(x) ∈ Z[x] is monic and f(0) = 1. Prove that if r ∈ Q and
f(r) = 0, then r = 1 or −1.

Exercise 3.9.9 (Another proof that
√
2 is irrational). Suppose that

√
2 = a/b where a and b are

coprime integers, so that a2 = 2b2.
(a) Prove that 3 cannot divide b, and so let c ≡ a/b (mod 3).
(b) Prove that c2 ≡ 2 (mod 3), and therefore obtain a contradiction.

12x1, . . . , xk are linearly dependent over Q if there exist rational numbers a1, . . . , ak, which are
not all zero, such that a1x1 + · · · + akxk = 0. They are linearly independent over Q if they are not
linearly dependent over Q.
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Exercise 3.9.10.‡ (a) Prove that
√
2 +

√
3 is irrational.

(b) Prove that
√
a+

√
b is irrational unless a and b are both squares of integers.

Exercise 3.9.11. Suppose that d is an integer and
√
d is rational.

(a) Show that there exists an integer m such that
√
d−m = p/q where 0 ≤ p < q and (p, q) = 1.

(b) If p �= 0, show that
√
d+m = Q/p for some integer Q.

(c) Use (a) and (b) to establish a contradiction when p �= 0.
(d) Deduce that d = m2.

Reference on the many proofs that
√
2 is irrational

[1] John H. Conway and Joseph Shipman, Extreme proofs I: The irrationality of
√
2, Math. Intelligencer

35 (2013), 2–7.

We say that N can be represented by the linear form ax + by, if there exist
integersm and n such that am+bn = N . The representation is proper if (m,n) = 1.

Exercise 3.9.12.† In this question we prove that if N can be represented by ax + by, then it
can be represented properly. Let A = a/(a, b) and B = b/(a, b). Theorem 3.5 states that if
N = ar + bs, then all solutions to am+ bn = N take the form m = r + kB, n = s− kA for some
integer k.

(a) Prove that gcd(m,n) divides N .
(b) Prove that at least one of A and B is not divisible by p, for each prime p.
(c) Prove that if p � A, then there exists a residue class kp (mod p) such that p|s − kA if and

only if k ≡ kp (mod p). Therefore deduce that p � s − kA if k ≡ kp + 1 (mod p). Note an
analogous result if p|A (in which case p � B).

(d) Deduce that there exists an integer k such that, for all primes p dividing N , either p does
not divide r + kB or p does not divide s− kA (or both).

(e) Deduce that if m = r + kB and n = s− kA, then N is properly represented by am+ bn.

Exercise 3.9.13. Prove the following version of the local-global principle for linear equations
(exercise 3.6.4): Let a, b, c be given integers. There are solutions in integers m,n to am+ bn = c
if and only if for all prime powers pe (where p is prime and e is an integer ≥ 1) there exist residue
classes u, v (mod pe) for which au+ bv ≡ c (mod pe).

Exercise 3.9.14. Find all solutions to 5a+ 7b = 211 where a and b are positive integers.

Exercise 3.9.15. Suppose that f(x) ∈ Z[x] and m and n are coprime integers.
(a) Prove that there exist integers a and b for which f(a) ≡ 0 (mod m) and f(b) ≡ 0 (mod n)

if and only if there exists an integer c for which f(c) ≡ 0 (mod mn), and show that we may
take c ≡ a (mod m) and c ≡ b (mod n).

(b) Suppose that p1 < p2 < · · · < pk are primes. Prove that there exist integers a1, . . . , ak such
that f(ai) ≡ 0 (mod pi) for 1 ≤ i ≤ k if and only if there exists an integer a such that
f(a) ≡ 0 (mod p1p2 . . . pk).

Adding reduced fractions. A reduced fraction takes the form a/b where a and
b > 0 are coprime integers. We wish to better understand adding reduced fractions.

Exercise 3.9.16.† Suppose that m and n are coprime integers.
(a) Prove that for any integer c there exist integers a and b for which c

mn
= a

m
+ b

n
.

(b) Prove that there are (unique) positive integers a and b for which 1
mn

= a
m

+ b
n
− 1.
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Exercise 3.9.17. Let m and n be given positive integers.
(a) Prove that for any integers a and b there exists an integer c for which a

m
+ b

n
= c

L
where

L = lcm[m,n].

For the denominators 3 and 6, with L = 6, we have the example 1
3
+ 1

6
= 1

2
, a case in which

the sum has a denominator smaller than L when written as a reduced fraction. However
1
3
+ 5

6
= 7

6
so there are certainly examples with these denominators for which the sum has

denominator L.
(b)† Show that lcm[m,n] is the smallest positive integer L such that for all integers a and b we

can write a
m

+ b
n

as a fraction with denominator L. (This is why lcm[m,n] is sometimes

called the lowest (or least) common denominator of the fractions 1/m and 1/n.)

(c)† Show that if a
m

and b
n

are reduced fractions whose sum has denominator less than L, then

there must exist a prime power pe such that pe‖m and pe‖n for which pe+1 divides an+bm.



Appendix 3A. Factoring
binomial coefficients
and Pascal’s triangle
modulo p

3.10. The prime powers dividing a given binomial coefficient

Lemma 3.10.1. The power of prime p that divides n! is
∑

k≥1[n/p
k]. In other

words

n! =
∏

p prime

p[
n
p ]+

[
n
p2

]
+
[

n
p3

]
+··· .

Proof. We wish to determine the power of p dividing n! = 1 · 2 · 3 · · · (n− 1) · n. If
pk is the power of p dividing m, then we will count 1 for p dividing m, then 1 for p2

dividing m,. . . , and finally 1 for pk dividing m. Therefore the power of p dividing
n! equals the number of integers m, 1 ≤ m ≤ n, that are divisible by p, plus the
number of integers m, 1 ≤ m ≤ n, that are divisible by p2, plus . . . . The result
follows as there are [n/pj ] integers m, 1 ≤ m ≤ n, that are divisible by pj for each
j ≥ 1, by exercise 1.7.6(c). �

Exercise 3.10.1. Write n = n0 + n1p+ · · ·+ ndp
d in base p so that each nj ∈ {0, 1, . . . , p− 1}.

(a) Prove that [n/pk] = (n− (n0 + n1p+ · · ·+ nk−1p
k−1))/pk.

The sum of the digits of n in base p is defined to be sp(n) := n0 + n1 + · · ·+ nd.

(b) Prove that the exact power of prime p that divides n! is
n−sp(n)

p−1
.

Theorem 3.7 (Kummer’s Theorem). The largest power of prime p that divides

the binomial coefficient
(
a+b
a

)
is given by the number of carries when adding a and

b in base p.
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Example. To recover the factorization of
(
14
6

)
we add 6 and 8 in each prime base

≤ 14:

0101 020 11 06 06 06
10002 0223 135 117 0811 0813
1101 112 24 20 13 11

We see that there are no carries in base 2, 1 carry in base 3, no carries in base 5,
1 carry in base 7, 1 carry in base 11, and 1 carry in base 13, so we deduce that(
14
6

)
= 31 · 71 · 111 · 131.

Proof. For given integer k ≥ 1, let q = pk. Then let A and B be the least non-
negative residue of a and b (mod q), respectively, so that 0 ≤ A,B ≤ q − 1. Note
that A and B give the first k digits (from the right) of a and b in base p. If C is
the first k digits of a+ b in base p, then C is the least non-negative residue of a+ b
(mod q), that is, of A+B (mod q). Now 0 ≤ A+B < 2q:

• If A + B < q, then C = A + B and there is no carry in the kth digit when
we add a and b in base p.

• If A+B ≥ q, then C = A+B− q and so there is a carry of 1 in the kth digit
when we add a and b in base p.

We need to relate these observations to the formula in Lemma 3.10.1. The
trick comes in noticing that A = a − pk

[
a
pk

]
, and similarly B = b − pk

[
b
pk

]
and

C = a+ b− pk
[
a+b
pk

]
. Therefore

[
a+ b

pk

]
−
[
a

pk

]
−
[
b

pk

]
=

A+B − C

pk
=

{
1 if there is a carry in the kth digit,

0 if not,

and so ∑
k≥1

([
a+ b

pk

]
−
[
a

pk

]
−
[
b

pk

])

equals the number of carries when adding a and b in base p. However Lemma 3.10.1

implies that this also equals the exact power of p dividing (a+b)!
a!b! =

(
a+b
a

)
, and the

result follows. �

Exercise 3.10.2. State, with proof, the analogy to Kummer’s Theorem for trinomial coefficients
n!/(a!b!c!) where a+ b+ c = n.

Corollary 3.10.1. If pe divides the binomial coefficient
(
n
m

)
, then pe ≤ n.

Proof. There are k + 1 digits in the base p expansion of n when pk ≤ n < pk+1.
When adding m and n−m there can be carries in every digit except the (k + 1)st
(which corresponds to the number of multiples of pk). Therefore there are no more
than k carries when adding m to n−m in base p, so that pe ≤ pk ≤ n by Kummer’s
Theorem. �

Exercise 3.10.3. Prove that if 0 ≤ k ≤ n, then
(n
k

)
divides lcm[m : m ≤ n].
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3.11. Pascal’s triangle modulo 2

In section 0.3 we explained the theory and practice of constructing Pascal’s triangle.
We are now interested in constructing Pascal’s triangle modulo 2, mod 3, mod 4, etc.
To do so one can either reduce the binomial coefficients mod m (for m = 2, 3, 4, . . .)
or one can rework Pascal’s triangle, starting with a 1 in the top row and then
obtaining a row from the previous one by adding the two entries immediately above
the given entry, modulo m. For example, Pascal’s triangle mod 2 starts with the
rows

1
1 1

1 0 1
1 1 1 1

1 0 0 0 1
1 1 0 0 1 1

1 0 1 0 1 0 1

It is perhaps easiest to visualize this by replacing 1 (mod 2) by a dark square and,
otherwise, a white square, as in the following fascinating diagram:13

Pascal’s triangle

(mod 2)

One can see patterns emerging. For example the rows corresponding to n =
1, 3, 7, 15, . . . are all 1’s, and the next rows, n = 2, 4, 8, 16, . . ., start and end with a
1 and have all 0’s in between. Even more: The two 1’s at either end of row n = 4
seem to each be the first entry of a (four-line) triangle, which is an exact copy of
the first four rows of Pascal’s triangle mod 2, similarly the two 1’s at either end of
row n = 8 and the eight-line triangles beneath (and including) them. In general
if Tk denotes the top 2k rows of Pascal’s triangle mod 2, then Tk+1 is given by a
triangle of copies of Tk, with an inverted triangle of zeros in the middle, as in the

13This and other images in this section reproduced with kind permission of Bill Cherowitzo.
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following diagram:

Tk

TkTk

0
Tk+1 =

Figure 3.1. The top 2k+1 rows of Pascal’s triangle mod 2, in terms of the

top 2k rows.

This is called self-similarity. One immediate consequence is that one can determine
the number of 1’s in a given row: If 2k ≤ n < 2k+1, then row n consists of two
copies of row m (:= n− 2k) with some 0’s in between.

Exercise 3.11.1. Deduce that there are 2k odd entries in the nth row of Pascal’s triangle, where
k = s2(n), the number of 1’s in the binary expansion of n.

This self-similarity generalizes nicely for other primes p, where we again replace
integers divisible by p by a white square, and those not divisible by p by a black
square.

Pascal’s triangle Pascal’s triangle Pascal’s triangle

(mod 3) (mod 5) (mod 7)

The top p rows are all black since the entries
(
n
m

)
with 0 ≤ m ≤ n ≤ p−1 are never

divisible by p. Let Tk denote the top pk rows of Pascal’s triangle. Then Tk+1 is
given by an array of p rows of triangles, in which the nth row contains n copies of
Tk, with inverted triangles of 0’s in between.

Pascal’s triangle modulo primes p is a bit more complicated; we wish to color
in the black squares with one of p− 1 colors, each representing a different reduced
residue class mod p. Call the top row the 0th row, and the leftmost entry of each
row its 0th entry. Therefore the mth entry of the nth row is

(
n
m

)
. By Lucas’s

Theorem (exercise 2.5.10) the value of
(
rpk+s
apk+b

)
(mod p), which is the bth entry of

the sth row of the copy of Tk which is the ath entry of the rth row of the copies
of Tk that make up Tk+1, is ≡

(
r
a

)(
s
b

)
(mod p). In other words, the values in the

copy of Tk which is the ath entry of the rth row of the copies of Tk are
(
r
a

)
times

the values in Tk.
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The odd entries in Pascal’s triangle mod 4 make even more interesting patterns,
but this will take us too far afield; see [1] for a detailed discussion.

Reading each row of Pascal’s triangle mod 2 as the binary expansion of an
integer, we obtain the numbers

1, 112 = 3, 1012 = 5, 11112 = 15, 100012 = 17, 1100112 = 51, 10101012 = 85, . . . .

Do you recognize these numbers? If you factor them, you obtain

1, F0, F1, F0F1 F2, F0F2, F1F2, F0F1F2, . . .

where Fm = 22
m

+ 1 are the Fermat numbers (introduced in exercise 0.4.14). It
appears that all are products of Fermat numbers, and one can even guess at which
Fermat numbers. For example the 6th row is F2F1 and 6 = 22+21 in base 2, whereas
the 7th row is F2F1F0 and 7 = 22+21+20 in base 2, and our other examples follow
this same pattern. This leads to the following challenging problem:

Exercise 3.11.2.† Show that the nth row of Pascal’s triangle mod 2, considered as a binary

number, is given by
∏k

j=0 Fnj , where n = 2n0 + 2n1 + · · · + 2nk , with 0 ≤ n0 < n1 < · · · < nk

(i.e., the binary expansion of n).14

References for this chapter

[1] Andrew Granville, Zaphod Beeblebrox’s brain and the fifty-ninth row of Pascal’s triangle, Amer.
Math. Monthly 99 (1992), 318–331.

[2] Kathleen M. Shannon and Michael J. Bardzell, Patterns in Pascal’s Triangle - with a Twist - First
Twist: What is It?, Convergence (December 2004).

Appendices. The extended version of chapter 3 has the following additional
appendices:

Appendix 3B. Solving linear congruences. We develop Gauss’s methods for
solving linear congruences in several variables with composite moduli. We then
prove the general form of the Chinese Remainder Theorem.

Appendix 3C. Groups and rings. We present some of the basics of groups and
rings and show how the multiplicative and additive groups mod m can be viewed
in this more abstract way. We also prove the Fundamental Theorem of Abelian
Groups.

Appendix 3D. Unique factorization revisited. We discuss various situations in
which unique factorization works and situations in which it does not. This leads
us to a discussion of the properties of ideals which allows us to recover a notion of
unique factorization in all situations.

Appendix 3E. Gauss’s approach. We review Gauss’s approach to unique fac-
torization.

14An m-sided regular polygon with m odd is constructible with ruler and compass (see section
0.18 of appendix 0G) if and only if m is the product of distinct Fermat primes. Therefore the integers
m created here include all of the odd m-sided, constructible, regular polygons.
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Appendix 3F. The Fundamental theorems and factoring states that a polyno-
mial of degree d, with coefficients in C, has exactly d roots, counted with multiplic-
ity. We indicate how to prove this and go on to better understand polynomials and
their reductions mod m, as well as how resultants tell us how polynomials factor
mod m.

Appendix 3G. Open problems. Here we revisit the Frobenius postage stamp
problem and Egyptian fractions and introduce the 3x+ 1 conjecture.



Chapter 4

Multiplicative functions

In the previous chapter we discussed τ (n), which counts the number of divisors of n.
We discovered that τ (n) is a multiplicative function, which allowed us to calculate
its value fairly easily. Multiplicative functions, so called since

f(mn) = f(m)f(n) for all pairwise coprime, positive integers m and n,

play a central role in number theory. (Moreover f is totally multiplicative, or
completely multiplicative, if f(mn) = f(m)f(n) for all integers m,n ≥ 1.) Thus
the divisor function, τ (n), is multiplicative but not totally multiplicative, since
τ (pa) = a + 1, and so τ (p2) = 3 is not equal to τ (p)2 = 22. Common examples
of totally multiplicative functions include f(n) = 1, f(n) = n, and f(n) = ns

for a fixed complex number s. Also Liouville’s function λ(n) which equals −1
to the power of the total number of prime factors of n, counting repetitions of
the same prime factor. For example λ(2) = λ(3) = λ(12) = λ(32) = −1 and
λ(4) = λ(6) = λ(10) = λ(60) = 1.

What makes multiplicative functions central to number theory is that one can
evaluate a multiplicative function f(n) in terms of the f(pe) for the prime powers
pe dividing n.

Exercise 4.0.1. Show that if f is multiplicative and n =
∏

p prime p
ep , then

f(n) =
∏

p prime

f(pep).

Deduce that if f is totally multiplicative, then f(n) =
∏

p f(p)ep .

Exercise 4.0.2. Prove that if f is a multiplicative function, then either f(n) = 0 for all n ≥ 1 or
f(1) = 1.

Exercise 4.0.3. Prove that if f and g are multiplicative functions, then so is h, where h(n) =
f(n)g(n) for all n ≥ 1.

Exercise 4.0.4. Prove that if f is completely multiplicative and d|n, then f(d) divides f(n).

67
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Exercise 4.0.5. Prove that if f is multiplicative and a and b are any two positive integers, then

f((a, b))f([a, b]) = f(a)f(b).

In this chapter we will focus on two multiplicative functions of great interest.

4.1. Euler’s φ-function

There are

φ(n) := #{m : 1 ≤ m ≤ n and (m,n) = 1}
elements in any reduced system of residues mod n. Obviously φ(1) = 1.

Lemma 4.1.1. φ(n) is a multiplicative function.

Proof. Suppose that n = mr where (m, r) = 1. By the Chinese Remainder Theo-
rem (Theorem 3.6) there is a natural bijection between the integers a (mod n) with
(a, n) = 1 and the pairs of integers (b (mod m), c (mod r)) with (b,m) = (c, r) = 1.
Since there are φ(m)φ(r) such pairs (b, c) we deduce that φ(n) = φ(m)φ(r). �

Hence to evaluate φ(n) for all n we simply need to evaluate it on the prime
powers, by exercise 4.0.1. This is straightforward because (m, pe) = 1 if and only
if (m, p) = 1; and (m, p) = 1 is not satisfied if and only if p divides m. Therefore

φ(pe) = #{m : 1 ≤ m ≤ pe and (m, p) = 1}
= #{m : 1 ≤ m ≤ pe} −#{m : 1 ≤ m ≤ pe and p|m}
= pe − pe−1

by exercise 1.7.6(c). We deduce the following:

Theorem 4.1. If n =
∏

p prime p
ep , then

φ(n) =
∏

p prime
p|n

(pep − pep−1) =
∏

p prime
p|n

pep
(
1− 1

p

)
= n

∏
p prime

p|n

(
1− 1

p

)
.

Example. φ(60) = 60 ·
(
1− 1

2

) (
1− 1

3

) (
1− 1

5

)
= 16, the least positive residues

being
1, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, and 59.

We give an alternative proof of Theorem 4.1, based on the inclusion-exclusion prin-
ciple, in section 4.5.

Studying the values taken by φ(n), one makes a surprising observation:

Proposition 4.1.1. We have
∑

d|n φ(d) = n.

Example. For n = 30, we have

φ(1) + φ(2) + φ(3) + φ(5) + φ(6) + φ(10)+φ(15) + φ(30)

= 1 + 1 + 2 + 4 + 2 + 4 + 8 + 8 = 30.
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Proof. Given any integer m with 1 ≤ m ≤ n, let d = n/(m,n), which divides n.
Then (m,n) = n/d so one can write m = an/d with (a, d) = 1 and 1 ≤ a ≤ d. Now,
for each divisor d of n the number of integers m for which (m,n) = n/d equals the
number of integers a for which (a, d) = 1 and 1 ≤ a ≤ d, which is φ(d) by definition.
We have therefore shown that

n = #{m : 1 ≤ m ≤ n} =
∑
d|n

#{m : 1 ≤ m ≤ n and (m,n) = n/d}

=
∑
d|n

#{m : m = a(n/d), 1 ≤ a ≤ d and (a, d) = 1}

=
∑
d|n

#{a : 1 ≤ a ≤ d and (a, d) = 1} =
∑
d|n

φ(d),

which is the result claimed. �

Exercise 4.1.1. Prove that if d|n, then φ(d) divides φ(n).

Exercise 4.1.2. Prove that if n is odd and φ(n) ≡ 2 (mod 4), then n has exactly one prime
factor (perhaps repeated several times).

Exercise 4.1.3. Prove that
∑

1≤m≤n, (m,n)=1 m = nφ(n)/2 and
∏

d|n d = nτ(n)/2.

Exercise 4.1.4. (a) Prove that φ(n2) = nφ(n).
(b) Prove that if φ(n)|n− 1, then n is squarefree.
(c) Find all integers n for which φ(n) is odd.

Exercise 4.1.5.† Suppose that n has exactly k prime factors, each of which is > k. Prove that
φ(n) ≥ n/2.

4.2. Perfect numbers. “The whole is equal to the sum of its parts.”

The number 6 is a perfect number since it is the sum of its proper divisors (the
proper divisors of m are those divisors d of m for which 1 ≤ d < m); that is,

6 = 1 + 2 + 3.

Six is a number perfect in itself, and not because God created all things
in six days; rather, the converse is true. God created all things in six
days because the number is perfect.

— from The City of God by Saint Augustine (354–430)

The next perfect number is 28 = 1+ 2+ 4+ 7+ 14 which is the number of days in
a lunar month. However the next, 496 = 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248,
appears to have little obvious cosmic relevance. Nonetheless, we will be interested
in trying to classify all perfect numbers. To create an equation we will add n to
both sides to obtain that n is perfect if and only if

2n = σ(n), where σ(n) :=
∑
d|n

d.

Exercise 4.2.1. Show that σ(n) =
∑

d|n n/d, and so deduce that n is perfect if and only if∑
d|n

1
d
= 2.
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Exercise 4.2.2. (a) Prove that each divisor d of ab can be written as �m where �|a and m|b.
(b) Show that if (a, b) = 1, then there is a unique such pair �, m for each divisor d.

By this last exercise we see that if (a, b) = 1, then

σ(ab) =
∑
d|ab

d =
∑

�|a, m|b
�m =

∑
�|a

� ·
∑
m|b

m = σ(a)σ(b),

proving that σ is a multiplicative function. Now

σ(pk) = 1 + p+ p2 + · · ·+ pk =
pk+1 − 1

p− 1

by definition, and so

If n =
∏
p

pkp , then σ(n) =
∏
p

pkp+1 − 1

p− 1
.

For example σ(25 · 33 · 52 · 7) = 26−1
2−1 · 34−1

3−1 · 53−1
5−1 · 72−1

7−1 .

Euclid observed that the first perfect numbers factor as 6 = 2·3 where 3 = 22−1
is prime, and 28 = 22 · 7 where 7 = 23 − 1 is prime, and then that this pattern
persists:

Proposition 4.2.1 (Euclid). If 2p − 1 is a prime number, then 2p−1(2p − 1) is a
perfect number.

The cases p = 2, 3, 5 correspond to the Mersenne primes 22 − 1 = 3, 23 − 1 =
7, 25 − 1 = 31 and therefore yield the three smallest perfect numbers 6, 28, 496
(and the next smallest examples are given by p = 7 and p = 13).

Proof. Since σ is multiplicative we have, for n = 2p−1(2p − 1),

σ(n) = σ(2p−1) · σ(2p − 1) =
2p − 1

2− 1
· (1 + (2p − 1)) = (2p − 1) · 2p = 2n. �

After extensive searching one finds that perfect numbers of the form 2p−1(2p−1)
with 2p−1 prime appear to be the only perfect numbers. Euler succeeded in proving
that these are the only even perfect numbers, and we believe (but don’t know) that
there are no odd perfect numbers. If there are no odd perfect numbers, as claimed,
then we would achieve our goal of classifying all the perfect numbers.

Theorem 4.2 (Euclid). If n is an even perfect number, then there exists a prime
number of the form 2p − 1 such that n = 2p−1(2p − 1).

In exercise 3.9.1 we showed that if 2p − 1 is prime, then p must itself be prime.
Now, although 22−1, 23−1, 25−1, and 27−1 are all prime, 211−1 = 23×89 is not,
so we do not know for sure whether 2p − 1 is prime, even if p is prime. However it
is conjectured that there are infinitely many Mersenne primes Mp = 2p− 1,1 which
would imply that there are infinitely many even perfect numbers.

1It is known that 2p − 1 is prime for p = 2, 3, 5, 7, 13, 17, 19, . . . , 82589933, a total of 51 values
as of September 2019 (and this last is currently the largest prime explicitly known). There is a long
history of the search for Mersenne primes, from the first serious computers to the first great distributed
computing project, GIMPS (Great Internet Mersenne Prime Search).
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Proof. Any even integer can be written as n = 2k−1m where m is odd and k ≥ 2,
so that if n is perfect, then

2km = 2n = σ(n) = σ(2k−1)σ(m) = (2k − 1)σ(m).

Now (2k − 1, 2k) = 1 and so 2k − 1 divides m. Writing m = (2k − 1)M we find that
σ(m) = 2kM = m+M . That is, σ(m), which is the sum of all of the divisors of m,
equals the sum of just two of its divisors, namely m and M (and note that these
are different integers since m = (2k − 1)M ≥ (22 − 1)M > M). This implies that
m and M are the only divisors of m. The only integers with just two divisors are
the primes, so that m is a prime and M = 1, and the result follows. �

It is widely believed that the only perfect numbers were those identified by
Euclid, that is, that there are no odd perfect numbers. It has been proved that if
there is an odd perfect number, then it must be > 101500, and it would have to
have more than 100 (not necessarily distinct) prime factors.

Exercise 4.2.3. (a) Prove that if p is odd and k is odd, then σ(pk) is even.
(b)† Deduce that if n is an odd perfect number, then n = p�m2 where p is a prime that does

not divide the integer m ≥ 1 and p ≡ � ≡ 1 (mod 4).

Exercise 4.2.4. Fix integer m > 1. Show that there are only finitely many integers n for which
σ(n) = m.

Exercise 4.2.5.† (a) Prove that for all integers n > 1 we have the inequalities∏
p|n

p+ 1

p
≤ σ(n)

n
<
∏
p|n

p

p− 1
.

(b) We have seen that every even perfect number has exactly two distinct prime factors. Prove
that every odd perfect number has at least three distinct prime factors.

Additional exercises

Exercise 4.3.1. Suppose that f(n) = 0 if n is even, f(n) = 1 if n ≡ 1 (mod 4), and f(n) = −1
if n ≡ −1 (mod 4). Prove that f(.) is a multiplicative function.

Exercise 4.3.2.† Suppose that r(.) is a multiplicative function taking values in C. Let f(n) = 1
if r(n) �= 0, and f(n) = 0 if r(n) = 0. Prove that f(.) is also a multiplicative function.

Exercise 4.3.3.† Suppose that f is a multiplicative function, such that the value of f(n) depends
only on the value of n (mod 3). What are the possibilities for f?

Exercise 4.3.4.‡ Suppose that f is a multiplicative function, such that the value of f(n) depends
only on the value of n (mod 8). What are the possibilities for f?

Exercise 4.3.5. How many of the fractions a/n with 1 ≤ a ≤ n− 1 are reduced?

Looking at the values of φ(m), Carmichael conjectured that for all integers m
there exists an integer n �= m such that φ(n) = φ(m).

Exercise 4.3.6.† (a) Find all integers n for which φ(2n) = φ(n).
(b) Find all integers n for which φ(3n) = φ(2n).
(c) Can you find other classes of m for which Carmichael’s conjecture is true?

Carmichael’s conjecture is still an open problem but it is known that if it is false, then the

smallest counterexample is > 1010
10
.
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Exercise 4.3.7.† (a) Given a polynomial f(x) ∈ Z[x] let Nf (m) denote the number of a
(mod m) for which f(a) ≡ 0 (mod m). Show that Nf (m) is a multiplicative function.

(b) Be explicit about Nf (m) when f(x) = x2 − 1. (You can use section 3.8.)

Exercise 4.3.8.‡ Given a polynomial f(x) ∈ Z[x] let Rf (m) denote the number of b (mod m)
for which there exists a (mod m) with f(a) ≡ b (mod m). Show that Rf (m) is a multiplicative

function. Can you be more explicit about Rf (m) for f(x) = x2, the example of exercise 2.5.6?

Exercise 4.3.9. Let τ(n) denote the number of divisors of n (as in section 3.3), and let ω(n)
and Ω(n) be the number of prime divisors of n not counting and counting repeated prime factors,
respectively. Therefore τ(12) = 6, ω(12) = 2, and Ω(12) = 3. Prove that

2ω(n) ≤ τ(n) ≤ 2Ω(n) for all integers n ≥ 1.

Exercise 4.3.10. Let σk(n) =
∑

d|n dk. Prove that σk(n) is multiplicative.

Exercise 4.3.11. (a) Prove that τ(ab) ≤ τ(a)τ(b) for all positive integers a and b, with equality
if and only if (a, b) = 1,

(b) Prove that σk(ab) ≤ σk(a)σk(b) for all positive integers a, b, and k.
(c) Prove that σk+�(n) ≤ σk(n)σ�(n) for all positive integers k, �, and n.

Exercise 4.3.12. Give closed formulas for (a)†
∑n

m=1 gcd(m,n) and (b)‡
∑n

m=1 lcm(m,n) in
terms of the prime power factors of n.

Exercise 4.3.13. n is multiplicatively perfect if it equals the product of its proper divisors.
(a) Show that n is multiplicatively perfect if and only if τ(n) = 4.
(b) Classify exactly which integers n satisfy this.

The integers m and n are amicable if the sum of the proper divisors of m equals
n and the sum of the proper divisors of n equals m. For example, 220 and 284 are
amicable, as are 1184 and 1210.2

Exercise 4.3.14. (a) Show that m and n are amicable if and only if σ(m) = σ(n) = m+ n.
(b) Verify Thâbit ibn Qurrah’s 9th-century claim that if p = 3× 2n−1 − 1, q = 3× 2n − 1, and

r = 9× 22n−1 − 1 are each odd primes, then 2npq and 2nr are amicable.3

(c) Find an example (other than the two given above) using the construction in (b).

An integer n is abundant if the sum of its proper divisors is > n, for example
n = 12; and n is deficient if the sum of its proper divisors is < n, for example n = 8.
Each positive integer is either deficient, perfect, or abundant, a classification that
goes back to antiquity.4

Exercise 4.3.15. (a) Prove that every prime number is deficient.
(b) Prove that every multiple of 6 is abundant.

(c) How do these concepts relate to the value of σ(n)/n?
(d) Prove that every multiple of an abundant number is abundant.
(e)† Prove that if n is the product of k distinct primes that are each > k, then n is deficient.
(f) Prove that every divisor of a deficient number is deficient.

2The 14th-century scholar Ibn Khladun claimed: “Experts on talismans assure me that these
numbers have a special influence in establishing strong bonds of friendship between individuals ... A
bond so close that they cannot be separated. The author of the Ghaia, and other great masters in this
art, swear that they have seen this happen again and again.”

3This was rediscovered by Descartes in the 17th century.
4Specifically a book by Nichomachus from A.D. 100. Another interesting reference is the 10th-

century German nun Hrotsvitha who depicts the heroine of her play “Sapientia” challenging Emperor
Hadrian while he is persecuting Christians, to surmise the ages of her children from information about
this classification and the number of Olympic games that each has been alive for!



Amicable, abundant, and deficient integers 73

Carl André is a controversial minimalist artist, his most infamous work being his
Equivalent I–VIII series exhibited at several of the world’s leading museums. Each
of the eight sculptures involves 120 bricks arranged in a different rectangular for-
mation. In Equivalent VIII, at the Tate Modern in London, the bricks are stacked 2
deep, 6 wide, and 10 long. (See http://thesingleroad.blogspot.co.uk/2011/01/test-
post.html for a photo of the original eight formations.)

Exercise 4.3.16. (a) How many different 2-deep, 120-brick, rectangular formations are there?
(b) What if there must be at least three bricks along the width and along the length?



Appendix 4A. More
multiplicative functions

4.4. Summing multiplicative functions

We have already seen that the functions 1, n, φ(n), σ(n), and τ (n) are all multi-
plicative. In Proposition 4.1.1 we saw the surprising connection that n is the sum
of the multiplicative function φ(d), summed over the divisors d of n. Similarly τ (n)
is the sum of 1, and σ(n) is the sum of d, summed over the divisors d of n. This
suggests that there might be a general such phenomenon.

Theorem 4.3. For any given multiplicative function f , the function

F (n) :=
∑
d|n

f(d)

is also multiplicative.

Proof. Suppose that n = ab with (a, b) = 1. In exercise 4.2.2 we showed that the
divisors of n can be written as �m where �|a and m|b. Note that (�,m) = 1 since
(�,m) divides (a, b) = 1 and so f(�m) = f(�)f(m). Therefore

F (ab) =
∑
d|ab

f(d) =
∑
�|a
m|b

f(�m) =
∑
�|a

f(�)
∑
m|b

f(m) = F (a)F (b),

as desired. �

It is worth noting that if we write m = n/d, then Theorem 4.3 becomes

F (n) :=
∑
m|n

f(n/m).

Above we have the examples {F (n), f(d)} = {n, φ(d)}, {τ (n), 1}, {σ(n), d};
but what about for other F (n)? For F (n) = 1 we have 1 =

∑
d|n δ(d) where
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δ(d) = 1 if d = 1, and = 0 otherwise. Finding f when F (n) = δ(n) looks more
complicated. This leads us to two questions: For every multiplicative F , does there
exist a multiplicative f for which F (n) :=

∑
d|n f(d)? And, if so, is f unique? To

answer these questions we begin by defining another multiplicative function which
arises in a rather different context.

Exercise 4.4.1. Prove that n
φ(n)

=
∑

d|n
d squarefree

1
φ(d)

.

4.5. Inclusion-exclusion and the Möbius function

In the proof of Theorem 4.1 we saw that if n = pa is a prime power, then φ(n) is
the total number of integers up to n, minus the number of those that are divisible
by p. This leads to the formula

φ(n) = n− n

p
= n

(
1− 1

p

)
.

Similarly if n = paqb, then we wish to count the number of positive integers up to
n that are not divisible by either p or q. To do so we take the n integers up to n,
subtract the n/p that are divisible by p and the n/q that are divisible by q. This
is not quite right as we have twice subtracted the n/pq integers divisible by both p
and q, and so we need to add them back in. This leads to the formula

φ(n) = n− n

p
− n

q
+

n

pq
= n

(
1− 1

p

)(
1− 1

q

)
.

This argument generalizes to arbitrary n, though we need to keep track of the terms
of the form ±n/d. In our examples so far, we see that each such d is a divisor of
n, but the term n/d only has a non-zero coefficient if d is squarefree. When d is
squarefree the coefficient is given by (−1)ω(d) where

ω(d) :=
∑

p prime, p|d
1

is the number of distinct prime factors of d. One therefore deduces that the coeffi-
cient of n/d is always given by the Möbius function, μ(d), a multiplicative function
defined by

μ(p) = −1, with μ(pk) = 0 for all k ≥ 2, for every prime p.

For example μ(1) = 1, μ(2) = μ(3) = −1, μ(4) = 0, μ(6) = μ(10) = 1, and
μ(1001) = −1 as 1001 = 7× 11× 13.

The argument for general n uses the inclusion-exclusion principle, which we
formulate here to fit well with the topic of multiplicative functions.

Corollary 4.5.1. We have∑
d|n

μ(d) =

{
1 if n = 1,

0 otherwise.

Proof. The result for n = 1 is trivial. If n is a prime power pa with a ≥ 2, then∑
d|pa μ(d) = 1 + (−1) + 0 + · · ·+ 0 = 0 by definition.

The result for general n then follows from Theorem 4.3. �
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Exercise 4.5.1. (a) Show that if m is squarefree, then

(1 + x)ω(m) =
∑
d|m

xω(d).

(b) Deduce Corollary 4.5.1.

A proof of Theorem 4.1 using the inclusion-exclusion principle. Wewant
a function that counts 1 if (a, n) = 1 and 0 otherwise. This counting function can
be given by Corollary 4.5.1:∑

d|a & d|n
μ(d) =

{
1 if (a, n) = 1,

0 otherwise.

Therefore

φ(n) =

n∑
a=1

{
1 if (a, n) = 1,

0 otherwise.

=
n∑

a=1

∑
d|a & d|n

μ(d)

=
∑
d|n

μ(d)
∑

1≤a≤n
d|a

1 =
∑
d|n

μ(d)
n

d
= n

∑
d|n

μ(d)

d
.

The last line comes from first swapping the order of summation and then using
exercise 1.7.6(c) as [n/d] = n/d since each d divides n. Exercise 4.5.2 completes
the proof. �
Exercise 4.5.2. Prove that for any positive integer n we have∑

d|n

μ(d)

d
=

∏
p prime

p|n

(
1− 1

p

)
.

Exercise 4.5.3. Prove that μ(n)2 is the characteristic function for the squarefree integers, and

deduce that n
φ(n)

=
∑

d|n
μ(d)2

φ(d)
.

4.6. Convolutions and the Möbius inversion formula

In the proof of Theorem 4.1 in the last section we saw that

φ(n) =
∑
d|n

μ(d)
n

d
.

If we let r = n/d, then the sum is over all factorizations of n into two positive
integers n = dr, and so

φ(n) =
∑
d,r≥1
n=dr

μ(d)r.

This can be compared to Proposition 4.1.1 which yielded

n =
∑
d|n

φ(d) =
∑
d,r≥1
n=dr

φ(d)1(r),
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where 1(r) is the function that is always 1 (which is a multiplicative function).
Something similar happens for the sum of any function f defined on the positive
integers.

Theorem 4.4 (The Möbius inversion formula). For any two arithmetic functions
f and g we have

g(n) =
∑
ab=n

f(b) for all integers n ≥ 1

if and only if

f(m) =
∑
cd=m

μ(c)g(d) for all integers m ≥ 1.

This can be rewritten as

g(n) =
∑
d|n

f(d) for all n ≥ 1 if and only if f(m) =
∑
d|m

μ(m/d)g(d) for all m ≥ 1.

Proof. If f(m) =
∑

cd=m μ(c)g(d) for all integers m ≥ 1, then∑
ab=n

f(b) =
∑
ab=n

∑
cd=b

μ(c)g(d) =
∑

acd=n

μ(c)g(d) =
∑
d|n

g(d) ·
∑

ac=n/d

μ(c) = g(n),

since this last sum is 0 unless n/d = 1, that is, unless d = n. Similarly if g(n) =∑
ab=n f(b) for all integers n ≥ 1, then∑

cd=m

μ(c)g(d) =
∑
cd=m

μ(c)
∑
ab=d

f(b) =
∑

abc=m

μ(c)f(b) =
∑
b|m

f(b)
∑

ac=m
b

μ(c) = f(m),

as desired. �

In the discussion above we saw several examples of the convolution f ∗ g of two
multiplicative functions f and g, which we define by

(f ∗ g)(n) :=
∑
ab=n

f(a)g(b).

Note that f ∗ g = g ∗ f . We saw that if I(n) = n, then φ ∗ 1 = I and μ ∗ I = φ, as
well as 1 ∗ μ = δ.

Exercise 4.6.1. Prove that δ ∗ f = f for all f , τ = 1 ∗ 1, and σ(n) = 1 ∗ I.

Proposition 4.6.1. For any two multiplicative functions f and g, the convolution
f ∗ g is also multiplicative.

Exercise 4.6.2. Prove that if ab = mn, then there exist integers r, s, t, u with a = rs, b =
tu, m = rt, n = su with (s, t) = 1.

Proof. Suppose that (m,n) = 1. For h = f ∗ g, we have

h(mn) =
∑

ab=mn

f(a)g(b).
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We use exercise 4.6.2 and note that (r, s) and (t, u) both divide (m,n) = 1 and
so both equal 1. Therefore f(a) = f(rs) = f(r)f(s) and g(b) = g(tu) = g(t)g(u).
This implies that

h(mn) =
∑

rt=m,
su=n

f(rs)g(tu) =
∑
rt=m

f(r)g(t)
∑
su=n

f(s)g(u) = h(m)h(n). �

In this new language, Theorem 4.3, which states that 1 ∗ f is multiplicative
whenever f is, is the special case g = 1 of Proposition 4.6.1. Corollary 4.5.1 states
that 1 ∗ μ = δ. The Möbius inversion formula states that F = 1 ∗ f if and only if
f = μ ∗F . It is also easy to prove the Möbius inversion formula with this notation
since if F = 1 ∗ f , then μ ∗ F = μ ∗ 1 ∗ f = δ ∗ f = f ; and if f = μ ∗ F , then
1 ∗ f = 1 ∗ μ ∗ F = δ ∗ F = F .

Exercise 4.6.3. Prove that (μ ∗ σ)(n) = n for all integers n ≥ 1.

Exercise 4.6.4. (a) Show that (a ∗ f) + (b ∗ f) = (a+ b) ∗ f .
(b) Let f(n) ≥ 0 for all integers n ≥ 1. Prove that (1∗f)(n)+(μ∗f)(n) ≥ 2f(n) for all integers

n ≥ 1.
(c) Prove that σ(n) + φ(n) ≥ 2n for all integers n ≥ 1.

Exercise 4.6.5. Suppose that g(n) =
∏

d|n f(d). Deduce that f(n) =
∏

d|n g(d)μ(n/d).

4.7. The Liouville function

The number of prime factors of a given integer n =
∏k

i=1 p
ei
i can be interpreted in

two different ways:

ω(n) :=
∑
p|n

1 = #{distinct primes that divide n} = k

and

Ω(n) :=
∑

p prime, k≥1

pk|n

1 = #{distinct prime powers that divide n} =
k∑

i=1

ei.

In other words, Ω(n) counts the number of primes when one factors n into primes
without using exponents, so Ω(12) = 3 as 12 = 2 × 2 × 3, while ω(n) counts the
number of primes when one factors n into primes using exponents, so ω(12) = 2 as
12 = 22 · 3. For other examples, ω(27) = 1 with Ω(27) = 3, and ω(36) = 2 with
Ω(36) = 4, while Ω(105) = ω(105) = 3.

Another interesting multiplicative function is Liouville’s function, defined at
the start of this chapter by λ(n) = (−1)Ω(n) so that, for example, λ(12) = (−1)3 =
−1. We notice that λ is the totally multiplicative function that agrees with μ on
the squarefree integers. Liouville’s function feels, intuitively, more natural, but
Möbius’s function fits better with the theory.

Exercise 4.7.1. Prove that Ω(n) ≥ ω(n) for all integers n ≥ 1, with equality if and only if n is
squarefree.

Exercise 4.7.2. Prove that λ ∗ μ2 = δ.
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Exercise 4.7.3. (a) Prove that

∑
d|n

λ(d) =

{
1 if n is a square,

0 otherwise.

(b)† By summing the formula in (a) over all positive integers n ≤ N , deduce that for all integers
N ≥ 1 we have ∑

n≥1

λ(n)

[
N

n

]
= [

√
N ].

Additional exercises

Exercise 4.8.1. Prove that μ(n)μ(n+ 1)μ(n+ 2)μ(n+ 3) = 0 for all integers n ≥ 1.

Exercise 4.8.2. Prove that φ(n) + σ(n) = 2n if and only if n = 1 or n is a prime.

Exercise 4.8.3. (a) By summing the formula in Corollary 4.5.1 over all positive integers n ≤
N , deduce that ∑

n≥1

μ(n)

[
N

n

]
= 1 for all N ≥ 1.

(b)† Deduce that ∣∣∣∣∣∣
∑
n≤N

μ(n)

n

∣∣∣∣∣∣ ≤ 1 for all N ≥ 1.

It is a much deeper problem to prove that
∑

n≤N μ(n)/n tends to a limit as N → ∞.

Exercise 4.8.4. (a) Prove that if f is an arithmetic function, then∑
n≥1

f(n)
xn

1− xn
=
∑
m≥1

(1 ∗ f)(m)xm,

without worrying about convergence.
(b) Write out explicitly the example f = μ as well as some other common multiplicative func-

tions.

Appendices. The extended version of chapter 4 has the following additional
appendices:

Appendix 4B. Dirichlet series and multiplicative functions. We discuss the
construction of Dirichlet series, establishing that they have an Euler product if the
coefficients are given by a multiplicative function. We discuss convergence issues,
interesting Dirichlet series, and important identities.

Appendix 4C. Irreducible polynomials mod p. We develop, in part, the analogy
to the theory of this chapter when working with polynomials mod p, giving a formula
for the number of irreducibles.

Appendix 4D. The harmonic sum and the divisor function. We develop upper
and lower bounds for the sum of 1/n over positive integers n ≤ N and use these
to determine a good estimate for the average number of divisors of an integer. We
develop Dirichlet’s hyperbola method to get a spectacularly accurate estimate for
this average.

Appendix 4E. Cyclotomic polynomials. We introduce their properties which
will come in useful in several areas, later on.





Chapter 5

The distribution
of prime numbers

Once one begins to determine which integers are primes, one quickly finds that
there are many. Are there infinitely many? One notices that the primes seem to
make up a decreasing proportion of the positive integers. Can we explain this? Can
we give a formula for how many primes there are up to a given point? Or at least
give a good estimate?

When we write out the primes there seem to be patterns, though the patterns
rarely persist for long. Can we find patterns that do persist? Is there a formula
that describes all of the primes? Or at least some of them?

Is it possible to recognize prime numbers quickly and easily?

These questions motivate different parts of this chapter and of chapter 10.

5.1. Proofs that there are infinitely many primes

The first known proof appears in Euclid’s Elements, Book IX, Proposition 20:

Theorem 5.1. There are infinitely many primes.

Proof #1.1 Suppose that there are only finitely many primes, which we will denote
by 2 = p1 < p2 = 3 < · · · < pk. What are the prime factors of p1p2 . . . pk+1? Since
this number is > 1 it must have a prime factor by the Fundamental Theorem of
Arithmetic, and this must be pj for some j, 1 ≤ j ≤ k, since all primes are contained
amongst p1, p2, . . . , pk. But then pj divides both p1p2 . . . pk and p1p2 . . . pk+1, and
hence pj divides their difference, 1, by exercise 1.1.1(c), which is impossible. �

1Not until relatively recently has there been mathematical notation to describe a collection of
objects, for example, p1, p2, . . . , pk. Neither Euclid nor Fermat had subscripts or “. . .” or “etc.” (Gauss
used “&c”). So instead the reader had to infer from the context how many objects the author meant. In
Euclid’s Elements, he writes that he assumes α, β, γ denote all of the prime numbers and then gives, in
terms of ideas, the same proof as here. The reader had to understand that in writing “α, β, γ”, Euclid
meant an arbitrary number of primes, not just three!
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There are many variants on Euclid’s proof. For example:

Exercise 5.1.1 (Proof #2). Suppose that there are only finitely many primes, the largest of
which is n > 2. Show that this is impossible by considering the prime factors of n!− 1.

Other variants include Furstenberg’s curious proof using point-set topology (see
appendix 5F). These all boil down to showing that there exists an integer q > 1 that
is not divisible by any of a given finite set of primes p1, . . . , pk. If m = p1p2 · · · pk,
then we wish to show there exists an integer q > 1 with (q,m) = 1, and there are
φ(m)− 1 such integers up to m. There is therefore such an integer by the formula
in Theorem 4.1 once m > 2.

Exercise 5.1.2. Prove that there are infinitely many composite numbers.

Euclid’s proof that there are infinitely many primes is a “proof by contradic-
tion”, showing that it is impossible that there are finitely many, and so does not
suggest how one might find infinitely many. We can use the following constructive
technique to determine infinitely many primes:

Lemma 5.1.1. Suppose that a1 < a2 < · · · is an infinite sequence of pairwise
coprime positive integers, and let pn be a prime factor of an for each n ≥ 2. Then
p2, p3, . . . is an infinite sequence of distinct primes.

Proof. If pm = pn with 1 < m < n, then pm divides both am and an and so divides
(am, an) = 1, which is impossible. �

By Lemma 5.1.1 we need only find an infinite sequence of pairwise coprime pos-
itive integers to obtain infinitely many primes. This can be achieved by modifying
Euclid’s construction. We define the sequence

a1 = 2, a2 = 3 and then an = a1a2 . . . an−1 + 1 for each n ≥ 2.

Now if m < n, then an ≡ 1 (mod am) and so (am, an) = (am, 1) = 1 by exercise
2.1.5, as desired. Therefore, by Lemma 5.1.1, we can take a prime factor pn of each
an with n > 1 to obtain an infinite sequence of prime numbers.

Fermat conjectured that the integers Fn = 22
n

+ 1 are primes for all n ≥ 0.
His claim starts off correct: 3, 5, 17, 257, 65537 are all prime, but his conjecture is
false for F5 = 641× 6700417, as Euler famously noted. It is an open question as to
whether there are infinitely many primes of the form Fn.

2 Using the identity

(5.1.1) Fn = F1F2 . . . Fn−1 + 2 for each n ≥ 1

we see that if m < n, then Fn ≡ 2 (mod Fm) so that (Fm, Fn) = (Fm, 2) = 1, the
last equality since each Fm is odd. Therefore, by Lemma 5.1.1, we can take a prime
factor pn of each Fn to obtain an infinite sequence of prime numbers.3

These proofs that there are infinitely many primes will be generalized using
dynamical systems in appendix 5H.

2The only Fermat numbers known to be primes have n ≤ 4. We know that the Fn are composite
for 5 ≤ n ≤ 30 and for many other n besides. It is always a significant moment when a Fermat number
is factored for the first time. It could be that all Fn with n > 4 are composite or they might all be
prime from some sufficiently large n onwards or some might be prime and some composite. Currently,
we have no way of knowing which is true.

3This proof that there are infinitely many primes first appeared in a letter from Goldbach to Euler
in July 1730.
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Exercise 5.1.3. Prove (5.1.1).

Exercise 5.1.4. Suppose that p1 = 2 < p2 = 3 < · · · is the sequence of prime numbers. Use the

fact that every Fermat number has a distinct prime divisor to prove that pn ≤ 22
n
+1. What can

one deduce about the number of primes up to x?

Exercise 5.1.5. (a) Show that if m is not a power of 2, then 2m + 1 is composite by showing
that 2a + 1 divides 2ab + 1 whenever b is odd.

(b) Deduce that if 2m + 1 is prime, then there exists an integer n such that m = 2n; that is, if

2m + 1 is prime, then it is a Fermat number Fn = 22
n
+ 1. (This also follows from exercise

3.9.3(b).)

Another interesting sequence is the Mersenne numbers,4 which take the form
Mn = 2n − 1. After exercise 3.9.2 we observed that if Mn is prime, then n is
prime and, in our discussion of perfect numbers (section 4.2) we observed that
M2,M3,M5, and M7 are each prime but M11 = 23× 89 is not. The Lucas-Lehmer
test provides a relatively quick and elegant way to test whether a given Mp is prime
(see Corollary 10.10.1 in appendix 10C).

5.2. Distinguishing primes

We can determine whether a given integer n is prime in practice, by proving that
it is not composite: If a given integer n is composite, then we can write it as ab,
two integers both > 1. If we suppose that a ≤ b, then a2 ≤ ab = n and so a ≤ √

n.
Hence n must be divisible by some integer a in the range 1 < a ≤

√
n. Therefore

we can test divide n by every integer a in this range, and we either discover a factor
of n or, if not, we know that n must be prime. This process is called trial division
and is too slow, in practice, except for relatively small integers n. We can slightly
improve this algorithm by noting that if p is a prime dividing a, then p divides n,
so we only need to test divide by the primes up to

√
n. This is still very slow, in

practice.5 We discuss more practical techniques in chapter 10.

Trial division is a very slow way of recognizing whether an individual integer is
prime, but it can be organized to be a highly efficient way to determine all of the
primes up to some given point, as observed by Eratosthenes around 200 B.C.6

The sieve of Eratosthenes provides an efficient method for finding all of the
primes up to x. For example to find all the primes up to 100, we begin by writing
down every integer between 2 and 100 and then deleting every composite even
number; that is, one deletes (or sieves out) every second integer up to x after 2.

4In 1640, France was home to the great philosophers and mathematicians of the age, such as
Descartes, Desargues, Fermat, and Pascal. From 1630 on, Father Marin Mersenne wrote letters to all of
these luminaries, posting challenges and persuading them all to think about perfect numbers.

5How slow is “slow”? If we could test divide by one prime per second, for a year, with no rest,
then we could determine the primality of 17-digit numbers but not 18-digit numbers. If we used the
world’s fastest computer in 2019, we could test divide 53-, but not 54-, digit numbers. In chapter 10 we
will encounter much better methods that can test such a number for primality, in moments.

6Eratosthenes lived in Cyrene in ancient Greece, from 276 to 195 B.C. He created the grid system
of latitude and longitude to draw an accurate map of the world incorporating parallels and meridians.
He was the first to calculate the circumference of the earth, the tilt of the earth’s axis, and the distance
from the earth to the sun (and so invented the leap day). He even attempted to assign dates to what
was then ancient history (like the conquest of Troy) using available evidence.
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2 3 5 7 9
11 13 15 17 19
21 23 25 27 29
31 33 35 37 39
41 43 45 47 49
51 53 55 57 59
61 63 65 67 69
71 73 75 77 79
81 83 85 87 89
91 93 95 97 99

Deleting every even number > 2, between 2 and 100

The first undeleted integer > 2 is 3; one then deletes every composite integer
divisible by 3; that is, one sieves out every third integer up to x after 3. The next
undeleted integer is 5 and one sieves out every fifth integer after 5, and then every
seventh integer after 7.

2 3 5 7
11 13 17 19

23 25 29
31 35 37
41 43 47 49

53 55 59
61 65 67
71 73 77 79

83 85 89
91 95 97

2 3 5 7
11 13 17 19

23 29
31 37
41 43 47

53 59
61 67
71 73 79

83 89
97

Then delete remaining integers > 3 and > 5 that are divisible by 5

that are divisible by 3 and > 7 that are divisible by 7.

The sieve of Eratosthenes enables us to find all of the primes up to 100.

What’s left are the primes up to 100. To obtain the primes up to any given limit
x, one keeps on going like this, finding the next undeleted integer, call it p, which
must be prime since it is undeleted, and then deleting every pth integer beyond p
and up to x. We stop once p >

√
x and then the undeleted integers are the primes

≤ x. There are about x log log x steps7 in this algorithm, so it is a remarkably
efficient way to find all the primes up to some given x,8 but not for finding any
particular prime.

Exercise 5.2.1. Use this method to find all of the primes up to 200.

The number of integers left after one removes the multiples of 2 is roughly 1
2 ·x,

since about half of the integers up to x are divisible by 2. After one then removes

7How should one think about an expression like log log x? It goes to ∞ as x does, but it is a
very slow growing function of x. For example, if x = 10100, far more than the current estimate for the
number of atoms in the universe, then log log x < 5 1

2 . Dan Shanks once wrote that “log log x goes to

infinity with great dignity.”
8In practice, this algorithm determines which of the first x integers are prime in no more than 6x

steps.
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the multiples of 3, one expects that there are about 2
3 · 1

2 · x integers left, since
about a third of the odd integers up to x are divisible by 3. In general removing
the multiples of p removes, we expect, about 1/p of the integers in our set and so
leaves a proportion 1 − 1

p . Therefore we expect that the number of integers left

unsieved in the sieve of Eratosthenes, up to x, after sieving by the primes up to y,
is about

x
∏
p≤y

p prime

(
1− 1

p

)
.

The product
∏

p≤y(1− 1
p ) is well-approximated by e−γ/ log y, where γ is the Euler-

Mascheroni constant discussed in section 4.14 of appendix 4D.9 The logarithm, used
here and elsewhere in this book, is the natural logarithm.

When we take y =
√
x, then only 1 and the primes up to x should be left in the

sieve of Eratosthenes, and so one might guess from this analysis of sieve methods
that the number of primes up to x is approximately

(5.2.1) 2e−γ x

log x
.

This guess is not correct; the constant is off,10 as we will discuss in section 5.4.

5.3. Primes in certain arithmetic progressions

How are the primes split between the arithmetic progressions modulo 3? Or modulo
4? Or modulo any given integer m? Evidently every integer in the arithmetic
progression 0 (mod 3) (that is, integers of the form 3k) is divisible by 3, so the
only prime in that arithmetic progression is 3 itself. There are no such divisibility
restrictions for the arithmetic progressions 1 (mod 3) and 2 (mod 3) and if we
partition the primes up to 100 into these arithmetic progressions, we find:

Primes ≡ 1 (mod 3) : 7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97, . . ..

Primes ≡ 2 (mod 3) : 2, 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, . . . .

There seem to be a lot of primes in each arithmetic progression, and they seem to
be roughly equally split between the two. Let’s see what we can prove. First let’s
deal, in general, with the analogy to the case 0 (mod 3). This includes not only 0
(mod m) but also cases like 2 (mod 4):

Exercise 5.3.1. (a) Prove that any integer ≡ a (mod m) is divisible by (a,m).
(b) Deduce that if (a,m) > 1 and if there is a prime ≡ a (mod m), then that prime is (a,m).
(c) Give examples of arithmetic progressions which contain exactly one prime and examples

which contain none.
(d) Show that the arithmetic progression 2 (mod 6) contains infinitely many prime powers.

Therefore all but finitely many primes are distributed among the φ(m) arith-
metic progressions a (mod m) with (a,m) = 1. How are they distributed? If the
m = 3 case is anything to go by, it appears that there are infinitely many in each

9This is a fact that is beyond the scope of this book but will be discussed in [Graa]. In fact

e−γ = .56145948 . . ..
10Though not by much. The correct constant is 1 whereas 2e−γ = 1.12291896 . . ..
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such arithmetic progression, and maybe even roughly equal numbers of primes in
each up to any given point.

We will prove that there are infinitely many primes in each of the two feasible
residue classes mod 3 (see Theorems 5.2 and 7.7).

Theorem 5.2. There are infinitely many primes ≡ −1 (mod 3).

Proof. Suppose that there are only finitely many primes ≡ −1 (mod 3), say
p1, p2, . . . , pk. The integer N = 3p1p2 . . . pk − 1 must have a prime factor q ≡ −1
(mod 3), by exercise 5.3.2. However q divides both N and N + 1 (since it must be
one of the primes pi), and hence q divides their difference, 1, which is impossible. �
Exercise 5.3.2. Use exercise 3.1.4(a) to show that if n ≡ −1 (mod 3), then there exists a prime
factor p of n which is ≡ −1 (mod 3).

In 1837 Dirichlet showed that whenever (a, q) = 1 there are infinitely many
primes ≡ a (mod q). (We discuss this deep result in sections 8.17 of appendix
8D and 13.7.) In fact there are roughly equally many primes in each of these
arithmetic progressions mod q. For example, half the primes are ≡ 1 (mod 3) and
half are ≡ −1 (mod 3), as our data above suggested. Roughly 1% of the primes are
≡ 69 (mod 101) and indeed there are roughly 1% of the primes in each arithmetic
progression a mod 101 with 1 ≤ a ≤ 100. This is a deep result and will be discussed
at length in our book [Graa].

Exercise 5.3.3. Prove that there are infinitely many primes ≡ −1 (mod 4).

Exercise 5.3.4. Prove that there are infinitely many primes ≡ 5 (mod 6).

Exercise 5.3.5.† Prove that at least two of the arithmetic progressions mod 8 contain infinitely
many primes.

Exercise 5.8.6 generalizes these results considerably, using similar ideas.

5.4. How many primes are there up to x?

When people started to develop large tables of primes, perhaps looking for a pattern,
they discovered no patterns but did find that the proportion of integers that are
prime is gradually diminishing (which will be proved in section 5.13 of appendix
5B). In 1808 Legendre quantified this, suggesting that there are roughly x

log x primes

up to x.11 A few years earlier, aged 15 or 16, Gauss had already made a much better
guess, based on studying tables of primes:

In 1792 or 1793 . . . I turned my attention to the decreasing frequency
of primes . . . counting the primes in intervals of length 1000. I soon
recognized that behind all of the fluctuations, this frequency is on average
inversely proportional to the logarithm . . . .

— from a letter to Encke by K. F. Gauss (Christmas Eve, 1849)

11And even the more precise assertion that there exists a constant B such that π(x), the number
of primes up to x, is well-approximated by x/(log x − B) for large enough x. This turns out to be true
with B = 1, though this was not the value for B suggested by Legendre (who presumably made a guess
based on data for small values of x).
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His observation may be best phrased as

About 1 in log x of the integers near x are prime,

which is (subtly) different from Legendre’s assertion: Gauss’s observation suggests
that a good approximation to the number of primes up to x is

∑x
n=2

1
logn . As 1

log t

does not vary much for t between n and n+1, Gauss deduced that π(x) should be
well-approximated by

(5.4.1)

∫ x

2

dt

log t
.

We denote this quantity by Li(x) and call it the logarithmic integral.12 The loga-
rithm here is again the natural logarithm. Here is a comparison of Gauss’s predic-
tion with the actual count of primes up to various values of x:

x π(x) = #{primes ≤ x} Overcount: Li(x)− π(x)

103 168 10
104 1229 17
105 9592 38
106 78498 130
107 664579 339
108 5761455 754
109 50847534 1701
1010 455052511 3104
1011 4118054813 11588
1012 37607912018 38263
1013 346065536839 108971
1014 3204941750802 314890
1015 29844570422669 1052619
1016 279238341033925 3214632
1017 2623557157654233 7956589
1018 24739954287740860 21949555
1019 234057667276344607 99877775
1020 2220819602560918840 222744644
1021 21127269486018731928 597394254
1022 201467286689315906290 1932355208
1023 1925320391606803968923 7250186216
1024 18435599767349200867866 17146907278
1025 176846309399143769411680 55160980939

Primes up to various x and the overcount in Gauss’s prediction.

Gauss’s prediction is amazingly accurate. From the data, Gauss’s prediction seems
to overcount by a small amount, for all x ≥ 8.13 To quantify this “small amount”,
we observe that the last column (representing the overcount) is always about half
the width of the central column (representing the number of primes up to x), so
these data suggest that the difference is no bigger than a small multiple of

√
x.

12Some authors begin the integral defining Li(x) at x = 0. This adds complication since the
integrand equals ∞ at x = 1; nonetheless this can be handled, and the difference between the two
definitions is then the constant 1.045163 . . ., which has little relevance to our discussion.

13It is not true that Li(x) > π(x) for all x > 2 but the first counterexample is far beyond where
we can hope to calculate. Understanding how we know this is well beyond the scope of this book, but
see [Graa].
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This might be optimistic but, at the very least, the ratio of π(x), the number of
primes up to x, to Gauss’s guess, Li(x), should tend to 1 as x → ∞; that is,

π(x)
/
Li(x) → 1 as x → ∞.

In exercise 5.8.11 we show that Li(x)
/

x
log x → 1 as x → ∞, and combining these

last two limits, we deduce that

π(x)
/ x

log x
→ 1 as x → ∞.

The notation of limits is cumbersome; it is easier to write

(5.4.2) π(x) ∼ x

log x

as x → ∞, “π(x) is asymptotic to x/ log x”.14 This is different by a multiplicative
constant from (5.2.1), our guesstimate based on the sieve of Eratosthenes. Our
data makes it seem more likely that the constant 1 given here, rather than the
2e−γ given in (5.2.1), is the correct constant.

The asymptotic (5.4.2) is called the prime number theorem. Its proof came
in 1896, more than 100 years after Gauss’s guess, involving several remarkable
developments. It was a high point of 19th-century mathematics and there is still no
straightforward approach. The main reason is that the prime number theorem can
be shown to be equivalent to a statement about zeros of the analytic continuation
of a function (the Riemann zeta-function which we discuss in appendices 4B, 5B,
and 5D), which seems preposterous at first sight. Although proofs can be given
that avoid mentioning these zeros, they are still lurking somewhere just beneath
the surface.15 A proof of the prime number theorem is beyond the scope of this
book (but see [Graa] and [GS]).

Exercise 5.4.1.† Assume the prime number theorem.
(a) Show that there are infinitely many primes whose leading digit is a “1”. How about leading

digit “7”?
(b) Show that for all ε > 0, if x is sufficiently large, then there are primes between x and x+ εx.
(c) Deduce that R≥0 is the set of limit points of the set {p/q : p, q primes}.
(d) Let a1, . . . , ad be any sequence of digits, that is, integers between 0 and 9, with a1 �= 0.

Show that there are infinitely many primes whose first (leading) d digits are a1, . . . , ad.

Exercise 5.4.2.† Let p1 = 2 < p2 = 3 < · · · be the sequence of primes. Assume the prime
number theorem and prove that

pn ∼ n logn as n → ∞.

Exercise 5.4.3.† (a) Show that the sum of primes and prime powers ≤ x is ∼ x2/(2 log x).
(b) Deduce that if the sum equals N , then x ∼

√
N logN .

14In general, A(x) ∼ B(x), that is, A(x) is asymptotic to B(x), is equivalent to
limx→∞ A(x)/B(x) = 1. It does not mean that “A(x) is approximately equal to B(x)”, which has
no strict mathematical meaning, rather that for any ε > 0, no matter how small, one has

(1 − ε)B(x) < A(x) < (1 + ε)B(x)

once x is sufficiently large (where how large is “ sufficiently large” depends on ε). This definition concerns

the ratio A(x)/B(x), not their difference A(x)−B(x). Therefore n2 + 1 ∼ n2 and n2 + n2/ log n ∼ n2

are equally true, even though the first is a better approximation to n2 than the second ([Sha85], p. 16),
15Including the so-called “elementary proof” of the prime number theorem.
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Primes in arithmetic progressions. As we mentioned in section 5.3, Dirichlet
showed in 1837 that if (a, q) = 1, then there are infinitely many primes p ≡ a
(mod q). Dirichlet’s proof was combined in 1896 with the proof of the prime number
theorem to establish that

#{p ≤ x : p is prime, p ≡ a (mod) q} ∼ π(x)

φ(q)
∼ x

φ(q) log x
.

The factor “1/φ(q)” emerges as there are φ(q) reduced residues a modulo q.

Exercise 5.4.4.‡ Use the prime number theorem in arithmetic progressions to prove that for any
integers a1, . . . , ad, b0, . . . , bd ∈ {0, . . . , 9}, with a1 �= 0 and b0 = 1, 3, 7, or 9, there are infinitely
many primes whose first d digits are a1, . . . , ad and whose last d digits are bd, . . . , b0.

5.5. Bounds on the number of primes

The first quantitative lower bound proven on the number of primes is due to Euler
in the mid-18th century who showed that∑

p prime

1

p
diverges,

as we will prove in section 5.12 of appendix 5B. This gives some idea of how
numerous the primes are in comparison to other sequences of integers. For ex-
ample

∑
n≥1

1
n2 converges, so the primes are, in this sense, more numerous than

the squares. This implies that there are arbitrarily large values of x for which
π(x) >

√
x.

Exercise 5.5.1.† Do better than this using Euler’s result.
(a) Prove that

∑
n≥1

1
n(logn)2

converges.

(b) Deduce that there are arbitrarily large x for which π(x) > x/(log x)2.

Next we will prove upper and lower bounds for the number of primes up to x,
of the form

(5.5.1) c1
x

log x
≤ π(x) ≤ c2

x

log x

for some constants 0 < c1 < 1 < c2, for all sufficiently large x. The prime number
theorem is equivalent to being able to take c1 = 1− ε and c2 = 1 + ε for any fixed
ε > 0 in (5.5.1). Instead we will prove Chebyshev’s weaker 1850 result that one can
take any c1 < log 2 and any c2 > log 4 in (5.5.1).

Theorem 5.3. For all integers n ≥ 2 we have

(log 2)
n

log n
− 1 ≤ π(n) ≤ (log 4)

n

log n
+ 4

n

(log n)2
.

Exercise 5.5.2. Fix ε > 0 arbitrarily small. Deduce Chebyshev’s bounds (5.5.1) with c1 =
log 2− ε and c2 = log 4 + ε, for all sufficiently large x, from Theorem 5.3.

Proof. The binomial theorem states that (x + y)N =
∑N

j=0

(
N
j

)
xjyN−j . Taking

x = y = 1 we get

(5.5.2)

N∑
j=0

(
N

j

)
= 2N .
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Lemma 5.5.1. The product of the primes up to N is ≤ 4N−1 for all N ≥ 1.

Proof. Each prime in [n+1, 2n] appears in the numerator of the binomial coefficient(
2n−1

n

)
but not in the denominator, and so their product divides

(
2n−1

n

)
. Now if

N = 2n− 1 is odd, then
(
2n−1
n−1

)
=
(
2n−1

n

)
so the value appears twice in the sum in

(5.5.2). Therefore

(5.5.3)
∏

n<p≤2n
p prime

p ≤
(
2n− 1

n

)
<

1

2

2n−1∑
j=0

(
2n− 1

j

)
= 22n−2 = 4n−1.

We now prove the claimed result by induction on N ≥ 1. The result is straight-
forward for N = 1, 2 by calculation. If N = 2n or 2n− 1, then the product of the
primes up to N is at most the product of the primes up to n times the product of
the primes in [n+ 1, 2n]. The first product is ≤ 4n−1 by the induction hypothesis,
and the second < 4n−1 by the previous paragraph. Combining these two upper
bounds gives the upper bound ≤ 42n−2 ≤ 4N−1, as claimed. �

If we take logarithms in (5.5.3), we obtain

(5.5.4)
∑

p prime
n<p≤2n

log p < (n− 1) log 4.

As each term of the left side is > log n we deduce that

(5.5.5) π(2n)− π(n) = #{p prime : n < p ≤ 2n} ≤ n− 1

log n
· log 4.

We now use this to deduce the upper bound claimed in Theorem 5.3. We verify the
bound by calculations for all N ≤ 100 and then proceed by induction for N ≥ 101.
If N = 2n or 2n− 1 (so that n ≥ 51), then by the induction hypothesis and (5.5.5)

π(N) ≤ π(2n) = π(n) + (π(2n)− π(n)) ≤ (log 4)
2n− 1

log n
+ 4

n

(log n)2
,

and for all n ≥ 51 this is

< (log 4)
2n− 1

log 2n
+ 4

2n− 1

(log 2n)2
< (log 4)

N

logN
+ 4

N

(logN)2
,

as a careful calculation reveals. This yields the upper bound claimed in Theorem
5.3.

To obtain the lower bound claimed in Theorem 5.3 we begin by observing that
the largest binomial coefficient

(
n
m

)
occurs with m = [n/2]. All the other binomial

coefficients are smaller, as is
(
n
0

)
+
(
n
n

)
, so that

2n =

((
n

0

)
+

(
n

n

))
+

n−1∑
m=1

(
n

m

)
≤ n

(
n

[n/2]

)
,
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by (5.5.2). Now, all prime factors of any
(

n
[n/2]

)
are ≤ n, and in fact if pep divides(

n
[n/2]

)
, then pep ≤ n by Corollary 3.10.1 to Kummer’s Theorem. Therefore

2n ≤ n

(
n

[n/2]

)
≤ n

∏
p prime
p≤n

pep ≤ nπ(n)+1.

Taking logarithms we deduce the claimed result. �

Exercise 5.5.3. Use exercise 3.10.3 and the last displayed equation to prove that

(5.5.6) lcm[m : m ≤ n] ≥ 2n

n
.

5.6. Gaps between primes

Let p1 = 2 < p2 = 3 < · · · be the sequence of primes. We are interested in the
possible gaps, pn+1 − pn, between primes.

The prime number theorem tells us that there are about x/ log x primes up to
x, so that the average gap between primes ≤ x is about log x: If N = π(x), then
pN is the largest prime ≤ x, and pN ∼ x by exercise 5.4.1(b). This implies that the
average gap between consecutive primes up to x is

1

N − 1

N−1∑
n=1

(pn+1 − pn) =
pN − 2

N − 1
∼ x

x/ log x
= log x,

by the prime number theorem.

Are there gaps between consecutive primes that are much smaller than the
average? Much larger than the average? What is the largest that gaps between
primes can be, and what is the smallest?

Exercise 5.6.1. (a) Prove that there are gaps between primes ≤ x that are at least as large
as the average gap between primes up to x.

(b) Prove that there are gaps between primes ≤ x that are no bigger than the average gap
between primes up to x.

Legendre conjectured that there are always primes between consecutive squares,
that is, that there are primes in the interval (n2, (n+ 1)2) for every integer n.

Exercise 5.6.2. (a) Show that if every interval (x, x+ 2
√
x) contains a prime, then there are

always primes between consecutive squares.
(b) Show that if there are always primes between consecutive squares, then every interval

(x, x+ 4
√
x+ 3] contains a prime.

At present we do not know how to prove every interval (x, x+ C
√
x) contains

primes, for any given C > 0. However it has been proven, by Baker, Harman, and
Pintz, that any interval (x, x+ cx

1
2+

1
40 ] contains a prime for c sufficiently large.

Exercise 5.6.3. Deduce from this that there is a prime between any consecutive, sufficiently
large, cubes.
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There is a simple way to construct a long interval which contains no primes:

Proposition 5.6.1. For any integer m the interval m! + 2, m! + 3, . . . ,m! + m
contains no primes. Therefore if pn is the largest prime ≤ m!+1, then pn+1−pn ≥
m.

Proof. If 2 ≤ j ≤ m, then j is included in the product for m!, and so j divides
m! + j. Therefore m! + j is composite as it is > j. Now pn+1 �= m! + j for each
such j and so pn+1 ≥ m! +m+ 1 ≥ pn +m. �

The gaps between primes constructed in this way are not quite as large as the
average gaps. However one can extend this idea, creating a long interval of integers
which each have a small prime factor, to prove that

lim sup
n→∞

pn+1 − pn
log pn

= ∞.

Proving this is again beyond the scope of this book but a proof can be found in
[Graa].

What about small gaps between primes?

Exercise 5.6.4. Prove that 2 and 3 are the only two primes that differ by 1.

There are plenty of pairs of primes that differ by two, namely 3 and 5, 5 and 7,
11 and 13, 17 and 19, etc., seemingly infinitely many, and this twin prime conjecture
that there are infinitely many prime twins p, p+2 remains an open problem. Until
recently, very little was proved about short gaps between primes, but that changed
in 2009, when Goldston, Pintz, and Yildirim (see [1]) showed that

lim inf
n→∞

pn+1 − pn
log pn

= 0.

In 2013, Yitang Zhang, until then a practically unknown mathematician,16 showed
that there are infinitely many pairs of primes that differ by at most a bounded
amount. More precisely there exists a constant B such that there are infinitely
many pairs of distinct primes that differ by at most B. This was soon improved by
Maynard and Tao, though by a different method, so that we now know there are
infinitely many pairs of consecutive primes pn, pn+1 such that

pn+1 − pn ≤ 246.

This is not quite the twin prime conjecture, but it is a very exciting development.
(See [2] for a discussion.)

The proofs of Maynard and of Tao yield a further great result: For any in-
teger m ≥ 3 there are infinitely many intervals of length 214m which contain
m primes. That is, there are infinitely many m-tuples of consecutive primes
pn, pn+1, . . . , pn+m−1 such that

pn+m−1 − pn ≤ 214m.

16See the movie Counting from Infinity (Zala Films, 2015) for an account of his fascinating story.
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Further reading on hot topics in this section

[1] K. Soundararajan, Small gaps between prime numbers: The work of Goldston-Pintz-Yıldırım, Bull.
Amer. Math. Soc. (N.S.) 44 (2007), 1–18.

[2] Andrew Granville, Primes in intervals of bounded length, Bull. Amer. Math. Soc. (N.S.) 52 (2015),
171–222.

5.7. Formulas for primes

Are there polynomials (of degree ≥ 1) that only yield prime values? That is, is
f(n) prime for every integer n? The example 6n + 5 begins by taking the prime
values 5, 11, 17, 23, 29 before getting to 35 = 5 × 7. Continuing on, we get more
primes 41, 47, 53, 59 till we hit 65 = 5 × 13, another multiple of 5. So every fifth
term of the arithmetic progression seems to be divisible by 5, which we verify as
6(5k) + 5 = 5(6k + 1). More generally qn + a is a multiple of a whenever n is
a multiple of a, since q(ak) + a = a(qk + 1). A famous example of a polynomial
that takes lots of prime values is f(x) = x2 + x + 41. Indeed f(n) is prime for
0 ≤ n ≤ 39. However f(40) = 412 and f(41k) = 41(41k2+k+1). Therefore f(41k)
is composite for each integer k for which 41k2 + k + 1 �= −1, 0, or 1.

We will develop this argument to work for all polynomials, but we will need the
following result, which is a consequence of the Fundamental Theorem of Algebra
and is proved in Theorem 3.11 of section 3.22 in appendix 3F.

Lemma 5.7.1. A non-zero degree d polynomial has no more than d distinct roots
in C.

The main consequence that we need is the following:

Corollary 5.7.1. Suppose that f(x) ∈ Z[x] has degree d ≥ 1. For any integer
B ≥ 1, there are no more than (2B + 1)d integers n for which |f(n)| ≤ B.

Proof. If n is an integer, then so is f(n), and therefore if |f(n)| ≤ B, then f(n) = m
for some integer m with |m| ≤ B. Therefore n is a root of one of the 2B + 1
polynomials f(x) − m, each of which has no more than d roots by Lemma 5.7.1,
and so the result follows. �

Proposition 5.7.1. If f(x) ∈ Z[x] has degree d ≥ 1, then there are infinitely many
integers n for which |f(n)| is composite.

Proof. By Corollary 5.7.1 there are no more than 3d integers n for which f(n) =
−1, 0, or 1, so there exists an integer a in the range 0 ≤ a ≤ 3d for which |f(a)| > 1.
Let m := |f(a)| > 1. Now km + a ≡ a (mod m) and so, by Corollary 2.3.1, we
have

f(km+ a) ≡ f(a) ≡ 0 (mod m).

There are at most 3d values of k for which km + a is a root of one of f(x) − m,
f(x), or f(x)+m, by Corollary 5.7.1. For any other k we have that |f(km+a)| �= 0
or m, in which case |f(km + a)| is divisible by m and |f(km + a)| > m, so that
|f(km+ a)| is composite. �
Exercise 5.7.1. Show that if f(x, y) ∈ Z[x, y] has degree d ≥ 1, then there are infinitely many
pairs of integers m,n for which |f(m,n)| is composite.
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Nine of the first ten values of the polynomial 6n+5 are primes. The polynomial
n2 + n + 41, discovered by Euler in 1772, is prime for n = 0, 1, 2, . . . , 39 and the
square of a prime for n = 40. However, in the proof of Proposition 5.7.1, we saw
that n2 + n + 41 is composite whenever n is a positive multiple of 41. See section
12.5 for more on such prime rich polynomials.

We discuss other places to look for primes in section 5.21 of appendix 5G.

It is not difficult to show that if a polynomial f takes on infinitely many prime
values, then f must be irreducible. The next result indicates how many prime
values f needs to take before we know that f is irreducible.

Theorem 5.4. If f(x) ∈ Z[x] has degree d ≥ 1 and |f(n)| is prime for ≥ 2d + 1
integers n, then f(x) is irreducible.

Proof. Suppose that f is reducible; that is, f = gh for polynomials g(x), h(x)
∈ Z[x]. If |f(n)| = p, a prime, then g(n)h(n) = p or −p. Therefore one of g(n)
and h(n) equals p or −p, the other 1 or −1. In particular n is a root of
(g(x) − 1)(h(x) − 1)(g(x) + 1)(h(x) + 1), a polynomial of degree 2d. This has
no more than 2d roots by Lemma 5.7.1, and so |f(n)| can be prime for no more
than 2d integers n. �

This is often more than we need, as we see in the following beautiful result:

Theorem 5.5. Write a given prime p in base 10 as p = a0 + a110 + · · · + ad10
d

(with each ai ∈ {0, 1, 2, . . . , 9} and ad �= 0). Then a0 + a1x + · · · + adx
d is an

irreducible polynomial.

Proof. Let f(x) = a0x + · · · + adx
d and suppose that f = gh. As g(10)h(10)

is prime, one of g(10) and h(10) equals 1 or −1. We will suppose that it is g
(swapping g and h if necessary). As g(x) ∈ Z[x] it can be written in the form

g(x) = c
∏D

j=1(x− αj) with c ∈ Z, and so
∏D

j=1 |10− αj | ≤ |g(10)| = 1. Therefore

there is a root α of g(x) for which |α − 10| ≤ 1. This implies that Re(α) ∈ [9, 11]
and so Re(1/α) > 0 and |α| ≥ 9.

As f(α) = 0 we deduce that

0 = Re

(
f(α)

αd

)
= ad + ad−1Re

(
1

α

)
+

d∑
i=2

ad−iRe

(
1

αi

)
.

As discussed above Re(1/α) > 0 and so ad−1Re(1/α) ≥ 0. On the other hand,
Re(1/αi) might be negative and so ad−iRe(1/α

i) ≥ −9/|α|i. Therefore

0 ≥ 1 + 0− 9
d∑

i=2

1

|α|i ,

which implies that

1 < 9
∑
i≥2

1

|α|i =
9

|α|(|α| − 1)
≤ 1

8

as |α| ≥ 9, which yields a contradiction. �
Exercise 5.7.2. Prove an analogous result for primes written in an arbitrary base b ≥ 3.
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Exercise 5.7.3.† Suppose that f(x) = a0x + · · · + adx
d ∈ Z[x] with each |ai| ≤ A and ad �= 0.

Prove that if f(n) is prime for some integer n ≥ A+ 2, then f(x) is irreducible.

There are many books on the distribution of primes. My favorites for beginners
are [TMF00] which explains the key ideas behind the prime number theorem and
other important results in an accessible way, and [Rib91] which is more recreational
but full of good stuff. The introductory book [HW08] proves quite a few of the
easier theorems in the subject.

Additional exercises

Exercise 5.8.1. Let m be the product of the primes ≤ 1000. Prove that if n is an integer between
103 and 106, then n is prime if and only if (n,m) = 1.

Exercise 5.8.2. Show that if p > 3 and q = p+ 2 are twin primes, then p+ q is divisible by 12.

Exercise 5.8.3. Show that there are infinitely many integers n for which each of n, n+1, . . . , n+
1000 is composite.

Exercise 5.8.4. Fix integer m > 1. Show that there are infinitely many integers n for which
τ(n) = m.

Exercise 5.8.5.† Fix integer k > 1. Prove that there are infinitely many integers n for which
μ(n) = μ(n+ 1) = · · · = μ(n+ k).

Exercise 5.8.6. Let H be a proper subgroup17 of (Z/mZ)∗.
(a) Show that if a is coprime to m and q is a given non-zero integer, then there are infinitely

many integers n ≡ a (mod m) such that (n, q) = 1.
(b) Prove that if n is an integer coprime to m but which is not in a residue class of H, then n

has a prime factor which is not in a residue class of H.
(c) Deduce there are infinitely many primes which do not belong to any residue class of H.

Exercise 5.8.7.† Suppose that for any coprime integers a and q there exists at least one prime
≡ a (mod q). Deduce that for any coprime integers A and Q, there are infinitely many primes

≡ A (mod Q).

Exercise 5.8.8. Prove that there are infinitely many primes p for which there exists an integer
a such that a3 − a+ 1 ≡ 0 (mod p).

Exercise 5.8.9. Prove that for any f(x) ∈ Z[x] of degree ≥ 1, there are infinitely many primes
p for which there exists an integer a such that p divides f(a).

Exercise 5.8.10. Let L(n) = lcm[1, 2, . . . , n].
(a) Show that L(n) divides L(n+ 1) for all n ≥ 1.
(b) Express L(n) as a function of the prime powers ≤ n.
(c) Prove that for any integer k there exist integers n for which L(n) = L(n+1) = · · · = L(n+k).
(d)‡ Prove that if k is sufficiently large, then there is such an integer n which is < 3k.

Exercise 5.8.11.† Prove that

Li(x)
/ x

log x
→ 1 as x → ∞.

Exercise 5.8.12. Prove that 1 is the best choice for B when approximating Li(x) by x/(log x−B).

Exercise 5.8.13.† Using the Maynard-Tao result, prove that there exists a positive integer k ≤
246 for which there are infinitely many prime pairs p, p+ k.

17H is a proper subgroup of G if it is a subgroup of G but not the whole of G
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Exercise 5.8.14. Suppose that a and b are integers for which g(a) = 1 and g(b) = −1, where
g(x) ∈ Z[x].
(a) Prove that b = a− 2, a− 1, a+ 1, or a+ 2.
(b)† Deduce that there are no more than four integer roots of (g(x)− 1)(g(x) + 1) = 0.
(c)† Show that if g(x) has degree 2 and there are four integer roots of (g(x)− 1)(g(x) + 1) = 0,

then g(x) = ±h(x− A) where h(t) = t2 − 3t+ 1, with roots A, A+ 1, A+ 2, and A+ 3.
(d)† Modify the proof of Theorem 5.4 to establish that if f(x) ∈ Z[x] has degree d ≥ 6 and

|f(n)| is prime for ≥ d+ 3 integers n, then f(x) is irreducible.

Let f(x) = h(x)h(x − 4), which has degree 4. Note that |f(n)| is prime for the eight values
n = 0, 1, . . . , 7, and so there is little room in which to improve (d).

One can show that there are reducible polynomials f(x) ∈ Z[x] of arbitrarily
large degree d for which |f(n)| takes on at least d+1 prime values: Let p1 < · · · < pm
be distinct primes. Let g(x) =

∏m
j=1(p

2
j−x2) and q = g(1). By Dirichlet’s Theorem

(section 5.3) we know that there are infinitely many primes p0 ≡ 1 (mod q).18 We
select one such prime and write p0 = 1 + �q for some positive integer �. Now let
f(x) = x(1+�g(x)) which has degree d := 2m+1. We have that |f(±1)| = 1+�q =
p0 and |f(±pj)| = pj for j = 1, . . . ,m, so there are ≥ 2m+2 = d+1 integers n for
which |f(n)| is prime.

In the next exercise, assuming certain conjectures,19 we construct reducible
polynomials f(x) ∈ Z[x] of arbitrarily large degree d for which |f(n)| takes on d+2
prime values. This implies that the result in exercise 5.8.14(d) is “best possible”.

Exercise 5.8.15.† Assume that there are infinitely many positive integers n for which n2−3n+1
is prime, and denote these integers by n1 < n2 < · · · . Let gm(x) := (n1 − x) · · · (nm − x). If �
is a positive integer for which 1 + �gm(0), 1 + �gm(1), 1 + �gm(2), 1 + �gm(3) are simultaneously
prime, then prove that the polynomial f(x) := (x2 − 3x+ 1)(1 + �gm(x)) has degree d := m + 2
and that there are exactly d+ 2 integers n for which |f(n)| is prime.

18We will prove this later, in Theorem 7.8.
19These conjectures follows from the Polynomial prime values conjecture stated in the bonus

section of this chapter.



Appendix 5A. Bertrand’s
postulate and beyond

5.9. Bertrand’s postulate

In 1845 Bertrand conjectured, on the basis of calculations up to a million:

Theorem 5.6 (Bertrand’s postulate). For every integer n ≥ 1, there is a prime
number between n and 2n.

Bertrand’s postulate was proved in 1850 by Chebyshev. We will follow the
19-year-old Erdős’s proof, or, as N. J. Fine put it (in the voice of Erdős):

Chebyshev said it, but I’ll say it again:
There’s always a prime between n and 2n.

Exercise 5.9.1. Show that prime p does not divide
(2n
n

)
when 2n/3 < p ≤ n.

Proof of Bertrand’s postulate. Let pep be the exact power of prime p dividing(
2n
n

)
. We know that

• ep = 1 if n < p ≤ 2n by Kummer’s Theorem (Theorem 3.7),

• ep = 0 if 2n/3 < p ≤ n by exercise 5.9.1,

• ep ≤ 1 if
√
2n < p ≤ 2n by Corollary 3.10.1,

• pep ≤ 2n if p ≤ 2n by Corollary 3.10.1.

Combining these gives

22n

2n
≤
(
2n

n

)
=
∏
p≤2n

pep ≤
∏

n<p≤2n

p
∏

p≤2n/3

p
∏

p≤
√
2n

2n

≤

⎛
⎝ ∏

n<p≤2n

p

⎞
⎠× 42n/3−1 × (2n)(

√
2n+1)/2,

97
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using Lemma 5.5.1 to bound
∏

p≤2n/3 p and the bound π(
√
2n) ≤ 1

2 (
√
2n + 1) (as

neither 1 nor any even integer > 2 is prime). Taking logarithms we deduce that

∑
p prime
n<p≤2n

log p >
log 4

3
n−

√
2n+ 3

2
log(2n).

This implies that

(5.9.1)
∑

p prime
n<p≤2n

log p ≥ 1

3
n

for all n ≥ 2349, which implies Bertrand’s postulate in this range. (This lower
bound should be compared to the upper bound (5.5.4).)

If 1 ≤ n ≤ 5000, then the interval (n, 2n] contains at least one of the primes 2,
3, 5, 7, 13, 23, 43, 83, 163, 317, 631, 1259, 2503, and 5003. �

Exercise 5.9.2. Use Bertrand’s postulate to prove that there are infinitely many primes with
first digit “1”.

Exercise 5.9.3. Use Bertrand’s postulate to show, by induction, that every integer n > 6 can be
written as the sum of distinct primes.

Exercise 5.9.4. Goldbach conjectured that every even integer ≥ 6 can be written as the sum of
two primes. Deduce Bertrand’s postulate from Goldbach’s conjecture.

Exercise 5.9.5. Use Bertrand’s postulate to prove that 1
n+1

+ 1
n+2

+ · · ·+ 1
2n

is never an integer.

Exercise 5.9.6. Prove that for every n ≥ 1 one can partition the set of integers {1, 2, . . . , 2n}
into pairs {a1, b1}, . . . , {an, bn} such that each sum aj + bj is a prime.

Exercise 5.9.7.† (a) Prove that prime p divides
(2n
n

)
when n/2 < p ≤ 2n/3.

(b) Prove that the product of the primes in (3m, 12m] divides
(12m
6m

)(6m
4m

)
.

(c)† Deduce that we can take any constant c2 > 2
9
log(432) in (5.5.1).

(Note that 2
9
log(432) = 1.3485 . . . < log 4 = 1.3862 . . ..)

(d) Now deduce Bertrand’s postulate for all sufficiently large x from (5.5.1).

5.10. The theorem of Sylvester and Schur

Bertrand’s postulate can be rephrased to state that at least one of the integers
k + 1, k + 2, . . . , 2k has a prime factor > k. This can be generalized as follows:

Theorem 5.7 (Sylvester-Schur Theorem). For any integers n ≥ k ≥ 1, at least
one of the integers n+ 1, n+ 2, . . . , n+ k is divisible by a prime p > k.

Proposition 5.10.1. If, for given integers n ≥ k ≥ 1, we have

(5.10.1)

(
n+ k

k

)
> (n+ k)π(k),

then at least one of the integers n+1, n+2, . . . , n+k is divisible by a prime p > k.
If (5.10.1) holds for n1(k), then it holds for all n ≥ n1(k).
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Proof. If the prime factors of n + 1, n + 2, . . . , n + k are all ≤ k, then all of the
prime factors p of

(
n+k
k

)
are ≤ k. If pe‖

(
n+k
k

)
, then pe ≤ n+ k by Corollary 3.10.1.

Therefore

(5.10.2)

(
n+ k

k

)
≤
∏
p≤k

(n+ k) = (n+ k)π(k),

contradicting (5.10.1). This proves the first part of the result.

We prove the second part by induction on n ≥ n1(k) using the following result.

Exercise 5.10.1. Prove that
(
1 + 1

x+k

)k
≤
(
1 + k

x+1

)
for all x ≥ k ≥ 1.

The result holds for n = n1(k), so now suppose that (5.10.1) holds for some
given n. Then(
n+ 1 + k

k

)
=

(
1 +

k

n+ 1

)(
n+ k

k

)
>

(
1 +

1

n+ k

)k

(n+k)π(k) > (n+1+k)π(k),

by exercise 5.10.1 and the induction hypothesis, and so (5.10.1) holds for n + 1.
The result follows. �

Proof of the Sylvester-Schur Theorem for all k ≤ 1500. Calculations give
some value for n1(k) in Proposition 5.10.1 for all k ≤ 1500, and so the Sylvester-
Schur Theorem follows for these k and all n ≥ n1(k) by Proposition 5.10.1. Now
n1(k) = k for 202 ≤ k ≤ 1500, and k ≤ n1(k) ≤ k + 17 for all k ≤ 201. We verify
the theorem for k ≤ n ≤ k + 16 with k ≤ 201, case by case. �

A just failed proof of the Sylvester-Schur Theorem. Calculations suggest
that

(
2k
k

)
> (2k)π(k) for all k ≥ 202. If so, the Sylvester-Schur Theorem follows for

all k ≥ 202 by Proposition 5.10.1. However we just failed to prove this inequality
as a consequence of the upper bound in Theorem 5.3. If one combines the upper
bound on π(k/4) from Theorem 5.3, together with exercise 5.9.7(b), then we can

prove that
(
2k
k

)
> (2k)π(k) for all sufficiently large k. However “sufficiently large”

here is likely to be extremely large. �

Exercise 5.10.2. Prove that if π(k) < k log 4
log(2k)

− 1 for all integers k ≥ 1, then Theorem 5.7 holds

for all n ≥ k ≥ 1.

Proof of the Sylvester-Schur Theorem for all k > 1500. If (5.10.1) holds,
then the result follows from Proposition 5.10.1. Hence we may assume that (5.10.2)
holds. Now, π(k) < k/3 (which can be proved by accounting for divisibility by 2

and 3), and n+k−j
k−j > n+k

k for j = 0, . . . , k − 1 so that
(
n+k
k

)
≥ (n+k

k )k. Therefore

(5.10.2) implies that(
n+ k

k

)k

≤
(
n+ k

k

)
≤ (n+ k)π(k) ≤ (n+ k)k/3,

which in turn implies that

n+ k ≤ k3/2; that is, n ≤ k3/2 − k.
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Next we note that if p > (n+k)1/2 and pe‖
(
n+k
k

)
so that pe ≤ n+k, then e = 0

or 1. Therefore we can refine (5.10.2) to

(5.10.3)

(
n+ k

k

)
≤

∏
p≤(n+k)1/2

(n+ k)
∏
p≤k

p = k
1
3k

3/4

4k−1,

by (5.5.4), as π((n+ k)1/2) ≤ 1
3 (n+ k)1/2 ≤ 1

3k
3/4.

Now if n ≥ 3k, then, by exercise 4.14.2 of appendix 4D,

(44/33)k

ek
≤
(
4k

k

)
≤
(
n+ k

k

)
≤ k

1
2k

3/4

4k−1

which is false for all k ≥ 1. Therefore n + k ≤ 4k, and so if n + k > 5
2k, then our

inequality becomes

(55/3322)k/2

ek
≤
(
5k/2

k

)
≤
(
n+ k

k

)
≤ (4k)k

1/2

4k−1.

This is false for all k ≥ 780.

Finally for the range k ≤ n ≤ 3k/2 if prime p is in the range (n+k)/3 < p ≤ k,
then 2p is the only multiple of p that appears in (n + 1) · · · (n + k) and so p does

not divide
(
n+k
k

)
. Therefore(

2k

k

)
≤
(
n+ k

k

)
≤

∏
p≤(n+k)1/2

(n+ k)
∏

p≤(n+k)/3

p ≤
∏

p≤(n+k)1/2

(3k)π(2k
1/2)

∏
p≤5k/6

p,

which implies that
4k

ek
≤ (4k)k

1/2

45k/6−1

which is false for all k ≥ 1471. �
Exercise 5.10.3. (a) Use Bertrand’s postulate and the Sylvester-Schur Theorem to show that

if 1 ≤ r < s, then there is a prime p that divides exactly one of the integers r + 1, . . . , s.

(b) Deduce that if 1 ≤ r < s, then 1
r+1

+ · · ·+ 1
s
is never an integer.



Bonus read: A review
of prime problems

5.11. Prime problems

In this bonus section we will discuss various natural sequences that are expected to
contain infinitely many primes, highlighting recent progress.

Mathematicians have tried in vain to discover some order in the sequence
of the prime numbers and we have every reason to believe that there are
some mysteries that the human mind shall never penetrate.

— Leonhard Euler (1740)

Prime values of polynomials in one variable

In section 5.6 we mentioned the twin prime conjecture, that there are infinitely
many pairs of primes that differ by 2. What about other pairs? Obviously there
can be no more than one pair of primes that differ by an odd integer k (as one of
the two integers must be divisible by 2), but when the difference is an even integer
k there is no such obstruction. Calculations then suggest that:

For all even integers 2m > 0 there are infinitely many pairs of primes that differ
by 2m. That is, there are infinitely many prime pairs p, p+ 2m.

Here we asked for simultaneous prime values of two monic linear polynomials x
and x+2m. What if we select polynomials with different leading coefficients, like x
and 2x+1? Such prime pairs come up naturally in Sophie Germain’s Theorem 7.11
(of section 7.27 in appendix 7F) and calculations support the guess that there are
many (like 3 and 7; 5 and 11; 11 and 23; 23 and 47; . . .). We therefore conjecture:

There are infinitely many pairs of primes p, 2p+ 1.

One can generalize this to other pairs of linear polynomials but we might again
have the problem that at least one is even, as with p, 3p+ 1.

101



102 Bonus read: A review of prime problems

Exercise 5.11.1. Give conditions on integers a, b, c, d with a, c > 0, assuming that (a, b) =
(c, d) = 1, which guarantee that there are infinitely many integers n for which an+ b and cn+ d
are different and both positive and odd. We conjecture, under these conditions that:

There are infinitely many pairs of primes am+ b, cm+ d.

For triples of linear forms and even k-tuplets of linear forms, there are more
exceptional cases. For example, the three polynomials n, n + 2, n + 4 can all si-
multaneously take odd values but, for each integer n, one of them is divisible by
3. We call 3 a fixed prime divisor, which plays the same role as 2 in the ex-
ample n, n + k with k odd. In general we need that a given set of linear forms
a1x+ b1, a2x+ b2, . . . , akx+ bk with integer coefficients is admissible; that is, there
is no fixed prime divisor p. Specifically, for each prime p, there exists an integer
np for which none of the ajnp + bj is divisible by p, which implies that p does not
divide ajn+ bj for 1 ≤ j ≤ k for every integer n ≡ np (mod p). This leads us to

The prime k-tuplets conjecture. Let a1x + b1, . . . , akx + bk be an admissible
set of k linear polynomials with integer coefficients, such that each aj is positive.
Then there are infinitely many positive integers m for which

a1m+ b1, . . . , akm+ bk are all prime.

Exercise 5.11.2.† Assuming the prime k-tuplets conjecture deduce that there are infinitely many
pairs of consecutive primes p, p+ 100.

Exercise 5.11.3.† Assuming the prime k-tuplets conjecture deduce that there are infinitely many
triples of consecutive primes in an arithmetic progression.

Exercise 5.11.4.† Assuming the prime k-tuplets conjecture deduce that there are infinitely many
quadruples of consecutive primes formed of two pairs of prime twins.

Exercise 5.11.5.† Let an+1 = 2an + 1 for all n ≥ 0. Fix an arbitrarily large integer N . Use the
prime k-tuplets conjecture to show that we can choose a0 so that a0, a1, . . . , aN are all primes.

Exercise 5.11.6. Show that the set of linear polynomials a1m + 1, a2m + 1, . . . , akm + 1, with
each aj positive, is admissible.

There is more on prime k-tuplets of linear polynomials in appendix 5E.

What about other polynomials? For example, the polynomial n2 + 1 takes
prime values 2, 5, 17, 37, 101, . . . seemingly on forever, so we conjecture that:

There are infinitely many primes of the form n2 + 1.

The polynomial x2 + 2x cannot be prime for many integer values since it is
reducible (recall Theorem 5.4 and exercise 5.8.14(c)). This is a different reason
(from the fixed prime factors above) for a polynomial not to take more than finitely
many prime values. These are the only reasons known for a polynomial not to take
infinitely many prime values and, if neither of them holds, then we believe that the
polynomial does take on infinitely many prime values. More precisely:

Polynomial prime values conjecture. Let f1(x), . . . , fk(x) ∈ Z[x], each irre-
ducible, with positive leading coefficients. If f1 · · · fk has no fixed prime divisor,
then:

There are infinitely many integers m for which f1(m), . . . , fk(m) are all prime.

To be precise, if f1, . . . , fk have “no fixed prime divisor” then we mean that for
every prime p there exists an integer np such that f1(np) · · · fk(np) is not divisible



Prime values of polynomials in several variables 103

by p. The polynomial prime values conjecture specialized to linear polynomials is
the prime k-tuplets conjecture.20

Exercise 5.11.7. Prove that the only prime pair p, p2 + 2 is 3, 11.

Exercise 5.11.8. (a) Prove that if f1 · · · fk has no fixed prime divisor, then, for each prime p,
there are infinitely many integers n such that f1(n) · · · fk(n) is not divisible by p.

(b)† Show that if p > deg(f1(x) · · · fk(x)) and p does not divide f1(x) · · · fk(x), then np exists.
(c) Prove that if fj(x) = x+ hj for given integers h1, . . . , hk, then np exists for a given prime

p if and only if #{distinct hj (mod p)} < p.

The only case of the polynomial prime values conjecture that has been proved
is when k = 1 with f1(.) is linear. The hypothesis ensures that f(x) = qx + a
with q ≥ 1 and (a, q) = 1. This is Dirichlet’s Theorem (that there are infinitely
many primes ≡ a (mod q) whenever (a, q) = 1, which we discuss in sections 8.17 of
appendix 8D and 13.7).

Distinguishing primes and Pk’s from other integers. The Möbius function
was introduced in section 4.5, and in Corollary 4.5.1 we saw that the sum∑

d|n
μ(d)

is non-zero only if n = 1 and so allows us to distinguish the integer 1 from all other
positive integers. In section 4.11 of appendix 4B we saw that if the sum∑

d|n
μ(d) log(n/d)

is non-zero, then n has exactly one prime factor and so allows us to distinguish
primes and prime powers from all other positive integers. A positive integer is
called a “Pk” if it has no more than k distinct prime factors. In the next exercise
we will see how an analogous sum allows us to distinguish Pk’s.

Exercise 5.11.9.† (a)‡ Let x0, . . . , xm be variables. Prove that if m > k ≥ 0, then∑
S⊂{1,2,...,m}

(−1)|S|
(
x0 +

∑
j∈S

xj

)k
= 0.

(b) Deduce that if n has more than k different prime factors, then∑
d|n

μ(d)(log(n/d))k = 0.

(c)‡ What value does this take when n has exactly k different prime factors?

Exercise 5.11.10. Show that if each prime factor of n is > n1/3, then n is either prime or the
product of two primes.

Prime values of polynomials in several variables

One can ask for prime values of polynomials in two or more variables, for example,
primes of the form m2+n2 or the form a2+b2+1 or more complicated polynomials
of mixed degree like 4a3 + 27b2. What is known?

20This conjecture was first formulated by Andrzej Schinzel in 1958. He called it “Hypothesis H”
in that paper, and the name has stuck.
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The proof of the prime number theorem can be adapted to many situations,
for example to primes of the form m2 + n2 or the form 2u2 + 2uv + 3v2 or indeed
the prime values of any irreducible binary quadratic form (which are discussed in
chapters 9 and 12) without a fixed prime divisor. The proof for m2 + n2 uses the
fact that m2 + n2 = (m+ in)(m− in), the norm of m+ in. One can develop this
to prove that any such norm form (the appropriate generalization21 of m2 + n2

to higher degree) takes on infinitely many prime values as long as it has no fixed
prime factor. A norm form is always a degree d polynomial in d variables.

One can then ask for prime values of norm forms in which we fix some of the
variables (perhaps to 0). For example, if m = 1 in m2+n2, we are back to the open
question about prime values of n2 + 1. However in 2002 Heath-Brown was able to
prove that a3 + 2b3 takes on infinitely prime values and then extended this, with
Moroz, to any irreducible cubic form in two variables. In 2018, Maynard proved
such a result for a family of norm forms22 in 3m variables of degree 4m (or less).

These results on norm forms were all inspired by Friedlander and Iwaniec’s 1998
breakthrough in which they took n to be a square in m2 + n2 (and therefore found
prime values of u2 + v4), following Fouvry and Iwaniec’s 1997 paper in which they
took n to be prime (and therefore obtained infinitely many prime pairs p,m2+p2).
This was the first example in which the polynomial in question is sparse in that the
number of integer values it takes up to x is roughly xc for some c < 1. The current
record sparsity is c = 2

3 from the work of Heath-Brown and Moroz. In 2017, Heath-
Brown and Xiannan Li went beyond the Fouvry-Iwaniec and Friedlander-Iwaniec
results by showing that there are infinitely many prime pairs p,m2 + p4.

In every case we expect that the proportion of values of the polynomial up to
x which are prime is about c/ log x, where c is a constant which depends on how
often each prime divides values of the polynomial.

Back in 1974, Iwaniec had shown how versatile sieve methods could be by
showing that any quadratic polynomial in two variables (which is irreducible and
has no fixed prime divisor) takes on infinitely many prime values, for example,
m2 + n2 + 1. We will see this result put to good use in appendix 12G when tiling
a circle with smaller circles.

What about the prime values of more than one polynomial in several variables?
We can generalize our conjectures as follows:

Multivariable polynomial prime values conjecture. Let f1(x1, . . . , xn), . . . ,
fk(x1, . . . , xn) ∈ Z[x1, . . . , xn], each of which is irreducible. Suppose that there are
infinitely many n-tuplets of integers m1, . . . ,mn for which each fj(m1, . . . ,mn) is
positive. If f1 · · · fk has no fixed prime divisor, then there are

Infinitely many n-tuplets of integers m1, . . . ,mn for which
f1(m1, . . . ,mn), . . . , fk(m1, . . . ,mn) are all prime.

In 1939, van der Corput showed that there are infinitely many three-term arith-
metic progressions of primes, which can be written as

a, a+ d, a+ 2d,

21More precisely the norm of
∑

i xiωi where the ωi are a basis for the ring of integers of some

number field of degree d and the xi are the variables.
22The norm of

∑3m
i=1 xiω

i where the field, of degree 4m, is generated by ω over Q.
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three degree-one polynomials in two variables. For a long time, methods seemed
inadequate to extend this to length four arithmetic progressions, but this was re-
solved in 2008 by Green and Tao, who proved that for any fixed integer k ≥ 3 there
are infinitely many prime k-tuplets of the form

a, a+ d, a+ 2d, . . . , a+ (k − 1)d.

The methods used were quite new to the search for prime numbers and this has
led to widespread interest. In 2012, along with Ziegler, they were able to prove a
very general result for linear polynomials, which is as good as one can hope for,
given that there has been no progress directly on the prime k-tuplets conjecture:

Until we prove the twin prime conjecture we will be unable to prove the mul-
tivariable polynomial prime values conjecture, in full generality, even for linear
polynomials, since two of the polynomials might differ by two, for example if x+3y
and x+3y+2 are in our set. More generally, without progress on the prime k-tuplets
conjecture, we must avoid any linear relation between two of our polynomials.

Theorem 5.8 (The Green-Tao-Ziegler Theorem). Suppose that f1(x), . . . , fk(x)
are linear polynomials which satisfy the hypothesis of the multivariable polynomial
prime values conjecture. Moreover assume that if 1 ≤ i < j ≤ k, there do not exist
integers a, b, c, not all zero, for which afi+ bfj = c. Then there are infinitely many
m ∈ Zn for which f1(m), . . . , fk(m) are all prime.

We will discuss applications of the Green-Tao-Ziegler Theorem in appendix 5E.

It is not difficult to show that there are infinitely many primes of the form
b2 − 4ac, the discriminant of an arbitrary quadratic polynomial. However we do
not know how to prove that there are infinitely many primes of the form 4a3 +
27b2, the discriminant of the cubic polynomial x3 + ax + b. Proving this would
have a significant impact on our understanding of various questions about degree 3
Diophantine equations.

Exercise 5.11.11. Let g(x) = 1+
∏k

j=1(x− j). Prove that there exist integers a and b such that

the reducible polynomial f(x) = (ax+ b)g(x) is prime when x = n for 1 ≤ n ≤ k. Compare this

to the result in exercise 5.8.14(c) (with d = k + 1).

Goldbach’s conjecture and variants

Goldbach’s 1742 conjecture is the statement that every even integer ≥ 4 can be
written as the sum of two primes. It is still an open question though it has now
been verified for all even numbers ≤ 4× 1018.

Great problems motivate mathematicians to think of new techniques, which
can have great influence on the subject, even if they fail to resolve the original
question. For example, although there have been few plausible ideas for proving
Goldbach’s conjecture, it has motivated some of the development of sieve theory,
and there are some beautiful results on modifications of the original problem. The
most famous are:

In 1975 Montgomery and Vaughan showed that if there are any exceptions to
Goldbach’s conjecture (that is, even integers n that are not the sum of two primes),
then there are very few of them.
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In 1973 Jingrun Chen showed that every sufficiently large even integer is the
sum of a prime and an integer that is the product of at most two primes. Here
“sufficiently large” means enormous.

In 1934 I. M. Vinogradov proved that every sufficiently large odd integer is the
sum of three primes. The “sufficiently large” has recently been removed: Harald
Helfgott, with computational assistance from David Platt, proved that every odd
integer > 1 is the sum of at most three primes.

Exercise 5.11.12. Show that the Goldbach conjecture is equivalent to the statement that every
integer > 1 is the sum of at most three primes.23

Other questions

Before this chapter we asked if there are infinitely many primes of the form 2p − 1
(Mersenne primes) or of the form 22

n

+ 1 (Fermat primes). We can ask other
questions in this vein, for example prime values of second-order linear recurrences
which start 0, 1 (like the Fibonacci numbers) or their companion sequences (see
exercise 3.9.3) or prime values of high-order linear recurrence sequences.

Mersenne primes written in binary look like 111 . . . 111, and so are palindromic.
Some people have been interested in primes of the form 1

9 (10
n − 1) which equal

111 . . . 111 in base 10 and so are palindromic. We are unable to prove there are
infinitely many Mersenne primes, so how about the easier question, are there infin-
itely many palindromic primes when written in binary or in decimal or indeeed in
any other base? Also open.

We saw earlier that it is not difficult to show that there are infinitely many
primes with the first few digits given. But how about missing digits? Can one find
infinitely many primes which have no 7 in their decimal expansion or no 9 or no
consecutive digits 123? These questions are all answered in a remarkable recent
paper of Maynard [4].

Let M be a given n-by-n matrix. The (i, j)th entry of M,M2, . . . can all be
described by an nth-order linear recurrence sequence. To see this think of the

powers of

(
2 0
0 1

)
. We have already asked whether the trace can take infinitely

many prime values. A recent question of interest is to take two (or more) such
matrices M and N say, and then look at the entries of all “words” created by M
and N , for example MaN bM c · · ·Nz, and ask whether the entries are infinitely
often prime (see section 9.15 of appendix 9D and appendix 12G for a beautiful
example).

Guides to conjectures and the Green-Tao Theorem
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and Euler observed that this is equivalent to showing that every even number ≥ 4 is the sum of two
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“Euler is rich, and Goldbach is poor.”
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Appendices. The extended version of chapter 5 has the following additional
appendices:

Appendix 5B. An important proof of infinitely many primes. We give Euler’s
proof that there are infinitely many primes (which yields that the sum of the re-
ciprocals of the primes diverges) and use this to show that the primes make up a
vanishing proportion of the integers. We use this to introduce the Riemann zeta-
function, as well as Riemann’s program for proving the prime number theorem.

Appendix 5C. What should be true about primes? Here we explain Cramér’s
model for the distribution of primes based on Gauss’s thoughts and determine what
it predicts about the expected longest gaps between primes.

Appendix 5D. Working with Riemann’s zeta-function. We further develop Rie-
mann’s program for proving the prime number theorem, detailing how the zeros of
the Riemann zeta-function relate to the count of primes. We are therefore able to
state the Riemann Hypothesis and discuss some attractive reformulations.

Appendix 5E. Prime patterns: Consequences of the Green-Tao Theorem. We
look for all sorts of prime patterns and at fun questions about primes, for example
magic squares of primes like

17 89 71

113 59 5

47 29 101

41 71 103 61

97 79 47 53

37 67 83 89

101 59 43 73

Examples of magic squares of primes.

Appendix 5F. A panoply of prime proofs presents several further proofs that
there are finitely many primes, one by point-set topology, another using irrational-
ity, and yet another via a counting argument.

Appendix 5G. Searching for primes and prime formulas. We look for formulas
for primes, including Matijasevic’s amazing polynomial in 26 variables, discuss their
value, explore Conway’s prime-producing machine and patterns in Ulam’s spiral.

Appendix 5H. Dynamical systems and infinitely many primes. Developing a
perspective on Euclid’s original proof, we show that there are many different poly-
nomials for which there are infinitely many prime divisors of the iterated values of
the polynomial, starting from a non-periodic point.





Chapter 6

Diophantine problems

Diophantine equations are polynomial equations in which we study the integer or
rational solutions. They are named after Diophantus (who lived in Alexandria in
the third century A.D.) who wrote up his understanding of such equations in his
thirteen volume Arithmetica (though only six part-volumes survive today). This
work was largely forgotten until interest was revived by Bachet’s 1621 translation
of Arithmetica into Latin.1

6.1. The Pythagorean equation

Right-angled triangles with sides 3, 4, 5 and 5, 12, 13, etc, were known to the ancient
Babylonians. We wish to determine all right-angled triangles with integer sides,
which amounts to finding all solutions in positive integers x, y, z to the Pythagorean
equation

x2 + y2 = z2.

Note that z > x, y > 0 as x, y, and z are all positive. We can reduce the problem,
without loss of generality, so as to work with some convenient assumptions:

• That x, y, and z are pairwise coprime, by dividing through by their gcd, as
in exercise 1.7.8.

• That x is even and y is odd, and therefore that z is odd: First note that x
and y cannot both be even, since x, y, and z are pairwise coprime; nor both
odd, by exercise 2.5.6(b). Hence one of x and y is even, the other odd, and
we interchange them, if necessary, to ensure that x is even and y is odd.

Under these assumptions we reorganize the equation and factor to get

(z − y)(z + y) = z2 − y2 = x2.

1Translations of various ancient Greek texts into Latin helped inspire the Renaissance.
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We now prove that (z − y, z + y) = 2: We observe that (z − y, z + y) divides
(z + y)− (z − y) = 2y and (z + y) + (z − y) = 2z, and that (2y, 2z) = 2(y, z) = 2.
Therefore (z− y, z+ y) divides 2, and so equals 2 as z− y and z+ y are both even.

Therefore, since (z − y)(z + y) = x2 and (z − y, z + y) = 2, there exist integers
r, s such that

z − y = 2s2 and z + y = 2r2; or z − y = −2s2 and z + y = −2r2,

by exercise 3.3.7(c). The second case is impossible since r2, y, and z are all positive.
From the first case we deduce that

x = 2rs, y = r2 − s2, and z = r2 + s2.

To ensure that x, y, and z are pairwise coprime we need (r, s) = 1 and r + s odd.
If we now multiply back in any common factors, we get the general solution

(6.1.1) x = 2grs, y = g(r2 − s2), and z = g(r2 + s2).

If we want an actual triangle, then the side lengths should all be positive so we
may assume that g > 0 and r > s > 0, as well as (r, s) = 1 and r and s having
different parities.2 The reader should verify that the integers x, y, and z given by
this parametrization always satisfy the Pythagorean equation.

2grs

g(r2 + s2)
g(r2 − s2)

Figure 6.1. Parameterization of all integer-sided right-angled triangles.

One can also give a nice geometric proof of the parametrization in (6.1.1). We
start with a reformulation of the question.

Exercise 6.1.1. Prove that the integer solutions to x2 + y2 = z2 with z > 0 and (x, y, z) = 1 are
in 1-to-1 correspondence with the rational solutions u, v to u2 + v2 = 1.

Where else does a line going through (1, 0) intersect the circle x2 + y2 = 1?
Unless the line is vertical it will hit the unit circle in exactly one other point, which
we will denote by (u, v). Note that u < 1. If the line has slope t, then t = v/(u−1)
is rational if u and v are.

2That is, one is even, the other is odd.
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(u, v)
t

(1, 0)(0, 0)

y

x

Figure 6.2. A line through (1, 0) on the circle x2 + y2 = 1.

In the other direction, the line through (1, 0) of slope t is y = t(x − 1) which
intersects x2 + y2 = 1 where 1 − x2 = y2 = t2(x − 1)2, so that either x = 1 and
y = 0, or we have 1 + x = t2(1− x), which yields the point (u, v) with

u =
t2 − 1

t2 + 1
and v =

−2t

t2 + 1
.

These are both rational if t is. We have therefore proved that u, v ∈ Q if and only
if t ∈ Q. In other words the line of slope t through (1, 0) hits the unit circle again
at another rational point if and only if t is rational, and then we can classify those
points in terms of t. Therefore, writing t = −r/s where (r, s) = 1, we have

u =
r2 − s2

r2 + s2
and v =

2rs

r2 + s2
,

the same parametrization to the Pythagorean equation as in (6.1.1) when we clear
out denominators.

Exercise 6.1.2.† Find a formula for all the rational points on the curve x2 − y2 = 3.

Exercise 6.1.3. We call {a, b, c} a primitive Pythagorean triple if a, b, and c are pairwise coprime
integers for which a2 + b2 = c2.
(a) Prove that, in a primitive Pythagorean triple, the difference in length between the hy-

potenuse and each of the other sides is either a square or twice a square.
(b) Can one find primitive Pythagorean triples in which the hypotenuse is three units longer

than one of the other sides? Either give an example or prove that it is impossible.
(c)† One can find primitive Pythagorean triples in which the hypotenuse is one unit longer

than one of the other sides, e.g., {3, 4, 5}, {5, 12, 13}, {7, 24, 25}, {9, 40, 41}, {11, 60, 61}.
Parametrize all such solutions.

(d)† One can find primitive Pythagorean triples in which the hypotenuse is two units longer than
one of the other sides, e.g., {3, 4, 5}, {8, 15, 17}, {12, 35, 37}, {16, 63, 65}, {20, 99, 101}.
Parametrize all such solutions.
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Exercise 6.1.4. (a) Prove that the side lengths of a primitive Pythagorean triple are �≡ 2
(mod 4).

(b) Given integer n > 1 with n �≡ 2 (mod 4), explicitly give a primitive Pythagorean triple
which has n as a side length.

Exercise 6.1.5.† Prove that there are infinitely many triples of coprime squares in arithmetic
progressions.

Around 1637, Pierre de Fermat was studying the proof of (6.1.1) in his copy of
Bachet’s translation of Diophantus’s Arithmetica. In the margin he wrote:

I have discovered a truly marvellous proof that it is impossible to separate a
cube into two cubes, or a fourth power into two fourth powers, or in general,
any power higher than the second into two like powers. This margin is too
narrow to contain it.

—Pierre de Fermat (1637), in his copy of Arithmetica

In other words, Fermat claimed that for every integer n ≥ 3 there do not exist
positive integers x, y, z for which

xn + yn = zn.

This is known as “Fermat’s Last Theorem”. Fermat did not subsequently mention
this problem or his truly marvellous proof elsewhere, and the proof has not, to
date, been rediscovered, despite many efforts.3 Fermat did show that there are no
solutions when n = 4 and we will present his proof in section 6.4, as well as some
consequences for more general exponents n in Fermat’s Last Theorem.

6.2. No solutions to a Diophantine equation through descent

Some Diophantine equations can be shown to have no solutions by starting with a
purported smallest solution and finding an even smaller one, thereby establishing
a contradiction. Such a proof by descent can be achieved in various different ways.

No solutions through prime divisibility

For some equations one can perform descent by considering the divisibility of the
variables by various primes. We now give such a proof that

√
2 is irrational.

Proof of Proposition 3.4.1 by 2-divisibility. [
√
2 is irrational.] Let us recall

that if
√
2 is rational, then we can write it as a/b so that a2 = 2b2. Let us suppose

that (b, a) gives the smallest solution to y2 = 2x2 in positive integers. Now 2
divides 2b2 = a2 so that 2|a. Writing a = 2A, thus b2 = 2A2, and so 2|b. Writing
b = 2B we obtain a solution A2 = 2B2 where A and B are half the size of a and b,
contradicting the assumption that (b, a) is minimal. �

Exercise 6.2.1. Show that there are no non-zero integer solutions to x3 + 3y3 + 9z3 = 0.

3Fermat wrote several important thoughts about number theory on his personal copy of Arithmetica,
without proof. When he died his son, Samuel, made these available by republishing Arithmetica with
his father’s annotations. This is the last of those claims to have been fully understood.
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No solutions through geometric descent

Proof of Proposition 3.4.1 by geometric descent. Again assume that
√
2 =

a/b with a and b positive integers, where a is minimal. Hence a2 = 2b2 which gives
rise to the smallest isosceles, right-angled triangle, OPQ with integer side lengths
OP = OQ = b, PQ = a and angles ˆPOQ = 90◦, ˆPQO = ˆQPO = 45◦. Now mark
a point R which is b units along PQ from Q and then drop a perpendicular to meet
OP at the point S so that SR is perpendicular to PQ. Then ˆRPS = ˆQPO = 45◦,
and so ˆRSP = 180◦−90◦−45◦ = 45◦ by considering the angles in the triangle RSP .
Therefore RSP is a smaller isosceles, right-angled triangle than OPQ. Moreover
we have side lengths RS = PR = a− b. To establish our contradiction we need to
show that the hypoteneuse, PS, also has integer length.

O

Q

P

R

S

b

2b− a a− b

b

a− b

b

a− b

a

45◦ 45◦

Figure 6.3. No solutions through geometric descent.

The two triangles, OQS and RQS, are congruent, since they both contain a
right-angle opposite SQ and adjacent to a side of length b (OQ and RQ, respec-
tively). Therefore OS = SR = a− b and so PS = OP −OS = b− (a− b) = 2b− a.
Hence RSP is a smaller isosceles, right-angled triangle than OPQ with integer side
lengths, contradicting the assumed minimality of OPQ. �

One can write this proof more algebraically: As a2 = 2b2, so a > b > a/2. Now

(2b− a)2 = a2 − 4ab+ 2b2 + 2b2 = a2 − 4ab+ 2b2 + a2 = 2(a− b)2.

However 0 < 2b− a < a, contradicting the minimality of a.

Proof of Proposition 3.4.2 by an analogous descent. [If d is an integer for

which
√
d is rational, then

√
d is an integer.] If

√
d is rational, then we can write

it as a/b so that a2 = db2. Let us suppose that (b, a) gives the smallest solution
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to y2 = dx2 in positive integers. Let r be the smallest integer ≥ db/a, so that
db
a + 1 > r ≥ db

a , and therefore a > ra− db ≥ 0. Then

(ra− db)2 = da2 − 2rdab+ d2b2 + (r2 − d)a2

= da2 − 2rdab+ d2b2 + (r2 − d)db2 = d(rb− a)2.

However 0 ≤ ra− db < a, contradicting the minimality of a, unless ra− db = 0. In
this case r2 = d · db2/a2 = d. �

6.3. Fermat’s “infinite descent”

Fermat proved that there are no right-angled triangles with all integer sides whose
area is a square (see exercise 6.3.1 below). In so doing he developed the important
technique of “infinite descent”, which we now exhibit in two related questions. (The
reader can read the proof of only one of the two following similar theorems. They
both lead to the same Corollary 6.4.1.)

Theorem 6.1. There are no solutions in non-zero integers x, y, z to

x4 + y4 = z2.

Proof. Assume that there is a solution and let x, y, z be the solution in positive
integers with z minimal. We may assume that gcd(x, y) = 1 or else we can divide
the equation through by the fourth power of gcd(x, y) to obtain a smaller solution.
Here we have

(x2)2 + (y2)2 = z2 with gcd(x2, y2) = 1,

and so, by (6.1.1), there exist integers r, s with (r, s) = 1 and r + s odd such that

x2 = 2rs, y2 = r2 − s2, and z = r2 + s2

(swapping the roles of x and y if necessary to ensure that x is even). Now r
and s have the same sign since rs = x2/2, so we may assume they are both > 0
(multiplying each by −1 if necessary). Now s2 + y2 = r2 with y odd and (r, s) = 1
and so, by (6.1.1), there exist integers a, b with (a, b) = 1 and a+ b odd such that

s = 2ab, y = a2 − b2, and r = a2 + b2,

and so

x2 = 2rs = 4ab(a2 + b2).

Now a and b have the same sign since ab = s/2 > 0, and therefore we may assume
they are both > 0 (multiplying each by −1 if necessary).

Now a, b, and a2 + b2 are pairwise coprime positive integers whose product is
a square so they must each be squares by exercise 3.3.7(b). Write a = u2, b = v2,
and a2 + b2 = w2 for some positive integers u, v, w. Therefore

u4 + v4 = a2 + b2 = w2

yields another solution to the original equation. We wish to compare this to the
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solution (x, y, z) we started with. We find that

w ≤ w2 = a2 + b2 = r < r2 + s2 = z,

contradicting the minimality of z. �
Theorem 6.2. There are no solutions in positive integers x, y, z to

x4 − y4 = z2.

Proof. If there is a solution, take the one with x minimal. We may assume (x, y) =
1 or else we divide through by the fourth power of the common factor.

We begin by noting that

(y2)2 + z2 = (x2)2 with gcd(x2, y2) = 1.

If z is even, then, by (6.1.1), there exist integers X,Y with (X,Y ) = 1, of opposite
parity, for which

x2 = X2 + Y 2 and y2 = X2 − Y 2, so that X4 − Y 4 = (xy)2.

Now X2 < x2, contradicting the minimality of x.

Therefore z is odd. By (6.1.1) there exist integers r, s with (r, s) = 1, of opposite
parity, for which

x2 = r2 + s2 and y2 = 2rs.

Now r and s have the same sign since rs = y2/2 > 0, and therefore we may
assume they are both > 0 (multiplying each by −1 if necessary). From the equation
2rs = y2 we deduce that r = 2R2, s = Z2 for some integers R,Z (swapping the
roles of r and s, if necessary). From (6.1.1) applied to the equation r2 + s2 = x2,
there exist integers u, v with (u, v) = 1, of opposite parity, for which r = 2uv and
s = u2 − v2. Now uv = r/2 = R2, so we may assume they are both positive
(multiplying each by −1 if necessary), and so u = m2, v = n2 for some integers
m,n. Therefore

m4 − n4 = u2 − v2 = s = Z2.

Now m2 < (mn)2 = uv = r/2 < x/2, contradicting the minimality of x. �
Exercise 6.3.1 (Fermat, 1659).
(a)† Prove that there is no right-angled, integer-sided, triangle whose area is a square.
(b) Deduce that there is no right-angled, rational-sided, triangle whose area is 1.
(c) Deduce that there are no integer solutions to x4 + 4y4 = z2.

In appendix 6B we will see an alternative proof of these results using classical Greek geometry.

6.4. Fermat’s Last Theorem

Fermat’s Last Theorem is the assertion that for every integer n ≥ 3 there do not
exist positive integers x, y, z for which

xn + yn = zn.

Corollary 6.4.1 (Fermat). There are no solutions in non-zero integers x, y, z to

x4 + y4 = z4.

Exercise 6.4.1. Prove this using Theorem 6.1 or Theorem 6.2.
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We deduce that Fermat’s Last Theorem holds for all exponents n ≥ 3 if it holds
for all odd prime exponents:

Proposition 6.4.1. If Fermat’s Last Theorem is false, then there exists an odd
prime p and pairwise coprime non-zero integers x, y, z such that

xp + yp + zp = 0.

Proof. Suppose that xn+yn = zn with x, y, z > 0 and n ≥ 3. If two of x, y, and z
have a common factor, then it must divide the third and so we can divide out the
common factor. Hence we may assume that x, y, z are pairwise coprime positive
integers. Now any integer n ≥ 3 has a factor m which is either = 4 or is an odd
prime (see exercise 3.1.3(b)). Hence, if n = dm, then (xd)m + (yd)m = (zd)m, so
we get a solution to Fermat’s Last Theorem with exponent m. We can rule out
m = 4 by Corollary 6.4.1. Therefore m = p is an odd prime and we have the desired
solution (xd)p + (yd)p + (−zd)p = 0. �

A brief history of equation solving

There have been many attempts to prove Fermat’s Last Theorem, inspiring the
development of much great mathematics, for example, ideal theory (see appendices
3D and 12B). We will discuss one beautiful advance due to Sophie Germain from
the beginning of the 19th century (see section 7.27 of appendix 7F).

In 1994 Andrew Wiles proved Fermat’s Last Theorem, developing ideas of Frey,
Ribet, and Serre involving modular forms, a subject far removed from the original
question. The proof is extraordinarily deep, involving some of the most profound
themes in arithmetic geometry.4 If the whole proof were written in the leisurely
style of, say, this book, it would probably take a couple of thousand pages. This
could not be the proof that Fermat believed that he had—could Fermat have been
correct? Could there be a short, elementary, marvelous proof still waiting to be
found? Or will Fermat’s claim always remain a mystery?

To some extent one can measure the difficulty of solving Diophantine equations
(especially rational solutions to equations with two variables) by their degree.5 The
first three chapters of this book focus on linear (degree-one) equations, culminating
in section 3.6. Much of the rest of this book provides tools for studying degree-two
(quadratic) equations; see chapters 8 and 9, sections 11.2 and 11.3, and chapter
12. Degree-three (cubic) equations give rise to elliptic curves; many of the key
questions about elliptic curves lay shrouded in mystery and so they are intensively
researched in number theory today (see chapter 17). In 1983 Gerd Faltings showed
that higher-degree Diophantine equations only have finitely many rational solutions
(though not how to find those solutions).

For higher-degree equations perhaps the most interesting cases are Diophantine
equations with varying degree, like the Fermat equation. Another famous example
is Catalan’s conjecture: The positive integer powers are

1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, . . .

4See our sequel [Grab] for some discussion of the ideas involved in the proof.
5A better but more sophisticated invariant is the genus, which requires quite a bit of algebraic

geometry to define and is beyond the scope of this book.
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which seem to get wider spread out as they get larger. Only two of the numbers in
our list, 8 and 9, differ by 1, and Catalan conjectured that this is the only example
of powers differing by 1. That is, the only integer solution to

xp − yq = 1 with x, y �= 0 and p, q ≥ 2,

is 32 − 23 = 1. This was shown to be true by Preda Mihăilescu in 2002.

Combining these two famous equations leads to the Fermat-Catalan equation

xp + yq = zr where (x, y, z) = 1 and
1

p
+

1

q
+

1

r
< 1.

We insist that (x, y, z) = 1 because one can find “trivial” solutions like 2k + 2k =
2k+1 in many cases (see exercise 6.5.8 for more examples). Obviously there are
solutions when one of p, q, r is 1, so we insist they are all ≥ 2. One can find
solutions when two of the exponents equal 2, and so the peculiar looking condition
1
p + 1

q + 1
r < 1 turns out to be the correct one. We do know of ten solutions:

1 + 23 = 32, 25 + 72 = 34, 73 + 132 = 29, 27 + 173 = 712, 35 + 114 = 1222,

177 + 762713 = 210639282, 14143 + 22134592 = 657, 92623 + 153122832 = 1137,

438 + 962223 = 300429072, 338 + 15490342 = 156133.

It is conjectured that there are only finitely many solutions xp, yq, zr to the Fermat-
Catalan equation; perhaps these ten are all the solutions. All of our ten solutions
have an exponent equal to 2. So one might further conjecture that there are no
solutions to the Fermat-Catalan equation with p, q, r all > 2. These are open
questions and mathematicians are making headway. Henri Darmon and I proved in
1995 that there are only finitely many solutions for each fixed triple p, q, r. Today we
know that for various infinite families exponent triples p, q, r, the Fermat-Catalan
equation has no solutions: For example when p = q and 1

p + 1
q + 1

r < 1 there are

no solutions if r is divisible by 2 or by 3 or by p, or if p is even and r is divisible by
5, etc. (see [1] for the state of the art).

Now that Fermat’s Last Theorem has been proved, what can take its place
as the “holy grail” of Diophantine equations? The abc-conjecture is clearly an
important problem that would have profound effects on equations and even in other
areas of number theory. In appendix 6A we will discuss its analogy for polynomials
and then discuss the abc-conjecture itself and its influence on other equations, in
section 11.5.

References for this chapter
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Additional exercises

Exercise 6.5.1. Find all rational-sided right-angled triangles in which the area equals the perime-
ter. Prove that 5, 12, 13 and 6, 8, 10 are the only such integer-sided triangles.
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Exercise 6.5.2.† Let n be an integer > 2 that is �≡ 2 (mod 4). Prove that there are 2ω(n)−1 dis-
tinct primitive Pythagorean triangles in which n is the length of a side which is not the hypotenuse,
where ω(n) counts the number of distinct prime factors of n.

Exercise 6.5.3.† Find a 1-to-1 correspondence between pairs of integers b, c > 0 for which

x2 − bx − c and x2 − bx + c are both factorable over Z, and right-angled triangles in which all
three sides are integers.

Exercise 6.5.4. Prove that if f(x) ∈ Z[x] is a quadratic polynomial for which f(x) and f(x) + 1
both have integer roots, then f(x) + 1 is the square of a linear polynomial. (Try substituting the
roots of f(x) into f(x) + 1 and studying divisibilities of the differences of the roots.)

Exercise 6.5.5.† We wish to show that α =
√

5+1
2

is irrational. Suppose it is rational, so that

α = p/q with (p, q) = 1. Now α satisfies the equation x2 = x + 1, so dividing through by x we
have x = (1 + x)/x, and so α = (p + q)/p. Prove that p/q cannot equal (p + q)/p and therefore
establish a contradiction.

Exercise 6.5.6.† Generalize the proof in the last exercise, to prove that if α is a rational root of
x2 − ax− b ∈ Z[x], then α is an integer which divides b.

Exercise 6.5.7.‡ Prove that 2n is the length of the perimeter of a right-angled integer-sided
triangle if and only if there exist divisors d1, d2 of n for which d1 < d2 < 2d1.

Exercise 6.5.8. Suppose that integers p, q, r are given. For any integers a and b let c = ap+bq . If
we multiply this through by cn, where n is divisible by p and q, then (acn/p)p +(bcn/q)q = cn+1.

Determine conditions on p, q, and r under which we find an integer n such that cn+1 is an rth
power (and therefore find an integer solution to xp + yq = zr, albeit with (x, y, z) > 1).

Exercise 6.5.9. Calculations show that every integer in [129, 300] is the sum of distinct squares.
Deduce that every integer > 128 is the sum of distinct squares. (In exercise 2.5.6(f) we showed
that there are infinitely many integers that cannot be written as the sum of three squares. In
appendix 12E we will show that every integer is the sum of four squares.)

Exercise 6.5.10. Prove that there are infinitely many integers that cannot be written as the sum
of three cubes.

Exercise 6.5.11.‡ Calculations show that every integer in [12759, 30000] is the sum of distinct
cubes of positive integers. Deduce that every integer > 12758 is the sum of distinct cubes of
positive integers. (In 2015 Siksek showed that every integer > 454 is the sum of at most seven
positive cubes. It is believed, but not proven, that every sufficiently large integer is the sum of at
most four positive cubes.)

Exercise 6.5.12. Verify the identity 6x = (x+1)3 + (x− 1)3 − 2x3. Deduce that every prime is
the sum of no more than five cubes of integers (which can be positive or negative).

Exercise 6.5.13. (a) Prove that n4 ≡ 0 or 1 (mod 16) for all integers n.
Let N be divisible by 16.

(b) Show that if N is the sum of 15 fourth powers, then each of those fourth powers is even.
(c) Deduce that N is the sum of 15 fourth powers if and only if N/16 is the sum of 15 fourth

powers.

(d) Prove that 31 is not the sum of 15 fourth powers but is the sum of 16 fourth powers.
(e) Deduce that there are infinitely positive integers N that are not the sum of 15 fourth powers.

(In 2005, Deshouillers, Kawada, and Wooley showed that every integer > 13792 can be
written as the sum of 16 fourth powers.)

In 1770 Waring asked whether for all integers k there exists an integer g(k)
such that every positive integer is the sum of at most g(k) kth powers of positive
integers. This was proved by Hilbert in 1909 but it is still a challenge to evaluate
the smallest possible g(k) for each k. We discuss this further in appendix 17D.



Appendix 6A. Polynomial
solutions of Diophantine
equations

6.6. Fermat’s Last Theorem in C[t]

The notation C[t] denotes polynomials whose coefficients are complex numbers. In
section 6.1 we saw that all integer solutions to x2+y2 = z2 are derived from letting
t be a rational number in the polynomial solution

(t2 − 1)2 + (2t)2 = (t2 + 1)2.

We now prove that there are no “genuine” polynomial solutions to Fermat’s equa-
tion

(6.6.1) xp + yp = zp

with exponent p larger than 2 (where by genuine we mean that (x(t), y(t), z(t)) is
not a polynomial multiple of a solution of (6.6.1) in complex numbers).

Proposition 6.6.1. There are no genuine polynomial solutions x(t), y(t), z(t) ∈
C[t] to x(t)p + y(t)p = z(t)p with p ≥ 3.

Proof. Assume that there is a solution with x, y, and z all non-zero to (6.6.1)
where p ≥ 3. We may assume that x, y, and z have no common (polynomial)
factor or else we can divide out by that factor (and that they are pairwise coprime
by the same argument as in section 6.1). Our first step will be to differentiate
(6.6.1) to get

pxp−1x′ + pyp−1y′ = pzp−1z′

and after dividing out the common factor p, this leaves us with

(6.6.2) xp−1x′ + yp−1y′ = zp−1z′.

119
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We now have two linear equations (6.6.1) and (6.6.2) (thinking of xp−1, yp−1, and
zp−1 as our variables), which suggests we use linear algebra to eliminate a variable:
Multiply (6.6.1) by y′ and (6.6.2) by y, and subtract, to get

xp−1(xy′ − yx′) = xp−1(xy′ − yx′) + yp−1(yy′ − yy′) = zp−1(zy′ − yz′).

Therefore xp−1 divides zp−1(zy′ − yz′), but since x and z have no common factors,
this implies that

(6.6.3) xp−1 divides zy′ − yz′.

This is a little surprising, for if zy′− yz′ is non-zero, then a high power of x divides
zy′ − yz′, something that does not seem consistent with (6.6.1).

Now, if zy′ − yz′ = 0, then (y/z)′ = 0 and so y is a constant multiple of z,
contradicting our statement that y and z have no common factor. Therefore (6.6.3)
implies, taking degrees of both sides, that

(p− 1) degree(x) ≤ degree(zy′ − yz′) ≤ degree(y) + degree(z)− 1,

since degree(y′) = degree(y)− 1 and degree(z′) = degree(z)− 1. Adding degree(x)
to both sides gives

(6.6.4) p degree(x) < degree(x) + degree(y) + degree(z).

The right side of (6.6.4) is symmetric in x, y, and z. The left side is a function of
x simply because of the order in which we chose to do things above. We could just
as easily have derived the same statement with y or z in place of x on the left side
of (6.6.4), so that

p degree(y) < degree(x) + degree(y) + degree(z)

and p degree(z) < degree(x) + degree(y) + degree(z).

Adding these last three equations together and then dividing out by degree(x) +
degree(y) + degree(z) implies

p < 3,

and so Fermat’s Last Theorem is proved, at least for polynomials. �

That Fermat’s Last Theorem is not difficult to prove for polynomials is an old
result, going back certainly as far as Liouville in 1851.

Exercise 6.6.1. Prove that all solutions to x(t)2 + y(t)2 = z(t)2 in polynomials are a scalar
multiple of some solution of the form (r(t)2 − s(t)2)2 + (2r(t)s(t))2 = (r(t)2 + s(t)2)2.

6.7. a+ b = c in C[t]

We now intend to extend the idea in our proof of Fermat’s Last Theorem for
polynomials to as wide a range of questions as possible. It takes a certain genius
to generalize to something far simpler than the original. But what could possibly
be more simply stated, yet more general, than Fermat’s Last Theorem? It was
Richard C. Mason (1983) who gave us that insight: Look for solutions to

a+ b = c.

We will just follow through the above proof of Fermat’s Last Theorem for polyno-
mials (Proposition 6.6.1) and see where it leads: Start by assuming, with no loss
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of generality, that a, b, and c are all non-zero polynomials without common factors
(or else all three share the common factor and we can divide it out). Then we
differentiate to get

a′ + b′ = c′.

Next we need to do linear algebra. It is not quite so obvious how to proceed
analogously, but what we do learn in a linear algebra course is to put our coefficients
in a matrix and solutions follow if the determinant is non-zero. This suggests
defining

Δ(t) :=

∣∣∣∣a(t) b(t)
a′(t) b′(t)

∣∣∣∣ .
Then if we add the first column to the second, we get

Δ(t) =

∣∣∣∣a(t) c(t)
a′(t) c′(t)

∣∣∣∣ ,
and similarly

Δ(t) =

∣∣∣∣ c(t) b(t)
c′(t) b′(t)

∣∣∣∣
by adding the second column to the first, a beautiful symmetry.

We note that Δ(t) �= 0, or else ab′ − a′b = 0 so b is a scalar multiple of a (with
the same argument as above), contradicting our hypothesis.

To find the appropriate analogy to (6.6.3), we consider the power to which
the factors of a (as well as b and c) divide our determinant: Let α be a root of
a(t), and suppose that (t − α)e is the highest power of (t − α) which divides a(t)
(we write (t − α)e‖a(t)). Now we can write a(t) = U(t)(t − α)e where U(t) is a
polynomial that is not divisible by (t − α), so that a′(t) = (t − α)e−1V (t) where
V (t) := U ′(t)(t − α) + eU(t). Now (t − α, V (t)) = (t − α, eU(t)) = 1, and so
(t− α)e−1‖a′(t). Therefore

Δ(t) = a(t)b′(t)− a′(t)b(t) = (t− α)e−1W (t)

where W (t) := U(t)(t−α)b′(t)− V (t)b(t) and (t−α,W (t)) = (t−α, V (t)b(t)) = 1
as t− α does not divide b(t) or V (t). Therefore we have proved that

(t− α)e−1‖Δ(t).

This implies that (t−α)e divides Δ(t)(t−α). Multiplying all such (t−α)e together
we obtain (since they are pairwise coprime) that

a(t) divides Δ(t)
∏

a(α)=0

(t− α).

In fact a(t) only appears on the left side of this equation because we studied the
linear factors of a; analogous statements for b(t) and c(t) are also true, and since
a(t), b(t), c(t) have no common roots, we can combine those statements to read

(6.7.1) a(t)b(t)c(t) divides Δ(t)
∏

(abc)(α)=0

(t− α).

The next step is to take the degrees of both sides of (6.7.1). The degree of∏
(abc)(α)=0(t − α) is precisely the total number of distinct roots of a(t)b(t)c(t).
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Therefore

degree(a) + degree(b) + degree(c) ≤ degree(Δ) + #{α ∈ C : (abc)(α) = 0}.
Now, using the three different representations of Δ above, we have

degree(Δ) ≤

⎧⎪⎨
⎪⎩
degree(a) + degree(b)− 1,

degree(a) + degree(c)− 1,

degree(c) + degree(b)− 1.

Inserting all this into the previous inequality we get

degree(a), degree(b), degree(c) < #{α ∈ C : (abc)(α) = 0}.
Put another way, this result can be read as:

Theorem 6.3 (The abc Theorem for Polynomials). If a(t), b(t), c(t) ∈ C[t] do not
have any common roots and provide a genuine polynomial solution to a(t)+b(t) =
c(t), then the maximum of the degrees of a(t), b(t), c(t) is less than the number of
distinct roots of a(t)b(t)c(t) = 0.

This is a “best possible” result in that we can find infinitely many examples
where there is exactly one more zero of a(t)b(t)c(t) = 0 than the largest of the
degrees, for example the familiar identity

(2t)2 + (t2 − 1)2 = (t2 + 1)2;

or the rather less interesting

tn + 1 = (tn + 1).

Exercise 6.7.1. Let a, b, and c be given non-zero integers, and suppose n, p, q, r > 1.
(a) Prove that there are no genuine polynomial solutions x(t), y(t), z(t) to axn + byn = czn

with n ≥ 3.
(b) Prove that if there is a genuine polynomial solution x(t), y(t), z(t) to axp + byq = czr in

which x, y, and z have no common root, then 1
p
+ 1

q
+ 1

r
> 1.

(c) Deduce in (b) that this implies that at least one of p, q, and r must equal 2.
(d) One can find solutions in (b) if one allows common factors, for example x3 + y3 = z4 where

x = t(t3 + 1) and y = z = t3 + 1. Generalize this construction to as many other sets of
exponents p, q, r as you can. (Try to go beyond the construction in exercise 6.5.8.)

Exercise 6.7.2. Let a and b be given non-zero integers, p, q > 1, and x(t), y(t) ∈ C[t]. Let D be
the maximum of the degrees of xp and yq, and assume that axp + byq �= 0.
(a) Prove that the degree of axp + byq is > D(1− 1

p
− 1

q
).

(b)† Prove that if g = (p, q) > 1, then the degree of axp + byq is ≥ D/g.
(c) Deduce that the degree of axp + byq is always > D/6.

(This is “best possible” in the case (t2 + 2)3 − (t3 + 3t)2 = 3t2 + 8.)

Appendices. The extended version of chapter 6 has the following additional
appendices:

Appendix 6B. No Pythagorean triangle of square area via Euclidean geometry
presents another proof (due to a student, Stephanie Chan, in 2017) of this theorem
of Fermat, now via clever geometric manipulations.

Appendix 6C. Can a binomial coefficient be a square? addresses and resolves
the question of whether a binomial coefficient can be a square.



Chapter 7

Power residues

We begin by calculating the least residues of the small powers of each given residue
mod m, to look for interesting patterns:

a0 a a2

1 0 0

1 1 1

a0 a a2 a3 a4 a5

1 0 0 0 0 0

1 1 1 1 1 1

1 2 1 2 1 2

Least power residues (mod 2). Least power residues (mod 3).1

In these small examples, the columns soon settle into repeating patterns as we go
from left to right: For example, in the mod 3 case, the columns alternate between
0, 1, 1 and 0, 1, 2. How about for slightly larger moduli?

a0 a a2 a3 a4 a5

1 0 0 0 0 0

1 1 1 1 1 1

1 2 0 0 0 0

1 3 1 3 1 3

a0 a a2 a3 a4 a5

1 0 0 0 0 0

1 1 1 1 1 1

1 2 4 3 1 2

1 3 4 2 1 3

1 4 1 4 1 4

Least power residues (mod 4). Least power residues (mod 5).

1Why did we take 00 to be 1 (mod m) for m = 2, 3, 4, and 5? In mathematics we create symbols
and protocols (like taking powers) to represent numbers and actions on those numbers, and then we
need to be able to interpret all combinations of those symbols and protocols. Occasionally some of those
combinations do not have an immediate interpretation, for example 00. So how do we deal with this?
Usually mathematicians develop a convenient interpretation that allows that not-well-defined use of a
protocol to nonetheless be consistent with the many appropriate uses of the protocol. Therefore, for
example, we let 00 be 1, because it is true that a0 = 1 for every non-zero number a, so it makes sense
(and is often convenient) to define this to also be so for a = 0.

Perhaps the best known dilemma of this sort comes in asking whether ∞ is a number. The correct
answer is “No, it is a symbol” (representing an upper bound on the set of real numbers) but it is certainly
convenient to treat it as a number in many situations.
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Again the patterns repeat, every second power mod 4, and every fourth power mod
5. Our goal in this chapter is to understand the power residues, and in particular
when we get these repeated patterns.

7.1. Generating the multiplicative group of residues

We begin by verifying that for each coprime pair of integers a and m, the power
residues do repeat periodically:

Lemma 7.1.1. For any integer a, with (a,m) = 1, there exists an integer k,
1 ≤ k ≤ φ(m), for which ak ≡ 1 (mod m).

Proof. Each term of the sequence 1, a, a2, a3, . . . is coprime with m by exercise
3.3.5. But then each is congruent to some element from any given reduced set of
residues mod m (which has size φ(m)). Therefore, by the pigeonhole principle,
there exist i and j with 0 ≤ i < j ≤ φ(m) for which ai ≡ aj (mod m).

Next we divide both sides of this equation by ai. To justify doing this we
observe that (ai,m) = 1 (as (a,m) = 1) and so we can use Corollary 3.5.1 to obtain
our result with k = j − i, so that 1 ≤ k ≤ φ(m). �

Exercise 7.1.1. (a) Show that for any integers a and m ≥ 2, there exist integers i and k, with
0 ≤ i ≤ m− 1 and 1 ≤ k ≤ m− i such that an+k ≡ an (mod m) for every n ≥ i.

(b) For each integer m ≥ 2 determine an integer a such that a �≡ 1 (mod m) but a2 ≡ a
(mod m). (This explains why we need the hypothesis that (a,m) = 1 in Lemma 7.1.1.)

Another proof of Corollary 3.5.2. [If (a,m) = 1, then a has an inverse mod
m.] Let r = ak−1 so that ar = ak ≡ 1 (mod m). �

Examples. In the geometric progression 2, 4, 8, . . ., the first term ≡ 1 (mod 13) is
212 = 4096. The first term ≡ 1 (mod 23) is 211 = 2048. Similarly 56 = 15625 ≡ 1
(mod 7) but 55 ≡ 1 (mod 11). We see that in some cases the power needed is as
big as φ(p) = p− 1, the bound given by Lemma 7.1.1, but not always.

If ak ≡ 1 (mod m), then ak+j ≡ aj (mod m) for all j ≥ 0, and so the geometric
progression a0, a1, a2, . . .modulo m has period k. Thus if u ≡ v (mod k), then au ≡
av (mod m). Therefore one can easily determine the residues of powers (mod m).
For example, to compute 31000 (mod 13), first note that 33 ≡ 1 (mod 13). Now
1000 ≡ 1 (mod 3), and so 31000 ≡ 31 = 3 (mod 13).

If (a,m) = 1, then let ordm(a), the order of a (mod m), denote the smallest
positive integer k for which ak ≡ 1 (mod m). We know that there must be such an
integer, by Lemma 7.1.1. We have ord3(2) = ord4(3) = 2, ord5(2) = ord5(3) = 4
(from the tables above), and ord13(2) = 12, ord23(2) = 11, ord7(5) = 6, and
ord11(5) = 5 from the examples above. The powers of 3 (mod 16) are 1, 3, 9, 33 ≡
11, 34 ≡ 1, 3, 9, 11, 1, 3, 9, 11, 1, . . . so that the residues are periodic with period
ord16(3) = 4.

Lemma 7.1.2. Suppose that a and m are coprime integers with m ≥ 1. Then n is
an integer for which an ≡ 1 (mod m) if and only if ordm(a) divides n.
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Proof. Let k := ordm(a) so that ak ≡ 1 (mod m). Suppose that n is an integer
for which an ≡ 1 (mod m). There exist integers q and r such that n = qk+r where
0 ≤ r ≤ k − 1. Hence ar = an/(ak)q ≡ 1/1q ≡ 1 (mod m). Therefore r = 0 by the
minimality of k (from the definition of order), and so k divides n as claimed.

In the other direction, if k divides n, then an = (ak)n/k ≡ 1 (mod m). �
Exercise 7.1.2. Let k := ordm(a) where (a,m) = 1.
(a) Show that 1, a, a2, . . . , ak−1 are distinct (mod m).
(b) Deduce that aj ≡ ai (mod m) if and only if j ≡ i (mod k).

We see that ordm(a) is the smallest period of the sequence 1, a, a2, . . . (mod m).

We wish to understand the possible values of ordm(a), especially for fixed m,
as a varies over integers coprime to m. We begin by taking m = p prime. The
theory for composite m can be deduced from an understanding of the prime power
modulus case, using the Chinese Remainder Theorem as determined in detail in
section 7.18 of appendix 7B.

Theorem 7.1. If p is a prime and p does not divide a, then ordp(a) divides p− 1.

Proof. Let k := ordp(a) and A = {1, a, a2, . . . , ak−1 (mod p)}. For any non-zero b
(mod p) define the set bA = {bα (mod p) : α ∈ A}.

Let b and b′ be any two reduced residues mod p. We now show that either bA
and b′A are disjoint or they are equal: If they have an element, c, in common, then
there exists 0 ≤ i, j ≤ k − 1 such that bai ≡ c ≡ b′aj (mod p). Therefore b′ ≡ bah

(mod p) where h is the least non-negative residue of i− j (mod k). Hence

b′a� ≡
{
bah+� (mod p) if 0 ≤ � ≤ k − 1− h,

bah+�−k (mod p) if k − h ≤ � ≤ k − 1,

which implies that b′A ⊂ bA. Since the two sets are finite and of the same size they
must be identical.

Since any two sets of the form bA are either identical or disjoint, we deduce
that they partition the non-zero elements mod p. That is, the reduced residues
1, . . . , p−1 (mod p) may be partitioned into disjoint cosets bA, of A, each of which
has size |A|; and therefore |A| = k divides p− 1. �

To highlight this proof let a = 5 and p = 13 so that A = {1, 5, 52 ≡ 12, 53 ≡
8 (mod 13)}. Then the cosets A, 2A ≡ {2, 10, 11, 3 (mod 13)}, and 4A ≡
{4, 7, 9, 6 (mod 13)} partition the reduced residues mod 13, and therefore 3|A| =
12. Also note that 7A ≡ {7, 9, 6, 4 (mod 13)} = 4A, as claimed, the same residues
but in a rotated order.

7.2. Fermat’s Little Theorem

Theorem 7.1 limits the possible values of ordp(a). The beauty of the proof of
Theorem 7.1, which is taken from Gauss’s Disquisitiones Arithmeticae, is that it
works in any finite group, as we will see in Proposition 7.22.1 of appendix 7D.2 This

2What is especially remarkable is that Gauss produced this surprising proof before anyone had
thought up the abstract notion of a group!
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result leads us directly to one of the great results of elementary number theory, first
observed by Fermat in a letter to Frénicle on October 18, 1640:

Theorem 7.2 (Fermat’s “Little” Theorem). If p is a prime and a is an integer
that is not divisible by p, then

p divides ap−1 − 1.

Proof. We know that ordp(a) divides p−1 by Theorem 7.1, and therefore ap−1 ≡ 1
(mod p) by Lemma 7.1.2. �

Here is a useful reformulation of Fermat’s “Little” Theorem:

Fermat’s Little Theorem, v2. If p is a prime and a is a positive integer, then

p divides ap − a.

Exercise 7.2.1. Prove that our two versions of Fermat’s Little Theorem are equivalent to each
other (that is, easily imply one another).

We now present several different proofs of Fermat’s “Little” Theorem and then
a surprising proof in appendix 7A.

“Sets of reduced residues” proof. In exercise 3.5.2 we proved that {a · 1,
a · 2, . . . , a · (p − 1)} form a reduced set of residues mod p. The residues of these
integers mod p are therefore the same as the residues of {1, 2, . . . , p− 1} although
in a different order. Since the two sets are the same mod p, the products of the
elements of each set are equal mod p, and so

(a · 1)(a · 2) · · · (a · (p− 1)) ≡ 1 · 2 · · · (p− 1) (mod p);

that is,

ap−1 · (p− 1)! ≡ (p− 1)! (mod p).

As (p, (p − 1)!) = 1, we can divide the (p − 1)! out from both sides to obtain the
desired

ap−1 ≡ 1 (mod p). �

Euler’s 1741 proof . We shall show that ap − a is divisible by p for every integer
a ≥ 1. We proceed by induction on a: For a = 1 we have 1p−1 − 1 = 0, and so the
result is trivial. Otherwise, by the binomial theorem,

(a+ 1)p − ap − 1 =

p−1∑
i=1

(
p

i

)
ai ≡ 0 (mod p),

as p divides the numerator but not the denominator of
(
p
i

)
for each i, 1 ≤ i ≤ p− 1

(as in exercise 2.5.8). Reorganizing we obtain

(a+ 1)p − (a+ 1) ≡ (ap + 1)− (a+ 1) ≡ ap − a ≡ 0 (mod p),

the last congruence following from the induction hypothesis. �
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Combinatorial proof . The numerator, but not the denominator, of the multi-
nomial coefficient

(
p

i,j,k,...

)
is divisible by p unless one of i, j, k, . . . equals p and the

others equal 0. In this case the multinomial coefficient equals 1. Therefore, by the
multinomial theorem,3

(a+ b+ c+ · · · )p ≡ ap + bp + cp + · · · (mod p).

Taking a = b = c = · · · = 1 gives �p ≡ � (mod p) for all integers � ≥ 1. �

Another proof of Theorem 7.1. Theorem 7.1 follows from Fermat’s Little The-
orem and Lemma 7.1.2 with m = p and n = p− 1. (This is not a circular argument
as our last three proofs of Fermat’s Little Theorem do not use Theorem 7.1.) �

We can use Fermat’s Little Theorem to help quickly determine large pow-
ers in modular arithmetic. For example for 21000001 (mod 31), we have 230 ≡ 1
(mod 31) by Fermat’s Little Theorem, and so, as 1000001 ≡ 11 (mod 30), we
obtain 21000001 ≡ 211 (mod 31) and it remains to do the final calculation. How-
ever, using the order makes this calculation significantly easier: Since ord31(2) = 5
we have 25 ≡ 1 (mod 31) and therefore, as 1000001 ≡ 1 (mod 5), we obtain
21000001 ≡ 21 ≡ 2 (mod 31).

It is worth stating the converse to Fermat’s Little Theorem:

Corollary 7.2.1. If (a, n) = 1 and an−1 �≡ 1 (mod n), then n is composite.

For example (2, 15) = 1 and 24 = 16 ≡ 1 (mod 15) so that 214 ≡ 22 ≡ 4
(mod 15). Hence 15 is a composite number. The surprise here is that we have
proved that 15 is composite without having to factor 15. Indeed whenever Corollary
7.2.1 is applicable we will not have to factor n to show that it is composite. This is
important because we do not know a fast way to factor an arbitrarily large integer
n, but one can compute rapidly with Corollary 7.2.1 (as discussed in section 7.13
of appendix 7A). We will discuss such compositeness tests in section 7.6.

Exercise 7.2.2. Prove that for any m > 1 if (a,m) = 1, then ordm(a) divides φ(m) (by an
analogous proof to that of Theorem 7.1).

Theorem 7.3 (Euler’s Theorem). For any m > 1 if (a,m) = 1, then aφ(m) ≡ 1
(mod m).

Proof. By definition aordm(a) ≡ 1 (mod m). By exercise 7.2.2 there exists an
integer k for which φ(m) = k ordm(a) and so aφ(m) = (aordm(a))k ≡ 1 (mod m). �

This result and proof generalizes even further, to any finite group, as we will
see in Corollary 7.23.1 of appendix 7D.

Exercise 7.2.3. Prove Euler’s Theorem using the idea in the “sets of reduced residues” proof of
Fermat’s Little Theorem, given above.

Exercise 7.2.4. Determine the last decimal digit of 38643.

3For the reader who has seen it before.
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7.3. Special primes and orders

We now look at prime divisors of the Mersenne and Fermat numbers using our
results on orders.

Exercise 7.3.1. Show that if p is prime and q is a prime dividing 2p − 1, then ordq(2) = p.

Hence, by exercise 7.3.1, if q divides 2p − 1, then p = ord2(q) divides q − 1 by
Theorem 7.1; that is, q ≡ 1 (mod p).

Another proof that there are infinitely many primes. If p is the largest
prime, let q be a prime factor of 2p − 1. We have just seen that p divides q − 1, so
that p ≤ q−1 < q. This contradicts the assumption that p is the largest prime. �
Exercise 7.3.2.† Show that if prime p divides Fn = 22

n
+1, then ordp(2) = 2n+1. Deduce that

p ≡ 1 (mod 2n+1).

Theorem 7.4. Fix k ≥ 2. There are infinitely many primes ≡ 1 (mod 2k).

Proof. If pn is a prime factor of Fn = 22
n

+ 1, then pn ≡ 1 (mod 2k) for all
n ≥ k − 1, by exercise 7.3.2. We saw that the pn are all distinct in section 5.1. �

7.4. Further observations

Lemma 5.7.1, a weak form of the Fundamental Theorem of Algebra (Theorem 3.11),
states that any polynomial in C[x] of degree d has at most d roots. An analogous
result can be proved for polynomials mod p.

Proposition 7.4.1 (Lagrange). Suppose that p is a prime and that f(x) is a non-
zero polynomial with coefficients in Z/pZ of degree d. Then f(x) has no more than
d roots mod p (counted with multiplicity).

Proof. By induction on d ≥ 0. This is trivial for d = 0. For d ≥ 1 we will suppose

that f(a) ≡ 0 mod p. Then write f(x) =
∑d

i=0 fix
i and define

g(x) =
f(x)− f(a)

x− a
=

d∑
i=0

fi
xi − ai

x− a
=

d∑
i=0

fi(x
i−1 + axi−2 + · · ·+ ai−1),

a polynomial of degree d− 1 with leading coefficient fd (so is non-zero). Therefore
g(x) has no more than d− 1 roots mod p, by the induction hypothesis. Now

f(x) = f(x)− f(a) = (x− a)g(x)

and so if f(b) ≡ 0 (mod p), then (b − a)g(b) ≡ 0 (mod p). Either b ≡ a (mod p)
or g(b) ≡ 0 (mod p), and so f has no more than 1 + (d− 1) = d roots mod p. �

Fermat’s Little Theorem implies that 1, 2, 3, . . . , p−1 are p−1 distinct roots of
xp−1 − 1 (mod p), and are therefore all the roots, by Proposition 7.4.1. Therefore
the polynomials xp−1 − 1 and (x − 1)(x − 2) · · · (x − (p − 1)) mod p are the same
up to a multiplicative constant. Since they are both monic they must be identical;
that is,

(7.4.1) xp−1 − 1 ≡ (x− 1)(x− 2) · · · (x− (p− 1)) (mod p),
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which implies that

xp − x ≡ x(x− 1)(x− 2) · · · (x− (p− 1)) (mod p).

Theorem 7.5 (Wilson’s Theorem). For any prime p we have

(p− 1)! ≡ −1 (mod p).

Proof. Take x = 0 in (7.4.1), and note that (−1)p−1 ≡ 1 (mod p). �

Gauss’s proof of Wilson’s Theorem. Let S be the set of pairs (a, b) for which
1 ≤ a < b < p and ab ≡ 1 (mod p); that is, every residue is paired up with its
inverse unless it equals its inverse. Now if a ≡ a−1 (mod p), then a2 ≡ 1 (mod p),
in which case a ≡ 1 or p− 1 (mod p) by Lemma 3.8.1. Therefore

1 · 2 · · · (p− 1) = 1 · (p− 1) ·
∏

(a,b)∈S

ab ≡ 1 · (−1) ·
∏

(a,b)∈S

1 ≡ −1 (mod p). �

Example. For p = 13 we have

12! = 12(2× 7)(3× 9)(4× 10)(5× 8)(6× 11) ≡ −1 · 1 · 1 · 1 · 1 · 1 ≡ −1 (mod 13).

Exercise 7.4.1. (a) Show that if n > 4 is composite, then n divides (n− 1)!.
(b) Show that n ≥ 2 is prime if and only if n divides (n− 1)! + 1.

Combining Wilson’s Theorem with the last exercise we have an indirect pri-
mality test for integers n > 2: Compute (n − 1)! (mod n). If it is ≡ −1 (mod n),
then n is prime; if it is ≡ 0 (mod n), then n is composite. Note however that in
determining (n− 1)! we need to do n− 2 multiplications, so that this primality test
takes far more steps than trial division (see section 5.2)!

Exercise 7.4.2. (a) Use the idea in Gauss’s proof of Wilson’s Theorem to show that∏
1≤a≤n
(a,n)=1

a ≡
∏

1≤b≤n

b2≡1 (mod n)

b (mod n).

(b) Evaluate this product using exercise 3.8.3 or by pairing b with n− b.

Exercise 7.4.3. (a) Show that
( p−1
(p−1)/2

)
≡ (−1)(p−1)/2 (mod p).

(b) Deduce that if p ≡ 3 (mod 4), then
(

p−1
2

)
! ≡ 1 or− 1 (mod p).

(c) Deduce that if p ≡ 1 (mod 4), then
(

p−1
2

)
! is a root of x2 ≡ −1 (mod p).4

7.5. The number of elements of a given order, and primitive roots

In Theorem 7.1 we saw that the order modulo p of any integer a which is coprime
to p must be an integer which divides p− 1. In this section we show that for each
divisor m of p− 1, there are residue classes mod p of order m.

4This explicitly provides a square root of −1 (mod p) which is interesting, as there is no easy way
in general to determine square roots mod p. However we do not know how to rapidly calculate the least

residue of
(

p−1
2

)
! (mod p).
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Example. For the primes p = 13 and p = 19 we have

Order a (mod 13)
1 1
2 12
3 3, 9
4 5, 8
6 4, 10
12 2, 6, 7, 11

Order a (mod 19)
1 1
2 18
3 7, 11
6 8, 12
9 4, 5, 6, 9, 16, 17
18 2, 3, 10, 13, 14, 15

How many residues are there of each order? From these examples we might guess
the following result.

Theorem 7.6. If m divides p−1, then there are exactly φ(m) elements a (mod p)
of order m.

A primitive root a mod p is a reduced residue mod p of order p− 1. The least
residues of the powers

1, a, a2, a3, . . . , ap−2 (mod p)

are distinct reduced residues by exercise 7.1.2 and so must equal

1, 2, . . . , p− 1

in some order. Therefore every reduced residue is congruent to some power aj

(mod p) of a, and the power j can be reduced mod p − 1. For example, 2, 3, 10,
13, 14, and 15 are the primitive roots mod 19. We can verify that the powers of 3
mod 19 yield a reduced set of residues:

1, 3, 32, 33, 34, 35, 36, 37, 38, 39, 310, 311, 312, 313, 314, 315, 316, 317, 318, . . .

≡ 1, 3, 9, 8, 5,−4, 7, 2, 6,−1,−3,−9,−8,−5, 4,−7,−2, −6, 1, . . . (mod 19),

respectively, so 3 is a primitive root mod p. Taking m = p− 1 in Theorem 7.6 we
obtain the following:

Corollary 7.5.1. For every prime p there exists a primitive root mod p. In fact
there are φ(p− 1) distinct primitive roots mod p.

To prove Theorem 7.6 it helps to first establish the following lemma:

Lemma 7.5.1. If m divides p − 1, then there are exactly m elements a (mod p)
for which am ≡ 1 (mod p).

Proof. We saw in (7.4.1) that

xp−1 − 1 = (xm − 1)(xp−1−m + xp−1−2m + · · ·+ xm + 1)

factors into distinct linear factors mod p, and therefore xm − 1 does so also. �

The residue a (mod p) is counted in Lemma 7.5.1 if and only if the order of a
divides m. Now we prove Theorem 7.6 which counts the number of residue classes
a (mod p) whose order is exactly m.
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Proof of Theorem 7.6. Let ψ(d) denote the number of elements a (mod p) of
order d. The set of roots of xm − 1 (mod p) is precisely the union of the sets of
residue classes mod p of order d, over each d dividing m, so that

(7.5.1)
∑
d|m

ψ(d) = m

for all positive integers m dividing p − 1, by Lemma 7.5.1. We now prove that
ψ(m) = φ(m) for all m dividing p − 1, by induction on m. The only element of
order 1 is 1 (mod p), so that ψ(1) = 1 = φ(1). For m > 1 we have ψ(d) = φ(d) for
all d < m that divide m, by the induction hypothesis. Therefore

ψ(m) = m−
∑
d|m
d<m

ψ(d) = m−
∑
d|m
d<m

φ(d) = φ(m),

the last equality following from Proposition 4.1.1. The result follows. �

Although there are many primitive roots mod p (φ(p− 1) of them by Theorem
7.6), it is not obvious how to always find one rapidly. In section 7.15 of appendix
7B we will present Gauss’s practical algorithm for finding primitive roots (as well
as special cases in exercises 8.9.20, 8.9.21, and 8.9.22).

It is believed that 2 is a primitive root mod p for infinitely many primes p
though this remains an open question. Artin’s primitive root conjecture states that
every prime q is a primitive root mod p for infinitely many primes p. This is known
to be true for all, but at most two, primes.5 Gauss himself conjectured that 10 is a
primitive root mod p for infinitely many primes p and this is also an open question.
Any integer m, which is neither a perfect square nor −1, is conjectured to be a
primitive root mod p for infinitely many primes p.

Corollary 7.5.2. For every prime p and every integer k, we have

1k + 2k + · · ·+ (p− 1)k ≡
{
0 if p− 1 � k

−1 if p− 1|k
(mod p).

Proof. Let Sk := 1k + 2k + · · · + (p − 1)k. If p − 1 divides k, then each jk ≡ 1
(mod p) by Fermat’s Little Theorem and so Sk ≡ 1 + · · · + 1 = p− 1 (mod p), as
claimed. So, henceforth assume that p− 1 does not divide k.

Let a be a primitive root mod p, so that ak �≡ 1 (mod p) since p− 1 does not
divide k. The integers {a ·1, a ·2, . . . , a · (p−1)} form a reduced set of residues mod
p and so are a rearrangement of the residues of {1, 2, . . . , p− 1} mod p. Therefore
any symmetric function of these two sets of integers residues are congruent mod p
(as we saw in the “Sets of reduced residues” proof of Fermat’s Little Theorem); in
particular,

Sk ≡
p−1∑
j=1

(aj)k = akSk (mod p).

Therefore (ak−1)Sk ≡ 0 (mod p) but ak �≡ 1 (mod p) and so Sk ≡ 0 (mod p). �
5This result is strangely formulated because of the nature of what was proved (by Heath-Brown

[2], improving a result of Gupta and Murty, see [3])—that in any set of three distinct primes q1, q2, q3,
at least one is a primitive root mod p for infinitely many primes p. Therefore there cannot be three
exceptions to the conjecture, and we believe that there are none.
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Near the beginning of this section we noted that if a is a primitive root (mod p),
then every reduced residue is congruent to some power aj (mod p). This property
is extremely useful for it allows us to treat multiplication as addition of exponents
in the same way that the introduction of logarithms simplifies usual multiplication.
We will discuss this further in section 7.16 of appendix 7B.

Exercise 7.5.1. Write each reduced residue mod p as a power of the primitive root a, and use

this to evaluate 1k +2k + · · ·+(p−1)k (mod p) as a function of a and k. Use this to give another
proof of Corollary 7.5.2.

Exercise 7.5.2. Let g be a primitive root modulo odd prime p.
(a) Prove that ga ≡ 1 (mod p) if and only if p− 1 divides a.

(b) Show that g(p−1)/2 ≡ −1 (mod p).

In order to determine the order of an element mod n, one can use the following
result:

Proposition 7.5.1. Suppose that a and n are coprime integers. Then d is the
order of a (mod n) if and only if ad ≡ 1 (mod n) and ad/q �≡ 1 (mod n) for every
prime q dividing d.

Proof. If d is the order of a (mod n), then ad ≡ 1 (mod n) and ad/q �≡ 1 (mod n)
by the definition of order, since d/q < d.

On the other hand let m := ordn(a). By Lemma 7.1.2 we know that m divides
d but does not divide d/q for any prime q dividing d. Therefore q does not divide
d/m for any prime q dividing d, so there cannot be any primes q that divide d/m.
This implies that d/m = 1 and so ordn(a) = m = d. �

We deduce an important practical way to recognize primitive roots mod p:

Corollary 7.5.3. Suppose that p is a prime that does not divide integer a. Then
a is a primitive root (mod p) if and only if

a(p−1)/q �≡ 1 (mod p)

for all primes q dividing p− 1.

Proof. By definition a is a primitive root (mod p) if and only if m := ordp(a) =
p− 1. The result follows from Proposition 7.5.1. �

Exercise 7.5.3. Find all residues of order 5 mod 31, given that 25 ≡ 1 (mod 31).

Exercise 7.5.4. (a) Prove that 2 is a primitive root (mod 13).
(b) Use this to determine all of the other primitive roots (mod 13).

Exercise 7.5.5. Let g be a primitive root modulo odd prime p.

(a) Prove that if m divides p− 1, then gm has order p−1
m

.

(b)† Prove that gk (mod p) is a primitive root mod p if and only if (k, p− 1) = 1.
(c) Deduce that there are φ(p− 1) primitive roots mod p.
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7.6. Testing for composites, pseudoprimes, and Carmichael numbers

In the converse to Fermat’s Little Theorem, Corollary 7.2.1, we saw that if an
integer n does not divide an−1 − 1 for some integer a coprime to n, then n is
composite. For example, taking a = 2 we calculate that

21000 ≡ 562 (mod 1001),

so we know that 1001 is composite. We might ask whether this always works. In
other words:

Is it true that if n is composite, then n does not divide 2n − 2?

For, if so, we have a very nice way to distinguish primes from composites. Unfor-
tunately the answer is “no” since, for example,

2340 ≡ 1 (mod 341),

but 341 = 11× 31. We call 341 a base-2 pseudoprime. Note though that

3340 ≡ 56 (mod 341),

and so the converse to Fermat’s Little Theorem, with a = 3, implies that 341 is
composite.

Are there composites n for which 2n−1 ≡ 3n−1 ≡ 1 (mod n)? Or 2n−1 ≡
3n−1 ≡ 5n−1 ≡ 1 (mod n)? Or, even Carmichael numbers, composite numbers
that “masquerade” as primes in that an−1 ≡ 1 (mod n) for all integers a coprime
to n? A quick computer search finds the smallest example: 561 = 3 · 11 · 17. The
next few Carmichael numbers are 1105 = 5 · 13 · 17, then 1729 = 7 · 13 · 19, etc.
Exercise 7.6.1. Show that squarefree n is a Carmichael number if and only if n is composite
and divides an − a for all integers a.

Carmichael numbers are a nuisance, masquerading as primes like this (and
so preventing a quick and easy, surefire primality test). Calculations reveal that
Carmichael numbers are rare, but in 1994 Alford, Pomerance, and I [1] proved
that there are infinitely many of them. Here is a more elegant way to recognize
Carmichael numbers:

Lemma 7.6.1. A positive integer n is a Carmichael number if and only if n is
squarefree and composite and p− 1 divides n− 1 for every prime p dividing n.

Proof. Suppose that n is squarefree and composite and p − 1 divides n − 1 for
every prime p dividing n. If (a, n) = 1 and prime p divides n, then ordp(a) divides
p − 1 by Theorem 7.1, which divides n − 1, and so an−1 ≡ 1 (mod p) by Lemma
7.1.2. Therefore an−1 ≡ 1 (mod n) by the Chinese Remainder Theorem as n is
squarefree, and so it is a Carmichael number.

Now suppose that n is a Carmichael number. If prime p divides n, then an−1 ≡
1 (mod p) for all integers a coprime to n. In particular, if a is a primitive root mod
p, then p− 1 = ordp(a) divides n− 1 by Lemma 7.1.2.

Now assume that pe‖n with e ≥ 2. We note that (1 + p)k ≡ 1 + kp (mod p2)
for all integers k ≥ 1, by the binomial theorem, so that ordp2(1 + p) = p. Select
a ≡ 1 + p (mod pe) with a ≡ 1 (mod n/pe) so that (a, n) = 1. As p|n we have
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1 ≡ (1 + p)n ≡ an ≡ a ≡ 1 + p (mod p2), a contradiction. Therefore n must be
squarefree. �

Lemma 7.6.1 imples that 561 = 3 · 11 · 17 is a Carmichael number as 2, 10, and
16 divide 560.

Exercise 7.6.2. Show that if n is a Carmichael number, then it is odd.

Exercise 7.6.3.† Show that if n is a Carmichael number, then it has at least three prime factors.

Exercise 7.6.4. Prove that if 6m+ 1, 12m+ 1, and 18m+ 1 are all primes, then their product
is a Carmichael number. (It is an open problem whether there exist infinitely many such prime
triples, though it is not difficult to find examples, like 7× 13× 19 and 37× 73× 109.)

7.7. Divisibility tests, again

In section 2.4 we found simple tests for the divisibility of integers by 7, 9, 11, and
13, promising to return to this theme later. The key to these earlier tests was
that 10 ≡ 1 (mod 9) and 103 ≡ −1 (mod 7 · 11 · 13); that is, ord9(10) = 1 and
ord7(10), ord11(10), and ord13(10) divide 6. For all primes p �= 2 or 5 we know that

k := ordp(10) is an integer dividing p− 1. Hence if n =
∑d

j=0 nj10
j , then

n =
∑
m≥0

(
k−1∑
i=0

nkm+i10
i

)
(10k)m ≡

∑
m≥0

(
k−1∑
i=0

nkm+i10
i

)
(mod p),

since if j = km + i, then 10j ≡ 10i (mod p). In the displayed equation we have
cut up the integer n, written in decimal, into blocks of digits of length k and added
these blocks together, which is clearly an efficient way to test for divisibility. The
length of these blocks, k, is always ≤ p− 1 no matter what the size of n. Therefore
we can, in practice, quickly test whether n is divisible by p, once we know the
p-divisibility of every integer < 10k (≤ 10p−1).

If k = 2� is even, we can do a little better (as we did with p = 7, 11, and 13)
since 10� ≡ −1 (mod p), namely that

n =

d∑
j=0

nj10
j ≡

∑
m≥0

(
�−1∑
i=0

nkm+i10
i −

�−1∑
i=0

nkm+�+i10
i

)
(mod p),

thus breaking n up into blocks of length � = k/2.

7.8. The decimal expansion of fractions

The fraction 1
3 = .3333 . . . is given by a recurring digit 3, so we write it as .3. More

interesting to us are the set of fractions

1

7
= .142857,

2

7
= .285714,

3

7
= .428571,

4

7
= .571428,

5

7
= .714285,

6

7
= .857142.

These decimal expansions of the six fractions a
7 , 1 ≤ a ≤ 6, are each periodic of

period length 6, and each contains the same six digits in the same order but starting
at a different place. Starting with the period for 1/7 we find that we go through the
fractions a/7 with a = 1, 3, 2, 6, 4, 5 when we rotate the period one step at a time.
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Do you recognize this sequence of numbers? These are the least positive residues
of 100, 101, 102, 103, 104, 105 (mod 7). To prove this, we begin by noting that since
106 ≡ 1 (mod 7), we have that

106 − 1

7
= 142857 is an integer,

which is ≤ 6 digits long. Putting the 1/7 on the other side and dividing through
by 106, we obtain

1

7
=

142857

106
+

10−6

7
= .142857 +

1

106
· 1
7
.

Substituting this expression in for the last term, divided by 106, we obtain

1

7
= .142857 +

.142857

106
+

1

1012
· 1
7
= · · · = .142857,

the final equality by repeating this process infinitely often. Now if we multiply this
through by 10, we obtain

10

7
= 1.428571, so that

3

7
=

10

7
− 1 = .428571,

and similarly, as 102 ≡ 2 (mod 7),

2

7
=

102

7
−
[
102

7

]
= .28574.

We obtain all the other decimal expansions analogously.

What happens when we multiply 1/7 through by 10k? For example, if k = 4,
then

104

7
= 1428.571428 = 1428 +

4

7
.

The part after the decimal point is always { 10k

7 } which equals �
7 where � is the

least positive residue of 10k (mod 7) (as in exercise 1.7.4(b)). We can now give two
results.

Proposition 7.8.1. Suppose that m is an integer that is coprime to 10. If 1 ≤
a < m, then the decimal expansion of the period for a/m is periodic with period of
length ordm(10). This is the minimal period length if (a,m) = 1.

Proof sketch. We proceed analogously to the above. Let n = ordm(10) and
r = (10n − 1)a/m, so that r is a positive integer < 10n. Let r be the sequence of
digits that give the integer r. The same argument as above gives that

a

m
=

r

10n
+

1

10n
· a

m
=

r

10n
+

r

102n
+

1

102n
· a

m
= · · · = r.

On the other hand, if this equation holds and the decimal expansion has period n,
then (10n − 1)a/m = (10n − 1).r = r.r − .r = r. In other words, (10n − 1)a/m is
the integer r, so that 10n ≡ 1 (mod m) if (a,m) = 1. �
Exercise 7.8.1.† Suppose that p is an odd prime for which 10 is a primitive root. Let ak be the
least residue of 10k (mod p), and suppose that ak/p = .rk where 1 ≤ rk < 10p−1. Prove that rk
is obtained from r1, by removing the leading k digits and concatenating them on to the end.

Exercise 7.8.2. Prove that the decimal expansion of every rational number is eventually periodic.
(One can see why we need “eventually” with the example 1

30
= .03333 . . . .)
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7.9. Primes in arithmetic progressions, revisited

We can use the ideas in this chapter to prove that there are infinitely many primes
in certain arithmetic progressions 1 (mod m).

Theorem 7.7. There are infinitely many primes ≡ 1 (mod 3).

Proof. Suppose there are only finitely many primes≡ 1 (mod 3), say p1, p2, . . . , pk.
Let a = 3p1p2 · · · pk, and let q be a prime dividing a2 + a + 1. Now q �= 3 as
a2 + a + 1 ≡ 1 (mod 3). Moreover q divides a3 − 1 = (a − 1)(a2 + a + 1), but
not a − 1 (or else 0 ≡ a2 + a + 1 ≡ 1 + 1 + 1 ≡ 3 (mod q) but q �= 3). Therefore
ordq(a) = 3 and so q ≡ 1 (mod 3) by Theorem 7.1. Hence q = pj for some j, so
that q divides a as well as a2+a+1, and thus q divides (a2+a+1)−a(a+1) = 1,
which is impossible. �

This, together with Theorem 5.2, proves that there are infinitely many primes
in both of the residue classes 1 (mod 3) and 2 (mod 3), as predicted from the data
at the start of section 5.3.

Exercise 7.9.1. Generalize this argument to primes that are 1 (mod 4), to primes that are 1
(mod 5), and to primes that are 1 (mod 6).

In order to generalize this argument to proving the existence of primes ≡ 1
(mod m) for every integer m ≥ 3, including composite m, we need to replace the
polynomial a2 + a+ 1 by one that recognizes when a has order m. Evidently this
must be a divisor of the polynomial am − 1; indeed am − 1 divided through by
all of the factors corresponding to orders which are proper divisors of m. This
discussion leads us to define the cyclotomic polynomials φn(t) ∈ Z[t], inductively,
by the requirement

(7.9.1) tm − 1 =
∏
d|m

φd(t) for all m ≥ 1,

with each φd(t) monic (see also appendix 4E). Therefore φ1(t) = t− 1,

φ2(t) = t+ 1, φ3(t) = t2 + t+ 1, φ4(t) = t2 + 1, φ5(t) = t4 + t3 + t2 + t+ 1, . . . .

Theorem 7.8. For any integer m ≥ 2, there are infinitely many primes ≡ 1
(mod m).

Proof. Suppose that p1, . . . , pk are all the primes that are ≡ 1 (mod m) and let
a = mp1 · · · pk. Let q be a prime divisor of φm(a), which divides am − 1, so that
am ≡ 1 (mod q). This implies that (q, a) divides (am − 1, a) = 1 and so (q, a) = 1.
In particular q is not a pj and does not divide m.

Let d = ordq(a) so that q ≡ 1 (mod d) by Theorem 7.1. Moreover d divides m
as am ≡ 1 (mod q). But q is not a pj and so q �≡ 1 (mod m), which implies that
d �= m, and therefore d < m.

Now φm(x) divides xm−1
xd−1

by definition. Substituting in x = a we deduce that

q divides both am−1
ad−1

and ad − 1, so that

0 ≡ am − 1

ad − 1
=

m/d−1∑
j=0

(ad)j ≡
m/d−1∑
j=0

1 = m/d (mod q).
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This implies that q divides m/d, and therefore divides m, which contradicts what
we proved above. �
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Additional exercises

Exercise 7.10.1. Prove that we can write any polynomial f(x) mod p of degree ≤ p− 1 as

f(x) ≡
p−1∑
a=0

f(a)(1− (x− a)p−1) (mod p).

Exercise 7.10.2.† Prove that if f(x) ∈ Z[x] is monic and has degree d and if prime p divides
f(0), f(1), . . . , f(d), then p ≤ d and p divides f(n) for all integers n.

Exercise 7.10.3. We will find all powers of 2 and 3 that differ by 1, a special case of Catalan’s
conjecture mentioned in section 6.4.
(a) What are the powers of 3 (mod 8)? What are the powers of 2 (mod 8)?
(b) Show that if 2n − 3m ≡ 1 (mod 8) for some positive integers m,n, then n = 1 or 2.
(c) Deduce that the only solutions to 2n − 3m = 1 are 4− 3 = 2− 1 = 1.
(d) Prove that if 3m − 2n = 1 with m odd, then m = n = 1.
(e) Prove that if 32k−2n = 1, then both 3k−1 and 3k+1 are powers of 2, and that this is only

possible if k = 1. We deduce that the only solutions to 3m − 2n = 1 are 3− 2 = 9− 8 = 1.

(This is the proof of Levi ben Gershon from around 1320.)

Exercise 7.10.4.† Show that if
(n
3

)
with n > 3 has no more than one prime factor which is > 3,

then n = 3, 4, 5, 6, 8, 9, 10, or 18. (Use exercise 7.10.3.)

Exercise 7.10.5. (a) Prove that if a > 1, then the order of a mod N := aq − 1 is exactly q.
Now let q be a prime.

(b) Deduce that if prime p divides aq − 1 but not a− 1, then p is a prime ≡ 1 (mod q).

(c) Prove that (a
q−1
a−1

, a− 1) = (q, a− 1).

(d)† Prove that there are infinitely many primes ≡ 1 (mod q).

Exercise 7.10.6. Let p be an odd prime, and let x, y, and z be pairwise coprime, positive
integers.

(a)† Prove that if p divides z − y, then zp−yp

z−y
≡ p (mod p2).

(b) Show that if xp + yp = zp, then there exists an integer r for which z − y = rp or z − y =
pp−1rp.

(This problem continues on from exercise 3.9.7.)

Exercise 7.10.7. Deduce Theorem 7.6 from (7.5.1) using the Möbius inversion formula (Theorem
4.4).

Exercise 7.10.8. Let p be a prime. Prove that every quadratic non-residue (mod p) is a primitive
root if and only if p is a Fermat prime.

Exercise 7.10.9. Suppose that g is a primitive root modulo odd prime p. Prove that −g is also
a primitive root mod p if and only if p ≡ 1 (mod 4).
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Exercise 7.10.10. (a) Show that the number of primes up to N equals, exactly,∑
2≤n≤N

n

n− 1
·
{
(n− 1)!

n

}
− 2

3
.

(Here {t} is the fractional part of t, defined as in exercise 1.7.4(b).)
(b) Suppose that n > 1. Show that n and n + 2 are both odd primes if and only if n(n + 2)

divides 4((n− 1)! + 1) + n.

Exercise 7.10.11. Prove that if f(x) ∈ Z[x] has degree ≤ p− 2, then
∑p−1

a=0 f(a) ≡ 0 (mod p).

Exercise 7.10.12.† Let p be an odd prime and k be an odd integer which is �≡ 1 (mod p − 1).
Prove that 1k + 2k + · · ·+ (p− 1)k ≡ 0 (mod p2).

Exercise 7.10.13.† Let an+1 = 2an + 1 for all n ≥ 0. Can we choose a0 so that this sequence
consists entirely of primes?

We define n to be a base-b pseudoprime if n is composite and bn−1 ≡ 1 (mod n).

Exercise 7.10.14. Show that if n is not prime, then it a base-b pseudoprime if and only if
ordpk (b) divides n− 1 for every prime power pk dividing n.

Exercise 7.10.15. Suppose that n is a squarefree, composite integer.
(a) Show that #{a (mod p) : an−1 ≡ 1 (mod p)} = (p− 1, n− 1).
(b) Show that there are

∏
p|n(p − 1, n − 1) reduced residue classes b (mod n) for which n is a

base-b pseudoprime.

Exercise 7.10.16. (a) Prove that if n is composite, then {b (mod n) : n is a base-b pseudo-
prime} is a subgroup of the reduced residues mod n.

(b)† Prove that if n is not a Carmichael number, then it is not a base-b pseudoprime for at least
half of the reduced residues b (mod n).

(c)† Suppose that p and 2p − 1 are both prime and let n = p(2p − 1). Prove that

#{b (mod n) : n is a base-b pseudoprime} =
1

2
φ(n).

Exercise 7.10.17. (a) Show that if p is prime, then the Mersenne number 2p − 1 is either a
prime or a base-2 pseudoprime.

(b) Show that every Fermat number 22
n
+ 1 is either a prime or a base-2 pseudoprime.

(c) Show that p2 divides 2p−1 − 1 if and only if p2 is a base-2 pseudoprime.

None of these criteria guarantee that there are infinitely many base-2 pseudo-
primes. However this is provable:

Exercise 7.10.18.† Prove that there are infinitely many base-2 pseudoprimes by proving and
developing one of the following two observations:

• Start with 341, and show that if n is a base-2 pseudoprime, then so is N := 2n − 1.
• Prove that if p > 3 is prime, then (4p − 1)/3 is a base-2 pseudoprime.

Can you generalize either of these proofs to other bases?

Exercise 7.10.19. Let a, b, c be pairwise coprime positive integers. Prove that there exists a
(unique) residue class m0 (mod abc) such that if m ≡ m0 (mod abc) and if am+ 1, bm+ 1, and
cm+1 are all primes, then their product is a Carmichael number (for example, a = 1, b = 2, c = 3
in exercise 7.6.4 with m0 = 0).

Exercise 7.10.20. Let D be a finite set of at least two distinct positive integers, the elements of
which sum to n. Suppose that d divides n for every d ∈ D. Prove that if there exists an integer
m for which pd := dnm+ 1 is prime for every d ∈ D, then

∏
d∈D pd is a Carmichael number. (In

particular note the case in which n is perfect and D is the set of proper divisors of n. The perfect
number 6, for example, gives rise to the triple 6m + 1, 12m + 1, 18m + 1, which we explored in
exercise 7.6.4.)
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Exercise 7.10.21. (a) Prove that .010010000100 . . . is irrational. (Here we put a “1” two digits
after the decimal point, then 3 digits later, then 5 digits later, etc., with all the other digits
being 0, the spacings between the “1”’s being p− 1 for each consecutive prime p.)

(b)† Develop this idea to find a large class of irrationals.



Appendix 7A. Card shuffling
and Fermat’s Little Theorem

In this appendix we will define order in terms of card shuffling, give a combinatorial
proof of Fermat’s Little Theorem, and discuss quick calculations of powers mod n.

7.11. Card shuffling and orders modulo n

The cards in a 52-card deck can be arranged in 52! ≈ 8× 1067 different orders. Be-
tween card games we shuffle the cards to make the order of the cards unpredictable.
But what if someone can shuffle “perfectly”? How unpredictable will the order of
the cards then be? Let’s analyze this by carefully figuring out what happens in a
“perfect shuffle”. There are several ways of shuffling cards, the most common being
the riffle shuffle. In a riffle shuffle one splits the deck in two, places the two halves
in either hand, and then drops the cards, using one’s thumbs, in order to more or
less interlace the cards from the two decks.

One begins with a deck of 52 cards and, to facilitate our discussion, we will
call the top card, card 1, the next card down, card 2, etc. If one performs a perfect
riffle shuffle, one cuts the cards into two 26 card halves, one half with the cards
1 through 26, the other half with the cards 27 through 52. An “out-shuffle” then
interlaces the two halves so that the new order of the cards becomes (from the top)
cards

1, 27, 2, 28, 3, 29, 4, 30, . . . .

That is, cards 1, 2, 3, . . . , 26 go to positions 1, 3, 5, . . . , 51, and cards 27, 28, . . . , 52
go to positions 2, 4, . . . , 52, respectively. We can give formulas for each half:

k →
{
2k − 1 for 1 ≤ k ≤ 26,

2k − 52 for 27 ≤ k ≤ 52.

140
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These coalesce into one formula k → 2k − 1 (mod 51) for all k, 1 ≤ k ≤ 52. The
top and bottom cards do not move, that is, 1 → 1 and 52 → 52, so we focus on
understanding the permutation of the other fifty cards:

Any shuffle induces a permutation σ on {1, . . . , 52}.6 For the out-shuffle, σ(1) =
1, σ(52) = 52, and

σ(1 +m) is the least positive residue of 1 + 2m (mod 51) for 1 ≤ m ≤ 50.

To determine what happens after two or more out-shuffles, we simply compute the
function σk(.) (= σ(σ(. . . σ︸ ︷︷ ︸

k times

(.)))). Evidently σk(1) = 1, σk(52) = 52, and then

σk(1 +m) is the least positive residue of 1 + 2km (mod 51) for 1 ≤ m ≤ 50.

Now 28 ≡ 1 (mod 51), and so σ8(1 +m) ≡ 1 +m (mod 51) for all m. Therefore
eight perfect out-shuffles return the deck to its original state—so much for the 52!
possible orderings!

Eight more perfect out-shuffles will also return the deck to its original state, a
total of 16 perfect out-shuffles, and also 24 or 32 or 40, etc. Indeed any multiple of
8. So we see that the order of 2 (mod 51) is 8 and that 2r ≡ 1 (mod 51) if and only
if r is divisible by 8. This shows, we hope, why the notion of order is interesting
and exhibits one of the key results (Lemma 7.1.2) about orders.

Exercise 7.11.1.† An “in-shuffle” is the riffle shuffle that interlaces the cards the other way;
that is, after one shuffle, the order becomes cards 27, 1, 28, 2, 29, . . . , 52, 26. Analyze this in an
analogous way to the above, and determine how many “in-shuffles” it takes to get the cards back

into their original order.

Exercise 7.11.2.† What happens when one performs riffle shuffles on n-card decks, with n even?

Exercise 7.11.3.‡ Suppose that the dealer alternates between in-shuffles and out-shuffles. How

many such pairs of shuffles does it take to get the deck of cards back into their original order?

Persi Diaconis is a Stanford mathematics professor who left home at the age of
fourteen to learn from sleight-of-hand legend Dai Vernon.7 It is said that Diaconis
can shuffle to obtain any permutation of a deck of playing cards. We are interested
in the highest possible order of a shuffle. To analyze this question, remember that
a shuffle can be reinterpreted as a permutation σ on {1, . . . , n} (where n = 52 for a
usual deck). One way to explicitly write down a permutation is to track the orbit
of each number. For example, for the permutation σ on 5 elements given by

σ(1) = 4, σ(2) = 5, σ(3) = 1, σ(4) = 3, σ(5) = 2,

1 gets mapped to 4, which gets mapped to 3, and 3 gets mapped back to 1, whereas
2 gets mapped to 5 and 5 gets mapped back to 2, so we can write

σ = (1, 4, 3)(2, 5).

Each of (1, 4, 3) and (2, 5) is a cycle, and cycles cannot be decomposed any further.
Any permutation can be decomposed into cycles in a unique way, the analogy of
the Fundamental Theorem of Arithmetic, for permutations. What is the order of
σ? Now σn = (1, 4, 3)n(2, 5)n, so that σn(1) = 1, σn(4) = 4, and σn(3) = 3 if

6That is, σ : {1, . . . , 52} → {1, . . . , 52} such that the σ(i) are all distinct (and so σ has an inverse).
7Check out this story, and these larger-than-life characters, on Wikipedia.
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and only if 3 divides n, while σn(2) = 2 and σn(5) = 5 if and only if 2 divides n.
Therefore σn is the identity if and only if 6 divides n, and so σ has order 6.

Exercise 7.11.4. Suppose that σ is a permutation on {1, . . . , n} and that σ = C1 · · ·Ck where
C1, . . . , Ck are disjoint cycles.
(a) Show that the order of σ equals the least common multiple of the lengths of the cycles

Cj , 1 ≤ j ≤ k.
(b) Use this to find the order of the permutation corresponding to an out-shuffle.
(c) Prove that if n1, . . . , nk are any set of positive integers for which n1 + · · · + nk = n, then

there exists a permutation σ = C1 · · ·Ck on {1, . . . , n}, where each Cj has length nj .
(d) Deduce that the maximum order, m(n), of a permutation σ on {1, . . . , n} is given by

max lcm[n1, . . . , nk] over all integers n1, . . . , nk ≥ 1 for which n1 + · · ·+ nk = n.

Our goal is to determine m(52), the highest order of any shuffle that Diaconis
can perform on a regular deck of 52 playing cards. However it is unclear how to
determine m(n) systematically. Working through the possibilities for small n, using
exercise 7.11.4, we find that

m(5) = 6 obtained from 6 = 3 · 2 and 5 = 3 + 2,
m(6) = 6 obtained from 6 = 3 · 2 · 1 and 6 = 3 + 2 + 1,
m(7) = 12 obtained from 12 = 4 · 3 and 7 = 4 + 3,
m(8) = 12 obtained from 12 = 4 · 3 · 1 and 8 = 4 + 3 + 1,
m(9) = 20 obtained from 20 = 5 · 4 and 9 = 5 + 4,
m(10) = 30 obtained from 30 = 5 · 3 · 2 and 10 = 5 + 3 + 2,
m(11) = 30 obtained from 30 = 6 · 5 and 11 = 6 + 5,
m(12) = 60 obtained from 60 = 5 · 4 · 3 and 12 = 5 + 4 + 3.

No obvious pattern jumps out (at least to the author) from this data, though one
observes one technical issue:

Exercise 7.11.5.† Show that there is a permutation σ = C1 · · ·Ck on {1, . . . , n} of order m(n)
in which the length of each cycle is either 1 or a power of a distinct prime.

Exercise 7.11.6.† Use the previous exercise to determine m(52).

Exercise 7.11.7.‡ Use exercise 5.4.3 to prove that logm(n) ∼
√
n logn.

7.12. The “necklace proof” of Fermat’s Little Theorem

Little Sophie has a necklace-making kit, which comes with wires that each accom-
modate p beads, and unlimited supplies of beads of a different colors. How many
genuinely different necklaces can be Sophie make? Two necklaces are equivalent if
they can be obtained from each other by a rotation; otherwise they are different;
and so Sophie is asking for the number of equivalence classes of sequences of length
p where each entry is selected from a possible colors.

Suppose we have a necklace with the jth bead having color c(j) for 1 ≤ j ≤ p.
One can rotate the necklace in p different ways: If we rotate the necklace k places
for some k in the range 0 ≤ k ≤ p−1, then the jth bead will have color c(j+k) for
1 ≤ j ≤ p, where c(.) is taken to be a function of period p. If two of these equivalent
necklaces are identical, then c(j+k) = c(j+ �) for all j, for some 0 ≤ k < � ≤ p−1.
Then c(n + d) = c(n) for all n, where d = � − k ∈ [1, p − 1], and so c(md) = c(0)
for all m; that is, all of the beads in the necklace have the same color.
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Therefore we have proved that, other than the a necklaces made of beads of the
same color which each belong to an equivalence class of size 1, all other necklaces
belong to equivalence classes of size p. Since there are ap possible sequences of
length p with a possible colors for each entry, and a sequences that all have the
same color, the total number of equivalence classes (different necklaces) is

a+
ap − a

p
.

In particular, we have established that p divides ap − a for all a, as desired.8

Exercise 7.12.1. Let p be prime. Let X denote a finite set and f : X → X where fp = i, the
identity map. (Here fp means composing f with itself p times.) Let Xfixed := {x ∈ X : f(x) = x}.
(a) Prove that |X| ≡ |Xfixed| (mod p).

Let G be a finite multiplicative group and X = {(x1, . . . , xp) ∈ Gp : x1 · · ·xp = 1}.
(b)† Deduce that #{g ∈ G : g has order p} ≡ |G|p−1 − 1 (mod p).
(c) Deduce that if p divides the order of finite group G, then G contains an element of order p.

Combined with Lagrange’s Theorem, Corollary 7.23.1 of appendix 7D, this is an “if and
only if” criterion.

Exercise 7.12.2. Let p be a given prime.
(a) Use (4.12.3) of appendix 4C to determine the number of irreducible polynomials mod p of

prime degree q.
(b) Deduce that qp ≡ q (mod p) for every prime q.
(c) Deduce Fermat’s Little Theorem.

More combinatorics and number theory

[1] Melvin Hausner, Applications of a simple counting technique, Amer. Math. Monthly 90 (1983),
127–129.

7.13. Taking powers efficiently

How can one raise a residue class mod m to the nth power “quickly”, when n is
very large? In 1785 Legendre computed high powers mod p by fast exponentiation:
To determine 565 (mod 161), we write 65 in base 2, that is, 65 = 26 + 21, so

that 565 = 52
6 · 521 . Let f0 = 5 and f1 ≡ f2

0 ≡ 52 ≡ 25 (mod 161). Next let
f2 ≡ f4

0 ≡ f2
1 ≡ 252 ≡ 142 (mod 161), and then f3 ≡ f8

0 ≡ f2
2 ≡ 1422 ≡ 39

(mod 161). We continue computing fk ≡ f2k

0 ≡ f2
k−1 (mod 161) by successive

squaring: f4 ≡ 72, f5 ≡ 32, f6 ≡ 58 (mod 161) and so 565 = 564+1 ≡ f6 · f0 ≡
58 · 5 ≡ 129 (mod 161). We have determined the value of 565 (mod 161) in seven
multiplications mod 161, as opposed to 64 multiplications by the more obvious
algorithm.

In general to compute an (mod m) quickly: Define

f0 = a and then fj ≡ f2
j−1 (mod m) for j = 1, 2, . . . , j1,

where j1 is the largest integer for which 2j1 ≤ n. Writing n in binary, say as
n = 2j1 + 2j2 + · · · + 2j� with j1 > j2 > · · · > j� ≥ 0, let g1 = fj1 and then

8We’ve seen that Fermat’s Little Theorem arises in many different contexts. Even its earliest
discoverers got there for different reasons: Fermat, Euler, and Lagrange were led to Fermat’s Little
Theorem by the search for perfect numbers, whereas Gauss was led to it by studying the periods in the
decimal expansion of fractions (as in section 7.8). It seems to be a universal truth, rather than simply
an ad hoc discovery.
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gi ≡ gi−1fji mod m for i = 2, 3, . . . , �. Therefore

g� ≡ fj1 · fj2 · · · fj� ≡ a2
j1+2j2+···+2j� = an (mod m).

This involves j� + � − 1 ≤ 2j� ≤ 2 log n
log 2 multiplications mod m as opposed to n

multiplications mod m by the more obvious algorithm.

One can often use fewer multiplications. For example, for 31 = 1+2+4+8+16
the above uses 8 multiplications, but we can use just 7 multiplications if, instead,
we determine a31 (mod m) by computing a2 ≡ a ·a; a3 ≡ a2 ·a; a6 ≡ a3 ·a3; a12 ≡
a6 · a6; a24 ≡ a12 · a12; a30 ≡ a24 · a6 (mod m); and finally a31 ≡ a30 · a (mod m).

These exponents form an addition chain, a sequence of integers e1 = 1 <
e2 < · · · < ek where, for all k > 1, we have ek = ei + ej for some i, j ∈
{1, . . . , k − 1}. In the example above, the binary digits of 31 led to the addi-
tion chain 1, 2, 3, 4, 7, 8, 15, 16, 31, but the addition chain 1, 2, 3, 6, 12, 24, 30, 31 is
shorter.

For most exponents n, there is an addition chain which is substantially shorter
than j�+�−1, though never less than half that size. There are many open questions
about addition chains. The best known is Scholz’s conjecture that the shortest
addition chain for 2n−1 has length ≤ n−1 plus the length of the shortest addition
chain for n. For much more on addition chains, see Knuth’s classic book [Knu98].

7.14. Running time: The desirability of polynomial time algorithms

In this section we discuss how to measure how fast an algorithm is. The inputs into
the algorithm in the previous section for calculating an (mod m) are the integers
a and m, with 1 ≤ a ≤ m, and the exponent n. We will suppose that m has d
digits (so that d is proportional to logm). The usual algorithms for adding and
subtracting integers with d digits take about 2d steps, whereas the usual algorithm
for multiplication takes about d2 steps.9

Exercise 7.14.1. Justify that multiplying two residues mod m together and reducing mod m
takes no more than 2d2 steps.

The algorithm described in the previous section involves about c logn multipli-
cations of two residues mod m, for some constant c > 0, and so the total number
of steps is proportional to

(logm)2 log n.

Is this good? Given any mathematical problem, the cost (measured by the number
of steps) of an algorithm to resolve the question must include the time taken to read
the input data, which can be measured by the number of digits, D, in the input.
In this case the input is the numbers a, m, and n, so that D is proportional to
logm+log n. Now if a and m are fixed and we allow n to grow, then the algorithm
takes CD steps for some constant C > 0, which is C times as long as it takes to
read the input. You cannot hope to do much better than that. On the other hand,
if m and n are roughly the same size, then the algorithm takes time proportional

9Since we have to multiply each pair of digits together, one from each of the given numbers.
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to D3. We still regard this as fast—any algorithm whose speed is bounded by a
polynomial in D is a polynomial time algorithm and is considered to be pretty fast.

It is important to distinguish between a mathematical problem and an algo-
rithm used for resolving it. There can be many choices of algorithm and one wants
a fast one. However, we might only know a slowish algorithm which, even though
it may seem clever, does not necessarily mean that there is no fast algorithm.

Let P be the class of problems that can be resolved by an algorithm that runs
in polynomial time. Few mathematical problems belong to P and the key question
is whether we can identify which problems. We’ll discuss P in section 10.4.

Exercise 7.14.2. Prove that the Euclidean algorithm works in polynomial time.

Appendices. The extended version of chapter 7 has the following additional
appendices:

Appendix 7B. Orders and primitive roots discusses how the order mod pk of
an integer prime to p varies as k increases. As a consequence we determine the
structure of (Z/pkZ)∗ and calculate orders modulo composite m. We go on to
discuss Gauss’s extraordinary algorithm to construct primitive roots mod p, which
works even better in the computer age than it did in his time.

Appendix 7C. Finding nth roots modulo prime powers introduces the question
of explicitly determining all of the nth roots mod p, of a given nth power. Using
the ideas in appendix 7B we can efficiently find all nth roots of 1 mod p, so our
question boils down to finding one mth root, where m = (n, p− 1). We use this to
find the nth roots of a (mod pk) for increasing k. We finish by looking at special
cases in which one can find nth roots mod p through a formula (this is not always

the case), which works if n divides p− 1 and (n, p−1
n ) = 1.

Appendix 7D. Orders for finite groups. Here we generalize the concept of order
and Fermat’s Little Theorem to arbitrary finite groups, and Wilson’s Theorem if
the group is also commutative. Finally we look at normal subgroups and develop
the analogy of the Fundamental Theorem of Arithmetic, for finite groups.

Appendix 7E. Constructing finite fields. We show that all finite fields have
order pr for some prime p and integer r ≥ 1 and show how to construct them.
Moreover we find two different generalizations of (7.4.1).

Appendix 7F. Sophie Germain andFermat’s Last Theorem proves Sophie Ger-
main’s famous result, which substantially restricts possible solutions to Fermat’s
Last Theorem with exponent p, when p and 2p+ 1 are both primes.

Appendix 7G. Primes of the form 2n + k shows how to construct integers k
such that 2n+ k is never prime, using a surprisingly simple idea of Paul Erdős. We
then go on to extend this idea to show there are integers k for which there are no
primes of the form Fn + k as Fn ranges through the Fibonacci numbers.

Appendix 7H. Further congruences. Here we study Fermat quotients and in
particular whether p2 ever divides 2p−2. We also look at binomial coefficients mod
p2, Bernoulli numbers mod p, the Wilson quotient, sums of powers of integers mod
p2, and go beyond Fermat’s Little Theorem.
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Appendix 7I. Primitive prime factors of recurrence sequences are prime factors
of a particular term of the recurrence sequence that divide no earlier term. For
certain recurrence sequences, we show that every term, except perhaps the first
few, has a primitive prime factor, and we discuss what is known on this subject.



Chapter 8

Quadratic residues

In this chapter we will develop an understanding of the squares mod n, in particular
how many there are and how to quickly identify whether a given residue is a square
mod n. We mostly discuss the squares modulo primes and from there understand
the squares mod prime powers via “lifting”, and modulo composites through the
Chinese Remainder Theorem.

8.1. Squares modulo prime p

There are two types of squares mod p. We always have 02 ≡ 0 (mod p). Then
there are the “quadratic residues (mod p)”, which are the non-zero residues a
(mod p) which are congruent to a square modulo p. All other residue classes are
“quadratic non-residues”. If there is no ambiguity, we simply say “residues” and
“non-residues”. In the next table we list the quadratic residues modulo each of the
primes between 5 and 17.

Modulus Quadratic residues
5 1, 4
7 1, 2, 4
11 1, 3, 4, 5, 9
13 1, 3, 4, 9, 10, 12
17 1, 2, 4, 8, 9, 13, 15, 16

Exercise 8.1.1. (a) Prove that 337 is not a square (that is, the square of an integer) by
reducing it mod 5.

(b) Prove that 391 is not a square by reducing it mod 7.
(c) Prove that there do not exist integers x and y for which x2 − 3y2 = −1, by reducing any

solution mod 3.

In each row of our table there seem to be p−1
2 quadratic residues mod p:

Lemma 8.1.1. The distinct quadratic residues mod p are given by 12, 22, . . . ,
(
p−1
2

)2
(mod p).

Proof. If r2 ≡ s2 (mod p) with 1 ≤ s < r ≤ p− 1, then p | r2 − s2 = (r− s)(r+ s)
and so p divides either r − s or r + s. Now 0 < r − s < p and so p does not divide

147
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r − s. Therefore p divides r + s, and 0 < r + s < 2p, so we must have r + s = p.

Hence the residues of 12, 22, . . . ,
(
p−1
2

)2
(mod p) are distinct, and if s = p−r, then

s2 ≡ (−r)2 ≡ r2 (mod p). This implies our result. �

Define the Legendre symbol as follows: For each odd prime p let

(
a

p

)
=

⎧⎪⎨
⎪⎩

0 if a ≡ 0 (mod p),

1 if a is a quadratic residue mod p,

−1 if a is a quadratic non-residue mod p.

Exercise 8.1.2. (a) Prove that if a ≡ b (mod p), then
(

a
p

)
=
(

b
p

)
.

(b) Prove that
∑p−1

a=0

(
a
p

)
= 0.

Corollary 8.1.1. There are exactly 1 +
(

a
p

)
residues classes b (mod p) for which

b2 ≡ a (mod p).

Proof. If a is a quadratic non-residue, there are no solutions. For a = 0 if b2 ≡ 0
(mod p), then b ≡ 0 (mod p) so there is just one solution. If a is a quadratic
residue, then, by definition, there exists b such that b2 ≡ a (mod p), and then there
are the two solutions (p − b)2 ≡ b2 ≡ a (mod p) and no others, by the proof in
Lemma 8.1.1 (or by Proposition 7.4.1). We have therefore proved

#{b (mod p) : b2 ≡ a (mod p)} =

⎧⎪⎨
⎪⎩
1 if a ≡ 0 (mod p),

2 if a is a quadratic residue mod p,

0 if a is a quadratic non-residue mod p.

This equals 1 +
(

a
p

)
, looking above at the definition of the Legendre symbol. �

Theorem 8.1. We have
(

ab
p

)
=
(

a
p

)(
b
p

)
for any integers a, b. That is:

(i) The product of two quadratic residues (mod p) is a quadratic residue.

(ii) The product of a quadratic residue and a non-residue is itself a non-residue.

(iii) The product of two quadratic non-residues (mod p) is a quadratic residue.

Proof (Gauss). (i) If a ≡ A2 and b ≡ B2, then ab ≡ (AB)2 (mod p).

Let R := {r (mod p) : (r/p) = 1} be the set of quadratic residues mod p. We
saw that if (a/p) = 1, then (ar/p) = 1 for all r ∈ R. In other words, ar ∈ R; that
is, aR ⊂ R. The elements of aR are distinct, so that |aR| = |R|, and therefore
aR = R.

(ii) Let N = {n (mod p) : (n/p) = −1} be the set of quadratic non-residues
mod p, so that N ∪ R partitions the reduced residues mod p. By exercise 3.5.2,
we deduce that aR ∪ aN also partitions the reduced residues mod p, and therefore
aN = N since aR = R. That is, the elements of the set {an : (n/p) = −1} are all
quadratic non-residues mod p.

By Lemma 8.1.1, we know that |R| = p−1
2 , and hence |N | = p−1

2 since N ∪ R
partitions the p− 1 reduced residues mod p.



8.2. The quadratic character of a residue 149

(iii) In (ii) we saw that if (n/p) = −1 and (a/p) = 1, then (na/p) = −1. Hence
nR ⊂ N and, as |nR| = |R| = p−1

2 = |N |, we deduce that nR = N . But nR ∪ nN
partitions the reduced residues mod p, and so nN = R. That is, the elements of
the set {nb : (b/p) = −1} are all quadratic residues mod p. �

Exercise 8.1.3. Suppose that prime p does not divide ab.

(a) Prove that
(

a/b
p

)
=
(

ab
p

)
.

(b) Prove that there are non-zero residues x and y (mod p) for which ax2 + by2 ≡ 0 (mod p) if

and only if
(

−ab
p

)
= 1.

Exercise 8.1.4. Prove that if odd prime p divides b2−4ac but neither a nor c, then
(

a
p

)
=
(

c
p

)
.

Exercise 8.1.5. Let p be a prime > 3. Prove that if there is no residue x (mod p) for which
x2 ≡ 2 (mod p), and no residue y (mod p) for which y2 ≡ 3 (mod p), then there is a residue z
(mod p) for which z2 ≡ 6 (mod p).

We deduce from Theorem 8.1 that
(

.
p

)
is a multiplicative function. Therefore if

we have a factorization of a into prime factors as a = ±qe11 qe22 . . . qekk , and (a, p) = 1,
then1 (

a

p

)
=

(
±1

p

) k∏
i=1

(
qi
p

)ei

=

(
±1

p

) k∏
i=1

ei odd

(
qi
p

)
,

since (q/p)2 = 1 whenever p � q as this implies that
(

qi
p

)ei
= 1 if ei is even, and(

qi
p

)ei
=
(

qi
p

)
if ei is odd. Therefore, in order to determine

(
a
p

)
for all integers a,

it is only necessary to know the values of
(

−1
p

)
, and of

(
q
p

)
for all primes q.

Exercise 8.1.6. One can write each non-zero residue mod p as a power of a primitive root g.
(a) Prove that the quadratic residues are precisely those residues that are an even power of g,

and the quadratic non-residues are those that are an odd power.

(b) Deduce that
(

g
p

)
= −1.

Exercise 8.1.7. (a) Show that if n is odd and p divides an − 1, then
(

a
p

)
= 1.

(b) Show that if n is prime and p divides an − 1, but a �≡ 1 (mod p), then p ≡ 1 (mod n).
(c) Give an example to show that (b) can be false if we only assume that n is odd.

Exercise 8.1.8. (a) Prove that, for every prime p �= 2, 5, at least one of 2, 5, and 10 is a
quadratic residue mod p.

(b)† Prove that, for every prime p > 5, there are two consecutive positive integers that are both
quadratic residues mod p and are both ≤ 10.

8.2. The quadratic character of a residue

Fermat’s Little Theorem (Theorem 7.2) states that the (p − 1)st power of any
reduced residue mod p is congruent to 1 (mod p). Are there other patterns to be
found among the lower powers?

1Each of “±” and “±1” is to be read as “either ‘+’ or ‘−’ ”. We deal with these two cases together
since the proofs are entirely analogous, taking care throughout to be consistent with the choice of sign.
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a a2 a3 a4

1 1 1 1
2 -1 -2 1
-2 -1 2 1
-1 1 -1 1

a a2 a3 a4 a5 a6

1 1 1 1 1 1
2 -3 1 2 -3 1
3 2 -1 -3 -2 1
-3 2 1 -3 2 1
-2 -3 -1 2 3 1
-1 1 -1 1 -1 1

The powers of a mod 5 The powers of a mod 7

As expected the (p − 1)st column is all 1’s, but there is another pattern that
emerges: The entries in the “middle” column, that is, the a2 column mod 5 and the
a3 column mod 7, are all −1’s and 1’s. This column represents the least residues of

numbers of the form a
p−1
2 (mod p), and it appears that these are all −1’s and 1’s.

Can we decide which are +1 and which are −1? For p = 5 we see that 12 ≡ 42 ≡ 1
(mod 5) and 22 ≡ 32 ≡ −1 (mod 5); recall that 1 and 4 are the quadratic residues
mod 5. For p = 7 we see that 13 ≡ 23 ≡ 43 ≡ 1 (mod 7) and 33 ≡ 53 ≡ 63 ≡ −1
(mod 7); recall that 1, 2, and 4 are the quadratic residues mod 7. So we have
observed a pattern: The ath entry in the middle column is +1 if a is a quadratic
residues mod p, and it is −1 if a is a quadratic residues mod p; in either case it

equals the value of the Legendre symbol,
(

a
p

)
. This observation was proved by

Euler in 1732.

Theorem 8.2 (Euler’s criterion). We have a
p−1
2 ≡

(
a
p

)
(mod p) for all primes p

and integers a.

Proof #1. If
(

a
p

)
= 1, then there exists b such that b2 ≡ a (mod p) so that

a
p−1
2 ≡ bp−1 ≡ 1 (mod p), by Fermat’s Little Theorem.

If
(

a
p

)
= −1, then we proceed as in Gauss’s proof of Wilson’s Theorem though

pairing up the residues slightly differently. Let

S = {(r, s) : 1 ≤ r < s ≤ p− 1, rs ≡ a (mod p)}.
Note that if rs ≡ a (mod p), then r �≡ s (mod p), or else a ≡ r2 (mod p), contra-

dicting that
(

a
p

)
= −1. Therefore each integer m, 1 ≤ m ≤ p− 1, appears exactly

once, in exactly one pair in S. We deduce that

(p− 1)! =
∏

(r,s)∈S

rs ≡ a|S| = a
p−1
2 (mod p),

and the result follows from Wilson’s Theorem. �

For example, for p = 13, a = 2 we have

−1 ≡ 12! = (1 · 2)(3 · 5)(4 · 7)(6 · 9)(8 · 10)(11 · 12) ≡ 26 (mod 13).

Exercise 8.2.1.† Prove Euler’s criterion for (a/p) = 1, by evaluating (p− 1)! (mod p) as in the
second part of proof #1, but now taking account of the solutions r (mod p) to r2 ≡ a (mod p).
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Proof #2 of Euler’s criterion. We began Proof #1 by showing that if
(

a
p

)
= 1,

then a
p−1
2 ≡ 1 ≡

(
a
p

)
(mod p). This implies that a is a root of x

p−1
2 − 1 (mod p).

By Lemma 8.1.1 there are exactly p−1
2 quadratic residues mod p, and we now know

that these are all roots of x
p−1
2 − 1 (mod p) and are therefore all of the roots of

x
p−1
2 − 1 (mod p). That is,

(8.2.1) x
p−1
2 − 1 ≡

∏
1≤a≤p
(a/p)=1

(x− a) (mod p).

In (7.4.1) we noted that

xp−1 − 1 ≡ (x− 1)(x− 2) · · · (x− (p− 1)) (mod p);

that is, the p − 1 roots of xp−1 − 1 = (x
p−1
2 − 1)(x

p−1
2 + 1) (mod p) are precisely

the reduced residues mod p, each occurring exactly once. Since the set of reduced
residues mod p is the union of the set of quadratic residues and the set of quadratic
non-residues, we can divide this last equation through by (8.2.1), to obtain

(8.2.2) x
p−1
2 + 1 ≡

∏
1≤b≤p

(b/p)=−1

(x− b) (mod p).

This implies that if b is a quadratic non-residue mod p, then b
p−1
2 +1 ≡ 0 (mod p);

that is, b
p−1
2 ≡ −1 =

(
b
p

)
(mod p). �

We can use Euler’s criterion to determine the value of Legendre symbols as
follows:

(
3
13

)
= 1 since 36 = 272 ≡ 12 ≡ 1 (mod 13), and

(
2
13

)
= −1 since

26 = 64 = −1 (mod 13).

Exercise 8.2.2. Let p be an odd prime. Explain how one can determine the integer
(

a
p

)
by

knowing a
p−1
2 (mod p). (Euler’s criterion gives a congruence, but here we are asking for the

value of the integer
(

a
p

)
.)

Exercise 8.2.3. Use Euler’s criterion to reprove Theorem 8.1.

Proof #3 of Euler’s criterion. Let g be a primitive root mod p. We have

g
p−1
2 ≡ −1 (mod p) by exercise 7.5.2. Suppose that a ≡ gr (mod p) for some

integer r, so that a
p−1
2 ≡ (gr)

p−1
2 = (g

p−1
2 )r ≡ (−1)r (mod p). If a is a quadratic

residue mod p, then r is even by exercise 8.1.6, and so a
p−1
2 ≡ (−1)r ≡ 1 (mod p).

If a is a quadratic non-residue mod p, then r is odd, and so a
p−1
2 ≡ (−1)r ≡ −1

(mod p). �

Square roots and non-squares modulo p. How can we tell whether a reduced
residue a (mod p) is a square mod p? One idea is to try to find the square root, but
it is not clear how to go about this efficiently (for example, try to find the square
root of 77 (mod 101)). One consequence of Euler’s criterion is that one does not
have to try to find the square root to determine whether a given residue class is a
square mod p. Indeed one can determine whether a is a square mod p by calculating
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a
p−1
2 (mod p). This might look like it will be equally difficult, but we have shown

in section 7.13 of appendix 7A that one can calculate a high power of a mod p quite
efficiently.

There are some special cases in which one can determine a square root of a
(mod p) quite easily. For example, when p ≡ 3 (mod 4):

Exercise 8.2.4. Let p be a prime ≡ 3 (mod 4). Show that if
(

a
p

)
= 1 and b ≡ a

p+1
4 (mod p),

then b2 ≡ a (mod p). (This idea is explored further in section 7.21 of appendix 7C.)

However if p ≡ 1 (mod 4), then it is not so easy to determine a square root.
For example, −1 is a square mod p (as we will prove in the next section) but we do
not know a simple practical way to quickly determine a square root of −1 (mod p).

How can one quickly find a quadratic non-residue mod p? One would think it
would be easy, as half of the residues mod p are quadratic non-residues, but there
is no simple way to guarantee finding one quickly. In practice it is most efficient
to select numbers in [1, p− 1] at random, independently. The probability that any
given selection is a quadratic residue is 1

2 ; so the probability that every one of

the first k choices is a quadratic residue is 1/2k. Therefore, the probability that
none of the first 20 selections is a quadratic non-residue mod p is less than one
in a million. Moreover it is easy to verify whether each selection is a quadratic
residue mod p, using Euler’s criterion. This algorithm will almost always rapidly
determine a quadratic non-residue mod p, but one might just be terribly unlucky
and the algorithm might fail.

It is useful to determine for which primes p a given small integer a is a quadratic
residue (mod p). We study this for a = −1, 2, and −2 in the next few sections.

8.3. The residue −1

Theorem 8.3. If p is an odd prime, then −1 is a quadratic residue (mod p) if and
only if p ≡ 1 (mod 4).

We will give five proofs of this result (even though we don’t need more than
one!) to highlight how the various ideas in the book dovetail in this key result. It
is worth recalling that in exercise 7.4.3(c) we showed that if p ≡ 1 (mod 4), then(
p−1
2

)
! is a square root of −1 (mod p). We developed more efficient ways of finding

a square root of −1 (mod p) in section 7.21 of appendix 7C.

Proof #1. Euler’s criterion implies that
(

−1
p

)
≡ (−1)

p−1
2 (mod p). Since each

side of the congruence is −1 or 1, and p, which is > 2, divides their difference, they

must be equal and so
(

−1
p

)
= (−1)

p−1
2 , and the result follows. �

Proof #2. In exercise 7.5.2 we saw that −1 ≡ g(p−1)/2 (mod p) for any primitive
root g modulo p. Now if −1 ≡ (gk)2 (mod p) for some integer k, then p−1

2 ≡ 2k

(mod p− 1), and there exists such an integer k if and only if p−1
2 is even. �
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Proof #3. The number of quadratic non-residues (mod p) is p−1
2 , and so, by

Wilson’s Theorem, we have(
−1

p

)
=

(
(p− 1)!

p

)
=

∏
a (mod p)

(
a

p

)
= (−1)

p−1
2 . �

Proof #4. If a is a quadratic residue, then so is 1/a (mod p). Therefore we may
“pair up” the quadratic residues (mod p), except those for which a ≡ 1/a (mod p).
The only solutions to a ≡ 1/a (mod p) (that is, a2 ≡ 1 (mod p)) are a ≡ 1 and
−1 (mod p). Therefore the product of the quadratic residues mod p is congruent

to −(−1/p). On the other hand the roots of x
p−1
2 − 1 (mod p) are precisely the

quadratic residues mod p, and so, taking x = 0 in (8.2.1), the product of the

quadratic residues mod p is congruent to (−1)(−1)
p−1
2 (mod p). Comparing these

yields that (−1/p) ≡ (−1)
p−1
2 (mod p), and the result follows. �

Proof #5. (Euler) The first part of Proof #4 implies that

p− 1

2
= #{a (mod p) : a is a quadratic residue (mod p)}

has the same parity as

#{a ∈ {1,−1} : a is a quadratic residue (mod p)} =
1

2

(
3 +

(
−1

p

))
.

Multiplying through by 2 yields p ≡
(

−1
p

)
(mod 4), and the result follows. �

Theorem 8.3 implies that if p ≡ 1 (mod 4), then
(

−r
p

)
=
(

r
p

)
; and if p ≡ −1

(mod 4), then
(

−r
p

)
= −

(
r
p

)
.

Exercise 8.3.1. Let p be a prime ≡ 3 (mod 4), which does not divide integer a. Prove that either
there exists x (mod p) for which x2 ≡ a (mod p) or there exists y (mod p) for which y2 ≡ −a
(mod p), but not both.

Exercise 8.3.2. (a) Prove that every prime factor p of 4n2 + 1 satisfies p ≡ 1 (mod 4).

(b) Deduce that there are infinitely many primes ≡ 1 (mod 4).

8.4. The residue 2

Calculations reveal that the odd primes p < 100 for which
(

2
p

)
= 1 are

p = 7, 17, 23, 31, 41, 47, 71, 73, 79, 89, and 97.

These are exactly the primes < 100 that are ≡ ±1 (mod 8). This observation is
established as fact as follows:

Theorem 8.4. If p is an odd prime, then(
2

p

)
=

{
1 if p ≡ 1 or − 1 (mod 8),

−1 if p ≡ 3 or − 3 (mod 8).
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Proof. We will evaluate the product

S :=
∏

1≤m≤p−1
m even

m (mod p)

in two different ways. First note that each m in the product can be written as 2k
with 1 ≤ k ≤ p−1

2 , and so

S =

p−1
2∏

k=1

(2k) = 2
p−1
2

(
p− 1

2

)
!.

One can also rewrite each m in the product as p− n where n is odd; and if m is in
the range p+1

2 ≤ m ≤ p− 1, then 1 ≤ n ≤ p−1
2 . Therefore

S =
∏

1≤m≤ p−1
2

m even

m ·
∏

1≤n≤ p−1
2

n odd

(p− n).

Let’s suppose there are r such values of n, and note that each p−n ≡ −n (mod p).
Therefore

S ≡
∏

1≤m≤ p−1
2

m even

m ·
∏

1≤n≤ p−1
2

n odd

(−n) = (−1)r
(
p− 1

2

)
! (mod p).

Comparing the two ways that we have evaluated S, and dividing through by
(
p−1
2

)
!,

we find that
2

p−1
2 ≡ (−1)r (mod p).

The result follows from Euler’s criterion and verifying that r is even if p ≡ ±1
(mod 8), while r is odd if p ≡ ±3 (mod 8) (see exercise 8.4.1). �
Exercise 8.4.1. For any odd integer q, let r denote the number of positive odd integers ≤ q−1

2
.

Prove that r is even if q ≡ ±1 (mod 8), while r is odd if q ≡ ±3 (mod 8).

Gauss’s Lemma (Theorem 8.6 in appendix 8A) cleverly generalizes this proof

of Theorem 8.4 to classify the values of
(

a
p

)
for any fixed integer a.

Calculations reveal that the odd primes p < 100 for which
(

−2
p

)
= 1 are

p = 3, 11, 17, 19, 41, 43, 59, 67, 73, 83, 89, and 97.

These are exactly the primes < 100 that are ≡ 1 or 3 (mod 8). This observation is
established as fact by combining Theorems 8.3 and 8.4, which allow us to evaluate(

−2
p

)
by taking

(
−2
p

)
=
(

−1
p

)(
2
p

)
for every odd prime p.

Exercise 8.4.2. Prove that if p is an odd prime, then(−2

p

)
=

{
1 if p ≡ 1 or 3 (mod 8),

−1 if p ≡ 5 or 7 (mod 8).

Exercise 8.4.3. Prove that if 2 is a primitive root mod p, then p ≡ 3 or 5 (mod 8).

Exercise 8.4.4.† (a) Prove that if prime p|Mn := 2n − 1 where n > 2 is prime, then p ≡ 1
(mod n) and p ≡ ±1 (mod 8).

(b) Prove that if p = 2n+ 1 is prime, then p|2n − 1 if and only if p ≡ ±1 (mod 8).
(c) Prove that if p = 2n+ 1 is prime, then p|2n + 1 if and only if p ≡ ±3 (mod 8).
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(d) Prove that if q and p = 2q + 1 are both prime, then p divides 2q − 1 if and only if q ≡ 3
(mod 4).

(e) Factor 211 − 1 = 2047.

Exercise 8.4.5.† In exercise 7.3.2 we proved that if prime p divides 22
k
+ 1, then p ≡ 1

(mod 2k+1). Now show that p ≡ 1 (mod 2k+2) if k ≥ 2.2

8.5. The law of quadratic reciprocity

We have already seen that if p is an odd prime, then(
−1

p

)
=

{
1 if p ≡ 1 (mod 4),

−1 if p ≡ −1 (mod 4)

and (
2

p

)
=

{
1 if p ≡ 1 or − 1 (mod 8),

−1 if p ≡ 3 or − 3 (mod 8).

To be able to evaluate arbitrary Legendre symbols we will also need the law of
quadratic reciprocity.

Theorem 8.5 (The law of quadratic reciprocity). If p and q are given distinct
odd primes, then(

p

q

)(
q

p

)
=

{
1 if p ≡ 1 (mod 4) or q ≡ 1 (mod 4),

−1 if p ≡ q ≡ −1 (mod 4).

These rules, taken together, allow us to rapidly evaluate any Legendre symbol.
For example, to evaluate (m/p), we first reduce m mod p, so that (m/p) = (n/p)
where n ≡ m (mod p) and |n| < p. Next we factor n and, by the multiplicativity of
the Legendre symbol, we can evaluate (n/p) in terms of (−1/p), (2/p) and the (q/p)
for those primes q dividing n. We can easily determine the values of (−1/p) and
(2/p) from determining p (mod 8), and then we need to evaluate each (q/p) where
q ≤ |n| < p. We do this by the law of quadratic reciprocity since (q/p) = ±(p/q)
depending only on the values of p and q mod 4.3 We repeat the procedure on each
(p/q). Clearly this process will quickly finish as the numbers involved are always
getting smaller. Let us work through some examples.(

111

71

)
=

(
40

71

)
=

(
2

71

)3(
5

71

)
as 111 ≡ 40 (mod 71) and 40 = 23 · 5,

= 13 · 1 ·
(
71

5

)
as 71 ≡ −1 (mod 8) and 5 ≡ 1 (mod 4),

=

(
1

5

)
= 1 as 71 ≡ 1 (mod 5).

2We can use this to “demystify” Euler’s factorization of F5: Exercise 8.4.5 implies that any prime
factor p of F5 must be of the form 128m + 1. This is divisible by 3, 5, and 3 for m = 1, 3, and 4,
respectively, so is not prime. If m = 2, then p = F4 which we proved is coprime with F5 in section 5.1.
Finally, if m = 5, then p = 541 is a prime factor of F5.

3Note that if
(

p
q

)(
q
p

)
= η (= ±1) by the law of quadratic reciprocity, then

(
q
p

)
= η

(
p
q

)
.
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There is more than one way to proceed with these rules:(
111

71

)
=

(
−1

71

)(
31

71

)
as 111 ≡ −31 (mod 71),

= (−1) · (−1) ·
(
71

31

)
as 71 ≡ 31 ≡ −1 (mod 4),

=

(
9

31

)
=

(
3

31

)2

= 1 as 71 ≡ 9 ≡ 32 (mod 31).

A slightly larger example is(
869

311

)
=

(
247

311

)
=

(
13

311

)(
19

311

)
= 1 ·

(
311

13

)
· (−1) ·

(
311

19

)

= −
(
−1

13

)(
7

19

)
= −1 · 1 · (−1)

(
19

7

)
=

(
−2

7

)
= −1.

Although longer, each step is straightforward except when we factored 247 = 13×19
(a factorization which is not obvious for most of us, and imagine how difficult
factoring might be when we are dealing with much larger numbers). Indeed, this
is an efficient procedure provided that one is capable of factoring the numbers n
that arise. Although this may be the case for small examples, it is not practical for
large examples. We can bypass this potential difficulty by using the Jacobi symbol,
a generalization of the Legendre symbol, which we will discuss in section 8.7.

In the next subsection we will prove the law of quadratic reciprocity, justifying
the algorithm used above to determine the value of any given Legendre symbol.

The law of quadratic reciprocity is easily used to determine various other rules.
For example, when is 3 a square mod p? This is the same as asking when (3/p) = 1.
Now by quadratic reciprocity we have two cases:

• If p ≡ 1 (mod 4), then (3/p) = (p/3), and (p/3) = 1 when p ≡ 1 (mod 3), so
we have (3/p) = 1 when p ≡ 1 (mod 12) (using the Chinese Remainder Theorem).

• If p ≡ −1 (mod 4), then (3/p) = −(p/3), and (p/3) = −1 when p ≡
−1 (mod 3), so we have (3/p) = 1 when p ≡ −1 (mod 12) (using the Chinese
Remainder Theorem).

We have therefore proved that (3/p) = 1 if and only if p ≡ 1 or −1 (mod 12).

Exercise 8.5.1. Determine (a)
(
13
31

)
; (b)

(
323
31

)
; (c)

(
377
233

)
; (d)

(
13
71

)
; (e)

(−104
131

)
.

Exercise 8.5.2. (a) Show that if prime p ≡ 1 (mod 5), then 5 is a quadratic residue mod p.
(b) Show that if prime p ≡ 3 (mod 5), then 5 is a quadratic non-residue mod p.
(c) Determine all odd primes p for which (5/p) = −1.

Exercise 8.5.3. Prove that if p := 2n − 1 is prime with n > 2, then (3/p) = −1.

Exercise 8.5.4.† Suppose that Fm = 22
m

+ 1 with m ≥ 2 is prime. Prove that 3
Fm−1

2 ≡
5

Fm−1
2 ≡ −1 (mod Fm).

Exercise 8.5.5.† (a) Determine all odd primes p for which (7/p) = 1.
(b) Find all primes p such that there exists x (mod p) for which 2x2 − 2x− 3 ≡ 0 (mod p).
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Exercise 8.5.6. Show that if p and q = p + 2 are “twin primes”, then p is a quadratic residue
mod q if and only if q is a quadratic residue mod p.

Exercise 8.5.7. Prove that (−3/p) = (p/3) for all primes p.

8.6. Proof of the law of quadratic reciprocity

Suppose that p < q are odd primes, and let n = pq. Given residue classes a
(mod p) and b (mod q) there exists a unique residue class r (mod n) for which
r ≡ a (mod p) and ≡ b (mod q), by the Chinese Remainder Theorem. Let r(a, b)
be the least residue of r mod n in absolute value and let m(a, b) = |r(a, b)|, so that
1 ≤ m(a, b) ≤ n/2, and m(a, b) = r(a, b) or −r(a, b). We claim that{
m(a, b) : 1 ≤ a ≤ p− 1 and 1 ≤ b ≤ q − 1

2

}
=
{
m : 1 ≤ m ≤ n

2
with (m,n) = 1

}
,

since the two sets both have φ(n)/2 elements, each such m(a, b) ∈ [1, n
2 ) with

(m,n) = 1, and them(a, b) are distinct. This last assertion holds or else ifm(a, b) =
m(a′, b′), then r(a, b) ≡ ±r(a′, b′) (mod n), so that b ≡ ±b′ (mod q). As 1 ≤ b, b′ ≤
q−1
2 this implies that b = b′ so that the sign is “+”, and therefore a ≡ a′ (mod p)

implying that a = a′.

Since each m(a, b) = ±r(a, b), we deduce that there exists σ = −1 or 1 such
that

(8.6.1) σ
∏

1≤a<p−1

1≤b≤ q−1
2

r(a, b) =
∏

1≤a<p−1

1≤b≤ q−1
2

m(a, b) =
∏

1≤m<n/2
(m,n)=1

m.

We will calculate the two sides in this identity, mod p and mod q, and compare.

As r(a, b) ≡ a (mod p) the product on the left-hand side of (8.6.1) is∏
1≤a<p−1

1≤b≤ q−1
2

r(a, b) ≡
∏

1≤b≤ q−1
2

∏
1≤a<p−1

a = (p− 1)!
q−1
2 ≡ (−1)

q−1
2 (mod p),

using Wilson’s Theorem. We rewrite the right-hand side of (8.6.1), multiplying top
and bottom by the integers m ∈ [1, n

2 ) that are divisible by q, to obtain∏
1≤m<n/2
(m,p)=1

m

/ ∏
1≤m<n/2

q|m

m.

We partition the m’s in the numerator into intervals of length p, because∏
ip≤m<(i+1)p

(m,p)=1

m =

p−1∏
j=1

(ip+ j) ≡
p−1∏
j=1

j ≡ (p− 1)! ≡ −1 (mod p),

by Wilson’s Theorem. Applying this for 0 ≤ i ≤ q−3
2 we get a contribution of

(−1)
q−1
2 to the numerator. The remaining integers in the numerator contribute

∏
q−1
2 ·p≤m<n

2

(m,p)=1

m =

(p−1)/2∏
j=1

(
q − 1

2
p+ j

)
≡

(p−1)/2∏
j=1

j ≡
(
p− 1

2

)
! (mod p).
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On the other hand the m’s in the denominator can be written as qk with 1 ≤ k ≤
p−1
2 , and so∏
1≤m<n/2

q|m

m =
∏

1≤k≤ p−1
2

qk = q(p−1)/2

(
p− 1

2

)
! ≡

(
q

p

)(
p− 1

2

)
! (mod p),

by Euler’s criterion. Cancelling the
(
p−1
2

)
! from the numerator and denominator, we

deduce that the right-hand side of (8.6.1) is ≡ (−1)
q−1
2

(
q
p

)
(mod p). Comparing

our calculation of the left- and right-hand sides of (8.6.1) mod p, we obtain

(8.6.2) σ(−1)
q−1
2 ≡ (−1)

q−1
2

(
q

p

)
(mod p).

Since both sides are 1 or −1 and are congruent mod p, they must be equal and so
we deduce that

σ =

(
q

p

)
.

Next we reduce (8.6.1) mod q. For the right-hand side we proceed entirely
analogously to how we did mod p, with the roles of p and q reversed and so obtain

(−1)
p−1
2

(
p
q

)
(mod q).

For the left-hand side of (8.6.1) mod q , we note that each r(a, b) ≡ b (mod q),
so that ∏

1≤a<p−1

1≤b≤ q−1
2

r(a, b) ≡
∏

1≤a<p−1

∏
1≤b≤ q−1

2

b =

((
q − 1

2

)
!
)p−1

(mod q).

In exercise 7.4.3 we saw
(

q−1
(q−1)/2

)
≡ (−1)

q−1
2 (mod q),4 and therefore((

q − 1

2

)
!
)2

≡ (−1)
q−1
2 (q − 1)! ≡ −(−1)

q−1
2 (mod q),

by Wilson’s Theorem. Therefore

∏
1≤a<p−1

1≤b≤ q−1
2

r(a, b) ≡
(((

q − 1

2

)
!
)2
) p−1

2

≡ (−1)
p−1
2 · (−1)

p−1
2 · q−1

2 (mod q).

Substituting this and the above into (8.6.1) we obtain

(8.6.3)

(
q

p

)
(−1)

p−1
2 · (−1)

p−1
2 · q−1

2 ≡ (−1)
p−1
2

(
p

q

)
(mod q).

Again both sides are 1 or −1 and are congruent mod q, so must be equal. Multi-

plying both sides through by (−1)
p−1
2

(
q
p

)
implies that(

p

q

)(
q

p

)
= (−1)

p−1
2 · q−1

2 .

4See the solution to exercise 7.4.3 at the end of the book for a proof.
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From here we work through the four cases for p and q mod 4 and deduce the law
of quadratic reciprocity (Theorem 8.5). �

There are many proofs of the law of quadratic reciprocity, 246 at the last
count (see the list at http://www.rzuser.uni-heidelberg.de/~hb3/fchrono.

html). In this chapter’s appendices we present two of the best: the original proof
due to Gauss and an elegant proof due to Eisenstein. We also discuss two other
proofs in the exercises and then two sophisticated but shorter proofs in chapter 14.

8.7. The Jacobi symbol

The Jacobi symbol is defined as follows: If m is a positive odd integer, we write
m =

∏
p p

ep , where the p are distinct odd primes, and then( a

m

)
=
∏
p

(
a

p

)ep

.

This is defined only for odd m, not for even m.

If a is a square modulo m, then, by the Chinese Remainder Theorem, a is a
square modulo every prime p dividing m; that is, (a/p) = 0 or 1 for all p|m and so
(a/m) = 0 or 1. However the converse is not always true; for example, 2 is not a
square mod 15 as(

2

3

)
=

(
2

5

)
= −1, even though this implies that

(
2

15

)
=

(
2

3

)(
2

5

)
= 1.

Exercise 8.7.1. Suppose that m is an odd positive integer.

(a) Prove that
(

a
m

)
=
(

b
m

)
whenever a ≡ b (mod m).

(b) Prove that
(

ab
m

)
=
(

a
m

) (
b
m

)
.

(c) Prove that if
(

a
m

)
= −1, then a is not a square mod m.

(d) Prove that
(

a
m

)
= 0 if and only if (a,m) > 1.

Exercise 8.7.2. (a) Prove that
∑m−1

a=0

(
a
m

)
= 0 for every non-square odd integer m ≥ 2.

(b) For how many residues a mod m do we have (a/m) = 1?
(c) For how many residues a mod m do we have (a/m) = −1?

Exercise 8.7.3. Show that if n ≥ 1, then
(

n
4n−1

)
= 1.

Theorems 8.3, 8.4, and 8.5 can all be extended to the Jacobi symbol (as we will
prove at the end of this section): If m and n are odd, coprime integers > 1, then

(8.7.1)

(
−1

n

)
=

{
1 if n ≡ 1 (mod 4),

−1 if n ≡ −1 (mod 4),

(8.7.2)

(
2

n

)
=

{
1 if n ≡ 1 or − 1 (mod 8),

−1 if n ≡ 3 or − 3 (mod 8),

and the law of quadratic reciprocity

(8.7.3)
(m
n

)( n

m

)
= (−1)

m−1
2 ·n−1

2 .

http://www.rzuser.uni-heidelberg.de/~hb3/fchrono.html
http://www.rzuser.uni-heidelberg.de/~hb3/fchrono.html
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We can use these three rules to easily evaluate (m/n) for any odd coprime
integers m and n. One begins by selecting M ≡ m (mod n) as conveniently as
possible, usually with |M | < n. Then we factor M = ±2k� where � is an odd

positive integer < n, so that
(
m
n

)
=
(
M
n

)
=
(±1

n

) (
2
n

)k ( �
n

)
. We can evaluate the

first two Jacobi symbols using the first two rules above (which depend only on the
value of n (mod 8)), and then we know that

(
�
n

)
= ±

(
n
�

)
by the third rule. To

evaluate
(
n
�

)
we repeat this process, but now with a smaller pair of numbers, so

that the algorithm will terminate after finitely many steps.

This algorithm only involves dividing out powers of 2 and a possible minus sign,
so it goes fast and avoids serious factoring; in fact it is guaranteed to go at least as
fast as the Euclidean algorithm since it involves very similar steps.5 Here is a first
straightforward example using the Jacobi symbol, instead of the Legendre symbol:(

106

71

)
=

(
35

71

)
= −

(
71

35

)
= −

(
1

35

)
= −1.

(Note that (71/35) is not the Legendre symbol as 35 is not prime, but it is a Jacobi
symbol.) Now let’s revisit the example

(
869
311

)
from section 8.5 and avoid factoring

247: (
869

311

)
=

(
247

311

)
= (−1)

(
311

247

)
= −

(
64

247

)
= −1.

We did not need to factor 247, and each step of the algorithm was straightforward.

Exercise 8.7.4. Determine (a)
(
13
27

)
; (b)

(
323
225

)
; (c)

(
233
377

)
; (d)

(−104
135

)
.

Proof of (8.7.1), (8.7.2), and (8.7.3). We proceed by induction on the number of
prime factors of m and n. The results follows when m and n have one prime factor
by Theorems 8.3, 8.4, and 8.5, respectively. Otherwise we write n = ap for some
prime p dividing n (swapping the roles of m and n if necessary).

Exercise 8.7.5. Prove that a−1
2

+ b−1
2

≡ ab−1
2

(mod 2) for any odd integers a, b.

Equation (8.7.1) can be rephrased as
(−1

n

)
= (−1)

n−1
2 . By induction, using the

multiplicativity of the denominator of the Jacobi symbol,(
−1

n

)
=

(
−1

ap

)
=

(
−1

a

)(
−1

p

)
= (−1)

a−1
2 + p−1

2 = (−1)
ap−1

2 = (−1)
n−1
2

by exercise 8.7.5.

Similarly by induction and multiplicativity of the numerator and denominator,(m
n

)( n

m

)
=

(
m

ap

)(ap
m

)
=
(m
a

)(m

p

)
·
( a

m

)( p

m

)
=
(m
a

)( a

m

)
·
(
m

p

)( p

m

)
= (−1)

m−1
2 · a−1

2 +m−1
2 · p−1

2 = (−1)
m−1

2 · ap−1
2 = (−1)

m−1
2 ·n−1

2

by exercise 8.7.5.

5As in the “speeded up” version of the Euclidean algorithm, given in section 1.11 of appendix 1B.
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If ( 2a ) = ( 2p ), then a ≡ ±p (mod 8), so that n = ap ≡ ±1 (mod 8), and

therefore ( 2n ) = ( 2a )(
2
p ) = (±1)2 = 1. If ( 2a ) = −( 2p ), then a ≡ ±3p (mod 8), so

that n = ap ≡ ±3 (mod 8), and therefore ( 2n ) = ( 2a)(
2
p ) = (1)(−1) = −1. �

Gauss gave a different proof of (8.7.2), tying the question directly into finding
solutions to quadratic equations. This foreshadows Gauss’s proof of the full law of
quadratic reciprocity, which we will give in appendix 8C.

Gauss’s induction step for integers n ≡ ±3 (mod 8). We suppose that (8.7.2)
is true for all odd integers m < n and that n ≡ ±3 (mod 8). If n = ab is composite
with 1 < a, b < n, then

(
2
n

)
=
(
2
a

) (
2
b

)
and the result for n follows by applying the

induction hypothesis with m = a and with m = b.

Therefore we may suppose that n = p is prime and assume that ( 2p ) = 1. Let a

be the smallest odd positive integer for which a2 ≡ 2 (mod p) so that 1 ≤ a ≤ p−1
(for if b is the smallest positive integer for which b2 ≡ 2 (mod p), then let a = b if b
is odd, and a = p−b if b is even), and write a2−2 = pr. Evidently pr ≡ a2−2 ≡ −1
(mod 8) and so r ≡ p2r ≡ p(pr) ≡ −p ≡ ±3 (mod 8). Now a2 ≡ 2 (mod r) and so(
2
r

)
= 1 with r = a2−2

p < p and r ≡ ±3 (mod 8). This contradicts the induction

hypothesis, and so our assumption is wrong. Therefore ( 2p ) = −1. �

Exercise 8.7.6. Prove an analogous induction step for integers n ≡ 5 or 7 (mod 8) when estab-

lishing the value of
(−2

n

)
.

Exercise 8.7.7 (A useful reformulation of the law of quadratic reciprocity). For a given odd,

squarefree integer n > 1 let n∗ =
(−1

n

)
n. Prove that n∗ ≡ 1 (mod 4) and that we have

(
m
n

)
=(

n∗
m

)
for all odd integers m > 1.

8.8. The squares modulo m

To determine the squares mod m, that is, the residues a (mod m) for which there
exists b (mod m) with b2 ≡ a (mod m), we may use the Chinese Remainder The-
orem: We know that a is a square mod m if and only if a is a square modulo every
prime power factor of m. So it is sufficient to understand the squares modulo every
prime power.

Above we have understood the squares modulo every prime p. We now “lift”
these squares to determine the squares modulo every prime power, pk. Let’s begin
by studying the squares mod p2:

The squares mod 9 are 0, 1, 4, and 7 mod 9 (these are the least residues of
02, 12, . . . , 82 (mod 9), excluding repetitions). The non-zero residues, 1, 4, and 7
are all ≡ 1 (mod 3); in fact they are all of the residue classes a (mod 9) for which
a ≡ 1 (mod 3). We have seen that 1 (mod 3) is the only quadratic residue mod 3.

Similarly mod 25 we have the squares

0, 1, 4, 9, 16, 11, 24, 14, 6, 21, and 19 (mod 25).
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The non-zero squares here are 1, 6, 11, 16, and 21 (mod 25), the residue classes a
(mod 25) for which a ≡ 1 (mod 5), and 4, 9, 14, 19, and 24 (mod 25), the residue
classes a (mod 25) for which a ≡ 4 (mod 5). Moreover 1 and 4 (mod 5) are the
quadratic residues mod 5.

A pattern begins to emerge. Define a to be a quadratic residue (mod m) if
(a,m) = 1 and there exists b (mod m) for which b2 ≡ a (mod m).

Proposition 8.8.1. Let p be a prime. If r is a quadratic residue mod pk, then r
is a quadratic residue mod pk+1 whenever k ≥ 1, except perhaps when pk = 2 or 4.

Proof. There exists an integer x for which x2 ≡ r (mod pk), and (x, p) = 1 as
(r, p) = 1. We let n be that integer for which x2 = r + npk.

Now if p is odd, then, for any integer j, we have

(x− jpk)2 = x2 − 2jxpk + j2p2k ≡ r + (n− 2jx)pk (mod pk+1).

This is ≡ r (mod pk+1) if and only if 2jx ≡ n (mod p), which holds if and only
if j ≡ n/2x (mod p) (as (2x, p) = 1). Therefore r is a square mod pk+1, and our
proof yields that there is a unique X (mod pk+1) for which X ≡ x (mod pk) and
X2 ≡ r (mod pk+1), namely X ≡ x− jpk (mod pk+1) where j ≡ n/2x (mod p).

If p = 2, then x2 = r + n · 2k and x is odd so that x2 − nx2k ≡ r (mod 2k+1).
Therefore

(x− n2k−1)2 = x2 − nx2k + n222k−2 ≡ r (mod 2k+1),

provided the exponent 2k − 2 ≥ k + 1; that is, k ≥ 3. �
Exercise 8.8.1. Deduce that an integer r is a quadratic residue mod pk if and only if r is a
quadratic residue mod p, when p is odd, and if and only if r ≡ 1 (mod gcd(2k, 8)) when p = 2.

This implies that exactly half of the reduced residue classes mod pk are qua-
dratic residues, when p is odd, and exactly one quarter when p = 2 and k ≥ 3.

Using the Chinese Remainder Theorem we therefore deduce from exercise 8.8.1
the following:

Corollary 8.8.1. Suppose that (a,m) = 1. Then a is a square mod m if and only

if
(

a
p

)
= 1 for every odd prime p dividing m, and a ≡ 1 (mod gcd(m, 8)).

Exercise 8.8.2. Suppose that (a, n) = 1 and that b2 ≡ a (mod n). Prove that the set of solutions
x (mod n) to x2 ≡ a (mod n) is given by the values br (mod n) as r runs through the solutions
to r2 ≡ 1 (mod n). (Determining the square roots of 1 (mod n) is discussed in section 3.8.)

Additional exercises

Exercise 8.9.1. Let p be an odd prime where p � a. Show that the congruence ax2 + bx+ c ≡ 0
(mod p) has a solution x (mod p) if and only if b2 − 4ac is a square mod p.

Exercise 8.9.2.† Prove that m2 and m2 +1 are both squares mod p, for m equal to at least one
of a, a+ 1, or a2 + a+ 1, for any integer a. (This generalizes exercise 8.1.8(a).)

Exercise 8.9.3. The polynomial x4 − 4x2 + 1 is irreducible over Q[x] by Theorem 3.4.
(a) Prove that x4−4x2+1 can be factored mod p as (x2−α)(x2−β) or (x2−ax+1)(x2+ax+1)

or (x2 − ax+ 1)(x2 + ax+ 1) if 3 or 6 or 2 is a square mod p, respectively.
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(b) Deduce that x4 − 4x2 + 1 (mod p) is reducible for every prime p.
(c)† Prove that every quadratic polynomial of the form x4+ax2+b2 factors into two quadratics

mod p, for every prime p.

Exercise 8.9.4. Prove that if p ≡ 1 (mod 4), then x4 + 4 factors into four linear factors mod p.

Exercise 8.9.5. Let f(.) be the totally multiplicative function for which f(3) = 1 and f(p) =
( p
3

)
if p �= 3.
(a) Give a formula for f(n) for an arbitrary integer n.
(b)† For any given large constant B, suppose that p is a prime for which (q/p) = f(q) for every

prime q ≤ B. Show that there are no three consecutive squares mod p that are all ≤ B.

This shows that the result in exercise 8.1.8(b) cannot be extended to three consecutive integers
provided the hypothesis in (b) holds. This hypothesis will be justified in exercise 8.17.2 of appendix
8D.

Exercise 8.9.6. Show that if
(

n
p

)
= −1, then

∑
d|n

(
d
p

)
= 0.

Exercise 8.9.7. Suppose that a and b are integers and {xn : n ≥ 0} is the second-order linear
recurrence sequence given by (0.1.2) with x0 = 0 and x1 = 1. Using exercise 0.4.10(b) prove that
if odd prime p divides some xn with n odd, then (−b/p) = 1. Deduce that if (−b/p) = −1 and p
divides xn, then n is even.

Exercise 8.9.8. (a) Suppose that pk is an odd prime power. Prove that there are 1 +
(

a
p

)
residue classes b (mod pk) for which b2 ≡ a (mod pk) .

(b) Suppose that n is an odd positive integer. Prove that there are
∏

p prime: p|n

(
1 +
(

a
p

))
residue classes b (mod n) for which b2 ≡ a (mod n).

(c) Show that this equals
∑

d|n
(
a
d

)
where the sum is restricted to squarefree integers d.

Exercise 8.9.9.† Let p be a given odd prime.
(a) Prove that for every m (mod p) there exist a and b mod p such that a2 + b2 ≡ m (mod p).
(b) Deduce that there are three squares, not all divisible by p, whose sum is divisible by p.
(c) Generalize this argument to show that if a, b, and c are not divisible by p, then there are

at least p solutions x, y, z (mod p) to ax2 + by2 + cz2 ≡ 0 (mod p).

Exercise 8.9.10.† Let m be a squarefree integer �= 1, and let a be an odd positive integer.
(a) Prove that the Jacobi symbol

(
4m
a

)
is a periodic function of a of period dividing 4m.

(b) Show that the Jacobi symbol
(
12
a

)
has minimal period 12.

(c) Prove that if m is odd and (a, 2m) = 1, then
(

4m
a+2m

)
=
(−1

m

) (
4m
a

)
.

Now suppose that m ≡ 3 (mod 4).

(d) Prove that there exists an integer r for which
(
4m
r

)
= −1.

(e) Prove that
∑4m

a=1

(
4m
a

)
= 0.

Exercise 8.9.11. (This extends exercise 8.2.4.)

(a) Let n = pq where p and q are distinct primes ≡ 3 (mod 4), and m = 1
2
( p−1

2
· q−1

2
+ 1).

Show that if
(

a
p

)
=
(

a
q

)
= 1 and b ≡ am (mod n), then b2 ≡ a (mod n).

(b) Any odd prime p can be written uniquely in the form p = 1 + 2km where m is odd and

k ≥ 1. Prove that if a is a 2kth power mod p and b ≡ a
m+1

2 (mod p), then b2 ≡ a (mod p).

If prime p ≡ 1 (mod 4) and (a/p) = 1 but a is not a fourth power mod p, then we do not know how
to use this idea to find a square root of a (mod p). Known methods in this case are considerably
more complicated (see, e.g., [CP05]).
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Exercise 8.9.12. Suppose that p is a prime ≡ 3 (mod 4) and
(

b
p

)
= 1. Prove that there are

exactly two solutions x (mod p) to x4 ≡ b (mod p).

Exercise 8.9.13.† Show that if p is a prime which divides m2 − 15 for some integer m, then
either p = 2, 3, or 5, or p ≡ ±1,±7,±11, or ±17 (mod 60).

Exercise 8.9.14.† Show that if p is a prime ≡ 1 (mod 4), then −1 is a fourth power (mod p) if
and only if 2 is a square mod p.

Exercise 8.9.15.† If (a, n) = 1, then multiplication by a (mod n) generates a permutation
of the reduced residues mod n. For example for 3 (mod 7) we get the permutation σ3,7 :=
(1, 3, 2,−1,−3,−2), whereas for 2 (mod 7) we get the permutation σ2,7 := (1, 2, 4)(3, 6, 5). Prove
that if p is prime and (a, p) = 1, then the signature6 of the permutation

ε(σa,p) =

(
a

p

)
.

Exercise 8.9.16. (a) Prove that
(

2n−1
2m−1

)
= 0 if (m,n) > 1.

(b) Suppose that n = mq + r where n ≥ m ≥ r ≥ 2. Prove that
(

2n−1
2m−1

)
= −
(

2m−1
2r−1

)
.

(c)‡ Prove that if n/m = [a0, a1, . . . , ak] with (n,m) = 1 and ak ≥ 2, then
(

2n−1
2m−1

)
= (−1)k+1.

Infinitely many primes.

Exercise 8.9.17.† Fix odd, squarefree integer n > 1. Prove that there are infinitely many primes
p for which (p/n) = −1.

Exercise 8.9.18.† Let n be a squarefree integer.
(a) By considering the prime divisors of m2 − n, for well-chosen values of m, prove that there

are infinitely many primes p for which (n/p) = 1.
(b) Deduce that there are infinitely many primes ≡ 1 (mod 3).
(c) Refine this to deduce that there are infinitely many primes ≡ 7 (mod 12).
(d) Prove that there are infinitely many primes ≡ 11 (mod 12).
(e) Prove that there are infinitely many primes ≡ 5 (mod 8).
(f) Prove that there are infinitely many primes ≡ 7 (mod 8).
(g) Prove that there are infinitely many primes ≡ 3 (mod 8).
(h) Prove that there are infinitely many primes ≡ 5 (mod 12).

Exercise 8.9.19.† Fix odd, squarefree integer n > 1. Using exercises 8.9.18(a) and 8.7.7 prove
that there are infinitely many primes p for which (p/n) = 1.

In Ram Murty’s undergraduate thesis (1976, Carleton University, Ottawa) he
defined a Euclidean proof that there are infinitely many primes ≡ a (mod q) to be
one in which we use a polynomial all of whose prime divisors either divide q or are
≡ 1 or a (mod q). Several of the proofs for the different arithmetic progressions in
the last three questions can be formulated in this way. We gave such a proof for
a = 1 in Theorem 7.8. Murty went on to show that there is a Euclidean proof that
there are infinitely many primes ≡ a (mod q) if and only if a2 ≡ 1 (mod q) (as in
all our examples here). To prove that there are infinitely many primes ≡ 2 or ≡ 3
(mod 5), or 5 (mod 7), etc., we will have to develop other techniques.

6Any permutation can be described by a sequence of transpositions (swaps) of pairs of elements.
Although the sequence, and even the number of swaps in such a sequence is not unique, the parity of
the number of swaps is. This is called the signature of the permutation and is given by −1 or 1 (for an
odd or even number of transpositions, respectively).
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Further reading on Euclidean proofs

[1] M. Ram Murty and N. Thain, Primes in certain arithmetic progressions, Funct. Approx. Comment.
Math. 35 (2006), 249–259.

Primitive roots for specially chosen primes.

Exercise 8.9.20.† Suppose that q and p = 2q + 1 are odd (Sophie Germain twin) primes.
(a) Show that if p ≡ 3 (mod 8), then 2 is a primitive root mod p (e.g., 11, 59, 83, 107, . . .).
(b) Show that if p ≡ 7 (mod 8), then −2 is a primitive root mod p.
(c) Prove that −3 is a primitive root mod p, but 3 is not.

Exercise 8.9.21.† Suppose that q and p = 4q + 1 are odd primes. Prove that 2, −2, 3, and −3
are all primitive roots mod p.

Exercise 8.9.22.† Suppose that the Fermat number Fm = 22
m

+ 1 is prime with m ≥ 1. Prove
that if (q/Fm) = −1, then q is a primitive root mod Fm. (We deduce that 3 and 5 (for m > 1)
are primitive roots mod Fm by exercise 8.5.4.)

Alternate proofs of the value of (2/n).

Exercise 8.9.23. Let p be a prime ≡ 1 (mod 4) so that there exists a reduced residue r (mod p)
such that r2 ≡ −1 (mod p).

(a) By expanding (r + 1)2 (mod p) prove that 2 is a square mod p if and only if r is a square
mod p.

(b) Prove that r is a square mod p if and only if there is an element of order 8 mod p.
(c) Use Theorem 7.6 to deduce that 2 is a square mod p if and only if p ≡ 1 (mod 8).

Exercise 8.9.24 (Proof of (8.7.2)). By induction on odd n ≥ 1. By the law of quadratic reci-
procity, as stated in (8.7.3), we have(

2

n

)
=

(−1

n

)(
n− 2

n

)
=

(−1

n

)(
n

n− 2

)
=

(−1

n

)(
2

n− 2

)
,

as one of n and n− 2 is ≡ 1 (mod 4). Complete the proof.

Exercise 8.9.25. Every odd prime p may be written in the form p = 4k + σ with σ =
(

−1
p

)
.

We will show that
(

2
p

)
= (−1)k which implies Theorem 8.4. Let m = 2k+ σ so that 2m = p+ σ.

Verify that(
2σ

p

)
=

(
2p+ 2σ

p

)
=

(
4m

p

)
=

(
m

p

)
=
(σp
m

)
=

(
2σm− 1

m

)
=

(−1

m

)
and deduce the result from here.

Further proofs of the law of quadratic reciprocity.

Exercise 8.9.26.† (a) In the mid-18th century, Euler conjectured that if m > n are coprime,
odd, positive integers, then

(
a
m

)
=
(
a
n

)
where m−n = 4a if m ≡ n (mod 4), and m+n = 4a

otherwise. Use the law of quadratic reciprocity to prove Euler’s conjecture.
(b) Use Euler’s conjecture to prove (8.7.3), the law of quadratic reciprocity.

Scholze (1938) proved Euler’s conjecture using Gauss’s Lemma (Theorem 8.6) and so gave a
different proof of the law of quadratic reciprocity.

Exercise 8.9.27.‡ Finally we present my own variation of Rousseau’s proof of quadratic re-
cipocity, as a series of (challenging) exercises. Let p < q be odd primes, and let n = pq.
Let A =

∏
1≤m<n/2, (m,n)=1 m. In the proof given of Theorem 8.5 in section 8.6, we showed

that A ≡
(

−1
q

)(
q
p

)
(mod p) and, analogously, A ≡

(
−1
p

)(
p
q

)
(mod q). We now evaluate A

(mod n) much as in Gauss’s proof of Wilson’s Theorem, where we paired up each residue with its
inverse: Let S be the set of (unordered) pairs {a, b} ∈ [1, n

2
) for which ab ≡ 1 or − 1 (mod n).
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(a) Prove that the residues a and b are distinct unless a2 ≡ 1 or −1 (mod n).
(b) Prove that if a2 ≡ 1 (mod n), then a ≡ 1, −1, r, and −r (mod n) for some r �≡ ±1

(mod n).
(c) Prove that the product of the integers a ∈ [1, n

2
) with a2 ≡ 1 (mod n) is ≡ ±r (mod n).

(d) Prove that if b2 ≡ −1 (mod n), then p ≡ q ≡ 1 (mod 4). In this case:
• Deduce that the product of the integers b ∈ [1, n

2
) for which b2 ≡ −1 (mod n) is ≡ ±r

(mod n).
• Deduce that A ≡ ±1 (mod n).

• Combine the above to show that
(

−1
q

)(
q
p

)
=
(

−1
p

)(
p
q

)
.

(e) If at least one of p and q is ≡ 3 (mod 4):
• Deduce that A ≡ ±r (mod n).

• Combine the above to show that
(

−1
q

)(
q
p

)
= −
(

−1
p

)(
p
q

)
.

(f) Deduce Theorem 8.5.



Appendix 8A. Eisenstein’s
proof of quadratic reciprocity

8.10. Eisenstein’s elegant proof, 1844

A lemma of Gauss gives a complicated but useful formula to determine (a/p):

Theorem 8.6 (Gauss’s Lemma). Given an integer a which is not divisible by odd
prime p, define rn to be the absolutely least residue of an (mod p), and then define

the set N := {1 ≤ n ≤ p−1
2 : rn < 0}. Then

(
a
p

)
= (−1)|N |.

For example, if a = 3 and p = 7, then r1 = 3, r2 = −1, r3 = 2 so that N = {2}
and therefore

(
3
7

)
= (−1)1 = −1.

Proof. For each m, 1 ≤ m ≤ p−1
2 , there is exactly one integer n, 1 ≤ n ≤ p−1

2 ,
such that rn = m or −m (mod p) (for if an ≡ ±an′ (mod p), then p|a(n∓n′), and
so p|n∓ n′, which is possible in this range only if n = n′). Therefore(

p− 1

2

)
! =

∏
1≤m≤ p−1

2

m =
∏

1≤n≤ p−1
2

n	∈N

rn ·
∏

1≤n≤ p−1
2

n∈N

(−rn)

≡
∏

1≤n≤ p−1
2

n	∈N

(an) ·
∏

1≤n≤ p−1
2

n∈N

(−an) = a
p−1
2 (−1)|N | ·

(
p− 1

2

)
! (mod p).

Cancelling out the
(
p−1
2

)
! from both sides, the result follows from Euler’s criterion.

�

This proof is a clever generalization of the proof of Theorem 8.4.

167
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Exercise 8.10.1.† Use Gauss’s Lemma to determine the values of (a) (−1/p) and of (b) (3/p),
for all primes p > 3.

Exercise 8.10.2.† Let r be the absolutely least residue of N (mod p). Prove that the least
non-negative residue of N (mod p) is given by

N − p

[
N

p

]
=

{
r if r ≥ 0,

p+ r if r < 0.

Corollary 8.10.1. If p is a prime > 2 and a is an odd integer not divisible by p,
then

(8.10.1)

(
a

p

)
= (−1)

∑ p−1
2

n=1 [ an
p ] .

Proof. (Gauss) By exercise 8.10.2 we have

(8.10.2)

p−1
2∑

n=1

(
an− p

[
an

p

])
=

p−1
2∑

n=1
n	∈N

rn +

p−1
2∑

n=1
n∈N

(p+ rn) =

p−1
2∑

n=1

rn + p|N |.

In the proof of Gauss’s Lemma we saw that for each m, 1 ≤ m ≤ p−1
2 , there is

exactly one integer n, 1 ≤ n ≤ p−1
2 , such that rn = m or −m, and so rn ≡ m

(mod 2). Therefore, as a and p are odd, (8.10.2) implies that

|N | ≡
p−1
2∑

n=1

[
an

p

]
(mod 2) as

p−1
2∑

n=1

rn ≡
p−1
2∑

m=1

m ≡ a

p−1
2∑

n=1

n (mod 2).

We now deduce (8.10.1) from Gauss’s Lemma. �

The exponent
∑ p−1

2
n=1

[
an
p

]
on the right-hand side of (8.10.1) looks excessively

complicated. However it arises in a different context that is easier to work with:

Lemma 8.10.1. Suppose that a and b are odd, coprime positive integers. There
are

b−1
2∑

n=1

[an
b

]

lattice points (n,m) ∈ Z2 for which bm < an with 0 < n < b/2.

Proof. We seek the number of lattice points (n,m) inside the triangle bounded
by the lines y = 0, x = b

2 , and by = ax. For such a lattice point, n can be any
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integer in the range 1 ≤ n ≤ b−1
2 . For a given value of n, the triangle contains the

lattice points (n,m) where m is any integer in the range 0 < m < an
b . These are

the lattice points in the shaded rectangle in Figure 8.1.

b/2

a/2

0 n

(n, [anb ])

The line by = ax

Figure 8.1. The shaded rectangle covers the lattice points (n,m) with 1 ≤
m ≤ [an

b
].

Evidently m ranges from 1 to [anb ], and so there are [anb ] such lattice points. Sum-
ming this up over the possible values of n gives the lemma. �

Corollary 8.10.2. If a and b are odd coprime positive integers, then

b−1
2∑

n=1

[an
b

]
+

a−1
2∑

m=1

[
bm

a

]
=

(a− 1)(b− 1)

2
.

Proof. The idea is to split the triangle

R :=

{
(x, y) : 0 < x <

b

2
and 0 < y <

a

2

}

into two parts: the points in R on or below the line by = ax, that is, in the region

A := {(x, y) : 0 < x < b/2 and 0 < y ≤ ax/b} ;
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b/2

a/2

0

B

A

Figure 8.2. Splitting the rectangle R into two parts.

and the points in R above the line by = ax, that is, in the region

B := {(x, y) : 0 < x < by/a and 0 < y < a/2} .

We count the lattice points (that is, the points with integer coordinates) in R
and then in A and B together. To begin with

R ∩ Z2 =

{
(n,m) ∈ Z2 : 1 ≤ n ≤ b− 1

2
and 1 ≤ m ≤ a− 1

2

}
,

so that |R ∩ Z2| = a−1
2 · b−1

2 .

Since there are no lattice points in R on the line by = ax, as (a, b) = 1, therefore

A ∩ Z2 =
{
(n,m) ∈ Z2 : 0 < n < b/2 and bm < an

}
,

and so |A ∩ Z2| =
∑ b−1

2
n=1

[
an
b

]
by Lemma 8.10.1. Similarly

B ∩ Z2 =
{
(n,m) ∈ Z2 : 0 < m < a/2 and an < bm

}
,

and so |B ∩ Z2| =
∑ a−1

2
m=1

[
bm
a

]
by Lemma 8.10.1 (with the roles of a and b inter-

changed). The result then follows from the observation that A ∩ Z2 and B ∩ Z2

partition R ∩ Z2. �

Eisenstein’s proof of the law of quadratic reciprocity. By Corollary 8.10.1
with a = q, and then with the roles of p and q reversed, and then by Corollary
8.10.2, we deduce the desired law of quadratic reciprocity:(

q

p

)(
p

q

)
= (−1)

∑ p−1
2

n=1 [
qn
p ] · (−1)

∑ q−1
2

m=1[
pm
q ] = (−1)

p−1
2 · q−1

2 . �

Appendices. The extended version of chapter 8 has the following additional
appendices:

Appendix 8B. Small quadratic non-residues. For a given prime p we show that

there are small integers m and n for which
(

m
p

)
= 1 and

(
n
p

)
= −1, and we discuss

some of the latest developments in bounding m and n.



8.10. Eisenstein’s elegant proof, 1844 171

Appendix 8C. The first proof of quadratic reciprocity presents Gauss’s orig-
inal proof of quadratic reciprocity. It is a wonderfully ingenious use of solutions
to quadratic equations, though a little more complicated than the proofs already
presented.

Appendix 8D. Dirichlet characters and primes in arithmetic progressions. Here
we present the vitally important generalization of the Legendre and Jacobi symbols
to Dirichlet characters. To determine all of the characters themselves requires a neat
theory. We then indicate how these were applied by Dirichlet to prove that there
are infinitely many primes in any arithmetic progression a (mod q) with (a, q) = 1.

Appendix 8E. Quadratic reciprocity and recurrence sequences. We study the p
divisbility of second-order linear recurrence sequences, which depends on the values
of certain Legendre symbols.





Chapter 9

Quadratic equations

Can we tell whether a given large integer is the sum of two squares of integers (other
than by summing every possible pair of smaller squares)? How about the values
of other quadratics? We will show, in this chapter, how we can understand a lot
about solutions to quadratic equations in integers, by understanding the solutions
to those quadratic equations modulo p, for every prime p. We begin by studying the
values taken by x2 + y2 when we substitute integers in for x and y, then ax2 + by2

for arbitrary integer coefficients a, b, and then finally the general binary quadratic
form, ax2 + bxy + cy2.

9.1. Sums of two squares

The list of integers that are the sum of two squares of integers begins:

0, 1, 2, 4, 5, 8, 9, 10, 13, 16, 17, 18, 20, 25, 26, 29, 32, 34, 36, 37, 40, 41, 45, 49, 50, . . . .

Is there a pattern? Can we easily determine whether a given integer is the sum of
two squares by any means other than trying to find two squares that sum to it? No
pattern emerges easily from the list above so we begin focusing on the primes that
appear in this list, namely

2 = 12+12, 5 = 12+22, 13 = 22+32, 17 = 12+42, 29 = 52+22, 37 = 12+62, . . . .

What do the odd primes in the list, 5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, . . . have in
common? The only easy-to-spot pattern is that the differences between consecutive
odd primes in our list, 13−5, 17−13, 29−17, . . . are all multiples of 4, which implies
that they are all ≡ 1 (mod 4).

Proposition 9.1.1. If p is an odd prime that is the sum of two squares, then p ≡ 1
(mod 4).

173
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Proof. If p = a2+b2, then p � a, or else p|p−a2 = b2 so that p|b and p2|a2+b2 = p,
which is impossible. Similarly p � b. Now a2 ≡ −b2 (mod p) so that

1 =

(
a

p

)2

=

(
−1

p

)(
b

p

)2

=

(
−1

p

)
,

and therefore p ≡ 1 (mod 4) by Theorem 8.3. �
Exercise 9.1.1. Prove that any odd integer n that can be written as the sum of two squares
must be ≡ 1 (mod 4). Deduce Proposition 9.1.1.

Exercise 9.1.2. Prove that if prime p divides a2 + b2, then either p = 2 or p divides (a, b) or
p ≡ 1 (mod 4).

Remarkably this is an “if and only if ” condition:

Theorem 9.1. Every prime p ≡ 1 (mod 4) can be written as the sum of two
squares (of integers).

Proof. Since p ≡ 1 (mod 4) we know that there exists an integer b such that
b2 ≡ −1 (mod p). Consider now the set of integers

{j + kb : 0 ≤ j, k ≤ [
√
p]}.

The number of pairs of integers j, k used in the construction of this set is
([
√
p] + 1)2 > p, and so by the pigeonhole principle, two of the numbers in the

set must be congruent mod p; say that

j + kb ≡ J +Kb (mod p)

where 0 ≤ j, k, J,K ≤ [
√
p] and {j, k} �= {J,K}. Let r = j − J and s = K − k so

that

r ≡ bs (mod p)

where |r|, |s| ≤ [
√
p] <

√
p and r and s are not both 0. Now

r2 + s2 ≡ (bs)2 + s2 = s2(b2 + 1) ≡ 0 (mod p),

and 0 < r2 + s2 <
√
p2 +

√
p2 = 2p. The only multiple of p between 0 and 2p is p,

and therefore r2 + s2 = p. �

We will use the identity

(9.1.1) (a2 + b2)(c2 + d2) = (ac− bd)2 + (ad+ bc)2

to determine which composite integers can be written as the sum of two squares.
Theorem 9.1 tells us that any prime p ≡ 1 (mod 4) can be written as the sum of
two squares; for example 5 = 12 + 22 and 13 = 22 + 32. Then (9.1.1) yields that
65 = 42 +72; if we write instead 13 = 32 +22, then we obtain 65 = 12 +82. Indeed
any integer that is the product of two distinct primes ≡ 1 (mod 4) can be written
as the sum of two squares like this, and even in two different ways. We will discuss
the number of representations further in appendix 9C.

Exercise 9.1.3. Find four distinct representations of 1105 = 5×13×17 as a sum of two squares.

Exercise 9.1.4. Prove that if n = n1 · · ·nk where n1, . . . , nk are each the sum of two squares,
then n is the sum of two squares.
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Theorem 9.2. Positive integer n can be written as the sum of two squares of
integers if and only if for every prime p ≡ 3 (mod 4) which divides n, the exact
power of p dividing n is even.

Proof. Suppose that n = a2+b2 where g = (a, b), so we can write a = gA, b = gB,
and n = g2N for some coprime integers A and B, with N = A2 +B2. Therefore if
p is a prime ≡ 3 (mod 4), then p cannot divide N , by exercise 9.1.2; and so if p|n,
then p|g. Moreover if pk‖g, then p2k‖n, as claimed.

On the other hand, if n = g2m where m is squarefree, then m has no prime
factors ≡ 3 (mod 4) by the hypothesis. Therefore all the prime factors of m can be
written as the sum of two squares by Theorem 9.1, and so their product, m, is the
sum of two squares by exercise 9.1.4, say m = u2+v2. Then n = (gu)2+(gv)2. �
Exercise 9.1.5. Prove that if n is squarefree and is the sum of two squares, then every positive
divisor of n is also the sum of two squares.

We saw that (9.1.1) is a useful identity. To find such an identity let i be a
complex number for which i2 = −1. Then x2+y2 = (x+ iy)(x− iy), a factorization
into numbers of the form a+ bi where a and b are integers. Therefore

(a2 + b2) · (c2 + d2) = (a+ bi)(a− bi) · (c+ di)(c− di)

= (a+ bi)(c+ di) · (a− bi)(c− di)

= ((ac− bd) + (ad+ bc)i) · ((ac− bd)− (ad+ bc)i)

= (ac− bd)2 + (ad+ bc)2,

and so we get (9.1.1). A different rearrangement leads to a different identity:

(9.1.2) (a2+b2)(c2+d2) = (a+bi)(c−di) ·(a−bi)(c+di) = (ac+bd)2+(ad−bc)2.

Theorem 9.2 has the following surprising corollary:

Exercise 9.1.6. Deduce that positive integer n can be written as the sum of two squares of
rationals if and only if n can be written as the sum of two squares of integers.

This suggests that we can focus, in this question, on rational solutions. In
section 6.1 we saw how to find all solutions to x2 + y2 = 1 in rationals x, y. How
about all rational solutions to x2 + y2 = n?

Proposition 9.1.2. Suppose that n = a2 + b2. Then all solutions in rationals x, y
to x2 + y2 = n are given by the parametrization

(9.1.3) x =
2brs+ a(r2 − s2)

r2 + s2
, y =

2ars+ b(s2 − r2)

r2 + s2
,

where r and s are coprime integers.

Proof. Let x, y be any rationals for which x2 + y2 = n. Just as in our geometric
proof of (6.1.1) we will parametrize these rational points (x, y) by noting that if t
is the slope of the line between (a, b) and (x, y), then t is rational, and vice versa.
In particular we let u = x− a and t = (y − b)/u when u �= 0, which must both be
rational numbers. Then

0 = n− n = (a+ u)2 + (b+ tu)2 − (a2 + b2) = 2u(a+ bt) + u2(1 + t2),
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so that, as u �= 0, we have

u =
−2(a+ bt)

1 + t2
=

2brs− 2as2

r2 + s2

writing the rational number t as t = −r/s where r and s are coprime integers.
Substituting this value of u into x = a + u and y = b + ut gives the claimed
parametrization.

If u = 0, then x = a so that either y = b or y = −b. The line between (a, b)
and (a,−b) is the vertical line x = a (corresponding to r = 1, s = 0 so that t = ∞).

Finally we obtain the initial point (a, b) in this parametrization by taking r =
a, s = b. This is obtained by taking the slope to be t = −a/b, the slope of the
tangent line to the curve x2 + y2 = n at the point (a, b). �

In Theorem 9.1 we saw that every prime p ≡ 1 (mod 4) can be written as the
sum of two squares. Examples suggest that there is a unique such representation,
up to signs and changing the order of the squares, as the reader will now prove:

Exercise 9.1.7.† Suppose that prime p = a2 + b2.
(a) Prove that |a|, |b| < √

p.

(b) Prove that if r2 ≡ −1 (mod p), then either r ≡ a/b (mod p) or r ≡ b/a (mod p).

(c) If prime p divides c2+d2 but p � cd, show that p divides either ac−bd or ad−bc, and deduce
that p divides both terms on the right-hand side of either (9.1.1) or (9.1.2), respectively.

(d) Suppose that p = a2 + b2 = c2 + d2 where a, b, c, d > 0. Show that {a, b} = {c, d}.
In other words, we have proved that each prime ≡ 1 (mod 4) has a unique representation as the

sum of two squares, unique up to changing the order of the squares, or their signs.

Exercise 9.1.8.† Prove, using the method of Theorem 9.1, that a squarefree integer n can be
written as the sum of two squares if and only if −1 is a square mod n.

9.2. The values of x2 + dy2

What values does x2 + 2y2 take? Let’s start again with the prime values:

2, 3, 11, 17, 19, 41, 43, 59, 67, 73, 83, 89, 97, . . . .

There is no obvious pattern; but this list contains exactly the same odd primes that

we found in section 8.4 when exploring when
(

−2
p

)
= 1. This link is no coincldence

for if we suppose that odd prime p = x2+2y2, then p does not divide x or y and so

1 =

(
x

p

)2

=

(
x2

p

)
=

(
−2y2

p

)
=

(
−2

p

)(
y

p

)2

=

(
−2

p

)
.

From (8.7.1) and (8.7.2), we know that
(

−2
p

)
= 1 if and only if p ≡ 1 or 3 (mod 8).

On the other hand if (−2/p) = 1, then select b (mod p) such that b2 ≡ −2
(mod p). We take R = 21/4

√
p, S = 2−1/4√p in exercise 9.7.3, so that there exist

integers r and s, not both 0, with |r| ≤ R and |s| ≤ S, for which p divides r2+2s2.
Therefore 0 < r2 + 2s2 ≤ 23/2p < 3p, and so r2 + 2s2 = p or 2p. In the latter case,
2 divides 2p− 2s2 = r2 so that 2|r. Writing r = 2R we have s2 + 2R2 = p. Hence,
either way, p can be written in the form m2 + 2n2. Therefore we have proved:

Theorem 9.3. Odd prime p can be written in the form m2 + 2n2 if and only if
p ≡ 1 or 3 (mod 8).
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The identity

(a2 + 2b2)(c2 + 2d2) = (ac+ 2bd)2 + 2(ad− bc)2

is analogous to (9.1.1). Using this, one can prove, analogous to the proof for u2+v2

in the first half of section 9.1, that positive integer n can be written as r2 + 2s2 if
and only if for every prime p ≡ 5 or 7 (mod 8) which divides n, the exact power of
p dividing n is even.

Can we also modify this proof for values of x2+3y2? Or x2+5y2? We explore
this in the following exercises.

Exercise 9.2.1. Fix integer d ≥ 1. Give an identity showing that the product of two integers of
the form a2 + db2 is also of this form.

Exercise 9.2.2. Which primes are of the form a2 + 3b2? Which integers?

Exercise 9.2.3. Which primes are of the form a2 +5b2? Try listing what primes are represented
and compare the list with the set of primes p for which (−5/p) = 1.

9.3. Is there a solution to a given quadratic equation?

It is easy to see that there do not exist non-zero integers a, b, c such that a2+5b2 =
3c2, for, if we take the smallest non-zero solution, then we have

a2 ≡ 3c2 (mod 5)

which implies that a ≡ c ≡ 0 (mod 5) since (3/5) = −1, and so b ≡ 0 (mod 5).
Therefore a/5, b/5, c/5 gives a smaller solution to x2 + 5y2 = 3z2, contradicting
minimality.

Another proof stems from looking at the equation mod 4 since then a2+b2+c2 ≡
0 (mod 4), and 0 and 1 are the only squares mod 4. Therefore if three squares sum
to an integer that is 0 (mod 4), then they must all be even. But then a/2, b/2, c/2
gives a smaller solution, contradicting minimality.

So we have now presented two different proofs that there are no non-zero solu-
tions in integers to a2 + 5b2 = 3c2, by working with two different moduli.

For all quadratic equations in three or more variables with real solutions, there
is never just one prime or prime power modulo which there are no solutions to the
given equation—when there is one, there is always a second. And indeed when
there is a third proof, then there is always a fourth. A remarkable consequence
of the theory (see appendix 9B) is that if a given quadratic equation in three or
more variables has non-zero real solutions but no non-zero integer solutions, then
there are always exactly an even number of different primes p such that the given
equation has no non-trivial solutions mod pk for some k ≥ 1. Moreover the odd
primes involved must divide the coefficients of the equation. On the other hand, if
there are no such “mod pk obstructions”, then there must be at least one non-zero
integer solution (implying that there must be a real solution!).

In exercise 3.6.4 we proved that there are integer solutions (m,n) to am+bn = c
if and only if there are solutions u, v (mod b) to au+ bv ≡ c (mod b). Similarly we
will show that if a, b, and c are pairwise coprime, positive integers, then there are
rational solutions (x, y) to ax2 + by2 = c if and only if there are coprime solutions
u, v (mod 4abc) to au2 + bv2 ≡ c (mod 4abc). This is an amazing theorem since
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to determine whether a quadratic equation has solutions in rationals we need only
verify whether it has solutions modulo a finite modulus.

To work on rational solutions (x, y) to ax2+ by2 = c it is convenient to develop
this into a question about integer solutions and to manipulate the equation to a
more convenient form:

(i) We may assume that each of a, b, c is a squarefree integer or else, if, say,
a = p2A, the rational solutions to ax2 + by2 = c are in 1-to-1 correspondence
with those of AX2 + by2 = c, taking X = px. If b is divisible by a square, we
proceed analogously. If c = q2C, then the rational solutions to ax2 + by2 = c
are in 1-to-1 correspondence with those of aX2 + bY 2 = C, taking X = x/q
and Y = y/q.

(ii) We may assume that a, b, c are pairwise coprime or else if, say, a = pA and
b = pB, then AX2 + BY 2 = C with X = px, Y = py, and C = pc; and if
a = qA and c = qC, then Ax2 +BY 2 = C with B = bq and Y = y/q.

(iii) Letting n be the lowest common denominator of the rationals x and y, we
write x = �/n with y = m/n so that �,m, n are integers with (�,m, n) = 1
and a�2 + bm2 = cn2.

(iv) We may assume that a�2, bm2, cn2 are pairwise coprime. If not, suppose that
prime p divides a�2 and bm2, so that p divides a�2 + bm2 = cn2. Now p
can only divide one of a, b, c (since they are pairwise coprime), say, c, and
so must divide �2 and m2. But then p divides � and m, and so p2 divides
a�2+bm2 = cn2. Hence p divides n, as p2 � c, contradicting that (�,m, n) = 1.

Therefore the correct formulation of our result is as follows:

Theorem 9.4 (The local-global principle for quadratic equations). Let a, b,
and c be given pairwise coprime, squarefree integers. There are solutions in

Non-zero integers �,m, n to a�2 + bm2 + cn2 = 0 with (a�2, bm2) = 1

if and only if there are solutions in

Non-zero real numbers λ, μ, ν to aλ2 + bμ2 + cν2 = 0,

and, for all positive integers r, there exist

Residue classes u, v, w (mod r) for which au2 + bv2 + cw2 ≡ 0 (mod r),

with (au2, bv2, cw2, r) = 1.

Proof =⇒ : We may take λ = u = �, μ = v = m, ν = w = n throughout. �
The proof in the other direction is the difficult part; it follows along the lines

of the proof of Theorem 9.1 but is more complicated. In appendix 9a we rephrase
that proof in the language of lattices, before completing the proof of the local-global
principle.

We can reduce the set of moduli to be considered using the following lemma.

Lemma 9.3.1. Let a, b, c be given pairwise coprime, squarefree integers. There are
residue classes u, v, w (mod r) with (au2, bv2, cw2, r) = 1 for which

au2 + bv2 + cw2 ≡ 0 (mod r)
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for every positive integer r, if and only if there are such solutions for r = 8, and
for r = p for every odd prime p dividing abc.

This result implies that, as in exercise 3.6.4, we can restrict our attention in
Theorem 9.4 to just one modulus, namely r = 8|abc|.

Proof. We can restrict our attention to prime power moduli pk by the Chinese
Reminder Theorem. We will prove that there are such appropriate solutions mod
pk by induction on k: for k ≥ 1 when p is odd and for k ≥ 3 when p = 2. There are
appropriate solutions modulo every odd prime p and modulo 23, by the hypothesis
for primes p dividing 2abc, and by exercise 8.9.9 for all odd primes p that do not
divide abc.

So now assume we have an appropriate solution mod pk, so that p does not
divide at least one of au2, bv2, cw2, say, au2 (and an analogous argument works
if p does not divide one of the others). Let R = −a−1(bv2 + cw2), so that
u2 ≡ R (mod pk) by the induction hypothesis. By Proposition 8.8.1 there ex-
ists U (mod pk+1) for which U2 ≡ R (mod pk+1) so that aU2 + bv2 + cw2 ≡ 0
(mod pk+1) and (U, p) = 1. �

Now if au2+bv2+cw2 ≡ 0 (mod a) with (a, bv2, cw2) = 1, then −bc ≡ (cw/v)2

(mod a); that is, −bc is a square (mod p) for every prime dividing a. Making
similar remarks modulo b and c, we find Legendre’s formulation of the local-global
principle.1

Theorem 9.5 (Legendre’s local-global principle, 1785). Let a, b, c be given
pairwise coprime, squarefree integers which do not all have the same sign. There
are solutions in non-zero integers �,m, n to a�2 + bm2 + cn2 = 0 if and only if
−ab is a square mod |c|, −ac is a square mod |b|, and −bc is a square mod |a|.

Note that a�2 + bm2 + cn2 = 0 has solutions in non-zero reals if and only if
a, b, c do not all have the same sign.

This principle may be extended to the rational solutions of more or less any
quadratic equation: Any quadratic polynomial in n variables can be diagonalized;
that is, a linear change of variables can change the polynomial into a diagonal
quadratic polynomial. We know that in the example g = ax2 + bxy + cy2 we can
let X = x + by/2a and then g = aX2 + Dy2 where D = −(b2 − 4ac)/4a. In a
three-variable example we take the polynomial

f = x2 + 2xy + 3xz + 4y2 + 5yz + 6z2 + 7x+ 8y + 9z + 10;

we let X = x+y+ 3
2z+

7
2 replace x to obtain f = X2+3y2+2yz+ 15

4 z2+y− 3
2z−

9
4 .

Then letting Y = y + z
3 + 1

6 we obtain f = X2 + 3Y 2 + 41
12z

2 − 11
6 z − 7

3 , and if

z = 6Z + 11
41 , this becomes

F = X2 + 3Y 2 + 123Z2 − 423

164
,

1The careful reader will note that we do not seem to have made adequate remarks about the
solution modulo powers of 2. However, we noted earlier in this section that if there are solutions in the
reals and modulo all but one prime, then there is a solution modulo all powers of this last prime. For
more details see appendix 9B.
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a diagonal quadratic with no “cross terms” (like XY ). Notice that the rational
solutions to F (X,Y, Z) = 0 are in 1-to-1 correspondence with the rational solutions
to f(x, y, z) = 0.

Whether or not a given diagonal quadratic with three or more terms has rational
solutions can then be resolved by the local-global principle.2

Exercise 9.3.1. Given one integer solution to ax20 + by20 + cz20 = 0, show that all other integer

solutions to ax2 + by2 + cz2 = 0 are given by the parametrization

x : y : z = (ar2 − bs2)x0 + 2brsy0 : 2arsx0 − (ar2 − bs2)y0 : (ar2 + bs2)z0 .

9.4. Representation of integers by ax2 + by2 with x, y rational, and
beyond

Coprime integer solutions to au2 + bv2 = cw2 with w > 0 are in 1-to-1 correspon-
dence with the rational solutions to ax2+by2 = c, by taking x = u/w and y = v/w.
Therefore the local-global principle can be restated to give an “if and only if” cri-
terion to determine whether c can be written as ax2 + by2 with x and y rational.
This is most usefully modified as follows:

Corollary 9.4.1. Suppose that a, b, c are given integers with (a, b, c) = 1, and
suppose d = b2 − 4ac is not divisible by the square of any odd prime. For any
given squarefree integer N with (N, d) = 1, there exist rationals u and v for which
N = au2 + buv + cv2 if and only if the following criteria hold:

• N has the same sign as a or c, or d > 0;

• d is a square mod N ;

•
(

N
p

)
=
(

a
p

)
for all odd primes p dividing d that do not divide a;

•
(

N
p

)
=
(

c
p

)
for all odd primes p dividing both d and a.

Proof. If N = au2 + buv + cv2, then we multiply through by 4a to obtain 4aN =
(2au + bv)2 − dv2; in other words, aN = U2 − dV 2 for some rationals U, V . We
may reverse this argument, and so there exist rationals u and v for which N =
au2 + buv + cv2 if and only if there exist rationals U, V for which aN = U2 − dV 2.
We now apply Legendre’s version of the local-global principle to rational solutions
to the equation aN = u2 − dv2.

We have real solutions if and only if aN > 0 or d > 0.

Now U2 ≡ dV 2 (mod aN) and so d must be a square mod aN . But d =
b2 − 4ac ≡ b2 (mod a), so we need only verify that d is a square mod N .

If odd prime p divides d, then aN ≡ u2 (mod p), and so
(

N
p

)
=
(

a
p

)
if p does

not divide a.

If odd prime p divides both d and a, then it divides b, as it divides b2 = d+4ac.
Therefore p does not divide c as (a, b, c) = 1. We then run through the analogous
argument with a replaced by c. (For the primes p dividing d, but not 4ac, our

results that
(

N
p

)
=
(

a
p

)
and

(
N
p

)
=
(

c
p

)
are consistent; see exercise 8.1.4.) �

2Which we have only proved in three variables but is true in three or more variables.
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9.5. The failure of the local-global principle for quadratic
equations in integers

We have seen how the local-global principle allows us to determine whether there
are rational solutions x, y to a given equation of the form ax2 + by2 = c. However
we will now show that it does not help when we ask for integer solutions. The
example

x2 + 23y2 = 52

has rational solutions, like ( 12 ,
3
2 ), (

25
4 , 3

4 ), (
29
12 ,

17
12 ), . . .. There are obviously no in-

teger solutions or else 23y2 ≤ x2 + 23y2 = 52 and so y2 = 0 or 1, but then
x2 = 52−23y2 = 52 or 29, which are not squares. Since there are rational solutions
we know that there are non-trivial solutions to a2 + 23b2 ≡ 52c2 (mod pk) for all
prime powers pk by the local-global principle, but not necessarily to a2+23b2 ≡ 52
(mod pk). To prove that there are such solutions, we show that solutions exist
modulo 8 and all odd prime moduli p, and then we lift these solutions to all prime
power moduli pk, using Proposition 8.8.1.

We have the solutions 22 + 23 · 42 = 372 ≡ 52 (mod 8), 42 + 23 · 12 = 39 ≡ 52
(mod 13), and 112 + 23 · 02 = 121 ≡ 52 (mod 23). For any odd prime p other than
13 or 23, there are p+1

2 residues mod p of the form 23y2, and p+1
2 residues mod p

of the form 52 − x2, so two of these residues must be equal. Therefore there is a
solution to x2+23y2 ≡ 52 (mod p), and evidently one of x and y must be non-zero
(mod p) (or else p would divide 52).

Therefore we have shown that the local-global principle holds for integer and
rational solutions of linear equations, and for rational but not integer solutions of
quadratic equations. However it does not even hold for rational solutions of cubic
equations: In 1957, Selmer showed that 3x3 + 4y3 = 5 has solutions in the reals,
and mod r for all r ≥ 1, yet has no rational solutions. Further discussion of the
failure of the local-global principle for cubic equations can be found in [Grab], with
a motivating discussion in chapter 7.

9.6. Primes represented by x2 + 5y2

Calculations reveal that the primes > 5 that are represented by x2 + 5y2 are

29, 41, 61, 89, 101, 109, 149, 181, . . . .

From our explorations of the binary quadratic forms x2+y2, x2+2y2, and x2+3y2

we might guess that this should be the set of primes for which (−5/p) = 1. However
the list of primes for which (−5/p) = 1 also includes the primes

3, 7, 23, 43, 47, 67, 83, 103, 107, 127, 163, 167, . . . .

What is going on? We quickly see that the primes in the first list end in a 1 or a
9, whereas the primes in the second list end in a 3 or a 7, so there seems to be a
further congruence condition that partitions the list. Further examination of the
equation p = x2 + 5y2 makes this evident: Besides (−5/p) = 1, we can also deduce
that p ≡ x2 (mod 5) so that (p/5) = 1. Combined with (−5/p) = 1, this also yields
that p ≡ 1 (mod 4). These two conditions together give that p ≡ 1 or 9 (mod 20),
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the primes that we see in the first list, and if (p/5) = −1, then we obtain p ≡ 3 or
7 (mod 20), the primes that we see in the second list.

Where do the primes in the second list come from? It turns out there is a
second, fundamentally different binary quadratic form, 2x2 + 2xy+ 3y2, which has
the same discriminant −20 as x2+5y2. We first observe that these quadratic forms
definitely do not represent the same integers because 2x2 +2xy+3y2 represents 3,
whereas x2+5y2 evidently does not. A quick calculation reveals that the second list
is precisely the set of odd primes represented by 2x2 + 2xy + 3y2. This dichotomy
will be explored further in chapter 12, though we observe here that if prime p =
2x2 + 2xy + 3y2, then 2p = 4x2 + 4xy + 6y2 = (2x+ y)2 + 5y2; that is, 2p can be
represented by a2 + 5b2

In general if we wish to represent the odd prime p by x2 + dy2, then −d must
be a square mod p. On the other hand, suppose that −d is a square mod p, say
u2 ≡ −d (mod p) with |u| < p/2.

If p < 2
√
d, then we can write u2 + d = ap, so the binary quadratic form,

pm2+2umn+an2, has discriminant −4d, the same as x2+dy2, and takes the value
p when m = 1, n = 0.

Now assume that p > 2
√
d. By exercise 9.7.3(a) with R = d1/4

√
p, S =

d−1/4√p, there exist integers r and s, not both 0, for which r ≡ us (mod p) and

so, squaring, r2 ≡ −ds2 (mod p); that is, r2 + ds2 is a multiple of p. Moreover we

have 0 < r2 + ds2 ≤ R2 + dS2 = 2
√
dp. Therefore there exists an integer a in the

range 1 ≤ a ≤ 2
√
d for which

r2 + ds2 = ap.

We may assume that (r, s) = 1 for if g = (r, s), then we claim that g2 divides
a, so we can divide r and s through by g. To justify our claim, note that g2

divides r2 + ds2 = ap so if g2 does not divide a, then p divides g. But then
p2 ≤ g2 ≤ r2 + ds2 = ap and so p ≤ a ≤ 2

√
d, a contradiction.

Now (s, a) = 1 or else if prime q divides a and s, then it divides ap = −ds2 = r2,
and so it divides r, contradicting that (r, s) = 1. Let b be an integer for which b ≡
r/s (mod a) so that b2 ≡ −d (mod a). We define integers n = s, m = (r − bs)/a,
and c = (b2 + d)/a. This implies that am+ bn = r and so

am2 + 2bmn+ cn2 =
(am+ bn)2 − (b2 − ac)n2

a
=

r2 + ds2

a
= p.

Therefore, whenever −d is a square mod p, there is a quadratic equation in
two variables, with positive leading coefficient ≤ 2

√
d, and of discriminant −4d,

which takes the value p. This is the first hint of a general theory: We will study
the solutions to quadratic equations in two variables, like this, in detail, in chapter
12.

Additional exercises

Exercise 9.7.1. Let f(n) be the arithmetic function for which f(n) = 1 if n can be written as
the sum of two squares, and f(n) = 0 otherwise. Prove that f(n) is a multiplicative function.
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Exercise 9.7.2. Let p be a prime ≡ 1 (mod 4). This exercise yields another proof that p is the
sum of two squares.
(a) Use Theorem 8.3 to prove that there exist integers a and b such that a2 + b2 is a positive

multiple of p.
(b) Let rp be the smallest such multiple of p. Prove that r ≤ p/2.
(c)† Prove that if r > 1, then there exists a positive integer s ≤ r/2 such that rs = c2 + d2 for

some integers c and d, selected so that ad− bc is divisible by r.
(d) Use (9.1.2) to deduce that if r > 1, then sp is a sum of two squares.

This contradicts the minimality of r unless r = 1; that is, p is the sum of two squares.

Exercise 9.7.3. Let p be an odd prime.
(a)† Suppose that b (mod p) is given and that R, S ≥ 1 such that RS = p. Prove that there

exist integers r, s with |r| ≤ R, 0 < s ≤ S such that b ≡ r/s (mod p).

(b) Prove that there exists an integer m with |m| < √
p for which

(
m
p

)
= −1.

(c) Deduce that if p ≡ 1 (mod 4), then there exists an integer n in the range 1 < n <
√
p for

which
(

n
p

)
= −1.

Exercise 9.7.4. Show that x and y are integers in (9.1.3) if and only if r2+s2 divides 2(ar+ bs),
and show that this can only happen if r2 + s2 divides 2n.

Exercise 9.7.5. What values of r and s yield the point (−a,−b) in Proposition 9.1.2?

Exercise 9.7.6. Reprove exercise 9.1.8 using Theorem 9.1 and (9.1.1).

Exercise 9.7.7.† 332 + 562 = 652 and 162 + 632 = 652 are examples of the side lengths of
different primitive Pythagorean triangles with the same hypotenuse. Classify those integers that
appear as the hypotenuse of at least two different primitive Pythagorean triangles.

Exercise 9.7.8. Prove that for every integer m there exists an integer n which is the length of
the hypoteneuse of at least m different primitive Pythagorean triples. (You may use Theorem 7.4
which implies that there are infinitely many primes ≡ 1 (mod 4).)

Exercise 9.7.9.† Prove that an integer of the form a2 + 4b2 with (a, 2b) = 1 cannot be divisible
by any integer of the form m2 − 2 with m > 1, or m2 + 2. Conversely prove that an integer of

the form m2 − 2n2 or m2 + 2n2 with (m, 2n) = 1 cannot be divisible by any integer of the form
a2 + 4.

Exercise 9.7.10.‡ (Zagier’s proof that every prime ≡ 1 (mod 4) is the sum of two squares) Let

S := {(x, y, z) ∈ N3 : p = x2 + 4yz}.
Define the map φ : S → S by

φ : (x, y, z) →

⎧⎪⎨
⎪⎩
(x+ 2z, z, y − x− z) if x < y − z,

(2y − x, y, x− y + z) if y − z < x < 2y,

(x− 2y, x− y + z, y) if x > 2y.

(a) Show that φ is an involution, that is, φ2 = 1, and verify that each φ(S) belongs to S.

(b) Prove that if φ(v) = v, then v = (1, 1, p−1
4

).

(c) Deduce that there are an odd number of elements of S (in particular, S is non-empty).
Let ψ : S → S be the involution ψ(x, y, z) = (x, z, y).

(d) Prove that ψ has a fixed point (x, y, y) so that z = y.
(e) Deduce that p = x2 + (2y)2 for some integers x, y.



Appendix 9A. Proof of
the local-global principle
for quadratic equations

In this appendix we will give the difficult part of the proof of the local-global
principle for quadratic equations, Theorem 9.4, as discussed at length in section
9.3.

The local-global principle for quadratic equations. Let a, b, c be given
pairwise coprime, squarefree integers. There are solutions in

non-zero integers �,m, n to a�2 + bm2 + cn2 = 0 with (a�2, bm2) = 1

if and only if there are solutions in

non-zero real numbers λ, μ, ν to aλ2 + bμ2 + cν2 = 0,

and, for all positive integers r, there exist

residue classes u, v, w (mod r) for which au2 + bv2 + cw2 ≡ 0 (mod r),

with (au2, bv2, cw2, r) = 1.

Our proof depends on an understanding of lattices.

9.8. Lattices and quotients

A lattice Λ in Rn is the set of points obtained by integer linear combinations of n
given linearly independent vectors. If the basis is x1, x2, . . . , xn ∈ Rn, then

Λ := {m1x1 +m2x2 + · · ·+mnxn : m1,m2, . . . ,mn ∈ Z}.
One can see that Λ is an additive group, but it also has some geometry connected
to it. The fundamental domain of Λ with respect to x1, x2, . . . , xn is the set

P = P (Λ) := {a1x1 + a2x2 + · · ·+ anxn : 0 ≤ ai < 1},

184
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the interior (and part of the boundary) of one of the diamond-shaped cells in Figure
9.1. If λ ∈ Λ, then λ+ P gives us another of the diamond shapes, shifted from the
original by λ. Therefore the sets λ + P , λ ∈ Λ are disjoint and their union is Rn.
Therefore P (Λ) is a set of representatives of

Rn/Λ,

which is often called “Rn mod Λ”.

0

u

v
u+ v

P

Figure 9.1. Constructing a lattice in R2, generated by vectors u and v. The
shaded grey parallelogram is the fundamental domain P (Λ). The dots repre-
sent the same point in R2/Λ repeated in each copy of P (Λ); that is, they are
the points P + λ for each vector λ ∈ Λ.

In the non-trivial example with n = 1, for which Λ = Z, we can write every
real number z as m + a where m ∈ Z and a ∈ [0, 1), letting m = [z] and a = {z}.
We prefer to think of this as z = a in the ring R/Z since their difference, m, is an
integer. This generalizes to n dimensions, in which case we can identify Rn/Λ with
(R/Z)n.

The determinant det(Λ) of Λ is the volume of P ; in fact det(Λ) = |det(A)|,
where A is the matrix with column vectors x1, x2, . . . , xn (written as vectors in
Rn). A convex body K is a bounded convex open subset3 of Rn.

3These are all common terms in geometry. A set S ⊂ Rn is bounded if it can be contained inside
a ball of some finite radius. The set S is convex if all the points on the straight line between any two
points of S also belong to S. The set S is open if there is a ball around any given point of S, perhaps
of very small radius, that also is contained within S.
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If Λ ⊂ Zn, then there are det(Λ) cosets of Λ in Zn; that is,

|Zn/Λ| = det(Λ).

In the proof of Theorem 9.1 we work with the lattice

Λ := {(r, s) ∈ Z2 : r − ks ≡ 0 (mod p)}
(where k2 ≡ −1 (mod p)). This lattice is presented there somewhat differently
from the definition here, but it can easily be seen that Λ is generated by (k, 1) and
(p, 0), and that (0, p) = p(k, 1)−k(p, 0). Hence det(Λ) = p; in particular we deduce
that there are p distinct cosets of Λ within Z2.

Let S be the set constructed in the proof of Theorem 9.1: S is a convex set of
> p elements of Z2 so that the difference, d, of two of them lies on the lattice Λ.
The set S was constructed so that the difference, d, must lie close to the origin.
Moreover Λ was constructed so that if (r, s) ∈ Λ, then r2 + s2 ≡ 0 (mod p) (since
if r ≡ ks (mod p), then r2 + s2 ≡ (ks)2 + s2 ≡ (k2 + 1)s2 ≡ 0 (mod p).)

We will now develop these ideas to give a proof of the local-global principle. In
the next section we will modify the last step to make it more elegant.

Proof of the local-global principle. Assume that a, b, and c are squarefree,
pairwise coprime integers, with a, b > 0 > c (so that there are non-zero real solutions
to ax2 + by2 + cz2 = 0), and that there exists a solution to

au2 + bv2 + cw2 ≡ 0 (mod |abc|),
with (au2, bv2, cw2, abc) = 1.4 We may assume that at least two of a, b, |c| are > 1,
for the case a = b = 1 can be proved directly from Theorem 9.2, while the case
a = 1, c = −1 is easy as we always have the solution x = b− 1, y = 2, z = b+ 1.

Define the lattice

Λ := {(x, y, z) ⊂ Z3 : aux+ bvy + cwz ≡ 0 (mod |abc|)}.
We claim that if (x, y, z) ∈ Λ, then

ax2 + by2 + cz2 ≡ 0 (mod |abc|).
We now prove that this holds mod a (and the cases mod b and mod |c| proceed
analogously, so that the claim follows using the Chinese Remainder Theorem). Now
if (x, y, z) ∈ Λ, then bvy ≡ −cwz (mod a), and so

bv2 · by2 = (bvy)2 ≡ (−cwz)2 = cw2 · cz2 (mod a).

Dividing through by bv2 ≡ −cw2 (mod a), we deduce that by2 ≡ −cz2 (mod a).
Therefore ax2 + by2 + cz2 ≡ 0 (mod a), as desired.

In the next exercise we will show that |det(Λ)| = |abc|. Let

S := {(i, j, k) : 0 ≤ i ≤ [
√
|bc|], 0 ≤ j ≤ [

√
|ac|], 0 ≤ k ≤ [

√
|ab|]}.

The number of integer points in S is >
√
|bc| ·

√
|ac| ·

√
|ab| = |abc| = |Z3/Λ|, and

so, by the pigeonhole principle, there must be two lattice points in S that differ by

4Lemma 9.3.1 implies that we should work modulo 8|abc| in proving the local-global principle.
However, in this first version of our proof, we prefer to not worry about the equation modulo powers of
2. We will revisit this issue in the next section.
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non-zero element (x, y, z) ∈ Λ. If the two lattice points are (i, j, k) and (I, J,K),
then

|x| = |i− I| ≤ [
√
|bc|], |y| = |j − J | ≤ [

√
|ac|], |z| = |k −K| ≤ [

√
|ab|].

These are all “<” as none of |bc|, |ac|, |ab| are squares, since at least two of a, b, |c| are
> 1 and they are pairwise coprime. Therefore ax2 + by2 < 2|abc| and |cz2| < |abc|,
so that

−|abc| < ax2 + by2 + cz2 < 2|abc|.
This implies that either ax2 + by2 + cz2 = 0 or ax2 + by2 + cz2 = |abc| = −abc.
We need to eliminate the second case. I know of two ways to do this. The first is
inelegant and comes from simply noting that if ax2 + by2 + cz2 + abc = 0, then

a(xz − by)2 + b(ax+ yz)2 + c(ab+ z2)2 = (ab+ z2)(ax2 + by2 + cz2 + abc) = 0.

The second involves slightly modifying the definition of Λ, by taking the prime 2
into account more carefully, which we discuss in the next section. �
Exercise 9.8.1. (a) Show that there exist integers U, V,W , coprime with abc, for which U ≡ u

(mod bc), V ≡ v (mod ac), W ≡ w (mod ab), so that aU2 + bV 2 + cW 2 ≡ 0 (mod |abc|).
(b) Let U−1 be an integer ≡ 1/U (mod abc) and W−1 be an integer ≡ 1/W (mod abc). Show

that Λ is generated by the vectors (1, V U−1,WU−1), (0, c,−bV W−1), and (0, 0, ab).)
(c) Deduce that det(Λ) = |abc|.

9.9. A better proof of the local-global principle

The idea is to construct a lattice, based on that in the previous section, but now
of determinant 4|abc|. We begin by defining

Λ0 := {(x, y, z) ⊂ Z3 : aux+ bvy + cwz ≡ 0 (mod |abc|)}.
If c is even, then let

Λ := {(x, y, z) ∈ Λ0 : y ≡ x (mod 4) and z ≡ wx (mod 2)}
based on the given solution (u, v, w). We construct Λ analogously if a or b is even.

If abc is odd, then one of u, v, w must be even (as au2 + bv2 + cw2 = 0), say w.
If so, then let

Λ := {(x, y, z) ∈ Λ0 : y ≡ x (mod 2) and z ≡ 0 (mod 2)},
using the given solution (u, v, w). We construct Λ analogously if u or v is even.

Exercise 9.9.1. (a) Prove that if (x, y, z) ∈ Λ, then ax2 + by2 + cz2 ≡ 0 (mod 4|abc|).
(b) Prove that det(Λ) = 4|abc|.

Consider the set of integer points

S := {(i, j, k) : 0 ≤ i ≤ [
√
2|bc|], 0 ≤ j ≤ [

√
2|ac|], 0 ≤ k ≤ [2

√
|ab|]}.

The number of lattice points in S is >
√
2|bc| ·

√
2|ac| · 2

√
|ab| = 4|abc| = |Z3/Λ|

by exercise 9.9.1(b), and so, by the pigeonhole principle, there must be two lattice
points in S that differ by a non-zero element (x, y, z) ∈ Λ. If the two lattice points
are (i, j, k) and (I, J,K), then

|x| = |i− I| ≤ [
√
2|bc|], |y| = |j − J | ≤ [

√
2|ac|], |z| = |k −K| ≤ [2

√
|ab|].



188 Appendix 9A. Proof of the local-global principle for quadratic equations

Therefore ax2 + by2 < 4|abc| and |cz2| < 4|abc| (as equality would only be possible
if a = b = 1), and so

|ax2 + by2 + cz2| < 4|abc|.
Now, since (x, y, z) ∈ Λ, we know that

ax2 + by2 + cz2 ≡ 0 (mod 4|abc|),
by exercise 9.9.1(a), and so we must have ax2 + by2 + cz2 = 0 as desired. �

A by-product of this proof is that the smallest non-trivial solution satisfies

|a�2|, |bm2|, |cn2| ≤ 4|abc|.
In 1950, Holzer showed that one may replace 4|abc| by |abc|.
Exercise 9.9.2. Give infinitely many examples in which max{|a�2|, |bm2|, |cn2|} = |abc| in the
smallest non-trivial solution of a�2 + bm2 + cn2 = 0.

Appendices. The extended version of chapter 9 has the following additional
appendices:

Appendix 9B. Reformulation of the local-global principle. We introduce the
Hilbert symbol and go on to formulate and prove the Hasse-Minkowski principle,
the local-global principle for quadratics in n variables with n ≥ 3.

Appendix 9C. The number of representations studies how often an integer is
the sum of two squares and uses this to introduce some important formulas.

Appendix 9D. Descent and the quadratics introduces several famous questions
which require descent and can be analyzed through matrix actions and orbits,
including the beautiful question of tiling a circle with smaller circles.



Chapter 10

Square roots and factoring

In this chapter we will study the computational side of number theory, which plays
an important role in several uses of computers in today’s society, particularly when
it comes to keeping secrets. We will investigate how to rapidly determine whether
a given large integer is prime and, if not, how to factor it. The issue of factoring
an integer n is closely related to determining square roots mod n:

10.1. Square roots modulo n

How difficult is it to find square roots mod n? The first question to ask is how
many square roots does a square have mod n?

Lemma 10.1.1. If n is an odd integer with k prime factors and A is a square mod
n with (A, n) = 1, then there are exactly 2k residues mod n whose square is ≡ A
(mod n).

In particular, all squares mod m, that are coprime to m, have the same number of
square roots mod m. We resolved how many square roots 1 (mod n) has in Lemma
3.8.1, and here we modify that proof to better suit the discussion in this chapter.
We could have immediately deduced Lemma 10.1.1 for if A is a square mod n, then
there exists b (mod n) such that b2 ≡ A (mod n), and then the solutions to x2 ≡ A
(mod n) are in 1-to-1 correspondence with the solutions to y2 ≡ 1 (mod n) through
the invertible transformation x ≡ by (mod n).

Proof. Suppose that b2 ≡ A (mod n) where n = pe11 pe22 . . . pekk , and each pi is odd
and distinct. If x2 ≡ A (mod n), then n|(x2− b2) = (x− b)(x+ b) so that p divides
x − b or x + b for each prime p dividing n. Now p cannot divide both or else p
divides (x + b) − (x − b) = 2b and so 4A ≡ (2b)2 ≡ 0 (mod p), which contradicts
the fact that (p, 2A)|(n, 2A) = 1. So let

d = (n, x− b), and therefore n/d = (n, x+ b),

189
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which must be coprime. Then x ≡ bd (mod n) where bd is that unique residue class
mod n for which

(10.1.1) bd ≡
{

b (mod d),

−b (mod n/d).

Note that the bd are well-defined by the Chinese Remainder Theorem, are distinct,
and that x2 ≡ b2d ≡ b2 ≡ A (mod n) for each d.

The possible values of d are
∏

i∈I p
ei
i for each subset I of {1, . . . , k}, and there-

fore there are 2k possibilities. �

To see how the proof works let’s obtain the four square roots of 4 (mod 15) from
knowing one square root, 2, and the factorization of 15. These four square roots
are given by four pairs of congruences which we solve using the Chinese Remainder
Theorem:

2 (mod 1) and −2 (mod 15) which yield 13 (mod 15);
2 (mod 3) and −2 (mod 5) which yield 8 (mod 15);
2 (mod 5) and −2 (mod 3) which yield 7 (mod 15); and
2 (mod 15) and −2 (mod 1) which yield 2 (mod 15).

Consequence. Let n be an odd integer with at least two different prime factors,
and suppose that b2 ≡ A (mod n) with (A, n) = 1. Finding square roots of A mod
n, other than b and −b, is “as difficult as” factoring n into two parts both > 1.

Sketch of “proof”. If we have a factorization n = d ·n/d, then we select bd as in
(10.1.1) so that b2d ≡ A (mod n) but bd �≡ ±b (mod n), as d, n/d > 1.

In the other direction, suppose that one has a fast algorithm for rapidly finding
arbitrary square roots mod n for odd integers n. In particular given A (mod n),
the algorithm randomly determines some x (mod n) for which x2 ≡ A (mod n);
by “random” we mean that each time the “square root finding” algorithm is run it
is equally likely to produce any one of the 2k solutions (as in Lemma 10.1.1). Now
define d = (n, x− b) (as in the proof of Lemma 10.1.1) and so we factor n as d ·n/d.
This works provided d �= 1 or n, that is, provided that x �≡ b or −b (mod n).

Now, the probability that x ≡ b or −b (mod n) is 2/2k which is ≤ 1
2 as k ≥ 2.

Therefore the probability of finding a non-trivial factor of n each time the “square
root finding” algorithm is run is ≥ 1

2 . This does not seem persuasive, but if we
run the “square root finding” algorithm 20 times, then the probability that the

algorithm gives 1 or n on every run is ≤
(
1
2

)20
, which is less than one in a million.

So, in practice, we will quickly find a non-trivial factor of n. �

We have shown that finding square roots mod n and factoring n are more or
less equally difficult problems.

Exercise 10.1.1. Find all of the square roots of 49 mod 32 · 5 · 11.

10.2. Cryptosystems

Cryptography has been around for as long as the need to communicate secrets at a
distance. Julius Caesar, on campaign, communicated military messages by creating
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ciphertext from plaintext (the unencrypted message), replacing each letter of the
plaintext with that letter which is three letters further on in the alphabet. Thus A
becomes D, B becomes E, etc. For example,

t h i s i s v e r y i n t e r e s t i n g

becomes
w k l v l v y h u b l q w h u h v w l q j

(Y became B, since we wrap around to the beginning of the alphabet. It is es-
sentially the map x → x + 3 (mod 26).) At first sight an enemy might regard
WKLV . . .WLQJ as gibberish even if the message was intercepted. It is easy
enough to decrypt the ciphertext, simply by going back three places in the alpha-
bet for each letter, to reconstruct the original message. The enemy could easily
do this if (s)he guessed that the key is to rotate the letters by three places in the
alphabet, or even if they only guessed that one rotates by a fixed number of let-
ters, as there would only be 25 possibilities to try. So in classical cryptography it
is essential to keep the key secret, as well as the technique by which the key was
created.1

One can generalize to arbitrary substitution ciphers where one replaces the
alphabet by some permutation of the alphabet. There are 26! permutations of our
alphabet, which is around 4× 1026 possibilities, enough one might think to be safe.
And it would be if the enemy went through each possibility, one at a time. However
the clever cryptographer will look for patterns in the ciphertext. In the above short
ciphertext we see that L appears four times among the 21 letters, and H,V,W three
times each, so it is likely that these letters each represent one of A,E, I, S, T . By
looking for multiword combinations (like the ciphertext for THE) one can quickly
break any ciphertext of around one hundred letters.

To combat this, armies in the First World War used longer cryptographic keys,
rather than of length 1. That is, they would take a word like ABILITY and since
A is letter 1 in the alphabet, B is letter 2, and ILITY are letters 9,12,9,20,25, re-
spectively, they would rotate on through the alphabet by 1, 2, 9, 12, 9,−6,−1 letters
to encrypt the first seven letters, and then repeat this process on the next seven.
For example, we begin with the message, adding the word “ability” as often as is
needed:

w e n e e d t o m a k e a n e x a m p l e

plus
a b i l i t y a b i l i t y a b i l i t y

becomes
x g w q n x s p o j w n u m f z j y y f d

This can again be “broken” by statistical analysis, though the longer the key length,
the harder it is to do. Of course using a long key on a battlefield would be difficult,
so one needed to compromise between security and practicality. A one-time pad,

1Steganography, hiding secrets in plain view, is another method for communicating secrets at a
distance. In 499 B.C., Histiaeus shaved the head of his most trusted slave, tattooed a message on his
bald head, and then sent the slave to Aristagoras, once the slave’s hair had grown back. Aristagoras then
shaved the slave’s head again to recover the secret message telling him to revolt against the Persians. In
more recent times, cold war spies reportedly used “microdots” to transmit information, and Al-Qaeda
supposedly notified its terrorist cells via messages hidden in images on certain webpages.
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where one uses such a long key that one never repeats a pattern, is unbreakable by
statistical analysis. This might have been used by spies during the cold war and
was perhaps based on the letters in an easily obtained book, so that the spy would
not have to possess any obviously incriminating evidence.

During the Second World War the Germans came up with an extraordinary
substitution cypher that involved changing several settings on a specially built
typewriter (an Enigma machine). The number of possibilities was so large that the
Germans remained confident that it could not be broken, and they even changed
the settings every day so as to ensure that it would be extremely difficult. The Poles
managed to obtain an early Enigma machine and their mathematicians determined
how it worked. They shared their findings with the Allies so that after a great
amount of effort the Allies were able to break German codes quickly enough to
be useful, even vital, to their planning and strategy.2 Early successes led to the
Germans becoming more cautious, and thence to horrific decisions having to be
made by the Allied leaders to safeguard this most precious secret.3

The Allied cryptographers would cut down the number of possibilities (for
the settings on the Enigma machine) to a few million, and then their challenge
became to build a machine to try out many possibilities very rapidly. Up until then
one would have to change, by hand, external settings on the machine to try each
possibility; it became a goal to create a machine in which one could change what
it was doing, internally, by what became known as a program, and this stimulated,
in part, the creation of the first modern computers.

Exercise 10.2.1. One can also create a cryptosystem using binary addition. For example, our
key could be the 20-letter word k = 10111011101111011001. Then we could encrypt by using
bit-by-bit addition; that is, 0

⊕
0 = 1

⊕
1 = 0 and 0

⊕
1 = 1

⊕
0 = 1. Therefore if the plaintext

is p = 11100010101101000011, then c = p
⊕

k, namely

10111 01110 11110 11001⊕
11100 01010 11010 00011

= 01011 00100 00100 11010.

It is easy to recover the plaintext since p = c
⊕

k. Prove that one can recover the key if one knows
the ciphertext and the plaintext.

10.3. RSA

In the theory of cryptography we always have two (imaginary) people, Alice and
Bob, attempting to share a secret over an open communication channel, and the
evil Oscar listening in, attempting to figure out what the message says. We will
begin by describing a private key scheme for exchanging secrets based on the ideas
in our number theory course:

Suppose that prime p is given and integers d and e such that de ≡ 1 (mod p−1).
Alice knows p and e but not d, whereas Bob knows p and d but not e. The numbers

2As portrayed, rather inaccurately, in the film The Imitation Game.
3The ability to crack the Enigma code allowed the Allied leaders to save lives. However if they

used it so often that every possible life was saved, the Germans would have realized that the Allies
had broken the code, and then the Germans were liable to have moved on to a different cryptographic
method, which perhaps the Allied codebreakers might have been unable to decipher. Hence the Allied
leadership was forced to use its knowledge sparingly so that it would be available in the militarily most
advantageous situations. As a consequence, they knowingly sent many sailors to their doom, knowing
where the U-boats were waiting in ambush, but being forced not to disclose that information.
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d and e are kept secret by whoever knows them. Thus if Alice’s secret message is
M ,4 she encrypts M by computing x ≡ Me (mod p). She sends the ciphertext x
over the open channel. Then Bob decrypts by raising x to the dth power mod p,
since

xd ≡ (Me)d ≡ Mde ≡ M (mod p)

as de ≡ 1 (mod p−1). As far as we know, Oscar will discover little by intercepting
the encrypted messages x, even if he intercepts many different x, and even if he
can occasionally make an astute guess at M . However, if Oscar is able to steal the
values of p and e from Alice, he will be able to determine d, since d is the inverse of
e mod p−1, and this can be determined by the Euclidean algorithm, as discussed in
exercise 3.5.5 (see the second proof of Corollary 3.5.2). He is then able to decipher
Alice’s future secret messages, in the same way as Bob does.

This is the problem with most classical cryptosystems; once one knows the
encryption method it is not difficult to determine the decoding method. In 1975
Diffie and Hellman proposed a sensational idea: Can one find a cryptographic
scheme in which the encryption method gives no help in determining a decryption
method? If one could, one would then have a public key cryptographic scheme,
which is exactly what is needed in our age of electronic information, in particular
allowing people to use passwords in public places (for instance when using an ATM)
without fear any lurking Oscar will be able to figure out how to impersonate them.5

In 1977 Rivest, Shamir, and Adleman (RSA) realized this ambition, via a
minor variation of the above private key cryptosystem:6 Now let p �= q be two
large primes7 and n = pq. Select integers d and e such that de ≡ 1 (mod φ(pq)).
Alice knows pq and e but not d, while Bob knows pq and d. Thus if Alice’s secret
message is M , the ciphertext is x ≡ Me (mod pq), and Bob decrypts this by taking
xd ≡ (Me)d ≡ Mde ≡ M (mod pq) as de ≡ 1 (mod φ(pq)) using Euler’s Theorem.

Now, if Oscar steals the values of pq and e from Alice, will he be able to
determine d, the inverse of e mod φ(pq) = (p− 1)(q − 1)? When the modulus was
the prime p, Oscar had no difficulty in determining φ(p) = p − 1. Now that the
modulus is pq, can Oscar easily determine (p − 1)(q − 1)? If so, then, since he
already knows pq, he would be able to determine pq+1− (p−1)(q−1) = p+ q and
hence p and q, since they are the roots of x2− (p+ q)x+ pq = 0. In practice, Oscar
needs to only know d to factor n (see exercise 5.27 in [CP05]8). In other words, if
Oscar can “break” the RSA algorithm, then he can factor n = pq, and vice versa.

We have just shown that breaking RSA is more or less as difficult as factoring.
Therefore RSA is a secure cryptographic protocol (when correctly implemented)
if and only if n is a difficult integer to factor. But nobody truly knows whether

4Of course a message is usually in words, but one converts the letters to numbers using some simple
substitutions, like “01” for “A”, “02” for “B”, ... , “26” for “Z”, etc., and concatenates these numbers.
Thus “cabbie” becomes “030102020905”. It is this number that is our message that we denote by M .

5When Alice uses a password, a cryptographic protocol might append a timestamp to ensure that
the encrypted password (plus timestamp) is different with each use, and so Bob will get suspicious if
the same timestamp is used again later.

6It is now known that (Sir) Clifford Cocks, working for the British secret cryptography agency,
GCHQ, had discovered this RSA algorithm in 1974, and it had been classified “Top Secret”. See
https://www.wired.com/1999/04/crypto/ for the story.

7We will develop fast methods to find large primes in appendix 10C.
8This uses Pollard’s p − 1 method, which will not be discussed in this book, and is an algorithm

that runs in probabilistic polynomial time.



194 10. Square roots and factoring

factoring is a difficult problem, nor how to select integers that are provably hard to
factor. In our current state of knowledge, we do not know any very efficient ways
to factor arbitrary large numbers, but that does not necessarily mean that there is
no quick way to do so.9 So why do we put our faith (and secrets and fortunes) in
the difficulty of factoring? The security of a cryptographic protocol must evidently
be based on the difficulty of resolving some mathematical problem,10 but we do
not know how to prove that any particular mathematical problem is necessarily
difficult to solve.11 However the problem of factoring efficiently has been studied
by many of the greatest minds in history, from Gauss onwards, who have looked
for an efficient factoring algorithm and failed. Is this a good basis to have faith in
RSA? Probably not, but we have no better. (More on this at the end of section
10.15 of appendix 10F.)

Exercise 10.3.1. Let n = 11×53 be an RSA modulus with encryption exponent e = 7. Determine
d, the decryption exponent, by hand, using the Euclidean algorithm and the Chinese Remainder
Theorem.

Exercise 10.3.2. Let n = 5891 be an RSA modulus with encryption exponent e = 29 and
decryption exponent d = 197. Use this information to factor n.

10.4. Certificates and the complexity classes P and NP

Algorithms are typically designed to work on any of an arbitrarily large class of
examples, and one wishes them to work as fast as possible. If the example is input in
� characters, and the function calculated is genuinely a function of all the characters
of the input, then one cannot hope to compute the answer any quicker than the
length, �, of the input. A polynomial time algorithm is one in which the answer
is computed in no more than c�A steps, for some constants c, A > 0, no matter
what the input. These are considered to be quick algorithms. There are many
simple problems that can be answered in polynomial time (the set of such problems
is denoted by P and was already discussed in section 7.14 of appendix 7A); see
section 10.15 of appendix 10F for more details. In modern number theory, because
of the intrinsic interest as well as because of the applications to cryptography, we
are particularly interested in the running times of factoring and primality testing
algorithms.

At the 1903 meeting of the American Mathematical Society, F. N. Cole came
to the blackboard and, without saying a word, wrote down

267 − 1 = 147573952589676412927 = 193707721× 761838257287,

long-multiplying the numbers out on the right side of the equation to prove that he
was indeed correct. Afterwards he said that figuring this out had taken him “three
years of Sundays”. The moral of this tale is that although it took Cole a great deal

9There are some families of numbers that we know are easy to factor (for example, see exercise
10.7.2 for a fast factoring method if p and q are close together) so we need to avoid those when selecting
a modulus for RSA.

10Here we are talking about cryptographic protocols on computers as we know them today. There
is a highly active quest to create quantum computers, on which cryptographic protocols are based on a
very different set of ideas.

11We can prove that almost all mathematical problems are “difficult to solve” (see section 10.16
of appendix 10F), but we do not know how to identify one specific problem that is provably difficult to
solve. This is a notoriously challenging and important open problem.
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of work and perseverance to find these factors, it did not take him long to justify
his result to a room full of mathematicians (and, indeed, to give a proof that he
was correct). Thus we see that one can provide a short proof, even if finding that
proof takes a long time.

In general one can exhibit factors of a given integer n to give a short proof that
n is composite. Such proofs, which can be checked in polynomial time, are called
certificates. (The set of problems for which the answer can be checked in polynomial
time is denoted by NP.) Note that it is not necessary to exhibit factors to give a
short proof that a number is composite. Indeed, we already saw in the converse to
Fermat’s Little Theorem, Corollary 7.2.1, that one can exhibit an integer a coprime
to n for which n does not divide an−1−1 to provide a certificate that n is composite.

What about primality testing? If someone gives you an integer and asserts
that it is prime, can you quickly check that this is so? Can they give you better
evidence than their say-so that it is a prime number? Can they provide some sort
of certificate that gives you all the information you need to quickly verify that the
number is indeed a prime? We had hoped (see section 7.6) that we could use the
converse of Fermat’s Little Theorem to establish a quick primality test, but we
saw that Carmichael numbers seem to stop that idea from reaching fruition. Here
we are asking for less, for a short certificate for a proof of primality. It is not
obvious how to construct such a certificate, certainly not so obvious as with the
factoring problem. It turns out that some old remarks of Lucas from the 1870s can
be modified for this purpose. We begin with a sure-fire primality test, obtained as
a consequence of Proposition 7.5.1.

Corollary 10.4.1. Suppose that n > 1 is a positive integer for which there exists
an integer g with (g, n) = 1 such that gn−1 ≡ 1 (mod n) and g(n−1)/q �≡ 1 (mod n)
for every prime q dividing n− 1. Then n is a prime.

Proof. Proposition 7.5.1 implies that g has order n− 1 (mod n), so that the n− 1
reduced residues 1, g, . . . , gn−1 are all distinct mod n. Therefore every integer a in
the range 1 ≤ a ≤ n− 1 is coprime to n, implying that n is prime. �

We are not suggesting that Corollary 10.4.1 provides a fast primality test. One
can probably find g rapidly, if it exists, using Gauss’s algorithm which is discussed
in section 7.15 of appendix 7B. However the algorithm requires one to completely
factor n − 1, and we have no particularly fast factoring algorithms. On the other
hand, if n − 1 has already been factored, then one can proceed rapidly. Indeed
we can provide a “certificate” to allow a checker to quickly verify that n is prime,
which would consist of

g and {q prime : q divides n− 1}.
The checker would need to verify that gn−1 ≡ 1 (mod n) whereas g(n−1)/q �≡ 1
(mod n) for all primes q dividing n−1, something that can be quickly accomplished
using fast exponentiation (as explained in section 7.13 of appendix 7A).

There is a problem though: One needs (the additional) certification that each
such q is prime. The solution is to iterate the above algorithm; and one can show
that no more than log n odd primes need to be certified prime in the process of
proving that n is prime. Thus we have a “short” certificate that n is prime.
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At first one might hope that this also provides a quick way to test whether a
given integer n is prime. However there are several obstacles. The most important
is that we need to factor n − 1 in creating the certificate. When one is handed
the certificate, n − 1 is already factored, so that is not an obstacle to the use of
the certificate; however it is a fundamental impediment to the rapid creation of the
certificate (and therefore to using this as a primality test).

Exercise 10.4.1. Assuming only that 2 is prime, provide a certificate that proves that 107 is
prime.

Exercise 10.4.2. Let Fm = 22
m

+ 1 with m ≥ 2 be a Fermat number.

(a) Prove that if there exists an integer q for which q
Fm−1

2 ≡ −1 (mod Fm), then Fm is prime.
(b) Deduce an “if and only if” condition for the primality of Fm using exercise 8.5.4.

10.5. Polynomial time primality testing

Although the converse to Fermat’s Little Theorem does not provide a polynomial
time primality test, one can further develop this idea. For example, we know that

a
p−1
2 ≡ −1 or 1 (mod p) by Euler’s criterion, and hence if a

n−1
2 �≡ ±1 (mod n),

then n is composite. This identifies even more composite n than Corollary 7.2.1
alone, but not necessarily all n. We develop this idea further in section 10.8 of
appendix 10A to find a criterion of this type that is satisfied by all primes but not
by any composites. However we are unable to prove that this is indeed a polynomial
time primality test without making certain assumptions that are, as yet, unproved.

There have indeed been many ideas for establishing a primality test which
is provably polynomial time, but this was not achieved until 2002. This was of
particular interest since the proof was given by a professor, Manindra Agrawal, and
two undergraduate students, Kayal and Saxena, working together with Agrawal
on a summer research project. Their algorithm is based on the following elegant
characterization of prime numbers.

Theorem 10.1 (Agrawal, Kayal, and Saxena (AKS)). For given integer n ≥ 2, let
r be a positive integer < n, for which n has order > 9(log n)2 modulo r. Then n is
prime if and only if

• n is not a perfect power,

• n does not have any prime factor ≤ r,

• (x+ a)n ≡ xn + a mod (n, xr − 1) for each integer a, 1 ≤ a ≤ 3
√
r log n.

The last equation uses “modular arithmetic” in a way that is new to us, but
analogous to what we have seen: (x + a)n ≡ xn + a mod (n, xr − 1) means that
there exist f(x), g(x) ∈ Z[x] such that (x+ a)n − (xn + a) = nf(x) + (xr − 1)g(x).

At first sight this might seem to be a rather complicated characterization of the
prime numbers. However this fits naturally into the historical progression of ideas
in this subject (indeed, see appendix 10G for a discussion and a proof), is not so
complicated (compared to some other ideas in use), and has the great advantage
that it is straightforward to develop into a fast algorithm for proving the primality
of large primes. However, although the AKS algorithm satisfies the desire to have a
rigorously proved polynomial time primality testing algorithm, it is not in practice
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the fastest algorithm for establishing primality of the largest integers currently
being considered.12

Exercise 10.5.1. Let pk be the highest power of prime p that divides n, with k ≥ 1.
(a) Prove that pk does not divide

(n
p

)
.

(b) Deduce that n does not divide
(n
p

)
.

(c) Show that if n is composite, then n does not divide all the coefficients of the polynomial
(1 + x)n − xn − 1.

Exercise 10.5.2. Use the previous exercise to show:
(a) n is prime if and only if (x+ 1)n ≡ xn + 1 (mod n).
(b) If (n, a) = 1, then n is prime if and only if (x+ a)n ≡ xn + a (mod n).
(c) Prove that if n is prime, then (x + a)n ≡ xn + a (mod (n, xr − 1)) for any integer a with

(a, n) = 1 and any r > 1.

10.6. Factoring methods

The problem of distinguishing prime numbers from composite numbers and
of resolving the latter into their prime factors is known to be one of the most
important and useful in arithmetic. It has engaged the industry and wisdom of
ancient and modern geometers to such an extent that it would be superfluous to
discuss the problem at length. Nevertheless we must confess that all methods
that have been proposed thus far are either restricted to very special cases
or are so laborious and difficult that even for numbers that do not exceed
the limits of tables constructed by estimable workers, they try the patience
of even the practiced calculator. And these methods do not apply at all to
larger numbers . . . . It frequently happens that the trained calculator will
be sufficiently rewarded by reducing large numbers to their factors so that it
will compensate for the time spent. Further, the dignity of the science itself
seems to require that every possible means be explored for the solution of a
problem so elegant and so celebrated . . . . It is in the nature of the problem
that any method will become more complicated as the numbers get larger.
Nevertheless, in the following methods the difficulties increase rather slowly
. . . . The techniques that were previously known would require intolerable
labor even for the most indefatigable calculator.

— from article 329 of Disquisitiones Arithmeticae (1801) by C. F. Gauss

The first factoring method, other than trial division, was given by Fermat: His
goal was to write a given odd integer n as x2 − y2, so that n = (x− y)(x+ y). He
started with m, the smallest integer ≥

√
n, and then looked to see if m2 − n is a

square. If so, say m2 − n = r2, then n = (m− r)(m+ r).

It is not easy to determine (at least by hand) whether a large integer is a square,
though most are not. Fermat simplified his algorithm by quickly eliminating non-
squares, by testing whether m2 − n is a square modulo various small primes. If
m2 − n is not a square, then he tested whether (m + 1)2 − n is a square; if that
failed, whether (m + 2)2 − n is a square, or (m + 3)2 − n, . . ., etc. Since Fermat
computed by hand he also noted the trick that

(m+ 1)2 − n = m2 − n+ (2m+ 1),

(m+ 2)2 − n = (m+ 1)2 − n+ (2m+ 3), etc.,

12Because other algorithms that we believe, but cannot prove, are polynomial time, run faster.
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so that, at each step he only needed to add a relatively small number to the integer
he had just tested, and the next add-on is just two larger than the previous one.

For example, Fermat factored n = 2027651281 so that m = 45030. Then

450302 − n = 49619 which is not a square mod 100;

450312 − n = 49619 + 90061 = 139680 which is divisible by 25, not 26;

450322 − n = 139680 + 90063 = 229743 which is divisible by 33, not 34;

450332 − n = 229743 + 90065 = 319808 which is not a square mod 3; etc.

...

up until 450412 − n = 10202, so that

n = 2027651281 = 450412−10202 = (45041−1020)×(45041+1020) = 44021×46061.

Exercise 10.6.1. Factor 1649 using Fermat’s method.

Gauss and other authors further developed Fermat’s ideas, most importantly
realizing that if x2 ≡ y2 (mod n) with x �≡ ±y (mod n) and (x, n) = 1, then

gcd(n, x− y) · gcd(n, x+ y)

gives a non-trivial factorization of n.

The issue now becomes to rapidly determine two residues x and y (mod n) with
x �≡ y or −y (mod n), such that x2 ≡ y2 (mod n). Several factoring algorithms
work by generating a sequence of integers a1, a2, . . . , with each

ai ≡ b2i (mod n) but ai �= b2i

for some known integer bi, until some subsequence of the ai’s has product equal to
a square, say

y2 = ai1 · · · air .
Then one sets x2 = (bi1 · · · bir)2 to obtain x2 ≡ y2 (mod n), and there is a good
chance that gcd(n, x− y) is a non-trivial factor of n.

We want to generate the ai’s so that it is not so difficult to find a subsequence
whose product is a square; to do so, we need to be able to factor the ai. This
is most easily done by only keeping those ai that have all of their prime factors
≤ B, for some appropriately chosen bound B. Suppose that the primes up to B
are p1, p2, . . . , pk. If ai = p

ai,1

1 p
ai,2

2 · · · pai,k

k , then let vi = (ai,1, ai,2, . . . , ai,k), which
is a vector with entries in Z.

Exercise 10.6.2. Show that
∏

i∈I ai is a square if and only if
∑

i∈I vi ≡ (0, 0, . . . , 0) (mod 2).

Hence to find a non-trivial subset of the ai whose product is a square, we simply
need to find a non-trivial linear dependency mod 2 amongst the vectors vi. This is
easily achieved through the methods of linear algebra and guaranteed to exist once
we have generated more than k such integers ai.

The quadratic sieve factoring algorithm selects the bi so that it is easy to find
the small prime factors of the ai, using Corollary 2.3.1. There are other algorithms
that attempt to select the bi so that the ai are small and therefore more likely to
have small prime factors. We discuss some of these in appendix 10B. The best
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algorithm, the number field sieve, is an analogy to the quadratic sieve algorithm
over number fields.

There are many other cryptographic protocols based on ideas from number
theory. Some of these will be discussed in the appendices to this chapter.

References: See [CP05] and [Knu98], as well as:

[1] Carl Pomerance, A tale of two sieves, Notices Amer. Math. Soc. 43 (1996), 1473–1485.

[2] John D. Dixon Factorization and primality tests, Amer. Math. Monthly 91 (1984), 333–352.

Additional exercises

Exercise 10.7.1. Suppose that n is an odd composite integer. Prove that for at least half the
pairs x, y with 0 ≤ x, y < n and x2 ≡ y2 (mod n), we have 1 < gcd(x− y, n) < n.

Exercise 10.7.2. Factor n = 62749. Let m = [
√
n] + 1 = 251. Compute (m + i)2 (mod n)

for i = 0, 1, 2, . . . and retain those residues whose prime factors are all ≤ 11. Therefore we have
2512 ≡ 22 · 32 · 7; 2532 ≡ 22 · 32 · 5 · 7; 2572 ≡ 22 · 3 · 52 · 11; 2602 ≡ 3272 · 11; 2682 ≡
3 · 52 · 112; 2712 ≡ 22 · 35 · 11 (mod n). Use this information to factor n.

Exercise 10.7.3. Alice is sending Bob messages using RSA with public key modulus n =
2027651281 and encryption exponent e = 66308903. Oscar recalls that n is the number Fermat
factored in section 10.6. Find the decryption exponent for Oscar.

We wish to determine how many different odd primes are involved in the Lucas
certificate of section 10.4.

Exercise 10.7.4. Let n be prime and suppose q1, . . . , qk are the odd prime factors of n− 1.

(a) Prove that the product of these primes, N1 := q1 · · · qk, is ≤ n/2.
(b)† To certify that q1, . . . , qk are prime we need the set of odd prime factors of q1−1, . . . , qk−1.

Let’s call those primes p1, . . . , p�. Prove that the product of these primes, N2 := p1 · · · p�,
is ≤ N1/2k.

(c) Generalize this argument to show that if there are r primes to be certified at the jth stage,
then Nj+1 ≤ Nj/2

r.

(d)† Prove that if there are m primes that were certified to be prime during all the steps of this
argument, then 2m ≤ n. Explain why this implies that primality testing is in NP.

Exercise 10.7.5.† Suppose n is an odd composite, and a(n−1)/2 ≡ 1 or −1 (mod n) for every a

with (a, n) = 1. Deduce that a(n−1)/2 ≡ 1 (mod n) for every a with (a, n) = 1 and that n is a
Carmichael number.



Appendix 10A. Pseudoprime
tests using square roots of 1

In section 7.6 we noted that the converse to Fermat’s Little Theorem may be used
to give a quick proof that a given integer n is composite: One simply finds an integer
a, not divisible by n, for which an−1 �≡ 1 (mod n) (if this fails, that is, if an−1 ≡ 1
(mod n) and n is composite, then n is called a base-a pseudoprime). Such a search
often works quickly, especially for randomly chosen values of n, but can fail if the
tested n have some special structure. For example, it always fails for Carmichael
numbers, which have the property that n is a base-a pseudoprime for every a with
(a, n) = 1. What can we do in these cases? Can we construct a test, based on
similar ideas, that is guaranteed to recognize even these composite numbers?

10.8. The difficulty of finding all square roots of 1

Lemma 10.1.1 implies that there are at least four distinct square roots of 1 (mod n),
for any odd n which is divisible by at least two distinct primes. This suggests that
we might try to prove that a given base-a pseudoprime n is composite by finding a
square root of 1 (mod n) which is neither 1 nor −1. (If we can find such a square
root of 1 (mod n), then we can partially factor n, as discussed in section 10.1.) The
issue then becomes: How do we efficiently search for a square root of 1?

This is not difficult: Since n is a base-a pseudoprime, we have(
a

n−1
2

)2
= an−1 ≡ 1 (mod n),

and so a
n−1
2 (mod n) is a square root of 1 (mod n). By Euler’s criterion we know

that if p is prime, then a
p−1
2 ≡ (a/p) (mod p), so that a

p−1
2 ≡ 1 or −1 (mod p). If n

is a base-a pseudoprime (and therefore composite), it is feasible that a
n−1
2 �≡ (a/n)

(mod n), which would imply that n is composite. If a
n−1
2 (mod n) is neither 1 nor

200
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−1, this allows us to factor n into two parts, since

n = gcd(a
n−1
2 − 1, n) · gcd(a

n−1
2 + 1, n).

If n is composite and a
n−1
2 ≡ (a/n) (mod n), then we call n a base-a Euler pseu-

doprime.

For example, 1105 is a Carmichael number, and so 21104 ≡ 1 (mod 1105). We
take the square root, and determine that 2552 ≡ 1 (mod 1105). So this method fails
to prove that 1105 is composite, since 1105 is a base-2 Euler pseudoprime. But,
wait a minute, 552 is even, so we can take the square root again, and a calculation
reveals that 2226 ≡ 781 (mod 1105). That is, 781 is a square root of 1 mod 1105,
which proves that 1105 is composite. Moreover, since gcd(781− 1, 1105) = 65 and
gcd(781 + 1, 1105) = 17, we can even factor 1105 as 65× 17.13

This property is even more striking mod 1729. In this case 1728 = 26 · 27 so we
can take square roots many times. Indeed, taking successive square roots of 21728

we determine that

1 ≡ 21728 ≡ 2864 ≡ 2432 ≡ 2216 (mod 1729), but then 2108 ≡ 1065 (mod 1729).

This proves that 1729 is composite, and even that

1729 = gcd(1064, 1729)× gcd(1066, 1729) = 133× 13.

This protocol of taking successive square roots can fail to identify that our
given pseudoprime is indeed composite; for example, we cannot use 103 to prove
that either 561 or 1729 is composite, since

10335 ≡ 1 (mod 561), and so 10370 ≡ · · · ≡ 103560 ≡ 1 (mod 561),

10327 ≡ −1 (mod 1729), and so 10354 ≡ · · · ≡ 1031728 ≡ 1 (mod 1729),

but such failures are rare (see exercise 10.8.7).

Suppose that n is a composite integer with n− 1 = 2km for some integer k ≥ 1
with m odd. We call n a base-a strong pseudoprime if the sequence of residues

(10.8.1) an−1 (mod n), a(n−1)/2 (mod n), . . . , a(n−1)/2k (mod n)

is equal to either
1, 1, . . . , 1 or 1, 1, . . . , 1,−1, ∗, . . . , ∗

where the ∗’s stand for any residue mod n. These are the only two possibilities if
n is prime, and so if the sequence of residues in (10.8.1) looks like one of these two
possibilities, then this information does not allow us to deduce that n is composite.

On the other hand, if n is a not a base-a strong pseudoprime, then we say that
a is a witness (to n being composite). To be more precise:

Definition. Suppose that n is a composite odd integer and n− 1 = 2km for some
integer k ≥ 1 withm odd. Assume that n is a base-a pseudoprime; that is, an−1 ≡ 1

(mod n). If am ≡ 1 (mod n) or am·2j ≡ −1 (mod n) for some integer j ≥ 0, then
n is a base-a strong pseudoprime. Otherwise a is a witness (to the compositeness

of n) and if � is the largest integer for which am·2� �≡ −1 or 1 (mod n), then

gcd(am·2� − 1, n) is a non-trivial factor of n.

13We have not factored 1105 into prime factors (since 65 factors further as 65 = 5×13), but rather
into two non-trivial factors.
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One can compute high powers modulo n very rapidly using “fast exponenti-
ation” (a technique we discussed in section 7.13 of appendix 7A), so this strong
pseudoprime test can be done quickly and easily.

In exercise 10.8.7 we will show that at least three-quarters of the integers a, 1 ≤
a ≤ n, with (a, n) = 1 are witnesses for n, for each odd composite n > 9. So can
we find a witness quickly if n is composite?

• The most obvious idea is to try a = 2, 3, 4, . . . consecutively until we find a
witness. It is believed that there is a witness ≤ 2(log n)2, but we cannot prove this
(though we can deduce this from a famous conjecture, the Generalized Riemann
Hypothesis14).

• Pick integers a1, a2, . . . , a�, . . . from {1, 2, 3, . . . , n − 1} at random until we
find a witness. By what we wrote above, if n is composite, then the probability that
none of a1, a2, . . . , a� are witnesses for n is ≤ 1/4�. Thus with a hundred or so such
tests we get a probability that is so small that it is inconceivable that it could occur
in practice; so we believe that any integer n for which none of a hundred randomly
chosen a’s is a witness is prime. We call such n “industrial strength primes” since
they have not been proven to be prime, but there is an enormous weight of evidence
that they are not composite.

This test is a random polynomial time test for compositeness (like our test for
finding a quadratic non-residue given at the end of appendix 8B). If n is composite,
then the randomized witness test is almost certain to provide a short proof of n’s
compositeness in 100 runs of the test. On the other hand, if 100 runs of the test
do not produce a witness, then we can be almost certain that n is prime, but we
cannot be absolutely certain since no proof is provided, and therefore we have an
industrial strength prime.

In practice the witness test accomplishes Gauss’s dream of quickly distinguish-
ing between primes and composites, for either we will quickly get a witness to n
being composite or, if not, we can be almost certain that our industrial strength
prime is indeed prime. Although this solves the problem in practice, we cannot
be absolutely certain that we have distinguished correctly when we claim that n is
prime since we have no proof, and mathematicians like proof. Indeed if you claim
that industrial strength primes are prime, without proof, then a cynic might not
believe that your randomly chosen a are so random or that you are unlucky or . . . .
No, what we need is a proof that a number is prime when we think that it is.

Exercise 10.8.1. Find all bases b for which 15 is a base-b Euler pseudoprime.

Exercise 10.8.2.† We wish to show that every odd composite n is not a base-b Euler pseudoprime
for some integer b, coprime to n. Suppose not, i.e., that n is a base-b Euler pseudoprime for every
integer b with (b, n) = 1.
(a) Show that n is a Carmichael number.

(b) Show that if prime p divides n, then p− 1 cannot divide n−1
2

.

(c) Deduce that (b/n) ≡ (b/p) (mod p) for each prime p dividing n.
(d) Explain why (c) cannot hold for every integer b coprime to n.

14We discussed the Riemann Hypothesis, and its generalizations, in sections 5.16 and 5.17 of ap-
pendix 5D. Suffice to say that this is one of the most famous and difficult open problems of mathematics,
so much so that the Clay Mathematics Institute has now offered one million dollars for its resolution
(see http://www.claymath.org/millennium-problems/).
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Exercise 10.8.3. Prove that Fn = 22
n
+ 1 is either a prime or a base-2 strong pseudoprime.

Exercise 10.8.4. Prove that if n is a base-2 pseudoprime, then 2n − 1 is a base-2 strong pseu-
doprime and a base-2 Euler pseudoprime. Deduce that there are infinitely many base-2 strong
pseudoprimes.

Exercise 10.8.5. Pépin showed that one can test Fermat numbers Fm for primality by using
just one strong pseudoprime test; i.e., Fm is prime if and only if 3(Fm−1)/2 ≡ −1 (mod Fm).

(a) Use exercise 8.5.4 to show if Fm is prime, then 3(Fm−1)/2 ≡ −1 (mod Fm).

(b) In the other direction show that if 3(Fm−1)/2 ≡ −1 (mod Fm), then ordp(3) = 22
m

when-
ever prime p|Fm.

(c) Deduce that Fm − 1 ≤ p− 1 in (b) and so Fm is prime.

Exercise 10.8.6.† (a) Prove that A := (4p + 1)/5 is composite for all primes p > 3.
(b) Deduce that A is a base-2 strong pseudoprime.

Exercise 10.8.7.‡ How many witnesses are there mod n? Suppose that n − 1 = 2km with m
odd and k ≥ 1, and that n has ω distinct prime factors. Let gp be the largest odd integer dividing

(p− 1, n− 1), and let 2R+1 be the largest power of 2 dividing gcd(p− 1 : p|n).
(a) Prove that R ≤ k − 1.
(b) Show that (10.8.1) is 1, 1, . . . , 1 if and only if agp ≡ 1 (mod pe) for every prime power pe‖n.
(c) Show that there are

∏
p|n gp such integers a (mod n).

(d) Show that if (10.8.1) is 1, 1, . . . , 1,−1, ∗, . . . , ∗, with r *’s at the end, then 0 ≤ r ≤ R, and

that this holds if and only if a2
rgp ≡ −1 (mod pe) for every prime power pe‖n.

(e) Show that there are ≤
∏

p|n 2rgp such integers a (mod n).

(f) Show the number of strong pseudoprimes mod n is∏
p|n

(2Rgp) ·
(
1 +

1

2ω
+

1

22ω
+ · · ·+ 1

2(R−1)ω
+

2

2Rω

)
.

(g) Prove that 2Rgp ≤ p−1
2

and so deduce that the quantity in (f) is ≤ φ(n)

2ω−1 , and so is < 1
4
φ(n)

if ω ≥ 3.
(h) Show that there are ≤ 1

4
φ(n) reduced residues mod n which are not witnesses, whenever

n ≥ 10 with equality holding if and only if either
• n = pq where p = 2m+ 1, q = 4m+ 1 are primes with m odd, or
• n = pqr is a Carmichael number with p, q, r primes each ≡ 3 (mod 4) (e.g., 7 ·19 ·67).

Appendices. The extended version of chapter 10 has the following additional
appendices:

Appendix 10B. Factoring with squares. We explain various factoring algorithms
such as random squares, the continued fraction method, and the quadratic sieve and
its variations, which all construct a multiple of n as the difference of two squares.

Appendix 10C. Identifying primes of a given size. We establish primality tests
that work when n − 1 or n + 1 is partially factored. This is useful in practice
for quickly finding large primes and was used in the recent proof of the ternary
Goldbach conjecture.

Appendix 10D. Carmichael numbers. We discuss a construction to find families
of Carmichael numbers with many prime factors.

Appendix 10E. Cryptosystems based on discrete logarithms. We describe how
the discrete log problem lies behind some strong cryptographic protocols, for ex-
ample the Diffie-Hellman key exchange and the El Gamal cryptosystem.

Appendix 10F. Running times of algorithms. No one knows whether there is a
truly safe cryptographic protocol. We prove here that if there is one (appropriately
defined), then the complexity class NP must be strictly larger than the complexity
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class P; that is, P�=NP, the most famous and tantalizing open question of theoretical
computer science. We also discuss how, although the overwhelming majority of
mathematical problems are not in P, we have yet to identfy one specific example
that is not in P.

Appendix 10G. The AKS test. We prove that the AKS test, as given in Theorem
10.1, is a valid primality test, though we do not establish its running time.

Appendix 10H. Factoring algorithms for polynomials play an important role in
number theory. Here we present the very useful Eisenstein irreducibility criterion
to test whether a given polynomial can be factored into smaller parts.



Chapter 11

Rational approximations
to real numbers

How well can we approximate a real number by rational numbers? Obviously we
can approximate π by 3, 3.1, 3.14, etc., but there are even better approximations
like 3, 22

7 , 333
106 ,

355
113 , . . . (see section 11.9 of appendix 11B for details). Are these the

“best” approximations? And how do we measure how good an approximation is?
We study these questions in detail in this chapter.

To start with we could ask how well we could approximate a rational number
α = p/q with (p, q) = 1 and q ≥ 1, by other, unequal, rational numbers. For any
rational m/n with n ≥ 1, which is �= p/q, the difference is

(11.0.1)

∣∣∣∣pq − m

n

∣∣∣∣ = |pn− qm|
qn

≥ 1

qn

since |pn − qm| is a non-negative integer that cannot be 0 as p/q �= m/n, and so
must be ≥ 1. We have therefore shown that the difference between rational α and
an approximation m/n is at least some constant (in this case 1/q) times 1/n. We
will see in the next section that one obtains much better approximations when α is
real and irrational.

11.1. The pigeonhole principle

If real irrational α is very close to m/n, then nα must be close to m, so we are
interested in how close the integer multiples of a given real number α can be to an
integer. Dirichlet noted that one can get a surprisingly good answer to this question
using the pigeonhole principle.

205
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Theorem 11.1 (Dirichlet’s Theorem). Suppose that α is a given real number.
For every integer N ≥ 1 there exists a positive integer n ≤ N such that

|nα−m| < 1

N
,

for some integer m. In other words,∣∣∣α− m

n

∣∣∣ <
1

nN
.

Proof. The N +1 numbers {0 ·α}, {1 ·α}, {2 ·α}, . . . , {N ·α} (where {t} denotes
the fractional part of t) all lie in the interval [0, 1). The intervals[

0,
1

N

)
,

[
1

N
,
2

N

)
, . . . ,

[
N − 1

N
, 1

)
partition [0, 1),1 and so each of our N + 1 numbers lies in exactly one of the N
intervals. Therefore some interval must contain at least two of our numbers by the
pigeonhole principle, say {iα} and {jα} with 0 ≤ i < j ≤ N , so that |{iα}−{jα}| <
1
N . Therefore, if n = j − i, then 1 ≤ n ≤ N , and if m := [jα]− [iα] ∈ Z, then

nα−m = (jα− iα)− ([jα]− [iα]) = {jα} − {iα},
and the first result follows by taking absolute values. The second result follows by
dividing through by n. �
Exercise 11.1.1. Prove that for any irrational real number α there are arbitrarily small real
numbers of the form a+ bα with a, b ∈ Z.

Corollary 11.1.1. If α is a real irrational number, then there are infinitely many
pairs m,n of coprime integers for which∣∣∣α− m

n

∣∣∣ <
1

n2
.

For large n this is a far better approximation of α than one can obtain for
rational numbers, as we saw in (11.0.1).

Proof. Suppose that we are given a finite list, (mj , nj), 1 ≤ j ≤ k, of solutions
to this inequality. Since this is a finite list there is some solution with |njα −mj |
minimal, and |njα − mj | must be > 0 as α is irrational. Therefore we can let N
be the smallest integer ≥ 1/min1≤j≤k{|njα−mj |}. By Dirichlet’s Theorem there
exists n ≤ N such that ∣∣∣α− m

n

∣∣∣ <
1

nN
≤ 1

n2
.

Now

|nα−m| < 1

N
≤ |njα−mj | for all j,

and so (n,m) is another solution to the inequality, not included in the list. This
implies that any finite list of solutions can be extended, and so there are infinitely
many solutions. �

1That is, each point of [0, 1) lies in exactly one of these intervals, and the union of these intervals
exactly equals [0, 1).
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Dirichlet’s Theorem is a very useful result as we will now exhibit by reproving
two big results from earlier in the book:

Another proof of Corollary 3.5.2. [If (a,m) = 1, then a has an inverse mod
m.] Take m ≥ 2. Let α = a

m and N = m− 1 in Dirichlet’s Theorem so that there
exist integers r and s with r ≤ m − 1 such that |ra/m − s| < 1/(m − 1); that is,
|ra − sm| < m/(m − 1) ≤ 2. Hence ra − sm = −1, 0, or 1. It cannot equal 0 or
else m|sm = ar and (m, a) = 1 so that m|r which is impossible as r < m. Hence
ra ≡ ±1 (mod m) and so ±r is the inverse of a (mod m). �

We saw an important use of the pigeonhole principle in number theory in the
proof of Theorem 9.1, and this idea was generalized significantly by Minkowski and
others. Now we reprove Theorem 9.1 using Dirichlet’s Theorem:

Another proof of Theorem 9.1. [If −1 is a square mod n, then n is the sum of
two squares.] Suppose that r2 ≡ −1 (mod n). By Dirichlet’s Theorem there exists
a positive integer b <

√
n such that |− r

n −
c
b | <

1
b
√
n
for some integer c. Multiplying

through by bn we deduce that |a| < √
n where a = rb + cn. Now a ≡ rb (mod n)

and so a2+ b2 ≡ r2b2+ b2 = (r2+1)b2 ≡ 0 (mod n), and 0 < a2+ b2 < n+n = 2n,
and so we must have a2 + b2 = n. �

For irrational α one might ask how the numbers {α}, {2α}, . . . , {Nα} are
distributed in [0, 1) as N → ∞, for α irrational. In section 11.7 of appendix 11A
we will show that the values are dense and even (roughly) equally distributed in
[0, 1). This ties in with the geometry of the torus and with exponential sum theory.

The next two exercises are multidimensional generalizations of Dirichlet’s The-
orem with not dissimilar proofs.

Exercise 11.1.2 (Simultaneous approximation). Suppose that α1, . . . , αk are given real numbers.
Prove that for any positive integer N there exists a positive integer n ≤ Nk such that, for each j
in the range 1 ≤ j ≤ k, there exists an integer mj for which

|nαj −mj | <
1

N
.

Deduce that given α1, . . . , αk ∈ R there exist integers q, 1 ≤ q ≤ Q, and p1, . . . , pk such that

∣∣∣∣α1 − p1

q

∣∣∣∣ ≤ 1

q1+1/k
,

∣∣∣∣α2 − p2

q

∣∣∣∣ ≤ 1

q1+1/k
, . . . ,

∣∣∣∣αk − pk

q

∣∣∣∣ ≤ 1

q1+1/k
.

Exercise 11.1.3. Suppose that α1, . . . , αk are given real numbers. Prove that for any positive

integer N there exist integers n1, n2, . . . , nk, not all zero, with each |nj | ≤ N , and an integer m
for which

|n1α1 + n2α2 + · · ·+ nkαk −m| <
1

Nk
.
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11.2. Pell’s equation

Perhaps the most researched equation in the early history of number theory is the
so-called Pell equation:2 Are there non-trivial integer solutions x, y to

x2 − dy2 = 1?

(The “trivial solutions” are x = ±1 and y = 0.) The best-known ancient example
comes from comparing the number of points in triangles of points, with the number
of points in squares of points:

• • • • •
• • • • • •

• • • • • • •
• • • • • • • •

This triangle has 1 + 2 + 3 + 4 = 10 points, whereas this square has 4× 4 = 16. In

general a triangle with m rows has m(m+1)
2 points, and a square with n rows has n2

points. The numbers appearing in these two lists are mostly different, but there are
exceptions, for example, 1, and then 36 = 8·9

2 = 62, and then 1225 = 49·50
2 = 352.

So are there arbitrarily many “triangular numbers” that are also squares? More
precisely, we are asking whether there are infinitely many pairs of integers m,n
such that

m(m+ 1)

2
= n2.

It makes sense to clear denominators and to “complete the square” on the left side.
Then we get

(2m+ 1)2 = 4m2 + 4m+ 1 = 8 · m(m+ 1)

2
+ 1 = 8n2 + 1.

Taking x = 2m+ 1 and y = 2n gives a solution to the Pell equation

x2 − 2y2 = 1.

On the other hand note that any solution to the Pell equation must have x odd, so
is of the form 2m+1, which implies that 2y2 = x2−1 ≡ 1−1 ≡ 0 (mod 8) and so y
is even and therefore must be of the form 2n. (Our examples of triangular numbers
above therefore correspond to the solutions 32 − 2 · 22 = 1, 172 − 2 · 122 = 1, and
992 − 2 · 702 = 1 to Pell’s equation.) So we have proved that the set of triangular
numbers that are also squares are in 1-to-1 correspondence with the positive integer
solutions to this Pell equation.

We will show in Theorem 11.2 that there is a non-trivial solution to Pell’s
equation x2 − dy2 = 1 for every non-square integer d > 1. This was evidently
known to Brahmagupta in India in 628 A.D., and one can guess that it was well

2In 1657 Fermat challenged Frénicle, Brouncker, Wallis, and “all mathematicians” to create a
method for finding solutions to Pell’s equation. Brouncker showed that he had done so by determining
the smallest solution for d = 313, namely x = 32188120829134849, y = 1819380158564160. It seems
that Euler attributed the equation to Pell because Rahn published an algebra book with Pell’s help in
1658, which contained an example of this type of equation. The name stuck.
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understood by Archimedes far earlier, judging by his “Cattle Problem”:

The Sun god’s cattle, friend, apply thy care
to count their number, hast thou wisdom’s share.
They grazed of old on the Thrinacian floor
of Sic’ly’s island, herded into four,
colour by colour: one herd white as cream,
the next in coats glowing with ebon gleam,
brown-skinned the third, and stained with spots the
last.
Each herd saw bulls in power unsurpassed,
in ratios these: count half the ebon-hued,
add one third more, then all the brown include;
thus, friend, canst thou the white bulls’ number tell.
The ebon did the brown exceed as well,
now by a fourth and fifth part of the stained.
To know the spotted — all bulls that remained —
reckon again the brown bulls, and unite
these with a sixth and seventh of the white.
Among the cows, the tale of silver-haired
was, when with bulls and cows of black compared,
exactly one in three plus one in four.
The black cows counted one in four once more,
plus now a fifth, of the bespeckled breed
when, bulls withal, they wandered out to feed.
The speckled cows tallied a fifth and sixth

of all the brown-haired, males and females mixed.
Lastly, the brown cows numbered half a third
and one in seven of the silver herd.
Tell’st thou unfailingly how many head
the Sun possessed, o friend, both bulls well-fed
and cows of ev’ry colour – no-one will
deny that thou hast numbers’ art and skill,
though not yet dost thou rank among the wise.
But come! also the foll’wing recognise.

Whene’er the Sun god’s white bulls joined the
black,
their multitude would gather in a pack
of equal length and breadth, and squarely throng
Thrinacia’s territory broad and long.
But when the brown bulls mingled with the flecked,
in rows growing from one would they collect,
forming a perfect triangle, with ne’er
a diff’rent-coloured bull, and none to spare.
Friend, canst thou analyse this in thy mind,
and of these masses all the measures find,
go forth in glory! be assured all deem
thy wisdom in this discipline supreme!

— from an epigram written to Eratosthenes of Cyrene
by Archimedes (of Alexandria), 250 B.C.3

The first paragraph involves only linear equations. To resolve the second, one needs
to find a non-trivial solution in integers u, v to

u2 − 609 · 7766v2 = 1.

The smallest solution is enormous, the smallest herd having about 7.76× 10206544

cattle: It wasn’t until 1965 that anyone was able to write down all 206545 decimal
digits! How did Archimedes know that the solution would be ridiculously large?
We don’t know, though presumably he did not ask this question by chance.

The next result, the main result of this section, presumably known to many
ancient mathematicians, is that there is always a solution to Pell’s equation.

Theorem 11.2. Let d ≥ 2 be a given non-square integer. There exist integers x, y
for which

x2 − dy2 = 1,

with y �= 0. If x1, y1 yields the smallest solution in positive integers,4 then all other
solutions are given by the recursion

xn+1 = x1xn + dy1yn and yn+1 = x1yn + y1xn for n ≥ 1.

We call the pair (x1, y1) the fundamental solution to Pell’s equation. Another way

3Archimedes, The Cattle Problem, in English verse by S. J. P. Hillion & H. W. Lenstra Jr.,
Mercator, Santpoort, 1999.

4We measure the size of the solutions in positive integers x, y by the number x +
√
dy, though we

would have the same ordering if we used either x or y.
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to write the recursion is that

xn +
√
dyn = (x1 +

√
dy1)

n for every integer n ≥ 1,

where we match the coefficients of
√
d on each side to determine yn, and what

remains, the coefficients of 1 on each side, to determine xn.

Proof. We begin by showing that there always exists a solution to x2 − dy2 = 1
in integers with y �= 0. By Corollary 11.1.1, there exist infinitely many pairs of
integers (m,n) such that |

√
d− m

n | < 1
n2 . For these pairs (m,n) we have

|m2 − dn2| = n2
∣∣∣√d− m

n

∣∣∣ · ∣∣∣√d+
m

n

∣∣∣ < ∣∣∣√d+
m

n

∣∣∣ ≤ 2
√
d+
∣∣∣√d− m

n

∣∣∣ < 2
√
d+1.

This implies that |m2 − dn2| must be an integer < 2
√
d + 1, so there must be

some non-zero integer r, with |r| < 2
√
d + 1, for which there are infinitely many

pairs of positive integers m,n such that m2 − dn2 = r. Pick the smallest such r.
We can assume that each (m,n) = 1 or else if (m,n) = g occurs infinitely often,
then we have infinitely many solutions (m/g)2 − d(n/g)2 = r/g2, contradicting the
minimality of r.

Since there are only r2 pairs of residue classes (m mod r, n mod r) there
must be some pair of residue classes a, b such that there are infinitely many pairs of
integers m,n for which m2 − dn2 = r with m ≡ a (mod r) and n ≡ b (mod r). Let
m1, n1 be the smallest such pair, and m,n any other such pair, so that m2

1− dn2
1 =

m2 − dn2 = r with m1 ≡ m (mod r) and n1 ≡ n (mod r). This implies that
r|(m1n− n1m) and

(m1m− dn1n)
2 − d(m1n− n1m)2 = (m2

1 − dn2
1)(m

2 − dn2) = r2,

so that r2 divides r2+d(m1n−n1m)2 = (m1m−dn1n)
2, and thus r|(m1m−dn1n).

Therefore x = |m1m − dn1n|/r and y = |m1n − n1m|/r are integers for which
x2 − dy2 = 1.

Exercise 11.2.1. Show that y �= 0 using the fact that (m,n) = 1 for each such pair m,n.

We measure the size of solutions to Pell’s equation, using the number x+
√
dy.

If x, y > 0, then this is > 1. There are four solutions associated with each solution
in positive integers u, v, and for these we have

u+
√
dv > 1 > u−

√
dv > 0 > −u+

√
dv > −1 > −u−

√
dv.

Therefore x, y > 0 if and only if x+
√
dy > 1.

Let x1, y1 be the solution to x2 − dy2 = 1 in positive integers with x1 +
√
dy1

minimal. We claim that all other solutions with x, y > 0 take the form x+
√
dy =

(x1+
√
dy1)

n. If not, let x, y be the counterexample with x, y > 0 for which x+
√
dy

is smallest. Now x+
√
dy > x1 +

√
dy1 since x1 +

√
dy1 is minimal.

IfX = x1x−dy1y and Y = x1y−y1x, thenX2−dY 2 = (x2
1−dy21)(x

2−dy2) = 1,
and

X +
√
dY = (x1 −

√
dy1)(x+

√
dy) =

x+
√
dy

x1 +
√
dy1

,

which implies that

1 < X +
√
dY < x+

√
dy.
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Hence X,Y > 0, and since x, y was the smallest counterexample, we deduce that

X +
√
dY = (x1 +

√
dy1)

m for some integer m ≥ 1,

and therefore x+
√
dy = (x1+

√
dy1)(X+

√
dY ) = (x1+

√
dy1)

m+1, a contradiction.

If we define xn +
√
dyn = (x1 +

√
dy1)

n, then we obtain the recursion given in
the theorem by an easy induction argument. We also deduce that the xn, yn > 0
and so x1 < x2 < · · · and y1 < y2 < · · · from the recursion formulas. �
Exercise 11.2.2. Prove that if a+

√
db = x+

√
dy where a, b, x, y, d are integers and d is not a

square, then a = x and b = y.

Exercise 11.2.3. Prove, by induction, that xn+2 = 2x1xn+1 −xn and yn+2 = 2x1yn+1 − yn for
all n ≥ 0.

Exercise 11.2.4. Show that all solutions to Pell’s equation (not just the positive integer solutions)

are given by the values ±(x1 +
√
dy1)n (not just “+”), with n ∈ Z (not just n ∈ N).

For technical reasons it is actually best to develop the analogous theory for the
solutions to x2 − dy2 = ±4, as in appendix 11B, when we revisit Pell equations.

In the second half of the proof we saw how all of the solutions in positive
integers can be generated from a fundamental solution. The proof is interesting
in that it works by “descent”: Given a solution we find a smaller one. This is a
technique that we saw several times in chapter 6. We will see it play a central role
in section 11.3, and later when we study elliptic curves in chapter 17.

The proof of Theorem 11.2 is not constructive, in that the proof does not
indicate how to find a solution. In Lemma 11.11.2 of appendix 11B we will show
how to find solutions using the continued fraction for

√
d (as was known to all

of the ancient mathematicians discussed here). How large is the smallest solution
to Pell’s equation? We saw that it can be surprisingly large, as in Archimedes’s

cattle problem. One can prove that the smallest solution is ≤ (8d)
√
d (see section

13.7 of appendix 13B). However what is surprising is that the smallest solution
seems to usually be this large. This is not something that has been proved; indeed
understanding the distribution of sizes of the smallest solutions to Pell’s equation
is an outstanding open question in number theory.

In Theorem 11.2 we saw that if d > 1 is a non-square integer, then there are
always solutions in integers x, y > 0 to Pell’s equation x2 − dy2 = 1. This implies
that √

dy(x−
√
dy) < (x+

√
dy)(x−

√
dy) = 1,

and so, dividing through by
√
dy2, we exhibit rational approximations x/y to

√
d

that satisfy ∣∣∣∣√d− x

y

∣∣∣∣ < 1√
dy2

,

which are better approximations than those that are given by Corollary 11.1.1.

Another issue is whether there is a solution to u2 − dv2 = −1, the negative
Pell equation. Notice, for example, that 22 − 5 · 12 = −1. Evidently if there is a
solution, then −1 is a square mod d, so that d has no prime factors ≡ −1 (mod 4).
Moreover d cannot be divisible by 4 or else u2 ≡ −1 (mod 4) which is impossible.
We saw that x2 − dy2 = 1 has solutions for every non-square d > 1, and one might
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have guessed that there would be some simple criterion to decide whether there are
solutions to u2−dv2 = −1, but there does not appear to be. For example there are
no solutions for d = 34, 205, or 221, yet in each case there is no congruence that
easily explains why not. This is a subject of ongoing research. We will discuss the
negative Pell equation in the next paragraph as well as in section 11.13 of appendix
11B .

The case d = 5 has many fascinating properties. For example

12 − 5 · 12 = −4, 32 − 5 · 12 = 4, 42 − 5 · 22 = −4, 72 − 5 · 32 = 4, . . . .

All these solutions to x2 − 5y2 = −4 or 4 are given by x+
√
5y

2 = ( 1+
√
5

2 )n. If

there are solutions to x2 − dy2 = ±4 with x, y both odd (as in this example), then
1− d ≡ x2 − dy2 ≡ 0 (mod 4); that is, d ≡ 1 (mod 4). If d ≡ 1 (mod 4), then the
proof of Theorem 11.2 can be used to prove there exist integers u, v > 0 such that:

All solutions to x2 − dy2 = ±4 with x, y > 0 are given by

x+
√
dy

2
=

(
u+

√
dv

2

)n

for some integer n ≥ 1.

To establish that there is at least one solution take x = 2r, y = 2s from a solution
to r2 − ds2 = 1 given by Theorem 11.2. Now select the solution to our equation

with u+
√
dv

2 > 1 but minimal. The proof of Theorem 11.2, suitably modified, then
gives that all other solutions are given by a power of this first one.

We call u+
√
dv

2 the fundamental solution to Pell’s equation and denote it by εd.

Exercise 11.2.5. The smallest solution to x2 − 2y2 = 1 is given by (x, y) = (3, 2), which implies
that 23 and 32 are consecutive powerful numbers (integer n is powerful if p2 divides n whenever
a prime p divides n). Use the theory of the solutions to x2 − 2y2 = 1 to prove that there are
infinitely many pairs of consecutive powerful numbers.

11.3. Descent on solutions of x2 − dy2 = n, d > 0

Let x1, y1 be the fundamental solution to Pell’s equation, and let εd = x1 + y1
√
d

as in Theorem 11.2, so that εd > 1.

Proposition 11.3.1. Given integers d, n > 0, the integer solutions x, y to x2 −
dy2 = n are all given by ±εkdβ for some integer k, where

β ∈ B := {u+
√
dv ∈ [

√
n,

√
nεd) : u, v ≥ 1 and u2 − dv2 = n}.

Proof. Given a solution to x2 − dy2 = n, let α = |x + y
√
d|. As εd > 1 the

sequence of numbers 1, εd, ε
2
d, . . . increases to infinity, and the sequence of numbers

1, ε−1
d , ε−2

d , . . . decreases to 0. Therefore there exists a unique integer k such that

εkd ≤ |α|/
√
n < εk+1

d .

Let β := |α|ε−k
d , so that

√
n ≤ β <

√
nεd. Therefore α is of the form ±βεkd, where

β ∈ [
√
n,

√
nεd). Writing β = u+

√
dv we obtain

u2 − dv2 = |(x+ y
√
d)(x− y

√
d)| · ((x1 + y1

√
d)(x1 − y1

√
d))−k

= (x2 − dy2)(x2
1 − dy21)

−k = n · 1−k = n.
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Moreover for a solution of r2 − ds2 = n where n > 0, with r, s ≥ 0, we have

γ := r + s
√
d >

√
n > n/γ = r − s

√
d > 0 > −r + s

√
d > −r − s

√
d,

so of these four closely related solutions the unique one >
√
n has both coordinates

positive. In particular this implies that u, v > 0, so that β ∈ B. �

For n = 1 we have B = {1}. In some questions B can be empty; in others it
can be large. For example, there are no solutions to x2 − dy2 = n in integers if n
is not a square mod d.

In the example x2 − 5y2 = 209, we have ε5 =
(

1+
√
5

2

)6
= 9+ 4

√
5 and, after a

brief search we discover that B = {17 + 4
√
5, 47 + 20

√
5}.

Exercise 11.3.1. Find all integer solutions x, y to (a) x2 − 5y2 = −4; (b) x2 − 5y2 = 4;
(c) x2 − 5y2 = −1; (d) x2 − 5y2 = 1; (e) x2 − 5y2 = −20; (f) x2 − 5y2 = −11.

Exercise 11.3.2. Prove that for any non-square positive integer d and integer n there is either
no solution or infinitely many solutions to x2 − dy2 = n.

11.4. Transcendental numbers

In section 3.4 we proved that
√
d is irrational if d is an integer that is not the

square of an integer. We can also prove that certain numbers are irrational simply
by establishing how well they can be approximated by rationals:

Proposition 11.4.1. Suppose that α is a given real number. Then α is irrational
if and only if for every integer q ≥ 1 there exist integers m,n such that

0 < |nα−m| < 1

q
.

Proof. If α is rational, then α = p/q for some coprime integers p, q with q ≥ 1.
For any integers m,n we then have nα − m = (np − mq)/q. Now, the value of
np−mq is an integer ≡ np (mod q). Hence |np−mq| = 0 or is an integer ≥ 1, and
therefore |nα−m| = 0 or is ≥ 1/q.

If α is irrational, then Corollary 11.1.1 tells us that there are arbitrarily large
coprime integers m,n for which 0 < |nα −m| < 1

n . We select n > q to prove the
result claimed here. �

There are several other methods to prove that numbers are irrational, but it
is more challenging to prove that a number is transcendental, that is, that the
number is not the root of a polynomial with integer coefficients.5 Next we show
that algebraic numbers cannot be too well approximated by rationals. This suggests
a method to identify a number as transcendental, generalizing how we identified
irrationality in Proposition 11.4.1.

Theorem 11.3 (Liouville’s Theorem). Suppose that α is a root of an irreducible
polynomial f(x) ∈ Z[x] of degree d ≥ 2. There exists a constant cα > 0 (which

5The root of a polynomial with integer coefficients is called an algebraic number.
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depends only on α)6 such that for any rational p/q with (p, q) = 1 and q ≥ 1 we
have ∣∣∣∣α− p

q

∣∣∣∣ ≥ cα
qd

.

Proof. Since I := [α − 1, α + 1] is a closed interval, there exists a bound B ≥ 1
for which |f ′(t)| ≤ B for all t ∈ I. We will prove the result with cα = 1/B. If
p/q �∈ I, then |α − p/q| ≥ 1 ≥ cα ≥ cα/q

d as desired. Henceforth we may assume
that p/q ∈ I.

If f(x) =
∑d

i=0 fix
i with each fi ∈ Z, then qdf(p/q) =

∑d
i=0 fip

iqd−i ∈ Z.
Now f(p/q) �= 0 since f is irreducible of degree ≥ 2 and so |qdf(p/q)| ≥ 1.

The mean value theorem tells us that there exists t lying between α and p/q,
and hence in I, such that

f ′(t) =
f(α)− f(p/q)

α− p/q
.

Therefore, as f(α) = 0,∣∣∣∣α− p

q

∣∣∣∣ =
|qdf(p/q)|
qd|f ′(t)| ≥ 1

Bqd
=

cα
qd

. �

Often students first learn to prove that there are transcendental numbers by
showing that the set of real numbers is uncountable; in contrast, the set of algebraic
numbers is countable, so the vast majority of real numbers are transcendental.
This argument yields that most real numbers are transcendental, without actually
constructing any! (See section 11.16 in appendix 11D.) The great advantage of
Liouville’s Theorem is that it can be used to actually construct transcendental
numbers.

Corollary 11.4.1. A Liouville number is an irrational real number α such that
for every integer n ≥ 1 there is a rational number p/q with (p, q) = 1 and q > 1 for
which ∣∣∣∣α− p

q

∣∣∣∣ <
1

qn
.

Every Liouville number is transcendental.

Proof. Let α be a Liouville number. Suppose that α is algebraic so that there
exist d and cα as in Liouville’s Theorem. Select n > d sufficiently large so that
2n−d > 1/cα. Then, selecting the approximation p/q with q > 1 as in the hypothesis
we have

1

qn
>

∣∣∣∣α− p

q

∣∣∣∣ ≥ cα
qd

,

by Liouville’s Theorem. Therefore 2n−d > 1/cα > qn−d, contradicting that q ≥ 2.
Therefore α is not algebraic and so must be transcendental. �

6In this chapter there are several constants like cα which depend only on the variable given in the
subscript. We do not attempt to be more precise about the constant because calculating a value for
the constant will make things much more complicated, yet one will gain little from knowing its precise
value.
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For example

α =
1

10
+

1

102!
+

1

103!
+ · · ·

is a Liouville number, since if p/q with q = 10n! is the sum of the first n terms,
then 0 < α− p/q < 2/qn+1 < 1/qn.

Liouville numbers are easily identifiable transcendental numbers, but there are
many transcendental numbers which are not Liouville numbers, like π and e.

Liouville’s Theorem has been improved to its, more or less, final form by Roth.
To explain his result we have to introduce an ε and that sort of thing: For any
fixed ε > 0 (which should be thought of as being small), there exists a constant
κε > 0, which depends on ε, and is chosen so it works in the proof.7 In the notation
in Roth’s Theorem we have to go a little further than this since the constant also
depends on the value of α we need to approximate, so our constant is cα,ε, which
depends on both α and ε, but nothing else. These dependencies do restrict our use
of the inexplicit constants cα,ε; for example, one cannot compare the constants that
arise from different values of α.

Theorem 11.4 (Roth’s Theorem, 1955). Suppose that α is an irrational real
algebraic number. For any fixed ε > 0 there exists a constant cα,ε > 0 such that
for any rational p/q with (p, q) = 1 and q ≥ 1 we have∣∣∣∣α− p

q

∣∣∣∣ ≥ cα,ε
q2+ε

.

The exponent “2 + ε” in Roth’s Theorem cannot be improved much since if α

is irrational, then there are infinitely many p/q with
∣∣∣α− p

q

∣∣∣ ≤ 1
q2 , by Corollary

11.1.1. We will prove that approximations which are a little better than this must be
convergents of the continued fraction of α (see Corollary 11.10.1 in section 11.10 of

appendix 11B). The “worst approximable” irrational number is therefore 1+
√
5

2 , for
which the best approximations are given by Fn+1/Fn where Fn is the nth Fibonacci

number. One can show that the difference, | 1+
√
5

2 − Fn+1

Fn
|, is roughly 1/(

√
5F 2

n)

with an error < 1/F 4
n .

Exercise 11.4.1. Prove that if α ∈ C\R, then there exists a constant βα > 0 such that |α−p/q| ≥
βα for all rational approximations p/q.

Exercise 11.4.2. Prove that if f(t) = ad
∏d

i=1(t− αi), then f ′(αi) = ad
∏d

j=1, j 
=i(αi − αj).

There are many beautiful applications of Roth’s Theorem to Diophantine equa-
tions. We highlight one:

Corollary 11.4.2 (Thue-Siegel Theorem). Suppose that f(t) = a0 + a1t + · · ·+
adt

d ∈ Z[t] is an irreducible polynomial of degree d ≥ 3. Then for any integer A
there are only finitely many pairs of integers m,n for which

ndf(m/n) = a0n
d + a1n

d−1m+ · · ·+ adm
d = A.

7A proof that is far too involved for inclusion in this book.
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Proof. If A = 0, the only solution is m = n = 0, as f is irreducible. So we

may assume that |A| ≥ 1 and write f(t) = ad
∏d

i=1(t − αi); the αi are distinct as
f(t) is irreducible. For any given pair of integers m,n select j so that |αj − m

n | is
minimized. If i �= j, then

2
∣∣∣αi −

m

n

∣∣∣ ≥ ∣∣∣αi −
m

n

∣∣∣+ ∣∣∣αj −
m

n

∣∣∣ ≥ |αi − αj |,

so that, since f ′(αj) = ad
∏

1≤i≤d, i 	=j(αj − αi) (as in exercise 11.4.2),∣∣∣αj −
m

n

∣∣∣ |f ′(αj)|
2d−1

=
∣∣∣αj −

m

n

∣∣∣ ad ∏
1≤i≤d
i 	=j

|αi − αj |
2

≤ ad
∏

1≤i≤d

∣∣∣αi −
m

n

∣∣∣
= |f(m/n)| =

|a0nd + a1n
d−1m+ · · ·+ adm

d|
|n|d =

|A|
|n|d .

We now apply Roth’s Theorem with α = αj and ε = 1
2 , so that∣∣∣αj −

m

n

∣∣∣ ≥
cαj ,1/2

|n|5/2 .

Substituting this into the previous equation, then squaring both sides and multi-
plying through by denominators, we obtain either |n| ≤ 1 or

|n|/2 ≤ (|n|/2)2d−5 ≤ B

where B = 8maxj(A/cαj ,1/2|f ′(αj)|)2. Either way there are only finitely many
possibilities for integer n, and for each such n there are at most d integers m which
can be roots of the polynomial

adx
d + · · ·+ a1n

d−1x+ (a0n
d −A) = 0.

This proves the claimed result. �

11.5. The abc-conjecture

In chapter 6 we discussed various Diophantine equations with three monomials like
x2 + y2 = z2, even xn + yn = zn for any integer n ≥ 2, and there are others of
interest like xp − yq = 1. So how do we determine which of these have infinitely
many solutions in integers? This is not an easy question, and indeed the focus of
a lot of research. One modern approach (motivated by deep considerations) is to
study the prime powers dividing each term.

We begin by proving the following consequence of Roth’s Theorem:

Corollary 11.5.1. Let F (x, y) ∈ Z[x, y] be a homogenous polynomial of degree d,
with no repeated linear factors. For each ε > 0 there exists a constant κF,ε > 0 such
that for any coprime positive integers m,n:

Either F (m,n) = 0 or |F (m,n)| ≥ κF,ε|n|d−2−ε.

In other words, either F (m,n) = 0 or |F (m,n)| is large.

Proof. A homogenous polynomial in two variables takes the form

F (x, y) =

d∑
j=0

ajx
jyd−j .
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As there are no repeated factors, F (x, y) can be divisible by y but not y2. Then
f(t) = F (t, 1) as a polynomial of degree d− 1 or d (depending on whether F (x, y)
is divisible by y or not) and has no repeated roots (as F has no repeated linear
factors).

Now if m and n are coprime integers, then either F (m,n) = 0 or, from the
inequality in the proof of the Thue-Siegel Theorem,

|F (m,n)|
|n|d = |F (m/n, 1)| = |f(m/n)| ≥ |f ′(αj)|

2d−1
·
∣∣∣αj −

m

n

∣∣∣ ≥ κF,ε

|n|2+ε
,

with κF,ε := minj cαj ,ε|f ′(αj)|/2d−1, where the last inequality follows from Roth’s

Theorem.8 The result follows by multiplying each side through by |n|d. �
Exercise 11.5.1. Let α be an algebraic number which is a root of f(t) ∈ Z[t], a polynomial of
degree d. Let F (x, y) = ydf(x/y), and suppose that there exists a constant κ > 0 such that
|F (m,n)| ≥ κ|n|d−2−ε for all integers m,n. Deduce that there exists a constant c > 0 such that
|α − m/n| > c/n2+ε for all integers m,n �= 0. (Thus Corollary 11.5.1 is “equivalent” to Roth’s
Theorem.)

We are going to move to what seems to be a rather different question but will
eventually tie in closely with Corollary 11.5.1. We study pairwise coprime, positive
integer solutions to the equation

a+ b = c,

bounding the size of a, b, and c in terms of the product of the distinct primes that
divide a, b, and c:

Conjecture 11.1 (The abc-conjecture). Fix ε > 0. There exists a constant κε > 0
such that if a and b are coprime positive integers with c = a+ b, then∏

p prime
p divides abc

p ≥ κεc
1−ε.

This is the abc-conjecture, one of the great open questions of modern mathe-
matics.

For example, if we have a putative solution to Fermat’s Last Theorem, like
xn + yn = zn with x, y, z > 0, then we take a = xn, b = yn, and c = zn. Now
the product of the primes dividing abc = (xyz)n is the same as the product of the
primes dividing xyz. Therefore the abc-conjecture with ε = 1/5 implies for n ≥ 5
that

κ(zn)4/5 ≤
∏

p prime
p divides xnynzn

p =
∏

p prime
p divides xyz

p ≤ xyz ≤ z3 ≤ z3n/5,

where κ = κ1/5, from which we deduce zn ≤ 1/κ5. Since xn, yn < zn we deduce,
from the abc-conjecture, that in every solution to xn + yn = zn with n ≥ 5, the
numbers xn, yn, and zn are all bounded by some absolute constant, and therefore

8Yet again this seems like a lot of notation for a constant, especially an inexplicit constant, but the
notation reflects what the constant depends on, and given the complicated derivation of this constant,
it is certainly simpler not to try to be explicit about it.
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there are only finitely many solutions. Therefore we have proved that the abc-
conjecture implies that there are only finitely many solutions to xn + yn = zn with
(x, y) = 1 and n > 4.

One can compare the abc-conjecture with the abc-theorem for polynomials (as
in section 6.7 of appendix 6A). The size of the integers replaces the degrees of the
polynomials; the prime divisors replace the irreducible polynomial factors. One
cannot prove the abc-conjecture in the same way, since we relied heavily in our
proof of the abc-theorem for polynomials on calculus, for which there is no analogy
for numbers.

We now state a conjecture which implies both the abc-conjecture and Corollary
11.5.1 of Roth’s Theorem:

Conjecture 11.2 (The abc-Roth conjecture). Let F (x, y) ∈ Z[x, y] be a homoge-
nous polynomial of degree d, with no repeated linear factors. For each ε > 0 there
exists a constant κF,ε > 0 such that for any coprime positive integers m,n, either
F (m,n) = 0 or ∏

p prime
p divides F (m,n)

p ≥ κF,ε|n|d−2−ε.

The abc-Roth conjecture implies both Corollary 11.5.1, since the product of
the primes dividing non-zero F (m,n) is ≤ |F (m,n)|, and the abc-conjecture, tak-
ing F (x, y) = xy(x+y) (since then F (a, b) = abc when a+b = c). Quite remarkably
Conjecture 11.2 follows from the abc-conjecture using some clever algebraic geom-
etry. (See [2].)
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Additional exercises

Exercise 11.6.1. Suppose (p, q) = 1 and q ≥ 1. Determine all rationalsm/n for which
∣∣∣ pq − m

n

∣∣∣ =
1
qn

.

Exercise 11.6.2. Reprove exercise 7.10.21(a) using (11.0.1).

Exercise 11.6.3.† Prove that there are infinitely many solutions to the Pell equation u2−dv2 = 1
with u ≡ 1 (mod d).

Exercise 11.6.4. Prove that if α is transcendental, then so is αk for every non-zero integer k.
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Exercise 11.6.5 (The “three gaps” theorem).‡ Given α ∈ R \ Q, we put the fractional parts
{α}, {2α}, . . . , {Nα} ∈ [0, 1) in ascending order as 0 < {a1α} < {a2α} < · · · < {aNα} < 1
(so that {a1, . . . , aN} is a reordering of {1, . . . , N}). We will prove that there are at most three
distinct values in the set of consecutive differences, D(A) := {{aj+1α}−{ajα} : j = 1, . . . , N−1}.
(a) Show that if {(aj+1 − 1)α}− {(aj − 1)α} �∈ D(A), then either aj = 1 or aj+1 = 1, or there

exists k such that {(aj − 1)α} < {akα} < {(aj+1 − 1)α}.
(b) Show that if {(aj − 1)α} < {akα} < {(aj+1 − 1)α}, then ak = N .
(c) Deduce from (a) and (b) that every element of D(A) equals one of {a1α}, 1 − {aNα}, or

{a1α}+ 1− {aNα}.

Exercise 11.6.6. Suppose that a and b are given integers, with 3 � a.
(a) Show that we can select a congruence class r (mod 3) such that if integer m ≡ r (mod 3),

then x+ y
√
3 = (2 +

√
3)m(a+ b

√
3), then 3 divides y.

(b) Deduce that if integer N can be written in the form a2 − 3b2 where 3 � N , then there are
infinitely many pairs of powerful numbers that differ by exactly N .

Exercise 11.6.7. Find an explicit value that can be used for cα in Liouville’s Theorem when

α =
√
D where D > 1 is a squarefree positive integer.

Exercise 11.6.8. Fix ε > 0, and integers a0, . . . , ad. Deduce from Roth’s Theorem that there
are only finitely many pairs of coprime integers m,n for which |a0nd + a1nd−1m+ · · ·+ adm

d| ≤
max{|m|, |n|}d−2−ε.

Exercise 11.6.9. Assume the abc-conjecture to show that there are only finitely many sets of
integers x, y > 0 and p, q > 1 for which xp − yq = 1.

Exercise 11.6.10. Suppose that xp + yq = zr with x, y, z pairwise coprime and 1
p
+ 1

q
+ 1

r
< 1.

(a) Prove that 1
p
+ 1

q
+ 1

r
≤ 41

42
.

(b) Assume the abc-conjecture. Prove that there exists a constant B for which |xp|, |yq|, |zr| <
B.

Exercise 11.6.11. The abc-conjecture is “best possible” in that one cannot take ε = 0. To
establish this, we need to find examples of solutions to a + b = c in which (1/c)

∏
p|abc p gets

arbitrarily small.
(a) Prove that if m2|b, then

∏
p|b p ≤ b/m.

(b) Prove that for any odd integer m there exists an integer n for which 2n ≡ 1 (mod m2).
(c)† Combine these two observations to show that for any ε > 0 there exist coprime integers

a+ b = c for which
∏

p|abc p < εc.



Appendix 11A. Uniform
distribution

11.7. nα mod 1

Dirichlet’s Theorem, in section 11.1, implies that nα mod 1 gets arbitrarily close
to 0 as n runs through a sequence of integers n. One might also ask whether nα
mod 1 gets arbitrarily close to any given θ ∈ (0, 1).

Theorem 11.5 (Kronecker’s Theorem). If α is a real irrational number, then the
numbers {nα} are dense on [0, 1).

Proof. Fix ε > 0. By Dirichlet’s Theorem there exists an integer n with ‖nα‖ < ε,
where ‖t‖ is the distance from t to the nearest integer. As α is irrational we also
have that ‖nα‖ �= 0, and so {nα} ∈ (0, ε) or {nα} ∈ (1− ε, 1). We will assume that
{nα} ∈ (0, ε) (the case with {nα} ∈ (1− ε, 1) being proved analogously).

Let δ = {nα} ∈ (0, ε). Select D to be the largest integer < 1/δ and so

{nα}, {2nα}, . . . , {Dnα} = δ, 2δ, . . . , Dδ

is a set of points in [0, 1), consecutive points being spaced δ < ε apart. Therefore
if θ ∈ [0, 1), then we let k = [θ/δ] and so θ − kδ ∈ [0, δ), which implies that

θ − {knα} = θ − k{nα} = θ − kδ ∈ [0, δ) ⊂ [0, ε).

That is, there are integer multiples of α in R/Z that are arbitrarily close to θ. �

Exercise 11.7.1. Show that the conclusion of the theorem is not true if α is rational.

Exercise 11.7.2. Prove Kronecker’s Theorem when nα (mod 1) ∈ (1− ε, 1).

Now we know that if α is irrational, then nα mod 1 gets arbitrarily close to any
given θ ∈ [0, 1), we might ask how often nα mod 1 gets close to each θ ∈ [0, 1). Are
the values of nα mod 1 roughly equidistributed? To answer this question we must
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determine how often {nα} ∈ [θ− ε, θ+ ε] for θ ∈ (0, 1) and sufficiently small ε > 0.
If the numbers {nα} are equidistributed, then we might expect the frequency to
be roughly proportional to the length of the interval. The analogous question can
be asked for any sequence of numbers x1, x2, . . . ∈ [0, 1). We say that {xn}n≥1 is
uniformly distributed mod 1 (or equidistributed mod 1) if for any a < b ∈ [0, 1),

lim
N→∞

1

N
#{n ≤ N : a ≤ xn ≤ b} exists and equals b− a.

The values of x (mod 1) are in 1-to-1 correspondence with the values of e(x)
(where e(t) := e2iπt) as its value depends on x (mod 1) and not on x. Moreover
the values e(kx) for any given integer k �= 0 remain consistent for x with any given
value mod 1. That is, if x = m + δ with 0 ≤ δ < 1, then kx = km + kδ so that
{kx} = {kδ}. This suggests that to study a sequence of values xn mod 1, we might
use Fourier analysis. This thinking leads to the famous theorem of Hermann Weyl
(for more on this, including the proof, see [GG]):

Theorem 11.6 (Weyl’s uniform distribution theorem). The sequence {xn}n≥1 is
uniformly distributed mod 1 if and only if for all non-zero integers k we have

lim
N→∞

1

N

N∑
n=1

e(kxn) exists and equals 0.

Exercise 11.7.3. (a) Show that
∑N

n=1 e({nα}) =
e(Nα)−1
1−e(−α)

if α �∈ Z, and then deduce that

|
∑N

n=1 e({nα})| ≤
1

| sinπα| .

(b) Use Weyl’s uniform distribution theorem to deduce that if α is a real, irrational number,
then {nα}n≥1 is uniformly distributed mod 1.

One can prove that {nα} is uniformly distributed mod 1 using fairly elementary
ideas though it is not easy:

Exercise 11.7.4. Let x1, x2, . . . ∈ [0, 1) be a sequence of numbers. Suppose that there are
arbitrarily large integers M for which

lim
N→∞

1

N
#

{
n ≤ N :

m

M
≤ xn ≤ m+ 1

M

}
exists and equals

1

M
,

for 0 ≤ m ≤ M − 1. Deduce that {xn}n≥1 is uniformly distributed mod 1.

Exercise 11.7.5.‡ Let α be a real, irrational number. In this exercise we sketch a proof that
{nα}n≥1 is uniformly distributed mod 1. Fix ε > 0 arbitrarily small.
(a) Use Kronecker’s Theorem to show that there exists an integer N ≥ 1 such that {Nα} = δ ∈

(0, ε).
(b) Prove that if {nα} < 1− δ, then {(n+N)α} = {nα}+ δ. What if {nα} ≥ 1− δ?
(c) Suppose that 0 < t < 1 − 2δ. Show that {nα} ∈ [t, t + δ] if and only if {(n + N)α} ∈

[t+ δ, t+ 2δ], and so deduce that

|#{1 ≤ n ≤ x : t ≤ {nα} < t+ δ} −#{1 ≤ n ≤ x : t+ δ ≤ {nα} < t+ 2δ}| ≤ N.

Now let δ = 1/M for some large integer M .
(d)† Use (c) to show that if 0 ≤ m ≤ M − 1, then∣∣∣∣#

{
1 ≤ n ≤ x :

m

M
≤ {nα} <

m+ 1

M

}
− x

M

∣∣∣∣ ≤ MN.

(e) Deduce that {nα}n≥1 is uniformly distributed mod 1 using exercise 11.7.4.
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Kronecker’s Theorem in n dimensions. In exercise 11.1.2 we saw that Dirich-
let’s Theorem may be generalized to k dimensions; that is, given α1, . . . , αk ∈ R,
for any ε > 0 there exist infinitely many integers n such that each ‖nαj‖ < ε. To
generalize Kronecker’s Theorem we would like that for θ1, . . . , θk ∈ R there are
infinitely many n for which each ‖nαj − θj‖ < ε. However this is not true in all
cases, even when k = 1: In the hypothesis of Theorem 11.5 we needed that α is
irrational, and we showed that this is necessary in exercise 11.7.1. Another way to
state that α is irrational is to insist that 1 and α are linearly independent over Z.

In two dimensions we find another obstruction: Suppose that α1 = α and
α2 = 1− α. If ‖nαj − θj‖ < ε for each j, then

‖θ1 + θ2‖ = ‖n− θ1 − θ2‖ ≤ ‖nα1 − θ1‖+ ‖nα2 − θ2‖ < 2ε.

But this should hold for any ε > 0 which implies that θ1 + θ2 is an integer. Notice
that in this example 1, α1, α2 are not linearly independent over Z.

Exercise 11.7.6. Let α1, . . . , αk, θ1, . . . , θk ∈ R be given, and assume that there are integers
c0, . . . , ck for which c0 + c1α1 + · · · + ckαk = 0. Suppose that for all ε > 0 there are infinitely
many n for which ‖nαj − θj‖ < ε for j = 1, 2, . . . , k. Prove that c1θ1 + · · ·+ ckθk ∈ Z.

These are the only obstructions to the generalization:

Theorem 11.7 (Kronecker’s Theorem in n dimensions). Assume that the real
numbers 1, α1, . . . , αk are linearly independent over Z. Then the points

(nα1, . . . , nαk)n≥1 are dense in (R/Z)k.

In other words, for any given θ1, . . . , θk ∈ R and any ε > 0 there are infinitely many
integers n for which ‖nαj − θj‖ < ε for all j = 1, . . . , k.

This can be proved in several different ways that are accessible though tough.
We refer the reader to sections 23.5–23.8 of [HW08].

11.8. Bouncing billiard balls

Billiards, snooker, and pool are all played on a rectangular table, hitting the ball
along the surface. The sides of the table are cushioned so that the ball bounces off
the side at the opposite angle to which it hits. That is, if it hits at angle α◦, then
it bounces off at angle (180− α)◦. Sometimes one miscues and the ball carries on
around the table, coming to a stop without hitting another ball. Have you ever
wondered what would happen if there were no friction, so that the ball never stops?
Would your ball eventually hit the ball it is supposed to hit, no matter where that
other ball is placed? Or could it go on bouncing forever without ever getting to
the other ball? We could rephrase this question more mathematically by supposing
that we play on a table in the complex plane, with two sides along the x- and
y-axes. Say the table length is � and width is w so that it is the rectangle with
corners at (0, 0), (0, �), (w, 0), (w, �). Let us suppose that the ball is hit from the
point (u, v) along a line with slope α (that is, at an angle α from the horizontal).
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As the line continues on indefinitely inside the box, does it get arbitrarily close to
every point inside the box?

Exercise 11.8.1. Show that by rescaling with the map x → x/�, y → y/w we can assume,
without any loss of generality, that the billiards table is the unit square.

As a consequence of exercise 11.8.1, we may henceforth assume that w = � = 1.

The ball would run along the line L := {(u + t, v + αt), t ≥ 0} if it did not
hit the sides of the table. Notice though that if after each time it hit a side, we
reflected the true trajectory through the line that represents that side, then indeed
the ball’s trajectory would be L.

i2

i3
i4

i5

i6

�1

�2

�3

�4

�5

�6

Figure 11.1. Billiards on the complex plane and on the unit square. Follow-
ing a path inside the fundamental domain of a lattice: The path segment �j
gets mapped to ij for j = 2, . . . , 6.
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Develop this to prove:

Exercise 11.8.2. Show that the billiard ball is at (x, y) after time t, where x and y are given as
follows:
Let m = [u+ t] . If m is even, let x = {u+ t}; if m is odd, let x = 1− {u+ t}.
Let n = [v + αt]. If n is even, let y = {v + αt}; if n is odd, let y = 1− {v + αt}.

Exercise 11.8.3. Show that if α is rational, then the ball eventually ends up exactly where it
started from, and so it does not get arbitrarily close to every point on the table.

So how close does the trajectory get to the point (r, s), where r, s ∈ [0, 1)? Let
us consider all of those values of t for which x = r, with m and n even to simplify
matters (with m and n as in exercise 11.8.2), and see if we can determine whether
y is ever close to s.

Exercise 11.8.4. Show that [z] is even if and only if {z/2} ∈ [0, 1/2). Deduce that [z] is even
and {z} = r if and only if {z/2} = r/2.

Hence we want (u+t)/2 = k+r/2 for some integer k; that is, t = 2k+(r−u), k ∈
Z. In that case v + αt = 2αk + α(r − u) + v so we want {αk + (α(r − u) + v)/2}
close to s/2. That is, kα mod 1 should be close to θ := { (s−v)+α(u−r)

2 }. Now,
in Kronecker’s Theorem (Theorem 11.5) we showed that the values kα mod 1 are
dense in [0, 1) when α is irrational, and so in particular there are values of k that
allow kα mod 1 to be arbitrarily close to θ. Hence we have proved the difficult part
of the following corollary:

Corollary 11.8.1. If α is a real irrational number, then any ball moving at angle
α (to the coordinate axes) will eventually get arbitrarily close to any point on a
1-by-1 billiards table.

We finish with a challenge question to develop a similar theory of billiards
played on a circular table!

Exercise 11.8.5. Imagine a trajectory inside the unit circle. A ball is hit and continues indefi-
nitely. When it hits a side at angle θ (compared to the normal line at that point), it bounces off
at angle −θ.
(a) Suppose that the first two points at which the ball hits the edge are at e(β) and then at

e(β + α). Show that the ball hits the edge at e(β + nα) for n = 0, 1, 2, . . ..
(b) Prove that the ball falls into a repeated trajectory if and only if α is rational.
(c) Show that if α is irrational, then the points at which the ball hits the circle edge are dense

(i.e., eventually the ball comes arbitrarily close to any point on the edge) but that it never
hits the same edge point twice.

(d) Prove that the ball’s trajectory never comes inside the circle of radius | cos(α/2)|. Deduce
that the trajectory of the ball is never dense inside the unit circle.

(e) Prove that if α is irrational, then the trajectory of the ball is dense inside the ring between
the circle of radius | cos(α/2)| and the circle of radius 1. (The technical word for a ring is
an annulus.)

Appendices. The extended version of chapter 11 has the following additional
appendices:

Appendix 11B. Continued fractions introduces and analyzes continued fractions
for all real numbers, focusing on continued fractions for quadratic irrationals. We
find and justify a particularly efficient algorithm for finding all the solutions to
Pell’s equation using continued fractions.
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Appendix 11C. Two-variable quadratic equations establishes that, other than
in certain special cases, if there is one solution to a given two-variable quadratic
equation, then there are infinitely many.

Appendix 11D. Transcendental numbers discusses how many transcendental
numbers there are, via Cantor’s diagonalization argument. We show that e and π
are irrational and then discuss “normal numbers”.





Chapter 12

Binary quadratic forms

Let a, b, and c be given integers. We saw in Corollary 1.3.1 that the integers that
can be represented by the binary linear form ax+ by are those integers divisible by
gcd(a, b). We are now interested in what integers can be represented by the binary
quadratic form,1

f(x, y) := ax2 + bxy + cy2.

As in the linear case, we can immediately reduce our considerations to the case
that gcd(a, b, c) = 1.

The first important result of this type was given by Fermat for the particular
example f(x, y) = x2 + y2, as discussed in section 9.1. The two main results were
that an odd prime p can be represented by f(x, y) if and only if p ≡ 1 (mod 4),
and that the product of two integers that can be written as the sum of two squares
can also be written as the sum of two squares, a consequence of the identity (9.1.1).
One can combine these two facts to classify exactly which integers are represented
by the binary quadratic form x2 + y2.

At first sight it looks like it might be difficult to work with the example f(x, y) =
x2+20xy+101y2. However, this can be rewritten as (x+10y)2+y2 and so represents
exactly the same integers as g(x, y) = x2 + y2. In other words

n = f(u, v) if and only if n = g(r, s), where

(
r
s

)
=

(
1 10
0 1

)(
u
v

)
.

This 2-by-2 matrix is invertible over the integers, so we can express u and v
as integer linear combinations of r and s. Thus every representation of n by f
corresponds to one by g, and vice versa, a 1-to-1 correspondence, obtained using
the invertible linear transformation u, v → u + 10v, v. Such a pair of quadratic
forms, f and g, are said to be equivalent; and we have just seen how equivalent
binary quadratic forms represent exactly the same integers. The discriminant of

1“Binary” as in the two variables x and y, and “quadratic” as in degree two. The monomials
ax2, bxy, cy2 each have degree two, since the degree of a term is given by the degree in x plus the degree
in y.
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ax2+bxy+cy2 is b2−4ac. We will show that equivalent binary quadratic forms have
the same discriminant, so that it is an invariant of the equivalence class of binary
quadratic forms. All of this will be discussed in this chapter and, in appendix 12A,
we will study generalizations of the identity (9.1.1).

12.1. Representation of integers by binary quadratic forms

An integer N is represented by f if there exist integers m,n for which N = f(m,n),
and N is properly represented if (m,n) = 1 (see exercise 3.9.13 for the same question
for linear forms).

Exercise 12.1.1. Prove that if N is squarefree, then all representations of N are proper.

What integers can be properly represented by ax2 + bxy + cy2? That is, for
what integers N do there exist coprime integers m,n such that

(12.1.1) N = am2 + bmn+ cn2?

We may reduce to the case that gcd(a, b, c) = 1 by dividing though by gcd(a, b, c).
(If gcd(a, b, c) = 1, then f is a primitive binary quadratic form.) One idea is to
complete the square to obtain

(12.1.2) 4aN = (2am+ bn)2 − dn2

where the discriminant d := b2 − 4ac. This implies that the discriminant always
satisfies

d ≡ 0 or 1 (mod 4).

There is always at least one binary quadratic form of discriminant d, for such
d, which we call the principal form:{

x2 − (d/4)y2 when d ≡ 0 (mod 4),

x2 + xy + (1−d)
4 y2 when d ≡ 1 (mod 4).

We call d a fundamental discriminant if d = D ≡ 1 (mod 4), or d = 4D with
D ≡ 2 or 3 (mod 4), and if D = d/(d, 4) is squarefree. These are precisely the dis-
criminants for which every binary quadratic form is primitive (see exercise 12.1.3).
We met this notion already in exercise 8.16.4 of appendix 8D, when classifying the
genuinely different Jacobi symbols.

When d < 0 the right side of (12.1.2) can only take positive values, which makes
our discussion easier than when d > 0. For this reason we will restrict ourselves to
the case d < 0 here and revisit the case d > 0 in appendix 12C. If d < 0 and a < 0,
we replace a, b, c by −a,−b,−c, so as to ensure that am2 + bmn + cn2 is always
≥ 0; in this case, we call ax2 + bxy+ cy2 a positive definite binary quadratic form.

At the start of this chapter we worked through one example of equivalence of
binary quadratic forms, and here is another: The binary quadratic form x2 + y2

represents the same integers as X2 + 2XY + 2Y 2, for if N = m2 + n2, then N =
(m−n)2+2(m−n)n+2n2, and similarly ifN = u2+2uv+2v2, thenN = (u+v)2+v2.
The reason is that the substitution(

x
y

)
= M

(
X
Y

)
where M =

(
1 1
0 1

)



12.1. Representation of integers by binary quadratic forms 229

transforms x2+y2 into X2+2XY +2Y 2, and the transformation is invertible, since
detM = 1. We therefore say that x2 + y2 and X2 + 2XY + 2Y 2 are equivalent
which we denote by

x2 + y2 ∼ X2 + 2XY + 2Y 2.

Much more generally define

SL(2,Z) =

{(
α β
γ δ

)
: α, β, γ, δ ∈ Z and αδ − βγ = 1

}
.

We can represent the binary quadratic form as

ax2 + bxy + cy2 =
(
x y

)( a b/2
b/2 c

)(
x
y

)
.

Its discriminant is −4 times the determinant of

(
a b/2
b/2 c

)
. We deduce that if(

x
y

)
= M

(
X
Y

)
where M =

(
α β
γ δ

)
∈ SL(2,Z),

then

AX2 +BXY + CY 2 =
(
X Y

)
MT

(
a b/2
b/2 c

)
M

(
X
Y

)
,

so that

(12.1.3)

(
A B/2

B/2 C

)
= MT

(
a b/2
b/2 c

)
M,

which yields the somewhat painful looking explicit formulas⎧⎪⎨
⎪⎩
A = f(α, γ) = aα2 + bαγ + cγ2,

B = 2αβa+ (αδ + βγ)b+ 2γδc,

C = f(β, δ) = aβ2 + bβδ + cδ2.

(12.1.4)

When working with binary quadratic forms it is convenient to represent ax2 +
bxy + cy2 by the notation [a, b, c]. We have just proven the following.

Proposition 12.1.1. If f = [a, b, c] ∼ F = [A,B,C], then there exist integers
α, β, γ, δ with αδ−βγ = 1 for which A = f(α, γ) and C = f(β, δ). Moreover f and
F represent the same integers, and there is a 1-to-1 correspondence between their
representations and proper representations of a given integer.

Exercise 12.1.2. (a) Suppose that d is a fundamental discriminant. Prove that the character
(d/·) has conductor dividing d.

(b) Prove that for any non-zero integer d, the character (d/·) has conductor that divides 4d.

The conductor of f(·) is the minimum p > 0 such that f(n+ p) = f(n) for all integers n.

Exercise 12.1.3. Suppose that d ≡ 0 or 1 (mod 4). Show that every binary quadratic form of
discriminant d is primitive if and only if d is a fundamental discriminant.

Exercise 12.1.4. (a) Show that if d < 0, then am2 + bmn + cn2 has the same sign as a, no
matter what the choices of integers m and n.

(b) Show that if ax2 + bxy + cy2 is positive definite, then a, c > 0.
(c) Show that if d > 0, then am2 + bmn + cn2 can take both positive and negative values, by

making explicit choices of integers m,n.
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Exercise 12.1.5. Use (12.1.3) to show that two equivalent binary quadratic forms have the same
discriminant.

Exercise 12.1.6. Show that the principal form is equivalent to every binary quadratic form
x2 + bxy + cy2 with leading coefficient 1, up to equivalence.

Exercise 12.1.7. In each part, determine whether the two binary quadratic forms are equivalent.
If so, make the equivalence explicit; if not, explain why not.
(a) y2 + xy + 4x2 and x2 − 5xy + 10y2.
(b) x2 + 3xy + 5y2 and 3x2 − 4xy + 11y2.

12.2. Equivalence classes of binary quadratic forms

In this section we will develop an algorithm that will allow us to show, for example,
that 29X2 +82XY +58Y 2 is equivalent to x2 + y2. We do this as it is surely more
intuitive to work with the latter form rather than the former. Gauss observed that
every equivalence class of binary quadratic forms (with d < 0) contains a unique
smallest representative, called the reduced representative, which we now prove:
The quadratic form ax2 + bxy + cy2 with discriminant d < 0 is reduced if

−a < b ≤ a ≤ c and b ≥ 0 whenever a = c.

Theorem 12.1. Every positive definite binary quadratic form is equivalent to a
reduced form.

Proof. We will define a sequence of properly equivalent forms; the algorithm ter-
minates when we reach one that is reduced. Given a form [a, b, c], we use one of
three transformations, described in terms of matrices from SL(2,Z):

(i) If c < a, the transformation(
x
y

)
=

(
0 −1
1 0

)(
X
Y

)
yields the form [c,−b, a] which is properly equivalent to [a, b, c] (as ax2 +
bxy + cy2 = a(−Y )2 + b(−Y )(X) + c(X)2 = cX2 − bXY + aY 2). Hence
A = c < a = C.

(ii) If b > a or b ≤ −a, then select B to be the absolutely least residue of b
(mod 2a), so that −a < B ≤ a, say B = b− 2ka. The transformation matrix
will be (

x
y

)
=

(
1 −k
0 1

)(
X
Y

)
.

The resulting form [A,B,C] with A = a is properly equivalent to [a, b, c],
where −A < B ≤ A.

(iii) If c = a and −a < b < 0, then the transformation(
x
y

)
=

(
0 −1
1 0

)(
X
Y

)
yields the form [A,B,A] with A = a and B = −b, so that 0 < B < A.

If the resulting form is not reduced, then repeat the algorithm. If none of these
hypotheses holds, then one can easily verify that the form is reduced. To prove that
the algorithm terminates in finitely many steps we follow the leading coefficient
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a: a starts as a positive integer. Each transformation of type (i) reduces the size
of a. It stays the same after transformations of type (ii) or (iii), but after a type
(iii) transformation the algorithm terminates, and after a type (ii) transformation
we either have another type (i) transformation or else the algorithm stops after at
most one more transformation. Hence the algorithm finishes in no more than 2a+1
steps. �

Examples. Applying the reduction algorithm to the form [76, 217, 155] of discrim-
inant −31, one finds the sequence of forms

[76, 65, 14], [14,−65, 76], [14,−9, 2], [2, 9, 14], [2, 1, 4],

the sought-after reduced form. Similarly the form [11, 49, 55] of discriminant −19
gives the sequence of forms [11, 5, 1], [1,−5, 11], [1, 1, 5].

This proof of Theorem 12.1 can be rephrased to prove Theorem 1.2 of section
1.10 (of appendix 1A), that every matrix in SL(2,Z) can be represented as the

product of powers of the matrices S =

(
1 1
0 1

)
and T =

(
0 1
−1 0

)
. The matrices

used in the transformations in the proof of Theorem 12.1 are

(
0 −1
1 0

)
= T−1 and(

1 −k
0 1

)
= S−k.

The very precise conditions in the definition of “reduced” were chosen so that
every positive definite binary quadratic form is properly equivalent to a unique
reduced form. The key to proving uniqueness is exercise 12.6.1; the (messy) details
are completed in exercise 12.6.2.

12.3. Congruence restrictions on the values of a binary quadratic form

What restrictions are there on the values that can be taken by a binary quadratic
form (in analogy to Theorem 9.2)?

Proposition 12.3.1. Let d = b2 − 4ac where (a, b, c) = 1.

(i) If integer N is properly represented by ax2+bxy+cy2, then d is a square mod
4N .

(ii) If d is a square mod 4N , then there exists a binary quadratic form of discrim-
inant d that properly represents N .

Proof. (ii) If d ≡ b2 (mod 4N), then d = b2 − 4Nc for some integer c, and so
Nx2 + bxy + cy2 is a quadratic form of discriminant d which represents N =
N · 12 + b · 1 · 0 + c · 02.

(i) Suppose that N = am2 + bmn+ cn2 with (m,n) = 1. Then (2am+ bn)2 −
dn2 = 4aN so that dn2 ≡ (2am+ bn)2 (mod 4N); that is, dn2 is a square mod 4N
and, analogously, dm2 is a square mod 4N . Now if p is a prime such that pk‖4N ,
then p does not divide at least one of m and n, as (m,n) = 1. We deduce that d is
a square mod pk from the fact that dn2 is a square mod pk if p does not divide n,
and from the fact that dm2 is a square mod pk if p does not divide m. The result,
that d is a square mod 4N now follows from the Chinese Remainder Theorem. �
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For a given odd prime p, Proposition 12.3.1 tells us that p is represented by some
binary quadratic form of discriminant d if and only if (d/p) = 1 or 0. However it does
not tell us which binary quadratic form. In section 9.6 we could not immediately
determine which of the two reduced binary quadratic forms of discriminant −20,
namely x2+5y2 and 2x2+2xy+3y2, represents which primes p with (−20/p) = 1.
There we found we could distinguish which prime was represented by which form
by also studying the values of (p/d). We now see how this works out in general.

We can appeal to Corollary 9.4.1 to restrict the possibilities for the binary
quadratic forms of discriminant d that represent N . Given a primitive binary
quadratic form f of discriminant d we define, for each odd prime p dividing d,

σf (p) =
(

a
p

)
if p does not divide a, and σf (p) =

(
c
p

)
if p does divide a.

If p divides a, then p divides d + 4ac = b2 and so divides b, and therefore cannot
divide c as f is primitive. Therefore σf (p) equals 1 or −1 for each such p.

Exercise 12.3.1.† Prove that if f ∼ g, then σf (p) = σg(p) for all odd primes p dividing d.

Corollary 12.3.1. Suppose that d is a fundamental discriminant and that N is a
squarefree integer for which (N, d) = 1. If d is a square mod 4N , then there exists
a binary quadratic form f of discriminant d that properly represents N such that

σf (p) =
(

N
p

)
for every odd prime p dividing d.

Proof. There exists a binary quadratic form f of discriminant d that properly
represents N , by Proposition 12.3.1(ii). Therefore N is represented by inserting

rationals into f and this happens, by Corollary 9.4.1, if and only if
(

N
p

)
= σf (p)

for every odd prime p dividing d. �

When d = −20 we have σf (5) = 1 for f = x2 + 5y2 and σf (5) = (2/5) = −1
for f = 2x2 + 2xy + 3y2. This can certainly settle such issues in several cases.

There are three reduced quadratic forms [1, 1, 6], [2,±1, 3] with d = −23. How-
ever σf (23) = 1 for each of these, so this does not help us to distinguish between the
integers represented by these quadratic forms. This case is much more complicated
and beyond the scope of this book.

We develop these ideas further in section 12.11 of appendix 12B.

Exercise 12.3.2. Prove that if p1, . . . , pk are distinct primes that are each represented by some
form of discriminant d, then p1 · · · pk is also represented by some form of discriminant d.

12.4. Class numbers

Theorem 12.2. If d < 0, then there are only finitely many reduced binary quadratic
forms of discriminant d.

Proof. For a reduced binary quadratic form, |d| = 4ac− (|b|)2 ≥ 4a · a− a2 = 3a2

and so a is a positive integer for which

a ≤
√
|d|/3.
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Therefore for a given d < 0 there are only finitely many a, and so b (as |b| ≤ a),
but then c = (b2−d)/4a is determined, and so there are only finitely many reduced
binary quadratic forms of discriminant d. �

Let h(d) denote the class number, the number of equivalence classes of binary
quadratic forms of discriminant d. We have just shown h(d) is finite, and the proof
of Theorem 12.2 even describes an algorithm to easily find all the reduced binary
quadratic forms of a given discriminant d < 0. In fact h(d) ≥ 1 since we always
have the principal form. If h(d) = 1, then all binary quadratic forms are equivalent
to the principal form.

Example. If d = −163, then |b| ≤ a ≤
√
163/3 < 8. But b is odd, since b ≡ b2 =

d+4ac ≡ d (mod 2), so |b| = 1, 3, 5, or 7. Therefore ac = (b2 +163)/4 = 41, 43, 47,
or 53, a prime, with 0 < a < c and hence a = 1. Since b is odd and −a < b ≤ a, we
deduce that b = 1 and so c = 41. Hence x2 + xy + 41y2 is the only reduced binary
quadratic form of discriminant −163, and therefore h(−163) = 1.

Exercise 12.4.1. Determine all of the reduced binary quadratic forms of discriminant d for
−20 ≤ d ≤ −1 as well as for d = −28,−43,−67,−167, and −171.

Exercise 12.4.2. Determine all of the reduced binary quadratic forms of discriminant d for
d = −3,−15,−23,−39,−47,−87,−71, and −95.

Exercise 12.4.3. Determine all of the reduced binary quadratic forms of discriminant d for
d = −4,−20,−56, and −104.

Exercise 12.4.4. Prove that if ax2 + bxy + cy2 is a reduced binary quadratic of discriminant

d < 0, then |c| ≥
√

|d|/2.

12.5. Class number one

Corollary 12.5.1. Suppose that h(d) = 1. Then N is properly represented by the
form of discriminant d if and only if d is a square mod 4N .

Proof. This follows immediately from Proposition 12.3.1, since there is just one
equivalence class of quadratic forms of discriminant d, and forms in the same equiv-
alence class represent the same integers by Proposition 12.1.1. �

We have h(−4) = 1 and so Corollary 12.5.1 implies that integer N is properly
represented by x2 + y2 if and only if −4 is a square mod 4N . This is more or less
Theorem 9.2 (and can be deduced from its proof).

In the example in section 12.4 we showed that x2 + xy + 41y2 is the only
binary quadratic form of discriminant −163. This implies, by Corollary 12.5.1,
that if prime p �= 2 or 163, then it can be represented by the binary quadratic form
x2 + xy + 41y2 if and only if (−163/p) = 1.

In exercise 12.4.1 we exhibited nine fundamental discriminants d < 0 with
h(d) = 1, namely d = −3,−4,−7,−8,−11,−19,−43,−67, as well as −163. It
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turns out these are the only ones with class number one.2 Therefore, as in the
example above, if p � 2d, then

p is represented by x2 + y2 if and only if (−1/p) = 1;
p is represented by x2 + 2y2 if and only if (−2/p) = 1;

p is represented by x2 + xy + y2 if and only if (−3/p) = 1;
p is represented by x2 + xy + 2y2 if and only if (−7/p) = 1;
p is represented by x2 + xy + 3y2 if and only if (−11/p) = 1;
p is represented by x2 + xy + 5y2 if and only if (−19/p) = 1;
p is represented by x2 + xy + 11y2 if and only if (−43/p) = 1;
p is represented by x2 + xy + 17y2 if and only if (−67/p) = 1;
p is represented by x2 + xy + 41y2 if and only if (−163/p) = 1.

Euler noticed that the polynomial x2 + x + 41 is prime for x = 0, 1, 2, . . . , 39, and
similarly the other polynomials above. Rabinowiscz proved that this is an “if and
only if” condition:

Theorem 12.3 (Rabinowiscz’s criterion). We have h(1−4A) = 1 for A ≥ 2 if and
only if x2 + x+A is prime for n = 0, 1, 2, . . . , A− 2.

At n = A − 1 the polynomial takes value (A − 1)2 + (A− 1) + A = A2 which
is composite. We will prove Rabinowiscz’s criterion below.

What about when the class number is not one? In the example with d = −20
we have h(−20) = 2; the two reduced forms are x2 + 5y2 and 2x2 + 2xy + 3y2. By
Proposition 12.3.1, p is represented by at least one of these two forms if and only
if (−5/p) = 0 or 1, that is, if p ≡ 1, 3, 7, or 9 (mod 20) or p = 2 or 5. Can we
decide which of these primes are represented by which of the two forms? Note that
if p = x2 + 5y2, then (p/5) = 0 or 1 and so p = 5 or p ≡ ±1 (mod 5), and thus
p ≡ 1 or 9 (mod 20). If p = 2x2 + 2xy + 3y2, then 2p = (2x + y)2 + 5y2 and so
p = 2 or (2p/5) = 1; that is, (p/5) = −1, and hence p ≡ 3 or 7 (mod 20). Hence
we have proved

p is represented by x2 + 5y2 if and only if p = 5, or p ≡ 1 or 9 (mod 20);

p is represented by 2x2+2xy+3y2 if and only if p = 2, or p ≡ 3 or 7 (mod 20).

That is, we can distinguish which primes can be represented by which binary qua-
dratic form of discriminant −20, through congruence conditions, despite the fact
that the class number is not one. However we cannot always do this; that is, we
cannot always distinguish which primes are represented by which binary quadratic
form of discriminant d. It is understood how to recognize those discriminants d for
which we can determine which binary quadratic forms of discriminant d represent

2The proof that the above list gives all of the d < 0, for which h(d) = 1, has an interesting history.
By 1934 it was known that there is no more than one further such d, but that putative d could not be
ruled out by the method. In 1952, Kurt Heegner, a German school teacher proposed an extraordinary
proof that there are no further d. At the time his paper was ignored since it was based on a result
from an old book (of Weber) whose proof was known to be incomplete. In 1966 Alan Baker gave a
very different (and more obviously correct) proof that this was the complete list of discriminants with
class number one, and this was widely acknowledged to be correct. However, soon afterwards Stark
realized that the proofs in Weber are easily corrected, so that Heegner’s work had been fundamentally
correct. Heegner was subsequently given credit for solving this famous problem, but sadly only after he
had died. Heegner’s paper contains a most extraordinary construction, widely regarded to be one of the
most creative and influential in modern number theory.



12.5. Class number one 235

which integers simply through congruence conditions (see section 12.11 of appendix
12B). These idoneal numbers were recognized by Euler. He found 65 of them, and
no more are known—it is an open conjecture as to whether Euler’s list is complete.
It is known that there can be at most one further undiscovered idoneal number, but
it seems unlikely whether the techniques used can rule out this putative example.3

Exercise 12.5.1. (a) Determine the two reduced binary quadratic forms of discriminant −15.
(b) Determine which reduced residue classes can be represented by some form of discriminant

−15?
(c) Distinguish which primes are represented by which form (with proof).

Proof of Rabinowiscz’s criterion. We begin by showing that f(n) := n2+n+A
is composite for some integer n in the range 0 ≤ n ≤ A−2, if and only if d = 1−4A
is a square mod 4p for some prime p < A. For if n2 + n + A is composite, let
p be its smallest prime factor so that p ≤ f(n)1/2 < f(A − 1)1/2 = A. Then
(2n + 1)2 − d = 4(n2 + n + A) ≡ 0 (mod 4p) so that d is a square mod 4p. On
the other hand if d is a square mod 4p where p is a prime ≤ A− 1, select m to be
the smallest positive integer such that d ≡ m2 (mod 4p). Then m < 2p (or else
replace m by 4p − m) and m is odd (as d is odd), so write m = 2n + 1 and then
0 ≤ n ≤ p− 1 ≤ A− 2 with d ≡ (2n+ 1)2 mod 4p. Therefore p divides n2 + n+A
with p < A = f(0) < f(n) so that n2 + n+A is composite.

Now we show that h(d) > 1 if and only if d = 1 − 4A is a square mod 4p
for some prime p < A. If h(d) > 1, then there exists a reduced binary quadratic

ax2+bxy+cy2 of discriminant d with 1 < a ≤
√
|d|/3 < A by the proof of Theorem

12.2. If p is a prime factor of a, then p ≤ a < A and d = b2 − 4ac is a square mod
4p. On the other hand if d is a square mod 4p for some prime p < A, and h(d) = 1,
then p is represented by x2 +xy+Ay2 by Proposition 12.3.1(ii). Now y �= 0 as p is
not a square. Therefore 4p = (2x+ y)2 + |d|y2 ≥ 02 + |d| · 12 = |d|; that is, p ≥ A,
a contradiction. (We will extend this proof to obtain more on the small values
taken by any binary quadratic form of negative discriminant, in exercise 12.6.1(a).)
Hence h(d) > 1.

Putting these two results together, we deduce that h(d) > 1 if and only if
f(n) := n2 + n + A is composite for some integer n in the range 0 ≤ n ≤ A − 2,
which implies Rabinowiscz’s criterion. �
Exercise 12.5.2.† Prove that if n2 + n + A is prime for all integers n in the range 0 ≤ n ≤ B,

where 1 ≤ B < (A− 1)/2, then
(

1−4A
p

)
= −1 for all primes p ≤ 2B + 1.

The class number one problem for even negative fundamental discriminants is
not difficult:

Theorem 12.4. If h(d) = 1 with d = −4n for n ∈ N, then n = 1, 2, 3, 4, or 7.

Proof. Suppose that h(−4n) = 1. Then n must be a prime power or else there
exist coprime integers 1 < a ≤ c for which ac = n and so [a, 0, c] is a non-principal
reduced form of discriminant −4n. Moreover n + 1 must be an odd prime or a
power of 2 or else there exist integers 1 < a ≤ c with gcd(a, 2, c) = 1 for which
ac = n+ 1 and so [a, 2, c] is a non-principal reduced form of discriminant −4n.

3We therefore find ourselves in much the same situation as for class number one before Heegner’s
work, as discussed in the last footnote.
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One of n and n+ 1 is even and hence must be a power of 2 (from the previous
paragraph). If n = 2k with k ≥ 4, then we have the non-principal reduced form
[4, 4, 2k−2+1], and if n+1 = 2k with k ≥ 6, then we have the non-principal reduced
form [8, 6, 2k−3 + 1].

Therefore if h(−4n) = 1, then n = 1, 2, 4, or 8 or n+ 1 = 2, 4, 8, 16, or 32. We
can rule out n = 15 (as 15 is composite) and n = 8 (as 9 is not an odd prime) and
n = 31 (as [5, 4, 7] is a non-principal reduced form of discriminant −124). We know
that h(−4n) = 1 for n = 1, 2, 3, 4, and 7 by exercise 12.4.1. �

These discriminants have a beautiful property.

Corollary 12.5.2. Let n = 1, 2, 3, 4, or 7. If p is a prime that does not divide 4n,

then p can be written as u2 + nv2 if and only if
(

−n
p

)
= 1.

Proof. As we just discussed h(−4n) = 1, and so all binary quadratic forms of
discriminant −4n are equivalent to x2 + ny2. By Proposition 12.3.1, p can be
represented by some form of discriminant −4n if and only if −4n is a square mod
p, and the result follows. �

We had already discussed representations of p by x2 + y2, x2 + 2y2, x2 + 3y2

in sections 9.1 and 9.2, and x2 +4y2 = x2 + (2y)2 follows easily from x2 + y2. This
leaves only the most interesting of the cases of Corollary 12.5.2:

p = x2 + 7y2 if and only if p ≡ 1, 9, 11, 15, 23, or 25 (mod 28).

Exercise 12.5.3. Let q be a prime ≡ −1 (mod 4). Prove that
(

p
q

)
= −1 for all primes p < q+1

4

if and only if h(−q) = 1. This result suggests that finding a small prime p with
(

p
q

)
= 1 can be

a deep problem (see appendix 8B for a discussion of small quadratic residues).

For much more on the values taken by binary quadratic forms, particularly the
prime values, we recommend David Cox’s wonderful book [1].
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Additional exercises

These last questions get considerably more involved but may be of interest to stu-
dents interested in further pursuing number theory.

Exercise 12.6.1. Suppose that f(x, y) = ax2 + bxy + cy2 is a reduced binary quadratic form.
(a) Show that if am2 + bmn+ cn2 ≤ a− |b|+ c with (m,n) = 1, then |m|, |n| ≤ 1.
(b) Prove that the least values properly represented by f are a ≤ c ≤ a − |b| + c, the first

two properly represented twice, the last twice unless b = 0, in which case it is properly
represented four times.

Exercise 12.6.2. We now use the results of exercise 12.6.1 to understand equivalences between
primitive reduced binary quadratic forms. The idea is to recognize a reduced binary quadratic
form by the smallest values it properly represents.
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(a) Prove that:
• If 0 < |b| < a < c, then [a, b, c] properly represents a, c, and a− |b|+ c in exactly 2, 2,

and 2 different ways, respectively.
• If 0 < |b| = a < c, then [a, b, c] properly represents a, and c = a− |b|+ c in exactly 2,

and 4 different ways, respectively.
• If 0 < |b| < a = c, then [a, b, c] properly represents a = c, and a− |b|+ c in exactly 4,

and 2 different ways, respectively.
• If 0 = |b| < a < c, then [a, b, c] properly represents a, c, and a− |b|+ c in exactly 2, 2,

and 4 different ways, respectively.
• [1, 1, 1] properly represents 1 in exactly six different ways.
• [1, 0, 1] properly represents both 1 and 2 in exactly four different ways.

(b) Deduce that if [a, b, c], and [A,B,C] are equivalent primitive reduced binary quadratic forms,
then A = a, C = c, and B = b or −b.

(c) Use exercise 12.6.1(a) to show that the entries of a matrix representing such an equivalence
must each be −1, 0, or 1.

(d) Prove that distinct primitive reduced binary quadratic forms are all inequivalent. Together
with Theorem 12.1 this implies that every positive definite binary quadratic form is properly
equivalent to a unique reduced form.

(e) Suppose that M ∈ SL(2,Z) transforms a primitive reduced binary quadratic form to itself
(this is an automorphism). Show that M = ±I, except in the following two cases:

• [1, 1, 1] has automorphisms given by ±I, ±
(
0 −1
1 1

)
, and ±

(
1 1
−1 0

)
.

• [1, 0, 1] has automorphisms given by ±I and ±
(

0 1
−1 0

)
.

Exercise 12.6.3. (a) Show that if [A,B,C] ∼ [a, b, c], then [A,−B,C] ∼ [a,−b, c].
(b) Use exercise 12.6.2(d) to show that if [a, b, c] is reduced, then [a, b, c] ∼ [a,−b, c] if and only

if b = 0, b = a, or a = c.
(c) Deduce that [A,B,C] ∼ [A,−B,C] if and only if they are equivalent to a quadratic form

[a, 0, c], [a, a, c], or [a, b, a].
(d) Prove that [a, a, c] ∼ [c, 2c− a, c].
(e) If d < 0 is odd, then show that the primitive reduced forms are given by taking each

factorization −d = rs with 0 < r ≤ s and (r, s) = 1,

{
[a, a, c] if s ≥ 3r where a = r and c = (r + s)/4,

[a, b, a] if s < 3r where a = (r + s)/4 and b = (s− r)/2.

(f) If d < 0 is even, then show that the primitive reduced forms are given by taking each
factorization −d/4 = rs with 0 < r ≤ s and (r, s) = 1,

⎧⎪⎨
⎪⎩
[a, 0, c] with a = r and c = s,

[a, a, c] if s > 3r where a = 2r and c = (r + s)/2,

[a, b, a] if s < 3r where a = (r + s)/2 and b = s− r.

Note that the last two cases hold only if d/4 is odd.
(g) Show that each binary quadratic form either represents both r and s, or both 2r and 2s.

(In (d), take f(1,−2) = s in the first case; f(1, 1) = s, f(1,−1) = r in the second case.)
(h) Deduce that if d < 0 is a fundamental discriminant, then there are exactly 2t−1 reduced

binary quadratic forms for which [a, b, c] ∼ [a,−b, c], where t is the number of odd prime
divisors of |d|, unless 4‖d in which case there are 2t.

Exercise 12.6.4.† (a) Prove that x2 +6y2 and 2x2+3y2 are the only binary quadratic forms,
up to equivalence, of discriminant −24.

(b) Prove that prime p can be written in the form a2 + 6b2 if and only if p ≡ 1 or 7 (mod 24).
(c) Prove that prime p can be written in the form 2u2 + 3v2 if and only if p = 2 or 3, or p ≡ 5

or 11 (mod 24).
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We can refine this further:
(d) Prove that prime p can be written in the form a2 + 24B2 if and only if p ≡ 1 (mod 24).
(e) Prove that prime p can be written in the form 8U2 + 3v2 if and only if p = 3, or p ≡ 11

(mod 24).

Automorphisms of binary quadratic forms.

Exercise 12.6.5. Suppose that f ∼ g via the transformation M and that G is the group of
automorphisms of f .
(a) Prove that M−1GM is the group of automorphisms of g.
(b) Prove that MG is the set of transformations yielding g from f .
(c) Deduce that there are ω(d) automorphisms of every primitive quadratic form of discriminant

d, where ω(−3) = 6, ω(−4) = 4, and ω(d) = 2 for all other discriminants d < 0.

Exercise 12.6.6. (a) If N = f(a, b), then N = f(−a,−b). If N = a2 + b2, then N = b2 +
(−a)2 = (−a)2+(−b)2 = (−b)2+a2. If N = a2+ab+b2, then find five other representations
of N by the quadratic form x2 + xy + y2.

(b) Explain how these representations correspond to the automorphisms of the quadratic form.
(c) Why did we not include N = (−a)2 + b2 in the representations in part (a)?

Exercise 12.6.7. (a) Let α, β, γ, δ be given integers for which αδ − βγ = 1. Prove that β′, δ′

are integers for which αδ′ − β′γ = 1 if and only if there exists an integer k such that(
α β′

γ δ′

)
=

(
α β
γ δ

)(
1 k
0 1

)
.

(b) If A = f(α, γ) with (α, γ) = 1, then prove that there exists a unique pair of integers β, δ

such that f ∼ [A,B,C] using the matrix M =

(
α β
γ δ

)
∈ SL(2,Z) for some integer B in

the range −A < B ≤ A.
(c) Deduce that the proper representations of the integer A by reduced binary quadratic forms

of discriminant d are in ω(d)-to-1 correspondence with the solutions to B2 ≡ d (mod 4A)
with −A < B ≤ A.

Exercise 12.6.8. Let f1, . . . , fh be the h = h(d) distinct reduced binary quadratic forms of
discriminant d, where d ≡ 0 or 1 (mod 4). Let rj(A) denote the number of proper representations
of A by fj . Prove that

r1(A) + · · ·+ rh(A) =
1

2
ω(d) ·#{B (mod 4A) : B2 ≡ d (mod 4A)}

and that this equals ω(d) ·
∏

p|A

(
1 +
(

d
p

))
unless perhaps 4|(A, d).

Exercise 12.6.9. Suppose that p is an odd prime for which (d/p) = 1. Prove that p is properly
represented either by only the principal form of discriminant d, or by only two non-principal,
reduced, binary quadratic forms of discriminant d, one, say, ax2+bxy+cy2, the other ax2−bxy+
cy2.

Transformations of the upper half-plane. Let H := {z ∈ C : Im(z) > 0} be
the upper half-plane. We consider transformations with M = SL(2,Z) acting on

z ∈ C by taking M

(
z
1

)
=

(
u
v

)
and considering this to be the map z → u/v. In

Theorem 1.2 we saw that that every matrix in SL(2,Z) can be represented as a

product of the two fundamental matrices S =

(
1 1
0 1

)
and T =

(
0 1
−1 0

)
.

Exercise 12.6.10. Prove that S represents the transformation z → z + 1 and that T represents
the transformation z → −1/z.
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We define

F=

{
z ∈ C : |z| > 1 and − 1

2
≤ Re(z) <

1

2

}
∪
{
z∈C : |z| = 1and − 1

2
≤ Re(z) ≤ 0

}
.

0−1 1

Figure 12.1. The shaded region is the fundamental domain F ⊂ H.

Exercise 12.6.11.† Prove that the binary quadratic form ax2 + bxy + cy2 with discriminant

d < 0 is reduced if and only if −b+
√

d
2a

∈ F .

Exercise 12.6.12.† Prove that for every z ∈ C there exists M ∈ SL(2,Z) such that Mz ∈ F .
Prove that M is unique.

Exercise 12.6.13.‡ Show that {MF : M ∈ SL(2,Z)} is a partition of H into disjoint sets.

The shaded region is F . Each enclosed region is a
domain MF for some M ∈ SL(2,Z).



Appendix 12A. Composition
rules: Gauss, Dirichlet,
and Bhargava

We study generalizations of the identity (9.1.1), which leads to a notion of “multi-
plying” binary quadratic forms together, and hence to the group structure discov-
ered by Gauss. We go on to study the reformulations of Dirichlet and Bhargava.

12.7. Composition and Gauss

In (9.1.1) we see that the product of any two integers represented by the binary
quadratic form x2+y2 is also an integer represented by that binary quadratic form.
We now look for further such identities. One easy generalization is given by

(12.7.1) (u2 +Dv2)(r2 +Ds2) = x2 +Dy2 where x = ur +Dvs and y = us− vr.

Therefore the product of any two integers represented by the binary quadratic form
x2 +Dy2 is also an integer represented by that binary quadratic form. For general
diagonal binary quadratic forms (that is, having no “cross term” bxy) we have

(12.7.2) (au2+ cv2)(ar2+ cs2) = x2 + acy2 where x = aur+ cvs and y = us− vr.

Notice here that the quadratic form on the right-hand side is different from those on
the left; that is, the product of any two integers represented by the binary quadratic
form ax2 + cy2 is an integer represented by the binary quadratic form x2 + acy2.

One can come up with a similar identity no matter what the quadratic form,
though one proceeds slightly differently depending on whether the coefficient b is
odd or even. The discriminant d = b2 − 4ac has the same parity as b. If d is even,

240
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then

(12.7.3) (au2 + buv + cv2)(ar2 + brs+ cs2) = x2 − d

4
y2,

where x = aur + b
2 (vr + us) + cvs and y = rv − su.

If d is odd, then

(12.7.4) (au2 + buv + cv2)(ar2 + brs+ cs2) = x2 + xy − d− 1

4
y2,

where x = aur + b−1
2 vr + b+1

2 us+ cvs and y = rv − su.

That is, the product of two integers represented by the same binary quadratic form
can be represented by the principal binary quadratic form of the same discriminant.

Exercise 12.7.1. (a) Prove that if n is represented by ax2 + bxy+ cy2, then an is represented
by the principal form of the same discriminant.

(b) Suppose that d < 0. Deduce that if d is a square mod 4n, then there is a multiple an of n

which is represented by the principal form of discriminant d, with 1 ≤ a ≤
√

|d|/3.
(c) We obtained the bound 1 ≤ a ≤

√
|d| when d is even in section 9.6. Use that method to

find a bound in the case that d is odd.

What about the product of the values of two different binary quadratic forms?
If d is even, we have

(12.7.5) (au2 + buv + cv2)(r2 − d
4s

2) = ax2 + bxy + cy2,

where x = ur + b
2su+ cvs and y = vr − asu− b

2vs.
If d is odd, then

(12.7.6) (au2 + buv + cv2)(r2 + rs− d−1
4 s2) = ax2 + bxy + cy2,

where x = ur + b+1
2 su+ cvs and y = vr − asu− b−1

2 vs.

That is, the product of an integer that can be represented by a binary quadratic
form f and an integer that can be represented by the principal binary quadratic
form of the same discriminant can be represented by f .

Exercise 12.7.2. Suppose that a is a prime and d = b2 − 4ac is even. Let D = −d/4.
(a) Show that if a divides r2 +Ds2, then a divides either r + (b/2)s or r − (b/2)s.
(b) Prove that if r2+Ds2 = an, then there exist integers X,Y for which n = aX2+bXY +cY 2.

If n is prime, then this result is true whether or not a is prime, but we will not prove that here.
Assume though that is so.
(c) Suppose that (d/p) = 1 and that ap is the smallest multiple of p that is represented by the

principal form. Prove that a here must take the same value as in exercise 12.6.9.

(d) Prove that 1 ≤ a ≤
√

|d|/3 and then use exercises 12.4.4 and 12.6.1(b) to prove that if

p <
√

|d|/2, then a = p.

What about two different binary quadratic forms with no particular structure?
For example,

(4u2 + 3uv + 5v2)(3r2 + rs+ 6s2) = 2x2 + xy + 9y2

by taking x = ur − 3us − 2vr − 3vs and y = ur + us + vr − vs. These are
three inequivalent binary quadratic forms of discriminant −71. Gauss called this
composition, that is, finding, for given binary quadratic forms f and g of the same
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discriminant, a third binary quadratic form h of the same discriminant for which

f(u, v)g(r, s) = h(x, y),

where x and y are quadratic polynomials in u, v, r, and s.

These constructions suggest many questions. For example, are the identities
that we found for two given quadratic forms the only possibility? Could the prod-
uct of two sums of two squares always equal the value of some entirely different
quadratic form? When we are given two quadratic forms of the same discriminant,
is it true that there is always some third quadratic form of the same discriminant
such that the product of the values of the first two always equals a value of the
third? That is, is there always a composition of two given binary quadratic forms of
the same discriminant? If so, can we determine the third quadratic form quickly?

Gauss proved that one can always find the composition of two binary quadratic
forms of the same discriminant. The formulas above can mislead one into guessing
that this is simply a question of finding the right generalization, but that is far
from the truth. All of the examples, (12.7.1) through to (12.7.6), are so explicit
only because they are very special cases in the theory. In Gauss’s proof he had to
prove that various other equations could be solved in integers in order to find h
and the quadratic polynomials x and y (which are polynomials in u, v, r, and s).
This was so complicated that some of the intermediate formulas took two pages to
write down and are very difficult to make sense of.4 We will prove Gauss’s theorem
though we will approach it in a somewhat different way.

Exercise 12.7.3. Given non-zero integers a, b, c, d prove that there exist integers m,n such that
the set of integers that can be represented by (ar + bs)(cu+ dv) as r, s, u, v run over the integers
is the same as the set of integers that can be represented by mx+ny as x, y run over the integers.

We finish this section by presenting a fairly general composition.

Proposition 12.7.1. Suppose that aix
2 + bixy + ciy

2 for i = 1, 2 are binary qua-
dratic forms of discriminant d such that q = (a1, a2) divides

b1+b2
2 . Then

(12.7.7) (a1x
2
1 + b1x1y1 + c1y

2
1)(a2x

2
2 + b2x2y2 + c2y

2
2) = a3x

2
3 + b3x3y3 + c3y

2
3

where a3 = a1a2/q
2 and b3 is any integer simultaneously satisfying the following

(solvable) set of congruences:

b23 ≡ d (mod 4a1a2/q
2),

b3 ≡ b1 (mod 2a1/q), b3 ≡ b2 (mod 2a2/q),

b3(b1 + b2) ≡ b1b2 + d (mod 4a1a2/q),

and c3 is chosen so that the discriminant of a3x
2
3 + b3x3y3 + c3y

2
3 is d.

Exercise 12.7.4. Show that the above congruences for b3 can be solved.

Proposition 12.7.1 implies that we can always compose two binary quadratic
forms f and g of the same discriminant, whose leading coefficients are coprime.

4See article 234 and beyond in Gauss’s book Disquisitiones Arithmeticae (1804).
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Proof sketch. Computer software verifies that (12.7.7) holds taking a3 = a1a2/q
2,

for any integer q dividing (a1, a2), with

x3 = qx1x2 +
b2 − b3
2a2/q

· x1y2 +
b1 − b3
2a1/q

· x2y1 +
b1b2 + d− b3b1 − b3b2

4a1a2/q
· y1y2,

and y3 =
a1
q

· x1y2 +
a2
q

· x2y1 +
b1 + b2
2q

· y1y2.

To ensure that we are always working with integers, the coefficients of x3 and y3
must be integers. So this formula works if we can find integers q and b3 for which q
divides a1, a2, and

b1+b2
2 , and the above four congruences hold simultaneously for

integer b3. It is difficult to determine whether there is such a b3 for an arbitrary q,
but not so challenging if q = (a1, a2) divides

b1+b2
2 . �

Corollary 12.7.1. For any given integers a, b, c, h, k we have

(ab, hk, ch) · (ac, hk, bh) ∼ (ah, hk, bc).

Proof. We multiply (ab, hk, ch) and (ac, hk, bh) ∼ (bh,−hk, ac) using the proof of
Proposition 12.7.1. We take q = b so that a3 = ah and 2q|b1 + b2 = 0. Selecting
b3 = hk we find that the congruences of Proposition 12.7.1 reduce to d ≡ (hk)2

(mod 4abh), which follows from d = (hk)2−4abch. Hence we have that (ab, hk, ch) ·
(ac, hk, bh) ∼ (ab, hk, ch) · (bh,−hk, ac) ∼ (ah, hk, bc).

To get more symmetry in the statement of the result we note that (ah, hk, bc) ·
(bc, hk, ah) = 1, and so

(ab, hk, ch) · (ac, hk, bh) · (bc, hk, ah) ∼ 1. �

12.8. Dirichlet composition

Dirichlet claimed that when he was a student, working with Gauss, he slept with
a copy of Disquisitiones under his pillow every night for three years. It worked,
as Dirichlet found a way to better understand Gauss’s proof of composition, which
amounts to a straightforward algorithm to determine the composition of two given
binary quadratic forms f and g of the same discriminant.

Exercise 12.8.1. Given any primitive binary quadratic form f(x, y) ∈ Z[x, y] and non-zero inte-
ger A, prove that there exist integers r and s such that f(r, s) is coprime to A. Deduce that there
exists a binary quadratic form g, for which f ∼ g, with (g(1, 0), A) = 1.

Exercise 12.8.2. Suppose that f(x, y), F (X,Y ) are two binary quadratic forms, with disc(f) ≡
disc(F ) (mod 2), for which f(1, 0) = a is coprime to F (1, 0) = A. Prove that there exist quadratic
forms g = ax2 + bxy + cy2 and G = AX2 + bXY + CY 2 with the same middle coefficient, such
that f ∼ g and F ∼ G.

Now suppose we begin with two quadratic forms of the same discriminant.
Let A be the leading coefficient of one of them. Then the other is equivalent to
a quadratic form with leading coefficient a, for some integer a coprime to A, by
exercise 12.8.1. Then these are equivalent to quadratic forms g = ax2 + bxy + cy2

and G = AX2 + bXY +CY 2, respectively, by exercise 12.8.2. Since these have the
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same discriminant we deduce that ac = AC and so there exists an integer h for
which

g(x, y) = ax2 + bxy +Ahy2 and G(x, y) = Ax2 + bxy + ahy2.

Then

H(m,n) = g(u, v)G(r, s) with H(x, y) = aAx2 + bxy + hy2,

where m = ur − hvs and n = aus+Avr + bvs.

Dirichlet went on to interpret this in terms of what we would today call ideals; and
this in turn led to the birth of modern algebra by Dedekind. In this theory one is
typically not so much interested in the identity, writing H as a product of g and G
(which is typically very complicated and none too enlightening), but rather in how
to determine H from g and G. Dirichlet’s proof goes as follows:

The ideal I
(

−b+
√
d

2 , a
)
is associated to a given binary quadratic form ax2 +

bxy+cy2 (see section 12.10 of appendix 12B). Therefore when we multiply together
g and G, we multiply together their associated ideals to obtain

J := I

(
−b+

√
d

2
, a

)
· I
(
−b+

√
d

2
, A

)
,

which contains aA as well as both a · −b+
√
d

2 and A · −b+
√
d

2 . Since (a,A) = 1 there
exist integers r, s for which ar +As = 1 and so our new ideal contains

r · a · −b+
√
d

2
+ s ·A · −b+

√
d

2
=

−b+
√
d

2
.

Therefore

J = I

(
−b+

√
d

2
, aA

)
which is the ideal associated with the binary quadratic form H.

Defining the class group. We now know that we can multiply together the
values of any two quadratic forms of the same discriminant and get another. Since
there are only finitely many equivalence classes of binary quadratic forms of a given
discriminant this might seem to lead to a group structure, under multiplication.
To prove this we will need to know that the usual group properties hold (most
importantly, associativity), and also that the values of a binary quadratic form
classifies the form. Unfortunately this is not quite true. In exercise 12.6.2 we
saw that the only issue in distinguishing between the values taken by forms is
perhaps the values taken by ax2 + bxy + cy2 and au2 − buv + cv2. However there
is an automorphism u = x, v = −y between their sets of values so they cannot be
distinguished in this way. On the other hand, the ideals

I

(
−b+

√
d

2
, a

)
and I

(
b+

√
d

2
, a

)

are quite distinct, and so multiplying ideals (and therefore forms) using Dirichlet’s
technique leads one immediately to being able to determine a group structure. This
is called the class group, since the group acts on equivalence classes of ideals (and
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so of forms). In this approach, associativity follows easily, as multiplication of the
numbers in the ideals multiply associatively, and it is similarly evident that the
class group is commutative. Therefore the class group is a commutative group,
acting on the ideal classes of a given discriminant, with identity element given by
the class of principal ideals (which correspond to the principal form).

We will now give a useful criterion to determine how to take square roots inside
the class group.

Proposition 12.8.1. If f is a binary quadratic form of fundamental discriminant
d which represents the square of an odd integer, then there exists a binary quadratic
form g of discriminant d for which g · g ∼ f .

Proof. We begin by squaring the primitive form ax2 + bxy + acy2. Then

J := I

(
−b+

√
d

2
, a

)2

contains a2, a · −b+
√
d

2 , and (−b+
√
d

2 )2 = −a2c − b(−b+
√
d

2 ). Therefore J contains

a · −b+
√
d

2 and b · −b+
√
d

2 . Now (a, b) = 1 or else our original form was not primitive,

and so J contains −b+
√
d

2 . Therefore

J = I

(
−b+

√
d

2
, a2

)

and the corresponding binary quadratic form is a2x2 + bxy + cy2.

One can justify this by finding a suitable multiplication of forms, namely,

(ar2 + brs+ acs2)(au2 + buv + acv2) = a2x2 + bxy + cy2,

where x = ru− csv and y = asu+ arv + bsv.

Now if f represents a2 with (a, d) = 1, then there exist integers b, c such
that the quadratic form F := a2x2 + bxy + cy2 is equivalent to f . Note that
(a, b)2 divides d = b2−4a2c, which is a fundamental discriminant and so squarefree
except perhaps a power of 2. However a is odd and so (a, b) = 1. Therefore we let
g = ax2 + bxy + acy2 so that, as in the previous paragraph g · g ∼ F ∼ f . �

12.9. Bhargava composition5

Let us begin with one further explicit composition, a tiny variant on (12.7.3) (letting
s → −s there):

(au2 + 2Buv + cv2)(ar2 − 2Brs+ cs2) = x2 + (ac−B2)y2

where x = aur +B(vr − us)− cvs and y = us+ vr.

Combining this with the results of the previous section suggests that if the discrim-
inant d is divisible by 4 (which is equivalent to b being even), then

(12.9.1) F (u, v)G(r, s)H(m,−n) = P (x, y)

5Although there is no Nobel Prize in mathematics, there is the Fields Medal, awarded every four
years, only to people 40 years of age or younger. In 2014, in Korea, one of the laureates was Manjul
Bhargava for a body of work that begins with his version of composition, as discussed here, and allows
us to much better understand many classes of equations, especially cubic.
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where P (x, y) = x2 − d
4y

2 is the principal form and x and y are cubic polynomials
in m,n, r, s, u, v. Analogous remarks can be made if the discriminant is odd.

In 2004 Bhargava came up with an entirely new way to find all of the triples
F,G,H of binary quadratic forms of the same discriminant for which (12.9.1) holds:
We begin with a 2-by-2-by-2 cube, the corners of which are labeled with the integers
a, b, c, d, e, f, g, h.

c

a b

d

g

e f

h

Figure 12.2. Bhargava’s Rubik-type cube.

There are six faces of a cube, and these can be split into three parallel pairs. To
each such parallel pair consider the pair of 2-by-2 matrices given by taking the
entries in each face, those entries corresponding to opposite corners of the cube,
always starting with a. Hence we get the pairs

M1(x, y) :=

(
a b
c d

)
x+

(
e f
g h

)
y =

(
ax+ ey bx+ fy
cx+ gy dx+ hy

)
,

M2(x, y) :=

(
a c
e g

)
x+

(
b d
f h

)
y =

(
ax+ by cx+ dy
ex+ fy gx+ hy

)
,

M3(x, y) :=

(
a b
e f

)
x+

(
c d
g h

)
y =

(
ax+ cy bx+ dy
ex+ gy fx+ hy

)
,

where we have, in each, appended the variables, x, y, to create matrix functions of
x and y. The determinant, −Qj(x, y), of each Mj(x, y) is a quadratic form in x and
y. Incredibly Q1, Q2, and Q3 all have the same discriminant and their composition
equals P , the principal form, just as in (12.9.1). We present two proofs. First, by
substitution, one can exhibit that

Q1(x,−y) = Q2(x2, y2)Q3(x3, y3)

where

y =
(
x3 y3

)(a b
c d

)(
x2

y2

)
and x =

(
x3 y3

)(e f
g h

)(
x2

y2

)
.

Let’s work though an example: Plot the cube in three dimensions, take the
Cartesian coordinates of every corner (each 0 or 1), and then label the corner
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(x, y, z), with 22x+ 2y + z, squared. Hence

a, b, c, d, e, f, g, h = 22, 62, 02, 42, 32, 72, 12, 52,

yielding the cube in Figure 12.3.

02

22 62

42

12

32 72

52

Figure 12.3. The construction of three binary quadratic forms using Bhar-
gava’s cube.

This cube leads to three binary quadratic forms of discriminant −7 · 44:
Q1 = −42(4x2+13xy+11y2), Q2 = −22(x2−2xy+29y2), andQ3 = 42(8x2+5xy+y2).

After some work one can verify that

Q1(m,n)Q2(r, s)Q3(u, v) = 4(x2 + 43 · 7y2),
where x and y are the following cubic polynomials in m,n, r, s, u, v:

x = 8(−11mru− 3mrv + 25msu+ 17msv − 17nru− 4nrv + 59nsu+ 32nsv)

and y = mru+mrv + 21msu+ 5msv + 3nru+ 2nrv + 31nsu+ 6nsv.

Bhargava proves his theorem, inspired by a 2-by-2-by-2 Rubik’s cube. His idea
is to apply one invertible linear transformation at a time, simultaneously to a pair
of opposite sides, and to slowly “reduce” the numbers involved, while retaining the
equivalence classes of Q1, Q2, and Q3, until one reduces to a cube and a triple of
binary quadratic forms with coefficients having a convenient structure.

Lemma 12.9.1. If one applies an invertible linear transformation to a pair of
opposite sides, then the associated binary quadratic form is transformed in the usual
way, whereas the other two quadratic forms remain the same.

Therefore we can act on our cube by such SL(2,Z)-transformations, in each
direction, and the three binary quadratic forms each remain in the same equivalence
class.

Proof. If

(
α β
γ δ

)
∈SL(2,Z), then we replace the face(

a b
c d

)
by

(
a b
c d

)
α+

(
e f
g h

)
β; and

(
e f
g h

)
by

(
a b
c d

)
γ +

(
e f
g h

)
δ.
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Then M1(x, y) gets mapped to{(
a b
c d

)
α+

(
e f
g h

)
β

}
x+

{(
a b
c d

)
γ +

(
e f
g h

)
δ

}
y,

that is, M1(αx+ γy, βx+ δy). Therefore the quadratic form Q1(x, y) gets mapped
to Q1(αx+γy, βx+δy) which is equivalent to Q1(x, y). Now M2(x, y) gets mapped
to (

aα+ eβ cα+ gβ
aγ + eδ cγ + gδ

)
x+

(
bα+ fβ dα+ hβ
bγ + fδ dγ + hδ

)
y =

(
α β
γ δ

)
M2(x, y);

hence the determinant, −Q2(x, y), is unchanged. An analogous calculation reveals

that M3(x, y) gets mapped to

(
α β
γ δ

)
M3(x, y) and the determinant, −Q3(x, y),

is also unchanged. �

The previous lemma allows one to proceed in “reducing” the three binary qua-
dratic forms to equivalent forms that are easy to work with (rather as in Dirichlet’s
proof).

Proof of the Bhargava composition. We will simplify the entries in the cube
by the following reduction algorithm:

• We select the corner that is to be a so that a �= 0.

• We will transform the cube to ensure that a divides b, c, and e. If not, say
a does not divide e, then select integers α, β so that aα+ eβ = (a, e), and then let
γ = −e/(a, e), δ = a/(a, e). In the transformed matrix we have a′ = (a, e), e′ = 0,
and 1 ≤ a′ ≤ a−1. It may well now be that a′ does not divide b′ or c′, so we repeat
the process. Each time we do this we reduce the value of a by at least 1; and since
it remains positive this can only happen a finite number of times. At the end of
the process a divides b, c, and e.

• We will transform the cube to ensure that b = c = e = 0. We already have
that a|b, c, e. Now select α = 1, β = 0, γ = −e/a, δ = 1, so that e′ = 0, b′ = b, c′ =
c. We repeat this in each of the three directions to ensure that b = c = e = 0.

Replacing a by −a, we have that the three matrices are

M1(x, y) :=

(
−a 0
0 d

)
x+

(
0 f
g h

)
y, so that Q1(x, y) = adx2 + ahxy + fgy2,

M2(x, y) :=

(
−a 0
0 g

)
x+

(
0 d
f h

)
y, so that Q2(x, y) = agx2 + ahxy + dfy2,

M3(x, y) :=

(
−a 0
0 f

)
x+

(
0 d
g h

)
y, so that Q3(x, y) = afx2 + ahxy + dgy2.

All three Qj have discriminant (ah)2 − 4adfg, and we observe that

Q1(fy2x3 + gx2y3 + hy2y3, ax2x3 − dy2y3) = Q2(x2, y2)Q3(x3, y3)

where x1 = fy2x3 + gx2y3 + hy2y3 and y1 = ax2x3 − dy2y3. �

This brings to mind the twists of the Rubik’s cube, though in that case one has
only finitely many possible transformations, whereas here there are infinitely many
possibilities, as there are infinitely many invertible linear transformations over Z.
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Appendices. The extended version of chapter 12 has the following additional
appendices:

Appendix 12B. The class group is a group whose elements are the equivalence
classes of quadratic forms with multiplication defined by composition as in appendix
12A. We will focus on classifying the all-important elements of order two.

Appendix 12C. Binary quadratic forms of positive discriminant. We have al-
ready explored at length the theory of binary quadratic forms of negative discrim-
inant. Positive quadratic forms are quite a bit trickier, largely because there are
infinitely many automorphisms of the solutions of a quadratic equation of this
discriminant, corresponding to the solutions to Pell’s equation, whereas for nega-
tive discriminants there is usually just the one non-trivial automorphism (x, y) →
(−x,−y). Here we present some of that theory.

Appendix 12D. Sums of three squares. We discover here the connection between
sums of three squares and class numbers and then develop Dirichlet’s class number
formula.

Appendix 12E. Sums of four squares. We give two proofs that every positive
integer is the sum of four squares, including one via the theory of quaternions, and
then discuss how many representations each integer has as the sum of four squares.

Appendix 12F. Universality. A quadratic form is universal if it takes all positive
integer values. Although these were classified long ago by Ramanujan it was only
recently that researchers found a much neater classification: simply verifying that
the quadratic form represents every integer up to 290.

Appendix 12G. Integers represented in Apollonian circle packings. In appendix
9C we developed some of the mathematics of the curvatures inside a circle tiled by
smaller circles. Now we show how some subset of the integers represented can be
found by reducing the question to values of binary quadratic forms.
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Exercises in chapter 0

Exercise 0.1.1(b). The key observation is that if α = 1+
√
5

2
or 1−

√
5

2
, then α2 = α+ 1 and

so, multiplying through by αn−2, we have αn = αn−1 + αn−2 for all n ≥ 2.

Exercise 0.1.3(b). Multiplying through by φ we have φn+1 = Fnφ
2 +Fn−1φ. Now use (a).

Exercise 0.1.5(b). Determine a and b in terms of α and then c and d in terms of α, x0,
and x1.

Exercise 0.2.1(a). Note that N2 + (2N + 1) = (N + 1)2.

Exercise 0.3.1. In both parts use induction on n.

Exercise 0.4.2. Use (0.1.1) to establish that |Fn − φn/
√
5| < 1

2
for all n ≥ 0.

Exercise 0.4.7. If the first character in a string in An is a 0, what must the subsequent
string look like? What if the string begins with a 1?

Exercise 0.4.8. Use Gauss’s trick to show that
∑

a<n≤b n =
(
b+1
2

)
−

(
a+1
2

)
= (b−a)(b+a+1)

2
,

a product of two integers of opposite parity, both > 1. Show that if N is not a power of
2 (so that it has an odd divisor m > 1), then it is a product of two integers of opposite
parity, both > 1. Determine a and b in terms of N and m.

Exercise 0.4.10(a). Verify this for k = 1 and 2, and then for larger k by induction.
(b) Select k and m as functions of n.

Exercise 0.4.16. By (0.1.1),
√
5Fn = φn − φ

n
, and so (

√
5Fn)

k =
∑k

j=0

(
k
j

)
(−1)jρnj where

ρj := φ
j
φk−j . Let xk+1 −

∑k
i=0 cix

i =
∏k

j=0(x− ρj). Therefore

k∑
i=0

ci(
√
5Fn+i)

k =

k∑
j=0

(
k

j

)
(−1)jρnj ·

k∑
i=0

ciρ
i
j =

k∑
j=0

(
k

j

)
(−1)jρnj · ρk+1

j = (
√
5Fn+k)

k.

The result follows after dividing through by (
√
5)k.

251
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Exercises in chapter 1

Exercise 1.1.1(a). Write a = db for some integer d. Show that if d �= 0, then |d| ≥ 1.
(b) Prove that if u and v are integers for which uv = 1, then either u = v = 1 or
u = v = −1. (c) Write b = ma and c = na and show that bx+ cy = max+nay is divisible
by a.

Exercise 1.1.2. Use Lemma 1.1.1 and induction on a for fixed b.

Exercise 1.2.1(a). By exercise 1.1.1(c) we know that d divides au+ bv for any integers u
and v. Now use Theorem 1.1. (d) First note that a divides b if and only if −a divides b.
If |a| = gcd(a, b), then |a| divides both a and b, and so a divides b. On the other hand if
a divides b, then |a| ≤ gcd(a, b) ≤ |a| by (c).

Exercise 1.2.4(b). Let g = gcd(a, b) and write a = gA, b = gB for some integers A and B.
What is the value of Au+Bv? Now apply (a).

Exercise 1.2.5(a). Use Theorem 1.1.

Exercise 1.4.2. Use Lemma 1.4.1.

Exercise 1.7.5(e). Write r = m+ δ where 0 < δ < 1, so that [r] = m and a− r = a−m− δ
so that [a− r] =?.

Exercise 1.7.10. Given any solution, determine u using Lemma 1.1.1.

Exercise 1.7.11. One might apply Corollary 1.2.2.

Exercise 1.7.14(d). Use exercise 1.7.10.

Exercise 1.7.22. For each given m ≥ 1, prove that xm|xmr for all r ≥ 1, by induction on
r, using exercise 0.4.10(a) with k = rm.

Exercise 1.7.23(a). Prove that gcd(xn, b) = gcd(axn−1, b) for all n ≥ 2, and then use
induction on n ≥ 1, together with Corollary 1.2.2. (b) Prove that gcd(xn, xn−1) =
gcd(bxn−2, xn−1) for all n ≥ 2, and then use induction on n ≥ 1, together with Corollary
1.2.2. (c) Use exercise 0.4.10(a) with k = n−m and then (b). (d) Follow the steps of the
Euclidean algorithm using (c).

Exercise 1.9.1. Use the matrix transformation for (uj , uj+1) → (uj+1, uj+2).

Exercises in chapter 2

Exercise 2.1.4(b). Write the integers in the congruence class a (mod d) as a + nd as n
varies over the integers, and partition the integers n into the congruences classes mod k.

Exercise 2.1.5. Write the congruence in terms of integers and then use exercise 1.1.1(c).

Exercise 2.1.6. Write the congruence in terms of integers and then use exercise 1.1.1(e).

Exercise 2.4.1(c). Factor 1001.

Exercise 2.5.4(a). Split the integers into k blocks of m consecutive integers, and use the
main idea from the first proof of Theorem 2.1. (b) Write N = km+ r with 0 ≤ r ≤ m−1.
Use (a) to get k such integers in the first km consecutive integers, and at most one in the
remaining r. Compare k or k + 1 to the result required.

Exercise 2.5.6(b). Use the results for m = 4 from (a). (d) Use the same idea as in (c).
(e) Study squares mod 8.

Exercise 2.5.9(b). Use that 1
j

(
p−1
j−1

)
= 1

p

(
p
j

)
.

Exercise 2.5.10(a). Treat the cases a ≥ b and a < b separately. (b) Treat the cases c ≥ d
and c < d separately.

Exercise 2.5.13. Proceed by induction on k ≥ 1.

Exercise 2.5.15(b). Use induction.



Hints for exercises 253

Exercise 2.5.16(a). Try a proof by contradiction. Start by assuming that the kth pigeon-
hole contains ak letters for each k, and determine a bound on the total number of letters
if each ak ≤ 1. (b) Use the pigeonhole principle. (c) Use induction.

Exercise 2.5.17(a). Use the pigeonhole principle on pairs (xr (mod d), xr+1 (mod d)).
(d) Use exercise 1.7.24.

Exercises in chapter 3

Exercise 3.0.1. The only divisors of p are 1 and p. Therefore gcd(p, a) = 1 or p, and so
gcd(p, a) = p if and only if p divides a. This implies that gcd(p, a) = 1 if and only if p
does not divide a.

Exercise 3.1.1. Use induction and the fact that every integer > 1 has a prime divisor,
as proved in the “prerequisites” section. (The proof will appear as part of the proof of
Theorem 3.2.)

Exercise 3.1.2(a). Apply Theorem 3.1 with a = a1 · · · ak−1 and b = ak, and if p divides a,
then proceed by induction.

(b) p divides some qj by (a), and as qj only has divisors 1 and qj , and as p > 1, we
deduce that p = qj .

Exercise 3.1.3(b). Write n = 2km with m odd. Then n has an odd prime factor if and

only if m > 1. Therefore if n has no odd prime factor, then n = 2k.

Exercise 3.2.1. We have [a, b] = ab by Corollary 3.2.2. The result follows from Lemma
1.4.1.

Exercise 3.3.1. Look at this first in the case that m and n are both powers of p, say,
m = pa and n = pb. If d divides m and n, then d = pc, say, with c ≤ a and c ≤ b.
The maximum c that satisfies both of these inequalities is min{a, b}. Similarly if m and
n divide L = pe, then a ≤ e and b ≤ e and so the minimum e that satisfies both of these
inequalities is max{a, b}. Now use this idea when m and n are arbitrary integers.

Exercise 3.3.5. Use exercise 3.3.3(d).

Exercise 3.3.7(c). Use exercise 3.3.3(c).

Exercise 3.5.1(a). Show that the aj + b are distinct mod m.

Exercise 3.5.2. Prove that the rj (mod m) are all reduced residues, and then that they
are distinct.

Exercise 3.5.3. If ar ≡ c (mod b), then b divides ar− c. Therefore gcd(a, b) divides ar− c
and so c. In the other direction, we write g =gcd(a, b) and so a = gA, b = gB, c = gC,
and we are looking for solutions to Ar ≡ C (mod B). Then use exercise 3.5.1(b).

Exercise 3.5.5. Use the second proof of Corollary 3.5.2.

Exercise 3.6.4. If am + bn = c, then am + bn ≡ c (mod b) (or indeed mod any integer
r ≥ 1). On the other hand if au+ bv ≡ c (mod b) and m is any integer ≡ u (mod b), then
am ≡ au+ bv ≡ c (mod b) and so there exists an integer n for which am+ bn = c.

Exercise 3.7.2(a) We proceed by induction on the number of moduli using exercise 3.2.1.

(b) Replace m in (a) by m− n.

Exercise 3.7.8(a). Work with the prime power divisors ofm and use the Chinese Remainder
Theorem.

Exercise 3.8.3. Calculate the product mod pe, for every prime power pe‖m.

Exercise 3.9.1. Use exercise 1.7.20(a).
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Exercise 3.9.3(a). If 2k + 1 = n/m, take u = αm and v = βm in

u2k+1 + v2k+1

u+ v
= (−uv)k +

k∑
j=1

(−uv)k−j(u2j + v2j),

so that yn/ym is a linear polynomial in the y2jm with coefficients that are ± powers of b.

Exercise 3.9.6. Use exercise 3.3.7(c), and factor gA2 − gB2.

Exercise 3.9.7(a). Write zp−yp

z−y
as a polynomial in y and z.

Exercise 3.9.10(a).
√
2 +

√
3 is a root of x4 − 10x2 + 1. Use Theorem 3.4.

(b)
√
a +

√
b is a root of x4 − 2(a + b)x2 + (a − b)2. Therefore the rational root

m =
√
a+

√
b must be an integer, and then m divides a− b. Writing a = b+mk we have

k =
√
a−

√
b so that b = (m−k

2
)2 and a = (m+k

2
)2.

Exercise 3.9.11(b). Prove that (
√
d+m)(

√
d−m) is an integer

Exercise 3.9.15(b). Use Corollary 2.3.1.

Exercise 3.9.17(b). Write m = gM and n = gN where g = gcd(m,n) so that (M,N) = 1,
and then use exercise 3.7.7 (or exercise 3.9.16(b), for a less complete solution).

Exercise 3.10.2. Write the trinomial coefficient as the product of binomial coefficients.

Exercise 3.11.1. Prove this by induction on n ≥ 1, using the observation in the paragraph
immediately above.

Exercises in chapter 4

Exercise 4.0.1. One can proceed by induction on the number of distinct prime factors of
n, using the definition of multiplicative.

Exercise 4.1.3. Pair m with n−m, and then m with n/m.

Exercise 4.1.5. If the prime factors of n are p1 < p2 < · · · < pk, then pj ≥ k + j and so
φ(n)
n

=
∏k

j=1

pj−1

pj
≥

∏k
j=1

k+j−1
k+j

= k
2k

= 1
2
.

Exercise 4.2.2. Let � = (d, a) so that �|a and therefore d/�|(a/�)b with (d/�, a/�) = 1 and
therefore m = d/�|b.
Exercise 4.2.3(b). What is the power of 2 in σ(n)?

Exercise 4.2.4. Give a general lower bound on σ(n).

Exercise 4.2.5(a). If pe‖n, then 1 + 1
p
≤ σ(pe)/pe < 1 + 1

p
+ 1

p2
+ · · · = p

p−1
.

(b) If n is a perfect number, then σ(n)/n = 2, and if it is odd with ≤ 2 prime factors,
then

∏
p|n

p
p−1

≤ 3
2
· 5
4
which is < 2, contradicting (a).

Exercise 4.3.7(a). Use exercise 3.9.15(a).

Exercise 4.3.11(a). Prove this when a and b are both powers of a fixed prime and then
use multiplicativity.

Exercise 4.3.12. In both parts write, for each d|n, the integers m = an/d with (a, d) = 1.
Use exercise 4.1.3.

Exercise 4.3.13(a). You could use the second part of exercise 4.1.3.

Exercise 4.3.15(b). Use multiplicativity. (e) Use exercise 4.2.5.

Exercise 4.5.1(a). Use the binomial theorem. (b) Let m =
∏

p|n p and x = −1 in (a).

Exercise 4.5.2. Expand the right-hand side.

Exercise 4.6.2. Let r = (a,m) and then s = a/r and t = m/r which therefore must be
coprime. Now a = rs divides mn = rtn, so that s divides tn and therefore s divides n as
(s, t) = 1. Let u = n/s and we finally deduce b = mn/a = tu.
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Exercise 4.8.2. Use the expansion φ(n) =
∑

d|n μ(n/d)d from the proof of Theorem 4.1 in

section 4.4, and a similar expression for σ.

Exercises in chapter 5

Exercise 5.1.4. Show that if 22
n−1

< x ≤ 22
n

, then there are ≥ n primes up to x. Then
give a lower bound for n as a function of x.

Exercise 5.3.2. Show that if every prime factor of n is ≡ 0 or 1 (mod 3), then n ≡ 0 or 1
(mod 3).

Exercise 5.3.4. Consider splitting arithmetic progressions mod 3 into several arithmetic
progressions mod 6.

Exercise 5.3.5. One might use exercise 3.1.4(b) in this proof.

Exercise 5.4.1(b). We wish to show that π(x+εx) > π(x). By (5.4.2) (and footnote 14) we
know that for any fixed δ > 0 we have (1− δ) x

log x
< π(x) < (1 + δ) x

log x
if x is sufficiently

large. The result will then follow if the middle inequality holds in

π(x) < (1 + δ)
x

log x
< (1− δ)

x+ εx

log(x+ εx)
< π(x+ εx).

Now log(x+εx)
log x

< 1 + ε
log x

as log(1 + ε) < ε, and so the middle inequality follows if

1+ ε
log x

< (1− δ)(1+ ε)/(1+ δ). Selecting, say, δ = ε/3 this holds if x is sufficiently large.

Exercise 5.8.11. Use l’Hôpital’s rule.

Exercise 5.8.12. First prove that
(
Li(x)− x

log x

)/
x

(log x)2
→ 1 as x → ∞.

Exercise 5.8.14(a). Use Corollary 2.3.1.

Exercise 5.9.1. Either use Kummer’s Theorem (Theorem 3.7) or consider directly how
often p divides the numerator and denominator of

(
2n
n

)
.

Exercise 5.9.3. Use induction to show that, for each n ≥ 6, every integer in [7, 2N + 6] is
the sum of distinct primes in {2, 3, . . . , 2N}, by induction on N ≥ 1.

Exercise 5.9.6. Let p be a prime in [2n, 4n]. Now construct all the pairs you can that sum
to p. Proceed.

Exercise 5.10.1. Maximize the log of the ratio using calculus.

Exercise 5.10.2. Use Proposition 5.10.1.

Exercise 5.10.3(a). If r ≤ s/2, then by Bertrand’s postulate there is a prime p ∈ (s/2, s] ⊂
(r, s]. Otherwise k = s− r ≤ r. In either case, by Bertrand’s postulate or the Sylvester-
Schur Theorem, one term has a prime factor p > k, and so this is the only term that can
be divisible by p.

Exercise 5.11.8(b). Use the Fundamental Theorem of Algebra mod p (see Lagrange’s
Theorem, Proposition 7.4.1).

Exercise 5.11.9(a). Can be proved by induction on k. For k = 0 this is trivial. For larger
k, let T ⊂ {1, 2, . . . ,m− 1} and we pair together the terms for S = T and S = T ∪ {m}
in our sum. The sum therefore becomes

∑
T⊂{1,2,...,m−1}

(−1)|T |

⎛
⎝(

xm + x0 +
∑
j∈T

xj

)k

−
(
x0 +

∑
j∈T

xj

)k
⎞
⎠

=

k−1∑
i=0

(
k

i

)
xk−i
m

∑
T⊂{1,2,...,m−1}

(−1)|T |(x0 +
∑
j∈T

xj)
i

and the result follows by induction, as m− 1 > k − 1 ≥ i.
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(b) Let x0 = logn and if n has prime factors p1, . . . , pm, then let xj = − log pj for
each j ≥ 1.

(c) We get k!x1 . . . xk in (a) and so (−1)kk!
∏

p|n log p in (b). We prove this by

induction using the proof in (a), since in the induction step only the i = k − 1 term
remains, which is the result from the previous step multiplied by kxk.

Exercises in chapter 6

Exercise 6.1.2. Study where lines of rational slope, going through the point (2, 1), hit the
curve again.

Exercise 6.1.5. Write down an equation that identifies when three given squares are in
arithmetic progression.

Exercise 6.3.1(a). By (6.1.1) the area is g2rs(r2 − s2) where r > s ≥ 1 and (r, s) = 1. If
this is a square, then each of r, s, and r2 − s2 must be squares; call them x2, y2, and z2,
respectively, so that x4 − y4 = z2, which contradicts Theorem 6.2.

(c) Consider a right-angled triangle with sides x2, 2y2, z.

Exercise 6.5.3. Here b is the hypotenuse, and c is the area. Further hint: We need b2 − 4c
and b2+4c to be integer squares, say, u2 and v2, so that 4c = b2−u2 = v2− b2. Therefore
2b2 = u2 + v2, so u, v have the same parity and therefore (u+v

2
)2 + (u−v

2
)2 = b2. This is

our Pythagorean triangle, which has area 1
2
· u+v

2
· v−u

2
= v2−b2+b2−u2

8
= c.

Exercise 6.5.6. Let α = p/q with (p, q) = 1 so that α = (aα + b)/α = (ap + bq)/p. Now
(p, q) = 1 so comparing denominators we must have q = 1, and p divides ap+ bq, so that
p divides bq, and therefore b.

Exercise 6.5.7. By (6.1.1) the perimeter of such a triangle has length 2grs+ g(r2 − s2) +
g(r2 + s2) = 2gr(r + s) where r > s > 0. Therefore n has divisors r and r + s, where
r < r + s < 2r. On the other hand if n has divisors d1, d2 for which d1 < d2 < 2d1, then
we may assume they are coprime, by dividing through by any common factor. Therefore
d1d2 divides n and so we can let r = d1, s = d2 − d1, and g = n/d1d2.

Exercise 6.5.9. Prove that if n ≥ 13, then (n+1)2+128 < 2n2. Then proceed by induction
on n for m ∈ [n2 + 129, 2n2).

Exercise 6.5.10. What values can cubes take mod 9?

Exercises in chapter 7

Exercise 7.1.2(b). Use the technique in the proof of Lemma 7.1.1

Exercise 7.2.2. Let k := ordm(a) and A = {1, a, a2, . . . , ak−1 (mod m)}. Show that if b
and b′ are any two reduced residues mod m, then either bA and b′A are disjoint or are
equal. Therefore the sets of the form bA, where b is a reduced residue mod m, which are
each of size k, partition the φ(m) reduced residues mod m. This implies that k divides
φ(m) as desired.

Exercise 7.3.1. Let k := ordq(2). We have 2p ≡ 1 (mod q) and so k divides p by Lemma
7.1.2. Therefore k = 1 or p, but k �= 1 as 21 �≡ 1 (mod q).

Exercise 7.4.1(a) If n is not of the form p or p2, write n = ab with 1 < a < b. If n = p2,
then n divides p · 2p.
Exercise 7.4.3(a). If Q = p−1

2
, then

(p− 1)!/Q! = (p− 1)(p− 2) · · · (p−Q) ≡ (−1)(−2) · · · (−Q) = (−1)QQ! (mod p).

Exercise 7.5.2(b). As (g
p−1
2 )2 = gp−1 ≡ 1 (mod p), so g

p−1
2 is a square root of 1 (mod p);

that is, g
p−1
2 ≡ 1 or −1 (mod p). But g has order p− 1 and so g

p−1
2 �≡ 1 (mod p).

Exercise 7.10.2. Use Proposition 7.4.1.
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Exercise 7.10.4. In every solution n, n− 1, n− 2 have prime factors 2, 3, p for some p > 3.
At most one of these integers is divisible by p. Show that the other two lead to a solution
to 2n − 3m = ±1 and use exercise 7.10.3.

Exercise 7.10.5(b). Use Theorem 7.1.

(d) Make sure a is chosen so that (q, a− 1) = 1.

Exercise 7.10.6(a). The trick is to write zp = ((z − y) + y)p and then use the binomial

theorem. One can also write xn = zn−yn

z−y
and use exercise 2.5.20(a).

Exercise 7.10.12. Take the j and p− j terms together.

Exercise 7.10.13. Let M = a0 + 1 so that an = 2nM − 1 for all n ≥ 0. Let p be an odd
prime dividing a1. Then p divides ap.

Exercise 7.10.16(b). Since n is not a Carmichael number, the subgroup in (a) is proper
and so contains at most half the reduced residues. (c) Let q = 2p− 1. Now n− 1 ≡ p− 1
(mod 2p − 2), so that if (a, n) = 1, then an−1 ≡ ap−1 ≡ 1 (mod p) and an−1 ≡ ap−1 ≡
a

q−1
2 ≡ ±1 (mod q).

Exercise 7.10.17(a). Mp − 1 = 2p − 2 is divisible by p.

Exercise 7.12.1(b). Let f(x1, . . . , xp) = (x2, . . . , xp, x1) in part (a).

Exercises in chapter 8

Exercise 8.1.2(b). Use Lemma 8.1.1.

Exercise 8.1.3(a). Use that
(

b2

p

)
=

(
b
p

)2

= (±1)2 = 1.

Exercise 8.1.6(a). The residues 1, g2, g4, . . . , gp−3 (mod p) are evidently distinct and non-
zero squares. As there are p−1

2
of them, they are all of the quadratic residues by Lemma

8.1.1.

(b) We see above that g = g1 is not one of the quadratic residues.

Exercise 8.2.1. There are two solutions to r2 ≡ a (mod p), say, r and −r (mod p), whose
product is r · (−r) ≡ −a (mod p). Note also that |S| = p−3

2
.

Exercise 8.4.1. r is the largest integer with 2r − 1 ≤ q−1
2

; that is, r ≤ q+1
4

.

Exercise 8.4.5. Look at (2/p).

Exercise 8.7.2(a). Use the Chinese Remainder Theorem and exercise 8.1.2(b).

Exercise 8.7.5. If a is odd, then a = 1 + 2 · a−1
2

, and so

1+2· ab− 1

2
= ab =

(
1 + 2 · a− 1

2

)(
1 + 2 · b− 1

2

)
≡ 1+2·

(
a− 1

2
+

b− 1

2

)
(mod 4).

Exercise 8.7.6. Select a2 ≡ −2 (mod p) with a odd and minimal, so that 1 ≤ a ≤ p − 1.
Write a2 + 2 = pr. Evidently pr ≡ a2 + 2 ≡ 3 (mod 8) and so r ≡ 3p ≡ 5 or 7 (mod 8).

But then a2 ≡ −2 (mod r) and so
(−2

r

)
= 1 with r = a2+2

p
< p. This contradicts the

induction hypothesis, and so
(

−2
p

)
= −1.

Exercise 8.8.1. Suppose that k > � ≥ 1. If r is a quadratic residue mod pk, then r is a
quadratic residue mod p�, trivially. On the other hand if r is a quadratic residue mod p�,
then it is a quadratic residue mod p�+1 by Proposition 8.8.1, then mod p�+2 by Proposition
8.8.1, etc., up to mod pk. We take � = 1 if p is odd, and � = 3 if p = 2 and note that if r
is a quadratic residue mod 8, then r ≡ 1 (mod 8).

Exercise 8.9.5(a). Write n = 3am where 3 � m.
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Exercise 8.9.9(a). Consider the size of the set of residues {a2 (mod p)} and of the set of
residues {m− b2 (mod p)}, as a and b vary.

(b) Take m = −1.

(c) Prove there is a solution u, v to au2+bv2 ≡ −c (mod p) and then multiply through
by any z (mod p).

Exercise 8.9.10(e). Apply Gauss’s trick as in the proof of Corollary 7.5.2.

Exercise 8.9.12. For each solution to y2 ≡ b (mod p), consider whether there are solutions
to x2 ≡ y (mod p).

Exercise 8.9.14. Let b2 ≡ −1 (mod p) and study (1 + b)2 (mod p).

Exercise 8.9.15. Show that if a has order m (mod p), then σa,p consists of p−1
m

cycles of
length m.

Exercise 8.9.16(a). Use exercise 1.7.20(c). (b) Use exercise 1.7.20(b).

Exercise 8.9.17. Select integerm with (m/n) = −1. Consider the prime divisors of integers
of the form kn+m for well-chosen values of k.

Exercise 8.9.18(a). Modify the ideas in Euclid’s proof that there are infinitely many
primes. (b) n = −3. (c) Look at 4m2 + 3 with m odd. (d) n = 3. Note (m2 − 3)/2 ≡ 2
(mod 3). (e) n = −4. Note m2 + 4 ≡ 5 (mod 8). (f) n = 2. Note m2 − 2 ≡ 7 (mod 8).
(g) n = −2. Note m2 + 2 ≡ 3 (mod 8). (h) n = −4 with (m, 6) = 1.

Exercise 8.9.24. Therefore
(
2
n

)
=

(
2

n−2

)
if n ≡ 1 (mod 4), and

(
2
n

)
= −

(
2

n−2

)
if n ≡ 3

(mod 4), and so the result follows by the induction hypothesis.

Exercise 8.10.2. If N = pq +m where 0 ≤ m ≤ p− 1, then N − p[N/p] = N − pq = m. If
r ≥ 0, then m = r; and if r < 0, then m = p+ r.

Exercises in chapter 9

Exercise 9.1.2. If p does not divide a, then (b/a)2 ≡ −1 (mod p). Therefore p = 2 or
p ≡ 1 (mod 4). We get the same conclusion if p does not divide b and, otherwise, p divides
(a, b).

Exercise 9.1.4. By induction on k ≥ 1: It is trivial for k = 1 and otherwise let nk = a2+b2

and n1 · · ·nk−1 = c2 + d2 (by the induction hypothesis), and then the result follows from
(9.1.1).

Exercise 9.1.7(d). Use (a) to prove that |ac− bd|, |ad− bc| < p.

Exercise 9.3.1. Proceed as in the geometric proof of (6.1.1), or as in the proof of Propo-
sition 9.1.2.

Exercise 9.7.2(b). Replace a and b by their absolutely least residues mod p.

Exercise 9.7.3(b). Select any b with
(

b
p

)
= −1 in (a), and let m = r or s.

Exercise 9.7.7. We know that n is the length of the hypotenuse of a primitive Pythagorean
triple iff there exist coprime integers r, s of different parity with n = r2 + s2. Hence all of
n’s prime factors are ≡ 1 (mod 4), and we know we get at least two representations of n
if it has at least two distinct prime factors.

Exercise 9.7.9. Since m2 ± 2 are odd they must be ≡ 3 (mod 4), and so must be divisible
by a prime ≡ 3 (mod 4).

Exercise 9.7.10(a). In what domains do each of the ranges of φ lie? (b) We must be in the
middle case (as y, z �= 0) so that x = y in which case x(x+ 4z) = p. Since p can only be
factored in one way into positive integers, we have x = 1, z = p−1

4
; that is, v = (1, 1, p−1

4
).

(c) Pair up the elements of S using φ.

Exercise 9.9.2. Try a = b = n = 1.
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Exercises in chapter 10

Exercise 10.3.2. Hopefully n = pq and φ(n) = de − 1 = 29 × 197 − 1 = 5712; if so, then
p+ q = n+ 1− φ(n) = 180. Therefore (x− p)(x− q) = x2 − 180x+ 5891 which we factor
to obtain p and q.

Exercise 10.4.2(b). Use Corollary 7.5.3.

Exercise 10.7.5. Since n is a Carmichael number we know that it is squarefree and has
prime divisors p and q, by Lemma 7.6.1. If a(n−1)/2 ≡ −1 (mod n), then let b ≡ 1 (mod p)

and b ≡ a (mod q), and determine the value of b(n−1)/2 (mod pq).

Exercise 10.8.6(a). Factor 4x4 + 1 and substitute in x = 2n.

Exercises in chapter 11

Exercise 11.2.1. If y = 0, then m1n = n1m. Now (m,n) = (m1, n1) = 1 and so m1 = m
and n1 = n contradicting our construction of the pair m,n.

Exercise 11.2.5. Consecutive powerful numbers of the form 23a2 followed by b2, for some
integers a and b.

Exercise 11.4.2. Use the product rule to compute the derivative.

Exercise 11.6.3. Given a smallest solution to x2 −dy2 = 1 expand (x+
√
dy)φ(d) (mod d).

Exercise 11.6.11(c). Consider the example 1 + (2n − 1) = 2n with m ≥ 2/ε.

Exercises in chapter 12

Exercise 12.1.3. Suppose that d is a fundamental discriminant and [a, b, c] is an imprimitive
form of discriminant d. If h|(a, b, c), then h2|d, so that h = 2. But then D = d/h2 ≡ 0 or
1 (mod 4), a contradiction. Now suppose that d is not a fundamental discriminant. Then
there exists a prime p such that d = p2D, where D ≡ 0 or 1 (mod 4). There is always a
form g of discriminant D and so pg is an imprimitive form of discriminant d.

Exercise 12.1.4(c). Study the right-hand side of (12.1.2).

Exercise 12.1.5. Take determinants of both sides.

Exercise 12.1.6. First note that b ≡ d mod 2, and that if b = 2k+δ with δ the least residue
of d (mod 2), then the change of variable x → x − ky shows that [1, b, c] ∼ [1, δ, A], the
principal form. The value of A must be (δ− d)/4, so that the discriminant is d = b2 − 4c.

Exercise 12.4.1. One example is d = −171. We begin by noting that |b| ≤ a ≤
√

171/3 =√
57 < 8 and b is odd. If b = ±1, then ac = (1 + 171)/4 = 43 with a ≤ c so that a = 1. If

b = ±3, then ac = (9 + 171)/4 = 45 with a ≤ c so that a = 1, 3, 5 and 1 < |b|. If b = ±5,
then ac = (25 + 171)/4 = 49 with a ≤ c so that a = 1, 7 and 1 < |b|. If b = ±7, then
ac = (49 + 171)/4 = 55 with a ≤ c so that a = 1, 5 which are both < |b|, so we are left
with [1, 1, 43], [3, 3, 15], [5, 3, 9], [5,−3, 9], [7, 5, 7], and [3, 3, 15] which is imprimitive.

Exercise 12.4.2. These are the smallest negative fundamental discriminants of class num-
bers 1 to 8:
For d = −3 we have [1, 1, 1]. For d = −15 we have [1, 1, 4], [2, 1, 2].
For d = −23 we have [1, 1, 6], [2,±1, 3].
For d = −39 we have [1, 1, 10], [2,±1, 5], [3, 3, 4].
For d = −47 we have [1, 1, 12], [2,±1, 6], [3,±1, 4].
For d = −87 we have [1, 1, 22], [2,±1, 11], [3, 3, 8], [4,±3, 6].
For d = −71 we have [1, 1, 18], [2,±1, 9], [3,±1, 6], [4,±3, 5].
For d = −95 we have [1, 1, 24], [2,±1, 12], [3,±1, 8], [4,±1, 6], [5, 5, 6].

Exercise 12.4.3. These are the smallest even negative fundamental discriminants of class
numbers 1 to 6: For d = −4 we have [1, 0, 1]; for d = −20 we have [1, 0, 5], [2, 2, 3]; for
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d = −56 we have [1, 0, 14], [2, 0, 7], [3,±2, 5]; for d = −104 we have [1, 0, 26], [2, 0, 13],
[3,±2, 9], [5,±4, 6].

Exercise 12.5.3. Use Rabinowicz’s criterion, and quadratic reciprocity.

Exercise 12.6.1. Prove and use the inequality am2+bmn+cn2 ≥ am2−|b|max{|m|, |n|}2+
cn2.

Exercise 12.6.2(b). Use the smallest values properly represented by each form.

Exercise 12.6.5(c). Use exercise 12.6.2(e).

Exercise 12.6.7(c). Given a solution B, let C = (B2−d)/4A and then [A,B,C] represents
A properly (by (1, 0)). Find reduced f ∼ [A,B,C] and use the transformation matrix to
find the representation as in (b).

Exercise 12.8.1. Prove this one prime factor of A at a time and then use the Chinese
Remainder Theorem. For each prime p, try f(1, 0), f(0, 1), and then f(1, 1).

Exercise 12.8.2 If f = [a, r, u], then the transformation x → x + ky, y → y yields that
f ∼ [a, b, c] where b = r + 2ka; that is, we can take b to be any value ≡ r (mod 2a).
Similarly if F = [A, s, v], then we can take b to be any value ≡ s (mod 2A). Such a b
exists by the Chinese Remainder Theorem provided r ≡ s (mod 2), and r and s have the
same parity as the discriminants of f and F .



Recommended further reading

[AZ18] Martin Aigner and Günter M. Ziegler, Proofs from The Book, sixth ed., Springer, Berlin,
2018.

[Bak84] Alan Baker, A concise introduction to the theory of numbers, Cambridge University Press,
Cambridge, 1984. MR781734

[BB09] Arthur T. Benjamin and Ezra Brown (eds.), Biscuits of number theory, The Dolciani Math-
ematical Expositions, vol. 34, Mathematical Association of America, Washington, DC, 2009.
MR2516529

[Cas78] J. W. S. Cassels, Rational quadratic forms, London Mathematical Society Monographs,
vol. 13, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York,
1978. MR522835

[CG96] John H. Conway and Richard K. Guy, The book of numbers, Copernicus, New York, 1996.
MR1411676

[Cox13] David A. Cox, Primes of the form x2 + ny2, second ed., Pure and Applied Mathematics
(Hoboken), John Wiley & Sons, Inc., Hoboken, NJ, 2013. MR3236783

[CP05] Richard Crandall and Carl Pomerance, Prime numbers: A computational perspective, second
ed., Springer, New York, 2005. MR2156291

[Dav80] Harold M. Davenport, Multiplicative number theory, Springer-Verlag, New York, 1980.

[Dav05] H. Davenport, Analytic methods for Diophantine equations and Diophantine inequalities,
second ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2005.

[DF04] David S. Dummit and Richard M. Foote, Abstract algebra, third ed., John Wiley & Sons, Inc.,
Hoboken, NJ, 2004. MR2286236

[Edw01] H. M. Edwards, Riemann’s zeta function, Dover Publications, Inc., Mineola, NY, 2001.
MR1854455

[GG] Andrew Granville and Ben Green, Additive combinatorics, American Mathematical Society
(to appear).

[Graa] Andrew Granville, The distribution of primes: Analytic number theory revealed, American
Mathematical Society (to appear).

[Grab] Andrew Granville, Rational points on curves: Arithmetic geometry revealed, American Math-
ematical Society (to appear).

[GS] Andrew Granville and K. Soundararajan, The pretentious approach to analytic number the-
ory, Cambridge University Press (to appear).

[Guy04] Richard K. Guy, Unsolved problems in number theory, third ed., Problem Books in Mathe-
matics, Springer-Verlag, New York, 2004. MR2076335

[HW08] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, sixth ed., revised by
D. R. Heath-Brown and J. H. Silverman, Oxford University Press, Oxford, 2008. MR2445243

[IR90] Kenneth Ireland and Michael Rosen, A classical introduction to modern number theory,
second ed., Graduate Texts in Mathematics, vol. 84, Springer-Verlag, New York, 1990.
MR1070716

261

https://www.ams.org/mathscinet-getitem?mr=781734
https://www.ams.org/mathscinet-getitem?mr=2516529
https://www.ams.org/mathscinet-getitem?mr=522835
https://www.ams.org/mathscinet-getitem?mr=1411676
https://www.ams.org/mathscinet-getitem?mr=3236783
https://www.ams.org/mathscinet-getitem?mr=2156291
https://www.ams.org/mathscinet-getitem?mr=2286236
https://www.ams.org/mathscinet-getitem?mr=1854455
https://www.ams.org/mathscinet-getitem?mr=2076335
https://www.ams.org/mathscinet-getitem?mr=2445243
https://www.ams.org/mathscinet-getitem?mr=1070716


262 Recommended further reading

[Knu98] Donald E. Knuth, The art of computer programming. Vol. 2, Seminumerical algorithms, third
edition [of MR0286318], Addison-Wesley, Reading, MA, 1998. MR3077153

[LeV96] William J. LeVeque, Fundamentals of number theory, reprint of the 1977 original, Dover
Publications, Inc., Mineola, NY, 1996. MR1382656

[NZM91] Ivan Niven, Herbert S. Zuckerman, and Hugh L. Montgomery, An introduction to the theory
of numbers, fifth ed., John Wiley & Sons, Inc., New York, 1991. MR1083765

[Rib91] Paulo Ribenboim, The little book of big primes, Springer-Verlag, New York, 1991. MR1118843

[Sha85] Daniel Shanks, Solved and unsolved problems in number theory, third ed., Chelsea Publishing
Co., New York, 1985. MR798284

[ST15] Joseph H. Silverman and John T. Tate, Rational points on elliptic curves, second ed., Un-
dergraduate Texts in Mathematics, Springer, Cham, 2015. MR3363545

[Ste09] William Stein, Elementary number theory: Primes, congruences, and secrets. A computa-
tional approach, Undergraduate Texts in Mathematics, Springer, New York, 2009. MR2464052

[Tig16] Jean-Pierre Tignol, Galois’ theory of algebraic equations, second ed., World Scientific Pub-
lishing Co. Pte. Ltd., Hackensack, NJ, 2016. MR3444922
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